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1 Introduction

The scope of this thesis is the investigation of two-phase immiscible flow. More pre-
cisely, inside a porous medium, like soil, rock or a fuel cell, we examine equations that
describe the flow of two immiscible fluids, like water and air, water and oil or water and
water vapor. Such flow processes may occur e.g. in hydrology, oil recovery or power
generation.

To describe the flow of two immiscible fluids with (reduced) saturations s; and sg, and
pressures p; and po, we use the so called two-phase flow equations that have essentially
the form

Os1 =V - (M(s1)(Vp1+9)),

Ops2 =V - (Aa(s2)(Vp2 + 9)),
pe(s1) = p1 — P2,
1 =51+ s9,

(1.1)

inside a cylinder Q := Qx (0, T). Typically, we find Q C R? or R? and we consider T' > 0.
We only consider the case where s; and the pressure difference p; — p2 are linked by a
functional dependence p.. Typical shapes of these functions we have in mind are depicted
in Figure 1.1. Particularly, our main concern are the degenerate cases shown there, i.e.
A1(0) = A2(0) =0 and lim p.(s1) = — lim p.(s1) = oo.

s1—1 s1—0

In many physical situations, for example in the case that one of the fluid phases is
gas and the other water, the variations in the pressure of one phase can be neglected in
comparison to the pressure variations in the other phase. In this situation it is reasonable
to assume that one pressure is constant, e.g. po = 0. With s = s1, p = p; and A\; = A,
we reduce (1.1) to

Oys = V- (A(s)(Vp +9)),

pe(s) =p (12)

on Q. Equation (1.2) is called the Richards equation for unsaturated flow.

To investigate these equations, we use certain transformations and realize that the trans-
formed problems of (1.1) and (1.2) are related to the generalized porous medium equa-
tion:

Ops = AP(s) on Q (1.3)



1 Introduction

Here, ® has one of the forms depicted in Figure 4.1. The degeneracies of A\, Ay and
p. may lead to a so-called doubly degenerate ®. Particularly, we think of the cases
®’'(0) = 0 and lin% P'(s) € {0, 0}

5—

So far, we did not comment on the z-dependence of the coefficients. Naturally, prop-
erties of a porous medium may change from one space position to another. Hence, the
coefficient functions, i.e. A1, A2 and ® in (1.1), (1.2) and (1.3) may depend on the spa-
tial position = € 2. Essentially, we consider two different types of x-dependencies. For
(1.1), we assume that the variations in z-directions of the coefficients are smooth; we
provide a local Hélder continuity result for s;. The precise problem is stated in chapter
3 and the regularity is shown in chapter 6 using the method of intrinsic scaling. The
x-dependence for the unsaturated flow problem is as follows. The porous medium (2
is separated by an interface I' into two subdomains €; and 2, (see Figure 1.2). On
each of these subdomains the coefficients are assumed to be constant with potentially
different values. The flow of the fluid phase is given by (1.2). To pose a well-defined
problem we require transmission conditions at the interface. Under the assumption that
the pressure and the flux across the interface are continuous, we show uniqueness of the
saturation. The problem is formulated in chapter 2 and the uniqueness, particularly a
generalized L'-contraction result, is proved in chapter 5 using the method of doubling
the variables. To tackle both problems, we provide technical tools in chapter 4 motivated
and demonstrated by means of equation (1.3).

Before we turn our attention to the problems presented above, we state the main re-
sults more precisely in the next section. We briefly derive variants of equations (1.1)
and (1.2) by means of physical principles in section 1.2 and comment on the litera-
ture in section 1.3. Basic assumptions, results and notation are provided in section
1.4.

1.1 Main Results

In this section, we specifiy the equations under consideration and state our main results
more precisely. As for the unsaturated flow problem, we assume that €2 is divided by
an interface I' into two domains €; and Q, (see Figure 1.2). We write Q; = Q; x (0,T")
for j € {l,r}. We attach an index to the functions that corresponds to the domains.
For j € {l,r}, the functions \; and p.; have the shapes of A\; and p. from Figure 1.1,
respectively. We use the Kirchhoff transform

@,(s) i= [ (o)) do

10



1.1 Main Results

and assume that ©; is an increasing function of s that that handles the continuity of the
pressure across the interface. As we see in section 2.1, we obtain

Ors =V - (V[®;(s)] +Nj(s)gj) + fj on Qj for j € {l,r},
0= (VI[®(s)]+ N(s)g1]) - vt + (V[®r(5)] + \(8)gr]) vr  onT x (0,T), (1.4)
©:(s) =0,(s) onl x(0,7),

where f; are source terms and v; are the outer normal vectors of Q; on I' for j € {l,}.
Assuming essentially that (®; o @;1)’ is Lipschitz continuous, Theorem 2.4 states that
solutions of (1.4) possess a generalized L!-contraction property. That is, for two solutions
s1 and s with initial data so 1 and sg2 there holds

L
I51(8) = 528l 10y < €™ lls0,1 = 50,20l 10 »

for a.e. t € (0,7). The constant L is determined by the Lipschitz constants of the
source terms f; and f.. Without the source terms, we find L = 0 and thus the classical,
non-generalized L'-contraction property. We emphasize that the L'-contraction implies
uniqueness.

Concerning the two-phase flow problem, we introduce the global pressure

[ e )
p=n /pc(o) Mot (w)

and the transformation

_ [P AN
o) = [ Sl E) e

Here, A1, A2 and p. are as in Figure 1.1. As it is pointed out in section 3.1, we ob-
tain

pOs =V - (k (V[®(s)] — VP(s) + B(s)) + D(s)u) on Q,

0=V-(k[\s)Vp+ E(s)]) + f on Q, (1.5)
with
B(s) = )\1<f\>(2)2(8) (Valpe(s)] + 91— g2) s
D(s) = _ M) or Aa(s)

A(s) A(s)’
E(s) = —Aa(5) Vape(s) +/\/0 v, <A2(f) :

NG

Our main result for (1.5) is stated in Theorem 3.12. Assuming that @' is smooth and
behaves like a power near zero and one with the same order, we prove that the saturation
s is locally Holder continuous. As far as we know, there is no proof for the local Holder
continuity of s for z-dependent ® available in the literature.

@0%+M®m+h@m

11



1 Introduction

As it is sketched in [Che02] for z-independent @, the method to obtain local Holder
continuity of s leads may also be used to obtain Hélder continuity at the boundary.
From there on, also global Hélder continuity can be obtained, which, in turn, is used to
obtain an uniqueness result. Thus, the local Hélder continuity result we provide could

be the first step to obtain an uniqueness result for (1.5) in the case of z-dependent
P.

1.2 Modelling of Flow in Porous Media

In this section, we derive the equations describing the macroscopic flow of two immiscible
fluids in a porous medium. For further details, we refer to the books of Bear [Bea88, ch.
9], Bear and Bachmat [BB90, ch. 5] and Chavent and Jaffré [CJ86, ch. I.IV and IILII].
Additionally, for the consideration of interfaces between porous media for unsaturated
flow processes we refer to [OS06] and the references therein.

Two-Phase Flow

The porous medium is denoted by Q@ C R? The function ¢ : Q — [0, 1] describes the
porosity of the medium, i.e. the amount of pore space relative to the bulk volume. We
assume that  is not deformable; particularly, ¢ is independent of time and pressure.
For each of the two fluid phases, i.e. for the a-phase with o = 1,2, the mass balance (or
continuity equation) is given by

¢8t()0a3a) +V. (paua) = pchOéu (1'6)

where pq, Ua, Palla, Sa and f, are, respectively, the density, volumetric flow rate, mass
flux, (reduced) saturation, and external volumetric flow rate of the a-phase. In the
literature one often finds the notation o = w, n, where w and n denotes the wetting and
non-wetting phase, respectively.

Assuming that the fluids are homogeneous and incompressible, i.e. p, = const, equation
(1.6) becomes

00 (Sa) + V- ug = fa. (1.7)
The fluxes u, obey Darcy’s law

kroc Sa
g = —r 5o (VPa + pag) , (1.8)

(e}

where & is the absolute permeability of the porous medium, —g is the gravity force, and
kra, o and pq are, respectively, the relative permeability, viscosity and pressure of the a-
phase. The permeability k is a symmetric, positive definite matrix. Thus, & allows to de-
scribe anisotropic porous media. We define the phase mobilities

kTO[ (x7 SO[)

Aol 8a) = fra ()

12



1.2 Modelling of Flow in Porous Media

De,il
DPe,r

Figure 1.1: In the left picture, we see typical curves of the \1(s), Aa(s) and p.(s). Also
the critical saturation s. such that p.(sc) = 0 is shown. The picture on
the right shows that the continuity of the pressure across an interface may
yield a discontinuity of the saturation.

The pores of the medium are completely filled by the two phases, i.e.
51+ s2 = 1 and we choose s := s7. (1.9)

Let us assume for the moment that the 1-phase is water, i.e. s describes the water
saturation inside the porous medium. A decrease in saturation of water may lead to a
disconnectedness in the water phase. Particularly, water pools inside the porous medium
may loose their connection through pores to each other. In such a situation the water
ceases to flow, causing the permeability to vanish. For 0 < s, < spr < 1, this occurs
at the residual saturations s = $,,, spr with ky1(s,,) = 0 and kyo(spr) = 0, respectively.
With the transformation § = (sps — $m)s + Sm € [0, 1], we may assume s € [0, 1], s, =0
and spr = 1 in the following. Thus, we only speak of saturation instead of reduced
saturation in the remainder of this thesis.

The bulk model is completed by a functional dependence of the pressure differences and
the saturation, namely by the capillary pressure relation

pe(s) = p1 — pa. (1.10)

This relation may also depend on the spatial position x € ). The capillary pres-
sure law (1.10) is motivated by Laplace’s law of surface tension. The pressure dif-
ference across the fluid interface depends linearly on the mean curvature of the inter-
faces between the two fluids. Furthermore, the curvature of these interface depends
on the typical size of the pores where these interfaces are located. Since the typical
pore size depends on the saturation, we obtain a relation between saturation and pres-
sure.

13



1 Introduction

We emphasize that the definition of capillary pressure presented here is different from
the usual choice in the literature. In particular, our definition leads to an increasing p.
function. Summarizing the previous deduction and redefining the functions A, in terms
of s and using s; + s2 = 1 as well as g, = pog for a € {1,2} we obtain the two-phase
flow system

¢0rs =V - (kA1(s)[Vp1 + ¢1]) + f1,

—¢0s =V - (kA2(8)[Vp2 + g2]) + f2, (TP)
Pe(s) = p1 — p2.
12
T "
T
1%
Q — Q,

Q

Figure 1.2: This picture shows the situation where the domain € is divided by the
interface I' into two subdomains € and §2,

For completeness, we also consider a porous medium with a sharp interface in the case of
two-phase flow. Assume that  is divided by an interface I' into two subdomains which
are denoted by €; and 2,. This situation is shown in Figure 1.2. We consider (TP) on
Q; and attach an index j € {l,r} to the functions. Mass conservation yields that the
fluxes of each of the phases across the interfaces are continuous, i.e. for a € {1,2} there
holds

(EAa,l(Sl)[vpa,l + ga,l]) V== (H)\a,r(sr)[vpa,r + ga,rD *Up (111)
on I'. Here vy = —v, are the outward pointing unit normal vectors of €; and €2, on
I". Balance of forces provides the continuity of the pressures across the interface, which
18

pc,l(sl) =P11 — P21 =Ply —P2r = pc,r(sr) (112)

on I'. The last assumption may yield a discontinuous saturation across the interface, i.e.
we find $; # s, on I'. This situation is shown in Figure 1.1.

Unsaturated Flow

As we stated in the introduction, it is often reasonable to assume that the pressure
variations in the second phase are negligible when compared to the pressure variations

14



1.3 Survey of Literature

in the first phase. For example, in groundwater flow, one considers water and air inside
soil. Assuming that the gas inside the soil is connected to the surrounding yields a
constant atmospheric pressure ps = pgen, inside the gas phase. Usually, the atmospheric
pressure is normalized to pgtm = 0.

With this normalization, dropping the index 1 for the first phase, and the choice ¢ = k =

1 we obtain from (TP) the Richards equation for unsaturated flow:
Oys =V - [(A(s)(Vp +9g))] + f, ®)
p = pe(s).

In the case of a domain 2 that is divided by an interface I', we assume, as before,
that (R) holds on €; and €,, respectively, attach an index j € {l,r} to the coefficient
functions and obtain from (1.11) and (1.12) the equations

Ni(s)[Vor+al) - v = — (Ae(sr) [Vor + 90)) - 1y

(1.13)
pc,l(sl) =PI =Dr = pc,r<3T>

on I'. In general, the coefficient functions p.(z, s) := pci(s) Lo, (x) + per(s) Lo, (z) and
Az, s) == N(s) L, (z) + Ar(s) 1q, (z) are discontinuous in z across I'. Hence, we call (R)
on € and €, linked by the transmission conditions (1.13) the discontinuous Richards
equation.

1.3 Survey of Literature

Considering (R) and having the shape of A; and p. from Figure 1.1 in mind, we see that
we can only expect estimates of Vp or Vs with a weight. More precisely, with the test
function p we expect that

[ M@0 o= [ M) wis))? Vsl
is bounded and with the test function s we expect
[ AV Vs = [ As)pl(s) [P
Q Q
is bounded. This implies a lack of regularity of p and s (in comparison to the heat
equation). Such a lack of regularity may result in a lack of compactness of sequences py

or sy, which is needed to prove existence. One possible trick to recover compactness is
to use the so called Kirchhoff transformation

o(s) = [ Aolrh(o)do. (K)

15



1 Introduction

We can expect to find estimates for

POl

without a weight and compactness for sequences uy = ®(si) can be inferred. With (K),
the Richards equation (R) is transformed into

Os =V - (V[®(s)] + A(s)g) + |- (1.14)

Equation (1.14) is a generalization of equation (1.3). In [V4z06] the generalized porous
medium equation (1.3) has been investigated extensively. With u = ®(s) and b = &1,
we cast (1.14) into

Oib(u) =V - (Vu+ A(b(u))g) + f (1.15)

and obtain a quasilinear elliptic-parabolic equation for which vast amounts of literature
is available. For example, existence is provided in the fundamental work of [AL83] under
standard boundary conditions. A uniqueness result for time-independent boundary data
is provided in [Ott95].

Equation (1.15) is also suited to describe so called unsaturated-saturated flow processes.
For z-independent coefficients, existence for standard and outflow boundary data is
shown in [ALV84]. A uniqueness result has been provided in [Ott97]. For unsaturated-
saturated flow processes, one may assign for each pressure value p a unique saturation
value s, but not the other way round. This corresponds to the situation of a multivalued
capillary pressure relation, i.e. p € p.(s). In comparison to Figure 1.1, we find for some
p* the relation lims_,1 p.(s) = p* and p.(1) = [p*, oo] instead of merely limg_,1 p.(s) = 0.
A similar behaviour may occur for lims_,gp.(s). For such a multivalued relation, one
defines a suitable analogue of (K) and obtains, instead of (1.14), under the assumption
g = 0, the equation
Os =Au+ f, uec d(s).

This equation, supplemented with an outflow boundary condition, was investigated in
[Sch07] and an existence result in the case of z-dependent coefficients was obtained via
a regularization argument.

For nondegenerate two-phase flow equations (TP), existence is shown in [KS77]. For
degenerate two-phase flow equations under standard and outflow boundary conditions,
existence results are provided in [KL84; AD85a; Arb92; Che01] and [LS10]. All these ref-
erences have in common that at most a smooth z-dependence of the coefficients is consid-
ered. Regularity of the saturation has been investigated in [AD85a; Che01; Che02] and
recently in [DGV10]. General uniqueness results are not available in the literature. Un-
der restrictive assumptions, essentially loosing the structure of the problem, a uniqueness
result in the case of z-dependent coefficients is stated in [Che01]. For the z-independent
case, a uniqueness result is stated in [Che02].

16



1.4 Notation and Function Spaces

Multivalued capillary pressure relations are also investigated for two-phase flow equa-
tions. Usually, relations of the form p; — ps € p.(s) are considered in the literature. In
the one-dimensional situation, existence is shown in [BLS09] considering an interface and
in [Koc09] considering outflow boundary conditions. For higher-dimensional problems
and under consideration of interfaces, an existence result has been provided in [CGP09].
The continuity of the pressures across the interfaces is translated into pa; N pa,r 7# 0 for
a € {1,2}.

In the case of nondegenerate capillary pressures, i.e. in the case that p. is a bounded
function, existence for the two-phase flow equation with interfaces is shown in [EEMO06].
For nondegenerate capillary pressures, existence and uniqueness for the discontinuous
Richards equation is provided in [Can08].

Recently, progress on existence results for capillary pressures with hysteresis for two-
phase and unsaturated flows were obtained. We refer to [KRS13; Sch12b; Sch12a] and
[LRS11] and the references therein.

1.4 Notation and Function Spaces

For d > 1, let E,U,V C R% such that U,V open, a,b € R and a function f : E — R be
given. We use the following definitions and notations.

e /a,b/ := [min{a,b}, max{a,b}] and R := RU{+cc} denotes the extended real line

e For ¢ > 0, each of the inequalities 2ab < eca® + % and ab < ea® + % is called
Cauchy’s inequality (see [Eva98, B.2]).

e We write V CC U and say V is compactly contained in U, if V. C V C U and V'
is compact

« |E| and H*(E) denote the d-dimensional Lebesgue and Hausdorff measure of E,
respectively, and the characteristic function of E is denoted by 1g

e Forl < k e R, we write
{l<f<k}={zeFE|l<f(z)<k}

and the obvious variants with, for example, only one lower or upper bound for
f(x) and relations "<" and "="

o If E is measurable and bounded and f € L!(E), we write

foT = m et

o fi:=max{f,0}and f- = max{—f,0}. Thisimplies f = f+—f_ and |f| = f++ /-

17



1 Introduction

For u € R and ¢ > 0, we define the sign-function and the approximation sign, in

virtue of
1 u > 0, 1 U > €,
sign(u) := 40 u=0, and sign(u):={% wel—¢zg, (1.16)
-1 u<0, -1 u<—¢
o For p > 0 and z¢ € R?, the Euclidean norm of zq is denoted by || = ||zol|, and

the ball of radius p centered at zy by

B, () := {x € R?| [z — x| < p} and abbreviate B, = B,(0)

o We use the standard notations C°(U) = D(U) for the space of functions that
are compactly supported in U and arbitrarily often differentiable. The space of
distributions is denoted by D'(U)

o For ¢ € C2°(By) with ¢ > 0 and [zap = 1, and € > 0, we call the sequence
(pe)eso defined in virtue of
1 T
pe(r) = 87190 z

for z € R? a (standard) Dirac sequence; see for example [Alt06, 2.13]

Assume now that F is measurable. The support of f is defined as

supp(f) := {z : f(z) # 0}.

This definition is suitable for continuous functions. When working with equivalence
classes of functions, such as in the LP-spaces, this definition is not adequate. A suitable
definition of the support should be independent of the representative element of the
equivalence class, but since I1g = 0 a.e. in R and R = supp(1g) # supp(0) = @ this is
not the case.

Proposition 1.1 (and definition of support [Brel0, Proposition 4.17]). Let f : RY — R
be any function. Consider the family (w;)icr, of all open sets of RY, for an appropriate
index set I, such that for each i € I, f =0 a.e. on w;. Set w = J;cywi. Then f =0
a.e. on w and define supp(f) := R\ w.

Function spaces For d > 1, let Q@ C R be a given domain. The Sobolev spaces
Wkr(Q,R) = WFP(Q) are defined by

WkP(Q) := {u € LP(Q)|D € LP(Q) for every a € N" with |a| < k}

18



1.4 Notation and Function Spaces

with norm
a, ||P Yr
_ (S Doul,g) " A <p<oo)
”UHwk,p(Q) = N
2la<k 1D ul| oo (0 (p = 00)
for p € [1,00]. Equivalently, by the Theorem of Meyers and Serrin [AF03, Theorem
3.18], the space W*P(€2) can be characterized as the closure of C°°(£2) under [l ()

The space Wg’p(ﬂ) is defined as the closure of C2°(€2) with respect to [|[lyynp(q)- If ©
has a Lipschitz boundary, we find the characterization

WP (Q) = {u € WFP(Q) | ulaq = 0},

where u|po denotes the trace of u on 9. We use the abbreviations H*(Q2) = W*2(Q) and
HE () = Wy (Q). The dual space of H} () is denoted by H~'(Q). For further reference
on Sobolev spaces, compare to [Alt06], [AF03] or [Brel0).

Concerning the local Holder regularity for two-phase flow, we exploit the following
Poincaré type inequality.

Proposition 1.2 ([DiB93, chapter I, Proposition 2.1]). Let Q C R? be a bounded convex
set and let p € C(Q) be such that 0 < p(z) < 1 for every x € Q and such that the sets
{p >k} are conver for every k € (0,1). Let u € WHP(Q), 1 < p < oo, and assume that
the set £ := {u =0} N {p = 1} has positive measure.

Then there exists a constant C depending only upon d and p, not depending on u and
w, such that
1 1
= d. Q d =
([ o) <8 ([ olpup)”. 1)
Q Fica Q

We also use Bochner spaces. Let T > 0, p € [1,00] and a Banach space X be be
given. We define the space LP(0,7; X) as the space of strongly measurable functions
u: [0,7] — X, such that the Bochner norm

T
oo = ( / ||u<t>rr’;()

is bounded. For p = oo, we define L*°(0,7; X) as the space of strongly measurable
functions u : [0, 7] — X such that

1/p

[[ull oo (0,7,x) = €88 sup [Ju(t) || x < oo.
te(0,T

0,7]

We remark that L>°(0,T; L>(2)) G L>(2 x [0,T7]) as the example f(z,y) = Liz<yy =
Ljo () on [0,1]* shows. Clearly, we find that f € L°°([0,1]*). However, the induced
map F : [0,1] — L*°([0,1]) given by y — 1o, is not strongly measurable. For further
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1 Introduction

results on the Bochner integral, we refer to [DU77], [Boc33], [ABO7, ch. 11.1] and [Sch13,
ch. 10.1].

Additionally, we define certain parabolic spaces on @ := Qx (0, T') in virtue of

VP(Q) = L(0,T, LP()) N LP(0, T; W(Q))
V(@) = L=(0,T, LP(2)) N LP(0, T; Wy P (Q))

both equipped with the norm

[vllveg) = eositiqu (s Ol Loy + IVl Loo 1200 -

In chapter 6, we exploit the following embedding theorem.

Theorem 1.3. Let p > 1 and let Q@ C R? be bounded. There exists a constant C
depending only on d and p such that for every v € V§'(Q) holds

lolf2, 0 < C {0l > 0377 [[0], 0 - (118)

The theorem is stated as a corollary in [DPV11, I.Corollary 4.1].

The duality pairing between a Banach space X and its dual X’ is denoted by (2, z) x7 x.
As long as the domains are clear, we write [[ul|,, or [lu|[;, instead of [lu[| ;) and likewise
for other norms.

Notation for spatial derivatives The spatial gradient of a real-valued function is de-
noted by V. Let f : R4 — R be given. For v : R? — R, we write

VIf ()] = V[f(z, u(@))] = Vo f(,u() + f'(z,u(z))Vu(z) = Vo f(u) + f'(u)Vu.

Particularly, V. f(x,u(z)) denotes the evaluation of the d partial z-derivatives of f
in the point (z,u(x)) and f'(z,u(x)) denotes the evaluation of the d + 1-st partial
derivative of f at (x,u(x)). Occasionally, for the column vector V, f(z,u(z)) we use the
notation

Vef(z,u(x)) = (fi(z,u(x)), folz,u(z)),. .., fd(ac,u(z)))T

In addition, we use the standard symbol D to denote the vector of the derivatives of
a function, see [Eva98, Appenidx A]. Consequently, we have Vu = (Du)' but Vf =
n(Df) T, where 7 is the projection onto the first d-coordinates. The matrix of the second
order derivatives of u is denoted by D?u.
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1.4 Notation and Function Spaces

Definition 1.4. For A, B € R™? with A = (a;i) and B = (b;i,), we define
d
A:B:= Z ajkbjk.

jk=1

For M € CY(Q,R¥>*9) let My, (z) be the k—th column of M. We define the column-wise
divergence of M as

V-M(x):=(V-M(x),..., V- My(x)).

For A € C1(Q,R™%), f € CY(Q,R) and g € C(Q,R?), we find the product rule

V- (fAg)=Ag - Vf+[V-(Ag)=Ag-Vf+f(A:(Dg)")+ f(V-A)g.  (1.19)

Further Notation Let d > 1 be given. For domains in R?, space-time domains in R%*!
and their boundaries, we use the following notation. Let

Q ¢ R? be a bounded domain with boundary 9. (1.20)

The outward normal vector of £ on 0 is denoted by v. We denote the Dirichlet
and Neumann parts of 02 as I'p and I'y, respectively. The decomposition is such
that

ON=TpUlywithTpNTy=0 (1.21)

holds. Let T' > 0 be given. For 0 < ¢ < T we define the space-time cylinders
Q: = Q x (0,t) denote its boundary by 9,Q: := Q, \  x (0, ] (1.22)

and abbreviate Q = Q7. The boundary 9,Q); is called the parabolic boundary of @;. For
Q) with Lipschitz boundary and given I'p C 02, we define

V= {ve H(Q) | vlr, = 0}. (1.23)

We are often concerned with Carathéodory functions, e.g. functions g : Q x [0,1] — R,
such that g(z,-) : [0,1] — R is continuous for a.e. z € 2 and g(, s) is measurable for
every s € [0,1]. Such functions are jointly measurable. Furthermore, for a measurable
function u : Q — [0, 1] the mapping = — g(x, u(x)), or as we write g(-,u), is measurable
(see [ABO7, 2.75 and 4.49-4.51]). With slight abuse of notation, we denote for measurable
u: Q — [0,1] the map (z,t) — g(x,u(x,t)) also by g(-, u).
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Remark 1.5 (Continuity in R). Continuity with values in R is understood with respect
to the topology generated by the metric d(z,y) = |g(z) — g(y)| for z,y € R, where

-1 for x = —o0,
g(x) = i forzeR,
1 for x = oo.

This is the topology generated by the intervals (a,b), (a,o0] and [—o0,a) for a,b € R.
See also [Alt06, 0.8 and 0.11] and [ABO7, 2.75] <

Definition 1.6 (Inverse of a function in one direction). Let ® € C(Q x [0,1]) be such
that the map @z : s ®(x, s) is increasing for every x € Q0 and denote the inverse by

@&1) For o € (0, 3), we define the sets

Ko :=={(z,u) |z € Q,®(z,0) <
K :={(z,u) |z € Q,®(z,0) <

e =

Furthermore, with abuse of notation, we define the map

o' Kg —[0,1]

(x,u) — q)(—wl) (u).
Remark 1.7. We emphasize that ®,)([0,1]) = [®(x,0),®(z,1)] and that K and
Kg are closed. Additionally, by definition of ®~! we find ®~!(z,®(z,s)) = s and
®(x, Y (x,u)) = u for fixed x € Q. The domain Kg and K are depicted in Figure
4.1. <
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2 The Unsaturated Flow Problem

In this chapter, we state the main result concerning the problem for unsaturated flows.
We consider a Lipschitz domain €2 that is separated by an interface I' into two Lipschitz
subdomains €2; and €, as depicted in Figure 1.2. We assume that ©; N, = () and the
interface I' is such that T = Q; N, holds. The outward unit normal vectors of €2, €Y
and 2, on 012, 0€); and 0L, are denoted by v,v; and v,, respectively. On I', 02 N 0N2
and 09, N O, we find v; = —v,,v = vy and v = v,, respectively. We consider the
discontinuous Richards equation such a domain €. Particularly, for j € {l,r}, we assume
that functions A; and p.; as well as vectors g; are given and postulate that the flow on
(25 is described by (R) from page 15. On the interface I' we prescribe the transmission
conditions (1.13).

To handle the discontinuous Richards equation, we require two transformations, both
similar to the Kirchhoff transform (K) from page 15. This is executed in section 2.1. For
the transformed problem, we provide a weak solution concept, and state the main result
for the discontinuous Richards equation, an L'-contraction in section 2.2. The proof of
the main result is presented in chapter 5.

Before we investigate the problem stated above, we make some notational remarks. For
j € {l,r}, we abbreviate Q; := ; x (0,T) and use for h; : Q; x [0,1] — R and
uj : 5 — [0, 1] the notation

u:=u Lo, +u, Lo, and h(u) := h(z,u) := h(u) Lo, (x) + hy(u) 1o, (x). (2.1)

2.1 Transformation of the Equations

We recall the equations we intend to consider. For j € {l,r}, we use the notation (2.1)
for s and obtain in virtue of (R) from page 15 the equations

s =V - (Ni(s)(Vpj +9;) + fj

(2.2)
Pj = Pe,j(5)
on @) and from (1.13), again with abuse of notation, the equations
M)V +al) - v = — (A (8)[Vpr + g5]) - 1y 2:3)

pc,l(s) =pL=Dr = po,r(s)
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2 The Unsaturated Flow Problem

on I' x (0,7). As in (K), we define for j € {l,r} and s € [0,1] the transforma-
tion

0, = [ Atonty(ondo = [ k) ac. (24
Consequently, (2.2) is transformed into
Ops =V - (V[®5(s)] + Aj(s)g;) + [ (2.5)
and the continuity of the flux from (2.3) reads
(VE(s)] + M(&al) - 11 = = (T2 ()] + Arl)gr) - (2:6)

Concerning the continuity of the pressure, we impose as a compatibility condition that
the ranges of p.; and p., coincide. More precisely, we assume that p.; and p., are
increasing and such that p.;(0) = p.(0) € [—00,00) and p.;(1) = per(1) € (—o0, 0]
holds.

From the second equality in (2.4) we see that continuity of the pressures across I' does
not lead to a continuity of ® across I', in general. Particularly, let s; and s, € [0,1] be
arbitrary, then

(I)l(sl) = (I)T(ST) € [0’ OO] @5 pc,l(sl) = pc,r(sr) € [_OO’ OO]

except if \(p, | (u)) = Ar(pet(u)) for any u € [pe(0), per(1)], which is not the case we
want to consider.

Following [Can08], we define a transformation similar to (2.4) that contains the continu-
ity information of the pressure across I'. For j € {l, 7}, we define

S

0,(s) = [ min {\/ Mok wes (@) bty (0) dor

0 ke{lr}

| (2.7)
i { k@) e
= min :
pe.;(0) kE{lr} k\Pek
As the second equality in (2.7) shows, for arbitrary s;, s, € [0, 1] we obtain
©i(s1) = ©,(s,) € [0,00] <= pei(s1) = per(sr) € [—00, 0] (2.8)

as long as p;(0) = per(0).
Summarizing, we obtain the transformed discontinuous Richards equation
Os =V - (V[®j(s)] + Aj(s)g;) + f;  on Q; for j € {l,r},

0= (VI®i(s)] + Mls)al) - vi + (V[®r(s)] + Ar(s)gr]) - v on T'x (0,T), (TDR)
O(s) =0,(s) onI x(0,T).
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2.2 Weak Solutions and Main Result

For j € {l,r}, we consider the disjoint decomposition 9Q2; = 'UI'p ;UI'x ;, use v; = v on
0 \T" to supplement (TDR) with the boundary conditions

0=v-(V[®;(s)] +Aj(s)gj) onIn;x(0,T),

(2.9)
<I>j(s) = CI)DJ‘ on PDJ’ X (O,T)

and with the initial condition
s(x,0) = so(x) for z € (2.10)

for appropriate functions ®p ; and sg.

2.2 Weak Solutions and Main Result

We start with the assumptions on the domain and recall the introduction of the interface
I' at the beginning of this chapter.

Assumption A2.1. Let d > 1 and Q C R? be a domain with Lipschitz boundary.
Additionally, there are Lipschitz domains Q, € C Q such that N, = 0 and O U
Q, = Q. T is such that T = QN Q,. For j € {l,r}, we assume that the disjoint
decompositions 0Q; = I'n ;UL'p ; UL and 0Q =T'p UT'y hold, where I'p =T'p;UT'p,
and I'y = FNJ U FN,r-

We only use the following assumptions on the coefficients.

Assumption A2.2. For j € {l,r}, we assume that f; € C%1([0,1]), A\; € C([0,1]) and
gj € R? and that there are measurable functions spj : Q@ — [0,1] such that ®p; =
®;(sp,j) € H'(Q;). The Lipschitz constant of f; is denoted by L;.

Assumption A2.3. Let j € {l,r}. Assume that there exist functions ©;,®; : [0,1] —
[0, 00], that are increasing, continuous in the sense of Remark 1.5 and that the compat-
ibility conditions ©;(0) = 0,(0) =0 and ©;(1) = ©,(1) € (0,00] hold. If ©;(1) < oo, we
impose ©;,®; € C*([0,1]). Otherwise, we impose ©;,®; € C1([0,1)).

Remark 2.1. In the following, we only work with the regularity of ®; and ©; from
Assumption A2.3. Thus, it is not necessary to impose assumptions on p/cyj or further
assumptions on A;.

However, assuming integrability near zero, additional conditions like p.; € C1((0,1)),
Aj € C%L([0,1]) and P ;(8),Aj(s) > 0 for s € (0,1) and j € {/,7} provide the regularity
of ®; and ©; stated in Assumption A2.3. In particular, the conditions of [Can08] are
allowed, i.e. A;(0) = A;(1) =0 and p.; € C'([0,1]) for j € {I,7}. Moreover, choices of
Aj and p.; as in Figure 1.1 are possible and ®; and ©; can have both shapes depicted
in Figure 4.1. N
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2 The Unsaturated Flow Problem

We recall the definition and V' from (1.23) and apply the notation to €;, i.e. we de-
fine

Vj = {U € H () | vy, = 0} (2.11)

for j € {{,r}. With the notation of (2.1), the abbreviations @ from (1.22) and Q; from
the beginning of this chapter, we define weak solutions for the discontinuous Richards
equation.

Definition 2.2. We call s € L>®(Q,[0,1]) a weak solution of (TDR) with initial data
sg € L®(Q,[0,1]), if the following properties hold:

1. s € L*(0,T;V') and

/0T<8ts,§)vf,v+/Qs@t§: —/9505(.70) (2.12)

for every € € L2(0,T; V)N WL10,T; LY(Q)) such that £(-,T) =0
2. ®;(s) € L*(0,T;V;) + ®p; for j € {l,r} and

/Q (05, E) vy + ; /Q [92405) + Ay (s)gs] - V6 = /Q f(s)€ (2.13)

for every € € L*(0,T;V)
3. O(s) € L*(0,T; V).

Remark 2.3. In Definition 2.2 item 1 states s(0) = sp, item 2 covers the continuity of
the flux and item 3 covers the continuity of the pressure on I'. We emphasize that item
3 needs to be read with the notation from (2.1). The only assumptions on ©; are those
imposed in Assumption A2.3. In particular, different definitions of ©; than that of (2.7)
may be used.

In the case without an interface we consider I' = (), Q; = Q,., \i(s) = A (s) and p.;(s) =
Per(s). Consequently, item 3 in Definition 2.2 is not required and the sum in (2.13) is
replaced by a single integral over Q.

In [Can08] an existence result for nondegenerate capillary pressures, A;(0) = A;(1) =0
and the same solution concept is shown. We are not going to provide existence for our
more general choice of ©. N

To prove the L'-contraction, we have to impose the following assumption.

Assumption A2.4. Forj € {l,r}, we assume that \;o @j_l is Lipschitz continuous on
[0,0;(1)) and that ®; o @;1 is differentiable on (0,0;(1)). We define Aj := (®; o @j_l)’
and assume additionally that Aj is Lipschitz continuous and bounded on (0,0,(1)).

26



2.2 Weak Solutions and Main Result

The Lipschitz continuity of A; is also required in [Can08] and is crucial to infer the
L'-contraction. In addition, we require bounds on A; since we consider potentially
unbounded functions ©;. Our main result on the discontinuous Richards equation (TDR)
from page 24 is the following:

Theorem 2.4 (L'-contraction and uniqueness). Let Assumptions A2.1, A2.2, A2.3
and A2.4 hold. Let sy, s2 be weak solutions of (TDR) in the sense of Definition 2.2 with
initial data so1 and so2, respectively. Then there holds

/Q(So,l —s0.2| — [51 — s2[) 0y +

+ > / sign(®;(s1) — ©;(s2))V[P;(s1) — P;(s2)] - Vv

ety (2.14)

jefiry ' 9

< /Q sign(s1 — s2) [f(s1) — f(s2)] ¥

for every non-negative v € C°((—o00,T) x R™). Moreover, for L = max{L1, La}, there
holds the following generalized L*-contraction property

ls1(8) = s2(8)ll () < €™ llson — s02l 1y - (2.15)

for almost every t € (0,T). Consequently, there is at most one solution to the discon-
tinuous Richards equation (TDR).

The proof of the theorem is presented in chapter 5 and uses the method of doubling
the variables. This method was introduced by [Kru70] and is presented, for example,
in [Ott95] or [Can08]. An important tool required to perform the method of doubling the
variables is the integration by parts formula from Lemma 4.36.

We provide two examples of coefficient functions, such that A; is Lipschitz continu-
ous though p.; is unbounded. In [CanO8] only bounded capillary pressure functions
are considered. Consequently, Theorem 2.4 generalizes Theorem 3.1 from [Can08] in a
substantial way.

For simplicity, both examples only show that A; is Lipschitz continuous sufficiently close
to zero. We use the inverse function theorem to obtain the identity

207! ()

J

kgﬁ?»} \/)\k (p;;i (pc,j (@;1 (u))))

Aj(u) =

: (2.16)

where 0 < w is sufficiently small and j € {l,r}.
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2 The Unsaturated Flow Problem

Example 2.5 (Logarithmic Pressures). For j € {l,r}, let a;j, Aj, B; > 0, and C; € R
be given. On a small interval near zero, we assume

Aj(s) = A;js% for s >0 and p. j(s) = Bjln(s) + C; for s > 0.
The coefficients are chosen such that
a; By, = o Bj, (2.17)
where k € {l,r} with k # j.
We find

i) =1 =
Do \Pe,i\S)) = 5y o
k\Pe,j S P exp(CJTka), i#k

and with (2.17) also

. = . C; —Cy 2 o
ity Pl 00 = i (Vv (S5 % o =%

For j € {l,r}, this leads to
2
@j(s) = OTBJ'D]'STJ.

Inversion of ©; and application to (2.16) yields

2
;U A a;

2 2
—10) _ I () = A
®j (u) = <QBij> and Aj(u) = D, <QBij> U

for w close to zero; thus, A; is Lipschitz continuous near zero. Particularly, the case
where pe; and pe, differ only by a vertical shift is allowed.

Example 2.6 (Higher Order Pressures). For j € {l,r}, let o, 5, Aj and B; > 0 be
given. For s sufficiently small, we assume

Aj(s) =A;js% fors >0 and pcj(s) = —% for s > 0.
The coefficients are chosen such that
a1fBr = o By and o > 25;. (2.18)
We find
s, i=k

—1
Pek(pei(s)) = = L
(%)% s, j#k

28



2.2 Weak Solutions and Main Result

Due to (2.18), we infer for j € {l,r} also

Sk
By |
. -1 . = i l
2\ e () = min, {m (B) } ’

Under consideration of (2.18), this leads to

_ 2Dijﬁj S"‘j_;ﬁj .

©;(s) w28,

Inversion of ©; and application to (2.16) yields

2 :
- OZ_2B ;=20 2 A a_QB a;—2B; a;
G 1(u) = (JJ> w5 and Aj(u) = =L (j] w25

for w close to zero; thus, due to (2.18), A; is Lipschitz continuous near zero.

In both examples, the assumptions on the coefficients are made to reduce complexity
and to obtain straight forward calculations.
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3 The Two-Phase Flow Problem

In this chapter, we state the main result concerning the two-phase flow problem (TP)
from page 14. Prior to that, we provide two ways to transform the system into a coupled
system of an elliptic and a parabolic partial differential equation (section 3.1). In section
3.2, we provide assumptions required to derive existence for the transformed problems
(TP1) and (TP2). We specify assumptions needed to derive local Holder continuity of the
saturation for weak solutions of (TP1) in section 3.3. Throughout this chapter, we usu-
ally suppress the z-dependence of the occurring functions.

3.1 Transformation of the Equations

In this section, we transform the system (TP) into a system consisting of one parabolic
and one elliptic equation. To this end, we introduce the so called global pressure and a
transformation that resembles the Kirchhoff transformation (K). Having done that, we
complete the problem by adding boundary and initial data.

We add the two elliptic-parabolic equations in (TP) from page 14, neglect the source
terms, i.e. we assume f; = fo = 0, and use the capillary pressure relation to ob-
tain

0=V (k[A1(s)Vp1 + A2(8) VP2 + A1(8)g1 + A2(s)g2])

= (x[re) (V1 - A;(S)V[pxs)]) )+ el )

with the definitions A(s) := A\1(s) +A2(s) and g; := pjg. Equation (3.1) can be expressed
with Vps instead of Vpy, in which case —\y/A changes to A1 /.

(3.1)

We define a global pressure

. > Ma(8) _ * Mg
p=m= [ SO =m+ [ e e (3.2

and find with a substitution

o [T el )
P=n1 /pc(o) s () du. (3.3)
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3 The Two-Phase Flow Problem

The global pressure p is often regarded as a mean pressure; particularly, in the case
A1 = A2 we obtain p = Z%. The gradients of the global and capillary pressure
are

Vo=V - v - [V, (2o ) ac

V[pe(s)] = pe(s)Vs + Vape(s)

and we refer to the notation from section 1.4. Definitions (3.2) and (3.4) applied to
(3.1), yield

(3.4)

00 (o [\ (%1 = 5Tl 1ok + o]

= V- (k[\s)Vp + E(s)])

(3.5)

with

E(s) := —=Xa2(s)Vape(s) + )‘/08 (

For a € {1,2}, the fluxes u, specified in (1.8) read

) dE+A1(s)g1 + Aa(s)g2

g = —KAa(5)(VDa + ga)- (3.6)
We define the global flux v := w1 + uo and find
u=1uy +us = —r(A(s)Vp+ E(s)). (3.7)

To reformulate one of the parabolic equations in (TP) in a way that it contains the
information of u, we use the identity

Ay = (A1 + Ao)up = Aoug — Mug + A (ug + u2) = Aug — Adjug + Aju. (3.8)

For the equation of p; in (TP), we obtain

605 = V- (MG)Tp+ 1) V- (—u)
D9 (M = o) - L) (3.9)
A e N O SEPYIN IS B R

Using the equation for ps and a similar reasoning, we obtain (3.9) with *2(s)/x(s) u in-
stead of —A1(s)/x(s)u. For further manipulations, we define a pseudo pressure in the
spirit of the the Kirchhoff transformation (K) and emphasize that the functions are
z-dependent

L S)\l(g)/\Q(é)/
o) = [ @) e (3.10)
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3.1 Transformation of the Equations

We remark the identity

Vo) = [V, (“i)(gj@pg@) de= [ v.w(s) (3.11)

Using the definition of ® and the gradient of the capillary pressure p. from (3.4) in (3.9),
we derive

60is = V - (1 (V[B(s)] — Vad(s) + B(s)) + D(s)u) (3.12)
with
5(s) = 2P 9, 4]+ g1 — gn) and D(s) = I o 22

With D(s) = —*1(s)/x(s) and the definition of u, we can express (3.12) as
$0rs =V - (K (V[@(s)] + Ai(s)Vp +71(s))), (3.13)

where

1(s) := —Vu®(s) + B(s) + Al(S)E(s)

A(s)
. . (3.14)
—n) [V (o )ac- [1v, (M) dcentn
Likewise, with D(s) = 22(s)/x(s) we may write (3.12) as
¢Ors =V - (£ (V[®(s)] — Aa(s) VP + 72(s))) , (3.15)
where
als) = Tl ~ Aale) [V (E4(0)) ag
(3.16)

- [~ (Mi)@j@p’c(@) A€ Ao (5)g.

On the other hand, under consideration of the elliptic equation (3.5), we can deduce
(3.15) also from (3.13), and vice verca.

We recall 2,Q,00,I'y and I'p from (1.20)—(1.22). Summarizing the previous consid-
erations, we may write (TP), formally equivalent, in one of the two forms below:

pOs =V - (k (V[®(s)] — Vo P(s) + B(s)) + D(s)u) on @, (TP1y)
0=V (k[\s)Vp+ E(s)]) on Q (TP1s)
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3 The Two-Phase Flow Problem

or

¢Ors =V - (k (V[®(s)] + A1(s)Vp +(s))) on Q, (TP2y)
0=V -(k[A(s)Vp+ E(s)]) on Q. (TP29)

To complete these problems, we prescribe initial and Dirichlet boundary data. Particu-
larly, we assume I'y = (0. OnT'px(0,7T] = 9% (0, T] we prescribe

p=pp and ®(s) = ®p on I'p x (0, 7). (3.17)
and complete the systems by prescribing initial data
s(0) = sp on © x {0}. (3.18)

Remark 3.1 (Comparison to [AD85a]). The article of Alt and DiBenedetto considers
existence of the two-phase flow problem in the form of (TP) with various boundary
conditions. As is shown there, solutions to this problem provide, via approximation,
a solution to the bulk two-phase flow problem in a form similar to (TP1). In their
transformed setting local uniform continuity, i.e. continuity on sets K CC @, of the
saturation is shown. Particularly, continuity of the saturation at the parabolic boundary
of () is not provided there.

In the remainder of this remark, we compare our notation to the notation of Alt and
DiBenedetto and assume for simplicity that x = 1. In their notation the saturations
s1 and s are functions of the pressure difference p; — po and of x. Comparing this to
our notation, we realize that the capillary pressure function p.(z, s) can be inverted for
every = € (2, as long as p.(z,-) has the shape as shown in Figure 1.1. This leads to
s1(z,p1 — p2) = s = p. 1(x, p1 — p2) with the notation from Definition 1.6.

The definition of global pressure Alt and DiBenedetto use is again slightly different and
reads p = p; — fé)c(s) % If we introduce a critical saturation s, i.e. s. € [0,1] such
that p1 — p2 = pe(x,8) = 0 <= s = s. (see [CJ86, chapters I, II1.3.2 and equation
I11.(2.13)]), we deduce with a change of variables p = p; — [ )‘TQp’C This coincides with
(3.2) as long as s, = 0. We infer that the global pressures in [AD85a] and the one we
use differ only by an z-dependent function. In particular, if the capillary pressure curves

are independent of x, then the pseudo pressures differ only by a constant.

Starting from (3.9) Alt and DiBenedetto arrive at

$pOs =V - <)\1(j\)(i\)2(s)p’c(s)Vs + B(s) + D(s)u) . (3.19)
With @ from (3.10) and realizing that
Al(i)(zi(s) PL(s)Vs = @/(5)Vs = V[(s)] - Va[d(s)],
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3.2 Weak Solutions

we might cast (3.19) into the form of (3.12). However, this is not done in [AD85a]. In
the derivation of the local uniform continuity of the saturation equation (3.19) appears,
but as a limit problem.

We remark that 9,57 ' (z,-) in their notation coincides with p/.(x,-) in our notation. At
first glance, a difference occurs in the terms b in their notation and B in our notation.
However, this difference is based on a typing error in [AD85a, (1.19)] where instead of
V(%) it should be V;(£L). Assuming sop = 1, this can be seen in the following way.
For z € Q and z € [0,1], we find the identity p.(z,p.!(x,z)) = z. The chain rule yields

0= Vipe(z,pz ' (x,2)] = Vape(w, pz ' (2, 2)) + pe(, 9z (2, 2)) Vaps (2, 2)

and hence
1

vxpc_l(x? Z) - 1,
Pi(z,pe ' (z, 2))

prc(l’,pc_l(l', Z)) (3'20)

With the previous considerations, we see that (3.20) corresponds to

1

vx ) = - —
s1(,2) 051 1(3:,51(x,z))

szl_l(l‘, si(x, 2)).

Using this in [AD85a, (1.19)], we find that b and B coincide. N

Remark 3.2 (Comparison to [Che0l] and [Arb92]). We mention that the articles
[Che01] and [Arb92] are quite similar. The main differences are a slightly different
definition of the pseudo pressure and a more general right-hand side of the equation in
Arbogast’s article. However, since we use the same pseudo pressure as Chen does, we
comment mainly on his article.

The article of Chen uses the second form (TP2) of the two-phase flow system. Implicitly,
it is assumed in [Che01, (A4)] that p. is nonincreasing. This is explained more detailed
in [Arb92, (A5b*)]. Compared to our deduction, Chen uses the negative of the pseudo
pressure ¢ and s = s9 instead of s;. Essentially, our definitions of v; and ~» coincide
with v3 and 72 in Chen’s notation, except for signs due to the different choices of s, p,
and ® and the orientation of g;. N

3.2 Weak Solutions

Following [Che01], we briefly state assumptions required to derive an existence result for
(TP2) modified due to our choices of ®, s and boundary conditions.

Assumption A3.1. Let d > 1 and Q C R? be a bounded Lipschitz domain.
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3 The Two-Phase Flow Problem

Assumption A3.2. We assume that ¢ € L*>°(2) is such that 0 < ¢, < ¢(z) < ¢* < 0
and that k(x) is a bounded, symmetric and uniformly positive definite matriz, i.e.

0<re <677 kij(a)&€ < K" <00, z€Q, 0#EeR?

ij=1

Assumption A3.3. For a € {1,2}, let \o(x,s) be bounded Carathéodory functions as
introduced in section 1.4. Additionally, assume that A1(0) =0 and Ai(s) > 0 for s > 0,
A2(1) =0 and Aa(s) > 0 for s <1, and

0< A <Az, 8) <N < oo forxeQandse|0,1].

Assumption A3.4. ® : Q x [0,1] — R is a Carathéodory function, such that ®(x,s)
is strictly increasing in s for every x € Q. In addition, assume that ®(z,0) = 0 and
0 < ®(x,1) for every x € Q and ®(-,1) € HY(Q).

As in [Che01] and [Arb92], we introduce the following notation. For v = v(z, s) and any
norm ||-|| for z-dependent functions, we define the norm ||| by

llollf =

sup |v(-,s)| ‘ . (3.21)

s€l0,1

Assumption A3.5. E and v; are Carathéodory functions and the norms

I £oo 0,722 (02)) and 171l z2(q)

are bounded. Furthermore, pp € L>®(0,T; H'(Q)), ®p € L*(0,T; H'(Q)), 0:®p €
LYQ) and 0 < ®p(x,t) < ®(x,1) almost everywhere on Q. The initial data fulfill

0 < ®(sp) < (1) a.e. in Q and B(sp) € L*(Q).
Since we only consider the Dirichlet problem here, we find I'p = 0€2. Thus, considering
(1.23) we have V = H}(Q) and V' = H1(Q).

Definition 3.3 (Weak solutions for (TP2)). A weak solution of system (TP2) with
boundary and initial data (3.17)—(3.18) is a pair of functions (s,p) withp € L*>(0,T;V )+
pp, ®(s) € L2(0,T;V) + ®p, ¢dys € L?(0,T;V), 0 < s(x,t) < 1 a.e. (x,t) € Q and
such that the following identities hold:

/Qli()\(S)Vp Y E(s)-Vw=0 YweL®0,T:V),
/OT<¢6ts, v)viy dt—i—/Qn(V[i)(s)] +M(8)Vp+m(s) - Vo=0 Yoec L*0,T;V),

T T
/ <¢at8, v)V’,V det +/ / (25(8 — So)@tv dt=0
0 0 Q
Yo e L2(0,T;V)n Wbt 0, T; L}(Q)), v(z,T) = 0.
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3.2 Weak Solutions

An adaption of [Che01, Theorem 2.1] yields existence of weak solutions.

Theorem 3.4. Under Assumptions A3.1-A3.5, the system (TP2) has a weak solution
in the sense of Definition 3.3.

We define weak solutions of (TP1) in the following sense.

Definition 3.5 (Weak solutions of (TP1)). A weak solution of system (TP1) with bound-
ary and initial data (3.17)~(3.18) is a pair of functions (s,p) with p € L*>(0,T;V)+pp,
®(s) € L*(0,T;V) + ®p, ¢pos € L*(0,T;V"), 0 < s(x,t) <1 a.e. (z,t) € Q and such
that the following identities hold:

/Q K(\(s)Vp+ E(s)) - Vw =0 Yw e L®0,T; V), (3.22)

/OT(qﬁ@ts,wvxy dt + /Q(R[V[(I)(S)] — Vz®(s) + B(s)] + D(s)u) - Vo =0
Yo € L2(0,T; V), (3.23)

T T

/ (POs, vy v dt+/ (s — s0)Ovdt =0 (3.24)
0 0
Yo € L2(0,T; V) nWhi0,T; L}(Q)), v(z,T) = 0.

To obtain weak solutions of (TP1) from weak solutions of (TP2) provided by Theorem
3.4, we need to ensure that

/Q KO\ (5)Vp +71(5)) - Vo = /Q (=Y. (s) + B(s)) + D(s)u] - Vo (3.25)
holds for every v € L?(0,T;V). Particularly, we have to take the alternatives in the
definition of D(s) into account.

Lemma 3.6 (Equivalence of weak solutions). Let Assumptions A3.1 — A3.5 hold, and
assume that the functions V,®(s) and B are bounded Carathéodory functions on ) x
[0,1]. Then any weak solution (s,p) of (TP2) in the sense of Definition 3.3 is a weak
solution of (TP1) in the sense of Definition 3.5 and vice versa. In particular, there
exists a weak solution of (TP1) in the sense of Definition 3.5.

Proof. To show that the solution concepts are equivalent, it suffices to show that (3.25)
holds for every v € L?(0,T; V). Due to the assumptions, we obtain that the integrals in
(3.25) are well-defined.

Let (s,p) be a weak solution of in the sense of Definition 3.5. We choose the alter-
native D(s) = —*1(5)/x(s). Using the definitions of v;(s) and u from (3.14) and (3.7),
respectively, we obtain the pointwise identity

_ /\1(8)
A(s)

Kk (=V3®(s) + B(s)) u=*r(A(s)VDp+7(s))
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3 The Two-Phase Flow Problem

a.e. on . Consequently, for our choice of D(s), we infer that (3.25) holds for every
v e L20,T; V).

Concerning the alternative D(s) = *2(s)/x(s), we need to take the elliptic equation into
account. For v € C°(0,T;V), we use (3.22) to infer

/Q K(VB(5) + M (5)Vp + 11 (s)) - Vo
= /QH(V@(S) + AVp — X2(s)Vp + 71(s)) - Vo

/QR(VQD(S) ~ E(s) — Aa(s)Vp+71(s)) - Vo

From
M) oy g = 2208) g
Ns) )~ Blo) = =55 B ),
we derive the identity
K(71(s) = E(s) = Aa(5)Vp) = K(=Va®(s) + B(s)) + A;((ss))u

a.e. on @ as above. Consequently, (3.25) holds for every v € C2°(0,7T; V') and the choice
D(s) = 22(s)/x(s). With a density argument, we infer that the argument also holds for
v € L2(0,T;V). Thus, (s,p) is a weak solution of (TP2) in the sense of Definition 3.3.

Considering the previous arguments, we realize that starting from weak solutions of
(TP2) in the sense of Definition 3.3 yields a weak solution to (TP1) in the sense of
Definition 3.5. This concludes the proof. O

3.3 Main Result

We specify assumptions on the coefficients needed to derive the local Holder continuity
of the saturation.

Assumption A3.6. We assume that p. is differentiable in x for every (z,s) in Qx [0, 1]
and in s for (z,s) € Q x (0,1). We assume that

0 < ps:= 1161% pl(z,s) < oo and 0 < p* := meag |Vape(, s)| < oo. (3.26)
x €T
s€(0,1) s€[0,1]

For a typical shape of the function @, we refer to Figure 4.1. The assumptions imposed
on ® from Assumption A4.1 (page 51) are also contained in the following assumptions.
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3.3 Main Result

Assumption A3.7. Let ® € C1(Q x [0,1]) be such that ®'(x,s) > 0 for s € (0,1) and
every z € Q, and ®'(z,0) = ®'(z,1) = ®(x,0) = 0 for every x € Q.

Let 8o € (0, %) be given. We define

Ao = min Ay(z,s), Ai.:= min A(z,s)
TOG?M TE%’ 1
elo, —4d0,
R selt=400.1 (3.27)
and Mg2s:= min min{\(xz,s), Aa(x,s)}
z€Q,
86[50,1—50}
and assume that there are constants 0 < C, < C* such that
C* S min {>\*; ¢*; Ry Pxs )\2,*7 )\1,*7 >\1,2,*}
1 * 3.28
and max{2,A*,f@*,¢)*,3p,3|g1|,3‘92‘}§0*. ( )
In addition, we demand k € WH>(Q; R*%),
1@llcr@xpo + IElwree + EN oo o,7522(0)) + IPDll oo (0,711 (0)) < CF and (329)

|B(z,8)| + |D(z, s)| + | E(x, s)| < C* for every x € Q and s € [0,1].

Furthermore, we impose that ®'(x,s) and D(x,s) are differentiable with respect to x,
and that for every x € Q and s € [0,1] there holds

S
V. ®(z,s) :/ Vo®'(z,0)do  and  |V,®'(x,s)|+|VaD(z,s)| <C*.  (3.30)
0
Concerning the structure of ®', we assume that for every x € 0 there holds

(3.31)

For j € {0,1} and k € {l,u}, we consider positive constants c;j and «; such that
P 1 (v) := ¢j V™ holds for v € [0,400]. In addition, we assume Cy < ®'(z,s) < C* for
s € [0, 1 — 6o and every x € Q. For the powers o, we assume that

ag = (1. (3.32)
Remark 3.7. The assumption ag = a; is crucial to obtain Hélder continuity. In the
z-indepedent case, Holder continuity for the cases a; # «q is stated in the literature.

However, there seem to be flaws in the given proofs in that case. We comment on these
issues more detailed in section 6.6.1. N
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3 The Two-Phase Flow Problem

Remark 3.8. Some of the assumptions in (3.28) are only made to simplify calculations
later. Particularly, we derive the following estimates. Due to the choices of p, and p*,
we infer

5] < | (@t g1 = )| < D) (9, o+l

The assumption on A «, A2 s and A 2 . are connected to the alternative in the definition
of D(s). Assume for the moment that s € [0,4dp]. Thus, we obtain

A1(8)A2(s)
A(s)A2(s)p-

With the same argument, we obtain the estimate of equation (3.33) also on [1 — 4dp, 1]
and on [0y, 1 — dp]. This is used as follows. In the analysis in chapter 6, we use test
functions that are only supported in either [0,4do], [1 — 460, 1] or [dp, 1 — Jp]. Depending
on the test function, we then choose D such that (3.33) holds.

/ L o/(s) < cra/(s). (3.33)

Dz < | P < o

We remark that the assumption on p* is not needed in the case without z-dependence. <«

Definition 3.9 (Parabolic Metric and Distance). On R4 we define the parabolic metric
do as
1
d2((@1,1), (w2, 12)) = |21 — @2| + [t1 — L2

for x1, 20 € R and t1,ty € R. According to this metric for A, B C R™ we define the
parabolic distance
disto(A,B) := inf d : 3.34

sta(4,B) = ol da(er ) 339
Definition 3.10. The constants Cy,C*,cji and oy, for j € {0,1} and k € {u,l} from
Assumption A3.7 and the dimension d from Assumption A8.1 are called the data. We
say that a constant v depends only on the data, if v can be determined only in terms of
these quantities.

Furthermore, let K C @ be given. We say that a constant v € R depends only on the data
and on IC, if v can be determined only in terms of the data and in terms of the distance
from K to 0,Q, i.e. of do(K,0,Q). In this case, we write v = y(data, K). Additionally,
if we write v = ~y(data,KC,1), we mean that v can be determined only in terms of the
data, K and some quantity .

Remark 3.11. Since we only intend to provide local Hélder continuity of s on sets
compactly contained in @), initial and boundary data for s do net enter in Definition
3.10. Due to (3.27), the constants C, and C* also depend on the choice of dy. Thus,
when speaking of a quantity depending on the data, the dependence on dy is implied.

We emphasize that, if for the saturation s of (TP1) on a domain K a constant v =
v(data, K) is determined, then we emphasize that v is particularly independent of s. <
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Remark 3.11 also applies to the previous definition. Our main result for two-phase flows
reads as follows.

Theorem 3.12 (Local Holder continuity of s). We assume that Assumptions A3.1 —
A3.7 hold. Let (s,p) be any weak solution of problem (TP1) in the sense of Definition
3.5. Then s is locally Holder continuous on Q). For any compact set K C @Q, there are
constants v € R and o € (0,1), depending only on the data and on K, such that

|s(z1,t1) = s(za,t2)| < 7y (da((w1, 1), (22,12)))" (3.35)

for every (z1,t1), (z2,12) € K.

We emphasize that v and o do not depend on the solution. The proof is presented
in chapter 6 and uses the method of intrinsic scaling. To apply the technique, it is
necessary to show that truncations of s are regular. This is shown in the next chap-
ter.

Remark 3.13. We emphasize again that the proof of the local Holder continuity we
present in chapter 6 only works in the case ag = ;. For an easier comparison to the
literature as well as a potential extension, we chose the given presentation. Particularly,
we do not simplify the notation from (3.31).

In view of Theorem 6.3 and Remark 6.4, we see that dropping the dependence of C*
on pp in (3.29) yields a constant « which also depends on the L°°(0, T’; L?(€2))-norm of
p. We emphasize that C* is independent of ®p and that Assumption A3.4 is contained
completely in Assumption A3.7.

In the literature, statements similar to that of Theorem 3.12 can be found for so-called
local weak solutions. Essentially, these are solutions as in Definition 3.5 but the integrals
are restricted to sets £ CC . Particularly, boundary and initial data are not specified
there. Since the result we provide is a local result, the theorem could also be stated with
minor changes in the setting of local weak solutions. N
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4 Chain Rules and Integration by Parts

Due to the similarities of the Richards equation (R) from page 15 and the parabolic
equation of the two-phase flow equations (TP1) from page 33, we consider the model
problem
Ors = A[®(x, s)] on Q,
®(x,s) =Pp on I'p x (0,7,
0, ®(xz,s) =0on 'y x (0,7,
s(z,0) = so(x) on Q,

(MP)

where s(z,t) € [0,1] for (z,t) € Q. We recall Q,I'p,I'y,Q and V from (1.20)—
(1.23).

Equation (MP) is the so-called generalized porous medium equation [Vaz06]. The function
®:Qx[0,1] — [0,00] is smooth in © x [0, 1] and increasing in s. When considering the
Richards equation one usually finds ® such that ®(z,0) = ®'(z,0) = 0 and ®(z,s) —
¢ > 0 as s — 1, where ¢ is usually infinity.

For the transformed two-phase flow equations (TP1), the function ® does in general not
tend to infinity when s approaches one. Typically, we find that ® is flat near one, i.e.
®’(x,1) = 0. Common shapes of ® are depicted in figure 4.1.

Though we are not going to show the existence of weak solutions, let us fix a setting
where we expect to find solutions in.

Definition 4.1 (Weak solutions of (MP)). A function s € L*°(Q;[0,1]) with O:s €
L2(0,T; V') and ®(-,s) € L*(0,T; V) + ®p is called a weak solution of (MP) provided
the following two properties are fulfilled:

1. For every € € L?(0,T;V), there holds

T
/0 (D05, Ehyry +/qu>(-,s)vg 0. (4.1)
2. The initial data s(0) = so are assumed in the sense of traces, i.e. there holds

/OT@tS(t),i(-,t))v',v dt+/QS<9t§ = —/Qsog(.,o) (4.2)

for every & € L2(0,T; V)N WL(0,T; LY(Q)) with £(-,T) = 0.
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4 Chain Rules and Integration by Parts

0 0 ¢ 0

Figure 4.1: The left picture shows typical shapes of ® for fixed x € Q. For Richards
equations, ® typically looks like ®1. In the case of the transformed two-
phase flow equations (TP1) the shape of ® is typically as that of ®5. The
picture on the right shows the domain of the function ®~1 in the sense of
Definition 1.6. Particularly, the sets Ko and Kg are depicted modulo a
cross section. For fized xo € Q, the function s — ®(xg,s) is increasing
and we consider it to have the shape of ®o depicted in the left picture.

For the sake of simplicity, let us assume for the rest of this section that ®p = 0. An
important subclass of weak solutions in the sense of definition 4.1 are so called weak
energy solutions; existence of such solutions is shown in [V4z06, chapter 5.4] and [AL83].
Weak energy solutions rely on the energy estimate

[wtso)+ [ 1veC.s)P < [ ws). (4.3)
Q Qq Q

where V¥ is a primitive of ® with respect to s and such that ¥(z,0) = 0. Formally, this
estimate is obtained by testing (MP) with ®(z, s(x)). For a rigorous proof of (4.3), the
crucial point is to show the chain rule

[ s (6o = [ oevs) = [ wise) - [ wiso) (4.4)

Q

Essentially, the literature contains two methods to prove this chain rule. For the first
approach, e.g. found in [V4z06, chapter 5], one constructs a sequence of smooth functions
sn that converges to s. For such smooth functions, (4.4) is nothing but the classical
chain rule; one obtains (4.3) for the approximations s,. Passing to the limit n — oo,
the estimate for s is maintained. The downside of this procedure is, that the energy
estimate (4.3) is only deduced for functions s that are the limits of an appropriate
sequence Sy.

The second approach is due to Alt and Luckhaus [AL83]; there, the chain rule (4.4)
is shown for any function in the function space of interest. In particular, the en-
ergy estimate (4.3) is obtained without explicitly constructing an approximating se-
quence.
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We follow the method of Alt and Luckhaus and show in section 4.4 chain rules and
related integration by parts formulae similar to (4.4), with ®(-,s) replaced by more
general functions. Preliminary to that, we collect properties of the Steklov average
that are presented in section 4.3. Additionally and more importantly for our objec-
tives is that these more general chain rules can be used to derive an L!'-contraction
property for weak solutions. We provide a formal proof in section 4.5.3 that also uses
the so called method of doubling the variables. To derive a uniqueness result from an
L'-contraction property, it is mandatory to infer the L'-contraction property for all
solutions in the considered functions spaces. If one seeks uniqueness, it does not suf-
fice to show an L'-contraction only for solutions that are merely the limits of certain
approximations.

Further typical choices of test functions for (MP) are s and s£2, where ¢ is a smooth and
compactly supported function. The latter test function leads to so called Caccioppoli es-
timates [GM12, chapter 4]. However, for the cases of ® we want to consider s does in gen-
eral no possess a weak gradient. As the formal calculation

V[®(x,s(x))] = V. ®(z, s(x)) + &' (x, s(x))Vs(x), (4.5)

indicates and since ®'(x,0) = ®'(z,1) = 0, we can only expect control of Vs with a
weight. We emphasize that for smooth s, e.g. s € H!(Q), Stampacchia’s Lemma yields
that Vs = 0 a.e. on the level sets {s = 0} and {s = 1}. Due to the lack of regularity of
s this information cannot be used here.

However, if s was bounded away from zero and one, then we could bound ®' away
from zero and expect s to have a weak gradient. To this end, consider 0 < ¢ < %,
use ®1(x,®(z,s)) = s, the chain rule and the same reasoning as in (3.20), to in-
fer

Vs ]l{s<s<1—s} = V[(I)_l('a ((I)('a 3))] ]l{€<8<1—8}

_ 1
— (V:E(I) L o(-8) + @,(.7S)V[<I>(-,s)}) Trecsc1-oy (4.6)

m (7VI(I>('7 8) + V[(I)(-, 5))]) ]l{s<s<1—6}'

In the situation that ® does not depend explicitly on & Stampacchia’s Lemma implies
that
lim V[(I)(S)] ]1{5<s<175} = V[(I)(S)]

This raises the question whether we can perform the limit also in the case where ®
depends on z. We ask, whether

V[Q)(-, 5)] = hm[q),('7 S)VS + VI(I)(', ‘9)] ]l{e<s<1—s} (47)

e—0

holds in an appropriate sense or not. To investigate this question, we present well
known results in the environment of Stampacchia’s lemma in section 4.1. Starting from
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Stampacchia’s Lemma, we show in section 4.2 that truncations of s are regular and prove
in section 4.5.1 the validity of (4.7).

In section 4.4, we show integration by parts formulae as an replacement for the formal
chain rule d;sg(s) = G(s), where G is a primitive of g. These formulae are tailored to
handle truncations of s as test functions, but are not suited to treat time dependent
Dirichlet data ®p.

4.1 Chain Rules and Stampacchia’s Lemma

In this section, we provide a brief overview on chain rules for Sobolev functions and Stam-
pacchia type lemmas. Consider the classical chain rule

Vg o ul(z) = ¢'(u(x)) Vu(z) (4.8)

for g € CY(R), u € C*(Q) and = € Q. With an approximation argument one infers that
(4.8) holds for a.e. z € Q if u € W1P(Q) and g € C*(R).

Proposition 4.2 ([GM12, Proposition 3.22]). Let a bounded domain Q C R%, g € C1(R)
with g € L™ (R), and u € WHP(Q) for some p € [1,0] be given. Then gou € WHP(Q)
and (4.8) holds for almost every x € Q.

Remark 4.3. Similar results can be found in [KS00, Lemma A.3; DiB02, VII.Proposition
20.1] and [GT98, Lemma 7.5 and p. 154]. For unbounded domains one requires that

g(0) = 0. Under that additional assumption the chain rule is proved in [BrelO, Propo-
sition 9.5]. q

With an approximation argument, the chain rule can be extended to the case where g is
piecewise C'! with finitely many discontinuities of ¢’. In particular, for the choice g(u) =
(u) 4+ the chain rule is often referred to as Stampacchia’s lemma.

Lemma 4.4 (Stampacchia’s lemma [see GM12, Proposition 3.23]). Let Q@ C R? be a
bounded domain, u € WHP(Q) and p € [1,00]. Then uy, u_ and |u| belong to W1P(Q)
with

V(uy) = Vu Loy, V(us) = =Vu lepy, and Viu| =V(ug) +V(u-). (4.9)

Furthermore, given any y € R, we find Vu =0 a.e. on every level set {u = y}.

With induction one obtains

Corollary 4.5 ([GM12, Proposition 3.24]). Let Q@ C R? be a bounded domain and
let g € C(R) be piecewise C1(R), i.e. for | € N there are points ty,...,t; such that

g € CY(—o0,t1]), g € CY([t1,t2]), ..., g € CH([t;,0)). Additionally, assume that g’ €
L>®(R). Forp € [1,00] and every u € W1P(Q), there holds g ou € WHP(Q) and
V(g e} 'LL) = g’(u)Vu ]l{u;é{tl,...,tl}} (4.10)
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4.1 Chain Rules and Stampacchia’s Lemma

Further references for either Stampacchia’s lemma or the corollary are [Sch13, Lemma
7.4; KS00, Appendix A; DiB02, chapter 7, Proposition 20.2] and [GT98, Lemma 7.6,
Theorem 7.8].

Corollary 4.6. For p € [1,0], let u,v € WYP(Q) be given. There holds max{u,v} €
WLP(Q) and min{u,v} € WHP(Q) with

Vmax{u,v} = Vuly,sy + Voley and Vmax{u, v} = Vul,cpy + Vo L,y

Proof. We recall

u+ v+ |u—o|
2

u+v—|u—u|

and min{u,v} = 5 ;

max{u,v} =

and apply Lemma 4.4. O

Remark 4.7 (Coordinate wise chain rules). The previous results admit also coordinate-
wise chain rules. For example, Proposition 4.2 implies

0j(g o u)(z) = g'(u())0;u(z) (4.11)

for a.e. x € Q and every j € {1,...n}. In each coordinate this equation is well defined
for u € LP(Q) and Oju € LP(2). This raises the question whether (4.11) also holds
if one merely assumes v € LP(2) and Oju € LP(€). Thanks to Proposition [GT9S,
Theorem 7.4] this question can be answered positively; u and its partial derivative u;, for
j €{1,...,d} can always be approximated by a sequence of smooth uj, with 0ju, — 0;u
and ugp — u in LllOC (©). In particular, the previous chain rules are applicable if one has
e.g. a time dependent function v € LP(Q) that lacks spatial regularity but has a regular
time derivative u; € LP(Q). N

Formula (4.8) extends to the case where g is merely a Lipschitz continuous function. The
proof of this result requires a different technique; one exploits that W1(Q) functions are
absolutely continuous on a.e. line-segments parallel to the coordinate axes [see Leo09,
Theorem 10.37 and Exercise 10.37; LMO07; Zie89, Theorem 2.1.11] and [KS00, Appendix
A]. In this case the right-hand side of (4.8) is interpreted to be zero whenever Vu(z) is
zero irrespective of whether ¢'(u(z)) is defined or not.

Let us turn our attention to chain rules for functions that depend also on x € €. For
g € C1(2xR) and u € C*(Q), the classical chain rule reads

Vig(z,u(z))] = Veg(z, u(z)) + g'(z, u(z)) Vu(z) (4.12)

for every x € Q. If g is smooth on Q, has bounded derivatives and u € W1P(Q), we can
easily extend the proof of Proposition 4.2 to the case here. We present the proof under
the weaker assumption of regularity in a single coordinate direction: wu,0dju € LP((Q).
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4 Chain Rules and Integration by Parts

Proposition 4.8. Let a bounded domain Q C R and p € [1,00] be given. For g €
CH(Q x R) with bounded partial derivatives and u € LP()) with O;u € LP(R), there holds
g(" u)’ 8]9(7 U) € LP(Q) and

9ilg(z,u(2))] = gj(z,u(x)) + ¢ (z,u(x))dju(zx) for a.e. z € Q. (4.13)

Proof. 1t suffices to prove the proposition in the case p = 1. If u,0;u € LP(Q), then,
due to the boundedness of 2, we find u,d;u € L'(2). Application of the proposition
in the case p = 1 yields that the j*" weak partial g(-,u) is determined by the right-
hand side of (4.13) which belongs to LP(Q2). Hence, let us assume p = 1. Since 2 is
compact and g is continuous, we deduce |g(z,0)| < C for an appropriate constant C' > 0.
Potentially increasing C' and using that the partial derivatives of g are bounded, we infer
1902, )] < $uDpeg |9/ (@, )| |s] + g(z,0)] < C(1+ |s|) and obtain g(-,u) € L1(%).

Thanks to [GT98, Theorem 7.4] there is a sequence uy € C*°(£2) such that up — u and
djur, — Oju in L () as k — oo. Since (4.13) holds for smooth functions u, we obtain
for ¢ € C2°(R2) using integration by parts the identity

/g(',uk)anO = - A aj[g(‘auk)]@ = _/Q [gj('vuk> +gl('7uk)ajuk] . (414)
From
l9(z, up(2)) — gz, u(@))| < ||¢'|| o Jue(z) — u(z)], for ae. z €Q,

we deduce g(-,ur) — g(-,u) in L{ (2). Consequently the left-hand side in (4.14) has

the desired limit. Moreover, up to extracting a subsequence, ux — u a.e. in ). Hence,
we also find g;(z, ug(x)) — gj(z,u(x)) and ¢'(z, ur(z)) = ¢ (z,u(z)) a.e. in Q. Since g
has bounded derivatives, Lebesgue’s dominated convergence theorem implies g;(-, ux) —
g;(-,u) € L'(Q) and

[ 19/ Coundju = g/ wdjul
<9l [ 10— ul Il + [ 19'Cue) = g/l 95ul [l — 0.
Q Q k—o0

The limit ¥ — oo of (4.14) yields that g;(-,u) + ¢'(-,u)0;u € L*(Q) is the j* weak
partial derivative of ¢(-,u) and we conclude. O

Corollary 4.9. Let p € [1,00], a bounded domain Q@ C R? and g € C*(Q x R) with
bounded partial derivatives be given. For u € WLP(Q), there holds g(-,u) € WP(Q) and

V[g(,u)] = ng(',u) + g’(‘, u)vu (4‘15)
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4.2 Regularity of Truncations

On the case of an (z, u)-dependent Lipschitz function ¢ In the case where g : QxR —
R is merely Lipschitz and v € H'(f2) one obtains that g(-,u) € H'(Q). But, as the
following example shows, a chain rule, as in (4.12), can not be expected in general.

Example 4.10. Let Q@ C R be an open interval, consider g(x,v) := max{x,v} and
choose u(x) = x € CY(I). Then g is not differentiable on the set B := {(z,v) C R?|x =
v} and B has measure zero by Rademacher’s theorem [EG92, chapter 3.1.2]. We find
g(z,u(z)) = z € CY(Q) and consequently V[g(x,u(x))] = 1. We find that the left-hand
side of (4.12) equals one. However, the right-hand side of (4.12) is nowhere defined,
since (z,u(z)) = (z,x) € B for any x € Q.

The previous example and further results on general chain rules can be found in [LMO07],
[MM72] and the references therein.

4.2 Regularity of Truncations

The preliminary results of the previous section are used to investigate the regularity of
truncations of s.

Definition 4.11 (Truncations). Let a,b € R, a < b be given. For s € R, we define
truncations of s at levels a and b as

T.(s) :=max{s,a}, T°(s)=min{s,b} and T°(s)= max{min{s,b}, a}.

We mention the identities T, 0 T® = T? o T, = Té’ . In the following we investigate the
cases where ® is z-independent and z-dependent separately. We refer to them simply
as the z-independent case and the z-dependent case, respectively. We also recall Figure
4.1 where a typical shape of ® and, for the z-dependent case, the sets K¢ and K§ are
shown.

4.2.1 The z-independent Case

Lemma 4.12 (Characterization of ®(T2(s))). Let @ C R? be a bounded domain. Let
® : [0,1] — R be continuous and increasing and let s € L>*(Q,[0,1]) be such that
®(s) € HY(Q). For0<a<b<1 and a.e. v € Q, the identities

(4.16)
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4 Chain Rules and Integration by Parts

hold. Additionally, ®(T?(s)), ®(T(s)) and ®(T,(s)) € H(Q) with

VI(TY(s))] = V[®(s)] Ligcs<ty = VIP()] Lig<scty = VIP($)] Lia<s<t)
()] Lgscpy = VI[P(s)] Lys<pys (4.17)
[@(5)] L1acsy = VI®(5)] Lia<sy-

a4
% %
Shc|
ol
T
< <

(S)

Proof. The identities in (4.16) follow directly from the definition of positive and negative
part of a function. Since ®(a) and ®(b) are constants and ®(s) € H'(Q2), we obtain from
Lemma 4.4 that (®(s) —®(b)); and (®(s)—®(a)) belong both to H(£2). Consequently,
O(T?(s)), ®(T%(s)) and ®(T,(s)) € H'(Q). Furthermore, with repeated application of
Lemma 4.4 and since ® is increasing we infer that

V(®(s) = @(b))+ = V(®(s)) Liapy<a(s)y = VP(5) Lipesy = VO(s) Tjp<s)-

Analogous formulae hold for (®(s) — ®(a))—. Combination of these results yields (4.17).
O

With the previous lemma, the regularity of 7°(s) is a direct consequence, provided ® is
smooth.

Proposition 4.13 (Regularity of truncations I). Let a,b € (0,1) and a bounded domain
Q C R? be given. Furthermore, let ® € C1([0,1]) be such that ®'(s) > 0 for s € (0,1),
®'(0) = 0, and ®'(1) = 0. For s € L>(Q,[0,1]) with ®(s) € H (), there holds
T (s) € HY() and

' [T3(s)]V[Ts (s)] = VI@(T5(s))]. (4.18)

Proof. With (1) (u) > 0 for u € [®(a), ®(b)], the inverse function theorem implies that
o1 ¢ CY([®(a),®(b)]). We extend @~ linearly and continuously differentiable onto R
and denote the extension by ®~!. Application of Proposition 4.2, i.e. of the chain rule,
and Lemma 4.12 yields T?(s) = @~ Y(®(T(s))) € H'(Q). With this information and
realizing that, due to the assumptions, the continuous and constant extension of ® is in
C1(R) with bounded derivative, we apply Proposition 4.2 and deduce

VI[(T;(5))] = ®'(T5()) V[T (5))-
O

Remark 4.14. The statement of Proposition 4.13 may be extended to the case where
a=0orb=1, provided ®(0) > 0 or ®'(1) > 0, respectively. In that case the argument
presented above remains unchanged. N

Lemma 4.12 and Proposition 4.13 imply the following identities for V[T?(s)].
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4.2 Regularity of Truncations

Corollary 4.15. Let the assumptions of Proposition 4.13 be fulfilled. Then, there holds

1

VIT)] = g5 VOO ety = 07 VPO oo

(4.19)

1
= mv[@(s)}ﬂ{agssw-

Furthermore, for every y € [0,1] there holds V[T?(s)] =0 a.e. on {s = y}.

4.2.2 The z-dependent Case

We recall the main steps to obtain the result of Proposition 4.13. Firstly, we used the
inverse function theorem to derive that ®~! is smooth on an interval bounded away
from zero and one. Secondly, we extended the function smoothly with bounded deriva-
tives. Thirdly, the characterization of ®(7T2(s)) together with the chain rule provided
that T%(s) € H'(). Lastly, we applied the chain rule again to obtain the identity in
(4.18).

In the z-dependent case, we want to implement the same program. With Corollary
4.9 the chain rule is already proven. On ® we impose assumptions that resemble those
of Proposition 4.13 adapted to the xz-dependent problem. A typical shape of such a
function @ is depicted in Figure 4.1 and labeled ;.

Assumption A4.1. Let ® € C*(Q x [0,1]), be such that ®'(z,s) > 0 for s € (0,1) and
every x € Q, and ®'(x,0) = ®'(x,1) = ®(x,0) = 0 for every z € Q.

The inverse of ® needs to be understood in the sense of Definition 1.6 and we denote it
by ®~!. As in the z-independent case, regularity properties of ® provide regularity of
oL

Lemma 4.16 (Properties of ®71). Let Q C R be a bounded domain, let ® be as
in Assumption A4.1 and let @1 0, Ko and K be as in Definition 1.6. There holds
!l e C(Kg) and 1 € C1(Kg). On K§ we find

1

= 2,0 (z,0) (420)

Dy @ (x, u)

and
1

&' (z, D~ 1(z,u))

Ve @ Y, u)] = — Vo®(z, @ (z,u)). (4.21)

We recall that the sets K¢ and Kg are depicted in Figure 4.1.
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4 Chain Rules and Integration by Parts

Proof. Step 1: Uniform continuity of ®~!'. We start with the uniform continuity of
&1, Let (z,u) € Ko be given and (zy,ur) € Ko be a sequence with (z,ug) — (z,u).
Thanks to the properties of ®, we find for each pair (z,u), (xg, ux), for k£ € N, a unique
s, sk € [0,1] such that ®(z,s) = u and ®(zy, s;) = ug, respectively. The corresponding
sequence sj is bounded and thus admits a convergent subsequence sir — §. Thanks to
the continuity of ® and the convergence of (xx,ur) — (x,u) we obtain

O(xz,8) « O(zp, spr) = upy — u = P(x,s).

Consequently, due to the properties of @, we conclude s = 5 and, by a standard argument
[DiB02, I.1.1], that the whole sequence sj converges to s. Furthermore, we obtain

Y, up) = sp = 5 = ¢z, u)
and we conclude, due to the compactness of Kg, that ®~! is uniformly continuous.

Step 2: Uniform continuity of 9, !(z,u). Due to the first step of the proof
and the compactness of K, it suffices to show that the partial derivatives of o~ are
uniformly continuous in int(Kg) to infer @~ € C1(Kg). From the properties of ®
and the inverse function theorem in one dimension we infer equation (4.20) on int(Kg).
Since Kg is compact and due to the properties of ®, there exists € > 0 such that
(2,7 1(z,u)) € A x [e,1 —¢] for (z,u) € K. Hence, there exists a positive ¢ such that
®'(z,8) > ¢ > 0on Qx [g,1 — ¢ and together with the uniform continuity of ® on
Q x [g,1 — g], the uniform continuity of ®~! on K¢ and equation (4.20) on int(Kg), we
infer that 9,®! is uniformly continuous on int(Kg).

Step 3: Uniform continuity of 8j<I>_1(1:,u). To consider the z-derivatives, we are
going to exploit the implicit function theorem. Let (zo,up) € int(Kg) be given and
let sg € (0,1) be the unique solution of ®(zg,s9) = ug. Since ®'(x,s) > 0 for every
x € Qand s € (0,1), the implicit function theorem states that there is locally a unique,
continuously differentiable function ¢"°(x) with ¢“0(z9) = so and ®(z,g"(x)) = up.
Since ®~!(z,up) also has these properties we infer ®~1(z,ug) = g“°(z). For the partial
derivatives, we apply again the implicit function theorem and compute

1
O (2, D1 (z,up))

0@ (2, u0)] = — ®;(w, @ (z, up)) (4.22)
for (z,up) € int(Kg) and j € {1,...,n}. Due to the assumptions on ® and using
the results of the first and second step we infer that 8J~<I>_1 is uniformly continuous
on int(Kg) for every j € {1,...,n}. From (4.22) we infer (4.21) which concludes the
proof. ]

Using a reflection, we next show an abstract extension lemma. Later, we apply this
lemma to &1,
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4.2 Regularity of Truncations

Lemma 4.17 (Extension lemma). Let @ C R? be a bounded domain and let go, g1 €
CH(Q) be such that go(z) < g1(x) for every x € Q. For G} := {(z,t) |z € Q,go(x) <t <
g1(z)} let f € CY(GY) be given. Then, there is an constant C > 0 and an extension f
of f such that

FeC'@xR), flgy=f and ||fllcrgum < C-

Proof. Step 1: G} = Q x [0,1]. We assume that gy = 0 and g; = 1. Consequently,
G =Q x[0,1]. We extend f smoothly on 2 x [0, 00) with a reflection. The function

N - f(z,t) for (z,t) € Q x [0,1],
ha,t) = 2f(:c,1)—f(x 1) for (z,t) € Q x (1,00)

)t

has the desired properties and, particularly, || f Hcl(ﬁx 10,00) is bounded. With a reflection
at the set where t = 0, we obtain the extension

Fat) fi(z,t) for (z,t) € Q x [0,00)
x,t) = _

2f1(x,0) — fi(x,—t) for (z,t) € Q X (—00,0).
with the desired properties.

Step 2: General case. We define the transformation

F:OxR—- QxR
(z,7) = (z,791(x) + (1 — 7)go(x))

~1 — t—go(x)
P = ( ’m(az)—go(m))

in ¢ for fixed € Q. By the properties of gy and g; we see that F, F~! ¢ C'(Q x R).
Furthermore, we obtain

with inverse

Flgyoy (2 x R) = Gy and F~'(Gg) = Q2 x [0, 1].

Hence, h:= foF € C'(21x[0,1]). Extend h by the first step and obtain h € C*(Q x R).
Choosing f = h o F~! completes the proof. O

Remark 4.18. We emphasize that the proof of the extension lemma does not rely
on boundary regularity of € since we only extended perpendicular to €). In typical
situations, €2 is assumed to have Lipschitz boundary and an alternative proof can be
obtained with the remarkable Whitney extension theorem. It provides a C'! extension
of f to an open domain in R¥*! if G} is quasiconvex; see e.g. [BB11, Theorem 2.64],
the classical articles by Whitney [Whi34a], [Whi34b], or the book [EG92, chapter 6.5].
For a Lipschitz domain 2, we find that G} is also Lipschitz and thus quasiconvex; this
is essentially the content of [Alt06, section 8.4]. <
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4 Chain Rules and Integration by Parts

It remains to show the characterization of ®(-,T?(s)) to have the tools required to per-
form the program presented at the beginning of this section.

Lemma 4.19 (Characterization of ®(-,7°(s))). Let Q C R? be a bounded domain, let
® be as in Assumption A4.1 and let s € L°(Q,[0,1]) be such that ®(-,s) € HY(Q2). For
0<a<b<l, there holds

(z, Tb(s(;v))) (4.23)

Additionally, there holds ®(-,T%(s)), ®(-, Ty(s)) and ®(-, T,(s)) € HY(Q) with

V[e(, Ty(s)] =

<

[@( )] Lacs<ty + VIP(, )] Lis<ay + VIO(0)] i<y

= VI[®(,8)] Liacscpy + VIR( a)] Liscay + V[R( D) Lipesy  (4.24)
= V[®(-, 8)] Lia<s<py + VIP(, 0)] Liscay + VI[P(, 0)] Ly
and
VI[(, T(5))] = V[®(:,8)] Lscpy + V[®(,0)] T ey
= VI[®(-, 8)] Ls<py + V[O(-,0)] L pes) (4.25)
VIQ(-, Ta(s))] = V[®(+, 8)] L{acsy + V[P(, a)] T {s<ay
= VI[®(,8)] Liacs) + VIP(+,a)] T {scqy

Proof. The proof is performed along the lines of the proof of Lemma 4.12; it suffices to
take the z-dependence of ®(x,b) and ®(z,a) into account in each step of the proof. [

Remark 4.20. In equations (4.24) and (4.25) we may use the identities V[®(z,a)] =
Vi®(z,a) and V[®(x,b)] = VP(z,b) for a.e. z € Q. <

Gathering the previous statements permits to obtain regularity of truncations of s also
in the z-dependent case.

Proposition 4.21 (Regularity of truncations II). For a bounded domain Q C R, ® as
in Assumption A4.1, s € L>(Q,[0,1]) with ®(-,s) € HY(Q) and 0 < a < b < 1, there
holds Tb(s) € HY(SY). Furthermore, we find

VIe(, T3 ()] = @' (- To () VITZ ()] + Vo (-, Ty (s)). (4.26)

Proof. For 0 < min{a,b}, we infer from Lemma 4.16 that ®~! € C'(Kg); thus, with
go(x) = ®(z,a) and g1(x) = ®(z,b) and G} defined in Lemma 4.17, &1 € CY(G}).
Application of the extension lemma yields a C! extension of ®~1 from G} onto  x R
that is denoted by &~ 1.
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4.3 The Steklov Average

From Lemma 4.19 we infer that (-, T(s)) € H(Q). Consequently, Corollary 4.9 ap-
plied with ¢ = ®~! and u = ®(z, T?(s(x))) yields T2(s) € H*(Q). Due to Assumption
A4.1, the extension

0 s <0,
B(x,5) :={ ®(x,s) sel0,1],
O(x,1) s>1

of ® is in C*(Q x R) with bounded derivatives. Thus, we can apply the chain rule from
Corollary 4.9 again and obtain (4.26). O

Remark 4.22. A remark similar to Remark 4.14 applies to Proposition 4.21. The
proposition holds for a = 0 and b = 1 provided ®'(z,0) > 0 and ®'(z,1) > 0 for every
r € , respectively. Furthermore, the assumption ®(x,0) = 0 is not essential; we only
require that ®(x,0) is a smooth curve. <

Analogously to section 4.2.1, we derive from Lemma 4.19 and Proposition 4.21 the
following identities for V[T2(s)].

Corollary 4.23. Let the assumptions of Proposition 4.21 be fulfilled. Then there holds

VIT ()] = 75 (V195 = Vo) Lpacac
1
= 57 V1R8] = Vel 5)] Lpacc (.27
1
= (I)/(', S) [V[CI)(, S)] - Vacq)(‘a S)} ]l{agsgb}

Furthermore, for every y € [0,1] there holds V[T?(s)] = 0 a.e. on {s = y}.

4.3 The Steklov Average

Throughout this section, let I = (a,b) C R with —oo < a < b < 0o be an open interval
and X be a Banach space. We use the Bochner-integral to define Banach-space valued
integrals, see e.g. [Boc33], [DU77] or [Sch13].

Definition 4.24. For p € [1,00], let u € LP(I;X) be a function extended by zero on
R\ I. For h # 0, the Steklov average of u is defined as

1 rtth
up(t) := E/t u(s)ds € X.
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4 Chain Rules and Integration by Parts

Remark 4.25. The Steklov average of u can be written as a convolution
1, 5o
w(t) = (e =H2) ),

where we used the notation for /a, b/ introduced in section 1.4. Consequently, we obtain
the estimate [luyll, < [lull, for any u € LP(I; X) with p € [1,00]; see [Alt06, chapter
2.12]. <

Lemma 4.26. Let p,p’ € [1,00] with  + 5 =1, h #0, f € LP(R; X) and g € LY (R)
be given. Then there holds

[ s | [ e
+/bb+h /t_hg(s) ds £(t) dt_/aa+h /t_hg(s) ds f(t)dt € X.

Remark 4.27. For unbounded intervals, we use the convention co + h = oo and analo-
gous definitions. Then, for a = —oo or b = oo, the last two integrals in equation (4.28)
may vanish depending on the form of I. For negative h, we exploit [; th— _ ft Yhe <

(4.28)

Proof. We only consider the case of a bounded interval I. The proof for unbounded
intervals works along the lines of this proof with the obvious modifications.

From Remark 4.25, we infer

H/tHh £s)

An analogous result also holds for g. Hence, the integrals in (4.28) are well-defined.
Using Fubini’s theorem and several substitutions we deduce

[ roasgmar= [ [ ses sl dtds_//b+s ol — ) deds

—//f t—sdtds—i—/h b+8f()(t—s)dt—/ f(t)g(t—S)dt]dS

b
_// s)ds £(¢) dt+/b+h/th )ds f(t) dt—/a+h/ s)ds £(t)

= [R[full, <[RS, -

S

O

Lemma 4.28 (Properties of the Steklov average). The Steklov average, as given by
Definition 4.24, of a function u € LP(I; X) has the properties

1. up € C(I; X)
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4.3 The Steklov Average

2. For 1 < p < oo, we find the convergence up, — u in LP(I;X) as h — 0

3. up € WHP(I; X) with weak derivative Oyuy,(t)] = w € X for almost every
tel

4. Let I be a bounded interval and v € WH(I; X). Then O;[un(t)] = [Opu]n(t) in X
for a.e. t € (max{a,a — h},min{b,b— h}).

Proof. Ad 1. Let a < s <t < b be given and estimate

t+h s+h
) =@l =3 | [ wtrar= [ uwar

/sfhh u(r)dr — /: u(r)dr

Due to the absolute continuity of the Lebesgue integral, see e.g. [DiB02, III.Theorem
11.1], we conclude that uy, is uniformly continuous in ¢. We emphasize that due to the
definition of the Steklov average, u = 0 on R\ I.

X

_1
"

1 t
<5 [ @)l + llut+ )l dr
X S

Ad 2. Since the Steklov average can be regarded as a convolution, the convergence in
LP(I; X) follows from standard LP-theory [see Alt06, section 2.14].

Ad 3. Let ¢ € C°(I) and h # 0 be given. We extend v on R \ I by zero. We apply
Lemma 4.26, take into account that supp(u),supp(p) C I, and exploit the summation
by parts formula to obtain

/1 un () (£) dt = /1 % /tth o (s) ds u(t) dt
wolt o

:/Iw(t) Z( M o) dt = —/Iu(t+h})b_u(t)go(t) dt.

Ad 4. Since u € WHI(I; X), it possesses an absolutely continuous representative, see
e.g [Sch13, Proposition 10.8] and [Eva98, section 5.9, Theorem 2]. Hence, we find for a.e.
t € (max{a,a — h}, min{b,b — h}) the identity
t+h
ult + h) — u(t) = / du(r)dr € X.
t

Division by h proves 4. O

Remark 4.29. Occasionally, we require pointwise properties of integrable functions f.
Such properties are often deduced in Lebesgue points, i.e. points ¢ such that

t+h
]{ 1£(s) = F(®)llx — O as h — 0 (4.29)
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4 Chain Rules and Integration by Parts

holds. For real-valued functions we refer to [Rud99, 7] and for vector valued functions we
refer to [DU77, II.Theorem 9]. We emphasize that the Lebesgue differentiation theorem
holds in both cases, i.e. (4.29) holds for a.e. ¢ in the domain of f. Consequently, with
the properties of the Steklov average one derives from (4.28) for u € W1P(I; X) and
¢ € C°(R) the classical integration by parts formula

t2

Orup = u(ta)p(t2) — u(ty)e(t1) — /t2 udip € X (4.30)

t1 t1

for a.e. t1 <ty € 1. With a density argument and properties of the Bochner integral, this
formula can be extended to the case ¢ € W' (I; X') for suitable p,p’ and spaces X, X'.
In this case the product needs to be replaced by an appropriate duality pairing. N

When considering the product of an integrable function f with a Lipschitz function g,
we find Lebesgue points of the product in zeroes of g.

Lemma 4.30 (Lebesgue points of products). Let f € L'(I;X) and g : I — R be
Lipschitz continuous. Let ty € I be such that g(to) = 0. Then ty is a Lebesgue point of
the product fg, i.e.

h—0

to+h
£ I 0ely = 0

Proof. For |h| < hg small enough, we find By, (tg) C Bp,(to) CC I and, with the Lipschitz
constant L of g on By, (to) and g(tp) = 0, we compute

to+h to+h
;L/t ' 1f()g(t)] x dt < ;L/t " £ ()[g(t) — g(to)]]l x dt

<o [T wrond S e <o [T s0lcar 0
—
- to X h - to X h—0

due to the absolute continuity of the Lebesgue integral. O

Lemma 4.31 (Lebesgue points of a composition). Let g : X — X be Lipschitz contin-
uous, let f € LY(I; X) and let tg € I be a Lebesque point of f. Then to is a Lebesgue

point of go f.

Proof. The lemma follows from (4.29) and the Lipschitz continuity of g with respect
to the X-norm. More precisely, we find i.e. ||g(f(t)) —g(f(s))|lx < LI f(t) — f(s)lx,
where L is the Lipschitz constant of g and ¢, s € I are arbitrary. ]
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4.4 Integration by Parts

4.4 Integration by Parts

With the properties of the Steklov average, we are in the position to derive integration
by parts formulas related to (4.4).

Lemma 4.32 (Integration by parts I). Let Q,Q and V be as in (1.20)—(1.23). Let
s € L>®(Q;[0,1]) be such that Oys € L*(0,T; V') and assume there exists € > 0 such that
T1=¢(s) € L*(0,T; HY(Q)). Let a Lipschitz continuous function g : [0,1] — R be given
such that g is constant on [0,e] U [1 —¢,1]|. For any antiderivative G of g, there holds

to t to to
/t (D05, 9(5)E) vy = / (s /t /G Y (4.31)
1 t 11 1

for every £ € CX(Q X R) and a.e. 0 <t; <ta<T.

Proof. 1t suffices to show the lemma for nondecreasing ¢. Since Lipschitz continuous
functions are of bounded variation, we may decompose g = g1 — g2, where g1, go are
nondecreasing functions. Particularly, choosing g1 and g» via the Jordan decomposition,
we obtain that both functions are Lipschitz continuous and constant on [0,e] U [1 —
g, 1], see [DiB02, chapter IV.1]. Furthermore, thanks to linearity, it suffices to consider
nonnegative £ € C2°(2 x R). Hence, let us assume that g is a nondecreasing, Lipschitz
continuous function and that £ € C°(Q x R) is nonnegative.

From s € L®(Q) we deduce g(s),G(s) € L>®(Q). Furthermore, g(s) = g(T17%(s)) €
L2(0,T; HY(Q)) and hence g(s)é € L?(0,T; H}(Q)) C L?(0,T;V). Consequently, for
a.e. t € (0,7T) the duality pairing (9;s(t), g(s(t))&(t))v,v and the right hand side of
(4.31) are well-defined. Using the properties of the Steklov average from lemma 4.28
and integration with respect to t over (¢1,t2), we obtain

[ s a9y e [ [dslnatoe

t1 h—0

The monotony of g implies the convexity of G. For 0 < h < T — to we use again Lemma
4.28, exploit the boundedness and the convexity of G, i.e. G(b) — G(a) > g(a)(b— a),
and compute with summation by parts

/%/@ﬂw“ﬁ:/ﬁ/S@+2_SwﬂJMﬂw&
/:2/ s(t+h)) G(S(t))f(t)dt:/t:2+h/ G(s(t))g(t_h) »
_/tltlJrh/ /tEQ/G i(t—h) d&t

Z f [ feuenacar

(4.32)

ﬂ>/G (t)E(t)
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4 Chain Rules and Integration by Parts

for a.e. 0 < t; < ta < T. The convergence on the right hand side of (4.32) follows
from the continuity of £, the uniform boundedness of difference quotients of £ and their
uniform convergence towards 9;§, and from Lebesgue’s differentiation theorem [DiB02,
chapter IV.11]. For negative h with 0 < —h =: 1 < t;, we see that [0;s];, is a backward
difference quotient and, similarly to (4.32), we obtain

/ /atshg )¢ = / /ats —ng(s)€ = / )g(s(t))§(t)dt
/j?/ G(s(t —n) 5(t)dt:/t / t+n)d
_/ / t+n /’*2/(; t+77) 6()dt
o, /G z 22 /tt/ G(s(£)) ¢ dt,

for a.e. 0 < t; <ty <T. With reasoning as in (4.32) we obtain convergence to the same
limit and we conclude. O

(4.33)

Remark 4.33. Without a proof, the previous lemma can be found in [AD85a, p. 366]
for more general £ lying in an appropriate Sobolev space. Furthermore, the proof of
Lemma 4.32 remains unchanged if £ € C°(Q U Ty x R) or if g(s) € L?(0,T;V). In the
latter case & € C°°(R%*1) is also allowed. q

Lemma 4.32 provides, at least locally, the admissibility of certain truncations of s as
test functions in (MP). We emphasize that, in general, the lemma is not suited to take
either Dirichlet boundary or initial data into account.

We turn our attention to the justification of e.g. ®(-,s) as a test function in (MP) from
page 43. We are interested in shapes of ®(z,-) as depicted in Figure 4.1 for € Q. In
these cases ® is not necessarily Lipschitz continuous, flat near zero and one, and it is
x-dependent. Hence, Lemma 4.32 does not suffice to justify the use of ®(-,s) as a test-
function. Imitating the previous proof, while using the definition of initial data in the
sense of traces (4.2), we obtain a formula similar to (4.31) that is suited to treat initial
and time-independent boundary data. Before proving such an improved integration
by parts formula, we define a primitive of a function g subject to a function h with

g(z,h(x)) = 0.

Definition 4.34. Let h(z) € L*°(£2;]0,1]) and a Carathéodory function g : 2x[0,1] — R
be given. We assume that for every x € Q there holds that g(x,-) is nondecreasing and
g(x,h(z)) = 0. Furthermore, we assume that —oo < g(x,s) < oo holds on £ x (0,1).
We define G : Q x [0,1] = R as

Gz, s) = /h g(z,0)do (4.34)
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4.4 Integration by Parts

for (z,s) € Q x [0,1] and say that G is the (nonnegative) primitive of g with respect to
h.

From the previous definition we infer that G(z, h(x)) = 0 for € Q. Since g(z, -) is non-
decreasing we obtain that G(z, -) is nonnegative and convex for every z € Q.

Remark 4.35 (On the subdifferential of G). Assume g € C(2 x [0,1]) in Definition
4.34. Then, the fundamental theorem of calculus yields that G'(z,v) = g(z, v) for every
v € [0,1] and z € Q. Additionally, for given v € [0,1] the subdifferential relation
G(z,u) > G(z,v) + g(v)(u — v) holds for every u € [0,1]. With the subdifferential
notation, this is written as 0G(z,v) = g(z,v).

We remark that neither of the mentioned identities needs to hold in points that satisfy
g(x,v) = oo. Exemplary, assume h(z) =0, g(z,1) = oo and 0 < g(z,v) < oo for z € Q
and v € [0,1). In that situation we obtain G(z,1) = oo, but the differential of G(x,v)
is undefined for v = 1. By definition of the subdifferential, we obtain dG(z,1) = () but
oo = g(z, 1). Particularly, the subdifferential relation is not satisfied for v = 1. <

Lemma 4.36 (Integration by parts II). Let Q,Q and V be as in (1.20)—(1.23) and
let h,g and G be as in Definition 4.34. Let so € L>®(Q,[0,1]) and s € L*(Q,[0,1])
be given. Furthermore, we assume that Oys € L*(0,T;V"), g(-,s) € L*(0,T;V) and
s(-,0) = sg in the sense of traces, i.e. such that (4.2) holds. If G(-,s0) € L*(), then
G(-,8) € L>®(0,T; LY(Q)) and

[ s g8y > [ Gttt - [ o) - [ [ Gtonagn @)

for every nonnegative ¢ € C(R? x [0,T)) and a.e. ty € (0,T). Furthermore, if, for
some p € [1,00), there exists a set E C (0,T) of measure zero such that s(t) — so in
LP(Q) fort —0,t € (0,T)\ E , then equality holds in (4.35).

In Lemma 4.43 we observe that the convergence s(t) — sp can often be obtained by
means of the differential equation.

Proof of Lemma 4.36. Let h > 0 and ¢y € (0,7) be given (0 < h < T — ). We extend
son —h <t < 0 via s(t) := so; since (4.2) holds, i.e. sop = s(0) in the sense of traces,
this extension is in Wb (—h, T; V'), see [Sch13, Lemma 10.10]. Due to the assumptions,
the left-hand side in (4.35) is well-defined.

To show that the right-hand side of (4.35) is well-defined, we need to exploit the convexity
of G and the subdifferential propberties of G under consideration of Remark 4.35. Since
g(+,s) € L*(0,T;V) we infer that g(-,s(t)) € L?(Q2) for a.e. t € (0,7) and, hence, for
a.e. t € (0,T) there holds —oo < g(z, s(x,t)) < oo for a.e. x € Q. In particular, we find
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4 Chain Rules and Integration by Parts

for a.e. t that g(x, s(x,t)) € 0G(x, s(x,t)) for a.e. x € . Hence, the convexity of G in
s implies for a.e. £ > 0 that

(s(t) = s(t = h))g(-,s(t)) = G(-,s(t)) = G(-,s(t = 1)) (4.36)

pointwise almost everywhere in ). Since G is nonnegative, we infer

0< Gl s5(t) < gl s(0)(s(t) — s(t — b)) + G(-, 5(t — h)).
Due to the assumptions and particularly since G(-,s9) € L'(Q) we deduce with an
inductive argument that G(-,s) € L'(2 x (=h,to + h)).

With the integrability of G(-,s), Lemma 4.28, particularly with the identity [0;s]_p =
O[s_pn] € V' a.e. on (0,tg) for the backward difference quotient, and equation (4.36), we
proceed as in (4.33) with ¢; = 0 and t2 = tp to obtain equation (4.35) for a.e. to € (0,7)).
We want to point out the difference in comparison to the proof of Lemma 4.32. The
integral regarding t; = 0 is treated with the extension of s; particularly, we obtain

// t+h //sogt+h) — /9805(0)'

Furthermore, with £ = 1 on [0, t] we infer from (4.35) that G(-,s) € L>(0,T; L}(Q2)).

With reasoning as above and as in equation (4.32) but taking the inferior limit, we infer
the upper estimate

[ @us, o)y < [ G sttoetto)
0 Q

1 h to
—limsup—/ /G(-,s / /G )0 (t)
h—o hJo Jo

for a.e. typ € (0,7"). Comparing (4.35) and (4.37), we conclude

h
tmsup [ [ Gs0)e0) < [ G0

Consequently, for the proof of the reverse inequality (4.37) it suffices to show that

lim inf 1 / / G-, s(D)E(t) > /Q G(-, 50)(0). (4.38)

Lemma 4.37 is applicable to f = G¢(0) and we find s € My. We conclude that Mg (o)
is a convex set and that the corresponding functional is weakly lower semicontinuous.
Since s(t) — so in LP(2) for some p € [1,00) and ¢ € (0,T) \ E, we infer that

(4.37)

lim inf G /G ,80)€
t—0,t¢E
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4.4 Integration by Parts

We denote the limit inferior by ¢ and define n(t) = [, G(-,s(t))§(0). By definition, we
obtain for every € > 0 a d > 0 such that n(t) > ¢ — ¢ for every ¢t € (0,6) \ E. For hy = ¢
we deduce foh n(t) > ¢ — ¢ for every 0 < h < hg. Hence, we infer

h
liminf £ (1) = limin nt) = | G 50)€(0), (4.39)

which is (4.38), and we conclude. O

Lemma 4.37. Let Q@ C R? be a bounded domain and f : Q x [0,1] — [0,00] be a
Carathéodory function such that s — f(x,s) is convex for a.e. x € Q. Define

My = {v € L¥(,[0,1)) | f(-,v) € L'(Q)}

and let p € [1,00). If My # 0, then My C LP(Q) is a convex set and F : My — [0, o0]
defined by

Fv) = /Q Fz,0(x)) do (4.40)

is a convex functional. Furthermore, F is lower semicontinuous with respect to the weak
convergence on LP(Q).

Proof. Since € is bounded, any L*(Q2) function is in LP(Q) and consequently My C
LP(€2). The convexity of f in s implies that M is a convex set and that ' : My — [0, oc]
is a convex functional.

Let vy, v € My with v, — v € LP(Q). By definition of the inferior limit, there exists
a subsequence k; such that lim;_,o, F(vg,) = liminf,_ o F(vg;). The subsequence can
be chosen such that vy, — v pointwise a.e. in €. The continuity of f implies that
f(x, vy, (z)) = f(z,v(x)) for | — oo for a.e. z € Q. Since f(z, vy, (x)) > 0, we apply
Fatou’s lemma to deduce

likrggolfF(vk) = llgglo/ﬂf(x,vkl (z))dz > /Qf(x,v(q:)) dz = F(v),

i.e. the lower semi-continuity of F' with respect to the strong convergence in LP(2). From
the separation theorem for convex sets we derive that F' is weakly lower semi-continuous
in LP(Q), see [Sch13, Theorem 13.8]. O

Remark 4.38 (Extensions of the integration by parts formulae). We consider the proofs
of the integration by parts formulae again and take Lemma 4.30 into accounts. After a
suitable extension of s for ¢ > T, e.g. extension by its trace value at t = T', we realize
that 4.32 and 4.36 also hold for to = T and ty = T, respectively. We find also that
Lemma 4.32 holds for z-dependent ¢ as in Definition 4.34.

We also intend to apply both integration by parts formulae to equation (3.23) of the two-
phase problem. Hence, we require integration by parts formulae that take the porosity
¢ into account. Since the porosity ¢ is time-independent, we find in ¢dis = O(¢s) €
L?(0,T;V"). Using this in the proofs of Lemmas 4.32 and 4.36, we obtain equations
(4.31) and (4.35) with a factor ¢ inside every duality pairing or integral over (2. <
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4 Chain Rules and Integration by Parts

Boundary Data in Lemma 4.36 and Comparison to the Literature We emphasize that
the proof of the integration by parts formulae relies on the convexity estimate (4.36).
Particularly, we use that g and G do not depend explicitly on the time t. Hence, the
previous integration by parts formulae are only appropriate to treat time-independent
boundary data ®p € H'(Q). As a consequence the test function g(x,s) = ®(z,s) —
®p(z) can be applied to (MP).

Integration by parts formulae, similar to the ones stated above, can also be found in
the literature. With the notation b = ®1, ie. ®(s) = u we cast (MP) into the
form

Oulb(w)] = Au on Q,
u=wup onI'p x (0,7),
Oyu=0onTyN x(0,T),
b(u(z,0)) = bo(x) on Q,

(4.41)

and explain the use of integration by parts formulae with respect to (4.41). Typi-
cally, only results for z-independent b are proven in the literature, but generalizations
for the x-dependent case are stated. The following references have in common, that
b needs not to be strictly increasing. This implies that multivalued pressures and, in
contrast to the work at hand, that the unsaturated-saturated flow problem can be han-
dled.

In [AL83, Lemma 1.5] time-dependent Dirichlet boundary data are treated. Particularly,
an integration by parts formulae for the function v — up applied to (4.41) is used. The
formulae is shown in the case that b is independent of x and is used to obtain an existence
result. Without a proof it is stated that the formula can be extended to the case where
b depends on x. As we saw above, our argument confirms this claim in the case that up
is time-independent and & is as in Assumption A4.1.

In [Car99, Lemma 4, p.324], [CW99, Lemma 4.3] and [Ott95, Lemma 1] integration by
parts formulae are shown to derive an L'-contraction result. In view of (4.41), the use
of the test function ¥ (u — f) is justified, where v is a sufficiently smooth function that
is used to approximate the sign-function and f depends on x or is constant. As in
[AL83, Lemma 1.5], the integration by parts formulae are stated in the case that b is z-
independent, but extensions are possible. To apply the method of doubling the variables
assumptions on f must be made. In [Car99] and [CW99] the space and time variables are
being doubled, which necessitates that f is constant. In [Ott95] only the time variable
is being doubled, whence f is allowed to depend on z. Particularly, f is chosen such
that ¢ (u — f) has the right boundary data. In [Car99] and [CW99] only homogeneous
Dirichlet data are considered, whereas in [Ott95] time-independent Dirichlet data up
and also Neumann boundary data are treated. Translating this to our notation, we
find that g(z, s) = sign.(®(x,s) — Pp(x)) is a valid test-function for the model problem
(MP). However, we need to use the test function g(z,s) = sign.(0(z,s) — O(x, f(x))
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4.5 The Model Problem Revisited

to perform the method of doubling the variables applied to the discontinuous Richards
equation (TDR) from page 24. Since © is nonlinear, this case is not covered by the
references mentioned above.

In the succeeding article [Ott97], Otto was able to obtain L!-contraction in the setting of
outflow boundary problems; particularly, time dependent boundary data up are involved
and, again, the test function ¢ (u—up) is applied to a variant of (4.41).

4.5 The Model Problem Revisited

In this section, we apply the results of sections 4.1 — 4.4 to the model problem (MP) from
page 43. Particularly, we show that the formal calculation (4.7) can be made rigorous.
We show that s(t) — sg as t — 0 and sketch the proof of an L!-contraction result for
weak solutions of (MP).

4.5.1 Justification of (4.7)

As before, we consider the z-independent and z-dependent case separately.

Lemma 4.39. Let Q C R? be a bounded domain. Let ® € C'([0,1]) be as in Proposition
4.18 and let s € L°°(£,[0,1]) be such that ®(s) € H(2). For given 0 < € < 3, we obtain
with T, := T1~¢ the identity

VI[®(s)] = lim ®'(s)V[T:(s)]. (4.42)

e—0

Proof. Since T,(s) — s uniformly and since ® is continuous, we obtain

O'(5)V[T:(s)] = V[®(T:(s))] — V[®(s)] in D'(12), (4.43)

e—0

where we applied the Proposition 4.13 and Corollary 4.15 to obtain the first equality.
The corollary is used to justify the replacement of ®'(7.(s)) by ®'(s). Hence, a potential
L?-limit is identified. To show the L?-convergence we use the same corollary to find
almost everywhere on () the identity

(I)I(S)V[Ta(s)] ]l{s<s<1fs} = V[(I)(S)] ]l{s<s<1fs}' (4'44)

Determining the pointwise limit on the right-hand side of (4.44) and using ®(s) € H(9),
we infer
@ (VL)) Loyt —> VIB(5)] L pcper) i L) (4.45)

from Lebesgue’s theorem. Since the distributional limit is unique and since L?-convergence
implies D’-convergence, we obtain (4.42). O
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4 Chain Rules and Integration by Parts

Lemma 4.40. Let ® fulfill Assumption A4.1 and let s € L*°(Q,[0,1]) be such that
®(-,s) € HY(Q). For 0 < e < %, let T. := T1¢ be as in Definition 4.11. Then there
holds

V(- 5)) = lim (V.0 (. To(s)) + /(-5 VIT.(5)))

(4.46)
= V() + lim (¥ (-, 5)V[T:(s)])

in L?(Q2) and the identity

VI®(-, 8)] Ljocs<1y + Va@(+ 8) Ligs=ojuis=1}3 = VI[®(-,5)].

Proof. The proof is similar to that of Lemma 4.39. Since ® is continuous and T.(s) — s
uniformly ad € — 0, we deduce, using Proposition 4.21 and Corollary 4.23, the conver-
gence

Va® (- To(s)) + (-, $)V[TL(s)] = V[B(, To(s))] — V(- s) in D'(Q).  (4.47)

e—0

As in the proof of Lemma 4.39, Corollary 4.23 is only needed to justify the replacement of
®/(T:(s)) by ®(s). With (4.47) a potential L2-limit is identified. Due to the assumptions
on ® and the uniform convergence of T;(s) — s we infer that V,®(-, T.(s)) — Vx(®(-,s))
in L2(Q). With Corollary 4.23, we derive

(I)/('a S)V[TE(S)] = [V[(I)(, 8)] - vl"q)('v 3)] ]1{8<S<1—5} (4'48)

for a.e. in Q. Determining the pointwise limit in (4.48) and using that V®(.,s),
V.®(-,5) € L?(Q) we obtain by Lebesgue’s theorem that

(-, 5)V[T(s)] — [V[(,5)] = Va®(-, 5)] Lip<scry in L*(R). (4.49)

e—0

Since L?-convergence implies D’-convergence and since the distributional limit is unique
we obtain (4.46). Collecting the previous identities also

V[q)(, S)} ]1{0<5<1} + qu)(a 3) ]1{{5:0}U{s:1}} = V[q)(, 8)]
and conclude. O

Remark 4.41. Taking in Lemmas 4.39 and 4.40 the "simultaeneous” limit T2 ~¢ was
only done to simplify notation. One obtains similar results if one merely considers the
upper or lower limits. 4

With the results from this section, we see that the formal identity (4.7) can be justified
by replacing Vs 1..,<1_¢} essentially by V[T.(s)].
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Remark 4.42. We want to continue Remarks 3.1 and 3.2. In [AD85a, Lemma 3.3 and
p. 389] a solution is constructed that fulfills (3.19) only in the sense that

$Oys =V - <nm Ai(s)ha(s)

e»0  A(s) Pe(s)VT.(s) + B(s) + D(s)u) ) (4.50)

Under certain assumptions on @, the previous two lemmas show that (4.50) is equivalent
to
POs =V - (A[Q(s)] — Vo P(s) + B(s) + D(s)u) (4.51)

and essentially (3.23) holds. q

4.5.2 Weak Convergence Towards Initial Data

Lemma 4.43 (Weak convergence towards initial data). Let s be a weak solution of the
model problem (MP) in sense of Definition 4.1. Then, there is a set E C (0,T) with
|E| =0 and such that

s(t) — s € L*(Q)

ast—0 forte (0,7)\ E.

Proof. Let 8 € C2°(Q) be given and ,for § > 0, let a4+ € WH1(0,T) be a sequence of
continuous piecewise linear cut off functions of the interval [0,t*], i.e.

1 0<t<t,
asp(t) =10 t >+,
linear t* <t <t*+0.

Particularly, there holds ’agﬁ‘ < 1/6. For 0 < t* < T and § small enough, we may
choose £ = a4+ in (4.1) and (4.2), and we obtain

tmr&/gs,@—l—/Ot*Jré/S)a(;’t*V[@(-,s)]Vﬁ—/Qsoﬂ. (4.52)

t*

To pass with 6 — 0, we apply Lebesgue’s differentiation theorem. This yields a set
E C (0,T) with |E| = 0 such that

[swys+ [ [ viecovs= [ s (453)

for any t* € (0,7) \ E. Due to the absolute continuity of the Lebesgue integral, we
obtain passing with ¢t* — 0 the convergence

t—0 . /
t) —— D(Q).
S( ) te(0,T)\E S0 1 ( )
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4 Chain Rules and Integration by Parts

Furthermore, since s(t) € L>(0,T;L*(2)), we find that {s(t)}corpp C L*(Q) is a
bounded set. Hence, up to a subsequence and since the distributional limit is unique, we
obtain s(t) — sg in L?(2) for any sequence ¢ — 0 subject to t € (0,T)\ E. We conclude
with a standard argument, see [DiB02, I.1.1]. O

Remark 4.44. The previous proof exploits that s € L*°(0,7T; LP(Q2)) for p = 2. The
same reasoning can be used for any p € [1,00). For p = 1, we require additionally
that {s(¢)} is uniformly or equi-integrable to apply the Dunford-Pettis theorem [Brel0,
Theorem 4.30]; this hint is also given in [Ott95, p. 36]. q

Application of Lemma 4.43 and Lemma 4.36, to the model problem (MP), yields with
the test function ®(z, s)as 5, where § =1 on 2, under the assumption ®p = h(z) =0

the a priori estimate (4.3) for a.e. ¢t € (0,7"). For more general Dirichlet data, we require
®p = &(z,h(z)) € H(Q) for some h € L>(Q, [0, 1]).

4.5.3 Formal L!'-contraction and Doubling the Variables
In this section, we assume that ® does not depend on x. The basic idea to show
L'-contraction for the model problem (MP) is to multiply the equations for any two

solutions s1 and s9 by sign(®(s1) — ®(s2)) = sign(sy — s2). To obtain the latter identity,
the monotony of ®(s) is used. For j € {1,2}, we obtain

/Q By, sign(s1 — s2) + V(®(s;))V]sign(®(s1) — B(s2))]. = 0 (4.54)

Subtracting the equations for s; and sa, and using the total time derivative dyusign(u) =
O |u| yields

/Q((?t 51— 82| + [V(®(s1) — ®(s2))]? sign’(®(s1) — ®(s2)) = 0. (4.55)

We interpret sign’ to be nonnegative and obtain, after integration over 7 € (0,¢) with the
initial data so,1 and sq 2 of 51 and so, respectively, the estimate

/\81—82!(t)é/ 50,1 — 802 -
Q Q

This estimate implies uniqueness of solutions and completes a first formal proof.

Remark 4.45. In the case of z-dependent ® an additional term of the form

/QV(@(Sl) — B(s2)) sign’(®(s1) — D(s2))(Va (R (51) — B(s2))

would appear in (4.55). Such a term does, in general, not possess a sign and the argument
fails. <
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4.5 The Model Problem Revisited

There are several issues in this formal proof which all are related to the validity of the test
function. The most obvious problem is the lack of regularity; in general sign(®(s;) —
®(s2)) € L*(0,T;V). To tackle this issue, one approximates the sign function by a
regularized function sign.. The downside of this approximation is that the equality
sign(s; — s2) = sign(®(s;) — ®(s2)) is not maintained under this approximation. The
use of this equality was essential in the in the step from (4.54) to (4.55). Furthermore,
due to the non-linearity of ® we cannot expect that 0(s1 — s2) sign(®(s1) — ®(s2)) is a
total time derivative of any function.

At this point the chain rule and doubled time variables come into play. However, the
chain rule is not directly applicable since

Ops1sign (®(s1) — (s2))

is not a total time derivative unless s3 is constant in ¢. Assuming that for the moment,
we obtain

01519 (51, 52) = Ops1 sign, (P(s1) — P(s2))
Y U sign_(®(u) — ()| =: AG.(s1, 52).

52

(4.56)

Hence, let us assume that s is a solution for the time variable ¢ and ss is a solution for the
time variable 7. We repeat the procedure obtained to deduce (4.55) with the following
changes. We use the total time deriative (4.56) for s; and s, respectively, exploit the
symmetry of the sign function to obtain —0;sssign, (P (s1) — ®(s2)) = 9-G:(s2,s1) and
infer, similarly to (4.55), the identity

/ B,Go(51(1), 52(7)) + 0, G (52(t), 51(7))
@ (4.57)
+ /Q IV(®(s1(t)) — (s2(7)))|* signl(®(s1(t)) — @' (s2(7))) = 0.

The last integral has a sign and we pass formally to the limit € — 0. This yields
/Q 0G (51(t), 52(r)) + 8- Glsa(t), 51(7)) < 0

Linking the times again by choosing 7 = ¢, using that G(s1, s2) = |s1 — s2| and integra-
tion over (0,to) yields the L!-contraction

[ tsatto) = sato)l < [ Is0.1 = socl
Q Q

and we finish the second formal proof.

The lack of rigor in this second proof on L'-contraction essentially affects the limit-
ing process € — 0. Particularly, the convergence of e.g. 9;G. — ;G and choosing
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4 Chain Rules and Integration by Parts

t = 7 afterwards is unclear. As we are going to see, the tool to cope with these is-
sues is the integration by parts formula provided by Lemma 4.36. Using this lemma,
the time derivative acts on a smooth function £ instead of G(s1,s2) and G(s2,s1), re-
spectively. Consequently, we only need to show convergence G.(s1,s2) — Gc(s1,52)
instead of 0,G:(s1,s2) — 0;Ge(s1,52). There are two terms coming into play due to
the occurrence of £&. The VE&-term vanishes by simply choosing £ constant in space
and the term containing 9, + 0.£ is used to approximate a Dirac measure in t =
T.

Remark 4.46. The method of doubling the variables was introduced by Kruzhkov
[Kru70] in the context of conservation laws. Otto [Ott95; Ott97] and Carrillo[Car99]
extended the method to degenerate parabolic equations. In Otto’s works it suffices to
double on the time variable, whereas in Kruzhkov’s and Carrillo’s articles it is required
to double the space and time variable. For a survey on recent results in the environment
of the method of doubling the variables, we refer to [AI12]. <
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5 L'-contraction for Equations of Richards
type with r-dependence

In this chapter, we provide a proof of Theorem 2.4, following closely the ideas presented in
the formal L'-contraction proof of section 4.5.3. There it was used that ® is independent
of z. The x-dependence of ® in our problem makes adaptions necessary. In section 5.1,
we provide notation and results to treat the problem with an x-dependent ®. In section
5.2, we state the main proposition, which is extended in section 5.3. The extension is
used to prove the main theorem, Theorem 2.4.

In the following, we use the notation introduced at the beginning of chapter 2 in equation
(2.1) and usually suppress the z-dependence of the functions.

5.1 Preliminaries

In contrast to the formal L!-contraction proof in section 4.5.3, we choose sign_(0(s1) —
O(s2)) instead of sign.(P(s1) — ®(s2)). The first function is weakly differentiable on
Q. The second function is only weakly differentiable on €; and €2, separately. As seen
in (4.56) we need to define a transformation similar to G. adapted to our problem.

Definition 5.1. Let j € {l,r}, v € [0,1] and € > 0 be given and let ©; be as in
Assumption A2.3. We define the mappings g ; and g; : [0, 12 >R as

ge.i(, v) = /u sign. (0;(€) — ©,(v)) dé
and
gj(u,v) = lu—v.

Lemma 5.2 (Properties of ¢. j). Let j € {l,r} and € > 0 be given. Let q. j and q; be as
in Definition 5.1. For u,v € [0, 1], the following properties hold

1. The mapping q. ;(-,v) : [0,1] — R is convez for every v € [0,1]
2. 0 < qej(u,v) /7 qj(u,v) as e = 0.
3. qe; € C([0,1]?)
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5 L'-contraction for Equations of Richards type with xz-dependence

4. Qej — qj uniformly as e — 0.

Proof. Ad 1. We consider two cases. If ©; is bounded or if v < 1, then the integrand of
¢e is nondecreasing in £. Consequently, g-(+,v) is convex. In the remaining case, i.e. in
the case®;(1) = oo and v = 1, we obtain that the integrand in ¢. ; equals —1 for v € [0,1)
and consequently we obtain for u € [0, 1] the relation ¢, ;(u, 1) = ¢j(u, 1) = |u — 1| which
is clearly convex.

Ad 2. Let ©; be bounded or v < 1. With 0 < sign(u — v) sign_(0;(u) — 0;(v)) <1, we
find
0 < gej(u, ) < fu—v| = gj(u,v)

Since ©; is an increasing function we obtain

sign(u — v) sign, (0 (u) — ©;(v)) /1 — by
as € — 0 and § denotes the Kronecker delta. Thus, from the monotone convergence
theorem [Alt06, A1.12], we infer ¢ ;(u,v) 7 |u—v| = gj(u,v) for u € [0,1] as € — 0.
The remaining case, i.e. ©;(1) = oo and v = 1, is immediate since sign_(0;(u)—0,(1)) =
—1 for uw € [0,1). Hence g-(u,1) =1 —u = |u — 1] for every u € [0, 1].
Ad 3. Let ug,v; € [0,1] for k& € N be such that uy — u and vy — v. With Lebesgue’s
dominated convergence theorem, we conclude

|Ge.j (1, v) = Ge j(uk, vi)|

[ 10 (O 58005(6) ~ 05(0)) — 1000/ ign.(65(6) — 0 (1)) e

(&) + Isign.(©;(£) — ©;(v)) — sign.(6;(§) — ©;(vk))| d&

1
S /0 ’ﬂ/w/— Ly i/

— 0.
k—o0

Ad 4. Thanks to items 2 and 3, we can apply Dini’s theorem [DiB02, I.Theorem 7.3].
This proves the claim. O

Lemma 5.3. We assume that Assumptions A2.1-A2.3 hold. Let s be a weak solution of
(TDR) in the sense of Definition 2.2. Let v € L>(£2;[0,1]) be such that O(-,v) € H*(Q)
and O(-,5) — O(-,v) € L?(0,T;V). Then there holds

| fa-(s0,0) = ac(s, 00100
Q

# 20 J 700+ (o) Vlens(5(n) €301 (5.1)

g/ £(s) [sign.(©(s) — ©(v))~]
Q

for every nonnegative v € C°([0,T) x R?) and £ > 0.
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5.2 The Kato Inequality

Proof. Since O(-,s) — O(-,v) € L*(0,T;V) and since sign, is Lipschitz continuous, we
infer from Corollary 4.5 that g(-,s) = sign_(©(-,s) — O(-,v)) € L*(0,T; V). Hence, it is
allowed to choose & = ¢(-,s)y in (2.13) and we obtain (5.1) modulo the inequality and
the term containing the time derivative.

To treat the term containing the time derivative, let G be the primitive of g with respect
to v in the sense of Definition 4.34. Since g is bounded on © x (0, 1), we find G(z,s) =
ge(z,s,v) for x € Q and s € [0,1]. Thus, under consideration of Remark 4.38 with
to =T, we apply Lemma 4.36 and obtain

/Q@s,g(-,S)v)v',v > —/Qqs(SO,v)v(O) —/Qqs(s,v)aw
= [ fa=(s0.0) = go(s. 0)}0r7.
Q

Summarizing, we obtain (5.1) and conclude the proof. O

5.2 The Kato Inequality

The next steps in the formal proof of Section 4.5.3 were to double the time variable,
send the regularization parameter of sign, to zero and finally reduce the doubling of
the time variable. These steps are performed in Proposition 5.4 and yield the so called
Kato-inequality.

As in [Ott95], the Kato-inequality presented here requires test functions that vanish
in ¢t = 0. In section 5.3, the Kato-inequality is extended to test functions with arbi-
trary values at t = 0. It is also possible to prove this extended Kato-inequality di-
rectly, which requires, in comparison to our proof, a different choice of test functions.

Proposition 5.4 (Kato inequality). Let s, so be weak solutions of (TDR) in the sense
of Definition 2.2. Under Assumptions A2.1, A2.2, A2.3 and A2.J there holds

J s st 3 [ steni@on) = 05(52) VIR 1) ~ @452)] - ¥

Je{lr}

+ > / sign(s1 — s2)[Aj(s1) — Aj(s2)lgj - Vv (5.2)
je{l,r}

< /Qsign(sl —s2)[f(s1) — f(s2)]y

for every v € C°((0,T) x RY) with v > 0.
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5 L'-contraction for Equations of Richards type with xz-dependence

Proof of the Kato Inequality

As indicated in section 4.5.3, the proof of the Kato inequality consists of three steps.
Firstly, we double the time variable. Secondly, we pass with ¢ — 0, i.e. we consider
sign, — sign. Lastly, we reduce the doubling of the time variable.

Step 1: Doubling the time variable

Let (t1,t2,2) € (0,T)? x Q := Q and define Q; = (0,T)% x Q; for j € {I,r}. Consider
si(x,ty,ta) == sl(g,tl) as a function on ) independent of ¢t and sy(z, t1,t2) := so(x, ta)
as a function on @ independent of ¢;.

Let 4 € C((0,T)? x RY) be such that ¥ > 0. For € > 0 and a.e. ty € (0, T), we
infer from Lemma 5.3 with v = sa(t2), t = t; and with the choice v(t) = (t,t2) the
estimate

—4%@wwmaﬂm
+ > i(s1) + Aj(s1)g;] - Visign.[0;(s1) — ©;(s2(t2))]7(t2))] (5.3)
Jje{lr}

séf@n%%@mm—euw@mwmy
Exchanging the roles of s; and sa, we obtain for a.e. t; € (0,7)

_/qu(SQ,Sl(tl))am:}/(tl)
+ / [V®;(s2) + Aj(s2)g5] - Visign.[0;(s2) — ©;(s1(t:))]3(t1))]  (5.4)
Jje{l,r}

g/ f(s2) [sign.[O(, s2) — O(+, 51(1))]7(t1)] -
Q

Integrating (5.3) and (5.4) with respect to t2 € (0,7") and ¢; € (0,T), respectively, adding
the resulting equations and exploiting the symmetry of sign,, i.e. sign,.(o) = —sign.(—o)
yields

- /C~2 QE(SL 82)8151;5/ + QE(SQ, Sl)atz;)}

+ > — V®j(s2)] - Vlsign.[0;(s1) — ©;(s2)]7)]
je{l,r} Qj
(5.5)
+ ) = Aj(s2)]g; - V[sign[©;(s1) — ©;(s2)]7)]
je{l,r} Q]

< /~[f(51) - f(SZ)] [Signa[e('a 31) - 6(7 32)]5/] :
Q
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5.2 The Kato Inequality

Step 2: The Limit ¢ — 0

To treat the first integral on the left-hand side of (5.5), we use the properties of g.
from Lemma 5.2 to obtain q.(s1,s2),q=(s2,51)  |s1 — so| a.e. on Q as e — 0. The
boundedness of |s; — so| and the regularity of 4 allow to apply Lebesgue’s theorem.
This yields

- / q=(51,52)00, 7 + q= (52, 51) 0, 7 — —/~ |s1 — s2| (O + Ory) - (5.6)
Q e—0 Q
Concerning the second integral on the left-hand side of (5.5), we compute
, [9s(0) = V(52)] - Vlsign.[0;(s1) ~ O (s2)]3)]
j
- /Q sign[0;(s1) — ©;(s2)] [V (s1) — VP;(s2)] - V7
j

+ /Q signz[0;(s1) — ©;(s2)] [V®;(s1) — V;(s2)] - [VO;(s1) = VO, (52)] ¥
=TI + 15,

where we use Corollary 4.5 from Stampacchia’s lemma to understand the right-hand
side, i.e. signl(0;(s1) — ©;(s2)) = 1 L{j0,(s1)=), (s2)|<}-

For k € {1,2}, we infer from 0, (sx) € L*(Q) that ©;(s;,) < 0o a.e. in Q. Consequently,
we deduce the pointwise convergence sign (0;(s1) — ©;(s2)) — sign(0;(s1) — ©(s2))
a.e. in Q as e — 0. Using that ©; and ®; are strictly increasing, thus sign(©;(s1) —
©;(s2)) = sign(®;(s1) — P;(s2)), and Lebesgue’s dominated convergence theorem, we
infer

e—0

Iy — o sign[®;(s1) — @;(52)] [VP;(s1) = V@;(s2)] - V¥.

Concerning I35, we introduce ES := Q;N{|©;(s1) — ©;(s2)| < €}, use Assumption A2.4
and compute

=2 [ V@51~ @s2)] - VIO;(51) - O5(s2)]3
=2 [ 50550 VIBs(51)) — A(05(52)) V18 (s2)]) - VIO, (51) - ©5(52))7
) ! (5.8)
=~ [ 850550 [V18,(s1) — € (s2))*5
+ % / [4(©;(s1)) = Aj(0;(52))]V[Oj(s2)] - V[O;(s1) — ©;(s2)]7.
Es

J

Particularly, the boundedness of A; implies that the integrals are well-defined. Since
A; is nonnegative, the first integral on the right-hand side of (5.8) is estimated by zero
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5 L'-contraction for Equations of Richards type with xz-dependence

from below. Let L; denote the Lipschitz constant of A;. On E5 we find the pointwise
estimate

1
- 144(85(s1)) = 44(8;(s2))] Lgje;(s1)-0,(s2)<e} < L (5.9)
Together with (5.9), Stampacchia’s lemma and the notation
E;? = E; n{|0;(s1) — ©;(s2)| # 0}
we obtain

1\/E; [Aj((aj(sl)) - AJ(@j(SQ))]V[@j(32)] . V[@j(sl) _ @j(SQ)]’?

e

< [ L5 VIOl V185 (51) — ©;(52))l § = Ly (B") — 0,
B e—

where p; is the nonnegative measure generated by |V[0;(s2)]| |[V[©;(s1) — ©;(s2)]| 7.
The convergence is inferred from E;l’o C EJE»Q’O for 1 < &2 and M.+ E;’O = ( [Rud99,
1.19 and 1.29]. Hence, the previous considerations provide that the second integral on
the right-hand side of (5.8) is nonnegative in the limit ¢ — 0. Consequently, we ob-
tain
liminf I5 > 0. (5.10)
e—0

The third integral one the left-hand side of (5.5) is treated similar to second integral.
We compute

/Q (1) = Ag(s2)]g; - Visigna[0;(s1) — ©;(52)7)]

= /@j signs[@j(&) - @j(52)][)‘j(51) - )‘j(52)]9j ’ V:Y) (5‘11)

— 5+ IS

Concerning I5 we proceed similarly to I7; we exploit the pointwise a.e. convergence
sign, (©,(s1)—0;(s2)) — sign(O;(s1) —O;(s2)) = sign(s1 —s2), as € — 0, and Lebesgue’s
dominated convergence theorem to infer

I3 — 5 sign(s1 — s2)[Aj(s1) — Aj(s2)]g; - V7.
J

e—0

As to Ij, under consideration of Assumption A2.4, we denote the Lipschitz constant of
Aj o @;1 by I;. We obtain (5.9) with A; replaced by A; o 6;1 and L; by [;, respec-
tively. Using the notation of the set E;’O introduced above and Stampacchia’s lemma,
we deduce

€ 1 5 ~
1< 2 [, 11l 19105(51) = € () 141 < iy () — 0.
J
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5.2 The Kato Inequality

where fi; is the nonnegative measure generated by |V[0;(s1) — ©;(s2)]| |7||gj]. The
convergence is justified as that in I5.

Concerning the right-hand side of (5.5), we use sign_(©,;(s1) — ©;(s2)) — sign(0;(s1) —
©,(s2)) = sign(s1 — s2) almost everywhere on @); as ¢ — 0 and Lebesgue’s dominated
convergence theorem to obtain

[ (F(s) = F(s2) sign.(O(s1) — O(s2))7 —> [ signsn = s2)(f(s1) = F(s2))7.
Q e—0 Q
Collecting the previous estimates, we find

AR Rk

+ > ~Slgn j(51) = @j(52))V[®5(s1) — @j(s2)] - V7
Jje{lr}

+ Y Slgn s1 — s2)(Aj(s1) — Aj(s2))g; - VA
je{l,r}

< /Qsignm — 52)(F(s1) — f(52))3-

(5.12)

Step 3: Reducing the doubling of the time variable

Let v € C°((0,T) x R?) be nonnegative and for § > 0, let s € C2°(R) be a Dirac se-
quence as introduced in section 1.4. For ¢ sufficiently small, the function

t1 + 1o
Y5(t1,t2, ) = @5 (t1 —t2)y ( 5 737) .

is an admissible choice for 4 in (5.12). Thanks to

t1+ 12 )
7':E )

(O + Oy )vs(t1, t2, ) = @5 (t1 — t2) Oy < 5

t1+1
VAs(ty, ta, ) = s (1 —tz)V’Y< ! 5 Q,x),

the derivatives of s, which are singular in the limit § — 0, cancel. We change the
variables in virtue of t = ¢; and 7 = t; — t3. We find 7 € (—=T,T) and the identity
t —7/2 = (t1 +t2)/2. With the notation w”(t) := w(t — 7), exploiting the compactness
of the supports of ¢ and v, and Fubini’s theorem, we infer

[esm[= [ 11 = 51007 = [ sientss = (1) = 5

+ ) / sign(@;(s1) = (1) V(@;(s1) = @) - VA (5 )
je{l,r}

+ > sign(s1 — s3)(Aj(s1) — Aj(s3))g; - V42| dr < 0.
je{l,r} @
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5 L'-contraction for Equations of Richards type with xz-dependence

Concerning the limit § — 0 in (5.13) we show that the function G : (-27,2T) — R,
extended trivially onto R, defined by

= [ Js1 = sl — [ sign(on — s5)(£(s1) ~ F3)) "
+ )] / sign(®;(s1) — ;(s3))V[®;(s1) — @;(s5)] - V2

G (5.14)
4
3 siEmlon = s0u(on) = AlsRgs - 97 = 3 Gulr)
je{l,r} k=1
is continuous in 7 = 0, where
- / |51 — 82| By — / sign(s1 — 2)(f(s1) = f(s2))7
+ 3 (o) — B2 V(i(s1) - @y2)] - Ty (5.15)
je{l,r}
+ Y / sign(s1 — s2)(\j(s1) = Ay (s2))g; - V.
je{l,r}

From the continuity of translation operator in LP(Q) for 1 < p < oo, cf. e.g. [Alt06, 2.14],
and the Lipschitz continuity of the modulus function, we infer

Gi(1) = /Q |s1 — s%]@t’f/z :0% /Q |s1 — 82| Dpy.

For h € C([0, 1]) define the function F}, : [0, 1]> — R in virtue of
Fy(u,v) :=sign(u — v)(h(u) — h(v)).

Since F}, is continuous, we deduce from Assumption A2.2 the continuity of G5 and G4
in zero. In particular the integrands in Ga(7) and G4(7) converge pointwise a.e. to the
integrands of G2(0) and G4(0), respectively. Since the occuring functions are bounded,
we apply Lebesgue’s dominated convergence theorem and obtain Gi(r) — G(0) as
T — 0 for k € {2,4}.

The limiting relation for (G3 is more intricate to handle. To simplify notation and
concentrate on the essential parts we exploit again the monotonicity of ®; and use
sign(®;(s1) — ®;(s2)) = sign(s1 — s2). Realizing that h(s™) = h(s)” for any time inde-
pendent function h, we write

sign(s1 — s5)V(®;(s1) — ®;(s2)7) - V' — sign(s1 — 52)V(®;(s1) — ®;(52)) - Vy
= [sign(s1 — s3) — sign(s1 — s2)]V(®;(s1) — @;(s2)) - Vv

+sign(s1 — 53)[V(®j(s1) — ®j(s2)7) - VA2 = V(D;(s1) — j(s2)) - V7]
=17 +717.
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5.2 The Kato Inequality

For T7, we exploit the Cauchy-Schwarz inequality and a standard argument to de-
duce

/Qj T3] < IV (@5(s1) — ®5(s5)), [V (v =27, (5.16)

+ IVl V(®5(s2) — ®5(s2))ll; = 0,

due to the uniform continuity of V- and the continuity of the translation operator.

Concerning 77, we define
Sj = {81 = 82} N Qj,

realize that sign(s;—s2) = 0 on Sj and use Stampacchia’s lemma to compute

|, Tsntss 5 = signss — s2))[1V(®5(51) ~ @5(s2))] 1991
(5.17)
/ V(®5(5) = @ (s2))] [V4] = 0.

On the complement SE of S;, we use that sj — so in L2(Qj). Thus, for any sequence 7 —

0, we obtain the convergence sj — s a.e. on SJC. This implies a.e. on S][-] the convergence
|sign(s; — s5) — sign(s; — s2)| = 0as 7 — 0, up to a subsequence. Lebesgue’s dominated
convergence theorem yields the strong convergence

T—0

/SE [sign(s1 — 53) — sign(s1 — 2)]V(®;(s1) — ®;(s2)) - Vy — 0 (5.18)

J

for this subsequence. With a standard argument [DiB02, I.1.1], we obtain the con-
vergence in (5.18) for any sequence 7 — 0. Combining (5.17) and (5.18), we in-
fer

limsup/ |T7| = 0.
Q

i
Summarizing, we have shown the continuity of Gy (7) in 7 = 0 for k € {1,...,4} with
G(0) given by (5.15).
With the continuity of G in zero, G € L'(R) and the properties of s, we find

T 1 T

lim R; <5> Glrydr=1im [ 2o <5> G(0) dr = G(0). (5.19)

From (5.13) we derive G(0) < 0, conclude the Kato inequality (5.2) and the proof is
complete.
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5 L'-contraction for Equations of Richards type with xz-dependence

5.3 Extension of the Kato Inequality

In this section, we provide tools to close the gap between the Kato inequality (5.2) and
(2.14) from Theorem 2.4. In Proposition 5.8 we show that ¢ = 0 is a right Lebesgue
point of s with s(0) = sg. To prove Theorem 2.4 in the next section, this is used to
dispose the restriction of v vanishing in ¢ = 0 in the Kato inequality (5.2) and yields
the extended Kato inequality (2.14). To obtain the generalized L!-contraction from the
extended Kato inequality, we require the auxiliary Lemma 5.5 and a Gronwall inequality
stated in Lemma 5.6.

Lemma 5.5 (Weak differential inequality). Let functionsu, € L'((0,T)) and constants
ug € R and L, K > 0 be given. If

T T
- / o/ (8) (ult) — uo) dt < / o(t)(Lu(t) + KO(t)) dt (5.20)
0 0

for every nonnegative o € C°((—00,T')), then there holds

u(t*) < ug + Ot* Lu(s) + K6(s) ds (5.21)

for every Lebesgue point t* of u(t) and thus for a.e. t* € (0,T).

Proof. Let t* € (0,T) be a Lebesgue point of u and let n € C°°(R) be non-decreasing
and such that n*(c) = 0 for 0 < 0 and n(o) = 1 for 0 > 1. For § > 0, we define the
sequence 7j5(0) = n((—o +t* +6)/d). With C;, := max ||, we infer |(75)'| < Cy /. Let
B € C(R) be nonnegative and such that 5 =1 on [0,7]. Then o = 750 is admissible
in (5.20) for ¢ sufficiently small. We compute

t* 46 t* 46
~ [ ) ©u(s)ds < wis(®) + [ di(s) (Luls) + K0(s)) ds

=up+ /Ot* (Lu(s) + K0(s))ds + t*t*+6 n5(s)(Lu(s) + K0(s))ds (5.22)
o0 Uo + Ot* Lu(s) + K6(s)ds

To pass with § — 0 on the left-hand side of (5.22), we claim that u(¢t*) is the desired
limit. Indeed, we find

t* 46 t* 46
[ = @uts) ds —ute)| < S [ luts) — ute)] ds

* 5 *
<2G, lu(s) —u(t*)] ds — 0
Bs(t*) =0
since t* is a Lebesgue point of v and (5.21) is proven. O
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5.3 Extension of the Kato Inequality

To obtain the L!-contraction property, we need a simple version of Gronwall’s inequality.
In [Eva98, Appendix B.2] we find some variants of Gronwall’s inequality and adapt the
proof to our needs.

Lemma 5.6 (A Gronwall Inequality). Let u(t) € L'(0,T) with u(t) > 0 for almost
every t € (0,T) and ug, L > 0 be given. Furthermore, assume that

u(t) < wug+ L/Otu(s) ds  for a.e. t € (0,T). (5.23)

Then there holds
u(t) < eMug (5.24)
for almost every t € (0,T).

Proof. We define the absolutely continuous function 7(t) = f5 u(s)ds. Hence, for a.e.
7 € [0,T], we infer

0 (n(s)e™") = e (/(s) — Ln(s)) < e "*ug

using (5.23) in the last inequality. Integration over s € [0,¢], multiplication by e and
using that n(0) = 0 yields

t 1
Lt —Ls _ Lt ~ _ Lt
n(t) <e (uo/o e ds) = ype 7 (1 e )

for a.e. t € [0,T]. Inserting this in (5.23) yields
t
u(t) < wugp+ L/ u(s) ds < uget (eiLt +1-— eth> = uge M
0

for a.e. t € [0, 7] O

In the following proposition, we use the concept of essential limit, which is the usual
limit except for a set of zero measure.

Definition 5.7 (Essential limit). Let g € L'(0,T). We say that c € R is the essential
limit of g in zero, i.e.

= li t
c esiwlmg( )

if there exists a subset E C (0,T) with |E| =0 such that

= lim g(t).
c=limyg(t)
teE
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5 L'-contraction for Equations of Richards type with xz-dependence

Proposition 5.8 (Essential continuity in ¢t = 0). Let s be a weak solution of (TDR) in
the sense of Definition 2.2 with initial data 0 < so(z) < 1 for a.e. x € Q. Then there
holds

esz}]lm/ﬂ |s(t) — so| = 0. (5.25)

Proof. We aim to use Lemma 5.3 with v = sg. Since v has to fulfill O(v) € HY(Q)
and O(s) — O(v) € L?*(0,T;V), we need to approximate v = so. Due to the density
of C2°(Q;) in LY(Q;), we find two sequences C°(Q;) 3 vn; — so € L1(9y) for j €
{l,r}. The sequence v, := v, 1o, + v, Lo, is such that v, — sp in LY(), v,|T =0,
O(vy) € HE (). Moreover, extending ©(v,,) constantly in time, we obtain ©(s)—0(v,) €
L*0,T; V).

With the choice v = v, in (5.1), we fix sequences ¢ = ¢ — 0 and v,, — sg as k,n — o0,
and define the functions

hi o (t) := / Qe (5(8),vn),  hn(t) ::/ |s(t) — vp| and the sets
Q Q
Ejn:={t €[0,T] |t is not a Lebesgue point of hy (t)}
for k,n € N. Since |E}, ,,| = 0 for k,n € N, the countable union E := |2, Uy Ek.n also
fulfills |E| = 0. Consequently, any ¢ ¢ E is a Lebesgue point of hy,, for every k,n € N.

Choosing y(z,t) = a(t)f(x) with =1 on Q and a € C2°(R), o nonnegative, leads in
equation (5.1) to the weak differential inequality

T T
_ / / [de, (5, 0n) — Gy (50, v)] (1) < / A(t)0n(t). (5.26)
0 Q 0

for some 0y ,(t) € L'(0,T). Lemma 5.5 yields for every Lebesgue point t* and conse-
quently for every t* ¢ E with L =0 and K = 1 the relation

[ st < [ anlooon) + [ it (5.27)

Since 0., € L'(0,T), we conclude

1imsup/9q€k(s(t),vn) S/Qqak(so,vn). (5.28)

tL0,tZE

Concerning the right-hand side of (5.28), we exploit item 2 of Lemma 5.2 and the strong
convergence v, — So to find

limsup/ e, (8(t),vp) < / e, (S0, 0p) < / lso —vpl. — 0 (5.29)
tl0tgE JQ Q Q
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5.4 Proof of Theorem 2.4

We emphasize that the set E is independent of n. Concerning the left hand side of
(5.28), we want to pass with the limit k¥ — oo first. With the uniform convergence
Qer,j — ¢ from item 4 of Lemma 5.2, we find

Je{l,r}
< 0 1G1HIs(8) = vngl = gy i (s(8), vng) oo — O
Je{lr}

‘/g [5(8) = vn| = gei (s(2), vn)

/Qv ls(t) o U”vj‘ - Qé:k,j(S(t),'Un’j)

(5.30)

as k — oo uniformly in ¢ € (0,7) \ F and n € N. Due to the uniform convergence, we
find for £ > 0 a kg > 0 such that for every K > kg and every ¢t € (0,7T) \ E there holds
|hin(t) — hn(t)| < € and consequently hy(t) < hg,(t) + €. Since (5.29) holds for every
k and since E was chosen independent of k and n, we find

lim limsup h,(t) < lim limsuphg,(t) +E <&

n=00 410,teE n=0 4 10,teE
This implies
lim hmsup/ s(t) —wvn| <0. 5.31
Jn timsup [ 15(0) < v (5.31)

Combining (5.31) and the convergence v, — so in L'(£2), using that the latter conver-
gence is independent of ¢t € (0,7) \ E, that E is independent of n and exploiting the
triangle inequality, we find

limsup/ |s(t) — so] < lim hmsup/ |s(t) — vp| + Jim / [vn, — s0] < 0. (5.32)
tl0,tgE JQ N0 4 10,teE

Hence, observing that

0= limsup/ |s(t) — so| = ess lim/ |s(t) — sol
Q tlo  Jo

t10,t¢E

concludes the proof. O

5.4 Proof of Theorem 2.4

To prove Theorem 2.4, we perform two steps. Firstly, we derive the extended Kato
inequality (2.14) from Propositions 5.4 and 5.8. Secondly, we use Gronwall argument to
infer (2.15), i.e. the generalized L'-contraction property.

Proof of Theorem 2.4. We start from the Kato-inequality (5.2). An approximation yields
that (5.2) holds for v € H(Qr) with 4(0) = v(T") = 0. Specifically, the left hand side of
(5.2) defines a bounded linear functional on a dense subset of {v € H'(Qr) : v(T,z) =
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5 L'-contraction for Equations of Richards type with xz-dependence

v(0,z) = 0}. We define the function n : R — R with n(s) = 0 for s < 0, n(s) = 1 for
5 > 1 and linear in between. With 75(s) = n(s/d) and 8 € C°((—o0,T) x R?), we find
the admissibility of v = 67 in (5.2). By Lebesgue’s dominated convergence theorem we
infer

/mslgn (51) — ;(52))V[®;(51) — ®;(s2)] - VO

vy 0, sign(®;(s1) — @;(s2))V[®;j(s1) — ®;(s2)] - V8,

/Q nssign(s1 — s2)[\(s1) — Ay(s2)]g; - VO

J

— sign(s1 — s2)[A\j(s1) — Aj(s2)]gj - VO
6—0 Q;

for j € {l,r}, as well as

| mssign(ss = s)lf(s1) = F52))0 > [ sign(si = s2)[(s1) = f(s2)]6.
Q =0 JQ
Concerning the integral containing the time derivative, we compute

/ |s1 — s2| 0¢(n50) :/ |51 *32|77(58t9+/ |51 — 52| 005
Q Q Q

o 1
< [l = salmdno+ [ [ 51— s0a]+ 501 = snal + [s2 = s02)6
Q 0 Jad

1 )
< [ fulmsdnd+ 5 [ [ 101 = 026
Q 0 JQ
C’ )
+ 2 [0 [ st = s0al +1s2 = 020
0 Q

0)+/ |31—52\at9=/(\51—521— 1501 — 502])940.
Q Q

The convergence in the last step follows from the continuity of 6 in zero and from
Proposition 5.8. More precisely, we argue similar to (4.39) and obtain

ess hm/\sk —sok|—hm][ /|sk

for k =1,2. Collecting the previous identities we infer (2.14).

To prove the L'-contraction property (2.15), we choose (¢, ) = a(t)(z) with nonneg-
ative a € C2°((—o0,T)) and nonnegative ¢ € C°(R?) as a test function in the extended
Kato-inequality (2.14). We even choose ¥ = 1 on (2, use the properties of f to infer that
sign(s; — s2)(f(s1) — f(s2)) < L|s1 — s2| and derive

/OTo/(lt)/QusQ1 50| — [s1(t) — s2(0))) dtg/OTLa(t)/Q]sl(t) _so(t)]dt.  (5.33)

Application of Lemma 5.5 and the Gronwall inequality 5.6 concludes the proof. ]
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5.5 Discussion of the Proof and Outlook

5.5 Discussion of the Proof and Outlook

The presented proof also works in the case without an interface. In particular, the
proof of the Kato inequality is more direct and we do not need the particular treat-
ment of the integral IS in (5.8). In that situation, we obtain directly the expres-
sion 1
5= [ IViaGs) - e(s)] 5 > 0.
€ JEs

Particularly, the result in the case without interfaces is a special case of [Ott95]. There
more general elliptic are terms are considered.

In Cances article [Can08] a specialized variant of Lemma 4.36 is stated implicitly in the
proof of Theorem 3.1. In addition, the L'-contraction is shown exploiting time continuity
of solutions. This is a consequence of the Lipschitz continuity of the Kirchhoff transform
®;(s) and was shown by Cances and Gallouét in [CG11].

In our setting ®; is not necessarily Lipschitz continuous. Hence, we prove the L-
contraction by a different argument that is strongly inspired by [Ott95]. Of outmost
importance is item 4 of Lemma 5.2, which is the uniform convergence of ¢. — ¢. For
bounded © and ¢ as in Assumption A2.3, this convergence is immediate as long as there
is only a finite amount of interfaces. We emphasize, that Dini’s theorem is exploited to
obtain the uniform convergence and no further assumptions on the growth of e.g. 0;(s)
for s — 1 are necessary.

The strict monotony of ©; is necessary to exploit the identities sign,(©;(s1) —©,(s2)) =
sign(s1 — s2) and to invert ©;, which is used to exploit Assumption A2.4. We empha-
size that the Lipschitz continuity of A; is essential to obtain the Kato inequality. For
example, the conclusion starting from (5.9) seems to be impossible if A; merely Holder
continuous.

Similarly to [Can08], the L!-contraction result we provide here can also be obtained for
Q divided by several interfaces into n subdomains. Another point of interest is to provide
an existence result for (TDR) for degenerate capillary transformations as in Assumption
A2.3. As far as we know, such a result is not available in the literature. However, due to
the integration by parts formulae from chapter 4.4 there are several possibilities to tackle
this problem. One could for example attempt to proceed with the idea introduced in
[AL83] or start from [Can08] and regularize the pressures. However, the latter approach
still enforces that A\j(1) = 0. Hence, showing existence using a regularization argument,
in the situation that A\;j(1) # 0 and p.; is bounded, should be viable. In addition, the
definition of ©; is not fixed. Different choices of ©; could make a modification of the
proof in [Ott95] possible and lead to L!-contraction results in the case of multivalued
capillary pressures.
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6 Local Holder Continuity for the
Two-Phase Flow Problem

In this chapter, (s,p) is always a weak solution of the two-phase problem (TP1) in
the sense of Definition 3.5. We show that the saturation s is locally Holder continu-
ous. For convenience, we usually suppress the z-dependencies of the occurring func-
tions.

A standard approach to obtain (local) Holder continuity of a function u : R¢ — R is to
show that the oscillation of u on balls of radius R > 0 is proportional to a positive power
of R. The oscillation of u is defined as the difference of its supremum and infimum on a
given set. For example, the estimate

u(z) —u < osc u < CR®
) ~ u(y)| < ose u <

implies local Holder continuity of u immediately. Here, z,y € R C > 0 and a €
(0,1), and the estimate holds for every Bgr(x) C € in some bounded open set Q C
R<.

If it is possible to quantitatively measure the decrease of oscillation of u on nested and
shrinking balls with the same center, then also Holder continuity can be obtained. For
example, if an estimate of the type

osc u<(1—0) osc u
Br(z) Bar(z)

holds for 0 < ¢ < 1 independent of x, then (local) Holder continuity can be obtained by
iteration argument.

The method of intrinsic scaling implements the iteration idea on certain cylinders that
reflect the structure of the differential equation. Particularly, we consider cylinders that
are related to the standard parabolic cylinders defined below and reflect the degeneracy
of the equation. These cylinders depend on the oscillation of the solution itself, which
makes them intrinsic. However, during the upcoming proofs we may transform the
cylinders to the standard parabolic ones. To describe the method precisely, it is necessary
to investigate its technical implementation. Summarizing the idea of the method in one
sentence, we quote from [Urb08, p. 6]:
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6 Local Hélder Continuity for the Two-Phase Flow Problem

The punch line of the theory is that the equation behaves, in its own geometry,
like the heat equation.

This chapter is structured as follows. In section 6.1, we provide notation and some
technical results needed later. Particularly, we infer from elliptic regularity theory that
the pressure p is locally Holder continuous. In section 6.2, we state the main proposition
to infer the Holder continuity. The proof of the main proposition unfolds along two
alternatives, which are executed in sections 6.3 and 6.4. The proof is concluded in
section 6.5. From there on, we prove Theorem 3.12 in the same section. In section
6.6, we discuss the literature and provide an outlook towards extensions of the local
result.

6.1 Preliminaries

We define the parabolic cylinders and refer to Figure 6.1, where the cylinder (xg,tg) +
Q(p, ) is depicted.

Definition 6.1 (Parabolic Cylinders). Let p,7,0 > 0 and (z¢,t0) € R*™! be given. We
define the cylinders

Q(p,7) = B, x (—7,0), (z0,t0) + Q(p, T) = By(wo) X (to — 7,%0),
Qp = Q(p, p*) and Q,(0) = Q(p,6p*).

A cylinder of the type @, is often called standard parabolic cylinder and reflects the nat-
ural homogeneity between the space and time variables for the heat equation: For any
solution u(x,t) to the heat equation, the rescaled function u(ez,&t), e € R, is again a
solution to the heat equation, i.e. the equation remains invariant under similarity trans-
formations of the space and time variables that leave the ratio |z|* /¢ constant. In general,
such an invariance is not recovered for degenerate parabolic equations. In particular,
such a scaling may result in a factor that depends on the solution itself as is pointed out
in [Urb08, section 3.1] for the parabolic p-Laplace equation.

Lemma 6.2 (Fast geometric convergence [DiB93, I.4.Lemma 4.1]). Let X,, be a sequence
of nonnegative real numbers, let b > 1 and C,« > 0 be such that the recurrence relation

Xpp1 < CYPX e (6.1)

holds. If
Xo < C7ep '/ (6.2)

then X, — 0 as n — o0.

Since there seems to be no complete proof in the literature and the constant C' is usually
stated to be larger than 1, we provide a proof.
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Proof. To prove the Lemma, it suffices to show that
Xo

o

Xn < (6.3)

holds for 1 < n € N We show inequality (6.3) by induction. For the base case n = 1, we

infer .
1 (0%

X1 <OV X3H < Xy (C’bo (=) ) —

[e3

For the inductive step, we assume that (6.3) holds for n. To show that the relation also
holds for n + 1, we compute

14+«
X1 < CH" X < Cb" (‘Z“) < XoCb a X§ < Xo

— n+1

o o

and conclude the proof.

O

From elliptic theory, in particular from [GT98, Theorem 8.24], we infer the local Holder
regularity of the pressure

Theorem 6.3 (Holder Regularity of the pressure p). Let Assumptions A3.1, A3.2, A3.3
and A3.5 hold and let (s,p) be a weak solution of (TP1) in the sense of Definition 3.5.
Then p(t) is locally Hélder continuous in Q uniformly in t € (0,T). More precisely,
for Cy and C* from Assumption A3.7 and some set K CC Q, there exist v, > 0 and
B € (0,1) independent of t and depending only the data and the distance of K to 0X,
such that

Il sy < W (1+ Pl 20y (6.4)
for almost every t € (0,T).

Remark 6.4. We emphasize that only the bounds on k, A and F from Assumptions A3.2,
A3.3 and A3.5 enter in the statement of the last result. Those bounds are contained
in the definitions of C, and C*. Furthermore, due to Assumption A3.7, the Dirichlet
data pp are also estimated by C*. Thus, we can estimate the L?(2) of p(t) only in
terms of the data. To see this, use p — pp as a test function in (3.22). Absorption yields
that |Vp(t)|, < C for some C depending only on the data. Then, an application of
Poincaré’s inequality provides the estimate ||p(t)||, < C for some different C' depending
only on the data.

After a redefinition of 7,, we find that equation (6.4) reads
[p(x,t) = p(y, )| < ple—y|” for every x,y € K and [[p(t)]] i) < W (6.5)

for almost every t € (0,T"). Consequently, the Holder norm of p(¢) on a given set K CC
can be determined only in terms of the data and the distance from K to 092 uniformly
in t. N
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6 Local Hélder Continuity for the Two-Phase Flow Problem

Using (6.5), the redefined v, and the properties on E from equation (3.29) we obtain
the following Caccioppoli estimate.

Proposition 6.5 (Caccioppoli estimate of p). Let Assumptions A3.1-A3.7 hold and
let (s,p) be a weak solution of (TP1) in the sense of Definition 3.5. For any open set
K ccC Q with diam(K) < 2r, there is a constant Cp > 1 that depends only the data and
the distance of K to 0L, such that

s o, (v [ vt [ 7). (6.6)

for any f € H(K) and almost every t € (0,T). Particularly, C, is independent of t.

Proof. Fix 29 € K and use w = [p(x,t) — p(zo,t)]f?(z) as a test function in equation
(3.22). Using the definition of C, and C*, particularly using |E(z,s)| < C* for every
z € Q and s € [0, 1], we obtain

¢z [ 19p(a. 0 (@) de <€) [ [9p(@.0)] Ipl.t) = p(ao,0)] [V2(@)] do
+C [ |V (I t) - plao. O] f2(2)) | do
K
for a.e. t € (0,T). For € > 0 and using Cauchy’s inequality, we compute

2 /K Vp(a, b)) () do

*\4
(045) +(C*)2> /Kf2($) dz (6.7)

< 25/}( IVp(z, 1) |f()]* dz + (

*\4
+ (ﬁg n (C*)2> /K p(z,t) — p(zo,t)[* |V f(2)]* dw

for a.e. t € (0,7). We absorb the first integral on the right-hand side of (6.7) choosing
4e = C2%. To fill the gap between (6.7) and (6.6), we exploit Theorem 6.3. More
precisely, we use (6.5) and and |p(z,t) — p(zo,t)| < v |z — x| < vp(2r)%8. Thus,
we find a constant C, depending on the same quantities as 7, and § such that (6.6)
holds. O

The following Lemma is usually referred to as DeGiorgi’s lemma.

Lemma 6.6 (DeGiorgi’s lemma [DiB93, 1.2.Lemma 2.2]). Let u € Wh(B,(y)) and let
k <l eR be given. There exists a constant C' depending only on d,p, not depending on
r,y, k,l, such that

’l“d+1

=Pt >B1< O] e

Vul (6.8)
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Proof. From Stampacchia’s lemma, more precisely from Corollary 4.5, we infer that
v = (min{u,l} — k)y € WHY(B,(y)). We assume that [{v < k}| > 0, otherwise the
right-hand side of (6.8) is interpreted to be equal to oo and the conclusion holds for any
C > 0.

We apply Proposition 1.2 to v with ¢ = 1 and p = 1. We remark that Vv = Vu 1<y,
due to Stampacchia’s lemma. Since |[{u < k}| < |B1(0)|7? on B,(y), we compute

2de
(-0)fu>i< [ plco——x [ vy
Br(y)

B fu< Y
Td+1
< 02— [Vl
Hu <k} Jik<u<i}
and remark that the integrals are only extended on B, (y). O

In the next sections we also make use of so-called logarithmic estimates. To this end, we
introduce a certain logarithmic function. We write log, (v) = (log(v))+ for v > 0 and
extend the function trivially to (—oo, 0].

Definition 6.7. Let 0 < a < b be given, we define for v < a + b the function
b
v, =1 — . 6.9
o) =tns (=) (69)

Lemma 6.8 (Properties of W,). Let a,b,v and Wqy be as in Definition 6.7. For
a<v<a+b, there holds

) = T W) = (V) (6.10)
and
(02,4(0)) = 201+ Wap () (¥, (v)?, (6.11)

as well as the estimate
20,4,5(0) W), (V) < Wap(v) + Vo p (V)W (v) < Wy p(v) + (14 Tap(v) U4 (v).  (6.12)

Furthermore, we find

b |
W2, € V0,8, mas (Vo)) <o (a) and max (V,,(0)} <5 (613)

Proof. Since ¥, € C*°(a,a+b), we obtain (6.10) and (6.11). Using Cauchy’s inequality
we deduce (6.12). The inequalities in (6.13) are derived by monotonicity.

)
Since ¥, p(a) = 0 we deduce that ¥, € C([0,a+ b)). For v < a, we find (\I’Z,b)’(v) =0
and for v > a we find (\Ilg p) (V) = 2V 1 (0)¥qp(v) — 0 as v N, a. Consequently, since
\Ifz,b € C1([0,b] \ {a}) we infer W2 ab € C’l([O b]) Since 2¥, W, ,(a) = 0 we infer from

(6.10), the bounds in (6.13) and the mean value the