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1. Introduction

We are concerned with the optimal control of elastoplastic contact problems. Our
investigation is restricted to the static model of infinitesimal elastoplasticity with
linear kinematic hardening and Signorini’s problem, which are both represented by
an elliptic variational inequality (VI) of the first kind. Thus, we have to deal with
a system of two coupled VlIs:

(AS, T - %) — (div*u, T — ) > 0 VT ek
—(div¥,v—u)>{{,v—u) YveCl.

The solution operator of a VI is usually not Gateaux differentiable, cf. [62] in case
of the obstacle problem. The lack of differentiability substantially complicates the
optimal control theory for only one VI - even in the finite-dimensional case, where
control problems of this type are known as mathematical problems with equilibrium
constraints, cf. e.g. [52, 65, 66, 69] and the references therein. Particularly, it is not
possible to establish necessary optimality conditions in the form of Karush-Kuhn-
Tucker conditions using the differentiability of the solution operator, which is the
standard way. Instead several alternative stationarity concepts such as Clarke(C)-,
Bouligand(B)- and strong stationarity have been introduced. There is a multitude
of papers contributing to the field of optimal control of elliptic VIs. A common
technique for the derivation of first-order necessary optimality conditions is to ap-
ply a Yosida-like regularization of the VI combined with a subsequent limit analysis
w.r.t. the regularization parameter tending to zero. This approach was developed
by Barbu [4] and adapted by many authors, see e.g. [15, 16, 30, 38, 45, 46, 50, 57].
In [5, 6, 7] Bergounioux used relaxation methods in order to obtain necessary con-
ditions, which was modified in [47]. Moreover, there are various contributions em-
ploying different regularization and relaxation techniques, see e.g. [8, 9, 59, 67, 70].
Mignot and Puel proved the necessity of an optimality system for the optimal con-
trol of the obstacle problem solely based on the directional differentiability of the
underlying control-to-state mapping, cf. [62, 63|, and their findings were extended
in [48]. Other direct approaches have been performed by Bermidez and Saguez in
[11, 12, 13], cf. also [10], by Jarusek et al. in [51] and by Wachsmuth in [76].

While sufficient conditions for optimal control problems governed by elliptic PDEs
have been extensively investigated, see e.g. |20, 21, 22, 23, 24, 25, 26, 68|, the liter-
ature for elliptic VIs is rather rare. In [62] it was proven that the obstacle control
problem is convex if the desired state is behind the obstacle and thus not reach-
able. Kunisch and Wachsmuth presented second-order sufficient conditions for the



optimal control of a general obstacle problem, cf. [55].

In view of the difficulty mentioned above we will separately address the optimal
control of static elastoplasticity and mechanical contact. The static model of in-
finitesimal elastoplasticity reads as follows: Given an inhomogeneity ¢ € V' find
> c 5% and u € V so that ¥ € K and

(A, T—2)+ (diviu, T—%)>0 forall T €K }
) o (VIg)
div=/¢ inV

is satisfied. Although this problem has only limited physical meaning, it is espe-

cially obtained via time discretization of a quasi-static counterpart modeling the

plastic deformation of a body under the influence of external loads, cf. Figure 1.1.

The VIin (VIg) represents the constitutive law of elastoplasticity and the equation

is just the balance of momentum. Here ¥ = (o, x) denotes the generalized stress,

where o is the Cauchy stress tensor resulting from the inhomogeneity ¢ and x is
an internal force, which arises during hardening. Moreover the variable u denotes

the displacement induced by X.

Figure 1.1.: Plastic deformation of a workpiece clamped at I'p,
boundary loads acting on I'y

Optimal control problems governed by (VIg) have been well investigated. In par-
ticular, existence and regularity results as well as several stationarity conditions
have been proven, cf. [40, 41, 42, 43, 44|. If one aims to establish sufficient opti-
mality conditions one needs a certain differentiability result for the control-to-state
map associated with (VIg). In [44] Herzog et al. showed that this operator is
weakly directionally differentiable, which however is not satisfactory for the deriva-
tion of sufficient conditions. In Chapter 2 we will therefore enhance this result by
proving Bouligand differentiability under additional regularity assumptions. As a
consequence we will be enabled to deduce second-order sufficient conditions, which
guarantee local optimality. The findings of Chapter 2 have already been published
in large part in [14].

Signorini’s problem describes the elastic deformation of a body which is pushed
against a rigid obstacle, cf. Figure 1.2, and can be formulated in the following way:
Given £ € V' find o € S and u € C such that

(0,e(v—u))>{,v—u) YveCl }

o = Ce(u). (VIs)



The VI takes the contact conditions into account, while the equation is the law
of linear elasticity. Again the variables o and u denote the Cauchy stress tensor
and the corresponding displacement, respectively. We will specify all spaces, sets
and operators involved in (VIg) and (VIg) later on. For a detailed introduction
to elasticity, plasticity and Signorini’s problem we refer to the books [35], [37], [53]
and [60].

0
[
T'p Tn

Figure 1.2.: Elastic workpiece clamped at I'p and pushed against
a rigid foundation, boundary loads acting on I'n

The optimal control of Signorini contact problems has also been discussed w.r.t. the
existence of solutions and necessary optimality conditions, cf. [12, 19, 29, 62]. The
latter have been proven for either a simplified or a regularized Signorini problem.
Furthermore, the solution operator of a simplified Signorini problem was shown to
be directionally differentiable in [62|. To the best knowledge of the author there are
no results concerning the differentiability of the solution operator associated with
(VIg). By adapting the technique of [62] we will establish directional differentiabil-
ity of this operator and derive first-order necessary conditions of strong stationary
type, see Chapter 3.

Notation

In all what follows @ C R? is a bounded domain with Lipschitz boundary T' in
dimension d = 2,3. The boundary consists of three disjoint parts, the Dirichlet
boundary I'p, the Neumann boundary I';y and the boundary of possible contact I'c.
Vectors and tensors are represented by bold-face letters. We denote by S := Rg;rr‘f
the space of symmetric d x d matrices endowed with the Frobenius norm. For
o, 7 € S the associated scalar product is denoted by o : 7 = Zij 0;jTij- We
write £(X,Y) for the space of linear and continuous operators from a normed

space X into a normed space Y. If X =Y, then we abbreviate with £(X). The



dual space of X and the adjoint operator of T € L(X,Y) are denoted by X’
and T™, respectively. For a subset M C X and z € M, K,(M) denotes the
conical hull of M — {z}, i.e.,, (M) = {a(w —z): « > 0, w € M}. Furthermore,
Mt ={T € X': Tz > 0VYz € M} is the dual cone of M. We write M for
the negative of M, which is also called polar cone of M, and [M]}, denotes the
polar cone of M w.r.t. H € L(X,X'), e, [M]% ={z € X: (Hx)y<0Vye M}.
Throughout, ¢ > 0 represents a generic constant. Moreover, we unambiguously
write |-| for the euclidean norm as well as for the Lebesgue measure. By M(K)
and M (K) we denote the set of regular (signed) Borel measures on a compact set
K c R?% and its subset containing all positive measures, respectively. The positive
and negative parts of a real-valued function f are abbreviated by f* = max(f,0)
and f~ = —min(f,0) such that f = fT — f~. For frequently used function spaces
we introduce the following abbreviations

WE’F(Q;Rd) = {u € Wl’p(Q;Rd) :7u =0 on FD}
1.2 /0. od
Vi=Wp (Q,R )
V] = {z € HY*(): Jv € V with v = 2}
-1, Cmd\ . L' 1oy, md\\/
Wp PR = (W' (% RY))
U= L*(%R?) x L*(Ty;RY)
S = L*(;S),
where 7 is the trace operator, 7, is the normal trace operator, cf. Section A.2, and p’
is the integrability exponent conjugated to p, i.e., 1/p+1/p’ = 1. The dual pairing
between W, (Q; R?) and WP (2;R?) as well as between (7,,[V])" and 7,,[V] and

between (HI(Q)), and H'() is always denoted by (-, -). The scalar product in
L2-type spaces such as L?(2), U, S, and S? is always denoted by (-, -).



2. Optimal control of static
elastoplasticity

Let J: V x U — R be a given objective functional. We consider the following
optimal control problem:

Minimize J(u, f)
s.t. the elastoplasticity problem (VIg) with £ € V' defined by

(Prg)
(£,v>:/f1-vdaf+ forvds YveV
Q Ty

The functions f; € L? (Q; Rd) and f, € L? (F N ]Rd) can be interpreted as volume
and boundary forces, respectively, acting on the domain Q. For ¥ = (o, x), T =
(t,pu) € S? and v € V the linear operators A: S? — S? and div: S? — V’
appearing in (VIg) are defined by

(AS, T) = /

Q
(divy, v) = —/Qa re(v) dz.

T:(C_lo'dx—i—/u:H_lxdx
Q

Herein, C~!(z) and H~!(x) are linear maps from S to S, which may depend on the
spatial variable x, and

e(v) = %(Vv + (Vo)) (2.1)

is the linearized strain tensor. The closed and convex set K C S2 of admissible
stresses is determined by the von Mises yield condition, i.e.,

K={Ze€S5*:¢(=)<0aec. inQ} (2.2)
with yield function ¢. In case of linear kinematic hardening the yield function is
given by

ol + XD 2 o2
o) = 172X a0 (2.3
where og > 0 is the yield stress and
ol =0 — g(trace o)l



with identity tensor I € S denotes the deviatoric part of o. In all what follows we
abbreviate o? 4+ xP by

DY = ol +xP.
Moreover it will be helpful for the subsequent analysis to note that the linear con-
tinuous operator D: S? — S satisfies

i (DX
Dpz_<D2>.

The following assumption is supposed to hold throughout this chapter:
Assumption 2.1.

(1) The domain Q C RY, d € {2,3}, is a bounded domain with Lipschitz boundary

I'. The boundary consists of two disjoint measurable parts I'y and I'p such
that ' = 'y UT'p. While I'y is a relatively open subset, I'p is a relatively
closed subset of I' with positive measure.
In addition, the set QUT  is reqular in the sense of Groger, cf. [34, Definition
2]. That is, for every point x € T, there exists an open neighborhood U, C RY
of x and a bi-Lipschitz map (a Lipschitz continuous and bijective map with
Lipschitz continuous inverse) W, : U, — R such that ¥,(z) = 0 € R? and
W, (Z/lx NnQu FN)) equals one of the following sets:

By ={yeR?: |y <1, y, <0}
Ey:={yeR’:|y| <1, y, <0}
Es:={y€ FEy:ys <0 ory; >0}

(2) The fourth-order tensors C~1 and H™! are elements of L>(%; L(S)). More-
over, both C™1(x) and H=Y(z) are uniformly coercive on'S and symmetric, i.e.,
o:C Y (z)o > c||lo|? with ¢ > 0 independent of x, 7:C~'(z)o = o:C ()T
for all o, € S and analogous relations hold for H™'.

Remark 2.2. There is a broad class of non-smooth domains which satisfy Assump-
tion 2.1(1). A characterization of such domains can be found in [36, Section 5].
Assumption 2.1(2) is for instance fulfilled by isotropic and homogeneous materials,
where C™1 and H™! are given by

1 AL 1

o — traceo)l, H'x = — 2.4

with Lamé constants py,, Ap, and hardening constant k1 > 0. If pr, > 0 and d )\, +
2y >0, then C™1 is coercive:

Clo =

dAr (trace o)?

L el
o:C o= —

= >cllo 2.
2, 2pLpn+di)  _ d Il
<1/(2pr) =1(XL,0u) <yl 02



2.1. Higher regularity

In this section we address the integrability of the solution to problem (VIg). First,
we recall two known results concerning the existence and the uniqueness of a solu-
tion.

Proposition 2.3. [40, Propositions 3.1, 3.2 and Lemma 3.3] For every £ € V',
problem (VIg) possesses a unique solution (,u) € S2x V.

In consequence of Proposition 2.3 we can introduce the control-to-state map asso-
ciated with (VIg):

Definition 2.4. The control-to-state map V' > £+ (2, u) € S? x V is denoted by
Gg. We sometimes consider Gg with different domains and ranges. For the sake
of convenience these operators are also denoted by Gg.

By means of a unique slack variable, termed plastic multiplier, the variational in-
equality in (VIg) can equivalently be expressed as a complementarity system:

Theorem 2.5. [43, Theorem 2.2] Let £ € V' be given. The pair (3,u) € S? x V
is the unique solution of (VIg) if and only if there exists a multiplier A € L?()
such that

AZ +diviu+ AD*DX =0 in S? (2.5a)
divE =¢ inV' (2.5b)
0<Az) L¢(=(z)) <0 ae inQ (2.5¢)

holds. Moreover, A is unique.

The integrability of the solution to (VIg) improves, if the inhomogeneity ¢ is slightly
more regular. The essential tool to prove this is the next theorem which relies on
Assumption 2.1(1).

Theorem 2.6. [/1, Theorem 1.1] Let the nonlinear function b: Q xS — S satisfy

b(-,0) € L>(;S) (2.6a)
b(-, o) is measurable (2.6b)
(b(z,0) — bz, 7)) : (0 —T) >m|o — 7|3 (2.6¢)
[b(z,0) — bz, 7)||s <M |lo — 7l (2.6d)

fa.a. x € Q and all o,7 € S with constants 0 < m < ™. Furthermore let
B,: Wllj’p (Q;Rd) — ng’p (Q;Rd) be defined through

(By(u), v) = /Qb(-,e(u)) ce(v)de Vue WEP(QRY), v e WEP (9;RY).



Then there exists p > 2 such that the operator B, is continuously invertible for
all p € [2,p]. Moreover, the inverse is globally Lipschitz with a Lipschitz constant
independent of p € [2,p].

In addition to Theorem 2.6 we need the following auxiliary result.

Lemma 2.7 (|40, Lemma 4.1|). Let H be a Hilbert space and C C H be a nonempty
closed convex set. Moreover let Po(x) denote the orthogonal projection of x onto
C. Then the operator F: H — H defined by F(x) = x — Pc(x) is monotone, i.e.,
it holds

(F(z) = F(y),z—y) =20 Vaz,y€H.

The elastoplasticity problem (VIg) is equivalent to a single nonlinear PDE in the
displacement field uw only whose underlying nonlinear function meets the conditions
(2.6a)—(2.6d). This is why we can establish higher integrability for the solution of
(VIg).

Theorem 2.8. There exists p > 2 such that for all p € [2,p] and for any £ €
ng’p(Q;Rd), the solution (3,u) of (VIg) belongs to LP(Q;SQ) X W})’p(Q;Rd).
Moreover there exists a constant L > 0 such that

121 = Bl o2y + w1 = w2llyregray < Ll = L2lly 10 pay »

i.e., the control-to-state map Gg is Lipschitz continuous from ng’p (Q;Rd) into
LP(9;%) x WhP(Q;RY).

Proof. The arguments are similar to |74, Theorem 4.4.4 and Proposition 4.4.5]|.
We reformulate (VIg) and (2.5), respectively, as a nonlinear PDE in w and apply
Theorem 2.6.
Let (¥, u) be given by the solution of (2.5). Testing (2.5a) with (7,0), T € S, we
find

Clo—e(u)+AXDE =0 ae. inQ,
where the property (O'D + XD) P = (O'D + XD) : 7 was used. If we furthermore
test with (0, ), p € S, we arrive at

Hlx+ADX =0 ae. in Q. (2.7)
Combining both equations yields
Clo—e(u)—H 'x =0 a.e. in Q. (2.8)

Next we derive a pointwise version of (VIg). To this end let 2y € Q be an arbitrary
Lebesgue point of C™1, o, H™!, x, e(u) and their products arising in the sequel.
Moreover let (7, ) € K be given, where the closed and convex set K is defined by

K ={T €S§*:¢(T) < 0}.



For p > 0 such that B,(zo) C © we then define (7, ) € K through

—~

20— T,1), x € By(zo)
(7. 1) {(a’,x), x € Q\ By(xp).

Testing (VIE) with (7, fx) results in
( /(Cl (F—o)+H 'x:(a—x)—¢e(u): (f—0o)dz
! ! -0 —x)—¢e(u):(t—0o)de
= [B,(w0)l B(mp)C o:(T—0)+H 'x:(p—x)—e(w): (r - o) dz.
We take the limit p \, 0 and obtain
C™H(zo)o(x0) : (T — o (0)) +H ™} (z0)x(20) : (1 — x(20))
—e(u(xg)): (T —o(xp)) > 0.

Since almost every point in © is a common Lebesgue point of C™%, o, H™!, x, e(u),
and their respective products, we conclude

CH(z)o(z): (T —o(x)) + H ' (z)x (@) : (1 — x(2)) (2.9)
—e(u(@) (r— (@) >0 V(r,p) ek,
fa.a. z € Q. Plugging (o(z), p) in (2.9) leads to
H(z)x(x) : (1 — x(x)) >0 for all o € Ssuch that u € K —o(x)  (2.10)
with convex and closed set K defined by
K={reS:(r,0) € K}.

Note that p € K — o () is equivalent to (o(x), ) € K. The variational inequality
(2.10) is the necessary and sufficient optimality condition for the convex optimiza-
tion problem

n Ll
min — _ .
pek —o(z) 9 el L(x)

Herein ||| -1, is the norm induced by the coercive operator H-1(z), ie.,

_ 1
ltllgr-1 gy = (HH(2)pe s )2

Therefore, f.a.a. x € Q the solution x(x) of (2.10) is given by

x(@) = Projii %) (0) = Profy “(a(x)) - o (x), (2.11)

where, for a given closed and convex set £ C S, Projﬂgil(@ denotes the orthogonal
projection on E w.r.t. the norm induced by H~!(z). Inserting (2.11) in (2.8) yields

C Y z)o(z) +H Y (z)(o(x) — Proj?;l(x) (o(z))) =e(u)(z) ae inQ. (2.12)



The left-hand side can be expressed by means of the the nonlinear function M, : S —
S defined by

-1
T C (@) + H ' (2)(r — Proji, “(r)).
In what follows we show that M, 1s invertible f.a.a. z € Q. On account of the

monotonicity of H™!(z)(T — PrOJK (‘r)( )), cf. Lemma 2.7, it follows for arbitrary
T, LES

(My(7) = My(p), 7 — p)s = (CTH) (7 — ), T — ) g
+ (H_l(az)(T - PI‘OJK 1(36)(7')), T — p)
- (H*( (= Proji. “(w), T~ )

( )(T_“)7T_“)S
>m |7~ plg,

S

S

v

where m > 0 is the coercivity constant of C~'. Hence the mapping M, (-) is strongly
monotone and coercive because of M, (0) = 0. Due to the boundedness of C~! and
H~! and the non-expansiveness of the projection w.r.t. the norm induced by H~!(z)
we observe

I9267) = M@l = (1€ iy + IF e uzion) 17— sl
HH 1HL°°(Q£ —1(z) H(x)
i o,
(‘ 1HLoo 2.c(s) T HH_IHLOO(Q;L(S))) T —nlls
=
+ Z;““S” I = blli-sey
(HC 1HL<><>Q£ +HH 1HL<>°Q£ )||T—M||s

Hfl 20O )
e |

b2
<m|7T—pls-

—H”S

Here h > 0 denotes the coercivity constant of H~!(z) and m > 0 is given by

HH_l‘EN(Q;L(S))

m=|Cc"
m H h%

1HL°°(QLI +|[H” 1HL°° (QL(S))

According to the Browder-Minty theorem the inverse M, 1(-) w.r.t. T exists f.a.a.
x € Q. If we define f.a.a. x €

10



then (2.12) is equivalent to o = M~1(-,e(u)). In view of (2.5b) the function w is
a solution of

/ M e(w) e(v) dz = — (£, v) Vo eV, (2.13)
Q

which is the desired nonlinear PDE in u. As we aim to make use of Theorem 2.6,
we have to check that M ~! satisfies the conditions (2.6a)—(2.6d), i.e., M~1(-,0) €
L>®(;S), M~1(-,T) is measurable, and M~ is Lipschitz continuous and strongly
monotone w.r.t. 7 f.a.a. € Q. The strong monotonicity of M,(-) implies for every
T, UWES

1

[0 (O (r)) = M QL () [ = 7 = mlE < - (M) = M), 7 = o
< ML) = M) 7 s

Consequently, the inverse M !(-) is Lipschitz continuous with Lipschitz constant
1/m. The strong monotonicity and Lipschitz continuity of M,(-) furthermore lead
to the estimate

(M1 (7) = My (), 7 = ) > m || MG () = M ()5
> 5 | Mo (M (7)) = Mo (M ()3

X
m 2
= 2 HT—HHs7

which shows strong monotonicity of M 1. Since moreover M ~1(-,0) = 0 belongs to
L>(€%;S), it remains to be proven that M ~!(z, 7) is measurable w.r.t. z. Due to the
measurability of C™ and H~! there exist simple functions C,;*, H-! € L>(Q; L(S)),
n € N, with

H(Cfl(a:) — C;l(x)Hﬁ(S) — 0 and HHfl(x) — ]H[;Ll(a:)HE(S) —0 ae. in Q.
Thus, there is Nf € N, depending on z, such that
:Cll(x)r=7:CYa)r +7:(C, (z) - CHa))T
> m 7 - [[C7 () = €7 @)]| g 1712
>m/2 | 7|l3

for all n > NE and an analogous estimate holds true for H;!. We define

n n

C,l(z) = and M, (z) =

Is, else

C;'(xz), n>NE
Is, else,

{H_l(m), n > NEH

where Is: S — S denotes the identity mapping. Thereby we obtain simple functions
C,: Q—Sand H;': Q — S with

HC_I(l‘) - C;1($)||£(S) — 0 and HH_I(a?) — ]I:]I;I(:L")Hﬁ(s) — 0 a.e.in Q.

11



Both C;;'(x) and H;!(z) are furthermore uniformly coercive with coercivity con-
stant min(1,m/2) > 0 for all n € N . The same arguments as for M, yield that

M?:S — S defined by
C (@) + L, (2) (7 — Projir (7))

~1(.) is Lipschitz continuous with

is invertible f.a.a. z € Q and the inverse (M)
Lipschitz constant L, := 1/min(1,m/2) = max(1,2/m), independent of n. By

construction
M"(z,7):= M}(T) and (M™) Yz, 7) = (M;‘)_l(r)

-1
are simple functions w.r.t. . For p := PrOJK (@ )( )

find
0 <H (@) (e —7): (py, — p) + H (@) (p, — 7) 5 (10— pt)
—H () (p = 7): (1 — ) —H (@) (= 1) 2 (1 — )
FH (@) (= 7) (g — )+ (@) (e — 7) 2 (1 — )
! (o, — ) — H (@) (e, — 1) * (1, — ).

= (H™'(z) — H, () (u — 7) -
~1(x) we infer

In view of the uniform coercivity of H
2
—pllg = ellpn, — plls

1B ()~ B ()| ) s — 7l N

and therefore ||p, — pllg — 0. Hence the sequence {p,,(z)}nen C S is bounded
which implies

[ (7) = Mo (7)||g =
—H N (2))r + HH(2)p — Hy (@) |

= (€7 @) - C7H @) + (H ()
< (H@El(@ - C_1($)H£(S) + || (@) — H_l(x)Hz:( ) I lls
+ [ @) ) 1 = pralls + [ @) = B ()] sy ltalls == 0.

Thanks to the Lipschitz continuity of (M?)~!(-) we derive f.a.a. € Q

(M), 7) = M7 (@, 7)||g =
= || (a2~ (M () (T >>) (M)~ (M (M (7)) ]|
< Ly || MZ (M) (7)) = M (M (7)) |
=max(1,2/m) || My (M, (7)) — M2 (M (7))

(-,7) is indeed measurable. Altogether we have shown

n—o0
0

so that M1
° M’l(-,O) € L>(Q;S)

12



e M~!(-,7) is measurable

o (M2, 7) = MV, p), T — p)g > 2 || — pl2

o [[M~ (o, 1) = Mo, pw)|g < 5 I — pells

fa.a. x € Qand all 7, u € S with m <m. On account of Theorem 2.6 there exists
p > 2 such that (2.13) admits a unique solution u € Wllj’p (;RY) for all p € [2,5]
and every £ € WBl’p (Q;Rd). In addition, the associated solution map ¢ — wu is
Lipschitz continuous for all p € [2,p]. Because the inverse operator M ! is Lipschitz
continuous with Lipschitz constant 1/m, we conclude that o = M~!(-,e(u)) is an
element of LP(€);S). It furthermore depends Lipschitz continuously on w and thus
on /. From equation (2.8) we then infer H-!'x € LP(Q;S). Since H! is uniformly
coercive by Assumption 2.1(2), the Lax-Milgram theorem yields a H € L™ (€2; L(S))
with
H(z)H '(z) = Is a.e. in Q,

which leads to x € LP(£;S). Invoking equation (2.8) again, we deduce the Lipschitz
continuous dependency of x on £. O

We end this section with a short comment on the existence of globally optimal
controls for (Pg).

Both the embedding V' — L? (Q; Rd) and the trace 7v: V — L2 (I‘N; Rd) onI'y are
compact operators, cf. [64, Section 2.6]. The linear continuous operator R: U — V'
defined through

(Rf, v>:/f1-’udm+ fo-Tnvds VveV (2.14)
Q 'y

is the adjoint of their product and according to Schauder’s theorem also compact.
Therefore we obtain the next proposition covering the existence of a global solution
to (P E)

Proposition 2.9. Suppose the mapping V- x U 3> (u, f) — J(u, f) € R is contin-
wous w.r.t. u and weakly lower semicontinuous w.r.t. f. If there exist r > 0 and

f € U such that
J(Gp(RS).f) 2 J(Gp(Rf).f) VfeU with|f~f[|, >

then Problem (Pg) admits a globally optimal solution.

Proof. Let {f, }nen C U be a minimizing sequence so that

13



By assumption this sequence is contained in the weakly compact set

B(f.r)={feu:|f-Fl,<r}

Conse(luently7 there is a subsequence, w.l.o.g. denoted by the same symbols, with
fn — fin B(f,r). Thanks to the Lipschitz continuity of Gg: V' — V cf. Theorem
2.8, and the compactness of the operator R, mentioned above, we moreover know

Hence the continuity of J in the first variable and the weak lower semicontinuity in
the second variable imply

J(Gp(R), f) < liminf J(Cp(Rf,), £a) = inf J(Gp(RS). f),

which shows global optimality of f € B( 1, r) for (Pg). O]

The solution cannot be expected to be unique due to the nonlinearity of Gg.

2.2. Bouligand differentiability

Based on the higher integrability of the solution to (VIg), cf. Theorem 2.8, we will
show Bouligand differentiability of the control-to-state map Gg: ¢ — (X, u) from
WP (4 RY) to S2 x V with p > 2.

solves
A +divf a4+ AD*DE =0 in S? (2.15a)
divE=¢ inV (2.15b)
0<A(z)L¢(E(z)) <0 ae. in (2.15¢)

In view of the complementarity (2.15¢) we define the following subsets of € up to
sets of zero measure

As={z€Q: \z) >0} (strongly active set) (2.16a)
(z) =0} (biactive set) (2.16b)
}. (inactive set) (2.16¢)

Note that Q = A, UBUT.

The operator Gg: V! — S? xV was already proven to be directionally differentiable
in a weak sense:

14



Theorem 2.10. /{4, Theorem 3.2] For every £ € V' and every 6{ € V’,_ the control-
to-state map Gg: V' — S2 X V' is weakly directionally differentiable at £ in direction
8¢, i.e., there exists 6,Gg(l;60) € S x V such that

Gr(l +t5) — Gg(l)
t

— §uGE(l;00) ast\,0.

The weak directional derivative 6,G g (l; 6€) is given by the unique solution (X', u’) €
Sy x V of the following variational inequality

(A, T - %) + (div*e/, T - &)
+ (A DE:D(T-%') >0 foralTeS (2.17a)
divy = §¢, (2.17b)

where the convex cone Sy is defined by
Sy = {T €S2 VDT € S, DX(x) : DT(z) <0 a.e. in B,

DX (z): DT (z) =0 a.e. in .,le}.

Again, by introducing a slack variable the variational inequality (2.17a) can be
written as a complementarity system:

Theorem 2.11. [}4, Proposition 3.13] A pair (X',u') € S? x V is the unique
solution of (2.17) if and only if there exists a multiplier X' € L*(Q) such that

AY +diviu + \D*DE + ND*'DE=0  in S? (2.18a)
divy' =60  inV’ (2.18b)

R3>\N(z) L DE: DX () =0 a.e. in Ag (2.18c)

0<N(z) LDE: DY (z) <0 a.e. in B (2.18d)

0=N(z) L DE:D¥ () eR a.e. inT (2.18e¢)

holds. Moreover, N is unique.

Remark 2.12. On account of (2.18d) the (weak) directional derivative is generally
not linear w.r.t. to the direction and the control-to-state map G thus not (weakly)
Gateaux differentiable, if the biactive set B has positive measure.

If we want to improve the assertion of Theorem 2.10, we have to make additional
assumptions.

Assumption 2.13.

(i) Let {,60 € WD_l’p(Q;Rd) with p € (2,p] and p given by Theorem 2.8.
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(ii) The solution of (2.15) satisfies x € L*(2;S) with

2p
> —. 2.19
s> L (219)
Moreover we set sp
= . 2.20
1=, (2.20)

Assumption 2.13 is supposed to hold for the rest of this section.

Remark 2.14. (i) If the right hand sides £ and §¢ in (2.15) and (2.18), respec-
tively, are defined as in (Pg), Assumption 2.13(i) is automatically fulfilled due
to Sobolev’s embedding theorems. To be more precise, the operator R defined
by (2.14) continuously maps U into W51’4 (Q;Rd) in case d = 2. If the spa-
tial dimension is d = 3, then R continuously maps from U to WE)I’3 (Q;Rd).
Furthermore, R is compact as a mapping from U to WD_I’B (Q; Rd) with 5 < 3
in dimension d = 3 and with B < 4 in dimension d = 2, cf. [64, Section 2.3
and Section 2.6/

(i1) We conclude from (2.19) and (2.20) that ¢ > 2 and p' < q < p:

s+p 1+27 144 1422 §
p—2
p p /
> = = ,
1+ 2 1+p-2 7
p—2

where p' is the integrability exponent conjugated to p.

(iii) The solution operator G g is not expected to map ng’p(Q; RY) into LP(£2;S) x
L5(82;S) x Wll)’p (Q; Rd). Assumption 2.13(ii) is only required for the particular
solution x of (2.15), where Gg is differentiated.

In order to be able to show Bouligand differentiability of the control-to-state map,
we collect some auxiliary results for the weak directional derivative (X', 4/, \'). First
we consider the difference of the solution to (2.15) and the solution of the following
perturbed problem

AT +diviu+AD*DE =0 in S? (2.21a)
divE=0+60 inV’ (2.21b)
0<A(z) Lo(=(z)) <0 ae. in Q. (2.21c)

By Theorem 2.5 we know that (2.21) has a unique solution.
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Lemma 2.15. Let (X, 4, \) and (2,u, ) be solution of (2.15) and (2.21), respec-
tively. Then it holds

(i) HE - Z_]HLP(Q;SZ) + H'U' - ’a’”WBP(Q;Rd) <L ||5£||W*17P(Q;Rd)
(ii) D — DX — 0 in L™(Q;S) V1 < m < oo, if 60 — 0 in W5 'P (Q;RY)
0, H)\ — /_\HLQ(Q) <c HMHWSLP(Q;W),

where L > 0 s the Lipschitz constant given in Theorem 2.8.

Proof. Let (04y)nen C WD_l’p(Q;Rd) be an arbitrary sequence with 64, — 0 for
n — 0 and let (%,,\,) be given by the solution of (2.21) with right hand side
{+ 80y

(1): Assertion (i) is a consequence of Theorem 2.8.

(ii): Due to (2.15c) and (2.21c) we observe

| D= (z) — DE()||g < 200 ace. in Q,

so that DX, — DX is bounded in L™(£2;S) for every m > 1. In addition, we infer
from (i) the existence of a subsequence, w.l.o.g. denoted by the same symbols, with

DY, (z) — DE(x) - 0 a.e. in Q. (2.22)

Lebesgue’s theorem of dominated convergence implies (ii) for every subsequence
satisfying (2.22) and hence for the whole sequence.
(iii): In view of (2.7) and (2.15c) we deduce

oAA=ADX: DX = -H 'x: DX ae. inQ (2.23)
and completely analogously we find
02\, = \DX,, : DX, = —H '), : DX, ae. in Q.

Subtraction of both equations consequently yields

-1
Ap— A= — (-H,'x, : DX, + H 'x : DX)

! . _ ) (2.24)
=~ (-H'x: (DS, ~ D) ~H ' (x,, — X) : DZ0) .
0

On account of (2.20), (2.21c), Remark 2.14(ii) and (i) this leads to

o = Moy < € (HXIILs(Q;S) P2 — DE| ) + 001X — XHLLZ(Q;S))
< CH(%TLHW[_)l”’(Q;Rd)’

which is the third assertion. O
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Next, we establish higher regularity for the solution of (2.18). For that purpose we
introduce another perturbed problem:

AZ + divi u; + MD*DE; =0 in S? (2.25a)
div, =0+ts¢ inV’ (2.25b)
0 < Ae(z) L ¢(Z¢(z)) <0 ae in (2.25¢)

with ¢ > 0 given.

Lemma 2.16. Let (X,u,)) be the solution of (2.15), (3¢, us, \¢) the solution of
(2.25) and (X', 4/, \') the solution of (2.18). Then it holds

(i) (BZ ust) (5 ) in LP(;S2) x WEP(Q;RY) as t N\, 0
(ii) 272 N in L9(Q) as t \, 0

(Z”) ”Z/HLP(Q;S?) + ||u/||WBp(Q;Rd) <L ||5£||W51’9(Q;Rd)

(iv) ”XHLq(Q) < CHMHWgLf’(Q;Rdy

where L > 0 is the Lipschitz constant given in Theorem 2.8.

Proof. Let (tp)neny C RT be an arbitrary sequence of positive real numbers con-
verging to zero and let (2, ,uy,, A, ) be given by the solution of (2.25) with right
hand side ¢ + t,,6¢.

(1): According to Theorem 2.10 we know

-3 —u
< tn : utn u> R (Zl,u/) in 52 % V
tn tn
Moreover it follows from Theorem 2.8 that
DI
tn

Ug,, — u
‘ < L)16 o g - (2.26)

LP(Q:52) ‘ tn HW}f(Q;Rd)

Thus, there exist a subsequence converging weakly in LP (Q, SQ) X Wl‘g’p (Q; Rd). Due
to the uniqueness of the weak limit we conclude (i).
(ii): Similarly to (2.24) it can be shown that

Ae, =N 1 DY, — DX - X
tnt - = <—H1>‘<: tn _g1 Xt X
n a9 t

: DEtn) . (2.27)

tn n
From (i) and (2.20) we deduce

DY, - DS

H1x - —~H 'x: DX in LY(Q)
n
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and Lemma 2.15(ii) with m = s implies

1 Xt, — X

n

H~ DY, —H 'y : DX in LIQ).

Since DX': DX = 0 a.e. in Ag and A = 0 a.e. in BUZ, cf. (2.18¢), (2.16) and (2.15¢),
equation (2.7) yields

H lx: DY = -A\DX': DX =0 a.e. in Q. (2.28)

Therefore, we derive

A, — A 1 =
%T — —%H*IX' : DY in LY(Q). (2.29)

By testing (2.18a) with (0, i), p € S, we obtain
H 'Y + \DXZ' + DX =0 a.c. in Q. (2.30)

Furthermore, (2.16), (2.15¢) and (2.18¢) result in 02\ = DX : DX a.e. in Q so
that o B
02N = —H 'x': DX — A\DY': DX a.e. in Q. (2.31)

Taking (2.28) into account we arrive at

N = —iH_lxl ;DY a.e. in
o8 ’

which together with (2.29) leads to (ii).
(iii): Since closed and convex sets are weakly closed, Assertion (iii) is a consequence

of (i) and (2.26).
(iv): From (2.20), (2.26), Remark 2.14(ii) and (2.27) we conclude

Lq(Q;S))
Q;R4)"

A, — A

+
t 70

LP($2;S)

By the same argument as in (iii) this shows [N 4 < ¢ HMHW;“’(

‘thn - DX
tn

Xt, — X
tn

<c (HX”LS(Q;S)
L(Q)

< [0l y—rr gz -

Before we are ready to prove Bouligand differentiability of Gg we need another two
auxiliary lemmas.

Lemma 2.17. Let X be a Hilbert space and x1,x2 € X. If ||1]|x = [|z2||x, then
it holds

1 2
(1, 21 — 952))( = 5 |21 —552”)('
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Proof. Because of the parallelogram law in Hilbert spaces it follows
(1, 21 — 22) x = (%1, T1) x — (71, T2) ¥

= a1k = 7 (o1 + 22k — o — 2% )

— ]

2 2 2 2
= llzalk = 7 (2loalk +2 llz2l = 2llo1 — ok )
1 2
= 5 llz a2l

where ||z1]|y = ||z2]| x Wwas used for the last equation. O

The next lemma covers the convergence of bounded and a.e. convergent sequences
in Lebesgue spaces.

Lemma 2.18. Let E C RY be measurable and bounded, v € (1,00) and f, fn, €
LY(E), n € N. If supyen | fullpv gy < ¢ and fo — [ a.e. in E, then f,, — f in
L5(E) for1 <k <w.

Proof. Let k € [1,v) and g, := |fn — f|*. We know g,(z) — 0 a.e. in F and g, is
bounded in the reflexive space L/#(E) with v/k > 1. Hence there is a subsequence,
w.l.o.g. denoted in the same way, converging weakly to g € L% (E). We assume that
there exists Ey C E with |Eg| > 0 and g > 0 a.e. in Ey. Due to weak convergence
we deduce

/gn dx%/~gdaz>0 VE C Ey with |E| > 0. (2.32)
E E
However, by Egorov’s theorem there is £ C Ey with |E| < |Eo| /2 and

HgnHLoo(Eo\m — 0,

contradictory to (2.32). Therefore, the weak limit equals the pointwise limit, i.e.,
g = 0. Since the above arguments are independent of the chosen subsequence, the
whole sequence {g, }nen converges weakly to zero so that

/gnd:n—>0,
E

which implies the assertion. O

The main result of this section reads as follows:

Theorem 2.19. Let (X, @) be given by the solution of (2.15), (X, u) by the solution
of (2.21) and (¥',4/) by the solution of (2.18). Then it holds

2 =% = ||+ lu—a -], =0 (100y-roiope ) (233)
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i.e., the control-to-state map G is Bouligand differentiable from WBl’p (Q;Rd) to
SZxV.

Remark 2.20. We point out that a norm gap is needed in order to establish Bouli-
gand differentiability of Gg. However, this is not surprising, since norm gaps are
usually necessary for the differentiability of nonlinear operators, see e.g. [33], and
the differentiability of solution operators associated with quasilinear PDEs, cf. [75,
Theorem 3.3].

Proof of Theorem 2.19. Let (64p)nen C WBl’p(Q;Rd) be an arbitrary sequence
with 6¢,, — 0 for n — 0. Furthermore let (3, u,, \,) denote the solution of (2.21)
with right hand side £+ 64, and (X!, u/,, \) the solution of (2.18) with right hand
side 04,,.

Subtracting (2.15a) and (2.18a) from (2.21a) and testing with X, — X — 3/ leads
to

(A, -2 -3)), %, - X -3%)) + (divi(up, —u —uy,), B, - X - %)
—T (2.34)
+ (\WDE, — ADE — \DX], — X, DX, D%, — DX — D) = 0.
Thanks to (2.15b), (2.21b) and (2.18b) we observe
div(E, X -%) =0+, —L—66,=0

and therefore I = 0. As both C~! and H~! are uniformly coercive by Assumption
2.1(ii), the linear operator A induces an equivalent norm on S2. In view of equation
(2.34) we derive

Z-E-h<(AE,-2-5), 5, -5 %))

A(Dx, - D - D3;,), DX, — DX — D)
(A — A= X,)D%,, DX, — DX — DX)))
- (X, (P, — DY), DX, — DT — DX)

——
-

= —/ A ||IPE, - D - DX |2 do
<~

- / (A — A~ X.)D, : (DS, - DS - DY) da
Q

- / X, (DS, — DS) : (DS, — DS — DY) da
Q

=:1n
< I+ I+ 1; + Io.

Herein I is given by

L= [ (w Ao X)PE,: (D5, - D5 D)) dr
A
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Moreover, I and I; are defined by the analogous integrals on the sets B and Z, re-
spectively, cf. (2.16). By Lemma 2.15(i) and (iii) there exist subsequences {\,, }ren
and {Enk}keN with

A () = A(z)  a.e. on (2.36a)
¥, (z) = X(x) a.e. on Q. (2.36b)

For the sake of convenience we denote these subsequences again by A, and X,.
Next we will estimate Iq, Is, I, and I; separately.

Estimation of Ig:

According to Remark 2.14(ii) and Lemma 2.16(iv) there exists m > 1 with 1/q +

1/m+1/2 =1 so that
Io < H)\;ZHL‘I(Q) HDEn - DZ—J‘ L™ (£2;S) HDETL - DX — DE;ZHS

sc H(%””WBLP(Q;Rd) HDEH a DSHL’”(Q;S) Hzn -X-X,

(2.37)
I
Estimation of Is: B

If z € Aj, then it holds A(z) > 0 and (2.15¢) yields ¢(2(z)) = 0. Due to the
pointwise convergence (2.36a) and the complementarity (2.21c) there exists N, €
N, depending on z, such that A,(z) > 0 and ¢(Z,(z)) = 0, ie., |[DE,(z)|s =
HDE(&C)HS = 0g, for all n > N, and faa. x € As. In view of Lemma 2.17 we
conclude

DX(x) : (DX(z) — DX, (7))
D), [DE(e) ~ D, 0],

zn(x) = ‘ —0 a.e. on A,. (2.38)

Because |z,(x)| < 1, it follows from Lebesgue’s dominated convergence theorem
that B
Zn =0 in L8(As) V1< €< oo (2.39)

Since DX : DX/, = 0 a.e. in A, cf. (2.18¢), we furthermore deduce

I, =

(An = A= X,)D%,, : (DX, — D — DX;,) du

»

(A=A =X,) (D%, - DY) : (DX, — DX — DX;,) dx

@

(A —A=X,)DE: (DX, — DX — DY) da

@

(A — A= X,) (DX, - D) : (DS, — D — DX},) da

(A —A—=X,)DX: (DX, — DY) da

@

(An = A= X,) (D=, — DY) : (DX, — DT — DX;,) da

»

+

Il
|

(A=A =A,)z | DZ|g | DEn — DE||g da.

[
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. .. . . 1 1,1
Again, on account of Remark 2.14(ii) there exist m > 1 and £ > 1 with {445 =1

and % + % + % = 1. In consequence of Lemma 2.15 and Lemma 2.16(iii)—(iv) we
arrive at

Is < A = A = Nl ooy [PZn = DE 1 ) [|DEn — DB - DX
+ 00 H)‘ —A-X HLq ||ZnHL€(AS) n — 2HLP Q;82?)

= CHMHHWEW(Q;RUI) HDEH - DEHLW(Q;S) [Zn -2 -5

nllg2

(2.40)
nlls2

2
+c “5€n“W51»P(Q;Rd) HanLf(As) )

Estimation of I:
If x € B, then we know ¢(2(z)) = M=) = 0. Hence it either holds A\,(z) = 0
and thus A\, (z) — A(z) = 0 or A\y(z) > 0 and ¢(Zp(z)) = 0, ie., [|[DZy(2)|g =

HDE HS = 09. Lemma 2.17 implies

(A — N (@)(DE : (DE = DX,)) (z) = (A — A)( fH DS — DX, (2.41)

2
)(@)llg
in both cases. Moreover, due to (2.16) and the complementarity (2.18¢c)—(2.18e) we

note that o B
ADXY: DX =\, DX :DX) =0 ae. in(Q

DX DX/ <0 and 0< )\, ae. inB.

Therefore the following estimate is obtained
Iy = —/B (A=A =X,)D%,, : (DX, — D - DX) dx
_ _/B (A — A~ \,)(DS, - DE) : (DS, — DS - DX,) da
- /B (An —A)DX: (DX, — DX - D) da
+ /B A, DY : (DX, — DX — DX}, dw
_ _/B (An— A= X,) (DS, — D) : (DS, — DS — DX} da

+/ [(An = A\)DE: (DX - DX,) + A\, DX : DX/, —\DX: DY), | dz
B ~~

>0 <0 =0
+/ X, (P=: D3, - |DS[2) - X, DS : D, | da
B N—— D

—q2
=0

< —/_ (Ao — A~ \.)(DE, - DE) : (DS, — DS — D¥.) da
B

+/ (A — A)DE: (DE - DX,) da:—i—/ A (00| DSl —of) da.
B B~~~ —

>0 <oo
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Taking (2.41) into account we derive
I < —/_ (An— A= \.) (DX, — D) : (DS, — DS — DS, da
B
1 )
" /B (=N [P - D, ar.

. : ap 111 1,11
J;A}lszn(2.40)thereex1stm>1and§>1W1tha+a+§:1anda+g+5zlso
a

B == Xl

1 - _ _
+ 9 HAn o )‘HL‘I(Q) HDEn o DZHLﬁ(Q;S) Hzn o EHLP(Q;S2)
sc HM”HW,;LP(Q;W) Dz — DSHL"L(Q;S) [PEEDIE

Q) HDEH o DiHLm(Q;S) HDE" ~ DX - Dz;l”ﬁ

(2.42)
Is2

+c !Wn”ivglwm;w) IPE0 = DE| () -

Estimation of I;:
For z € 7 it holds ¢(2(z)) < 0 and A(z) = 0, cf. (2.15¢). Thanks to the continuity
of ¢, the pointwise convergence (2.36b) and the complementarity (2.21c) there exists
N, € N with ¢(Zn(z)) <0 and A\y(z) =0 for all n > N, and f.a.a. x € Z. Hence
we infer that -

An — A

—0 ae. inZ.
lléenllwgl’p(Q;Rd)

Moreover, we know ~
1An = Al o)

H(%TLHWBLP(Q;Rd)

<c¢c VneN

with ¢ > 2 according to Lemma 2.15(iii) and Remark 2.14(ii). Therefore, from
Lemma 2.18 it follows

An — A

a ”(%”HWBLP(Q;]Rd)

— 0 in L*(Z). (2.43)

Wn *

Because of (2.18¢) we moreover deduce

IZ-:—/ (A=A =X,)D%,: (DX, — DE — DX da
z

- / (Aw — \)DZ, : (DX, — DS — DX,) da
A
= /_wn ||5€n\|W51,p(Q.Rd) DY, : (DX, — DX — DY) da.
I )

Due to the complementarity (2.21c) this leads to

Ii < a9 HWnHL2(f) ||5£n||W514’(Q;Rd) Hzn -3 Engsz . (2.44)
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In summary, (2.37), (2.40), (2.42), and (2.44) together with (2.35) yield

[Zn =2 = 2|5 < cllolnllyy - DX = DI ) [|Bn — 2 = 5

nllse
+c H(;En”w—l,l’ Q‘Rd (HZTLHLf(/IS + |’D2n o DSHL& 938))
‘Z - -3

Hs2 ~LP(QRd) ‘

+ellobully rrqpay lwonll L2z nllse -

By applying Young’s inequality we find

12, - = -3

HSQ < DY, — DX ?
H Cn, Hm/‘lP(Q Re)

+c (HZnHLf(AS) +[| D2 - DE—JHB(Q;S)) :
Lemma 2.15 (ii), (2.39) and (2.43) then imply

HE _E_EIYLHEQ n—o00
15¢n 15

0. (2.45)
P (SRY)

In order to prove the remainder term property for the displacement u, we subtract
(2.15a) and (2.18a) from (2.21a) and test the arising equation with

T := (s(un) —e(u) —e(ul,), —e(uy,) + e(u) + e(u;)) e S2.
Consequently, we obtain
(AZn, -2 -3, T) + (div*(up, — @ —ul,), T)
+ (\DX, — ADE - ADX), — X, DX, DT) = 0. (2.46)

=:1s

As DT = 0, we infer I, = 0 and therefore

et — @ — ||, < C/Q le(tn — @ — ul)||? de

:c(div*( n—a—u), T) (2.47)
<c|(A(Z, -2 -X)), T

<c Hun—u Unlly [ B0 =2 =3,

by Korn’s inequality (Proposition A.25). Hence, (2.45) induces

[un —a —uplly nooo

0.

H(SgnHWD_lvp(Q;Rd)

Since the above arguments hold for every subsequence of (X,,, u,, Ay ), we conclude
(2.33) for the whole sequence. O
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In view of Lemma 2.18 we can enhance the result of Theorem 2.19:

Corollary 2.21. Let (X, ) be given by the solution of (2.15), (X, u) by the solution
of (2.21) and (X',u’) by the solution of (2.18). Then it holds

[=-=- E/HLﬁ(Q;SQ) +u—a- “/Hw,gﬂ(sz;Rd) =0 (H(%HWBLP(Q;Rd)) (2.48)
forall1 < B <p.

Proof. As in the proof of Theorem 2.19 let (§4,)nen C WBl’p(Q;Rd) be an arbi-
trary sequence with ¢, — 0 for n — 0. Furthermore, by (X, Uy, A\p) we denote
the solution of (2.21) with right hand side ¢ + 64, and by (X, u),, \)) the solu-

tion of (2.18) with right hand side 6¢,,. According to Theorem 2.19 there exist
subsequences, w.l.0.g. denoted in the same way, such that

R SN
[EL— 108l 1.7(0m)

— !
U, —U—U )
n_ 50 a.e. in Q.

Besides, these subsequences are bounded in LP (Q;SQ) and Wll)’p (Q;Rd), respec-
tively, cf. Theorem 2.8 and Lemma 2.16. From Lemma 2.18 we infer (2.48) for
arbitrary subsequences and thus for the whole sequence. O

In addition, Theorem 2.19 entails two consequences stated in the following corol-
laries:

Corollary 2.22. Let the multipliers A\, X\ and X' be given by the solutions of (2.15),
(2.21) and (2.18), respectively. Then it holds

V=X = Nl gy = 0 (1€l 0.5 ) (2.49)

forall 1 <y <gq.

Proof. Due to (2.23), (2.31) and (2.28) we know
AN = A= N)=—H 'x:DE+H 'x: DZ + H 'x/: DT
=-H ' (x—x):(DE-D) -H ' (x —~x — X)) : DT
—H 'x: (DX - DX — DY).
Because of ¢ = 1/(1/s 4+ 1/p), cf. (2.20), every v < ¢ can be written as 7 =

1/(1/s +1/B) for some B < p. The boundedness of DX(z) a.e. in €, cf. (2.15¢),
then implies

A=A =Xl o) < lix = Xlls o [IPE - P

L3(%S)
+elx —x - X/Hm(sz;sa
+c ||5CHLS(Q;S) HE - ZIHLB(Q;SQ) :
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Lemma 2.15 together with Corollary 2.21 yields the claim. O

As a result of Corollary 2.21 and Corollary 2.22 the operator Gg is directionally
differentiable:

Corollary 2.23. For all 1 < 8 < p the control-to-state map Gg: W];l’p (Q;Rd) —
LB (Q;SQ) X Wé’ﬁ (Q;Rd) is directionally differentiable at every { € ng’p(Q;Rd)
in all directions 60 € WBl’p(Q;Rd). Furthermore, the mapping WBl’p(Q;Rd) >
C— X\ € LV(Q) is directionally differentiable for all 1 <~ < q.

Proof. Since the set Sy is a cone, the mapping §¢ — 6,G (£, 8¢) is positively ho-
mogeneous so that (X', tu’,t)\') is the solution of (2.18) with right hand side td¢.
Consequently, (2.48) leads to

[ -3 - tz,HLB(Q~S2) lue — o = tu'lly s ey o
— 4+ = 0.
t t
The second assertion follows analogously from (2.49). O

2.2.1. Directional differentiability

In order to derive the assertion of Corollary 2.23 we do not need Theorem 2.19.
To be more precise, the integrability requirement (2.19) for the hardening variable
can be relaxed such that Gg: ng’p (Q;Rd) — LP (Q;SQ) X Wé’ﬁ (Q;Rd) is only
directionally differentiable for all 1 < 8 < p without the remainder term property
(2.48).

Assumption 2.24. The solution of (2.15) satisfies the weaker condition x €
L*(%;S) with
p
> —. 2.50
s> L (2.50)

For the rest of this section Assumption 2.24 is supposed to hold instead of Assump-
tion 2.13(ii).

Remark 2.25. As in Remark 2.14(ii) we infer from (2.50) that q defined in (2.20)
fulfills p' < q < p. Therefore, the statements of Lemma 2.15 and Lemma 2.16
remain unaffected by Assumption 2.24.

By similar arguments as in the proof of Theorem 2.19 we can establish the following
Theorem.
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Theorem 2.26. Let (2,4, ) be the solution of (2.15), (¢, us, \¢) the solution of
(2.25) and (X', 4/, ') the solution of (2.18). Then it holds

Et—i ut—ﬂ
t 7t

> DO (3w in S2x (2.51)

i.e., the control-to-state map G is directionally differentiable from ng’p(Q;Rd)
to S? x V.

Proof. Let {t,}nen C RT be an arbitrary sequence of positive real numbers con-
verging to zero and let (X, ,uy,, Ay, ) be given by the solution of (2.25) with right
hand side £ + t,0¢. Subtracting (2.15a) and (2.18a) from (2.25a) and testing with
(24, — )/t — X' results in

X — X X — X — U X — X
A t”i_z/ ,t”i_z, + le* (M_u,>,t”7_2,

=J7

A\, DS, — \DE - _ DY, — DI
+< i — DY — \Npy, — 2 T2

tTL n

— DZ’) = 0.

Due to (2.15b), (2.25b) and (2.18b) we infer div ((2¢, — X)/t, — ') = 0 and thus
J7 =0 for all n € N. Analogously to (2.35) we obtain

= 2
P (i I
th 52
DY, — DY - _ DY, — D%
<— (At" t; ADE _ Spsy Npy, 22 T DE’)
n n
A, DX, —A\DET - _ - DY, — DX
= ( bn ’*t" —\DY — \'DX, DZ’) + ()\DZ’, t”)
=37 =73 (2.52)
_ D%, — DX A, — A DY, — DX
+ (A’DE, e ) - ( I Zpyw, T2 T2 >
tn n tn
=Ty :vg
<XD2% - DY DX, — Dz)
tn ’ tn '

.
=7

Next the convergence of gg, Jy, I}, I¢ and J§ as n — 00 is investigated. Thanks
to the boundedness of DX and (2.23) the multiplier A belongs to L*(€2). Moreover,
in view of Remark 2.25 there exists m > 0 with 1/¢+ 1/m = 1/p’ so that (2.20),
Lemma 2.15(ii), Lemma 2.16(i) and (ii) yield
A, — A _ D%, —DX%
t"tipztn —~NDE, A\l T2

n n

—~ ADY’ in LP(Q;S)
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and accordingly

M, — A D3, — DT
33:( fn thn+A7t"t

tn n

— DX - \DY/, DZ’) — 0. (2.53)

From ADX/, DX € L¥ (Q;S), Lemma 2.16(i) and (2.18c)—(2.18¢) we further con-
clude

Iy — (A\DY', DY), T} — (DX, DY) =0. (2.54)
The convergence of J2 is separately discussed on the sets As, B and Z. By Lemma
2.15 there exist subsequences, w.l.0.g. denoted by the same symbols, with A, () —
Az) ae. in Q and X, () — Z(z) a.e. in Q. Similarly to (2.40) it can then be
shown that

/ A = Apy, DX = DX
A t

n tn

A, — A

DY, — DX
- [ s 195,y 22 = P2
As

- - (2.55)

A, — A ’zztn—z

n tTL

<og

< C”ZthLm(As)a

12t Lma,) LP(5)
.

La(Q)

where the function z;, is as defined in (2.38) with ¥, instead of X,. Note here
the boundedness of weakly convergent sequences, cf. Lemma 2.16. On account of
(2.41) and Remark 2.25 it follows

3 S < ")
— DY, — DX —\1||DYy, — DX
/ Aty )\thn LT T gy :/ A, ZAL [D=, HS dx
B tn tn g8 tn 2 tn
LA, — A DI ) - (2.56
=1 ’t D%, = DE| o) )
nlraQ) n o lr@s)
<c||DZy, - DzHL"L(Q;S)
with 1/p+1/q+ 1/m = 1. Finally, we observe
— DY, — DX — A %, — X
/ )\t"t /\DEtn : 7“} dz < o9 /\tnt A ) ’tnt
A n n n_ LP'(7) n LP(Q;S) (2.57)
A, — A
<c
b lpr @)
with p’ < ¢ and analogously to (2.43) we deduce
i, — A .
t"t — 0 in LP(Z). (2.58)
Lemma 2.15(ii), (2.39) and (2.55)—(2.58) lead to
37— 0. (2.59)
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Let f: LP(Q,S) — R be defined by
e (A [I7]2).

In consequence of (2.15¢) the function —f is concave. Moreover, from (2.20) and
Remark 2.25 we infer 1/p+1/s+ 1/p < 1 so that

F(r1) — fra) = /Q A2 - 17l2) de

= [ A0mals = Imalls ) (lrills = Il + 2lmalls) de 5 6

< H;\‘ Ls(Q) HTI - TQH%I’(Q;S)
+|A]

L3 (Q) ||Tl - TQHLP(Q;S) 2 HTQHLP(Q;S)

for all 71,79 € LP(Q,S). This shows continuity of f and hence weak upper semi-
continuity of —f, which implies

DY — DX
lim sup Jg = limsup (—f(t">> < —f(DE')

n—00 n—00 128 (2.61)
=— (\DY, DY).
Together (2.52)—(2.54), (2.59) and (2.61) induce
3, — 5 oo
Ht" - ~% 0. (2.62)
t
n 92

The convergence result for the displacement is obtained similarly to (2.47). By
subtracting (2.15a) and (2.18a) from (2.25a) and testing with

T — (E(utn) — E(ﬂ) N s(u’), _e(utn)t_ 8(’[_1,) +€(u/)> c 52

we arrive at

J

Korn’s inequality (Proposition A.25) and (2.62) yield the claim for every subse-
quence (X, ,uy,, A\, ) and thus for the whole sequence. O

3, — X
tn

2
dr <e¢
S

€<utn) — 8(1_1’) - E(U/) U, — U —u

tn

-y

n

|4 52

The next two corollaries can be derived analogously to Corollary 2.21 and Corollary
2.22.

Corollary 2.27. Let (X,u) be given by the solution of (2.15), (X4, us) by the
solution of (2.25) and (¥',u’) by the solution of (2.18). Then it holds

Et—fl U —u
t ’ t
forall1 < B <p.

) OO (5 ) in DA(Q582) x WA (0 RY)
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Corollary 2.28. Let the multipliers X, Ay and X' be given by the solutions of (2.15).
(2.25) and (2.18), respectively. Then for all 1 <~ < q it holds

A A DOy ).

2.3. Second-order sufficient optimality conditions

Given the findings on the differentiability of the control-to state map G we can
establish second-order sufficient optimality conditions for (Pg). We start by provid-
ing some preparatory auxiliary results. Then rather restrictive sufficient optimality
conditions are presented, which however are applicable to a general smooth ob-
jective functional. Subsequently, we assume a specific structure of the objective
functional such that these conditions can be relaxed.

Throughout this section we make the following assumption.

Assumption 2.29. The objective functional J: V x U — R is twice continuously
Fréchet-differentiable.

According to Theorem 2.5 Problem (Pg) is equivalent to

Minimize J(u, f)
AY +diviu + \D*DE =0 in S?

, (2.63)
s.t. divE =Rf mV
0<Az)L p(X(x)) <0 ae. in
with R: U — V' given in (2.14). For the rest of this chapter we set
p = min(p, 3), (2.64)

where p is as defined in Theorem 2.8. Hence, R continuously maps from U to
ng’p (Q; Rd), cf. Remark 2.14(i). To simplify matters we denote R with range in
WD_I’p (©2; R?) by the same symbol.

Remark 2.30. Let Assumption 2.1 hold. Furthermore let (3, w, ) be the state and
multiplier associated with f €U and (X,u, \) be the state and multiplier associated
with f € U. Due to the continuity of R the results of Section 2.2 imply

(i) HE B 2HLID(Q;S2) + Hu - 'L_"HW;P(Q;Rd) <L HR” Hf - }IHU

(ii) A= Ml oy < cIBINF = £l
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(iit) |2 1o (52) + [ llyy1egray < LR 1 =l
(1) [Nl pagy < clIRIHF = £l
(0) |2 =3 == sge + lu—a —ullyisgp =0 (| = Fll,) V6 €Lp)

(vi) [[A=X=X

o([[f = flly) vrellq).

v =

Here we used the abbreviation ||R| := HRHL(UW—Lp(Q,Rd)).
YYD ’

The yield function ¢ involved in the complementarity constraints in (2.63) is Lip-
schitz continuous on the admissible set K:

Lemma 2.31. Let 31,39 € K. Then it holds

[6(21) = (32l v () < 00 121 = Bl v (02

for every v > 1.

Proof. By definition of ¢, cf. (2.3), we find

DY |2 - 02  |DZy|2 - 02"
IPXfls — o5 [DXalls —oo|” 4

[6(21) = ¢(B2) |70 () =

/Q 2 2
2
[ [z ‘L
ol 2 2
1 14
= / 5(7)22 + DEI) : (D21 — ng) dx
Q
1
< [ 35 (IDRals +[DZ1l5)” [DE: — D5 da
< [ 1%~ Bl do = oF 51~ Balliuasn
Q
where the last estimate follows from (2.2). O

For the derivation of the second-order sufficient conditions a particularly chosen
Lagrange function is employed. To this end we introduce the space

S% :={T € S?: DT € L™(Q;S) }.

Note that every solution of (2.15) and (2.21), respectively, belongs to S2 in conse-
quence of (2.15¢) and (2.21c). Equipped with an appropriate norm, S2, becomes a
Banach space:
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Proposition 2.32. The space S%, endowed with the norm
ITls2, := ITlls2 + IPT | Lo s,

1s a Banach Space.

Proof. 1f {T',}nen is a Cauchy sequence in S2, then {T',}nen and {DT,, }nen are
Cauchy sequences in the Banach spaces $? and L>(£2;S), respectively. Thus, there
exist T € S? and p € S with

T, - T in S? DT, — p in L>®(S).

Moreover there are subsequences converging pointwisely so that g = DT a.e. in (.
Therefore, the space S2, is complete. O

With S% at hand we define the Lagrangian £: S% x V x L?(Q) x U x S? x V x
L*(Q) x L*°(Q)" — R through
E(Z,u,)\,f,'r,w,u,ﬁ) -
= J(u, f) + (AZ + div* u + AD*DE, T) + (divE — Rf, w) (2.65)
= (A 1) +(D(X), 0) oo (), Lo () -

On account of Assumption 2.29 and the definition of S we obtain the following
result concerning the differentiability of L.

Proposition 2.33. The Lagrange function L defined in (2.65) is twice continuously
Fréchet-differentiable.

Proof. We show exemplarily that the nonlinear mapping Fy: L?(2) x S%2, — S,
(A, X) — ADX, is twice continuously Fréchet differentiable. The definition of the
norm on S2, implies
[P+ 00,2+ 6%) — Fi(N, B) — (0ADE + AD6X) ||
[(6A, 03] 120y x 52,
_ ||(A 4+ 6M)(DX + D6E) — ADX - ADE — ADIX||
1A, 03| 20y x 52,
[9XD63 5
10Al L2y + [16%| g2 + [[PIX]| oo (25

(6X,62)—0
S IDOZ| poo ) — 0,

TFy ((5)\, (52)) .

which shows differentiability of F; with Fl’(;\_, 2)(6A,6%) = SADXE + ADJIX. Since
the first-order derivative is linear w.r.t. (A, X), we conclude that F is twice con-
tinuously Fréchet differentiable. By the same arguments the nonlinear mapping

33



Fy: §2 — L°(Q;S), = ¢(X), is Fréchet differentiable with first-order deriva-
tive F5(X)6% = DX : DOX. O

It will be crucial to estimate the last two expressions in (2.65) properly. More
precisely, we need the next auxiliary lemma.

Lemma 2.34. Let (X, u,\) be the state and multiplier associated with f € U
and (X, u, ) be the state and multiplier associated with f € U. Furthermore let
i€ LS(Q) and § € L™(Q) with
2
C,T>$ and s>7p,
sp—p—2s p—2
where p is as defined in (2.64). If p >0 in Ay :={z € Q: —r1 < #(X) <0} for
some k1 >0 and 0 >0 in Az == {x € Q:0 <\ < Ky} for some kg > 0, then there
are v1,vy > 2 such that

(2.66)

- [omdeselr =l [ o <c]s -l

Remark 2.35. The integrability condition (2.66) ensures that 1/{ <1—1/q—1/p,
or equivalently, ¢ > qp/(qp — p — q) with q as defined in (2.20):
> sp sp° sipP qp

sp—p—2s sp?—p(s+p)—sp  Ep-—p—E w-p—q

Thanks to Remark 2.14(ii) we further know1—1/qg—1/p>1—1/p' —=1/p=0.

Proof of Lemma 2.34. By defining Qy := {z € Q : A(z) > 0} and E; := Q1 N Ay,

we observe
— )\ﬂdx:—/ A Qb dx—/ An dz
/Q E1 :6/\26/ Qi1\E1

< —/ (A= N)i dz.
Q1\E1

Note here that A = 0 a.e. in 7 \ By due to (2.15¢). In view of Remark 2.35 there
exists f < p with 1/g+1/{ + 1/ = 1 so that we infer

- 1
- [ e < A= Sl iy 19\ Bl
From the definition of A; and (2.21c) it follows

1
|Ql\E1|:p/ Ii?dl‘
Q1\E1

k1
1 i 1 -
wy dv =% ~ dz.
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Because of Lemma 2.31, Remark 2.30(i) and (ii), we consequently arrive at

- _r
- /Q Midz < el[A— )\HLQ(Q) 12l e (g lo(2) — ¢(E)H1€p(§z)

- _
< ef]A = Ml ooy IAlle o) 1B = | Loas2) (2.67)
— 1.:,_%
<c|f-flv

with vy := 14p/f > 2. If we define Qg := {z € Q: ¢(X(x)) < 0} and Ey := Q2N Ag,
then we obtain

/ng(Z)de: E2¢(z)\e/ dx—i—/ $(2)0 d

5 20 2\

< oy O 2278

< [[6(2) = 6(E)|| 1oy 119

where the existence of v < ¢ with 1/p+1/r 4+ 1/v = 1 was used. The definition of
Ay and (2.21c¢) lead to

1
Lm(Q) |QQ \ EZ"Y ;

1
‘QQ\EQ’:(]/ Iig dIIJ
Ko JQo\E,
1 N 1 3|9
<— ‘)\‘ dz = — ‘/\—/\} dx.
Ko JQo\E, Ko JQo\E>

Thanks to Lemma 2.31, Remark 2.30(i) and (ii) it can be shown analogously to
(2.67) that

/Q o) de < c||f - Flo

with vp := 1+ q/v > 2. O

Now we are ready to prove the first version of second-order sufficient optimality
conditions for (Pg).

Theorem 2.36. Let f € U and (X, @, \) € S x V x L?(Q) be the associated state
and multiplier. Sup_pose further that there exist an adjoint state (X, w) € S? x V
and multipliers (fi,0) € L?(Q) x L?(Q) satisfying the following conditions:

(1) x € L*(4;8), Y € L”(Q;SQ), i€ LY(Q) and 6 € L7(Q) with

2 S
7p T],C,T> P

s> , —
-2 sp—p—2s

(2.68)

and p as defined in (2.64).
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(2) (X, ) and (fi,0) solve

AY +div* @ + AD*DY + 0D*DE =0 (2.69a)
divY + 0y J(u, f) =0 (2.69b)

R'w —0¢J(u, f) =0 (2.69¢)

DYDY =[i (2.69d)

EA=0  a.e. in (2.69¢)

0p(Z) =0  a.e. in (2.69f)

a>0 a.e. in A (2.69g)

6>0 a.e. in A, (2.69h)

where the sets A1 and Ay are defined through

A1 ={z€Q: -k <o(2) <0}
Ay ={r €Q:0< )< kol

for some k1,Kk9 > 0.

(3) There is an o > 0 such that
Roaur ) L(Ea A F, X, w,1,0) (5w, X h)* = a|[h]f (SSC)
for allh € U and (X',4/,\) solving (2.18) with 6¢ = Rh.

Then there exists an € > 0 such that the quadratic growth condition
_ 7 « 2112
J(w, ) = (@, F)+ S| = FIl; (2.70)

18 fulfilled for oll f € U with Hf — }.HU < e. Thus, f is a strict local optimum of
(Pg).

Remark 2.37. The Lagrangian L is twice continuously differentiable in its space of
definition by Proposition 2.33. However, if the dual variables (X, 0) fulfill the inte-
grability conditions in (2.68), the second derivative of L w.r.t. the primal variables
(3, u, A, g) is given by

s urp£(Za, X F, X, @, 1,0) (5, 6u, 07, 6f)* =

) o ) _ o (2.71)
=Viupd (@ f)0u,6f)"+2 | SADSE : DY dx+ [ | DOX||56 dx
Q Q

and defines a continuous bilinear form on the space LP(Q;Sz) x V x L1(Q) x U,
cf. Remark 2.35. Hence, the left-hand side in (SSC) is well-defined according to
Remark 2.30(iii) and (). Hereafter we denote the integrals in (2.71) as L*-scalar
products by (-, -).
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Remark 2.38. Let us compare the sufficient optimality conditions in Theorem 2.36
with their finite-dimensional counterpart. In [69, Theorem 7] Scheel and Scholtes
proved that

e strong stationarity (= necessary conditions for local optimality)

o coercivity of the Hessian (w.r.t. the primal variables) of the Lagrangian on the
cone of critical directions

guarantee local optimality for a mathematical program with complementarity con-
straints (MPCC) in finite dimensions. In case of the infinite-dimensional MPCC
(Pg) Herzog et al. proved that C-stationarity conditions are necessary for local op-
timality, see [43, Theorem 3.16]. These conditions coincide with (2.69), except
that they claim a sign condition only for the product of the multipliers fi and 6 in
contrast to (2.69g) and (2.69h). To the best knowledge of the author, necessary
conditions of strongly stationary type can be established solely if an additional and
physically meaningless control variable is introduced as inhomogeneity in (2.5a), cf.
[44, Theorem 4.5]. A strongly-stationary-like system for (Pg) would coincide with
(2.69), except that the individual sign conditions for the multipliers would hold on
the biactive set B. The sets A1 and Az involved in (2.69g) and (2.69h), respec-
tively, are even larger than B. Moreover, Theorem 2.36 requires higher integrability
of the hardening variable X, the adjoint variable X and the multipliers i and 6,
cf. (2.68). Thus, we observe a significant gap between the necessary and the suffi-
cient optimality conditions for (Pg). In addition, the set of directions, for which
the coercivity (SSC) has to be fulfilled, is larger than the cone of critical directions.
In the context of Problem (Pg), this cone consists of all directions (E/,u’,)\’,h),
which solve (2.18) and satisfy J'(w, f)(u’,h) = 0.

To sum up, the sufficient conditions in Theorem 2.36 are quite restrictive in compar-
1son with the sufficient conditions for finite dimensional MPCCs listed above. Later
on we will improve the assertion of Theorem 2.36 and obtain conditions, which are
more competitive with [69, Theorem 7], provided that the objective functional has a
certain structure, cf. Theorem 2.41.

Proof of Theorem 2.36. At first we note that Assumption 2.13 is satisfied because
of s > 2p/(p—2) and (2.64). Therefore, the results of Section 2.2, enumerated
in Remark 2.30, can be employed. Let f € U be arbitrary with f # f and
(3, u,\) € S2, x V x L?(Q) be the state and multiplier associated with f.

We aim to deduce the quadratic growth condition (2.70) from a Taylor expansion
of the Lagrangian. For this purpose we introduce the abbreviations

z:=(Z,u,\f), z:=(Za\f), =T w/pb).

As L is twice continuously differentiable in its space of definition, cf. Proposition
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2.33, there is a ¢ € [0, 1] such that

£(2,0) = £(2,0) + VoL(2,@)(z ~ 2) + ViL(z00)(z — 27 (272)
with z; := Z 4+ t(z — 2). In the following we discuss each expression in (2.72)
separately.
The zero-order terms:
On account of (2.15a), (2.15b), (2.69e) and (2.69f) we observe
L(z,@)=J(,f)+ (AZ +div: @ + AD*DE, T) + (divE — Rf, w)
o (5‘7 IE’)LQ(Q) + (¢(2>7 é)L2(Q) (2.73)
=0 =0
= J(a, f).
In addition, (2.21a) and (2.21b) show
L(z,w)=J(u, f)+ (A +div: u + AD*DX, X) + (divE — Rf, w)
=0 =0
— (O W)y + (6(2), 0) 12 (2.74)
= J(u, f) = (\ @) p2q) + ((2), é)LQ(Q)
so that Lemma 2.34 leads to
L(z,@) < J(u,f)+o((|f—ﬂ\§]). (2.75)

The first-order term:
The first derivative of £ at z in direction (z — 2) is given by

V.L(%,2)(z — %)
:<8u<](ﬁ)]:)7 u—u

Y+ (0pJ(w, ), F—F)+ (A= -%), )
+ (div¥(u — @), X) + (A= A)D*DE, ¥) + (A\D*D(Z - %), Y)
+{div(Z - %), w) —(R(f — f), w) — (A= X\, i) + (DE: D(Z - %), )
= (AY +div* @ + A\D*DY + §D*DX, £ — ) + Y +0uJ(u, f), u—u)

From (2.69a)—(2.69d) we thus conclude
V.L(z,2)(z—2)=0.

The second-order term:
In view of Remark 2.37 it is already known that

ViL(z,@)(z — 2)? =
=Viupd (e F)w—u,f - ) +2 (A= )D'D(T - %), Y)

+ (Ilp= - D=2, 9).
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(2.77)



Since V(zu (@, F)[-, ] defines a bilinear function on V' x U, we find

v%u,f)J(ﬂaj‘> ula.f_}.)z_v2u,f)J(ﬂaf)(u_a7f_f)2 -
zﬁiJ(ﬂ, V', ] —812LJ('& flu—u,u— ] — 2070, J (u Plu—u -, f— f]
= _8'3‘](_7

= aJ(uf)[u u,u—u—u]

I

|
N3
=~
\.g‘
e

|
I~

|

g e g
|

Consequently, equation (2.77) can be rewritten as
v E(Zt, )(Z - Z)2 =
= Vi@ W = 5+ (Vi g (e £) = Vi T ) (w—u, f = F)?

=D
+2050uJ (4, f)lu—u -, f — fl+ 05 J(a, f)(u—ua—u')
+202J(a, f)lu—u—u,u]+2 (A= ND*D(E 2 ,Y)

+ (| 2. 0).

Next we derive estimates for the last two expressions. Thanks to the regularity
condition (2.68) there exist ¢ < f < p and v < ¢ such that 1/¢+1/8+1/n < 1
and 1/vy+1/p+1/n < 1, cf. Remark 2.35. In view of Remark 2.30(ii) and (iii) we
deduce

(A= X)(DPx - DX), DY) =
=(NDX', DY) + (A= \)(PX — DX — DY), DY) + (A — A — X)DY', DY)
=:Do

> (VDS DY) A A 15 5 g ¥
—efa-a

)‘/HLW(Q) HE,HLP(Q;SQ) HTHL"(Q;S2)
> (szlv DT) - Hf o }HU (HE -X- ElHIﬁ(Q;S?) + H)‘ A= XHL"*(Q)) :
Besides, (2.68) yields 1/p+1/8+ 1/r < 1, which implies
( 1) =
=(Io=|l3. 6) + (o= - DS - DS|3, 6) + 2 (DX - DS - DX'): DY, 9)
—_—
—=:Dsg
N2 p S / S ’ 0
= (‘ S’ 9) - ¢ HE —¥-% HLP(Q;S) HE —¥-X HLB(Q;SZ) H@
- ¢ HE/HLP(Q;S) [2-%- EIHM(Q;S?) 10

> (|

Lr(©)

Lr()
12 0) el = Al 122 = s e
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according to Remark 2.30(i) and (iii). Recalling again Remark 2.37, we furthermore
note

Dy + 2D, + Ds = V2L(2,@) (S o', X, f — F)°.
Thus, because of Remark 2.30(iii)—(vi) and (SSC) we obtain
ViL(z,0)(z — 2)* =
>V2L(z,@) (X w N, f — )
—C Hv%u’f)J(Ut, -ft) - v%ru”f)*](’ljﬂ }')
—c||058uJ (a, })HE(U,V’)
_cllzia f

-7

’,C(VXU,(VXU)’)
‘u —u-— “/Hv Hf - fHU

fu—a ||y

(2.78)

>H£(V,V’)

)HC(V,V’) u—a— '], o],

—c)lf = Flly (I = £ = =l psgen + 1A =3 = Nl 1oy)
>allf=7l5 -0 (£ - FI7).

where we used that J is twice continuously differentiable by Assumption 2.29. From
(2.72), (2.73) and (2.75)—(2.78) it follows

T f) = I 5+ 5 |1 = 55— o (Ilr = 717)

i o (15 7lI7) L
— J(u. F) + <0‘ - ) T
2 |lr -1l y
Hence there exists € > 0 such that
Ju, f) = J(a, )+ S f = Pl vFeuwitn || - F, <«

which is the desired quadratic growth condition. O

Remark 2.39. For every p > 2, there are numbers s,n,(,r € [2,00[ satisfying the
reqularity conditions (2.68). However, if p tends to 2, then the bounds for s, n, (,
and r tend to oo, cf. also Remark 2.1/ (i1) and Remark 2.35. Asp > 2p/(p—2) for
all p > 4, the assumption for the integrability exponent s in (2.68) is automatically
fulfilled in case p > 4. In view of Sobolev’s embedding theorem such high integrability
cannot be expected for controls in U = L? (Q;Rd) x L? (FN;Rd) but for controls in
L (Q; Rd) x L2 (FN; ]Rd) with vy, vy sufficiently large, cf. Remark 2.14(1), provided
that the problem data are smooth enough.

If the objective functional provides a particular structure, we are able to relax the
second-order condition (SSC). To be more precise, we can restrict the coercivity of
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the Hessian of £ to the cone of critical directions so that (SSC) becomes a classical
condition, cf. |69, Theorem 7]. Moreover we are allowed to weaken the integrability
requirement for the hardening variable x in (2.68).

As in Theorem 2.36 let f € U and (X, u, \) be the associated state and multiplier.
For the rest of this section we assume that J fulfills the next assumption.

Assumption 2.40. The objective functional J: V x U — R is given by J(u, f) =
i(u) + 7(f). Moreover it holds

i) i: V. — R is twice continuously Fréchet-differentiable

ii) 7: U — R is twice continuously Fréchet-differentiable and there exists a v > 0
with B
J"(HR* = v|Rl; VheU.

The second version of sufficient optimality conditions reads as follows.

Theorem 2.41. Let f € U and (2,@,\) € S% x V x L*(Q) be the associated state
and multiplier. Suppose further that there are an adjoint state (Y, w) € S?xV
and multipliers (i,0) € L?(Q) x L?(Q) satisfying the following conditions:

(1) x € L*(%S), X € L"(%S?), fi € LS(Q) and § € L™(Q) with
p sp

3>]f27 n,Cﬂ’>m, (2.79)
and p as defined in (2.64).
(2) (X, w) and (fi,0) solve
AY +div* @ + AD*DY + 0D*DE =0 (2.80a)
divY +d'(u) = (2.80b)
R'w—j'(f)=0 (2.80c)
DE:DY =i (2.80d)
A =0 a.e. in Q (2.80e)
0p(%) = a.e. in Q (2.80f)
@ >0 a.e. in A (2.80g)
6>0 ae in Ay (2.80h)

where the sets A1 and Ay are defined through

Al ={r€Q:—K <¢(Z) <0}
Ay ={2€Q:0< )<Ko}

for some k1,k9 > 0.
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(3) There is an a > 0 such that
a?E,u,A,f)L(iv u, 5‘7 .?7 T, w, [, é) (2,7 ’U,,, )‘,, h)2 >« ||h||[2] (SS/\C)
for allh € U and (X',4/,\) solving (2.18) with 6¢ = Rh such that

i'(w)u' + j'(f)h = 0.

Then there exist € > 0 and § > 0 such that the quadratic growth condition
_ =012
J(u, f) > J(u, f)+6|f - £, (2.81)

is fulfilled for oll f € U with Hf — fHU < €. Thus, f is a strict local optimum of
(Pg).

Proof. The proof is similar to [55, Theorem 2.12]. We argue by contradiction and
assume the opposite of the quadratic growth condition (2.81). Then there exist
a sequence {f,}neny C U with f # f, — f and by Lemma 2.15 a sequence of
associated states {(Zp, Un, An) bneny With (2, s, An) — (X, @, \) in LP(Q;SQ) X
WhP(Q;RY) x LI(Q) satisfying

oo, L 2112
J(uvf)—i_EH‘fn_fHU>J(un7fn)' (2.82)
For the sake of convenience we introduce the abbreviations
r. fn_jc Zn_2 Uy — U /\n—j\
Pn 1= an—fHU, h, = , Ly = , Up 1= , Ly 1= .
Pn Pn Pn Pn

Because of the boundedness of h, and the compactness of the operator R, cf.
Remark 2.14(i), there is a subsequence, w.l.o.g. denoted in the same way, with

h,—h inU  Rh,— Rh W, (RY) V1I<g<p. (2.83)

Let (2,,,Up,,Ap,) denote the state and multiplier associated with f + p,h and
(3}, up,, Aj,) denote the solution of (2.18) with right-hand side Rh. Then Theorem
2.8 implies

Hzn - ;1HL5(Q;SQ) -
- zpn—z’:_z,h +Hzn—zpn
P LA(9:8?) P llLs(0;8?)
<[P =y +LHR<fn—f—Pnh)H
Pn LA(;8?) Pn 1 (050
= 21)7;7;2 - LB(Q;52) * LB - RhHWBI’ﬂ(Q;Rd) '
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From Corollary 2.27 and (2.83) we thus infer

n—o0

/
1200 = Bl s ) = 0-
Analogous arguments hold true for v, and ¢,, cf. Lemma 2.15(iii) and Corollary

2.28. Consequently, we observe

Z,— 3, in LP(Q;S?) VI<B<p (2.84a)
v, —uly,  m WHGRY)  VI<B<p (2.84D)
tn = AR, in LY(Q) Vi<y<gq (2.84c)

with q as deﬁned~ in (2.20). Because J is twice continuously differentiable, there is
an element (@, f,) between (u, f) and (w,, f,) such that

J(uN7fn) - J(ﬂ’a}.) =
= @)ty — ) (P~ ) " )t — ) 4 L F ) — P

2
+ (A(Z), — 2) + div*(uy, — @) + A, D*DE, — AD*DX, Y)
=0
+ (div(Z, — %) — Rf, + Rf, w) + (\D*'DX,,, X) — (\D*'DX,, T)
=0

=) () + 7 (F)(F— F) 5" ) — ) + 5" (Fo)(F— P
+ (AY +div* w + AD*DY, %, — &) + (div Y, u, — u) — (R*w, f, — f)

+ (A = A)D*DY, %) ,

where (2.15a), (2.15b), (2.21a) and (2.21b) was used. On account of (2.80a)—(2.80c)
we obtain

Tatn, £) = (8, F) = 51" o) (i — 5 + 57" (F) (o~ F)

— (0D*'DX, 2, — ) + (A, — N)D'DY, ,,) .
Hence, from (2.82) it follows

((An = N)D*DY, 3,) — (ID*DX, =, — %)

2 ~
<Pn_ % (i”(ﬁn)(un —a)® + " (F)(fr - f>2) :

n

which is equivalent to

(.,sD*DY, %) — (ID*DEX, Z,,)
1

< P (@) = w0a] + (R Foha])

(2.85)
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Thanks to the integrability conditions (2.79) there are v < ¢ and 8 < p with
1/y+1/n+1/p<1land 1/p+1/8+1/r <1, cf. Remark 2.35, so that Lemma
2.15, (2.84a) and (2.84c) imply

(inD*DY, 3,) = (\,D*DY, %), (ID'DX, Z,) — (ID*DX, },).  (2.86)

As the second derivatives of ¢ and j are continuous bilinear forms by Assumption
2.40, we infer

i () [, — 0, wn]| < |37 () [, — B, 0] — 07 () [, — T, 03]
+ ’z” _)[un u, v H
< [|é" (@) — ﬂ)H,; v llun = ally vl

+ HZ u Hﬁ(V,V') llwn — UHV anHV
and a similar estimate for j(f,,)[f, — f,hn]. Thus, (2.83) and (2.84b) induce

z”(&n)[un - ﬂ, ’Un] - 07 J//(}n)[fn - }.7 hn] — 0. (287)

Note that v,, as well as h,, is bounded in consequence of the (weak) convergence.
From (2.85)—(2.87) we conclude

(A, DY :DX) — (6, DX : DX},) < 0. (2.88)

Moreover, (2.18¢)—(2.18¢) and (2.80d)—(2.80h) yield

N,=0=0 inZ, DY:DEX=DX:DX}, =0 in A
N, >0 in B, DY : DX >0 in B
>0 inbB, DY :DX;, <0 in B

and therefore ()\'h, DY : Df)) — (5, DY : DE’h) > 0, which together with (2.88)
leads to B B o
(Ah, DY : DX) — (0, DX : DX},) = 0. (2.89)

Because of (2.80a)(2.80c), (2.18a) and (2.18b) we further find
(A, DY :DX) — (6, DX : DX},) = (\,D*DX, X) — (0D*DE, 3,) =
— (AX}, + div* uj, + AD*DX},, 1) + (AY + divi w + AD*DY, X))
=—(div Y, up) + (divE}, w) = — (div Y, up,) + (R*w, h)
=i'(w)uy, +5'(f)h

and in view of (2.89) we arrive at

i'(w)up, + 5 (f)h = 0. (2.90)

As in the proof of Theorem 2.36 we introduce the abbreviations

Zp = (Un;2n7)\nvfn)7 z = (’ITL,E,;\, }l)’ W= (T’ﬁ)

fi,0).
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Analogously to (2.73), (2.74) and (2.76) it can be shown that L(z,w) = J(a, f),
L(zn, @) = J(tUn, f) = (Ans 1) + (0(En), 0) and V.L(Z,@)(zn — 2) = 0. Conse-
quently, we derive

J(una fn) - J(’aa }) = ‘C(Zm‘:’) + (Ana ,L_L) - (¢(En)v 9_) - ‘C(Za"‘_")

2.91
= SR @) (2 — 22 + () — (9(20), 0), .

where Z,, denotes an element between z and z,. From (2.82) and (2.91) it then
follows

%Vzﬁ(in,cﬁ)(zn —-2)?< %" — (M, )+ (6(Z0), 0) (2.92)

so that Lemma 2.34 yields

I 1 o(p})
= n — ) 2.93
2VZ.C(z w) ( ™ > < 2 (2.93)
which is equivalent to
1 zZn—2\°
§V§£(2,a}) ( ”p ) =
<ﬁ+ 2 3 Vzﬁ(zn,w)< o ) —Vzﬁ(z,w)< o > .
Recalling (2.71), we know
zZn—2\° zZn—2\°
Vione) (22F) - vioee) (2F) -
Pn Pn 9205
_ f }. 2 ( . )
- - u, —u f, —
= [Viup (@n, £o) = Viu 5 (@, F)] < peaie )
Since V?u g)J is continuous by assumption and the sequence (z, —Z)/py, is bounded

due to (weak) convergence, cf. (2.83) and (2.84), the right-hand side of (2.94) con-
verges to zero. For the discussion of the left-hand side we use again (2.71) and
observe

2o - Zn— 2 2 g — 2 N 2
vzaz,w)( — ) — (@) (o) + 5 (F) () -

+2 (D*DZ, X) + (124, 9) .

Thanks to the coercivity condition in Assumption 2.40(ii) the continuous mapping
U>s f— j7(f)f* € R is convex and hence weakly lower semi-continuous. On
account of (2.83) we deduce

7"(F)(h)* < liminf j(£)(ha)?. (2.97)

n—o0
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B <pand 1l < vy < ¢ with
) implies

= (I=hlE.0). @0y

Furthermore, according to (2.79) we can chose 1 <
1/8+1/y+1/p<1and2/8+1/r <1 so that (2.84

(1D DZ,, X) - (DD, X), (1202, 0

Together, (2.94)—(2.98) and (2.84b) lead to

=\ 2
VZE(Z,GJ) ( h,uh, Ah,h) < ].lmlnfv ﬁ( ) <zn Z) < 0.

n—oo

Invoking (S/S\EJ) and (2.90), we infer h = 0 and therefore
I =0, u,=0, ) =0. (2.99)

Note that (2.18) is uniquely solvable. Since ||h,||;; = 1 by definition, Assumption
2.40(ii) and (2.94)—(2.96) yield

v 1, -
Zo< gl 2
0< ¥ < L))
1 O(p’%) 1 2 ~ - 2 = ’u,n—'a, fn_} 2
1, , o ) -
— S"(@)(00)* = (D" DZn, ¥) - 5 (|yzn||S, ).

On account of (2.84b), (2.98), (2.99) and the continuity of V?u g/ the right-hand
side converges to zero, which is the desired contradiction. O

Remark 2.42. Again, we want to compare the sufficient optimality conditions given
in Theorem 2.41 with [69, Theorem 7]. There is no analogue of the integrability
requirement (2.79) in finite dimensions. In contrast to Theorem 2.36 the coercivity
of the Hessian (w.r.t. the primal variable) of the Lagrangian is restricted to the cone
of critical directions, cf. (SSAE), and can hence be seen as the infinite-dimensional
counterpart of the coercivity condition in [69, Theorem 7], cf. also Remark 2.38.
We still had to tighten the sign conditions of strong stationarity, though. In [69,
Theorem 7] it is sufficient, if the multipliers are nonnegative on the biactive set B,
which generally is a genuine subset of both Ay and As. The larger sets are needed
in order to employ Lemma 2.34, cf. the estimates (2.75) and (2.93). However, in
finite dimensions this lemma is not necessary, as the crucial expressions already
provide a sign:

Let us assume that X\, ¢(2), i and 0 are elements of R™ satisfying the following
complementarity system

i =0 Vie{l,...,m} (2.100a)
0;6(X); =0 Vie{l,...,m} (2.100b)
[i,0; >0 VieB= {ze{l Lm}: A =¢(X); =0} (2.100c)
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Due to (2.100a) we know fi; = 0 for alli € Ay = {i € {1,...,m}: \; > 0}. From
the continuity of ¢ and the convergence £, — X we moreover deduce ¢p(X,); < 0
and hence (A,); = 0 for alli € T = {i € {1,...,m}: ¢(2); < 0}, if n is large
enough. The sign condition (2.100c) together with A, > 0 then shows

LA = fi(An)i =Y fii(An)i > 0. (2.101)
=1

i€B

In view of Ay — X we find (M\p); < 0 and consequently ¢(Xn)i =0 foralli e A, if
n is large enough. In addition, thanks to (2.100b) we derive 6; = 0 for all i € Z so
that (2.100¢) and ¢(X,,) < 0 imply

0T ¢(Zn) =D 0:p(Tn)i = 0;p(En)i <0. (2.102)
i=1 ieB

Thus, the right-hand sides in (2.74) and (2.92) can be estimated without involving

Lemma 2.3/4. Since the above arguments, which lead to (2.101) and (2.102), cannot

be applied in function spaces, the assertion of Theorem 2.41 seems to be a natural
generalization of [69, Theorem 7].

In the remainder of this section we establish an equivalent formulation of (SSAG)
Therefor the next auxiliary lemma is required.

Lemma 2.43. Let h € U and {hy}nen C U be given. Moreover let (X),,ul,, A be

nr’'n

the solution of (2.18) with right-hand side Rh,,. If (3], ul,, X, hy) = (X', 4/, N h)

ny \ns

in S2x V x L2(Q) x U, then (X',u’, \) solves (2.18) with right-hand side Rh.

Proof. According to Theorem 2.11 the system (2.18) with right-hand side Rh,, is
equivalent to

(A, T) — (A%, =) + (diviu,, T) — (div* u,, 3,)
+ (A DB, :DT) - (A, |DE,[5) 20 YT €S, (2103a)
div], = Rh,. (2.103b)

We will achieve the assertion by passing to the limit n — oo in (2.103). To this end
let T € S; be fixed but arbitrary. On account of the weak continuity of div and R
we conclude (2.17b) with ride-hand side Rh. Furthermore, the weak continuity of
A yields

(A%, T) — (AX, T), (diviu,, T)— (divia/, T). (2.104)
Because of (2.103b), the compactness of R and (2.17b) we obtain

(div*uy,, 37,) = (ul,, Rhy) — (v, Rh) = (div'u/, &) . (2.105)
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By the same arguments as in the proof of Lemma 2.16 we infer
\DX! = —H 'x/, — X\, DX,

cf. (2.30). The left-hand side converges weakly in LY(%;S). However, resulting from
the boundedness of DX the right-hand side converges weakly in S so that

ADY, -~ A\DY = -H 'x' —NDX in S (2.106)

and therefore
(A, DX, : DT) — (A, DX': DT)) . (2.107)

Due to Assumption 2.1(2) the operator A is continuous and coercive. This is why
the mapping S? > T+ — (AT, T) € R is continuous and concave, which implies

limsup (— (A%, 7)) < — (A%, &) . (2.108)
n—o0
For the discussion of the remaining term in (2.103a) we introduce the space
3= {T e 8% VoDT € 5}
endowed with the scalar product
(3, T)ge = (%, T) + (A, DX : DT).

Similarly to the proof of Proposition 2.32 it can be derived that S/Q\ is complete and
thus a Hilbert space. Next, we define the continuous function

f:85 =R, T— (\, DT:DT).

In view of (2.15¢) the function —f is concave and hence weakly upper semicontin-
uous. For 5)2\ is a Hilbert space, every linear functional on 5/2\ can be represented
by a scalar product. Since (2.106) induces

(\DX),, DT) — (A\D¥/, DT) VT € S3,

we find ¥/, — ¥’ in S and consequently

limsup (- f(3,)) < = (A,

n—oo

DX||3). (2.109)

Altogether, from (2.103a), (2.104), (2.105) and (2.107)-(2.109) we deduce (2.17a).
Testing with DX’ in (2.106) and using the boundedness of DX yields VDY € S.
Since equality and inequality conditions remain valid for the weak limit, we observe
3 € 8 so that (X', v/, Rh) solves (2.17). By the same token it follows X' = 0 a.e.
in Z. The argument which led from (2.30) to (2.31) and (2.106) then show that
A’ coincides with the unique multiplier in (2.18). On account of Theorem 2.11 the
weak limit (X', 4/, \') is indeed the solution to (2.18) with ride-hand side Rh. [
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Remark 2.44. If the hardening variable X satisfies the integrability condition in
(2.79), it is not necessary to introduce the Hilbert space 5/2\ in the proof of Lemma
2.48. According to Remark 2.30(iii) and the weak convergence h, — h in U the
sequence {X! }nen s bounded in LP (Q;SQ). Hence there is a subsequence, w.l.0.g.
denoted in the same way, converging weakly in LP (Q; SQ). Moreover, analogously to
(2.60) we obtain the continuity of f on LP(%;S?) so that (2.109) is a consequence
of ¥ =~ X" in LP (Q; SZ).

The weak convergence of the sequences {X! },en and {u), }en in Lemma 2.43 is in
fact strong:

Corollary 2.45. Let h € U, {hy}neny C U be given and let (X, u,, \),) be the
solution of (2.18) with right-hand side Rh,. If (], u),, X, hy) — (X', 4/, N, h) in

ny‘\ns

SZxV x L32(Q) x U, then (Z,,,ul) — (X', u/) in S2x V.

Proof. Due to Lemma 2.43 we know that (X',u/, X, Rh) solves (2.18). By sub-
tracting (2.18a) from the corresponding equation for (X!, u!, /) and testing with
¥ — 3! we arrive at

(AZ' =3, 2 = 3) + (divi(u —up,), X' - %)
+ (AD(Z' - %), D(E' - %0)) + (N —\,)DE, D(X' — =/)) = 0.

The coercivity of A implies

o= - Sl < - (v - u), - 5) - (A D8 - 2)2)

:;fn =:II, (2.110)
— (N = \,)DE, D(Z' - =)

=111y

By the same arguments as in the proof of Lemma 2.43, cf. (2.105) and (2.109), we

infer
I, —0 and limsup(—II,)<0. (2.111)

n—oo

Thanks to (2.18¢)—(2.18¢) and the boundedness of DX the weak convergence leads
to
I1I, = (N'DX, DY) — (XN, DX, DY) — (DX, D)) + (A, DX, D)
D a— T (2112)
= - (\,DE, DY) - (NDE, DX]) =2 2 (N'DE, DY) =0,

which together with (2.110) and (2.111) shows X/ — ¥’ in S2. In order to prove
strong convergence of u), we subtract again (2.18a) from the corresponding equation
for (2, u,,\,) and test with

n)»’'n

T := (e(u') — e(u,), —e(u) +e(u))) € S
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Since DT = 0, Korn’s inequality (Proposition A.25) yields similarly to (2.46)—(2.47)

o < [l u) | e = e (v o i), T)
Q

< C‘(A( -3, ’ = CH“ _“nHV HZ/ 241”52

so that w), >« in V. O

By means of Lemma 2.18 we can extend the previous result:

Corollary 2.46. Let h € U, {hp}tneny C U be gz’ven and let (X, u] )\’) be the

n»’m

solution of (2.18) with right-hand side Rh,. If (2], u),, N,  hy) — (X', 4/, N, h) in

n’»’ 'n’

LP(Q;S?) x V x L2(Q) x U with p > 2, then B!, — X' in L?(;S?) for all1 < 8 < p.

Proof. As a result of Lemma 2.45 there exists a subsequence, w.l.0.g. denoted in
the same way, with 3/ — ¥’ a.e. in . Moreover the subsequence is bounded in
LP(£%;S?) because of the weak convergence. Thus, Lemma 2.18 implies the claim
for an arbitrary subsequence and hence for the whole sequence. O

Based on Corollary 2.45 and Corollary 2.46 we can now prove an equivalent refor-
mulation of (SSC).

Theorem 2.47. Let (X, u,\) € S? x V x L?(Q) be the state associated to feuU.
If x € L5(;S), (X, w) € L"(Q;S?) x V and (i1,0) € LS(Q) x L™(Q) with s,n,(

and r satisfying (2.79), then the following two statements are equivalent:

a) There exists a > 0 such that

RourpL(E.a N F. T, @, 0,0) (3w N h)* > a|h]}

for allh € U and (¥',4',X') solving (2.18) with 6¢ = Rh such that i'(u)u’ +
7' (f)h =0.

b) For all h € U\ {0} and (X', u', ) solving (2.18) with ¢ = Rh such that
i'(w)u + 7' (f)h = 0 it holds

R un LB 8N F. X, @, 1.0) (X, 4/, N h)* > 0.
Proof. 1t suffices to show that a) is a consequence of b). Similar to [23, Theorem
4.4] we argue by contradiction and suppose the opposite of a). Then for every

a > 0 there exist h, € U and (X, ug,, \,,) solving (2.18) with 6/ = Rh, such that
i'(w)ul, + j'(f)ha = 0 and

B unp LB @ N F. T, @, 1,0) (3w, Ny ha)® < ool - (2.113)

o) Ny
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For Sy is a cone, the solution map of (2.18) is positively homogeneous and we can
assume that [|h.|; = 1 for all & > 0. From Remark 2.30(iii) and (iv) we derive
boundedness of (X, u/,, \L,) in LP(Q;S?) x W]%)’p(Q; R)x L4(£2). Consequently, there
exists a subsequence, w.l.o.g. denoted by the same symbols, with

(S, Ny ) 5 (3 /X b in LP(; %) x WEP(Q;RY) x LI(Q) x U.
Thanks to Corollary 2.45 and Corollary 2.46 it thus follows

ul, —wu inV, ¥ -3 inLPQ;S?. (2.114)
Moreover, the weak limit satisfies
i'(w)u + 5 (Fh = lim (i'(w)ul, + j'(g)ha ) = 0. (2.115)
a—
=0

In view of (2.113) and (2.71) we observe

[ 2R

0> limsupé?(gnu’/\’f)ﬁ(f],ﬁ,j\,]_",T,ﬁi i, 5) (E’ ul A\ . h )2

> hmlnf@(EuA f)ﬁ(f] a, N\, f, X, w, i 9) (E/ Upy; Ay Py )2

) i (2.116)

— lim nf {822'(@)(1/ )2 4+ 0% (F)h% + 2 (A, DX, DY)
a—r

«

2 —
2. 0) b
The integrability conditions for ¥ and @ yield the existence of 1 < f < p with

1/¢+1/8+1/n < 1and 2/8+ 1/r < 1, c¢f. Remark 2.35, so that the strong
convergence (2.114) leads to

+(|Ip=,

(\.DZi, DY) - (WD, DY), (|[D=L].0) - (D=3, 0).  (2117)

On account of Assumption 2.40(ii) the continuous mapping U 3 f + 9%j(f)f? € R
is convex and hence weakly lower semi-continuous. Due to (2.114), (2.116) and
(2.117) we conclude

0> &%i(@)(w)? + 0%(F)R? + 2 (VDX DY) + (|| DZ||3, )
= 8(2u,2,)\,f)£(a7 S7 5‘7 ]:) Ta w, i, é)(2/7 ul’ )\I7 h')2

As (X', v/, X) solves (2.18) with ride-hand side Rh by Lemma 2.43, we deduce h = 0
from (2.115) and b). Furthermore, (2.18) is uniquely solvable, cf. Theorem 2.11,
which implies (£, 4/, \) = (0,0,0). Invoking ||hs||;, = 1, Assumption 2.40(ii) and
(2.71), we infer

(2.118)

v = vlimsup ||ha|? < limsup 8%(F)h2
a—0 a—0

Slimsup{ﬁ(zu)\f)ﬁ(f] a N\ f, Y, w, i, 0) (B, upy, Ay, b ) — &i(u)(uy,)?
a—0

—2(\,DX, DY) — (HDE’ I

«

o1



Therefore, (2.114), (2.116) and (2.117) together with (£',u/,\) = (0, 0,0) show

v < limsup 8(22 w f)C(fJ,ﬂ, A, }', Y, w, [i, é) (E;, u/a, Xa, ha)2
a—0 B
— lim {0%i(@)(w},)? +2 (\, D4, DY) + ([ D13, 6) }

<0,
contradictory to v > 0. O

Remark 2.48. The proof of Theorem 2.47 can analogously be applied to (SSC)
provided that the objective functional J satisfies Assumption 2.40.

2.4. An exact solution with non-vanishing biactive set

In Section 2.2 we have seen that the control-to-state map G g associated with (VIg)
is Bouligand differentiable (Theorem 2.19) or at least directionally differentiable
(Theorem 2.26), if additional integrability conditions are fulfilled by the solution
to (2.15), where G is differentiated. However, if the biactive set of this solution
has positive Lebesgue measure, then G is in general not Gateaux differentiable,
cf. Remark 2.12. Consequently, it is delicate to derive necessary optimality condi-
tions from a reduced formulation, which would be the usual approach of optimal
control theory, see e.g. |73, Section 4.6]. Furthermore, gradient-based optimization
algorithms cannot carelessly be applied to (Pg), cf. [2, Section 1.3].

In the following we will show that the case of biactivity can indeed arise. More
precisely, by means of the sufficient conditions stated in Theorem 2.36 we will find
a locally optimal control for Problem (Pg) with non-vanishing biactive set.

The next assumption is supposed to hold throughout this section.

Assumption 2.49.

(i) The spatial dimension is d = 2.

(ii) Both C~' and H™! are the identity mapping S — S f.a.a. x € Q.
(i4i) The domain Q is the unit sphere in R?, i.e., ) = {x eER?: |z| < 1}.

(iv) The Dirichlet boundary T'p is the entire boundary of Q, i.e., T'p = {a: €
R%: |z| = 1}.

First, we aim to construct a biactive solution to (VIg) with £ = Rf for some
control f € U = L? (Q; Rz). In view of Theorem 2.5 and Assumption 2.49 we look

52



for ((a,x),u,)\, f) € S? x H} (Q;R2) x L2(Q) x L? (Q;R2) satisfying

Clo—e(w)+Ao”+x"”)=0 S (2.119a)
H'x+Ao” +x”)=0 inS (2.119b)
—/a’:e(v) dx—/f-vda::o Vv € Hj (4 R?) (2.119¢)
Q Q
0<ALglo,x) <0 a.e. in {2 (2.119d)

and |B| = |{z € Q: A(z) = ¢(o(x),x(x)) = 0}| > 0. To this end let w: Q — R?

be defined through
a(z) = (U(MQ)) (2.120)
U(l=f?))

where U: R — R is given by

—oot® + oot — 1o00, t <
Ut :{ 708"+ 300t — 1590, (2.121)

o0Vt — 09, t >

NS

The function U is twice continuously differentiable with first and second derivative

—200t + 309, t<1 —209, 1<
! _ 27U 4 " _ )

U(t)—{ao o1 U =9 T
2/t = 4 13/2) Z

Note that U as well as U” are continuous in ¢ = 1/4. By the chain rule we know
u € C*(Q;R?) so that e(u) € C*(Q,S) C S and dive(u) € C(Q;R?) C L*(Q;R?).
Since U vanishes in t = 1, it moreover follows @ € H} (Q; RQ). Thereby we obtain
a solution to (2.119), if we set

(2.122)

NN

o =e(u), x =0, =0, f =dive(a), (2.123)

which is the system of linear elasticity, cf. [35, Section X.32|. In order to prove this
the following auxiliary lemma is needed.

Lemma 2.50. Let U: R — R be defined by (2.121). Then it holds

U'(t) < 2‘% vt e (0,1/4).

Proof. In consequence of (2.122) we have to check that —20t + 3/20¢ < 00/(2V/%)
for all ¢ € (0,1/4), or equivalently,

—4t32 13Vt <1 Vite (0,1/4). (2.124)
We define g: (0,1/4] — R, t — —4t3/2 + 31/t, and observe

3 1
"= —6Vt+ —=0t=-. 2.125
q'(t) Wi 1 ( )
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Besides, the function ¢ is concave, as its second derivative satisfies

3 3
\/{; 4t3/2 =
Hence the maximum value of ¢g in (0,1/4] is g(1/4) = 1. From (2.125) we further

deduce ¢'(t) < 0 for all t € (0,1/4) so that g is strictly increasing in (0, 1/4), which
implies (2.124). O

Jg't) = — <0 Vte (0,1/4].

Proposition 2.51. Let 5, X, u, X and f be as defined in (2.120) and (2.123).
Then ((&,X),Q,A,f) € S% x H} (Q;R2) X L3(2) x L? (Q;Rz) solves (2.119) with

associated biactive set B and inactive set I given by

B={zeR*:1/4<|z? <1}, I={zeR*:0<|z[*<1/4}.  (2.126)

Proof. Assumption 2.49(ii) together with & = e(@), x = 0 and A = 0 yields
(2.119a) and (2.119b). Furthermore, (2.119c¢) is the weak formulation of dive = f,
cf. Assumption 2.49(iv). For the verification of (2.119d) it suffices to show

¢(e(w),0) < 0= Hs DHS <o0p a.e. in .

We recall that the linearized strain e(w) is defined through
ou 1( 0u ou
( o () .

and its deviatoric part is
(2.128)

Consequently, we find
_ _ 2 — — 2
D12 1 8’11,1 8’112 1 8u1 aUQ
=2 (L -22 2= (=2 + 22
HE(U) HS <2 (8.%’1 6x2>> + <2 6952 + 8x1
1( (0w 2_28'&18'&2+ dug\?
2 8m1 8951 8:1;2 8562
1(/0u\® _Ow duy [Ouy)>
— — 2 .
+ 2 ((8332) + 89:2 83:1 * 81‘1
In addition, the partial derivatives of u satisfy
ou ou ou ous

_ 2 / Jur _ Oup _ 1112
ooy = g, = 2U'(2l),  Fo =5 = 2wl (ef) (2.129)
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which leads to

_ 1
le(@)”|2 = 5 (8x%U’(!x\2)2 +8x%U’(!x\2)2> = 42207 (|22).
If = 0, then we know ||e(u)”|| = 0 < 6p. From (2.122) and Lemma 2.50 we
moreover conclude

00

|e(@)? || = 2/z|U"(|z]?) < 2‘x|2‘x| = 0y (2.130)

for all x # 0 and thus (2.119d). The estimate in (2.130) becomes an equation, if
x € {_a: € R?:1/4 < |z|* < 1}, and a strict inequality otherwise. In view of (2.16)
and A = 0 we obtain (2.126). O

Next, a particularly chosen objective functional .J is considered such that f &
L?(€;R?) with associated state and multiplier ((&,X),, ) € S? x H}(Q;R?) x
L?(9) as defined in Proposition 2.51 is a locally optimal solution of Problem (Pg).
We introduce the abbreviation

By ={zeR*:0< |z| <1/2}
and define J: V x L? (Q; ]R2) — R through

1 2 1 2
J(u, f) = 9 lu — uleLQ(Q;RQ) + 9 lu — ud2HL2(BBl/2;]R2)

, . (2.131)
+ 5 IF = Fallzz e -

The functions ug; € L? (Q;R2), Ug € L? (631/2;R2) and f, € L? (Q;R2) are given

() — u(z) + 2dive(u(x)), T € By 5 1394
a() {u(x) +div (e(a(x)) + e(u(x))%), € Q\ By 2 )
uge(z) = u(x) — s(ﬂ(:p))D%’ (2.132b)
fa=1- %ﬂ (2.132¢)

where v is a positive real number and
e(w)d = %(traces(ﬂ))I (2.133)

with identity tensor I € S is the spherical part of e(u).

Proposition 2.52. Let J: V x L?(R?) — R be as defined in (2.131). Then
felL? (Q;Rz) with associated state and multiplier ((6’, X),u, )\) defined in (2.1202

and (2.123) is a locally optimal control for (Pg). In particular, the biactive set B
has positive Lebesgue measure.

95



Proof. Because the objective functional J is twice continuously Fréchet differen-
tiable, we can apply Theorenl 2.36. In view of Assumption 2.49, (2.123) and
Proposition 2.51 the fL_mc_tion f is a locally optimal control for (Pg), if there ex-
ist an adjoint state ((¢, %), w) € L"(Q;S)? x Hy(Q;R?) and multipliers (fz,6) €
LS(Q) x L"(Q) with
2

o
sp—p—2s p—2
and p € (2, 3] as defined in (2.64), which fulfill the following optimality conditions:

7,67 > (2.134)

(a) ((¢,%),w) and (i, 6) solve

¢ —e(w) + ()’ =0 (2.135a)

P+ fe(w)P =0 (2.135b)

_/ Cie(w)do+ (Bud (@, F), v) =0 Vve HL(R?)  (2.135¢)
Q

w—0¢J(u, f)=0 (2.135d)

e@P: (" +9") =0 aeinQ (2.135¢)

06((e(w),0)) =0  ae. inQ (2.135f)

n>0 a.e. in Ay (2.135g)

) >0  ae in Ay (2.135h)

0
with A; ;== {z € Q: —k1 < ¢(X) <0} and Ay :={x € Q:0 < X < Ko} for
some K1, kg > 0.

(b) There is a > 0 such that
N T T T 2
a?(g}x)’u’)“f)ﬁ((o-? X): u, A7 f7 (C7 ¢)7 w, [, 9) ((0/7 X/)a ’Ll,/, Al, h) Z o HhH?j
for all h € L*(Q;R?) and ((0/,x/),w’, \') solving
o' —e(u) + Ne(@)? =0 (
X’ + /\’E(Q)D =0 (2.136b

0<N Le@?: (0’ +(x)P?) <0 ae inQ\ By, (2.136d
0=XN_Le@?”:((0"?+(x)”)€R  ae. in Byp. (2.136¢
Herein, the Lagrangian £: S2 x H{} (Q;R2) x L%(Q) x LQ(Q;RZ) x 8% x
H} (Q;R?) x L2() x L*>(2)" is given by
L((o,x),u, X, £, (¢, ), w, 1, 0) =
= J(u, f) + (o —e(w) + A(a® + xP), ¢) + (x + A(a? + xP), )
— (o, e(w)) = (f, w) — (A, ) + <¢((U>X))v 9>L00(Q)’LOO(Q)/ .

)

)

—/o-’:s('v) dm—/h"vdaz:() Vv € H} (4 R?) (2.136¢)
Q Q

)

)
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We start with the construction of (({, %), w) and (i, 6) such that (a) is satisfied.
Subsequently we check the integrability condition (2.134) and (b). For that to
happen, let §: © — R be defined through

g0 v€b (2.137)
1, S Q\Bl/g

On account of BUZ = Q and Z = By s, cf. (2.126), we obtain (2.135f) and (2.135h)
with Ay = Q) due to A = 0. The choice

b= . v B (2.138)
—e(u)”, z€Q\ By

leads to (2.135b). Next, we set w = 2u and observe

—elw )P = —2¢(w) + Oe(w)? = —2e(a), ® & Bz
e(w) + Oe(u)” = ~2¢(w) + fe(u) _{—@@w+ewﬁh z € Q\ Bijp.

If {: Q — S is defined by

¢ { e(@), v € B (2.139)

“T\e@) +e@s, xe0\ By,

then it follows (2.135a). As 4 is twice continuously differentiable, the function ¢
is continuously differentiable in By /5 and {2 \ By /2, respectively. Hence, integration
by parts yields

—/Z:s(v)dx:— Z:s(u)dx—/ ¢:e(v) de
Q By /o N\By 2
:/ divz-vdx—/ Z!Blminids
B1/2 031/2 “T|

+/ divC-’udm—/ Z’|Q\Bl/2 (—x>-vds
B2 0By /2 |z|

for all v € Hj (Q;R?), where we used that z/ || is the unit outward normal on the
sphere B 5. Note here the density of Cg° (Q; Rz) in H} (Q; RZ). Since e(u) can be
decomposed into its deviatoric and spherical parts, we arrive at

~ _ - x
/C dg:_/dlvﬁ-vdaH—/ (C\Q\Bl/Q—dBuz)*'vds
OB, 2 ]

—/divz-vdx—i— u)+e(u )S)i v ds
Q 881/2 |z|
—/div(-vdx—i—/ —s(ﬁ)s—i-e(ﬂ)s)i-'vds
Q OB 2 |z
:/diVC~vdx+/ - v ds.
QO 9B, s \$|
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Because of (2.132a) and (2.132b) the partial derivative 0,J(u, f) satisfies

~—

8uJ(U7})U—/(u—ud1).de+/ (ﬂ_udQ)"UdS
Q 9B/
= —2dive(u) v dz + / —div (e(a) + e(w)®) - v da
Biy2 QB2

_|_

/ E:(ﬂ)Di -vds
OB, |z|

for all v € Hj(;R?) so that (2.135¢) is a result of (2.139). In addition, we infer
ofJ(u, f) = v(f — f4) = @ from (2.132c¢), which shows (2.135d). Finally we set
i =e(@)?: (C” + ). Together, (2.138), (2.139) and (e(@)S)" = 0 imply

D - 2¢(w)P B
0, x e Q\Bl/Q

and hence i > 0 in €, i.e., (2.135g) holds for arbitrary x; > 0. For ({,,w) €
L>®(S) x L>®(Q;S) x Hy(Q;R?) and (1, 60) € L®(Q) x L>(Q) by the regularity
of u, the integrability condition (2.134) is met. In order to verify (b) we recall that
the second derivative of the Lagrangian w.r.t. the primal variables is given by

8(2(0—7)(),“’)\7f)£((&7 X)a ﬂv X7 }l (C ¢) w M? ) ((U,a X/)7 u’,v Al? h)2 =

= HuIHiQ(Q;RQ) + H“/H;(aBm;u@) Tv HhHL?(Q;RQ)
2(V((@)” + ()P, (€7 +97)) + (Ile)? + )Pz 0).
cf. (2.71). In view of (2.136e), (2.140) and (2.137) we deduce

a?(a,x),u,)\,f)‘c((&a )_()7 ﬂv 5‘7 } (C ¢) w N7 ) ((0-/7 X/)a u/a >‘/7 h)2 =

D;,9_>

= HuIHiQ(Q;RQ) + H“/H;(aBl/Q;R% Tv HhHL?(Q;RQ) + (H(UI)D + ()"

2
2 v [|h[72ore)

for all b € L*(;R?) and ((o”,x/),w/,\') solving (2.136). Thanks to Theorem
2.36 the control f with associated state and multiplier ((6’, X), W, )\) is thus locally
optimal for (Pg). Moreover, according to Proposition 2.51 the biactive set B fulfills
|B| > 0. O

We end this section by providing a more detailed description of the local solution f
as well as the problem data wg1, ug2 and f;. From (2.123) and (2.127) we derive

827._1,1 1 821_1.1 821_1.2
8r% + 2 ( 837% + Oxo0x1

1 (921_1,1 62’&2 821_1.2
2 <8x18x2 + ax% + (9CE%

f=dive(a) =
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The second-order partial derivatives of w are given by

O*uy  9*us

7 = 0 2 — 4230 (|2[2) + 20" (|2?) (2.141a)
1
Pu;  9*u
-7 = W; = 423U" (|z?) + 2U" (|z[?) (2.141b)
2 2
2 2 2 2
OCm _ Oy 07w Ots (), (2.141c)

Ox10x9 011019  OT00r1 019019
cf. also (2.129), so that
- (e )
(223 + 423 + 2z129) U" (|]?) + 3U'(|z|?)

Consequently, (2.132¢) leads to

(423 + 223 4 22122) U” (|2]?) 4 3U'(|2]?) — 2U (|z|?)
(223 + 423 + 22122) U” (|2]?) + 3U'(|z[%) — 2U (|2|?)
Moreover, (2.133) and (2.141) imply
du, | Oun 1 (8% R )
div (e(w)®) = div <aml " 8:”2) ) 0 N _ j ( 822 + 336;23932
0 (81;11 - TZ;) 2 (6128:1:1 - u2>

B 2(2% + z122)U" (|2]?) + U’ (|2]?)
2(23 + w122)U" (|2?) + U (j22) )
Due to (2.123), (2.132a) and (2.142) we therefore obtain

( (U(:ﬂ) (822 + 4a} + dayzo) U (J2]?) + 6U’(:n2)) Cecn,
U(|z|?) + (423 + 823 + dz120) U” (|z[2) + 6U’ (|z[?)

wal) = ( (12f2) + (622 + 223 + dz12) U” ([zf2) +4U'(x2)) R
U(|z]?) + (22% + 623 + da122) U” (|z|?) + 4U' (|z|?)

Furthermore, (2.128), (2.129) and (2.132b) yield

() = (UOI\Q)) (BB ) n (B i) e
TR g (e g (2 - )
B (U(m?)) 1 ( 23U’ (|a|? )+x§U’(yx|2)>
U(|z]?) x| 10 (Jo]?) + 23U (|[?)
- (U(|x|2) - U’(|:c|2)|x|>
\U(2?) = U (2] )
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Because only the values on the boundary of By /o matter, we conclude from (2.121)
and (2.122) that

—o
ud2:< 0) onﬁBl/gz{:cERQ:m:l/Q}.

_O'O
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3. Optimal control of Signorini’s
problem

This chapter is dedicated to optimal control problems governed by (VIg). To be
more precise, for a given objective functional J: V x U — R we now consider the
optimization problem

Minimize J(u, f)
s.t. the Signorini problem (VIg) with £ € V'’ defined by

(Ps)
<€,v>:/gf1-vdx+ g fo-v YveV.

As in (Pg), the functions f, € L? (Q; Rd) and f, € L? (FN;Rd) represent, volume
and boundary loads, respectively, which are imposed on the domain ). By inserting
the law of linear elasticity o = Ce(w) in the variational inequality in (VIg), we see
that the Signorini problem can be rewritten as follows: Given an inhomogeneity
¢ € V' find a displacement u € C such that

(Bu,v—u) > {{,v—u) VYveCl. (3.1)

The linear operator B: V — V' is defined through
(Bu, v) = / e(u):Ce(v)dz Vu,v eV,
Q

where C(z) is a linear mapping from S to S, which may depend on the spatial
variable z, and e(u) denotes the linearized strain tensor, cf. (2.1). The closed and
convex set of admissible displacements is determined by

C={veV:nv<yae onlc}. (3.2)

Herein, 1) € H'/2(I") is given and 7, is the normal trace operator, cf. Section A.2.
The function 1 represents the initial gap between I'c and the surface of the rigid
obstacle, against which the domain € is pushed. From now on, when referring to
(VIg), we will think of (3.1).

Throughout this chapter the next assumption is supposed to hold.
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Assumption 3.1.

(1) The domain Q C R%, d € {2,3}, is bounded and of class C*'. Its boundary T
consists of three disjoint measurable parts I'p, I'yy and I'c, each of which has
positive measure, such that Tp ULy Ul =T. While I'y is a relatively open
subset, I'p and T'c are a relatively closed subsets of T' with dist(I'c,I'p) > 0.

(2) The forth-order tensor C is an element of L™ (% L(S)). Moreover, C(x) is
uniformly coercive on' S and symmetric, i.e., o: C(x)o > ¢ ||0'H§ with ¢ > 0
independent of x and T: C(z)o = o : C(x)T hold for all o, T € S.

(3) There ezists v € V such that ¢ = 1,v.

Remark 3.2. Assumption 3.1(2) is for instance fulfilled, if C is the inverse of the
tensor C~1 defined in (2.4), i.e., if C is given by
Co =2pupo + Ap(traceo)I
with Lamé constants satisfying pur > 0 and dAp + 2 pup > 0:
trace o)?

—_———
>—2 o3

2
> cllolls,

cf. also Remark 2.2. This tensor is commonly known as elasticity tensor.

3.1. Existence of solutions

In the following we shortly comment on the existence of solutions to the Signorini
problem (VIg) and the corresponding control problem (Pg), respectively.

First, we recall a known result for variational inequalities.

Theorem 3.3 (|58, Theorem 2.1]). Let X be a Hilbert space and C C X a closed
convez subset. Moreover let H € L(X,X') be coercive and f € X'. Then there
exists a unique x € C such that

<Hx7y—l‘>X’,XZ <f7y_$>X’,X VyEC (33)

Furthermore, the mapping f — x is Lipschitz continuous from X' into X.

The operator B and the set C involved in (3.1) meet the conditions of Theorem 3.3
so that we infer the existence and uniqueness of a solution to (VIg). Note that
V is a Hilbert space in consequence of the continuity of the trace operator 7, cf.
Theorem A.14.
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Proposition 3.4. For every ¢ € V' problem (3.1) admits a unique solution u € C.
Furthermore, the mapping £ — w is Lipschitz continuous from V' into V.

Proof. Since C is uniformly coercive and I'p has positive measure by Assumption
2.1, Korn’s inequality (Proposition A.25) implies that B: V' — V is coercive. In
addition, it is continuous because of the boundedness of C. For 7, is linear and
continuous, cf. Theorem A.22, the set C C V is closed and convex. Hence, the
assertion follows from Theorem 3.3. O

In view of Proposition 3.4 we are allowed to introduce the control-to-state map
associated with (VIg).

Definition 3.5. The control-to-state map V' 3 £+ u € V is denoted by Gg.

Completely analogously to Proposition 2.9 the existence of a generally not unique
solution to (Pg) can be derived from the Lipschitz continuity of Gs and the com-
pactness of the operator R: U — V' defined in (2.14).

Proposition 3.6. Suppose the objective functional J: V x U — R is weakly lower
semicontinuous. If there exist r > 0 and f € U such that

J(Gs(Rf), f) > J(Gs(RF), F) VfeU with ||f—f|,>r

then Problem (Pg) admits a globally optimal solution.

In the remainder of this section three equivalent reformulations of (VIg) are pre-
sented, which will be useful for the subsequent analysis.

Thanks to its continuity and coercivity the operator B induces an equivalent norm
on V. Moreover the Lax-Milgram theorem yields that B is invertible. Therefore,
the function u € C solves (3.1) if and only if

(B(u—w),v—u)>0 VvecC (3.4)

with w = B~ € V. The solution of (3.4) is the projection of w on the set C w.r.t.
to the norm induced by B.

Definition 3.7. The solution operator associated with (3.4) which maps V > w —
u € C is denoted by PéB.

Furthermore, due to the coercivity of B the mapping v — (B(u — w), u — w)
defines a strictly convex functional on V. As the operator B is symmetric result-
ing from the symmetry of C, (3.4) is thus the necessary and sufficient optimality
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condition of the convex optimization problem

1
Minimize B (B(u —w), u —w)

st. weV, F(u) € K,

(3.5)

where the convex cone K is given by
K={zenlV]:2<0ae onT¢c}
and the affine mapping F': V' — 7,[V] is defined through
F(u) =nu — 1.

Note here that 1 is an element of 7,,[V], cf. Assumption 3.1(3). The image 7, [V] C
HY2(I') of 7, is a Hilbert space according to Corollary A.23. Since (V) = V
and F' = 7, is surjective from V into 7,[V], every admissible function for (3.5) is
regular in the sense of Zowe-Kurcyusz [77]:

Lemma 3.8. Every u € C is regular in the sense of Zowe-Kurcyusz [17], i.e., for
u € C it holds F'(u)ou (V) — Kp)(K) = 1 [V].

On account of Lemma 3.8 the Signorini problem (VIg) can be reformulated by
means of a complementarity system:

Theorem 3.9. A function w € V is the solution of (VIg) if and only if there exists
a unique Lagrange multiplier X € (1, [V])/ such that

(Bu, v) + (\, ) = ({,v) VveV (3.6a)
AeK° (A F(u)=0, F(u)eK. (3.6b)

Proof. Let w € V be the solution of (VIg), or equivalently, the solution of (3.5)
with w = B~1'¢. Because u is regular in the sense of Zowe-Kurcyusz, the existence
of a Lagrange multiplier is a corollary of [77, Theorem 3.1]. We suppose that there
exist two multipliers \j, Ao € (T,,[V])/ with A1 # A2 satisfying (3.6). Subtracting
equation (3.6a) for A2 from the one for A\; leads to (A\; — Ao, pv) =0 for allv € V.
By definition this is equivalent to A\; = Ay in (7,[V])’. Consequently, the Lagrange
multiplier is unique.

If (u,\) € Vx (T,,[V])/ is a solution to (3.6), then for vi,v2 € V and «a € [0, 1]
we find F(av; + (1 — a)ve) — aF(v1) — (1 — a)F(vy) = 0 € K, which together
with A € K° implies that V > v = (B(v —w), v —w) + (A, F(v)) € R is a
convex function. Hence, condition (3.6a) is necessary and sufficient for uw to solve
the problem

Minimize % (B(v — w), v — w) + (A, F(v))

st. vel.
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Recall here the strict convexity of (B(- — w), - — w) and the symmetry of B. From
(3.6b) we then infer

1 1
5 (Blu—w), u —w) = 5 (B(u —w), u —w) + (), F(u))
2 2 NS/
=0
1
< LB —w), v —w) + (\, Fv)
2 —_———
<0
1
< §<B(v—w), v —w)
for all v € V with F(v) € K so that w is the solution to (3.5). O

3.2. Directional differentiability

In this section we are concerned with the differentiability of the control-to-state
map Gg: V' — V. By adapting the technique of Mignot [62, Section 3] we will
show that this operator is directionally differentiable.

The next Theorem states a criterion, which guarantees directional differentiability
of a projection.

Theorem 3.10 (|62, Théoréme 2.1]). Let X be a Hilbert space, C C X a closed
conver subset and H € L(X,X") be symmetric and coercive. Moreover let Pg
denote the projection on the set C w.r.t. norm induced by H. Suppose further that

Ky(C) N [span(z — y)|Y = Ky (C) N [span(z — y)]r := S (3.7)

with x € X and y = Pg(az) Then Pg is directionally differentiable at x and its
directional derivative is given by the projection on the set SY w.r.t. the norm induced
by H. In particular it holds

PH(z +th) = PH(x) + tP& (h) + o(t,h) VheX,
where o(t,h)/t — 0 ast — 0.

In what follows we aim to verify (3.7) for the operator Pf . To be more precise, we
want to establish

Ku(C) N [span(w — u)]y = KW (C) N [span(w — u)]% (3.8)

for all w € V and u = P¥(w). Because the control-to-state map Gg satisfies
Gs(f) = (P o B™1)(0), (3.9)

cf. (3.1) and (3.4), Theorem 3.10 together with the linearity of B would imply the
directional differentiability of Gg, if the density property (3.8) was fulfilled.
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3.2.1. Extension of Riesz’ representation theorem

In order to prove (3.8) we have to extend the Riesz representation theorem to
positive functionals f € (H 1((2))/. This will allow us to derive characterizations of
the sets involved in the right-hand side of (3.8).

The following lemma is a first step towards this extension.

Lemma 3.11. Let f € (Hl(Q))/ be positive, i.e., it holds (f, v) > 0 for all v €
HY(Q) with v > 0 a.e. in Q. Then there exists a unique measure j € M*(Q) such
that

(f, v) = /Q’U dp (3.10)

for allv € HY(Q) N C(Q).

Proof. Let v € H'(Q)NC(f2) be arbitrary. For [vlle@) —v = 0 in ©, we infer from
the positivity of f that

Since the right-hand side in (3.11) defines a sublinear function p: C(2) — R, the
Hahn-Banach theorem yields the existence of an extension ¢ € (C (ﬁ)), with

() = {f,v) Yve HY(Q)NCQ). (3.12)
We assume there is another extension ¢ € (C(ﬁ))/, 1 # {, satisfying (3.12) and
hence £(v) = £(v) for all v € C>(Q) C H(Q) N C(Q). However, by the Stone-
Weierstrass theorem we conclude ¢(v) = £(v) for all v € C(Q) so that ¢ is unique.
Moreover, due to the Riesz representation theorem there exists a unique p € M(Q)
with

() = /de,u Yo € O(Q). (3.13)

Together, (3.12) and (3.13) lead to
<f7 U> = /’U dp
Q

for all v € HY(Q) N C(Q). It remains to be proven that y € M™*(Q). For this

purpose we consider K C B(£2) compact and the finite open covering
n
G, = UBG(CL‘Z'), ;€ K, neN, e>0.
i=1

Thanks to Lemma A.24 (partition of unity) there is 9% € C§°(G¢) with 0 < ¢f <1
and ¢ =11in K. As ¢% is bounded by 1 € H*(Q) N C(Q) C LY(Q; 1) and

HY Q)N CQ) 2 ¢% 9% Yk pointwisely in RY,
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we deduce from Lebesgue’s dominated convergence theorem

€ € e—0
(fs ‘PK>_/Q(PKle>/QXKdN_N(K)-

Note that Lebesgue’s theorem can be applied for a general signed measure thanks
to the Hahn-Jordan decomposition p = pu™ — p~ with positive measures pu+ and
p~ . Because of @5 > 0 it follows (f, ¢%) > 0 for all € > 0 by assumption and thus

p(K) > 0. The regularity of p implies for arbitrary E € B(2)
u(E) =sup{p(K): K C E, K compact} >0

so that p is indeed positive. O

Now we aim to get rid of the set C(£2). More precisely, we want to show that
every v € H'(Q) has a particular representative satisfying (3.10). The proof will
be performed in two steps:

1. We establish (3.10) for truncated H!(Q)-functions by means of Lebesgue’s
dominated convergence theorem.

2. We conclude (3.10) for arbitrary functions v € H'(2) with the help of the
monotone convergence theorem.

Therefor the convergence of truncated H'!(Q)-functions must be investigated. We
start by providing two known auxiliary results.
Lemma 3.12 ([1, Lemma A1.17]). Let f € LY(Q) and {E,}nen C Q be a sequence

of measurable sets with |E,| — 0. Then it holds

fdu—0.
En

While Lemma 3.12 states the convergence of the integral, if the measure of the
domain converges, the next one claims the converse.

Lemma 3.13. Let M C Q be measurable, f € L'() and {fn}nen C L1(Q) with
fo— fin LY(Q). If f >0 a.e. in M, then it holds |[{x € M : f,(z) <0} — 0.

Proof. In [44, Lemma A.2| Herzog et al. already proved under the same assumptions
that |[{z € M: f,(x) =0}| — 0. Their proof can readily be adapted to the sets
{r e M: f,(x) <0} O

The space H'(Q) is closed under truncation by Stampaccia [54, Theorem I1.A.1]:
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Theorem 3.14. Let v € HY(Q). Then it holds v € H'(Q) with (weak) derivative
given by

axi(w):{a“” infw € Qiv(@) >00 gy (3.14)

0 in{z € N:v(z) <0}

From Theorem 3.14 we deduce the following convergence result.

Lemma 3.15. Let v € HY(Q) and {v,}nen C HY(Q) be a sequence with v, — v.
Then it holds

(i) v — vt in HY(Q) as n — oo

(ii) min(v,m) — v in H'(Q) as m — co.

Proof. (i): The domain € can be decomposed as Q = A, U B, U C, U D,, with
A, = {z € Q:v(x) > 0,v(z) > 0}, B, = {z € Q: vy(x) < 0,v(z) > 0},
Cp ={z € Q: vy(x) > 0,v(z) < 0} and D, = {x € Q: v,(z) < 0,v(x) < 0}. In
view of (3.14) we thus obtain

Hv;L —v‘*‘”ip(m :/A (|vn —0]2 + |V(vy —v)|2) dJ:Jr/ (|v[2 + \Vv|2) dz

+ / ([vnl® + |Vou|*) da.
Cn
Applying Minkowski’s inequality leads to

[og — U+H§{1(Q) =

<lon = ol + [ (1o + Vo) da

Bn

i <</C [on —vf* dm)é N (/C o dx)§>2
+ <</C o )+ (/Cn Vo2 dm)5>

§2]vn—v||§{1(m+/ (|U|2+|Vv|2) dz—l—/ (|U|2+|VU|2) dzx

n n

1 1
+2(/Cn\vn—v]2 d:1:>2<[cn|v\2 dgc)2 l
+2(/C V(0 — ) dx>2</c Vof? dz)?

§2|vn—v||§{1(m+/3 (|v|2—|—|Vv|2)d:L‘+/C ([of® +|Vol*) dz

+ 4 lon = vl g 10l ) -
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If weset M ={z € Q:v>0}and M = {x € Q: —v > 0}, respectively, Lemma
3.13 implies
|Bp] =+ 0 and |C,| — 0.

Thus, the assertion follows due to Lemma 3.12.
(ii): We decompose the domain as Q = A,,, U By, with A, = {x € Q: v(z) > m}
and By, = {x € Q: v(x) < m}. Theorem 3.14 then yields

o= min(w,m) ey = [ o= ml+ (Vo do< [ foft+ o da,
Am Am

T was used. As A,,11 C Ay, we moreover find

where min(v, m) =m — (m — v)

lim Ay = |ﬂm€NAm| =|{z € Q:v(z) =00} =0

so that (ii) is a consequence of Lemma 3.12. O

On account of Lemma 3.15 we observe that H}(€2) is also closed under truncation:

Corollary 3.16. Let v € H}(Q) and m € N. Then v, min(v,m) € H}(Q).
Proof. Due to the definition of H}(2) there exists a sequence {¢n}neny C C5°()
with ¢, — v in H'(Q). From Lemma 3.15(i) we infer

Co(Q)NHYQ) 3 ¢ = vt in H(Q).

Together with Theorem A.13 and Corollary A.16 this shows

vt = lim 79 =0 a.e. onT.
n—oo
Because of min(v,m) =m — (m — v)" we similarly obtain 7 min(v, m) = 0. O

In order to derive (3.10) for v € H(£2) it will moreover be crucial that every set of
zero capacity has pu-measure zero. To this end we need the next auxiliary result.

Lemma 3.17. Let EC Q, F={ve H{(Q)NCQ),v>1onE} and Fo = {v €
H(Q)NC(Q),v>00nQ,v>1o0nE}. Then it holds

. 2 . 2
inf { /vy } = it {0lF300) -
Proof. Since Fy C F, we know

inf { ol } < nf { ol }-
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If {vp }nen C F is a minimizing sequence, then Corollary 3.16 implies {v; },en C Fo
with || |31 < llonll? Therefore we conclude
n i) < 11Vnllm )

inf { [0y } = inf {Iolyc0)

which completes the proof. O

Lemma 3.17 enables us to prove that the measure p in (3.10) vanishes on every set
of zero capacity.

Lemma 3.18. Let Q be a bounded Lipschitz domain with Q C Q. Moreover let
fe (Hl(Q))/ and € M*(Q) such that
(f, v) = /v dp Yve HY(Q)NnC((Q).
Q

If D € B(Q) is a set of zero capacity, then D N Q belongs to B(Q) and satisfies
w(DNQ)=0.

Proof. Let K C @ be compact. Furthermore let ¢ € H(Q) N C(Q) be arbitrary
with o > 01in Q and px > 1in K. As @k is an element of H'(Q) N C(Q), we
obtain

n(K) = /QXK dp < /QSDK dp = (f; vx) < Ifllin @y lexllm@) < cllexllip g
< C”SDKHH[%(Q)v

where Friedrich’s inequality was used for the last estimate. Invoking Lemma 3.17
we arrive at

uw(K) < cinf{||vHHé(Q) cve H(Q)NC(Q),v>1on K}
Proposition A.3a) hence leads to
W(K) < ccap(K;Q)7, (3.15)

since we minimize on a smaller set. In view of Definition A.27 and Lemma A .28 we
observe DN Q € B(Q). Consequently, due to the regularity of the measure p and
(3.15) it follows

w(D N Q) = sup {,LL(K): KcDnQ K compact}
< csup{cap(K;Q)%: KcDnQ K compact}.

From Theorem A.4i) we deduce u(D N Q) < ccap(D N Q)% < ccap(D; Q)
that (DN Q) = 0.

N|=

03
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We are ready for the desired extension of the Riesz representation theorem to the
space (Hl(Q))/

Theorem 3.19. Let f € (Hl(Q))/ be positive, i.e., it holds (f, v) > 0 for all
v e HY(Q) with v > 0 a.e. in Q, and let Q@ D Q be a bounded Lipschitz domain.
Then there exists a unique measure u € M™(Q) such that

(f, v>=/ﬂv dp (3.16)

for allv € H' (2), where (3.16) is fulfilled by a representative of v, which is quasi-
continuous in Q2. Moreover, if D € B(Q) is a set of zero capacity, then pu(DN) = 0.

Remark 3.20. Resulting from Corollary A.10 and the second assertion of The-
orem 8.19 the integral in (3.16) does not depend on the chosen quasi-continuous
representative.

Proof of Theorem 3.19. According to Lemma 3.11 and Lemma 3.18 there exists a
unique p € M*(Q) vanishing on all sets D NQ with cap(D; Q) = 0 such that (3.16)
holds for every v € H'(Q) N C(Q). By performing the two steps mentioned above,
we show that C(Q) can be omitted, if proper representatives are considered. Let
v € HY(Q) and © € H}(Q) with & = v a.e. in Q, see e.g. |31, Lemma 1.29]. We
assume w.l.o.g. that ¥ is nonnegative a.e. in Q. If this is not the case, we apply the
arguments to 0 and ¥~ separately.

Step 1: By definition of H}(Q) there is a sequence {vy }neny C C5°(Q) with v, —
#™ = min(d,m) in HY(Q) as n — oo for every m € N, cf. also Corollary 3.16.
Because of 9" = m — (m —v)T and Lemma 3.15(i) we thus infer

v = min(vy,, m) I 5™ in H&(Q)
Thanks to Lemma A.12 there exists a subsequence of quasi-continuous representa-

tives, w.l.o.g. denoted by the same symbols, with

m M—00  ~m

v, —— 0" q.e.in €.

Therefore, Lemma 3.18 yields

m M—00  ~m
n

— p-a.e. in €.

As v <m a.e. in Q for all n € N by definition, we derive from Lemma A.9 and
Lemma 3.18
opt <m  peace. in Q.

Note that restrictions of Borel-measurable functions are measurable w.r.t. the re-
spective Borel-sigma-algebra on the restricted domain by Corollary A.29. This
property will frequently be used in the following without further reference. Since
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m € HYQ) N C(Q) is p-integrable, Lebesgue’s dominated convergence theorem
implies

/QUZL dp =25 ﬁf}m dp < oo. (3.17)
In addition, we find H(2) N C(Q) 2 v™ — o™ in H'(Q) as n — oo so that
Lot = (o) === g ).
which combined with (3.17) leads to
(f, ") = /Qﬁm dp. (3.18)

Step 2: Invoking Lemma A.9, we derive from 11 > ™ a.e. in Q that o7+ > ™
qe. in Q. Let E,, € B(Q) denote the set of points = € Q, where ! < ™. Due
to Theorem A.4ii) the union of all sets E,, has zero capacity. Consequently, the
sequence {0 },en is monotonously increasing q.e. in Q and thus p-a.e. in Q by

Lemma 3.18. Thanks to Lemma 3.15(ii) we moreover know
~m, M—00

o™ T 5 in HE(Q). (3.19)

Again, on account of Lemma A.12 there exists a subsequence of quasi-continuous
representatives, w.l.o.g. denoted in the same way, with

o™ 2% 5 gee. in Q.
Hence, we conclude from Lemma 3.18

~m M—00

7" T 0 peace. in Q.
In view of (3.18) we have shown
e 0 <™ /¥ p-ace. in  as m — oo
o 0™ € LY(Q;p).
Note that two different quasi-continuous representatives coincide p-a.e. in €, cf.
Corollary A.10 and Lemma 3.18. This is why (3.18) holds true for all quasi-

continuous representatives of ™. Because of the convergence (3.19) the sequence
{0} en is bounded so that

/Q T dp = (f, ™) <l gy 157y <

From the monotone convergence theorem it then follows

/5’" dp 2222 /f} dp < . (3.20)
Q Q
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Since 9™ — ¥ in H(Q) according to (3.19), we furthermore observe
/Q@m dp = (f, ™) 222 (f, 3) . (3.21)
Together, (3.20) and (3.21) imply
o= [ o

For ¥ = v a.e. in €2, we have found a quasi-continuous representative defined on Q
such that (3.16) is fulfilled. O

In the subsequent section we will not have to deal with a positive f € (H 1(9)),
but with A € (T,,[V])/ which is positive for all z € 7,[V] with z > 0 a.e. on I'¢c.
Nevertheless, as for every 2z € 7,[V] there is a function w € H'(Q) with 7w = 2
a.e. on I' by the inverse trace theorem (Theorem A.19), such A can fortunately be
interpreted as a positive functional on H!(€2).

Lemma 3.21. Let A € (T,,[V])/ such that (A, z) > 0 for all z € 7,[V] with z > 0
a.e. on Tc and let Q@ D Q be a bounded Lipschitz domain. Then there exists a
unique measure p € M1(Q), concentrated on the set I'c, such that

(A, z) = /F vdp (3.22)

for all z € 7,[V], where (3.22) is fulfilled by a representative of v € HY(Q) with
TV = z a.e. on 'c, which is quasi-continuous in Q. Moreover it holds j1(D nQ)=0
for all D € B() with cap(D; ) =0 and

/ vy dp :/ vo dp (3.23)
I'c I'c

for all vi,vy € HY(Q) with Tv; = T3 a.e. on ['c.

Proof. In view of Assumption 3.1(1) we know I'c = TN E = QN Q°N E with
E c R? closed. Hence, the set I'c is compact and the finite open covering

Go ::UB(;/Q(a;i), zi€le, neN

i=1

with 6 := dist(I'c,I'p) > 0 intersects I'p trivially. Due to Lemma A.24 (partition
of unity) there is a smooth function (¢ € C§°(G¢) with 0 < (¢ <1, (¢ =1on ¢
and (¢ =0 on I'p. From Theorem A.14 and Corollary A.18 we deduce

7(Ccv) =0 ae.onlp (3.24a)
7((cv) =Tv a.e. on ¢ (3.24b)

73



for all v € H*(Q). Note that (¢ is locally Lipschitz continuous by the mean value
theorem and thus globally Lipschitz continuous on the compact set Q, i.e., (¢ €
C%1(Q). Thanks to (3.24a) and Theorem A.22 there exists v € V with v =
7(¢cv) and 7pv = 0, where we used the identity 7v = (1, v)v + 7pv leading to
v = 0 a.e. on I'p. Therefore, the trace 7({cv) is an element of 7,[V] for all
v e HY Q). If v e HY(Q) fulfills v > 0 a.e. in 2, then Proposition A.21 implies
7((cv) > 0 a.e. on I'c. Accordingly we infer (A, 7(v{c)) > 0 by assumption. In
other words, the functional f € (HI(Q)), defined through (f, v) = (A, 7(¢cv)) is
positive. Consequently, Theorem 3.19 yields

(A, 7(Cev)) Z/Qv dp (3.25)

for a representative of v, which is quasi-continuous in Q, and with unique measure
@ € MT(Q) vanishing on DNQ if cap(D; Q) = 0. Now let z € 7,[V] and v € HY(Q)
with 70 — 2z = 0 a.e. on I'¢, cf. Theorem A.19. On account of (3.24b) we derive
7((cv) —2=0 ae.onl¢
so that the assumption on A results in
N\, 7(Ccv) —2) >0 and (A, z—71(¢cv)) >0, (3.26)
ie., (A z) = (\, 7(Ccv)). Together with (3.25) this shows (3.22) and by the same

arguments we obtain
/m dp = /U2 dp Vor,ve € HY(Q) with 7oy = Tvy a.e. on g,
Q Q

It remains to be proven that u is concentrated on I'c. For € > 0 we consider the
finite open covering of the compact set I'c

k
Ue:i=|JBe(w:), zi€T¢e, keN.

Since 2\ U, = QN U¢ is also a compact set, there is a finite open covering

l
U (i), 1, €Q\U, 1€N

with Ge NT'¢ = 0. Analogously to above we can find (. € C§°(G,) with 0 < (. <1
and (. =11in Q\ U.. As (. is bounded by 1 € H(Q) for every € > 0 and

Ce =0 XonTe pointwisely in R?,

it follows from (3.25) and Lebesgue’s dominated convergence theorem that

e—0

<)‘ T CCC& / Ge dpp — ﬁXQ\Fc dp = M(ﬁ\ Fc).

Because of (3.24b) we further note 7(¢c(.) = 0 a.e. on I'c and hence (X, 7((cCe)) =
0 for every € > 0, cf. also (3.26). This is why we conclude u(2\ T'c) = 0. O
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Lemma 3.21 is independent of the chosen function v € H(Q) with 7v = 2 a.e.
on e, cf. (3.23). In the remainder of this section we introduce a specifically
chosen extension operator E: H'Y/?(T') — H(Q), customized for the purposes of
the subsequent section, with 7E(z)|q = z a.e. on I'c, where Q D Q is a bounded
Lipschitz domain. Before we are in the position to define E, we need the following
auxiliary lemma.

Lemma 3.22. Let Q 2 Q be a bounded Lipschitz domain such that Q\ Q is con-
nected. If f € HY(Q) and g € HY(Q\ Q) satisfy 7f = 7g a.e. on T, then the
compound function h defined by

b f, a.e onQ,
g, ae onQ\Q

belongs to H'(Q). Moreover, if Tg = 0 a.e. on S, then h € H&(Q)

Remark 3.23. The assumption on 0 in Lemma 3.22 is necessary in order to
guarantee that the difference \ Q is also a Lipschitz domain. A set Q C R? which
satisfies this assumption can be constructed for instance by extending the exterior
boundary of Q.

Proof of Lemma 3.22. Both B(Q2) and B(Q\ Q) are subsets of B(€), which implies
measurability of h: (2, B(2)) — (R, B(R)) with

1l 726y = 11220y + 91172 @q) < o-

We have to verify if h has a weak derivative Oh € L?(). To this end let ¢ €
Cg° (Q) and v; denote the ith component of the unit outward normal vector on T
Integration by parts yields

/h@iwdm:/faigodx—i-/ g0 dr
Q Q OO

:/chpl/i ds—/ﬁifgodx—i—/ngo(—ui) ds— [  Oigpdx
r Q r Mo

:—/&f@dx—[ _Oigpdux,
Q O\Q

where ¢ = 0 on 9Q was used. Now we define dh: Q — R through

O — df, a.e.on (~2 B
dg, a.e.on )\ .

The same arguments as above lead to Oh € L*(Q) so that h € H'(Q) with weak
derivative Oh. According to Theorem A.15 and Theorem A.14 we derive Th = 7g¢

a.e. on 9Q. Therefore, the function A is an element of H&(Q), it g = 0 a.e. on
o00. O
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Due to Lemma 3.22 every 2z € H'Y2(T") can be extended to a function, which belongs
to H}(Q).

Corollary 3.24. Let Q D Q be a bounded Lipschitz domain such that Q \ Q is
connected and let z € H/?(T'). Then there exists v € HA(Q) with Tv|g = 2 a.e. on
I', depending continuously on z. In particular it holds

HUHH(%(Q) < CHZHH1/2(F) .

Proof. With the help of the inverse trace operator we define

. T_lf, a.e. on (NZ B (3.27)
T_1Z, a.e.on )\ £,
where z € H'/2(9(Q\ Q)) is given by
B z, a.e.onl
zZ= - (3.28)
0, a.e. on 0f).

Thanks to Lemma 3.22 we know v € H} (Q) and the estimate follows from Theorem
A19. O

For the calculation of the sets appearing in (3.8) we require an extension, which is
not only continuous but also nonnegative whenever z > 0 a.e. on I'c.

Lemma 3.25. Let Q D Q be a bounded Lipschitz domain such that @\ﬁ 15 connected
and let z € HY?(T). Then there exists a unique solution v € HL(Q) of

(Vu, Vg@)LQ(Q;Rd) =0 VypeKy

(3.29)
Tl =2 a.e onT¢

with Ko == {p € HY): Tolo =0 a.e. on Lc}. In addition, the solution operator
associated with (3.29) is linear continuous.

Proof. Let us consider the minimization problem

o L, 2
Minimize 5 HUHH(%(Q) ) (3.30)
st. veK:={p¢€ HY(Q): T7¢|lq = z a.e. on Ic}.

In view of Corollary 3.24 the admissible set K is nonempty. It is convex and closed,
as the trace operator is linear continuous, cf. Theorem A.14. The squared norm
furthermore defines a continuous, radially unbounded and strictly convex functional
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on H}(Q). Thus, Problem (3.30) admits a unique solution v € K, whose necessary
and sufficient optimality condition is given by

(Vu, V(p — U))L2(Q;Rd) >0 VypeK. (3.31)

Since K = {v} + Ko, we derive (3.29) from (3.31). The solution of (3.29) depends
linearly on z and Corollary 3.24 implies

ol sy < ellzllazgry

where the optimality of v was used. O

The solution operator associated with Problem (3.29) is the extension operator we
are looking for.

Definition 3.26. The solution operator associated with (3.29), which maps z €
HY2(T) = v € HY(R), is denoted by E.

In order to prove the nonnegativity of E mentioned above we have to improve the
assertion of Corollary 3.16.

Lemma 3.27. Let v € HY(Q), z € HY2(') and {z,}nen € HY?(T) a sequence
with z, — z. Then it holds

(i) 7ot = (tv)* a.e. on T

(i) 2zt — 2zt in HY2(T).
Proof. (i): On account of Theorem A.15 there exists a sequence {¢,, }nen C C(Q)
with ¢, — v in H'(Q). Consequently, Theorem A.14 yields 7, — v in H/?(T)

and therefore
Ton — v in L*(T).

We decompose the boundary as I' = A, UB, UC,, U D,, with A,, = {x €T': 7, >
0,7v >0}, B, ={x €l':7p, > 0,70 <0}, C,, ={x €T': 7, <0,7v < 0} and
D, ={z €T': 7, <0,7v > 0}. Then we obtain the estimate

2
|(ren)t — (Tv)JrHLz(F) :/A |7on — 70| ds—I—/ |Ton|? ds+/ I7v]? ds
n n Dn
< / |Tn — Tv\z ds —|—/ |Ton — T@]Q ds
An By

—|—/ ]Tv—ﬂpn|2 ds
D,

< 3|lron — T0ll72(ry -
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This shows (7¢,)" — (7v)* in L?(T") and hence

(o)t — ()T ae. onT, (3.32)

if a proper subsequence is considered. According to Theorem A.13, Corollary A.16
and Lemma 3.15(i) we moreover observe (7¢,)" = 7o — 7ot in HY/?(T). Sim-
ilarly to (3.32), there exists a subsequence, w.l.o.g. denoted by the same symbols,
such that

(ton)t — 70t ae. onT. (3.33)

Together, (3.32) and (3.33) imply (i).
(ii): From the inverse trace theorem (Theorem A.19) we infer

I7-12 = Tflzn”Hl(Q) = [|7-1(2 — Zn)HHl(Q) <cllzn — Z||H1/2(p) 7% 0.
Thanks to Lemma 3.15(i) and Theorem A.14 we find

7'(7'_1/2,1)+ — 7'(7'_12)+ in H1/2(F)

so that (ii) is a result of (i). O

The next corollary covers the nonnegativity of E(z) for every z € H'/?(T) with
z > 0 a.e. on I'c. This will be the crucial property of the operator E.

Corollary 3.28. Let z € H}/Q(F) with z > 0 a.e. on I'c. Then the solution of
(3.29) satisfies v >0 a.e. in €.

Proof. Due to min(v,0) = —(—v)* and Lemma 3.27(i) we can test with min(v,0) €
{p e H{(Q): Tolg =0 a.e. on ¢} in (3.29), which leads to

[min(v, 0)] 5 ) = 0.

Friedrich’s inequality yields min(v,0) = 0 a.e. in Q and thus v > 0 a.e. in €. O

3.2.2. The density property

With the results of the previous section at hand we can now establish (3.8). In [62,
Section 3| Mignot proves the density (3.7) by exploiting that the closed and convex
set C' C X satisfies

{z}+XTCcC o {2}+X CcC VzeC, (3.34)

where X+ and X~ consist of all positive and negative parts of functions in the
Dirichlet space X, respectively. Since the convex set C involves the normal trace
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operator 7, cf. (3.2), condition (3.34) is generally not fulfilled in our setting. There-
fore, we cannot directly transfer Mignot’s technique of proof to PCB . Instead a known
result for infinite-dimensional optimization problems is employed.

First, we recall that u = PCB (w) with w € V is equivalent to u being a solution of
the minimization problem (3.5), i.e.,
1
Minimize 3 (B(u —w), u —w)
st. weV, Flu) e K.

S uel

Moreover we introduce the linearized cone of C at w € C, which is given by
Lu(C) ={v e V: F/(u)v € Kp@)(K)}.

Note here that ICp(V) = V. As every u € C is regular in the sense of Zowe-
Kurcyusz [77], cf. Lemma 3.8, the following proposition, which states the existence
of multipliers for admissible but not necessarily optimal functions, can be deduced
from the proof of [77, Theorem 3.1].

Proposition 3.29. Let u € C and @ € Ly(C)t. Then there exists a multiplier
A€ (TV[V])/ such that

u+ F'(u)*A=0 inV’
AeKY (A F(u)=0 F(u)cK.

Besides, the linearized cone L,,(C) coincides with /Cp (C):
Lemma 3.30. For every u € C it holds Ky(C) = Ly (C).

Proof. Let u € C be arbitrary.
"C": If v € Kyu(C), then we observe
Flluyv=nv=1(a(s—u)) =a(rus — ¢ —1,u+1)
=a(ns—y¢ - F(u) = a(z - F(u))
with > 0, s € C and 2z := 7,58 — ¢ € K. We infer ["(u)v € Kp(y)(K) and
therefore v € L, (C).
"D": Let v € Ly, (C) so that
Flluyv=nv=a(z— F(u)) =a(z — ,u + 1)
with @« > 0 and z € K. In case @« = 0 nothing is to show. Otherwise we set
s =v/a+u €V and obtain

1
TWw8=—-T+Tu=z—7u+¢+71u<1tY ae onlg,
(0%
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where z € K was used for the estimate. Hence, the function v fulfills v = a(s — u)
with s € C, which implies v € Ky, (C). O

Based on Lemma 3.21 and Corollary 3.28 we next derive a characterization of the
dual cone [Ky(C)]%. To this end we define for a quasi-continuous representative of
E(ryu — 1), w.lo.g. denoted by the same symbol,

Ay ={z €T¢c: E(yu — ) =0}, (active set)

cf. also Lemma A.11. Note that A4, changes only on sets of zero capacity, if a
different quasi-continuous representative is considered, cf. Corollary A.10.

Lemma 3.31. For every u € C the dual cone [Ky(C)]% is given by

[Ku(O)]% = {v cV:3puec MT(Q) concentrated on Ay, such that
(3.35)
(Bv, s) = Erysdu Vs e V}.
Te
The integrals are defined in the sense of Lemma 3.21 and satisfy (3.23). Moreover,
every measure i € M (Q) in (3.35) vanishes on all sets DN Q with D € B(Q) and
cap(D; Q) = 0.

Proof. Let u € C be arbitrary.

"C": If v € [Ku(C)]%, then we know (Bw, s) < 0 for all s € Ky(C). As a result
of Lemma 3.30 the functional —Bv € V' is an element of L,(C)*. Thanks to
Proposition 3.29 there is a A € K9 with

—Bv+71;A=0 inV', (\ npu—1)=0. (3.36)

Since (A, z) > 0 for all z € 7,[V] with z > 0 a.e. on I'¢, Lemma 3.21 yields the
existence of a unique measure p € M™(Q) such that

uw(@Q\Te) =0, () 2)= g Ezdu Vzemn|V] (3.37)

and (3.23) is satisfied. In addition, it holds u(D N€) = 0 for all D € B() with
cap(D; Q) = 0. Together, (3.36) and (3.37) show

(Bv, s) = (\, Tu8) = ET,s dp, E(rpu —) du =0, (3.38)
T'c r'c

where Assumption 3.1(3) was used. From Corollary 3.28 and w € C it follows
E(ryu—1) < 0a.e.in Q so that E(r,u—1) < 0 q.e. in Q for every quasi-continuous
representative by Lemma A.9 and thus

E(r,u—1) <0 p-ae. in Q. (3.39)
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Taking (3.38) into account we conclude

p({z €Tt |E(nyu—1)| > 0}) = 0.

The measure p is therefore concentrated on A,,.
">": Now let v € V and u € M*(Q) be concentrated on A, with

(Bv, s) = Erysdpy VselV.
e
Furthermore, if u(D N Q) = 0 for all D € B(Q) with cap(D;Q) = 0, we obtain
E(1,8—1) < 0 p-a.e. in Q for every s € C by the same arguments leading to (3.39).
Because the positive measure 4 vanishes outside A, = {z € T'¢: E(ru—1) =0},
we find

(Bv, s —u) = Ety(s —u) dpu
e
= E(rys — ) du+ E@—1u)du<0
FC Fc
<0 =0
for all s € C, which is equivalent to v € [K,(C)]%. 0

Lemma 3.31 combined with the bipolar theorem enables us to calculate the set

Ku(C):

Lemma 3.32. For every u € C the closure of Ky (C) is given by
Ku(C) = {v eV:Erv <0 qe on Au},

where ET,v denotes a quasi-continuous representative.

Proof. Let u € C be arbitrary and s € [Ky(C)]% so that
(Bs,v) <0 Ywve k)

is fulfilled. Then the functional Bs € V' is an element of the polar cone (10, (C))°.
Moreover, in view of the Lax-Milgram theorem there exists a unique s € V for
every f € (Ky(C))°® with Bs = f and (Bs, v) = (f, v) < 0 for all v € K,(C).
Consequently, we infer

(Kul(©)® = {Bs: s € [Ku(C))3}.
The bipolar theorem and Lemma 3.31 yield
Ku(C) = (Ku(C))® ={veV: (Bs,v) <0Vs € [Ku(C)]}

:{’UEV: ETuvdMSOV,ueimu}
Te
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with 90, € M™(Q2) defined by

My, = {p € MT(Q): p is concentrated on A,, 3s € V such that

(Bs, v) = Enyvdp Vo e V}.
Le

Furthermore, for u € M™(Q) concentrated on A, and v € V we observe
Eryvdu= / Er,v du.
T'e Au

According to the last assertion of Lemma 3.31 we therefore conclude
Ku(C) D {veV: Env <0q.e on Ay}, (3.40)

where the estimate is satisfied by a quasi-continuous representative of E1,v.

In order to establish the reverse inclusion let v € I, (C) be arbitrary. Then there
exist sequences {vn}neny C C and {t,}neny € RT with ¢,(v, —u) — v in V.
Invoking Theorem A.22; we deduce t,, 7, (v, —u) — 7,0 in H1/2(F). Thanks to the
continuity of F, cf. Lemma 3.25, it follows

E(tymy (v, —u)) = Enyv  in Hi(Q)
so that Lemma A.12 leads to

E(tymy(vy —uw)) = Eryv  qe. in Q, (3.41)

if quasi-continuous representatives of a proper subsequence are considered. From
the definition of A,, we derive ET, (v, — u) = E(m,v, — ¥) q.e. on A,. Note here
the linearity of F. In addition, the same arguments as in the proof of Lemma 3.31
show E(r,v, — ) <0 qg.e. in Q) and hence

thETy (v, —u) <0 qe. on A,,.
Together with (3.41) this implies Er,v < 0 q.e. on A,, and in particular
m C {'U eV:Erv<0qe on .Au},
which completes the proof. O

Remark 3.33. For the proof of Lemma 3.32 it is crucial that the dual pairing
(Bs, v) with s € [Ky(C)]% and v € V can be written as an integral w.r.t. a measure
p € MT(Q) concentrated on A,,. Without this representation we are not able to
exploit local information as performed in (3.40). From the proof of Lemma 3.31
we know Bs = o1, with A € K%, c¢f. (3.36). If one aimed to use a property of
v €V in a subset Qo C Q or a property of T,v on a subset I'g C I' solely based
on (3.36), it would be necessary to consider the dual pairings (X, T,(xo,v)) and
(A, X1, Twv), respectively. However, in general it holds xq,v ¢ V and xr,mpv ¢
Hl/Q(F). The big advantage of the integral representation is thus the possibility to
test with characteristic functions.
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With the help of Lemma 3.31 we can also calculate the set [span(w —w)]%. To this
end we state another auxiliary lemma.

/

Lemma 3.34. Let w € V and u = PP (w) with associated multiplier A € (1,[V]) .
Then it holds B(w —u) = AoT, in V' and w —u € [K4(C)]%. In particular, there
exists a measure py € MT(Q) concentrated on A, such that

(A, pv) = Er,vduy YvelV. (3.42)
o]
The integral is defined in the sense of Lemma 3.21 and satisfies (3.23). Moreover,
it holds px(D N Q) =0 for all D € B(Y) with cap(D; ) = 0.

Proof. The first assertion is a consequence of (3.6) with £ = Bw. Let 0 # v €
Kw(C) be arbitrary so that av + u € C for some o« > 0. From (3.4) we infer
(B(w —u), (av +u) — u) < 0 and therefore (B(w —u), v) <0 for all v € K, (C),
which yields w — u € [K4(C)]%. Lemma 3.31 implies (3.42) and the last claim. [

Since by definition v € V' belongs to [span(w —u)]% if and only if (B(w — ), v) =
0, we arrive at the following result.

Lemma 3.35. Letw € V andu = PCB(;w) with associated multiplier X € (7, [V}),.
Then there exists a measure uy € M (Q) concentrated on Ay, such that

[span(w — u)]% = {’v eV: (\ ) = Eryv duy = 0}.

o]
The integral is defined in the sense of Lemma 3.21 and satisfies (3.23). Moreover,
it holds px(D N Q) =0 for all D € B(Q) with cap(D; Q) = 0.

Having the characterizations of the sets K, (C) and [span(w — u)]% available, we

are ready to prove the density property (3.8).

Theorem 3.36. For every w € V and u = PP (w) the set K, (C) N [span(w —u)]%
is dense in Ky (C) N [span(w — u)]%.

Proof. Let w € V, u = PP(w), 0 # v € Ky(C) N [span(w — u)]} and {v, }nen C
Kw(C) with v, — v in V. We can assume w.l.o.g. that v,, # 0 for all n € N. If this
is not the case, we eliminate all zeros from the sequence. This is why there exists
{tn}neny C RT\ {0} such that t,v, + u € C, ie., t,7pv, + wu < 1 ae. on I
for all n € N. By manipulating 7,v,, and applying Theorem A.22 we will obtain a
sequence {0y, fnen C Kqy(C) N [span(w — u)]% with 9, — v in V. For this purpose
we define
Z =Ty, Zp = TyUp.
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In view of Lemma 3.32 and Lemma 3.35 the quasi-continuous representatives of Ez
satisfy

Ez<0 qe. onA, (3.43a)

Ezdp =0 with g € MT(Q) concentrated on A,,. (3.43b)
e

Due to (3.43a) we observe (Fz)™ = 0 q.e. in A,,. Thus, the last assertion of Lemma
3.35 and (3.43b) result in

0= Ezdp= / (Ez)T du —/ (Ez)” dp = —/ (Ez)” du.
r'c T'c r'c r'c

Moreover, from Lemma 3.27(i) and (3.29) we derive 7(Ez)” = (7Ez)” = 2z~ =

TEz~ a.e. on ['c, which combined with (3.23) leads to

Ez" dp=0. (3.44)
I'e

Next, we introduce the abbreviation

Z, =min(z,,2" ).

Note that z~ and z, as well as z are elements of H'/2(T) according to Lemma
3.27(ii). Because of 2~ > Z a.e. on I'c we deduce from Corollary 3.28, Lemma
A.9 and Lemma 3.35 that

E(zZ, —27) <0 p-ae. in Q.

n

Taking the linearity of E, (3.44) and the positivity of p into account, we hence
arrive at

Ez du= E(z, —z )du<O0.
T'o T'o

Since Z, > 0 by definition, the same arguments yield
EZ; dp=0. (3.45)
e

Considering w € C and t, 2, + T, u < 9 a.e. on I'c we furthermore find
tnz + Tpu < max (T,,u,tnzn + T,,u) <1 a.e. onl¢ (3.46)

and consequently
1

0<z'<—(¢—1u) ae onlg.

Again, thanks to Corollary 3.28, Lemma A.9 and Lemma 3.35 we conclude

0< Ezf <

ln
e
1 o
t—E(¢ —Tpu) p-a.e. in €.
n
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As the measure p is concentrated on A,,, it follows

Bz dp=0. (3.47)
Te
Together, (3.45)—(3.47) show
B(zf —2z)du=0 (3.48a)
Ie
th(zh —Z) +rpu <tpzt +ou <9 ae. onlg, (3.48b)

where we used Z; > 0 a.e. on I'¢ for the first estimate in (3.48b). By Theorem A.22
there exists a sequence {8, }nen C H'(Q;R?) with 7,8, = (2,7 —2,) — 2, 778, =0
and

Isnll i1 @umey < e[|z = 20) = 2l gy -
In view of Lemma 3.27(ii) we infer

+
n

+

zy — %, =z, —min(z, ,z")

n—o0

=zt —(min(z; —27,0)+27) 2225 2T — 27 =2 in HY2(D)

so that s, — 0 in H! (Q; Rd). In addition, we know

+

TSp = TuSplV + 118y = ((2, —2,) —2)v =0 a.e. on I'p,

and therefore s, € V. Recall here that z = 2z, = 0 a.e. on I'p, as v € V and
v, € V. This is why v + s, — v in V with
wwtsy) =2+ —-2)—z2=2" 2.

From (3.48b) we derive v + s, € K,(C) and (3.48a) combined with Lemma 3.35
implies that v + s, belongs to [span(w — u)]%. Finally, we set ¥, = v + s, to
complete the proof. O

Theorem 3.10 and Theorem 3.36 lead to the directional differentiability of the
control-to-state map Gg:

Corollary 3.37. The control-to-state map Gg: V' — V is directionally differen-
tiable. In particular, for £ € V' and 5¢ € V' it holds

Gs(l+t50) — Gs(0)

; —-n ast 0,
where m € V' is the solution of the following VI
nes*, (Bn,v—n)>{lv-m) VYVveS“ (3.49)
The convex cone S™ is defined by
S*={veV:Env <0 ge on Ay, (N mov)=0} (3.50)

with w = Gg({) and associated multiplier X € (7, [V])/.
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Remark 3.38. Due to the coercivity of B the variational inequality (3.49) admits a
unique solution for every ¢ € V' and the mapping 6¢ — n is Lipschitz continuous,
cf. Theorem 8.8.

Remark 3.39. Because of the inequality in (3.50) the directional derivative is gen-
erally not linear w.r.t. to the direction and the control-to-state map Gg thus not
Gateaux differentiable, if the active set Ay, has positive capacity. We point out that
the capacity of a set can be positive, while its Lebesgue measure is zero, see e.g. [3,

Section 5.8.2].

Proof of Corollary 5.37. Since Gg = PP o B!, cf. (3.9), we deduce from Theorem
3.10 and Theorem 3.36

Gs(0+80) — Gs(¢)  PB(B Y +tB~'60) — PP(B~') o .
t - t ’

where 1 denotes the projection of B~/ on the set S* = K, (C)N[span(B~ Y —u)]%
w.r.t. the norm induced by B. To be more precise, the function n belongs to S*
and solves the variational inequality

(B(n—B7'60),v—m)=(Bn,v—n)— (8, v—m) >0 VveS™
Furthermore, Lemma 3.32 and Lemma 3.35 show that S* satisfies (3.50). O

Despite Remark 3.39 we obtain Géateaux differentiability of Gg on a dense subset
of V' similarly to [62, Théoréme 3.4]:

Theorem 3.40. There exists a dense subset V' C V', where the control-to-state
map Gg is Gateaux differentiable. The Gdteauzr derivative at £ € V' in direction
00 € V' is the solution of the following variational equation

nedsS*, (Bn,v)=(v) YVveS" (3.51)
with 8* := {v € V: En,v =0 g.e. on Ay} and u = Gg({).

Proof. The space V and hence its dual V' are Hilbert spaces and the operator Gg
is Lipschitz continuous, cf. Proposition 3.4. Therefore, the existence of the set V' is
a consequence of [62, Théoréme 1.2|. If Gg is Gateaux differentiable at £ € V', then
we know 7 := 0Gg(¢;0¢) = —0Gg(¢; —dL) for all 6¢ € V'. From Corollary 3.37 we
infer

nesS* (Bn,v—mn)>{lv—m) YveS* (3.52)
and in addition

-nesY (B(-m),v—(-m)) = (-0 v—(-m) VveS"
<~ ne-5% (Bn,v—mn)>{0lv—m) Yve-S* (3.53)
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with S* = {v € V: Er,v < 0 gee. on Ay, (A, 7v) = 0}. Together, (3.52) and
(3.53) yield

nesS*N-S% (Bn,v—n)> ¢, v—m) VYVveS¥Nn-S"

Since S¥ .= S¥N—-S% = {v eV:Env=0q.e. on Au} is a subspace, we arrive at
(3.51). Here we used that A o7, can be represented by an integral w.r.t. a measure
gy € MT(Q) concentrated on the set A, and vanishing on all sets D N Q with
cap(D; Q):O, cf. Lemma 3.34. Finally, we note that the solution of (3.51) indeed
depends linearly on d¢. O

3.3. First-order necessary optimality conditions

Based on the directional differentiability of Gg it is possible to derive necessary
optimality conditions for the optimal control problem (Pg). In particular, we will
establish first-order conditions, which are comparable with the strong stationarity
system for mathematical programs with complementarity constraints (MPCCs) in
finite dimensions given in [69, Theorem 2].

We make the following assumption, which is supposed to hold throughout this
section.

Assumption 3.41. The objective functional J: VxU — R is Fréchet differentiable.

According to Theorem 3.9 Problem (Pg) is equivalent to a MPCC in function
space:
Minimize J(u, f)
Bu+7)A=Rf inV’
(A, z2) >0 Vzer[V]withz>0ae onl¢
nu(z) —¢P(z) <0  ae onl¢
(A, mu — ) =0,
with R: U — V' as defined in (2.14). Our first-order analysis requires directional

differentiability of the reduced objective functional J(Gg(R-),-): U — R guaranteed
by the next auxiliary lemma.

Lemma 3.42 (|44, Lemma 3.9]). Let X and Y be normed vector spaces. Moreover
let G: X =Y be directionally differentiable at x € X and I:' Y x X — R be Fréchet
differentiable. Then the functional j: X — R defined through j(x) = I(G(x),x) is
directionally differentiable at x and its directional derivative in direction dx € X is
given by

9j(x;0z) = I'(G(x), ) (0G (x; 6z), o).

87



Now we can deduce a necessary optimality condition involving solely primal vari-
ables:

Lemma 3.43. Let f € U be a local optimal solution of (Pg) with associated state
uw € V. Then it holds

OuJ(u, f)n +0¢J(u, f)5f >0 VOfeU, (3.54)

where 1 solves (3.49) with S* = S™ and ¢ = RO f .

Proof. In view of Corollary 3.37 and the linearity of the operator R the composition
Ggo R: U — V is directionally differentiable with

(GsoR)(f +t3f) — (Gs o R)(f) _
t
_ Gs(Rf +tR5f) — Gs(Rf)

- 5 ™0 9Gs(Rf; ROf) Y feU Vof eU.

As the objective functional J: V' x U — R is Fréchet differentiable by assump-
tion, Lemma 3.42 thus yields directional differentiability of the mapping U 3 f —
J(f) = J(Gs(Rf), f) € R with

95(f;0f) = 0uJ(Gs(RF), F)OGs(RFf; ROf) + 95 J (Gs(RF), F)Of-

Due to local optimality of f we conclude the assertion. O

Because the space U includes distributed controls f; € L? (Q; ]Rd), strong station-
arity for (Pg) can be proven analogously to [27, Section 5]. For this purpose we
need another auxiliary result.

Lemma 3.44. Let f € U be a local optimal solution of (Pg) with associated state
u € V. Then there exists a @ € V' such that

OuJ(, f)m — (60, @) >0 VéleV,

where n solves (3.49) with S* = S*.

Proof. Thanks to Lemma 3.43 it is already known that
Oud(u, £)OGs(Rf; ROf) + 0 J(u, £)5f >0 Véf € U. (3.55)

The variational inequality (3.49) is uniquely solvable and the associated solution
operator is Lipschitz continuous by Remark 3.38. Since dGg(Rf; R0O) = 0, we
therefore arrive at the estimate

—0pJ(w, F)5f < c||0ut (@, F)]

ROf|

(3.56)

v [R3F [y
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Next, we show that the linear operator R is injective. If f,g € U satisfy Rf = Rg,
then the density of C§° (Q; Rd) in L? (Q; Rd), cf. [1, Satz 2.14], implies the existence
of a sequence {h"},en C V with

0= (R(f — g), B}) = /Q (F1—g0) - BY e "2 | F — g1 oy - (3:57)

Now let }2 € L? (F ;Rd) and g, € L? (F;Rd) denote the extensions by zero of f,
and g,, respectively. According to Theorem A.20 there is a sequence {hj },en C
H'(Q;RY) with

Thy — fy— g, in L*(T;RY). (3.58)
Similarly to the proof of Lemma 3.21 we furthermore find {(, }nen € C%1(Q2) with
0<¢ <1,(=00nTIp and

Cn — Xa\rp pointwisely in €.

Corollary A.18, Theorem A.14 and (3.58) consequently lead to (,h5 € V and

7(Cnhy) = CalrT(hy) — xo\rp (f2 —G2) ae.onT,

in case a proper subsequence is considered. As a result of (3.58) and (, € [0, 1] for
all n € N the sequence {7(¢,h5)}nen is bounded in L?(I';R?). Hence, there is a
weakly convergent subsequence, w.l.o.g. denoted in the same way, whose weak limit
coincides with the pointwise limit by Egorov’s theorem, cf. the proof of Lemma
2.18, so that

0= (RUF =9, Goh3) = [ (F2=g2) r(Guh) ds = s = gl mey - (3:5)
N

Together, (3.57) and (3.59) yield f = g in U. The operator R is therefore bijective

from U to its image R[U] with linear inverse R_; and the left-hand side in (3.56)

can be seen as a linear functional on R[U]. This functional is dominated by the

sublinear function p: V/ — R defined through

p(0) = c[|du (u, f)]

In view of the Hahn-Banach theorem it follows that —dg.J(w, f)R_1 can be ex-
tended to a linear and continuous functional on V’. Because the space V is a
Hilbert space, we identify the extension with a function @ € V and obtain

v Ly -

(w, R6f) = —0¢J(u, f)Of Vof €U. (3.60)

Moreover, on account of [1, Satz 2.14] the embedding V — L?*(Q;R?) is dense.
Since the operator R: L2 (Q; Rd) — (L2 (Q; Rd))/ defined by

(Rf, 9)(12(m)y L2(0r1) = /Q f-gdz
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is isometrically isomorphic, its image ]:Z[L2 (Q;Rd)} and thus R[U] is densely em-
bedded in V' due to Proposition A.26. Note here that R§f = R f, holds for all
§f = (6f,,0) € U. From the Lipschitz continuity of Gs(Rf;-): V! — V, (3.55)
and (3.60) we infer the assertion. O

The first-order necessary optimality conditions of strongly stationary type for (Pg)
read as follows:

Theorem 3.45. Let f € U be a locally optimal solution of (Pg) with associated
state w € V' and multiplier X € (T,,[V])/. Then there exist an adjoint state @ € V

and a multiplier 0 € (7, [V])/ such that

Bu+ 7 A=Rf inV’ (3.61a)
(A, 2) >0 Vzemn[V]withz>0 ae onlc (3.61b)
u(zr) —Y(z) <0 a.e onl¢ (3.61c)
(A, pu—1) =0 (3.61d)
Bw+ 120 =0y J(u, f) inV’ (3.61e)
wesS* (0,nv)>0 Vves® (3.61f)
w+0p J(w, f)=0 ae inQ (3.61g)
@+ 95, J(u, f) =0 a.e onTy, (3.61h)
where the conver cone S* is as defined in (3.50).
Proof. We define g € V as the unique solution of
(Bq, v) = (OuJ(u, f),v) VveV. (3.62)

Let moreover II: V' — V be defined by
II(v) = (0Gs(Rf;-) o B)(v).

In consequence of the symmetry of C, cf. Assumption 3.1(2), the operator B is
self-adjoint. From Lemma 3.44, (3.62) and Gg(Rf;-) = llo B~! we therefore infer
the estimate

0 < OuJ(u, )OGs(Rf;6¢) — (BB™'5t, w)

= (Bq, 0Gg(Rf;6l)) — (B~'6¢, B)
= (I(B~'8¢), B(qg — w)) — ((Iy —)(B~'8¢), Bw) (3.63)
= (T1( —155) ( —@)) —{((Iy —O)(B~'6¢), Bll(w))

— (v B~'8(), B(Iy —TI)(@))

for a @ € V satisfying (3.60) and for all 6¢ € V’'. Herein, the mapping Iy : V — V
denotes the identity. The operator II is the projection on the set S% w.r.t. to the
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norm induced by B, cf. the proof of Corollary 3.37. Hence, for every & € V we
know

I(g) € S*, (BII(E) — &), v—T1(€)) >0 Vv S“ (3.64)

Because S% is a convex cone, we can test the variational inequality in (3.64) with
v = 2I1(¢) and v = 0, which leads to

(B(Iy —TE, TIE) =0 VEE V. (3.65)
Besides, II is idempotent so that

Doll=1I, (Jy —M)o (Iy —1I) = Iy —1I (3.66a)
Mo (Iy —1I) = (Iy — ) o II = 0. (3.66b)

We insert 6¢ = B(Iy — II)(w) € V' in (3.63) and obtain

< (I(B™'B(ly —1)(@)), B(q —@))

— ((Iy = )(B~'B(Iy — IT)(w)), BI(w))
—((Iy =I)(B~'B(Iy —1)(@)), B(ly — )(@))

= ((Iy = 1)(w), BIl(w)) — ((Iy — IT)(w), B(Iy —)(@))
= —(B(ly —I)(w), (Iy —II)(w)),

where (3.65), (3.66) and B = B* was used. Together with the coercivity of B this
implies
lo —(@)[[§; < e¢{B(@ ~11(®)), ® — (@) <0,
i.e., w =1II(w) € S%. Now let s € V be the solution of
(Bs,v) = (B(w—q),v) VYveV (3.67)
Plugging 0¢ = BII(s) € V' in (3.63) and taking account of (3.65)—(3.67) yields
0< (TI(B™'BII(s)), B(q -~ w)) — <(Iv - H)(
— ((Iv =I)(B™'BIL(s)), B(Iy —)(@))
= (li(s), B(q —w)) = — (Bs, Il(s )) =

~'BIl(s)), Bll(w))

I(s), I(s)) -

—(B

Thanks to the coercivity of B we conclude II(s) = 0. In view of (3.64) it therefore
follows i
(Bs,v) <0 VwvelS

which by (3.67) and (3.62) is equivalent to
(Ba, v) < (Bq, v) = (0uJ (@, F), v) Ve 5%

We define ¢ = 9, J(u, f) — Bw € V' and find

B+ = 0y J (1, f)

(C,v)>0 Yves™ (3.68)
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Due to the linearity of the extension operator £ we further deduce from Corollary
A.10 and (3.68) that

((,v)=0 VveV with n,v=0.

This is why the functional ( € V' belongs to ker(7, ). As the mapping 7,,: V —
7y [V] is surjective, the set ker(7y,)* coincides with the range of 77, cf. [61, Theorem
6.6.2], and there exists 6§ € (T,,[V])/ with ¢ = 7,50. Finally, by testing with (f,0),

f1 € L*(%RY), and (0, fa2), fa € L?(T'n;RY), in (3.60), we derive @ = 05 J(w, f)
a.e. in Q and 7@ = Jy,J(u, f) a.e. on I'y, respectively. O]

Remark 3.46. We want to compare the strong stationarity system (3.61) with the
one stated in [69, Theorem 2. To this end we investigate a finite-dimensional
version of (Pg). More precisely, we consider

Minimize  Jy(u, f)

t Mu+N"A=Qf (3.69)
s.t.

A>0, A (Nu—1)=0, Nu<a
with objective functional Jp: R™ x R™ — R, vectors w, f € R®, A\, € R™, and
matrices M,Q € R™ ™ and N € R™ ™. The complementarity system in (3.69)
is obtained e.g. via a finite element discretization of (3.6). According to [69] a

solution (, A, f) € R" x R™ x R™ of (3.69) is called strongly stationary, if there
exist multipliers @ € R™ and 0, € R™ such that

M'@+ N0 =—-0,J(a,f) (3.70a)
No=¢ (3.70b)

Q'@ =09sJu(a, f) (3.70c)

(Nu—1)0; =0 Vie{l,...,m} (3.70d)

A, =0 Vie{l,...,m} (3.70e)

0;,,¢; >0 Vie{l,...,m} with A\; = (Na —1); = 0. (3.70f)

From (3.70b), (3.70e) and (3.70f) we deduce (Nw); > 0 for alli € {1,...,m} with
Ai = (Nu—-1); =0, (Nw); =0 for alli € {1,...,m} with \; > 0 and thus

AN =o. Moreover, (3.70d) and (3.70f) lead to 8; = 0 for all i € {1,...,m}
with (N@w — p); # 0 and 8; > 0 for all i € {1,...,m} with \; = (N@ — ); = 0.
If v € R" satisfies (Nv); < 0 for all i € {1,...,m} with (Nu —); = 0 and
A No = 0, then we observe \i(Nv); = 0 for all i € {1,...,m} and (Nv); =0
for all i € {1,...,m} with A\; > 0 so that 0' Nv < 0. Consequently, the strong
stationarity system (3.70) implies

M'G+ N0 =0,J,(u, f) (3.71a)
weS* O Nv>0 VYveSE (3.71b)
Q'@+ 9rdu(u, f) =0, (3.71c)
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where @ := —&, 6 := —0 and St is given by
Su = {v € R™: (Nv); <0 Vie{1,...,n} with (Na—); =0, S\Tszo}.

Since (3.61g) together with (3.61h) is equivalent to R*@+dgJ(u, f) = 0, cf. (3.60),
we can interpret (3.71) as the finite-dimensional analogue of (3.61e)—(3.61h). Hav-
ing the surjectivity of the mapping 7,: V. — 1,[V] in mind, we assume now that
its counterpart N € R™*™ s also surjective. From (3.71b) it follows (Nw); < 0
for all i € {1,...,m} with (Nu —); = 0, X' Nw = 0 and hence Ai(N@); =0
for all i € {1,...,m}. Furthermore, the surjectivity of N yields 8; < O for all
i € {1,...,m} with (Nu —); = X; = 0 and 0; = 0 for all i € {1,...,m} with
(N — 1); # 0 so that 8;(Nu — 1p); = 0 for all i € {1,...,m}. Altogether, we
infer from (3.71) the strong stationarity system (3.70) with & = —@, 0 := —0 and
é’ := — N, which justifies that we used the same terminology in Theorem 3.45.
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4. Conclusion and outlook

In the previous chapters we investigated the optimal control of two variational
inequalities arising in mechanical contact problems - the static model of infinitesi-
mal elastoplasticity with linear kinematic hardening (VIg) and Signorini’s problem
(VIg). Solution operators associated with variational inequalities are commonly not
Gateaux differentiable and the same applied for (VIg) and (VIg). As a result the
standard optimal control theory could not be employed. Nevertheless, in case of
(VIg) we were able to prove Bouligand differentiability of the solution operator
under additional regularity assumptions. By slightly weakening these assumptions
it was still possible to show directional differentiability. With these results at hand
we established two different second-order sufficient optimality conditions for the
optimal control of (VIg). The first condition was based on the Bouligand dif-
ferentiability of the solution operator and rather restrictive but applicable to a
general smooth objective functional. For an objective functional with a particu-
lar structure we then stated a sufficient condition, which was comparable with its
finite-dimensional counterpart in [69], using the directional differentiability of the
solution operator. With the help of an extension of Riesz’” representation theorem
it was also possible to show directional differentiability of the solution operator
associated with (VIg) by following the ideas of [62]. This allowed us to derive
first-order necessary optimality conditions of strongly stationary type for optimal
control problems subject to (VIg).

We have seen that the solution operator of (VIg) is Gateaux differentiable if cer-
tain regularity requirements are satisfied and the biactive set of the solution, where
the operator is differentiated, is empty. The same holds true for (VIg), provided
that the active set vanishes. The topic of future research could be to exploit this
information in order to design efficient optimization algorithms for optimal con-
trol problems governed by (VIg) and (VIg), respectively. Bundle methods for
non-smooth problems or path-following approaches for regularized problems as in
[56, 71| could be combined with gradient-based optimization methods. By observing
the critical sets such algorithms would determine gradients via an adjoint calculus
and perform Newton-like steps, whenever it seems suitable, and switch back to a
bundle or path-following method otherwise. Maybe it is also possible to find de-
scent directions under additional assumptions, although the gradient does not exist,
so that a classical descent method can be performed, cf. [49]. Another alternative
could be to use information about the gradient within a trust region algorithm,
cf. [27]. In addition, the goal of future research should be of course to establish a
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substantial optimal control theory for the coupling of (VIg) and (VIg). In par-
ticular the existence of optimal solutions and subsequently the differentiability of
the solution operator associated with the coupled system must be discussed. Fur-
thermore, the underlying model must be extended. For instance the assumption of

linear kinematic hardening is not realistic and should be replaced by a nonlinear
hardening law.
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A. Auxiliary results

A.l. Capacity theory

We provide basics of capacity theory obtained from the books [3], [17] and [39]. Let
Q C R? be open and bounded. The following definition can be found in [3, Section
5.8.2].

Definition A.1 (Capacity).

a) For an open set U C Q the capacity of U w.r.t.  is defined by

cap(U; Q) :== inf{HvH%,é(Q) cv € HY(Q),v>1 ae. in U}.

b) This definition is extended to any subset E of by
cap(E; Q) := inf { cap(U;Q): ECU CQ, U open}.

Proposition A.2 (|3, Proposition 5.8.3|). Let E C be an arbitrary subset of €.
Then it holds

cap(FE; Q) = inf {HvHiIS(Q) cv € HY(Q), v > 1 a.e. in a neighborhood of E} .

Proposition A.3 ([3, Proposition 5.8.4]). Let K C Q be compact and U C € be
open. Then it holds

a) cap(K; Q) = inf {||UH%,6(Q) v e C(Q), v>1 in K}

b) cap(U; Q) = sup { cap(K;Q): KU, K compact}.

Heinonen et al. define capacity in [39, Section 2| for compact and open sets as in
Proposition A.3. The definition is then extended to arbitrary sets as in Definition

A1 b).

Theorem A.4 ([39, Theorem 2.2|). Let A,B C Q with AC B and E = J,,cyy En
with {Ey }nen CB(Q). Then it holds
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i) cap(A; Q) < cap(B; )

i) cap(E;Q) < >, oy cap(Ey; Q).

In [17, Section 6.4.3| capacity is defined only for Borel sets:
Definition A.5. Let E € B(2) and o € R.
a) We say that v € H}(Q) satisfies v > « in E in the sense of Hi(Q), if there

exists a sequence v, — v in HE(Q) such that v, > « a.e. in a neighborhood
of E.

b) The capacity of E, in the sense of Hi(Q), is defined as

c(E;Q) = inf{HUH?{é(Q) :v>11n E in the sense of H&(Q)}

In fact, Definition A.1 and Definition A.5 are equivalent.
Lemma A.6. Let E € B(Q2). Then it holds c(E; Q) = cap(FE; ().

Proof. By the choice v, = v for all n € N we see that every v € H}(Q) with v > 1
a.e. in a neighborhood of E also satisfies v > 1 in E in the sense of H}(£2). Thanks
to Proposition A.2 it follows cap(F; Q) > c¢(E;Q), since we minimize on a smaller
set. In order to prove the inverse estimate let

{vn}nen C {v € H{(Q): v > 1in E in the sense of Hj()}
be a minimizing sequence so that
ol iy — (B2 ).

Consequently, for every n € N there exists a sequence {v] }reny C H(Q) with vp>1
a.e. in a neighborhood of E and v} — v, as k — oo. If we extract vy € {v} }ren
with ]
2 2
‘HUNHH(}(Q) - HkaHé(Q)‘ <
then {vi}treny C {v € HJ(Q): v > 1 a.e. in a neighborhood of E'} is also a mini-
mizing sequence, which implies cap(F; Q) < c(E; Q). O]

Definition A.7 (Quasi-everywhere). We say that a property P is true quasi-
everywhere (q.e.) on §, if P is true except on a set of zero capacity.

Definition A.8 (Quasi-continuous). A function f: Q — R is said to be quasi-
continuous in ), if there exists a sequence Uy D Uy D ... DUy D Upy1 D ... of
open sets in Q such that fis continuous on Q\ U, and cap(Uy; Q) — 0 as n — oo.
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The following lemmas are taken from [17, Section 6.4.3|. Note that lim,,_,~ f, is a
measurable function and {z € Q: f = g} with = € {<,>, <, >, =} is a measurable
set, if the functions f,, n € N, f and g are measurable. Therefore we will not have
to distinguish between c(-;€2) and cap(-; Q).

Lemma A.9 ([17, Lemma 6.49]). Let f: Q — R be quasi-continuous and measur-
able. If f >0 a.e. in Q, then cap({z € Q: f <0};Q) =0.

Note that 2 must be an open set. Applied to the difference of two quasi-continuous
and measurable functions, which coincide a.e. in €2, Lemma A.9 yields the next
corollary.

Corollary A.10. Let f,g: Q — R be quasi-continuous and measurable. If f = g
a.e. in §, then f =g g.e. in Q.

Lemma A.11 (|17, Lemma 6.50]). Let f € H}(2). Then f has a quasi-continuous
representative.

Lemma A.12 ([17, Lemma 6.52|). Let f, — f in H}(Q). Then there exists a sub-
sequence { fn, }ken such that its quasi-continuous representatives, w.l.o.g. denoted
by the same symbols, satisfy fn, — f g.e. in Q.

A.2. The trace operator

In this section we collect several results on the trace operator mainly obtained from
Necas [64]. Let © C R? be a bounded domain with Lipschitz boundary T

Theorem A.13 (|1, Theorem A6.6]). There exists a unique linear continuous map
v: HY(Q) — L*(T) such that

yo=uvlp YveHY(Q)NCO). (A1)

Theorem A.14 (|64, Theorems 2.4.2, 2.4.6 and 2.5.5]). There exists a unique linear
continuous map 7: H'(Q) — HY?(T) such that

Tv=vlp Vve Q). (A.2)

The space HY/2(I') ¢ L?(T") is a Hilbert Space. For a detailed definition we refer
to [32, Section 1.3] or [64, Section 2.5.2].

Theorem A.15 ([64, Theorem 2.3.1]). The space C®(Q) is dense in H* ().

Corollary A.16. The operators v and T defined by (A.1) and (A.2), respectively,
are identical. In particular, it holds yv = v a.e. on T for allv € HY(Q).
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Proof. Let v € H'(Q) N C(Q2) be arbitrary. Due to Theorem A.15 there exists a
sequence {pn }nen C C®(Q) with ¢, — v in H'(Q). In view of Theorem A.13 and
Theorem A.14 we deduce

onlr = vlr in L3(I) and  @u|r — 7o in L*(D).
Thus, the operator 7 satisfies
mw=uv|r ae onl YoecH(Q)NCQ),

which together with the uniqueness of v implies the claim. O

The operator 7 is well-known as trace operator. For a vector-valued Sobolev function
veH! (Q; Rd) the componentwise application of the trace operator is also denoted
by Tv.

Lemma A.17 ([64, Lemma 2.5.5]). Letv € H'(Q2) and h € C%1(Q). Then it holds
vh € HY(Q) with

||Uh”H1(Q) <c ||UHH1(Q) ”tho,l(ﬁ) :
Corollary A.18. Let v € HY(Q) and h € C%Y(Q). Then it holds

T(vh) = Tvth a.e. on T, (A.3)

Proof. Thanks to Theorem A.15 there is a sequence {p, }nen C C%(Q) with ¢, — v
in H'(2). On account of Lemma A.17 we arrive at the estimate

lnh = vl 1) = [I(en = V)l i (q) < cllon = vllg @) [1Rllcoa @)

so that the product ¢,h converges to vh in H'(2). Theorem A.14 consequently
yields that

Ton — v in L*(T) and 7(,h) = 7(vh) in L*(T). (A.4)

Because the property (A.3) is fulfilled by continuous functions, cf. Theorem A.13
and Corollary A.16, we moreover infer

7(pnh) = TonTh — ToTh in LY(D). (A.5)
Together, (A.4) and (A.5) lead to the assertion. O

Theorem A.19 (Inverse trace theorem, [64, Theorem 2.5.7]). The trace operator
T has a linear continuous right inverse 7_1: HY/*(T') — HY(Q). In particular, it
holds

Trz=z Yze HYYD)

and there exists a constant ¢ > 0 such that

I7-12ll g ) < cllzll gz -
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Theorem A.20 (|64, Lemma 2.4.9]). The image of the trace operator T is dense
in L?(T"), i.e., it holds
TIH(Q)] = L*(I).

The next proposition is a result of the embedding W1 (Q) — C(Q), cf. [64,
Theorem 2.3.8], and [54, Proposition 11.5.2].

Proposition A.21. The trace operator T is positive, i.e., it holds Tv > 0 a.e. on
T for allv € HY() with v >0 a.e. in §.

Let v: ' — R? denote the unit outward normal vector field on I'. The tangent
space of H/2 (F; Rd) is defined through

Hjlﬂ(f‘;]Rd) = {v € HI/Z(F;Rd): U-V:()}.

Theorem A.22 (|53, Theorem 5.5]). Let @ C R? be a bounded domain with
CYYboundary T. The maps Ty : HI(Q;Rd) — HY?(T) and 7p: H! (Q;Rd) —
H;ﬂ (I‘;Rd) defined by

TV =TV -V, Tpv=7T0— (T,0)V

are linear continuous. Moreover, for a given (h,g) € H1/2(F) X Hr_lp/2 (F; Rd), there
exist v € H! (Q; Rd) and a constant ¢ > 0 such that

wv=h and TrUV=g,
ol @y < € (Wllirsae) + 19l 2pger ) -

Therefore, both 1, and Tp are surjective.

The operator 7, is known as normal trace operator.

Corollary A.23. Let I'p C T' be measurable. The image 1,[V] of the set V =
{v € H! (Q;Rd): Tv = 0 a.e. on FD} under the normal trace operator 1, is a
Hilbert space.

Proof. We aim to show that 7, [V] is closed in the Hilbert space H'/?(T") and hence
complete. For this purpose let {z,}neny C 7[V] be a sequence with z, — z in
HY2(I"). In view of Theorem A.22 there exists {v, }peny C H' (Q;RY) with mv, =
Zn, TTV, = 0 and

vnll g1 ray < €llznllgrrery - (A.6)

By definition of 7, we know 7,v,, = 0 a.e. on I'p and accordingly

TV, = (pUp)V + 7o =0 ae.onlp
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so that {vy,}nen C V. Furthermore, the convergence of z, combined with (A.6)
yields the existence of a subsequence, w.l.o.g. denoted in the same way, converging
weakly to v € V. Since 7, is linear continuous and thus weakly continuous, we
find v, — Ty in HY/? (T"). From the uniqueness of the weak limit we conclude
z = 1,v with v € V| which implies z € 7,[V]. Consequently, the space 7,[V] is a
closed subset of HY/2(T). O

A.3. Miscellaneous

Lemma A.24 (Partition of unity, [18, Lemma 9.3]). Let K C R? be compact and let
Ui,Us, ..., Uy be an open covering of K. Then there exist functions p; € C5°(U;),
1=1,...,n, with

i) 0< ¢ <1Vie{l,...,n}

i) or jpi(z)=1Vz e K and Y.I  pi(r) <1VreRI\ K.

Proposition A.25 (Korn’s inequality, |72, Proposition 1.1 and Remark 1.3|). Let
I'p € T' be measurable with positive measure. Then there exists a constant cx > 0
such that

||U||§{1(Q;Rd) < cK (HUH%?(FD;Rd) + HE(U)HLQ(Q;S)> Vue H' (%RY),

where e(u) denotes the linearized strain tensor, cf. (2.1).

Proposition A.26 ([31, Bemerkung 1.5.14|). Let X and Y be Banach spaces.
Moreover let X be reflexive and dense in'Y such that

lzlly <cllzllx Ve X

Then the dual space Y' can be identified with a dense subspace of the dual space X'
such that

1fllx <cllflly. Y feY’

Let X ¢ RY and M C X be arbitrary. Moreover let 2 denote a sigma-algebra on
the set X.

Definition A.27. The trace sigma-algebra of M in 2 is defined as
Ay ={ANM: AecA}.

Lemma A.28 (|28, Korollar 1.4.5]). Let the sigma-algebra 2L be generated by the
family € of subsets of X. Then the trace sigma-algebra A|ps is generated by the
family

¢y ={ENM:E € ¢}
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Corollary A.29. If a mapping f: (X,B(X)) — (R,B(R)) is measurable, then its
restriction to M, f|pr: (M,B(M)) — (R, B(R)), is measurable.

Proof. The inclusion mapping j: (M, B(X)|y) — (X, B(X)) is measurable. Hence,
the composition flyr = foj: (M,B(X)|nm) — (R,B(R)) is measurable. From
Lemma A.28 we infer the assertion. O

102



Bibliography

1
2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

H.W. Alt. Lineare Funktionalanalysis. 5th Edition, Springer, Berlin, 2006.

W. Alt. Numerische Verfahren der konvexen, nichtglatten Optimierung. Teub-
ner, Wiesbaden 2004.

H. Attouch, G. Buttazzo and G. Michaille. Variational Analysis in Sobolev
and BV Spaces: Applications to PDFEs and Optimization. SIAM, Philadelphia,
2006.

V. Barbu. Optimal Control of Variational Inequalities, volume 100 of Research
Notes in Mathematics. Pitman, Boston, 1984.

M. Bergounioux. Use of augmented Lagrangian methods for the optimal control
of obstacle problems. Journal of Optimization Theory and Applications 95(1),
pp- 101-126, 1997.

M. Bergounioux. Optimal control of an obstacle problem. Applied Mathematics
and Optimization 36(2), pp. 147-172, 1997.

M. Bergounioux. Optimal control problems governed by abstract elliptic varia-
tional inequalities with state constraints. SIAM Journal on Control and Opti-
mization 36(1), pp. 273-289, 1998.

M. Bergounioux and H. Dietrich. Optimal control problems governed by obsta-
cle type variational inequalities: A dual reqularization penalization approach.
Journal of Convex Analysis 5(2), pp.329-351, 1998.

M. Bergounioux and H. Zidani. Pontryagin maximum principle for optimal
control of variational inequalities. STAM Journal on Control and Optimization
37(4), pp. 1273-1290, 1999.

M. Bergounioux and F. Mignot. Optimal control of obstacle problems: FExis-
tence of Lagrange multiplieres. ESAIM: Control, Optimisation and Calculus of
Variations 5(1), pp. 45-70, 2000.

103



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Bermudez and C. Saguez. Optimality conditions for optimal control problems
of variational inequalities. In Control Problems for Systems Described by Par-
tial Differential Equations and Applications (Gainesville, Fla., 1986), volume
97 of Lecture Notes in Control and Information Science, pp. 143-153. Springer,
Berlin, 1987.

A. Bermidez and C. Saguez. Optimal control of a Signorini problem. SIAM
Journal on Control and Optimization 25(3), pp. 576-582, 1987.

A. Bermidez and C. Saguez. Optimal control of variational inequalities: Opti-
mality conditions and numerical methods. In Free Boundary Problems: Applica-
tions and Theory, volume 121 of Research Notes in Mathematics, pp. 478-487.
Pitman, Boston, 1988.

T. Betz and C. Meyer. Second-order sufficient optimality conditions for optimal
control of static elastoplasticity with hardening. ESAIM: Control, Optimisation
and Calculus of Variations 21(1), pp. 271-300, 2015.

F. Bonnans and D. Tiba. Pontryagin’s principle in the control of semilinear
elliptic variational inequalities. Applied Mathematics and Optimization 23(3),
pp. 299-312, 1991.

F. Bonnans and E. Casas. An extension of Pontryagin’s principle for state-
constrained optimal control of semilinear elliptic equations and variational in-
equalities. STAM Journal on Control and Optimization 33(1), pp. 274-298, 1995.

J.F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems.
Springer, New York, 2000.

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Fqua-
tions. Springer, New York, 2011.

A. Capatina. Optimal control of a Signorini contact problem. Numerical Func-
tional Analysis and Optimization 21(7&8), pp. 817-821, 2000.

E. Casas, F. Troltzsch, and A. Unger. Second order sufficient optimality condi-
tions for a nonlinear elliptic control problem. Zeitschrift fir Analysis und ihre
Anwendungen 15, pp. 687-707, 1996.

E. Casas, F. Troltzsch, and A. Unger. Second order optimality conditions for
some control problems of semilinear elliptic equations with integral state con-
straints. In Optimal Control of Partial Differential Equations, volume 133 of
ISNM International Series of Numerical Mathematics, pp. 89-97, 1999.

104



[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

E. Casas, F. Troltzsch and A. Unger. Second order sufficient optimality con-
ditions for some state-constrained control problems of semilinear elliptic equa-
tions. STAM Journal on Control and Optimization 38(5), pp. 1369-1391, 2000.

E. Casas and M. Mateos. Second order optimality conditions for semilinear
elliptic control problems with finitely many state constraints. STAM Journal on
Control and Optimization 40(5), pp. 1431-1454, 2002.

E. Casas. Necessary and sufficient optimality conditions for elliptic control
problems with finitely many pointwise state constraints. ESAIM: Control, Op-
timisation and Calculus of Variations 14(3), pp. 575-589, 2008.

E. Casas, J.C. de los Reyes, and F. Troltzsch. Sufficient second-order optimal-
ity conditions for semilinear control problems with pointwise state constraints.
STAM Journal on Optimization 19(2), pp. 616643, 2008.

E. Casas and F. Troltzsch. First- and second order optimality conditions for
a class of optimal control problems with quasilinear elliptic equations. SITAM
Journal on Control and Optimization 48(2), pp. 688-718, 2009.

J.C. de los Reyes and C. Meyer. Strong stationarity conditions for a class
of optimization problems governed by variational inequalities of the 2nd kind.
ModeMat Report 14-04, 2014. http://arxiv.org/abs/1404.4787.

J. Elstrodt. Majf$- und Integrationstheorie. 5th Edition, Springer, Berlin, 2007.
S.A. El-Zahaby. Optimal control of a system governed by variational inequal-
ities for elastic system with application to a Signorini’s problem. Journal of

Information and Optimization Sciences 15(2), pp. 165-169, 1994.

A. Friedman. Optimal control for variational inequalities. STAM Journal on
Control and Optimization 24(3), pp. 439-451, 1986.

H. Gajewski, K. Groger and K. Zacharias. Nichtlineare Operatorgleichungen
und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.

P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.
H. Goldberg, W. Kampowsky and F. Troltzsch. On Nemytskij operators in L,-
spaces of abstract functions. Mathematische Nachrichten 155(1), pp. 127-140,
1992.

K. Groger. A WiP-estimate for solutions to mized boundary value problems for

105



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

second order elliptic differential equations. Mathematische Annalen 283, pp.
679687, 1989.

M.E. Gurtin. An Introduction to Continuum Mechanics, volume 158 of Math-
ematics in Science and Engineering. Academic Press Inc., New York, 1981.

R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela. Hélder continuity
and optimal control for nonsmooth elliptic problems. Applied Mathematics and
Optimization 60(3), pp. 397-428, 20009.

W. Han and B.D. Reddy. Plasticity. Springer, New York, 1999.

7.X. He. State constrained control problems governed by variational inequalities.
STAM Journal on Control and Optimization 25(5), pp. 1119-1144, 1987

J. Heinonen, T. Kilpeldinen and O. Martio. Nonlinear Potential Theory of
Degenerate Elliptic Equations. Dover, New York, 2006.

R. Herzog and C. Meyer. Optimal control of static plasticity with linear kine-
matic hardening. Journal of Applied Mathematics and Mechanics (ZAMM)
91(10), pp. 777-794, 2011.

R. Herzog, C. Meyer and G. Wachsmuth. Integrability of displacement and
stresses in linear and nonlinear elasticity with mized boundary conditions. Jour-
nal of Mathematical Analysis and Applications 382(2), pp. 802-813, 2011.

R. Herzog, C. Meyer, and G. Wachsmuth. Ezxistence and regularity of the plastic
multiplier in static and quasistatic plasticity. GAMM Reports 34(1), pp. 39-44,
2011.

R. Herzog, C. Meyer and G. Wachsmuth. C-stationarity for optimal control of
static plasticity with linear kinematic hardening. STAM Journal on Control and
Optimization 50(5), pp. 3052-3082, 2012.

R. Herzog, C. Meyer and G. Wachsmuth. B- and strong stationarity for optimal
control of static plasticity with hardening. STAM Journal on Optimization 23(1),
pp. 321-352, 2013.

M. Hintermiiller. Inverse coefficient problems for variational inequalities: Opti-
mality conditions and numerical realization. ESAIM: Mathematical Modelling

and Numerical Analysis 35(1), pp. 129-152, 2001.

M. Hintermiiller. An active-set equality constrained Newton solver with feasi-

106



[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

bility restoration for inverse coefficient problems in elliptic variational inequal-
ities. Inverse Problems 24(3), 034017 (23pp), 2008.

M. Hintermiiller and I. Kopacka. Mathematical programs with complementarity
constraints in function space: C- and strong stationarity and a path-following
algorithm. STAM Journal on Optimization 20(2), pp. 868-902, 2009.

M. Hintermiiller and T. Surowiec. First order optimality conditions for elliptic
mathematical programs with equilibrium constraints via variational analysis.
SIAM Journal on Optimization 21(4), pp. 1561-1593, 2011.

M. Hintermiiller and T. Surowiec. A bundle-free implicit programming ap-
proach for a class of MPECSs in function space. Matheon Report 1070, 2014.
http://nbn-resolving.de/urn:nbn:de:0296-matheon-13267.

K. Ito and K. Kunisch. Optimal control of elliptic variational inequalities. Ap-
plied Mathematics and Optimization 41(3) pp. 343-364, 2000.

J. Jarusek, J. Outrata and J. Stard. On optimality conditions in control of
elliptic variational inequalities. Set-Valued and Variational Analysis 19(1), pp.
23-42, 2011.

C. Kanzow and A. Schwartz. Mathematical programs with equilibrium con-
straints: Enhanced Fritz John-conditions, new constraint qualifications, and
improved exact penalty results. STAM Journal on Optimization 20(5), pp.
27302753, 2010.

N. Kikuchi and J.T. Oden. Contact Problems in Elasticity: A Study of Varia-
tional Inequalities and Finite Element Methods. STAM, Philadelphia, 1988.

D. Kinderlehrer and G. Stampacchia. An introduction to variational inequali-
ties and their applications. SIAM, Philadelphia, 2000.

K. Kunisch and D. Wachsmuth. Sufficient optimality conditions and semi-
smooth Newton methods for optimal control of stationary variational inequal-
ities. ESAIM: Control, Optimisation and Calculus of Variations 18(2), pp.
520-547, 2011.

K. Kunisch and D. Wachsmuth. Path-following for optimal control of stationary
variational inequalities. Computational Optimization and Applications 51(3),
pp. 1345-1373, 2012.

W. Li, G. Wang, and Y. Zhao. Some optimal control governed by elliptic vari-

107



[58]

[59]

[60]

[61]

[62]

[63]

|64]

[65]

[66]

[67]

|68]

[69]

ational inequalities with control and state constraint on the boundary. Journal
of Optimization Theory and Applications 106(3), pp. 627-655, 2000.

J.L. Lions and G. Stampacchia. Variational inequalities. Communications on
Pure and Applied Mathematics 20(3), pp. 493-519, 1967.

W. Liu and J.E. Rubio. Optimality conditions for strongly monotone variational
inequalities. Applied Mathematics and Optimization 27(3), pp. 291-312, 1993.

I. Liu. Continuum Mechanics. Springer, Berlin Heidelberg, 2002.

D.G. Luenberger. Optimization by Vector Space Methods. Wiley, New York,
1969.

F. Mignot. Contréole dans les inéquations variationelles elliptiques. Journal of
Functional Analysis 22(2), pp. 130-185, 1976.

F. Mignot and J.P. Puel. Optimal control in some wvariational inequalities.
SIAM Journal on Control and Optimization 22(3), pp. 466476, 1984.

J. Necas. Direct Methods in the Theory of Elliptic Equations. Springer, Berlin
Heidelberg, 2012.

J. V. Outrata, M. Ko¢vara and J. Zowe. Nonsmooth Approach to Optimization
Problems with Equilibrium Constraints, volume 28 of Nonconvex Optimization
and its Applications. Kluwer, Dordrecht, 1998.

J.V. Outrata. Optimality conditions for a class of mathematical programs with
Equilibrium Constraints. Mathematics of Operations Research 24(3), pp. 627-
644, 1999.

J.P. Puel. Some results on optimal control for unilateral problems. In Control
of Partial Differential Equations, Lecture Notes in Control and Information
Sciences, pp. 225-235. Springer, Berlin, 1989. Proceedings of the IFIP WG 7.2
Working Conference Santiago de Compostela, Spain, July 6-9, 1987.

A. Rosch and F. Troltzsch. Sufficient second-order optimality conditions for an
elliptic optimal control problem with pointwise control-state constraints. STAM
Journal on Optimization 17(3), pp. 776-794, 2006.

H.Scheel and S. Scholtes. Mathematical programs with complementarity con-
straints: Stationarity, optimality, and sensitivity. Mathematics of Operations
Research 25(1), pp. 1-22, 2000.

108



[70]

[71]

[72]

73]

[74]

[75]

|76]

[77]

S. Shi. Optimal control of strongly monotone variational inequalities. STAM
Journal on Control and Optimization 26(2), pp. 274-290, 1988.

A. Schiela and D. Wachsmuth. Convergence analysis of smoothing methods for
optimal control of stationary variational inequalities. ESAIM: Mathematical
Modelling and Numerical Analysis 47(3), pp. 771-787, 2013.

R. Temam. Mathematical Problems in Plasticity. Gauthier-Villars, Paris, 1985.

F. Troltzsch. Optimal Control of Partial Differential FEquations, volume 112
of Graduate Studies in Mathematics. American Mathematical Society, Provi-
dence, RI, 2010.

G. Wachsmuth. Optimal control of quasistatic plasticity — An MPCC in func-
tion space. Ph.D. thesis, Chemnitz University of Technology, 2011.

G. Wachsmuth. Differentiability of implicit functions: Beyond the implicit
function theorem. Journal of Mathematical Analysis and Applications 414(1),
pp. 259-272, 2014.

G. Wachsmuth. Mathematical programs with complementarity constraints in
Banach spaces. Journal of Optimization Theory and Applications, 2015, to
appear. DOI: 10.1007/s10957-014-0695-3.

J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical pro-
gramming problem in Banach spaces. Applied Mathematics and Optimization
5(1), pp. 49-62, 197

109



