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Abstract—Wind power fluctuates with time and it is reasonable 
to regard it as a random variable. Recently, an active-reactive 
optimal power flow (A-R-OPF) method in active distribution 
networks with wind stations has been developed to handle the 
problem of wind power curtailment (WPC). Since the mentioned 
method is deterministic, it may fail to handle uncertain wind 
power (UWP). Therefore, our study in this paper will firstly 
discuss the issue of UWP and secondly develop a new strategy 
which can improve the A-R-OPF by considering UWP. The new 
strategy can be distinguished from the original so that: 1) it 
considers shorter time intervals, i.e., 15 minutes instead of one 
hour and 2) it can handle both UWP and WPC simultaneously. 
The effectiveness of the new strategy is shown by using a real case 
medium-voltage distribution network.   

Keywords-active-reactive optimal power flow (A-R-OPF); 
medium-voltage; uncertain wind power (UWP); wind power 
curtailment (WPC).

I. INTRODUCTION

Uncertain wind power (UWP) is one of many challenges 
that power system operators face when ensuring optimal and 
reliable operations. It is a well-known fact that wind power 
production varies with wind speed and cannot be controlled 
except by curtailing it [1]. Therefore, wind energy is a 
partially dispatchable generation source, and consequently 
curtailment investigation must be considered within a 
probabilistic rather than deterministic study context [2].   

Recently, a method which is based on so-called chance 
constrained optimal power flow (OPF) was proposed in [3]. In 
[3], load power uncertainties were considered as multivariate 
random variables with a correlated normal distribution, but
renewable energy generation (REG) was not considered. In 
contrast, the forecasted active power outputs of REG units 
were regarded as normally distributed random variables [4].
Moreover, the uncertainty of load was neglected because the 
REG, such as wind energy, has more variability than load [5].
It is noted in [4] that no variables were used for curtailing of
REG. 

More recently, a deterministic active-reactive optimal 
power flow (A-R-OPF) method in active distribution networks 
(ADNs) with REG and battery storage systems was developed 
[6][7][8].  

One of the remarkable abilities of the A-R-OPF method is 
its capability to ensure feasible solutions even with a high 
penetration of wind power. This is achieved by incorporating a 
curtailment factor. Note that the problem of A-R-OPF in 
ADNs [6-8] (even with a deterministic formulation) represents 
a large-scale and complex optimization problem. Therefore, it
is expected that considering any uncertain operating 
conditions [9] will further complicate the problem. 

The principle of wind power curtailment (WPC) was also 
used in [10], where an OPF was formulated as a nonlinear 
chance constrained optimization problem under non-Gaussian 
uncertainties. Note that the formulated problem in [10] (even 
with a single snapshot) was solved with a considerable 
computational time. In addition, the expected wind speed and 
its variance were assumed to be the same at all wind stations 
(WSs). 

Based on the above literature and distinguished from the 
previous works in the research area of ADNs [11][12][13], a
new strategy to handle UWP and WPC in an ADN is proposed 
in this paper. The contributions of this work can be 
summarized as follows: 

 Using a shorter time interval (ti) in A-R-OPF, i.e., ti = 15
minutes instead of one hour. 

 Introducing a center for environment data which can 
provide forecasted and actual wind power production for 
WSs at different locations in the ADN. 

 Developing a new strategy to handle UWP and WPC 
simultaneously. This ensures the feasibility when 
considering actual wind power production in the 
deterministic A-R-OPF.

II. DETERMINISTIC A-R-OPF WITH UWP

A. Deterministic A-R-OPF 
In [6], an A-R-OPF problem was formulated with 

forecasted or deterministic input wind power and demand 
profiles in the time frame of optimization. However, the 
inaccuracies in these forecasts were not considered as given in 
[8]. A deterministic A-R-OPF problem can reduce the 
computational effort on the one hand, but on the other hand it 
cannot handle the inaccuracies in these profiles. Therefore, our 
aim here is to overcome such problems by focusing on UWP.   
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B. Uncertain Wind Power 
The idea behind considering UWP in this work can be 

explained in Fig. 1. Here, it is assumed that there are two WSs 
with same installed capacities at different locations in an 
ADN. The produced wind power Pw from each WS can be 
forecasted from the expected wind speed at each WS. Note 
that Pw can be different during ti even with a relatively small 
distance between WSs. This is because the forecasted wind 
speed can be different at each WS.

From another perspective, the forecasted value of Pw during 
ti can also be different from actual wind power production 
based on, e.g., a probability density function (PDF), as seen in 
Fig. 2. Here, F stands for forecast (a forecasted value), H for 
high-side (values higher than forecasted) and L for low-side 
(values lower than forecasted). Note that Pw in Fig. 2 is 
assumed normally distributed. The values of F, H and L are 
also illustrated with time for the two WSs, as shown in Fig. 3. 

In Fig. 1, active Pd and reactive Qd power demand are 
assumed to follow IEEE-RTS winter season’s days [8]. In 
contrast, active PS1 and reactive QS1 power at slack bus S1 (see 
Fig. 1) are allowed to be either positive or zero to avoid any 
possible generation rejections from reverse power flows (see 
details in [11]). This means that active and reactive power can 
be imported (in the case of low wind power), but not exported
(in the case of high wind power) [14][15]. Note that due to 
system constraints, a wind power curtailment factor (0 ≤ βc.w ≤ 
1) at each WS is used as a control variable [6], where βc.w = 1 
when no curtailment and βc.w < 1 otherwise, as seen in Fig. 1.  

The objective of A-R-OPF in Fig. 1 is to maximize the total 
revenue from the wind energy and meanwhile to minimize the 
total costs of active energy losses in the grid and the total costs 
of active and reactive energy at bus S1. Now, the problem of 
UWP in A-R-OPF is to find a strategy to ensure the feasibility 
when considering actual instead of forecasted wind power 
production.     

III. PROPOSED STRATEGY 

The proposed strategy in this paper requires a center for 
environment data as shown in Fig. 4. This center should be 
able to provide forecasted and actual wind power production 
of WSs at different locations in an ADN for a given ti.

  

           

Fig. 2.  Illustration of a PDF of wind power. Here, ξ is the 
random variable, μ is the mean or expectation and σ is the 

standard deviation.

          

Fig. 3.  Illustration of wind power profiles during an hour.
Here, (a) and (b) stand for wind power profiles from two 

different WSs.

Fig. 1.  Illustration of a meter-based method for charging and remunerating different entities connected to a power system [18]. Here, M stands for meter, TR for 
transformer, S0 and S1 for TR primary and secondary side, respectively.
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In this work, ti is taken 15 minutes ahead, as seen in Fig. 3. 
In addition, two WSs are considered to be located at different 
buses, i.e., bus 2 and bus 16, as seen in Fig. 4. Based on the 
above considerations, the solution strategy of UWP in A-R-
OPF can be summarized by the following steps: 
1) Provide system parameters, energy prices and demand as 

inputs to the A-R-OPF with UWP, as seen in Fig. 4. 
2) Provide F(i,ti): forecasted wind power of WS at bus i

during ti. For example, F(2,1) = Pw(2,1) = 9 MW and 
F(16,1) = Pw(16,1) = 8 MW, as seen in Fig. 5. 

3) Calculate H(i,ti): wind power higher than forecasted of WS
at bus i during ti. In this paper, we use the following simple 
formula H(i,ti) = F(i,ti) + ΔPw(i). Here, ΔPw(i) is defined 
as a constant power at bus i to get wind power values 
around the forecasts. Let ΔPw(i) = ΔPw(2) = ΔPw(16) = 1 
MW. Then,  one can simply get H(2,1) = Pw(2,1) = 10 MW 
and H(16,1) = Pw(16,1) = 9 MW, as seen in Fig. 5. Note 
that if H(i,ti) > PW(i), then H(i,ti) = PW(i). Here, PW(i) is 
the rated power of WS at bus i (see Table IV in Appendix).

4) Calculate L(i,ti): wind power lower than forecasted of WS
at bus i during ti. In this paper, we use the following simple 
formula L(i,ti) = F(i,ti)  ̶  ΔPw(i). Let ΔPw(i) as defined 
above, then one can simply get L(2,1) = Pw(2,1) = 8 MW 
and L(16,1) = Pw(16,1) = 7 MW, as seen in Fig. 5. If L(i,ti)
< 0, then L(i,ti) = 0. 

5) Solve A-R-OPF for ti and all main nine possible scenarios
shown in Fig. 5. Then, save obtained results in a lookup 
table, as Table I. Here, βc.w(i,ti) is the optimal curtailment 
factor at bus i during ti for all nine scenarios. 

It is to note that the required computational time to fill in the 
lookup table should be small enough in order to ensure the 
applicability of the proposed strategy.   

Now, provide actual wind power (AWP) for WS at bus i
during ti from the center in Fig. 4. Then, compare it with wind 
power scenarios (i.e., H-H, H-F, H-L,…) in the lookup table,
and choose the optimal control variables βc.w(i,ti) based on the 
following simple rules: 

 Rule 1: If (H ≥ AWP > F) then consider (AWP = H) 
 Rule 2: If (F ≥ AWP > L) then consider (AWP = F) 
 Rule 3: If (L ≥ AWP ≥ 0) then consider (AWP = L) 

The application of the above strategy will be further explained 
in section V. 

Fig. 5. Illustration of main nine possible scenarios. Here, F stands for
forecast (forecasted wind power during ti), H for high-side (wind power 

higher than forecasted during ti) and L for low-side (wind power lower than 
forecasted during ti).

Fig. 4.  Distribution network for the case study [17][18].
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IV. OPTIMIZATION PROBLEM FORMULATION 

Here, we adapt the extended objective function F (1) [15] 
by changing the discretization from (1-hour) to (15-minutes) 
as follows: 

1 2 3 4max  F F F F F   (1) 

where 

1 pr.p w c.w
 1

( ) ( , ) ( , )  
N

i
i l

F C ti P i ti i ti  (2)   

2 pr.p loss( ) ( )F C ti P ti (3)   

3 pr.p S1( ) ( )F C ti P ti (4) 

4 pr.q S1( ) ( ).F C ti Q ti (5) 

It is aimed in (1) to maximize the total revenue from the wind 
energy F1, and meanwhile to minimize the total costs of active 
energy losses in the grid F2, the cost of active energy at slack 
bus F3, and the cost of reactive energy at slack bus F4,
respectively. Here, Cpr.p(ti) is the active energy price during ti,
Cpr.q(ti) is the reactive energy price during ti, Ploss(ti) is the
active power losses during ti, N is the total number of buses, 
Pw(i,ti) is the active power of WS at bus i during ti while l
stands for the set of WSs, PS1(ti) and QS1(ti) are the active and 
reactive power injected at slack bus S1 during ti, respectively.
The control variable of WSs is βc.w(i,ti), which represents the 
curtailment factor of wind power at WS i during ti.

The optimization problem is solved with the general 
algebraic modeling system (GAMS) [16] where the equality (6) 
and inequality (7) constraints for the A-R-OPF are as follows 
(mathematical details can be found in [6]):

 Active power balance at each bus 
 Reactive power balance at each bus  (6)  

 Voltage bounds of PQ-buses 
 Active and reactive bounds at slack bus 
 Feeder bounds                 
 Bounds of the curtailment factors (7)

V. CASE STUDY 

The network considered for the case study is taken from 
[17][18]. It is a typical rural distribution network with 41 
buses and 27.6 kV, as shown in Fig. 4, where line thicknesses 
indicate feeder capacities. The peak power demand of the 
network is 16.25 MVA [15] and the substation rating is 20 
MVA. Two WSs (data in Table IV in Appendix) are located at 
buses 2 and 16, as seen in Fig. 4. Data of energy prices are 
given in Table V in Appendix. Slack bus S1 is considered here 
with fixed voltage amplitude 1.02 pu [19] and zero voltage 
angle for all conducted computations. 

TABLE II.  COMPARISON OF COMPUTATION TIME (ON INTEL 
CORE 2 DUO CPU 3 GHZ AND 4 GB RAM) AND FEASIBILITY STATE IN 

TWO METHODS

Criterion A-R-OPF 
with UWP

A-R-OPF 
without UWP Diff.

CPU (sec./ti1)
Feasibility

58.348
feasible

8.346
infeasible

-50.002
(-599%)

CPU (sec./ti2)
Feasibility

57.6
feasible

8.455
feasible

-49.145
(-581%)

CPU (sec./ti3)
Feasibility

57.467
feasible

8.452
feasible

-49.015
(-580%)

CPU (sec./ti4)
Feasibility

57.879
feasible

8.357
infeasible

-49.522
(-593%)

TABLE III.  OBJECTIVE FUNCTION VALUE IN TWO SCENARIOS

Criterion Actual
wind power

Forecasted
wind power Diff.

F($/ti1) 82 83 -1(-1.2%)
F($/ti2) 66 83 -17(-20.48%)
F($/ti3) 81 83 -2(-2.4%)
F($/ti4) 80 83 -3(-3.61%)

TABLE I.  OPTIMIZATION RESULTS FOR THE FIRST TIME INTERVAL AND ALL MAIN NINE POSSIBLE SCENARIOS IN FIG. 5

Scenario Pw(2,1)
(MW)

Pw(16,1)
(MW)

βc.w(2,1)
---

βc.w(16,1)
---

PS1 (1)
(MW)

QS1(1)
(Mvar)

1 H-H 10 9 0.475 0.278 0 2.53
2 H-F 10 8 0.475 0.313 0 2.53
3 H-L 10 7 0.475 0.357 0 2.53
4 F-H 9 9 0.528 0.278 0 2.53
5 F-F 9 8 0.528 0.313 0 2.53
6 F-L 9 7 0.528 0.357 0 2.53
7 L-H 8 9 0.594 0.278 0 2.53
8 L-F 8 8 0.594 0.313 0 2.53
9 L-L 8 7 0.594 0.357 0 2.53
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The results in Table I show that the active power at bus S1
is always zero for all scenarios because of total active power 
demand (7.234 MW), high wind active power production of 
WSs (see Table I), and limits on exported active power. It can 
be clearly seen in Table I that high wind power production 
leads to low values of curtailment factors to ensure a feasible 
solution. In contrast to active power, the reactive power at bus 
S1 is always (2.53 Mvar) for all scenarios (see Table I). This is 
because of using unity power factors (PFs) of all WSs (see 
Table IV), total reactive power demand (2.62 Mvar) and the 
reactive power compensation of feeder capacitive susceptance 
[18]. 

The benefits of the proposed strategy can be clearly seen in 
Table II where the deterministic A-R-OPF fails to achieve 

feasible solutions during the first (i.e., ti1) and fourth (i.e., ti4)
time periods. This is because the actual wind power 
production (see Fig. 6(a)) is higher than forecasted at both 
WSs. It means the new strategy uses the lowest curtailment 
factors, i.e., βc.w(2,1) = 0.475 and βc.w(16,1) = 0.278 (i.e., H-H) 
instead of βc.w(2,1) = 0.528 and βc.w(16,1) = 0.313 (i.e., F-F)
(see Table I and Fig. 6). Of course the new strategy requires 
more CPU time. Note that the deterministic A-R-OPF can 
achieve a feasible solution during, e.g., the second time period
(i.e., ti2) because the actual wind power production from WS
at bus 2 is much lower than the production from WS at bus 16.

From economical point of view, the new strategy requires 
almost a higher active energy import at slack bus S1 in 
comparison with the deterministic A-R-OPF as seen in Fig. 7. 

               

               

Fig. 6. (a) Forecasted wind power profiles (red-dashed) and actual wind power profiles (blue-solid) of WS at bus 2 (left column) and WS at bus 16 (right
column). (b) Curtailment factors corresponding to forecasted wind power profiles (red-dashed) and corresponding to actual wind power (blue-solid) of WS at bus 

2 (left column) and of WS at bus 16 (right column).

        

Fig. 7. Slack bus active power (left column) and slack bus reactive power (right column) corresponding to forecasted wind power profiles (red-dashed) and 
corresponding to actual wind power (blue-solid).
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For example, the active energy import during the second time 
period (i.e., ti2) is the highest value because the actual wind 
power production from WS at bus 2 is too lower than expected. 
The numerical results of the objective function are given in 
Table III. In Fig. 7, it is clearly seen that the reactive power 
import is in a weak relation with wind active power 
curtailment. 

VI. CONCLUSIONS

This paper discussed the issue of uncertain wind power 
(UWP) in an active distribution network and proposed a new 
strategy which can handle both UWP and wind power 
curtailment (WPC) simultaneously. The new strategy 
improves the deterministic active-reactive optimal power flow 
so that on one hand it uses shorter time intervals, i.e., 15 
minutes instead of one hour and on the other hand it ensures 
not only optimal but also feasible solutions.     

The benefits of the proposed strategy in handling both WPC 
and UWP are shown by using a real case medium-voltage 
network.  Beside the advantages of the new strategy, there are 
some drawbacks in terms of computational effort. Therefore, 
our future research will focus on tackling such problems by 
exploring more efficient computational mechanisms.    

APPENDIX
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TABLE V.  DATA OF ENERGY PRICES DURING TIME INTERVALS [8]

ti Cpr.p($/MW.ti) Cpr.q($/Mvar.ti)
ti1 = 15 min 12.5 3
ti2 = 15 min 12.5 3
ti3 = 15 min 12.5 3
ti4 = 15 min 12.5 3

TABLE IV.  RATED POWER OF WSS (PW) AND POWER FACTORS (PFS)

Wind stations
Bus 2 16

PW (MW) 10 10
PFs 1.0 1.0
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