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Summary

Up to this point, no striking evidence for the theoretical nature of physics beyond the Standard
Model has been found. However, there are many theoretical arguments and experimental
observations why an extension of the Standard Model is necessary. In this work we focus
on one of them, i.e. the existence of neutrino masses and mixing and their origin. The
structures and hierarchies observed in the lepton sector show a large discrepancy to the well
established quark sector. To motivate these differences we will rely on models based on flavor
symmetries. After introducing a few general concepts, like Supersymmetry and the seesaw
mechanism, we discuss three different classes of these. In each chapter we highlight one
additional topic involved in the challenge of model building. We begin with a framework
employing the symmetry A4. Based on two existing supersymmetric models, guided by the
now excluded paradigm of exact tribimaximal-mixing, we propose two viable modifications,
illustrating that it can still be a useful starting point. While minimal ultraviolet completions of
the old models exist, we discuss the interplay and restrictions of next-to-minimal completions
and modifications of the general field content, employed to arrive at these viable versions.
Afterwards we proceed to the symmetry ∆(27) in the context of geometrical CP violation, an
interesting implementation of spontaneous CP violation. We start by presenting a concept to
remedy the known shortcomings of the existing first viable model of the quark sector. Then we
apply the lessons learned to construct a first existence proof for an implementation covering
all known fermions featuring geometrical CP violation. Finally we conclude with a generic
class of models which is only constrained by a general flavor hypothesis. In this part R-parity
violation leads to viable neutrino structures. The number and size of the associated couplings
is then reduced to a predictive set via the flavor hypothesis. Here we emphasize the differences
between tribimaximal and realistic models and the question of neutrino mass hierarchy -
normal or inverted?

Zusammenfassung

Bis zu diesem Punkt, hat sich kein eindeutiger Hinweis auf die Natur der Physik jenseits des
Standardmodells gefunden. Es existieren jedoch viele theoretische Argumente und experi-
mentelle Beobachtungen, dass eine Erweiterung des Standardmodells zwingend notwendig
ist. In dieser Arbeit konzentrieren wir uns auf einen Aspekt, die Existenz von Neutrinomassen
und -mischung und deren Ursprung. Die beobachteten Strukturen im Leptonen-Sektor un-
terscheiden sich hierbei komplett von den Strukturen im etablierten Quark-Sektor. Um diese
Differenzen zu motivieren greifen wir auf Flavor-Symmetrie Modelle zurück. Nachdem wir
einige grundlegende Konzepte, wie Supersymmetrie und den Seesaw-Mechanismus eingeführt
haben, diskutieren wir drei Klassen von diesen. In jedem Kapitel beleuchten wir zusätzlich ein
weiteres Konzept, das in der Modellkonstruktion eine Rolle spielt. Wir beginnen mit Modellen,
die die Symmetrie A4 verwenden. Basierend auf zwei existierenden supersymmetrischen
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Modellen, welche vom jetzt ausgeschlossenen Paradigma der exakten tribimaximalen Mis-
chung inspiriert waren, schlagen wir zwei aktuelle Modifikationen vor und zeigen damit,
dass es immer noch ein nützlicher Ausgangspunkt sein kann. Auf Grundlage der bereits
vorliegenden minimalen, ultravioletten Vervollständigungen der alten Modelle, diskutieren
wir den Zusammenhang und die Einschränkungen fast minimaler Vervollständigungen und
der Modifizierung der generellen Feldstruktur, die Verwendung finden um zu diesen realis-
tischen Versionen zu gelangen. Wir fahren fort mit der Symmetrie ∆(27) im Zusammenhang
mit geometrischer CP-Verletzung, einer interessanten Implementierung der spontanen CP-
Verletzung. Zu Beginn präsentieren wir ein Konzept, das die bekannten Schwachstellen des
ersten vorgelegten realistischen Models für die Quarks ausbessert. Danach bauen wir auf dem
dort gelernten auf um den Existenzbeweis für eine erste Klasse von Modellen zu präsentieren,
welche den kompletten Fermionensektor abdeckt und geometrische CP-Verletzung beinhal-
tet. Wir schließen mit einer generischen Art von Modellen, welche nur von einer simplen
Flavor-Hypothese eingeschränkt ist. In diesem Teil führt die Verletzung der R-Parität zu den
gewünschten Neutrinostrukturen. Die Zahl und Größe der beteiligten Kopplungen wird hier-
bei von der Flavor-Hypothese auf ein prädiktives Maß reduziert. In diesem Zusammenhang
betonen wir den Unterschied zwischen tribimaximalen und realistischen Modellen und die
Frage der Neutrionmassen-Hierarchie - normal oder invertiert?
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1. Introduction

Particle physics rarely delivers a breaking news noticed not only by the scientific community,
but also by the general public. July 4, 2012 marked such a day when the ATLAS and CMS
collaborations announced the discovery of a massive spin-0 particle in a press conference
at CERN. The last missing piece of a highly successful theory describing the interaction of
fundamental particles, called Standard Model was finally found after decades of searching.
But while the Standard Model-like properties of this so called Higgs boson were confirmed
later, open issues still remain.

The Standard Model has several shortcomings, and it is clear that it has to be superseded
by a different theory at some energy scale. The limit in this regard is 1019 GeV, which marks
the point at which the quantum effects of gravity have to be taken into account. The LHC has
been constructed as a general purpose experiment to discover any new physics beyond the
Standard Model around the TeV scale. Unfortunately no striking indication of this has been
found yet.

Arguably one of the most obvious features the Standard Model is missing, related to an
even smaller scale, is the need to accommodate massive neutrinos which are the focus of this
work. These are in turn closely related to the flavor puzzle. The standard model contains three
generations of fermions with a large mass hierarchy and completely different mixing in the
quark and lepton sector.

In the following section 1.1 we will give a short recap of the theoretical background of
the Standard Model. First we will discuss the relevant gauge symmetries before introducing
particle masses and mixing via the process of electroweak symmetry breaking in which the
Higgs boson plays a crucial role. Section 1.2 will then discuss the most general additional
concepts and mechanisms relevant to this work, namely Supersymmetry and neutrino mass
generation. This will be accompanied by a short overview of the current experimental status
quo in these fields. The next three chapters will then deal with concrete models based on
additional flavor symmetries to generate the aforementioned neutrino masses and mixing.

In chapter 2 we present next to minimal ultraviolet completions of two models based on the
symmetry A4. The original minimal ultraviolet completions have been proposed with a very
special mixing pattern, called tribimaximal-mixing, in mind. Exact tribimaximal-mixing is now
excluded by experimental data, but it might still provide a good starting point to build realistic
models like the ones we propose. We illustrate the process how these ultraviolet completions
are build. Discussing the restrictions and difficulties encountered along the way also highlights
one of the advantages of ultraviolet complete models; the additional constraints lead to a
higher predictivity.
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Chapter 1. Introduction

The models in chapter 2 only deal with the leptonic part of the fermions. In Chapter 3 we
then turn to models featuring geometrical CP violation employing a ∆(27) triplet. We first
discuss a modification of a viable existing model for the quarks and then proceed to combine
this with working structures for the lepton sector. Overall this combines to a proof of existence
for models of geometrical CP violation accounting for masses and mixing of the complete
fermion sector.

Finally, chapter 4 introduces a different class of models to generate neutrino masses in a
Supersymmetry framework without the explicit need for additional neutrino fields - R-parity
violation. The challenge here is to explain the smallness of the introduced couplings and to
reduce the relevant number to a set leading to predictive models. We show how to achieve this
by introducing a very generic idea for the involved (unspecified) flavor symmetry. We discuss
models leading to both inverse hierarchy and normal hierarchy for tribimaximal-mixing and
large θ13. Contrary to the models of chapter 2, in these models the realistic scenario does not
necessarily arise as a perturbation of tribimaximal-mixing.

1.1. The Standard Model

1.1.1. Gauge group

The Standard Model (SM) of particle physics [5, 6, 7, 8] is the established status quo in the
theoretical description of the interactions of fundamental particles, which are governed by
the strong, the electromagnetic (EM) and the weak force. During its development, many
bold predictions have been made. One of them for example being the postulation of the
existence of the charm quark [9, 10]. It has been verified to an astonishing degree after years of
experimental searches and tests including the arguably most precise measurement ever made,
the anomalous magnetic moment of the muon g −2.1 With the measurement of a massive
spin-0 particle announce by the ATLAS and CMS collaborations [12, 13], the last piece of the
puzzle finally fell into place.

Mathematically the SM is implemented as a local gauge quantum field theory represented
by the unitary product group

GSM = SU(3)C ×SU(2)L ×U(1)Y . (1.1)

The fields of the theory can be categorized in three groups. The first is given by the fermion
fields which are used to represent matter particles. Equation (1.1) is the product of local gauge
symmetries, with generators depending on the Minkowski space time coordinate x. Therefore
the introduction of these fields in combination with the requirement to keep the Lagrangian
invariant at all points give rise to the second group, the gauge boson fields. Physically they
can be interpreted as particles mediating the forces of the associated symmetry group. The

1For a review of up to date values for almost all involved quantities, see e.g. [11].
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1.1. The Standard Model

SU(3)C SU(2)L Y
Gluons Ga 8 1 0

SU(2)L gauge fields Ai 1 3 0
U(1)Y gauge field B 1 1 0

Quarks QL =
(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
3 2 +1/3

uR ,cR , tR 3 1 +4/3
dR , sR ,bR 3 1 −2/3

Leptons LL =
(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
1 2 −1

eR ,µR ,τR 1 1 −2
Higgs field φ 1 2 1

Table 1.1.: The field content of the SM.

final field is a scalar field which is necessary for the construction of mass terms for the fermion
fields and will also play a role in the generation of several gauge boson masses.

The group SU(3)C describes the dynamics governed by the strong force. It acts on fields
with a so called color charge which is illustrated by the use of the subscript C . As a result the
theory is christened as Quantum Chromodynamics (QCD). The matter fields charged under
this symmetry are called quarks. There are three knows generations of them each containing
quarks of two distinct electrical charges. These are usually referred to as up, down, charm,
strange, top and bottom. The three different color charges of the quarks are labeled as red,
green and blue. The eight generators of SU(3)C are constructed from the well known Gell-
Mann matrices. The associated eight mediators carry (anti-)color charge and are called gluons.
The fields will be referred to as Ga (a = 1,2, ...,8).

The name of these mediators is related to an interesting experimental observation. There
are no free quarks. This is a result of the combination of two features of the theory. The
symmetry is non-Abelian and the gluon fields themselves carry a charge under the symmetry
and are massless. The larger the distance between two quarks (the lower the energy scale),
the more energy is required to further increase it. The effect is called confinement. Therefore,
we only observe particles which are uncharged (singlets) under SU(3)C . These are called
hadrons, which are separated into Mesons - a combination of quark and antiquark - and
Baryons - a combination of three quarks. On the other end of the spectrum at very high energy
scales (short distances) QCD can be considered as almost free. The result is called asymptotic
freedom. This allows for the application of perturbation theory at high energy scales, while one
has to rely on different, usually less explored/developed techniques for lower energy scales.
On of them e.g. being QCD on the lattice [14].

The product of the remaining two symmetry groups is the basis of the famous Glashow-
Weinberg-Salam (GWS) theory. The major part of this thesis will deal with physics related to

3



Chapter 1. Introduction

Fermions Bosons
Leptons Quarks Vector Scalar
νe e u d γ h
νµ µ c s Z 0, W ±

ντ τ t b g

Table 1.2.: Bosons and fermions constituting the particle content of the SM.

this part of the SM gauge group. The GWS theory unifies the EM and the weak force to one
called electroweak (EW). This unification was a major theoretical breakthrough and many
efforts have been made to further unify it with QCD to a grand unified theory. Unfortunately
none of these could be established via experimental observation so far.

The weak interaction, tied to SU(2)L only acts on left-chiral fermion fields with a left chiral
spinor ΨL having the property γ5ΨL =ΨL . These fields are assigned to SU(2)L doublets and
labeled with the index L while the right chiral fields are assigned to singlets with the index
R. For the quarks the doublets are labeled as QL , while for the leptons we use the notation
LL . The fermion singlets will be denoted by the respective small case letter.2 Analogously to
the concept of spin in classical quantum mechanics, the weak isospin is introduced. Its third
component I3 is related to the electric charge Q and the U(1)Y hypercharge Y via the relation

Y = 2(Q − I3). (1.2)

In a single SU(2)L doublet for the known particles, the electric charge between the upper
and the lower component varies by one unit of the electron charge. The group SU(2)L has
three generators τi (with i = 1,2,3). The associated three gauge fields constituting a triplet are
referred to as Ai , while the single gauge field of U(1)Y is denoted as B .

The field content of the standard model is completed with the scalar Higgs field φ which
is assigned to be a SU(2)L doublet with a positive hypercharge of one and no color. This
field acquires a nontrivial vacuum expectation value (VEV) which leads to the breakdown of
SU(2)L ×U(1)Y which is the main topic of the following subsection 1.1.2.

An overview of all SM fields and their assignments under the SM gauge group is presented
in table 1.1.

1.1.2. Massive particles

Introducing masses to the theory described in subsection 1.1.1 is a nontrivial task. In fact the
Nobel price in physics of 2013 was awarded to Peter W. Higgs and François Englert, for their
major contributions [15, 16, 17] to this topic. The challenge arises from the requirement of
SU(2)L invariance of the Lagrangian. Due to the multiplet assignments, including a mass term

2Note that the SM does not contain any right-handed neutrinos.
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1.1. The Standard Model

Figure 1.1.: Illustrations of the Higgs potential symmetries. On the right side the color indicates
a rising Vφ from black to white. Grey lines correspond to contours of the same
values with equal spacing.

for an arbitrary fermion field f of table 1.1

LSM ⊃−m f f L fR (1.3)

with a constant m would break this invariance and is thus not allowed. The solution to this
problem is to generate such a term dynamically. In the SM this is achieved via the now
famous Higgs mechanism of electroweak symmetry breaking (EWSB). The key ingredient is
the introduction of a scalar field with a non-trivial charge under SU(2)L , the aforementioned
φ.

Associated with scalar particles comes a scalar potential. For the single field φ this potential
V f is given by

Vφ =−1

2
λ

(
|φ|2 − 1

2
v2

)2

, (1.4)

with the signs of the constants λ and v fixed by the requirement of the potential to be bounded
from below. Studying this so-called Mexican hat potential is very helpful in illustrating the
process of ESWB. For a complex field the potential of equation (1.4) has two classes of extrema,
one single unstable point at the center and a stable ring of minima around it with radius v
and it is symmetrical with respect to rotations around and reflections on the z-axis, as can
be seen in figure 1.1. Now, as a complex doublet, φ has four degrees of freedom. Breaking
the symmetry by letting φ acquire an arbitrary VEV |v | breaks the latter symmetry. Due to the
remaining rotation invariance, the doublet can always be rotated to a basis where

〈φ〉 =
(

0
v +h

)
, (1.5)
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Chapter 1. Introduction

where h is the physical Higgs boson. In the language of gauge groups, this is formulated as

SU(2)L ×U(1)Y →U(1)EM (1.6)

where the remaining rotation symmetry after the breakdown of EW symmetry is called EM
symmetry. Inserting this VEV in a term

LSM ⊃−y f φ f L fR , (1.7)

where y f is a Yukawa-coupling, now leads to a mass term with the required form of equation
(1.3). The actual mass is determined by the strength of the coupling constant and the Higgs-
VEV.

The process of EWSB further leads to gauge boson masses. Technically however, these arise
in a different way compared to the fermions. The SM Lagrangian contains the term with the
covariant derivative Dµ of the Higgs field

L ⊂ ∣∣Dµφ
∣∣2 . (1.8)

Introducing the EW coupling constants g and g ′, this derivative is defined as

Dµ =
[
δµ− i g

2
τa Aa

µ−
i g ′

2
Y Bµ

]
φ. (1.9)

The expansion of this Lagrangian term and the insertion of the Higgs-VEV then lead to the
three massive physical Bosons W ± and Z 0 and the massless photon γ. In the context of the
Goldstone theorem the massive Bosons are interpreted to ‘eat’ three Goldstone bosons and
the massless photon is protected by the remaining U(1)EM of equation (1.6). Note that the field
content of the SM and the Higgs mechanism do not lead to massive Neutrinos due to the lack
of the necessary right handed fields.3 All the physical particles of the SM are summarized in
table 1.2.

1.1.3. Fermion mixing

While the interaction vertices of the SM mediate only between fermions of one generation, in
nature we observe phenomena switching between these generations. An obvious example are
several Meson decays in the hadron sector. The origin of this can be explored by examining
the weak charged current we observe. For instance for quarks u and d this is given as

W +
µ uLγ

µdL . (1.10)

In experiments we only measure mass eigenstates. The EW current on the other hand mediates
between weak eigenstates and obviously the two bases defined by these eigenstates do not

3This is true at the renormalizable level. Non-renormalizable operators will be discussed later.

6



1.1. The Standard Model

match. To account for this we introduce the unitary complex 3×3 matrices Vu and Vd which
transform u and d from the mass basis to their weak counterparts u′, respective d ′

u′ =Vuu (1.11)

d ′ =Vd d . (1.12)

These can be used to rewrite equation (1.10) in terms of the weak eigenstates

W +
µ u′

L

(
VuV †

d

)
γµd ′

L ≡W +
µ u′

LVCKMγµd ′
L , (1.13)

which defines the CKM-matrix VCKM. It is named after its three inventors. Cabibbo first
postulated mixing between the first two quark generations. The associated mixing angle θC is
therefore referred to as the Cabibbo angle [18]. This was later generalized by Kobayashi and
Maskawa for all three generations [19] and awarded with the noble price of physics in 2008.

The CKM matrix can be parametrized in terms of three real angles and one complex phase.
The standard parametrization for such a matrix is denoted as c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13e iδ13 c12c23 − s12s23s13e iδ13 s23c13

s12s23 − c12c23s13e iδ13 −c12s23 − s12c23s13e iδ13 c23c13

 . (1.14)

Here si j and ci j refer to the sine and cosine of the mixing angle of the generation indices
and δ13 is the complex phase. It is this complex phase of VCKM, which is the only origin of
CP violation (CPV) in the standard model, a concept which will receive further attention in
chapter 3. Experimentally, VCKM is nearly diagonal. One possible approximation in frequent
use was introduced by Wolfenstein [20] and reads

VCKM ≈
 1−λ2/2 λ Aλ3(ρ− iη)

−λ 1−λ2/2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

 , (1.15)

where λ is identified as θC .
To conclude this section we turn our focus to trying the same exercise in the lepton sector.

In terms of weak eigenstates, analogously to the quark case, the charged current here reads

W +
µ ν′

L

(
UνV †

L

)
γµe ′L ≡W +

µ ν′
LUPMNSγ

µe ′L , (1.16)

which defines the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix UPMNS. However, since
neutrinos are not massive in the standard model, one has always the freedom to choose
Uν =V †

L leading to no physical mixing. This is not compatible with the phenomena, that we
observe in nature. These in fact point to a mixing matrix which is not even close to diagonal,

7



Chapter 1. Introduction

contrary to the quark sector. Current best fit values for a global fit of the mixing angles taken
from [21] indicate

sin2 θ12 = 0.30, (1.17)

sin2 θ23 = 0.41, (1.18)

sin2 θ13 = 0.023 (1.19)

and require at least two massive neutrinos. The famous tribimaximal-mixing (TBM) matrix
[22]

VTBM =


√

2
3

1p
3

0

− 1p
6

1p
3

1p
2

1p
6

− 1p
3

1p
2

 (1.20)

remains a good first order approximation, although exact TBM mixing is now excluded, since
the value of θ13 has to deviate from its TBM value which demands θ13 = 0. First concrete
evidence for this was presented in 2011 by the experiments T2K in Japan [23] and MINOS in
the United States [24]. Both are long-baseline accelerator experiments which searched for
νµ → νe events. This initial findings were later confirmed by other experiments like Daya Bay,
Double Chooz and RENO.4

Oscillations only tell us about two mass squared differences. Best fit values, also included in
[21] are

∆m2
21 = 7.50×10−5 eV2, (1.21)

∆m2
31 =+2.473×10−3 eV2, (1.22)

or

∆m2
32 =−2.427×10−3 eV2, (1.23)

where ∆m2
i j = m2

i −m2
j is defined by the three neutrino mass eigenvalues mi . The ambiguity of

the last two of these reflects the fact that in the neutrino sector, the hierarchy of these masses is
not yet completely determined. The two possible scenarios m2

1 < m2
2 < m2

3 and m2
3 < m2

1 < m2
2

are referred to as normal hierarchy (NH) and inverse hierarchy (IH).5 For these masses so far
only upper bounds are known. The most stringent one is derived from cosmology and after
the latest Planck results [25] given by ∑

mi < 0.23eV. (1.24)

While this bound involves many uncertainties, similar bounds, i.e. from neutrinoless double
beta decay, indicate the same order of magnitude.

4Published Results for all relevant experiments can again be found in [11].
5The loosely defined case where all of them are in the same order of magnitude is usually called degenerate.
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1.1. The Standard Model

Figure 1.2.: A sketch of the known fermion masses. The logarithmic mass scale on the left
indicates the huge range and hierarchies covered by the three generations of
up-type quarks, down-type quarks, charged leptons and neutrinos (from left to
right). Since the status of neutrinos is not visible at this scale, a zoom is provided
which illustrates the relations of the squared mass eigenvalues, and highlights
the ambiguity of their normal or inverse order and the large mixing compared to
the quark sector. TBM is displayed to highlight the correspondence between the
squared mass eigenvalues and the squared columns of equation (1.20).

The sketch of figure 1.2 summarizes the situation of fermion masses and mixing and hints at
the huge challenges involved in the construction of a realistic theory. One big question is why
are all known fermions replicated in three generations and how are they related? The gauge
groups of the standard model provide no answer, since they only discriminate by quantum
numbers which are the same for all particles belonging to the same family. Even putting
aside neutrino masses for a moment, why is the hierarchy between the masses spanning
almost five orders of magnitude? Another issue is the observed fermion mixing. Why is it
so different in the quark and lepton sector, with one mixing matrix almost diagonal and the
other one almost of tribimaximal form? Finally, why are the mass hierarchies and scales
in the quark sector different compared to the lepton sector? With this open questions we
conclude, that an appealing theory needs to expand the symmetry content of the SM in a
way that distinguishes between quarks and leptons, and their respecting generations. Since
these additional symmetries mediate between different flavors they are often called flavor
symmetries, or horizontal6 symmetries.

Such symmetries will be the topic of the following chapters, but since neutrino masses are

6This naming may seem a little bit odd due to the layout we choose to present the particle content so far. It’s
origin lies in displaying the generations of particles from left to right, therefore symmetries relating these have
to mediate in the horizontal direction.
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Chapter 1. Introduction

such a special challenge we would like to quickly summarize some general mechanisms how
to extend the SM to include these.

1.2. Beyond the Standard Model

1.2.1. Supersymmetry

As we pointed out, to contribute to a viable theoretical description of nature one necessarily
needs to go beyond the Standard Model (BSM). Many different concepts to do so and a
countless number of models have been proposed in the past. But since all the models discussed
in this work are implemented in a so called supersymmetric framework, we take the liberty of
introducing just one broad concept - Supersymmetry (SUSY), a symmetry relating bosons and
fermions.

There are several arguments, why this might be a promising extension of the SM but here
we choose to only sketch a motivation based on symmetry considerations. These have proven
to be invaluable in the past, and will be (albeit in a different manifestation) heavily used in the
original part of this work. The largest continuous spacetime symmetry we have observed so far
is the one of the Poincaré group. It’s algebra is defined in terms of the hermitian generators of
the unitary operators of four translations and homogeneous Lorentz transformations. These
are denoted as Pµ, respective Mµν. One can now ask the question how to expand this symmetry
further. As it turns out this is hardly possible on the basis of physically reasonable assumptions.
The Coleman-Mandula theorem [26] tells us that it is not possible to combine the Poincaré
algebra with any other continuous symmetry in a nontrivial way to a Lie algebra. I.e. for any
generator of an additional Lie algebra T the relation

[T,Pµ] = [T, Mµν] = 0 (1.25)

holds. The Haag-Łopuszánski-Sohnius theorem [27] however directs us to a unique way
out - Z2-graded Lie algebras. It proves, that such an algebra is the most general continuous
symmetry of the S-Matrix when two requirements are fulfilled. First, the odd generators
of this symmetry belong to the representations7 (1/2,0) and (0,1/2) of the homogeneous
Lorentz group and second, the even generators commute with the other generators of the
symmetry group. Now identifying even generators as bosonic and odd generators as fermionic,
this means that we are able to add relevant fermionic generators of the above mentioned
representations. An object with exactly these properties is an operator Q which generates
transformations between fermions and bosons

Q |boson,fermion〉 = |fermion,boson〉 . (1.26)

7Note that SU(2)+⊗SU(2)− is homomorph to SL(1,3) and thus any relevant representation can be described by
an ‘angular-momentum’ index pair ( j1, j2).
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1.2. Beyond the Standard Model

Further investigation of this operator leads to the algebraic relations

{Q,Q} ∝ Pµ, (1.27)

[Q,Pµ] = 0, (1.28)

[Q, Mµν] ∝Q, (1.29)

and thus expands the S-Matrix symmetry including the Poincaré symmetry.8 This concept is
called SUSY. Note that in principle it is possible to add more than one generator satisfying the
Haag-Łopuszánski-Sohnius theorem. In this work however, we only discuss SUSY with one
generator which is usually referred to as N = 1 SUSY.

Single particle states are irreducible representations of the SUSY algebra and called super-
multiplets. Two properties of theses are, that all particles in such a multiplet are required to
have the same gauge quantum numbers and that the number of bosonic degrees of freedom
equals the number of fermionic degrees of freedom. The fermionic and bosonic states of a
supermultiplet are referred to as superpartners. The simplest possible way to construct a
supermultiplet is combing a Weyl fermion with a complex scalar field, this is called chiral
supermultiplet. The next to simplest possibility is constituted by a massless spin-1/2 Weyl
fermion and a massless spin-1 boson. This is labeled as a vector multiplet. Every particle of a
SUSY extension of SM particle content falls into one of these categories. The superpartners of
the SM fermions are usually indicated by prefacing an s to the original name and applying a
tilde to the mathematical symbol, so e.g. an neutrino (ν) becomes a sneutrino (ν̃). The super-
partners of bosons are named by appending an -ino. Note that for each chiral fermion of the
SM, the associated superfield must provide the same number of fermion and boson degrees of
freedom. For the SU(2)L doublet this requires two complex scalar fields, consequently called
left sfermions and labeled with the index L, while for the singlets one right sfermion field with
the index R is sufficient.

A geometric interpretation of SUSY, which is suitable to a quantum field theory, is possible
in superspace. This relies on the additional use of Grassmann variables and the details of this
will not be discussed here. The takeaway message is, that in this context it makes sense to talk
about superfields. This is the expression we will use from now on.

1.2.2. The minimal supersymmetric Standard Model

While there are many different implementations of supersymmetric extensions of the SM, we
will only introduce one of them, which is called Minimal supersymmetric Standard Model
(MSSM). This is, roughly speaking, constructed by introducing a superpartner for every SM
field of table 1.1, group them into superfields, parametrize the symmetry breaking and stop at
this point, except for one other necessary addition to the superfield content.

8In this short discussion we have omitted the spinorial indices of Q since the technical details of SUSY are not
discussed in this work. For a more thorough introduction, see e.g. [28], or one of the many available textbooks
like [29].

11



Chapter 1. Introduction

SU(3)C SU(2)L Y
Gauge fields Ga 8 1 0

Ai 1 3 0
B 1 1 0

Matter fields Qi 3 2 +1/3
U i 3 1 −4/3
D i 3 1 +2/3
Li 1 2 −1
E i 1 1 2

Higgs fields H1 1 2 −1
H2 1 2 1

Table 1.3.: Superfield content of the MSSM.

sleptons squarks Gaug- and Higgsinos

ν̃e ẽL , ẽR ũL , ũR d̃L , d̃R g̃a

ν̃µ µ̃L , µ̃R c̃L , c̃R s̃L , s̃R χ̃±
1 , χ̃±

2
ν̃τ τ̃L , τ̃R t̃L , t̃R b̃L , b̃R χ̃0

1, χ̃0
2, χ̃0

3, χ̃0
4

Table 1.4.: List of sparticles of the MSSM omitting antisfermions.

To establish the necessary notations and concepts, we will delve into some of the intricacies
of this a little bit more deeply in the following. As previously stated we start by introducing
scalar superpartners for all SM fields. For quarks this would be e.g.

q̃i L =
(

ũ
d̃

)
L

, ũi R and d̃i R , (1.30)

were i is a generation index for the corresponding quark family. With the help of these and the
SM fields we define the left chiral superfields Qi , U i and D i following the requirements stated
in subsection 1.2.1. Analogously we proceed in the leptonic sector by promoting the SM fields
into the superfields Li and E i .

The gauge sector is handled in a similar way. For each gauge field of the SM we introduce a
vector superfield, additionally containing the spin-1/2 Majorana superpartners. We simply
name these Ga , Ai and B replacing the notation of subsection 1.1.1.

After skimming over this part, the supersymmetric Higgs sector requires a little more atten-
tion. The reason is the way how Yukawa interactions arise in supersymmetric theories. These
are derived from the superpotential W which is constrained to only contain left or right chiral
superfields to be holomorphic. Thus it is not possible to use one Higgs doublet to derive mass
terms for both up- and down-quarks, like it was the case in the SM. So to construct a viable
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1.2. Beyond the Standard Model

theory we need to include a second Higgs field with opposite hypercharge Y . We call these two
Higgs fields h1 and h2 and group them with the necessary superpartners into the superfields
H1 and H2. The overall superfield content of the MSSM is summarized in table 1.3.

It is important to point out at least one additional property of the MSSM. In the SM La-
grangian lepton and baryon numbers L and B are conserved accidentally. This is not the case
when writing down the most general superpotential of the MSSM superfields obeying the
SM gauge group. Therefore an additional conserved quantum number called R-parity (RP ) is
introduced in the MSSM, to prevent e.g. rapid proton decay. Additionally using the spin S this
is defined for any particle as

RP ≡ (−1)3(B−L)+2S . (1.31)

Note that via this definition all particles are R-parity even and all sparticles are R-parity
odd. This prevents the lightest MSSM sparticle to decay, which is therefore stable. The
superpotential of the MSSM WMSSM is then given by

WMSSM =µH1H2 − f e
i j H1Li E j − f d

i j H1Qi D j − f u
i j H2QiU j , (1.32)

where the fi j are the corresponding 3×3 Yukawa matrices and the parameter µ has mass
dimension one. The scale of µ is required to be of the order of the weak scale to include EWSB.
Interesting consequences arise in this place when RP is dropped. This will be discussed in
subsection 1.2.3.

As mentioned SUSY must be broken. It turns out that this breaking can not be spontaneous
in the MSSM. It has to be introduced explicitly by adding soft9 SUSY breaking terms Lsoft to
the supersymmetric terms LSUSY so that overall

L =LSUSY +Lsoft. (1.33)

The details of this process and the necessary EWSB are beyond the scope of this short intro-
duction.

In the end this leads to two charged mass eigenstates, called charginos χ̃±
1,2, four neutralinos

χ̃0
1,2,3,4 and five Higgs bosons h, H , A, H±, where the indices correspond to the ordering of the

masses from lightest to heaviest. Minimization of the Higgs potential and EWSB involve the
two VEV’s

〈h1〉 = 1p
2

(
v1

0

)
, 〈h2〉 = 1p

2

(
0

v2.

)
(1.34)

These are related to the W and Z masses of the SM and their ratio defines

tanβ≡ v2/v1. (1.35)

Overall the particle content of the MSSM is given by the particle content of the SM with an
enlarged Higgs sector and the superparticles. These are completed with the addition of the
gluon superpartners called gluinos ga . The sparticle content is summarized in table 1.4.

9This means that every field operator has a mass dimension less than four.
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1.2.3. Generating neutrino masses

The previous discussion has still not addressed our main problem - how to include massive
neutrinos? However, it has given us a hint of one possible starting point in supersymmetric
models. But before discussing this, it is in order to derail a little bit and to point out the effects
of one unique feature of neutrinos. They are the only fermions we observer at a low energy
scale that are electrically neutral. This allows us to illustrate the status of lepton masses after
EWSB via the effective Lagrangian

Lleptons =−lLmllR − 1

2
ν>

L C mννL +H. c., (1.36)

where we denote the corresponding charged lepton fields as lL/R . The charge conjugation
matrix C is defined by C = iγ2γ0 and mL and mν are arbitrary (potentially complex) 3×3 mass
matrices. An additional requirement for the latter one is to be symmetric. They are called
Majorana masses and violate Lepton number by two units.10 Note that Majorana masses
allow for two additional phases in UPMNS compared to the parametrization of equation (1.14).
Clearly, the SU(2)L structure of these terms is different compared to the Dirac ones. This
indicates that they result from a separate mechanism. Thus it can be considered natural to
relate them to a different scale, which is a key ingredient to arrive at a satisfying description of
neutrinos. There are numerous ways to realize this effective low energy picture of neutrino
masses. We will discuss the most prominent ones, which are relevant to this work, in the
following.

In supersymmetric models one has the option to drop the concept of R-parity conservation
which was introduced in the MSSM by hand without any deeper theoretical background
anyway. The most rigorous way to do so is to add all terms that are now allowed to the
superpotential of equation (1.32).11 Since lepton number conservation is no longer an issue
anyway, one can start by replacing each occurrence of H1 by Li since both superfields share
the same quantum numbers and add these terms to the superpotential. As it turns out there is
one more operator which is allowed that violates baryon number. Overall the new R-parity
violating (RPV) superpotential terms WRPV are

WRPV =−µi Li H2 + 1

2
λi j k Li L j E k +λ′

i j k Li Q j Dk +
1

2
λ′′

i j kU i D j Dk , (1.37)

introducing three new couplings µi with mass dimension one, nine Yukawa couplings λi j k , 27
Yukawa couplings λ′

i j k and nine Yukawa couplings λ′′
i j k .12 The introduction of these terms

10An experimental confirmation of this would be the observation of neutrinoless double β decay, which is a heavily
explored topic but not confirmed so far. See e.g [30, 31, 32, 33, 34] for published results and [35, 36, 37] for
proposed sensitivities. A more complete overview can be found in one of the many recent review talks. See e.g.
[38].

11R-parity violation (RPV) can also be introduced spontaneously, this was first proposed by Aulakh and Mohapatra
[39] and will not be further mentioned here. For a thorough introduction to the concept of RPV see e.g [40].

12The number of λ (λ′′) couplings is reduced due to the requirement of SU(2)L (SU(3)C ) invariance.
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1.2. Beyond the Standard Model

Figure 1.3.: Exemplary Feynman diagrams for neutrino Majorana mass terms. The upper row
illustrates (s)quark and (s)lepton loops for R-Parity violating SUSY. The lower row
corresponds to seesaw Type I (Type III) on the left and seesaw Type II on the right.
The crosses indicate chirality flips and VEV insertions, while suitable couplings
and generation indices are implicitly understood.

then leads to associated terms in the soft part of the Lagrangian, and is the most general way
to parametrize RPV.

When both lepton and baryon number violating couplings are present at the same time,
this may lead to rapid proton decay which is not observed in nature. However, there are many
possible concepts to avoid this, e. g. based on symmetries. This is a topic discussed in [41].

Exploring the consequences of equation (1.37) one can immediately see that neutrino
(Majorana) masses proportional to µiµ j arise at tree level. This already points out one of
the challenges to generate viable neutrino masses in this context – to motivate why these
couplings are small enough to satisfy the very tight bounds for neutrino masses.

At tree level, these couplings generate only one non vanishing neutrino mass eigenvalue.
Thus, to construct a viable model in this context one has to necessarily go to the loop level.
Numerous kinds of diagrams arise from combinations of the L violating couplings. These are
discussed in more detail in chapter 4. To illustrate the concept figure 1.3 already depicts some
of them. This hints to the second challenge, to reduce the number of involved couplings to
small subset for a predictive theory – an issue addressed by flavor symmetries.

A second route to arrive at the low energy picture of equation (1.36) related to a different
scale M is the non-renormalizable Weinberg operator

OW = (LLφ)(LLφ)

M
, (1.38)

15



Chapter 1. Introduction

with a resulting low energy neutrino mass scale

mν ∝ v2

M
. (1.39)

Given M À v , now this allows to elegantly explain why neutrino masses are so small compared
to the scale ml of the charged lepton masses which is proportional to v .

The simplest way to achieve this is to introduce additional fields coupling to the lepton
and the Higgs doublet. The Weinberg operator then arises by integrating out the degrees
of freedom of these heavy fields. This realization of small neutrino masses is called seesaw
mechanism. Most seesaw models fall into one of three classes, named Type I [42, 43, 44, 45],
Type II [46, 47, 48, 49, 50] and Type III [51]. They are defined by the properties of the mediating
particles. In Type I models this is a heavy fermion which is a singlet under GSM, e.g. a heavy
right handed neutrino νR . The other two types employ SU(2)L triplets. In the case of Type II
this is a scalar ∆, and in the case of Type III a fermion Σ.13 Feynman diagrams exemplary for
this model can also be found in figure 1.3. Note that the seesaw mechanism is not necessarily
tied to SUSY. However, it is also used frequently in supersymmetric models.

13There are other, more exotic seesaw schemes, see e.g. [52].
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2. Two A4 lepton models

In this chapter we will discuss two BSM models addressing the challenge to give a realistic
description of the lepton sector. As previously stated, we will add additional symmetries to
the gauge group GSM and extend the field content. The models employ the aforementioned
seesaw mechanism to generate the neutrino mass hierarchy and are supersymmetric.

The general idea is to assign all fields to suitable irreducible representations of the overall
symmetry and to construct invariants under it. The new structures, mainly arising from the
new symmetry, are then used to explain the observed lepton mixing. The multiplication rules
of the used irreducible representations will be essential in this context.

In this chapter the supersymmetric nature of the models is not the essential feature, we
will loosely refer to the superfields as fields. Further we will denote the representations as
multiplets of the according dimension and use the term singlet for the invariant and non-trivial
singlets for the other one-dimensional irreducible representations.

This chapter is based on the previously published article [2]:

Ivo de Medeiros Varzielas and Daniel Pidt
UV completions of flavour models and large θ13

JHEP 1303 (2013), p.065
arXiv:1211.5370

2.1. The group A4 and ultraviolet completions

The models presented here employ the discrete non-abelian symmetry group A4. They are
ultraviolet (UV) completions of two previous effective models [53, 54] and [55] which predicted
exact TBM at leading order (LO). This is achieved by a specific spontaneous breaking of A4. In
correspondence to the names of the authors, we will denote the original models as the Altarelli-
Feruglio (AF) and Altarelli-Meloni (AM) model. Before discussing the concrete implementation,
a few comments on the symmetry group and the benefits of UV completions are in order.1

The symmetry A4 has three one-dimensional and one three-dimensional irreducible repre-
sentations which we will label as 1, 1′, 1′′ and 3. To understand the way the model is built it
is important to establish the used multiplication rules in the particular basis chosen. For an

1For a more thorough introduction of A4 and an overview of other symmetries and their application, see e.g. [56,
57, 58].
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Chapter 2. Two A4 lepton models

arbitrary representation r the relation

1× r = r×1 = r (2.1)

holds. Further, for the other products of one-dimensional representations one finds

1′×1′ = 1′′

1′′×1′′ = 1′

1′×1′′ = 1′′×1′ = 1

∝α1β1. (2.2)

Here and in the following αi and βi denote the i-th component of the first and second multiplet
of the product respectively. The singlet products with the triplet are

1′×3 = 3 ∝
αβ3

αβ1

αβ2

 , (2.3)

1′′×3 = 3 ∝
αβ2

αβ3

αβ1

 (2.4)

and the product of two triplets is

3×3 = 3S +3A +1+1′+1′′



1 ∝α1β1 +α2β3 +α3β2

1′ ∝α3β3 +α1β2 +α2β1

1′′ ∝α2β2 +α1β3 +α3β1

3S ∝ 1

3

2α1β1 −α2β3 −α3β2

2α2β2 −α1β2 −α2β1

2α3β3 −α3β1 −α1β3



3A ∝ 1

2

α2β3 −α3β2

α1β2 −α2β1

α3β1 −α1β3


. (2.5)

The two subscripts A and S refer to the symmetric and antisymmetric ways to construct a
triplet again from two triplets, which will be essential for the following models. We will use
curly brackets to indicate contractions to different one dimensional A4 representations, i.e.
for two generic triplets A and B , {AB } ∝ 1, {AB }′ ∝ 1′ and {AB }′′ ∝ 1′′.

Even though exact TBM is excluded it is still a LO good starting point to build a realistic
model. In effective models the deviations from TBM can be accounted for by the inclusion
of next to leading order (NLO) terms. In this context UV completions can play an important
role, they introduce additional messenger fields to construct a fundamental theory. Integrated
out, these messenger fields provide the effective terms of the theory. The motivation behind
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2.2. Completions of A4 ×Z3 ×U(1)FN models

this is not merely the wish for a more aesthetically pleasing theory but the fact, that these
completions can lead to an improved predictivity compared to the effective models. This has
been shown e.g. in [59] and is achieved by limiting the set of effective terms which arise at the
lower scale.

For the AF and AM models this has been shown with the minimal UV completions presented
in [60]. However, they were guided by the paradigm of TBM. The completion of the AF model
predicts exact TBM and is therefore excluded. The minimal AM completion on the other hand,
allows for deviations from TBM, but we find its parameters quite constrained by the currently
measured mixing angles. So clearly there is a motivation to investigate next-to-minimal
completions of these models, accounting the experimental status quo.

There is a multitude of sources from which the needed deviations may arise. Namely, these
are the charged lepton sector (e.g. [61, 62]), Dirac (e.g. [63]) or Majorana masses (in type I
seesaw models, as in [64]), or VEV alignment (e.g. [65]). A very recent proposal combining type
I seesaw with either type II or III can be found in [66], for a general review, see e.g. [67]. The
details of this are explored in the following two sections.

Generally, both presented models will employ the MSSM with additional (chiral) superfields.
There are two classes of these fields which are discriminated by their charge under a global
symmetry U(1)R , which is part of the SUSY embedding and contains R-parity as a discrete
subgroup.2 The additional fields with U(1)R charge 0 will be called flavons, while the fields
with U(1)R charge 2 will be denoted as driving fields. Since the ordinary matter fields have
charge 1, only the flavons can couple to these. Further note that the scalar components of the
driving fields do not receive a VEV, since they only appear linearly in the superpotential terms.3

Further details of their assignments and the additional messenger fields will be discussed in
sections 2.2 and 2.3.

In section 2.2 we explore modifications of the AF model. We compare possible next to
minimal completions with modifications of the flavon sector. A similar comparison will then
be presented for possible modifications of the AM model in section 2.3, which allows to relax
the tight constraints for the minimal completion.

2.2. Completions of A4 ×Z3 ×U(1)FN models

The foundation of the models discussed in this section is the supersymmetric implementation
of the AF model [54]. Its flavor symmetry is given by the product A4 ×Z3 ×U (1)FN. All three
symmetries play a different role in the construction of the models. The spontaneous breaking
of A4 leads to exact TBM at LO, while the Z3 separates the neutrino sector and the charged
lepton sector and prevents unintended couplings. The final U(1)FN implements the Froggatt-
Nielsen (FN) mechanism [68]. The basic idea is to introduce a global U(1) as a flavor symmetry.

2The reason behind this SUSY embedding is that it simplifies the construction of the scalar potential, which
allows to explain the vacuum.

3Strictly speaking this is only true while SUSY is still intact.
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Chapter 2. Two A4 lepton models

The VEV of an associated field is then used to explain the observed hierarchy of the charged
fermion Yukawa couplings, in our case the charged lepton ones.

The minimal completion of the AF model presented in [60] is elegant and has the rather
unique feature of predicting exact TBM leading to its exclusion by present experimental results.
This combination motivates us to see how next to minimal completions perform. Since the
original model is of seesaw Type I, all of the aforementioned tools are at our disposal.4 The
field content relevant to the discussion is presented in tables 2.1, 2.2 and 2.3 for the matter
fields, the flavons and the FN messengers respectively. Before delving into the details, we
would like to make a few comments on these. As discussed later in this section the field ξ̃ in
table 2.2 is only present in the original AF model and its minimal completion. It is replaced
by ξ′ in the new model that we present here. Further we relabeled the fields φT and φS of
the original papers as φl and φν for the sake of a consistent notation. The messengers of the
completion are generically denoted as χ. They are FN messengers with R charge 1 like the
leptons and thus do not couple to the driving fields. The right-handed neutrino field is labeled
as νc and should not be confused with the left-handed neutrinos contained in l .

2.2.1. Modifications of the completion

The superpotential w for the original AF model can be split up into three parts, the neutrino
superpotential wν, the charged lepton superpotential wl and the driving superpotential wd ,

w = wl +wν+wd . (2.6)

For the following discussion keep in mind, that we use curly brackets to represent the A4

contractions {a} ∼ 1, {a}′ ∼ 1′ and {a}′′ ∼ 1′′ and that the field ξ̃ will be replaced in the improved
models later on. The first two parts are given by

wν = y
{
l vc}hu + (

xAξ+ x̃A ξ̃
){

νcνc}+xB
{
φνν

cνc} (2.7)

and

wl =
ye

Λ3 θ2ec {
φl l

}
hd + yµ

Λ2 θµc {
φl l

}′ hd + yτ

Λ
τc {

φl l
}′′ hd . (2.8)

The origin of the latter one is the following renormalizable superpotential of the minimal UV
completion wUV

l . Using the subscript A to refer to the different messenger pairs (c.f. table 2.3)
it can be written as

wUV
l = MχA

{
χAχ

c
A

}+hd
{
lχc

τ

}+τc {
φlχτ

}′′+θµcχ1 +θecχ3

+{
φlχτ

}′
χc

1 +
{
φlχτ

}
χc

2 +θχ2χ
c
3. (2.9)

4The model recently proposed in [66] is very similar to what we will present. There, the authors use the seesaw
type I to implement TBM and then combine it with one of the other two seesaw types to deviate from it.
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νc l ec µc τc hd hu

A4 3 3 1 1′′ 1′ 1 1
Z3 ω2 ω ω2 ω2 ω2 1 1

U(1)FN 0 0 2 1 0 0 0
U(1)R 1 1 1 1 1 0 0
U(1)Y 0 −1/2 +1 +1 +1 −1/2 +1/2

Table 2.1.: Assignments of matter fields relevant to the discussion of the AF model.

θ φl φν ξ ξ̃ ξ′ φ0
l φ0

ν ξ0

A4 1 3 3 1 1 1′ 3 3 1
Z3 1 1 ω2 ω2 ω2 ω2 1 ω2 ω2

U(1)FN −1 0 0 0 0 0 0 0 0
U(1)R 0 0 0 0 0 0 2 2 2
U(1)Y 0 0 0 0 0 0 0 0 0

Table 2.2.: Assignments of flavons and driving fields relevant to the discussion of the AF model.
The original AF model and the minimal completion only employ ξ̃ and do not
contain ξ′. The opposite is the case for the new model we propose.

χτ χ1 χ2 χ3 χc
τ χc

1 χc
2 χc

3
A4 3 1′ 1 1 3 1′′ 1 1
Z3 ω ω ω ω ω2 ω2 ω2 ω2

U(1)FN 0 0 0 −1 0 0 0 +1
U(1)R 1 1 1 1 1 1 1 1
U(1)Y −1 −1 −1 −1 +1 +1 +1 +1

Table 2.3.: The FN messengers for the AF model. They are the same as presented in [60].
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Chapter 2. Two A4 lepton models

The masses of the messengers are expected to be similar and their scale is generically denoted
as Mχ. Superdiagrams for the charged lepton mass terms can be found in section A.1 of the
appendix.

The final part of the superpotential is

wd = M
{
φ0

l φl
}+ g

{
φ0

l φlφl
}+ g1

{
φ0

νφνφν

}+ g2ξ̃
{
φ0

νφν

}+ g3ξ
0 {

φνφν

}
+ g4ξ

0ξξ+ g5ξ
0ξξ̃+ g6ξ

0ξ̃ξ̃. (2.10)

This part gives rise to the VEV structure, since the associated alignment conditions can be
derived from it. These are

∂w

∂φ0
ν1

= g2ξ̃φν1 + 2

3
g1

(
φ2

ν1 −φν2φν3
)= 0, (2.11)

∂w

∂φ0
ν2

= g2ξ̃φν3 + 2

3
g1

(
φ2

ν2 −φν1φν3
)= 0, (2.12)

∂w

∂φ0
ν3

= g2ξ̃φν2 + 2

3
g1

(
φ2

ν3 −φν1φν2
)= 0, (2.13)

∂w

∂ξ0 = g3
(
φ2

ν1 +2φν2φν3
)+ g4ξ

2 + g5ξξ̃+ g6ξ̃
2 = 0, (2.14)

and

∂w

∂φ0
l1

= Mφl 1 +
2

3
g1

(
φ2

l 1 −φl 2φl 3
)= 0, (2.15)

∂w

∂φ0
l2

= Mφl 3 +
2

3
g1

(
φ2

l 2 −φl 1φl 3
)= 0, (2.16)

∂w

∂φ0
l3

= Mφl 2 +
2

3
g1

(
φ2

l 3 −φl 1φl 2
)= 0. (2.17)

Additionally to the trivial solution, this allows the VEV structure

〈φν〉∝ (1,1,1), 〈φl 〉∝ (1,0,0), 〈ξ〉 6= 0, 〈ξ̃〉 = 0. (2.18)

This VEV structure and the alignment equation play a crucial role in modifications of the
model. In fact it is a delicate task to change or introduce terms that contribute to these, as the
consequences can be vanishing VEVs or a completely different, non-viable VEV alignment.
This can, for example, be seen by enabling φl to appear in the φ0

ν terms. An example of this at
the non-renomalizable level is

{
φ0

νφl
}
ξξ. The construction of this term in an UV complete

theory requires only one new field η. It has to transform as ω under the Z3 (c.f. table 2.2) and
allows for the new vertex

{
φ0

νφl
}
η and the mass term ξ0η. If η acquires a non-vanishing VEV

this vertex alone mixes φl into the alignment equations of φ0
ν. But additionally, even for 〈η〉 = 0

new combinations with ξ0ξξ appear. At the non-renormalizable level this manifests itself in
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2.2. Completions of A4 ×Z3 ×U(1)FN models

Figure 2.1.: Topology for φ0
νφlξξ.

Figure 2.2.: Topology for χc
τχτφlφl .

the term
{
φ0

νφl
}
ξξ via the topology displayed in figure 2.1. The altered alignment equations

(c.f. equations (2.11)-(2.14)) are then given by

∂w

∂φ0
ν1

= g2ξ̃φν1 + 2

3
g1

(
φ2

ν1 −φν2φν3
)+ g8φl 1η= 0, (2.19)

∂w

∂φ0
ν2

= g2ξ̃φν3 + 2

3
g1

(
φ2

ν2 −φν1φν3
)+ g8φl 3η= 0, (2.20)

∂w

∂φ0
ν3

= g2ξ̃φν2 + 2

3
g1

(
φ2

ν3 −φν1φν2
)+ g8φl 2η= 0, (2.21)

∂w

∂ξ0 = g3
(
φ2

ν1 +2φν2φν3
)+ g4ξ

2 + g5ξξ̃+ g6ξ̃
2 + g7η= 0. (2.22)

A quick check with the original configuration 〈φl 〉∝ (1,0,0) and 〈φν〉∝ (1,1,1) immediately
uncovers that the old VEVs do not fulfill these new constraints. A more torough investigation
reveals, that preserving 〈φν〉 ∝ (1,1,1) requires 〈φl 〉 ∝ (1,1,1). This is not compatible with
equations (2.15)-(2.17), an issue that can not be resolved by small perturbations of the structure
of 〈ϕν〉. A more detailed discussion of modifications to the alignment sector will follow within
the A4 ×Z4 framework in section 2.3.

Now to the charged leptons. In this sector the effective terms are already renormalizable.
The effect of the vertex

{
χc

τχτφl
}

is already discussed in [60]. As shown in figure 2.2 the non-
renormalizable term χc

τχτφlφl is enabled by merely employing this renormalizable vertex
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Chapter 2. Two A4 lepton models

Figure 2.3.: Topologies contributing to neutrino masses, enabled by N c .

twice. It does not affect the leptonic mixing. Thus, charged lepton terms are not a promising
source to explain a large mixing angle θ13.

In the neutrino sector, expanding the available set of Majorana terms requires the intro-
duction of one additional R-charge 1 field N c with a Z3 charge ω and otherwise mimicking
the present νc (i.e. U(1)Y = 0). This allows for the vertex

{
νcφl N c

}
and the mass term νc N c .

One possible non-renormalizable term which can now be constructed is e.g. νcφνφlν
c 5 (see

the upper topology in figure 2.3). Additionally the effective Dirac mass term lhuφlν
c (allowed

by A4 ×Z3 ×U (1)FN, but not present in the minimal completion) now arises from the lower
topology in figure 2.3, so overall this amounts to an extended seesaw realization. Here, the
new contribution δm added to the original mD is the relevant part. In the flavor basis, it is of
the form

δm =
2a 0 0

0 b −a 0
0 0 −b −a

 . (2.23)

Note that in this structure the new parameter a preserves the µ-τ symmetry included in TBM.
Overall, its effects lead to undesired, significant changes of θ12 when a and b are not fine-tuned
while the influence on the other two angles is negligible. Therefore the addition of N c does
not lead to an experimentally viable modification of the model.

At this stage we conclude that next-to-minimal completions of the AF model are not very
successful in generating large θ13. Further modifications of the completion, introducing a

5This term can also be constructed by introducing an SU(2) doublet messenger. This messenger would further
contribute to the charged lepton mass terms. However, this contributions would merely redefine the already
existing terms and thus yield no new opportunities to modify the existing terms.
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2.2. Completions of A4 ×Z3 ×U(1)FN models

multitude of additional fields by employing more than one extra mediator, leading to viable
mixing are certainly possible. However, they further and further sacrifice the main benefit
of having an explicit completion, which is the increase in predictivity. Therefore we will not
consider these.

2.2.2. Modifications of the flavons

A more promising origin of a viable modification of the AF model is its flavon field content.
A natural starting point here is the field ξ̃. In the original framework it played the role of
a duplicate flavon of ξ, that was necessary to obtain the desired VEV alignment. However,
the algebra provided by A4 allows for structures not leading to TBM. Thus replacing ξ̃ by a
nontrivial singlet ξ′ provides access to new relevant terms, while preserving the same number
of fields of the original minimal UV complete model. In the following we will show that this
leads to a viable phenomenology and can be understood as the construction of a minimal
completion for the different effective model presented in [69]. Since, this replacement is the
only change in this respect of the field and symmetry content of the model, it was already
summarized in table 2.2 and the messengers can again be found in table 2.3.

This replacement does not influence the charged lepton and UV completion parts of the
superpotential (e.g. equations (2.8) and (2.9) remain valid). It only modifies the driving and
the neutrino parts to

wd = M
{
φ0

l φl
}+ g

{
φ0

l φlφl
}+ g1

{
φ0

νφνφν

}+ g2ξ
{
φ0

νφν

}
+ g3ξ

′ {φ0
νφν

}′′+ g4ξ
0 {

φνφν

}+ g5ξ
0ξξ (2.24)

and

wν = y
{

vc l
}

hu + (
xAξ+x ′

Aξ
′){νcνc}+xB

{
φνν

cνc} , (2.25)

which replace equations (2.10) and (2.7). What are the effects enabled by these changes? Recall,
that ξ̃ was necessary in the original model to generate a nontrivial VEV structure from the
minimization of the potential. As we demonstrated previously, any modification related to
the alignment conditions is a delicate task and we have to make sure that the desired VEV
structure is preserved. Comparing equations (2.24) and (2.10) reveals that both the old ξ̃ and
the new ξ only couple to φν and not to φl . Thus the related alignment equations (2.15)-(2.17)
still apply. In combination with no changes in the charged lepton superpotential, this yields
a diagonal charged lepton sector after symmetry breaking, which was also the case in the
original model. Differences arise in the alignment conditions of φν due to the changed terms
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Chapter 2. Two A4 lepton models

and A4 contractions. The old conditions (c.f. equations (2.11)-(2.14)) are replaced by

∂w

∂φ0
ν1

= g2ξφν1 + g3ξ
′φν3 + 2

3
g1

(
φ2

ν1 −φν2φν3
)= 0, (2.26)

∂w

∂φ0
ν2

= g2ξφν3 + g3ξ
′φν2 + 2

3
g1

(
φ2

ν2 −φν1φν3
)= 0, (2.27)

∂w

∂φ0
ν3

= g2ξφν2 + g3ξ
′φν1 + 2

3
g1

(
φ2

ν3 −φν1φν2
)= 0, (2.28)

∂w

∂ξ0 = g4
(
φ2

ν1 +2φν2φν3
)+ g5ξ

2. (2.29)

This leads to the VEV structure

〈φl 〉
Mχ

= (u,0,0) ,
〈φν〉
Mχ

= cb (u,u,u) ,
〈ξ〉
Mχ

= cau,
〈ξ′〉
Mχ

= c ′au, (2.30)

u =−3

2

M

g
, c2

b =− g5g 2
3

3g4g 2
2

c ′2a , ca =−g3

g2
c ′a . (2.31)

The parameter c ′a remains undetermined and again Mχ generically denotes the messenger
masses. Small perturbations of this VEV structure are incompatible with the alignment equa-
tions. This configuration is very similar to the original one so, contrary to our previous example,
in this case the original, desired structure is preserved.

After ensuring that these fundamental building blocks are still in place, we now turn to
modifications enabled by ξ′ in the neutrino sector. The Dirac mass structure does not change
compared to [54]

MD = y vu

1 0 0
0 0 1
0 1 0

 , (2.32)

where vu denotes the VEV 〈hu〉. On the other hand, the new terms in equation (2.25) modify
the structure of the Majorana mass, which now reads

MM = xAcauMχ

1 0 0
0 0 1
0 1 0

+x ′
Ac ′auMχ

0 0 1
0 1 0
1 0 0

+ 1

3
xB cbuMχ

 2 −1 −1
−1 2 −1
−1 −1 2

 . (2.33)

The second term in this equation is introduced by the new flavon ξ′ and as previously men-
tioned this structure is one of the possible A4 contractions which is not used for TBM models.
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2.2. Completions of A4 ×Z3 ×U(1)FN models

Consequently, it provides the gateway to a large mixing angle θ13. Indeed one can check that it
leads to the effective neutrino mass matrix presented in [69]

Mν = a

1 0 0
0 1 0
0 0 1

+b

1 1 1
1 1 1
1 1 1

+ c

1 0 0
0 0 1
0 1 0

+d

0 0 1
0 1 0
1 0 0

 . (2.34)

The translation of the generic parameters a, b, c and d to the parameters of our complete
model is

a = y2v2
u

Mχu

xB cb

−x2
Ac2

a +xAca x ′
Ac ′a −x ′2

A c ′2a +x2
B c2

b

, (2.35)

b = y2v2
u

3Mχu

3x ′2
A c ′2a + (

xAca +x ′
Ac ′a

)
xB cb +x2

B c2
B

x3
Ac3

a +x ′3
A c ′3a −x2

B c2
b

(
xAca +x ′

Ac ′a
) , (2.36)

c = y2v2
u

Mχu

xAca −x ′
Ac ′a

x2
Ac2

a −xAca x ′
Ac ′a +x ′2

A c ′2a −x2
B c2

b

, (2.37)

d =− y2v2
u

Mχu

x ′
Ac ′a

x2
Ac2

a −xAca x ′
Ac ′a +x ′2

A c ′2a −x2
B c2

b

. (2.38)

For this structure the matrix diagonalizing Mν can be expressed by an additional rotation
applied to the TBM matrix VTBM

UPMNS =VTBM

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 , (2.39)

with

VTBM =


2p
6

1p
3

0
−1p

6
1p
3

−1p
2−1p

6
1p
3

1p
2

 (2.40)

and

tan2θ =
p

3d

−2c +d
. (2.41)

Clearly, enforcing d = 0 leads to TBM. A well known fact in this case is that Mν is invariant
under Z2×Z2 symmetries with well defined matrices in the flavor basis. Introducing structures
like the last term of equation (2.34) breaks this invariance but only one part of it. Since one of
the two Z2 symmetries is related to the µ−τ symmetry of TBM which is clearly not respected
by the new term, only the second one remains. This type of situation with one residual Z2
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Figure 2.4.: Deviations of θ13 and θ23 from TBM values for complex parameters (top row).
Correlation of θ13 to θ12 and θ23 (bottom row).

symmetry was discussed recently in [70]. In the case we present here the model generates
trimaximal mixing [71, 72, 73, 74]

|Ue2| = 1p
3

, |Ue3| = 2p
6
|sinθ| , ∣∣Uµ3

∣∣= ∣∣∣∣− 1p
6

sinθ− 1p
2

cosθ

∣∣∣∣ . (2.42)

Our findings for the neutrino mixing angles are summarized in figure 2.4. There we display
the angles as functions of the parameters of equation (2.33) and the correlations between
the different angles. Our results confirm the LO results presented in [69] for their effective
generic model. The crucial improvement is, that in our case the results are not only valid at
leading order. We provided a renormalizable model with an explicit UV completion including
type I seesaw and FN messengers. Thus the predictions of figure 2.4 are protected against
corrections from higher order terms allowed in the effective model. We achieve this while
preserving the simplicity of the original AF completion (presented in [60]). No expansion of
the symmetry content or an enlarged set of fields is needed. For this new, complete framework
we have demonstrated, that it leads to a viable VEV alignment and to desirable structures for
the charged leptons and neutrinos.

Remembering that A4 not only provides two different triplet contractions to singlets but
three (c.f. equation (2.5)) reveals one final option to modify the framework. The models we
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discussed covered the 1 and the 1′ but it is interesting to briefly consider the effects of an
additional 1′′. At the effective level [69] already demonstrated that this is superfluous. The
structure associated with the 1′′ flavon is

0 1 0
1 0 0
0 0 1

 . (2.43)

It would expand equation (2.34), but can simply be absorbed in a redefinition of a,b,c,d as
the respective structures are not linearly independent. In fact

0 1 0
1 0 0
0 0 1

=
1 1 1

1 1 1
1 1 1

−
1 0 0

0 0 1
0 1 0

−
0 0 1

0 1 0
1 0 0

 . (2.44)

In our model the change enabled by such a new flavon occurs in the Majorana mass term
and still has to go trough the whole seesaw mechanism before it manifests itself in the light
neutrino masses, which complicates the discussion. Equation (2.33) is modified by adding a
new coefficient x ′′

A and the structure of equation (2.43). This can be reabsorbed without loss of
generality by redefinition of xAca → xAca − x ′′

Ac ′′a , x ′
Ac ′a → x ′

Ac ′a − x ′′
Ac ′′a , xB cb → xB cb −3x ′′

Ac ′′a
and adding a contribution proportional to the identity matrix (which shifts the overall mass
scale by 3x ′′

Ac ′′a but does not affect the mixing). Recall that due to seesaw mechanism these
coefficients are related to a,b,c,d in a non-linear way (c.f. equations (2.35)-(2.38)). For this
reason it is convenient to consider the ratio d/c = x ′

Ac ′a/(xAca −x ′
Ac ′a). As both of our original

Majorana coefficients, xAca and x ′
Ac ′a , get redefined by x ′′

Ac ′′a , the effect of the redefinition
translates into a linear change of d/c through the shift in the redefined x ′

Ac ′a and modifies e.g.
equation (2.41), which defines the deviation from TBM.

2.3. Completions of A4 ×Z4 models

The framework discussed in this section builds upon the AM model [55]. Again the foundation
of the model is A4. The other part of the overall symmetry group is simplified compared to
the previous section. In this case the separation of the charged lepton and neutrino sector,
allowing for the breaking in two different directions and the charged lepton mass hierarchies
are implemented via a single Z4. This has to be compared with the product Z3 ×U(1)FN of the
AF model. Tables 2.4 and 2.5 list the field and symmetry content of the original AM effective
model, and table 2.6 contains the messenger content of its minimal completion as proposed in
[60]. Later on we will modify the flavon content again by introducing an additional non-trivial
singlet.
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νc l ec µc τc hd hu

A4 3 3 1 1 1 1 1
Z4 −1 i 1 i −1 1 i

U(1)R 1 1 1 1 1 0 0
U(1)Y 0 −1/2 +1 +1 +1 −1/2 +1/2

Table 2.4.: Assignments of matter fields relevant to the discussion of the AM model.

φl ξ′ φν ξ φ0
l φ0

ν ξ0

A4 3 1′ 3 1 3 3 1
Z4 i i 1 1 −1 1 1

U(1)R 0 0 0 0 2 2 2
U(1)Y 0 0 0 0 2 2 2

Table 2.5.: Assignments of flavons and driving fields relevant to the discussion of the AM
model.

χτ χ1 χ2 χ3 χc
τ χc

1 χc
2 χc

3
A4 3 1′′ 1′ 1′′ 3 1′ 1′′ 1′

Z4 i −1 −1 −i −i −1 −1 i
U(1)R 1 1 1 1 1 1 1 1
U(1)Y −1 −1 −1 −1 +1 +1 +1 +1

Table 2.6.: The FN messengers for the AM model. They remain the same as presented in [60].
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2.3.1. Modifications of the completion

At this stage, without the additional field, the neutrino superpotential is

wν = yν

{
lνc}hu + (M +aξ)

{
νcνc}+b

{
φνν

cνc} , (2.45)

which is composed by a Dirac mass term followed by Majorana mass terms. Note that the
structure is very similar to the one of the AF model, with the simple replacements y → yν,(
xAξ+ x̃A ξ̃

)→ (M +aξ) and xB → b. The driving superpotential associated to the alignment
conditions now reads

wd = M
{
φν

0φν

}+ g1
{
φν

0φνφν

}+ g2ξ
{
φν

0φν

}+ g3ξ
0 {

φνφν

}+ g4ξ
0ξ2 +Mξξ

0ξ

+M 2
0 ξ0+h1ξ

′ {φ0
l φl

}′′+h2
{
φ0

l φlφl
}

. (2.46)

For the terms related to φν a quick comparison of this equation with equation (2.10) reveals
the A4 structure of the contractions remains unchanged. Simply replace g2ξ̃ with (M + g2ξ).
Thus the alignment of 〈φν〉∝ (1,1,1) is expected to stay the same. The interesting effects arise
for φl and ξ′. There we have

∂w

∂φ0
l1

= 2h2(φl
2
1 −φl 2 φl 3)+h1 ξ′φl 3 = 0, (2.47)

∂w

∂φ0
l2

= 2h2(φl
2
2 −φl 1 φl 3)+h1 ξ′φl 2 = 0, (2.48)

∂w

∂φ0
l3

= 2h2(φl
2
3 −φl 1 φl 2)+h1 ξ′φl 1 = 0. (2.49)

The most relevant difference to the previously discussed framework is due to ξ′. It aligns 〈φl 〉
in the (0,1,0) direction replacing the previous (1,0,0) direction. Overall the new VEVs are

〈φl 〉
Mχ

= (0,u,0) ,
〈φν〉
Mχ

= ε′ (1,1,1) . (2.50)

For the AF model the minimal completion presented in [60] leads to a diagonal charged
lepton mass matrix. However, this is not the case in the present framework. The messenger
content of table 2.6 already enables off-diagonal terms since it allows for the term

{
φνχτχ

c
τ

}
.

This leads a non-diagonal charged lepton mass matrix

ml =
 me (−cs + ca)ε′mµ (−cs − ca)ε′mτ

(−cs + ca)ε′me mµ 2csε
′mτ

ε′(−cs − ca)me 2csε
′mµ mτ

 , (2.51)

where ε′ is the VEV of φν as in equation (2.50) and ca , cs are the superpotential parameters
governing the respective

{
φνχτχ

c
τ

}
antisymmetric and symmetric A4 invariants (c.f. equa-

tion (2.5)). To better illustrate the structure and order of magnitude of the (non-symmetric)
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Figure 2.5.: Range of cA and cS allowed by present mixing angle data for the minimal AM
completion [60] (ε′ = 1). Note the different scales.

matrix we have written the entries in terms of the the charged lepton masses. More details on
this can be found in section A.1 of the appendix and in [60]6

In combination with the TBM structure in the neutrino sector this already allows to in-
troduce the necessary modification. The deviations can be found by diagonalizing ml m†

l .
The most influential entry in the generation of a large mixing angle θ13 is the 13 entry of
equation (2.51). While manipulating this entry one has to be simultaneously very careful about
changes related to the 23 entry. They rapidly lead to modifications of the two other mixing
angels and drive them out of the allowed 3σ ranges. The dependencies of equation (2.51)
lead to the expectation, that for a given ε′, cs is constrained to be very close to 0, while ca

is bounded by the 3σ range allowed for θ13. This is confirmed by a more careful numerical
analysis for ε′ = 1 and real couplings. The results for the allowed paramter space are displayed
in figure 2.5 in the (ca ,cs) plane. There we imposed the requirement for all mixing parameters
to stay in their allowed 3σ ranges.7 Indeed, the parameter cs has to be very close to zero, while
the allowed range for ca is symmetric. Note the order of magnitude difference between the
two parameters. Figure 2.5 is a very good illustration of the virtues of UV completions. By

6Note that they use a different convention for the mass matrices compared to this work.
7For complex parameters the analysis becomes more complicated but the same reasoning remains valid.
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2.3. Completions of A4 ×Z4 models

Figure 2.6.: Topologies for ξ′
{
φ0

l φlφν

}′′
.

measuring the mixing angles one can directly probe parameters of the superpotential and the
messenger sector, related to a much higher scale.

So the original minimal completion is still viable. However, as we have demonstrated the
bounds imposed by recent experimental data severely constrain the allowed parameter space
and lead to an unexplained, to some extent unnatural, hierarchy. This serves as a motivation
to check how next-to-minimal completions fare. The following discussion has the same basic
structure as the previous section 2.2. As promised, this time we will provide a more in-depth
look at the issues related to perturbing the the VEV alignment. The same reasoning applies
to the framework of section 2.2 too. The main problem is related to the R-parity containing
U(1)R symmetry. In each messenger pair needed for effective alignment terms, one of the two
fields is required to have R-charge 2. Often this results in the addition of a new alignment
field accompanied by new minimization conditions, which lead to a complete different VEV
alignment or only allow for the trivial solution.

Explicitly, we will discuss the non-renormalizable terms ξ′
{
φ0

l φlφν

}′′
and

{
φ0

l φlφlφν

}
. The

latter one allows for different A4 contractions and both are invariant under A4. To construct UV
complete versions of these terms, there are different choices of suitable messengers depending
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Chapter 2. Two A4 lepton models

Figure 2.7.: Topologies for
{
φ0

l φlφlφν

}
.

on the topology. There are three topologies for ξ′
{
φl

0φlφν

}′′
and two for

{
φ0

l φlφlφν

}
, displayed

in figure 2.6 and figure 2.7.

To enable at least one of these, the introduction of new messengers is necessary. In case of
a pair, the two messengers are required to be in A4 representations of the same dimension
and the two possible choices are triplets and singlets. For the triplet messenger pairs we have
on the one hand χ, χ0 with respective Z4 charges −1 and −1 and on the other hand χ′, χ′

0
with the charges i ,−i . The singlet options are η, η0 with respective Z4 charges −1 and −1 or
alternatively η′, η′

0 with i ,−i . We use the subscript zero to indicate the messenger fields with

pair A4 Z4 U(1)R

χ, χ0 triplet −1, −1 0, 2
χ′, χ′

0 triplet i , −i 0, 2
η, η0 singlet −1, −1 0, 2
η′, η′

0 singlet i , −i 0, 2

Table 2.7.: Properties of new messenger pairs necessary to enable the topologies ξ′
{
φ0

l φlφν

}′′
and

{
φ0

l φlφlφν

}
. Some of these messengers can be identified with fields of the

original content, i.e. χ0 ≡φ0
l and for a suitable A4 singlet choice additionally η′ ≡ ξ′.
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2.3. Completions of A4 ×Z4 models

R-charge 2 for each pair.8 Some of these messengers can be identified with existing fields.
For instance, assuming a suitable A4 singlet choice for η′

0 allows the field ξ′ to serve as η′.
Additionally, the triplet χ0 can be identified as φ0

l . See table 2.7 for a summary of the new
messengers.

Adding an an R-charge 2 triplet like χ′
0 leads to three new minimization constraints which

have to be simultaneously fulfilled with equations (2.47)-(2.49). This is an example for a too
tightly constrained scenario, since it can be verified, that this multitude of requirements only
allows for the trivial, vanishing solution for the VEVs. The same applies to the pair χ′, χ′

0.
Contrary to this, the singlet choice of an R-charge 2 field such as η0 in combination with η,
leads to non-trivial VEVs. The new constraint added is

∂w

∂η0
= η+{

φlφl
}= 0 (2.52)

where
{
φlφl

}=φ2
l1 +2φl 2φl 3. This constraint is satisfied for 〈η〉 = 0 and 〈φl 〉∝ (0,1,0). So the

desired configuration is preserved. But the singlet messengers only allow for the topology
where the A4 contractions are

{
φ0

l φν

}{
φlφl

}
and since

{
φlφl

}= 0, this results in an unmodi-
fied model at the effective level only adding additional parameters.

The remaining choice is the one of singlets with Z4 charges i ,−i . In this case the most
economic option identifies η′ ≡ ξ′. This only requires the addition of one new field η′

0 which
transforms as a 1′′ underA4. This enables the new terms η′

0ξ
′+η′

0

{
φlφν

}′ and relates the VEV of
η′ and the VEVs of the triplet flavons. This is harmless since previously 〈ξ′〉 was a free parameter.
At the effective level this gives rise to the term

{
φ0

l φlφlφν

}
. But the A4 representations chosen

only allow for the contraction
{
φ0

l φl
}′′ {

φlφν

}′, where 〈{φlφν

}′〉 ∝ 〈ξ′〉 due to ∂w/∂η′
0 = 0.

Confronting this with the second terms of equations (2.47)-(2.49) leads to the conclusion that
this choice merely amounts in a redefinition of h1, yielding no new effects for the mixing.
Placing the same pair in a different irreducible singlet representation of A4 is also not viable.
This would modify equations (2.47)-(2.49) to a structure similar to equations (2.26)-(2.29).
Thus, both triplet VEVs would be aligned in the (1,1,1) direction.

The last two modifications we will discuss only introduce one new messenger instead of a
pair. Adding an R-charge 2 A4 1 or 1′ like η′

0 without a partner does not alter equations (2.47)-
(2.49). However, fulfilling the new alignment condition ∂w/∂η′

0 = 0 requires either
{
φlφν

}= 0
or

{
φlφν

}′ = 0 respectively for the 1 and 1′′ choice for η′0. In combination with the other
alignment conditions, this again only allows the trivial solution. The final option, dispensing
the R-charge 2 field of the pair, requires a new triplet messenger χ which transforms as −1
under Z4. This adds the terms

{
φ0

l χ
}+ {

φ0
l χ

}
ξ+ {

φ0
l χφν

}
to the superpotential and enables

both topologies ξ′
{
φl

0φlφν

}′′
and

{
φ0

l φlφlφν

}
(c.f. figures 2.6 and 2.7). They add terms to the

existing alignment conditions without adding new equations. If 〈χ〉 = 0 the contributions arise
from the enabled contractions of the non-renormalizable terms

{
φ0

l φνφl
}′′

ξ′+{
φ0

l φνφlφl
}
.

8The R-charge 2 fields of the original field content use 0 as a superscript.
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Chapter 2. Two A4 lepton models

The extra terms modifying alignment equations (2.47)-(2.49) force 〈φl 〉 to be aligned in the
same direction as 〈φν〉, yielding no viable phenomenology.

This leads us to the conclusion, that although [55] presents the NLO VEVs as 〈φν〉 = ε(1+
d w,1+d w,1+d w), 〈φl 〉 = (d x,u+d y,d z), at least next-to-minimal completions do not allow
these small, general perturbations of the VEV alignment.

2.3.2. Modifications of the flavons

After excluding modifications of the original completion as an attractive source of deviations,
we are again left with two remaining options. The first of these is the straightforward extension
of the Dirac or Majorana sector of the model, by introducing the effective terms lhuφlν

c ,
νcφνφlν

c respectively. However, it can be easily verified via tables 2.4 and 2.5 that these
terms are not Z4 invariant. Implementing them would require at least four extra insertions of
non-trivial Z4 charged flavons (φl or ξ′). This would go hand in hand with the obligation to
add multiple new messengers pushing the model well beyond the limit of next-to-minimal
completions we consider in this work. More insertions of φν also do not lead to a satisfying
modification. As νc would be the only messenger involved, this would just boil down to the
seesaw mechanism of the minimal completion.

Finally, we consider modifications of the flavon content. This goes analogously to section 2.2.
We start by adding another non-trivial A4 singlet. This time we rely on a field transforming as
1′′ which we consequently call ξ′′. It is easy to see that this field has to transform trivially under
Z4. Exploring its effects demonstrates the constraining power of UV completions. In case of an
effective implementation this would enable one additional NLO term for every term involving
two or more A4 triplets. In the UV complete model however, the only added superpotential
terms are {

νcνc}′ ξ′′+{
φ0

νφν

}′
ξ′′+{

χc
τχτ

}′
ξ′′ . (2.53)

The effects of the first term are very similar to what was discussed in the end of section 2.2. The
second term has the potential to modify the alignment, but a quick check reveals a comparable
structure to equations (2.26)-(2.29). Thus the term

{
φ0

νφν

}′
ξ′′ preserves the alignment (1,1,1)

for φν.
What is new compared to section 2.2 is the third term which yields additional contributions

to the mass of the χc
τ, χτ messenger pair. This modifies equation (2.51), the already non-

diagonal charged lepton mass matrix. Labeling the coupling corresponding to the last term of
equation (2.53) as cχ, the mass now reads

ml =
 me (−cs + ca)ε′mµ (−cs − ca + cχ)ε′mτ

(−cs + ca + cχ)ε′me mµ 2csε
′mτ

ε′(−cs − ca)me (2cs + cχ)ε′mµ mτ

 . (2.54)

Consequently, the phenomenological differences of this models arise from the combination of
the non-trivial charged lepton mixing matrix with the modified Majorana mass term, where
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2.4. Conclusions

Figure 2.8.: Range of cA and cS allowed by present mixing angle data for the modified AM
model (ε′ = ε′′ = 1).

the new flavon ξ′′ adds the structure of equation (2.43). The overall effects of the modification
are illustrated in figure 2.8 where we present the now relaxed ranges for the allowed parameter
space in the ca-cs plane. This has to be compared with figure 2.5. As expected this allows to
avoid the somewhat unnatural hierarchy of these two parameters, leading to a more appealing
framework in which both can be of the same order.

2.4. Conclusions

In this chapter we discussed UV completions of two different A4 models, which are guided
by the concept of TBM. We investigated the possibility to obtain a large mixing angle θ13 as a
deviation from this strict mixing scheme.

In case of the A4 ×Z3 ×U(1)FN model, the originally proposed minimal completion predicts
exact TBM and thus is already excluded. We illustrated that next-to-minimal completions
appear to be a poor choice to solve this issue. Instead we demonstrated, that the minimal
completion in combination with a modified flavon content, which replaces one singlet A4

flavon with a non-trivial one, preserves the elegance of the original completion while it allows
to accommodate for experimental data.
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Chapter 2. Two A4 lepton models

On the other hand, the existing completion of the A4 ×Z4 model is still viable. However,
the recent more precise measurements impose very strict constraints and a hierarchy of the
involved parameters without any theoretical motivation. Analogously to the first discussed
model, we started to study in detail the prospects of completion modifications to arrive at
a more satisfying model. Again we concluded, that these are not very attractive and instead
a more appealing alternative is to use the minimal completion for a model including a non-
trivial A4 singlet flavon. This relaxes the tight constraints and allows for related parameters of
the same order.

The discussions of both symmetry groups share the conclusion, that minimal and next-
to-minimal completions can lead to an increased predictivity compared to the effective,
non-renormalizable ones. This translates from the paradigm of TBM, as presented in [60], to
more realistic scenarios. We were indeed able to highlight how these allow to rule out several
possibilities.
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3. A model of all fermions featuring
geometrical CP violation

After discussing the leptonic sector in chapter 2 we are now going to expand the scope to
include the quarks too. We will shift our focus from UV completions to a different topic relevant
to the SM and its extensions, the origin of CPV. As discussed in subsection 1.1.3 there is only
one source of CPV in the SM. At the Lagrangian-level it is explicitly introduced via complex
Yukawa couplings. In this chapter we discuss minimal models, instead implementing it via the
spontaneous breaking of a symmetry. A concept, well motivated and heavily employed in this
work.

In section 3.1 we will start by introducing spontaneous CP violation and discuss geometrical
CP violation as an elegant way to implement it via a discrete symmetry. In this context we
highlight why models with three Higgs doublets based on the flavor symmetry ∆(27) can be
considered as a minimal framework. We then proceed to discuss the relevant properties of the
group ∆(27) and establish the necessary notation for the following discussion of flavor models
with geometrical CP violation. We start by proposing an improvement to the model of [75] in
section 3.2, which first demonstrated how viable quark mixing can be implemented in this
context. We then proceed to present a first existence proof of a model which employs the same
structures for the quark sector and implements viable structures in the lepton sector, finally
covering all fermions in section 3.3.

This chapter is based on the previously published articles [3] and [4]:

Ivo de Medeiros Varzielas and Daniel Pidt
Towards realistic models of quark masses with geometrical CP violation

J.Phys. G41 (2014), p.025004
arXiv:1307.0711

Ivo de Medeiros Varzielas and Daniel Pidt
Geometrical CP violation with a complete fermion sector

JHEP 1311 (2013), p.206
arXiv:1307.6545

3.1. Geometrical CP violation and the group ∆(27)

Recall that the implementation of CPV in the SM occurs via the explicit introduction of complex
Yukawa couplings in the Lagrangian. While this is a very general approach, it is rather ad hoc
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Chapter 3. A model of all fermions featuring geometrical CP violation

and doubles the number of parameters compared to real couplings. Albeit at the physical level,
many of the complex phases can be removed by redefinitions of the fields1, a more compelling
solution, in our opinion, is the idea to tie CPV to the spontaneous breakdown of a symmetry.
Indeed this has been proposed for non-Abelian gauge groups [76, 77] and can thus be related
to EWSB. This framework features a CP conserving Lagrangian while CPV enters the picture
only through complex VEVs of scalar fields. This concept is called spontaneous CP violation
(SCPV).

Aside from fitting nicely to the breaking of the SM gauge group this has other attractive
effects for BSM scenarios. For instance, it solves the strong CP problem [78, 79, 80, 81, 82, 83,
84, 85] and can lead to an alleviated SUSY CP problem [86, 87]. Further SCPV is a requirement
for the embedding in perturbative string theory [88, 89, 90].

This helps to motivate the inclusion of CP violating quantities but is not sufficient to neces-
sarily lead to CPV at the end of the day. One has to further ensure, that no unitary transforma-
tion

φi →φ′
i =Ui j φi (3.1)

for the Higgs fields can be found, that fulfills the relation

Ui j 〈φ j 〉∗ = 〈φi 〉 (3.2)

and leaves the Lagrangian invariant. In this case CP would still be conserved. Another problem
is that generally the complex phases of these fields depend on arbitrary parameters of the
scalar potential, which can be numerous themselves depending on the BSM model.

These problems have already been tackled and can be solved by finding an additional sym-
metry of the potential which leads to phases that are precisely determined by the properties
of this symmetry [91]. This calculable phases are called geometric and thus lead to the name
geometrical CP violation (GCPV). It has further been shown, that these complex phases are
stable against radiative corrections [92, 93].

The additional symmetry required for GCPV can neatly be identified with a horizontal
discrete flavor symmetry. As discussed in chapter 2, this can also solve the problem of neutrino
masses. The authors of [91] already pointed out that at least three Higgs doublets are required
and found an interesting solution for the symmetry group ∆(27).

In [94] it is illustrated that ∆(27) can indeed be considered as a minimal framework for GCPV.
The argument goes as follows. One starts with the most general SU(2)×U(1) potential for three
Higgs fields. The only solution for the minimization of this potential with a calculable phase
is the trivial one. Thus it is necessary to forbid and/or relate different couplings for all these
terms. The most elegant justification for this is a discrete non-Abelian symmetry. The authors
then start by choosing the smallest one, which is S3. However S3 alone is not sufficient to yield
interesting solutions. A further reduction of parameters is needed. This can be achieved by

1For a 3×3 Yukawa matrix of Dirac fermions, like in the SM, only one complex phase remains.
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3.1. Geometrical CP violation and the group ∆(27)

the combination of S3 with cyclic symmetries Zi to forbid terms. The combination of terms
that leads to a viable solution can be preserved for for a suitable charge assignment under
Z3×Z3. For this assignment the group S3n (Z3 ×Z3) ≡∆(54) leads to the same scalar potential
as Z3 n (Z3 ×Z3) ≡ ∆(27) which is a finite subgroup of ∆(54).2 Thus, it is the minimal basis
required for a GCPV model.

This leads to the two VEV configurations already found in [91], which are

〈φ〉 = vp
3

(
1,ω,ω2) (3.3)

〈φ〉 = vp
3

(
ω2,1,1

)
, (3.4)

with ω ≡ exp(2πi /3) for the triplet φ. The latter VEV is the more relevant one for model
building in the context of SCPV. The reason is, that for this configuration the complex phase
can not be removed by an additional symmetry of the potential, and therefore guarantees
the manifestation of CPV. This VEV structure in combination with the group ∆(27) will be the
basis for the models proposed in this chapter.

Analogously to chapter 2 we are now going to introduce the irreducible representations and
multiplication rules relevant to the discussed models. A thorough analysis of the general flavor
group ∆(3n2) including all the details and derivations can be found e.g. in [95].3 The group
∆(27) has nine irreducible representations of dimension one, which we will label as 1i , j with
i , j = 0,1,2. Of these nine only three are relevant to the construction of models featuring GCPV
since the construction of the remaining six singlets involves the complex phase ω which is
at odds with the goal to construct a CP invariant Lagrangian. These are the singlets 10, j . The
multiplication rule for their products is

10,i ×10, j = 10,i+ j mod3, (3.5)

where we denote the invariant as 10,0. Further we have two three-dimensional representations
30,1 and 30,2 which serve as triplet and anti-triplet. The product of a pair of identical triplets
yields three of the other kind of triplets, i.e.

30, j ×30, j = 3(i )
0,k +3(i i )

0,k +3(i i i )
0,k


3(i )

0,k ∝ (α1β1,α2β2,α3β3)

3(i i )
0,k ∝ (α2β3,α3β1,α1β2)

3(i i i )
0,k ∝ (α3β2,α1β3,α2β1)

, (3.6)

with j ,k = 1,2 and j 6= k and again α and β denoting the components of the first respective
second multiplet. The last missing ingredient is the construction of singlets out of the two

2The relevant properties are preserved in all discrete subgroups of SU(3) which are of the type Z3 n (Zn ×Zn ) ≡
∆(3n2) or S3 n (Zn ×Zn ) ≡∆(6n2) with n ∈ 3Z.

3A similar treatment of the group ∆(6n2) can be found in [96].
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different triplets. It is given by

30,1 ×30,2 =
∑
i , j

1i , j


10,0 ∝ (α1β1 +α2β2 +α3β3)

10,1 ∝ (α1β2 +α2β3 +α3β1)

10,2 ∝ (α1β3 +α2β1 +α3β2)

. . .

, (3.7)

where we constrained ourselves to the presentation of the relevant singlets. This completes
the establishment of the notation for the remaining chapter. The colon between the indices is
only used in this part to clarify the structure. It will be omitted in the following sections.

3.2. Towards a realistic quark model

Now, after presenting the general idea and the necessary building blocks, we are going to
discuss actual models arising from this foundation. The appealing implementation of SCPV
via GCPV has received further attention in recent years [97, 98, 75, 99, 100, 101] and it is in
order to point out a few achievements in this field.

We already discussed parts of [94] in the previous section but the authors also identified
promising leading order structures for the quark sector. However, it remained a very chal-
lenging task to produce viable masses and mixing patterns for the fermions. On the one
hand, the only parameter coming from the symmetrical VEV structure of equation (3.4) is its
magnitude v , which is shared by all components. On the other hand, the calculable phase ω is
very sensitive to further extensions of the scalar content. However, the authors of [75] finally
managed to present a working explicit model of GCPV for the quark sector. For the lepton
sector, one possible approach is discussed in [101]. Reference [97] contributed considerations
on the stability of the calculable phase under non-renormalizable terms in the scalar potential
and [102] also discussed the ∆(27) case. Generalizations of the framework to other symmetry
groups and different calculable phases are presented in [99, 98].

Since in this chapter we will rely on the viability of the structures discussed in [75], we
would like to address the two shortcomings of this model. The first problem is that the overall
symmetry offers no explanation for the large hierarchy of the quark Yukawa couplings. In
this work however, we always use the symmetry group to at least explain parts of the fermion
hierarchies, so this is not satisfying. The other issue of the model is that it has to rely on
the combination of a ∆(27) triplet scalar and at least one scalar transforming as a non-trivial
singlet under ∆(27). This was necessary to accommodate realistic CKM mixing. The problem
is that this endangers the crucial feature of GCPV. To preserve it the couplings mixing these
two scalars have to be assumed as being negligible. This premise might be considered natural
in some sense but not enforcing it by a symmetry jeopardizes the central point of models
building on this.4

4The same issue is present in the model [101] discussing the lepton sector. There it is even amplified by the
presence of two non-trivial ∆(27) singlet scalars.
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Q1 Q2 Q3 uc d c H ϕ θ

∆(27) 100 100 102 301 302 301 100 102

U(1)F or ZN 3 2 0 0 0 0 −1 −2

Table 3.1.: The symmetry and field content of the model we adopted to improve [75].

Generally, there is a vivid activity in the field of discrete flavor groups related to CP symme-
tries and violation [103, 104, 105, 106, 107, 108, 102, 109, 110, 111, 112, 113, 114, 115, 116]. It is
not constrained to the particular case of GCPV and thus serves as a motivation that this aspect
should be covered by related models explaining the fermion masses and mixing. Thus we will
proceed by proposing the appropriate improvements to the framework of [75].

3.2.1. The model

There is a single solution for the two previously discussed issues of the model presented in
[75]. Namely this is to increase the overall symmetry of the model. We propose to add either
a single continuous U(1)F or a single discrete ZN subgroup. By assigning suitable charges to
the different quark fields and non-trivial ∆(27) singlet scalars, it is possible to implement a FN
mechanism and to forbid undesired couplings at the same time. While the former explains the
observed hierarchy the latter ensures that GCPV is not spoiled.

We start the presentation of the field content of our model with the Higgs field. It is a ∆(27)
301 triplet with the VEV structure of equation (3.4)5, i.e.

〈Hi 〉 = v(ω,1,1) . (3.8)

This is accompanied by the second class of triplets, the SU(2)L singlets uc and d c which trans-
form as 301 and 302 respectively under ∆(27). This allows them to be contracted with the Higgs
triplets to suitable singlets 10 j . These structures in combination with the three generations
of SU(2)L doublet quarks Qi are the foundation of the quark mass terms. These quark field
are ∆(27) singlets with different U(1)F (ZN ) charges to implement the FN mechanism, (i.e.
the charges are 3, 2 and 1 for Q1, Q2 and Q3). This is balanced out by the two new SM gauge
singlets ϕ and θ we add. Their respective charges under ∆(27) and U(1)F are 100, −1 and 102,
−2. This concludes the field content of our model, which is summarized in table 3.1 and
mostly preserves the ∆(27) assignments of [75].

A short comment before we explain the resulting structures in more detail. We will generally
use M and Mα to denote mass matrices, where α is a letter indicating the associated fermions.
The model we propose does not lead to the same M M † structures for Mu and Md that are
presented in [75]. However, the employed structures also populate all off-diagonal entries and
thus our solution is equally viable.

5Note that it is not important whether the VEV of H contains the ω and the one of H† the ω2 or vice versa.
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Now to the Lagrangian construction. The generic forms involved in building invariants
for the up and down quark sector are Qi (H †uc )0 j and Qi (Hd c )0 j . The brackets indicate the
∆(27) contraction of the two triplets to a singlet 10 j which is then combined with one of the
SU(2)L quark doublets Qi again to a ∆(27) singlet 10k . These expressions can generally have a
non-trivial charge under U(1)F (ZN ). This provides the opportunity to alleviate the hierarchy
in the quark Yukawa couplings. As previously explained, we consider this as essential for a
framework adding a flavor symmetry to the SM. With the assignments of table 3.1, the charge
is different for each quark generation and thus has to be (eventually) canceled by additional
insertions of ϕ and θ to build an overall invariant term. This implements a generalized FN
mechanism. The structure of the Lagrangian is further constrained by the ∆(27) assignments
of these fields. For the down quarks it reads

Ld = y3Q3(Hd c )01 + y2Q2(Hd c )00ϕ
2 + y1Q1(Hd c )00ϕ

3

+p2Q2(Hd c )01θ+p1Q1(Hd c )01ϕθ

+h3(H H †)Q3(Hd c )01 +h2(H H †)Q2(Hd c )00ϕ
2

+h1(H H †)Q1(Hd c )00ϕ
3. (3.9)

Here the mass scale suppressions of all non-renormalizable terms are omitted and implicitly
understood to be absorbed by the associated yi , pi and hi coefficients. This is done for the
sake of a simple notation, since contrary to chapter 2 we are not going to discuss an UV
complete version of the framework here. In such a model the mass scale suppressions would
be provided by the respective FN messenger masses. While the explicit construction is beyond
our intended scope, figure 3.1 illustrates two examples of how the effective term Q2(Hd c )01θ

may arise in a complete model.

In principle other non-renormalizable terms are allowed. In case of using the U(1)F this
requires adding invariant combinations under this symmetry like θ†θ or θ†ϕ2, leading to terms
such as Q3(Hd c )00θ

†ϕ2. However, the first of these invariants (θ†θ) merely redefines existing
terms since it is a ∆(27) invariant itself. Terms involving the second invariant (θ†ϕ2) are always
suppressed by three or more additional field insertions compared to the associated terms
of equation (3.9) and thus negligible. In case of using the discrete symmetry instead, one
can check that the lowest viable N for the cyclic group is 4 (otherwise Q1 becomes neutral).
With the non-negative assignments 3 for ϕ and 2 for θ this allows for an additional invariant
insertion of two fields, i.e. θ2 enabling e.g. Q3(Hd c )00θθ. Anyhow, this third contribution,
which is not present in the U(1)F implementation, can be easily pushed to higher orders by
choosing a larger N for the discrete symmetry.

The Lagrangian of equation (3.9) leads to to the down quark mass matrix

Md = M +Mp +Mh , (3.10)
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3.2. Towards a realistic quark model

Figure 3.1.: Diagrams of possible Q2(Hd c )01θ topologies. The χ,χ̄ messengers are SU(2)L

doublets, whereas the χci , χ̄c
i are ∆(27) triplets. The index i is used to indicate the

triplet components.

with

M = v

y1ω y1 y1

y2ω y2 y2

y3 y3 y3ω

 , (3.11)

Mp = v

p1 p1 p1ω

p2 p2 p2ω

0 0 0

 (3.12)

and

Mh = v3

 h1 h1ω
2 h1ω

2

h2 h2ω
2 h2ω

2

h3ω
2 h3ω

2 h3

 . (3.13)

This structure is sufficient to yield viable CKM mixing. To see how this arises, it is instructive
to discuss the role of each involved matrix. M combines the first three straightforward Yukawa
terms of the Lagrangian. The problem with this structure alone is revealed by examining M M †.
Using the identity 1+ω+ω2 = 0 it can be written as

M M † = 3v2

 y2
1 y1 y2 0

y1 y2 y2
2 0

0 0 y2
3

 , (3.14)
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Chapter 3. A model of all fermions featuring geometrical CP violation

the same structure that was present in [75]. It can easily be verified that this matrix only has
rank two. Obviously, more terms are needed to enable the addition of off-diagonal entries to
generate realistic CKM mixing.

These structures are introduced in our model via the additional field θ, which transforms
non-trivially under ∆(27) (102). It enables the terms in the second line of equation (3.9)
(and thus Mp ). There θ combines with both Q1 and Q2 (both 100) again to 102 and has to
be finally linked to the contraction (Hd c )01 to build an invariant. Since y3Q3(Hd c )01 was
already present, we now have terms which combine with the (Hd c )01 contraction of the Higgs
field for each generation of quarks. Via the 〈H1〉 VEV this now gives a contribution with the
complex phase ω in the same (i.e. third) column of the mass matrix. Analogously to the
previous discussion it can be shown that this is sufficient to fill in the missing (13) and (23)
entries of equation (3.14) and leads to a fully populated CKM matrix. This happens in a very
similar way in [75]. In their model the (13) and (23) entries arose from Q3(Hd c )00 interfering
with Q2(Hd c )00, Q2(Hd c )00(H H †) and Q1(Hd c )00, Q1(Hd c )00(H H †), whereas in our case the
responsible interference stems from Q2,1(Hd c )01 with Q3(Hd c )01 (and Q3(Hd c )01(H H †) once
Mh is included).

Albeit, there is still one missing piece with only M and Mp considered, the complex phase

(although present in both) would not survive the construction of Md M †
d . This problem is

solved by the remaining term of equation (3.9) leading to Mh . It is directly responsible to
generate a complex CKM matrix. This was also the case in [75]. Note that for Mh we have
constrained ourselves to only include contributions from the possible ∆(27) invariants leading
to a new structure. All other contributions can be absorbed in the already present structures
by employing the relation 1+ω+ω2 = 0 again.

The Lagrangian for the up quark sector is

Lu = x3Q3(H †uc )01+x2Q2(H †uc )00ϕ
2 +x1Q1(H †uc )00ϕ

3

+q2Q2(H †uc )01θ+q1Q1(H †uc )01ϕθ. (3.15)

Now because H † is the 102 we have (uc H †)01 = uc
1H †

3 +uc
2H †

1 +uc
3H †

2 , compared to the down
sector where we had (Hd c )01 = H1d c

3 +H2d c
1 +H3d c

2 . This leads to the mass matrix

Mu = v

x1ω
2 x1 x1

x2ω
2 x2 x2

x3 x3ω
2 x3

+ v

q1 q1ω
2 q1

q2 q2ω
2 q2

0 0 0

 . (3.16)

Due to the stronger hierarchy in the up sector, the contributions to the CKM matrix are
irrelevant and the Yukawa couplings can easily fit the required three up quark masses.6

6Note that analogously to the down quark sector, only implementing the first term of equation (3.16) leads to a
rank two matrix and consequently considering the additional term is not optional but mandatory.
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3.2. Towards a realistic quark model

3.2.2. Scalar potential

With the charge assignments of table 3.1 the scalars H , ϕ and θ lead to the potential

V (H ,ϕ,θ) =m2
ϕϕϕ† +m2

θθθ
† +m2

H

[
Hi i †

]
+λϕ(ϕϕ†)2 +λθ(θθ†)2 +λϕθ(ϕϕ†)(θθ†)+λ1

[
(Hi H †

i )2
]

+λ2

(
H1H †

1 H2H †
2 +H2H †

2 H3H †
3 +H3H †

3 H1H †
1

)
+λ3

(
H1H †

2 H1H †
3 +H2H †

3 H2H †
1 +H3H †

1 H3H †
2 +h.c.

)
+

(
λϕHϕϕ† +λθHθθ†

)[
Hi H †

i

]
, (3.17)

where λ3 > 0 is responsible for the GCPV solution of equation (3.8). Details on this can be
found in the original paper [91] or in [98, 100]. Discussing why this solution is preserved
shows that it is necessary to choose different U(1)F (ZN ) charges for θ and ϕ. Otherwise the
∆(27) contractions of these two singlet with H H † would enable the renormalizable, phase-
dependent term (H H †)(ϕθ†) and therefore spoil GCPV. On the other hand all terms involving
θθ† or ϕϕ† are harmless since these combinations transform as the trivial singlet under ∆(27)
ensuring that no additional phase dependency is introduced. Instead, all terms with this effect
are pushed to the non-renormalizable level. Consider e.g. terms with H H † and a single θ,
that can enable additional non-trivial Higgs contractions. They would require at least one
additional insertion of (ϕ†)2 in order to be invariant under the extra U(1)F symmetry.

We use the scalars ϕ or θ in the FN mechanism to generate the hierarchies in the quark
Yukawa couplings once suitable messengers are introduced.7 This can be problematic since
the scales involved in the determination of their VEVs have to be larger than the scale of EWSB.
Fortunately, equation (3.17) separates any masses and quartic couplings of terms involving
either ϕ or θ (or both) and terms involving H . Thus a different choice of the scales can be
considered natural in our framework.

With the parameters of the presented scalar potential it is easy to accommodate a decoupling
scenario in which the additional ∆(27) singlet scalars have masses of order TeV (as already
demonstrated in [75]). In this limit it is easy to realize that only one of the CP even states
associated with H is light. This requires no fine-tuning and allows this Higgs to serve as the
recently discovered light Higgs boson. An even more interesting phenomenology can arise
when the parameters are chosen in a way that two CP even states are light. In that scenario ha

avoids detection due to not having haV V couplings with the SM vector bosons V and hb has a
mass of 125-126 GeV and SM-like couplings. Only hc is heavier.

7As we mentioned earlier this is beyond the scope of this work. An illustration of the possible, involved topologies
can be found in figure 3.1.
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Q1 Q2 Q3 uc d c

∆(27) 100 100 102 302 302

U(1)F 3 2 0 −p −p

Table 3.2.: The quark field and symmetry content of the models discussed in section 3.3.

L ec µc τc

∆(27) 301 100 100 102

U(1)F fL
(
p

)
fe

(
p

)
fµ

(
p

)
fτ

(
p

)
Table 3.3.: The lepton field and symmetry content of the models discussed in section 3.3.

3.2.3. Conclusions

In summary, we succeeded to address both issues of the framework presented in [75]. While it
first proved that viable CKM mixing can be realized in combination with a minimal implemen-
tation of GCPV, it was not able to explain the hierarchies of the Yukawa couplings and relied
on a non-trivial ∆(27) singlet jeopardizing the calculable phase. We point the way toward
a more realistic model by enlarging the symmetry content to include either an additional
U(1)F or a discrete ZN and expand the field content with two scalars charged under it. One
of these is a non-trivial singlet under ∆(27) and its charge under the additional symmetry
enforces that GCPV is not spoiled by its presence (addressing one of the original issues). At
the same time both scalars can acquire VEVs larger than the EW scale. This is possible due
to a separation between their mass and quartic couplings and the Higgs fields in the scalar
potential. In combination with suitably charged quark doublets, this is used to enact a FN-like
mechanism and justifies the hierarchy present in the Yukawa couplings. At the same time our
improved model preserves the interesting properties of the scalar sector described in [75].

3.3. A complete picture of all fermions

After the establishment of a satisfying quark sector, we now turn our focus to the lepton
part and will investigate the viability of several possible extensions. While [101] pointed out
interesting structures in this sector it does not include the other fermions. We would like to
extend the isolated focus in this field to finally cover the whole picture.

One of our goals is to develop a lepton framework that is not only viable by itself, but fully
compatible with the quark structures proposed in [75] and section 3.2. To achieve this, we
intend to keep the U(1)F FN symmetry introduced in the previous section. By finding viable
lepton structures that are consistent with feasible quark structures, we provide an existence
proof of a complete model of fermion masses and mixing featuring GCPV.

We start with an explanation why the most straightforward extensions of the ∆(27) GCPV
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H φ ϕ θ

∆(27) 100 301 100 102

U(1)F 0 p −1 −2

Table 3.4.: The scalar field and symmetry content of the models.

framework do not readily work. In the lepton sector we want to construct the invariants HLτc

for the charged lepton masses and the effective operator H †H †LL to generate neutrino masses,
where H and L are the respective SM scalar and lepton doublet.8 Previously, H transformed as
a 301 under ∆(27).9 ∆(27) invariance of the effective neutrino mass term H †H †LL now requires
the lepton doublet to transform as the same triplet representation as H (c.f. equations (3.5)-
(3.7)). Consequently, invariance of the charged lepton mass term HLτc , also forces the SU(2)L

lepton singlets to transform as 301. It has already been demonstrated that the resulting mass
structures are not viable [91, 94]. One way to avoid this pitfall is to enlarge the field content of
the model. Multiple ways are viable, e.g. [101] chose to introduce additional SU(2)L doublets
ζ transforming as ∆(27) singlets. This enabled the neutrino mass operator ζH †LL, with L
transforming as the conjugate triplet (302). The charged lepton SU(2)L singlets ec , µc , τc

transformed as singlets under ∆(27). However, this model only covered the lepton sector and
has its issues too, as we already pointed out in section 3.2.

Instead we explore a different path. We abandon the idea to assign H as a triplet and chose
it to be a trivial ∆(27) singlet. This is accompanied by the introduction of a new 301 triplet φ

(a SM singlet) and amounts to the field and symmetry content displayed in tables 3.2-3.4. As
a result now the scales of breaking the SM gauge group (related to H) and of breaking ∆(27)
and CP (related to φ) are separated. On the one hand, this has the disadvantage that the rich
phenomenology of the SU(2)L doublet scalars, sketched in the end of section 3.2 and in [75],
no longer is present. On the other hand, this provides the opportunity for a higher scale of CP
breaking. A requirement which may be imposed by future implementations of the framework
also addressing the subject of the baryon asymmetry of the universe (e.g. via leptogenesis).

3.3.1. Modified quark structures

With this separation of H and φ in place, we are now free to assign L as a 301. This allows
us to build neutrino mass terms like H †H †(LLφ) or H †H †(LLφ†φ†) with potentially viable
structures. However, before we discuss this in detail, we have to ensure that two building
blocks of the framework are still in place with our modification.

First of all we have to arrange that the VEV structure of equation (3.8) is not spoiled. As

8Again, for the discussion in this section the necessary mass scale suppressions for effective terms are omitted
and implicitly understood. As discussed previously in chapter 2 or e.g. in [60, 114, 117, 118], these are related to
the masses of the messenger fields associated to the UV completion of the model, or the seesaw mechanism.

9Choosing 302 instead does not influence the argumentation.
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Chapter 3. A model of all fermions featuring geometrical CP violation

previously mentioned this is the case, as long as no cubic terms of φ appear in the scalar
potential. Because φ is a SM singlet we now have to enforce this by a different symmetry. In
the presented models this happens via the FN symmetry that we already have. To preserve the
VEV alignment we assign a non-trivial charge to φ which is suitable to forbid any cubic terms.
There are multiple viable choices and we label this charge as p. As indicated by tables 3.2-3.4
this has consequences for the charges of most fermion fields. We will discuss this when we
arrive at the specific models.

The second preliminary remark is that we have to apply further minor modifications to the
quark structures of section 3.2 and [75]. There the invariants were H †Quc and HQd c , with H ,
uc and d c respectively 301, 301 and 302 under ∆(27). In comparison now we have H †Qucφ and
HQd cφ, with H , uc , d c and φ respectively 100, 302, 302 and 301 under ∆(27). This results in a
slight change of the up quark matrix. Because uc is the 302 in the invariant contraction (with
φ, not φ†) the first structure of equation (3.16) is altered to

Mu = v

x1ω x1 x1

x2ω x2 x2

x3 x3 x3ω

 . (3.18)

The structure of section 3.2 can be recovered by replacing ω with ω2 and swapping the entries
(32) and (33). Analogously HQd cφ(φφ†) replaces the previous invariant HQd c (H H †).10 How-
ever, overall no differences arise in the ability to accommodate viable masses for all quarks
and realistic CKM mixing, thus leading to an equally appealing framework. For the details
regarding the involved structures we refer to the according discussion in section 3.2 and [75].

We would like to conclude the introduction of our new, complete framework with a short
recapitulation of its essentials. A FN mechanisms is implemented either via a continuous
U(1)F or a discrete ZN . The scalar sector is extended with a ∆(27) triplet scalar φ, which has
to be charged non-trivially under this symmetry to enforce GCPV since it is a SM singlet.11

This charge p has consequences for other fields of the model and will be specified in the
actual implementation of models. The SM singlets ϕ and θ serve as FN fields and have the
charges 100, −1 and 102, −2 under ∆(27) and the other respective symmetry. Finally, the SU(2)L

breaking Higgs field is now a trivial ∆(27) singlet. The details of the changed scalar potential
will be addressed in subsection 3.3.4.

3.3.2. Leptonic structures

After establishing this solid foundation, we now focus to build models featuring a viable lepton
sector upon this base, that is compatible with the proposed quark structures. One general
intricacy of the framework we discuss is the charged lepton mass matrix. Since we choose L to
transform as a ∆(27) triplet the hermitian combination Ml M †

l is not diagonal at leading order.

10This invariant was required to introduce a complex phase to the CKM matrix.
11The requirement is to forbid the terms φ3, φ3θ, φ3θ†, φ3ϕ and φ3ϕ†.
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For the generic, most important invariants, like H
[
(Lφ†)l c

i

]
and the assignments 100, 100 and

102 for the SU(2)L singlet leptons ec , µc and τc , the contractions generally look like

H
[

y3(Lφ†)01τ
c + y2(Lφ†)02µ

c (θ2)+ y1(Lφ†)00ec (θ3)
]

, (3.19)

giving rise to the mass matrix

Ml =
y1ω

2 y2 y3

y1 y2 y3ω
2

y1 y2ω
2 y3

 , (3.20)

where we have reabsorbed the VEVs into the yi .12 The hermitian combination now reads

Ml M †
l =

 y2
1 + y2

2 + y2
3 y2

1ω
2 + y2

2 + y2
3ω y2

1ω
2 + y2

2ω+ y2
3

y2
1ω

2 + y2
2 + y2

3ω y2
1 + y2

2 + y2
3 y2

1 + y2
2ω+ y2

3ω
2

y2
1ω

2 + y2
2ω+ y2

3 y2
1 + y2

2ω+ y2
3ω

2 y2
1 + y2

2 + y2
3

 . (3.21)

There is a simple analytic expression for the matrix Vl diagonalizing this, i.e.

Vl =
1p
3

ω2 ω 1
1 ω ω2

1 1 1

 . (3.22)

Note that Vl has no free parameters. The three Yukawa couplings yi are fixed by the charged
lepton masses.

Before we proceed with a detailed discussion of the neutrino related invariants, we would
now like to shed a little more light on the general obstacles encountered in the construction of
a viable lepton model within these limits. The ∆(27) contractions for the Majorana neutrino
mass invariant H †H †(LLφ) include structures that can easily generate TBM for the neutrinos.
While this was generally a good starting point up until now, in this case the mixing would
be completely screwed up by the non-diagonal form of Vl , due to UPMNS = V †

l Uν. For a
compatible solution with the TBM neutrino structures, a contraction of L with a different
triplet field aligned as (1,0,0) would be required. Vice versa, we could chose to assign the
SU(2)L doublets L1, L2, L3 as the ∆(27) singlets 100, 101, 102 and instead build the triplet from
ec , µc , τc . This would yield a leading order neutrino mass matrix with (11), (23) and (32)
as the only non-vanishing entries. In combination with Vl from equation (3.22) this µ−τ

interchange would provide a very promising leading order structure for the neutrino mixing
matrix. Unfortunately, these assignments do not preserve the structure of equation (3.22),
lead to a diagonal charged lepton sector (c.f. the discussion of the quark sector) and thus
yield no viable mixing. Again the solution would be the contraction with a different alignment

12Note that although [101] employed ∆(27) singlets ec , µc , τc too, the specific choice of the suitable singlet for
each field differ.
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field, i.e. this time the contraction of LL with a field ∝ (1,0,0). Both cases would amount to a
well-proven strategy to implement TBM-like models with a discrete symmetry - the breaking
of neutrino and charged lepton sector in two different directions. The models discussed in
chapter 2 rely on this too. However, both also involve the introduction of additional triplet
scalars which is at odds with the main feature of this framework, the enforcement of GCPV.
Consequently this is not an option and a more creative approach is needed.

Our proposal relies on the Majorana invariants of the type H †H †(LLφ). The algebra of
equation (3.6) allows the construction of two distinct triplets 302 from LL (two combinations
are symmetric). Each of these can be further contracted with φ to build all three available
singlets (c.f. equation (3.7)) amounting to six different singlets overall. The term under
consideration clearly requires the singlet contractions H †H †(LLφ)00 and the two different
parameters available for this are not sufficient to build viable neutrino structures. This requires
the introduction of auxiliary (spurion) fields. Analogously to the singlets of the previous
chapter 2 we label them as ξ, ξ′ and ξ′′, indicating their representations 100, 101 and 102. They
all share the same FN charge which has to be the opposite of H †H †(LLφ) to build an overall
invariant. These auxiliary fields can be constructed from the physical fields ϕ and θ. We
address this in more detail in subsection 3.3.3. As discussed, each of these spurions provides
two distinct invariants, i.e.

H †H †ξ
[
z1(Li Liφi )00 + z4(Li L j φk )00

]
, (3.23)

H †H †ξ′
[
z2(Li Liφi )02 + z5(Li L j φk )02

]
, (3.24)

H †H †ξ′′
[
z3(Li Liφi )01 + z6(Li L j φk )01

]
, (3.25)

where the i j k invariant denotes the symmetric contraction, i.e.

(Li L j φk )00 = L2L3φ1 +L3L1φ2 +L1L2φ3, (3.26)

(Li L j φk )01 = L2L3φ3 +L3L1φ1 +L1L2φ2, (3.27)

(Li L j φk )02 = L2L3φ2 +L3L1φ3 +L1L2φ1. (3.28)

The corresponding mass structures read

Mξ =
z1ω

2 z4 z4

z4 z1 z4ω
2

z4 z4ω
2 z1

 , (3.29)

Mξ′ =
 z2 z5ω

2 z5

z5ω
2 z2 z5

z5 z5 z2ω
2

 , (3.30)

Mξ′′ =
 z3 z6 z6ω

2

z6 z3ω
2 z6

z6ω
2 z6 z3

 . (3.31)
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This concludes the general setup of our first phenomenological scan for viable parameter
space. With VL fixed by the charged lepton masses, equations (3.23)-(3.25) leave us with six
parameters zi to fit the neutrino related parameters. Even though the structures provided
by equations (3.29)-(3.31) are fairly constraining, we were able to identify feasible regions of
parameter space resulting in mixing angles and mass squared differences satisfying the 3-σ
bounds of [21]. The obtained solutions include examples of both neutrino mass orderings, i.e.
IH and NH (c.f. table A.1 in the appendix for an illustration of the resulting couplings).

For the setup of our second scan, we also include the operator H †H †(Lφ†)(Lφ†). The
relevant contractions are

H †H †
[

A(Lφ†)00(Lφ†)00 +B(Lφ†)01(Lφ†)02

]
, (3.32)

introducing the parameters A and B . This allows us to constrain the set of spurion fields
required to obtain viable results from three to two. We performed a scan for each of the
three possible combinations. Again, for all three classes of models we were able to find large
regions of viable parameter space leading to both hierarchies. Exemplary coupling patterns
can be found in tables A.2, A.3 and A.4 in the appendix, which also contains considerations
concerning the measurement of the involved fine-tuning.

3.3.3. Specific models

After demonstrating the potential of the general framework, we are now going to delve into the
details of building concrete models. By assigning suitable U(1)F charges to the fields the FN
mechanism is implemented and the auxiliary fields of the scans can be constructed from the
fields θ and ϕ.

First to the simple part, the quark sector. There, the assignment of table 3.1 uses the charges
of uc and d c to balance out the charge of φ, which we labeled p. The different choice for the
three quark generations Qi in combination with the FN fields then enables the viable quark
structures discussed in the according section, including the required FN suppression.

The more intricate part is the lepton sector. First of all note, that not all solutions for the
effective parameters zi obtained in the scans are equally appealing. Of these six parameters,
two are always related to the same spurion, i.e. (z1, z4) to ξ, (z2, z5) to ξ′ and (z3, z6) to ξ′′.
Since each spurion corresponds to a physical field combination of θ and ϕ, a large hierarchy
between couplings from the same pair is unnatural. The same argument holds for A and B .
First we constrained ourselves to solutions with all couplings within one order of magnitude.
Sample hits for the different classes of models can be found in tables A.1-A.4 in section A.2 of
the appendix. To build two actual models, we modify this constraint a little bit by considering
two solutions which allow the combination (z1, z4) to be roughly one order of magnitude larger
than (z2, z5), (z3, z6) and (A,B). For exact numerical values, see table A.5.
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invariants L φ ec µc τc

100+101 -1 -4 3 1 -3
100+102 1 4 9 7 3

Table 3.5.: Specific U(1)F charges for two sample models that are considered natural in terms
of hierarchies. The column invariants refers to the enabled ∆(27) contractions of
FN field combinations.

For the two models we find the invariants

H †H †(θ3)†
[

A(Lφ†)00(Lφ†)00 +B(Lφ†)01(Lφ†)02

]
+H †H †θ3 [

z1(Li Liφi )00 + z4(Li L j φk )00
]

+H †H †θ2ϕ2 [
z2(Li Liφi )02 + z5(Li L j φk )02

]
, (3.33)

and

H †H †θ3
[

A(Lφ†)00(Lφ†)00 +B(Lφ†)01(Lφ†)02

]
+H †H †(θ3)† [

z1(Li Liφi )00 + z4(Li L j φk )00
]

+H †H †(θ2ϕ2)† [
z3(Li Liφi )01 + z6(Li L j φk )01

]
(3.34)

respectively. Compared to equations (3.23)-(3.25) and equation (3.32), ξ, ξ′, ξ′′ are now re-
placed by θ and ϕ. Thus, these spurions can indeed be identified as combinations of the
physical FN fields. In both models the combination (z1, z4) is the only one appearing in invari-
ants with eight field insertions. All remaining combinations require nine fields and thus, the
resulting hierarchy between them is justified. TheU(1)F assignments are listed in table 3.5. The
general idea behind the charge assignments for L and φ is to make the fields H †H †(Lφ†)(Lφ†)
invariant in combination with either θ3 or (θ3)† resulting in overall nine fields for the (A,B)
terms.13

3.3.4. Scalar potential

Finally, after constructing viable structures for fermion masses and mixing, it is time to discuss
the full scalar potential to ensure that GCPV manifests itself and to see how all this comes
together in the end. Due to our careful choice of the FN charge p for φ, no cubic terms of this
field can appear in the potential. At the same time the charges of ϕ and θ guarantee, that no
other phase dependent invariants, like (φ†φ)01θ, (φ†φ)02θ

† are allowed, which would spoil

13There are two other possible choices where H†H†(Lφ†)(Lφ†) has the same overall FN charge as H†H†(LLφ).
However, these correspond to p = 0 allowing for cubic φ terms in the scalar potential. This is incompatible with
the goal to enforce GCPV.
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GCPV. Overall the potential reads

V (H ,φ,ϕ,θ) = m2
H H H † +m2

ϕϕϕ† +m2
θθθ

†

+λH (H H †)2 +λϕ(ϕϕ†)2 +λθ(θθ†)2 +λϕθ(ϕϕ†)(θθ†)

+
(
λϕHϕϕ† +λθHθθ†

)(
H H †

)
+m2

φ

[
φiφ

†
i

]
+λ1

[
(φiφ

†
i )2

]
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†
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†
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+
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λHφH H † +λϕφϕϕ† +λθφθθ

†
)[

φiφ
†
i

]
. (3.35)

Indeed, one can easily verify that this potential only contains one phase dependent term, i.e.
the one associated with λ3. Combined with the prerequisite λ3 > 0 it effectively enforces GCPV
with φ acquiring a VEV of the form presented in equation (3.8). The magnitudes of the VEVs
of H , φ, ϕ and θ are controlled by the various mass terms and quartic couplings. Again, the
scales are not required to be the same. After the breaking of the FN symmetry U(1)F , the flavor
symmetry ∆(27) and EW symmetry through the VEVs of the respective scalar fields, finally
viable masses and mixing of all fermions arise at low energy.

3.3.5. Conclusions

Building on the foundation of a viable quark sector including a FN mechanism, we discussed
the common issues related to the structures of the lepton part and presented a fully com-
patible set. For different frameworks composed from this set, we performed an extensive
phenomenological scan and found several regions of parameter space where viable lepton
masses and mixing can be obtained. With viable solutions readily available, we proceed to
construct concrete models for two of these with an appealing, natural structure of parameters.
The related scalar potential leads to GCPV with the desired VEV structure ∝ (ω,1,1). Overall,
this amounts to the presentation of a first existence proof of models of quark and lepton
masses and mixing that feature GCPV.
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4. A generic class of R-parity violating
models

In the previous two chapters we discussed models based on concrete flavor symmetries, which
employed the seesaw mechanism to generate small neutrino masses. Further, these models
considered the nowadays required large mixing angle θ13 arising as some kind of modification
of TBM or a combination with some of its eigenvectors. However this is not the only viable
guiding principle for lepton mixing. For instance see e.g. [119] for recent considerations of
how θ13 ≈ 9◦ can be seen a a reduction of an even larger guiding value. Another possibility,
which is often used as some kind of benchmark, is that the neutrino mass matrix has random
entries. This is usually referred to as neutrino mass anarchy [120, 121, 122, 123, 124, 125].

In this chapter we are going to discuss a generic class of flavor models which feature the
concept of RPV (c.f. subsections 1.2.2 and 1.2.3) to generate small neutrino masses. Recall
that in this context, one of the main challenges to be addressed by the flavor symmetry is to
explain the hierarchy of the RPV couplings. By just requiring some simple relations of the
charge assignment, we demonstrate how this arises and further achieve a significant reduction
in the number of independent couplings.

In order to address the above mentioned ambiguity of TBM and other principles, we will
illustrate how both, TBM and realistic models are constructed and constrained in this frame-
work. This will serve as an example in which realistic models can not be seen as a deviation
from TBM. We will further investigate the constraints for the absolute mass scale and the
discrimination between NH and IH.

The basic idea for the flavor hypothesis was already sketched in the diploma thesis:

Daniel Pidt
Neutrino Masses and Lepton Flavor Violating Decays in the Minimal Supersymmetric Standard

Model without R-Parity

Except for this starting point everything else was developed later on and this chapter is based
on the previously published article [1]:

Gautam Bhattacharyya, Heinrich Päs, and Daniel Pidt
R-Parity violating flavor symmetries, recent neutrino data and absolute neutrino mass scale

Phys.Rev. D84 (2011), p.113009
arXiv:1109.6183
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Chapter 4. A generic class of R-parity violating models

4.1. A simple flavor hypothesis

The basis of the framework is the MSSM with RPV. The latter leads to the inclusion of the
superpotential terms given by equation (1.37). Since the structure of these terms will be
important for the following discussion we repeat it in this place for the sake of convenience.

WRPV =−µi Li H2 + 1

2
λi j k Li L j E k +λ′

i j k Li Q j Dk +
1

2
λ′′

i j kU i D j Dk . (4.1)

As previously stressed, the most general approach means the introduction of 48 a priori
complex couplings to the superpotential, leading to a loss of predictivity. One solution for this
problem is to forbid/suppress and relate this couplings. As already demonstrated in chapter 3
for the case of GCPV, flavor symmetries are a very appealing candidate to achieve this. In
the following we will show how the large set of RPV couplings can be brought down to six
independent lepton number L violating ones. The only requirement is the assumption of
a simple flavor hypothesis leading to a class of interesting, generic models. The remaining
couplings are sufficient to construct viable Majorana neutrino masses and mixing which will
be detailed in section 4.2.

But first we have to state our hypothesis. We assume that the Yukawa structure leading to
the masses and mixing of quarks and charged leptons is fixed by some unspecified global
symmetry. This symmetry also ensures baryon number conservation. There is a second global
symmetry (X ), an abelian horizontal symmetry, which is at the centre of our attention. Only
leptons are charged under X , such that for each generation i ,

QX (Li ) =−QX (E i ) . (4.2)

We assume that the QX charges of different generations are all positive. The horizontal sym-
metry is explicitly broken by a small parameter ε< 1, whose charge under X is QX (ε) =−1. If
the total charge of a given superpotential term is n, then the term is suppressed by εn . As an
example, if X =ZN , then the suppression would be εn(modN ) [126].

Now we look at the consequences of equation (4.2) for the 48 RPV couplings of equation (4.1).
Since B-number is conserved, all the λ′′ couplings vanish right away. Since only leptons are
charged under X , it follows that QX (Li Q j Dk ) = QX (Li Hu) = QX (Li ), and hence λ′

i ≡ λ′
i j k '

µ̃i ≡ µi /µ, where the supersymmetry preserving µ parameter is assumed to be of the same
order as the supersymmetry breaking soft masses (m̃). Turning our attention to the Li L j E k

operator, we notice that when j = k, the same argument as above leads to λi j j ' λ′
i j k ' µ̃i .

Thus 39 a priory independent L-violating couplings basically boil down to only six

µ̃i

(
'λ′

i j k 'λi j j

)
, λ123, λ132, λ231 . (4.3)

Thanks to the flavor symmetry, the L-violating bilinear soft parameters Bi would be aligned
to the corresponding superpotential parameters µi as well, i.e. B̃i ≡ Bi /m̃2 ' µ̃i . It should be
noted that when we say that two couplings are related, we mean that they have a common
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4.2. Relevant neutrino mass terms and mixing

Our couplings Related to Existing limits (Sources) Refs.
µ̃i µ̃i , λ′

i j k , λi j j 1.5×10−6
(
Mχ̃

)
[mνi ] [127]

λ123 λ123 0.03 (τ̃R ) [Vud ] [128]
λ132 λ132 0.03

(
µ̃R

)
[Rτ] [128]

λ231 λ231 0.05 (ẽR ) [Rτ] [128]

Table 4.1.: The list of the six independent couplings and the standard couplings they are related to
by the flavor symmetry X . The three µ̃i couplings are of the same order of magnitude as
36 out of 39 a priori independent RPV couplings. A mass of 100 GeV is assumed for the
superparticles exchanged in the processes involved. These superparticles are indicated
within first bracket right after the bounds (the weak gaugino mass Mχ and the three scalar
leptons ˜̀R ). The entries in the square brackets specify the different observables from which
the bounds originate. Here, Rτ = Γ(τ− →µ−νµντ)/Γ(µ− → e−νeνµ).

suppression factor εQX . Indeed, there are order-one uncertainties in the actual coefficients of
the operators, for which reason we have used a ‘near-equality’ sign in equation (4.3). Now we
come to the relative sizes of the L-violating couplings. The suppression would depend on the
sum of QX charges of the associated lepton fields as a power of ε. More specifically,

µ̃i ' B̃i 'λ′
i ∼ εQX (Li ), λi j k ∼ ε

{
QX (Li )+QX (L j )+QX (E k )

}
. (4.4)

Eventually, we shall provide a specific demonstration with X =ZN1 ×ZN2 [126], which means
there are all together 6 charges for the three lepton generations.

Many RPV couplings which are not so strongly constrained may now be related by equa-
tion (4.4) to the ones which are severely constrained by experiments. The existing bounds on
the individual and product couplings can be found in the reviews [129, 130, 131, 132, 40].

4.2. Relevant neutrino mass terms and mixing

One of the appealing aspects of R-parity violation is that it generates neutrino masses and
mixing through a perfectly renormalizable interaction without the need of introducing any
right-handed neutrino. This has already been studied at various levels of detail [133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 127, 147]. In this work we will follow
the notation of [147]. The neutrino masses, in the basis in which all the sneutrino vacuum

59



Chapter 4. A generic class of R-parity violating models

expectation values vanish, can be written as

mi j ≈ cos2 β

m̃
µiµ j + g 2

64π2 cos2 β

Bi B j

m̃3 + g 2

64π2 cosβ

µi B j +µ j Bi

m̃2

+∑
k

3

16π2 g mdk

µiλ
′
j kk +µ j λ

′
i kk

m̃
+∑

k

1

16π2 g mek

µiλ j kk +µ j λi kk

m̃

+∑
l ,k

3

8π2 λ′
i lkλ

′
j kl

mdl mdk

m̃2
q

µ tanβ+∑
l ,k

1

8π2 λi lkλ j kl
mel mek

m̃2 µ tanβ, (4.5)

where mdi (mei ) denote the masses of the down-type quarks (charged leptons). The associated
diagrams can be found in section A.1 in the appendix. A comment on the approximations
made above is in order. We have denoted the squark masses by m̃q and assumed them to
be somewhat heavier than a common mass scale m̃ assumed for the sleptons and weak
gauginos/Higgsinos. This approximation may be crude but is good enough for our order-of-
magnitude estimate of the RPV couplings. In equation (4.5), the first line accounts for the tree
level and one loop contributions from bilinear couplings only, the second line represents the
one loop contributions from both bilinear and trilinear couplings, while the last line stands
for one loop contributions from trilinear couplings only. The possibility of large left-right
squark/slepton mixing which may be induced by large tanβ(≡ vu/vd ) has been taken into
account in the purely trilinear loop dynamics. The tree level µiµ j contribution generates a
rank-one mass matrix and therefore yields only one mass eigenvalue. Since, in our case, Bi , λ′

i ,
λi j j are all proportional to µi , even after including their contributions the rank-one nature of
the mass matrix does not change. What breaks the alignment and yields more non-vanishing
eigenvalues is the contribution from the purely trilinear loops involving λi j k (i 6= j 6= k), since
these couplings are not aligned with µi . This leaves us with the remaining three couplings,
namely λ123, λ132 and λ231, no two indices of which are the same, for generating the second
mandatory and the third optional nonvanishing neutrino masses and the three mixing angles
(two large and one small). Note that the existing bounds on λi j k with i 6= j 6= k are relatively
less stringent – see table 4.1.

Different low energy processes, especially some lepton flavor violating decays, yield impor-
tant constraints on trilinear product couplings [148, 149, 150]. Due to the smallness of most of
the couplings as shown in the first row of table 4.1, these constraints are in almost all cases
easily satisfied. The bounds emerging from the non-observation of K 0

L → µe/eµ [149, 150],
namely,

λi j kλ
′
lmn < 6.7×10−9 m2

ν̃L3
/ (100GeV)2 , (4.6)

with the combinations (i j k)(l mn) : (312)(312), (312)(321), (321)(312), (321)(321), play a crucial
role in neutrino mass/mixing model building in our scenario, as we shall see later. Due to the
specific inter-connections among RPV couplings owing to the flavor symmetry, equation (4.6)
leads to the following limits:

λ132λ
′
3 , λ231λ

′
3 < 6.7×10−9 m2

ν̃L3
/ (100GeV)2 . (4.7)
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4.2. Relevant neutrino mass terms and mixing

If we set the numerical values of the couplings near their upper limits (see table 4.1), they
turn out to be large enough to offset the loop suppression factors. The mass matrix entries can
then be written with only six RPV couplings as

mee ≈ aµ1µ1 + 1

8π2 λ123λ132
mµmτ

m̃2 µ tanβ, (4.8)

meµ ≈ aµ1µ2 + 1

8π2 λ123λ232
mτmµ

m̃2 µ tanβ+ 1

8π2 λ213λ131
mτme

m̃2 µ tanβ, (4.9)

meτ ≈ aµ1µ3 + 1

8π2 λ132λ323
mµmτ

m̃2 µ tanβ+ 1

8π2 λ312λ121
mµme

m̃2 µ tanβ, (4.10)

mµµ ≈ aµ2µ2 + 1

8π2 λ231λ213
me mτ

m̃2 µ tanβ, (4.11)

mµτ ≈ aµ2µ3 + 1

8π2 λ231λ313
mτme

m̃2 µ tanβ+ 1

8π2 λ321λ212
mµme

m̃2 µ tanβ, (4.12)

mττ ≈ aµ3µ3 + 1

8π2 λ312λ321
mµme

m̃2 µ tanβ, (4.13)

with

a = cos2 β

m̃
+∑

k

3g mdk

8π2m̃2 +∑
k

g mek

8π2m̃2 +∑
k,l

3mdl mdk

8π2µm̃2
q

tanβ . (4.14)

With this mass matrix we try to reproduce the neutrino oscillation data, namely, the two
mass-squared differences (∆m2

21 and ∆m2
31) and the three mixing angles (θ12, θ23 and θ13). For

simplicity we assume that all the phases in the neutrino mixing matrix are zero. Since neutrino
oscillation analysis probes only the mass-squared differences and not their absolute values,
we need to assume the hierarchy (normal/inverted) of the masses and the size of the smallest
eigenvalue to fix the other two masses. There is no lower limit on the smallest neutrino mass
eigenvalue, it can still be zero.

We take the best fit values of the neutrino mass-squared differences from [151]: ∆m2
21 =

7.59×10−5 eV2, ∆m2
31(IH) =−2.40×10−3 eV2, ∆m2

31(NH) = 2.51×10−3 eV2. The two mixing
angles θ12 and θ23 are set to their TBM values (using best fit values instead does not lead to
significant changes). On the other hand, nowadays it is an established experimental fact,
that the value of θ13 deviates from its TBM value which demands θ13 = 0. Depending on the
included measurements and reactor fluxes it seems to be the case that it is rather close to
θ13 ≈ 9◦. We are now at a point were the field of neutrino oscillation parameters reaches the
stage of precision measurements. Future tasks will for example include the determination of
the Dirac CPV phase δ. For some very recent illustrations of the current work in progress, see
e.g. [152].

However, the focus of this work is to demonstrate the principal model building challenges
and strategies of this field. Especially in this chapter we would like to point out the difference
to the previous frameworks, which mostly used TBM as a guiding principle to yield viable
masses and mixing patterns, compared to other ones in which this is unrelated. Thus in the
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Chapter 4. A generic class of R-parity violating models

following section we will discuss two benchmark scenarios of neutrino mixing. The first one
will be TBM and it will be confronted with a realistic setup which assumes θ13 = 9◦. We shall
later see, that this will have interesting consequences for another important question of the
neutrino puzzle – NH or IH?

4.3. Classes of models

4.3.1. Models of TBM

The TBM structure immediately implies that
∣∣meµ

∣∣= |meτ| and
∣∣mµµ

∣∣= |mττ|, regardless of
whether the lightest mass eigenvalue is vanishing or not, and also irrespective of whether the
neutrino mass hierarchy is normal or inverted. For our couplings this can be comfortably
realized by setting |λ123| = |λ132| and |µ2| = |µ3| – see equations (4.8)-(4.13). This means that
we can parametrize the mass matrix with four independent RPV parameters instead of six,
which of course would improve the predictivity of the model. Dropping the terms in the loop
contribution proportional to the electron mass, we obtain

meµ ≈ meτ ≈ aµ1µ2 − 1

8π2 λ123µ3
mτmµ

m̃2 tanβ . (4.15)

Clearly, under this situation, the absolute values for the tree-level contributions to mµµ ∼
aµ2µ2, mµτ ∼ aµ2µ3 and mττ ∼ aµ3µ3 are the same. Setting all CP-violating phases to zero, the
TBM mixing matrix takes the form already displayed in equation (1.20). To fix the numerical
values of the mass matrix from m =V >

TBM ×diag(m1,m2,m3)×VTBM, all we need to decide is
the mass hierarchy (normal or inverted) and the smallest mass eigenvalue.

Inverted hierarchy: We first consider the case of inverted hierarchy with m3 = 0. This choice
additionally demands mµτ =−mµµ. One obtains

m =
 4.92×10−2 2.56×10−4 −2.56×10−4

2.56×10−4 2.47×10−2 −2.47×10−2

−2.56×10−4 −2.47×10−2 2.47×10−2

 eV (IH, TBM, m3 = 0). (4.16)

By setting µ2 = −µ3 and keeping λ231 . λ123, we obtain a rough analytical solution using
equations (4.4) and (4.8)-(4.13):

∣∣µ2
∣∣= ∣∣µ3

∣∣≈√
a−1mµµ, (4.17)

λ123 ≈
√

4π2mee m̃2

mµmτµ tanβ
(4.18)

µ1 ≈
meµ+µ2λ123mτmµ tanβ/

(
8π2m̃2

)(
aµ2

) . (4.19)
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4.3. Classes of models

Putting m̃ = µ = 100GeV and m̃q = 300GeV in equations (4.17)-(4.19) we obtain a solution
(with µ2 =−µ3, and λ132 =−λ123)

µ̃1 = 1.9×10−8 , µ̃2 =−4.7×10−6 , (4.20)

λ231 ∼ 10−4, λ123 =−3.2×10−4, (4.21)

for tanβ= 10.
To illustrate how this coupling pattern can arise from a flavor symmetry we are providing

an exemplary flavor group for this case. However, since this choice is not necessarily unique
and our conclusions do not depend on the specific flavor group, we omit this exercise for the
other scenarios. In this case, the required relative suppression can be reproduced by a family
symmetry X = Z4 ×Z8 with a breaking parameter ε. The necessary charge assignments are
given by

QX (L1) = (2,5) , QX (L2) = (0,5) , QX (L3) = (3,2) , (4.22)

which imply

QX (L1L2EC
3 ) = (3,0) , QX (L1L3EC

2 ) = (1,2) , QX (L2L3EC
1 ) = (1,2) . (4.23)

These assignments lead exactly to the required suppression of the couplings with ε≈ 0.1 as

µ2(=µ3) ∼ ε5 , µ1 ∼ ε7 , λ123(=λ132) ∼ ε3, λ231 ∼ ε3 . (4.24)

In the above example, the near equality of the magnitude of the entries in the µ−τ block is en-
sured by saturating them with the tree level contributions, while keeping the loop contributions
suppressed. If, within the TBM framework, we now consider m3 to be slightly above zero, then
mµµ = mττ > |mµτ|. To obtain m3 = 0.001 eV with m̃ = µ= 100 GeV, we need µ̃1 = 1.9×10−8,
µ̃2 =−4.6×10−6, µ̃3 = 4.7×10−6, λ123 =−3.1×10−4, λ132 =−3.3×10−4, λ231 = 2.7×10−3. We
should note two important things: (i ) These choices imply λ231λ

′
3 = 1.3×10−8, which mildly

overshoots the KL → µe bound as shown in equation (4.7). If we increase m3 further, the
disagreement with the KL bounds deepens. (i i ) The ‘four parameter’ scenario with |µ2| = |µ3|
and |λ123 =λ132| is not compatible with a non-vanishing absolute neutrino mass scale, i.e. we
cannot fit the data assuming these ‘equalities’ with m3 > 0, because of the hierarchical nature
of the charged lepton masses which appear in equations (4.8)-(4.13).

Normal hierarchy: We now consider normal hierarchy of neutrino masses. In this case the
smallest mass eigenvalue is m1. Within the TBM structure if we keep m1 = 0, it follows that
mµµ = mττ > |mµτ|. The numerical values of the mass matrix entries are

m =
 2.90×10−3 2.90×10−3 −2.90×10−3

2.90×10−3 2.80×10−2 2.21×10−2

−2.90×10−3 2.21×10−2 2.80×10−2

 eV (NH, TBM, m1 = 0). (4.25)
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Chapter 4. A generic class of R-parity violating models

The couplings needed to fit these entries are µ̃1 =−5.2×10−7, µ̃2 = 3.9×10−6, µ̃3 = 5.0×10−6,
λ123 =−4.4×10−3, λ132 =−1.2×10−6, λ231 = 1.0×10−3. Although we are within the KL →µe
bound, the requirement meµ = −meτ is realized quite differently. The relative signs of the
tree-level couplings invariably imply mtree

eµ ≈+mtree
eτ . This difference between the experimental

requirement and the tree-level contribution cannot be resolved, even keeping in mind that
signs of the RPV couplings can be chosen at will and also each neutrino field can be redefined
to absorb a sign. Therefore, a sign adjustment for one of the entries (eµ) via a large loop
contribution is needed, while the loop contribution to the other one (eτ) becomes negligible.
This is reflected in the large hierarchy between λ123 and λ132. We recall that such a sign
adjustment was not required in the case of inverted hierarchy (TBM, m3 = 0). If we now
increase the value of m1 (from zero) and try to fit normal hierarchy within the TBM framework,
the KL →µe bound haunts us like in the case of inverted hierarchy with m3 > 0. Therefore, our
most robust conclusion is the tight constraint for the smallest mass eigenvalue. Thus, inverted
hierarchy can be fit with four parameters, while normal hierarchy requires six parameters and
a sign altering large loop correction.

4.3.2. Realistic models

In the light of the present experimental status quo, we now study how flexible we are to
accommodate a large mixing angle θ13, which is close to the value of 9.0◦. Further we will again
explore both relevant neutrino mass orderings, NH and IH. Unlike in the case of TBM which
guarantees

∣∣meµ
∣∣= |meτ| and mµµ = mττ, it is not possible to fit the data with 4 parameters

when θ13 6= 0.
Inverted hierarchy: First we consider the case m3 = 0. The numerical entries of the mass

matrix are given by

m =
 4.80×10−2 −5.13×10−3 −5.63×10−3

−5.13×10−3 2.53×10−2 −2.41×10−2

−5.63×10−3 −2.41×10−2 2.54×10−2

 eV (IH, θ13 = 9.0◦, m3 = 0) . (4.26)

This can be fit with µ̃1 = −1.1× 10−6, µ̃2 = −4.5× 10−6, µ̃3 = 4.8× 10−6, λ123 = 9.3× 10−3,
λ132 = 1.1×10−5, λ231 =−1.1×10−4. Two things are worth noting: (i ) The magnitudes of λ123

and λ132 are separated by nearly three orders, while they assumed identical numerical values
in the case of TBM. (i i ) The tree-level contribution to meµ has the wrong sign like in the case
of NH with θ13=0. Again a large sign adjusting loop contribution is needed to be in agreement
with the experimental data. If we now increase the value of m3, the required magnitude for
λ231 becomes larger, and eventually beyond m3 = 0.01 eV the KL →µe bound overshoots.

Normal hierarchy: For m1 = 0, the mass matrix entries are given by

m =
4.06×10−3 8.02×10−3 2.29×10−3

8.02×10−3 2.67×10−2 2.16×10−2

2.29×10−3 2.16×10−2 2.80×10−2

 eV (NH, θ13 = 9.0◦, m1 = 0) . (4.27)
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4.4. Collider signatures and conclusion

This can be reproduced with µ̃1 = 4.1×10−7, µ̃2 = 3.8×10−6, µ̃3 = 5.0×10−6, λ123 =−5.3×10−3,
λ132 = −1.5×10−6, λ231 = 8.3×10−4. Note that λ231 is small enough to satisfy the KL → µe
bound. Contrary to the case of inverted hierarchy, now no large sign-flipping correction for
meµ is needed. However, the difference between the values of meµ and meτ still leads to a
hierarchy in the λ-couplings. Just like in the previous cases, the KL →µe bound begins to be
relevant as soon as m1 increases to around 0.005 eV (which requires λ231 = 1.5×10−3). The
main conclusion for non-zero θ13 is again that the smallest mass eigenvalue is required to be
almost vanishing in both hierarchies. But contrary to the TBM case, now IH requires a sign
adjustment, while NH does not.

4.4. Collider signatures and conclusion

The LHC signatures of the λi j k couplings have e.g. been explored in [153]. In our scenario,
only three couplings λi j k (i 6= j 6= k) are relatively large (10−3 − 10−4), the rest are of order
10−6. The large couplings are small enough to make sure that the RPV vertex is numerically
relevant only at the end of a supersymmetry cascade when the lightest neutralino decays via a
λi j k interaction, χ̃0

1 → l±l∓ν. The λi j k couplings thus give rise to li lk or l j lk final states plus
missing energy. Depending on the numerical values of of the corresponding λi j k couplings
the branching ratios into the li lk or l j lk channel will scale as |λi j k |2. Thus both invariant
mass distributions and number counting of the final state leptons should be a part of the
search method. However, other decay channels like χ̃0

1 → W ±l∓ and χ̃0
1 → Zν are available

due to the presence of the bilinear couplings. Their role has been investigated in detail in
[154]. Therefore, a detailed study of neutralino decays is important to test this and other RPV
models and differentiate between them. Unfortunately no sign of SUSY has been observed
so far by ATLAS and CMS. For a recent overview of this topic see e.g. [155]. This indicates a
somewhat heavier squark mass scale than the one we chose. However, scaling the slepton
masses accordingly can balance this out. The task to generate a viable SUSY mass spectrum is
another challenge itself and there is no unique structure arising from the different theoretical
concepts, especially in the lepton sector. However, this is beyond the scope of this work and
does not lead to any significant changes related to our previous discussions.

Overall, in this chapter we have studied a generic and simple flavor model which reduces
the number of independent couplings from 39 to 6, i.e. µi (i = 1,2,3), λ123, λ132 and λ231.
This results in an extremely predictive framework, which can reproduce the correct neutrino
masses and mixings while satisfying all other low energy bounds.

The simplest incarnation of this scenario would be the TBM case. It can be built from
only four parameters and prefers inverse hierarchy. We illustrated for this case how a specific
flavor model could be constructed, via a Z4 ×Z8 symmetry. A non-vanishing mixing angle θ13

necessarily requires a six parameter realization and arises in a different manor.

A general conclusion of all possible realizations is an almost vanishing absolute mass scale
for neutrinos, i.e. an essentially massless lightest neutrino. This feature is tightly related to
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the non-observation of KL → µe which affects many important coupling products in this
framework. As a consequence, any positive signal in one of the upcoming neutrinoless double
beta decay experiments would imply an inverted neutrino mass hierarchy, since for the
combination of normal hierarchy and an almost vanishing absolute mass scale, the resulting
|mee | is beyond their sensitivity. In other words, since a large value of θ13 is now established,
our scenario is only able to accommodate a positive signal of neutrinoless double beta decay
at the expense of large sign-flipping correction to one of the off-diagonal elements of the mass
matrix. Moreover, the flavor structure proposed here can lead to specific decays of a neutralino
LSP at the LHC.
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5. Conclusion

At the moment, the field of neutrino physics is in a phase transition from the era of rough
concepts to the age of precision physics. Not a long time ago, the established knowledge
could have been summarized by stating that three light neutrinos exist and that we have a
general idea of how they mix. But this has begun to change rapidly. On the one hand, each new
publication from one of the LHC collaborations so far constrained the parameter space for
new heavy particles around the TeV scale further and further. On the other hand, astrophysical
experiments and experiments dedicated to specific neutrino observables continue to reduce
the error bars on the known mixing parameters and push the upper bounds for neutrino
masses to lower and lower scales. They even promise further to yield first bounds for former
unconstrained parameters, like the Dirac phase. The models presented in this work are located
at the link between these two phases and chapter 1 provided a short glance at some theoretical
concepts and experimental results in this field, necessary to understand these.

In chapter 2 we revisited two models for leptons based on the symmetry A4, which were
proposed before the exclusion of exact tribimaximal-mixing. Of these one did not stand the
test of time while the other one is now under severe pressure. Minimal ultraviolet completions
for these models previously existed, and we investigated how next to minimal completions
and modifications of the flavon content fare in addressing their present issues. For the first
framework, composed of A4 ×Z3 ×U(1)FN, we found that modifications of the minimal ultravi-
olet completion do not work very well in this respect. Instead we found a different appealing
solution. It consists of the existing minimal completion, preserving its increase in predictivity,
in combination with a non-trivial singlet flavon. This new model is additionally able to explain
realistic mixing parameters, yielding a viable, elegant description of the lepton sector. A similar
result was found for the second class of A4 ×Z4 models. Again we proceeded by exploring
possible modifications of the completion and the field content and arrived at the conclusion,
that a liaison between the the minimal completion and the addition of a non-trivial singlet
flavon is the most attractive remedy. While in this case the original model is still viable, the
involved parameters started to require more and more finetuning which is alleviated by our
proposed solution that leads to a natural order of these. In the context of both models, we
were able to highlight the virtues of ultraviolet completions compared to effective models. We
emphasized how they indeed lead to an increase in predictivity and illustrated how they rule
out several options in the transition from tribimaximal-mixing to realistic scenarios.

Following this, we shifted our focus from ultraviolet completions to the topic of sponta-
neous CP violation in chapter 3. The symmetry A4 is replaced by ∆(27). We sketched that
this framework is the minimal basis to implement geometrical CP violation which is a very
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appealing implementation of spontaneous CP violation featuring calculable phases. Building
on the foundation of the first viable model of the quark sector for this setup, we propose some
improved version, which addresses two of the original shortcomings. The Yukawa hierarchy is
explained via the Froggatt-Nielsen mechanism or a ZN symmetry and the calculable phases
are protected since the nontrivial ∆(27) singlet of our implementation is charged under the
additional symmetry. Afterwards we tackled the challenge to provide a more complete picture.
To arrive at a first consistent description of all fermions, we had to modify the field structure
again. Contrary to the improved model of the quark sector H transforms as a ∆(27) singlet in
this framework and the associated flavon transforms as a 301. This decouples the scales of
symmetry breaking, which has the disadvantage to lose the interesting scalar phenomenology
but on the other hand provides the opportunity for a higher scale of CP breaking. This might be
useful for future models building on our work, investigating additional topics like leptogenesis.
For different implementations of this general framework we performed thorough scans of the
available parameter space and found multiple regions leading to viable masses and mixing.
We further investigated the finetuning necessary in this context and constructed examples
of natural models perfectly compatible with working structures for the quark sector. This
completed the first presented proof of existence of a model realistically describing all fermion
and masses mixing, featuring geometrical CP violation.

In the final chapter 4 we traded the concrete flavor symmetries of the previous ones for a
more general concept, the assumptions of a simple flavor hypothesis. This is used to provide
a predictive description of neutrino masses and mixing based on R-parity violation instead
of the seesaw mechanism. While the other two classes of frameworks discussed in this work
still used the tribimaximal-mixing paradigm as a starting point, we showed in this chapter
how realistic models may arise in a different way. This was done by exploring and comparing
coupling patterns leading to both, realistic and tribimaximal-mixing. We further highlighted
the differences between inverse hierarchy and normal hierarchy. This discrimination turned
out to have a relevant impact too. Overall, while we provided a simple, concrete four parameter
implementation of a model for one tribimaximal-mixing case, we concluded that the realistic
descriptions required six new couplings. As a general conclusion, all realistic models in this
context shared one common feature, an almost vanishing smallest neutrino mass eigenvalue,
making this framework falsifiable by the next generation of neutrinoless double beta decay
experiments.

All in all, this work covered many aspects of the earlier mentioned transition phase of
neutrino physics. We explored its roots in the paradigm of tribimaximal-mixing, proposed
models altering this to adapt to present developments, and provided building blocks for future
models addressing even more challenging tasks. Indeed, interesting times lie ahead and there
is still much work to be done.
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A. Appendix

A.1. Additional diagrams for the A4 models

This section of the appendix presents the superdiagrams for the charged lepton mass terms
of the A4 models discussed in chapter 2 which are the same as in [60]. Figure A.1 displays
the the diagrams generating the e, µ and τ masses in the AF models. Figure A.2 illustrates
the modifications of these diagrams due to the presence of the operator

{
φlχτχ

c
τ

}
in the

renormalizable superpotential. These can be easily absorbed by a redefinition of the charged
lepton masses and are thus irrelevant. The repeated latin indices are used to indicate the A4

invariant contractions.
Figures A.1 and A.4 show the same diagrams for the AM models. Note that the τ diagram is

absent, since it remains unchanged compared to the AF models. The effects of the operator
ξ
{
χτχ

c
τ

}
can again be accounted for by a redefinition of the charged lepton masses. The

operator
{
φνχτχ

c
τ

}
however, enables non-diagonal entries in the charged lepton mass matrix.
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Figure A.1.: Superdiagrams to generate the effective e, µ and τ mass terms in the AF models.

Figure A.2.: Generic modifications to the charged lepton mass terms enabled by the superpo-
tential operator

{
φlχτχ

c
τ

}
.
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Figure A.3.: Superdiagrams to generate the effective µ and τ mass terms in the AM models.
The e mass term remains unchanged compared to the AF models.

Figure A.4.: Modifications to the charged lepton mass terms enabled by the superpotential
operators

{
φνχτχ

c
τ

}
and ξ

{
χτχ

c
τ

}
respectively.
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A.2. Tables of ∆(27) coupling sets

In this section of the appendix we present viable coupling sets for all classes of ∆(27) models
discussed in chapter 3. All considered models were built with a set of six parameters, chosen
from the the pool of the four coupling pairs (z1, z4), (z2, z5), (z3, z6) and (A,B) correspond-
ing to the two different contractions of the invariants H †H †ξ(Li Liφi )00, H †H †ξ′(Li Liφi )02,
H †H †ξ′′(Li Liφi )01, respective the combination (H †H †(Lφ†)00(Lφ†)00, H †H †(Lφ†)01(Lφ†)02).

The tables contain sample numerical values for the used parameters. Table A.1 corresponds
to models with the full set of 6 zi parameters, whereas tables A.2, A.3 and A.4 have some
examples for each of the three classes with (A,B). Table A.5 has examples where (z1, z4) is
larger by one order of magnitude. For all classes of models we were able to identify large parts
of viable parameterspace leading to mixing angles and mass squared differences within the
3-σ bounds of [21]. All models cover both neutrino mass orderings, IH and NH.

In order to have an idea of the fine-tuning, we have relied on the procedure discussed
in [156]: we use dFT as a quantitative measure of the fine-tuning, a dimensionless quantity
defined as the sum of the absolute values of ratios between all parameters and respective
errors, where these errors are themselves defined as the deviation in that parameter that leads
to an increase of χ2 by 1 (while the other parameters remain at their fitted values). In [156],
another similar quantity dData is introduced, defined simply the sum of the absolute values of
ratios between the data and respective errors - for comparison, dData = 39.4773. As can be seen
in the tables below, for the hits we display, dFT is no more than one or two orders of magnitude
higher than dData.
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z1 z2 z3 z4 z5 z6 χ2 dFT

-0.00554161 -0.00340302 -0.00227104 -0.0141038 0.0175277 0.0170266 0.46992 640.595
0.00967825 -0.0118758 -0.00670678 -0.0160151 -0.00629062 -0.00653824 0.187884 246.89

Table A.1.: Sample hits for the 6 zi model. First row is for IH, second row for NH.

A B z1 z4 z2 z5 χ2 dFT
-0.00353652 0.00107432 -0.0524306 -0.00585345 -0.00696862 0.0118005 1.161 516.293

0.0109313 -0.0215866 0.0172491 0.0154776 -0.00496799 -0.00163566 0.247987 1480.21
0.00907931 -0.0256511 -0.00227895 0.0142952 0.00284323 0.00881012 0.389833 1074.57

Table A.2.: Sample hits for the contractions ξ and ξ′ in the A,B class of models.

A B z1 z4 z3 z6 χ2 dFT

-0.00941157 0.00922199 0.0190035 -0.0103075 -0.0277012 -0.045596 0.791304 3546.25
-0.0141045 0.0349938 -0.00117646 -0.00713608 -0.00700718 0.00389799 0.277284 2234.42

Table A.3.: Sample hits for the contractions ξ and ξ′′ in the A,B class of models.

A B z2 z5 z3 z6 χ2 dFT

0.0099768 -0.0387091 -0.00543329 0.00613746 -0.0101139 0.0284193 0.607939 4035.83
0.00438667 -0.0049329 0.00337298 -0.00261386 0.0616697 -0.0127218 0.132725 1301.91
0.00476606 -0.00529681 0.0608295 -0.0129415 0.00381149 -0.00135987 0.915034 1269.28

Table A.4.: Sample hits for the contractions ξ′ and ξ′′ in the A,B class of models.

A B z1 z4 z2 z5 χ2 dFT
0.00245874 -0.00750093 0.0561966 0.0143339 0.0045167 -0.00187831 0.901573 725.276

A B z1 z4 z3 z6 χ2 dFT
0.00153913 -0.00573201 0.0427374 0.0325508 0.00544977 -0.0013738 0.249697 640.799

Table A.5.: A sample hit for the contractions ξ and ξ′ (top) and ξ and ξ′′ (bottom) in the A,B
class of models matching the natural hierarchies associated with the FN charges
listed in Table 3.5.
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A.3. Neutrino mass diagrams for the RPV models

This section of the appendix lists the neutrino mass terms and associated topologies used in
chapter 4. In the diagrams, a circle is used to indicate mixing while a cross represents a mass
insertion.

• mν
i j ⊃

cos2 β
m̃ µiµ j

• mν
i j ⊃

g 2

64π2 cos2 β

Bi B j

m̃3

• mν
i j ⊃

g 2

64π2 cosβ
µi B j+µ j Bi

m̃2

• mν
i j ⊃

∑
k

3
16π2 g mdk

µi λ
′
j kk+µ j λ

′
i kk

m̃ +∑
k

1
16π2 g mek

µi λ j kk+µ j λi kk

m̃

(The diagrams ∝µλ are obtained by replacing the (s)quarks with the according (s)leptons.)
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• mν
i j ⊃

∑
l ,k

3
8π2 λ

′
i lkλ

′
j kl

mdl
mdk

m̃2
q

µ tanβ+∑
l ,k

1
8π2 λi lkλ j kl

mel
mek

m̃2 µ tanβ

(The diagrams ∝λλ are obtained by replacing the (s)quarks with the according (s)leptons.)
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Acronyms

Altarelli-Feruglio (AF)

Referring to the names of the involved physicists. 17, 19, 20, 24, 25, 28, 29, 31, 69

Altarelli-Meloni (AM)

Referring to the names of the involved physicists. 17, 19, 29, 69

beyond the Standard Model (BSM)

A generic term covering all particle physics not described by the standard model. 1, 10,
17, 40

CP violation (CPV)

Referring to the invariance under the combinations of charge conjugation symmetry C
and and parity inversion P . 7, 39–41, 61, 80

electromagnetic (EM)

Referring to the electromagnetic force, observable below the scale of electroweak sym-
metry breaking. 2, 4, 6

electroweak (EW)

Referring to the unification of SU(2)L and U(1)Y . 4, 6, 48, 55

electroweak symmetry breaking (EWSB)

The breaking of electroweak symmetry by the vacuum expectation value of a scalar field.
1, 5, 6, 13, 14, 40, 47

Froggatt-Nielsen (FN)

Referring to the names of the involved physicists. 19, 20, 28, 43, 44, 47, 48, 50, 52–55, 68

geometrical CP violation (GCPV)

SCPV with precisely calculable phases of the involved complex VEVs. 2, 39–43, 47, 48, 50,
52, 54, 55, 58, 67, 68
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Acronyms

Glashow-Weinberg-Salam (GWS)

Referring to the names of the involved physicists. 3, 4

inverse hierarchy (IH)

Referring to the order m3 ¿ m1 < m2 of the three light neutrino mass eigenvalues. 2, 8,
53, 57, 62, 64, 65, 68, 72

leading order (LO)

The leading terms in the context of perturbation theory. 17–19, 28

Minimal supersymmetric Standard Model (MSSM)

A general supersymmetric model requiring the smallest number of fields. 11, 13, 14, 19,
58

next to leading order (NLO)

C.f. leading order. 18, 36

normal hierarchy (NH)

Referring to the order m1 < m2 ¿ m3 of the three light neutrino mass eigenvalues. 2, 8,
53, 57, 62, 64, 65, 68, 72

Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

Referring to the names of the involved physicists. 7

Quantum Chromodynamics (QCD)

The theory of the strong interaction, described by the gauge group SU(3)C . 3, 4

R-parity violation (RPV)

Referring to the quantum number RP = (−1)3(B−L)+2S defined by baryon number B ,
lepton number L and spin S. 2, 14, 15, 57–62, 64, 65, 68

spontaneous CP violation (SCPV)

The implementation of CPV via the spontaneous breakdown of a symmetry. 39–42, 67,
68, 79

Standard Model (SM)

A local quantum gauge field theory, describing most observed particle physics. 1, 2, 4–6,
9–13, 39, 40, 43, 44, 47, 49, 50
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Acronyms

Supersymmetry (SUSY)

A symmetry relating bosons and fermions. The only possible extension of the Poincaré
symmetry of the S-matrix. 1, 2, 10, 11, 13, 16, 19, 40, 65

tribimaximal-mixing (TBM)

A special three generation neutrino mixing pattern. 1, 2, 8, 17–20, 24–27, 29, 32, 37, 38,
51, 52, 57, 61–65, 67, 68

ultraviolet (UV)

In this work generally referring to high energy. 1, 17–20, 22, 25, 28, 32, 33, 36, 37, 39, 44,
49, 67

vacuum expectation value (VEV)

The vacuum expectation value of a (complex) scalar field. 4–6, 13, 19, 20, 22, 23, 25, 26,
28, 31, 33, 35, 36, 40–43, 46–50, 55, 79
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