
Tight Integration of Cache, Path and Task-interference
Modeling for the Analysis of Hard Real-time Systems

Dissertation

zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Jan C. Kleinsorge

Dortmund

2015

Ort: TU Dortmund

Fakultät: Informatik

Tag der mündlichen Prüfung: 28. Oktober 2015

Dekan: Prof. Dr. Gernot Fink

Gutachter: Prof. Dr. Peter Marwedel

Prof. Dr. Björn Lisper

Abstract

Traditional timing analysis for hard real-time systems is a two-step approach consisting of

isolated per-task timing analysis and subsequent scheduling analysis which is conceptually

entirely separated and is based only on execution time bounds of whole tasks. Today this

model is outdated as it relies on technical assumptions that are not feasible on modern

processor architectures any longer. The key limiting factor in this traditional model is

the interfacing from micro-architectural analysis of individual tasks to scheduling analysis

— in particular path analysis as the binding step between the two is a major obstacle.

In this thesis, we contribute to traditional techniques that overcome this problem

by means of bypassing path analysis entirely, and propose a general path analysis and

several derivatives to support improved interfacing. Specifically, we discuss, on the basis

of a precise cache analysis, how existing metrics to bound cache-related preemption

delay (CRPD) can be derived from cache representation without separate analyses, and

suggest optimizations to further reduce analysis complexity and to increase accuracy.

In addition, we propose two new estimation methods for CRPD based on the explicit

elimination of infeasible task interference scenarios. The first one is conventional in that

path analysis is ignored, the second one specifically relies on it. We formally define a

general path analysis framework in accordance to the principles of program analysis —

as opposed to most existing approaches that differ conceptually and therefore either

increase complexity or entail inherent loss of information — and propose solutions for

several problems specific to timing analysis in this context. First, we suggest new and

efficient methods for loop identification. Based on this, we show how path analysis itself

is applied to the traditional problem of per-task worst-case execution time bounds, define

its generalization to sub-tasks, discuss several optimizations and present an efficient

reference algorithm. We further propose analyses to solve related problems in this domain,

such as the estimation of bounds on best-case execution times, latest execution times,

maximum blocking times and execution frequencies. Finally, we then demonstrate the

utility of this additional information in scheduling analysis by proposing a new CRPD

bound.

iii

Zusammenfassung

Traditionelle Zeitanalyse von harten Echtzeitsystemen ist ein typischerweise zweischritti-

ges Verfahren bestehend aus der eigentlichen Analyse einzelner isolierter Tasks, sowie

einer darauf folgenden Scheduling-Analyse, welche konzeptionell sehr verschieden ist

und lediglich auf der Abschätzung der Gesamtlaufzeit einzelner Tasks beruht. Nach

heutigen Maßstäben ist dieses Modell veraltet, da diesem Analyseprinzip längst überholte

technische Annahmen zu Grunde liegen. Die zentrale Beschränkung hierbei bildet gerade

die Schnittstelle zwischen Mikroarchitekturanalyse einzelner Tasks und der Scheduling-

Analyse. Insbesondere die sogenannte Pfadanalyse, als Bindeglied beider Phasen, ist

hierbei von zentraler Bedeutung.

Mit dieser Arbeit tragen wir zum einen dazu bei, Analyseverfahren, welche die Pfad-

analyse vollständig umgehen, zu verbessern. Zum anderen stellen wir eine neue allgemeine

Pfadanalyse, sowie mehrere Varianten vor, die dazu beitragen die Schnittstelle erheblich zu

verbessern. Genauer diskutieren wir, wie auf Grundlage einer präzisen Cache-Analyse be-

reits existierende Metriken zur Abschätzung von Cache-related Preemption Delay (CRPD)

ohne weitere separate Analysen abgeleitet werden können, und wir schlagen spezifische

Optimierungen vor, die sowohl die Analysekomplexität senken, sowie die Genauigkeit

erhöhen. Zusätzlich schlagen wir zwei neuartige Methoden zur Abschätzung von CRPD

vor, basierend auf dem expliziten Ausschluss unmöglicher Präemptionsinterferenzen. Das

Erste ist konventionell insofern, als dass die Pfadanalyse umgangen wird. Das Zweite

hingegen hängt explizit von ihr ab. Wir definieren formal ein allgemeines Pfadanalyse-

framework, das den Prinzipien der klassischen Programmanalyse entspricht. Existierende

Lösungen weichen davon konzeptionell erheblich ab, zeigen geringe Performanz oder sind

inhärent ungenau. In diesem Zusammenhang besprechen wir weiter wichtige Probleme

speziell im Kontext der Zeitanalyse. Wir zeigen neue Möglichkeiten zur Identifikation von

Kontrollflussschleifen auf, zeigen wie darauf aufbauend das klassische Problem der Worst-

Case-Zeitanalyse ganzer Tasks, sowie von Teilmengen gelöst werden kann — zuzüglich

zahlreicher Optimierungen und eines effizienten Referenzalgorithmus. Weiter zeigen wir

wie Probleme wie Best-Case- und Latest-Ausführungszeit, sowie Maximale-Blockierzeit

und Worst-Case-Ausführungsfrequenz gelöst werden können. Abschließend demonstrieren

wir den Nutzen dieser Analyseergebnisse für die Scheduling-Analyse anhand einer neuen

CRPD-Abschätzung.

v

vi

Acknowledgements

This thesis would not have been possible without the support of many people and whom

I owe a great deal of gratitude. First of all I would like to thank Prof. Dr. Peter Marwedel

who gave me the opportunity to work in his group. Along with him, I would like to thank

Prof. Dr. Heiko Falk. Both gave me the advice, the freedom and the time to pursue my

research and have always been valuable sources of guidance and expertise.

I would never have found the stamina to finish this work if it had not been for my

formidable colleagues who were always open for discussion and who have been a great

source of inspiration over the years. I would like to specially thank Dr. Michael Engel

for always having an open ear and amicable advice. I would also like to explicitly thank

Dr. Timon Kelter with whom it was a pleasure to work with for all these years in our

little two-men work group. It has been a constant in changing tides.

I will not provide a complete list of names at this point of all the people that shared

this experience with me, be it colleagues or friends — often that is indistinguishable —,

or my family. But be assured that if you are looking for your name right now, then you

would be on it. Thank you for your time, your dedication, your patience, all the talk, all

the fun, your friendship and your love.

vii

Contents

1 Introduction 1

1.1 Contribution . 3

1.2 Structure . 5

1.3 Contributing Publications . 5

2 Principles of Program Analysis 7

2.1 Programs: Syntax, Semantics and Interpretation 8

2.2 Trace Semantics . 8

2.3 Collecting Semantics . 10

2.4 Fixed Point Semantics . 12

2.5 Abstraction . 15

2.6 Convention and Practical Program Analysis 18

3 Context 21

3.1 Real-time Scheduling . 21

3.1.1 Basic Task Model . 22

3.1.2 Modes of Preemption . 25

3.1.3 Deadline Monotonic and Earliest Deadline First 27

3.1.4 Schedulability . 28

3.1.5 Blocking and Synchronization . 30

3.2 Timing Analysis . 33

3.2.1 Practical Aspects . 34

4 Cache Analysis 39

4.1 Computer Memories . 40

4.2 Processor Caches . 41

4.3 Cache Logic . 43

4.4 Static Cache Analysis . 44

4.4.1 LRU Cache Semantics . 45

4.4.2 Access Classification . 46

4.4.3 Abstraction . 47

4.5 Multitask Timing Analysis . 49

4.5.1 Costs of Preemption . 49

4.5.2 Cache-related Preemption Delay 50

4.5.3 Bounding Cache-related Preemption Delay 51

4.6 Synergetic Approach to CRPD Analysis 58

ix

Contents x

4.6.1 Precise Cache Analysis . 58

4.6.2 Computation of UCB, ECB and CBR 61

4.6.3 Restriction to Basic Block Boundaries 64

4.6.4 CRPD Bounds on Task Sets . 66

4.7 Evaluation . 72

4.8 Conclusion . 77

5 Path Analysis 79

5.1 Fundamentals of Control Flow Analysis 81

5.1.1 Flows and Paths . 81

5.1.2 Graph Structure . 84

5.2 Path Problems in Timing Analysis . 91

5.2.1 On Program Representation . 91

5.2.2 On Control Flow Representation 93

5.2.3 On Path Analyses . 98

5.3 A General Path Analysis . 101

5.3.1 Motivation . 101

5.3.2 Graph Structure and Loops . 103

5.3.2.1 Related Work . 104

5.3.2.2 Scopes . 105

5.3.2.3 A General Algorithm for Precise Loop Detection 107

5.3.2.4 Handling Ambiguous Loop Nesting by Enumeration . . . 121

5.3.2.5 Handling Ambiguous Loop Nesting by Prenumbering . . 125

5.3.2.6 Conclusion . 131

5.3.3 Computing Worst-Case Execution Time Bounds 131

5.3.3.1 Prerequisites . 131

5.3.3.2 Computing WCET Bounds on a Single Scope 133

5.3.3.3 Computing WCET Bounds Globally 149

5.3.3.4 Computing WCET Bounds on Subgraphs 151

5.3.3.5 Practical Global Path Length Computation 153

5.3.3.6 Evaluation . 159

5.3.3.7 Conclusion . 163

5.3.4 Computing Best-case Execution Time Bounds 164

5.3.4.1 Prerequisites . 164

5.3.4.2 Framework . 165

5.3.4.3 Evaluation . 169

5.3.4.4 Conclusion . 171

5.3.5 Computing Latest Execution Time Bounds 171

5.3.5.1 Prerequisites . 172

5.3.5.2 Framework . 173

5.3.5.3 Evaluation . 182

5.3.5.4 Conclusion . 184

Contents xi

5.3.6 Computing Maximum Blocking Time Bounds 184

5.3.6.1 Prerequisites . 186

5.3.6.2 Framework . 189

5.3.6.3 Evaluation . 202

5.3.6.4 Conclusion . 204

5.3.7 Computing Worst-Case Execution Frequencies 204

5.3.7.1 Prerequisites . 205

5.3.7.2 Framework . 207

5.3.7.3 Evaluation . 213

5.3.7.4 Conclusion . 216

5.4 Remarks . 216

5.5 Conclusion . 218

6 Bounding Cache-related Preemption Delay 221

6.1 Improving Conventional CRPD Bounds 221

6.1.1 Preliminaries . 222

6.1.2 A Review of Approaches . 223

6.1.3 A Refined Bound on CRPD . 230

6.2 Improving CRPD Estimation with Time Bounds 237

6.3 Evaluation . 242

6.4 Conclusion . 245

7 Conclusion 247

7.1 Summary of Contributions . 247

7.2 Future Work . 249

7.3 Conclusion . 249

A Notations and Conventions 251

A.1 Mathematical Notation . 251

A.2 Pseudo-code Language . 253

B Reference Implementations of Basic Graph Algorithms 255

B.1 Breadth-first Search . 255

B.2 Maximum Flow . 256

B.3 Single-source Shortest Paths . 257

B.4 Topological Sort . 258

B.5 Single-source Shortest Paths on Directed Acyclic Graphs 258

B.6 Depth-first Search . 258

C On Linear Programming 261

Bibliography 263

Index 279

Contents xii

Chapter 1

Introduction

Contents

1.1 Contribution . 3

1.2 Structure . 5

1.3 Contributing Publications . 5

In the history of digital computing systems, no generation of technology had an impact

on the status quo of modern civilization as profoundly as cyber-physical systems [1].

Gradually and unobtrusively, embedded computing systems [2] with capabilities focused on

interaction with the physical environment became ubiquitous in our everyday life. Today

these systems can be found in just about anything from vehicles to medical implants.

In a modern automobile for example, we are surrounded by systems controlling basic

functions such as gasoline injection and transmission, safety-critical systems like airbags

and driver assistance, and comfort features such as satellite navigation, air conditioning

or entertainment systems. More than in any other digital computing domain are these

systems in such direct interaction with, and their capabilities constrained by, their

physical environment. Physical parameters such as energy efficiency — both in terms

of operations per energy unit in mobile systems as well as in terms of heat emission in

deeply embedded systems —, resistance to radiation or extreme temperatures or precise

timing of operations are of significant concern. These nonfunctional properties add to

the complexity of guaranteeing correctness of critical operations.

The legendary quote attributed to David Wheeler that “[a]ll problems in computer

science can be solved by another level of indirection. . . Except for the problem of too

many layers of indirection” is strikingly acute in the domain of embedded systems design

where any layer that abstracts by means of indirection from the physical environment

potentially jeopardizes provably correct operations. Every additional abstraction, be

it in the form of hardware or software, potentially increases the complexity of causal

chains, adding uncertainty about the behavior of functional as well as nonfunctional

properties. This sets embedded computing apart from general purpose computing:

holistic hardware/software co-design with a shallow abstraction hierarchy is the norm.

In particular, multiple objectives such as efficiency or predictability must be balanced

against throughput. Unfortunately, long gone are the times that computing performance

1

Chapter 1. Introduction 2

of simple system architectures could just be raised by increasing clock frequencies. First,

memory technology fell short of keeping up to processor performance, followed by hitting

physical boundaries to raising frequencies in general. Today, performance increments

are achieved by features such as cache memory, pipelined, speculative or out-of-order

execution, or the duplication of processing units. Some of these features are at odds

with named nonfunctional properties, motivating their formal study to assess their

applicability, devise formal analyses or give design recommendations according to the

specific requirements of embedded systems. In this context it is important to recognize

software as a level of indirection to cope with limited flexibility and high costs of hardware

solutions which can not be avoided.

Due to their sensitivity to stimuli from physical environments, timeliness of operations

in “real” physical time is an overarching concern in embedded systems. In particular in

hard real-time systems the timing aspect blurs the border of nonfunctional to functional

properties as correctness of computations becomes critically dependent on their time

demand in addition to mere functional semantics [3]. Its formal study is referred to as

timing analysis. Of particular relevance is static timing analysis which allows to derive

provably correct best-case or worst-case timing estimates from mathematical models of

hardware and software. The discovery and study of such models for existing and future

systems is an established [4] but nonetheless active field of research [5].

A proven procedure for practical static timing analysis is the separation of analysis

phases which roughly translate into discovery of potential execution paths (control flow

analysis), component-wise timing analysis (micro-architectural analysis) and consolidation

by selection of least or most time-demanding execution paths (path analysis). This is

usually performed for each unit of functionality, referred to as task, in isolation. Since

the components providing computing time as a resource to software tasks are usually

shared, a scheduling policy defines global task orchestration. To determine global timing

characteristics of a system, the phase of scheduling analysis consolidates per-task timings

under such a given policy.

Not just the quality of analysis phases themselves but also their interfacing is a critical

aspect of the overall process. Over time the interface between micro-architectural and

scheduling analysis in particular became an increasingly severe bottleneck. Traditionally,

all information obtained in phases preceding scheduling analysis is ultimately mapped

onto a single scalar value to denote execution time per task as a parameter to this

final phase. The assumption is that global timing characteristics solely depend on the

shared resource of computation time, and scheduling analysis solely serves the purpose

of estimating task interference on this resource. However, in modern architectures, task

interference that affect global timing also — and not exclusively — occurs in cache

memories and execution pipelines. The wider the gap between memory and processing

performance, and the deeper and more sophisticated execution pipelines become, the

more imprecise traditional scheduling analysis becomes. Today, we long passed the point

where this simplification is tolerable.

Chapter 1. Introduction 3

1.1 Contribution

The problem of insufficient interfacing to scheduling analysis is known and understood [6].

In particular the inherent costs of task interference in cache memories have been subject

to intense research. They are primary sources of imprecision and there exists a body

of approaches that propose an additional interface by summarizing micro-architectural

cache analysis results to tighten estimates of cache-related interference costs in scheduling

analysis. Potential for optimization in this context can be exploited by either improve-

ments in cache analysis itself, by improved interfacing or by improving cache-aware

scheduling analysis. This thesis contributes to all three aspects as follows:

Cache Analysis and Cache-related Preemption Delay

On the basis of a precise cache analysis framework for set-associative caches, we

show how to derive popular metrics for bounding cache interference — specifically

cache-related preemption delay. We demonstrate that fast precise analysis for

set-associative caches is indeed applicable nowadays, despite memory requirements,

given a careful performance-conscious implementation. We show that the particular

advantage is that from precise cache analysis results, metrics to bound interference

can be directly and precisely derived without separate analyses. Further, we

propose optimizations for instruction caches to significantly reduce overall memory

requirements. In addition, we identify potential sources of pessimism for bounding

task interference in set-associative caches and propose improvements.

Formal Discussion on Path Analysis

Path analysis is the central limiting factor in the interfacing of micro-architectural

and scheduling analysis, as essentially all existing approaches in the context of

timing analysis are limited to deriving simple per-task time bounds, which severely

inhibits progress. As a historical consequence, in most approaches the mapping

of cache interference to scheduling analysis completely bypasses path analysis,

aggravating the problem of information loss. We formally discuss path analysis,

give an overview of related issues, and show the conceptual and formal relation of

existing approaches. In particular, we show the fundamental relations of approaches

deemed conceptually different and we identify their specific limitations. Moreover,

it becomes clear that existing approaches are not necessarily ideal fits to the general

principles of program analysis in theoretical and technical terms.

Control Flow Reconstruction and Loop Identification

Path analysis is critically dependent on a precise representation of program structure.

We contribute solutions to the problem of loop identification in particular by

proposing a new general parametric and highly efficient algorithm that specifically

addresses a key problem in the context of timing analysis: Semantics but not

program structure is preserved from high-level to low-level representation of software

during compilation, but path analysis critically depends on this information which

must then be provided as parameters to the algorithm. Further, we accompany

Chapter 1. Introduction 4

the algorithm with two new methods to handle ambiguity in loop identification

that cannot be tackled with the primary algorithm alone. We propose two efficient

methods to either enumerate potential contexts to allow for safe but not necessarily

precise path analysis, or to guide precise loop identification by annotation.

General Path Analysis

Our central contribution is the proposal of a new path analysis and a selection of

several derivatives to approach various problems in timing analysis and scheduling

analysis in general. We formally define a general and yet simple framework which

perfectly fits principles of program analyses used in micro-architectural analysis,

paving the way for more advanced and new applications. Initially, we motivate

its construction along the use-case of traditional per-task worst-case execution

time analysis. Beyond the base model, we propose several optimizations. We

then further generalize beyond mere per-task analysis and show the application to

arbitrary subgraphs and we show how to efficiently compute timing estimates from

and to arbitrary program points. In addition, we also propose a highly efficient

and carefully crafted reference algorithm. In all proposals, we carefully took the

specific requirements of symbolic path analysis into account, formally as well as

practically.

Derivatives of General Path Analysis

From the base model of path analysis which mainly serves the purpose of worst-case

time estimates for traditional timing analysis, we derive several variants that either

significantly improve upon existing approaches or provide entirely new solutions.

We propose a framework for best-case analysis to compute lower time bounds. We

propose a new notion of time bounds, to which we refer to as latest execution

times, that specifically tightens estimates in fully preemptive schedules. We further

propose an analysis for the efficient estimation of maximum blocking times which

is the first proposal to allow for efficient preemption point placement, and we

propose a framework to bound execution frequencies of individual program points

independently of potential execution paths. All variants are well-defined, directly

applicable to the proposed reference implementation, highly efficient and simple.

Improved Bounds on Cache-related Preemption Delay

We improve upon the state of the art by proposing two new methods of estimation.

We identify common weaknesses in traditional approaches and specifically address

them by proposing an improved bound that performs estimates conceptually

orthogonal to existing approaches, avoiding their pessimism. We then further

extend the interface of scheduling analysis by proposing an improved estimation

method that exploits timing information from path analysis to exclude infeasible

task interferences from consideration. This demonstrates that bypassing path

analysis as in traditional approaches can lead to suboptimal results.

Chapter 1. Introduction 5

1.2 Structure

According to the order of contributions, this thesis is structured as follows. We introduce

principles of program analysis and important practical aspects in Chapter 2. In Chapter 3

we set the topics subject to this thesis into perspective by providing a general overview

on aspects of task scheduling and timing analysis. In Chapter 4 we give a thorough

overview of cache analysis and discuss our own approach. Similarly, Chapter 5 starts with

a thorough discussion of important aspects of path analysis followed by our approaches to

loop identification and path analysis. In Chapter 6 we briefly review existing approaches

to bound CRPD and then discuss our new bounds. We conclude the thesis in Chapter 7.

1.3 Contributing Publications

Contributions of this thesis have partially been published. The thesis bases on the

following peer-reviewed publications:

• Jan Kleinsorge, Heiko Falk, and Peter Marwedel. A Synergetic Approach to

Accurate Analysis of Cache-related Preemption Delay. In Proceedings of the 7th

International Conference on Embedded Software, EMSOFT ’11. ACM, October

2011

• Jan Kleinsorge, Heiko Falk, and Peter Marwedel. Simple Analysis of Partial Worst-

case Execution Paths on General Control Flow Graphs. In Proceedings of the 9th

International Conference on Embedded Software, EMSOFT ’13. ACM, October

2013

• Jan Kleinsorge and Peter Marwedel. Computing Maximum Blocking Times with

Explicit Path Analysis under Non-local Flow Bounds. In Proceedings of the 10th

International Conference on Embedded Software, EMSOFT ’14. IEEE, October

2014

The contributions to this thesis have been envisioned, specified, formalized and imple-

mented by myself in their entirety in purely technical terms. Nevertheless inspiration,

motivation, guidance and assistance is due to the co-authors of aforementioned papers

by which they made invaluable contributions.

Chapter 1. Introduction 6

Chapter 2

Principles of Program Analysis

Contents

2.1 Programs: Syntax, Semantics and Interpretation 8

2.2 Trace Semantics . 8

2.3 Collecting Semantics . 10

2.4 Fixed Point Semantics . 12

2.5 Abstraction . 15

2.6 Convention and Practical Program Analysis 18

Program analysis is concerned with the discovery of facts about program execution

such as the valuation of variables, the use of resources or the execution time. Dynamic

analysis usually denotes the actual execution of a program under instrumentation to

discover program facts directly. Static analysis, on the other hand, derives facts from

a semantic model derived from programs, which does not necessarily encompass the

entirety of program semantics and therefore allows for the restriction to specific facts

of interest. In general, precise fact discovery is often undecidable. Most prominently,

it is undecidable in general whether a program terminates — which implies execution

time is undecidable either. Therefore, abstraction (approximation) of concrete semantics

is necessary. Any such an abstraction has to be sound, which refers to the fact that

only true facts about properties can be derived from it. Approximations are ideally

tight, which means that facts derived from abstract semantics are not too imprecise to

be useful. Abstract Interpretation [10, 11] denotes the general theory which provides the

formal background to construct such program analyses. In this chapter we discuss its

principles and the basic terminology.

In Section 2.1 we introduce some basic terminology. We then successively introduce

different types of program semantics. In Section 2.2 we introduce trace semantics, followed

by collecting (Section 2.3) and fixed point semantics (Section 2.4) as the foundation of

the following chapters. We then focus on practical program analysis by first introducing

the concept of abstraction (Section 2.5), followed by a brief primer on conventions we

rely on later, and we give hints on practical implementations in Section 2.6.

7

Chapter 2. Principles of Program Analysis 8

2.1 Programs: Syntax, Semantics and Interpretation

A program1 P is represented by sequence of statements (l1, . . . , ln) of a language L, repre-

senting its syntax, where each statement li ∈ L is uniquely identified by its corresponding

program point qi ∈ Q. Every program P has a unique entry point q0 ∈ Q and a set

of exit locations Qf ⊆ Q. Statements li define the semantics of a program associated

with program points qi. Semantics define the transition of program states S ⊆ D in the

given state domain D from one state to another. A state may, for example, represent the

current program point or the valuation of variables. This transition of state is commonly

referred to as data flow and transition of program location, specifically, is referred to

as control flow. Semantics of a language define how statements affect state. In other

words, it defines its interpretation. The successive interpretation of a given initial state

is referred to as evaluation.

For the purpose of program analysis, we might not be interested in the complete state.

For example, we might only be interested in whether program points are ever reached

or just the sign of variable valuations. On the other hand, we might be interested in

aspects beyond mere program semantics such as the state of hardware which is indirectly

affected by execution but which is not subject to explicit language semantics. To this

end, it is often a practical necessity to derive an abstract interpretation, which reduces or

extends semantics according to our requirements.

In the following we discuss and formalize abstract interpretation to clarify important

aspects of program analysis and to define a general framework for efficient practical

program analyses.

2.2 Trace Semantics

We first define how semantics are applied to program state in general for our definition

of programs. We assume that q(s) ∈ Q denotes a program point contained in a program

state s ∈ D.

Definition 2.1 (Transfer Function) For a program, let Q denote program points and

let D denote its state domain. A transfer function (or transformer) denotes semantics at

program points and is defined as:

tf : Q 7→ (D 7→ ℘(D)) (2.1)

Evaluation of a program then is denoted by the successive application of transformer

tf to an initial state.

1We assume an imperative program model.

Chapter 2. Principles of Program Analysis 9

Definition 2.2 (Trace) Let s0 ∈ S0 denote an initial state (input), then a trace

tr : D 7→ D∗ is a sequence of states defined as:

tr(si) =

(si) · tr(si+1) : si+1 ∈ tf(q(si))(si) if q(si) /∈ Qf
ε otherwise

(2.2)

such that tr(s0) denotes all reachable states for the given input. A trace path (or

execution path) is the sequence of program locations along a trace: (q(s0), q(s1), . . .).

A program is deterministic if and only if every evaluation from an initial state yields

the same trace. Therefore, it must hold that ∀si ∈ D : |tf(q(si))(si)| = 1. A program

terminates for an input s0 ∈ D if and only if an evaluation has a finite number of steps:

|tr(s0)| ∈ N. Checking for termination is known as the halting problem: To decide

whether a program terminates for a given input, we could construct a program that

computes traces for a given program along with its input. This program itself might not

terminate if traces cannot be computed in a finite number of steps. The halting problem

is undecidable in the general case.

Definition 2.3 (Computation Tree) Let s0 ∈ S0 denote program input and let tr(s0) =

(s0, . . .) denote an execution trace. Then the digraph T = (S,R) with S ∈ tr(s0) and

(si, si+1) ∈ R is the corresponding computation tree.

For a deterministic program and concrete program semantics, its computation tree

is a simple path of potentially finite length. Abstracting semantics might cause non-

determinism by losing information. For example, an abstract interpretation might only

model the sign of variables instead of their concrete valuation: In case of program branch

decisions depending on specific values, an analysis must take all potentially resulting

execution paths into account. A class of program analyses known as model checking [12]

tests for properties in computation trees specified in propositional logic.

Definition 2.4 (Trace Semantics) The trace semantics of a program is the set of all

traces:

{tr(s0) : s0 ∈ S0} (2.3)

In trace semantics we collect all reachable states of a program including their order.

If a program does not terminate for a given input or interpretation, trace semantics

is not computable. In any case, trace semantics might be too large to be practically

computable.

By the definition above, we also recognize yet another problem for program analysis

in general: The set of initial states S0 ⊆ D does not necessarily reach all possible states.

Hence, the computed semantics may be an under-approximation (unsound) of actual

semantics if input is not exhaustive. For concrete semantics, the set of possible inputs

might be too large to be practically applicable.

Chapter 2. Principles of Program Analysis 10

2.3 Collecting Semantics

A more efficient semantics is the collecting semantics (COL). It approximates trace

semantics by losing information on the sequential order of program states. Instead of

sets of traces, we only compute sets of states discriminated by program points. This

semantics effectively separates control from data flow by requiring the existence of a

control flow graph as an abstraction of execution paths.

Definition 2.5 (Control Flow Graph) A control flow graph (CFG) G = (V,E, s, t)

is a digraph where vertices (nodes) V denote a set of program points, edges E ⊆ V 2

denotes their control flow relation, node s ∈ V denotes the program entry and, without

loss of generality, node t ∈ V denotes the program exit. For convenience, we just write

G = (V,E) and assume nodes s and t to be implicitly be given.

We assume CFG G to be connected. Reduction from multiple exits Vt to a single

exit t is easily achieved by adding a node t and edges Vt × {t} to the graph. Deriving a

CFG as a program abstraction is a difficult analysis problem on its own since sound and

tight control flow transitions must be computed. In Chapter 5, we will address this issue

in detail. For completeness, we provide some additional definitions in this context

Definition 2.6 (Predecessor, Successor, Degree) Let G = (V,E) be a CFG. Then

for a node u ∈ V , the sets of predecessors and successors, respectively, are denoted by

pred(u) := {v | (v, u) ∈ E} and succ(u) := {v | (u, v) ∈ E}. The indegree of a node u is

denoted by degin(u) = |pred(u)|, its outdegree is denoted by degout(u) = |succ(u)|,

Definition 2.7 (Control Flow Path) Let G = (V,E) be a CFG. Then a control flow

path is a sequence of nodes π = (u1, . . . uk) ∈ Π ⊆ V k such that (ui, ui+1) ∈ E.

It is easy to see that paths in a CFG potentially over-approximate execution paths

since only a point-wise relation is maintained instead of the execution “history” of how a

point is reached. Nevertheless, explicit separation of control and data flow now allows

the analysis (and abstraction) of “data” independently. In the following we maintain

this separation. Therefore, we redefine transfer functions for CFGs as:

tf : V 7→ (D 7→ D) (2.4)

Definition 2.8 (Path Semantics) Let π = (u1, . . . , uk) be a path. Then path semantics

is defined as the composition of transfer functions tf along π such that:

JπK(tf) =

id if π = ε

tf(ui) ◦ J(u1, . . . , ui−1)K(tf) otherwise
(2.5)

Application of an initial state s0 ∈ D yields the reachable state JπK(s0) = s along a

path π. Hence, we can easily define the set of all reachable states in a program point.

Chapter 2. Principles of Program Analysis 11

Definition 2.9 (Collecting Semantics) Let Π denote all paths in a CFG, let us ∈ V
be an entry node and let S0 ∈ D denote initial state. Collecting semantics is then defined

as:

col(u) =
⋃
s∈S0

⋃
{JπK(tf)(s) | π = (us, . . . , u) ∈ Π} (2.6)

Then the set col(u) denotes all reachable states.

Collecting semantics as just defined is also called “state-based” (or first-order) since

it denotes a mapping from program points to states. In other words, it denotes the set

of “values” in this point. For example, it denotes the valuation of program variables. A

“path-based” (second-order) collecting semantics on the other hand denotes the set of

paths up to a program point.

Definition 2.10 (Path-based Collecting Semantics) Let Π denote all paths in a

CFG, let us ∈ V be an entry node and let vt an exit node. Path-based collecting semantics

colπ : V 7→ D for a node u ∈ V is then defined as follows. The set of paths ending in a

point u is defined as:

col→π (u) =
⋃
{π | π = (us, . . . , u) ∈ Π} (2.7)

and the set of paths originating from a point u is defined as:

col←π (u) =
⋃
{π−1 | π = (u, . . . , ut) ∈ Π} (2.8)

such that col→π (u) denotes all paths reaching point u and col←π (u) denotes all reverse paths

originating from point u, respectively. The former is referred to as “forward semantics”

the latter as “backward semantics”.

This semantics is useful for answering questions of general reachability such as whether

a program point is reachable from the entry (forward) or, inversely, whether it can reach

the exit (backward).

Second-order semantics can be expressed in terms of first-order semantics. It is

easy to see that for D = Π and tf(u) = λS . {π · (u) | π ∈ S}, it holds that for an

initial state S0 = ε, the set col(u) = col→π (u) denotes exactly forward second-order

semantics. Backward semantics is defined symmetrically (for the respective redefinition

of Equation 2.6).

Due to the abstraction of control flow, collecting semantics is not computable in the

general case, as it requires the enumeration of paths, but length and number of paths is

potentially unbounded due to cycles. To make analysis feasible in the general case, we

therefore must avoid path enumeration for state collection.

Chapter 2. Principles of Program Analysis 12

2.4 Fixed Point Semantics

We now introduce a program analysis referred to as fixed point analysis, which is

practically feasible even for unbounded paths at the potential loss of additional precision.

In collecting semantics (COL), states are computed by means of a union over all paths

up to a program point (Historically, this is referred to as meet-over-all-paths (MOP)

although it is defined as a join over all paths.) With fixed point semantics, on the

other hand, we can avoid computing paths in the first place by considering states from

immediately preceding program points only.

Lattices

We first introduce the technical framework. Let S ⊂ D denote a set such that for a

function f : D 7→ D (e.g. a transfer function), it holds that S ∪ {s | s ∈ f(s)} = S. Then S

denotes an upper bound with respect to subset inclusion. Subset inclusion ⊆ denotes a

partial order on D.

Definition 2.11 (Partial Order, Partially Ordered Set) A partial order is a binary

relation v⊆ D× D over a set S ⊆ D, which, for elements x, y, z ∈ S, is:

• x v x (reflexive)

• x v y ∧ y v x⇒ x = y (anti-symmetric)

• x v y ∧ y v z ⇒ x v z (transitive)

The tuple (S,v) as called a partially ordered set or poset.

An element s ∈ S is an upper bound if ∀s′ ∈ S : s v s′ and a least upper bound if for

all upper bounds Sub ⊆ S, it holds that ∀s′ ∈ Slub : s′ v s. For a set S ∈ D,
⊔
S denotes

its least upper bound. Symmetrically, this holds for (greatest) lower bounds denoted by
d
S.

Definition 2.12 (Complete Lattice) A poset (D,v) is a complete lattice if every

subset S ⊆ D has a least upper bound and a greatest lower bound. Element > =
⊔
D

denotes the top element and ⊥ =
d
D denotes the bottom element of L. A complete

lattice is denoted by the tuple L = (D,⊥,>,v,t,u).

Conventionally, operators t and u are referred to as “join” and “meet” respectively.

An “incomplete” lattice (D,>,v,t) is therefore referred to as join semi-lattice. Analo-

gously, the tuple (D,⊥,v,u) is referred to as meet semi-lattice. Figure 2.1 illustrates a

complete lattice for D = ℘({1, 2, 3}) and subset inclusion ⊆ for v. We recognize that

every power set domain with subset inclusion ⊆ as order relation forms a complete lattice.

In the context of program analysis, sets of states represent knowledge we collected

about a program, partial order provides a means to tell whether knowledge increases

by adding new information and a least upper bound denotes the smallest set containing

maximal knowledge. Lattices define the relation of knowledge. We now define how

knowledge is collected.

Chapter 2. Principles of Program Analysis 13

{1, 2, 3} = >

{2, 3} {1, 3} {1, 2}

{3} {2} {1}

∅ = ⊥

Figure 2.1: A complete lattice L = (℘({1, 2, 3}),⊥,>,⊆,∪,∩).

Definition 2.13 (Monotonicity, Distributivity) Let (D1,v1) and (D2,v2) denote

posets. Then function f : D1 7→ D2 is monotone (order-preserving) if and only if:

∀x, y ∈ D1 : x v1 y ⇒ f(x) v2 f(y) (2.9)

It is distributive (additive) if and only if:

∀x, y ∈ D1 : f(x t1 y)⇒ f(x) t2 f(y) (2.10)

Function f : D 7→ D is reductive if ∀x ∈ D : f(x) v x and extensive if ∀x ∈ D : x v f(x).

Fixed Points

We can now define how upper and lower bounds on lattices can be computed, respectively,

and how these bounds relate to collecting semantics.

Definition 2.14 (Fixed Point) Let L be a lattice and let function f : L 7→ L be mono-

tone. Then x ∈ L with f(x) = x denotes a fixed point.

Theorem 2.15 (Tarski [13]) Let L be a complete lattice and let function f : L 7→ L be

monotone, then the set of fixed points fix f = {x | f(x) = x} is a complete lattice.

Since fix f is a complete lattice, it has a least upper bound and a greatest lower bound.

We denote the least upper bound of fix f as the least fixed point

lfp(f) =
⊔

fix f =
⊔
{x | f(x) v x} (2.11)

and the greatest lower bound as the greatest fixed point

gfp(f) =
l

fix f =
l
{x | x v f(x)} (2.12)

Theorem 2.15 guarantees the existence of fixed points in complete lattices. But we have

no notion of how it is computed yet.

Chapter 2. Principles of Program Analysis 14

Definition 2.16 (Chain) For a poset (D,v), a sequence S ⊆ D∗ is a chain if all

elements s ∈ S are totally ordered. It is ascending if ∀xi, xi+1 ∈ S : xi v xi+1 and

descending if ∀xi, xi+1 ∈ S : xi+1 v xi.

Definition 2.17 (Ascending Chain Condition) A poset (D,v) satisfies the ascending

chain condition if all ascending chains eventually stabilize. A sequence of elements

x1 v x2 v . . . v xn with xi ∈ D stabilizes if there exists a k ∈ N such that xk = xk+1.

Symmetrically, this holds for descending chains.

Theorem 2.18 (Kleene [14]) Let L be a lattice that satisfies the ascending chain

condition and let f : L 7→ L be a monotone function, then the least fixed point can be

computed by the repeated application of f to ⊥:

∃k ∈ N : lfp(f) = f◦k(⊥) (2.13)

Analogously, if L satisfied the descending chain condition, the greatest fixed point is

computed by:

∃k ∈ N : gfp(f) = f◦k(>) (2.14)

By Theorem 2.18, we know the conditions under which the collection of analysis

facts stabilizes and that the result will be a minimal (maximal) fixed point. We can now

devise the algorithm to compute fixed point semantics.

Definition 2.19 (Minimal Fixed Point [15]) Let G = (V,E, s, t) denote a CFG, let D
denote a complete lattice fulfilling the ascending chain condition and let tf : V 7→ (D 7→ D)

denote a (monotone) transfer function. Then the minimal fixed point (MFP) solution

mfp: V 7→ (D 7→ D) is the least fixed point lfp(tf):

mfp(u) =


⊔
{tf(u)(mfp(v)) | (v, u) ∈ E} if u 6= s

⊥ otherwise
(2.15)

Symmetrically, this holds for gfp(tf). For semi-lattices, a suitable initial element but ⊥
(>) must be given.

Note that not all ascending chains necessarily stabilize or do so only after an imprac-

tically large number of steps. To solve this, widening and narrowing [16] can be applied

to deal with infinite chains in finite number of steps, at the expense of a loss of precision.

To us, this will be of no relevance in the following.

Fixed point semantics is well suited for practical analysis as computations need not

be carried out by the enumeration of CFG paths as in collecting semantics (which may

not even be computable). Yet, we have not clarified the potential trade-off in precision.

Chapter 2. Principles of Program Analysis 15

Figure 2.2: Illustration of the Galois Connection

Theorem 2.20 (Soundness of MFP [17, 18]) Let L be a complete lattice fulfilling

the ascending chain condition and let f : L 7→ L be a monotone function. If all ascending

chains stabilize in a finite number of steps, it holds that:

∀u ∈ V : col(u) v mfp(u) (2.16)

If in addition f is distributive, then it holds that:

∀u ∈ V : col(u) = mfp(u) (2.17)

Theorem 2.20 is also known as the coincidence theorem. For an analysis, if we

can guarantee monotonicity of the corresponding transfer function for a value domain

which is a lattice that fulfills the ascending chain condition, then MFP denotes a sound

approximation of collecting semantics (COL). If, in addition, the transformer is also

distributive, MFP equals COL.

2.5 Abstraction

Although the MFP solution can be computed independently of program paths, and

thus circumvents the problem of infinite paths, some value domains might still yield

impractically large solution sets. Similar to how we abstracted from concrete control

flow in the step from trace to collecting semantics by introducing control flow graphs,

abstraction can be applied to the effective analysis domain — again, at the potential

additional loss of precision. In the following we discuss the foundation of abstraction.

Fundamentally, we are interested in the relation of a concrete domain D to its

corresponding abstract domain D̂. If values computed in the abstract domain are always

safe approximations of the concrete domain, we can directly apply fix point semantics.

The relation of both domains is formally defined in terms of the Galois connection.

Chapter 2. Principles of Program Analysis 16

Figure 2.3: Illustration of local consistency

Definition 2.21 (Galois Connection) A Galois connection is a tuple (D, α, γ, D̂)

where (D,v) and (D̂, v̂) are partially ordered sets, α : D 7→ D̂ is an abstraction function

and γ : D̂ 7→ D is a concretization function such that α and γ are monotone and satisfy:

∀x ∈ D : x v (γ ◦ α)(x) (2.18)

and

∀x ∈ D̂ : (α ◦ γ)(x)v̂x (2.19)

A Galois Insertion, in addition, satisfies:

∀x ∈ D̂ : x = (α ◦ γ)(x) (2.20)

Monotonicity ensures that both mappings are order preserving. Property 2.18

guarantees that the abstraction is sound : The mapping into the abstract domain and

back never loses information but potentially precision. Property 2.19 guarantees precision

of the abstraction: The mapping into the concrete domain and back always yields a

value as least as precise as the initial value. Equation 2.20 tightens these constraints:

abstraction followed by concretization maps to the original abstract value. Figure 2.2

graphically illustrates the respective mappings between the two domains D and D̂. The

respective elements are ordered vertically according to the partial order relation of both

posets.

To enable the applicability of the abstract domain to fixed point semantics, an abstract

transformer must satisfy specific properties with regard to its concrete counterpart. Let

tf : V 7→ D 7→ D be a concrete transformer and let t̂f : V 7→ D̂ 7→ D̂ be an abstract

transformer.

Definition 2.22 (Local Consistency) An abstract transformer t̂f is locally consistent

with a concrete transformer tf if it holds that:

∀x ∈ D̂ : ∀u ∈ V : (tf(u) ◦ γ)(x) v (γ ◦ t̂f(u))(x) (2.21)

Chapter 2. Principles of Program Analysis 17

Local consistency guarantees that the abstract transfer function may be less precise

than the concrete one, but it will never lose information and is therefore sound. Figure 2.3

illustrates this relation graphically. Concretization and a subsequent application of the

concrete transformer is potentially more precise than the a application of the abstract

transformer followed by the concretization. For a Galois insertion, γ ◦ tf ◦ α is referred

to as a best abstract transformer, which may be, however, infeasible if concretization is

not realizable in practice.

It remains to show that COL and MFP can equally well be applied in the abstract

domain if local consistency of transformers is guaranteed. Analogously to Definition 2.8

and Definition 2.9 for concrete semantics, we define their abstract counterparts.

Definition 2.23 (Abstract Path Semantics) Let π = (u1, . . . , uk) be a path. Then

abstract path semantics is defined as the composition of abstract transfer functions t̂f

along π such that:

JπK(t̂f) =

id if π = ε

t̂f(ui) ◦ J(u1, . . . , ui−1)K(t̂f) otherwise
(2.22)

Then abstract collecting semantics for a set of paths Π and initial states Ŝ0 ∈ D̂, is

defined as:

ĉol(u) =
⊔
s∈Ŝ0

⊔{
JπK(t̂f)(s) | π = (us, . . . , u) ∈ Π

}
(2.23)

Note that in concrete collecting semantics, we assumed set union ∪ to collect all state.

For abstract states, collection of information may be performed for some other definition

of union (potentially t 6= ∪).

Lemma 2.24 (Correctness of Abstract Path Semantics) Let (D, α, γ, D̂) be a

Galois connection, then it holds that

∀x ∈ D̂ : JπK(tf)(γ(x)) ⊆ γ(JπK(t̂f)(x)) (2.24)

if the corresponding concrete transformer tf and abstract transformer t̂f are locally

consistent.

Proof. See [19].

Lemma 2.25 (Correctness of Abstract Collecting Semantics) Let (D, α, γ, D̂) be

a Galois connection, let t̂f be an abstract transformer, S0 ∈ D and Ŝ0 ∈ D̂ initial states

such that S0 v γ(Ŝ0), then it holds that

∀u ∈ V : : col(u) v γ(ĉol(u)) (2.25)

if for the concrete transformer tf, the abstract transformer t̂f locally consistent.

Chapter 2. Principles of Program Analysis 18

Proof. See [19].

Reduction to abstract path-based collecting semantics (Definition 2.10) is obvious.

Also, the construction of the MFP solution (Definition 2.19) applies analogously to the

abstract domain. Then Theorem 2.20 directly applies as well in the abstract domain.

To summarize, an abstraction of concrete semantics is sound if i) the abstract domain

D̂ is a poset ii) abstraction α and Concretization γ are sound iii) transformers t̂f and tf

are locally consistent.

2.6 Convention and Practical Program Analysis

We will briefly address some practical aspects of program analysis. In particular, we

define conventions and tools used throughout this thesis.

For convenience, we will usually define analysis problems in terms of collecting

semantics. As we have seen, reduction from COL to MFP is straight forward. We denote

forward semantics by col→ and backward semantics by col← and path-based semantics

by col
→/←
π , respectively. Analogously, for the recursive equation for the MFP solution

Equation 2.15, mfp→/← denotes only predecessor/successor nodes in the corresponding

CFG. In some cases, we restrict col and mfp to subgraphs with explicitly given source

and sink nodes, or to a subset of edges. Equation 2.15 can be rewritten as:

in(u) =
⊔

v∈pred(u)

out(v) (2.26)

out(u) = tf(u)(in) (2.27)

which explicitly discriminates states prior and after application of a transformer, for a

suitable initialization.

In practice, the least solution to the equation system above can be solved iteratively

by successively updating program information in all program points by performing just

one step at a time per node, cycling through all nodes (round robin).

Algorithm 2.1 Worklist algorithm for iterative data flow analysis

1 for u ∈ V do
2 in[u]← out[u]← S0

3 W ← V
4 while w 6= ∅ do
5 u← popW
6 in(u)←

⊔
v∈pred u out(v)

7 out(u)← tf(u)(in)
8 i f out(u) changed
9 W ←W ∪ succ u

Algorithm 2.1 lists a practical implementation to compute a forward MFP solution [20].

In lines 1, 2 the arrays in and out are assigned a suitable initial value, then a worklist

Chapter 2. Principles of Program Analysis 19

containing all nodes of the corresponding CFG is created (line 3). We recompute values

in set in and set out, one node at a time, in some order by removing some node from W

(line 5), then recompute the values (lines 6,7). If we have not reached a fixed point yet

(line 8), we add the successors of the current node u (line 9) to the worklist.

If the underlying CFG is acyclic (DAG) and nodes are processed in topological order,

a fixed point can be reached in time linear to the number of nodes. Consequently, if

the worklist is ordered accordingly initially, a fixed point is likely to be reached quicker.

In addition, the smallest semantic unit of a program is typically a statement (or an

instruction) but not all statements affect control flow. Hence, it is customary to group

statements in basic blocks [20], which denote maximal sequences of statements with

control flow branching only at the first and the last statement, to denote a single CFG

node. More details on the general subject of practical data flow analysis can be found

in [21–23]. Note that control flow analysis [24–26] for the construction of CFG is an

important topic on its own.

Chapter 2. Principles of Program Analysis 20

Chapter 3

Context

Contents

3.1 Real-time Scheduling . 21

3.1.1 Basic Task Model . 22

3.1.2 Modes of Preemption . 25

3.1.3 Deadline Monotonic and Earliest Deadline First 27

3.1.4 Schedulability . 28

3.1.5 Blocking and Synchronization . 30

3.2 Timing Analysis . 33

3.2.1 Practical Aspects . 34

This chapter contains background information to set this thesis into context. Every

topic discussed here is related, but not necessarily a requirement to understand the

remainder of this thesis. In the following the topics of real-time scheduling, aspects of

hardware in real-time systems and aspects of software for real-time systems, including

timing analysis of software will be addressed.

Specifically, the chapter comprises of a discussion on basics of schedulability theory

in Section 3.1 and fundamentals of timing analysis in Section 3.2.

3.1 Real-time Scheduling

We start with some basic terminology. The problem of allocating processing time for

concurrently running software is known as the scheduling problem. In this, the basic unit

of processing is that of a task. The assignment of tasks to processors is then usually

performed under a given set of constraints, which is denoted as the scheduling policy. A

scheduling algorithm (or scheduler), then, is the method of finding a feasible schedule

such that all tasks can be completed according to a set of constraints. A set of tasks is

schedulable if for a given algorithms all constraints hold.

Real-time scheduling can typically be found in embedded systems. As opposed to

non-real-time systems, the emphasis is not on load-balancing or general responsiveness

but on meeting timing guarantees such as timing deadlines. Hard real-time policies give

21

Chapter 3. Context 22

firm guarantees: The consequence of deadline misses in this case is typically a complete

system failure. Soft real-time policies on the other hand allow deadline misses typically

at the expense of a degraded quality of service.

A schedule is preemptive if it allows the temporary suspension of a task to assign

another task to the processing unit. Otherwise, a schedule is said to be non-preemptive.

If a scheduling policy allows instantaneous preemptions on demand, it is fully preemptive.

The compromise between fully and non-preemptive schedules is called deferred preemption

scheduling. Under such a policy, preemption is only allowed at specific points in time or

at specific program points.

Typically, tasks are being assigned priorities such that the task of highest priority

is assigned to a processor. A static scheduling assigns priorities according to tasks

parameters known prior to actual system execution. A scheduling is said to be dynamic

if priorities are assigned at run-time. Static schedules are typically more predictable at

the cost of lower performance.

Besides mere timing, additional constraints can be imposed on tasks. Precedence

constraints enforce a specific order on the execution of tasks. Resource constraints impose

limits on the availability of resources other than processing time, such as the mutual

exclusion of accesses to certain resources.

In particular hard real-time systems pose specific requirements on the predictability

of system components. Therefore, not only has the hardware and the task software to

be predictable, but the scheduling algorithms themselves should be predictable in the

sense that i) a safe upper bound of their processing overhead can be determined and

ii) safe upper bounds on the timing behavior of the final schedule can be obtained. In the

following we formally introduce the basics of uni-processor, priority-based, hard real-time

scheduling without explicit precedence constraints. A general overview of hard real-time

scheduling can be found in [27].

In Section 3.1.1 we define the task model used throughout the thesis, in Section 3.1.2

we address important aspects of preemptive scheduling, then we introduce two widely

employed scheduling policies in Section 3.1.3. For the latter, we briefly discuss schedula-

bility tests in Section 3.1.4. We further characterize issues related to task blocking and

synchronization in Section 3.1.5.

3.1.1 Basic Task Model

We assume the problem of scheduling a task set T = {τ1, τ2, . . . } ⊆ N0 on a single

processor. A single execution (instance) of a task is called a job where τ ji denotes the

j’th job of τi.

Time in this model is discrete and measured in clock ticks if no other unit is specified

explicitly. A job can be in one of three states: ready, run and wait, as illustrated in the

automaton in Figure 3.1. The edges are labeled with the events that can occur. A job is

released once it is scheduled for execution, and placed into the ready-queue – a queue

of tasks ready for dispatch if another task is currently run by the CPU. The release of

Chapter 3. Context 23

Figure 3.1: State-machine of a task with preemption and synchronization

T = {τ1, . . . , τn} ⊆ N0 Task set
HT Hyper period
prP Priority under policy P

Task τi

Bi Blocking time
Ci Computation time
Di Relative deadline
Ji Release jitter
Ri Response time
Ti Period, Inter-arrival time
Ui Utilization

Job τ ji

aji Arrival time

dji Absolute deadline

f ji Finishing time

lji Lateness

rji Response time

sji Starting time

Table 3.1: Task parameters

a higher priority task potentially preempts a running task. Alternatively, a job can be

send into a wait state (specifically into a wait-queue) if, for example, it fails to acquire

another resource by itself. All waiting jobs receiving a signal are put back into the ready

state. A task is active if there’s a job that is either ready, running or waiting. Otherwise,

it is idle.

A task schedule is aperiodic if tasks are activated at arbitrary points in time. It

is periodic if activation occurs in fixed intervals or sporadic if it is aperiodic with the

constraint that there exists a minimal inter-arrival time between jobs. In the following

we only consider periodic tasks.

Chapter 3. Context 24

A task τi is assigned a set of static parameters such that Ci denotes its computation

time, Di its relative deadline and Ti its period or, alternatively, its inter-arrival time.

Release jitter is denoted by Ji and defines a possible imprecision in timing (e.g. time

consumed by the scheduling decision and the context switch). Blocking time Bi denotes

the time span a higher priority task is prevented from execution by lower priority tasks

due to deferred preemption or exclusive resource access. A deadline is an implicit deadline

if Di = Pi. The hyper period of a periodic task set T is the least common multiple of its

periods Ti:

HT = lcm(T1, . . . , Tk) (3.1)

The earliest release time of a job τ ji is called arrival time and is defined as:

aji = aj−1
i + Ti − Ji (3.2)

The absolute deadline of a job is derived from the arrival time and its relative deadline:

dji = aji +Di (3.3)

We call the time instant at which a job executes for the first time after being released

the starting time sji and the time instant at which it completes the finishing time f ji .

The response time of a job is the time span from activation to completion, defined as:

rji = f ji − a
j
i (3.4)

From individual jobs, we can derive the response time Ri, which is defined as:

Ri = max
j
{rji } (3.5)

A task set is schedulable if all of its jobs finish before their respective deadlines:

Ri ≤ Di − Ji ⇔ τi schedulable (3.6)

The time difference of finishing time and its absolute deadline is a job’s lateness:

lji = f ji − d
j
i (3.7)

A negative lateness denotes that a task finished before its deadline and is therefore a

requirement in hard real-time systems.

Table 3.1 summarizes these and additional parameters discussed in the following. In

Figure 3.2 key parameters for tasks and jobs are depicted graphically.

Chapter 3. Context 25

Figure 3.2: Illustration of task parameters

(a) Non-preemptive scheduling (b) Fully preemptive scheduling

Figure 3.3: Example of feasible schedule under fully preemptive scheduling

3.1.2 Modes of Preemption

Preemptions relax the scheduling problem by allowing subdivision of tasks and there-

fore potentially simplify the computation of a feasible schedule where non-preemptive

scheduling might fail to do so due to excessive blocking.

Figure 3.3 illustrates how an infeasible schedule for two tasks can turn into a feasible

one by allowing unrestricted preemptions. In both time lines, task τ1 is given priority

over task τ2 when it is active. In Figure 3.3a a non-preemptive schedule is shown. Since

τ2 occupies the processor during the entire active period of τ1, the latter is never run

and misses its deadline. When scheduled fully preemptively, as shown in Figure 3.3b, τ2

is interrupted instantly upon activation of τ1, therefore allowing both tasks to meet their

deadlines.

The downside of preemptions is that they cause a number of problems for hard

real-time scheduling. The computation time Ci denotes the worst-case execution time of

a task under the assumption of uninterrupted execution. Each suspension comes with

associated context-switch costs and an unconsidered change of the system state that

might affect the computation time long after having been resumed. In short, preemptions

increase the level of unpredictability.

The trade-off between fully preemptive scheduling and non-preemptive scheduling can

be mitigated by compromising such that preemption is deferred. Deferring preemption

potentially enables schedulability of tasks at the cost of higher priority tasks potentially

becoming unschedulable due to blocking. One way to defer preemptions is to allow

preemptions just periodically in fixed time-intervals. This way, task subdivision is

performed in the time domain. Since program points at which preemptions occur are

not explicitly known, the program points between two preemptions is referred to as

Chapter 3. Context 26

Figure 3.4: Progress and relation of space and time for non-preemptive, fully preemptive
and deferred preemption scheduling with floating and fixed regions

a floating region. Another way is to subdivide a task in the space domain by placing

explicit preemption points [28]. Then points in time are not explicitly known and the

program locations not affected by preemption are referred to as a fixed region. Fixed

region deferred preemption with static scheduling decisions is also known as cooperative

scheduling [29, 30] to emphasize the fact that tasks explicitly have to yield the processor

“voluntarily”.

Figure 3.4 sketches the trade-off between the aforementioned classes of scheduling

policies. The abscissa denotes time and the ordinate denotes program locations of a

task. We assume that a non-preemptive execution of a job is a linear mapping from

time to location. For a non-interrupted execution, the job with deadline td starts at time

ts and finishes at time tc while traversing all program locations from source qs to sink

qt. A fully preemptive execution is characterized by interruptions with no well-defined

points in time or space and a response time of tr, which potentially lies well beyond the

isolated computation time for the uninterrupted execution tc. For deferred preemption

with floating regions, interruption is potentially less frequent. For some point in time ti,

it is, however, not necessarily possible to map to a corresponding program location but

only to an interval [qu, ql]. Inversely, for deferred preemption with fixed regions, although

the location of the interruption qi is known, we might only map this point to an interval

[tl, tu].

Floating regions are modeled in two ways. In what the authors of [31] call the

“floating model”, preemptions are enabled or disabled by enabling or disabling interrupts

explicitly by inserting the respective primitives into the software and the guarantee that

none of the non-preemptive regions takes longer than a specific time bound to execute.

It is called floating since the region bounds in time are not specified in the model. In

regions with interrupts enabled, a standard scheduling policy applies. A variant of this

Chapter 3. Context 27

model is that of final non-preemptive regions [32] which reduces the problem to a single

such region per task. The “activation-triggered model” [31, 33] defines that the arrival

of a higher priority task causes all preemptions to be postponed for a defined period of

time such that the initially postponed preemption occurs right after the period without

being delayed any further by other tasks.

3.1.3 Deadline Monotonic and Earliest Deadline First

Two prominent scheduling policies for hard real-time scheduling on a single processor

are Deadline Monotonic Scheduling (DM) and Earliest Deadline First (EDF). Both

are priority-based, preemptive and popular choices for periodic scheduling due to their

predictability and the existence of efficient schedulability tests. Both assign priorities to

tasks such that the task of highest priority is run, and both have no notion of precedence

or resource constraints.

Deadline Monotonic Scheduling [34] assigns priorities to tasks according their

deadlines. Priority assignment is therefore static and the overhead at run-time is

restricted to the selection of the highest priority task among all ready tasks. The task

priority prDM is defined such that:

prDM (τi) < prDM (τj)⇔ Di ≥ Dj (3.8)

DM is optimal in the sense that no other static priority assignment schedule can exist

if it cannot be scheduled with DM [35]. DM with implicit deadlines is known as Rate

Monotonic Scheduling (RMS) [36].

For later reference, we define the following functions: For static and unique priorities

prP for some scheduling policy P , we define the following task subsets:

hp(i) = {j | prP (i) < prP (j)} Higher priority tasks
hep(i) = hp(i) ∪ {i} Higher priority tasks and self
lep(i) = T \ hp(i) Lower priority tasks and self
lp(i) = T \ hep(i) Lower priority tasks
aff(i, j) = hep(i) ∩ lp(j) Bounded set of higher priority tasks

Table 3.2: Definitions of priority-relative task sets

Earliest Deadline First [37] assigns priorities dynamically, which increases the run-

time overhead of scheduling decisions at the advantage of dynamic adaption to changing

runtime constraints and is therefore not restricted to periodic schedules. Priority prEDF

is defined such that among all jobs ready to run, the job closest to its absolute deadline is

given the highest priority. Let t denote the current absolute time and cji the computation

Chapter 3. Context 28

time of a job τ ji (the effective time the job has run), then priority is defined such that:

prEDF (t, τ ji) < prEDF (t, τ lk)⇔ (dji − c
j
i) ≥ (dlk − clk) (3.9)

EDF is optimal in the sense that no other dynamic priority assignment schedule can

exist if it cannot be scheduled with EDF. EDF minimizes the maximum lateness [37].

Note that Table 3.2 is equally valid for EDF under the assumption that the sets denotes

potential candidates throughout execution.

3.1.4 Schedulability

A schedulability test takes a task set and a scheduling policy as input and returns whether

the test is passed or not. A schedulability test is necessary if it holds that i) if the test is

positive, then there might exist a feasible schedule, but not necessarily ii) if the test is

negative, there definitively does not exist a feasible schedule. A test is sufficient if the

it holds that i) if the test is positive, there definitely exists a feasible schedule ii) if the

test is negative, then there might exist a feasible schedule anyway. A test is exact if it is

both necessary and sufficient.

Utilization

A measure to quantify the load of a processor is the utilization factor : the fraction of

time a task uses from the available processing time, defined as::

Ui = Ci/Ti (3.10)

The accumulated utilization for a task set T = {τ1, . . . , τn}, then, is defined as:

UT =

n∑
i=1

Ci/Ti (3.11)

A (necessarily) exact test for EDF (with implicit deadlines) is simply:

UT ≤ 1 (3.12)

For EDF without implicit deadlines, a demand bound function1 [33, 38] defines the time

demand of all tasks in a given time interval L. If time demand does not exceed the

length of any such L, the task set is schedulable:

∀L > 0:

n∑
i=1

(⌈
L−Di

Ti

⌉
+ 1

)
Ci ≤ L (3.13)

1Also known as “processor demand criterion” [27]

Chapter 3. Context 29

In practice, not all possible values of L can be tested. The authors of [38] propose the

quick convergence processor demand algorithm (QPA) for an efficient schedulability test

of EDF.

The classical schedulability test for DM with implicit deadlines (e.g. RMS), is a

sufficient test based on utilization [35], defined such that:

UT ≤ n(21/n − 1)⇒ T schedulable (3.14)

where

lim
n→∞

n(21/n − 1) = ln(2) ≈ 0.7 (3.15)

The test suggests that with static priorities a processor is potentially not fully utilized if

hard real-time guarantees must be given. A slightly more accurate test is the hyperbolic

bound test [39].

Response time

An exact test for task schedulability for periodic fixed-priority schedules (such as DM)

is the response time analysis (RTA) [40, 41]. Intuitively, an individual task must be

schedulable if it meets its deadline under the worst-possible circumstances (cf. Equa-

tion 3.6). Such a worst-case scheduling scenario, referred to as the critical instant, occurs

Figure 3.5: Critical instant

when the task and all its higher priority tasks are released simultaneously such that

the response time is maximized . Figure 3.5 illustrates a schedule where all release

times are left-aligned, which implies that the initial execution of the lowest priority

task τ3 is maximally postponed in addition to the delays caused by preemptions that

inevitably occur. Response time Ri then comprises of the computation time Ci of τi and

the computation times Cj of all higher priority tasks τj . Since the schedule is periodic,

τi can be preempted at most d(Ri + Ji)/Tje times by τj during response time Ri. Let hp

denote the set of all higher priority tasks. Then the worst-case response time (WCRT) is

the least fixed point denoted by the following equation system:

R
(0)
i = Ci (3.16)

R
(k+1)
i = Ci +

∑
j∈hp(i)

⌈
R

(k)
i + Jj
Tj

⌉
Cj (3.17)

Chapter 3. Context 30

The value of Ri is monotonically increasing and eventually reaches a fixed point if

Ri ≤ Di. A reasonable initial value is the computation time Ci. For brevity, we write:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + Jj
Tj

⌉
Cj (3.18)

While WCRT is derived from the notion of critical instants, it is equally possible to

derive the notion of the best-case response time (BCRT) [42] from the notion of optimal

instants. An optimal instant is a scheduling scenario where a task τi instantly runs

upon release and its completion coincides with the simultaneous release of all higher

priority tasks. Figure 3.6 illustrates an optimal instant. Task τ3 is the lowest priority

task and runs right after release and all other tasks’ next releases are right-aligned with

its completion. The intuition behind BCRT is that all potentially preempting tasks will

Figure 3.6: Optimal instant

already have run for their maximally possible amount of time and cause the least number

of preemptions.

Accordingly, let C?i denote the best-case execution time (BCET) of task τi, then

the BCRT (with an optimal blocking time equal to 0) is the greatest fixed point to the

recursive equation:

R
?(0)
i = Ri (3.19)

R
?(k+1)
i = C?i +

∑
j∈hp(i)

(⌈
R
?(k)
i − Jj
Tj

⌉
− 1

)
C?j (3.20)

R?i is monotonically decreasing for an initial value Ri (WCRT). For brevity, we write:

R?i = C?i +
∑

j∈hp(i)

(⌈
R?i − Jj
Tj

⌉
− 1

)
C?j (3.21)

3.1.5 Blocking and Synchronization

Often tasks share common resources, beside the processor time, which must be protected

from mutual access. DM and EDF are scheduling policies oblivious of resource constraints.

In the following we discuss blocking and synchronization of concurrent resource accesses

and we briefly sketch prominent resource constrained scheduling policies.

In fully preemptive scheduling without resource constraints, higher priority tasks are

never blocked by lower priority ones. In non-preemptive scheduling, the blocking time

Chapter 3. Context 31

imposed on a task τi is simply the maximum computation time of all lower priority tasks.

Bi = max
j∈lp(i)

Cj (3.22)

In deferred preemptive scheduling, blocking depends on the type of strategy. For

time-triggered floating regions, blocking time Bi is known by definition. For fixed

region deferred preemption, though, it depends on the longest execution paths between

preemption points. which will be subject to detailed discussion in Chapter 5. Once

known, response time analysis can be extended by blocking time Bi such that:

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri + Jj
Tj

⌉
Cj (3.23)

Semaphores

Resources shared between tasks are typically protected by means of mutual exclusion

to ensure consistency of data structures by synchronization of tasks. A code region

executed under mutual exclusion is called a critical section. A common synchronization

primitive is the semaphore. A task enters a critical section protected by a semaphore

Si by invoking an operation wait(Si), which either grants access — thus making the

task the owner of the resource — or blocks the requesting task. When a task leaves

its critical section, it invokes an operation signal(Si) to free the resource and which

effectively unblocks all tasks waiting for that resource such that they can attempt again

to enter their respective critical sections. In Figure 3.1, this is denoted by the state

wait. A semaphore can allow for multiple tasks to access the resource. A semaphore that

grants access to just a single task at a time is called a mutex.

Scheduling policies with limited preemption enforce implicit critical sections with

mutual exclusion with the processor time as the shared resource. In non-preemptive

scheduling, the critical section encompasses the entire task. In deferred preemption

scheduling, tasks are partitioned into disjoint critical sections.

Priority Inversion Problem

Synchronization globally overrides task priorities to ensure semantic correctness. If the

scheduling policy is unaware of resource constraints, the priority inversion problem can

occur, as illustrated in Figure 3.7. In the figure, task priorities are static and decreasing

from τ1 on and only tasks τ1, τ3 share a protected resource. When τ1 is released at time

step 3, τ3, which has already entered its critical section, is preempted according to the

given priorities. When τ1 attempts to enter its critical section at time step 4, it is blocked

by τ3, which in turn resumes execution. At time step 5, the priority inversion problem

manifests: Although τ1 is the highest priority active task, τ2 is scheduled to run because

τ1 is blocked and τ3 has lower priority than τ2. Thus, τ1 is not only delayed by the

blocking due the critical section of τ3 but also by the computation time of the unrelated

Chapter 3. Context 32

Figure 3.7: Example of a priority inversion problem

task of intermediate priority τ2. Hence, for the time interval [4, 10], priorities of τ1, τ3

are effectively inverting.

The priority inversion problem is critical since tasks of a nominally high priority

are blocked for an unbounded amount of time. In the following we briefly sketch

common strategies to counter the priority inversion problem by implementing explicit

resource-awareness into the scheduling decisions. We restrict the discussion to static

priorities.

Priority Inheritance Protocol

The Priority Inheritance Protocol (PIP) [43] directly addresses the priority inversion

problem by temporarily assigning (inheriting) the highest priority of all tasks waiting for

a resource to the task currently holding it. Figure 3.8 illustrates the scheduling scenario

Figure 3.8: Example of the priority inheritance protocol

from Figure 3.7 under priority inheritance. When τ1 attempts to enter its critical section

in time step 4, τ3 inherits the priority of τ1, thus preventing τ3 to be preempted by τ2 in

the following.

Generally, under PIP a task τi has a nominal priority pr(i) and an active priority

pr?(i). If pr?(i) is the highest priority among all active tasks, τi is run. If τi attempts to

enter a critical section and is blocked by a task τj , active priorities are assigned such that

pr?(j) = pr?(i). If τi leaves a critical section, pr?(i) is set to the maximal active priority

among all tasks still blocked by τi (nested critical sections), or to pr(i) otherwise.

PIP prevents priority inversion and thus bounds the amount of blocking but still

suffers from two problems:

• chained blocking : If a high priority task τi is bound to successively enter n critical

sections protected by n different semaphores, in the worst-case it is blocked by n

Chapter 3. Context 33

critical sections of lower priority tasks. Thus blocking time, while being bounded,

is potentially still significant.

• deadlock : If two tasks both enter critical sections and, in the following, attempt to

acquire the semaphore held by the other additionally, a cyclic wait situation can

occur.

Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) [43] is an extension to PIP and prevents priority

inversion, chained blocking and deadlocks. The intuition is that a task is only allowed to

enter a critical section if it can be guaranteed that it will not be blocked before leaving.

Let Si denote a semaphore, then the (static) priority ceiling value C(Si) is the maximal

priority among all tasks that potentially acquire Si during execution. Further, let S∗

dynamically denote the semaphore with the highest ceiling priority among all semaphores

(at a specific point in time) and nominal respectively active priorities (cf. PIP).

The task τi of highest priority pr?(i) is run. Task τi is allowed to enter a critical

section only if pr?(i) > C(S∗). Otherwise it is blocked and pr?(j) = pr?(i) for the task

τj holding S∗. If τi leaves a critical section, pr?(i) is set to the maximal active priority

among all tasks still blocked by τi (nested critical sections), or to pr(i) otherwise.

PCP bounds the amount of blocking inflicted to a task τi to the longest critical section

among all lower priority tasks τj that share semaphores Sk with τi and C(Sk) > pr(i).

3.2 Timing Analysis

Schedulability theory provides a means to guarantee feasibility of a system under given

timing constraints. Failing to meet such constraints in hard real-time systems leads to

system failure. To provide schedulability analysis with the necessary timing parameters,

timing analysis per task is required. The computed values need not only be sound to

ensure correctness of timing guarantees, but should also be tight to be of practical use.

In the following will briefly define the objective of timing analysis. In Section 3.2.1,

we briefly cover important aspects of practical analysis with a focus on hardware- and

software-related issues, and we sketch a typical tool chain for timing analysis. Execution

time ET of a program depends not only on its input I0 ⊆ I but also on the initial system

state S0 ⊆ S. Let πi ∈ Π denote the execution path for input i ∈ I0. Then best-case

execution time (BCET) is defined as:

BCET = min
i∈I0

min
s∈S0

ET(πi, s) (3.24)

And worst-case execution time (WCET) is defined as:

WCET = max
i∈I0

max
s∈S0

ET(πi, s) (3.25)

Chapter 3. Context 34

Figure 3.9: Worst-case and best-case execution times compared to observed and estimated
bounds

where ET(πi, s) denotes execution depending on control flow and initial system state.

Consequently, given uniform distribution of input and initial state, the average-case

execution time (ACET) is defined as:

ACET =

∑
i∈I0

∑
s∈S0

ET(πi, s)

× (|S0|+ |I0|)−1 (3.26)

In practice, it is infeasible to enumerate all executions for all feasible states and inputs

to derive actual execution time bounds. Then two options are available. First, we can

restrict the set initial states and inputs to a practically manageable size. Then the

observed concrete execution time bounds, BCETobs
p and WCETobs

p , might neither be safe

nor precise. Second, we can apply abstract interpretation. We construct abstract models

of components affecting program timing, which typically yield small and well-defined

initial best-case and worst-case states, and we abstract from control flow by means of

CFGs to remove some of its input dependence. Then sound but potentially less precise

bounds can practically be computed due to much reduced states spaces:

∀i ∈ I0 : ∀s ∈ S0 : BCETest ≤ ET(πi, s) ≤WCETest (3.27)

Figure 3.9 illustrates the relation of the different timing values.

We will be only concerned with the computation of timing estimates by static timing

analysis based on abstract interpretation. Note that for convenience, we will refer to

WCETest (BCETest) by just WCET and BCET, respectively, unless stated explicitly

otherwise.

3.2.1 Practical Aspects

In the following we shall briefly discuss various generally practical aspects of static timing

analysis.

Chapter 3. Context 35

Hardware-related Aspects

Soundness and accuracy of timing analysis critically depends on the availability of

appropriate models for the hardware under analysis. Leaving software aside, two system

components are of particular interest: i) The CPU pipeline, which typically includes its

bus systems. ii) The cache subsystem, where analysis concerned with the classification

of accesses into hits and misses.

Pipeline analysis critically depends on the features of the CPU pipeline. Out-of-order

execution and dynamic branch prediction (speculative prefetching) significantly lower

the predictability of a system as execution time then increasingly depends on execution

history. Highly predictable pipelines are therefore short and yield no dynamic speculative

execution. For static analysis, this implies significantly simpler models and a more

efficient analysis at a potentially reduced loss of information due to abstraction. The

typical trade-off here is between predictability and average case performance [44–46]. In

this thesis we are not concerned with aspects of pipeline-architectural analysis [47–49]

and therefore omit its detailed discussion.

Cache analysis is concerned with deriving classifications of memory accesses into

cache hits or misses. Semantics in this model is restricted to cache logic. Analysis results

affect execution time estimation by denoting whether accesses cause additional reloads

from subsequent levels in the memory hierarchy. Cache analysis is not only relevant for

time estimation in uninterrupted execution, but is in particular central for bounding

interference effects in preemptive scheduling scenarios. We will devote the following

Chapter 4 to the details of static cache analysis. We refer to pipeline and cache analysis

cumulatively as micro-architecture analysis, unless stated otherwise.

We shall clarify some terminology in this context: Particular hardware features

yield timing anomalies [50] during execution. This refers to effects such as a local

worst-case positively affecting the global worst-case; or vice versa. For example, in

conjunction with speculative prefetching, a cache miss might cause a globally reduced

WCET [51]. In addition, domino effects [50, 52] can occur. This refers to scenarios where

the difference in execution time for an execution path starting in the same location but

under different initial hardware states is not constant-bounded but is proportional to

the path length. An example for such an effect is hardware states that do not converge

within program loops. Cache replacement policies, such as FIFO and PLRU [53, 54],

are prone to domino effects. Accordingly micro-architectures are classified by their

respective predictability [46]: i) Fully timing compositional architectures neither yield

timing anomalies nor domino effects. ii) Constant-bounded compositional architectures are

susceptible to timing anomalies but do not exhibit domino effects. iii) Non-compositional

architectures exhibit domino effects and timing anomalies. Compositionality refers to

the ability to safely analyze system components separately.

Chapter 3. Context 36

Software-related Aspects

Sound and precise timing analysis is also dependent on information about the high-level

semantics of a program and not necessarily on hardware-related information. An inherent

problem is the availability of a sufficiently rich program representation. To perform

timing analyses at micro-architectural level, typically the only option is the recovery of

information from a program binary, which contains instructions, constant data and a

description of the program memory layout. A key problem is the recovery of a sound

and sufficiently precise CFG [25]. At this low level of representation, the CFG has to

be recovered from a stream of binary data which involves decoding of instructions and

the discovery of jump targets for basic block reconstruction. Depending on high-level

language semantics, targets can be dynamic and CFG precision critically depends on

precise control flow analysis [25, 26].

Most hard real-time software is highly static and therefore typically allows for

relatively precise control flow reconstruction without explicit value analysis to determine

jump targets. Nevertheless, value analysis provides valuable information about potential

memory accesses or invariant CFG branch conditions to rule out infeasible paths. In

addition, the availability of valuation of loop index variables also enable the automatic

derivation of loop bounds for loop iterations and recursions [55–57]. Information on

path infeasibility and iteration bounds is commonly referred to as flow facts. While

micro-architectural analysis yields worst-case (best-case) time bounds for individual

program points, computation of final timing estimates is performed by a step referred to

as path analysis, which derives global timing estimates from local timings, the CFG and

flow facts. We will devote Chapter 5 to this topic specifically.

A Typical Toolchain for Timing Analysis

R
e

constructio n

V
alu

e a
nalysi s

C
ache

 a
nalys is

P
ipeline analy sis

P
ath

 an
alysis

Program
representation

Timing
estimate

CFG

Memory layout

Data
accesses

Flow facts

Access
classi-
fication

Memory
accesses

Basic block
timing

Instruction
stream

Figure 3.10: Typical tool chain for timing analysis

Figure 3.10 illustrates a work flow for static timing analysis similar to the commercial

aiT timing analyzer [58]. While it is in principle possible to combine analysis stages,

they are typically separated for efficiency reasons [47], although a combined analysis

would potentially yield greater accuracy. For example, static analyses of values, caches

and pipeline are oblivious of flow facts and therefore unnecessarily take infeasible paths

into consideration. Only in path analysis, infeasible results might be pruned from the

result set. For cache and pipeline analysis, loss of accuracy can be unacceptable with

Chapter 3. Context 37

an unidirectional information flow [59]: Pipeline timing potentially critically depends

on cache analysis results and cache analysis depends on memory accesses issued by the

pipeline. A survey of practices and tools and details of static timing analysis can be

found in [4, 60]. Other timing analyzers [61–65] are similarly structured.

Chapter 3. Context 38

Chapter 4

Cache Analysis

Contents

4.1 Computer Memories . 40

4.2 Processor Caches . 41

4.3 Cache Logic . 43

4.4 Static Cache Analysis . 44

4.4.1 LRU Cache Semantics . 45

4.4.2 Access Classification . 46

4.4.3 Abstraction . 47

4.5 Multitask Timing Analysis . 49

4.5.1 Costs of Preemption . 49

4.5.2 Cache-related Preemption Delay . 50

4.5.3 Bounding Cache-related Preemption Delay 51

4.6 Synergetic Approach to CRPD Analysis . 58

4.6.1 Precise Cache Analysis . 58

4.6.2 Computation of UCB, ECB and CBR 61

4.6.3 Restriction to Basic Block Boundaries 64

4.6.4 CRPD Bounds on Task Sets . 66

4.7 Evaluation . 72

4.8 Conclusion . 77

Of the timing analysis stages presented Chapter 3, cache analysis potentially has the

greatest impact on overall program timing as access latencies vastly differ depending on

the memory accesses, and worst-case timings in the memory subsystem greatly exceeds

that of components not related to storage. Not only is cache analysis critical for the

analysis of uninterrupted execution of single tasks (task-level analysis) but also plays a

critical role for timing analysis in multitask scenarios to bound task interference — an

issue we have not previously addressed.

This chapter first provides a study to static cache analysis in general and how it

is applied to single-task and multitask timing estimation. Second, beyond the study

39

Chapter 4. Cache Analysis 40

of existing static analysis and its application, we propose a highly accurate cache

analysis framework which combines the most precise approaches to cache analysis and

the estimation of cache-related preemption costs to date. The aim is to address and

improve weaknesses inherent to some approaches and evaluate is applicability in an

overall framework.

In the following we recap the basics of computer memories in general in Section 4.1,

of caches in particular in Section 4.2 and the fundamentals of cache logic in Section 4.3.

We then formalize static cache analysis in Section 4.4. In Section 4.5 we discuss various

aspects of multitask timing analysis. We then propose our analysis framework for static

cache analysis, along with extensions for bounding multitask scenarios in Section 4.6.

4.1 Computer Memories

The speed difference of CPU-bound and I/O-bound operations is known as the memory

gap. It was historically steadily increasing due to the pace of CPU clock rate increments

as compared to clock rates possible to random access memory technologies of that time.

While the increase of CPU clock rates stalled due to technological limitations, today the

rise of on-chip multi-processor systems even accelerates this trend. Memory access is the

key performance bottleneck today [66]. We will now briefly provide technical background

to memory systems.

Memory Technologies

Register Cache, SPM Main memory Persistent storage

Access latency

Storage capacity

1 cycle 10 cycles 100 cycles 106 cycles

4 byte 64 kbyte 1 Mbyte 1 Gbyte

~ ~ ~ ~

~ ~ ~ ~

Figure 4.1: Illustration of accesses latencies and storage capacities of memories in a
typical memory hierarchy

Different random access memory technologies available today exhibit trade-offs

between performance — in terms of latency and bandwidth – and storage capacity.

The fastest storage available for a CPU is its register file, which is clocked at the CPU

frequency. The memory technology is static RAM (SRAM), a transistor-based storage

which is fast but expensive both in terms of monetary costs and on-chip area. While

registers are fixed storage locations, some embedded architectures feature scratchpad

memories (SPM) — based on SRAM and in close proximity to the CPU — which are

randomly addressable. High capacity random access memory is typically capacitor-based

dynamic RAM (DRAM). As opposed to SRAM, DRAM cannot be clocked at rates

Chapter 4. Cache Analysis 41

comparable to CPU clock rates and in addition require refresh cycles to maintain charges,

severely impacting both performance as well as timing predictability [46]. SRAM and

DRAM storage is fast but comparably small and non-persistent. Cheap, persistent but

also slow local storage solutions are either flash memory, based on so-called floating-gate

transistor technology, or traditional disk-based solutions. From registers to the slowest

level of memories, performance and costs (by either metric, per bit of storage) drop

exponentially, as illustrated in Figure 4.1. For a more thorough overview of memory

technologies see [67, 68].

Memory Hierarchies

To counter the memory gap, different memory types are laid out in an hierarchy from

memory close to the CPU (fast and expensive) to off-chip memories (large and cheap).

The underlying principle of why performance is seemingly ever increasing despite slow

memories is locality of reference. Spatial locality denotes the fact that memory locations

in proximity to previously accessed locations are likely to be accessed as well. Temporal

locality denotes that recently accessed locations are likely to be accessed again. Spatial

locality occurs because most kinds of memory accesses are not truly random but often

form linear accesses sequences, such as reading a sequence of CPU instructions, which

motivates prefetching data from memory in larger blocks for increased efficiency. Temporal

locality is caused by program loops and motivate the use of fast but small memories as

caches, temporarily maintaining a working set of memory contents of slower but larger

memories. Caches can be laid out in multiple levels of memories of increasing size (but

decreasing speed) to hide individual latencies. This principle does not only apply to

general-purpose memories but equally applies to more specialized components such as

buffers of branch targets (branch-target buffers, BTB) or address translations for virtual

memory mappings (translation look-aside buffers, TLB).

In the following we assume a memory hierarchy consisting of just a single cache-level

for general memory accesses, which we refer to as processor caches or simply caches.

4.2 Processor Caches

We now provide technical background for cache memories specifically.

The kind of embedded systems we are concerned with in the following feature a single-

level of caching of DRAM or flash memory, partitioned into separate data and instruction

caches, which we refer to as main memory in the following. Scratchpad memories are not

common. While both, SPM and caches, are based on SRAM, only SPM are randomly

accessible. Cache memory is managed by a cache logic, that exclusively controls its

contents depending on the accesses issued by the CPU. Since a cache maintains only a

small image of a larger memory, the replacement policy of the cache logic determines

what cache contents shall be maintained and for how long. All accesses pass through

the cache and either cause a cache hit, if the requested data is available from the cache

Chapter 4. Cache Analysis 42

or a cache miss otherwise. Upon a miss, data has to be loaded from the next lower

memory level, causing a delay referred to as cache miss penalty (or block reload time).

We distinguish three types of misses [67]: i) A compulsory miss is caused by a request

to data has never been cached before and denotes the very first access. ii) A capacity

miss occurs when the cache size is smaller than the current working set and is caused

by insufficient hardware resources. iii) A conflict miss denotes a non-compulsory miss

despite sufficient storage capacity in the cache and is caused by sub-optimal interaction

of access requests, cache logic and memory layout of data.

For write operations from the CPU to main memory, two strategies are typically

employed: i) Write-back : A datum is stored in the cache and is specially marked. Only

once it is evicted from the cache, it is written to main memory. ii) Write-through: a

datum is instantly written to the cache and main memory.

If a datum is not present in the cache when its address is written to (write miss), the

datum can either be loaded into the cache, modified and written back (write/allocate),

or the cache is not altered and changes are directly being written into main memory

(write/no-allocate). Write-through improves timing predictability as main memory

accesses can be accounted for instantly upon access as opposed to the analysis of lazy

writes of write-back.

Geometry

Figure 4.2: Conceptual layout of a cache memory and its geometry

A cache is organized in cache lines of size L which store the contents of a particular

memory block of the cached storage. A cache set contains K cache lines, where K is

referred to as the associativity of the cache. Each memory block maps to exactly one

cache set. A cache itself is composed of N cache sets. Thus, it’s storage capacity equals

S = L ×K × N . Figure 4.2 illustrates the geometry of such a K-way set-associative

cache. Such a cache is called direct-mapped if K = 1 and fully-associative if K = N .

Chapter 4. Cache Analysis 43

Arithmetic

Cache geometry parameters are given in powers of two. The bits of the address AM

of a memory block then determine the mapping into cache sets. A memory address is

interpreted as the tuple

AM = (TM , IM , OM)

where tag TM uniquely identifies a block within a set, set index IM denotes which set

a block is mapped to and block offset OM determines which part of a block is actually

being accessed [67]. For static cache analysis, only the cache set being accessed is of

relevance. Thus, we can abstract from address arithmetic in the following and simply

restrict the discussion to cache set accesses.

4.3 Cache Logic

In the following we will briefly address the most important cache replacement policies.

Since caches only map a subset of a larger memory and should maintain the current

working set dynamically, eventually memory blocks are evicted from the cache when

being updated. A replacement policy determines which blocks to evict from individual

cache sets, which can be seen as queues ordered and updated in a particular fashion.

While line size L caters spatial locality by causing updates of memory blocks — which

are typically a lot larger than the actually requested data size — the replacement policy

caters temporal locality by classifying blocks according to a notion of age.

The optimal replacement policy OPT [69] minimizes the number of cache misses by

evicting only those blocks that will not be accessed for the longest time in the future and

is necessarily an offline policy. Online policies differ in their heuristics to approximate

OPT , differ in complexity of the hardware circuitry to implement them and differ in

their predictability in terms of static timing analyses. We only informally describe the

heuristics of the most prominent ones. For details and examples, refer to [19, 53].

• Least Recently Used (LRU) orders blocks in a set according to their age, which

denotes the number of accesses to other blocks since the last access to this block.

Upon conflict, the oldest block is evicted. Upon access, the age is reset. According

to the principle of locality, a block that has not been accessed for a relatively

extended period of time is less likely to be accessed again, while a block that has

recently been accessed is likely to be accessed again.

• Pseudo LRU (PLRU) approximates LRU but is less complex in terms of hardware

implementation for increasing associativities. Age is modeled in terms of a binary

tree of depth K − 1, with leafs representing cache lines. A path in the tree is

maintained which points to the block to be evicted next. At every junction, a 0

denotes the left subtree, a 1 denotes the right one. Upon access, all path bits are

flipped away from the leaf to model age reset as in LRU.

Chapter 4. Cache Analysis 44

Cache geometry

L Cache line size
K Cache set associativity
N Number of cache sets
S = L×K ×N Cache size

Cache states

M Memory block
M⊥ =M∪ {⊥} Cache block
C = (Cs)N Cache state
Age = {0, . . . ,K − 1,∞} Block age

Table 4.1: Cache-related definitions

• First-in first-out (FIFO) models a queue such that upon a miss the newly loaded

block is stored at the queue head and all existing elements age by one. A hit does

not change the queue as opposed to LRU.

• Most Recently Used (MRU) counter-intuitively does not replace the most recently

used element. Each element is attached a status bit which is set to 1 upon access

to indicate a recent use. If all bits are set to 1, all bits but the most recent one are

reset to 0. Upon a miss, a line with a 0 bit is replaced.

Of the listed policies, LRU is the most predictable one and is therefore of great

interest for the construction of time critical systems. Key properties are, that the logic is

not sensitive to whether a memory access is a hit or a miss, and, regardless of a specific

initial state of a cache set, the state can be precisely determined after any sequence of K

memory accesses [19]. In this thesis, we will focus on this policy. PLRU is hard to predict

because an access does not only protect the element but also its neighbors from eviction.

This may lead to the indefinite survival of an element. FIFO reduces predictability by

treating hits and misses asymmetrically and therefore critically depends on the precision

of access classification by static analysis. Similarly, MRU is hard to predict due to the

dependence on precise information on status bits. PLRU, FIFO and MRU are prone to

domino effects [54, 70]. In particular, they are sensitive to specific initial cache states

and are therefore highly unpredictable in preemptive scenarios where unknown initial

states do not only have to be taken into account at the start of a task but throughout its

entire execution — after each potential preemption. For a detailed survey of policies,

performance and predictability in task-level analysis see [19].

4.4 Static Cache Analysis

We now formally study static cache analysis under the LRU replacement policy which

will serve as the formal basis to present our approach to estimate task timing under

preemption. First, we formalize LRU cache semantics and discuss aspects of its static

analyses for non-preemptive executions. Table 4.1 lists related definitions. In Section 4.4.1

Chapter 4. Cache Analysis 45

we formalize basic semantics, in Section 4.4.2 we define how semantics are computed

and it relates to timing analysis. In Section 4.4.3 we briefly introduce abstract cache

semantics.

4.4.1 LRU Cache Semantics

We now formally define LRU cache semantics. Without loss of generality, we restrict

ourselves to semantics of individual caches sets. Let M denote the set of memory blocks

and letM⊥ =M∪{⊥} denote memory blocks mapped in a cache (cache blocks), where

⊥ denotes an invalid cache line. A cache set state is a K-tuple

Cs = (M⊥)K (4.1)

such that for a state (b0, . . . , bk−1) ∈ Cs, block b0 denotes the youngest and bk−1 denotes

the oldest element. Let set Age = {0, . . . ,K − 1,∞}, then we define:

age : M×Cs 7→ Age

age(m, (b0, . . . , bk−1)) =

i if m = bi

∞ otherwise
(4.2)

to denote the age of a block, where ∞ denotes that a block is not cached. Under LRU, if

a block m is accessed, all blocks of lower age than m that are mapped to the same set

age by one. Formally, we define the LRU update policy as:

lru :M×Cs 7→ Cs

lru(m, (b0, . . . , bk−1)) =

(m, b0, . . . , bi−1, bi+1, . . . bk−1) if m = bi

(m, b0, . . . , bk−2) otherwise
(4.3)

We now define the corresponding collecting semantics. Let ι : V 7→ M denote a memory

access at a program point. Then we define a transfer function as:

tf lru : V 7→ Cs 7→ Cs
tf lru(u) = λc . lru(ι(u), c) (4.4)

such that semantics on a path π = (u1, . . . , ui) correspond to:

JπK(tf lru) =

id if π = ε

tf lru(ui) ◦ J(u1, . . . , ui−1)K(tf lru) otherwise
(4.5)

Chapter 4. Cache Analysis 46

Accordingly, collecting cache semantics for a set of initial cache states C0 ⊆ CS and paths

Π is defined as:

collru : V 7→ ℘(Cs)

collru(ui) =
⋃

c0∈C0

{
J(ui, . . . , uj−1)K(tf lru)(c0)

∣∣∣ (ui, . . . , uj) ∈ Π
}

(4.6)

For worst-case estimations, the set of initial states contains just the empty cache, which

models the worst-case initial state for LRU1 [19].

The computation of fixed point semantics relies on the transformer defined in Equa-

tion 4.4 and the join semi-lattice (℘(DC),>,⊆,∪) where DC = C. Hence

mfplruC : V 7→ ℘(C) (4.7)

denotes its fixed point solution. Note that this domain is very precise since although

execution context is lost due to loss of concrete execution paths in the MFP solution,

cache state itself retains limited execution history.

4.4.2 Access Classification

The original purpose of cache analysis is the classification of accesses ι into cache hits and

misses such that the costs of memory accesses in a program point for micro-architectural

analysis can be accounted for accordingly. For a given access ι(u), we distinguish three

cases: i) always hit (ah) if the access guaranteed to be a cache hit in all reachable cache

states ii) always miss (am) if the access is guaranteed to be miss in all reachable cache

states iii) not classified (nc) otherwise. We formalize this notion according to the given

semantics and define access classification acl as:

acl : M× V 7→ {am, ah, nc}

acl(m,u) =


ah if ∀c ∈ collru(u) : m ∈ c

am if ∀c ∈ collru(u) : m /∈ c

nc otherwise

(4.8)

An access is classified ah if a block is guaranteed to be cached for all paths to point u,

and am if is it guaranteed to be uncached. Otherwise, no classification can be given.

This gives rise to the notion of must set, which denotes memory blocks that must be

cached in a point, defined as:

musts : V 7→ ℘(M)

musts(u) = {m | acl(m,u) = ah} (4.9)

1This is not necessarily true for other replacement policies [19].

Chapter 4. Cache Analysis 47

Symmetrically, a may set denotes all memory blocks that might be cached in some point

(not always miss) and which is defined as:

mays : V 7→ ℘(M)

mays(u) = {m | acl(m,u) 6= am} (4.10)

Note that due to compulsory misses, accesses would never be classified always hit in

a program point given a standard CFG, which does not distinguish execution context

(the very purpose of CFGs). The problem can be mitigated by adding explicit context

back into the CFG by virtual function inlining, virtual loop unrolling (VIVU) [26] or

persistence analysis [71].

From access classification, bounds on the number of cache hits and misses along a

path can be computed. Let π = (u1, . . . , uk) denote a path. Then an upper bound on

the number of cache misses is given by counting all accesses classified ah such that:

misss : Π× Cs 7→ N0

misss(π) =


misss(π \ (uk)) +

1 if acl(ι(uk), uk) 6= ah

0 otherwise
if π 6= ε

0 otherwise

(4.11)

We denote miss counts for complete cache states by miss : Π× C 7→ N0 in the following.

Symmetrically, bounds for cache hits can be defined which will be of no interest to us.

4.4.3 Abstraction

An more efficient but less precise abstraction for LRU cache semantics has been proposed

in [72]. The abstraction A : M 7→ Age from cache states C exploits that for may and

must set computation we are effectively only interested in the maximal and minimal

block ages among all states. For example, a block is contained in a may set if there exists

at least one maximal age among all states less than associativity K. Since ages are only

approximated, abstract may and must set computation requires two distinct analyses.

Inversely, this holds for must sets. We shall formalize for reference.

Let C ∈ ℘(Cs) denote a set of cache states. For may analysis, abstraction αmay

extracts the minimum age from C and is defined as:

αmay : ℘(Cs) 7→ A

αmay(C) = λm .min
c∈C

age(m, c) (4.12)

Chapter 4. Cache Analysis 48

Concretization γmay returns a set of concrete states such that the age of each memory

block m is at least αmay(Cs):

γmay : A 7→ ℘(Cs)

γmay(â) = {c ∈ Cs | ∀m ∈M : â(m) ≤ age(m, c)} (4.13)

Transformer tf lrumay redefines the mapping from blocks to ages â ∈ A according to lru and

is defined as:

tf lrumay : V 7→ A 7→ A

tf lrumay(u)(â) = λm .



0 if m = ι(u)

â(m) if â(m) > â(m)(ι(u))

â(m) + 1 if â(m) ≤ â(m)(ι(u)) ∧ â(m) < K − 1

∞ otherwise

(4.14)

Informally, the cases distinguished in the transformer are:

1. If a cached block is accessed, its age is reset.

2. All blocks older than the currently accessed block do not change their age.

3. All younger blocks age by one.

4. Blocks with ages exceeding the associativity do not need an exact age.

May analysis bases on the join semi-lattice (A,>,v,t) where vmay is defined as:

â1 vmay â2 ⇔ ∀m ∈M : â1(m) ≤ â2(m) (4.15)

and tmay is defined as:

tmay : A 7→ A 7→ A

â tmay â′ = λm .min(â(m), â′(m)) (4.16)

Must analysis is symmetric in that we maintain only maximal ages, thus underestimating

possible cache contents [72]. We do not formalize it here, as we will only be concerned

with may analysis in the following.

This abstract domain is popular as it is efficient in terms of memory consumption

as opposed to the power set domain above, which is critical for large memories and

large software in particular. Note however that hard real-time systems and software are

usually small and high accuracy of analysis is possibly more important than efficiency of

analyses. Abstraction also comes with drawbacks. On the one hand, it inherently loses

context and it is therefore not possible to distinguish mutually exclusive states as we will

see later. Secondly, the domain is not distributive [19] (cf. Theorem 2.20). A trade-off

between both domains has been proposed in [73].

Example Figure 4.3 illustrates the fixed point solution under the abstract domain for

Chapter 4. Cache Analysis 49

(a) 1st iteration (b) 2nd iteration

Figure 4.3: Example of may set computation

a cache of associativity K = 2 and number of sets N = 1. We represent cache states

as tuples of sets, which depicts the mapping of memory blocks with ages ∀u ∈ V : ∀m ∈
M : â(u)(m) <∞. The nodes are labeled with memory blocks accessed at the respective

program points such that ι(a) = a. Figure 4.3a and Figure 4.3b depict the two iterations

required to obtain the MFP solution. Superscripts at the cache states denote the number

of updates of the respective states. The initial cache state is the empty cache such that

∀u ∈ V : ∀m ∈M : â(u)(m) =∞. Then each access ages all elements by one according

to Equation 4.14 and at each join the minimal ages of elements is maintained according

to Equation 4.16.

4.5 Multitask Timing Analysis

Task-level timing analysis as discussed in Section 3.2 computes worst-case (best-case

time) bounds for a single uninterrupted execution of a task. Focusing on cache-related

timing aspects in Section 4.4, we showed how cache hits and misses can be accounted

for to contribute to the WCET and BCET of a task. In the presence of preemptions,

additional context-switch costs must be taken into account.

In Section 4.5.1 we introduce basic terminology and context and in Section 4.5.2 we

formally define the notion of preemption costs specifically. In Section 4.5.3 we introduce

the basic building blocks to bound preemption costs.

4.5.1 Costs of Preemption

A preemption causes additional context-switch costs which must be accounted for in

static timing analysis to obtain safe timing bounds in multitask scenarios. Different

types of costs need to be distinguished: i) Scheduling costs denote software overhead of a

preemption which include scheduling decisions and context-saving [74–77]. ii) Pipeline

Chapter 4. Cache Analysis 50

costs denote hardware-related costs due to the interruption of pipelined execution.

iii) Cache costs denote cache-related costs due to interfering cache usage of multiple

tasks. A severe limitation of schedulability tests from Section 3.1.4 is the assumption

that these costs are negligible. Indeed, scheduling and pipeline costs are comparably low

and can therefore be bounded by a constant in practice without being overly pessimistic.

As far as cache costs are concerned, historically, the memory gap was negligible when

processor clock rates used to be low. Now, cache-related costs are significant and highly

dynamically affect time bounds. Only scheduling and pipeline costs can directly be

associated with a particular preemption. Cache-related preemption delays (CRPD) —

also referred to as extrinsic cache interference [78] — on the other hand only occur once

evicted blocks are accessed at some point after a preemption. In the following, we focus

on worst-case CRPD only, since best-case CRPD it can always safely be bounded by

assuming no interference at all.

4.5.2 Cache-related Preemption Delay

We now formally define preemptions and CRPD, and briefly address related work to

prevent CRPD altogether.

Formal Basics

Let πi ∈ Πi denote a path of an uninterrupted execution of a task τi ∈ T . Assume

τj is a preempting task of τi, then a preemption is a pair (u, πj) of preemption point

u ∈ πi and execution path πj ∈ Πj of the preempting task. The preemption partitions

πi = (. . . ui, ui+1, . . .) such that π̂i = (. . . , u) · πj · (ui+1, . . .) denotes an execution path

under preemption.

In general, for a task τi, let prei : ΠT 7→ ΠT map from uninterrupted to preempted

execution paths and let c : V ×T 2 7→ {>,⊥} denote a scheduling decision for preemption

in a point. Then preempted execution paths are defined recursively as follows: Let

schedi : πi 7→ ΠT be a function that maps from program points in a task τi to (possibly

themselves preempted) execution paths of tasks τj , scheduled to preempt in a point u

and which is defined as:

schedi(u, c) =

prej(πj) : πj ∈ ΠT if c(u, τi, τj)

ε otherwise
(4.17)

Let πi = (u1, . . .) denote an execution path of task τi. Then we can define function prei

as:

prei(πi) =

(u1) · schedi(u1) · prei(u2, . . .) if π 6= ε

ε otherwise
(4.18)

Chapter 4. Cache Analysis 51

which interleaves a non-preempted path of task τi with preempting paths. Thus, π̂i =

pre(πi) denotes a preempted execution path.

Definition 4.1 (Cache-related Preemption Delay [6]) Let miss : Π × Cs 7→ N0

denote the number of cache misses on a path and let BRT denote block reload time. Then

CRPD is defined as the difference in misses of uninterrupted and preempted execution of

a task. Formally:

crpdπ(π) = (miss(π̂)−miss(π))× BRT (4.19)

Let ET(π) denote execution time on a path π, then only in fully timing compositional

or constant-bounded compositional architectures [6], the follow inequation holds:

ET(π̂) ≤ ET(π) + crpdπ(π) (4.20)

The sum might indeed be greater than the actual execution time since block reloads

might occur in parallel with processes such as arithmetic computations in a pipeline,

which is not reflected by this separation. Note that the architectural constraint above

implies restriction to the LRU replacement policy as FIFO, PLRU and MRU exhibit

domino effects [19] and therefore the number of additional misses due to preemption is

not bounded. Consequently, various techniques have been proposed to circumvent CRPD

altogether.

Avoidance of CRPD

Different measures can be taken to avoid CRPD altogether by temporal or spatial isolation.

With cache locking [79–81], cache logic is disabled temporarily or for the entire execution

of a task so that the underlying memory serves as a fast read-only buffer. Alternatively,

scratchpad memories can be used for similar purposes [82–85]. The trade-off between

the two is that a cache provides a transparent address translation, thus instructions can

be allocated into the memory unmodified since all references remain intact. However,

dynamic replacement at runtime is not easily achieved. On the other hand, an SPM is

mapped into the address space and is therefore directly dynamically accessible. Cache

partitioning [86, 87] is the problem of computing an optimal memory layout to avoid

cache conflicts. Despite trade-offs in performance, these strategies increase predictability

as they eliminate CRPD as an additional source of imprecision without disabling caching.

In general, these techniques rely on special hardware support. Hence, CRPD cannot be

avoided in those cases. We will therefore subsequently be concerned with the computation

of safe and ideally tight approximations.

4.5.3 Bounding Cache-related Preemption Delay

In the following we will be concerned with standard techniques to bound CRPD. We

unify different techniques in one formal framework and discuss specific inaccuracies in

Chapter 4. Cache Analysis 52

their original definitions. We do not address practical analysis yet but constrain ourselves

to concepts.

Useful Cache Blocks

To estimate CRPD, we are ultimately interested in the number of additional cache misses

due to preemption. Useful cache blocks (UCB) [88] bound this number by computing sets

of memory blocks potentially being accessed and reused during uninterrupted execution

of a task. Intuitively, a preemption can not inflict more misses than cached blocks

potentially being re-accessed.

Definition 4.2 (Useful Cache Block) A memory block m ∈ M is is a useful cache

block in a point ui ∈ V if and only if it is cached in ui and reused in a point uj such

that ui uj and m is not evicted before uj is reached.

A safe but pessimistic bound on CRPD is given by the assumption that preemptions

evict all UCB.

useful

not useful

useful

not useful

useful

m

m

Figure 4.4: Useful Cache Blocks in a control flow graph

A set of UCB contains all memory blocks which may be cached at some point and

may be reused at a later point in time. Figure 4.4 illustrates this notion. The white

circles represent accesses to m along a control flow path. Block m is only classified

“useful” at those program points from where an access to m is reachable in forward and

backward direction without m being evicted along the path. We refer to the number of

memory accesses distinct from m as distance between accesses to m.

We shall now formalize the notion of UCB. For an initial state c∅ ∈ Cs, a memory

block m ∈M is cached in a program point ui ∈ V if for a path π = (u0, . . . , ui, . . . , un),

it holds that:

age
(
m, J(u0, . . . , ui)K(tf lru)(c∅)

)
≤ K − 1 (4.21)

where age denotes the age of a block in a cache set state (Equation 4.2) and JπK(tf lru)

denotes the cache set semantics (Equation 4.4) on π. We define the set of all cached

Chapter 4. Cache Analysis 53

blocks, given a path π as:

cbπ : Π 7→ ℘(M)

cbπ(π) =
{
m
∣∣∣ ∀m ∈M : age(m, JπK(tf lru)(c∅)) ≤ K − 1

}
(4.22)

We define UCB via path-based collecting semantics. Recall that path-based semantics

col
→/←
π (Definition 2.10 on page 11) denote sets of paths from CFG source to a point u

or from CFG sink t u, respectively. Let UCB ⊆ V 7→ ℘(M) denote the function that

map from points to sets of UCB, then we define:

ucb: UCB

ucb(u) =
{
m
∣∣∃π ∈ col→π (u) ∧ ∃π′ ∈ col←π (u) : m ∈ (cbπ(π) ∩ cbπ(π′))

}
(4.23)

For reference, let set : m 7→ [1, N] denote the cache set a memory block is mapped to,

then we define the set of ucb in cache set s as:

ucbs : V 7→ ℘(M)

ucbs(u) = {m | m ∈ ucb(u), set(m) = s} (4.24)

Figure 4.5: UCB overestimation due to a single access

Note that Equation 4.23 overestimates UCB as illustrated in Figure 4.5: Let memory

block m be accessed in program point u, then m will be classified useful regardless of an

actual reuse in another program point.

CRPD due to a preemption in a point u is then denoted by:

crpducb
u : V ×UCB 7→ N0

crpducb
u (u,ucb) = |ucb(u)| × BRT (4.25)

In general, it is statically not possible to precisely determine the preemption point. Hence,

a safe bound is denoted by [88]:

crpducb : UCB 7→ N0

crpducb(ucb) = max
u∈V

crpducb
u (u,ucb) (4.26)

Let # denote a bound on the number of preemptions, then a bound for the preempted

execution of a task is given by:

WCETest + crpducb(ucb)×# (4.27)

Chapter 4. Cache Analysis 54

Figure 4.6: Relation of access classification (cf. Section 4.4.2) for CRPD and WCET

Recall from Section 4.4.2 that for safe WCET computation all memory accesses

classified “always miss” and “not classified” (not cache on all paths) must be accounted

for as cache misses in uninterrupted execution. Similarly, function cbπ denotes all blocks

classified “always hit” or “not classified” (cached on at least one path). Consequently,

function WCETest and function crpd account for all accesses “not classified” twice, as

illustrated in Figure 4.6. This gives rise to the notion of definitely cached useful cache

blocks (DCUCB) [89] to mitigate redundancy in analysis, and which is defined as the

constrained set of “useful” memory blocks classified as:

dcucb: V 7→ ℘(M)

dcucb(u) = {m ∈ ucb(u) ∧ acl(m,u) = ah} (4.28)

Note that Equation 4.27 is only safe if WCET and CRPD bounds are derived from the

same cache analysis, which might not be possible in practice due to inaccessibility of

proprietary WCET analyses frameworks.

Evicting Cache Blocks

Bound crpducb denotes an approximation on the number additional cache misses due to

preemption by any task. It does not take into account the accesses that are actually

performed by individual preempters, leading to unnecessary pessimism. In [78, 90], the

consideration of evicting cache blocks (ECB) is proposed.

Definition 4.3 (Evicting Cache Block) A memory block m ∈M is an evicting cache

block if it is ever accessed on execution path π.

Consequently, let ECB ⊆ ℘(M) denote sets of memory blocks. Then the set of ECB

is simply defined as the same of cached blocks along a path:

ecb: ECB

ecb = {m ∈ cbπ(π) | π ∈ Π} (4.29)

Chapter 4. Cache Analysis 55

For reference, we define the set of ECB per cache set s as:

ecbs : ℘(M)

ecbs = {m | m ∈ ecb, set(m) = s} (4.30)

Symmetrically to function ucb, ecb is an upper bound on the number of additional misses

for any preempted task. It is important to recognize that under LRU, a single eviction

can cause up to associativity K additional cache misses in a preemptee [91]. This needs

to be taken into account when deriving CRPD bounds.

(a) Non-preeemptive execution (b) Preemptive execution

Figure 4.7: Example of miss behavior under LRU and preemption

Example Figure 4.7a illustrates the memory access sequence ι∗(π) of a task τ2 and the

contents of a cache set for K = 4 under LRU into which the memory blocks are mapped.

All initial accesses necessarily lead to compulsory cache misses. After that, all accesses

are hits. As opposed to this, Figure 4.7b illustrates the effect of a single access by a

preempting task τ1. All hits become misses since the accessed block has just been evicted

before its access. Hence, the number of ECB is not a safe upper bound for additional

cache misses.

Consequently, a safe bound on CRPD is given by the number of invalidated cache

sets times associativity K:

crpdecb : ECB 7→ N0

crpdecb(ecb) = |{s | s ∈ N, ecbs 6= ∅}| ×K × BRT (4.31)

Originally [90], Equation 4.31 has been proposed for direct mapped caches only. Its

extension [92] to non-direct mapped caches, however, has been shown to be unsound [91].

The bound given above has not been proposed before to the best of the author’s knowledge.

Cache Block Resilience

Equation 4.31 is based on a safe but not very precise bound on the number of additional

misses as it does not take UCB into account. From the example illustrated in Figure 4.7

we conclude that a possible improvement by taking UCB and ECB into account can

Chapter 4. Cache Analysis 56

be achieved by excluding cache sets with empty intersection of UCB and ECB [91].

Recall that otherwise we have to assume complete set invalidation to be safe. However,

in [93], the authors recognize that by maintaining age information of UCBs, cache

block resilience (CBR) with respect to preemption eviction can be computed to reduce

over-approximation.

Figure 4.8: Example of block aging and distance metric of accesses

For an intuition, consider Figure 4.8 which illustrates two memory accesses to a block

m on a path π. We ignore cba→/← for the moment. The distance between the two

accesses equals 3. If we assume an associativity K = 4, then the resilience of m between

the two accesses is (K − 1) − 3 = 0 in all potential preemption points. Consequently,

any additional access due to preemption causes a cache miss upon the next access to

m. For any shorter distance between two accesses, a block’s resilience increases: we can

guarantee m is still cached after an access to some other block that maps into the same

cache set if the distance is less than 3.

Definition 4.4 (Cache Block Resilience [93]) The maximal amount of additional

accesses distinct from m ∈M by preempting tasks without causing a cache miss upon

the next access to m is referred to as cache block resilience (CBR).

Let us formalize this notion. To compute CBR, information on block ages need to be

available in all program points. UCB (cf. Equation 4.23) do not include this information

anymore. Let CBR ⊆ V 7→ Age denote the set of functions from program points to block

ages. Then ages of memory blocks for a given execution path π are denoted by:

cbaπ : Π 7→ CBR

cbaπ(π) = λm . age(m, JπK(tf lru)(c∅)) (4.32)

Recall that uncached memory blocks yield an age of ∞ and that a memory block m may

only be cached in point u if m ∈ ucb(u). The maximal age (distance in terms of memory

accesses) of a useful block m in point u for all forward paths leading to that point is

then defined as:

cba→ : V 7→ CBR

cba→(u) = λm .

max {cbaπ(π)(m) | π ∈ col→π (u)} if m ∈ ucb(u)

∞ otherwise
(4.33)

Chapter 4. Cache Analysis 57

Symmetrically, the maximal aging from point u to its next access is defined as:

cba← : V 7→ CBR

cba←(u) = λm .

max {cbaπ(π)(m) | π · (u) ∈ col←π (u)} if m ∈ ucb(u)

∞ otherwise
(4.34)

We deviate from the original definition [93] in that we are collecting aging up to but

not including respective program points in cba← — as opposed to cba→ — to avoid

overestimation in the original proposal. Figure 4.8 illustrates the respective valuation of

cba→/←.

CBR is the difference between the associativity (its maximal resilience) and the

maximal distance between two accesses. We thus define a bound CBRmu for memory

block m and program point u as:

cbr : V 7→ CBR

cbr(u) = λm . (K − 1)−min(K − 1, cba→(u)(m) + cba←(u)(m)) (4.35)

The sum of block ages denotes the distance, which is bounded by K − 1 such that

distances equal or greater than K − 1 yield a CBR of 0.

CRPD in a program point u for a single preemption is then bounded by those whose

UCB whose CBR is greater than the number of ECB. Formally, we define:

crpducb,cbr,ecb
u : V ×UCB× ECB× CBR 7→ N0

crpducb,cbr,ecb
u (u,ucb, cbr, ecb) =

∑
s

|ucbs(u) \ {m | cbr(u)(m) ≥ ecbs(u)|}| (4.36)

A globally safe bound for a preemption is then denoted by the maximal interference over

all program points:

crpducb,cbr,ecb : UCB × ECB × CBR 7→ N0

crpducb,cbr,ecb(ucb, cbr, ecb) = max
u∈V

crpdcbr
u (u,ucb, cbr, ecb) (4.37)

Summary

In this section we have provided an overview of the basic building blocks to bound

CRPD and an initial notion of how these can be used to compute CRPD estimates. Note

however, that the bounds so far only account preemptions by a single preempting task

and merely serve the purpose of clarifying their conceptual use. For multiple preempters,

in particular for bounds based on explicit interference of UCB and ECB, care has to be

taken not to underestimate CRPD. We will address this subject in detail below. For a

more detailed and general overview of various proposals, see [94]. In the following we

leave the conceptual level and propose in detail a specific analysis framework for very

precise CRPD estimation, addressing various shortcomings of existing approaches.

Chapter 4. Cache Analysis 58

4.6 Synergetic Approach to CRPD Analysis

In this section we present our approach to bound CRPD in K-way set-associative caches

under the LRU replacement policy for fixed-priority periodic schedules by proposing

an analysis framework from the ground up. We propose a cache analysis which trades

efficiency for precision, specifically with the intention of evaluating its practical applica-

bility. We argue that this trade-off is justified since we are interested in cache analysis

result of caches close to the CPU — which are typically small and yield low associativity.

Although we do not take multi-level cache analyses into consideration, imprecision at

this level can have significant impact on other stages of analyses as uncertainty is intro-

duced early. Ultimately, we are interested in precise bounds on CRPD, and imprecision

potentially degrades the overall result quality. For direct mapped caches, the authors

of [73, 95] proposed similar analysis domains. We propose the generalization for K-way

set associative caches. We further show how UCB, ECB and CBR can be computed

cumulatively in a single analysis pass for this framework, instead of requiring several

distinct analyses as previously proposed. We also propose optimizations that can be

applied in the context of instruction caches specifically. We then show how results can

be used to compute improved bounds on CRPD. Throughout the discussion, we address

several weaknesses of existing approaches and propose improvements accordingly.

In Section 4.6.1 we formally define our cache analysis framework. We show in

Section 4.6.2 how UCB, ECB and CBR can be derived from analysis results and how our

state representation simplifies analysis. In Section 4.6.3 we propose an instruction cache

optimization for the reduction of the analysis state space. In Section 4.6.4 we show how

these results can be applied to compute CRPD estimates and propose improved bounds

for set-associative caches.

4.6.1 Precise Cache Analysis

In this section we introduce basics of our cache analysis framework [7]. Primarily two

techniques [88, 95] have been proposed to solve the problem of cache analysis, which

differ in precision and complexity. In the literature, they are known as the “set-based”

and “state-based” approaches [73]. In the following, we sketch the construction of our

approach to state-based analysis of K-way set-associative caches, which we will use as the

basis for our following proposals. We seek to exploit its unique properties. State-based

analysis has only been proposed for direct mapped caches yet. We extend the basic idea

for higher associativities.

First we briefly review imprecision of abstract cache analysis, then we define precise

cache analysis.

Imprecision of Cache Abstraction

We briefly discuss the inherent imprecision introduced by abstract cache analysis from

Section 4.4.3. Recall that abstract may analysis is based on the join semi-lattice (A,>,v

Chapter 4. Cache Analysis 59

,t) where A : M 7→ Age is the set of functions mapping from memory blocks to block

ages. Information is lost in abstraction as well as joining of states, as we will show with

two examples.

Example Let cs = {(a, b, c, d), (b, a, c, e)} denote two states of set-associative cache sets

of associativity K = 4. Abstracting (cf. Equation 4.12) from cs yields:

ĉs = αmay({(a, b, c, d), (b, a, c, e)}) = ({ab}, {}, {c}, {d, e}) (4.38)

Concretization (cf. Equation 4.13) of ĉs then yields:

cs v αmay(ĉs) =


(a, b, c, d), (b, a, c, d), (a, b, c, e), (b, a, c, e),

(a, b, c,⊥), (b, a, c,⊥), (a, b,⊥,⊥), (b, a,⊥,⊥),

(a,⊥,⊥,⊥), (b,⊥,⊥,⊥), (⊥,⊥,⊥,⊥)

 (4.39)

Abstraction yields a loss of information such that its concretization is a large overesti-

mation of the original states. Similarly, joining abstract states leads to loss of information

such that for an abstract states ŝ and t̂ it holds that γmay(ŝ tlrumay t̂) * γmay(ŝ) ∪ γmay(t̂).

Example Consider abstract cache set states ŝ = ({a}, {}, {}, {}) and t̂ = ({b}, {}, {}, {}).
Joining (cf. Equation 4.16) ŝ and t̂ yields:

ŝt = ŝ tlrumay t̂ = ({a, b}, {}, {}, {}) (4.40)

Its concretization then yields:

γmay(ŝt) =


(a, b,⊥,⊥), (b, a,⊥,⊥),

(a,⊥,⊥,⊥), (b,⊥,⊥,⊥),

(⊥,⊥,⊥,⊥)

 (4.41)

In particular, we lose information on mutual exclusion of cache states: an inherent

loss of information on execution history on every join. This means for CRPD compu-

tation, we are considering non-existing cache contents. Since UCB, ECB and CBR are

already approximations themselves, imprecision accumulates and CRPD is even further

overestimated.

State-based Analysis for Set-associative Caches

Recall that M⊥ =M∪ {⊥} denotes states of a cache block, Cs =MK
⊥ denotes state of

a cache set and, consequently, C = CNs denotes state of a cache. Then a precise analysis

domain is denoted by DC = ℘(C) and the corresponding join semi-lattice is defined as:

(DC , ℘(DC),⊆,∪) (4.42)

Chapter 4. Cache Analysis 60

We refer to forward cache semantics as reaching cache state (RCS) and distinguish RCS

just before (cs→•) and after a program point (cs•→), respectively. Let lru :M×Cs 7→ Cs
model LRU cache set semantics. Then we define the corresponding cache set transformer

tfs : M×Cs 7→ Cs as:

tfs(m, s) =

lru(m, s) if m 6= ⊥

s otherwise
(4.43)

Let ι : V 7→ M denote memory accesses in a point and let set : m 7→ [1, N] denote the

cache set blocks are mapped to. We define a function gen which models accesses issued

in a program point mapped to a specific cache sets as:

gen: V × [1, N] 7→ M

gen(u, i) =

m if ι(u) = m ∧ set(m) = i

⊥ otherwise
(4.44)

Then tfc : C 7→ C denotes a cache state transformer, defined as:

tfc((s1, . . . , sN)) = (tfs(gen(ui, 1), s1), . . . , tfs(gen(pi, N), sN)) (4.45)

Precise cache semantics is denoted by the least RCS solution to the following equation

system:

cs→•/•→ : V 7→ DC

cs→•(u) =
⋃

v∈pred(u)

cs•→(v)

cs•→(u) = {tfc(r) | r ∈ cs→•(u)}
(4.46)

Example Figure 4.9 illustrates the fixed point computation for RCS for a cache of

associativity K = 2, number of sets N = 1 and memory accesses denoted by node labels,

similar to Figure 4.3, such that ι(a) = a. We represent cache states as sets of tuples,

where ⊥ denotes empty cache lines. Figure 4.9a and Figure 4.9a depict the two iterations

required to obtain the MFP solution. Superscripts at the cache states denote the number

of updates of the respective states. The initial cache state is the empty cache. Then each

access ages all elements by one according to Equation 4.43 and at each join the union of

cache states in computed. As opposed to Figure 4.3, where the state after evaluation of

node e equals ({e}, {c, d}), in Figure 4.9 the state {(e, c), (e, d)} retains information of

mutual exclusion of memory blocks c and d.

We refer to backward cache semantics as live cache states (LCS). While RCS denote

memory blocks accessed during execution for particular program points, LCS represent

memory blocks at particular program points which may be accessed again in the future

without being evicted. Computation is symmetric to RCS: LCS is the least solution to

Chapter 4. Cache Analysis 61

(a) 1st iteration (b) 2nd iteration

Figure 4.9: Example of RCS computation

the equations defined by:

cs←•/•← : V 7→ DC

cs•←(u) =
⋃

v∈succ(u)

cs←•(v)

cs←•(u) = {tc(r) | r ∈ cs•←(u)}
(4.47)

4.6.2 Computation of UCB, ECB and CBR

We proceed to define how UCB, ECB and CBR are derived from RCS and LCS in DC ,
respectively. We maintain contextual discrimination for maximal precision by keeping

information encoded in DC as opposed to the original definitions above.

Useful Cache Blocks

We define the set of UCB as the intersection of RCS and LCS:

ucbC : V 7→ DC
ucbC(u) = {r ∩c l | r ∈ cs•→(u), l ∈ cs←•(u)} (4.48)

where operator ∩c : C × C 7→ C evaluates to cache set-wise intersection, defined as:

c ∩c c′ = (s1 ∩s s′1, s2 ∩s s′2, . . . , sN ∩s s′N) (4.49)

Chapter 4. Cache Analysis 62

where operator ∩s : Cs × Cs 7→ Cs denotes block-wise intersection, defined as:

si ∩s s′i = (b1, . . . , bk) : ∀bi :

bi = m if m ∈ si ∧m ∈ s′i
bi = ⊥ otherwise

(4.50)

The set of UCB per cache set is per definition bounded by associativity K and loses all

information on block ages.

Example Let s = (a, b, c, d) and s′ = (b, a, d,⊥) denote cache sets states for K = 4, then

s ∩s s′ = (a, b,⊥, d). The resulting tuple yields no particular order.

Note that ucbC maintains the product of RCS and LCS and therefore represents

only actually feasible combinations. For convenience, we define a predicate that denotes

usefulness of a memory block:

pucbC : V 7→ M 7→ {>,⊥}

pucbC(u) = λm . ∃c ∈ ucbC(u) : ∃s ∈ c : m ∈ s (4.51)

A memory block is useful if it is member of one element in ucbC .

Evicting Cache Blocks

We directly derive ECB from the result. Let t ∈ V denote the CFG sink node. Then

ecbC denotes the set of evicting cache states, defined as:

ecbC : DC
ecbC = {c ∈ cs•→(t)} (4.52)

Note that RCS does not necessarily map all blocks that cause evictions as some of them

may have been evicted within the same task themselves in turn. Rather, they indicate

the pattern of cache usage of the preempting task and denote which cache sets have

been used and to what extent. For RCS specifically, this is more accurate than in other

approaches [73], as RCS only holds those states that are actually reachable along all

paths leading to the terminal program points.

Example In Figure 4.9 reachable cache states (for geometry K = 2, N = 1) and

terminal node e, states ({(e, c), (e, d)}) are being explicitly discriminated, reflecting

mutually exclusive paths leading to e, potentially eliminating imprecision of ECB-based

CRPD estimations.

Cache Block Resiliencies

From RCS and LCS we can also directly derive CBR. Under abstraction, this is not

possible and would necessitate a separate analysis [93], potentially losing additional

information. Analysis based on DC maintains precise ages and resiliences.

Chapter 4. Cache Analysis 63

To this end, we define a helper function that returns a default block age of 0 if age

(Equation 4.2) returns ∞:

age0 : M×C 7→ Age

age0(m, s) =

age(m, s) if age(m, s) 6=∞

0 otherwise
(4.53)

Then we can define the maximal age of a memory block m with regard to CBR right

before a program point u in forward direction as:

age→• : V 7→ M 7→ Age

age→•(u) = λm .


max

a ∈ age0(m, s)

∣∣∣∣∣∣∣
s ∈ c,
c ∈ cs•→(v),

v ∈ pred(u)

 if pucb(u,m)

∞ otherwise

(4.54)

The maximal age of a block m before a point u is the maximal age of all states in

preceding points, where potentially uncached blocks yield ages equal to 0, but only if m

is useful. The latter constraint guarantees the existence of at least one state containing

m. If a memory block is not useful, we can ignore it (∞). Analogously, we define the

maximal age of a memory block m with regard to CBR right after a program point u in

forward direction as:

age•→ : V 7→ M 7→ Age

age•→(u) = λm .


max

{
a ∈ age0(m, s)

∣∣∣∣∣ s ∈ c,c ∈ cs•→(u)

}
if pucb(u,m)

∞ otherwise

(4.55)

Symmetrically, we define age•← and age←• for backward semantics.

Under the assumption that program points are atomic in the sense that preemptions

occur only after their complete execution, we define CBR as:

cbr : V 7→ M 7→ Age

cbr(u) = λm . (K − 1)−min(K − 1, age•→(u)(m) + age•←(u)(m)) (4.56)

This definition yields more precise results than in the original proposal [93], which treats

aging symmetrically, similar to Equation 4.35.

Figure 4.10: CBR overestimation due to symmetric aging (K > 4)

Chapter 4. Cache Analysis 64

Example In Figure 4.10 memory block m is accessed twice and is therefore considered

useful in program point u. For Equation 4.35, it holds that age•→(u)(m)+age←•(u)(m) =

2+2 = 4, whereas for Equation 4.56 it holds that age•→(u)(m)+age•←(u)(m) = 2+1 = 3.

Set associativities are usually small and BRT can be significant, so reduction of

overestimation is important. For non-atomic program points with multiple accesses

and multiple potential preemptions, such as basic blocks, care has to be taken not to

underestimate aging though. We address this in the following.

4.6.3 Restriction to Basic Block Boundaries

We assumed that program points are atomic in that preemptions are only possible after

their completion and in that their execution only issues just a single memory access.

For example, program points correspond to single CPU instructions. Domain DC is

inherently expensive in terms of memory consumption. Therefore, we now show how to

restrict computations to basic blocks such that it is sufficient to perform computations

only on their boundaries instead of all interior points. Recall that a basic block is a

sequence of instructions without interior jump targets. Nevertheless, preemptions can

occur within this sequence. Therefore, computing UCB or CBR only on basic block

boundaries requires to compute safe and ideally tight approximations. In [88], a rough

idea of reducing UCB analysis to basic block boundaries has been given informally and

for direct mapped caches only.

In the following we formalize strategies for UCB and CBR on basic block boundaries.

Note that these techniques are only applicable to instruction caches.

UCB on Basic Block Boundaries

Let π = π′ · πBB be an execution path terminating at the end of a basic block, with πBB

denoting the path through a basic block, then all paths by definition share the same

suffix such that:

∀πi, πj ∈ Π: πBBi = πBBj (4.57)

In a basic block, an instruction memory block m can only be accessed once, since inte-

rior program points do not repeat: ∀(u1, . . . , un) ⊆ πBB : |(u1, . . . , un)| = |{u1, . . . , un}|.
Also multiple interior points accessing the same memory block must be consecutive:

Let I = {i | ui ∈ πBB ∧ ι(u) = m} be the index set of program points within a ba-

sic block that access the same memory block, then these indices must be consecutive:

@j ∈ [min I,max I] : ι(uj) 6= m.

Let program points now denote complete basic blocks and let ι∗ : V 7→ M∗ denote the

sequence of accesses (into the same cache set) within basic blocks. It holds, by definition

of LRU, that cache state right after each basic block only depends on the last K accesses:

m ∈ cs•→(u)⇔ m ∈ (mj−K , . . . ,mj) ⊆ (mi, . . . ,mj) = ι∗(u) (4.58)

Chapter 4. Cache Analysis 65

Consequently, all referenced memory blocks mi≤l<j−K need not be considered for CRPD,

as they are evicted from the cache without preemption already. The same holds true for

cs←•. Consequently, Equation 4.48 remains to denote a safe bound on UCB: A memory

block referenced within a basic block is only useful if it does not cause a guaranteed miss

without preemption.

m

m

↓ {m}

↑ {m}

(a)

m

m

↓ {m}

↑ {m}

(b)

m

↓ {m}

↑ {m}

(c)

Figure 4.11: Scenarios for UCB on basic block boundaries

Example Figure 4.11 illustrates the possible scenarios, where ↓ {} denotes cs•→ and

↑ {} denotes cs←•, respectively. In Figure 4.11a both references to block m are external to

the basic block and m is classified useful throughout the entire basic block. In Figure 4.11b

block m remains useful nonetheless if m only occurs in the last k accesses. Figure 4.11c

depicts the result, given that m is only referenced once within the basic block. In this

case an overestimation occurs. In all cases, m remains useful and would therefore safely

overestimate the CRPD regardless of where a preemption actually occurs within the basic

block.

To summarize, the K last accesses to a cache set fully determine its state right after

a basic block and a memory block is classified useful for an entire basic block if it is not

guaranteed to cause a cache miss in some interior point without preemption.

CBR on Basic Block Boundaries

We will now address CBR on basic block boundaries. To this end, we show how to

compute safe approximations for block ages for all interior points within basic blocks.

Recall that we only allow for consecutive access to a memory block within a basic

block. This effectively splits a basic block in two halves: i) Interior points from the top

of the basic block to the access. ii) Interior points from the access to the bottom of a the

basic block. We define the distance between the top and an access as:

•dist : V 7→ M 7→ Age

•dist(u) = λm .

min(K − 1, age→•(u)(m) + age•←(u)(m)) if pucb(u,m)

∞ otherwise
(4.59)

Chapter 4. Cache Analysis 66

top

bot.
top

bot.
top

bot.

m

m

age→ age← dist max

0

1
1

3
3

1

1

3
3

1
1

0

1

4
4

4
4

1

4

4

4

Figure 4.12: Computing safe block-wise ages

Analogously, for the bottom half of a basic block, we define:

dist• : V 7→ M 7→ Age

dist•(u) = λm .

min(K − 1, age•→(u)(m) + age•←(u)(m)) if pucb(u,m)

∞ otherwise
(4.60)

Let us assume sequences of memory accesses as paths πι. Then a sequence of accesses

for an execution path is defined as:

πι = πι1 · πι2 · πι3 = (. . . , uιi) · (vι1, . . . , vιm, . . . , vιj) · (wιk, . . .)

where πι2 denotes a basic block and vιm denotes a memory access to m. Then a safe block

age for an entire basic block is the maximal age of paths from the last access to the

current access (uιf≤i, . . . , v
ι
m) and the maximal age from this access to the next access

(vιm+1, . . . , w
ι
l≥k). Thus, we redefine CBR for basic blocks as:

cbrBB : V 7→ M 7→ Age

cbrBB(u) = λm . (K − 1)−max(•dist(u)(m),dist•(u)(m)) (4.61)

Example Consider Figure 4.12. To the left, memory accesses and basic blocks are

depicted. We consider accesses to m specifically. We maintain ages of m at the top

and the bot (bottom) of the respective basic blocks. age→ denotes age→• and age•→,

respectively. age← denotes age•← and age←•, respectively. Function dist denotes the

respective distances according to Equation 4.59 and Equation 4.60, respectively. Function

max denotes the maximal ages for both paths. Recall that memory blocks potentially not

cached but classified useful, yield a default of age 0.

4.6.4 CRPD Bounds on Task Sets

We now show how CRPD is computed for our cache analysis and we improve upon

existing analyses by showing how to reduce pessimism in case of multiple preempting

Chapter 4. Cache Analysis 67

tasks. We will restrict the discussion to our approach of bounding CRPD for this specific.

A thorough and general overview and a discussion of alternative bounds follows in

Chapter 6 below.

First, we show how CRPD is computed in general for our framework, then we address

specific issues related to multiple preempters and propose an optimized variant.

CRPD for Precise Cache Analysis

Recall from Section 4.5.3 how CRPD is bounded by taking interference denoted by UCB,

ECB and CBR into account. Application to domain DC is achieved as follows.

We extend the equation system for WCRT computation (cf. Section 3.1.4) by an

additional parameter γi,j , which denotes CRPD imposed by a task τj upon a task τj .

Further, we denote the number of preemptions of τj during the response time of τi by:

#(i, j) :=

⌈
Ri + Ji
Tj

⌉
(4.62)

Then WCRT including CRPD can be defined as [78]:

Ri = Ci +
∑

j∈hp(i)

#(i, j)(Cj + γi,j) (4.63)

We define a helper function to count the number of mapped memory blocks in a cache

set:

1c : Cs 7→ N0

1c(c) = |{m ∈ c | m 6= ⊥}| (4.64)

Then we can define the interference χ of cache states C taking UCB, CBR and ECB into

account as:

χucb/cbr/ecb(Cucb, R, Cecb)

:=
∑

i∈[1,N]

{
ci \ {m | R(m) ≥ 1c(c

′
i)} | ci ∈ Cucb ∧ c′i ∈ Cecb

}
(4.65)

where Cucb ∈ C denotes a cache state representing UCB, R ⊆M 7→ Age denotes CBR

and Cecb ∈ C denotes a cache state representing ECB. Similar to Equation 4.36 on

page 57, we exclude from the set of UCB those memory blocks whose resilience is equal

or greater then the number of evictions imposed by ECB, and we accumulate over all

cache sets.

Chapter 4. Cache Analysis 68

Finally, CRPD γi,j for a single preempting task is then denoted by maximum among

all possible interferences and is defined as.

γi,j := crpd
ucb/cbr/ecb,1
C (ucbC , cbrC , ecbC)

= max


χucb/cbr/ecb(C,R,C ′)

∣∣∣∣∣∣∣∣∣∣∣

C ∈ ucbC(u),

R ∈ cbrC(u),

u ∈ V,

C ′ ∈ ecbC


× BRT (4.66)

Below, we relax the restriction to multiple preempting tasks.

Figure 4.13: Example with UCB and ECB for direct preemption (K = 2, N = 2)

Example Figure 4.13 illustrates the preemption of a task τ2 by a task τ1 for a single

cache state for UCB and ECB, respectively (BRT = 1). For both UCB e and g of task

τ2, resilience equals 1. Then Equation 4.66 yields:

crpd
ucb/cbr/ecb,1
C (ucb, cbr, ecb)

= max
{
χucb/cbr/ecb(C,R,C ′) | C ∈ ucb(u), R ∈ cbr(u), C ′ ∈ ecb

}
= max

{
χucb/cbr/ecb (((e,⊥), (g,⊥)), {e→ 1, g → 1}, ((a,⊥), (⊥,⊥)))

}
= max{{|{}|}} = 0

Bounding with Multiple Preempters

So far, we have limited the discussion to CRPD for a single preempter. Multiple

preemptions by the same task are safely bounded since the same set of ECB is applied

for each such preemption. CRPD with multiple preempters, however, can not be safely

bounded by considering tasks in isolation as they potentially interact [93], causing

additional evictions. We distinguish two types of interaction: i) nested interaction:

preempters are potentially preempted themselves ii) successive interaction multiple

preemptions occur in succession between memory accesses in the preempting task In both

cases, preempters combined cause greater block aging than preempters considered in

isolation. In these cases, Equation 4.66 is unsafe. We illustrate this with two examples.

Example (Nested Interaction) Consider Figure 4.14, which depicts nested interaction

for the preemption of task τ3 by tasks τ1, τ2. The sets of UCB and ECB are given for a

direct mapped cache and we assume BRT = 1. Black marks indicate actual CRPD. The

worst-case CRPD of τ2 preempting τ3 equals 2 since τ2 is itself preempted by τ1.

Chapter 4. Cache Analysis 69

Figure 4.14: Interaction by nested preemption(K = 1, N = 3)

Figure 4.15: Interaction by successive preemption (K = 4, N = 1)

Example (Successive Interaction) Figure 4.15 illustrates the preemption of task τ3

by tasks τ1 and τ2 without nesting. We assume a associativity K = 4 and BRT = 1. The

black mark indicates actual CRPD. Each preemption in isolation does not increase the

aging of the useful cache block i such that it is being evicted. However, both preemptions

in succession evict block i. Note that this problem occurs only for non-direct mapped

caches.

We first address nested preemption. A simple way to bound evictions due to nested

preemptions is to accumulate costs of all indirect preemptions. Let τi be a preemptee

and τj a preempter. Recall that all tasks of higher priority than τi but lower or equal

priority of τj is denoted by aff(i, j) = hp(i) ∩ lep(j) (cf. Table 3.2 on page 27). Then we

bound CRPD for a single preemption by:

γi,j :=
∑

k∈aff(i,j)

crpd
ucb/cbr/ecb,1
C

(
ucbτkC , cbrτkC , ecb

τj
C
)

(4.67)

This correctly accounts for a CRPD equal to 2 in Figure 4.14. Note that various different

bounds for CRPD have been proposed in the literature. We dedicate Chapter 6 to their

discussion. Here, this simple bound shall suffice.

It remains to tackle the underestimation in successive interaction, as illustrated in

Figure 4.15. A possible solution to this problem is to assume that each preemption by

one task is an immediate succession of preemptions by all possible preempters instead,

which has been proposed in [93]. For nested interaction, we assume that a preempting

task has itself already been preempted. We adapt their proposal to our framework and

propose an improvement.

We first define a join operator over DC as a cache set-wise join which collects up to K

memory blocks per cache set. Function lru (Equation 4.3 on page 45) already provides

the desired semantics. Let lru∗ : M∗ × C 7→ C denote a successive application of memory

Chapter 4. Cache Analysis 70

accesses to a cache state such that:

lru∗((m1, . . . ,mn), C) = lru(mn, lru(mn−1, . . . lru(m1, C) . . .)) (4.68)

Then joining two cache states is defined as the set-wise application of lru∗:

∪C : C × C 7→ C

C ∪C C ′ = (s1, . . . , sN) ∪C (s′1, . . . , s
′
N) = (lru∗(s′1, s1), . . . , lru∗(s′N , sN)) (4.69)

We lift this to sets of cache states by defining:

∪DC : DC × DC 7→ DC
S ∪DC T =

{
C ∪C C ′

∣∣ C ∈ S,C ′ ∈ T} (4.70)

CRPD given interaction for associativities K > 1 is then bounded by the combination of

all ECB of potential preempters:

γi,j :=
∑

k∈aff(i,j)

crpd
ucb/cbr/ecb
C

(
ucbτkC , cbrτkC ,

⋃DC

l∈hep(j)
ecbτlC

)
× BRT (4.71)

This bound is safe in either case but not very precise. In the following we seek to reduce

overestimation in bounding successive interaction specifically. We will be concerned with

various kinds of pessimism in a more general discussion in Chapter 6.

Pessimism in Interaction

Equation 4.71 can be improved since currently we assume that all tasks interact uncondi-

tionally. Recall that cache interference is considered cache set-wise (Equation 4.65). Also

recall that interaction denotes the fact that two preemptions cause greater block aging

than preemptions considered in isolation. We can avoid accounting for some presumed

interaction by recognizing that a preempting task whose ECB cache-set is empty can

never interact with other preempters.

m m −

|ec
b 0
| =

3

|ec
b 1
| =

2

τ0 τ1

K = 4

(a)

m m −

|ec
b 0
| =

0

|ec
b 1
| =

4

τ0 τ1

K = 4

(b)

Figure 4.16: Example scenarios of successive interaction

Example Figure 4.16 illustrates two successive interaction scenarios for preempting

tasks τ1, τ2, given accesses to a memory block m. We only consider a single cache

Chapter 4. Cache Analysis 71

set of associativity K = 4. Thus, |ecbn| denotes the utilization of the set belonging to

τn. Arrows denote preemptions and circles denote presence in the cache. Figure 4.16a

depicts successive interaction of two preemptions, with a ECB set utilization of 3 and

2, respectively. One preemption alone does not evict m from the cache. Preemptions

in succession, however, cause a cache miss in the third memory access. Equation 4.71

correctly models this scenario. Figure 4.16b, on the other hand, illustrates pessimism

of this approach. Task τ0 does not contribute to block aging. Only the ECB of τ1 cause

eviction all by itself. Nonetheless, Equation 4.71 causes consideration of interaction for

τ0, in addition to considering the evictions caused by τ2 alone. Hence accounting for the

same scenario twice.

Similarly, this holds true for nested interaction. We conclude from this example that

we can safely omit joining ECB cache sets that are empty in the lowest priority task,

because possible cache misses due to interaction are independent of the latter.

We redefine Equation 4.69 and Equation 4.70 to address this finding. Let task τj be

the preempting task. Recall that 1c (Equation 4.64) denotes the number of non-empty

cache lines in a set. Then we define the constrained join of cache states as:

∪C,? : C × C 7→ C

C ∪C,? C ′ = (s1, . . . , sN) ∪C,? (s′1, . . . , s
′
N)

=

({
lru∗(s′1, s1) if 1c(s1) > 0

s1 otherwise

}
, . . . ,

{
lru∗(s′N , sN) if 1c(sN) > 0

sK otherwise

})
(4.72)

The operator is not commutative. Either the left-hand-side operand is non-empty, then

we apply lru∗ analogous to Equation 4.69, or it is empty. Then we do not apply any

changes and return the empty set. We lift this to sets of cache states, as in Equation 4.70,

by defining:

∪DC ,? : DC × DC 7→ DC
S ∪DC ,? T = {C ∪C,? C ′ | C ∈ S,C ′ ∈ T} (4.73)

Joining of cache states must now be performed in ascending order of priority, so that

non-interacting task can be omitted accordingly. Hence, Equation 4.71 becomes:

γi,j :=
∑

k∈aff(i,j)

crpd
ucb/cbr/ecb
C

(
ucbτkC , cbrτkC ,

⋃DC ,?

l∈hep(j)
ecbτlC

)
× BRT (4.74)

Example Figure 4.17 illustrates a successive preemption of a task τ3 by two other tasks.

UCB and ECB denote a single state of a cache with associativity K = 4 and number of

sets N = 2. Task τ2 alone does not cause any evictions since it only ages memory block

j by 1. As opposed to this, task τ1 alone evicts memory block i and ages block j by one.

Together, they invalidate all UCB. A CRPD by Equation 4.74 yields a bound of 1 for

γ3,1, since the aging of memory block i exceeds its resilience. For γ2,1, we compute a

Chapter 4. Cache Analysis 72

Figure 4.17: Example scenario for successive interaction (K = 2, N = 2)

bound of 2, since ECB combined evict all UCB. This overestimates the actual CRPD

since aging caused by τ1 alone has incorrectly been attributed to τ2 as well. Equation 4.74

correctly yields a bound of 2, since due to the empty cache set of τ2, aging due to higher

priority tasks is ignored for this set.

4.7 Evaluation

In this section we evaluate various aspects of the proposed cache analysis, including basic

CRPD computations. We conducted the experiments with our static analysis framework,

in which this cache analysis is one component. As compiler we used the WCET-aware C

Compiler (WCC) [96]. Cache analysis itself uses a built-in static pipeline analysis for the

Tricore 1.3 architecture (TC1796b clocked at 150 MHz) to obtain precise static memory

access information. Analysis passes themselves are constrained to basic block boundaries.

Evaluation has been carried out on an Intel E5630 (2.53 GHz) CPU with no parallel

computations. We made use of the Mälardalen WCET Benchmarks (MRTC) [97] which

comprises of typical real-time applications. MRTC benchmarks do not form a task set. As

such, static scheduling parameters are unknown. To evaluate a realistic task set, we make

use of the PapaBench [98] benchmark suite which models tasks of an Unmanned Aerial

Vehicle (UAV) along with static scheduling parameters. We evaluated the benchmarks

with floating point operations carried out on the FPU.

To adapt to problem sizes of the benchmarks, we did not maintain the original

memory specification of the TC1796 and chose a 2-way set-associative cache of 4 kB total

size with 32 B line size and LRU replacement policy and assume a BRT of 1 cycle.

MRTC

For MRTC, we modeled two preemptions of a benchmark by a single other benchmark

to amplify CRPD results for improved visuals. We analyze preemptions with different

benchmarks as preempters. And we perform three evaluations per scenario:

• UCB : CRPD from only the preemptee’s UCB as in Equation 4.26.

• ECB : CRPD from full cache sets that interfere with ECB as specified in Equa-

tion 4.31.

• CBR: CRPD from Equation 4.37.

Chapter 4. Cache Analysis 73

Name Size (B) UCB ECB
adpcm encoder 2 844 59 81
binarysearch 134 5 6
countnegative 278 7 11
crc 976 17 18
edn 3 054 43 98
fdct 2 192 43 70
fft1 4 866 56 58
fibcall 56 2 3
jfdctint 2 740 52 87
lcdnum 1 184 8 10
lms 1 834 31 43
matmult 520 9 15
ndes 2 586 54 61
qurt 1 772 20 21
sqrt 236 7 9
st 1 410 20 24

Table 4.2: Properties of MRTC benchmarks

1

10

100

ad
p

cm
en

co
d

er

b
in

ary
searc h

cou
n
tn

egative

crc

ed
n

fd
ct

ff
t1

jfd
ctin

t

lcd
n
u

m

lm
s

m
atm

u
lt

n
d

es

q
u

rt

sq
rt

st

Name

C
R

P
D

(l
og

(c
y
cl

es
))

Method

UCB

UCB/ECB

UCB/ECB/CBR

Figure 4.18: MRTC: Preemption by task fibcall

We selected a subset of benchmarks for graphical representation which are listed in

Table 4.2. The size of benchmarks is given in bytes of the program binaries. UCB and

ECB are the maximal values among all cache states for all program points for the former

and those of terminal states for the latter. Note that all diagrams depicting CRPD are

of logarithmic scale.

In Figure 4.18 CRPD for preemptions by fibcall is depicted, which only shows a

minimal impact on the preempted tasks due to its small number of ECB. For purely

UCB-based computations, CRPD ranges from 16 misses for lcdnum to 118 misses for

adpcm encoder. Considering the ECB of the preempter already causes a reduction of

75 % (16 to 4 misses) for the first and 95 % (118 to 6 misses) for the latter benchmark.

For both benchmarks, CBR-based analysis reduces the estimated CRPD to 0. Only for

edn and fdct, a CRPD of 2 is estimated as opposed to 86 for the purely UCB based

computation and 8 for ECB, in each case.

Chapter 4. Cache Analysis 74

1

10

100

ad
p

cm
en

co
d

er

b
in

ary
searc h

crc

ed
n

fd
ct

ff
t1

fi
b

call

jfd
ctin

t

lcd
n
u

m

lm
s

m
atm

u
lt

n
d

es

q
u

rt

sq
rt

st

Name

C
R

P
D

(l
og

(c
y
cl

es
))

Method

UCB

UCB/ECB

UCB/ECB/CBR

Figure 4.19: MRTC: Preemption by task countnegative

1

10

100

ad
p

cm
en

co
d

er

b
in

ary
searc h

cou
n
tn

egative

crc

ed
n

fd
ct

ff
t1

fi
b

call

lcd
n
u

m

lm
s

m
atm

u
lt

n
d

es

q
u

rt

sq
rt

st

Name

C
R

P
D

(l
og

(c
y
cl

es
))

Method

UCB

UCB/ECB

UCB/ECB/CBR

Figure 4.20: MRTC: Preemption by task jfdctint

Figure 4.19 illustrates the evaluation for an preempter with a non-extreme number of

ECB. The preempting task is countnegative. The UCB-based CRPD ranges from

4 misses for fibcall to 112 misses for fft1. Taking ECB into consideration does

not reduce the number of misses for the first benchmarks, but reduces the amount of

additional misses by 95 % (112 to 6 misses). This further reduces to 2 misses under CBR.

Fig. 4.20 depicts the results for preemption with jfdctint, which yields a comparably

large number of ECB. As can be seen, even though ECB are taken into account, CRPD

estimation is almost identical to the estimation with UCB alone. This behavior is typical

for these estimations when comparably high cache-usage occurs. Particularly in such

cases, CBR-based estimation is superior to the other approaches. For adpcm encoder

for example, a 88 % (118 to 14 misses) tighter bound is computed, whereas ECB-based

estimation is just 8 % (118 to 96 misses) tighter than the plain UCB-based computation.

The preempter’s high cache usage leads to constantly 2 misses in all preemptees.

Figure 4.21 illustrates the saving of program points by the reduction to basic block

boundaries, as discussed in Section 4.6.3. The bars show the ratio from all program

points to the number of program points required under reduction. Reductions between

96 % for jfdctint and 34 % for lcdnum can be observed. On average, 66 % less program

points were required for the computations when limited to basic block bounds (73 on

Chapter 4. Cache Analysis 75

29 %

0

20

40

60

ad
p

cm
en

co
d

er

b
in

ary
searc h

cou
n
tn

egative

crc

ed
n

fd
ct

ff
t1

fi
b

call

jfd
ctin

t

lcd
n
u

m

lm
s

m
atm

u
lt

n
d

es

q
u

rt

sq
rt

st

Name

P
ro

gr
am

P
oi

n
ts

(%
)

Figure 4.21: MRTC reduction of sample points

3450

0

4000

8000

12000

16000

ad
p

cm
en

co
d

er

b
in

ary
search

cou
n
tn

egative

crc

ed
n

fd
ct

ff
t1

fi
b

call

jfd
ctin

t

lcd
n
u

m

lm
s

m
atm

u
lt

n
d

es

q
u

rt

sq
rt

st

Name

T
im

e
(m

s) Scenario

fibcall

countnegative

jfdctint

Figure 4.22: MRTC analysis duration

Name Size (b) UCB ECB Period Priority Preemptions
T5 166 4 7 375 5 23
T6 752 5 26 375 6 26
T7 164 5 7 75 2 4
T10 462 9 17 375 7 28
T12 700 5 26 75 3 6
I4 338 3 10 150 4 8
I5 260 3 5 75 0 0
I6 108 3 13 75 1 2

Table 4.3: Properties of PapaBench tasks

average, instead of 328 on average at instruction-level granularity).

The analysis duration for the different preemption scenarios with varying preempters,

as just discussed, is shown in Figure 4.22. Duration ranges from 300 ms to 14 s, and takes

3.5 s on average per benchmark and scenario. Despite the presumed inefficiency of the

precise domain, this illustrates that with a careful implementation, reasonable analysis

performance can be achieved.

Chapter 4. Cache Analysis 76

1

10

100

I5 I6 T7 T12 I4 T5 T6 T10
Name

C
R

P
D

(l
og

(c
y
cl

es
))

Method

UCB

UCB/ECB

UCB/ECB/CBR

Figure 4.23: PapaBench: tasks preempted by all higher priority tasks

PapaBench

PapaBench composes an entire multitask system for an autonomous aircraft. Table 4.3

lists the considered tasks’ properties. The size is given in bytes, the period is given

as a cycle-factor2. As a side note, the only task we left out is task T9 because its

disproportional size, in combination with its predefined high priority, are not beneficial

to a meaningful evaluation, since it would result in an actual eviction of the entire

cache (regardless of what a CRPD analysis would estimate). Execution modes are not

distinguished. To obtain deterministic results from identical periods, we manually set

fixed priorities by setting periods off by 1 cycle. The priority equals 0 for the highest

priority task. The last column denotes an upper bound on number of total preemptions of

the task. The total analysis time is 7 s with only using 2 844 computations on basic block

bounds as opposed to 18 462 computations which would be necessary at instruction-level

granularity (85 % less).

Figure 4.23 shows the results of CRPD computations for all tasks, where each one

can be preempted by all higher priority tasks. As can be seen, the UCB-based analysis

is significantly overestimating all CRPD except for I5 which is not preempted. Except

for T10, considering the ECB already tightens CRPD estimation significantly (33 % for

I6). In all cases (except T6, T10), the CBR-based estimation yields a CRPD of 0. For

T6, 80 % (130 to 26 misses, ECB and CBR) and for T10 88 % (252 to 28 misses, CBR)

tighter estimations are computed. In all cases, the CBR-based estimations outperform

the UCB-only approach by 89 % to 100 %.

Figure 4.24 depicts the ratio for reduced overestimation in successive interaction due

to Equation 4.74 and Equation 4.74. For an increasing number of preempters, ECB and

therefore CRPD is largely overestimated. The results for I5 and I6, as the two highest

priority tasks, are obviously 0 or match the ECB of the one evicting task. For T5, 75 %

(54 to 13 ECB) tighter bounds are computed with reduced sets of ECB. On average we

computed 58 % tighter bounds.

2Period is value× 108 cycles (at 150 MHz)

Chapter 4. Cache Analysis 77

42 %

0

25

50

75

100

I5 T
6

T
5

T
7

T
12

T
10

I4 I6

Name

E
C

B
ra

ti
o

(%
)

Reduced

Figure 4.24: PapaBench: Effect of tight ECB composition for interaction

4.8 Conclusion

In this chapter we have discussed static cache analysis in general and we have proposed the

application of a precise state domain to improve estimates for set-associative LRU caches

by deliberately sacrificing performance for accuracy. We also showed how to construct

UCB, ECB and CBR analyses in this framework and discussed its respective application

to bound CRPD. In this context we identified imprecision in existing approaches and

proposed improvements such as the reduction of sample points for instruction caches and

pessimism in preemption interaction. We specifically focused on improved estimates for

single preemptions and only addressed CRPD for multiple preempters as far as necessary.

A broader and more general discussion focusing on CRPD specifically will follow in

Chapter 6.

Chapter 4. Cache Analysis 78

Chapter 5

Path Analysis

Contents

5.1 Fundamentals of Control Flow Analysis . 81

5.1.1 Flows and Paths . 81

5.1.2 Graph Structure . 84

5.2 Path Problems in Timing Analysis . 91

5.2.1 On Program Representation . 91

5.2.2 On Control Flow Representation . 93

5.2.3 On Path Analyses . 98

5.3 A General Path Analysis . 101

5.3.1 Motivation . 101

5.3.2 Graph Structure and Loops . 103

5.3.2.1 Related Work . 104

5.3.2.2 Scopes . 105

5.3.2.3 A General Algorithm for Precise Loop Detection 107

5.3.2.4 Handling Ambiguous Loop Nesting by Enumeration 121

5.3.2.5 Handling Ambiguous Loop Nesting by Prenumbering 125

5.3.2.6 Conclusion . 131

5.3.3 Computing Worst-Case Execution Time Bounds 131

5.3.3.1 Prerequisites . 131

5.3.3.2 Computing WCET Bounds on a Single Scope 133

5.3.3.3 Computing WCET Bounds Globally 149

5.3.3.4 Computing WCET Bounds on Subgraphs 151

5.3.3.5 Practical Global Path Length Computation 153

5.3.3.6 Evaluation . 159

5.3.3.7 Conclusion . 163

5.3.4 Computing Best-case Execution Time Bounds 164

5.3.4.1 Prerequisites . 164

5.3.4.2 Framework . 165

79

Chapter 5. Path Analysis 80

5.3.4.3 Evaluation . 169

5.3.4.4 Conclusion . 171

5.3.5 Computing Latest Execution Time Bounds 171

5.3.5.1 Prerequisites . 172

5.3.5.2 Framework . 173

5.3.5.3 Evaluation . 182

5.3.5.4 Conclusion . 184

5.3.6 Computing Maximum Blocking Time Bounds 184

5.3.6.1 Prerequisites . 186

5.3.6.2 Framework . 189

5.3.6.3 Evaluation . 202

5.3.6.4 Conclusion . 204

5.3.7 Computing Worst-Case Execution Frequencies 204

5.3.7.1 Prerequisites . 205

5.3.7.2 Framework . 207

5.3.7.3 Evaluation . 213

5.3.7.4 Conclusion . 216

5.4 Remarks . 216

5.5 Conclusion . 218

In this chapter we are concerned with diverse aspects of path analysis. Recall from

Section 3.2.1 that path analysis in the context of timing analysis refers to the consolidation

of worst-case timings of program points to compute bounds in the WCET of entire tasks.

In general, we regard path analysis as a class of diverse analyses which are concerned

with different problems related to timing analysis of which per-task WCET estimation

is just a specific case. Doubtlessly, path analysis — synonymously for worst-case path

length analysis in this context — as the terminal stage of traditional timing analysis

(cf. Figure 3.10 on page 36) is predominant. This, however, leads to an unfortunate

focus on just this single problem. The consequence of this development is twofold. First,

the objective of per-task timing analysis is just to project all (program) state onto a

single scalar value: a bound on WCET. In the face of multitasking, the interfacing

between such timing analysis and schedulability analysis is extremely low on information.

Historically, this might be explained by the fact that scheduling theory existed before

static timing analysis such that the latter only adopted to the requirement. In the

face of ever increasing (hardware) complexity (cf. Section 3.2.1) the strict separation

of timing analysis from scheduling by such principle is unfortunate. All information on

program state is entirely lost in path analysis. CRPD analysis is an exception in that it

(cf. Section 4.5.1) defines one additional interface by maintaining summaries of cache

usage patterns between timing and scheduling analysis. Providing a better framework

with increased expressiveness will allow improved interfacing beyond this. The second

and tightly related consequence is that by focusing only on per-task WCET bounds, there

Chapter 5. Path Analysis 81

exists a significant lack of general tools for other important problems that frequently

occur in the domain of (multitask) timing analysis, such as bounding maximum blocking

times or execution frequencies. Another crippling aspect is the predominant use of linear

programming (cf. Appendix C) for path analysis, which inherently prevents advances

due its lack of expressiveness.

In the following we take a step back from the state of the art and its current focus

on per-task timing analysis and propose a fully general and highly efficient framework to

address various problems in the domain of path analysis. We partition the discussion

into two parts which ultimately leads to the specification of a single unified framework.

First, we will address the problem of control flow reconstruction with a focus on loop

detection. We propose a new, highly efficient loop detection which is designed to serve

the specific problems encountered in timing analysis as opposed to traditional heuristics.

Second, we base a general path analysis on the respective program representation. We

first show how traditional per-task WCET estimates are obtained, then we discuss several

variations. Along with a formal model, we also address practical analyses by proposing

an efficient reference implementation and by proposing numerous optimizations. In all

cases, our focus is on generality of the formal model and performance of its practical

implementation.

Specifically, in Section 5.1 we discuss basic formal principles of control flow analysis.

In Section 5.2 we provide an overview of issues related to timing analysis in particular. In

Section 5.3 we will then discuss our proposal for a path analysis framework. In Section 5.4

we discuss our proposals in a broader context. In Section 5.5 we conclude the chapter.

5.1 Fundamentals of Control Flow Analysis

In this section we provide a formal introduction to the fundamental concepts of flows

and paths on graphs (Section 5.1.1), and important concepts and techniques for graph

structure and transformation (Section 5.1.2). The reader may choose to only skim through

this section as a refresh of established notions and the relation of various concepts, or to

use it as a reference for the upcoming discussion. Note that we also put classical graph

algorithms into their respective context, of which we provide reference implementations

in Appendix B. Later on we will propose derivatives for some of them. So we assume

familiarity with their base versions.

5.1.1 Flows and Paths

In the following we elaborate on the concepts of flows and paths in digraphs, explain

their relation and put classical graph algorithms into perspective accordingly.

A flow network G = (V,E, s, t) is a digraph with source node s such that degin(s) = 0,

sink node t such that degout(t) = 0 with the property ∀u ∈ V \ {s, t} : s u t, and an

Chapter 5. Path Analysis 82

additional flow capacity c : E 7→ N0. A flow f : E 7→ Z, for some value q ∈ N0, satisfies:

∀u, v ∈ V : f(u, v)− f(v, u) =


q if u = s

−q if u = t

0 otherwise

(5.1)

∀(u, v) ∈ E : f(u, v) ≤ c(u, v) (5.2)

Sensibly, it also holds that ∀(u, v) /∈ E : ⇒ c(u, v) = 0. The valuation of f is called net

flow. The value of a flow is defined as the total flow out of the source:
∑

(s,v)∈E f(s, v).

It is important to note that, except for s and t, the positive net flow into a node equals

the net flow out of it:

∀v ∈ V \ {s, t} :
∑

u∈V : f(u,v)>0

f(u, v) =
∑

w∈V : f(v,w)>0

f(v, w) (5.3)

The maximum flow problem (maxflow [99]) is to find a flow of maximum value from

source to sink. Formally, we define the problem as:

max
∑
u∈V

f(s, u) (5.4)

s.t. ∀v ∈ V \ {s, t} :
∑
u∈V

f(u, v)−
∑
u∈V

f(v, u) = 0

∀u, v ∈ V : f(u, v) ≤ c(u, v)

Given two nodes (u, v) ∈ E, the additional net flow that can be “pushed” from u to v

before exceeding the capacity constraint c is the residual capacity r : E 7→ Z such that:

r(u, v) = c(u, v)− f(u, v) (5.5)

The graph GR = (V, {(u, v) ∈ E(G) : r(u, v) > 0}) is the residual flow network, containing

only those edges of the original network which have not been saturated.

A path πs,t from s to t is an increasing path, if there exists a corresponding path in

GR. Along such a path, fmin = min{r(u, v) | (u, v) ∈ πs,t} additional flow can be pushed.

If no such paths exists, the flow is maximal. Thus, successively increasing the flow by

finding increasing paths solves maxflow [100]1. This computation principle is known as

the Ford-Fulkerson method (cf. Algorithm B.12 on page 256).

An extension to the flow network is the introduction of a lower flow bound l : E 7→ Z
such that for the net flow it must also hold that:

∀(u, v) ∈ E : l(u, v) ≤ f(u, v) ≤ c(u, v) (5.6)

Given such a lower bound, the minimum flow problem (minflow [102]) is to find a flow

1Unsurprisingly, since 1956 more efficient algorithms have been devised [101].

Chapter 5. Path Analysis 83

of minimum value from source to sink. Thus, the objective is to verify feasibility of flow

rather than optimization.

To find a path in a flow network, breadth-first search (BFS [103], cf. Algorithm B.11

on page 256) can be used. A unit flow represents exactly one path leaving the source.

Thus, finding some path from source s to sink t (πs,t) guarantees at least unit flow. The

cardinality |πs,t| denotes path length for an implicit weight function ω : E 7→ N0 such that

∀e ∈ E : ω(e) = 1. In this restricted case BFS computes a solution to the single-source

shortest paths problem (sssp [104]). For generalized weights and an explicit weight

function such that ∀e ∈ E : ω(e) ≥ 0, path length — in terms of set cardinality — and

weight must be discriminated explicitly.

The problem of sending a maximum amount of flow with minimal costs is known as

the minimum cost flow problem (mincost flow [101]) and is formalized as:

min
∑

(u,v)∈E

f(u, v)ω(u, v) (5.7)

s.t. ∀u ∈ V :
∑
w∈V

f(u,w)−
∑
v∈V

f(v, u) = bu

bu =


q if u = s

−q if u = t

0 otherwise

∀(u, v) ∈ E : l(u, v) ≤ f(u, v) ≤ c(u, v)

The variable bu is also called supply if bu > 0, and demand of bu < 0. If we interpret

each unit flow as a single walk from s to t, then constraining q ≤ 1 yields the solution to

a problem we refer to as the minimum path length problem (minlen) in the following: A

single shortest path through the flow network.

We can extend this idea to define the sssp. The intuition is that there must be

|V | − 1 paths leaving source node s and in each node u ∈ V \ {s}, a shortest path must

terminate, respectively. Thus, we formally capture this notion and define:

min
∑

(u,v)∈E

f(u, v)ω(u, v) (5.8)

s.t.
∑
u∈V

f(u, s)−
∑
u∈V

f(s, u) = |V | − 1

∀v ∈ V \ {s} :
∑
u∈V

f(u, v)−
∑
w∈V

f(v, w) = 1

∀(u, v) ∈ E : l(u, v) ≤ f(u, v) ≤ c(u, v)

Algorithm B.13 on page 257 specifies a generalization of BFS2 to solve sssp. Note that in

Algorithm B.13, upper flow bounds are not taken into account, and for lower flow bounds

it is assumed that ∀(u, v) ∈ E : l(u, v) = 0. Note that for the minimization problems so

2Here, it is a variant of the venerable algorithm proposed by E. Dijkstra [104]

Chapter 5. Path Analysis 84

far only non-negative weight graph cycles can be encountered since flow f (Equation 5.4)

and weight ω must both be non-negative.

A path (u1, . . . , un) is cyclic if ∃i, j : i 6= j, ui = uj and edges (uj−1, uj) are referred

to as back edges. Removing all back edges from G forms a directed acyclic graph (DAG),

in which edges denote the topological order of nodes. Given a DAG ~G, Algorithm B.14

computes the corresponding sequence of nodes. Shortest paths, given that sequence, can

then be computed by means of Algorithm B.15.

Inversely, for the computation of longest paths, cycles cannot be ignored any longer

and, hence, upper flow bounds must explicitly be taken into account. In a flow network

with unit flow, path lengths are bounded by capacity constraints. Each traversal of a

node (in a cycle) increases its specific net flow but not the flow (value). Hence, path

length is bounded since net flow is bounded, and for a single path, the flow (value)

is constrained to equal 1. Thus, the maximum path length problem (maxlen) for a

weighted flow network is formally defined as:

max
∑

(u,v)∈E

f(u, v)ω(u, v) (5.9)

s.t. ∀u ∈ V :
∑
w∈V

f(u,w)−
∑
v∈V

f(v, u) = bu

bu =


1 if u = s

−1 if u = t

= 0 otherwise

∀(u, v) ∈ E : l(u, v) ≤ f(u, v) ≤ c(u, v)

Analogously, single-source longest paths (sslp) could be defined. maxlen is of particular

interest in timing analysis. We will devote Section 5.2 specifically to this topic.

In case of node weights and node capacities, they can easily be mapped to edges

by assigning them to either in- or out-edges [105] such that, for example, for a node

capacity η : V 7→ N0 we define ∀(u, v) ∈ E : c(u, v) = η(u). Inversely, edge capacities and

weights are mapped to nodes by expanding the underlying graph to contain additional

nodes for each edge such that, for example, for the expanded edge set E′ it holds that

∀(u,w) ∈ E : ∃(u, v), (v, w) ∈ E′ : η(v) = c(u,w).

5.1.2 Graph Structure

In this section we give an overview of the most important concepts and techniques related

to graph structure. We first define basic terminology, then discuss Depth-First Search

and its properties, and address graph reducibility, loops and graph grammars.

Basic Terms

We assume a connected digraph G = (V,E, s, t) with source node s and sink node t.

Chapter 5. Path Analysis 85

Definition 5.1 (Subgraph) For G and a set of nodes W ⊆ V , the subgraph G|W
induced by W is defined as G|W = (W, (W ×W) ∩ E) such that:

G|W = (W,H) ⊆ (V,E) := W ⊆ V ∧H ⊆ E (5.10)

Definition 5.2 (Reduced Graph) In a reduced graph, subgraphs G|W = (W,H)

are replaced by representative nodes. Formally, we define G \w G|W = (V ′, E′), for a

representative w ∈W , where

V ′ = (V \W) ∪ {w} (5.11)

E′ = {(u,w) | (u, v) ∈ E, v ∈W} ∪ {(w, v) | (u, v) ∈ E, u ∈W} (5.12)

Definition 5.3 (Transitive Graph Closure [106]) The transitive closure of G is

G+ = (V, {(u, v) ∈ E : u v}), which extends the set of edges such that all reachable

nodes become adjacent.

Definition 5.4 (Dominance Relation) Node u ∈ V dominates node v ∈ V , if all

paths from s to v pass through u:

u dom v := ∀πs,v ∈ ΠG : u ∈ πs,v (5.13)

By definition every node dominates itself, but it does not strictly dominate itself. The

immediate dominator of a node u ∈ V is a strictly dominating node v ∈ V , which does

not strictly dominate any other node.

Definition 5.5 (Strongly Connected Component) Two nodes u, v ∈ V are strongly

connected if they can reach each other in G, denoted by the relation
sc∼ such that:

u
sc∼ v := {(u, v), (v, u)} ⊆ E(G+) (5.14)

This relation induces equivalence classes of nodes, the strongly connected components

(SCC) V/
sc∼, which form maximal subgraphs maintaining strong connectedness. By

definition, strongly connected components are disjoint.

Definition 5.6 (Condensation Graph) Let S = {S1, S2, . . . } denote the set of SCCs.

Then the graph (((G \G|S1) \G|S2) . . .) is referred to as the condensation graph of G,

which is by definition acyclic.

Depth-first Search

A depth-first search (DFS) [107] reveals the structure of a connected digraph G = (V,E)

by partitioning its set of edges into tree edges T , back edges B, forward edges F and cross

edges C such that T ∪B ∪ F ∪ C = E, and it labels nodes with time stamps reflecting

discovery and finished processing.

Chapter 5. Path Analysis 86

(a) An example graph

discovery sequence (a, b, d, e, c, f)
preorder (1, 2, 3, 4, 5, 6)
discovery time (1, 2, 3, 5, 8, 9)

finishing sequence (d, e, b, f, c, a)
postorder (1, 2, 3, 4, 5, 6)
finishing time (4, 6, 7, 10, 11, 12)

(b) Traversal orders and labeling of DFS

Figure 5.1: Example of a DFS application to a given graph

Definition 5.7 (Depth-first Spanning Tree) The set of tree edges T induces a depth-

first spanning tree (DFST) D = (V, T) with V (D) = {u | (u, v) ∈ T ∨ (v, u) ∈ T}.

Example In Figure 5.1a thick edges denote tree edges, (a, d) is a forward edge, (c, e) is

a cross edge and (f, a) is a back edge.

Algorithm B.16 on page 259 specifies a non-recursive implementation of DFS which,

besides edge classification, returns a pair of time stamps that denote discovery time and

finishing time of nodes for the traversal of the corresponding DFST. In the following

we denote the discovery time with d : V 7→ N0 and the finishing time with f : V 7→ N0,

respectively. “Preorder” and “postorder” sequence numbers [108] are “dense” represen-

tations of d and f , respectively. The difference is the use of a shared counter for both

labels. As an example, Figure 5.1b lists the various sequence labels. We now formally

elaborate on their relation.

Lemma 5.8 Let •t : V 7→ N0 and t• : V 7→ N0 denote preorder and postorder numbers of

the DFST, then it holds:

d(u) < d(v)⇔ •t(u) < •t(v) (5.15)

f(u) < f(v)⇔ t•(u) < t•(v) (5.16)

In particular, ∀u ∈ V : d(u) ≤ f(u).

Proof. In DFS, node u is pushed onto the stack before it is popped off.

Lemma 5.9 For nodes u, v ∈ V , it holds that: d(u) 6= d(v) 6= f(u) 6= f(v)

Proof. It holds that d(u) < f(u) and each newly visited node increases the sequence

counter. Hence, d(u) < d(v) ∨ d(u) > d(v).

Lemma 5.10 For nodes u, v ∈ V , it holds that if d(u) < d(v) then f(u) > f(v).

Proof. Unfinished nodes are queued in LIFO order.

Theorem 5.11 (Parenthesis) For a graph G = (V,E), and u, v ∈ V such that d[u] <

d[v], it holds that the intervals [d(u), f(u)] and [d(v), f(v)] are either nested or disjoint.

Chapter 5. Path Analysis 87

Proof. If d(u) < d(v) < f(v), then node u is on the stack when node v is reached first,

and u is still on the stack, when v is finished. Otherwise, u is not on the stack when v is

visited first.

Theorem 5.12 (DFST Reachability) A node u is a predecessor of a node v if and

only if it holds that:

•t(u) < •t(v) ∧ t•(u) > t•(v) (5.17)

Proof. Follows directly from Lemma 5.8 and Theorem 5.11.

Note that reverse postorder t•
−1

: V 7→ N0 denotes topological order imposed by the

DFST. Note also that BFS order is not necessarily a topological order. In Figure 5.3b

node a could be visited before b′ in BFS order — as opposed to topological order.

Graph Reducibility

An important class of digraphs for program analysis is the reducible graph. In the

following we will characterize its properties.

We use traditional notation. Let S be a set and let =⇒ be a relation on S such that

a1 =⇒ a2 =⇒ . . . an, with ai ∈ S is a chain of length n. We write ai
∗

=⇒ aj to denote

the existence of a chain from ai to aj . The relation is finite, if it holds that for all ai ∈ S,

with all ai distinct, there exists an n ∈ N0 such that for a chain a1 =⇒ a2 =⇒ . . . ak, it

holds that k ≤ n.

Definition 5.13 (Church-Rosser Transformation [109]) A relation =⇒, for a set

S, is a finite Church-Rosser transformation (or locally confluent), if and only if the

relation is finite and for an element a ∈ S, it holds that ∀b, c ∈ S : a =⇒ b ∧ a =⇒ c

implies ∃t ∈ S : b
∗

=⇒ d and c
∗

=⇒ d.

(a) (b)

Figure 5.2: Grammar of T1-T2

We define a finite Church-Rosser transformation by means of the grammar specified

in Figure 5.2, which is known as T1-T2 reduction [110], to parse a graph by iteratively

applying the following steps according to the given production rules:

T1) Remove any edge (u, u) ∈ E that connects a node u ∈ V to itself (self-loop).
T2) For any node u that has exactly one predecessor v, reduce G(i) such that G(i+1) =

G(i) \G(i)|{u, v}.

Chapter 5. Path Analysis 88

Definition 5.14 (Reducibility [110, 111]) A graph G = (V,E) is reducible if and

only if T1-T2 transformation results in a trivial graph G(k) = (V,E) with |V | = 1.

A consequence of Theorem 5.13 is that graph reduction is independent of the order

in which it is applied and therefore is a function of the graph alone rather than also

depending on a specific traversal.

(a) A minimal irreducible graph (b) Application of T3 transformation

Figure 5.3: Example of an irreducible graph and its corresponding node splitting

Example Figure 5.3a illustrates a minimal graph for which further reduction by T1-T2

is not possible.

An irreducible graph can be transformed into a reducible one by node splitting [112–

114]. T1-T2 transformation, as specified above, is extended by a third step:

T3) For any node u with at least two predecessors, duplicate u and reconnect an edge
from one of the predecessors to the duplicate.

Example Figure 5.3b depicts the graph from Figure 5.3a with node splitting applied.

All reducible graphs share the following properties.

Theorem 5.15 If a graph G = (V,E) is reducible, then it holds that:

• The set of back edges B is the same for all DFST of G.

• For all back edges (u, v) ∈ B it holds that v dom v.

• All loops have a single entry.

Proof. See [110, 115].

We still have yet to characterize loops specifically.

Loops

We refer to the set Bn ⊆ B such that ∀(u, v) ∈ Bn : v dom u as natural back edges. This

notion is more strict than general back edges as defined above.

Definition 5.16 (Natural Loop) For a maximal set of back edges BL ⊆ B such that

(bi, h) ∈ BL, a natural loop is a maximal set L ⊆ V such that ∀u ∈ L : h dom u and all

u ∈ L can reach any bi without passing through h. We refer to h as the loop head and to

bi as a loop bottom. A loop body is the acyclic subgraph GL = (V (G|L), E((G|L) \B).

Chapter 5. Path Analysis 89

Note that our definition is more strict than in the literature [20, 116], in that we

strictly but without loss of generality interpret a set of back edges sharing the same head

as just a single natural loop.

Lemma 5.17 A natural loop Lh is uniquely identified by its head h ∈ V .

Natural loops can be identified by DFS deterministically (Theorem 5.15). The

implication of this is that in reducible graphs, loop identification is a function independent

of the specific DFST traversal order and therefore solely depends on the graph structure.

As a direct consequence of the parenthesis theorem (Theorem 5.11), we conclude:

Theorem 5.18 For two natural loops L and L′, it holds that either L ⊂ L′ or L∩L′ = ∅.

Proof. A loop head uniquely identifies a loop and Theorem 5.11 applies.

Definition 5.19 (Entry, Exit) Let G = (V,E, s, t). Given a subgraph G|S with S ⊆ V ,

a node v ∈ S is an entry if and only if either v = s or ∃(u, v) ∈ E : u 6= S. Node v is an

exit if and only if either v = t or ∃(v, w) ∈ E : w 6= S.

In irreducible graphs, not all paths pass through potential loop headers — their sole

entry. Specifically, all and only irreducible graphs yield loops with multiple entries [110].

Definition 5.20 (Loop Nesting Forest [117]) A natural loop L with header h is

nested within a loop L′ ⊃ L if h ∈ L′. Let L denote a set of loops and Lh ∈ L denote a

loop with head h, then N = ({h | Lh ∈ L}, {(h, h′)|Lh ⊃ Lh′}) is a loop nesting forest.

Its edges define its nesting relation. The loop depth is the distance from the root in a

loop nesting tree.

(a) Graph with nested loops (b) Loop nesting tree

Figure 5.4: Example of a reducible digraph and its corresponding loop nesting tree

Example Figure 5.4a illustrates a digraph of three loops with loop headers a, b and c,

respectively. Figure 5.4b depicts the corresponding loop nesting forest, consisting of just

a single tree.

Definition 5.21 (Iteration) An iteration of a loop is a path that starts in an entry

and ends in either an exit or a bottom without passing through any back edge of this loop.

It may pass through back edges of nested loops though.

Chapter 5. Path Analysis 90

Definition 5.22 (Kernel, Entry Path, Exit Path) Given a loop L with entries I(L),

exits O(L), head h(L) and bottoms B(L). A kernel is a path (h(L), . . . , b) : b ∈ B(L)

from the loop head to a bottom. An entry path is a path (i, . . . , b) : i ∈ I(L), b ∈ B(L)

from an entry to a bottom. An exit path (h(L), . . . , o) : o ∈ O(L) from the head to an

exit.

Graph Grammars

The construction of a loop nesting forest corresponds to the parsing of a graph with

an appropriate grammar. T1-T2 as specified in Figure 5.2 is only one possibility. We

can think of a loop nesting forest as just a set of abstract syntax trees (AST) [116] as a

model of a certain language. As a case in point, T1-T2 is a very simple grammar of a

language which allows for the discovery of loop structure only. In practice, different source

(programming) languages typically share common constructs and it might be of interest,

for program analysis in particular, to expose structure with a more detailed grammar. For

example, the semi-structured flow graph grammar (SSFG) [118] provides production rules

for such typical constructs (structural analysis [119]) and allows for the identification of

specific control flow constructs such as sequences, loops and different kinds of branching

constructs. Figure 5.5 illustrates examples for typical control flow constructs subject

(a) Sequence (b) If/Then (c) If/Else (d) Self-loop (e) While (f) Do/While

Figure 5.5: Typical grammatical constructs

to reduction. Complementing the list with node splitting as in Figure 5.3a allows the

reduction of irreducible regions. Notably, Figure 5.5d, Figure 5.5e and Figure 5.5f define

different constructs which are all natural loops according to Definition 5.16. In our

(a) Infinite (b) Shared (c) Entwined (d) Multiexit (e) Multi-entry

Figure 5.6: Typical loop variants

context, identification of such specific loop types is of particular interest as they yield

information on loop iteration semantics. Figure 5.6 lists loop types — in addition to the

three loop types in Figure 5.5 — that are typically encountered in practice. Note that

Chapter 5. Path Analysis 91

the constructs listed may be compositions of the aforementioned ones. Also note that

Figure 5.6e is equivalent to Figure 5.3a, and, according to Definition 5.16, Figure 5.6b

forms a single loop.

Numerous parsing algorithms have been proposed in the literature [21, 111, 120, 121]

that are significantly more efficient than T1-T2 and which are specifically concerned with

the construction of loop nesting forests. They typically depend on information about

node dominance and edge classification — hence, they ultimately depend on reducibility

— to form larger regions for reduction to speed up processing [24]. Irreducibility can also

be resolved more efficiently than with T3 transformation as defined above [122, 123].

Other algorithms handle irreducible graphs directly [120, 124, 125]. Famously, the author

of [126] noted that most control flow graphs are reducible due to constraints imposed by

the source (programming) language.

5.2 Path Problems in Timing Analysis

In timing analysis, we are concerned with two kinds of path-related problems. First, static

analyses such as those for values, caches and CPU pipelines depend on the availability of

a control flow graph — depending on the representation of the source program under

analysis its construction is not necessarily straight forward [26]. Second, after domain-

specific analyses of timing behavior of program points, timing information needs to be

consolidated to compute the worst-case path length in the CFG, given time bounds as

weights of nodes on this path. In Figure 3.10 on page 36 these problems are illustrated

as reconstruction and path analysis phase, respectively.

In the following we briefly address the relation of program representation and timing

analysis in Section 5.2.1. Then we discuss control flow representation and the role of

flow facts in this context specifically in Section 5.2.2 and define their relation to path

analysis along with related work on path analysis in general in Section 5.2.3.

5.2.1 On Program Representation

The reconstruction of control flow refers to the process of extracting a control flow

graph from a given program representation. Here, we shall summarize different existing

approaches. Note that we assume only statically typed and statically bound source

programs in the following (think ANSI C).

P
arsing

G
en

era
tion

G
eneratio

n

O
p

tim
ization

G
eneratio

n

Source
program

Source
ASTs

Neutral
ASTs

Target
ASTs

O
ptim

ization

O
ptim

ization

Target
representation

Meta
data

Meta
data

Meta
data

Figure 5.7: Typical compilation pipeline

Chapter 5. Path Analysis 92

Figure 5.7 illustrates the typical stages of a compilation pipeline. A program of a given

source language is parsed to construct syntax trees and meta data. The latter typically

includes reverse program location mappings for debug purposes but might also include

compiler-specific language extensions to instruct subsequent stages. Representation at

this level preserves structural information of a given source program, such as information

subject to graph structure (cf. Section 5.1.2). Optimization at this level involves expression

simplifications but also, and in particular, optimization of loop structure. Only at this

level the originally “intended” loop structure is available, without having to deal with loop

detection and resolving ambiguity, such as depicted in Figure 5.6. For meta data — such as

reverse mappings — loop transformations have to be taken into account. For multi-source-

multi-target compilers, it is then convenient to generate a neutral, more efficient program

representation for optimizations that are not source-level dependent. At this stage, meta

data is the only link to the source representation. In particular, transformations are

usually not structure preserving anymore, merely semantic preserving. For efficient

analysis and optimization, irreducible programs would typically be transformed into their

reducible semantic equivalents [113, 122, 123] — for example by node splitting — and

transformed into SSA form [116]. It is also here that reverse mappings in meta data

potentially becomes imprecise. The final representation is target-specific but structure

and semantic preserving. Target-specific problems such as instruction scheduling and

register allocation is addressed here. The target representation then includes a binary

stream of CPU instructions, static data values, memory maps, symbol tables and meta

data. For details on the specific techniques, see [20, 116].

Static timing analysis can in principle be performed at any representation level in

this pipeline, as long as its safety can be guaranteed.

Analysis at a high representation level has the advantage that structure is preserved:

high-level constructs are immediately available and consequently no ambiguities arise.

Moreover, expressions are still being preserved in their symbolic form. Loop index

variables and termination conditions are easier to determine than in any lowered represen-

tation. For timing analysis, bounds on loop iterations are of particular interest to bound

path lengths [56, 127, 128]. The drawback of such an approach is that nothing can be said

about target architecture semantics. Neither CPU instructions nor memory layout are

known at this stage. A possible approach then is to perform low-level timing analysis and

to rely on meta data to back-annotate high-level constructs with timing data. Reverse

mapping becomes more imprecise by transformations [129] between representations and

optimization. Hence, soundness is hard to guarantee [130].

In turn, analysis at a low representation level allows for sound and (comparably) pre-

cise micro-architectural analysis at the expense of original program structure potentially

being lost. Recovery of this information can be a problem, as structural ambiguities can

arise, in particular given irreducible program structure, but also regarding loop nesting.

This also relates to the problem of meta data co-transformation: Loop structure and

loop bounds obtained from higher levels must continue to be sound even after program

Chapter 5. Path Analysis 93

representation has changed [131]. At the lowest possible level, not even meta data

might be available. The problem then is twofold. First, a control flow graph must be

reconstructed from a binary stream representing instructions (cf. Section 5.2.1). Second,

sound loop bounds must be obtained automatically [56, 127, 128, 132], and, in case this

fails, must be provided by means of manual annotations.

Compiler-support for low-level timing analysis is an active research topic [44]. The

WCET-aware C compiler (WCC) [96], for example, supports co-transformation of high-

level loop bounds that are either manually specified as a language extension or automati-

cally derived [55]. It makes use of aiT [58] for static timing analysis on binary code. A

similar framework is the Open Timing Analysis Platform (OTAP) [133], which is based

on LLVM [134] as an architecture-neutral program representation and is able to employ

the SWEedish Execution time Tool (SWEET) [62] for flow fact analysis, based on a

similar intermediate format, called ALF [135]. OTAP can also make use of aiT.

5.2.2 On Control Flow Representation

We will now discuss important basics of control flow representation, characterize informa-

tion loss in CFGs and introduce path expressions as a convenient formal representation

of path related problems. In this context, we also put flow facts into perspective. The

section forms the basis of the subsequent discussion of practical path analyses.

Control Flow Abstraction

In Section 2.3 we introduced control flow graphs as an abstraction of execution paths. To

obtain a precise notion control flow reconstruction from some representation and the role

of flow facts in path analysis, we now formally define CFG abstraction. Let D̂Π denote a

set of CFGs such that G = (V,E, s, t) ∈ D̂Π is a (sound) abstraction for a set of (concrete)

paths Π ∈ DΠ. Without loss of generality, we assume ∀(us, . . . , ut), (vs, . . . , vt) ∈ Π: us =

vs ∧ ut = vt.

We first define abstraction. Let P denote a set of paths, then let fv denote the set of

all elements in P such that:

fv := λP . {u | u ∈ π, π ∈ P} (5.18)

and let fe denote the set of consecutive pairs in all sequences such that:

fe := λS . {(ui, ui+1) | (ui, ui+1) ∈ P} (5.19)

Then abstraction αΠ is defined as:

αΠ : DΠ 7→ D̂Π

αΠ(Π) = (fv(Π), fe(Π), us, ut) (5.20)

Chapter 5. Path Analysis 94

We now define concretization which computes from a CFG a set of paths. To this end,

we define a helper function which recursively extends all paths in a given set according

control flow relation R for a source node u and a terminal node w as:

p : V × V × V 2 7→ ℘(V ∗)

p(u,w,R) =

{π · (w) | π ∈ p(u, v,R), (v, w) ∈ R} if u 6= w

{(u)} otherwise
(5.21)

Then concretization γΠ is defined as:

γΠ : D̂Π 7→ DΠ

γΠ(G) = p(s, t, E) (5.22)

We also define the corresponding transformers for both domains. For the concrete domain

Dπ, transformer tfΠ is just path-based forward collecting semantics, defined as:

tfΠ : V 7→ DΠ 7→ DΠ

tfΠ(u) = λP . {π · u | π ∈ P} (5.23)

Let succΠ(u) = λP . {v | (u, v) ∈ P} denote successors, then the abstract transformer t̂fΠ

is defined as:

t̂fΠ : V 7→ D̂Π 7→ D̂Π

t̂fΠ(u) = λG . ((V ∪ {u}, E ∪ {(v, u)}) | v ∈ V ∧ u ∈ succΠ(v)) (5.24)

Correctness of the abstraction is easy to see. To be sound, the abstract domain must be

a poset, the abstraction must be sound and the transformers must be locally consistent.

1. (D̂Π,vG) is a poset :

The order relation vG is defined as set inclusion: G v G′ ⇔ V (G) ⊆ V (G′) ∧
E(G) ⊆ E(G′). D̂Π is a complete lattice with > = (V, V 2) and ⊥ = (V, ∅) with

G
⊔
G′ = (V (G) ∪ V (G′), E(G) ∪ E(G′)).

2. Abstraction αΠ and concretization γΠ form a sound abstraction:

The abstract transformer is monotone by definition (set union) such that ∀G,G′ ∈
D̂Π : G v G′ ⇔ t̂fΠ(u)(G) v t̂fΠ(u)(G′). By construction, a CFG overapproximates

sets of paths ∀P ∈ DΠ : P ⊆ γΠ(αΠ(P)).

3. The transfer functions tfΠ and t̂fΠ are locally consistent:

∀G ∈ D̂Π : ∀u ∈ V (G) : (tfΠ(u) ◦ γΠ)(G) v (γΠ ◦ t̂fΠ(u))(G).

Note also that abstraction and concretization form the Galois Insertion (DΠ, α, γ, D̂Π).

The computation of all possible paths is infeasible in general and a CFG must be

constructed by means of sound heuristics. The problem of control flow reconstruction is to

find a suitable approximation ŝuccΠ : V 7→ ℘(V) such that ∀u ∈ V : succΠ(u) ⊆ ŝuccΠ(u),

which enables the construction of a sound CFG by Equation 5.24.

Chapter 5. Path Analysis 95

(a) (b)

Figure 5.8: Two example graphs to demonstrate unboundedness and infeasibility

Unbounded Concretization, Imprecision and Flow Facts

Let us characterize the loss of information due to abstraction of paths by means of CFGs.

First, it is easy to see that without further constraints, cycles yield unbounded sets

of paths

Lemma 5.23 For a cyclic CFG G, its concretization γΠ(G) is unbounded.

Example Consider the CFG illustrated in Figure 5.8a. According to Equation 5.22,

concretization yields an unbounded set of unbounded paths:

γΠ(G) = p(s, t, E)

= {p(s, u,E) · (t)}

= {p(s, s, E) · (u, t), p(s, u,E) · (u, t)}

= {(s, u, t), p(s, u,E) · (u, t), p(s, u,E) · (u, u, t), . . . }

= {(s, u, t), p(s, s, E) · (u, u, t), p(s, s, E) · (u, u, u, t), . . . }

= . . .

= {(s, u, t), (s, u, u, t), (s, u, u, u, t), . . . }

Second, another source of imprecision is infeasible (mutually exclusive) paths. Since a

CFG does not encode execution history per se, its concretization contains all structurally

possible but — under execution — potentially infeasible paths.

Lemma 5.24 Even for a set of acyclic paths Πs,t = {(s, . . . , t)}, it holds that Πs,t ⊆
γΠ(αΠ(Πs,t)).

Example Consider Figure 5.8b, which depicts the CFG αΠ(P) corresponding to the

set of paths P = {(s, a, b, c, t), (s, a, x, b, c, t), (s, a, b, y, c, t)}. Apparently, nodes x and y

are mutually exclusive in concrete semantics but concretization yields the set γΠ(G) =

Π ∪ {(s, a, x, b, y, c, t)}, which includes all structurally possible paths.

Additional information needed to obtain sound and tight concretization is referred

to as flow facts [4, 136–138]. These include — but are not necessarily restricted to —

constraints on the repetition of nodes on paths to obtain bounded path sets or possibly

denote mutual exclusion. We cumulatively refer to this subset of flow facts as flow

constraints.

Chapter 5. Path Analysis 96

Path Expressions

We shall formalize the notion of flow constraints to establish a well-defined connection

between program structure, flow constraints and path problems, which subsequently

directly leads us to matters of practical path analysis.

Without loss of generality, we assume reducibility (see [9] for irreducible graphs). For

practical reasons, we use original notation in the following.

Every path in a CFG G = (V,E, s, t) can be interpreted as a string over its edges3 E.

For nodes u, v ∈ V , a path expression [139] is a regular expression [17] P of type (u, v)

(written as P(u,v)) such that every string π in the language L(P) ⊆ V ∗ is a path from u

to v. Note that L(P) equals concretization γΠ(G) (Equation 5.22).

Let P (u, v) be a path expression of type (u, v). Then subexpressions P1 and P2 of P

are also path expressions whose type is recursively defined by the productions:

P (u, v) := P1(u, v) ∪ P2(u, v) (5.25)

P (u,w) := P1(u, v) · P2(v, w) (5.26)

P (u, u) := P ∗(u, u) (5.27)

These rules define alternative paths (5.25), concatenation (5.26) and repetition (5.27),

respectively. Complete path expressions describe all structurally possible (but yet

unconstrained) paths of a CFG.

The underlying algebraic structure of path expressions is a Kleene algebra [140]

(idempotent semi-ring with additional “Kleene closure” operator) (E,∪, ∅, ·, ε, ∗), where

∪ is addition with neutral element ∅, · is multiplication with neutral element ε (the empty

string) and the additional operator ∗, which denotes repetition (Kleene closure). The

order of operator precedence is ∗ > · > ∪. For convenience, we omit · for multiplication

and parenthesis if possible.

The construction of path expressions corresponds to structural analysis of loops since

we are not just recovering paths as in concretization γΠ(G) (Equation 5.22) but also

represent repetitions more efficiently.

For the CFG with edges classified by DFS, let EF = E \B = T ∪ F ∪ C refer to the

set of non-back edges and let H ⊆ V denote loop heads. Then path expression P for a

reducible4 CFG from source s to sink t is recursively defined as:

P (s, t) =


⋃

(u,t)∈EF P (s, u)(u, t) if t /∈ H ∧ s 6= t

(
⋃

(u,t)∈EF P (s, u)(u, t))P (t, t) if t ∈ H ∧ s 6= t

ε if s = t

(5.28)

P (h, h) = (
⋃

(b,h)∈E\EF
P (h, b)(b, h))∗ (5.29)

3Path expression are defined over edges but reduction to nodes is straight forward [105].
4In [9], we define the construction for irreducible graphs.

Chapter 5. Path Analysis 97

A path expression P (s, t) in the acyclic case (Equation 5.28) is the union of all paths

leading to the predecessors u of node t and the edges leading to t. In the cyclic case

(Equation 5.29), if some node t is a loop head, then P (s, t) is a prefix of all paths in

the loop body (P (h, h)) from the head to its bottoms, back to its head. The expression

P (h, b) denotes the kernels of the loop and every exit path is represented by the expression

P (h, t) for a head h and some exit node t.

Figure 5.9: Example graph for flow bounds

Example Consider the graph illustrated in Figure 5.9. The minimal path expression for

this graph is P = (s, h)((h, a)(a, c) ∪ (h, b)(b, c))∗(c, t). Note that Equation 5.28 yields a

much larger but equivalent expression. In particular, common prefixes are not factored

out and the final loop iteration is represented explicitly although, in this graph, it equals

the kernel expression.

The path language L(P) is unbounded for cyclic graphs and flow constraints must

be introduced to obtain feasible solutions. Let the indicator function 1e be defined as

1e(u) = 1 if (u,) ∈ E, then the multiplicity (or frequency) mπ of a node u ∈ V on a

path π is defined as:

mπ(u) =
∑

(u,)∈π

1(u,)(u) (5.30)

Given a set of flow constraints C, the subset of structurally possible paths L(P, C) ⊆ L(P)

that satisfy the constraints then is denoted by:

L(P, C) = {π ∈ L(P) | ∀C ∈ C : C(mπ)} (5.31)

A constraint set C′ is an approximation if L(P, C) ⊆ L(P, C′). A typical approximation

of flow bounds constraining frequencies of individual nodes are loop bounds, which only

constrain frequencies of loop heads, consequently lifting the specification of constraints

to entire loops.

Example Reconsider Figure 5.9. Given constraints C = {0 ≤ mπ(a) ≤ 2, 1 ≤ mπ(b) ≤
5}. A sound approximation is CL = {min(0, 1) ≤ mπ(h) ≤ max(2, 5)} such that

L(P,mathcalC) ⊆ L(P, CL).

Node infeasibility for a node u is obviously expressed as constraint {mΠ(u) = 0}.
Path infeasibility can be expressed as mutual exclusion of nodes.

Chapter 5. Path Analysis 98

Example For Figure 5.9, let CX = {¬(mπ(a) > 0 ∧ mπ(b) > 0)}, then it holds that

L(P, C ∪ CX) ⊆ L(P, C) ⊆ L(P, CL).

Depending on the constraint model, different degrees of tightness can be achieved.

In [137], path expressions are used to define a formal framework for parametric

WCET formulae. Besides flow bounds and exclusion constraints, in [141] a model with

conditional constraints is proposed that enables the modeling of flows depending on loop

iteration numbers, which allows the partitioning of loop iterations. Value constraints

are proposed in [138]. This further increases the level of accuracy for value-dependent

(dynamic) control flow. In [142], a flow bound model is extended by predicate logic to

express the effect software configurations on path feasibility.

5.2.3 On Path Analyses

The majority of approaches to path analysis in the field of timing analysis is concerned

with the computation of WCET: the length of a longest path, given a control flow graph,

time bounds of program points as node weights and a flow constraint model. Despite

their common theoretical basis, existing approaches are quite heterogeneous in nature.

We first show how path lengths can be computed from path expressions, then we show

how existing proposals on path analysis relate to this representation. Further, we provide

a brief overview of the most prominent approaches in general.

From Path Expressions to Path Lengths

There exists a simple homomorphism between path expressions and the problem of

computing length bounds of paths. Recall the underlying algebraic structure of path

expressions. If we ignore mutual exclusion, then bounded path expressions are defined

over the algebra (E,∪, ∅, ·, ε, [l,h]) such that for a given set of constraints, l and h denote

lower and upper flow bounds. The expression P [l,h] denotes the finite expansion to ∪l..hP
with P ∗ = P [0,∞]. Let ω(u, v) denote the cost of an edge5. Then function W denotes the

costs of the longest path recursively by:

W (P) =



−∞ if P = ∅

0 if P = ε

ω(u, v) if P = e = (u, v)

max(W (P1),W (P2)) if P = P1 ∪ P2

W (P1) +W (P2) if P = P1 · P2∑
l..hW (P) if P = P [l,h]

(5.32)

In other words, the underlying algebraic structure of bounded path expressions can

simply be replaced by (N0 ∪ {−∞},max,−∞,+, 0) to obtain maximal path lengths

5Reduction to nodes is achieved by attributing costs to either the source or target node of the edge.

Chapter 5. Path Analysis 99

(W (P) = −∞ denotes infeasibility). Symmetrically, lengths of shortest paths can be

computed by the algebra (N0 ∪ {−∞},min,∞,+, 0).

Path expressions form a general formal basis for path problems encountered in timing

analysis. In particular, they define the connection between symbolic representation and

evaluation.

Approaches to Path Analysis

Path expressions are based on a (graph) grammar that supports sequences, branches

and cycles. The cost model defined in Equation 5.32 specifies semantic rules that can

be applied during reduction already; hence, costs can be computed without an explicit

representation of program structure by means of path expressions in the first place.

(a) Sequence (b) Branch (c) Loop

Figure 5.10: Attributed grammar for longest paths

Example Consider Figure 5.10 which illustrates schematically a grammar along with

semantic rules for cost computation of longest paths. Let ω denote time bounds for the

execution of elements and let β denote loop bounds. Then the computed cost for a fully

reduced graph yields a global time bound.

A path expression is just an AST of a corresponding grammar in canonical form.

Approaches to path analysis that compute costs from AST are commonly referred to as

(syntax) tree-based [4] approaches. Usually, their grammar directly reflects more complex

high-level constructs, such as those listed in Figure 5.5 and Figure 5.6.

Computing costs by reduction has some drawbacks. Reduced regions are small

and potentially yield multiple exits. Semantics to derive time bounds is therefore

significantly locally constrained and potentially less precise. Moreover, upon reduction,

an approximation has to be computed which is globally sound. Hence each reduction

further decreases precision. For example in Figure 5.10b, total cost of the branch region

will always be the longest path regardless the cost of the two individual paths. Another

significant problem of both theoretic and practical nature is that parsing and reduction is

not easily unified with concepts of general program analysis as reasoning about paths is

limited to regions denoted by grammar “non-terminals”. Safe cost estimates are therefore

typically overly pessimistic. Initially, the authors of [143] proposed this approach for

high-level timing analysis (cf. Section 5.2.1). Different variants in different scenarios

of timing analysis sharing the same principle have been further proposed in [144–148].

Generation of symbolic expressions is explicitly addressed in [148, 149].

Chapter 5. Path Analysis 100

Path-based [4] analysis generally refers to approaches that perform partial cost

computation during reduction. Intuitively, it is exploited that in reducible graphs

path lengths are cheaply computed on the DAGs that form the respective loop bodies

(cf. Algorithm B.15). Hence, explicit reduction is limited to loops only. All of these

approaches share a common outline, which is sketched as follows:

1) For each loop L with head h in postorder of loop nesting tree:
1.1) Compute longest path π in loop body
1.2) Reduce graph G(i+1) ← G(i) \h (G(i)|L)
1.3) Reassign weight ω(h)← β(h)× |π|

2) Compute longest path on condensation graph G(k)

As long as there are loops, compute the weight of innermost loops first. Replace the

loops by representatives, multiply a loop bound with a given weight and repeat. The

final graph will be a DAG for which weight is computed once again.

The advantage over tree-based approaches is that semantics can be computed on

usually much larger regions — the loop bodies — which potentially results in tighter

time bounds. Otherwise, it shares the general limitations of reduction approaches:

Upon reduction an approximation has to be computed to obtain a cost metric which is

sound for all region exits. For example, in Figure 5.6d, the final iteration of this loop

must be considered a kernel to yield a safe bound on path length for all exits. Second,

program semantics are not easily taken into account since upon reduction of some inner

loop, context in terms of program state “up to” the loop region is unavailable. Also

reduction makes it difficult to discriminate loops with shared heads without explicit prior

graph transformation. Proposed path-based analyses vary in their objectives and their

approaches towards the general limitations. A simple and formally clean approach to

path-based analysis is proposed in [150] for the recursive generation of path expressions,

similar to our notion of path expressions. Other, comparably complex approaches

[128, 151, 152] focus on interleaving path analysis with micro-architectural analysis with

different approaches to limit imprecision due to reduction. In [137], the problem is

approached by means of path expressions as defined above. It shall be noted that that

some approaches [153] provide countermeasures to mitigate imprecision upon reduction.

A body of approaches is based on integer linear programming (ILP) (cf. Appendix C).

We have already formalized path problems in Section 5.1.1, all of which have linear

constraint models and can be directly solved in ILP. Most approaches are based on

Equation 5.9 to solve maxlen, but provide diverse extensions for greater semantic richness

or to address its specific shortcomings. Collectively, these approaches are commonly

referred to as being based on the implicit path enumeration technique (IPET) [154].

Solutions to flow problems as discussed in Section 5.1.1 are always integer [99] due to the

totally unimodularity property (cf. Appendix C). Hence, they are efficiently solvable as

non-integer linear programs, although in general ILP is NP-complete. The complexity of

variations of maxlen is potentially worse. In particular, adding additional constraints

to flow problems, such as mutual infeasibility, make them NP complete [137, 155, 156].

Chapter 5. Path Analysis 101

A general framework for mutual exclusion constraints for IPET is discussed in [157].

Various flow bound extension are proposed in [153]. IPET gains much of its popularity

due to the simplicity of the base model and the fact that global constraints do not require

extra effort. On the other hand, the consideration of additional semantics is difficult

due to the limited expressiveness of the linear equation model. Numerous proposals

[45, 136, 142, 158–161] address the problem of adding program or architecture semantics

for improved time bounds. Besides IPET, in [82, 162] graph reduction is modeled in ILP.

Experiments with parametric ILP [163] have been conducted in [164, 165].

Apart from these isolated approaches to path analysis, holistic approaches based on

model checking combining various stages of timing analysis have been proposed [166–168].

5.3 A General Path Analysis

In this section we propose a general path analysis which integrates loop structure detection

and path analysis itself in a single self-sufficient framework. We propose new and efficient

techniques for the various problems that are encountered. We discuss loop detection

in the first half. In the second half, we then discuss a general path analysis framework

with the initial objective to solve the problem of computing whole-task WCET bounds,

for which we then propose several optimizations and from which we derive solutions

for specific subproblems. From this base framework, we also derive various solutions

for problems frequently encountered in timing and scheduling analysis such as, among

others, maximum blocking time or worst-case execution frequencies.

In the following Section 5.3.1 we motivate our approach by discussing existing alterna-

tives and their specific limitations. In Section 5.3.2 we discuss specific problems related to

loop detection during control flow reconstruction and we propose new approaches to this

problem. Specifically, we propose a loop representation and an efficient general algorithm

for loop detection. We then propose two variants to support graph irreducibility. Based

on these proposals, we then discuss our proposal for a general framework for path analysis

itself. We initially propose the framework according to the specific use-case of per-task

WCET in Section 5.3.3 along with numerous optimizations, we show how it is applied

to compute WCET bounds from and to individual program points, and we propose a

highly efficient reference algorithm. Based on this basic framework, we discuss several

variants that solve typical problems in timing analysis. We propose a framework for

BCET estimates in Section 5.3.4, for “latest execution times” — a much better metric

than WCET for preemptive tasks — in Section 5.3.5, for maximum blocking times in

Section 5.3.6 and for worst-case execution frequencies in Section 5.3.7. We conclude the

discussion in Section 5.5.

5.3.1 Motivation

Despite the body of existing approaches to path analysis, each comes with its own set of

limitations. Partly due to theoretical or technical constraints, partly due to a limited

Chapter 5. Path Analysis 102

scope which results in specializations leaving little room for improvement. Another

important issue is complexity, both in terms of computation and implementation, which

quite practically limits adoption and leads to heterogeneity.

Although the base model of IPET is simple, its applicability to problems beyond

vanilla maxlen is limited. Figure 3.10 on page 36 outlines the tool chain of the aiT

WCET analyzer, whose purpose is the estimation of WCET of a single, non-concurrent,

uninterrupted task execution. Separation of phases — such as cache, pipeline or path

analysis — is a deliberate engineering decision [47], ensuring modularity and separation

of concerns. For complex pipeline architectures, the strict separation of cache and

micro-architectural analysis leads to intolerable imprecision, which motivates interaction

of both stages in aiT [59]. IPET prevents an even higher degree of integration, although

other stages would profit from contextual information provided by path analysis. Heart of

the problem is the inherent incompatibility of the linear equation model and traditional

program analyses, forcing the encoding of analysis semantics as ILP, which is hard and

leaves little room for improvements — as the numerous approaches to higher levels of

integration, as discussed above, suggest. Consequently, encoding program state subject

to analysis in linear equations comes along with an inherent loss of information due

to limited expressiveness of the language. Worse yet, all program state is ultimately

narrowed down to a single scalar objective value — the WCET — which serves as input

to schedulability tests. The interface of single task analysis and task set analysis is

therefore necessarily primitive. Symbolic problem representations [163] for parametric

WCET analysis have proven impractical due to complexity constraints. IPET suggests

itself as a terminal stage of a traditional single-task WCET analysis but is otherwise

limited in scope.

A key limitation of non-ILP approaches is the heterogeneity of approaches and a lack

of simple, general, primitive building blocks that enable practical adoption, extension

and formalization. One of the most advanced non-ILP path analyses [153] features

extensive constraint capabilities for single task WCET computation, but it is at the

same time highly complex such that simple adoption (re-implementation) or extension

to other problems is practically infeasible. On the other hand, simple approaches, such

as [149, 150], are easy to adopt but limited by implicit assumptions about their scope of

application or are not efficient, and are therefore impractical in more general settings. For

symbolic program representations in particular, tighter integration of analysis stages and

provision of complex program state to subsequent analyses beyond single-task WCET,

explicit path models are the only feasible option.

A common limitation is the assumption of reducible graph structure. While it is

true that most CFGs are reducible, it is not necessarily the case. And while it is true

that there exist approaches to transform CFGs into reducible graphs, the problem of co-

transforming flow facts to adopt to the new structure is inherent. Recovery of control flow

from a binary representation is purposely performed to match actual semantics as close

as possible. Further transformation runs counter to this intent. Another, purely practical

Chapter 5. Path Analysis 103

consideration is the problem to adapt to existing tool chains: no assumption about the

program representation should be made. In particular, intermediate formats used in

analysis frameworks are not necessarily designed for further structural transformation.

Hence, immutability of input should be assumed. Root of the liberal assumption of

mutability is the reuse of traditional algorithms from the field of compilation, where

mutation is necessary for optimization, while maintaining program semantics, ignoring

timing semantics.

From a purely practical perspective, the state as of this writing is a focus on IPET

in most if not all WCET analysis frameworks. Flow fact models tend to take on the

form of linear equations for easy adaption to IPET, which limits universality. Due to the

increased interest in symbolic representations for parametric analyses [137, 149, 150, 165],

this is a critical development and can only be countered by developing simple, general

alternatives to IPET.

Our approach to path analysis is a framework approach from scratch with specific

design goals in mind. Primary objectives are generality and simplicity. Generality, in the

sense that we do not provide a solution for just WCET computations but the provision

of a framework for a larger set of problems related to timing analysis. Simplicity, in the

sense that a framework and its constituents enable a formal specification and analysis,

and directly suggest a specific implementation such that computational complexities are

already exposed in its specification. Further, it should be consistent with the concepts of

traditional program analysis. The predominant scenario of path analysis is single-task

WCET computation from source to sink. To maximize flexibility, it should be possible

to carry out analyses on arbitrary subgraphs and without specific assumptions about

graph structure. All input is assumed to be immutable. The framework should enable to

carry out computations directly on the input without unnecessary redundancy. Hence,

transformation including reduction is to be avoided. A careful design of augmenting

data structures should enable concurrency of computations with low contention. Hence,

mutable data should remain locally constrained, while all globally accessed data structures

should remain read-only.

In the remainder of this chapter, we propose a general framework for path analysis

that meets these requirements. Further we propose solutions to the single-task WCET

path analysis problem as well to a number of variants for which no solutions have been

proposed yet at all.

5.3.2 Graph Structure and Loops

In this section we are concerned with the recovery of loop structure to guide path

analysis itself. Explicit separation of loop structure from a CFG allows for a much

larger degree of flexibility than it is the case for approaches that perform specific graph

transformations, such as to establish reducibility: The intent of such transformation

is to ensure a deterministic partitioning of edge types for DFS for the purpose of loop

detection. It is important to recognize that this does not solve the problem of ambiguous

Chapter 5. Path Analysis 104

(a) Ambiguous loop head (b) Ambiguous number of loops (c) Ambiguous loop nesting

Figure 5.11: Sources of ambiguity for loop detection via DFS

graph structure at all, as it merely shifts non-determinism from DFS to preceding graph

transformations. It is also important to recognize that irreducibility is only one of

several sources of ambiguity in the context of path analysis. Figure 5.11 illustrates three

possible source of ambiguities that arise for loop detection by DFS. Figure 5.11a depicts

irreducibility as discussed earlier. Figure 5.11b illustrates a scenario in which it is not

clear from the structure alone, whether a single or two nested loops are modeled. In

Definition 5.16, we quite arbitrarily defined this to denote a single loop, which is not

necessarily the case in practice. In Figure 5.11c even the nesting relation might be

ambiguous: depending on program semantics either loop could be nested if, for example,

potential loop counters are reset upon entry into one or the other cycle. All these cases

can be resolved by transformations that preserve program semantics but at the same

time obfuscate the mapping of flow facts to low-level semantics by not being structure

preserving, as discussed in Section 5.2.1. A common weakness of existing approaches

is the dependence on such transformations, which result in much harder problems to

solve, unless crippling assumptions about program structure are imposed or inaccuracy

is accepted. The key observation is this: The algorithms used are based on standard

compiler techniques where significant structural transformation is not only acceptable

but a means to optimization. We claim that for the purpose of timing analysis this is

not necessarily the best option.

In the following we propose a set of algorithms to support loop detection without

transformation. We first address related work in Section 5.3.2.1. Then we formalize

scopes as an alternative, more general notion of loops suitable for irreducible graphs

in Section 5.3.2.2. In Section 5.3.2.3 we then propose an efficient, precise and general

algorithm for loop detection. We then propose two methods to handle structural ambiguity

of irreducible CFGs for this algorithm: In Section 5.3.2.4 we propose an algorithm for the

enumeration of context-sensitive loops and in Section 5.3.2.5 a method for disambiguation

based on additional annotation is proposed. The proposed algorithms are preprocessing

steps for the following discussion of path analysis itself.

5.3.2.1 Related Work

Reduction by T1-T2 [110] as discussed above is one among a comparably small set of

approaches to loop detection and is also relatively inefficient due to the small step size

of reductions. A more efficient reduction — also for the sake of proving reducibility —

Chapter 5. Path Analysis 105

by specifying larger regions (intervals) is proposed in [24]. In [117], an algorithm for

the construction of loop nesting forests for reducible graphs is proposed. Subsequently,

different approaches have been proposed to detect loops and to handle irreducible

CFGs [120, 124, 125], all of which are based on graph reduction of some form which

inherently introduces imprecision or complexity in case of irreducibility. The authors of

[111] show that all of these algorithms yield quadratic worst-case complexity and propose

variants to these algorithms to achieve almost linear time complexity. Summaries and

quantitative comparisons of these approaches are published in [111, 169]. Curiously, there

is no consensus on the definition of loop nesting relations among those approaches: For

irreducible graphs, they all yield different structural descriptions [111, 121]. To the best

of our knowledge, the proposal in [121] is the only one for loop identification without

explicit graph reduction.

5.3.2.2 Scopes

G̊ = (V̊ , E̊) Scope tree

s̊ ∈ V̊ Scope

γ̊ : V 7→ V̊ Scope label

entry : V̊ 7→ ℘(V) Entry nodes

exit : V̊ 7→ ℘(V) Exit nodes

top: V̊ 7→ ℘(V) Top nodes

bottom: V̊ 7→ ℘(V) Bottom nodes

Table 5.1: Scope-related definitions

We first provide additional definitions that will be used throughout the remainder of

this chapter. The traditional definition of (natural) loops (Definition 5.16 on page 88) is

based on dominance relation and is therefore too strict in the context of irreducibility. For

general graphs, we provide a generalized definition which relies on node reachability only.

Let G = (V,E, s, t) denote a CFG, let B denote its back edges and let ~G = (V,E \ B)

such that
→
 denotes reachability in ~G.

Definition 5.25 (Loop) The (non-empty) set BL ⊆ B such that (bi, h) ∈ BL, induces

a loop, which is a maximal set of nodes L ⊆ V such that for the DAG ~G = (V,E \B), it

holds that ∀u ∈ L : h
→
 u

→
 bi.

Nesting relations of such general loops are not a function of mere graph structure

but in general must be established through additional annotations. A data structure

similar to a loop nesting forest (Definition 5.20) specifies such (nesting) relations. Unlike

with natural loops, structural containment is not a requirement but it may serve as a

reasonable heuristic in many cases.

Definition 5.26 (Scope) A scope6 s̊ ∈ S̊ is a symbolic representation of a loop. Scope

membership is denoted by the labeling function γ̊ : V 7→ S̊.

6This notion of scope is unrelated to the definitions given in [148] or [153].

Chapter 5. Path Analysis 106

In the following we use the terms scope and loop synonymously unless stated otherwise.

Definition 5.27 (Scope Tree) A scope tree G̊ = (V̊ , E̊) with E̊ = V̊ × V̊ is a gener-

alization of a loop nesting forest (Definition 5.20) such that V̊ ⊆ S̊ denotes its nodes

and (̊s, t̊) ∈ E̊ denotes the nesting of scope s̊ within scope t̊. The label γ̊ denotes scope

membership such that γ̊(u) maps to the innermost scope a node u ∈ V belongs to. For

clarity, let par(̊s) = succ(̊s) denote a parent scope and let dsc(̊s) = pred(̊s) denotes

descendants.

Our objective will be to compute a suitable scope tree G̊ and a suitable mapping γ̊

such that a subsequent path analysis based entirely on this structural information is safe

and precise.

Definition 5.19 for entries and exits continues to hold, but we strengthen and extend

the definition for scopes.

Definition 5.28 (Scope Entry, Scope Exit) Let (u, v) ∈ G such that γ̊(u) 6= γ̊(v).

Node v is a scope entry if and only if γ̊(v) γ̊(u). Node v is a far entry (multi-level

entry) if it is an entry and (̊γ(v), γ̊(u)) /∈ E̊. Symmetrically, node u is a scope exit if

and only if γ̊(u) γ̊(v). Node u is a far exit if it is an exit and (̊γ(u), γ̊(v)) /∈ E̊. We

denote entries by entry : V̊ 7→ ℘(V) and exits by exit : V̊ 7→ ℘(V), respectively.

Definition 5.29 (Scope Top, Scope Bottom) Node u ∈ V is a scope top if and

only if ∀v ∈ V : γ̊(u) = γ̊(v) ⇒ u
→
 v. Node u is a scope bottom if and only if

@v ∈ V : γ̊(u) = γ̊(v)⇒ u
→
 v. We denote the singleton set of tops by top: V̊ 7→ ℘(V)

and the set of bottoms by bottom: V̊ 7→ ℘(V), respectively.

By definition, a scope has only a single top but potentially multiple bottoms, entries

and exits. Table 5.1 summarizes scope properties so far. As previously, we define some

extra terminology.

Definition 5.30 (Scope Iteration) An iteration is a (not necessarily acyclic) path

π = (s, . . . , t) such that s ∈ entry(̊s) and ∀u ∈ π \ {s} : γ̊(u) ∈ {̊s} ∪ dsc(̊s).

Note that in general, we do not impose any restriction on the terminal node. For

now, can simply assume node t to denote a scope bottom or exit of the same scope as

the entry. Later, we will relax this notion. Similar to loop iterations, we distinguish

iterations types.

Definition 5.31 (Iteration Type) An iteration π = (s, . . . t) is an entry if s ∈
entry(̊s) ∧ t ∈ bottom(̊s), it is an exit if s ∈ top(̊s) ∧ t ∈ exit(̊s), and it is a ker-

nel if s ∈ top(̊s) ∧ t ∈ bottom(̊s).

Example Consider Figure 5.12, which illustrates a CFG and its relation to scopes. The

CFG in Figure 5.12a features two loops identified by back edges (g, b) and (f, c). The loop

heads and bottoms are also entries and exits respectively. Edge (a, d) is a far entry and

edge (d, h) is a far exit. For convenience, we use the syntax illustrated in Figure 5.12b,

Chapter 5. Path Analysis 107

(a) An example CFG (b) Graphical illustration of labeling (c) Scope tree

Figure 5.12: An example of scope tree representation

to represent labeling according to Table 5.1. Here, circles denote scope membership and

edges denote reachability of entries and exits. Interior nodes that are neither top, bottom,

entry or exit are not shown in general. Figure 5.12c depicts the corresponding scope tree.

Note that all scope members are reachable from the top node, all member nodes reach at

least one bottom but not all entries necessarily reach all exits.

5.3.2.3 A General Algorithm for Precise Loop Detection

In this section we propose a new algorithm for loop detection that does not make any

assumptions about graph structure, does not require complex auxiliary data structures, is

not dependent on the availability of additional analysis passes and operates on immutable

inputs. It is formally simple and easy to implement. The proposal in [121] and our

approach share the same intuition, which has been discovered independently, but is

effectively a generalization of the former approach with a simpler formal definition,

stricter specification and focused on our problem set.

The approach is based on a single DFS pass in which structural information is

collected and applied to construct a scope tree for a given CFG. Reducibility is not a

requirement, but as Theorem 5.15 on page 88 suggests, the discovered loop nestings

are potentially non-deterministic as this depends on the traversal sequence of DFS.

Our strategy to approach irreducibility is to provide an algorithm which is oblivious of

such considerations and hence does not preemptively introduce imprecision as in other

approaches. To achieve safety in addition to precision, we later propose methods to

steer DFS itself. This maximizes flexibility and precision while keeping implementations

simple.

Example Figure 5.13 illustrates a motivating example. In Figure 5.13a a CFG labeled

by preorder values is depicted. Structurally, the CFG decomposes into three scopes as

shown in Figure 5.13b with their respective nesting relations. Figure 5.13c shows the

respective scopes labeling of CFG nodes.

In the following we give a formal specification and propose an efficient algorithm.

First, we discuss technical prerequisites. We then formally construct an analysis for

Chapter 5. Path Analysis 108

(a) An example CFG (b) Scopes of CFG (c) Labeled CFG nodes

Figure 5.13: Properties of scope tree construction

which we propose an equivalent efficient algorithm for loop detection, followed by a brief

discussion on complexity bounds and a thorough evaluation.

Prerequisites

During scope tree construction we have to take ambiguities as illustrated in Figure 5.11

into account. We chose to either allow for annotations to support construction or

to revert to heuristics otherwise. In case of irreducibility (Figure 5.11a), back edges

are ambiguous and so is the identification of scopes. In the following we assume the

construction of scope trees for any traversal order. So in case of irreducibility, the

result is non-deterministic initially. Later we provide a solution to this issue. Shared

heads (Figure 5.11b) prevent the discrimination of individual loops by, for example,

their preorder label •t (cf. Section 5.1.2) alone. We introduce annotations to allow for

explicit steering of loop detection to address ambiguous loop counts, such as illustrated

in Figure 5.11b and ambiguous nesting relations, such as illustrated in Figure 5.11c.

These annotations are not inherently safe, but neither is scope tree construction by mere

heuristic. Our overall intent is to provide these annotations alongside flow constraints to

allow for the construction of feasible loop models that match flow annotations.

Informally, our strategy will be this: Scope trees are constructed by a single DFS

pass over a CFG. Decisions are carried out only once nodes finish. Initially, we assume

that every single (scope) bottom denotes a separate scope. Hence, once a bottom node is

finished, we assume a new scope. We cannot know the nesting relation, its corresponding

CFG nodes or whether the bottom denotes only one of a set of bottoms constituting a

loop comprised of multiple back edges at this point in time and therefore refer to it as a

pending scope; for which information is still incomplete. A scope which is not pending is

either complete or yet unknown. A pending scope is complete once all information has

been gathered, which is the case when its top is finished. Multiple completing scopes

potentially merge or form nestings, depending on the given annotations.

We now discuss how scope nesting relation is established and maintained within the

algorithm. A scope is uniquely identified by the pair of top and bottom nodes. The

traditional default heuristic in (natural) loop detection is to identify loops only by their

Chapter 5. Path Analysis 109

head node (cf. Definition 5.20). We model this behavior by default but allow for explicit

modification. Let σ̊> : S̊ 7→ N0 denote a symbolic label for top nodes and let σ̊⊥ : S̊ 7→ N0

denote a symbolic label for bottom nodes. We can define a partial order of scopes in the

scope tree by the relation:

<̊ : S̊ × S̊

s̊ <̊ t̊ ⇔ σ̊>(̊s) < σ̊>(̊t) ∨ (̊σ>(̊s) = σ̊>(̊t) ∧ σ̊⊥(̊s) < σ̊⊥(̊t)) (5.33)

To model the traditional heuristic, we define:

σ̊>(̊s) = •t(top(̊s)) (5.34)

σ̊⊥(̊s) = 0 (5.35)

By default, scopes are never discriminated by their bottoms and all scopes sharing the

same top node — identified by their preorder label — are considered equal. We establish

a corresponding equivalence relation, defined as:

∼̊ : S̊ × S̊

s̊ ∼̊ t̊ := ¬(̊s <̊ t̊ ∨ t̊ <̊ s̊) (5.36)

The scope tree only consists of representatives of the respective equivalence classes.

Axiom 5.32 For any scope tree G̊ = (V̊ , E̊), it holds that V̊ ⊆ {̊s | [̊s] ∈ S̊/◦∼}.

Figure 5.14: Creating scopes without explicit discrimination

Example Consider Figure 5.14, which illustrates the instantiation of scopes by the

default heuristic, while finishing nodes in DFS postorder. Once potential scope bottoms

are reached, a new scope is created. Given default annotations, both potential scopes

become elements of the same equivalence class [̊0], eventually. In contrast, Figure 5.15

Figure 5.15: Creating scopes given explicit discrimination

illustrates scope creation for σ̊⊥(̊0) 6= σ̊⊥(̊1). Thus, scopes remain explicitly discriminated.

Chapter 5. Path Analysis 110

Edges of scope trees denote their respective parent relations.

Definition 5.33 (Parent Scope) Given scopes s̊, t̊ ∈ V̊ . Let t̊s ∈ top(̊s) and let Bt̊ ⊆
bottom(̊t). Then scope t̊ is a parent of scope s̊ if and only if t̊ <̊ s̊ and ∃b̊t ∈ Bt̊ : t̊s

→
 b̊t.

Intuitively, assuming default heuristics, this corresponds to natural loop nesting

relations of Definition 5.20 and our relaxed definition of loops of Definition 5.25 (u
→

v ⇒ •t(u) < •t(v)). For example, in Figure 5.13c, it holds that ¬(̊1 <̊ 2̊) but 0̊ <̊ 2̊.

Definition 5.34 (Immediate Parent Scope) Scope t̊ is an immediate parent of s̊ if

and only if it is parent and it holds that ∀p̊ ∈ {̊r ∈ S̊ : r̊ <̊ s̊} \ {̊t} : p̊ <̊ t̊.

Note that there may be multiple feasible immediate parents t̊, but only one equivalence

class of immediate parents [̊t] (Axiom 5.32).

Lemma 5.35 Set [̊t] is an immediate parent of [̊s] if and only if Definition 5.34 holds

for all elements in [̊s] and [̊t].

We have not precisely defined yet when scopes are considered to be complete.

Definition 5.36 During DFS, once a node u ∈ V finishes, all pending scopes s̊ ∈ P̊ with
•t(u) ≤ •t(top(̊s)) are completed in the order denoted by <̊.

With default heuristics, all scopes s̊ with σ̊>(̊s) = •t(top(̊s)) complete upon finishing

its top node. Consider Figure 5.16, which depicts ambiguous nesting. Using preorder

Figure 5.16: Completing scopes in preorder

labels as given by DFS such that σ̊> = {̊0 → 1, 1̊ → 2}, a corresponding sequence

of completing scopes is that scope 1̊ completes before scope 0̊. We can modify σ̊> to

Figure 5.17: Completing scopes in modified order

enforce alternative nestings. Given σ̊> = {̊0→ 2, 1̊→ 1}, the corresponding sequence of

completion is illustrated in Figure 5.17. Scope 1̊, which is now the immediate parent of

0̊, is not completed until 0̊ is completed. Such postponement is a technical requirement

for simple scope tree construction as is reflected by:

Chapter 5. Path Analysis 111

Lemma 5.37 Once a scope completes, all potential parent scopes are still pending.

Proof. The tops of all potential parent scopes are still on the DFS stack.

In particular, this holds for immediate parents. Hence, only upon completion, we

establish scope relation between a scope and an immediate parent by searching the set

of pending scopes.

Theorem 5.38 During DFS, let the poset P̊ denote pending scopes and let [̊s] ∈ P̊ be a

set of finishing scopes. Then [̊t] with t̊ = max<̊ P̊ \ [̊s] is an immediate parent of [̊s].

Proof. Follows directly from Lemma 5.35 and Lemma 5.37.

It remains to define how scope labels γ̊ are determined.

Theorem 5.39 Let poset P̊ denote pending scopes. For any finishing node u ∈ V , it

holds that γ̊(u) = max<̊ P̊ .

Proof. Follows directly from the definition of loops (Definition 5.25) and the fact that the

currently maximal element in the set of pending scopes is not finished (Definition 5.36).

Scope Tree Construction

We can now formalize the construction of scope trees, which is a simple program analysis

based on backward path-based semantics on a CFG. For the specification, we initially

assume reducibility. We will later relax this constraint. The scope tree is built bottom

up — leaves first — with all pending scope representatives in partial order <̊.

Let S̊ denote the set of scopes and let [S̊] = {̊s | [̊s] ∈ S̊/
◦∼} denote the set of

representatives of equivalence classes in S̊. We define the state domain as:

D̊ = (S̊, S̊ × S̊, S̊, V 7→ S̊) (5.37)

which models nodes and edges of a scope tree, a set of pending scopes and scope labels,

respectively.

We define two transfer functions. Function gen introduces new pending scopes, handles

re-entries into complete scopes and otherwise propagates state. Let B = {(u, v), . . . })
denote a set of back edges and let the tuple (V̊ , E̊, P̊ , γ̊) denote a scope tree with nodes

V̊ , edges E̊, a poset of pending scopes P̊ and scope labels γ̊. Also, let s? ∈ S̊ denote a

new unique scope label. Then gen is defined as:

genG̊ : ℘(B)× D̊ 7→ D̊

genG̊(B, (V̊ , E̊, P̊ , γ̊))

=

genG̊

(
B \ {(u, v)},

(
V̊ , E̊, P ∪ {̊s?}, γ̊[u 7→ max<̊([P̊ ∪ {̊s?}])]

))
if B 6= ∅

(V̊ , E̊, P̊ , γ̊[u 7→ max<̊[P̊]]) otherwise

(5.38)

Chapter 5. Path Analysis 112

In the first case (B 6= ∅), scopes s̊? are created successively for each back edge (u, v) ∈ B.

Each new scope s̊? is added to the poset of pending scopes P̊ and scope label γ̊ is reset

to reflect the innermost enclosing scope according to Lemma 5.39. In the second case,

scope labels γ̊ are just updated to denote the topmost pending scope for node u.

Figure 5.18: Example graph to demonstrate genG̊

Example Consider the CFG illustrated in Figure 5.18. We assume default heuristics.

Upon finishing node c, genG̊ yields:

genG̊({c→ a, c→ b}, (∅, ∅, ∅, ∅))

= genG̊(genG̊({c→ b}, (∅, ∅, {̊0}, {c→ 0̊})))

= genG̊(genG̊(genG̊(∅, (∅, ∅, {̊0, 1̊}, {c→ 1̊}))))

= (∅, ∅, {̊0, 1̊}, {c→ 1̊})

The scope tree is still empty, two scopes 0̊, 1̊ are pending and the current node c is mapped

to the innermost scope 1.

While function gen creates pending scopes, function kill constructs the scope tree

by completing scopes. Let u ∈ V denote the currently finishing node and as before let

tuple (V̊ , E̊, P̊ , γ̊) denote a scope tree. Let s̊max := max<̊[P̊] denote the topmost pending

scope. Then kill is defined as:

killG̊ : V × D̊ 7→ D̊

killG̊(u, (V̊ , E̊, P̊ , γ̊))

=


killG̊

u,


V̊ ∪ {̊smax},

E̊ ∪ {(̊smax,max<̊([P̊] \ {̊smax}))},

P̊ \ s̊max,

γ̊




if •t(u) ≤
•t(top(̊smax))

(V̊ , E̊, P̊ , γ̊) otherwise

(5.39)

In the first case, killG̊ is invoked recursively for each maximal element in the poset P̊

whose corresponding scope top node has (already) been finished. In each invocation,

scopes are completed in the order of P̊ (descendant scopes first according to completion

order given by Definition 5.36). A scope is completed by assigning an additional scope

tree node to V̊ , by defining an edge from the currently completing scope to the (yet

pending) immediate parent scope (Definition 5.34) and by removing the respective scopes

Chapter 5. Path Analysis 113

(all members of the same partition) from the set of pending scopes P̊ . In the second case,

the scope tree is returned unmodified.

(a) Example CFG

discovery sequence (a, b, d, e, c)
preorder (1, 2, 3, 4, 5)

scopes {̊0, 1̊, 2̊}
top {̊0→ a, 1̊→ a, 2̊→ a}
bottom {̊0→ e, 1̊→ d, 2̊→ c}
σ̊> {̊0→ 1, 1̊→ 1, 2̊→ 1}
σ̊⊥ {̊0→ 1, 1̊→ 2, 2̊→ 1}
equivalences [̊0] = {̊0, 2̊}, [̊1] = {̊1}

(b) Annotations and properties

Figure 5.19: Example graph to demonstrate killG̊

Example Figure 5.19a illustrates an example CFG of three scopes. Figure 5.19b lists the

properties of this graph. Notably, σ̊> corresponds to preorder and σ̊⊥ models equivalences

of scopes 0̊ and 1̊ such that for the scope relation it holds that [̊0] <̊ [̊1]. Once node a is

finished, scope tree construction by killG̊ yields:

killG̊(a, (∅, ∅, {̊0, 2̊, 1̊}, {a→ 1̊, b→ 1̊, c→ 0̊, d→ 1̊, e→ 0̊}))

= killG̊(a, (killG̊(a, {̊1}, {̊1→ 0̊}, {̊0, 2̊}, . . .)))

= killG̊(a, (killG̊(a, killG̊(a, {̊1, 0̊}, {̊1→ 0̊, 0̊→ ⊥}, ∅, . . .))))

= ({̊1, 0̊}, {̊1→ 0̊, 0̊→ ⊥}, ∅, . . .)

Note that scope labels γ̊ correspond to the representative of each equivalence class such

that c→ 0̊.

Finally, a scope tree for a CFG G = (V,E, s, t) with back edges B, non-back edges

EF = E \B and top(̊s0) = {s} is constructed by stree(s) given:

stree : V 7→ D̊

stree(u) =

killG̊

(
u, gen(B,

⋃
(u,v)∈EF stree(v))

)
if u 6= t

(∅, ∅, {̊s0}, ∅) otherwise
(5.40)

In the first case, if the current node u is not the sink node t of G, obtain a scope tree by

construction in postorder. In the second case if u = t, an initial scope is marked pending.

Example Figure 5.20 illustrates scope tree construction for the initial example in Fig-

ure 5.13 such that when node a is finished, the scope tree G̊ = ({̊0, 1̊, 2̊}, {̊1 → 0̊, 2̊ →
0̊, 0̊→ ⊥}) is fully specified.

Chapter 5. Path Analysis 114

Figure 5.20: Complete example of scope tree construction

An Efficient Algorithm

The suggested construction of scope trees as proposed above served only as a means to

specify its principle ideas. We now propose an equivalent, efficient and non-recursive

algorithm.

For an efficient representation, we recognize that it is not necessary to propagate

information along the DFST, which unnecessarily increases overhead.

Lemma 5.40 During scope tree construction (Equation 5.40), the subtrees (V̊ , E̊) that

eventually form the final scope tree, the sets of pending scopes P̊ and the scope labels γ̊

are all disjoint for neighboring nodes in the corresponding DFST.

Proof. Follows directly from the parenthesis theorem (Theorem 5.11 on page 86).

Consequently, it is not necessary to propagate data along the graph: “global” data

structures suffice to maintain sets. For our proposed algorithm, arrays are sufficient to

encode all data. We assume the existence of a DFS such as proposed in Algorithm B.16.

For simplicity, we assume default heuristics in the following code specification but already

provide provisions such that extension for a fully parameterized version is obvious. We

explicitly allow for irreducibility. Back edge discovery still depends on the traversal

sequence order of DFS but will be addressed separately later.

In the proposed Algorithm 5.2, three arrays maintain state. Scopes are identified

by integer values. Array S (line 1) encodes pending states as well as the scope tree.

A scope is encoded as a tuple consisting of back edge head node Top, an ordinal Ord,

which corresponds to labeling σ̊>, a “tag” value Tag, which corresponds to labeling σ̊⊥, a

reference Class to maintain equivalence classes and a reference Next to other scopes in S,

which is used to either model lists of pending scopes or parents in the scope tree which

is to be constructed. Array H (line 2) maintains the heads of sorted lists of pending

scopes. H consistently references the maximal elements of pending scopes. Array γ̊

(line 3) models scope labels.

We define two types of relations to sort lists of pending scopes. Relation R̊ (line 4)

denotes membership in equivalence classes by restricting comparison to Ord and Tag

only. Relation R̊
∗

is an extension of R̊, which strictly discriminates individual scopes,

not just their equivalence classes.

Chapter 5. Path Analysis 115

Algorithm 5.2 Generalized Loop Detection

1 S : N0 ∪ {⊥} 7→ (Top,Ord,Tag,Class,Next)
2 H : V (G) 7→ N0

3 γ̊ : V (G) 7→ V̊ (G̊)

4 l et R̊ s t = Ord S(s) < Ord S(t) ∨ (Ord S(s) = Ord S(t) ∧ Tag S(s) < Tag S(t))

5 l et R̊
∗
s t = R̊ s t ∨ (Ord S(s) = Ord S(t) ∧ Tag S(s) = Tag S(t) ∧ s < t)

6
7 l et initG = / G = (V,E, s, t)
8 H(t(G))← |S| / t(G) sink of CFG
9 S(|S|)← (s(G), •t s(G),⊥, |S|,⊥)

10
11 l et union s t = / union of sorted lists (descending order)
12 r ← ⊥
13 while s 6= ⊥ ∧ t 6= ⊥ do

14 i f R̊
∗
s t then

15 Next S(r)← s
16 s← Next S(s)

17 else i f R̊
∗
t s then

18 Next S(r)← t
19 t← Next S(t)
20 else
21 Next S(r)← t / either s or t
22 break
23 r ← Next S(r)
24 Next S(r)← i f s 6= ⊥ then s else t
25 return Next S(⊥)
26
27 l et finish u =
28 for v ∈ succ u do
29 i f (u, v) ∈ B(G) then
30 S(|S|)← (v, •t v,⊥, |S|,⊥)
31 H(u)← unionH(u) S(|S| − 1)
32 else let f s =
33 i f Ord S(s) = ⊥ then f Next S(s) else s in
34 H(u)← unionH(u) f(s)
35 s← γ̊(u)← H(u)
36 while •t u ≤ •t Top S(s) do
37 t← s
38 s← Next S(s)
39 i f s 6= ⊥ then

40 i f R̊ s t then
41 (Next S(Class S(t)),Ord S(Class S(t)))← (s,⊥)
42 else
43 (Class S(s),Ord S(s))← (Class S(t),⊥)
44 else
45 for s ∈ γ̊ do γ̊(s)← Class S(s)
46 break
47 H(u)← s

Chapter 5. Path Analysis 116

(a) Example CFG (b) State on finishing node d

Figure 5.21: Example to demonstrate handling of re-entry into scopes

Function init (line 7) is invoked for initialization. Head of the list of pending scopes

is the initial scope identified by |S| = 0, which is defined in line 9. We define top as CFG

source, Ord as •t, no specific Tag, an equivalence class |S| = 0, consisting only of this

very scope, and no adjacent scope in the list of scopes.

Function union (line 11) simply defines the union of two sorted, singly-linked scope

lists and is only given for completeness. Its implementation is not relevant in the following.

Note that lists are ordered by the stricter relation R̊
∗
.

Function finish (line 27) is invoked for every finishing node during DFS. It consists

of two parts, resembling genG̊ and killG̊ as defined earlier. For all succeeding CFG nodes

(line 28), either create a new scope (line 30) and insert it into the list of pending scopes

(line 31), or join lists of pending scopes (lines 32-34).

At this point, irreducibility is handled. To distinguish pending and completed scopes

in S, we reset Ord to ⊥ upon completion. When propagating the head of a pending

scope list from a succeeding node, but the presumed head already belongs to a completed

scope, we traverse the scope tree until the first pending scope is encountered.

Example Figure 5.21 illustrates an example. In Figure 5.21a, once node d completes,

H(e) references a complete scope. To infer a correct scope label for node d, the scope

tree as depicted in Figure 5.21b is traversed upwards until a pending scope is reached.

This is encoded in lines 33-34 by means of function f .

In line 35 scope label γ̊ is set as the maximum element of pending scopes and an index

s is set. From line 36 on, scopes are being completed. While there exist pending scopes

whose top nodes have already been finished, or are to be finished, they are grouped

according to Class to form equivalence classes. In lines 37, 38 the current top element t

of the list of pending scopes is saved and the next element s is obtained. If s 6= ⊥, the

topmost scope has not been reached yet. By means of the weaker scope relation R̊ (line 40),

if s is an element of another equivalence class, the current equivalence class, denoted by

Class (S(t)), is set to reference the next one in the order of R̊ (Next S(Class (S(t)))← s)

and Ord is “cleared” to denote the completion of this class (Ord S(Class (S(t)))← ⊥),

in line 41. Otherwise, if the next element in the list of pending scopes does belong to the

same equivalence class (line 42), then the scope s inherits the class identifier from scope

t (Class S(s)← Class S(t)) and and Ord is “cleared” to denote the completion of this

scope (Ord S(s)← ⊥), in line 43.

Chapter 5. Path Analysis 117

Once we reach the topmost scope (line 44), then all references in the scope tree are

reset to only refer to equivalence class representatives. In line 47 the list of pending

scopes is adjusted to the maximal non-completed scope.

Upon finishing source node s, array S contains the scope tree, where V̊ = {̊s ∈
S : Class(s) = s}, which excludes all scopes not being representatives of equivalence

classes.

Figure 5.22: Example of scope tree construction by Algorithm 5.2

Example Figure 5.22 illustrates an example of a scope tree construction with Algo-

rithm 5.2. We assume default heuristics. Hence loops with shared heads yield single

scopes. The figure shows a CFG annotated with the contents of array S, along with

references Next, denoted by solid arrows and Class, denoted by dashed arrows. The

vertical dashed arrow indicates the head of the pending scopes list. Initially all scopes form

singleton equivalence classes and the scope tree is constructed as usual. Upon finishing

node c, the lists of pending scopes are joined such that order of 0̊ and 3̊ is maintained

for future completion. Scopes 1̊ and 2̊ complete and form [̊2]. Otherwise, the algorithm

proceeds as usual. Upon finishing node a, S encodes the scope tree (̊1 is not considered

as it is a member of [̊2]) Note that still γ̊(g) = 1̊, which is eventually adjusted such that

γ̊(g)← 2̊ = Class(̊1).

Complexity

The algorithm requires a single DFS traversal (O(|V |+ |E|), [103]). At each node, lists

of pending scopes need to be joined. Joining sorted lists yields a complexity bound

of O(d), where d denotes the maximal depth of the scope tree. Hence, complexity is

asymptotically bounded by O(d|V | + E). Complexity can potentially be lowered to

O(log2(d)|V | + |E|) by maintaining pending scopes in search trees. From a practical

perspective, introducing more sophisticated data structures for improved theoretical

performance is likely to lower average performance. Empirical studies [121, 126] suggest

low loop nesting depths in general. Also maintaining all state within an array leads

to optimal cache utilization and a potentially large constant overhead is incurred due

Chapter 5. Path Analysis 118

num Soft bound on number of CFG nodes
seq Length bound sequence of constructs
depth Nesting bound
loop depth Loop nesting bound
exit span Bound of nesting levels an exit may leap
entry span Bound of nesting levels an entry may leap
P(block) Probability of basic blocks
P(if) Probability of “if” constructs
P(ifelse) Probability of “ifelse” constructs
P(while) Probability of “while” constructs
P(dowhile) Probability of “dowhile” constructs
P(seq) Probability of sequences
P(exit) Probability of exits
P(entry) Probability of entries

Table 5.2: Parameters of CFG generator

to increased operation complexity. It should be noted, however, that loop depths can

be significantly larger for interprocedural CFGs — commonly used in timing analysis.

However, scopes are typically inserted near the end of the pending list since most scope

entries or exits are not far (cf. Definition 5.28) and, thus, do not span across functions,

unless recursion is modeled.

Evaluation

We briefly evaluate our approach to loop detection in the following and compare our

proposed Algorithm 5.2 (array) with an implementation directly derived from its

formalization in Equation 5.40 on page 113 (set) which propagates data along the

graph edges and the traditional loop detection based on reduction [117] as proposed

in [111] (reduc). We base all three on the same DFS implementation (cf. Section B.6).

The union-find data structure for reduc is implemented with path compression and

union-by-rank [103]. Care has been taken to minimize dynamic memory allocation in all

three cases.

All approaches are very fast: Real-world benchmarks are not suitable to explore

corner-cases of these algorithms as the processing time is typically so low that other

operations on the benchmarking system could potentially affect results significantly. We

therefore choose a sampling resolution of at least 1 ms to mitigate these effects. To

amplify the impact of the core operations of these algorithms on the runtime, we chose

to generate large control flow graphs from randomly (parameterized) chosen AST. This

allows the investigation of unusual cases such as extreme loop depths, which is highly

uncommon in practice. Parameters specify probabilities of high-level constructs, “gotos”

and nesting bounds (see Table 5.2). We only consider reducible graphs as reduc cannot

handle other cases.

Experiments are carried out on a single core of an Intel Xeon E5630 (2.53 GHz, 4

cores, 128 kB/1 024 kB/12 MB (L1/L2/L3) cache) CPU. We measure the accumulated

Chapter 5. Path Analysis 119

CPU time of each run in which the same CFG is applied to all three approaches. Graphs

are scaled from 10 000 to 600 000 nodes (soft bound) in step sizes of 5 000 and two samples

per size. Average values are computed by the arithmetic mean.

1000

2000

3000

4000

5000

0 200,000 400,000 600,000
Nodes (count)

L
o
op

s
(c

ou
n
t)

Figure 5.23: Distribution of loop sizes

Figure 5.23 illustrates the distribution of loop sizes of the AST generator. The line

of best fit indicates a uniform distribution for all graph sizes.

0

100

200

300

400

0 200,000 400,000 600,000
Nodes (count)

T
im

e
(m

s)

Method

Array

Set

Reduc

Figure 5.24: Runtime for non-degenerated CFGs (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4,P(exit) = 0.02)

In Figure 5.24 we relate graph sizes with execution times in ms, given a “typical”

distribution of constructs. From the lines of best fit, we can see that array dominates

the other two approaches on average. It processes 600 000 nodes in around 100 ms, while

reduc require 50 % and set 250 % more processing time on average. Notably, set is

prone to excessive runtimes due to its non-linear memory demand.

Figure 5.25 depicts the deviation (in %) in runtimes of set and reduc from array.

For all graph sizes, reduc performs ∼20 % worse and set performs ∼50 % worse on

average.

To illustrate the mere contribution of graph traversal, Figure 5.26 illustrates deviations

as above for acyclic graphs. It suggests that performance is only insignificantly affected

by the number of loops for “typical” loop counts, as ratios are comparable to Figure 5.25.

Chapter 5. Path Analysis 120

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 200,000 400,000 600,000
Nodes (count)

D
ev

ia
ti

on
fr

om
A

rr
ay

(%
of

m
s) Scenario

Array : Reduc

Array : Set

Figure 5.25: Correlation of runtimes for non-degenerated CFGs (depth =
4, loop depth = 3,P(if) = 0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) =
0.4,P(exit) = 0.02)

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

200,000 400,000 600,000
Nodes (count)

D
ev

ia
ti

on
fr

om
A

rr
ay

(%
of

m
s) Scenario

Array : Reduc

Array : Set

Figure 5.26: Correlation of runtimes for acyclic CFGs (depth = 4, loop depth =
0,P(if) = 0.4, ifelse = 0.6,P(while) = 0.0,P(dowhile) = 0.0,P(exit) = 0.0)

To expose the impact of loops, we generated graphs with high probabilities for loops

and with high loop nesting depth bounds, whose results are illustrated in Figure 5.27.

For all graph sizes, reduc performs ∼35 % worse and set performs ∼55 % worse on

average. reduc is more affected by such deep nestings due to the overhead imposed by

the reduction via union-find.

Conclusion

In this section we proposed an efficient and general algorithm for loop detection. As

opposed to existing approaches which use heuristics that are solely guided by graph

structure alone, we allow for explicit annotations to establish a simple interface to guide

detection. Incorrect detection is a problem since flow facts — for example loop bounds —

typically depend on the correct reconstruction of the original program structure. Our

motivation is the provision of additional structural constraints along with other flow facts.

In particular, the proposed algorithm is shown to outperform the traditional approach for

Chapter 5. Path Analysis 121

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 200,000 400,000 600,000
Nodes (count)

D
ev

ia
ti

on
fr

om
A

rr
ay

(%
of

m
s) Scenario

Array : Reduc

Array : Set

Figure 5.27: Correlation of runtimes for deeply nested CFGs (depth =
32, loop depth = 30,P(if) = 0.1, ifelse = 0.1,P(while) = 0.4,P(dowhile) =
0.4,P(exit) = 0.0,exit span = 3)

loop detection by at least 20 %. We have yet to address proper handling of irreducibility.

We do this by proposing variants to traditional DFS in the following two sections.

5.3.2.4 Handling Ambiguous Loop Nesting by Enumeration

Loop detection as proposed in the previous section provides a solution to the problems

of ambiguous loop counts in the case of shared loop heads by multiple back edges,

and a means to deal with ambiguous loop nesting in the case of entwined back edges

(cf. Figure 5.11 on page 104). We have not, however, taken care of the issue of ambiguous

loop heads, such as illustrated in Figure 5.11a, as this depends on the traversal sequence

order of the underlying DFS. In this section we propose a solution to this problem by

constructing a context-sensitive scope tree which models all feasible combinations of loop

nestings, regardless of the DFS sequence. By this, a sound — but possibly not tight —

path analysis can be performed despite irreducibility and lack of sufficient structural

information to construct an unambiguous loop nesting model.

We first motivate the proposal, followed by a discussion on technical prerequisite and

a proposal for a corresponding algorithm.

Motivation

Figure 5.28 illustrates an example of this issue. In Figure 5.28a, a CFG is illustrated in

a layout that reflects the original program structure: a single loop with two back edges

(dashed) and a side entry. We assume that a loop bound is provided for its head node c.

If the DFS which is backing loop detection visits node c first, the resulting scope tree

is depicted in Figure 5.28b, with the corresponding scope labeling γ̊ shown below. If

instead node e is visited before node c, the assumed graph layout is that of Figure 5.28c.

This also implies that a loop bound is missing for one of the two detected loops. The

corresponding scope tree along with its labels is given in Figure 5.28d. Although by

Chapter 5. Path Analysis 122

(a) Possible traversal (b) Scope labels (c) Another traversal (d) Another labeling

Figure 5.28: Example of back edge ambiguity for loop detection

means of parameters for loop detection as proposed above, we could force loops to be

recognized as a single scope, loop bounds remain to be incompletely specified.

A method to handle this problem is to enumerate all feasible combinations of nestings.

Consequently, a path analysis for some context might be infeasible due to invalid or

missing constraints but the maximal solution for all combinations is guaranteed to be

sound.

Prerequisites

Each re-entry into an irreducible region yields a different context in which different back

edge classifications are possible. Consequently CFG nodes are mapped to multiple and

unrelated scopes within their respective contexts.

Without loss of generality, a scope is complete once its top node is finished. At this

point in time, its relation to its parent scope can be established, as discussed previously.

Lemma 5.41 A re-entry edge into a completed scope is a DFS forward or cross edge.

Proof. Forward and cross edges lead to already finished nodes and a scope is complete if

and only if all its CFG nodes are finished.

By definition of scope entries and exits (Definition 5.28 on page 106), an entry edge

is a CFG edge from a parent scope into a descendant one. (cf. Figure 5.28).

Lemma 5.42 A re-entry edge leads from a pending scope to a complete scope.

Proof. Scopes are complete if their top nodes are finished, which is also the point in time

the parent is known; which itself cannot be complete before its descendants. The lemma

then instantly follows from the definition of scope exits (Definition 5.28).

Consequently, all other edges must be entirely contained within the same scope or

lead to a parent scope (exit edge).

An entry edge from a pending to a complete scope yields a new context in which

edges are to be reclassified by DFS and in which scopes are identified accordingly. This

reclassification is bounded as there must exist exit edges back into parent scopes.

Chapter 5. Path Analysis 123

Theorem 5.43 Let s̊ be a (pending) parent scope. Then for all possible descendant

scopes t̊, it holds that an edge from t̊ to s̊ is an exit edge in all contexts.

Proof. By Definition 5.28 of scope exits.

Example In Figure 5.28a and Figure 5.28c edge (f, g) remains the exit for any com-

bination of descendant scopes to the very same parent scope. Although exits specific to

newly identified descendant scopes might be discovered for new contexts, the exit edges to

the originating parent scope remain. As only edges within already complete descendants

are to be reclassified, a DFS traversal is bounded by these specific exit edges.

To encode this enumeration of scopes, scope labels merely need to be extended by

context. We define

γ̊? : V 7→ V̊
∗

(5.41)

such that γ̊?(u) denotes a “stack” of scopes node u is member of. The definition of scope

tree G̊ = (V̊ , E̊) remains unchanged as it only defines parent relations of scopes and

scopes of different contexts yield unrelated neighboring subtrees.

Algorithm

Algorithm 5.3 Scope-enumerating DFS

1 l et enumdfs s G = do / G = (V,E)
2 initialize
3 enqueue s in Q
4 while nodes in queue Q do
5 dequeue u from Q
6 for each adjacent node v do
7 i f v finished then / cross/forward edge
8 i f scope “top of γ̊?(v)” not complete then
9 continue with next adjacent node

10 else
11 mark v as unvisited
12 i f v unvisited then / tree edge
13 enqueue u in Q
14 u← v
15 else i f v unfinished / back edge
16 mark (u, v) as back edge
17 mark u finished

Algorithm 5.3 specifies pseudo-code for the enumerating scope tree construction by a

modification of non-recursive DFS as listed in full detail in Algorithm B.16. The function

enumdfs (line 1) is invoked for a root node s and a CFG. After initialization (lines 2,3),

nodes u in worklist Q are visited in order of their discovery (lines 4,5). For all adjacent

nodes (line 6), we change the standard DFS semantics to meet our requirements. Recall

that nodes are either unvisited, if they are discovered for the first time, unfinished, if there

Chapter 5. Path Analysis 124

(a) Initial DFS pass and labels (b) Repeated pass from node b to f (c) Scope tree

Figure 5.29: Example of enumerating loop detection

are still unvisited descendants, or otherwise finished. If an adjacent node v is already

finished (line 7), we distinguish two cases (line 8): Either the most recently assigned

scope label denotes membership to a pending scope (line 9), then edge (u, v) is a cross or

forward edge, either within the same scope or as an exit, and, as usual, we just ignore

it. Otherwise the most recently assigned scope label to node u denotes a completed

scope (line 11), then we mark u as being unvisited. Subsequently, if the adjacent node v

is marked unvisited, its predecessor u is queued (line 13) and v is visited (again). All

(retreating) edges to unfinished nodes are back edges (line 16). Once all adjacent nodes

have been finished, finish the current node u (line 17).

Algorithm 5.4 Scope-enumerating loop detection

1 l et finish u = do
2 propagate scope lists H from successors of u
3 push list head H(u) onto stack γ̊?(u)
4 complete scopes as necessary

Algorithm 5.3 interacts with the loop detection proposed earlier. Algorithm 5.4 lists

pseudo-code of the original Algorithm 5.2, stripped of details not relevant in this context.

As usual, scope tree construction is performed once a node u is finished (line 1) in DFS.

The algorithm decomposes into three sections: propagation of pending scopes (line 2),

assignment of scope labels (line 3), and scope completion (line 4). We modify scope label

assignment such that every time u finishes, an additional scope label is assigned.

Example Figure 5.29 illustrates an execution of the aforementioned algorithm on the

very same graph as depicted in Figure 5.28. For the CFG, thick solid edges denote tree

edges and thick dashed edges denote back edges, respectively. In Figure 5.29a, the traversal

of the graph which corresponds to Figure 5.28a is shown. Nodes are finished in post order

and scope labels are assigned as usual. Upon revisiting node b, the forward edge (b, e) into

the completed scope 1̊ is encountered. Accordingly, node e and all nodes reachable from e

that belong to complete scopes will be revisited. Consequently, the extended DFS proceeds

as illustrated in Figure 5.29b, reclassifying edges along the way. Node f is the last such

node. Hence, nodes finish in the order of the new tree edges, instantiating two additional

Chapter 5. Path Analysis 125

scopes just as depicted in Figure 5.28c. Assuming default heuristics, the resulting scope

tree corresponds to Figure 5.29c.

5.3.2.5 Handling Ambiguous Loop Nesting by Prenumbering

Another method to handle ambiguity is to allow for additional annotation to prevent

ambiguity altogether. This eventually allows for most precise analysis results. In the

following we propose a structural annotation we refer to as prenumbering, which allows

for removal of ambiguity of DFS edge classification. The motivation to this approach is

identical to the enumeration approach proposed above: flow constraints must match the

presumed graph structure. If CFG reconstruction and flow constraints are independent,

this easily leads to unsound results.

Studies [121, 126] suggest that reducible CFGs are the norm but a single irreducible

subgraph deems an entire CFG irreducible. Many loop analyses [111] take the approach

to isolate such subgraphs within their respective loop nesting representation which are

then subject to transformation such as node splitting. Our hypothesis is that these

regions are nevertheless still typically the result of “structured” programming, in the

sense that irreducible control flow is still simple and logically structured – often a result

of human programming — typically modeling exception handling or automata, and

that such subgraphs are sparsely distributed over entire CFGs. As already elaborated

earlier, heart of the problem is ambiguous DFS traversal. We propose prenumbering as

a sparsely applied annotation with the intent to remove DFS ambiguity only in those

locations required, and stick to standard DFS semantics in all remaining reducible regions

otherwise. Prenumbering is optional, as we can always revert to — or combine this with

— enumeration.

Intuition

Recall that in reducible graphs, although there might exist multiple feasible DFST, the

set of back edges is unique (cf. Definition 5.7 on page 86). For irreducible graphs on the

other hand, this is not the case. Prenumbering models constraints on visitation order of

DFS to exclude the infeasible DFST explicitly.

Consider Figure 5.30, which illustrates the intuition of prenumbering. In Figure 5.30a

an irreducible CFG is depicted, which yields three possible DFST, of which only the two

in which edge (g, c) is a back edge are considered feasible. The italic labels next to nodes

d and e denote prenumbers, which denote the constraint that any in feasible DFST,

node d must have a smaller preorder label than node e after DFS traversal. We resolve

prenumbers by labeling the entire CFG as shown in Figure 5.30b. These labels model

feasible paths for a following DFS traversal to detect loops. Specifically, the labels model

shortest paths from every program point to the smallest reachable prenumber. Distance

is denoted by the number of intermediate nodes to a labeled target node (illustrated as

superscripts in Figure 5.30b). A modified DFS then follows a shortest path, towards the

Chapter 5. Path Analysis 126

(a) Prenumbered CFG (b) Prenumbered paths (c) Final DFST in preorder

Figure 5.30: Example of prenumbering

smallest prenumbered node that has not been visited yet. A possibly resulting preorder

labeling for one of the two feasible DFST under prenumbering is shown in Figure 5.30c.

Algorithm

We solve the problem of path precomputation by computing a fixed point of node labeling

(cf. Figure 5.30b). The value domain is defined as the set of all functions P 7→ D:

Dpre = P 7→ D (5.42)

with “prenumbers” P ⊆ N0 that will guide a modified DFS and distance values D ⊆ N0

that enable DFS to follow the shortest path to the next prenumber labeling. The problem

of shortest paths to prenumbered nodes has the structure of the semi-lattice:

(Dpre,>,v,t) (5.43)

where v denotes additional mappings or lower prenumbering defined as:

f v g ⇔ def(f) ⊆ def(g) ∧ ∀p ∈ def(f) ∩ def(g) : f(p) ≤ g(p) (5.44)

and t denotes unification of mappings defined as:

f t g :=

p→


min(f(p), g(p)) if p ∈ (def(f) ∩ def(g))

f(p) if p /∈ def(g)

g(p) if p /∈ def(f)

 (5.45)

Chapter 5. Path Analysis 127

For a transformer defined as:

tfpre : V 7→ (Dpre 7→ Dpre)

tfpre(u) = λf .

{pre(u)→ 0} if pre(u) 6= ⊥

{p→ d+ 1 | (p→ d) ∈ f} otherwise
(5.46)

A least fixed point then denotes, for a node u, the set of shortest path distances to

the reachable prenumbered nodes from u such that no path passes through another

prenumbered node. This corresponds to the least solution of equation:

lpre : V 7→ Dpre 7→ Dpre
lpre(u) =

⊔
{tfpre(u)(lpre(v)) | (u, v) ∈ E} (5.47)

Informally, we collect all prenumbers by backward propagation, “annotating” all program

points with the reachable labels and the minimal distance to reach them.

Since we can expect most subgraphs to be reducible, quick convergence can be

expected by processing nodes in reverse postorder [17] of some DFS, which is optimal in

reducible subgraphs only.

We use the computed labeling lpre to guide DFS to compute feasible DFST only. The

intuition of the following algorithm is to discover prenumbered nodes in the specified

order without contradicting discovery time. The strategy is to guide DFS to follow the

shortest path to the lowest undiscovered prenumbered node, respectively.

Definition 5.44 (Feasible DFST) Let D(u) = (VD, ED) with VD ⊆ V and ED ⊆ T

denote a DFST rooted in node u, and let d denote discovery time stamps of DFS. Then

D is feasible if and only if ∀ui ∈ VD with pre(ui) 6= ⊥ such that pre(u1) < pre(u2) <

· · · < pre(uk) it holds that d(u1) < d(u2) < · · · < d(uk).

(a) (b) (c) (d)

Figure 5.31: Examples of feasible (a,b) and infeasible DFST (c,d)

Example Figure 5.31 illustrates examples of feasible and infeasible DFST with respect to

prenumbering. Prenumbering is denoted by black italic labels next to graph nodes. Gray

labels denote synthesized labels from lpre. In each case, our guided DFS starts at node

a. In Figure 5.31a node b is discovered first, according to our traversal strategy. The

next greater prenumbered node d is contained in the subgraph rooted in b, which yields

d(b) < d(d). Since no more prenumbered nodes are to be visited, DFS proceeds as usual.

Chapter 5. Path Analysis 128

In Figure 5.31b, prenumbered nodes are contained in neighboring subgraphs but it holds

that d(c) < d(d). Figure 5.31c and Figure 5.31d illustrate infeasible cases, respectively.

In the first case, the lowest prenumbered node d is not reachable without passing through

node b first, hence d(b) ≮ d(d). The second case violates the order of discovery since

d(c) < d(d) ≮ d(f).

Algorithm 5.5 Prenumbered DFS

1 l et prenumdfs s G = do / G = (V,E)
2 initialize
3 Q← {(s, succ(s))}
4 W ← {p | p ∈ img(pre)}
5 i f min def(lpre(s)) > minW then
6 infeasible
7 while Q 6= ∅ do
8 (u, S)← popQ
9 while S 6= ∅ do

10 C ← {w ∈ S : lpre(w)(minW) ≥ minW)}
11 i f C 6= ∅ then
12 i f min

⋃
w∈C def(lpre(w)) > minW then

13 infeasible
14 v ← w : w ∈ C ∧ ∀w′ ∈ C : lpre(w)(minW) ≤ lpre(w′)(minW)
15 else
16 v ← any S
17 S ← S \ {v}
18 i f v unvisited then / tree edge
19 Q← Q · ((u, S))
20 i f pre(v) = minW then
21 W ←W \minW
22 (u, S)← (v, succ(v))
23 else i f v unfinished then / back edge
24 mark (u, v) as back edge
25 else
26 skip / cross/forward edge
27 mark u finished

Let (p→ d) = (p, d). In the following we assume that it holds that min((p, d), (p, d′)) =

(p,min(d, d′)) that {(p, d)}∪{(p, d′)} = {(p,min(d, d′)} and that x 6= def(f)⇔ f(x) = ⊥
and ∀y ∈ img(f) : ⊥ < y.

The extension to DFS is listed in Algorithm 5.5 (cf. Algorithm B.16 for details on

DFS). In addition to the usual stack for DFS Q (line 3), we maintain a worklist W of all

prenumber labels in ascending order during regular DFS (line 4). If the node of lowest

label is not reachable, the algorithm fails (lines 5,6). If there exist unvisited adjacent

nodes (line 9), set C denotes the set of nodes such that each such potential branch

target must be on a path to a prenumbered node with a label at least as high as the

next prenumber in the worklist (line 10). This does not differentiate yet whether those

candidates are feasible. However, it excludes already visited and unlabeled nodes. If there

are no such reachable nodes (line 11), continue with DFS as usual (line 16). Otherwise, if

the lowest labeled reachable node is not the lowest label in W , prenumbering is infeasible

Chapter 5. Path Analysis 129

(lines 12,13). Otherwise, the lowest reachable label equals the lowest label in W and

we select the candidate of minimal distance to the target (line 14). If a node v with

an explicit prenumber is being discovered, it is removed from worklist W (lines 20,21).

Otherwise, DFS proceeds as usual.

Correctness

Equation 5.47 computes shortest paths to reachable annotated nodes. To reach a fixed

point, the transformer must be monotone.

Lemma 5.45 Transformer tfpre (Equation 5.46) is monotone.

Proof. Given a node u, let t = tfpre(u) and functions f, g : P 7→ D such that f v g.

If pre(u) 6= ⊥:

t(f) v t(g)

⇔ { (pre(u), 0)} v {(pre(u), 0)}

⇔ { pre(u)} ⊆ {pre(u)} ∧ 0 ≤ 0

If pre(u) = ⊥:

t(f) v t(g)

⇔ t({(p0, d0), . . . }) v t({(p′0, d′0), . . . })

⇔ {(p0, d0 + 1), . . . } v {(p′0, d0 + 1′), . . . }

⇔ {p0, . . . } ⊆ {p′0 . . . } ∧ ∀pi ∈ {p0, . . . } ∩ {p′0, . . . } : di + 1 < d′i + 1

Lemma 5.46 For node u and a prenumbered node v, lpre denotes the shortest path length

from u to v without passing through another prenumbered node:

lpre(u)(pre(v)) = min{|π| : u π
 v ∧ @w ∈ π \ {u, v} : pre(w) 6= ⊥} (5.48)

Proof. Property holds by definition of t (Equation 5.45) and tfpre (Equation 5.46).

Why are we considering only shortest paths?

Corollary 5.47 Shortest paths are acyclic due to positive weight cycles [103]. Hence,

prenumbered nodes are discovered via tree edges only and explicit guiding can be ceased

early.

Why are labeled intermediate nodes not allowed on paths?

Corollary 5.48 Let u
π
 v

π′
 w such that π · π′ denotes an unconstrained path from

u to w and let v, w be prenumbered. Either pre(v) > pre(w), then π′ is infeasible and

therefore w is not reachable from u via v. Or pre(v) < pre(w), then we reach w by

reaching v first, from where information on w is available.

Chapter 5. Path Analysis 130

By exploiting transitivity, sets in tfpre remain small.

Intuitively, DFSpre (Algorithm 5.5) follows a (shortest) path to the node with the

lowest label in the worklist without passing through another labeled node. Once the

specific target node has been reached, a path to the next greater label is searched.

Unlabeled paths are traversed non-deterministically as usual. In either case, nodes are

visited in preorder or the prenumbering is infeasible.

Lemma 5.49 During DFSpre, the minimal element of worklist W denotes the next node

to discover.

Proof. DFST feasibility (Definition 5.44) is guaranteed to hold.

Lemma 5.50 During DFSpre, worklist W denotes only undiscovered nodes.

Proof. Prenumbering is unique and Lemma 5.49 holds. The first next prenumbered node

will be removed from W once discovered.

Theorem 5.51 (Candidates) During DFSpre, for a currently visited node u, the set

of possible branch candidates C ⊆ S denotes only undiscovered nodes.

Proof. By Lemma 5.50, discovered nodes are discarded.

Theorem 5.52 (Next Target) Let d denote discovery time and let f denote finishing

time. For nodes u, v such that pre(u) < pre(v), it holds that either d(u) < f(u) < d(v) <

f(u) or d(u) < d(v) < f(u) < f(u).

Proof. By parenthesis theorem (Theorem 5.11).

Consequently, the candidate set C may be empty if the next target for DFSpre lies in

a neighboring subtree but we eventually retreat to a point where v is reachable again.

Theorem 5.53 (Infeasible Targets) Let D(u) = (VD, ED) denote a DFST rooted in

a node u. Let P (u) denote the set of reachable prenumbers in D(u) and let W denote

the worklist in DFSpre. Prenumbering is infeasible if and only if minP (u) > minW .

Proof. Recall that P (u) only contains the directly reachable labels. Given node v such

that pre(v) = minP (u) and node w such that pre(w) = minW . If v ∈ VD(D(u)) and

w ∈ VD(D(v)) then d(v) < d(w) which contradicts pre(v) > pre(w) (cf. Figure 5.31c). If

v ∈ VD(D(u)) and w /∈ VD(D(u)) then d(v) < d(w) which contradicts pre(v) > pre(w).

(cf. Figure 5.31d). Otherwise, w can be reached from u directly without going through v,

which guarantees d(w) < d(v).

In Algorithm 5.5, we check for this property in lines 5 and 12, where def(lpre(u)) =

P (u) denotes the set of reachable labels.

Theorem 5.54 (Feasible Target) If prenumbering is feasible, for every most recently

discovered node u, it holds that minP (u) = minW .

Chapter 5. Path Analysis 131

Proof. By Theorem 5.53 it holds that minP (u) ≤ minW , and minP (u) < minW

contradicts the fact that DFSpre follows a path to minW first. Therefore, for pre(w) =

minW and ∀v ∈ VD(D(u)), d(w) < d(v).

Consequently, in Algorithm 5.5 line 14, it is sufficient to select the prenumbered node

of smallest distance as the next branch target.

5.3.2.6 Conclusion

We have been concerned with aspects of control flow reconstruction. Specifically, we

addressed the problem of mismatching of flow constraints and reconstructed control flow

structure due to ambiguity in loop detection. To this end, we introduced scopes and scope

trees as the fundamental data structures to guide the following path analysis and we

proposed different techniques for their construction. We proposed a general, configurable

and efficient loop detection. In addition, we proposed enumeration and prenumbering as

techniques to guide loop detection in case of irreducible control flow graphs. Overall, we

proposed a set of structural annotations and the corresponding technical framework for

their application.

5.3.3 Computing Worst-Case Execution Time Bounds

In this section we are concerned with the computation of upper bounds on the WCET

of a task. Effectively, the underlying framework represents a general, efficient and

flexible way to express various path-related problems in timing analysis. Computation of

WCET bounds is just one specific use case. Later, we will discuss different variations of

this framework for other problems specifically. All fundamental principles will only be

discussed in this section and will not be repeated later.

In Section 5.3.3.1 we provide formal basic and technical prerequisites. We first

propose how to efficiently compute a WCET bound for a single scope in Section 5.3.3.2

to introduce the basic constraint model and we propose several optimizations, followed

by an extension to complete tasks in Section 5.3.3.3. In Section 5.3.3.4 we show how to

compute WCET bounds within subgraphs: from and to arbitrary program points. From

the formal model, we derive an efficient algorithm in Section 5.3.3.5. We evaluate our

proposal in Section 5.3.3.6 and conclude the discussion in Section 5.3.3.7.

5.3.3.1 Prerequisites

We first provide fundamental definitions that will be used throughout the remainder of

this chapter.

We first briefly introduce the most important definitions given in Table 5.3 without

elaborating on their specific purpose yet. Let G = (V,E, s, t) denote a CFG with entry s

and exit t, let ~G = (V,EF , s, t) denote its corresponding DAG, let G̊ = (V̊ , E̊) denote

its corresponding scope tree. Let Aπ denote a set of symbolic annotations such that

Chapter 5. Path Analysis 132

G = (V,E, s, t) Control flow graph
~G = (V,EF = E \B, s, t) DAG of G

G̊ = (V̊ , E̊) Scope tree

γ̊ : V 7→ V̊ Scope labeling

Aπ Annotation labels
απ : V 7→ Aπ

∗ Annotation labeling
α−1
π : Aπ 7→ V Annotation location

Sπ Path states
sπ = (δπ, σπ, oπ) ∈ Sπ Path state

δπ : Sπ 7→ N∞,⊥0 Path length
σπ : Sπ 7→ Aπ

∗ Path signature
oπ : Sπ 7→ V Path origin

ω : V 7→ N0 Node weight
βπ : Aπ 7→ N0 Flow bound

Table 5.3: Definitions for path analysis

απ : V 7→ Aπ
∗ denotes annotation labeling at a program point and α−1

π : Aπ 7→ V denotes

annotation locations in the CFG.

We represent paths by means of path states (δπ, σπ, oπ) = sπ ∈ Sπ, which encode

path length δπ : Sπ 7→ N∞,⊥0 where N∞,⊥0 = N0 ∪{∞,⊥}, signature σπ : Sπ 7→ Aπ
∗, which

denotes a sequence of annotations along paths, and origin of paths oπ : Sπ 7→ V .

The only annotations we will use here are flow bounds βπ : Aπ 7→ N0 as capacity

bounds and ω : V 7→ N0 to denote node weights in terms of upper bounds on the WCET

per program point.

We now define the purpose of signatures and the underlying arithmetic, and we

introduce additional terminology.

Signatures induce equivalence classes of path states of identical signature and origin

by the relation

Aπ∼ : Sπ × Sπ

sπ
Aπ∼ sπ

′ ⇔ σπ(sπ) = σπ(sπ
′) ∧ oπ(sπ) = oπ(sπ

′) (5.49)

such that for a set of path states S, S/
Aπ∼ denotes the set of all equivalence classes.

Intuitively, paths are comparable by length if and only if their signature and origin

matches. The rationale is that if two paths are associated with identical sets of constraints,

then there is no reason to represent both explicitly as they belong to a set of paths

of which only the longest is of relevance. The underlying algebraic structure is the

commutative semi-ring

(N∞,⊥0 ,max,⊥,+, 0) (5.50)

Chapter 5. Path Analysis 133

where N∞,⊥0 = N0 ∪{∞,⊥} with max for addition and + for multiplication, with neutral

elements ⊥ and 0, respectively such that:

max(a, b) :=


maxN∞0 (a, b) if a 6= ⊥ ∧ b 6= ⊥

a if a 6= ⊥

b otherwise

(5.51)

a+ b :=

a+N∞0 b if a 6= ⊥ ∧ b 6= ⊥

⊥ otherwise
(5.52)

where maxN∞0 denotes maximum and +N0 denotes addition in N∞0 . We lift (without

explicit definition) max to path states of the same equivalence class and define:

maxπ : ℘(Sπ) 7→ Sπ

maxπ(S) ∈ {s ∈ S | ∀s′ ∈ S : δπ(s) = max(δπ(s), δπ(s′))} (5.53)

For an equivalence class S = [s], state maxπ([s]) denotes a path of maximal length.

In the context of network flows, we provide additional definitions related to scopes

(cf. Section 5.3.2.2 on page 105). Let f : V 7→ N∞0 denote net flow (out of) a node.

Definition 5.55 (Feasible Iteration) An iteration π is feasible if and only if ∀u ∈
π : f(u) > 0.

Definition 5.56 (Unroll) An unroll πµ = (s, . . . , t) of a scope s̊ is a (not necessarily

cyclic) concatenation of iterations such that πµ is connected:

πµ = (s, . . . , t) ∧ ∀(ui, ui+1) ⊆ πµ : (ui, ui+1) ∈ E(V) (5.54)

Recall that by definition of scope iterations (Definition 5.30 on page 106), unrolls

start in scope entries and terminate in nodes which are mapped to scope s̊ or one of its

descendants. We can assume terminal node t to denote an exit of the same scope for

now. We will later relax this notion. Similarly to iterations, unrolls are subject to flow

constraints.

Definition 5.57 (Feasible Unroll, Bounded Unroll) An unroll πµ is feasible if all

its constituting iterations are feasible. It is bounded if and only if ∀u ∈ πµ : f(u) ≤ ∞.

The algebra in Equation 5.50 denotes infeasibility by ⊥ and unboundedness by ∞.

5.3.3.2 Computing WCET Bounds on a Single Scope

We first consider the computation of maximal path lengths for a single scope without

parents or descendants. We assume annotations to denote only flow bounds in the

following: ∀A ∈ img(απ) : ∀a ∈ A : βπ(a) 6= ⊥. Intuitively, we solve a variant of maxlen

(cf. Equation 5.9) with node weights and node constraints. Although a CFG could be

Chapter 5. Path Analysis 134

interpreted as a flow network directly to tackle this problem, our hypothesis is that

constraints are often sparsely distributed — for example, loop bounds denote just a single

constraint per loop. We therefore compute a path-compressed network representation of

the CFG, which only denotes annotations and their relations. This effectively decouples

path search from constraint solving.

In the following we first discuss the computation of iterations, then we discuss unrolling

in principle by reduction to flow networks, followed by a proposal for direct unrolling

without explicit reduction. We initially show how to test feasibility of unrolls, followed

by the corresponding maximization of path length. We then focus on optimization,

proposing various techniques to reduce overhead to achieve high performance.

Computation of Iterations

We first compute possible iterations of a scope. We use relation
Aπ∼ to compute partitions

of simple paths, constrained by identical annotations and whose representative denotes

the longest path in each partition, respectively. This problem has the structure of the

semi-lattice:

(Dwcet,>,v,t) (5.55)

where Dwcet = ℘(Sπ) is a set of path states, where Sπ v Sπ
′ ⇔ Sπ ⊆ Sπ

′ and where

Sπ t Sπ ′ := {maxπ[s] | [s] ∈ (Sπ ∪ Sπ ′)/
Aπ∼} denotes the set of path states of different

signature, origin and maximal length. We define the corresponding transformer as:

tfwcet : V 7→ (Dwcet 7→ Dwcet)

tfwcet(u) = λS . {(δπ(s) + ω(u), σπ(s) · απ(u), oπ(s)) | s ∈ S} (5.56)

Function tfwcet increases distance δπ by the node weight ω, adds annotations απ to σπ

and maintains the path origin.

Let pred→ denote predecessors on forward edges EF . For an initial state (0, a, s),

where 0 denotes the initial distance, a denotes an initial annotation label and s denotes

the origin of the path, the set of reachable path states from entry node s is denoted by:

Swcet : V
2 ×Aπ 7→ Sπ

Swcet(s, v, a) =

tfwcet(u)({(0, a, s)}) if v = s⊔
{tfwcet(u)(Swcet(s, u, a)) | u ∈ pred→(v)} otherwise

(5.57)

which computes a least fixed point denoting longest paths in a program point. Con-

sequently, maxπ Swcet(s, t, ε) denotes the maximal simple path length in scope s̊ from

entry s to node t. Path states Swcet(s, t, ε) denote possible but not necessarily feasible

iterations of maximal length.

Chapter 5. Path Analysis 135

Figure 5.32: Example of longest path without annotations

Example Let απ = ∅ and ∀u ∈ V : ω(u) = 1, then Figure 5.32 illustrates the correspond-

ing states per node u ∈ V for Swcet(a, u, ε), where maxπ Swcet(a, u, ε) denotes the longest

path to u.

We lift Swcet to distinguish iteration types (cf. Definition 5.31 on page 106). Let

au0 ∈ Aπ denote a unique default annotation such that βπ(ai0) = ∞ for every entry

u ∈ entry(̊s). This is a technical provision for otherwise unbounded paths. Then entry

paths, for an entry node s, are denoted by:

SIwcet : V̊ × V 7→ ℘(Sπ)

SIwcet(̊s, s) =
⋃

u∈bottom(̊s)

Swcet(s, u, a
s
0) (5.58)

Exit paths, for an exit node t, are denoted by:

SOwcet : V̊ × V 7→ ℘(Sπ)

SOwcet(̊s, t) =
⋃

u∈top(̊s)

Swcet(u, t, a
u
0) (5.59)

Kernel paths are denoted by:

SKwcet : V̊ 7→ ℘(Sπ)

SKwcet(̊s) =
⋃

t∈top(̊s)

⋃
b∈bottom(̊s)

Swcet(t, b, a
t
0) (5.60)

In addition, we define direct paths from an entry s to an exit t as:

SDwcet : V̊ × V × V 7→ ℘(Sπ)

SDwcet(̊s, s, t) = Swcet(s, t, a
s
0) (5.61)

The unused parameter s̊ to SDwcet is a technical provision and can be ignored for now.

Example Figure 5.33 provides an example of an annotated scope s̊ with top a, bottom

g, entries a, c and exits f, g. Figure 5.33a illustrates only non-empty annotations and

Figure 5.33b illustrates the corresponding state space induced by Swcet which summarizes

maximal paths partitioned by signature and origin. States at scope bottoms and exits

Chapter 5. Path Analysis 136

(a) Example scope of multiple
entries, exits and annotations (b) Corresponding state space

Figure 5.33: Example of path states of general scopes

summarize the respective longest path partitions. From these, we will construct our

network. All other states are grayed out. For entry c and exit f , discrimination by

iteration type yields:

SIwcet(̊s, c) = {(3, (ac0, a2, a3), c)} (entries)

SOwcet(̊s, f) = {(2, (aa0, a1), a)} (exits)

SKwcet(̊s) = {(5, (aa0, a1, a2, a3), a), (5, (aa0, a1, a3), a)} (kernels)

SDwcet(̊s, c, f) = ∅ (direct)

Flow Networks for Unrolling

The signature of a path state is a path-compressed representation of annotations along

a CFG path. The length value of a path state denotes the maximal length among all

CFG paths sharing the same set of annotations. This effectively separates the problem

of finding longest possible iterations from the problem of deciding unroll feasibility or

the computation unrolls of maximal length.

It is straight-forward to reduce signatures to flow networks which we define as:

N̊ = (V,E, s, t, ω, `, β) ∈ N̊ (5.62)

where ` denotes lower and β denotes upper flow bounds, respectively. We explicitly

have to distinguish two types of networks: Network N̊ iok models annotations in order

to compute unrolls by composition of entry, exit and kernel paths. Network N̊d models

annotations in order to find direct paths from an entry to an exit. Every signature by

construction represents exactly one path in these networks, which is why we can avoid

their explicit construction for all problems that can be tackled by the Ford-Fulkerson

method [100, 101] (cf. Section B.2).

Chapter 5. Path Analysis 137

We define a helper function which, for a set of path states, collects all annotations,

representing network vertices:

n := λS . {a | a ∈ σπ(s), s ∈ S} (5.63)

Further, we define a helper function that turns signatures π into sets of network edges,

and which defines additional edges to connect node s to the head of π and node t to its

tail, respectively:

l := λ(s, t, π) .

{(s, t)} if π = ε

{(s, π1), (π|π|, t)} ∪ {(u, v) ⊆ π} otherwise
(5.64)

Besides nodes for annotations, the networks contain additional nodes where s, t denote

network source and sink, and i, o model paths into and out of the scope, respectively.

We first define network N̊ iok ∈ N̊. Let si ∈ SIwcet(̊s, u) and so ∈ SOwcet(̊s, v) denote

entry and exit states. Then the network is defined by:

n̊iok : Sπ × Sπ 7→ N̊

n̊iok(si, so) = (Viok, Eiok, s, t, `iok, βiok) (5.65)

where

Viok :=n({si, so} ∪ SKwcet(̊s)) ∪ {s, t, i, o}

Eiok := {(s, i), (o, t)}

∪ l(i, t, σπ(si)) (entry)

∪ l(s, o, σπ(so)) (exit)

∪
⋃

sk∈SKwcet (̊s)

l(s, t, σπ(sk)) (kernels)

`iok :=λu .

1 if u ∈ {i, o}

0 otherwise
(lower bounds)

βiok :=λu .


1 if u ∈ {i, o}

∞ if u ∈ {s, t}

βπ otherwise

(upper bounds)

This construction is easy to understand by example.

Example Figure 5.34 illustrates the network for the CFG of Figure 5.33 for the entry/exit

pair (c, f) and respective entry path state (3, (a1, a2), c) and exit path state (2, (a0), a).

Upper flow bounds βπ are extended in βiok to restrict entry and exit paths. On the other

hand, lower flow bounds `iok for nodes i and o guarantee the existence of feasible entry

and exit paths to and from the scope.

Chapter 5. Path Analysis 138

Figure 5.34: Example network n̊iok for Figure 5.33 for entry c and exit f

Similarly, we define the network for direct paths N̊d as:

n̊d : Sπ 7→ N̊

n̊d(sd) = (Vd, Ed, s, t, `d, βd) (5.66)

where

Vd :=n({sd}) ∪ {s, t, i, o}

Ed := {(s, i), (o, t)}

∪ l(i, o, σπ(sd)) (entry)

`d :=λu .

1 if u ∈ {i, o}

0 otherwise
(lower bounds)

βd :=λu .


1 if u ∈ {i, o}

∞ if u ∈ {s, t}

βπ otherwise

(upper bounds)

Again, the construction is easy to understand by example.

Figure 5.35: Example network n̊d for Figure 5.33 for entry a and exit f

Example Figure 5.35 illustrates the network for the CFG of Figure 5.33 for the entry/exit

pair (a, f) and respective direct path state (2, (a0), a). As before, additional lower and

upper flow bounds further constrain paths.

Chapter 5. Path Analysis 139

The networks we just constructed are a path-compressed representation of control

flow annotations and their relations. An implication of the separation of network flows

from control flow paths is that complexities of the subsequent network flow problems

do not scale with the CFG size but rather with the number of annotations. In addition,

this allows for scalability since flow bounds can be approximated which in turn increases

efficiency of analysis accordingly.

Computing Feasible Unrolls

We will first be concerned with the computation of feasible unrolls to introduce the

general approach. Recall the classical Ford-Fulkerson method for maxflow [100, 103]

(cf. Section 5.1.1 on page 81). The strategy is to search (flow) increasing paths from

source to sink successively and to push the maximal admissible flow along such a path

until no more paths can be found. In our case, we already computed all possible paths

prior to network construction. We now show that we do not need to explicitly generate

the flow networks as devised above.

Recall from Section 5.1.1, that fΣ
in(u) and fΣ

out(u) denote net flow of a node u.

Formally, the problem of unroll feasibility for either network N̊ iok or N̊d is defined as:

max
∑
u∈V

fΣ
out(u) (5.67)

s.t. ∀u ∈ V : fΣ
in(u)− fΣ

out(u) = bu

bu =


q if u = s

−q if u = t

0 otherwise

∀u ∈ V : `(u) ≤ f(u) ≤ β(u)

Lemma 5.58 An unroll is feasible if and only if Equation 5.67 has a feasible solution.

Proof. Due to capacity constraints, it must hold that fΣ
out(i) = fΣ

out(o) = 1.

Lemma 5.59 Let n̊iok(si, so) denote a network for entry state si and exit state so. Let

a
oπ(si)
0 denote the default initial annotation as defined in Equation 5.58 and let a

oπ(so)
0

denote the default initial annotation as defined in Equation 5.59. Then, by construction,

it holds that:

fΣ
out(i) > 0⇔fΣ

out(a
oπ(si)
0) > 0 (5.68)

fΣ
out(o) > 0⇔fΣ

out(a
oπ(so)
0) > 0 (5.69)

Analogously, this holds for n̊d.

Since network nodes s, t do not constrain flow otherwise, we can simply ignore nodes

s, t, i, o on increasing paths as long as we can “simulate” satisfaction of lower capacity

Chapter 5. Path Analysis 140

bounds of nodes i, o. In other words, explicit reduction to networks is not necessary

beyond formal problem definition.

We modify the traditional Ford-Fulkerson method accordingly to correctly solve

maxflow directly on path states. Let f : V 7→ N∞0 denote net flow (out of a node). As

usual, for a path π, given (upper) node capacity constraints c, the maximal admissible

flow along π is denoted by:

testf := λ(c, f, π) .min{c(u)− f(u) | u ∈ π} (5.70)

Pushing additional admissible flow n over such a path is defined as:

setf := λ(f, n, π) . f [u→ f(u) + n | u ∈ π] (5.71)

We define a function f1
>, which pushes unit admissible flow over a single path σπ(s),

given path state s and a tuple (r, f, c) where r ∈ {>,⊥}, where f denotes existing net

flow and c denotes capacity constraints, and which also returns such a tuple.

f1
> := λs . λ(r, f, c) .

(>, setf (f, 1, σπ(s)), c) if r 6= ⊥ ∧ testf (c, f, σπ(s)) > 0

(⊥, ∅) otherwise
(5.72)

The intuition is to chain f1
> to successively test for feasibility of paths.

Theorem 5.60 (Feasible Unroll) Let s̊ ∈ V̊ be a scope, let u ∈ entry(̊s) and v ∈ exit(̊s).

Let f0 = Aπ × {0} denote initial flow. Then an unroll from u to v is feasible if and only

if:

∀si ∈ SIwcet(̊s, u) : ∀so ∈ SOwcet(̊s, v) : ∃f io> = f1
>(so) ◦ f1

>(si) : f io> (>, f0, βπ) = (>, f, βπ)

∨ ∀sd ∈ SDwcet(̊s, u, v) : ∃fd> = f1
>(sd) : fd>(>, f0, βπ) = (>, f, βπ)

(5.73)

Proof. Each invocation of f1
> sends unit flow along an iteration denoted by the respective

state if and only if r = > and the admissible flow is greater 1. Hence, it only returns >
if a previous iteration (if any) and the current iteration is feasible. By Definition 5.57,

the unroll is feasible if and only if all successive applications of f1
> are feasible.

Note that kernel states are not relevant to unroll feasibility. Consequently, we did

not test for unboundedness either.

Example We reconsider Figure 5.33 and test whether there exists a feasible unroll from

entry c to exit f given the following flow bounds:

βπ = {ac0 →∞, aa0 →∞, a1 → 1, a2 → 1, a3 → 1}

Chapter 5. Path Analysis 141

Both paths are represented by exactly one state, respectively:

si = (3, (ac0, a2, a3), c)

so = (2, (aa0, a1), a)

Then the unroll feasibility test yields:

(f1
>(so) ◦ f1

>(si))(>, f0, βπ)

= f1
>(so)(f

1
>(si)(>, f0, βπ))

= f1
>(so)((>, setf (f, 1, σπ(si)), βπ)) (r 6= ⊥ ∧ testf (c, f0, σπ(si)) > 0)

= f1
>(so)((>, setf (f, 1, (ac0, a2, a3)), βπ)) (> 6= ⊥ ∧ testf (c, f0, (a

c
0, a2, a3)) > 0)

= f1
>(so)((>, {ac0 → 1, a2 → 1, a3 → 1}, βπ)) (> 6= ⊥ ∧ 1 > 0)

= (>, setf (f, 1, σπ(so)), βπ) (r 6= ⊥ ∧ testf (c, f, σπ(so)) > 0)

= (>, setf ({ac0 → 1, a2 → 1, a3 → 1}, 1, (aa0, a1)), βπ) (> 6= ⊥ ∧ testf (c, {. . . }, aa0, a1) > 0)

= (>, {ac0 → 1, a2 → 1, a3 → 1, aa0 → 1, a1 → 1}, βπ) (> 6= ⊥ ∧ 1 > 0)

= (>, f, βπ)

Note that there exists no direct path from c to f .

Computing Maximal Unrolls

We will now address the problem of computing feasible unrolls of maximal length. As

opposed to testing for mere feasibility, we have to take kernels and node weights into

account. Consequently, unrolls can be unbounded. Note that entry and exit paths are

compulsory but kernels are only optional for feasibility.

We first formally define the problem for flow networks, then we show that explicit

network instantiation is not necessary in this case either. We assume node weights

ω : V 7→ N0 given, such that:

ω(u) =

0 if u ∈ {s, t, i, o}

n otherwise
(5.74)

where n ∈ N0 denotes a unknown node weight (instead of individual node weights, total

path lengths are known, which will be sufficient). The problem of computing an unroll

Chapter 5. Path Analysis 142

of maximal length is then defined as:

max
∑
u∈V

fΣ
out(u)ω(u) (5.75)

s.t. ∀u ∈ V : fΣ
in(u)− fΣ

out(u) = bu

bu =


q if u = s

−q if u = t

0 otherwise

∀u ∈ V : `(u) ≤ f(u) ≤ β(u)

Lemma 5.61 An unroll is feasible if and only if Equation 5.75 has a feasible solution.

It is bounded if and only if the objective value is finite.

Proof. See Lemma 5.58 and Definition 5.57.

Obviously, Lemma 5.59 continues to hold for mere feasibility. In addition, weights ω

have to be taken into account:

Lemma 5.62 For a scope s̊, let n̊iok(si, so) denote a network for entry state si and exit

state so, which by definition includes kernels SKwcet(̊s). Let ωπ(π) =
∑

u∈π ω(u). It holds

that:

ωπ((s, i) · σπ(si) · (t)) = δπ(si) (entry) (5.76)

ωπ((s) · σπ(so) · (o, t)) = δπ(so) (exit) (5.77)

∀sk ∈ SKwcet(̊s) : ωπ((s) · σπ(sk) · (t)) = δπ(sk) (kernels) (5.78)

Analogously, this holds true for n̊d.

Proof. By definition of weights in Equation 5.74 and the accumulation of weights in path

states by Definition 5.56.

Consequently, we can compute unroll lengths by just signatures and the corresponding

path length. In addition to satisfying lower capacity constraints for entry and exit states,

the total path length must be maximized. We achieve this by considering entry and exit

paths first, as before to satisfy implicit flow demand, then consider kernels in descending

order of their lengths in order to maximize the sum of path lengths.

We keep testf (Equation 5.70) and setf (Equation 5.71) unchanged but define a

function f1
ω which pushes unit admissible flow over a single path σπ(s) while accumulating

path length, given path state s and a tuple (ω, f, c), where ω denotes path length or

infeasibility, f denotes existing flow and c denotes flow capacities, and which also returns

Chapter 5. Path Analysis 143

such a tuple as:

f1
ω := λs . λ(ω, f, c) .



ω + δπ(s),

setf (f, 1, σπ(s)),

c

 if ω 6= ⊥ ∧ testf (c, f, σπ(s)) > 0

(⊥, ∅, c) otherwise

(5.79)

In addition, we define a function fkω , which is declared like f1
ω but is defined to push

maximally admissible flow over a single path σπ(s) while accumulating path lengths

scaled by the flow as:

fkω := λs . λ(ω, f, c) .



ω + δπ(s)× testf (c, f, σπ(s)),

setf (f, testf (c, f, σπ(s)), σπ(s)),

c

 if ω 6= ⊥

(⊥, ∅, c) otherwise

(5.80)

We compose f1
ω and fkω to evaluate unrolls. Let σδπ : ℘(Sπ) 7→ S∗π order a set of path

states sπ ∈ Sπ by descending length δπ(sπ), such that for a scope s̊

fKω := λs̊ . Jσδπ(SKwcet(̊s))K(f
k
ω) (5.81)

denotes an ordered composition of fkω(sk) for kernel states sk ∈ σδπ(SKwcet(̊s)). Further,

for scope s̊, entry u and exit v, let

F iokω := λ(̊s, u, v) .
{
fKω (̊s) ◦ f1

ω(so) ◦ f1
ω(si)

∣∣ si ∈ SIwcet(̊s, u), so ∈ SOwcet(̊s, v)
}

(5.82)

denote the set of all possible evaluations for unrolls and let

F dω := λ(̊s, u, v) .
{
f1
ω(sd)

∣∣ sd ∈ SDwcet(̊s, u, v)
}

(5.83)

denote the set of evaluations for direct paths.

Theorem 5.63 (Local Maximal Unroll) Let s̊ ∈ V̊ be a scope, let u ∈ entry(̊s) and

v ∈ exit(̊s). Let f0 = Aπ ×{0} denote initial flow. Then we define maximal unroll length

for a scope s̊, entry node u ∈ V and exit node u ∈ V as:

maxµ : V̊ × V 2 7→ N∞,⊥0

maxµ(̊s, u, v) = max

{
ω

∣∣∣∣∣ (ω, f, βπ) = fω(0, f0, βπ),

fω ∈ F iokω (̊s, u, v) ∪ F dω (̊s, u, v)

}
(5.84)

Proof. Equation 5.82 captures the semantics of pushing unit flow over an entry and an exit

path first, which satisfies flow demand — if possible — and then pushing all remaining

admissible flow over all kernels in descending order of length. Since flow represents

iteration repetitions, repeating longest paths first as often as possible maximizes the

Chapter 5. Path Analysis 144

accumulated path length. Equation 5.83 captures the semantics of pushing unit flow

over a direct path. By Lemma 5.59 and Lemma 5.62, reduction to maxlen by the

Ford-Fulkerson method [101] on flow networks is direct. Equation 5.84 then denotes the

maximal solution for all combinations of entry, exit and direct paths.

Example We reconsider Figure 5.33 and maximize the unroll length from entry c to

exit f given flow bounds:

βπ = {ac0 →∞, aa0 →∞, a1 → 1, a2 → 2, a3 → 2}

and path states:

si = (3, (ac0, a2, a3), c)

so = (2, (aa0, a1), a)

sK = ((5, (aa0, a1, a2, a3), a), (5, (aa0, a1, a3), a))

Then composition of semantics by Equation 5.82 and Equation 5.83 yields:

F iokω (̊s, u, v) ∪ F dω (̊s, u, v) = F iokω (̊s, u, v) ∪ ∅

= {fKω (̊s) ◦ f1
ω(so) ◦ f1

ω(si)}

= {fkω(s0
k) ◦ fkω(s1

k) ◦ f1
ω(so) ◦ f1

ω(si)}

=

{
fkω((5, (aa0, a1, a2, a3), a)) ◦ fkω((5, (aa0, a1, a3), a))

◦ f1
ω((2, (aa0, a1), a)) ◦ f1

ω((3, (ac0, a2, a3), c))

}

Evaluation of fω ∈ F iokω (̊s, u, v), according to Equation 5.84, then yields:

fω(0, f0, βπ)

= (fkω(s0
k) ◦ fkω(s1

k) ◦ f1
ω(so) ◦ f1

ω((3, (ac0, a2, a3), c)))(0, f0, βπ)

= (fkω(s0
k) ◦ fkω(s1

k) ◦ f1
ω((2, (aa0, a1), a)))(3, {ac0 → 1, a2 → 1, a3 → 1}, βπ)

= (fkω(s0
k) ◦ fkω((5, (aa0, a1, a3), a)))(3 + 2, {ac0 → 1, a2 → 1, a3 → 1, aa0 → 1, a1 → 1}, βπ)

= (fkω((5, (aa0, a1, a2, a3), a)))(5 + 5× 1, {ac0 → 1, a2 → 1, a3 → 2, aa0 → 1, a1 → 2}, βπ)

= (10 + 5× 0, {ac0 → 1, a2 → 1, a3 → 2, aa0 → 1, a1 → 2}, βπ)

= (10, {. . . }, βπ)

Avoiding Redundant Computations

F iokω (Equation 5.82) and F 1
ω (Equation 5.83) can be optimized if scope tops and bottoms

coincide with entries and exits. In these cases, kernels subsume entry, exit and direct

paths, which is often the case in practice, and which significantly reduces computational

redundancy. In the following, semantics remain unchanged. This is a purely technical

modification.

Chapter 5. Path Analysis 145

To correctly test for feasibility in case of subsumption, we extend functions f1
ω

(Equation 5.79) and fkω (Equation 5.80) by a symbolic identity. Let T ⊆ {i, o, k, d} denote

symbolic identifiers. Then the named extension of f1
ω is defined as:

fT,1ω :=λ(s, T) . λ(ω, f, c, T ′) .


ω + δπ(s),

setf (f, 1, σπ(s)),

c,

T ∪ T ′

 if ω 6= ⊥ ∧ testf (c, f, σπ(s)) > 0

(⊥, ∅, c, T ′) otherwise

(5.85)

Analogously, we define the named extension of fkω as:

fT,kω :=λ(s, T) . λ(ω, f, c, T ′) .


ω + δπ(s)× testf (c, f, σπ(s)),

setf (f, testf (c, f, σπ(s)), σπ(s)),

c,

T ∪ T ′

 if ω 6= ⊥

(⊥, ∅, c, T ′) otherwise

(5.86)

Evaluation of kernels in descending order (cf. Equation 5.81) is then defined as:

fT,Kω := λ(̊s, T) . Jσδπ(SKwcet(̊s))K(f
T,k
ω (sk, T)) (5.87)

In the following let t ∈ top(̊s) and b ∈ bottom(̊s) of scope s̊. Then a more efficient

composition of path evaluations is defined by:

F iokω :=λ(̊s, u, v).

{
fT,Kω (̊s, {i, o, k})

}
if t = u ∧ b = v ∧ |bottom(̊s)| = 1{

fT,Kω (̊s, {i, k}) ◦ f1
ω(so, {o})

∣∣∣ so ∈ SOwcet(̊s, v)
}

if t = u ∧ (b 6= v ∨ |bottom(̊s)| > 1){
fT,Kω (̊s, {o, k}) ◦ f1

ω(si, {i})
∣∣∣ si ∈ SIwcet(̊s, u)

}
if t 6= u ∧ b = v ∧ |bottom(̊s)| = 1{

fT,Kω (̊s, {k}) ◦ f1
ω(so, {o})

◦ f1
ω(si, {i})

∣∣∣∣∣ si ∈ SIwcet(̊s, u),

so ∈ SOwcet(̊s, v)

}
otherwise

(5.88)

Giving flow evaluations identities allows to determine which types of paths have been

covered by the various tests in case of subsumption. Optimization is defined analogously

for direct paths: If entry and exit coincide with top and bottom, then the longest feasible

kernel is already the longest direct path. Hence, in conjunction with Equation 5.88, an

Chapter 5. Path Analysis 146

optimized version of F dω (Equation 5.83) is defined as:

F dω := λ(̊s, u, v) .

∅ if t = u ∧ b = v ∧ |bottom(̊s)| = 1

{f1
ω(sd, {d}) | sd ∈ SDwcet(̊s, u, v)} otherwise

(5.89)

Then we define the maximal unroll length for a scope s̊, entry node u ∈ V and exit node

u ∈ V as:

maxopt
µ : V̊ × V 2 7→ N∞,⊥0

maxopt
µ (̊s, u, v) = max

ω
∣∣∣∣∣∣∣∣

(ω, f, βπ, T) = fω(0, f0, βπ, ∅),

{i, o} ⊆ T ∨ {d} ⊆ T,

fω ∈ f iokω (̊s, u, v) ∪ fdω (̊s, u, v)

 (5.90)

A solution is only feasible if tests for entry and exit paths succeed, irrespective of the

concrete subsumption scenario.

Example We modify the previous example to maximize the unroll length from entry a

to exit g for the scope illustrated in Figure 5.33. Since entry and exit paths coincide with

kernels it holds that:

F iokω (̊s, u, v) ∪ F dω (̊s, u, v)

= {fKω (̊s, {i, o, k})} ∪ ∅

= {fkω({i, o, k})((5, (aa0, a1, a2, a3), a)) ◦ fkω({i, o, k})((5, (aa0, a1, a3), a))}

Since there only exists a single kernel, evaluation of fω ∈ F iokω (̊s, u, v)∪F dω (̊s, u, v) yields:

fω(0, f0, βπ)

= fkω({i, o, k})(s0
k) ◦ fkω({i, o, k})(5, (aa0, a1, a3), a)(0, f0, βπ)

= fkω({i, o, k})(s0
k)(5, {aa0 → 1, a1 → 1, a3 → 1}, βπ, ({i, o, k}))

= fkω({i, o, k})(5, (aa0, a1, a2, a3), a)(5, {aa0 → 1, a1 → 1, a3 → 1}, βπ, ({i, o, k}))

= (5 + 5× 0, {aa0 → 1, a1 → 1, a3 → 1}, βπ, ({i, o, k}))

= (5, {. . . }, βπ, ({i, o, k}))

Maximal Unroll Length to All Scope Members

We computed unrolls of maximal length from dedicated entries to dedicated exits. We

are now concerned with further optimization to minimize recomputation of unrolls to

multiple exits. Even more so, we generalize and show how to minimize computational

overhead for unrolls to all member nodes in a scope. Besides eliminating unnecessary

tests by means of F iokω of Equation 5.88, this is another corner-stone optimization to

keep redundancy low.

Chapter 5. Path Analysis 147

Recall that maxµ as defined in Equation 5.84 evaluates to the maximal unroll length

from s to any node in s̊, which, as a matter of fact, does not necessarily have to be an

exit.

Definition 5.64 (Annotation Anchor) A node u ∈ V such that απ(u) 6= ε is referred

to as (annotation) anchor.

Definition 5.65 (Most Recent Anchor) Let sπ ∈ Sπ be a path state. Then for

signature σπ(sπ) = (a0, . . . , ak), node α−1
π (ak) ∈ V (cf. Table 5.3 on page 132) denotes

the most recent anchor.

For a scope s̊, an entry u ∈ entry(̊s) and a node v ∈ V , we define the set of most

recent anchors as:

mra: V 2 7→ ℘(V)

mra(u, v) = {α−1
π (ak) | σπ(sπ) = (a0, . . . ak), sπ ∈ Swcet(u, v, au0)} (5.91)

By definition of Swcet, set mra(u, v) is never empty.

Example In Figure 5.33a it holds that mra(a, e) = {a, c} and mra(a, g) = {g}.

We now show that to obtain maximal unroll lengths to a node, it is sufficient to

compute unroll lengths to their most recent anchors. For two path states sπ and s′π such

that sπ
Aπ∼ s′π (cf. Equation 5.49), let the difference in path length be defined as:

dδπ(sπ, s
′
π) := δπ(sπ)− δπ(s′π) (5.92)

Recall that we refer to path states such that
Aπ∼ holds true, as being comparable (by

length).

Lemma 5.66 Given scope s̊, let s ∈ entry(̊s). For a node v ∈ V , let u ∈ mra(s, v).

Then for every path state sπ in u there exists a comparable path state s′π in v:

∀sπ ∈ Swcet(s, u, as0) : ∃s′π ∈ Swcet(s, v, as0) : sπ
Aπ∼ s′π (5.93)

Proof. We consider states from node s only and u is the most recent anchor on a path

from s to v. Hence, σπ(sπ) = σπ(s′π) ∧ oπ(sπ) = oπ(s′π)⇔ sπ
Aπ∼ s′π.

Lemma 5.67 Let nodes be given as in Lemma 5.66. All length differences d between all

states sπ in a most recent anchor u and a matching state s′π in node v are equal:

∀sπ ∈ Swcet(s, u, as0) : ∀s′π ∈ Swcet(s, v, as0) : sπ
Aπ∼ s′π ⇒ dδπ(sπ, s

′
π) = d (5.94)

Proof. Every pair sπ, s
′
π of comparable path states must lie on the same path (s, . . . , u, . . . , v)

and all pairs share the same suffix |(u, . . . , v)| = d, which denotes the longest path from

u to v.

Chapter 5. Path Analysis 148

Consequently, to compute the distance from a most recent anchor to a node, it is

sufficient to derive the difference from a single pair of comparable states.

Theorem 5.68 (Sparse Unrolling) Given a scope s̊, an entry s ∈ entry(̊s) and a node

v ∈ V such that maxµ(̊s, s, v) denotes its maximal unroll length. We define a helper

function that returns a pair of matching path states due to Lemma 5.67:

m := λu . λv . (sπ, s
′
π) ∈ Swcet(s, u, as0)× Swcet(s, v, as0) ∧ suπ

Aπ∼ svπ (5.95)

Then the maximal unroll distance to node v is alternatively defined as:

maxsparse
µ : V̊ × V 2 7→ N∞,⊥0

maxsparse
µ (̊s, s, v) = max

{
maxµ(̊s, s, u) + dδπ(svπ, s

u
π)

∣∣∣∣∣ u ∈ mra(s, v),

(suπ, s
v
π) = m(u, v)

}
(5.96)

The maximal unroll distance to node v equals the maximum of maximal unroll distances

to its most recent anchors ui and the greatest iteration distance from each ui to v.

Example Reconsider Figure 5.33. We compute maxsparse
µ (̊s, a, f), given bounds as in

the previous two examples. It holds that mra(a, f) = {a} and

m(a, f) = (sa, sf) ∈ Swcet(a, a, aa0)× Swcet(a, f, aa0)

= {((1, (aa0), a), (2, (aa0, a1), a)}

Consequently, we compute:

maxsparse
µ (̊s, a, f) = maxµ(̊s, a, a) + dδπ(sf , sa)

= (fkω(s0
k) ◦ fkω(s1

k) ◦ f1
ω(so))(0, f0, βπ) + δπ(sf)− δπ(sa)

= 6 + δπ(sf)− δπ(sa)

= 6 + 2− 1 = 7

where s0
k, s

1
k, so denote the two kernels and the exit path from node a to itself.

Given that we only unroll from scope entry to scope exits, the strategy we just

proposed is only an optimization if exit nodes outnumber anchors. Otherwise, unrolling is

performed unnecessarily. However, below we propose computations that rely on unrolling

to all interior nodes of a scope. In that case, savings are significant.

Practical Path State Computation

In practice, we can further optimize the computation of unrolls. The model we have

given so far is ultimately based on fixed point computation per node (cf. Equation 5.57).

As usual, if nodes are processed in topological order, this fixed point is reached in linear

time as no information is “fed back” via back edges. Moreover, a single pass in such order

is sufficient to collect all possible path states originating from all entries collectively.

Chapter 5. Path Analysis 149

Another aspect is the encoding of signatures. In the given model, signatures denote

paths through anchors. We recognize that all path states originating in the same entry

share common prefixes of their signature. So instead of maintaining those separately,

a compact representation is achieved by means of prefix trees (or tries) [8, 170] which

significantly reduce the amount of information to be propagated7.

A simple but rarely applicable optimization is the recognition of zero-valued flow

bounds. Since we already know single bound valuation upon path state computation,

encountering such a bound denotes invariably infeasible paths. Hence, no information

has to be propagated through such points, further reducing the state set.

A concrete example where these techniques likely also have a significant impact is the

derivation of symbolic representations which typically [137, 150] suffer from unnecessarily

redundant representation.

5.3.3.3 Computing WCET Bounds Globally

We now extend the framework to compute a global bound on the WCET instead of just

for a single scope. Intuitively, we continue to compute path states within a single scope

only. Consequently, all path lengths are relative to a specific entry. As opposed to before,

we now take maximal unroll lengths of subscopes that are “crossed” by iterations of the

current scope into account. Recall that by Definition 5.28 on page 106, every far entry

(exit) is also an entry to (exit from) its enclosing scope(s).

We assume a function

maxs̊
µ : V̊ × V 2 7→ N∞,⊥0 (5.97)

given such that max̊s
µ(̊s, u, v) denotes maximal unroll length for a scope s̊ from entry u

to exit v including all subscopes, as opposed to maxµ (Equation 5.84). Then we define a

transformer tf s̊, which wraps tfwcet (Equation 5.56) such that:

tf s̊wcet : S̊ × V 2 7→ (Dwcet 7→ Dwcet)

tf s̊wcet(̊s, u, v) =

λS .



id if v ∈ entry(̊t) ∧ (̊t, s̊) ∈ E̊
 δπ(sπ) + l,

σπ(sπ),

oπ(sπ)


∣∣∣∣∣∣∣
sπ ∈ S,
l = maxs̊

µ(̊t, u, v)

 if v ∈ exit(̊t) ∧ (̊t, s̊) ∈ E̊

tfwcet(u)(S) otherwise

(5.98)

For a node u and its predecessor v, if v is a scope entry then we neither advance path

lengths nor extend signatures since the node is subject to the subscope and therefore

length and annotations are already accounted for in the unroll of the subscope. If v is a

7In the reference algorithm we propose below, we do just that. See [8] for a graphical example.

Chapter 5. Path Analysis 150

scope exit then we extend path lengths by the unroll length of the subscope for entry u

and exit v. Otherwise, tfwcet applies.

To correctly account for subscope unroll lengths max̊s
µ in Equation 5.98, provisions

have to be taken. As before, let pred→ denote predecessors on forward edges EF . Then

predecessors “leaping” over subscopes are defined as:

pred→s̊ : V̊ 7→ V 7→ ℘(V)

pred→s̊ = λs̊ . λv .

{u|u ∈ entry(̊t)} if v ∈ exit(̊t) ∧ (̊t, s̊) ∈ E̊

pred→(v) otherwise
(5.99)

Consequently, we define path states in a program point, similar to Equation 5.57 as:

S s̊wcet : V̊ × V 2 ×Aπ 7→ Sπ

S s̊wcet(̊s, s, v, a) =

tf s̊wcet(̊s, s, s)({(0, a, s)}) if v = s⊔{
tf s̊wcet(̊s, u, v)(S s̊wcet(̊s, s, u, a)) | u ∈ pred→s̊ (̊s)(v)

}
otherwise

(5.100)

which computes a fixed point of longest paths in a program point, taking unrolls of

maximal length of subscopes into account. Hence, maxπ S
s̊
wcet(̊s, u, v, ε) denotes the

greatest possible path length in scope s̊ from entry u to exit v.

Figure 5.36: Example of global WCET computation

Example Figure 5.36 illustrates a simple example of global WCET bound computation.

We assume annotations such that απ(b) = (a1) with flow bound βπ(a1) = N . The table

to the right denotes respective path states, where S s̊wcet(̊0, a, , a
a
0) denotes states in scope

0̊, from root a to some interior node, S s̊wcet(̊1, b, , a
b
0) denotes states in scope 1̊, from root

b. In node b, S s̊wcet(̊0, a, b, a
a
0) denotes an iteration of 0̊ up to but not including b, whereas

S s̊wcet(̊1, b, b, a
b
0) denotes an iteration in 1̊ that includes b only. Consequently, in node c,

all iterations in 1̊ are known by S s̊wcet(̊1, b, c, a
b
0). S s̊wcet(̊0, a, c, a

a
0) then denotes a possible

iteration in 0̊, including the maximal unroll length of subscope 1̊.

Chapter 5. Path Analysis 151

Analogously to the definitions for just a single scope without subscopes (cf. Sec-

tion 5.3.3.2), we now redefine partitions of path states such that:

SIwcet(̊s, s) =
⋃

u∈bottom(̊s)

S s̊wcet(̊s, s, u, a
s
0) (cf. Eq. 5.58) (5.101)

SOwcet(̊s, t) =
⋃

u∈top(̊s)

S s̊wcet(̊s, u, t, a
u
0) (cf. Eq. 5.59) (5.102)

SKwcet(̊s) =
⋃

t∈top(̊s)

⋃
b∈bottom(̊s)

S s̊wcet(̊s, t, b, a
t
0) (cf. Eq. 5.60) (5.103)

SDwcet(̊s, s, t) = S s̊wcet(̊s, s, t, a
s
0) (cf. Eq. 5.61) (5.104)

Feasibility checks for a single iteration f1
ω (Equation 5.79 on page 143) and for kernels

fkω (Equation 5.80 on page 143) remain unchanged.

It remains to define max̊s
µ to compute feasible maximal unroll lengths, just as in the

previous section.

Theorem 5.69 (Maximal Unroll) Given the redefined set of path states S s̊wcet, which

now takes subscopes into account, Theorem 5.63 applies unchanged with all definitions

such that

maxs̊
µ : V̊ × V 2 7→ N∞,⊥0 (5.105)

denotes the longest unroll length for a scope s̊ from entry u to exit v, analogously to

maxµ (Equation 5.84 on page 143). This represents the precise worst-case path length

for a scope and a pair of source and sink nodes, under the given flow bound model.

Proof. Theorem 5.63 on page 143 applies unchanged with S s̊wcet for Swcet.

Note that for a CFG G = (V,E, s, t), the initial annotation as0 for the global entry

must be defined such that flow bound βπ(as0) = 1 to avoid non-direct path composition

in the (acyclic) root scope.

5.3.3.4 Computing WCET Bounds on Subgraphs

We briefly discuss how to change the problem specification from the computation of

longest paths from the global CFG entry to the global CFG exit to the computation of

globally longest paths to and from all interior nodes. First, we extend the framework to

enable arbitrary sink nodes, then we extend it to enable source nodes.

Path Length to Arbitrary Interior Points

Intuitively, since we can compute longest paths within a scope s̊ from its entry to its exit,

then nothing prevents us from computing longest paths from an entry of s̊ to the entries

of its subscopes. Previously, all path lengths within a scope have been relative to their

respective entries. We now compute maximal offsets to these entries. In the context of

Chapter 5. Path Analysis 152

(a) (b)

Figure 5.37: Example graphs to illustrate subgraph techniques

timing analysis, we compute an upper bound on the latest possible time a scope can

be “executed” as an offset to the longest possible duration to “execute” a scope up to a

specific program point. The intuition has previously been stated in [150].

We define a function max?µ(̊s, s, t̊, t), which computes the worst-case path length from

source scope s̊ and node s to a target scope t̊ and node t, by computing the maximal

unroll length to all entries of t̊ and the maximal unroll length within t̊ to t as:

max?µ : S̊ × V × S̊ × V 7→ N∞,⊥0

max?µ(̊s, s, t̊, u) =
max

{
max?µ(̊s, s, ů, i) + max̊s

µ(̊t, i, u)

∣∣∣∣∣ i ∈ entry(̊s),

ů = par(̊t)

}
if s̊ 6= t̊

max̊s
µ(̊s, s, u) otherwise

(5.106)

Proof. max?µ(̊t, i, u) denotes the longest feasible unroll within scope t̊ from (entry) node

i to (exit) node u. Simple induction yields longest unrolls from parent scope entry to

current scope entry for all enclosing scopes and entry to terminal node u in scope t̊.

Example Consider Figure 5.37a. We assume annotations such that απ(a) = (a1) with

flow bound βπ(a1) = 1, απ(b) = (a2) with βπ(a2) = N and απ(c) = (a3) with βπ(a3) = M .

Then evaluation of Equation 5.106 yields:

max?µ(̊0, a, 2̊, d) = max
{

max?µ(̊0, a, 1̊, c) + maxs̊
µ(̊2, c, d)

}
= max?µ(̊0, a, 1̊, b) + 2×M

= max
{

max?µ(̊0, a, 0̊, b) + maxs̊
µ(̊1, b, c)

}
+ 2×M

= max?µ(̊0, a, 0̊, b) + ((1 + 2×M + 1)× (N − 1) + 1) + 2×M

= 1 + ((1 + 2×M + 1)× (N − 1) + 1) + 2×M

Note that for the computation of path lengths to all nodes, sparse unrolling (cf. The-

orem 5.68 on page 148) is specifically effective.

Chapter 5. Path Analysis 153

Path Lengths from Arbitrary Interior Points

We recognize that source nodes need not necessarily have to be scope entries as per

Definition 5.28. Consequently, we can take provisions to designate arbitrary interior

nodes as global entries. Recall that we already know how to compute longest paths from

and to arbitrary nodes within the very same scope. Symmetrically to showing how to

compute longest paths to any node above, we now sketch the idea of computing longest

paths from any node.

Figure 5.37b illustrates the graphical construction by example, where we designate

node d to be the global start node. Instead of the global entry a to the root scope 0̊,

an artificial entry s with node weight ω(s) = 0 to scope 0̊ and a far entry edge from

s to the designated global entry node d is added. In addition, node a is ignored as

an entry. Node d is by definition an entry to its enclosing scopes 2̊, 1̊. Consequently,

max?µ(̊0, s, 0̊, u) (Equation 5.106) denotes the globally longest path effectively starting

in node d, terminating in some node u. By construction, there now exists only one

feasible entry path from s to all subscopes imposing a zero-valued offset. In practice,

the construction is easily achieved “virtually”, without graph mutation, by adjusting

Equation 5.100 accordingly to “simulate” the desired behavior.

5.3.3.5 Practical Global Path Length Computation

Even though we discussed some optimizations already, the formal definitions as given

above are impractical due to their recursive nature and repetitive recomputation of

identical subproblems. We will now show how the problem of computing maximal path

lengths to all reachable nodes as terminals can be achieved in just two passes over the

CFG.

To this end, we first introduce a specialization of global topological order on a CFG to

enable efficient non-recursive computations, then we propose a carefully crafted reference

implementation.

Scope Order and Scope Completion

Just as topological order is optimal for fixed point computation on the DAGs that form

the bodies of isolated scopes, we seek to compute a globally feasible topological order such

that dependencies are satisfied optimally globally. In terms of unrolling, the maximal

(a) “Well-structured” exit (b) Preemptive exit (c) Out-of-order completion

Figure 5.38: Example CFGs to illustrate different topological orders

Chapter 5. Path Analysis 154

distance from a scope entry to its exit can only be computed once all iterations are

completely known. Only then iterations of enclosing scopes can be completed. Figure 5.38

illustrates different scenarios where this is an issue. Figure 5.38a shows the ideal case:

Scope bottom and exit coincide. Hence, all iterations of the inner scope are known

prior to computing the maximal unroll distance from entry to exit and dependencies

form iterations of the enclosing scope are satisfied implicitly. In Figure 5.38b a feasible

topological order is to place node d prior to node c. Consequently, information for

unrolling is still incomplete. In Figure 5.38c we assume nodes c, d to denote an innermost

scope. Here, not only does node e depend on unrolling from entry b to exit b, but the

scope’s kernel depends on the unroll of the bottommost scope from entry c to exit c.

The usual practice is a post order traversal of the loop nesting representation (scope

tree). However, this has the drawback that a recursive dependence remains and in-

formation unnecessarily has to be memoized. In addition, information propagation is

only unidirectional (upwards the scope tree), preventing propagation of information into

scopes prior to unrolling.

Definition 5.70 (Scope Completion) A scope is completely known (or complete) if

all iterations are completely known.

This is obviously the case once all nodes in a scope and all of its subscopes have been

processed. In Figure 5.38c the scope entered from node b is not complete even when its

bottom is visited.

Definition 5.71 (Scope Order) Scope order σ̊ : V 7→ N0 is a topological order such

that all scope bottoms in all subscopes are visited prior to completing a scope.

For a scope s̊, let the set of all descending scopes including s̊ be defined as:

D̊(̊s) := {̊s} ∪ dsc+(̊s) (5.107)

Then we define a set of “virtual bottoms” as:

vbot(̊s) := {b ∈ bottom(̊u) : ů ∈ D̊(̊s) ∧ ∀̊v ∈ D̊(̊s) : @b′ ∈ bottom(̊v) : b′
→
 b} (5.108)

The set contains the structurally “bottommost” scope bottoms in a scope nesting.

Example Reconsider Figure 5.38c. Assume scopes such that 2̊ = γ̊(c) = γ̊(d), 1̊ = γ̊(b)

and 1̊ = par(̊2). Then vbot(̊1) = vbot(̊2) = {d}.

Intuitively, we collect bottoms in case of imperfect nesting such that subscope nodes

are structurally not fully enclosed. Reaching virtual bottoms in a topological order —

which necessarily depends on structure — guarantees that all conceptually nested scopes

are completely known.

The next issue is that of “preemptive” exits such as edge (b, d) in Figure 5.38c. We

have to guarantee that all virtual bottoms are indeed processed prior to any “external”

Chapter 5. Path Analysis 155

dependencies from enclosing scopes. We can achieve the desired result by adding

“virtual” dependence edges from virtual bottoms to exit edge destinations, consequently

conceptually constraining the set of structurally possible topological orders.

Algorithm 5.6

1 l et vedgeG = do / G = (V,E)
2 for (u, v) ∈ E : (u, v) is exit edge from s̊ do

3 E ← E ∪ {(b, v) | b ∈ vbot(̊s) ∧ ¬(v
→
 b)}

4 return (V,E)

Algorithm 5.6 sketches the idea. For all exit edges (u, v) of a scope s̊, add a virtual

exit edge from its virtual bottoms b to node v. We prohibit virtual exit edges to form

cycles. In that case, they are useless anyway since the target node by definition already

must have been processed in some topological order. Recall that virtual exits only

compensate for non-perfect nesting. Otherwise, it only ensures an additional dependency

from a bottom to an external iteration.

Example In Figure 5.38b a “virtual” edge (c, d) is inserted, and in Figure 5.38c a

“virtual” edge (d, e) is inserted.

In practice, instead of actually introducing edges to the CFG, we can “simulate”

virtual edges by minor modification of Algorithm B.14 on page 258 to obtain a suitable

topological order. The implementation is straight-forward and we therefore skip its

detailed discussion at this point.

To summarize, counting the number of virtual bottoms while processing nodes in

a topological order is a means to know when a scope is complete. The topological

order must be a scope order to prevent preemptive exits. In combination, we can

thus “simulate” perfectly nested scopes in an appropriately designed framework without

additional computational overhead.

A Reference Algorithm For Efficient Path Analysis

In the following we document the principal outline of an efficient algorithm for worst-case

path analysis for reference. To summarize, we process nodes in scope order in two passes.

In a first pass, iterations are computed and every time a scope completes, its maximal

unroll distances are computed. Instead of computing states from one entry at a time,

we compute all states simultaneously. Since scope entries and exits denote transitions

between scopes, we model entering a scope by backing up states from the parent scope

(pending states) and replace them by a representative. Once scopes complete, all unrolls

are computed and pending states are swapped back and updated to model leaving the

scope. This leaves us with longest paths in the root scope. In a second pass, scope offsets

are computed by the same strategy to compute absolute path lengths to individual nodes.

In the following, we only outline the algorithms leaving special cases and error handling

aside for simplicity.

Chapter 5. Path Analysis 156

Algorithm 5.7 Outline of non-recursive path analysis (pass 1)

1 state : V 7→ ℘(Sπ) / Path states

2 pstate : V̊ 7→ V 7→ ℘(Sπ) / Pending path states

3 estate : V̊ 7→ V 7→ ℘(Sπ) / Exit path states

4 nbottom: V̊ 7→ N0 / “Virtual bottom” count

5 eoffset : V̊ 7→ V 7→ N0 / Scope entry offset
6 wcet : V 7→ N∞0 / Maximal path length
7
8 l et pass1 u = / Designated start node

9 nbottom← {̊s→ |vbot(̊s)| | s̊ ∈ V̊ } / Initialize
10 u← ”top of outermost loop scope of u or u” / Effective start node
11 for v ∈ ”nodes in scope order from u” do
12 state[v]← tfwcet(v)(prologue v) / Join/Transfer
13 while v ∈ vbot(̊s) do / Reached “virtual bottom”
14 nbottom[̊s]← nbottom[̊s]− 1
15 i f nbottom[̊s] = 0 then / Scope completely known
16 epilogue s̊
17 s̊← par s̊ / Parent scope

Algorithm 5.7 defines auxiliary arrays and the first pass. In lines 1-6, state holds path

states in a node, pstate holds pending states for scope entries, estate holds path states

in exit nodes that will be replaced by pending states upon scope completion, nbottom

counts the number of processed virtual scope bottoms to denote completion, eoffset

denotes scope entry offsets for the second pass and wcet denotes absolute path distances

to individual nodes.

Function pass1 (line 8) computes for a given designated start node the longest path

to the global CFG exit. For initialization, counters of virtual bottoms nbottom are set

up (lines 9) and an effective start node is determined (line 10). This node is the top

node of the outermost scope enclosing node u if is contained in a loop, or u otherwise.

We effectively start computation from here to be able to compute unrolls for all such

enclosing scopes. Then we process nodes in scope order (line 11) from the effective

start node. Processing generally decays into three phases: In the prologue (discussed

below) path states are propagated and generally provisions are taken for conceptually

entering scopes such that updating path states (line 12) is restricted to simply applying

transformer tfwcet. In the epilogue, scopes are conceptually left by performing unrolling

and restoring original path states. In line 13, if a virtual bottom is reached, we decrease

the respective counter (line 14). Once all virtual bottoms of a scope have been visited,

we invoke the epilogue (line 16, details below). Since bottom nodes could be shared

among scopes, all possible scopes are left at once (line 17).

Algorithm 5.8 outlines the prologue phase. Path states are initially joined as usual

(line 2). Generally, we propagate all path states originating from all entries simultaneously.

Therefore, at each entry, the set of path states can be partitioned (lines 3,4) into states

originating in the current scope In and states from enclosing scopes Ex. If Ex is not

empty or if the current node is an entry (line 5), then we conceptually enter a new scope.

Chapter 5. Path Analysis 157

Algorithm 5.8 Outline of non-recursive path analysis (prologue)

1 l et prologue u = / Start iteration in node u
2 S ←

⊔
{s ∈ state[v] : v ∈ pred→(u)} / Propagation

3 In← {s ∈ S : γ̊(oπ(s)) = γ̊(u)} / Scope-local states
4 Ex← S \ In / Scope-external states
5 i f Ex 6= ∅ ∨ u ”is entry” then / Actual or designated entry
6 i f ”u is designated entry” then
7 Ex← Ex ∪ {(0, (as0), s)} / Initial state for global entry s
8 pstate[̊γ(u)][u]← Ex / Store “pending” states
9 In← In ∪ {(0, (au0), u)} / Initial state for entry u

10 return In

If the current node is the designated global start point (which is also considered an entry)

(line 6), then we create a path state that represents an iteration in the globally outermost

scope. This effectively models a far entry from the global CFG entry (line 7). In either

case, we back up states Ex (line 8) and denote them by a single representative path state

modeling all parent iterations passing through this entry (line 9). Note that we do not

address the issue of shared entry nodes yet. Instead, we only model an iteration of the

innermost scope. The return value (line 10) now only denotes local path states.

Algorithm 5.9 Outline of non-recursive path analysis (epilogue)

1 l et epilogue s̊ = / Finish scope s̊
2 for o ∈ exit(̊s) do
3 R← ∅
4 for i ∈ entry(̊s) do
5 Rio ← ∅ / States to be resumed
6 l← ”unroll i to o”
7 for s ∈ pstate[̊s][i] do / Pending states
8 i f γ̊(oπ(s)) 6= par s̊ then / Far entry state
9 pstate[par s̊][i]← pstate[par s̊][i] ∪ {s} / Export state

10 Rio ← Rio ∪ {(l, (ai0), i)} / Initial state for entry i
11 else
12 Rio ← Rio ∪ {(δπ(s) + l, σπ(s), oπ(s))} / Update length
13 R←

⊔
{s | s ∈ Rio ∪R} / Collect “resumables”

14 estate[̊s][o]← state[o] / Backup states
15 state[o]← R / “Leave” scope s̊

Leaving scopes is performed in the epilogue, defined in Algorithm 5.9. Generally,

maximal unrolls from all entries to one specific exit are computed, pending path states

are restored and updated accordingly. Therefore, for each scope exit (line 2), we fill a

set of “resumed” states R (line 3). The set Rio (line 5) denotes the set of path states

for one specific pair of entry and exit. First, the maximal unroll length is computed

(line 6), then pending states are restored one at a time (line 7). If such a state does

not originate from an immediately enclosing scope (line 8), then this state denotes a

path that also entered the immediately enclosing scope. Consequently, it is added to the

respective set of pending states (line 9), and we create a path state to be restored, which

originates in the immediately enclosing scope (line 10) along with the respective path

Chapter 5. Path Analysis 158

length. Otherwise (line 12), a pending state is simply restored by adjusting the path

length. Pending states from all entries are collected (line 13). Before replacing states in

the current exit node (which denote iterations in the scope to be left), we back up the

original states (line 14). Replacing path states in this exit then conceptually leaves the

current scope (line 15).

Algorithm 5.10 Outline of non-recursive path analysis (pass 2)

1 l et finish scope s̊ =
2 for o ∈ exit par s̊ do
3 state[par s̊][o]← estate[par s̊][o] / Restore original exit states
4 for i ∈ entry s̊ do
5 state[̊s][i]← pstate[̊s][i] / Restore original entry states s̊
6 l← 0
7 for p ∈ entry par s̊ do / Parent entries
8 l← max(l, ”unroll p to i” + eoffset[par s̊][p])
9 eoffset[̊s][i]← l

10 pstate[̊s][i]← state[̊s][i] / Swap back
11
12 l et finish node u =
13 l← 0
14 for i ∈ entry γ̊(u) do
15 l← max(l, ”unroll i to u” + eoffset[̊γ(u)][i]) / Absolute distance
16 wcet[u]← l
17
18 l et pass2 u =

19 eoffset← {̊s→ {u→ 0 | u ∈ entry(̊s)} | s̊ ∈ V̊ }
20 u← ”top of outermost loop scope of u or u” / Effective start node
21 for v ∈ ”nodes in scope order from u” do / Compute absolute distances

22 Q̊← ε
23 while v ∈ top(̊γ(v)) do / All shared top nodes

24 Q̊← (̊s).Q̊ / Inner to outer scope
25 s̊← par s̊

26 for s̊ ∈ Q̊ do / In order
27 finish scope s̊
28 finish node v

After the first pass completes, the length of the longest path to the global CFG exit

is already known. To compute absolute path distances to all nodes, a second pass is

required, which is defined in Algorithm 5.10. Function pass2 (line 18) first initializes

the array of scope entry offsets eoffset (line 19). As before, we derive the effective start

node from the designated start node, which is either the top of the topmost loop scope

surrounding the designated start node or the node itself if it belongs to the root scope

(line 20). The function then processes all nodes in scope order from the effective start

node (line 21). If a scope top is encountered (line 23), γ̊(u) denotes the innermost scope

for a possibly shared top node. Since we propagate scope offsets top down the scope tree,

we compute the sequence of scopes entered through this node in Q (line 24), from the

topmost to bottommost scope (line 23-25). In this order, we first compute entry offsets

in function finish scope (line 27), then compute individual distances to nodes in function

Chapter 5. Path Analysis 159

finish node (line 28).

In finish scope (line 1), we successively compute values in array eoffset which denotes

maximal path lengths to individual scope entry nodes. For a given scope s̊, for all scope

exits of the parent scope, the original path states are restored (lines 2,3). This ensures

we can unroll the parent scope as all path states originating in the parent are back in

place. For each (current) scope entry (line 4), we now compute the maximal unroll from

the parent entry to the current entry. Again, we need to swap states (line 5) such that

path states in the entry of the current scope denote iterations of the parent scope. With

correct states in place, an absolute maximal distance from all parent entries (line 7) to

this entry is computed (line 8). We store this new offset (line 9) and restore original

states in the entry (line 10) such that path states of the entries of scope s̊ are back in

place.

After having computed all absolute entry distances, in finish node (line 12), individual

node distances are computed by computing a maximal length unroll from all entries

(line 14) to a specific node (line 15). Array wcet then (line 16) contains the final distances.

Note that in the algorithm outline we repeatedly perform unrolling. As we learned

earlier, it is sufficient to (expensively) unroll to a subset of nodes only to obtain unroll

length to all nodes (cheaply). Hence, depending on the density of annotations, unrolling

needs to be performed a lot less than the algorithm above suggests.

Note also that in the reference implementation, all path states are maintained for

both passes. We recognize that the second pass can already be performed once a

strongly connected component formed by respective loops is finished by the first pass

(the outermost scope denotes an acyclic region and therefor only direct paths lead to

the entries of SCC). Hence, by interleaving analysis passes, memory consumption can

potentially significantly be reduced. Nevertheless, this likely has no noticeable effect on

performance for realistic input sizes.

Remarks

The reference algorithm has been carefully designed to enable concurrent computation

although this is not exploited here. Input data is immutable, global data is read-only

and write operations to data structures are locally restricted. Potential for parallel

computations are the computations of states on neighboring paths or scopes, unrolling

for different entry and exit combinations or for different scopes. Also both passes can be

interleaved by recognizing that once strongly-connected components have been completed

in the first pass, the second pass can instantly be applied instead of performing two

complete passes over the CFG. Even without concurrency, this would lower memory

requirements even further as many states can be discarded early.

5.3.3.6 Evaluation

We evaluate the efficiency of the proposed reference implementation for various control

flow scenarios. To this end, we evaluate the average (arithmetic mean) performance of

Chapter 5. Path Analysis 160

statemate
cover

petrinet
ndes

st
minver

qurt
edn

lcdnum
matmult

prime
crc

ludcmp
expint
fibcall

fir
jfdctint

0 5 15 20 30 35 45 50 60 65
Time (ms)

N
am

e

Method

IPET

PAAN

Figure 5.39: Runtimes on MRTC benchmark suite

our path analysis (called PAAN in the following) including all optimizations we proposed

earlier. The aim is to demonstrate scalability characteristics for typical control flow graphs

of varying sizes and topologies. We perform runtime measurements on the Mälardalen

WCET benchmark suite (MRTC [97]) as well as on control flow graphs generated from

random syntax trees (AST) at a sampling rate of 1 ms. The resulting CFGs range from

10 to approximately 60 000 nodes with 50 samples taken equally distributed. The ASTs

are composed of four high-level language constructs if, ifthen, while and dowhile.

Additional entries and exits to and from loops can be generated, as well as loop bounds

and per-node WCET. Program semantics are not considered. Randomization provides

the structural diversity and sizes required to provide a satisfying coverage, while the given

benchmarks are comparably small and well-structured. We reuse the same framework

as for the evaluation of loop detection (cf. Section 5.3.2.3 on page 107). Table 5.2 on

page 118 lists all randomization parameters. Figure 5.23 illustrates loop distribution of

the generator.

The experiments are carried out on a single core of an Intel Xeon E5630 (2.53 GHz,

4 cores, 128 kB/1 024 kB/12 MB (L1/L2/L3) cache) CPU. We measure the accumulated

CPU time of all phases of our path analysis including the control flow reconstruction by

prenumbering (cf. Section 5.3.2.5). For IPET, the construction of the equation system is

included. The resulting ILP is solved using CPLEX [171] (v12.4) with default arguments.

WCET estimates per program point are obtained by aiT [172] for the Tricore 1.3

architecture.

MRTC

Figure 5.39 shows the results for a subset of MRTC benchmarks. We compute the WCET

to all nodes with paan, while ipet just solves the problem of computing WCET to

the global exit node. In all cases, paan significantly outperforms ipet. In some cases,

we solve the WCET problem from the source to all reachable nodes in less than 1 ms

in some cases. These hard real-time benchmarks are comparably small in size (ca. 50

Chapter 5. Path Analysis 161

0

1

2

3

4

5

6

6

7

8

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(s

)

Method

PAAN

PAAN (ALL)

IPET

Figure 5.40: Runtime for non-degenerated CFG (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4)

0

1

2

3

3

4

5

6

7

8

9

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(s

)

Method

PAAN (ALL, STD)

PAAN (ALL)

IPET

Figure 5.41: Runtime for acyclic CFG (depth = 4, loop depth = 3,P(if) =
0.35, ifelse = 0.65)

to 1 200 LOC). Thus, scalability for very large problem instances is not obvious. We

therefore evaluate very large randomized graph instances to emphasize the differences on

average.

Randomized Graphs

In Figure 5.40 we compare the computation times for inputs that are quite “typically”

found in real-time benchmarks with distributions of constructs given in the title and an

additional probability for flow bounds of 0.1 but a least a single flow bound per loop.

paan denotes the time required to compute the per-task WCET, paan (all) denotes

the time for the computation to all nodes and ipet denotes per-task WCET as before.

As with small benchmarks, paan in both variations performs and scales significantly

better than ipet. It is also notable that it shows significantly less variance in its time

consumption and that the WCET computation to all nodes only has a marginal impact.

The time consumption for purely acyclic control flow is depicted in Figure 5.41. We

now compare the average performance from Figure 5.40 for the computation of WCET

to all nodes on non-degenerated graphs (paan (all, std)) to the computation of WCET

Chapter 5. Path Analysis 162

0

47

94

141

188

235

282

329

376

423

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(s

)

Method

PAAN (ALL, STD)

PAAN (ALL)

IPET

Figure 5.42: Runtime for high loop counts (depth = 11, loop depth = 10,P(if) =
0.0, ifelse = 0.0,P(while) = 0.3,P(dowhile) = 0.7,P(exit) = 0.0,P(entry) =
0.0)

0

1

2

3

3

4

5

6

7

8

9

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(s

)

Method

PAAN (ALL, STD)

PAAN (ALL)

IPET

Figure 5.43: Runtime for high entry and exit counts (depth = 4, loop depth =
3,P(if) = 0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4,P(exit) =
1.0,P(entry) = 1.0)

to all nodes for this particular graph type, which we denote by paan(all) and ipet,

respectively. For acyclic graphs ipet shows a much smaller variance. The primary insight

however is that the curve for paan (all) is practically identical to paan (all, std) and

shows that the complexity of paan only marginally depends on the number of loops.

Due to the unrolling, paan could potentially be sensitive to graphs that are excessive

regarding their number of loops, entries to loops and loop bound specifications. Therefore,

we compare the time consumption for such degenerated inputs. In the following the

probabilities are identical to the standard case except for the features we add for

investigation.

Figure 5.42 depicts the results for a parameters of p(while) = 0.3, p(dowhile) =

0.7 and a maximal nesting depth of 10. In this case ipet shows to be less predictable.

Again, the very high loop count has no practical effect on the scalability of paan. To

summarize the figures so far, paan scales largely independently of the graph structure

itself. It is now worthwhile to investigate extreme cases of irreducibility and flow bounds.

Figure 5.43 illustrates samples for cyclic graphs with loops having entries to and

Chapter 5. Path Analysis 163

0

1

2

3

4

5

6

7

8

9

10

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(s

)

Method

PAAN (ALL, STD)

PAAN (ALL)

IPET

Figure 5.44: Runtime given all nodes bounded (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4,P(bound) = 1.0)

exits from loops at practically all nodes (the exclusion of some nodes stems from the

fact that nodes are restricted to an out-degree of 2 for technical reasons). We can now

observe a significant impact for some of the inputs for paan as well as ipet, and a

noticeable deviation from the reference (paan (all, std)). The reason for the excessively

large time consumption for paan in some cases is due to control flow reconstruction by

prenumbering (cf. Section 5.3.2.5). Nonetheless, on average paan still shows very good

scalability.

As opposed to that, Figure 5.44 shows results for control flow graphs where every

single node is flow bounded. Since every flow bound potentially doubles the number of

states, this is an approximation for the worst-case number of path states. Again, ipet is

comparably slow and yields a high variance. Comparing paan(all) with its reference

paan (all, std) does not show a noticeable difference on average. The reason for this

is that growth in the state space is always limited by scopes and for the root scope only

the longest iteration is of relevance. Moreover, since all paths pass through the same

bottom nodes, the flow bounds are quickly satisfied. Note that paan and ipet do not

necessarily compute identical results here as in the previous cases since the semantics of

both (randomized) flow fact models differ. IPET bounds are relative to specific reference

points while bounds for the proposed path analysis are always relative to specific entries.

5.3.3.7 Conclusion

In this section we proposed a simple and efficient general framework for worst-case

path length computation on general control flow graphs. The approach subsumes many

existing explicit path analyses that are often constrained to specific subproblems. We

provided a formal model supporting non-trivial flow bounds and investigated several

ways to improve performance by avoiding unnecessary computations. We proposed an

extension to the traditional problem of per-task WCET bound computation to compute

bounds to all interior nodes. Along with the formal model, we proposed an efficient

reference implementation. Evaluation suggests excellent scalability even in corner-cases.

Chapter 5. Path Analysis 164

5.3.4 Computing Best-case Execution Time Bounds

A trivial lower bound on the execution time is obviously 0. An improvement is the

computation of just shortest paths, ignoring flow bounds. In this case we could simply

compute SSSP (cf. Algorithm B.15 on page 259). However, this can be fairly imprecise

as lower flow bounds are not taken into account otherwise. In the following we discuss

the adaption of the previous framework from longest paths to shortest paths to compute

BCET bounds with respect to lower flow bounds.

In Section 5.3.4.1 we discuss technical prerequisites. We then define the corresponding

framework in Section 5.3.4.2, evaluate the proposal in Section 5.3.4.3 and conclude the

section in Section 5.3.4.4. We assume acquaintance with the principles of WCET

computation from Section 5.3.3.

5.3.4.1 Prerequisites

In the following we discuss the technical prerequisites for BCET analysis. Basic definitions

from Section 5.3.3.1 on page 131 remain valid. The only semantic changes relate to

the interpretation of node weights ω : V 7→ N0, which now denote lower bounds on the

execution time of individual program points, and flow bounds βπ : Aπ 7→ N0, which now

denote lower bounds in the minimum net flow to model minimal iteration counts. The

underlying algebraic structure is the commutative semi-ring

(N∞,⊥0 ,min,⊥,+, 0) (5.109)

where N∞,⊥0 = N0 ∪ {∞,⊥} with min and neutral element ⊥ for addition, and + with

neutral element 0 for multiplication such that:

min(a, b) :=


minN∞0 (a, b) if a 6= ⊥ ∧ b 6= ⊥

a if a 6= ⊥

b otherwise

(5.110)

a+ b :=

a+N∞0 b if a 6= ⊥ ∧ b 6= ⊥

⊥ otherwise
(5.111)

where minN∞0 denotes minimum and +N∞0 denotes addition in N∞0 . We lift operator min

to path states of the same equivalence class and define:

minπ : ℘(Sπ) 7→ Sπ

minπ(S) ∈ {s ∈ S | ∀s′ ∈ S : δπ(s) = min(δπ(s), δπ(s′))} (5.112)

For an equivalence class S = [s], minπ([s]) denotes a path of minimal length. Otherwise,

all definitions from Section 5.3.3.1 on page 131 continue to be valid.

Chapter 5. Path Analysis 165

5.3.4.2 Framework

In the following we derive the framework for BCET bounds from the previously defined

framework for WCET bounds. First, we show how to compute iterations, then we show

how unrolls are computed in general and the specific differences to WCET bounds for

computing BCET bounds to all interior nodes.

Iterations

In the following we define how scope iterations for best-case path analysis are computed.

The problem of computing shortest iterations has the structure of the semi-lattice:

(Dbcet,>,v,t) (5.113)

where Dbcet = ℘(Sπ) is a set of path states, where Sπ v Sπ
′ ⇔ Sπ ⊆ Sπ

′ and where

Sπ t Sπ ′ := {minπ[s] | [s] ∈ (Sπ ∪ Sπ ′)/
Aπ∼} denotes the set of path states of different

signature, origin and minimal length, according to the equivalence relation defined in

Equation 5.49 on page 132. The corresponding transformer to compute iterations of

minimal length is defined as:

tfbcet : V 7→ (Dbcet 7→ Dbcet)

tfbcet(u) = λS . {(δπ(s) + ω(u), σπ(s) · απ(u), oπ(s)) | s ∈ S} (5.114)

This is identical to the transformer for longest paths (in Equation 5.56 on page 134),

except that weight ω denotes lower bounds on execution costs.

Unlike above, we directly lift the problem to the computation of iterations of minimal

length including all subscopes. To this end, we assume the function

mins̊
µ : V̊ × V 2 7→ N∞,⊥0 (5.115)

to be given such that min̊s
µ(̊s, u, v) evaluates the shortest feasible unroll length in scope

s̊ from node u to node v, and where ∞ denotes unboundedness and ⊥ denotes infeasi-

bility. Then we define a new transformer similar to Equation 5.98, which specifies the

computation of iterations accordingly as:

tf s̊bcet : S̊ × V 2 7→ (Dbcet 7→ Dbcet)

tf s̊bcet(̊s, u, v) =

λS .



id if v ∈ entry(̊t) ∧ (̊t, s̊) ∈ E̊
 δπ(sπ) + l,

σπ(sπ),

oπ(sπ)


∣∣∣∣∣∣∣
sπ ∈ S,
l = mins̊

µ(̊t, u, v)

 if v ∈ exit(̊t) ∧ (̊t, s̊) ∈ E̊

tfbcet(u)(S) otherwise

(5.116)

Chapter 5. Path Analysis 166

The function either computes shortest iterations up to, but not including subscope entries,

extends all iterations by unroll lengths of subscopes for subscope exits, or, otherwise,

just updates path states according to Equation 5.114.

Assuming pred→s̊ as defined in Equation 5.99 on page 150 to denote CFG predecessors

such that subscopes are being “leaped over”, we define path states in a program point

by:

S s̊bcet : V̊ × V 2 ×Aπ 7→ Sπ

S s̊bcet(̊s, s, v, a) =

tf s̊bcet(̊s, s, s)({(0, a, s)}) if v = s⊔{
tf s̊bcet(̊s, u, v)(S s̊bcet(̊s, s, u, a)) | u ∈ pred→s̊ (̊s)(v)

}
otherwise

(5.117)

For a given scope s̊, start and terminal nodes u, v and an initial annotation a, S s̊bcet(̊s, u, v, a)

denotes the set of shortest iterations including unrolls of all subscopes.

As in the case of WCET, we define partitions of S s̊bcet (cf. Section 5.3.3.2) to explicitly

distinguish entry, exit, kernel and direct paths by the functions:

SIbcet : V̊ × V 7→ ℘(Sπ) (5.118)

SObcet : V̊ × V 7→ ℘(Sπ) (5.119)

SKbcet : V̊ 7→ ℘(Sπ) (5.120)

SDbcet : V̊ × V 2 7→ ℘(Sπ) (5.121)

Unrolls

It remains to define min̊s
µ to compute respective unroll lengths. Previous definitions are

straight-forward derivatives of the previous path analysis problem for worst-case path

lengths. For unrolling, we have to take care not to compute shortest path unconditionally

to avoid sacrificing precision by unnecessarily taking direct paths into account.

Figure 5.45: Example CFG to demonstrate BCET underestimation

Example Figure 5.45 illustrates a scope with entry node a and exit node c. Assume a

solitary lower flow bound greater 1 assigned to top node a. Then a direct path from a

to c is feasible (and sound) but underestimates the intended unroll path length by not

saturating the lower bound on admissible flow, which would allow for greater feasible path

lengths by unrolling.

Chapter 5. Path Analysis 167

The problem of computing shortest path unrolls for a single scope corresponds to

mincost flow with node weights and bounds. Formally, we define this as:

min
∑
u∈V

fΣ
out(u)ω(u) (5.122)

s.t. ∀u ∈ V : fΣ
in(u)− fΣ

out(u) = bu

bu =


q if u = s

−q if u = t

0 otherwise

∀u ∈ V : `(u) ≤ f(u) ≤ β(u)

Reduction of path states to flow networks has been thoroughly discussed for WCET in

Section 5.3.3.2 on page 133 and is not repeated here. As opposed to the WCET-case, the

objective function is to be minimized. As before, ` denotes flow demand to guarantee

existence of feasible entry and exit paths and β denotes an upper flow bound. Note

that although β is an upper bound in a corresponding flow network, it is nonetheless a

lower bound for the model of iteration repetitions in scope unrolls. Soundness remains a

matter of correct annotation. Consequently, testing for iteration feasibility remains in

principle unchanged.

Let f1
ω (Equation 5.79) and fkω (Equation 5.80) be defined as above. Let σ−1

δπ
: ℘(Sπ) 7→

S∗π order a set of path states sπ ∈ Sπ in ascending length δπ(sπ). Then, for a scope s̊,

fKω := λs̊ . Jσ−1
δπ

(SKbcet(̊s))K(f
k
ω) (5.123)

denotes an ordered composition of fkω . Further let

F iokω := λ(̊s, u, v) .
{
fKω (̊s) ◦ f1

ω(so) ◦ f1
ω(si)

∣∣ si ∈ SIbcet(̊s, u), so ∈ SObcet(̊s, v)
}

(5.124)

denote the set of all possible evaluations for non-direct unrolls from a node u to a node

v, and let

F dω := λ(̊s, u, v) .
{
f1
ω(sd)

∣∣ sd ∈ SDbcet(̊s, u, v)
}

(5.125)

denote the set of all possible evaluations for all direct paths from node u to node v.

Let f0 = Aπ × {0} denote initial flow. Then we denote the set of all unroll distances,

partitioned by type, by:

Riokµ := λ(̊s, u, v) .
{
ω
∣∣∣ (ω, f, βπ) = fω(0, f0, βπ), fω ∈ F iokω (̊s, u, v)

}
(5.126)

Rdµ := λ(̊s, u, v) .
{
ω
∣∣∣ (ω, f, βπ) = fω(0, f0, βπ), fω ∈ F dω (̊s, u, v)

}
(5.127)

Theorem 5.72 (Minimal Unroll) Let s̊ ∈ V̊ be a scope, let u ∈ entry(̊s) and v ∈
exit(̊s). Then shortest unroll length (of maximal flow) for a scope s̊ ∈ V̊ and entry and

Chapter 5. Path Analysis 168

exit nodes u, v ∈ V , respectively, is defined as:

mins̊
µ : V̊ × V 2 7→ N∞,⊥0

mins̊
µ(̊s, u, v) =

minRiokµ (̊s, u, v) if minRiokµ (̊s, u, v) 6= ⊥

minRdµ(̊s, u, v) otherwise
(5.128)

This represents the precise best-case path length for a scope and a pair of source and sink

nodes, under the given flow bound model.

Proof. Theorem 5.69 on page 151 continues to hold except for the fact that we are now

maximizing repetition counts of shortest iterations and we minimize the total sum of

lengths conditionally such that either the sum of kernels in descending order of lengths

is feasible, and thus denotes a minimal length unroll, or at least a shortest direct path is

feasible.

BCET to Interior Points

Similarly to the worst-case problem (cf. Section 5.3.3.4), we are also interested in path

lengths to all interior nodes of a given CFG. So far, min̊s
µ denotes the best-case path

length from entry to exit of a given scope (including all subscopes). In particular, if

applied to the root scope, it denotes a lower bound on the BCET of an entire task.

Unfortunately, it is not as straight-forward as previously to lift the problem definition to

computing best-case path lengths to arbitrary interior nodes. Care has to be taken not

to overestimate the lower bound on path length “inadvertently”. Recall semantics of

flow bounds our case here. Informally, once a scope is “entered”, flow bounds denote

a minimum number of repetitions of individual program points before it can be “left”

again. Inductively, we can thus compute a time bound when enclosing scopes are left.

However, if an interior point is a terminal node of path computation, its enclosing

scopes are never left and, hence, annotation semantics become unclear. We address this

“under-specification” by guaranteed underestimation in these cases. Note that in the

WCET-case, overestimation is implicit.

Recall that iteration lengths computed by tf s̊bcet (Equation 5.116) include best-case

path lengths of all subscopes. To compute absolute path lengths to interior points, we

safely approximate lower bounds for the final computation (cf. Equation 5.106) in the

current scope by searching for shortest paths instead of best-case paths.

To this end, we define an additional path evaluation such that

F ioω := λ(̊s, u, v) .
{
f1
ω(so) ◦ f1

ω(si)
∣∣ si ∈ SIbcet(̊s, u), so ∈ SObcet(̊s, v)

}
(5.129)

denotes the set of all feasible evaluations for an entry and an exit path, respectively. Let

F dω be defined as in Equation 5.125. Analogously, we define another set of all unroll

Chapter 5. Path Analysis 169

distances as:

Rioµ := λ(̊s, u, v) .
{
ω
∣∣ (ω, f, βπ) = fω(0, f0, βπ), fω ∈ F ioω (̊s, u, v)

}
(5.130)

where f0 denotes initial flow. Let Rdµ be defined as in Equation 5.127.

Intuitively, the shortest feasible path length is either denoted by a direct path or the

shortest feasible unroll. Therefore, given a scope s̊ ∈ V̊ and entry/exit nodes u, v ∈ V ,

we define:

mins̊,-1
µ : V̊ × V × V 7→ N∞,⊥0

mins̊,-1
µ (̊s, u, v) =

minRdµ(̊s, u, v) minRdµ(̊s, u, v) 6= ⊥

minRioµ (̊s, u, v) otherwise
(5.131)

Finally, we define a function min?µ(̊s, s, t̊, t), which computes the minimal path length

from source scope s̊ and node s to a target scope t̊ and node t, by computing the shortest

path to all entries of t̊ and the shortest path within t̊ to t as:

min?µ : S̊ × V × S̊ × V 7→ N∞,⊥0

min?µ(̊s, s, t̊, u) =
min

{
min?µ(̊s, s, ů, i) + mins̊,-1

µ (̊t, i, u)

∣∣∣∣∣ i ∈ entry(̊s),

ů = par(̊t)

}
if s̊ 6= t̊

mins̊,-1
µ (̊s, s, u) otherwise

(5.132)

5.3.4.3 Evaluation

In the following we evaluate precision and performance of our approach to BCET

estimation. The test environment is identical to that of the WCET evaluation in

Section 5.3.3.6 on page 159 and we use a similar method. For precision, we evaluate

results from the MRTC benchmark suite [97]. Performance is evaluated by means of

randomized graphs to obtain large sample sets with controlled characteristics. The

implementation is an unoptimized derivative of the WCET reference algorithm from

Section 5.3.3.5 on page 153.

MRTC

We evaluate a subset of MRTC benchmarks to demonstrate the loss of precision of BCET

estimates over shortest-path execution time (SPET) estimates. A qualitative comparison

of BCET to WCET yields obvious results, which is why we compare to SPET. For the

latter, we use a modified implementation of BCET that consistently gives priority to

direct paths and only falls back to full unrolling of at most a single iteration if no feasible

direct path exists. We do not provide any details on SPET here, as it is straight-forward.

Averages are computed by the arithmetic mean.

Chapter 5. Path Analysis 170

5287 %
0

25 000

50 000

75 000

100 000

125 000

150 000

175 000

qu
rt

pe
tr
in

et

lc
dn

um

bi
na

ry
se

ar
ch

ex
pi

nt
sq

rt

in
se

rt
so

rt

pr
im

e

m
in

ve
r

fib
ca

ll

st
at

em
at

e
cr

c

co
ve

r
fft

1

lu
dc

m
p

co
m

pr
es

sd
at

a fir
fd

ct

bs
or

t1
00

jfd
ct

in
t

lm
s

ed
n

nd
es

co
un

tn
eg

at
iv
e

ad
pc

m
en

co
de

r

ad
pc

m
de

co
de

r

m
at

m
ul

t st

Name

R
at

io
(%

)

Figure 5.46: Improvement (%) in precision of BCET over shortest-path estimates

47 %

0

10

20

30

40

50

60

70

80

90

100

qu
rt

st
at

em
at

e

pe
tr
in

et

lc
dn

um
pr

im
e

sq
rt

lm
s

ex
pi

nt

in
se

rt
so

rt

bi
na

ry
se

ar
ch

fib
ca

ll

co
un

tn
eg

at
iv
e

fd
ct fir cr

c

m
at

m
ul

t
nd

es

jfd
ct

in
t

bs
or

t1
00

co
m

pr
es

sd
at

a

lu
dc

m
p

fft
1 st

ed
n
co

ve
r

m
in

ve
r

ad
pc

m
de

co
de

r

ad
pc

m
en

co
de

r

Name

R
at

io
(%

)

Figure 5.47: Program points (%) with non-deviating time estimates

Figure 5.46 illustrates the ratio of precision between BCET and SPET as box plots

showing upper, lower and average ratios for all program points within a single benchmark.

Benchmarks are ordered by ascending average difference. For all benchmarks from qurt

(no difference) to st (49 × 103 % underestimation on average), spet underestimates

BCET by ∼5 387 % on average over all benchmarks. All benchmarks yield a lower ratio

bound of 0 %: there always exist program points that do not differ for spet and bcet.

For upper ratio bounds, underestimation of up to 1729× 103 % (matmult) occurs. This

suggests that trivial techniques to compute lower BCET bounds are usually impractical.

Figure 5.47 illustrates the ratio on the number of program points whose time bounds

do not differ for bcet and spet, respectively. On average, 47 % of points are not affected.

Benchmark qurt yields equal results on all program points, whereas for adpcm encoder

only 1 % of estimates do not differ.

Chapter 5. Path Analysis 171

0

250

500

750

1 000

1 250

1 500

1 750

2 000

2 250

2 500

2 750

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(m

s)
Method

BCET

SPET

Figure 5.48: Runtime for non-degenerated CFG (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4)

Randomized Graphs

Real-time benchmarks for qualitative comparison are not well suited for a quantitative

comparison of performance due to their limited size. So we evaluate randomized CFGs

from a size of approximately 100 to 60 000 nodes. As before, randomization parameters

for control flow constructs and annotations are given in Table 5.2 on page 118. Note that

we employed unoptimized reference implementations for both measurements.

In Figure 5.48 we relate execution time in ms to graph sizes for a “typical” distribution

of control flow constructs (cf. parameters in caption), and we generate just a single bound

per loop. bcet is denoted by the upper line of best fit. As an be observed, spet is only

marginally faster then bcet due to simplified unrolling. For 61 396 nodes, spet takes

1 476 ms and bcet takes 2 124 ms. Consequently, from a performance point-of-view, a

simpler but much more imprecise estimation of lower time bounds is barely justified

even for very large graph instances. Similar to WCET evaluations, we did not observe

significant variations for different randomization parameters.

5.3.4.4 Conclusion

In this section we derived a framework for the computation of best-case path lengths

from the model for worst-case path lengths. In particular, we showed that the problem

is not trivially derivable, and discussed and addressed the differences. Optimizations and

the reference implementation as proposed previously remain valid with the necessary

changes. Also complexity characteristics are very similar, which is why we do not repeat

performance evaluation here.

5.3.5 Computing Latest Execution Time Bounds

In the two previous sections, we have been concerned with the computation of worst-case

and best-case path lengths from source to terminal program points. Unfortunately, they

Chapter 5. Path Analysis 172

suffer from an inherent imprecision: What we computed are path lengths under the

assumption that task execution actually terminates in these points. In this section, we

address the problem of computing time bounds for interior program points under the

constraint that global tasks exits remain reachable under given flow bounds.

Definition 5.73 (Latest Execution Time) Latest execution time (LET) denotes a

bound on the worst-case (best-case) execution time of a program point such that there

remains a feasible path to the terminal node of the corresponding task.

Figure 5.49: Example CFG to demonstrate difference between WCET and LET

Example Figure 5.49 illustrates the difference between regular worst-case bounds and

latest execution worst-case time bounds for a task composed of a single loop. We assume

∀u ∈ V : ω(u) = 1 and βπ(a0) = 2, and source node a. The worst-case path to node

c is |(abcbc)| = 5. For the latest execution time bound, reachability of terminal node

d must be guaranteed. Hence, the latest execution time path is |(abc)| = 3, since path

(abcbd) ⊇ (abc) must remain feasible.

In the following we restrict the discussion to worst-case latest execution times. As

before, we first introduce technical prerequisites which include the state space and

the underlying arithmetic in Section 5.3.5.1. We discuss the underlying framework in

Section 5.3.5.2, followed by an evaluation in Section 5.3.5.3 and concluding remarks

in Section 5.3.5.4. As usual, we assume acquaintance with the principles of WCET

computation from Section 5.3.3.

5.3.5.1 Prerequisites

Sdπ Path states
sdπ = (δdπ,∆

d
π, σ

d
π, o

d
π) ∈ Sdπ Path state

δdπ : Sdπ 7→ N∞,⊥0 Path length

∆d
π : Sdπ 7→ (V 7→ N∞,⊥0) Path length map

σdπ : Sdπ 7→ Aπ
∗ Path signature

odπ : Sdπ 7→ V Path origin

Table 5.4: Additional definitions for latest execution time analysis

In the following we discuss the technical prerequisites for LET analysis by defining

a new state space and the underlying arithmetic. Basic definitions from Table 5.3 on

Chapter 5. Path Analysis 173

page 132 remain valid except for the replacement of path states. Here, we represent

paths by means of path states (δdπ,∆
d
π, σ

d
π, o

d
π) = sdπ ∈ Sdπ, which encode path length

δdπ : Sdπ 7→ N∞,⊥0 , an additional mapping of nodes to path lengths ∆d
π : Sdπ 7→ (V 7→ N∞,⊥0),

signature σπ : Sdπ 7→ Aπ
∗, which denotes a sequence of annotations along paths, and

origin of paths oπ : Sdπ 7→ V .

Accordingly, we discriminate path states Sdπ by the equivalence relation defined as:

Aπ∼ : Sdπ × Sdπ

s
Aπ∼ s′ ⇔ σdπ(sdπ) = σdπ(sdπ

′
) ∧ odπ(sdπ) = odπ(sdπ

′
) (5.133)

The underlying algebraic structure remains to be the commutative semi-ring

(N∞,⊥0 ,max,⊥,+, 0) (5.134)

as in the WCET-case (Equation 5.50 on page 132). As before, we also lift operator max

to path states of the same equivalence class. Similar to function maxπ (Equation 5.53

on page 133), we determine the path state of maximal length. In addition, we join all

length maps ∆d
π of all states. Hence, we define:

maxlet
π : ℘(Sdπ) 7→ Sdπ

maxlet
π (S) =

(
max
s′∈S

δdπ(s′),
⋃
s′∈S

∆d
π(s′), σdπ(s), odπ(s)

)
: s ∈ S (5.135)

For an equivalence class S = [s] according to Equation 5.133, maxlet
π ([s]) denotes a path

of maximal length.

5.3.5.2 Framework

We now define the analysis framework. Except for the newly introduced additional

mapping of path lengths ∆d
π, it remains similar to the one defined for the computation

of simple worst-case length in Section 5.3.3.

First we define how iterations are obtained. Then we extend semantics to complete

unrolls and we discuss how LET to all interior points are computed.

Iterations

As before, the problem of computing iteration lengths has the structure of the semi-lattice:

(Dlet,>,v,t) (5.136)

where Dlet = ℘(Sdπ) is a set of path states such that for path states S, S′ ∈ Dlet, where

S v S′ ⇔ S ⊆ S′ and where S t S′ := {maxlet
π [s] | [s] ∈ (S ∪ S′)/Aπ∼} denotes the set of

path states of different signature, origin, maximal length and joined length maps.

Chapter 5. Path Analysis 174

Figure 5.50: Example of LET state propagation

We define a transformer which does not only update path lengths and annotations,

but which also records path length to the current node:

tf let : V 7→ (Dlet 7→ Dlet)

tf let(u) = λS .




δdπ(s) + ω(u),

∆d
π(s)[u→ δdπ(s) + ω(u)],

σdπ(s) · απ(u),

odπ(s)



∣∣∣∣∣∣∣∣∣∣∣
s ∈ S


(5.137)

Example We assume a single scope without descendants and define path states in a

program point as:

Slet : V
2 ×Aπ 7→ Sdπ

Slet(s, v, a) =

tf let(u)({(0, a, s)}) if v = s⊔
{tf let(u)(Slet(s, u, a)) | u ∈ pred→(v)} otherwise

(5.138)

Let απ = ∅ and ∀u ∈ V : ω(u) = 1, then Figure 5.50 illustrates the corresponding states

per node u ∈ V for Slet(a, u, ε), where maxlet
π Slet(a, u, ε) denotes the longest path to u

including all maximal path lengths to individual nodes on the path.

Besides path lengths, states now represent information on whether a node is on a set

of paths and the maximal path length from a source node to these respective nodes.

We now define the computation of iterations with scope descendants. We assume a

function

maxs̊
µlet : V̊ × V 3 7→ N∞,⊥0 (5.139)

such that max̊s
µlet (̊s, u, v, w) evaluates to the longest feasible unroll length in scope s̊ from

node u (source) to node w (target) such that node v (sink) remains reachable. As usual

∞ denotes unboundedness and ⊥ denotes infeasibility.

First, we define an additional transformer to handle entry into a scope and which

differs from tf let by not updating distances and annotations, but which only updates the

Chapter 5. Path Analysis 175

length map with the distance to the current node as:

tfinlet : V 7→ (Dlet 7→ Dlet)

tfinlet(u) = λS .




δdπ(s),

∆d
π(s)[u→ δdπ(s)],

σdπ(s),

odπ(s)



∣∣∣∣∣∣∣∣∣∣∣
s ∈ S


(5.140)

Second, we define a transformer to handle exit from a scope which updates a set of path

states by the unroll distance of a given scope as:

tfoutlet : S̊ × V 2 7→ (Dlet 7→ Dlet)

tfoutlet (̊s, u, v) = λS .




δdπ(sdπ) + l,

∆d
π(sdπ)[v → δdπ(s) + l],

σdπ(sdπ),

odπ(sdπ)



∣∣∣∣∣∣∣∣∣∣∣
sdπ ∈ S,

l = maxs̊
µlet (̊s, u, v, v)


(5.141)

Finally, we compose the general transformer which incorporates the different cases (entry,

exit and default transformation) to compute iteration lengths including subscopes as:

tf s̊let : S̊ × V 2 7→ (Dlet 7→ Dlet)

tf s̊let(̊s, u, v) = λS .


tfinlet(u)(S) if v ∈ entry(̊t) ∧ (̊t, s̊) ∈ E̊

tfoutlet (̊t, u, v)(S) if v ∈ exit(̊t) ∧ (̊t, s̊) ∈ E̊

tf let(u)(S) otherwise

(5.142)

For a node u and its predecessor v, if v is a scope entry then we only update the length

map with the distance up to v. If v is a scope exit then we compute a maximal unroll of

the subscope and update path states accordingly. Otherwise tf let applies. Function tfinlet
ensures that the length mapping contains all relevant nodes for a given scope. Function

tfoutlet updates the length mapping accordingly. Note that max̊s
µlet (̊t, u, v, v) = max̊s

µ(̊t, u, v)

(cf. Equation 5.105 on page 151), which simply denotes the maximal feasible unroll from

node u to node v.

Assuming pred→s̊ (Equation 5.99 on page 150) to denote CFG predecessors such that

subscopes are being “leaped over”, we define path states in a program point by:

S s̊let : V̊ × V 2 ×Aπ 7→ Sdπ

S s̊let(̊s, s, v, a) =

tf s̊let(̊s, s, s)({(0, ∅, a, s)}) if v = s⊔{
tf s̊let(̊s, u, v)(S s̊let(̊s, s, u, a)) | u ∈ pred→s̊ (̊s)(v)

}
otherwise

(5.143)

Chapter 5. Path Analysis 176

(a) Target node on exit (b) Target node on kernel (c) Target node on entry

Figure 5.51: Different locations of reference nodes

For a given scope s̊, start and terminal nodes u, v and an initial annotation a, S s̊let(̊s, u, v, a)

denotes the set of maximal iterations including unrolls of all subscopes. Note that

S s̊let(̊s, u, v, a) = S s̊wcet(̊s, u, v, a).

Finally, we define partitions of S s̊let as in the case of WCET (cf. Section 5.3.3.2) such

that

SIlet : V̊ × V 7→ ℘(Sdπ) (5.144)

SOlet : V̊ × V 7→ ℘(Sdπ) (5.145)

SKlet : V̊ 7→ ℘(Sdπ) (5.146)

SDlet : V̊ × V 2 7→ ℘(Sdπ) (5.147)

denote entry, exit, kernel and direct paths, respectively.

Note that a significant optimization in practice is to avoid mapping individual path

distances in the root scope (acyclic control flow), since distances can directly be derived

from path lengths δdπ without unrolling if feasibility of the global exit is guaranteed.

Unrolls

So far, we have computed worst-case path lengths exactly as in the standard case,

albeit propagating additional path length information. We now address the problem of

computing unrolls of maximal length under the condition that scope entries and exits

remain feasible.

Assume execution of a loop represented by the scopes in Figure 5.51, which shows

different placements of a target node u. We further assume all nodes are reachable within

the CFG. In particular we can reach the exit from the entry. Then, if target node u is

on an exit path (Figure 5.51a), we necessarily executed the entry paths and all kernels

prior to reaching u, all contributing to its distance from the entry. If the u is on one of

the kernels (Figure 5.51b), then the maximal distance to u is given if the entry path

and all kernels, except for the very last kernel repetition that can reach u, are executed

prior to reaching u, and finally the exit path is taken. If u is only on the entry path

(Figure 5.51c), then its distance is simply the distance from the entry to u, while all

kernels and the exit path are still to be executed, but which do not contribute to the

distance of u.

Chapter 5. Path Analysis 177

In the following we refine iteration evaluations with additional parameters to extend

semantics of their original versions for WCET from Section 5.3.3.2.

We extend f1
ω (Equation 5.79) with a predicate p ∈ {0, 1} to prevent length accumu-

lation while retaining semantics of pushing unit flow along a path denoted by a path

state s ∈ Sdπ:

f1,p
ω := λ(s, p) . λ(ω, f, c) .



ω + δdπ(s)× p,
setf (f, 1, σdπ(s)),

c

 if ω 6= ⊥ ∧ testf (c, f, σdπ(s)) > 0

(⊥, ∅, c) otherwise

(5.148)

In addition, we define another variant of f1
ω (Equation 5.79) such that path length is not

denoted by the entire path represented by a path state s ∈ Sdπ but only by its subpath to

a node u ∈ V :

f1,u
ω := λ(s, u) . λ(ω, f, c) .



ω + ∆d
π(s)(u),

setf (f, 1, σdπ(s)),

c

 if ω 6= ⊥ ∧ testf (c, f, σdπ(s)) > 0

(⊥, ∅, c) otherwise

(5.149)

Note that we assume u /∈ def(∆d
π(so)) ⇔ ∆d

π(s)(u) = ⊥ and recall that ω + ⊥ = ⊥
(cf. Section 5.3.3.1). This implies that a test fails, if either there is no admissible flow

left or if the target node is not on the path denoted by the respective path state.

We also define a predicated version of fkω (Equation 5.80) similar to f1,p
ω above:

fk,pω := λs . λp . λ(ω, f, c) .



ω + δdπ(s)× testf (c, f, σπ(s))× p,
setf (f, testf (c, f, σπ(s)), σdπ(s)),

c

 if ω 6= ⊥

(⊥, ∅, c) otherwise

(5.150)

Analogously to fKω (Equation 5.81), we lift fk,pω to a sequence of kernels ordered by

descending length:

fK,pω := λ(̊s, p) . Jσδdπ(SKlet(̊s))K(f
k,p
ω (p)) (5.151)

Predicates in all versions allow to test for feasibility while preventing length accumulation.

From these definitions, we can now construct an evaluation that covers the cases illustrated

in Figure 5.51.

With these extended tests, we now construct evaluations for the different cases

discussed earlier.

Chapter 5. Path Analysis 178

In the first case, target node u is assumed to be on an exit path and we define:

fo
′ik
ω := λ(̊s, si, so, u) . fK,pω (̊s, 1) ◦ f1,p

ω (si, 1) ◦ f1,u
ω (so, u) (5.152)

We test whether node u is on the exit path (state so). If it is not or if the entire path is

infeasible, f i
′ok fails. Otherwise, the full path lengths of the entry path (state si) and all

kernels are accumulated to the distance of u in the exit path.

The second test models the case when the target node is on a kernel and we define:

foik
′

ω := λ(̊s, si, so, sk, u) . fK,pω (̊s, 1) ◦ f1,u
ω (sk, u) ◦ f1,p

ω (si, 1) ◦ f1,p
ω (so, 0) (5.153)

We test for exit path (state so) feasibility without accounting for its lengths, test for

entry path (state si) feasibility including its complete path length, test a kernel (state

sk) for feasibility and whether it contains target node u. If it does not, the test fails.

Otherwise, we accumulate the path length to node u and all remaining feasible kernel

lengths.

Thirdly, we test whether the target node is on an entry path, and define:

foi
′k

ω := λ(si, so, u) . f1,u
ω (si, u) ◦ f1,p

ω (so, 0) (5.154)

This follows the familiar pattern: We test for exit path (state so) feasibility without

accumulating path length. Then entry path (state si) feasibility is given if and only of

the path is feasible and target node u is on this path. If so, we account for its length.

The composition of all tests (cf. Equation 5.82 on page 143), for an entry node u, an

exit node v and a target node w, is then defined by:

F oikω := λ(̊s, u, v, w).{
fo
′ik
ω (̊s, si, so, u)

∣∣∣ si ∈ SIlet(̊s, u), so ∈ SOlet(̊s, v)
}

∪
{
foik

′
ω (̊s, si, so, sk, u)

∣∣∣ si ∈ SIlet(̊s, u), so ∈ SOlet(̊s, v), sk ∈ SKlet(̊s)
}

∪
{
foi
′k

ω (si, so, u)
∣∣∣ si ∈ SIlet(̊s, u), so ∈ SOlet(̊s, v)

}
(5.155)

By construction, this covers all possible cases for unrolling. Note that we chose this

scheme for clarity. In practice, we can optimize by removing redundancy thoroughly.

As usual, we also have to account for direct paths. The set of all tests is defined as:

F dω := λ(̊s, u, v, w) .
{
f1,u
ω (sd, w)

∣∣ sd ∈ SDwcet(̊s, u, v)
}

(5.156)

Either target node w is on a feasible direct path, then we account for its relative path

length, or the tests fail.

Chapter 5. Path Analysis 179

(a) Example scope
with annotation (b) Corresponding state space

Figure 5.52: Example of path states for LET computations

Finally, let f0 = Aπ × {0} denote initial flow. Then the set of all unroll distances is

defined as:

Rµ :=λ(̊s, u, v, w).{
ω
∣∣∣ (ω, f, βπ) = fω(0, f0, βπ), fω ∈ F oikω (̊s, u, v, w) ∪ F dω (̊s, u, v, w)

}
(5.157)

Theorem 5.74 (Latest Execution Time Unroll) The maximal unroll length for a

scope s̊ ∈ V̊ , entry and exit nodes u, v ∈ V and a target node w ∈ V is denoted by:

maxs̊
µlet : V̊ × V 3 7→ N∞,⊥0

maxs̊
µlet (̊s, u, v, w) = maxRµ(̊s, u, v, w) (5.158)

This represents the precise worst-case path length for a scope to a dedicated target node

w, given an entry node u and an exit node v that must remain reachable under the given

flow bound model.

Proof. By construction, all possible cases for the target node w are covered explicitly

(cf. Figure 5.51). For just entry node u and exit node v, correctness of the standard

WCET case applies.

Example Figure 5.52a illustrates an example scope s̊ with entry a, exit f and a single

annotation in node a. Figure 5.52b depicts the corresponding states space (cf. Figure 5.50)

where only the non-faded states are of relevance in the following. We assume βπ(a1) = 2,

unit weight ω and compute LET from node a to node d with max̊s
µlet (̊s, a, f, d). Partitions

of states S s̊let yield:

SIlet(̊s, a) = {si} = {(5, {. . . , d→ 3, f → 2, g → 5}, (. . .), a)}

SOlet(̊s, f) = {so} = {(2, {. . . , f → 2}, (. . .), a)}

SKlet(̊s) = {sk} = {si}

SDlet(̊s, a, f) = {sd} = {so}

Chapter 5. Path Analysis 180

Composition of evaluation semantics yields:

F oikω (̊s, a, f, d) ∪ F dω (̊s, a, f, d)

=
{
fo
′ik
ω (̊s, si, so, d), foik

′
ω (̊s, si, so, sk, d), foi

′k
ω (si, so, d)

}
∪
{
f1,u
ω (̊s, so, d)

}

=



fK,pω (̊s, 1) ◦ f1,p
ω (si, 1) ◦ f1,u

ω (so, d),

fK,pω (̊s, 1) ◦ f1,u
ω (sk, d) ◦ f1,p

ω (si, 1) ◦ f1,p
ω (so, 0),

f1,u
ω (si, d) ◦ f1,p

ω (so, 0),

f1,u
ω (sd, d)


= {fo, fk, fi, fd}

Let f0 = Aπ × {0} denote initial flow. Evaluation of tests fo, fk, fi and fd starting with

path lengths of 0, initial flow f0 and flow bounds βπ then yields:

{fo(0, f0, βπ), fk(0, f0, βπ), fi(0, f0, βπ), fd(0, f0, βπ)}

=
{
. . . , f1,u

ω (sd, d)(0, f0, βπ)
}

(direct)

=
{
. . . , (f1,u

ω (si, d) ◦ f1,p
ω (so, 0))(0, f0, βπ)

}
∪ {(⊥, f, βπ)}

(entry)

=
{
. . . , (fK,pω (̊s, 1) ◦ f1,u

ω (sk, d) ◦ f1,p
ω (si, 1) ◦ f1,p

ω (so, 0))(0, f0, βπ)
}

∪
{

(3, f ′, βπ), (⊥, f, βπ)
} (kernel)

=
{

(fK,pω (̊s, 1) ◦ f1,p
ω (si, 1) ◦ f1,u

ω (so, d))(0, f0, βπ)
}

∪
{

(⊥, f ′, βπ), (3, f ′, βπ), (⊥, f, βπ)
} (exit)

=
{

(⊥, f, βπ), (⊥, f ′, βπ), (3, f ′, βπ), (⊥, f ′, βπ)
}

where f = {aa0 → 2, a1 → 2} and f ′ = {aa0 → 1, a1 → 1}. Consequently, the maximal

distance to node d such that scope s̊ can be entered and left through nodes a and f ,

respectively, equals:

maxs̊
µlet (̊s, a, f, d) = maxRµ = max{⊥,⊥, 3,⊥} = 3

Corollary 5.75 For the given scenario (WCET computation), let 0̊ ∈ V̊ be the root

scope, and let s ∈ entry(̊s) and t ∈ exit(̊s) denote global entry and exit, respectively.

Then by construction max̊s
µlet (̊0, s, t, t) = max̊s

µ(̊0, s, t), where max̊s
µ denotes the WCET

bound according to Theorem 5.69.

Proof. max̊s
µlet denotes the worst-case path length from an entry to an exit such that

path length to a designated target node is maximized. Exit and target coincide.

LET to Interior Points

We are now concerned with the computation of absolute LET path lengths. As before,

the intuition for computing absolute path lengths is to recursively compute path lengths

from entries of scopes to entries of their respective descendants as offsets to the final path

Chapter 5. Path Analysis 181

length computation within the scope containing the target node (cf. Section 5.3.3.4). For

LET, we must guarantee that at least one exit of each descending scope remains feasible

such that there remains a feasible path from the target node to the global exit.

Figure 5.53: Example scenario for LET to interior nodes

Example To support this intuition, consider Figure 5.53. We assume nodes a and

d denote global entries and exits, respectively. Our intent is to compute an abso-

lute LET path length from node a to node u. Then max̊s
µlet (̊0, a, d, b) denotes an off-

set to scope 1̊ for entry b such that global exit d remains reachable. Consequently,

max̊s
µlet (̊0, a, d, b) + max̊s

µlet (̊1, b, c, u) denotes the absolute path length to node u, while

global exit d is guaranteed to be reachable from entry b. Reachability from exit c to exit d

is implicitly given by construction.

Lemma 5.76 (Feasible Entries) Given a scope s̊ and its immediate parent t̊. Let

b ∈ entry(̊s), c ∈ exit(̊s), a ∈ entry(̊t) and d ∈ exit(̊t). Further, we assume that all paths

from entry a to exit d must pass through entry b and exit c. Then entry b is only feasible

if max̊s
µlet (̊t, a, d, b) is feasible. In particular, entry a is feasible, too.

Proof. By definition of max̊s
µlet .

Lemma 5.77 (Feasible Exits) Let prerequisites be given as in Lemma 5.76. Then exit

c is only feasible if max̊s
µlet (̊t, a, d, c) is feasible. In particular, exit d is feasible, too.

Proof. By definition of max̊s
µlet . In particular, tfoutlet (cf. Definition 5.141) requires

max̊s
µlet (̊s, b, c, c) to yield a feasible solution.

Consequently, computing maximal unroll lengths of a scope s̊ guarantees both feasible

entries and exits to and from descending scopes while implicitly guaranteeing reachability

of exits from entries of s̊.

We define a function max?
µlet (̊s, s, t, t̊, u), which computes the (worst-case) LET path

length from source scope s̊, with entry node s and exit node t to a target scope t̊ and

node u by computing the maximal path length to all entries of t̊ from all entries of

its immediate parent scope and the maximal unroll length within t̊ to u such that its

Chapter 5. Path Analysis 182

5 %

0

10

20

30

40

50

pr
im

e st

bs
or

t1
00 cr

c

ex
pi

nt

st
at

em
at

e
lm

s
ed

n
co

ve
r

co
m

pr
es

sd
at

a

jfd
ct

in
t

fib
ca

ll
qu

rt
nd

es

co
un

tn
eg

at
iv
e

m
at

m
ul

t
fd

ct

ad
pc

m
en

co
de

r

ad
pc

m
de

co
de

r fir

in
se

rt
so

rt

lu
dc

m
p

lc
dn

um

ja
nn

e
co

m
pl

ex

m
in

ve
r

sq
rt fft

1

bi
na

ry
se

ar
ch

Name

R
at

io
(%

)

Figure 5.54: Improvement (%) in precision of LET over standard WCET estimates

respective exits are feasible, as:

max?µlet : V̊ × V 2 × V̊ × V 7→ N∞,⊥0

max?µlet (̊s, s, t, t̊, u) =
max

max?
µlet (̊s, s, t, ů, i) + max̊s

µlet (̊t, i, o, u)

∣∣∣∣∣∣∣
i ∈ entry(̊s),

o ∈ entry(̊s),

ů = par(̊t)

 if s̊ 6= t̊

max̊s
µlet (̊s, s, t, u) otherwise

(5.159)

5.3.5.3 Evaluation

In the following we compare our approach to LET estimation against the “standard”

WCET analysis we proposed in Section 5.3.3. To this end, we use a setup as in

Section 5.3.3.6 on page 159. We evaluate precision by comparison on benchmarks from

the MRTC benchmark suite [97] and performance by means of randomized graphs

to obtain large sample sets. Averages are computed by the arithmetic mean. The

implementation is a derivative of the WCET reference algorithm from Section 5.3.3.5.

MRTC

We evaluate a subset of MRTC benchmarks to demonstrate the benefits of LET analysis

on existing scenarios. Figure 5.54 illustrates the ratio of precision between standard

WCET (wcet) and LET (let) analyses for the given benchmarks as box plots depicting

upper, lower and average ratio values. Precisely, the ratios denote the difference in WCET

estimates per program point in loops (other program points cannot have deviating time

bounds). The diagram is ordered by the average ratio of improvement of let over

wcet. For all benchmarks from prime (1.4 % average improvement) to binarysearch

(22 % average improvement), we obtain 5 % more precise results for let on average over

all benchmarks. All benchmarks yield a lower ratio bound of 0 %: there always exist

Chapter 5. Path Analysis 183

19 %

0

10

20

30

40

50

60

70

80

90

pr
im

e

bs
or

t1
00 fd

ct

jfd
ct

in
t

lu
dc

m
p

ed
n

ex
pi

nt

fib
ca

ll

m
in

ve
r

co
m

pr
es

sd
at

a

in
se

rt
so

rt

bi
na

ry
se

ar
ch st

co
un

tn
eg

at
iv
e

cr
c

m
at

m
ul

t fir

ja
nn

e
co

m
pl

ex
qu

rt fft
1

sq
rt

lm
s

ad
pc

m
de

co
de

r
nd

es

ad
pc

m
en

co
de

r

lc
dn

um
co

ve
r

st
at

em
at

e

Name

R
at

io
(%

)

Figure 5.55: Program points (%) with non-deviating time estimates

program points that do not profit from let. For upper ratio bounds, improvements of

up to 50 % (adpcm encoder, adpcm decoder) an be achieved. Figure 5.55 illustrates

quantitative differences as a percentage of program points within loops that do not differ.

On average, 19 % of program points do not yield improved estimates. Benchmark prime

correlates with the qualitative result in Figure 5.54 in that 86 % of program points do

not differ at all. For binarysearch, correlation is low: Although it yields the greatest

qualitative average difference, 15 % of program points did not differ. As opposed to that,

for benchmark statemate, just 1 % of program points yield identical time bounds.

Randomized Graphs

Real-time benchmarks for the qualitative comparison are not well suited for a quantitative

comparison of performance due to their limited size. Rather, we evaluate by scaling graph

sizes of approximately 100 to 50 000 nodes in size. As before, randomization parameters

for control flow constructs and annotations are given in Table 5.2 on page 118. It shall

be noted that we employed unoptimized reference implementations for the following

evaluations.

In Figure 5.56 we relate graph sizes with execution times (ms) given a “typical”

distribution of constructs (cf. parameters in caption), and we generate just a single

bound per loop. As can be seen, let scales only marginally worse than wcet due

to additional data maintenance and increased complexity for unrolling. While wcet

takes from under 1 ms up to 2.22 s, let computations take from under 1 ms up to 5.77 s

for 62 336 program points. Depending on loop structure, performance of LET analysis

is comparably variant. Similar to WCET evaluations, we did not observe significant

variation for different randomization parameters.

Chapter 5. Path Analysis 184

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

0 20 000 40 000 60 000
Nodes (count)

T
im

e
(m

s)

Method

LET

WCET

Figure 5.56: Runtime for non-degenerated CFG (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4)

5.3.5.4 Conclusion

In this section we proposed an alternative notion of WCET to program points by means

of latest execution time. It denotes a time bound for individual program points with

the additional constraint that the terminal program points must remain reachable under

a given flow bound model. As opposed to that, standard WCET bounds as proposed

in Section 5.3.3 consider respective (interior) program points as terminal nodes. We

showed that for a set of real world benchmarks, we improved by 5 % on average over all

benchmarks and up to 22 % on average per benchmark, while differences in individual

program points can be considerable. An important application of LET bounds are task

interference analyses in fully preemptive schedules.

5.3.6 Computing Maximum Blocking Time Bounds

In Section 3.1 we introduced blocking time as the maximal time span higher priority tasks

are prevented from execution by (blocking) lower priority tasks. In the context of path

analysis, we more precisely denote it as maximum blocking time (MBT). Blocking can

implicit be caused by a deliberate scheduling decision (time-triggered, floating program

points), but it can also be explicitly caused by means of synchronizing program points

such as semaphores or preemption points (fixed program points). In either case, blocking

must be taken into consideration in scheduling analysis.

In this section we are concerned with the efficient computation of MBT and we

propose a path analysis that efficiently computes, from a designated source, MBT bounds

to all reachable program points. To our best knowledge, the only other approach to this

problem is proposed in [173], which is, however, based on ILP and therefore incorporates

its implied deficiencies (cf. Section 5.2.3). More importantly, it requires a known set

of preemption points as input, which makes it unsuitable for efficient design space

Chapter 5. Path Analysis 185

exploration. We show how the reduction to the problem for known preemption points,

as well as the computation to all potential preemption points.

We first define MBT in the context of our general path analysis framework.

Definition 5.78 (Maximum Blocking Time) Maximum Blocking Time (MBT) de-

notes a maximal path length from a designated CFG source node s to a sink node t

such that s is only the first element and t only the final element on the corresponding

maximum blocking path (MBP).

MBPs model paths between preemption points which might technically be imple-

mented such that its corresponding basic blocks might or might not be executed prior

to preemption or after resumption. Hence accounting for the node weights of sources

and sinks might differ. In our following proposal, this is a mere technical nuisance and

adaption to the specific requirements is simple. We assume in the following that execution

starts right after source nodes. Hence, their costs are not accounted for. This matches

semantics of basic blocks where control is only transferred from the final instruction.

(a) Example CFG

(s, t) WCEP MBP

(a, c) (abcebc) (abdebc)
(c, c) (cebcebc) (cebdebc)
(a, e) (abcebce) (abce)
(c, e) (cebcebce) (ce)

(b) Example paths from source s to sink t

Figure 5.57: Relating worst-case execution paths to maximum block paths

Example Figure 5.57 illustrates the difference between worst-case paths and maximum

blocking paths. Assume a CFG given as in Figure 5.57a, where the scope denotes a loop

bounded by βπ(a0) = 2 and costs are distributed such that ω(a) > ω(b) > ω(c) > ω(d) >

ω(e). Then Figure 5.57b contains examples for various source and sink nodes (s, t) along

with their corresponding paths. Note that the paths do not necessarily reflect that actual

costs as semantics for source and sink nodes may vary.

In the following we assume the global CFG entry to always denote the source node.

Technical measures for reduction to arbitrary nodes as sources have been discussed in

Section 5.3.3.4.

We follow the usual scheme. After an introduction to technical prerequisites in

Section 5.3.6.1, such as state representation and arithmetic, we discuss the framework

itself in Section 5.3.6.2. We conclude the section with an evaluation in Section 5.3.6.3

and concluding remarks in Section 5.3.6.4. As usual, we assume acquaintance with the

principles of WCET computation from Section 5.3.3.

Chapter 5. Path Analysis 186

Sdπ Path states
sdπ = (δdπ,∆

d
π, σ

d
π, o

d
π) ∈ Sdπ Path state

δdπ : Sdπ 7→ Z∞,⊥ Path length
∆d
π : Sdπ 7→ (V 7→ Z∞,⊥) Path length map

σdπ : Sdπ 7→ Aπ
∗ Path signature

odπ : Sdπ 7→ V Path origin

Table 5.5: Additional definitions for worst-case blocking time analysis

5.3.6.1 Prerequisites

In the following we discuss the technical prerequisites for MBT analysis by defining

a new state space and the underlying arithmetic. Basic definitions from Table 5.3 on

page 132 remain valid except for the replacement of path states. For MBT analysis, we

reuse path state definitions from LET analysis (cf. Section 5.3.5.1 on page 172) with

the exception that path lengths are denoted as elements of Z∞,⊥. Table 5.5 summarizes

these functions. As before, discrimination of path states is defined by the equivalence

relation (cf. Equation 5.133 on page 173):

Aπ∼ : Sdπ × Sdπ (5.160)

The underlying algebraic structure is now the commutative ring:

(Z∞,⊥,max,⊥,+, 0) (5.161)

with max for addition and + for multiplication, with neutral elements⊥ and 0, respectively

such that:

max(a, b) :=


maxZ∞(a, b) if a 6= ⊥ ∧ b 6= ⊥

a if a 6= ⊥

b otherwise

(5.162)

a+ b :=

a+Z∞ b if a 6= ⊥ ∧ b 6= ⊥

⊥ otherwise
(5.163)

where maxZ∞(a, b) denotes maximum and +Z∞ denotes addition on Z∞.

For our purposes, we define the following semantics: Function δdπ represents worst-

case path lengths, which we refer to as reference path length. Function ∆d
π represents

differences in length from δdπ. We now lift the basic algebra to perform computations

directly on this representation.

Let V 7→ Z∞,⊥ denote the set of all functions that map from nodes V to lengths

Z∞,⊥. Then all pairs of reference path length and difference maps are denoted by :

Dδ×∆ = Dδ × D∆ = Z∞,⊥ ×
(
V 7→ Z∞,⊥

)
(5.164)

Chapter 5. Path Analysis 187

Then we define the following algebra on Dδ×∆:(
Dδ×∆,max, 1max,+, 1+

)
(5.165)

In the following we define its corresponding operators.

Example The intuition of operator max is best shown by simplifying the domain from

mappings to differences to a single difference value. Without loss of generality, assume a

pair (r, d) ∈ N2 to denote a reference length and a difference, and an operator maxN2,

which is a simplified version of the operator to be defined for domain Dδ×∆. Then an

example computation is the following:

maxN2((10, 5), (7, 1)) = (max(10, 7),max(10, 7)−max(10− 5, 7− 1))

= (10, 10− 6) = (10, 4)

Intuitively, we compute the maximums of the reference lengths, and differences are

translated into absolute lengths for comparison and then converted back to a difference

from the maximal reference length.

We now define max for domain Dδ×∆. To this end, we first define a function absδ×∆,

which returns absolute path lengths from a reference and map of differences as:

absδ×∆ : Dδ×∆ 7→ D∆

absδ×∆(l, d) = λu .

l − d(u) if u ∈ def(d)

l otherwise
(5.166)

Intuitively, difference d(u) encodes three cases:

1. If d(u) ∈ Z∞, then it denotes a path not longer than the reference. We assume

d(u) =∞⇒ l =∞.

2. If u /∈ def(d), then it denotes a path length equal to the reference (equal to

d(u) = 0).

3. If d(u) = ⊥, then it denotes a path that passed through node u. Note that

l − d(u) = ⊥ ⇔ l = ⊥ ∨ d(u) = ⊥.

Inversely to absδ×∆, we define a function relδ×∆, which returns differences from a reference

and a map of absolute lengths as:

relδ×∆ : Dδ×∆ 7→ D∆

relδ×∆(l, a) = λu . l − a(u) (5.167)

Chapter 5. Path Analysis 188

We also define a function max∆, which returns the maximum of absolute path lengths:

max∆ : D∆ × D∆ 7→ D∆

max∆(a, a′) = λu .maxZ∞,⊥(a(u), a′(u)) (5.168)

Finally, we define operator maxδ×∆, which returns the maximum for a pair of reference

lengths and differences as:

max: Dδ×∆ × Dδ×∆ 7→ Dδ×∆

max((l, d), (l′, d′)) =
maxZ∞,⊥(l, l′),relδ×∆


maxZ∞,⊥(l, l′),

max∆

(
absδ×∆(l, d),

absδ×∆(l′, d′)

) (u)

∣∣∣∣∣∣∣∣ u ∈ def(d) ∪ def(d′)




(5.169)

Its neutral element is 1max = {⊥, V × {⊥}}.

Example Let us investigate examples to strengthen the intuition. In a first example, we

compute the maximum of a reference length of 10 and a difference for node u of 5, and a

reference length of 7 and a difference for node u of 1:

max((10, {u→ 5}), (7, {u→ 1}))

= (max(10, 7), relδ×∆(max(10, 7),max∆(absδ×∆(10, {u→ 5}), absδ×∆(7, {u→ 1})))(u))

= (10, relδ×∆(10,max∆(absδ×∆(10, {u→ 5}), absδ×∆(7, {u→ 1})))(u))

= (10, relδ×∆(10,max∆({u→ 5}, {u→ 6}))(u))

= (10, relδ×∆(10, {u→ max(5, 6)})(u))

= (10, relδ×∆(10, {u→ 6})(u))

= (10, {u→ 4})

In a second example, we assume a missing mapping and relative infeasibility:

max((10, ∅), (7, {u→ ⊥}))

= (10, relδ×∆(10,max∆(absδ×∆(10, ∅), absδ×∆(7, {u→ ⊥})))(u))

= (10, relδ×∆(10,max∆({u→ 10}, {u→ ⊥}))(u))

= (10, relδ×∆(10, {u→ 10})(u))

= (10, {u→ 0}) = (10, ∅)

Note that we can drop mappings that yield no difference in length.

Chapter 5. Path Analysis 189

It remains to define addition. We first define operator +∆, which adds differences as:

+∆ : D∆ × D∆ 7→ D∆

d+∆ d′ = λu .


d(u) +Z∞,⊥ d

′(u) if u ∈ def(d) ∩ def(d′)

d(u) if u ∈ def(d)

d′(u) otherwise

(5.170)

Recall that the absence of mappings denotes equality of the absolute path length to the

reference length. Then addition on Z∞,⊥ is defined as:

+: Dδ×∆ × Dδ×∆ 7→ Dδ×∆

(l, d) + (l′, d′) =
(
l +Z∞,⊥ l

′,
{

(d+∆ d′)(u)
∣∣ u ∈ def(d) ∪ def(d′)

})
(5.171)

The neutral element is 1+ = {0, ∅}. It is easy to see why we can avoid translation to

absolute distances and back to differences for addition.

Example Without loss of generality, assume a pair (r, d) ∈ N2 to denote a reference

length and a difference, and an operator +N2 , which is defined akin to above but adapted

to the given domain. Then the following equation holds:

(n, d) +N2 (m, e) = (n+m, (n+m)− ((n− d) + (m− e)))

= (n+m,n+m− (n+m− d− e))

= (n+m, d+ e)

Finally, we lift computation of maximal lengths to path states of the same equivalence

class and define:

maxmbt
π (S) = max

s′∈S

(
δdπ(s′),∆d

π(s′)
)
·
(
σdπ(s), odπ(s)

)
: s ∈ S (5.172)

For an equivalence class S = [s], maxlet
π ([s]) denotes a reference path of maximal length

and a set of differences from this path.

5.3.6.2 Framework

In the following we define the analysis framework for MBT. We first show how iterations

are computed, then we extend semantics to complete unrolls. Finally, we discuss how

MBT are computed to all interior points.

Intuition

We shall briefly outline the intuition. As usual, every path state denotes a path. Ulti-

mately, we compose these states to compute a globally longest path. The issue at hand is

to compose longest paths to individual nodes only from those subpaths that are feasible

Chapter 5. Path Analysis 190

(a) Without branches (b) With branches

Figure 5.58: Example computations for MBT

relative each particular sink node. For efficiency, we exploit that an individual subpath

is often feasible for a number of sinks such that we can avoid unnecessary recomputation.

Length map ∆d
π fulfills two purposes in this: to mark paths as infeasible for composition

with respect to specific sinks and, if the reference path is infeasible but there exists an

alternative feasible but potentially shorter path, to encode their lengths as differences

from the reference.

Example Figure 5.58 illustrates example scenarios for this intuition. Figure 5.58a

depicts a trivial path where tuples above and below the dashed lines denote path states

just before and just after considering respective nodes. We assume unit node weights and

ignore signature and origin. Once node a is visited, reference length is increased and the

path is marked as being infeasible for composition (unroll) to form longer paths having

node a only as their terminal node. Likewise for node b.

Figure 5.58b illustrates a scenario with alternative paths. We assume node weights

ω = {a→ 1, b→ 2, c→ 3, d→ 4}. Path states now denote state after visiting respective

nodes. As before, visiting node a marks the path infeasible and increases the reference

path length. Likewise, this happens to nodes b and c. The path state after visiting node d

then encodes the following information: The reference (unconditional worst-case) path

length to node d equals 8. For all paths from node a to d, it holds that they are infeasible

with respect to nodes a and d. With respect node b, the reference path coincides with the

longest path that does not pass through node b. Hence, no difference has to be stored

explicitly. With respect to node c, there exists a feasible path that does not pass through

node c, but which is shorter than the reference.

More precisely the intuition is as follows: For an equivalence class of path states

[sdπ], sdπ denotes the unconditionally longest path of length δdπ(sdπ) and map ∆d
π(sdπ) either

encodes lengths of alternative paths in [sdπ] or marks state sdπ as being infeasible with

respect to individual nodes if no alternatives exist.

We refer to nodes mapped in ∆d
π as being known, otherwise as unknown, and we refer

to a path which is infeasible regarding a known node as being relatively infeasible.

Note that in the following, we implicitly purge differences equal to 0 from all sets

where appropriate. For the sake of clarity, we never specify this removal explicitly. In

practice, this is a simple optimization.

Chapter 5. Path Analysis 191

Iterations

In the following we define the computation of scope iterations. The problem of computing

longest path lengths of the domain Dδ×∆ has the structure of the semi-lattice defined as:

(Dmbt,>,v,t) (5.173)

where Dmbt = ℘(Sdπ) is a set of path states, where Sdπ v Sdπ
′ ⇔ Sdπ ⊆ Sdπ

′
and where

Sdπ t Sdπ
′
:= {maxmbt

π [s] | [s] ∈ (Sdπ ∪ Sdπ
′
)/
Aπ∼} denotes the set of path states of different

signature, origin and maximal length, according to maximal lengths as defined in

Equation 5.172 and the equivalence relation defined in Equation 5.160.

The corresponding transformer to compute iterations advances the reference path

length δdπ, marks the current node infeasible and updates annotations as usual. We define

it as:

tfmbt : V 7→ (Dmbt 7→ Dmbt)

tfmbt(u) = λS .




δdπ(sdπ) + ω(u),

∆d
π(sdπ)[u→ ⊥],

σπ(sdπ) · απ(u),

oπ(sdπ)



∣∣∣∣∣∣∣∣∣∣∣
s ∈ S


(5.174)

Although path states now potentially represent multiple paths (of different length but

equal signature), due to difference encoding it is sufficient to update only the reference

length.

As before, we compute maximal distances “across” scopes. Let maximal distances on

Dδ×∆ for a given scope including its descendants be denoted by the function:

maxs̊
µmbt : V̊ × V 2 7→ Dδ×∆ (5.175)

such that max̊s
µmbt (̊s, u, v) evaluates to maximal unroll length in scope s̊ from node u to

node v.

Now we lift tfmbt to take subscopes into account. To this end, we first define an

additional transformer tfoutlet to model semantics upon reaching exits of subscopes. As

usual, we update path lengths by unroll lengths of respective subscopes. Recall that

length is denoted by the pair of reference and differences. Consequently, we define:

tfoutmbt : S̊ × V 2 7→ (Dmbt 7→ Dmbt)

tfoutmbt(̊s, u, v) = λS.{((
δdπ(sdπ),∆d

π(sdπ)
)

+ maxs̊
µmbt (̊s, u, v)

)
·
(
σdπ(sdπ), odπ(sdπ)

) ∣∣∣ sdπ ∈ S} (5.176)

Chapter 5. Path Analysis 192

Finally, we define the scope-aware transformer (cf. Equation 5.98 on page 149) to compute

iteration lengths as:

tf s̊mbt : S̊ × V 2 7→ (Dmbt 7→ Dmbt)

tf s̊mbt(̊s, u, v) = λS .


id if v ∈ entry(̊t) ∧ (̊t, s̊) ∈ E̊

tfoutmbt(̊t, u, v)(S) if v ∈ exit(̊t) ∧ (̊t, s̊) ∈ E̊

tfmbt(u)(S) otherwise

(5.177)

For a node u and its predecessor v, if v is a scope entry then do nothing. If v is a scope exit

then we compute a maximal unroll of the subscope and update path states accordingly.

Otherwise tf let applies. Function tfoutlet updates the length mapping accordingly. Note

that for (r, d) = max̊s
µmbt (̊t, u, v), it holds that r = max̊s

µ(̊t, u, v) (cf. Equation 5.105 on

page 151), which simply denotes the standard WCET (cf. Section 5.3.3). Map d denotes

length differences from the reference unroll for individual nodes. If no such unroll exists,

marks the reference unroll infeasible for each such node.

In scopes representing acyclic regions, differences or infeasibility markings need not

be maintained since direct paths are the only ones to reach individual nodes. Differences

and markings are only relevant if paths are subject to composition (unroll). In other

words, the additional information is only relevant within loops. For clarity, we do not

take this optimization into account in the formal framework definition but exploit this in

the reference implementation for evaluation.

Analogously to the path analysis frameworks proposed earlier, we define path states

for specific program points. Assuming pred→s̊ (Equation 5.99 on page 150) to denote

CFG predecessors such that subscopes are being “leaped over”, we define path states in

a program point by:

S s̊mbt : V̊ × V 2 ×Aπ 7→ Sdπ

S s̊mbt(̊s, s, v, a) =

tf s̊mbt(̊s, s, s)({(0, ∅, a, s)}) if v = s⊔{
tf s̊mbt(̊s, u, v)(S s̊mbt(̊s, s, u, a)) | u ∈ pred→s̊ (̊s)(v)

}
otherwise

(5.178)

For a given scope s̊, start and terminal nodes u, v and an initial annotation a, S s̊mbt(̊s, u, v, a)

denotes the set of maximal iterations including unrolls of all subscopes.

We define partitions of S s̊mbt as in the WCET case (cf. Section 5.3.3.2) such that

SImbt : V̊ × V 7→ ℘(Sdπ) (5.179)

SOmbt : V̊ × V 7→ ℘(Sdπ) (5.180)

SKmbt : V̊ 7→ ℘(Sdπ) (5.181)

SDmbt : V̊ × V 2 7→ ℘(Sdπ) (5.182)

denote entry, exit, kernel and direct paths, respectively.

Chapter 5. Path Analysis 193

Unrolls

It remains to define max̊s
µmbt (Equation 5.175) to denote unroll lengths. Given the algebra

on Dδ×∆, unrolling is conceptually similar to the standard WCET case from Section 5.3.3.

But, care has to be taken to correctly account for the changed path length representation.

We keep testf (Equation 5.70) and setf (Equation 5.71) unchanged but redefine

functions f1
ω (Equation 5.79) and fkω (Equation 5.80) to accommodate to domain Sdπ.

As before, function f1
ω pushes unit admissible flow over a network path denoted by

σdπ and accumulates path lengths, which are now expressed as pairs of reference length

δdπ and differences ∆d
π. It is defined as:

f1
δ,∆ := λs . λ(ω, d, f, c) .




ω + δdπ(s),

d+ ∆d
π(s),

setf (f, 1, σdπ(s)),

c

 if ω 6= ⊥∧
testf (c, f, σdπ(s)) > 0

(⊥, ∅, ∅, c) otherwise

(5.183)

It is straight-forward to evaluate entry and exit paths. As usual, we just test all

candidates, from which we then chose a solution of maximal length. For kernels, evaluation

is more intricate. Recall from the WCET case that for evaluation we ordered kernels

by descending length to maximize the product of lengths and flows. In the MBT case,

difference encoding requires a unique ordering for each explicitly known node mapped

in ∆d
π separately: Each such node potentially has a unique set of feasible kernels of

individual length. We now show how the difference representation is transformed into

a mapping from nodes to sets of potential kernels of absolute length. The purpose is

to reduce the problem of unrolling so that we can apply the same techniques as in the

WCET-case — for each node individually. Subsequently, we then restore the original

representation. In the following we refer to the composition of reference paths as reference

unrolls.

We first define a transformation twcet, which transforms a path state in Sdπ to a path

state in Sπ (cf. Section 5.3.3.1) as:

twcet : S
d
π × V 7→ Sπ

∗

twcet(s, u) =



ε if u ∈ def(∆d
π(s))∧

∆d
π(s) = ⊥

((δdπ(s)−∆d
π(s)(u), σdπ(s), odπ(s))) if u ∈ def(∆d

π(s))∧
∆d
π(s) 6= ⊥

((δdπ(s), σdπ(s), odπ(s))) otherwise

(5.184)

For a path state s ∈ Sdπ and a node u ∈ V , twcet(s, u) evaluates to a singleton sequence

containing a path state sπ ∈ Sπ. We distinguish three cases: i) If the paths denoted by

sdπ is infeasible relative to node u, the sequence is empty. ii) If there exists an explicit

Chapter 5. Path Analysis 194

difference value in map ∆d
π which does not denote infeasibility, the sequence contains a

path state representing absolute path length. iii) If no explicit difference is given, the

sequence contains a path state with the reference path length as its absolute path length.

Example For a path state s ∈ Sdπ, let (δdπ(s),∆d
π(s)) = (10, {u→ 3, v → ⊥}). Then the

following equations hold:

twcet(s, u) = ((δdπ(s)−∆d
π(s)(u), σdπ(s), odπ(s))) = ((7, σdπ(s), odπ(s)))

twcet(s, v) = ε

twcet(s, w) = ((δdπ(s), σdπ(s), odπ(s))) = ((10, σdπ(s), odπ(s)))

Before we compose individual evaluations, we first collect only path states that make

up feasible kernels relative to certain nodes. Since path lengths are already known, we

also already collect states in a desired order.

Let V> = V ∪ {u>} where u> is a “dummy” node which serves as a representative

for “unknown” nodes in the following. Also let σδπ : Sπ∗ 7→ S∗π order a sequence of path

states in Sπ by descending length δπ(sπ). We then define a transformation tuniq which

computes an individually ordered sequence of WCET kernel states (of Sπ) for each node

that is explicitly mapped in a given set of MBT kernel states (of Sdπ) as:

tuniq : (V> 7→ Sπ
∗)× ℘(Sdπ) 7→ (V> 7→ Sπ

∗)

tuniq(m,S) =
tuniq


{u→ σδπ(π · twcet(s, u)) | (u→ π) ∈ m}

∪

{
u→ σδπ(m(u>) · twcet(s, u))

∣∣∣∣∣ u ∈ def(∆d
π(s))

∧ u /∈ def(m)

}
,

S \ {s}

 , s ∈ S if S 6= ∅

m otherwise

(5.185)

Function tuniq is invoked with an initially empty sequence for reference kernels and path

states SKmbt, denoting all kernels for a given scope s̊:

tKuniq := λs̊ . tuniq
(
{u> → ε} , SKmbt(̊s)

)
(5.186)

Transformation tuniq(m,S) proceeds recursively, one kernel state s ∈ S ⊆ Sdπ at a time,

constructing function m which denotes individually ordered WCET state sequences. In

each iteration, every existing individual sequence π ((u → π) ∈ m) is extended by an

element (twcet(s, u)). This element denotes a WCET path state of absolute length, but

only if state s is relatively feasible for node u (by ε otherwise). For every node u in

the difference map ∆d
π of state s (u ∈ def(∆d

π(s))) and for which no individual sequence

exists yet (u /∈ def(m)), we extend function m by a unique sequence m(u>) · twcet(s, u).

Chapter 5. Path Analysis 195

The latter consists of the reference kernel sequence so far, and an individual WCET path

state which denotes this specific kernel difference if it is relatively feasible. Note that a

new sequence is added regardless of whether its potential constituents turn out to be

relatively infeasible. Feasibility testing will be a subsequent step.

Example Let SKmbt(̊s) = {s1, s2} where s1 = (4, ∅, σ1, o1) and s2 = (10, {u → 3, v →
⊥}, σ2, o2), and where σi, oi denote signature and origin respectively. Then evaluation

yields:

tuniq ({u> → ε}, {s1, s2}) = tuniq ({u> → ((4, σ1, o1))} , {s2})

= tuniq



u> → ((10, σ2, o2), (4, σ1, o1)),

u→ ((7, σ2, o2), (4, σ1, o1)),

v → ((4, σ1, o1))

 , ∅


For completeness, we restate function fkω (Equation 5.80 on page 143) unchanged.

Recall that its purpose is to extend path lengths by scaling kernel paths lengths by

maximally admissible flow.

fkω := λs . λ(ω, f, c) .



ω + δπ(s)× testf (c, f, σπ(s)),

setf (f, testf (c, f, σπ(s)), σπ(s)),

c

 if ω 6= ⊥

(⊥, ∅, c) otherwise

(5.187)

Transformation tuniq returns a map of individually ordered sequences of kernel states. We

define a function fKuniq which lifts evaluations fkω to maps of kernel sequences. Effectively,

we “wrap” all path states in each sequence with function fkω .

fKuniq := λs̊ .
{
u→ JπK(fkω)

∣∣∣ (u→ π) ∈ tKuniq (̊s)
}

(5.188)

For a scope s̊, fKuniq (̊s) denotes a map of individual kernel evaluations. Node-wise, this

corresponds to fKω (Equation 5.81 on page 143).

For a scope s̊, a known node u and an initial value (ω, f, c), where ω denotes an initial

path length, f denotes flow and c denotes capacity bounds, fKuniq (̊s)(u)(0, f, c) yields a

maximal (absolute) path length. Next, we define how evaluation is carried out in general

and transform the result back to differences from a reference length.

Let ω ∈ Z∞,⊥ denote the length of a reference unroll. We define a function fKrel,

which performs evaluation for all non-reference kernel sequences Fπ = fKuniq (̊s)(u) with

u 6= u>, and returns the length difference to ω as:

fKrel := λs̊ . λ(ω, f, c).{
u→ ω − ω′

∣∣ (ω′, f ′, c) = Fπ(0, f, c), (u→ Fπ) ∈ fKuniq (̊s), u 6= u>
} (5.189)

Chapter 5. Path Analysis 196

Finally, we define a function fKδ×∆, which is symmetric to f1
δ×∆ (Equation 5.183) as:

fKδ×∆ := λs̊ . λ(ω, d, f, c).(
(ω, d) +

(
ω′, fKrel(̊s)(ω

′, f, c)
∣∣ (ω′, f ′, c) = fKuniq (̊s)(u>)(0, f, c)

)
, f ′, c

) (5.190)

Function fKδ×∆ performs evaluation of the reference kernel sequence (denoted by u>) and

composes a pair of reference length ω′ and a map of differences fKrel(̊s)(ω
′), and adds

this pair to an initial value (ω, d) by +Dδ×∆ . It returns a tuple (ω, d, f ′, c) where (ω, d)

denote kernel lengths, f ′ denotes flow after reserving kernels and c denotes the original

capacity constraints. Note that f ′ is just a placeholder and not used subsequently.

The composition of all evaluations (cf. Equation 5.82 on page 143) for a scope s̊,

from node u to node v follows the familiar pattern and we define the set of all composed

evaluations as:

F iokδ×∆ := λ(̊s, u, v).{
fKδ×∆(̊s) ◦ f1

δ×∆(so) ◦ f1
δ×∆(si)

∣∣ si ∈ SImbt(̊s, u), so ∈ SOmbt(̊s, v)
}

(5.191)

It remains to define evaluation for direct paths. The set of all evaluations of direct paths

for a scope s̊ from node u to node v, similar to F dω (Equation 5.83), is defined as:

F dδ×∆ := λ(̊s, u, v) .
{
f1
δ×∆(sd)

∣∣ sd ∈ SDmbt(̊s, u, v)
}

(5.192)

Computing maximal unroll distances is carried out as usual. We compute the set of

solutions and determine its maximum (Equation 5.169):

Theorem 5.79 (Maximum Blocking Time Unroll) Let f0 = Aπ×{0} denote initial

flow. Then the maximal unroll length for a scope s̊ ∈ V̊ , from node u ∈ V to node v ∈ V
is defined as:

maxs̊
µmbt : V̊ × V 2 7→ Dδ×∆

maxs̊
µmbt (̊s, u, v) = max

{
(ω, d)

∣∣∣∣∣ (ω, d, f, βπ) = fδ×∆(0, ∅, f0, βπ),

fδ×∆ ∈ F iokδ×∆(̊s, u, v) ∪ F dδ×∆(̊s, u, v)

}
(5.193)

This represents the precise maximally blocking path lengths for a scope and a pair of

source and sink nodes, under the given flow bound model.

It is easy to see but lengthy to show that absδ×∆(ω, d) denotes unique maximal unrolls

for each scope member node. For worst-case path lengths in general, see Section 5.3.3.

Example Consider Figure 5.59a which illustrates an example scope s̊ with entry a,

exit c and a single annotation in node a. Figure 5.59b depicts the corresponding states

space where only the non-faded states are of relevance in the following (cf. example forx

Figure 5.58 for details on state space construction). We assume βπ(a1) = 3 and node

weight ω = {a→ 1, b→ 2, c→ 3, d→ 4} and compute MBT from node a to node c with

Chapter 5. Path Analysis 197

(a) Example scope with annotation (b) Corresponding state space

Figure 5.59: Example of path states for MBT computation

max̊s
µmbt (̊s, a, c). Partitions of states S s̊mbt yield:

SImbt(̊s, a) = {si} = {(8, {a→ ⊥, c→ 1, d→ ⊥}, . . .)dπ}

SOmbt(̊s, c) = {so} = {(4, {a→ ⊥, c→ ⊥}, . . .)dπ}

SKmbt(̊s) = {sk} = {si}

SDmbt(̊s, a, c) = {sd} = {so}

We will consistently assume that “. . . ” denotes “(aa0, a2), a” (signature, origin) for all path

states. We also write “(. . .)dπ ∈ Sdπ” and “(. . .)π ∈ Sπ” to indicate tuples representing

path states.

Composition of evaluation semantics yields:

F iokδ×∆(̊s, a, c) ∪ F dδ×∆(̊s, a, c) =
{
fKδ×∆(̊s) ◦ f1

δ×∆(so) ◦ f1
δ×∆(si)

}
∪
{
f1
δ×∆(sd)

}
Let f0 = Aπ × {0} denote initial flow. Then evaluation of just the direct path yields:

f1
δ×∆(sd)(0, ∅, f0, βπ) = (4, {a→ ⊥, c→ ⊥}, fd, βπ)

Note that this result implicitly denotes feasible direct paths of length 4 for nodes b, d.

Evaluation of the only possible unroll from node a to node c yields:

(fKδ×∆(̊s) ◦ f1
δ×∆(so) ◦ f1

δ×∆(si))(0, ∅, f0, βπ)

= (· · · ◦ f1
δ×∆(si))(0, ∅, f0, βπ) (entry)

= (· · · ◦ f1
δ×∆(so))(8, {a→ ⊥, c→ 1, d→ ⊥}, f i, βπ) (exit)

= fKδ×∆(̊s)(8 + 4, {a→ ⊥, c→ 1, d→ ⊥}+ {a→ ⊥, c→ ⊥}, foi, βπ)

= fKδ×∆(̊s)(12, {a→ ⊥, c→ ⊥, d→ ⊥}, foi, βπ) (kernels)

= (continued below)

Note again that there implicitly exists a feasible entry/exit combination for node b of

length 12.

It remains to evaluate kernels after we have now already taken entry and exit paths

into account. To make this more approachable, we dissect the invocation of fKδ×∆ (Equa-

tion 5.190) and perform computations bottom up to keep noise to a minimum. First, let

Chapter 5. Path Analysis 198

us compute tKuniq (̊s) (Equation 5.186) to determine individual path state sequences:

tKuniq (̊s) = tuniq({ut → ε}, SKmbt(̊s)) (Eq. 5.186)

= tKuniq (̊s) = tuniq({ut → ε}, {(8, {a→ ⊥, c→ 1, d→ ⊥}, . . .)dπ}

=

{
u> → ((8, . . .)π), a→ ε, b→ ((8, . . .)π),

c→ ((7, . . .)π), d→ ε

}
(Eq. 5.185)

Possible kernels exist only with respect to nodes u>, b, c, where u> denotes the constraint

reference. We convert this presentation from path state sequences to evaluation sequences

with fKuniq such that:

fKuniq (̊s) =

{
u> → fkω((8, . . .)π), a→ (id), b→ fkω((8, . . .)π),

c→ fkω((7, . . .)π), d→ (id)

}
(Eq. 5.188)

where fkω (Equation 5.187) denotes evaluation of a single relatively feasible kernel.

Now that we have obtained possible evaluation sequences, we step-wise partially

evaluate Equation 5.190. First, we compute the reference unroll:

fKuniq (̊s)(u>)(0, foi, βπ) = fkω((8, . . .)π)(0, foi, βπ)

= (8, f iok, βπ)

Apparently, the reference kernel can only be repeated once after having reserved flow f io

for entry and exit paths already. Second, we evaluate all remaining individual sequences.(
ω′, fKrel(̊s)(ω

′, f, c)
∣∣∣ (ω′, f ′, c) = (8, f iok, βπ)

)
=
(
8, fKrel(̊s)(8, f, c)

)

=

8,



a→ 8− ω′ | (ω′, f iok, c) = fKuniq (̊s)(a)(0, f io, c),

b→ 8− ω′ | (ω′, f iok, c) = fKuniq (̊s)(b)(0, f
io, c),

c→ 8− ω′ | (ω′, f iok, c) = fKuniq (̊s)(a)(0, f io, c),

d→ 8− ω′ | (ω′, f iok, c) = fKuniq (̊s)(d)(0, f io, c),





=

8,



a→ 8− ω′ | (ω′, f iok, c) = id(0, foi, βπ),

b→ 8− ω′ | (ω′, f iok, c) = fkω((8, . . .)π)(0, foi, βπ),

c→ 8− ω′ | (ω′, f iok, c) = fkω((7, . . .)π)(0, foi, βπ),

d→ 8− ω′ | (ω′, f iok, c) = id(0, foi, βπ)




=

(
8,

{
a→ 8− 0, b→ 8− 8,

c→ 8− 7, d→ 8− 0

})
= (8, {a→ 8, c→ 1, d→ 8})

This result denotes differences in unroll length for all known nodes and therefore completely

summarizes unrolling. There exists no relatively feasible kernels for nodes a and d

(absolute length equals 0), and for nodes b and c absolute kernel unroll lengths equal 8

Chapter 5. Path Analysis 199

and 7, respectively. Recall that we implicitly purge differences equal to 0.

Finally, we can fully state the evaluation of fKuniq (Equation 5.190). We resume our

previous computation:

(continued)

= fKδ×∆(̊s)(12, {a→ ⊥, c→ ⊥, d→ ⊥}, foi, βπ) (kernels)

= (12, {a→ ⊥, c→ ⊥, d→ ⊥}) + (8, {a→ 8, c→ 1, d→ 8})

= (20, {a→ ⊥, c→ ⊥, d→ ⊥}) (Eq. 5.171)

Reference unroll length equals 20, and node b is the only node for which a feasible unroll

of equal length exists.

Finally, we can compute the MBT unroll according to Theorem 5.79. We already

computed results for direct paths and unrolls. Hence, max̊s
µmbt (̊s, a, c) (Equation 5.193)

reduces to:

max

{
(20, {a→ ⊥, c→ ⊥, d→ ⊥}),

(4, {a→ ⊥, c→ ⊥})

}
= (20, {a→ ⊥, c→ ⊥, d→ 16}) (Eq. 5.169)

Nodes a and c remain infeasible in all combinations, node b still has a maximal path

length equal to the reference, and node d has a feasible direct path of length 4, which

equals a difference of 16 to the reference.

Note that in practice, exploiting path subsumption or sparse unrolling as proposed in

Section 5.3.3.2 on page 133 potentially severely affects performance. Note also that tuniq

(Equation 5.185) only needs to be computed once per scope.

MBT to Interior Points

When computing total path lengths from and to individual nodes, care has to be

taken to account for global start and terminal nodes correctly. Recall that we assume

that preemption points take effect right after each program point. Consequently, after

preemption, execution resumes accordingly. The practical consequence is that designated

preemption points cut the graph, effectively not allowing for any path state to propagate

“across” these points.

For MBT analysis, if a node denotes a preemption point, we have to distinguish

whether it represents a point of preemption or a point of resumption. Accordingly, it is

either a global source node or a global terminal node for path analysis. For the sake of

simplicity of the following discussion, we assume the global CFG entry node to invariably

denote the global source node. Extension to subgraphs follows the same pattern as

already proposed for the WCET case in Section 5.3.3.4.

Recall that transformer tfmbt (Equation 5.174) marks all paths through a node as

relatively infeasible. For a global sink (or source) node this invariably marks all paths

to it as relatively infeasible — which is obviously unfortunate. Consequently, for the

Chapter 5. Path Analysis 200

computation of total path lengths to individual interior nodes, we have to take this into

account.

To this end, we assume a set of path states

SO,Tmbt : V̊ × V 7→ ℘(Sdπ) (5.194)

to represent terminal exit path states similar to usual exit path states SOmbt, except that

SO,Tmbt (̊s, u) denotes states such that only node weight and annotations are applied according

to tfmbt (Equation 5.174) but paths are not marked relatively infeasible regarding node

u. Analogously, we assume a set of terminal direct path states:

SD,Twcet : V̊ × V × V 7→ ℘(Sπ) (5.195)

similar to SDmbt such that SD,Twcet(̊s, u, v) denotes path states in scope s̊ from node u such

that tfmbt is only applied partially similar to SO,Tmbt .

For the sake of completeness, to adapt to these new state sets, we restate existing

definitions. Otherwise, semantics remain unchanged.

We define a new set of unroll evaluations F itkδ×∆, which is similar to F iokδ×∆ (Equa-

tion 5.191), except for the replacement of SOmbt by SO,Tmbt as:

F itkδ×∆ := λ(̊s, u, v).{
fKδ×∆(̊s) ◦ f1

δ×∆(so) ◦ f1
δ×∆(si)

∣∣∣ si ∈ SImbt(̊s, u), so ∈ SO,Tmbt (̊s, v)
}

(5.196)

Analogously, we define direct path evaluations similar to F dδ×∆ (Equation 5.192) as:

F tδ×∆ := λ(̊s, u, v) .
{
f1
δ×∆(st)

∣∣∣ st ∈ SD,Tmbt (̊s, u, v)
}

(5.197)

Unsurprisingly, we also redefine max̊s
µmbt (Equation 5.193) to adapt to these changes.

Hence, let f0 = Aπ × {0} denote initial flow. Then the maximal unroll length for a scope

s̊ ∈ V̊ , from node u ∈ V to right before node v ∈ V is defined as:

maxs̊,T
µmbt : V̊ × V 2 7→ Dδ×∆

maxs̊,T
µmbt (̊s, u, v) = max

{
(ω, d)

∣∣∣∣∣ (ω, d, f, βπ) = fδ×∆(0, ∅, f0, βπ),

fδ×∆ ∈ F itkδ×∆(̊s, u, v) ∪ F tδ×∆(̊s, u, v)

}
(5.198)

In Section 5.3.3.4 we addressed the problem of computing total WCET path lengths

to interior nodes. For MBT, the general idea applies almost unchanged, except for the

consideration of terminal path states. Intuitively, terminal states as defined above are

only relevant in the scope to which the global terminal node is mapped to. Consequently,

all unroll computations except for those of this scope are unaffected. Put differently, the

total length we compute corresponds to a global path having the designated sink node

only as its terminal. Hence, no subpath is permitted to pass through the sink, except for

Chapter 5. Path Analysis 201

the terminal exit path.

We define a helper function, which conditionally returns either maxs̊,T
µmbt (Equa-

tion 5.198) or max̊s
µmbt (Equation 5.193) as:

cmaxs̊
µmbt := λ(̊s, u) .

maxs̊,T
µmbt if s̊ = γ̊(u)

max̊s
µmbt otherwise

(5.199)

Then finally, we define a function max?
µmbt (̊s, s, t̊, t), similar to max?µ (cf. Equa-

tion 5.106 on page 152) for the WCET case. It computes the MBT path length from

source scope s̊ and node s to a target scope t̊ and terminal node t, by computing the

MBT path length to all entries of t̊ and the MBT path length within t̊ to t as:

max?µmbt : S̊ × V × S̊ × V 7→ Dδ×∆

max?µmbt (̊s, s, t̊, u) =
max

 max?µmbt (̊s, s, ů, i)

+ cmaxs̊
µmbt (̊t, u)(̊t, i, u)

∣∣∣∣∣∣∣
i ∈ entry(̊s),

ů = par(̊t)

 if s̊ 6= t̊

cmax̊s
µmbt (̊s, u)(̊s, s, u) otherwise

(5.200)

where for (ω, d) = max?
µmbt (̊s, s, t̊, t), ω denotes a bound on the WCET and d(t) denotes

a bound on the MBT regarding node t.

Example We reconsider the example from the introduction as illustrated in Figure 5.57.

We refer to the implicit outermost most scope as 0̊ and to the inner scope as 1̊. Further,

we assume flow bound βπ(a0) = 2 and node weights ω(a) = 5, ω(b) = 4, ω(c) = 3, ω(d) =

2, ω(e) = 1, denoted by the labels next to the nodes.

As a first example, we compute an MBT bound from node a to node e. It is immediately

apparent that only direct paths lead to node e. Hence, computation yields:

max?µmbt (̊0, a, 1̊, e) = max
{

max?µmbt (̊0, a, 0̊, b) + cmaxs̊
µmbt (̊1, e)(̊1, b, e)

}
= cmaxs̊

µmbt (̊0, b)(̊0, a, b) + cmaxs̊
µmbt (̊1, e)(̊1, b, e)

= maxs̊
µmbt (̊0, a, b) + maxs̊,T

µmbt (̊1, b, e)

= (5, {a→ ⊥}) + (4 + 3 + 1, {b→ ⊥, c→ 1})

= (13, {a→ ⊥, b→ ⊥, c→ 1}) = (ω, d)

⇒ d(e) = 13

Chapter 5. Path Analysis 202

45 %

0

25

50

75

100

ad
pc

m
en

co
de

r

st
at

em
at

e

ad
pc

m
de

co
de

r st

co
ve

r

lc
dn

um nd
es

co
m

pr
es

sd
at

a
ed

n
qu

rt

m
in

ve
r

fft
1

bi
na

ry
se

ar
ch lm

s
cr

c

lu
dc

m
p

ja
nn

e
co

m
pl

ex fir

jfd
ct

in
t

co
un

tn
eg

at
iv
e

ex
pi

nt
sq

rt

fib
ca

ll
fd

ct

pr
im

e

m
at

m
ul

t

bs
or

t1
00

in
se

rt
so

rt

Name

R
at

io
(%

)

Figure 5.60: Improvement (%) in precision of MBT over WCET estimates

As a second example, computing MBT path length from node a to node c yields:

max?µmbt (̊0, a, 1̊, c) = maxs̊
µmbt (̊0, a, b) + maxs̊,T

µmbt (̊1, b, c)

= (5, {a→ ⊥}) + ((8, {b→ ⊥, c→ 1, e→ ⊥}) + (7, {b→ ⊥}))

= (20, {a→ ⊥, b→ ⊥, c→ 1, e→ ⊥}) = (ω, d)

⇒ d(c) = 19

Here, the unroll is composed of an entry path “around” terminal node c and its terminal

path.

5.3.6.3 Evaluation

In the following evaluation, we compare MBT against WCET analysis from Section 5.3.3

and against the ILP model as proposed in [173]. We compute WCET and MBT from

the CFG entry to all program points, whereas for the ILP, only computations to a

single dedicated sink node is possible; we chose the CFG exit as sink node. As test

environment, we use a setup as described in Section 5.3.3.6. We evaluate precision by

comparison on benchmarks from the MRTC benchmark suite [97] and performance by

means of randomized graphs to obtain large sample sets. Averages are computed by the

arithmetic mean. The implementation is a derivative of the WCET reference algorithm

(cf. Section 5.3.3.5) with all previously proposed optimizations included.

MRTC

We evaluate on a subset of MRTC benchmarks to demonstrate the benefits of MBT over

WCET on existing scenarios. Figure 5.60 illustrates the ratio of precision between WCET

(wcet) and MBT (mbt) analyses for the given benchmarks as box plots depicting upper,

lower and average ratio values. More precisely, the ratios denote the difference in WCET

estimates per program point in loops (other program points cannot have deviating time

Chapter 5. Path Analysis 203

13 %

0

5

15

20

25

35

40

45

55

st
at

em
at

e

co
ve

r

lc
dn

um nd
es

bi
na

ry
se

ar
ch

ja
nn

e
co

m
pl

ex

ex
pi

nt cr
c

ad
pc

m
en

co
de

r
fft

1

ad
pc

m
de

co
de

r

co
m

pr
es

sd
at

a fir
sq

rt
qu

rt
lm

s

co
un

tn
eg

at
iv
e st

m
in

ve
r

lu
dc

m
p

bs
or

t1
00 ed

n
fd

ct

fib
ca

ll

in
se

rt
so

rt

jfd
ct

in
t

m
at

m
ul

t

pr
im

e

Name

R
at

io
(%

)

Figure 5.61: Program points (%) with non-deviating time estimates

bounds). The diagram is ordered by the average ratio of improvement of MBT over

WCET analysis. For all benchmarks from adpcm decoder (10 % average improvement)

to insertsort (93.7 % average improvement), we obtain 45 % more precise results for

mbt on average over all benchmarks. Minimum and maximum bounds differ in the

ranges from below 0.1 % to 100 %. Intuitively, differences are large in loops without

branching bodies whereas loops with branches, low repetition counts and bottom exits

yield low differences. Figure 5.61 illustrates quantitative differences as a percentage of

program points within loops that do not differ. On average, just 13 % of program points

do not yield tighter estimates by using mbt. Benchmark statemate consists of deep

nesting structures and accordingly 55 % of program point estimates do not differ. A

range of benchmarks, such as prime or matmult, which perform numeric computations,

conditional execution is rare. Hence, 100 % of program points yield tighter estimates.

Randomized Graphs

For a qualitative comparison of performance, we compare our MBT analysis with our

WCET analysis and the corresponding ILP model proposed in [173] (ilp) on randomized

CFG, whose parameters for control flow constructs and annotations are given in Table 5.2

on page 118. Our approaches are sampled including all necessary pre-processing such

as scope tree construction. Sampling of ilp includes the generation of the ILP model.

We scale sizes from 100 to circa 12 500 nodes and sample with a granularity of 1 ms. In

Figure 5.62 we relate graph sizes with execution times (ms) given a “typical” distribution

of constructs (cf. parameters in caption), and we generate just a single bound per loop.

As already demonstrated for the WCET analysis (cf. Section 5.3.3.6), the ILP approach

scales significantly worse than our WCET analysis. ilp ranges from 24 ms up to 1.42 s,

whereas wcet ranges from under 1 ms up to 116 ms. Despite the increased computational

complexity of mbt as opposed to wcet, we recognize that the difference in execution

time is only insignificant: mbt scales from under 1 ms up to 210 ms.

Chapter 5. Path Analysis 204

0
100
200
300
400
500
600
700
800
900

1 000
1 100
1 200
1 300
1 400
1 500

0 2 500 5 000 7 500 10 000 12 500
Nodes (count)

T
im

e
(m

s)

Method

MBT

WCET

ILP

Figure 5.62: Runtime for non-degenerated CFG (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4)

5.3.6.4 Conclusion

We proposed a path analysis for maximum blocking time computation, which is not

only highly efficient but also the only existing non-ILP approach to this problem, to

the best of our knowledge. As opposed to the ILP approach, we are not limited to

fixed sets of preemption points but are able to explore the state space for all possible

preemption points quickly. Efficiency is achieved by exploiting redundancy not only

during computation of MBT bounds from a dedicated source to dedicated target node

but in particular by exploiting the fact that for multiple target nodes computations are

often redundant. We compute MBT bounds from a single source to all reachable nodes

significantly quicker than the“the single source, single sink” problem is solved with the

ILP approach. Moreover, we show that a carefully optimized implementation is only

insignificantly slower than the computation of WCET bounds.

5.3.7 Computing Worst-Case Execution Frequencies

As a final variant of path analysis, we will be concerned not with path length bounds but

with bounds on execution frequencies of individual program points. Previous approaches

can be modified to compute upper bounds on the execution frequencies of nodes on specific

paths but to the best of our knowledge, no efficient approach based on explicit path

analysis exists to compute frequency bounds for all program points irrespective of specific

paths. A related approach is referred to as Minimum Propagation Analysis (MPA) [149],

which computes symbolic bounds on global execution frequencies from which WCET

bounds can be derived. Note that with maxlen-based ILP approaches, only frequencies

on the implicit worst-case path can be obtained.

Definition 5.80 (Worst-case Execution Frequency) For a given set capacity con-

straints C, Worst-Case Execution Frequency (WCEF) denotes an upper bound on the

Chapter 5. Path Analysis 205

(a) (b)

Figure 5.63: Example of WCEF distribution

repetition count of program points under C on any path from a dedicated source to a

dedicated sink node.

Example Figure 5.63a illustrates a schematic CFG consisting of two scopes, capacity

constraints as node labels and unit node weight. Figure 5.63b illustrates the corresponding

WCEF distribution: A global bound on the number of potential executions of each program

point under the given flow bounds model. Note that the WCEP does not pass through

the right branch within the loop. Consequently, information on potential flow in parallel

paths would be lost.

As a practical application, for the analysis of preemptive scheduling scenarios, WCEF

denotes an upper bound on the number of preemptions that can occur for any specific

program point. Note that for program points u ∈ V , costs ω and WCEF f , the sum∑
u∈V ω(u)f(u) also denotes an upper bound on the WCET.

After technical prerequisites in Section 5.3.7.1, we discuss the respect framework in

general in Section 5.3.7.2, followed its evaluation in Section 5.3.7.3 and by concluding

remarks in Section 5.3.7.4. As always, we assume acquaintance with the principles of

WCET computation from Section 5.3.3.

5.3.7.1 Prerequisites

Sfπ Path states

sfπ = (νfπ , σ
f
π , o

f
π) ∈ Sfπ Path state

νfπ : Sfπ 7→ (Aπ 7→ N∞0) Execution frequencies

σfπ : Sfπ 7→ Aπ
∗ Path signature

ofπ : Sfπ 7→ V Path origin

Table 5.6: Definitions for WCEF analysis

In the following we discuss the technical prerequisites for WCEF analysis. Basic

definitions from Table 5.3 on page 132 remain valid except for the replacement of path

states. For WCEF, they still denote individual paths, but instead of length properties,

we are solely interested in execution frequencies along such paths. Hence, we define path

Chapter 5. Path Analysis 206

states (νfπ , σ
f
π , o

f
π) = sfπ ∈ Sfπ , which encode execution frequencies νfπ : Sfπ 7→ (Aπ 7→ N∞0)

which denotes frequencies on a path, signature σπ : Sfπ 7→ Aπ
∗ which denotes a sequence

of annotations along paths, and origin of paths oπ : Sfπ 7→ V . Note that path infeasibility

is now expressed as frequencies equal to 0.

Basic concepts of analysis remain intact. As usual, we discriminate path states Sfπ by

the equivalence relation defined as:

Aπ∼ : Sfπ × Sfπ

s
Aπ∼ s′ ⇔ σfπ(sfπ) = σfπ(sfπ

′
) ∧ ofπ(sfπ) = ofπ(sfπ

′
) (5.201)

The underlying algebraic structure — now for frequencies — is the commutative semi-ring

(N∞0 ,max,⊥,+, 0) (5.202)

as defined in Equation 5.50 on page 132. Since νfπ denotes a map of frequencies, we lift

the algebra accordingly. Let the set of all functions that map from nodes to frequencies

be denoted by:

Dν = (V 7→ N∞0) (5.203)

Then we define the following algebra on Dν :

(Dν ,max, 1max,+, 1+) (5.204)

We define a helper function which applies an operator o ∈ O element-wise as:

opf : O × Dν × Dν 7→ Dν

opf(o, a, b) = λu .


o(a(u), b(u)) if u ∈ def(a) ∩ def(b)

a(u) if u ∈ def(a)

b(u) otherwise

(5.205)

Then maximum is defined as:

max: Dν × Dν × Dν

max(a, b) =
{
u→ opf(maxN∞0 , a, b)(u)

∣∣ u ∈ def(a) ∪ def(b)
}

(5.206)

where 1max = ∅ denotes the neutral element. Similarly, we define addition8 as:

+: Dν × Dν × Dν

a+ b =
{
u→ opf(+N∞0 , a, b)(u)

∣∣ u ∈ def(a) ∪ def(b)
}

(5.207)

where 1+ = ∅ denotes the neutral element.

8We assume operator + to be applicable in prefix or infix notation.

Chapter 5. Path Analysis 207

Finally, we can lift operator max to sets of path states in Sfπ of the same equivalence

and define

maxwcef
π : ℘(Sfπ) 7→ Sfπ

maxwcef
π (S) =

(
max
s′∈S

νfπ (s′), σfπ(s), ofπ(s)

)
: s ∈ S (5.208)

such that for an equivalence class S = [s], maxwcef
π ([s]) denotes maximal frequencies

mapped for these paths. We assume set S to denote an equivalence class according to

Equation 5.201.

5.3.7.2 Framework

We now define the analysis framework for worst-case execution frequencies. Conceptually,

this does not differ from previous frameworks substantially. Nevertheless, computing

frequency bounds differs from path lengths enough to warrant a detailed discussion. As

before, we define the framework bottom up. Starting from single iterations to unrolls to

the computation of globally absolute execution frequencies.

As usual, we first show how iterations are computed, followed by the discussion of

how complete unrolls are computed and how WCEF to all interior points are obtained,

and we discuss how WCET bounds can be derived from bounds on WCEF.

Iterations

The problem of computing worst-case execution frequencies has the structure of the

semi-lattice:

(Dwcef ,>,v,t) (5.209)

where Dwcef = ℘(Sfπ) is a set of path states, where Sfπ v Sfπ
′
⇔ Sfπ ⊆ Sfπ

′
and where

Sfπ t Sfπ
′
:= {maxwcef

π [s] | [s] ∈ (Sfπ ∪ Sfπ
′
)/
Aπ∼} denotes the set of path states of different

signature, origin and maximal frequencies, according to the equivalence relation defined in

Equation 5.201. We define the corresponding transformer, which only updates signature

σfπ as:

tfwcef : V 7→ (Dwcef 7→ Dwcef)

tfwcef (u) = λS . {(νfπ (s), σfπ(s) · απ(u), ofπ(s)) | s ∈ S} (5.210)

We assume the function

maxs̊
µwcef : V̊ × V 2 7→ Dν (5.211)

to be given such that max̊s
µwcef (̊s, u, v) evaluates to a mapping from annotation labels

to maximal execution frequencies within descendants of scope s̊ from node u to node v

Chapter 5. Path Analysis 208

under given flow bounds βπ. In particular, for the root scope, max̊s
µwcef denotes absolute,

global execution frequencies in subscopes.

We now define, how frequencies are derived from local flow bounds. To this end, we

first define a lifted transformer to specify updates across subscopes as:

tf s̊wcef : S̊ × V 2 7→ (Dwcef 7→ Dwcef)

tf s̊wcef (̊s, u, v) =

λS .



id if v ∈ entry(̊t) ∧ (̊t, s̊) ∈ E̊
 νfπ (sfπ) ∪ f,
σfπ(sfπ),

ofπ(sfπ)


∣∣∣∣∣∣∣
sfπ ∈ S,
f = maxs̊

µwcef (̊t, u, v)

 if v ∈ exit(̊t) ∧ (̊t, s̊) ∈ E̊

tfwcef (u)(S) otherwise

(5.212)

We compute maximal frequencies up to, but not including, subscope entries, extend the

set of frequencies by those of the currently finished subscope, or, otherwise, just update

path states according to Equation 5.210.

Assuming pred→s̊ as defined in Equation 5.99 on page 150 to denote CFG predecessors

such that subscopes are being “leaped over”, we define path states in a program point

by:

S s̊wcef : V̊ × V 2 ×Aπ 7→ Sfπ

S s̊wcef (̊s, s, v, a) =

tf s̊wcef (̊s, s, s)({(0, a, s)}) if v = s⊔{
tf s̊wcef (̊s, u, v)(S s̊wcef (̊s, s, u, a)) | u ∈ pred→s̊ (̊s)(v)

}
otherwise

(5.213)

For a given scope s̊, start and terminal nodes u, v and an initial annotation a, S s̊wcef (̊s, u, v, a)

denotes the set of maximal frequencies within subscopes.

As usual, we define partitions of S s̊let as in the WCET case (cf. Section 5.3.3.2) such

that

SIwcef : V̊ × V 7→ ℘(Sfπ) (5.214)

SOwcef : V̊ × V 7→ ℘(Sfπ) (5.215)

SKwcef : V̊ 7→ ℘(Sfπ) (5.216)

SDwcef : V̊ × V 2 7→ ℘(Sfπ) (5.217)

denote entry, exit, kernel and direct paths, respectively.

Unrolls

Regarding path length, unrolling as defined in the previous analyses involved computing

maximal admissible flow along the network paths denoted by state signatures such that

Chapter 5. Path Analysis 209

the length of compositions of entry, exit and kernel paths (or direct paths, alternatively)

is maximized. In WCEF analysis, we are only concerned with the maximal admissible

flow. Consequently, the problem to solve per scope is just maxflow with node weights

and bounds, which we can define as:

max
∑
u∈V

fΣ
out(u) (5.218)

s.t. ∀u ∈ V : fΣ
in(u)− fΣ

out(u) = bu

bu =


q if u = s

−q if u = t

0 otherwise

∀u ∈ V : `(u) ≤ f(u) ≤ β(u)

As before, ` denotes flow demand to guarantee existence of feasible entry and exit paths

and β denotes an upper flow bound. Reduction of path states to flow networks has been

thoroughly discussed for the case of WCET in Section 5.3.3.2 and is not repeated here.

Frequency is almost synonymous to network flows. The difference is that with the

former we denote scope-relative flows scaled by flow of enclosing scopes. It is important

to recognize that frequencies Dν denote maximal frequencies of subscopes only: prior

to unrolling, maximal flow of current scopes is unknown. Recall that flow bounds βπ

denote scope-local constraints only. Consequently, since Dν denotes maximal flow for all

subscopes, unrolling encompasses not just the determination of maximal flow for a scope

but also the scaling of frequencies of subscopes. We now formalize this intuition.

We keep testf (Equation 5.70) and setf (Equation 5.71) unchanged but define an

additional function

scaleν := λ(ν, n) . {a→ f × n | (a→ f) ∈ ν} (5.219)

such that scaleν(n, νfπ (sfπ)) scales subscope frequencies νfπ by n. Then we define a function

f1
ν which pushes unit admissible flow over a path denoted by σfπ while scaling subscope

flows accordingly. The function argument is a triple of frequencies ν, flow f and capacity

bounds c and returns such a triple. It is defined as:

f1
ν := λs . λ(ν, f, c) .



 ν + scaleν(νfπ (s), 1)

setf (f, 1, σfπ(s)),

c

 if testf (c, f, σfπ(s)) > 0

(⊥, ∅, c) otherwise

(5.220)

Chapter 5. Path Analysis 210

As usual, we represent infeasibility by ⊥. Analogously, we define a function fkν , which

pushes maximally admissible flow and which is defined as:

fkν := λs . λ(ν, f, c) .



 ν + scaleν(νfπ (s), testf (c, f, σfπ(s)))

setf (f, testf (c, f, σfπ(s)), σfπ(s)),

c

 if ν 6= ⊥

(⊥, ∅, c) otherwise

(5.221)

As usual, we compose f1
ν and fkν to evaluate unrolls. Note that we are effectively solving

maxflow. Hence,. kernel paths need not be ordered specifically. Consequently, all

possible evaluations for scope s̊, entry u and exit v for unrolls are defined as:

F iokν := λ(̊s, u, v).{
JSKwcef (̊s)K(fkν) ◦ f1

ν (so) ◦ f1
ν (si)

∣∣∣ si ∈ SIwcef (̊s, u), so ∈ SOwcef (̊s, v)
} (5.222)

Similarly, all evaluations for direct paths are defined as:

F dν := λ(̊s, u, v) .
{
f1
ν (sd)

∣∣ sd ∈ SDwcef (̊s, u, v)
}

(5.223)

Theorem 5.81 (Maximal Frequencies Unroll) Let s̊ ∈ V̊ be a scope, let u ∈ entry(̊s)

and v ∈ exit(̊s) and let f0 = Aπ × {0} denote initial flow. Then maximal frequencies for

a scope s̊ ∈ V̊ and entry and exit nodes u, v ∈ V , is defined as:

maxs̊
µwcef : V̊ × V 2 7→ Dν

maxs̊
µwcef (̊s, u, v) = max

{
ν ∪ f

∣∣∣∣∣ (ν, f, c) = fν(∅, f0, βπ), ν 6= ⊥,

fν ∈ F iokν (̊s, u, v) ∪ F dν (̊s, u, v)

}
(5.224)

This represents the precise worst-case execution frequencies for a scope and a pair of

source and sink nodes, under the given flow bound model.

Proof. maxflow is solved as usual (cf. Theorem 5.63 on page 143). In addition, for

every (local) flow f along a path π in the current scope, all maximal flows of subscopes

ν “traversed” by π are scaled by f . Consequently, f + ν denotes maximal flow for the

current scope and the scaled maximal flow for all subscope. Note that sets f and ν are

disjoint. We determine the maximum for all possible combinations.

Example Figure 5.64a illustrates two interior scopes 1̊, 2̊, annotated such that βπ(a1) =

2, βπ(a2) = 2, βπ(a3) = 3. Figure 5.64b illustrates a subset of the state space, where

state sets above and below the dashed lines denote path states just before and right

after transformer tfwcef is applied, respectively. In nodes f and g, max̊s
µwcef is applied

respectively such that

S s̊wcef (̊1, a, f, aa0) = {({ab0 → 5, a2 → 2, a3 → 3}, (aa0, a1), a)}

Chapter 5. Path Analysis 211

(a) (b)

Figure 5.64: Example of WCEF state propagation

denotes path states right after subscope 2̊ has been left. If we assume a surrounding scope

0̊ of entry s, then similarly,

S s̊wcef (̊0, s, g, as0) = {({aa0 → 2, a1 → 2, ab0 → 10, a2 → 4, a3 → 6}, (. . .), . . . }

denotes path states after leaving scope 1̊.

WCEF of All Interior Points

Let 0̊ be a root scope where s ∈ entry(̊0) is the global CFG entry and t ∈ exit(̊0) is the

global CFG exit. Then ν = max̊s
µwcef (̊0, s, t) by definition represents absolute frequencies

from all scopes. Recall that we assume the default annotation for entry s to denote a

unit capacity bound. Consequently, only direct paths are considered in the unroll of

scope 0̊. Nevertheless, we still need to compute maximal frequencies for all interior nodes:

map ν only denotes frequencies for annotation labels yet. We now map frequencies into

the CFG.

For a given node u ∈ V , let S(u) denote all path states in u from all entries of its

respective scope γ̊(u), which we define as:

S := λu . {S s̊wcef (̊γ(u), i, u)|i ∈ entry(̊γ(u))} (5.225)

where S s̊wcef (̊γ(u), i, u) (Equation 5.213) represent path states from entry i. Recall that

path signature σfπ denotes a sequence of annotations along a path. Then the set of all

most recent annotation labels with respect to node u on paths denoted by S(u) is defined

as:

A := λu . {an|(a1, . . . , an) = σfπ(s), s ∈ S(u)} (5.226)

Chapter 5. Path Analysis 212

Theorem 5.82 Let ν = max̊s
µwcef (̊0, s, t) denote the mapping ν : Aπ 7→ N∞0 from annota-

tion labels to execution frequencies. Then

ν? : V 7→ N∞0
ν?(u) =

∑
a∈A(u))

ν(a) (5.227)

denotes the maximal execution frequency of a node u.

Proof. By definition of network flows, net flow into a node equals the sum of net flow out

of its network predecessor nodes. Frequency ν(a) equals net flow out of its corresponding

CFG node v = α−1
π (a) ∈ V . All paths to a node u ∈ V must pass through a most recently

annotated node v. Consequently, net flow into node u must equal the sum of net flow

out its most recently annotated predecessors.

Example We reconsider Figure 5.64b and compute the maximum execution frequency

for node f . Note that the example only represents a subgraph. By unrolling scope 1̊, we

already computed frequencies per annotation labels (cf. S s̊wcef (̊0, s, g, as0) which denotes

path states in the implicit enclosing scope 0̊ after unrolling):

ν = maxs̊
µwcef (̊0, s, t) = {aa0 → 2, a1 → 2, ab0 → 10, a2 → 4, a3 → 6} (5.228)

All path states in f are represented by:

S(f) = {(∅, (ab0, a2), b), (∅, (ab0, a3), b)}

Consequently, all most recent annotation labels are denoted by:

A(f) = {a2, a3}

where α−1
π (a2) = c and α−1

π (a3) = d. Then the accumulated frequency in f is denoted by:

ν?(f) = ν(a2) + ν(a3) = 10

Note that ν?(g) = ν(a1) = 2 and ν?(c) = ν(a2) = 4 (c.f Figure 5.63).

From Frequencies to Time Bounds

We briefly address how WCEF bounds can be reduced to obtain WCET bounds. Let

ω : V 7→ N0 denote WCET estimates per program point just as in the previous variants

and let ν? be defined as in Equation 5.82. Then a global WCET bound wcetν per program

point u is denoted by all program points potentially executing prior to u. Therefore, let

pred∗(u) := {v | v u} ∪ {u} denote all CFG nodes to reach — and including — node

Chapter 5. Path Analysis 213

u . Then we define WCET bounds as node weights scaled by frequencies as:

wcetν : V 7→ N∞,⊥0

wcetν(u) =
∑

v∈pred∗(u)

ν?(v)× ω(v) (5.229)

It is important to recognize that flow bounds for WCEF and WCET as defined in

Section 5.3.3 yield different semantics.

Figure 5.65: Example of different semantics of flow bounds for WCEF and WCET

Example Consider the graph illustrated in Figure 5.65. Node c is bounded by 2 and we

assume unit node weights. According to Equation 5.229, a bound on the WCET for node

b yields 1 × ω(a) + 2 × ω(b) + 2 × ω(c) = 5. However, the worst-case path to b equals

|(abcbcb)| = 6.

The reason for this is that WCET bounds by worst-case paths are sensitive to

annotation location, whereas WCET bounds by WCEF are path-insensitive. When

comparing both approaches directly this has to be kept in mind.

5.3.7.3 Evaluation

We evaluate the proposed WCEF framework qualitatively as well as quantitatively by

evaluating WCET estimates obtained via Equation 5.229, which we will denote as just

wcef in the following, and from our proposed WCET framework from Section 5.3.3

to assess the differences between the two methods. The test environment is identical

to that of the WCET evaluation in Section 5.3.3.6 and we use a similar method. For

precision, we evaluate results from the MRTC benchmark suite [97]. As stated before,

WCET estimates by the two methods are not directly comparable. Nonetheless, the

evaluation provides an intuition of their respective quality. Averages are computed by

the arithmetic mean. Performance is evaluated by means of randomized graphs to obtain

large sample sets with controlled characteristics. The implementation is a derivative of

the WCET reference algorithm given in Section 5.3.3.5.

MRTC

We first evaluate estimation quality by assessing a subset of MRTC benchmarks. Figure 5.66

illustrates the ratio of precision in terms of overestimation of wcef over wcet as box

plots, showing upper, lower and average ratios for all program points within a single

Chapter 5. Path Analysis 214

132 %

50

100

150

200

250

300

350

400

450

500

550

sq
rt fir fft

1

ad
pc

m
de

co
de

r

ad
pc

m
en

co
de

r

pr
im

e st

fib
ca

ll

in
se

rt
so

rt

bs
or

t1
00 ed

n

ex
pi

nt

co
m

pr
es

sd
at

a

m
at

m
ul

t

co
un

tn
eg

at
iv
e

jfd
ct

in
t

qu
rt

lm
s

fd
ct cr

c

lu
dc

m
p

bi
na

ry
se

ar
ch

m
in

ve
r

nd
es

pe
tr
in

et

st
at

em
at

e

lc
dn

um
co

ve
r

Name

R
at

io
(%

)

Figure 5.66: Overestimation (%) of WCEF over WCET bounds

15 %

0

10

20

30

40

50

60

70

80

pr
im

e st

bs
or

t1
00

fib
ca

ll

ad
pc

m
de

co
de

r

ad
pc

m
en

co
de

r
ed

n

ex
pi

nt fir

co
m

pr
es

sd
at

a

m
at

m
ul

t

co
un

tn
eg

at
iv
e

in
se

rt
so

rt
sq

rt
lm

s
cr

c

jfd
ct

in
t

qu
rt fft

1
fd

ct

lu
dc

m
p

nd
es

bi
na

ry
se

ar
ch

m
in

ve
r

st
at

em
at

e

pe
tr
in

et

lc
dn

um
co

ve
r

Name

R
at

io
(%

)

Figure 5.67: Overestimation (%) of WCEF over WCET bounds for terminal nodes only

benchmark. Benchmarks are ordered in ascending order of average deviation. On average

over all benchmarks, wcef yields 132 % overestimation. Recall from the discussion

above that flow bounds have different semantics in both frameworks. Hence, wcef is

not necessarily strictly dominated by wcet in all program points, given identical sets of

flow bounds; this is reflected by the diagram. wcef for benchmark sqrt yields 5 % lower

bounds on average. Opposed to that, benchmark cover overestimates wcet by 510 %.

Lowest wcef estimates occurred for adpcm encoder (−22 %).

Figure 5.67 depicts wcef overestimation just for the respective terminal program

points of all benchmarks. In all cases, wcef yields higher estimates than wcet (by 15 %

on average). Overestimates range from 0 % for prime to 82 % for cover.

In Figure 5.68 the percentage of program points that do not differ for both estimates

is depicted. On average, 14 % of program points yield identical results, ranging from

55 % for expint to 1 %.

Chapter 5. Path Analysis 215

14 %

0

5

10

15

20

25

30

35

40

45

ex
pi

nt

fib
ca

ll
fd

ct

pr
im

e

bi
na

ry
se

ar
ch

co
un

tn
eg

at
iv
e fir

in
se

rt
so

rt

bs
or

t1
00

co
m

pr
es

sd
at

a

m
at

m
ul

t

jfd
ct

in
t

st
at

em
at

e
qu

rt
sq

rt cr
c

ed
n st

lm
s

lc
dn

um

lu
dc

m
p

nd
es

ad
pc

m
de

co
de

r

ad
pc

m
en

co
de

r

m
in

ve
r

pe
tr
in

et fft
1
co

ve
r

Name

R
at

io
(%

)

Figure 5.68: Program points (%) with non-deviating time estimates

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

10 000

11 000

0 5 000 10 000 15 000 20 000 25 000
Nodes (count)

T
im

e
(m

s)

Method

WCET

WCEF

Figure 5.69: Runtime for non-degenerated CFG (depth = 4, loop depth = 3,P(if) =
0.1, ifelse = 0.2,P(while) = 0.3,P(dowhile) = 0.4)

Randomized Graphs

As before (cf. Section 5.3.3.6), we argue that real-time benchmarks are not well suited

for a quantitative comparison of performance due to their limited size. So we evaluate

randomized CFGs from size of approximately 100 to 25 000. Randomization parameters

for control flow constructs and annotations are listed in Table 5.2 on page 118.

In Figure 5.69 we relate execution time in ms to graph sizes for a “typical” distribution

of control flow constructs (cf. parameters in caption), and we generate just a single bound

per loop. Scalability of wcef is significantly worse than wcet. for 25 313 nodes, wcef

takes 6 104 ms and whereas wcet takes just 320 ms. Moreover, scaling is clearly not

linear for wcef.

Chapter 5. Path Analysis 216

5.3.7.4 Conclusion

Here, we proposed a variant of our reference WCET path analysis to compute worst-case

frequencies. As opposed to other path analyses in which frequencies might be derived as

side-results our approach on frequency estimation is independent of specific paths but

computes them only based on given flow bounds. This has the advantage of obtaining a

holistic view on execution patterns within a task. This is particularly useful to identify

“hot” regions within a task. This metric is can in general not be obtained by path-based

analyses as proposed earlier. As we have seen, WCEF can also be used to bound WCET.

However, path-based and frequency-based approaches for time estimation assume different

flow bound semantics and are therefore not directly comparable in general.

5.4 Remarks

In this section we make remarks on potential future work on path analysis regarding

context-sensitivity, global flow bounds, mutual path exclusion and symbolic analyses,

which we have not covered explicitly so far.

As we have seen, the proposed framework is a general foundation for path analysis

from which different variants besides whole-task WCET estimates can cleanly be derived.

We deliberately did not address aforementioned features to keep overall formalization

unified and simple. Nevertheless, throughout its design, we took care not to create

unnecessary obstacles for extension. Arguably, IPET-based approaches for simple whole-

task WCET estimates have the advantage that it is very easy to model, for example,

mutual path exclusion. But it cannot be stressed enough that ILP-based approaches in

particular yield highly limited expressiveness, preventing advances towards higher levels

of integration of timing analysis phases, including — and in particular — of scheduling

analysis. Recall that in particular in the case non-timing compositional architectures no

viable alternative is known. Our framework is a proposal and as well as an invitation

to unify non-ILP-based path analysis approaches. Future work should therefore involve

the addition of features of practical relevance beyond what we proposed so far. We now

address some of these specifically and give hints on their realization.

As opposed to IPET and approaches based on graph reduction, our method allows

the collection of information in execution order to a greater extent. This allows path

computations to be context-sensitive. As a matter of fact, we already took precautions

for this case in that we introduced generic annotation labels that define path signatures.

At the current state, these labels merely denote flow bounds, but we specifically took

into consideration that these might identify other kinds of information, where signatures

continue to discriminate state explicitly. Since analysis order is topological, it is also

easy to propagate information in and out of scopes, enabling global context-sensitivity.

During unrolling, we then can take this into account accordingly. As an example, above,

we assumed constant execution costs ω per program point, but it is easy to define ω as

a function of signatures, given they provide relevant contextual information. To some

Chapter 5. Path Analysis 217

degree context is already discriminated in our proposals in that flow bounds induce

partitions of iterations. Also we explicitly discriminate entry and exit paths from kernels.

For example, it would already be straight forward to distinguish first from following

iterations to account for cold and hot cache contexts. It is important to recognize that

if costs ω become a function of path context, it also questions the traditional order

of stages in timing analysis tool chains, in that path analysis can become a potential

driver of micro-architectural analysis by providing additional means to discriminate

context, instead of representing just a final consolidating analysis stage. More fine-

grained discrimination of loop iterations are proposed in [141]. Their constraint model is

in principle also applicable to our framework with a respective adaption of unrolling. For

general global flow bounds, we sketched the idea and a simple heuristic in [9]. In general,

we consider this a non-trivial problem that cannot be decided just locally since flows in

different scopes need to be balanced out to obtain globally maximal path lengths (see [9]

for details). Note that global bounds can always be approximated with respective local

bounds. Still it is an interesting problem to investigate in isolation.

An important type of context-sensitivity is mutual path exclusion from which sig-

nificant gains in accuracy can be expected even under a constant cost model: mutual

exclusion, along with flow bounds, reflect control flow semantics lost in the CFG ab-

straction. Flow bounds are necessary for path analysis while mutual exclusion may be

optional. Nevertheless, we explicitly took this into account as the logical next step to

enhance our framework. As with general context-sensitivity above, it is possible to extend

annotations and adopt unrolling accordingly. To give a concrete hint on its realization,

let annotations — besides ones that denote flow bounds — represent nodes in a conflict

graph. Then states are sufficiently discriminated by definition of path states already and

just unrolling needs to be adopted to compose only non-conflicting paths. Since conflicts

are potentially global, annotations need to be migrated between scopes, affecting initial

and restored pending path states accordingly. This equally enables the discrimination of

task execution modes.

For parametric timing analysis, computing symbolic representations of path problems

is of particular interest. All analyses proposed above have been carefully formalized to

expose the underlying algebra. Technically, efficient construction of symbolic expressions

in our framework is easily achieved by just replacing respective algebras. To the best

of our knowledge, all symbolic approaches suffer from state space explosion. We argue

that in many cases this is the result of naive expression construction [137, 150] which

yields much redundancy that is subsequently to be eliminated by term-rewriting. Our

framework circumvents such problems by eliminating redundancy early.

Undoubtedly, there likely exist equivalent ILP models to the path problems discussed

so far. But we have to keep in mind that these will have to be built first, potentially

requiring additional analyses and which effectively duplicate existing control flow rep-

resentation in the form of linear equations. In-place analysis is not possible. Also

the generated models will be static and potentially very large as the entire potential

Chapter 5. Path Analysis 218

state space must be modeled in constraints. Exploitation of dynamic redundancy is

not possible. For example, to compute WCET estimates to all reachable nodes, an ILP

model of at least quadratic size of the input would be required to model maxlen for

each pair of source and potential sink node separately. In our proposal, only a minimal

amount of information is maintained since we dynamically decide whether subpaths can

be reused for multiple sink nodes at a time. We believe that the question is not so much

whether we can find corresponding ILP models for these algorithms. But rather whether

we can find algorithms as alternatives to problems traditionally modeled as ILP in the

context of timing analysis to overcome the current stalemate.

5.5 Conclusion

In this chapter we proposed a general, efficient and flexible path analysis framework for

timing analysis. The problem of path analysis is addressed by isolating two key aspects.

The first aspect is control-flow reconstruction. We discussed how traditional, compiler-

oriented approaches to reconstruction have critical shortcomings in the context of timing

analysis by creating a semantic gap between flow fact models and representation used in

subsequent analyses. We argue that root cause for this is the application of traditional

standard heuristics which may be ill-suited. Worse yet, existing approaches propose

input transformations (e.g. to establish graph reducibility prior to reconstruction) which

only widens the semantic gap. To address these problems, we first proposed an efficient

parametric algorithm for loop detection which allows for structural specification as part

of a flow fact model to close the semantic gap. In particular for the case of irreducibility,

we proposed two alternative strategies to overcome ambiguity during recovery: Either

by locally restricted enumeration of cases or by extension of structural flow facts by

so-called prenumbering to maintain specific loop-structures.

The second aspect is related to path analysis itself based on structural information

previously obtained. To this end, we propose a general path analysis framework which

subsumes other existing approaches. As the primary use case, we showed the construc-

tion of an efficient analysis for WCET estimation, which is not limited to analysis at

task granularity but allows for computation on arbitrary subgraphs and for individual

program points. We proposed several optimizations for the construction of highly efficient

implementations, and provided a concrete reference implementation. Further, we derived

several variants of the standard WCET problem:

• Best-case Execution Time (BCET): Estimation of lower execution time bounds. In

conjunction with WCET bounds, execution time intervals for individual program

points can be determined.

• Latest Execution Time (LET): WCET to program points with the guarantee that

a task terminal point remains reachable. This yields significantly tighter estimates

for analysis cases in fully preemptive scheduling scenarios.

Chapter 5. Path Analysis 219

• Maximum Block Time (MBT): Upper bounds on the WCET for the execution

from a program point to another. This provides timing estimates for fixed region

deferred preemption scenarios.

• Worst-case Execution Frequencies (WCEF): Upper bounds on the repetition of

individual program points independently from potential execution paths. This, for

example, yields upper bounds on the number of preemptions in fully preemptive

scheduling scenarios.

Together, these variants cover many existing practical problems in timing analysis for

which no, only highly specialized or inefficient solutions exist. Our hypothesis is that one

of the causes is the overemphasis of IPET, which might be an near-optimal choice in

traditional per-task timing analysis but which is otherwise highly restrictive.

Chapter 5. Path Analysis 220

Chapter 6

Bounding Cache-related

Preemption Delay

Contents

6.1 Improving Conventional CRPD Bounds . 221

6.1.1 Preliminaries . 222

6.1.2 A Review of Approaches . 223

6.1.3 A Refined Bound on CRPD . 230

6.2 Improving CRPD Estimation with Time Bounds 237

6.3 Evaluation . 242

6.4 Conclusion . 245

In this chapter we resume our discussion on bounding cache-related preemption

delay. In Chapter 4, we focused on the computation of tight CRPD bounds for single

preemptions and only addressed issues related to non-trivial task sets as far as necessary.

In the following we review and compare different approaches with an emphasis on

optimizing for large numbers of preemptions. We further propose two new bounds on

CRPD which on the one hand improve on the current state of the art for — what we

refer to as — conventional CRPD bounds and on the other hand propose a bound which

explicitly exploits results from path analyses proposed in the the previous chapter.

In Section 6.1 we discuss existing CRPD bounds and propose a new bound which does

not follow the conventional principles of existing approaches by more precisely modeling

preemption scenarios. In Section 6.2 we propose another bound which relies on timing

information from path analysis to exclude infeasible interferences. We evaluate these new

bounds in Section 6.3 and conclude the chapter in Section 6.4.

6.1 Improving Conventional CRPD Bounds

In this section we discuss various approaches to bound CRPD. To this end, we first

provide a brief overview of the most accurate existing conventional CRPD bounds. We

221

Chapter 6. Bounding CRPD 222

refer to this class of CRPD bounds as being conventional as they have been proposed

over an extended period of time, depend on similar inputs and only differ in their degree

of pessimism. We identify their common principles and their inherent weaknesses. We

then propose an new alternative bound which does follow these principles and does not

share sources of inaccuracy of existing approaches.

We first repeat, summarize and simplify important notions from previous chapters in

Section 6.1.1. Then we review existing approaches in Section 6.1.2 and propose a new

CRPD bound in Section 6.1.3.

6.1.1 Preliminaries

We first tersely summarize important notions and definitions from Chapter 3 and

Chapter 4 for reference in the following discussion. Generally, we assume deadline

monotonic scheduling and LRU cache replacement policy.

From scheduling theory, recall from Table 3.1 on page 23 that for a task τi, parameter

Ri denotes response time, Ji denotes release jitter and Ti denotes period. Then the

number of preemptions imposed by a higher priority task τj on a task τi is bounded by:

#(i, j) :=

⌈
Ri + Ji
Tj

⌉
(6.1)

Also recall from Table 3.2 on page 27 that hep(i) denotes tasks of higher or equal priority

than τi, lp(i) denotes tasks of lower priority than τi and that aff(i, j) = lep(j) ∩ hp(i)

denotes “affected” tasks in the context of indirect preemption of τi by τj .

We simplify the representation of static cache analysis results and denote useful cache

blocks, evicting cache blocks and cache block resiliencies by the following function sets:

UCB ⊆ V 7→ ℘(M) (6.2)

ECB ⊆ ℘(M) (6.3)

CBR ⊆ V 7→ Age (6.4)

where Age = {0, . . . ,K−1,∞} denotes cache block age. In a formal context, UCB, ECB

and CBR denote aforementioned sets. Otherwise, we just mean the concept.

Consequently, task-wise sets of UCB, ECB and CBR are denoted by:

ucbτ : T 7→ UCB (6.5)

ecbτ : T 7→ ECB (6.6)

cbrτ : T 7→ CBR (6.7)

In Chapter 4, we have been concerned with improving estimates for single preemptions

and only handled bounds within task sets only as far as necessary. We briefly summarize

the most important bounds for single preemptions according to our simplified notation:

Bounds based on UCB only are defined as the maximal cardinality of UCB sets in

Chapter 6. Bounding CRPD 223

program points such that:

crpducb : UCB 7→ N0

crpducb(ucb) = max
u∈V

 ∑
s∈[1,N]

{|ucb(u)s|}

 (6.8)

Bounds using ECB-only are defined as the number of accessed cache sets scaled by cache

associativity K:

crpdecb : ECB 7→ N0

crpdecb(ecb) = K ×
∑

s∈[1,N]

{s : |ecbs| > 0} (6.9)

Recall that a single evicting cache block can cause up to K cache misses in a preemptee.

Consequently, for bounds combining UCBs and ECBs, a safe estimate is given by the

maximal cardinality of invalidated UCBs denoted by conflicting cache sets of UCBs and

ECBs over all program points:

crpducb,ecb : UCB× ECB 7→ N0

crpducb,ecb(ucb, ecb) = max
u∈V

 ∑
s∈[1,N]

{|ucb(u)s| : ecbs 6= ∅}

 (6.10)

CBR is an optional optimization for such combined bounds. For the sake of simplicity, we

will not specifically address CBR in the following. Its application is an obvious extension

to the given formulae.

6.1.2 A Review of Approaches

In this section we briefly review approaches to bound CRPD in worst-case response time

analysis. Instead of providing a collection of related work, we only discuss the principle

intuitions of the various techniques and briefly address their specific weaknesses. We

only limit the discussion to the relevant subset of approaches. A thorough overview and

the historic development of approaches is given in the seminal work of [6].

After a brief introduction, we first discuss a class of bounds akin to those already

partially addressed in Chapter 4 to which we refer to as singleton bounds, then we discuss

the current state of the art of approaches referred to as multiset bounds.

Introduction

Recall that UCBs in a program point denote cached memory blocks which remain cached

till their next access. Any preemption between two accesses potentially evicts such UCBs,

increasing the CRPD. Hence, the largest set of UCBs at one program point denotes an

upper bound for evictions at any program point. The amount of possible eviction is

Chapter 6. Bounding CRPD 224

Figure 6.1: Example of UCB-only and ECB-only CRPD (K=1, N=4, BRT=1)

Figure 6.2: Example of UCB-only and ECB-only CRPD with nested preemption (K=1,
N=4, BRT=1)

denoted by the ECBs of a preempter, which denote all memory blocks accessed during

its entire execution.

Example In Figure 6.1 task τ1 preempts task τ2 and causes preemption costs of 0. On

the one hand, at most 2 UCBs can be evicted which therefore denotes a safe upper bound

on the actual preemption costs. On the other hand, at most 2 ECBs of τ1 evict blocks in

τ2, which therefore also denotes a safe upper bound on preemption costs. Taking both

sets, UCB and ECB, into account yields a precise bound.

In case of nested preemption, preemption costs may be indirect and care must be

taken not to underestimate actual costs.

Example In Figure 6.2 task τ3 is indirectly preempted by task τ1, causing preemption

costs of 2 only due to evictions in the intermediate task τ2. Hence, only taking τ1 and τ3

into account in isolation may be unsafe.

Singleton Bounds

Let γi,j denote an upper bound on the CRPD for task τi due to τj . Then a bound on the

WCRT of τi including CRPD imposed by all higher priority tasks hp(τi) is denoted by:

Ri = Ci +
∑

j∈hp(i)

#(i, j)× (Cj + γi,j) (6.11)

Bound γi,j has been previously proposed to be derived from UCB, ECB or combina-

tions thereof. Some of these approaches yield unsafe bounds which have subsequently

been corrected [6]. We briefly review the corrected variants.

Using just UCB is a safe bound on CRPD despite nested preemption is given as

follows:

Chapter 6. Bounding CRPD 225

Definition 6.1 (UCB-only [88]) A safe CRPD bound considering only UCB is given

by:

γi,j := BRT × max
k∈aff(i,j)

crpducb(ucbτ (k)) (6.12)

with crpducb defined by Equation 6.8.

Example In Figure 6.2 this yields precise bounds for the preemption of τ3 by τ1:

max
k∈aff(1,3)

crpducb(ucbτ (k)) = max{2, 2} = 2

Similarly, CRPD can be bounded by ECB alone. In this case indirect costs need not

be taken into account since ECBs always denote an upper bound on possible evictions.

Definition 6.2 (ECB-only [41]) A safe CRPD bound considering only ECB is given

by:

γi,j := BRT × crpdecb(ecbτ (j)) (6.13)

with crpdecb defined by Equation 6.9.

Example In Figure 6.2 this yields precise bounds for the preemption of τ3 by τ1:

crpdecb(ecbτ (j)) = 2

An obvious improvement is to take the actual interference of UCBs and ECBs into

account. In Figure 6.1 the intersection of UCB and ECB yield a precise bound. In case

of nested preemption, care has to be taken to account for all possible cases of indirection.

Two conceptually symmetric approaches are known which solve the problem of indirect

preemptions by computing supersets of either all sets of UCB of all possible preemptees by

a preempter, or of all sets of ECBs of all possible preempters of a preemptee. In both cases,

the respective UCB and ECB sets are eventually intersected. Simple intersection without

previous transformation potentially misses indirect delays from nested preemptions.

The first technique is dubbed UCB-union. In the UCB-only approach above, the

largest set of UCB over all program points of all preemptees is computed. The worst-case

preemption cost for UCB-union, however, is the largest element in the cross-product of

all preemptees. For example, in Figure 6.3, ECBs of τ1 intersect with UCBs (at specific

program points) in τ2 and τ3.

Definition 6.3 (UCB-union) Let the projection of all UCB of affected tasks onto all

program points of a preemptee τi be defined as:

ucb×τ (i) =

u→
 ⋃
k∈aff(i,j)

⋃
v∈V

ucbτ (k)(v)


∣∣∣∣∣∣ u ∈ def(ucbτ (i))

 (6.14)

Chapter 6. Bounding CRPD 226

Figure 6.3: Example of imprecise UCB-union and precise ECB-union
(K=1, N=4, BRT=1)

Then a safe CRPD bound considering combined UCB and ECB is defined as:

γi,j := BRT × crpducb,ecb
(
ucb×τ (i), ecbτ (j)

)
(6.15)

where crpducb,ecb is defined according to Equation 6.10.

Note that projection ucb×τ is only one possibility. In the original proposal [174] of

this approach, UCB are projected onto a single set. We altered the definition here to

adapt to crpducb,ecb.

Example For the example illustrated in Figure 6.3, we ignore the distinction of specific

preemption points for the sake of simplicity. For the preemption by τ3, actual preemption

costs equal 4 and UCB-union yields a safe but not precise upper bound of 6 by computing:

γ3,2 = crpducb,ecb((i, j,⊥,⊥), (⊥,⊥, g, h)) = 0

γ3,1 = crpducb,ecb((i, j, g, h), (a, b, c, d)) = 4

Symmetrically, we define a technique referred to as ECB-union. Here, ECB of all

potential preempters are joined to compute interference with a preemptee. However, as

we already pointed out for Figure 6.2, the worst-case may not be a direct preemption of

task τj in the preemptee τi but a preemption in a task τk with k ∈ aff(i, j).

Definition 6.4 (ECB-union [94]) A safe CRPD bound considering UCB and combined

ECB is defined as:

γi,j := BRT × max
k∈aff(i,j)

crpducb,ecb

ucbτ (k),
⋃

h∈hep(j)

ecbτ (h)

 (6.16)

where crpducb,ecb is defined according to Equation 6.10.

Intuitively, we account for the preemption by a task τj which has itself already been

preempted by tasks τh. The worst-case, however, need not be a direct preemption of τi

but might be any preemption of an intermediate task τk by τj that itself preempted τi

Chapter 6. Bounding CRPD 227

Figure 6.4: Example of precise UCB-union and imprecise ECB-union
(K=1, N=4, BRT=1)

Example Figure 6.4 illustrates an example scenario with an actual preemption cost of 2.

ECB-union yields total preemption cost f 6 by computing:

γ3,1 := max
{

crpducb,ecb((i, j, k, l), (⊥,⊥, c, d)), crpducb,ecb((⊥,⊥,⊥,⊥), (⊥,⊥, c, d))
}

= max{2, 0} = 2

γ3,2 := max
{

crpducb,ecb((i, j, k, l), (e, f, c, d)),
}

= max{4} = 4

Note that in Figure 6.3, ECB-union yields a precise bound as opposed to UCB-union,

and in Figure 6.4 UCB-union yields a precise bound as opposed to ECB-union. Such

overestimation is the result of accounting for the same evictions multiple times by forming

supersets.

The bound we originally proposed in Section 4.6.4 is similar to the ECB-union

approach which has only been proposed recently [94]. Instead of accounting for indirect

preemption by joining ECB sets of preempting tasks, we accumulate direct preemption

costs only but allow for an optimized treatment of successive interaction in non-direct

mapped caches. We restate our bound here without CBR for reference only.

Definition 6.5 (ECB-union?) A safe CRPD bound considering UCB and only inter-

acting ECB is defined as:

γi,j := BRT ×
∑

k∈aff(i,j)

crpducb,ecb

ucb(k),
⋃

h∈hep(j)

?
ecb(h)

 (6.17)

where
⋃? only joins interacting cache sets (cf. Section 4.6.4) and where crpducb,ecb is

defined by Equation 6.10.

Similar to UCB-union and ECB-union, this bound suffers from potentially accounting

for the same evictions repeatedly.

ECB-union and ECB-union? can be combined with CBR (cf. Section 4.5.3) to enhance

precision. In the following in order to simplify the discussion, we will not be concerned

with matters of interaction and constrain ourselves to direct-mapped caches.

Chapter 6. Bounding CRPD 228

Multiset Bounds

We refer to the previous approaches as singleton bounds since we compute a single

bound which must be safe for all preempting jobs (cf. Equation 6.11). Several authors

[94, 175, 176] proposed the discrimination of individual preemptions by maintaining

multisets of preemption costs that individual preempting jobs can impose. In the following

we only discuss the most precise of these approaches.

Let γmi,j denote a bound that denotes the accumulated costs of individual preemptions

of a task τi by a task τj . Then WCRT for τi is denoted by:

Ri = Ci +
∑

j∈hp(i)

(
#(i, j)× Cj + γmi,j

)
(6.18)

Intuitively, γmi,j is computed as follows: For preemptions of τi by τj , multiset M

contains the costs of all direct and indirect preemptions that τj possibly imposes on τi.

This set may be larger than the actual number of jobs of τj in the response time of τj .

Hence, only the sum of the #(i, j) largest values in M denote a safe upper bound on the

total preemption costs.

As the number of preempters increases, the number of scenarios grows exponentially,

potentially accounting for the very same evictions many times. For example, in Figure 6.5,

only τ1 imposes (indirect) preemption costs onto τ3. Since #(3, 1) = 2, this leads to

an unnecessarily imprecise bound since costs attributed to τ1 stem from τ1 preempting

τ2 which itself only repeats #(3, 2) = 1 times in the response time of τ3. Therefore,

we [94] recognize that any task τk with k ∈ aff(i, j) can not be preempted more often

than #(k, j) times by a preempter τj and does itself not preempt τi more often than

#(i, k) times.

Definition 6.6 (Multiset [6]) Let γsi,j denote any singleton bound as discussed above,

then multiset Mi,j, which denotes preemption costs of a preempter τj for a preemptee τi,

is defined as:

Mi,j :=
⋃

k∈aff(i,j)

{
γsk,j
}#(k,j)×#(i,k)

(6.19)

Let maxn : S 7→ S denote the n largest elements in a set S. Then

Ci,j = max#(i,j) Mi,j (6.20)

denotes the #(i, j) largest values in multiset Mi,j. A bound according to Equation 6.18

is then defined as:

γmi,j := BRT×
∑

Ci,j (6.21)

Chapter 6. Bounding CRPD 229

Figure 6.5: Example for effectiveness of multiset approaches (K=1, N=4, BRT=1)

For the singleton bound γsi,j, we can apply either UCB-union or ECB-union approaches

as discussed above. For UCB-union (Equation 6.15), it is defined as:

γsi,j := crpducb,ecb
(
ucb×τ (i), ecbτ (j)

)
(6.22)

For ECB-union (Equation 6.16), it is defined as:

γsi,j := crpducb,ecb

ucbτ (i),
⋃

h∈hep(j)

ecbτ (h)

 (6.23)

Multiset approaches do not tighten the bounds on individual preemptions per se.

Instead they accumulate individual preemption costs as opposed to applying a single

upper bound to all preemptions as in previous approaches.

Example Figure 6.5 illustrates the improvement of the multiset CRPD bounds over

singleton CRPD bounds. We assume ECB-union. Then singleton preemption costs γsi,j
are denoted by:

γs3,1 := max
{

crpducb,ecb((⊥,⊥, k, l), (a, b,⊥,⊥))
}

= max{0} = 0

γs2,1 := max
{

crpducb,ecb((e, f,⊥,⊥), (a, b,⊥,⊥)),
}

= max{2} = 2

Then multiset Mi,j yields:

M3,1 = {γs3,1}#(3,1)×#(3,3) ∪ {γs2,1}#(2,1)×#(3,2) = {0, 0} ∪ {2}

Total preemption costs for task τ1 preempting τ3 is then bounded by:

γm3,1 =
∑

max#(3,1) M3,1 =
∑
{2, 0} = 2 (6.24)

With singleton UCB-union or ECB-union, preemption costs are bounded by 4 since

indirect preemption costs of τ1 preempting τ3 is accounted for twice.

Multiset approaches cannot prevent overestimation in the singleton bounds they

employ internally, but in cases of potentially many preemptions (high CPU utilization),

they are more precise than their purely singleton counterparts.

Chapter 6. Bounding CRPD 230

6.1.3 A Refined Bound on CRPD

We propose a new bound on CRPD which precisely accounts for block evictions. In the

singleton approaches discussed above, supersets are composed, which either represent

safe upper bounds on evicted or evicting memory blocks, respectively. Consequently,

identical evictions are accounted for multiple times. Multiset mitigates overestimation

by discriminating evictions of individual preempting jobs. Nonetheless, pessimism in

estimating costs of nested preemptions remain by ultimately relying on the same singleton

bounds.

The fundamental restriction of existing bounds is the lack of contextual information

to precisely bound evictions. Response time according to Equation 6.11 or Equation 6.18

is ultimately composed of CRPD estimates of just a preemptee τi and a preempter τj such

that indirect evictions in tasks τk of intermediate priority must be safely bounded. Actual

evictions in all tasks preempted by τj , however, depend on specific nesting scenarios,

which are unknown by only taking τi and τj into account in isolation. The approach we

are to propose in the following enumerates all possible preemption scenarios, precisely

accounting for evictions. Accordingly, response time is not based on estimates for a

specific preempter but by accumulating all preemptions costs for a single preemptee:

Ri = Ci +
∑

j∈hp(i)

(#(i, j)× Cj) + γbi (6.25)

In the following we introduce the basic principles and start from a naive and imprecise

bound which we successively refine.

First, we introduce the underlying basic data structure “bucket”. Then we show how

a complete enumeration of all preemption scenarios can be achieved. To achieve tight

bounds, we then successively optimize the enumeration approach.

Buckets

Instead of collecting preemption costs in a multiset attributed to a specific preempter

which represents its own preemption costs as well as those of all its lower priority tasks

cumulatively, we maintain “buckets” that precisely account eviction costs to all individual

tasks potentially involved in a preemption nesting.

Definition 6.7 (Bucket) Buckets B : T 7→ N0
∗ are a mapping from tasks to preemption

costs and represent worst-case preemption costs in a specific preemption context. Joining

of buckets b, b′ ∈ B is defined as task-wise concatenation such that:

b ∪ b′ :=
{
τ → ⊕(b, b′)(τ)

∣∣ τ ∈ def(b) ∪ def(b′)
}

(6.26)

Chapter 6. Bounding CRPD 231

Figure 6.6: Example of overhead by naive enumeration (K=1, N=4, BRT=1)

where

⊕ : B ×B 7→ (T 7→ ℘(N0))

⊕(b, b′) = λτ .


b(τ) · b′(τ) if τ ∈ def(b) ∩ def(b′)

b(τ) if τ ∈ def(b)

b′(τ) otherwise

(6.27)

Example Let b = {τ1 → (a), τ2 → (b)} and b′ = {τ1 → (a)} then b∪b′ = {τ1 → (a, a), τ2 → (b)}.

The purpose of buckets is similar to multisets.We use sequences just for technical

reasons.

Enumeration

Instead of computing bounds for just a pair of tasks, where indirect preemptions are

taken into account implicitly, our approach is based on enumeration of all scenarios

explicitly. A naive bound based on this idea is given by:

Definition 6.8 (Enumeration) Let response time be defined as in Equation 6.25. Then

a bound on CRPD by enumeration of all preemptions is defined as:

γbi := BRT × c(i) (6.28)

where

c : T 7→ N0

c(j) =
∑

h∈hp(j)

#(j, h)×
(
c(h) + crpducb,ecb (ucbτ (j), ecbτ (h))

)
(6.29)

For every task, we accumulate preemption costs due to higher priority tasks. This

bound is trivially safe by considering all possible combinations but is highly pessimistic

as it overestimates the number of preemptions as well as the number of evictions.

Chapter 6. Bounding CRPD 232

Example Consider Figure 6.6, which illustrates an example with total preemption costs

of 5. Enumeration for the preemption if task τ3 according to Equation 6.29 yields:

c(1) = 0

c(2) =
(

#(2, 1)×
(
c1 + crpducb,ecb ((⊥,⊥,⊥, h), (⊥,⊥, c, d))

))
= 1× 1

c(3) = #(3, 2)×
(
c(2) + crpducb,ecb ((i, j, k, l), (⊥,⊥,⊥, h))

)
+ #(3, 1)×

(
c(1) + crpducb,ecb ((i, j, k, l), (⊥,⊥, c, d))

)
= 1× (1× 1 + 1) + 2× 2 = 6

Evictions due to task τ1 are taken into account three times although during the response

time of task τ3 only 2 jobs are possible and it is not taken into account that in the nested

preemption τ1 and τ2 evict the very same blocks in τ3.

Instead of directly accumulating costs, we can rewrite Equation 6.29 to fill buckets

which are evaluated only after all costs have been accumulated.

Definition 6.9 (Bucket-based Enumeration) Let response time be defined as in

Equation 6.25. Then a bound on CRPD by collecting all preemptions costs in buckets is

defined as:

γbi := BRT ×
∑

j∈hp(i)

∑
B(j) : B = c(i) (6.30)

where

c : T 7→ B

c(j) =
⋃

h∈hp(j)

(
c(h) ∪

{
h→ crpducb,ecb (ucbτ (j), ecbτ (h))

})#(j,h)
(6.31)

Example We reconsider the example illustrated in Figure 6.6. Buckets c3 according to

Equation 6.31 yields:

c(1) = ∅

c(2) = {τ1 → (1)}#(2,1)

c(3) = {c(2) ∪ {τ2 → (1)}}#(3,2) ∪ {τ1 → (2)}#(3,1)

= {{τ1 → (1)} ∪ {τ2 → (1)}} ∪ {τ1 → (2, 2)}

= {τ1 → (1, 2, 2), τ2 → (1)}

Accumulating costs according to Equation 6.30 yields a cost estimate of 6 — equal to the

previous example.

Chapter 6. Bounding CRPD 233

In the following we improve the bucked-based enumeration approach and first address

overestimation of preemption counts and then address overestimation due to duplicate

evictions.

Limiting Preemption Counts

While the number of possible scenarios is exponential to the number of tasks, the actual

number of possible preemptions is limited by the maximal number of jobs of a preempter

within the response time of a preemptee. We therefore must guarantee the following

invariant: A bucket, at any time during composition, is guaranteed never to contain

more elements than globally feasible.

Assumption 6.10 Let τi be a preemptee and B ∈ ℘(B) a set of buckets representing

preempters. Then it must hold that:

∀k ∈ hp(i) : |B(k)| ≤ #(i, k) (6.32)

Let task τi denote a task for which CRPD is to be computed. We introduce two

helper functions. The first function removes from buckets τk ∈ def(B), with τk ∈ hp(i),

all but the max#(i,k) largest preemption costs with respect to a task τi. We define it as:

rmi := λB .
{
k → max#(i,k) C

∣∣∣ (k → C) ∈ def(B)
}

(6.33)

This guarantees Assumption 6.10 for a set of buckets in general.

The second function duplicates cost values in a similar fashion to multisets above. Let

task τi denote a task for which CRPD is to be computed. Let τj ∈ hp(i) be a preemptee,

let τh ∈ hp(j) be its direct preempter and let τk ∈ hep(h) denote either τh or tasks hp(h)

that indirectly preempt τj by nesting in τh. Let B denote the corresponding buckets

denoting the singleton cost of one job of τh preempting τj directly and costs of all jobs of

tasks τk preempting τj indirectly. Then we define a function mui which first duplicates

all costs in B #(j, h) times and afterwards constrains costs by Equation 6.33. We define

it as:

mui := λ(j, h,B) . rmi

{
k → C#(j,h)

∣∣∣ (k → C) ∈ def(B)
}

(6.34)

Locally, any indirect preemption by nesting in τh or direct preemption by τh repeat at

most #(j, h) times within the response time of τj . Globally, no preemption can occur

more often than #(i, j) times within the response time of τi.

Enumerating (and accumulating) all preemptions is safe by construction since all

possible evictions are accounted for at least once. When purging preemption costs from

a bucket, however, we lose information which might not be redundant.

Chapter 6. Bounding CRPD 234

Figure 6.7: Example of underestimation by constrained buckets (K=1, N=4, BRT=1)

Example Consider the illustration in Figure 6.7. Task τ1 preempts τ3 at most once but

enumeration yields two scenarios. Constraining the bucket of τ1 underestimates that the

single preemption by τ1 evicts blocks in both τ2 and τ3.

Therefore, instead of accounting for direct preemptions only, we have to take potential

nestings of a preemption by a task τh into account.

Let π ∈ ℘(T) denote a potential nesting of a task τh preempting a task τi such that

∀τk ∈ π : τk ∈ aff(i, h). Then we define preemption costs of τh as the accumulated costs

over π as:

co := λ(π, h) .

{
h→

∑
k∈π

crpducb,ecb (ucbτ (i), ecbτ (k))

}
(6.35)

Finally, we can define a bound on CRPD that takes Assumption 6.10 properly into

account.

Definition 6.11 (Constrained-bucket Enumeration) Let response time be defined

as in Equation 6.25. Then a safe bound on CRPD for a preemptee τi is given by:

γbi := BRT ×
∑

j∈hp(i)

∑
B(j) : B = ci(i, ∅) (6.36)

where

ci : T × ℘(T) 7→ B

ci(j, π) = rmi

 ⋃
h∈hp(j)

rmi (mui (j, h,B ∪ co (π ∪ {j}, h)) : B = ci (h, π ∪ {j}))

 (6.37)

denotes a set of buckets such that Assumption 6.10 holds.

As in Equation 6.31, we enumerate all cases recursively. Set ci(j, π) denotes a set of

buckets representing the maximal constrained preemption costs in all scenarios of higher

priority tasks. During recursion, task τj always denotes a preemptee and τh denotes

its direct preempter. For every preemption by τh, buckets B = ci(h, π ∪ {j}) denote

preemption costs of higher priority tasks. Then preemption costs in the current task

τj are composed of B and the costs co(π ∪ {j}, h) that τh imposes on τj and all lower

priority tasks π. All preemptions of τh and higher priority tasks may repeat #(j, h) times

Chapter 6. Bounding CRPD 235

during the response time of τj (mui). However, globally, no preemption repeats more

often than #(i, j) times (rmi). The latter is true for each preempter τh individually, as

well as for all scenarios relative to τj collectively. Hence, scenarios are purged twice.

Example We reconsider the example in Figure 6.6 with an actual preemption cost of 5

and compute buckets according to Equation 6.37. In the following we list the respective

return values of the recursive invocation starting from c3(3, ∅):

c3(1, {3, 2}) = c3(1, {3}) = ∅

c3(2, {3}) = rm3

 ⋃
h∈{1}

rm3 (mu3(2, h,B ∪ co({3, 2}, h) : B = c3(h, {3, 2})))


= rm3 (rm3 (mu3(2, 1, {τ1 → (3)})))

= max#(3,h) (max#(3,h) ({τ1 → (3)}#(2,h)))

= {τ1 → (3)}

c3(3, ∅) = rm3

 ⋃
h∈{2,1}

rm3 (mu3(3, h,B ∪ co({3}, h) : B = c3(h, {3})))


= rm3

(
rm3 (mu3(3, 2, B ∪ co({3}, 2) : B = c3(2, {3})))

∪ rm3 (mu3(3, 1, B ∪ co({3}, 1) : B = c3(1, {3})))

)

= rm3

(
rm3 (mu3(3, 2, {τ1 → (3)} ∪ co({3}, 2)))

∪ rm3 (mu3(3, 1, co({3}, 1)))

)

= rm3

(
rm3 (mu3(3, 2, {τ1 → (3), τ2 → (1)}))

∪ rm3 (mu3(3, 1, {τ1 → (2)}))

)

= max#(3,h)

max#(3,h)
(
{τ1 → (3), τ2 → (1)}#(3,2)

)
∪max#(3,h)

(
{τ1 → (2)}#(3,1)

)


= max#(3,h) ({τ1 → (3), τ2 → (1)} ∪ {τ1 → (2, 2)})

= {τ1 → (3, 2), τ2 → (1)}

Accumulated preemption costs in τi equal 6. Note that from 3 possible preemption scenarios

of τ1 just 2 are globally feasible with respect to τ3.

Avoiding Duplicate Preemption Costs

Although we minimize bucket sizes in Equation 6.37 to only account for a globally feasible

number of preemptions by individual jobs, we still overestimate the amount of evictions

single preemptions can cause. For example, in Figure 6.7, we account for the eviction of

UCB l by ECB h and d, separately, although in case of a nesting of τ1 in τ2, block l can

only be evicted once. However, we recognize that if we can ensure a preemption by τ1 is

nested within τ2 then we can exclude all the UCB from consideration by τ1 that have

Chapter 6. Bounding CRPD 236

been (or will be) already evicted by lower priority tasks that form the nesting. Recursive

enumeration allows just that.

Axiom 6.12 Given Equation 6.37, for any invocation of ci(j, π), set π denotes the set

of tasks forming a nesting into which τj is embedded.

Consequently, in Equation 6.35 evictions need only be taken into account for those

UCB that have not been (or will be) already evicted by lower priority tasks in a respective

nesting.

We define an alternative to crpducb,ecb which denotes the set of evicted (useful) cache

blocks instead of just its cardinality as:

crpducb,ecb
M : UCB× ECB × ℘(M)→ ℘(M)

crpducb,ecb
M (ucb, ecb,M) = max

u∈V

 ⋃
s∈[1,N]

{
maxK (ucb(u)s \M) : ecbs 6= ∅

} (6.38)

where set M denotes UCBs to be excluded from consideration. For brevity, we define:

ev := λ(j, h,M) . crpducb,ecb
M (ucbτ (j), ecbτ (h),M) (6.39)

Accordingly, we redefine Equation 6.35 to adapt and define accumulated costs for a

preempter τh along nesting path π with exclusion M as:

co := λ(π, h,M) .

{
h→

∑
k∈π
|ev(k, h,M)|

}
(6.40)

Let functions rmi (Equation 6.33) mui (Equation 6.34) be unchanged.

Definition 6.13 (Context-sensitive Constrained-bucket Enumeration) Let re-

sponse time be defined as in Equation 6.25. Then a safe bound on CRPD for a preemptee

τi is given by:

γbi := BRT ×
∑

j∈hp(i)

∑
B(j) : B = ci(i, ∅, ∅) (6.41)

where

ci : T × ℘(T)× ℘(M) 7→ B

ci(j, π,M) =

rmi

 ⋃
h∈hp(j)

rmi

mui


j,

h,

B ∪ co (π ∪ {j}, h,M)

 : B = ci


h,

π ∪ {j},

M ∪ ev(j, h, ∅)





(6.42)

Chapter 6. Bounding CRPD 237

Intuitively, we propagate already (or to be) evicted cache blocks “upwards” the

nesting hierarchy to avoid duplicate evictions, then collect and constrain buckets while

unwinding the recursion. This removes the inherent overestimation of existing bounds

while keeping the number of assumed preemptions minimal. Note that this bound can

be combined with CBR by propagating the aging of UCBs instead of just the UCBs

themselves to achieve greater precision in case of non-direct-mapped caches.

Example We reconsider the example in Figure 6.6 with an actual preemption cost of 5

and compute buckets according to Equation 6.42. In the following we list the respective

return values of the recursive invocation starting from c3(3, ∅, ∅) just as in the previous

example:

c3(1, {3, 2}, {l, h}) = c3(1, {3}, {k, l}) = ∅

c3(2, {3}, {l}) = rm3

 ⋃
h∈{1}

rm3 (mu3(2, h,B ∪ co({3, 2}, h, {l}) : B = c3(h, {3, 2}, {l, h})))


= rm3 (rm3 (mu3(2, 1, {τ1 → (2)})))

= . . .

= {τ1 → (2)}

c3(3, ∅) = rm3

 ⋃
h∈{2,1}

rm3 (mu3(3, h,B ∪ co({3}, h, ∅) : B = c3(h, {3}, {l})))


= rm3

(
rm3 (mu3(3, 2, B ∪ co({3}, 2, ∅) : B = c3(2, {3}, {l})))

∪ rm3 (mu3(3, 1, B ∪ co({3}, 1, ∅) : B = c3(1, {3}, {l})))

)
= . . .

= max#(3,h) ({τ1 → (2), τ2 → (1)} ∪ {τ1 → (2, 2)})

= {τ1 → (2, 2), τ2 → (1)}

Accumulated preemption costs in τi equal 5, which is precise for the given example.

Note that examples in Figure 6.3 (imprecise UCB-union) and Figure 6.4 (imprecise

ECB-union) are also precisely estimated by this approach.

6.2 Improving CRPD Estimation with Time Bounds

Conventional CRPD bounds assume that preemptions can occur at arbitrary points

within a task. We can improve such estimations by recognizing that jobs of preempters are

constrained by well-defined time-frames in which they are being activated. Consequently,

not all program points of a preemptee are subject to the same preemption. In Chapter 5,

we showed how to compute lower and upper execution time bounds for individual program

points. We exploit the availability of this information to exclude UCBs from eviction by

jobs of higher priority tasks in CRPD estimation.

Chapter 6. Bounding CRPD 238

We first introduce the idea intuitively. Then we specify time bounds formally and

show how they are applied to tighten the class of multiset CRPD bounds.

Intuition

(a) WCET bounds of individual
program points

(b) Time intervals resulting from BCRT and WCRT
estimation

Figure 6.8: Mapping from task-local execution time bounds to system time

The example in Figure 6.8 illustrates the intuition. Figure 6.8a outlines the execution

of a task which is composed of program points {u1, u2, u3} with associated completion

times {t1, t2, t3}, respectively. Time Tlocal denotes task-local execution time in which

potential preemption is not taken into account. Given a set of higher priority tasks,

we can map the local time instants into time intervals in the global system time by

estimating BCRT and WCRT for each program point, respectively. Figure 6.8b illustrates

the corresponding intervals in time Tglobal, in which given program points may complete

despite preemption. Preemption occurs periodically in Tglobal. Consequently, we can

derive sets of UCBs potentially evicted by specific jobs of higher priority tasks. In

particular, this allows to exclude worst-case sets of UCBs from consideration for some

preemptions. Recall from above that otherwise only a single worst-case program point is

taken into account. Note that we simplified the example: completion time in Tlocal are

also time intervals [BCETest,WCETest] from which we derive intervals [BCRT,WCRT],

respectively.

Time-bounded Cache Interference

For a task τi ∈ T , let Vi denote its program points. Let

tbi : Vi 7→ (N∞0)2 (6.43)

be a mapping from program points to intervals, where lower bounds denote BCRT and

upper bounds denote WCRT for each such program point individually.

Theorem 6.14 Let Tj denote the period of a higher priority task τj. Then a program

point u ∈ Vi may only be a preemption point if and only if Tj ∈ tbi(u).

Chapter 6. Bounding CRPD 239

Proof. We assume no blocking. Then τj preempts τi instantly at Tj . By definition of

BCRT (Equation 3.21 on page 30) and WCRT (Equation 3.18 on page 30), a program

point u may have already been completed or may not have been executed if Tj /∈ tbi(u),

respectively.

For BCRT, we can assume no CRPD since in the best case no evictions occur. For

WCRT any of the aforementioned bounds on CRPD can be assumed. We recognize that

under this assumption, time bounds tb denote program points u subject to preemption and

therefore also denotes UCBs ucb(u) subject to eviction by a specific job of a preempting

task.

An Upper Bound on Multiset CRPD

Let t : tbi denote time bounds of task τi, let τj be a preempter and let r ∈ N0 denote job

τ rj . Then the set of program points potentially subject to preemption is denoted by:

V tb
i,j (t, r) := {u | (r × Tj) ∈ t(u), u ∈ Vi} (6.44)

Accordingly, we wrap V tb
i,j and define the function of UCBs subject to eviction by job τ rj

as:

ucbtb
i,j(t, r) := λu .

{
ucbτ (i)(u) : u ∈ V tb

i,j (t, r)
}

(6.45)

where ucbτ (i)(u) denotes UCBs of task τi in program point u. Consequently, the time-

bounded singleton ECB-union CRPD bound (cf. Definition 6.16) for a preemption of job

τ rj is denoted by:

γtb
i,j(t, r) := crpducb,ecb

ucbtb
i,j(t, r),

⋃
h∈hep(j)

ecbτ (h)

 (6.46)

We now compute a multiset (cf. Definition 6.6) from singleton bounds, which allows

to discriminate individual preempting jobs. Recall that above multisets represent all

preemption costs within the response of a task. We generalize this notion and compute

multisets with respect to individual program points. For task τi, let Cui : V 7→ N∞0 denote

WCET per program point.

We further denote the response time of a program point in τi by a function R̄i, which

we will define below. Then the number of preemptions of a task τj within the response

time of program point ui ∈ Vi in τi, given time bounds t, is defined as:

#(t, i, ui, j) :=

⌈
R̄i(t)(ui) + Ji

Tj

⌉
(6.47)

Chapter 6. Bounding CRPD 240

Let xi ∈ Vi denote the terminal program point of a task τi. Then the corresponding

multiset of preemption costs is defined as:

M tb
i,j(t, ui) :=

⋃
k∈aff(i,j)

({
γtb
k,j(t, r) : r ∈ [0,#(t, k, xk, j)− 1]

}#(t,i,ui,k)
)

(6.48)

where r denotes the jobs τ rj that preempt any task τk ∈ aff(τi, τj) and where γtb
k,j denotes

the corresponding time-bounded singleton preemption costs. Such preemptions repeat at

most #(t, τk, xk, τj) times during the response time of a task τk which in turn repeat at

most #(t, τi, ui, τk) times during the response time of node ui of task τk.

As usual, CRPD is bounded by the #(t, τi, ui, τj) largest preemption costs in multiset

M tb
i,j . We therefore define the time-bounded multiset bound on CRPD as:

γmi,j(t, ui) := BRT×
∑

max#(t,i,ui,j) M tb
i,j(t, ui) (6.49)

Then WCRT, given time bounds t, with respect to a single program point ui ∈ Vi in

τi, is denoted by the fixed point of:

R̄i : (V 7→ (N∞0)2) 7→ (V 7→ N∞0)

R̄
(n+1)
i (t) = λui . C

u
i (ui) +

∑
j∈hp(i)

(⌈
R̄

(n)
i (t)(ui) + Ji

Tj

⌉
× Cuj (xj) + γmi,j(t)

)
(6.50)

where R̄
(0)
i (u) = Ci(u). Note that R̄i, just like Ri (Equation 6.18), is monotonously

increasing. We denote the fixed point by R̄i(t).

It is important to recognize that time bounds t denote response times that we already

(somehow) computed, and whose purpose it is to exclude UCBs from eviction by specific

preempting jobs. Otherwise they do not interact with the current round of response time

computations carried out in Equation 6.50. To summarize, the only differences from a

standard multiset approach is the generalization to individual program points and the

consideration of time bounds within the singleton bound and within the multiplication

of preemption costs to compose the multiset.

A Lower Bound On Task Interference

Response times R̄i denote WCRT per program point given upper and lower response

time bounds per program point. Time bounds increase the precision of R̄i. For initial

time bounds t(0) = {Vi × {[0,∞]}}, R̄i yields unconstrained response times such that

R̄i(t
(0))(xi), where xi ∈ Vi denotes the terminal program point of task τi, equals regular

ECB-union multiset response times (cf. Definition 6.6 on page 229).

We recognize that in general, for initial time bounds t(m), response times R̄i(t
(m))

denote improved upper response time bounds as the number of potentially interfering

Chapter 6. Bounding CRPD 241

program points is reduced. Formally, time-bounds t(m+1) can be derived from t(m) as:

t(m+1) = λu . [inf(t(m)(u)), R̄i(t
(m))(u)] (6.51)

where inf(t(m)(u)) denotes the lower bound of the interval t(m)(u). Note that we assumed

above that this lower bound equals 0. A more precise lower bound is given by considering

BCRT, which we denote by R̄?i . Recall that BCRT is independent of CRPD. Similar to

WCRT bounds above, we generalize BCRT bounds to individual nodes and define:

R̄?i : (V 7→ N∞0)

R̄
?,(n+1)
i = λu . C?i (u) +

∑
j∈hp(i)

(⌈
R̄
?,(n)
i (u)− Jj

Tj

⌉
− 1

)
C?j (u) (6.52)

where R̄
?,(0)
i (u) = Ri and where C?i (u) denotes BCET bounds per program point.

Definition 6.15 (Initial Response Time Bounds) For a task τi, a safe initial

response time bound ti for R̄i (Equation 6.52) is denoted by the minimal BCRT of all

preceding nodes as lower bound and an unbounded upper bound, defined as:

t
(0)
i = λu .

[
min

v∈pred(u)
R̄?i (v),∞

]
(6.53)

Lower response time bounds are constant and independent of existing response time

bounds. Upper response time bounds recursively depend on the result of time bounded

CRPD estimation.

Definition 6.16 (General Response Time Bounds) For a task τi, the smallest

possible worst-case response time bounds are denoted by the fixed point of:

t
(m+1)
i = λu .

[
min

v∈pred(u)
R̄?i (v), R̄i(t

m
i)(u)

]
(6.54)

Every upper response time bound depends on the WCRT given existing response

time bounds. Note that ti is monotone since in each iteration a non-increasing number

of potential preemption points is taken into account.

Finally, we can compose the definition of time bounded response time.

Definition 6.17 (Time-bounded Response Time) For task τi and terminal node

xi ∈ Vi, the worst-case response time with reduced cache interference is denoted by:

¯
Ri = sup(ti(xi)) (6.55)

where sup(ti(xi)) denotes the upper bound of the interval denoted by ti(xi). Note that
¯
Ri

is not necessarily a global optimum.

Chapter 6. Bounding CRPD 242

Remarks

We also extended time-bounded response time analysis to exploit worst-case execution

frequencies (cf. Section 5.3.7) in addition to response time intervals. The rationale is

that program points cannot be preemption points more often than they are executed

within their respective response time intervals. However, we found this to yield only

insignificant improvements. Intuitively, program points in loops typically yield the highest

UCB counts but execution frequencies then often far exceed the possible number of

preemptions. In addition, adjacent program points in loops often tend to have similar

sets of UCBs. Exclusion of a single point therefore only yields insignificant reduction —

if at all — in worst-case interference. Therefore, we do not address this possibility here

since complexity of formulation and practical gain are at odds, and the venerable reader

might sure be glad to have made it.

6.3 Evaluation

In the following we evaluate the proposed approaches of time-bounded multiset and

bucket-based CRPD estimation, where we compare our results to existing approaches

for various benchmarks from the Mälardalen WCET Benchmarks (MRTC) [97], which

comprises of typical real-time applications, and the PapaBench [98] benchmark suite,

which models tasks of an Unmanned Aerial Vehicle (UAV).

For all benchmarks, we compute WCRT estimates. For a given task set ordered by

WCET estimate, we model the preemption of the longest running task by a successively

increasing set of preempters. We compare the following approaches: WCRT according

to Equation 6.11 without CRPD (none) and with ECB-union (ecb, Definition 6.16),

WCRT according to Equation 6.18 with ECB-union multiset (ecbms, Definition 6.6),

WCRT according to Equation 6.25 with buckets (buck, Equation 6.42) and time bounded

WCRT for ECB-union multiset according to Equation 6.52 (becbms). We found in all

samples UCB-union approaches to be inferior, so we exclude them. Note that [94] reports

UCB-union approaches to be competitive for DC-UCB. Here, we rely on the standard

definition of UCB.

To adapt to benchmark sizes and to provoke greater cache interference, we chose a

direct-mapped cache of size of 1 kB with line size of 8 B. Note that associativities K > 1

are not relevant here as our focus is to evaluate task sets with high preemption counts

instead of focusing on the reduction of estimates for single preemptions. We estimate

WCET (per program point) of benchmarks with path analyses for latest execution times

WCET (LET) and BCET path analysis. We assume a BCET estimate per instruction of

50 % of the WCET estimate for the lack of BCET pipeline analysis.

We scale task periods to achieve specific processor utilization for fixed-priority periodic

scheduling without CRPD. We evaluate WCRT for a constant utilization of 40 % without

taking CRPD into account as well as determine breakdown utilization for given CRPD

estimates.

Chapter 6. Bounding CRPD 243

Name Size (B) WCET (cyc) BCET (cyc) UCB ECB
bs 132 287 112 13 17
fibcall 52 432 26 6 7
lcdnum 254 1 344 131 32 32
insertsort 206 4 150 126 13 25
fdct 2 478 10 569 5 283 128 128
select 910 11 045 377 86 113
sqrt 234 14 959 21 24 29
cnt 276 44 311 18 334 16 37
edn 3 052 112 660 52 738 128 128
fft1 4 000 115 160 1 044 128 128
crc 978 122 776 101 63 66
st 1 410 414 183 198 376 73 88
bsort 100 162 597 946 2 902 12 20
matmult 518 809 582 403 957 29 55
lms 1 664 1 477 995 50 197 101 127

Table 6.1: Properties of MRTC benchmarks

Table 6.1 list the utilized MRTC task set including its properties ordered by WCET.

Benchmark sizes are given in bytes of the binary image1.

0

5,000,000

10,000,000

15,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of Taskset (count)

W
C

R
T

(c
y
cl

es
)

Method

NONE

ECB

ECBMS

BECBMS

BUCK

Figure 6.9: Absolute WCRT estimates for various approaches

Figure 6.9 illustrates absolute WCRT estimates for the various approaches. As can

be seen, CRPD overhead is substantial for all but small set sizes. Notably, the addition

of benchmark bs as the last additional benchmarks yields considerable overhead. In this

specific use case precision of estimates increases monotonically from none to buck.

Figure 6.10 illustrates the ratio of improvement of becbms and buck over ecbms

for the same benchmarks as in Figure 6.9. Numbers right of the bars denote the ratio for

buck, numbers left from the bars denote becbms. From 10 preempters on, pessimism

of ms and becms increases significantly, up an extreme case of 40 % above buck. We

1Sizes differ insignificantly from properties listed in Table 4.2 on page 73 due to a different version of
the underlying platform.

Chapter 6. Bounding CRPD 244

0

0

0

0

0

0.11

0

0

0

0

0

0

0

0

0.09

0

0

0.05

0.27

0.32

0.47

0.3

0.22

0.1

0.45

2.62

2.33

3.67

5.48

39.73

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0% 10% 20% 30% 40%
Difference from MS

S
iz

e
of

T
as

k
se

t
(c

ou
n
t)

Method

BECBMS

BUCK

Figure 6.10: Ratio of WCRT estimate from ECB-union multiset (ms) to time-bounded
ECB-union multiset (becbms) and bucket-based CRPD (buck)

recognize that time bounds in becbms only yield an insignificant impact on overall

precision in this specific use case.

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11 12
Size of Taskset (count)

B
re

ak
d
ow

n
U

ti
li
za

ti
on

Method

ECBMS

BECBMS

BUCK

Figure 6.11: Breakdown utilization for MRTC task set of increasing size

To estimate breakdown utilization, we normalized utilization by adjusting task periods

accordingly. Figure 6.11 illustrates respective results. For increasing task set sizes, we

recognize buck to dominate the other approaches in this use case. becbms improves up

to ∼2 % (8-9 tasks) over ms, whereas buck improves up to ∼5 % over ms (12 tasks).

For additional use cases, we also evaluated task from the PapaBench benchmark

suite. Tasks along with their properties are listed in Table 6.2 ordered by descending

WCET estimate. As opposed to MRTC, these benchmarks are control tasks with small

footprint, short execution times and low loop repetition counts.

Accordingly, Figure 6.12 illustrates breakdown utilization similar to Figure 6.11. Most

notably, buck does not necessarily dominate multiset-based approaches in this use case

Chapter 6. Bounding CRPD 245

Name Size (B) WCET (cyc) BCET (cyc) UCB ECB
I6 108 92 24 8 14
T7 164 121 30 16 21
T5 166 157 19 10 21
I5 260 162 50 8 33
I4 338 250 50 12 42
T10 462 413 53 34 61
T6 752 553 25 14 95
T12 700 660 289 16 73

Table 6.2: Properties of PapaBench tasks

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8
Size of Taskset (count)

B
re

ak
d
ow

n
U

ti
li
za

ti
on

Method

ECBMS

BECBMS

BUCK

Figure 6.12: Breakdown utilization for PapaBench task set of increasing size

(∼− 3 % for 4 tasks). For increasing set sizes though, overhead inherent to “non-bucket”

approaches shows (∼3 %).

6.4 Conclusion

In this chapter we proposed two new approaches to bound CRPD for WCRT analysis.

We first addressed the problem of inherent overestimation in conventional CRPD bounds,

which are too pessimistic in case of deep preemption nestings. In the proposes “bucket”-

based approach, we explicitly enumerate all nesting scenarios which by itself largely

overestimates actual preemption costs. We then refined this approach and demonstrated

that it improves, potentially significantly (up to ∼40 % in our use cases), upon the

current state of the art. We then reviewed the possibility to associate time intervals

with potential cache contents to tighten CRPD estimates by exploiting results from path

analyses proposed in Chapter 5. For the given use cases, we observed improvements of

up to ∼2%. Results may vary depending on the scenario so greater improvements can be

expected for long-running low-priority tasks. Overall we proposed two new techniques to

bound CRPD that do not follow the conventional line of approaches and outperform the

latter in many cases.

Chapter 6. Bounding CRPD 246

Chapter 7

Conclusion

Contents

7.1 Summary of Contributions . 247

7.2 Future Work . 249

7.3 Conclusion . 249

In this chapter we summarize our contributions in Section 7.1, give hints on potential

future work in Section 7.2 and conclude this thesis in Section 7.3.

7.1 Summary of Contributions

We identified the critical aspect in traditional static timing analysis as representation

and flow of information between micro-architectural analysis and scheduling analysis,

which are conceptually fundamentally different. We contributed analyses and conceptual,

theoretical, and practical improvements, and new solutions to several domain-specific

problems in this context. The main contributions are as follows:

Cache Analysis We discussed the role of cache analysis in timing analysis and the

interfacing of such micro-architectural analysis with scheduling analysis by means of cache

content summaries UCB, ECB and CBR. The intuition is to bound CRPD by computing

summaries and incorporate them in schedulability tests while bypassing path analysis.

We discussed the construction of a precise cache analysis for k-way set-associative caches

with LRU replacement policy and we showed how these summary metrics can cheaply and

precisely be derived from analysis results without the need for separate analyses. Along

the discussion, we pointed out potential sources of inherent imprecision in the original

definitions. We then proposed how UCB and CBR computations can be optimized for

instruction caches by reducing the number of sample points to basic block boundaries, and

we discussed task interaction in non-direct mapped caches and how to avoid unnecessary

overestimation by excluding infeasible interaction.

247

Chapter 7. Conclusion 248

Path Analysis The core contribution of this thesis is the proposal of a general path

analysis. We thoroughly discussed the problem of in general path analysis with a

focus on traditional methods of graph theory as well as in the context of static timing

analysis. We put existing approaches into context and discussed their specific strengths

and weaknesses. We concluded that methods inspired from traditional definitions and

approaches do not conceptually fit the principles of program analysis well in general,

and that the problem of preserving structural mappings of flow facts remains to be

acute. To remedy these problems we reconsidered the problem holistically instead of

focusing on specific subproblems. All solutions proposed follow specific design goals:

i) Efficiency : Besides clarity of formal models, practical efficiency is of overarching

concern. ii) Simplicity : The proposed solutions are technically simple and generalized —

theoretically and practically — as far as possible or sensible. iii) Immutability : All input

is supposed to be immutable. This implies that no assumption about graph layouts, such

as reducibility, is made which avoids structural transformation that potentially distorts

structural relation of input and flow facts. iv) Conception: As opposed to existing

approaches, we specifically took concepts of traditional program analysis into account

which allows for simple formal and practical combination for other program analyses.

This specifically allows the introduction of path-sensitivity.

First, we focused on the reconstruction of loops in control flow. We proposed a highly

efficient algorithm with parametric heuristics for loop identification. To solve problems

related to irreducible graphs, we proposed two variants: i) Enumeration: We show how a

context-sensitive representation of scope nestings is efficiently generated if no additional

structural information through annotations is available. ii) Prenumbering : We proposed

how annotations can be provided to guide loop identification deterministically..

Second, we proposed a general framework for path analysis. We provided its cor-

responding formal model, and we initially showed how it is applied to the traditional

problem of whole-task WCET estimation. Along the discussion, we proposed numerous

optimizations and generalized the algorithm to computations on subgraphs and how

to efficiently derive solutions for all reachable program points. We also proposed a

highly efficient reference algorithm. We then showed how a generalized framework can

be adopted to efficiently solve other important problems in the domain of timing and

scheduling analysis: i) BCET : We showed that BCET estimation is not symmetric to

WCET estimation and discussed the differences accordingly. ii) LET : We introduced

a new metric latest execution time which specifically denotes latest possible executions

of program points in fully preemptive scheduling . iii) MBT : For scheduling with de-

ferred preemption, proper placement of preemption points or the general availability of

blocking times, we proposed how maximum blocking times can be derived efficiently for

all reachable program points. iv) WCEF : All previous proposals are path-sensitive. We

show how to efficiently derive maximal execution frequencies independent of paths.

Chapter 7. Conclusion 249

CRPD We improved upon the state of the art of CRPD application in scheduling

analysis in two ways. First, we proposed bucket-based CRPD estimation which is not

based on summary computation of UCB or ECB, but is ultimately based on enumeration

of preemption scenarios which avoids inherent imprecision in existing approaches. Second,

instead of bypassing path analysis, we propose how to exploit time bounds for program

points to exclude infeasible preemption scenarios to tighten CRPD estimates.

7.2 Future Work

Accounting for CRPD in the context of static program analysis highlights the shortcomings

in the traditional tool chain of program analyses to obtain execution time estimates.

A major problem that has to be addressed in the near future is the incorporation of

scheduling analysis into timing analysis. Traditional methods to account for CRPD

are limited to timing compositional or at least constant-bounded timing compositional

architectures — a property only given for simple architectures whose use is becoming

increasingly rare. Scheduling analysis must not be decoupled from micro-architectural

analysis. Traditional numeric scheduling analysis is, just as ILP-based path analysis,

a misfit in this regard. Methods based on abstract interpretation need to be found.

Ironically, in the domain of multicore WCET analysis, abstract interpretation of shared

bus schedules is already done [177] and is therefore conceptually already ahead of unicore

multitask analysis in this regard. Its application to problems of task scheduling is

potentially just a single abstraction step away — but only with a sufficiently powerful

path analysis. In this thesis we used a constraint model sufficient enough to ensure

soundness of estimates. We purposely did not advance the constraint model to mutual

exclusion of paths and global flow bounds, which only contribute positively to tightness

but not to soundness of estimates. So this remains an open problem.

7.3 Conclusion

Established methods for static timing analysis are not necessarily a good fit for existing

and foreseeable problems in the context of multi-task timing analysis. The objective in

this thesis has been to contribute various proposals for improvements in the interfacing

from per-task program analysis to scheduling analysis. We showed that despite the

maturity of traditional techniques, there still is room for improvement. Nevertheless, it is

strikingly obvious that traditional thinking on how tooling for timing analysis is supposed

to be composed requires a second though. Increasingly, we recognize that technical

advances and available tools for timing analysis part ways. Removing the traditional

separation of timing and scheduling analysis is therefore worth the endeavor.

Chapter . Conclusion 250

Appendix A

Notations and Conventions

Contents

A.1 Mathematical Notation . 251

A.2 Pseudo-code Language . 253

This chapter serves as a general reference for mathematical notations and pseudo-code

listings.

A.1 Mathematical Notation

In the following, we define basic mathematical notations used in this thesis which might

differ from standard notation and semantics.

Sets Let S = {a1, a2, . . . , } denote an (unordered) set. The empty set is denoted

by ∅ = {}. ℘(S) = 2S = {∅, {a1}, {a1, a2}, . . . } denotes the power set. The usual set

operators (∪,∩, \,×) apply. Sets can be partitioned into equivalence classes, which are

induced by an binary equivalence relation ∼. We write [a] = {s | s ∈ S∧a ∼ s} to denote

an equivalence class. Equivalence classes are either disjoint or equal. The quotient set,

denoted by S/∼, is the set of all equivalence classes induced by the equivalence relation.

A set of class representatives is a set of exactly one element of each equivalence class

{s | [s] ∈ S/∼}. We denote an arbitrary element from a set by any(S) = s ∈ S. A multiset

like S = {a, a, b, b, c} is an unordered set that allows repeated elements. We denote the

n greatest (smallest) elements of a set S by maxn : ℘(S) 7→ ℘(S) (minn : ℘(S) 7→ ℘(S)).

Tuples A tuple T = (a1, . . . , ak) is a sequence of elements such that T ∈ Sk. The empty

tuple is denoted by ε = (). Every symbolic element of a tuple is implicitly assumed to be

a function that, if applied to the tuple, evaluates to its value. Thus, given a tuple T ∈ Nk

with T = (a1, a2, . . . , ak) = (1, . . . ,K), there exist functions a1 : Nk 7→ N, a2 : Nk 7→ N, . . .
such that a1(T) = 1, a2(T) = 2, etc. Cardinality is denoted by |T | = k. Inversion is

denoted by (a1, a2, . . .)
−1 = (. . . , a2, a1). Set inclusion (∈), subset (⊆) and cardinality (|·|)

operators equally apply to tuples with their intuitive meaning. Tuples A = (a1, a2, . . .)

251

Appendix A. Notations and Conventions 252

and B = (b1, b2, . . .) are equal, if ∀ai ∈ A : ∀bi ∈ B : ai = bi. For convenience, we use

“ ” to “match” any tuple element, such that for a set S = {(a, b), (a, c), (b, c)}, we can

construct sets such that {s | (a,) ∈ S} = {(a, b), (a, c)}. We allow for implicit conversion

from tuples to sets and therefore alternatively refer to tuples as ordered sets.

Graphs Graph G = (V,E) is composed of a finite set of vertices (or nodes) V and

edges (or arcs) E that represents relations between vertices. In an undirected graph,

E ⊆ {{u, v} | u, v ∈ V } is a set of unordered pairs. In a directed graph (or digraph),

E ⊆ V 2 is a set of ordered pairs. If (u, v) ∈ E, vertices u and v are adjacent to each

other and the edge is said to be incident upon u and v. The degree of a node denotes

the number of incident edges. For a digraph, indegree and outdegree is distinguished

accordingly. A path is a sequence of vertices π = (u1, . . . , un) of length n such that

(ui, ui+1) ∈ E. Path (u1, . . . , un) is closed if un = u1. We write u v, if there exists a

path from u to v. The empty path is denoted by ε. A cycle is a path such that u u. A

graph is connected, if there exists a path between any two nodes. A tree is a connected

graph with |V | − 1 edges. A disjoint set of trees is a forest.

Functions For a function f : X 7→ Y , its domain is dom(f) = X, its co-domain is

codom(f) = Y , its range of definition is def(f) ⊆ X and its image is img(f) ⊆ (Y). A

discrete function f : X 7→ Y is a set of tuples f = {(xi, yj), · · · | xi ∈ X, yj ∈ Y } denoting

the mapping relation. If the mapping is incomplete such that ∀x ∈ X : ∃y ∈ Y : (x, y) /∈ f,

the function is partially defined and we implicitly denote this by f(x) = ⊥, unless stated

otherwise. The notation f [x→ y] denotes:

f [x→ y](z) :=

y if x = z

f(z) otherwise

Partially applying a sequence of arguments to a function is denoted by operator J·K.
For example, let f = λx . λy . x+ y, then J(1, 2, 3)K(f) = (f(3) ◦ f(2) ◦ f(1)), which is

equivalent to λy . f(3, f(2, f(1, y))).

Function composition is denoted by operator ◦ such that for functions f : X 7→ Y and

g : Y 7→ Z, (g ◦ f)(x) = g(f(x)) = z. Operator 7→ is right-associative: f : X 7→ Y 7→ Z

equals f : X 7→ (Y 7→ Z). We assume implicit argument “unpacking” such that f((x, y))

equals f(x, y), unless stated otherwise. The identity function id maps to itself id(x) = x.

The indicator function 1S denotes existence in a set S such that:

1S(s) :=

1 if s ∈ S

0 otherwise

Hence,
∑

s∈S 1S(s) denotes the number of occurrences of s in set S.

Note that function symbols composed of multiple characters are typeset in roman

(“fun”), whereas single character symbols are optionally written slanted (f).

Appendix A. Notations and Conventions 253

Lambda Calculus A convenient way to express higher-order functions (functions as

arguments or return values from functions) is the lambda calculus [178]. We write the

lambda term f := λx . y, where x is bound and y is free, such that the application f(a)

replaces all occurrences of x in y by a. Examples: (λx.x+1)(1) = 2, (λx.x+z)(1) = 1+z

and (λx . λy . x+ y)(1)(2) = 3.

A.2 Pseudo-code Language

The pseudo-code language we are using in code listings is inspired by different existing

programming languages, such as Haskell, Lisp and OCaml. We allow for the mixture

of pure mathematical notation with typical programming language constructs such as

conditional branches and loop constructs. The semantics is not purely functional. We use

indentation instead of curly braces (“{. . . }”) or similar to denote grouped consecutive

blocks of execution. Depending on whether it supports clarity, we introduce explicit

type declaration. Otherwise, types are static nonetheless but are skipped if inference is

obvious. Higher order functions are possibly used but generally avoided to allow for a

simple translation into “imperative” programming languages. Generally, neither syntax

or semantics is very strict to enhance readability.

Comments are denoted by “/” and do not span multiple lines.

Arithmetic expressions are written in usual infix notation and conventional mathe-

matical notation for set comprehension etc. is used as usual. Comparison is denoted by

operators <,≤,=, 6=,≥, >. Assignment of values to variables is denoted by operator ←.

Access to element n in map (array) x is written as x[n]. If a tuple is explicitly declared

(i.e. T : (A,B)), then we assume the implicitly definition of functions to access tuple

elements (For tuple t ∈ T , function A denotes the first element in tuple t by A(t)).

Binding/rebinding of values to symbols representing variables does not occur. An

exception is function definition: we write, for example, letf x y = x+ y to emphasize the

introduction of a new function. Function invocation is typically written without explicit

parenthesis for simplicity. Hence, f(x, y) equals f x y.

For manipulation of frequently used data structures such as queues, we define the

following functions. Let s = (x1, . . . , xn) be some ordered sequence (array, tuple, string,

etc.) then the following relations (not strictly mathematical) hold:

car(s) = x1

cdr(s) = (x2, . . . , xn)

top(s) = xn

pop(s) = xn ∧ s = (x1, . . . , xn−1) (Note: side-effect)

deq(s) = x1 ∧ s = (x2, . . . , xn) (Note: side-effect)

any(s) = xi : 1 ≤ i ≤ n

Appendix A. Notations and Conventions 254

Note that appending elements to a queue (or stack “push”) is usually denoted by

concatenation (s · (xn+1)).

Very high level semantics are written in italics and given in plain words, if the precise

semantics is not relevant to the understanding of algorithms.

Appendix B

Reference Implementations of

Basic Graph Algorithms

Contents

B.1 Breadth-first Search . 255

B.2 Maximum Flow . 256

B.3 Single-source Shortest Paths . 257

B.4 Topological Sort . 258

B.5 Single-source Shortest Paths on Directed Acyclic Graphs 258

B.6 Depth-first Search . 258

In this chapter, we list reference implementations of classic problems from graph

theory in the pseudo language outlined in Appendix A. In the core chapters, we discuss

modifications of these algorithms, so it might be of interest how we implemented the

original versions in the first place to support understanding. We only provide algo-

rithm listings along with their description here, along with references to more thorough

discussions. Note that we often deviate from standard textbook implementations.

B.1 Breadth-first Search

Breadth-first Search [103] (BFS) visits nodes in a digraph G starting from a root node s

“level-wise”. The level denotes the distance, in terms of node count, on a shortest path

from the root node. It returns an array P encoding a path tree which denotes shortest

paths from every node towards the root node. Algorithm B.11 specifies the corresponding

algorithm. Function bfs is invoked with a source node s and a digraph G (line 1) and

returns a path tree P (line 12). The algorithm is initialized (lines 2-4) with a first-in

first-out (FIFO) queue, a set of marked (visited) nodes M and a set of path predecessors

P , where P [u] denotes the preceding node for some node u. The algorithm repeats until

all reachable nodes have been marked, that is, no additional nodes have been queued

(line 5). The oldest element of the queue is removed (line 6) and all its adjacent nodes

255

Appendix B. Reference Implementations of Basic Graph Algorithms 256

Algorithm B.11 Breadth-first Search

1 l et bfs s G = do / G = (V,E, s, t)
2 Q← (s)
3 M ← {s}
4 P ← {(u,⊥) | u ∈ V }
5 while Q 6= ε do
6 u← carQ
7 for v ∈ pred u do
8 i f v /∈M then
9 M ←M ∪ {v}

10 Q← Q · (v)
11 P [v]← u
12 return P

(line 7) that have not been marked yet (line 8), are marked, queued and its preceding

path node is recorded (lines 9-11).

B.2 Maximum Flow

Computing maximum flow by the Ford-Fulkerson method [101] is performed by repeatedly

searching for a path from source to sink via BFS in the residual network R of the flow

network G and sending as much flow as possible over the corresponding path P in the

original network until flow can no longer be increased. This is equivalent to a disconnected

sink in the residual network. The algorithm returns an array F denoting flow along

edges.

Algorithm B.12 Maximum Flow via Ford-Fulkerson Method

1 l et maxflow G = do / G = (V,E, s, t, c)
2 F ← {(u, v)→ 0) | (u, v) ∈ E}
3 R← (V, {(u, v) ∈ E | c(u, v)− F [(u, v)] > 0})
4 P ← bfsR
5 l et pushflow u v P a =
6 a← min a (c(u v)− F [(u v)])
7 i f P [u] 6= ⊥ do
8 a← pushflow P [u] u P a
9 F [(u, v)]← F [(u, v)] + a

10 return a
11 while pushflow P [t] t P ∞ do
12 R← (V, {(u, v) ∈ E | c(u, v)− F [(u, v)] > 0})
13 P ← bfsR
14 return F

Algorithm B.12 outlines this method. Function maxflow in invoked with a flow

network G (line 1) and returns (line 14) flow along an edge. Initially, all flows equal

0, we compute the residual network R, which contains all the edges of G that do not

saturate their respective capacity bound, and an initial path is computed via bfs.

Appendix B. Reference Implementations of Basic Graph Algorithms 257

The algorithm loops (line 11), repeatedly pushing flow, recomputing the residual

network R and looking up a path in R (lines 11-13). Function pushflow (line 5) in invoked

with a predecessor node u of a node v on the path encoded in path tree P , a maximal

flow a. The maximal flow is bounded by the minimum of all residual flows. Thus, given

a maximal flow a, for the edge (u, v), the new maximal flow is the minimum of a and

the residual flow (line 6). If the flow network source has not been reached yet (line 7),

repeat this step recursively for the preceding edge along the path tree P . Hence, once

recursion terminates, a equals the maximal admissible flow along the path from source to

sink. Unwinding the recursion, thus, involves adjusting the net flow accordingly (line 9)

and passing on the minimum flow (line 10).

B.3 Single-source Shortest Paths

Computing single-source shortest paths is classically implemented according to [104].

Here, we deviate slightly from the original to increase similarity with the reference

implementation of BFS in Section B.1. For a edge-weighted digraph G, the algorithm

returns an array of distances D from source node s and an array modeling a path tree P

denoting the path from any node to s. Algorithm B.13 lists the implementation. For

Algorithm B.13 Single-source Shortest Paths

1 l et ssspG = do / G = (V,E, s, t, ω)
2 Qmin ← (s)
3 M ← {s}
4 D ← {(u→∞) | u ∈ V \ {s}} ∪ {(s→ 0)}
5 P ← {(u,⊥) | u ∈ V }
6 while Qmin 6= ε do
7 u← deqQmin

8 for v ∈ succ u do
9 i f D[u] + ω u v < D[v] then

10 D[v]← D[u] + ω u v
11 P [v]← u
12 i f v /∈M then
13 M ←M ∪ {v}
14 Qmin ← σD(Qmin · (v))
15 return (D,P)

source node s and graph G (line 1), we initialize a queue Qmin ordered by ascending

distance D from source node s (line 2), a set of visited nodes M with s (line 3), an

array of distances D from s (line 4) and a path tree P (line 5). While Qmin is not empty

(line 6), select node u with the shortest distance to s (line 7) from Qmin. For its successor

nodes v (line 8), we update their distances to s if the path through node u including the

distance from u to v denotes by weight ω is shorter then any previous path, and updates

the path tree P accordingly (lines 9-11). If successor node v is unvisited yet (line 12),

mark v visited (line 13) and enqueue v (line 14) where σD sorted Qmin in descending

order of distances denoted by array D.

Appendix B. Reference Implementations of Basic Graph Algorithms 258

B.4 Topological Sort

This algorithm orders nodes of an acyclic digraph in topological order [103]. Intuitively,

edges denote dependencies, so we successively remove nodes without dependencies from

the graph, which in turn leads to new nodes without dependencies. It returns a string S

containing nodes in such order. Algorithm B.14 specifies the algorithm. For a graph G

Algorithm B.14 Topological Sort

1 l et topoG = do / G = (V,E)
2 S ← ε
3 Q← ε
4 for u ∈ V do
5 I[u]← degin u
6 i f I[u] = 0
7 Q← Q · (u)
8 while Q 6= ε do
9 u← deqQ

10 S ← S · (u)
11 for v ∈ succ u do
12 I[v]← I[v]− 1
13 i f I[v] = 0
14 Q← Q · (v)
15 return S

(line 1), we initialize a string of nodes S and a queue Q of nodes without predecessors

(lines 1,2), and for every node u (line 5), compute its respective indegree I and enqueue

all nodes of indegree equal to 0 (lines 4-7). While queue Q is not empty (line 8), remove

a node from Q (line 9) and append it to string S (line 10). For all successors v of node u

(line 11), decrease indegree I (line 12) and enqueue v if its indegree now equals 0.

B.5 Single-source Shortest Paths on Directed Acyclic Graphs

Given topological order, compute single-source shortest paths on a DAG can be computed

efficiently by only taking preceding nodes into account. Note that longest paths can be

computed by just negating weights. Similar to the general algorithm for single-source

shortest paths, this implementation returns an array denoting distances from a source

node and a path tree denoting the shortest paths explicitly. Algorithm B.15 lists the

corresponding algorithm. For a weighted DAG G (line 1), we initialize a path tree P

and an array denoting distances per node D (lines 1,2). For all nodes v in topological

order (line 4), we compute the shortest distance to v by adding the shortest distance to a

preceding node u and edge weight ω, and we update the path tree accordingly (lines 5-8).

B.6 Depth-first Search

Depth-first Search traverses a digraph from a given root node along a spanning tree

consisting of tree edges T . All other edges are being classified as back B, forward F or

Appendix B. Reference Implementations of Basic Graph Algorithms 259

Algorithm B.15 DAG Single-source Shortest Paths

1 l et dagssspG = do / G = (V,E, s, t)
2 P [s]← ⊥
3 D ← {(u→∞) | u ∈ V \ {u}} ∪ {(s→ 0)}
4 for v ∈ topoG do
5 for u ∈ pred v do
6 i f D[u] + ω u v < D[v] then
7 D[v] = D[u] + ω u v
8 P [v] = u
9 return (D,P)

cross C edges. Nodes are being labeled according to their discovery and finishing time,

respectively, represented as an interval I.

Algorithm B.16 Non-recursive Depth-first Search

1 l et dfsG = do / G = (V,E, s, t)
2 Q← ((s, succ s))
3 M = {(u→ white) | u ∈ V \ {s}} ∪ {(s→ gray)}
4 T ← B ← F ← C ← ∅
5 I = {u→ [∞,∞] : u ∈ V }
6 t← 0
7 while Q 6= ε do
8 (u, S)← popQ
9 while S 6= ∅ do

10 v ← pop S
11 i f M [v] = white then
12 T ← T ∪ {(u, v)}
13 Q← Q · ((u, S))
14 u← v
15 S ← succ v
16 M [u]← gray
17 I[u][0]← t← t+ 1
18 else i f M [v] = gray then
19 B ← B ∪ {(u, v)}
20 else
21 i f I[u][0] ≤ I[v][0] then
22 F ← F ∪ {(u, v)}
23 else
24 C ← C ∪ {(u, v)}
25 M [u]← black
26 I[u][1]← t← t+ 1
27 return (T,B, F,C, I)

Algorithm B.16 specifies a respective implementation. Function dfs is invoked with

digraph G (line 1) and returns a tuple of disjoint sets of tree T , back B, forward F

and cross edges C, and an interval I representing discovery and finishing time of nodes

(line 27). During traversal of G nodes are marked as either non-visited (white), visited

but unfinished (gray), or as finished (black). A node is unfinished if there exists an

unvisited adjacent nodes. A stack maintains the set of unfinished nodes. For initialization,

the stack Q is initialized with s and its set of adjacent nodes (line 2). All nodes but s are

Appendix B. Reference Implementations of Basic Graph Algorithms 260

marked unvisited and s is marked unfinished (line 3). Lines 4-6 initialize edge partitions,

time intervals and the counter for time stamps.

Function dfs proceeds until all reachable nodes have been visited (line 7). It repeats

the following actions. A node u — we will refer to u as the current node — and its

successors S are popped off stack Q (line 8). While there exist unvisited successors

(line 9), remove a successor v from S (line 10) and check its marking. If v is not yet

visited (line 11), classify edge (u, v) as tree edge (line 12), push the current node u along

with its remaining successors S onto the stack for later processing (line 13), set v to

be the current node — along with its respective successors — and mark it unfinished

(lines 14-16), and increase and store its time stamp t (lines 17). If v is unfinished (line 18),

(u, v) is a back edge. If v is finished (line 20), (u, v) is a forward edge, if u is a descendant

in the subtree of T rooted in v (lines 21,22). Otherwise, (u, v) is a cross-edge (line 24).

If the current node u has no unfinished successors left (line 25), it is marked finished,

labeled with its timestamp in increased and assigned (lines 26).

Appendix C

On Linear Programming

Linear Programming (LP) is a branch of constraint programming to solve convex opti-

mization problems [99]. As opposed to “imperative” programming languages, not the

way towards a certain result is specified in terms of a specialized algorithm, but only

the “shape” of the solution is modeled and finding a solution is subject to a generalized

optimization algorithm. Linear programming refers to the fact these models are specified

in terms of linear equations.

Given a matrix A ∈ Rn × Rm, a row vector c ∈ Rn, a column vector b ∈ Rm and a

column vector of “unknowns” x ∈ Rn. The (canonical) form of a general LP problem is

denoted by:

min cx (C.1)

s.t. Ax ≥ b

x ≥ 0

Equation C.1 is the objective function, A is a constraint matrix, x is a set of decision

variables and the matrix rows, which are constrained by b, are referred to as constraints.

An LP can only have one of three possible solutions: i) Feasible: An optimal solution

exists and the objective value denotes its valuation. ii) Infeasible: No solution exists at

all. iii) Unbounded : The optimal solution is infinite.

LP can be turned into a maximization problem by negating the objective coefficients

c. Note that although the objective value is optimal, decision variables might be valuated

non-deterministically. LP is well-understood and efficient algorithms exist to solve its

general form as well as specialization of this problem [179].

One particularly important type of LP in our context are integer linear programs (ILP).

Here, all decision variables must be whole numbers (x ∈ Zn).

The general ILP is NP-complete [99] and the typical strategy is based on successive

constraining of an identical (relaxed) LP, based on branch-and-bound [179] (branch-and-

cut) techniques to obtain feasible solutions.

Again, for variations of ILP, efficient algorithms exist. One particularly important

type of ILP are those with a constraint matrix which is totally unimodular.

261

Appendix C. On Linear Programming 262

Definition C.1 (Total Unimodularity [99]) A matrix A is totally unimodular

(TUM) if and only if every square matrix A′ ⊆ A has a determinant of −1, 0 or

1.

A totally unimodular LP is guaranteed to yield an integer solution, hence an equivalent

ILP can be solved efficiently by known LP techniques. As an example, the maxflow

network flow problem as specified in Definition 5.4 is TUM.

Bibliography

[1] Edward A. Lee. Computing Foundations and Practice for Cyber-Physical Systems:

A Preliminary Report. Technical Report UCB/EECS-2007-72, EECS Department,

University of California, Berkeley, May 2007.

[2] P. Marwedel. Embedded System Design. Springer, Secaucus, NJ, USA, 2011.

[3] Edward A. Lee. Absolutely Positively on Time: What Would It Take? IEEE

Computer, 38(7):85–87, 2005.

[4] Reinhard Wilhelm, Jakob Engblom, et al. The Worst-Case Execution Time Problem

- Overview of Methods and Survey of Tools. ACM Transaction on Embedded

Computing Systems, 7(3), 2008.

[5] Edward A. Lee and Yang Zhao. Reinventing Computing for Real Time. In

Proceedings of the 12th Monterey Conference on Reliable Systems on Unreliable

Networked Platforms, pages 1–25. Springer, 2007.

[6] S. Altmeyer. Analysis of Preemptively Scheduled Hard Real-time Systems. epubli

GmbH, 2013.

[7] Jan Kleinsorge, Heiko Falk, and Peter Marwedel. A Synergetic Approach to

Accurate Analysis of Cache-related Preemption Delay. In Proceedings of the 7th

International Conference on Embedded Software, EMSOFT ’11. ACM, October

2011.

[8] Jan Kleinsorge, Heiko Falk, and Peter Marwedel. Simple Analysis of Partial Worst-

case Execution Paths on General Control Flow Graphs. In Proceedings of the 9th

International Conference on Embedded Software, EMSOFT ’13. ACM, October

2013.

[9] Jan Kleinsorge and Peter Marwedel. Computing Maximum Blocking Times with

Explicit Path Analysis under Non-local Flow Bounds. In Proceedings of the 10th

International Conference on Embedded Software, EMSOFT ’14. IEEE, October

2014.

[10] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Programs by Construction or Approximation of

263

Bibliography 264

Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, pages 238–252. ACM, 1977.

[11] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic Properties of

Generalized Type Unions. In Language Design for Reliable Software, pages 77–94,

1977.

[12] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The

MIT Press, 1999.

[13] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285–309, 1955.

[14] S. Kleene. Introduction to Metamathematics. Van Nostrand, New York, 1952.

[15] John B. Kam and Jeffrey D. Ullman. Monotone Data Flow Analysis Frameworks.

Acta Informatica, 7(3):305–317, 1977.

[16] Patrick Cousot and Radhia Cousot. Comparing the Galois Connection and Widen-

ing/Narrowing Approaches to Abstract Interpretation. In Proceedings of the 4th

International Symposium on Programming Language Implementation and Logic

Programming, pages 269–295, 1992.

[17] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer, 2005.

[18] Gary A. Kildall. A Unified Approach to Global Program Optimization. In

Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, pages 194–206, 1973.

[19] Jan Reineke. Caches in WCET Analysis: Predictability - Competitiveness - Sensi-

tivity. PhD thesis, Saarland University, 2009.

[20] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.

[21] Yong-Fong Lee, Barbara G. Ryder, and Marc E. Fiuczynski. Region Analysis:

A Parallel Elimination Method for Data Flow Analysis. IEEE Transaction on

Software Engineering, 21(11):913–926, November 1995.

[22] R. Kramer, R. Gupta, and M. L. Soffa. The Combining DAG: A Technique

for Parallel Data Flow Analysis. IEEE Transaction on Parallel and Distributed

Systems, 5(8):805–813, August 1994.

[23] Florian Martin. PAG - An Efficient Program Analyzer Generator. International

Journal on Software Tools for Technology Transfer, 2(1):46–67, 1998.

Bibliography 265

[24] Frances E. Allen and John Cocke. Graph Theoretic Constructs For Program Control

Flow Analysis. Technical report, IBM T.J. Watson Research Center, Yorktown

Heights, NY, 1972.

[25] Johannes Kinder, Florian Zuleger, and Helmut Veith. An Abstract Interpretation-

Based Framework for Control Flow Reconstruction from Binaries. In Proceedings

of the 10th International Conference on Verification, Model Checking, and Abstract

Interpretation, VMCAI ’09, pages 214–228, Berlin, Heidelberg, 2009. Springer.

[26] Henrik Theiling. Control Flow Graphs For Real-Time Systems Analysis. Ph. D.

Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2002.

[27] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling

Algorithms And Applications. Springer, Santa Clara, CA, USA, 2004.

[28] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Esposito, and Gior-

gio C. Buttazzo. Optimal Selection of Preemption Points to Minimize Preemption

Overhead. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems,

2011.

[29] Constantine D. Polychronopoulos. Toward Auto-scheduling Compilers. The Journal

of Supercomputing, 2(3):297–330, 1988.

[30] Alan Burns. Preemptive Priority-Based Scheduling: An Appropriate Engineering

Approach. In Advances in Real-Time Systems, pages 225–248. Prentice Hall, 1994.

[31] Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. Limited Preemptive Schedul-

ing for Real-Time Systems. A Survey. IEEE Transaction on Industrial Informatics,

9(1):3–15, 2013.

[32] Robert I. Davis and Marko Bertogna. Optimal Fixed Priority Scheduling with

Deferred Pre-emption. In Proceedings of the Real-time Systems Symposium, pages

39–50, 2012.

[33] Sanjoy K. Baruah. The Limited-Preemption Uniprocessor Scheduling of Sporadic

Task Systems. In Proceedings of the Euromicro Conference on Real-Time Systems,

pages 137–144. IEEE Computer Society, 2005.

[34] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority

scheduling of periodic, real-time tasks. Performance Evaluation, 2(4):237–250,

1982.

[35] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in

a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973.

[36] John P. Lehoczky, Lui Sha, et al. The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behavior. In Proceedings of the IEEE

Real-Time Systems Symposium, 1989.

Bibliography 266

[37] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,

21(1):177–185, 1974.

[38] Fengxiang Zhang and Alan Burns. Schedulability Analysis for Real-Time Systems

with EDF Scheduling. IEEE Transaction on Computers, 58(9):1250–1258, 2009.

[39] E. Bini, G. Buttazzo, and G. Buttazzo. A Hyperbolic Bound for the Rate Monotonic

Algorithm. In Proceedings of the Euromicro Conference on Real-Time Systems,

pages 59–66, 2001.

[40] Mathai Joseph and Paritosh K. Pandya. Finding Response Times in a Real-Time

System. The Computer Journal, 29(5), 1986.

[41] N. Audsley, A Burns, M. Richardson, K. Tindell, and A J. Wellings. Applying new

Scheduling Theory to Static Priority Pre-emptive Scheduling. Software Engineering

Journal, 8(5):284–292, Sep 1993.

[42] Reinder J. Bril, Johan J. Lukkien, and Rudolf H. Mak. Best-case Response Times

and Jitter Analysis of Real-time Tasks with Arbitrary Deadlines. In Proceedings

of the 21st International Conference on Real-Time Networks and Systems, pages

193–202. ACM, 2013.

[43] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An

Approach to Real-Time Synchronization. IEEE Transactions on Computers, 39(9):

1175–1185, September 1990.

[44] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt

Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, Maurice Sebastian,

Reinhard Von Hanxleden, Reinhard Wilhelm, and Wang Yi. Building Timing

Predictable Embedded Systems. ACM Transactions on Embedded Computing

Systems, 13(4):82:1–82:37, March 2014.

[45] Greger Ottosson and Mikael Sjodin. Worst-Case Execution Time Analysis for

Modern Hardware Architectures. In In Proceedings ACM SIGPLAN Workshop on

Languages, Compilers and Tools for Real-Time Systems, pages 47–55, 1997.

[46] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand.

Memory Hierarchies, Pipelines, and Buses for Future Architectures in Time-Critical

Embedded Systems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 28(7):966–978, July 2009.

[47] Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation

of Pipeline Models. PhD thesis, Saarland University, 2005.

[48] Stephan Wilhelm. Efficient Analysis of Pipeline Models for WCET Computation.

In 5th International Workshop on Worst-Case Execution Time Analysis, volume 1

Bibliography 267

of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2007. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik.

[49] Stephan Wilhelm and Björn Wachter. Symbolic state traversal for WCET analysis.

In Proceedings of the International Conference on Embedded Software, pages 137–

146. ACM, 2009.

[50] Thomas Lundqvist and Per Stenström. Timing Anomalies in Dynamically Scheduled

Microprocessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium,

page 12, Washington, DC, USA, 1999. IEEE Computer Society.

[51] Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Polian,

Jochen Eisinger, and Bernd Becker. A Definition and Classification of Timing

Anomalies. In Proceedings of the 6th International Workshop on Worst-Case

Execution Time Analysis, Dagstuhl, Germany, 2006. Internationales Begegnungs-

und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[52] Jörn Schneider. Combined schedulability and WCET analysis for real-time operating

systems. PhD thesis, Shaker, 2003.

[53] Daniel Grund. Static Cache Analysis for Real-Time Systems – LRU, FIFO, PLRU.

PhD thesis, Saarland University, 2012.

[54] Christoph Berg. PLRU Cache Domino Effects. In Proceedings of the 6th Interna-

tional Workshop on Worst-Case Execution Time Analysis, volume 4 of OpenAc-

cess Series in Informatics (OASIcs), Dagstuhl, Germany, 2006. Schloss Dagstuhl–

Leibniz-Zentrum für Informatik.

[55] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A Fast and

Precise Static Loop Analysis Based on Abstract Interpretation, Program Slicing

and Polytope Models. In Proceedings of the 7th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’09, pages 136–146,

Washington, DC, USA, 2009. IEEE Computer Society.

[56] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper. Au-

tomatic Derivation of Loop Bounds and Infeasible Paths for WCET Analysis

using Abstract Execution. In Proceedings of the 27th IEEE Real-Time Systems

Symposium, December 2006.

[57] Florian Martin Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand.

Analysis of Loops. In Proceedings of the 7th International Conference on Compiler

Construction, volume 1383 of Lecture Notes in Computer Science, pages 80–94.

Springer, 1998.

[58] Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen. Static Memory and

Timing Analysis of Embedded Systems Code. In Proceedings of the 3rd European

Bibliography 268

Symposium on Verification and Validation of Software Systems, volume 07-04 of

TUE Computer Science Reports, 2007.

[59] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm.

The Influence of Processor Architecture on the Design and the Results of WCET

tools. Proceedings of the IEEE, 91(7):1038–1054, 2003.

[60] Reinhard Wilhelm, Sebastian Altmeyer, Claire BurguiÃšre, Daniel Grund, Jörg

Herter, Jan Reineke, Björn Wachter, and Stephan Wilhelm. Static Timing Analysis

for Hard Real-Time Systems. In Proceedings of the International Conference on

Verification, Model Checking, and Abstract Interpretation, volume 5944 of Lecture

Notes in Computer Science, pages 3–22. Springer, 2010.

[61] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.

OTAWA: An Open Toolbox for Adaptive WCET Analysis. In In Proceedings

of the IFIP Workshop on Software Technologies for Future Embedded and Ubiq-

uitous Systems, volume 6399 of Lecture Notes in Computer Science, pages 35–46.

Springer, 2010.

[62] Björn Lisper. SWEET – A Tool for WCET Flow Analysis (Extended Abstract). In

Leveraging Applications of Formal Methods, Verification and Validation. Specialized

Techniques and Applications, volume 8803 of Lecture Notes in Computer Science,

pages 482–485. Springer, 2014.

[63] A. Colin and I. Puaut. A Modular and Retargetable Framework for Tree-based

WCET Analysis. In Proceedings of the 13th Euromicro Conference on Real-Time

Systems, pages 37–44, Delft, The Netherlands, June 2001.

[64] Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound - A Conceptually

New Tool for Worst-Case Execution Time Analysis. In Proceedings of the 8th

International Workshop on Worst-Case Execution Time Analysis, volume 8 of

OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik.

[65] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A

Timing Analyzer for Embedded Software. Science of Computer Programming, 69

(1-3):56–67, December 2007.

[66] Maurice V. Wilkes. The Memory Gap and the Future of High Performance

Memories. SIGARCH Computer Architecture News, 29(1):2–7, March 2001.

[67] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2006.

[68] Ulrich Drepper. What Every Programmer Should Know About Memory, 2007.

Bibliography 269

[69] L. A. Belady. A Study of Replacement Algorithms for a Virtual Storage Computer.

IBM Systems Journal, 5(2):78–101, 1966.

[70] Gernot Gebhard. Timing Anomalies Reloaded. In Proceeedings of the 10th Interna-

tional Workshop on Worst-Case Execution Time Analysis, volume 15 of OpenAccess

Series in Informatics (OASIcs), pages 1–10, Dagstuhl, Germany, 2010. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik.

[71] Christoph Cullmann. Cache Persistence Analysis: A Novel Approach. In Proceed-

ings of International Conference on Languages, Compilers, Tools and Theory for

Embedded Systems, LCTES, pages 121–130, New York, NY, USA, 2011. ACM.

[72] Christian Ferdinand and Reinhard Wilhelm. Efficient and Precise Cache Behavior

Prediction for Real-Time Systems. Real-Time Systems, 17(2-3):131–181, 1999.

[73] Jan Staschulat and Rolf Ernst. Scalable Precision Cache Analysis for Real-Time

Software. ACM Transaction on Embedded Computing Systems, 6(4), 2007.

[74] Daniel Sandell, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Static

Timing Analysis of Real-Time Operating System Code. In Proceedings of the Inter-

national Symposium On Leveraging Applications of Formal Methods, Verification

and Validation, volume 4313 of Lecture Notes in Computer Science, pages 146–160.

Springer, 2004.

[75] Mingsong Lv, Nan Guan, Yi Zhang, Qingxu Deng, Ge Yu, and Jianming Zhang. A

Survey of WCET Analysis of Real-Time Operating Systems. In Proceedings of the

IEEE International Conference on Embedded Software and Systems, pages 65–72.

IEEE, 2009.

[76] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Cache-Related

Preemption and Migration Delays: Empirical Approximation and Impact on

Schedulability. In Proceedings 6th International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications, Brussels, Belgium, July 2010.

[77] Johan Stärner and Lars Asplund. Measuring the Cache Interference Cost in

Preemptive Real-time Systems. SIGPLAN Notices, 39(7):146–154, June 2004.

[78] J. V. Busquets-Mataix, J. J. Serrano, et al. Adding Instruction Cache Effect to

Schedulability Analysis of Preemptive RealTime Systems. In Proceedings of the

Internation Conference on Real-Time and Embedded Technology and Applications

Symposium, 1996.

[79] Sascha Plazar, Jan Kleinsorge, Heiko Falk, and Peter Marwedel. WCET-aware

Static Locking of Instruction Caches. In Proceedings of the International Symposium

on Code Generation and Optimization, pages 44–52, San Jose, CA, USA, April

2012.

Bibliography 270

[80] Isabelle Puaut and David Decotigny. Low-Complexity Algorithms for Static Cache

Locking in Multitasking Hard Real-Time Systems. In Proceedings of the IEEE

Real-Time Systems Symposium, pages 114–123. IEEE Computer Society, 2002.

[81] Antonio Mart́ı Campoy, Francisco Rodŕıguez-Ballester, and Rafael Ors Carot. Using

Dynamic, Full Cache Locking and Genetic Algorithms for Cache Size Minimization

in Multitasking, Preemptive, Real-Time Systems. In Theory and Practice of Natural

Computing, volume 8273 of Lecture Notes in Computer Science, pages 157–168.

Springer, 2013.

[82] Heiko Falk and Jan C. Kleinsorge. Optimal Static WCET-aware Scratchpad Allo-

cation of Program Code. In Proceedings of the 46th Design Automation Conference,

pages 732–737, San Francisco / USA, July 2009.

[83] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient utilization

of scratch-pad memory in embedded processor applications. In Proceedings of the

1997 European Conference on Design and Test, EDTC ’97, pages 7–11. IEEE, 1997.

[84] Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. Scratchpad Allocation for

Concurrent Embedded Software. ACM Transaction on Programming Languages

and Systems, 32(4):13:1–13:47, April 2010.

[85] Manish Verma, Klaus Petzold, Lars Wehmeyer, Heiko Falk, and Peter Marwedel.

Scratchpad Sharing Strategies for Multiprocess Embedded Systems: A First Ap-

proach. In Proceedings of the 3rd Workshop on Embedded Systems for Real-Time

Multimedia, ESTImedia, pages 115–120. IEEE Computer Society, 2005.

[86] Sascha Plazar, Paul Lokuciejewski, and Peter Marwedel. WCET-aware Software

Based Cache Partitioning for Multi-Task Real-Time Systems. In Proceedings of the

9th International Workshop on Worst-Case Execution Time Analysis, pages 78–88,

Dublin / Ireland, June 2009.

[87] Frank Mueller. Compiler Support for Software-Based Cache Partitioning. In

Proceedings of the Workshop on Languages, Compilers, & Tools for Real-Time

Systems, pages 125–133. ACM, 1995.

[88] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seong-

soo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of

Cache-Related Preemption Delay in Fixed-Priority Preemptive Scheduling. IEEE

Transactions on Computers, 47(6):700–713, June 1998.

[89] Sebastian Altmeyer and Claire Burguière. A New Notion of Useful Cache Block to

Improve the Bounds of Cache-Related Preemption Delay. In Proceedings of the

International Conference on Euromicro Conference on Real-Time Systems, 2009.

Bibliography 271

[90] Hiroyuki Tomiyama and Nikil D. Dutt. Program Path Analysis to Bound Cache-

Related Preemption Delay in Preemptive Real-Time Systems. In Proceedings of

the International Conference on Hardware/Software Codesign, pages 67–71, 2000.

[91] Claire Burguière, Jan Reineke, and Sebastian Altmeyer. Cache-Related Preemption

Delay Computation for Set-Associative Caches - Pitfalls and Solutions. In Proceed-

ings of the 9th International Workshop on Worst-Case Execution Time Analysis,

volume 10 of OpenAccess Series in Informatics (OASIcs), pages 1–11, Dagstuhl,

Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[92] Yudong Tan and Vincent Mooney. Integrated Intra- and Inter-Task Cache Analysis

for Preemptive Multi-tasking Real-Time Systems. In Proceedings of the Workshop

on Software and Compilers for Embedded Systems, volume 3199 of Lecture Notes

in Computer Science, pages 182–199. Springer, 2004.

[93] Sebastian Altmeyer, Claire Maiza, et al. Resilience Analysis: Tightening the CRPD

bound for set-associative caches. In Proceedings of International Conference on

Languages, Compilers, Tools and Theory for Embedded Systems, 2010.

[94] Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Improved Cache Related

Pre-emption Delay Aware Response Time Analysis for Fixed Priority Pre-emptive

Systems. Real-Time Systems, 48(5):499–526, 2012.

[95] Hemendra Singh Negi, Tulika Mitra, et al. Accurate Estimation of Cache-Related

Preemption Delay. In Proceedings of the International Conference on Hardware/-

Software Codesign and System Synthesis, 2003.

[96] Paul Lokuciejewski. A WCET-Aware Compiler- Design, Concepts and Realization.

VDM Verlag, Saarbrücken, Germany, 2007.

[97] Jan Gustafsson, Adam Betts, et al. The Mälardalen WCET Benchmarks: Past,

Present And Future. In Proceedings of the International Workshop on Worst-Case

Execution Time Analysis, 2010. URL http://www.mrtc.mdh.se/projects/wcet/

benchmarks.html.

[98] Fadia Nemer, Hugues Cassé, et al. PapaBench: a Free Real-Time Benchmark.

In Proceedings of the International Workshop On Worst-Case Execution Time

Analysis, 2006.

[99] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1982.

[100] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network. Canadian

Journal of Mathematics, 8:399–404, 1956.

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Bibliography 272

[101] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows:

Theory, Algorithms, and Applications. Prentice-Hall, 1993.

[102] Laura Ciupală. Incremental Algorithms for the Minimum Cost Flow Problem. In

Proceedings of the 15th WSEAS International Conference on Computers, pages

212–216, Stevens Point, Wisconsin, USA, 2011. World Scientific and Engineering

Academy and Society (WSEAS).

[103] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3rd edition). MIT Press, 2009.

[104] E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[105] Laura Ciupală. About Flow Problems in Networks with Node Capacities. WSEAS

Transactions on Computers, 8(8):1266–1275, August 2009.

[106] Esko Nuutila. Efficient Transitive Closure Computation in Large Digraphs. PhD

thesis, Helsinki University of Technology, 1995.

[107] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM

Journal on Computing, 1(2):146–160, 1972.

[108] Carl Offner. Notes on Graph Algorithms Used in Optimizing Compilers, 2013.

[109] Ravi Sethi. Testing for the Church-Rosser Property. Journal of the ACM, 21(4):

671–679, October 1974.

[110] Matthew S. Hecht and Jeffrey D. Ullman. Flow Graph Reducibility. In Proceedings

of the 4th Annual ACM Symposium on Theory of Computing, STOC ’72, pages

238–250, New York, NY, USA, 1972. ACM.

[111] G. Ramalingam. Identifying Loops in Almost Linear Time. ACM Transaction on

Programming Languages and Systems, 21(2):175–188, March 1999.

[112] Johan Janssen and Henk Corporaal. Making Graphs Reducible with Controlled

Node Splitting. Proceedings of the Transactions on Programming Languages and

Systems, 19(6):1031–1052, 1997.

[113] Sebastian Unger and Frank Mueller. Handling Irreducible Loops: Optimized Node

Splitting versus DJ-Graphs. ACM Transaction on Programming Languages and

Systems, 24(4):299–333, July 2002.

[114] Larry Carter, Jeanne Ferrante, and Clark D. Thomborson. Folklore Confirmed:

Reducible Flow Graphs are Exponentially Larger. In Proceedings of the Internationl

Symposium on Principles of Programming Languages, pages 106–114. ACM, 2003.

[115] M. S. Hecht and J. D. Ullman. Characterizations of Reducible Flow Graphs.

Journal of the ACM, 21(3):367–375, July 1974.

Bibliography 273

[116] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2007.

[117] Robert Endre Tarjan. Testing Flow Graph Reducibility. Journal of Computer and

System Sciences, 9(3):355–365, 1974.

[118] Ken Kennedy and Linda Zucconi. Applications of a Graph Grammar for Program

Control Flow Analysis. In Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages, POPL ’77, pages 72–85, New York,

NY, USA, 1977. ACM.

[119] M. Sharir. Structural Analysis: A New Approach to Flow Analysis in Optimizing

Compilers. Computer Languages, 5(3-4):141–153, January 1980.

[120] Paul Havlak. Nesting of Reducible and Irreducible Loops. Proceedings of the

Transactions on Programming Languages and Systems, 19(4):557–567, 1997.

[121] Tao Wei, Jian Mao, Wei Zou, and Yu Chen. A New Algorithm for Identifying

Loops in Decompilation. In Proceedings of the Static Analysis Symposium, volume

4634 of Lecture Notes in Computer Science, pages 170–183. Springer, 2007.

[122] AM. Erosa and L.J. Hendren. Taming Control Flow: A Structured Approach to

Eliminating Goto Statements. In Proceedings of the 1994 International Conference

on Computer Languages, pages 229–240, May 1994.

[123] M. Howard Williams and G. Chen. Restructuring Pascal Programs Containing

Goto Statements. The Computer Journal, 28(2):134–137, 1985.

[124] Bjarne Steensgaard. Sequentializing Program Dependence Graphs for Irreducible

Programs. Technical Report MSR-TR-93-14, Microsoft Research, Redmond, WA,

1993.

[125] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Identifying Loops

Using DJ Graphs. ACM Transaction on Programming Languages and Systems, 18

(6):649–658, November 1996.

[126] Donald E. Knuth. An Empirical Study of FORTRAN Programs. Software: Practiced

and Experience, 1(2):105–133, 1971.

[127] Christopher A. Healy, Mikael Sjödin, Viresh Rustagi, David B. Whalley, and

Robert van Engelen. Supporting Timing Analysis by Automatic Bounding of Loop

Iterations. Real-Time Systems, 18(2/3):129–156, 2000.

[128] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Deriving WCET Bounds

by Abstract Execution. In Proceedings of the 11th International Workshop on

Worst-Case Execution Time Analysis. OCG, July 2011.

Bibliography 274

[129] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A Structured Approach to

Proving Compiler Optimizations Based on Dataflow Analysis. In Types for Proofs

and Programs, volume 3839 of Lecture Notes in Computer Science, pages 66–81.

Springer, 2006.

[130] Gogul Balakrishnan and Thomas W. Reps. WYSINWYX: What you see is not

what you eXecute. ACM Transactions on Programming Languages and Systems,

32(6), 2010.

[131] Raimund Kirner and Peter P. Puschner. Timing Analysis of Optimised Code.

In Proceedings of the 8th International Workshop on Object-Oriented Real-Time

Dependable Systems, pages 100–105. IEEE Computer Society, 2003.

[132] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among

Variables of a Program. In Proceedings of the 5th Symposium on Principles of

Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New

York, NY.

[133] Benedikt Huber, Wolfgang Puffitsch, and Peter Puschner. Towards an Open

Timing Analysis Platform. In Proceedings of the 11th International Workshop on

Worst-Case Execution Time Analysis, pages 5–14, Vienna, Austria, 2011. OCG.

[134] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the 2nd IEEE / ACM

International Symposium on Code Generation and Optimization, pages 75–88,

2004.

[135] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg, and Linus

Källberg. ALF - A Language for WCET Flow Analysis. In Proceedings of the

9th International Workshop on Worst-Case Execution Time Analysis. OCG, June

2009.

[136] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient Longest

Executable Path Search for Programs with Complex Flows and Pipeline Effects.

In Proceedings of the IEEE International Conference on Automation Science and

Engineering, CASES ’01, pages 132–140. ACM, 2001.

[137] Benedikt Huber, Daniel Prokesch, and Peter Puschner. A Formal Framework for

Precise Parametric WCET Formulas. In Proceedings of the 12th International

Workshop on Worst-Case Execution Time Analysis, volume 23 of OASIcs, pages

91–102, 2012.

[138] Björn Lisper. Principles for Value Annotation Languages. In Proceedins of the 14th

International Workshop on Worst-Case Execution Time Analysis, volume 39 of

OpenAccess Series in Informatics (OASIcs), pages 1–10, Dagstuhl, Germany, 2014.

Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

Bibliography 275

[139] Robert Endre Tarjan. A Unified Approach to Path Problems. Journal of the ACM,

28(3):577–593, 1981.

[140] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In

Automata Studies, pages 3–41. Princeton University Press, Princeton, NJ, 1956.

[141] Jakob Engblom and Andreas Ermedahl. Modeling Complex Flows for Worst-Case

Execution Time Analysis. In Proceedings of the 21st IEEE Real-Time Systems

Symposium, pages 163–174, November 2000.

[142] Pascal Montag and Sebastian Altmeyer. Precise WCET Calculation in Highly

Variant Real-time Systems. In Proceedings of the Conference on Design, Automation

& Test in Europe, pages 920–925. IEEE, 2011.

[143] A. C. Shaw. Reasoning about Time in Higher-Level Language Software. IEEE

Transaction on Software Engineering, 15(7):875–889, January 1989.

[144] P. Puschner and Ch. Koza. Calculating the Maximum, Execution Time of Real-time

Programs. Real-Time Systems, 1(2):159–176, September 1989.

[145] G. Pospischil, P. Puschner, A. Vrchoticky, and R. Zainlinger. Developing Real-Time

Tasks with Predictable Timing. IEEE Software, 9(5):35–44, September 1992.

[146] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,

Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang

Kim. An Accurate Worst Case Timing Analysis for RISC Processors. IEEE

Transactions on Software Engineering, 21(7):593–604, 1995.

[147] R. Chapman. Static Timing Analysis and Program Proof. University of York, 1995.

[148] Antoine Colin and Guillem Bernat. Scope-Tree: A Program Representation

for Symbolic Worst-Case Execution Time Analysis. In Proceedings of the 14th

Euromicro Conference on Real-Time Systems, 2002.

[149] Stefan Bygde, Andreas Ermedahl, and Björn Lisper. An Efficient Algorithm for

Parametric WCET Calculation. In Proceedings of the International Conference

on Embedded and Real-Time Computing Systems and Applications, pages 13–21.

IEEE Computer Society, 2009.

[150] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. Precise and Efficient

Parametric Path Analysis. In Proceedings of the International Conference on

Languages, Compilers, and Tools for Embedded Systems, 2011.

[151] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley, and M.G. Harmon. Bounding

Pipeline and Instruction Cache Performance. IEEE Transactions on Computers,

48(1):53–70, Jan 1999.

Bibliography 276

[152] Friedhelm Stappert and Peter Altenbernd. Complete Worst-case Execution Time

Analysis of Straight-line Hard Real-time Programs. Journal of Systems Architecture,

46(4):339–355, February 2000.

[153] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time

Analysis. PhD thesis, Uppsala University, 2003.

[154] Yau-Tsun Steven Li and Sharad Malik. Performance Analysis of Embedded

Software using Implicit Path Enumeration. In Proceedings of the Design Automation

Conference, 1995.

[155] Gabriel Y. Handler and Israel Zang. A Dual Algorithm for the Constrained Shortest

Path Problem. Networks, 10(4):293–309, 1980.

[156] Y.P. Aneja and K. Nair. The Constrained Shortest Path Problem. Naval Research

Logistics Quarterly, 25:549–555, 1978.

[157] Pascal Raymond. A General Approach for Expressing Infeasibility in Implicit Path

Enumeration Technique. In Proceedings of the 14th International Conference on

Embedded Software, EMSOFT ’14, pages 8:1–8:9, New York, NY, USA, 2014. ACM.

[158] Claire Maiza-Burguière and Christine Rochange. History-Based Schemes and

Implicit Path Enumeration. In Proceedings of the 6th International Workshop On

Worst-Case Execution Time Analysis, July 2006.

[159] Mingsong Lv, Zonghua Gu, Nan Guan, Qingxu Deng, and Ge Yu. Performance

Comparison of Techniques on Static Path Analysis of WCET. Proceedings of the

IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 1:

104–111, 2008.

[160] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance Estimation of

Embedded Software with Instruction Cache Modeling. ACM Transaction Design

Automation of Electronic Systems, 4(3):257–279, July 1999.

[161] Amine Marref. Predicated Worst-Case Execution-Time Analysis. PhD thesis,

University of York, 2009.

[162] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET Centric

Data Allocation to Scratchpad Memory. In Proceedings of the IEEE Real-Time

Systems Symposium, pages 223–232. IEEE Computer Society, 2005.

[163] Paul Feautrier. Parametric Integer Programming. RAIRO Recherche

Op’erationnelle, 22(3):243–268, 1988.

[164] Sebastian Altmeyer, Christian Hümbert, Björn Lisper, and Reinhard Wilhelm.

Parametric Timing Analysis for Complex Architectures. In Proceedings of the 14th

International Conference on Real-Time Computing Systems and Applications, 2008.

Bibliography 277

[165] Jan Reineke and Johannes Doerfert. Architecture-Parametric Timing Analysis. In

Proceedings of the 20th IEEE Real-Time and Embedded Technology and Application

Symposium, pages 189–200. IEEE, April 2014.

[166] Benedikt Huber and Martin Schoeberl. Comparison of Implicit Path Enumeration

and Model Checking Based WCET Analysis. In Proceedings of the 9th International

Workshop on Worst-Case Execution Time Analysis, volume 10 of OpenAccess Series

in Informatics (OASIcs), pages 1–12, Dagstuhl, Germany, 2009. Schloss Dagstuhl–

Leibniz-Zentrum für Informatik.

[167] Alexander Metzner. Why Model Checking Can Improve WCET Analysis. In

Computer Aided Verification, volume 3114 of Lecture Notes in Computer Science,

pages 334–347. Springer, 2004.

[168] Reinhard Wilhelm. Why AI + ILP Is Good for WCET, but MC Is Not, Nor

ILP Alone. In Proceedings of the International Conference on Verification, Model

Checking, and Abstract Interpretation, pages 309–322, 2004.

[169] Loukas Georgiadis, Luigi Laura, Nikos Parotsidis, and Robert Endre Tarjan.

Loop Nesting Forests, Dominators, and Applications. In Proceedings of the 13th

International Symposium on Experimental Algorithms, pages 174–186, 2014.

[170] Donald E. Knuth. The Art of Computer Programming, Vol. 3. Addison Wesley,

1998.

[171] IBM ILOG CPLEX Optimizer, Last 2010. URL http://www-01.ibm.com/

software/integration/optimization/cplex-optimizer/.

[172] AbsInt Advanced Analyzer User Documentation. AbsInt Angewandte Informatik

GmbH, 2010.

[173] Sebastian Altmeyer, Claire Maiza-Burguière, and Reinhard Wilhelm. Comput-

ing the Maximum Blocking Time for Scheduling with Deferred Preemption. In

Proceedings of the International Conference on Software Technologies for Future

Dependable Distributed Systems, 2009.

[174] Yudong Tan and Vincent John Mooney III. Timing Analysis for Preemptive

Multitasking Real-time Systems with Caches. ACM Transaction on Embedded

Computing Systems, 6(1), 2007.

[175] Stefan M. Petters. Scheduling Analysis with Respect to Hardware Related Pre-

emption Delay. In Proceedings of the Workshop on Real-Time Embedded Systems,

2001.

[176] Jan Staschulat, Simon Schliecker, and Rolf Ernst. Scheduling Analysis of Real-Time

Systems with Precise Modeling of Cache Related Preemption Delay. In Proceedings

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Index 278

of the 17th Euromicro Conference on Real-Time Systems, ECRTS ’05, pages 41–48,

Washington, DC, USA, 2005. IEEE Computer Society.

[177] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik

Roychoudhury. Static Analysis of Multi-Core TDMA Resource Arbitration Delays.

Real-Time Systems, 50(2):pp185–229, March 2014.

[178] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge,

MA, USA, 2002.

[179] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &

Sons, Inc., New York, NY, USA, 1986.

Index

abstract interpretation, 7

abstract syntax tree, 90

abstraction function, 16

analysis

dynamic, 7

fixed point , 12

static, 7

anchor, 147

arrival time, 24

basic block, 19

best-case execution time, 30

best-case response time, 30

blocking time, 24

breadth-first search, 83, 255

bucket, 230

cache

arithmetic, 43

block reload time, 42

block resilience, 56

capacity miss, 42

compulsory miss, 42

conflict miss, 42

line, 42

locking, 51

miss, 41, 42

miss penalty, 42

replacement policy, 43

replacement policy, 41

set, 42

set associativity, 42

write miss, 42

write/allocate, 42

write/no-allocate, 42

cache-related preemption delay, 50, 51

chain, see lattice

condition, 14

chained blocking, 32

Church-Rosser transformation, 87

computation tree, 9

concretization function, 16

condensation graph, 85

constistency, see locally consistent

context-switch cost, 49

control flow, 8

analysis, 19

graph, 10

path, 10

reconstruction, 36

critical instant, 29

critical section, 31

data flow, 8

deadline, 24

deadline monotonic scheduling, 27

deadlock, 33

depth-first search, 85, 258

deterministic, 9

directed acyclic graph, 84

dominance relation, 85

domino effect, 35

earliest deadline first, 27

equivalence relation, 251

equivalence class, 251

279

Index 280

evicting cache block, 54

finishing time, 24

fixed point, 13

greatest, 13

least, 13

flow

constraint, 95

fact, 36, 95

frequency, 97

network, 81

flow network

residual, 82

Galois

connection, 16

insertion, 16

graph reduction, 85

halting problem, 9

hyper period, 24

implicit path enumeration technique, 100

integer linear program, 261

inter-arrival time, 23

interpretation, 8

iteration, 89

scope, 106

type, 106

job, 22

lambda calculus, 253

language, 8

lateness, 24

latest execution time, 172

lattice, 12

chain, 14

semi, 12

linear Programming, 261

live cache state, 60

local consistency, 16

locality principle, 41

longest paths, 84

loop, 105

bounds, 36

depth, 89

entry path, 90

exit path, 90

kernel, 90

natural, 88

nesting forest, 89

nesting relation, 89

maximum blocking

path, 184

time, 184

maximum flow problem, 82

maximum path length, 84

may analysis, 47

may set, 47

meet-over-all-paths, 12

memory gap, 40

minimal fixed point, 14

minimum cost flow problem, 83

minimum flow problem, 82

minimum path length, 83

model checking, 9

monotonicity, 13

must analysis, 48

must set, 46

mutex, 31

mutual exclusion, 22, 31

narrowing, 14

node splitting, 88

optimal instant, 30

partial order, 12

partially ordered set, 12

path analysis, 36

path expression, 96

bounded, 98

precedence constraint, 22

preemption, 50

interaction, 68

Index 281

preemption point, 26

priority ceiling protocol, 33

priority inheritance protocol, 32

priority inversion problem, 31

program point, 8

program analysis, see analysis

quotient set, 251

rate monotonic scheduling, 27

reaching cache state, 60

reducibility, 88

residual flow network, 82

resource constraint, 22

response time, 24

response time

analysis, 29

reverse postorder, 87

scheduling

aperiodic, 23

cooperative, 26

deferred preemption, 25

periodic, 23

policy, 21

problem, 21

sporadic, 23

scope, 105

bottom, 106

entry, 106

exit, 106

immediate parent, 110

order, 154

parent, 110

top, 106

tree, 106

semantics, 8

collecting, 10, 11

fixed point, 12

path, 10

path-based collecting, 11

trace, 9

semaphore, 31

single-source shortest paths, 83, 257

directed acyclic graph, 258

soundness, 16

starting time, 24

strongly connected component, 85

subgraph, 85

synchronization, 31

syntax, 8

task, 21

set, 22

termination, 9

timing anomaly, 35

topological order, 84

topological sort, 258

total unimodularity, 262

trace, 9

transfer function, 8

transformer, see transfer function

transitive closure, 85

unroll, 133

useful cache block, 52

definitely cached, 54

utilization factor, 28

value analysis, 36

widening, 14

working set, 41

worst-case execution frequency, 204

worst-case response time, 29

Index 282

	1 Introduction
	1.1 Contribution
	1.2 Structure
	1.3 Contributing Publications

	2 Principles of Program Analysis
	2.1 Programs: Syntax, Semantics and Interpretation
	2.2 Trace Semantics
	2.3 Collecting Semantics
	2.4 Fixed Point Semantics
	2.5 Abstraction
	2.6 Convention and Practical Program Analysis

	3 Context
	3.1 Real-time Scheduling
	3.1.1 Basic Task Model
	3.1.2 Modes of Preemption
	3.1.3 Deadline Monotonic and Earliest Deadline First
	3.1.4 Schedulability
	3.1.5 Blocking and Synchronization

	3.2 Timing Analysis
	3.2.1 Practical Aspects

	4 Cache Analysis
	4.1 Computer Memories
	4.2 Processor Caches
	4.3 Cache Logic
	4.4 Static Cache Analysis
	4.4.1 LRU Cache Semantics
	4.4.2 Access Classification
	4.4.3 Abstraction

	4.5 Multitask Timing Analysis
	4.5.1 Costs of Preemption
	4.5.2 Cache-related Preemption Delay
	4.5.3 Bounding Cache-related Preemption Delay

	4.6 Synergetic Approach to CRPD Analysis
	4.6.1 Precise Cache Analysis
	4.6.2 Computation of UCB, ECB and CBR
	4.6.3 Restriction to Basic Block Boundaries
	4.6.4 CRPD Bounds on Task Sets

	4.7 Evaluation
	4.8 Conclusion

	5 Path Analysis
	5.1 Fundamentals of Control Flow Analysis
	5.1.1 Flows and Paths
	5.1.2 Graph Structure

	5.2 Path Problems in Timing Analysis
	5.2.1 On Program Representation
	5.2.2 On Control Flow Representation
	5.2.3 On Path Analyses

	5.3 A General Path Analysis
	5.3.1 Motivation
	5.3.2 Graph Structure and Loops
	5.3.2.1 Related Work
	5.3.2.2 Scopes
	5.3.2.3 A General Algorithm for Precise Loop Detection
	5.3.2.4 Handling Ambiguous Loop Nesting by Enumeration
	5.3.2.5 Handling Ambiguous Loop Nesting by Prenumbering
	5.3.2.6 Conclusion

	5.3.3 Computing Worst-Case Execution Time Bounds
	5.3.3.1 Prerequisites
	5.3.3.2 Computing WCET Bounds on a Single Scope
	5.3.3.3 Computing WCET Bounds Globally
	5.3.3.4 Computing WCET Bounds on Subgraphs
	5.3.3.5 Practical Global Path Length Computation
	5.3.3.6 Evaluation
	5.3.3.7 Conclusion

	5.3.4 Computing Best-case Execution Time Bounds
	5.3.4.1 Prerequisites
	5.3.4.2 Framework
	5.3.4.3 Evaluation
	5.3.4.4 Conclusion

	5.3.5 Computing Latest Execution Time Bounds
	5.3.5.1 Prerequisites
	5.3.5.2 Framework
	5.3.5.3 Evaluation
	5.3.5.4 Conclusion

	5.3.6 Computing Maximum Blocking Time Bounds
	5.3.6.1 Prerequisites
	5.3.6.2 Framework
	5.3.6.3 Evaluation
	5.3.6.4 Conclusion

	5.3.7 Computing Worst-Case Execution Frequencies
	5.3.7.1 Prerequisites
	5.3.7.2 Framework
	5.3.7.3 Evaluation
	5.3.7.4 Conclusion

	5.4 Remarks
	5.5 Conclusion

	6 Bounding Cache-related Preemption Delay
	6.1 Improving Conventional CRPD Bounds
	6.1.1 Preliminaries
	6.1.2 A Review of Approaches
	6.1.3 A Refined Bound on CRPD

	6.2 Improving CRPD Estimation with Time Bounds
	6.3 Evaluation
	6.4 Conclusion

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Work
	7.3 Conclusion

	A Notations and Conventions
	A.1 Mathematical Notation
	A.2 Pseudo-code Language

	B Reference Implementations of Basic Graph Algorithms
	B.1 Breadth-first Search
	B.2 Maximum Flow
	B.3 Single-source Shortest Paths
	B.4 Topological Sort
	B.5 Single-source Shortest Paths on Directed Acyclic Graphs
	B.6 Depth-first Search

	C On Linear Programming
	Bibliography
	Index

