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4 1. INTRODUCTION

1 Introduction

Modern statistics provides countless tools for the investigation of various types of

problems. Despite the myriad of new applications, the two main questions after

the data acquisition remain the same: which assumptions on given observations

are justifiable and which method relying on these assumptions is most suitable

to study the points of interest? Homogeneity is a topic closely related to both

of these questions. With regard to the first, homogeneity tests allow to compare

several pieces of data checking the assumption of identical distributions. This

way, either the dissimilarities of the observations are recognised and treated ade-

quately or the whole data can be combined resulting in increased information. In

both cases homogeneity tests are valuable tools to verify assumptions on the data

and thereby facilitate an appropriate data analysis. With respect to the second

question, homogeneity itself often lies at the heart of the analysis. This holds for

example when one is looking for the best of several products, as it is the case

with new commodities, medical treatments and also more abstract concepts like

teaching methods. Homogeneity is also relevant in itself in the context of temporal

data allowing to construct monitoring procedures and to check the effectiveness of

conducted interventions such as new laws.

Since applying methods under wrong assumptions frequently leads to incorrect

conclusions, it is of great importance to work with universal procedures to achieve

reasonable results. Furthermore, highly multidimensional datasets containing quite

different types of attributes are ubiquitous nowadays. It is thus rarely possible to

state adequate distributional assumptions for each variable. For both these reasons

fast distribution-free methods are highly desirable in the context of homogeneity. In

this thesis three such procedures are presented. Each of them treats at a different

homogeneity problem. The corresponding three chapters of this work are based
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on the papers by Wornowizki and Munteanu (2015), Wornowizki and Fried (2014)

and Wornowizki et al. (2015).

Chapter 2 is motivated by the fact that a mere rejection of homogeneity is unsa-

tisfactory in many applications. To illustrate this we consider an arbitrary simula-

tion procedure designed to imitate some observable data source. In other words, the

simulation should generate artificial data resembling an observed sample. To check

the quality of the simulation a statistician typically applies a homogeneity test.

In case of rejection the simulation is inappropriate. Unfortunately, it is not clear

then which particular data regions are modelled incorrectly. In order to improve

the simulation efficiently it is of interest to automatically quantify the regions with

too many or not enough observations in the artificial sample. In Chapter 2 an

algorithm for this task is proposed. It is based on the classical distribution-free

two-sample Kolmogorov-Smirnov test. The test is combined with a fairly general

mixture model resulting in a highly flexible method. The algorithm determines a

shrinkage factor and a correction distribution function. The first one measures how

well the datasets resemble each other. The latter captures all discrepancies between

them relevant in the sense of the Kolmogorov-Smirnov test. With regard to our

illustrating example, the correction distribution indicates the deficiencies of the

current simulation procedure and thus facilitates its improvement. The proposed

procedure is illustrated using simulated as well as real datasets from astrophysics

and bioinformatics and leads to intuitive results. We also prove its correctness

and linear running time when applied to sorted samples. Since our approach is

completely distribution-free and fast to compute, it is widely applicable and in

particular suited for large multivariate datasets.

Up to now there is not much work on distribution-free density-based methods for

testing homogeneity in the two-sample case. Chapter 3 is devoted to this topic.

Classical two-sample test procedures such as the method investigated in the second
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chapter often rely on distribution functions. Such functions can be estimated in a

nonparametric way quite easily by their empirical counterparts, which is certainly

one of their appealing properties. However, they cannot be interpreted as intuitively

as probability density functions, which are in turn more difficult to estimate in a

distribution-free setting. We focus on the concept of f -divergences introduced by

Ali and Silvey (1966) in order to develop two-sample homogeneity tests. These

distance like measures for pairs of distributions are defined via the corresponding

probability density functions. Thus, homogeneity tests relying on f -divergences

are not limited to discrepancies in location or scale, but can detect arbitrary

types of alternatives. We propose a distribution-free estimation procedure for this

class of measures in the case of continuous distributions. It is based on kernel

density estimation and spline smoothing. As shown in extensive simulations, the

new method performs stable and quite well in comparison to several existing non-

and semiparametric divergence estimators. Furthermore, we construct two-sample

homogeneity tests relying on various divergence estimators using the permutation

principle. Just like for the new estimator, this approach does not require any

assumptions on the underlying distributions and is therefore broadly applicable.

The new tests are compared to an asymptotic divergence procedure as well as

to several traditional parametric and nonparametric tests on data from different

distributions under the null hypothesis and several alternatives. The results suggest

that divergence-based methods have considerably higher power than traditional

methods if the distributions do not primarily differ in location. Therefore, it is

advisable to use such tests if changes in scale, skewness, kurtosis or the distribution

type are possible while the means of the samples are of comparable size. The

methods are thus of great value in many applications as illustrated on ion mobility

spectrometry data.

In Chapter 4 we take a step further moving from two-sample problems to the
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detection of structural breaks in time series. As in the previous chapters, the

approach we prose is distribution-free. It is also highly flexible in two senses: the

method can be applied in order to focus on arbitrary features of a time series

such as the location, the scale or the skewness. In addition, any test statistic

reflecting the feature under study can be incorporated. This is for example quite

valuable, if outliers in the data are an issue. In such a case one can simply use the

proposed test plugging in a suitable robust estimator. The method is based on a

Fourier-type transformation of blockwise estimates of the quantity under study.

The blockwise construction allows to handle multiple structural changes, which is

often advantageous in real world applications. The Fourier-type transformation

also related to characteristic functions leads to nice representations of the test

statistics, which makes them easily computable. We introduce the approach testing

the null hypothesis that a given sequence of variables has an unknown but constant

volatility over time. Under the assumption of independent and piecewise identically

distributed zero mean observations, several statistics for this testing problem are

proposed. All of them are given in simple explicit formulas. Conducting extensive

Monte Carlo experiments the new approach is compared to other tests for constant

volatility. It shows a comparatively high power as well as an accurate localisation of

the structural break positions in particular in the case of multiple volatility changes.

The method also determines reasonable regimes of volatility on real exchange rate

data. To illustrate the flexibility of our approach it is modified to test for a constant

kurtosis. Its performance on artificial samples suggests that it behaves comparable

to its volatility counterpart.

The three main chapters are structured in a similar way: at first the problem under

study is motivated. Hereafter a new method solving the problem is introduced

and its details are elaborated. Finally, it is evaluated using artificial as well as

real data and the main conclusions are presented. The final chapter gives an
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overview over the thesis and summarises its main results. The new algorithms and

all alternative methods used for comparison are implemented using the statistical

software R (R Development Core Team, 2013), version 2.15.1-gcc4.3.5. To run the

data experiments in a batch and to distribute the computations to the cores the R

package BatchExperiments by Bischl et al. (2013) is applied. The computations are

conducted on a 3.00GHz Intel Xeon E5450 machine with 15 GB of available RAM

running a SuSE EL 11 SP0 Linux distribution. All test are carried out at a nominal

significance level of α = 0.05, unless stated otherwise. The work is supported by the

collaborative research centers SFB 823 - ”Statistical modelling of nonlinear dynamic

processes” and SFB 876 - ”Providing Information by Resource-Constrained Data

Analysis”.
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2 Demixing Empirical Distribution Functions

In this chapter a new statistical method for the comparison of two samples is

presented. The algorithm provides detailed information on the dissimilarities of the

datasets and extends the classical Kolmogorov-Smirnov test, cf. (Durbin, 1973).

Our aim is motivated in Section 2.1. In Section 2.2 we formalise the setting and

propose a general mixture model for the two-sample problem. Hereafter, several

desirable properties of the unknown quantities of the model are established. On

this basis two optimisation problems allowing to determine them are formulated.

An algorithm solving these problems is proposed in Section 2.3. We hereby give

detailed explanations for the main method and each subalgorithm. The proofs

of the algorithm’s correctness and linear running time are conducted in Section

2.4. In Section 2.5 the performance of the procedure is illustrated on real and

simulated data examples. Section 2.6 concludes the chapter providing an overview

on existing methods for related problems. In particular, we consider alternative

procedures based on probability density functions. This part of the thesis has

been published before in Computational Statistics by Wornowizki and Munteanu

(2015). Besides giving the basic ideas, I contributed substantially to all parts of

this chapter. My co-author greatly supported the development of the method and

in particular proposed embedding the binary search technique in our algorithm.

2.1 Motivation

To introduce the method proposed in the following let us consider an example from

astrophysics. The gamma ray detectors MAGIC-I and MAGIC-II are telescopes

located at the Roque de los Muchachos on the Canary Island La Palma. For detailed
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information on their structure and functionality the interested reader is referred to

Cortina et al. (2009) and the MAGIC Collaboration (2014). The telescopes consist

of a mirror surface of over 200 square metres each. It allows to measure atmospheric

signals induced by the interaction of high energetic photons, called gamma rays,

with the atmosphere. Gamma rays do not interact with magnetic fields, since they

do not have an electric charge. They thus are able to carry valuable information

about their sources in space far away from the detectors. The physicists exploring

these sources are interested in gamma rays. They thus utilise the detectors to

reconstruct the particles’ trajectories, their energies and some related quantities.

However, there are other particles generating somewhat similar atmospheric signals.

For each gamma ray in the measurements there are about 1 000 observations of

so called background events, which are not of interest in the given context. The

background events mainly consist of protons, but also contain heavier hadrons

and electrons. Classification algorithms relying on characteristics of the measured

signals could be applied in order to distinguish between the background and the

gamma particles. Unfortunately, these methods cannot be trained on real data,

because it is not labelled. Therefore, simulation procedures for gamma rays as

well as for protons based on models of particle propagation have been constructed

and improved in several steps. The main software generating such simulations is

CORSIKA (Heck et al., 1998).

Clearly, it is of major importance to compare simulated proton samples with

actually observed data. On the one hand, suitable artificial background data

is crucial for the classification analysis. Hence, variables with low agreement of

generated background data and the sample must be identified, so that a purposeful

improvement of the simulation is possible. On the other hand, small deviations

between the simulations and the real data can be caused by gamma ray signals.

If one assumes to have a reasonable simulation, variables with comparably high
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discrepancies can be quite helpful for the upcoming classification task.

A typical statistical approach to check the similarity of the observed and the

simulated data is the application of a homogeneity test. Note that since the

datasets include a large number of variables of various types, a distribution-free

procedure like for example the two-sample Kolmogorov-Smirnov test must be used.

However, a mere rejection of the null hypothesis is not satisfying in our situation.

If the simulation is highly inadequate, the data analyst wants to quantify the

issues. In other words, the regions with too many or not enough observations in the

artificial sample must be identified. Such information can then be used to update

CORSIKA using more suitable simulation parameters. It even may give rise to the

inclusion of additional simulation steps. If the discrepancies between the samples

potentially stem from gamma ray signals, their quantification is necessary as well.

It allows to assess and validate the gamma ray simulations in a subsequent step of

the analysis.

In this chapter we present a novel approach allowing to gain additional insight into

the discrepancies between two samples. It provides useful information for improving

simulation procedures and is illustrated from this point of view in the following.

The fast algorithm is applicable for small and large datasets. It is however mainly

designed for the latter case, since often large amounts of multivariate simulated data

are generated. Note that our contribution helps to improve an existing simulation

procedure, which is often based on prior domain specific knowledge. We therefore

assume that such a simulation procedure exists a priori.

We work with a mixture model linking the distributions of the observed and

the simulated samples by a third distribution. The latter is called correction

distribution. It represents all discrepancies between the first two distributions and

can therefore be used to correct the simulation. Our algorithm determines an

empirical distribution function corresponding to this correction distribution along
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with a mixing proportion for the mixture model. Both are computed such that the

resulting mixture of the simulation and the correction resembles the observed data

in the sense of the Kolmogorov-Smirnov distance. The algorithm does not aim at

statistical testing during or after the modification of the simulated sample. Thus,

the corresponding type I and type II errors are not investigated. The method rather

utilises quantiles of the Kolmogorov-Smirnov distribution to obtain intuitive bounds

on the distance between empirical distribution functions. The algorithm does not

construct a mixture fitting the observed data perfectly, but leads to a reasonably

close approximation taking the sample variance into account. The amount of

closeness can be regulated by the critical value cα or equivalently by the significance

level α and may be adjusted for a given application. For the sake of brevity, we

illustrate the problem focussing on the improvement of a simulation procedure in

the following. The method can also be applied to characterise subgroups in the

data. For example, the correction distribution provides an approximation to the

distribution of the gamma ray signals assuming that the background simulation is

correct.

2.2 Problem Definition

In this section the basic notations for this chapter are introduced. We then suggest a

general mixture model for the two-sample problem under study. Within this model

all deviations between the distributions of the observed and the simulated data are

represented by a correction distribution. In order to identify these discrepancies

the correction distribution must be determined. For this purpose, the model is

transferred to an empirical equivalent. To calculate the unknown quantities of the

empirical model we motivate several constraints to it.
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Let x1, . . . , xn ∈ R denote the observed sample stemming from an unknown contin-

uous distribution P with probability density function p and distribution function

F . The underlying data generating process is modelled by a simulation procedure

represented by the distribution Q. The corresponding probability density function

and distribution function are denoted by q and G, respectively. To evaluate the

quality of the simulation m simulated observations y1, . . . , ym are independently

drawn from Q. If the simulation procedure works well, G resembles F so that the

samples are similar.

To check the equality of P and Q a statistician typically applies a homogeneity

test such as the classical two-sample Kolmogorov-Smirnov test, see Durbin (1973).

Denote the empirical distribution functions of the samples by Fe and Ge, respec-

tively, and set N = n·m
n+m

. Choosing M = R the null hypothesis H0 : P = Q is

rejected by the two-sample Kolmogorov-Smirnov test, if the statistic

KSM(Fe, Ge) =
√
N sup

x∈M
|Fe(x)−Ge(x)|

exceeds an appropriately chosen critical value cα. It is also possible to consider

this procedure from a different perspective. Define an upper boundary function

U setting U(x) = min(1, Fe(x) + cα√
N ) for all x ∈ R. In analogy, define a lower

boundary function L by L(x) = max(0, Fe(x) − cα√
N ) for all x ∈ R. Using these

notations the Kolmogorov-Smirnov test does not reject H0 if and only if Ge is an

element of the set

B = {f : R→ [0, 1]|∀x ∈M : L(x) ≤ f(x) ≤ U(x)}

called the confidence band. We are interested in the regions of undersampling and

oversampling, that is, the regions where Ge violates L or U .
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In order to quantify the amount of such violations we work with the fairly general

two-component mixture model

P = s̃ ·Q+ (1− s̃) ·H. (2.1)

The so-called mixture proportion or shrinkage factor s̃ ∈ [0, 1] measures the

degree of agreement of P and Q. The correction distribution H represents all

dissimilarities between P and Q. Since P is fully described by Q, s̃ and H, the latter

two contain all information helpful for a modification of Q towards P . We thus

want to determine them. Setting s̃ = 0 and H = P solves equation (2.1). However,

this is not an appropriate solution in our application, because the data analyst is

interested in correcting and not in discarding the current simulation. A modification

of the current procedure, which is often motivated by expert knowledge, may give

more insight into the data generating process itself and is thus preferable. For

s̃ = 1 the simulation is correct and H is irrelevant. However, for any s̃ ∈ (0, 1) the

corresponding H is unique. In this case demixing P , that is, determining s̃ and H,

provides useful information for an improvement of the simulation.

Unfortunately, the distributions P and Q are unknown in practice. We thus

consider the corresponding empirical distribution functions Fe and Ge. They are

consistent estimators for the true distribution functions F and G, which in turn

entirely characterise P and Q. Combining the Kolmogorov-Smirnov approach with

the mixture model (2.1), we propose to identify an (empirical) shrinkage factor

s ∈ (0, 1] and an (empirical) correction distribution function H such that the

resulting mixture

F = s ·Ge + (1− s) · H (2.2)
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lies within the confidence band B around Fe. In other words, the corrected empirical

distribution function F is regarded as close to Fe in the Kolmogorov-Smirnov sense.

H is a distribution function and therefore must lie in the set

M =

{
f : R→ [0, 1]

∣∣∣∣ f mon. nondecreasing step function, lim
x→−∞

f(x) = 0

}
.

This is a superset of the set of all distribution functions on R.

Since lying in B does not completely determine the structure of F , neither s

nor H are unique up to now. We thus introduce additional constraints on them

allowing to determine reasonable solutions. Before addressing this point we propose

another simplification of the problem. Since we work with empirical distribution

functions, all derived quantities are characterized by their values on the joint

sample x1, . . . , xn, y1, . . . , ym. Therefore, it is not necessary to consider all functions

H ∈M. Instead, we restrict ourselves to those functions which are discontinuous

only on Z = {z1, . . . , zn+m}, where z1, . . . , zn+m is the ordered joint sample. We

denote this set of functions by M∗ ⊂ M. This restriction is not very strong

regardless of the sample sizes. For the Kolmogorov-Smirnov distance it does not

make a difference, whether we add observations at the values in Z or at intermediate

values. In addition, the position of such an intermediate value would be arbitrary

between two of the given data points with respect to our distance. We thus

focus on the original observations, thereby also avoiding additional computational

costs. Keep in mind that the sample sizes in the applications we aim for is often

comparably large. In these cases the restriction to Z is particularly weak, because

the observations cover the relevant data regions quite well.

One helpful constraint on the model can be deduced from the fact that the data

analyst wants to change the current simulation as little as possible. With regard

to our model this means that s should be chosen maximal such that the corrected
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distribution F fits the observed data. This directly implies a minimal weight (1−s)

for the correction function H. We thus formulate Problem 1:

max
s∈[0,1]

: s

s.t. : ∃H ∈M∗ : s ·Ge + (1− s) · H ∈ B

Since this maximum is unique, the shrinkage factor is now identifiable. Note that

for 0 < s∗ = cα√
N and H∗ = 1

1−s∗ · L the property s∗ ·Ge + (1− s∗) · H∗ ∈ B holds.

Thus, the sought-after value of s, called sopt in the following, is larger than 0.

Hence, the simulated data is always included in the mixture.

After Problem 1 is solved the resulting mixture F = sopt ·Ge + (1− sopt) · H lies

in B. Since this does not imply the property lim
x→∞
F(x) = 1, the function H could

be an improper distribution function. Therefore, there might exist several choices

of H solving Problem 1 given sopt. To find a reasonable H we define the related

function Hmin via Hmin(z) = minH(z) ∀z ∈ Z. Hereby, the minimisation is taken

over the set of all functions H ∈M∗ satisfying sopt ·Ge + (1− sopt) · H ∈ B. The

function Hmin is clearly unique. We propose to first identify and then enlarge Hmin

in a meaningful way, see Section 2.3.5. This means that we construct a distribution

function Hopt such that Hopt(z) ≥ Hmin(z) for all z ∈ Z and the corresponding

mixture Fopt = sopt ·Ge + (1− sopt) ·Hopt is a proper empirical distribution function

lying in B.

In most casesHmin should not be enlarged for small z ∈ Z. Due to the restriction on

s in Problem 1 there often exists a point in Z, where Fmin = sopt·Ge+(1−sopt)·Hmin

intersects the upper boundary U . Enlarging Hmin before or in such a point

zmeq = max {z ∈ Z|Fmin(z) = U(z)} leads to violations of U in zmeq. In case of

such an intersection the Kolmogorov-Smirnov distance on M = R between the

final mixture and Fe is just the radius of the confidence band for any meaningful
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enlargement of Hmin. On subsets of R, however, the distance can be improved if

Hmin is enlarged appropriately. Hence, we propose to identify znorm, the smallest

value after zmeq such that adding mass after znorm minimises the Kolmogorov-

Smirnov distance restricted to the set Mnorm = {z ∈ Z|z ≥ znorm}. We then add

the probability mass in such a way that the minimal distance KSMnorm is attained.

If there is no intersection between Fmin and U , we set zmeq = min(Z) and proceed

in the same way. In total, finding a suitable distribution function H for a given

value of sopt can be formalised in Problem 2:

min
H∈M∗

: KSMnorm(F , Fe)

s.t. : F = sopt ·Ge + (1− sopt) · H ∈ B

H ≥ Hmin

lim
x→∞
H(x) = 1

An optimal solution to Problem 2 is called Hopt. The corresponding final mixture

is denoted by

Fopt = sopt ·Ge + (1− sopt) · Hopt. (2.3)

Note that Fopt is not unique even with these constraints. Although the shrinkage

factor sopt is unique by its maximality property, there may exist several optimal

enlargements of Hmin equally appropriate in the sense of the restricted Kolmogorov-

Smirnov distance.
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2.3 Demixing Algorithm

In this section we present an algorithm solving Problems 1 and 2 formulated in

Section 2.2. At first the main procedure is described. All subsequent subroutines

called within the main algorithm are explained in more detail hereafter. In order

to illustrate the algorithm and its subroutines pseudo code is provided.

2.3.1 Main Algorithm

Algorithm 1 on page 20 is our main procedure to solve Problems 1 and 2. It

requires two sorted sample vectors x ∈ Rn, y ∈ Rm and a significance level α. At

first it calculates the empirical distribution functions Fe and Ge of the samples

and determines the critical value cα at level α. In fact, cα is the α-quantile of the

distribution of C = supt∈[0,1] |B(t)|, where B is a Brownian bridge, cf. (Durbin,

1973). For the commonly used significance levels α1 = 0.05 and α2 = 0.01 the

critical values are cα1 = 1.358 and cα2 = 1.628, respectively. The algorithm also

initialises the values s and F , candidates for the shrinkage factor sopt and the final

mixture Fopt, and sets the lower bound for the binary search procedure, lb, to the

value of s∗, see page 16. The upper and lower boundary functions of the confidence

band around Fe denoted by U and L, respectively, are computed next. These

steps can be considered as preprocessing and are carried out in the lines 1 and 2.

The two-sample Kolmogorov-Smirnov test does not reject the null hypothesis of

equal distributions, if the relation L ≤ Ge ≤ U holds. In this case, the empirical

distribution functions resemble each other and the algorithm stops in line 4.

If the test rejects the null hypothesis, Ge does not completely lie within the

confidence band. The algorithm thus carries out certain steps to determine an

optimal mixture within the confidence band. To solve Problem 1 the following
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operations are applied iteratively in the main loop in lines 5 to 11: if a candidate

mixture F lies above the upper boundary U for any observation z ∈ Z, it has

to be multiplied by a factor sd ∈ (0, 1) in order to correct the violation of U .

This problem is addressed in line 7 in the so called Shrink-Down algorithm. The

corresponding correction is illustrated in the upper row of Figure 1.
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Figure 1: Empirical distribution functions describing the initial data situation (top
left), the correction via the Shrink-Down (top right) and subsequent Shrink-Up
step (bottom left) as well as the final normalisation (bottom right).

Due to the maximal property of the optimal shrinkage factor stated in Problem 1,

the mixture candidate intersects U after a Shrink-Down step.
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Algorithm 1: Demixing

Input : Sorted observations x ∈ Rn, y ∈ Rm , significance level α
Output : Optimal shrinkage factor sopt,

optimal correcting function Hopt ∈M∗

1 Z ← sort((x, y)); cα ← c(α); N ← n·m
n+m

; lb ← cα√
N ; s← 1;

2 Fe ← EmpDistrFun(x); Ge ← EmpDistrFun(y); F ← Ge;

L← max
{

0, Ge − cα√
N

}
;U ← min

{
1, Ge + cα√

N

}
;

3 if ∀z ∈ Z : L(z) ≤ F(z) ≤ U(z) then
4 return (s, 0)

5 repeat
6 if ∃z ∈ Z : F(z) > U(z) then
7 (s,F)← Shrink-Down(s,F);

8 if ∃z ∈ Z : F(z) < L(z) then
9 (s,F)← Shrink-Up(s,F);

10 (lb, s,F)← BinSearch(lb, s,F);

11 until ∀z ∈ Z : L(z) ≤ F(z) ≤ U(z);
12 F ← Normalise(F);
13 H ← (F − s ·Ge)/(1− s);
14 return (s,H);
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As shown in the upper row of Figure 1, the Shrink-Down algorithm eliminates

violations of U , but can create or enhance violations of the lower boundary L. A

candidate falling below L must receive additional probability mass in appropriate

regions. This is taken achieved in line 9 by applying the Shrink-Up algorithm. Its

effect is presented in the lower left part of Figure 1. The two shrink steps are

conducted whenever necessary in the presented order. Since they have opposite

effects, some data situations require multiple executions of the Shrink-Down and

the Shrink-Up step. Their iteration generates a decreasing sequence of upper

bounds to sopt. To guarantee the solution of Problem 1 we embed the well-known

binary search technique in our demixing algorithm, cf. (Cormen et al., 1990). It is

applied in line 10 and bounds sopt from below and above. The method is connected

with the Shrink-Down and Shrink-Up step by using the current shrinkage factor s

learned from them as an upper bound to sopt. In return, the binary search updates

s and F , which are then passed back to the Shrink-Down and Shrink-Up steps.

The lower bound for the optimal shrinkage factor, lb, is updated by the binary

search procedure itself.

Once the main loop is terminated, the optimal shrinkage factor sopt and the corre-

sponding minimal correction function Hmin introduced on page 16 are determined.

Thus Problem 1 is solved and the current candidate lies within the confidence band.

The normalisation step in line 12 solves Problem 2 returning an optimal mixture

Fopt depicted in the lower right part of Figure 1. Hereafter, Hopt is identified

rearranging equation (2.3) in line 13. Finally, it is returned together with the

optimal shrinkage factor sopt.
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2.3.2 Shrink-Down Algorithm

This procedure is applied whenever a candidate F exceeds the upper boundary U

at some point z ∈ Z. This problem can be solved intuitively exploiting the mixture

model (2.2). One simply computes the maximal shrinkage value sd ∈ (0, 1) such

that sd · F does not violate U any more. In other words, F is shrunk down. The

maximal shrinkage factor achieving this is sd = minz∈Z

{
U(z)
F(z)

}
, where we set v

0
=∞

for any v > 0. The Shrink-Down subroutine presented in Algorithm 2 calculates

this factor in line 1. It then updates the total shrinkage and the candidate mixture

F accordingly and returns them. The effect of the Shrink-Down step is visualised

in the upper row of Figure 1.

Algorithm 2: Shrink-Down

Input : Current mixture F and shrinkage factor s
Output : Updated mixture F and shrinkage factor s

1 sd ← min
z∈Z

{
U(z)
F(z)

}
;

2 s← sd · s;
3 F ← sd · F ;
4 return (s,F);

2.3.3 Shrink-Up Algorithm

The Shrink-Up step presented in Algorithm 3 is carried out whenever the current

candidate mixture F violates L, the lower boundary of the confidence band. In

order to increase the values of the mixture in the problematic regions probability

mass is added. This is illustrated in the lower left part of Figure 1. Note that

F may lie below L before zeq = min
z∈Z
{z|U(z) = F(z)} as well as after that point.

However, these two cases have a crucial difference. Adding probability mass before

zeq leads to a new violation of the upper boundary U in zeq. Adding mass after
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zeq does not have to imply this problem. To distinguish between these cases the

Shrink-Up algorithm first identifies zeq in line 1. The value of zeq is well-defined after

initialisation with F = Ge, because F(max(Z)) = Ge(max(Z)) = 1 = U(max(Z))

holds. As we show in Lemma 4, zeq is also well-defined after modifications of F .

Algorithm 3: Shrink-Up

Input : Current mixture F and shrinkage factor s
Output : Updated mixture F and shrinkage factor s

1 zeq ← min
z∈Z
{z |U(z) = F(z)};

2 if ∃z < zeq : F(z) < L(z) then

3 su ← min
z<zeq

{
F(zeq)−L(z)

F(zeq)−F(z)

}
;

4 s← su · s;
5 F ← su · F ;

6 ∀z ∈ Z : d(z)← max{0, L(z)−F(z)};
7 ∀z ∈ Z : H(z)← max

z′≤z
{F(z′)− s ·Ge(z

′) + d(z′)};

8 F ← s ·Ge +H;
9 return (s,F);

If there are violations of L before zeq, a shrinkage is necessary. Because of Problem

1, we have to shrink minimally. Thus, the largest shrinkage factor su must be

identified, so that all residuals to L before zeq do not exceed the residual to U in

zeq after shrinking. If this property does not hold, adding appropriate probability

mass causes a violation of U in zeq. More formally, the shrinkage factor

su = max
s∈[0,1]

{s | ∀z < zeq : L(z)− s · F(z) ≤ U(zeq)− s · F(zeq)}

must be determined. Using basic arithmetic transformations of the constraint and

F(zeq) = U(zeq) we get su = min
z<zeq

{
F(zeq)−L(z)

F(zeq)−F(z)

}
. This value is determined in line

3 of the Shrink-Up algorithm and the shrinkage factor s as well as the candidate
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mixture F are updated.

After the potential shrinkage the algorithm corrects F by adding probability

mass. In order to shift F appropriately its nonnegative residuals to L, d(z) =

max {0, L(z)−F(z)}, are computed for all z ∈ Z. These are the minimal amounts

which must be added to F so that it no longer violates the lower boundary L. They

are thus added to the current correction term F − s ·Ge and the sum is minimally

monotonised in line 7. The result is added to s · Ge yielding the new candidate

mixture F . Note that, in contrast to equation (2.2), we use the notation H rather

than (1− s) · H for the properly scaled correction function for the sake of brevity

here. Analogical abbreviations are used in the pseudo code of Algorithms 4 and 5.

2.3.4 Binary Search Algorithm

The binary search step presented in Algorithm 4 is called at the end of every iteration

in the main loop of Algorithm 1. Its input consists of lb and ub, the current lower

and upper bound for sopt, respectively. While lb is derived from previous binary

search steps, ub is set to the current value of s. The algorithm computes the average

of the given bounds in line 1. Using this candidate the minimum monotone step

function Hb is determined such that Fb = sb ·Ge +Hb ≥ L holds in lines 2 and 3.

This is done in analogy to the lines 6 and 7 in the Shrink-Up step. If Fb violates

the upper boundary U , then, by minimality of Hb, no monotone step function for

the shrinkage factor sb can exist such that the corresponding mixture lies within

the confidence band B. Therefore, as implied by the monotonicity property proved

in Lemma 1, it holds that s > sb > sopt. In this case the algorithm updates s to sb

as the new upper bound for sopt and sets the current mixture candidate to Fb in

lines 6 and 7. Otherwise, again by Lemma 1, the relation sopt ≥ sb > lb must hold,

since there exists a monotone step function for the shrinkage factor sb leading to a
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mixture in B. Thus, sb is a better lower bound to sopt than lb. In this case lb is

updated to sb, while all other quantities are kept.

Algorithm 4: Binary Search

Input : lb and ub, current lower and upper bounds on sopt
Output : Updated mixture F , shrinkage factor s and lower bound lb

1 sb ← (lb + ub)/2;
2 ∀z ∈ Z : d(z)← max{0, L(z)− sb ·Ge(z)};
3 ∀z ∈ Z : Hb(z)← max

z′≤z
{d(z′)};

4 Fb ← sb ·Ge(z) +Hb;
5 if ∃z ∈ Z : Fb(z) > U(z) then
6 s← sb;
7 F ← Fb;
8 else
9 lb ← sb;

10 return (lb, s,F);

2.3.5 Normalisation Algorithm

As shown in Theorem 1, Problem 1 is solved when the loop of Algorithm 1 (lines 5

to 11) stops. At this point the current value of s is the optimal shrinkage factor sopt.

The current mixture is F = sopt ·Ge+(1−sopt) ·Hmin and lies within the confidence

band. However, as pointed out in the description of Problem 2, F may not be a

proper distribution function. It may hold that lim
x→∞
F(x) < 1, as illustrated in the

lower left part of Figure 1. This deficiency is corrected by the normalisation step

presented in Algorithm 5.

To check whether F must be enlarged the algorithm computes zmeq, the maximal

value z ∈ Z where F(z) equals U(z). If the last candidate mixture was proposed

by the binary search, there may not exist an intersection of F and U . In this

case the algorithm sets zmeq = min(Z). If zmeq = max(Z) is satisfied, the property

F(max(Z)) = F(zmeq) = U(zmeq) = U(max(Z)) = 1 holds, so no further correc-
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tions are necessary and F is returned. Otherwise, as stated in the motivation

to Problem 2, adding probability mass before zmeq leads to a violation of U in

zmeq. Since sopt is already determined, such a violation cannot be repaired by

further shrinking as in the Shrink-Up step. Thus, probability mass must be added

after zmeq. In fact, the region where mass should be added can be restricted even

further. This holds, because adding mass in regions where F is above Fe pushes

the mixture further apart from Fe. We thus define znorm as the smallest value in Z

such that znorm > zmeq and F(znorm) < Fe(znorm) holds and modify F on the set

Mnorm = {z ∈ Z|z ≥ znorm} only.

Algorithm 5: Normalisation

Input : Current value of F
Output : Final value of F

1 if ∀z ∈ Z : F(z) < U(z) then
2 zmeq ← min(Z);

3 else
4 zmeq ← max

z∈Z
{z |U(z) = F(z)};

5 if zmeq 6= max(Z) then
6 znorm ← min

z>zmeq
{z | F(z) < Fe(z)};

7 ∀z ≥ znorm : d(z)← min{Fe(z)−F(z), 1−F(max(Z))};
8 if max

z≥znorm
{−d(z)} ≥ 1−F(max(Z)) then

9 z̃ ← max
z≥znorm

{z | − d(z) ≥ 1−F(max(Z))};

10 znorm ← min
z>z̃
{z | d(z) > 0};

11 ∀z ≥ znorm : Hnorm(z)←

max

{
0,

(
max

znorm≤z′≤z
{d(z′)}+ min

z′′≥z
{d(z′′)}

)
/2

}
;

12 ∀z < znorm : Hnorm(z)← 0;
13 F ← F +Hnorm;

14 return (F);

The residuals d(z) = Fe(z) − F(z) are computed for all z ∈ Mnorm in line 7.

Residuals larger than the remaining mass 1 − F(max(Z)) are decreased to this
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value, because more probability mass is not available anyways. Hereafter, the

algorithm compares two quantities. The first one is the maximal increase of F

above Fe, the maximum of all negative residuals −d(z), z ∈ Mnorm. The second

one is the imposed maximal decrease of F below Fe, namely 1−F(max(Z)). As

long as the first is greater or equal to the second one, adding probability mass does

not decrease the Kolmogorov-Smirnov distance. Hence, in line 9 the algorithm

determines the last position where this inequality holds. It then updates znorm to be

greater than this position. This yields an updated set Mnorm = {z ∈ Z|z ≥ znorm}

where a reduction of the Kolmogorov-Smirnov distance is possible. At the latest,

Mnorm is the last region where F lies below Fe.

To determine an appropriate modification of the current candidate F , the residuals

d are considered on Mnorm. Since a monotone function fitting the residuals in

the Kolmogorov-Smirnov sense must be determined, we are dealing with an L∞

isotonic regression problem. Unweighted isotonic regression problems under the

L∞-norm can be efficiently solved in linear time for sorted samples. This can be

achieved by a simple approach, which is referred to as Basic by Stout (2012). The

method is applied in line 11 of Algorithm 5. For each residual, it computes the

maximum of all previous values and the minimum of all subsequent values. The

regression value is then determined as the average of these two quantities.

Note that a solution to the isotonic regression problem may in general be negative

for some z ∈Mnorm. The correction term Hnorm however must be nonnegative to

guarantee the monotonicity of the mixture and no violations of L. We resolve this

issue proving that setting all negative values of Hnorm to 0 results in an optimal

solution to the isotonic regression problem constraint to nonnegativity, see Lemma

5. Since no correction is applied before znorm, Hnorm is set to 0 before znorm in line

12. Finally, F is updated and returned. The resulting overall mixture is presented

in the lower right part of Figure 1.
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2.4 Theoretical Analysis

In this section theoretical results for the algorithms presented in Section 2.3 are

provided. Among other things, we prove a monotonicity property allowing to apply

the binary search technique to Problem 1. Also, the Shrink-Down and Shrink-Up

steps are shown to lead to upper bounds on sopt. While the first part of this section

deals with the correctness of the demixing algorithm, the second one presents its

runtime analysis.

First, let us introduce additional notations used repeatedly in our proofs. The

shrinkage factor of Ge, the scaled correction function and the mixture candidate

after the k-th iteration of the main loop of Algorithm 1 (lines 5 to 11) are denoted

by sk, Hk and Fk = sk · Ge + Hk, respectively. In order to initialise them, we

set s0 = 1, H0 = 0 and F0 = Ge. Let sd,k denote the multiplicative update of

the shrinkage factor determined in the Shrink-Down step in the k-th iteration. If

this update is not computed, we set sd,k = 1. The update of the shrinkage factor

determined in the Shrink-Up step of the k-th iteration is called su,k and treated in

the same way.

2.4.1 Correctness of the Algorithm

As we show in our first result, the property of lying within the confidence band

is monotone in s. In other words, for any s > sopt a corresponding mixture must

violate a boundary of B, while for every s ≤ sopt it is always possible to find a

mixture in B. This fact allows to prove the correctness of our binary search step.
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Lemma 1. (∃H ∈M∗ : s ·Ge + (1− s) · H ∈ B)⇔ s ∈ [0, sopt].

Proof. First we recall the definition of Problem 1 from page 16:

max
s∈[0,1]

: s

s.t. : ∃H ∈M∗ : ∀z ∈ Z :

L(z) ≤ s ·Ge(z) + (1− s) · H(z) ≤ U(z), (2.4)

where M∗ denotes the set of all monotonically nondecreasing step functions dis-

continuous on Z only and converging to 0 as their argument goes to −∞. We

introduce an alternative characterisation of sopt by Problem A:

max
s∈[0,1]

: s

s.t. : ∀z ∈ Z : s ·Ge(z) ≤ U(z) (2.5a)

∀z′, z′′ ∈ Z, z′ < z′′ : L(z′)− s ·Ge(z
′) ≤ U(z′′)− s ·Ge(z

′′) (2.5b)

Before we proceed with proving the proposition, we show the equivalence of Problem

1 and Problem A. For this sake, choose an arbitrary s ∈ [0, 1] such that (2.4) holds.

For all z ∈ Z it follows that s·Ge(z) ≤ U(z)−(1−s)·H(z) ≤ U(z) by nonnegativity

of (1− s) · H, which proves inequality (2.5a). Furthermore, choose z′ < z′′ from Z

arbitrarily. Then L(z′)−s·Ge(z
′) ≤ (1−s)·H(z′) ≤ (1−s)·H(z′′) ≤ U(z′′)−s·Ge(z

′′)

follows by monotonicity ofH. Thus, (2.5b) is also respected. For the other direction,

let s ∈ [0, 1] respect constraints (2.5a) and (2.5b). From (2.5a) it is clear that

s ·Ge(z) never exceeds the upper boundary. From (2.5b) we know that correcting

any deficiency to the lower boundary L is possible without violating the upper

boundary U on subsequent positions. Choosing

(1− s) · H(z) = max

{
0,max

z∗≤z
{L(z∗)− s ·Ge(z

∗)}
}
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thus must result in a mixture within the confidence band so that (2.4) holds.

We now make use of the equivalence of Problem 1 and Problem A to prove the

proposition:

(∃H ∈M∗ : s ·Ge + (1− s) · H ∈ B)⇔ s ∈ [0, sopt].

For s ∈ (sopt, 1] the property s · Ge + (1 − s) · H /∈ B immediately follows by

definition of sopt for any H ∈ M∗. So let s ∈ [0, sopt] be arbitrarily chosen. By

the equivalence of Problem 1 and Problem A the constraints (2.5a) and (2.5b) are

respected for sopt. From this we deduce that both conditions must also hold for

s since ∀z ∈ Z : s ·Ge(z) ≤ sopt ·Ge(z) ≤ U(z) and furthermore for all z′, z′′ ∈ Z

with z′ < z′′ it follows

L(z′)− s ·Ge(z
′) = L(z′)− sopt ·Ge(z

′)− (s− sopt) ·Ge(z
′)

(2.5b)

≤ U(z′′)− sopt ·Ge(z
′′)−(s− sopt)︸ ︷︷ ︸

≥0

·Ge(z
′)

≤ U(z′′)− sopt ·Ge(z
′′)− (s− sopt) ·Ge(z

′′)

= U(z′′)− s ·Ge(z
′′).

Hence, L(z′)− s ·Ge(z
′) ≤ U(z′′)− s ·Ge(z

′′) holds. As shown before, constraints

(2.5a) and (2.5b) are equivalent to constraint (2.4). Therefore, there exists an

H ∈M∗ so that s ·Ge + (1− s) · H ∈ B holds. This completes the proof.

In the next lemma the correction function Hk computed in the k-th iteration of

the main loop is considered. As we prove, Hk is indeed the minimal function in

M∗ resolving violations of the lower boundary L. This result contributes to the

correctness of our construction of Hmin and is used in subsequent proofs.
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Lemma 2. Hk is the pointwise minimal function among all H ∈ M∗ satisfying

sk ·Ge +H ≥ L.

Proof. Let Hk,min ∈ M∗ be the minimal function fulfilling sk · Ge +Hk,min ≥ L.

To prove the claim we show Hk = Hk,min. The correction function Hk is either

computed in the binary search or in the Shrink-Up step. In the first case, the

residuals between sk · Ge and the lower boundary L are determined and then

minimally monotonised, cf. lines 2 and 3 of Algorithm 4. This monotonisation is

performed considering the maximum of preceding values and is therefore minimal.

Hence, this procedure must yield Hk,min. In the remainder of this proof we thus

treat the second case, namely the computation of Hk in the Shrink-Up step.

Following the lines 6 to 7 in Algorithm 3 on page 23, let us consider dk =

max(0, L − sd,k · su,k · Fk−1). These are the positive deficiencies to L after po-

tential shrinking of the last candidate Fk−1 in the Shrink-Down and Shrink-Up

step of iteration k. Setting F̃k = sd,k · su,k · Fk−1 + dk the correction function

Hk can be expressed as Hk = mon
(
F̃k − sk ·Ge

)
. Thereby, mon(f) denotes the

pointwise minimal monotone function such that mon(f) ≥ f for any function f .

This monotonisation is performed analogically to the one in the binary search step

by considering the maximum of preceding values. Note that the monotonising

operator is itself monotone, that is, mon(f1) ≤ mon(f2) holds for two arbitrary

functions f1, f2 such that f1 ≤ f2. We show the proposition Hk = Hk,min by

induction:

Base case k = 1: By assumption H1 is computed in the Shrink-Up step, so

s1 = sd,1 · su,1 holds. In addition, F0 is defined by F0 = Ge. Hence, d1 =

max(0, L − sd,1 · su,1 · F0) = max(0, L − s1 · Ge) ≤ H1,min must hold, since the

last inequality holds by definition of H1,min. Because of F̃1 = s1 · Ge + d1 we
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obtain H1 = mon(F̃1 − s1 · Ge) = mon(d1) ≤ mon(H1,min) = H1,min, where

the inequality follows by the monotonicity of the monotonising operator. Thus

H1 ≤ H1,min is established. To prove the other inequality, note that H1 ∈ M∗

and H1 = mon(d1) ≥ d1. Hence, H1,min ≤ H1 follows by the definition of H1,min.

Altogether, we get H1,min = H1.

Inductive step k − 1 ⇒ k: The shrink updates sd,k and su,k are bounded by

1 by construction and thus the inequality sk ≤ sd,k · su,k · sk−1 ≤ sk−1 holds.

Hence, the shrinkage factor sk does not increase in k. From that we deduce

that the corresponding minimal correction function Hk,min does not decrease in

k. Consequently, we get Hk,min ≥ Hk−1,min ≥ sd,k · su,k · Hk−1,min. The correctness

of the (k − 1)-th step assumed by the induction principle yields Hk−1,min = Hk−1

resulting inHk,min ≥ sd,k ·su,k ·Hk−1. Next, note that sd,k ·su,k ·Fk−1 can be rewritten

to sk ·Ge + sd,k · su,k · Hk−1. This allows us to interpret dk as the minimal function

which must be added to sk ·Ge+sd,k ·su,k ·Hk−1 so that the lower boundary L of the

confidence band is not violated any more. Together with Hk,min ≥ sd,k · su,k · Hk−1

established above this implies sd,k · su,k · Hk−1 + dk ≤ Hk,min. Since in addition dk

is by construction minimally chosen such that F̃k = sd,k · su,k · Fk−1 + dk ≥ L holds,

we deduce

L− sk ·Ge ≤ F̃k − sk ·Ge = sd,k · su,k · Hk−1 + dk ≤ Hk,min.

Applying the monotonising operator and exploiting its monotonicity this implies

L− sk ·Ge ≤ mon (L− sk ·Ge) ≤ mon
(
F̃k − sk ·Ge

)
︸ ︷︷ ︸

=Hk

≤ mon (Hk,min) = Hk,min, (2.6)
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and therefore Hk ≤ Hk,min. To prove Hk ≥ Hk,min first note that Hk ∈M∗. The

inequalities (2.6) imply L ≤ sk ·Ge +Hk. So, by definition of Hk,min, Hk ≥ Hk,min

follows. Thus, overall Hk = Hk,min holds, which completes the proof.

The next result shows that the Shrink-Down step always leads to an overall shrinkage

factor s not lower than sopt. Therefore, the updated value of s may be used as an

improved upper bound for sopt in the binary search procedure.

Lemma 3. If sk > sopt is fulfilled, then sd,k+1 · sk ≥ sopt must hold.

Proof. The proposition is trivial for sd,k+1 = 1 so in the following sd,k+1 < 1 is

assumed. This means that the (k + 1)-th Shrink-Down step is not skipped but

executed. So Fk must lie above the upper boundary U for some values. Together

with the definition of sd,k+1 (page 22) this ensures the existence of a zeq ∈ Z such

that sd,k+1 · Fk(zeq) = U(zeq) holds. In the following we consider the two possible

cases for the correction function Hk = Fk − sk ·Ge:

Case Hk(zeq) = 0: Using the definition of zeq and Fk, we deduce

U(zeq) = sd,k+1 · Fk(zeq)

= sd,k+1 · (sk ·Ge(zeq) +Hk(zeq))

= sd,k+1 · sk ·Ge(zeq)

< Ge(zeq),

where the last inequality follows since 0 < sd,k+1 < 1, 0 < sk ≤ 1 and 0 < Ge(zeq).

The latter is satisfied, because otherwise 0 = Ge(zeq) would hold. In this case

Hk(zeq) = 0 immediately implies 0 = U(zeq), which is a contradiction to the positiv-

ity of U . The calculations show that the function Ge lies above the upper boundary
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U in zeq before any shrinking. However, the first Shrink-Down step solves this

problem. Because of Hk(zeq) = 0 there cannot be a new violation of U in zeq in sub-

sequent steps. Hence, k = 0 and consequently sk = 1 must hold. The proposition

sd,1 = sk · sd,k+1 ≥ sopt holds in this case, since sd,1 is by construction the max-

imal shrinkage factor avoiding violations of U before adding any correction function.

Case Hk(zeq) > 0: Let H̃ ∈ M∗ be the minimal function one must add to

sd,k+1 · sk · Ge in order to correct violations of the lower boundary L. Due to

sd,k+1 ≤ 1 we get sd,k+1 · sk ·Ge ≤ sk ·Ge. Thus H̃ ≥ Hk holds by minimality of Hk

shown in Lemma 2. Since by assumption 0 < sd,k+1 < 1 holds, this allows to prove

U(zeq) = sd,k+1 · Fk(zeq)

= sd,k+1 · (sk ·Ge(zeq) +Hk(zeq))

< sd,k+1 · sk ·Ge(zeq) +Hk(zeq)

≤ sd,k+1 · sk ·Ge(zeq) + H̃(zeq).

Thus, sd,k+1 · sk ·Ge + H̃ violates the upper boundary of the confidence band and

thus does not lie in B. By minimality of H̃ Lemma 1 yields sd,k+1 · sk > sopt, which

completes the proof.

The following proposition concerns the additional shrinkage performed in the

Shrink-Up step. Similarly to Lemma 3, it states that a Shrink-Up step cannot lead

to shrinkage factors below sopt. The lemma therefore allows to use the updated

overall shrinkage factor s as an improved upper bound on sopt.
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Lemma 4. If sd,k+1 · sk > sopt is fulfilled, then su,k+1 · sd,k+1 · sk ≥ sopt must hold.

Proof. The statement is obviously fulfilled for su,k+1 = 1. It is also clear in case of

k = 0 by construction of the shrink update su,1. So let su,k+1 < 1 and k ≥ 1 hold

in the following. We prove the proposition by contradiction and thus assume

sd,k+1 · sk > sopt > sd,k+1 · su,k+1 · sk. (2.7)

Let us consider the preceding candidate mixture Fk. Fk /∈ B must hold, because

otherwise the algorithm would have stopped after k iterations. Furthermore,

Fk ≥ L is guaranteed by construction of the Shrink-Up and binary search steps.

Therefore, Fk must violate the upper boundary U in the assumed case k ≥ 1. Thus,

a Shrink-Down step was executed before the current Shrink-Up step. Hence, the

point

zeq = min {z ∈ Z|sd,k+1 · Fk(z) = U(z)}

is well defined. The assumption su,k+1 < 1 implies that a Shrink-Up step is

carried out and ∃z ∈ Z : z < zeq. By definition of zeq, each z < zeq satisfies

sd,k+1 · Fk(z) < U(z) ≤ U(zeq). From that we deduce

∀z < zeq : sd,k+1 · Fk(z)− U(zeq) < 0. (2.8)

Now consider the point

z′ = max

{
argmax
z<zeq

(L(z)− sd,k+1 · su,k+1 · Fk(z))

}
.

By the definition of

su,k+1 = max {s ∈ [0, 1]|∀z < zeq : L(z)− s · sd,k+1 · Fk(z) ≤ U(zeq) · (1− s)}
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it follows that

L(z′)− su,k+1 · sd,k+1 · Fk(z′) = U(zeq) · (1− su,k+1). (2.9)

We also consider another point z′′ = min{argmaxz≤zeq Hk(z)}. Using the minimal

property of Hk proved in Lemma 2, for k ≥ 1 one can deduce Fk(z′′) = L(z′′).

This implies z′′ < zeq. Since Fk ≥ L holds by construction of Fk, for all z ≤ z′′ we

obtain

L(z)− su,k+1 · sd,k+1 · Fk(z) ≤ Fk(z)− su,k+1 · sd,k+1 · Fk(z)

= (1− su,k+1 · sd,k+1) · Fk(z)

≤ (1− su,k+1 · sd,k+1) · Fk(z′′)

= Fk(z′′)− su,k+1 · sd,k+1 · Fk(z′′)

= L(z′′)− su,k+1 · sd,k+1 · Fk(z′′).

Combining this result with z′′ < zeq derived before we get z′ ≥ z′′. Using the

monotonicity of Hk and the definition of z′′ we deduce

Hk(z
′) = Hk(z

′′) = Hk(zeq). (2.10)

We now combine (2.7), (2.8), (2.9) and (2.10) to prove the proposition. By Lemma 3

and sopt ≥ s∗ > 0 (page 16) the inequality sd,k+1 ·sk > 0 holds. Thus, su2 = sopt
sd,k+1·sk

is well defined. Inequality (2.7) implies

1 ≥ su2 > su,k+1. (2.11)
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This allows us to show

L(z′)− su2 · sd,k+1 · Fk(z′)

= L(z′) + (−su,k+1 · sd,k+1 + su,k+1 · sd,k+1 − su2 · sd,k+1) · Fk(z′)
(2.9)
= U(zeq) · (1− su,k+1) + su,k+1 · sd,k+1 · Fk(z′)− su2 · sd,k+1 · Fk(z′)

= U(zeq)− su2 · sd,k+1 · Fk(z′) + su,k+1 · (sd,k+1 · Fk(z′)− U(zeq))︸ ︷︷ ︸
< 0 by (2.8)

(2.11)
> U(zeq)− su2 · sd,k+1 · Fk(z′) + su2 · (sd,k+1 · Fk(z′)− U(zeq))

= U(zeq) · (1− su2).

We thus get

U(zeq) · (1− su2) < L(z′)− su2 · sd,k+1 · Fk(z′). (2.12)

We now use sopt ·Ge +Hopt ≥ L, which holds by definition of Hopt, to show

U(zeq) = U(zeq) + su2 · (sd,k+1 · Fk(zeq)− U(zeq))︸ ︷︷ ︸
= 0 by definition of zeq

= U(zeq) · (1− su2) + su2 · sd,k+1 · Fk(zeq)
(2.12)
< L(z′)− su2 · sd,k+1 · Fk(z′) + su2 · sd,k+1 · Fk(zeq)

= L(z′)− su2 · sd,k+1 · (sk ·Ge(z
′) +Hk(z

′)) + su2 · sd,k+1 · Fk(zeq)

= L(z′)− su2 · sd,k+1 · sk︸ ︷︷ ︸
= sopt by definition of su2

·Ge(z
′) + su2 · sd,k+1 · (Fk(zeq)−Hk(z

′))

≤ Hopt(z
′) + su2 · sd,k+1 · (sk ·Ge(zeq) +Hk(zeq)−Hk(z

′)︸ ︷︷ ︸
= 0 by (2.10)

)

≤ Hopt(zeq) + sopt ·Ge(zeq).
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Thus, the upper boundary U is violated for sopt, which contradicts its definition.

Therefore, the proposition follows.

The next result justifies the way we correct a solution to the unconstrained isotonic

regression problem in line 11 of Algorithm 5. As we prove, setting its negative values

to zero leads to the same L∞-distance as in the constrained problem. It therefore

yields an optimal solution to the latter. Keep in mind that the unconstrained

isotonic regression problem is solved by the Basic approach (Stout, 2012). This

algorithm computes the maximum of all previous values and the minimum of all

subsequent values for each observation. It then chooses the regression value as the

average of these two quantities.

Lemma 5. Let x ∈ Rd be arbitrary. Denote by xL the optimal solution of the L∞

isotonic regression of x computed by the Basic approach (Stout, 2012). Define

the new vector xL0 = max(xL, 0) by component-wise comparison to 0. Let xLc

be an optimal solution of the L∞ isotonic regression of x with the constraint of

nonnegativity. Then xL0 is also an optimal solution to the constraint problem:

L∞(x, xLc) = L∞(x, xL0).

Proof. We show the statement considering the two distinct cases min(x) ≥ 0

and min(x) < 0 consecutively. At first, assume that min(x) ≥ 0 holds. Then,

by construction of xL, we can deduce xL ≥ 0. Thus, xL0 is equal to xL. As a

nonnegative vector it also satisfies L∞(x, xLc) ≤ L∞(x, xL0). Since introducing

constraints to a problem cannot lead to a better value of the objective function in

the optimum, it must hold that L∞(x, xLc) ≥ L∞(x, xL) = L∞(x, xL0). Together,

this yields the result restricted to the case min(x) ≥ 0.

We now consider the case min(x) < 0. The negative values of xL set to zero in

xL0 result in a maximal deviation of −min(x) to x. We thus get L∞(x, xL0) =
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max(L∞(x, xL),−min(x)). Also, min(x) < 0 and xLc ≥ 0 imply L∞(x, xLc) ≥

−min(x), so that we deduce

L∞(x, xL0) = max(L∞(x, xL),−min(x))

≤ max(L∞(x, xL), L∞(x, xLc))

= L∞(x, xLc).

The last inequation follows, because a constraint problem cannot lead to a solution

with a better value of the objective function compared to the corresponding

unconstrained problem. Thus, L∞(x, xL0) ≤ L∞(x, xLc) holds. The converse

inequality L∞(x, xL0) ≥ L∞(x, xLc) follows from the definition of xLc, since xL0 ≥ 0.

Both together yield the result restricted to the case min(x) < 0, which completes

the proof.

We now collect all previous results to prove the correctness of our algorithm.

Theorem 1. Algorithm 1 returns sopt and a corresponding solution Hopt optimal

in the sense of Problems 1 and 2, respectively.

Proof. Lemma 1 shows that for s > sopt no mixture can lie within the confidence

band B while for s ≤ sopt there always exists a mixture lying in B. By the

monotonicity of this property the binary search step converges to sopt. Lemmas 3

and 4 allow to update the upper bound of the binary search by the values of the

shrinkage factor after each Shrink-Down and Shrink-Up step. Hence, these steps

further reduce the range of possible candidates for sopt, while never excluding sopt.

Therefore, the correct sopt is still determined. Lemma 2 implies that the correcting

function Hk after termination of the main loop of Algorithm 1 is the function Hmin

introduced on page 16, which is required for solving Problem 2. Finally, Lemma 5

allows to correct the solution to the unconstrained L∞ isotonic regression problem
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finding an optimal solution to the constrained problem on the set Mnorm. Thus a

valid solution Hopt is generated, which completes the proof.

2.4.2 Runtime Analysis

For the runtime analysis of our algorithm we introduce a precision parameter ε.

This quantity never appears in our pseudo code or the actual implementation.

Instead, think of it as the machine precision, which might depend on the physical

architecture, the operating system or the programming environment. The main loop

of Algorithm 1 in lines 5 to 11 runs until the mixture F lies within the confidence

band up to an additive deviation of ε. In other words, the loop stops as soon as for

all z ∈ Z the property L(z)− ε ≤ F(z) ≤ U(z) + ε holds. In the following theorem

we prove that this condition is met after a constant number of iterations. This

yields an overall running time linear in the input size and logarithmic in 1
ε
. Hereby,

we exclude the O(n log n) time needed for computing the cumulative distribution

functions by assuming sorted input data. We rather focus on the linear running

time of the actual analysis.

Theorem 2. Let ε ∈ (0, 1) be a fixed machine precision parameter. On an input

of n+m sorted observations, Algorithm 1 runs for at most O
(
log
(

1
ε

))
iterations.

Each iteration can be implemented to run in time O (n+m). The total running

time is therefore of order O((n+m) log
(

1
ε

)
).

Proof. The Shrink-Down, the Shrink-Up, the binary search step and the normal-

isation step can be implemented in linear, i.e. O(n + m), time. The solution to

the isotonic regression subproblem (line 11 in Algorithm 5) can be computed in

linear time as noted by Stout (2012). Therefore, it remains to bound the number

of iterations of the loop in lines 5 to 11 of the main algorithm. The search interval
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for s is initialized to [s∗, 1] ⊂ [0, 1]. It is halved at the end of every iteration by the

binary search step. The Shrink-Down and Shrink-Up steps can only further decrease

the upper bound and consequently the size of the search interval. Therefore, after

dlog2

(
2
ε

)
e iterations the size of the interval decreases to at most 2−dlog2( 2

ε)e < ε
2
.

So, after dlog2

(
2
ε

)
e iterations every value between the upper and lower boundary

lies within additive precision ε
2

to sopt. Consider an s ∈
[
sopt − ε

2
, sopt + ε

2

]
and let

Hs ∈M∗ be the minimal function such that s ·Ge + (1− s) · Hs ≥ L holds. Using

s ≥ sopt − ε
2

we see that s ·Ge ≥
(
sopt − ε

2

)
·Ge = sopt ·Ge − ε

2
·Ge ≥ sopt ·Ge − ε

2

holds. This implies (1− s) · Hs ≤ (1− sopt) · Hopt + ε
2

and we deduce

s ·Ge + (1− s) · Hs ≤
(
sopt +

ε

2

)
·Ge + (1− sopt) · Hopt +

ε

2

≤ sopt ·Ge + (1− sopt) · Hopt + ε

≤ U + ε,

because sopt · Ge + (1 − sopt) · Hopt ≤ U holds by definition of sopt and Hopt. An

analogous argument shows s ·Ge+(1−s) ·Hs ≥ L−ε. Thus, the stopping criterion

L− ε ≤ F ≤ U + ε is met after dlog2

(
2
ε

)
e iterations and the result follows.

2.5 Practical Evaluation

In this section the performance of our algorithm is investigated in simulation

scenarios as well as on real datasets from astrophysics and bioinformatics. We

also illustrate its linear running time and compare it to an alternative demixing

procedure. In addition, the method’s behaviour in case of false rejections of the

null hypothesis is studied.
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Our algorithm represents the determined correction distributions by their cumula-

tive distribution functions. However, probability density functions and the first two

moments allow to capture the main features of a distribution more intuitively. We

thus present our results via estimated densities and empirical moments rather than

using the distribution functions. Keep in mind that in applications this approach is

not mandatory, because the determined distribution function contains all relevant

information available. Improving simulations based on this distribution function

directly is perfectly fine in practice. Thus, the additional estimations are not

regarded as part of our method and are conducted for the purpose of presentation

only. To asses their effect the interested reader is referred to Serfling (1980) and

Devroye and Györfi (1985).

In order to attain estimators of the first two moments and the density of a correction

distribution, we first determine the empirical density function corresponding to

the calculated correction distribution function. This is achieved by considering

consecutive differences of Hopt(z) using all z ∈ Z. We then generate 10 000 artificial

observations from this density using weighted sampling. Finally, the empirical

means and the empirical variances are computed from this artificial data. In

addition, kernel density estimation is conducted to estimate the corresponding

density. Given an i.i.d. sample x̃1, . . . , x̃l generated by an unknown density p̃, the

kernel density estimate of p̃ is defined by

p̂h(x) =
1

l · h

l∑
i=1

Kh (x, x̃i) ∀x ∈ R.

Hereby, Kh is for instance the Gaussian kernel function

Kh(x, z) =
1√
2π

exp

(
−1

2

(
x− z
h

)2
)
∀x, z ∈ R (2.13)
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with a bandwidth h > 0 always applied in the following. It is well known that in

most cases the choice of the bandwidth has a much stronger effect on the results

than the choice of the kernel function, cf. Devroye and Györfi (1985). Standard

algorithms for the selection of h are cross validation and the method of Sheather

and Jones (1991). The latter relies on a minimiser of the estimated mean integrated

squared error and is used for all computations involving kernel density estimators

in this work.

2.5.1 Performance and Runtime

In order to evaluate the algorithm it is applied in the popular setting of finite

Gaussian mixtures. For this purpose we generate equally sized dataset pairs for

each of the sample sizes n = m = 100, 500, 1 000, 5 000, 10 000, 50 000, 100 000. In

scenario a) for every dataset pair one sample is drawn from a standard Gaussian

distribution. The other sample also consists of observations from the standard

Gaussian distribution to a fraction of s = 0.3. The remaining observations stem

from a second Gaussian distribution with mean 3 and standard deviation 1. Our

demixing algorithm is therefore supposed to notice the different distributions of the

samples, estimate a mixing proportion of about 0.3 and recommend a correction

distribution with a mean near 3 and a standard deviation around 1.

In scenario b) the same sample sizes and also the case n = m is investigated. It is

more specific and resembles some of the situations encountered in our real data

applications. Instead of mixing two Gaussian distributions, the constant value 0 is

set for a fraction of 0.7 of the observations in each mixed dataset. The remaining

fraction of 0.3 is sampled from the Gaussian distribution with mean 3 and standard

deviation 1. The corresponding second sample representing the simulated data

consist of observations from the same Gaussian distribution entirely. In this setting
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the method is supposed to determine a shrinkage value sopt around 0.3 and propose

a correction distribution putting most of its probability mass at 0. Both scenarios

are replicated 1 000 times for each of the sample sizes.

Table 1 shows the results for both data cases averaged over the 1 000 replications.

In scenario a) we list the determined shrinkage factors sopt as well as the mean

and standard deviation of samples of size 10 000 drawn from the determined

correction distribution Hopt for each sample pair. The second half of the table

corresponds to scenario b). In addition to the determined shrinkage factors sopt, the

mean probability assigned to the value 0 by the determined correction distribution

functions Hopt is presented. As we see, our demixing leads to an overestimation

of the expected mixing proportion 0.3, which decreases in the sample size. This

is not surprising, since by definition sopt is the maximal shrinkage factor such

that the corresponding mixture lies in the confidence band. Therefore, as the

sample size increases, the radius of the confidence band becomes smaller and

hence sopt converges towards the true mixture proportion. The estimated mean

and standard deviation in data setting a) behave similarly approaching 3 and 1,

respectively. In scenario b) even for small sample sizes an overwhelming majority

of the probability mass in Hopt is assigned to the value 0. This is correct, since by

construction the differences between the sample pairs are caused by the zero values

only. Altogether, the correction distributions proposed by the method reflect the

discrepancies between the sample pairs quite well in both scenarios.

In Figure 2 we illustrate the algorithm output for scenario a) and n = m = 1 000.

In the upper row kernel density estimations of the two samples are presented

according to their roles in our framework. Demixing the samples using Algorithm

1 leads to the shrinkage factor sopt = 0.39, which is a reasonable approximation of

the true mixture proportion s = 0.3. Using the approach described on page 41, we

generate a third sample with 10 000 observations from the correction distribution
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Figure 2: Kernel density estimates for two samples (upper row), the computed
mixture (bottom right) and the correction distribution (bottom left) in the Gaussian
mixture setup a).
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characterised by Hopt. Its mean 3.3 and standard deviation 0.81 resemble the

desired values 3 and 1, respectively. The corresponding kernel density estimation

shown on the right in the lower row is almost symmetrical and unimodal. Hence,

the correction distribution represents the Gaussian distribution quite well, which

is the difference between the underlying distributions of the first and the second

sample. The final mixture distribution proposed by Algorithm 1 is illustrated in

the lower left corner. It corresponds to the weighted sum of the distribution of the

simulated sample and the correction distribution. The graph resembles the one of

the observed sample as desired.

In order to study the running time of our algorithm we again make use of the

data scenarios a) and b). For comparison a simpler demixing approach called

binary search procedure is considered. It determines the optimal shrinkage factor

sopt relying only on the binary search. In contrast to Algorithm 1, the Shrink-

Down and Shrink-Up steps are not conducted. Both steps are in principle not

necessary to obtain the correct solutions to Problem 1 and 2, but are supposed to

accelerate the computation. Thus, the determined sopt and Hopt are identical for

both methods, but the running times differ. The corresponding running times for

both algorithms in data case a) are shown in Figure 3. Thereby, the time needed for

precomputing the empirical distribution functions is not included. For the sake of

presentation, the running times for the two largest sample sizes n = m = 50 000 and

n = m = 100 000 are not included. These were 1.18 and 2.47 seconds, respectively,

for Algorithm 1 and 6.2 and 12.33 seconds, respectively, for the binary search

procedure. We also omit the running times for scenario b), which are essentially

the same as in a). All results are averages over 1 000 repetitions.

In accordance with Theorem 2, the running time for both algorithms increases

linearly in the sample size given sorted input data. It is by a factor of approximately

6 smaller for Algorithm 1 than for the binary search procedure for both data cases.



2. DEMIXING EMPIRICAL DISTRIBUTION FUNCTIONS 47

This shows that the Shrink-Down and Shrink-Up steps lead to huge savings in

computation time and are therefore very valuable in particular for large datasets.
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Figure 3: Average running times in seconds for Algorithm 1 (black) and the binary
search procedure (red) computed on sorted samples for different sample sizes in
the Gaussian mixture case a).

2.5.2 Estimated Shrinkage Factors under the Null Hypothesis

Under H0 : P = Q both analysed samples stem from the same distribution. In this

situation the Kolmogorov-Smirnov test rejects by mistake in about an α-fraction

of the cases, where α is the predefined significance level. A reasonable procedure

comparing the samples after a false rejection should recognise their similarity. Thus,

a shrinkage factor near 1 is desirable in such cases.

To check the performance of our method under H0, dataset pairs are generated

for the sample sizes n = m = 100, 500, 1 000, 5 000, 10 000. All samples stem from

the standard Gaussian distribution. Other distribution types like exponential and

t-distributions were also considered and led to comparable results. For each sample

size, dataset pairs are simulated until the Kolmogorov-Smirnov test rejects 1 000

times. These 1 000 dataset pairs are passed to Algorithm 1. The corresponding
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shrinkage factors determined by the method are presented via boxplots in Figure 4.

All of them are less than 1 by construction.
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Figure 4: Boxplots of shrinkage factors sopt determined by Algorithm 1 for different
sample sizes after a false rejection of the null hypothesis H0 : P = Q for data
generated from the standard Gaussian distribution.

As suggested by the results, even for small sample sizes the majority of shrinkage

values are greater than 0.9. Increasing the sample size further reduces the amount of

small shrinkage values. Thus, our method performs as desired: if no modifications

are actually necessary, the algorithm proposes to perform none or only small

modifications to the current samples.

2.5.3 Application to Astrophysical Data

In this section we apply Algorithm 1 to investigate data from astrophysics motivating

our work. The data situation is introduced on page 9. We consider simulated proton

data and compare it to observations recorded by the gamma ray detectors MAGIC-
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I and MAGIC-II. The latter are almost completely induced by protons. Both

datasets consist of 5 000 observations and contain 54 continuous attributes we work

with. Among other features, these variables include characteristics of the recorded

atmospheric signals and their reconstructed trajectory. The attributes are identical

for both datasets. Our method is supposed to determine attributes differing the

most for simulated protons and observed data and quantify their discrepancies.

This information can subsequently be used to improve the background simulation.

The Kolmogorov-Smirnov test comparing the real data and the simulation rejects

the null hypothesis for all but two attributes. However, 37 of the 54 attributes have

shrinkage factors above 0.85, which indicates a suitable proton simulation overall.

The upper row of Figure 5 provides kernel density estimates for the observed and

simulated data for the attribute Length1. This variable describes the length of

the ellipse fitted to an atmospheric signal measured by the MAGIC-1 detector.

The Kolmogorov-Smirnov test for Length1 rejects H0 : P = Q and results in a

comparably low shrinkage factor of 0.75. Therefore, the simulation of this variable

might be inadequate and the corresponding simulation steps seem to be worth

inspecting in more detail. In the lower right corner of Figure 5, a kernel density

estimation for the corresponding correction distribution characterised by Hopt is

presented. It is determined on 10 000 observations generated by the sampling

technique introduced on page 41. The plot in the lower left corner shows the

density estimates for the simulated and the correction distribution weighted by

0.75 and 0.25, respectively. In addition, the density estimate for the final mixture

is included. All plots are presented on the same scale.

The coarse form of the density estimates for the observed data and the simulation

in the upper row is quite similar showing one major peak around 25. However,

there are some slight discrepancies. Compared to the real data curve, the main

peak of the simulation is considerably higher. While the curve for the real data has
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Figure 5: Kernel density estimates for the attribute Length1 based on the observed
data (top left), the simulated data (top right), the determined mixture (bottom
left) as well as the correction distribution (bottom right).
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a plateau around 90, there is a steadily falling curve for the simulation. Although

these differences are not very large, it is quite unlikely that they are induced

by the sample variance due to the large sample sizes. To assess whether this

is realistic or not, we conducted several simulations considering kernel density

estimates for a broad class of distributions using 5 000 observations in each sample.

The dissimilarities in these simulations were much smaller than for the Length1

attribute. This supports the conjecture that the Kolmogorov-Smirnov test correctly

rejects the null hypothesis of equal distributions. To correct the simulated sample

one obviously has to generate less observations around 25 and more around 90.

Exactly this is proposed by the correction distribution presented in the lower right

corner of Figure 5. The corresponding density graph based on the estimated Hopt

has a peak near 25, but also another one of comparable height and greater width

near 90. Therefore, it gives the region around 90 about as much weight as the one

around 25, in contrast to the simulated sample. The combination of the simulated

and the correction distributions leads to the density graph of the final mixture

presented by the solid black curve in the lower left plot of Figure 5. It resembles the

density estimate for the observed data quite well. On the one hand, the height of

the main peak is corrected, which is achieved by the shrinking. On the other hand,

the required plateau is introduced to the mixture by the correction distribution. As

similar but somewhat smaller correction is performed for the plateau around 140.

2.5.4 Application to Bioinformatical Data

Algorithm 1 is also illustrated on so called ion mobility spectrometry (IMS) mea-

surements. IMS data allows to detect volatile organic compounds in the air or

in exhaled breath. For the analysis, groups of measurements are summarised in

spectrograms, two-dimensional data structures similar to heat-maps. Motivated by
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the need to process the measurements in real-time as they arrive one-by-one, it is a

usual approach to find and annotate major peaks in the spectrograms. In this way

the original information is reduced to the position and shape parameters of the

peaks and storage is saved. To automate and speed-up the computations D’Addario

et al. (2014) propose to approximate the measurements by finite mixtures of proba-

bility density functions. More precisely, both dimensions of the spectrograms are

modelled independently by mixtures of inverse Gaussian densities. The correspond-

ing parameters of the densities are estimated using an EM algorithm.

For the evaluation of these models we focus on one of the dimensions and condition

on the other. This results in 6 000 spectrograms consisting of 12 500 data points

each. They stem from 10 minutes of IMS measurement, cf. Kopczynski et al. (2012).

This data consist of 187 groups of spectrograms. Hereby, each spectrogram in a

group belongs to the same peak model and the models differ over the groups. Both

the spectrograms as well as the bioinformatic mixture models can be regarded as

probability density functions up to some normalising constants. This allows us to

draw samples of size 1 000 from each spectrogram and the corresponding mixture

model. In order to evaluate the bioinformatic models we apply our algorithm to

the corresponding pairs of datasets.

In general our algorithm suggests that the models fitted by the bioinformaticians

approximate their spectrograms reasonably well, since in 152 of the 187 groups the

mean shrinkage factor for the spectrograms is above 0.8. In addition, we identify

some interesting groups of spectrograms. The shrinkage factors of two of these are

shown in Figure 6. Keep in mind that the spectrogram index represents the second

dimension of the data we condition on. In both groups the model in the second

dimension consists of a single inverse Gaussian density.
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Figure 6: Shrinkage factors sopt for two groups of spectrograms.

Our results for group A suggest that the first half of the measurements are modelled

quite well by the bioinformaticians’ EM algorithm, but for increasing spectrogram

indices the approximation is getting worse. This shows that the bioinformatics

model in the second dimension is not appropriate. Instead of a single inverse

Gaussian density, two components would probably lead to better approximations.

In contrast to that, the shrinkage factors for group B indicate a sufficient number

of components used in the second dimension. For the spectrograms in the middle

we have shrinkage factors close to one. Thus the corresponding models are close

to the observed spectrograms. However, going to the left and right borders, the

spectrograms seem to be fitted quite poorly, since the shrinkage factors are lower

than 0.2. The two leftmost and two rightmost models are a little closer to their

spectrograms with shrinkage values between 0.4 and 0.6. Taking the models of

Kopczynski et al. (2012) into account this indicates that their fitted density mixture

might be too wide or too narrow in the second dimension. The approximation

could be substantially improved by excluding the spectrograms on both margins

from this group and treating them by further models.
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We also illustrate our procedure using a single spectrogram from the dataset. The

upper row of Figure 7 provides a kernel density estimate for the measurement

1157 and its model. Since all four plots are given on the same scale, the two

peaks in the model are more narrow and differ much more in height than the

ones in the original data. In addition, the peak on the left is not included in

the model. Although it looks small in this scale, it appears noteworthy when

compared to the other two. In the bottom right part of Figure 7 a kernel estimate

for the correction distribution characterised by Hopt is presented. It is determined

on 10 000 observations generated by the sampling approach described on page

41. As expected, the correction distribution puts mass on the very right peak in

order to fix the height proportions between the peaks on the right. In addition,

it generates the left peak missing in the model. The plot in the lower left corner

shows the estimates of the modelled and the correction distribution weighted by

the determined shrinkage value 0.76 and the remaining mass 0.24, respectively. The

kernel estimate for the final mixture, which is the sum of the weighted estimates,

is presented here, too. The proposed mixture is still somewhat narrow, but the

proportions of the peak heights as well as the small peak are represented more

adequately in comparison to the original model.

2.6 Related Methods

The literature offers various suggestions on mixture models. Some of them involve

multiple samples and finite mixture models, like for example the Bayesian approach

by Kolossiatis et al. (2013). Nevertheless, to the best of our knowledge, there

is no literature addressing the two-sample problem investigated in this chapter.

Algorithm 1 closes this gap providing a fast distribution-free method to model

discrepancies between datasets flexibly, as illustrated in Section 2.5.
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Figure 7: Kernel density estimates for spectrogram 1157 based on the measurements
(top left), the corresponding inverse Gaussian model (top right), the determined
mixture (bottom left) and the correction distribution (bottom right).
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Most of the procedures available in the context of mixture models are tailored

for single samples and operate on the level of probability density functions. They

estimate the number and shape of components in the specified mixture model and

thereby rely on adjusted EM algorithms (Pilla and Lindsay, 2001) or Newton type

optimisers (Wang, 2010; Schellhase and Kauermann, 2012). As pointed out on page

41, probability density functions are easier to interpret than distribution functions.

It is thus worth discussing, whether the algorithms available can be modified to

solve the two-sample problem investigated in this chapter in a straightforward

way. Many procedures available like for example Schellhase and Kauermann (2012)

use convex combinations of basis functions pi, i = 1, . . . , nb to model the unknown

density p:

p̂(x) =

nb∑
i=1

aipi(x) ∀x ∈ R. (2.14)

The natural way to exploit such models in our situation is the following one: first,

the density q corresponding to the simulated sample is estimated via (2.14). In a

second step this estimate q̂ is fixed as one of the basis functions for the estimation

of the density p corresponding to the observed sample. In short, one fits the model

p̂ = a1q̂+
∑nb

i=2 aipi. This strategy is straightforward, but has a crucial drawback. In

general one cannot guarantee that the coefficient a1 properly reflects the importance

of the simulated data. Often a1 is determined way too small as long as the remaining

basis functions are not chosen appropriately, because they also contribute to the

region of values modelled by q̂. Thus, in terms of a better fit, it is often correct to

choose a1 small. However, this corresponds to discarding the simulation almost

completely, which is not desirable in our application. Unfortunately, choosing the

remaining basis functions in an adequate way is a highly nontrivial and open problem.

Therefore, the obvious adjustment of one-sample density-based approaches does
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not lead to satisfactory results. Also, their optimisation is often computationally

costly making them less suitable especially in medium to large sample cases.

Certainly, much work is necessary to make density-based procedures viable for

the problem studied in this chapter. Before going in this direction it is thus

interesting to know, whether such methods are advantageous at all in the context

of homogeneity. A good starting point to address this question are two-sample

tests relying on probability density functions studied in the next chapter.
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3 Two-sample Tests based on Divergences

In this chapter we construct and evaluate distribution-free two-sample homogeneity

tests based on probability density functions. In particular, we focus on the concept

of f -divergences introduced by Ali and Silvey (1966), which provides a rich set of

distance like measures between pairs of distributions. The corresponding tests can

be applied to detect arbitrary deviations of distributions and are not restricted to

location or scale alternatives. This part of the work is based on the manuscript

Wornowizki and Fried (2014). The discussions with my thesis advisor R. Fried were

of great help to improve the methods as well as their presentation.

The f -divergences are defined in Section 3.1. We then present a new nonparametric

divergence estimation technique combining kernel density estimation and spline

smoothing in Section 3.2. As we show in extensive simulations, the algorithm

performs stable and quite well in comparison to several existing non- and semipara-

metric divergence estimators. In Section 3.3 we tackle the two-sample homogeneity

problem using permutation tests based on various divergence estimators. The

methods are compared to an asymptotic divergence test as well as to several tra-

ditional parametric and nonparametric procedures under different distributional

assumptions and alternatives in simulations. It turns out that divergence-based

procedures detect discrepancies more often than traditional methods, if the samples

do not predominantly differ in location. The tests performing best are applied

to the ion mobility spectrometry data considered before in Section 2.5.4. Section

3.4 concludes the chapter giving some final thoughts on divergence-based testing.

Furthermore, potential extensions of the concept are pointed out.
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3.1 Divergence Measures

As before, let us consider two distributions P and Q with corresponding probability

density functions p and q. For any convex function f : R→ R the f -divergence

from P to Q is defined by

Df (P,Q) =

∫
f

(
p(y)

q(y)

)
dQ(y) = EQ

(
f

(
p (Y )

q (Y )

))
. (3.1)

To ensure a well-defined density ratio r = p
q

the distribution P must be dominated

by Q. An f -divergence attains its minimal value f(1) if, and only if, P = Q (Ali and

Silvey, 1966). For all common divergences f(1) = 0 holds, giving a rather intuitive

interpretation of the minimal property. Note that divergences do not need to be

symmetric, that is, Df (P,Q) = Df (Q,P ) may not hold. Choosing the function f as

faKL(x) = x · log(x) for all x ∈ R yields the asymmetric Kullback-Leibler divergence

denoted by DaKL. This measure is closely related to the popular AIC information

criterion, see Seghouane and Amari (2007). It also has a central role among the

divergences, since minimizing it in the context of parameter estimation corresponds

to the classical maximum likelihood approach, cf. Basu et al. (1998). DaKL can be

symmetrised using fKL(x) = (x− 1) · log(x), x ∈ R. This leads to the symmetric

Kullback-Leibler divergence DKL fulfilling DKL(P,Q) = DaKL(P,Q)+DaKL(Q,P ).

In case of continuous and one-dimensional random variables this measure can be

represented by

DKL(P,Q) =

∫
[p(x)− q(x)] · [log(p(x))− log(q(x))] dx.
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Another member of this class is the squared Hellinger distance, also called Hellinger

divergence. For continuous random variables it is defined by

DH(P,Q) =
1

2

∫ (√
p(x)−

√
q(x)

)2

dx = 1−
∫ √

p(x) ·
√
q(x)dx.

As suggested by the names,
√
DH is a metric, while DH is the f -divergence

corresponding to fH(x) = 1
2
· (
√
x− 1)

2
, x ∈ R. In contrast to the unbounded

Kullback-Leibler divergence, the Hellinger divergence does not exceed 1. Along with

the Kullback-Leibler measure, it is one of the standard divergences investigated in

the literature. In particular, it allows to construct robust and first-order efficient

parameter estimators (Lindsay, 1994) and is frequently used for asymptotical con-

siderations as for example in Liese and Miescke (2008).

Divergence measures, similar to Kolmogorov-Smirnov type statistics, take into

account deviations in the location, the scale, the skewness and any other character-

istics of the distributions and weight them implicitly according to the function f .

Thus, corresponding methods are able to detect arbitrary heterogeneities. For this

reason, divergence measures and related quantities are applied in various estimation

and testing problems like contingency tables (Alin and Kurt, 2008), model selection

(Seghouane and Amari, 2007), survival analysis (Zhu et al., 2013) and detection

of structural breaks of distribution parameters in time series (Lee and Na, 2005).

They often yield a good compromise between efficiency and robustness, cf. Beran

(1977) and Basu et al. (1998). A downside of divergence measures is the necessity

of density ratio estimation. Therefore, the problem is often divided into two steps:

1. Estimate the density ratio function r = p
q

by r̂.

2. Estimate the divergence Df (P,Q) = EQ (f(r(Y ))) given r̂.

Several approaches to both steps are discussed in the next section.
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3.2 Divergence Estimation

This section is dedicated to the estimation of f -divergences and consists of three

parts. Section 3.2.1 reviews several non- and semiparametric methods for the

estimation of the density ratio. These procedures are utilised in Section 3.2.2 to

construct divergence estimators. In addition to reviewing the standard approaches,

we propose a new algorithm for divergence estimation based on spline smoothing.

All divergence estimators are evaluated in a simulation study in Section 3.2.3.

As in Chapter 2, we assume that x1, . . . , xn ∈ R are observations from continuous,

independent and identically distributed random variables X1, . . . , Xn. Each of them

follows a distribution P with probability density function p. We make analogous

assumptions for the sample y1, . . . , ym and the corresponding random variables

Y1, . . . , Ym with distribution Q and probability density function q.

3.2.1 Density Ratio Estimation

The direct approach is an intuitive way to estimate the density ratio function

r = p
q

without imposing distributional assumptions. Hereby, the probability density

functions p and q are estimated nonparametrically by p̂ and q̂ first. Hereafter, r = p
q

is simply approximated by the ratio r̂ = p̂
q̂
. Estimates of the individual probability

density functions can be attained by the kernel density procedure (Devroye and

Györfi, 1985), cf. page 42. For implementation we use the bandwidth choice of

Sheather and Jones (1991) and the Gaussian kernel. The latter ensures strictly

positive density estimates, which results in a well defined density ratio estimate

r̂ = p̂
q̂
.

In contrast to the nonparametric approach, semiparametric methods estimate the

density ratio itself instead of the individual densities. The key idea is to introduce a
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density ratio model r(·, θ), which should fulfill r(x) = r(x, θ) for a certain parameter

θ∗ = (θ∗1, . . . , θ
∗
d) ∈ Rd and all x ∈ R. Thereby, the identification of r boils down to

the approximation of the parameter θ∗ by an estimate θ̂. Since different distributions

can result in the same density ratio, the density ratio model does not parametrise

the densities completely. It thus can be regarded as semiparametric. In the

following, we describe two parameter estimation techniques for semiparametric

density ratio models.

The moment matching technique (Qin, 1998) is motivated by the equation

EP (η) =

∫
η(x) · p(x) dx =

∫
η(x) · p(x)

q(x)
· q(x) dx = EQ(η · r),

which holds for the true density ratio function r = p
q

and for an arbitrary moment

function η. As we see, the moments EP (η) and EQ(η · r) are equal for the correct

density ratio. Replacing these moments by appropriate sample means allows to

estimate θ∗ by solving the equation

1

n

n∑
i=1

η(xi, θ)−
1

m

m∑
j=1

η(yj, θ) · r(yj, θ) = 0 (3.2)

in θ for any density ratio model. In other words, the parameter θ is chosen such

that the empirical approximations of the considered moments match. As shown by

Qin (1998) the moment function

η∗(x, θ) =
1

1 + n
m
· r(x, θ)

∇ log r(x, θ) ∀x ∈ R, (3.3)

is optimal in the sense that the corresponding estimator induced by the moment

matching has minimal asymptotic variance. Hereby, ∇ log r(x, θ) denotes the

gradient column vector of the function log r(x, θ) with respect to θ for all x ∈ R.

There are analytic solutions of equation (3.2) for density ratio models linear in
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θ. Explicit estimators of r in arbitrary density ratio models are only available

at the sample points y1, . . . , ym. If the problem is not explicitly solvable, it is

rephrased via the minimisation of the square of the left-hand side of equation (3.2)

and numerical optimisation is applied. This is the case in the simulations presented

in the following, because we focus on the popular exponential model

re(x, θ) = exp
(
θ1 + θ2 · x+ θ3 · x2

)
. (3.4)

This model includes the case of two Gaussian distributions, but also holds for two

exponential distributions. In the latter case it is overparametrised, because the

quadratic term is redundant. In our applications of the moment matching we always

use the optimal moment function η∗ introduced in (3.3) and the exponential model

presented in (3.4) unless stated otherwise. The minimisation problem is solved

using the optimiser of Nelder and Mead (1965) implemented in the R-function

optim with default settings. The initialisation for the parameter θ is derived from

the maximum likelihood estimates of the mean and variance under the assumption

of Gaussianity. Several other initialisation procedures were investigated, but did

not improve the estimation performance. Especially the initialisation assuming

r = 1 does not provide good results and is therefore not advisable.

Moment matching can be conducted using arbitrary density ratio models. Typically,

models with a low dimension are used and thus relatively strong assumptions on

the density ratio are made. In contrast to that, the density ratio model in the

ratio matching approach is fixed to

rK(x, θ) =
d∑
i=1

θi ·Kh(x, x
∗
i ) ∀x ∈ R. (3.5)
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Hereby, θ = (θ1, . . . , θd) ∈ Rd is the parameter vector of weights, Kh is the Gaussian

kernel defined in (2.13) and the x∗1, . . . , x
∗
d are observations randomly chosen from

the sample x1, . . . , xn. According to Sugiyama et al. (2009) a model dimension

d = min(100, n) is sufficient to guarantee reasonable results together with a tolerable

computation time in most applications. This density ratio model typically has more

parameters than the ones used in the moment matching, which leads to a more

flexible estimation. To estimate the parameter θ∗ via ratio matching, distance-like

measures between the true and the modelled density ratio are minimised. One

example for this is the Kullback-Leibler importance estimation procedure (KLIEP),

which is presented in detail in Sugiyama et al. (2009). The method relies on the

measure KL(θ) = −
∫

log (rK(x, θ)) · p(x) dx. This quantity is the asymmetric

Kullback-Leibler divergence from p to the implicitly modelled p(x, θ) = rK(x, θ)·q(x)

up to a constant independent of θ. Since divergence measures attain their minimal

value only for equal distributions, the KLIEP procedure estimates θ by minimising

an empirical equivalent to KL(θ) in θ. Another example for ratio matching is the

Least-Squares Importance Fitting (LSIF) also presented in Sugiyama et al. (2009).

The approach corresponds to the function

LS(θ) =
1

2

∫
rK(x, θ)2 · q(x) dx−

∫
rK(x, θ) · p(x) dx

=
1

2

∫
(rK(x, θ)− r(x))2 · q(x) dx+ c,

where the constant c is again independent of θ. It thus essentially reflects a squared

distance between the density ratio and its model. To obtain sparse solutions a

weighted penalty term consisting of the L1-norm of θ is added to the empirical

equivalent of LS(θ). This leads to the estimator

θ̂ = arg min
θ∈Rd

1

2m

m∑
j=1

rK(yj, θ)
2 − 1

n

n∑
k=1

rK(xk, θ) + w∗
d∑

u=1

|θd| .
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Both KLIEP and LSIF require constraint optimisation procedures, since θ̂ =(
θ̂1, . . . , θ̂d

)
must not be negative to ensure a nonnegative density ratio estimator.

Unfortunately, high-dimensional constrained optimisation tasks are hard to solve

efficiently. Therefore, Sugiyama et al. propose to drop the nonnegativity restriction

initially and replace the L1 penalty term by L2 regularisation. Since the density

ratio model (3.5) is linear in θ, the unconstrained minimisation with the L2

penalty is analytically solvable. The negative entries of its solution θ̂ are set to

zero, so that a nonnegative density ratio estimate is ensured. This procedure is

called the unconstrained Least-Squares Importance Fitting (uLSIF). In addition

to resulting in an analytically solvable optimisation problem, uLSIF has another

advantage: the score of the leave one out cross-validation can be computed efficiently

and stably. This is quite useful for obtaining a suitable bandwidth h and a

regularisation weight w∗. In our computations we make use of the R implementation

of this algorithm by Takafumi Kanamori with default settings. It is available at

http://www.ms.k.u-tokyo.ac.jp/software.html.

3.2.2 Divergence Estimation using Density Ratio Estimates

In this subsection we introduce several possibilities for estimating an arbitrary

divergence Df given r̂, an estimate of the density ratio function r = p
q
. By its

definition in (3.1) a divergence is nothing but the moment EQ (f (r (Y ))). Hence,

straightforward application of the strong law of large numbers allows to estimate

Df by the natural estimator

D̂f =
1

m

m∑
j=1

f (r̂(yj)) .

http://www.ms.k.u-tokyo.ac.jp/software.html
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As a simple mean, this estimator is easy to implement and fast to compute.

However, the procedure is asymmetric in the sense that the first sample affects the

divergence estimation only implicitly via the density ratio estimation in contrast

to the second sample. As we see in the simulations in Section 3.3.2, this does affect

the performance of corresponding tests.

Kanamori et al. (2012) expanded D̂f explicitly including both samples in the final

divergence estimation. The authors decompose the convex function f characterising

a divergence measure via f(x) = f1(x) + x · f2(x) for all x ∈ R. Given such a pair

f1 and f2 each f -divergence can be estimated by the decomposed estimator

D̂D
f =

1

m

m∑
j=1

f1 (r̂(yj)) +
1

n

n∑
k=1

f2 (r̂(xk)) ,

because Df (P,Q) = EQ (f (r)) = EQ (f1 (r)) + EP (f2 (r)) holds. For the moment

matching method based on the moment function η∗ specified in (3.3) Kanamori et

al. prove that the decomposition into

f ∗1 (x) =
f(x)

1 + n
m
· r(x, θ)

and f ∗2 (x) =
n
m
· f(x)

1 + n
m
· r(x, θ)

∀x ∈ R (3.6)

leads to an estimator with minimal asymptotic variance under fairly weak and

verifiable conditions, cf. Kanamori et al. (2012). Even though the decomposed

estimator is introduced for the moment matching density ratio estimation, it is

applicable for any density ratio estimation procedure.

We now propose an alternative estimator of f -divergences, which makes use of

cubic splines (Green and Silverman, 1994). Cubic splines are piecewise polynomial

functions with continuous second derivatives. They are quite appealing for regres-



3. TWO-SAMPLE TESTS BASED ON DIVERGENCES 67

sion, since given some observations (x̃1, ỹ1), . . . , (x̃l, ỹl) and a fixed penalty factor

w̃ > 0 there is a unique cubic spline minimising

S(g) =
l∑

j=1

(ỹj − g(x̃j))
2 + w̃

x̃l∫
x̃1

g′′(x)2dx (3.7)

over all functions g with continuous second derivatives. Hereby, g′′ denotes the

second derivative of g. The measure S represents a trade-off between the goodness-

of-fit (left term) and the roughness (right term) of the regression function g. For

w̃ →∞ its minimiser converges to the linear least squares fit, for w̃ → 0 the solution

is a spline interpolating the observations. The minimiser of S is computable in

linear time, which is advantageous when dealing with large datasets.

In order to derive our divergence estimation technique, let us regard a divergence

as an integral involving the known convex function f , the unknown density ratio r

and the unknown density q. The unknown quantities can be estimated following

the direct approach to density ratio estimation. The only problem left to solve

then is the integration. Since the direct density ratio estimator is quite sensitive to

distortions of its denominator, we propose to smooth the integrand via cubic splines.

This also allows us to solve the integration problem, because splines are piecewise

polynomial and thus can be integrated analytically quite easily. In summary, we

propose the following algorithm to obtain a smoothed estimator D̂S
f :

1. Compute the kernel density estimates p̂ and q̂ and set r̂ = p̂
q̂
.

2. Smooth the function f (r̂(·)) q̂(·) using cubic splines.

3. Integrate the spline analytically over the range of all observations.

Our implementation of this algorithm determines the bandwidth of the kernel

density estimations via the method of Sheather and Jones (1991) using the Gaussian
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kernel (2.13). The spline smoothing is performed using the routine smooth.spline

with default settings available in the stats package. More detailed information in

particular with regard to the proper choice of w̃ are provided on to the corresponding

help page and in the references given therein.

3.2.3 Comparison of the Divergence Estimators

To investigate their performance the estimation techniques presented before are

applied to artificial data. Hereby, we restrict ourselves to distribution pairs with

explicit representations of the corresponding divergence measure. The true diver-

gence values can thus be calculated in an easy way allowing us to validate the

estimates. Therefore, we work with exponential, Laplacian and Gaussian data for

equal sample sizes m = n = 50, 100, 300. The results are reported for the Gaussian

data and m = n = 300 only, since the findings for the other distributions and

sample sizes are essentially the same. In the Gaussian setting the first sample is

generated from the standard Gaussian distribution. The second one is drawn from

the Gaussian distribution with mean µ and variance σ2. The cases considered are:

1) µ = 0, σ2 = 1 (H0)

2) µ = 3, σ2 = 1 (location alternative)

3) µ = 0, σ2 = 2 (scale alternative)

4) µ = 3, σ2 = 2 (location and scale alternative)

For each of them 500 sample pairs are generated. The Kullback-Leibler and the

Hellinger divergence are estimated on each of them. Two Gaussian distributions
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with means µ and ν and variances σ2 and τ 2, respectively, result in a symmetric

Kullback-Leibler divergence given by

DKL(P,Q) =
(σ2 − τ 2)2

2σ2τ 2
+

(µ− ν)2

2
·
(

1

σ2
+

1

τ 2

)

and a Hellinger divergence of

DH(P,Q) = 1−
√

2στ

σ2 + τ 2
· exp

(
−1

4

(µ− ν)2

σ2 + τ 2

)
.

In the data cases 1) to 4) this yields 0, 9, 1.125 and 6.75 for the Kullback-Leibler

criterion and 0, 0.82, 0.17 and 0.74 for the Hellinger divergence, respectively. The

density ratio estimation is conducted using the direct kernel density approach, the

moment matching technique and the uLSIF algorithm. Since its computational

demand is quite high and its performance is not outstanding (Sugiyama et al., 2009),

we do not take the KLIEP procedure into account. Each density ratio estimate is

passed to the natural divergence estimator D̂f as well as to its decomposed version

D̂D
f . The latter one relies on the decomposition presented in equation (3.6), which

is optimal for the moment matching density ratio estimation. Furthermore, the

smoothed estimator D̂S
f is applied for both divergence measures.

To assess the performance of the estimators the empirical mean squared error

(MSE) is computed over the 500 replications of each data case. We make use of this

absolute error measure rather than a relative one, since under the null hypothesis

the true divergence values are both zero. The results for n = m = 300 are given in

Tables 2 and 3 in the appendix. The estimated errors for the Hellinger divergence

are presented on a 10−4 scale, because they are much smaller than those for the

Kullback-Leibler divergence. This is caused by the boundedness of the Hellinger

divergence. As for the measure itself, the corresponding estimates typically lie

within [0, 1] leading to a small empirical MSE in comparison to the unbounded
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Kullback-Leibler measure.

According to the results, higher divergence values are more difficult to estimate

than smaller ones. This becomes in particular clear focussing on data case 2).

Situation 4) seems more difficult than 2) at first glance, since more variability is

introduced by a higher variance of the second distribution. However, the estimated

MSEs here are mostly lower than in case 2), which leads to the highest errors

overall. Note that higher divergence values indicate a density ratio with more high

and more low values. Thus, the density ratio estimation is more difficult and larger

errors in the divergence estimation become more likely.

Among the density ratio estimators, the moment matching algorithm unsurprisingly

leads to the best results overall. Since the correct density ratio model is specified,

this semiparametric approach makes use of addition information in comparison to

its competitors. In contrast, the uLSIF algorithm leads to extreme estimations

and hence achieves the worst results. Sugiyama et al. (2009) stressed its good

performance for multidimensional problems, but in the univariate case we find

the other methods to estimate the true divergence values better. Among the

nonparametric procedures in case of the Kullback-Leibler divergence, the smoothed

estimator D̂S
f outperforms both divergence estimators relying on the direct kernel

density approach. The latter lead to huge overestimations, while D̂S
f behaves more

stable. In the most realistic sample case 4) it even attains the smallest MSE of all

methods considered. For the bounded Hellinger divergence the decomposed estima-

tor using the direct kernel density estimation leads to slightly better results than

the smoothed estimator, which performs quite well overall. In general decomposing

drastically improves the estimators’ performance in the majority of the cases and

never leads to huge increases of the MSE. This holds for all methods and not just

for the moment matching it was proposed for.
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3.3 Testing Homogeneity based on Divergences

In this section we study two-sample tests using divergence measures to test H0 :

P = Q. At first, we review an asymptotic method by Kanamori et al. (2012), which

relies on a semiparametric divergence estimator. Hereafter, we construct alternative

tests via the permutation technique. They can be conducted using arbitrary

divergence estimators. In the second part of the section, all tests procedures

introduced so far are compared to some parametric and nonparametric competitors

in a broad simulation study. The methods performing best are applied to ion

mobility spectrometry data also investigated in Section 2.5.4.

3.3.1 Divergence-based Tests

Kanamori et al. (2012) propose an asymptotic test for the two-sample homogeneity

problem relying on divergence measures. They estimate the density ratio via the

semiparametric moment matching. The divergence of choice is then estimated

in the subsequent step by the decomposed estimator D̂D
f . Hereby, they rely on

the moment function η∗ and the decomposition functions f ∗1 and f ∗2 presented in

(3.3) and (3.6), respectively. The authors prove that under the null hypothesis

H0 : P = Q the test statistic

T =
2 · n ·m

(n+m) · f ′′(1)
· D̂D

f

is asymptotically chi-square distributed with (d − 1) degrees of freedom for any

divergence measure Df . Hereby, d denotes the dimension of the parameter vector

θ in the density ratio model r(·, θ) and f ′′ is the second derivative of the convex

function f specifying the divergence. The corresponding homogeneity test is referred
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to as the Kanamori test from here on.

Research in various fields shows that the permutation principle introduced by Fisher

(1935) and its extensions can lead to quite powerful tests, cf. Cardot et al. (2007),

Sohn et al. (2012) and Zeileis and Hothorn (2013) and the references given therein.

Motivated by these facts, we propose the following distribution-free procedure to

test the null hypothesis: given the original sample pair x1, . . . , xn and y1, . . . , ym,

first generate np ≥ 500 new sample pairs from the original data. For this purpose,

draw n of the n+m observations from the original joint sample at random without

replacement yielding a new first sample. The remaining m observations form the

new second sample. In other words, the group labels of the original samples are

permuted at random. Repeating this procedure np times results in np new sample

pairs. Next, the divergence of choice is estimated on each of the np sample pairs

as well as on the original data always using the same estimator. This leads to

np + 1 divergence estimates. Under H0 : P = Q all of them stem from identically

distributed random variables. Recall that the true divergence value for any convex

function f is minimal under the null hypothesis. Thus, a permutation test based

on a divergence estimator rejects the null hypothesis, if the divergence estimate on

the original data exceeds the empirical (1− α)-quantile of the np + 1 divergence

estimates, where α is the predefined significance level. In contrast to the Kanamori

test, the permutation procedure leads to a valid testing procedure for all sample

sizes and also does not impose any distributional assumptions on the data. In

addition, it allows to use arbitrary estimators for testing. As we show in the next

section, these advantages lead to results superior to the combination of the moment

matching and the decomposed estimator in several settings.
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3.3.2 Comparison of Divergence-based Tests

Since the Kanamori test is an asymptotical procedure, we assess the minimum

sample size it requires to hold the nominal significance level of α = 5% prior to a

comparison of the homogeneity tests. For this purpose, the method is applied to

500 pairs of equally sized samples drawn from the standard Gaussian distribution

for different sample sizes and both divergence measures. An analogue simulation

is conducted with data generated from the exponential distribution with mean 1.

Kanamori et al. (2012) also check the convergence rate of their method in a similar

simulation, but focus on the multidimensional rather than the univariate setting. As

mentioned before, the exponential density ratio model given in (3.4) is adequate for

two Gaussian or two exponential distributions. However, it is overparametrised in

the latter case. In order to quantify the effect of this overparametrisation equivalent

tests are performed using the reduced exponential model

rre(x, θ) = exp(θ1 + θ2 · x) (3.8)

for the exponential data. In comparison to the exponential model it lacks a

quadratic term. To analyse the behaviour of the Kanamori test we consider its

empirical size as a function of the sample size in Table 4. The results illustrate

the strong impact of the density ratio model quite well. For the correctly specified

models presented in rows a) and c) 150 or at most 250 observations are sufficient

to ensure a proper test procedure. The rejection rate for the overparametrised

exponential model in line b) converges much slower to α = 5% and leads to too

many false rejections. The results also indicate a faster convergence of the test

using the Hellinger distance compared to the Kullback-Leibler version.
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We now compare the empirical power of several homogeneity tests in different

simulation scenarios proceeding as follows: at first, a certain data setting such as

”location alternatives for Gaussian distributions” is chosen. The distribution P is

fixed, while the parameters of the second distribution Q vary on a grid reflecting

different degrees of discrepancy. For each of these parameter constellations 500

sample pairs of size m = n = 50 are generated from the respective P and Q.

Then, several tests are applied to each of the sample pairs. Finally, the empirical

rejection rate is computed for each test and each parameter constellation. The

tests include six divergence-based permutation tests as well as other parametric

and nonparametric competitors from the literature. As illustrated at the beginning

of this section, the asymptotic Kanamori test is not a valid procedure for small

sample sizes. We thus repeat the simulation for m = n = 300 and hereby apply the

Kanamori test for both divergence measures. In exchange, some of the permutation

tests performing similar to others for m = n = 50 are excluded in the large sample

case. Due to the huge amount of results we do not list all rejection rates for the

small and the large sample case in all settings. Instead, we give some representative

examples for qualitatively similar results and summarize the main conclusions.

Before going into detail with regard to the data settings, we specify the tests

investigated. The testing via the permutation approach is conducted using six

different divergence estimators and np = 500 permutations. The divergence estima-

tors considered are the smoothed estimators D̂S
KL and D̂S

H , the natural estimators

D̂KL and D̂H as well as the decomposed estimators D̂D
KL and D̂D

H . The corre-

sponding density ratios are estimated by the direct kernel density approach. The

semiparametric uLSIF algorithm is omitted due to its high computational demand

and its modest results in Section 3.2.3. We also do not consider permutation

tests based on the density ratio estimation by moment matching due to the large

amount of simulations. Nevertheless, this technique is investigated, because it
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is applied in the Kanamori test studied in the large sample case. In addition to

the six permutation tests, we apply the nonparametric Wilcoxon rank-sum test

(Wilcoxon, 1945), the Anderson-Darling test (Anderson and Darling, 1952) and

the Kolmogorov-Smirnov test, cf. page 13. The first primarily detects location

alternatives. The other two reveal arbitrary deviations from the null hypothesis

and are motivated by distribution functions. If appropriate, we also include optimal

distribution specific tests like the F-test and the t-test. In particular when dealing

with exponential distributions, a two-sided parametric test is considered. It is

based on two one-sided tests and rejects the null hypothesis H0 : P = Q if and only

if one of the one-sided tests rejects H0. The one-sided tests are optimal for testing

λP > λQ and λP < λQ, respectively, whereby λP and λQ denote the parameters

of the exponential distributions P and Q. The statistic of the tests is the ratio of

the sample means, which follows an F -distribution under H0, see Lee et al. (1975).

Both one-sided tests are carried out at a significance level of 2.5% to ensure the

global significance level of α = 5%. This method as well as the Kanamori test are

implemented by the authors. All other competitors of the permutation procedures

are conducted using the implementations in the R packages stats and adk.

We now explain the data scenarios under study. Hereby, we always list the pa-

rameters considered in the small sample simulation and give the corresponding

values for the large sample simulation in brackets. At first, we simulate choos-

ing both P and Q as Gaussian distributions. While P is the standard Gaussian

distribution, random variables with distribution Q have mean µ and variance

σ2. For location alternatives we fix σ2 = 1 and vary µ = −1,−0.9, . . . , 0.9, 1

(µ = −0.5,−0.45, . . . , 0.45, 0.5). Scale alternatives are studied setting µ = 0 and

changing the values of σ2 = 0.1, 0.2, . . . , 1.9, 2 (σ2 = 0.5, 0.55, . . . , 1.45, 1.5). In

order to investigate simultaneous discrepancies in location and scale, the mean

and variance are linked using µ = θ − 1 and σ = θ for θ = 0.1, 0.2, . . . , 1.9, 2
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(θ = 0.5, 0.55, . . . , 1.45, 1.5). Analogous simulations are performed for the family

of scaled t-distributions with 5 and 20 degrees of freedom, respectively. Some

representative rejection rates for these settings are given in Tables 6 and 7. In

addition, Table 5 provides the empirical sizes for the large sample case. Since the

null hypothesis is included in the location, the scale and the location and scale

design and each of them is replicated 500 times, the results are based on 1500

replications.

In a second step, we evaluate the performance of the methods in case of skewness

alternatives making use of the skewed Gaussian distribution class (Azzalini, 1985).

The skewness of the corresponding random variables is regulated by the parameter

λ̃. For λ̃ = 0 the skewed Gaussian distribution coincides with the standard Gaus-

sian. For negative (positive) values of λ̃ it is left-skewed (right-skewed). Note

that a skewed Gaussian random variable does not have mean 0 and variance 1 for

λ̃ 6= 0. We therefore always generate data from a standardised skewed Gaussian

distribution Q for λ̃ = −50,−40, . . . , 40, 50 (λ̃ = −5,−4, . . . , 4, 5) and compare it

to observations drawn from the standard Gaussian distribution P . The results for

the large sample case in this scenario are presented in Table 8.

Next, we investigate the methods’ capability of detecting departures from the

Gaussian distribution in terms of heavy tails. P is again set to the standard

Gaussian distribution. Q is chosen as a t-distribution with a number of degrees

of freedom ν varying from 3 to 10 for m = n = 50 and m = n = 300. As for the

skewness, we draw data from a standardised version of Q, so that P and Q neither

differ in location nor in scale. The corresponding results are listed in Table 9.

As shown in Lindsay (1994), the Hellinger divergence allows to construct a robust

and first-order efficient parameter estimator. Motivated by this fact we investigate

the robustness of the tests with respect to outliers. For this purpose, we set P to

the standard Gaussian distribution. Q is chosen as the mixture of the standard
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Gaussian distribution and another Gaussian distribution with mean µ and variance

1 to a proportion of ε∗ and 1− ε∗, respectively. The parameter µ is set to 0.5 (0.1).

We consider ε∗ = 0, 0.05, 0.1, 0.2, 0.3 to illustrate the effect of outliers under the

null hypothesis and ε∗ = 1, 0.95, 0.9, 0.8, 0.7 to assess the effect of outliers under

the alternative. The corresponding results are given in Tables 10 and 11.

Finally, we analyse the case of two exponential distributions. P is fixed to have

mean λP = 1. The mean of Q, 1
λQ

, is chosen by λQ = 0.2, 0.3, . . . , 1.7, 1.8

(λQ = 0.6, 0.7, . . . , 1.5, 1.4). Representative rejection rates for the exponential

data scenario are summarised in Table 12.

According to the rejection rates for the parametric methods, the t- and F-test, as

expected, perform best under Gaussianity for discrepancies in location and scale,

respectively. However, they reject H0 quite rarely if their specific alternative is

not met, cf. Tables 8 and 9. As illustrated in Table 5, the F-test is more affected

by an incorrect distributional assumption and does not hold the significance level

for non-gaussian data. As opposed to that, the t-test becomes conservative when

applied to data generated by a t-distribution. In the exponential setting, the

parametric test consisting of two one-sided optimal tests proposed by Lee et al.

(1975) also attains the highest rejection rates.

Among the classical nonparametric procedures, the Anderson-Darling test achieves

better results than the Kolmogorov-Smirnov test in almost every case investigated.

Although both asymptotic tests are applicable for samples of size 50 already, they

still reject H0 in less than 5% of the cases for the t-distribution with 5 degrees of

freedom even for m = n = 300. Both of them detect various kinds of discrepancies

between the distributions in contrast to the Wilcoxon test, which mainly reveals

location alternatives. The latter is solely superior to the Anderson-Darling test if

the samples differ in location only.

With regard to the permutation tests, the ones based on the Hellinger divergence



78 3. TWO-SAMPLE TESTS BASED ON DIVERGENCES

perform better than their Kullback-Leibler counterparts in most cases. However,

the discrepancies are not large even in the outlier scenarios (Table 10 and 11).

This is somewhat surprising, because the Hellinger divergence leads to more robust

parameter estimators than the maximum likelihood estimator corresponding to the

Kullback-Leibler divergence (Lindsay, 1994). The divergence estimation technique

appears to be much more crucial for the performance of the tests. The methods

using the smoothed estimator or the decomposed estimator lead to similar and

stable results. The ones relying on the natural estimators D̂H and D̂KL perform

quite differently, see Tables 6 and 12. For example in the setting of different scales,

they detect departures from the null hypothesis more often if the variance of the

second sample, 1.5, exceeds the one of the first, which is 1. However, they reject

rarely compared to other methods in the opposite case, where the variances are

0.5 and 1. This appears counterintuitive due to the relative size of the variances

and could be caused by the asymmetry of the estimation procedure discussed on

page 66. Overall, the decomposed and smoothed estimators lead to higher rejection

rates in most of the cases under study.

All in all, permutation tests using divergence estimators detect discrepancies be-

tween distributions less often than the Wilcoxon test, the Kolmogorov-Smirnov

test and the Anderson-Darling test, if the corresponding samples differ primarily in

location. More precisely, the nonparametric procedures outperform the divergence

tests only for the location and the exponential setting. In all other cases studied the

tests based on the smoothed divergence estimator and the decomposed estimator

attain at least competitive and often considerably higher empirical powers. Espe-

cially in situations where the means of the distributions are equal the advantages

of the divergence procedures are striking. This holds for the scale and the skewness

setting as well as for the comparison of Gaussian to t-distributed random variables.

This behaviour results in less proneness to outliers under the null hypothesis (Table
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10), but lower rejection rates under contaminated location alternatives (Table 11)

in comparison to the Anderson-Darling test, the overall best classical procedure.

The asymptotic Kanamori test shows even better results as long as the exponential

density ratio model is correct. However, if the model is inadequate, it does not

hold the nominal significance level and leads to considerably worse results than the

permutation tests, cf. Table 5, 8 and 9.

Since the two best permutation tests using D̂S
H and D̂D

H lead to quite similar results,

they are evaluated in terms of running time. We apply them to equally large

samples of varying size n = m = 50, 100, 200 . . . , 1 000 and determine the mean

computation time over 200 replications for each sample size. All tests are conducted

using 1 000 permutations and data stemming from the standard Gaussian distribu-

tion in both samples. The runtime in the case of different Gaussian distributions

is also investigated and is essentially the same. According to the results given in

Table 13, the test based on D̂S
H is always considerably faster than the decomposed

estimator D̂D
H . Its runtime also increases notably slower in the sample size. Since

both methods lead to comparable rejection rates in our simulations, we recommend

the smoothed divergence estimator for applications.

3.3.3 Application to Biometrical Data

To assess how our tests perform on real data we consider the ion mobility spec-

trometry (IMS) measurements studied in Section 2.5.4. The homogeneity tests

are applied to compare the peak modelling proposed by D’Addario et al. (2014)

to the corresponding datasets. As before, we focus on one of the dimensions and

condition on the other. This time we investigate 500 spectrograms and generate 500

observations from each spectrogram. In addition, we sample an equal amount of

data from each mixture modelling a corresponding spectrogram. The permutation
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test based on the smoothed divergence estimator D̂S
H and the Anderson-Darling

test are applied to each of these 500 dataset pairs.

In general, the results for both tests suggest that the inverse Gaussian models fit

the spectrograms quite well. The null hypothesis of equal distribution is rejected

for only 62 and 51 of the 500 spectrograms, respectively. For 91 spectrograms

the tests come to different conclusions. We illustrate two of these 91 situations

by looking at kernel density estimates associated with the spectrograms and the

corresponding mixture model in Figure 8.

Most of the 91 cases are unimodal or almost unimodal like spectrogram A. In

some of them the Anderson-Darling test rejects the null hypothesis, while the

divergence test does not, and vice versa. Presumably, most of them are false

rejections of one or the other test. For all of the few multimodal situations similar

to spectrogram B the Anderson-Darling test does not reject H0 in contrast to the

divergence test. Since the discrepancies between the densities in spectrogram B

look notably larger than in spectrogram A, the test based on D̂S
H seems preferable

to the Anderson-Darling test. These results also go well with our impressions based

on the simulation study. The Anderson-Darling test has problems, if the samples

differ in shape but not in location, while the divergence-based test detects such

discrepancies more often.

3.4 Conclusions and Extensions

Finding out whether density-based procedures are beneficial in the context of

homogeneity tests is the key motivation to the work presented in this chapter.

Given the results in Sections 3.3.2 and 3.3.3 we can state quite surely this is the

case. Permutation tests relying on stable estimators of f -divergences do not require

any assumptions on the underlying distributions and are therefore widely applicable.
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Figure 8: Kernel density estimates based on the measurements and the correspond-
ing fitted model for two spectrograms.
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As long as the samples under study do not predominantly differ in location, they

clearly outperform classical homogeneity tests like the Kolmogorov-Smirnov and

the Anderson-Darling test. If this assumption is justifiable in an application, we

heavily recommend to use the permutation test based on the stable smoothed

estimator of the Hellinger divergence. This is in particular the case, if it is not

clear what kind of discrepancies can be expected or the samples differ in several

ways. A combination of our method and the Anderson-Darling test via a Bonferroni

correction (Bonferroni, 1937) might also be a reasonable option.

There are several possibilities to extend the approach presented in this chapter. First,

one could consider other divergences or density-based dissimilarity measures. In

the context of parameter estimation the Hellinger divergence has better robustness

properties than the Kullback-Leibler divergence. However, in the nonparametric

setting studied here both measures lead to comparable results. Nevertheless the

choice of divergence is expected to have some influence of the performance of

the corresponding test in general. A natural first idea is to investigate other

divergences with beneficial properties in the case of parameter estimation. One

candidate is the class of blended weighted Hellinger divergences (Basu and Lindsay,

1994) extending the Hellinger measure. A second way to expand this work is to

adapt the procedures to the multidimensional case. According to the studies of

Sugiyama et al. (2009) the estimation of divergences via the natural approach

and kernel density estimators performs poorly for multiple dimensions. However,

multivariate smoothing techniques or combinations of numeric integration with

the uLSIF algorithm might be worth considering. We studied a first version of

the latter proposal conducting density ratio estimation via uLSIF, kernel density

estimation of the density q and numerical integration of the resulting function.

Unfortunately, in the univariate case this estimator gave poor results even for a

correctly specified density ratio model and has therefore been omitted in this work.
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Another possible point of improvement is the robustification of the estimators

presented here. A robustified divergence estimation procedure can be constructed

using robust kernel density estimators as for example proposed by Kim and Scott

(2012). It might also be helpful to develop a sophisticated approach for determining

the region of integration or find a suitable weighting of the observations for the

decomposed estimator.

The concepts introduced in this chapter could also be transfered to the detection of

structural breaks in time series. Temporal data plays a huge role in many different

fields of application such as biometry (vital signs, disease progression, outbreak of

epidemics), quality control (survival analysis) and finance (exchange rates, returns).

Therefore, there is a strong need to develop new and improve old methods in the

context of time series. We do not further pursue this goal using density-based

methods. Instead, we turn to procedures closely related to Fourier transform and

characteristic functions in the next chapter. Just like probability density functions,

characteristic functions uniquely characterise the corresponding distribution and do

not focus on particular moments such as the mean or the variance. They are thus

flexible tools allowing to construct distribution-free tests with competitive power.
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4 Testing Time Series for a Constant Volatility

In this chapter we develop a new procedure for testing the null hypothesis that

a given sequence of variables has constant volatility over time. First, we sketch

the framework in Section 4.1. Several test statistics resulting from different weight

functions are proposed in Section 4.2. They are based on a Fourier-type transfor-

mation of the volatility process, which is assumed to be piecewise constant. The

corresponding testing approach as well as several competitors are introduced in

Section 4.3. They are compared conducting extensive Monte Carlo experiments

in Section 4.4. As it turns out, our proposals have high power in particular in

the case of multiple changes of the volatility and locate structural break positions

adequately. The best methods are applied to exchange rate data. In Section 4.5

the construction principle used in Section 4.2 is transfered to obtain a test for

structural breaks in kurtosis. The performance of the new kurtosis tests is also

investigated in a simulation study. Section 4.6 highlights the main results of the

chapter and provides an outlook on possible extensions. This chapter is based on

the manuscript Wornowizki et al. (2015). The basic idea for the approach presented

in the following was proposed by S. Meintanis and refined and investigated by me

and my thesis advisor R. Fried.

4.1 Framework

Let us consider a real-valued stochastic process X(·) at times t = 1, . . . , n for some

n ∈ N. Denote the associated volatility process by σ2(·), where σ2(t) = Var(X(t))
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is the variance of X(t) at each of the times t = 1, . . . , n. We are interested in

testing whether σ2(·) is constant as expressed by the hypotheses

H0 : ∀t, t′ = 1, . . . , n : σ2(t) = σ2(t′) vs. H1 : ∃t, t′ = 1, . . . , n : σ2(t) 6= σ2(t′).(4.1)

Often the volatility is thought to vary permanently, for instance according to a

GARCH or another stochastic volatility model. Since this assumption is contro-

versial, we adopt an alternative idea of a blockwise constant volatility, which

has drawn attention in Mercurio and Spokoiny (2004), Stărică and Granger

(2005), Vassiliou and Demetriou (2005), Spokoiny (2009), Davies et al. (2012)

and Fried (2012), among others. Within this concept, some specified time points

0 = t0 < t1 < . . . < tN = n are understood as potential change point positions.

If there is no external knowledge allowing to choose them appropriately, one can

set t0, . . . , tN equidistantly. The potential change point positions correspond to

important events, which may trigger an upward or downward change in the volatil-

ity. The values of the volatility process σ2(·) are thus allowed to differ for some

of the time blocks Bj = {tj−1 + 1, tj−1 + 2, . . . , tj}, j = 1, ..., N . However, within

each time block the volatility is assumed to be constant. In addition, we work

with independent zero mean random variables X(1), . . . , X(n), which are identi-

cal distributed up to scale. The latter means that for some unknown but fixed

distribution function F the relation P (X(t) ≤ x) = F (x/
√
σ2(t)) holds for all

t = 1, . . . , n and all x ∈ R. The centered Gaussian distribution is thus contained

in our framework as a special case. Heavy tails, for example often encountered in

financial applications, are also included. The zero mean assumption is justifiable

when dealing with returns or comparable data, which is obtained from differences

of consecutive observations. In other cases it can be relaxed to blockwise constant

means with known block structure, so that zero mean data results from prepro-
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cessing. For a detailed discussion of the other assumptions in comparison to the

classical GARCH framework see Spokoiny (2009) and the references given therein.

4.2 Test Statistics for Volatility Changes

In this section a new class of test statistics allowing to test the constancy of the

volatility process is introduced. We then derive explicit formulas for some represen-

tatives of this class and discuss alternative class members.

To test H0 specified in (4.1) a reasonable first step is the estimation of the volatility

in each time block Bj, j = 1, . . . , N . Since all random variables are assumed to

have zero mean, a natural volatility estimator for the j-th block is given by

σ̂2
j =

1

τj

∑
t∈Bj

X(t)2 ∀j = 1, . . . , N. (4.2)

Hereby, τj = |Bj| denotes the number of observations with observation times in

the time block Bj, j = 1, . . . , N . To ensure volatility estimates with reasonable

accuracy a sufficient number of observations should be included in each block.

Instead of considering the estimated volatilities themselves, we rather work with

their logarithms in the following. As demonstrated later, this allows us to construct

scale independent test procedures. Let i denote the imaginary number defined by

i2 = −1. Under the null hypothesis specified in (4.1) the logarithmised volatility

process log(σ2(·)) is constant. Thus, under H0 the function ϕ : R×{1, . . . , n} → C
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defined by ϕ(u, t) = eiu log(σ2(t)) does not depend on t. Hence, for any t = 1, . . . , n

it can be estimated by

ϕ̂(u) =
N∑
j=1

τj
n
eiu log(σ̂2

j )

in a straightforward way. Hereby, each τj/n = τj/(
∑N

i=1 τi) weights the correspond-

ing term derived from the j-th block according to the number of observations in

the block, j = 1, . . . , N . If all blocks contain the same number of observations, all

weights are equal to 1
N

. The transformation of the blockwise estimators induced by

ϕ is closely related to the Fourier transformation and to characteristic functions.

In this situation it has the nice and intuitive behaviour illustrated in Figure 9.
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Figure 9: Behaviour of ϕ̂(u) for some fixed u ∈ R under the null hypothesis of
constant volatility (left) and under an alternative (right), cf. Section 4.2. The red
crosses represent the blockwise volatility estimates mapped to the unit circle. The
black crosses mark the corresponding values of ϕ̂(u).

Under the null hypothesis of global constant volatility the blockwise estimates are

about the same. Because of that, the function f : R→ C, f(x) = eiux maps them

to the red points on the unit circle close to each other, as presented in the left part
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of the figure. Consequently, their weighted mean ϕ̂(u) depicted by the black cross

lies near the unit circle for every u ∈ R and has a modulus close to one. Under

an alternative some of the logarithmised blockwise estimates differ. They are thus

mapped to distant points on the unit circle for most u ∈ R, see the right part of

Figure 9. Hence, for most u ∈ R their weighted mean ϕ̂(u) is closer to the origin

than under the null hypothesis. In these cases ϕ̂(u) has a comparatively small

modulus. In view of this fact, we consider test statistics of the form

V =

∫ (
1− |ϕ̂(u)|2

)
w(u)du

to test for a global constant volatility. V is nonnegative because of |ϕ̂(u)|2 ≤ 1.

The latter obviously holds, since a weighted mean of points at the unit circle cannot

lie outside the unit circle. The weight function w : R→ R+
0 is chosen such that a

finite test statistic is ensured.

In order to handle the integral in our test statistic we define W =
∫
w(u)du <∞

for an integrable weight function w. In this case V can be rewritten to

V = W −
∫
|ϕ̂(u)|2w(u)du. (4.3)

Since W is independent of the data, it can be dropped. Using the definition of ϕ̂

the integral in (4.3) reduces to

TFour =
1

n2

N∑
j,k=1

τjτkIw
(
log
(
σ̂2
j

)
− log

(
σ̂2
k

))
, (4.4)

where

Iw(x) =

∫
cos(ux)w(u)du.
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Since small values of V support the null hypothesis, H0 is rejected for small values of

TFour. This test statistic depends on the data only via the terms log
(
σ̂2
j

)
−log (σ̂2

k) =

log
(
σ̂2
j/σ̂

2
k

)
for 1 ≤ j < k ≤ N . Therefore, thanks to the logarithm, any scale

factor is canceled out and TFour is scale invariant. This is the reason why we

logarithmise the estimated volatilities.

The function Iw can be expressed explicitly for several standard choices of w

presented in Hušková and Meintanis (2006a). These are the uniform, the Laplace

and the Gaussian weighting with corresponding weight functions

wU(u) = 1(−a,a)(u), wL(u) = e−a|u| and wG(u) = e−au
2

,

respectively. All of them are integrable and depend on a parameter a > 0. Straight-

forward computations lead to

IwU (x) =
2 sin(ax)

x
, IwL(x) =

2a

a2 + x2
and IwG(x) =

√
π

a
exp

(
−x2

4a

)

for the uniform, Laplace and the Gaussian weight function, respectively. There also

exist alternative choices for w. One example is the data adaptive weighting scheme

proposed by Meintanis et al. (2014) for goodness-of-fit testing. Another weight

function is studied in Matteson and James (2014) in the context of multivariate

nonparametric detection of general distributional changes. These two types of

weight functions were also considered in the simulations. We do not provide the

corresponding results in the following, because the weight function does not have a

large impact on the performance of the proposed tests. This is illustrated in Section

4.4.1 for the three standard weighting schemes wU , wL and wG and also holds for

these weight functions. In our simulations the data adaptive weighting leads to

slightly worse and the weighting proposed by Matteson and James to essentially

the same rejection rates as the standard weight functions.



90 4. TESTING TIME SERIES FOR A CONSTANT VOLATILITY

4.3 Testing for a Global Constant Volatility

In this section we show how time series can be tested for a global constant volatility.

First, a simple approach using the statistics defined in Section 4.2 is presented.

Hereafter, a natural estimator of the structural break position in case of a rejection

is defined. The procedure allows to locate multiple presumable structural break

positions, which is quite valuable in applications. The section closes by introducing

alternative methods for the testing problem taken from or inspired by the literature.

4.3.1 Testing Procedure

The distribution of the test statistic TFour heavily depends on the distribution of

the random variables X(1), . . . , X(n). Getting critical values without imposing

distributional assumptions is thus impossible at least for small sample sizes. As

shown for the divergence estimators in Chapter 3, the permutation principle

introduced by Fisher (1935) can be of great help in such situations. As an additional

motivation, note that Hušková and Meintanis (2006b) successfully make use of it

testing for general structural changes of the distribution in temporal data using

characteristic functions, a topic closely related to our procedure. Since under the

null hypothesis the observations stem from identically distributed random variables,

the approach described on page 72 can be adapted to our framework. We thus

determine the test statistic TFour on the original sample as well as on each of

its np permutations always assuming that each sample is observed in the given

order. Thereby, the same parameters N,w, a and block lengths τ1, . . . , τN are used

for all computations. The permutation procedure rejects H0 at the predefined

significance level α, if the test statistic determined on the original sample falls

below the empirical α-quantile of all np + 1 test statistics.
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4.3.2 Localisation of Presumable Structural Breaks

If the tests procedure proposed in 4.3.1 rejects H0, we are interested in locating the

first presumable change point. A rough approximation for this position is tj∗ , where

j∗ = argmax
∣∣log

(
σ̂2
j

)
− log

(
σ̂2
j+1

)∣∣ and the maximisation is performed over the

blocks j = 1, . . . , N − 1. Unfortunately, the resolution of this estimator is limited

by the block lengths. This is in particular problematic, if the potential change

point positions t1, . . . , tN are not determined by a priori knowledge. In order to

alleviate this problem the presumable change point position can be fine tuned if

desired. To achieve this we work with the union of the two blocks around the rough

estimate tj∗ , B = {tj∗−1 + 1, tj∗−1 + 2, . . . , tj∗ , . . . , tj∗+1} for j∗ = 1, . . . , N −1. For

each t ∈ B the volatility before and after t is estimated analogously to (4.2) using

observations from B only. Let us denote them by σ̂2
1(t) and σ̂2

2(t). The position of

the presumable structural break is then estimated by

argmax
t
| log(σ̂2

1(t))− log(σ̂2
2(t))|.

Hereby, the maximisation is performed over all t ∈ B far enough away from the

bounds of B so that a meaningful estimations of the local volatility is ensured. In

our implementation of the method we always leave out the five observations closest

to each bound of B.

Multiple structural break positions are located in a recursive manner in the spirit of

Vostrikova (1981). After identifying the first presumable change point as described

above, the sample is split into two parts at that point. The test procedure

is then repeated on each of the subsamples large enough to ensure reasonable

estimations. In case of new rejections, corresponding presumable change points

are determined and the splitting continues. As soon as no splitting is performed
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anymore, the current data blocks seem homogeneous and the method stops. This

testing procedure attains a predefined significance level α under the null hypothesis,

since under H0 the permutation test conducted on the full sample rejects in α

percent of the cases.

4.3.3 Alternative Methods

The idea of using Fourier-type transforms and characteristic functions in change

point detection is not new. Work in this context is often related to similar issues such

as the two–sample problem (Meintanis, 2005) and the k–sample problem (Hušková

and Meintanis, 2008) and empirical characteristic functions of the observations

themselves are used to test for general deviations of distributions. Papers on the

general change point problem also include Hušková and Meintanis (2006a,b) for

change point detection with independent observations and Hlávka et al. (2012)

for sequential testing in the context of autoregressive models. In all of these it is

shown that methods using transformations to the complex plane are convenient

from the computational point of view and lead to theoretically sound asymptotics.

However, to the authors’ knowledge up to now there are no methods based on such

concepts specifically tailored for testing the constancy of the volatility or other

features of time series explicitly.

In the following, we sketch several other approaches for this task derived from the

literature. All four methods presented in this section reject the hypothesis of a

global constant volatility for large values of the corresponding test statistic. The

CUSUM procedure is a standard tool in the detection of structural breaks and
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a lot of work is available on it. We choose the method proposed by Wied et al.

(2012) as a representative for this class of tests. It relies on the CUSUM statistic

TCUS = max
1≤t≤n

∣∣∣∣D̂ t√
n

(
σ̂2

1:t − σ̂2
1:n

)∣∣∣∣ ,
where σ̂2

1:l denotes the empirical variance of the first l observations for l = 1, . . . , n.

The normalising scalar D̂ allows to attain the asymptotic distribution. The CUSUM

approach compares the discrepancies between the estimated volatility on the whole

sample to all volatilities estimated on proper subsamples. It then determines the

maximal deviation signaling a possible structural break. The test is designed

to detect at most one change in volatility and critical values are derived from

asymptotics.

As opposed to the CUSUM strategy, Peña (2005) also compares variances estimated

on subsamples to a measure of volatility estimated on the complete sample. He

proposes the test statistic

TLog = n log

(
n∑
t=1

X(t)2

)
−

N∑
j=1

τj log(σ̂2
j ) (4.5)

built in a blockwise manner. As for TFour, its distribution under the null hypothesis

also heavily depends on the data. To construct a level α test we therefore again

apply the permutation principle.

Another approach testing for a global constant volatility is given by Ross (2013). It

is motivated by the classical distribution-free procedure proposed by Mood (1954).

The method first determines r(1), . . . , r(n), the ranks of the random variables

X(1), . . . , X(n). It then splits the time series into two parts X(1), . . . , X(t) and

X(t + 1), . . . , X(n) for each possible split position t = 1, . . . , n − 1. For each of

these splittings the standardised test statistic of the Mood test is calculated using
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the ranks. The expected value µt = t(n2 − 1)/12 and the standard deviation σt =√
t(n− t)(n+ 1)(n2 − 4)/180 used hereby are derived under the null hypothesis.

Taking the maximum over the possible split positions t = 1, . . . , n− 1 results in

TMood = max
t=1,...,n−1

∣∣∣∑t
h=1

(
r(h)− n+1

2

)2 − µt
∣∣∣

σt
.

Since only the ranks of the random variables contribute to the test statistic, the

procedure is distribution-free. Appropriate critical values depend solely on the

sample size n and can be derived by simulations. For several critical values and

more details we refer to Ross (2013).

In addition, we consider the monitoring procedure based on characteristic functions

introduced by Steland and Rafaj lowicz (2014). Their statistics have the advantage

that changes in the location process do not affect the monitoring of the volatility

and vice versa. According to the authors,

Sj =

∫ [(
Ûj(u)

)2

+
(
V̂j(u)

)2
]
w(u)du

is a good estimator in the context of characteristic functions, which reflects the

volatility in the j-th block, j = 1, . . . , N . Hereby, w is a weight function as before.

Ûj and V̂j denote the natural estimators of the real and imaginary part of the

characteristic function of the random variables in the j-th block for j = 1, . . . , N .

They are defined by

Ûj(u) =
1

τj

∑
t∈Bj

cos (u ·X(t)) and V̂j(u) =
1

τj

∑
t∈Bj

sin (u ·X(t)) ∀j = 1, . . . , N.
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We adopt the monitoring procedure to the retrospective case in the following way:

since the null hypothesis should be rejected for substantially different volatilities in

two blocks, we propose the quantity

Tcf = max
1≤j<k≤N

|Sj − Sk| (4.6)

as a test statistic for the testing problem under study. The testing is carried out

via the permutation principle. Note that for any j = 1, . . . , N one can rewrite Sj to

Sj =
1

τ 2
j

∑
t,t′∈Bj

Iw (X(t)−X(t′)) .

Therefore, using (4.4) our statistic TFour can be interpreted as a weighted version

of Sj computed on the pseudo observations log (σ̂2
1) , . . . , log (σ̂2

N).

4.4 Comparison of Volatility Tests

In this section the new Fourier-type tests are compared to the competitors described

in Section 4.3.3. This is achieved by determining the rejection rates of all methods

in different data scenarios. We thereby address the choice of parameters and

weighting functions. The best methods are applied to exchange rate data, along

with a GARCH approach.

4.4.1 Choice of Weighting Scheme and Block Sizes

As a first step of the analysis, we asses the influence of the weight function w,

its parameter a and the number of the blocks N on the two tests using weight
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functions. These are the ones based on the Fourier-type statistic TFour and the

statistic Tcf derived from characteristic functions defined, see (4.4) and (4.6). Since

both methods are constructed using the permutation principle, they attain a

predefined significance level α under the null hypothesis of global constant volatility.

Therefore, their empirical powers under alternatives are adequate performance

measures. We thus generate 1 000 datasets consisting of 200 observations each. The

first half of each sample is drawn from the standard Gaussian distribution. The

second 100 observations are sampled from the Gaussian distribution with increased

standard deviation 1.5 and mean 0. Appropriate values of the weight parameter

a > 0 are chosen from the literature on empirical characteristic functions, which

are comparable to our quantity ϕ̂N . Since characteristic functions contain the

most information around the origin (Epps, 1993), the weight functions used in

this context are decreasing in the modulus of their argument. In accordance with

this prior experience, for all three weighting functions investigated we choose the

values a = 0.5, 1, 1.5 for the parameter a regulating how fast a weight function

decreases to zero. The number of equidistant blocks is set to N = 5 and N = 10

and 2 000 permutations are conducted for both tests. The corresponding rejection

rates are given in Table 14. Comparable results not listed here were attained for

the weighting proposed by Matteson and James (2014) introduced on page 89.

According to the rejection rates the choice of the weight function w and its parameter

a does not have a large influence on the performance of the test using TFour. The

second method seems more affected by them and in particular does not show the

same behaviour in a for each choice of w. Unsurprisingly, both tests heavily depend

on the initial number of blocks, because a few large blocks in general allow better

estimations of the blockwise volatilities. For that reason, the methods lead to lower

rejection rates for N = 10 in comparison to N = 5. This is the case despite of the

fact that for N = 5 the true structural break lies in the middle of one block, which
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certainly has a negative effect on the power of the test. We also observe that the

test based on TFour considerably outperforms the one using Tcf for all parameter

constellations.

4.4.2 Evaluation of Volatility Tests

In the following we apply all tests introduced in Section 4.3 in five data scenarios.

To present the settings in a clear and compact way, let |n, σ = ã|m,σ = b̃| denote

n observations with standard deviation ã followed by m observations with standard

deviation b̃. The data cases under study are:

1) |200, σ = 1| (H0)

2) |100, σ = 1| 100, σ = 1.5| (one structural break)

3) |100, σ = 1| 100, σ = 1.5 |100, σ = 1| (two structural breaks)

4) |100, σ = 1| 100, σ = 1.4 |100, σ = 1| 100, σ = 1.4 |100, σ = 1|

(four structural breaks)

5) |100, σ = 1| 50, σ = 1.6 |100, σ = 1| 150, σ = 1.2 |100, σ = 1|

(four nonequidistant structural breaks)

For each of these five data cases three different distributions are considered as

prototypes. These are the standard Gaussian distribution (G), the t-distribution

with 5 degrees of freedom (t5) and the exponential distribution with parameter

λ = 1 (exp) shifted to zero mean. We make use of scaling to obtain the desired

standard deviations from these prototypes. For each of the five data cases and each

distribution 10 000 time series are generated. All methods introduced in Section
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4.3 are applied to them. The permutation tests are executed using np = 2 000

permutations. For the blockwise procedures the data is divided into N = 10

equidistant blocks. In case of rejection we proceed in the same way on subsamples.

To reduce the computational burden the two tests relying on weight functions are

only carried out for a = 1.5 and the Gaussian weighting based on the analysis in

the previous section. The results are given in Table 15.

Apparently, heavier tails make the detection of the structural breaks more difficult,

since the rejection rates for data generated from the t-distribution are always lower

than the corresponding ones for Gaussian data. Under the null hypothesis all

methods keep the significance level of 5%. For the non-gaussian data the rejection

rates of the CUSUM test are quite low under the null reflecting an inaccurate

approximation. As expected, the method leads to the best results for Gaussian data

with one volatility change, but loses a considerable amount of power in presence

of multiple structural breaks due to masking effects. The Mood-type test clearly

outperforms its competitors in the case of exponential data in all but the fifth

data scenario. The procedure therefore might have problems in nonequidistant

settings. For data from the Gaussian and the t-distribution it suffers a similar

loss of efficiency as the CUSUM test. The problem is quite similar, because the

procedure proposed by Ross is based on a two-sample test. Much like the CUSUM

approach, it therefore implicitly anticipates one structural break at a time and

thus always divides the sample into two parts. The tests relying on TFour and TLog

lead to competitive results overall. In particular, they suffer considerably less from

multiple structural breaks in comparison to the CUSUM and the Mood-type test.

As a consequence, they clearly outperform the CUSUM test for all distributions

under study and the test proposed by Ross for the symmetric distributions in case

of more than one volatility change. Among the two, TLog leads to slightly higher

rejection rates under alternatives. The procedure using Tcf performs similarly
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to TFour and TLog, but is inferior to both in all considered scenarios. This is in

accordance with the results in Section 4.4.1.

4.4.3 Number and Position of Estimated Structural Breaks

A good test for structural breaks should have high rejection rates under various

alternatives. However, it also must determine the causes of the heterogeneity

adequately after a rejection. Otherwise, it connects the correct rejection with

an irrelevant event leading to false conclusions. We therefore take a closer look

at the number and location of the presumable structural breaks estimated by

the methods. The blockwise procedures based on the statistics TFour and TLog

performed best in terms of power for the Gaussian and the t-distribution with

multiple structural breaks. We therefore focus on the corresponding tests, since

the assumption of Gaussianity is often encountered in practice due to the central

limit theorem and multiple structural breaks as well as heavy tails are also realistic

scenarios for example in financial applications. Both tests are conducted in the

recursive manner explained in Section 4.3.2. In Table 16 their mean number of

presumable structural breaks is listed for all five scenarios studied in the previous

section and data stemming form the t-distribution.

On average both methods do not detect all structural breaks, particularly if several

volatility changes are present. It seems especially problematic to detect the four

equidistant volatility changes in setting 4). Now, each data case is constructed

such that all rejection rates are below 1 in order to make the tests comparable.

Therefore, the structural breaks are simply not that obvious to all procedures under

study and are thus not always detected. The test via TLog rejects more often and

thus unsurprisingly finds more structural breaks on average. The differences are

quite small though.
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Next, the replications where the tests reject are considered. As indicated by the

results given in brackets in Table 16, both methods determine a reasonable number

of presumable structural breaks given a rejection. The test based on TFour estimates

the number of structural breaks more adequately under the null hypothesis and in

presence of four structural breaks, but the results are again of comparable size.
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Figure 10: Mean number of the change points estimated by the permutation
procedure based on TFour (left column) and TLog (right column) grouped by the
presumable change point position. The data is generated using scaled t-distributions
and contains two (upper row) and four (lower row) equidistant structural changes.

The presumable change point positions for the case of two and four equidistant

structural breaks are presented in Figure 4.4.3 for both methods. Since both

tests locate presumable change points in the same way, the different results are

mainly a consequence of additional rejections on subsamples by the method using

TLog. These additional presumable change point positions do not coincide with

the true structural break positions for the most part. Hence, the tests based on
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TFour locates the true change point positions much more precisely. This suggests

that tackling the detection of structural breaks via Fourier-type transformations is

indeed advantageous in comparison to the blockwise approach of TLog. The price

paid by a somewhat smaller rejection rate is outweighed by a more exact location

of the change position in case the latter is relevant at all.

4.4.4 Application to Financial Data

For further illustration of the methods we consider the daily exchange rates of

the Chinese yuan to the U.S. dollar from the 1st of January 2006 to the 1st of

January 2015. The data is available on the web page of the US Federal Reserve

(http://www.federalreserve.gov). In accordance with Ross (2013) we study

the logarithmised daily exchange rate differences. For this purpose, we apply the

permutation tests relying on TFour and TLog with the same settings as in Section

4.4.2 at a significance level of 5%. Both of them are conducted in the recursive

manner described in Section 4.3.2. In Figure 4.4.4 we present the data as well as

twice the estimated standard deviations in the blocks derived from the presumable

changepoints for both methods. In addition, we fit a GARCH(1,1) model based on

t-distributions using the R package fGarch by Wuertz and Chalabi (2013).

The data shows several regimes with considerably different magnitudes of volatility.

These can be associated with events such as the financial crisis starting in the

summer of 2007 and the bankruptcy of Lehman Brothers in September 2008.

Apparently, both permutation tests manage to detect the regime changes quite well

and lead to similar time intervals of constant volatility. Both volatility estimates

can be regarded as a smoothed version of the GARCH(1,1) prediction, which is

far more wiggly. Among the two tests, the block arrangement obtained using

TLog seems to be too fine for the summer of 2006 and more sensitive to single

http://www.federalreserve.gov
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observations around 2011. As opposed to that, the blocks for the TFour statistics

give a clear overview of the behaviour of the volatility for the whole time series.
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Figure 11: Logarithmised daily exchange rate differences of the Chinese yuan and
the U.S. dollar. The lines represent twice the estimated local volatility derived
from the presumable structural breaks obtained via the permutation test based on
TFour (blue) and TLog (red) as well as the a GARCH(1,1) model (gray).

4.5 Extension to Structural Breaks in Kurtosis

The concept introduced in Section 4.2 as well as the procedure proposed in 4.3.1

are not restricted to testing for a constant volatility. They can easily be adapted

to test the constancy of any desired feature of the data as long as reasonable
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estimators for this feature are available. This can be achieved in a straightforward

way: one simply substitutes the estimator (4.2) by another measure reflecting the

quantity of choice. To illustrate the procedure and give a first impression on its

performance we consider structural changes in the kurtosis. Kurtosis has recently

gained additional attention in financial applications and is increasingly regarded

as an alternative risk measure, see for example Bertram (2013) and the references

given therein. In analogy to Section 4.4.2, we consider 1 000 replications of each of

the four data cases

1) |6 000, N(0, 1)| (H0)

2) |3 000, N(0, 1)| 3 000, t10| (one structural break)

3) |3 000, N(0, 1)| 3 000, t10 |3 000, N(0, 1)| (two structural breaks)

4) |3 000, N(0, 1)| 3 000, t10 |3 000, N(0, 1)| 3 000, t10 |3 000, N(0, 1)|

(four structural breaks)

Hereby, N(0, 1) denotes standard Gaussian data, while t10 stands for observations

drawn from a t-distribution with 10 degrees of freedom. To eliminate the effect

of different volatilities the data from the t-distribution is standardised by the

corresponding theoretical standard deviation. We work with considerably larger

sample sizes than for the volatility, because the kurtosis is much harder to estimate.

Four tests are applied to the datasets. The following three of them rely on the

permutation principle. The first one is the proposed adaption to the procedure

motivated in Section 4.2. Its test statistic is

T̃Four =
1

n2

N∑
j,k=1

τjτkIw(log (κ̂j)− log (κ̂k)),
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where

κ̂j =
1

τj

∑
t∈Bj

X(t)4 ∀j = 1, . . . , N

is the natural estimator of kurtosis in the j-th block for zero mean random variables

with unit variance. T̃Four resembles the statistic TFour in (4.4), but the volatility

estimators σ̂2
j are replaced by the kurtosis estimators κ̂j for all j = 1, . . . , N . The

weighting is conducted using the Gaussian weight function with parameter a = 1.5.

Additional simulations not reported here show that both the weighting scheme as

well as the parameter a do not affect the results much as in the volatility case. In

analogy to that we adopt the statistics TLog introduced in (4.5) resulting in

T̃Log = n log

(
n∑
t=1

X(t)4

)
−

N∑
j=1

τj log(κ̂j).

The third statistic considered via the permutation approach is

T̃Max = max
1≤j,k≤N

|κ̂j − κ̂k|.

It is an intuitive measure to capture changes in the kurtosis process. In addition

to the three permutation tests, an asymptotical CUSUM test for the kurtosis is

conducted. Following Bertram (2013) we define

T̃CUS = max
1≤h≤n

√
n

∣∣∣∣ κ̂1:h

κ̂1:n

− h

n

∣∣∣∣
and derive corresponding critical values from its asymptotics. Hereby, κ̂1:h =

1
h

∑h
t=1X(t)4 denotes the kurtosis estimator on the first h observations, 1 ≤ h ≤ n.

The results in Table 17 lead to similar conclusions as for the volatility. The CUSUM
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procedure attains the highest rejection rates as long as the data contains only a

few structural breaks. With increasing number of changes in kurtosis the method’s

performance worsens in comparison to the other tests, although this happens not

as fast as in the volatility case. The tests using T̃Four and T̃Log on the contrary

reject more often with increasing number of structural breaks. As before, their

results are quite close. Both tests outperform the method using T̃Max in all settings

considered. In analogy to Section 4.4.3 we examined the positions of the structural

breaks determined by these two tests. As for the volatility, the test based on T̃Four

determines the location of the true structural breaks more accurately, cf. page 101.

4.6 Conclusions and Outlook

In this chapter we construct statistics allowing to test whether the volatility of

a time series is constant over time. For this purpose, we make use of a Fourier-

type transformation and blockwise estimates. The method does not assume a

specific distribution type, but is based on independent and blockwise identically

distributed data. Our studies suggest that it has a competitive power for symmetric

distributions in particular when several structural changes are present. In case of

rejection it locates the structural break positions adequately.

The procedure can be extended to test for arbitrary quantities, if appropriate

estimators are used. We demonstrate this in Section 4.5 for the kurtosis and

obtain results comparable to the volatility case. The concept also enables the data

analyst to substitute the volatility notion introduced in (4.2) by any other measure

more suitable in a given context. For example, robust estimators of scale may be

preferable if outliers are an issue. Deriving asymptotics for the test statistic TFour is

one goal for future research. Under the null hypothesis TFour is nothing but a mean

of identically distributed, but not independent, random variables. Therefore, the
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formulation of a law of large numbers as well as a central limit theorem is an obvious

task partially solved already. Upon completion, the results will allow to speed up

the computations significantly especially for large sample sizes. New algorithms

for an adequate choice of blocks can greatly contribute to an improvement of the

method’s performance and are thus desirable as well. Finally, the procedure could

also be extended to the multivariate case.
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5 Summary

In this dissertation three problems strongly connected to the topic of homogeneity

are considered. For each of them a distribution-free approach is motivated and

investigated using simulated as well as real data.

The first method is based on the classical nonparametric two-sample Kolmogorov-

Smirnov test, cf. Durbin (1973). In case of a rejection by this test, the proposed

algorithm quantifies the discrepancies between the corresponding samples. These

dissimilarities are represented by the so called shrinkage factor and the correction

distribution. The former measures the degree of discrepancy between the two

samples. The latter contains information with regard to the over- and undersam-

pled regions when comparing one sample to the other in the Kolmogorov-Smirnov

sense. To the best of our knowledge our proposal is the first attempt to measure

the dissimilarities between two datasets in a general distribution-free framework.

We prove the correctness of the algorithm as well as its linear running time when

applied to sorted samples. As illustrated in various data settings, the fast method

leads to adequate and intuitive results.

The second topic investigated in this work is a new class of two-sample homogeneity

tests. Classical nonparametric procedures such as the Kolmogorov-Smirnov test

and the Anderson-Darling test (Anderson and Darling, 1952) rely on distribution

functions, which can be estimated comparatively easily. The estimation of prob-

ability density functions is not that straightforward, if no particular distribution

type is assumed. Nevertheless, two-sample homogeneity tests using density-based

dissimilarity measures lead to much higher power in certain data scenarios as shown

in the analysis in Chapter 3. In particular, they perform considerably better than

classical procedures, if the samples under study do not predominantly differ in

location. We thus highly recommend them for testing scale alternatives, skewness
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alternatives or general unspecified discrepancies of datasets with almost equal

means. In addition to proposing and evaluating new tests, we introduce a novel

estimation technique for f -divergences the tests can rely on. The procedure is fast,

does not require strong assumptions on the data and competes well with other

estimators in terms of mean squared error.

In Chapter 4 we deal with structural breaks in time series. The method introduced

there is motivated by characteristic functions and Fourier-type transforms. It is

highly flexible in several ways: firstly, it allows to test for the constancy of an

arbitrary feature of a time series such as location, scale or skewness. It is thus

applicable in various problems. Secondly, the method makes use of arbitrary esti-

mators of the feature under investigation. Hence, a robustification of the approach

or other modifications are straightforward. We demonstrate the testing procedure

focussing on volatility as well as on kurtosis. In both cases it leads to reasonable

rejection rates for symmetric distributions. In particular the test shines in presence

of multiple structural breaks, because its test statistic is constructed in a blockwise

manner. The position and number of the presumable change points located by the

new procedure also correspond to the true ones quite well. The method is thus

well suited for many applications as illustrated on exchange rate data.
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6 Tables

In the tables below, we use the abbreviations given in brackets: Gaussian distribu-

tion (G), t-distribution with 5 degrees of freedom (t5), t-distribution with 20 degrees

of freedom (t20), exponential distribution with mean 1 (exp), t-test (t), F-test

(F), Wilcoxon test (Wil), Kolmogorov-Smirnov test (KS), Anderson-Darling test

(AD), Kanamori test based on the Kullback-Leibler divergence (KanKL), Kanamori

test based on the Hellinger divergence (KanH), parametric test for two exponential

distributions (Exp), natural density ratio estimator (Nat), uLSIF density ratio

estimator (uLSIF) and moment matching density ratio estimator (MM). The tests

not listed to far are denoted by their test statistic. All rejection rates are given in

percent.

100 500 1 000 5 000 10 000 50 000 100 000

a)
sopt 0.516 0.409 0.380 0.341 0.331 0.317 0.313

Mean 3.504 3.282 3.217 3.121 3.096 3.055 3.043
SD 0.693 0.795 0.832 0.892 0.910 0.944 0.954

b)
sopt 0.481 0.381 0.358 0.326 0.318 0.308 0.306

PHopt(0) 0.979 0.993 0.995 0.998 0.999 0.999 1.000

Table 1: Results for the the Gaussian mixture case a) and the the zero mixture b)
for different sample sizes averaged over 1 000 replications, cf. page 43. For a) the
determined shrinkage factors sopt and the estimations of the mean and the standard
deviation of the correction distribution Hopt are given. For b) the determined
shrinkage factors sopt and estimated probability mass assigned to 0 by Hopt denoted
by PHopt(0) are presented.
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Table 2: Empirical mean square errors for estimators of the Kullback-Leibler
divergence in situations 1) to 4), cf. page 68. The estimators are grouped by their
density ratio estimators.

Nat uLSIF MM

D̂KL D̂D
KL D̂KL D̂D

KL D̂KL D̂D
KL D̂S

KL

1) 0.0014 0.0019 0.0027 0.0041 0.0004 0.0004 0.0015
2) 8.2009 17.8172 91.3088 7.1588 10.9003 1.1715 3.9507
3) 0.9449 0.9276 0.3728 0.4041 0.0611 0.0610 0.1801
4) 77.2846 79.2853 9.6543 10.0414 0.8303 0.8276 0.6996

Table 3: Empirical mean square errors for estimators of the Hellinger divergence in
situations 1) to 4) multiplied by 104, cf. page 68. The estimators are grouped by
their density ratio estimators.

Nat uLSIF MM

D̂H D̂D
H D̂H D̂D

H D̂H D̂D
H D̂S

H

1) 0.20 0.24 0.37 0.56 0.07 0.07 0.22
2) 685.34 15.79 7699.41 161.73 466.80 11.05 18.03
3) 3.05 3.02 6.31 7.56 3.35 3.34 3.53
4) 18.13 11.78 27.89 25.79 10.05 8.88 11.99

Table 4: Rejection rates of the Kanamori test under H0 : P = Q for different
sample sizes, cf. page 71. Distributions: a) standard Gaussian, b) and c) mean 1
exponential. Density ratio models: a) and b) exponential, c) reduced exponential.

n 10 30 50 75 100 150 200 250 300 400 500

a)
KLD 16.8 8.6 7.6 7.4 6.2 5.2 5.8 5.4 4.4 4.4 6.0
Hell 11.4 7.6 7.0 6.6 5.6 5.0 5.8 5.2 4.2 4.2 6.0

b)
KLD 23.2 17.8 9.0 8.6 11.6 8.4 8.2 7.2 7.0 6.6 6.2
Hell 11.8 12.8 5.4 6.4 9.4 6.4 6.0 5.8 6.6 6.0 5.4

c)
KLD 8.6 9.0 4.2 5.8 6.4 4.6 6.6 5.2 5.2 5.6 5.4
Hell 7.6 8.2 4.2 5.4 6.2 4.6 6.4 5.2 5.2 5.6 5.4

Table 5: Rejection rates of several homogeneity tests under H0 : P = Q for
m = n = 300, cf. page 76.

t F Wil KS AD KanKL KanH D̂KL D̂S
H

G 5.2 5.2 5.0 5.0 5.6 4.2 3.8 4.8 5.0

t5 4.0 22.4 5.2 3.6 4.0 7.6 7.0 4.9 4.8

t20 4.4 6.4 5.6 5.2 4.8 5.0 4.8 5.9 5.7
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Table 6: Rejection rates of some homogeneity tests under several alternatives for
m = n = 50. The parameters of the distribution Q are µ1 = −0.5, µ2 = 0.5 for
location alternatives, σ2

1 = 0.5, σ2
2 = 1.5 for scale alternatives and θ1 = 0.6, θ2 = 1.4

for alternatives in both location and scale simultaneously, cf. page 76.
Location Scale Location and Scale

G t20 t5 G t20 t5 G t20 t5
µ1 µ2 µ1 µ2 µ1 µ2 σ1 σ2 σ1 σ2 σ1 σ2 θ1 θ2 θ1 θ2 θ1 θ2

t 72 68 68 69 71 73 5 4 4 5 4 4 67 40 70.2 35 67 38
F 5 5 7 7 20 20 100 79 100 80 97 73 92 61 92 59 85 60

Wil 68 68 73 69 80 80 5 6 5 4 4 5 63 36 68 33 75 44
KS 58 52 53 54 67 69 36 11 36 13 29 10 73 36 78 36 85 43
AD 70 63 68 66 77 78 75 23 72 23 57 20 86 50 89 45 89 56

D̂KL 46 40 42 40 43 49 33 68 26 67 12 54 42 64 41 61 40 58

D̂H 46 41 43 43 49 52 40 65 35 65 22 56 47 63 45 59 47 60

D̂D
KL 50 45 46 45 48 54 94 52 93 51 75 34 89 54 90 48 85 43

D̂D
H 50 45 47 46 52 56 94 52 94 51 84 37 89 54 90 46 89 46

D̂S
KL 43 48 48 41 49 46 95 50 95 45 87 34 91 54 91 49 89 44

D̂S
H 45 49 48 43 55 54 95 49 95 42 88 33 91 52 92 49 91 49

Table 7: Rejection rates under several alternatives form = n = 300. The parameters
of the distribution Q are µ1 = −0.2, µ2 = 0.2 for location alternatives, σ2

1 = 0.8,
σ2

2 = 1.2 for scale alternatives and θ1 = 0.8, θ2 = 1.2 for alternatives in both
location and scale simultaneously, cf. page 76.

Location Scale Location and Scale

G t20 t5 G t20 t5 G t20 t5

µ1 µ2 µ1 µ2 µ1 µ2 σ1 σ2 σ1 σ2 σ1 σ2 θ1 θ2 θ1 θ2 θ1 θ2

t 66 71 69 69 69 69 5 6 4 4 4 4 78 64 77 62 76 62

F 5 5 6 6 22 22 98 89 96 86 89 78 98 89 96 86 89 78

Wil 67 66 67 69 78 77 6 5 6 5 6 5 75 57 75 60 85 69

KS 51 57 56 57 71 70 26 17 25 16 22 16 85 69 86 67 90 73

AD 63 70 66 69 78 75 60 37 57 32 41 27 95 83 96 79 95 83

KanKL 55 63 57 62 63 62 96 80 92 75 68 49 99 94 99 90 93 80

KanH 55 63 57 61 62 62 96 80 92 75 67 48 99 94 99 90 92 79

D̂KL 46 43 45 45 34 34 87 68 80 64 52 38 97 86 97 83 83 66

D̂S
H 46 44 49 46 47 45 87 68 80 64 61 45 97 86 97 84 89 76
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Table 8: Rejection rates for testing the equality of the standard Gaussian and a
skewed Gaussian distribution with skewness parameter λ̃ for m = n = 300, cf. page
76.
λ̃ t F Wil KS AD KanKL KanH D̂KL D̂S

H

-5 6.8 7.8 13.6 35.0 51.8 7.4 7.0 96.6 97.0

-3 6.6 7.2 11.0 21.2 23.8 6.2 5.8 66.6 66.4

-1 7.4 5.0 7.0 5.6 7.0 6.4 6.4 6.2 6.2

0 6.0 5.2 5.6 4.2 5.4 4.4 4.4 6.0 5.0

1 4.8 4.2 4.4 4.4 5.8 6.0 6.0 5.6 5.4

3 3.0 6.4 9.8 19.0 20.4 5.0 5.0 66.0 66.4

5 3.8 7.2 13.8 31.8 46.8 5.4 5.2 95.8 95.0

Table 9: Rejection rates for testing the equality of the standard Gaussian and a
standardised t-distribution for varying degrees of freedom and m = n = 300, cf.
page 76.

d.o.f. Wil KS AD KanKL KanH D̂H D̂S
H

3 4.8 74.2 90.8 24.0 23.2 97.6 99.4

4 5.0 25.2 35.8 9.8 9.6 65.0 72.2

5 5.6 14.0 16.4 7.6 7.0 41.1 46.8

10 4.8 5.2 6.8 6.6 6.4 10.2 11.0

Table 10: Rejection rates for comparing the standard Gaussian to an asymmetrically
contaminated standard Gaussian distribution with different contamination levels
ε∗ for m = n = 50, cf. page 77.

ε∗ t F Wil KS AD D̂KL D̂H D̂D
KL D̂D

H D̂S
KL D̂S

H

0 4.2 6.0 4.8 3.6 5.0 4.2 4.4 3.6 4.6 4.2 4.4

0.05 5.0 4.4 4.6 4.8 5.0 5.8 5.8 5.2 4.2 5.0 4.4

0.1 6.8 4.6 6.8 4.6 6.6 7.0 6.6 5.2 6.0 5.2 5.8

0.2 15.4 7.2 12.8 8.6 13.0 11.6 11.2 8.6 8.6 9.6 8.8

0.3 28.8 10.0 26.0 16.8 25.6 21.4 20.2 17.2 17.6 18.6 17.4
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Table 11: Rejection rates for comparing the standard Gaussian distribution to a
mixture of the standard Gaussian distribution and the Gaussian distribution with
mean 0.1 with different levels of mixture proportion ε∗ for m = n = 300, cf. page
77.
ε∗ t F Wil KS AD KanKL KanH D̂KL D̂S

H

1 94.6 5.0 94.4 84.8 94.2 90.6 90.6 81.2 82.0

0.95 93.0 4.8 92.4 84.2 92.2 89.2 89.0 76.0 77.0

0.9 89.2 4.8 87.2 79.2 88.0 84.2 84.2 72.0 73.2

0.8 82.6 4.8 80.2 69.4 81.2 75.2 75.2 61.0 61.6

0.7 73.4 5.2 70.6 57.6 70.0 62.4 61.6 48.2 48.6

Table 12: Rejection rates for testing the equality of two exponential distributions
with parameters λP = 1 and varying λQ for m = n = 300, cf. page 77.

λQ Exp Wil KS AD D̂KL D̂H D̂D
KL D̂D

H D̂S
KL D̂S

H

0.7 98.8 96.0 93.8 97.4 83.0 95.4 60.0 85.8 80.8 87.4

0.8 79.4 67.2 56.4 71.6 42.6 61.6 23.0 41.2 36.2 42.2

0.9 26.2 22.4 15.2 22.6 17.4 20.6 9.6 12.6 12.0 13.6

1 6.6 5.4 6.2 6.2 6.6 4.8 6.0 4.4 5.6 4.6

1.1 19.8 15.6 14.4 16.6 1.4 1.8 6.6 8.4 9.6 8.8

1.2 60.2 48.4 37.8 49.6 1.4 5.8 16.6 25.0 26.6 27.6

1.3 88.4 77.4 68.4 80.0 3.4 12.6 31.4 54.6 50.6 57.4

Table 13: Runtimes of the permutation tests using the estimators D̂D
H and D̂S

H on
standard Gaussian data in seconds for different sample sizes, cf. page 79.

n 50 100 150 200 250 300 350 400 450 500

D̂D
H 16.9 23.9 31.4 39.1 46.6 54.2 62.4 70.3 77.8 85.6

D̂S
H 11.4 11.4 11.8 12.0 12.3 12.8 13.2 13.7 14.3 15.0
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Table 14: Rejection rates in case of one volatility change for the permutation tests
based on TFour and Tcf for different weight functions w, the parameter values
a = 0.5, 1, 1.5 and two numbers of initial equidistant blocks N , cf. Section 4.4.1.

wU wL wG

a 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

N=5
TFour 80 80 81 81 80 80 80 80 81

Tcf 68 69 65 60 65 68 66 68 69

N=10
TFour 72 72 72 71 72 71 72 72 71

Tcf 47 50 42 34 42 46 43 48 49

Table 15: Rejection rates for the volatility tests in five different scenarios for
Gaussian distributions (G), t-distributions with 5 degrees of freedom (t5) and
exponential distributions (exp). The tests are denoted by their test statistics, cf.
Section 4.3.3 and 4.4.2.

TFour TCUS TMood Tcf TLog

H0

G 5.2 4.9 5.3 5.0 5.4

t5 5.0 3.5 5.1 5.3 5.1

exp 5.0 3.0 4.8 5.2 5.1

1 break

G 71.0 89.3 78.4 44.1 74.6

t5 47.2 51.1 65.8 35.1 47.4

exp 49.1 31.8 99.0 26.3 41.4

2 breaks

G 78.5 2.6 38.1 55.2 82.7

t5 50.6 1.9 29.0 42.9 52.3

exp 44.3 1.4 83.6 31.0 41.1

4 breaks

G 77.7 0.7 14.6 55.6 80.1

t5 70.1 0.7 20.4 64.8 69.7

exp 56.1 0.9 70.4 43.7 53.7

4 noneq. breaks

G 88.9 0.3 14.6 80.8 92.0

t5 56.2 0.7 12.6 65.5 60.8

exp 44.7 0.8 42.6 43.3 46.4
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Table 16: Mean number of structural breaks estimated by the permutation tests
using the blockwise statistics TFour and TLog. The data is generated by the t5-
distribution and five data cases are considered, cf. Section 4.4.3. In brackets the
mean number of estimated structural breaks among the samples with rejection is
given.

H0 1 break 2 breaks 4 breaks 4 noneq. breaks

TFour 0.07 (1.4) 0.70 (1.48) 1.05 (2.08) 1.66 (2.37) 2.16 (3.84)

TLog 0.08 (1.56) 0.76 (1.60) 1.15 (2.20) 1.74 (2.48) 2.28 (3.75)

Table 17: Rejection rates for tests presented in Section 4.5 in the four different
kurtosis scenarios introduced in Section 4.4.4.

T̃Four T̃CUS T̃Log T̃Max

H0 4.7 5.1 4.6 4.9

1 break 22.2 81.1 22.7 16.0

2 breaks 28.1 56.6 29.5 22.0

4 breaks 65.1 56.5 65.7 43.6
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Hušková, M. and Meintanis, S. G. (2006b): Change-point Analysis Based on

Empirical Characteristic Functions of Ranks. Sequential Analysis , 25 (4), 421–

436.



120 REFERENCES
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