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Introduction

The modeling and estimation of stochastic dependence in financial markets via copulas
has become increasingly common in applications, see for example Embrechts et al. (2003).
Although this development could also partly be observed in the closely intertwined en-
ergy and commodity sector, the practice of using copulas has still been in its infancy.
There are essentially two ways of explaining the theory of copulas. From a probabilis-
tic view, copulas are multivariate distribution functions whose one-dimensional margins
are uniform on the interval [0,1]. Alternatively, copulas are functions that join multi-
variate distribution functions to their one-dimensional marginal distribution functions,
embodying all information about the dependence structure between the components of
a random vector (see for instance Nelsen, 2006).

It is of particular interest, especially in risk management, to measure the amount of
dependence in the upper-right or lower-left tail of a bivariate distribution, i.e., the depen-
dence between extreme events of two random variables. Considering different directions
to approach the tail we arrive at the concept of tail copulas (Schmidt and Stadtmdiller,
2006). The latter approach being closely related to the theory of copulas allows for mea-
suring tail dependence in a variety of scenarios. This includes the well-known tail depen-
dence coefficients when following the diagonal section of a copula. For instance, the lower
tail dependence coefficient can be interpreted as the limiting likelihood of a portfolio re-
turn falling below its Value-at-Risk, given that another portfolio return has fallen below
its Value-at-Risk at the same level. Summing up, once a copula has been associated with
a random vector, its tail dependence is also determined (Joe, 1997). As we will see at a
later stage, the converse is not true; there are many copulas that result in the same tail
copula. Formal definitions of the above concepts will be given in due course.

When estimating tail dependence, one could follow two principal routes. Within the
traditional approach, a parametric copula family is initially fitted to the whole dataset
characterizing the overall dependence structure and the tail behavior of that particular
copula is extracted later. The second approach, a more direct one, relies on extreme-value
techniques taking only a part of the dataset into account, hence being robust against
changes in the center of the distribution. Here, the statistician has to choose the amount
of data which could be considered as being in the tail. Similar to other applications in
extreme-value theory, there is no perfect global answer to the question of where the tail
begins (see for example Biicher, 2014). This thesis is based on the latter approach using
empirical tail copulas and analyzes the shortcomings of the first one by testing the re-
spective applicability on a variety of examples.

As a first example, which will be analyzed in much detail in the course of this thesis,
Fig. 1 shows daily quotes in USD/barrel of the WTI Cushing Crude Oil Spot and the
Bloomberg European Dated Brent from October 2, 2006 to October 1, 2010, collected from
Bloomberg’s Financial Information Services. At first sight, the development of the two
crude oil grades seems to be almost identical, i.e., one could think of an almost perfect
correlation. Among other topics, this thesis investigates the overall dependence structure
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Fig. 1. Daily quotes in USD/barrel of the WTI Cushing Crude Oil Spot (blue) and the Bloomberg European
Dated Brent (yellow) from October 2, 2006 to October 1, 2010.
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Fig. 2. Scatter plot of the WTI Cushing Crude Oil Spot (horizontal) and the Bloomberg European Dated
Brent (vertical) log-returns from October 2, 2006 to October 1, 2010 (left) and enlarged third quadrant (right).

between the two oil grades and addresses the question whether the joint distribution has
a (strong) tendency to generate extreme values simultaneously. In that case, a bivariate
normal distribution with an arbitrary linear correlation coefficient would not be able to
appropriately model the (tail) dependence. In this regard, see Embrechts et al. (2002)
for common pitfalls and fallacies in risk management. A first view on the dependence
can be gained from the scatter plots of the log-returns in Fig. 2. They reveal a strong
co-movement between the two grades, which is not surprising at all, though a significant
deviation from a comonotonic relationship (one random variable can be represented as
an increasing function of the other) is evident.

So far, we have considered a static (time-independent) setting. However, there is an
established empirical evidence that the dependence structure between financial returns,
for instance measured by correlation (Krishnan et al., 2009), varies over time. Especially
in times of crises, an increasing dependence is observable (sometimes referred to as diver-
sification meltdown, see Campbell et al., 2008). Recently, nonparametric tests for constancy
of the whole dependence structure have been developed (within the copula framework
see Rémillard, 2010; Busetti and Harvey, 2011; Biicher and Ruppert, 2013; Biicher et al.,
2014). The current thesis will follow this route of research and will present an approach
to testing for constancy of the tail dependence using the concept of tail copulas. The
newly developed tests allow for the verification of a constant tail dependence, which is
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(implicitly) assumed by most former related empirical studies. Failing this, structural
break-points might be revealed.

Contributing material This thesis is a cumulative one, comprising three peer-reviewed
and published papers. The full bibliographic details are

(i) Jaschke, S., Siburg, K. ., and Stoimenov, P. A. (2012), Modeling dependence of extreme
events in energy markets using tail copulas, Journal of Energy Markets, 5(4), 60-80,

(ii) Jaschke, S. (2014), Estimation of risk measures in energy portfolios using modern copula
techniques, Computational Statistics and Data Analysis, 76, 359-376, CFEnetwork:
The Annals of Computational and Financial Econometrics 2nd Issue,

(iif) Bticher, A., Jaschke, S., and Wied, D. (2015), Nonparametric tests for constant tail de-
pendence with an application to energy and finance, Journal of Econometrics, 187(1),
154-168.

The first article (Chapter 1) studies, for the first time in the literature, the depen-
dence of extreme events in energy markets and has been the starting point for the further
research presented here. The particular dataset covers daily quotes of the generic one-
month-ahead futures Light Sweet Crude Oil and Henry Hub Natural Gas traded on the
New York Mercantile Exchange between July 2, 2007 and July 2, 2010. After a careful
modeling of the marginals, it is shown that adopting general copula inference techniques
(applying a goodness-of-fit test for copulas to the whole support of the bivariate distri-
bution) can be very misleading for modeling the joint tail behavior of the log-returns of
the crude oil and natural gas futures. Moreover, we emphasize the advantage of tail cop-
ulas over the single tail dependence coefficients allowing to account for different extreme
outcomes. The nonparametric estimation of the tail copulas is carried out by calcula-
tion of the lower and upper empirical tail copulas according to Schmidt and Stadtmiiller
(2006). For this purpose, the optimal threshold separating the tail from the center of the
joint distribution is found via a plateau-finding algorithm.

The objective of the second article (Chapter 2) is the modeling of stochastic tail de-
pendence in energy and commodity markets. This is particularly relevant as a thorough
understanding of energy portfolio risk requires an adequate assessment of the probabil-
ity that extreme movements occur together. The dataset consists of the WTI Cushing
Crude Oil Spot and the Bloomberg European Dated Brent log-returns from October 2,
2006 to October 1, 2010 (see Figs. 1 and 2). To obtain an adequate respective data genera-
tion process, several single equation models accounting for autocorrelation and volatility
clustering are applied. The essential part of the article is the application of the newly
introduced partial derivatives multiplier bootstrap goodness-of-fit test for tail copulas
(Biicher and Dette, 2013) to the filtered dataset (more precisely, the standardized residu-
als calculated from the preceding time series models). The findings are then compared to
a traditional copula fit as briefly described above. In this regard, the newly introduced
Copula Information Criterion is applied (Greonneberg and Hjort, 2014). Finally, the ar-
ticle provides a wide and comprehensive backtesting framework for the risk measures
Value-at-Risk and Expected Shortfall. As suspected, the best tail copula model slightly
outperforms the traditional copula fit. This backtesting approach, derived from the (tail)
copula techniques described above, has not yet been addressed before in the literature.

The third article (Chapter 3) develops asymptotic tests for detecting structural breaks
in the tail dependence of multivariate time series. In particular, to obtain asymptotic
properties, a new limit result for the sequential empirical tail copula process is derived.
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Moreover, we perform an elaborated simulation study that investigates the finite sam-
ple properties of the proposed testing procedures. In the observed behavior, the tests
are slightly conservative combined with reasonable power properties. The study further
reveals that the asymptotic behavior of the estimator based on time series residuals is
the same as the one based on independent and identically distributed observations. The
developed tests allow for verifying the implicit assumption of constant tail dependence
between the log-returns from Fig. 2. Indeed, it is shown that this assumption cannot be
rejected. A second application investigates the constancy of the tail dependence between
the Dow Jones Industrial Average and the Nasdaq Composite time series around Black
Monday on 19th of October 1987. Here, the question is addressed whether Black Monday
constitutes a significant break in the dependence structure. Whereas our tests for a break-
point on Black Monday do not yield entirely unambiguous results, an overall model with
some unspecified break-point can be accepted.

Remarks As this cumulative thesis consists of three self-contained articles, some parts
within the respective preliminary sections may coincide. Furthermore, as an alternative
to providing references at the end of each article, all of them are combined and sorted al-
phabetically at the end of this thesis. Whenever necessary, the bibliographic details have
been updated. To achieve a consistent layout some parts of the published papers have
been adjusted. This includes the common usage of American English and the standard-
ization of notation across all articles where possible.

In the first article, all figures have been replaced by recreated colored versions and
respective legends have been added. Moreover, instead of the published p-values, the
standard errors of the estimated parameters in the univariate models (1.15) and (1.16) are
provided, see Table 1.1. The latter does not imply a loss of information as each of the two
quantities can be calculated once the other one is known.

The third published article contains an online supplement. All additional tables and
figures contained therein have been integrated into the main part of this thesis. The
proofs are now deferred to Section 3.7. In addition, whereas the finite sample study in
the published version only reports the simulated rejection probabilities for the level of
significance « = 5%, Section 3.4.2 presents the calculated target values for all three levels
of significance a € {1%,5%,10%}.

Appendix A lists selected source code and algorithms used for obtaining the results
presented in this thesis. The commented code is written in a way that should make it
possible for the interested reader to apply it without further instructions. With respect to
the nonlisted parts, all algorithms and methods are described in detail in the following
articles which should be sufficient for any efforts to reproduce the data.
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Modeling dependence of extreme
events in energy markets
using tail copulas

Abstract

This paper studies, for the first time, the dependence of extreme events in energy markets.
Based on a large dataset comprising daily quotes of crude oil and natural gas futures, we
estimate and model large co-movements of commodity returns. To detect the presence of tail
dependence we apply a new method based on the concept of tail copulas, which accounts for
different scenarios of joint extreme outcomes. Moreover, we show that the common practice
of fitting copulas to the data cannot capture the dynamics in the tail of the joint distribution.
It is therefore unsuitable for risk management purposes.

1.1 Introduction

As energy and commodity markets have become more volatile and increasingly intercon-
nected in recent years, the ability to capture the joint dynamics of commodity prices has
become indispensable for managing energy risk. In contrast to the vast literature on mod-
eling dependence between stock returns, there is a relative paucity of related research for
the energy market. Alexander (2004) shows that the log-returns of futures on crude oil
and natural gas exhibit asymmetric behavior and strong, nonlinear dependence — a far
cry from the assumption that their joint distribution is bivariate normal. The same prob-
lem is studied in Grégoire et al. (2008). They model the daily log-returns individually
as time series, and account for the dependence between them by fitting various families
of copulas to the error terms. In order to select the best copula, the authors perform a
range of goodness-of-fit tests, which again show that the dependence between crude oil
and natural gas log-returns cannot be characterized by the Gaussian copula. Accioly and
Aiube (2008) study the dependence of 0il and gasoline prices. After adjusting general-
ized autoregressive conditional heteroskedasticity (GARCH) models to filter the linear
and the nonlinear time dependence in the series of returns they fit various copulas to
the residuals of these models. Dividing the sample in two periods, it is shown that the
dependence is well represented by the t-copula and the Plackett copula, respectively.
The departure from normality in a multivariate setting poses an additional problem
from the perspective of risk management, whose primary concern is the occurrence of
extreme events. In the univariate case, non-normality is associated to the skewness and
leptokurtosis phenomena (more briefly, the fat-tail problem). In the multivariate case,
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the fat-tail problem can be attributed not only to the marginal distributions but also to
the probability of large co-movements of the individual returns, i.e., tail dependence.
Consequently, a thorough understanding of energy portfolio risk requires an adequate
assessment of the probability that large price movements in energy markets occur to-
gether.

The latest statistical standard to describe the amount of extremal dependence is rep-
resented by the concept of tail dependence. To the best of our knowledge, however, the
problem of modeling and estimating tail dependence between returns of energy com-
modities has not yet been addressed in the literature. The present paper opens this line
of research by analyzing a large dataset comprising daily quotes of the Light Sweet Crude
Oil Futures and the Henry Hub Natural Gas Futures traded on the NYMEX (New York
Mercantile Exchange). From a methodological point of view, the main tool is the theory
of copulas, which allows the separate specification of the marginal distributions and the
dependence structure.

The purpose of the paper is twofold: First, to provide an applicable model which
estimates adequately the likelihood of joint extreme events in energy markets. Second,
to illustrate the pitfalls of fitting copulas to data for risk management purposes. Un-
doubtedly, copulas represent the current standard for modeling stochastic dependence.
However, we argue that a general goodness-of-fit test for copulas does not necessarily
provide a good model for tail dependence. The reason is that the procedure is based
on minimizing the distance between observed and model values over the whole sup-
port of the distribution and therefore cannot capture the joint dynamics in the tail of the
underlying distribution. Thus, to some extent, the paper is also meant as an educative
warning against adopting general copula inference techniques for modeling dependence
of extreme events.

In order to overcome this difficulty, we apply the concept of tail copulas. A tail copula
is a function of the underlying copula, which describes the dependence structure in the
tail of multivariate distributions, but works more generally than the simple tail depen-
dence coefficient, which is just the value of the tail copula at the point (1,1). Therefore,
tail copulas enable the modeling of tail dependence of arbitrary form and, thus, account
for all possible scenarios of joint extreme outcomes.

The paper is organized as follows. In the next section we briefly review some fun-
damental properties of copulas and introduce the closely related concept of tail copulas
and tail dependence. Section 1.3 describes the data. To account for serial dependence
in the data we estimate numerous univariate GARCH and asymmetric power ARCH
(APARCH) models with various distributions for the error term. Section 1.4 presents our
methodology and the empirical results. In a first step we fit different families of copu-
las to the residuals of the individual time series. Then, we estimate nonparametrically
(Schmidt and Stadtmdiller, 2006) the lower and upper tail copulas and show that the joint
distribution of the log-returns of the crude oil and natural gas futures are both lower and
upper tail dependent, a fact which can not be detected by fitting a copula to the whole
dataset. The final Section 1.5 summarizes and provides an outlook for further research.

1.2 Preliminaries

The theory of copulas dates back to Sklar (1959), but its application to statistical mod-
eling is far more recent. A copula is a function that embodies all the information about
the dependence structure between the components of a random vector. From a proba-
bilistic point of view, it is a multivariate distribution function with uniformly distributed
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margins on the interval [0,1]. For notational convenience, all further definitions and
results are provided for the bivariate case only. In the following, we consider a ran-
dom vector (X,Y) with continuous marginal distribution functions F(x) := P[X < x]
and G(y) := P[Y < y|, x,y € R, respectively. By Sklar’s theorem, there exists a unique
copula C, called the copula of X and Y, such that

P[X < x,Y <y] = C(F(x),G(y)), (1.1)

for all x,y € R. Conversely, if C is a copula and F, G are distribution functions, then
the function defined via (1.1) is a bivariate distribution function with margins F,G. It
follows that copulas can be interpreted as dependence functions since they separate the
marginal distributions from the dependence structure. In fact, the copula of X and Y is
the joint distribution function of the probability integral transformations U := F(X) and
V := G(Y), which are uniform on [0, 1]. It follows that

Clu,v) =PU<uV<v]=PX<F (u),Y <G (v), (1.2)

forall u,v € [0,1], where F~ and G~ denote the generalized inverses of F and G, respec-
tively, i.e,, F~ (1) = inf{x € R|F(x) > u}, for all u € [0, 1] (analogously for G).

Let F(x) == 1—F(x) = P[X > x] and G(y) := 1 — G(y) = P[Y > y] denote the
corresponding survival functions of X and Y. Define a function C by

Cu,v)=u+v—-14+C(1—u,1-0), (1.3)
for all u,v € [0,1]. Then, for all x,y € R, we have
P[X > x,Y > y] =C(F(x),G(y)). (1.4)

The function C is a copula itself and is called the survival copula of X and Y. In view
of (1.4), the survival copula links the joint survival function to its univariate margins in a
manner completely analogous to the one in which the copula connects the joint distribu-
tion function to its margins. Hence, for all u,v € [0,1], we have

Cu,v)=PU>1—u,V >1-1] 15
=PX>F (1-u),Y>G (1-0)]. (1.5)
For further details regarding the theory of copulas we refer the reader to Nelsen (2006).

As the focus of this paper is to characterize and measure extremal dependence, the
remainder of this section is devoted to the concept of tail dependence, which concentrates
on the upper and lower quadrant tails of the joint distribution. The standard way to
determine whether X and Y are tail dependent is to look at the so-called lower and upper
tail dependence coefficients, denoted by A; and Ay, respectively. Ap is the limit (if it
exists) of the conditional probability that X is less than or equal to the u-th quantile of F,
given that Y is less than or equal to the u-th quantile of G as u approaches 0, i.e.,

M= HmPX < F-(u) | Y < G (u)] (1.6)

Similarly, Ay is the limit (if it exists) of the conditional probability that X is greater than
the u-th quantile of F, given that Y is greater than the u-th quantile of G as u approaches 1,
ie.,
Au = li;r} P[X>F (u)|Y>G (u). (1.7)
u
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The random vector (X, Y) is said to have lower (upper) tail dependence if A1 (A7) € (0,1],
and no lower (upper) tail dependence if Af(Ay) = 0.

The following identities show that the tail dependence coefficients are nonparametric
and depend only on the copula C of X and Y. In particular, we have (see Nelsen, 2006)

. C(u,u)
AL = Llll{(r(l) ” (1.8)
and
Auzhml—Zu%—C(u,u) :th(u,u)’ (1.9)
u,/1 1—u u\,0 u

where C is the survival copula of X and Y defined in (1.3). Since copulas are invariant un-
der strictly increasing transformations of the random variables, it follows that A; and Ay
exhibit the same invariance property.

From a practitioner’s point of view, tail dependence can be interpreted as the limiting
likelihood of an asset/portfolio return falling below its Value-at-Risk at a certain level,
given that another asset/portfolio return has fallen below its Value-at-Risk at the same
level. However, like any scalar measure of dependence, A and Ay suffer from a certain
loss of information concerning the joint behavior in the tails of the distribution. In the
context of tail dependence, the immediate analogues of copulas, which describe the entire
dependence structure, is given by tail copulas; see Schmidt and Stadtmiiller (2006) for
further details on tail copulas. The lower tail copula A associated with X and Y is a
function of their copula C and is defined by

Ap(x,y) :==lim ——=, (1.10)

if the above limit exists for all (x,y) € IE = [0,00]? \ {(c0,00)}. The upper tail copula Ay
associated with X and Y is a function of their survival copula C and is defined by
. C(tx, ty)
Auy(x,y) :=lim ———=, 1.11
ulxy) o= lim == (1.11)

if the above limit exists for all (x,y) € E.
The probabilistic interpretation of A; and Ay is provided by the following relation-
ships:

Aulx,y) = ylmPIX < () | Y < G~ (1)], (112)
Au(x,y) = y}iilg]l’[x >F (1—tx)|Y>G (1—ty)]. (1.13)

It is easy to show that the tail dependence coefficients are a special case of the respective
tail copulas. More precisely, we have

AL = AL(l,l) and )\u = Au(l,l). (114)
As pointed out in Schmidt and Stadtmiiller (2006), another reason to embed the tail de-

pendence coefficients in the framework of tail copulas is to facilitate their estimation,
which is a nontrivial task, especially for nonstandard distributions.
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Fig. 1.1. Log-returns of the one-month-ahead futures on crude oil (top) and natural gas (bottom) between
July 2, 2007 and July 2, 2010.

1.3 Data

Our empirical investigation focuses on the dependence between crude oil and natural
gas log-returns. The dataset covers daily quotes of the Light Sweet Crude Oil Futures
and the Henry Hub Natural Gas Futures traded on the NYMEX (New York Mercantile
Exchange) between July 2, 2007 and July 2, 2010. Both futures contracts are generic one-
month-ahead futures. The quotes are collected from Bloomberg’s Financial Information
Services.

The daily log-returns for both series are plotted in Fig. 1.1. In order to estimate and
model the dependence between the two commodities, it is necessary to consider depen-
dence within the individual time series. To detect the presence of heteroscedasticity we
perform standard Box-Pierce and Ljung-Box tests on the squared log-returns for three dif-
ferent lags (lag 1, lag 5 and lag 10). For crude oil, both tests are significant at the 1% level
for all lags. Applied to the natural gas data, the same is true for lag 5 and lag 10, while
the null hypothesis that none of the autocorrelation coefficients up to a certain lag are
different from zero cannot be rejected for lag 1 (p-value equals 0.18).

These findings show that the assumption of an independent and identically distri-
buted sample is unrealistic and therefore one has to account for heteroscedasticity in the
marginal series. For this purpose, we employ GARCH(p, ) and APARCH(p, q)-models,
p,q € {1,...,6}, with various distributions for the error term, including the normal, the
generalized error, their skewed variants and the skewed Student’s ¢t-distribution. The 360
models under test are evaluated by simultaneously considering three selection criteria:
statistical significance of the model parameters (p-value < 0.05), lack of autocorrelation
in the squared standardized residuals of both series for different lags (p-value > 0.05)
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Fig.1.2. Standardized residuals of the individual time series models (1.15) and (1.16) for the daily log-returns
of the crude oil (top) and natural gas (bottom) futures.

and different information criteria (the Akaike information criterion, the Bayesian infor-
mation criterion, the Schwarz information criterion and the Hannan-Quinn information
criterion).

It turns out that the APARCH(1, 1)-model with skewed normal distribution describes
most adequately the data generating process for the log-returns O, t = 1,..., T, of the
crude oil futures:

O = 2.639 x 107° + 01X,

07 =1.193 x107°
+9.542 x 107 2(|oy_1 X 1] —2.384 x 107 Loy X;1)?
+8.880 x 107107 ;.

(1.15)

Thus, the standardized residuals Xj, X5, ..., X1, which are plotted in the upper panel
of Fig. 1.2, can be viewed as a random sample from a skewed normal distribution with
skewness parameter { = 0.986; see Azzalini and Dalla Valle (1996) for details on the
skewed normal distribution.

With respect to the log-returns Ny, t = 1,..., T, of the natural gas futures, the follow-
ing GARCH(1,1)-model with skewed Student’s t-distribution

N; = —4.842 x 1074 + oY;,
07 =2.648 x 107° +5.106 x 10207 ;Y7 4 (1.16)
+9.283 x 107107 ;
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provides the best fit to the data. Analogously, we conclude that the standardized resid-
uals Y1, Y2, ..., Yr, which are plotted in the lower panel of Fig. 1.2, are randomly drawn
from a skewed Student’s t-distribution with skewness parameter { = 1.113 and v =
8.094 degrees of freedom. For the definition and properties of the skewed Student’s t-
distribution we refer to Azzalini and Capitano (2003).

Applying now the Box-Pierce and Ljung-Box tests to the squared standardized resid-
uals of both series for lag 1, lag 5 and lag 10, provides completely different test results
than initially obtained. None of the tests detects the presence of auto correlation at the
5% level. In fact, apart from the test results for the crude oil futures at lag 1 (p-value
equals 0.06), the p-values exceed 0.4. Further, standard errors based on the asymptotic
distribution of the maximum likelihood estimates are shown in Table 1.1.

Table 1.1. Maximum likelihood estimates together with their corresponding standard
errors for the crude oil APARCH(1,1)-model with skewed normal distribution and the
natural gas GARCH(1,1)-model including the skewed Student’s ¢-distribution.

Parameter Crude oil log-returns Natural gas log-returns

Estimate std. error Estimate std. error

Variance equation

w 0.0000 0.0000 0.0000 0.0000
o 0.0954 0.0253 0.0511 0.0158
Y1 0.2384 0.1657 - -

B1 0.8880 0.0317 0.9283 0.0204
Distribution

¢ 0.9856 0.0559 1.1134 0.0611
v - - 8.0938 2.0669

1.4 Methodology and results

1.4.1 Copula estimation

Having specified adequate models for the daily log-returns of the crude oil and natural
gas futures, O; and N;, we now address the problem of modeling their dependence. For
this purpose, we employ the theory of copulas, briefly introduced in Section 1.2. The
main advantage of copulas is that they allow the separate specification of the marginal
distributions and the dependence structure.

As shown in the preceding section, (O, N;), t = 1,...,T, certainly does not con-
stitute an i.i.d. sample. Therefore, in order to estimate their copula, we consider the
sample (X}, Y;) of the standardized residuals of the individual time-series models (1.15)
and (1.16). The next step is to transform each pair of observation into its rank based
representation (u, v;), calculated by

~ rank(X;) _ rank(Y})
uf—Tiﬂ and Ut—Tile.

Figure 1.3 shows a scatter plot of the 758 pairs (i, v;). It reveals a certain tendency of u;
and v;, and thus of X; and Y; to vary together, regardless of their marginal distributions.

To confirm this judgement, we first estimate the two most common rank correlation
coefficients, Spearman’s rho and Kendall’s tau, which depend solely on the underlying
copula via

(1.17)

0(C) = —3+12/01 /01C(u,v)d(u,v), (1.18)
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Fig. 1.3. Scatter plot of the ranks of the standardized residuals u; and v;.

C)=-1 +4/01 /01 C(u,v)c(u,v)d(u,v), (1.19)

where c(u,v) = 9*C(u,v)/9udv is the density of C (assuming it exists). For the empirical
measures ot and Tr (Genest and Favre, 2007) we find that pr = 0.314 and 17 = 0.214,
which are both significantly different from zero (p-value < 0.001). For details about
the test statistics and their asymptotic distributions we refer to Genest and Favre (2007).
These preliminary results are in accordance with the ones reported in Grégoire et al.
(2008), who perform the same tests on their dataset.

Note that, as any scalar measure of dependence, p and T cannot describe the whole
dependence structure of the joint distribution. Therefore, having concluded that the log-
returns of the crude oil and natural gas futures are positively dependent, we now address
the problem of estimating their copula. For this purpose we first compute the empirical
copula Cr (Deheuvels, 1979) and the empirical survival copula Cr, defined by

1 T
== Y L(ur < u,vp < 0) (1.20)
=1

and

1(up > u, v > 0), (1.21)

~| -
TMH

where 1 denotes the indicator function.



1.4 Methodology and results 13

Table 1.2. Test results for the goodness-of-fit test of different
copula models in ascending order (p-value).

Copula p-value fr-value
Independence 0.000

Pareto 0.000 0.545
Frank 0.027 2.001
Gaussian 0.289 0.330
t(v=29) 0.311 0.330
Gumbel 0.712 1.272

In order to find an appropriate copula model, we consider different parametric fami-
lies of copulas commonly used in economics and finance. Beside the independence cop-
ula C(u,v) = uv, we fit two elliptical copulas, Gaussian and f, and three Archimedean
copulas, Pareto, Frank and Gumbel. Each of these families is completely characterized
by a single parameter, 6, with exception of the t-copula, which, in addition, requires the
specification of its degree of freedom v. For each copula family, we estimate the unknown
parameter 6 by inversion of Kendall’s tau (Genest and Rémillard, 2008). More precisely,
the estimate 0t is computed by substituting 77 for T in Eq. (1.19), and then solving the
equation to obtain 7, which gives us the best copula fit Cy, within the respective copula
family. The inversion approach utilizes the fact that, for the considered copula families,
6 is a monotone function of T, which, for example, for the Gaussian and the ¢-copula is
given by 6 = sin(t7/2).

Finally, to select the optimal copula model, we apply a goodness-of-fit test, based on
the Cramér-von Mises statistic

T

ST = Z {CT(Mt, Z)t) — C(;T(ut, Ut)}z . (1.22)
t=1

A review and comparison of goodness-of-fit procedures is given by Genest et al. (2009).
This statistic measures how close the fitted copula Cy_is from the empirical copula Cr.

Since the distribution of St depends on the unknown value of 7 under the null hypoth-
esis that the true copula C is from the respective copula family, we compute the p-values
of the test using the parametric bootstrap procedure described by Genest and Rémillard
(2008).

The test results together with the estimates fr are summarized in Table 1.2. They
clearly show that the log-returns of crude oil and natural gas are not independent. Fur-
thermore, the Pareto copula and, to a great extent, the Frank copula seem inappropriate
to model the dependence structure. As to the specific form of the dependence, no defi-
nite conclusion can be drawn. The null hypothesis cannot be rejected for any of the other
three candidates. In particular, even the Gaussian copula could be an applicable alterna-
tive, which of course does not imply that the joint distribution is bivariate normal. Using
the highest p-value as a criterion to select the model with the best fit to the data, we con-
clude that the Gumbel copula, with O = 1.272, describes best the dependence between
crude oil and natural gas.

Finally, we point out, that our results differ substantially from those of Grégoire et al.
(2008), who find, for example, that for the Gumbel copula the null hypothesis can be
rejected on the basis of the same test procedure. In fact, in view of the extremely low
p-values, not exceeding 0.03, none of the six copula models considered in Grégoire et al.
(2008) provides an adequate description of the dependence between crude oil and natural
gas log-returns.
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1.4.2 Tail copula estimation

We now address the question whether the joint distribution of the log-returns of the crude
oil and natural gas futures has a tendency to generate extreme values simultaneously and
is, in this sense, a dangerous distribution for risk managers. The scatter plot in Fig. 1.3
reveals a pronounced concentration of data points in both tails of the distribution. As
concluded above, however, the overall dependence structure is well represented by the
Gumbel copula, which exhibits no lower tail dependence since, in view of Eq. (1.8), its
lower tail dependence coefficient Ay is 0. Thus, for modeling extremal dependence in the
lower tail of the distribution, the Gumbel copula is no better choice than the indepen-
dence copula.

We point out that this seeming contradiction suggests neither that the variables are tail
independent, nor that the selected copula is unsuitable to model the overall dependence.
It rather shows that a general goodness-of-fit test for copulas does not necessarily provide
an appropriate model for tail dependence, simply because the procedure is based on
minimizing the distance between observed and model values over the whole support of
the distribution. In fact, one of the main aims of this paper is to illustrate the lack of
effectiveness of fitting copulas to the data in capturing the dependence in the tail of the
underlying distribution.

In order to assess the risk of joint extreme events, we apply the theory of tail copu-
las, briefly introduced in Section 1.2. For the estimation of the tail copulas, we use the
lower and upper empirical tail copulas, denoted by Ar and Ay, respectively. These non-
parametric estimators, introduced and studied by Schmidt and Stadtmdiller (2006), are
defined by

1.23
_ i y kx ” y (1.23)
Tk= ST T T4
and
. T- [(kx k
Au(x/y) :% T(T/,I:-,V>
1.24
NEZ]I w> 1=k, STk "
~k Ty T T

with some parameter k € {1,..., T} to be chosen by the statistician. Under the assump-
tions that k = k(T) — oo and k/T — 0 for T — oo, Schmidt and Stadtmiiller (2006)
establishes weak convergence and strong consistency for A; and Ay. The paper also
describes a method of choosing the optimal threshold k via a simple plateau-finding al-
gorithm. Implementing this procedure, we calculate the empirical tail copulas for the
log-returns of the crude oil and natural gas futures. These are visualized in Figs. 1.4
and 1.5.

Schmidt and Stadtmidiller (2006) develop a consistent nonparametric estimator for the
lower and upper tail dependence coefficients, given by

Ar:=Ap(1,1) and Ay:=Ay(1,1), (1.25)

respectively. The estimators A; and Ay, based on the empirical counterparts of the iden-
tities given in (1.14), emphasize that tail copulas are an intuitive generalization of the tail
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Fig. 1.4. Empirical lower tail copula Ay of the log-returns of the crude oil and natural gas futures.
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Fig. 1.5. Empirical upper tail copula A; of the log-returns of the crude oil and natural gas futures.
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Table 1.3. Tail dependence coefficients of the copulas consid-
ered for the goodness-of-fit test presented in Table 1.2.

Copula Ap(6r) Au(r)
Independence 0.000 0.000
Pareto 0.280 0.000
Frank 0.000 0.000
Gaussian 0.000 0.000
t(v=27) 0.249 0.249
Gumbel 0.000 0.276
Empirical 0.318 0.281

dependence coefficients via a function describing the complete dependence structure in
the tail of a distribution. Therefore, tail copulas constitute a powerful tool for modeling
tail dependence of arbitrary form. Moreover, as pointed out in Schmidt and Stadtmdiller
(2006), tail copulas also provide a convenient method for the, otherwise, nontrivial task
of estimating A and Ay.

For our dataset, we find )A&L = 0.318 and ;\u = 0.281, which implies that the log-
returns of the crude oil and natural gas futures exhibit tail dependence. Our estimates
clearly demonstrate that the Gumbel copula, with 6r = 1.272, which, according to the
goodness-of-fit test conducted in Section 1.4.1 provides the best fit to the data, does not
describe adequately the risk of extreme events in the lower tail of the distribution. This
raises the question of the optimal copula choice from a risk management perspective.

One possibility to deal with this problem is to select the copula, whose tail depen-
dence coefficients are closest to their empirical counterparts. Table 1.3 lists the tail de-
pendence coefficients of the copulas considered for the goodness-of-fit test. Note that
the t-copula here has the same value of 1, but less degrees of freedom v than the fitted
one in Table 1.2 since the lower v, the higher the tail dependence coefficients. Our choice
v = 2.7 is dictated by the fact that for smaller degrees of freedom the null hypothesis
of the goodness-of-fit test conducted in Section 1.4.1 must be rejected at the 5% level of
significance.

It turns out that Ay, of the Pareto copula, with O = 0.545, is closest to our estimate A,
although according to the goodness-of-fit test results, presented in Table 1.2, the Pareto
copula clearly fails to capture the overall dependence structure of the crude oil and nat-
ural gas returns. With respect to the upper tail of the distribution, the situation changes
completely. Here the Gumbel copula, 87 = 1.272, which exhibits the highest p-value of
the goodness-of-fit test, remains the best model, since its Ay = 0.281 almost coincides
with the value of A;.

At this point, we emphasize again that A; and Ay, as scalar measures of tail depen-
dence, cannot characterize the entire dependence structure in the tails of the distribution.
For example, two tail copulas with the same value at (1,1), corresponding to Aj or Ay,
respectively, could differ substantially at other points in their domain. Thus, they could
incorporate different levels of risk, although judging from the tail dependence coefficients
alone, they would seem equally dangerous. In order to account for all possible scenarios
of joint extreme outcomes one should utilize more information from the tail copula than
simply its value at the point (1,1).

From Table 1.3, it is evident that, beside the Pareto and Gumbel copulas, the only al-
ternative for modeling tail dependence between the log-returns of crude oil and natural
gas is the t-copula since all other copula models exhibit no tail dependence. Figures 1.6
and 1.7 visualize the values of the respective tail copulas and their empirical counterparts
along the circle passing through the point (1,1). Thus, the (empirical) tail dependence
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Fig. 1.6. Parametrization of the circle around the origin through the point (1,1) in the first quadrant with
values of the empirical lower tail copula A} (blue line) as well as the lower tail copulas of the Pareto copula,
67 = 0.545 (yellow line), and the t-copula, 7 = 0.330, v = 2.7 (dark grey).
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Fig. 1.7. Parametrization of the circle around the origin through the point (1,1) in the first quadrant with
values of the empirical upper tail copula Ay (blue line) as well as the upper tail copulas of the Gumbel
copula, O = 1.272 (yellow line), and the t-copula, 7 = 0.330, v = 2.7 (dark grey).
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coefficients are the values of the functions at 71/4. Instead of comparing the plotted func-
tions at a single point in their domain, we propose a least squares approach and calculate
the Cramér-von Mises statistic for the empirical tail copula and the tail copula of each
of the fitted copulas. This approach has the advantage of taking into account simultane-
ously different scenarios of extreme co-movements of the two variables. We find that the
Pareto and Gumbel copulas remain the best models for lower and upper tail dependence,
respectively.

1.5 Concluding remarks

This paper studies, for the first time, the dependence of extreme events in energy markets
from both theoretical and empirical perspectives. Using daily quotes of the Light Sweet
Crude Oil Futures and the Henry Hub Natural Gas Futures traded on the NYMEX be-
tween July 2, 2007 and July 2, 2010 we estimate and model both the overall dependence
and the tail dependence of crude oil and natural gas log-returns. The main results which
can be drawn from our empirical investigation can be summarized as follows.

According to the conducted goodness-of-fit test, the Gumbel copula describes best the
overall dependence structure, but is unable to generate the joint occurrence of large drops
in the analyzed commodity returns. However, applying the nonparametric technique for
estimation of the tail copula introduced in Schmidt and Stadtmdiiller (2006), we detect
the presence of such extreme events. These results suggest that a good model for the
overall dependence between commodity returns can be a very bad model for their tail
dependence. In fact, we see that using the copula which provides the best fit to the data
can be very misleading for risk management which requires an adequate assessment of
the probability that large price movements occur together.

With respect to the applicability of our results, it must be said that although the Pareto
and Gumbel copulas describe well the lower and upper tail dependence in the data, re-
spectively, they perform very badly in the other tail of the joint distribution. Among
the considered copula families, the only copula which delivers satisfactory results as a
general and, at the same time, as a tail dependence model is the t-copula.

An implicit assumption of our analysis is that the (tail) dependence between crude
oil and natural gas log-returns is constant over time. Further research might analyze
models with time-varying copulas to predict more accurately the probability of joint ex-
treme movements in commodity returns. Finally, we point out that the use of our results
for risk pricing and risk management depends on the effectiveness of different types of
information on the tail dependence structure in bounding risk measures.



Chapter 2

Estimation of risk measures in energy
portfolios using modern
copula techniques

Abstract

The dependence structure between WTI and Brent crude oil spot log-returns is analyzed
using modern copula techniques. In a first step, to account for autocorrelation and volatility
clustering in the marginals, several single equation models are applied. Second, to select both
copulas and tail copulas characterizing the joint dynamics between the time series, newly
introduced bootstrap-based goodness-of-fit tests are implemented and evaluated. Based on
each approach, a comprehensive backtesting is performed by simulating and comparing the
risk measures Value-at-Risk and Expected Shortfall with observed values.

2.1 Introduction

The modeling of stochastic dependence in energy and commodity markets via copulas
has become increasingly common in applications. Especially crude oil, which plays a ma-
jor role in commodity investments, has been related to other markets (see, for instance
Reboredo (2012); Wu et al. (2012); Aloui et al. (2013) for foreign exchange rate markets or
Wen et al. (2012) for the stock market). When staying within the energy sector Grégoire
et al. (2008) analyze the dependence structure of log-returns of futures on crude oil and
natural gas, Accioly and Aiube (2008) study the co-movement of crude oil and gasoline
prices, while Reboredo (2011) focuses on the dependence structure between crude oil
benchmark prices. Using weekly data the article examines whether crude oil markets are
rather globalized or regionalized. Having estimated each log-return time series individ-
ually, the author accounts for the dependence between the different crude oil grades by
fitting various copula families to the error terms. The unknown parameters of the cop-
ula functions are obtained via maximum likelihood, whereas the decision which model
performs best relies on an adjusted information criterion and a pseudo-likelihood ratio
test. Additionally and directly linked to the estimated copula parameters, coefficients for
upper and lower tail dependence are provided.

According to Jdschke et al. (2012) a general goodness-of-fit test for copulas does not
necessarily provide a good model of tail dependence, as most of these procedures take the
whole support of the distribution into account and therefore, adopting copula inference
techniques for modeling joint extreme events can be very misleading for risk manage-
ment purposes. Using the concept of tail copulas accounts for all possible scenarios of
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joint extreme outcomes and thus decouples the decision to select an appropriate model
describing the overall dependence from the analysis of the joint dynamics in the tail of
the underlying distribution.

The present paper follows this route and extends the current state of knowledge
within a couple of areas. First and foremost, we apply the partial derivatives multiplier
bootstrap goodness-of-fit test for tail copulas (Biicher and Dette, 2013) to the log-returns
of two crude oil grades. To compare the findings with a traditional copula fit we present
both the best model characterizing the overall dependence structure using a bootstrap-
based goodness-of-fit test for copulas and the newly introduced Copula Information Cri-
terion (Grenneberg and Hjort, 2014). Moreover, from a risk management perspective it is
indispensable to capture the joint behavior of certain assets within energy portfolios. Fol-
lowing Jaschke et al. (2012), a thorough understanding of energy portfolio risk requires
an adequate assessment of the probability that large negative movements occur together,
i.e., lower tail dependence. Therefore, the present paper introduces a wide and compre-
hensive backtesting framework for two of the most commonly applied risk measures,
namely Value-at-Risk and Expected Shortfall.

Although the problem of modeling and assessing risk measures in energy portfolios
using copulas is not completely new (see Liu, 2011; Lu et al., 2011; Wu et al., 2012), the
backtesting approach derived from the techniques described above, to the best of our
knowledge, has not yet been addressed before. The paper’s claim to cover a topic of
broad applicability and high practical relevance is backed by extensive guidelines from
a practitioner’s point of view as well as detailed comments concerning the empirical
implementation.

The present analysis uses a large dataset of daily quotes of the WTI Cushing Crude
Oil Spot and the Bloomberg European Dated Brent. WTI quotes are commonly used as a
reference spot price for U.S. crude oil whereas the price for Brent serves as a benchmark
for European crude oil. Both oil grades belong to the class of light and sweet crude oils,
i.e., they are characterized by their low density and their low sulphur content. Although
Brent is not as light or as sweet as WTI, it is still high-grade for subsequent processing
and thus, both crude oils are not completely, but to a great extent, generally treated as
interchangeable.

Due to these differences in quality, WTI futures were usually traded at a small pre-
mium to Brent futures. From early on in 2011 the development of the spread between
the two futures has attracted the attention of energy and finance markets. Analysts and
investors have become quite uncertain how to play the WTI-Brent anomaly. In fact, Brent
did not only trade over WTI, but also the spread of the futures widened notably, which
is reason enough to analyze the dependence structure between the two crude oil grades
from a probabilistic point of view.

Historically, market participants often have not only assumed a physical interchange-
ability but accordingly a portfolio-interchangeability. Thus one could have thought of an
almost perfect correlation between the two oil grades. After all, in view of the WTI-Brent
anomaly, risk management needs to address the following two points. First, if a portfo-
lio contains only one of the two varieties, it is really important to precisely consider and
simulate the kind one is holding. Second, in the context of risk optimization with fixed
expected returns it can be analyzed, whether or not it makes sense to hold both types
simultaneously and thus diversifying the portfolio. However, should one keep both, a
dedicated analysis of dependence is crucial since apparently structures have changed
significantly and a simple correlation approach may mislead.

The paper is organized as follows: Section 2.2 briefly introduces the well-known cop-
ula framework and reviews the closely related concept of tail copulas with their corre-
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sponding nonparametric estimates. Section 2.3 models the individual time series of both
crude oil grades, accounting for serial dependence in the data. Section 2.4 describes the
applied rank-based goodness-of-fit tests for copulas and tail copulas, respectively. Sec-
tion 2.5 provides instruction on how to put the described theory into practice. Section 2.6
backtests the findings using the example of risk measures. Finally, Section 2.7 summa-
rizes the results and the used methods.

2.2 Preliminaries

2.2.1 Copulas and tail dependence

The theory of copulas investigates the dependence structure of multivariate distribution
functions. As this article focuses on co-movements between the WTI and Brent crude
oil futures, we state all further definitions and results for the bivariate case only. From
a probabilistic perspective, a copula is a joint distribution function with uniformly dis-
tributed margins on the interval [0, 1]. To begin with, we consider a random vector (X, Y)
with continuous marginal distribution functions F(x) := P[X < x] and G(y) := P[Y <
y], x,y € R, respectively. The theoretical foundation for the application of copulas is pro-
vided by Sklar’s theorem (Sklar, 1959), according to which there exists a unique copula C,
called the copula of X and Y, such that

PIX <x,Y <y] = C(F(x),G(y)), 2.1)

for all x,y € R. Conversely, if C is a copula and F and G are distribution functions, then
the function defined by Eq. (2.1) is a bivariate distribution function with margins F and
G, respectively. It can be shown that

Clu,v) =PU<u,V<v]=PX<F (u),Y<G (v)], (2.2)

for all u,v € [0,1], where F~ and G~ denote the quasi-inverses of F and G, respectively,
ie.,
F~(u) =inf{x € R | F(x) > u}, (2.3)

forall u € [0,1] (analogously for G). Summing up, copulas allow for a stepwise modeling
of the joint distribution whose dependence structure is independent of the respective
marginal distributions. Further details can be found in Nelsen (2006).

Having set the copula framework, we are now able to introduce the concept of tail
copulas that provides a generalized approach to model dependencies of extreme events.
Following Schmidt and Stadtmidiller (2006), the lower tail copula Ay associated with X
and Y is a function of their copula C and is defined by

Ar(x,y) :=lim Cltx ty)

, 2.4
AN t 24

if the above limit exists for all (x,y) € E := [0,00]2\ {(c0,00)}. Considered analytically,
AL describes the directional derivative of the copula C along the vector (x,y) € E at the
point (0,0). According to Schmidt and Stadtmdiller (2006), the lower tail copula admits
the homogeneous structure among its components, i.e.,

Ap(sx,sy) =sAL(x,y), s>0, (2.5)

forall (x,y) € E. Regarding this property, we conclude that evaluating the lower tail cop-
ula on the unit circle in the first quadrant contains all information about the directional
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derivatives of the copula C at the origin. Once these values are calculated the missing
ones can be obtained by linear continuation according to Eq. (2.5). Moreover, in the fol-
lowing we assume that the lower tail copula is nonzero in some point (xg, o) € E and
thus nonzero everywhere on E (Schmidt and Stadtmidiller, 2006, Theorem 1).

The next part allows for embedding the well-known concept of tail dependence (see
among others Joe, 1997; Frahm et al., 2005) into the framework of tail copulas. More
precisely, two random variables X and Y are called lower tail dependent if the limit

Ai= A1) = ImPX < F (1) | Y < G~ (u) (2.6)

exists and lies in the interval (0,1]. In case A, = 0, X and Y exhibit no lower tail depen-
dence. Regarding the scope of this article, tail dependence can be viewed as the limiting
likelihood of a commodity return falling below its Value-at-Risk at a certain level, given
that another commodity return has fallen below its Value-at-Risk at the same level. As
pointed out in Jaschke et al. (2012), the so-called lower tail dependence coefficient Aj,
is not able to thoroughly capture the joint behavior in the lower tail of the distribution.
Nevertheless, it is widely used as a simple and intuitive scalar measure for dependence
between extreme losses of commodity returns.

2.2.2 Nonparametric estimates

In preparation for the rank-based goodness-of-fit tests in Section 2.4 we introduce non-
parametric estimators for the copula C and the lower tail copula A, respectively. For
this purpose we consider a sample (X3, Y1), ..., (X7, Yr) from a pair (X, Y) of continuous
random variables. Then the normalized rank-based representation (1, v;) of the sample
data (X, Y;), t =1,...,T,is defined by

rank(X rank(Y;
ut:M and Ut:T—i—(lt)'

T+1 @7)

Assuming a time-independent dependence structure, the empirical copula Cr (see De-
heuvels, 1979) is given by

T
Cr(u,0) = 2 ) (s < w01 < ), 28)
=1

where 1(A) denotes the indicator function of a set A. As argued in Genest and Favre
(2007), the empirical Copula Cr is the best sample-based nonparametric representation
of the copula C, which itself characterizes the dependence structure of the random vector
(X,Y). Moreover, for any given pair (u,v), Cr(u,v) serves as a consistent rank-based
estimator of C(u,v) that is asymptotically normally distributed with mean C(u,v) (see
Segers, 2012a).

To be able to adequately assess the risk of joint extreme losses, we now introduce
the lower empirical tail copula A; according to Schmidt and Stadtmiiller (2006). This
nonparametric estimator is defined by

o T kx k
AL(X;]/> = 7CT (T’ ]:ay)

2.9)
L kx ky (
< <
t;ﬂ (”t ST T+1>

~
~

E e



2.3 Modeling marginal time series 23

with some parameter k € {1,...,T} to be chosen by the statistician. As proven in
Schmidt and Stadtmiiller (2006), the estimator A} exhibits weak convergence and strong
consistency provided that k = k(T) — coand k/T — 0 for T — oo (and other regularity
conditions, quod vide Huang, 1992). From an analytical perspective the lower empiri-
cal tail copula A; can be viewed as the slope of the secant of the empirical copula éT
containing the points (0,0) and (kx/T,ky/T) for x> + y* = 1, x,y > 0. Note that non-
parametric estimation of several variants of A has been addressed in Drees and Huang
(1998); Einmahl et al. (2006); de Haan and Ferreira (2006); Biicher and Dette (2013) for
iid. samples.

At the same time, the lower empirical tail copula yields a convenient method for the
nontrivial task of estimating the lower tail dependence coefficient A; (see Schmidt and
Stadtmuiiller, 2006). To be precise,

AL =Ar(1,1), (2.10)

which again illustrates that the lower tail copula is an intuitive generalization of the lower
tail dependence coefficient.

2.3 Modeling marginal time series

Since the copula is a function of the marginal distributions, an adequate modeling of the
individual time series is crucial for estimating the dependence structure between two
commodities. Recently, several empirical studies have analyzed the modeling of univari-
ate time series for crude oil spot and futures prices considering different data frequencies
(see among others Kang et al., 2009; Mohammadi and Su, 2010; Chang et al., 2010). For the
purpose of the present study it is preferable to use daily returns over weekly returns to
investigate joint extreme events, as weekly returns tend to smoothen returns especially
in the tails of the distribution whose structure we are trying to capture here. Conse-
quently, our dataset covers daily closing quotes of the WTI Cushing Crude Oil Spot and
the Bloomberg European Dated Brent from October 2, 2006 to October 1, 2010, collected
from Bloomberg’s Financial Information Services.

First, to test the time series for weak stationarity we perform unit root tests on the
logarithmic spot prices. Following the strategy proposed in Perron (1988), the realized
Augmented Dickey-Fuller tests indicate that the null hypothesis of a unit root cannot be
rejected for both WTI Crude Oil and European Brent. In a second step we apply the test
to the first differences of the log time series. Here, the null hypothesis of non-stationarity
can clearly be rejected at the 0.1% level. Taking the latter into account, we assume the log
time series of both crude oil commodities to be integrated of order one. Accordingly, the
following investigation focuses on the log-returns r; = log(P;) — log(P;—1). Figure 2.1
shows the log-returns for both series.

To check for temporal dependence within the individual time series, we apply stan-
dard Ljung-Box tests to the observed and squared observed log-returns for three different
lags (lag 1, lag 5 and lag 10). While for both series, in the case of squared observations,
the null hypothesis that none of the autocorrelation coefficients up to the specified lag is
different from zero can clearly be rejected at the 0.1% level of significance, the p-values
for the nonsquared observations are given by (0.239,0.017,0.004) for the WTI log-returns
and (0.167,0.121,0.052) for the Brent log-returns, respectively. Furthermore, applying
the Lagrange multiplier test proposed by Engle (1982) rejects the null hypothesis of no
ARCH effects for all lags at the 0.1% level.

Summing up, the findings show that the assumption of an ii.d. sample is unre-
alistic. Thus, to account for autocorrelation and volatility clustering in the marginal
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Fig. 2.1. Log-returns of the WTI Cushing Crude Oil Spot (top) and the Bloomberg European Dated Brent
(bottom) from October 2, 2006 to October 1, 2010.

series we employ ARMA (4, b)-processes, a,b € {0,1}, for modeling the conditional
mean equation in combination with GARCH(p,q), APARCH(p, q), GJRGARCH(p, q)
and EGARCH(p, q)-models, where p,q € {1,2,3}. Additionally, following Liu (2011),
we introduce exogenous variables into the conditional mean equation to explain the log-
return time series. As energy prices are highly affected by imbalances of supply and
demand, a representative indicator for this balance is given by the change in the energy
inventory. Consequently, the applied model uses weekly U.S. stock data of commercial
crude oil which is released by the Department of Energy. While Liu (2011) fits weekly
published figures of the energy inventory data are fitted to daily granularity using piece-
wise linear interpolation, we assume that the market is merely influenced on a single
trading day;, i.e., the weekly publication date. For details see Kemp (2010) and Fattouh
(2010). Besides, the modeling allows various distributions for the error term, specifically
the normal, the generalized error, the Student’s ¢-distribution and their skewed exten-
sions.

For illustration, we next consider the ARMA (4, b)-EGARCH(p, g)-model from Nelson
(1991) with underlying fundamental factors:

a b

re=pA O Y O ite+ ) Yie, (2.11)
i=1 j=1

where

woéeR, abelN,
0;€R, i=1,...,.a, ¢ ER, j=1,..,b
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and y; denotes the log-returns of the U.S. crude oil stock. The conditional variance pro-
cess of the innovations &; = 0;z; is given by

p
log (crtz) = w+ thizt_i + vi(|ze—i| = E(|z1-i]))
i—1

1

. 2.12)
2
1 prlog (),
]:

where

p.g €N, weR,
OCZ‘,’)’Z'ER, izl/"'/pl ,B]elR, j:1,...,q

and E(|z¢|) denotes the unconditional expected value of the absolute standardized inno-
vations |z|.

The selection of an appropriate model requires criteria which are a priori specified. To
be precise, all estimated parameters should be significant at the 1% level. Furthermore,
standard Box-Pierce and Ljung-Box tests on the standardized and squared standardized
residuals for three different lags (lag 1, lag 5 and lag 10) should indicate that the null
hypothesis — none of the autocorrelation coefficients up to the certain lag is different
from zero — cannot be rejected at the 10% level. The same threshold should be valid
when applying Engle’s Lagrange multiplier test for all lags up to and including lag 10.
In addition we consider the information criteria AIC, BIC, SIC and HQIC as well as the
corresponding QQ-plot of the standardized residuals. The modeling is carried out using
the functionality of Ghalanos (2011).

Fulfilling all these criteria the ARMA(0,0)-EGARCH(2,3)-model with the explanatory
variable and the skewed generalized error distribution adequately describes the data
generating process Wy, t = 1,..., T, of the daily WTI spot log-returns:

Wi = 2.596 x 107* —3.216 x 10~ 1
+ O-tXt/

log (07) = —3.438 x 101 —1.260 x 10~ 'X;_4
—1.267 x 1071 X;_»
42458 x 107 1(|X;_1| —7.961 x 1071)
+2.243 x 1071 (| X;_o| — 7.961 x 1071)
—6.701 x 10~ ' log (07_1) + 9.745 x 10 " log (07_,)
+6.494 x 10~ log (073) -

(2.13)

Consequently, the standardized residuals Xj, ..., Xt can be viewed as a random sample
from a skewed generalized error distribution with skewness parameter { = 0.958 and
shape parameter v = 1.960; for details on the skewed generalized error distribution see
Wiirtz et al. (2006).

At the same time, the ARMA(1,1)-EGARCH(2,3)-model including the explanatory
variable and the skewed generalized error distribution provides the best fit to the daily
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Fig. 2.2. Standardized residuals of both WTT Cushing Crude Oil Spot (top) and Bloomberg European Dated
Brent (bottom) log-return time series.

Brent spot log-returns B;, t =1,..., T:

By =3.064 x 107* —2.315 x 10~y
—7.893 x 107'B;_4
+ oY + 7.641 x 10 o1 Y, g,

log (07) = —2.803 x 107" —1.026 x 10~'Y;_4
—1.076 x 107'Y;_, (2.14)
+1.343 x 107 1(]Y;_1| — 7.920 x 107 1)
+8.270 x 107 2(|Y;—2| — 7.920 x 107 1)
—7.586 x 10~ ' log (07 ) +9.098 x 10 " log (07_,)
+8.117 x 10! log (07_3) -

Therefore, we conclude that the standardized residuals Y, ..., Yr are randomly drawn
from a skewed generalized error distribution with skewness parameter ¢ = 0.921 and
shape parameter v = 1.873. Figure 2.2 exhibits the standardized residuals which provide
the basis for the following investigations for both WTT and Brent log-return time series.
The corresponding QQ-plots are shown in Fig. 2.3. Although a few outliers do not fit
the straight line, it seems safe to conclude that the respective residuals follow the speci-
fied distributions. To further validate the latter we apply the well-known Kolmogorov-
Smirnov, Cramér-von Mises and Anderson-Darling goodness-of-fit tests. Here, the null
hypotheses of the correct specification of the respective distribution function cannot be
rejected at the 5% level of significance. More precisely, the p-values of the three tests are
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Fig. 2.3. QQ-plots of standardized residuals for the WTI Cushing Crude Oil Spot (top) and the Bloomberg
European Dated Brent (bottom).
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Table 2.1. Mean values and maximum likelihood estimates together with their cor-
responding standard errors for the WTI ARMA(0,0)-EGARCH(2,3)-model and the
Brent ARMA(1,1)-EGARCH(2,3)-model both including the explanatory variable and
the skewed generalized error distribution. All estimates are significant at the 1% level.

Parameter WTI log-returns Brent log-returns

Estimate std. error Estimate std. error

Mean equation

U 0.0003 0.0009 0.0003 0.0008
o —0.3216 0.1176 —0.2315 0.0213
01 - - —0.7893 0.0035
Py - - 0.7641 0.0020
Variance equation

w —0.3438 0.0153 —0.2803 0.0875
oy —0.1260 0.0178 —0.1026 0.0237
ay —0.1267 0.0172 —0.1076 0.0239
7 0.2458 0.0247 0.1343 0.0269
72 0.2243 0.0216 0.0827 0.0290
B1 —0.6701 0.0022 —0.7586 0.0880
B2 0.9745 0.0005 0.9098 0.0184
B3 0.6494 0.0022 0.8117 0.0894
Distribution

¢ 0.9580 0.0434 0.9213 0.0432
v 1.9604 0.1455 1.8725 0.1334

given by (0.982,0.966,0.934) for the WTI residuals and (0.638,0.667,0.678) for the Brent
residuals, respectively. Details on the parameter estimation are provided in Table 2.1.

2.4 Rank-based goodness-of-fit tests

Having modeled the individual time series, we are now able to investigate the depen-
dence structure between the WIT and Brent crude oil log-returns. For this, we first apply
a one-level bootstrap-based goodness-of-fit test for copulas (Genest and Rémillard, 2008)
which takes the whole support of the joint distribution into account. In a second step
we directly estimate the lower tail copula with a multiplier bootstrap along the lines of
Biicher and Dette (2013). For an introduction to bootstrap-based goodness-of-fit tests see
Stute et al. (1993). The next subsections show how to implement these procedures.

2.4.1 Bootstrap procedures for copulas

There are several rank-based tests of the appropriateness of copula families when mod-
eling the dependence structure between two random variables. Following Genest and
Rémillard (2008) we consider an open set O C R and the parametric copula class

C=1{Cy|0ecO)

Hence, the test for the null hypothesis that Cg belongs to a certain parametric class is
given by

Ho: Cg € C, Hi: Cy ¢ C. (2.15)
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The test statistic sums up the squared deviations between the empirical copula Cr and
C@T , Vis.
T 2
St=)Y (CT(ut, vt) — Cy (ut, vt)> , (2.16)
t=1
with (u¢, v;) denoting the rank-based representation of the standardized residuals (X}, Y})
from Eq. (2.7).

To compute the optimal parameter estimate fr for a given copula family we use a
monotone relation between the parameter § and Kendall’s tau, one of the commonly
applied rank-based correlation measures (Nelsen, 2006, Chapter 5). For example, in case
of all nondegenerated elliptical copulas — in particular the Gaussian and the t-copula —
the correlation parameter 6 can be calculated by

6 = sin (t77/2). (2.17)

For the t-copula we estimate the degrees of freedom v by maximum likelihood, keeping
the correlation parameter 6 constant, i.e.,

T

07 = arg max )_log (cg, (ur,vr)), (2.18)
VE(2,00) ;4

where ¢} =~ denotes the density of a t-copula with correlation parameter 6 and degrees
of freedom v. This method was chosen for its consistency with the other estimators as
described above and also because it was found to give very similar estimates to the full
maximum likelihood procedure (Demarta and McNeil, 2005). Evaluating the empirical
equivalent of Kendall’s tau yields ¥r = 0.705, and thus Or = 0.895 and U7 = 0.531, re-
spectively. For comparison only, we find Spearman’s rho, another rank-based correlation
measure, ot = 0.878, and Pearson’s product-moment correlation coefficient 77 = 0.875.
See Genest and Favre (2007) for a detailed description of these quantities.

Figure 2.4 shows a scatter plot of the 1001 pairs (u;, v;) of standardized residuals. It
reveals a strong tendency of u; and v; (and thus of X; and Y;) to vary together, without
regarding their marginal distributions. This is not surprising as the log-returns origi-
nate from similar types of crude oil. More importantly, we notice that the dependence
structure between the two commodities differs clearly from the Fréchet-Hoeffding upper
bound, namely C(u,v) = min(u,v), which would indicate that Y is almost surely an in-
creasing function of X. The latter fact suggests a small opportunity for diversification in
the current framework, i.e., reducing the unsystematic risk by investing in a variety of
assets.

The following one-level parametric bootstrap-based goodness-of-fit test yields ap-
proximated p-values assuming that the copula belongs to the selected parametric copula
class. The algorithm (Genest and Rémillard, 2008) proceeds as follows:

1. transform the standardized residuals (X;,Y;), t = 1,..., T, into their rank-based
representation vectors (u,v¢), t =1,...,T;

2. evaluate the empirical copula Cr for all rank vectors (u, v¢), t =1,...,T:

~

1
T L(u; < up,v; < vp); (2.19)

1

Cr(us,v) =

Il
—_

3. compute the optimal parameter estimate f1 by inversion of the empirical equivalent
of Kendall’s tau tr;



30 Estimation of risk measures in energy portfolios using modern copula techniques

1 F ' ' ' ° ' z
i
o o, Do
3%
° ° °
R
e o ] T e, [
08 | . Y (LA
o 00, o 3 ] ° SRe °
o e .o.’.ao.‘.o;’.
s ST e adiy SWIWT
a Se. %, 'ﬂ{_&'v' ‘.
-@ ° .o‘.. * o, ..o .‘.:'.. ':.‘o ’ ° °
Z 06 r * e A Y 2 ) 1
g LI o9 ﬂc e ®°% e °
k= ® i - ° 00° ¢ %% .. ° o,
= ° % o y "'. ’00.-. ¢
e ° o ©°%0°%° 93 0, e °
@ ° %0 foo o .“o‘" o8 ¢ 0%
v % oo oo ® o © %
5 04t ° o.‘ © 3 %o ,,0 o ° b
S ° ° 0% e o o
o S0 e :03‘ wer, % o o,
I R L S :
= ‘..‘ S .‘ ® % e ° °
S .8.. %." .. ° °
Z 02 F o %2 ashy .{,o. o« O ]
st gl °° )
T O
W..‘.. " o ® :
0 -I .g‘ 1 ° 1 1 1 I-

0 0.2 0.4 0.6 0.8 1

Normalized ranks (WTI crude oil residuals)

Fig. 2.4. Scatter plot of the rank-based representation of the standardized residuals.

4. calculate ST according to (2.16);
5. choose N € IN sufficiently large and repeat the next steps for each k € {1,...,N}:

(a) generate a random sample (Xy, Yi¢), t =1,..., T, of the copula Cér and com-
pute the corresponding rank vectors (ukrt, Uk,t) fort=1,...,T;

(b) evaluate the empirical copula for all simulated rank vectors (uy;, v;), t =
1,...,T:

Crr(Upr k) = L(u; < Upp, Vi < Ukp); (2.20)

I
—_

1

@ g
R

(c) use the same method as in Step 3 to construct a rank-based estimator 9le for
0;

(d) compute

T 2
Skr=1, (Ck,T(uk,tzUk,t) — G, , (g, Uk,t)) ; (2.21)
=1
6. calculate
1 N
N Y 1 (Skr > St) (2.22)
k=1

to obtain an approximated p-value of the goodness-of-fit test.

For an overview of goodness-of-fit tests for copulas see Genest et al. (2009).
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2.4.2 Multiplier bootstrap

Initially, let A} be the empirical lower tail copula of our dataset of standardized residuals
(X¢,Y:), t =1,...,T, and AL be an arbitrary lower tail copula. Following Biicher and
Dette (2013) we introduce a distance ¢ between A} and A; by

/2
o(AL,AL) == /o (Ar(cos ¢, sin @) — Ar(cos @, sin q)))z de
(2.23)

= [ (A (o) - At (p) a0,

where
Af(9) = Ap(cos @,sing), A% (¢) = Ar(cos ,sin ¢).

Analytically speaking, ¢ describes the squared distance between the empirical lower tail
copula Ap and the arbitrary lower tail copula Aj, corresponding to the metric induced
by the L?>-norm evaluated on the unit circle in the first quadrant. In the following this set
is denoted by K. = {(cos ¢,sin¢): ¢ € [0, 77/2]}.

For the purpose of estimating the lower tail copula of the time series (X;, Y;), t =
1,...,T, we consider an open set O C R and the one-parameter class £ = {AL(+;0) | 6 €
O}. Then, the test for the hypothesis that Aj belongs to a certain parametric class is given
by

Ho: A € L, Hi: AL € L. (2.24)

We estimate the optimal parameter 6 by applying the minimum distance estimator
0 = arg %nigg (AL, AL(59)), (2.25)
S

where ¢ denotes the distance defined in (2.23) and A the empirical lower tail copula.
The reference statistic of the test is given by

S;pdm = kQ (AL,AL(',‘ éT))
/2 , . n 2
=k [ (Af(g) — Af(ibr) do.

To construct multiplier bootstrap critical values, we introduce i.i.d. nonnegative ran-
dom variables ¢;, independent of (X;,Y;), t = 1,...,T, with mean y in (0, 00) and finite
variance 0 which satisfy the regularity condition [~ 1/P(|¢] > x)dx < co. A multiplier
bootstrap analog of Eq. (2.9) can then be defined by

(2.26)

A 1< kx k
A%(x,y) = k;gl (”t < T < T+y1> , (2.27)
where & = T! Zthl ¢+ denotes the mean of ¢y,...,{r. As proposed in Biicher and
Dette (2013) we will use Laplacian(0,2) multipliers, more precisely, the discrete random
variables ¢; are i.i.d. with probability density function P({ = 0) = P(¢ = 2) = 1/2,
which obviously fulfill the aforementioned conditions.
Having determined the multipliers, we are now able to formulate the process

prdm A
2.2
Er STrTv1' o TH1)

T (vy) =
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which will be part of the partial derivatives multiplier bootstrap (pdm-bootstrap) process.
Furthermore, following Rémillard and Scaillet (2009), we compute consistent estimates
for the partial derivatives of the lower tail copula as follows:

AL(x+h,y) — AL(x —h,y)

- T h<x < oo,
OxAL(x,Yy) =14 . (2.29)
AL(X+2h,y)—AL(0,y) X <h
2h 7 7

—

where I ~ k~1/2 tends to 0 with increasing sample size. For x = oo, we set dy AL (c0,y) =
0. In the same vein, we define 9, Ar(x, y). Summing up, this yields the process

o (x,y) = B (x, )
— 3 AL (%, y)Br(x, ) (2.30)
— 3, AL(x,y)Br(co,y),

which only depends on the standardized residuals of the log-return time series and the
multipliers ¢y, ...,G7.

Finally, let dp(x, y) = dpAL(x,y;0) denote the partial derivative of the lower tail cop-
ula with respect to 8 € O. Given some regularity conditions it can be easily shown that
this partial derivative function is also homogeneous. The pdm-bootstrap statistic is ob-
tained as

/2 - /2 2
spim — /0 <oc;’?d “(9) - 3. (9) /0 7@4@)“?“(?)@) dp,  (2.31)

where L ]
Vo, (@) = A@;lfsgi(q’), ol (@) = ai" (cos ¢, sin )
and
A /2 z 2 / .
Ag = /0 (%T(go)) de, (59T(g0) = 03, (cos ¢, sin ). (2.32)

Note that we only consider one-parameter families of tail copulas and therefore Eq. (2.32)
is also one-dimensional. For a detailed description of the required regularity conditions
and a more theoretical view see Biicher and Dette (2013).

The following goodness-of-fit test based on the partial derivatives multiplier boot-
strap (Biicher and Dette, 2013) yields approximated p-values assuming that the respec-
tive lower tail copula has a specific parametric form. The detailed algorithm proceeds as
follows:

1. transform the standardized residuals (X}, Y;), t = 1,...,T, into their rank-based
representation vectors (u;,v;), t =1,...,T;

2. discretize the unit circle in the first quadrant K and choose the parameter k in rela-
tion to the sample size T for calculating the empirical tail copula A% (¢) according
to (2.9);

3. for the purpose of evaluating the reference statistic (2.26) compute the optimal pa-
rameter estimate 61 by applying the minimum distance estimator (2.25);

4. to prepare for the next steps estimate the partial derivatives of the selected lower
tail copula via (2.29) and approximate (2.32) using central difference quotients, if
applicable;
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5. choose N € IN sufficiently large and repeat the next steps foreach j € {1,...,N}:

(a) generate a random sample (;‘]-,1, .. .,(j]»,T of the random variables ¢1,...,¢r as
described above;

(b) compute the statistics a}'i ‘; = (x?dm(éj,l, ..., Gjr) for every (x,y) € K, using
the updated multiplier bootstrap analog of the empirical lower tail copula
(2.27), the evaluated process ﬁ’;dm from Eq. (2.28) and the calculated partial
derivatives from Step 4;

(c) evaluate

2
d d £ d 4
Ssz :/ (“]FiTm /’YeT p & )d(l)) de

according to (2.31);

6. calculate

N
1 Z]l (Spdm *pdm) (2.33)
]:1

to obtain an approximated p-value of the goodness-of-fit test.

2.5 Empirical results

The following subsections provide guide on how to implement the methodology above.
First, we apply the parametric bootstrap-based goodness-of-fit test to suitable classes
of copulas. Having rejected certain copula models according to a predefined level of
significance, we use a newly introduced information criterion for copulas to find the best
fit to the crude oil log-returns. In a second step a closed-form expression of the lower
tail copula is derived and several possibly suitable one-parametric models are presented.
The results of the goodness-of-fit test based on the partial derivatives multiplier bootstrap
finalize the tail copula fit.

2,51 Copula selection

The goodness-of-fit test from Section 2.4.1 requires a preselection of possible one-para-
metric copula classes. The structure of the scatter plot in Fig. 2.4 suggests to limit the
range to symmetric copulas, i.e., C(u,v) = C(v,u) for all (u,v) in [0,1]2. In addition
to two elliptical copulas, Gaussian and ¢, we fit the widely used Plackett copula and
three Archimedean copulas. Within the latter class we choose the Frank family and two
relatively unknown strict copulas from (4.1.12) and (4.1.14) in Nelsen (2006), Table 4.1,
with corresponding functions given by

Co(u,v) = <1 + [(LF1 ~ 1)+ (o7 = 1)0} 1/9) B (2.34)
and »
Colt,v) = (1 + [(u—l/e —1)0 4 (VO 1)9} w) , (2.35)

respectively, 6 € [1,00). Both copulas share the same limit case Co, = min(u, v), which is
not Archimedean anymore.
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Table 2.2. Test results (N = 2000 bootstrap iterations) for the
goodness-of-fit of different copula models in ascending order

(p-value).
Copula p-value fr-value
Frank 0.000 11.649
(4.1.14) 0.001 2.891
Plackett 0.012 47.150
Gaussian 0.052 0.895
(4.1.12) 0.065 2.261
t (07 = 5.313) 0.074 0.895

Table 2.3. Cross-validation Copula Information Criterion values for the remaining copula
models in ascending order (CIC-value).

Copula CIC-value f-value (1(8)-value
Gaussian 1454 0.877 729.75
(4.1.12) 1471 2.088 743.61
t (0 =5.101) 1522 0.880 764.36

Table 2.2 summarizes the results (p-values) of the goodness-of-fit tests for the above
mentioned copula classes together with their estimated optimal parameter f7. For the
Plackett copula, where no explicit expression for the parameter 6 is available, we apply
penalized splines to approximate the function 6(7) using an appropriately chosen grid
of 6 values (Kojadinovic and Yan, 2010). Figure 2.5 presents scatter plots of n = 1001
sampling points from simulations for all copula families under consideration, fr as listed
in Table 2.2. From these scatter plots alone it is nearly impossible to draw definite con-
clusion about the goodness-of-fit.

The results of the parametric bootstrap procedure indicate that neither the Frank fam-
ily nor the copula (4.1.14), and to a great extent, the Plackett copula seem to be appropri-
ate to model the dependence structure between the residuals of the crude oil log-returns.
On the contrary, at a 5% level of significance, the null hypothesis cannot be rejected for
any of the remaining three candidates. At this point we emphasize — as the actual in-
vestigation focuses on the behavior of joint extreme events — that it is fairly unlikely to
achieve p-values higher than 10%, while, at the same time, not trimming or winsorizing
the original data in order to mitigate the effects of (marginal) extreme outliers.

However, as the p-values are ‘only’” inverse measures of the strength of evidence
against the null hypothesis Hy, we need to select the most appropriate model from the
remaining candidates. Following Grenneberg and Hjort (2014), we implement the gen-
erally applicable cross-validation Copula Information Criterion for the left three copula
families. In contrast to the common used formula AIC = 207 max — 2, where {1 may is de-
fined as the maximizer of the pseudo likelihood ¢7(6) = ZtT:1 log (cg(ut,vt)), the cross-
validation CIC corrects for finite-sample bias introduced by the rank-based nonparamet-
ric modeling of the marginals. For a more detailed view on the different model selection
criteria see Claeskens and Hjort (2008).

Table 2.3 shows the maximum pseudo likelihood estimate together with its corre-
sponding likelihood and the cross-validation Copula Information Criterion value. Using
the maximal CIC-value as a criterion to select the model with the best fit to the data, we
conclude that the t-copula, with correlation parameter 6r = 0.895 and degrees of free-
dom ¥ = 5.313, best describes the dependence between the WTI and Brent crude oil
log-returns. Note that in this case evaluating the frequently applied AIC formula would
lead to the same decision. In addition, when leaving the symmetric setting, further re-
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Fig. 2.5. Simulation of Frank copula (top left), copula (4.1.14) (center left), Plackett copula (bottom left),
Gaussian copula (top right), copula (4.1.12) (center right) and t-copula (bottom right).
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search might extend the present paper by analyzing a skewed version of the t-copula
(Smith et al., 2012) which can capture asymmetric and extremal dependence at the same
time.

2.5.2 Tail copula fit

Implementing the goodness-of-fit test for tail copulas described in Section 2.4.2 requires
some background. In order to derive a closed-form expression of the lower tail copula (in
contrast to the limit definition in Eq. (2.4)), let (U, V) be a random vector with uniformly
distributed margins on the interval [0, 1] and joint distribution

Ca(u,v) =exp <log(uv)A <1130gg((uvv)))> , (2.36)
where A: [0,1] — [1/2,1] is called Pickands dependence function. C,4 can be identi-
fied with the class of extreme-value copulas which arise naturally as limits of copulas
of componentwise maxima in independent random samples and provide a convenient
framework for modeling the dependence structure between extreme events (see Guden-
dorf and Segers, 2010). Following Pickands (1981) the extreme-value copula C4(u,v) is a
copula if and only if the function A: [0,1] — [1/2,1] is a convex function which satisfies
max(t,1 —t) < A(t) < 1. Next, it can be shown that the joint distribution of the random
vector (1 — U, 1 — V) is given by the survival copula

Ca(u,v) =u4+v—-1+Ca(1—u,1-0). (2.37)

From the homogeneous structure of the lower tail copula in Eq. (2.5) it is sufficient to
consider the restriction of these functions to the unit simplex A1 = {(u,v) € [0,1]? : u +
v = 1} (see Segers, 2012b). By substituting Eq. (2.37) in Eq. (2.4) and applying I'Hopital’s
rule, a tedious but straightforward calculation yields

AL(1—x,x) =lim Cat1 = x), tx)
N0 t

=1-A(x) (2.38)

for the lower tail copula of the random vector (1 — U,1 — V). Finally, by renaming
variables and the homogeneity property the entire lower tail copula can be obtained as
AL(1—t,t) =1 — A(t) with Pickands dependence function A(t). The latter implies the
existence of a one-to-one and onto relationship between lower tail copulas and Pickands
dependence functions.

Consequently, the next part focuses on different classes of Pickands dependence func-
tions. The structure of the empirical estimate Ay, see Eq. (2.9), evaluated on the unit circle
in the first quadrant and displayed in Fig. 2.6, suggests to limit the range to symmetric
lower tail copulas. Below, we seek to cover a spectrum as wide as possible via

(i) the logistic or Gumbel model (Gumbel, 1960), defined by

1/6
Ar(1—tt)=1— ((1 — 1) +t9) . Be[l,0),
which belongs, among others, to the survival copula of the well-known Gumbel-

Hougaard copula,

(ii) the negative logistic or Galambos model (Galambos, 1975), given by

Ar(1—tt) = ((1 )+ t—")fl/e, 0 € (0,00),
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that is the lower tail copula of, among others, the Clayton copula, the survival cop-
ula of the Galambos copula and the copula family (4.1.12),

(iii) the mixed model (Tawn, 1988), defined by
AL(1—tt)=0(1—-1t)t, 6€]0,1],

which constitutes the complete class of quadratic functions for differentiable para-
metric models; in the case § = 1, Ar belongs, among others, to the copula family
(4.1.14),

(iv) the Hiisler-Reiss model (Hiisler and Reiss, 1989), vis.
1 1—t
AL(l—t ) =1—(1—)d —log [ ——
L(1—t¢t) (1—1) (9+29 og( ; >>

1 t
—td <6+2610g <1—t>> , 0€(0,00),

with ® denoting the standard normal distribution function; Ay is, among others,
the lower tail copula of the survival copula of the Hiisler-Reiss copula.

Note that the list does not contain the well-known class of t-extreme-value copulas C,
(see Demarta and McNeil, 2005). Following their remarks the correspondent Pickands
dependence function is not particularly convenient for practical application. Demarta
and McNeil (2005) show empirically that for each fixed (6, v) in the f-model there exists
a parameter 0 from either the Gumbel or the Galambos model such that the resulting
curves are indistinguishable.

Referring back to the applied copula models in Section 2.5.1 and digressing, the re-
lationship between the lower tail copula of the t-copula and the t-extreme-value copula
can be obtained as:

Af(1—s,5) = log (Ch (e7079,e7))
=1-A(s) se[01]

(2.39)

The latter can be proven (also in a general setting) by using the natural definition of
extreme-value copulas (Gudendorf and Segers, 2010), applying the Taylor expansion
and finally, considering the identity C = C for radially symmetric copulas (Nelsen,
2006). Equation (2.39) shows that, in order to avoid the complexity of the univariate
t-distribution, the lower tail copula of the t-copula can again be accurately approximated
by the simpler Gumbel or Galambos models. Furthermore, neither the Frank copula nor
the Plackett copula nor the Gaussian copula allow for lower tail dependence and thus
Ap(x,y) =0forall (x,y) € E.

Care should be taken when implementing the derivatives multiplier bootstrap with
respect to the different applied norms. Whereas the Pickands dependence functions are
defined within the L!-norm framework, the minimum distance estimator in Eq. (2.25)
is formulated using the L2-norm. Furthermore, the transformation of the radian coordi-
nate ¢ € [0,7t/2] to t € [0,1] can be obtained by t = tan(¢)/(1 + tan(¢)). In the spe-
cific situation of estimating tail dependence, Frahm et al. (2005) use plots of the function
k — TDC(k) to define a plateau-finding algorithm that provides a single data-adaptive
choice of k. Here, we graphically search for a value k* such that the tail dependence co-
efficient (TDC), as a function of k¥, is as constant as possible in a suitable neighborhood
of k*. In combination with appealing finite sample coverage probabilities in Biicher and
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Fig. 2.6. Plot of the empirical lower tail copula Ar (yellow), Gumbel model (blue line), mixed model (light
blue) and the overall range (grey dashed line) for both the Pickands framework (top) and the tail copula
approach (bottom).
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Table 2.4. Test results (N = 10000 bootstrap iterations) for the derivatives multiplier
bootstrap of different lower tail copulas in ascending order (p-value).

Model p-value Or-value Ar(07)-value
Mixed 0.000 1.000 0.500
Hiisler-Reiss 0.146 0.343 0.732
Galambos 0.242 2.251 0.735
Gumbel 0.290 2.961 0.736

Dette (2013) we decide to take the value k* = 200 for the subsequent analysis. The re-
sults of this computationally efficient goodness-of-fit test for tail copulas based on the
partial derivatives multiplier bootstrap are summarized in Table 2.4. In addition to the
p-value, the table lists the minimum distance estimator @T and the estimated lower tail
dependence coefficient A; (1), which is obtained by evaluating the lower tail copula at
the point t = (1/2,1/2) multiplied with the factor /2.

While the mixed model is definitely not appropriate for the joint behavior in the lower
tails, the null hypothesis, at a 5% level of significance, cannot be rejected for any of the
remaining three candidates. We decide to use the smallest distance between the empirical
lower tail dependence coefficient A. = 0.757 and the estimated lower tail dependence
coefficient A; (A7) as criterion to select the model with the best fit to the data in the lower
tails, which turns out to be the logistic or Gumbel model with 6 = 2.961. Note that both
the Hiisler-Reiss and the Galambos models also seem appropriate to model the structure
of the lower tail dependence.

Although the lower tail copula of the t-copula can be accurately approximated with
the Gumbel model, it is a far cry from saying that the joint dynamics in the lower tail of
the t-copula (07 = 0.895, i1 = 5.313) from Section 2.5.1 are identical to the corresponding
behavior of the Gumbel model (7 = 2.961). This can be explained by the completely
different ways of estimating the model parameters in both subsections. When comparing,
for instance, the lower tail dependence coefficient we find A; = 0.575 for the t-copula and
AL = 0.736 for the Gumbel model. Figure 2.6 shows the plot of the empirical lower tail
copula A1, the selected Gumbel model, the unsuitable mixed model and the overall range
for both the Pickands framework and the tail copula setting.

2.6 Risk measures and backtesting

With oil being an integral part of commodity portfolios the question arises how one can
obtain an (additional) diversification effect by splitting an oil proportion of a portfolio to
WTTI and Brent crude oil (cf. Section 2.4.1, Page 15). Taking this into account and return-
ing to the initial intention, having selected both the copula and tail copula model, we are
now interested in the risk measurement of a portfolio consisting of an arbitrary convex
combination of the WTT and Brent crude oil. For this purpose, we simulate the com-
mon risk parameters Value-at-Risk and Expected Shortfall. According to Jorion (2006)
the Value-at-Risk summarizes the worst loss over a target horizon that will not be ex-
ceeded with a given level of confidence, or more formally, it describes the quantile of
the projected distribution of gains or losses over the target horizon. If « is the selected
level of confidence, the Value-at-Risk corresponds to the 1 — a lower tail level. Extending
this concept, the Expected Shortfall (also known as Conditional Value-at-Risk) for a given
level of confidence a is defined as the expected loss, given the loss is larger or equal to
the Value-at-Risk (Deutsch, 2009).
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Fig. 2.7. In sample one day-ahead simulated portfolio (w; = wy = 0.5) Value-at-Risk for a given level of
confidence &« = 95% for the Gumbel model (yellow) and the realized (observed) returns (blue).

Following Rank and Siegl (2002) we first generate n pairs (u,v) of observations of
U(0,1) distributed random variables U and V whose joint distribution function is either
given by the t-copula (7 = 0.895, i1 = 5.313) from Section 2.5.1 or the survival copula
of the Gumbel copula (01 = 2.961) from Section 2.5.2. The simulation is carried out using
the functionality of Kojadinovic (2010) and Yan (2007). To obtain the required marginal
distributions we apply the inverse distribution functions, estimated in Section 2.3, to the
sample (u,v). Accordingly, the n obtained pairs (x;,y;), i = 1,...,n, form scenarios of
possible logarithmic changes of the two crude oil grades, while at the same time having
preserved the desired dependence structure.

For the purpose of simulating the Value-at-Risk we consider a simple linear portfolio
position with weighting factors wy, ws € [0,1] and wp = 1 — w;. The change a; of the
(simulated) portfolio at time ¢ is given by

ar = w1 Wi + w2 B, (2.40)
where the univariate WTI crude oil model W; is described in Eq. (2.13) and the Brent ana-
log B; in Eq. (2.14), respectively. To sum up, the applied Monte Carlo method generates n
scenarios for each day t and evaluates the present value change of a portfolio under each
scenario. Finally, calculating the 1 — & quantile yields the daily Value-at-Risk with level of
confidence «. Note that within a nonrolling target horizon framework, and having once
modeled the univariate time series, the only remaining task is to simulate the standard-
ized residuals (x;,y;), i = 1,...,n, and substitute these values into the corresponding
model equation.

Figure 2.7 shows the in sample one day-ahead simulated portfolio (w; = w, = 0.5)
Value-at-Risk for a given level of confidence a = 95% for the estimated Gumbel model
in combination with the realized (observed) returns (quod vide Palaro and Hotta, 2006).
To be able to judge the effectiveness of the applied Value-at-Risk model, we compare the
simulated (predicted) and empirical number of outliers, where the actual loss exceeds
the Value-at-Risk (Rank and Siegl, 2002). Consequently, from a risk management point
of view, this backtesting approach is easily comprehensible and allows for the required
transparency. To benchmark the simulated Value-at-Risk with a fully deterministic ap-
proach we apply historical simulation. The freedom from model assumptions is one of
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Table 2.5. Relative number (absolute number) of backtest outliers 1 — & for the differ-
ent applied Value-at-Risk simulations with level of confidence 1 — &, weighted aver-
age error |& — «| and error ranking.

1—w w1 wy t-copula Gumbel Historical
0.050 0.50 0.50 0.059 (44) 0.056 (42) 0.067 (50)
0.025 0.50 0.50 0.021 (16) 0.021 (16) 0.052 (39)
0.010 0.50 0.50 0.008 (06) 0.008 (06) 0.021 (16)
0.050 0.25 0.75 0.056 (42) 0.055 (41) 0.063 (47)
0.025 0.25 0.75 0.017 (13) 0.019 (14) 0.048 (36)
0.010 0.25 0.75 0.011 (08) 0.009 (07) 0.025 (19)
0.050 0.75 0.25 0.056 (42) 0.055 (41) 0.069 (52)
0.025 0.75 0.25 0.027 (20) 0.024 (18) 0.045 (34)
0.010 0.75 0.25 0.011 (08) 0.011 (08) 0.016 (12)
0.050 Average 0.007 0.005 0.016
0.025 Average 0.005 0.004 0.023
0.010 Average 0.001 0.001 0.011
Average Average 0.003 0.002 0.015
Ranking 2 1 3

the primary advantages of this method (Deutsch, 2009). Based on the given time series
and the target horizon of T = 250 business days we compute 751 daily Value-at-Risk esti-
mates for the confidence level vector a; (ay = 95%, ay = 97.5%, a3 = 99%). Note that the
latter approach takes a rolling dataset of 250 (observed) values (for each one day-ahead
estimated Value-at-Risk) into account whereas the Value-at-Risk simulations via copulas
depend on the entire considered time horizon. Consequently, a comparison between the
applied models is only of limited use.

Table 2.5 summarizes the results of the backtesting for the set of scenarios w; ; (w11 =
0.50, wyp = 0.25, w13 = 0.75) with a given level of confidence a. Following Rank and
Siegl (2002) we define the prediction error as the absolute difference between the relative
number of outliers 1 — & and the predicted relative number 1 — . While the average over
the portfolios uses equal weights, the average over the level of confidence x emphasizes
the tails by a weighting scheme B; (1 =1, B2 = 2, B3 = 5). The Value-at-Risk simulation
via copulas is carried out generating n = 100 000 samples of pairs (1, v). As expected, the
tail copula fit from Section 2.5.2 yields the best result, whereas both the ¢t-copula and the
survival copula of the Gumbel copula obviously outperform the historical simulation.
The latter should be regarded with caution as outlined before. Furthermore, although
the Gumbel model yields a slightly better result than the t-copula, both models seem to
pass the backtesting stage.

To further verify the validity of the t-copula and the Gumbel model we apply the
traffic light approach used by the supervising authorities when auditing banks” internal
risk management models (Deutsch, 2009). For this, a confidence interval for the observed
outliers has to be constructed. It is quite obvious to assume that the number of outliers
follows a binomially distributed random variable with probability p = 1 — « and number
of trials n. Within this framework the probability of observing more than k outliers is

k n . .
1- E Bn,p<i) = Z <1:> pl(l - p)n—z' (2.41)
i—0 i=k+1

This is equal to the probability of making a type-I-error (the rejection of a correct model)
when the hypothesis is rejected if more than k outliers are observed. Based on this prob-
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Table 2.6. Average relative error between the observed outliers and the Expected
Shortfall for the different applied Expected Shortfall simulations with level of con-
fidence 1 — &, weighted averages and error ranking.

1—a w1 wy t-copula Gumbel Historical
0.050 0.50 0.50 0.141 0.144 0.235
0.025 0.50 0.50 0.129 0.131 0.284
0.010 0.50 0.50 0.056 0.061 0.374
0.050 0.25 0.75 0.168 0.170 0.261
0.025 0.25 0.75 0.138 0.135 0.298
0.010 0.25 0.75 0.097 0.087 0.548
0.050 0.75 0.25 0.140 0.142 0.353
0.025 0.75 0.25 0.111 0.108 0.415
0.010 0.75 0.25 0.056 0.057 0.282
0.050 Average 0.150 0.152 0.283
0.025 Average 0.126 0.125 0.332
0.010 Average 0.070 0.068 0.401
Average Average 0.094 0.093 0.369
Ranking 2 1 3

ability the supervising authorities establish the boundaries for three different zones, i.e.,
a lower bound of the red zone (equals the upper bound of the yellow zone) for a type-I-
error of less than 0.01% and a lower bound of the yellow zone (equals the upper bound
of the green zone) for a type-I-error less than 5%. For p =1 —0.95 = 0.05 and n = 751
this translates into the following intervals as a function of realized outliers k

green zone, k <47,
f(k) = < yellow zone, 48 <k <61, (2.42)
red zone, k> 62.

Table 2.5 clearly shows that both models (for each type of portfolio weighting) are in the
green zone and thus no adjustments are necessary. Completely analogous calculations
yield the same results for the cases &« = 0.025 and & = 0.01. The previous implementa-
tion being in line with reporting the unconditional coverage due to Kupiec (1995) we are
now interested in the analysis of the conditional coverage (Christoffersen, 1998), namely
testing the joint hypothesis that the Value-at-Risk model has the right frequency of inde-
pendent outliers. Here as well, the p-values of the latter null hypothesis clearly exceed the
10% threshold.

Having assessed the Value-at-Risk for a given level of confidence « it is straight-
forward to estimate the corresponding Expected Shortfall, i.e., averaging the (1 — a)-
quantile. Table 2.6 lists the average relative errors between the observed outliers and
the Expected Shortfall based on the full backtesting period (751 days). Note that here
the absolute values of the relative errors are taken into account. Finally, the concluding
averages use the same weights as in the Value-at-Risk approach. As it can be seen from
Table 2.6, the results are consistent with the previous Value-at-Risk measures. Here as
well, the Gumbel model yields the overall best result having in mind that the t-copula
results are very close. For the sake of completeness, the historical simulation shows the
worst fit.
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2.7 Concluding remarks

This paper studies the dependence structure of log-returns of two crude oil grades, name-
ly the WTI Cushing Crude Oil Spot and the Bloomberg European Dated Brent, from a
probabilistic point of view. The investigation focuses on lower tail dependence, i.e., on
assessing the probability that large losses occur together. As a rough but not exhaustive
indicator (see Jaschke et al., 2012), the lower tail dependence coefficient is estimated as
the value of the empirical lower tail copula at the point (1,1) (Schmidt and Stadtmiiller,
2006). The resulting estimate A, = 0.757 reveals a relatively high level of lower tail
dependence.

The empirical analysis can be summarized as follows: the overall dependence be-
tween the log-returns sample of the two crude oil grades can be adequately described by
a t-copula. When directly modeling the joint dynamics in the lower tail via tail copulas
the Gumbel model performs best. Here, for the first time in the literature, the partial
derivatives multiplier goodness-of-fit test for tail copulas (Biicher and Dette, 2013) is ap-
plied to energy portfolios.

From a risk management perspective it is crucial to backtest the findings using com-
monly applied risk measures. Therefore, the present paper simulates the Value-at-Risk
and Expected Shortfall for both models and compares the results for different portfolio
weights and certain levels of confidence (Rank and Siegl, 2002). As suspected and con-
firmed by the backtesting the Gumbel model slightly outperforms the t-copula. Finally,
the traffic light approach verifies the validity of both the Gumbel model and the ¢-copula.

The present article focuses on studying downside risk, mainly relevant for investors
holding long positions. Further research might also examine upper tail dependence be-
tween the two crude oil grades, i.e., assessing the upside risk being inherited in short
positions. Based on this, strategies of hedging and effective risk mitigation could be de-
veloped.






Chapter 3

Nonparametric tests for constant tail
dependence with an application
to energy and finance

Abstract

Neuw tests for detecting structural breaks in the tail dependence of multivariate time series
using the concept of tail copulas are presented. To obtain asymptotic properties, we derive
a new limit result for the sequential empirical tail copula process. Moreover, consistency of
both the tests and a break-point estimator are proven. We analyze the finite sample behav-
ior of the tests by Monte Carlo simulations. Finally, and crucial from a risk management
perspective, we apply the new findings to datasets from energy and financial markets.

3.1 Introduction

Modeling and estimating stochastic dependencies has attracted increasing attention over
the last decades in various fields of applications, including mathematical finance, actuar-
ial science or hydrology, among others. Of particular interest, especially in risk manage-
ment, is a sensible quantitative description of the dependence between extreme events,
commonly referred to as tail dependence; see for example Embrechts et al. (2003). A
formal definition of this concept is given in Section 3.2.

In applications, tail dependence is often assessed by fitting a parametric copula fam-
ily to the data and by subsequently extracting the tail behavior of that particular copula.
Examples can be found in Breymann et al. (2003) and Malevergne and Sornette (2003),
among others. Fitting the copula typically requires some sort of goodness-of-fit testing.
Recent reviews on these methods are given by Genest et al. (2009) and Fermanian (2013).
More robust methods to assess tail dependence are based on the assumption that the un-
derlying copula is an extreme-value copula. The class of these copulas can be regarded
as a nonparametric copula family indexed by a function on the unit simplex (Gudendorf
and Segers, 2010). Since the copula is a rather general measure for stochastic depen-
dence, the estimation techniques for both of the latter approaches are usually based on
the entire available dataset (see, for instance, Genest et al. (1995); Chen and Fan (2006)
for parametric families or Genest and Segers (2009) for extreme-value copulas). How-
ever, due to the fact that the center of a distribution does not contain any information
about the tail behavior, these techniques might in general yield biased estimates for the
tail dependence. We refer to Frahm et al. (2005) for a more elaborated discussion of this
issue. In order to circumvent the problem and to obtain estimators that are robust with
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respect to deviations in the center of the distribution, there are basically two important
approaches: either one could extract the tail dependence from subsamples of block max-
imal data, for which extreme-value copulas provide a natural model (McNeil et al., 2005,
Section 7.5.4), or one could rely on extreme-value techniques some of which are presented
in Section 3.2. Applications of these procedures can be found in Breymann et al. (2003);
Caillault and Guégan (2005); Jaschke et al. (2012); Jaschke (2014), among others.

Most of the aforementioned applications to time series data are based on the implicit
assumption that the tail dependence remains constant over time. Whereas nonparamet-
ric testing for constancy of the whole dependence structure, as for instance measured by
the copula, has recently drawn some attention in the literature (Rémillard, 2010; Busetti
and Harvey, 2011; Kramer and van Kampen, 2011; Biicher and Ruppert, 2013; Biicher
et al., 2014; Wied et al., 2014), there does not seem to exist a unified approach to test-
ing for constancy of the tail dependence. It is the main purpose of the present paper to
fill this gap. Our proposed testing procedures are genuine extreme-value methods de-
pending only on the dependence between the tails of the data and are hence robust with
respect to potential (non-)constancy of the dependence between the centers of the dis-
tributions. In particular, the presented tests do not rely on the assumption of a constant
copula throughout the sample period.

Our procedures are based on new limit results for the sequential empirical tail copula
process, formally defined in Section 3.3.1. We derive its asymptotic distribution under
the null hypothesis and propose several variants to approximate the required critical
values. When restricting to the case of testing for constancy of the simple tail dependence
coefficient, the limiting process can be easily transformed into a Brownian bridge. In this
case, the asymptotic critical values of the tests can be obtained by direct calculations or
simulations. In the more complicated case of testing for constancy of the whole extremal
dependence structure as measured by the tail copula, we propose a multiplier bootstrap
procedure to obtain approximate asymptotic quantiles. The finite-sample performance
of all proposals is assessed in a simulation study, which reveals accurate approximations
of the nominal level and reasonable power properties.

We apply our methods to two real datasets. The first application revisits a recent in-
vestigation in Jaschke (2014) on the tail dependence between WTI and Brent crude oil
spot log-returns, which is based on the implicit assumption that the tail dependence re-
mains constant over time. Our testing procedures show that this assumption cannot be
rejected. The second application concerns the tail dependence between the Dow Jones
Industrial Average and the Nasdaq Composite time series around Black Monday on 19th
of October 1987, it reveals a significant break in the tail dependence. However, our results
do not show clear evidence for the hypothesis that this break takes place at the particular
date of Black Monday.

The structure of the paper is as follows: in Section 3.2, we briefly summarize the con-
cept of tail dependence and corresponding nonparametric estimation techniques. The
new testing procedures for constancy of the tail dependence are introduced in Section 3.3.
In particular, we derive the asymptotic distribution of the sequential empirical tail copula
process, propose a multiplier bootstrap approximation of the latter and show consistency
of various asymptotic tests. Additionally, we deal with the estimation of break-points in
case the null hypothesis is rejected and make use of a data-adaptive process for the nec-
essary parameter choice, common to inference methods in extreme-value theory. A com-
prehensive simulation study is presented in Section 3.4, followed by the two elaborate
empirical applications in Section 3.5. All proofs are deferred to Section 3.7.
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3.2 The concept of tail dependence and its nonparametric esti-
mation

Let (X,Y) be a bivariate random vector with continuous marginal cumulative distribu-
tion functions (c.d.f.s) F and G. Lower or upper tail dependence concerns the tendency that
extremely small or extremely large outcomes of X and Y occur simultaneously. Simple,
widely used and intuitive scalar measures for these tendencies are provided by the well-
established coefficients of tail dependence (TDC), defined as

AL = }i{%ﬂ’{F(X) <t[G(Y) <t} Au= }i;rllll’{F(X) >t[G(Y)=t}, (&I

see for instance Joe (1997); Frahm et al. (2005), among others.
It is well-known that the joint c.d.f. H of (X, Y') can be written in a unique way as

H(x,y) = C{F(x),G(y)}, xyeR, (32)

where the copula C is a c.d.f. on [0, 1]? with uniform marginals. Elementary calculations
show that the conditional probabilities in (3.1) can be written as
/\L = lim C(t,t), )Lu = lil’nc(t’t),
V. V)
where C denotes the survival copula of (X, Y). Therefore, _the coefficients of tail depen-
dence can be regarded as directional derivatives of C or C at the origin with direction
(1,1). Considering different directions, we arrive at the so-called tail copulas, defined for

any (x,y) € E = [0,00]?\ {(c0,00)} by

. C(xt,yt)
N0 t Aulvy) = }1{% t
see Schmidt and Stadtmiiller (2006). Note that the upper tail copula of (X, Y) is the lower
tail copula of (—X, —Y), whence there is no conceptual difference between upper and
lower tail dependence.

Several variants of tail copulas have been proposed in the literature on multivariate
extreme-value theory. For instance, L(x,y) = x +y — Ay(x,y) denotes the stable tail
dependence function, see, e.g., de Haan and Ferreira (2006). The function A(t) = 1 —
Ay(1 —t,t), which is simply the restriction of L to the unit sphere with respect to the || -
|l1-norm, is called Pickands dependence function, see Pickands (1981). All these variants
are one-to-one and are known to characterize the extremal dependence of X and Y, see
de Haan and Ferreira (2006). In the present paper we restrict ourselves to the case of tail
copulas.

Nonparametric estimation of L and A has been addressed in Huang (1992); Drees and
Huang (1998); Einmahl et al. (2006); de Haan and Ferreira (2006); Biicher and Dette (2013);

, (3.3)

.....

tail copulas, the considered estimators are slight variants, differing only up to a term of
uniform order O(1/k), of the function

(x,y) — % Zn: 1 (Ri <kx, S < ky) (3.4)
i1

where R; (resp. S;) denotes the rank of X; (resp. Y;) among Xj, ..., X, (resp. Y1,...,Yn),
and where k = k, — oo denotes an intermediate sequence to be chosen by the statistician.
Under suitable assumptions on k, and on the speed of convergence in (3.3) the estimators
are known to be \/En-consistent. Additionally, under certain smoothness conditions on
A, the corresponding process vk, (A — A) converges to a Gaussian limit process.
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3.3 Testing for constant tail dependence

3.3.1 Setting and test statistics

Let (X;,Yi)ie (1,..n} be an independent sequence of bivariate random vectors with joint
c.d.f. H; and identical continuous marginal c.d.f.s F and G, respectively. According to
Sklar’s Theorem, see (3.2), we can decompose

Hi(x,y) = CG{F(x),G(y)}, xy€eR,

where C;(u,v) = P(U; < u,V; <o) with U; = F(X;) and V; = G(Y;). We assume that the
corresponding lower tail copulas

Ai(x,y) = lim ¢Ci(x/t,y /1) (3.5)

exist for all (x,y) € E = [0,00]2\ {(c0,00)} and alli = 1,...,n.

At first sight, the assumption of serially independent time series may appear some-
what restrictive. However, the assumption does not seem to be too problematic because
of the following argument. In Section 3.5, the role of (Xj, Y;) will be played by the un-
observable, serially independent innovations of common time series models such as AR
or GARCH processes. We will apply the proposed tests to the observable, standardized
residuals (obtained by univariate filtering) and consider these residuals as marginally al-
most i.i.d. Our extensive simulation study in Section 3.4 indicates that the additional
estimation step does not influence the asymptotic behavior of our test statistics, i.e., the
asymptotic distribution of the estimator based on residuals is the same as the one based
on the unobservable, serially independent innovations. Note that this observation is sup-
ported by the results in Chen and Fan (2006); Rémillard (2010); Chan et al. (2009), where
it is shown that the asymptotic distributions of both semi- and nonparametric estimators
in copula models are not influenced by marginal filtering.

Also, the assumption of strict stationarity of the marginal distributions may appear re-
strictive. Note that, in the literature on testing for constant copulas, it can be considered as
a common practice hitherto, see for instance Busetti and Harvey (2011); Rémillard (2010);
Biicher and Ruppert (2013); Biicher et al. (2014). In Section 3.3.7, we adapt our methods
to a more general setting that allows for potential breaks in the marginal distributions.
Note that, as we are only interested in strict stationarity in the following (calculation of
ranks, see (3.4), originating from different distributions is of doubtful validity), we drop
the adjective strict.

Throughout this paper, it is our aim to develop tests for detecting breaks in the tail
dependence, i.e., to test for

H{)\ : there exists A > Osuchthat A; = Aforalli=1,...,n
against alternatives involving the non-constancy of A;. A special case of this null hy-
pothesis is given by considering the conventional lower tail dependence coefficient A; =
Ai(1,1). The corresponding null hypothesis reads as

Hé‘ : thereexists A > OsuchthatA; = Aforalli=1,...,n.

In order to motivate our test statistics, let us first recapitulate the empirical tail copula
from Schmidt and Stadtmuiiller (2006) as the basic nonparametric estimator for A under
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HY, see also (3.4) and the corresponding citations. Replacing the unknown copula in (3.5)
by the empirical copula C,, it is defined as

An(x,y) = %C’n (kx,ky) = %Z]l (Hi <kx/nV; < ky/n), (3.6)

where (Hi, Vl) denote pseudo-observations from the copula C, defined by

=" " Ga(Y)),

P<Xi)/ Vi:]’l—f—l n

T+l "

with F, and G, denoting the marginal empirical c.d.f.s. Additionally, k = k, — o0, k =
o(n) as n — oo, represents a sequence of parameters discussed in detail below. The
ratio k/n can be interpreted as the fraction of data that one considers as being in the tail
and thus taken into account to estimate the tail dependence in Equation (3.6). Under
suitable regularity conditions some of which are given in the subsequent Section 3.3.2, it
is known that A, is vk-consistent for A and that the corresponding empirical tail copula
process (x,y) — Vk{A,(x,y) — A(x,y)} converges weakly to a Gaussian limit process.
R Now, in order to test for Hé\, it is natural to consider a suitable sequential version of
A,,. We define

A rhel X

A (s, x,y) = Z Y 1(U; < kx/n, Vi < ky/n)

i=1

as the sequential empirical tail copula. Under H{, AS should be regarded as an estimator
for A°(s,x,y) = sA(x,y). Note that AS(1,x,y) = A,(x,y). The crucial quantity for all
test procedures in this paper is now given by the sequential empirical tail copula process
{Gu(s,x,y),s € 10,1], (x,y) € E} with

Gu(s,x,y) = VE{AS(s,x,y) —sAs(1,x,y)} . (3.7)

Note that, despite its name, the sequential empirical tail copula process is not completely
sequential. More precisely, the unknown marginal distributions are estimated based on
all the available marginal information, whereas only the quantity of interest, the depen-
dence, is assessed sequentially.

Now, some simple calculations show that, for s € (0,1), G, can be written as

1 |ns] . R
Gu(s,x,y) = Vi{s(1—s)} e Z 1 (U; <kx/n,V; <ky/n)
i—1
1 n N N
= 1( lﬁkx/n,ViSky/n)}
k(1—s) z:sz;sHl

Since ks = |ks|, ns ~ |ns| and k/n ~ |ks|/|ns] for any s € (0,1), the two summands in
the brackets on the right-hand side can be interpreted as (slightly adapted) empirical tail
copulas of the subsamples (X1, Y1), ..., (X|ns|, Y|us)) and (X{ps| 11, Yns| 1)« - - (X, Ya),
respectively, with corresponding sequence of parameters k' = |ks| and k" = [k(1 —s)].
Under H{', one would expect that the difference between these two estimators converges
to 0. Therefore, any statistic that can be interpreted as a distance between G, and the
function being constantly equal to 0 is a reasonable candidate for a test statistic for the
null hypothesis. A simulation study similar to one presented in Section 3.4 showed that
a Cramér-von Mises functional yields the best finite-sample performance, which is why
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we restrict ourselves to this case in the subsequent presentation. Consequently, in case of
the simple null hypothesis H}, we propose the test statistic

. 1
8= At [ {Gu(s 1)) ds (3.8)

where A, = /A\,‘; (1,1,1), and to reject the null hypothesis whenever S, is larger than an
appropriate critical value to be determined later on.

For the construction of a test for the null hypothesis Hj', we make use of the fact
that, by homogeneity, the lower tail copula is uniquely determined by its values on the

sphere S(c) = {x € [0,00)2 : ||x|| = c}, where || - || denotes an arbitrary fixed norm on
R? and where ¢ > 0 is an arbitrary fixed constant. The most popular choice in bivariate
extreme value theory is ¢ = 1 together with the | - |[;-norm resulting in the function

AHHl . [0,1] — [0,1/2] = AHHl(t) = A(l — t, t). Note that Aqu(t) =1- A(t) with
the Pickands dependence function A, see, e.g., Segers (2012b).

In order to test for overall constancy of A; it is sufficient to test for constancy of A;
on some sphere S(c). In Section 3.3.5, we will propose a data-adaptive procedure for the
choice of the parameter k, which will suggest to use a sphere that contains the point (1,1).
For that reason, we introduce the following test statistic

T = / (Gn(s,2 —2t,26)}% d(s, 1),
01

whose support corresponds to the || - |;-norm and ¢ = 2, and let H{* again be rejected
when 7, is larger than an appropriate critical value.

In order to determine the critical values, we will derive the asymptotic null distribu-
tions of the tests in the next subsection. For both statistics, they will rely on a limit result
for the sequential empirical tail copula process.

3.3.2 Asymptotic null distributions

Let B« ([0,1] x E) denote the space of all functions f : [0,1] x E — R which are uni-
formly bounded on every compact subset of [0, 1] x E (here and throughout, we under-
stand E = [0,00]? \ {(c0,00)} as the one-point uncompactification of the compact set
[0, 00]?), equipped with the metric

[ele]

d(f,g) = 3, 27"(Ilf = 8lls. A1),

m=1

where a A b = min(a, b), where the sets S, are defined as S, = [0,1] x T,, with
Ty := [0,m]* U ({eo} x [0,m]) U ([0,m] x {co})

and where || - ||s denotes the sup-norm on a set S. Note that convergence with respect to
d is equivalent to uniform convergence on each S,,.

In the following we are going to show weak convergence of G, as an element of the
metric space (B« ([0,1] x [E),d). Similar as in related references on the estimation of tail
copulas (see Section 3.2), we have to impose several regularity conditions. First, we need
a second order condition quantifying the speed of convergence in (3.5) uniformly in i and

(x,y).
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Assumption 3.1
We have A; # 0 and

Ai(x,y) — tCi(x/ty/t) = O(S(t)), t— oo, (3.9)

uniformly on {(x,y) € [0,1]?> : x +y = 1} (and hence uniformly on each T,,) and uni-
formly ini € IN, where S : [0,00) — [0, 00) denotes a function satisfying lim;_,« S(t) = 0.

Second, the following conditions have to be imposed on the sequence k = k.

Assumption 3.2
The nondecreasing sequence k = k,, — oo satisfies the conditions

(a)ko/n 10,  (b) Vk,S(n/ky) = 0(1),

as n tends to infinity.

Condition (a) is needed anyway to define a meaningful estimator. Condition (b) al-
lows to control appearing bias terms in the nonsequential empirical tail copula process,
see also Schmidt and Stadtmidiller (2006) and Biicher and Dette (2013).

With these assumptions we can now state the main result of our paper.

Proposition 3.3
Suppose that Assumptions 3.1 and 3.2 hold. Then, under Hj',

G, ~ Gp  in (Bs([0,1] X E),d),

where G (s, x,y) = Ba(s,x,y) —sBa(1,x,y). Here, B, is a tight centered Gaussian process
with continuous sample paths and with covariance structure

E[Ba(s1,x1,y1)Ba (52, x2,¥2)] = (51 As2)A(x1 A x2,y1 A y2).

As stated above, Assumption 3.2 (b) is needed to control bias terms occurring when
estimating A by A,. As the process G, does not involve the true tail copula A, the as-
sertion of Proposition 3.3 actually holds if (b) is replaced by a quite technical, but less
restrictive assumption, see Remark 3.16 in the appendix. However, as an application of
the proposed test procedures in this paper will usually be followed by the application of
estimation techniques relying on (b), we do not feel that imposing this condition is too
restrictive.

Proposition 3.3 immediately yields the asymptotic null distributions of S, and 7,,.

Corollary 3.4
Suppose that Assumptions 3.1 and 3.2 hold. Then, under H',

1
Sy S = / (B(s))2ds,
0
where B is a one-dimensional standard Brownian bridge, and
R /[ RCNCES 2t,26) Y2 d(s, 1),
0,1

where G is defined in Proposition 3.3.
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Note that, in fact, the weak convergence of S, can be derived under a relaxation of
Hé\, as it suffices that A;(x,y) # 0 exists and is constant in time in a neighborhood of
(1,1). This is, however, a bit more than assumed in Hé‘.

Since the limiting distribution for S, in Corollary 3.4 is pivotal, we directly obtain an
asymptotic level « test for HS‘.

TDC-Test 1. Reject Hé\ for S,, > qf_ . Where qlc_ . denotes the (1 — a)-quantile of the
Cramér-von Mises distribution, the latter being defined as the distribution of the random

variable fol {B(s)}?ds.

In order to derive critical values for the test based on 7, some more effort is needed.
Its limiting distribution in Corollary 3.4 is not pivotal and cannot be easily transformed
to a distribution which is independent of A. Therefore, we propose an appropriate boot-
strap approximation for G, which will also allow for the definition of an alternative test
for H.

Let B € N be a large integer and let &",..., &/, ...,&",..., & be an independent
sequence of n x B ii.d. random variables with mean 0 and variance 1 which are inde-
pendent of the data (X1,Y1),..., (X, Ys) and possess finite moments of any order. We
will refer to (jl@ as a multiplier. Similar in spirit as in Rémillard (2010); Biicher and Dette
(2013) we define, for any (s,x,y) € [0,1] x Eand b € {1,..., B},

G,z (s, X, y) = B,z (s, %,y) — 5B, =00 (L, x, ¥), (3.10)
where

1 |ns] R R R
]Bn,w)(s,x,y) = T C.b) {1 (U; <kx/n,V; <ky/n) —Cyp(kx/n,ky/n)}

=

1

~
[y

,_
=
©w

[T

e {0 (T < kx/n, Vi < ky/n) —k/n x AS(1,x,)} .

1

-

—_

=

The following proposition essentially states that, for large 1, G, z1), . .., G, z( can be
regarded as almost independent copies of G,. To prove the result, one additional technical
assumption on the sequence k; is required, which can be regarded as very light.

Assumption 3.5
There exists some p € N such that n/k}, = o(1).

Proposition 3.6
Suppose that Assumptions 3.1, 3.2 and 3.5 hold. Then, under HA,

(Gann,g(l)/ “oe ’Gn,CU”) o d (GA, G(I{)’ I ,G(X))
in (Beo([0,1] X E),d)B+1, where Gg), e ,Gf) are independent copies of G.

Forb =1,...,B, define Sn,(;:(b) and 7;,(3@) by

R 1
Snlg(b) = A1 /0 {Gnré(b) (s,1,1)}ds, 7:1,5(1;) = /[O 1}2{Gn’§(b) (s,2 —2t,2t)}2d(s, t).

We obtain the following tests for Hj and H{', respectively.

TDC-Test 2. Reject H) for S, > §s, 1, where §s, 1, denotes the (1 — a)-sample quan-
tile of Sn,(:(l)’ ce ’Sn,(j(B)‘
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TC-Test. Reject HY for T, > 47,14, where 47,1, denotes the (1 — a)-sample quantile
Of 7;’@(1), ey 7;1,C(B>'

The final result of this subsection shows that all proposed tests in this paper asymp-
totically hold their level.

Corollary 3.7

Suppose that Assumptions 3.1 and 3.2 hold and that H{\ is valid. Then TDC-Test 1 is an asymp-
totic level a test for Hy. If, additionally, Assumption 3.5 holds, then TDC-Test 2 and TC-Test are
asymptotic level  tests for H} and HY', respectively, in the sense that, for any a € (0,1),

lim lim IP(SH > 578,7,1—0() =, im lim IP(’];I > qA’Y;,l—a) = Q.

| i
B—oc0 n—00 B—00 n—00

3.3.3 Asymptotics under fixed alternatives

In the present subsection we are going to show consistency of the proposed test statistics
under fixed alternatives. We observe a triangular array of row-wise independent random
vectors (Xj,,Yin), i =1,...,n,such that X;, ~ Fand Y;, ~ G for all i and n and such
that the copula C; , of (X, Yi,) may vary over time. Slightly abusing notation, we omit
the index n wherever it does not cause any ambiguity. For the sake of a clear exposition,
we first consider the following two simple alternatives for H} and H{'. Later on, we
provide a discussion on how to detect multiple break-points and how the test statistics
behave in the presence of smooth changes.

H{‘ : there exists § € (O,l),A(l) # A such that
Ai=AWfori=1,...,[n5|and A\; = A? fori = [n5| +1,...,n.
H{\ : there exists 5 € (0, 1),A(1) = A@ such that
Ai=AYfori=1,...,|n5] and A; = A® fori = |n5] +1,...,n

Proposition 3.8
Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hy and H{ are true, then

1
sup |—=Gy(s,1,1) — Ax(s)
se[0,1] 1V kn

where Ay(s) = s(1 —3) (A1) —A@) for s < 5and Ay(s) = 5(1 —s) (AN — A2)) for
s > 5. Moreover, S, converges to infinity in probability.

= 0p<1)

(ii) If Hi is true, then

sup
5€[0,1],(x,y) €T

T Gn(5,5) = An(s, )| = on(D)
for any m € N, where Ax(s,x,y) = s(1 —35){AW(x,y) — A®(x,y)} for s < 5 and
An(s,x,y) = 5(1 —s){AD(x,y) — AP (x,y)} for s > 5. Moreover, T, converges to
infinity in probability.

As already mentioned after Corollary 3.4, it is not necessary to assume global con-
stancy of the tail copulas in the respective subsamples in part (i) of Proposition 3.8, con-
stancy in a neighborhood of (1,1) is sufficient. Moreover, Proposition 3.8 implies consis-
tency of the proposed tests.
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Corollary 3.9

Suppose that Assumptions 3.1 and 3.2 are satisfied. Then TDC-Test 1 is consistent for H;. If,
additionally, Assumption 3.5 holds, then TDC-Test 2 and TC-Test are consistent for H and H{*,
respectively, in the sense that, for any B € N and a € (0,1),

lim ]P(Sn > q\Sml_a) = 1, lim ]1)(7;1 > q\'n,l—a) =1.

n—oo n—oo

Under H; and H{*, consistent estimators for the break-point 3 are given by §* :=
argmaxg o ] |G,(s,1,1)| and 8 := argmax e o 1] SUP;c(o 1] |Gy (s,2 — 2t,2t)], respectively.

Proposition 3.10
Suppose that Assumptions 3.1 and 3.2 hold.

(i) If H and H are true, §* —, 3.
(ii) If H{ is true, § — 5.

Note that, if one of the alternatives H{‘ or H{\ holds, then the other one cannot hold
with a different value for 5. Hence, the break-point 5 in Proposition 3.10 (i) is well-defined.

Up to now, we have assumed the existence of at most one single break-point. As
is shown in the end of this subsection, an analog consistency result for the test can be
obtained in the case of an arbitrary finite number of break-points between which the tail
copula is constant, respectively. For example, a corresponding alternative for H} would
then read as: there exists a finite number of points 0 = 59 < 51 < ... < sy < ... <
s; = 1 such that, for any ¢ € {1,...,L}, the TDC of the sample (XLnsHHlfYLnsf,lHl)f

o+ (X|ns,|» Y|ns, ) is given by A, with A0 £ A1),

Estimating the break-points sy, sy,...,511 is slightly more complicated than it is in
the case of just one break-point. In principle, it is also possible to work with the argmax-
estimator 3" here, but, by construction, this estimator only estimates a single break-point.
The number and the location of the other break-points can be estimated by a binary seg-
mentation algorithm going back to Vostrikova (1981). This procedure is for instance ap-
plied in Galeano and Wied (2014) to the problem of detecting changing correlations. The
basic principle is as follows: at first, the test is applied to the whole sample. If the null hy-
pothesis gets rejected, the argmax-estimator $* can be shown to be a consistent estimator
for the dominating break-point (see Galeano and Wied, 2014). In the next step, the sample
is divided into two parts with the split point given by |n$*|. The test is applied to both
parts separately to decide whether one gets additional break-points in the corresponding
subsamples. In that case, the respective subsample is further divided at the correspond-
ing estimated break-point. This procedure is repeated until no further break-points are
detected.

The setting with a fixed number of break-points as described above is a special case of
a general class of alternatives in which A; (and thus also A;) is described by a nonconstant
function g. More precisely, let G denote the class of all functions g : [0,1] x E — R such
that (s, -, -) is a tail copula for any s € [0,1] and such that, for any m € N,

1 ns] i s
lim sup |- ) ¢ (,x,y) —/ Q(z,x,y)dz| = 0.
n—reo (s,x,4)ESm n 1:21 h 0

The class G allows to consider the following general class of alternatives, see also Wied
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et al. (2012):

H{‘,g : there exists ¢ € G such that A; = g(i/n, -, -) and such that

s 1
/ Q(z,1,1)dz # s/ g(z,1,1)dz for some s € [0,1],
0 0

H{}g : there exists ¢ € G such that A; = g(i/n, -, -) and such that
s 1
/ Q(z,x,y)dz # s/ 2(z,x,y) dz for some (s, x,y) € [0,1] x E.
0 0

The former setting with a fixed number of break-points corresponds to a function g
that is piecewise constant in s, but in the general case, continuous functions are explicitly
allowed. The latter, for instance, may occur in models with time varying copula parame-
ters (see, e.g., Hafner and Manner, 2012 or Patton, 2006).

In general, CUSUM-type procedures as those considered in Section 3.3.2 are not con-
structed for detecting smooth changes in the first place. Here, it would perhaps be more
advisable to consider a setup based on locally stationary processes. Nevertheless, the test
statistics converge to infinity in probability under smooth alternatives.

Proposition 3.11
Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hy is true, then

sup Gu(s,1,1) — AS(s)| = op(1),

s€[0,1]

1
VEn
where A3 (s) = [ g(z,1,1)dz —s fol ¢(z,1,1)dz. Moreover, S, converges to infinity in
probability.

(ii) If H{}g is true, then

sup
s€[0,1],(x,y) €Ty

T Guls ) = 455, = 0n(1),

for any m € IN, where Ai(s, X,y = fos Q(z,x,y)dz — sfolg(z, x,y)dz. Moreover, T,
converges to infinity in probability.

As a simple consequence, we obtain consistency of TDC-Test 1 under the setting of
Proposition 3.11(i).

3.3.4 Testing for a break at a specific time point

In certain applications, one might have a reasonable guess for a potential break-point in
the tail dependence of a time series. Important econometric examples can be seen in Black
Monday on 19th of October 1987, the introduction of the Euro on 1st of January 1999 or
the bankruptcy of Lehman Brothers Inc. on 15th of September 2008. In that case, it might
be beneficial to test for constancy against a break at that specific time point rather than
testing against the existence of some unspecified break-point. The results in the previous
subsections easily allow to obtain simple tests in this setting.

Under the situation of Section 3.3.1, let 5 € (0, 1) be some fixed time point of interest.
Suppose we know that the tail dependence is constant in the two subsamples before
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|n5| and after |n5| + 1, which, in practice, can be verified by the tests in the preceding
subsections. Then, to test for H{)L against

H{\(5) : there exists A1) #£ A(?) such that
A=AV fori=1,..., |n5| and A; = A2 fori = |ns|+1,...,n,

we propose to use the test statistic
Su(5) == (5A4) T Gu(5,1,1)2 (3.11)

It easily follows from Proposition 3.3 that, under the null hypothesis, S, (5) weakly con-
verges to a chi-squared distribution with one degree of freedom. Under the alternative, it
follows from Proposition 3.8 that S, (5) converges to infinity, in probability. Hence, reject-
ing H} if S,(5) exceeds a corresponding quantile of the chi-squared distribution, yields
a consistent test for H} against H; (), which asymptotically holds its significance level.
Similar results can be obtained for the bootstrap analog and for the test for constancy of
the entire tail copula, the details are omitted for the sake of brevity.

3.3.5 Choice of the parameter k

As usual in extreme-value theory, the choice of k, plays a crucial role for statistical appli-
cations. The asymptotic properties of the tests proposed in this paper hold as long as the
assumptions on the sequence k, from Assumption 3.2 (and of course other assumptions)
hold. This, of course, allows for a large number of possible choices of k,. However, the
results of the testing procedures may depend crucially on the specific choice of k.

The common approach in extreme-value theory to cope with this problem is to con-
sider the outcome of statistical procedures, for instance of an estimator, for several differ-
ent values of k. The set of all these outcomes should give a clearer picture of the under-
lying data-generating process. This, for instance, is the basic motivation for the Hill plot
used in univariate extreme-value theory for estimating the extreme-value index, see, e.g.,
Embrechts et al. (1997). Additionally, in certain univariate settings some refined data-
adaptive choices to estimate an optimal k have been developed, see for instance Drees
and Kaufmann (1998) or Danielsson et al. (2001).

In the specific context of estimating tail dependence, Frahm et al. (2005) use plots
of the function k — TDC(k) to define a plateau-finding algorithm that provides a single
data-adaptive choice of k. In most of the application in this paper, we closely follow their
approach for which reason we briefly summarize this algorithm in the following.

The aim of the algorithm is to search for a value k* such that the TDC, as a function
of k, is as constant as possible in a suitable neighborhood of k*. This is achieved by ac-
complishing the following steps: first, the function k — TDC(k) is smoothed by a box
kernel depending on a bandwidth b; we denote the smoothed plot by k +— A,(k), k =
1,...,n —2b. In our simulation study, we use b = |0.005n]. In a second step, we con-
sider a rolling window of vectors or plateaus (having length ¢ = |v/n — 2b]) with their
entries consisting of successive values of the smoothed TDC-plot, formally defined as
P(k) = (Ap(k),Ap(k+1),...,Ap(k+£—1)) € R, wherek = 1,...,n—2b— £+ 1. We
calculate the sum of the absolute deviations between all entries and the first entry in
each vector, i.e., MAD(k) = Zle |(P(k))1 — (P(k));|. The algorithm searches for the first
vector such that MAD(k) is smaller than two times the sample standard deviation of all
values of the smoothed TDC-plot A,(1), ..., A,(n — 2b). Finally, k* is defined as the index
which corresponds to the middle entry (the floor function if the length is even) of this
vector. For further details, we refer to Frahm et al. (2005).
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3.3.6 Higher dimensions

Although we have focused on the case of two dimensions so far, it is basically straight-
forward (although notationally more involved) to deal with d-dimensional random vec-
tors for a fixed number d. Consider a sequence of marginally i.i.d. random vectors
(Xit, -, Xid)ie{l,...,n} with continuous marginal c.d.f.s Fy, ..., F; and d-dimensional cop-
ulas C;. We suppose that the corresponding lower tail copulas

Al-(xl,. . .,xd) = tli_>r£1°tCi(x1/t,.. .,xd/t).

exist for all x = (x1,...,%;) € Ey = [0,00]\ {(c0,...,00)}. Note that A; is in one-
to-one correspondence to the familiar d-dimensional stable tail dependence function of
(Xi1, - de) see, e.g., Einmahl etal. (2012) for its deflmtlon Define pseudo-observations
(Uy, . .., Uiy) from the copula C; by Ul] arFaj(Xij), j = .,d, where F,; denote the
marginal empirical c.d.f.s. The d-dimensional sequential empirical tail copula process is
defined, for any (s, x1,...,x4) € [0,1] X Ey, by

Gu(s,x1,...,x3) = \/%{f\,ol(s,xl,...,xd) —s/\fl(l,xl,...,xd)},

where AS(s, x1,...,x4) = %Z}EJ 1(U;y < kxi/n,..., Uy < kxg/n). A test statistic only
focusing on the d-dimensional TDC can be defined analog to the 2-dimensional case,

. _ 1
Sii= (A1 0} [ HGuls 1 )P s,
0

while test statistics focusing on the entire tail copula look slightly more complicated. For
instance, one might use
Tn = {G, (s, 1)} d(s, 1),
0,1]xA
where A := {t € (t1,...,t;) € E | atleast2 of the t; are # OOIZ;‘i:l,t]-;éoo t; = 1}. Note
that the restriction of a tail copula to A uniquely determines the whole tail copula by

homogeneity. Bootstrap statistics can be defined analogously. For the asymptotic results,
one has to modify the metric defined in the beginning of Section 3.3.2 such that

d
— ]
U U m,jlr

where, foreachm € Nand j =0,...,d — 1, the U, ;, are the (’j) different d-fold cartesian
products that contain j times {oo} and d — j times [0, m].

3.3.7 Testing for a break under non-stationarity of the marginals

Throughout the previous subsections, we made the assumption that the marginal laws of
(X, Y;) are constant over time. A less stringent assumption would be to allow for breaks
in the marginal laws. In the present subsection, we outline how the proposed methods
can be adapted to that setting.

For the sake of brevity, we restrict ourselves to the case of one known break in each
marginal. Let (X;, Y;) be an independent sequence of random variables with copula
C; and continuous marginal c.d.f.s F() and G, respectively. Suppose that there exist
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tF/ tg € (O/ ) such that F( ) — o= F(L”tFJ) ?é F(L”tFJ"'l) = ... = ( ) and G( ) — =
Gllne)) # Gllntel+1) = ... = G(”). Define pseudo-observations (U;, V;) of C; through
0 — Fi: e (X3), Z:S [nte], D= Gi:nte) (Yi), Z:S [ntc], (3.12)
FLnth+1:n(Xi)/ 1> LTlth, G[ntcj—&-l:n(yi)/ 1> LntGJ/

where Fy 1y, (x) :== ({ —k+1)"" Zf:kﬂ 1(X; < x), and similarly for the second coordi-
nate. Define G, exactly as in (3.7). For the derivation of asymptotic properties, we need
an additional smoothness assumption on A.

Assumption 3.12

The first order partial derivative A, = 2 A exists and is continuous on {(x,y) € E :
0 < x < oo}. The first order partial derivative A, = %A exists and is continuous on
{(x,y) €E:0 <y < oo}

Proposition 3.13
Suppose that Assumptions 3.1, 3.2 and 3.12 are satisfied. Then, under HY', we have G, ~
Gty te 11 (Beo([0,1] X E), d), where

SAtp—st
Gaptc(5,%,9) = Ga(s,x,y) — Ax(x, y)ﬁ(},\(tp, X, )
p sANtg — stg
Ay(x/y)m‘@/\(tc,w,y)-

The limiting distribution is different from the one under constant margins in Propo-
sition 3.3. As a consequence, for approximating critical values of an appropriate test
statistic, one needs to modify the methods described in the previous subsections. In the
following, we restrict ourselves to the case of testing for a constant coefficient of tail de-
pendence. Let A, ,(1,1) and Ay,n(l, 1) denote estimators for the partial derivatives of A
at (1,1) which are consistent under the null hypothesis, for instance

A K2 ~
Amn01D::aif—{AnU;+k*U%1)——AﬂCl—k’U%l)},

and similar for the partial derivative with respect to y (Biicher and Dette, 2013). Fur-
thermore, let S, be defined as in (3.8) with pseudo-observations as in (3.12). Observing
that s — A71/2G,(s,1,1) is a standard Brownian bridge, Proposition 3.13 suggests the
following test procedure.

TDCME-Test. Reject H} if the test statistic S, is larger than the (1 — «)-quantile of the
distribution of the random variable fol {Bi, 1. (s)}? ds, where

s A\Ntp —str sN\tg —stg
tp(1—tr) tc(1—tg)

with marginal break points tr and g, and a standard Brownian bridge B.

Analogs of the tests in Section 3.3.4 for the detection of breaks at a given time point
§ are straightforward. In practice, the marginal break points tr and ¢ are rarely known.
However, they can usually be estimated at rate n~! which suggests that the previous
results remain valid provided tr and ¢ are replaced by suitable estimators fr and f (see,
e.g., Diimbgen, 1991) both within the definition of the pseudo-observations in (3.12) and
the approximation of the limit distribution stated in Proposition 3.13. For instance, in

Biric(s) := B(s) — Ayu(1,1) B(tp) — Ayu(1,1) B(tg),
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a model with a structural break in the (unconditional) mean for the first marginal, one
might use

1 ({ "
i (B a )

(see, e.g., Bai, 1997; Aue and Horvath, 2013). The simulation results in Section 3.4 show
that, indeed, the approximation of the nominal size is quite good.

, (3.13)

S |~

» 1
tp = — argmax
n j=1,...n

3.4 Evidence in finite samples

This section investigates the finite sample properties of the proposed testing procedures
by means of a simulation study. We observe that the tests are slightly conservative and
that they have reasonable power properties. As a main conclusion, we obtain that the
tests based on i.i.d. observations and on time series residuals show the same asymptotic
behavior.

3.4.1 Setup

As outlined in Jaschke (2014) (see also McNeil et al., 2005, Section 7.5), many commonly
applied symmetric tail copulas exhibit a quite similar behavior. When comparing, for
instance, the Gumbel model (Gumbel, 1960), the Galambos model (Galambos, 1975) or
the Hiisler-Reiss model (Hiisler and Reiss, 1989), the plots of t — A(1 —t,t), which
uniquely determine the tail copula by homogeneity, are nearly indistinguishable. We
therefore stick to two cases of one common symmetric and one common asymmetric tail
copula model as follows.

(A1) The negative logistic or Galambos model (Galambos, 1975), defined by
-1/6
Al —tt) = {(1 —t)’9+t’9} , teo1],

where we chose the parameter 6 € [1,00) such that A = A(1,1) = 271/ varies in
the set {0.25,0.50,0.75}.

(A2) The asymmetric negative logistic model (Joe, 1990), defined by

A=) = {ma-0) @0}, e,

with two fixed parameters ¢; = 2/3, » = 1 and parameter 6 € [1,00) such that
A=AL1) =2((¥1/2)7 + (2/2)7%) /% varies in the set {0.2,0.4,0.6}.

Note that (A1) is a special case of (A2) with ; = ¢, = 1. Tail copulas being direc-
tional derivatives of copulas in the origin, there are of course many copulas that result in
the same tail copula. In our simulation study, we basically stick to simulating from one
of following two copula families.

(C1) The Clayton copula, defined by
~1/6
C(u,v) = (u‘e +o0 0 — 1) , u,vel0,1],

possesses the negative logistic tail copula as specified in (A1). The Clayton copula
is widely used for modeling negative tail dependent data.
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(C2) The survival copula of the extreme-value copula, defined by

C(u,v) = exp {log(uv)A (l?&%) } u,v € [0,1],

(3.14)
where A(t) = 1 — A(1 —t,t) with A as in (A2), see Segers (2012b), possesses the
asymmetric negative logistic tail copula specified in (A2).

a third model.

In order to show that our methods have better power properties than tests for con-
stancy of the whole copula, provided the change only takes place in the tail, we consider

algorithm for generating a pair (U, V) from that copula.
(C1) or (C2).

(C3) Instead of giving a closed form expression for the copula, we state the simulation

(a) First, generate (U, V) ~ C, with C being one of the aforementioned copulas

(b) Then, if ({1, V) € [a,1]% set (X, Y) = (U, V). If (I, V) € [0,1]\ [a,1]2

tedious calculations show that

coin with success probability p. In case of success, define (X,Y) = (all,aV)
Note that, for p = 0, (X,Y) is distributed according to the initial copula C. Some

with (U, V) ~ C, independent of (U, V), otherwise set (X,Y) = (U, V)
H(x,y) =P(X <x,Y <vy)

_ {WC<xmm, Ymin) + (1= p)C(x,y),

(x,y) € [0,1]*\ [2,1]?,
up+Clxy) — p{C(x,a) + Cla,y) = Cla,a)}, (xy) € [a,1]%,
where Xmin := min(x/a,1), Ymin := min(y/a,1) and y := C(a,1) + C(1,a) — C(a,a)
denotes the C-measure of [0,1]?\ [a,1]%.

(c) Finally, define (U, V) by U = H(X,1) and V = H(1,Y).

(Estimated) densities of the resulting copulas are depicted in Fig. 3.1 for the Clayton
copula with 6 = 0.5 (or equivalently A = 0.25), for a = 0.1 and for p € {0,0.3}. One
can clearly see that the two densities are very close to each other on [g,1
they differ significantly in the tail.

]2, while
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Fig. 3.1. Left: (estimated) copula density from the Clayton copula with A = 0.25. Middle: (estimated) copula

density from the transformed Clayton copula described in (C3). Right: difference between the two densities.
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Our simulation results will show that the distribution of the test statistic based on
estimated marginally almost i.i.d. residuals is the same as the one of the test statistic based
on the unobservable, marginally i.i.d. innovations. Regarding the marginal time se-
ries behavior, we consider three different cases. We begin with a consideration of i.i.d.
marginals. Subsequently, the simulation results in this case will serve as a benchmark
for the application of the tests to marginally almost i.i.d. residuals of AR and GARCH time
series models. Note that, under the null hypothesis, the latter two models satisfy the
assumptions that Rémillard (2010) imposed in the context of related residual-based tests
for constancy of the entire copula.

(T1) Serial independence. Here, we generate independent random vectors (U;, V;), i =
1,...,n, of one of the aforementioned copulas (C1), (C2) or (C3). Note that, without
loss of generality, the marginal distribution can be chosen as standard uniform in
this case, since all estimators in this paper are rank-based and hence invariant with
respect to monotone transformations.

(T2) AR(1) residuals. This setting considers the (under Hj stationary) solution (Q;, R;)
of the first order autoregressive process

icz, (3.15)
Ri = B2Ri_1+Y;,

{Qi = p1Qi-1 + Xi,
where (X;,Y;), i € Z, are serially independent bivariate random vectors (inno-
vations) whose copula is either from model (C1) or (C2). Here, the (stationary)
marginals X;, i € Z, are standard normally distributed and Y;, i € Z, are t3-
distributed, respectively. The coefficients (1, B2) of the lagged variables vary in
the set {1/3,1/2,2/3}. We simulate a time series of length n of this model as fol-
lows:

(a) choose some reasonably large negative number M, e.g., M = —100;

(b) generate a serially independent sequence (U;, ;) ~ C;,i =M,...,nof one of
the aforementioned copulas C and apply the inverse of the marginal c.d.f.s F
and G to the copula sample, vis. (X;,Y;) = (F~1(U;), G"Y(V}));

(c) calculate recursively the values (Q;, R;) according to (3.15) for all i = M +
1,...,n, starting with (Qp, Rm) = (Xm, Ym); the last n observations form the
final sample.

Since we do not observe the innovations (X;, Y;),i =1, ..., n, we estimate 1 and
by the Yule-Walker estimators and obtain an marginally almost i.i.d. sample (see Sec-
tion 3.3.1) by considering the time series (X;, Y;) of corresponding estimated resid-
uals defined as

Xi=Qi—p1Qi1, Yi=Ri—poRiy, i=1,...,n

(T3) GARCH(1,1) residuals. The final setting analyses a two-dimensional time series
model which is based on the frequently applied univariate GARCH(1,1) model.
More precisely, for i € Z, we consider the (under Hj stationary) solution (Q;, R;) of

Qi =0i1X;, 051 =w +:Q% | + ,31(71-2,1,1, (3.16)
R; = 0;)Y;, 0'1-2,2 =wy+ aR? |+ /32(712,1,2,
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where (X;,Y;), i € Z, are serially independent bivariate random vectors (innova-
tions) whose copula is again either from model (C1) or (C2). This time, the (sta-
tionary) marginals X;, i € Z, are standard normally distributed and Y;, i € Z, are
normalized ts-distributed (i.e., \@Yi, i € Z, are t3-distributed), respectively. Fol-
lowing the empirical application of modeling volatility of S&P 500 and DAX daily
log-returns in Jondeau et al. (2007) we set the coefficients w; = 0.012, wy = 0.037,
a1 = 0.072, &, = 0.115, B1 = 0.919 and B, = 0.868. The long run average variances

in this model are given by 0y, = \/ w;/(1—a; — B;) which also serve as initial val-
ues for simulating a sample from (3.16). The simulation algorithm reads as follows:

(a) generate an independent sample (X;,Y;), i = M, ..., n, as described in steps
(a) and (b) of the previous AR(1) setting;

(b) recursively calculate the values (Qj, R;) according to (3.16) for all i = M +
1,...,n, starting with (Qum, Rm) = (om1Xm, om2YMm); again, the last n obser-
vations form the final sample.

A marginally almost i.i.d. sample (X;,Y;),i = 1,...,n, to which we apply the tests is
obtained by estimating the standardized residuals

Xl' = Ujjl(d)h&l/,él)Qi/ ?1 = 0—1',71 (dJZ/ &2/ BZ)Ri/ i = 1/ s, n,

where the estimates @;, &; and Bj, j = 1,2, are calculated by applying standard
constraint nonlinear optimization routines.

3.4.2 Results and discussion

The target values of our finite sample study are the simulated rejection probabilities
(s.r.p.s) of the Cramér-von Mises tests described in Sections 3.3.2 and 3.3.7 under the
null hypothesis and under various alternatives. We calculate the s.r.p.s for three levels of
significance &« € {1%,5%,10%}, for two different sample sizes n = 1000 and n = 3000
and for all of the previously described models. Due to close similarity of some of the
results, we report them only partially. The results are based on N = 5000 repetitions,
unless stated otherwise.

In Table 3.1, we present the results for TDC-Test 1 under 7 x 3 different null hypothe-
ses. The s.r.p.s for the different levels are stated in columns 3-5 (n = 1000) and 8-10
(n = 3000), respectively. The parameter k is determined by the plateau algorithm de-
scribed in Section 3.3.5. The properties of this algorithm are summarized in columns
6 and 7 (n = 1000) and 11 and 12 (n = 3000), where we state the mean and the sam-
ple standard deviation of the estimate k*. We observe an accurate approximation of the
nominal level in all cases, with a tendency of a slight underestimation of the signifi-
cance level in most of the cases. As already mentioned in Section 3.3, the additional
initial estimation step of applying univariate filtering to the time series does not signif-
icantly influence the finite sample properties. The slight conservative behavior of the
test can be explained by the constancy of the copula in most of our settings: defining
Co(s,u,v) = %ZILZSH 1(0; < u,V; < v) the test statistic S, from Equation (3.8) can be
rewritten as

Sy ={Co(1,k/n,k/n)} ! /01 [Vn {C3(s,k/m,k/n) — sCo(1,k/n,k/n)}]* ds.

If k was chosen such that u = k/n > 0 is constant in n and if, additionally to the tail
copula, the copula remained constant over time, it would follow from Corollary 3.3 (a)
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in Biicher and Volgushev (2013) that S,, weakly converges to {1 — C(u, u)} fol B?(s) ds,
where B denotes a standard Brownian bridge. Since the critical values of TDC-Test 1 are

the quantiles of fol B?(s) ds, we can easily see that the test rejects too rarely, provided that
C(u,u) > 0. Note that this argument remains valid if the copula is constant over time
only in a neighborhood of (u, u).

A more enlightening view on this issue can be gained from the results in the third
block of Table 3.1. Here, we first simulate the first half of the dataset from model (C1)
whereas the second half is simulated from model (C2). The parameters are chosen in
such a way that both models exhibit the same tail dependence coefficient. Hence, we
are still simulating under the null hypothesis but this time the hybrid (copula) model is
not constant (over time) at any point on the diagonal of the interior of the unit square.
Within the serially independent setting we observe that this is the only case where the
s.r.p.s (slightly) exceed some levels of significance.

In Table 3.2, we present simulation results for TDC-Test 1 under 8 x 3 different alter-
natives. We consider only the case of one break-point, which is either located at 5 = 0.25
or at 5 = 0.5, and of three different upward jumps. Note that, for symmetry reasons, the
results are essentially the same for corresponding downward jumps at 1 — 5. The sec-
ond column of the table indicates the coefficient of tail dependence before and after the
break-point. As one might have expected, higher jumps in the TDC are detected more
frequently. Also, breaks at 3 = 0.5 are more likely to be detected than breaks at 5 = 0.25.
Similar as for the null hypotheses presented in Table 3.1, the discrepancy between the
corresponding results for the serially independent case and for the time series residuals
appears to be negligible. Overall, one can conclude that TDC-Test 1 shows reasonable
power properties.



Table 3.1. Simulated rejection probabilities of TDC-Test 1 under various null hypotheses H(/)\. In the AR(1) scenario the marginals X,
i =1,...,n, are standard normally distributed and Y;, i = 1,...,n, are t3-distributed, respectively. The parameters are set to f; = 1/3
and B, = 2/3. In the GARCH(1,1) setting, v/3Y;,i = 1,...,n, are t3-distributed.

Tail copula A(1,1) n = 1000 n = 3000

a=1% a=5% a=10% avgk*) std(k*) a=1% a=5% a=10% avg(k*) std(k*)

Serial independence

0.25 0.008 0.046 0.092 52 23 0.008 0.044 0.093 97 49
(A1) 0.50 0.007 0.044 0.092 71 29 0.009 0.047 0.091 134 59
0.75 0.007 0.039 0.085 127 46 0.008 0.038 0.088 237 97
0.20 0.009 0.047 0.095 44 20 0.009 0.045 0.100 80 40
(A2) 0.40 0.010 0.042 0.091 61 26 0.009 0.047 0.093 113 52
0.60 0.007 0.046 0.090 84 34 0.008 0.045 0.098 153 67
0.20 0.010 0.053 0.106 47 21 0.010 0.056 0.098 86 44
(A1), (A2) 0.40 0.008 0.044 0.091 62 26 0.010 0.048 0.092 114 52
0.60 0.009 0.047 0.092 87 33 0.010 0.048 0.093 159 69
AR(1) residuals
0.25 0.008 0.046 0.098 52 23 0.011 0.047 0.099 97 49
(A1) 0.50 0.009 0.049 0.091 72 29 0.011 0.049 0.096 134 60
0.75 0.007 0.036 0.081 126 46 0.008 0.041 0.090 235 95
0.20 0.007 0.042 0.093 44 20 0.009 0.049 0.099 81 40
(A2) 0.40 0.007 0.046 0.092 61 25 0.009 0.045 0.098 112 42
0.60 0.009 0.043 0.091 83 34 0.010 0.045 0.094 154 67
GARCH(1,1) residuals
0.25 0.008 0.047 0.092 52 23 0.008 0.047 0.096 96 48
(A1) 0.50 0.007 0.045 0.090 72 29 0.007 0.048 0.093 134 59
0.75 0.006 0.038 0.083 127 45 0.007 0.041 0.087 235 94
0.20 0.007 0.043 0.095 44 20 0.008 0.046 0.092 81 42
(A2) 0.40 0.009 0.045 0.090 61 25 0.010 0.043 0.095 113 52
0.60 0.007 0.044 0.088 85 33 0.008 0.047 0.089 154 68
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Table 3.2. Simulated rejection probabilities of TDC-Test 1 under various alternatives H{\. The marginal time series models are the same

as in Table 3.1 except that ; = 1/2 = B5.

Tail copula A(1,1) n = 1000 n = 3000
a=1% a=5% a=10% avgk®) std(k*) a=1% a=5% a=10% avgk*) std(k*)

Serial independence, 5§ = 0.5

0.25 to 0.50 0.051 0.165 0.261 61 26 0.136 0.309 0.426 113 53
(A1) 0.25 to 0.75 0.321 0.563 0.694 76 30 0.679 0.845 0.904 140 64

0.50 to 0.75 0.073 0.211 0.321 93 35 0.185 0.389 0.507 171 71

0.20 to 0.40 0.054 0.175 0.279 52 22 0.128 0.306 0.431 94 45
(A2) 0.20 to 0.60 0.247 0.485 0.613 60 25 0.547 0.752 0.830 111 52

0.40 to 0.60 0.044 0.139 0.231 71 29 0.105 0.258 0.369 130 59
Serial independence, 5§ = 0.25

0.25 to 0.50 0.019 0.091 0.174 66 27 0.054 0.173 0.277 122 52
(A1) 0.25 to 0.75 0.125 0.340 0.478 95 36 0.394 0.650 0.763 174 74

0.50 to 0.75 0.036 0.129 0.217 107 40 0.077 0.225 0.339 197 82

0.20 to 0.40 0.022 0.092 0.172 56 24 0.050 0.161 0.265 104 49
(A2) 0.20 to 0.60 0.090 0.262 0.395 71 29 0.252 0.498 0.640 129 60

0.40 to 0.60 0.017 0.079 0.154 77 31 0.046 0.148 0.238 144 63
AR(1) residuals, s = 0.5

0.25 to 0.50 0.050 0.164 0.256 61 26 0.125 0.300 0.420 114 53
(A1) 0.25 to 0.75 0.329 0.567 0.690 76 30 0.686 0.849 0.904 138 62

0.50 to 0.75 0.073 0.205 0.311 92 35 0.190 0.390 0.506 169 72

0.20 to 0.40 0.052 0.170 0.262 52 22 0.133 0.295 0.413 96 48
(A2) 0.20 to 0.60 0.256 0.489 0.614 61 25 0.565 0.766 0.838 111 53

0.40 to 0.60 0.044 0.148 0.242 71 29 0.109 0.268 0.386 131 59
GARCH(1,1) residuals, § = 0.5

0.25 to 0.50 0.051 0.159 0.256 61 25 0.138 0.316 0.439 113 52
(A1) 0.25t0 0.75 0.335 0.575 0.685 76 30 0.682 0.849 0.906 141 63

0.50 to 0.75 0.076 0.213 0.320 91 35 0.192 0.387 0.511 169 70

0.20 to 0.40 0.053 0.174 0.278 52 23 0.137 0.317 0.429 95 45
(A2) 0.20 to 0.60 0.262 0.487 0.619 60 25 0.550 0.747 0.830 111 53

0.40 to 0.60 0.046 0.147 0.237 71 29 0.106 0.262 0.375 132 61




Table 3.3. Simulated rejection probabilities of TDC-Test 2 and the TC-Test under the null hypothesis and one alternative using the Clayton
copula within the serial independence setting.

Scenario A(1,1) n = 1000 n = 3000

a=1% a=5% a=10% avgk*) std(k*) a=1% a=5% a=10% avg(k*) std(k*)

TDC-Test 2
0.25 0.007 0.046 0.088 52 23 0.007 0.049 0.096 97 51
Hé\ 0.50 0.010 0.052 0.116 73 28 0.011 0.052 0.099 135 62
0.75 0.009 0.052 0.110 129 47 0.012 0.044 0.092 239 96
0.25 to 0.50 0.053 0.179 0.277 61 26 0.159 0.320 0.455 113 52
H{\, 5=05 0.25 t0 0.75 0.353 0.579 0.695 77 31 0.688 0.855 0.901 138 61
0.50 to 0.75 0.091 0.256 0.359 93 34 0.225 0.425 0.541 171 72
TC-Test
0.25 0.017 0.045 0.100 51 23 0.006 0.051 0.091 95 48
Hé\ 0.50 0.012 0.044 0.099 70 29 0.008 0.039 0.089 135 58
0.75 0.010 0.046 0.103 127 46 0.013 0.060 0.105 239 95
0.25 to 0.50 0.049 0.152 0.246 61 25 0.150 0.312 0.416 116 52
HlA, 5=05 0.25t0 0.75 0.276 0.530 0.639 76 30 0.619 0.813 0.882 141 64

0.50 to 0.75 0.063 0.169 0.267 91 35 0.125 0.302 0.416 169 72

Table 3.4. Simulated rejection probabilities of TDC-Test 1 and the TC-Test in the serial independence setting: The parameters are chosen
such that the TDC remains constant over time while the tail copula does not.

Scenario A(1,1) n = 1000 n = 3000

a=1% a=5% a=10% avgk®) std(k*) a=1% a=5% a=10% avgk*) std(k*)

TDC-Test 1
0.20 0.009 0.048 0.102 45 21 0.010 0.053 0.103 95 46
H{} N H{\ 0.40 0.009 0.049 0.103 63 26 0.009 0.048 0.101 120 53
0.60 0.010 0.053 0.107 89 35 0.012 0.050 0.101 168 72
TC-Test
0.20 0.032 0.183 0.355 45 20 0.236 0.566 0.744 92 44
Hé‘ N H{\ 0.40 0.047 0.219 0.447 60 25 0.279 0.666 0.835 122 54
0.60 0.024 0.160 0.381 91 34 0.140 0.509 0.747 169 72
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Table 3.3 briefly presents simulation results for TDC-Test 2 and the TC-Test. For the
sake of brevity, we only report the s.r.p.s for the Clayton tail copula model and the seri-
ally independent case, since the results for the other cases do not convey any additional
insights. The s.r.p.s are based on N = 1000 simulation runs, while the sample size is
again either n = 1000 or n = 3000 with B = 500 bootstrap replications (B = 300 for the

TC-Test) and multipliers Cfb) that are uniformly distributed on the set {—1,1}. In com-
parison to its competitor TDC-Test 1, we observe that with TDC-Test 2, there seems to be
slight evidence that the rejection probabilities are higher both under the null hypothesis
as well as under the alternative. Regarding the null hypothesis, a comparable observa-
tion can be made for the TC-Test, but the power under the alternative is even lower than
that of TDC-Test 1.

The next results of this subsection, presented in Table 3.4, concern a setting where the
tail dependence coefficient stays constant over time whereas the tail copula may change
at points (x,y) # (1,1) (cf. third block of Table 3.1). From theory, one would expect that
the TC-Test should be able to detect those breaks, whereas the TDC-Tests should hold the
nominal size. We only consider breaks at 5 = 0.5 and model (A2) (i.e., we simulate from
(C2)) which will allow to construct tail copulas that are equal in (1,1), but sufficiently
different in other points. More precisely, for a given A € {0.2,0.4,0.6}, we choose §; = A,
Yo =land @ = 100 fors < 5and weset iy = 1, ¥» = A and 0 = 100 for s > 5. For
A = 0.4, the corresponding graphs of t — A(2 — 2t,2t) are shown in Fig. 3.2. Note that,
for fixed 1, P, we have

Aw(1=t) 1= lim A(1=t,8) = {$1(1 = O} A (ya).

The corresponding limit copula defined in (3.14) is the well-known Marshall-Olkin cop-
ula, whose TDC is given by min(y, »), see Segers (2012b). With our choice of 6 = 100
in (A2), the difference between the TDC and min(y, ) = A is less than the machine
accuracy 10716

The results in Table 3.4 confirm the expectations: the TC-Test (again based on N =
1000 simulation runs and B = 300 bootstrap replications) has considerable power while
TDC-Test 1 basically keeps the nominal size. As a conclusion, the developed testing
procedures allow for empirically distinguishing between constant tail dependence coef-
ficient and constant tail copula.

Next, we investigate a scenario (for sample size n = 1000) where the simulated copula
is constant at the center of the distribution throughout the sample period but exhibiting a
significant structural break in the tail. For that purpose, we consider one break at 5 = 0.5,
and we simulate from the Clayton copula with A = 0.25 before the break, and from the
copula described in (C3), witha = 0.1, p € {0,0.25,0.5,0.75,1} and the Clayton copula
with A = 0.25, after the break. The results for TDC-Test 1 can be found in the right part of
Table 3.5. As expected, the significant break in the tail is well detected by our methods.

Since our methods focus on the tail dependence, they should have, at least in this
particular setting, more power than related tests for constancy of the whole copula. This
is confirmed by the results in the left part of Table 3.5, which show the s.r.p.s for an 12-
type version of the tests for constancy of the copula proposed in Rémillard (2010); Biicher
and Ruppert (2013). More precisely, recalling that CZ (s,u,v) = % ZZLZS’H ]l(lAlZ- <u,V < v),
the results are based on the test statistic

Rui=n [ Al 2) = sC1u0))’ dls,u,0),
0,1

along with the bootstrap approximation Rn,g(b> = f[o 1 Gn,g<b> (s,u,v)?d(s,u,v) with
Gn,gw) as defined in (3.10) based on the choice k = n. In practice, we approximate the
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Fig. 3.2. Negative asymmetric logistic model (A2) for 1 = 0.4, ¢, = 1,0 = 100 (blue) and 1 =1, P = 04,
6 = 100 (yellow) evaluated on the straight line (2 — 2t,2t), t € [0,1]. Both models exhibit the same tail
dependence coefficient A = 0.4.

integral through a sum over a finite grid. We use N = 500 repetitions and B = 300 boot-
strap replications with multipliers that are uniformly distributed on the set {—1,1}. Itis
clearly visible that, as expected, the power of the copula constancy test is lower than that
of TDC-Test 1.

Finally, we investigate the detection of breaks in the tail dependence coefficient under
the potential presence of breaks in the marginal laws. We restrict ourselves to a compari-
son of the TDCMB-Test to TDC-Test 1 in a serially independent case. Table 3.6 shows the
s.r.p.s for the TDCMP-Test, based on samples from copula (C1) with or without a break in
the TDC at § = 0.5 and with marginal laws being either uniform on [0, 1] for the entire
sample or being uniform on [0, 1] before tr = 0.25 and f; = 0.5 and uniform on [5, 6]
after tr and ¢, respectively. The marginal breaks are estimated by (3.13). Critical values
are obtained by simulating 500 times from the respective limiting distribution, where the
Brownian bridge is simulated based on a grid of length 1/500. When comparing the sim-
ulations results in the case of a constant mean to the ones from TDC-Test 1 (see the first
block of Table 3.1 and Table 3.2, respectively), the TDCMP-Test has better power proper-
ties. On the other hand, it seems to be quite liberal compared to the slightly conservative
TDC-Test 1. Moreover, the computational costs are substantially increased compared to
TDC-Test 1: first, marginal breaks have to be estimated, and second, as the limiting distri-
bution is not pivotal, additional estimation of the partial derivatives of A and simulations
of a Brownian bridge are necessary. Finally, note that applying TDC-Test 1 to observa-
tions underlying a mean change in the marginal laws seems to be useless as under both
H{* and H7 all s.r.p.s are very close to 1.
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Table 3.5. Simulated rejection probabilities of a test for constancy of the entire copula and TDC-Test 1 in the
serial independence setting (n = 1000) in which there is a structural break in the tail but not in the center of the

distribution.
Scenario p Copula-Test TDC-Test 1
a=1% a=5% a=10% a=1% a=5% a=10% avg(k*) std(k*)

H{)\ 0.00 0.010 0.046 0.086 0.008 0.040 0.091 52 23
0.25 0.014 0.060 0.120 0.041 0.128 0.199 67 32
HY 5—05 0.50 0.022 0.070 0.124 0.187 0.340 0.436 84 43
e 0.75 0.040 0.126 0.236 0.346 0.481 0.554 102 57
1.00 0.070 0.230 0.330 0.430 0.542 0.609 121 73

Table 3.6. Simulated rejection probabilities for the TDCMB_Test in a serially independent setting with and without a mean change in the
margins.

Scenario A(1,1) n = 1000 n = 3000
a=1% a=5% a=10% avgk®) std(k*) a=1% a=5% a=10% avgk*) std(k*)

TDCMB—Test, constant mean

0.25 0.014 0.061 0.111 52 24 0.013 0.063 0.117 98 49
Hé\ 0.50 0.017 0.070 0.120 71 29 0.021 0.073 0.122 133 58
0.75 0.022 0.072 0.122 120 44 0.025 0.075 0.130 231 95
0.25 to 0.50 0.122 0.262 0.370 61 26 0.300 0.500 0.609 113 53
H{\, 5=05 0.25t0 0.75 0.640 0.807 0.871 73 30 0.912 0.963 0.979 138 62
0.50 to 0.75 0.229 0.420 0.532 98 34 0.502 0.693 0.779 168 72
TDCMB_Test, mean change
0.25 0.014 0.061 0.116 53 23 0.017 0.065 0.120 99 50
Hé\ 0.50 0.015 0.062 0.122 71 28 0.019 0.066 0.121 132 58
0.75 0.013 0.053 0.103 120 43 0.013 0.054 0.104 231 94
0.25 to 0.50 0.129 0.288 0.408 61 26 0.310 0.512 0.619 112 53
H{\, 5=05 0.25t0 0.75 0.688 0.847 0.898 73 31 0.920 0.968 0.979 136 61

0.50 to 0.75 0.252 0.449 0.560 90 35 0.511 0.703 0.788 167 70
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3.5 Empirical applications

3.5.1 Energy sector

In this subsection, we reinvestigate the bivariate dataset from Jaschke (2014) consisting of
n = 1001 daily closing quotes of the WTI Cushing Crude Oil Spot and the Bloomberg Eu-
ropean Dated Brent from October 2, 2006, to October 1, 2010, collected from Bloomberg’s
Financial Information Services. The analysis of the extremal dependence between the
log-returns of the two time series in Jaschke (2014) is based on the implicit assumption
that the tail dependence structure, more precisely their lower tail copula, remains con-
stant over time. We are going to verify this assumption by applying the tests developed
in Section 3.3.

As pointed out in Jdschke (2014), the assumption of a serially independent sample
is unrealistic. To account for autocorrelation and volatility clustering, it is shown that
an ARMA(0,0)-EGARCH(2,3)-model including an explanatory variable (U.S. crude oil
inventory) and the skewed generalized error distribution adequately describes the data
generating process for the log-returns of the WTI time series. Regarding the daily Brent
spot log-returns, an ARMA(1,1)-EGARCH(2,3)-model including U.S. crude oil inventory
as an explanatory variable and the skewed generalized error distribution provides an
adequate fit. In particular, there is no clear evidence against the assumption of marginal
stationarity in both time series.

We calculate standardized residuals on the basis of the preceding time series mod-
els. A first view on the lower tail dependence between these residuals can be gained
from the diagnostic plot in Fig. 3.3. For various values of k such that k/n lies in the set
{0.05,0.06, ...,0.15}, we depict the points in time where the pseudo-observations in both
coordinates fall simultaneously below the value k/n. Note that these are exactly the joint
extreme events inside the indicators in the definition of the empirical tail dependence co-
efficient. As the points are quite equally spaced in time, the picture suggests that the tail
dependence remains rather constant.
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Fig. 3.3. (WTI and Brent time series) Points in time where pseudo-observations in both coordinates fall
simultaneously below the value k/n, for k/n € {0.05,0.06,...,0.15}. The yellow row corresponds to the
plateau ratio k* /n = 104/1001 ~ 10%.

More formally, we proceed by checking the hypothesis Hj of constancy of the tail
dependence coefficients by an application of TDC-Test 1. First, in order to obtain a rea-
sonable choice for the parameter k, we use the plateau algorithm from Section 3.3.5 with
bandwidth b = |0.005n] = 5. This yields a value of k* = 104 (which is also depicted
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in yellow in Fig. 3.3) and a plateau of length ¢ = 31. Following Frahm et al. (2005), the
average of the 31 empirical lower tail dependence coefficients on this plateau, given by
A = 0.732, provides a good estimate for A. Figure 3.4 shows the corresponding standard-
ized sequential empirical tail copula process ns +— A~1/2G,(s,1,1) for k* = 104. The
graph seems to be indistinguishable from a simulated path of a one-dimensional stan-
dard Brownian bridge which indicates that the null hypothesis cannot be rejected. In
Fig. 3.5 we depict both the value of the Cramér-von Mises type test statistic S,, defined in
(3.8) (yellow) as well as the corresponding p-values (blue) as a function of k. The dashed
vertical line shows the outcomes for the plateau optimal k* = 104, in which case we ob-
tain S, = 0.285 with a resulting p-value of 0.15. Consequently, the null hypothesis Hy
cannot be rejected at a 5% level of significance. Moreover, Fig. 3.5 shows that this con-
clusion is robust with respect to different choices of k. Results for TDC-Test 2 are very
similar and are not depicted for the sake of brevity.

Finally, the assumption of a constant lower tail copula is verified by testing for the
hypothesis Hy*. We apply the TC-Test from Section 3.3.2 with B = 2000 bootstrap replica-
tions using the plateau optimal k* = 104. We obtain 7, = 0.069 with a resulting p-value
of 0.29. Again, the null hypothesis cannot be rejected at a 5% level of significance. Similar
as for the tests for H}, this conclusion is robust with respect to different choices of k.

100 300 500 700 900

Fig. 3.4. (WTI and Brent time series) Standardized sequential empirical tail copula process A~1/2G, (s, 1,1)
for k* = 104 with respect to ns, s € [0,1].
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Fig. 3.5. (WTI and Brent time series) Test statistics S;, (yellow) and corresponding p-values (blue) for different
k. The horizontal line indicates the 5% level of significance, the vertical one the plateau k* = 104.
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3.5.2 Financial markets

As an empirical application from the finance sector, we consider the Dow Jones Industrial
Average and the Nasdaq Composite time series around Black Monday on 19th of October
1987. This dataset covers n = 1768 log-returns from daily closing quotes between January
4, 1984, and December 31, 1990, collected from Datastream. Related studies in Wied
et al. (2014) and Dehling et al. (2013) try to examine whether Black Monday constitutes
a break in the dependence structure between the two time series. The outcomes of their
studies do not provide a clear picture, as the answer depends on the applied test statistic.
While the test for a constant Pearson correlation rejects the null hypothesis of constant
correlation, the more robust (rank-based) tests for constant Spearman’s rho and Kendall’s
tau yield no evidence for breaks. In these papers, the contrasting result is explained by the
fact that the (unfiltered) time series contain several heavy outliers around Black Monday
which seriously affect the Pearson-, but not the rank-based tests for Spearman’s rho and
Kendall’s tau.

For our analysis, we begin by an investigation of the univariate time series. Ap-
plying the model selection and verification criteria from Jaschke (2014), we find that an
ARMA(0,0)-GARCH(1,1)-model with t-distribution for the Dow Jones log-returns and an
ARMA(1,0)-GARCH(1,1)-model with skewed t-distribution for the Nasdaq equivalent
provide the best fits among a number of common stationary time series models. Details
on the parameter estimation are given in Table 3.7. Note that more suitable models might
be found by considering piecewise stationary models and by subsequently applying the
tests from Section 3.3.7 where necessary. For our illustrative purposes, we restrict our-
selves to the former models and to the tests from Sections 3.3.2 and 3.3.4 in the following.

Along the lines of Dehling et al. (2013) we first seek to answer the question whether
Black Monday constitutes a break in the tail dependence between the two time series. A
positive answer would indicate that the market conditions have substantially changed
after this date. For the ease of a clear exposition, we restrict ourselves to an investigation
of the lower tail dependence coefficient. A first visual description of the joint tail behavior
similar to the one in Fig. 3.3 can be found in Fig. 3.6 which, however, does not provide a
clear picture: even though there seems to be a tendency of stronger tail dependence for
later dates in the time series, it is unclear whether this is due to a break on Black Monday
(second dashed vertical line).
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Fig. 3.6. (Dow Jones and Nasdaq time series) Points in time where pseudo-observations in both coordinates
fall simultaneously below the value k/n, for k/n € {0.05,0.06,...,0.15}. The yellow row corresponds to
the plateau ratio k* /n ~ 11%. The first yellow vertical line reflects the argmax-estimator [n3"| = 817, the
second equivalent indicates Black Monday |n5pys| = 959.
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Table 3.7. Maximum likelihood estimates together with their corresponding standard
errors for the Dow Jones ARMA(0,0)-GARCH(1,1)-model with {-distribution and the
Nasdaq ARMA(1,0)-GARCH(1,1)-model including the skewed t-distribution. All esti-
mates but the additive constant w are significant at the 1% level.

Parameter Dow Jones log-returns Nasdaq log-returns

Estimate std. error Estimate std. error

Mean equation

1 0.0006 0.0002 0.0005 0.0002
01 - - 0.2714 0.0234
Variance equation

w 0.0000 0.0000 0.0000 0.0000
nq 0.0349 0.0084 0.1407 0.0179
B1 0.9373 0.0080 0.7914 0.0182
Distribution

¢ - - 0.8531 0.0294
v 4.2016 0.4390 5.3001 0.4135

In the following, we examine this formally by applying the tests from Section 3.3, in
particular the test from Section 3.3.4 for a specific break-point. First, a careful inspection
of the plot k — TDC(k) and the statistics defining the plateau algorithm (which are
not depicted for the sake of brevity) suggests that k* = 191 is a reasonable choice for
the parameter k, with a corresponding length of the plateau of ¢ = 41. The average
of the empirical lower tail dependence coefficients over the corresponding values k €
{171,...,211} is given by A = 0.620.

Now, we apply the test from Section 3.3.4 for a specific break-point at | n5py | = 959,
the date of Black Monday. The results are depicted in Fig. 3.7, where we plot the p-values
of the test against the parameter k. For k* = 191, the resulting p-value of 0.082 does not
allow for a clear rejection of the null hypothesis. In contrast to this, slightly lower values
of k yield a rejection at the 5% level of significance, whence, as a summary, there seems
to be some light, but disputable evidence against Hy. However, the rejection of the null
hypothesis might be due to different reasons than a break precisely on Black Monday.
To conclude upon the latter, one would have to accept the hypothesis of constancy of
the lower tail dependence coefficient in the subsamples before and after Black Monday.
Therefore, we perform the corresponding TDC-Test 1 in the subsamples, whose results
are depicted in Figs. 3.8 and 3.9 in a similar manner as before; in particular, they are based
on new (plateau-based) choices of k for the reduced samples. We can accept constancy
after Black Monday, but have to reject it for the subsample before Black Monday. A
summary of the results can also be found in the first two columns of Table 3.8.

In principal, one could now proceed by a refined analysis of the subsample before
Black Monday in order to identify potential additional break-points. Motivated by the
diagnostic plot in Fig. 3.6, we prefer an application of TDC-Test 1 to the whole sample
since this might reveal that a model with at most one break-point is also appropriate.
In other words, we dismiss the initial guess of a break precisely on Black Monday and
rather split the sample at an estimated break-point, hoping that the latter yields a simpler
model with at most one break-point.

We do not depict the results of the corresponding test, since it clearly rejects the null
hypothesis Hy at the 1% level of significance for almost all choices of k. A short summary
can be found in the last column of Table 3.8. More enlightening conclusions can be drawn
from the plot of the function ns +— |;\_1/2(3n (s,1,1)] in Fig. 3.10, for k* = 191. The dashed
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Fig. 3.7. (Dow Jones and Nasdaq time series) Chi-squared test for a specific break at | nspy; | = 959: p-values
for different k. The horizontal line indicates the 5% level of significance, the vertical one the plateau k* = 191.
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Fig. 3.8. (Dow Jones and Nasdaq time series) TDC-Test 1 for the subsample before |n5gy; | = 959: p-values
for different k. The horizontal line indicates the 5% level of significance, the vertical one the plateau k* = 48.

Fig. 3.9. (Dow Jones and Nasdaq time series) TDC-Test 1 for the subsample after |n3gy| = 959 (including
Black Monday): p-values for different k. The horizontal line indicates the 5% level of significance, the vertical
one the plateau k* = 169.
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Table 3.8. Summary of results for TDC-Test 1 applied to the subsample before Black
Monday, to the subsample after Black Monday and to the full sample.

Parameter before Black Monday after Black Monday full sample size
n 958 810 1768

k* 48 169 191

y4 30 28 41

A 0.449 0.678 0.620

Sy 0.546 0.211 1.064
p-value 0.028 0.244 0.003

vertical lines denote Black Monday |n3py | = 959 (second line) and the value |né'| =
817 where the graph attains its maximum. The latter corresponds to the 27th of March
1987 and appears to be the argmax for most choices of k in a neighborhood of k* = 191.
We split the sample at this estimated break-point and conduct a refined analysis in the
respective subsamples. The procedure is similar to what we have done before, whence we
restrict ourselves to a brief summary of the results: in both subsamples, we cannot reject
the null hypothesis for all reasonable choices of k, including the values obtained from
the plateau algorithm, with p-values lying between 0.2 and 0.5. Similar to the values in
Table 3.8 we find A = 0.430 for the first subsample (k* = 43) and A = 0.656 for the second
one (k* = 57), respectively.
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Fig. 3.10. (Dow Jones and Nasdaq time series) Absolute standardized sequential empirical tail copula pro-
cess [A1/2G(s,1,1)] for k* = 191 with respect to 1s, s € [0,1]. The first yellow vertical line indicates the
argmax estimator |18 | = 817, the second one shows Black Monday |n3gy | = 959.

We conclude this application with a short summary of the main findings:

(i) The test for a break on Black Monday does not yield entirely unambiguous results;

(ii)

in particular, we have to reject the null hypothesis of constant tail dependence in
the subsample before Black Monday resulting in an overall model with more than
one break-point.

Testing against the existence of some unspecified break-point in the full sample
clearly rejects the null, with an estimated break-point at |n8"| = 817. Since we can-
not reject the null hypothesis in the corresponding subsamples, an overall model
with only one break-point can be accepted.
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3.6 Conclusion and Outlook

We developed new tests for detecting structural breaks in the tail dependence of multi-
variate time series, derived their theoretical properties, investigated their finite-sample
performance and applied them to energy and financial market data.

Our work hints at interesting directions for further research. First of all, we did not
give a formal proof for the conjecture derived from the simulation study, that the test
statistics based on estimated residuals show the same asymptotic behavior as the ones
based on ii.d. samples. To the best of our knowledge, this problem is also unsolved
for the estimation techniques described in Section 3.2: under what conditions does (or
does not) the additional estimation step of forming marginally almost i.i.d. residuals influ-
ence the asymptotic behavior of the nonparametric estimators for the tail dependence?
Second, extensions to the case of serially dependent datasets (e.g., to mixing sequences)
would allow to check for constant tail dependence of the raw data which might also be
of interest for practitioners. In particular with a view on the necessary (block) bootstrap
procedure this could be a quite challenging task.

Finally, a deeper investigation of the results in Section 3.3.7 would be a worthwhile
topic of future research: under what conditions can one replace the (unknown) marginal
break points in Proposition 3.13 by their empirical counterparts? How can one treat the
case of an unknown number of breaks in the marginals, and how can one adapt the
bootstrap methodology to these settings?

3.7 Proof of the results in the main text

For all proofs, by asymptotic equicontinuity, we may redefine U; = F,(X;) and V; =
Gn(Y;). Now, forany s € [0,1] and (x,y) € E, let

L

=

s

A (s, x,y) = 1(U; < kx/n,V; < ky/n). (3.17)

| =
Il
—

i

Under HY', this is a sequential (oracle) estimator for A°(s,x,y) = sA(x,y). The asymp-
totic behavior of A;, can be derived under the following general condition, which allows
for rather general changes of the tail copula A; (see also Section 3.3.3).

Assumption 3.14
There exists some function g : [0,1] X E — R such that A;(-,-) = g(i/n,-,-) and such
that, for any m € IN,

s
sup 1 Y g(i/n,x,y) — G(s,x,y)| =0(1), n— oo, (3.18)
(S/x/y)esm n i=1

where G(s,x,y) = [y g(z,x,y)d

Note that, under Hé\, Assumption 3.14 is trivially met with g(z,x,y) = A(x,y),
G(s,x,y) = A°(s,x,y) = sA(x,y) and with the expression on the left-hand side of (3.18)
being of order O(1/n). Now, consider the following sequential empirical process B,
defined as

Bu(s, x,y) = \/%{f\fl(s,x,y) —G(s,x,y)},
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and its corresponding centered version

[ns]
B, (s, x,y) \1[ Z 1(U; < kx/n, Vi < ky/n) — Ci(kx/n, ky/n).

The proof of the following central lemma is given in Section 3.7.1.

Lemma 3.15
Suppose that Assumptions 3.1, 3.2 (a) and 3.14 hold. Then

Bj, ~ lBé in (B ([0,1] X E),d),
where By, denotes a tight centered Gaussian process with covariance given by
Cov{Bg(s1,x1,41), By(s2, X2, 42) } = G(s1 A 82, %1 A X2, 41 Ay2)-

If, additionally, Assumption 3.2 (b) is met and if the convergence in (3.18) in Assumption 3.1 is
of order o(k;;1/?), then d(B),,B,) = o(1).

Note that, under Hé\, the distribution of ]B;, is equal to the distribution of B, as de-
fined in Proposition 3.3.

Proof of Proposition 3.3. Since the rank of X; among Xj, ..., X, is the same as the rank of
U; among Uy, ..., U, (similar for the second coordinate) we may assume without loss
of generality that (X;,Y;) is distributed according to C;, i.e.,, F(x) = G(x) = x for all
x € [0,1]. Some thoughts reveal that

As(s, ) — Agls, )| < 2/k,

uniformly in (s, x,y) € S;,, where

A (s, x,y) Ilci {X <F, (kx/n),Y; <G, (ky/n)}

and where F,” and G,; denote the generalized inverse functions of F, and G, respectively.
Note that A, can be expressed in terms of A, as

Xo 0 n__ (kx\ n__ (ky
Kot =8 {s 1 () 560 (1)}

Now, we have n/kF,(kx/n) = AS(1,x,00) and n/kG, (kx/n) = AS(1,00,y), whence,
by Hadamard-differentiability of the inverse mapping as stated in Biicher and Dette

(2013),
n_._ (kx
il (n) -

for any M > 0 (this result can also be obtained by deducing weak convergence of x —
B, (1, x,00) as an element of the cadlag space D([0, M]) with the Skorohod topology (from
Lemma 3.15), invoking a Skorohod construction and applying Vervaat’s Lemma, see Ver-
vaat (1972) or Lemma A.0.2 in de Haan and Ferreira (2006)). Therefore, by asymptotic

sup
x€[0,M]

=op(1), sup )ZGH_ <ky> —y‘ = op(1) (3.19)
yeloM "
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equicontinuity of B, from Lemma 3.15, uniformly on S,

Gu(s,x,y) = \/l;{/_\fl(s, x,y) —sA,(1,x,y)} +O(k1/2)
o (525 ()
B, { an (kj) ,%G; <I;y> } +O(K1?)

= By(s,x,y) —sB,(1,x,y) + op(1), (3.20)
which converges weakly to Ga(s,x,y) = Ba(s,x,y) —sBa(1,x,y) on (Su, | - s, ), for
any m € IN. The proposition is proven. ]
Remark 3.16

A crucial argument in the preceding proof is the decomposition (3.20) of G, into a sum
involving B, from Lemma 3.15. A similar decomposition is possible with B,, replaced
by BJ, from Lemma 3.15, and weak convergence of the latter holds without imposing As-
sumption 3.2 (b). Therefore, a relaxation of the assumptions for Proposition 3.3 seems to
be possible. Indeed, a sufficient condition that makes occurring bias terms in an alterna-
tive version of (3.20) negligible and allows to dispense with Assumption 3.2 (b) is given
by
Lns| n
sup vk ) Bk /n, ky/n) —s ) Rk /n, ky/n)| = o(1),
(5,%,Y)ESm n|is k i=1 k

as n — oo. In case C; = C is constant over time, this condition reduces to vVk/n = o(1),
which is satisfied anyway since k = o(n).

Proof of Corollary 3.4. It follows from Proposition 3.3 that

-1/2

s {A(1,1,1)} " Gu(s,1,1)

converges to a standard Brownian bridge. Therefore, both assertions are simple conse-
quences of the continuous mapping theorem. O

Proof of Proposztzon 3.6. Letus firstfixab € {1,..., B} and show that G, ;) weakly con-
verges to G , . For the sake of a clear notation, we omit the index b for the proof of this re-
sult. In light of the continuous mapping theorem, it is sufficient to prove that B,  weakly
converges to B5. As in the proof of Proposition 3.3, we may assume that the marginal
distributions are standard uniform. Let us suppose that we have proven B,z ~» By,
where

Lns]
B, (s, x,y) = \1[2(;{]1 (U; < kx/n,V; <ky/n)— Cy(kx/n,ky/n)}

and where C,(u,v) := n~ ' Y1, 1(U; < u,V; < v). Then, by a similar reasoning as in the
proof of Proposition 3.3,

Bz(s,%,y) = B { cEr <":)’Zc <’Z/>}+o<k 1/2max|g,|). (3.21)

By (3.19) and asymptotic equicontinuity of BB, ¢, the first expression on the right-hand
side weakly converges to B, in £°(S,,), for any fixed S,,. In light of the fact that {; has
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finite moments of any order we have P(|¢1| > x) = O(x™1) for any g € IN. Therefore,
the estimation

IP(k~1/2 n_falx & > €) < nP(|&1] > evk/2) = nO(k~1/?)

shows that the O-term in (3.21) converges to 0 in probability, by choosing g sufficiently
large. This proves that G, ;) weakly converges to G )

It remains to be shown that ]Bn@ ~> Bp in £%°(S,,), for any fixed S,,. We have

Be(s,x,y) = Aui(s,x,y) + Ana(s, x,y) + An(s, x,y),

where

\}E Ci{1(U; <kx/n,V; <ky/n)—Ci(kx/n,ky/n)},
Ap = 1 Y &i{Ci(kx/n,ky/n) — A(kx/n,ky/n)},
Vk
1
Vik !

& {A(kx/n,ky/n) — Cy(kx/n,ky/n)}.

—_

The fact that C,, (kx/n,ky/n) — A(kx/n,ky/n) = Vk/n x By(s,x,y) = Op(v/k/n) from
Lemma 3.15 together with Donsker’s invarance principle implies that the last term A,;3
is of order Op(1/+/n) = op(1), uniformly on each S,,. Furthermore, C;(kx/n,ky/n) —
A(kx/n,ky/n) =k/n x O(S(n/k)) by Assumption 3.1, uniformly in i and uniformly on

T, whence
n

sup |An(s,x,y)] Y g (S(n/k)).
(s,%,y)ESn i=1

::\)—\

The right-hand side is op(1) by Assumption 3.2 (b). Hence, it remains to consider the
leading term A,;. Its conditional weak convergence follows from Theorem 11.19 in
Kosorok (2008) and the proof of Lemma 3.15 below. Further note that conditional weak
convergence as considered by the last named author implies unconditional weak conver-
gence.
Now, let us give the proof of the proposition. On each S, the sequence (G, Gn,§<1>r
.G, z) is jointly asymptotically tight by Lemma 1.4.3 in Van der Vaart and Well-
ner (1996). Hence, it remains to consider weak convergence of the finite-dimensional
distributions. It suffices to consider the finite-dimensional distributions of the sequence
(]Bnr]Bn,§<l>/ . ,IBM(@). By a similar argumentation as above in the case of a fixed b ¢
{1,..., B}, we may replace each coordinate B, ;) by

3]
\1[ ZC {1(U; <kx/n,V; <ky/n)—Ci(kx/n,ky/n)}.

Then, the coordinates are uncorrelated and row-wise independent, whence the finite-
dimensional distributions weakly converge to those of (B, ]B(X, e, ]Bf)) by the central
limit theorem for row-wise independent triangular arrays. O

Proof of Corollary 3.7. For TDC-Test 1, this is a direct consequence of Corollary 3.4 (i). The
proofs of TDC-Test 2 and TC-Test being essentially the same, we restrict ourselves to the
proof of TDC-Test 2. For monotonicity reasons it suffices to consider « € R\ Q.
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Let K denote the c.d.f. of S and define

B B
K, p(x) = B! Z ll(Sn,éu,) < x), Kp(x) = B! Z 1(8%) < x),
b=1 b=1

where SU, ... S(B) denote independent copies of S. Consequently, we can write P(S,, >
4s,1-a) = P{K;,8(Sy) > 1 — a}. Let us first show that, for any B € N fixed, we have

lim P{K,,5(Sy) > 1—a} = P{Ky(S) > 1—a}. (3.22)

For that purpose, let ¢ > 0 be given. Define a map ¥ : RET! — R by ¥(t,...,t5) =
B-1Y2 . 1(t, < ty) and note that ¥ is continuous at any point (to, ..., tg) with pairwise
different coordinates (i.e., t; # t; for i # j). Then, observing that (Sn,SM(l),. . 'fSn,§<B>) s

(S,S ,...,8 (B)) with the limit having pairwise different coordinates, almost surely,
the continuous mapping theorem implies that K, 5(S,) ~» Kg(S), for n — co. The
Portmanteau-Theorem implies that there exists some 1y = 1(¢, B) such that

IP{K,5(S) >1—a) —P{Kp(S) >1—a}| <e

(note that P(Kp(S) =1 —a) = 0 since « € R\ Q), which proves (3.22).
It remains to be shown that

lim P{Kp(S) >1—a} =u. (3.23)

B—yo00

By the Glivenko-Cantelli Theorem, we may choose By = By(¢) € IN such that

P {sup |Kg(x) — K(x)| > s} <e.

x€ER
for all B > By. For all such B,
P{Kp(S) >1—a} <P{K(S)>1—a—¢)+e=n+2
and similarly,
P{Kp(S) >1—a} >P{K(S)>1—a+e) =a—g¢,
which implies that
|IP{Kp(S) >1—a} —a| <2
This proves (3.23) and hence the Corollary. O

Proof of Proposition 3.8. The result is a special case of Proposition 3.11 which is proven
below. O

Proof of Corollary 3.9. For TDC-Test 1, this is a direct consequence of Proposition 3.8 (i).
The proofs for TDC-Test 2 and TC-Test being essentially the same, we only consider the
TC-Test.
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Let us first show that 7, ¢ is stochastically bounded. This follows if we prove that
SUP (5 x.y)e5,, B,z (s,x,¥)| = Op(1), for n — co. By a similar reasoning as in (3.21) and the

subsequent paragraph, it suffices to show the same for B, #(s, x, ). Since

sup |Bn,§(sf X,y)|
(s,,4)ESm

= max{ sup  |Bye(s,x,y)], sup  [Bue(s, x,y)]}, (3.24)
s<5,(x,y) €T s>5,(x,y) €Ty

we can verify the claim for each of the suprema in the maximum separately. Let us

first treat the notationally simpler first supremum. We can decompose B,z (s, x,y) =

Y71 Au(s,x,y), where

Lns]
A = \1[ Y & (LU < K/, Vi Ky /) = Cilke/m ky )}

|ns]

Ay = \[ Z gl{ (kx/n,ky/n) — (kx/n,ky/n)},

nsJ

Ays = Z &1 {A<1>(kx/n, ky/n) — A® (kx/n, ky/n)},

LnsJ
Apy = i Y & {§A<1>(kx/n, ky/n) + (1 —8)AD (kx/n, ky/n) — Cy(kx/n, ky/n)} .
V=i

Since s < 3, the first term A, converges weakly by the same arguments as in the proof
of Proposition 3.6. Also as in that proof, A,,» = op(1). Negligibility of A,3 follows from
Donsker’s invariance principle and the fact that A(kx/n, ky/n) < (x Ay) x k/n for any
tail copula A. Hence, it remains to consider A,4. Again exploiting Donsker s invariance
principle, it is certainly sufficient to show A, := C,(kx/n,ky/n) — sAW (kx/n,ky/n) —

(1 —35)A® = Op(vk/n). This, however, follows from the fact that we can write

[n3)
\ZEAH = \/E{Ii ; 1(U; <kx/n,V; <ky/n) —s‘A(l)(x,y)

Z (U; < kx/n,V; < ky/n) — (1 —s-)A(2>(x,y)},

[nsJ +1

which is Op(1) by two suitable applications of Lemma 3.15.
Regarding the second supremum on the left-hand side of (3.24), write

B,z (s, x,y) = B (5, y)

+ k712 Z &{L(U; < kx/n,V; < ky/n) — Culkx/n,ky/n)}. (3.25)
i=|ns]+1
The first term on the left-hand side has already been handled above, and the second one
can be treated by a similar decomposition.
Now, fix B € IN and let ¢ > 0 be given. Then, since 7, xi) = Op(1) for each b =
1,..., B, we may choose K = K(¢g, B) > 0 such that

sup]P<max] n20) \>K><s
nelN
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Therefore, 47, 1-, > K with probability of at least ¢, and since 7, — oo in probability, we
get that

liminf P(7; > 47,1-0) = iminf{P(7; = K) = P(47,0« > K)} 2 1.

n— 00

As e > 0 was arbitrary, the assertion is proven. O

Proof of Proposition 3.11. As in the proof of Proposition 3.3 we may assume without loss
of generality that the marginals are standard uniform. We only prove (i), the proof of (ii)
is completely analogous. By the continuous mapping theorem, it suffices to show that

| ns] s
Z]l(l:l,'gk/n,f/igk/n) —/ <(z,1,1)dz
i=1 0

= Op(l).

==

sup
s€[0,1]

As in the proof of Proposition 3.3, we may replace the indicators in the previous expres-
sionby 1{U; < F, (k/n),V; < G,, (k/n)}. Now, we decompose

1 [ns] s 4
= Y 1 {Ui < By (k/n), Vi < Gy (k/m)} —/ g(z1,1)dz =Y Ay(s)
k= 0 (=1

where

Aq(s) = k—l/zB;{(n/k)F,;(k/n), (n/k)G; (k/n)},

J
Ci{Fn‘ (k/n), G (k/n)} — Ci(k/n,k/n),

,_
=
[

Az(S) =

1=
I
L

=
%)
[

N
w
—
195
N—
Il
S|

(n/k)Ci(k/n,k/n) —g(i/n,1,1),

Il
—

— o~
=
%)
[

S
S
—
195
N—
Il
S|

g(i/n,1,1) — /Osg(z,l,l)dz.

I
—

A1 (s) converges to 0, uniformly in s € [0,1], by Lemma 3.15. The second term is uni-
formly op(1) by Lipschitz continuity of C; and (3.19). By Assumption 3.2, the third term
is of order O(S(n/k)) = o(1). Aa(s) goes to 0, uniformly in s, by the assumption in
H. O

Proof of Proposition 3.13. For i = 1,...,|ntr], the rank of X; among X1, ..., X |, | is the
same as the rank of U; among U, . . ., U and similar for the second subsample and for
the second coordinate. Hence, we may assume without loss of generality that (X, Y;) is
distributed according to C;, for alli = 1,...,n. Moreover, by asymptotic equicontinuity,
we may redefine Fq).(x) := (£ — k)1 Zf:kH 1(X; < x), and similar for the second
coordinate.

In the following, we suppose that tr < tg, the other case is treated similarly. We
restrict ourselves to show weak convergence on £*([0,1] x [¢,m]?) for 0 < ¢ < m < oo;
the boundary cases can be treated similarly, following arguments in Biicher and Dette
(2013) for x or y smaller than e. Let n be large enough such that t,tg € (1/n,1—1/n).
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Define
B [n(sAtr)] - -
MGxytnte) =g L 1{X; <, (66/n), Y < Gy (ky/m) }
1 In(snte)) B -
1 X5 < Py g (/) Y < Gy (ky/) |
i=|n(sAtg)|+1
1 [ns] B B
+ k ]I{Xi = F[ntpj—&-l:n(kx/n)’yi < GLnth-ﬁ-l:n(ky/n)}
i=|n(sAtg) |+1

and note that
A5 (s, x,y) — A5 (s, %,y tr, te)| = O(1/k),

uniformly in (s, x,y) € [0,1] x [¢, m]2. Therefore, it suffices to prove weak convergence of
vk {As(s,x,y;te,tc) —sAy (L, x,y;tp,tG) } -
For (t,t) € [0,1]*> with t, > t; + 1/n define

n.__ kx n__ ky
b1t %) = T F g oy <n> Bu(tut2,y) = Gl 11:nn) (n)

Recall the definition of A3 in (3.17) and note that

]\Z (SI X, yr tF/ tG) = [\1?1 {S A tP/ Xn (0/ tF/ x)/ ,BVI(O/ tG/y)}
+ ]\1(’)1 {S A tG/ [xi’l(tF/ 11x)/ 511 (O/ tGr ]/)} - ]\1(/)1 {S Ntg, Dén(tp, 1/x)1 51’1(01 tGI]/)}
+ AZ {S/ “l’l(tF/ 1/ x)/ ,Bl’l(tG/ 1/ y)} - AZ {S /\ tG, [Xn(tF, 1/ x)/ ,BH(tG/ 1/ y)} .

In particular, we can write vk {As(s,x,y;te,tc) —sAp (L, x,y; b, tg) } as

IBn {S A tF/ an(ol tF/x)l ﬁﬂ(ol tG/]/)}
+ IBn {S A tG,an(tF, 11x)/,37l(01 tGly)} - IBV! {S A tF,OCn(tF, 1’ x)’an(O’ tG’y)}
+ IBn {S/ “ﬂ(tF/ 1/-x)/ ,Bn(tG/ 1/y)} - IBH {S A tGI “n(tl—"/ ]-/ X), ,Bﬂ(tG/ 1/]/)}

—s|By {1 Atp,an(0,tr, x), Bn(0,tc,y)}
+ B, {1 Atc,an(tr, 1,x),Bn(0,tc,y)} — By {1 Atr,an(tr,1,x),B.(0,tc,y)}
+ B, {1, an(tr, 1,x),Bn(tc, 1,y)} — By {1 Atg,an(tr, 1,x), Bu(tc, 1,y)} ]
+R, (3.26)

where the remainder R, is given by

\/k{ (s A tp — str) [A{an(o, tr, %), Bu(0,te, )} — A{an(tr, 1, %), (0, tG, y)}}

(s Atg —stg) [A{an(tF, 1,%), Bn(0, te, )} — Afan(tr,1,x), Bu(tc, 1, y)}} }



84 Nonparametric tests for constant tail dependence

The functional delta method applied to the inverse mapping (see the proof of Lemma A.1
in Biicher and Dette, 2013) shows that

sup |VEk{an(0,tr,x) — x} + t7 By (tr, x,oo)‘ = op(1),
x€[0,M]

sup |Vk{an(tr,1,x) —x} + (1 — tp) 1 {By(1,x,00) — By(tr, x,oo)}‘ = op(1),
x€[0,M]

sup |VE{B(0,tc,¥) =y} + 15 Bulte,00,y)| = op(1),
yelo,M]

sup (VKk{Ba(tc,L,y) =y} + (1 —tc) {Bu(1,00,y) — Bu(tc, ooly)}’ = op(1),
y€[o,M]

for any M € IN. In particular,

sup |an(0,tr,x) — x| =o0p(1), sup |an(fr,1,x) — x| =op(1)
x€[0,M] x€[0,M]

sup [Bu(0,tc,y) —y| = op(1), sup |Bu(tc,1,y) —y| =op(1),
y€[o,M] yelo,M]

which implies, by asymptotic equicontinuity of B, that the first six lines of the decom-
position (3.26) are equal to By, (s, x,y) — sB,(1,x,y), up to a term of uniform order op(1).
Regarding R;;, a Taylor expansion of A based on Assumption 3.12 shows that

VE[ AL (0, tr, %), Bu(0,t6,y)} = Afan(tr, 1,%), Bu(0,t6,v)}

_ _m [(1 — tp)By(tp, x,o.O) — tp{Bu(1,x,00) — By (tr, x/w)}} +op(1)
— _M{Bn(tB x,00) — tpBy(1,x,00)} + op(1).

A similar calculation yields

VE|[A{an(tr,1,%), Ba(0,t6,9)} = Man(tr, 1,%), Bulte, 1,9)}

Ay(x,
= _ Avy) {By(tg,00,y) — tcBu(1,00,y)} + 0p(1).
tc(1—tg)
Assembling terms yields the assertion. O

3.7.1 Proofs of additional results

Proof of Lemma 3.15. First, consider the assertion regarding BJ,. It suffices to fix one set S,
and to show weak convergence in ¢*(S,,). The latter can be accomplished by a suitable
application of Theorem 11.16 in Kosorok (2008), see also Biicher and Dette (2013) for a
similar proof for the i.i.d. and nonsequential case. Write B/, (s, x,y) = B/ (s, x,y,w) as

n
B, (s,%,Y,w) =}, fui(s, %y, @) — Elfu,i(s,%,y,°)],
i=1

where f,;(s,x,y,w) = kY21 (U;(w) < kx/n,Vi(w) < ky/n)1(i < |ns]). Moreover
define envelopes F, ; for f, ; as

Fui(w) = kY20 (U (w) < km/n or Vi(w) < km/n)1(i < |ns]).

By Theorem 11.16 in Kosorok (2008), the assertion in Lemma 3.15 regarding B}, is proven
if we show that
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(i) The f,; are manageable with envelopes F,, ;.

(ll) The limit H((Sll X1, ]/1), (Slr X1, yl)) = hmn—>00 E[B;(Sl, X1, yl)IB;’l (SZ’ X2, ]/2)] €XiStSf07’
every (s1,x1,Y1), (52, %2,Y2) € Sm.

(iii) limsup, , Y EF;; < co.
(iv) limy—e0o Y1y ]EF,flill{Fn,i > et =0foralle > 0.

(v) The limit imy 0o P ((51, X1, Y1), (52, X2,Y2)) = p((51,%1,Y1), (52, X2,Y2)) exists for all
(s1,x1,Y1), (S2,X2,Y2) € Sy, where

E

n
=1

1/2
2
fn,z‘(SLxl,yl, ) _fn,i(SZ/ xz,yz,')‘ > .

Pn((sllelyl), (52, X2,y2)) = (

1

Furthermore, for all sequences (S1n, X1, Y1n )neN, (S2n, X2n, Y2n )neN € Sm, the convergence
0n((S11, X100, Y1n ), (S2n, X2n, You)) — 0 holds, under the condition that p((S1,, X1, Y1n),

(SZn/ Xon, yZn)) — 0.
i) {fu1(s,%,y,w),..., fan(s,x,y,w) : (s,x,y) € Sy} is almost measurable Suslin.

For the proof of (i) note that we can write f, ;, when indexed by the extended domain
[0,1] x ([0, m] U {c0})? instead of S, as a product of three nondecreasing functions in s, x
and y, respectively. Manageability with respect to the envelopes F,; then follows from
the discussion on Page 221 in Kosorok (2008) and two applications of Theorem 11.17 (iv)
in that reference. Then, also the restriction to S, is manageable with envelopes F, ;.

In the following, we omit the argument w. For the proof of (ii), we have the decom-
position E[B),(s1, x1, y1)B),(s2, x2,¥2)] = Au1 + Ann, where

1 [n(s1/s2) |

Anl = k— . Cl (k(X] A\ Xz)/n;k(]/l A ]/2)/”) 4

BN

1
A= o Ci(kx1/n,ky1/n)Ci(kxa/n, kya/n).

n
Exploiting that C;(u,v) < u A v, the second summand A,; is uniformly bounded by
km/n = o(1). For the first summand, we write

1 \_1’1(51/\52”
Ap = - Y. Ai(x Axo,y1 Ay2)
i=1
n(s1As2) n
+ - Z ECi(k(xl Ax2)/n,k(y1 Ay2)/n) — Ai(x1 A x2,y1 A y2).
i=1
The second sum is of order O(S(n/k)) = o(1) by Assumption 3.1, and the first sum

converges to G(s1 A sy, X1 A X2, 1 AY2) < 0.
For the proof of (iii) note that ]EFﬁ,i =2m/n — Cij(km/n,km/n)/k. Therefore,

n 2 1 n
E]E [Fn,i] =2m — EZ

i=1 i=1

Ci(km/n,km/n).

>

As in the proof of (ii), the second sum converges to fol Q(z,m,m)dz.
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For the proof of (iv), note that ]E[Fii]l(Fn/i > ¢)] < P(F,; > ¢), and the right-hand
side is equal to O for sufficiently large .
For the proof of (v), note that

1 sl g
on((s1,x1, 1), (52, %2,42))* = — ) - Cilkxr/n kyy /)
i=1
) [n(s1/As2) | 1 |nsz | k
- ) Eci(k(xl Nx2)/n,k(y1 ANy2)/n) + - ) ECi(kxz/n,kyz/n).
i=1 i=1

Similar calculations as before show that this expression converges uniformly (on S,,) to

o((s1,x1,y1), (52, %2,42))* = G(s1, x1,y1) — 2G(s1, As2, X1 A x2,¥1 Ay2) + G(s2, X2, ¥2).

Finally, the assertion in (vi) follows from separability of B}, and Lemma 11.15 in Kosorok
(2008).
Now, consider the assertion regarding B,,. We have

1 ns]
1B, (s,x,y) — Bu(s,x,y)| = Vkn ke E Ci(knx/n,kyy/n) — G(s, x,y)(
i=1
< \/EUI:J rrfalx kECi(an/n,kny/n) —g(i/n,x,y)‘

+ Vhy

1 Lns]

= g(i/n,x,y)—G(s,x,y)‘-

nis

Since we assume that the convergence in Assumption 3.1 is of order o(k; 1/?), we imme-
diately obtain negligibility of the second term on the right-hand side. By (3.9), the first
term on the right-hand side is of order O(y/k,S(n/k,)), uniformly on each S,,. Hence, by

Assumption 3.2 (b), this term converges to 0 as well. O
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Commented code

The next part consists of selected Matlab source code and algorithms used for obtaining
the results presented in the preceding articles. It is organized as follows: Section A.1
presents the implementation of the goodness-of-fit test for both copulas and tail copulas
applied in Chapter 2. Section A.2 provides a useful algorithm to simulate from arbitrary
copulas, particularly convenient for singular copulas. Further, the simulation algorithm
of copula model (C3) from Section 3.4.1 is presented. Finally, Section A.3 lists two test
procedures from Chapter 3: the application of TDC-Test 1 to a bivariate dataset and the
TC-Test used in the finite sample studies. Note that some symbols have been adjusted to
improve readability.

A.1 Goodness-of-fit tests

Code A.1. One-level parametric bootstrap-based goodness-of-fit test for the t-copula including calculation
of the cross-validation Copula Information Criterion.

)

% goodness-of-fit test for the t-copula with calculation of the CIC

% load data
WTI = xlsread('...'");
Brent = xlsread('...');

% initialization
n = length (WTI);
tau_data = corr (WTI,Brent, 'type', 'Kendall');

)

% rank-based analysis

rcl = zeros(n,1l);
[hv,ar] = sort (WTI);
for 1 = 1:n

rcl(ar(i)) = i;
end

rcl = rcl/ (n+l);

rhh = zeros(n,1);
[hv,ar] = sort (Brent);
for 1 = 1:n

rhh(ar(i)) = i;
end

rhh = rhh/ (n+1);

)

% maximum pseudo likelihood estimator and cross-validation CIC
theta = linspace(0,0.999,100)"';
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nu = linspace(3,7,100)"';
mple = zeros(100,100);

for i = 1:100
for 3 = 1:100

mple (i, j) = sum(log(copulapdf('t', [rcl rhh],theta(i),nu(j))));
end
end
[maximum posrow] = max(mple);
[maximum poscol] = max (maximum) ;
h = 10" (-5);

p = 1/(2xh) x (log(copulapdf ('t', [rcl rhh], theta (posrow(poscol))+h,
nu (poscol))) - log(copulapdf('t', [rcl rhh], theta(posrow(poscol))-h,
nu (poscol))));
jhat = 1/nxsum(1l/(h"2)* (log(copulapdf ('t', [rcl rhh], theta(posrow(poscol))+h,
nu (poscol))) - log(copulapdf('t', [rcl rhh], theta(posrow(poscol))-h,
nu (poscol))) -
2xlog (copulapdf ('t', [rcl rhh], theta(posrow(poscol)), nu(poscol)))));
jinvhat = -1/ (jhat);
phat = 1/n*sum(p.”2xjinvhat);

z1l = zeros(n,1);
z2 = zeros(n,1l);
for 1 = 1:n
z1(1i) = 1/n*sum(l/ (4xh"2)* ((log(copulapdf('t', [rcl+h rhh],

theta (posrow (poscol) ) +h, nu(poscol))) - log(copulapdf('t', [rcl+h rhh],
theta (posrow (poscol))-h, nu(poscol)))) -
(log(copulapdf ('t', [rcl-h rhh], theta(posrow(poscol))+h, nu(poscol)))
- log(copulapdf ('t', [rcl-h rhh], theta(posrow(poscol))-h,

nu(poscol))))) .x
((rcl < rcl(i)) - rcl(i)));
z2 (1) = 1/nxsum(1l/ (4+h”"2)* ((log(copulapdf ('t', [rcl rhh+h],
theta (posrow (poscol))+h, nu(poscol))) - log(copulapdf('t', [rcl rhh+h],

theta (posrow (poscol))-h, nu(poscol)))) -
(log (copulapdf ('t', [rcl rhh-h], theta (posrow(poscol))+h, nu(poscol)))
- log(copulapdf ('t', [rcl rhh-h], theta(posrow(poscol))-h,

nu(poscol))))) .x
((rhh < rhh(i)) - rhh(i)));
end
z = (zl+4+z2);
ghat = 1/n*sum(jinvhat+p.*z);

zetal = 1/ (2xh) % (log(copulapdf ('t', [rcl+h rhh], theta (posrow(poscol)),
nu (poscol))) - log(copulapdf('t', [rcl-h rhh], theta(posrow(poscol)),
nu (poscol))));

zeta2 = 1/ (2xh) % (log(copulapdf ('t', [rcl rhh+h], theta(posrow(poscol)),
nu (poscol))) - log(copulapdf('t', [rcl rhh-h], theta(posrow(poscol)),
nu (poscol))));

rhat = 1/n*sum(sum([zetal zeta2].* (1 — [rcl rhh])));

CIC = 2xmaximum - 2* (phat + ghat + rhat);

% obtaining the degrees of freedom via maximum likelihood
corr_data = copulaparam('t',tau_data);

nu_vec = linspace(4,6,100);

maxlike = zeros(length (nu_vec),1);
for i = 1l:length(nu_vec)

maxlike (i) = sum(log(copulapdf('t', [rcl rhh],corr_data,nu_vec(i))));
end
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[value, pos] = max(maxlike);
nu_data = nu_vec (pos);

)

for 1 = 1:n
G(i) = sum((rcl < rcl(i)).x(rhh < rhh(i)));
end
G = G/n;
C = copulacdf('t', [rcl rhh],corr_data,nu_data);

errtl = sum((C-G')."2);
resultt = 0;

for t = 1:N

)

tl = data(:,1);

[hv,ar] = sort(tl);

rtl = zeros(n,1l);

for i = 1:n
rtl(ar(i)) = i;

end

rtl = rtl/(n+l);

t2 = data(:,2);

[hv,ar] = sort (t2);

rt2 = zeros(n,1l);

for 1 = 1:n
rt2(ar(i)) = i;

end

rt2 = rt2/(n+l);

tau = corr(data(:,1),data(:,2), "type', 'Kendall');

cor = copulaparam('t',tau,nu_data);

maxlike (i) = sum(log(copulapdf('t', [rcl rhh],cor,nu_vec(i))));

maxlike = zeros(length (nu_vec),1);
for i = l:length(nu_vec)
end
[value, pos] = max(maxlike);
nu = nu_vec (pos) ;
for 1 = 1:n
T(i) = sum((rtl < rtl(i)).x(rt2 < rt2(i)));
end
T = T/n;

C = copulacdf('t', [rtl rt2],cor,nu);

errt2 = sum((C-T')."2);

vergleich = errt2 > errtl;

resultt = resultt + vergleich;
end

% result goodness-of-fit test
tfit = resultt/N

% begin bootstrap-based goodness-of-fit test

% generation of an independent random sample of the f-copula
data = copularnd('t',corr_data,nu_data,n);
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Code A.2. Partial derivatives multiplier goodness-of-fit test for tail copulas using the example of the Hiisler-
Reiss model.

)

% partial derivatives multiplier bootstrap goodness-of-fit test for tail
copulas

% load data
WTI = xlsread('...");
Brent = xlsread('...'"');

o

initialization

= length (WTI);

= 10000;

= 200;

delta = 0.001;

steps = round(pi/ (2xdelta) + 1);

s = linspace(0.0001,pi/2, steps);

t (tan(s) ./ (l+tan(s)))"';

tau_data = corr (WTI,Brent, 'type', 'Kendall');

~ =28

o°

definition of the Pickands dependence function (nonsymbolic)
= @(t,theta) (1-t).*normcdf (theta + 1/ (2xtheta)xlog((l-t)./t)) +
t.*normcdf (theta + 1/ (2xtheta)*log(t./(1-t))); % Hisler—-Reiss model

pd

)

% lower tail copula evaluated on the unit circle
APrime = @(t,theta) (1 - A(t,theta))./(sqgrt(2+t."2 - 2+t + 1));

% rank-based analysis

rcl = zeros(n,1);
[hv,ar] = sort (WTI);
for i = 1:n

rcl(ar(i)) = i;
end

rcl = rcl/ (n+l);

rhh = zeros(n,1);
[hv,ar] = sort (Brent);
for i = 1:n

rhh(ar(i)) = i;
end

rhh = rhh/ (n+1);

% parametrisation of the unit circle
x = cos(s)';
y = sin(s)';

% transformation to unit simplex
xnorm = x./ (x+y);
ynorm = y./ (x+ty);

% calculation of the empirical lower tail copula (evaluated on the unit circle)
U = zeros(steps,1);
for i = l:steps
U(i) = sum((rcl < k*x(1i)/(n+l)).»(rhh < kxy(i)/(n+l)));
end
U = U/k;

o

applying the minimum distance estimator

z = linspace(0,1,1000)"';

dist = zeros(length(z),1l);

for i = 1l:length(z)

dist (i) = deltax*sum((U - LPrime(t,z(i)))."2);
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end

[minimum pos] = min(dist);

theta = z (pos);

% calculation of the reference statistic
ref_stat = k*minimum;

% partial derivatives lower tail copula
h = 1/sqgrt (k) ;

partial_x = zeros(steps,l);
for i = l:steps
if x(i) > h
partial_x (i) = (sum((rcl < kx(x(i)+h)/(n+l)).*(rhh < k*y(i)/(n+l))) -
sum( (rcl < k*x(x(i)-h)/(n+l)).x(rhh < k*xy(i)/(n+1))))/ (2%h);
else
partial_x (i) = (sum((rcl < k= (x(i)+2+h)/(n+l)) .~ (rhh < kxy(i)/(n+l))) -
sum((rcl < 0).x(rhh < k*y(i)/(n+l))))/(2+h);
end
end

partial_x = max (min (partial_x./k,1),0);

partial_y = zeros(steps,1l);
for i = l:steps
if y(i) > h
partial_y (i) = (sum((rcl < kxx(1i)/(n+l)).*(rhh < k*(y(i)+h)/(n+l))) -
sum( (rcl < k*x(i)/(n+l)).*x(rhh < k*(y(i)-h)/(n+1))))./(2xh);
else
partial_y (i) = (sum((rcl < kxx(i)/(n+l)).*(rhh < kx(y(i)+2+h)/(n+l))) -
sum((rcl < kxx(1i)/(n+l)).*(rhh < 0)))./(2*h);
end
end

partial_y = max (min(partial_y./k,1),0);

% partial derivative of the assumed lower tail copula with respect to theta
solved by symbolic equations

syms a p g

integralBody = exp(-g~2/2);

symNormA = (1/sqgrt (2+xsym(pi))) *int (integralBody, -Inf, p +
1/ (2xp)*log((l-a)/a));

symNormB = (1/sqrt (2+«sym(pi)))*int (integralBody, -Inf, p +
1/ (2xp) xlog(a/(1-a)));

A = (l-a)*symNormA + axsymNormB; % Hiisler—Reiss model

partial_theta = (-1)xdiff(A,p);

partial_theta = subs(partial_theta, {a, p}, {t, repmat (theta,steps,1)});

num_partial_theta = partial_theta./sqgrt (2+t. 2 - 2%t + 1);
A_theta = deltaxsum(num_partial_theta."2);

A_theta_inv = 1/A_theta;

% begin multiplier bootstrap

statistik = zeros(N,1);

result = 0;

for j = 1:N

% generation of multiplier sample &ji,...,8;T
multiplier = zeros(n,1l);
for i = 1:n

if unidrnd(2) == 1;
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Commented code

multiplier (i) = 0;
else
multiplier (i)

Il
N
~.

end
end
mu = mean (multiplier);
sigma = sqgrt (var (multiplier));
multiplier = multiplier/mu;
% calculation of the process f
beta = zeros(steps,1);
for i = l:steps
beta (i) = sum((multiplier-1).x(rcl < k#*x(i)/(n+l)).* (rhh
k*xy (1) /(n+1)));

pdm
T

end

beta = (mu/sigma)* (1/sqgrt (k) ) «beta;
% beta infinity values

betainf_x = zeros(steps,1l);

for i = l:steps

<

betainf_x (i) = sum((multiplier -1).*(rcl < k*n"2/(n+l)).*(rhh <

k*xy (1) /(n+l)));
end
betainf_x = (mu/sigma) * (1/sqrt (k)) xbetainf_x;

betainf_y = zeros(steps,1l);
for i = l:steps
betainf_y (i) = sum((multiplier -1).*(rcl < k*x(i)/(n+l))
kxn~2/ (n+1)));
end
betainf_y = (mu/sigma) * (1/sqrt (k) ) +xbetainf_y;
% calculation of the process aﬁ?l
alpha = beta - partial_x.xbetainf_y - partial_y.xbetainf_x;

% evaluation of the loop statistic
stat = delta*sum((alpha -

.+ (rhh <

num_partial_thetaxdeltaxsum(A_theta_invsnum_partial_theta.xalpha))."2);

)

% comparing results

vergleich = stat > ref_stat;
result = result + vergleich;
multiplier = [];

beta = [];

betainf_x = [];

betainf_y = [];

alpha = [];

end
% result goodness-of-fit test
result = result/N
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A.2 Simulation of copulas

Code A.3. Simulation of arbitrary copulas with a grid approach using the example of the upper Fréchet-
Hoeffding bound.

function [simU simV] = SimulationCop (n,m,p)

o

simulation of arbitrary copula families

calling the subfunction GridCalc to obtain probabilities in each cell of
an equidistant (nx m)-partition of the square [0,1]?
u,v,C] = GridCalc (n,m);

— o° o°

% preparing the simulation vector with p independent copies
simU = zeros(p,1);
simV = zeros(p,1);

for k = 1:p
generate uniform distribution to choose relevant cell

oe

c = rand(1l);
% searching for the corresponding cell
i =1;
while C(2,1) < c¢
i=1i+1;
end
simU (k) = u(C(4,1));
simv (k) = v(C(3,1));
end
end
function [u,Vv,C] = GridCalc(n,m)

oe

defining the copula function, here the upper Fréchet-Hoeffding bound
= @(u,v) min(u,Vv);

h

o°

initial settings

= zeros (m—-1,n-1);

zeros (4, (m—1)*(n-1));
= linspace(0,1,n);

= linspace(0,1,m);

< © Q"
Il

% probability calculation

for i = 2:m
for j = 2:n
if (1 == 2) && (j == 2)
P(i-1,3J-1) = f(u(3),v(i)) - f£(u(3-1),v(i)) - £(u(j),v(i-1));
else
P(i-1,3-1) = £(u(3),v(i)) - £(u(3-1),v(i)) - £(u(j),v(i-1)) +
f(u(j-1),v(i-1));
end
end
end

% reshaping, cumulating, storing positions
sum = 0;

for i = 1:m-1
for j = 1:n-1
C(l, (i-1)x(n-1)+3) = P(i,3);
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sum = sum + P (i, J);
C(2, (i-1)x(n-1)+3j) = sum;
C(3, (i-1)*(n-1)+3) = i+1;
C(4, (i-1)*(n-1)+3) = J+1;

end
end
end

Code A.4. Simulation of the copula (C3) from Section 3.4.1 with underlying Clayton family.

function [simU simV] = SimAlgorithm(n,a,p,tailindex)

o° o

parameter of the corresponding copula
theta = -log(2)/log(tailindex) ;

% generate the pair (X,Y)

U = copularnd('Clayton',theta,n/2);
subsetU = find(U(:,1) < a | U(:,2) < a);
binom = binornd(1l,p,length (subsetU),1);
multBinom = subsetU.xbinom;

multBinom = multBinom (multBinom # 0);

> simulation of copula family (C3) from Section 3.4.1

using the inverse Clayton tail dependence coefficient relation to obtain

tailU = axcopularnd('Clayton',theta,length (multBinom)) ;

for j = l:length(multBinom)
U(multBinom(j),:) = tailU(j, :);
end

)

Caa = copulacdf ('Clayton', [a a], theta);
mu = 2*a — Caaj;

for j = 1l:length(U(:,1))
% obtaining first marginal H(X,1)
if U(3,1) < a
U(3,1) = muxp*U(J,1)/a + (1-p)*U(3,1);
else
Cxa = copulacdf ('Clayton', [U(j,1) al,
U(j,1) = muxp + (l-p)*(Cxa + a - Caa)
end

% obtaining second marginal H(1,Y)
if U(3,2) < a
U(3,2) = muxp*U(J,2)/a + (1-p)*U(3,2);
else
Cay = copulacdf ('Clayton', [a U(3j,2)],
U(j,2) = muxp + (1l-p)=x(a + Cay - Caa)
end
end

simU =
simVv = U(:,2);
end

|
c
—

~
=

~

% calculate the distribution H and return marginals

- Cxa - a + Caaj;

- a — Cay + Caa;
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A.3 Tests for constant tail dependence

Code A.5. Application of TDC-Test 1 to the bivariate energy dataset for different k.

% empirical application of TDC-Test 1
% loading data

WTI = xlsread('...
Brent =

')

xlsread('...");

)

% initialization

n = length (WTI);

steps = n;

ns = floor(linspace(0,1,steps) .*n);
sopt = floor(linspace (100,250,150));
teststat = linspace (0,0, length (sopt));
pvalue = linspace (0,0, length(sopt));

o)

% calculating pseudo-observations

rcl = zeros(n,1);

[hv,ar] = sort (WTI);

for 1 = 1:n
rcl(ar(l)) = 1;

end

rcl = rcl/ (n+l);

rhh = zeros(n,1);

[hv,ar] = sort (Brent);

for 1 = 1:n
rhh(ar(l)) = 1;

end

rhh = rhh/ (n+1);

o)

% test statistic and p-value

< sopt(r)/(n+l)));

sqgrt (sopt (r)) .* (EmpLtdc - EmpLtdc (length(ns)) *ns/n);

for r = l:length(sopt)
EmpLtdc = linspace (0,0, length(ns));
for j = l:length(ns)
EmpLtdc (j) = 1/sopt(r)*sum((rcl(l:ns(j)) <
sopt (r)/ (n+l)) .+ (rhh(l:ns(j))
end
stat =
stat = stat.x* (EmpLtdc (length(ns)).”

teststat (r) =
pvalue (r) =
end

mean (stat.”2);

o)

function [pbb] =

s ratio,

o° o° o o°

or euclidean norm

maxbb = zeros(steps,1);
for 1 = 1l:numsim
[bb] = brownianbridge (steps);

if norm == 1
maxbb (i, 1)

numsim number of simulations,

(=1/2));

pvaluebrownianbridge (teststat (r),0,1000,1000,2);

% additional functions to be copied in a separate m-file
pvaluebrownianbridge (x, s, numsim, steps, norm)

finds the p-value of two functionals of the Brownian Bridge

steps discretization for the

interval m,ﬂ, norm applies either the supremumsnorm

= max (abs (bb ((floor (sxsteps)+1l) :steps,1)));
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else
maxbb (i, 1) = mean (bb((floor(s*xsteps)+1l):steps,1l)."2);
end
end
pbb = mean (maxbb(:,1) > x);
end
function [bb] = brownianbridge (steps)

% simulates a Brownian Bridge between 0 and 1

bm = 1/sqrt (steps) *cumsum (randn (steps, 1)) ;
bb = bm - (l:steps)'./steps.*bm(steps,1);
end

Code A.6. Simulated rejection probabilities of the TC-Test under the null hypothesis using the Clayton
copula within the serial independence setting.

o)

% simulated rejection probabilities of the TC-Test

o

setup simulation parameter and bootstrap replications
= 1000;

= 300;

= 1000;

5w =

steps = 200;
stepst = 20;

ns = floor(linspace(0,1,steps) .*n);
tparam = linspace (1l/ (stepst+l),1-1/(steps+1),stepst);
x = 1 - tparam;

y = tparam;

tailindex = 0.75;
theta = -log(2)/log(tailindex) ;

sopt = floor(linspace(l,n,n));
quantilefix = [0.9 0.95 0.99];
PlateaulowLtdcNull = linspace(0,0,N);
ResultNull = linspace(0,0,N);
normstat = linspace(0,0,N);
bootquantile = zeros (N, length(quantilefix));
% begin simulation run
for 1 = 1:N

% simulate from Clayton copula

U = copularnd('Clayton',theta,n);

WTI = U(:,1);

Brent = U(:,2);

rcl = zeros(n,1l);
[hv,ar] = sort (WTI);
for 1 = 1:n

rcl(ar(l)) = 1;
end

rcl = rcl/ (n+l);

rhh = zeros(n,1);
[hv,ar] = sort (Brent);
for 1 = 1:n

rhh(ar(l)) = 1;

end
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rhh = rhh/ (n+1);

LowLtdc = linspace (0,0, length(sopt));
% calculation of lower tail dependence coefficient
for r = 1:1length (sopt)
LowLtdc (r) = 1/sopt (r)*sum((rcl < sopt(r)/(n+l)).x(rhh <
sopt (r)/ (n+l)));
end

% box kernel to smooth
b = floor (0.005%n);
EmpLtcBar = linspace (0,0, length(n-2+b));
for 3 = 1:(n - 2xb);
EmpLtcBar (j) = mean (LowLtdc (j:2xb+73));
end
sigma = 2*std(EmpLtcBar);
1 = floor (sgrt (n-2+b));
% calculate the difference within each block
sumLtdc = linspace (0,0, length(n-2xb-1+1));
for k = 1: (n-2+xb-1+1)
sumLtdc (k) = sum(abs (EmpLtcBar (k) -EmpLtcBar (k:k+1-1)));
if sumLtdc (k) < sigma
PlateauLowLtdcNull (i) = mean (EmpLtcBar (k:k+1-1));
ResultNull (i) = k + floor(1/2x%1);
break
end
end
k = k + floor(1/2x1);
% empirical lower tail copula
EmpLtc = zeros(length(tparam), length(ns));
for m = l:length(tparam)
for j = l:length(ns)
% rows tparam, columns ns
EmpLtc (m, j) = 1/k*xsum((rcl(l:ns(j)) < k*x2+x(m)/(n+l)).*(rhh(l:ns(3))
< k*2xy(m)/ (n+l)));
end
end
stat = sqgrt (k) .* (EmpLtc - EmpLtc(:,length(ns))*ns/n);
normstat (i) = mean (mean(stat.”2,1));
% begin multiplier bootstrap
bootstat = linspace(0,0,B);
for b = 1:B

% generation of multiplier sample g?%.”,§$>
multiplier = zeros(n,1);
for p = 1:n
if unidrnd(2) == 1;
multiplier(p) = -1;
else
multiplier(p) = 1;
end
end

% empirical lower tail copula bootstrap
EmpLtcBoot = zeros(length (tparam),length(ns));
for m = l:length (tparam)
for j = 1l:length(ns)
% rows tparam, columns ns
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EmpLtcBoot (m, j) = 1/k*sum(multiplier(l:ns(j)).*((rcl(l:ns(j)) <
kx2xx (m) / (n+1)) .* (rhh(1:ns (j)) < kx2xy(m)/(n+l)) -
k/nxEmpLtc (m, length (ns))));

end
end
statboot = sqgrt (k) .x (EmpLtcBoot - EmpLtcBoot (:, length(ns)) *ns/n);
bootstat (b) = mean (mean (statboot.”2,1));
end
bootquantile (i, :) = quantile (bootstat,quantilefix);
end

o)

% calculate finite sample results
sum (normstat' > bootquantile(:,1))/N
sum (normstat' > bootquantile(:,2))/N
sum (normstat' > bootquantile(:,3))/N
mean (ResultNull)

std(ResultNull)
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