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Chapter 1

Introduction

In the year 1982 Richard P. Feynman asked the question wether a classical computer
can simulate the physics of quantum mechanical systems efficiently [11]. Since the
Hilbert space dimension of a quantum system containing interacting particles grows
exponentially, he came to the conclusion that the boundaries of classical machines will
be exceeded rapidly. E.g. for a system of N spin−1/2 particles, the Hilbert space di-
mension is given by D = 2N and even storing one complex number for each degree of
freedom is not managable for a couple of hundred spins. This led Feynman to the con-
jecture that a suitable quantum computing device might be the most adequate option
to simulate quantum dynamics efficiently. In the past couple of decades the vision of
such a quantum computer has been subject of various research. As an important confir-
mation of Feynman’s conjecture, Bernstein and Vazirani [22] have, based on a quantum
mechanical Turing machine, presented the first proof that a quantum computer is ca-
pable of simulating other quantum systems in polynomial instead of exponential time.
Also a variety of algorithms, that can be implemented more efficiently on a quantum
than on a classical computer, have been put forward [33, 44, 55]. The most prominent of
these algorithms is the integer factorization by Shor [66, 77].

With various possible applications of quantum computers around [88], dealing with
the obstacles of their realization is unevitable. David DiVincenzo has summarized five
requirements [99] for the successful implementation of a quantum computing device,
which will not be reviewed in detail here. Of course the central building block of a
quantum computer are quantum bits (qubits), which can be represented by any quan-
tum mechanical two level system. Several possible realizations of such qubits have
been introduced in the past, including nitrogen-vacancy centers in diamond [1010, 1111],
nuclear spins of molecules in liquids [1212, 1313], 31phosphorus impurities in silicon [1414]
and superconducting circuits [1515, 1616, 1717]. The proposal constituting the basis of this
work, is the realization of qubits via the spin of electrons or holes that are confined
in semiconductor quantum dots (QDs) [1818, 1919, 2020]. All of the mentioned approaches
feature different advantages and drawbacks. While the realization of qubits in semi-
conductor QDs is a promising candidate [2121, 2222, 2323, 2424, 2525] for quantum computing,
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2 Chapter 1. Introduction

its main problem is the coherence time of the confined spins, which is short compared
to other realizations. The scope of this work is the detailed investigation of spin deco-
herence in such semiconductor QD devices, because an in-depth understanding of the
underlying physical mechanisms is the first step to overcome the arising obstacles.

The Fermi contact hyperfine interaction [2626] is the dominant mechanism influencing
the dynamics of electron spins confined in semiconductor QDs [2727, 2828]. The isotropic
central spin model [2929] is usually applied to account for the Fermi contact interaction
in theoretical modelings. It consists of one central spin (the electron spin) that interacts
with a large bath of spins (of the nuclei forming the QD). The bath spins are not cou-
pled to each other. Due to its relevance for quantum information processing, the central
spin model (CSM) has been subject of numerous investigations in the past two decades.
The applied methods involve several analytical and numerical approaches. Although
exact approaches [1919] for the analytical investigation of the model exist, the majority
of analytical claims relies on a semi classical treatment of the problem [2727, 3030, 3131]. The
variety of numerical studies of the central spin model is manifold. With respect to the
model’s integrability [2929], its exact Bethe Ansatz solution has been evaluated and dis-
cussed exactly [3232, 3333, 3434, 3535] and stochastically [3636, 3737], but due to the sophisticated
character of the Bethe Ansatz equations these studies were limited to certain initial
conditions and bath sizes below 50 spins. A recent time dependent density matrix
renormalization group (TD-DMRG) approach to the model [3838, 3939] managed to push
the number of fully quantum mechanically treatable spins to 1000, but is quite lim-
ited in its accessible timescales. In certain regimes of the CSM, a perturbative claim
is well justified [4040] and several master equation approaches for its treatment have
been proposed [4141, 4242, 4343]. The success of the semi classical, analytic solution [2727],
concerning the model’s short time dynamics, has justified its semi classical treatment
and entailed numerous numerical quasi static approximations [4444, 4545, 4646, 4747, 4848, 4949].
Besides these approaches for the solution of the isotropic CSM, a cluster expansion has
been proposed [5050, 5151, 5252, 5353], that relies on the separation of the system into smaller
pieces that are treatable on short timescales. As the perturbative methods, the cluster
expansion works reliably in certain regimes of the CSM, but lacks general validity. In
defiance of the large variety of applied methods, the spin dynamics within the isotropic
central spin model is not fully understood until the present day and will be revisited
and discussed in detail within this work.

While the case of electrons confined in semiconductor QDs has been subject of nu-
merous theoretical investigations, hole spins have not been studied nearly as inten-
sively in the past. Instead of the Fermi contact interaction, a dipole-dipole like inter-
action between the confined spin and the nuclear spins of the QD is crucial for the
hyperfine interaction of holes. This dipole-dipole mechanism acts significantly differ-
ent when considering light or heavy hole spins. While some studies were limited to
the latter case [5454, 5555], Testelin et al. [5656] have demonstrated that both hole species
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can be casted into the anisotropic CSM and have discussed an analytic semi classical
treatment of the model. Beside further numerical studies of the semi classical pic-
ture [5757], no investigations concerning the hole doped case exist up to our knowledge.
This leaves a detailed discussion on a quantum mechanical level as an open topic.
There is experimental evidence [5858, 5959, 6060, 6161, 6262] that solely considering the hyper-
fine interaction for electrons and holes yields an incomplete picture of the measured
spin dynamics. Namely, similar decoherence times were observed, while the hyper-
fine interaction alone implies a larger lifetime for holes than for electrons. It has been
proposed [6363] that this mismatch stems from the coupling of the nuclei to electric field
gradients (EFGs) occuring throughout the QDs.

The central goal of this work is to develop a fully quantum mechanical theory, that
covers the real time dynamics of electron and hole spins confined in semiconductor
QDs. To substantiate the adequacy of the theory, we will compare it to various recent
measurements on InGaAs QDs [5959, 6262, 6464, 6565] and demonstrate that all the experimen-
tal results are in agreement with the established theory, although their findings appear
to be contradictory on first sight. With this central goal in mind, this work is structured
as follows.

First, the basics of the referenced experiments are discussed. This includes a de-
scription of the production process and some properties of self-assembled ensembles
of semiconductor QDs, which are the most commonly studied samples with in the
addressed experiments. We aim at the investigation of two types of measurements
concerning the real time spin dynamics of holes or electrons confined in QDs: (i) pump-
probe experiments and (ii) spin noise measurements. The basic ideas and techniques
of these two approaches will be reviewed briefly.

Second, the theoretical modeling of the dominant interactions influencing electrons
or holes confined in semiconductor QDs will be discussed in detail. In this context the
isotropic and anisotropic CSM, which account for the hyperfine interaction influencing
electron and hole spins, will be introduced including a short review of their derivation
and a realistic model for the entering coupling constants based on the QD geometry
will be presented. In prior quantum mechanical studies [1919, 3232, 3636, 3939] of the CSM a
realistic treatment of these coupling constants has not been applied and instead sim-
plified assumptions have been considered, while we will demonstrate that their choice
is crucial for the obtained spin dynamics. We will enhance the CSM by the coupling
of the nuclei’s quadrupole moment to EFGs throughout the sample and discuss details
of the QD’s properties influencing the central spin dynamics. The discussion of the in-
vestigated model will be completed by introducing the quantity of interest and central
properties of the model under study.

Third, the Chebyshev polynomial expansion technique (CET), which is the central
numerical tool of this work, will be introduced. While it is originally [6666] a numer-
ical method for the propagation of a single quantum state in time, we will discuss
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its enhancement to the evaluation of expectation values and the direct calculation of
spectral information. For this sake several numerical obstacles need to be treated and
benchmarks of the method will be presented. In this context a simplified version of the
isotropic CSM, namely the box model, will be discussed in detail.

The core results of this work are divided into four chapters, of which three are en-
tirely based on the CET and various analytical approaches to the model under study.
In the fourth chapter, which is the only one that is not directly addressing recent exper-
iments, an approach for the realization of a time dependent numerical renormalization
group (TD-NRG) [6767, 6868, 6969] treatment of the isotropic central spin problem is pre-
sented. The remainder three chapters are organized as follows. The most prominent
special case of the introduced model is the isotropic CSM accounting for the Fermi con-
tact hyperfine interaction, that dominates the spin dynamics of electrons. It is treated
in detail in the first of the following chapters, where the numerical results obtained via
the CET are compared to various analytical estimates and their agreement to recent
experimental findings in a certain regime is illustrated as well as their disagreement in
other regimes. After considering a possible implementation of a TD-NRG procedure
for the isotropic CSM, the hole spin dynamics within the anisotropic CSM is discussed.
The special cases of heavy and light holes are considered as well as heavy and light
hole mixing. Namely, a crossover behavior between the two extreme cases will be il-
lustrated and quantified. On top of that, we will demonstrate that the anisotropic CSM
is insufficient to reproduce experimentally measured spin noise spectra.

Finally, the influence of the nuclei’s quadrupolar couplings (QCs) will be investigated
in detail. While the influence of various QD properties onto the resulting central spin
dynamics will be initially discussed in general, the scope of the final chapter is to
demonstrate the accordance between the presented theory and various experiments
on InGaAs QDs. The assumed physical properties of these dots are based on recent
microscopic studies [7070, 7171] and due to the preparatory general discussions, our theory
is capable of predicting the spin dynamics in other materials than InGaAs if certain
properties of the QDs are known.



Chapter 2

Experimental background

Since this theoretical work is closely related to recent experiments concerning spin
noise in semiconductor QDs, we will briefly discuss some of the basic technologies that
are related to this type of investigation. The majority of the addressed experiments have
been performed on self-assembled ensembles of semiconductor QDs. Accordingly,
some details of the production process and the properties for this type of sample will be
discussed initially. The most common approach to the measurement of spin dynamics
in QDs is probably the pump-probe technique, which is, in contrast to spin noise
measurements, an invasive method. Although our focus is on the discussion of spin
noise experiments, we will argue in section 3.33.3 that these two approaches are expected
to yield the same physical information of the underlying system and accordingly we
will briefly introduce the basics of both methods. Note that a large variety of materials,
like Si, CdSe, CdTe, AlGaAs for instance, is on the market, but as proof of principle for
our theory we will focus its comparison on experiments on In(Ga)As QDs.

2.1 Semiconductor quantum dots

Most of the investigated QD samples that will be addressed within this work, have
been grown via molecular beam epitaxy (MBE) based on the Stranski-Krastanov-mode
[7272, 7373]. Although several different growth procedures, like the more recent stacked
submonolayer growth for instance [7474], exist, we restrict the following discussions to
the widely applied Stranski-Krastanov-method and the special case of InAs/GaAs QDs
for brevity. The basic idea is to deposit InAs on top of a GaAs substrate, which is tech-
nically realized by MBE, and due to the lattice mismatch [7575] of the two materials strain
occurs. This strain is on the one hand responsible for the formation of small (few tens
of nanometer diameter) InAs islands, i.e. the QDs, and on the other hand it influences
the electronic structure within semiconductor QDs, entailing electric field gradients
(EFGs). These EFGs are of crucial importance for the studies of this work and will
be discussed in greater detail below. Figure 2.12.1 contains depictions of self-assembled
InAs QDs grown via MBE. The excellent resolution of the left picture [7676] reveals the

5



6 Chapter 2. Experimental background

Figure 2.1: The left panel shows an atomically resolved picture of an InAs QD. It has been
published in reference [7676]. The right panel (picture from [7777]) depicts different
ensembles of InAs QDs grown on GaAs substrates. By varying the InAs deposition
the density of the arising QDs can be well controlled.

detailed structure of an individual dot. The right panel [7777] demonstrates how the den-
sity of QDs in an ensemble can be controlled by varying the InAs deposition within the
MBE. On top of that, the right panel of figure 2.12.1 reflects the random character of the
growth process. Beside the clearly resolved random positioning of the individual dots,
it is important to note that also some physical properties, as their characteristic length
scale for instance, is varying among the ensemble. We will come back to this aspect in
context of the theoretical modeling of a self-assembled QD ensemble.

After the In(Ga)As QDs have been grown on the GaAs substrate, several further
monolayers of GaAs are grown on top of the sample. I.e. finally the In(Ga)As film
containing the QDs is fully surrounded by GaAs. While the lattice constant of In(Ga)As
is approximately 7 % larger than the one of GaAs, its energy gap, which is sketched
in k-space in the left panel of figure 2.22.2, is significantly smaller [7878]. Therefore an
individual In(Ga)As QD surrounded by GaAs serves as a potential well, as sketched in
one dimension in the right panel of figure 2.22.2, that can be used as confinement potential
trapping an individual electron (or hole). The resulting spatial confinement reduces
the particle’s interaction with the substrate and along with this electronic decoherence
mechanisms are suppressed. At the same time the hyperfine interaction of the confined
particle with the nuclei forming the QD is enhanced and becomes the main source of
decoherence which will be intensively discussed throughout this work. Note that, due
to their discrete energy levels that can be populated by the confined particles, QDs are
often referred to as artificial atoms.

If an otherwise charge neutral QD is populated by a single electron (hole), it is called
n-doped (p-doped). Exemplarily, one possibility to realize an ensemble of n-doped
In(Ga)As QDs is to grow a doping layer, e.g. consisting of Si, in a distance of ≈ 20 nm
to the QDs, i.e. underneath the substrate. Electrons from this doping layer can tunnel
into the QDs and on average one electron will be trapped permanently in each dot
[7575]. Another important aspect of the QD fabrication process is the so called annealing
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E

khh
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cb

Figure 2.2: In the left panel a sketch of the band structure of a direct semiconductor near its
band gap is presented. The acronyms hh and lh account for heavy and light holes.
In the right panel the spatial band structure of an In(Ga)As/GaAs QD is depicted.
Only the relevant bands for our present studies are shown.

[7979, 8080]. During this procedure the above described sample is purposefully heated
and as a consequence the QD partially diffuses into the substrate and vice versa. This
technique is used to influence the physical properties of the QDs selectively. With
the basic knowledge of QD fabrication and properties in mind, let us now turn to the
description of the experimental realization of spin dynamic measurements.

2.2 Measurement of spin dynamics in semiconductor QDs

The spin dynamics of particles confined in semiconductor QDs is widely studied using
the pump-probe technique [8181, 8282, 8383, 8484]. While it is often applied to investigate
the free time evolution of initially polarized spins, pump protocols can be applied
to the sample under study, revealing a lot of further interesting physical effects and
details [8585, 8686, 8787, 8888]. However, our investigations concern the equilibrium dynamics
of electrons or holes trapped in semiconductor QDs. The measurement of spin noise
represents, in contrast to the pum-probe procedure, a non-invasive approach to study
the addressed spin dynamics in thermal equilibrium [5959, 6464, 8989, 9090, 9191]. Both mentioned
experimental methods are entirely based on optical excitation and detection. In the
following we will briefly review the main aspects of their realization.

2.2.1 Pump-probe experiments

The name of the pump-probe technique stems from its composition: first, a pump
beam is applied to induce a collective orientation of the spins in the studied sample
and second, after a well defined delay time ∆t a probe beam is applied to read out
the remaining total polarization. The experimental setup for such a measurement is
sketched in the left panel of figure 2.32.3. As indicated in the figure, the pump beam has
to be polarized circularly to induce a collective orientation of the confined particles.
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The right panel of figure 2.32.3 needs to be considered to understand the optical po-
larization mechanism within an ensemble of, e.g. n-doped, semiconductor QDs. The
energy of the probe beam is adjusted such that only excitations from the heavy or
light hole band (see left panel of figure 2.22.2) into the lowest lying state of the conduc-
tion band are allowed. The resulting six level problem is depicted in figure 2.32.3 (b).
The circularly polarized light can either carry the total angular momentum +1 or −1,
which is denoted as σ±. As shown in the stated panel, each type of circular light can
induce two transitions from the valence into the conduction band. In the following
discussion, we exemplarily restrict ourselves to the case σ+. Then, one photon can
only excite one valence electron with spin −3/2 (from the hh band) into a spin −1/2
conduction electron or one spin −1/2 valence electron (from the lh band) into a spin
+1/2 conduction band electron. As indicated in the figure, the latter excitation occurs
a factor of 3 less frequent and as a consequence more spin −1/2 electrons are excited
by a σ+ pulse. Since the excitation of a spin −3/2 electron from the valence into the
conduction band leaves behind a hole with spin +3/2 and the lowest conduction band
state is permanently occupied by the resident electron, whose spin has to be oriented
opposingly to the excited electron, the optical excitation leaves behind three particles,
forming a so called trion. Due to a high recombination rate of the hole and the excited
electron [9292], the trion decays on a very short timescale, leaving behind the polarized
resident electron with spin +1/2. The polarization process using σ− photons works
accordingly.

Figure 2.3: The left panel, which has been extracted from reference [9393], presents a sketch
of the experimental setup for a pump-probe experiment in Voigt-geometry. The
right panel is based on reference [9494] and shows the optical transitions that are
important for the polarization mechanism of an n-doped QD ensemble. The sym-
bols σ± refer to the circular polarization of the applied pump beam and the added
numbers indicate the relative frequency of the different transitions.

After the orientation of the electron spins has been performed, the sample spins
evolve freely for the time interval ∆t. Then, the probe pulse is applied, which is polar-
ized linearly in a well controlled direction. Due to the spins of the optically oriented
electrons, a magnetization arises within the studied sample. This magnetization of the
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semiconductor material induces a rotation of the light’s polarization axis due to the
Faraday effect [9494, 9595]. The experimentally accessible rotation angle θF is proportional
to the total magnetization and consequently to the spin orientation. I.e. by build-
ing a variable delay line for the probe beam, the real time spin dynamics in n-doped
semiconductor QDs can be observed via the described pump-probe method.

2.2.2 Measurement of spin noise

The measurement of spin noise is an alternative approach to gain insight into the spin
dynamics of doped semiconductor QDs. In contrast to the pump-probe technique, it
is a non-invasive method. I.e. the dynamics of the sample under study is measured in
thermal equilibrium and ideally no excitations are induced at any time. The basic setup
for a spin noise experiment corresponds to a pump-probe setup, where only a linearly
polarized probe beam is applied to the sample and the occuring Faraday rotation angle
is measured. Since only a very weak magnetization due to spin fluctuations is present
in the sample, the magnitude of the signal in a spin noise measurement is a lot smaller
than in a pump-probe experiment. On top of that, a small probe beam intensity, which
is unevitable in a spin noise measurement to avoid unpleasant excitations, also entails
a small signal and makes a reliable detection of spin noise even more challenging.

In the real time domain a spin noise measurement yields, as indicated by its name, a
noisy signal, which barely reveals useful information. Thus, a Fourier transformation is
applied to the real time measurement and from the obtained spectral function insight
into the physical properties of the underlying sample is gained. As we will argue in
section 3.33.3, the investigation of spin noise yields, at least in the limit of high tempera-
ture, the same information as a pump-probe measurement, but in contrast to the latter
technique a spin noise measurement is not influenced by the above stated trion decay,
which might adulterate the pure spin dynamics.

We stress that there are further details that have to be considered for the realization
of a spin noise or pump-probe experiment, but their understanding on the discussed
level is sufficient in the context of the following theoretical investigations.





Chapter 3

Model

The central step to establish an adequate theory for the spin dynamics of electrons or
holes confined in semiconductor QDs is the derivation of a model that covers all the
important physical properties of the system under study. The goals of the chapter at
hand are (i) to derive a model Hamiltonian H that includes the most relevant interac-
tions influencing the investigated spin dynamics, (ii) to introduce realistic choices of
the parameters entering the theory and (iii) to discuss basic properties of the derived
Hamiltonian. Finally the quantity of interest, that corresponds to the experimentally
measured Faraday or Kerr rotation angles, will be defined in the last section. Let us
forestall that the full Hamiltonian has the form

H = HCSM + HQ, (3.1)

where HQ involves the influence of electric field gradients (EFGs) that couple to the
quadrupole moment of the individual nuclei forming a QD and HCSM contains an
externally applied magnetic field and the hyperfine interaction, which will be discussed
in detail in the following section.

3.1 The anisotropic central spin model (CSM)

In this section the Hamiltonian HCSM is introduced. It describes the dominant inter-
action for the spin dynamics of both electrons and holes confined in a semiconductor
quantum dot. The fact that these two cases of doping can be included in a single
model Hamiltonian is noticable, since for electrons the Fermi contact hyperfine inter-
action and for holes a dipole-dipole like interaction is crucial. In the following the
derivation of the full anisotropic CSM is briefly summarized.

3.1.1 Fermi contact hyperfine interaction

E. Fermi has presented [2626] a perturbative approach to deduce the hyperfine splitting
of a nucleus interacting with an electron, where the electron is considered as a rela-

11



12 Chapter 3. Model

tivistic particle while the nucleus is treated non-relativistically. In the literature [9696]
an alternative derivation is presented, that relies on the non-relativistic treatment of
the interaction between the electron’s spin ~S and the magnetic moment ~µ of a single
nucleus. Since this derivation also provides the dipole-dipole Hamiltonian that is cru-
cial for the description of hole spins, it is briefly summarized in the following and for
further details the reader is referred to the original literature [9696]. Introducing the spin
operator ~I of the nucleus and its gyromagnetic ratio γ = µ

|~I| =: µ
I , the Hamiltonian

of an electron (or hole) in the magnetic field of a single nucleus can, in first order
perturbation theory, be written as

He-n = 2µBγ
~l ·~I

r3 + 2µBγ~S · rot

(
rot

(
~I
r

))
, (3.2)

where µB denotes Bohr’s magneton, r is the position operator and ~l is the orbital
angular momentum operator. After some considerations concerning the behavior of
He-n for r → 0, the Hamiltonian (3.23.2) might be rewritten as

He-n = 2µBγ~I ·
(
~l
r3 −

~S
r3 + 3

~r · (~S ·~r)
r5 +

8
3

π~Sδ(~r)

)
. (3.3)

The second and third term represent the usual dipole-dipole interaction and the last
term, that only contributes for s-type orbitals, is the Fermi contact hyperfine contact
interaction. On top of that setting l = 0 causes the first three terms to yield no distri-
bution, i.e. solely the last term contributes in this case. Electrons confined in semicon-
ductor QDs are described by s-type Bloch functions and as a consequence the fermi
contact hyperfine interaction is crucial for n-doped QDs. Taking into account that the
confined electron interacts with a number of N nuclei instead of a single one, we can
rewrite the contact hyperfine term for an n-doped QD as

He-d =
16πµB

3

N

∑
k=1

µk
Ik

(
~S · ~Ik

)
δ(~r− ~Rk). (3.4)

~Rk and ~r denote the position of the k-th nucleus and the electron. Since the energy
splitting between two levels of the electrons under study is a lot larger than the en-
ergy scale of the hyperfine interaction, the Hamiltonian of an electron confined in a
semiconductor QD can be written as [2727]

Hhf-contact =
N

∑
k=1

Jk
~S ·~Ik, (3.5)

Jk =
16πµBµ

3I

∣∣∣ψe(~Rk)
∣∣∣2 , (3.6)
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where ψe(~Rk) is the value of the electron wave function at the k-th nucleus. Note that
we assume identical nuclei, i.e. an identical magnetic moment µ and spin I for all
bath spins in the system, which is an approximation. For example in an InGaAs QD
the nuclei of Ga and As both fullfill I = 3/2, while the In atoms carry spin I = 9/2
[5656]. According to the Bloch theorem the electron wave function can be written as a
product ψe(~r) = u(~r)ψ(~r) of the Bloch amplitude u(~r) and the envelope function ψ(~r).
The Bloch amplitude describes the behavior of the wave function in the individual unit

cells and has maxima at the positions of the nuclei. Typical values of ηk =
∣∣∣u(~Rk)

∣∣∣2 are

of the order 103 − 104 [1919] and vary among the individual nuclei in a QD. Once again
we assume all nuclei to be identical and set ηk = 1, which coincides with the case of
free electrons. Note that the choice of the magnitude of ηk in our model is not crucial
for the obtained physics, because we do not aim at constructing a realistic estimate for
the energy scale of the total hyperfine coupling Js = ∑k Jk, but instead want to obtain a
detailed picture of the spin dynamics due to the hyperfine interaction and compare the
theory to recent experiments by inserting existing data concerning the energy scale of
the hyperfine interaction. The envelope function ψ(~r) describes the behavior of ψe(~r)
among the quantum dot and it is crucial for the distribution of the coupling constants
within the model that is introduced here. The assumptions concerning ψ(~r) and their
impact on the choice of the coupling constants Jk will be discussed in detail in section
3.1.53.1.5. Note that the present work is restricted to the case of antiferromagnetic couplings
Jk > 0, which is valid for a large variety of semiconductor QDs.

3.1.2 Dipole-dipole interaction

In contrast to conduction electrons, a valence electron or hole that is confined in a semi-
conductor QD is described by a p-type wave function, which vanishes at the position
~Rk of the nuclei and as a consequence the last term of the Hamiltonian (3.33.3) does not
contribute. C. Testelin et al. [5656] calculated the matrix elements of the remainder terms
of He-n, which describe a dipole-dipole type of interaction between a hole and a given
nucleus, in the bases of the heavy holes (hh) and light holes (lh). Applying the result-
ing Hamiltonians to a hole interacting with N bath spins instead of a single nucleus,
one obtains

Hhh =
N

∑
k=1

CkSz Iz
k (3.7)

Hlh =
N

∑
k=1

Ck
3
(Sz Iz

k − 2Sx Ix
k − 2Sy Iy

k ) (3.8)

Ck = Ω
16µBµ

5I

〈
1

r3

〉 ∣∣∣ψ(~Rk)
∣∣∣2 . (3.9)
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Several comments are in order: (i) Since heavy holes carry an angular momentum
Jz = ±3/2 the occuring spin operator in Hhh belongs to a pseudo spin, fullfilling
Sz = ±1/2 as usual. (ii) The negative sign of the last two terms in Hlh does not make
a difference for the obtained spin dynamics in the present considerations and it is for
simplicity replaced by a positive sign in the following. (iii) The prefactor Ω is the

volume of the semiconductor’s unit cell containing two nuclei and
〈

1
r3

〉
=
∫

Ω dr F2
x (r)
r3

describes the hole wave function in the individual unit cells, where Fx(r) is the orbital
function of p-symmetry. According to reference [5656], the bound hole state comprises
a superposition of light and heavy hole states and thus the occurence of valence-band
mixing is unevitable in self-assembled semiconductor QDs and as a consequence the
Hamiltonians (3.73.7) and (3.83.8) need to be combined to describe mixed heavy and light
hole states. The discussion of the details of valence band mixing is skipped here and
instead the combination of the dipole-dipole and fermi contact hyperfine interaction
into one Hamiltonian is presented and discussed in the following section.

3.1.3 Hamiltonian of the anisotropic CSM

Piecing together the Hamiltonians (3.53.5), (3.73.7) and (3.83.8) yields the final Hamiltonian
describing the hyperfine interaction for both electrons and holes confined in a semi-
conductor QD, which can be written as

Hhf =
N

∑
k=1

Ak

(
Sz Iz

k +
1
λ
(Sx Ix

k + Sy Iy
k )

)
. (3.10)

The newly introduced coupling constants Ak are given by Ak = Jk for electrons, Ak =

Ck for mixed hole states and heavy holes. For the special case of light holes Ak = Ck/3
holds. From this point forward the Ak are the only coupling constants that will be
referred to and one has to bear in mind that they are of a fundamentally different
origin for electrons and holes. Nevertheless these coupling constants are in any case

governed by the squared absolute value of the envelope wave function
∣∣∣ψ(~Rk)

∣∣∣2 and
only differ from each other by their prefactors that are set by the detailed physics of
the material at hand:

Ak = AsΩ
∣∣∣ψ(~Rk)

∣∣∣2 , (3.11)

where the definition of the prefactor As follows from the comparison of Ak to equation
(3.63.6) for electrons and to (3.93.9) for holes. The envelope wave function ψ(~r) is assumed
to vary slowly over the volume Ω of a given unit cell. Therefore the normalization
integral of ψ(~r) can be approximated by a sum over its values at the individual nuclei

1 =
∫

d3r |ψ(~r)|2 ≈∑
k

Ω
∣∣∣ψ(~Rk)

∣∣∣2 . (3.12)
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By applying the sum over all nuclei ∑k to equation (3.113.11) and inserting the normaliza-
tion condition, the energy scale As can be identified as

As =
N

∑
k=1

Ak. (3.13)

This energy scale is independent of the electron or hole wave function and therefore
independent of the detailed coupling constants distribution. In typical semiconductor
QDs As is of the order O(10 µev) [2828, 2020] for electrons and it is expected to be approx-
imately one order of magnitude smaller for holes [5656]. In the Hamiltonian (3.103.10) the
parameter λ has been introduced, which will be referred to as the anisotropy parame-
ter from now on. It takes the values λ = 1 for electrons, λ = 1/2 for light holes and
λ → ∞ for heavy holes. For mixed heavy and light hole states a value in between the
latter two extreme cases applies for the anisotropy factor.

The hyperfine interaction is the dominant interaction influencing the spin dynamics
of either an electron or hole confined in a semiconductor QD and the Hamiltonian
(3.103.10) fully describes this central effect arising from the confining material. In most ex-
perimental setups an external magnetic field ~B is applied to the sample, whose energy
scale is usually adjusted to be at least of the same order as the hyperfine interaction.
Therefore an arbitrary magnetic field is added to the hyperfine Hamiltonian yielding
the full anisotropic central spin model

HCSM = ωL
~S ·~nB +

N

∑
k=1

Ak

(
Sz Iz

k +
1
λ
(Sx Ix

k + Sy Iy
k )

)
=: ωL

~S ·~nB +
N

∑
k=1

Hk
h f , (3.14)

where ωL =
µBg|~B|

h̄ denotes the Larmor frequency of the central spin that is governed
by the external field and ~nB is a unit vector that is directed along the magnetic field
direction. The introduced g-factor varies quite significantly for electrons and holes,
for example in InGaAs ghole ≈ 0.16 and gelectron ≈ 0.54 has been measured [5959]. Note
that the external field is assumed to be only acting on the central spin. This approxi-
mation is based on the Zeeman energy, which is small for the nuclei compared to the
central spin. Especially in the specific scenario of an external field aligned along the
z-direction, it can easily be shown that the term stemming from the coupling of the
magnetic field to the nuclei only induces a small correction of the field strength acting
on the central spin [3434]: for ~nB = ~ez the total spin z -component S z = Sz + ∑k Iz

k is a
conserved quantity, thus the full magnetic contribution ωLSz + ∑k ωn

L Iz
k to the Hamil-

tonian, where ωn
L denotes the Larmor frequency of the nuclei, can be rewritten as

(ωL − ωn
L)S

z + ωn
LS

z. The latter term is a constant offset and the Larmor frequency
of the nuclei is small compared to ωL and is therefore negligible. Note that the y-
component of the applied magnetic field will always be assumed to be zero, because
the presented model contains no contributions that distinguish between the x- and
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y-direction in any fashion, i.e. the obtained effects from a certain finite y-component
in ~B will always be identical to those stemming from the same absolute value in the
x-component.

The first coupling term Sz Iz
k of the central spin to the bath spins in the Hamiltonian

(3.143.14) does not introduce any spin flips and, with respect to its form, it is referred to as
the Ising term in the following. In contrast, the last two terms of HCSM can be rewritten
as 1

2λ (S
+ I−k + S− I+k ), revealing that, in abscence of a magnetic field, the central spin is

only able to flip in exchange with a bath spin that flips into the opposite direction. This
mechanism is the source of decoherence in the anisotropic central spin model and for
obvious reasons it is often referred to as the "flip-flop"-term.

Note that the isotropic (λ = 1) CSM Hamiltonian HCSM belongs to the class of op-
erators M. Gaudin has proven [2929] to be integrable. As a consequence an analytical
solution via Bethe Ansatz exists, but its evaluation with the purpose of obtaining the
real time dynamics of a central spin interacting with a large bath is very challenging.
Such Bethe Ansatz studies of the isotropic CSM have been performed by several groups
[3636, 3737, 3232, 3333] and are capable of handling large amounts (N ∼ 50) of bath spins. Any-
how the method is heavily dependent on the initial conditions and lacks the possibility
of adding arbitrary further terms to the Hamiltonian (3.143.14), especially if it breaks its
integrability. This lack of variability is decisive for the insufficiency of the Bethe Ansatz
method for the investigations that are presented here.

3.1.4 Comments concerning the model’s treatment

The central spin operator ~S = (Sx, Sy, Sz)T refers to a spin-1/2 particle in any inves-
tigated scenario, i.e. its components are given by Sα = 1

2 σα with α ∈ x, y, z. The
introduced matrices σα are the well known Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (3.15)

The underlying basis for this representation is given by the eigenstates of σz and Sz

which is denoted as

σz
∣∣∣∣12,

1
2

〉
=

∣∣∣∣12,
1
2

〉
,

∣∣∣∣12,
1
2

〉
=̂

1

0

 (3.16)

σz
∣∣∣∣12,−1

2

〉
= −

∣∣∣∣12,−1
2

〉
,

∣∣∣∣12,−1
2

〉
=̂

0

1

 . (3.17)

For a spin-1/2 particle the eigenstates of Sz are often referred to as spin up
∣∣ 1

2 , 1
2

〉
= |↑〉

and spin down
∣∣ 1

2 ,− 1
2

〉
= |↓〉. The spin of the nuclei is not limited to the case I = 1/2
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and for semiconductor materials that are commonly used for the investigation of spin
dynamics in QDs, all values of I from 1/2 to 9/2 are represented. Since the size of a
single nucleus’ Hilbert space is given by Idim = 2I + 1 and the Hilbert space dimension
of the full model D = 2 · IN

dim is the main limiting factor of the numerical investigations
presented here, only the cases I = 1/2 and I = 3/2 are discussed in the present work.
In the literature most commonly a restriction to the case I = 1/2 is applied, which is
exceeded here because the quadrupole coupling (QC) Hamiltonian, that is presented
in section 88, does not contribute to the central spin dynamics for spin-1/2 nuclei. As
for the central spin operator, the matrix representation of the nuclear spin operators ~Ik

is again presented in the eigenbasis of Iz
k . For I = 1/2 the nuclear spin operators are

identical to the central spin operators and for I = 3/2 they take the form

Ix
k =


0

√
3/2 0 0

√
3/2 0 1 0

0 1 0
√

3/2

0 0
√

3/2 0

 , Iz
k =


3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2

 ,

Iy
k =


0 −i

√
3/2 0 0

i
√

3/2 0 −i 0

0 i 0 −i
√

3/2

0 0 i
√

3/2 0

 . (3.18)

Corresponding to the spin-1/2 notation the underlying basis for this representation of
the nuclear spin operators Iα

k is denoted as∣∣ 3
2 , 3

2

〉
=̂(1, 0, 0, 0)T,

∣∣ 3
2 , 1

2

〉
=̂(0, 1, 0, 0)T,∣∣ 3

2 ,− 1
2

〉
=̂(0, 0, 1, 0)T,

∣∣ 3
2 ,− 3

2

〉
=̂(0, 0, 0, 1)T. (3.19)

The spin operators fullfill a Lie Algebra independently of their irreducible representa-
tion: [Sα, Sβ] = iεαβδSδ and [Iα

k , Iβ

k′
] = iεαβδ Iδ

k δk,k′ , where εαβδ is the fully antisymmetric
ε-tensor that is positive for the case α = x, β = y and δ = z. All further values of ε

follow from its definition.
The Hamiltonian (3.143.14) can be explicitly constructed using the Kronecker product,

which is denoted by the symbol "⊗" in the following. For example the explicit form
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of the isotropic (λ = 1) CSM Hamiltonian for ~nB = ~ex, N = 2 and I = 1/2 in the
eigenbasis of the Operators Sz and Iz

k is given by

HCSM = ωL(S
x ⊗ 12 ⊗ 12) + A1 ∑

α

Sα ⊗ Iα
1 ⊗ 12 + A2 ∑

α

Sα ⊗ 12 ⊗ Iα
2 , (3.20)

=
1
4



As 0 0 0 2ωL 0 0 0

0 ∆A 0 0 2A2 2ωL 0 0

0 0 −∆A 0 2A1 0 2ωL 0

0 0 0 −As 0 2A1 2A2 2ωL

2ωL 2A2 2A1 0 −As 0 0 0

0 2ωL 0 2A1 0 −∆A 0 0

0 0 2ωL 2A2 0 0 ∆A 0

0 0 0 2ωL 0 0 0 As


, (3.21)

where 12 denotes the 2× 2 identity matrix. On top of that the quantity ∆A = A1 − A2

has been introduced and As = A1 + A2 holds. Obviously the explicit construction of
the Hamiltonian H is not an adequate option for the numerical treatment of systems
with a significant number of bath spins. For example the storage of H for N = 17 spin-
1/2 nuclei in double precision would require a memory (assuming only real entries
of HCSM) of 500 Gb which exceeds the processing memory of the available machines.
Anyhow the explicit matrix form (3.213.21) of the Hamiltonian HCSM is not very densely
occupied, i.e. it features many matrix elements that are zero. Note that the main di-
agonal includes the contributions of the z-component of the magnetic field and all the
terms ∝ Sz Iz

k of the hyperfine interaction. The explicit matrix form of HCSM also demon-
strates that the contributions from the x-component of the magnetic field always occure
on the D/2-th diagonal above and below the main diagonal. Also the contributions of
each individual flip-flop-term always occure on a certain diagonal next to the main
diagonal. Therefore it is possible to store all matrix elements forming the Hamiltonian
HCSM as one vector of length D, that represents the main diagonal elements stemming
from the Ising terms and the z-component of the external field, and N vectors whose
length is guaranteed to be smaller than D/2, that represent the N individual flip-flop-
terms. There are always D non-zero matrix elements occuring due to the magnetic field
component along the x-direction. They are given by 〈↑, sb| S

x |↓, sb〉 = 〈↓, sb| S
x |↑, sb〉,

where sb represents an arbitrary bath state. Due to their simplicity there is no need
to store these matrix elements. This approach for the storage of all matrix elements
reduces the demanded process memory from O(D2) to O(N · D) byte, which is a sig-
nificant improvement for large systems and it is also advantageous for the computation
of the real time dynamics of the central spin.
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3.1.5 Distribution of the hyperfine coupling constants

The numerical investigations that are presented in this work are mainly limited by the
Hilbert space of the Hamiltonian under study and as a consequence the number of bath
spins that can be taken into account is limited to N ∼ O(10). In contrast the central
spin interacts with O(105) nuclei in a realistic QD. The limitations arising from this
insufficiency will be discussed in detail in section 5.1.25.1.2, while the focus of the section
at hand is to develop a distribution of the coupling constants Ak, that is able to mimic
the physics of a real QD within a model limited to O(10) bath spins. Note that the
coupling constants are treated as dimensionless quantities within the section at hand.
The underlying energy scale of the hyperfine interaction will be discussed in detail in
section 3.33.3. The strategy to develop a realistic distribution of the coupling constants
Ak is to create n sets of N randomly generated coupling constants Ak with respect to a
certain probability distribution, such that the generated couplings are representative for
the entire QD. Then the resulting central spin dynamics is calculated individually for
each of the n sets of coupling constants and the obtained outputs are averaged to yield
a final result that is effectively influenced by a much larger bath than we can handle in
a single simulation. The basic idea for the generation of representative sets of coupling
constants, is to determine a probability distribution P(A) that yields the probability to
find a nucleus associated to the coupling strength A by randomly picking any nucleus
from the QD. The derivation of P(A) has been originally presented in reference [9797]. It
will be reviewed here for more general assumptions concerning the dot geometry and
the envelope wave function ψ(~r). For all considerations a d-dimensional spherical QD
shape for either d = 3 or d = 2 is assumed.

While the energy scale of the hyperfine coupling constants (3.113.11) is governed by the
prefactors As and Ω, that contain the details of the underlying material and information
on its doping, the distribution of the Ak among the QD is solely governed by the
squared absolute value of the envelope wave function |ψ(~r)|2 within the presented
model. It is assumed to be of the form

ψ(~r) = C(
√

πL0)
−d/mexp

(
− rm

2Lm
0

)
, (3.22)

where L0 is the characteristic length scale of the considered QD, which is expected
to be typically of the order L0 ≈ 5 nm [2828], and m is restricted to the values m = 2,
describing a Gaussian envelope wave function, or m = 1, corresponding to an expo-
nentially decreasing envelope function. The prefactor C(

√
πL0)

−d/m guarantees the
normalization of ψ(~r). For the constant C one obtains C = 1 for m = 2 independently
of the QD dimension d, C = 1/

√
2 for m = 1, d = 2 and C = 1/

√
8 for m = 1, d = 3.

Basic quantum mechanics teaches us that the central spin’s wave function ψ(~r) has
a finite value out of the QD and it is technically non-zero even for nuclei from the
substrate that are located far from the dot. But obviously these nuclei are associated
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Figure 3.1: Illustration of the probability distribution (3.243.24). The black dashed lines show
P(A) for (a) a variation of the cutoff r0 = R/L0 assuming a d = 3 dimensional QD
with a Gaussian envelope wave function (m = 2) and (b) all considered choices
of the parameters d and m, where the ratio of the largest and smallest coupling
constant is set to Amin/Amax = e−4 for all curves. The colored lines depict a
histogram generated by 108 random picks of Ak = Amaxexp

(
−rm

0 γm/d
k

)
, with a

uniformly distributed parameter γk ∈ [0 : 1]. Panel (a) corresponds to figure 1 of
reference [9797].

to a very small coupling constant Ak and are not expected to have a noticable impact
on the central spin dynamics. On top of that considering all nuclei within a very large
radius R around the QD center will yield a divergence of P(A) → 0, because the total
number of nuclei within a d-dimensional sphere of radius R is increasing as Rd, while
the nuclei associated to a significant coupling constant Ak are expected to be located at
maximum a couple of QD length scales L0 away from the dot center. For this reason
we introduce the radius R as a cutoff distance for the nuclei that are taken into account
for the calculation of the central spin dynamics. Of course the obtained physics is
supposed to be independent of the artificial cutoff R, as long as it is not chosen too
small. The probability P(r) to find a nucleus on a surface of radius r, when randomly
picking a nucleus with a maximum distance of R to the center of the QD, is given by
P(r) = d · rd−1/Rd, which is directly associated to the probability of finding a nucleus
associated to a certain coupling constant:

P(r)dr = P(A)dA. (3.23)

By using the relation A(r) = AsΩ |ψ(~r)|
2 with respect to the appropiate assumption

for the wave function (3.223.22), one obtains the probability distribution

P(A) =
d
m

(
L0

R

)d 1
A

(
ln
(

Amax

A

))d/m−1

, (3.24)

where the largest coupling constant, that is located at the center of the QD, is denoted

as Amax = AsΩC2

(
√

πL0)
d . The smallest accessible value of the considered coupling constants is

governed by the cutoff parameter r0 = R/L0 entering the envelope wave function. It is
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given by Amin = Amaxe−rm
0 . The analytic form (3.243.24) of the probability distribution P(A)

clearly shows its expected divergence for A→ 0, that is eliminated by the introduction
of the cutoff R. Figure 3.13.1 illustrates the probability distribution P(A) for a variety of
the considered parameters r0, m and d. Panel (a) treats the case of a d = 3 dimensional
QD and a Gaussian envelope wave function for various values of r0. It reflects the rapid
decrease of the probability to find a coupling constant A ∼ 0.1− 1 near the QD center
for an increasing cutoff r0. Panel (b) compares P(A) for all considered combinations
of the parameters d = 2, 3 and m = 1, 2, based on an identical ratio Amin/Amax = e−4.
Since Amin ∝ e−rm

0 applies, the cutoff r0 has to adjusted appropriately to compare the
cases m = 1 and m = 2. It is observed, that increasing the dimension from d = 2 to
d = 3 always yields an increase of the probability to find a nucleus that is associated
to a small coupling constant. This behavior of P(A) is traced back to the number of
nuclei within a certain radius r from the dot center, which is proportional to rd. I.e.
the ratio (r1/r2)

d of the number of nuclei located in a small shell of radius r1 around
the QD center to those within a larger shell of radius r2 is decreasing faster in higher
dimensions. Comparing P(A) for m = 1 and m = 2, while keeping the dimension d
constant, yields an opposite trend: although the Gaussian envelope function decreases
faster than the exponential one, P(A) is larger near A/Amax ≈ 1 for m = 2 than for
m = 1. This stems from the much larger number of considered nuclei arising from
setting r0 = 4 instead of r0 = 2. The underlying argument is the same as it has been
put forward for an increase of the dimension.

To produce sets of coupling constants that obey the distribution (3.243.24), the quantity

γ(Ak) =
∫ Amax

Ak

P(A′)dA′ (3.25)

is introduced. Since P(A) is a monotonically decreasing probability density and only
defined on the interval [Amin, Amax], the newly introduced quantity γ(Ak) is a bijective
function of the form γ : [Amin, Amax] → [0, 1]. By inserting P(A) from equation (3.243.24)
into relation (3.253.25) and calculating the inverse function of γ(Ak) one obtains

Ak(γ) = Amaxexp(−rm
0 γm/d). (3.26)

This relation is used for the production of sets of coupling constants Ak that obey
P(A), by generating a random value of γ ∈ [0, 1] from a uniform distribution for each
individual coupling constant Ak. The colored lines in figure 3.13.1 depict histograms that
have been generated via this procedure for the different sets of parameters as proof of
its reliability.
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As mentioned above, the obtained physics is supposed to be independent of the
choice of the cutoff R as long as the conditions r0 > 1 and ψ(R) ≈ 0 are satisfied. For
the statistical average of an individual coupling constant one easily obtains the value

A =
∫

dAP(A)A ≈ As/Nd(R), (3.27)

where Nd(R) denotes the number of nuclei within the radius R. It is given by N2(R) =
πR2/Ω or N3(R) = 4πR3/3Ω. The approximation in equation (3.273.27) becomes exact
for R → ∞. The obtained result is apparently in agreement with the definition of
As = ∑k Ak = NA and this energy scale is independent of the artificial cutoff R as
expected.

3.2 Quadrupole interaction

The formation of QDs grown via molecular beam epitaxy relies on the mismatch of
the lattice constants between the substrate and the deposited material, i.e. on the
occuring strain that is unevitable when these materials are grown on top of each other.
This intrinsic strain is also the source of electric field gradients (EFGs) within such
semiconductor QDs, that couple to the quadrupole moment of the nuclei forming the
dot. In the following a Hamiltonian is introduced, that involves the influence of this
interaction onto the central spin dynamics. C.P. Slichter has derived [9898] a Hamiltonian
Hq modelling the impact of an arbitrary EFG on a single nucleus, which has a nonzero
quadrupole moment. It reads

Hq =
eQ

4I(2I − 1)

[
Vzz(3(Iz)2 − I2) + (Vxx −Vyy)((Ix)2 − (Iy)2)

]
, (3.28)

where Q denotes the quadrupole moment of the nucleus, e is the elementary charge
and Vαα is the second partial derivative of the strain induced electric potential V along
the α-direction. The quadrupole moment Q arises from the non-spherical shape (see
figure 3.23.2 (a)) of the nucleus under study and its value is determined by the differ-
ence between the charge distribution, which is given by the positions of the individual
protons within a nucleus, parallel and transverse to the symmetry axis of the nucleus.
For simplicity the z-direction is set along this symmetry axis for the representation
(3.283.28) of the Hamiltonian. It is convenient to introduce the asymmetry parameter
η = (Vxx−Vyy)/Vzz as a measure of which term in the Hamiltonian (3.283.28) is dominant.
Concerning the electric potential it is a common [6363, 9999] approximation to assume
axial symmetry, yielding η = 0. Recent studies by C. Bulutay [7070] have shown that
this approximation is not necessarily good for self-assembled semiconductor quantum
dots. Especially for the alloy InGaAs those studies found values for η of more than 0.5,
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(a) (b) z

Figure 3.2: (a) Sketch of a nucleus carrying a finite quadrupole moment due to its deviation
from a spherical shape. Its symmetry axis is defined as ~nk. (b) Illustration of the
random generation process for the orientation vectors ~nk, which are determined
randomly within an upper dome of the unit sphere and cover the angle θz towards
the growth direction of the dot which defines the z-axis.

pointing out that neglecting the latter term of the Hamiltonian (3.283.28) might not yield a
satisfying approximation.

The orientation of the symmetry axis of each individual nucleus within a QD clearly
depends on its environment, since it will align according to the EFGs that occure within
a self-assembled semiconductor QD. To take an arbitrary orientation of the symmetry
axes into account, the normalized vectors ~nk are introduced according to figure 3.23.2 (a).
They will be referred to as the quadrupole orientation vectors in the following. Defin-
ing the prefactor qk = 3eQk

4I(2I−1)Vk
zz, where we restrict ourselves to the case of identical

bathspins, and introducing arbitrary quadrupole orientation vectors for each individ-
ual nucleus, yields the total quadrupole Hamiltonian

HQ =
N

∑
k=1

qk

((
~Ik ·~nk

)2
− I(I + 1)

3
+

η

3

(
~Ik ·~n

x
k

)2
− η

3

(
~Ik ·~n

y
k

)2
)
=:

N

∑
k=1

Hk
q , (3.29)

which only yields a non-trivial contribution for nuclei with magnetic moment I > 1/2.
Note that we have assumed the asymmetry parameter η to be identical for every bath
spin, which is an approximation, and that we have introduced the auxilliary vectors
~nx/y

k . In the Hamiltonian (3.283.28) the z-axis was set to be the symmetry axis of the
investigated nucleus, which we have set to ~nk. I.e. we have rotated the cartesian unit
vector~ez onto ~nk to find a new expression for the operator Iz

k and as a consequence we
have to apply the same rotation to~ex/y to find the representations of Ix/y

k . Determining
the rotation that converts ~ez into ~nk is simple: we apply a π-rotation around the axis
obtained from the sum of the unit vectors ~ez and ~nk. Applying this rotation to ~ex/y

yields ~nx/y
k .
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3.2.1 Discussion of the quadrupole parameters

There are three central parameters entering the Hamiltonian HQ: (i) the quadrupole
coupling constants qk, (ii) the orientation vectors ~nk and (iii) the asymmetry parameter
η. Since the latter is assumed to be identical for each bath spin, its variation among the
QD does not have to be considered further. Note that typical values of η in semicon-
ductor QDs are expected to be of the order O(10−1) according to reference [7070]. The
same studies have shown that the distribution of the orientation vectors ~nk is heavily
dependent on the underlying material. Although no explicit spatial distribution of
the symmetry axes has been presented, the data concerning the angle θz, measuring
the deviation of ~nk from the z-direction as depicted in figure 3.23.2 (b), indicates that the
quadrupole orientation vectors tend to align along the growth direction for InAs, but
deviate significantly from this alignment for InGaAs. Numerous studies concerning
the distribution of strain within semiconductor QDs have been put forward in the past
[100100, 101101, 102102], all reporting an unsteady behavior of the strain, which is crucial for
the quadrupole coupling constants. As a consequence, a straight forward and well-
grounded derivation for a distribution of neither the couplings qk nor the orientation
vectors ~nk is possible at the present. As an alternative a stochastical approach is ap-
plied to account for the relevant physics within the system: according to the work of
Sinitsyn et al. [6363] the quadrupole coupling constants are determined randomly from
a uniform distribution qk ∈ [0.5 : 1]. The influence of various claims for this distri-
bution will be discussed in section 8.2.28.2.2, pointing out that the intuitive approach put
forward by Sinitsyn et al. is supposed to be able to cover the crucial physical effects.
Since the orientation of the vectors ~nk among the QD is not known and expected to
be correlated to the EFGs, a stochastical procedure reproducing the average deviation
angles θz found in reference [7070] is applied here. Although a more recent work [7171]
treats the distribution of the deviation angles θz in greater detail, it is to complex to be
reproduced within a model consisting of only ∼ 10 nuclei. As a consequence we stick
to reproducing the reported average angle from reference [7070]. This is realised by the
generation of a set of isotropically oriented vectors~nk on the unit sphere, of which only
those vectors within a certain dome at the top of the unit sphere are kept, as sketched
in figure 3.23.2 (b). The angle θmax determining the size of this dome is dictated by the
deviation angle θz of the addressed material. For example in In0.4Ga0.6As the deviation
angle varies significantly for the different components: θz ≈ 42◦ for As, θz ≈ 17◦ for Ga
and θz ≈ 12◦ for In. As a consequence the mean deviation angle is given by θz ≈ 23◦

which is reproduced by setting θmax ≈ 34◦.
As an intuitive parameter that classifies wether the interactions within the CSM or

the quadrupole interaction dominates the energy scale of the full Hamiltonian H =

HCSM + HQ, the ratio Qr = Aq/As is introduced, where Aq = ∑k qk denotes the sum
over all quadrupole couplings corresponding to As = ∑k Ak.
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3.3 Spin noise function

The experimental measurement of spin noise is usually performed on ensembles of
semiconductor QDs that are doped with either electrons or holes. It relies on fluctu-
ations of either the Faraday or Kerr rotation of a linearly polarized probe beam, that
occure due to the arising total magnetization from the spins of the confined particles.
The autocorrelation function of the rotation angle is equivalent to the symmetrized
fluctuation function

S(t) =
1
2
(〈

Sz(t)Sz〉+ 〈SzSz(t)
〉)
−
〈
Sz〉2 . (3.30)

The average spin polarisation
〈
Sz〉 vanishes in the abscence of a magnetic field. The

function S(t) will be referred to as the spin noise function in the following and it is the
central quantity of interest throughout this work. Note that S(t) is symmetric in time
by its definition and as a consequence the spectral spin noise function S(ω), which is
also going to be discussed in detail, can be written as

S(ω) =
∫ ∞

−∞
S(t)e−iωt dt =

∫ ∞

−∞
S(t)cos(ωt)dt. (3.31)

From the inverse Fourier transformation of S(ω), it is straight forward to show that
the total spectral weight of the spectral spin noise function is determined by the initial
value S(t = 0):

S(0) =
1

2π

∫ ∞

−∞
S(ω)dω. (3.32)

This is an important finding as a benchmark for the adequacy of a given numerical
method for the calculation of the spectral spin noise function. For the experimental
measurement of spin noise the probe laser is adjusted such that it ideally does not
induce any excitations in the sample, i.e. the sample is supposed to be in thermal
equilibrium. The experiments [5959, 6464] addressing spin noise in semiconductor QDs
are usually performed at a minimum temperature of T ≈ 5 K which corresponds to
approximately 400 µeV. Hence, the energy scale of the temperature is significantly
larger than As ∼ O(10) µeV and as a consequence we will assume a high temperature
limit for all performed simulations, which yields the equilibrium density operator

ρ0 =
1
D

1, (3.33)

where D = 2 · IN
dim is the Hilbert space dimension of the investigated system arising

from the partition function Z. Taking this initial condition into account, some simplifi-
cations for the spin noise function apply: on the one hand the expectation value

〈
Sz〉
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is 0 independently of the applied external field and on the other hand, due to cyclic
permutation under the trace and the commutator [ρ0, Sz] = 0, we can rewrite

S(t) =
1
2

(〈
Sz(t)Sz〉

ρ0
+
〈
SzSz(t)

〉
ρ0

)
=

1
2

Tr
[
ρ0Sz(t)Sz + ρ0SzSz(t)

]
=

1
2D

Tr
[
Sz(t)Sz + Sz(t)Sz] = 〈Sz(t)Sz〉

ρ0
. (3.34)

Taking this simplified form of S(t) into account, it is straight forward to show that the
spin noise function corresponds to the time evolution of the z-component of an initially
polarised central spin interacting with an unpolarized bath at infinite temperature.
Namely, this initial condition is implemented by the density operator

ρpol =
1
D
(1 + 2Sz), (3.35)

where the central spin is initially in the ↑-state. For the resulting dynamics of the
central spin

〈
Sz(t)

〉
ρpol

=
1
D

Tr[(1 + 2Sz)Sz(t)] =
2
D

Tr[SzSz(t)] = 2S(t) (3.36)

is obtained. This equivalence of
〈
Sz(t)

〉
and S(t) is an important finding, because

it states that all investigations and findings concerning the spin noise function also
apply for experiments that induce a polarisation in an ensemble of semiconductor
QDs via a pump beam and observe the decay of the obtained collective polarisation.
As a consequence we put forward that the measurement of spin noise at temperatures
T > 5 K is in general equivalent to the observation of the real time dynamics of initially
polarized spins confined in semiconductor QDs.

3.3.1 The intrinsic time scale

In the following a systematic derivation of a time scale is presented, that describes the
leading order impact of the material, which forms the confinement potential to trap a
single electron or hole, on the central spin dynamics. I.e. the full Hamiltonian (3.13.1) for
ωL = 0 is considered within this derivation. To obtain the leading order contribution
to S(t), the Taylor series of the entering time evolution operators are inserted:

S(t) =
〈

eiHtSze−iHtSz
〉
=

〈
∞

∑
n=0

(iHt)n

n!
Sz

∞

∑
m=0

(−iHt)m

m!
Sz

〉

=
〈
(Sz)2

〉
+ it

〈
[H, Sz]Sz〉− t2

2
〈[

H, [H, Sz]
]

Sz〉+ O(t3). (3.37)
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The evaluation of the occuring commutators shows that the first order term ∝ t van-
ishes and the lowest order contribution is of second order in time. The result reads

S(t) =
1
4
− t2

16
4I(I + 1)

3λ2

N

∑
k=1

A2
k + O(t3) =:

1
4
−
(

t
4T∗λ

)2

+ O(t3), (3.38)

where the intrinsic time scale T∗λ = λ
(

4I(I+1)
3 ∑k A2

k

)−1/2
has been introduced. This is

the central time scale, that will be used throughout this work, to form the dimensionless
Hamiltonian H̃ = HT∗λ and accordingly it sets the underlying time scale t/T∗λ for the
presented real time dynamics.

Some very intuitive tendencies concerning the impact of HCSM on S(t) can be di-
rectly read off the definition of T∗λ : (i) the central spin dynamics is expected to be a
lot faster for electrons than for holes, because the anisotropy parameter λ enters the
intrinsic timescale linearly, while the coupling constants Ak, which are expected to be
approximately one order of magnitude larger for electrons than for holes, enter T∗λ in-
versely. (ii) An increase of the nuclear moment I of the nuclei forming the QD, yields
faster occuring decoherence.

Note that the index of the intrinsic time scale T∗1 , applying for electrons, will be
dropped for simplicity in the following, a simplification that defines T∗ ≡ T∗1 . On
top of that, the dimensionless magnetic field b = ωLT∗ will be used throughout this
work. Also note that the quadrupole interaction does not contribute to the central spin
dynamics in second order and does therefore not enter the intrinsic time scale. Instead
the ratio Qr = Aq/As, which is independent of the intrinsic time scale, will be used to
characterize the magnitude of the QC. Taking the distribution of the coupling constants
introduced in section 3.1.53.1.5 into account, one can show that the expectation value of T∗

for an infinite number of bath spins, corresponding to an infinite cutoff R → ∞, is
governed by

(T∗)−2 ∝ ∑
k=1

A2
k = N(R)A2

=
A2

s

3
√

πN(L0)
. (3.39)

This points out that the intrinsic time scale of a given QD is fully determined by the
energy scale As of the hyperfine interaction and the characteristic length scale L0 of the
dot.
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3.3.2 Semi classical approximation

Merkulov et al. [2727] have introduced a semi classical approach concerning the short
time dynamics of an initially polarised spin within the isotropic CSM without an ex-
ternal field. In this simplified scenario, the Hamiltonian H can be rewritten as

HOH = ~S ·
N

∑
k=1

Ak~Ik. (3.40)

In this notation the central spin effectively interacts with a single magnetic field ~BOH =

∑k Ak~Ik, that is formed by the weighted sum of all nuclei. This field is usually referred
to as the Overhauser field. Since the semi classical approach (SCA) by Merkulov et al.
is essential to understand the short time dynamics of the spin noise function S(t), it
is briefly reviewed here based on the review from reference [103103]. Each nuclear spin
is assumed as a classical magnetic moment of length I, which is oriented randomly,
according to the assumed high temperature limit. On top of that the nuclei are consid-
ered to be frozen. This assumption is based on the fact that the total Overhauser field
experienced by the central spin is O(N) times larger than the field each individual
nucleus sees. Since the total field ~BOH consists of a large number of small magnetic
moments with random orientation, its magnitude is assumed to obey a Gaussian prob-
ability distribution

W(|~BOH|) =
(

2
π

)3/2

(T∗)3e−2(~BOHT∗)2

. (3.41)

The precession of a given spin~s within a constant external field, which is applied along
the ~nB direction and associated to the Larmor frequency ωL, can be written as

~s(t) = (~s0 ·~nB) ·~nB + (~s0 − (~s0 ·~nB) ·~nB)cos(ωLt)

+ [~nB × (~s0 − (~s0 ·~nB) ·~nB)] sin(ωLt), (3.42)

where ~s0 denotes the initial orientation of the spin ~s. The central spin dynamics is
obtained by averaging equation (3.423.42) over all possible orientations of the Overhauser
field with respect to the probability distribution W(|~BOH|) describing its absolute value:

〈~s(t)〉 =
∫ 2π

0
dφ
∫ π

0
sin(θ)dθ

∫ ∞

0
B2 dB W(|~B|)~s(t). (3.43)

The infinite upper boundary of the last integral arises from the applied limit of an
infinite bath N → ∞. As argued above the spin noise function S(t) is equivalent to
the measurement of

〈
Sz(t)

〉
for an initially fully polarized central spin. Therefore the
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initial condition ~s0 = s0~ez is assumed, where the absolute value s0 = 1/4 applies for
the spin noise function. One obtains

SSCA(t) :=
s0

3

[
1 + 2

(
1−

(
t

2T∗

)2
)

exp

(
−1

2

(
t

2T∗

)2
)]

. (3.44)

The only physical quantity that enters this analytical result is the intrinsic time scale T∗,
which underlines its fundamental role within the model at hand. Especially note that
no details concerning the distribution of the coupling constants Ak enter SSCA(t). The
semi classical approach predicts a finite value of S(t) at infinite times S(t→ ∞) = 1/12,
but since it assumes a frozen nuclear spin bath, it is expected to be only viable for the
short time dynamics of the spin noise function. The Fourier transformation of the semi
classical result SSCA(t) can be straight forwardly performed analytically, yielding

SSCA(ω) =
∫ ∞

−∞
dt SSCA(t)e

−iωt =
s0

3

[
2πδ(ω) + ω2(

√
8T∗)3√πe−2(ωT∗)2]

. (3.45)

Apparently the contribution ∝ δ(ω) corresponds to the finite value of SSCA(t) at infinite
times and the spectral weight of SSCA(ω) corresponding to the central spin’s decay due
to the frozen Overhauser field contributes 2/3 of the full spectral weight, which is set
by S(0).

Note that Testelin et al. [5656] have also introduced semi classical predictions similar
to SSCA(t) for various special cases of the anisotropic CSM, which will not be reviewed
here in detail, but will serve as a reference for some numerical calculations below.

3.4 Ensemble averaging

Experimental measurements addressing spin noise in semiconductor QDs are often
performed on ensembles of QDs and therefore the effect of ensemble averaging on the
spin noise functions S(t) and S(ω) needs to be considered. Since the model under
study does not include possible interactions between the particles confined in neigh-
boring QDs of an ensemble, only those physical properties that may vary among the
individual QDs and have an impact onto the Hamiltonian (3.13.1) need to be discussed
in the context of ensemble averaging here. There are such properties influencing each
of the three parts forming the Hamiltonian H, but as discussed above we have limited
insight into the details of the strain distribution for each individual QD. Hence, the
stochastical approach for the implementation of the quadrupole interaction, which has
been presented in section 88, is assumed to hold for each QD of the ensemble.

It is well known [104104] that the shape of self-assembled QDs is varying among an
ensemble. As indicated by equation (3.393.39), the characteristic length scale L0 of a given
dot directly influences the intrinsic time scale of the system, which is crucial for the
central spin’s short time dynamics. To account for this effect, a Gaussian distribution
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with a variable standard deviation ∆L0 is assumed for the characteristic length scale
L0, which enters a given simulation via equation (3.393.39).

Beside the varying shape of the individual QDs, we take into account that a spread
of the g-factor occurs in typical ensembles of semiconductor QDs. For electrons this
spread is very small [2323] and will be neglected throughout this work. In contrast
it has been found [6464] to be rather large for hole doped QDs and to account for this
observation, once again, a Gaussian distribution of the g-factors among the ensemble is
assumed. If not stated otherwise its standard deviation is set to the value ∆g/g = 0.2.



Chapter 4

The Chebyshev Polynomial Expansion
Technique

The focus of the chapter at hand is the introduction of an adequate numerical method
for the calculation of the spin noise function S(t) in the real time and the spectral
regime, based on the Hamiltonian H = HCSM + HQ. The limit of infinite temperature
enters all presented considerations. The Chebyshev polynomial expansion technique
(CET) is originally a method that propagates a single quantum state in time by expand-
ing the time evolution operator e−iHt, arising in the formal time evolution

|ψ(t)〉 = e−iHt |ψ(0)〉 , (4.1)

in orders of Chebyshev polynomials. As discussed in detail in the following, the CET
is an exact method for the propagation of a single quantum state |ψ(t)〉 in time, but
its main advantage compared to exact diagonalisation (ED), is that its runtime scales
linearly with the Hilbert space dimension D of the underlying Hamiltonian, while the
ED scales with D3. To apply the CET to the calculation of the spin noise function

S(t) =
〈
Sz(t)Sz〉

ρ0
=

1
D

D

∑
i=1
〈i| eiHtSze−iHtSz |i〉 , (4.2)

every individual basis state |i〉 and the modified basis states Sz |i〉 would have to be
propagated in time individually, which implies an enormous numerical effort rapidly
exceeding reasonable amounts of resources. Thus, an efficient way for the calculation
of traces has to be found, to apply the CET to the spin noise function S(t). On top of
that, a direct way to calculate the spectral function S(ω) is not known a priori.

The remainder of this chapter is structured as follows: first, the definition of the
Chebyshev polynomials is given and some of their elementary properties that are cru-
cial for the CET are briefly introduced. Second, the propagation of a single quantum
state in time is discussed along with some numerical details. Third, a systematic ap-
proach for the numerically efficient treatment of the occurring traces in the spin noise

31
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function S(t) is presented. Fourth, the Fourier transformation of S(t) is performed an-
alytically, based on its expansion in Chebyshev polynomials, to obtain a direct method
for the calculation of S(ω) that does not rely on the transformation of time resolved
data. Finally, benchmarks for the CET concerning both S(t) and S(ω) are performed,
to prove the viability of the method. Note that this chapter is based on the discussions
concerning the CET from references [9797] and [103103].

4.1 Definition and properties of the Chebyshev
polynomials

For the presented numerical investigations only the Chebyshev polynomials of first
kind are of interest. There are two common definitions of these polynomials: (i) the
iterative definition, which reads

T0(z) = 1, T1(z) = z,

Tn+1(z) = 2zTn(z)− Tn−1(z), (4.3)

and (ii) the trigonometric definition, reading

Tn(z) =

cos(n · arccos(z)), z ∈ [−1, 1]

cosh(n · arcosh(z)), else.
(4.4)

The first one will turn out to be useful for the propagation of quantum states, while
the latter can be taken into account to show that the Chebyshev polynomials form
an orthonormal basis on the interval z ∈ [−1 : 1]. Starting from the well known
orthogonality relation

δn,m
π

2− δn,0
=

1
2

∫ π

−π
dx cos(nx)cos(mx) =

∫ π

0
dx cos(nx)cos(mx), (4.5)

where δα,β denotes the Kronecker symbol, one obtains a corresponding relation occur-
ring for the Chebyshev polynomials by substituting x → arccos(z):

〈Tn|Tm〉c :=
∫ 1

−1
dz

Tn(z)Tm(z)√
1− z2

=
π

2− δn,0
δn,m, (4.6)
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where the scalar product 〈·|·〉c has been defined. Due to the orthonormality of the
Chebyshev polynomials with respect to this scalar product, every function that is de-
fined on the interval z ∈ [−1 : 1] can be expanded in Chebyshev polynomials as follows

g(z) =
∞

∑
n=0

bnTn(z),

bn =
2− δn,0

π

∫ 1

−1
dx

Tn(x)g∗(x)√
1− x2

. (4.7)

Another central property, that is crucial for the reliability of the CET, is that the Cheby-
shev polynomials of first kind are linked to the Bessel functions of first kind via the
relation

Jn(t) =
(−i)n

π

∫ 1

−1
dω

eiωtTn(ω)√
1−ω2

. (4.8)

Of course there are several further interesting properties concerning the Chebyshev
polynomials, but the introduced repertoire is sufficient for the expansion of the time
evolution operator in Chebyshev polynomials, which is of interest here.

4.2 Propagating a quantum state in time

The CET has been originally introduced by H. Tal-Ezer and R. Kosloff [6666] and it can
be applied to any quantum system whose Hamiltonian has a finite energy spectrum
Emin ≤ ω ≤ Emax. This prerequisite is clearly met for any system that is fully repre-
sented by a finite number of spin operators, which is the case for the Hamiltonian H
under study. To apply the CET to the enhanced central spin model, its energy spectrum
has to be mapped onto the interval ω′ ∈ [−1 : 1] on which the Chebyshev polynomials
form a complete basis set. This is realised by applying the transformation

H′ =
H − α

β
⇐⇒ H = βH′ + α, (4.9)

which yields the dimensionless Hamiltonian H′, whose energy spectrum is defined on
the demanded interval. The introduced quantities α and β are defined as

α =
Emax + Emin

2
, β =

Emax − Emin

2
. (4.10)
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Taking these definitions into account the time evolution operator can be expanded in
Chebyshev polynomials. The expansion reads

e−iHt = e−iαte−iH′βt =
∞

∑
n=0

bn(t)Tn(H′), (4.11)

bn(t) = e−iαt 2− δn,0

π

∫ 1

−1
dω′

eiω′βtTn(ω
′)√

1−ω′2
,

= e−iαt(2− δn,0)i
n Jn(βt). (4.12)

Apparently, the Chebyshev expansion of the time evolution operator separates the in-
fluence of the Hamiltonian, which only enters the Chebyshev polynomials Tn(H′), from
the time depedence, wich is fully described by the scalar coefficients bn(t). Applying
the expanded time evolution operator to an arbitrary quantum state |ψ0〉 yields the
expression

e−iHt |ψ0〉 =
∞

∑
n=0

bn(t)Tn(H′) |ψ0〉 =:
∞

∑
n=0

bn(t) |φn〉 . (4.13)

As a consequence the states |φn〉 can be generated by iteratively applying the Hamilto-
nian H′ to the initial state |ψ0〉

|φ0〉 = |ψ0〉 , |φ1〉 = H′ |ψ0〉
|φn+1〉 = 2H′ |φn〉 − |φn−1〉 (4.14)

before the time evolution of the initial state is calculated. I.e. instead of storing the
Hamiltonian H′ for the calculation of the real time dynamics |ψ(t)〉, a set of states |φn〉
has to be stored. Obviously an infinite number of states can not be treated numerically
and the infinite sum entering equation (4.134.13) has to be truncated after a finite number
Nc of elements. In the following a systematic choice for this cutoff Nc is discussed
with respect to the convergence properties of the CET. On top of this open topic, the
largest and smallest eigenenergies of the Hamiltonian H have to be known to apply
the transformation (4.94.9), which is unevitable for the CET. Of course the full energy
spectrum of H is not known a priori and applying an exact diagonalisation of the full
Hamiltonian is obviously not an option, because circumventing this step is the whole
point of applying the CET instead of an ED procedure to obtain the spin noise function
S(t). Pleasently, knowing an upper bound for Emax and a lower bound for Emin is
sufficient to make the CET work, where the deviation of these bounds from the exact
values turns out to be crucial for the efficiency of the method.
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4.2.1 Convergence of the time dependent CET

The convergence of the CET for the propagation of a single quantum state in time re-
lies on the occurence of the Bessel functions of first kind in the coefficients bn(t). As
demonstrated in figure 4.14.1 (a), the Bessel functions Jn(βt) of large order are approx-
imately zero up to a certain value of their argument, which can be estimated by the
asymptotic form Jn(βt) ∼ (eβt/2n)n [105105, 106106] that holds for n→ ∞. To determine the
number of Chebyshev polynomials Nc, that have to be taken into account to obtain an
accurate result for the propagated initial state |ψ0〉 at time t, the parameter ε is intro-
duced. It is a measure for the accuracy of the CET and by evaluating the smallest Nc

fullfilling

ε ≥
(

eβt
2Nc

)Nc

, (4.15)

a reliable result for |ψ(t)〉 is obtained by computing equation (4.134.13), where the infinite
sum is truncated after summing up Nc elements. The parameter ε is usually set to the
value ε = 10−3, ensuring an error below 10−6 as demonstrated in section 4.54.5, where
general benchmarks concerning the CET are performed. Note that equation (4.154.15) in-
dicates a quick convergence of the CET as Nc exceeds βt and as a consequence the
number of polynomials Nc, that have to be taken into account in a typical simulation,
is of the same order as the product of the half spectral width β and the largest time
tmax that is simulated. In contrast to an ED procedure, whose runtime only depends on
the system’s Hilbert space, this also implies that the runtime of a simulation based on
the CET is proportional to βt. This finding points out that the deviation of the estimate
for the largest and smallest eigenvalue of the Hamiltonian H, which will be discussed
in the following section, from their exact values enters the runtime of the CET linearly,
pointing out that finding a good estimate for Emin and Emax is worthwhile. For typ-
ical setups that will be investigated throughout this work, the number of considered
Chebyshev polynomials is of the order Nc ∼ O(100− 1000). This sets the main limi-
tation of the CET, because Nc quantum states of the dimension D = 2 · IN

dim have to be
stored in the active memory at any given time, which limits the number of treatable
spin-1/2 nuclei to N ∼ 24.

4.2.2 Estimating the energy spectrum

As discussed in the previous section, establishing an adequate estimate for the eigenen-
ergies Emin and Emax is crucial for the runtime optimization of a program that utilizes
the CET. The ideal estimate is obviously obtained by exactly diagonalizing the Hamil-
tonian H, which is not a feasible option, because the diagonalization would consume
a lot more time than the whole CET procedure itself. Thus, we have to find a mod-
erate trade off between an estimate that is (i) close to the real extreme eigenvalues of



36 Chapter 4. The Chebyshev Polynomial Expansion Technique

-0.5

-0.25

0

0.25

0.5

0.75

1

0 10 20 30 40 50

J
n
(β
t)

βt

(a) n = 0
n = 10
n = 30

0

0.05

0.1

0.15

0.2

2 4 6 8 10 12

∆
β
/
β

N

(b) ∆βe
mat

∆βo
mat

∆βpow

Figure 4.1: Panel (a) illustrates the behavior of the Bessel functions Jn(βt) of large order n,
which is crucial for the convergence of the CET. Panel (b) shows the relative error
of the two presented estimates for the spectral width β of the isotropic CSM with
a spin bath of spin-1/2 nuclei, where an external magnetic field strength b =
ωLT∗ = 2 applied along the x-direction is considered. Note that the quadrupole
term does not contribute for spin-1/2 nuclei. The error of the estimate obtained
via the power iteration is referred to as ∆βpow, while ∆βe/o

mat denotes the relative
error of the approach based on the triangle inequality, where the even (e) and
odd (o) bath sizes N are illustrated seperately.

the Hamiltonian H and (ii) obtained in an adequate amount of time. In the following
two approaches for the realization of such an estimate are presented, both featuring
different advantages and drawbacks.

Triangle inequality

Since the Hamiltonian H does not include any interactions between the individual bath
spins, the triangle inequality [107107]

||A + B|| ≤ ||A||+ ||B|| (4.16)

can be applied to gain an estimate for the two extreme eigenenergies Emin and Emax. For
this purpose the triangle inequality is examined with respect to the spectral norm [108108].
For a hermitian matrix, as represented by any matrix representation of the Hamiltonian
H, the spectral norm is given by the absolute value of the eigenvalue that possesses the
largest absolute value. To apply equation (4.164.16) to the Hamiltonian H, which is given
by the relations (3.293.29) and (3.143.14), it is split into two parts

H = ωL
~S ·~nB +

N

∑
k=1

(Hk
h f + Hk

q) = H1 + H2 (4.17)

H1 = ωL
~S ·~nB +

m

∑
k=1

(Hk
h f + Hk

q), H2 =
N

∑
k=m

(Hk
h f + Hk

q). (4.18)

Due to this partition of the full Hamiltonian, the two operators H1 and H2, whose
Hilbert spaces are associated to the dimensions 2 · Im

dim and 2 · IN−m
dim , can be diagonalised

in a moderate amount of time, yielding the sets of eigenvalues {E1
n} and {E2

n}. By
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examining the triangle inequality with respect to the spectral norm, this procedure
straight forwardly provides the upper bound

∣∣∣E1
∣∣∣
max

+
∣∣∣E2
∣∣∣
max

for the absolute values
of both Emin and Emax. Anyhow, the full spectrum of a given matrix can be shifted
arbitrarily by adding or substracting a matrix proportional to unity, i.e. one can always
set either Emin or Emax to be the eigenenergy with the largest absolute value and the
triangle inequality holds in any case. Thus, considering the triangle inequality on
basis of the spectral norm is sufficient to show, that the diagonalisation of the two
matrices H1 and H2 provides the two individual bounds Emin ≥ E1

min +E2
min and Emax ≤

E1
max + E2

max. Note that the triangle inequality can in principal be generalized to an
arbitrary number of summed matrices, but for the Hilbert space dimensions that will
be treated with the CET in the following, the separation into two individual parts is
sufficient.

Figure 4.14.1 (b) shows the relative error ∆βmat := ∆β/β of the estimate obtained via
the triangle inequality, where ∆β is the absolute deviation of the estimated spectral
width from its exact value. The underlying system that has been considered for the
shown estimates consists of a nuclear bath of spin I = 1/2 particles in the isotropic
(λ = 1) CSM including an external magnetic field along the x-direction. Its strength
is given by b = ωLT∗ = 2. For simplicity and comparability the coupling constants
are not determined randomly for this benchmark, instead they are increasing linearly:
Ak = k · Amin. The parameter m, that sets the dimension of the two operators H1 and
H2, has been set to N/2 (rounded up for odd bath sizes) for all calculations. With
respect to the shape of the presented curves, the results for even and odd bath sizes
are separated from each other. The fact that the relative error ∆βo

mat for odd bath
sizes is significantly smaller than ∆βe

mat for even bath sizes indicates the tendency that
separating the Hamiltonian into two equally large parts is not an optimal choice. A
further investigation of this tendency, which is not discussed here in detail, points out
that choosing m as large as possible is always ideal. This is an intuitive finding, since
setting m = N is obviously the best possible choice. For the numerical investigations
that will be presented in the following, the choice of m depends on the numerical effort
of the individual calculation. For rather short simulations setting m = 10 for spin-1/2
and m = 5 for spin-3/2 nuclei is sufficient to quickly obtain a sufficient estimate, while
for expensive simulations m is maximally set to 12 or 6 respectively. Note that the error
of the presented estimate based on the triangle inequality is decreasing for increasing
bath size and already for N = 12 and the suboptimal choice m = N/2 a relative
error of approximately 2 % is achieved, which is expected to be reduced by a factor of
approximately 1.5− 2 in the typical simulations that will be discussed later. Although
the presented estimate based on the triangle inequality is very versatile at a moderate
efficiency, a second approach for the estimation of the energy spectrum is presented in
the following, that is advantageous in certain scenarios.
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Power iteration

The power iteration [109109] is a numerical procedure that gives access to the single eigen-
value λmax that possesses the largest absolute value of a given diagonalisable matrix.
To obtain this eigenvalue, the matrix is iteratively applied to an arbitrary initial vector
a0, defined in the space that is spanned by the eigenvectors of the matrix under study,
until the arising prefactor of the performed matrix vector product converges. The only
prerequisite, which is mandatory for the convergence of the method, concerning the
vector a0 is that it needs to have a finite overlap with the subspace spanned by the
eigenvectors that are associated to the eigenvalue λmax. Note that the vector a0 has
to be normalized after each iteration, to avoid an occurring divergence of the method.
Determining λmax for the Hamiltonian H corresponds to the calculation of the series

|ϕn〉 =
Hn |ϕn〉√

〈ϕn|H
nHn |ϕn〉

, (4.19)

where |ϕ0〉 is usually a randomly generated state. Since the propagation of a quantum
state in time via the CET also relies on the iterative application of the Hamiltonian to
an initial vector |ψ0〉, the power iteration is an obvious candidate for a cheap estimation
of the largest eigenenergy according to its absolute value.

For the most general form of the Hamiltonian (3.13.1) it is unclear wether the power
iteration yields the absolute value of Emin or Emax and in general no analytic state-
ment for the other eigenvalue is known. Thus, it is straightforward to determine the
eigenvalue λmax of the Hamiltonian H and to set Emin = − |λmax| and Emax = |λmax|
afterwards. This clearly yields a valid upper bound for the spectral width β, but appar-
ently not an optimal one. Figure 4.14.1 (b) shows the relative error ∆βpow := ∆β/β of the
estimate obtained via the described power iteration procedure based on the same setup
as discussed for the estimation via the triangle inequality. Apparently the relative error
obtained via the power iteration is significantly smaller than from the triangle inequal-
ity. As described in the context of the estimate via the triangle inequality, it is also
possible to shift the entire spectrum of the Hamiltonian and by applying the power
iteration, both extreme eigenvalues could be determined exactly this way. Also note
that the largest eigenenergy Emax is known a priori for the special case of the isotropic
CSM without taking the quadrupole interaction into account (Qr = 0) and it is given
by

Emax =
ωL
2

+
As I
2

. (4.20)

On top of the knowledge of this exact statement, it can be shown that the absolute value
of the smallest eigenenergy Emin is always larger than Emax for the pure isotropic CSM.
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Hence the power iteration is capable of yielding an exact estimate for the demanded
eigenenergies in this special case.

On first sight the power iteration seems to be advantageous compared to an esti-
mation via the triangle inequality. Anyhow, there are two problems associated to this
method that are linked to each other: (i) by construction the method always converges
towards the largest eigenvalue from below, i.e. aborting the iteration too early yields
an underestimation of the energy spectrum, which results in a divergence of the CET.
(ii) It turns out that the convergence velocity of the method is heavily dependent on
the system parameters and for certain setups the convergence occurs very slowly. For
these reasons the estimation based on the triangle inequality is often the better choice,
because it is not dependent on the system setup at hand and it therefore yields an ad-
equate result on a timescale that is perfectly predictable. Still the power iteration is the
preferred method for certain setups. Especially for the treatment of the isotropic CSM
without an external magnetic field and QC, which is a very prominent special scenario
of the system under study, the power iteration is the preferred method due to its quick
convergence and its exact estimate of the desired energy spectrum.

4.3 Calculation of the spin noise function S(t)

As mentioned introductory and shown in equation (4.24.2), the calculation of the spin
noise function S(t) requires the evaluation of a trace, i.e. the propagation of D in-
dividual basis states in time, This is clearly not realisable in an adequate amount of
time. To circumvent this problem A. Weisse et al. [110110] have put forward a stochas-
tical evaluation of traces, which manages to approximate a full trace by considering
a small amount Ns of randomly generated states |r〉. These states are constructed by
determining D random coefficients ξri fullfilling the relations

〈〈ξri〉〉 = 0, (4.21)〈〈
ξriξr′ j

〉〉
= δr,r′δi,j, (4.22)

where 〈〈· · ·〉〉 denotes the statistical average. Equations (4.214.21) and (4.224.22) are realized
by the generation of real coefficients that obey a Gaussian distribution. To realize
such a Gaussian probability distribution, the Box-Muller-method [111111] is applied. The
coefficients ξri are used to construct the random state

|r〉 =
D

∑
i=1

ξri |i〉 , (4.23)
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which is explicitly not normalized in the process. These states are used to construct
the statistical average〈〈

1
NsD

Ns

∑
r=1
〈r| eiHtSze−iHtSz |r〉

〉〉
=

1
NsD

Ns

∑
r=1

D

∑
i,j=1

〈〈
ξriξrj

〉〉
〈i| eiHtSze−iHtSz |j〉

=
1
D

D

∑
i=1
〈i| eiHtSze−iHtSz |i〉 . (4.24)

Apparently considering a set of Ns random states instead of the D basis states repro-
duces the spin noise function S(t) in the representation (4.24.2) on average. As argued
by Weisse et al. [110110], the error of this stochastical approach is of the order O( 1√

NsD
).

I.e. the number Ns of considered random states, that needs to be taken into account
for an adequate approximation of the spin noise function S(t), decreases with the di-
mension D of the underlying Hilbert space. For example when investigating a system
containing a bath of N = 20 spin-1/2 nuclei, taking a single random state into account
is expected to be sufficient to obtain an error of the order O(10−3). In equation (4.24.2)
one time evolution operator is applied to the state |i〉, while the other acts on the mod-
ified state

∣∣i′〉 = Sz |i〉. To avoid the explicit propagation of these two individual states,
the relation (3.363.36) is exploited, where the density operator ρpol fullfills ρ2

pol =
2
D ρpol.

Inserting this into the spin noise function yields

S(t) ≈ 1
2Ns

Ns

∑
r=1
〈r| ρpole

iHtSze−iHt |r〉 = D
4Ns

Ns

∑
r=1
〈r| ρpole

iHtSze−iHtρpol |r〉 . (4.25)

This is the final form of S(t), which is calculated in most simulations that are discussed
throughout this work. Ns is typically in the range 3− 5 and only a single quantum state∣∣r′〉 = ρpol |r〉 needs to be propagated for each of the Ns series elements.

4.4 Analytic Fourier transformation of the spin noise
function

The experimental approach to obtain the spectral spin noise function S(ω) is to perform
a real time measurement on large time scales and to perform a Fourier transformation
to the obtained data. This is also a valid route for the theoretical treatment of S(ω), but
since the expansion in Chebyshev polynomials features a direct analytical statement
for the spectral spin noise function, the numerical evaluation of this analytical form is
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preferred over the Fourier transformation of time resolved calculations. To transform
S(t) into the spectral regime, it is rewritten using equation (4.124.12) yielding

S(t) = Tr
[
eiHtSze−iHtSz

]
(4.26)

=
∞

∑
n,m=0

2− δn,0

π

2− δm,0

π
Tr
[
Tn(H′)SzTm(H′)Sz]

×
∫∫ 1

−1
dω̃1 dω̃2 e−i(ω̃1−ω̃2)βt Tn(ω̃1)Tm(ω̃2)√

(1− ω̃2
1)(1− ω̃2

2)
. (4.27)

For simplicity the acronyms µn,m = Tr
[
eiHtSze−iHtSz

]
and hn,m =

2−δn,0
π

2−δm,0
π are intro-

duced. By applying the Fourier transformation to this form of S(t), one obtains

S(ω) =
∞

∑
n,m=0

hn,mµn,m

∫∫ 1

−1
dω̃1 dω̃2

Tn(ω̃1)Tm(ω̃2)√
(1− ω̃2

1)(1− ω̃2
2)

×
∫ ∞

−∞
dt e−i( ω

β +ω̃1−ω̃2)βt, (4.28)

where the time integral can be easily evaluated. It yields a Dirac delta function of the
form 2π

β δ(ω
β + ω̃1 − ω̃2), which can be used straight forwardly to evaluate one of the

remainder integrals. We arrive at the final form

S(ω) =
∞

∑
n,m=0

2π

β
hn,mµn,m

∫ b

a
dω̃

Tn(ω̃)Tm(ω̃ + ω
β )√

(1− ω̃2)(1− (ω̃ + ω
β )

2)
. (4.29)

The boundaries a and b of the occurring integral depent on the sign of the frequency
ω:

ω < 0 : a = −1− ω

β
, b = 1 (4.30)

ω ≥ 0 : a = −1, b = 1− ω

β
. (4.31)

Anyhow equation (3.313.31) points out that the spectral spin noise function is an even
function in ω. As a consequence a restriction to ω ≥ 0 is well justified and will be
applied in the following. There are three critical factors entering the final form (4.294.29)
of S(ω): (i) the calculation of the momenta µn,m can be treated similarly as discussed
for the occurring trace in S(t). Namely a stochastical evaluation is applied and for sim-
plicity Tr

[
Tn(H′)SzTm(H′)Sz] is rewritten as D

4 Tr
[
ρpolTn(H′)SzTm(H′)ρpol

]
. (ii) The

occurring integral features divergencies at both boundaries, making its adequate eval-
uation problematic. (iii) The convergence of the two infinite sums entering S(ω) is not
strictly ensured, in contrast to the demonstrated behavior for S(t). The two latter open
challenges are discussed in the following.
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4.4.1 Efficient integration method

The divergencies entering the integral in equation (4.294.29) stem from the denominator,
while the nominator is entirely unproblematic. Figure 4.24.2 illustrates the behavior of
the integral kernel for n = m = 0, where the Chebyshev polynomials are equal to 1.
Apparently, its gradient is very large close to the boundaries, while it is small for a
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Figure 4.2: Schematical illustration of the integral kernel ((1− ω̃)(1− (ω̃ + ω
β )

2))−1/2 enter-
ing equation (4.294.29) for n = m = 0. The x-tics indicate the applied distribution of
the nodes that are used to evaluate the full integral.

broad area in the middle of the relevant interval. With respect to this trend, the nodes
that are used for the evaluation of the integral under study are supposed to obey a
dense distribution near the integral boundaries that thins out towards the middle of
the interval. To realize a distribution of this type, the distance between two considered
nodes is set to increase exponentially when veering away from the boundaries, which
is illustrated for 12 nodes by the x-tics in figure 4.24.2. Note that the discussed integral
entering the spectral spin noise function S(ω) does not depend on the details of the
underlying system. The only physical quantity that is crucial for the integral is the
spectral width β. Therefore the result for a given grid of the frequency ω/β ∈ [0 : 2]
and a large number N0 of series elements can be calculated once and be stored on the
hard memory of the machine. The obtained data can be applied for any numerical
simulation of the Hamiltonian H and any desired number of series elements Nc ≤ N0,
while the numerical effort for the calculation of the integral entering S(ω) has to be
paid only once. As a consequence the main effort of the simulations adressing the
spectral spin noise function lies in the calculation of the momenta µn,m.

4.4.2 The Kernel polynomial method

As mentioned above, there is no factor entering S(ω) that ensures a strict convergence
of equation (4.294.29) after summing up a finite number Nc of series elements. The oc-
curence of Gibbs oscillations [112112] is typical for problems of this type and to supress
this unpleasant effect A. Weisse et al. [110110] have discussed the kernel polynomial
method (KPM). It will be briefly reviewed here, according to the review from reference
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[103103], to reclaim the so called Jackson Kernel [113113, 114114], which will be used for the
suppression of Gibbs oscillations throughout this work. The basic idea of the KPM is
to introduce prefactors gn that are supposed to regulate the truncation error of infinite
sums:

f (x) = b0 + 2
∞

∑
n=1

bnTn(x) (4.32)

≈ g0b0 + 2
Nc

∑
n=1

gnbnTn(x) =: fKPM(x). (4.33)

The key question of the KPM is obviously the determination of an adequate choice of
the prefactors gn. It is approached by introducing the Kernel

KNc
(x, y) = g0φ0(x)φ0(y) + 2

Nc

∑
n=1

gnφn(x)φn(y), (4.34)

φn(x) =
Tn(x)

π
√

1− x2
, (4.35)

which is linked to fKPM(x) via the orthogonality relation

fKPM(x) =
〈

KNc
(x, y)| f (x)

〉
. (4.36)

To classify an appropriate Kernel Weisse et al. presented three criteria: (i) the kernel
is supposed to be positive definite KNc

> 0∀x, y ∈ [−1 : 1], (ii) it needs to fulfill the

normalization relation
∫ 1
−1 dx KNc

(x, y) = φ0(y) and (iii) the second coefficient g1 shall
approach 1 for Nc → ∞. To ensure that the first condition is fulfilled, the strictly
positive function

p(ϕ) =

∣∣∣∣∣Nc−1

∑
ν=0

aνeiνϕ

∣∣∣∣∣
2

= g0 + 2
Nc−1

∑
n=1

gncos(nϕ) (4.37)

gn =
Nc−1−n

∑
ν=0

aνaν+n (4.38)

can be put forward, which is linked to the Chebyshev polynomials by setting φ =

arccos(x), according to their trigonometric definition (4.44.4). To exploit the third condi-
tion, the function

Q :=
∫∫ 1

−1
dxdy (x− y)2KNc

(x, y) (4.39)

is introduced, which is a measure for the squared width of the peak of KNc
(x, y) occur-

ring at x = y. By demanding the minimization and treating some elementary proper-
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ties of Q, a system of equations is obtained that is used to determine the coefficients
aν. One arrives at

aν = ā · sin
(

πk(ν + 1)
Nc + 1

)
(4.40)

⇒ gn =
(Nc − n + 1)cos πn

Nc+1 + sin πn
Nc+1 cot π

Nc+1

Nc + 1
, (4.41)

which are the coefficients gn that set the Jackson kernel and will be applied to all cal-
culations of S(ω) throughout this work. Note that the coefficients gn are not obtained
trivially [110110] from the derived set of aν, but for simplicity the additional steps are not
discussed in detail here.

4.4.3 Sum-rule

As argued above, the sum-rule (3.323.32) yields a valuable benchmark for the adequacy
of a given numerical method. Obviously the question arises, wether the truncation
of the infinite sum in equation (4.294.29) violates this sum-rule. Since T0(x) = 1 holds,
inserting the Chebyshev expansion of the spectral spin noise function into the Fourier
transformation S(t = 0) = 1

2π

∫ ∞
−∞ dω S(ω) yields

S(t = 0) =
1

2π

∞

∑
n,m=0

hn,mµn,m

∫ 1

−1
dω̃1

Tn(ω̃1)T0(ω̃1)√
1− ω̃2

1

∫ 1

−1
dω̃2

Tn(ω̃2)T0(ω̃2)√
1− ω̃2

2

×
∫ ∞

−∞
dω 2πδ(ω + β(ω̃1 − ω̃2)) (4.42)

=
∞

∑
n,m=0

hn,mµn,mπ2δn,0δm,0 = µ0,0 =
1
4

, (4.43)

where the orthogonality relation of the Chebyshev polynomials has been exploited.
Apparently, the spectral weight of S(ω) expanded via the CET is fully determined by
the smallest order moment µ0,0 and the desired sum-rule is fullfilled independently of
the cutoff Nc. This finding also implies that the Chebyshev polynomials of higher order
only introduce a redistribution of the existing spectral weight, which is an important
feature for the understanding of the spectral results obtained via the CET.

4.5 Benchmarking the Chebyshev polynomial expansion

To benchmark the CET, a simplified version of the Hamiltonian H is considered, for
which a couple of exact analytical statements exist, that are useful to gain detailed
insight into the convergence properties of the CET. Namely, the section at hand is
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restricted to the treatment of spin-1/2 nuclei and the so called box model, which is
defined by the Hamiltonian

Hbox = A~S ·
N

∑
k=1

~Ik. (4.44)

The intrinsic time scale T∗ = (∑k A2
k)
−1/2 is introduced to define the dimensionless

coupling constants Ã = AT∗ = 1/
√

N. A. Khaetskii et al. [115115] have put forward
an analytic treatment of the CSM that is based on the conservation of the system’s
total spin S z = Sz + ∑k Iz

k . Within their approach, a Laplace transformation of the
Schrödinger equation for an arbitrary pure state with a well defined total spin S z is
performed. Also see the review presented in reference [103103] for the details of this ana-
lytic solution. Although the exact analytic treatment of a full trace for a moderate bath
size N ∼ O(10) is not possible in an adequate amount of time, the method provides
the statement that the central spin’s time evolution for an arbitrary initial condition is
driven by a set of N/2 frequency components, which are given by

ΩN/2−n =

√
N

2

(
1 +

1− 2n
N

)
, (4.45)

where n ∈ {0, 1, ..., N/2− 1} holds. Thus, the spectral function S(ω) will always consist
of N/2 + 1 δ-spikes (one occurring at ω = 0), whose spectral weight is determined by
the considered initial condition. For the real time dynamics S(t) the analytical finding
implies a periodic behavior, because for a finite spin bath a finite number of com-
mensurable frequencies fully describes the time evolution. Since the recurrence time
approaches infinity for an infinite number N of bath spins, it is expected to increase
with the system size.

4.5.1 Benchmarks concerning S(t)

Figure 4.34.3 shows various calculations demonstrating the convergence properties of the
CET applied to the real time dynamics S(t) within the box model Hbox. Note that all
following statements concerning the discussed convergence properties also apply for
any other model Hamiltonian, but due to its analytically accessible properties the box
model is examplarily taken into account here. Panel (a) of figure 4.34.3 considers a spin
bath of N = 2 nuclei. For this setup the spin noise function can easily be calculated
exactly and it is given by

S(t) =
1
4

(
5
9
+

4
9

cos
(

3t√
8T∗

))
. (4.46)

According to the general analytic prediction (4.454.45), the spin noise function is described
by a single frequency which is given by the spectral width 2β = 3/

√
8. I.e. the recur-
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Figure 4.3: Panels (a)-(b) treat the time dependent CET’s convergence for varying cutoffs
Nc of the infinite sum occurring in equation (4.114.11). Both panels are based on
the system Hamiltonian Hbox considering N spin-1/2 nuclei. The legend of panel
(b) also applies for panel (a). The arrows indicate the time when the prediction
(4.154.15) exceeds ε = 10−3 for the order Nc of the equivalent color. Panels (c)-(d)
focus on the error arising from the stochastic evaluation of the trace entering S(t).
The dashed lines in panel (d), which shows the relative error ∆S(t) = (SED(t)−
SCET(t))/S(0), indicate the estimated error for the data of the corresponding color.
It is given by 1/(S(0)

√
NsD), where D = 2048 applies for all shown results. Panels

(a) - (c) correspond to figure 2 from reference [9797].

rence time of the periodic spin noise function S(t) is given by trec/T∗ = 2
√

8π/3 ≈ 6.
The colored arrows in panels (a)-(b) of figure 4.34.3 indicate where the anayltic estimate
(4.154.15) exceeds the value ε = 10−3. For the investigated setup it yields tmax/T∗ = 6.95,
considering Nc = 10 Chebyshev polynomials and the comparison to the exact results
shows a deviation of the order O(10−5). Setting ε = 10−2 would suggest the largest
reliable timescale tmax/T∗ = 8.75 and an error of the order O(10−4), which is, as will be
discussed below, of the same order as the error arising from the stochastical evaluation
of traces. Thus, the parameter ε will be set to 10−3 throughout this work. Turning to
a larger bath of N = 6 nuclei, which is considered in panel (b) of figure 4.34.3, yields an
increase of the spectral width and along with it of the largest contributing frequency
to 2β = 7/

√
24. As a consequence, taking Nc = 10 or 20 Chebyshev polynomials

into account yields shorter reliable timescales than for N = 2. Accordingly, the ob-
tained results from the CET develop significant deviations from the exact calculations
on shorter timescales, which is most pronounced for Nc = 20. Setting ε = 10−3 sug-
gests that Nc = 56 polynomials are adequate to guarantee reliable results for t/T∗ = 50
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and, according to our prediction, the numerical simulations performed via the CET re-
produce the exact solution for N = 2 and 6 perfectly on the predicted timescale. As put
forward in the introduction of the section at hand, the recurrence time for N = 6 bath
spins is significantly larger than for N = 2, but as expected S(t) is a strictly periodical
function in time. Both of these observations are also stated for N = 10 bath spins.

Figure 4.34.3 (c)-(d) treats the error arising from the stochastical evaluation of the trace
occurring in S(t). In panel (c) its exact time evolution, obtained via exact diagonalisa-
tion (ED), for N = 10 is shown in comparison to CET results for various numbers Ns

of randomly generated states |r〉. It turns out, that already the consideration of such
a single quantum state is sufficient to reproduce the qualitative behavior of S(t) and
for Ns = 16 the accordance of the two approaches is already very good. Panel (d)
quantifies this statement, by showing the relative deviation of the CET from the ED,
which is defined as ∆S(t) = (SED(t)− SCET(t))/S(0). The error estimate that has been
derived by A. Weisse et al. [110110] puts forward a relative error of the order O(1/

√
NsD),

which is indicated by the dashed lines in figure 4.34.3 (d) and it turns out that it over-
estimates the observed relative error significantly. Note that considering Ns = 3072
random states for N = 10 bath spins corresponds to the expected error of a simulation
of N = 20 spin-1/2 nuclei taking Ns = 3 random states into account, which is a typical
choice of parameters for the simulations that are presented thorughout this work. For
such a setup the relative error is estimated to be smaller than 0.2 % and for the data
shown in figure 4.34.3 (d) it is a factor of 2 smaller. Hence, the absolute error entering S(t)
is usually of the order O(10−4), which is, as mentioned above, one order of magnitude
larger than the error stemming from the CET applied to a single quantum state. There-
fore the error stemming from the stochastical evaluation of traces is the main source
of uncertainty that enters the simulations based on the CET. We stress that this error
is not increasing with the maximum time that is simulated. This is an important state-
ment, since it distinguishes the method at hand from most other approaches for the
calculation of real time dynamics in complex quantum systems. Concerning the box
model, this time-independence manifests itself in the observation that the occurring
error of the simulations features the same periodicity as S(t).

4.5.2 Benchmarks concerning S(ω)

As argued above, there is, in contrast to the time dependent CET, no contribution to
the spectral spin noise function S(ω) expanded in orders of Chebyshev polynomials,
ensuring the convergence of the method in a straight forward fashion. Anyhow, it has
been demonstrated that S(t) is reproduced adequately up to tmax ≤ 10−3/Nc 2Nc/(eβ)

(see equation (4.154.15)) by taking Nc polynomials into account. Inverting this statement
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Figure 4.4: Numerical results adressing the convergence properties of the CET applied for
the calculation of the spectral spin noise function S(ω). A system containing
N = 8 spin-1/2 nuclei associated to the coupling constants Ak = 1/

√
N has been

considered and the legend of panel (c) applies for all shown data. For panel (a) the
infinite sum occurring in equation (4.294.29) has been truncated without inserting the
coefficients gn. The black dashed lines indicate the positions of the frequencies
ΩN/2−n. Panel (b) shows corresponding results, where the Jackson kernel has
been added. The colored dashed lines correspond to the individual curves and
indicate their reliable resolution, estimated by equation (4.474.47), for the δ-peak
occurring at the frequency Ω2. Panel (c) shows the same data as panel (b) on a
double logarithmic scale, where the dashed lines specify the reliable resolution
for the peak at zero frequency.

puts forward the estimate, that the CET applied to the spectral function S(ω) for a
given number Nc of Chebyshev polynomials yields the reliable resolution

ωmin ≥
103/Nc πeβ

Nc
. (4.47)

This is, due to the lack of straight forward convergence properties, not necessarily
a valid prediction and has to be checked numerically. Also the role of the Jackson
kernel for the obtained convergence properties of the CET is unclear a priori. Figure
4.44.4 adresses these issues, considering a system of N = 8 homogeneously coupled
(Ak = 1/

√
N) bath spins with I = 1/2. The N/2 = 4 frequencies ΩN/2−n, that

drive the central spin dynamics for this setup, are specified by the black dashed lines
in panel (a), which shows numerical results for S(ω) obtained via the CET without
the introduction of convergence improving factors gn. In contrast, figure 4.44.4 (b) ex-
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hibits corresponding results involving the Jackson kernel (4.414.41). It turns out that both
approaches feature maxima, where the δ-peaks of the exact spectral function are lo-
cated. Also, the distribution of the total spectral weight among these individual peaks
appears to be similar for both approaches. Appart from these similarities, the pro-
nounced Gibbs-oscillations occurring in panel (a) are problematic for two reasons: (i)
they feature unphysical contributions S(ω) < 0 and (ii) their frequency and ampli-
tude are increasing with the order Nc, stating that an increase of the finite order Nc

does not fully solve the occurring problems. This puts forward that the introduction of
convergence improving prefactors gn is mandatory, to obtain a physically well defined
spectral function S(ω) when considering a finite number of polynomials Nc.

The added dashed lines in figure 4.44.4 (b) and (c), mark the estimated (see equation
(4.474.47)) reliable resolution of the peaks occurring at ΩN/2−2 = Ω2 = 5

√
2

8 (b) and ωT∗ =
0 (c) for the order Nc of the corresponding color. On a linear scale no violation of the
analytic estimate for the reliable resolution is observed and as predicted, the numerics
produce an overlap of the neighboring δ- peaks for Nc = 50, while they are well
separated for the larger orders Nc = 100, 200. It also turns out, that the spectral weight
of the well separated peaks is invariant for increasing Nc. Also note that the peaks
calculated via the CET are not perfectly centered around the correct frequencies, but
the correct spectral weight is distributed within a well defined range around it. The
double logarithmic illustration of the numerical results, as presented in panel (c) of
figure 4.44.4, reveals that a deviation of the order S(ω)/T∗ ∼ O(10−2) from the estimated
reliable resolution (4.474.47) occurs, but due to the full amplitude of the spectral function
this deviation is negligible. Therefore the introduced error estimate applied to the
CET involving the Jackson kernel, is assumed to yield a valid bound for the reliably
simulated interval of a given spectrum. Figure 4.44.4 (c) also reveals that the convergence
of the CET towards an individual δ-peak is not of a strictly monotonic nature.

In section 4.4.14.4.1 an efficient method for the treatment of the integrals entering S(ω)

has been introduced, that respects the problematic properties of the integral kernel. To
verify that the introduced method treats these properties adequately, the demanded
sum-rule (3.323.32) is checked by integrating the spectral functions calculated via the CET.
It turns out that the occurring deviations from the sum-rule, are always of the same
order as the error stemming from the stochastical evaluation of the trace entering S(ω),
proving that the latter error is at least of the same order as all further uncertainties
influencing S(ω).

Given that the sum-rule (3.323.32) is fullfilled within the introduced spectral CET, it is
stressed that its convergence properties can be advantageous for the treatment of the
discrete character of a finite quantum system. Since we address experiments that are
applied on a large quantum system, whose spectrum is expected to be approximately
continuous, it is sometimes a pleasent feature that the CET intrinsically adds a well
defined broadening to the discrete frequency components of the finite system. I.e.
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instead of a set of individual sharp peaks, a smooth curve can be obtained by choosing
a rather small order Nc, which may account better for the experimental setup. Of
course this broadening is only useful for the investigation of short time dynamics,
because effects taking place on a long time scale are always associated to sharp peaks,
that have to be resoluted adequately.



Chapter 5

Electron Spin Dynamics

The chapter at hand is dedicated to the study of the most prominent special case of the
model Hamiltonian H, namely the isotropic central spin model (ICSM). It is given by
the Hamiltonian

HICSM = ωL
~S ·~nB + ~S ·

N

∑
k=1

Ak~Ik. (5.1)

Since the ICSM accounts for the Fermi contact hyperfine interaction, which is the dom-
inant interaction influencing a single electron confined in a semiconductor QD, it has
been studied intensively in the past. In the following an overview of the results of
numerous investigations concerning the central spin dynamics within the ICSM is pre-
sented and the virtues of the CET are exploited to gain new insights into certain aspects
of the model, that are not fully understood until the present day. Hence, the main part
of this chapter addresses the central spin dynamics in the absence of a magnetic field
ωL = 0, which is the most challenging regime of the model, because any perturbative
approach dividing the model into an easily treatable part accompanied by a small per-
turbation fails due to the lack of an energy hierarchy. Note that a Bethe Ansatz solution
for the ICSM exists. It has been intensively studied in the past [3636, 3737, 3333, 3535], but since
its treatment is quite challenging, there are still several open questions concerning the
central spin dynamics within the ICSM. The discussion of the magnetic field free case
is followed by the treatment of the central spin dynamics in (i) transversal (~nk = ~ex)
and (ii) longitudinal (~nk = ~ez) magnetic fields. In large external fields the real time dy-
namics can be treated perturbatively [116116, 117117] and consequently the system dynamics
are accessible for large bath sizes, while small external fields ωL . As demand a non-
perturbative treatment. Finally, the theoretical findings are compared to the results of
recent experiments. It is stressed that the influence of quadrupolar interactions onto
the electron and hole spin dynamics is postponed to chapter 88. Note that most of the
discussions presented in the chapter at hand are based on the published results from
references [9797], [118118] and [119119].

51
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5.1 Dynamics in the absence of a magnetic field

In section 3.3.23.3.2 a semi classical approach has been reviewed, that turns out to describe
the short time behavior of S(t) perfectly. This finding has been underlined impressively
by recent DMRG investigations taking N = 1000 bath spins into account [3939], where
perfect agrement between the fully quantum mechanical and semi classical calculations
was found. Hence, the semi classical result SSCA(t) serves as a valuable benchmark for
the CET concerning the obtained short time dynamics. The critical character of this
benchmark is stressed by the fact that the semi classical approach (SCA) assumes an
infinite spin bath, while the CET simulations are limites to N ∼ 20 spin-1/2 nuclei. This
forces the question wether the numerical simulations are able to put forward reliable
statements for a system containing O(105) bath spins at all. As sketched in section
3.1.53.1.5, we try to mimic an effectively larger bath by determining n random sets of N
coupling constants and performing an individual simulation of S(t) for each of these
sets. Finally, the results of these individual calculations are averaged to obtain a single
curve for S(t), that represents a certain set of model parameters. The question wether
this approach is adequate to circumvent possible occuring finite size limitations will be
part of the presented studies below.

The SCA by Merkulov et al. has also been discussed concerning a prediction of
the long time dynamics of the central spin. This and further estimates for S(t) at
large times will not be reviewed here in detail, but based on the presented numerical
simulations their viability will be discussed in the corresponding section below. In this
context also the influence of the system parameters r0, d and m will by investigated in
detail. The discussions will be concluded by the introduction of an analytic estimate
concerning the long time behavior of S(t), which has been proposed in the context of
this work [119119]. Its derivation will be briefly reviewed and its validity will be discussed
in the final part of the section at hand.

5.1.1 Short time dynamics

As argued in section 3.3.23.3.2, the semi classical solution of the ICSM by Merkulov et
al. does not contain any information about the distribution of the coupling constants
Ak among the QD. Hence, the choice of the model parameters r0, d and m, that have
been introduced in section 3.1.53.1.5, is not supposed to have an impact onto the short
time dynamics of S(t). Figure 5.15.1 (c)-(d) addresses the question wether this statement
is true concerning the cutoff r0 and accordingly the remainder parameters are kept
constant among the figure, choosing d = 3 and m = 2. To guarantee comparibility of
the individual calculations, a set of 960 (for spin-1/2 nuclei, 480 for I = 3/2) coupling
constants Ak has been generated for every given value of r0 in advance. I.e. for each
presented curve from figures 5.15.1 (a) and (b) exactly the same coupling constants have
been taken into account and due to the varying bath size the number of individual
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Figure 5.1: Short time dynamics of the spin noise function S(t) in comparison to the semi
classical prediction SSCA(t), focusing on the role of the cutoff r0. The left panels
consider a bath of spin-1/2 nuclei, while for the right panels I = 3/2 holds. Panel
(a)-(b) show numerical results for r0 = 1.2 and a varying bath size N. The insets
show a close up, which is specified by the black rectangles, of the minimum of
S(t). For all presented simulations the parameters d = 3, m = 2 apply and
n = 960/N (I = 1/2) or n = 480/N (I = 3/2) randomly generated sets of
coupling constants Ak have been averaged. The panels (c)-(d) treat a variation
of the cutoff r0 and are based on N = 20 (c) and N = 10 (d) bath spins, yielding
an identical Hilbert space dimension D ∼ 2 · 106.

averaged simulations is given by n = 960/N (or n = 480/N). E.g. all data presented
in panels (c)-(d), which all consider N = 20 (I = 1/2) or N = 10 (I = 3/2) bath spins,
are based on n = 48. In panels (a)-(b) numerical results for S(t) based on various bath
sizes N are shown along with the semi classical solution SSCA(t). It turns out that
the introduction of the intrinsic timescale T∗ induces a collapse of all presented curves
onto each other up to t/T∗ ≈ 2.5 independently of the bath size or the nuclear spin
species. This finding states that T∗ is indeed the crucial timescale for the short time
dynamics of the spin noise function S(t). After the initial collapse, the numerical results
deviate from the analytic prediction: for both investigated nuclear species S(t) reaches
its minimum slightly earlier than predicted by SSCA(t) and, accordingly, the ensuing
increase to approximately S(0)/3 at t/T∗ ≈ 8 occurs faster for the numerical results.
Looking into the scaling behavior of the simulations concerning the system size, it
turns out that, as expected, the subsequent calculations for increasing N indicate a
convergence towards the semi classical prediction up to t/T∗ ≈ 8. Also note that
this convergence towards the local minimum of S(t) at t/T∗ ≈ 3.5 occurs from above
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for I = 1/2 and from below for I = 3/2, while the relative deviation from SSCA(t) is
comparable for both nuclear species at identical Hilbert space dimension D. In contrast,
both spin-bath types feature a convergence from above at larger times. As mentioned
above, D. Stanek et al. [3939] were able to apply the DMRG to a spin bath of N = 1000
nuclei and found perfect agreement between the fully quantum mechanical calculations
and SSCA(t). The same result is expected to be found for a single simulation involving
N = 960 bath spins associated to the coupling constants which entered figure 5.15.1 (a)-
(b). Hence, we find that performing an average over n = 60, 48, 40 sets of N = 16, 20, 24
individual calculations, taking the same 960 coupling constants Ak into account, is not
capable of reproducing the same short time dynamics as a single calculation involving
all spins exactly. This finding is not surprising, because as suggested by the semi
classical solution, the details of the realization of the coupling constants only influence
the short time dynamics slightly. This implies that the obtained dynamics for each of
the n sets of coupling constants are very similar and since a very large number of bath
spins is required to reproduce SSCA(t) in a single simulation, averaging over several
smaller systems will always deviate from the analytic solution for N → ∞. However,
this observation states that the underestimation of the minimum of S(t) for I = 3/2
as well as its overestimation for I = 1/2 is intrinsic to the two types of nuclei and not
related to the random realization of the Ak.

Although the effect of statistical averaging over many individual configurations
turned out to be of minor importance for the short time dynamics of S(t), its cen-
tral role for the present CET studies will be discussed further below. Note that the
good agreement between SSCA(t) and the numerical simulations is the central obser-
vation indicating that considering a rather small spin bath might be adequate to cover
the generic dynamics of an experimental setup. Since all findings stated so far hold
for arbitrary values of the parameters d and m and their variation yields very similar
curves as presented for d = 3 and m = 2 in figure 5.15.1 (a)-(b), we renounce their further
discussion in the context of the short time dynamics.

Though, the influence of the parameter r0 for t/T∗ < 20 is treated in figure 5.15.1 (c)-
(d). As for r0 = 1.2, all presented curves collapse onto each other for very short times,
but the deviations of the numerical results from SSCA(t) become more and more pro-
nounced for increasing r0. For the initial local minimum of the spin noise function this
means, that the overestimate for I = 1/2 and the underestimate for I = 3/2 increase
significantly. Afterwards, the simulations of S(t) for r0 > 2 feature significant oscil-
lations that are not expected from the SCA. This behavior is easily understood by the
distribution of coupling constants in any of the random configurations. Considering a
fixed bath size N and a large cutoff r0, the number of nuclei associated to a significant
coupling constant Ak/Amax = O(1) becomes very small due to the rapidly increasing
probability of finding a small coupling constant. Hence, the resulting oscillation is of
a similar origin as the coherent motion shown in figure 4.34.3 (a), where only one or two
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bath spins affect the short time behavior, and the damping is induced by the weakly
coupling spins contributing to the dynamics on a longer timescale. I.e. the observed
oscillations are not expected to occur in a real QD, because the distribution of coupling
constants is always densely occupied and a significant number of bath spins contribut-
ing through a coupling constant Ak/Amax of every order is represented. In contrast
the numerical limitations on the bath size only guarantee a dense distribution of the
coupling constants for small cutoffs r0 and therefore entail a limitation on the treatable
cutoff, which is one of the main drawbacks of the CET. The comparison of the results
for I = 1/2 and I = 3/2 yield a very similar behavior for the two bath types at times
t/T∗ > 5, while the deviations from SSCA(t) are a lot more pronounced for I = 3/2
before. Due to the discussed limitations concerning the cutoff r0, the latter observation
is quite intuitive, since the number N of considered coupling constants is reduced by a
factor of two for I = 3/2. On the other hand it is surprising that the subsequent time
evolution is of a similar character for both scenarios. Besides, we find that the drop
of S(t) below the value S(0)/3 for t/T∗ > 9 becomes more and more significant with
increasing r0 and it is not clear a priori, wether this is another finite size or a physical
effect. The latter questions will be discussed further in the context of the long time
dynamics below.

But for now, let us turn to the spectral spin noise function S(ω), focusing on the short
time dynamics of the central spin which is treated in figure 5.25.2. All shown results are
based on the parameters d = 3, m = 2 and r0 = 1.5. The scope of panels (a)-(b),
which are limited to N = 20 (a) or N = 10 (b) bath spins, is the effect of (i) averaging
spectra obtained for different underlying sets of coupling constants and (ii) varying
the number Nc of considered Chebyshev polynomials. For the calculation of the real
time dynamics of S(t) up to t/T∗ = 20, as presented in figure 5.15.1, Nc = 35 Chebyshev
polynomials are sufficient to obtain an adequate accuracy of the numerics. I.e. setting
Nc = 400 clearly yields a higher spectral resolution than mandatory. As a consequence
the obtained results for a single setup of randomly generated coupling constants (see
panels (a)-(b) of figure 5.25.2) considering Nc = 400 clearly reveal the discrete character of
the spectrum, which consists of several individual broadened peaks. By applying an
average over n = 50 different sets of random couplings, the resulting spectral function
S(ω) is smoothened significantly, but the discrete features are still visible, which is an
unpleasant finite size feature. As indicated in section 4.5.24.5.2, this finite size effect can be
eliminated by decreasing the order Nc of the CET. Correspondingly to the mandatory
number Nc = 35 of Chebyshev polynomials for the real time calculations, spectral
results for this order are added in panels (a) and (b) of figure 5.25.2, which yield a perfectly
smooth spectral function S(ω), as it is expected to be found for Nc ∼ O(105). Note that
the obtained results for Nc = 400 and n = 50 approximately reproduce the findings
for Nc = 35 and n = 50 at large frequencies ωT∗ ∼ O(1) on average. In contrast,
pronounced mismatches are found for small frequencies, where the resolution of the
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Figure 5.2: Illustration of the spectral spin noise function S(ω) for electrons, focusing on the
short time dynamics. The left part of the figure addresses spin-1/2 and the right
part spin-3/2 nuclei. All presented calculations are based on d = 3, m = 2 and
r0 = 1.5. Panels (a)-(b) address the impact of statistical averaging over various
random realizations of the coupling constants Ak in conjunction with the consid-
ered number of Chebyshev polynomials Nc. Each individual underlying system
involves N = 20 (a) or N = 10 (b) bath spins. Panels (c)-(d) treat the scaling
behavior of S(ω) with the bath size N, where Nc = 35 Chebyshev polynomials
have been considered and and average over n = 50 individual sets of coupling
constants has been performed.

method for Nc = 35 is too rough to yield an adequate estimate for the spectral function.
Strictly speaking, all spectral weight below ωT∗ ≈ 0.3 is simply transferred into a single
peak, whose detailed structure only depends on the method’s convergence behavior
instead of the physical details. The discussion of the spectral features occuring at
ωT∗ → 0 is postponed to the following section 5.1.25.1.2.

Panels (c)-(d) of figure 5.25.2 treat the scaling behavior of S(ω) with the bath size N,
where all calculations are based on r0 = 1.5, Nc = 35 and n = 50. The black reference
line is given by the Fourier transformation SSCA(ω) of the semi classical solution. The
observed behavior for the time resolved calculations is reflected in the spectral results:
for both bath spin types I = 3/2 and I = 1/2 two distinct peaks occur. One is centered
at ω = 0 and refers to the long time behavior of the central spin, which is not resoluted
reliably in the presented data. The second peak, whose maximum is arising at ωT∗ ≈
0.8, corresponds to the observed dip (see figure 5.15.1 for the time resolved calculations)
on small timescales t/T∗ < 8. For the semi classical solution, the latter peak contains
2/3 of the full spectral weight, while the rest enters the δ-spike reflecting its finite
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value SSCA(t → ∞) = S(0)/3 at infinite times. The peaks referring to the short time
behavior of the central spin are shifted to slightly larger frequencies, corresponding
to smaller times, for the CET simulations, according to the time resolved case, and
the general qualitative agreement between the CET and the semi classical approach
is, once again, satisfactory. Also the indicated convergence towards the analytically
predicted curve occurs accordingly to S(t). Although the resolution of the presented
calculations is too rough for a detailed analysis of the spectrum at small frequencies, it
is striking that its maximum S(ω = 0) is decreasing for increasing N. There are two
factors responsible for this behavior: on the one hand, all shown calculations are based
on Nc = 35 Chebyshev polynomials, while the spectral width β is approximately 11 %
larger for N = 24 or N = 12 compared to N = 16 or N = 8 bath spins, implying a
worse resolution and thus a larger broadening of the zero frequency peak. On the other
hand, the spectral weight of the simulated short time peak is indeed smaller than 2/3
of the total weight and it is approaching this value slowly with the increasing system
size N.

5.1.2 Long time dynamics

As demonstrated in the previous section, the semi classical analytical solution SSCA(t)
by Merkulov et al. [2727] is not sensitive to the detailed realization of the coupling con-
stants Ak, but is believed to describe the short time dynamics of a system containing a
large number of bath spins correctly. Since the assumption of a frozen nuclear spin bath
does obviously not hold for arbitrary timescales, the authors of reference [2727] have also
discussed the long time limit of their SCA. Within this picture, the central spin decays
to the value S(0)/3 due to its precession in the frozen nuclear field and subsequently
each nuclear spin precesses slowly around the direction defined by the central spin.
The frequency of this precession is given by its associated coupling constant Ak for
every individual nucleus. As a consequence a variation of the mean nuclear field oc-
curs at large times, which acts back on the central spin. After inclusion of the explicit
time dependence of the classically treated Overhauser field ~Beff(t) = Beff~n(t), the time
evolution of the central spin~s(t) (see section 3.3.23.3.2 and reference [9797]) can be written as

〈~s(t)〉 = 〈~n(t) · [~n(t) ·~s(t)]〉 . (5.2)

The quantity [~Beff(t) ·~s(t)] accounts for the total energy of the ICSM and it is a con-
served quantity. Therefore we can write [~Beff(t) ·~s(t)] = [~Beff(0) ·~s(0)] and since the
nuclear spin-spin correlation function is isotropic, we arrive at

〈~s(t)〉 = ~s(0)
3
〈~n(t) ·~n(0)〉 . (5.3)



58 Chapter 5. Electron Spin Dynamics

For the long time limit this quantity approaches a stationary value 〈~n(t→ ∞) ·~n(0)〉 =:
γ(u), which is, as derived in reference [2727], only dependent on the ratio u = 〈A2〉/ 〈A〉2.
Namely, it is given by

γ(u) =
2
π
(u− 1)3

∫∫ ∞

0
dy dz

(2ycosh− sinh(2y))2

yzsinh(2y)
exp

[
−
(

1 + (u− 1)2
)

z2 − y2

z2

]
,

(5.4)

which is a monotonically decreasing function in the interval u ∈ [1 : ∞), with the
boundary values γ(1) = 1 and γ(u → ∞) = 0. In contrast to the short time behavior
obtained from the SCA, the distribution of the coupling constants Ak enters the pre-
diction for the long time limit through the ratio u, putting forward that u is the crucial
quantity characterising the nuclear bath. Also note that the numerical evaluation of
equation 5.45.4 is unstable for (u− 1)→ 0+.

Previous numerical studies concerning the ICSM, which also took the full quantum
correlations of the system into account, were based on simplified assumptions for the
coupling constants Ak. E.g. a statistical evaluation of the exact Bethe Ansatz equations
[3636] focused on the fixed set Ak = A/Nexp[−(k − 1)/(N − 1)], where all coupling
constants are of the same order of magnitude (Amax/Amin = e) and u ≈ 1.082 applies.
In accordance to the discussed semi classical considerations, this study found no sig-
nificant deviation from SSCA(t) on large time scales. In the following, the coupling
constants determined by equation (3.263.26) are investigated. In this specific scenario, the
ratio between the smallest and largest coupling constant only depends on the cutoff r0

and the form of the electron wave function, which is characterised by the parameter
m: Amax/Amin = erm

0 . In contrast, the ratio u is also influenced by the dimension d and
therefore by all model parameters entering the hyperfine coupling constants. Thus, a
variation of m and d is expected to have an impact onto the long time behavior of S(t),
which is one aspect that is discussed in detail on the basis of numerical simulations
below.

Beside the SCA, L. Balents et al. [3030] have put forward a rather intuitive argument
to estimate the long time behavior of the central spin within the ICSM: for very large
times the initially present total polarization within the entire system, which is given by
S(0), is assumed to be equally distributed over all spins within the system. Since the
only energy scale applying for the k-th nucleus is given by the coupling constant Ak,
the time it takes for an individual nucleus to contribute significantly to the central spin
dynamics can be estimated by t > 1/Ak. By inserting equation (3.263.26) into this estimate,
the radius R(t) containing all nuclei contributing to S(t) at a given time t is given by

R(t) < L0[ln(Amaxt)]
1
m = L0ln

1
m (Amaxt). (5.5)
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Since the short time behavior of S(t) is solely governed by a number N(Rs) of spins,
which are found in the radius Rs = R(T∗), the long time decay is expected to be of the
form

S(t) ∝
N(Rs)

N(R(t))
∝ ln−

d
m (Amaxt), (5.6)

assuming an equal redistribution of the intitially present polarization. For an infinite
system this finding puts forward a full decay of the spin noise function. But as ar-
gued above, a finite cutoff r0 = R/L0 is mandatory for the simulation of any finite
system and accordingly a finite value S∞ := S(t → ∞) will be found in any numerical
simulation presented here. Still, equation (5.65.6) puts forward an estimate for the long
time behavior of the spin noise function, which will be considered in the following
discussions concerning this regime of S(t).

Influence of the cutoff r0 onto the long time dynamics

To study the qualitative impact of a variation of the cutoff r0 onto the long time be-
havior of the central spin, let us, once again, focus on the fixed parameters m = 2 and
d = 3 which account for a 3 dimensional QD with a Gaussian envelope wave function.
Figure 5.35.3 shows time resolved and spectral results for the spin noise function concern-
ing the central spin’s long time behavior. Panels (a)-(b) address the according real time
dynamics, where a logarithmic scale has been chosen for the t-axis, to emphasize the
slowly varying behavior of S(t) at large time scales. A scan of several values of the
cutoff r0 is presented, based on n = 50 randomly generated sets of N = 18 (I = 1/2)
or N = 9 (I = 3/2) coupling constants. The effect of averaging results for several
randomly determined realizations of the spin bath onto the long time dynamics will
not be addressed in a separate figure here, but since the choice of the couplings is, as
suggested by the results presented in figure 5.35.3, crucial for the long time evolution of
S(t), the impact of averaging multiple setups is quite intuitive: since the considera-
tion of N ∼ O(20) coupling constants is far from a number of statistical significance,
many more individual coupling constants have to be taken into account to obtain a
typical spin bath realization with respect to the underlying model parameters. I.e. the
obtained curves for single sets of N = 18 coupling constants can, due to statistical fluc-
tuations, deviate significantly from the averaged result, which is assumed to represent
the typical dynamics for the entering parameters. Independent of the cutoff r0 and the
nuclear spin I, all obtained results from figure 5.35.3 (a)-(b) feature two central aspects
after experiencing the previously discussed short time evolution: (i) S(t) saturates at
a finite value S∞ := S(t → ∞) after (ii) passing through a single pronounced mini-
mum. The observed trends for increasing r0 are also identical for I = 1/2 and I = 3/2.
Namely, the saturation value S∞ is decreasing and the relaxation time into this steady
state value of S(t) is increasing for larger cutoffs. The latter observation can easily be
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Figure 5.3: Numerical results for the electron long time dynamics in a d = 3 dimensional QD
based on a Gaussian (m = 2) envelope wave function. All simulations are based
on N = 18 (left) or N = 9 (right) bath spins. Panels (a)-(b) illustrate the spin noise
function S(t) for various cutoffs r0, where the t-axis is scaled logarithmically. The
shown results are based on n = 50 individual sets of coupling constants. The col-
ored arrows indicate the estimated value S∞ := S(t → ∞) from the SCA, which
is only governed by u = 〈A2〉/ 〈A〉2. The spectral spin noise function S(ω) is
treated in panels (c)-(d) on a double logarithmic scale. For all presented results
n = 200 setups have been averaged and Nc = 1000 Chebyshev polynomials have
been considered, yielding the indicated smallest accessible frequency ωmin. The
black dashed line shows a power law fit ∝ ω−3/4. The colored arrows indicate the
mean value Amin(r0) of the smallest coupling constant entering the correspond-
ing simulation. Panels (a) and (c) are based on figures 4 (a) and 6 of reference
[9797].

traced back to the decreasing value of the smallest coupling constant that is taken into
account: according to the assumption of Balents et al. [3030], the inverse coupling 1/Ak

sets the timescale at which the k-th nucleus contributes significantly to the central spin
dynamics. I.e. the relaxation time of S(t) is supposed to be increasing when the ratio
Amin/Amax is decreasing. On the other hand, the observed decrease of S∞ is in qualita-
tive agreement with the semi classical analysis of the long time dynamics by Merkulov
et al. [2727], because the ratio u = 〈A2〉/ 〈A〉2 is significantly increasing with the cutoff
r0. To check wether the semi classical result (see equations (5.35.3)-(5.45.4)) for the steady
state value S∞ also holds quantitatively, its estimate for the corresponding numerical
results is indicated by the colored arrows in panels (a) and (b) of figure 5.35.3. Appar-
ently the analytic estimate deviates significantly from the performed simulations. This
observation is most pronounced for large values of r0, where the semi classical pre-
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diction clearly underestimates the fully quantum mechanical calculations. For small
cutoffs r0 different trends are observed depending on the nuclear species: for I = 1/2
the steady state value for r0 ∈ [1.0 : 1.4] is slightly underestimated, but approximate
agreement between the two claims is found, while S∞ is overestimated for I = 3/2 and
r0 ∈ [1.0 : 1.4]. Clearly there are two possible origins for the significant deviations:
(i) the importance of quantum correlations for the long time behavior of S(t), which
are not covered by the SCA, or (ii) the inadequacy of the numerical simulations due
to finite size limitations. This aspect is investigated further in figure 5.45.4, which will be
discussed in detail below.

Figure 5.35.3 (c)-(d) treats the spectral spin noise function S(ω), corresponding to the
time resolved results from panels (a)-(b). For all presented results n = 200 sets of
coupling constants and Nc = 1000 Chebyshev polynomials have been considered. This
CET order yields the smallest reliably resoluted frequency ωmin which is indicated on
the ω-axis. As expected from the time resolved calculations, the spectral weight below
ωmin, which represents a broadened δ(ω) whose spectral weight corresponds to the
observed finite value S∞, is decreasing for increasing r0. The peak occuring at ωT∗ ≈ 1
corresponds to the initial precession of the electron spin in the frozen Overhauser field
and its increasing deviation from SSCA(ω) for large cutoffs has been discussed in detail
in the previous section. Hence, the most interesting feature of figure 5.35.3 (c)-(d) occurs
on the crossover scale separating the high energy energy peak from the δ(ω) spike.
The spectral function in this intermediate regime corresponds to the decay of S(t) from
S(0)/3 into S∞. As indicated by the dashed black lines, the observed shoulder can be
nicely approximated by a ω−3/4 fit. The regime where this fit is viable is increasing
significantly with the cutoff r0 and, in accordance to the observations from the time
resolved calculations, it is shifted to slightly smaller frequencies when turning from
I = 1/2 to I = 3/2. In the real time domain the observed power law suggests an
equivalent decay ∝ t−1/4, which agrees nicely with the analytic claim S(t) ∝ ln−3/2t
by Balents et al. in the intermediate regime t/T∗ ∈ [100, 1000]. To establish a clear
deviation form the latter estimate, a strict power law fit over more than one decade
would be necessary. This is not possible due to the finite size limitations of the applied
simulations. Namely, the restriction concerning the cutoff r0 directly sets the smallest
considered coupling constant Amin for a given simulation and as a consequence also
the smallest possible energy exchange due to an individual spin flip. The colored
arrows in panels (c)-(d) of figure 5.35.3 indicate the mean smallest coupling constant Amin

for the underlying cutoffs r0 and system sizes N. Apparently the shoulder ∝ ω−3/4

begins to bend down at the frequency indicated by the smallest coupling constant,
proving that it is indeed the decisive quantity for the central spin’s relaxation time into
the steady state value S∞. Note that since there are obviously setups where smaller
coupling constants than the mean value Amin are involved, the observed shoulders do
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Figure 5.4: Influence of the considered spin bath size N on the long time dynamics of S(t).
For all presented simulations n = 50 individual setups have been considered for
m = 2 and d = 3. Panel (a) shows a scan of the system size for a constant cutoff
r0, where the inset shows a close up of the long time dynamics t/T∗ > 10. Panel
(b) compares the SCA prediction for S∞ based on the ratio u to a numerical r0
scan for two different system sizes. On top of that, results obtained from panel
(c) have been added. Panel (b) corresponds to figure 4 (b) of reference [9797].
Panels (c)-(d) show time resolved calculations for various sets of the parameters
N and r0, where the quantity AgT∗ is kept constant among the two panels. Panel
(d) is the only one that is based on I = 3/2 instead of I = 1/2.

not collapse exactly at Amin and on top of that the finite resolution of the CET broadens
the shoulder further, but apart from these deviations the stated finding is valid.

While figure 5.35.3 focused on the variation of the cutoff r0 for a constant Hilbert space
size D = 219, figure 5.45.4 addresses the influence of varying the system size N. This is
an important benchmark for the CET’s adequacy concerning its predictive power for
the physical properties of large spin baths O(105). Panel (a) shows a scan of the bath
size N for a constant cutoff r0. On the full scale S(t) ∈ [0 : 0.25] the presented curves
are very close to each other, but looking into a close up, which is shown in the inset of
the panel, of the long time evolution reveals minor differences. From the semi classical
estimation of S∞ we draw the expectation that the ratio u = 〈A2〉/ 〈A〉2 is crucial for
the long time dynamics. For the thermodynamic limit it is fully determined by the
cutoff r0, but since figure 5.45.4 (a) considers finite systems N ∈ [16 : 22] the ratio u is
varying by approximately 0.5 % among the figure, while it is 1.5 % larger for N → ∞
than for N = 16. Based on these variations of u equation (5.45.4) predicts a change of the
steady state value S∞ of about 2 % when turning from N = 16 to N → ∞. In contrast,
the estimated S∞ from the simulations already changes by approximately 4 % between
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N = 16 and N = 20. Anyhow the finding for N = 22 indicates that the evolution of the
steady state value is not necessarily monotonic with increasing system size. For this
reason the SCA’s prediction is not in strict disagreement with the numerical findings.
For a further comparison of the two claims, figure 5.45.4 (b) shows cutoff scans for the
saturation value S∞, which has been determined by averaging the spin noise function
S(t) for t/T∗ ∈ [450 : 500], at two different system sizes along with the semi classical
prediction for the thermal equilibrium case. The black lines indicate that S∞(r0) can
be nicely fitted by a linear function, suggesting that it vanishes for large cutoffs r0.
The linear regression for N = 20 puts forward that this is the case for r0 ≈ 3.7, which
would imply the ratio Amax/Amin ≈ 106. But since the obtained r0 varies significantly
considering different system sizes, it can not be determined reliably from the CET.
On top of that, the analytic estimate by the SCA yields a non-linear envelope of S∞.
This qualitative deviation might originate from the fact that an increase of r0 at a
fixed system size N also reduces the largest coupling constant taken into account and
with it the energy scale Ag. The results for S∞(r0) obtained from the time dependent
calculations, which are presented in figure 5.45.4 (c), are also added to panel (b). For
these simulations the ratio r0 and system size N have been determined such, that all
shown results are based on a constant product AgT∗. It turns out that the resulting
claim for S∞(r0) is indeed a lot closer to the analytic estimate and even the qualitative
form agrees quite nicely. I.e. the findings from the CET agree with the SCA as far
as the finite size limitations allow reliable statements concerning larger systems. This
finding puts forward that the ratio u may indeed be the crucial quantity for the steady
state value S∞. Note that the short time evolution of the calculations from panels (c)-
(d) of figure 5.45.4 is invariant due to the constant energy scale Ag among the different
curves. This was not the case for the results presented in figure 5.35.3 (a)-(b), where
significant deviations occured for increasing r0. Also note that the oscillation observed
at t/T∗ ≈ 30 for r0 = 0.79 originates from the small spread of considered coupling
constants. In the extrem case of the box model (Ak = A) this feature becomes a full
reoccurence of the initial polarization.

Influence of the electron wave function and the QD shape onto S(t)

Within the investigated modeling of the hyperfine interaction in a semiconductor QD,
the electron wave function is assumed to have a Gaussian (m = 2) or an exponential
shape (m = 1) and the shape of the QDs is assumed to be spherical in either two or
three dimensions d. The analytic claim (5.65.6) by Balents et al. [3030] suggests that the long
time behavior of S(t) is affected by the variation of either of the parameters d and m.
I.e. in contrast to the short time evolution, S(t/T∗ > 10) depends on the detailed shape
and therefore also on the growth conditions of the QD under study. Numerical results
concerning the influence of the model parameters m and d onto the long time dynamics
are presented in figure 5.55.5. Panels (a)-(b) address the real time dynamics of the spin
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Figure 5.5: Numerical results illustrating the influence of the QD model parameters m and d
onto the central spin dynamics. Panels (a)-(b) treat S(t) for all considered vari-
ations of m and d, based on N = 20 spin-1/2 (a) or N = 10 spin-3/2 (b) nu-
clei. The cutoff has been chosen such that the ratio Amax/Amin = e−81/25 holds
and all curves are based on n = 50 individual bath configurations. The black
dashed lines are a guide to the eye. They indicate the offset that has been added
to distinguish the individual curves. Panels (c)-(f) show direct comparisons of
the spectral function S(ω) for the two different nuclear species. The results for
I = 1/2 (3/2) are based on N = 18 (9) bath spins and n = 200. For all calcula-
tions the CET order has been pushed to Nc = 2000 and the cutoff r0 guarantees
the ratio Amax/Amin = e−4. The dashed lines are power law fits with respect to
the analytic prediction given in equation (5.65.6), which can be approximated by a
power law in the intermediate time regime as demonstrated in panel (g).
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noise function for the different nuclear species I = 1/2 and I = 3/2. The black dashed
lines are a guide to the eye, indicating the obtained value S∞ for m = 1 and d = 3 with
respect to the added offset. While the short time dynamics is, as expected, invariant for
all obtained results, two central observations on large timescales occur independently
of the underlying nuclear species: First, the steady state value S∞ is varying slightly. As
discussed above, the ratio u is the prime candidate to be crucial for this observation and
indeed the trends from the simulations qualitatively match the expectation from this
quantity. Namely, for N = 20 and constant m = 2 it takes the almost identical values
u = 1.372 (d = 2) and u = 1.374 (d = 3), which is in agreement with the observed
invariance of S∞ for the corresponding curves. For m = 1 a larger variation is found
when turning from d = 2 to d = 3, which is again in good agreement to the predicted
trend from the ratio u since u = 1.140 (d = 2) and u = 1.100 (d = 3) holds. Second,
the relaxation time into S∞ is varying significantly among the presented curves. As
argued above, the smallest considered coupling constant Amin appears to set the largest
timescale on which S(t) experiences changes in its dynamics. This finding is stated by
the results from figure 5.55.5 (a)-(b): from top to bottom the expectation value AminT∗ is
decreasing monotonically, while the relaxation time is increasing within a comparable
order of magnitude. Due to the different character of the relaxation process for the
individual sets of d and m, a consistent definition of the relaxation time is problematic
in this context and therefore the following, more detailed analysis of the spin noise
function’s decay towards S∞ is based on S(ω) instead of S(t).

Panels (c)-(f) of figure 5.55.5 treat the spectral function S(ω). With respect to the an-
alytic prediction (5.65.6), each panel compares results for the different nuclear species at
identical parameters m and d. To guarantee comparibility of the individual plots, the
ratio Amax/Amin = e−4 has been kept constant. The added dashed lines correspond to
power law fits, which reproduce the predicted ln−d/m(t) behavior nicely in the interme-
diate regime 100 < t/T∗ < 1000, i.e. the exponent of the added function ω−ν depends
on the model parameters d and m. The fitting procedure for the determination of the
exponent ν for each individual set of d and m is illustrated in panel (g) of figure 5.55.5: the
exponent of the shown power law curves in time ∝ tν−1, whose Fourier transformation
yields ω−ν, is determined in a trial and error procedure by comparison to ln−d/m(t).
Decent agreement between the numerics and the predicted decay is found over aproxi-
mately one decade for most presented results. The biggest observed deviation from the
predicted power law, which is expected to hold only in the intermediate time regime,
occurs for m = 1 and d = 3. Especially the simulation for I = 3/2 does not match the
expected power law in a broad interval, but since the observed relaxation of S(t) (see
panels (a)-(b)) is already completed at t/T∗ = 100, this deviation from the power law
is not disproving the estimated logarithmic decay.

All in all, good agreement between the analytical estimates and the numerical data
is found. For a given realization of the coupling constants Ak, the results suggest that
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computing the quantities u and Amin is sufficient to predict the qualitative resulting
behavior of S(t). For this reason, the remainder discussions are restricted to d = 3
dimensional QDs with a Gaussian (m = 2) electron wave function, which is assumed
to be the most adequate setup to reproduce experimental conditions. Especially note,
that no fundamental differences between the induced dynamics of a spin-1/2 or spin-
3/2 bath have been found. Therefore, all following discussions concerning the CSM
without QCs will be restricted to I = 1/2 for simplicity.

5.1.3 Analytic estimate for the non-decaying fraction

Based on Mazur’s inequality [120120, 121121], G. S. Uhrig et al. [119119] have presented an
analytic derivation of a rigorous lower bound Slow for the non-decaying fraction S∞

that applies for a general time-independent Hamiltonian. The central ingredient of
this analytic estimate is to exploit the conserved quantities of the underlying model.
The derivation of Slow will be briefly reviewed for the special case of the ICSM in the
following. Afterwards, the evaluation of the lower bound for an arbitrary set of linear
independent conserved quantities will be reviewed [119119] and the obtained results for
one set of known conserved quantities will be compared to the CET.

Starting from equation (3.343.34), the Lehmann representation of S(t) is given by

S(t) =
1
D

D

∑
i,j=1
|Sz

i,j|
2ei(Ei−Ej)t, (5.7)

where Sz
i,j are the matrix elements of Sz in the eigenbasis |i〉 of the Hamiltonian H.

From this representation, one can deduce that the steady state value can be written as

S∞ =
1
D

D

∑
i,j=1
|Sz

i,j|
2δEj,Em

≥ 0. (5.8)

Since the exact diagonalization of H is not feasible for a moderate bath size, a set of M
constants of motion Xi, which fullfill [Xi, H] = 0 by definition, is considered to evaluate
S∞ instead. Let us assume that the set of linearly independent conserved quantities Xi

is orthonormal with respect to the scalar product

(X|Y) :=
〈

X†Y
〉
=

1
D

Tr[X†Y], (5.9)

i.e. they fullfill (Xi|Xj) = δi,j. Then, expanding the central spin operator Sz in this
representation yields

|Sz) = |R̂) +
M

∑
i=1

ai|Xi), (5.10)
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where the coefficients are given by ai = (Xi|S
z) and the operator R̂ represents the entire

operator space that is not covered by the incomplete basis {Xi}. Note that the relation
(Xi|R̂) = 0 must hold for i ∈ {1, ..., M}. Next, the term (5.105.10) is substituted into the
definition S(t) =

〈
(Sz)†(t)Sz

〉
, yielding

S(t) =
〈

R̂†(t)R̂
〉
+

M

∑
i=1

(
a∗i
〈

R̂†(t)Xi

〉
+ ai

〈
X†

i (t)R̂
〉)

+
M

∑
i,j=1

a∗i aj

〈
X†

i (t)Xj

〉
=
〈

R̂†(t)R̂
〉
+

M

∑
i,j=1

a∗i ajδi,j =: S(R̂)(t) +
M

∑
i=1
|ai|

2. (5.11)

Since [Xi, H] = 0 holds, the time dependence of the last three terms in the first line
can be eliminated and the two middle terms vanish due to (Xi|R̂) = (R̂|Xi) = 0,
while the last term gives a Kronecker symbol δi,j. If the set of constants of motion
{Xi} would form a basis for all conserved quantities of the Hamiltonian H, the state-
ment S∞ = ∑M

i=1 |ai|
2 would be true (see reference [119119] for further details). Anyhow,

not all conserved quantities of the ICSM are known and in practice R̂ still features a
non-decaying contribution S(R̂)(t → ∞) > 0. Therefore we can only deduce Mazur’s
inequality

S∞ ≥ Slow =
M

∑
i=1
|ai|

2 (5.12)

from equation (5.115.11). In the following, this result will be evaluated based on one well
known set of N + 1 conserved quantities. The first one is the total spin S z, which is
accompanied by N constants of motion Hl , that are known from the model’s Bethe
Ansatz solution [2929]. These are defined by

Hl =
N

∑
k=1, 6=l

(
1

Ak
− 1

Al

)−1
~Ik ·~Il − Al

~S ·~Il , (5.13)

with l ∈ {1, ..., N}. Since these N + 1 conserved quantities are not orthonormal with re-
spect to the scalar product (·|·), equation (5.125.12) has to be extended to non-orthonormal
sets of constants of motion. For this purpose let us assume a set of N + 1 orthonormal
operators Xi was known, that spans the subspace of the known operators Hl and S z.
Then, the lower bound (5.125.12) can be rewritten as

Slow =
M

∑
i=1

(Sz|Xi)(Xi|S
z) (5.14)

with respect to this set {Xi}. By introducing the vector ~aX, whose components are
given by the scalar products (Xi|S

z), the lower bound may be rewritten in the short
form Slow = ~a†

X ·~aX. Next, the considered conserved quantities are summarized into
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the operators Ci ∈ {S
z, Hl} and in this notation the known constants of motion can be

expanded in the basis of the orthogonal ones:

(Ci| =
M

∑
j=1

(Ci|Xj)(Xj|. (5.15)

By introducing the matrix M containing the elements (Ci|Xj) and multiplying this
equation with |Sz) from the right hand side, one obtains the relation ~aC = M ·~ax,
where the components of~aC are given by (Ci|S

z). One can easily show that the matrix
product M ·M† gives the matrix N, which is given by the overlap elements (Ci|Cj) of
the conserved quantities under study:

(M ·M†)ij =
M

∑
k=1

(Ci|Xk)(Xk|Cj) = (Ci|Cj) = Nij, (5.16)

since the set {|Xk)} is assumed to form a complete basis for the subspace of the con-
stants of motion Ci. Hence, we obtain a general form of the lower bound Slow for an
arbitrary set of linearly independent conserved quantities:

Slow =~a†
X ·~aX =~a†

C

(
M−1

)†
M−1~aC =~a†

C N−1~aC. (5.17)

I.e. in practice only the matrix elements (Ci|S
z) and (Ci|Cj) have to be calculated and

an inversion of the obtained matrix N has to be performed to obtain a rigorous lower
bound for S∞. For details concerning the mandatory matrix elements, the reader is
referred to the supplemental material [122122] of reference [119119]. Note however, that the
conserved quantities Hl need to be replaced by Hz

l := S zHl to yield a contribution to
the desired matrix elements.

Besides the rigorous lower bound (5.175.17), Uhrig et al. [119119] have also introduced an
estimate based on the semi classical picture by Merkulov et al. [2727]. Instead of S(t) the
correlation function S(B)(t) :=

〈
Bz

N(t)Bz
N
〉

is considered, where Bz
N = A0Sz + ∑k Ak Iz

k

holds and the term A0Sz, that is added to the z-component of the Overhauser field
in this expression, is used to maximize the obtained lower bound. According to the
previous considerations (see section 5.1.25.1.2 concerning the long time dynamics of S(t)),
the lower bound from the correlation function S(B)(t) is estimated by

S(B)
low =

S(B)
∞

12S(B)(0)
. (5.18)

Concerning the details of the additional matrix elements that need to be calculated
for this claim, the reader is, once again, referred to reference [122122]. In the following,
the two estimates (5.175.17) and (5.185.18) are compared to numerical results obtained via the
CET in regard to their general adequacy. On top of that, results from a numerical
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Figure 5.6: Panels (a)-(b) show a comparison of numerical results obtained via the CET and
semi classical simulations (CL) that have been performed by D. Stanek [123123]. For
the CET n = 50 random configurations of N = 20 coupling constants have been
considered using the cutoff r0 = 1 (a) and r0 = 1.5 (b). For the semi classical
calculations the exact same coupling constants have been used in a single sim-
ulation, i.e. a bath of N = 1000 spin-1/2 nuclei have been taken into account
at once. The black dashed lines indicate the lower bound S(B)

low, which is indis-
tinguishable for the two numerical claims, while the colored dashed lines show
the rigorous bound Slow corresponding to the numerical data of the same color.
The insets show a close up of the long time evolution, where the t-axis has been
shifted to eliminate the short time decay and the CET results have been elongated
by a factor of 7. Panel (c) shows the mismatch ∆η = S∞ − Sη

low between the CET
and the estimated lower bounds for various system sizes. Panel (d) compares the
estimated lower bounds from equations (5.35.3) and (5.185.18), where the latter one has
been evaluated for N = 1000 and N = 2000.

treatment of the SCA, that has been put forward and performed by D. Stanek [4949, 123123],
are considered and compared to the other approaches.

Comparison of numerical and analytical estimates

The mentioned semi classical model (CL) by D. Stanek et al. [4949] relies on the evaluation
of a system of coupled equations of motion, that respect the long time dynamics of
each individual bath spin and the central spin. For details of this numerical claim see
reference [123123]. In figure 5.65.6 (a)-(b) numerical results obtained via the CET and the
CL, for which the presented data have been provided by D. Stanek, are compared to
the analytic estimates Slow and S(B)

low. Note that the numerical approaches are based on
the exact same randomly generated coupling constants, but the CL considered N =

1000 bath spins in a single simulation, while for the CET n = 50 results of N = 20
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underlying nuclei have been averaged. Concerning the short time behavior, the semi
classics reproduce SSCA(t) excellently as expected, while the CET deviates slightly as
discussed above. On large timescales three central observations occur. (i) The long
time decay of S(t) occurs slower within the CL than in the CET simulations. For a
constant cutoff r0 and an increasing bath size, the average coupling constant AkT∗ of
an individual bath spin is decreasing with

√
N. Accordingly, an elongation of the long

time decay by this factor is expected. For the presented data from figure 5.65.6 (a)-(b) this
suggests an elongation by a factor of approximately 7 when turning from N = 20 to
N = 1000. Concerning the time interval between the finished initial precession of the
central spin within the Overhauser field (t/T∗ ≈ 8) and the observed local minimum
at large timescales, the factor 7 reproduces the mismatch between the obtained decay
times quite nicely. This is illustrated by the insets of panels (a)-(b), where the long
time decay of the CET results is elongated by a factor of 7, revealing its accordance to
the CL dynamics. (ii) For the semi classical numerics the correlation function S(t) is
accompanied by significant fluctuations on large timescales, which is a feature that is
not observed within the CET for N = 20 and is expected to be supressed even stronger
for larger spin baths. This finding reveals an inadequacy of the CL simulations, which
does not necessarily imply that the obtained behavior of S(t) at large times is not
reproduced adequately on average. On top of this, it has been shown [123123] that the
quality of the SCA is improving with N and the occuring fluctuations are suppressed
proceedingly. (iii) On the one hand, the fully quantum mechanical, rigorous lower
bound Slow clearly underestimates S∞ from both numerical simulations. This finding
puts forward that the considered conserved quantities are not sufficient to yield a tight
lower bound and to obtain one, further linearly independent constants of motion need
to be taken into account. On the other hand, the semi classical simulations violate the
phenomenological lower bound S(B)

low, which is not the case for the CET calculations.
Since the estimate S(B)

low as well as the semi classical numerics are not guaranteed to
yield correct estimates for the long time evolution of S(t), it remains unclear wether
either of the predictions can be classified as better than the other.

To shed more light onto the quality of the lower bound S(B)
low, figure 5.65.6 (c) treats

the scaling behavior with the system size N of the quantity ∆η = S∞ − Sη
low, where

η = 1 corresponds to the rigorous lower bound Slow and η = (B) to S(B)
low respectively.

The reference value S∞ is determined by the CET. It turns out that the deviation ∆η is
increasing slowly with the system size for the fully quantum mechanical bound Slow.
Given that a set of N conserved quantities Hl is known and has been taken into account
to obtain Slow, the observed loss of accuracy for increasing N suggests, that further sets
of constants of motion might exist, whose number also increases with the system size.
In contrast, the deviation of the lower bound S(B)

low from the CET’s findings for S∞ is
decreasing with the system size and the performed scan points towards an occuring
convergence for large N. Since the semi classical assumptions entering S(B)

low are based
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on an infinite spin bath, the observed trend is rather intuitive. But on the other hand
the same conserved quantities enter the rigorous lower bound, where a decrease of the
estimate’s adequacy was found. Thus, the validity of S(B)

low remains unclear and can not
be stated ultimately by the CET, although no deviations between the introduced bound
and exact numerical calculations have been observed yet. To complete the discussion of
the analytical lower bounds for S∞, figure 5.65.6 (d) shows a comparison of the estimates
S(B)

low and (5.35.3), which are both based on the considerations of Merkulov et al. [2727].
It turns out that the two claims yield a significantly different shape for S∞(r0) and
most strikingly none of them is monotonically larger or smaller than the other. The
comparison of S(B)

low for two different system sizes N = 1000 and N = 2000, yielding
nearly undistinguishable results, underlines that no finite size effects are expected to
be responsible for the significant deviations. Since the non-rigorous estimate from
Mazur’s inequality reproduces the numerical findings more accurately, it is nearby to
assume it is the superior claim, but all in all the CET does not allow an incontrovertible
statement concerning the properties of S(t) for very large systems N ∼ O(1000).

5.2 Dynamics within an external magnetic field

In the previous section the spin noise function S(t) has been discussed in the absence of
a magnetic field within the ICSM. The influence of the model parameters entering the
coupling constants Ak has been discussed in detail and it has been shown that the two
considered nuclear species qualitatively yield the same dynamics, both on short and
long timescales. Since the effect of varying any of the mentioned factors is known from
the prior discussions, the following considerations are restricted to I = 1/2, m = 2 and
d = 3.

5.2.1 Transversal magnetic fields

Introducing a transversal magnetic field ~nB = ~ex to the ICSM has two central effects.
First, the conservation of the total spin S z along the z-direction is not warranted any-
more. Thus, the lower bound predicted by Mazur’s inequality is zero and S(t) is
expected to approach this value within a finite time. I.e. due to the induced symmetry
breaking, the value S∞ is expected to be zero even for an infinitesimal external field.
Second, the short time dynamics of S(t) is governed by the timescale

T′∗ =
(

2ω2
L + (T∗)−2

)−1/2
, (5.19)

which approaches T∗ for ωL → 0. According to T∗λ , the timescale T′∗ can be derived
numerically by evaluating the von-Neumann equation up to second order in time.
Equation (5.195.19) suggests that for large external magnetic fields b = ωLT∗ � 1 the short
time dynamics of S(t) is solely dominated by the Larmor frequency ωL, but since the
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Figure 5.7: Illustration of the central spin dynamics in a transversal external magnetic field
(~nB = ~ex). Panel (a)-(c) treat the dynamics in a strong external field b = ωLT∗ > 1.
The envelope of the presented real time dynamics in panel (a) is approximated
by a Gaussian function E(t) = 1

4 exp[− 1
2 (

t
2T∗

)2]. An offset has been added to
distinguish the curves for varying b. Panels (b) and (c) show the same set of data,
which are based on Nc = 100 Chebyshev polynomials. Panel (c) reveals that the

maximum of the approximately Gaussian peak is centered at ω∗ =

√
b2 + 1/2.

Panels (d)-(f) address the case of a small external field strength b < 1. The real
time dynamics is treated in panel (d), where the time axis is scaled with tωL
instead of t/T∗ to reveal the b-dependent long time behavior of S(t). This scaling
is also adopted for the depiction of S(ω) in panel (f), which shows the same sets
of data as panel (e). In the latter panel the smallest reliably resolved frequency
ωmin ≈ 0.0052, which stems from Nc = 4000 considered Chebyshev polynomials,
is indicated by the black arrow. The black dashed lines in panels (e)-(f) correpsond
to the power law fit from figure 5.35.3. All presented calculations are based on N =
20, r0 = 1.5 and n = 50.
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hyperfine interaction is the only source of decoherence entering the model under study,
the central spin is expected to experience a decay that is still governed by the intrinsic
bath fluctuations and therefore by T∗. As demonstrated in figure 5.75.7 (a), the expected
decay occurs indeed and it can be approximated by a Gaussian envelope function

E(t) =
1
4

exp

[
−1

2

(
t

2T∗

)2
]

, (5.20)

which is, as expected, only dependent on T∗. The spectral spin noise function for
strong transversal fields is treated in panels (b)-(c) of figure 5.75.7. It consists of two
contributions: the peak centered at the frequency ω∗ =

√
b2 + 1/2, as indicated by

the collapse of all five spectra in panel (c), corresponds to the short time evolution of
S(t) that is presented in panel (a). Corresponding to the Gaussian envelope function,
the peak’s shape is approximately Gaussian and its width is solely governed by T∗.
Examining the addressed peaks closely shows that their spectral weight is increasing
slightly with b, which is linked to the conserved sum-rule and the second observed
feature near ω = 0, which is vanishing quickly with increasing b. This second fea-
ture evolves continuously from the peak near zero frequency, that describes the long
time dynamics and the non-decaying fraction S∞. As stated above, the latter quantity
already drops to zero for an infinitesimal external field along the x-direction. Hence,
the rapidly vanishing feature at small frequencies corresponds to minor oscillations
around S(t) = 0 on large timescales that are negligible for large field strenghts.

Panels (d)-(f) of figure 5.75.7 treat the central spin dynamics for small field strengths
b < 1. Clearly the short time behavior is unaffected by the external field in this regime.
Hence, the scope of the remaining panels lies on the long time evolution. Panel (d)
treats the time dependent spin noise function S(t). The time axis is scaled as tωL,
yielding a collapse of S(t) onto one curve for varying magnetic field strength b ∈
[0.01, 0.04] at large times t/T∗ & 300. This finding reveals, that the central spin’s long
time behavior is dictated solely by the Larmor frequency ωL. Note that the long time
decay of S(t) due to the hyperfine interaction is well separated from the impact of
the external field, which occurs on larger timescales in the presented regime. This is
stated by the spectral results for slightly larger values of b, that are presented in panel
(e): looking into the intermediate frequency regime ωT∗ ∈ [0.05, 0.2] for b = 0.05, the
power law fit ∝ ω−3/4 reproduces S(ω) quite nicely and the peak occuring at smaller
frequencies is well separated from the power law shoulder. For b = 0.1 the fit still
reproduces the intermediate power law behavior of S(ω), but the separation between
the two features at small frequencies is already lifted and for b = 0.2 they fully overlap
each other. As a consequence the power law does not reproduce S(ω) anymore. The
finite spectral weight, that is found for ωT∗ → 0 and rapidly decreases for increasing
b, occurs due to the limited resolution of the method, which is indicated by the black
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arrow. According to figure 5.75.7 (d), panel (f) shows the exact same data for S(ω) as
panel (e), but on the scale ω/ωL instead of ωT∗. It turns out that the shape of the
peak at small frequencies ω/ωL ≈ 0.1 is very similar for all presented values of b. This
corresponds to the findings of recent Bethe Ansatz studies [3636, 3737], which reported
a strictly invariant spectrum for varying b in the regime of small external fields. I.e.
the Larmor frequency is indeed the crucial quantity for the long time evolution of the
central spin in this regime.

5.2.2 Longitudinal magnetic fields

The main effect of introducing a longitudinal external field to the ICSM, is the suppres-
sion of spin flips of the central spin. In an arbitrarily large field b → ∞, the hyperfine
interaction is negligible and S(t) = S(0) holds. I.e. when increasing b starting from
0, a crossover between the behavior that has been intensively discussed in section 5.15.1
to S(t) = S(0) is expected. As depicted in figure 5.85.8 (a), which treats S(t) for various
values of b, a monotonic increase of S∞ is observed as expected. On top of that, the
minimum, which occurs due the central spin’s precession in the Overhauser field, is
shifted to smaller times and larger values for increasing b. As observed for transversal
magnetic fields, the initial precession passes over into a precession in the external field
for large field strengths. Panel (b) of figure 5.85.8 shows results for the spectral spin noise
function S(ω) that correspond to the time resolved calculations from panel (a). The
spectral weight of the peak at large frequencies is decreasing rapidly, which clearly
reflects the observed increase of S∞. The inset of panel (b) treats the steady state value
S∞ in greater detail. Since it corresponds to the spectral weight of S(ω = 0), the red
solid line shows this value in dependence of b. Note that due to the limited resolution
of the CET, this determination of S∞ is not necessarily exact. Figure 5.85.8 (c) treats the
peak at large frequencies in greater detail. For this purpose S(ω) has been rescaled by
the factor b2 and the frequency axis has been shifted by ωL. This illustration clearly
reveals two features: First, the frequency of the precession in the external field is given
by ωL instead of ω∗, which has been found for transversal fields. Second, the decrease
of the peak’s spectral weight is governed by b2. From the latter finding we deduce the
following estimate for the non-decaying fraction:

S∞(b) = S(0)− S(0)− S∞(b = 0)

1 + b2 . (5.21)

This estimate clearly reproduces the boundary values S∞(b = 0), which has been
discussed in detail in section 5.1.25.1.2, and S∞(b→ ∞) = S(0) and features the numerically
found convergence ∝ b−2 towards S(0) for large values of b. It is added to the inset of
panel (b) as a black dashed line for S∞(b = 0) = S(0)/3. Apparently the claim (5.215.21)
reproduces the numerically found result for S∞(b) adequately. Panel (d) of figure 5.85.8
illustrates S(ω) for several small values of b on a double logarithmic scale. It stresses
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Figure 5.8: Illustration of the central spin dynamics in a longitudinal external field ~nB ‖ z. All
panels show scans of varying field strengths b, have been calculated for N = 20
bath spins and n = 50 individual setups. The cutoff r0 = 1.5 also applies for all
presented data. Panel (a) addresses the time resolved correlation function S(t),
while the remainder panels depict results for S(ω). For panel (b) Nc = 70 Cheby-
shev polynomials have been taken into account. The inset shows two results
concerning the non-decaying fraction S∞(b): the red solid curve has been deter-
mined from the spectral weight of the peak occuring at small frequencies, i.e.
from results of the CET, while the black dashed line shows the analytic estimate
S(0) ·

(
1− 2

3(1+b2)

)
. Panel (c) is based on the same data as panel (b), but the ω

axis has been shifted by ωL and S(ω) has been rescaled with b2. Panel (d) shows
S(ω) for various small values of b on a double logarithmic scale, where Nc = 2000
polynomials have been taken into account. Panels (a)-(b) correspond to figure 8
of reference [9797].

the rapid suppression of the power law decay, that occurs on intermediate timescales,
for increasing b. Still, some spectral features in the intermediate regime sustain for
b ∼ O(1), whose amplitude is decreasing, in accordance to the stated increase of S∞,
with b2 for large values of b.

5.3 Reference to recent experiments

As stated above, a recent experiment by Bechtold et al. [6262] was able to measure the
real time dynamics of an initially polarized, single electron spin confined in an InGaAs
QD. The authors presented the first measurements that clearly show the initial decay of
the electron spin within the Overhauser field, as predicted by the SCA from Merkulov
et al. [2727]. Comparing the CET’s results from figure 5.15.1 to the experimental curve (see
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figure 3 of reference [6262]), yields perfect agreement between theory and experiment
on short timescales. This comparison also puts forward that the intrinsic timescale T∗

of the QD under study is very close to 1 ns, which will be assumed for the follow-
ing considerations. Besides the excellent agreement on short timescales t ≤ 10 ns, the
experimentally found long time decay differs from the theoretical expectations within
the ICSM. The prediction by Chen et al. [3030] suggests a logarithmic decay of S(t) on
long timescales, which is stated by our numerical investigations for various assump-
tions of the dot geometry and the electron envelope wave function. In contrast, the
experimentally measured signal decays faster than predicted by this theory. On top of
that, a reoccurence of the signal is observed at t ≈ 1 µs. Such a feature is not involved
in the theory by Chen et al., but is observed for any fully quantum mechanical simu-
lation via the CET. I.e. it can not be excluded that the reoccurence might set in before
all bath spins have contributed to the dynamics, which might supress the logarithmic
decay on very large timescales. Thus, it remains unclear and rather speculative if the
experimental findings can be fully understood within the ICSM or not. Anyhow, an
alternate interpretation of the experimental data based on the influence of quadrupolar
coupling (QC) will be presented below, which explains the non-logarithmic decay and
also unifies recent measurements of holes and electrons.

In section 5.2.15.2.1 it has been demonstrated that applying a strong transversal field
to the central spin yields a rapid decay of S(t) that is (i) solely governed by the in-
trinsic timescale T∗ and (ii) described by a Gaussian envelope function on timescales
t/T∗ < 10. In accordance to the above stated, excellent agreement between theory and
experiment on such short timescales, the ICSM is expected to reproduce the experimen-
tally measured electron spin dynamics in a strong transversal field correctly. Crooker
et al. [5959] have investigated spin noise in an ensemble of n-doped InGaAs QDs within
an applied transversal field experimentally. The observed spectrum features a single
peak at large frequencies, whose position is determined by the Larmor frequency. The
shape of this peak turned out to be approximately given by a Lorentzian, in contrast to
the expected Gaussian shape for an individual QD. I.e. an ensemble average has to be
applied to the spectrum of a single dot, to compare the theory to these experimental
findings. As described in section 3.43.4, this is realized by determining the characteristic
length scale L0 from a Gaussian distribution and inserting the obtained value into T∗

with respect to equation (3.393.39). The average timescale T∗ is set to 1 ns, as stated above.
Figure 5.95.9 shows the obtained results, that correspond to figure 4 (a) from reference
[5959]. It turns out that the applied ensemble average indeed induces a change of the
occuring peak from a Gaussian to a Lorentzian shape. Especially for large external
fields the fits account adequately for the data, while significant deviations are found
for small external fields. Both observations correspond to the experimental findings
[5959]. Also the position and width of the individual peaks is reproduced almost per-
fectly by the numerical simulations. The observed asymmetry of the peaks, mainly
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Figure 5.9: Ensemble averaged spin noise spectra for electron doped QDs at five different
magnetic field strengths. The spectral function S(ω) has been calculated for
n = 100 spin baths of N = 20 nuclei, a cutoff r0 = 1.5 and Nc = 15 Cheby-
shev polynomials have been considered. According to reference [5959], the elec-
tron g-factor |ge| = 0.54 is used. Concerning the ensemble averaging, a mean
intrinsic timescale T∗ = 1ns has been assumed. The broadening of T∗ results
from a Gaussian distribution of the characteristic length scale L0, which enters
T∗ via L−3/2

0 , with a standard deviation ∆L0/L0 = 0.2. An offset proportional to
b = ωLT∗ has been added to distinguish the individual curves. The black lines
indicate Lorentzian fits.

stems from the asymmetry of the T∗ distribution arising from the L3/2
0 term. Note that

a very small number Nc = 15 of Chebyshev polynomials has been considered for the
results of figure 5.95.9. This accounts for the limited resolution of the experiments on
very short timescales. Due to the rough resolution, the peaks occuring at small and
large frequencies feature a finite overlap, which is an artefact of the CET, for small ex-
ternal fields. All in all good agreement between our simulations and the experiments
by Crooker et al. is found, underlining that the ICSM does describe the short time
dynamics of electrons confined in InGaAs QDs adequately.

5.4 Chapter conclusion

In the precedent chapter, the isotropic central spin model (ICSM) has been discussed
in detail. It has been stated that the semi classical solution SSCA(t) predicts the short
time behavior of S(t) correctly, while the adequacy of its estimate for S∞ turned out
to be questionable. Still, the qualitative prediction that the parameter u = 〈A2〉/ 〈A〉2

is crucial for the steady state value S∞, has been stated. The timescale on which the
longtime decay of the spin noise function occurs turned out to be governed by the
parameter u, the ratio Amax/Amin and the size of the spin bath. In contrast to the
SCA, the long time decay ∝ ln−d/m(t), that has been proposed by Balents et al. [3030],
has proven to reproduce the decay of S(t) for intermediate timescales adequately, but
since it does not feature a reoccurence of S(t) for large t, it is also not believed to
cover the entire long time dynamics. It has also been shown that the investigation of
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spin-1/2 nuclei qualitatively yields the same results as a bath of spin-3/2 particles.
The presented rigorous lower bound for S∞ based on Mazur’s inequality has proven
to be quite rough and further conserved quantities need to be taken into account to
obtain a tight bound. On the other hand, the estimate S(B)

low is also not tight for arbitrary
coupling constants and its general validity could not be proven and is questionable,
since the semi classical simulations by D. Stanek violate it.

The central spin dynamics in large transversal magnetic fields is given by a preces-
sion with frequency ω∗ =

√
b2 + 1/2 that is damped by a Gaussian envelope func-

tion which only depends on the intrinsic timescale T∗. The long time decay for small
transversal fields is dictated by the Larmor frequency ωL, while the short time be-
havior of S(t) remains unaffected. It has been demonstrated, that the increase of the
non-decaying fraction in a longitudinal field can be described by equation (5.215.21) when
considering a fixed cutoff r0. The short time dynamics in large longitudinal fields
turned out to be governed by the Larmor frequency ωL instead of ω∗ and, according
to the analytic estimate for S∞(b), the spectral weight of S(ω 6= 0) is decreasing as b−2

for large external fields.
By applying an ensemble average to the results of a single QD, recent experimental

results [5959] for spin noise in an ensemble of n-doped InGaAs QDs within a transversal
external field could be reproduced adequately. Another recent experiment [9999] on a
single electron spin confined in an InGaAs QD found the same short time dynamics
as predicted by the SCA. Either due to the applied model’s incompleteness or finite
size limitations the experimental findings concerning the long time dynamics are not
reproduced by the simulations considering the ICSM. This mismatch will be discussed
further in section 88.



Chapter 6

TD-NRG Approach for the Isotropic Central
Spin Model

The spin dynamics within the ICSM in the absence of a magnetic field has been in-
tensively studied in the preceding chapter. We have put forward several arguments
concerning the central spin’s behavior on large timescales, that support the correct-
ness of certain analytical predictions, but until the present day nobody has been able
to establish a numerical procedure that is capable of treating the long time evolution
for a large spin bath N ∼ O(103) on a fully quantum mechanical level. One promis-
ing candidate to achieve this goal is the time dependent numerical renormalization
group (TD-NRG). It is an iterative procedure, designed to calculate time dependent
expectation values of the form

O(t) = 〈ρ(t)O〉 = Tr
[
e−iHtρ0eiHtO

]
, (6.1)

by truncating the underlying Hilbert space and performing the occuring sums ap-
propriately. Originally [6767] the NRG has been developed to study the Kondo effect
[124124, 125125], but it can be applied to quantum impurity models in general. In the fol-
lowing chapter, we present first investigations concerning the realization of a TD-NRG
procedure applied to the ICSM, where the central spin is the quantum impurity under
study. The section at hand assumes that the reader possesses basic knowledge about
the TD-NRG and does not contain a full review of the method. To take along readers
who are entirely new to the NRG, the central steps of the original method are always
sketched before we discuss their realisation in the CSM TD-NRG. For a detailed discus-
sion of the original time independent NRG the reader is referred to references [6767, 6969],
while the TD-NRG has been proposed in reference [6868].

6.1 TD-NRG algorithm

For the standard NRG procedure the investigated Hamiltonian is mapped on a semi-
infinite chain, where the quantum impurity (here: the central spin) is coupled to the

79
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first site of the chain only. The algorithm relies on the fact that the coupling constants
in the Wilson chain decrease exponentially with the distance from the impurity. Since
mapping the ICSM onto a Wilson chain is not possible, we retain the original star-
topology of the model within the NRG and assume the coupling constants Ak to be
ordered as follows:

A1 > A2 > · · · > AN . (6.2)

The NRG method aims towards obtaining a fixed point Hamiltonian after a large num-
ber m of iterations. To ensure that each term added in the iterative NRG procedure,
which is described in detail below, is of the same order of magnitude, we introduce the
rescaled coupling constants

Ak = Λk−1Ak. (6.3)

The selection of the so called NRG parameter Λ demands further considerations and
the details on its choice will be discussed in the following section. In the central spin
NRG algorithm we will start from a system consisting of the central spin coupled to
the nucleus with the largest coupling constant A1 only

H1 = A1
~S ·~I1 (6.4)

and iteratively add the remainder bath spins to the system by using the recursion
relation

HM+1 = ΛHM + AM+1
~S ·~IM+1. (6.5)

Apparently we arrive at the final Hamiltonian HN = ΛN−1H after N − 1 steps. As
we will see below, the Hamiltonian needs to be diagonalized in each NRG step and
since the Hamiltonian’s Hilbert space dimension is growing exponentially with the
bath size, we can only treat the full system exactly for several iterations m0. After m0

is exceeded we need to apply an appropriate truncation scheme selecting which states
are discarded at step m and which states are kept for further iterations. With respect to
the iterative construction of the Hamiltonian, we introduce the following notation for
the matrix elements of an observable O at the m-th NRG iteration:

O(m)
rs = 〈r, e; m|O|s, e; m〉, (6.6)

where the letters r/s represent the NRG states of the central spin and those bath spins
that have already been added to the Hamiltonian at step m, while e represents the states
of the remainder bath spins. Since we will not consider operators acting on a bath site
that has not already been added to the system up to step m, the representation (6.66.6) is
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diagonal in e. Before we go into further detail about the used truncation schemes and
the explicit calculation of time dependent expectation values, let us first slide in some
considerations concerning the NRG parameter Λ and the density operator ρ.

6.1.1 Selection of the NRG parameter Λ

For the CSM the selection of the NRG parameter Λ is closely related to the selection
of the coupling constants Ak, since they dictate the energy scale of the Hamiltonian
(5.15.1) without an external field. As discussed above, we usually apply a procedure to
generate random sets of coupling constants with respect to a certain distribution func-
tion, where the cutoff radius r0 determines the ratio between the largest and smallest
coupling constant taken into account. This ratio is decreasing exponentially with the

square of r0: A1/AN = e−r2
0 . From the definition of the rescaled couplings we can

immediately see that setting

ΛN−1 =
A1

AN
(6.7)

yields a constant ratio A1/AN = 1. This choice for Λ clearly fullfills our requirement,
that all rescaled coupling constants added to the system are of the same order of mag-
nitude. Anyhow, the NRG demands a strict energy hierarchy to work reliably and this
condition can not be guaranteed for our randomly generated coupling constants Ak.
Thus, we begin with the investigation of simplified coupling constants

Ak = Λ−k+1A1, (6.8)

yielding Ak = A1, to check wether the NRG procedure is adequate to tackle the central
spin problem in general and deal with problems that might occur for a more realistic
setup later. By inserting equation (6.86.8) into (6.76.7) we see that this simplified assumption
for the coupling constants allows us to choose the NRG parameter Λ freely. From the
numerical point of view, a large value of Λ, yielding a pronounced energy hierarchy
and therefore a reliable NRG procedure, is desirable. Anyhow this choice is contrary
to the physical point of view: in a realistic QD the electron wave function varies slowly
on the length scale of a unit cell and thus we wish to investigate a dense distribution
of coupling constants. As a consequence we need to find a compromise between the
physical and numerical demands of the underlying problem.

6.1.2 Density operator

The original TD-NRG [6868] is designed to calulate the real time dynamics of a local
operator after a quantum quench: the investigated system is initially in thermal equi-
librium, described by the initial Hamiltonian Hi yielding the density matrix ρeq in the
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basis of Hi, and then Hi is instantaneously exchanged by the final Hamiltonian H f

causing a reaction of the system. This reaction is calculated within the TD-NRG. For
this type of experiment two individual NRG runs for Hi and H f are required to com-
pute the TD-NRG equation, vaguely speaking because ρeq has to be rotated from the
initial to the final basis, which has to be constructed iteratively. I.e. the original TD-
NRG demands one forward an one backward iteration. Since we are interested in the
spin noise function S(t) at infinite temperature, the density operator of our system is
proportional to unity and therefore independent of the underlying basis. Thus, we
know the exact form of the required reduced density operator in every NRG step a
priori and a backward iteration is not required:

ρ0 =
1

2DN
1, (6.9)

=⇒ ρred,(m)
sr = ∑

e
〈s, e; m|ρ0|r, e; m〉 = DN−m

2DN
δs,r, (6.10)

where Dn = (2I + 1)n denotes the dimension of a bath containing n spins with absolute
value I. I.e. the ratio DN−m

2DN
is the dimension of the system consisting of the central spin

and all bath spins that have been added up to the NRG step m.

6.1.3 The ICSM TD-NRG iteration

It has been shown [6868], that the expectation value of a local operator O can be written
in the form

O(t) =
N

∑
m=0

′

∑
r,s

O(m)
rs ρred,(m)

sr (t), (6.11)

where the reduced sum ∑
′

r,s requires at least one of the states r and s to be discarded
at step m. Also note that in the last step m = N all remaining states are consid-
ered to be discarded. Since we are interested in calculating the correlation function
S(t) = 〈Sz(t)Sz〉 within the ICSM, the TD-NRG equation (6.116.11) demands some addi-
tional consideration. As described above, we diagonalize the Hamiltonian exactly for
the first m0 iterations without discarding any states in the process, hence these NRG
steps do not contribute to the TD-NRG equation due to the reduced sum. Further-
more the consideration of a correlation function as S(t) demands a summation over an
additional complete basis set, yielding

S(t) =
N

∑
m=m0

′

∑
r,s,t

Sz,(m)
rs (t)Sz,(m)

st ρ
red,(m)
tr ,

=
N

∑
m=m0

DN−m

2DN

′

∑
r,s

Sz,(m)
rs (t)Sz,(m)

sr =
N

∑
m=m0

S(m)(t), (6.12)
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after inserting the investigated reduced density operator (6.106.10). Equation (6.126.12) is
the central equation of the CSM TD-NRG. Since the choice of an adequate truncation
scheme is the key ingredient to construct an adequate NRG procedure for the central
spin problem, we present two fundamentally different approaches for its realization in
the following, that are based on two different truncation schemes. Note that we restrict
ourselves to the case I = 1/2 for the remainder of this chapter.

Wilson truncation

First, we adapt the Wilson energy truncation from the original NRG [6767]. Within this
approach the kept NRG states entering equation (6.126.12) are the low energy eigenstates
of the Hamiltonian. Up to step m0 we do not truncate any states and due to the
reduced sum in relation (6.126.12) these steps do not contribute to the spin-noise function
S(t). Thus, we might simply construct the Hamiltonian up to step m0 in the eigenbasis
of the operators Sz and Iz

k , i.e. the spin operators ~S and ~Ik are well known in every
step. Starting at NRG iteration m = m0 − 1 on the basis of Hamiltonian Hm0−1 given
in the basis set |σz, Iz

1 , Iz
2 , · · · , Iz

m0−1, e; m〉 = |r, e; m〉, that are considered the kept states
entering step m = m0, we iteratively perform the following steps until arriving at
m = N:

1. We add the m-th bath spin to the bath, forming the new basis set |r, Iz
m, e; m〉 and

the Hamiltonian Hm is constructed in this basis with respect to equation (6.56.5).

2. In the next step, we diagonalize Hm and obtain its eigenstates

Hm|n〉 = E(m)
n |n〉, (6.13)

where the degrees of freedom e of the bath that has not been added to the system
have been omitted. These eigenstates are connected to the initial basis of the kept
states via the unitary matrix U(m), whose elements are given by

|n〉 = ∑
r

U(m)
n;r |r, Iz

m〉. (6.14)

The states |n〉 are the NRG states entering equation (6.126.12). We consider the states
corresponding to the upper half of the spectrum |n, e; m〉 = |l, e; m〉 the discarded
states and those corresponding to the lower half |n, e; m〉 = |k, e; m〉 the kept states
in the following. Note that the line between kept and discarded states is never
drawn between two degenerate eigenstates and in case of a degeneracy in the
middle of the spectrum we always keep all the degenerate states.
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3. We use the matrix U(m) to rotate the central spin operator ~S into the basis |n, e; m〉
and can straight forwardly calculate the contribution of the m-th NRG step to the
spin noise function:

S(m)(t) =
DN−m

2DN

′

∑
r,s

Sz,(m)
rs Sz,(m)

sr ei(Er−Es)t. (6.15)

Next, we revisit step 1. adopting the operators Hm and ~S in the basis of the kept
states only and setting m = m + 1.

As we have seen, due to the star topology of the CSM the central spin operator ~S en-
ters the Hamiltonian in every iteration and its transformation into the basis spanned
by the kept NRG states only is not unitary. Thus, it does not conserve the commutation
relation of the components of ~S, i.e. the central spin is also truncated in the NRG proce-
dure and its absolute value

∣∣∣~S∣∣∣ = 1/2 is not conserved. Recent DMRG studies [3939] have
shown that this truncation is problematic in the CSM, because due to the special role
of the central spin its truncation also implies an underestimation of all interactions that
are added after the first truncation in the NRG procedure. This observation motivates
our second approach for an adequate truncation scheme.

Central spin conserving truncation scheme

In the following we introduce a truncation scheme conserving the central spin’s abso-
lute value

∣∣∣~S∣∣∣ = 1/2 and the Lie-Algebra of the central spin operators Sx, Sy, Sz. To
realize this, we seek to split the states of the spins that have already been added to
the system up to step m into their central spin σ and bath er contribution: |r, e; m〉 →
|σ, er, e; m〉. With this notation in mind, let us turn to the new CSM NRG iteration. Since
we do not truncate up to step m0, the states |σ, er, e; m0 − 1〉, that are no eigenstates of
the Hamiltonian Hm0−1, are exactly known and considered the kept states entering step
m0. Accordingly all matrix elements 〈σ, er|Hm0−1|σ

′, e′r〉 forming Hm0−1 are also known.
Subsequently we iteratively perform the following steps starting from m = m0:

1. We extend the kept basis set |σ, er, e; m− 1〉 by adding another bath spin to form
the new bath variable e(m)

r = (e(m−1)
r , Iz

m) and form |σ, er, e; m〉, where one bath
spin has been transferred from the environment e to the bath that is interacting
with the central spin er. Within this new basis the Hamiltonian Hm is constructed
via equation (6.56.5).

2. In the next step, we diagonalize Hm and obtain its eigenstates

Hm|n〉 = E(m)
n |n〉. (6.16)
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These eigenstates are connected to the initial basis of the kept states via the uni-
tary matrix U(m), whose elements are given by

|n〉 = ∑
σ,er

U(m)
n;σ,er
|σ, er, e; m〉. (6.17)

3. We use a fictitious density operator ρ
(m)
f and trace out the central spin to construct

a reduced density matrix ρ(m)
e for the bath spins only:

ρ
(m)
f =

1
Z ∑

n
|n〉〈n|e−βE(m)

n (6.18)

ρ(m)
e =

1
Z ∑

σ
∑
n
〈σ|n〉〈n|σ〉e−βE(m)

n , (6.19)

where Z = ∑n〈n|e
−βE(m)

n |n〉 = ∑n e−βEn is the partition function of the system.
The parameter β is a fictitious inverse truncation temperature, differentiating the
high-energy states from the low-energy states. By inserting relation (6.176.17) into
(6.196.19) we obtain the matrix elements of the reduced density matrix of the spin
bath

ρ(m)
e =

1
Z ∑

n
∑
σ

∑
er ,e′r

|er, e; m〉〈e′r, e′; m|U(m)
n;σ,er

(
U(m)

σ,e′r ;n

)∗
e−βE(m)

n (6.20)

=⇒
(

ρ(m)
e

)
er ,e′r

=
1
Z ∑

n
e−βE(m)

n
(

U(m)
n;↑,er

(
U(m)

↑,e′r ;n

)∗
+ U(m)

n;↓,er

(
U(m)

↓,e′r ;n

)∗)
. (6.21)

Now we diagonalize ρ(m)
e obtaining its eigenstates |ẽr〉, that are connected to the

original bath states via

|ẽr, e; m〉 = ∑
er

S(m)
ẽr ,er
|er, e; m〉, (6.22)

where the matrix S(m) transforms ρ(m)
e into its diagonal form.

4. We consider those eigenstates |ẽk, e; m〉 that correspond to the larger half of ab-
solute eigenvalues the new kept states and the remainder eigenstates |ẽl , e; m〉
discarded states. In case of degenerate states in the middle of the spectrum, the
same rules as above apply. Now we add the central spin back to the system, ob-
taining the states |σ, ẽk, e; m〉 and |σ, ẽl , e; m〉 that are the basis states entering the
TD-NRG equation (6.126.12). For the time-dependency, we need to expand the kept
and discarded states in the eigenstates of the Hamiltonian

|σ, ẽr, e; m〉 = ∑
er

S(m)
ẽr ;er
|σ, er, e; m〉 = ∑

er

∑
n

S(m)
ẽr ;er

(
U(m)

σ,er ;n

)∗
|n〉 (6.23)
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and obtain their time dependency

e−iHt|σ, ẽr, e; m〉 = ∑
n

Ũ(m)
ẽr ;n [σ]e

−iEnt|n〉 (6.24)

after defining the matrix Ũ(m)

Ũ(m)
[σ] = S(m)

(
U(m)[σ]

)†
. (6.25)

5. Finally, we calculate the contribution of NRG step m to the spin noise function

S(m)(t) =
DN−m

2DN
∑
σ,σ′

′

∑̃
er ,ẽs

〈σ, ẽr; m|eiHtSze−iHt|σ′, ẽs; m〉×

× 〈σ′, ẽs; m|Sz|σ, ẽr; m〉, (6.26)

where the reduced sum demands that at least one of the states ẽr and ẽs is a
discarded state. Now we use the fact that Sz is diagonal in the underlying basis
〈σ′, ẽs; m|Sz|σ, ẽr; m〉 = σ

2 δσ,σ′δẽs,ẽr
, with σ = + for spin up and σ = − for spin

down, and insert relation (6.246.24) to arrive at

S(m)(t) =
DN−m

2DN
∑
σ

∑̃
el

∑
n,n′

σ

2
〈n|
(

Ũ(m)
n;ẽl

[σ]
)∗

SzŨ(m)

ẽl ;n
′ [σ]|n′〉e−i(E

n′−En)t

=
DN−m

4DN
∑
n,n′

e−i(E
n′−En)t〈n|Sz|n′〉 ∑̃

el

×

×
[(

Ũ(m)
n;ẽl

[↑]
)∗

Ũ(m)

ẽl ;n
′ [↑]−

(
Ũ(m)

n;ẽl
[↓]
)∗

Ũ(m)

ẽl ;n
′ [↓]
]

(6.27)

Note that all states are considered discarded states in the last NRG step m = N.
After calculating equation (6.276.27) step 1. is revisited for m = m + 1 and the states
|σ, ẽk, e; m〉 as new kept states.

6.2 Results

Let us now turn to the discussion of the results obtained via the two approaches for a
CSM TD-NRG procedure, that have been introduced in the previous section. Beside the
comparison of exact calculations to corresponding NRG calculations of the spin noise
function S(t), we will discuss the NRG energy flow of the investigated Hamiltonian
(5.15.1), i.e. the behavior of the Hamiltonian’s energy spectrum in the proceeding NRG
steps.



6.2. Results 87

0

5

10

15

0m0 50 100 150

E
T

∗

m

(a)

0

0.5

1.0

1.5

0m0 50 100 150

E
T

∗

m

(a)

(b)

Figure 6.1: Energy flow of the Hamiltonian (5.15.1) for the Wilson energy truncation, Λ = 1.4
and simplified coupling constants Ak = λ1−k A1. The lowest eigen energy Emin is
always set to 0 and panel (a) only depicts the flow of the largest energy level Emax.
Panel (b) depicts the energy flow of the low lying eigen energies and each energy
level is represented by an individual red dot. The first truncation was applied at
m0 = 8 corresponding to keeping Nk = 256 states in every NRG step.

6.2.1 Wilson truncation

Before we go into detail on the calculations concerning the spin noise function S(t), let
us discuss the energy flow of the underlying Hamiltonian, that is shown in figure 6.16.1
for one representative setup. Panel (a) demonstrates how the width of the spectrum is
growing exponentially until arriving at iteration m0 = 8, where the first truncation is
applied. From this point forward we observe a rapid decay of the spectral width, which
is not expected in a usual NRG procedure since the coupling constants are chosen such
that the terms added to the Hamiltonian yield a contribution of the same order of
magnitude in every NRG step. After m ≈ 100 iterations the monotonous decrease of
the spectral width is turning into a rapid increase. After m ≈ 120 iterations we arrive at
a fixed point Hamiltonian, i.e. a Hamiltonian with an invariant spectrum for m > 120.
This invariance is underlined by the detailed extract of the low energy spectrum shown
in panel (b) and its occurrence is a positive precursor indicating that the realization of a
working TD-NRG procedure for the central spin problem might be possible. Anyhow
the rapid decrease of the spectral width during the first couple of applied truncations
is unusual, especially due to the simplified choice of coupling constants. Hence, the
truncation of the central spin operators within the Wilson energy truncation is the most
likely source for this unusual behavior. Note that the energy flow for varying Λ always
looks similar to the case shown in figure 6.16.1. The only major change for decreasing Λ
is an increase of the NRG steps m that have to be performed to obtain a fixed point
Hamiltonian. Let us now turn to the discussion of the time dependent data obtained
within the Wilson apporach of the ICSM TD-NRG realization.

Figure 6.26.2 (a) compares ICSM TD-NRG results, based on varying values of the NRG
parameter λ, for the spin noise function S(t) to results obtained via exact diagonal-
ization (ED) for N = 12 bath spins. For the presented data we set m0 = 11, i.e. only
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Figure 6.2: Time dependence of the correlation function S(t) for different values of the NRG
parameter Λ. To distinguish between its different values, offsets have been added
that are indicated by the black dashed lines. The underlying coupling constants
are chosen as discussed above: Ak = λ1−k A1, where A1 is adjusted such that
T∗ = 1 is fullfilled. Panel (a) shows a comparison between results obtained via ED
(red solid lines) and the ICSM TD-NRG (blue dashed lines), where all calculations
are based on N = 12 bath spins and the number of kept NRG states has been set
to Nk = 2048, i.e. only one truncation was applied in the procedure. In panel (b)
this limitation is exceeded: the solid green lines have been obtained using the
CET for N = 20 bath spins, while the dashed blue lines show NRG calculations for
the same system size and Nk = 4096. The red curves in panel (b) are the same
as in panel (a) for the corresponding values of Λ.

one truncation of the energy spectrum was applied in the NRG procedure. Of course
the goal of a final TD-NRG for the central spin problem is to reproduce exact results
adequately for a large number of bath spins N after many truncations O(N), but being
able to adequately reproduce exact results for a single truncation is clearly the first
step to approach this final goal. We observe good agreement for all values of the NRG
parameter Λ on short time scales t/T∗ < 20. On top of that, the NRG reproduces
the ED nicely on the whole shown timescale for Λ = 1.4, but for a decreasing NRG
parameter the deviations on long timescales are increasing drastically. This finding
meets the expectation we put forward in section 6.1.16.1.1: since a large value of Λ induces
a clear separation of energy scales, the NRG works less accurate the smaller the NRG
parameter is. Panel (b) of figure 6.26.2 shows CSM TD-NRG results, where more than just
a single truncation has been applied, in comparison to exact results obtained via the
CET for N = 20. For Λ = 1.2 we find that the deviation between the exact and NRG
results is a lot larger than it was found in panel (a). This once more underlines the fact
that the NRG does not work reliably for small values of Λ. On top of that the similar-
ity of the NRG data for N = 20 and the exact data for N = 12 in panel (b) is striking.
Bearing in mind that setting Nk = 4096 is equivalent to m0 = 12 and therefore the two
sets of data both include the same exact eigenstates, this observation points out that
the contribution of the NRG steps after the first truncation is only a small correction
on top of the exact results. We trace this finding back to the truncation of the cen-
tral spin operators, resulting in an underestimation of all coupling constants that are
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added after the first truncation. The data from figure 6.26.2 (b) for Λ = 1.3 show a very
similar behavior for all three considered cases. This underlines the physical limitation
on the NRG parameter: the fact that the exact results for N = 12 and N = 20 only
deviate slightly from each other points out that the dynamics is heavily dominated by
a small number of large coupling constants and thus the good agreement of the NRG
calculations, that take the heavily dominant coupling constants exactly into account, is
not surprising. On top of that the lack of a dense distribution of couplings prohibits
the description of a realistic quantum dot and for this reason the investigation of large
values of Λ is of limited interest. All in all the approach for a CSM TD-NRG based on
the Wilson energy truncation seems not to be a promising candidate to tackle setups
that are of experimental interest.

6.2.2 Central spin conserving truncation scheme

Panel (a) of figure 6.36.3 shows a small extract of the Hamiltonian’s energy flow in a
typical NRG run based on the central spin conserving truncation scheme. We restrain
ourselves to a small number of kept states here, to be able to distinguish the individual
energy levels with the bare eye, but in principle all discussed observations remain the
same for a much larger number of kept states. Starting from the exact eigenstates of
an untruncated Hamiltonian at m = 7, the Hamiltonian is first rotated into the sub-
spaces of the kept and discarded states only, yielding new approximate eigenenergies
that are also depicted in the figure. On the one hand, we find that most of the original
eigenstates are reproduced appropiately and only a few pronounced deviations are
observed. An unpleasant feature in the context of this finding is that most of the occur-
ing deviations are found in the low energy regime, which is crucial for an adequately
working TD-NRG procedure. On the other hand, it is striking that the central spin con-
serving truncation scheme always produces the same number of high and low energy
states that are considered kept states, while all the discarded states lie in the middle
of the spectrum. This finding is problematic for two reasons: (i) the NRG relies on the
fact that the low energy states are the ones mainly driving the dynamics of a quantum
system, i.e. the kept high energy states are mainly unnecessary baggage slowing down
the procedure, and (ii) the spectral width is increasing exponentially with m, causing
severe numerical problems for large spin baths.

The lower panels of figure 6.36.3 treat the calculations concerning S(t), where we only
took a single truncation of the Hamiltonian into account. We observe that none of
the shown NRG runs yields an appropriate approximation for the exact central spin
dynamics. As observed for the Wilson truncation scheme, panel (b) shows that the
quality of the NRG calculations is slightly increasing for increasing Λ, but as discussed
before this effect might be trivial, because S(t) is heavily dominated by a small amount
of bath spins in this regime that are treated exactly in the NRG. On top of that panel (c)
reveals that even a pronounced increase of the truncation parameter β does not improve
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Figure 6.3: Data for the central spin conserving truncation scheme. We used the same choice
for the coupling constants as in figure 6.26.2 for all calculations. Panel (a) shows a
small extract of the energy flow for Λ = 1.2, β/T∗ = 10 and Nk = 128. The first
and second applied truncations are shown, where the points at m = 7 and m = 8
show the energy levels of the Hamiltonian right after a new spin has been added
to the system and the shifted data points are the corresponding energy levels
after rotating the Hamiltonian into either the subspace of the kept (at m + 0.5) or
discarded (at m + 0.25) states. The lower panels show the time dependence of
the correlation function S(t) for the central spin conserving truncation scheme,
where the solid red curves show results obtained by exact diagonalization (ED)
and the blue dashed lines have been calculated using the NRG. For all TD-NRG
runs Nk = 2048 was used, i.e. the Hamiltonian was only truncated once. The
lower panels show a comparison between (b) two different values of the NRG
parameter Λ based on β/T∗ = 10 and (c) two different values of the truncation
temperature β based on Λ = 1.2. As in figure 6.26.2 an offset has been added to
distinguish the different calculations.

the obtained results noticeably. In conclusion, the central spin conserving truncation
scheme significantly fails to reproduce S(t) already for a single truncation. Since the
eigenenergies of the Hamiltonian are crucial for the time evolution of any observable,
the failure of the method most likely originates from the fact that the exact eigenstates
are not sufficiently reproduced in the subspaces of the kept and discarded states. We
conclude that if we were able to find a truncation scheme that fixes this problem and
at the same time conserves the central spin, the realisation of an appropriate CSM TD-
NRG might be possible. Anyhow we failed to find such a scheme until the present
day.



Chapter 7

Hole Spin Dynamics

As argued in section 3.1.23.1.2, the spin dynamics of holes confined in semiconductor QDs
is mainly driven by a dipole-dipole type interaction instead of the Fermi contact hy-
perfine interaction. The resulting Hamiltonian, that will be studied in the chapter at
hand, is referred to as the anisotropic CSM and it is given by equation (3.143.14). In con-
trast to the ICSM, the anisotropic version has not been subject of numerous studies in
the past. The publication that introduced the anisotropic CSM [5656], also included the
evaluation of the resulting central spin dynamics within a semi classical picture, ac-
cording to the approach by Merkulov et al. [2727]. Thus, the published analytical results
are expected to be valid for the short time dynamics. The first section of the chapter at
hand treats the Ising limit of the anisotropic CSM, which accounts for heavy holes. As
discussed below, the Hamiltonian of this special case can easily be diagonalized ana-
lytically. Hence, the Ising limit will serve as reference to understand the central spin
dynamics for the transition from the ICSM to the anisotropic CSM. The remainder of
the chapter is structured similar as the preceding one: First, the hole spin dynamics in
the absence of a magnetic field is discussed with respect to the anisotropy parameter
λ. Second, the effect of an externally applied transversal magnetic field is investigated
in detail. Since the effect of an externally applied longitudinal field is almost the same
for holes as for electrons, this special case will only be briefly discussed. Finally, a
comparison of the numerical findings within the anisotropic central spin model to re-
cent experiments is discussed. As stated above, the numerical findings for spin-1/2
and 3/2 are qualitatively the same and also the variation of the model parameters m
and d, that account for the QD geometry, yields no fundamentally new insight into the
model’s properties. As a consequence this chapter is restricted to spin-1/2 nuclei and
the parameters m = 2 and d = 3. The majority of the results that will be presented
within the chapter below have already been published in reference [9797].

91
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7.1 The Ising limit of the CSM

For the description of heavy hole spins in semiconductor QDs, the Ising limit of the
CSM applies. It is given by the Hamiltonian

HIsing = ωL~nB · ~S +
N

∑
k=1

AkSz Iz
k . (7.1)

The dynamics of heavy holes confined in semiconductor QDs has been previously
studied in references [3131] and [5454] for instance. In the following, we will first discuss
the Ising limit of the CSM based on analytical arguments and will back the discussion
up with numerical simulations afterwards.

7.1.1 Analytical treatment

Clearly, the central spin operator Sz is conserved within this model for ~nB = ~ez or
ωL = 0 and in these cases the spin noise function is trivially given by S(t) = S(0).
Hence, only the case ~nB = ~ex needs to be treated in the following. Since the interaction
term between the central spin and the bath spins does not introduce any spin flips
of the nuclei, each nuclear operator Iz

k is a conserved quantity. I.e. the nuclear bath
is static and fully determined by the configuration {mk} of the bath spin operators’
eigenvalues. The eigenvalues of the Hamiltonian (7.17.1) for ωL = 0 can be written as

E∗(σ, {mk}) = σ ∑
k

Akmk = σE∗({mk}), (7.2)

where σ denotes the eigenvalue of Sz. Due to the conservation of Iz
k , the Hamiltonian

matrix HIsing, containing an added transversal field, decomposes into 2× 2 subblocks
for each configuration {mk}. Diagonalizing these blocks yields the eigenvalues

E±({mk}) = ±

√
ω2

L + [E∗({mk})]
2

2
, (7.3)

which correspond to the precession of the central spin in the effective magnetic field
~Beff = (ωL, 0, E∗({mk}))

T. The knowledge of the Hamiltonian’s exact eigenenergies
enables us to write down an exact analytical form for S(t) = 〈Sz(t)〉ρpol

/2. Therefor the
initial polarized state |↑, {mk}〉 is expanded using the exact eigenstates |±, {mk}〉 for a
given configuration {mk}:

|±, {mk}〉 = c+(|±, {mk}〉) |+, {mk}〉+ c− |−, {mk}〉 . (7.4)



7.1. The Ising limit of the CSM 93

The excitation energies of the system are given by ∆E({mk}) =
√

ω2
L + [E∗({mk})]

2

and averaging over these yields the time evolution

S(t) = S∞ + ∑
{mk}

c2
+c2
−cos(∆E({mk})t), (7.5)

S∞ = ∑
{mk}

1
4
(c2

+ − c−)
2. (7.6)

Since the number of elements in the occuring sum equals the Hilbert space dimension
D, the evaluation of this result can not be realized for arbitrarily large systems, but
for spin baths of the order N ∼ 20 it is evaluated in a few seconds using a standard
workstation without parallelization.

The semi classical estimate (5.35.3) for the non-decaying fraction S∞ can also be ap-
plied to the Ising limit of the CSM, where the effective magnetic field is given by
~Beff = (ωL, 0, E∗({mk}))

T. For a spin initially polarized along the z-direction, an aver-
age over all nuclear configurations {mk} has to be applied to the z-component of the
nonprecessing contribution (~ez ·~nBeff

)2S(0), yielding

〈
(~ez ·~nBeff

)2
〉
{mk}

=

〈
[E∗({mk})]

2

ω2
L + [E∗({mk})]

2

〉
{mk}

. (7.7)

For large magnetic fields this term approaches the value 1/4b2, while in zero magnetic
field 〈(~ez ·~nBeff

)2〉{mk} = 1 is obtained. As mentioned above, Testelin et al. [5656] have
extended the SCA to the anisotropic CSM and in the limit of strong external fields the
result

Ez(τ) =
1
4

[
cos(4b2τ + 1

2 arctan(τ))

(1 + τ2)1/4 +
1

4b2

(
1−

cos(4b2τ + 3
2 arctan(τ))

(1 + τ2)3/4

)]
(7.8)

is obtained for the Ising limit λ→ ∞, where the timescale τ := t/4bT∗ has been intro-
duced. This estimate is clearly in good agreement with the claim S∞ = S(0)/4b2 from
equation (7.77.7). The analytical result consists of two oscillatory contributions governed
by the Larmor frequency (4b2τ = ωLt) accompanied by a phase shift term and two
envelope functions ∝ (1 + τ2)−1/4 and ∝ (1 + τ2)−3/4. The power law form of the spin
noise functions’ decay can also be derived by averaging the central spin’s precession
for one given nuclear state {mk} over all possible configurations, using a Gaussian dis-
tribution of the nuclear field [5454]. Note that equation (7.87.8) implies an increase of the
coherence time for increasing b. Since no decay of S(t) occurs at all for b = 0 this is
not a necessarily intuitive finding, but it can be understood from the suppression of
the nuclear field fluctuations for large external fields.
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Figure 7.1: Illustration of the spin noise function for the Ising limit λ→ ∞ of the CSM. N = 18
bath spins have been considered for each presented curves and the cutoff r0 = 1.5
has been used. Panel (a)-(b) show S(t), based on n = 20 sets of coupling con-
stants, for various values b of the external magnetic field, where the dimension-
less timescale τ := t/4bT∗ has been introduced. The black lines in panel (a)
indicate the envelope of the analytical prediction Ez(τ) as defined in equation
(7.87.8). Panel (b) reveals that the power law decay ∝ (1 + τ2)1/4 also holds for
small external fields. An offset of 0.5 has been added to distinguish the individual
curves. Panel (c)-(d) treat the spectral function S(ω), where the frequency axis is
shifted by ωL. Both panels show the same results, which have been obtained from
an exact Fourier transformation of equation (7.57.5). The inset of panel (c) shows
the spectral weight S∞ of the δ-peak occuring at ω = 0, which is not included in
the illustration of S(ω). Panel (a) corresponds to figure 9, panel (c) to figure 10
of reference [9797].

7.1.2 Numerical discussion

Figure 7.17.1 presents numerical results for the spin noise function in the real time and
the spectral regime within the Ising limit of the CSM. Panel (a) shows S(t) in the
regime of large external fields b > 1. The added black lines depict the envelope of
the analytically estimated function Ez(τ), which reproduces the decay of the numerical
results excellently. I.e. the simulations state a power law decay ∝ t−1/2 of S(t) in the
regime of large external fields, that is fully governed by the timescale τ = t/4bT∗. Our
findings also imply, that the SCA describes both the short and long time dynamics of
the central spin correctly within the Ising limit. Panel (b) of figure 7.17.1 addresses the
long time behavior of the central spin for small external fields b ≤ 1, for which no
closed expression of S(t) within the SCA exists. The presented numerical results are
rescaled by the factor (1+ τ)1/4 to reveal that the predicted power law for the long time
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decay also holds in the limit of small external fields, but we stress that the prediction
(7.87.8) does not reproduce the exact shape of S(t) for b� 1 anymore.

From the above introduced excitation energies of the Hamiltonian HIsing, which are

given by ∆E({mk}) =
√

ω2
L + [E∗({mk})]

2, we can immediately deduce central prop-
erties of S(ω): (i) apart from the contribution at ω = 0, there is a finite threshold fre-
quency ωth for which S(0 < ω < ωth) = 0 holds, (ii) due to the definition of E∗({mk})
the limit limN→∞ ωth = ωL must hold and (iii) since the largest excitation frequency is

fiven by ωmax =
√

ω2
L + A2

s /4, the statement S(ωmax > 0) = 0 must hold. It is stressed
that the occuring gap in the spectral function prevails in the thermodynamic limit and
its width is solely set by the Larmor frequency. Panels (c)-(d) of figure 7.17.1 treat the
spectral spin noise function S(ω) and both include the exact same sets of data depicted
on (a) a linear and (b) a double logarithmic scale. The numerical results are shifted by
the Larmor frequency to stress the threshold behavior of S(t). The spectral weight of
the δ-peak occuring at 0 frequency, which is not included in the frequency range of the
figure, is depicted in the inset of panel (c). The added black line in panel (d) shows a
fit ∝ 1/

√
ω−ωL. Apparently the spectral function near the threshold frequency can

be approximated nicely by such a power law, although the accuracy of the fit decreases
for b→ 0. This loss of accuracy stems from the fact that S(ω) is dominated by the non-
decaying fraction in this regime and accordingly only a small portion of the spectral
weight occurs at finite frequencies. The applied 1/

√
ω−ωL fit corresponds to a long

time decay proportional to 1/
√

t [9797], which corresponds to the prediction of Ez(τ),
but is found independently of the external field strength.

7.2 Dynamics in the absence of a magnetic field

So far the spin dynamics of heavy holes (λ → ∞) and electrons (λ = 1) have been
discussed in detail. In contrast to the Ising limmit of the CSM, the case of light holes
(λ = 1/2) does not include comparable unique features and therefore it is discussed
along with the general case of light and heavy hole mixing in the following. In the
absence of a magnetic field, the decay of S(t) is solely induced by the flip-flop term,
whose magnitude in the general Hamiltonian (3.143.14) is scaling with 1/λ. I.e. the de-
cay of the spin noise function is expected to occur slower for increasing λ, which is
in accordance to the definition of the intrinsic timescale T∗λ . Since S(t) = S(0) holds
in the Ising limit of the CSM, also the steady state value S∞ is expected to increase
monotonically with λ, because a crossover behavior from the real time dynamics for
λ = 1 to those for λ → ∞ is expected. Figure 7.27.2 (a) shows S(t) for various values
of the anisotropy parameter λ. Apparently, the location of the minimum occuring at
t/T∗λ ≈ 4 remains almost invariant, although its characteristic form, as described by
SSCA(t), vanishes for large λ. The expected increase of S(t) on all timescales is also
clearly observed. In general the obtained curves basically interpolate between the limit
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Figure 7.2: Impact of the anisotropy factor λ onto the spin noise function without an exter-
nally applied field. Panel (a) shows a λ scan addressing the real time dynamics
S(t). Panel (b) shows the spectral spin noise function on a double logarithmic
scale. The smallest reliably resoluted frequency ωmin is indicated on the ω-axis.
E.g. for λ = 8 this resolution implies considering Nc = 6113 polynomials in a
single simulation. The black dashed line represents a power law fit ∝ ω−3/4. All
shown simulations are based on n = 50, N = 18 and r0 = 1.5.

of light and heavy holes. Figure 7.27.2 (b) shows the corresponding spectral spin noise
function S(ω) focusing on the real time dynamics in the intermediate regime. Corre-
sponding to the observed increase of S∞, the spectral weight of the short time peak
occuring at ωT∗λ ≈ 1 is decreasing rapidly with an increase of λ and, as observed for
the time resolved calculations, its shape is broadened for large anisotropy. Due to the
conserved sum-rule, that applies for all calculated spectra, it is clear that the decreas-
ing spectral weight at large frequencies must be shifted to smaller frequencies, but it
is not clear wether it is only transferred into the δ-peak at ω = 0 or also an increase of
the total spectral weight in the intermediate regime is obtained. In panel (b) of figure
7.27.2, where the reliable resolution of the CET is given by ωT∗λ = 0.02 for all presented
calculations, a clear gap between the resolution-broadened peak at zero frequency and
the shoulder at 0.03 ≤ ωT∗λ ≤ 0.2 is observed for λ = 1/2 and λ = 1. For larger values
of λ this gap is filled increasingly and, within the warranted resolution, for λ ≥ 4 the
zero and intermediate frequency features are merging such that no gap can be identi-
fied anymore. At the same time, the amplitude of the shoulder is decreasing between
the high frequency peak and the position of the gap. This finding implies that the sup-
pression of the spin-flip terms in the anisotropic CSM pushes the long time decay of
S(t) to larger times than implied by the intrinsic timescale T∗λ . I.e. the linear elongation
of the central spin dynamics only holds on short timescales and the longtime decay is
suppressed even stronger than linearly. This can be understood within the semi classi-
cal picture: the initial decay of S(t) is fully described by the central spin’s interaction
with a frozen spin bath, while the long time decay is influenced by the slow dynamics
of the bath spins that acts back onto the electron. This indirect process clearly only
contributes in higher orders of the hyperfine interaction and is therefore governed by
higher orders of λ. This is also in accordance with the rapid drop of the intermediate
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frequency shoulder for λ = 1/2 compared to λ = 1. Still, it is noticeable that a power
law fit ∝ ω−3/4 appears to describe the intermediate regime of S(ω) adequately up to
λ = 4, which is in accordance to the argument by Chen et al. [3030] that only relies on
the distribution of the coupling constants Ak. It is unclear wether the observed devi-
ation from this estimate for λ = 8 is a physical effect or if it stems from the limited
resolution. I.e. the expected power law might occur on smaller frequencies, which are
beyond the resolution of the applied method.

7.3 Dynamics within an external magnetic field

Before going into detail on the hole spin dynamics in an external magnetic field, a
word concerning the field strength parameter b = ωLT∗1 is in order. As demonstrated
in the preceding section, the influence of the hyperfine interaction onto the decay of
the spin noise function S(t) is governed by T∗λ . When the CSM Hamiltonian is rescaled
by this timescale, one obtains

HCSMT∗λ = λb~S ·~nB +
N

∑
k=1

AkT∗
(
λSz Iz

k + (Sx Ix
k + Sy Iy

k )
)

. (7.9)

Hence, the discussion wether the external field is weak or strong compared to the
hyperfine interaction, depends on the orientation vector~nB. For a longitudinal external
field b must be compared to AsT∗, as for the isotropic case, and for transversal fields the
product λb needs to be considered instead. Thus, in the latter case, we speak of a strong
external field, when λb > 1 holds and the weak field limit is defined accordingly. Since
the effect of an externally applied longitudinal field is independent of the parameter
λ and its main impact is, as for the isotropic CSM, to preserve the spin noise function
from decaying, no new physics is found for the case ~nB = ~ez and consequently it is
not discussed further in the following. Instead, we limit ourselves to the treatment of
transversal magnetic fields in the remainder of this section.

7.3.1 Transversal external fields

Testelin and coworkers [5656] have presented an analytical estimate for the central spin
dynamics within the SCA, that is supposed to apply for large external fields b � 1. It
reads

Exy(t) =
1

16b2 +

(
1− 1

4b2 +
λ−4 + 2λ−2 − 3

4b2

(
t

2T∗

)2
)

cos(ωLt)exp

[
−1

2

(
t

2T∗λ

)2
]

− λ−2 + 1
8b

t
T∗

sin(ωLt)exp

[
−1

2

(
t

2T∗λ

)2
]

. (7.10)
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The time dependent part of this estimate is clearly damped by a Gaussian envelope
function that corresponds to equation (5.205.20), where only T∗ is replaced by T∗λ . I.e. for
the limit of large external fields, which is, as discussed above, realized if the condition
λb > 1 is fullfilled, this analytical estimate suggests a decay of the central spin that
is identical to the isotropic case and the anisotropy parameter λ only influences the
timescale of the occuring Gaussian decay. In section 7.17.1 it has been demonstrated that
the Ising limit of the CSM features a significantly different decay ∝ t−1/2 of S(t) than
predicted by equation (7.107.10), for which Testelin et al. accounted by the introduction
of the estimate (7.87.8), that only holds for the Ising limit. Within this semi classical pic-
ture of the central spin dynamics, no crossover regime between the Ising limit and the
isotropic case arises. Panel (a) of figure 7.37.3 shows a direct comparison between results
obtained via the CET and the analytical prediction from equation (7.107.10). Among the
panel the magnetic field b = 10 is kept constant, while the anisotropy parameter takes
the values λ = 2 and λ = 10. Both sets of parameters clearly fullfill the introduced
condition for a large external field. Nevertheless we find good agreement between the
two claims for λ = 2, while the semi classical estimate deviates significantly from the
numerical results for λ = 10. This finding indicates that the estimate (7.107.10) does not
hold for large external fields in general, but it also puts forward that the magnitude of
the ratio b/λ might be relevant for S(t). Figure 7.37.3 (b)-(c) addresses the impact of this
ratio onto the envelope of S(t) in greater detail. In panel (b) the magnetic field strength
b is varied keeping the anisotropy parameter λ = 10 constant and in panel (c) a λ-scan
is applied for fixed b = 4. The added Gaussian envelope functions ∝ exp[−(t/T∗λ)

2/8]
serve as reference for the spin decay in the isotropic CSM. Clearly the Gaussian enve-
lope describes the decay of S(t) adequately for b/λ ≥ 1, while the deviations from it
increase with decreasing ratio b/λ < 1. For its smallest presented value b/λ = 1/25
the deviations are very pronounced. Namely, the initial decay of the spin noise func-
tion occurs much faster than suggested by the Gaussian decay, but on large timescales
its lifetime is increased significantly. The observed dependency of the central spin dy-
namics on the ratio b/λ can be understood within a very intuitive physical picture:
if a very large magnetic field along the x-direction is applied, the contribution of the
model Hamiltonian along the z-direction is suppressed. As a consequence the central
spin does not feel the presence of anisotropy and behaves as in the ICSM, but since
the impact of the spin operators acting in the x − y-plane is decreasing linearly with
λ, the required magnitude b of the magnetic field, that is mandatory to suppress the
anisotropy, increases with λ.

Although it is not demonstrated in a separate panel here, note that the envelope
of S(t) is truly fully governed by the ratio b/λ. E.g. panel (b) of figure 7.37.3 involves
numerical results for b = 2, λ = 10, while panel (c) features data for b = 4, λ = 20
and both obtained curves feature the exact same envelope function. To illustrate the
crossover from large to small values of the ratios b/λ further, panel (d) of figure 7.37.3
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Figure 7.3: Illustration of the hole spin dynamics in the presence of a transversal magnetic
field. The parameters n = 50, N = 18 and r0 = 1.5 hold for all presented results.
An offset of 0.5 has been added to distinguish between neighbouring curves in
panels (a)-(d). Panel (a) shows a comparison between the analytical prediction
of equation (26c) of reference [5656] (blue) and numerical results obtained via the
CET (red) for S(t). The field strength b = 10 applies for all curves, while the
anisotropy parameter λ is varied. Panels (b)-(c) also depict numerical results
concerning S(t) for a variation of the ratio b/λ, where in panel (b) λ = 10 and
in panel (c) b = 4 is kept constant. The envelope function 1

4exp[−(t/T∗λ)
2/8]

has been added to the individual curves to reveal the occuring deviations from
the observed spin dynamics in the ICSM. Panel (e) shows the spectral spin noise
function S(ω−ωL) also for constant b = 4. The number of considered Chebyshev
polynomials has been determined such that the same resolution is guaranteed
for all shown curves. All panels are based on figures 12-14 of reference [9797].



100 Chapter 7. Hole Spin Dynamics

presents the rescaled spin noise function S(t) · (1 + τ2)1/4 for the exact same set of
data as panel (c), a depiction of S(t) that corresponds to panel (b) of figure 7.17.1, where
the rescaled fluctuation function has been found to remain invariant for large times.
Considering this invariant behavior and the Guassian envelope function from the ICSM
as reference, the crossover from the isotropic to the anisotropic case is clearly revealed
and we find three different regimes of the occuring decay: (i) for large ratios b/λ ≥ 1
the envelope of S(t) is clearly given by the Gaussian function. (ii) For small values
b/λ� 1, corresponding to the Ising regime, a power law decay ∝ t−1/2 dominates the
central spin dynamics on large timescales and (iii) in the intermediate regime b/λ ∼
O(0.1) the short time decay deviates from the Gaussian envelope function, which still
describes the long time tail of S(t) adequately. Note that concerning the analytical
prediction (7.107.10) our findings suggest that it is not valid for the limit of large external
fields b� 1 as stated in reference [5656], but for the limit of large ratios b/λ� 1 instead.

The results for the spectral spin noise function, that are depicted in figure 7.37.3 (e),
clearly reflect the observed crossover from the isotropic to the anisotropic limit. Since
the latter extreme case features a strict threshold, which is given by the Larmor fre-
quency, behavior that also holds in the thermodynamic limit, the presented spectra
are shifted by ωL. As demonstrated for the ICSM, the Gaussian peak that occurs for
b/λ = 2 is centered at ω∗ =

√
b2 + 1/2 instead of ωL. While the position of the peak’s

maximum remains approximately invariant for all depicted results, the spectral weight
left of the Larmor frequency is decreasing monotonically with b/λ and, according to
the expected threshold behavior for λ → ∞, it is shifted to the right side of ωL. I.e.
the symmetric form of S(ω) for b/λ > 1 is replaced by the fully asymmetric threshold
shape step by step. It is stressed that λ = 100 holds for the smallest presented ratio
b/λ = 2/25 and depicting S(ω) versus ωT∗ instead of ωT∗λ yields a very sharp peak
near the threshold ωL corresponding to a very large lifetime of the central spin in the
anisotropic limit.

So far the dynamics in a strong λb > 1 transversal field have been discussed in detail.
In the opposite scenario of a small transversal field, characterized by the condition
λb � 1, the central spin already experiences decoherence induced by the spin bath
before a whole Larmor precession occurs. Hence, the short time dynamics of the central
spin in this regime is identical to the magnetic field free case, that has been presented in
figure 7.27.2. After the characteristic initial decay on the timescale T∗λ , S(t) will approach
zero on a large time interval that is governed by ωL/λ. This long time evolution is
analogous to the decay of S(t) in the ICSM and has been demonstrated in panel (d) of
figure 5.75.7. Consequently combining the observed effects from figures 7.27.2 (a) and 5.75.7
(d) fully describes the long and short time behavior of S(t) in the weak field limit of
the anisotropic CSM. Thus no results concerning this regime are presented here.
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Figure 7.4: Illustration of the ensemble averaged spectral spin noise function S(ω) based
on simulations within the anisotropic CSM in the experimtally relevant regime.
Concerning the timescale T∗, the same procedure for the ensemble average has
been applied as described in figure 5.95.9. Panels (a)-(b) depict numerical results
for various longitudinal external fields on a double logarithmic scale, where (a)
λ = 2, Nc = 2000 or (b) λ = 4, Nc = 4000 has been considered and results of
n = 100 individual setups have been averaged. The average intrinsic hole spin
fluctuation timescale has been assumed to be given by T∗ = 10ns. As for panel
(c), the spread of g-factors is modeled by a Gaussian probability distribution with
the standard deviation ∆g/g = 0.2 and the average hole g-factor gh = 0.15.
Panels (c)-(d) treat the case of transversal external fields, where Nc = 50 and
n = 500 applies for all presented curves. The solid red curves are identical in
both panels and are based on λ = 5. In panel (c) these results are compared to
calculations for λ = 50 (solid blue), while for the solid green curves also λ = 5
has been assumed, but the underlying g-factor spread is obtained from a uniform
probability distribution gi/g ∈ [0.8, 1.2]. For panels (c)-(d) an offset of 1.5 has been
added to distinguish the individual curves. Further parameters: d = 3, m = 2,
r0 = 1.5 and N = 18. Panels (c)-(d) are based on figure 16 from reference [9797],
but show different sets of data.

To bridge between the findings of the preceding chapter and recent experiments on
ensembles of p-doped QDs, the occuring variation of the intrinsic timescale T∗, which
enters the performed simulations as described in section 5.35.3, and the hole g-factors
in ensembles of QDs is considered in the following. The g-factor spread is assumed
to obey a Gaussian probability distribution with the standard deviation ∆g/g = 0.2.
Panels (a)-(b) of figure 7.47.4 address the central spin dynamics in zero and longitudi-
nal magnetic fields for two different choices of the anisotropy parameter λ. For the
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average intrinsic timescale we assume T∗ = 10 ns and the average hole g-factor is set
to gh = 0.15. When turning from λ = 2 to λ = 4 the entire spectrum is shifted to
smaller frequencies, indicating an enhancement of the central spin coherence time for
increasing λ as also suggested by the definition of the intrinsic timescale T∗λ . According
to the findings for electron spins in longitudinal magnetic fields, the spectral weight of
S(ω) at large frequencies is clearly decreasing faster than linearly and a corresponding
increase of the peak at zero frequency is found. Comparing the results from panels
(a)-(b) to recent measurements on an ensemble of hole doped InGaAs QDs [6464] reveals
striking deviations between the experimental and numerical results. Namely figure 7.47.4
corresponds to figure 3 (b) of reference [6464], where an approximately Lorentzian line-
shape of the spin noise function is found for b = 0, that transforms into a 1/ f behavior
in the intermediate frequency regime with increasing longitudinal field strength. We
stress that the experimentally found behavior of S(ω) is not reproduced by the ap-
plied simulations in any fashion. This pronounced mismatch between numerics and
experiment points toward an incompleteness of the considered theory, which will be
enhanced by the quadupole Hamiltonian in the chapter below.

Figure 7.47.4 (c)-(d) addresses the hole spin noise within a transversal external field.
Due to the spread of the hole g-factors, the width of the peak occuring near the Lar-
mor frequency is, in contrast to the case of n-doping, increasing with the field strength
b. This effect is rather trivial and was also observed in recent experimental measure-
ments [5959]. In section 7.3.17.3.1 it has been demonstrated that an increase of λ at constant
b induces a crossover from a symmetric Gaussian peak to an asymmetric threshold
behavior at the Larmor frequency. Also the width of these peaks is decreasing for
increasing λ if the results are depicted on the scale ωT∗. The direct comparison of nu-
merical data for λ = 5 and λ = 50 in figure 7.47.4 (c) demonstrates, that the pronounced
asymmetry and decreasing width of the underlying spectra of the individual QDs are
smoothened out by the applied ensemble average. Of course this effect is strongest for
large values of b, while the signature of the individual spectra is still visible for b ≤ 1.
This observation puts foward that the measurement of hole spin noise on an ensemble
of QDs in a transversal field, primarily yields information on the distribution of the
g-factor spread of the sample instead of the properties of the confined particles. To
underline this statement, figure 7.47.4 (d) compares spin noise spectra for two different
assumptions concerning the spread of the hole g-factors: the red lines, that are iden-
tical to panel (c), are based on a Gaussian spread and the green lines on a uniform
probability distribution in the interval gi/g ∈ [0.8, 1.2]. Apart from these assumptions
the compared sets of parameters are identical. The direct comparison reveals that the
spin noise function for b � 1 is expected to be solely governed by the underlying dis-
tribution function of the g-factor spread, that also affects the obtained spectra for small
external fields, which still mirror some basic properties of the underlying individual
QDs. I.e. the measurement of spin noise in the absence of an external field reveals
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most information on the physical properties of an individual hole spin confined in a
semiconductor QD.

7.5 Chapter conclusion

In the preceding chapter it has been demonstrated that the short time dynamics of hole
spins confined in semiconductor QDs in the absence of a magnetic field is governed by
the timescale T∗λ and the long-term decay, which appears to be of a logarithmic form
as for the isotropic case, of S(t) is enhanced stronger than linearly in λ. Also the Ising
limit, accounting for heavy holes, of the CSM model has been discussed in detail, for
which the spin noise function is trivial if no transversal magnetic field is applied. In
this limit the eigenvalues of the Hamiltonian are known a priori, a power law ∝ t−1/2

holds for the long time evolution of S(t) and the spectral spin noise function features
a threshold behavior.

We have argued that a longitudinal as well as a weak transversal external field does
not introduce new physical effects compared to the ICSM. For ~nB = ~ex the parameter
λb distinguishes wether an external field is strong or weak compared to the influence
of the hyperfine interaction onto the central spin. In the limit of large external fields
the envelope of S(t) is dictated by the ratio b/λ and a crossover between a Gaussian,
which also accounts for electrons, to a power law decay, which accounts for heavy
holes, is observed. The results of recent experiments [6464] on an ensemble of hole doped
InGaAs QDs in zero and a longitudinal external field can not be reproduced within the
anisotropic CSM. Due to the large spread of the hole g-factors and the large lifetime of
hole spins within the CSM, the measurement of hole spin noise on an ensemble of QDs
in a transversal field is expected to primarily yield information about the distribution
of the g-factors.





Chapter 8

Influence of the Quadrupole Interaction
onto the Confined Spins

Due to the mismatch between the predictions of the anisotropic CSM and recent ex-
perimental findings, the influence of EFGs coupling to the quadrupole moment of the
nuclei is investigated in the chapter below. The importance of this interaction has been
put forward by Sinitsyn and coworkers [6363], who also applied a semi classical treat-
ment of the model to demonstrate the qualitative effect of the quadrupolar couplings
(QCs). In this context they introduced an effective model, replacing the quadrupole
Hamiltonian (3.293.29), that also applies for nuclei with spin-1/2. The focus of the chapter
at hand is to treat the quadrupolar interaction in detail and for this purpose it can
be notionally split into two parts. The first one contains a detailed discussion of the
influence onto S(t) of all the system parameters entering the quadrupole interaction.
In this context also a comparison between the effective and the original model for the
QCs is discussed. In the second part of the chapter we bridge towards the results of
recent experiments, discuss realistic values of the model parameters and how they are
influenced by the structure of the underlying QDs. This part of the chapter grants de-
tailed insight into the findings of various experiments and unifies some findings that
seem to contradict each other on first sight. Some of the following results have already
been published in reference [6565].

8.1 Effective model for spin-1/2

As mentioned in the introduction, Sinitsyn et al. [6363] introduced an effective model that
allows a treatment of the quadrupole interaction considering spin-1/2 nuclei, giving
access to larger spin baths in numerical calculations. The authors claimed that the
effective Hamiltonian is capable of reproducing the central spin dynamics which is

105
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obtained by taking the full quadrupole Hamiltonian (3.293.29) into account. The effective
quadrupole Hamiltonian reads

HQ,eff =
N

∑
k=1

qk~Ik ·~nk, (8.1)

where the quadrupolar term is mimiced by magnetic fields applied to each nuclear
spin individually and the asymmetry parameter η is set to zero. The purpose of the
section at hand is twofold: (i) We discuss the viability of the effective Hamiltonian
HQ,eff by putting forward analytical arguments and comparing numerical results. (ii)
Since the quadrupolar orientation vector ~nk will turn out to play an important role in
the comparison of the Hamiltonians (3.293.29) and (8.18.1), we investigate its influence on the
central spin dynamics in detail in this context. With respect to reference [6363] we will
also restrict ourselves to the case η = 0 in this section.

8.1.1 Analytical discussion

In the previous chapters we discussed the correlation function S(t) within the CSM
intensively. Now we study the influence of an additional term that is added to the
Hamiltonian, namely HQ or HQ,eff respectively. One of the most common ways to
approach such a modification is to set up a perturbation theory, that might grant insight
into the dynamics for a small parameter Qr on both an analytical and numerical level.
Such a perturbation theory relies on an exactly solved Hamiltonian, that is enhanced
by a complex interaction term. In our case this precondition is not fullfilled, because
there is no closed form for an exact solution of the CSM. Thus we take a different route
to gain an intuition concerning the influence of HQ and HQ,eff. Namely, we exploit

the series expansion of the time evolution operators in
〈
Sz(t)Sz〉 =

〈
eiHtSze−iHtSz

〉
as demonstrated in equation (3.373.37). To explicitly calculate higher order commutators
of the form

〈
[H, Sz]nSz〉, we need to specify the orientation vectors ~nk. For simplicity

we restrict ourselves to a system where all quadrupolar moments are fixed along the
z-direction for the moment. Evaluating equation (3.373.37) for the simplified case ~nk = ~ez

and the usual density operator ρ0 = 1
D 1 up to fourth order in time yields

HQ,eff : S(t) =
1
4
− 1
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HQ : S(t) =
1
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k), (8.3)

where we neglected contributions proportional to ∑k A4
k , because for large systems

they are small compared to the competing terms proportional to (T∗)−4. Note that the
first three terms, that are identical for HQ and HQ,eff, reproduce the Taylor series of the
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analytical solution by Merkulov et al. [2727] up to fourth order. On top of that we find
that both analytical predictions feature additive contributions proportional to ∑k q2

k A2
k ,

while only for the latter case the subtractive term ∑k qk A3
k occurs, i.e. the effective

model tends only to protect the central spin’s polarisation while the usual model also
features a destructive term for ~nk ‖ ~ez. This finding is in good agreement with a rather
intuitive argument: writing down the operators Iz

k and (Iz
k )

2 in their eigenbasis for
spin-3/2

Iz
k =


3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2

 (Iz
k )

2 − I(I + 1)
3

=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (8.4)

points out that the quadrupolar contribution in the effective Hamiltonian sets a pre-
ferred orientation for each nuclear spin, e.g. spin flips of the bath spins and in con-
sequence also of the central spin are proceedingly suppressed for an increasing value
of Qr. For HQ this is not the case, since the only preference indicated by (Iz

k )
2 is in

favor of the states |1/2〉 and | − 1/2〉 over |3/2〉 and | − 3/2〉. The fact that the sub-
stractive term in equation (8.38.3) contributes linearly in the quadrupole couplings of the
nuclei, while the additive term contributes in second order, suggests that the former
will dominate for small values of the parameter Qr while the latter should dominate
for large values. All in all we expect a fundamental difference for the behavior of the
noise function S(t), that should be most striking in the intermediate regime Qr ≈ 1,
based on wether we take HQ or HQ,eff into account. We postpone the discussion of the
influence of varying orientation vectors~nk to the following section, restricting ourselves
to numerical results in that context.

8.1.2 Numerical results

Figure 8.18.1 shows the time evolution of the spin noise function S(t) obtained via the CET
corresponding to the analytical predictions (8.28.2)-(8.38.3), i.e. all quadrupolar orientation
vectors are aligned along the z−direction. In the upper panel, showing calculations for
the effective model HQ,eff and I = 1/2, a monotonic increase of the correlation function
for all times t/T∗ & 1 is observed, a finding that is in good agreement with the intuitive
argument given in the previous section: since the quadrupole interaction is mimiced
by magnetic fields applied to each individual bath spin, the occuring Zeeman splitting
suppresses spin flips within the bath and in direct consequence also for the central
spin. It is also noticable that the monotonic increase of S(t) in the effective model
HQ,eff only sets in significantly at moderate ratios of Qr & 1, what can be traced back
to the term ∑k q2

k A2
k from equation (8.28.2) that is negligible compared to (T∗)−4 for small
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Figure 8.1: The correlation function S(t) calculated for the isotropic CSM λ = 1 without ex-
ternal magnetic field and all quadrupole moments oriented along the z−direction
~nk = ~ez. Each curve has been averaged over n = 50 randomly generated sets of
coupling constants Ak and qk, as described above. The cutoff for the random gen-
eration of the hyperfine coupling constants is set to r0 = 1. Panels (a)-(b) show
results for N = 18 bath spins with spin I = 1/2 taking the effective quadrupo-
lar hamiltonian HQ,eff into account, while panels (c)-(d) have been calculated for
N = 9 nuclei with spin I = 3/2 based on HQ. I.e. all calculations are based on a
Hilbert space with D = 219 dimensions. The asymmetry paramter is set to η = 0.

Qr. According to the analytical prediction, the quadrupolar interaction clearly tends to
protect the central spin’s coherence in the scenario at hand.

The observed behavior changes drastically for the model hamiltonian HQ and I =

3/2, as shown in the lower panel of figure 8.18.1. In this case we find a decrease of the
correlation function S(t) for small values of the ratio Qr ∈ [0 : 2] at times t/T∗ > 3.
The short time evolution remains unchanged in this regime. For Qr > 2 a reversal of
this trend is observed: the minimum S(t) passes through at short times is shifted to
slightly larger times and the value of S(t) is increasing on all time scales. Thus the
dynamics in the original model HQ is twofold: for small and intermediate values of
Qr a decrease of S∞ is observed, which is in correspondence to the dominance of the
term that is linear in the QC in equation (8.38.3). For large values of Qr a change of the
trend in favour of spin coherence is observed, which once again is in agreement to the
additive term in (8.38.3) that is quadratic in qk and will dominate over the linear term in
this regime. It is also important to note, that we do not observe a decay of the spin
correlation towards S(t) = 0 for large times. Although the analytical estimates from
section 8.1.18.1.1 are restricted to the fourth order in time and the long time evolution of S(t)
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is clearly influenced by higher orders, all presented numerical findings for ~nk = ~ez are
in perfect agreement with the qualitative prediction of equation (8.38.3). This suggests that
the higher orders in the series expansion of S(t) are expected to feature only additive
contributions with even exponents of the couplings qk, Ak and subtractive contributions
with odd exponents, where linear terms in the hyperfine couplings are not expected.
Due to the lack of these two competing effects, the dynamics obtained from the effective
model HQ,eff overestimate the effect of the QCs in protecting the spin noise function
S(t) from decaying, but underestimate the contribution to the possible occurence of
decoherence. Anyhow we expect the two models to feature similar dynamics in the
limit of a large ratio Qr, while in the intermediate regime As ≈ Aq and for small Qr

fundamental differences are observed for ~nk = ~ez.
There is also an intuitive argument that can be put forward to explain the observed

twofold dynamics. Without QCs the preferred orientation of the nuclei only depends
on the orientation of the central spin and to minimize the total energy all nuclei seek the
same state, which is usually oriented opposite to the central spin and from a purely
classical point of view has the largest possible absolute value |Iz

k | = 3/2. Adding
the terms (Iz

k )
2 to the Hamiltonian introduces an energy splitting to each individual

nucleus, such that the states ±1/2 are energetically beneficial compared to ±3/2. As
a consequence certain nuclear spin flips are energetically less suppressed allowing a
larger variety of central spin flips in favor of a decrease of S(t).

Figure 8.28.2 treats the central spin correlation function for two different setups of the
orientation vectors ~nk. For the upper panels (a)-(b) S(t) has been calculated for fixed
orientations ~nk = ~ex. Given the fact that figure 8.28.2 is restricted to the isotropic CSM
with no applied magnetic field, the only physically defined direction without consid-
ering the QCs is, due to the definition of S(t), the z−direction. I.e. the choice of the
quadrupolar vectors at hand is representative for all possible orientations within the
x − y−plane, which is the opposite extreme to setting ~nk = ~ez as treated before. The
obtained numerical results for (a) the effective model HQ,eff and (b) the original model
HQ, once again, reveal striking differences in the spin noise function S(t). While the
short time behavior t/T∗ < 4 is similar for both setups, the calculations for the effective
model develop pronounced damped oscillations around S(t) = 0 on large timescales,
whose amplitude is ∼ S(0)/5. With an increase of Qr the relaxation of these oscil-
lations occurs more and more rapidly. The results for the original model HQ do not
feature this type of long time oscillations. The difference is most pronounced for small
values Qr < 1: after passing through the usual minimum due to the precession in the
Overhauser field, a monotonic decay to S(t→ ∞) = 0 is observed as examplary shown
for Qr = 0.5 in figure 8.28.2 (b). Apart from that, we also observe occuring oscillations
within the original model for larger values of Qr, whose amplitude is a lot smaller and
their decay sets in a lot faster than for the effective model. It is also noticable that the
oscillations for the effective model are almost symmetric around the time axis, while
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Figure 8.2: Numerical results for S(t) and S(ω) considering two different choices of the
quadrupolar orientation vectors ~nk. For the upper panels (a)-(b) all vectors are
fixed along the x−axis~nk = ~ex, while the lower panels (c)-(f) are based on isotropi-
cally randomly oriented quadrupole moments. The calculations for panels (a) and
(c) use the effective model HQ,eff and nuclear spin I = 1/2, while HQ and I = 3/2
enter the calculations for panels (b) and (d). The lower panels (e) and (f) show a
comparison of the spectral correlation function S(ω) for the two competing mod-
els, where the solid red lines are dedicated to HQ and the dashed blue lines to
HQ,eff. For panel (e) Nc = 325 Chebyshev polynomials have been used and to
guarantee the same spectral resolution for all shown data we set Nc = 450 for
panel (f). All further parameters have been chosen as described in figure 8.18.1.
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the original model prefers positive values for S(t). Summarized we find a similar trend
for the two extreme choices of the vectors ~nk, namely that the dynamics obtained from
the two models are fundamentally different for small and intermediate values of Qr

and seem to approach each other for large values.
We have seen that fixing the nuclear quadrupole moments along either the z- or

x-axes results in drastically different results for the correlation function S(t) when ei-
ther HQ or HQ,eff is taken into account. The authors of reference [6363] however only
discussed the case of isotropically randomly oriented quadrupole moments and found
qualitatively good agreement between the two models. For the results shown in panels
(c)-(f) of figure 8.28.2 we adapted this approach by isotropically determining a random
vector ~nk on the surface of the unit sphere. The time resolved data in panels (c)-(d)
suggest that this scenario, in contrast to the results for fixed vectors ~nk, yields similar
results for the correlation function S(t) for both models. The most surprising similarity
is the good agreement between the curves for Qr = 0.5 that are representative for small
values of the ratio Qr, because in this regime the most striking differences were found
for fixed~nk as discussed above. With the preceding discussions in mind, the qualitative
accordance between the models for large values of Qr as well as the occurence of the
biggest disagreement for Qr = 1 are less surprising. Since we are mainly adressing
recent experimental measurements of spin noise in this chapter, our highest interest
is gaining insight into the long time evolution of the spin noise function. Figure 8.28.2
(e)-(f) shows results for spectral spin noise function for the same setup as panels (c)-(d),
comparing results for the two different Hamiltonians HQ and HQ,eff again. S(ω) is pre-
sented on a double logarithmic scale to set the focus of the figure on the intermediate
frequency regime, which corresponds to the evolution of S(t) after the initial decay. We
observe that the short time dynamics, i.e. the spectral peak occuring around ωT∗ ≈ 1,
is reproduced execellently by the effective model. This is not surprising, since for the
shown values of Qr the contribution of the quadrupole moments significantly sets in
after the initial precession of the central spin in the Overhauser field has already been
performed. In the intermediate time regime, where the central spin dynamics is in-
fluenced by the quadrupole interaction, the spectra corresponding to the two models
differ significantly. For Qr = 1 the spectral correlation functions deviate massively for
all values ωT∗ < 0.4, stressing that the long and intermediate time evolution obtained
for the two compared hamiltonians is fundamentally different. For Qr = 0.5 similar,
but less stressed deviations occur for ωT∗ < 0.2. Since we are primarily interested in
the central spin’s long time dynamics, these results point out that the effective model
is not sufficient to be taken into account for further investigations. Although aver-
aging over all possible orientations of the quadrupole orientation vectors ~nk turned
out to qualitatively reproduce the real time dynamics of the central spin correlation
function, it has been demonstrated that the effective model is not reliable for arbitrary
setups and even when averaging isotropic orientation vectors it yields deviating re-
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sults when looking into the details. On top of the discussion of the effective model
HQ,eff the preceding section has shed some light on the influence of the alignment of
the quadrupolar orientation vectors ~nk: aligning them parallel to the z−axis, that is set
by the definition of the correlation function S(t), tends to feature a protective effect
concerning the central spin’s coherence and the orthogonal alignment strictly supports
decoherence. Isotropically generating random vectors for Qr ≤ 3 turned out to yield
similar dynamics as the alignment along the x-axis, a finding that is not necessarily
correct in all regimes of Qr. Besides, an analysis of the corresponding spectral function
S(ω) might also reveal interesting differences that are not visible on first sight from
the time resolved calculations. Anyhow we will set this analysis aside for now and
postpone it to upcoming sections.

8.2 Discussion of the system parameters

In context of the comparison between the effective and the full model Hamiltonian, the
selection of the orientation vectors ~nk has turned out to be crucial for the physics of the
spin noise function S(t). The following section is dedicated to the general discussion of
the further system parameters entering HQ. First, the validity of the common approx-
imation of axial symmetry, yielding η = 0, will be discussed and second, the impact
onto S(t) of three different assumptions concerning the distribution of the quadrupolar
coupling constants qk will be compared to each other.

8.2.1 Axial asymmetry of the electric field gradients

In the previous section we have seen that aligning the quadrupole orientation vectors
~nk along the growth direction, which is set to be parallel to the z-direction and is also
entering the definintion of S(t), tends to protect the coherence of the central spin. In
contrast, setting~nk = ~ex supports rapid decoherence. Since the vectors~nx/y

k entering the
asymmetry term in (3.293.29) are always orthogonal to the symmetry axis ~nk, the former
observations provide the intuition that increasing η from zero to a finite value will
support the occuring decoherence. This is obvious for the scenario ~nk = ~ez, where the
asymmetry term only consists of components orthogonal to the growth direction. For
~nk = ~ex either~nx

k or ~ny
k is rotated into the z-direction, suggesting that a protection of the

central spin’s coherence due to the asymmetry term might occur, but we will always
find a competing term that is necessarily of the same order of magnitude and destroys
the coherence.

The upper panels of figure 8.38.3 show results for the two extreme cases of fixed align-
ment ~nk = ~ez/x and various values of the asymmetry parameter η. As expected, an
increase of η induces a faster occuring decay of S(t) in both scenarios. When compar-
ing the results for η = 0 and η = 0.25, it is noticeable that the observed effect sets in
more pronounced for the case ~nk = ~ex, while the opposite observation applies for the
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Figure 8.3: Influence of the asymmetry parameter η on the spin noise function S(t). In the
upper panels the orientation vectors ~nk are aligned along (a) the z- and (b) the
x-direction. For the lower panels the vectors have been determined randomly.
Panel (c) shows a scan of the asymmetry parameter η, where the z-component of
the orientation vector fullfills (~nk)z ∈ [0.8 : 1]. In panel (d) the allowed values for
(~nk)z are increased proceedingly, while η = 0 is kept constant. All calculations
concern the isotropic CSM, involving N = 10 spin−3/2 nuclei and the cutoff for the
coupling constants is set to r0 = 1. The quadrupole couplings qk are determined
randomly out of a uniform distribution in the interval [0.5 : 1] and Qr = 0.5 holds.
Results for n = 50 individual setups have been averaged.

increase of η from 0.75 to 1. The combination of these observations suggests that the
impact of the Hamiltonian terms ∝ (I(x/y)

k )2 is larger for small values of Qr, while the
terms ∝ (Iz

k )
2 dominate when Qr is large.

For an arbitrary orientation vector ~nk the asymmetry term, governed by η, and the
general quadrupole interaction term, governed by the coupling constants qk, both fea-
ture the same operators. Hence, it is intuitive to assume that it might be possible to
circumvent the introduction of the asymmetry term by applying an adequate distribu-
tion of the orientation vectors ~nk instead. The lower panels of figure 8.38.3 address the
question wether a variation of the orientation vectors can indeed mimic the asymmetry
term. For this sake, random orientation vectors are determined isotropically within a
certain dome of the unit sphere, which is specified by the z-component of ~nk. In panel
(c) this distribution is kept invariant for (~nk)z ∈ [0.8 : 1] and η is varied, while panel (d)
presents results for η = 0 and varying size of the considered dome. On first sight, the
obtained results are very similar as one would intuitively expect. Just as an increase of
η, the growing variation of (~nk)z entails a faster decay of S(t) towards zero, but when
looking into the details important differences are revealed. The lowest lying curve from
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panel (c) and the one from panel (d) both feature a very similar value S(t/T∗ = 50),
but their relaxation behavior for 7 < t/T∗ < 50 is significantly different. For η = 0 and
(~nk)z ∈ [0 : 1] the spin noise function decays rapidly up to t/T∗ = 30 and is almost
constant afterwards, while the asymmetry induced decay is more steady. These trends
are found throughout panels (c)-(d) of figure 8.38.3 and the observed behavior is mainly
traced back to the energy hierarchy in the Hamiltonian (3.293.29): when the asymmetry
term is not taken into account, all considered contributions are necessarily of the same
order of magnitude and solely governed by the coupling constants qk. Since the asym-
metry term enters the Hamiltonian with η/3, it introduces a second energy scale to
the system that is, roughly speaking, one order of magnitude smaller than the QCs
themselves. Accordingly, a decoherence mechanism is introduced that occurs slower
than induced by averaging over different directions of the same orientation vector. On
top of the missing energy hierarchy, finding an adequate distribution for the vectors ~nk

that reproduces the impact of the asymmetry term for arbitrary η is challenging, while
involving the term is more accurate and implies less effort.

8.2.2 Distribution of the quadrupole coupling constants qk

Aside from prefactors, the coupling constants qk are governed by the EFGs among the
QD that arise due to the occuring strain in their growth process. In the literature[102102,
126126] often only the strain along a single axis within a dot is discussed, while we are
interested in its distribution among the entire QD. In references [7070, 7171] a three di-
mensional treatment of the strain within InGaAs QDs is presented. It has been found
that the strain does not necessarily reflect the symmetry of the dot: while a uniform
distribution among the x− y−plane at the bottom of the dot, where the largest strain-
values occur, was found, the strain varies unsteadily in the remainder of the QD. On
top of that the observed strain in the close environment of the dot, where the coupling
constants Ak from the anisotropic CSM are small, is of the same order of magnitude
as within the QD. I.e. the quadrupolar splitting of the corresponding nuclei might
be a lot larger than its hyperfine coupling, suppressing the contribution to the central
spin dynamics of the nuclei out of the dot. This effect supports the adequacy of our
finite size limitation to a small cutoff r0 in the context of the influence of quadrupole
couplings onto the central spin dynamics. In the following we will dicuss three dif-
ferent choices for the quadrupole coupling constants qk: (i) according to reference [6363]
we generate a random number for each qk from a uniform distribution in the interval
[0.5 : 1], which respects the reported [7070] unsteady behavior of the strain in InGaAs
QDs. (ii) To account for the large strain at the bottom of the QDs, where the coupling
constants Ak are expected to be rather small, we generate a linear set of coupling con-
stants qk = 0.5 + k/2N such that the largest hyperfine coupling Ak is associated to the
smallest quadrupole coupling constant and so on. (iii) For simplicity we compare the
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latter setups to identical couplings qk = q. For all three distributions we rescale the
coupling constants to ensure Qr = Aq/As.
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Figure 8.4: Results for S(t) concerning three different claims to model the quadrupole cou-
pling constants qk: (i) the red solid lines are based on randomly generated qk
drawn from a uniform probability distribution in the interval [0.5 : 1], (ii) for the
blue solid lines the couplings qk are linearly increasing from q1 = 0.5 to qN = 1
where A1 refers to the largest and AN to the smallest hyperfine coupling constant,
(iii) finally the green dashed lines treat a setup where all quadrupole couplings
are identical qk = q. The quadrupole parameters are η = 0.5 and Qr = 0.5. Panel
(a) treats ~nk = ~ez and for panel (b) ~nk = ~ex holds. All further system parameters
are correspond to the setup discussed in figure 8.38.3.

Figure 8.48.4 shows numerical results for these three different distributions of the cou-
pling constants qk. The calculations for~nk = ~ez shown in panel (a) exhibit no visible dif-
ference between the results for identical and randomly generated coupling constants,
while the impact of the quadrupole interaction on the central spin dynamics appears to
be weaker for the linear set of coupling constants. The latter observation also holds for
the results from panel (b) for ~nk = ~ex. This finding can be justified by a rather intuitive
argument: since the interaction between the nuclei and the central spin is always me-
diated by the couplings Ak and, for the linearly increasing sets of coupling constants
qk, the small QCs are associated to the large hyperfine couplings, the total impact on
the central spin dynamics must be smaller than for the evenly distributed sets of qk.
Bearing this simple argument in mind, it is also intuitive that taking the randomly
generated and the identical couplings into account has on average a very similar effect
on S(t). Although slight deviations are observed for these two assumptions in panel
(b), the only difference in the obtained dynamics from the different distributions is that
the impact of the quadrupolar interactions for a given value of Qr is effectively larger
if the large qk are associated to nuclei with a large coupling to the central spin and vice
versa. To summarize the current section we obtained two central results concerning
the model Hamiltonian at hand: (i) taking a possible axial asymmetry of the EFGs
into account corresponds to the introduction of a term to the Hamiltonian that is an
additional source of decoherence for arbitrary orientations of the nuclear symmetry
axes. (ii) Introducing a certain distribution of the quadrupolar coupling constants qk

does not yield fundamentally new effects in terms of the central spin dynamics and the
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impact of the quadrupole interaction on S(t) can always be predicted by considering
how the quadrupole couplings qk are correlated with the central spin couplings Ak.
This statement does not necessarily hold for unrealistic distributions like qj = Qr and
qk = 0 for k 6= j for instance, but since we focus our investigations on rather realistic
setups we will not consider such cases in the present work.

8.3 Spin noise in InGaAs quantum dots

After the general investigation of the various system parameters entering the quadrupole
Hamiltonian (3.293.29), we now turn to the discussion of recent experiments. As mentioned
above, the focus of the present work is on various measurements on InGaAs QDs and
with respect to the findings of references [7070, 7171] we concentrate the further investiga-
tions on the set of system parameters that constitutes a realistic model for this type of
QDs: (i) the quadrupole coupling constants qk are determined randomly from a uni-
form distribution in the interval [0.5 : 1], (ii) the considered orientation vectors ~nk are
also generated randomly and all end on a dome of the unit sphere, whose size is cho-
sen such that the average angle between the z-axis and ~nk is 30◦. (iii) The asymmetry
parameter is set to η = 0.5. (iv) We assume a Gaussian shape (m = 2) for the electron
(or hole) wave function and investigate a d = 3 dimensional dot. This set of parameters
enters every calculation that is discussed in the remainder of this chapter.

Note that the intention of restricting the following investigations to InGaAs QDs,
is to demonstrate the accordance of our numerical findings and various experimental
results. From the knowledge of certain physical properties, such as the built in strain,
the orientation of the nuclear symmetry axes and the EFG’s asymmetry, the real time
dynamics of an electron or hole confined in most other semiconductor QDs can also
be predicted from our theory. E.g. the finding that the life time of hole spins is sig-
nificantly larger in InAs QDs [127127] than in InGaAs QDs, is in perfect agreement with
the results from the previous sections, once again taking the findings of reference [7070]
into account: (i) in InAs the symmetry axes of the nuclei tend to be aligned along the
growth direction of the dot, i.e. the system is close to the extreme case ~nk = ~ez that
tends to conserve the central spin’s coherence and (ii) the asymmetry parameter η,
which is an additional source of decoherence, is significantly smaller in InAs than in
InGaAs.

We proceed as follows: first, the influence of the ratio Qr = Aq/As onto the dynamics
of a single electron spin (setting λ = 1) confined in an InGaAs QD is investigated
in general. Second, for electron spins the crucial theory parameters T∗ and Qr are
gauged towards corresponding measurements from a recent experiment [6262]. On this
basis we advance to the treatment of hole doped QDs in general and demonstrate the
comparibility between the obtained theoretical and recent experimental results [6464],
where the determined system parameters from the electron doped case are taken into
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account. Afterwards, further experimental measurements are discussed, which have
been performed here in Dortmund by Glasenapp et al. [6565] and constitute the only set
of original experimental data that is available to us. All in all, our theoretical treatment
of spin noise in semiconductor QDs will shed light on the comparable coherence times
of electron and hole spins, which is, according to the findings of the preceding chapters,
a priori not an intuitive result. On top of that, the general validity of our theory grants
an in-depth insight into the desired properties of a QD that conserves the confined
spin’s coherence ideally.

8.3.1 Electron spin dynamics

Figure 8.58.5 treats the central spin dynamics for a single, electron doped InGaAs QD
for a variation of the system parameter Qr, where all further model parameters have
been set to reproduce the realistic properties of an InGaAs QD. The time resolved data
shown in panels (a)-(b) correspond to the spectral functions shown in panels (c)-(d)
and the resolution of the presented spectra S(ω) corresponds to the largest shown
timescale t/T∗ = 100. As demonstrated in panel (a), the short time dynamics up to
t/T∗ ≈ 4 remains invariant for intermediate ratios 0.25 ≤ Qr ≤ 1.0, i.e. the impact
of the quadrupole interaction is not strong enough to influence the initial decay of the
central spin. Anyhow its full initial evolution due to the frozen Overhauser field does
not occur for Qr > 0.5. Namely the usual reoccurrence to the value S(t) = S(0)/3 at
t/T∗ ≈ 8 is not observed, because a decay of S(t) due to the quadrupole interaction
sets in earlier. It is noticeable that S(t) does not decay to 0 on the depicted time scale,
although an intuitive prediction from the obtained results for Qr = 0.25 and 0.5 would
suggest such a decay. In contrast, the value S(t = 100T∗) is almost indistinguishable
for a broad variety of ratios Qr. The corresponding spectra for intermediate values of
Qr, that are shown in figure 8.58.5 (c), reflect the time resolved results: due to the consid-
eration of QCs the high frequency peak is only altered at its left shoulder. The height
of the observed peak at small frequencies, which contains all the spectral weight that is
beyond the resolution of the shown calculations, is decreasing monotonically. The oc-
curence of this peak does not necessarily imply that the spin noise function approaches
a finite value S(t→ ∞), but that the long time evolution of the central spin occurs on a
larger time scale than it is resoluted in figure 8.58.5. In the intermediate frequency regime
0.063 ≤ ωT∗ < 1 the observed spectral weight in panel (c) is monotonically increasing
with Qr. The occuring gap between the peaks at ωT∗ ≈ 1 and at small frequencies,
that is very pronounced for Qr = 0.25, is filled and for Qr = 1.5 a relatively even spec-
trum is found. Accordingly, the gradient of S(ω) in the transition regime from small to
intermediate frequencies is decreasing with increasing Qr. Turning to scenarios where
the total quadrupole coupling Aq = ∑k qk is dominant compared to the total hyperfine
interaction As = ∑k Ak, a change of the observed trend sets in (see panels (b) and (d)
of figure 8.58.5): on the one hand a significant effect on the initial precession of the cen-
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Figure 8.5: Impact of the varying ratio Qr on the spin noise function in the time and fre-
quency domain for intermediate and large values. All results consider electron
doped QDs (λ = 1) and the model parameters r0 = 1, d = 3 and m = 2. The
orientation vectors~nk are determined randomly and reproduce the average devi-
ation angle 30◦ from the growth direction of the dot. The qk are determined from a
uniform probability distribution in the interval [0.5 : 1]. The number of Chebyshev
polynomials Nc taken into account for the results in panel (c) and (d) is chosen
such, that the reliable resolution of the spectral function S(ω) is ωminT∗ ≈ 0.063,
which corresponds to the time scale that is shown in panels (a) and (b). N = 9
bath spins have been taken into account and results for n = 50 setups have been
averaged.

tral spin is now observed and on the other hand the occuring decay for intermediate
timescales is less pronounced for very large ratios Qr. Both observations have in com-
mon that they provide a longer life time of the electron spin, since the initial decay is
shifted to larger times. Interestingly the central spin dynamics for very large values of
Qr is, apart from a shift to smaller frequencies, similar to that for rather small values
and only in the intermediate regime a significant deviation is observed. In the latter
case the results for S(ω) shown in panels (b) and (d) feature significantly more spectral
weight at intermediate frequencies, while in the other scenarios a clear gap between
the peak due to the initial spin precession and the one that describes the long time
decay is observed. Qualitatively the same behavior was also observed for the simpli-
fied cases discussed in section 8.18.1 and it can be traced back to the finding of equation
(8.38.3), suggesting that the highest order term in the quadrupole coupling constants qk

is always an additive term. On top of this it is rather intuitive that the mediation of a
nuclear spin flip due to the hyperfine interaction is very unlikely when the interaction
of the nuclear spin with an external field is significantly larger than the hyperfine cou-
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plings. The finding that quadrupole interactions are in principle capable of increasing
the coherence of the central spin, is in good agreement with recent predictions [9999, 128128].
Anyhow we do not believe that the magnitude of the quadrupole coupling constants
qk in a common InGaAs QD is large enough to realise such a protection of the electron
spin coherence, as will be discussed in the following.

101

103

0.01 0.1 1

T
H

[n
s]

Qr

0

0.05

0.1

0.15

0.2

0.25

0.01 0.1 1 10 100 1000

S
(t
)

t [ns]

(a)
Q

−3/2
r

Qr = 0.02
Qr = 0.04
Qr = 0.07
Qr = 0.10

0.001

0.01

0.1

1

1 10 100

S
(ω

)
[µ
s]

Frequency [MHz]

(b) Qr = 0.07
Qr = 0.10
Qr = 0.15

Figure 8.6: Panel (a) depicts real time CET results, considering n = 20 setups of N = 18 bath
spins, for various small values of the ratio Qr ≤ 0.1, addressing the core result
of reference [6262]. The crossover of S(t) and the black dashed line at t/T∗ > 7
defines the timescale TH, which measures the decay of the spin noise function
to the value S(t/T∗ = 7)/e. The inset of panel (a) shows the dependence of this
timescale on the parameter Qr. As indicated by the blue dashed line, TH(Qr) can
be approximated by a power law fit ∝ Q−3/2

r . Panel (b) presents corresponding
results for S(ω) calculated for Nc = 6000, n = 50 and N = 18. Further parameters:
r0 = 1.2 and λ = 1. Panel (a) corresponds to figure 1 (a) and panel (b) to figure 2
(a) of reference [6565].

Comparison to an experiment on a single n-doped InGaAs QD

Let us now turn to the direct comparison of our theory to recent measurements [6262]
on a single n-doped InGaAs QD. Looking into the core result (figure 2 (a) of reference
[6262]) of this experiment, it turns out that a realistic choice of the system parameter
Qr must be significantly smaller than the considered values from figure 8.58.5, because
the observed decay of the elctron spin polarisation, after its initial precession in the
Overhauser field, sets in a lot slower than in our findings for Qr > 0.2. To compare our
theory to the experiment, figure 8.68.6 treats the electron spin dynamics for small values
of Qr up to times t/T∗ = 5000. The resulting short time dynamics of the central spin
reproduces the experiment excellently, pointing out that the theory of Merkulov et al.
[2727] describes the initial electron spin decay adequately. The comparison of the time
scale of figure 8.68.6 (a) to the experimental result reveals that the intrinsic time scale T∗

is very close to 1 ns for the InGaAs QD under study, which will be assumed from now
on.

As demonstrated in section 5.1.25.1.2, the electron spin’s long time evolution within the
ICSM is expected to be governed by a logarithmic decay, which is not in agreement to
the experimental results. In contrast, figure 8.58.5 (a) indicates that the influence of the
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quadrupole interaction for Qr ≈ 0.07 reproduces the central spin dynamics found in
the experiment up to t ≈ 800 ns quite nicely, while the following increase of S(t) to
approximately S(0)/9 after roughly 1 µs is not reproduced by the simulations. This
deviation might stem from several sources: (i) since we can not take nuclei with ar-
bitrarily small coupling constants Ak into account, contributions from the hyperfine
interaction at large times are neglected. Although these contributions are expected to
be suppressed by the quadrupolar splitting, we can not exclude that they might have
a major impact on S(t) on large timescales. (ii) There are interactions our model does
not take into account that might contribute after 1 µs, like the dipole-dipole interaction
between the nuclei for instance. Note that Bechtold et al. [6262] also introduced a semi
classical model for the central spin dynamics. It takes the quadrupole interaction on
basis of the effective model by Sinitsyn et al. [6363] into account and features a reoccur-
rence of S(t) after approximately 1 µs. Beside the above stated lack of reliability of the
effective model for the QC, their presented numerical results seem questionable for a
second reason: from figure 8.58.5 we draw the expectation that the short time evolution
of S(t) is altered significantly compared to SSCA(t) when the parameter Qr is larger
than 1. This effect has not been measured in the experiment and does not occur in the
presented simulations of reference [6262] although Qr = 2 has been considered. All in all
this leaves the origin of the occuring reoccurrence as an open question.

The inset of figure 8.68.6 (a) shows the dependency of the newly introduced timescale
TH on the ratio Qr. TH denotes the time it takes until the spin noise function has
dropped to 1/e of its initial value due to the influence of the quadrupole interaction.
For its determination the initial value of S(t) is not defined at t = 0 but at t/T∗ = 7
instead, because the initial decay of the spin noise function to one third of its initial
value occurs due to the central spin’s precession in the Overhauser field and is not
significantly influenced by the quadrupole couplings for Qr < 0.1. The black dashed
line in figure 8.68.6 (a) indicates the value S(t) has to take to set TH. The purpose of the
inset is to construct a prediction concerning the influence of the quadrupole interaction
for the case of hole doped QDs. Since the coupling constants Ak are one order of
magnitude smaller for holes than for electrons and the strain within a QD is indpendent
of its doping, we assume that the model parameter Qr has to be set about a factor of
10 larger for holes to obtain a realistic description. As demonstrated in figure 8.68.6 (a),
the function TH(Qr) can be approximated by a power law ∝ x−3/2, i.e. we expect
that an increase of Qr by a factor of 10 will reduce the central spin’s coherence time
by a factor of approximately 30. On the other hand one also has to bear in mind
that the underlying timescale T∗ is also about 10 times larger for holes due to the
small coupling constants Ak and on top of that the anisotropy parameter λ enters T∗λ
linearly, which also yields an increase of the coherence time. Combining these three
factors, we expect the increase of the coherence time due to the change of parameters
within the CSM and its decrease due to the quadrupole interaction to even out each
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Figure 8.7: Influence of the ratio Qr onto the hole spin dynamics within a single InGaAs QD
for λ = 2 (left) and λ = 4 (right). For all presented calculations d = 3, m = 2,
r0 = 1.2, n = 50 and D = 219 = 2 · IN

dim applies. The resolution of the shown
spectra in panels (c) and (d) has been adjusted to ωT∗ = 0.013, corresponding
to the depicted timescale from panels (a) and (b). Note that the timescale T∗ is
used instead of T∗λ , to warrant a better intuition concerning the effects of varying
λ and Qr in an experimental setup.

other approximately. We will recall this prediction within the discussion of hole spin
dynamics in the following section.

Panel (b) of figure 8.68.6 presents CET results for the spectral spin noise function for
small values of Qr. A clear separation of the spin noise function’s decay due to the
hyperfine interaction (10 . ν . 30 MHz) and the QCs (ν . 5 MHz) is observed for
Qr = 0.07, which is lifted proceedingly with an increase of Qr. This clear separation
stems from the limited considered cutoff r0 and is not expected to be observed in an
experimental measurement of the spectral function S(ω), but still a smoothened kink,
similar to the one observed for Qr = 0.1, in the crossover regime from the hyperfine
to the quadrupolar mediated decay might occur in S(ω) in an experiment where Qr ≈
0.07 applies.

8.3.2 Hole spin dynamics

Figure 8.78.7 treats the impact of the quadrupole interaction onto the hole spin dynamics
in a single InGaAs QD. For this purpose, scans of the ratio Qr for two different values
of the anisotropy parameter λ are presented in the real time and spectral domain.
Within the general discussion of the anisotropic CSM it has been demonstrated that the
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timescale T∗λ induces an invariant short time dynamics for a variation of the anisotropy
parameter. This clearly implies a linear increase of the initial spin decay time with λ,
which is supposed to be observed in the experiments. Since the mixing of light and
heavy holes for a given sample is generally not known a priori, the comparison of
experimental and theoretical results might shed some light onto this property of the
QDs under study.

As observed for the case of electrons, an increase of Qr from 0 to approximately 2
precedingly induces a faster decay of the spin noise function S(t) and also the value
S(t/T∗ = 500) decreases monotonically in this regime. When the energy scale of the
quadrupole interaction exceeds the hyperfine interaction significantly (Qr > 2), flips
of the central spin are suppressed and a protection of the spin’s coherence sets in.
Comparing the real time results from panels (a)-(b) of figure 8.78.7 for the two differ-
ent values of λ at fixed Qr reveals several interesting features. For the two smallest
ratios Qr = 0.1, 0.2 and both considered anisotropy parameters the central spin’s re-
occurrence due to its precession in the static nuclear field is observed. This is also
the case for λ = 2 and Qr = 0.4, but considering the same magnitude of the QCs
the reoccurrence is already suppressed for λ = 4, where a monotonic decrease of the
spin noise function is observed. In figure 8.68.6 it has been demonstrated, for Qr < 0.2,
that an increase of Qr impacts the electron spin dynamics stronger than linearly, while
the decoherence driving flip-flop terms from the CSM are suppressed linearly with λ.
Thus, it is intuitive to assume that the impact of the QCs onto S(t) is not qualitatively
the same for a constant value λQr, but instead the hole spin evolution through the
hyperfine interaction is suppressed stronger if λ is large. This intuition is stated by
comparing the numerical results for λ = 2, Qr = 0.8 and λ = 4, Qr = 0.4: in the latter
scenario the initial precession in the frozen bath is fully suppressed, which is not the
case in the first scenario. For large Qr > 1 this comparison does not hold anymore, but
since the prediction from figure 8.68.6 only holds for Qr < 0.25, the presented argument
is only supposed to by valid for small ratios Qr.

The comparison of the spectral functions S(ω) for varying Qr, as presented in figure
8.78.7 (c)-(d), underlines the strong dependence of the spin noise function’s shape on the
underlying parameters λ and Qr. Combining the observations from (i) the general
discussion of the anisotropic CSM and (ii) the influence of Qr in the electronic case,
fully covers the qualitative behavior for hole spins. Namely, an increase of λ shifts
the entire spectrum to smaller frequencies, corresponding to a linear slow-down of the
short time dynamics and occuring long time effects on a timescale that is increased
more than linearly. The increase of Qr yields a suppression of the characterisitc initial
precession and a shift of spectral weight to the intermediate frequency regime, which
entails a decrease of the gradient of S(ω) in this regime.
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Comparison to an experiment on a p-doped ensemble of InGaAs QDs

Panel (a) of figure 8.88.8 treats the real time evolution of a single hole spin confined in
an InGaAs QD. The simulations were calculated via the CET for various combinations
of the parameters Qr and λ. As stated above, the parameter Qr is assumed to be one
order of magnitude larger for holes than for electrons, where Qr ≈ 0.07 turned out to
reproduce the experimental findings by Bechtold et al. [6262] adequately. To point out the
occurence of comparable lifetimes when investigating n- or p-doped QDs, the following
discussion of the experiments by Li et al. [6464] is entirely based on the assumption
that the QDs investigated in the two experimental studies feature an identical strain
tensor. Note that this assumption is not necessarily true, because, with respect to the
performed measurements, the underlying nano-device in the experiment by Bechtold
and coworkers features a significantly different design than usual samples of InGaAs
QDs.

The three presented parameter sets that are considered in figure 8.88.8 (a) all feature a
similar lineshape of S(t). It does not feature the characteristic dip due to the cen-
tral spin’s precession in the Overhauser field. As argued at the beginning of this
section, the initial precession is suppressed due to the interplay of the QCs and the
anisotropic hyperfine interaction. Note that the decay time TH is varying significantly
among the different curves due to two factors: the anisotropy factor is increased and
Qr is decreased proceedingly. Since the Fourier transformation of a Lorentzian peak at
zero frequency is given by an exponential decay in time, we have added the function
S(0)exp(−t/TH) for comparison. In contrast to the case of electrons, the horizontal
black dashed line, whose crossover with S(t) defines the lifetime TH, indicates the
value S(t) = S(0)/e, since for hole spins the decay due to the quadrupole interaction
can not be clearly separated from the decay due to the hyperfine interaction. Li et al.
[6464] reported a hole spin lifetime of 400 ns, while we find the lifetimes TH = 176 ns
for λ = 4, TH = 399 ns for λ = 6 and TH = 738 ns for λ = 8. I.e. our finding for
λ = 6 and Qr = 0.8 is in very good agreement to the experiment. On top of that, the
obtained lifetime for Qr = 0.07 in the electronic case was TH = 536 ns and thus of the
same order of magnitude as the hole lifetime. This finding agrees to our initially stated
prediction that the influence of QCs counters the enhanced lifetime of hole spins that
is expected from the bare anisotropic CSM and represents one of the central results
of this work. Approximating S(t) by a purely exponential decay does work to some
extent: on short and intermediate timescales qualitative agreement is found, while the
exponential decay fails to reproduce the long time tail of the spin noise function, which
does not decay to zero on the presented timescale.

Figure 8.88.8 (b) is related to recent spin noise measurements by Li et al. [6464], where
we focus on the presented results in zero and longitudinal external fields. The authors
of the experimental publication claimed that the hole noise spectrum in zero magnetic
field can be nicely approximated by a Lorentzian fit and with an increasing longitudinal
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Figure 8.8: Illustration of hole spin noise results for InGaAs QDs in experimentally relevant
parameter regimes. The solid lines in panel (a) show real time calculations for
three combinations of the parameters λ and Qr. The dashed lines of the corre-
sponding color indicate a bare exponential decay of the form S(0)exp(−t/TH),
where TH is determined by the crossover of S(t) and the black dashed line. Panel
(b) depicts spectral results for a varying external field ~nB ‖ z at fixed parameters
Qr = 0.8 and λ = 6. A Lorentzian peak that corresponds to the red dashed line
from panel (a) is added. Panel (c) presents spectral results for λ = 6 and various
values of Qr. S(ω) is nicely approximated by a Lorentzian fir for Qr = 3.0. All
spectra have been calculated for Nc = 6000 Chebyshev polynomials and the ver-
tical black dashed lines indicate the roughest spectral resolution of the depicted
curves. We assumed the intrinsic timescale T∗ = 10ns to be a factor of 10 larger
than for electrons and the hole g-factor was set to gh = 0.15 [6464]. All further pa-
rameters have been chosen as in figure 8.68.6 and the ensemble average has been
performed as described in figure 7.47.4.

field the Lorentzian proceedingly turns into a 1/ f behavior. Both findings have in
common that they feature a monotonous decrease of the spectral spin noise function
and no shoulder, which is always observed for n-doping, occurs at large frequencies.

To substantiate the stated agreement between our theory and the experiment by Li
and coworkers, numerical results for S(ω) are presented in panel (b) of figure 8.88.8. From
the comparison to the measurements on a single electron by Bechtold et al. [6262], we
obtained the intrinsic timescale T∗e = 1 ns, which is expected to be enhanced approxi-
mately by a factor of 10 for hole spins due to the smaller magnitude of their hyperfine
coupling constants. Based on this assumption, we find decent agreement between
experiment and theory. Namely, the frequency scale on which the spin noise func-
tion is varying is reproduced adequately by the simulations and the added Lorentzian



8.3. Spin noise in InGaAs quantum dots 125

fit, which corresponds to the exponential decay from panel (a), accounts correctly for
S(ω) at large frequencies. According to our observations in the real time domain, pro-
nounced deviations between the added Lorentzian lineshape and S(ω) occur for small
frequencies. These deviations stem from two origins: (i) as demonstrated in reference
[6565], renouncing the norm of the Lorentzian fit and focusing it on the reliably resoluted
part of the spectrum, yields a significantly better approximation of S(ω) that does not
account for the peak beyond the numerical resolution. (ii) With respect to the finite
size limitations of the applied theory, slightly different theoretical results concerning
the long time behavior of the spin noise function are expected compared to the ex-
periment. Figure 8.88.8 (b) also includes spectral results within an external longitudinal
field. As discussed above, the suppression of central spin flips due to the magnetic
field trivially shifts the entire spectral weight to smaller frequencies. The simulations
demonstrate how this shift induces a variation of the spectral function’s gradient to
smaller values at large frequencies and consequently the observed 1/ω2 behavior for
b = 0 vanishes. Due to the increase of spectral weight in the intermediate regime and at
small frequencies, the gradient of S(ω) rises on the frequency scales where it flattened
out for b = 0. Li et al. referred to the combination of these two effects as a crossover
from a Lorentzian to a 1/ f noise. Our theory points out that both observations only
hold approximately and the detailed lineshapes are closely related to the QDs under
study. For different materials and even for InGaAs/GaAs QDs grown under different
conditions the obtained spectral functions might vary significantly. Note that we are
unable to resolve the experimentally observed crossover of the individual curves from
figure 8.88.8 (b) at small frequencies due to numerical limitations, but since the sum-rule
3.323.32 must hold in any case, it is ensured to occur beyond the numerical resolution. All
in all we find decent agreement between our theory and the experimental results.

Panel (c) of figure 8.88.8 demonstrates that the above discussed results are qualitatively
reproduced for b = 0 when increasing Qr from 0.8 to 3.0 at constant λ = 6. While
the approximately Lorentzian shape of S(ω) at b = 0 is not reproduced for Qr = 1.0
and Qr = 2.0, it is reclaimed for Qr = 3.0. The observed similar shape of the spectral
spin noise function for two different values of the ratio Qr stems from the above stated
crossover behavior of the QC’s impact onto S(ω): the quadrupolar interaction has
a destructive effect onto the central spin’s coherence for small ratios Qr, while the
coherence is enhanced for large Qr and consequently a comparable lineshape can be
obtained at two different magnitudes of the QCs. Therefore it remains unclear, wether
the QD sample under study is described adequately by Qr = 0.8 or Qr = 3.0 and while
starting from the experimental results by Bechtold et al. [6262] the first option appears
more realistic, the latter choice for Qr is in better agreement with the below treated
measurements that have been performed in Dortmund.
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8.3.3 Mixture of electrons and holes

The section at hand addresses experimental measurements by Glasenapp et al. [6565],
that have been performed on ensembles of InGaAs QDs grown by the group of A.D.
Wieck in Bochum [7979, 129129]. Yet unpublished results on the samples under study put
forward that the doping of the underlying sample is not necessarily ideal: in the n-
doped QD ensemble approximately 20 % of the QDs turned out to feature a resident
hole instead of the desired electron. This statement is based on measurements in a finite
transversal field, where the obtained spectral function turned out to feature two peaks
centered around the Larmor frequency (i) of holes and (ii) of electrons (based on the g-
factors gh ≈ 0.15 and ge ≈ 0.54). For the, ideally, p-doped QD ensemble the admixture
of electrons has been found to be less pronounced, but is not necessarily negligible.
With respect to these experimental observations, a mixture of spectral functions of
electrons and holes is considered and compared to the experimental spectra in the
following section.

It is stressed that the considered QDs have been grown under different conditions
than the samples from the above treated experiments [6262, 6464] and as a consequence
the model parameters T∗, Qr and λ might vary compared to the above stated results.
From internal discussions with M. Bayer, it is known that the QDs grown in the group
of A. D. Wieck have been found to be larger than the ones in the investigated sample
from reference [6464]. Along with the diameter of the considered QDs, the spread of the
confined particle’s wavefunction is increasing. According to equation (3.393.39) this entails
an increase of T∗, but at the same time the magnitude of an individual hyperfine
coupling constant is decreasing and therefore the ratio Qr is expected to be increasing
for the QD samples that are investigated in Dortmund.

Figure 8.98.9 presents a direct comparison of experimental and theoretical results for
spin noise in (a) an n-doped and (b) a p-doped ensemble of InGaAs QDs. In the
experiments, performed by P. Glasenapp, two different detectors granting access to
different frequency regimes have been used. While the measurements by Bechtold et
al. [6262] clearly reflect the electron’s initial precession in the Overhauser field which is
separated from the remainder spin decay, the presented electron spin noise spectrum
from figure 8.98.9 (a) features a significantly less pronounced shoulder at 100 MHz and no
clear gap between the large and small frequency features is observed. There are three
decisive factors inducing this behavior. (i) Performing an ensemble average slightly
broadens the peak due to the precession in the Overhauser field. (ii) As stated above,
the underlying sample features approximately 20 % resident holes instead of electrons
and according to the results from the preceding section, the peak at large frequencies is
suppressed for holes. (iii) As indicated in figure 8.58.5, the same effect occurs for electrons
if Qr is of the order O(1). Since the first two arguments are not sufficient to justify the
experimentally measured shoulder at large frequencies, it indicates that the influence
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Figure 8.9: Direct comparison of experimentally measured InGaAs spin noise spectra, which
have been provided by P. Glasenapp, and results for S(ω) obtained via the CET.
In the experiment two different detectors that are sensitive in different frequency
ranges have been used. Panel (a) shows results for an electron doped sample,
where a hole spin admixture of 20 % and Qr = 0.6 has been assumed for the
simulations. In panel (b) corresponding results for p-doped QDs are presented,
which are based on Qr = 6.0, λ = 5 and an electron spin admixture of 15 %.
For electrons the intrinsic timescale T∗e = 1ns and for holes T∗h = 7ns has been
assumed. The vertical dashed lines indicate the reliable resolution of the CET
calculations. The ensemble average has been performed as described in figure
5.95.9. Further parameters: N = 9, n = 100 and r0 = 1.5. The experimental spectra
have been published in reference [6565].

of QCs is a lot larger in the sample under study than in the experiment by Bechtold et
al. [6262].

With respect to this observation, the theoretical curve in figure 8.98.9 (a) is based on a
rather large ratio Qr = 0.6 applying for resident electrons. Accordingly Qr = 6.0 is
assumed for resident hole spins and the anisotropy parameter has been set to λ = 5.
Note that the ratio Qr = 3.0 has been found to describe the measured spin noise spec-
tra from reference [6464] adequately and, as discussed above, due to the larger size of
the investigated QDs the assumption Qr = 6.0 appears valid. A mixture of 80 % elec-
tron and 20 % hole spins enters the simulations that are presented in figure 8.98.9 (a).
The choice of the intrinsic timescale T∗e = 1 ns will be discussed with respect to the
QD size below. Also note that the intrinsic timescale of hole spins has not been set a
factor of 10 larger, but instead T∗h = 7 ns has been assumed. This choice is well jus-
tified within the applied model as described in chapter 33. The vertical line indicates
the reliably resoluted frequency of the simulations and especially in the intermediate
frequency regime (≈ 1− 30 MHz) excellent agreement between theory and experiment
is found. As discussed intensively throughout this work, the exact gradient of S(ω) in
this regime is heavily dependent on the details of the hyperfine coupling constants Ak

and the quadrupole parameters Qr, η and ~nz
k. Due to the finite size limitations of the

applied method and the simplifcations that are linked to it, this excellent agreement is
surprising. The slight deviations of the different curves at large frequencies stem from
the mentioned model limitations: by choosing a slighlty larger intrinsic timescale T∗e ,
which is in accordance to the expected increase of T∗ when turning to larger QDs, per-
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fect agreement between the different results is found at ≈ 100 MHz, but the obtained
spectra would differ in the intermediate regime. This deviation is expected to be lifted
if N ∼ O(1000) nuclei could be considered in a single simulation. In such a scenario a
more realistic choice of the model parameters might also pay off and with the results
of section 5.1.25.1.2 in mind, taking into account that In carries nuclear spin I = 9/2 instead
of I = 3/2 might also have an impact onto the details of the spectrum.

Apparently, the considered magnitude of the ratio Qr = 6.0 for hole spins is already
within the parameter range, where the central spin lifetime is enhanced compared to
the intermediate values Qr ≈ 1.5. Thus, the above stated argument that increasing the
ratio Qr by a factor of 10 counters the enhanced hole spin lifetime, as it is expected from
the anisotropic CSM, does not hold anymore. Although the QCs still have a destructive
effect onto the central spin’s coherence, the determined similar lifetimes of electrons
and holes also stem from the non-ideally doped samples that have been studied in the
experiment at hand and the investigated hole spins indeed feature a larger lifetime
than the electrons. Still, we stress that the lifetime enhancement is significantly smaller
than implied by the bare anisotropic CSM.

Due to the assumed admixture of hole spins in the electronic spectra, turning from
an n-doped to a p-doped ensemble of InGaAs QDs only induces a change in the per-
centages with which the particles contribute to the theoretical results. With respect
to the above stated, yet unpublished measurements, we assumed a portion of 15 %
resident electrons to contribute to the measured hole spin noise. Based on this as-
sumption, we find decent agreement between theory and experiment in the frequency
range above 5 MHz. The observed deviations for smaller frequencies, corresponding to
large timescales, are not surprising with respect to the simplicity of the applied model.
On top of the already discussed finite size limitations, we also assumed a factor of 10
between the ratio Qr for electrons and holes for simplicity, which is clearly a further
approximation.

With all the limiting factors of the studied finite size model in mind, the good agree-
ment between our theory and the different spin noise spectra from recent experiments
is remarkable. We are able to describe the experimentally realized spin dynamics ade-
quately and obtain correct estimates independently of the spin species.

8.4 Chapter conclusion

The preceding chapter is dedicated to the study of the influence of strain induced EFGs
onto the spin dynamics of holes and electrons confined in semiconductor QDs. Using
both analytical and numerical tools, we have pointed out significant insufficiencies
of an effective model accounting for the quadrupole interaction, that has been put
forward by Sinitsyn et al. [6363]. In this context it has been demonstrated that a variation
of the quadrupolar orientation vectors ~nk has a major impact onto the central spin
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dynamics, which is not reproduced adequately by the effective model. An alignment
of the orientation vectors along the dot’s growth direction tends to protect the central
spin’s coherence compared to a perpendicular alignment. Introducing an anisotropy
of the EFGs near the nuclei tends to enhance the occurrence of decoherence in any
case. Nevertheless, if the quadrupolar splitting of each nucleus is significantly larger,
which appears not to be realized in semiconductor QDs, than its hyperfine coupling to
the confined particle, flips of the central spin are suppressed for any orientation of the
vectors ~nk.

For the comparison of the developed theory to recent experiments, we focused on
the special case of InGaAs QDs, basing the considered model parameters on the mi-
croscopic studies of these QDs by Bulutay [7070, 7171]. Within the finite size limitations
of the presented studies, we found excellent agreement between the theoretical and
experimental results for measurements of n- and p-doped QDs. While the detailed
shape of the spin noise spectra of semiconductor QDs has been demonstrated to be
very sensitive to all the factors influencing the QCs (i.e. the orientation vectors ~nk, their
relative magnitude Qr and the local asymmetry governed by η), one general statement
concerning n- and p-doped QDs has been put forward as a central finding: we pointed
out that the lifetime of hole and electron spins confined in InGaAs QDs are of the same
order of magnitude due to the interplay of the hyperfine and quadrupole interaction:
due to the decreasing magnitude and the anisotropy of the hyperfine interaction for
holes, the spin’s lifetime is enhanced, which is countered by the increasing impact of
the EFGs relatively to the hyperfine interaction.
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Conclusion

As the central result of this work, we have demonstrated that the fully quantum me-
chanical treatment of the introduced enhanced CSM is capable of reproducing the
results of various experiments on n- or p-doped InGaAs QDs. Due to the intensive
study of the impact onto the central spin dynamics that stems from every individual
model parameter, we have been able to gain a more detailed insight into the role of
the studied sample’s material properties than ever before. From a detailed analysis of
the magnitude of the hyperfine interaction, the linked strain distribution and orien-
tation of the nuclear quadrupole momenta we are able to predict the lifetime of the
confined spins and the qualitative shape of their experimentally measured spin noise
function in the spectral and real time regime. This achievement represents a very valu-
able enhancement of the knowledge concerning the spin dynamics of electrons or holes
confined in semiconductor QDs.

To facilitate the above stated core result, several steps towards an accurate numerical
treatment of spin noise in semiconductor QDs were in order. First, we have revisited
the anisotropic central spin model, that accounts for the hyperfine interaction influ-
encing hole and electron spins, and introduced a claim for a realistic distribution of
the coupling constants Ak, that is based on the shape of the underlying QD and the
envelope wave function of the confined particle. Second, we have enhanced the CSM
by the quadrupole interaction and considered a recent detailed analysis of the strain
tensor in In(Ga)As QDs, to deduce realistic choices of the corresponding model pa-
rameters. Third, an ensemble average of the spin noise function for an individual QD
has been applied with respect to the varying physical properties of the QDs within an
ensemble. Finally, we have enhanced the Chebyshev polynomial expansion technique
to be able to evaluate traces, whose occurence is unevitable when considering a high
temperature limit, and to gain direct access to the spectral spin noise function S(ω).
Besides, an approach concerning the realisation of a time dependent NRG procedure
for the isotropic CSM has been presented, that turned out to be inappropriate for the
treatment of the central spin problem at hand, mainly due to the truncation of the
central spin operators. The introduced claim to circumvent this truncation also failed,
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because the crucial low energy eigenstates could not be reproduced adequately along
with the central spin’s Lie algebra.

The central spin dynamics within the isotropic CSM has been intensively discussed,
with respect to various prior works. The quantum mechanical simulations stated the
validity of a semi classical treatment on short timescales, where the time evolution of
the central spin is only governed by the intrinsic fluctuation scale T∗ and indepen-
dent of the detailed QD properties. On large timescales a numerical, semi classical
treatment of the ICSM also appears viable. We have stated that a logarithmic decay,
whose form respects the QD geometry, of the spin noise function is likely to be the cor-
rect prediction for the long time decay of S(t) and introduced a rigorous lower bound
for the non-decaying fraction S∞ that only relies on the conserved quantities of the
CSM and leaves a lot of possible research for the future. Combined with an ensemble
average, the ICSM is perfectly capable of reproducing the experimentally measured
electron spin dynamics within strong transversal fields, stating that it describes the
physics of the largest energy scale acting on the electron spins confined in semicon-
ductor QDs. For zero or longitudinal fields the pure ICSM is insufficient to reproduce
experimental measurements, because the influence of the quadrupolar interactions has
a significant impact onto the electron spin dynamics in these cases. In this context we
have demonstrated that our theory is capable of reproducing the results of two differ-
ent experiments on samples of n-doped QDs, which have been grown under different
conditions.

The description of the hole spin dynamics within the anisotropic CSM, which tends
to enhance the lifetime of the confined particles, turned out to describe the measured
hole spin noise from recent experiments inadequately. Even more the expected basic
features of the spectral spin noise function S(ω) for a single QD have not been observed
in experiments on ensembles of QDs. Namely, a transversal magnetic field induces an
asymmetric spectral function around the Larmor frequency, that develops into a strict
threshold behavior for the case of heavy holes, and a narrowing of this peak is expected
from the anisotropic CSM. The energy scale of the hyperfine interaction is, due to its
dipole-dipole nature for p-doped QDs, approximately one order of magnitude smaller
for holes than for electrons and therefore the role of the quadrupole interaction is more
central in the p-doped than in the n-doped case. The induced decoherence from the
quadrupole interaction turns out to counter the occuring lifetime enhancement from
the anisotropic CSM and finally the lifetime of hole and electron spins confined in
semiconductor QDs is of the same order of magnitude. This finding constitutes one
central result of this work.

In general the theory that has been established within this work granted us a deeper
insight into the details of the role the quadrupole interaction plays when it is involved
in the CSM, while prior studies were limited to more superficial and qualitative state-
ments. While the strain of the discussed samples of InGaAs QDs induces a quadrupole
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interaction that is weak compared to the Fermi contact interaction and therefore tends
to destroy the confined spin’s coherence, a very large strain tensor might protect it. We
have also demonstrated that a parallel alignment (with respect to the QD’s growth di-
rection) of the nuclear orientation vectors and a weak asymmetry of the EFGs near the
individual nuclei are in favor of the confined particle’s spin coherence. All in all our
findings put forward that pushing microscopic studies concerning the detailed strain
and quadrupole moment distribution within a large variety of QD-types, represents a
worthwhile field of investigations.

We have achieved significant progress in understanding the spin dynamics of elec-
trons and holes confined in semiconductor QDs, but of course there are still many open
questions left for future research. Due to the finite size character of the presented stud-
ies, we are unable to resolve the experimentally observed reoccurrence of S(t) at large
times. We have argued that the semi classical treatment of the enhanced CSM intro-
duced by Bechtold et al. [6262], which is based on an effective Hamiltonian accounting
for the QCs and features a reoccurrence of the central spin polarisation, clearly fails to
reproduce elementary features of the spin dynamics. Thus, an adequate method for
the treatment of the enhanced CSM involving large spin baths on long timescales is de-
sirable, but extremely challenging at the same time. A quantum mechanical treatment
of the model might be possible using an innovative renormalization group approach,
but the most promising tool appears to be a numerical evaluation of the semi classical
picture. Of course there are further interactions, beside the hyperfine and quadrupolar
interaction, that might contribute significantly to the central spin dynamics on long
time scales, like the dipole-dipole interaction between the nuclei for instance. All of
the preceding studies are based on the limit of infinite temperature, which is clearly an
approximation and considering the effects of introducing a finite temperature is also an
interesting subject for studies in the future. On top of that, the investigation of higher
order correlation functions, for which the CET’s runtime rapidly exceeds considerable
efforts, might reveal additional interesting information on the system properties.
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