EVERY PROPERTY OF HYPERFINITE GRAPHS IS TESTABLE*
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Abstract. A k-disc around a vertex v of a graph G = (V, E) is the subgraph induced by all
vertices of distance at most k£ from v. We show that the structure of a planar graph on n vertices,
and with constant maximum degree d, is determined, up to the modification (insertion or deletion)
of at most edn edges, by the frequency of k-discs for certain k = k(e,d) that is independent of the
size of the graph. We can replace planar graphs by any hyperfinite class of graphs, which includes,
for example, every graph class that does not contain a set of forbidden minors.

A pure combinatorial consequence of this result is that two d-bounded degree graphs that have
similar frequency vectors (that is, the ¢ difference between the frequency vectors is small) are close
to be isomorphic (where close here means that by inserting / deleting not too many edges in one of
them, it becomes isomorphic to the other).

We also obtain the following new results in the area of property testing, which are essentially
equivalent to the above statement. We prove that

e graph isomorphism is testable for every class of hyperfinite graphs,

e every graph property is testable for every class of hyperfinite graphs,

e cvery hyperfinite graph property is testable in the bounded degree graph model,
e A large class of graph parameters is approximable for hyperfinite graphs.

Our results also give a partial explanation of the success of motifs in the analysis of complex
networks.
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1. Introduction. Given two planar graphs G; = (V1, E) and Gy = (Va, E2) on
n vertices whose maximum degree is bounded by a constant d, can we decide whether
the two graphs are isomorphic? This problem is a special instance of the graph
isomorphism problem, the complexity of which is not yet fully understood (but which
has a polynomial algorithm for bounded degree graphs [14, 16]). Assume that we only
want to solve a relaxed version of the problem, where we are supposed to accept the
two graphs with probability at least 2/3 if they are isomorphic, and reject them if
they have edit distance more than edn. Further assume that we are given access to
the adjacency list representation of the two graphs. This puts this question into the
framework of property testing of bounded degree graphs, introduced in [11]. We show
that with the promise that the graphs, say, are planar!, the answer is positive in a very
strong sense. Namely, there is an algorithm that for any €, queries only a constant
g = q(e,d) number of vertices in the graphs and gets the (at most) d neighbors of
every queried vertex. The algorithm accepts with probability 2/3 two planar graphs
that are isomorphic while it rejects with probability 2/3 two planar graphs that are
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IThe class of planar graphs here can be replaced with any hyperfinite class of graphs. The family
of hyperfinite graphs contains bounded degree planar graphs, as well as any family that is defined
by a collection of forbidden minors, and some other families of graphs.
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e-far from being isomorphic?.

We also show that for any graph property II, deciding whether a given planar
graph has IT or is e-far from having IT requires at most ¢ = ¢(¢, d)-queries - a constant
number of queries to the graph (independent of the graph size). Combining this with
a result of Benjamini, Schramm and Shapira [4] (or Hassidim, Kelner, Nguyen, and
Onak [12]) this implies that a similar task can be performed for arbitrary graphs
of bounded degree, if the studied property is planar, i.e. all graphs that have the
property are planar. The result can be extended to any hyperfinite graph property.
Previously, this was only known for monotone hyperfinite graph properties, which
contain, for example, all minor-closed graph properties [4] (see also [12] for a simpler
proof for the testability of all minor-closed graph properties).

Another immediate corollary of our results is that every graph parameter, i.e.
every function of a graph that has the same value for isomorphic graphs, whose
value changes by at most a constant under insertion or deletion of one edge, can be
approximated up to an additive error of edn for bounded degree planar graphs, using
only a constant number of queries to the input graph. Again the result can be extended
to any family of hyperfinite graphs. Previously, this was known only for specific
functions like maximum matching, minimum vertex cover, minimum dominating set
and maximum independent set [17, 12, 7] and for all parameters of graphs of bounded
growth [8].

In the next couple of paragraphs we briefly describe the recent relevant devel-
opments in property testing of bounded degree graphs and what is the context of
our contribution. As already noted in [4], our understanding of property testing in
the dense graph model is much better than that of the bounded-degree model. This
is since Szemerédi’s Regularity Lemma provides a ’constant-size’ description for any
dense graph (up to changing €|V (G)|? of the edges / non-edges) that is accurate
enough to test any testable graph property in that model [1]. For the bounded-degree
model, we do not have such a theory. It turns out, however, that for bounded de-
gree graphs that come from a hyperfinite-family of graphs, (e.g., planar graphs) the
ideas from [6, 4, 12] together with the results here, provide a notion of ’constant-size’
description of such graphs. This description is just the frequency vector of constant
size discs in the graph. This notion serves us well from two points of view. It can
be estimated very efficiently (by sampling a constant number of vertices and edges
in the graph), and it captures enough information to let one decide the existence of
every property of such graphs (up to the deletion or insertion of a small fraction of the
edges). These two features are just what is needed for property-testing (in analogy
with regular partitions as in [1]), and derive the corresponding results.

The first step in this direction was done by Czumaj, Shapira and Sohler in [6],
where the authors showed that in planar graphs (again this can be extended to more
general families of graphs) testing of hereditary graph properties can be reduced to
testing the occurrence of small connected induced subgraphs. The break-through
made by Benjamini, Schramm and Shapira [4], was to prove that this local view al-
ready says enough about the possibility of being planar (or not having any minor
from a set of forbidden ones). They show that any graph which can be partitioned
into small connected components by removing edn edges, has a significantly different
distribution of certain constant sized subgraphs than graphs, which are far from hav-

2¢-far here means that one needs to modify at least an e-fraction of the edges in one of the graphs
so that the resulting graphs become isomorphic. We will refer to such algorithms as property testing
algorithms or testers, for short. See exact definitions in Section 2.
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ing such a partition. Their proof shows that, based on the local information, one can
(randomly) construct a global partition of the graph into small components by remov-
ing at most edn edges from the graph. As a result they show that every monotone
hyperfinite property of graphs is testable in constant time. This implies, in particular,
that every minor-closed graph property is testable. In a follow-up work, Hassidim,
Kelner, Nguyen, and Onak [12] give an explicit algorithm to locally compute such a
partition. They develop a uniform tester for minor-closed properties and also improve
on the running time of the previous tester. Furthermore, they show that the distance
to any non-degenerate hereditary property can be approximated with additive error,
if the graph comes from a hyperfinite family of graphs (a hereditary graph property
is non-degenerate, if for any number of vertices the empty graph has the property).
Their work uses a previous result by Nguyen and Onak, which shows how to transform
certain greedy algorithms into local algorithms.

Using the machinery of [12] we show that this local view is sufficient for testing
any property of planar graphs (or hyperfinite graphs in general). Our techniques
heavily rely on the recent development in the area of testing in the bounded degree
model described above. In particular, we use the local partition oracles used implicitly
in [4], and explicitly in the later result by Hassidim, Kelner, Nguyen, and Onak [12],
which in turn is based on a technique developed in [17].

Building on the results in the conference version of this paper, Elek extended our
main result to the theory of graph limits and proved that if two hyperfinite graphings
have the same local statistics then they are globally close [9].

We end this section by pointing at an interesting connection between the recent
work in property testing and the concept of motifs used in the analysis of complex
networks [15]. Motifs are subgraphs that occur significantly more frequent in a given
class of graphs than in a random graph. They are supposed to be the "building blocks’
of networks appearing, for example, in biological applications and can also be used
to classify certain classes of networks. Furthermore, they are often assumed to have
a specific function in the considered class of networks. From a combinatorial point
of view, a motif is simply a heavy hitter (large entry) in the histogram of constant
sized subgraphs. A different view of our result says that two graphs are close to be
isomorphic if their histograms of local neighborhoods are close. Thus, such heavy
hitters should be of high significance to the structure of the whole graph, at least, if
the graph is hyperfinite.

Finally, we remark that in a preliminary version of this paper in STOC2011,
we have presented a different proof of the main results. We first proved the pure
combinatorial result stated in Theorem 3.1 using a probabilistic argument. Then we
showed that it directly implies the results on property testing. Here we present a much
simpler direct proof for the property testing results, and show how the combinatorial
statement follows. For those that are less interested in the theory of property testing
we include also a direct proof of the purely combinatorial Theorem 3.1.

The rest of this draft is organized as follows: Section 2, contains basic notations,
preliminary definitions and background on property testing. Section 3 contains the
formal description of the results. Sections 4, and 5 describe the needed machinery
from [12] along with an estimator for the frequency vector of local neighborhoods.
Sections 6 and 7 contain the proofs of the main property testing results. Sections 8
and 9 contain the proofs related to isomorphism testing and the combinatorial results.
Finally, we end with some additional discussion in Section 10.
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2. Notations and definitions. In this paper we consider undirected labeled
graphs without self-loops. We use G = (V, E) to denote a graph with vertex set V'
and edge set E. We write V(G) to denote the vertex set of graph G, and will always
assume that V(G) = {1,...,n} for the graph G at hand. We will shortly say that a
graph is d-bounded degree if its maximum degree is at most d (here d = O(1) will be
a constant that does not depends on n, while the number of vertices n will tend to
infinity).

To state our results we need the following definition of hyperfinite graphs, which
was introduced in [7].

DEFINITION 2.1 (Hyperfinite). Let 0 < € < 1, and k € N. A graph G is
called (e, k)-hyperfinite, if one can remove en edges from G and obtain a graph whose
connected components have size at most k. For a function p : RT — RT a graph G
is called p-hyperfinite , if, for every e > 0, G is (e, p(€))-hyperfinite. A collection of
graphs is p-hyperfinite, if every graph in the collection is p-hyperfinite. A collection
of graphs is called hyperfinite, if there exists a function p such that the collection is
p-hyperfinite.

We note that d-bounded degree planar graphs are p-hyperfinite for p = O(d?/€?),
and any class that is defined by a finite collection of forbidden minors is p-hyperfinite
for some p that is O(d?/€?) (see e.g., [3]).

Two graphs G1 = (V1, E1) and Gy = (Va, E») are called isomorphic if there exists
a bijective mapping ® : V3 — V4 such that (u,v) € E; if and only if (®(u), ®(v)) € Es.
Such a map @ is called a graph isomorphism map between G; and Gs.

2.1. k-discs. A connected graph G = (V, E) with a specially marked vertex v,
is called a rooted graph and we sometimes say that G is rooted at v. A rooted graph
G = (V, E) with a root v has radius k if every vertex in V has distance at most k from
v. Two rooted graphs G and H are isomorphic, if there is a graph isomorphism map
between H and G that identifies the roots with each other. We denote by N(k,d)
the number of all non-isomorphic rooted graphs with maximum degree at most d and
radius at most k. For a d-bounded degree graph G = (V, E), an integer k and a
vertex v € V, let Bg(v, k) be the subgraph rooted at v that is induced by all vertices
of G that are at distance k or smaller from v. In particular, Bg(v, k) is a graph of
radius at most k. Bg(v,k) will be called the k-disc around v. The k-discs of G are
all possible Bg (v, k), v € V. Note that for bounded degree graphs, the number of all
possible non-isomorphic k-discs is at most N(k,d). Let H(k,d) = {H1,..., Hy(,a)}
denote the set of all d-bounded degree rooted graphs with radius at most k.

2.2. Distance between graphs and Property testing. A graph property is
a (possibly infinite) collection of graphs, which is closed under isomorphism.

DEFINITION 2.2 (Graph distance). Let Gy = (V1, E1) and Go = (Va, Es) be d-
bounded degree graphs on n vertices. The distance dist(G1,G2) is the number of edges
that needs to be deleted and/or inserted from Gy in order to make it isomorphic to
Go. We say that G1,Ge are e-far from being isomorphic (or Gy is e-far from Gz ), if
dist(G1,Ga) > edn. Otherwise, we say that they are e-close (to be isomorphic).

DEFINITION 2.3 (e-far). Let IT be any (non-empty) graph property on d-bounded
degree graphs. A d-bounded degree graph G = (V, E) is said to be e-far from 11, if it
is e-far from every G' € II. If G is not e-far from 11, it is said to be e-close to II.

A d-bounded degree graph will be represented by its adjacency lists. This can
be thought of as an array of size n x d in which the /-th row contains the names of
the (at most) d neighbors of the ¢-th vertex. This representation, in the context of
property-testing, is referred to as the bounded degree model [11]. In this model, for a
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query to a vertex v € V and a number ¢, the i-th neighbor of v is returned in constant
time. If v has less than ¢ neighbors, a special symbol is returned to indicate this
fact. For simplicity, as we ignore constants, we assume that a query in this model,
for d = O(1), is defined by a vertex v € V(G), and the result of a query is the set of
the (at most d) vertices that are the neighbors of v.

The notion of property testing was introduced by Rubinfeld and Sudan [20] in
the context of algebraic properties and then defined for combinatorial properties (in
particular, for graph properties) by Goldreich, Goldwasser and Ron [10]. An e-test for
property II, or for short “tester”, in the bounded degree graph model, is an algorithm
that is given as input a bounded degree graph G which it accesses via queries as
described above. It accepts every graph from IT with probability at least 2/3, and
rejects every graph that is e-far from IT with probability at least 2/3.

If the graph neither has property II nor is e-far from II, a property tester for I1
may accept or reject. The query complexity of a tester is the number of queries for the
worst case input and worst case random choices. We call a graph property testable,
if it has a (non-uniform) property tester with constant query complexity.

DEFINITION 2.4 (Testable graph properties). A graph property I is called (non-
uniformly) testable in the bounded degree graph model with degree bound d, if there is
a function q = q(e,d) such that for any 0 < € < 1 and any n € N, there is a tester
Ac an for II, whose query complexity on graphs of n vertices is q.

A randomized algorithm is said to be non-adaptive, if its queries do not depend on
answers of previous queries and thus a non-adaptive algorithm can specify all queries
(or rather a probability distribution on sets of queries) right at the beginning of the
algorithms. It is not hard to see that a constant time non-adaptive algorithm cannot
do much in bounded-degree sparse graphs as the probability to sample two adjacent
vertices tends to zero as the graph size increases. Hence, the only information one
can obtain by sampling is an approximation of the distribution of the vertex degrees
(see also [21] for a formal proof of this statement). We therefore formalize the notion
of weak non-adaptivity. Consider an algorithm that specifies on its start, a (possibly
random) set of vertices to be queried and for each vertex a sampling radius. Then
the algorithm queries for each sampled vertex the subgraph induced by all vertices
at distance that is at most its sampling radius. If these are the only queries made
by the algorithm, it is called weakly non-adaptive. We note that, if an algorithm
queries on every run all vertices in the discs of a certain predefined radius k around a
uniformly chosen sequence of vertices of a fixed size then the algorithm is weakly non-
adaptive. Namely, for some fixed integers k,r, the queries are to a random sequence
v1,...,0. € V(G) and the vertices in Bg(v;, k), i = 1,...,7. We will use such an
algorithm in Section 5.

All the algorithms that are considered in this paper are weakly non-adaptive.

2.3. Partitions and the local view of the graph. For a graph G = (V, E),
and a set S C V, we denote by G[S] the induced graph on S, namely the graph
(S,E’) where E' = {(u,v) € E| u,v € S}. For two sets A,B C V we denote
e(A,B) = |{(u,v) € E| u € A, v € B}|. A partition of a set V is a set of pairwise
disjoint, non-empty subsets of V whose union is V. For a partition P = {C4,...,C;}
of V(G) we denote by G[P] the graph that is the union of G[C;]. Note that G[P] is
disconnected if » > 2 and is obtained from G by deleting all edges whose end points
are in different partition classes.

In this paper we will show that, for some k£ = O(1), knowing the number (or even
an approximation of it) of each type of k-disc in a graph taken from a hyperfinite-
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family of graphs already determines, from the point of view of property testing, the
presence of any graph property for that graph. To make this formal we use the
following definition.

DEFINITION 2.5 (Local view of a graph). For a d-bounded degree graph G =
(V,E) and integer k, let histg(k) be the histogram vector of all k-discs of G. Namely,
histg (k) is a vector of dimension N(k,d), indexed by all possible rooted graphs of
radius at most k and degree at most d. The ith entry of histg(k) corresponds to
H; € H(k,d), and counts the number of k-discs of G that are isomorphic to H;. Note
that G has n = |V| different discs, thus the sum of entries in histg(k) is n. Let
freqe (k) be the normalized distribution, namely freqq(k) = histg(k)/n.

For a vector v = (v1,...,v,) we will use ||[v]|y = >.._; |v;| to denote its ¢1-norm.
We say that two unit-length vectors u, v are A-close, if ||u —v|]; < A.

We present here the following two basic claims that relate the distance between
frequency vectors of graphs and the distance between the graphs.

Cramm 2.1. Let Gy, G4 be two d-bounded degree graphs on n vertices. Let k > 0
be an integer and 0 < X\ < 1. If freqq, (k) and freqq, (k) are A-close then there is
a bijection W : Vi — Vo such that, for all v € V1 but a A-fraction of the vertices,
Bg, (v, k) is isomorphic to Bg,(¥(v), k).

Proof. Let H(k,d) = {Hi,...,Hy(,a} be as defined above. For every i €
[N(k,d)], let a1(H;)(aa(H;)) denote the number of occurrences of H; as a rooted
graph in G (G respectively). Since |[Vi| = |V| = n, the assumption that ||freqs, (k)—
freac, ()] < X implics that [histc, (+) ~hista (B)l1 = X e, Jon (Hi)—aa(Hi)| <
A-n.

For each i € [N(k,d)], we can pair greedily the vertices v € V; with v € V3 if
both Bg, (v, k), Ba,(u, k) are isomorphic to H;. This will leave out at most |« (H;) —
ao(H;)| vertices unpaired. This pairing is extended to a bijection ¥ between V; and
V, arbitrarily on unpaired vertices. This leaves out altogether ;.. 4 loa (Hi) —
as(H;)| < An vertices v € V; for which Bg, (v, k) is not isomorphic to Bg, (¥ (v), k).
|

CrLAM 2.2. Let k > 1 be an integer and let 0 < A < 1. Let G} and G35 be two
d-bounded degree graphs on n vertices whose connected components have size at most
k and whose frequency vectors frquI(k) and frquE(k) are A-close. Then G5 and G%
are A-close.

Proof. Greedily map connected components of G to isomorphic ones in G35,
until this is no longer possible, and then extend the map to a bijection between the
remaining subsets of vertices arbitrarily. By definition, only a A-fraction of the vertices
will be mapped to images on which the k-neighborhoods (which are equivalent to the
connected component of the vertex) do not agree. Deleting the incident edges from
G7 and inserting the corresponding edges from G3% under our bijection requires at
most A\dn edge modifications by the bounded degree assumption. Hence, the graphs
are A-close. O

3. Results. Our main combinatorial result is the following theorem. It states
that the local view of a hyperfinite graph determines, up to changing at most edn
edges, its global structure.

THEOREM 3.1 (Local versus global graph structure). Let G1,Gy be d-bounded
degree, p-hyperfinite graphs on n vertices. Then for every e, 0 < € < 1, there exists
n= W(G,P,d)’ D = D(Eapv d), such that: Zf ”frqul (D) 7f7"qu2 (D)”l <7 then Gy s
e-close to being isomorphic to Gs.

In the following, we will derive a number of results in the area of property testing.
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These results are (essentially) equivalent to Theorem 3.1. The first result says that
graph isomorphism is testable for hyperfinite graphs. This follows almost immediately
from our main theorem (and also vice versa, if one also takes the structure of the
property tester into account). The reason is that, in the context of property testing,
the local view of a graph gives a sufficiently close estimation of its global view. In
addition, one can estimate the local view by random sampling. The other results are
related to Theorem 3.1 in a similar way.

One may consider Theorem 3.1 as our main result, as it is purely combinatorial
and meaningful outside the area of property-testing. Indeed in a first version [18] we
prove it first and deduce the other implications. However, as it turns out, proving
directly Theorem 3.3 is conceptually easier. Hence we delay the proof of Theorem 3.1
to the end.

THEOREM 3.2 (Isomorphism of hyperfinite graphs is testable). Let C be a p-
hyperfinite family of graphs with mazimum degree at most d. Then there is a function
s = s(e, p,d) such that for any 0 < € < 1 there is a tester A, 4 with query complexity
s for the graph isomorphism problem for graphs in C. Namely, the algorithm Acq
has access to two graphs G1,Go € C with |Vi| = |Va|. It makes at most s queries to
G1 and Gy and accepts G1,Go with probability at least 2/3, if Gy is isomorphic to
Ga, and rejects with probability at least 2/3 if G1 is e-far from any isomorphic copy
of Go. If the function p is computable, then there is also a uniform tester for graph
isomorphism.

Following a similar line of thought one can also prove that any graph property is
testable in hyperfinite graphs.

THEOREM 3.3 (Every property is testable for hyperfinite graphs). Let C be a
hyperfinite family of d-degree bounded graphs, and I1 any graph property. The property
IT is testable for any graph taken from C.

Note that Theorem 3.3 is a 'conditional’ statement. Namely, if the graph G is
in the hyperfinite family C then it can be tested for II. To obtain the following
unconditional theorem we use the fact that being in a hyperfinite family C can be
tested, similarly to [4]. Together with the previous theorem, this implies that we
can test every property that is the intersection of a hyperfinite family C (which is
closed under isomorphism) and an arbitrary graph property. Equivalently, every graph
property which contains only hyperfinite graphs can be tested. Such a graph property
will be called hyperfinite.

THEOREM 3.4 (Every hyperfinite property is testable). FEwvery hyperfinite graph
property is testable in the bounded degree graph model. In particular, taking II to be
the set of all graphs, the above implies the testability of being in C, e.g., rephrases
that planarity is testable (by the same test as suggested in [12]), which was first shown
in [4].

An immediate application of Theorem 3.3 is that of approximating graph pa-
rameters. A graph parameter is an integer function that maps graphs to a range
{1,...,m} and that assigns the same value to isomorphic graphs. Examples include
the size of a maximum matching, a maximum cut or independent set. We say that a
graph parameter f is A-robust, if, for any G, f(G) changes by at most +A, if an edge
is added to or deleted from G. Let f be a A-robust graph parameter for A = O(1).
Let TI(¢, €) be the set of all graphs G for which £ — ed|V| < f(G) < £. Since II(¢, €)
is a graph property, Theorem 3.3 asserts that II(¢, ¢) can be tested using a constant
number of queries for any hyperfinite family of graphs. Thus an estimate of f(G) can
be approximated to within an additive error of ed|V| by testing II(¢, €) for various ¢'s.
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Thus we get,

COROLLARY 3.5. Let C be a p-hyperfinite family of graphs of d-bounded degree,
and f be any O(1)-robust graph parameter. Then for any 0 < € < 1 there is a constant
query complexity, randomized algorithm Ac qn, that approximates f(G) to within an
additive error of ed|V|, for any graph G = (V,E) € C, |V| = n, with probability at
least 2/3.

4. Algorithms for local graph partitioning. We present here the main ma-
chinery from [12]. Our proof requires their construction of a partitioning oracle (see
Definition 4.2) as stated in Lemma 4.3 below. Every graph taken from a hyperfinite
family of graphs admits a partitioning into small connected components by removing
a fraction of the edges. To be useful for property testing and sublinear approximation
algorithms, it would be nice if the features of such partitions could be obtained by
some local sampling. Indeed an oracle to such a partition, that decides in constant
time, for each vertex, to which partition class it belongs, has been developed by Has-
sidim, Kelner, Nguyen, and Onak [12]. Also, an earlier work of Benjamini, Schramm
and Shapira [4] implicitly contains a way to construct such a local partitioning. In
the following we will explain the result of Hassidim et al. in more details as their
algorithm will be required for our analysis.

The oracle is constructed by using a technique from [17] that can be applied to
derive constant time algorithms from certain greedy approximation algorithms. In
[12] the authors present a greedy algorithm to compute the desired partition, which
then can be made local using the technique from [17]. In this greedy algorithm,
the vertices are considered in random order m = (my,...,m,). The algorithm greedily
removes components containing the current vertex m; (if this vertex is still in the graph
when it is considered by the algorithm). Namely, if there exists a small connected set
S of vertices that contains 7; and that has a small cut to the rest of the graph, this
set will be cut out by the algorithm. Otherwise the single vertex m; is cut out.

Formally, a set S C V is a (k,&)-isolated neighborhood [12] of v € V, if v € S,
the subgraph induced by S is connected, |S| < k and e(S,V — S) < £|S|. With this
definition, we can state the algorithm from [12] that computes a partition of G.
GLOBALPARTITIONING(k;, &)

7w = (m,...,T,) = random permutation of V(G).
P =0,
while G is not empty do

Let v be the first vertex in G according to 7

if there exists a (k, £)-isolated neighborhood of v in G

then S = this neighborhood

else S = {v}

P=PU{S}

Remove all vertices in S from the graph

Note that the random permutation of the vertices deterministically defines the
partition. We thus denote this partition by P(7) and the graph induced by the
connected components of P(w), by G[P(m)]. The partition, of course, depends also
on & and k, but these parameters will be taken to be fixed in the context of use. For
any run, namely choice of 7, the connected components in G[P(7)] are of size at most
k. If in addition at most en edges are deleted in order to move from G to G[P(w)],
we say that the partition is an (e, k)-partition. Hassidim et al. [12] proved.

THEOREM 4.1.[12] Let 0 < e < 1 and G be a d-bounded degree graph taken from
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a p-hyperfinite family. Then there is a & = &(e,p,d), k = k(e, p,d) such that, with
probability at least 9/10, the random partition generated by the randomized algorithm
above for G, is an (ed, k)-partition.

If we are to make only few queries to the graph, we need a more local view of
such partitions. This motivates the following definition of [12]. Recall that a query
of a vertex v € V(@) returns all the neighbors of v. In the following definition P[v]
denotes the set of vertices of the partition that contains v.

DEFINITION 4.2. [12] A randomized algorithm O is an (e, k)-partitioning oracle
for a class C of graphs, if, given query access to a graph G = (V, E), it provides query
access to a partition P of V.. For a query about v € V, O returns P|v]; the partition
class that contains v. The partition has the following properties:

e P is a function of the graph and random bits used by the oracle. In particular,
it does not depend on the order of queries to O.

e For everyv € V, |P[v]| <k and P[v] induces a connected graph in G.

o If G belongs to C, then |{(v,w) € E : Plv] # Plw|}| < €|V| with probability
9/10.

For sake of completeness, we will briefly recap the ideas from [12] how to turn the
global partitioning algorithm in a local partitioning oracle. In [12] it is shown how to
implement the global partition algorithm described above such that one can access
the global partition using only queries to a small local part of the graph. The result
of this implementation is a (local) partitioning oracle. In order to do so, one issue
is to simulate locally a random permutation. This is done as follows. Each vertex is
assigned a random priority from [0, 1], independently of any other vertex. Thus this
defines a random map 7 : V > [0,1]. Such a map naturally defines a permutation on
V by taking the vertices according to increasing priorities®. The advantage of defining
a permutation by such random ordering is that one can select the priority at random
whenever access to a vertex (and its priority) is required. In what follows we will
identify such a map 7 with the random permutation on V' that is associated with it.

Now, a local algorithm can access the partition P[v] of a query vertex v as fol-
lows: The 2k-disc around v is explored, and whenever a new vertex is encountered
whose priority has not yet been fixed, its priority is chosen uniformly at random from
[0,1]. If v has lowest priority among all discovered vertices in the neighborhood, we
know that it would be encountered and cut out first in its k-disc by the algorithm
GlobalPartitioning running on a permutation that is consistent with the (partially
determined) random order 7. Hence, this operation cannot affect vertices that have
been cut out earlier in other places of the graph. Indeed, any vertex u with lower
priority must have a distance of more than 2k from v and cutting out vertices never
decreases distances, so any k-neighborhood of u cannot intersect any k-neighborhood
of v. Thus, in this case, the partition class P[v] is determined and can be answered
by the oracle. Otherwise, if the neighborhood around v contains a vertex u with
m(u) < 7(v), then we recurse by moving to the vertex w with the smallest priority.
We note that the oracle can be used to answer a sequence of queries, in such a case,
the partially determined 7 is, of course, saved. Namely, once a vertex is encountered
along the above process, its priority is determined and will never change in the future.

We also note that for every permutation 7 the local partition oracle is consistent
with the partition produced by the algorithm GlobalPartitioning above, for the same
7 (and the same € and k). It is proved in [12] that the expected number of queries

3If two vertices are mapped to the same value, then the permutation is not well defined, but this
occurs with probability 0, hence will be disregarded.
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(namely the recursion depth) is bounded for hyperfinite graphs. This is summed up
in the following lemma, which is a slight variation of the lemma stated in [12] (see
also [19]).

LEMMA 4.3. [12] Let G be an (€3/54000, k)-hyperfinite d-bounded degree graph
with d > 2. Then there is an (ed, k)-partitioning oracle with the following properties:
If the oracle is asked q non-adaptive queries, then with probability 1 — §, the oracle

q . 2do<k)

makes 3§ queries to the input graph. The time complexity for computing the

answers to the q queries is bounded by % log % L 9do®

5. Estimating the frequency vector of a graph. For our testers, as well as
for the proof, we need to approximate the frequencies of D-discs in a graph G = (V, E).
The vector freqn(D) can be estimated to within additive error £\ by sampling a
constant number of vertices and exploring the D-discs around them. We give the
algorithm below.
ESTIMATEFREQUENCIES(G = (V, E) with maximum degree d, D, s)
freq(D) =0
sample s vertices uy, ..., us uniformly at random
for j =1to s do
explore the D-disc around u;
let ¢ be the index such that H; € H(D,d) is isomorphic to this D-disc
set freq(D)[i] = freqq(D)[i] + 4
return freq. (D)

LEMMA 5.1. Let G be a d-bounded degree graph. If s > %gd)z -In(N(D, d) 4 40)
then algorithm ESTIMATEFREQUENCIES above returns a vector freqn(D) that with
probability at least 19/20 satisfies

|freqc (D) — frege (D)1 < A.

Proof. Let X;; be the indicator random variable for the event that the D-disc
Bg(uj, D) is isomorphic to H;. We observe that this event happens with prob-
ability freqs(D)[¢]. This implies that E[X; ;] = freqq(D)[i] and E[Z:j:1 Xi;l =
s+ freq(D)]i]. Furthermore, we have E[freqq (D)[i]] = - E[Y5_, Xi ;] = freqq(D)[i].

Using the Chernoff bound (see e.g., Theorem A.1.4 in [2]) we get for every i,

Pr(|fregc(D)[i] — freqq(D)[i]| > A/N(D, d)]

S S )\
= Prl ZXi;j - E[ZXLJ‘“ > ND.d) ]

j=1 j=1 ’

92 A2.s

< 2¢ “ N(D,d)?

1
< - -
- 20N(D,d)

By the union bound we get that with probability at least 19,/20 for every 4, ||freqe (D)[i]—
freq(D)[i]|l1 < A/N(D,d). This implies that ||freqo (D) — freqo(D)|lx < A. O

We end up this section with the following note: In the same way that the algorithm
ESTIMATEFREQUENCIES can estimate the frequency vector of G, it can be used as
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well to estimate the frequency vector of G[P(r)], namely the graph that is induced
by the (ed, k)-partition that is defined by an (ed, k)-partitioning oracle with random
permutation 7. One can just apply it on G[P] with D = k, and for each query to a
vertex u and the exploration of the k-disc around it, one just runs the partition oracle
that returns the connected component of u in G[P], as asserted by Lemma 4.3. Thus,
each query in algorithm FREQUENCYESTIMATE is executed by calling the partition
oracle. Note that algorithm ESTIMATEFREQUENCIES samples the vertices uy, ..., ug
non-adaptively and so the guarantees of Lemma 4.3 hold. We query the partitioning
oracle for the partition classes of uq,...,us. These partition classes are the k-discs
around uq, ..., us since every connected component in G[P] has diameter at most k.
This is formally stated in the following Lemma.
LEMMA 5.2. For every choice of constants 0, \ with 0 < §,\ < 1 and every
k > 1, there are values €55 = €5.2(8), Dso = Dsa(Nk,d), s5.20 = s5.2(\, k,d) and a
randomized algorithm SAMPLER, that on a random permutation 7 (given as a priority
vector), accesses a graph G with maximum degree at most d by querying independently
s5.2 random vertices of G and exploring the Ds.o-discs around them. The algorithm
outputs a frequency vector f If the input graph G is d-bounded degree and (€52, k)-
hyperfinite then, with probability at least 4/5 (over the choices of ™ and the internal
coins of the algorithm), the following two events occur.
1. The partition P(w) defined by algorithm GLOBALPARTITIONING with param-
eters €50, k, and using the permutation w as its random permutation, is a (dd,k)-
partition. _
2. The output vector f A-approzimates the frequency vector freqqpxy of the

k-discs in G[P(n)](k). Namely, we have ||f — freqapy (Bl < A
Proof. Let §,\ and k be given. Define €52(8) = §2/54000, the values required
to apply Lemma 4.3. Then the definition of partitioning oracles implies that with

probability at least 9/10 the first event occurs. Next, define s52(\, k,d) = N(’;;d)z .
In(20N (k,d)), the value required to apply Lemma 5.1. Provided the oracle can answer
all queries based on the information obtained from the sampled D5 5-discs, this implies
that with probability 19/20 the second event occurs. Finally, Lemma 4.3 and the fact
that the local partitioning oracle accesses connected sets around each query vertex
imply that, for sufficiently large D5 o(A, k, d), with probability at least 19/20 all queries
to the oracle can be answered within the queried discs. This proves our lemma. [

6. Every property is testable for hyperfinite graphs. We now have the
machinery required for proving our results. We first start with the proof of Theorem
3.3. We restate the theorem below.

THEOREM 6.1 (Every property is testable for hyperfinite graphs; restated). Let
C be a hyperfinite family of d-bounded degree graphs, and I1 any graph property. The
property 11 is testable for any graph taken from C.

The main idea is quite simple. Let G € C, where C is p-hyperfinite and G is d-
bounded degree. By the definition, since G is (e, k)-hyperfinite for any € and k = p(e),
G has a ’small description’ up to the deletion of edn edges. This is just the frequency
vector freqepr) (k) of the components of G[P()], where P(r) is an (e-d, k)-partition
of G. If P(m) is indeed an (e-d, k)-partition of G, these components are all spanned by
k-discs, and G[P(m)] is e-close to G. Note that freqip(r) (k) is an N (k, d) dimensional
vector, that is O(1)-dimensional. The entries in freqqp () (k) might not be of constant
size (namely, have denominators n), but we avoid this issue at this stage (this will
be automatically taken care of in the formal proof and test below). Furthermore,
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knowing freqgp(y (k) exactly, uniquely defines G[P(7)] - it is just being composed
of the appropriate number® of disjoint copies of H;, i = 1,..., N(k,d).

Now assume that we want to e-test G for a property II, and that we have at hand
the 'small description’ freqgp () (k') of G for some value k" = k’(e, p) that is accurate
up to edn/2 edges. The test is then obvious: we reconstruct G* = G[P ()] and check
whether it is €/2-close to II. If it is we accept G and otherwise reject it. Indeed, if
G has TI, then since G* is €/2-close to G, G* is €/2-close to II and hence G will be
accepted. On the other hand, if G is e-far from II, then G* is e/2-far from II and so
the algorithm rejects.

Thus all we need is an access to the corresponding small description freggp (- (k')
While we can’t have this, the sampler guaranteed by Lemma 5.2 gives an approxima-
tion to this small description. Thus all we need to do is to handle the accumulation
of sampling errors, and the probability of failure. This is done formally below.

Proof. [Of Theorem 3.3] Let G € C, where C is p-hyperfinite and G is d-bounded
degree. Let IT be the property that we want to e-test G for. Let § = A = €/4,
€ =e5.2(0) and let k = p(€'), D = D52()\, k,d). By Lemma 5.2 there is a randomized
algorithm that makes at most ¢ = s5.2(\, k,d)-dPT = O(1) queries to G and outputs
a frequency vector f, with the guarantees of Lemma 5.2, that corresponds to § and
k.

This sampler defines the e-test for IT (namely, all the queries it performs). The
decision is then taken as follows. We check if there is a graph G’ € IINC so that G’
has a (dd, k)-partition P’ and a corresponding induced graph G’[P’], for which the
frequency vector of k-discs, freqq/p (k), is d-close to f. If there is such G’ we accept
G and otherwise reject it. The query complexity of the test is obviously O(1). We
will now prove its correctness.

Disregarding whether G has II or not, since G € C, and C is p-hyperfinite, it follows
that G is (€, k)-hyperfinite. Hence, Lemma 5.2 guarantees that with probability
4/5 the sampler outputs a vector f that is A-close to a frequency vector of k-discs,
freqa. (k), of a graph G* = G[P(r)], where P(r) is a (dd, k)-partition of G.

We assume in the following that this event happens, and prove then that the
decision of the algorithm is correct. Indeed, assume that the event above, guaranteed
by Lemma 5.2 occurs, and G has II. Counsider G itself with a partition P(w) for
which G[P(w)] is a (dd, k)-partition, as a possible G’ in the definition of acceptance.
Obviously, for this G’ the frequency vector freqeip (k) is identical to fregqq. (k).
Recall however, that f is d-close to frqu,[p,](k), hence G will be accepted.

Next we prove that, if the guarantees of Lemma 5.2 hold (which happens with
probability at least 4/5), then no graph that is e-far from IT will be accepted. Let us
assume that a graph G is accepted on account of a graph G’ € IINC and a corre-
sponding frequency vector freqqp/(k) of G'[P’], and that the guarantees of Lemma

5.2 hold. Then || f — freqq (k)1 < & (due to acceptance) and |f = frege-(k)|l1 < X
(due to the guarantee of Lemma 5.2). Hence by the triangle inequality, fregq« (k) is
(6 + A)-close to freqgipi(k). In turn, Claim 2.2 implies that G* is (6 + A)-close to
G'[P’]. This, in turn, implies that G is (36 4+ A)-close to G’. Hence G is e-close to II.
Thus, if G is e-far from II, it can only be accepted, if the guarantees of Lemma 5.2
do not hold, which proves our theorem. 0O

Remarks: We end this discussion with a few notes on the proof.

4Each H; is counted |V (H;)| times, but not all of them are isomorphic as rooted discs. However,
each fixed H; contributes a fixed number to each entry of histg|p(x))(K)[i]-
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e The assumption in the theorem that C is p-hyperfinite was only to assure
that G is (€¢/, k)-hyperfinite for the € as in the proof. Hence, this assumption
can be replaced with the weaker assumption “G being (€', k)-hyperfinite for
an appropriate ¢ ”. The same phenomenon occurs for all the theorems we
present.

e Note that the test is somewhat oblivious of II. Namely, for every II it would
make the same queries. Only the decision is dependent of II. In particular,
the test can be run without knowing II, or for several II's, making the same
set of queries, and then making a decision for any desirable property (or all
properties). This is also true for all the relevant theorems that we present.

e While the query complexity is fixed and independent of II, we don’t have a
reasonable bounds on the time complexity (neither one can expect anything
for this generality of statement, as II may not even be decidable). Fixing
the size of the graphs n, and fixing II defines a finite collection G,, of graphs
of n vertices - these in II N C. One could run the test by constructing all
the frequency vectors for graphs in G,. Alternatively, one can choose the
error parameters somewhat smaller, and construct a fine enough net for this
collection of frequency vectors.

7. Every hyperfinite property is testable. Again we start by restating the
theorem we are about to prove.

THEOREM 7.1 (Every hyperfinite property is testable). Fuvery hyperfinite graph
property is testable in the bounded degree graph model.

Proof. Let II be a p-hyperfinite graph property, i.e. II viewed as a family of
graphs is p-hyperfinite. To e-test that a given graph is in II N C is very similar to
the test proposed in the proof of Theorem 3.3. The difference is that we now do not
have the promise that G comes from C and hence is not necessarily p-hyperfinite. The
idea (which has first been developed in [4]) is very simple: we first “test” if G has
(d, k)-partition for a small enough . If it fails to have such a partition, it will be
far from being p-hyperfinite, and hence we may safely reject. If it does have such a
partition, then we apply the test in the proof of Theorem 3.3. As explained in the
discussion following that proof, this premise is just enough to carry on the proof.

A tester that distinguishes (e, k)-hyperfinite graphs from graphs that are not
(4elog(4d/e), k)-hyperfinite has been given in [4]. Here, we will use a simple test that
has been used in [12] to obtain improved bounds for testing minor-closed properties.

To test whether the graph has (dd, k)-partition, we just run the local partition
oracle guaranteed by Lemma 4.3 for some ¢ random edges (u,v) € E(G) and estimate
the fraction of edges cut by the partition (namely for which P(u) # P(v)). This
obviously gives a good estimate for the number of edges cut by the partition. Formally:
Let 6 = ¢/4, € =€52(5), 61 = ﬁ, q=1/67 and k = p(&§3/54000).

The e-test for IINC is done in two phases:

Phase 1: verifying that G is p-hyperfinite: We first perform ¢ 'random
edge’ queries to the graph. Each query @Q;, ¢ = 1,...,q is implemented by selecting
a vertex v; € V(G) uniformly at random, and a random number r; € [d]. We make
Qi, i = 1,...q independent. As a result we get a sequence of vertices (v;, ), i =
1,...,q where «; is either 'null’ if deg(v;) < r;, or the r;th neighbor of v;, denoted
u;. Now, for each query @; for which we have obtained an edge (v;,u;), namely for
which an r;th neighbor of v; exists, we find out whether the edge (v;,u;) is cut by
the partition defined by the partition oracle. To do that we apply the random local
partition oracle that is guaranteed by Lemma 4.3, with input parameter ¢1, to make
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the ¢ nonadaptive vertex queries {v;| i € [q]}. Since the partitioning oracle returns
the component P[v;] of vertex v;, we can check whether wu; is in this component or
not, i.e. whether the edge (v;,u;) is cut. If v; and w; are in different components, we
mark the query.

We accept this phase if at most 44, - ¢ of the queries are marked. In that case we
go to Phase 2. Otherwise, we reject Phase 1, and the whole test.

Phase 2: We perform the e-test suggested in the proof of Theorem 3.3 for the
property IINC.

Obviously the test has O(1) query complexity. We prove below its correctness.

We first note that for any fixed edge e = (v, u) the probability that this edge will
be picked by a random query @; as above, (with either v; = v or v; = u) is exactly
%. In particular, every edge has the same chance of appearing in a query.

CrAaMm 7.1. If G € C, then it passes Phase 1 with probability at least 0.875.

Proof. Indeed, assume that G € C, then by the definition of C being p-hyperfinite,
G is (63/54000, k)-hyperfinite. But then, by Lemma 4.3, with probability 9/10 the
partition P that the oracle produces is consistent with a (1d, k)-partition. Namely,
at most d1dn edges are cut by P. Hence, for a random query @Q;, the probability that
it is marked is at most didn - % = 26,. Given that the partition oracle is indeed
as guaranteed in Lemma 4.3, we expect at most 2d1¢g queries to be marked, and by
Chernoff (Theorem A.1.4. in [2]), the probability that more than 4d1¢ queries are
marked is at most e=8%17 < 1 /40 for our choice of parameters. Thus such G will pass
this stage with probability as claimed. O

The partial inverse (just what is needed for the tester of Theorem 3.3) is also
true.

CramM 7.2. If G is not (€, k)-hyperfinite, then it will be rejected by Phase 1 with
probability at least 19/20.

Proof. Assume that G is not (€, k)-hyperfinite, then in any partition of V(G)
into components of size at most k, P’, at least ¢n = 491dn edges are cut by P’. In
particular, the local partition oracle of Lemma 4.3 induces a partition to components
of size at most k. Hence, random query will be marked with probability of at least
461dn - % > 81 to be cut. Again, by Chernoff, the probability that at most a
40;-fraction of the queries are marked is at most 1/20. O

We now formally complete the proof of the Theorem. If G € IINC, then by Claim
7.1 it passes Phase 1 with probability 0.875. Since Phase 2 is just the tester for the
proof of Theorem 3.3, it passes this test with probability at least 4/5. Hence G is
accepted by the whole test with probability at least 0.675 > 2/3.

Now consider a graph G that is e-far from II. If the graph is not (¢’, k)-hyperfinite,
it will be rejected with probability at least 9/10 in Phase 2. Thus, we can assume
that it is (¢/, k)-hyperfinite. Now Theorem 3.3 implies that G is rejected. O

8. Testing Isomorphism of Hyperfinite Graphs. We now present a short
proof for testing isomorphism in a hyperfinite family. We first restate the result.

THEOREM 8.1 (Isomorphism of hyperfinite graphs is testable; restated). Let
C be a p-hyperfinite family of d-bounded degree graphs. Then there is a function
s = s(e, p,d) such that for any 0 < € < 1 there is a tester Ac q for graph isomorphism
for two graphs in C whose query complexity is s. Namely, the algorithm A4 has
access to two graphs G1,Go € C with |Vi| = |Va|. It makes at most s queries to Gy
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and G2 and accepts G1,Go with probability at least 2/3, if Gy is isomorphic to Go,
and rejects with probability at least 2/3 if Gy is e-far from any isomorphic copy of
Go. If the function p is computable, then there is also a uniform tester for graph
isomorphism.

Proof. Let € > 0, C be a p-hyperfinite family of graphs, and G1,G2 € C be two
d-bounded degree graphs for which we want to e-test for isomorphism. The idea is
quite simple, we just use the oracle of Lemma 5.2 to compute an appropriate estimate
of the k-discs frequency vectors fi, fo for partitions of (i1, G2 respectively. We then
accept if the graph described by f; is close enough to the graph described by f2 and
otherwise reject.

Formally, let § = A = €/8, € = e52(d) and let k = p(¢’). We run the randomized
algorithm guaranteed by Lemma 5.2, independently on G; and G4 with parameters
0, A, k as above. Due to the choice of parameters, and the assumption that G1,Gs, € C
which is p-hyperfinite, these two runs produce two vectors f1, fa for Gy, G5 respec-
tively, that with probability 3/5 the following events occur simultaneously: (a) The
partition Py, and the partition P, that are induced by the oracle runs on Gy, G re-
spectively are (dd, k)-partitions. (b) ||f; — f¥|l1 < A, i = 1,2, where f is the k-discs
frequency vector of G;[P;], ¢ = 1,2. We accept, if there exist graphs Hy, Hy with
frequency vectors fi, fo such that H; is 20-close to Hs and ||ﬂ - fi||1 < Xfort=1,2.

Assume first that Gy is isomorphic to Go. We will define H; = G;[P;], i = 1,2,
and show that our choice of H; leads to acceptance. Assume that events (a) and (b)
above occur (which happens with probability at least 3/5). Event (b) implies that
| fi — fill. < A and event (a) implies that H; is d-close to G, i = 1,2. Tt follows, that
H, is 2)-close to Hy since G7 and G are isomorphic. Hence, the tester accepts with
probability at least 3/5.

Assume now that events (a) and (b) occur and that the tester accepts. In this case,
we know by the acceptance condition that there are frequency vectors ﬁ , 1= 1,2
describing graphs H; such that H; is (26)-close to Hy. Furthermore, we know by
the acceptance condition that || f; — fill < A for i = 1,2 and by condition (b) that
Ifi = f#lli < A Thus, ||f; — f#]l1 < 2X and Claim 2.2 implies that H; is (2))-close to
G;[P;]. Hence, G1[P1] is (20 + 4X)-close to G2[P2].

By the fact that Py, P2 are (dd, k)-partitions, it now follows that G is (40 +4\)-
close to G2. By our choice of §, A this implies that G is e-close to G2. Hence the
test is correct with probability 3/5 which can be amplified by repetition in a standard
way. O

9. The local view of hyperfinite graphs approximates its global struc-
ture. Finally, we prove the pure combinatorial result of Theorem 3.1, which we will
first restate below.

THEOREM 9.1 (local versus global graph structure; restated). Let G1, G2 be d-
bounded degree, p-hyperfinite graphs on n vertices. Then for every e, 0 < e < 1, there
exists 1 = (e, p,d), D = D(e, p,d), such that, if | freqq, (D) — freqq,(D)|l1 < n then
G is e-close to being isomorphic to Gs.

Proof. We prove the theorem for n > N, for some constant number N and obtain
a value D’ for which the theorem holds. If we then take D = max{D’, N} andn < 1/N
the theorem follows for every n, which can be seen as follows. If n < N the graphs must
be identical since each disc completely covers the connected component of its vertex
and by our choice of 7 the frequency vectors are identical. If n > N and the two graphs
satisfy [|freqg, (D) — freqe, (D)1 < n they also satisfy |freqg, (D) — freqe, (D) <1
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since ||freqq, (D) — freqq,(D)||1 > ||freqq, (D) —freqq,(D')||1. Thus, the result follows
already from the case n > N and disc radius D’.

Let G1 = (V1, E1),Go = (Va, E2) be d-bounded degree p-hyperfinite graphs on
n vertices, let € > 0 and k = p(e/4). Furthermore, assume that G; and Go satisfy
lfreqq, (D) — freqq,(D)|l1 < 1 for n = n(e, p,d) and D = D(e, p,d) to be determined
below. In order to show that G is e-close to Go we will show that they both have
partitions Py, Ps respectively, that are (ed/4, k)-partitions, and with frequency vectors
of their connected components (which are also k-discs) that are ¢/2-close. This will
imply that G is e-close to G5 by the triangle inequality: G is §-close to Gi[P;], i =
1,2 by definition, and G1[P1] is §-close to G2[P;] by Claim 2.2.

To show that there are corresponding partitions with close frequency vectors we
will use the algorithm associated with Lemma 5.2, applied on both graphs, with pa-
rameters €/4, A = €/4 and k as above. The choice of parameters here also determines
our choice for D, namely, D = D5 5(\, k,d). With probability at least 4/5 the algo-
rithm will return an estimate of the frequency vector of the connected components of
an (ed/4, k)-partition with ¢1-error at most €/4. We recall that this algorithm samples
a set S of vertices uniformly at random and then explores the D-discs around them.
It uses its internal randomness to (a) determine the set S and (b) to determine the
behavior of the partitioning oracles. Note that, if for two distinct graphs G; and G
the algorithm queries the same set of D-discs and if these D-discs do not intersect in
any of the graphs, then the output distribution (which still depends on the choice of
randomness for the partitioning oracle) is identical.

Since ||freqg, (D) — freqg,(D))||1 is bounded by 7, but not necessarily 0, we do
not expect that for the sample S, the algorithm will see exactly the same set of discs
in both graphs, but mostly so. To show that this is enough we need the following
properties of the sampled sets.

Let s = s52(\ k,d) and n = ﬁ. We first fix a mapping ¥ : V5 — V5 that
identifies the vertices of V7 with the vertices of V5 such that for all v € V4, but an
n-fraction of the vertices, Bg, (v, D) is isomorphic to Bg, (V(v), D). This is asserted
by Claim 2.1, using the fact that ||freqq, (D) — freqg,(D)|1 < n. Let F C Vi be
the set of these vertices v for which Bg, (v, D) is not isomorphic to Bg, (¥ (v), D).
Then |F| < n-n. We want to construct a sample set S C V7, such that the following
property is satisfied:

DEFINITION 9.2. A sample set S C Vi is called good, if for some choice of
random bits for the partitioning oracle,

1. the algorithm on input G1 and sample set S approximates the frequency vector
of an (ed/4, k)-partition of G1 with £1-error at most X,

2. the algorithm on input Go and sample set U(S) := {U(s) | s € S} approz-
imates the frequency vector of an (ed/4,k)-partition of Go with {1-error at most A,
and

3. the output vector of both instances is identical.

By the discussion above, if S is good, then indeed G1[P1] is €/2-close to G2[P:]
as needed, where P;, i = 1,2 are (¢/4, k)-partition for G;. Hence, we only need to
show the existence of good S.

DEFINITION 9.3. We say that a sample set S C Vi is D-indistinguishable in G
and Ga, if the following two conditions are satisfied:

e all D-discs in G1 rooted at vertices in S do not intersect,

o all D-discs in G rooted at vertices ¥(v), v € S do not intersect, and

e SNF=1.
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To show that there exists a good sample set S, we will focus on D-indistinguishable
sample sets. If a sample set S is D-indistinguishable, we can easily extend any per-
mutation of V; to a permutation of V5 in such a way that, on input S and ¥(S) and
with randomness given by the two corresponding permutations, the output vectors
returned by the two instances of our algorithm will be identical. Furthermore, if we
take the permutation of V; as random, so will be the permutation of V5 and so the
behaviour of the algorithm on input V5 will satisfy the same guarantees as that of a
normal instance. If we can prove that for some set S C V; there exists a permutation
of V; that satisfies Item 1 in Definition 9.2 and its corresponding permutation of V5
satisfies Item 2, then we have proved the existance of a good sample set. We say that
a sample set S is sufficient if this sufficient condition for being good is met for S.

In order to prove that a sufficient set S exists, we will first show that most sets .S
are D-indistinguishable for sufficiently large n. This follows, because the probability
for the event SN F # () is bounded by 2|S|-n < 1/5. Furthermore, as |S|, k and
D are independent of n, there exists N = N(e, p,d) such that for all n > N the
probability that D-discs around the sampled vertices and their image under ¥ in G4
intersect in Gy or G is at most 1/5. Hence, with probability at least 3/5 the set .S is
D-indistinguishable for n > N.

Now, recall that the algorithm in Lemma 5.2 queries a random sample set .S, and
S is successful for the algorithm with probability at least 9/10. Moreover, when it is
successful, it has Property 1 in Definition 9.2. Similarly, the same is true for ¥(.S) to
be successful for the run on Gs. Thus the probability that S is D-indistinguishable
for G1,G2 and that it is sufficient is at least 1 — 3/5 — 2/10 > 0. In particular this
implies the existence of S that is sufficient. O

We end with the following discussion on the last proof. The proof presented
above requires only Lemma 5.2 and hence it is purely combinatorial. As already
mentioned the results presented are essentially equivalent. The isomorphism tester is
immediately implied by Theorem 3.1 and vice versa, if the algorithm in the proof of
Theorem 3.2 is also taken into account. The isomorphism tester can be derived from
the two other testers by defining a graph property that contains only all isomorphic
copies of graph H (the graph for which isomorphism is tested). Alternatively, the two
other testers can also be derived from Theorem 3.1.

In the light of this discussion, let us remark that there is an even simpler proof for
Theorem 3.1, but that is based on Theorem 3.2. We sketch this proof here: Let G1, G2
be two graphs that meet the assumptions of Theorem 3.1 (with the parameters say,
set in its proof). Let us consider G, G2 as the input for the e-test for isomorphism
that is asserted by Theorem 3.2. Since the test explores D-discs around a constant
number of random vertices, the assumption on G1, G5 together with Claim 2.2 implies
that the test must accept with probability 2/3 —1/10, as it sees isomorphic view with
probability, say 9/10 (as argued in the first part of the proof above). Hence, by the
correctness of the test, it follows that G; must be e-close to Gs.

10. Additional discussion. In view of the grand goal of the characterization
of all graph properties that are testable in the bounded-degree graph model, and the
discussion in the introduction, we note that all the testable properties that we are
aware of, fall into one of the following categories: (a) the properties of hyperfinite
classes, namely that are covered by Theorem 3.4°. (b) properties that are defined by

5Needless to say, most if not all of previously constructed testers are much more efficient than
these implied by Theorem 3.4 here.
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their local structure: e.g., being triangle-free. Such properties are testable for every
bounded degree graph. (c). combinations of the above by simple boolean operators
that 'preserve’ the distance (e.g., the union of a property from (a) and a property of
type (b)). (d) - other properties, such as, the property of having between d/4 to d/2
edges. Another such property is connectivity.

The last category contains testable properties for which testability is not directly
due to any ’general’ reason known so far. Finding a reasonable general explanation
to why such properties are testable (besides the ’trivial’ fact that their existence is
determined by the frequency vector of the graph for some suitable disc-radius), would
essentially amount to a characterization of testable properties in this model.
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