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Abstract

The topic of this dissertation is the design of fast branch-and-bound algorithms
that use intelligently adapted approaches from continuous optimization for solv-
ing convex mixed-integer nonlinear programming problems. This class of opti-
mization problems is NP-hard and polynomial-time algorithms for these prob-
lems are therefore unlikely to exist (unless P=NP). The importance of this class
is highlighted by the fact that many real-world applications can be modeled as
a (convex) mixed-integer nonlinear programming problem. Currently, there are
several standard techniques such as outer approximation that are used within
recent state-of-the-art software. Although all these algorithms include sophisti-
cated improvements such as primal heuristics and effective preprocessing, they do
not take into account the large gap between the algorithmic performance of NLP
and IP solvers. While NLP solvers are well-engineered for large-scale problems,
MIP problems of similar sizes are by far harder to solve in practice. Therefore,
when using NLP techniques within MIP solvers, these NLP algorithms have to
be adjusted to handle small-size instances effectively.

Taking this problem into account, we present three branch-and-bound algorithms,
based on a former work by Buchheim et al. [43] on unconstrained convex quadratic
integer programming problems. The main strategies used within this branch-and-
bound framework include extensive preprocessing and fast incremental compu-
tations, aiming at a very fast enumeration of the nodes. The first algorithm we
present is designed to solve convex quadratic mixed-integer programming prob-
lems with linear inequality constraints and is based on a new feasible active set
algorithm applied to the dual of the continuous relaxation. This active set al-
gorithm is tailored for the continuous problem and fully exploits its structure.
Furthermore, a warmstarting procedure is used to reduce the number of active
set iterations per node. The second algorithm we introduce is an approach called
quadratic outer approximation for solving box-constrained convex mixed-integer
nonlinear programming problems. It extends the classical outer approximation
by using quadratic underestimators leading to a faster convergence in practice.
Finally, the last algorithm we devise is aimed at a class of mean-risk portfolio op-
timization problems that can be modeled as convex mixed-integer programming
problems with a single linear budget constraint. For this application we propose a
branch-and-bound scheme using a modified Frank-Wolfe type algorithm to solve
the node relaxations. Similarly to the branch-and-bound algorithms mentionded
above we exploit the simplicity of the relaxations to enumerate the nodes as
quickly as possible rather than focussing on strong dual bounds.

We implemented all three algorithms and compared their performance with sev-
eral state-of-the art approaches. Our extensive computational studies show that
all new approaches presented in this thesis are able to effectively solve large classes
of real-world instances.



Zusammenfassung

Diese Arbeit befasst sich mit dem Entwurf von schnellen branch-and-bound Al-
gorithmen zur Lösung von konvexen gemischt-ganzzahligen nichtlinearen Opti-
mierungsproblemen. Solche Probleme sind NP-schwer, so dass es dafür unter
der Annahme P6=NP keine effizienten exakten Algorithmen gibt. Aktuell gibt es
etablierte Standardverfahren, wie z.B. outer approximation, welche in den mod-
ernsten Software-Paketen implementiert sind. Obwohl diese Verfahren ausgereifte
algorithmische Techniken benutzen, berücksichtigen sie dennoch nicht, dass die
verwendeten Algorithmen der nichtlinearen und der gemischt-ganzzahligen Op-
timierung ursprünglich für Probleme verschiedener Größe konzipiert wurden.
Während NLP Löser darauf spezialisiert sind Instanzen mit einer großen Anzahl
an Variablen und Nebenbedingungen zu lösen, können in der aktuellen Forschung
keine vergleichbar großen Instanzen für gemischt-ganzzahlige Probleme gelöst
werden. Da die Effektivität der Löser für gemischt-ganzzahlige Probleme in der
Regel auch von denen der NLP Löser abhängt, führt dies dazu, dass letztere auch
speziell für kleine Instanzen angepasst werden müssen.

Ausgehend von dieser Herausforderung, stellen wir insgesamt drei branch-and-
bound Verfahren vor, basierend auf einem exakten Algorithmus von Buchheim
et al. [43] für unrestringierte konvexe quadratische ganzzahlige Probleme. Die
Hauptkomponenten des Verfahrens sind ein ausgereiftes Preprocessing sowie eine
schnelle inkrementelle Berechnung der dualen Schranken. Dies führt zu einer sehr
effektiven Enumerierung des Suchbaumes. Der erste branch-and-bound Algorith-
mus, den wir vorstellen, löst konvexe quadratische gemischt-ganzzahlige Prob-
leme mit linearen Ungleichungen und basiert auf einer Aktive-Mengen Strate-
gie, welche auf das duale Problem der kontinuierlichen Relaxierung angewen-
det wird. Dieser Algorithmus ist besonders effektiv, da er die spezielle Struktur
der quadratischen Teilprobleme ausnutzt. Ferner präsentieren wir einen Ansatz
um konvexe gemischt-ganzzahlige nichtlineare Probleme mit Variablenschranken
zu lösen. Dieser Ansatz erweitert die klassische outer approximation Methode
und nutzt anstelle von Linearisierungen quadratische Unterschätzer. Durch die
bessere Approximation der Zielfunktion kann dies bei bestimmten Instanzklassen
zu einer schnelleren Konvergenz in der Praxis führen. Schließlich entwerfen wir
einen branch-and-bound Algorithmus zur Lösung von speziellen Problemen der
Portfolio-Optimierung, die ebenfalls als konvexe gemischt-ganzzahlige Probleme
modelliert werden können. Für diese Anwendung entwerfen wir einen modifizierten
Frank-Wolfe Algorithmus, der erneut gezielt die Struktur der zulässigen Menge
ausnutzt.

Alle drei Algorithmen wurden implementiert und in einer experimentellen Studie
mit ausgewählten aktuellen Lösern verglichen. Die Ergebnisse zeigen, dass alle
vorgestellten Algorithmen dieser Arbeit in der Lage sind eine große Anzahl an
praxisorientierten Instanzen effektiv zu lösen.
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Leuten umgegangen wäre und von ihnen gelernt hätte?“

Johann Wolfgang von Goethe, German writer and statesman

First of all, I would like to thank my supervisor Prof. Christoph Buchheim for his
constant scientific support throughout the years at Dortmund. I am very thankful
for being part of his fantastic working group and I fully enjoyed the casual but
at the same time motivational atmosphere created by the group.

It was a pleasure for me to work with every single one of my colleagues during
this period. I did not only profit from their professional expertise, but I also re-
ally appreciated their non-scientific skills that enriched my time outside working
hours. I am really honored to have been part of LSV. Especially, I thank Frank
Baumann for teaching me many very useful tricks in coding; Viktor Bindewald
for showing me the best activities whenever I needed some timeout from work;
Marianna De Santis for perfectly answering any of my questions concerning non-
linear optimization; Anna Ilyina for the good times during the conferences; Laura
Klein for sharing all the good but also hard moments during almost my complete
time at the chair; Jannis Kurtz for taking care of the constant coffee produc-
tion and Maribel Montenegro for helping me whenever it was important. Special
thanks are also devoted to Sabine Willrich for absolutely helping me with all
administrative issues and always conveying positive mood to the working group.

Moreover, many thanks go to my co-authors Stefano Lucidi, Francesco Rinaldi
and Marianna De Santis who were significantly involved in the results of Chapter
5 and 7 of this thesis.

Furthermore, I would like to thank Frank Baumann, Marianna De Santis and
Daniel Heubes for carefully proofreading my thesis.

Finally, I would like to thank my family and Laura for always being there for me.





Contents

1 Introduction 1

2 Nonlinear Programming 5

2.1 Existence of Global Minima . . . . . . . . . . . . . . . . . . . . . 5

2.2 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Unconstrained Nonlinear Optimization Problems . . . . . 7

2.2.2 Constrained Nonlinear Optimization Problems . . . . . . . 7

2.3 Lagrangian Duality and Convexity . . . . . . . . . . . . . . . . . 9

2.3.1 Weak and Strong Duality . . . . . . . . . . . . . . . . . . 9

2.3.2 Optimality Conditions for Convex Programming . . . . . . 11

2.4 Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Unconstrained Quadratic Programming . . . . . . . . . . . 14

2.4.2 Quadratic Programming with Linear Constraints . . . . . 16

2.5 Methods for Nonlinear Programming . . . . . . . . . . . . . . . . 19

2.5.1 Unconstrained Nonlinear Optimization . . . . . . . . . . . 19

2.5.2 Unconstrained Quadratic Optimization . . . . . . . . . . . 23

2.5.3 Constrained Quadratic Optimization . . . . . . . . . . . . 26

2.5.4 Constrained Nonlinear Optimization . . . . . . . . . . . . 29

3 Convex Mixed-Integer Programming 33

3.1 Mixed-Integer Linear Programming . . . . . . . . . . . . . . . . . 34

3.1.1 Branch-and-Bound Algorithm . . . . . . . . . . . . . . . . 35

3.1.2 Cutting Plane Algorithm . . . . . . . . . . . . . . . . . . . 41

3.1.3 Branch-and-Cut Algorithm . . . . . . . . . . . . . . . . . . 44

3.2 Convex Mixed-Integer Nonlinear Programming . . . . . . . . . . . 44

3.2.1 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . 45



3.2.2 Outer Approximation . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Generalized Benders Decomposition . . . . . . . . . . . . . 48

3.2.4 Extended Cutting Planes . . . . . . . . . . . . . . . . . . . 51

3.2.5 LP/NLP-based Branch-and-Bound . . . . . . . . . . . . . 52

3.2.6 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.7 Primal Heuristics . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Software for Convex MINLP . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Performance Benchmarks and Collection of Test Instances 59

4 Convex Quadratic Integer Programming 61

4.1 Complexity of CQIP . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 A Branch-and-Bound Algorithm for CQIP . . . . . . . . . . . . . 63

4.3 Improvement to Linear Running Time per Node . . . . . . . . . . 65

5 Active Set Based Branch-and-Bound 71

5.1 Quadratic Programming Problems with Non-negativity Constraints 74

5.2 The Kunisch-Rendl Active Set Algorithm . . . . . . . . . . . . . . 75

5.3 The FAST-QPA Active Set Algorithm . . . . . . . . . . . . . . . 77

5.3.1 Active Set Estimate . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Outline of the Algorithm . . . . . . . . . . . . . . . . . . . 78

5.3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . 80

5.4 A Branch-and-Bound Algorithm for CMIQP . . . . . . . . . . . . 88

5.4.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Dual Approach . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Reoptimization . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.4 Incremental Computations and Preprocessing . . . . . . . 91

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Quadratic Outer Approximation 103

6.1 Linear vs. Quadratic Outer Approximation . . . . . . . . . . . . . 104

6.1.1 Linear Outer Approximation . . . . . . . . . . . . . . . . . 104

6.1.2 Quadratic Outer Approximation . . . . . . . . . . . . . . . 105



6.2 Computing Lower Bounds . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Surrogate Problem . . . . . . . . . . . . . . . . . . . . . . 111

6.3.3 Quadratic Outer Approximation . . . . . . . . . . . . . . . 112

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Frank-Wolfe Based Branch-and-Bound 117

7.1 Dual Bounds by the Frank-Wolfe Method . . . . . . . . . . . . . . 119

7.1.1 Checking Optimality in Zero . . . . . . . . . . . . . . . . . 121

7.1.2 Starting Point Computation . . . . . . . . . . . . . . . . . 122

7.1.3 Outline of the Algorithm . . . . . . . . . . . . . . . . . . . 123

7.1.4 Computation of a Feasible Descent Direction . . . . . . . . 124

7.1.5 Computation of a Suitable Step Size . . . . . . . . . . . . 125

7.1.6 Incremental Computations . . . . . . . . . . . . . . . . . . 126

7.1.7 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . 127

7.1.8 Dual Bound Computation . . . . . . . . . . . . . . . . . . 131

7.2 A Branch-and-Bound Algorithm for GCBP . . . . . . . . . . . . . 132

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1 Non-monotone Line Search and Warmstarts . . . . . . . . 135

7.3.2 Comparison to CPLEX 12.6 and Bonmin 1.8.1 . . . . . . . 137

7.3.3 Using a Different Risk-adjusted Function . . . . . . . . . . 140

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Summary and Outlook 143

References 147





List of Frequently Abbreviated
Problems

CBIP . . . . . . . . Convex Box-Constrained Integer Programming
CBMIQP . . . . Convex Box-Constrained Mixed-Integer Quadratic Programming
CMINLP . . . . . Convex Mixed-Integer Nonlinear Programming
CMIQP . . . . . . Convex Mixed-Integer Quadratic Programming
CP . . . . . . . . . . . Convex Programming
EQP . . . . . . . . . Equality-Constrained Quadratic Programming
GCBP . . . . . . . Generalized Capital Budgeting Problem
INLP . . . . . . . . Integer Nonlinear Programming
MILP . . . . . . . . Mixed-Inter Linear Programming
MINLP . . . . . . Mixed-Integer Nonlinear Programming
MIQCP . . . . . . Mixed-Integer Quadratically-Constrained Programming
MIQP . . . . . . . . Mixed-Integer Quadratic Programming
NLP . . . . . . . . . Nonlinear Programming
NLP-R . . . . . . . Nonlinear Programming Relaxation
QP . . . . . . . . . . . Quadratic Programming
UCQIP . . . . . . Unconstrained Convex Quadratic Integer Programming
UNLP . . . . . . . Unconstrained Nonlinear Programming
UQP . . . . . . . . . Unconstrained Quadratic Programming





Chapter 1

Introduction

In this thesis we are dealing with Mixed-Integer Nonlinear Programming (MINLP)
problems involving both integer and continuous variables. In addition to the
difficulty caused by the integrality, the need to handle the nonlinearity of the
functions increases their complexity even more. One reason why in particular
optimization over integers is more difficult than continuous optimization is that,
except for a very few special cases, there are no optimality conditions for integer
programming problems. Proving optimality is therefore much more difficult than
in the continuous case. One possible approach would be to enumerate all finitely
many feasible points, but this is not feasible due to the combinatorial explosion
of the feasible set. Another reason is that integrality automatically implies non-
convexity of the feasible region. Thus, although we are concerned with convex
objective and constraint functions in this thesis, we are dealing implicitly with
non-convex feasible regions. While convexity in continuous optimization implies
that every local minimum is also a global minimum, this is no longer true if we
require integrality of the solution. A famous quote that reflects the role of non-
convexity in optimization is given by the renowned mathematician Ralph Tyrrell
Rockafellar. In a SIAM review survey paper from 1993, he argued that

“the great watershed in optimization isn’t between linearity and nonlinearity,
but convexity and non-convexity”.

The general Mixed-Integer Nonlinear Programming problem has the following
formulation:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0 (MINLP)

x ∈ X ∩ Zn, y ∈ Y,

where f : Rn × Rp → R is the nonlinear objective function, g : Rn × Rp → Rm

models the nonlinear constraints and X ⊆ Rn, Y ⊆ Rp. We assume f and g to

1



2 CHAPTER 1. INTRODUCTION

be twice continuously differentiable and X, Y to be bounded. In case the feasible
region is bounded, MINLP belongs to the class of NP-hard problems, since it
contains Mixed-Integer Linear Programming (MILP) as a special case, which is
known to be NP-hard itself [118]. If the feasible region is unbounded, MINLP
is even undecidable [116]. Nevertheless, in practice, the feasible region is usually
bounded. Therefore MINLP is an extremely difficult class of optimization prob-
lems. A comprehensive study on the computational complexity of optimization
problems can be found in [89]. If both f and g are convex functions and X, Y
are convex sets, MINLP is called convex, otherwise non-convex. While solving
convex MINLPs is already very challenging, non-convex MINLPs are much more
difficult to solve since even their continuous relaxation can be NP-hard itself (see,
e.g., [180, 182]), due to the possibility of local minima. If p = 0 MINLP becomes
a Pure Integer Nonlinear Programming problem:

min{f(x) | g(x) ≤ 0, x ∈ X ∩ Zn}. (INLP)

INLP itself can be classified into different subclasses according to the special
structure of the objective and constraint functions. We mention three special
cases.

• Unconstrained Integer Programming: All inequality constraints are absent
(m = 0) and X = Rn.

• Quadratic Integer Programming: The objective function f is quadratic and
the constraint function g is linear.

• Convex Integer Programming: Both functions f and g are convex.

Combining all three subclasses above, we get an Unconstrained Convex Quadratic
Integer Programming problem

min{x>Qx+ c>x+ d | x ∈ Zn}, (UCQIP)

where Q ∈ Rn×n is symmetric and positive semidefinite, c ∈ Rn and d ∈ R.
Note that, in spite of all restrictions to INLP, UCQIP is already NP-hard, since
it is equivalent to the Closest Vector Problem, see [184]. In Chapter 4, we will
recall a tailored branch-and-bound algorithm for solving a box-constrained ver-
sion of UCQIP, developed by Buchheim et al. [43], which will be the fundamental
branch-and-bound scheme for all the other algorithms in this thesis.

There is an endless number of real-world problems which can be formulated as
mixed-integer nonlinear programming problems. They include portfolio optimiza-
tion [29], block layout design in the manufacturing and service sectors [50], net-
work design with queuing delay constraints [38], integrated design and control of
chemical processes [83], drinking water distribution systems security [131], min-
imizing the environmental impact of utility plants [76], and multiperiod supply
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chain problems subject to probabilistic constraints [136]. A very detailed overview
of applications in the field of engineering is given by Grossmann and Sahini-
dis [102, 103]. MINLP problems are therefore of great interest in mathematical
optimization. In 2008, Jon Lee used the term “the mother of all deterministic
optimization problems” to describe the importance of MINLP. A comprehensive
survey on applications, models and solution methods, both for non-convex and
convex MINLP is given by Belotti et al. [19].

Contributions

In this thesis, we present new branch-and-bound algorithms for solving convex
mixed-integer nonlinear programming problems that combine well known meth-
ods from nonlinear optimization with a special branch-and-bound scheme. Algo-
rithms for convex MINLP often strongly rely on the effectiveness of nonlinear
programming (NLP) solvers, since the original mixed-integer problem is usually
tackled by solving a sequence of NLP subproblems that occur as relaxations.
Currently, theory and algorithms for nonlinear programming are still constantly
improving. Yet, recent advances already allow state-of-the art NLP solvers to han-
dle large-scale problems with several thousands of variables and/or constraints.
In contrast, unlike in nonlinear programming the algorithmic advances in integer
programming are still lagging behind such that solving general integer problems
of about 100 variables can be already very challenging. Therefore a key task
in designing fast MINLP solvers consists also in the reengineering of existing
NLP solvers to accelerate the process of finding solutions to small-size problems.
In particular, it is necessary to fully exploit the given nonlinear structure by ap-
propriate methods instead of typically just linearizing the nonlinearities. Another
important concept is the use of warmstarts within the branch-and-bound scheme,
leading to a further reduction of iterations within each node and finally to a faster
enumeration in the search tree. The main concept and contribution of this thesis
is the design of new, but also the reengineering of existing nonlinear programming
algorithms. The effective embedding of the tailored NLP solvers into a general
branch-and-bound framework is done by the use of a sophisticated preprocessing
phase, yielding a very effective overall enumeration process in the search tree.
Following this philosophy, we devise three branch-and-bound algorithms for con-
vex quadratic mixed-integer programming problems (Chapter 5), box-constrained
convex nonlinear mixed-integer programming problems (Chapter 6) and, as an
application, one class of mixed-integer mean-risk portfolio optimization problems
(Chapter 7). All three algorithms have in common that they are based on the
same quick branch-and-bound scheme combined with finely tuned NLP solvers.
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Outline

In Chapter 2, we introduce the basic concepts of nonlinear programming. We give
optimality conditions for the relevant problems to be discussed, summarize known
results from Lagrangian duality theory, convex and quadratic programming. We
furthermore give a brief overview of the nonlinear programming methods we will
use in order to solve the nonlinear programming relaxations in our branch-and-
bound algorithms.

Chapter 3 deals with the basic theory of convex mixed-integer nonlinear program-
ming. First, we discuss common approaches for mixed-integer linear programming
and show how they have been used to design algorithms for their nonlinear coun-
terpart. We present the fundamental methodology that is needed and shortly
survey the existing state-of-the-art algorithms. At the end a short presentation
of the most common software packages is given.

In Chapter 4, a branch-and-bound scheme proposed by Buchheim et al. for box-
constrained convex quadratic mixed-integer programming problems is formulated,
on which the upcoming algorithms are based. The most important components,
namely the preprocessing phase and the fast incremental computation technique
for the dual bounds, are presented. Finally, results on achieving linear running
time per node are given.

Chapter 5 presents a novel generalization of the latter scheme to mixed-integer
quadratic programming problems with linear inequalities. We show that the the-
oretical complexity of computing dual bounds for this generalized class of prob-
lems does not increase if the number of linear inequalities is considered as fixed.
An active set based algorithm is devised to compute the dual bounds effectively.
Additionally, the crucial concepts of using duality and warmstarts within Branch-
and-Bound are investigated.

In Chapter 6 we formulate an extension of the standard outer approximation ap-
proach for solving box-constrained convex mixed-integer nonlinear programming
problems by using quadratic underestimators instead of linearizations. We give
a sufficient condition for the existence of a global quadratic underestimator and
illustrate the potential of the scheme by studying a special class of exponential
objective functions for which underestimators can be derived explicitly.

Chapter 7 presents a branch-and-bound algorithm for solving a generalization
of the risk-averse capital budgeting problem where the investor can adjust his
own risk profile by choosing an appropriate risk function. This application is
modeled as a convex mixed-integer optimization problem. We design a modified
Frank-Wolfe type algorithm to compute dual bounds within our branch-and-
bound framework. Again, duality and warmstart properties are exploited to speed
up the algorithm.

Finally, we give summary and a short outlook about future research perspectives.



Chapter 2

Nonlinear Programming

A general nonlinear optimization problem is given by

min{f(x) | x ∈ F} (NLP)

where ∅ 6= F ⊆ Rn is the feasible region and f : Rn → R is the objective function
we want to minimize. In the further course of this section, unless explicitly indi-
cated, we assume f to be continuously differentiable. If F = Rn, the problem NLP
is called unconstrained, otherwise constrained.

We call a vector x ∈ Rn feasible for NLP if x ∈ F . If x? is feasible and

f(x?) ≤ f(x) ∀ x ∈ F, (2.1)

x? is called a (global) minimizer of NLP.
If there exists some r > 0, such that for all x ∈ F ∩Br(x

?)

f(x?) ≤ f(x), (2.2)

x? is called a (local) minimizer of NLP. Here, Br(x
?) denotes the closed ball of

radius r centered in x?.

If in (2.1) and (2.2) strict inequality holds for all x 6= x?, x? is called a strict
(global/local) minimizer. Each global minimizer is by definition also a local mini-
mizer. The corresponding objective function value f(x?) is called a (global/local)
minimum.

2.1 Existence of Global Minima

A well-known result from calculus, the Extreme Value Theorem of Weierstrass,
states that, for any given compact set F , a continuous function f : F → R at-
tains its global minimum on F . Although we are going to deal only with smooth

5



6 CHAPTER 2. NONLINEAR PROGRAMMING

functions in this thesis, we note that this result can be extended and generalized
also to non-continuous functions and non-compact sets, using the following def-
initions: any real-valued function f : Rn → R is called lower semicontinuous at
x ∈ Rn if lim infk→∞ f(xk) ≥ f(x) for every sequence {xk} ⊂ Rn that converges
to x. It is called coercive if for every sequence {xk} ⊂ Rn such that ||xk|| → ∞
we have limk→∞ f(xk) =∞.

Theorem 2.1 (Weierstrass’ Theorem [26]). Let F ⊆ Rn be a nonempty set and
f : F → R be lower semicontinuous on F . Assume that one of the following
conditions holds:

(i) F is compact.

(ii) F is closed and f is coercive.

(iii) There exists z ∈ F such that the level set

Nf (z) = {x ∈ F | f(x) ≤ f(z)}

is nonempty and compact.

Then the set of minimizers of f over F is nonempty and compact.

Example 2.1. We consider the minimization of the strictly convex quadratic
function f(x) := 1

2
x>Qx + c>x + d, where Q ∈ Rn×n is symmetric and positive

definite, c ∈ Rn and d ∈ R. It is easy to see that from the coercivity of f
there exists some z ∈ Rn sufficiently large such that level set Nf (z) is nonempty
and compact. Hence, every strictly convex quadratic function attains its global
minimum on Rn.

2.2 Optimality Conditions

In this section we introduce necessary and sufficient optimality conditions for non-
linear optimization problems. These conditions are used to identify local minima.
Necessary conditions are satisfied in every local minimizer, while sufficient condi-
tions imply local optimality, if they are satisfied. Characterizations of minimizers
are both important in theory and from a practical point of view for designing
effective optimization algorithms. We first take a look at optimality conditions
for unconstrained nonlinear optimization problems and extend the theory to the
presence of nonlinear constraints.
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2.2.1 Unconstrained Nonlinear Optimization Problems

An unconstrained nonlinear optimization problem is of the form

min{f(x) | x ∈ Rn}. (UNLP)

Note that even if the problem is unconstrained, the minimization of an arbitrary
nonlinear function may be hard, since it might have several local minima. Never-
theless, every local minimizer of UNLP satisfies the following first-order necessary
condition.

Theorem 2.2 (First-Order Necessary Condition [26]). If x∗ is a local minimizer
of UNLP, then

∇f(x?) = 0. (2.3)

Solutions of (2.3) are called stationary points of f . This means when searching for
minima of f , we can reduce the search space to all its stationary points. However,
in general this is equivalent to solving a system of nonlinear equations which can
be done analytically only for special classes of functions, for example if f is
quadratic. In this case (2.3) reduces to a system of linear equations. If we assume
f to be additionally twice continuously differentiable, we can use second-order
information to obtain a necessary optimality condition.

Theorem 2.3 (Second-Order Necessary Condition [26]). If x? is a local mini-
mizer of UNLP, then ∇2f(x?) is positive semidefinite.

If f is convex, (2.3) is also sufficient for optimality, see Section 2.3.2. For a
general function f that is not necessarily convex, any stationary point at which
the Hessian of f is positive definite is a strict local minimizer.

Theorem 2.4 (Second-Order Sufficient Conditions [26]). If ∇f(x?) = 0 and
∇2f(x?) is positive definite, then x? is a strict local minimizer of UNLP.

Note that the second-order necessary and sufficient conditions differ only slightly,
but the second-order sufficient conditions even imply strict local minimality.

2.2.2 Constrained Nonlinear Optimization Problems

In this section, we consider general nonlinear optimization problems NLP. We
assume that their feasible region can be described by a set of m inequalities and
p equations, i.e.,

F = {x ∈ Rn | g(x) ≤ 0, h(x) = 0}, (2.4)



8 CHAPTER 2. NONLINEAR PROGRAMMING

where g : Rn → Rm and h : Rn → Rp are assumed to be continuously differ-
entiable. We point out that there exist many optimality conditions for generally
constrained nonlinear programming problems in the literature. Instead of giving
a complete overview, we focus on optimality conditions that will be exploited in
the following to design practical algorithms. We start with some basic definitions.

Definition 2.1 (Lagrangian). The Lagrangian of NLP is defined as the function
L : Rn × Rm × Rp → R,

L(x, λ, µ) := f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x). (2.5)

The vectors λ ∈ Rm and µ ∈ Rp are called Lagrangian Multipliers.

Definition 2.2 (KKT-Conditions). The system

∇xL(x, λ, µ) = 0 (Stationarity)

g(x) ≤ 0, h(x) = 0 (Primal Feasibility)

λ ≥ 0, λ>g(x) = 0 (Complementary Slackness)

is called Karush-Kuhn-Tucker (KKT)-system of NLP. Any solution of the KKT-
system is called KKT-point.

Definition 2.3 (Active and Non-active Set). For any x ∈ F the active set at x
is the set A(x) := {i ∈ {1, . . . ,m} | gi(x) = 0} and the non-active set at x is the
set N (x) := {i ∈ {1, . . . ,m} | gi(x) < 0}.

Definition 2.4 (Linear Independence Constraint Qualification). x ∈ F satisfies
the Linear Independence Constraint Qualification (LICQ) if the vectors

∇hi(x), i = 1, . . . , p and ∇gj(x), j ∈ A(x) (2.6)

are linearly independent.

We can finally state a very practical necessary optimality condition for NLP,
based on the KKT-system. It is the basis for many optimization algorithms.

Theorem 2.5 (First-order Necessary Condition [26]). If x? ∈ F is a local min-
imizer of NLP and satisfies LICQ, then there exists unique (λ∗, µ∗), such that
(x?, λ∗, µ∗) is a KKT-point.

For the validity of the theorem it is important that (2.6) holds. There are several
other constraint qualifications that can be used instead of (2.6) like the Abadie
Constraint Qualification (ACQ) or the Mangasarian-Fromovitz Constraint Qual-
ification (MFCQ) [91]. Nevertheless LICQ implies ACQ and MFCQ. Although
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ACQ and MFCQ are also sufficient they just ensure the existence of a KKT-
point, while LICQ even ensures the existence of a unique KKT-point. We also
mention the Slater Constraint Qualification, which is probably the most well-
known constraint qualification in literature. It is also sufficient for the existence
of a KKT-point and implies ACQ. To formulate second-order optimality condi-
tions for NLP, we introduce the critical cone and require f, g and h to be twice
continuously differentiable.

Definition 2.5 (Critical Cone). For any x ∈ F , λ ∈ Rm, λ ≥ 0 the critical cone
is defined as

K(F ;x, λ) :=

s ∈ Rn

∣∣∣∣∣∣
∇h(x)>s = 0
gi(x)>s = 0, i ∈ A(x), λi > 0
gi(x)>s ≤ 0, i ∈ A(x), λi = 0

 .

We can finally state the following second-order sufficient condition.

Theorem 2.6 (Second-Order Sufficient Condition [26]). Let (x?, λ∗, µ∗) be a
KKT-point. If for all s ∈ K(F ;x?, λ∗) we have

s>∇2
xL(x?, λ∗, µ∗)s > 0,

then x? is a strict local mimimum of NLP. Here, ∇2
xL denotes the Hessian of L

with respect to x.

As we will see in Section 2.3, the KKT-conditions can be simplified in the convex
case and therefore play an important role in convex optimization.

2.3 Lagrangian Duality and Convexity

In this section we deal with the concept of duality in nonlinear optimization. We
will see that the duality theory for linear programming can be classified within
this concept and that some results are valid analogously to the linear case.

2.3.1 Weak and Strong Duality

Recall a general nonlinear optimization problem NLP given in the form

min{f(x) | g(x) ≤ 0, h(x) = 0},

where f : Rn → R, g : Rn → Rm and h : Rn → Rp.

Studying the dual problem of NLP, also denoted as the Lagrangian Dual, is
motivated by the following result.
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Definition 2.6 (Saddle Point). A vector (x?, λ∗, µ∗) ∈ Rn × Rm × Rp is called
saddle point of its Lagrangian L, if the following inequalities hold

L(x?, λ, µ) ≤ L(x?, λ∗, µ∗) ≤ L(x, λ∗, µ∗), (2.7)

for all (x, λ, µ) ∈ Rn × Rm × Rp, λ ≥ 0.

Theorem 2.7 (Saddle Point Theorem [170]). If (x?, λ∗, µ∗) is a saddle point of
L, then x? is a minimizer of NLP.

This means the saddle point property (2.7) implies optimality. The idea of finding
a saddle point of L is to first find a minimizer x(λ̄, µ̄) of L(·, λ̄, µ̄) for fixed
(λ̄, µ̄), λ̄ ≥ 0, and then to find a maximizer of L(x(λ̄, µ̄), λ, µ). We motivate this
idea by the simple Example 2.2.

Example 2.2. Consider the problem

min{f(x) := x2 | g(x) := 1− x ≤ 0, x ∈ R}.

L is given by L(x, λ) = x2 + λ(1 − x). For fixed λ ≥ 0, we have x(λ) = λ
2
.

Maximizing L(x(λ), λ) = λ− λ2

4
yields λ∗ = 2. Thus, (x?, λ∗) = (1, 2) is a saddle

point of L and hence a minimizer by Theorem 2.7.

To follow this idea, it is convenient to consider the inner minimization problem
and the outer maximization problem independently.

Definition 2.7 (Dual Function). The function q : Rm × Rp → R ∪ {∞},

q(λ, µ) := inf
x
L(x, λ, µ)

is called the dual function of NLP. In general the dual function is not differen-
tiable. The problem

sup{q(λ, µ) | λ ≥ 0, µ ∈ Rp} (NLD)

is called the dual problem of NLP. The corresponding primal problem of NLP is
naturally defined as infx supλ≥0, µ L(x, λ, µ). In fact, it can be shown that NLP is
equivalent to its primal problem in the sense that every minimizer of the problem
is also a minimizer of NLP and vice versa.

As we can see, the dual problem has simpler constraints, while its objective
function is more complicated, so dualizing a problem moves the difficulty from the
constraints to the objective function. Nevertheless, we will see that considering
the dual problem can be useful. The following results explain the connection
between the optimal objective function values of the primal and dual problem. It
is natural to analyze if and under which conditions we achieve equality. In this case
it might be easier to solve the dual problem instead. The Weak Duality Theorem
states that for every feasible pair of points for the primal and dual problem the
dual objective function value is a lower bound on the primal objective function
value.
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Lemma 2.8 (Weak Duality Theorem [91]). Let x ∈ Rn be feasible to NLP and
(λ, µ) ∈ Rm × Rp be feasible to NLD, then

sup(NLD) ≤ inf(NLP ).

The dual function q and its feasible domain

dom(q) := {(λ, µ) ∈ Rm × Rp | λ ≥ 0, q(λ, µ) > −∞}

have the properties that dom(q) is convex and q : dom(q) → R is concave. This
means the dual problem can be transformed into a convex optimization problem
by writing it as a minimization problem. Note that any dual problem is always
convex, independently of the primal problem.

A duality gap between the primal and the dual solutions p and d can occur.
This means that the lower bounds obtained by the dual problem might be weak
in the sense that the gap is huge. The following theorem shows that under
certain assumptions on the primal problem, we can obtain strong duality, i.e.,
sup(NLD) = inf(NLP ) and the duality gap is thus zero.

Theorem 2.9 (Strong Duality Theorem [91]). If in NLP f, g are convex, h is
affine-linear, furthermore, inf(NLP ) is finite and there exists x̂ ∈ Rn, such that
g(x̂) < 0 and h(x̂) = 0, then the dual problem has an optimal solution and

sup(NLD) = inf(NLP ).

For example, for any convex quadratic optimization problem that has a strictly
feasible point strong duality holds. We will make use of this useful result in
particular in Chapter 5.

2.3.2 Optimality Conditions for Convex Programming

In this section we consider convex optimization problems, i.e., NLP, where the
objective function as well as the feasible region are both convex:

min{f(x) | x ∈ C}, (CP)

where f : Rn → R and C ⊆ Rn. Convex optimization problems have some
useful properties and are in general easier to solve in practice than non-convex
problems. We start with some basic definitions and give important results on
convex optimization problems, including optimality conditions.

Definition 2.8 (Convex Set). A set C ⊆ Rn is called convex, if for all x, y ∈ C
and for all λ ∈ [0, 1]:

(1− λ)x+ λy ∈ C.
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Definition 2.9 (Convex, Strictly Convex and Uniformly Convex Function). Let
C ⊆ Rn be convex. A function f : C → R is called

(i) convex, if for all x, y ∈ C and for all λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

(ii) strictly convex, if in (i) strict inequality holds for all x 6= y.

(iii) uniformly convex, if there exists some µ > 0, such that for all x, y ∈ C and
for all λ ∈ [0, 1]:

f(λx+ (1− λ)y) + µλ(1− λ)||x− y||2 ≤ λf(x) + (1− λ)f(y).

Using the following theorem, we can characterize convex, strongly convex and
uniformly convex functions by first-order information.

Theorem 2.10 ([26]). Let C ⊆ Rn be convex, open and f : C → Rn be continu-
ously differentiable. Then,

(i) f is convex if and only if for all x, y ∈ C:

f(y)− f(x) ≥ ∇f(x)>(y − x).

(ii) f is strictly convex, if and only if for all x, y ∈ C, x 6= y:

f(y)− f(x) > ∇f(x)>(y − x).

(iii) f is uniformly convex, if and only if there exists some µ > 0, such that

f(y)− f(x) ≥ ∇f(x)>(y − x) + µ||y − x||2

for all x, y ∈ C.

To characterize convexity of twice continuously differentiable functions, the fol-
lowing observation is useful.

Theorem 2.11 ([91]). Let C ⊆ Rn be convex, open and f : C → R be twice
continuously differentiable. Then

(i) f is convex, if and only if ∇2f(x) is positive semidefinite for all x ∈ C.

(ii) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex.
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(iii) f is uniformly convex, if and only if there exists some µ > 0, such that

s>∇2f(x)s ≥ µ||s||2

for all x ∈ C and for all s ∈ Rn.

Some useful features of convex optimization problems are summarized in the
following theorem.

Theorem 2.12 ([91]). Let C ⊆ Rn be convex and f : C → R be convex. Consider
the problem of minimizing f over C. Then we have that

(i) each local minimizer is also a global minimizer.

(ii) the set of optimal solutions is convex.

(iii) if f is strictly convex, at most one global minimizer exists.

(iv) if f is uniformly convex and C is nonempty and closed, there exists a unique
global minimizer.

For any general convex set C = {x ∈ Rn | h(x) = 0, g(x) ≤ 0} ⊆ Rn given by
equations and inequalities, we have the following sufficient optimality condition
which is a consequence of Theorem 2.7, since KKT-points coincide with saddle
points if the optimization problem is convex.

Theorem 2.13 (Sufficient Optimality Condition [91]). If (x?, λ∗, µ∗) is a KKT-
point, x? is a global minimizer of CP.

In case f is convex and C = Rn, i.e., we have an unconstrained convex optimiza-
tion problem, any stationary point is a global minimizer, since the KKT-system
reduces to (2.3).

We already know that the KKT-conditions are sufficient for optimality. If the
following constraint qualification holds we can also guarantee that the KKT-
conditions are necessary for optimality.

Definition 2.10 (Slater Condition). A feasible point x̂ ∈ F is called Slater
Point, if g(x̂) < 0.

Note that this condition was already used in the Strong Duality Theorem. The
KKT-conditions are sufficient for optimality for CP. They are also necessary only
if a constraint qualification like Slater’s condition holds.

Theorem 2.14 (Necessary Optimality Condition [91]). If x? is a global mini-
mizer of CP and in addition a Slater Point exists, then there exists a KKT-point
(x?, λ∗, µ∗).
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Assume that we have a convex optimization problem of the form CP, where the
feasible region F is given by general inequalities g(x) ≤ 0 and equations h(x) = 0,
i.e., F = {x ∈ Rn | g(x) ≤ 0, h(x) = 0}, where g : Rn → Rm and h : Rn → Rp.
In some special cases, e.g., when h and g are linear, the constraint qualification
simplifies to require the existence of any feasible point x ∈ F . In this case there
exists a global minimizer of CP, if and only if there exists a KKT-point. For
example this is true for any convex quadratic programming problem. We will
study this type of problems in the next section.

2.4 Quadratic Programming

Quadratic Programming (QP) plays an important role in mathematical program-
ming. Optimization problems involving a quadratic objective function and linear
constraints are often used as subproblems to solve more general nonlinear opti-
mization problems. A representative of this class of algorithms is the iterative
Sequential Quadratic Programming algorithm [32, 190], one of the most effec-
tive methods for nonlinearly constrained optimization problems. Concerning the
complexity it was shown that convex quadratic programming can be solved in
polynomial time by using either the ellipsoid method [128] or the interior point
method [119, 193]. In contrast, non-convex quadratic programming was shown
to be NP-hard by Sahni [173]. Pardalos and Vavasis [166] showed that quadratic
programming in which the quadratic matrix has a single negative eigenvalue is
already NP-hard. In this section we are mainly interested in conditions which
ensure the existence of an optimal solution.

2.4.1 Unconstrained Quadratic Programming

We start with unconstrained quadratic programming problems, i.e., problems of
the form

min{f(x) := x>Qx+ c>x+ d | x ∈ Rn}, (UQP)

where Q ∈ Rn×n, c ∈ Rn and d ∈ R. Note that without loss of generality Q
can be assumed to be symmetric, since x>Qx = x>Q̄x, where Q̄ = 1

2
(Q+Q>) is

symmetric.

According to Theorem 2.11, we have that

• Q is positive definite ⇔ f(x) is strictly convex, and

• Q is positive semidefinite ⇔ f(x) is convex.

The implication f(x) is strictly convex ⇒ Q is positive definite does not follow
immediately but can be shown as follows: Let t ∈ Rn, t 6= 0. For any x ∈ Rn we
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Figure 2.1: The top left picture shows an unbounded convex function without
minima, the top right one shows a strictly convex function with a unique mini-
mum, the bottom left one is a non-convex function and the bottom right one is
a convex function with infinitely many minima.

define y := x− t. We have that (x− y)>(∇f(x)−∇f(y)) > 0 since f is strictly
convex. By inserting the gradients we see that this is equivalent to t>Qt > 0.

Furthermore, for a quadratic function we have the equivalence between strictly
and uniformly convex.

Lemma 2.15. A quadratic function f is strictly convex if and only if f is uni-
formly convex.

Proof. Let λmin be the smallest eigenvalue of Q. We have λmin > 0, such that
s>∇2f(x)s = 2s>Qs ≥ 2λmin||s||2 for all s ∈ Rn.

In particular Theorem 2.12 implies that any strictly convex quadratic program has
a unique minimizer. The following theorem shows that any unconstrained non-
convex quadratic optimization problem is unbounded, while any strictly convex
quadratic optimization problem has a unique minimizer that can be computed by
solving a system of linear equations. A convex but not strictly convex quadratic
optimization problem might have either infinitely many or no minima. In Fig-
ure 2.1, we illustrate the different cases for convex functions.
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Theorem 2.16 ([70]). For UQP, it holds

(i) x? is a local minimizer of UQP, if and only if Q is positive semidefinite and
∇f(x?) = 2Qx? + c = 0.

(ii) UQP has a unique solution, if and only if Q is positive definite.

(iii) If Q is not positive semidefinite, then UQP is unbounded from below.

2.4.2 Quadratic Programming with Linear Constraints

We consider equality constrained quadratic programming problems, i.e., problems
of the form

min x>Qx+ c>x+ d

s.t. Ax = b (EQP)

x ∈ Rn,

where Q ∈ Rn×n, Q = Q>, c ∈ Rn, d ∈ R, A ∈ Rp×n and b ∈ Rp. Equality
constrained quadratic programming problems are easy to solve if Q is assumed
to be positive semidefinite since this implies f to be convex, and hence the KKT-
conditions are necessary and sufficient for optimality. Thus, if there exists a so-
lution (x?, µ∗) ∈ Rn × Rp of the KKT-system, x? is also a minimizer of EQP,
and vice versa. In particular, in this case the KKT-system is a system of linear
equations: (

2Q A>

A 0

)(
x
µ

)
=

(
−c
b

)
. (2.8)

From a practical point of view we have the following theorem.

Theorem 2.17 ([91]). Let xk ∈ Rn be feasible for EQP. A pair (x?, µ∗) ∈ Rn×Rp

is a KKT-point of EQP if and only if x? = xk + ∆x? and (∆x?, µ∗) is a solution
of the following system of linear equations(

2Q A>

A 0

)(
∆x
µ

)
=

(
−∇f(xk)

0

)
.

This result will be used in standard active set methods, see Section 2.5.3. Concern-
ing the existence and uniqueness of minima for EQP, we can state the following
result.

Theorem 2.18. If Q is positive definite and rk(A) = p ≤ n, there exists a unique
solution (x?, µ∗) of (2.8) and x? is the unique minimizer of EQP.
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Proof. Let f be the quadratic objective function of EQP. For any arbitrary vector
z ∈ Rn the level sets Nf (z) = {x ∈ Rn | f(x) ≤ f(z)} of f are compact. Since
rk(A) = p, we have that the feasible region is nonempty: let A = (A0, A1), where
A0 ∈ Rp×p, A1 ∈ Rp×(n−p) and rk(A0) = p (if necessary after permutation of the
columns of A). Thus,

z0 = (A−1
0 b, 0)>

is a feasible point. According to Theorem 2.1 there exists a minimizer of EQP.
Since f is strictly convex, it is also unique using Theorem 2.12.

Again, like in the unconstrained case, it is sufficient to assume the objective
function to be strictly convex and additionally the constrained matrix to be full-
ranked to have a unique solution. Solving the KKT-system (2.8) can be done in
different ways. Besides solving it directly, it can be done by using Range-Space
Methods or Null-Space Methods. We refer to [162] for details.

If we allow inequality constraints, the problem becomes

min f(x) := x>Qx+ c>x+ d

s.t. Ax ≤ b (QP)

x ∈ Rn,

where Q ∈ Rn×n, Q = Q>, c ∈ Rn, d ∈ R, A ∈ Rm×n and b ∈ Rm.

By using the necessary optimality conditions (2.5) for NLP and taking into ac-
count that no constraint qualification is needed since all constraints are affine-
linear [91], we get the following first-order necessary condition for QP.

Theorem 2.19 ([162]). If x? is local minimizer of QP, then there exists (x?, λ∗)
that satisfies the KKT-system:

2Qx? + c+
∑

i∈A(x?)

λ∗i ai = 0 (Stationarity)

gi(x) = a>i x
? ≤ bi, i ∈ N (x?) (Primal Feasibility)

gi(x) = a>i x
? = bi, i ∈ A(x?) (Primal Feasibility)

λ∗i ≥ 0, i ∈ A(x?) (Dual Feasibility, Complementarity)

λ∗i = 0, i ∈ N (x?) (Dual Feasibility, Complementarity)

Again, Theorem 2.12 and Lemma 2.15 imply the existence of a unique solution
if Q is positive definite.

Corollary 1. If Q is positive definite and the feasible region is nonempty, then
there exists a unique solution for QP.
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In this case, since the KKT-conditions are necessary and sufficient for optimality,
we can conclude that the unique minimizer can be computed by the unique
solution of the KKT-system.

For general Q, we can at least give sufficient conditions under which there exists
a minimizer. The result is the well-known theorem of Frank and Wolfe.

Theorem 2.20 (Frank-Wolfe Theorem [70]). Let X ⊆ Rn be a nonempty poly-
hedron, then the optimization problem min{f(x) = x>Qx + c>x + d | x ∈ X}
attains its global minimum on X, if and only if f is bounded from below.

This theorem is not valid for arbitrary nonlinear functions. For example f(x) = ex

does not have any minimizer although bounded from below. Using the Frank-
Wolfe Theorem, it is possible to derive a sufficient condition for the existence of
minima for QP, if Q is positive semidefinite but not definite.

For any convex set C ⊆ Rn its recession cone is defined as the following cone
rec(C) := {y ∈ Rn | x+ λy ∈ C for all x ∈ C, λ ≥ 0}.

Theorem 2.21 ([58]). Let C ⊆ Rn be the nonempty feasible polyhedral region
of QP. Then it holds:

(i) If QP has a solution, then x>Qx ≥ 0 for all x ∈ rec(C) and

c>x ≥ 0 for all x ∈ rec(C) ∩ ker(Q). (2.9)

(ii) If (2.9) holds and f is convex, QP has a solution.

Without loss of generality assume the polyhedral set contains only inequalities.
Otherwise the equations can be written as inequalities. It is interesting that the
condition (2.9) can be checked in polynomial time by solving the following linear
program:

min{c>x | Ax ≤ 0, Qx = 0, x ∈ Rn}, (2.10)

since the recession cone of a polyhedron P = {x ∈ Rn | Ax ≤ b} is the set
{x ∈ Rn | Ax ≤ 0}. Thus, if there exists an optimal solution x? of (2.10), such
that c>x? < 0, QP is unbounded from below and there is no solution. On the
other hand, if c>x? ≥ 0, the objective function is bounded from below and hence
there exists at least one solution to the problem if f is convex. This shows that
if Q is positive semidefinite (but not positive definite), we have a necessary and
sufficient condition for the existence of an optimal solution for QP, which can be
checked in polynomial time.

In general, there are two common approaches for solving QP, namely interior
point methods and active set methods. In interior point methods, a sequence
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of parameterized barrier functions is (approximately) minimized using Newton’s
method. The main computational effort consists in solving the Newton system to
get the search direction. In active set methods, at each iteration, a working set
that estimates the set of active constraints at the solution is iteratively updated.
They will be briefly described in the next Section.

2.5 Methods for Nonlinear Programming

This chapter is based on the books of Nocedal and Wright [162], Bazaraa et al. [17]
and Geiger and Kanzow [91] which give a detailed insight into theory and practice
of nonlinear optimization. For an overview of NLP software we refer to the work
of Leyffer and Majahan [139]. We start with unconstrained optimization prob-
lems. They are of great interest since they are often used to solve subproblems in
approaches for constrained optimization problems. After giving a brief descrip-
tion of the common approaches, we take a closer look at line search methods.
After that, we concentrate on two quadratic programming algorithms, namely
the conjugate gradient method for unconstrained convex quadratic programming
problems and the active set method for linearly constrained convex quadratic
programming problems. All three types of algorithms, line search method, con-
jugate gradient method and active set method will play an important role in the
design of our fast active set algorithm for convex mixed-integer programming
in Chapter 5. Finally we take a look at the Frank-Wolfe Algorithm for solving
constrained convex optimization problems. We use an algorithm tailored to our
branch-and-bound algorithm for a class of mixed-integer portfolio optimization
problems in Chapter 7.

2.5.1 Unconstrained Nonlinear Optimization

All algorithms for unconstrained nonlinear optimization problems follow the idea
of generating a sequence of iterates {xk}∞k=0 such that for some iterate we can
either verify optimality (up to a certain accuracy) or no progress can be made.
The design of these algorithms differs in the way of deciding how to move from
one iterate xk to the next xk+1. There are mainly two categories of approaches of
choosing the next iterate: line search methods and trust region methods.

Line search methods are moving from the current iterate xk to a new one xk+1

with a better objective function value along some descent direction sk. To de-
cide how far the step size along the descent direction should be they solve an
one-dimensional optimization problem: minαk>0 f(xk + αkx

k). This is often done
approximately, since solving this subproblem can already be expensive. If we solve
the problem to optimality we call it an exact line search, otherwise an inexact
line search.
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Trust region methods are different, as in each iteration k they first approximate
f(xk + s) by some (simpler) auxiliary function f̄k(s) and then minimize it locally
in a trust region ∆k in which both are similar:

min{f̄k(s) | ||s|| ≤ ∆k}. (2.11)

Typically trust regions are chosen as either balls ∆k = {s ∈ Rn | ||s|| ≤ ∆}, where
∆ > 0, or boxes/ellipsoids. The auxiliary function is usually chosen as a quadratic
function of the form f̄k(s) = f(xk) +∇f(xk)>s+ 1

2
s>Bks, where Bk is either the

Hessian or an approximation of it. Depending on the ratio of actual and expected

reduction of the objective function ρk = f(xk)−f(xk+sk)

f̄k(0)−f̄k(sk)
, either the solution sk is

accepted and the new iterate is set to xk+1 = xk+sk or the trust region is modified
and the problem is solved again. It is common to reject the step and decrease the
trust region if ρk < 0 since it implies the objective function value to become worse
in the current iteration. On the other hand if ρk ≈ 1, we can increase the trust
region, and if ρk � 1, the current trust region is kept. The fundamental question
is how to solve the trust region problems (2.11). Well-known algorithms that solve
the problem approximately are for example the dogleg method for positive definite
Bk, and the two-dimensional subspace minimization for indefinite Bk, a method
by Steinhaug, based on the CG Method, if Bk is chosen as the exact Hessian of f .
In this section we are not going into further details about trust region methods
since they are not needed in our approaches. A survey on trust region methods
is given by Dennis and Schnabel [67].

Line Search Methods

We start with the definition of a descent direction, i.e., directions in which we
can improve our objective function. In fact, moving along any descent direction
of f , we can guarantee an improvement of the objective function value.

Definition 2.11 (Descent Direction). Let f : Rn → R be differentiable in x ∈ Rn.
A vector s ∈ Rn is called a descent direction of f in x if we have

∇f(x)>s < 0.

Lemma 2.22 ([9]). Let f : Rn → R be differentiable in x ∈ Rn and s ∈ Rn be a
descent direction in x. Then there exists some α > 0, such that f(x+αs) < f(x).

This leads to the following iterative procedure, sketched in Algorithm 1. The al-
gorithm starts with an initial guess x0 and determines a feasible descent direction
s0 as well as a feasible step size α0 to compute the new iterate x1 := x0+α0s

0 with
a reduced objective function value. This is repeated until a stopping criterion is
satisfied. In practice the stopping criterion is ||∇f(xk)|| < ε, where 0 < ε � 1.
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Algorithm 1: Line Search

input : differentiable function f : Rn → R
output: stationary point x? of f

Choose starting point x0 ∈ R. Set k = 0.
while ∇f(xk) 6= 0 do

Compute descent direction sk.
Compute step size αk > 0, such that

f(xk + αks
k) < f(xk).

Set xk+1 = xk + αks
k, k = k + 1.

The obvious questions are how to determine a suitable descent direction s and an
appropriate step size α. Concerning the descent direction it is common to choose

s = −B−1∇f

for some symmetric and regular matrix B. Two specific choices for B are for
example B = I or B = ∇2f(x), if the Hessian is positive definite. The resulting
descent directions are called Anti-Gradient and Newton-Direction, respectively.

Assuming we are interested in an inexact line search, some common conditions
on the step sizes then are:

• Wolfe conditions:

f(xk + αks
k) ≤ f(xk) + c1αk∇f(xk)>sk (2.12)

∇f(xk + αks
k)>sk ≥ c2∇f(xk)>sk, (2.13)

where 0 < c1 < c2 < 1.

Condition (2.12) is also known as the Armijo condition and guarantees a
sufficient decrease of the objective function. The second condition (2.13)
is the curvature condition that ensures the line search to make reasonable
progress since a sufficiently small step size would always satisfy the Armijo
condition. Furthermore, it may be the case that some step size that satisfies
the Wolfe conditions is not close to a minimizer of φ(α) = f(xk + αsk). To
ensure this, we can require the derivative φ′(α) to be non-negative such that
points far away from the minimizer are excluded by the following additional
requirement (2.14).

• Strong Wolfe conditions:

f(xk + αks
k) ≤ f(xk) + c1αk∇f(xk)>sk

|∇f(xk + αks
k)>sk| ≤ c2|∇f(xk)>sk|, (2.14)
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where 0 < c1 < c2 < 1. A third pair of conditions are the

• Goldstein conditions:

f(xk) + (1− c)αk∇f(xk)>sk ≤ f(xk + αks
k) (2.15)

≤ f(xk) + cαk∇f(xk)>sk, (2.16)

where 0 < c < 1
2
.

Again, the first inequality prevents to have a step size too small and the
second inequality ensures the sufficient decrease.

Often the sufficient decrease condition (2.12) is combined with a backtracking
such that we do not need to consider (2.13). It starts with an initial step size
and reduces it step by step until the sufficient decrease condition holds, see Al-
gorithm 2.

Algorithm 2: Backtracking Line Search

input : iterate xk, search direction sk, step size αk
output: feasible step size αk

Choose αk > 0, ρ, c ∈ (0, 1).
while f(xk + αks

k) > f(xk) + cαk∇f(xk)>sk do
Set αk = ραk.

If the descent directions and step sizes are chosen appropriately the line search
algorithm converges to a stationary point. We therefore define feasible search
directions and feasible step sizes.

Definition 2.12 (Feasible Search Direction, Feasible Step Size). Let {sk}k, {xk}k
and {αk}k be the the sequences of search directions, iterates and step sizes gen-
erated by Algorithm 1. The sequence {sk}k is called feasible, if for all {xk}k we
have the implication:

lim
k→∞

∇f(xk)>sk

||sk||
= 0⇒ lim

k→∞
∇f(xk) = 0. (2.17)

The sequence {αk}k is called feasible, if for all {xk}k and {sk}k we have the
implication:

f(xk + αks
k) < f(xk) for all k ∈ N and

lim
k→∞

(f(xk)− f(xk + αks
k)) = 0⇒ lim

k→∞

∇f(xk)>sk

||sk||
= 0.
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The condition (2.17) ensures that the descent direction does not tend to be-
come orthogonal to the gradient. Both, the Anti-Gradient as well as the Newton-
Direction are feasible search directions. On the other hand, it can be shown that
under standard assumptions the Wolfe conditions as well as the Goldstein condi-
tions are choosing step sizes that are both feasible.

Under additional requirements, we can assure the convergence of the line search
method to a minimizer.

Theorem 2.23 ([9]). Let f : Rn → R be continuously differentiable, x0 be the
starting point, the level set Nf (x

0) be convex and compact and f strictly convex
on Nf (x

0). Furthermore, let the sequence of descent directions {sk}k and step
sizes {αk}k be feasible. Then there exists a unique global minimizer x? of f and
Algorithm 1 produces a sequence {xk}k that converges to x?.

The assumptions made are quite restrictive since we require the objective function
in a neighborhood of x? to be strictly convex and additionally that the starting
point x0 has to be in that neighbourhood.

One of the most important representatives of line search algorithms is the Newton
Method that uses in its most general form the Newton Direction as a descent
direction and step size 1. Assuming the starting point x0 is sufficiently close to
a minimizer x?, it can be shown that if f is twice continuously differentiable
and the Hessian of f is Lipschitz continuous in a neighbourhood of x? at which
∇f(x?) = 0 and ∇2f(x?) is positive definite, then {xk}k converges to x? and
{||∇f(xk)||}k converges to 0 quadratically. Several modifications can be made to
get a practical global convergent version of the Newton Method. For example in
the Modified Newton Method, whenever necessary, the Hessian is modified to be
positive definite throughout the whole algorithm to guarantee descent directions.
To save computational expenses, the computation of the Newton Direction can
be done approximately, yielding an Inexact Newton Method. In particular, Quasi-
Newton type methods aim at reducing the computational effort by approximating
the Hessian with some matrix that is easier to invert.

2.5.2 Unconstrained Quadratic Optimization

Conjugate Gradient Method

The conjugate gradient method (CG) was introduced by Hestenes and Stiefel [110]
in the 1950s for solving systems of linear equationsQx = b for any positive definite
coefficient matrix Q ∈ Rn×n and right hand side vector b ∈ R. It is obvious
that solving Qx = b is equivalent to minimizing the unconstrained quadratic
programming problem

min{f(x) =
1

2
x>Qx− b>x | x ∈ Rn}. (2.18)
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Looking at this, we can consider unconstrained quadratic programming as an
alternative way to solve systems of linear equations, if Q is positive definite.
Theorems 2.12 and 2.13 guarantee the existence of a unique minimizer of the
quadratic programming problem.

CG Methods are specific line search algorithms, i.e., they iteratively create a
sequence of points xk+1 = xk + αks

k by choosing appropriate step sizes αk and
descent directions sk in each iteration. The method starts with the anti-gradient
as an initial descent direction but continues with modified Anti-Gradients such
that a certain property, called conjugacy holds for the set of search directions.

Definition 2.13 (Q-Conjugacy). A set of nonzero vectors {p0, p1, . . . , p`} is called

Q-conjugate for a symmetric positive definite matrix Q ∈ Rn×n, if pi
>
Qpj = 0

for all i 6= j.

This property ensures that given an arbitrary starting point x0 ∈ Rn and a set
of n nonzero Q-conjugate vectors pi ∈ Rn, i = 0, . . . , n− 1, the iterations

xk+1 = xk + αkp
k, (2.19)

where αk = −∇f(xk)
>
pk

pk>Qpk
, give a minimizer of (2.18) after at most n iterations.

Note that any two eigenvectors of Q corresponding to distinct eigenvalues are
Q-conjugate. But computing all the eigenvectors would be too expensive. Instead
of computing all the Q-conjugate vectors a priori, it is possible to compute them
iteratively. This leads to the question of how to determine a set of Q-conjugate
vectors. The answer is given by the following constructive Lemma.

Lemma 2.24 ([90]). Let p0 ∈ Rn, p0 6= 0 be arbitrary and pk, k = 1, . . . , n− 1,
be defined by

pk = −∇f(xk) + βk−1p
k−1, where βk−1 =

∇f(xk)>Qpk−1

pk−1>Qpk−1

and xk defined as in (2.19). Then p0, . . . , pn−1 are Q-conjugate.

Note that in the above construction of the set of Q-conjugate vectors, each vector
xk is constructed by using the current iterate xk and the preceding conjugate
vector pk−1. In practice, the computation of αk and βk can be simplified by the
following formulas

αk =
||∇f(xk)||2

pk>Qpk
, βk =

||∇f(xk+1)||2

||∇f(xk)||2
.

In particular ∇f(xk)>pk = −||∇f(xk)||2 < 0 for all ∇f(xk) 6= 0 implies that the
CG Method in fact belongs to the class of line search methods. The CG Method
in its most general form is given by Algorithm 3. Putting these results together,
we can state the following convergence theorem.



2.5. METHODS FOR NONLINEAR PROGRAMMING 25

Algorithm 3: Conjugate Gradient Method

input : symmetric, positive definite matrix Q ∈ Rn×n, vector b ∈ Rn

output: minimizer of f(x) := 1
2
x>Qx− L>x

Choose x0 ∈ Rn, p0 = −∇f(x0), set k = 0.
while ∇f(xk) 6= 0 do

Set αk = ||∇f(xk)||2

pk>Qpk
.

Compute

xk+1 = xk + αkp
k

∇f(xk+1) = ∇f(xk) + αkQp
k

βk =
||∇f(xk+1)||2

||∇f(xk)||2

pk+1 = −∇f(xk+1) + βkp
k

Set k = k + 1.

Theorem 2.25 ([90]). If Q is symmetric and positive definite, Algorithm 3 ter-
minates after at most n iterations with the unique minimizer of (2.18).

The convergence rate of the CG Method is linear, since we have the following
error estimation:

||xk − x?|| ≤

(√
κ(Q)− 1√
κ(Q) + 1

)2k

||x0 − x?||,

where κ(Q) = λmax(Q)
λmin(Q)

is the condition of the matrix Q. We can see that the con-
vergence highly depends on the distribution of the eigenvalues of Q. Therefore, in
practice CG Methods are often accelerated via Preconditioning : Instead of using
the CG Method for the original problem we consider the transformation y = Cx
and the resulting problem C−>QC−1y = C−1b, where C ∈ Rn×n is non-singular
and κ(C−>QC−1) is smaller than κ(Q). Some common choice is the Incomplete
Cholesky Factorization C = L̃>, where Q ≈ L̃L̃> such that L̃ is sparser than the
the matrix in the exact Cholesky factorization. The idea of the CG Method is
extendible to general unconstrained nonlinear optimization problems of the form
min{f(x) | x ∈ Rn} with an arbitrary continuously differentiable objective func-
tion f : Rn → R. Popular versions are for example the Fletcher-Reeves Method
and the Polak-Ribiere Method. For details, we refer to [162].
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2.5.3 Constrained Quadratic Optimization

Essentially two classes of methods have been developed for solving linearly con-
strained quadratic programs of the form QP, namely active set methods (ASM)
(see, e.g., [94, 168]) and interior point methods (IPM) (see, e.g., [95, 152]). For
a detailed comparison, we refer to [162]. In this thesis, we will focus on inequal-
ity constrained convex problems, i.e., we assume Q to be positive semidefinite.
Equality constrained quadratic programs of the form EQP do not require spe-
cial algorithms to be solved, since solving its KKT-system, which is a system
of linear equations, is sufficient (see Section 2.4). We therefore concentrate on
quadratic programs with inequalities and describe a solution technique based on
the reduction to equality constrained problems.

Active Set Methods

The main idea of active set methods is to solve a sequence of equality constrained
quadratic programs by considering only the active constraints at the current
iterate. For sake of simplicity, assume we have an optimization problem of the
form QP without equations, i.e., m = 0. Recall that by Definition 2.3 the active
and non-active sets at some point xk are denoted by

A(xk) := {i | a>i xk = bi} and N (xk) := {1, . . . ,m} \ A(xk).

It is well known that active set methods are preferable to interior point methods
in practice, if the number of constraints is small or medium.

The basic idea of general active set methods for convex quadratic programming
problems relies on the following observation. If x? is the minimizer of QP, we
have

x? = argmin f(x) s.t. Ax ≤ b

= argmin f(x) s.t. a>i x = bi for all i ∈ A(x?).

Knowing the optimal active set of x? would solve the problem immediately by
finding the solution to (2.8). Since this is not the case, the approach starts by
choosing a working set Wk ⊆ {1, . . . ,m} and computing

xk+1 = argmin f(x) s.t. a>i x = bi for all i ∈ Wk.

If the new iterate xk+1 is not the minimizer of QP, adjustWk toWk+1 in a clever
way and solve the updated equality constrained quadratic programming problem.
It is common to distinguish between primal and dual active set methods. While
a primal active set method ensures primal feasibility of all iterates, a dual active
set methods ensures dual feasibility.
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Let Wk denote the current working set and Ak the matrix that consists of all
rows of A belonging to Wk. We assume that the row vectors ai, i = 1, . . . ,m,
are linearly independent. Algorithm 4 gives a basic version of a primal active set
method for quadratic optimization problems with linear inequalities.

Theorem 2.26 ([91]). Consider Algorithm 4 for Problem QP.

(i) If Q is positive definite and ai (i ∈ Wk) are linear independent, (2.20) has
a unique solution.

(ii) If ai (i ∈ Wk) are linear independent at any iteration k and the algorithm
does not terminate after solving (2.20), this also holds for ai (i ∈ Wk+1).

(c) If Q is positive definite and ∆xk 6= 0, we have ∇f(xk)>∆xk < 0, i.e., ∆xk

is a descent direction.

In each iteration k, the algorithm considers the feasible iterate xk and checks if it
minimizes the quadratic objective function in the subspace defined by the current
working set Wk. If not, it computes a descent direction ∆xk by solving (2.20).
This corresponds to solving the equality constrained quadratic program with
constraints a>i x = bi for all i ∈ Wk while all other constraints are relaxed. From
Theorem 2.17 we know that ∆xk 6= 0, since otherwise the iterate would already
be optimal in that subspace. On the other hand (xk + ∆xk, λk+1

Wk
) is a KKT-point

of that equality constrained problem. Since Ak∆x
k = 0, every constraint in the

working set will still be satisfied with equality by the new iterate xk + ∆xk. If
(c) holds, i.e., xk + ∆xk is feasible for all constraints, we update our iterate and
the working set is not changed. If there are constraints i /∈ Wk that are violated
by the new iterate, we choose the step size αk as large as possible until the first
constraint that is violated becomes active and any other constraints stays strictly

feasible. Therefore we choose the step size as αk := mini/∈Wk, a
>
i ∆xk>0

bi−a>i xk

a>i ∆xk
,

update our iterate by xk+αk∆x
k and add this blocking constraint to the working

set. This iterative process is repeated until a point is reached that is optimal for
the current working set, i.e., when ∆xk = 0. Then, either all of the multipliers in
the working setWk are non-negative and we can stop since (xk+1, λk+1) is already
a KKT-point of our original problem, or if there is a negative multiplier in the
working set Wk, we remove this constraint. It can be shown that the solution of
the resulting subproblem (2.20) gives a feasible direction for the constraint that
has just been dropped.

Assuming that it is always possible to take a nonzero step along a nonzero descent
direction guarantees that the algorithm does not cycle. It can also be shown that
no working set is considered twice. Since the number of different working sets is
finite, the algorithm stops after a finite number of iterations with a KKT-point of
the problem. Nevertheless active set methods can have exponential running time
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Algorithm 4: Active Set Method

input : symmetric, positive definite matrix Q ∈ Rn×n, matrix A ∈ Rm×n,
vectors c ∈ Rn, b ∈ Rm

output: minimizer of q(x) := x>Qx+ c>x such that Ax ≤ b

Choose feasible x0 ∈ Rn for QP and λ0 ∈ Rm. Set W0 := {i | a>i x0 = bi}.

while (xk, λk) is not a KKT-point do
Set λk+1

i := 0 for all i /∈ Wk. Solve(
2Q A>k
A>k 0

)(
∆x
λA

)
=

(
−∇f(xk)

0

)
. (2.20)

Distinguish between:

(a) If ∆xk = 0 and λk+1
i ≥ 0 for all i ∈ Wk: STOP

(b) If ∆xk = 0 and min{λk+1
i | i ∈ Wk} < 0:

choose

q := arg min{λk+1
i | i ∈ Wk}

and set

xk+1 := xk,

Wk+1 :=Wk \ {q}.

(c) If ∆xk 6= 0 and xk + ∆xk is feasible for QP:
set

xk+1 := xk + ∆xk,

Wk+1 :=Wk.

(d) If ∆xk 6= 0 and xk + ∆xk is infeasible for QP:
choose

r := arg min

{
bi − a>i xk

a>i ∆xk
| i /∈ Wk s.t. a>i ∆xk > 0

}
and set

αk :=
br − a>r xk

a>r ∆xk
,

xk+1 := xk + αk∆x
k,

Wk+1 :=Wk ∪ {r}.

Set k := k + 1.
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in the dimension of the problem [125], due to the existence of up to 2n possible
working sets, but their practical performance is usually much better. A significant
advantage of active set methods is that they can be easily warmstarted. We will
profit from this fact in the design of our branch-and-bound algorithms.

2.5.4 Constrained Nonlinear Optimization

There are plenty of classical and well-studied approaches for solving constrained,
but not necessarily convex, nonlinear optimization problems. We give a short
overview without going into detail. At the end we focus on the Frank-Wolfe
method that will be use in the last chapter of this thesis.

Penalty Methods follow the idea of replacing the constrained problem by a se-
quence of unconstrained optimization problems Pk := min{f(x)+τkP (x)}, where
P (x) is a non-negative penalty function that is zero if and only if x is feasible and
τk > 0 is a positive penalty parameter. The use of penalty function and parameter
ensures that the objective function is penalized by a perturbation if x is infeasible.
The magnitude of perturbation for each unconstrained problem Pk is controlled
by the parameter τk. For a strictly monotonically increasing sequence of penalty
parameters {τk}k it can be shown that for suitable penalty functions every limit
point of the sequence of minimizers {xk}k solves the original constrained problem.
Typically Pk is chosen as Pk := min{f(x) + τk

2
||h(x)||2 + τ

2

∑m
i=1 max2{0, gi(x)}}.

Penalty Methods usually suffer from the fact that Pk becomes ill-conditioned for
growing τk.

Exact Penalty Methods overcome this disadvantage by considering a bounded se-
quence of penalty parameters. Exact penalty functions have the property that
there exists τk̄ > 0, such that if x? is a minimizer of f , it is also a minimizer
of Pk̄ for every k ≥ k̄. This makes it possible to tackle the problem by solving
a single (or at least a small number of) unconstrained problem(s) instead of a
whole sequence. The penalty functions Pq(x) := f(x)+τ ||(h(x),max{0, g(x)})||q,
q ∈ [1,∞), are standard choices in practice. It is known that Pq, q ∈ [1,∞), is
exact for convex optimization problems while they are even exact for general
nonlinear optimization problems if in addition x? satisfies a constraint qualifi-
cation. The disadvantage of exact penalty functions is that they are necessarily
non-differentiable and methods of non-differentiable optimization, like the bundle
method, are needed. A popular reference on non-differentiable methods, especially
on bundle methods, is given by [124].

Barrier Methods for inequality constrained problems use a similar strategy. Again
a sequence of unconstrained problems is considered. In contrast to Penalty Meth-
ods they compute a sequence of feasible instead of infeasible iterates by using
barrier terms that keep the iterate in the interior of the feasible region. The bar-
rier term is chosen in a way that it penalizes the function only if the iterate
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is moving towards the boundary of the feasible region. For example logarithmic
barrier terms are often used, resulting in unconstrained problems of the form
Bk := min{f(x) − τk

∑m
i=1 ln(−gi(x))}. In this case, we solve Bk for a strictly

monotonically decreasing sequence of barrier parameters τk > 0 and every limit
point of a sequence {xk}k generated by a Barrier Method is a global minimizer
of the original constrained problem. Unfortunately, Barrier Methods also suffer
from ill-conditioned problems when τk is converges to zero from above.

Augmented Lagrangian Methods, also known as Multiplier-Penalty Methods, com-
bine Lagrangian multipliers with penalty functions. For constrained nonlinear
programming problems the augmented Lagrangian function can be chosen as
La(x, λ, µ, τ) := f(x)+ τ

2
||h(x))||2 +µ>h(x)+ 1

2τ

∑m
i=1(max2{0, λi+τgi(x)}−λ2

i ),
which is a continuously differentiable function. It can be shown that there exists
τ̄ > 0 such that any strict local minimizer x? of f is also a strict local mini-
mizer of La(x, λ

∗, µ∗, τ) for all τ ≥ τ̄ , where (λ∗, µ∗) are the optimal Lagrangian
multipliers. Since neither τ̄ nor (λ∗, µ∗) are known a priori, one usually uses it-
erative procedures to approximate (λ∗, µ∗) and τ̄ in each iteration. In general,
Augmented Lagrangian Methods tend to be less vulnerable to ill-conditioning of
the generated subproblems.

Sequential Quadratic Programming (SQP) Methods are among the most popular
methods for constrained nonlinear programming problems. Their essential idea is
to successively model the problem at each iterate xk by a quadratic programming
problem and use its solution to define the new iterate xk+1. SQP Methods can
be seen as an application of the Newton Method to the KKT-system and are
therefore sometimes also called Newton-Lagrange Methods. To be more precise
each iteration k consists of solving the quadratic program

min
1

2
s>∇2

xxL(xk, λ, µ)s+∇f(xk)s

s.t. ∇hi(xk)>s+ hi(x
k) = 0, i = 1, . . . , p

∇gj(xk)>s+ gj(x
k) = 0, j = 1, . . . ,m,

and setting xk+1 = xk + s. This quadratic model consists of a quadratic approx-
imation of the Lagrangian and a linear approximation of the constraints. It can
be solved by using standard methods of constrained quadratic programming. Ad-
ditional strategies inspired by line search and trust-region methods can be used
to ensure global convergence from an arbitrary starting point, yielding a very
effective instrument to tackle constrained nonlinear programs.

In Chapter 7, we will deal with convex but not necessarily quadratic mixed-
integer problems. To solve their continuous relaxations effectively we rely on the
following classical method from convex optimization.
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Frank-Wolfe Algorithm

The Frank-Wolfe Algorithm, also known as the Conditional Gradient Method [85]
was proposed in 1956 by Marguerite Frank and Philip Wolfe to originally solve
convex quadratic optimization problems over a polygonal set and can be extended
to convex problems of the more general form CP. This method was in fact one
of the breakthroughs in convex optimization. It assumes that the problem:

min{c>x | x ∈ C}

can be solved effectively for any linear objective function c>x. We assume C to
be compact, nonempty and f to be continuously differentiable. Again, the Frank-
Wolfe Algorithm can be categorized as a line search method. In each iteration,
the search direction is computed by solving a convex problem with a linear ob-
jective function. In case C is a polygonal region this is just a linear programming
problem. The main idea is to replace the general convex objective function f by
its first-order Taylor approximation. More precisely, given an iterate xk ∈ C, we
consider the Taylor expansion of f about xk:

f(xk) +∇f(xk)>(y − xk)

and minimize it over the feasible region C. Since f(xk) and ∇f(xk)>xk are con-
stant, we can replace the objective function by

lk(y) = ∇f(xk)>(y − xk),

yielding the following subproblem that has to be solved in each iteration k:

min{∇f(xk)>y | y ∈ C}. (FWk)

Let yk denote the minimizer of FWk. Then yk − xk is a feasible direction. More-
over it is a descent direction. To see this, note that the variational inequality
∇f(yk)>(y − yk) ≥ 0 for all y ∈ C is a sufficient condition for yk to be a mini-
mizer of f over C. Since yk is the minimizer of FWk, we have

lk(y
k) ≤ lk(x

k) = ∇f(xk)>(xk − xk) = 0.

This means that lk(y
k) is either zero or negative. In the first case, we have

0 = lk(y
k) ≤ lk(y) = ∇f(xk)>(y − xk) for all y ∈ C,

meaning that xk is already stationary and we can stop. In the second case we
have

0 > lk(y
k) = ∇f(xk)>(yk − xk),

implying sk := yk − xk to be a descent direction. We can improve our iterate by
moving along sk with any step size αk ≤ 1, by the convexity of f .

Some possible choices for the step sizes are:
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• an exact step size αk := arg minα f(xk + αdk)

• an Armijo Rule, compare (2.12)

• a constant step size αk = 1.

• the simple step size αk = 2
k+2

.

Assuming C to be compact, the existence of a limit point x̄ ∈ C is guaranteed
and we can derive the following convergence theorem:

Theorem 2.27 ([26]). Let {xk} be as sequence generated by the Frank-Wolfe
Algorithm:

xk+1 = xk + αks
k.

If all step sizes αk satisfy

(a) f(xk+1) < f(xk), if ∇f(xk) 6= 0,

(b) If ∇f(xk) 6= 0 for all k, then

lim
k→∞

∇f(xk)>sk

||sk||
= 0.

Then every limit point x̄ of {xk} is a stationary point.

In Algorithm 5 we sketch the basic scheme of the Frank-Wolfe Algorithm. The

Algorithm 5: Frank-Wolfe Algorithm

input : convex function f : Rn → R and convex set C ⊆ Rn

output: minimizer of f(x) such that x ∈ C
Set k = 0, choose xk ∈ C.
repeat

Solve
zk := min{∇f(xk)>y | y ∈ C}.

Let yk be the minimizer.
if (zk < 0) then

Set sk := yk − xk.
Choose αk ≤ 1 using any step size rule.
Set xk+1 = xk + αks

k and k = k + 1.

until zk = 0
STOP: xk is a stationary point.

Frank-Wolfe algorithm is widely used for sparse greedy optimization in machine
learning and signal processing problems. An overview about the history and recent
variants of this algorithm is given in [115].



Chapter 3

Convex Mixed-Integer Nonlinear
Programming

In this chapter we are concerned with the solution of convex integer nonlinear op-
timization problems, i.e., problems of the form INLP, where f and g are assumed
to be convex. The reason for considering convex mixed-integer optimization prob-
lems is that their continuous relaxation is a pure continuous convex problem,
that can be handled effectively because of its good properties, see Section 2.3.2.
Indeed, considered as a breakthrough in convex optimization, Nemirovski and
Nesterov [161] showed that interior point methods can be used to solve convex
optimization problems to a given accuracy with a number of operations that does
not grow faster than a polynomial of the problem dimension. Special classes in-
clude linear programming (LP), second order cone programming (SOCP) and,
under reasonable assumptions, also semidefinite programming (SDP). We note
that many convex optimization problems can be cast as one of these. For modern
interior point methods in convex optimization, we refer to the book of Ben-Tal
and Nemirovski [20]. On the contrary, for many non-convex optimization prob-
lems, in the worst case, all known algorithms require a number of operations that
is exponential in the problem dimension, e.g., global quadratic optimization is
already NP-hard [173]. In fact all algorithms for solving mixed-integer nonlinear
programming problems are based on the solution of subproblems which are either
integer linear programming (ILP) problems or continuous nonlinear programming
(NLP) problems, as we will see in Section 3.2. In both cases the underlying sub-
problem should be easier to solve than the original problem. Therefore convexity
is crucial to tackle the NLP problems.

It is also worth to mention that convexity is often used to deal with non-convex
problems, especially for computing dual bounds, e.g., in the context of branch-
and-bound. This is often done by convexifying the constraints or using Lagrangian
relaxation that is always a convex optimization problem. A detailed survey about
non-convex mixed-integer nonlinear programming is given by Burer and Letch-

33
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ford [45]. We will not discuss any problems with non-convexity besides integrality
in this work.

To motivate integer programming, let us consider the following two dimensional
integer linear optimization problem, taken from [191].

Example 3.1.

max 1.00x1 + 0.64x2

s.t. 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1, x2 ≥ 0

x1, x2 ∈ Z

This integer linear optimization problem has the optimal solution x̄? = (5, 0)>. If
we relax the integrality restriction on x, i.e., to x ∈ R2, we get x̄ = (376

193
, 950

193
)> as

the optimal solution of the LP-relaxation. Intuitively, one might think of round-
ing the continuous minimizer to obtain the optimal integer solution. In our small
example this does not help since rounding the components of x̄ to the nearest
integer gives x̂ = (2, 5)> which is first of all far away from the optimal integer
solution but also infeasible, while rounding x̄ to the nearest feasible point gives
x̃ = (2, 4). Figure 3.1 illustrates this problem. Unless the underlying optimiza-
tion problem has a special structure, rounding does not give an optimal integer
solution. Although in general it is not true, there exist special classes of optimiza-
tion problems where clever rounding of the LP-solution gives the optimal integer
solution [112].

This small motivating example gives rise to the question how we can design
algorithms to handle integrality and solve integer optimization problems to opti-
mality.

We start this chapter with a section about Mixed-Integer Linear Programming
problems, i.e., we assume f and g to be linear. After introducing the machinery to
deal with such kind of problems, we continue with convex but nonlinear functions
f and g and explain how theory and algorithms for the linear case can be adapted
and used for convex Mixed-Integer Nonlinear Programming.

3.1 Basic Methods for Mixed-Integer Linear Pro-

gramming

If in MINLP, we require both the objective function f and the constraints g to
be linear, it reduces to a Mixed-Integer Linear Program:

min {c>x+ d>y | Ax+By ≤ b, x ∈ X ∩ Zn, y ∈ Y }, (MILP)
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2y + x ≤ 10

c = (1.00, 0.64)>

cont. min.

x

y

Figure 3.1: The feasible region of the LP-relaxation (blue lines), the integer fea-
sible points (red dots) and its convex hull (red lines), the continuous minimizer
x̄ = (376/193, 950/193)> (blue dot), the integer minimizer x? = (5, 0)> (yellow
dot), a cutting plane (orange dashed line) and the level set {x ∈ R2 | c>x = 5}
(black dashed line).

where c ∈ Rn, d ∈ Rp, A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm and X ⊆ Rn, Y ⊆ Rp are
polyhedra.

Integer linear programming is known to be NP-hard. In the last decades mainly
two algorithmic approaches have been developed to handle integer linear and
also nonlinear programming problems: branch-and-bound [59, 132, 144], cutting
planes [63, 96, 97] and branch-and-cut [164] as a mixture of both. In nearly every
state-of-the-art software at least one of these approaches is implemented. We
refer to [159, 175, 191] for a comprehensive overview in the theory of mixed-
integer linear programming. Surveys about software for solving mixed-integer
linear programming problems are given by [141, 142, 145].

3.1.1 Branch-and-Bound Algorithm

Mixed-Integer Linear Programming problems are generally solved using a lin-
ear programming based branch-and-bound algorithm. This is due to the fact
that linear programming problems can be solved efficiently in theory by the el-
lipsoid method [123] as well as by the interior point method [120]. In practice
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linear programming problems are solved effectively, since the Simplex Algorithm
was introduced by Dantzig in late sixties [62]. Basic LP-based branch-and-bound
is nowadays used in nearly every state-of-the-art MIP software. The main idea
of branch-and-bound is based on the concept of relaxations. Instead of solving
the original mixed-integer programming problem, we remove all integrality re-
strictions, resulting in a linear programming problem, called the LP-relaxation,
usually also known as the continuous relaxation of the original mixed-integer
problem. More generally, relaxing the integrality condition x ∈ Zn in an integer
nonlinearoptimization problem INLP results in a problem of the form NLP, i.e.,
a continuous optimization problem that can be handled by algorithms for non-
linear optimization problems. In particular if the underlying problem is convex it
is likely that we can find an efficient algorithm to solve the subproblem.

In this way, we obtain a lower bound on the optimal objective function value
of the mixed-integer problem. More generally, there are many ways to compute
lower bounds for mixed-integer nonlinear programming problems by using the
concept of relaxation. To be more precise, a relaxation is defined as follows.

Definition 3.1 (Relaxation). For a given minimization problem

f ∗ := min{f(x) | x ∈ F} (P)

we call the optimization problem

f̄ ∗ := min{f̄(x) | x ∈ F̄} (R)

a relaxation for P, if the following two conditions hold:

(i) F ⊆ F̄ and

(ii) f̄(x) ≤ f(x), for all x ∈ F .

There are two possibilities to relax an optimization problem. The first one is to
enlarge the feasible set F , the second one is to find an underestimator for the
objective function, such that it always has a value less or equal than the original
one. Of course, one is interested in finding relaxations which are easy to solve,
but are also close to the original problem. Since there is no need to simplify f ,
the first possibility is more promising in our case. It follows directly that solving
a relaxation always gives a lower bound on f ∗ = f(x?). During the branch-and-
bound process, the following properties hold:

(P1) For any relaxation R of P, we have f̄ ∗ ≤ f ∗.

(P2) If any relaxation R of P is infeasible, P is also infeasible.

(P3) If for any relaxation R of P we have f̄ ∗ = f ∗, then x? is also optimal for P.

On the other hand, we observe that for any feasible x ∈ F , f(x) gives an upper
bound on f ∗. The goal in branch-and-bound will be to find good lower and upper
bounds on f ∗.
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Algorithm 6: LP-based branch-and-bound for MILP

input : Polyhedron P = {(x, y) ∈ X × Y | Ax+By ≤ b}, c ∈ Rn

output: min c>x s.t. (x, y) ∈ P ∩ (Zn × Rp)

Set

P = {(x, y) ∈ X × Y | Ax+By ≤ b},
L = {P},
U =∞.

while L 6= ∅ do
Choose P ∈ L and set L := L \ {P}.
Solve

min{c>x+ d>y | (x, y) ∈ P}. (?)

if (?) is infeasible then
Set f ∗ =∞.

else
Let (x?, y∗) denote the optimal solution of (?) and set
f ∗ = c>x? + d>y∗.

if f ∗ ≥ U then
Continue

if (x?, y∗) ∈ P ∩ (Zn × Rp) then
if f ∗ < U then

Set (x̄, ȳ) = (x?, y∗) and U = f ∗.
Continue

Choose i ∈ {1, . . . , n} such that x?i /∈ Z and let

P1 := {(x, y) ∈ P | xi ≥ dx∗i e} and P2 := {(x, y) ∈ P | xi ≤ bx∗i c}.

Set L = L ∪ {P1, P2}.
if U =∞ then

STOP: The problem is infeasible.
else

STOP: (x̄, ȳ) is optimal with objective function value U .
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Reduced Enumeration by Branching and Bounding Since complete enu-
meration in combinatorial optimization leads to a combinatorial explosion, mean-
ing that for increasing problem dimension, the number of potential optimal so-
lutions is increasing exponentially in the dimension, we are seeking for some
more intelligent algorithms for finding the optimal solution. The basic principle
of branch-and-bound is to create a reduced enumeration tree of all feasible can-
didates by excluding those in advance for which it is known that they cannot
be optimal. This can be achieved by using the divide and conquer strategy com-
bined with a Bounding procedure: the original problem P is divided into k more
restrictive subproblems P1, . . . , Pk such that

F =
k⋃
i=1

Fi,

where F ,F1, . . . ,Fk are the feasible sets of P , P1, . . . , Pk, respectively. Usually
the union is chosen to be disjunct. It is clear that

z = min{zi, . . . , zk},

where z is the optimal objective function value of P and zi is the optimal objec-
tive function values of Pi for all i = 1, . . . , k. In other words the sets of feasible
solutions form a (disjunctive) union of the original set of feasible solutions. Since
this leads to k different branches in the tree, we call this step Branching. Every
subproblem created in this way is called a node in the branch-and-bound tree.
The original mixed-integer problem is therefore called the root node. In Algo-
rithm 6, we describe an LP-based branch-and-bound scheme, where the number
of subproblems generated at each node is two. This formulation was proposed by
Dakin [59] in 1965 and that way of branching is known as dichotomy branching.
Every time we find a feasible mixed-integer solution this is a valid upper bound
for the optimal objective function value z. On the other hand every relaxation
yields a lower bound. We have the following observation. If z̄k and zk denote the
upper and lower bound on zk, respectively, we can conclude that z̄ = mink z̄k is
an upper bound on z. Therefore we can successively compare upper and lower
bounds to potentially exclude branches of the tree. If no upper bound is known at
the root node, it is set to infinity. Usually the expressions primal bound and dual
bound are used instead of upper and lower bounds to be consistent if switching
from minimization to maximization problems.

For each subproblem i we solve an appropriate relaxation. Three different cases
may occur:

(i) the solution is feasible for P .

(ii) the solution is feasible for Pi but not feasible for P .
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(iii) Pi is infeasible.

Everytime case (i) occurs, we have found a feasible solution to the original mixed-
integer problem and according to property (P2) it is not necessary to continue
branching on this node. This is due to the fact that in every consecutive node,
originating from the current one, the objective function value is non-decreasing
since we restrict the set of feasible solutions. We further check if the solution
provides an improved solution, i.e., it has a better objective function value than
the best one known so far. If so, it yields an improved primal bound and we
update our best solution. For any upcoming node we know that we will never have
to accept a feasible mixed-integer solution of value worse than our best primal
bound. Otherwise, if we do not get an improved solution, we simply proceed with
the tree search.

If case (ii) occurs, we use the fact that every relaxation yields a dual bound. We
can compare it to the best primal bound found so far. Now, if the dual bound is
greater or equal to the best known primal bound, we do not need to consider that
branch of the tree and therefore cut it off from the search space. This process of
comparing dual and primal bounds is known as Bounding. Cutting off a branch is
denoted also as Pruning. In the other case, i.e., the dual bound is strictly less than
the primal bound, that branch may still contain a better solution and the current
subproblems are again divided into k more restrictive ones. This procedure is
continued until we either reach a point at which we have solved or pruned all
of those subproblems. The best solution at the end is proven to be optimal for
the original mixed-integer problem, or if no feasible solution has been found, the
problem is infeasible.

Finally, if case (iii) occurs, we can prune the node due to property (P3), since
there will be for sure no feasible solution for the original problem in that branch.
A typical branch-and-bound tree is illustrated in Figure 3.2.

To sum up, there are mainly three crucial components that can improve the
performance of a generic branch-and-bound algorithm, namely the Branching
Strategy, the Node Selection and the Bound Computation. We will shortly discuss
the possibilities.

Branching Strategies Besides a random branching strategy, where a random
fractional variable is chosen, Most-Fractional-Branching is the most intuitive
branching strategy, picking some fractional variable in the LP-solution whose
distance to the next integer is maximal. In Strong Branching [10] one aims at
maximizing the expected increase of the lower bound to prune as early as possible.
This is done by solving all nodes originating from branching on each fractional
variable. Looking at the optimal objective function value of the current node and
comparing it to the solution values of the nodes generated by branching on one of
the fractional variables, the branching rule chooses a variable that is promising.
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infeasible

xi ≤ bx∗i c

...

xi ≥ dx∗i e
z̄ = 10: new upper bound

...

zk = 10.5: dominated by z̄ zk+1 = 9.5: branch

...

...

Figure 3.2: Illustration of a branch-and-bound tree using dichotomy branching:
the red node indicates the infeasibility of the node relaxation, thus it can be
pruned. The green node indicates that a feasible (mixed-)integer solution has
been found. In the upper green node a new primal bound of value 10 has been
found. In the blue node the dual bound of value 10.5 exceeds the current primal
bound and we can also prune, while in the yellow node we need to continue
branching.

This strategy requires the exact solution of a lot of nodes at every level of the
branching tree. The computational effort can be reduced by solving the nodes only
approximately. A similar strategy is devised in [21], called Pseudo-Cost Branch-
ing and can be seen as a computationally cheaper version of strong branching.
The idea is to replace the exact solution values at the nodes by an estimation
of these values, gained from the branchings on that variable done so far in the
search tree. Every time a variable has been chosen for branching, the change in
the objective function is stored. Then a variable that is predicted to have the
biggest change in the objective function based on stored values is chosen. Relia-
bility Branching, introduced by Achterberg et al. [3], combines strong branching
and pseudo-cost branching. Since in pseudo-cost branching no data is available
for initializing the estimated costs, it is useful to perform strong branching at the
beginning, until every variable has been branched on k times, and then switch
to pseudo-cost branching. Again the computational effort can be controlled by
limiting the number of variables for which strong branching will be executed, if
k ≥ 2. For example this can be done by ranking the variables by some score
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number and taking the best ones.

Node Selection Strategies After processing the current node, we have to
decide which open node will be processed next. Two common node selection
strategies are depth-first search and best-first search. For a fixed branching strat-
egy, depth-first search selects the last node put in the list, which corresponds
to the deepest node of the enumeration tree. Best-first search selects the node
with the smallest lower bound since it might be more promising to search for
the optimal solution in that branch. While a depth-first search leads to a quick
initial primal bound, a best-first search might reduce the number of nodes in
the enumeration tree. Clearly, on the other hand, depth-first may result in the
enumeration of many nodes if no good primal bound can be found quickly while
a best-first search might take longer to find any feasible solution before reach-
ing the bottom of the enumeration tree. Both strategies can also be combined
in Two-Phase-Methods, e.g., Diving Methods, as proposed in [143]. After starting
with a depth-first search, until one or a few feasible solutions have been found, it
continues with a best-first search aiming at proving local optimality.

Bound Computation Strategies We have to choose which appropriate re-
laxation for the nodes we want to use to compute the dual bounds. It is intuitive
that tighter bounds are more costly to compute but can lead to a smaller overall
search tree. In case of an integer linear programming problem it is obvious to
use the continuous relaxation. The same trade-off holds for the primal bound.
The usage of Primal Heuristics, i.e., algorithms that compute feasible solutions
quickly without assuring optimality, can lead to good approximative solutions
that can be used as primal bounds to reduce the gap between dual and primal
bounds but can be time consuming.

3.1.2 Cutting Plane Algorithm

The motivation of the Cutting Plane Algorithm for mixed-integer linear program-
ming problems comes from a well-known result in integer programming, namely
that minimizing a linear function over an arbitrary set is the same when replacing
the set by its convex hull:

Theorem 3.1 ([191]). Let X ⊆ Rn and c ∈ Rn. Then we have

min{c>x | x ∈ X} = min{c>x | x ∈ conv(X)}.

In particular, if X = P ∩ Zn, where P is a polyhedron, P ′ := conv(X) is also
a polyhedron, i.e., there exists a matrix Ã and a vector b̃ of appropriate size
such that P ′ = {x ∈ Rn | Ãx ≤ b̃}. Knowing Ã and b̃ in advance, would give a
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complete description of the convex hull and in theory such an integer program
could be reformulated as a linear programming problem and solved by using any
algorithm for linear programming. But in general P ′ might need an exponentially
large number of linear inequalities to be described. In practice it is often hard to
find an explicit description of P ′ for a set X due to numerical issues, so one is
interested in approximating P ′. The above result is also true for any mixed-integer
linear program MILP. The Cutting Plane Algorithm aims at approximating P ′

by the usage of cutting planes.

Definition 3.2 (Valid Inequality, Cutting Plane). Let P be a polyhedron and
P ′ := conv(P ∩ Zn). A linear inequality π>x ≤ π0 is a valid inequality for P if it
holds for all x ∈ P . A linear inequality is a Cutting Plane for P , if it is valid for
P ′ but not for P .

In Figure 3.1 a possible cutting plane is shown. There are mainly two reasons
why adding cutting planes to P from the beginning is not always reasonable.
First, there is generally an exponential number of such additional constraints.
Second, by adding additional constraints the LP-relaxations become successively
harder to solve. We only want to add these constraints if they are violated by any
fractional solution not contained in P ′. Therefore it is important to study ways
of generating cutting planes for P whenever needed.

Definition 3.3 (Separation Problem). For a polyhedron P a separation problem
is the following problem:

Given any x? ∈ Rn, find a valid inequality π>x ≤ π0 for P ′ such that π>x? > π0

or decide that none exists.

For any x? /∈ P ′, the separation algorithm gives a cutting plane for P . In general,
efficient optimization and efficient separation are equivalent, i.e., the following
theorem holds:

Theorem 3.2 ([191]). For a given class of optimization problems with a linear
objective function min{c>x | x ∈ X ⊆ Rn}, there exists an efficient (polynomial)
algorithm, if and only if there exists an efficient algorithm for the separation
problem associated with the problem class.

The main idea of the cutting plane algorithm is to tighten the original formulation
of the LP-relaxation by removing undesired fractional solutions during the solu-
tion process without the undesired side effect of creating additional subproblems,
such as in a branching process. Given the fractional LP solution x? ∈ P found
by solving the LP-relaxation, it is tested for being feasible in the integer compo-
nents. If it is not, the separation problem is solved, i.e., a valid linear inequality
for P ′ is determined which cuts off the non-integer point x?. Once such a cutting
plane is found, it is added to the LP-relaxation to tighten the feasible set and
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the relaxation is solved once again. In an iterative fashion, we alternate between
adding cutting planes and solving the LP-relaxation with the aim of finding an
integer solution. Each time a cutting plane is added, the current feasible set gets
closer to the desired convex hull.

In Algorithm 7, we sketch a general cutting plane algorithm for problems of the
form MILP. It might be the case that Algorithm 7 terminates without finding an
integer solution because no further cutting plane can be found. In this case the
improved formulation can still be passed to any branch-and-bound algorithm.

Algorithm 7: Generic Cutting-Plane Algorithm

input : Polyhedron P = {(x, y) ∈ X × Y | Ax+By ≤ b}, c ∈ Rn

output: min c>x s.t. (x, y) ∈ P ∩ (Zn × Rp).

repeat
Minimize c>x+ d>y over P .
Let (x?, y∗) ∈ P denote its optimal solution.
if x? ∈ Zn then

STOP: x? is optimal.
else

Solve the separation problem for P .

if a cutting plane π>(x, y) ≤ π0 is found then
Set P := {(x, y) ∈ P | π>(x, y) ≤ π0}.

until no cutting plane was found

It remains the question of how to find a cutting plane in Step 3 of Algorithm 7.
In the 1950s Ralph Gomory and Vaclav Chvátal independently found out that
the following observation holds:

Lemma 3.3 ([191]). Given X = P ∩ Zn, where P = {x ∈ Rn | Ax ≤ b, x ≥ 0}
and u ∈ Rm

+ , the linear inequality
∑n

j=1bu>ajcxj ≤ bu>bc is valid for X, where
a1, . . . , an ∈ Rm denote the columns of A ∈ Rm×n.

These linear inequalities are known as Chvátal-Gomory Cuts. Adding one of them
to P is called the Chvátal-Gomory Procedure. It can be shown that these cuts are
sufficient to generate all possible valid inequalities for X.

Theorem 3.4 ([191]). Every valid inequality for P ∩ Zn can be obtained by ap-
plying the Chvátal-Gomory procedure a finite number of times.

The first cutting plane algorithm was introduced by Dantzig, Fulkerson and John-
son in 1954 [63], to solve a 54-city instance of the Traveling Salesman Problem. In
1958 Ralph Gomory [96] formulated an algorithm, based on the Chvátal-Gomory
Procedure, for successively generating Chvátal-Gomory Cuts directly out of the
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optimal simplex tableau for any fractional LP solution found in Step 1, cutting
it off. It was the first finite cutting plane algorithm presented for solving general
pure integer linear programming problems of the form min{c>x | x ∈ P ∩ Zn},
where P is defined by linear inequalities Ax ≤ b, and A, b are required to be
integer valued. Later, in 1960 Gomory [97] introduced the Gomory Mixed-Integer
Cuts and extended the algorithm to general mixed-integer linear programming
problems. These cuts are based on a disjunctive argument. However, iteratively
adding Gomory Mixed-Integer Cuts will only guarantee finite convergence if also
the objective function is required to be integer valued.

In the last decades, different types of cutting planes have been studied besides
the Chvátal-Gomory Cuts and Gomory Mixed-Integer Cuts, e.g., Mixed-Integer
Rounding Cuts [150], Lift-and-Project (Disjunctive) Cuts [13, 14], Split Cuts [54],
Intersection Cuts [12], {0, 1

2
}-Cuts [49]. A detailed survey on cutting planes for

mixed-integer linear programming is given by Cornuéjols [55]. Their effectiveness
depends on the underlying problem and usually different types of cuts are com-
bined. The theory of cutting planes is deep and extensive. It is also generally
accepted to be the most important contributor to the computational advances
that have been made in integer programming over the last several years. An in-
teresting study by Bixby [31] shows the improvements in solving mixed-integer
problems using all innovations over the last decades.

3.1.3 Branch-and-Cut Algorithm

Combining branch-and-bound with the cutting plane algorithm results in the so-
called branch-and-cut algorithm and merges the advantages of both approaches.
In the root node the LP-relaxation is solved. If the solution is not integer feasible,
the separation problem is solved and cutting planes are added to the problem if
possible and we repeat as in a cutting plane algorithm. If no cutting plane can be
found we switch to a branching procedure as in branch-and-bound. In commonly
used optimization software for integer linear programming problems branch-and-
cut algorithms can be considered as state-of-the-art, see Section 3.3.

3.2 Methods for Convex Mixed-Integer Nonlin-

ear Programming

We are now interested in convex mixed-integer nonlinear programming problems,
i.e., problems of the form MINLP:

zCMINLP := min
x,y

f(x, y)

s.t. g(x, y) ≤ 0 (CMINLP)

x ∈ X ∩ Zn, y ∈ Y,
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where additionally the objective function f , the constraint functions g and the
sets X, Y are assumed to be convex.

Many optimization problems arising in real world applications can be formulated
as convex mixed-integer nonlinear programs of the form CMINLP. Allowing both
integrality and nonlinearity makes this class of problems extremely hard. In fact,
MINLP comprises the NP-hard subclasses of mixed-integer linear programming
(MILP) and general nonlinear programming (NLP). The restriction to convex
MINLP preserves NP-hardness, as MILP is still contained as a special case.

In literature, there are mainly five approaches for this kind of problems, which
we will explain in the following subsections: NLP-based branch-and-bound [105],
outer approximation [75, 80], general benders cecomposition [92], extended cutting
planes [188] and LP/NLP-based branch-and-bound [169]. A detailed survey of
algorithms and software for solving convex MINLP is given by Bonami, Kilinç
and Linderoth [36]. Especially branch-and-bound and outer approximation will
build the main components for our quadratic outer approximation algorithm,
presented in Chapter 6. The idea is always to reduce the original problem to a
sequence of ILP and/or NLP problems and use the methodology of Chapter 2.

3.2.1 Branch-and-Bound

NLP-based branch-and-bound works analogously to Algorithm 6. Instead of con-
sidering its linear programming relaxation, the following nonlinear programming
relaxation is used to to compute the dual bounds in Step 4:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0 (NLP-R)

x ∈ X, y ∈ Y.

This relaxation is also known as the NLP-relaxation of a mixed-integer program-
ming problem. Therefore one may think of choosing any algorithm from nonlinear
programming that can solve the continuous relaxation. For this purpose, all al-
gorithms presented in the following chapters make use of one or more algorithms
presented in Section 2.5.

3.2.2 Outer Approximation

Outer approximation was introduced by Duran and Grossmann in 1986 [75] and
extended to general convex mixed-integer nonlinear programming problems by
Fletcher and Leyffer in 1994 [80]. The basic concept is to successively build up
a mixed-integer linear programming problem that is equivalent to the original
problem by linearizing both the objective function as well as the constraints at
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Figure 3.3: Polyhedral outer approximation of the feasible region (left) and ob-
jective function (right).

certain points. Figure 3.3 illustrates an outer approximation of feasible region
and objective function. The approach requires the following assumptions:

A1 X 6= ∅ is compact.

A2 f, g are convex and continuously differentiable.

A3 for any fixed integer x̄ ∈ X ∩ Zn, a constraint qualification, e.g., Slater’s
condition, holds at the solution of the resulting NLP-relaxation:

zNLP (x̄) := min f(x̄, y)

s.t. g(x̄, y) ≤ 0 (NLP(x̄))

y ∈ Y,

or, in case NLP(x̄) is infeasible, at the solution of the following feasibility
problem, that minimizes the violation of the constraints g:

zNLPF (x̄) := min
m∑
j=1

gj(x̄, y)+ (NLPF(x̄))

s.t. y ∈ Y,

with gj(x̄, y)+ := max{0, gj(x̄, y)}.

Introducing a real variable η and using the convexity of f and g, we end up with
a mixed-integer linear programming problem for which it can be shown that it is
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equivalent to CMINLP:.

zOA := min η

s.t. f(x̄, y(x̄)) +∇f(x̄, y(x̄))>
(

x− x̄
y − y(x̄)

)
≤ η, ∀ x̄ ∈ T ∗

gj(x̄, y(x̄)) +∇gj(x̄, y(x̄))>
(

x− x̄
y − y(x̄)

)
≤ 0, ∀ j = 1, . . . ,m, ∀ x̄ ∈ T ∗

(MILP-OA)

gj(x̃, y(x̃)) +∇gj(x̃, y(x̃))>
(

x− x̃
y − y(x̃)

)
≤ 0, ∀ j = 1, . . . ,m, ∀ x̃ ∈ S∗

x ∈ X ∩ Zn, y ∈ Y, η ∈ R

where T ∗ = {x ∈ X ∩ Zn | NLP(x) is feasible} consists of all integer points in X
for which the subproblem is feasible, S∗ = {x ∈ X ∩ Zn | NLP(x) is infeasible}
consists of those for which it is infeasible and y(x) denotes an optimal solution
of NLP(x) or NLPF(x), respectively.

Theorem 3.5 ([36, 75, 80]). Assuming A1-A3 hold, then zOA = zCMINLP . All
optimal solutions of CMINLP are optimal solutions of MILP-OA.

From a practical point of view formulating MILP-OA requires the a priori knowl-
edge of T ∗ and S∗, thus also the knowledge of the solutions of all the NLP
subproblems for each xk ∈ X∩Zn at some iteration k of the outer approximation
scheme. Algorithmically, it is therefore convenient to build up the mixed-integer
linear problem step by step, alternating between solving the nonlinear program-
ming problem NLP(xk), yielding a point (xk, yk) about which we linearize the
objective and the constraint functions, and the resulting relaxation MILP-OAk

of the mixed-integer linear programming problem MILP-OA at each iteration k:

zOAk
:= min η

s.t. f(xh, yh) +∇f(xh, yh)>
(
x− xh
y − yh

)
≤ η, h ∈ T k

gj(x
h, yh) +∇gj(xh, yh)>

(
x− xh
y − yh

)
≤ 0, j = 1, . . . ,m, h ∈ T k

(MILP-OAk)

gj(x
l, yl) +∇gj(xl, yl)>

(
x− xl
y − yl

)
≤ 0, j = 1, . . . ,m, l ∈ Sk

x ∈ X ∩ Zn, y ∈ Y, η ∈ R,

where T k := {h ≤ k | yh is the optimal solution of NLP(xh)} and analogously
Sk := {l ≤ k | yl is the optimal solution of NLP(xl)}. It is clear that on the
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one hand the solution of every feasible problem NLP(xk) gives a primal bound
for CMINLP since it is feasible and on the other hand the solution of MILP-OAk

gives an increasing sequence of dual bounds for CMINLP. The iterative proce-
dure stops when primal and dual bounds are within a specified tolerance. Finite
convergence is ensured by the following theorem.

Theorem 3.6 ([75, 80]). If assumptions A1-A3 hold and |X| < ∞, then Al-
gorithm 8 terminates in a finite number of iterations at the optimal solution
of CMINLP or with an indication that it is infeasible.

We finally give a sketch of the general outer approximation scheme in Algorithm 8.
Note that there exist instances for which Algorithm 8 needs exponentially many

Algorithm 8: Outer approximation algorithm

input : f : Rn × Rp → R, g : Rn × Rp → Rm convex and differentiable
output: min{f(x, y) | g(x, y) ≤ 0, (x, y) ∈ X ∩ Zn × Y }
Set k := 0, T k := ∅, Sk := ∅, Uk :=∞, Lk := −∞ and ε > 0. Choose
xk ∈ X ∩ Zn.
repeat

Solve NLP(xk) (or NLPF(xk), if subproblem is infeasible). Let yk be
the solution.
Linearize f and g about (xk, yk), set T k+1 := T k ∪ {k} (or
Sk+1 := Sk ∪ {k}, if subproblem is infeasible).
if NLP(xk) is feasible and f(xk, yk) < Uk then

Set (x?, y∗) = (xk, yk) and Uk+1 = f(xk, yk).
else

Uk+1 = Uk.
Solve MILP-OAk.
Let (xk+1, yk+1) be the solution and Lk+1 := zOAk

. Set k = k + 1.
until Uk − Lk < ε
STOP: (xk, yk) is the optimal solution.

iterations to converge, see, e.g., [111], meaning we need to solve exponentially
many mixed-inter linear programming problems. Figure 3.4, taken from [111],
shows the empty set Bn := {x ∈ {0, 1}n |

∑n
i=1(xi− 1

2
)2 ≤ n−1

4
} as the intersection

of the vertices of an n-dimensional hypercube with a ball of radius
√
n−1
2

centered
in (1

2
, . . . , 1

2
). Algorithm 8 would need 2n iterations to converge, since only one

vertex can be cut by an outer approximation constraint in each iteration.

3.2.3 Generalized Benders Decomposition

Generalized Benders Decomposition for CMINLP was devised by Geoffrion [92]
in 1972, and is very similar to the presented outer approximation algorithm, but
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Figure 3.4: Worst-case example: exponentially many iterations are needed by
outer approximation to detect infeasibility [111].

was proposed earlier. The difference between both approaches is the construc-
tion of the mixed-integer linear programming problems for computing the dual
bounds. At iteration k, having solved NLP(xk) with the corresponding solution
yk, instead of adding all linearizations of g about (xk, yk), the idea is to add a
cut that turns out to be an aggregation of these linearizations, thus yielding a
potentially weaker bound than the one resulting from outer approximation. This
is why the majority of available solvers prefer outer approximation to the Gen-
eralized Benders Decomposition to solve convex MINLP (see Section 3.3). In [1],
Abishek, Leyffer and Linderoth use the resulting Benders cuts to aggregate in-
equalities in their LP/NLP-based branch-and-bound software FilMINT. We will
give a brief derivation of the MILP. Again, we require the assumptions A1-A3
on CMINLP and use arguments from nonlinear duality theory. We start with the
dual representation of NLP(xk). According to Definition 2.7 the Lagrangian dual
is

zDNLP (xk) := max
λ∈Rm

+

min
y∈Y

f(xk, y) + λ>g(xk, y). (DNLP(xk))

Using assumptions A1-A3 we have that strong duality holds for NLP(xk), i.e.,
zNLP (xk) = zDNLP (xk). Thus, we have

zCMINLP = min
xk∈V

zNLP (xk)

= min
xk∈V

(
max
λ∈Rm

+

min
y∈Y

L(xk, y, λ)

)
= min{α | α ≥ min

y∈Y
L(xk, y, λ) ∀λ ≥ 0, α ∈ R, xk ∈ V },

where V := {x ∈ X ∩ Zn | ∃ y ∈ Y : g(x, y) ≤ 0} is the set of all feasible
integer assignments for which there exists a feasible continuous part. Since V is
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not known explicitly, xk ∈ V has to be reformulated by inequality constraints.
This is done by the feasibility problem NLPF(xk), knowing that xk ∈ V if and
only if NLPF(xk) has a positive minimum. Considering its Lagrangian dual and
again using strong duality yields the condition xk ∈ V if and only if

0 ≥ min
y∈Y

µ>g(xk, y) for all µ ∈ Λ := {µ ∈ Rm
+ |

m∑
i=1

µi = 1}.

Finally, we get the following MILP which is equivalent to CMINLP

zGBD := min η

s.t. min
y∈Y

L(x, y, λ) ≤ η ∀λ ≥ 0

min
y∈Y

µ>g(x, y) ≤ 0 ∀µ ∈ Λ (MILP-GBD)

x ∈ X ∩ Zn, η ∈ R.

Also here, it is not useful to solve this problem directly, since there are infinitely
many constraints. By linearization, we get the relaxation

min η

s.t. L(xh, yh, λh) +∇xL(xh, yh, λh)>(x− xh) ≤ η, h ∈ T k

(µl)>
(
g(xl, yl) +∇xg(xl, yl)>(x− xl)

)
≤ 0, l ∈ Sk (MILP-GBDk)

x ∈ X ∩ Zn, η ∈ R,

where T k and Sk are defined as for MILP-OAk.

Finally we want to show that the cut, added to the mixed-integer linear pro-
gramming problem, is an aggregation of those in outer approximation. From the
KKT-conditions of NLP(xk) we have

∇yf(xk, yk) + (λk)>∇yg(xk, yk) = 0 (3.1)

(λk)>g(xk, yk) = 0, (3.2)

where (yk, λk) is the pair of primal and dual solution. The linearizations used in
outer approximation are:

f(xk, yk) +∇f(xk, yk)>
(
x− xk
y − yk

)
≤ η (3.3)

g(xk, yk) +∇g(xk, yk)>
(
x− xk
y − yk

)
≤ 0. (3.4)

Using the equations (3.1),(3.2), and adding the inequalities of (3.3),(3.4) where
the second one is multiplied by λk yields

f(xk, yk) +∇xf(xk, yk)>(x− xk) + (λk)>∇xg(xk, yk)(x− xk) ≤ η

⇔L(xk, yk, λk) +∇xL(xk, yk, λk)>(x− xk) ≤ η.
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Algorithm 9: General Benders Decomposition

input : f : Rn × Rp → R, g : Rn × Rp → Rm convex and differentiable
output: min{f(x, y) | g(x, y) ≤ 0, (x, y) ∈ X ∩ Zn × Y }
Set k := 0, T k := ∅, Sk := ∅, Uk :=∞. Choose xk ∈ X ∩ Zn.
repeat

Solve NLP(x̄) (or NLPF(x̄), if subproblem is infeasible). Let yk be the
solution.
Linearize f and g about (xk, yk), set T k+1 := T k ∪ {k} (or
Sk+1 := Sk ∪ {k}, if subproblem is infeasible).
if NLP(x̄) is feasible and f(xk, yk) < Uk then

Set (x?, y∗) = (xk, yk) and Uk+1 = f(xk, yk).
else

Uk+1 = Uk.
Solve MILP-GBDk.
if MILP-GBDk is feasible then

Let (xk+1, yk+1) be the solution. Set k = k + 1.

until MILP-GBDk is infeasible
STOP: (xk, yk) is the optimal solution.

These inequalities are also known as Benders Cuts. Since they are aggregations
of the cuts from the outer approximation procedure, the resulting dual bounds
are weaker. We give a detailed scheme of the algorithm in Algorithm 9 that is
identical to outer approximation, except of exchanging the problems MILP-OAk

by MILP-GBDk. Analogously we have the following optimality and convergence
theorem.

Theorem 3.7 ([92]). Assuming A1-A3 hold, then zCMINLP = zGBD and the al-
gorithm terminates in a finite number of steps at the optimal solution of CMINLP
or with an indication that it is infeasible.

3.2.4 Extended Cutting Planes

In 1960, Kelley [122] devised his cutting plane algorithm for solving convex NLPs.
35 years later, Westerlund and Pettersson [188] presented an extension of this al-
gorithm for CMINLP. The difference to outer approximation and Generalized
Benders Decomposition is that it iteratively solves a mixed-integer linear pro-
gramming problem that is tightened by cuts without solving any NLP-relaxation.
The cuts added at each iteration are chosen as the linearizations of the most vi-
olated constraint gj, j = 1, . . . ,m and the objective function about the current
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iterate solution point xk. The solutions generated by MILP-ECPk are therefore
non-decreasing. In every iteration the following MILP is solved:

zECPk
:= min η

s.t. f(xk, yk) +∇f(xk, yk)>
(
x− xk
y − yk

)
≤ η, (xk, yk) ∈ K

gj(x
k, yk) +∇gj(xk, yk)>

(
x− xk
y − yk

)
≤ 0, (xk, yk) ∈ K, j = J(xk, yk)

(MILP-ECPk)

x ∈ X ∩ Zn, y ∈ Y, η ∈ R, (xk, yk) ∈ K,

where J(xk, yk) := argmaxj=1,...,m gj(x
k, yk) for every solution (xk, yk) ∈ K, the

set of solutions to (MILP-ECPk).

Algorithm 10: Extended Cutting Plane Algorithm

input : f : Rn × Rp → R, g : Rn × Rp → Rm convex and differentiable
output: min{f(x, y) | g(x, y) ≤ 0, (x, y) ∈ X ∩ Zn × Y }
Choose ε > 0 and (x0, y0) ∈ X ∩ Zn. Set K = ∅ and k = 0.
repeat

Solve MILP-ECPk. Let (xk, yk, ηk) denote its optimal solution.
Update

K = K ∪ {(xk, yk)}, t = argmaxj gj(x
k), J(xk, yk) = {t}

Set k = k + 1.
until (gj(x

k−1, yk−1) ≤ ε for all j = 1, . . . ,m) or (f(xk−1, yk−1)− ηk−1 ≤ ε)
STOP: (xk, yk) is optimal.

Note that in case we want to solve a MILP, the ECP-method converges in one
iteration since the ECP MILP-model is exactly the original problem. Nevertheless
the convergence might be very slow if the nonlinearity of the underlying problem
is very high. Variants of the ECP-method where more than one linearization
is added in each iteration are also possible. The ECP-method is sketched in
Algorithm 10.

Theorem 3.8 ([188]). Assuming A1 and A2 hold, then zECPk
converges to zCMINLP .

3.2.5 LP/NLP-based Branch-and-Bound

LP/NLP-based branch-and-bound is a concept developed by Quesada and Gross-
mann [169] and extended for CMINLP by Leyffer in his PhD Thesis [137]. Its key
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idea is to combine branch-and-bound with outer approximation and can be con-
sidered as a branch-and-cut procedure. It starts to solve the initial MILP-OAk

of outer approximation by branch-and-bound using its continuous relaxation.
Each time an integer solution xk is found, it solves NLP(xk) and successively
adds linearizations of objective functions and constraint functions about (xk, yk)
to MILP-OAk, where yk is the corresponding optimal solution of NLP(xk). The
branch-and-bound tree is continued with the updated problem MILP-OAk, i.e.,
the cuts are considered for every upcoming node. The main feature of LP/NLP-
based branch-and-bound is the possibility to keep track of a single enumeration
tree. This leads to a reduced number of nodes to be enumerated but nevertheless
increases the number of NLP subproblems to be solved. Convergence properties
are the same as for outer approximation. We give an outline in Algorithm 11.

Algorithm 11: LP/NLP-based branch-and-bound

input : f : Rn × Rp → R, g : Rn × Rp → Rm convex and differentiable
output: min{f(x, y) | g(x, y) ≤ 0, (x, y) ∈ X ∩ Zn × Y }
Set U =∞, k = 0. Choose xk ∈ Zn.
Solve NLP(xk) and build MILP-OAk.
Solve MILP-OAk by branch-and-bound:

if The solution (x̄, ȳ) of any node is integer feasible then
STOP branching, solve NLP(xk) (or NLPF(xk) with xk = x̄ to
modify MILP-OAk, set k = k + 1,.
Continue branch-and-bound with the new MILP-OAk.

3.2.6 Hybrid Methods

Bonami et al. [34] developed a hybrid method that combines branch-and-bound
with outer approximation. In a first phase, for a given time limit τ , the classi-
cal OA algorithm is executed. At the end of this phase, we are given the cur-
rent MILP-OAk and an incumbent primal bound Uk. Starting from that, a mod-
ified version of the LP/NLP-based branch-and-bound algorithm of Quesada and
Grossmann is performed. The difference is that at every fixed number κ of nodes
the nonlinear programming problem NLP(xk) is solved and independent of the
integrality of xk the linearizations about (xk, yk) are added to MILP-OAk to
strengthen its formulation, unlike in Algorithm 11, where NLP(xk) is only solved
when xk is integral. Choosing τ = ∞ gives the classical outer approximation,
while choosing τ = 0 and κ = 1 gives a classical branch-and-cut algorithm.
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3.2.7 Primal Heuristics

In the context of CMINLP there are two categories of primal heuristics, originally
designed for MILP and extended to convex MINLP, that have been studied. The
first one is Diving Heuristics [33] where successively integer variables are fixed
from the root node to a leaf of the tree to quickly get primal bounds. Diving
follows the idea of a depth-first search strategy. The second one is Feasibility
Pumps [35] where in alternation two sequences of iterates are generated: one
consists of iterates x̄i which satisfy all constraints except of integrality and the
other consists of iterates x̂i which are integral but do not necessarily satisfy the
remaining constraints. The two sequences are generated in such a way that the
distance on the integer variables

∑
j∈I |x̄ij−x̂

i+1
j | between two consecutive iterates

x̄i and x̂i+1 is non-increasing. Here I denotes the index set of all integer variables.
The process is iterated until some integer feasible solution is found. A good survey
on heuristics for convex mixed-integer nonlinear programming problems is given
by Bonami and Gonçalves [33].

3.3 Software for Convex Mixed-Integer Nonlin-

ear Programming

In this section, we present the most used general-purpose software packages for
solving CMINLP to optimality. All of them are mainly based on one or more
of the algorithmic frameworks presented in Section 3.2. For each solver, we give
a short explanation of the used algorithm(s) and, if important, some additional
information. In Table 3.1, we summarize all the information, including five state-
of-the-art software packages for convex mixed-integer quadratically constrained
programming problems (MIQCP). Note that in nearly every presented solver
a bunch of sophisticated enhancements are used, like primal heuristics, domain
propagation, presolving techniques, enhanced branching strategies and node selec-
tion strategies (see Section 3.1.1) or cutting plane separation (see Section 3.1.2).
In our overview, we are not considering more general software, e.g., the well-
known solvers α-BB, LaGO, LINDO-Global, ANTIGONE and GloMIQO designed to
solve general non-convex mixed-integer problems. We refer to the surveys of Bu-
rer and Letchford [45], Bussieck and Vigerske [46] and D’Ambrosio and Lodi [60].
We just mention Baron and Couenne that are most popular among the software
for general non-convex MINLP.

3.3.1 Solvers

α-ECP (α-Extended Cutting Plane) [187] is based on the ECP Method (see
Section 3.2.4) by Westerlund and Petersson [188] at the Åbo Akademi University
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Table 3.1: Most used software packages for solving CMINLP.

solver algorithm(s) open- author(s)/companies dependencies
implemented source

α-ECP ECP [188] no T. Westerlund GAMS,
and K. Lundqvist CPLEX

website: users.abo.fi/twesterl/A-ECPManual.pdf
Baron branch-and-reduce [171, 182] no N. Sahinidis CPLEX,

and M. Tawarmalani Minos/Snopt
website: http://archimedes.cheme.cmu.edu/?q=baron

Bonmin B&B [105], OA [75, 80], yes P. Bonami et al. Cbc/CPLEX,
LP/NLP-based B&B [169], Ipopt/filterSQP
Hybrid Methods [34]
website: https://projects.coin-or.org/Bonmin

DICOPT OA [75, 80] no J.Viswanathan GAMS,
and I.E. Grossmann any MILP/NLP

solver under
GAMS

website: www.gams.com/dd/docs/solvers/dicopt.pdf
FilMINT LP/NLP-based B&B [169] no K. Abishek, MINTO,

S. Leyffer filterSQP
and J. Linderoth

website: www.mcs.anl.gov/~leyffer/papers/fm.pdf
KNITRO LP/NLP-based B&B [169] no Ziena Optimization LLC -

website: http://www.ziena.com/knitro.htm
MINLPBB B&B [105] no S. Leyffer filterSQP, bqpd

website: www-unix.mcs.anl.gov/~leyffer/solvers.html
MINOPT GBD [92], OA [75, 80] no C.A. Schweiger CPLEX/LPsolve,

C.A. Floudas Minos/NPsol/
Snopt

website: http://titan.princeton.edu/MINOPT/
MINOTAUR NLP-based B&B [105], yes S. Leyffer, J. Linderoth filterSQP/IPOPT

LP/NLP-based B&B [169], J. Luedtke, A. Mahajan
branch-and-reduce [171], T. Munson
website: http://wiki.mcs.anl.gov/minotaur/index.php/MINOTAUR

SBB B&B [105] no ARKI Consulting GAMS, CONOPT/
and Development Minos/Snopt

under GAMS
website: www.gams.com/solvers/solvers.htm#SBB

CPLEX B&B no IBM -
website: http://www.cplex.com/

GUROBI B&B no Gurobi Optimization, Inc. -
website: http://www.gurobi.com/

FICO Xpress B&B no Fair Isaac Corporation -
website: http://www.fico.com/xpress

MOSEK B&B no MOSEK ApS -
website: http://www.mosek.com/

SCIP Spatial B&B yes Zuse Institut Berlin (ZIB) SoPlex/CPLEX,
website: http://scip.zib.de CppAD/IPOPT

users.abo.fi/twesterl/A-ECPManual.pdf
http://archimedes.cheme.cmu.edu/?q=baron
https://projects.coin-or.org/Bonmin
www.gams.com/dd/docs/solvers/dicopt.pdf
www.mcs.anl.gov/~leyffer/papers/fm.pdf
http://www.ziena.com/knitro.htm
www-unix.mcs.anl.gov/~leyffer/solvers.html
http://titan.princeton.edu/MINOPT/
http://wiki.mcs.anl.gov/minotaur/index.php/MINOTAUR
www.gams.com/solvers/solvers.htm#SBB
http://www.cplex.com/
http://www.gurobi.com/
http://www.fico.com/xpress
http://www.mosek.com/
http://scip.zib.de
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in Finland and was extended by Westerlund and Pörn [167, 189] for pseudo-
convex objective functions and constraints. At every iteration the underlying
Problem MILP-ECPk is solved by calling CPLEX [57], an optimization software
suite maintained by IBM, or any other MILP solver. The resulting cuts are added
to the MILP formulation until the algorithm converges. A major difference to all
other software is that α-ECP does not require any NLP solver.

Baron (Branch-And-Reduce Optimization Navigator) [172, 183] is a compu-
tational system for solving general non-convex optimization problems to global
optimality. Purely continuous, purely integer, and also mixed-integer nonlinear
problems can be solved with the software. Baron implements algorithms of the
branch-and-bound type enhanced with a variety of constraint propagation and
duality techniques for reducing ranges of variables in the course of the algorithm.
Furthermore, the implementation includes heuristics for the approximate solution
of optimization problems to tighten the variable bounds. Originally the software
was created by Nick Sahinidis during his time as Assistant and Associate Profes-
sor at the University of Illinois at Urbana-Champaign. Currently it is developed
by Sahinidis at Carnegie Mellon University and M. Tawarmalani at Purdue Uni-
versity.

Bonmin (Basic Open-source Nonlinear Mixed INteger programming) [34] con-
sists of four solvers: B-BB is an NLP-based branch-and-bound algorithm (see
Section 3.2.1), B-OA uses the outer approximation algorithm (see Section 3.2.2),
B-QG is an implementation of the LP/NLP-based branch-and-bound algorithm
by Quesada and Grossmann (see Section 3.2.5) and B-Hyb is a hybrid version
of B-BB and B-OA (see Section 3.2.6). The standard solvers for solving NLP and
MILP problems are Ipopt (Interior Point OPTimizer) [186] and Cbc (COIN-OR
branch-and-cut) but other solvers like filterSQP or CPLEX may also be chosen by
the user. Ipopt is an interior point solver for large-scale NLP problems, written
by A. Wächter and C. Laird and Cbc is a branch-and-cut framework for MILP
problems, originally developed by J. Forrest. Both solvers are open-source and are
part of the COIN-OR (Common Optimization Interface for OR) [147] initiative.
Bonmin was written and is maintained by P. Bonami et al. in cooperation with
researchers from Carnegie Mellon University and IBM Research.

DICOPT (Discrete Continuous OPTimizer) was implemented by I.E. Gross-
mann and J. Viswanathan [126, 127] from the Carnegie Mellon University and is
based on an extension of the outer approximation algorithm and is used within
the GAMS (General Algebraic Modeling System) [87] interface. GAMS is a commer-
cial modeling system for mathematical programming and optimization including
a huge variety of solvers by D. Kendrick and A. Meerhaus. For solving the occur-
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ring series of NLP and MILP problems the user may therefore choose between all
available solvers under GAMS, e.g., CONOPT for NLP problems and CPLEX for MILP
problems. A complete list can be found at [87]. A major restriction of DICOPT is
that it can handle only integer variables that appear linearly in the constraints
and objective function.

FilMINT (Filter-Mixed Integer Optimizer) [1] is a solver written by K. Abishek,
S. Leyffer and J. Linderoth from the Argonne National Laboratory and Lehigh
University. It is another implementation of the LP/NLP-based branch-and-bound
algorithm and uses the solvers filterSQP [82] and MINTO (Mixed INTeger Opti-
mizer) [160]. MINTO was developed by M. Savelsbergh and G. Nemhauser and is an
LP-based branch-and-bound software for solving MILP problems and filterSQP

is a sequential quadratic programming trust region solver by R. Fletcher and S.
Leyffer for solving NLP problems. filterSQP itself uses the QP solver named bqpd

that is an active set solver and was developed by the same authors.

KNITRO (Nonlinear Interior point Trust Region Optimization) [47] is a com-
mercial software package for solving large scale mathematical optimization prob-
lems by R. Waltz, J. Nocedal, T. Plantenga and R. Byrd, first introduced in
2001 and now sold through Ziena Optimization LLC. KNITRO is specialized for
nonlinear optimization, but can also handle mixed-integer nonlinear program-
ming problems, both convex and non-convex. KNITRO implements a branch-
and-bound algorithm, offering three different optimization algorithms for solving
the NLP-relaxation. Two algorithms are of the interior point type, and one is of
the active set type. Special features of KNITRO are the possibility of crossovers
during the solution process from one algorithm to another and a multistart op-
tion.

MINLPBB (Mixed-Integer Nonlinear Programming Branch-and-Bound) [138]
implements an NLP-based branch-and-bound algorithm and uses, like FilMINT,
the NLP solver filterSQP. It was also developed by R. Fletcher and S. Leyffer
at the University of Dundee.

MINOPT (A Modeling Language and Algorithmic Framework for Linear,
Mixed-Integer, Nonlinear, Dynamic, and Mixed-Integer Nonlinear Optimization)
is a software package by C.A. Schweiger [176] and C.A. Floudas from Princeton
University and can handle many general optimization problems besides convex
MINLP, including problems with differential and algebraic constraints or optimal
control problems. Some algorithms implemented are outer approximation in many
variants and the Generalized Benders Decomposition (see Section 3.2.3). MINOPT
also includes a modeling language.
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MINOTAUR (Mixed-Integer Nonconvex Optimization Toolbox - Algorithms,
Underestimators, Relaxations) [148, 149] is developed by S. Leyffer, J. Linderoth,
J. Luedtke, A. Mahajan and T. Munson at Argonne National Laboratory and the
University of Wisconsin-Madison. It is open-source and can be used through AMPL

and implements an NLP-based branch-and-bound algorithm, where the NLP re-
laxations are solved by IPOPT or filterSQP. Additionally, it offers an option to
replace the NLP relaxations by faster-to-solve QP approximations. MINOTAUR also
features a technique to check if the feasible region of certain nonlinear functions
can be represented as a union of few convex regions, aiming at branching in a
specific way to create convex subproblems of these nonlinear problems.

SBB (Simple Branch-and-Bound) [88] is a commercial software package by
ARKI Consulting & Development A/S, running under GAMS. It uses standard
NLP-based branch-and-bound and may therefore utilize several NLP solvers avail-
able under GAMS, e.g., the large-scale nonlinear optimization solver CONOPT [72]
and MINOS [158] by B. Murtagh and M. Saunders or SNOPT (Sparse Nonlinear
OPTimizer) [93] by P. Gill, W. Murray and M. Saunders.

The following solvers are capable of solving linear programming (LP), quadratic
programming (QP), quadratically constrained programming (QCP), mixed inte-
ger linear programming (MILP) and mixed-integer (quadratically constrained)
programming (MIQ(C)P) problems. If the MIQ(C)P problem has only binary
variables in the indefinite quadratic matrices, the problem is usually reformulated
to an equivalent convex MIQ(C)P problem by most of the solvers. All MIQ(C)P
solvers implement a branch-and-bound algorithm that uses Q(C)P relaxations
for computing the bounds.

CPLEX (IBM ILOG CPLEX Optimization Studio) [57] is a commercial op-
timization software package by IBM. It was named for the simplex method as
implemented in the C programming language. It was originally developed by
R. Bixby in 1988 for CPLEX Optimization Inc., which was acquired by ILOG
in 1997; ILOG was subsequently acquired by IBM in 2009. Very recently, a non-
convex MIQP solver was added, which uses a spatial branch-and-bound algorithm.
In a generic spatial branch-and-bound algorithm a lower and upper bound to the
optimal solution value is computed for a subspace of the feasible region. In case
the gap between those bounds are not sufficiently close, the subspace is further
split and the process is repeated until all nodes can be pruned.

GUROBI (Gurobi Optimizer) [106] is a commercial optimization software pack-
age named for its founders: Z. Gu, E. Rothberg and R. Bixby. The former two
were also involved in the CPLEX-development team. Together with CPLEX it is
considered the most effective MIQ(C)P solver available nowadays.
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FICO Xpress (FICO Xpress Optimization Suite) [78] was developed by Dash
Optimization, later acquired by FICO. Besides CPLEX and GUROBI, it is also con-
sidered as one of the state-of-the-art solver for MIQ(C)P problems.

MOSEK (MOSEK optimization software) [156] was developed by MOSEK
ApS. In particular, MOSEK is known for its effective interior point SOCP solver.

SCIP (Solving Constraint Integer Programs) [177] was developed by the op-
timization department at the Zuse Institute Berlin (ZIB), in particular by T.
Achterberg [2], and its collaborators. Originally it was developed as a MILP
solver, but it was constantly extended to handle also general non-convex MINLP
problems [22, 23]. In contrast to the other MIQCP solvers SCIP is open-source. It
implements a spatial branch-and-bound algorithm including sophisticated primal
heuristics and preprocessing techniques like bound-tightening. Currently, SCIP is
often considered as one of the fastest non-commercial solvers for mixed-integer
nonlinear programming (MINLP) problems.

3.3.2 Performance Benchmarks and Collection of Test In-
stances

Recent benchmark tests of all these solvers for convex mixed-integer nonlinear
programming problems are regularly provided by Hans Mittelmann from Arizona
State University. Detailed results on the performance of different state-of-the-art
solvers on a set of standard benchmark instances can be found on the web-
site: http://plato.asu.edu/bench.html. In summary, the most recent results
conclude that the outer approximation algorithm of Bonmin, B-OA, combined
with CPLEX as the required LP solver has the best overall performance in terms
of the average running times run on a test bed of 155 convex MINLP instances,
see http://plato.asu.edu/ftp/minlp.html. For the 25 MIQ(C)P instances it
is shown that GUROBI and CPLEX are by far the most effective solvers currently
available, see http://plato.asu.edu/ftp/miqp.html. Justified by these results,
we will choose Bonmin and CPLEX as competitors in the following Chapters 5 to 7.
The results are taken from the links above and are summarized in the Tables 3.2
and 3.3.

Table 3.2: Benchmark Results of Hans Mittelmann for MIQP problems: Scaled
shifted geometric means of running times in cpu-seconds.

Mixed-Integer Quadratic Programming Solver

Bonmin Couenne CPLEX GUROBI SCIP XPRESS MINOTAUR CBC

89 325 1.28 1 20.6 2.65 42.2 31.4

http://plato.asu.edu/bench.html
http://plato.asu.edu/ftp/minlp.html
http://plato.asu.edu/ftp/miqp.html
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Table 3.3: Benchmark Results of Hans Mittelmann for convex MINLP problems:
Scaled shifted geometric means of runtimes cpu-seconds.

Convex Mixed-Integer Nonlinear Programming Solver

KNITRO SCIP α-ECP B-OA B-Hyb DICOPT MINOPT SBB

12.4 1.59 4.11 1 3.36 2.7 3.66 14.4

To provide algorithm developers with a large set of both theoretical and practical
test models, researchers started to gather benchmark instances. Recently the most
popular public available libraries for MINLP are:

• MacMINLP Library: A collection of MINLP test problems is avail-
able at http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP. The
library is maintained by Sven Leyffer from the Argonne National Labo-
ratory and consists of 51 instances, from which 15 are convex. The website
also provides additional information like the number of integer variables,
the optimal objective value or best solution found.

• CMU/IBM Library: This collection of convex MINLP instances was
created within a cooperation between researchers of Carnegie Mellon Uni-
versity and IBM. It contains 41 instances. The collection is publicly available
at http://egon.cheme.cmu.edu/ibm/page.htm.

• MINLPLib(2) Library: Michael R. Bussieck from GAMS Develop-
ment Corporation introduced this collection of 266 instances in GAMS for-
mat, all available at http://www.gamsworld.org/minlp/minlplib.htm.
They include additional information like optimal solution value and ori-
gin of the instance. Very recently, the library started to get enlarged, now
also containing NLP instances. The current version can be accessed at
http://www.gamsworld.org/minlp/minlplib2/html/.

• QPLIB2014: This very recent library, still under construction, is specifi-
cally conceived for (mixed-integer) quadratic programming problems. It is
intended to be a standard test set for the computational comparison of dif-
ferent generic quadratic optimization softwares. Currently no instances are
available yet. However, the authors announced the release of more than 8000
instances at http://www.lamsade.dauphine.fr/QPlib2014/doku.php in
the near future. The library is maintained by many researchers all over the
world.

http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://egon.cheme.cmu.edu/ibm/page.htm
http://www.gamsworld.org/minlp/minlplib.htm
http://www.gamsworld.org/minlp/minlplib2/html/
http://www.lamsade.dauphine.fr/QPlib2014/doku.php


Chapter 4

Convex Quadratic Mixed-Integer
Programming

In this chapter, we consider strictly Convex Quadratic Mixed-Integer Program-
ming (CQIP) problems with box-constraints of the form

min{f(x) = x>Qx+ c>x+ d | x ∈ [l, u]n, x1, . . . , xn1 ∈ Z}, (CBMIQP)

where Q ∈ Rn×n is symmetric and positive definite, c ∈ Rn, li ∈ R ∪ {−∞},
ui ∈ R∪{∞} for all i = 1, . . . , n, d ∈ R and n1 ∈ {0, . . . , n}. This problem can be
classified as a convex mixed-integer programming problem CMINLP, discussed in
Chapter 3. From a methodological point of view it is natural to study CBMIQP
as a first step towards generalizing MILP-methods for CMINLP. Moving from
mixed-integer linear programming to mixed-integer convex quadratic program-
ming does not change the overall complexity in theory, however solving these
two types of problems in practice makes a huge difference. Similarly, this is also
true when comparing the effort of solving CBMIQP and general convex nonlinear
mixed-integer problems. Being aware of this, it is reasonable to take advantage of
the given problem structure. Since the convex quadratic objective function and
the box-constraints are much more specific than general convex mixed-integer
programs it is not useful to apply the general methods presented in Section 3.3
directly to our problem. Instead, it is reasonable to develop an algorithm that fully
exploits the problem structure and adjusts the existing methods to CBMIQP.

This convex quadratic mixed-integer problem has several applications. One prac-
tical application in electronics, known as Filtered Approximation [48], is to syn-
thesize periodic waveforms by either bipolar or tripolar pulse codes. The problem
can be modeled in form of CBMIQP, where all variables are required to be bi-
nary or ternary, i.e., x ∈ {−1, 0, 1}n. Another more theoretical application is the
so-called Closest Vector Problem (CVP) [184]: given a basis b1, . . . , bn of Rn and
an additional vector v ∈ Rn, it asks for an integer linear combination of the basis
vectors which is as close as possible to v with respect to the Euclidean distance.

61
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It can be shown that this problem is equivalent to the unbounded version of CB-
MIQP where n1 = 0, i.e., additionally all variables are required to be integer. In
the literature CVP is sometimes also known as the Integer Least Squares Prob-
lem (ILS). It has several applications in the areas of wireless communication,
cryptography, Monte-Carlo second moment estimation, radar imaging and global
navigation satellite systems, see e.g., [7, 107, 157]. The general box-constrained
version is therefore called Box-constrained Integer Least Squares Problem. A com-
mon approach for solving ILS consists of a two-stage enumeration strategy. First,
a reduction phase is performed, where Q is transformed to an upper triangular
matrix using an orthogonal transformation, followed by a search phase. Typically
they are based on either the Schnorr-Euchner algorithm [174] or the Fincke-Pohst
algorithm [79]. A survey on search methods for ILS is given by [7]. Similarly, BILS
is usually solved by extending one of the search algorithms to so-called sphere
decoding methods, where a tree search is performed only on the lattice points
within a hypersphere of a chosen radius around v, see, e.g., [40, 52, 61]. In order
to speed up the search algorithm the columns are reordered in a preprocessing
phase.

This chapter is organized as follows. After giving a short proof that the prob-
lem CBMIQP is NP-hard, we give an outline and the main ideas of a branch-
and-bound scheme in Section 4.2. After this, in Section 4.3, we explain the major
running time improvements, leading to a linear running time per node algorithm.

4.1 Complexity of CQIP

Solving CBMIQP is NP-hard. There are two straightforward ways to see this.
The first one follows from the special case of CBMIQP where all the variables
are required to be binary, i.e., xi ∈ {0, 1} for all i = 1, . . . , n. In this case we
have a close connection between CBMIQP and two classical and well-studied
combinatorial optimization problems, namely Unconstrained Binary Quadratic
Programming (UBQP) and Max-Cut (MC). To be precise, UBQP is a special
case of CBMIQP since convexity of the objective function can be assumed with-
out loss of generality. Both UBQP and MC are NP-hard [121, 165] and it is
also proven that UBQP and MC have the same polyhedral description [181],
so that the underlying Boolean Quadric Polytope and the Cut Polytope can be
mapped to each other under a linear transformation. In fact, MC can be mod-
eled as an unconstrained quadratic minimization problem over the set of {−1, 1}
variables. Therefore the algorithmic approaches for UBQP and MC may also be
applied to CBMIQP in the case of binary variables. Here, we alternatively derive
NP-hardness of CBMIQP by considering the special case of CBMIQP where all
variables are integer and unbounded, i.e., xi ∈ Z for all i = 1, . . . , n. We show
that this problem is equivalent to the already mentioned Closest Vector Problem
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which is also NP-hard itself [184].

Theorem 4.1. The problem CBMIQP is NP-hard.

Proof. We consider the following decision variant of CVP:

given: a basis b1, . . . , bn of Rn, an additional vector v ∈ Rn and a scalar d ∈ R.
question: does there exist an integer linear combination of b1, . . . , bn such that its
Euclidean distance to the vector v is less or equal d?

We show the reduction CVP ≤T CQIP:
Given an instance of CVP, we are looking for integer scalars λ1, . . . , λn ∈ Z, such
that ||

∑n
i=1 λib

i−v||2 ≤ d. We choose Q̃ := B>B, c̃ := B>v and d̃ := v>v, where
B ∈ Rn×n consists of the columns b1, . . . , bn, and get an instance for CBMIQP.
We have that

∃λ ∈ Zn : λ>Q̃λ+ c̃λ+ d̃ ≤ d

⇐⇒∃λ ∈ Zn : λ>B>Bλ− 2v>Bλ+ v>v ≤ d

⇐⇒∃λ ∈ Zn : ||Bλ− v||2 ≤ d

⇐⇒∃λ ∈ Zn : ||
n∑
i=1

λib
i − v||2 ≤ d.

As we have shown that the unconstrained version of CBMIQP is NP-hard, the
result follows immediately since this is the special case of CBMIQP where the
bounds are l = {−∞}n and u = {∞}n.

4.2 A Branch-and-Bound Algorithm for CQIP

The following branch-and-bound algorithm for solving CBMIQP was presented
by Buchheim, Caprara and Lodi [43]. It is a tailored version of an NLP-based
branch-and-bound algorithm, as described in Section 3.2.1, and uses the following
ingredients, mostly already explained in Section 3.1.1:

• simple primal bound computation using a depth-first enumeration strategy

• easy dual bound computation by using the continuous relaxation

• possible bound improvement by lattice-free ellipsoids

• fast incremental computation of the dual bounds

• branching by fixing variables to integer values

• sophisticated preprocessing phase by using a predetermined branching order
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For simplicity, we assume without loss of generality, that the variables are sorted
in a way such that the integer variables are x1, . . . , xn1 and the continuous vari-
ables are xn1+1, . . . , xn.

Branching At every node in our branch-and-bound scheme, we branch by fix-
ing a single variable in increasing distance to its value in the solution of the
continuous relaxation x̄. The branching strategy works as follows. In a generic
node of the search tree, we assume that the next variable to be fixed is xi. The
subsequent values to which we fix xi are determined by the value x̄i in the con-
tinuous minimizer of the current node. For example, if the closest integer value
to x̄i is bx̄ic, we fix xi to integer values bx̄ic, dx̄ie, bx̄ic − 1, dx̄ie + 1, and so on.
After each branching step, the resulting subproblem is a mixed-integer quadratic
programming problem of type CBMIQP again, with a problem dimension de-
creased by one. We are not explicitly imposing bound constraints on the integer
variables (i.e., xi ≤ bx̄ic and xi ≥ bx̄ic), since they are implicitly taken into ac-
count as fixings (i.e., xi = bx̄ic) in the construction of the reduced subproblem by
adapting properly the matrices Q`, the linear term c̄ and the constant term d̄ (see
Section 4.3). The branching order of these variables at every level 0 ≤ ` ≤ n1 is
set to x1, . . . , xn1−`, assuming that ` variables are already fixed. Hence, at every
level we have a predetermined branching order. Let x̄i be the value of the next
branching variable in the continuous minimizer. Then, by the convexity of f , all
consecutive lower bounds obtained by fixing xi to integer values in increasing
distance to x̄i, on each side of x̄i, are non-decreasing. Thus, we can cut off the
current node of the tree and all its outer siblings as soon as we fix a variable to
some value for which the resulting lower bound exceeds the current best known
upper bound. Since f is strictly convex we get a finite algorithm even in the case
where the variables are unbounded.

Dual Bounds We know from Theorem 2.16 that there exists a unique minimum
x̄ for the continuous relaxation of the unbounded version of CBMIQP, since Q is
positive definite. At every depth ` we have

2Q`x̄+ c̄ = 0⇔ x̄ = −1

2
Q−1
` c̄ (4.1)

and

f(x̄) = −1

2
c̄>Q−>` Q`(−

1

2
Q−>` c̄) + c̄>(−1

2
Q−1
` c̄)

=
1

4
Q−1
` c̄− 1

2
c̄>Q−1

` c̄+ d̄

= d̄− 1

4
c̄>Q−1

` c̄.
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Thus, the continuous minimum can be used as a dual bound for CBMIQP. Its
direct computation simply asks for solving a system of linear equations which
takes cubic running time in the reduced dimension n−`. We remark that the box-
constraints are taken into account implicitly by the branch-and-bound scheme.
We prune all nodes with invalid variable fixings outside of the box, instead of
computing the box-constrained continuous minimizer, since the latter problem
is much harder to solve in practice. Only at depth n1, after all integer variables
have been fixed, we need to compute a feasibles point within the box. This can
be done by any common method for box-constrained QP, for example active set
or interior point methods.

Primal Bounds Since the problem is only box-constrained, any mixed-integer
point x ∈ Zn1 × Rn−n1 ∩ [l, u]n is feasible and therefore at level n1 of the enu-
meration tree, meaning all integer variables have been fixed, we get a primal
bound. Alternatively, one can try to improve the primal bound during the enu-
meration by using primal heuristics. The authors use a genetic algorithm for 0-1
programming to improve primal bounds [146].

4.3 Improvement to Linear Running Time per

Node

Preprocessing Since the dual bounds obtained by the continuous relaxation
may be weak, the enumeration tree might become very large. Therefore the strat-
egy of the branch-and-bound scheme is to enumerate the nodes quickly. Before
starting the enumeration it takes advantage of a preprocessing phase that per-
forms the most time-consuming computations in every node in advance. This
is possible due to the fact that at every level ` of the branching tree, certain
data that is needed to compute the continuous minimizer does not depend on
the specific fixings but only on the current depth. To explain this, we first de-
scribe a useful effect of their way to branch by fixing. After each branching a new
subproblem of the same form in a reduced dimension is built by updating the
problem data. In this way, no constraint needs to be added for the new fixing.
In particular having fixed ` variables x1, . . . x` to integer values r1, . . . , r`, we get
the reduced objective function f : Rn−` → R of the form

f̄(x) = x>Q`x+ c̄>x+ d̄,

where the reduced constant term d̄ =
∑`

i=1 ciri +
∑`

i=1

∑`
j=1 qijrirj contains the

fixings from the quadratic and linear part and the components of the reduced
linear part c̄j−d = cj + 2

∑`
i=1 qijri, j = `+ 1, . . . , n, contain the fixings from the

quadratic part. The reduced matrices Q` are obtained from Q by deleting the first
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Algorithm 12: Basic Branch-and-Bound Scheme for CBMIQP

input : a strictly convex function f : Rn → R, f(x) = x>Qx+ c>x+ d
output: a vector x? ∈ Zn1 × Rn−n1 minimizing f

determine a variable order x1, . . . , xn1 , set ` := 0, ub :=∞
let Q` be the submatrix of Q for rows and columns `+ 1, . . . , n
while 0 ≤ ` ≤ n1 do

define f̄ : Rn−` → R by f̄(x) := f(r1, . . . , r`, x1, . . . , xn−`)
compute c̄ and d̄ such that f̄(x) = x>Q`x+ c̄>x+ d̄
// compute lower bound
if ` = n1 then

compute x̄ := argmin{f(x) | a ≤ x ≤ b}
else

compute x̄ = −1
2
Q−1
` c̄ ∈ Rn−` and set lb := f̄(x̄)

// compute upper bound
set rj := x̄j−` for j = `+ 1, . . . , n1 to form r ∈ Zn1 × Rn−n1

// update solution
if f̄(r`+1, . . . , rn) < ub then

set r∗ = r
set ub = f̄(r`+1, . . . , rn)

// prepare next node
if lb < ub then

// branch on variable x`+1

set ` := `+ 1;
if l1 ≤ bx̄1e ≤ b1 then

set r` := bx̄1e;
else

// prune current node
set ` := `− 1;
if ` > 0 then

// go to next node
increment r` in increasing distance to the value in the
continuous relaxation (see paragraph branching above);
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` rows and columns, and are therefore again positive definite. To compute the
dual bounds according to (4.1) we need the inverse matrices Q−1

` . An important
observation is that Q` and therefore also Q−1

` does not depend on the values ri,
i = 1, . . . , `, to which the first ` variables are fixed. Exploiting this useful fact,
we do not change the order of fixing the variables in the branch-and-bound tree
at each level `, i.e., we always fix the variables according to an order that is
determined a priori, before starting the enumeration. On the one hand, we do
not have the freedom to use sophisticated branching rules. But on the other hand,
this implies that, in total, we only have to consider the n different matrices Q`

during the whole enumeration tree, which we know in advance, since the fixing
order is predetermined. Thus, we avoid to compute an exponential number of
reduced matrices that would be needed if the order of variables to be fixed were
allowed to be chosen freely. The basic branch-and-bound scheme is outlined in
Algorithm 12. Using the preprocessing phase, every node in the enumeration tree
can be processed in quadratic running time in the reduced dimension n− `. Here,
the most time-consuming operation is still the computation of the continuous
minimum and its corresponding objective function value, given the precomputed
inverse matrix Q−1

` . In a first step, using the preprocessing leads to a reduction
of the running time per node from O(n− `)3 to O(n− `)2.

Lemma 4.2 ([43]). After a polynomial-time preprocessing, the running time per
node of Algorithm 12 can be reduced to O(n− `)2.

Proof. Since the inverse matrices Q−1
` ∈ R(n−`)×(n−`) are computed in polynomial

time in the preprocessing, the running time is dominated by the computation of
c̄>Q−1

` c̄ which is quadratic in the reduced dimension n− `.

Incremental Computations Apart from precomputing the reduced matrices
Q`, the preprocessing phase can be used to further decrease the running time of
every node at level ` to O(n−`). Again, this is achieved by improving the running
time for the computation of the continuous minima of f̄ . To do this, the authors
propose an incremental technique. It determines the new continuous minimum
from the old one in linear time whenever a new variable is fixed. For this, the
authors make use of the surprising fact that in a given node, the continuous
minima corresponding to all possible fixings of the next variable lie on a line and
the direction of this line only depends on which variables have been fixed so far,
but not on the values to which they were fixed. Again, this allows to shift some
expensive computations into the preprocessing since the direction of this line is
fully determined by the level of the current node. This observation is illustrated
in Figure 4.1. Recall that f̄(x) = x>Q`x+ c̄>x+ d̄ denotes the function obtained
from f by fixing variable xi to ri for i = 1, . . . , `, and x̄ ∈ Rn−` is its continuous
minimum, noting that x̄1 corresponds to the value of the original variable x`+1.
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x

y

z`

Figure 4.1: Incremental computation of the minimizer y (red dots), depending on
the fixings of x by moving along the direction z` (blue arrow).

If we define the vectors

z` := (1, (q`+1,`+2, q`+1,`+3, . . . , q`+1,n)Q−1
`+1)> ∈ Rn−`,

for every ` = 1, . . . , n1, we finally get the following result.

Proposition 4.3 ([43]). If we fix variable x`+1 to r`+1 and reoptimize f̄ , the
resulting continuous minimum is given by x̄+ (r`+1 − x̄1)z`.

Proof. Let c̄(u) ∈ Rn−`−1 denote the linear term of f̄ : Rn−`−1 → R after fixing
x`+1 to u and removing the associated component. We have

c̄(u)j−`−1 = cj + 2
∑̀
i=1

qi,jri + 2q`+1,ju, j = `+ 2, . . . , n.

Moreover, we denote by ¯̄x ∈ Rn−` the continuous minimizer of f̄ after fixing
variable x`+1 to the value r`+1 and keeping the associated component. This means
for the first component we have ¯̄x1 = r`+1, yielding

¯̄x = (r`+1, (−
1

2
Q̄−1
`+1c̄(r`+1))>)>.

It is clear that in case r`+1 = x̄1, we have ¯̄x = x̄, since in that case x`+1 is fixed to
its optimal continuous value and the continuous minimum is unchanged. Thus,
we can write x̄ as

x̄ = (x̄1, (−
1

2
Q̄−1
`+1c̄(x̄1))>)>.

If follows that

¯̄x = x̄+ (r`+1 − x̄1, (−
1

2
Q̄−1
`+1(c̄(r`+1)− c̄(x̄1)))>)>.
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It remains to show that

(r`+1 − x̄1)z` = (r`+1 − x̄1, (−
1

2
Q̄−1
`+1(c̄(r`+1)− c̄(x̄1)))>)>,

or equivalently

(r`+1 − x̄1)(1,−(q`+1,`+2, q`+1,`+3, . . . , q`+1,n)Q−1
`+1)>

=(r`+1 − x̄1, (−
1

2
Q̄−1
`+1(c̄(r`+1)− c̄(x̄1)))>)>.

The equality for the first component is clear. For the other components, we ob-
serve that

c̄(r`+1)− c̄(x̄1) = (2q`+1,`+2(r`+1 − x̄1), . . . , 2q`+1,n(r`+1 − x̄1))> ∈ Rn−`−1

and hence we get

(−1

2
Q̄−1
`+1(c̄(r`+1)− c̄(x̄1))>

=(−Q̄−1
`+1(q`+1,`+2, . . . , q`+1,n)>(r`+1 − x̄1))>

=(r`+1 − x̄1)(−Q̄−>`+1(q`+1,`+2, . . . , q`+1,n)>)>

=(r`+1 − x̄1)(−(q`+1,`+2, . . . , q`+1,n)Q̄−1
`+1).

To guarantee sublinear running time of O(n−`) per node, we also have to reduce
the running time for the evaluation of the objective function values of the contin-
uous minima, since a simple evaluation would take quadratic time and therefore
dominate the rest of the computations. As to this, if we define

v` := 2Q`z
` ∈ Rn−`, s` := (z`)>Q`z

` ∈ R,

we can state the following analogous result for the incremental computation of
the associated optimal objective function value.

Proposition 4.4 ([43]). If we fix variable x`+1 to r`+1 and reoptimize f̄ , the
resulting optimal objective function value is given by

f̄(x̄+ αz`) = f̄(x̄) + α(x̄>v` + c̄>z`) + α2s`,

where α = r`+1 − x̄1.

Proof. We have

f(x̄+ αz`) = (x̄+ αz`)>Q̄`(x̄+ αz`) + c̄>(x̄+ αz`) + d̄

= x̄>Q̄`x̄+ α2z`
>
Q̄`z

` + 2αx̄>Q̄`z
` + c̄>x̄+ αc̄>x̄+ αc̄>z` + d̄

= f̄(x̄) + α(x̄>2Q̄`z
` + c̄>z`) + α2z`

>
Q̄`z

`

= f̄(x̄) + α(x̄>v` + c̄>z`) + α2s`
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Since c̄ can be computed incrementally in O(n−`) time, the last two propositions
can be summarized in the following main result.

Theorem 4.5 ([43]). If, in the preprocessing phase of Algorithm 12, we compute
z`, v` and s` as defined above for ` = 0, . . . , n − 1, then the computation of
the continuous minimizer and the associated lower bound can be carried out in
O(n− `) time per node.

Proof. The result follows directly from Theorems 4.3 and 4.4.

We close this chapter with an example.

Example 4.1. Consider the following unconstrained integer quadratic program

min{x>Qx+ c>x | x ∈ Z3},

where

Q =

 2 −1 −3
−1 2 4
−3 4 9

 < 0 and c =

1
3
2

 .

The continuous minimizer is x̄ = −1
2
Q−1c = (1.5,−7, 3.5)>. Suppose we fix x1 to

r1 = 2. For the first iteration we compute in a preprocessing phase the vectors

z0 = (1,−(q1,2, q1,3)Q−1
1 )> = (1, 1.5, 1)>, where Q̄1 =

(
2 4
4 9

)
,

v0 = 2Qz0 = (1, 0, 0)> and the scalar s0 = z0>Qz0 = 1
2
.

Hence the new minimizer is

¯̄x = x̄+ (r1 − x̄1)z0 = (2,−7.75, 4)>

and its objective function value is

f̄ = f̄(x̄) + (r1 − x̄1)(x̄>v0 + c̄>z0) + (r1 − x̄1)2s0 = −6.125.

Buchheim et al. [43] showed by extensive numerical experiments that for the un-
constrained case (x ∈ Zn) and the ternary case (x ∈ {−1, 0, 1}n) of CBMIQP the
branch-and-bound algorithm outperforms all competitive software on a test set
of randomly generated instances as well as real-world instances from an applica-
tion in electronics. They conclude that CPLEX as the most competitive solver was
outperformed by even several orders of magnitude.



Chapter 5

Active Set Based
Branch-and-Bound

In this chapter we aim at extending the branch-and-bound Algorithm 12 of the
previous Chapter 4 for mixed-integer optimization problems with strictly convex
quadratic objective functions to the presence of additional linear inequalities:

min f(x) = x>Qx+ c>x+ d
s.t. Ax ≤ b

xi ∈ Z, i = 1, . . . , n1

xi ∈ R, i = n1 + 1, . . . , n

(CMIQP)

where Q ∈ Rn×n is a positive definite matrix, c ∈ Rn, d ∈ R, A ∈ Rm×n, b ∈ Rm,
and n1 ∈ {0, . . . , n}. Therefore, we will present a generalization of the approach
for CBMIQP. Up to now, all solution methods for convex mixed-integer quadratic
programming are based on the methods presented in Section 3.2. Agrawal [6]
presented a cutting plane algorithm that starts from the solution of the QP-
relaxation. If the solution has a non-integral component that is required to be in-
teger it adds a Chvátal-Gomory cut to the existing constraints and applies the Pa-
rameter t-Algorithm by Beale [18] to find its optimal integral value. The procedure
is repeated until integrality for all integer variables is obtained. Bienstock [29]
proposed a branch-and-cut algorithm using disjunctive cuts for solving a family
of mixed-integer quadratic programming problems arising in a portfolio optimiza-
tion application. By reformulating the original problem, Lazimy [133, 134] applied
the Generalized Benders Decomposition method yielding Benders cuts that are
linear instead of quadratic in the integer variables. The original mixed-integer
quadratic problem is decomposed into a finite sequence of integer linear master
programs, and quadratic programming subproblems. Al-Khayyal and Larsen [8]
developed a branch-and-bound algorithm that uses different types of piecewise
affine convex functions to underestimate the objective function. The relaxed lin-
ear problems are used to compute lower bounds. Instead of using linearizations

71
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Leyffer [137] showed how improved lower bounds from the QP-relaxations can
be used within a branch-and-bound algorithm. In particular Fletcher and Leyf-
fer [81] compute lower bounds by parametrically taking one step of the dual active
set method in every node of the search tree. Their numerical experiments also
show that branch-and-bound is the most effective approach out of all the com-
mon methods to solve MIQP problems, since the convex QP-relaxations are easy
to solve, e.g., by methods outlined in Section 2.4. Standard commercial solvers
that can handle mixed-integer quadratically constrained programs (MIQCP), and
therefore in particular also CMIQP, include CPLEX [57], Xpress [78], Gurobi [106]
and MOSEK [156], while Bonmin [34] and SCIP [2] are well-known non-commercial
software packages being capable of solving CMIQP, compare Section 3.3. Recent
benchmarks show that Gurobi and CPLEX perform best on MIQP problems, both
implementing state-of-the-art branch-and-bound algorithms.

We propose an extended version of the branch-and-bound algorithm 12 of Chap-
ter 4 to solve CMIQP. Since dualizing the continuous relaxation yields another
convex quadratic programming problem with only non-negativity constraints, as
we will see in Section 5.4, a new feasible active set method for quadratic pro-
grams of that form is specifically designed to compute lower bounds. The main
feature of the branch-and-bound algorithm 12 for solving CBMIQP, i.e., the so-
phisticated preprocessing phase, leading to a fast enumeration of the branch-and-
bound nodes, can be easily adapted by small modifications to handle CMIQP.
Moreover, our feasible active set method takes advantage of this preprocessing
phase and is also well suited for reoptimization. Following the ideas of the branch-
and-bound scheme sketched in the last chapter, we keep the fixed branching order
that is determined in advance. Recall that on the one hand, we lose the flexibility
of choosing sophisticated branching strategies usually used in recent state-of-the
art software packages, as shortly reviewed in Section 3.1, but on the other hand,
we gain the possibility of shifting expensive computations into a preprocessing
phase. As one of the main ideas that differs from standard approaches, our algo-
rithm solves the dual problem of the continuous relaxation in each node in order
to determine a local lower bound. Using the concept of duality theory in nonlinear
programming, as seen in Section 2.3, strong duality holds if the primal problem
is feasible, since all constraints of the continuous relaxation of CMIQP are affine.
Thus, computing a lower bound by the dual is useful since on the one hand it
can be solved effectively by exploiting its structure and on the other hand we
get a lower bound that is as strong as by solving the primal. If additionally the
primal problem has a small number of constraints, the dual problem has a small
dimension. Extending the sophisticated incremental computations of Chapter 4,
the overall running time per node in our approach is still linear in the dimen-
sion n if the number of constraints is fixed and if we assume that the solution
of the dual problem, which is of fixed dimension in this case, can be computed
in constant time. In this sense our approach can be seen as an extension of the
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Algorithm 12 without increasing the order of running time per node.

For the solution of the dual problem we investigate the performance of two active
set methods. The first one, discussed in Section 5.2, is an infeasible active set
method by Kunisch and Rendl [129], denoted by KR. It computes a KKT-point
by relaxing primal and dual feasibility while requiring stationarity and comple-
mentary slackness at every iteration. This relaxation leads to a simplification of
the KKT-system to a system of linear equations in the dimension of the set of
inactive variables. A theoretical limitation of this algorithm is that it requires
a strictly convex objective function. However, this problem can be tackled by
adding a small multiple of the identity matrix to the diagonal of Q. To over-
come this disadvantage, we propose as a second method, a new feasible active set
method FAST-QPA, discussed in detail in Section 5.3. A key feature of that active
set method is that each of its iterates is feasible. Combining this with properties
of duality theory, it suffices to find an approximate solution, as each dual feasible
solution yields a valid lower bound. We can thus prune the branch-and-bound
node as soon as the current upper bound is exceeded by the value of any feasible
iterate produced in a solution algorithm for the dual problem.

Another feature that is used in both active set algorithms within the branch-and-
bound is the use of warmstarts: after each branching, corresponding to the fixing
of a variable, we pass the optimal active set from the parent node as starting point
to the child nodes. This leads to a significant reduction in the average number of
iterations needed to solve the dual problem to optimality.

This chapter is organized as follows. In Section 5.1 we give a short overview of
existing methods for non-negativity constrained convex quadratic programming
problems. In Section 5.2 we discuss the infeasible active set method by Kunisch
and Rendl for solving this kind of problem. In Section 5.3 we present our own
alternative active set method. The properties of the proposed active set estima-
tion are discussed and the convergence of the algorithm is analyzed. Section 5.4
presents an outline of the branch-and-bound algorithm: we discuss the advan-
tages of considering the corresponding dual problem instead of the primal one.
Afterwards, we explain the idea of reoptimization, i.e., using warmstarts within
the branch-and-bound scheme. The end of the section deals with some tricks to
speed up the algorithm by exploiting incremental computations and an intelligent
preprocessing similar to Chapter 4. In Section 5.5 we present our computational
results. We compared the performance of both active set methods used within
our branch-and-bound framework to the MIQP solver of CPLEX 12.6 on a set of
randomly generated instances. We will show that this new approach significantly
outperforms the MIQP solver of CPLEX 12.6 for instances with a small number
of constraints. Section 5.6 summarizes the results of this chapter.
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5.1 Quadratic Programming Problems with Non-

negativity Constraints

In the following two sections, we consider non-negatively constrained QP prob-
lems of the form

min q(x) = x>Q̃x+ c>x+ d
s.t. x ≥ 0

x ∈ Rm,
(QP)

where Q̃ ∈ Rm×m is positive definite, c ∈ Rm and d ∈ R, implying that the
minimum of QP is finite.

The vast majority of solution methods for (purely continuous) quadratic pro-
grams can be categorized into either interior point methods [192] or active set
methods [25]. Besides the references in Section 2.5.3, we refer also to [162] and
the references therein for further details. In interior point methods, a sequence
of parameterized barrier functions is (approximately) minimized using Newton’s
method. The main computational effort consists in solving the Newton system
to get the search direction. Some noteworthy contributions based on interior
point methods for the solution of QP are made by Heinkenschloss, Ulbrich and
Ulbrich [108] and D’Apuzzo and Marino [64]. In active set methods, at each iter-
ation a working set that estimates the set of active constraints at the solution is
iteratively updated. Usually, only a single active constraint is added or deleted to
the active set at each iteration. However, when dealing with simple constraints,
one can use projected active set methods. These methods usually add/delete
more than one constraint at each iteration to/from the current estimated active
set to find the optimal active set in a finite number of steps. Among the more
recent work on active set based methods for solving QP, we mention the algo-
rithms by Kunisch and Rendl [129], Moré and Toraldo [154, 155] and Dostál and
Schöberl [71]. We will discuss the first one in more detail in Section 5.2. The last
two algorithms both use the conjugate gradient method to explore the face of the
feasible region defined by the current iterate and the reduced gradient projection
method to expand the active set.

An advantage of active set methods is that they are well-suited for warmstarts,
where a good estimate of the optimal active set is used to initialize the algorithm.
This is particularly useful in applications where a sequence of QP problems is
solved, e.g., in a sequential quadratic programming method. Since in our branch-
and-bound framework we need to solve a large number of closely related quadratic
programs, using active set strategies seems to be a reasonable choice.

In the next two sections we will use the following notation. Given a matrix M ,
we denote by λmax(M) the maximum eigenvalue of M . Furthermore, given a
vector v ∈ Rm and an index set I ⊆ {1, . . . ,m}, we denote by vI the sub-
vector with components vi with i ∈ I. Analogously, given the matrix H ∈ Rm×m
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we denote by HI I the sub-matrix with components hi,j with i, j ∈ I. Finally,
given two vectors v, y ∈ Rm we denote by max{v, y} the vector with components
max{vi, yi}, for i ∈ {1, . . . ,m}.
For our specific problem QP, recall that the active and non-active sets of variables
are defined by the following:

Definition 5.1. Let x? ∈ Rm be an optimal solution for Problem (QP). We
define as active set at x? the following:

A(x?) =
{
i ∈ {1, . . . ,m} : x?i = 0

}
.

We further define as non-active set at x? the complementary set of A(x?):

N (x?) = {1, . . . ,m} \ A(x?) =
{
i ∈ {1, . . . ,m} : x?i > 0

}
.

The idea behind active set methods in constrained nonlinear programming is that
of correctly identifying the set of active constraints at the optimal solution x?,
which then yields x? by the solution of an equality constrained QP, see Theo-
rem 2.17. In the following, two specific algorithms to obtain A(x?) are presented.

5.2 The Kunisch-Rendl Active Set Algorithm

The first algorithm is a tailored active set method by Kunisch and Rendl [129]
for solving QP. According to Definition 2.2 the KKT-System of QP is given by

2Q̃x+ c− λ = 0 (5.1)

−λixi = 0 ∀ i = 1, . . . ,m (5.2)

−x ≤ 0 (5.3)

λ ≥ 0. (5.4)

Using Theorems 2.14 and 2.13 we have that a pair (x?, λ?) is a solution of that
(nonlinear) system if and only if x? is a global minimizer of QP.

The active set method uses a reduced KKT-system by relaxing both primal and
dual feasibility, i.e., relaxing the constraints (5.3) and (5.4) and choosing xA = 0
and λN = 0, where A and N denote the current estimates for A(x?) and N (x?),
respectively. This a valid choice for the nonlinear equations (5.2), so that a system
of linear equations remains. By partitioning (5.1) according to the active and
inactive variables, we get(

2Q̃A,A 2Q̃A,N
2Q̃N ,A 2Q̃N ,N

)(
xA
xN

)
+

(
cA
cN

)
+

(
−λA
−λN

)
= 0. (5.5)
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Then we solve this system for xN , yielding

xN = −1

2
Q̃−1
N ,N cN (5.6)

We can then compute λA by

λA = cA + 2Q̃A,NxN . (5.7)

Before resolving the updated reduced system (5.5), we compute a new guess for
the optimal active set as follows

A(x) = {i ∈ {1, . . . ,m} | xi < 0 ∨ λi > 0}.

The choice of the updated active set can be justified by the following observation.
On the one hand, if λi > 0, the solution is dual feasible, so our previous choice
i ∈ A is confirmed and we keep the index in the subsequent active set. On the
other hand, if xi < 0, the solution is primal infeasible and we add the index
to our subsequent active set. For the starting guess of the optimal active set
A(x?), we choose A(x?) = {1, . . . ,m}, which gives x = 0 and λ = c. Another
possible choice would be A = ∅, such that λ = 0 and x = −1

2
Q̃−1c or simply

choosing A randomly. The KR-algorithm is sketched in Algorithm 13. Note that
in each iteration of Algorithm 13 the main effort consists of solving one system of
linear equations of dimension |N |, i.e., if |N | is small the solution process will be
cheap. For a more detailed description of the algorithm and convergence results,
see [129].

Algorithm 13: Infeasible Active Set Algorithm (KR)

input : Q̃ ∈ Rm×m symmetric and positive definite matrix, c ∈ Rm,
A ⊆ {1, . . . ,m}

output: optimal solution (x?, λ?) of (5.1)–(5.4)

while (x, s) not optimal do
solve (5.5), i.e., set xA = 0, λN = 0 and compute xN from (5.6)
and (5.7). Set A(x) = {i | xi < 0 ∨ λi > 0}

A drawback of the KR-algorithm is that it constructs iterates that are not nec-
essarily feasible. Therefore not every arbitrary iterate can be used to construct
a primal solution. There are two easy ways to adapt this algorithm to turn it
into a feasible active set algorithm. The first way is to project any iterate xk

which is not feasible to the non-negative orthant, i.e., for any i ∈ {1, . . . ,m} such
that xki < 0, we simply set xki = 0. A similar idea is studied by Hungerländer
and Rendl [113]. They obtain primal feasibility by iteratively adding all infeasi-
ble components of xk to the subsequent active set and resolving the system of
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linear equations (5.6) for xI until primal feasibility is attained. For the cost of
resolving (5.6) several times, we gain primal feasible iterates. Nevertheless both
approaches do not improve the performance essentially [113], such that we devise
a new feasible active set algorithm in the next section.

5.3 The FAST-QPA Active Set Algorithm

As an alternative to Algorithm 13, we describe a projected active set method for
the solution of QP that tries to exploit the information calculated in a preprocess-
ing phase at each level of the branch-and-bound tree. Our method is inspired by
the work of Bertsekas [24], where a class of active set projected Newton methods is
proposed for the solution of nonlinear problems with non-negativity constraints.
The main difference between the two approaches is in the way the active variables
are defined and updated. While the method described in [24] uses a line search
procedure that both updates active and non-active variables at each iteration,
our method, at a given iteration, first sets to zero the active variables (guaran-
teeing a sufficient reduction of the objective function), and then tries to improve
the objective function in the space of the non-active variables. This gives us more
freedom in the choice of the step size along the search direction, since the active
variables are not considered in the line search procedure.

In this section we denote by ∇q(x) ∈ Rm and ∇2q(x) ∈ Rm×m the gradient
vector and the Hessian matrix of the objective function q(x) in Problem QP,
respectively. Explicitly, we have

∇q(x) = 2Q̃x+ c, ∇2q(x) = 2Q̃ .

The open ball with center x and radius ρ > 0 is denoted by Bρ(x). Finally, we
denote the projection of a point z ∈ Rm onto Rm

+ by [z]] := max{0, z}.

5.3.1 Active Set Estimate

Our aim is to find a rule that leads us to the identification of the optimal active
set A(x?) for Problem QP as quickly as possible. The rule we propose is based
on the use of multiplier functions and follows the ideas reported in [77].

Definition 5.2. Let x ∈ Rm. We define the following sets as estimates of the
non-active and active sets at x:

Ñ (x) = {i ∈ {1, . . . ,m} : xi > ε∇qi(x)}

and
Ã(x) = {1, . . . ,m} \ Ñ (x),

where ε > 0 is a positive scalar.
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The following result is taken from [77]:

Theorem 5.1. Let x? ∈ Rm be an optimal solution of Problem QP. Then, there
exists a neighborhood of x? such that, for each x in this neighborhood, we have

A+(x?) ⊆ Ã(x) ⊆ A(x?),

with A+(x?) = A(x?) ∩ {i ∈ {1, . . . ,m} : ∇qi(x?) > 0}.

Proof. To show the first inclusion, let i belong to A+(x?). Then by definition of
A+(x?), we have

x?i = 0 and ∇qi(x?) > 0.

Then, since both x and ∇qi are continuous, the result follows immediately. To
show the second inclusion, let i /∈ A(x?). Noticing that, according to (5.1), for
the optimal multiplier λ? of QP we have λ? = ∇q(x?), and by using the comple-
mentarity condition (5.2) we get

x?i > 0 and ∇qi(x?) = 0,

so that again by continuity of x and ∇qi, we conclude i /∈ Ã(x), and the second
inclusion is proved.

Furthermore, if strict complementarity holds, i.e., λ?i > 0 for all i ∈ A(x?), we
can state the following:

Corollary 2. Let x? ∈ Rm be a an optimal solution of Problem QP where strict
complementarity holds. Then, there exists a neighborhood of x? such that, for each
x in this neighborhood, we have

Ã(x) = A(x?).

5.3.2 Outline of the Algorithm

We now give an outline of our Feasible Active SeT Quadratic Programming Al-
gorithm (FAST-QPA) for solving Problem QP; see Algorithm 14 below.

At each iteration k the algorithm first determines the two sets N k := Ñ (xk)
and Ak := Ã(xk) according to Definition 5.2. Then, the variables belonging to
Ak are set to zero, thus obtaining a new point x̃k, and a search direction dk is
calculated. More specifically dkAk , the components of dk related to Ak, are set to
zero, while a gradient related direction dkN k is calculated in N k. Here we define
that a direction dÑ (xk) is gradient related in x̃k (see, e.g., [26]) if there exist
σ1, σ2 > 0 such that dÑ (xk) satisfies the following two conditions:

d>Ñ (xk)
∇q(x̃k)Ñ (xk) ≤ −σ1‖∇q(x̃k)Ñ (xk)‖

2, (5.8)

‖dÑ (xk)‖ ≤ σ2‖∇q(x̃k)Ñ (xk)‖. (5.9)
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Algorithm 14: Feasible Active SeT Quadratic Programming Algorithm
(FAST-QPA)

input : a quadratic programming problem of the form QP
output: a minimizer x? ∈ Rn of QP

Fix δ ∈ (0, 1), γ ∈ (0, 1
2
), ε > 0 and maxit > 0.

Choose x0 ∈ Rn
+, set k = 0.

for k = 0, 1, . . . ,maxit do

Compute Ak := Ã(xk) and N k := Ñ (xk).
Set x̃kAk = 0 and x̃kN k = xkN k .
Set dkAk = 0.
Compute a gradient related direction dkN k in x̃k (Algorithm 15).
Set αk = δj where j is the first non-negative integer for which

q([x̃k + δjdk]]) ≤ q(x̃k) + γ δj∇q(x̃k)>dk.

Set
xk+1 = [x̃k + αkdk]].

Algorithm 15: Calculation of the direction dkN k

input : a current iterate x̃k of Algorithm 14
output: a gradient related direction dkN k in x̃k

Choose y0 = x̃kN k .

Set ∇q0 = 2Q̃y0 + c, d0 = −∇q0 and l = 0.
while Stopping Condition not satisfied do

Compute step size along the search direction dl:

αl =
‖∇ql‖2

dl>Q̃dl

Update point yl+1 = yl + αl dl.
Update gradient of the quadratic function ∇ql+1 = ∇ql + αl Q̃ dl.
Compute coefficient

βl+1 =
‖∇ql+1‖2

‖∇ql‖2
.

Determine new conjugate direction dl+1 = −∇ql+1 + βl+1dl.
Set l = l + 1.

Set dkN k = yl − y0.
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In order to obtain the direction dkN k , we apply Algorithm 15, a conjugate gradient
method, to the following unconstrained quadratic problem in the subspace of non-
active variables,

min qk(y) = y>Q̃N kN ky + c>N ky

s.t. y ∈ R|N k|.
(QPk)

When the minimum of Problem QPk is finite, it follows from Theorem 2.25 that
the conjugate gradient method produces an optimal solution y of Problem QPk

in at most |N k| iterations. Otherwise, the algorithm stops after a finite number
of iterations with a vector y which is a combination of the conjugate directions
generated along the iterations by the conjugate gradient method. In both cases,
once a vector y is calculated, we choose dkN k := y − x̃kN k . Using standard re-
sults [66, 101] it can be proven that dkN k satisfies (5.8) and (5.9) and hence is
gradient related. Finally, the new point xk+1 is computed by means of a pro-
jected Armijo line search along the direction dk. Note that, even if the matrix Q̃
is ill-conditioned, the conjugate gradient method embedded into Algorithm 14
still generates a gradient related direction at each iteration. In case one wants to
exactly solve Problem QPk, suitable preconditioning techniques can be applied
to the conjugate gradient method.

5.3.3 Convergence Analysis

The convergence analysis of FAST-QPA is based on two key results, namely Propo-
sition 5.2 and Proposition 5.3 stated below. These results show that the algorithm
obtains a significant reduction of the objective function both when fixing to zero
the variables in the active set estimate and when we perform the projected Armijo
line search.

Proposition 5.2 completes the properties of the active set identification strategy
defined in Section 5.3.1. More specifically, it shows that, for a suitably chosen
value of the parameter ε appearing in Definition 5.2, a decrease of the objective
function is achieved by simply fixing to zero one or more variables whose indices
belong to the estimated active set.

Proposition 5.2. Assume that the parameter ε appearing in Definition 5.2 sat-
isfies

0 < ε <
1

2λmax(Q̃)
. (5.10)

Given the point xk and the set Ak, let Ay be a set of indices and let y be a point
such that

Ay ⊆ {i ∈ Ak : xki 6= 0},
yAy = 0, yI\Ay = xkI\Ay ,
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with I = {1, . . . ,m}. Then,

q(y)− q(xk) ≤ − 1

2ε
‖y − xk‖2.

Proof. By taking into account the definition of the set Ay and the point y, we
have

q(y) = q(xk) +∇qAy(xk)>(y − xk)Ay +
1

2
(y − xk)>Ay(∇2q)AyAy(y − xk)Ay .

Since ∇2q = 2Q, the inequality

q(y) ≤ q(xk) +∇qAy(xk)>(y − xk)Ay + λmax(Q̃) ‖(y − xk)Ay‖2

holds. Using (5.10) we obtain

q(y) ≤ q(xk) +∇qAy(xk)>(y − xk)Ay +
1

2ε
‖(y − xk)Ay‖2

and hence

q(y) ≤ q(xk) +
(
∇qAy(xk) +

1

ε
(y − xk)Ay

)>
(y − xk)Ay − 1

2ε
‖(y − xk)Ay‖2.

It thus remains to show(
∇qAy(xk) +

1

ε
(y − xk)Ay

)>
(y − xk)Ay ≤ 0 ,

which follows from the fact that, for all i ∈ Ay,(
∇qi(xk) +

1

ε
(yi − xki )

)>
(yi − xki ) ≤ 0.

Indeed, for all i ∈ Ay we have xki ≥ 0 and yi = 0, hence xki − yi = xki ≤ ε∇qi(xk),
so that

∇qi(xk) +
1

ε
(yi − xki ) ≥ 0 .

The following result shows that the projected Armijo line search performed in
Algorithm 14 terminates in a finite number of steps, and that the new point
obtained guarantees a decrease of the objective function of QP.

Proposition 5.3. Let γ ∈ (0, 1
2
). Then, for every x̄ ∈ Rn

+ with ∇q(x̄)Ñ (x̄) 6= 0,
there exist ρ > 0 and ᾱ > 0 such that

q([x+ αd]])− q(x) ≤ γ α d>Ñ (x̄)
∇q(x)Ñ (x̄) (5.11)

for all x ∈ Rn
+ with x ∈ Bρ(x̄) and for all α ∈ (0, ᾱ], where d ∈ Rn is the direction

used at x satisfying (5.8) and (5.9).



82 CHAPTER 5. ACTIVE SET BASED BRANCH-AND-BOUND

Its proof is similar to the proof of Proposition 2 in [24].

Proof. From the continuity of the objective function of problem QP, we have that
the gradient ∇q is Lipschitz continuous on Rn

+, so that there exists L <∞ such
that, for s ∈ [0, 1]

‖∇q(x)−∇q(x− s[x− x(α)])‖ ≤ sL‖x− x(α)‖ ∀ x ∈ Bρ(x̄) ∩ Rn
+,

where x(α) := (x + αd)]. Furthermore, ∇q is bounded on Bρ(x̄) ∩ Rn
+, hence,

there exists σ > 0 such that

‖∇q(x)‖ ≤ σ

σ2

, ∀ x ∈ Bρ(x̄) ∩ Rn
+

and by (5.9) d is also bounded on Bρ(x̄) ∩ Rn
+. For x(α) ∈ Bρ(x̄) ∩ Rn

+ we have

q(x(α))− q(x) = ∇q(x)>(x(α)− x)

+

∫ 1

0

(
∇q(x− s[x− x(α)])−∇q(x)

)>(
x(α)− x

)
ds

≤ ∇q(x)>(x(α)− x) + ‖x(α)− x‖
∫ 1

0

sL‖x(α)− x‖ds

= ∇q(x)>(x(α)− x) +
L

2
‖x(α)− x‖2.

Then, from the definition of dÃ(x̄) in Algorithm 14, we have

x(α)Ã(x̄) = xÃ(x̄).

Therefore, it is possible to write

q(x(α))− q(x) ≤ ∇q(x)>Ñ (x̄)
(x(α)− x)Ñ (x̄) +

L

2
‖(x(α)− x)Ñ (x̄)‖

2. (5.12)

We now majorize the terms in the right hand side. of (5.12). We first analyze the
term ‖(x(α)− x)Ñ (x̄)‖2.

Let x ∈ Bρ(x̄) ∩ Rn
+. We distinguish between di ≥ 0 and di < 0.

• If di ≥ 0, we have

xi(α) = xi + αdi

for all α ≥ 0.

Thus,

(xi(α)− xi)2 = α2d2
i . (5.13)
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• If di < 0, we have
xi(α) ≥ xi + αdi

for all α ≥ 0.

Hence,
0 ≤ xi − xi(α) ≤ −αdi,

so that
0 ≤ (xi − xi(α))2 ≤ α2d2

i . (5.14)

Then by (5.13) and (5.14) we have

‖(x(α)− x)Ñ (x̄)‖
2 ≤ α2‖dÑ (x̄)‖

2.

Using (5.8) and (5.9)

‖(x(α)− x)Ñ (x̄)‖
2 ≤ α2 ‖dÑ (x̄)‖

2 ≤ α2 σ2
2 ‖∇q(x)Ñ (x̄)‖

2 ≤ −α2 σ
2
2

σ1

d>Ñ (x̄)
∇q(x)Ñ (x̄).

(5.15)

Now we consider the first term in the right hand side of (5.12). By condition (5.9)
on the search direction we have that for all x ∈ Bρ(x̄)∩Rn

+ and for all i ∈ Ñ (x̄):

|di| ≤ ‖dÑ (x̄)‖ ≤ σ2 ‖∇q(x)Ñ (x̄)‖ ≤ σ.

Then we introduce
ω = min

i:∇qi(x)>0
ε∇qi(x).

Consider first the case that i ∈ Ñ (x̄) and ∇qi(x) = 0. For such indices we have
of course that

∇qi(x)(x(α)i − xi) = α∇qi(x)di.

When i ∈ Ñ (x̄) and ∇qi(x) 6= 0 according to our estimation of the non-active
set, we have two different subcases:

• If ∇qi(x) > 0, then by choosing α ∈ (0, ω/σ] we have that:

xi(α)− xi = αdi. (5.16)

• If ∇qi(x) < 0, we have for all α > 0

xi(α)− xi ≥ αdi,

so that multiplying by ∇qi(x) < 0 we have

∇qi(x)
(
x(α)i − xi

)
≤ α∇qi(x)di. (5.17)
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Therefore, choosing α ∈ (0, ω/σ] we have, from (5.16) and (5.17), that

∇q(x)>Ñ (x̄)
(x(α)− x)Ñ (x̄) ≤ α∇q(x)>Ñ (x̄)

dÑ (x̄). (5.18)

Substituting (5.15) and (5.18) into (5.12) we obtain that for all α ∈ (0, ω/σ] and
x(α) ∈ Bρ(x̄) ∩ Rn

+

q(x(α))− q(x) ≤ α (1− ασ2
2L/2σ1)∇q(x)>Ñ (x̄)

dÑ (x̄). (5.19)

Hence from (5.19) we see that (5.11) is satisfied by choosing α in such a way that
the following inequality holds:

1− α Lσ
2
2

2σ1

> γ.

We can conclude that the statement holds for all x ∈ Bρ(x̄) ∩ Rn
+, α ∈ (0, ᾱ],

where

ᾱ = min

{
ω

σ
,
2σ1 (1− γ)

σ2
2L

}
. (5.20)

Proposition 5.4. Suppose that (5.10) holds and that FAST-QPA produces an
infinite sequence {xk}. Then the sequence {q(xk)} converges.

Proof. Let x̃k be the point produced in Algorithm 14. By setting y = x̃k in
Proposition 5.2, we have

q(x̃k) ≤ q(xk)− 1

2ε
‖x̃k − xk‖2 .

Furthermore, by the fact that we use an Armijo line search in Algorithm 14 and
by Proposition 5.3, we have that the chosen point xk+1 satisfies inequality (5.11),
that is

q(xk+1)− q(x̃k) ≤ γ α d>N k∇q(x̃k)N k .

By taking into account (5.8), we thus have

q(xk+1)− q(x̃k) ≤ γ α d>N k∇q(x̃k)N k ≤ −σ1‖∇q(x̃k)N k‖2 .

In summary, we obtain

q(xk+1) ≤ q(x̃k)− σ1‖∇q(x̃k)N k‖2 ≤

≤ q(xk)− 1

2ε
‖x̃k − xk‖2 − σ1‖∇q(x̃k)N k‖2 . (5.21)

In particular, the sequence {q(xk)} is monotonously decreasing and bounded
from below by the minimum of QP, which by our assumption is finite. Hence it
converges.
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Finally, we are able to prove the main result concerning the global convergence
of FAST-QPA.

Theorem 5.5. Assume that the parameter ε appearing in Definition 5.2 satis-
fies (5.10). Let {xk} be the sequence produced by Algorithm FAST-QPA. Then either
an integer k̄ ≥ 0 exists such that xk̄ is an optimal solution for Problem QP, or the
sequence {xk} is infinite and every limit point x? of the sequence is an optimal
solution for Problem QP.

Proof. Let x? be any limit point of the sequence {xk} and let {xk}K be the
subsequence with

lim
k→∞, k∈K

xk = x?.

By considering an appropriate subsequence, we may assume that there exist sub-
sets Ā ⊆ {1, . . . ,m} and N̄ = {1, . . . ,m}\ Ā such that Ak = Ā and N k = N̄ for
all k ∈ K, since the number of possible choices of Ak and N k is finite. In order
to prove that x? is optimal for Problem QP, it then suffices to show

(i) min {∇qi(x?), x?i } = 0 for all i ∈ Ā, and

(ii) ∇qi(x?) = 0 for all i ∈ N̄ .

In order to show (i), let ı̂ ∈ Ā and define a function Φı̂ : Rm → R by

Φı̂(x) = min {∇qı̂(x), xı̂} ,

we thus have to show Φı̂(x
?) = 0. For k ∈ K, define ỹk ∈ Rm as follows:

ỹki =

{
0 if i = ı̂
xki otherwise.

(5.22)

Recalling that x̃kĀ = 0, as set in Algorithm 14, and using ı̂ ∈ Ā, we have

‖ỹk − xk‖2 = (ỹk − xk)2
ı̂ = (x̃k − xk)2

ı̂ ≤ ‖x̃k − xk‖2 .

From (5.21) and Proposition 5.4 we obtain

lim
k→∞, k∈K

‖x̃k − xk‖2 = 0 ,

hence

lim
k→∞, k∈K

ỹk = x? . (5.23)

By Definition 5.2, we have 0 ≤ xkı̂ ≤ ε∇qı̂(xk) for all k ∈ K. Using Assump-
tion (5.10), there exists ξ ≥ 0 such that

ε ≤ 1

2Q̃ı̂̂ı + ξ
.
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As ỹkı̂ = 0, we obtain

xkı̂ − ỹkı̂ = xkı̂ ≤ ε∇qı̂(xk) ≤
1

2Q̃ı̂̂ı + ξ
∇qı̂(xk)

and hence
(2Q̃ı̂̂ı + ξ)(xkı̂ − ỹkı̂ ) ≤ ∇qı̂(xk),

which can be rewritten as

∇qı̂(xk) + 2Q̃ı̂̂ı(ỹ
k
ı̂ − xkı̂ ) ≥ ξ(xkı̂ − ỹkı̂ ) ≥ 0,

yielding ∇qı̂(ỹk) ≥ 0. Together with ỹkı̂ = 0, we obtain Φı̂(ỹ
k) = 0. By (5.23) and

the continuity of Φı̂, we derive Φı̂(x
?) = 0, which proves (i).

To show (ii), assume on contrary that ∇q(x?)N̄ 6= 0. By Proposition 5.3, there
exists ᾱ > 0 such that for k ∈ K sufficiently large

q([x̃k + αdk]])− q(x̃k) ≤ γα
∑
i∈N k

∇qi(x̃k)dki

for all α ∈ (0, ᾱ], as x̃kN̄ converges to x?N̄ . As we use an Armijo type rule in
Algorithm 14, we thus have δj−1 ≥ ᾱ and hence

αk = δj ≥ δᾱ . (5.24)

Again by the Armijo rule, using (5.8) and (5.24), we obtain

q(x̃k)− q([x̃k + αkdk]]) ≥ −γαk
∑
i∈N k

∇qi(x̃k)dki

≥ γσ1α
k‖∇q(x̃k)N k‖2

≥ γσ1δᾱ‖∇q(x̃k)N k‖2 .

As the left hand side expression converges to zero by Proposition 5.4, while the
right hand side expression converges to

γσ1δᾱ‖∇q(x?)N̄‖2 > 0 ,

we have the desired contradiction.

Corollary 3. If (5.10) holds, then the sequence q(xk) converges to the minimum
of QP.

As a final result, we prove that, if strict complementarity holds, FAST-QPA finds
an optimal solution in a finite number of iterations.

Theorem 5.6. Assume that there exists an accumulation point x? of the sequence
{xk} generated by FAST-QPA such that
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(i) strict complementarity holds in x? and

(ii) the problem
min y>Q̃N Ny + c>Ny
s.t. y ∈ R|N |, (5.25)

with N = N (x?), admits a finite solution.

Then FAST-QPA produces a minimizer of Problem QP in a finite number of steps.

Proof. Let {xk} be the sequence generated by FAST-QPA and let {xk}K be a con-
verging subsequence. By Theorem 5.5, the limit point x? of {xk}K is a minimizer
of Problem QP. Now define

ξ = min
i∈N (x?)

{x?i } > 0 .

From Corollary 2, we have that for k ∈ K sufficiently large

Ak = A(x?) (5.26)

and

min
i∈N k
{xki } = min

i∈N k
{x̃ki } ≥

ξ

2
.

The search direction dkN k computed in Algorithm 14 is gradient related and, since

lim
k→∞, k∈K

‖∇qN k(x̃k)‖ = 0, (5.27)

we have
lim

k→∞, k∈K
‖dkN k‖ = 0.

Therefore, for k sufficiently large,

(xk + dk)N k = (x̃k + dk)N k

and

(x̃k + dk)i ≥
ξ

2
> 0, ∀i ∈ N k .

This means that
[(x̃k + dk)N k ]] = (x̃k + dk)N k ,

and x̃k+dk is feasible for Problem QP. For k sufficiently large, k ∈ K, Corollary 2,
(5.26) and (5.27) ensure that

A(x?) = Ak = Ak+1 (5.28)

and
N (x?) = N k = N k+1 . (5.29)
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Since, taking into account (5.29) and point ii) in our assumptions, (x̃k + dk)N k

is the optimal solution for problem QPk, we have

∇qN k(x̃k + dk) = 0, (5.30)

q(x̃k + dk) = q(x̃k) +
1

2
∇q(x̃k)>dk. (5.31)

By (5.31), the test in the projected Armijo line search of Algorithm 14 is satisfied
with α = 1. Hence, at the end of Algorithm 14, we set xk+1 = x̃k + dk. By (5.30),
we obtain ∇qN k(xk+1) = 0, so that xk+1 is stationary with respect to the non-
active variables.

To conclude the proof, we need to show that xk+1 is stationary with respect to
the active variables, too. By (5.28), we have

xk+1
Ak = 0, ∇qAk(xk+1) ≥ 0,

and the stationarity of xk+1 with respect to the active variables is also proved.

5.4 A Branch-and-Bound Algorithm for CMIQP

In this section we shortly summarize the key ingredients of our branch-and-bound
algorithm, called FAST-QPA-BB, that can be used with any active set algorithm
for the node relaxations. In particular we analyze its performance in combination
with the infeasible KR algorithm and the feasible FAST-QPA algorithm, presented
in Sections 5.2 and 5.3. The branch-and-bound framework we consider is based
on the one discussed in Chapter 4 where the unconstrained case is addressed.
As this branch-and-bound scheme aims at a fast enumeration of the nodes, it is
reasonable to use a relaxation that can be solved quickly to compute the lower
bound, e.g., the continuous relaxation of CMIQP. These computations can be
improved by using duality theory for nonlinear programming. Instead of consid-
ering the primal formulation of the continuous relaxation of CMIQP, we deal
with the dual one. The resulting non-negativity constrained convex quadratic
programming problems are solved by either KR or FAST-QPA. We use the solution
as a lower bound for f over all feasible integer points. The obtained lower bounds
are as strong as the ones obtained by solving the primal problem, since strong
duality holds.

Our branching strategy and its advantages are discussed in Section 5.4.1. In
Section 5.4.2, we have a closer look at the relation between the primal and the dual
problem, while in Section 5.4.3 we shortly discuss the advantage of reoptimization.
Using a predetermined branching order, some of the expensive calculations can
be moved into a preprocessing phase, as described in Section 5.4.4.
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5.4.1 Branching

We adapt our branching strategy of Algorithm 12 in Section 4.2 to FAST-QPA-BB.
As explained in this section, at every node in our branch-and-bound scheme,
we branch by fixing a single primal variable in increasing distance to its value
in the solution of the continuous relaxation x̄. The branching order is kept pre-
determined. Besides adapting properly Q`, c̄ and d̄ at every level according to
Section 4.3, we now also adapt A` and b̄ of the reduced linear constraints. This is
done directly by deleting the corresponding columns of A and moving the values
of the fixed variables to the right hand side. Recall that the resulting subproblems
are again quadratic programming problems of type CMIQP with a dimension de-
creased by one. Analogously to the bound-constrained case, due to the strict
convexity of f , we get a finite branch-and-bound algorithm.

5.4.2 Dual Approach

In the following, we derive the dual problem of the continuous relaxation of CMIQP
and point out some advantages when using the dual approach in the branch-and-
bound framework. The connection between a convex quadratic program and its
dual was first investigated by Dorn [69]. The dual can be computed by first form-
ing the Lagrangian of the relaxation

L (x, λ) = x>Qx+ c>x+ d+ λ>(Ax− b)

and then, for fixed λ, minimizing L with respect to the primal variables x. As Q
is assumed to be positive definite, the unique minimizer can be computed from
the stationarity condition of the KKT-system, see Definition 2.2.

∇xL (x, λ) = 2Qx+ c+ A>λ = 0⇐⇒ x = −1

2
Q−1(c+ A>λ). (5.32)

Having x as a function of λ, we can insert it into the Lagrangian L yielding the
following dual function

L (λ) = λ>
(
− 1

4
AQ−1A>

)
λ−

(
b> +

1

2
c>Q−1A>

)
λ− 1

4
c>Q−1c+ d.

Defining Q̃ := 1
4
AQ−1A>, c̃ := 1

2
AQ−1c + b and d̃ := 1

4
c>Q−1c − d, we can thus

write the dual of the continuous relaxation of CMIQP as

−min λ>Q̃λ+ c̃>λ+ d̃

s.t. λ ≥ 0 (5.33)

λ ∈ Rm.

Note that (5.33) is again a convex QP, since Q̃ is positive semidefinite.
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The first crucial difference in considering the dual problem is that its dimension
changed from n to m, which is beneficial if m � n. The second one is that
λ = 0 is always feasible for (5.33). Finally, note that having the optimal solution
λ? ∈ Rm of (5.33), it is easy to reconstruct the corresponding optimal primal
solution x? ∈ Rn using the first order optimality condition (5.32).

Within a branch-and-bound framework, a special feature of the dual approach
is early pruning : we can stop the iteration process and prune the node as soon
as the current iterate λk is feasible and its objective function value exceeds the
current upper bound, since each dual feasible solution yields a valid bound. Note
however that, in case we cannot prune, an optimal solution of the dual problem
is required, since it is needed for the computation of the corresponding primal
solution x? which in turn is needed to decide the enumeration order in the branch-
and-bound scheme.

During the tree search it may occur that a node relaxation is infeasible due
to the current fixings. In this case infeasibility of the primal problem implies
the unboundness of the dual problem. Therefore, during the solution process
of the dual problem, an iterate will be reached such that its objective function
value exceeds the current upper bound and the node can be pruned. This is why
in our implementation of FAST-QPA we set the following stopping criterion: the
algorithm stops either if the norm of the projected gradient is less than a given
optimality tolerance, or if an iterate is computed such that its objective function
value exceeds the current upper bound. In case the primal problem has no feasible
solution, no finite upper bound is available. This has to be decided in advance,
e.g., by using a phase-1 approach. In our implementation we used CPLEX for this.

We want to emphasize two advantages of FAST-QPA compared to KR. First, while
we can always use FAST-QPA directly to solve (5.33), the algorithm KR of Kunisch
and Rendl can only handle strictly convex objective functions. In case the function
becomes positive semidefinite during the search tree, it is needed to make it
artificially positive definite by adding a small multiple of the identity matrix to
the quadratic matrix Q̃. From a numerical and practical point of view that does
not make any difference, nevertheless the problem gets slightly modified by the
pertubation of Q̃. Second, FAST-QPA generates feasible iterates in contrast to KR.
This is very useful for the early pruning.

5.4.3 Reoptimization

At every node of the branch-and-bound tree, we use our algorithm FAST-QPA

described in Section 5.3 for solving Problem (5.33). A crucial advantage of using
an active set method is the possibility of working with warmstarts, i.e., of passing
information on the optimal active set from a parent node to its children. In the
dual approach the dimension of all subproblems is m, independently of the depth `
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in the branch-and-bound tree. When fixing a variable, only the objective function
changes, given by Q̃, c̃ and d̃. So as the starting guess in a child node, we choose
A0 := Ã(λ?), i.e., we use the estimated active set for the optimal solution λ? of
the parent node. We also pass the solution λ? to the child nodes to initialize the
variables in the line search procedure in Algorithm 14, that is we set x̃0

N 0 = λ?N 0 .
Our experimental results presented in Section 5.5 show that this warmstarting
approach reduces the average number of iterations of FAST-QPA significantly.

5.4.4 Incremental Computations and Preprocessing

Analogously to the ideas of Section 4.3, a remarkable speed-up can be achieved
by exploiting the fact that the subproblems enumerated in the branch-and-bound
tree are closely related to each other. Let ` ∈ {0, . . . , n1−1} be the current depth
in the branch-and-bound tree and recall that after fixing the first ` variables, the
problem reduces to the minimization of

f̄ : Zn1−` × Rn−n1 → R, x 7→ x>Q`x+ c̄>x+ d̄

over the feasible region F̄ = {x ∈ Zn1−` × Rn−n1 | A`x ≤ b̄}, where Q` � 0 is
obtained by deleting the corresponding ` rows and columns of Q and c̄ and d̄ are
adapted properly by

c̄j := cj + 2
∑̀
i=1

qijri, for j = 1, . . . , n− `

and

d̄ := d+
∑̀
i=1

ciri +
∑̀
i=1

∑̀
j=1

qijrirj,

where r = (r1, . . . , r`) ∈ Z` is the current fixing at depth `. Similarly, A` is
obtained by deleting the corresponding ` columns of A and the reduced right
hand side b̄ is updated according to the current fixing.

In our algorithm, we predetermine the order in which variables are fixed. By
this, the reduced matrices Q`, Q

−1
` and A` only depend on the depth `, but

not on the specific fixings. Along with the reduced matrix Q`, the quadratic
parts of the reduced dual objective function Q̃` can then be computed in the
preprocessing phase, because they only depend on Q` and A`. The predetermined
fixing order also allows the computation of the maximum eigenvalues λmax(Q̃`)
in the preprocessing phase, needed for ensuring proper convergence of our active
set method as described in Section 5.3; compare (5.10).

Concerning the linear part c̃ and the constant part d̃ of the dual reduced problem,
both can be computed incrementally in linear time per node: Again, let r ∈ Zl
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be the current fixing at depth `. By definition of c̃, we have

c̃(r) =
1

2
A`Q

−1
` c(r) + b(r) ,

where the suffix (r) always denotes the corresponding data after fixing the first `
variables to r.

Theorem 5.7. After a polynomial time preprocessing, the vector c̃(r) can be
constructed incrementally in O(n− `+m) time per node.

Proof. Defining y(r) := −1
2
Q−1
` c(r), we have

1

2
A`Q

−1
` c(r) = −A`y(r).

Note that y(r) is the unconstrained continuous minimizer of f(r). In Section 4.3,
it was shown in Proposition 4.3 that y(r) can be computed incrementally by

y(r) := [y(r′) + αz`−1]1,...,n−` ∈ Rn−`

for some vector z`−1 ∈ Rn−`+1 and α := r`−y(r′)` ∈ R, where r′ = (r1, . . . , r`−1) is
the fixing at the parent node. This is due to the observation that the continuous
minima according to all possible fixings of the next variable lie on a line, for
which z`−1 is the direction. As defined in description of the preprocessing phase
in Section 4.3, the vectors z`−1 only depend on the depth ` and can be computed
before the enumeration of the nodes. Updating y thus takes O(n − `) time. We
now have

c̃(r) = −A`[y(r′) + αz`−1]1,...,n−` + b(r)

= −A`[y(r′)]1,...,n−` − αA`[z`−1]1,...,n−` + b(r)

= −(A`−1y(r′)− y(r′)n−`+1 · A·,n−`+1)− αA`[z`−1]1,...,n−` + b(r).

In the last equation, we used the fact that the first part of the computation
can be taken over from the parent node by subtracting column n − ` + 1 of A,
scaled by the last component of y(r′), from A`−1y(r′), which takes O(m) time. The
second part A`[z

`−1]1,...,n−` can again be computed in the preprocessing. The result
then follows from the fact that also b(r) can easily be computed incrementally
from b(r′) in O(m) time.

Theorem 5.8. After a polynomial time preprocessing, the scalar d̃(r) can be
constructed incrementally in O(n− `) time per node.

Proof. Recalling that

d̃(r) =
1

4
c(r)>Q−1

` c(r)− d(r) ,

this follows from the fact that y(r) = −1
2
Q−1
` c(r) and c(r) can be computed

in O(n− `) time per node by Proposition 4.3.
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Corollary 4. After a polynomial time preprocessing, the dual problem (5.33) can
be constructed in O(n− `+m) time per node.

Besides the effort for solving the QP with the active set method, computing the
optimal solution of the primal problem from the dual solution is the most time
consuming task in each node. The following observation is used to speed up its
computation.

Theorem 5.9. After a polynomial time preprocessing, the optimal primal solu-
tion x?(r) can be computed from the optimal dual solution λ?(r) in O(m · (n− `))
time per node.

Proof. From (5.32) we derive

x?(r) = −1

2
Q−1
`

(
m∑
i=1

λ?(r)iai + c(r)

)

= y(r) +
m∑
i=1

λ?(r)i

(
−1

2
Q−1
` ai

)
.

The first part can again be computed incrementally in O(n−`) time per node. For
the second part, we observe that −1

2
Q−1
` ai can be computed in the preprocessing

phase for all i = 1, . . . ,m.

The above results show that the total running time per node is linear in n − `
when the number m of constraints is considered a constant and when we make
the reasonable assumption that Problem QP is solved in constant time in fixed
dimension.

5.5 Experimental Results

We performed extensive numerical experiments to show the effectiveness of the
three key components in FAST-QPA-BB: duality, warmstarts and fast active set
based lower bound computation. To emphasize the stepwise improvements we
compared different versions of our branch-and-bound algorithm implemented in
C++/Fortran 90 to the MIQP solver of CPLEX 12.6 on randomly generated
instances. We considered the following active set based algorithms, that were
used within FAST-QPA-BB:

(P) The branch-and-bound algorithm with a standard active set method [162]
for solving the QP relaxations

(D) as (P) but considering the dual problems of the QP relaxations, as de-
scribed in Section 5.4.2
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(D+w) as (D) but with reoptimization, as described in Section 5.4.3

(KR) as (D+w) but using the KR algorithm as described in Section 5.2

(QPA) as (D+w) but using the FAST-QPA algorithm as described in Section 5.3

Whenever applicable, the incremental computations described in Section 5.4.4
have been used in all approaches. The differences between D+w, KR and QPA consist
in the choice of the active set method to solve the node relaxations. All experi-
ments were carried out on Intel Xeon processors running at 2.60 GHz. We used
an absolute optimality tolerance and of 10−6 for all algorithms. Concerning the
feasibility tolerance, we experienced some numerical issues for FAST-QPA-BB. If
the dual problem is bounded, strong duality guarantees the existence of a primal
feasible solution. However, in practice, computing the primal solution by (5.32)
can affect its feasibility. This numerical problem is negligible in the pure integer
case. On the other hand it is relevant in the mixed-integer case, in the nodes
where all integer variables have been fixed, as the optimal solution has to be ob-
tained in one of these nodes. In order to overcome this difficulty we implemented
an adaptive feasibility tolerance control. In the mixed-integer case, every time
when all integer variables have been fixed, the optimality tolerance of our active
set method is iteratively increased until a desired precision for the feasibility of
the primal solution is reached. Starting from 10−3, the optimality tolerance of
the active set solver is successively divided by 10 until the feasibility tolerance
is achieved, stopping however at an optimality tolerance of 10−8. Unfortunately,
this was not always sufficient to obtain the desired feasibility accuracy: we were
able to guarantee primal feasibility within a tolerance of 10−5 only for problems
with up to 10 constraints. Hence, for a fair comparison, we set the feasibility
tolerance for FAST-QPA-BB to 10−3 so that primal feasibility was reached for all
instances.

Altogether, we randomly generated 1600 different problem instances for CMIQP,
considering percentages of integer variables p := n1

n
∈ {0.25, 0.50, 0.75, 1.0}. For

p = 0.25 we chose n ∈ {50, 100, 150, 200, 250}. For p = 0.5/0.75/1.0, we chose
n ∈ {50, 75, 100, 125, 150} / {50, 60, 70, 80, 90} / {50, 55, 60, 65, 70}, respectively.
The number of constraints m was chosen in {1, 10, 25, 50}. For each combination
of p, n and m, we generated 10 instances. For every group of instances with
a given percentage of integer variables p, the parameter n was chosen up to a
number such that at least one of the tested algorithms was not able to solve all
of the 10 instances to optimality for m = 1 within our time limit of 3 cpu-hours.

For generating the positive definite matrix Q, we chose n eigenvalues λi uniformly
at random from [0, 1] and orthonormalized n random vectors vi, each entry of
which was chosen uniformly at random from [−1, 1], then we set Q =

∑n
i=1 λiviv

>
i .

The entries of c were chosen uniformly at random from [−1, 1], moreover we
set d = 0. For the entries of A and b, we considered two different choices:
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(a) the entries of b and A were chosen uniformly at random from [−1, 1],

(b) the entries of A were chosen uniformly at random from [0, 1] and we set
bi = 1

2

∑n
j=1 aij, i = 1, . . . ,m.

The constraints of type (b) are commonly used to create hard instances for the
knapsack problem. All generated instances are publicly available online [153].

To evaluate the performance of all active set methods, they have been com-
pared to each other on the 200 pure integer instances, i.e., where p = 1.0 and
n ∈ {50, 55, 60, 65, 70}, since they are by far the hardest instances. The results
for these instances can be found in the Table 5.1. We compared all active set
based methods to see all the improvement steps achieved by the different key
components.

From the results we can see that instances with up to 10 linear inequalities and
up to 55 variables can be effectively solved to optimality by the dual approach
using the tailored active set method, while the simple primal approach as well as
CPLEX 12.6 both suffer from the increasing number of variables. As expected, for
larger number of inequalities the running times of our algorithm increase rapidly,
it is generally outperformed by CPLEX 12.6 for m ≥ 10.

By comparing the running times of (P), (D), (D+w), (KR) and (QPA), one can
observe the stepwise improvement obtained by considering the dual problem, by
reoptimization, and by using the special active set method of Kunisch and Rendl.
It is also worth to mention that the average number of systems of linear equations
needed to be solved at each node stays very small, independently of n and m.
Again, a decrease in the number of such systems to be solved is observed in each
of the improvement steps.

We can see that the overall running times of our approach are much faster for
moderate sizes of m, emphasizing both the quick enumeration process within the
branch-and-bound tree and the benefit of using reoptimization.

The dominating algorithm (QPA), in the following referred to as FAST-QPA-BB,
was then also run on all mixed-integer instances and compared to the most re-
cent version of the MIQP solver of CPLEX 12.6 to further demonstrate its ef-
fectiveness. We also tested the branch-and-bound solver B-BB of Bonmin 1.74

on our instances. However, we did not include the running times for the latter
into the tables since its performance was not competitive at all, not even for
mixed-integer instances with a few number of integer variables. The results for
instances of type (a) can be found in Tables 5.2–5.5. We do not include the tables
for instances of type (b), since there are no significant differences in the results,
except that they are in general easier to solve for our algorithm as well as for
CPLEX 12.6. All running times are measured in cpu-seconds. The tables include
the following data for the comparison between FAST-QPA-BB and CPLEX 12.6:
numbers of instances solved within the time limit, average preprocessing time,
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average running times, average number of branch-and-bound nodes, average num-
ber of iterations of FAST-QPA in the root node and average number of iterations
of FAST-QPA per node in the rest of the enumeration tree. All averages are taken
over the set of instances solved within the time limit.

From our experimental results for the pure integer case (p = 1.0), we can conclude
that most instances with up to ten linear inequalities and up to 65 variables can
be effectively solved to optimality by FAST-QPA-BB, using the tailored active
set method FAST-QPA, while CPLEX 12.6 suffers from an increasing number of
variables. As expected, for larger number of inequalities the running times of our
algorithm increase rapidly, but FAST-QPA-BB nevertheless still clearly outperforms
CPLEX 12.6 for m up to 25 if p ∈ {0.25; 0.50} and is at least competitive to
CPLEX 12.6 if p = 0.75. For the mixed-integer case we can see that the average
running times of FAST-QPA-BB compared to CPLEX 12.6 are better the bigger the
percentage of continuous variables is, even with a larger number of constraints.
For the pure integer case we still outperform CPLEX 12.6 for m up to 10. For all
instances, the preprocessing time is negligible.

This experimental study shows that FAST-QPA-BB is able to solve 644 instances
of type (a) to optimality, while CPLEX 12.6 can only solve 593 instances. Note
that the average number of branch-and-bound nodes in our dual approach is
approximately 30 times greater than that needed by CPLEX 12.6. Nevertheless
the overall running times of our approach are much faster for moderate sizes
of m, emphasizing both the quick enumeration process within the branch-and-
bound tree and the benefit of using reoptimization. Note that the performance
of our approach highly depends on m. As the number of constraints grows, the
computational effort for both solving the dual problem and recomputing the
primal solution (see Theorem 6.3), is growing as well.

In Table 5.6 we compare the performance of FAST-QPA-BB with FAST-QPA-BB-NP,
a version in which the early pruning is not implemented (see Section 5.4.2). We
show the results for the pure integer instances of type (a) with p = 1.0. The
benefits from the early pruning are evident: the average number of iterations of
FAST-QPA is decreased leading to faster running times so that 9 more instances
can be solved.

Our experimental results also underline the strong performance of FAST-QPA.
The number of iterations of FAST-QPA needed in the root node of our branch-
and-bound algorithm is very small on average: for m = 50 it is always below 60
and often much smaller. Using warmstarts, the average number of iterations drops
to 1–6.

Besides the tables of average running times, we visualized our results by perfor-
mance profiles in Figure 5.1, as proposed in [68]. They confirm the result that
FAST-QPA-BB outperforms CPLEX 12.6 significantly.
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Table 5.2: Results for instances of type (a) with p = 1.0.

inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

50 1 10 0.00 6.83 9.24e+6 1.50 1.16 10 53.50 5.06e+5
50 10 10 0.00 83.15 3.16e+7 3.80 1.54 10 189.50 1.45e+6
50 25 9 0.01 2337.87 1.62e+8 8.56 2.09 10 2413.50 1.25e+7
50 50 0 - - - - - 0 - -

55 1 10 0.00 28.47 3.62e+7 1.60 1.25 10 210.71 1.75e+6
55 10 10 0.00 427.66 1.46e+8 3.40 1.48 10 1154.91 7.53e+6
55 25 4 0.01 3843.30 3.37e+8 7.50 1.86 5 3949.40 1.82e+7
55 50 0 - - - - - 0 - -

60 1 10 0.00 133.32 1.60e+8 1.30 1.11 9 353.89 2.61e+6
60 10 8 0.01 1894.81 6.86e+8 2.62 1.51 7 3477.91 2.04e+7
60 25 2 0.02 8963.19 7.55e+8 5.50 2.00 1 6149.31 2.68e+7
60 50 0 - - - - - 0 - -

65 1 10 0.01 349.11 4.13e+8 1.40 1.15 10 2105.36 1.31e+7
65 10 8 0.01 4010.42 1.50e+9 2.75 1.48 4 5503.84 2.83e+7
65 25 0 - - - - - 0 - -
65 50 0 - - - - - 0 - -

70 1 10 0.01 1113.47 1.30e+9 1.60 1.27 7 5133.59 2.88e+7
70 10 4 0.01 6915.67 2.38e+9 2.50 1.51 0 - -
70 25 0 - - - - - 0 - -
70 50 0 - - - - - 0 - -

Table 5.3: Results for instances of type (a) with p = 0.75.

inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

60 1 10 0.00 1.75 2.01e+6 1.30 1.11 10 16.27 1.22e+5
60 10 10 0.01 5.54 1.82e+6 2.80 1.44 10 22.26 1.33e+5
60 25 10 0.02 30.98 2.36e+6 9.10 1.65 10 34.27 1.53e+5
60 50 10 0.08 580.05 6.64e+6 55.80 2.14 10 161.88 4.83e+5

70 1 10 0.01 11.92 1.30e+7 1.60 1.20 10 105.08 6.63e+5
70 10 10 0.01 26.39 8.19e+6 3.40 1.43 10 101.17 5.10e+5
70 25 10 0.03 153.71 1.23e+7 9.20 1.60 10 241.66 9.10e+5
70 50 10 0.08 2047.06 2.79e+7 18.60 1.96 10 751.75 1.92e+6

80 1 10 0.02 63.38 6.51e+7 1.40 1.12 10 563.33 2.83e+6
80 10 10 0.03 149.43 4.37e+7 3.80 1.42 10 491.01 2.08e+6
80 25 10 0.04 930.12 7.06e+7 10.30 1.60 10 990.54 3.18e+6
80 50 7 0.09 3070.16 5.38e+7 15.29 1.82 9 2379.88 5.22e+6

90 1 10 0.03 413.50 3.79e+8 1.30 1.11 10 3004.33 1.24e+7
90 10 10 0.04 1505.40 4.36e+8 3.00 1.40 10 3504.12 1.25e+7
90 25 10 0.06 4347.03 3.55e+8 5.90 1.55 9 3891.51 1.07e+7
90 50 1 0.09 4883.54 1.02e+8 10.00 1.72 3 4963.04 9.62e+6

100 1 6 0.05 1824.11 1.69e+9 1.33 1.10 4 6703.76 2.31e+7
100 10 6 0.06 5797.23 1.52e+9 4.83 1.39 0 - -
100 25 1 0.06 4734.57 3.95e+8 5.00 1.51 0 - -
100 50 1 0.11 3348.44 8.05e+7 15.00 1.74 1 3460.59 5.50e+6
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Table 5.4: Results for instances of type (a) with p = 0.5.

inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

50 1 10 0.00 0.01 9.83e+3 1.50 1.16 10 0.24 1.22e+3
50 10 10 0.00 0.02 5.46e+3 3.80 1.48 10 0.15 7.38e+2
50 25 10 0.01 0.08 4.68e+3 8.20 1.71 10 0.23 8.62e+2
50 50 10 0.06 0.98 8.30e+3 21.40 2.35 10 0.65 1.65e+3

75 1 10 0.01 0.20 1.76e+5 1.60 1.21 10 2.71 1.31e+4
75 10 10 0.02 0.64 1.65e+5 3.60 1.42 10 3.02 1.22e+4
75 25 10 0.02 2.14 1.68e+5 9.80 1.57 10 4.45 1.45e+4
75 50 10 0.09 11.13 1.70e+5 17.00 1.88 10 7.72 1.73e+4

100 1 10 0.05 13.48 1.08e+7 1.50 1.15 10 98.43 3.27e+5
100 10 10 0.05 14.37 3.46e+6 4.80 1.39 10 80.06 2.36e+5
100 25 10 0.07 56.13 4.35e+6 8.50 1.53 10 113.76 2.64e+5
100 50 10 0.13 311.71 5.39e+6 51.80 1.72 10 273.26 4.45e+5

125 1 10 0.11 189.76 1.33e+8 1.40 1.13 10 2984.36 6.61e+6
125 10 10 0.13 516.64 1.15e+8 3.40 1.37 10 2850.20 5.67e+6
125 25 10 0.14 1321.35 1.03e+8 8.80 1.46 10 2652.18 4.21e+6
125 50 10 0.21 4344.63 9.28e+7 52.60 1.62 10 3603.98 4.27e+6

150 1 9 0.22 3953.23 2.34e+9 1.78 1.25 2 6389.09 9.71e+6
150 10 6 0.24 6749.47 1.29e+9 3.50 1.38 0 - -
150 25 3 0.24 9332.23 6.65e+8 7.33 1.46 0 - -
150 50 0 - - - - - 0 - -

Table 5.5: Results for instances of type (a) with p = 0.25.

inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

50 1 10 0.01 0.01 1.30e+2 1.50 1.18 10 0.02 3.43e+1
50 10 10 0.00 0.00 1.96e+2 3.80 1.53 10 0.01 4.52e+1
50 25 10 0.01 0.01 1.40e+2 8.20 1.98 10 0.02 3.87e+1
50 50 10 0.06 0.07 1.14e+2 21.40 3.85 10 0.06 3.22e+1

100 1 10 0.06 0.08 1.05e+4 1.50 1.16 10 0.59 1.03e+3
100 10 10 0.06 0.07 3.88e+3 4.80 1.40 10 0.44 6.37e+2
100 25 10 0.06 0.14 4.91e+3 8.50 1.56 10 0.59 7.32e+2
100 50 10 0.12 0.65 8.24e+3 51.80 1.80 10 1.52 1.61e+3

150 1 10 0.25 0.60 1.68e+5 1.70 1.23 10 9.49 1.32e+4
150 10 10 0.22 0.94 1.24e+5 3.00 1.39 10 8.79 1.09e+5
150 25 10 0.24 2.75 1.56e+5 6.40 1.46 10 15.49 1.65e+5
150 50 10 0.31 4.52 7.77e+4 11.20 1.60 10 11.34 8.84e+3

200 1 10 0.58 14.73 6.38e+6 1.50 1.16 10 332.01 2.59e+5
200 10 10 0.52 21.40 3.00e+6 3.20 1.37 10 297.02 2.17e+5
200 25 10 0.57 74.25 4.03e+6 5.90 1.44 10 414.67 2.55e+5
200 50 10 0.68 388.64 7.44e+6 40.60 1.54 10 982.40 4.84e+5

250 1 10 1.12 326.69 1.21e+8 1.50 1.15 6 3933.41 1.79e+6
250 10 10 1.10 606.83 7.35e+7 3.80 1.35 8 5757.74 2.41e+6
250 25 10 1.17 2105.21 1.01e+8 6.90 1.41 4 4206.78 1.54e+6
250 50 9 1.28 3643.73 6.27e+7 49.11 1.51 4 6371.74 1.92e+5
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Table 5.6: Results for instances of type (a) with p = 1.0 turning early pruning
on/off.

inst FAST-QPA-BB FAST-QPA-BB-NP

n m # time nodes it # time nodes it

50 1 10 6.83 9.24e+6 1.16 10 8.79 9.24e+6 1.48
50 10 10 83.15 3.16e+7 1.54 10 145.95 3.16e+7 2.74
50 25 9 2337.87 1.62e+8 2.09 7 4587.82 1.35e+8 4.25
50 50 0 - - - 0 - -

55 1 10 28.47 3.62e+7 1.25 10 34.86 3.62e+7 1.74
55 10 10 427.66 1.46e+8 1.48 10 743.12 1.46e+8 2.53
55 25 4 3843.30 3.37e+8 1.86 3 4216.79 1.56e+8 3.63
55 50 0 - - - 0 - - -

60 1 10 133.32 1.60e+8 1.11 10 154.74 1.60e+8 1.34
60 10 8 1894.81 6.86e+8 1.51 8 3259.91 6.86e+8 2.62
60 25 2 8963.19 7.55e+8 2.00 0 - -
60 50 0 - - - 0 - - -

65 1 10 349.11 4.13e+8 1.15 10 410.14 4.13e+8 1.47
65 10 8 4010.42 1.50e+9 1.48 7 5238.44 1.23e+9 2.52
65 25 0 - - - 0 - - -
65 50 0 - - - 0 - - -

70 1 10 1113.47 1.30e+9 1.27 10 1318.95 1.30e+9 1.81
70 10 4 6915.67 2.38e+9 1.51 1 8714.63 1.31e+9 2.95
70 25 0 - - - 0 - - -
70 50 0 - - - 0 - - -
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Figure 5.1: Performance profiles for all instances of type (a).
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5.6 Conclusion

In this chapter we have shown that the approach of embedding tailored active set
methods into a branch-and-bound scheme is very promising for solving convex
quadratic integer programming problems of type CMIQP. We also presented a
new branch-and-bound algorithm for convex quadratic mixed-integer minimiza-
tion problems based on the use of an active set method for computing lower
bounds. Using dual instead of primal information considerably improves the run-
ning times, as it may allow an early pruning of the nodes. Moreover, the dual
problem only contains non-negativity constraints, making the problem accessible
to our tailored active set method FAST-QPA. Our sophisticated rule to estimate
the active set leads to a small number of iterations of FAST-QPA in the root node
that however grows as the number of constraints increases. This shows that for
a large number of constraints the QPs addressed by FAST-QPA are nontrivial
and their solution time has a big impact on the total running time, since we
enumerate a large number of nodes in the branch-and-bound tree. Nevertheless,
reoptimization helps to reduce the number of iterations of FAST-QPA per node
substantially, leading to an algorithm that outperforms CPLEX 12.6 on nearly all
problem instances considered.
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Chapter 6

Quadratic Outer Approximation

When moving from convex quadratic to general convex nonlinear objective func-
tions, all state-of-the art solvers use at least one of the common methods pre-
sented in Section 3.2. As shown by the benchmark results of H. Mittelmann in
Section 3.3 the best convex MINLP solver in terms of average running times
is B-OA, an algorithm in the open-source solver Bonmin based on the concept of
outer approximation [75] (see Algorithm 8 in Chapter 3). The crucial reason for
its success is the availability of advanced and sophisticated ILP solvers that can
handle the underlying integer linear subproblems effectively. Since the basic idea
of outer approximation is based on linearizations of the objective and constraint
functions, the original problem is approximated by linear models, thus in general
yielding an inaccurate approximation if the functions are highly nonlinear. Hence,
the iterative process of adding linearizations may result in a slow convergence of
the algorithm, see [111]. Therefore, we present a new quadratic outer approxima-
tion scheme for solving convex box-constrained mixed-integer programs, where
suitable quadratic approximations are used to underestimate the objective func-
tion instead of classical linear approximations. As a resulting surrogate problem
we need to consider the problem of minimizing a function given as the max-
imum of k finitely many convex quadratic functions having the same Hessian
matrix. A fast algorithm for minimizing such functions over integer variables is
presented, based on the fast branch-and-bound approach for convex quadratic
integer programming proposed by Buchheim, Caprara and Lodi [43], described
in Chapter 4. Again, we take over the idea of a fast incremental computation
of the continuous global minimum, by implicitly reducing the surrogate problem
to 2k − 1 convex quadratic integer programs of the form CBMIQP. Hence, each
node of the branch-and-bound algorithm can be processed in O(2kn) time. Ex-
perimental results for a special class of ternary and unbounded convex integer
programming instances with exponential objective functions are presented. Com-
pared with Bonmin’s outer approximation algorithm B-OA and branch-and-bound
algorithm B-BB, running times turn out to be very competitive.

103
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In the further course of this chapter, we are concerned with the minimization of
a convex and twice differentiable objective function f over a mixed-integer set
subject to box-constraints l ≤ x ≤ u for some fixed lower and upper bound vectors
l ∈ (R ∪ {−∞})n and u ∈ (R ∪ {∞})n. The resulting convex box-constrained
integer nonlinear program has the form

min f(x)

s.t. xi ∈ Z, i = 1, . . . , n1 (CBIP)

xi ∈ R, i = n1 + 1, . . . , n.

l ≤ x ≤ u,

where n1 ∈ {0, . . . , n} is the number of integer variables. We will denote the fea-
sible region by B := {x ∈ Zn1 ×Rn−n1 | l ≤ x ≤ u}. It follows directly that CBIP
belongs to the class of NP-hard problems, since minimizing a convex quadratic
function over the integer lattice is equivalent to the Closest Vector Problem, as
shown in Theorem 4.1. This emphasizes also the theoretical and practical im-
portance of CBIP. Our algorithm for solving CBIP that we will present in the
following is based on the classical outer approximation scheme.

In Section 6.1, we first give a short recapitulation of the standard linear outer
approximation scheme for the case of box-constrained optimization problems.
Then, we describe our extension of the latter method to a decomposition approach
using quadratic global underestimators. In Section 6.2 we present our approach
for solving a convex piecewise quadratic integer program with constant Hessian
matrix, which occurs as a surrogate problem in every iteration of our extended
outer approximation scheme. In Section 6.3, we present computational results
and analyze the effectiveness of the proposed algorithm, applied to a special class
of convex integer nonlinear optimization problems. We compare our scheme to
the state-of-the-art software package Bonmin. Finally, we summarize our main
results in Section 6.4 and conclude.

6.1 Linear vs. Quadratic Outer Approximation

6.1.1 Linear Outer Approximation

The main idea of the classical linear outer approximation approach is to equiv-
alently transform the original mixed-integer nonlinear problem into a mixed-
integer linear problem by iteratively adding linearizations to the objective func-
tion and constraints. Usually the algorithm solves an alternating sequence of
mixed-integer linear models and nonlinear models. Since in our problem we have
only box-constraints the stopping criterion can be simplified. We have reached
optimality as soon as we obtain an iterate that has already been computed in
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Figure 6.1: Linear outer approximation applied to the minimization of
f : {−2, 2} → R, f(x) = (x + 1)2 + ex

2−2. The iterates are x1 = 0, x2 = −2,
x3 = −1, and x4 = −1.

an earlier iteration. This is due to the fact that in each iteration we obtain a
feasible point and both lower and upper bounds coincide. Applied to CBIP, we
get a simplified scheme of the outer approximation introduced in Section 3.2.2. It
is sketched in Algorithm 16. The main computational effort of the presented ap-
proach lies in the computation of the mixed-integer minimizer in each iteration, by
solving a convex box-constrained piecewise linear mixed-integer program, which
can be formulated as a mixed-integer linear program. The approach is illustrated
in Figure 6.1.

Note that the stopping criterion of the scheme is a valid alternative to the stan-
dard criterion where the difference between primal and dual bound goes below a
given optimality tolerance.

6.1.2 Quadratic Outer Approximation

The main drawback of linear outer approximation is that in general many it-
erations are necessary to obtain an appropriate approximation of the original
objective function. The basic idea of our approach is to modify Algorithm 16
by replacing the linearizations by appropriate quadratic underestimators. Un-
fortunately, the second-order Taylor approximation is not necessarily a global
underestimator of the original function, as we can see from the simple example in
Figure 6.2. One important challenge therefore is to find a suitable quadratic un-
derestimator. The following theorem gives a sufficient condition on the matrix Q
of the quadratic function to get a global underestimator for the original function.
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Algorithm 16: Simplified linear outer approximation scheme

input : convex and continuously differentiable function f
output: mixed-integer minimizer x? ∈ B of f

Set k := 1 and choose any x1 ∈ B.
do

Compute supporting hyperplane for f in xk:

f(x) ≥ f(xk) +∇f(xk)>(x− xk).

Compute xk+1 ∈ B as an integer minimizer of

max
i=1,...,k

{f(xi) +∇f(xi)>(x− xi)}.

Set k := k + 1.
while xk+1 6= xi for all i ≤ k
Return xk+1

Theorem 6.1. Let f be twice continuously differentiable and let Q ∈ Rn×n such
that Q 4 ∇2f(x) for all x ∈ [l, u], i.e., Q − ∇2f(x) is negative semidefinite for
all x ∈ [l, u]. Consider the supporting quadratic function

T (x) := f(xk) +∇f(xk)>(x− xk) + 1
2

(x− xk)>Q(x− xk).

Then f(x) ≥ T (x) for all x ∈ [l, u].

Proof. By construction, we have ∇2(f−T )(x) = ∇2f(x)−Q < 0 for all x ∈ [l, u]
and ∇(f − T )(xk) = ∇f(xk) − ∇f(xk) = 0. This implies that f − T is convex
with minimizer xk, yielding f(x)−T (x) ≥ f(xk)−T (xk) = 0 for all x ∈ [l, u].

Unfortunately the existence of such a quadratic underestimator is not always
guaranteed. We have the following necessary and sufficient condition. Note that
strict convexity is not sufficient as for example the exponential function does not
allow any quadratic underestimator with a non-zero matrix Q.

Observation 6.2. Let f be a twice continuously differentiable strictly convex
function. There exists 0 6= Q ∈ Rn×n such that Q 4 ∇2f(x) for all x ∈ [l, u] if
and only if infx λmin(x) > 0 for all x ∈ [l, u], where λmin(x) denotes the minimum
eigenvalue of ∇2f(x).

Proof. Let λ̄ := infx∈[l,u] λmin(x) > 0. We can choose 0 6= Q := diag(λ̄) · I < 0
and we further have that ∇2f(x)−Q < 0 for all x ∈ [l, u]. The other direction is
obviously true.
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Figure 6.2: The first and second order Taylor Approximation T1(x,−1) (green)
and T2(x,−1) (blue) for the function f(x) = (x+ 1)2 + ex

2−2 (red).

Algorithm 17: Quadratic outer approximation scheme

input : convex and twice continuously differentiable function f ,
matrix Q s.t. 0 4 Q 4 ∇2f(x) for all x ∈ [a, b]

output: mixed-integer minimizer x? ∈ B of f

Set k := 1 and choose any x1 ∈ B.
do

Compute supporting quadratic underestimator for f in xk:

f(x) ≥ f(xk) +∇f(xk)>(x− xk) + 1
2

(x− xk)>Q(x− xk).

Compute xk+1 ∈ B as a mixed-integer minimizer of

max
i=1,...,k

{f(xi) +∇f(xi)>(x− xi) + 1
2

(x− xi)>Q(x− xi)}.

Set k := k + 1.
while xk+1 6= xi for all i ≤ k
Return xk+1

The entire quadratic outer approximation scheme is sketched in Algorithm 17.

In Algorithm 17 the new underestimator for a given iterate xk is computed as
follows:

f(xk) +∇f(xk)>(x− xk) + 1
2

(x− xk)>Q(x− xk)

= f(xk)−∇f(xk)>xk + 1
2
xk
>
Qxk︸ ︷︷ ︸

=:dk+1

+ (∇f(xk)> − xk>Q)︸ ︷︷ ︸
=:c>k+1

x+ 1
2
x>Qx ,

so that
gk+1(x) := 1

2
x>Qx+ c>k+1x+ dk+1

is a convex quadratic function with Hessian Q < 0 not depending on k.
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Algorithm 17 requires to compute a mixed-integer minimizer of a quadratic pro-
gram instead of a linear program, as was the case in Algorithm 16. Although the
hardness of this surrogate problem increases from a practical point of view, this
approach might pay off if the number of iterations decreases significantly with
respect to linear approximation. In fact, we observed in our experiments that
the number of iterations stays very small in general, even for problems in higher
dimensions; see Section 6.3.

However, the surrogate problem of solving a convex box-constrained piecewise
quadratic mixed-integer program, being the most expensive part of Algorithm 17,
requires an effective solution method to keep the whole algorithm fast. The sur-
rogate problem can be formulated as a minimization problem of the form

min
x∈B

max
i=1,...,k

(
1
2
x>Qx+ c>i x+ di

)
, (6.1)

where Q < 0, c1, . . . , ck ∈ Rn, and d1, . . . , dk ∈ R. At this point it is crucial to
emphasize that the Hessian Q of each quadratic function gk(x) is the same, so
that we can rewrite (6.1) as

min
x∈B

(
1
2
x>Qx+ max

i=1,...,k
(c>i x+ di)

)
,

which in turn can be reformulated as a linearly constrained mixed-integer quadratic
program using an auxiliary variable α ∈ R:

min x>Qx+ α

s.t. c>i x+ di ≤ α ∀i = 1, . . . , k (6.2)

x ∈ B
α ∈ R.

Note that the reformulated problem (6.2) is only convex in (x, α), although it is
strictly convex in x. For this reason, it cannot be solved directly by FAST-QPA-BB

from Chapter 5. A small example for the quadratic outer approximation scheme
is illustrated in Figure 6.3. In this small example, the algorithm terminates after
two iterations.

6.2 Computing Lower Bounds

Solving the convex piecewise quadratic mixed-integer program (6.1) in each iter-
ation is the core task of the quadratic outer approximation scheme. We implicitly
reduce this problem, in iteration k, to at most 2k − 1 convex quadratic mixed-
integer programs, which are solved by Algorithm 12 (see Section 4.2). Our com-
putational results in Section 6.3 show that only few iterations of Algorithm 17 are
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Figure 6.3: Quadratic outer approximation applied to the minimization of
f : {−2, 2} → R, f(x) = (x + 1)2 + ex

2−2, using Q = 2 + 2e−2. The iterates
are x1 = 0, x2 = −1, and x3 = −1.

necessary in general to solve an instance to optimality, so that the number 2k−1,
though being exponential in the number of iterations k, remains reasonably small
in practice.

We recall that after fixing the first ` variables, every quadratic function fi reduces
to a function

f̄i : Zn−` → R, x 7→ 1
2
x>Q`x+ c̄>i x+ d̄i

where Q` < 0 is obtained by deleting all rows and columns of Q corresponding
to fixed variables and c̄i and d̄i are adapted appropriately. To solve the surrogate
problem (6.1) with a branch-and-bound algorithm, we compute a lower bound at
every node by solving its continuous relaxation

min
x∈Rn−`

max
i=1,...,k

(
1
2
x>Q`x+ c̄>i x+ d̄i

)
.

The main idea is to decompose this problem into subproblems, namely the min-
imization of several auxiliary quadratic functions defined on affine subspaces
of Rn−`, and finally make use of the incremental computation technique described
in the last subsection. To describe this decomposition procedure, we need to in-
troduce some definitions. First, we define

f̄(x) := max
i=1,...,k

f̄i(x)

as the maximum of the reduced functions

f̄i(x) := 1
2
x>Q`x+ c̄>i x+ d̄i, i = 1, . . . , k .

For all J ⊆ {1, . . . , k}, J 6= ∅, we define

UJ := {x ∈ Rn−` | f̄i(x) = f̄j(x) ∀i, j ∈ J}

and consider the auxiliary function

f̄J(x) : UJ → R, f̄J(x) := f̄i(x), i ∈ J .
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As all functions f̄i have the same Hessian matrix Q`, each set UJ is an affine
subspace of Rn−`. In particular, we can compute the minimizers x?J of all f̄J
incrementally as described in Chapter 4 by adapting the initial lower bound
computations in the preprocessing for every subspace UJ . This can be done by
solving the corresponding KKT-system. In our case the restriction to an affine
subspace can be expressed as a linear equation and the KKT-system is a system
of linear equations. Hence, the polynomial running time in the preprocessing is
maintained.

The following theorem gives a condition that allows to exclude certain candidates.

Theorem 6.3. For each J ⊆ {1, . . . , k} with J 6= ∅, let x?J be a minimizer of f̄J
over UJ . Then the global minimum of f̄ is

min {f̄J(x?J) | ∅ 6= J ⊆ {1, . . . , k}, f̄(x?J) = f̄J(x?J)}.

Proof. Clearly “≤” holds. To show “≥”, let x? ∈ Rn−` be the global minimizer
of f̄ and define

J? := {i | f̄i(x?) = f̄(x?)} 6= ∅.

Then it follows that x? ∈ UJ? and f̄(x?) = f̄J?(x?). Moreover, x? minimizes f̄J?

over UJ? , hence x? = x?J? by strict convexity. In summary,

f̄(x?J?) = f̄(x?) = f̄J?(x?) = f̄J?(x?J?) ,

from which the result follows.

Corollary 5. The running time of the modified branch-and-bound algorithm for
solving the surrogate problem (6.1) is O(2k · (n− `)) per node.

Proof. The cardinality of the power set of J is 2k. Since for each subset the
corresponding continuous minimizer can be computed in O(n− `) time per node,
the statement follows immediately.

Note that the index set J does not need to be considered any more in the current
node and its branch-and-bound subtree as soon as the value of f̄J(x?J) exceeds
the current upper bound.

Example 6.1. Consider the special case of k = 2. Then we have the following
reduced functions:

f̄1/2 : Rn−` → R, x 7→ x>Q`x+ c̄>1/2x+ d̄1/2.

It follows from the definition of the subpaces that U{1} = U{2} = Rn−` and
U{1,2} = {x ∈ Rn−` | f̄2(x) = f̄1(x)} = {x ∈ Rn−` | (c̄2 − c̄1)>x = d̄2 − d̄1}.
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Following our idea, we incrementally compute the minimizers x̄{1} of f̄1 on Rn−`,
x̄{2} of f̄2 on Rn−` and x̄{1,2} of f̄1 (or f̄2) on U{1,2}. According to Theorem 6.3,
we check if f̄1(x?{1}) = f̄(x?{1}). Since k = 2, the condition f̄(x?J) = f̄J(x?J) is true

for exactly one subset J . In this case, when f̄1(x?{1}) ≥ f̄2(x?{1}) we have that x?{1}
is the global minimizer, in case f̄2(x?{2}) ≥ f̄1(x?{2}) we have that x?{2} is the global
minimizer. Otherwise we know that the minimizer is x?{1,2}.

6.3 Experimental Results

To show the potential of our approach, we carried out two types of experiments.
First, we compared our branch-and-bound algorithm for solving the surrogate
problems (6.1), called CPQIP, to CPLEX 12.4. Second, we created a class of hard
convex integer programs, to illustrate the effectiveness of our quadratic outer
approximation algorithm, called QOA, and to compare its performance to that
of B-OA and B-BB 1.5.1 [37] using Cbc 2.7.2 and Ipopt 3.10. All experiments
were carried out on Intel Xeon E5-2640 processors at 2.50 GHz.

6.3.1 Implementation Details

We implemented our algorithm in C++. To speed up our algorithm, we used
a straightforward local search heuristic to determine a good starting point. We
start by taking the origin x = (0, . . . , 0) and continue to increase the first vari-
able x1 until no further improvement can be found. In the same way we test if
decreasing the variable leads to a better solution. We repeat this procedure for
every consecutive variable x2, . . . , xn.

Another small improvement in running time is achieved by using the optimal
solution x?k of the surrogate problem in iteration k to get an improved global
upper bound UB for the next iteration, i.e.,

UB := max
i=1,...,k+1

1
2
x?k
>Qx?k + c>i x

?
k + d.

6.3.2 Surrogate Problem

We randomly generated 160 instances for the surrogate problem (6.1), 10 for
each combination of n ∈ {20, 30, 40, 50} and k ∈ {2, 3, 4, 5}. We chose B = Zn,
i.e., we consider unbounded instances. Similar to Chapter 5, we used a random
generator to build our instances. For the positive semidefinite matrix Q, we chose
n eigenvalues λi uniformly at random from [0, 1] and orthonormalized n random
vectors vi, where all entries were chosen uniformly at random from [−10, 10], then
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we set Q =
∑n

i=1 λiviv
>
i . The entries of all ci and di, i = 1, . . . , k, were chosen

uniformly at random from [−10, 10].

We compared our algorithm CPQIP with the MIQP solver of CPLEX applied to
Problem (6.2). As already mentioned in Section 6.1.2, it would be intuitive to use
also FAST-QPA-BB from Chapter 5 for a comparison. However, since Problem (6.2)
is not strictly convex, FAST-QPA-BB is not able to handle our instances directly.
Numerically, this problem can be overcome by adding a small value ε > 0 to
the diagonal element of Q corresponding to the linearization variable α to make
the problem become strictly convex again. Even if this trick does not allow a
completely fair comparison, we include the results of FAST-QPA-BB on the slightly
perturbed instances to give an impression on how well the approach of CPQIP

works. To make the problems strictly convex, we chose ε to be 10−8. For all three
algorithms, we used a time limit of 3 hours, an absolute optimality tolerance of
10−6 and a relative optimality tolerance of 10−10.

The results are summarized in Table 6.1. Running times are measured in cpu-
seconds and the numbers of nodes explored in the branch-and-bound trees are
given in the corresponding column. First, we can observe that CPQIP could solve
158 out of 160 instances in total within the given time limit, while CPLEX and
FAST-QPA-BB managed to solve only 154 and 150 instances, respectively. Second,
for instances with a large number n of variables but small k, CPQIP turns out
to be significantly faster than CPLEX but also FAST-QPA-BB. Instances of this
type are the most relevant instances in a quadratic outer approximation scheme,
as shown in Section 6.3.3. The results confirm that the decomposition approach
used in CPQIP works well and in particular takes into account the specific problem
structure of Problem (6.1).

As expected, CPQIP tends to be slower than CPLEX on most of the instances with
k = 5, since the running time per node in our branch-and-bound algorithm is
exponential in k.

6.3.3 Quadratic Outer Approximation

In order to evaluate the entire quadratic outer approximation scheme, we consider
the following class of problems:

min
x∈B

f(x), f : B ⊆ Rn → R, f(x) =
n∑
i=1

exp(qi(x)) (6.3)

where qi(x) = x>Qix+ c>i x+ di. We assume Qi � 0 for all i = 1, . . . n, so that f
is a strictly convex function.

In order to determine a feasible matrix Q according to Theorem 6.1, we first



6.3. EXPERIMENTAL RESULTS 113

Table 6.1: The table shows the average running times, the numbers of instances
solved and average numbers of branch-and-bound nodes for CPQIP, FAST-QPA-BB
and CPLEX 12.4 on randomly generated unbounded instances for the surrogate
problem of type (6.1).

inst CPQIP FAST-QPA-BB CPLEX 12.4

n k # time nodes # time nodes # time nodes

20 2 10 0.02 1.4e+4 10 8.56 4.2e+4 10 0.24 2.5e+3
20 3 10 0.03 9.8e+3 10 4.77 2.5e+4 10 0.18 1.7e+3
20 4 10 0.06 9.5e+3 10 5.98 2.8e+4 10 0.21 1.6e+3
20 5 10 0.05 2.9e+3 10 0.22 7.4e+4 10 0.10 1.1e+3

30 2 10 0.07 4.2e+4 10 18.97 1.3e+5 10 0.90 1.3e+4
30 3 10 0.40 1.1e+5 10 67.56 3.3e+5 10 1.94 2.8e+4
30 4 10 4.48 4.2e+5 10 246.44 1.2e+6 10 7.75 9.1e+4
30 5 10 4.57 2.6e+5 10 30.11 7.6e+5 10 2.90 3.9e+5

40 2 10 10.41 5.4e+6 10 2206.24 1.6e+7 10 138.77 1.3e+6
40 3 10 30.70 7.2e+6 10 2449.90 2.1e+7 10 69.58 7.9e+5
40 4 10 66.13 7.2e+6 9 1144.60 1.5e+7 10 73.32 8.3e+5
40 5 10 141.53 7.2e+6 10 211.83 7.2e+6 10 92.80 1.0e+6

50 2 10 320.30 1.5e+8 7 2954.61 1.3+e8 10 2337.91 1.8e+8
50 3 10 844.18 1.7e+8 8 4528.46 1.6+e8 8 646.15 5.4e+7
50 4 10 1925.06 1.8e+8 8 5696.67 1.7e+8 8 864.92 7.0e+7
50 5 8 1650.26 6.9e+7 8 4999.94 2.0e+8 8 931.00 7.5e+7

compute mi := minx∈B qi(x) for all i = 1, . . . , n and then choose

Q :=
n∑
i=1

2Qi exp(mi) � 0 .

We can easily verify that Q can be used in Algorithm 17.

Observation 6.4. With the choices above, we have ∇2f(x) − Q < 0 for all
x ∈ Rn.

Proof. We have

∇f(x) =
n∑
i=1

exp(qi(x))(2Qix+ ci)

and

∇2f(x) =
n∑
i=1

(2Qix+ ci)(2Qix+ ci)
> exp(qi(x)) + 2Qi exp(qi(x)).
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Table 6.2: The table shows the average running times, numbers of instances solved
and the average and maximum numbers of iterations of QOA compared to B-OA

and B-BB 1.5.1 for randomly generated ternary instances of problem type (6.3).

QOA B-OA B-BB 1.5.1

n # it max time (s) # time (s) # time (s)

20 10 1.00 1 0.03 10 91.53 10 2.12
30 10 1.50 4 5.87 5 1017.99 10 148.85
40 10 1.40 3 20.19 0 - 9 4573.80
50 10 2.00 3 69.54 0 - 0 -
60 9 2.11 4 1154.66 0 - 0 -
70 5 3.80 6 3363.11 0 - 0 -

We define
Q̃i := (2Qix+ ci)(2Qix+ ci)

> exp(qi(x)) < 0

and

Q :=
n∑
i=1

2Qi exp(mi) � 0 ∀x ∈ Rn.

Then

∇2f(x)−Q =
n∑
i=1

Q̃i + 2Qi(exp(qi(x))− exp(mi)) < 0

since Q̃i, Qi < 0 ∀i = 1, . . . , n and the set of positive semidefinite matrices is a
cone.

The quality of Q and therefore of the quadratic underestimator strongly depends
on B: the smaller the set B is, the larger are the values of mi, and the better is
the global underestimator.

To test the quadratic outer approximation scheme, we randomly generated ternary
and unbounded instances of type (6.3), i.e., we consider the box B = [−1, 1]n and
the unconstrained case B = Rn. All data were generated in the same way as in
Section 6.3.2, except that all coefficients of Q and ci, di, i = 1, . . . , n, were scaled
by 10−5, to avoid numerical issues in the function evaluations. This is due to
the effect of the exponential function that leads to very large objective function
values, even on a small domain around the origin.

We tested our algorithm against B-OA and B-BB, which are state-of-the-art solvers
for convex mixed-integer nonlinear programming. While B-OA is a decomposition
approach based on outer approximation, B-BB is a simple branch-and-bound algo-
rithm based on solving a continuous nonlinear program at each node of the search
tree and branching on the integer variables. Again the time limit per instance was
set to 3 hours.
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Table 6.3: The table shows the average running times, the numbers of in-
stances solved and the average and maximum numbers of iterations of QOA com-
pared to B-BB 1.5.1 for randomly generated unbounded instances of problem
type (6.3).

QOA B-BB 1.5.1

n # it max time (s) # time (s)

20 10 2.30 3 0.12 10 113.13
30 8 3.12 5 26.38 1 4897.10
40 6 2.83 3 134.42 0 -
50 2 3.00 3 7630.12 0 -

Results for ternary and unbounded instances are shown in Tables 6.2 and 6.3,
respectively. QOA denotes our quadratic approximation scheme using the local
search heuristic. Running times are again measured in seconds. The columns
named “#”,“it” and“max” show the number of instances solved, the average and
maximum number of iterations in our approach, respectively.

Overall our quadratic outer approximation approach could solve more instances
and turns out to be considerably faster for the ternary instances as well as the
unbounded instances. For the unbounded instances, we unfortunately experienced
some numerical issues with B-OA so that it did not converge properly. The reason
might be the resulting big values in the function evaluations. However, the branch-
and-bound solver B-BB was clearly outperforming B-OA on these instances anyway,
so that we included only the running times of B-BB in the corresponding table.
In the ternary case, such problems did not occur.

An important observation in all our experiments is that both the average and
maximum number of iterations in our outer approximation scheme tend to be
small, here up to 4 for the instance sizes we could solve to optimality within the
given time limit. In particular, the number of iterations does not seem to increase
significantly with the number of variables n, contrary to the standard linear outer
approximation approach.

6.4 Conclusion

In this chapter we proposed a quadratic outer approximation scheme for solving
box-constrained convex integer nonlinear programs, based on the classical linear
outer approximation scheme. From our computational results, we can conclude
that quadratic underestimators have the potential to yield significantly better
approximations, which might lead to considerably fewer iterations of the entire
algorithm. While the standard linear outer approximation scheme requires to
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solve an integer linear program in each iteration, our method requires the solu-
tion of integer quadratic programs with linear constraints. Therefore we proposed
an algorithm which is based on the reduction of the surrogate problems to a set of
box-constrained/unconstrained convex quadratic integer programs, which are ef-
fectively solved by Algorithm 12. For a special class of instances with exponential
objective function, we found out that the idea of improving the approximation
by quadratic underestimators pays off in terms of a small number of iterations,
growing only slightly with the dimension n of the problems, and therefore results
in better running times.



Chapter 7

Frank-Wolfe Based
Branch-and-Bound

In this chapter we see how branch-and-bound algorithms can be used for real-
world problems. We present a tailored algorithm for the risk-averse capital bud-
geting problem, a special application in portfolio optimization. In numerical ex-
periments on real-world data, we show that it may help an investor to make
decisions on building his portfolio depending on his own personal risk profile.

In finance, mathematical programming approaches are widely used to solve mean-
variance optimization (MVO) problems based on the models and methods devel-
oped by Harry Markowitz in his seminal paper in 1952 [151]. In MVO we assume
an investor to hold a certain amount of money that he is willing to invest into a
given number of securities (e.g., stocks, bonds, ...) that have uncertain returns.
For each security the expected return and variance is given. Following Markowitz’s
principle of diversification an investor is interested in maximizing a risk-adjusted
expected return, defined as the expected return minus a scaled proportion of
the variance, trying to find a trade-off between expected returns and the mar-
ket volatility, i.e., the risk of the portfolios. Note that this is one way to model
MVO problems, another one is to maximize the expected return of the portfolio
while limiting the variance of its return, yielding a nonlinear constraint. We refer
to the book of Cornuéjols and Tütüncü [56] for a more detailed description of
mathematical programming models for MVO and their comparison. The general
setting that we consider is the following:

We are given an investor, having a budget b > 0 and a number of securities
S1, . . . , Sn (n ≥ 2), where security Si has an expected return of ri, a stan-
dard deviation σi of the return and a cost of ai > 0 per unit. Furthermore, let
M = (σij) ∈ Rn×n be the symmetric positive semidefinite covariance matrix with
σii = σ2

i and σij = ρijσiσj, for i 6= j. Here, ρij denotes the correlation coefficient
of the returns of Si and Sj for i 6= j, and ρii := 1 for all i = 1, . . . , n. Sometimes

117
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short-selling, i.e., the sale of a security that is not owned by the seller, or that the
seller has borrowed, is not prefered. If we denote by yi the total amount invested
in security Si, these restrictions can be expressed as non-negativity constraints
on the variables yi. A popular special case of modeling mean-variance optimiza-
tion problems is the so-called risk-averse capital budgeting problem using binary
variables:

z := max

∑
i∈I

riyi − Ω

√∑
i∈I

σ2
i yi :

∑
i∈I

aiyi ≤ b, y ∈ {0, 1}I
 , (7.1)

where I := {1, . . . , n} is the set of securities and the constant Ω serves as a
parameter that models risk-aversion. In this model covariances are not taken
into account, i.e., σij = 0, for all i 6= j, yielding a diagonal matrix M . Bertsi-

mas and Popescu [27] suggested to choose Ω =
√

1−ε
ε

, yielding a variant of the

classical value-at-risk (VaR) problem [30] that takes into account uncertainties
in the expected returns. This problem was studied by several authors before.
Atamtürk and Narayanan [11] proposed a SOCP-based branch-and-bound algo-
rithm. In [16] Baumann et al. [16] used techniques from Lagrangian decomposition
while in [15] Baumenn et al. used a branch-and-cut approach to solve it. In (7.1)
binary variables are used to decide, whether the investor should invest in security
Si or not. Several other authors studied Problem (7.1) in the context of differ-
ent optimization problems [51, 114, 163, 179, 185]. Other exact approaches for
problems including mean-variance portfolio optimization problems are devised
by [28, 29, 39, 84, 135, 140, 178]. Mostly, versions of the Limited Asset Markowitz
model are considered, where the number of assets to invest money into is limited
by some upper bound to reduce transaction costs. Usually an MIQP model is
used to solve it.

In our model, we want to generalize (7.1) in three ways:

1. Besides binary variables it is convenient to consider also general non-negative
integer variables, motivated by the fact that portfolios are often not only
restricted to binary but also general discrete choices in practice, for example
when considering stocks.

2. The parameter Ω changes the investor’s risk-aversion only linearly in the
risk-term

√
y>My. This might be too restrictive, since an investor’s risk-

aversion may vary. We propose to model the risk by the composite function
h ◦ g : Rn → R, where g : Rn → R, g(y) =

√
y>Qy models the quantity of

risk and h : R+ → R is a convex, differentiable and non-decreasing function,
adjusting the risk-aversion of the investor. The objective function can then
be written as r>y − h(g(y)). Possible choices for h are h(t) = Ωt, yielding
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the formulation (7.1), h(t) = Ωt2, which gives a convex MIQP problem or

h(t) = h̃(t) :=

{
0 , t ≤ γ

exp(t− γ)− (t− γ + 1) , t > γ,

such that the investor’s risk-aversion increases exponentially in the growth
of the risk as soon as it reaches a threshold of γ.

3. The majority of approaches considered in the literature requires M to be
diagonal, meaning that covariances are ignored. They explicitly exploit the
fact that the objective function is submodular in that case.

To tackle the proposed generalized risk-averse capital budgeting problem with
mixed-integer variables, we consider the optimization problem of the following
form:

z := max
{
r>y − h(

√
y>My) : a>y ≤ b, y ≥ 0, y1, . . . , yn1 ∈ Z

}
, (7.2)

where h : R+ → R is a convex differentiable function, M ∈ Rn×n is a symmetric
positive definite matrix, a, r ∈ Rn

+, b ∈ R+, and n1 ∈ {0, . . . , n} is the number of
integer variables. Note that assuming M to be positive definite is not a restriction
in practice, since it is equivalent to having no redundancies in the set of avail-
able securities. Problem (7.2) can then be turned into a convex mixed-integer
minimization problem of the form

z := −min
{
h(
√
y>My)− r>y : a>y ≤ b, y ≥ 0, y1, . . . , yn1 ∈ Z

}
. (GCBP)

The remainder of this chapter is organized as follows. In Section 7.1 we describe
our modified Frank-Wolfe algorithm to efficiently compute the dual bounds for
the node relaxations. This section also includes an in-depth convergence analysis
of our algorithm. In Section 7.2 we shortly explain the small adpations of our
branch-and-bound algorithm (Algorithm 12 in Chapter 4) to our Problem GCBP.
In particular, we present several effective warmstart strategies to accelerate the
dual bound computation. In Section 7.3 we test our algorithm on real-world
instances. We show computational results and compare the performances of our
algorithm and CPLEX 12.6 for different risk-functions h. In case h(t) = t2 we also
compared our algorithm with Bonmin 1.8.1. Finally, in Section 7.4 we summarize
the results and give a conclusion.

7.1 Dual Bounds by the Frank-Wolfe Method

In this section, we describe the non-monotone version of the Frank-Wolfe algo-
rithm with away-steps, originally proposed in [104]. We embed this algorithm
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into our branch-and-bound framework and fully analyze its convergence proper-
ties. Using a Frank-Wolfe type method in the context of convex mixed-integer
nonlinear programming is twofold. On the one hand, the algorithm gives a valid
dual bound for the original MINLP problem at each iteration. This dual bound
is available for free as a byproduct of computing the descent direction in each it-
eration. Thus, it enables an early pruning of the nodes in the branch-and-bound
tree (see Section 5.4.2). On the other hand, the cost per iteration is very low,
as in each iteration a simple LP with a special structure is solved. The original
method described in [104] utilized an exact line search to determine the step size
along the descent direction at every iteration to compute the new iterate. When
the exact line search is too expensive (i.e., too many objective function/gradient
evaluations are required), different alternative rules can be used for the step size
calculation (see, e.g., [86]). In particular, inexact line search methods, like the
Armijo or the Goldstein conditions (see Section 2.5), can be applied [74] to cal-
culate the step size. Due to the large number of subproblems we need to solve,
a reduction of the number of function evaluations for the step size calculation is
desirable. Therefore, inspired by the work in [99, 100, 101], we decided to use a
non-monotone version of the Armijo line search, in case an exact line search is
not applicable. This choice allows to accept a step size that gives a safe growth
of the objective function, obtaining a new iterate with less computational effort.

The continuous relaxation of Problem (7.2), obtained by relaxing the integrality
constraints, is the following convex nonlinear programming problem:

min h
(√

y>My
)
− r>y

s.t. a>y ≤ b (7.3)

y ≥ 0

y ∈ Rn.

By the transformation yi = Diag( b
ai

)xi Problem (7.3) becomes

min f(x) = h
(√

x>Qx
)
− µ>x

s.t. e>x ≤ 1 (7.4)

x ≥ 0

x ∈ Rn,

where we relabeled Q = Diag
(
b2

a2i

)
M , µ = Diag( b

ai
)r and e = (1, . . . , 1)> denotes

the vector of ones. The feasible regions of Problems (7.3) and (7.4) are illustrated
in Figure 7.1.
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Figure 7.1: The initial and transformed feasible region of Problem (7.3) and (7.4),
respectively, for n = 2. The red line depicts the area in which the optimal solution
lies if it is not zero, in case h(x) is chosen as Ωx.

7.1.1 Checking Optimality in Zero

A first difficulty in dealing with Problem (7.4) comes from the fact that the
objective function may not be differentiable in x = 0. Therefore, we report a
result [26] that enables checking if the point x? = 0 is the optimal solution
of (7.4).

Proposition 7.1 ([26]). Let f : Rn → R be a convex function. Then x? minimizes
f over a convex set X ⊂ Rn if and only if there exists a subgradient d ∈ ∂f(x?),
such that

d>(x− x?) ≥ 0 ∀x ∈ X.

By Proposition 7.1, we have that x? = 0 is an optimal solution for Problem (7.4)
if and only if there exists a subgradient d ∈ ∂h(g(0)), such that (d − µ)>x ≥ 0,
for all x ∈ {x ∈ Rn : e>x ≤ 1, x ≥ 0}. From standard results on convex analysis
(see, e.g., [26]), we derive that

∂h(g(0)) = h′(0)Q
1
2v,

where v ∈ {w ∈ Rn : ‖w‖ ≤ 1}. Then, from Proposition 7.1, we have that x? = 0
is an optimal solution for Problem (7.4) if and only if

∃ v ∈ Rn such that ‖v‖ ≤ 1 and
(
h′(0)Q

1
2v − µ

)>
x ≥ 0, (7.5)

for all x ∈ S = {x ∈ Rn : e>x ≤ 1, x ≥ 0}.
Since x ∈ S implies x ≥ 0, condition (7.5) is equivalent to the following:

∃ v ∈ Rn with ‖v‖ ≤ 1 and h′(0)Q
1
2v − µ ≥ 0. (7.6)
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We notice that in case h′(0) = 0, since µ ≥ 0 and µ 6= 0, condition (7.6) cannot
be satisfied for any v ∈ Rn, such that ‖v‖ ≤ 1. This means that, in the case
h′(0) = 0, x? = 0 is not the only optimal solution of Problem (7.4).

By (7.6) we have a necessary and sufficient condition to decide if zero is the
optimal solution of Problem (7.4).

7.1.2 Starting Point Computation

In case zero is not the optimal solution of Problem (7.4), we could produce a point
x0 6= 0 such that f(x0) < f(0), and use it as a starting point for our method.
For the classical case considered in the literature, where h(t) = Ωt, we have the
following theoretical result.

Proposition 7.2. The optimal solution x∗ of Problem (7.4) for h(t) = Ωt is
either zero or it satisfies e>x? = 1.

Proof. There exists an optimal solution x? of Problem (7.4) due to the compact-
ness of S and the continuity of f . Suppose x? 6= 0, then f(x?) < 0. We assume
that for the optimal solution x? > 0 we have e>x? < 1. Since x? is not a vertex
of S, we can find a vector y ∈ S and a scalar α ∈ (0, 1) such that

x? = (1− α)0 + αy = αy.

It follows that 0 > f(x?) = f(αy) = Ω
√

(αy)>Q(αy)− µ>(αy) = αf(y). There-
fore f(y) < 0, since α > 0. But we have that f(x?) = αf(y) > f(y) since α < 1,
which is a contradiction to the optimality of x?.

This means we can restrict the search space to any point in S that lies on the
hyperplane e>x = 1, in case the optimal solution is not zero. Thus, Problem (7.4)
is equivalent to the minimization problem min{f(x) | e>x = 1, x ≥ 0} and
our objective function becomes differentiable on the reduced feasible set. It is
sufficient to start with any feasible point satisfying e>x = 1, e.g., any unit vector
since the optimal solution lies on the face induced by the inequality.

In the general case, where the objective function is non-differentiable, we can
always compute a starting point for Problem (7.4). From a practical point of view,
checking condition (7.6) is equivalent to solving the following convex quadratic
program with non-negativity constraints with any QP-method:

min ||v||2 (7.7)

s.t. h′(0)Q
1
2v ≥ µ.
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By the transformation z := Q
1
2v − µ

h′(0)
we can transform the problem into the

non-negativity constrained convex quadratic program

min z>Q−1z +
2

h′(0)
µ>z +

1

h′(0)2
µ>Q−1µ (7.8)

s.t. z ≥ 0.

To solve Problem (7.8) to optimality, we can use for example the tailored QP-
solver FAST-QPA proposed in Chapter 5. If follows that the optimal solution
of (7.7) is less or equal than 1, if and only if zero is the optimal solution of (7.4).

7.1.3 Outline of the Algorithm

Now, we can define our method and analyze its convergence properties. From now
on we denote by S the feasible set of (7.4), that is S = {x ∈ Rn : e>x ≤ 1, x ≥ 0},
which is compact and convex. Since the points xk at each iteration are produced
such that f(xk) ≤ f(x0), we have that xk ∈ L(x0) ∩ S and 0 6∈ L(x0) ∩ S, where
L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} is the x0-sub-level set of f . We have the
following observations:

• L(x0) ∩ S is compact, as it is a closed subset of the compact set S.

• f is continuously differentiable in L(x0) ∩ S.

• h is Lipschitz continuous in S, since it is differentiable and S is compact.

• f is Lipschitz continuous in S with Lipschitz constant L
√
λmax(Q) + ‖µ‖,

where L is the Lipschitz constant of h.

Indeed, we have

‖∇f(x)‖ =
∥∥∥h′(‖Q1/2x‖) Qx

‖Q1/2x‖ − µ
∥∥∥

≤ |h′(‖Q1/2x‖)|
∥∥∥Q1/2 Q1/2x

‖Q1/2x‖

∥∥∥+ ‖µ‖

≤ |h′(‖Q1/2x‖)|‖Q1/2‖+ ‖µ‖

≤ L
√
λmax(Q) + ‖µ‖.

It follows that f is uniformly continuous in S.

In Algorithm 18 we report the basic scheme of our algorithm.

At each iteration k, the algorithm first computes a descent direction, choosing
among a standard toward-step and an away-step direction (see Subsection 7.1.4).
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Algorithm 18: NM-MFW

input : a convex programming problem of the form (7.4)
output: the minimizer x? of (7.4)

Fix maxit > 0 and choose a suitable starting point x0 ∈ S.
for k = 0, 1, . . . ,maxit do

Compute a descent direction dk.
if ∇f(xk)>dk = 0 then

STOP.
Calculate a step size αk ∈ (0, 1] by using a line search.
Set xk+1 = xk + αkdk.

Then, in case optimality conditions are not satisfied, it calculates a step size along
the given direction by a non-monotone line search (see Subsection 7.1.5), updates
the point, and starts a new iteration.

7.1.4 Computation of a Feasible Descent Direction

For the computation of a feasible descent direction we follow the away-step ap-
proach described in [104]. While using away-step directions, even a linear con-
vergence rate can be guaranteed, if an exact line search is used and suitable
assumptions on the objective function are made.

At every iteration k, we first solve the following linearized problem for the toward-
step

x̂kTS := argmin ∇f(xk)>(x− xk) (7.9)

s.t. x ∈ S,

and define dkTS ∈ Rn as dkTS = x̂kTS − xk. Then, we consider the problem related
to the away-step

x̂kAS := argmax ∇f(xk)>(x− xk)
s.t. x ∈ S (7.10)

xi = 0, if xki = 0,

and define dkAS ∈ Rn as dkAS = xk − xkAS.

In order to choose between the two directions, we use the criterion presented
in [104]. In particular, if

∇f(xk)>dkTS ≤ ∇f(xk)>dkAS, (7.11)

then we set the toward-step direction: x̂k = x̂kTS and dk = x̂k − xk = dkTS.
Otherwise we select the away-step direction: x̂k = x̂kAS and dk = xk − x̂k = dkAS.
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We want to notice that for both Problems (7.9) and (7.10), we minimize a linear
function over a polytope. Hence, the solution can be found by checking the ob-
jective function value on the vertices of the feasible set S = conv({0, e1, . . . , en}).
Therefore, we just need to compare the values ∇if(xk), i = 1, . . . , n and both
solutions can be obtained at a computational cost of O(n). In the following we
denote by ı̂ the index of the vertex, at which the optimal solution is obtained.

7.1.5 Computation of a Suitable Step Size

In case an exact line search can be used and the objective function satisfies specific
assumptions (for details, see, e.g., [104, 130]), the Frank-Wolfe algorithm using
away-steps converges linearly to an optimal solution. When an exact line search
approach cannot be considered, we combine the away-step approach with a non-
monotone inexact line search. Even if in the latter case there is no proof that the
algorithm converges linearly, good results can be observed in practice as we will
see in our experimental results.

Now we can describe the non-monotone line search used in our algorithm for the
general case: a step size is accepted as soon as it gives a point which allows a
sufficient decrease with respect to a reference value. A classical choice for the
reference value f̄ in Algorithm 19 is the maximum among the last nm objective
function values computed, where nm is a positive integer. We report the detailed
scheme below. The maximum step size αmax used in Algorithm 19 is set to αTS
if the toward-step direction is chosen; it is set to αAS otherwise.

Algorithm 19: Non-monotone Armijo line search

input : iterates x0, . . . , xk and descent direction dk in Algorithm 18
output: a step size α for Algorithm 18 in iteration k

Set δ ∈ (0, 1), γ1 ∈ (0, 1
2
), γ2 ≥ 0, nm > 0.

Update
f̄k = max

0≤i≤min{nm,k}
f(xk−i).

Calculate starting step size α ∈ (0, αmax].
while f(xk + αdk) > f̄k + γ1 α∇f(xk)>dk − γ2 α

2 ‖dk‖2 do
Set α = δα.

When the away-step direction is chosen, then the starting step size for the line
search is set to

αAS = max{α ≥ 0 | xk + αdkAS ∈ S}.

Namely, if x̂kAS = eı̂ we set αAS =
xkı̂

1−xkı̂
, otherwise αAS = 1−e>xk

e>xk
. On the other

hand, if the toward-step direction is chosen, the starting step size for the line
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search is simply set to αTS = 1. In case an away-step is chosen but αAS < β,
where 0 < β � 1 is a certain threshold value, we decide to perform a toward-step
instead to ensure proper convergence, as will become clear in Section 7.1.7.

The following result states that the non-monotone Armijo line search terminates
in a finite number of steps.

Proposition 7.3. Assume that ∇f(xk)>dk < 0. Then the non-monotone Armijo
line search determines, in a finite number of iterations, a step size αk such that

f(xk + αkdk) ≤ f̄k + γ1 α
k∇f(xk)>dk − γ2 (αk)2 ‖dk‖2. (7.12)

The result is proved using similar arguments as in the proof of Proposition 3
in [98].

Proof. Let j be the iteration counter of the cycle in the Armijo line search of
Algorithm 18 and αj be the current step size of iteration j. We can write

αj = δjα0,

so that αj → 0 for j →∞. Let us assume, by contradiction, that the cycle does
not terminate. Then, for all j we have

f(xk + αjdk) > max
0≤i≤min{nm,k}

[f(xk−i)] + γ1 α
j∇f(xk)>dk − γ2 (αj)2 ‖dk‖2.

It follows

f(xk + αjdk)− f(xk)

αj
− γ1∇f(xk)>dk > −γ2 α

j ‖dk‖2. (7.13)

Taking the limits in (7.13) for j → ∞, as γ1 < 1 and αj → 0, we obtain
∇f(xk)>dk ≥ 0, which contradicts the assumption on dk.

7.1.6 Incremental Computations

Similar as in Chapter 4, we again exploit the fact that we can speed up the
objective function evalutations by using fast incremental updates. During the loop

of the Armijo line search in Algorithm 19, by storing the values of xk
>
Qxk ∈ R,

Qxk ∈ Rn, and µ>xk ∈ R for every iteration k, we are able to evaluate the terms

yk
>
Qyk + µ>yk for all trial points yk = xk + αdk in constant time per node. In

particular, if a toward-step is performed in the line search, i.e., dk = dkTS = eı̂−xk,
we have the following incremental updates:

yk
>
Qyk = (xk + αdk)>Q(xk + αdk)

= xk
>
Qxk + α(α− 2)xk

>
Qxk + 2α(1− α)xk

>
Qeı̂ + α2Qı̂ ı̂

= (1− α)2xk
>
Qxk + 2α(1− α)(Qxk)ı̂ + α2Qı̂̂ı

µ>yk = (1− α)µ>xk + αµı̂.
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In case x̂ = 0, i.e., dk = −xk, the incremental updates simplify to

yk
>
Qyk = (1− α)2xk

>
Qxk

µ>yk = (1− α)µ>xk.

The running time for evaluating the objective function f at the trial points yk

depends on the choice of the risk-function h. In case h can be evaluated in constant
time, this is also true for the computation of f(yk) and the objective function
evaluations can be carried out in O(1) time per iteration of Algorithm 19.

Note that the running time for computing the new values xk+1>Qxk+1 ∈ R,
Qxk+1 ∈ Rn, and µ>xk+1 ∈ R for the next iteration of Algorithm 18 is O(n) per
iteration, since it is dominated by the update of Qxk+1 ∈ Rn. We can use the

same formulas from above to update the scalars xk+1>Qxk+1 ∈ R and µ>xk+1 ∈ R
in constant time, while the vectors Qxk+1 ∈ Rn can be updated in linear time by

Qxk+1 =

{
(1− α)Qxk + αQeı̂ if x̂k = eı̂

(1− α)Qxk if x̂k = 0.

Similar computations apply if an away-step is performed, i.e., dk = dkAS.

7.1.7 Convergence Analysis

In this section, we analyze the convergence properties of the non-monotone Frank-
Wolfe Algorithm 18 with away-steps. In order to do that, we need to prove some
preliminary results. We first prove, in the following Lemma, that the sequence
{f̄k}k converges.

Lemma 7.4. Suppose that Algorithm 18 produces an infinite sequence {xk}k.
Then

• xk ∈ L(x0) ∩ S for all k, and

• {f̄k}k is non-increasing and converges to a value f̄ .

Proof. From the non-monotone Armijo line search we have that

f̄k+1 = max
0≤i≤min{nm,k+1}

f(xk+1−i)

≤ max{f̄k, f(xk+1)}.

Since f(xk+1) < f̄k from the non-monotone line search, then

f̄k+1 ≤ f̄k
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which proves that {f̄k}k is non increasing. Now, taking into account the fact
that f(xk) ≤ f(x0) for all k, we get that the sequence {xk}k belongs to the set
L(x0) ∩ S. Therefore, we get that the non increasing sequence {f̄k}k is bounded
from below, and converges to f̄ .

Now, we prove that the sequence {f(xk)}k converges to the same limit as the
sequence {f̄k}k.

Lemma 7.5. Suppose that Algorithm 18 produces an infinite sequence {xk}k.
Then

lim
k→+∞

f(xk) = lim
k→+∞

f̄k = f̄ . (7.14)

Proof. Let {xtk}k ⊆ {xk}k ⊂ L(x0) ∩ S be the subsequence of points such that
f̄k = f(xt

k
) and k −min(k, nm) ≤ tk ≤ k.

We prove by induction that for any fixed integer i ≥ 1 we have

lim
k→+∞

f(xt
k−i) = lim

k→+∞
f(xt

k

) = lim
k→+∞

f̄k = f̄ . (7.15)

Suppose at first i = 1.

f̄k = f(xt
k

) = f(xt
k−1 + αt

k−1dt
k−1)

≤ f̄ t
k−1 + γ1α

tk−1∇f(xt
k−1)>dt

k−1 − γ2(αt
k−1)2‖dtk−1‖2

≤ f̄ t
k−1 − γ2(αt

k−1)2‖dtk−1‖2,

where the second inequality holds since ∇f(xt
k−1)>dt

k−1 < 0. This means that

f̄k − f̄ tk−1 ≤ −γ2(αt
k−1)2‖dtk−1‖2.

From Lemma 7.4 the left hand side converges to zero and we obtain

lim
k→+∞

(αt
k−1)2‖dtk−1‖2 = 0,

that means limk→+∞ ‖xt
k − xt

k−1‖ = 0. Due to the uniform continuity of f(x)
over L(x0) ∩ S equation (7.15) holds for i = 1.

We now assume that (7.15) holds for i ≥ 1 and we prove that it holds for index
i+ 1.

We have

f(xt
k−i) ≤ f̄ t

k−i−1 + γ1α
tk−i−1∇f(xt

k−i−1)>dt
k−i−1 − γ2(αt

k−i−1)2‖dtk−i−1‖2
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and reasoning as before yields

f(xt
k−i)− f̄ tk−i−1 ≤ −γ2(αt

k−i−1)2‖dtk−i−1‖2. (7.16)

The left hand side of (7.16) tends to zero since (7.15) holds for i, i.e., f(xt
k−i)

converges to f̄ . Then,

lim
k→+∞

(αt
k−i−1)2‖dtk−i−1‖2 = 0,

that means limk→+∞ ‖xt
k−i−xtk−i−1‖ = 0. Again, uniform continuity of f(x) over

L(x0) ∩ S yields (7.15) for index i+ 1.

Let T k = tk+nm+1. In order to conclude the proof we notice that for any index k
we can write

f(xk) = f(xT
k

)−
Tk−k−1∑
i=0

(f(xT
k−i)− f(xT

k−i−1)).

Therefore, taking the limit for k → +∞ we obtain (7.14).

The next result shows that the sequence {∇f(xk)>dk}k converges to zero.

Lemma 7.6. Let {xk}k ⊂ L(x0) ∩ S be the sequence of points produced by Algo-
rithm 18. Then

lim
k→+∞

∇f(xk)>dk = 0. (7.17)

Proof. First of all we notice that ∇f(xk)>dk < 0 for all k. Let αk be the step size
computed by Algorithm 18 at iteration k. Then,

f̄k − f(xk + αkdk) ≥ γ1 α
k |∇f(xk)>dk|+ γ2 (αk)2 ‖dk‖2 ≥ γ1 α

k |∇f(xk)>dk|.

From Lemma 7.5, since limk→+∞(f̄k − f(xk + αkdk)) = 0, we have

lim
k→+∞

γ1 α
k |∇f(xk)>dk| = 0. (7.18)

Suppose by contradiction that (7.17) does not hold. This implies that a subse-
quence {∇f(xk)>dk}k, which we relabel as {∇f(xk)>dk}, exists such that

lim
k→+∞

∇f(xk)>dk = −η < 0.

Then, by (7.18) we have that limk→+∞ α
k = 0 must hold.

Let D > 0 be the diameter of S. Since ‖dk‖ ≤ ‖xk‖+‖x̂k‖ ≤ 2D we have that the
sequence {dk}k is bounded. The sequence {xk}k ⊂ L(x0) ∩ S is also bounded, so
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that appropriate subsequences, which we relabel as {dk}k and {xk}k, exist such
that

lim
k→+∞

xk = x̄; lim
k→+∞

dk = d̄.

From the continuity of the gradient in L(x0) ∩ S we have:

∇f(x̄)>d̄ = lim
k→+∞

∇f(xk)>dk = −η < 0.

Since αmax ≥ β > 0 and the sequence αk is converging to zero, a value k̄ ∈ N
exists such that αk < αmax, for k ≥ k̄. In other words, for k ≥ k̄ the step
size αk cannot be set to the maximum step size and, taking into account the
non-monotone Armijo line search, we can write

f
(
xk +

αk

δ
dk
)
> f̄k + γ1

αk

δ
∇f(xk)>dk − γ2

(αk
δ

)2

‖dk‖2.

Hence, due to the fact that f̄k ≥ f(xk), we get

f
(
xk +

αk

δ
dk
)
− f(xk) > γ1

αk

δ
∇f(xk)>dk − γ2

(αk
δ

)2

‖dk‖2. (7.19)

Since f is continuously differentiable in L(x0)∩ S, we can apply the Mean Value
Theorem and we have that sk ∈ [0, 1] exists such that

f
(
xk +

αk

δ
dk
)

= f(xk) +
αk

δ
∇f
(
xk + sk

αk

δ
dk
)>
dk. (7.20)

In particular we have limk→+∞ x
k+sk α

k

δ
dk = x̄. By substituting (7.20) within (7.19)

we have

∇f
(
xk + sk

αk

δ
dk
)>
dk > γ1∇f(xk)>dk − γ2

αk

δ
‖dk‖2.

Considering the limit on both sides we get

−η = ∇f(x̄)>d̄ > γ1∇f(x̄)>d̄ = −γ1η

and we get a contradiction since γ1 ∈ (0, 1
2
).

Finally, we can prove the main convergence result related to Algorithm 18. We
notice that due to the use of the line search, there is no need to make any par-
ticular assumption on the gradient of the objective function (like, e.g., Lipschitz
assumption) for proving convergence.

Proposition 7.7. Let {xk}k ⊆ L(x0) ∩ S be the sequence of points produced by
Algorithm 18. Then, either an integer k ≥ 0 exists such that xk is an optimal
solution for Problem (7.3), or the sequence {xk}k is infinite and every limit point
x? of the sequence is an optimal solution for Problem (7.4).
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Proof. If Algorithm 18 does not stop in a finite number of iterations at an optimal
solution, from Proposition 7.6 we have that

lim
k→+∞

∇f(xk)>dk = 0.

Since the set L(x0) ∩ S is compact and the sequence {dk}k is bounded, we have
that appropriate subsequences, which we relabel as {dk}k and {xk}k, exist such
that

lim
k→+∞

xk = x?; lim
k→+∞

dk = d?.

Therefore
∇f(x?)>d? = lim

k→+∞
∇f(xk)>dk = 0.

From the definition of dk we have

∇f(xk)>dk ≤ ∇f(xk)>(x− xk) ∀ x ∈ S.
Taking the limit for k → +∞ we have

0 = ∇f(x?)>d? ≤ ∇f(x?)>(x− x?) ∀ x ∈ S,
that is

∇f(x?)>(x− x?) ≥ 0 ∀ x ∈ S
and x? is an optimal solution for Problem (7.4).

7.1.8 Dual Bound Computation

Algorithm 18 is used within a branch-and-bound algorithm presented in Sec-
tion 7.2 to compute valid dual bounds. To speed up the enumeration process, we
take advantage of the following surrogate duality gap [115] for Problem (7.4):

g(x) := max
z∈S
∇f(x)>(x− z),

defined for all x ∈ S \ {0}. Then, convexity of f implies that g(x) is an upper
bound for the gap between f(x) and f(x?):

f(x)− f(x?) ≤ ∇f(x)>(x− x?) ≤ g(x).

In particular, when considering the search direction computed in Algorithm 18,
we have that g(xk) = −∇f(xk)>dk, yielding

f(xk) +∇f(xk)>dk ≤ f(x∗).

Therefore, we get a dual bound for free in each iteration of Algorithm 18 by
the computation of the step direction dk. This implies the possibility of an early
pruning, already successfully used in FAST-QPA-BB and explained in Section 5.4.2.
This premature termination of the iteration process leads to a faster overall enu-
meration. Due to the non-monotone Armijo line search we choose to update the
value of the dual bound only when there is an improvement in the objective
function.
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7.2 A Branch-and-Bound Algorithm for GCBP

The branch-and-bound algorithm follows the successfully adapted ideas of Chap-
ter 4 and Chapter 5 with the aim of a fast enumeration of the search tree. In the
following, we describe the branch-and-bound algorithm by briefly summarizing
its main components.

Upper Bound As an initial upper bound in the branching tree, we use a simple
greedy heuristic, adapted from Julstrom [117] for the quadratic knapsack problem.
Analogously to the notation used in the theory of knapsack problems the profit
ratio pi of an item i is defined as the sum of all profits that are gained by putting
item i into the knapsack of capacity b, divided by its weight ai. Transferred to our

application, we have pi :=
(
h
(√

mii + 2
∑

j 6=imij

)
− ri

)
/ai, for all i = 1, . . . , n.

The heuristic sorts all items 1, . . . , n in a non-decreasing order and successively
fills the knapsack with the best items until the capacity of the knapsack is reached.
Since the original algorithm proposed by Julstrom is tailored for a binary problem,
we adapt it by allowing multiple copies of each item. The overall running time of
the heuristic is O(n2).

During the branch-and-bound enumeration, we do not use any heuristics for im-
proving the primal bound, since the quick enumeration using a depth-first search
yields quick updates of the bound. Once all integer variables have been fixed,
we compute the optimal solution of the subproblem in the reduced continuous
subspace. If the computed point is feasible, it yields a valid upper bound for the
original problem.

Branching We use the same branching scheme as explained in Section 4.2, i.e.,
we branch by successively fixing a variable in increasing distance to its value in
the fractional solution of the current node relaxation. Furthermore, the branching
order of the variables at every level is predetermined.

Incremental Computations An advantage of branching by fixing variables
is that the subproblems in the enumeration process of the search tree have the
very same structure, just in a reduced dimension. Let ` ∈ {0, . . . , n1 − 1} be
the current depth in the branch-and-bound tree. By moving the part resulting
from fixing ` variables into the linear and constant part, respectively, the problem
reduces to the minimization of

f̄ : Zn1−` × Rn−n1 → R, x 7→
√
x>M`x+ c>` x+ d` − r`x− e` (7.21)

over the feasible region S` = {x ∈ Zn1−` × Rn−n1 | a>` x ≤ b`, x ≥ 0}. We notice
that in the case where there is at least one variable that is fixed to a nonzero
value, the objective function is differentiable everywhere in S`, since d` > 0.
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The matrix M` is obtained by deleting the corresponding ` rows and columns of
M and c`, d` and e` are adapted appropriately by

(c`)j−` := cj + 2
∑̀
i=1

σijsi, for all j = `+ 1, . . . , n

and

d` := d+
∑̀
i=1

cisi +
∑̀
i=1

∑̀
j=1

σijsisj, e` := e+
∑̀
i=1

risi,

where s = (s1, . . . , s`) ∈ Z` is the current fixing at depth `. Similarly a` is obtained
by deleting the corresponding entries of a and the reduced right hand side b` is
updated accordingly by b` = b−

∑`
i=1 siai.

Preprocessing To check whether zero is the minimizer of the node relaxation
at any level ` of the enumeration tree, we have derived the necessary and sufficient
condition (7.5). We point out that checking this condition can be performed

completely in a preprocessing phase, since the reduced matrices Q
1
2
` and reduced

linear coefficient vectors µ` do not depend on the specific fixings. Therefore the
problem data of Problem (7.8) is known in advance for every level ` and it can
be solved before starting the enumeration.

Warmstart With the aim of speeding up our branch-and-bound scheme, we
use a warmstart procedure by taking over information from the parent node. The
branching order of the variables at every level ` is x1, . . . , xn1 . Let x? ∈ Rn−` be
the optimal solution of the subproblem after fixing the first ` ≥ 1 variables to
their integer values. Assume we fix the next component x`+1. We then consider
the point x̃ := (x?2, . . . , x

?
n−`) ∈ Rn−`−1. If x̃ is feasible for the current node

relaxation, we take it as a starting point for Algorithm 18, otherwise we take one
of the following feasible points:

(x̃ ∨ e1): e1 = (1, 0, . . . , 0) ∈ Rn−`−1,

(x̃ ∨ ep): ep ∈ Rn−`−1, that is the projection of x̃ onto the set

S̃ = {x ∈ Rn−`−1 | e>x = 1, x ≥ 0}

or

(x̃ ∨ eı̂): eı̂, where

ı̂ := argmin


√√√√qii +

n−`−1∑
j 6=i

2qij − µi | i = 1, . . . , n− `− 1

 .
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The feasible point ep is computed by solving the nonlinear optimization problem

min

{
1

2
||x− x̃||2 |

n∑
i=1

xi = 1, x ≥ 0

}

using an algorithm originally proposed by Held et al. [109], that was recently
rediscovered by Duchi et al. [73]. For the latter version, sketched in Algorithm 20,
the overall complexity has been proven to be O(n2). Since the projection of a
vector onto the so-called l1-ball has many applications in the areas of statistics,
operations research and machine learning, improved versions of this algorithm
have been proposed, most of them using different sophisticated data structures
and sorting techniques. For a recent survey on algorithms for the projection onto
the l1-ball, we refer to Condat [53].

Algorithm 20: Projection of x̃ onto the set S̃

input : a vector x̃ ∈ Rn

output: the projection x? of x̃ onto S̃

Sort x̃ into x̄: x̄1 ≥ x̄2 ≥ . . . ≥ x̄n.

Find ρ(x̄) = max
{
j ∈ {1, . . . , n} | x̄j − 1

j

(∑j
i=1 x̄i − 1

)
> 0
}

.

Define λ? = (
∑ρ

i=1 x̄i − 1) /ρ.
Set x?i = max{x̃i − λ?, 0}.

The unit vector eı̂ is chosen by adapting ideas of the greedy heuristic by Jul-
strom [117]. It represents the vertex of S where the simultaneous potential risk
increase by setting xı̂ = 1 is minimized.

7.3 Experimental Results

In order to investigate the potential of our algorithm FW-BB applied to the capital
budgeting problem 7.2, we produced an implementation in C++/Fortran 90. As
benchmark data set, we used real-world capital market indices from the Standard
& Poor’s 500 index (S&P 500) that were used and made public by Cesarone,
Scozzari and Tardella [51]. This data set was used for solving a Limited Asset
Markowitz (LAM) model. For each of the 500 stocks the authors obtained 265
weekly price data, adjusted for dividends, from Yahoo Finance for the period from
March 2003 to March 2008. Stocks with more than two consecutive missing values
were disregarded. The missing values of the remaining stocks were interpolated,
yielding 476 stocks in total. Logarithmic weekly returns, expected returns and
covariance matrices based on the data for the period March 2003 to March 2007
were computed. By choosing stocks at random from the 476 available, we built
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Table 7.1: Results for the pure integer instances with h(t) =
√

1−0.91
0.91

t and b = b3,

running the non-monotone and monotone version of FW-BB.

NM-FW-BB M-FW-BB

n # time nodes it # time nodes it

50 9 12.51 7.07e+05 17.00 6 137.90 2.21e+05 91.50
75 10 582.89 5.20e+06 35.80 6 118.38 3.95e+05 78.33
100 9 359.06 3.33e+06 32.67 5 644.72 4.62e+06 57.20

portfolio optimization instances of different sizes. Namely, we built 10 problems
each with 50, 75 and 100 stocks for the pure integer case (i.e., n1 = n) and 10
problems each with 100, 150 and 200 for the mixed-integer case, for which we
considered n1 = bn/2c. We considered 3 different values for the budget b of the
investor, namely b ∈ {b1 := 1 ·

∑n
i=1 ai, b2 := 10 ·

∑n
i=1 ai, b3 := 100 ·

∑n
i=1 ai},

having a total of 90 instances each for the pure integer case and for the mixed
integer one. All experiments were carried out on Intel Xeon processors running
at 2.60 GHz. All running times are measured in cpu-seconds and the time limit
is 1 cpu-hour. In the following, we first present a numerical experience related
to our algorithm FW-BB: we explore the benefits of using the non-monotone line
search and using warmstart alternatives. Then, we present a comparison of FW-BB
with the MIQP and SOCP solver of CPLEX 12.6, for the two cases h(t) = Ωt
and h(t) = t2, respectively. In the latter case, we also used the branch-and-bound
solver B-BB of the open-source optimization software package Bonmin 1.8.1 for
comparison. Finally, we report some numerical tests on a different risk-adjusted
function.

7.3.1 Non-monotone Line Search and Warmstarts

The Algorithm 18 that we have devised in Section 7.1 uses a non-monotone line
search and in our implementation of FW-BB we set nm = 1. In order to show
the benefits of the non-monotone version of FW-BB we report in Table 7.1 the
comparison between the non-monotone version (NM-FW-BB) and the monotone one
(M-FW-BB). The comparison is made on the pure integer instances with h(t) = Ωt
and as a budget constraint we chose a>x ≤ b3, where b3. In Table 7.1 we report,
for each dimension, the number of instances solved within the time limit (#),
the average running times (time), the average numbers of the branch-and-bound
nodes (nodes) and the average numbers of iterations of FW in each node of the
enumeration tree (it). By considering the non-monotone line search, FW-BB is able
to solve more instances and the average number of iterations of Algorithm 18
is almost halved. In order to investigate the benefits of the warmstart choices
(x̃∨ e1), (x̃∨ ep), (x̃∨ eı̂) we run the different versions of FW-BB on the pure and
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Table 7.2: Results for different starting point choices for the pure integer instances

with h(x) =
√

1−0.91
0.91

x and b = b3, running FW-BB.

e1 eı̂ x̃ ∨ e1 x̃ ∨ ep x̃ ∨ eı̂
n # time # time # time # time # time

50 9 92.93 9 81.83 9 20.38 7 2.87 9 16.30
75 7 116.10 7 122.12 9 346.51 5 18.53 10 692.32
100 9 225.19 9 226.23 9 518.65 6 73.85 9 416.47

Table 7.3: Results for different starting point choices for the mixed-integer in-

stances with h(x) =
√

1−0.91
0.91

x and b = b3, running FW-BB.

e1 eı̂ x̃ ∨ e1 x̃ ∨ ep x̃ ∨ eı̂
n # time # time # time # time # time

100 8 1.95 9 23.81 10 38.25 10 3.03 10 5.06
150 9 7.14 9 9.92 9 14.22 10 13.32 9 15.17
200 5 101.29 5 123.24 8 403.14 10 169.84 9 411.50

mixed-integer instances with h(t) = Ωt and as a budget constraint a>x ≤ b3. We
compare the three warmstart possibilities presented to the following alternatives:

(e1): choose at every node e1 = (1, 0, . . . , 0) ∈ Rn−`−1 or

(eı̂): choose at every node eı̂ ∈ Rn−`−1.

In Table 7.2 we show the results related to the five different starting point choices
for the pure integer instances. We can observe that, by choosing (x̃ ∨ eı̂), FW-BB
is able to solve the most instances within the time limit. The alternatives that
do not take into account the parent node are better for instances with n = 100.
By choosing (x̃∨ ep), FW-BB solve the lowest number of instances, but it is faster
with respect to the average running times for the instances solved. In Table 7.3
we show the results related to the five different starting point choices for the
mixed-integer instances. We can observe that the only choice that enables FW-BB
to solve all the instances within the time limit is (x̃∨ ep). Choosing (x̃∨ eı̂) looks
like the second best choice in terms of performance. We also observe that choosing
(x̃ ∨ e1), is better than considering e1 or eı̂ as starting points, highlighting the
benefits from using warmstarts.
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7.3.2 Comparison to CPLEX 12.6 and Bonmin 1.8.1

In this section we present a numerical comparison on instances for h(t) = Ωt
and h(t) = t2. We compare FW-BB with the MIQP and the SOCP solver of
CPLEX 12.6, respectively. In case h(t) = t2, we additionally tested the branch-
and-bound solver B-BB of Bonmin 1.8.1. Concerning FW-BB, we consider the
two non-monotone versions, FW-BB-P and FW-BB-G, using (x̃ ∨ ep) and (x̃ ∨ eı̂),
respectively. We use an absolute optimality tolerance of 10−10 for all algorithms.

Comparison on instances with h(t) = Ωt. In order to compare FW-BB with
CPLEX 12.6, we modeled GCBP as an equivalent mixed-integer second-order cone
program (SOCP):

z := −min
{
y − r>x : a>x ≤ b,Ω

√
x>Mx ≤ y, x ≥ 0, x1, . . . , xn1 ∈ Z+, y ∈ R

}
.

(7.22)

We chose Ω =
√

(1− ε)/ε, where ε ∈ {0.91, 0.95, 0.99}. The value of ε controls
the amount of risk the investor is willing to take. In theory, ε can take any value
in (0,1], where a small value implies a bigger weight on the risk-term and ε = 1
means that the risk is not taken into account. Numerical tests on single instances
showed that any value of ε in (0,0.9] gives the trivial optimal solution zero, i.e.,
not investing anything is the optimal decision for the investor. Therefore, we
restricted our experiments to the three values of ε mentioned above.

The performance of the considered algorithms for the pure integer and the mixed-
integer instances can be found in Table 7.4 and Table 7.5, respectively. The
tables include the following data: numbers of instances solved within the time
limit, average running times, average numbers of branch-and-bound nodes. All
averages are taken over the set of instances solved within the time limit. The
different tables show the computational results for the three different values of
ε and b. From the results we can see that FW-BB suffers with the increasing of
the right hand side b. We can observe that, in the pure integer case, FW-BB-G is
able to solve the most instances within the time limit, while for the mixed-integer
case, it is FW-BB-P that is able to solve the largest number of instances. When
the number of solved instances is the same, both version of FW-BB outperform
the SOCP solver of CPLEX 12.6. We also observe that FW-BB-G is the best in the
pure integer case, while FW-BB-P is the fastest in the mixed-integer case.

In our experiments, we noticed that in some cases FW-BB and CPLEX provide
slightly different minimizers, yielding slightly different optimal objective function
values. While for certain instances the optimal solution of FW-BB is slightly supe-
rior to CPLEX, for other instances it is the other way round. We observed a relative
difference from the best solution of the order of 10−5 and 10−3, respectively for
the pure and the mixed-integer case.
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Table 7.4: Results for the pure integer instances with h(t) =
√

1−ε
ε

t and ε ∈
{0.91, 0.95, 0.99}, running FW-BB-P, FW-BB-P and CPLEX 12.6.

inst FW-BB-P FW-BB-G CPLEX 12.6

n ε b # time nodes # time nodes # time nodes

50 0.91 b1 10 0.10 5.9e+03 10 0.14 6.0e+03 10 3.78 1.4e+04
50 0.91 b2 10 20.24 6.7e+05 10 4.01 2.1e+05 10 720.33 9.2e+05
50 0.91 b3 7 3.30 1.3e+05 9 15.51 7.1e+05 7 532.02 6.4e+05
50 0.95 b1 10 0.08 5.7e+03 10 0.08 5.8e+03 10 0.68 4.0e+03
50 0.95 b2 10 5.25 5.4e+05 10 5.91 5.1e+05 10 501.38 1.3e+06
50 0.95 b3 8 104.49 8.8e+06 10 15.50 5.5e+05 9 483.39 9.5e+05
50 0.99 b1 10 0.03 5.3e+03 10 0.02 5.3e+03 10 0.03 2.4e+02
50 0.99 b2 10 10.62 2.6e+06 10 10.39 2.6e+06 9 0.53 5.5e+03
50 0.99 b3 10 7.71 1.5e+06 10 8.60 1.5e+06 10 14.37 1.7e+05

75 0.91 b1 10 2.13 4.4e+04 10 2.45 4.3e+04 9 270.65 1.8e+05
75 0.91 b2 9 342.27 1.5e+07 10 100.53 3.4e+06 6 1367.35 8.7e+05
75 0.91 b3 5 24.30 5.3e+05 9 582.18 5.3e+06 6 1064.61 1.4e+06
75 0.95 b1 10 0.36 1.9e+04 10 0.34 1.9e+04 10 16.17 3.4e+04
75 0.95 b2 10 3.79 2.4e+05 10 8.95 2.6e+05 9 176.86 3.3e+05
75 0.95 b3 7 97.13 3.7e+05 10 323.10 1.1e+06 7 632.53 7.6e+05
75 0.99 b1 10 0.40 2.7e+04 10 0.38 2.7e+04 10 1.37 5.8e+03
75 0.99 b2 10 2.77 2.5e+05 10 2.68 2.5e+05 10 8.29 8.6e+04
75 0.99 b3 10 1.41 2.2e+04 10 1.45 2.2e+04 10 0.52 4.4e+03

100 0.91 b1 10 10.98 2.5e+05 10 14.03 2.5e+05 6 754.15 5.6e+05
100 0.91 b2 8 16.59 4.7e+05 10 59.60 9.3e+05 4 543.38 4.3e+05
100 0.91 b3 6 94.64 3.7e+06 9 566.18 3.3e+06 4 885.57 9.4e+05
100 0.95 b1 10 6.09 1.1e+05 10 6.59 1.1e+05 9 157.28 1.9e+05
100 0.95 b2 10 18.17 1.6e+06 10 27.56 1.8e+06 10 423.91 4.7e+05
100 0.95 b3 6 85.64 5.6e+05 8 505.27 3.5e+06 5 130.69 1.4e+05
100 0.99 b1 9 0.95 7.8e+04 10 8.65 1.2e+06 9 1.48 1.1e+04
100 0.99 b2 10 4.28 2.2e+05 10 4.24 2.2e+05 10 1.70 1.7e+04
100 0.99 b3 9 11.30 5.2e+05 9 11.70 5.2e+05 10 34.71 1.4e+05

Comparison on instances with h(t) = t2. In this case our Problem GCBP
reduces to a convex quadratic mixed-integer problem, and the objective function
is differentiable everywhere in the feasible set. On Table 7.6 and Table 7.7 we
report the comparison among FW-BB-P, FW-BB-G, the MIQP solver of CPLEX 12.6

and the branch-and-bound solver of Bonmin 1.8.1. We considered Ω = 1. All
the algorithms were able to solve all the instances very quickly. The MIQP solver
of CPLEX 12.6 shows the best cpu-times, although FW-BB is also very fast even
if it enumerates a higher number of nodes. It is not surprising that Bonmin is not
competitive, since it is not tailored for quadratic objective functions.
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Table 7.5: Results for the mixed-integer instances with n1 = bn
2
c and h(t) =√

1−ε
ε
t and ε ∈ {0.91, 0.95, 0.99}, running FW-BB-P, FW-BB-P and CPLEX 12.6.

inst FW-BB-P FW-BB-G CPLEX 12.6

n ε b # time nodes # time nodes # time nodes

100 0.91 b1 10 0.13 5.3e+02 10 0.96 1.6e+03 10 17.00 3.8e+03
100 0.91 b2 10 0.22 7.7e+02 10 0.37 7.3e+02 10 279.15 7.9e+03
100 0.91 b3 10 2.63 4.2e+02 10 4.28 7.0e+02 3 51.01 2.8e+03
100 0.95 b1 10 0.07 2.6e+02 10 0.09 2.6e+02 10 1.89 4.7e+02
100 0.95 b2 10 0.21 3.0e+02 10 0.37 3.2e+02 10 59.10 3.0e+03
100 0.95 b3 10 3.35 5.3e+02 10 4.08 5.9e+02 5 364.90 4.4e+03
100 0.99 b1 10 0.04 1.8e+02 10 0.05 1.8e+02 10 0.15 3.7e+01
100 0.99 b2 10 0.20 7.3e+02 10 0.21 7.6e+02 10 0.70 1.9e+02
100 0.99 b3 10 80.69 7.2e+03 10 168.03 2.7e+04 9 503.62 1.0e+04

150 0.91 b1 10 1.06 2.4e+03 10 8.21 1.1e+04 10 52.53 3.2e+03
150 0.91 b2 9 1.27 1.6e+03 10 294.82 4.9e+04 6 707.94 6.7e+03
150 0.91 b3 10 10.09 1.1e+03 9 12.80 1.3e+03 5 47.32 1.8e+03
150 0.95 b1 10 0.41 1.1e+03 10 0.54 1.1e+03 10 11.49 1.0e+03
150 0.95 b2 10 1.19 1.3e+03 10 21.34 5.8e+03 8 225.78 3.0e+03
150 0.95 b3 10 57.69 7.7e+03 10 142.30 1.2e+04 5 834.79 6.2e+03
150 0.99 b1 10 0.15 2.5e+02 10 0.18 2.6e+02 10 35.08 5.8e+02
150 0.99 b2 10 1.04 4.7e+02 10 1.54 6.2e+02 10 6.69 6.1e+02
150 0.99 b3 10 10.00 1.3e+03 9 10.78 1.4e+03 9 422.15 3.5e+03

200 0.91 b1 10 1.63 3.6e+03 10 8.94 1.2e+04 10 465.62 9.5e+03
200 0.91 b2 9 11.92 5.9e+03 8 65.36 1.8e+04 3 879.46 9.1e+03
200 0.91 b3 10 142.27 1.3e+04 9 349.51 2.7e+04 3 204.92 3.8e+03
200 0.95 b1 10 0.86 1.3e+03 10 1.30 1.4e+03 10 75.50 3.5e+03
200 0.95 b2 10 3.56 2.3e+03 10 5.94 9.9e+02 5 44.64 1.6e+03
200 0.95 b3 9 146.75 1.4e+04 6 16.54 2.4e+03 7 38.77 2.4e+03
200 0.99 b1 10 2.63 1.6e+04 10 2.65 1.6e+04 10 2.44 2.8e+03
200 0.99 b2 10 2.15 4.9e+02 10 5.25 8.3e+02 9 277.08 2.6e+03
200 0.99 b3 10 49.84 6.1e+03 10 168.41 2.2e+04 9 183.80 2.1e+03

Table 7.6: Results for the pure integer instances with h(t) = t2, run-
ning FW-BB-P, FW-BB-G, CPLEX 12.6 and B-BB 1.8.1.

inst FW-BB-P FW-BB-G CPLEX 12.6 B-BB 1.8.1

n b time nodes time nodes time nodes time nodes

50 b1 0.02 1.7e+03 0.01 1.7e+03 0.02 3.3e+01 2.05 72
50 b2 0.03 1.9e+03 0.01 1.9e+03 0.01 6.1e+01 3.16 119
50 b3 0.05 1.9e+03 0.05 1.9e+03 0.02 5.8e+01 3.70 151
75 b1 0.12 9.4e+03 0.12 9.4e+03 0.03 7.5e+01 7.31 174
75 b2 0.13 5.6e+03 0.14 5.6e+03 0.03 6.1+e01 5.41 98
75 b3 0.22 5.4e+03 0.22 5.4e+03 0.03 7.3e+01 6.29 129
100 b1 0.24 9.6e+03 0.24 9.4e+03 0.05 9.8e+01 14.44 195
100 b2 0.28 8.3e+03 0.29 8.3e+03 0.05 8.8e+01 15.93 206
100 b3 1.27 3.9e+04 1.27 3.9e+04 0.04 6.6e+01 13.04 143
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Table 7.7: Results for the mixed-integer instances with n1 = bn
2
c and h(t) = t2,

running FW-BB-P, FW-BB-G, CPLEX 12.6 and B-BB 1.8.1.

inst FW-BB-P FW-BB-G CPLEX 12.6 B-BB 1.8.1

n b time nodes time nodes time nodes time nodes

100 b1 0.07 4.1e+02 0.07 4.1e+02 0.04 1.1e+01 2.69 17
100 b2 0.08 6.4e+02 0.09 6.4e+02 0.03 1.6e+01 3.01 28
100 b3 0.33 9.3e+02 0.33 9.3e+02 0.03 2.6e+01 4.28 44
150 b1 0.21 7.6e+02 0.22 7.6e+02 0.06 1.9e+01 13.96 53
150 b2 0.29 9.7e+02 0.29 9.6e+02 0.06 2.1e+01 23.57 69
150 b3 0.33 8.5e+02 0.34 8.5e+02 0.06 9.9e+00 17.92 30
200 b1 0.79 3.3e+03 0.79 3.3e+03 0.11 2.1e+01 75.33 173
200 b2 1.60 5.2e+03 1.65 5.2e+03 0.11 1.9e+01 80.79 101
200 b3 0.70 1.5e+03 0.72 1.5e+03 0.12 2.4e+01 90.56 122

7.3.3 Using a Different Risk-adjusted Function

As a further experiment, we tested the pure integer instances considering a dif-
ferent risk-adjusted function hexp : R+ → R, namely

hexp(t) =

{
0 t ≤ γ

exp(t− γ)− (t− γ + 1) t > γ,

so that the investor’s risk-aversion increases exponentially in the magnitude of
the risk.

In Table 7.8, we report the results of FW-BB-G, considering three different values
for the parameter γ, namely γ ∈ {0, 1, 10}. We observe that for γ = 0 and γ = 1,
FW-BB-G is able to solve all the instances within the time limit and that the bigger
the γ the more difficult are the instances for FW-BB-G.

In order to have an idea of how the risk-adjusted function influences the results in
terms of objective function value, we report in Table 7.9 the results obtained on a
pure integer instance of dimension n = 50, under the constraint a>x ≤ b1. In the
table we report, for each risk-adjusted function h(t), depending on a specific risk
parameter (risk-par), the value of the objective function obtained (f ?), the value
of the return term in the objective function (r>x?), the number of the non-zero
entries in the optimal solution (|supp(x)|) and the infinity norm of the optimal
solution (‖x?‖∞). We notice that the lowest value for the objective function value
and the return is obtained by considering h(t) = t2. Concerning the linear risk-
adjusted function h(t) = Ω t, we can observe that we get higher returns for higher
values of ε. For what concerns the risk-adjusted function hexp(t), we can observe
that we get higher returns the higher is the value of γ. Both of these behaviors
suggest that the more risk the investor is willing to take, the better can be the
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Table 7.8: Results for the pure integer instances with h(t) = h̃(t) and γ ∈
{0, 1, 10}, running FW-BB-G.

inst γ = 0 γ = 1 γ = 10
n b # time nodes # time nodes # time nodes

50 b1 10 0.05 2.2e+03 10 0.64 1.3e+04 10 0.04 2.1e+03
50 b2 10 0.04 1.0e+03 10 0.20 4.0e+03 8 33.25 6.2e+05
50 b3 10 0.10 1.3e+03 10 2.31 2.0e+04 7 211.84 1.6e+05
75 b1 10 0.20 4.5e+03 10 5.31 1.0e+05 9 37.38 4.8e+04
75 b2 10 0.13 2.1e+03 10 1.38 2.2e+04 3 21.66 3.4e+05
75 b3 10 0.47 5.9e+03 10 5.83 1.9e+04 5 441.38 1.9e+05
100 b1 10 0.37 6.9e+03 10 17.72 3.0e+05 7 228.46 2.5e+06
100 b2 10 0.54 5.4e+03 10 4.14 2.0e+04 6 176.83 7.1e+04
100 b3 10 3.06 1.4e+04 10 32.37 5.0e+04 5 1352.24 5.3e+05

Table 7.9: Results for one instance with n = 50, b = b3 and different risk-functions,
running FW-BB-G.

model solution characteristics
h(t) risk-par f(x?) r>x? ||x?||∞ |supp(x?)|
Ωt ε = 0.91 -0.05684 -0.3438 14 10
Ωt ε = 0.95 -0.15883 -0.5471 28 9
Ωt ε = 0.99 -1.76778 -4.8224 613 2
Ωt2 Ω = 1 -0.03672 -0.0784 2 9

h̃(t) γ = 0 -0.06768 -0.1311 4 11

h̃(t) γ = 1 -0.40489 -0.4341 20 10

h̃(t) γ = 10 -2.03201 -2.0429 158 3

h(t) = Ω t
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Figure 7.2: Contour plots of f = h(
√
x>Mx) − r>x for different risk-adjusted

functions.
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return he gets. Furthermore, we observe a smaller number of non-zero components
in the optimal solution x?, as well as a higher value of the infinity norm of x? if
the investor is becoming less risk-averse. A possible explanation is that allowing
more risk results in a less diversified portfolio. In Figure 7.2, we show the contour
plots for different risk-adjusted functions h(t).

7.4 Conclusion

In this chapter we have designed a new branch-and-bound algorithm for con-
vex mixed-integer minimization problems. Its effectiveness relies on the rapid
enumeration of the search tree and combines ideas of early pruning, warmstart
features and quick incremental computations. The branch-and-bound algorithm
has been tested on a set of real-world instances for the capital budgeting problem.
Different risk-adjusted functions have been modeled and considered. Experimen-
tal results show that the approach proposed significantly outperforms the SOCP
solver of CPLEX 12.6 for instances where a linear risk-adjusted function is con-
sidered. In particular, the results also confirm the remarkable benefits of the
non-monotone Frank-Wolfe version to solve the node relaxations.



Summary and Outlook

This thesis deals with exact algorithms for convex mixed-integer nonlinear op-
timization problems. We proposed three branch-and-bound algorithms that all
follow and extend the same ideas of the basic branch-and-bound scheme pro-
posed by Buchheim et al. for the solution of box-constrained convex mixed-integer
programming problems. The latter algorithm was designed to give a quick enu-
meration of the nodes rather than computing strong dual bounds. To process
each node as fast as possible, we focused on special tailored algorithms from
nonlinear programming to compute the dual bounds effectively. In many cases
a reengineering of the basic algorithms leads to good overall performance of the
branch-and-bound algorithms.

After introducing the basics of nonlinear and integer programming, we sum-
marized the most relevant algorithmic and theoretical advances in the form of
an overview of existing solution methods and software for convex mixed-integer
nonlinear programming problems in Chapter 3. Based on the branch-and-bound
scheme for convex quadratic mixed-integer programming problems in Chapter 4,
we proposed the branch-and-bound algorithm FAST-MIQPA-BB using a specialized
active set method for the solution of convex mixed-integer quadratic minimization
problems with linear inequalities in Chapter 5. While common QP-based branch-
and-bound algorithms tackle this problem by simply solving the QP relaxation
in the nodes, we addressed the problem of computing dual bounds by solving the
dual problems of the QP relaxations. This approach has the big advantage that
valid lower bounds are automatically generated as long as feasibility is obtained,
even if the problem is solved only approximately. In many cases an approximate
solution was already sufficient to prune the node such that the average running
per node reduced considerably. The dual problem was solved by the specialized
active set algorithm FAST-QPA that fully exploited the structure of the underlying
quadratic program. As a third key component, we focused on warmstart proce-
dures to decrease the average running times per node. Exploiting the fact that
the node relaxations are highly related to each other in the sense that they have
the same form and differ only slightly in the problem data, we took over the node
solutions from the parent node as a starting point for our active set algorithm.
Our experiments on randomly generated instances showed that our algorithm is

143
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very competitive to the state-of-the art MIQP solver of CPLEX 12.6 in case the
number of linear inequalities is moderate.

The second branch-and-bound algorithm was used within the quadratic outer ap-
proximation scheme of Chapter 6 to solve box-constrained convex mixed-integer
minimization problems. We introduced an extension of the classical linear outer
approximation that uses quadratic underestimators instead of linearizations. In
every iteration a modified version of our branch-and-bound scheme is used to solve
a box-constrained convex mixed-integer quadratic problem within the quadratic
outer approximation scheme. The surrogate problems have been tackled by a de-
composition approach that reduced the convex linearly constrained mixed-integer
nonlinear programming problem to a series of unconstrained problems of the
same form. It turned out that the quadratic underestimators have the potential
to approximate the original objective function much better than the standard
supporting hyperplanes, yielding a faster convergence. The disadvantage of the
additional computational effort of minimizing a piecewise convex quadratic func-
tion instead of a piecewise linear function was faced by requiring the quadratic
underestimators to have the same Hessian. This allowed us to reduce the problem
to a sequence of convex mixed-integer quadratic minimization problems that can
be solved effectively by our common branch-and-bound framework. For a class of
exponential functions, it turned out that the usage of quadratic outer approxi-
mation is useful. In numerical experiments we showed that the scheme is superior
to B-BB, one of the state-of-the art branch-and-bound solvers for general convex
mixed-integer problems.

In Chapter 7, we showed the potential of quick branch-and-bound schemes to
solve real-world applications. We considered a generalized version of the classic
mean-variance capital budgeting problem and proposed a modified Frank-Wolfe
type algorithm to compute the dual bounds. Using several improvements, we
were able to quickly find optimal solutions. Applying it to real-world capital
market indices, taken from historical Standard and Poor’s indices, we could solve
pure integer instances with up to 100 variables within a time limit of one hour.
Comparing it to CPLEX 12.6 and Bonmin 1.8.1 confirmed the effectiveness of
our approach.

Based on the results of this thesis, we want to suggest possible research directions.
First of all, it is worth to analyze to which classes of general convex mixed-integer
programming problems the dual bound computation approach of FAST-QPA-BB

can be adapted. This is not straightforward because of mainly two reasons. The
first one is that the computation of the dual relaxations requires a suitable al-
gorithm. Since the dual problem is a bound-constrained nonlinear problem (see
Section 2.3), one possibility is to use the tailored feasible active set method by
De Santis et al. [65]. This algorithm is a generalization of FAST-QPA and seems
therefore promising to provide good results. The more difficult reason is due to
the crucial task of recovering the primal solution from the dual. In fact, this is
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not always possible by a closed formula and in general requires the solution of
a system of nonlinear equations. In case of MIQP this was straightforward since
the stationarity condition of the KKT-system is a system of linear equations.

Moreover, our elementary work on the quadratic outer approximation scheme
leads to several natural and possible improvements. First of all, we need to figure
out how the quadratic underestimator can be chosen automatically to use it in
practice. One possibility is to study results on the estimation of the eigenvalues of
the hessian. For example in case Q is an interval matrix one might use techniques
inspired by the ideas of Adjiman et al. used in the design of the solver α-BB [4, 5]
to automatically generate valid convex underestimators. Besides this key ques-
tions, there are two main directions to study. It would be interesting to generalize
our quadratic outer approximation scheme to general constrained convex mixed-
integer optimization problems by also outer approximating the feasible region by
supporting quadratic functions instead of hyperplanes. This would lead to an-
other challenging task of designing an algorithm that can handle the underlying
mixed-integer quadratically constrained quadratic problems for solving the sub-
problems. Alternatively, a penalty approach might be used to reduce the problem
to an unconstrained problem since a convex differentiable penalty term would not
affect the validity of the quadratic underestimator. A first generalization could be
the investigation of linear inequalities. Another idea is to study ways of discarding
underestimators in the case they are not needed in the current iteration, since
the number of active underestimators plays a crucial role for the overall running
time. Finally, a novel approach would be to use non-convex quadratic underes-
timators. The resulting surrogate problem then becomes a non-convex quadratic
mixed-integer problem that can be handled for example by the exact algorithm
of Buchheim et al. [44].

Concerning the results of Chapter 7, it seems promising to enhance the Frank-
Wolfe method to handle general nonlinear convex objective functions. Thus, we
would get a powerful algorithm for handling convex mixed-integer nonlinear pro-
gramming problems. Finally it would be interesting to apply our branch-and-
bound scheme to further applications, especially real-world problems that can be
modeled as convex MINLP problems with one linear constraint.
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