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1 Introduction

1.1 Motivation

The present thesis mainly focuses on nonparametric estimation methods for certain classes
of stochastic processes. It is divided into three main subject areas. We start with the
formulation of a kernel based nonparametric estimation procedure for jump diffusions.
Afterwards we will focus on bias reduction techniques for this class of estimators. Finally,
we will work with multivariate models and introduce the concept of copula functions.
As already mentioned, the first part deals with nonparametric kernel estimators for solu-
tions of stochastic differential equations. We will start with a model based on a Brownian
motion driven diffusion process as a motivation and will afterwards mainly deal with
jump diffusions. Nonparametric kernel estimation for the coefficients of jump diffusions
has not attracted much attention in the literature, yet. Most of the existing articles are
concerned with the case of an additive independent finite activity jump process, which
means -roughly speaking- that they focus on compound Poisson processes as a source of
additive jumps. We will extend the existing results to the case of Lévy-driven jump diffu-
sion models. The class of Lévy processes provides many possibilities of modeling certain
jump behavior of, for instance, economic processes like stock prices, volatilities or interest
rates.
We propose Nadaraya-Watson like estimators based on kernel functions as well as a band-
width and will explore their asymptotic properties, i.e., consistency and asymptotic nor-
mality. The latter allows us to construct pointwise asymptotic confidence intervals, which
are very useful for practical issues.
Based on these results, we will subsequently extend them to the case of noisy data. This
kind of data plays a significant role, especially in high frequency settings; see for exam-
ple Jones (2003) and Zhou (1996). In particular, we will not observe the diffusion itself
but rather a sample containing an additive white noise process. Using a pre-averaging
approach, we are able to get rid of the noise and make use of the asymptotic results in
the non-noisy case.
The last section of the first part contains another example of a very interesting and, for
practical issues, relevant jump diffusion model. Particularly, we will focus on integrated
jump diffusion processes. These processes appear naturally in problems of engineering
and physics. One can, for example, think of a velocity of a particle as the original jump
diffusion process and the coordinate of the particle as the integral up to a fixed time point
t ≥ 0. Moreover, we assume that we are only able to observe the coordinate whereas the
velocity is hidden. Making again use of the pre-averaging approach, we see that under
appropriate assumptions, the results of the first section can also be used in this context.

The second part is mainly concerned with bias reduction techniques for nonparamet-
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ric kernel based estimators. We will start with an adaptive version of the well-known
Nadaraya-Watson estimator for nonparametric regression estimation. We will see that an
appropriate choice of the newly introduced bandwidth function will asymptotically lead
to a significant reduction of the order of the bias term. We show that this appealing
property withstands even under weak dependency of the available sample. For our proofs
we will make use of techniques borrowed from classical discrete time series analysis and
will afterwards construct an adaptive drift estimator for a continuous diffusion process in
view of the discrete findings.
Subsequently, we will leave the univariate case and focus on multivariate stochastic pro-
cesses. We will especially deal with the so-called “boundary bias” effect, which occurs
when we want to estimate densities possessing bounded or compact support by the use
of symmetric kernel based estimators. The effect describes, for instance, the fact that
symmetric kernel based estimators smear over probability mass to the negative real line
or outside the unit square, although the corresponding densities are only supported on
R

+ or respectively on [0, 1]2. This problem has been attained a lot of attention in the
literature and many methods for avoiding this effect have been published. We will focus
on an approach by Chen (1999, 2000), who uses asymmetric probability densities like Beta
and Gamma kernels for the estimation of unknown univariate densities. Furthermore, we
will develop an extension of this approach due to the multivariate case and will afterwards
introduce two non-negative multiplicative bias correction methods improving the rate of
the bias term significantly. We explore bias and variance approximations and focus on
several choices for the kernel functions. Regression estimators based on this method are
then suggested for the estimation of the drift vector of a multivariate diffusion process.
The last section mainly focuses on the estimation of compact supported densities. Partic-
ularly, we will look at densities whose support is the unit hyper cube [0, 1]d and construct
nonparametric estimators via the use of Bernstein polynomials. In the literature, this
approach has been used for the estimation of copula densities. We will briefly introduce
the class of copula functions and will afterwards introduce various estimation approaches.
Finally, due to Sklar´s theorem, we are able to represent conditional densities as well as
conditional expectations in terms of the corresponding copula densities. This represen-
tation will lead us to the use of a Bernstein polynomial based estimator for conditional
expectations which are in contrast -as we have already seen- approximations for the un-
known drift and diffusion coefficient in diffusion models. Hence, this gives us another
possibility to face the problem of estimating unknown conditional expectations or regres-
sion functions.

1.2 Preliminaries and basic notations

In this section we will shortly introduce our used notations and will define the basic
tools for our subsequent analysis. There exists a variety of useful books introducing the
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concept of stochastic processes. We only refer to those definitions being useful and in any
way needed for our following analysis. For this purpose we restrict ourselves to the most
important definitions and tools given in the books by Karatzas and Shreve (1996) as well
as Cont and Tankov (2004). The following section is based on their introduction chapters.
We will subsequently work on a filtered probability space (Ω,A, (At)t≥0, P ) where A
denotes a σ-algebra, (At)t≥0 a filtration of sub-σ-algebras, and P a probability measure.
A stochastic process X = (Xt(ω))t≥0 := (Xt)t≥0 is a family of random variables, which
means that Xt is a random variable for every t ≥ 0. We omit the dependency of the
randomness ω, but always keep in mind that we work on a probability space. Moreover,
a process X is called adapted to (At)t≥0, if Xt is At measurable for all t ≥ 0.
For a fixed ω ∈ Ω, the map t → Xt(ω) is called a path of the process X. During our
following analysis, we will always observe a discrete sample of a path of an underlying
stochastic process and will construct estimators for characteristics of this process based
on this sample.
Another mentionable definition are the Lp(Ω,A, P ) := Lp(P ) spaces. We say that a
random variable X : Ω → R

d belongs to Lp(P ), if

E[|X|p] =
∫

Ω

|X(w)|pdP (w) =
∫

Rd

|x|pPX(dx) <∞,

where
PX(A) = P (X−1(A)), A ∈ B(Rd)

denotes the image measure of X.
A very important class of stochastic processes, which additionally plays a major role in
the following chapters, are martingales. We will omit the concept in terms of discrete
time and will restrict ourselves to the continuous-time case. We will at first introduce
the Brownian motion, which acts as a fundamental stochastic process and is also very
important in the context of diffusion processes, which will play a central role within this
work later on. For the sake of simplicity, we will restrict ourselves to the case d = 1.

Definition 1.1. A one-dimensional Brownian motion W = (Wt)t≥0 on a filtered proba-
bility space (Ω,A, (At)t≥0, P ) is an adapted stochastic process fulfilling

a) W has independent increments, which means that Wt −Ws is independent of As,
for s ≤ t,

b) W has stationary increments, which are normally distributed such that

Wt −Ws
D
= N (0, t− s),

c) W has almost surely continuous paths and

d) W0 = 0 almost surely (a.s.).
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A Brownian motion is one basic example of a continuous-time martingale. Other examples
of martingales will become very important later on. For this purpose let us now define
another fundamental class of stochastic processes, namely the class of Lévy processes.
These processes play a central role in many scientific fields. Applications can be found
for instance in physics (analysis of turbulence data), in engineering (construction of dams
protecting the environment against flood catastrophes), in economics as a toy-example of
a discontinuous asset price, and, of course, in mathematical finance (in particular in risk
theory). Several advisable books introduce the interested reader into this field of stochastic
processes. We refer to Sato (1999), Cont and Tankov (2003), and Barndorff-Nielsen et al.
(2001). A very useful survey about Lévy processes and their applications in finance has
been published by Papapantoleon (2008), from which the ideas how to introduce Lévy
processes in the following way are extracted.
We start with a formal definition of a Lévy process and concentrate only on the one-
dimensional case due to the sake of simplicity.

Definition 1.2. A real-valued, adapted, and càdlàg (French “continue à droite, limite à
gauche”; English RCLL: “right continuous with left limits”) stochastic process L = (Lt)t≥0

on a filtered probability space (Ω,A, (At)t≥0, P ) such that L0 = 0 a.s. is called Lévy process,
if

a) L has independent increments, which means that Lt − Ls is independent of As,
0 ≤ s < t,

b) L has stationary increments, i.e., the distribution of Lt+h − Lt is independent of t
for all h > 0 and

c) L is stochastically continuous, i.e.

∀ε > 0 : lim
t→s

P (|Lt − Ls| > ε) = 0, for every t ≥ 0.

The literature features different definitions for Lévy processes. The definition above seems
to be most adequate for our purposes, because the handling of small increments of stochas-
tic processes will play a central role in our subsequent analysis; see c) in Definition 1.2.

Example 1.3. The easiest examples of Lévy processes are given by a deterministic linear
drift Lt = at, a ∈ R, by the Brownian motion Lt = Wt, and by a (compound) Poisson
process.

A fundamental characterization of Lévy processes provides the Lévy-Khintchine repre-
sentation of the corresponding characteristic function of L. Due to its importance, we
will state this result here. Further, it acts as an elegant tool for the derivation of higher
moments of L and will be important subsequently.
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Theorem 1.4 (Cont and Tankov (2003), Theorem 3.1). Let L = (Lt)t≥0 be a Lévy process,
then there exists a triplet (b, σ, ν) where b ∈ R, σ ∈ R

+ and additionally ν is a measure
on R fulfilling

ν({0}) = 0 and

∫

R

(1 ∧ x2)ν(dx) <∞

such that the characteristic function of Lt can be represented as

ϕLt(u) := E[eiuLt ] = exp

[
t

(
ibu− u2σ

2
+

∫

R

(
eiux − 1− iux1{|x|≤1}

)
ν(dx)

)]
.

Remark 1.5. This representation does not only hold for Lévy processes but rather for
the characteristic function of a random variable whose distribution is infinitely divisible.
We do not go into detail here, but remark that the law of Lt is infinitely divisible and (in
turn) for every infinitely divisible random variable X one can construct a Lévy process L̃

such that L̃1
D
= X.

We will now introduce the concept of Poisson random measures of Lévy processes, which
provide a very useful tool to work with these processes by using martingale techniques
under appropriate assumptions.

Definition 1.6. Let L = (Lt)t≥0 be a Lévy process and ∆L := (∆Lt)t≥0 := (Lt − Lt−)t≥0

the corresponding pure jump process, where Lt− := lims↑t Ls. Let B ∈ B(R\{0}) a Borel
set such that 0 /∈ B, where B denotes the closure of the Borel set B. We set

µL(ω, t, B) := #{0 ≤ s ≤ t : ∆Ls ∈ B} =
∑

0≤s≤t

1B(∆Ls)

and call µL the Poisson random measure of L.

Roughly speaking, µL is the non-negative integer-valued random measure, which counts
the jumps of L up to a certain time t such that ∆Ls ∈ B.
The name Poisson random measure is justified by the following observations (cf. Papa-
pantoleon (2008)):

a) µL has independent increments, which means that µL(ω, t, B)− µL(ω, s, B) is inde-
pendent of As. This can be seen in the fact that

µL(ω, t, B)− µL(ω, s, B) ∈ σ({Lu − Lv; s ≤ v < u ≤ t})
and that L has independent increments.

b) µL has stationary increments because

µL(ω, t, B)− µL(ω, s, B) = #{0 ≤ u ≤ s− t : ∆(Ls+u − Ls) ∈ B}
and that L has stationary increments.
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Hence, (µL(ω, t, B))t≥0 is a non-negative integer-valued Lévy process whose jumps are all
of height 1. Consequently, µL is, for a fixed Borel set B and indexed in t ≥ 0, a Poisson
process with intensity

ν(B) := E[#{0 ≤ s ≤ 1 : ∆Ls ∈ B}],
which means that

P (µL(ω, ·, B) = k) = e−ν(B)ν(B)k

k!
, ∀k ∈ N0.

For further reading on this topic, we refer to Cont and Tankov (2004), Section 2.6.
ν is called the Lévy measure or the Lévy density of L and has already been used in the
Lévy-Khintchine representation as well as in the characteristic triplet.
The Lévy measure provides information about the expected number of jumps of a certain
height within a time interval of length 1. Since

∫
R
(1 ∧ x2)ν(dx) < ∞, the Lévy process

L can have infinitely many small jumps, but does only have finitely many jumps of size
J ≥ 1. A Lévy process is called infinitely active when ν(R) = ∞. Finite activity processes
(ν(R) < ∞) are, in general, compound Poisson processes and will not play a significant
role in our following analysis.
We now state another fundamental representation of a Lévy process, namely the Lévy-Itô
decomposition where Poisson random measures as well as the Lévy measure appear, too.

Proposition 1.7 (Cont and Tankov (2004), Proposition 3.7). Let L = (Lt)t≥0 be a Lévy
process with Poisson random measure µL and characteristic triplet (b, σ, ν). Then, L can
be decomposed into the sum of four independent Lévy processes L(i), i = 1, ..., 4, in the
following way

Lt = L
(1)
t + L

(2)
t + L

(3)
t + L

(4,ε)
t

= bt+
√
σWt +

∫ t

0

∫

{|x|≥1}
xµL(ds, dx) + lim

ε↓0

∫ t

0

∫

{ε<|x|<1}
x(µL − νL)(ds, dx)

=: bt+
√
σWt +

∑

0<s≤t

∆Ls1{|∆Ls|≥1} +

∫ t

0

∫

{|x|<1}
x(µL(ds, dx)− ν(dx)ds),

where L(1) is a linear drift term, L(2) is a scaled Brownian motion, L(3) is a compound
Poisson process with arrival rate λ =

∫
{|x|≥1} ν(dx), and L

(4) := limε↓0 L
(4,ε) is a pure jump

martingale.

The fact that the last part L(4) is a martingale can be seen for instance through Propo-
sition 2.16 in Cont and Tankov (2004). Moreover, the reason why we stated this decom-
position here is that we will work with diffusions driven by Lévy processes, which are
time-continuous martingales. Additionally, we assume that the driving Lévy process pos-
sesses finite moments of certain orders. The relation between the existence of moments of
L and its corresponding Lévy measure ν can be found in the following proposition.
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Proposition 1.8 (Cont and Tankov (2004), Proposition 3.13). Let L = (Lt)t≥0 be a Lévy
process with triplet (b, σ, ν), then

E[|Lt|n] <∞ ⇔
∫

{|x|≥1}
|x|nν(dx) <∞.

In this case, the moments can be deduced in a rather simple way by differentiation of the
characteristic function. In particular, we can state that

E[Lt] = t

(
b+

∫

{|x|≥1}
|x|ν(dx)

)

as well as

V ar(Lt) = t

(
σ +

∫

R

x2ν(dx)

)
.

Finally, we want to conclude the mentioned properties of Lévy processes and use them
for our purposes. In the following section, we will work with a Lévy process L of the form

Lt =

∫

(0,t]

∫

R

x(µL(ds, dx)− ν(dx)ds)

:=

∫ t

0

∫

R

x(µL(ds, dx)− ν(dx)ds) :=

∫ t

0

∫

R

xµ̄L(ds, dx)

possessing the property that
∫
R
x4ν(dx) < ∞. µ̄L denotes the compensated Poisson ran-

dom measure of L. We are able to rewrite L in view of the Lévy-Itô decomposition as
follows:

Lt =

∫ t

0

∫

R

x(µL(ds, dx)− ν(dx)ds)

=

∫ t

0

∫

{|x|<1}
x(µL(ds, dx)− ν(dx)ds) +

∫ t

0

∫

{|x|≥1}
xµL(ds, dx)

−
∫ t

0

∫

{|x|≥1}
xν(dx)ds

:= L(3) + L(4) + b̃t,

where b̃ := −
∫
{|x|≥1} xν(dx) ∈ R.

Hence, L has the triplet (b̃, 0, ν) and is a martingale possessing a finite fourth moment

E[L4
t ] = t

(
3

(∫

R

y2ν(dy)

)2

+

∫

R

y4ν(dy)

)
.

In addition, the characteristic function ϕLt(u) of L is given by

ϕLt(u) = E[eiuLt ] = exp

(
t

∫

R

(eiux − 1− iux)ν(dx)

)
.
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2 Nonparametric drift estimation in a Lévy-driven

diffusion model

2.1 First intuitions in scalar diffusion models

In this chapter we will focus on the nonparametric estimation of the coefficients in a
certain jump diffusion model. To motivate our procedure, we will at first have a look at
an ordinary diffusion model driven by a Brownian motion. To be precise, consider a filtered
probability space (Ω,F , (FW

t )t≥0, P ) equipped with a Brownian MotionW = (Wt)t≥0 and
the canonical filtration FW

t := σ(Ws, s ≤ t). Let X = (Xt)t≥0 be a diffusion process given
by the time-homogeneous stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0
D
= η,

where b and σ > 0 are unknown functions, which are globally Lipschitz-continuous such
that the equation possesses a pathwise unique strong solution (see Karatzas and Shreve
(1996), Proposition 2.13). Moreover, let the initial condition η ∈ L2(P ) be independent
of W . Now define

Ft := σ(η,Ws; 0 ≤ s ≤ t), 0 ≤ t ≤ ∞
and additionally the “collection of null sets”

N := N∞ := {N ⊂ Ω; ∃F ⊂ F∞ with N ⊂ F and P (F ) = 0}.

We call
FX

t := σ(Ft ∪N )

the augmented filtration fulfilling the usual assumptions. This means that it is complete
and right-continuous (see Karatzas and Shreve (1996), Proposition 7.7). The solution

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs

is FX
t adapted and also a semimartingale. Furthermore, the process is determined by the

functions b and σ and, hence, it seems natural to be interested in their behavior and
shape. By additional assumptions within this model, which cause that X is stationary
and equipped with a stationary density, one can see that this density can explicitly be
represented only in dependence of b and σ2; see for example Karatzas and Shreve (1996),
pp. 352.
Due to the importance of the drift b and the volatility σ, several different approaches for
the (non-)parametric estimation of diffusion models have been published. In this work we
are only interested in nonparametric approaches. For parametric estimation procedures,
we refer to a recently published book by Kessler et al. (2012).
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In the nonparametric setting, any list of existing methods would be incomplete, so we
will only mention those approaches playing a significant role for our subsequent analysis.
Very fundamental and crucial work has been done by Comte and Genon-Catalot; see
for instance Comte et al. (2009), (2010) and Comte and Genon-Catalot (2007). Their
approach is based on model selection and provides an adaptive estimator for both, the
drift and the volatility function, for which the L2-risk can be bounded dependent on the
smoothness of these functions as well as the sampling frequency. Due to the adaptivity
of their estimator, an asymptotic distribution is not derivable and, therefore, confidence
intervals cannot be determined. Nevertheless, simulation issues reveal that their estimators
provide good results. Later on, we will compare our findings with those of Schmisser
(2014), who developed the same estimation procedure as Comte and Genon-Catalot in a
jump diffusion setting.
In contrast to the upper approach, other authors focused on kernel based estimation of
diffusion models. Their findings will act as a basis for our approach in the Lévy-driven
model. In this context, very important work has been done by Bandi. His articles provide
a complete asymptotic analysis of kernel based estimators for ordinary diffusion models;
see Bandi and Phillips (2001), (2003). He also extends his results to jump diffusion models
driven by compound Poisson processes and to multivariate diffusion models; see Bandi
and Nguyen (2003) as well as Bandi and Moloche (2008). Due to the importance of his
results, we will briefly describe the motivation behind a kernel based approach below.
To develop nonparametric estimators for b and σ, Stanton (1997) uses approximations of
the infinitesimal generator L of X defined by

L(f)(x, t) := lim
τ↓t

E[f(Xτ , τ)|Xt = x]− f(x, t)

τ − t

=
∂f(x, t)

∂t
+
∂f(x, t)

∂x
b(x) +

1

2

∂2f(x, t)

∂x2
σ2(x).

The last equation is a classical result for Itô-diffusions and can, for instance, be found
in Øksendal (2000, Theorem 7.3.3). For our purposes, it is sufficient to assume that f ∈
C2

0(R × R
+). Under this assumption, the above limit exists and is therefore contained

in the domain of L. Using a Taylor expansion of f , one can finally deduce a first order
approximation for the drift b (by setting ∂f(x,t)

∂x
= x) and for the volatility function σ (by

setting ∂f(x,t)
∂t

= (x−Xt)
2) via

b(x) =
1

∆
E[Xt+∆ −Xt|Xt = x] +O(∆), as ∆ → 0

σ2(x) =
1

∆
E[(Xt+∆ −Xt)

2|Xt = x] +O(∆), as ∆ → 0.

We refer to Stanton (1997) for higher order approximations of b and σ. For our purposes,
these approximations are sufficient and are the basis for both Bandi´s and our estimation
procedure in more involved models.
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Using the above approximations, it is quite intuitive to use nonparametric regression tech-
niques, which are well developed for discrete time series analysis. There is a plethora of
different regression estimators like local polynomial estimators, splines, jackknife estima-
tors or neural networks. Due to its popularity and the well-known asymptotic properties,
we focus on a local constant estimator, which is also known as the Nadaraya-Watson
estimator (cf. Nadaraya (1965), Watson (1964) or Härdle (1990)) for the estimation of
conditional moments in regression frameworks. The intuition of this estimator is to use
weighted averages of infinitesimal increments of X, which lie in the vicinity of the spatial
point x at which we want to estimate both functions b and σ. The quantification of the
rather imprecise term “vicinity” will be handled later on. The weighting will be realized
by a kernel function K which is in general a symmetric probability density function pos-
sessing a finite second moment. For all following derivations, one can think of a Gaussian
density as a toy-example for which all assumptions will hold true.
To further illustrate the idea of the previously described procedure, we suppose that we
observe the process X at equidistant time points 0,∆, 2∆, ..., n∆. An initial estimator for
the drift b at point x according to the above description would be given by

b̂1(x) :=
1
nh

∑n−1
i=0 1(|Xi∆−x|≤h)

(X(i+1)∆−Xi∆)

∆
1
nh

∑n−1
i=0 1(|Xi∆−x|≤h)

=

1
nh

∑n−1
i=0 1( |Xi∆−x|

h
≤1
)

(X(i+1)∆−Xi∆)

∆

1
nh

∑n−1
i=0 1( |Xi∆−x|

h
≤1
)

,

where h = hn is a bandwidth and ∆ = ∆n is the sampling frequency. The bandwidth will
regulate what is meant by the term “vicinity”.
To explore asymptotic properties like consistency and the derivation of the asymptotic
distribution, it seems intuitive to ensure the following points:

i) It is a well-known fact that the drift function cannot consistently be (nonparamet-
rically) estimated on a compact interval; see for instance Bandi and Phillips (2003).
Therefore, it seems natural to impose that n∆ := T → ∞ for the examination of
b̂1(x).

ii) To reproduce our initial approximation of b, we have to impose that ∆ → 0 as
n→ ∞.

iii) The bandwidth h has to decrease to zero as n→ ∞ to ensure that only observations
“near” x are included for estimating b(x).

iv) The rescaled denominator
n−1∑

i=0

1( |Xi∆−x|
h

≤1
)

has to diverge as n → ∞ in order to guarantee that the process X infinitely often
hits a neighborhood of x.
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Later on, we will specify all these intuitive conditions to derive the desired asymptotic
properties of our proposed drift estimator.
From a heuristic point of view, it seems to be reasonable that observations near x should
be equipped with higher weights than others. Therefore, it would be a canonical approach
to substitute the indicator kernel 1( |Xi∆−x|

h
≤1
) by a smooth kernel function K whose basic

properties have already been mentioned. Bandi and Phillips (2003) and Bandi and Nguyen
(2003) finally suggested the estimators

b̂(x) :=
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) (X(i+1)∆−Xi∆)

∆
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

)

as well as

σ̂2(x) :=
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) (X(i+1)∆−Xi∆)2

∆
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) .

They explored the strong consistency and the asymptotic normality under usual regularity
assumptions on b and σ like Lipschitz-continuity and ellipticity of σ (which means that
σ(x) > σ0 > 0). Following our first intuitions, their derivations are based on the double
asymptotics scheme

∆ → 0 and T = n∆ → ∞.

Remark 2.1. For the consistent nonparametric estimation of σ, the assumption T → ∞
is not necessary; see for example Florens-Zmirou (1993) or Bandi and Phillips (2003) for
an exact mathematical justification of this fact. Due to this reason, the second estimator
possesses a faster rate of convergence. Later on, we will see that, in contrast to the ordinary
diffusion model, the double asymptotics scheme is necessary for both estimators in our
considered Lévy-driven model.

2.2 Scalar jump diffusion models driven by a finite activity jump

process

To the best of our knowledge, the first paper which investigated nonparametric kernel
based estimators for the coefficients in a jump diffusion model is the one by Bandi and
Nguyen (2003). We will shortly present their approach and the used techniques. After
that, we will use analogous arguments for the derivation in a more general model.
Adding jumps in a diffusion model seems to be very important from a practical point of
view. As we want to model interest rates or stock prices, macroeconomic news, endogenous
as well as exogenous shocks can cause abrupt changes during the evolution of the process
X. Hence, it is quite intuitive to include an additive (independent) jump component.
Bandi and Nguyen (2003) focused on the following class of processes

dXt = b(Xt)dt+ σ(Xt)dWt +

∫
c(Xs−, y)ν̄(ds, dy), X0

D
= η,

13



where ν̄(ds, dy) = µ(ds, dy) − Γ(dy)ds is a compensated Poisson random measure with
intensity Γ(dy)ds, where Γ(dy) is a probability distribution. To coincide with their nota-
tion, we set here the intensity of the underlying Poisson process equal to 1. Because of
this assumption on the jump size distribution Γ(dy), X is a process with finite activity. As
a consequence, they allow for jumps occurring due to an independent additive compound
Poisson process.
In the following section, we will present our main results, where we explicitly not assume
that the additive jump component is of finite activity but is rather a Lévy process pos-
sessing certain finite moments.
Bandi and Nguyen (2003) focused on the same double asymptotics scheme as in the Brow-
nian case before and used nonparametric regression techniques for the estimation of the
first and second conditional moment of infinitesimal changes of the process X. The ap-
proximations of the infinitesimal generator for the above discontinuous process X are now
given by (Bandi and Nguyen (2003), p.297):

b(x) = lim
∆→0

1

∆
E[Xt+∆ −Xt|Xt = x]

σ2(x) + E[c2(x, Y )] = lim
∆→0

1

∆
E[(Xt+∆ −Xt)

2|Xt = x] (2.1)

E[ck(x, Y )] = lim
∆→0

1

∆
E[(Xt+∆ −Xt)

k|Xt = x], k ≥ 3,

where we naturally assume that the above conditional moments exist and Y
D
= Γ(dx)

denotes the jump size distribution. This should only be understood as a motivation how
we can construct Nadaraya-Watson like estimators even in this jump diffusion setting. The
dependency of these approximations of the jump component is not surprising. In the jump
diffusion case, the approximation of the infinitesimal generator of X can be decomposed
into the approximation of the continuous part L and the one for the discontinuous part
M, where

M(φ)(x) :=

∫

R

(φ(x+ c(x, y))− φ(x)− φ′(x)c(x, y))Γ(dy).

Bandi and Nguyen (2003) provide an asymptotic analysis of the appropriate Nadaraya-
Watson like estimators based on symmetric kernels. It should also be mentioned that a
comparable semiparametric analysis has been conducted by Johannes (2004), who pro-
posed estimators for the coefficients of the above mentioned jump diffusion model, too.
For this purpose, he parametrized the jump size distribution and used the proposed ap-
proximations to construct estimators based on the method of moments.

Remark 2.2. The results in Bandi and Phillips (2003) as well as in Bandi and Nguyen
(2003) hold true even for a relatively broad class of stochastic processes. Their central
identifiability assumption is that the process X is Harris-recurrent. This ensures that X
infinitely often hits a neighborhood of an already visited point x; see Bandi and Phillips
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(2003) for more details. Subsequently, we will assume that X is stationary and σ is ellip-
tical. Moreover, we weaken their assumption that b has to be bounded.

2.3 Drift estimation in a Lévy-driven diffusion model

We now turn to our main section, namely the nonparametric estimation of the coefficients
in a Lévy-driven jump diffusion model.
Let, therefore, (Ω,F , (Ft)t≥0, P ) be a filtered probability space equipped with a Brownian
MotionW = (Wt)t≥0 and a Lévy process L = (L(t))t≥0 = (Lt)t≥0 of the already introduced
form

dLt =

∫

R

y(µ(dt, dy)− ν(dy)dt) :=

∫

R

yµ̄(dt, dy),

where µ is a Poisson random measure compensated by its intensity measure ν(dy)dt. We
assume that the Lévy measure ν(dy) satisfies

E[L2(1)] = V ar(L(1)) =

∫

R

y2ν(dy) <∞.

The representation of V ar(L(1)) by its corresponding Lévy measure can easily be derived
by differentiation of the characteristic function as it was presented in the introduction.
We remark that L is a martingale with respect to its canonical filtration and possessing
finite variance.
Now consider a stochastic process X = (Xt)t≥0 such that

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt, X0
D
= η, (2.2)

where b, σ and ξ are unknown functions andX possesses the initial distribution η
D
= Γ(dx).

We also assume that W and L are independent processes and that η ∈ L2(Γ(dx)) is
independent ofW as well as L. In addition, we choose as filtration Ft := σ(η, (Ls,Ws), s ≤
t) such that Xt is Ft adapted.
We should remark that the integral

Zt :=

∫ t

0

∫

R

ξ(Xs−)yµ̄(ds, dy)

denotes a martingale with respect to Ft and satisfies the isometry formula

E[Z2
t ] = E

[∫ t

0

∫

R

ξ2(Xs)y
2ν(dy)ds

]
.

Furthermore, by imposing that ξ is bounded (cf. Assumption A1,ii)), we easily conclude
that

E

[∫ t

0

∫

R

ξ2(Xs)y
2ν(dy)ds

]
≤ t||ξ2||∞

∫

R

y2ν(dy).

15



Moreover, Xt− denotes the càglàd version of the process X which ensures that the in-
tegrand is a predictable process such that the stochastic integral can be defined in the
usual manner; see Cont and Tankov (2004), Section 8.1.4. for further details on stochas-
tic integrals with respect to Poisson random measures. Suppose that we observe X in
a high frequency setting on the interval [0, T ] on an equidistant grid at time points
0,∆, 2∆, ..., n∆ = T . Our first aim will be the construction of a meaningful pointwise
estimator of the drift function b at a design point x based on the available sample
X0, X∆, X2∆, ..., Xn∆ = XT .
This problem originates from Schmisser (see Schmisser (2013), (2014)), who proposed
adaptive nonparametric estimators for b as well as σ2+V ar(L(1))ξ2 on a compact subset
A ⊂ R by the use of a model selection approach. Our procedure differs substantially from
this technique, as we are interested in pointwise estimators. Moreover, we are concerned
with kernel based estimators for which we incorporate an additional regularization pa-
rameter, namely the bandwidth h. To the best of our knowledge, there is no work done yet
covering the nonparametric estimation of b(x) in a Lévy-driven diffusion model. It should
be mentioned that for the nonparametric estimation of σ2(x) in an infinite activity model,
there is a reasonable and alternative approach by Mancini and Renó (2011). They used
a threshold estimator, which disentangles the discontinuous from the continuous part of
the process X. The new thinned out sample is used for the construction of an estima-
tor of σ2(x). In contrast to our approach, they are only interested in the fixed T case,
namely when one observes the process X only on a compact interval of the form [0, T ].
Their estimator converges with rate

√
nh. Furthermore, and to the best of our knowledge,

minimax rates for b, σ and ξ are not available in the literature, yet. We are now ready to
list our assumptions on the considered model, which will lead us to the first very useful
proposition.

Assumption A1

i) The functions b, σ and ξ are globally Lipschitz-continuous.

ii) The function σ is bounded away from zero (ellipticity condition) as well as uniformly
bounded for all x:

∃ σ1, σ0 ∈ R : ∀x ∈ R : 0 < σ1 ≤ σ(x) ≤ σ0.

iii) The function ξ is non-negative and also bounded:

∃ ξ0 ∈ R : ∀x ∈ R : 0 ≤ ξ(x) ≤ ξ0.

iv) The function b is elastic (cf. Masuda (2007)). This means that

∃ M > 0 : ∀x ∈ R, |x| > M : xb(x) . −x2,
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where the relation . is defined as follows:
let S be a set and f, g : S → [0,∞) two functions. Then,

f . g :⇔ ∃ C ∈ R
+ : f(x) ≤ C · g(x) ∀x ∈ S.

Especially, b cannot be bounded as required in Bandi and Nguyen (2003).

v) The Lévy measure ν possesses the properties that

V ar(L(1)) =

∫

R

y2ν(dy) <∞, ν({0}) = 0.

Under Assumption A1,i) a unique strong solution X of (2.2) it exists (cf. Masuda (2007)).
Moreover, under A1,i)-v), this solution is equipped with a unique invariant probability
distribution Γ(dx). Moreover, X fulfills a β-mixing condition. In general, a homogeneous
Markov process X with transition semigroup (Pt)t∈R+ and initial distribution η is said to
be β-mixing with coefficient βX(t), if

βX(t) := sup
s∈R+

∫
||Pt(x, ·)− ηPs+t(·)||ηPs(dx) −→ 0, as t→ ∞,

where ηPt denotes the distribution of Xt and ||λ|| defines the total variation norm of
a signed measure λ; see Masuda (2007). This mixing property describes the temporal
dependence of the process. Due to Masuda (2007), X is, in addition, exponentially β-
mixing, which means that there exists a constant γ > 0 such that

βX(t) = O(e−γt), as t→ ∞.

Using Theorem 2.1 in Masuda (2007) we can deduce the ergodicity of X, which means
that for all measurable functions g ∈ L1(Γ(dx)):

1

T

∫ T

0

g(Xs)ds −→
∫

R

g(x)Γ(dx) a.s., as T → ∞.

For further information and especially equivalent reformulations of A1,iv), we recommend
Masuda (2007).
Due to our assumptions on the Lévy measure ν and the Lipschitz-continuity of the coef-
ficients b, σ and ξ, we have that E[X2

t ] < ∞. This can easily be proven by applying the
Cauchy-Schwarz inequality successively. We will focus on this property later on.
Moreover, we impose that

vi) Γ is absolutely continuous with respect to the Lebesgue measure and, thus, possesses
a Lebesgue density π such that Γ(dx) = π(x)dx.
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For sufficient conditions on A1, vi) see Ishikawa and Kunita (2006), which ensure that
under our assumptions on ξ (especially the boundedness from below) a smooth transition
density exists.
We remark that the process X is also stationary, because we assumed that X0 ∼ Γ(dx).
These assumptions are largely congruent to those in Schmisser (2014), which make com-
parisons of the derived results much easier.
We are now ready to state our first proposition. It turns out that this result is one of the
key elements for our asymptotic analysis. The following result originates from Schmisser
(2014) but is not proven there.

Proposition 2.3. Let X = (Xt)t≥0 be the solution of (2.2). Under assumptions A1,i)-vi)
a constant C > 0 exists, such that

E

[
sup

|s−t|≤∆

(Xs −Xt)
2

]
≤ C∆,

provided that ∆ ≤ 1.

For the proof of this statement, we need the following two inequalities of the Burkholder-
Davis-Gundy type (see Schmisser (2014), Result 11):

Lemma 2.4. Let C1, C2 and ∆ be positive constants and recall that

Ft = σ(X0, (Ws, Ls); s ≤ t)

denotes the underlying filtration of sub-σ-algebras. For ∆ ≤ 1 it holds that

1.) E

[
sup

|s−t|≤∆

(∫ s

t

σ(Xu)dWu

)2 ∣∣∣∣Ft

]
≤ C1E

[∫ t+∆

t

σ2(Xu)du

∣∣∣∣Ft

]

2.) E

[
sup

|s−t|≤∆

(∫ s

t

ξ(Xu−)dLs

)2 ∣∣∣∣Ft

]
≤ C2E

[∫ t+∆

t

ξ2(Xu)du

∣∣∣∣Ft

](
1 +

∫

R

y2ν(dy)

)
.

Proof of Proposition 2.3. Recall that σ and ξ are bounded and derive the desired result
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in the following way:

E

[
sup

|s−t|≤∆

(Xs −Xt)
2

]

= E

[
sup

|s−t|≤∆

(∫ s

t

b(Xu)du+

∫ s

t

σ(Xu)dWu +

∫ s

t

ξ(Xu−)dLu

)2
]

. E

[
sup

|s−t|≤∆

(∫ s

t

b(Xu)du

)2
]
+ E

[
sup

|s−t|≤∆

(∫ s

t

σ(Xu)dWu

)2
]

+ E

[
sup

|s−t|≤∆

(∫ s

t

ξ(Xu−)dLu

)2
]

= E

[
sup

|s−t|≤∆

(∫ s

t

b(Xu)1[t,s](u)du

)2
]
+ E

[
E

[
sup

|s−t|≤∆

(∫ s

t

σ(Xu)dWu

)2 ∣∣∣∣Ft

]]

+ E

[
E

[
sup

|s−t|≤∆

(∫ s

t

ξ(Xu−)dLu

)2 ∣∣∣∣Ft

]]

. ∆E

[
sup

|s−t|≤∆

∫ s

t

b2(Xu)du

]
+ E

[
E

[∫ s

t

σ2(Xu)du

∣∣∣∣Ft

]]
+ E

[
E

[∫ s

t

ξ2(Xu)du

∣∣∣∣Ft

]]

≤ ∆

∫ t+∆

t

E[b2(Xu)]du+

∫ t+∆

t

E[σ2(Xu)]du+

∫ t+∆

t

E[ξ2(Xu)]du

≤ ∆
(
∆E[b2(X0)] + σ0 + ξ0

)
. ∆.

We want to remark some facts we have used. ∆ is specified as the sampling frequency of
X, so one can think of a small number. The functions σ and ξ are quite well manageable.
The only term which can cause trouble is the first one involving the drift function. For
our last deduction, we implicitly used the Lipschitz-continuity of b, the stationarity, and
the fact that E[X2

0 ] <∞:

E[b2(X0)] = E[(b(X0)− b(0) + b(0))2] . E[(b(X0)− b(0))2] + b2(0)

≤ LbE[X
2
0 ] + b2(0) ≤ C,

where Lb denotes the Lipschitz constant of b and C is a generic constant.

Remark 2.5. We can also bound the increments of X of order 2p, p ≥ 1, by impos-
ing that

∫
R
y2pν(dy) < ∞ and the successive use of the Hölder inequality. Moreover, the

Burkholder-Davis-Gundy inequalities hold true even for higher moments of the mentioned
integrals; see Schmisser (2014). For our purposes, it suffices to bound the squared incre-
ments.
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Now we are ready to define the new drift estimator b̂(x) based on the high frequency
sample X0, X∆, ..., Xn∆ such that ∆ → 0 and n∆ → ∞ as n → ∞. Using the available
sample we define

b̂(x) :=
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) (X(i+1)∆−Xi∆)

∆
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) .

We now state assumptions on the kernel function K as well as on the speed of convergence
of ∆ and h.

Assumption A2

i) Let K be a bounded probability density function, which is symmetric around zero,
differentiable and Lipschitz-continuous. Hence, K possesses a bounded derivative.

ii) Let K fulfill ∫

R

z2K(z)dz <∞,

∫

R

K2(z)dz <∞.

iii) Let ∆ and h fulfill

n∆h2 = Th2 → ∞ and ∆1/2h−2 → 0 as n→ ∞.

Let us shortly remark that A2,i) and A2,ii) are standard in kernel based estimation
procedures. One could also allow higher order kernels. A kernel function K is of order
l ∈ N, if

∫

R

K(z)dz = 1,

∫

R

zjK(z)dz = 0, j = 1, ..., l − 1 and

∫

R

zlK(z)dz <∞.

This would cause an asymptotic bias reduction, but the proofs are rather long and invoke
tedious calculations. Further, such kernels lack the property of being a probability density
anymore. These are reasons why we will only focus on kernels of order two. Certainly, all
proofs can be carried over to more general kernels.
For our purposes, one can always think of the Gaussian kernel

KG(z) :=
1√
2π
e−

1
2
z2

as a toy-example for which all assumptions hold true. Of course, there are many other
choices for kernel functions possible, but in the literature it is quite reputable that the
choice of the kernel function is not as important as the choice of the bandwidth parameter.
Later on, we will present an example for which assumption A2, iii) is fulfilled. In general,
it turns out that ∆ has to converge relatively fast compared to h, which means that

h >> ∆.
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2.4 Consistency of b̂(x)

We are now ready to state our first theorem, namely the weak consistency of b̂(x).

Theorem 2.6. Let assumptions A1 and A2 hold true. Then, provided that π(x) > 0, we
can conclude that

b̂(x)
P−→ b(x), as n→ ∞.

We remark an essential difference to the findings in Bandi and Nguyen (2003) and to
Mancini and Renó (2011): due to the possible occurrence of infinitely many jumps on
a finite interval, we are only able to prove convergence in probability of our proposed
estimator. The reason for this weaker result is relatively intuitive. It turns out that one
of the key points of their proofs of the strong consistency is the uniform boundedness of
increments of X on small intervals. They defined for this purpose the value

δn,T := max
i≤n−1

sup
i∆≤s≤(i+1)∆

|Xs− −Xi∆|.

Using Lévy´s modulus of continuity of the Brownian motion and due to the fact that only
finitely many jumps occur on every small interval, they deduced that

lim supn→∞
δn,T

(∆ log(∆−1))1/2
= C, a.s.

for some constant C; see Bandi and Nguyen (2003), equation (95).
We are not able to specify a comparable almost surely bound in our setting and, hence,
will only deduce the convergence in probability of our proposed estimator.

Proof of Theorem 2.6. We will now derive the weak consistency of b̂(x). For this pur-
pose we will divide the proof into different steps. At first, we decompose b̂(x) due to its
definition:

b̂(x) =
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

∆
nh

∑n−1
i=0 K

(
Xi∆−x

h

)

=

1
h

∑n−1
i=0 K

(
Xi∆−x

h

) (∫ (i+1)∆

i∆
b(Xs)ds+

∫ (i+1)∆

i∆
σ(Xs)dWs +

∫ (i+1)∆

i∆
ξ(Xs−)dLs

)

∆
h

∑n−1
i=0 K

(
Xi∆−x

h

)

:=
I+II+III

IV
.
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Each term will be handled separately and we will start with the derivation of the denom-
inator

IV =
∆

h

n−1∑

i=0

K

(
Xi∆ − x

h

)

=

∫ T

0

1

h
K

(
x−Xs

h

)
ds+

∆

h

n−1∑

i=0

K

(
Xi∆ − x

h

)
−
∫ T

0

1

h
K

(
x−Xs

h

)
ds

=

∫ T

0

1

h
K

(
x−Xs

h

)
ds+

1

h

n−1∑

i=0

∫ (i+1)∆

i∆

(
K

(
Xi∆ − x

h

)
−K

(
x−Xs

h

))
ds

:=

∫ T

0

1

h
K

(
x−Xs

h

)
ds+ F n

1 . (2.3)

We are interested in the rate of convergence of the approximation error F n
1 and con-

sider therefore its L1-distance. Under the assumption that K is Lipschitz-continuous, by
Proposition 2.3, the Cauchy-Schwarz as well as the Jensen inequality, we conclude that

E[|F n
1 |] ≤

1

h

n−1∑

i=0

E

[∫ (i+1)∆

i∆

∣∣∣∣K
(
Xi∆ − x

h

)
−K

(
x−Xs

h

) ∣∣∣∣ds
]

≤ 1

h

n−1∑

i=0

E

[∫ (i+1)∆

i∆

||K ′||∞
∣∣∣∣
Xi∆ −Xs

h

∣∣∣∣1[i∆,(i+1)∆](s)ds

]

≤ ||K ′||∞
h2

n−1∑

i=0

E



(∫ (i+1)∆

i∆

(Xi∆ −Xs)
2ds

)1/2

∆1/2

≤ ∆1/2||K ′||∞
h2

n−1∑

i=0

∫ (i+1)∆

i∆

(
E[Xi∆ −Xs)

2]
)1/2

ds

.
∆1/2

h2

n−1∑

i=0

∫ (i+1)∆

i∆

∆1/2ds =
n∆2

h2
=
T∆

h2
.

Using the Markov inequality, we can deduce that

P (|F n
1 | > ε) ≤ E[|F n

1 |]
ε

= O(T∆h−2), ε > 0

⇒ F n
1 = OP

(
T∆

h2

)
, as n→ ∞.

As we want to use the ergodic theorem for the first term of (2.3), we will multiply both
terms by 1

T
. Definitely, we will do the same for the derivation of the numerator. As T → ∞
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and h→ 0 we conclude that

1

T
· IV =

1

T

∫ T

0

1

h
K

(
x−Xs

h

)
ds+OP

(
∆

h2

)

−→ π(x), as n, T → ∞,

which means that
1

T
· IV P−→ π(x), as n, T → ∞.

Now we will derive the three parts in the numerator of b̂(x). We start with the drift term
I:

I =
1

h

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

b(Xs)ds

=

∫ T

0

1

h
K

(
x−Xs

h

)
b(Xs)ds+

1

h

n−1∑

i=0

∫ (i+1)∆

i∆

(
K

(
Xi∆ − x

h

)
−K

(
x−Xs

h

))
b(Xs)ds

:=

∫ T

0

1

h
K

(
x−Xs

h

)
b(Xs)ds+ F n

b . (2.4)

We again derive the L1-distance of the approximation error F n
b . We will use comparable

techniques as before, namely Proposition 2.3 and the Cauchy-Schwarz inequality. We will
also rely on the fact that b(X0) ∈ L2(Γ(dx)) and conclude as follows:

E[|F n
b |] ≤

1

h

n−1∑

i=0

∫ (i+1)∆

i∆

E

[∣∣∣∣K
(
Xi∆ − x

h

)
−K

(
x−Xs

h

) ∣∣∣∣ · |b(Xs)|
]
ds

≤ 1

h

n−1∑

i=0

∫ (i+1)∆

i∆

(
E

[(
K

(
Xi∆ − x

h

)
−K

(
x−Xs

h

))2
])1/2 (

E
[
b2(Xs)

])1/2
ds

≤ 1

h

n−1∑

i=0

∫ (i+1)∆

i∆

(
E

[
||K ′||2∞

(
Xi∆ −Xs

h

)2
])1/2 (

E
[
b2(Xs)

])1/2
ds

=
(E [b2(X0)])

1/2 ||K ′||∞
h2

n−1∑

i=0

∫ (i+1)∆

i∆

(
E
[
(Xi∆ −Xs)

2])1/2 ds

.
∆1/2T

h2
.

We multiply again by T−1 and conclude that

1

T
· F n

b = OP

(
∆1/2

h2

)
.
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Again, this term converges to zero due to A2, iii).
Finally, we receive for (2.4), as n and T diverge simultaneously, that

1

T
· I P−→ b(x)π(x), as n, T → ∞,

where we used the standard substitution from above and recalled that b as well as π are
continuous functions and that K(z)dz is a probability distribution.
Now we will handle term II:

II =
1

h

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs.

We remark that this term is a martingale-difference sequence. Moreover, due to the sta-
tionary and independent increments of the Brownian motion W , we are allowed to derive
the L2-distance of this term in an easy manner. At first, remember that the probability
space was endowed with a filtration of sub-σ-algebras Ft = σ(X0, (Ws, Ls), s ≤ t). With
respect to this filtration, we can make use of conditional expectations to conclude that

E[II] = E[E[II|Fi∆]] = E



1

h

n−1∑

i=0

K

(
Xi∆ − x

h

)
E

[∫ (i+1)∆

i∆

σ(Xs)dWs

∣∣∣∣Fi∆

]

︸ ︷︷ ︸
=0


 = 0.

Now, the variance can be decomposed into

E[II2] = E



(
1

h

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs

)2



=
1

h2

n−1∑

i=0

E

[
K2

(
Xi∆ − x

h

)
E

[∫ (i+1)∆

i∆

σ2(Xs)ds

∣∣∣∣Fi∆

]]

+
1

h2
E

[
n−1∑

i,j=0;i 6=j

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs K

(
Xj∆ − x

h

)∫ (j+1)∆

j∆

σ(Xu)dWu

]

≤ σ1
∆

h2

n−1∑

i=0

E

[
K2

(
Xi∆ − x

h

)]

+
2

h2
E

[
∑

i<j

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs K

(
Xj∆ − x

h

)∫ (j+1)∆

j∆

σ(Xu)dWu

]

≤ σ1n∆||K2||∞
h2

.
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For the last step, we used the tower property of conditional expectations as follows:

E

[
∑

i<j

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs K

(
Xj∆ − x

h

)∫ (j+1)∆

j∆

σ(Xu)dWu

]

= E

[∑

i<j

K

(
Xi∆ − x

h

)

E

[ ∫ (i+1)∆

i∆

σ(Xs)dWs K

(
Xj∆ − x

h

)
E

[∫ (j+1)∆

j∆

σ(Xu)dWu

∣∣∣∣Fj∆

]

︸ ︷︷ ︸
=0

∣∣∣∣Fi∆

]]
= 0.

Using Chebyshev´s inequality and assumption A2, ii) we are finally able to conclude that

P
(
T−1|II| > ε

)
≤ E[II2]

T 2ε2
= O

(
T

T 2h2

)
= O

(
1

Th2

)
= o(1), as n→ ∞

and therefore
1

T
· II = OP ((Th

2)−1/2) = oP (1), as n→ ∞.

Finally, the term

III =
1

h

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ(Xs−)dLs

can be handled in the exact same manner as the Brownian part. We assumed that L is
an L2-martingale, which can be represented as an integral with respect to a compensated
random measure. This is why term III is a martingale-difference sequence, too. Using
the Burkholder-Davis-Gundy type inequality in Lemma 2.4 for Lévy driven stochastic
integrals, we can derive the same asymptotic rate of convergence as for term II:

1

T
· III = OP ((Th

2)−1/2) = oP (1), as n→ ∞.

Now we can summarize our recent findings and are able to complete the proof by the
quotient limit theorem for stationary Markov processes; see Bandi and Nguyen (2003), p.
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317:

b̂(x) =
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

=
1
T

∫ T

0
1
h
K
(
Xs−x

h

)
b(Xs)ds+

1
T
· F n

b + 1
T
· II + 1

T
· III

1
T

∫ T

0
1
h
K
(
Xs−x

h

)
ds+ 1

T
· F n

1

=

1
T

∫ T

0
1
h
K
(
Xs−x

h

)
b(Xs)ds+OP

(
∆1/2

h2

)
+OP

(
1

Th2

)

1
T

∫ T

0
1
h
K
(
Xs−x

h

)
ds+OP

(
∆
h2

)

=
b(x)π(x) + oP (1)

π(x) + oP (1)
= b(x) + oP (1), as n, T → ∞.

Recall that we assumed that π(x) > 0 holds true.

2.5 Derivation of the asymptotic distribution

From a practical point of view, it is desirable to be able to construct confidence inter-
vals for estimated values of b(x). To derive our second important theorem, namely the
asymptotic normality of b̂(x), we have to strengthen our assumptions in a slightly different
manner.

Assumption A3

i) Let the drift function b as well as the stationary density π be twice continuously
differentiable.

ii) Let ∆ and h satisfy

n∆h5 → 0 and n∆2h−3 → 0 as n→ ∞.

iii) Let the Lévy-measure ν fulfill

∫

R

y4ν(dy) <∞.

Now we are ready to state our next important theorem.

Theorem 2.7. Under Assumptions A1-A3, provided that π(x) > 0, it holds that

√
n∆h(b̂(x)− b(x))

D−→ N
(
0,

||K||22(V ar(L(1))ξ2(x) + σ2(x))

π(x)

)
, as n→ ∞.
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We shortly remark that Assumption A3, ii) ensures that the bias term is negligible.
It will turn out that the key point of the derivation of the asymptotic distribution will
be a central limit theorem (CLT) for arrays of martingale-difference sequences. We will
make use of the following version stated in Shiryayev, Probability (1995), page 511.

Theorem 2.8. Let (Yin,Fin)n∈N be a square-integrable array of martingale-difference se-
quences satisfying the Lindeberg condition: if for ε > 0

⌊nt⌋∑

i=0

E[Y 2
i,n · 1(|Yi,n| > ε)|Fi−1,n]

P−→ 0 as n→ ∞ (2.5)

for a 0 < t ≤ 1, it holds that

1.)

⌊(n−1)t⌋∑

i=0

E[Y 2
i,n|Fi−1,n]

P−→ σ2
t =⇒

⌊(n−1)t⌋∑

i=0

Yi,n
D→ N (0, σ2

t )

2.)

⌊(n−1)t⌋∑

i=0

Y 2
i,n

P−→ σ2
t =⇒

⌊(n−1)t⌋∑

i=0

Yi,n
D→ N (0, σ2

t ).

Another interesting result, stated below, will also be used and is concerned with moment
properties of Lévy-driven stochastic integrals.

Lemma 2.9. Let X = (Xt)t≥0 be the solution of (2.2) and let f be a bounded and
continuous function. Moreover, let Ξ = (Ξt)t≥0 be a centered pure jump Lévy process

possessing the property that
∫
R
y4ν(dy) < ∞. Define the process Y (t) =

∫ t

0
f(Xs−)dΞs,

then it holds that

i) E[Y 2(t)] = E

[(∫ t

0

f(Xs−)dΞs

)2
]
=

∫ t

0

E[f 2(Xs)]dsV ar(Ξ(1))

ii) E[Y 4(t)] = 6

∫ t

0

E[Y 2(s)f 2(Xs)]dsV ar(Ξ(1))

+ 4

∫ t

0

E[Y (s)f 3(Xs)]ds

∫

R

y3ν(dy) +

∫ t

0

E[f 4(Xs)]ds

∫

R

y4ν(dy).

For the derivation of this result we will need the Itô-formula for general semimartingales.
We will state this fundamental result below, which can be found for instance in Protter
(2005), Chapter 7, Theorem 32. We have already implicitly used it in the context of the
approximation of the infinitesimal generator of the considered jump process X.

Theorem 2.10. Let X = (Xt)t≥0 be a semimartingale and let g be a real valued C2-
function. Then g(X) = (g(Xt))t≥0 is again a semimartingale and the following formula

27



holds true:

g(Xt)− g(X0) =

∫

(0,t]

g′(Xs−)dXs +
1

2

∫

(0,t]

g′′(Xs−)d[X,X]cs

+
∑

0<s≤t

(g(Xs)− g(Xs−)− g′(Xs−)∆Xs).

Proof of Lemma 2.9. Recall that Ξ is a martingale with respect to its augmented canon-
ical filtration.
Using the Itô-formula for semimartingales and especially choosing g(x) = x2, we are able
to derive Y 2(t) as

E[Y 2(t)] = E

[∫ t

0

∫

R

(
(Y (s−) + y)2 − Y 2(s−)− 2Y (s−)y

)
ν̃Ys (dy)ds

]

+ E

[∫ t

0

∫

R

(
(Y (s−) + y)2 − Y 2(s−)− 2Y (s−)y

)
(µ̃Y

s − ν̃Ys )(dy, ds)

]

:= E

[∫ t

0

∫

R

(
Y 2(s−) + 2Y (s−)y + y2 − Y 2(s−)− 2Y (s−)y

)
ν̃Ys )(dy)ds

]

= E

[∫ t

0

∫

R

y2ν̃Ys (dy)ds

]
,

where µ̃Y
s (dy, ds) is the Poisson random measure corresponding to the process Y with its

intensity measure ν̃Ys (dy)ds. Furthermore, ¯̃µY
s (dy, ds) denotes the compensated random

measure. Observe that the intensity measure is now time-dependent and that the second
term is a martingale by construction. To derive a closed form of the time-dependent
random measure, we make use of the following representation of ν̃Ys (A)

ν̃Ys (A) =

∫

R

1A(f(Xs)x)ν(dx), ∀ A ∈ B(R), 0 /∈ A,

which can, for example, be found in Kallsen (2006), Proposition 2.4.
Therefore, we can conclude that

E[Y 2(t)] = E

[∫ t

0

∫

R

y2ν̃Ys (dy)ds

]

=

∫ t

0

∫

R

E[f 2(Xs)]x
2ν(dx)ds =

∫ t

0

E[f 2(Xs)]dsE[L
2(1)].

For the derivation of the second statement, we will again make use of the Itô-formula but
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now by the use of g(x) = x4:

Y 4(t) =

∫ t

0

∫

R

(
(Y (s−) + y)4 − Y 4(s−)− 4Y 3(s−)y

)
ν̃Ys (dy)ds

+

∫ t

0

∫

R

(
(Y (s−) + y)4 − Y 4(s−)− 4Y 3(s−)y

)
(µ̃Y

s − ν̃Ys )(dy, ds)

=

∫ t

0

∫

R

(
6Y 2(s−)y

2 + 4Y (s−)y
3 + y4

)
ν̃Ys (dy)ds

+

∫

R

(
6Y 2(s−)y

2 + 4Y (s−)y
3 + y4

)
¯̃µY
s (dy, ds)

= 6

∫ t

0

∫

R

Y 2(s−)y
2ν̃Ys (dy)ds+ 4

∫ t

0

∫

R

Y (s−)y
3ν̃Ys (dy)ds

+

∫ t

0

∫

R

y4ν̃Ys (dy)ds+Mt,

where Mt denotes the martingale part. Using analogous arguments, we are now able to
deduce that

E[Y 4(t)] = 6

∫ t

0

E[Y 2(s)f 2(Xs)]ds

∫

R

y2ν(dy)

+ 4

∫ t

0

E[Y (s)f 3(Xs)]ds

∫

R

y3ν(dy) +

∫ t

0

∫

R

E[f 4(Xs)]ds

∫

R

y4ν(dy)

= 6

∫ t

0

E[Y 2(s)f 2(Xs)]dsE[L
2(1)] + 4

∫ t

0

E[Y (s)f 3(Xs)]ds

∫

R

y3ν(dy)

+

∫ t

0

∫

R

E[f 4(Xs)]ds

∫

R

y4ν(dy),

which finishes the proof.

An elementary consequence is the following upper bound

Corollary 2.11. Under the assumptions of Lemma 2.9, we can derive the following upper
bounds

E[Y 2(t)] ≤ ||f ||2∞V ar(L(1))t
as well as

E[Y 4(t)] ≤ 3V ar2(L(1))||f ||4∞t2 +
8
√
V ar(L(1))||f ||4∞

3

∫

R

y3ν(dy)t3/2 + ||f ||4∞
∫

R

x4ν(dx)t.
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Proof of Corollary 2.11. We only state the proof of the second statement:

E[Y (t)4] = 6

∫ t

0

E[Y 2(s)f 2(Xs)]dsV ar(L(1))

+ 4

∫ t

0

E[Y (s)f 3(Xs)]ds

∫

R

y3ν(dy) +

∫ t

0

E[f 4(Xs)]ds

∫

R

y4ν(dy)

≤ 6||f ||2∞V ar(L(1))
∫ t

0

E[Y 2(s)]ds+ 4
√
V ar(L(1))||f ||4∞

∫

R

y3ν(dy)

∫ t

0

√
sds

+

∫ t

0

E[f 4(Xs)]

∫

R

x4ν(dx)

≤ 6V ar2(L(1))||f ||4∞
∫ t

0

sds+
8
√
V ar(L(1))||f ||4∞

3

∫

R

y3ν(dy)t3/2

+

∫ t

0

E[f 4(Xs)]

∫

R

x4ν(dx)

= 3V ar2(L(1))||f ||4∞t2 +
8
√
V ar(L(1))||f ||4∞

3

∫

R

y3ν(dy)t3/2

+

∫ t

0

E[f 4(Xs)]

∫

R

x4ν(dx).

Now we are able to state the proof of the asymptotic normality.

Proof of Theorem 2.7. We will start with a decomposition, comparable to derivation of
the consistency of b̂(x):

√
Th(b̂(x)− b(x)) =

√
Th

(
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

) − b(x)

)

=
√
Th

(
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(b(Xs)− b(x))ds

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
)

+
√
Th




1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) (∫ (i+1)∆

i∆
σ(Xs)dWs +

∫ (i+1)∆

i∆
ξ(Xs−)dLs

)

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)




=
√
Th

(
1
T

∫ T

0
1
h
K
(
x−Xs

h

)
(b(Xs)− b(x))ds+ F n

b + 1
T
F n
1

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
)

(2.6)

+

1√
Th

∑n−1
i=0 K

(
Xi∆−x

h

) (∫ (i+1)∆

i∆
σ(Xs)dWs +

∫ (i+1)∆

i∆
ξ(Xs−)dLs

)

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
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The first term in (2.6) is a bias term and negligible as we will see in our subsequent
analysis, because of Th5 = n∆h5 → 0 as n, T → ∞. By the use of a Taylor expansion of
the functions b and π around x, we are able to handle the first term. Due to the fact that
b and π are twice continuously differentiable, the remainder terms are negligible and we
can conclude that

∫

R

1

h
K

(
x− y

h

)
(b(y)− b(x)) π(y)dy =

∫

R

K(z)(b(x− zh)− b(x))π(x− zh)dz

=

∫

R

K(z)

(
−zhb′(x) + z2h2

2
b′′(x) +O(h3)

)(
π(x)− zhπ′(x) +O(h2)

)
dz

=

∫
K(z)

(
b′(x)π(x)(−zh) + z2h2b′(x)π′(x)

z2h2

2
b′′(x)π(x)

)
dz +O(h3)

= h2
∫
z2K(z)dz

(
b′(x)π′(x) +

b′′(x)π(x)

2

)
+O(h3) = O(h2). (2.7)

Now, by letting T → ∞, we can use the ergodic property of the process X and are able
to derive the asymptotic rate of convergence of the numerator of (2.6) by the use of (2.7):

√
Th

(
1

T

∫ T

0

1

h
K

(
x−Xs

h

)
(b(Xs)− b(x)) ds+ F n

b +
1

T
F n
1

)

= O((n∆h)1/2h2) +OP ((n∆h)
1/2∆1/2h−2) = oP (1), as n→ ∞.

Where the last equality follows from A3, ii).
We already know that the denominator is a consistent estimate of π(x). Hence, we will
now treat the remaining two terms of the numerator, which we define as

n−1∑

i=0

ηi+1,n :=
1√
Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs =
n−1∑

i=0

η̃i+1,n + F n
W

as well as

n−1∑

i=0

ζi+1,n :=
1√
Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ(Xs−)dLs :=
n−1∑

i=0

ζ̃i+1,n + FL
n ,

where

FL
n =

1√
Th

n−1∑

i=0

∫ (i+1)∆

i∆

ξ(Xs−)

(
K

(
x−Xs−

h

)
−K

(
x−Xi∆

h

))
dLs

and

FW
n =

1√
Th

n−1∑

i=0

∫ (i+1)∆

i∆

σ(Xs)

(
K

(
x−Xs

h

)
−K

(
x−Xi∆

h

))
dWs
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are denoting the approximation errors. Both terms are negligible in probability, which can
be seen through

E[(FL
n )

2] =
1

Th

n−1∑

i=0

∫ (i+1)∆

i∆

E

[
ξ2(Xs)

(
K

(
x−Xs

h

)
−K

(
x−Xi∆

h

))2
]
V ar(L(1))ds

≤ ||K ′||2∞||ξ2||∞V ar(L(1))
Th3

n−1∑

i=0

∫ (i+1)∆

i∆

E
[
(Xi∆ −Xs)

2] ds

.
n∆2

Th3
=

∆

h3
= o(1), as n→ ∞,

where the last equation follows from the fact that ∆1/2h−2 → 0. Therefore, this term is
negligible in probability by the fact that FL

n = OP (∆
1/2h−3/2) = oP (1) as n, T → ∞.

This suffices, because we are interested in convergence in distribution. We only used the
fact that L is a process with stationary and independent increments such that the Lévy
measure ν(dy) integrates y4 to a finite number. Therefore, the order of FW

n can be found
in a similar manner.
Now we will focus on the array of martingale difference sequences (η̃i+1,n,Fi) and (ζ̃i+1,n,Fi).
Both can be treated by the use of central limit theorem 2.8. Recall that we chose Ft =
σ(X0, (Ws, Ls); s ≤ t) as filtration. We will start with the verification of the Lindeberg
condition (2.5) for t = 1 by the following useful observation:

n−1∑

i=0

E[ζ̃2i+1,n1(|ζ̃i+1,n| > ε)|Fi∆] =
n−1∑

i=0

∫

R

y21(|y| > ε)P ζ̃i+1,n|Fi∆(dy)

≤
n−1∑

i=0

∫

R

y4

ε2
1(|y| > ε)P ζ̃i+1,n|Fi∆(dy) ≤

n−1∑

i=0

∫

R

y4

ε2
P ζ̃i+1,n|Fi∆(dy)

=
1

ε2

n−1∑

i=0

E[ζ̃4i+1,n|Fi∆].

Now recall the statement of Lemma 2.4. This lemma enables us to derive upper bounds for
moments of Lévy as well as Brownian driven stochastic integrals. Instead of the function
ξ, we will now make use of the lemma by the utilization of the function ξ̃ := K · ξ, which
is again bounded and also continuous. For the determination of the fourth conditional
moment of ζ̃i+1,n we need the statement of Lemma 2.4 in a slightly more general form.
By Schmisser (2014), p.895, it holds, because

∫
R
y4ν(dy) <∞, that

E

[(∫ t+∆

t

K

(
x−Xu

h

)
σ(Xu)dWu

)4 ∣∣∣∣Fi∆

]

≤ E

[
sup

|t−s|≤∆

(∫ s

t

K

(
x−Xu

h

)
σ(Xu)dWu

)4 ∣∣∣∣Fi∆

]
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≤ C̃1E

[(∫ t+∆

t

K2

(
x−Xu

h

)
σ2(Xu)du

)2 ∣∣∣∣Fi∆

]
≤ C̃1||K2σ2||2∞∆2.

For the Lévy driven integral we find analogously

E

[(∫ t+∆

t

K

(
x−Xu−

h

)
ξ(Xu−)dLu

)4 ∣∣∣∣Fi∆

]

≤ E

[
sup

|t−s|≤∆

(∫ s

t

K

(
x−Xu−

h

)
ξ(Xu−)dLu

)4 ∣∣∣∣Fi∆

]

≤ C̃2(V ar(L(1)))
2E

[(∫ t+∆

t

K2

(
x−Xu

h

)
ξ2(Xu)du

)2 ∣∣∣∣Fi∆

]

+ C̃2

∫

R

y4ν(dy)E

[∫ t+∆

t

K4

(
x−Xu

h

)
ξ4(Xu)du

∣∣∣∣Fi∆

]

≤ C̃2

(
(V ar(L(1)))2||K2σ2||2∞∆2 +

∫

R

y4ν(dy)||K4ξ4||∞∆

)
,

where C̃2 denotes a deterministic constant.
We shortly remark that both integrands are non-negative and bounded functions such
that the result of Schmisser (2014), p.895, can be transferred. These inequalities can also
be found in Dellacherie and Meyer (1980), Theorem 92, Chapter VIII and Applebaum
(2004), Theorem 4.4.23, p. 265.
Now we are able to verify the Lindeberg condition:

n−1∑

i=0

E[ζ̃2i+1,n1(|ζ̃i+1,n| > ε)|Fi∆] ≤
1

ε2

n−1∑

i=0

E[ζ̃4i+1,n|Fi∆]

=
1

ε2

n−1∑

i=0

E



(

1√
Th

∫ (i+1)∆

i∆

K

(
x−Xs−

h

)
ξ(Xs−)dLs

)4 ∣∣∣∣Fi∆




≤ 1

T 2h2ε2

n−1∑

i=0

(
C̃2

(
(V ar(L(1)))2||K2σ2||2∞∆2 +

∫

R

y4ν(dy)||K4ξ4||∞∆

))

.
n∆2

T 2h2
+

n∆

T 2h2
= O

(
1

nh2

)
+O

(
1

T 2h2

)
= o(1), as n, T → ∞.

For the derivation of the asymptotic variance of the asymptotic distribution, we make use
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of the second condition of central limit theorem 2.8:
n−1∑

i=0

E[ζ̃2i+1,n|Fi∆]

=
n−1∑

i=0

E



(

1√
Th

∫ (i+1)∆

i∆

K

(
x−Xs−

h

)
ξ(Xs−)dLs

)2 ∣∣∣∣Fi∆




:=
1

Th

n−1∑

i=0

E
[
(ζ ′(i+1)∆ − ζ ′i∆)

2|Fi∆

]

=
1

Th

n−1∑

i=0

E
[
(ζ ′(i+1)∆)

2 − (ζ ′i∆)
2|Fi∆

]
− 2E[ζ ′i∆(ζ

′
(i+1)∆ − ζ ′i∆)|Fi∆]

=
1

Th

n−1∑

i=0

E
[
(ζ ′(i+1)∆)

2 − (ζ ′i∆)
2|Fi∆

]
− 2ζ ′i∆E[ζ

′
(i+1)∆ − ζ ′i∆|Fi∆]

=
1

Th

n−1∑

i=0

E
[
(ζ ′(i+1)∆)

2 − (ζ ′i∆)
2|Fi∆

]

=
1

∆h

2

n

n∑

i=1

∫ (i+1)∆

i∆

E

[
ζ ′s−dζ

′
s

∣∣∣∣Fi∆

]

+
1

∆h

1

n

n∑

i=1

∫ (i+1)∆

i∆

E

[
K2

(
x−Xs−

h

)
ξ2(Xs−)y

2µ̄(ds, dy)

∣∣∣∣Fi∆

]

+
1

∆h

1

n

n∑

i=1

∫ (i+1)∆

i∆

E

[
K2

(
x−Xs

h

)
ξ2(Xs)

∣∣∣∣Fi∆

]
ds

∫

R

y2ν(dy).

By using the ergodicity of X we see that the first two terms converge to zero due to the
fact that they are martingales. The third summand converges by invoking the stationarity
of X to

V ar(L(1))ξ2(x)π(x)

∫

R

K2(z)dz, as n, T → ∞.

According to central limit theorem 2.8, this value denotes the asymptotic variance of this
part.
Now we have almost finished the proof of the asymptotic normality. For the Lévy driven
part, we are now able to summarize that

√
Th
(

1
Th

∑n−1
i=0 K

(
x−Xi∆

h

) ∫ (i+1)∆

i∆
ξ(Xs−)dLs

)

∆
Th

∑n−1
i=0 K

(
x−Xi∆

h

)

1√
Th

∑n−1
i=0 K

(
x−Xi∆

h

) ∫ (i+1)∆

i∆
ξ(Xs−)dLs

π(x) +OP

(
∆
h2

)
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D−→ N
(
0,

||K||22V ar(L(1))ξ2(x)
π(x)

)
as n→ ∞,

where we used Slutsky´s lemma and the quotient limit theorem; see Bandi and Nguyen
(2003), p.317.
Since (η̃i,n,Fi) is a martingale difference sequence possessing a finite fourth moment, too,
the exact analogous argumentation fits. For the sake of brevity we leave the corresponding
proof out and only state the crucial point in the following. The Brownian part converges
also in distribution to a normal distributed random variable and the asymptotic variance
can also be deduced quite easily. In detail, we have

√
Th
(

1
Th

∑n−1
i=0 K

(
x−Xi∆

h

) ∫ (i+1)∆

i∆
σ(Xs)dWs

)

∆
Th

∑n−1
i=0 K

(
x−Xi∆

h

)

D−→ N
(
0,

||K||22σ2(x)

π(x)

)
as n→ ∞.

We recall that L and W are assumed to be independent. This has the advantage that we
can sum up the asymptotic variances of both martingale difference sequences to get the
final variance. In fact, we have finished the proof and it finally holds that

√
Th(b̂(x)− b(x))

D−→ N
(
0, σ̄2(x)

)
as n→ ∞,

where we set σ̄2(x) :=
||K||22(V ar(L(1))ξ2(x)+σ2(x))

π(x)
:=

||K||22σ̃2(x)

π(x)
.

Example 2.12. An interesting question is whether the restrictions on ∆ and h can be
satisfied and which rate finally occurs. By letting

∆ ∼ n−α, h ∼ n−β, α, β > 0,

assumptions A2, iii) and A3, ii) can be reformulated according to

α + 5β > 1, 2α− 3β < 1, α + β < 1 ,and 4β < α.

One possible answer is to solve the following linear optimization problem. Let

G(α, β) :=
1− α− β

2

and maximize the function G with respect to the upper restrictions. One possibility to
solve this problem is to make use of a simplex algorithm as in Figure 1 providing the
approximately optimal result

α∗ ≈ 0.615, β∗ ≈ 0.077,

which leads to an optimal rate of n0.154.
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Figure 1: Plot of the constraints on G(α, β) and the corresponding optimal coordinates
(α∗; β∗).

2.6 Examples of possible Lévy processes

In this section, we briefly want to state possible drivers for the stochastic differential equa-
tion (2.2) fulfilling our used assumptions. The crucial property is that L has to possess
moments up to order four.

Examples

I) Let L be a compound Poisson process with intensity 1 and jump size distribution
ν(dy), which means that

Lt =
Nt∑

i=1

ςi,

where ςi are independent and identically distributed random variables with ςi ∼
ν(dy) and Nt is a Poisson process with intensity 1 being independent of ςi ∀ i =
1, ..., n. Now we specify the jump size distribution. Note that L is a process of finite
activity, which means that ν(R) <∞.

i) Let δa(dy) be the Dirac measure in a ∈ R, then define

ν(dy) :=
1

2
(δ1(dy) + δ−1(dy)) ,

such that

V ar(L(1)) =

∫

R

y2ν(dy) =
1

4
and

∫

R

y4ν(dy) =
1

8
.
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ii) Let

ν(dy) =
1

2
exp(−λ|y|)dy, λ > 0,

be the Laplace or double-exponential measure, then

V ar(L(1)) =

∫

R

y2ν(dy) =
1

2

∫

R

y2 exp(−λ|y|)dy =
2

λ2
and

∫

R

y4ν(dy) =
24

λ4
.

iii) Let
ν(dy) = ϕ(y)dy,

where ϕ(y) denotes the density of a standard normal distributed random vari-
able. Then it holds that

V ar(L(1)) =

∫

R

y2ϕ(y)dy = 1 and

∫

R

y4ν(dy) =

∫

R

y4ϕ(y)dy = 3.

II) Now we state examples of possible choices of Lévy processes not being compound
Poisson processes.

i) Let L be an infinite activity process possessing a discrete Lévy measure

ν(dy) :=
∞∑

k=0

2k+2
(
δ 1

2k
(dy) + δ− 1

2k
(dy)

)
.

Though ν(R) = ∞, the required moments exist. Namely, we have that

V ar(L(1)) =

∫

R

y2ν(dy) =
∞∑

k=0

2k+2 2

2k
= 4

and ∫

R

y4ν(dy) =
∞∑

k=0

2k+2 2

22k
=

∞∑

k=0

23−3k =
64

7
.

ii) Let L be a Gamma process, which is a purely discontinuous subordinator of
relatively low activity and finite variation possessing the Lévy measure

ν(dy) = γy−1 exp(−λy)1(0,∞)(y)dy, γ, λ > 0.

Moreover, it holds that

V ar(L(1)) =

∫

R

y2ν(dy) = γ

∫ ∞

0

y exp(−λy)dy =
γ

λ2
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and ∫

R

y4ν(dy) = γ

∫ ∞

0

y3 exp(−λy)dy =
6γ

λ4
.

This process is a special case of the tempered stable subordinators possessing
the Lévy measure

ν(dy) = γy−α−1 exp(−λy)1(0,∞)(y)dy, 0 ≤ α < 2.

For further details on this class of processes we refer to Cont and Tankov
(2004), Section 4.4.

iii) In order to allow an asymmetric behavior of small jumps and also to model flex-
ible decay rates for positive and negative big jumps, a widely referred model is
the class of CGMY processes; see Carr et al. (2002). It is a purely discontinuous
Lévy process equipped with Lévy measure

ν(dy) =

(
C
exp(−G|y|)

|y|1+Y
1(−∞,0)(y) + C

exp(−M |y|)
|y|1+Y

1(0,∞)(y)

)
dy,

where C > 0, G,M ≥ 0 and Y < 2. In dependence of Y , this process can
have finite or infinite activity and, moreover, is of finite or infinite variation.
Furthermore, it holds that

V ar(L(1)) =

∫

R

y2ν(dy) = CΓ(2− Y )

(
1

M2−Y
+

1

G2−Y

)
.

Note that all stated examples fulfill the assumption

∫

|y|≥1

|y|ν(dy) <∞

such that the used representation

Lt =

∫ t

0

∫

R

x(µL(ds, dx)− ν(dx)ds)

=

∫ t

0

∫

{|x|<1}
x(µL(ds, dx)− ν(dx)ds) +

∫ t

0

∫

{|x|≥1}
xµL(ds, dx)

−
∫ t

0

∫

{|x|≥1}
xν(dx)ds

of L is well defined.
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2.7 Bandwidth selection

A very important question for practical issues is how to choose a proper bandwidth h in
our model. There is an immense amount of papers exclusively dealing with this topic for
nonparametric estimation procedures as density or regression estimation. We will restrict
ourselves to three methods, which will be introduced in this section.
In general, the practitioner has n observations sampled at a given frequency ∆. Thus,
both parameters are determined by the available data and a third parameter h has to
be chosen by the use of certain procedures based on this sample. The question which
procedure is optimal is hard to answer. Some selection methods are highly computable,
whereas others are based on unknown quantities, which in turn have to be estimated. An
overview concerning this problem in the context of nonparametric density estimation can
be found in Jones et al. (1996). For kernel based regression estimation, we refer to Vieu
(1993).
First of all, we recall Assumption A3, ii), where we assumed that

n∆h5 = o(1), as n→ ∞.

This assumption guarantees that the numerator of the bias term fulfills

1

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

(b(Xs)− b(x))ds = oP ((n∆h)
−1/2), as n→ ∞.

By choosing h = T−1/5 = (n∆)−1/5, this term is not negligible and denotes the occurring
bias. Hence, according to Theorem 2.7, the asymptotic mean squared error (AMSE) of
b̂(x) is of the following form

AMSE(b̂(x)) =
(
ABIAS(b̂(x))

)2
+AVAR

(
b̂(x)

)

= h4µ2
2(K)Λ(x) +

∫
R
K2(z)dzσ̃2(x)

n∆hπ(x)
,

where

Λ(x) :=
b′(x)π′(x)

π(x)
+
b′′(x)

2

denotes one part of the bias term and

µ2(K) =

∫

R

z2K(z)dz

the second moment of K.
We are able to recognize the well-known tradeoff between these two parts and, hence,
in order to minimize the AMSE, we will differentiate the sum with respect to h. The
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resulting bandwidth is called “oracle bandwidth” and in our case this optimal bandwidth
hopt,oracle(x) has the form

hopt,oracle(x) = (n∆)−1/5

(
σ̃2(x)

∫
R
K2(z)dz

4µ2
2(K)Λ2(x)π(x)

)−1/5

.

To ensure that this bandwidth fulfills A3, ii), ∆ and T have to fulfill

T 8/5∆ → 0.

Using this bandwidth, the optimal AMSE is of order

AMSE
(
b̂(x)

)
= O

(
(n∆)−4/5

)
.

Assuming higher order smoothness properties of b and π, this rate can be fastened.
Obviously, hopt,oracle(x) depends on the unknown quantities Λ(x), σ̃2(x) and π(x), which all
have to be estimated. This task is quite challenging in practical issues, because it is often
unclear how two build an appropriate pilot estimator which is a first-stage estimator. One
possibility would be to use kernel based estimators again, where the occurring bandwidths
are chosen by a rule of thumb, for example hROT ≡ (n∆)−1/5. Moreover, recall that
hopt,oracle(x) is a local plug-in choice for h and, hence, for every x at which b has to be
estimated, a new bandwidth has to be computed. Thus, this method is highly computable,
although it provides a natural choice of the bandwidth according to the minimization of
the (asymptotic) mean squared error.
An alternative approach is provided by the selection of h invoking a global performance
criterion, namely by selecting h such that the integrated mean squared error (“IMSE”)

IMSE(b̂) =

∫
MSE(b̂(x))dx = E

[∫ (
b̂(x)− b(x)

)2
dx

]
= MISE(b̂)

is minimized, where the integration takes place over the support of the stationary density
π of X. Moreover, we mention that the order of integration can be reversed due to the
positivity of the integrand. In our case, the asymptotic IMSE of b̂ (AIMSE(b̂)) has the
form

AIMSE(b̂) = h4µ2
2(K)

∫
Λ(x)2π(x)dx+

∫
R
K2(z)dz

∫
σ̃2(x)dx

n∆h
.

Analogously, we find the representation of the optimal bandwidth parameter h̃opt,oracle as
follows:

h̃opt,oracle = (n∆)−1/5

( ∫
R
K2(z)dz

∫
σ̃2(x)dx

4
∫
Λ2(x)π(x)dxµ2

2(K)

)−1/5

.

This choice for the bandwidth is now x-independent, but the appearing integrals have
to be discretized and the integrands have to be replaced by estimators afterwards. These
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estimators are then again dependent on a bandwidth, which, in turn, can also be chosen
by an appropriate rule of thumb.
The third presented method is cross-validation. For independent and identically dis-
tributed data, this procedure is quite standard in the literature and has extensively been
studied; see for example Härdle and Marron (1985) for a pioneering work in the context
of nonparametric regression. In our case, the leave-one-out cross-validation method (see
Härdle and Marron (1985)) is not appropriate because the available data set contains
non-independent copies. Nevertheless, due to our assumptions, the jump-diffusion X is
exponentially β-mixing (and, hence, also strong mixing or α-mixing). Thus, the depen-
dency in terms of the correlation decreases as the lag between two observations increases.
In the context of mixing data, Chu and Marron (1991) as well as Burman et al. (1994)
introduced a generalization of the leave-one-out cross-validation method for dependent
(strong mixing) data. Burman et al. (1994) initially called this method the H-block cross-
validation, which provides a method for choosing an optimal global bandwidth parameter
hH−CV .
The intuition adapted to our model is as follows: Fix an l ∈ 1, ..., n and estimate b(Xl∆)
by a subsample of the available data set {Xi∆}i=1,...,n such that H observations on both
sides are removed and b(Xl∆) is then estimated by the remaining n− (2H + 1) observa-
tions. To ensure asymptotic optimality, H has to be an increasing integer-valued positive
sequence. Now define b̂−(l+H)∆:(l+H)∆(Xl∆) as the estimate of b(Xl∆) based on the sample
{X∆, X2∆, ..., X(l−H−1)∆, X(l+H+1)∆, ..., Xn∆}. Then, the smoothing parameter hH−CV is
selected by

H-CV(h) = argminh

n−H∑

i=H+1

(
X(i+1)∆ −Xi∆

∆
− b̂(Xi∆)

)2

,

see Burmann et al. (1994), where also an ad-hoc choice of the sequence H is given as
H = ⌊n1/4⌋.
For practical issues, H can, for instance, be selected by analyzing the empirical auto-
correlation function of the data.

2.8 Comparison to an alternative nonparametric estimation ap-

proach

In this section, we briefly want to compare our approach to the one of Schmisser (2014).
Schmisser focuses on the same class of stochastic processes given by the stochastic differ-
ential equation

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt, X0
D
= η.

Moreover, the same assumptions on the model have been imposed; see assumption A1.
Hence, Schmisser also works with a stationary and ergodic process X as the unique so-
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lution of the considered stochastic differential equation. The aim of Schmisser is the
construction of a nonparametric estimator of the drift function b, although her approach
substantially differs from ours. We will now shortly introduce the ideas behind the alter-
native approach.
Schmisser (2014) is interested in constructing an estimator for b on a compact subset
A ⊆ R and, for this purpose, introduces an increasing sequence of linear subspaces Sm

of the vector space L2(A), whose finite dimension Dm is increasing in terms of m. As
examples serve piecewise defined polynomials, compact supported wavelets, and splines.
All of them are satisfying certain regularity assumptions; see Assumption A4, p.885 of
Schmisser (2014).
Based on the high-frequency sample X∆, X2∆, ..., Xn∆, a contrast function γn(t) is defined
as

γn(t) :=
1

n

n−1∑

i=1

(
X(i+1)∆ −Xi∆

∆
− t(Xi∆)

)2

:=
1

n

n−1∑

i=1

(Yi∆ − t(Xi∆))
2 , t ∈ Sm.

γn(t) has to be minimized on the subspace Sm in terms of t. Due to the fact that γn(t)
can always be minimized on Sm, but the minimizer may not be unique, Schmisser (2014)
introduced the empirical risk

Rn(t) := E
[
||t− bA||2n

]
, where ||t||2n :=

1

n

n−1∑

i=1

t2(Xi∆) and bA(x) := b(x)1A(x).

Now a least squares regression type estimator b̂m is defined according to

b̂m := argminm∈Mn
γn(t),

where Mn := {m, Dm ≤
√
n∆/ log(n)}.

Under the double asymptotics scheme

∆ → 0 and n∆ → ∞,

for fixed m, the risk of the estimator can be bounded as follows (see Schmisser (2014),
Theorem 2, p.887):

Rn(b̂m) ≤ C1||bm − bA||2L2 + C2

(
||σ2||∞ + ||ξ2||∞V ar(L(1))

) Dm

n∆
+ C3∆,

where || · ||L2 denotes the L2-distance of the linear subspace Sm. Furthermore, bm is
the orthogonal L2-projection of bA over the vectorial subspace Sm and the constants Ci,
i = 1, 2, 3, are independent of m, n, and ∆.
The last term is, under the assumption that n∆2 = o(1) as n → ∞, negligible. In our
case, by assuming T 8/5∆ = o(1), this assumption holds true.
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Now consider this risk bound in more detail. The first term is a bias term, whereas the sec-
ond term denotes the variance. Using the bias and variance decomposition of the AMSE,
we are able to compare our rate and the above bound adequately.
The bias term decreases while the regularization parameter Dm increases. The variance
behaves contrary and is, thus, proportional to Dm. By imposing certain smoothness as-
sumptions on b, the rate of the bias can be quantified in terms of Dm. In particular, by
assuming that b belongs to a ball of the Besov space B2

2,∞, Schmisser (2014) concludes
that

||bm − bA||2L2 ≤ D−4
m .

To balance the bias and the variance terms, the optimal choice of the dimension Dm is

Dm,opt ∼ (n∆)1/5

such that
Rn(b̂opt) . (n∆)−4/5.

In our case, under the assumption that π and b are twice continuously differentiable, the
optimal pointwise AMSE is of order

AMSE
(
b̂(x)

)
= O

(
(n∆)−4/5

)

by choosing
hopt ∼ (n∆)−1/5.

We see that the relation
Dm,opt ∼ h−1

opt

for the optimal regularization parameters holds true.
We will now compare the advantages and drawbacks of both methods. At first, Schmisser
(2014) provides an adaptive selection method for choosing the dimension Dm by intro-
ducing a penalty function, too. This approach allows to choose m in an adaptive manner,
whereas our approach relies on a rule-of-thumb or an oracle bandwidth, respectively.
But in contrast, we are able to derive the asymptotic distribution, which allows us to con-
struct confidence intervals. From a practical point of view, this is an advantage compared
to Schmisser´s approach.
Moreover, we are interested in pointwise estimators, whereas Schmisser provides some
kind of uniform approximation on a compact interval of the drift function. Concerning
this substantially different approach, practitioners should decide which approximation is
needed for their purposes.

2.9 Estimation of the asymptotic variance

From a statistical point of view, it is desirable that the asymptotic variance of the asymp-
totic distribution of b̂(x) can be consistently estimated in order to construct feasible
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pointwise confidence intervals. In fact, the findings during the previous section lead us to
the following approximation:

P

(
−Φ−1

(
1− α

2

)
≤

√
n∆h(b̂(x)− b(x))√

σ̄2(x)
≤ Φ−1

(
1− α

2

))
≈ 1− α,

by choosing n∆h5 = o(1) as n→ ∞. Using this assumption on the bandwidth h, the bias
term is negligible. In fact, we undersmooth b̂(x) to get rid of the bias.
In view of this approximation, an asymptotic confidence interval at point x is given by

Ix :=

[
b̂(x)− Φ−1

(
1− α

2

)
σ̄(x)√

n∆h
≤ b(x) ≤ b̂(x) +

Φ−1
(
1− α

2

)
σ̄(x)√

n∆h

]
.

As we have seen, the asymptotic variance σ̄2(x) =
||K||22σ̃2(x)

π(x)
is a quotient of unknown

functions. Our aim is now to provide a consistent estimator for σ̄2(x) based on consistent
estimators for numerator and denominator. As we have seen, the denominator π(x) can
be consistently estimated by

π̂(x) =
∆

Th

n−1∑

i=0

K

(
x−Xi∆

h

)

using Theorem 2.6. Thus, we focus on the estimation of the numerator of σ̄2(x), in par-
ticular on σ̃2(x).
In view of approximation (2.1), we propose the estimator of σ̃2(x) as follows:

ˆ̃σ2(x) :=
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

2

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

) .

We remark that ˆ̃σ2(x) acts as an estimator for the second infinitesimal conditional moment
σ̃2(x) = σ2(x) + V ar(L(1))ξ2(x). In contrast to the threshold approach by Mancini and
Renò (2011), where only the state-dependent volatility σ2(x) is of interest. Moreover, due
this different problem, a faster rate of convergence,

√
nh, is attained in this case.

For the derivation of the asymptotic properties of this estimator, we have to strengthen
the assumptions of Theorem 2.6 a little bit.

Theorem 2.13. Under Assumptions A1, A2, and additionally under the assumption that
the Lévy measure ν fulfills ∫

R

y4ν(dy) <∞,

ˆ̃σ2(x) is a (weak) consistent estimator for σ̃2(x), provided that π(x) > 0. In particular,
we find out that

ˆ̃σ2(x)
P−→ σ̃2(x), as n→ ∞.
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Proof of Theorem 2.13. To establish the consistency, we start with the determination of
an explicit form of a squared increment of the process X. Such increments appear in the
denominator of ˆ̃σ2(x). We have already presented the Itô-formula in Theorem 2.10. This
will act as the first crucial tool for the derivation of the consistency.
Now we will decompose the squared increments in the following way:

(X(i+1)∆ −Xi∆)
2 = X2

(i+1)∆ −X2
i∆ − 2Xi∆(X(i+1)∆ −Xi∆) (2.8)

The first two terms can now be represented by the use of Itô´s formula as follows:

dX2
t = 2Xtb(Xt)dt+ σ2(Xt)dt+ 2Xtσ(Xt)dWt

+ ξ2(Xt)

∫

R

y2ν(dy)dt+

∫

R

((Xt− + ξ(Xt−)y)
2 −X2

t−)µ̄(dy, dt).

Now we are ready to find an explicit form of the considered squared increments according
to (2.8):

(X(i+1)∆ −Xi∆)
2 = X2

(i+1)∆ −X2
i∆ − 2Xi∆(X(i+1)∆ −Xi∆)

= 2

∫ (i+1)∆

i∆

Xsb(Xs)ds+ 2

∫ (i+1)∆

i∆

Xsσ(Xs)dWs +

∫ (i+1)∆

i∆

σ2(Xs)ds

+

∫ (i+1)∆

i∆

ξ2(Xs)ds

∫

R

y2ν(dy) +

∫ (i+1)∆

i∆

∫

R

((Xs− + ξ(Xs−)y)
2 −X2

s−)µ̄(dy, ds)

− 2Xi∆

(∫ (i+1)∆

i∆

b(Xs)ds+

∫ (i+1)∆

i∆

σ2(Xs)dWs +

∫ (i+1)∆

i∆

ξ(Xs−)dLs

)

= 2

∫ (i+1)∆

i∆

(Xs −Xi∆)b(Xs)ds+ 2

∫ (i+1)∆

i∆

(Xs −Xi∆)σ(Xs)dWs

+

∫ (i+1)∆

i∆

(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

+

∫ (i+1)∆

i∆

∫

R

((Xs− + ξ(Xs−)y)
2 −X2

s−)µ̄(dy, ds)− 2

∫ (i+1)∆

i∆

Xi∆

∫

R

ξ(Xs−)yµ̄(dy, ds).

The last two terms can be summed up according to
∫ (i+1)∆

i∆

∫

R

((Xs− + ξ(Xs−)y)
2 −X2

s−)µ̄(dy, ds)− 2

∫ (i+1)∆

i∆

Xi∆

∫

R

ξ(Xs−)yµ̄(dy, ds)

=

∫ (i+1)∆

i∆

∫

R

(2Xs−ξ(Xs−)y + ξ2(Xs−)y
2)µ̄(dy, ds)− 2

∫ (i+1)∆

i∆

Xi∆

∫

R

ξ(Xs−)yµ̄(dy, ds)

=

∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds) + 2

∫ (i+1)∆

i∆

ξ(Xs−)(Xs− −Xi∆)

∫

R

yµ̄(dy, ds)

=

∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds) + 2

∫ (i+1)∆

i∆

ξ(Xs−)(Xs− −Xi∆)dLs.
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Now we summarize the derived decomposition:

(X(i+1)∆ −Xi∆)
2 = 2

∫ (i+1)∆

i∆

(Xs− −Xi∆)dXs

+

∫ (i+1)∆

i∆

(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds+

∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds)

= 2

∫ (i+1)∆

i∆

(Xs −Xi∆)b(Xs)ds+ 2

∫ (i+1)∆

i∆

(Xs −Xi∆)σ(Xs)dWs

+ 2

∫ (i+1)∆

i∆

(Xs− −Xi∆)ξ(Xs−)dLs +

∫ (i+1)∆

i∆

(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

+

∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds).

Due to this representation, we are able to decompose the estimator ˆ̃σ2(x) into the following
five parts

ˆ̃σ2(x) =
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

2

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

=
2
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(Xs −Xi∆)b(Xs)ds

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

+
2
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(Xs −Xi∆)σ(Xs)dWs

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

+
2
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(Xs− −Xi∆)ξ(Xs−)dLs

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

+
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

+
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
ξ2(Xs−)

∫
R
y2µ̄(dy, ds)

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)

:=
I ′ + II ′ + III ′ + IV ′ + V ′

V I ′
.

The meaning of the six terms seems intuitive: the first three summands will converge to
zero in probability according to the fact that they are additionally dependent on “small”
increments of X. The rate of convergence of these increments has already been studied.
The fourth term will tend to σ̃2(x) and the last term will also tend to zero according
to the fact that this is an integral with respect to a martingale. Last but not least, the
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denominator is a consistent estimator of π(x) > 0, as we have already seen.
These intuitions will now be proved and we will start with the derivation of the first three
terms. In particular we have that

E[|I ′|] = E

[∣∣∣∣
2

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

(Xs −Xi∆)b(Xs)ds

∣∣∣∣

]

≤ 2

Th

n−1∑

i=0

∫ (i+1)∆

i∆

E

[∣∣∣∣K
(
Xi∆ − x

h

) ∣∣∣∣ ·
∣∣∣∣(Xs −Xi∆)b(Xs)

∣∣∣∣
]
ds

≤ 2||K||∞
Th

n−1∑

i=0

∫ (i+1)∆

i∆

E [|Xs −Xi∆| · |b(Xs)|] ds

≤ 2||K||∞
Th

n−1∑

i=0

∫ (i+1)∆

i∆

(
E
[
(Xs −Xi∆)

2
])1/2 (

E[b2(Xs)]
)1/2

ds

.
∆1/2

Th

n−1∑

i=0

∫ (i+1)∆

i∆

(
E[b2(Xs)]

)1/2
ds =

∆1/2n∆

Th

(
E[b2(X0)]

)1/2

= O

(
n∆3/2

Th

)
= O

(
∆1/2

h

)
= o(1), as n→ ∞.

The Brownian term II ′ is handled in the same way as before. Particularly, we derive the
order of its L2-distance by using conditional expectations. Recall that we chose Fi∆ =
σ(X0, (Ws, Ls); s ≤ i∆) such that only the squared terms remain:

E[(II ′)2] = E



(

2

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

(Xs −Xi∆)σ(Xs)dWs

)2



=
4

2Th2

n−1∑

i=0

E

[
K2

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

E

[
(Xs −Xi∆)

2σ2(Xs)ds

∣∣∣∣Fi∆

]]

≤ 4||σ2||∞
2Th2

n−1∑

i=0

∫ (i+1)∆

i∆

E

[
K2

(
Xi∆ − x

h

)
(Xs −Xi∆)

2

]
ds

≤ 4||σ2||∞||K2||∞
2Th2

n−1∑

i=0

∫ (i+1)∆

i∆

E
[
(Xs −Xi∆)

2
]
ds

.
n∆2

T 2h2
= O

(
∆

Th2

)
= O

(
1

nh2

)
= o(1), as n→ ∞.

The third term can be examined in an analogous manner. We only make use of the fact
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that L is a martingale:

E[(III ′)2] = E



(

2

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

(Xs− −Xi∆)ξ(Xs−)dLs

)2



=
4V ar(L(1))

T 2h2

n−1∑

i=0

E

[
K2

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

E

[
(Xs− −Xi∆)

2ξ2(Xs−)ds

∣∣∣∣Fi∆

]]

≤ 4V ar(L(1))||ξ2||∞
T 2h2

n−1∑

i=0

∫ (i+1)∆

i∆

E

[
K2

(
Xi∆ − x

h

)
(Xs −Xi∆)

2

]
ds

≤ 4V ar(L(1))||ξ2||∞||K2||∞
T 2h2

n−1∑

i=0

∫ (i+1)∆

i∆

E
[
(Xs −Xi∆)

2
]
ds

.
n∆2

T 2h2
= O

(
∆

Th2

)
= O

(
1

nh2

)
= o(1), as n→ ∞.

Using the Markov inequality, we are now ready to conclude that

I ′ + II ′ + III ′ = OP

(
∆1/2

h

)
+OP

(√
1

nh2

)
= oP (1), as n→ ∞.

Now we deal with the fourth term. This term is responsible for the consistent estimation
of σ̃2(x). At first, we will approximate the discrete observation Xi∆ by its continuous
counterpart Xs, where s lies in the vicinity of i∆:

IV ′ =
1

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

=
1

T

∫ T

0

1

h
K

(
Xs − x

h

)
(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

+
1

Th

n−1∑

i=0

∫ (i+1)∆

i∆

(
K

(
Xi∆ − x

h

)
−K

(
Xs − x

h

))
(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

:=
1

T

∫ T

0

1

h
K

(
Xs − x

h

)
σ̃2(Xs)ds

+
1

Th

n−1∑

i=0

∫ (i+1)∆

i∆

(
K

(
Xi∆ − x

h

)
−K

(
Xs − x

h

))
σ̃2(Xs)ds

:=
1

T

∫ T

0

1

h
K

(
Xs − x

h

)
σ̃2(Xs)ds+ F n

σ̃2 .
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The first term converges according to the ergodicity of X to

1

T

∫ T

0

1

h
K

(
Xs − x

h

)
σ̃2(Xs)ds

−→ σ̃2(x)π(x) = π(x)(σ2(x) + ξ2(x)V ar(L(1))), a.s. as n, T → ∞.

Recall that σ̃2 is also bounded and continuous due to the assumed properties of σ and ξ.
The approximation error is negligible in probability:

E[|F n
σ̃2|]

= E

[∣∣∣∣
1

Th

n−1∑

i=0

∫ (i+1)∆

i∆

(
K

(
Xi∆ − x

h

)
−K

(
Xs − x

h

))
σ̃2(Xs)ds

∣∣∣∣

]

≤ 1

Th

n−1∑

i=0

∫ (i+1)∆

i∆

E

[∣∣∣∣K
(
Xi∆ − x

h

)
−K

(
Xs − x

h

) ∣∣∣∣ · σ̃2(Xs)

]
ds

≤ ||K ′||∞||σ̃2||∞
Th2

n−1∑

i=0

∫ (i+1)∆

i∆

E
[
|Xi∆ −Xs| · 1[i∆,(i+1)∆](s)

]
ds

≤ ||K ′||∞||σ̃2||∞
Th2

n−1∑

i=0

∫ (i+1)∆

i∆

(E [|Xi∆ −Xs|])1/2 ds∆1/2

.
n∆2

Th2
= O

(
∆

h2

)
= o(1), as n→ ∞.

Let us summarize that

IV ′ = σ̃2(x) +OP

(√
∆

h2

)
= σ̃2(x) + oP (1), as n→ ∞.

Now focus on the fifth term which is a martingale with respect to the augmentation of
the filtration Ft = σ((Ws, Ls), X0; s ≤ t) and, moreover, let

dL̃s :=

∫

R

y2µ̄(dy, ds) =

∫

R

y2(µ(dy, ds)− ν(dy)ds)

denote the squared compensated jumps of L. Using this abbreviation, we can conclude
that

V ′ :=
1

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds)

=
1

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ2(Xs−)dL̃s.
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We derive again the L2-distance of this term:

E
[
(V ′)2

]
= E



(

1

Th

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ2(Xs−)dL̃s

)2



=
1

T 2h2

n−1∑

i=0

E

[
K2

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

E[ξ4(Xs)|Fi∆]ds

]∫

R

y4ν(dy)

≤ ||ξ4||∞||K2||∞n∆
T 2h2

∫

R

y4ν(dy) = O

(
1

Th2

)
= o(1), as n→ ∞.

We summarize our findings as follows:

ˆ̃σ2(x) =
σ̃2(x)π(x) +OP

(
∆1/2

h

)
+OP

(√
1

nh2

)
+OP

(
∆
h2

)
+OP

(√
1

Th2

)

π(x) +OP

(
∆
h2

)

= σ̃2(x) + oP (1), as n→ ∞.

2.10 Asymptotic distribution of the variance estimator

We are finally able to derive the asymptotic distribution of σ̂2(x) by making use of the
same technique as for the drift estimator b̂(x). To this end, we have to impose additional
smoothness assumptions on σ and ξ as well as on the speed of convergence of ∆ and h.

Assumption A4

i) Let the functions σ, ξ, and π be twice continuously differentiable.

ii) Let ∆ and h satisfy

n∆h5 → 0, n∆2h−1 → 0, n∆3/2 → 0, n∆3h−3 → 0.

iii) Let the Lévy-measure ν fulfill

∫

R

y8ν(dy) <∞.

Now we state the following Theorem.
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Theorem 2.14. Under Assumptions A1,A2, and A4, provided that π(x) > 0, we have
that √

Th
(
σ̃2(x)− σ̃2(x)

) D−→ N
(
0,

||K||22ξ4(x)
∫
R
y4ν(dy)

π(x)

)
, as n→ ∞.

Proof of Theorem 2.14. Using the smoothness assumptions on σ, ξ, and π as well using
A4, ii), we find out that only the last part is responsible for the asymptotic distribution.
In particular, we can derive that:

√
Th
(
ˆ̃σ2(x)− σ̃2(x)

)

=
√
Th

(
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

2

1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
)

=
√
Th



σ̃2(x)π(x) +O(h2) +OP

(
∆1/2

h

)
+OP

(√
1

nh2

)
+OP

(
∆
h2

)

π(x) +OP

(
∆
h2

) − σ̃2(x)




+
√
Th

(
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
ξ2(Xs−)

∫
R
y2µ̄(dy, ds)

π(x) +OP

(
∆
h2

)
)

=
1√

Thπ(x)

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds) + s.o..

The abbreviation “s.o.” denotes the remaining terms, which are all negligible in probability
compared to the first one. This follows directly by Assumption A4, ii) and we, therefore,
omit this derivation.
For the examination of the term, which is responsible for the distribution, we will again
make use of the central limit theorem 2.8 for martingale difference sequences. At first,
define

n−1∑

i=0

ζ ′i+1,n =
1√

Thπ(x)

n−1∑

i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

ξ2(Xs−)

∫

R

y2µ̄(dy, ds)

:=
n−1∑

i=0

ζ̃ ′i+1,n + F L̃
n ,

where F L̃
n again denotes the approximation error, which is negligible in probability by

the same arguments as before. We always keep in mind that we assumed here that ν
has moments up to order 8. We start with the derivation of the Lindeberg condition for
the martingale difference sequence (ζ̃ ′i+1,n, F̃i+1) with respect to the filtration F̃i+1 :=
σ(X0, (Ws, Ls); s ≤ i+ 1). Now the Lindeberg condition can be derived by using Lemma
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2.4:

n−1∑

i=0

E
[
(ζ̃ ′i+1,n)

4|Fi∆

]

=
n−1∑

i=0

E



(

1√
Thπ(x)

n−1∑

i=0

∫ (i+1)∆

i∆

K

(
Xs− − x

h

)
ξ2(Xs−)

∫

R

y2µ̄(dy, ds)ζ̃ ′i+1,n

)4 ∣∣∣∣Fi∆




=
1

T 2h2

n−1∑

i=0

(
3∆2||Kξ2||6∞

(∫

R

y4ν(dy)

)2

+∆||Kξ2||8∞
∫

R

y8ν(dy)

)

.
n∆2

T 2h2
+

n∆

T 2h2
=

1

nh2
+

1

n∆h2
= o(1), as n→ ∞.

The asymptotic variance can analogously be derived as in the drift case. Using the ergod-
icity of X, we are able to deduce that

n−1∑

i=0

E
[
(ζ̃ ′i+1,n)

2|Fi∆

]
−→ ||K||22ξ4(x)

∫
R
y4ν(dx)

π(x)
a.s. as n→ ∞.

Now we can apply the central limit theorem 2.8 and are ready to deduce that

√
Th(σ̃2(x)− σ̃2(x))

D−→ N
(
0,

||K||22ξ4(x)
∫
R
y4ν(dy)

π(x)

)
as n→ ∞.

Remark 2.15. Wee see that the second conditional moment, which is the sum of the
volatility function σ and a jump part, can only be consistently estimated when the double
asymptotics scheme holds true. This is contrary to the ordinary diffusion case (ξ ≡ 0),
where only ∆ → 0 is required; see for example Florens-Zmirou (1993). The result that the
double asymptotics scheme is needed is not surprising, due to the fact that even in the
finite activity case, which is considered in Bandi and Nguyen (2003), it is necessary for
the consistent estimation of the first two conditional moments.

Remark 2.16. It is often quite satisfactory when simpler models can be recovered in
more difficult ones by leaving out occurring parameters. By setting ξ ≡ 0 our results are
consistent with those in Bandi and Phillips (2003). By assuming that ν is a probability
measure, our results are also consistent with those in Bandi and Nguyen (2003).

Remark 2.17. After discussing the feasible estimation of the first two conditional mo-
ments, one is able to hypothesize how higher moments can be estimated. One crucial point
will be that for the estimation of the k-th conditional moment, one has to require that

∫

R

y2kν(dy) <∞
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for the Lévy measure ν of the driving Lévy process L. Moreover, the speed of convergence
of the occurring regularization parameters has to be adjusted, too.

Example 2.18. Again, it would be interesting to visualize the appearing constraints on
α and β when writing

∆ ∼ n−α and h ∼ n−β.

0.3 0.4 0.5 0.6 0.7 0.8

−0.4

−0.2

0

0.2

0.4

0.6

α

β

(α∗; β∗)

Figure 2: Plot of the constraints in assumption A4, ii) the corresponding optimal coordi-
nates (α∗, β∗) ≈ (0.67, 0.07).

2.11 The case of noisy data

In this section, we will extend our derived results to the case where we only observe
noisy data. We will see that, by a slight modification of our proposed drift estimator, our
estimation procedure is robust under measurement errors.
In particular, it is widely known that in the case of high-frequency observation schemes,
measurement errors as well as the so-called microstructure noise play significant roles and
can be found in several financial data sets; see Zhang et al. (2005), Jacod et al. (2009)
or Jones (2003). In contrast to our considered high-frequency setting, this effect is not
significant in low frequency models in such a way. There are quite a lot of articles dealing
with noisy data in parametric as well as in nonparametric models. We are only interested
in nonparametric models and shortly want to summarize three different approaches for the
nonparametric estimation of integrated volatility (“IV”) as well as integrated quarticity
(“IQ”) for Itô-diffusions of the form

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs,
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where 0 ≤ t ≤ 1, a is a predictable drift function and σ is a càdlàg volatility process.
Consider a process Y , defined on the same filtered probability space (Ω,F , (F)t∈[0,1], P ),
which is observed at time points i/n, i = 0, ..., n, and can be decomposed into

Y i
n
= X i

n
+ Ui,n.

The additional white noise process U = (Ui,n)0≤i≤n is centered and exhibits a finite vari-
ance and is, in addition, independent of X. In this setting, Podolskij and Vetter (2006)
introduced the so-called pre-averaging approach for the nonparametric estimation of IV
and IQ based on realized bipower variation in the setting of Itô-diffusions with as well
as without an additional jump process. This widely used approach has for instance been
studied in Jacod et al. (2009) in a more general setting. We will focus on their approach
later on for the estimation of b(x) in our considered Lévy-driven diffusion model.
Two additional approaches for the handling of noisy data have been proposed by Zhang
et al. (2005) and Zhang (2006) where a subsampling based method has been considered.
Another possibility to estimate the values of interest in noisy models was suggested by
Barndorff-Nielsen et al. (2006). They derived an asymptotic theory for multipower vari-
ation based estimators for IV in the simultaneous presence of jumps and measurement
errors by linear combinations of autocovariances.

2.12 Formulation of the pre-averaged drift estimator

Recall that our model is given by

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt, X0
D
= η

and that we observe a high-frequency sample at time points 0,∆, 2∆, ..., n∆ := T such
that ∆ → 0 as well as n∆ → ∞. Now assume that the process X is contaminated by an
additional noise process ε = (εt)t≥0 such that we observe a process Y = (Yt)t≥0 instead of
X, which can be decomposed as

Yi∆ = Xi∆ + εi∆, i = 1, ..., n,

where we assume that {εi∆}i=0,...,n are independent and identically distributed random
variables such that

E[εi∆] = 0, E[ε2i∆] := σ2
ε

for all i and ∆. Moreover, the process ε is independent of X.
We will now focus in detail on the idea of the pre-averaging approach by Podolskij and
Vetter (2006). Let us at first decompose the available sample Yi∆, i = 1, ..., n intomn := m
subgroups of length rn := r, such that mr = n. An example would be that we observe a
sample of a certain asset price in 36 months (=̂ m) and 60 times (=̂ r) in each month.
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Without loss of generality, we assume that n can be decomposed into the product of m
and r. Otherwise, one would introduce a first and a last block whose lengths are smaller
than r. Moreover, the block length as well as the number of blocks fulfill

r → ∞, m =

⌊
n

r

⌋
→ ∞, ∆r → 0, as n→ ∞.

Instead of working with the contaminated rare data set {Yi∆}, we build averages inside
every block j, where j = 1, ..., r. Thus, we define

Ȳj := Ȳj,∆ :=
1

r

r∑

i=1

Y((j−1)r+i)∆

and analogously

X̄j := X̄j,∆ :=
1

r

r∑

i=1

X((j−1)r+i)∆, ε̄j := ε̄j,∆ :=
1

r

r∑

i=1

ε((j−1)r+i)∆.

Using these notations, we obtain
Ȳj = X̄j + ε̄j.

The motivation for this approach is rather simple. Due to the fact that the noise process
{εt}t≥0 is a centered i.i.d. process with finite variance, the averages ε̄j tend to zero in
probability (we only need this kind of convergence) as r → ∞ for every j = 1, ..,m.
Because of that, the averages Ȳj act as approximations of the averages X̄j , which are, in
turn, approximations of the original sample {Xi∆}. Recall that {X̄j,∆, j = 1, ...,m} can
be seen as a discrete sample of the original time continuous process (Xt) with sampling
frequency r∆ → 0 on the time interval [0,mr∆] = [0, n∆] with mr∆ → ∞.
Let us now define a new drift estimator b̂Y (x) based on the sample Ȳj, j = 1, ...,m, as

b̂Y (x) :=

1
mh

∑m−1
j=1 K

(
Ȳj−x

h

) (
Ȳj+1 − Ȳj

)

r∆
mh

∑m−1
j=1 K

(
Ȳj−x

h

) .

In the ordinary diffusion setting, kernel estimators occur in the approach by Barndorff-
Nielsen et al. (2006) as covariances estimators. Moreover, Greenwood et al. (2015) and
Lee (2014) focused on kernel estimators in a noisy diffusion setting without jumps.
In order to derive the asymptotic properties of this estimator, we will make use of the
results in our previous section. In particular, our strategy will be to prove that

b̂Y (x)− b̂(x) = oP (1), as n→ ∞

by a proper rate such that the results concerning the asymptotic normality of b̂(x) can be
transferred.
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To derive these results, we have to impose the following assumptions, mainly concerning
the rates of convergence of the included sequences.

Assumption A4

i) The noise process ε = (εt)t≥0 is an i.i.d. process, in particular the random variables
εi∆, i = 1, ..., n, are i.i.d. with

E[εi∆] = 0, E[ε2i∆] = σ2
ε <∞

for all 0 ≤ i∆ ≤ T .

ii) The processes X = (Xt)t≥0 and ε = (εt)t≥0 are independent.

iii) The block length r fulfill

r → ∞ and ∆r → 0 as n→ ∞.

Moreover, the number of blocks m behaves like m = ⌊n/r⌋ → ∞ as n→ ∞.

iv) The appearing parameters r, h, and ∆ fulfill

n∆rh5 → 0, n(∆r)2h−3 → 0, n∆rh→ ∞,

(∆r)1/2h−2 and n∆r−2h−3 → 0.

Now we are ready to state our main theorem concerning the asymptotic distribution of
b̂Y (x).

Theorem 2.19. Under Assumptions A1-A4, provided that π(x) > 0, it holds that

√
n∆h

(
b̂Y (x)− b(x)

)
D−→ N

(
0,

||K||22(σ2(x) + ξ2(x)V ar(L(1)))

π(x)

)
, as n→ ∞.

It turns out that the key point for the derivation of this result is an analogous statement to
Proposition 2.3. Under suitable assumptions, we have to bound the squared L2-distance of
small increments of X, but now in terms of r∆ instead of the original sampling frequency
∆.

Proposition 2.20. Under Assumptions A1,i)-vi) and ∆ ≤ 1, the following statements
hold true

1) max
1≤j≤m

E
[
(Xjr∆ −X(j−1)r∆)

2
]
. r∆,

2) max
1≤j≤m

E
[
(X̄j −X(j−1)r∆)

2
]
. r∆,

3) max
1≤j≤m−1

E
[
(X̄j+1 − X̄j)

2
]
. r∆.
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Proof of Proposition 2.20. The first statement can be directly deduced by Proposition
2.3. For the second statement, observe that

E[|X̄j −X(j−1)r∆|] ≤
1

r

r∑

i=1

E[|X((j−1)r+i)∆ −X(j−1)r∆|]

≤ 1

r

r∑

i=1

(
E[(X((j−1)r+i)∆ −X(j−1)r∆)

2]
)1/2

.
1

r

r∑

i=1

(
∆

∫ ((j−1)r+i)∆

(j−1)r∆

E[b2(Xs)]ds+

∫ ((j−1)r+i)∆

(j−1)r∆

E[σ2(Xs)]ds

+ V ar(L(1))

∫ ((j−1)r+i)∆

(j−1)r∆

E[ξ2(Xs)]ds

)1/2

≤ 1

r

r∑

i=1

(
∆2iE[b2(X0)] + i∆(||σ2||∞ + ||ξ2||∞V ar(L(1)))

)1/2

.
1

r

r∑

i=1

(i∆)1/2 ≤ 1

r
∆1/2

(
r∑

i=1

i

)1/2 √
r .

r3/2∆1/2

r
= (r∆)1/2.

Now use Jensen´s inequality and the monotonicity of the function t →
√
t to finish the

proof of statement 2).
Finally for 3), observe that

E[|X̄j+1 − X̄j|] ≤ E[|X̄j+1 −Xjr∆|] + E[|Xjr∆ −X(j−1)r∆|]
+ E[|X̄j −X(j−1)r∆|] . 3(r∆)1/2

due to 1) and 2).

We are now able to proof our main statement, namely the asymptotic normality of the
pre-averaged drift estimator.

Proof of Theorem 2.19. Recall that we observe a high-frequency sample

Yi∆ = Xi∆ + εi∆, i = 0, ..., n

consisting of the original diffusion process and contaminated by additional noise. Now
define

b̂X(x) :=

1
(m−1)h

∑m−1
j=1

(
Xjr∆ −X(j−1)r∆

)
K
(

X(j−1)r∆−x

h

)

r∆
(m−1)h

∑m−1
j=1 K

(
X(j−1)r∆−x

h

) :=
N̂X(x)

D̂X(x)
,
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which is the drift estimator of b(x) based on a high-frequency sample {Xjr∆ := Xjδ, j =
0, ...,m}. The new sample is a “thinned out version” with sampling frequency δ = ∆r → 0
of the original sample. From an asymptotic point of view, this has no impact on the
derivation of the asymptotic distribution since we are working in a high-frequency setting.
Therefore, and under Assumptions A1-A4, this estimator is consistent and asymptotically
normally distributed due to Theorems 2.6 and 2.7:

√
mδh

(
b̂X(x)− b(x)

)
=

√
n∆h

(
b̂X(x)− b(x)

)
D−→ N

(
0,

||K||22σ̃2(x)

π(x)

)
, as n→ ∞.

Our aim is now to prove that

N̂X(x)− N̂Y (x) = oP ((n∆h)
−1/2) = oP ((mδh)

−1/2) (2.9)

as well as

D̂X(x)− D̂Y (x) = oP ((n∆h)
−1/2) = oP ((mδh)

−1/2), (2.10)

where analogously

b̂Y (x) =

1
(m−1)h

∑m−1
j=1 K

(
Ȳj−x

h

) (
Ȳj+1 − Ȳj

)

r∆
(m−1)h

∑m−1
j=1 K

(
Ȳj−x

h

) :=
N̂Y (x)

D̂Y (x)
.

The proof of equations (2.9) and (2.10), together with the fact that all appearing esti-
mators are bounded in probability, and are according to this of order OP (1), yields the
desired result.
We will start with the derivation of (2.10) and evaluate the L1-distance between D̂X(x)
and D̂Y (x) to deduce the negligibility in probability by the Markov inequality. The key
point will be Proposition 2.20 and the Lipschitz-continuity of K:

E[|D̂X(x)− D̂Y (x)|] ≤
r∆

(m− 1)h

m−1∑

j=1

E

[∣∣∣∣K
(
Ȳj − x

h

)
−K

(
X(j−1)r∆ − x

h

) ∣∣∣∣
]

≤ r∆||K ′||∞
(m− 1)h2

m−1∑

j=1

E
[
|Ȳj −X(j−1)r∆|

]

=
r∆||K ′||∞
(m− 1)h2

m−1∑

j=1

E
[
|X̄j −X(j−1)r∆ + ε̄j|

]
.

Now we will focus on the above summands, which can be evaluated by the use of Propo-
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sition 2.20

E
[
|X̄j −X(j−1)r∆ + ε̄j|

]
≤ E

[
|X̄j −X(j−1)r∆|

]
+ E [|ε̄j|]

. (r∆)1/2 +
(
E
[
(ε̄j)

2])1/2 = (r∆)1/2 +


E



(
1

r

r∑

i=1

ε((j−1)r+i)∆

)2





1/2

= (r∆)1/2 +
σε√
r
.

Recall for the last equation that εj are i.i.d.
Now we can conclude that

E[|D̂X(x)− D̂Y (x)|] ≤
r∆||K ′||∞
(m− 1)h2

m−1∑

j=1

(
E
[
|X̄j −X(j−1)r∆|

]
+ E [|ε̄j|]

)

.
r∆

(m− 1)h2

m−1∑

j=1

(
(r∆)1/2 +

σε√
r

)

= O

(
(∆r)3/2

h2
+

∆r1/2

h2

)
.

To prove (2.10), both following terms have to converge to zero in probability:

√
n∆h

(
D̂X(x)− D̂Y (x)

)
= OP

(
(n∆h)1/2(∆r)3/2

h2
+

(n∆h)1/2∆r1/2

h2

)
!
= oP (1). (2.11)

To derive (2.11), both connections of the appearing parameters can be found in assumption
A4, iv). Due to the Markov inequality, the difference of the denominators fulfills

D̂X(x)− D̂Y (x) = oP ((n∆h)
−1/2), as n→ ∞.

The more interesting step of the proof is the treatment of the difference

N̂X(x)− N̂Y (x).

Our aim is to prove that this difference is also of order oP ((n∆h)
−1/2) as n→ ∞. For this
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purpose we decompose the considered difference as follows:

N̂X(x)− N̂Y (x)

=
1

(m− 1)h

m−1∑

j=1

((
Ȳj+1 − Ȳj

)
K

(
Ȳj − x

h

)
−
(
Xjr∆ −X(j−1)r∆

)
K

(
X(j−1)r∆ − x

h

))

=
1

(m− 1)h

m−1∑

j=1

((
Ȳj+1 − Ȳj

)(
K

(
Ȳj − x

h

)
−K

(
X(j−1)r∆ − x

h

)))

+
1

(m− 1)h

m−1∑

j=1

(((
Ȳj+1 − Ȳj

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

))

:= An(x) + Bn(x).

We will again determine the order of the L1-distance of both terms An(x) and Bn(x).
Again, by the use of the Markov inequality, we will deduce that both terms will converge
as fast as required to zero. We will start with the first term An(x) and use the Lipschitz-
continuity of K as well as Proposition 2.20:

E[|An(x)|] ≤
1

(m− 1)h

m−1∑

j=1

E

[
|Ȳj+1 − Ȳj| ·

∣∣∣∣K
(
Ȳj − x

h

)
−K

(
X(j−1)r∆ − x

h

) ∣∣∣∣
]

≤ ||K ′||∞
(m− 1)h2

m−1∑

j=1

E
[
|Ȳj+1 − Ȳj| · |Ȳj −X(j−1)r∆|

]

≤ ||K ′||∞
(m− 1)h2

m−1∑

j=1

(
E
[(
Ȳj+1 − Ȳj

)2])1/2 ·
(
E
[(
Ȳj −X(j−1)r∆

)2])1/2

=
||K ′||∞

(m− 1)h2

m−1∑

j=1

(
E
[(
(X̄j+1 − X̄j) + (ε̄j+1 − ε̄j)

)2])1/2 ·
(
E
[(
X̄j −X(j−1)r∆ + ε̄j

)2])1/2

=
||K ′||∞

(m− 1)h2

m−1∑

j=1

((
E
[
(X̄j+1 − X̄j)

2 + 2(X̄j+1 − X̄j)(ε̄j+1 − ε̄j) + (ε̄j+1 − ε̄j)
2
])1/2

·
(
E
[
(X̄j −X(j−1)r∆)

2 + 2(X̄j −X(j−1)r∆)ε̄j + ε̄2j
])1/2

)

=
||K ′||∞

(m− 1)h2

m−1∑

j=1

(
E
[
(X̄j+1 − X̄j)

2
]
+ E

[
(ε̄j+1 − ε̄j)

2
])1/2

·
(
E
[
(X̄j −X(j−1)r∆)

2
]
+ E[ε̄2j ]

)1/2

.
||K ′||∞

(m− 1)h2

m−1∑

j=1

(
r∆+

1

r

)1/2

·
(
r∆+

1

r

)1/2

=
r∆

h2
+

1

rh2
,
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where we used the fact that

E
[
(ε̄j+1 − ε̄j)

2
]
≤ 2

(
E[ε̄2j+1] + E[ε̄2j ]

)
=

4σ2
ε

r
.

Hence, we conclude that

E[|An(x)|] = O

(
r∆

h2
+

1

rh2

)
, as n→ ∞.

Furthermore, to prove that the term An(x) possesses the proper rate oP ((n∆h)
−1/2), we

have to ensure that

√
n∆hAn(x) = OP

(
(n∆h)1/2r∆

h2
+

(n∆h)1/2

rh2

)
!
= oP (1).

Due to Assumption A4, iv), both constraints are fulfilled and we can deduce that An(x)
exhibits the needed order. Now we will continue with the derivation of the second term
Bn(x). We will use a detailed decomposition to derive the order of this term. The derivation
will be rather tedious, but in the end we will see that this term possesses the needed order,
too. At first decompose Bn(x) as follows:

Bn(x) =
1

(m− 1)h

m−1∑

j=1

(((
Ȳj+1 − Ȳj

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

))

=
1

(m− 1)h

m−1∑

j=1

(((
X̄j+1 − X̄j

)
−
(
X(j+1)r∆ −Xjr∆

))
K

(
X(j−1)r∆ − x

h

))

+
1

(m− 1)h

m−1∑

j=1

(((
X(j+1)r∆ −Xjr∆

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

))

+
1

(m− 1)h

m−1∑

j=1

(
(ε̄j+1 − ε̄j)K

(
X(j−1)r∆ − x

h

))
:=

3∑

k=1

Bn,k(x).

Now we will focus on each term separately and start with a further decomposition of the
latter:

Bn,3(x) =
1

(m− 1)h

m−1∑

j=1

(
(ε̄j+1 − ε̄j)K

(
X(j−1)r∆ − x

h

))

=
ε̄m

(m− 1)h
K

(
X(m−2)r∆ − x

h

)
− ε̄1

(m− 1)h
K

(
X0 − x

h

)

+
1

(m− 1)h

m−1∑

j=2

ε̄j

(
K

(
X(j−2)r∆ − x

h

)
−K

(
X(j−1)r∆ − x

h

))
.
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The corresponding L1-distance can now easily be derived by the use of the boundedness
of K as well as Proposition 2.20:

E[|Bn,3(x)|] ≤
1

(m− 1)h
E

[∣∣∣∣ε̄m ·K
(
X(m−2)r∆ − x

h

) ∣∣∣∣
]

+
1

(m− 1)h
E

[∣∣∣∣ε̄1 ·K
(
X0 − x

h

) ∣∣∣∣
]

+
1

(m− 1)h

m−1∑

j=2

E

[
|ε̄j| ·

∣∣∣∣K
(
X(j−2)r∆ − x

h

)
−K

(
X(j−1)r∆ − x

h

) ∣∣∣∣
]

≤ 2||K||∞
(m− 1)h

E[|ε̄m|] +
||K ′||∞

(m− 1)h2

m−1∑

j=2

E
[
|ε̄j| · |X(j−2)r∆ −X(j−1)r∆|

]

≤ 2||K||∞
(m− 1)h

(
E[ε̄2m]

)1/2

+
||K ′||∞

(m− 1)h2

m−1∑

j=2

(
E[ε̄2j ]

)1/2 (
E[(X(j−2)r∆ −X(j−1)r∆)

2]
)1/2

.
1

(m− 1)hr1/2
+

1

(m− 1)h2

m−2∑

j=1

1

r1/2
(r∆)1/2 = O

(
1

(m− 1)hr1/2
+

∆1/2

h2

)
.

Again, we found two rates, which have to fulfill certain requirements. In particular, we
have to assure that

√
n∆hBn,3(x) = OP

(
(n∆h)1/2

(m− 1)hr1/2
+

(n∆h)1/2∆1/2

h2

)
!
= oP (1),

which is guaranteed by Assumption A4, iv). Now we will focus on Bn,2(x). We will perform
a comparable decomposition as before and get three different terms as follows:

Bn,2(x) =
1

(m− 1)h

m−1∑

j=1

((
X(j+1)r∆ −Xjr∆

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

)

=
(Xmr∆ −X(m−1)r∆)

(m− 1)h
K

(
X(m−2)r∆ − x

h

)
+

(X0 −Xr∆)

(m− 1)h
K

(
X0 − x

h

)

+
1

(m− 1)h

m−2∑

j=1

(X(j+1)r∆ −Xjr∆) ·
(
K

(
X(j−1)r∆ − x

h

)
−K

(
Xjr∆ − x

h

))
.
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Now the L1-distance can be bounded by

E[|Bn,2(x)|] ≤
||K||∞

(m− 1)h

(
E[|Xmr∆ −X(m−1)r∆|] + E[|X0 −Xr∆|]

)

+
||K ′||∞

(m− 1)h2

m−2∑

j=1

E[|X(j+1)r∆ −Xjr∆| · |X(j−1)r∆ −Xjr∆|]

.
(r∆)1/2

(m− 1)h
+

(r∆)

h2
.

Finally, to guarantee that Bn,2(x) converges fast enough to zero in probability, we have
to ensure that

√
n∆hBn,2(x) = OP

(
(n∆h)1/2(r∆)1/2

(m− 1)h
+

(n∆h)1/2r∆

h2

)
!
= oP (1).

Basic reformulations of Assumption A4, iv) ensure that the appropriate terms converge
to zero as fast as it is needed.
Finally, we will focus on Bn,1(x). As a first step, we will decompose it as follows:

Bn,1(x) =
1

(m− 1)h

m−1∑

j=1

(((
X̄j+1 − X̄j

)
−
(
X(j+1)r∆ −Xjr∆

))
K

(
X(j−1)r∆ − x

h

))

=
(Xr∆ − X̄1)

(m− 1)h
K

(
X0 − x

h

)
+

(X̄m −X(m−1)r∆)

(m− 1)h
K

(
X(m−1)r∆ − x

h

)

+
1

(m− 1)h

m−2∑

j=1

(
X̄j+1 −X(j+1)r∆

)(
K

(
X(j−1)r∆ − x

h

)
−K

(
Xjr∆ − x

h

))
.

Due to Proposition 2.20, we are allowed to proceed in the same way as for the treatment
of Bn,2(x). For the sake of brevity, we will restrict ourselves to the final result, namely

E[|Bn,1(x)|] .
(r∆)1/2

(m− 1)h
+

(r∆)

h2
.

Hence,
Bn,1(x) = oP ((n∆h)

−1/2), as n→ ∞,

which finishes the proof.

Example 2.21. In the noisy setting it would be interesting to derive an optimal rate of
convergence under the assumptions on r, ∆ and h, too.
By letting

∆ ∼ n−α, h ∼ n−β, and r ∼ nρ,
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a variety of connections between α, β and ρ exists. It would be appropriate to make use of
a simplex algorithm conducted in the previous section, too. Hence, we solve the following
linear optimization problem. Let

G(α, β) :=
1− α− β

2

and maximize the function G with respect to

α− ρ+ 5β > 1, 2(α− ρ)− 3β > 1, α− ρ+ β < 1,

α− ρ− 4β > 0, 4α− 3ρ− 3β > 1, 3α− ρ− 3β > 1,

3α− 3β − 2ρ > 1, α + 2ρ− 3β > 1, −α + β + ρ < 1,

2α− 3β > 1, −2α + β + 3ρ < 1, and 3α− 2ρ− 3β > 1.

The simplex algorithm yields the following result:

α ≈ 0.821, β ≈ 0.077,

which leads to an optimal rate under our assumptions of n0.051. This rate is slower than in
the case of non-noisy data, which is not surprising. We already know that in our setting
r∆ denotes the sampling frequency of the new random sample {X̄j, j = 1, ...,m} and
should behave like ∆ in the previous section without measurement errors. Therefore, we
choose r ∼ n0.2 such that r∆ ∼ n−0.62, which is approximately the optimal result for α in
the previous section.

2.13 Drift estimation of an integrated jump diffusion process

In this section, we will extend our results from nonparametric drift estimation for Lévy
driven jump diffusion models to the case of integrated processes. We will at first concretize
what is meant by an integrated process. Consider a two-dimensional process (Xt, Vt)t≥0

such that

dXt = Vtdt, X0 = 0

dVt = b(Vt)dt+ σ(Vt)dWt + ξ(Vt−)dLt, V0
D
= η, (2.12)

where again W = (Wt)t≥0 is a standard Brownian Motion and L = (Lt)t≥0 is a centered
Lévy process with finite variance E[L2(1)] =

∫
R
y2ν(dy) <∞ such that

dLt =

∫

R

z(µ(dt, dz)− ν(dz)dt).

W and L are independent and η is independent of both W and L. Hence, V is actually
the same process as in our first section.
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Usual estimation schemes for diffusion processes, as for example in our first considered
model, are based on a sample of the original process. In contrast to the non-noisy setting,
we are now assuming that we cannot observe the process V itself but rather a running
integral of the process V . In particular, we only observe the first coordinate Xt =

∫ t

0
Vsds

of our original bidimensional process at equidistant time points k∆, k = 1, ..., n+ 2, such
that

T := (n+ 2)∆ → ∞ and ∆ → 0.

We changed the original definition of T due to some technical reasons. From an asymp-
totic point of view, this renaming has obviously no impact on the rate of divergence of T .
Such integrated processes appear quite often in engineering science as well as in physics.
For example, Comte et al. (2009) refer to a model where V denotes the velocity of a par-
ticle and X represents its coordinate. Further models and application of such processes
can be found in Ditlevsen and Sørensen (2004) as well as in Lefebvre (1997).
For such models, parametric inference has been conducted in some works; see for exam-
ple Ditlevsen and Sørensen (2004) or Glotter (2000, 2006) as well as Glotter and Gobet
(2005). But in general, this topic has not arisen much attention, although it is quite in-
teresting and important for real data applications.
In the nonparametric framework, we are only aware of two works, where the coefficients of
such models have been consistently estimated. Comte et al. (2009) use a model selection
approach to construct adaptive nonparametric estimators of b and σ on a fixed compact
interval. This work extends their approach for estimating ordinary univariate diffusions
and was also pursued by Schmisser (2014) in the case of univariate jump diffusions; see
Section 2.8. Nicolau (2007) uses kernel estimators for pointwise consistent estimation of
b(x) and σ2(x). Nicolau (2007) and Comte et al. (2009) are both concerned with continu-
ous integrated diffusions, in particular the case where ξ ≡ 0. To the best of our knowledge,
nonparametric pointwise inference for the drift function b(x) in an integrated jump diffu-
sion model has not been done in the literature before.
We will now concretize our estimation approach. Hence, consider the available data set
{Xk∆, k = 1, ..., n + 2} of the process X given by (2.12). As mentioned, the process V
is not observable and has to be approximated. The idea behind our estimation approach
relies on the following transformation. We set

V k :=
1

∆

(
X(k+1)∆ −Xk∆

)
=

1

∆

∫ (k+1)∆

k∆

Vsds, 1 ≤ k ≤ n+ 1.

Based on the sample {V k, k = 1, ..., n + 1}, we will now propose the drift estimator for
the considered model as follows:

b̂V (x) :=
b̂V,D(x)

b̂V,N(x)
:=

1
n∆h

∑n−1
k=0 K

(
V k+1−x

h

) (
V k+2 − V k+1

)

1
nh

∑n−1
k=0 K

(
V k+1−x

h

) ,
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where we shortly recall that K is a bounded, symmetric, and Lipschitz-continuous prob-
ability density function possessing a finite second moment.
The equivalent data set {V k, k = 1, ..., n+ 1} should now act as an approximation of the
unobservable jump diffusion V :

V k ≈ Vk∆, k = 1, ..., n+ 1.

After evaluating the goodness of the above approximation, we will be able to deduce the
desired asymptotic properties of our proposed drift estimator by the use of the results in
the ordinary Lévy driven diffusion case.
At first, we will reconsider the context of the first section, where we worked with a station-
ary and exponentially β-mixing jump diffusion process fulfilling the ergodicity property.
Hence, we will impose assumptions A1 and A2 and start with a very useful proposition
acting as a key point for our proofs. The following proposition generalizes Lemma 7.1-7.3
in Comte et al. (2010) to the case of integrated jump diffusions.

Proposition 2.22. Under assumptions A1 and A2, the following observations hold true

a) V k +
1
∆

∫ (k+1)∆

k∆
(u− k∆)dVu = V(k+1)∆.

b) Yk+1 :=
V k+2−V k+1

∆
= 1

∆2

∫ (k+3)∆

(k+1)∆
ψ(k+1)∆(u)dVu, where

ψk∆(u) := (u− k∆)1[k∆,(k+1)∆)(u) + ((k + 2)∆− u)1[(k+1)∆,(k+2)∆)(u).

c) For ∆ ≤ 1, we can bound second moments of “small” increments of the process V
as follows:

E[(Vt+∆ − Vt)
2] . ∆.

d) To value the goodness of our used approximation, we state that

E[(V(k+1)∆ − V k)
2] . ∆.

Proof of Proposition 2.22. We start by proving a), which is more or less an interchange
of integrals according to

V k =
1

∆

∫ (k+1)∆

k∆

Vsds =
1

∆

∫ (k+1)∆

k∆

(Vk∆ + Vs − Vk∆)ds

=
1

∆

∫ (k+1)∆

k∆

(
Vk∆ +

∫ s

k∆

dV u

)
ds = Vk∆ +

1

∆

∫ (k+1)∆

k∆

(∫ (k+1)∆

u

ds

)
dVu

= Vk∆ +
1

∆

∫ (k+1)∆

k∆

((k + 1)∆− u)dVu = V(k+1)∆ +
1

∆

∫ (k+1)∆

k∆

(k∆− u)dVu.
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By the use of a), we are able to deduce statement b) as follows:

=
1

∆

(
V(k+3)∆ − 1

∆

∫ (k+3)∆

(k+2)∆

(u− (k + 2)∆)dVu − V(k+2)∆ +
1

∆

∫ (k+2)∆

(k+1)∆

(u− (k + 1)∆)dVu

)

=
1

∆2

∫ (k+3)∆

(k+1)∆

(
(u− (k + 1)∆)1[(k+1)∆,(k+2)∆)(u) + ((k + 3)∆− u)1[(k+2)∆,(k+3)∆)(u)

)
dVu

=
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)dVu.

Statement c) is a reformulation of Proposition 2.3 acting as a reminder and again being
crucial for our purposes.
The proof of d) is based on c) as well as the Cauchy-Schwarz inequality and is derived as
follows:

E[(V(k+1)∆ − V k)
2] =

1

∆2
E



(∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)ds

)2



≤ 1

∆2

∫ (k+1)∆

k∆

∆E[(V(k+1)∆ − Vs)
2]ds . ∆.

To derive the consistency of b̂V (x), we will decompose the denominator b̂V,D(x) and the

numerator b̂V,N(x) separately. We start with a useful regression type decomposition of
Yk+1:

b̂V,D(x) =
1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)
Yk+1

=
1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)(
V k+2 − V k+1

∆

)

=
1

nh

n−1∑

k=0

K

(
V(k+2)∆ − x

h

)
b(V(k+2)∆)

+
1

nh

n−1∑

k=0

b(V(k+2)∆)

(
K

(
V k+1 − x

h

)
−K

(
V(k+2)∆ − x

h

))

+
1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)
(
b(Vu)− b(V(k+2)∆)

)
du

+
1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)σ(Vu)dWu
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+
1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)ξ(Vu−)dLu

:=
1

nh

n−1∑

k=0

K

(
V(k+2)∆ − x

h

)
b(V(k+2)∆) +R

(1)
∆ +R

(2)
∆ + Z

(1)
∆ + Z

(2)
∆ ,

where we have used the fact that

1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)du = 1.

The first term is responsible for receiving a consistent estimator of πV (x)b(x), where πV (x)
denotes the stationary density of the process V . The following two terms act as remainder
terms, which are negligible, since ∆ is small. The last two terms are noise terms and also
negligible, but possess the slowest rate of convergence and are responsible for the asymp-
totic distribution. These facts will be seen in the proof of the following Theorem.
We are now ready to formulate our main theorem within this section, namely the consis-
tency of b̂V (x).

Theorem 2.23. Under assumptions A1 and A2, provided that πV (x) > 0, we find that

b̂V (x)
P−→ b(x), as n→ ∞.

Proof of Theorem 2.23. Using the regression type decomposition, we are able to deduce
that, under the Lipschitz-continuity of the kernel K, the first remainder term R

(1)
∆ fulfills

E[|R(1)
∆ |] ≤ 1

nh

n−1∑

k=0

E

[
|b(V(k+2)∆)| ·

∣∣∣∣K
(
V k+1 − x

h

)
−K

(
V(k+2)∆ − x

h

) ∣∣∣∣
]

≤ ||K ′||∞
nh2

n−1∑

k=0

E
[
|b(V(k+2)∆)| · |V k+1 − V(k+2)∆|

]

≤ ||K ′||∞
nh2

n−1∑

k=0

(
E[b2(V(k+2)∆)|]

)1/2 ·
(
E[(V k+1 − V(k+2)∆)

2]
)1/2

.
||K ′||∞ (E[b2(V0)|])1/2

nh2

n−1∑

k=0

∆1/2 . ∆1/2h−2 → 0, as n→ ∞.

Now we will focus on the second remainder term R
(2)
∆ , which can be handled by the use
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of the Lipschitz-continuity of b as well as Proposition 3.2:

E[|R(2)
∆ |] ≤ 1

nh

n−1∑

k=0

1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)E

[∣∣∣∣K
(
V k+1 − x

h

) ∣∣∣∣ · |b(Vu)− b(V(k+2)∆)|
]
du

≤ ||K||∞||b′||∞
nh

n−1∑

k=0

1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)E
[
|Vu − V(k+2)∆|

]
du

≤ ||K||∞||b′||∞
nh

n−1∑

k=0

1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)
(
E
[
(Vu − V(k+2)∆)

2
])1/2

du

.
||K||∞||b′||∞

nh

n−1∑

k=0

1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)∆
1/2du . ∆1/2h−1 → 0, as n→ ∞.

The Brownian noise term Z
(1)
∆ can be handled in analogous manner compared to the first

section, where we used independent increments of W to find out that the L2-distance is
bounded by

E[(Z
(1)
∆ )2] = E



(

1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)σ(Vu)dWu

)2



=
1

n2h2

n−1∑

k=0

1

∆4

∫ (k+3)∆

(k+1)∆

ψ2
(k+1)∆(u)E

[
K2

(
V k+1 − x

h

)
σ2(Vu)

]
du

≤ ||K2||∞E[σ2(V0)]

n2h2

n−1∑

k=0

1

∆4

∫ (k+3)∆

(k+1)∆

ψ2
(k+1)∆(u)du

=
||K2||∞E[σ2(V0)]

n2h2
n−1∑

k=0

1

∆4

(∫ (k+2)∆

(k+1)∆

(u− (k + 1)∆)2du+

∫ (k+3)∆

(k+2)∆

(u− (k + 3)∆)2du

)

=
||K2||∞E[σ2(V0)]

n2h2

n−1∑

k=0

1

∆4

2∆3

3
.

1

n∆h2
→ 0, as n→ ∞.

Finally, the Lévy term Z
(1)
∆ can be treated using the same steps:

E[(Z
(1)
∆ )2] = E



(

1

nh

n−1∑

k=0

K

(
V k+1 − x

h

)
1

∆2

∫ (k+3)∆

(k+1)∆

ψ(k+1)∆(u)ξ(Vu−)dLu

)2



≤ ||K2||∞E[ξ2(V0)]E[L2(1)]

n2h2

n−1∑

k=0

1

∆4

∫ (k+3)∆

(k+1)∆

ψ2
(k+1)∆(u)du

69



=
||K2||∞E[ξ2(V0)]E[L2(1)]

n2h2

n−1∑

k=0

1

∆4

2∆3

3
.

1

n∆h2
→ 0, as n→ ∞.

Using the Markov inequality we are ready to conclude that

b̂V,D(x) =
1

nh

n−1∑

k=0

K

(
V(k+2)∆ − x

h

)
b(V(k+2)∆) +OP (∆

1/2h−2) +OP

(
1√
n∆h2

)

= πV (x)b(x) + oP (1), as n→ ∞.

The derivation of the denominator b̂V,N(x) is rather simple and is based on comparable
steps. The advantage is that we do not have any noise terms. We omit the proof for the
sake of brevity and finally conclude that

b̂V (x)
P−→ πV (x)b(x)

πV (x)
= b(x), as n→ ∞.
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3 Using varying bandwidths in nonparametric regres-

sion and density estimation

3.1 Sample smoothing estimators in nonparametric density es-

timation

After introducing the general idea of using nonparametric regression estimators for time-
continuous stochastic processes, we now want to focus on some methods how to improve
the performance of this class of estimators. In general, the class of local polynomial esti-
mators provide promising results in many arising practical situations. Higher order poly-
nomials of degree d ≥ 1 were firstly introduced by Fan (1992) in order to estimate proba-
bility densities as well as regression functions. The class of Nadaraya-Watson estimators
acts as the special case d = 0 and has been considered since the 1960s; see for example
Nadaraya (1965), Watson (1964) or Wand and Jones (1994). To concretize the definition
of local polynomial estimators, we consider the following weighted least squares problem.
Let {Xk∆, k = 1, ..., n} be a high-frequency sample of the considered Levy driven jump
process and define

β̂ := (β̂0, ..., β̂p) = argminβ0,...,βp

n−1∑

i=0

(
X(i+1)∆ −Xi∆

∆
−

p∑

k=0

βj(Xi∆ − x)j

)2

Kh(Xi∆ − x).

In view of local polynomial estimators, the above-introduced Nadaraya-Watson like esti-
mator for the drift b is given by the case p = 0 and β̂0 = b̂(x). The case p = 1 is called local
linear estimator for b and arises via β̂0 = b̂(x) again. Moreover, β̂1 is an estimator of b′(x),
see Fan (1992). In the context of scalar valued continuous diffusion processes (ξ ≡ 0),
Bandi and Phillips (2002) focused on the use of such estimators in Section 3.3. The rea-
son why we will only focus on the Nadaraya-Watson case is due to the fact that proofs
for higher order polynomial estimators are rather long and tedious and, that it is possible
that they produce negative values in the context of density estimation. But it should be
mentioned that the higher effort will yield to a bias reduction; see again Fan (1992) for a
detailed analysis. Nevertheless, the possibility to invoke higher order polynomials for the
estimation of b is only one possibility to improve the performance of the proposed kernel
based estimators. There is a plethora of possible extensions and improvements of this
estimation technique, until now especially developed for nonparametric regression and
density estimation. Due to the fact that any list would be incomplete, we only mention
the books by Härdle et al. (2004) as well as Härdle (1994) providing a summary of many
existing approaches for nonparametric curve estimation.
In this chapter, we want to focus on a special technique to reduce the asymptotic order
of the bias, namely the use of variable bandwidths. The intuition of using this type of
unequal smoothing is rather simple: in many practical situations, the available data is
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not equidistantly located across the corresponding support. There are regions exhibiting
scattered sparse data points as well as data-rich regions. This seems very important, es-
pecially for practical issues. Although we are working in a high-frequency scheme, where
the time lag between observations tends to zero, we think that it is still worth focusing on
varying bandwidths due to the fact that real data sets often consist of unequally spaced
data points. Approaches to handle the problem of unequally spaced data have been widely
studied, especially within the context of nonparametric density estimation. Particularly,
we want to mention two important works, which act as a foundation for this chapter:
Based on n independent and identically distributed random variables Xi, i = 1, ..., n,
possessing a density f , Abramson (1982) was one of the first authors who proposed the
idea of using varying bandwidths of the form hn(Xi). In particular, he considered random
bandwidths dependent on the observations Xi. He provides a so-called “square root law”
arguing for the use of random bandwidths proportional to f(Xi)

−1/2. This choice ensures
that the bias term is of order o(h2), which is faster compared to the classical fixed band-
width case. He did not give the exact asymptotic proof, i.e. how fast the new rate of the
bias exactly is. A very interesting proof of the exact rate of convergence of the bias, which
will also play a role in our subsequent analysis, was proposed in Terrell and Scott (1992).
They derived the asymptotic rates for the variance and the bias of the so-called “sample
smoothing” density estimator

f̂1(x) :=
1

n

n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)

for independent and identically distributed observations X1, ..., Xn, based on a bandwidth
function hn(Xi) dependent on both the sample size and the observations. Moreover, they
assumed that K is a symmetric density supported on [−1, 1]. Therefore, f̂1 is an average
of kernels with individually equipped scaling. Due to the fact that K is a probability
density, f̂1 will be a “bona fide” estimator, namely f̂1 integrates to 1 and is non-negative.
For the sake of completeness, we want to mention that the original version of this estima-
tor, proposed by Abramson (1982), is of the form

f̂A(x) =
1

n

n∑

i=1

c(Xi)

hn
K

(
c(Xi)(x−Xi)

hn

)
,

where c is a scalar valued function such that c(x) = f̄(0)−1/2f̄(x) and f̄(x) = f(x)∨ 1
10
f(0),

where Abramson assumed that f(0) > 0. This version is called the “clipped version” of
Abramson´s estimator (cf. Terrell and Scott (1992)). Most authors only focused on the
unclipped version for the sake of simplicity. We fill proceed analogously.

Remark 3.1. Certainly, there are other possibilities of varying the bandwidth, for exam-
ple the k-th nearest neighbor method, which was originally proposed by Loftsgaarden and
Quesenberry (1965) as well as the so-called “balloon estimator”, where the bandwidth h is
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dependent on the point of estimation and not on the available sample, see again Terrell
and Scott(1992):

f̂2(x) :=
1

n

n∑

i=1

1

hn(x)
K

(
x−Xi

hn(x)

)
.

It turns out that the asymptotic analysis of this class of estimators is rather simple, but the
resulting estimator is not a “bona fide” estimator, because f̂2 is in general not a density
anymore; see Terrell and Scott (1992) as well as Tukey and Tukey (1981).

Abramson´s square root law requires a “pilot estimate” for the unknown density f evalu-
ated at Xi. This can, for example, be a kernel based estimator with fixed bandwidth, see
Terrell and Scott (1992). For the pilot estimator as well as the resulting density estima-
tor, the bandwidth selection plays an important role. We will not address this problem
in our subsequent analysis and will rely on the existing methods like least squares cross-
validation, which works very well in most situations, see for example Härdle (1994).
For the sake of completeness, we will state the pointwise asymptotic properties of the
sample smoothing estimator f̂2(x) below, which will play a central role in our following
analysis. This proposition can be found in Terrell and Scott (1992) denoted as Theorem
2.

Proposition 3.2. Let K be a symmetric probability density function being square in-
tegrable and possessing a finite second moment. Moreover, let hn(x) → 0 as well as
nhn(x) → ∞ as n→ ∞ and let

ty(x) :=
x− y

hn(y)

be strictly monotone in x. Then, for h and f twice continuously differentiable, we have

AV ar(f̂2(y)) =
f(y)||K||22
nhn(y)

as well as

ABias(f̂2(y))
2 =

1

4

((
f(y)h2n(y)

)′′)2
,

where the “A”, stands, as usual, for “asymptotic” and denotes only the term exhibiting
the slowest rate of convergence.

Recall that the expression of the variance remains unchanged compared to the classical
fixed bandwidth case and, moreover, that the bias expression reveals Abramson´s square
root law. In particular, in contrast to the classical fixed bandwidth case, the bandwidth
function has now “moved under the differential operator”, which results in the fact that,
for hn(y) = hnf(y)

−1/2, this term is equal to zero:

ABias(f̂2(y)) =
1

2

(
f(y)hnf(y)

−1
)′′ ≡ 0,
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provided that f(y) > 0.
The next term occurring in the bias is of order O(h4) (due to Silverman (1986)), which
results in an optimal rate of convergence of the (asymptotic) mean squared error of order
O(n−8/9). This is considerably faster than O(n−4/5), which is the optimal rate in the
classical setting, in which K is a symmetric probability density function with finite second
moment. Moreover, this faster rate is generally reserved for higher order kernels, which
are, in turn, no probability density functions anymore. The use of higher order kernels also
provides a possibility to achieve faster rates of the mean squared error; see for example
Härdle (1994) for more details.

Remark 3.3. Although the sample smoothing estimator f̂2 exhibits appealing theoretical
properties, one should mention that this estimator suffers from the so-called “nonlocality
phenomenon” as it was pointed in Terrell and Scott (1992). This means that even ob-
servations Xi, which lie “far away” from the point of estimation x, may have significant
influence on the estimation procedure. This case will be suspended by the technical assump-
tion on the function ty(x), in our theoretical analysis. In practical issues, this assumption
may not be satisfied as it was stated in Terrell and Scott (1992) by a chosen example.

3.2 Sample smoothing estimators in nonparametric regression

models

Now we will turn to our main topic, namely the construction and asymptotic analysis of
the Nadaraya-Watson sample smoothing estimator for regression functions.
The technique for the estimation of the drift in our previous analysis originates from
discrete time series analysis and was originally proposed for the estimation of conditional
expectations, for instance, in nonparametric regression models. We will now have a closer
look at these models.
Let (Xi, Yi), i = 1, ..., n, be identically distributed copies of the bivariate random vector
(X, Y ). Our main interest lies in the determination or quantification of the dependence
structure between X and Y . We call X a (one-dimensional) covariate and Y the scalar-
valued response and assume that they are connected by a nonparametric regression model

Y = m(X) + ε,

where m is an unknown regression function. m has to be specified by the available sample
and ε is a centered random variable possessing a density fε and finite variance. Moreover,
we assume that E[ε|X] = 0. The regression function m, evaluated at x, can now be
specified as

m(x) = E[Y |X = x].

Based on the sample (Xi, Yi), i = 1, ..., n, one intuitive and very simple method to esti-
mate the value m(x) nonparametrically is provided by the use of the already mentioned
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Nadaraya-Watson estimator (cf. Nadaraya (1965), Watson (1964))

m̂(x) =
1
nh

∑n
i=1K

(
x−Xi

h

)
Yi

1
nh

∑n
i=1K

(
x−Xi

h

) ,

whose components have been introduced. This estimator has widely been studied in the
regression context and its properties are well-known for independent and identically dis-
tributed as well as for weakly dependent (strong mixing) data. In fact, we have that (cf.
Härdle (1994) or Cai (2001) in a slightly different setting)

E[m̂(x)] =
h2
∫
R
z2K(z)dz

2

(
m′′(x) +

2m′(x)f ′(x)

f(x)

)
+ o(h2)

V ar(m̂(x)) =

∫
R
K2(z)dzV ar(Y |X = x)

nh
+ o

(
1

nh

)
, as n→ ∞

under common smoothness assumptions like m, f ∈ C2(R) on the regression function m
and the marginal density f of X. The main goal of this chapter will now be to establish
the pointwise asymptotic rates for the bias and the variance, as well as the derivation of
the asymptotic distribution of the sample smoothing (adaptive) version of the Nadaraya-
Watson estimator. Therefore, define:

m̂ANW (x) :=

1
nh

∑n
i=1

1
h(Xi)

K
(

x−Xi

h(Xi)

)
Yi

1
nh

∑n
i=1

1
h(Xi)

K
(

x−Xi

h(Xi)

) .

To the best of our knowledge, this estimator has only been studied in Demir and Töktamis
(2010), where a short Monte Carlo study and also an empirical study have been considered.
The entire asymptotic analysis has been left out.

3.3 Asymptotic properties of m̂ANW (x)

In this section, we will focus on the derivation of the asymptotic distribution of m̂ANW (x).
We will work with strong mixing (α-mixing) data and make use of some very interesting
tools for the derivation of the proofs. This dependence structure occurs naturally in many
existing and popular time series models; see for example Doukhan (1994), who provides
an introduction into the concept of strong mixing properties for time series. The reason
why this dependence structure is also interesting for the treatment of time-continuous
processes is quite intuitive. In Masuda (2007), different assumptions on the coefficients of
certain jump diffusion models were proposed, which ensure the ergodicity of the solution
of the considered stochastic differential equations by establishing the β-mixing properties
of such processes. In particular, β-mixing of a stochastic process is a stronger property
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than α-mixing, in the sense that αX(t) ≤ βX(t) for mixing coefficients αX and βX of a
(stationary) stochastic process X.
We will now define what is meant by α-mixing and derive the asymptotic distribution of
m̂ANW (x) in the following.

Definition 3.4 (Doukhan (1994), Section 1.1). Let (Ω,A, P ) be a probability space with
sub-σ-fields B and C. Define the mixing coefficient α of B and C as

α = α(B, C) := sup
B∈B,C∈C

|P (B ∩ C)− P (B)P (C)|.

Now let {Xt}t∈Z be a stochastic process. Furthermore, let Bt := σ(Xs, s ≤ t) and Ct,k :=
σ(Xs,≥ t+k). The time series (or the stochastic process) {Xt}t∈Z is called strongly mixing,
if

lim
k→∞

α(k) := lim
k→∞

sup
t∈Z

sup
A∈Bt,C∈Ct,k

|P (A ∩ C)− P (A)P (C)| = 0.

Example 3.5 (Linear autoregressive sequences). Let {Xt}t∈N be a sequence of random
variables satisfying

Xt+1 = aXt + εt+1,

where {εt}t∈N is a sequence of i.i.d. random variables with E[|ε1|] < ∞. Moreover, let
εt possess a density which is almost everywhere positive on R. Furthermore, assume that
E[|X1|] <∞ and |a| < 1. Then it holds that {Xt}t∈N is geometrically strong mixing, which
means that

α(k) = O(γk), for some 0 < γ < 1.

Suppose that we observe n identically distributed copies (Xi, Yi), i = 1, ..., n, of the
random vector (X, Y ), whose components are connected via a nonparametric regression
model

Yi = m(Xi) + εi,

where the random variables εi fulfill the above stated assumptions. In particular, they
are centered, possess a density with respect to the Lebesgue measure, and have finite
variance.
At first, we state the assumptions on the kernel function, which are comparable to as-
sumption A2 in the first chapter.

Assumption B1

i) Let K be a bounded symmetric probability density function exhibiting a finite
second moment (or a kernel of order two, as it is referred to in the literature).

ii) Let K additionally fulfill
∫

R

z2K2(z)dz <∞,

∫

R

z4K(z)dz <∞,

∫

R

K2(z)dz <∞.
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Finally, we impose the following assumptions for the pointwise estimation of m(x) in our
regression model and the appearing random variables:

Assumption B2

i) tx(y) =
x−y
hn(y)

is strictly monotone in y.

ii) hn(x) := hnh̄(x) → 0, nhn(x) → ∞ as n→ ∞ and hn(x) > 0.

iii) h2n(x), fX(x), σ
2(x) = V ar(Y |X = x), m(x) are all twice continuously differen-

tiable.

iv) ∃ H1 ∈ R : E[|ε1εi||X1 = x1, Xi = x2] ≤ H1 ∀i ∈ N.

v) ∃ g2 ∈ R : fX1,Xi
(x1, x2) ≤ g2 ∀i ∈ N, where fX1,Xi

indicates the joint density of X1

and Xi.

vi) ∃ δ > 2 and H3 ∈ R such that ϑ(u) := E[|Y |δ|X = u] < H3.

vii) ∃ 2 < δ′ < 4 such that
∑∞

k=1 kα(k)
1−2/δ′ < ∞, where α(k) denotes the mixing

coefficient of the sequence (Xi, Yi).

viii) ∃ {sn}n∈N ⊆ R
+ : sn → ∞, sn = o(

√
nhn(x)),

√
n

hn(x)
α(sn) → 0 as n→ ∞.

ix) ∃ δ∗ : 4 > δ∗ > δ > 2 and ∃H4 ∈ R such that E[|Y |δ∗ |X = u] ≤ H4 <∞. Moreover,
α(k) = O(k−θ∗), where θ∗ ≥ δ∗δ

2(δ∗−δ)
and n1/2−δ/4(hn(x))

δ/δ∗−1/2−δ/4 = O(1) as n →
∞.

Assumption B2, vii) is always fulfilled, if α(k) decays exponentially fast. Assumptions B2,
iv)-ix) originate from Cai (2001), where the asymptotic behavior of a re-weighted version
of the ordinary Nadaraya-Watson estimator is studied.

Remark 3.6. By assuming that X and ε are independent and that εi are independent
and normally distributed random variables, Assumptions B2, iv) and vi) are satisfied.

Now we are ready to formulate our first important theorem in this section

Theorem 3.7. Under Assumptions B1 and B2, provided that fX(x) > 0 and hn(x) =
Ch̄n

−1/5, we have that

√
nhn(x)

(
m̂ANW (x)−m(x)− µ2(K)

(
h2n(x)m(x)

2Ch̄

+
m′(x)(fX(x)h

2
n(x))

′

fX(x)

))

D−→ N
(
0,

||K||22V ar(Y |X = x)

fX(x)

)
, as n→ ∞.
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If the bandwidth function hn(x) fulfills hn(x) = o(n−1/5) as n → ∞, then the bias is
negligible and the asymptotic distribution is centered:

√
nhn(x) (m̂ANW (x)−m(x))

D−→ N
(
0,

||K||22V ar(Y |X = x)

fX(x)

)
, as n→ ∞.

In order to establish the proof of this statement, we need three useful results from discrete
time series analysis, which can all, for instance, be found in Billingsley (1995), Section
27. These results let us bound the covariance between two random variables which are
connected via an α-mixing relation. Recall that we always work on the already mentioned
probability space (Ω,F , P ).

Lemma 3.8 (Davydov´s inequality). Let X ∈ Lp(P ), Y ∈ Lq(P ) with p, q > 1 and
1
p
+ 1

q
< 1, then

|Cov(X, Y )| ≤ 2r (2α(σ(X), σ(Y )))1/r ||X||p||Y ||q,

where 1
p
+ 1

q
+ 1

r
= 1. Especially for p = q > 2 and X

D
= Y we have

|Cov(X, Y )| ≤ 2

(
1− 2

p

)
(2α(σ(X), σ(Y )))1−2/p ||X||2p.

Lemma 3.9 (Billingsley´s inequality). Let {Xt}t∈Z be a stationary real-valued sequence
of α−mixing random variables. If Y is σ(X1, . . . , Xn) measurable and bounded by CY and
if Z is σ(Xn+k, Xn+k+1, . . .) measurable and bounded by CZ, it holds that

|Cov(Y, Z)| ≤ 4CYCZα(k).

For our purposes, we have to extend this lemma to complex valued random variables:

Corollary 3.10. If {Xt}t∈Z is a complex valued sequence of random variables and the
conditions of the previous lemma remain the same, it holds that

|Cov(Y, Z)| ≤ 16CYCZα(k).

Proof of Corollary 3.10. The proof is based on the decomposition of X into real and
imaginary parts and, after that, the use of Lemma 3.9 for both parts.

We see that we can bound the covariance of the considered random variables by the
corresponding mixing coefficient. Moreover, and due to the definition of strong mixing,
the random variables are nearly uncorrelated when the lag k is large enough. We are now
ready to state the proof of Theorem 3.7
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Proof of Theorem 3.7. We will start with the derivation of the asymptotic bias and, there-
fore, decompose m̂ANW (x) according to the considered regression model as follows

m̂ANW (x) = m(x) +
m̂1(x)

f̂A(x)
+ (nhn(x))

−1/2 m̂2(x)

f̂A(x)
,

where

m̂1(x) :=
1

n

n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
(m(Xi)−m(x))

as well as

m̂2(x) :=

(
hn(x)

n

)1/2 n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi.

Moreover, f̂A(x) = 1
n

∑n
i=1

1
hn(Xi)

K
(

x−Xi

hn(Xi)

)
denotes the denominator of m̂ANW (x). To

introduce an advantageous technique used to handle the appearing terms, we will focus
on the expectation of the numerator r̂A(x) of m̂ANW (x) and, without loss of generality,
evaluate it at x = 0. The following ideas are based on Terrell and Scott (1992), proof of
Theorem 2, pp. 1262, where the properties of the smoothing sample density estimator for
independent and identically distributed data are explored.

E[r̂A(0)] = E

[
1

n

n∑

i=1

1

hn(Xi)
K

( −Xi

hn(Xi)

)
Yi

]
= E

[
1

hn(X)
K

(
X

hn(X)

)
Y

]

= E

[
E

[
1

hn(X)
K

(
X

hn(X)

)
Y

∣∣∣∣X
]]

= E

[
1

hn(X)
K

(
X

hn(X)

)
m(X)

]

=

∫

R

1

hn(x)
K

(
x

hn(x)

)
m(x)fX(x)dx.

Now we will evaluate the last integral using the substitution x
hn(x)

= z. Because of the

assumptions on hn(x), we are allowed to differentiate this ratio with respect to x:

dz

dx
=
hn(x)− xh′(x)

h2n(x)
⇔ dx =

h2n(x)

hn(x)− xh′n(x)
dz.

Moreover, we will use the monotonicity condition on t0(x) =
x

hn(x)
, which means that for

every z ∈ R there is at most one x = x(z) ∈ R solving the equation x
hn(x)

= z. The latter

fact is a direct consequence of the injectivity of t0(x).
Hence, we are now able to plug in this substitution into the above integral term and
remark that the bounds of integration are not changed by the considered substitution.
This yields:
∫

R

1

hn(x)
K

(
x

hn(x)

)
m(x)fX(x)dx =

∫

R

1

hn(x(z))
K(z)

m(x(z))fX(x(z))h
2
n(x(z))

hn(x(z))− x(z)h′n(x(z))
dz

=

∫

R

K(z)
m(x(z))fX(x(z))hn(x(z))

hn(x(z))− x(z)h′n(x(z))
dz =

∫

R

K(z)
m(x(z))fX(x(z))

1− h′n(x(z))z
dz.
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We will now use the residue theorem to evaluate this term. Thus, consider the curve

γr,x(z) : [0, 2π] → C, t→ x(z) + reit

with r ∈ R
+ such that 0 ∈ Br(x(z)) := {y ∈ C : |y − x(z)| < r}.

Obviously, γr,x(z) defines a Jordan curve on the complex plane. Furthermore, the integrand
is a holomorphic function and we can use the (generalized) residue theorem. Observe that
the integrand has a pole of first order at x(z):

1

2πi

∫

γr,x(z)

m(x)fX(x)

x− zhn(x)
dx = 2πi


 1

2πi

∑

a∈{x: x−zhn(x)=0}
Resa

m(x)fX(x)

x− zhn(x)




= Resx(z)
m(x)fX(x)

x− zhn(x)
=

m(x)fX(x)
∂
∂x
(x− zhn(x))

∣∣
x=x(z)

=
m(x)fX(x)

1− zh′n(x(z))
.

Therefore, it holds:

∫

R

K(z)
m(x(z))fX(x(z))

1− h′n(x(z))z
dz =

∫

R

K(z)

(
1

2πi

∫

γr,x(z)

m(x)fX(x)

x− zhn(x)
dx

)
dz.

Now we will use a Taylor approximation for the integrand of the inner integral. First,
observe that for

gf,hn,m(z) :=
m(x)fX(x)

x− zhn(x)
=

m(x)fX(x)

x− zhnh̃(x)

an expansion around z = 0 gives us

gf,hn,m(z) = gf,hn,m(0) + g′f,hn,m(0)z + g′′f,hn,m(0)
z2

2
+ o(h2n),

where the remainder term possesses this order, because hn(x) = hnh̄(x) and by the as-
sumptions on K, especially the bounded moments of K up to order four (cf. Terrell and
Scott P. 1262). We can use this representation for the evaluation of the integral term by
the use of the generalized residue theorem for finite many residues as well as the moment
assumptions on the kernel function K:

∫

R

K(z)

(
1

2πi

∫

γr,x(z)

m(x)fX(x)

x− zhn(x)
dx

)
dz =

∫

R

K(z)

(
1

2πi

∫

γr,x(z)

m(x)fX(x)

x
dx

)
dz

+

∫

R

K(z)

(
1

2πi

∫

γr,x(z)

m(x)fX(x)hn(x)

x2
dx z

)
dz

+

∫

R

K(z)

(
1

2πi

∫

γr,x(z)

m(x)fX(x)h
2
n(x)

x3
dx z2

)
dz + o(h2n).
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For a convenient handling of these integrals, we use the well-known limit formula for
higher order poles of meromorphic functions (cf. Fischer and Lieb (2008), Chapter VI,
Theorem 4.2.):
If a ∈ C is a pole of order k ∈ N, then the residue of a holomorphic function f at a is

Resaf =
1

(k − 1)!
lim
z→a

∂k−1

∂zk−1

(
(z − a)kf(z)

)
.

Here, the integrands have poles at 0 ∈ Br(x(z)) of orders one, two and three. Therefore,
we can evaluate these integrals and get, under consideration of the assumptions taken on
the kernel, for the asymptotic bias of the numerator:

E[r̂A(0)] = m(0)fX(0) +
µ2(K)(m(0)fX(0)h

2
n(0))

′′

2
+ o(h2n),

where µ2(K) :=
∫
R
z2K(z)dz <∞.

Using this technique together with assumption B2, ii) and iii), we find out that

E[m̂1(x)] =
µ2(K)

2

(
m′′(x)fX(x)h

2
n(x) + 2m′(x)(fX(x)h

2
n(x))

′) o(h2n)

= µ2(K)fX(x)

(
m′′(x)h2n(x)

2
+
m′(x)(fX(x)h

2
n(x))

′

fX(x)

)
+ o(h2n)

:= fX(x)B̄(x)µ2(K) + o(h2n).

Our aim will be to use a law of large numbers for m̂1 in order to show that it converges
asymptotically to its expectation. We therefore have to derive the variance of m̂1, which
is slightly more complicated since we work with strong mixing data. Lemma 3.8 will act
as a useful tool.

V ar(m̂1(x)) = V ar

(
1

n

n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
(m(Xi)−m(x))

)

=
1

n
V ar

(
1

hn(X1)
K

(
x−X1

hn(X1)

)
(m(X1)−m(x))

)

+
1

n2

∑

1≤i 6=j≤n

Cov (Ci, Cj) ,

where

Ci :=
1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
(m(Xi)−m(x)), i = 1, ..., n.

We will handle the terms above separately and start with the second one. Because of the
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stationarity of {Xi}i=1,...,n, we can conclude that

∣∣∣∣
1

n2

∑

1≤i 6=j≤n

Cov(Ci, Cj)

∣∣∣∣ =
∣∣∣∣
2

n

n∑

i=2

(
1− i− 1

n

)
Cov(C1, Ci)

∣∣∣∣

≤ 2

n

n∑

i=2

∣∣Cov(C1, Ci)
∣∣ Davydov

≤ 2

n

n∑

i=2

α(i− 1)1−2/δ||C1||2δ , with δ ∈ (2, 4).

At first we derive ||C1||2δ :

E[Cδ
1 ] = E

[(
1

hn(X1)
K

(
x−X1

hn(X1)

)
(m(X1)−m(x))

)δ
]

=

∫

R

1

hδn(y)
Kδ

(
x− y

hn(y)

)
(m(y)−m(x))δfX(y)dy we set w.l.o.g. x = 0 and y/hn(y) := z

=

∫

R

Kδ(z)(m(y(z))−m(0))δ
fX(y(z))h

1−δ
n (y(z))

1− zh′n(y(z))
dz

=

∫

R

Kδ(z)
1

2πi

∫

γr,y(z)

(m(y)−m(0))δfX(y)h
1−δ
n (y)

y − zhn(y)
dy dz.

After expanding the inner integrand in a Taylor series around z = 0, we have for hn(y) =
hnh̃(y) that

E[Cδ
1 ] ≤ Ch2−δ

n .

When we apply these results, we find out that for the sum of the covariances one has

∣∣∣∣
1

n2

∑

1≤i 6=j≤n

Cov(Ci, Cj)

∣∣∣∣ ≤
2

n

n∑

i=2

α(i− 1)1−2/δ||C1||2δ

≤ C̃ · 1
n

n−1∑

i=1

α(i)1−2/δ(h2−δ
n )2/δ = O

(
h
(4−2δ)/δ
n

n

)
, as n→ ∞,

where the last equation is justified by the summability assumption on the mixing coeffi-
cients ∞∑

k=1

kα(k)1−2/δ <∞.
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We will now examine the first summand:

1

n
V ar

(
1

hn(X1)
K

(
x−X1

hn(X1)

)
(m(X1)−m(x))

)

≤ 1

n
E

[(
1

hn(X1)
K

(
x−X1

hn(X1)

)
(m(X1)−m(x))

)2
]

w.l.o.g.x=0
=

1

n

∫

R

1

h2n(y)
K2

(
y

hn(y)

)
(m(y)−m(0))2fX(y)dy

y/hn(y)=z
=

1

n

∫

R

K2(z)
fX(y(z))

(m(y(z))−m(0))2

hn(y(z))

1− zh′n(y(z))
dz

=
1

n

∫

R

K2(z)
1

2πi

∫

γr,y(z)

fX(y)(m(y)−m(0))2

hn(y)

y − zhn(y)
dy dz.

Expanding the inner integrand around z = 0 yields:

1

n

∫

R

K2(z)
1

2πi

∫

γr,y(z)

fX(y)(m(y)−m(0))2

hn(y)

y − zhn(y)
dy dz

·
=

1

n

∫

R

K2(z)
1

2πi

∫

γr,y(z)

fX(y)(m(y)−m(0))2

yhn(y)
dy dz

+
1

n

∫

R

K2(z)z
1

2πi

∫

γr,y(z)

fX(y)(m(y)−m(0))2

y2
dy dz

+
1

n

∫

R

K2(z)
z2

2

1

2πi

∫

γr,y(z)

hn(y)fX(y)(m(y)−m(0))2

y3
dy dz

=
1

n
||K||22

(
(m(y)−m(0))2fX(y)

hn(y)

) ∣∣∣∣
y=0︸ ︷︷ ︸

=0

+
1

n

∫

R

K2(z)zdz
∂

∂y

(
fX(y)(m(y)−m(0))2

) ∣∣∣∣
y=0︸ ︷︷ ︸

=0

+
1

n

∫

R

K2(z)
z2

2

∂2

∂2y

(
hn(y)fX(y)(m(y)−m(0))2

) ∣∣∣∣
y=0

=
hn
n

∫

R

K2(z)
z2

2
dz · fX(0)m′(0)h̃(0) = O

(
hn
n

)
, as n→ ∞.

Therefore, we can now conclude that:

V ar

(
1

n

n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
(m(Xi)−m(x))

)
= O

(
hn
n

)
+O

(
h
(4−2δ)/δ
n

n

)
, δ ∈ (2, 4).

Using this result as well as the law of large numbers in connection with Chebyshev´s
inequality, we can deduce that

√
nhn(x)(m̂1(x)− fX(x)B̃(x)µ2(K))

P−→ 0 as n→ ∞.
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Using exact analogous techniques, we are able to derive the (weak) consistency of the
denominator of m̂ANW (x), too. The rates are the same as in the fixed bandwidth case and
we can conclude that

√
nhn(x)

(
m̂1(x)

f̂A(x)
− B̃(x)µ2(K)

)
P−→ 0 as n→ ∞.

We will now turn to the examination of

m̂2(x) =

(
hn(x)

n

)1/2 n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi.

As we will see, this term is responsible for the asymptotic distribution. Recall that m̂2(x)
is centered, because E[εi|Xi] = 0 holds true. We will now focus on the variance of this
term. The result of this computation is the variance of the asymptotic distribution.

V ar(m̂2(x)) =
hn(x)

n
V ar

(
n∑

i=1

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi

)

= hn(x)V ar

(
1

hn(X1)
K

(
x−X1

hn(X1)

)
ε1

)

+ 2hn(x)
n∑

i=1

(
1− i− 1

n

)
Cov

(
1

hn(X1)
K

(
x−X1

hn(X1)

)
ε1,

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi

)

=: I(x) + II(x)

We will handle these terms separately and start with I(x):

I(x) = hn(x)E

[(
1

hn(X1)
K

(
x−X1

hn(X1)

)
ε1

)2
]

= hn(x)

∫

R

∫

R

e2fX,ε(y, e)

h2n(y)
K2

(
x− y

hn(y)

)
dyde

= hn(x)

∫

R

σ2(y)fX(y)

h2n(y)
K2

(
x− y

hn(y)

)
dy, where σ2(y) := E[ε2|X = y].

We will abbreviate the derivation of this integral, because the procedure remains the same
as before. Using the residue theorem twice as well as a Taylor expansion yields:

I(x) = σ2(x)fX(x)||K||22 +O(hn), as n→ ∞.

For the derivation of II(x), we choose a sequence {an}n∈N ⊆ R
+ such that

an → ∞ as well as anhn(x) = anhnh̃(x) → 0 as n→ ∞.
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Furthermore, we introduce the abbreviation

ξi :=
hn(x)

1/2εi
hn(Xi)

K

(
x−Xi

hn(Xi)

)
.

Using this assumptions we can conclude:

|II(x)| = 2

∣∣∣∣
n∑

i=2

(
1− i− 1

n

)
Cov(ξ1, ξi)

∣∣∣∣ ≤ 2

⌊an⌋∑

i=2

|Cov(ξ1, ξi)|
︸ ︷︷ ︸

:=II1(x)

+2
n∑

i=⌊an⌋+1

|Cov(ξ1, ξi)|
︸ ︷︷ ︸

:=II2(x)

.

Now we use assumptions B2, iv) and v):

B2, iv) ∃H1 ∈ R : E[|ε1εi||X1, Xi] ≤ H1 ∀i ∈ N

B2, v) ∃g2 ∈ R : fX1,Xi
(x1, x2) ≤ g2 ∀i ∈ N.

Ad II1(x):

II1(x) =

⌊an⌋∑

i=2

|Cov(ξ1, ξi)| =
⌊an⌋∑

i=2

|E[ξ1ξi]|

≤ hn(x)

⌊an⌋∑

i=2

E

[
1

hn(X1)
K

(
x−X1

hn(X1)

)
1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
E[|ε1εi||X1, Xi]

]

≤ H1hn(x)

⌊an⌋∑

i=2

E

[
1

hn(X1)
K

(
x−X1

hn(X1)

)
1

hn(Xi)
K

(
x−Xi

hn(Xi)

)]

≤ H1g
2
2hn(x)

⌊an⌋∑

i=2

(∫

R

1

hn(y)
K

(
x− y

hn(y)

)
dy

)2

︸ ︷︷ ︸
=O(1)

≤ M̃hn(x)O(an) = O(hn(x)an) = o(1), as n→ ∞.

To handle the second term II2(x), we again make use of Davydov´s inequality:

|II2(x)| ≤
n∑

i=an+1

|Cov(ξ1, ξi)| ≤ C
n∑

i=an+1

α(i− 1)1−2/δ(E[|ξ1|δ])2/δ, δ > 2.

First, observe that, under the assumption that ϑ(y) := E[|ε|δ|X = y] < H3 <∞, it holds
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that

E[|ξ1|δ] = hn(x)
δ/2E

[(
1

hn(X1)
K

(
x−X1

hn(X1)

)
|ε1|
)δ
]

= hn(x)
δ/2E

[
1

hδn(X1)
Kδ

(
x−X1

hn(X1)

)
ϑ(X1)

]

= hn(x)
δ/2

∫

R

1

hδn(y)
Kδ

(
x− y

hn(y)

)
ϑ(y)fX(y)dy.

After several computations we have

E[|ξ1|δ] ≤ C1 · hn(x)1−δ/2.

Therefore:

|II2(x)| ≤ C

n∑

i=an+1

α(i− 1)1−2/δ(C1hn(x)
1−δ/2)2/δ = C2hn(x)

2/δ−1

n−1∑

i=an

α(i)1−2/δ

= C2hn(x)
2/δ−1

n−1∑

i=an

i−1iα(i)1−2/δ ≤ C2hn(x)
2/δ−1a−1

n

n−1∑

i=an

iα(i)1−2/δ.

Now choose an such that

hn(x)
2/δ−1a−1

n = O(1) ⇔ hn(x)
1−2/δan = O(1),

so that the assumptions an → ∞ and anhn(x) → 0 are still valid. For example, choose

an = Lh
2/δ−1
n , L > 0 and recall that δ > 2. Now make use of the assumption that∑∞

i=1 iα(i)
1−2/δ <∞ to conclude that

n∑

i=⌊an⌋
iα(i)1−2/δ → 0 as n→ ∞.

Thus, we have established an expression for the variance of m̂1(x). Under the previous
assumptions, the covariances are vanishing asymptotically and it holds that

V ar(m̂2(x)) → σ2(x)fX(x)||K||22 as n→ ∞.

Let us now shortly summarize what we have shown until now:
√
nhn(x)(m̂ANW (x)−m(x)− B̃(x)µ2(K))

=
√
nhn(x)

(
m̂1(x)

f̂A(x)
− B̃(x)µ2(K)

)
+
√
nhn(x)(nhn(x))

−1/2 m̂2(x)

f̂A(x)

=
n−1/2

∑n
i=1 hn(x)

1/2 1
hn(Xi)

K
(

x−Xi

hn(Xi)

)
εi

f̂A(x)
+ oP (1) =

n−1/2
∑n

i=1 ξi

f̂A(x)
+ oP (1).
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Finally, we will show the asymptotic normality of n−1/2
∑n

i=1 ξi. The sequence {ξi}i=1,...,n

is α-mixing and, therefore, the classical Lindeberg theorem cannot be applied to this
sequence. Instead, we will use a so-called “Large-Block”- and “Small-Block”-technique,
which enables us to derive the asymptotic distribution of n−1/2

∑n
i=1 ξi. This technique is

commonly attributed to Bernstein (1927), sometimes referred to as Bernstein´s blocking.
Other authors refer to Markov when dealing with this method. We do not want to take
part in this discussion and will only focus on the main idea behind this approach. In the
context of nonparametric density and regression estimation, this technique has played a
major role in some articles; we refer to Cai (2001), where the blocking technique is used
for the derivation of the asymptotic normality of a re-weighted version of the ordinary
Nadaraya-Watson estimator in a regression context.
Now we will introduce the main idea. Consider the sum ξ1 + . . . + ξn and divide it in
2kn + 1 alternating blocks of length rn and sn -the “big blocks” and the “small blocks”-
as well as a residual block which length is smaller than rn + sn. Observe that, under
these conditions, kn = ⌊n/(rn + sn)⌋. Now choose sn so small that the small blocks are
negligible in probability (they are of order oP (1)) but even so large that the big blocks
are asymptotically independent. Then we apply the Lindeberg theorem to the big blocks
and the proof is completed.
At first, define the big blocks:

Uni := ξ(i−1)(rn+sn)+1 + . . .+ ξ(i−1)(rn+sn)+rn , for 1 ≤ i ≤ kn.

Next, define the small blocks:

Vni := ξ(i−1)(rn+sn)+rn+1 + . . .+ ξ(i−1)(rn+sn)+rn+sn , for 1 ≤ i ≤ kn.

Finally, define the residual block:

Wn := ξkn(rn+sn)+1 + . . .+ ξn.

We are now able to divide n−1/2
∑n

i=1 ξi into three parts:

n−1/2

n∑

i=1

ξi = n−1/2

kn∑

i=1

Uni + n−1/2

kn∑

i=1

Vni + n−1/2Wn.

Let us now verify that E[(
∑kn

i=1 Vni)
2] = o(n) as n → ∞. If this order holds true we

can conclude that the small blocks are negligible in probability by the use of Chebyshev´s
inequality. Recall that the random variables ξi are centered and, hence, the second moment
of the sum denotes its variance. Let us now make assumptions about the length sn of the
small blocks (cf. Cai (2001)):

sn → ∞, sn = o((nhn(x))
1/2),

(
n

hn(x)

)1/2

α(sn) → 0, as n→ ∞.
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Therefore, it exists a sequence βn such that

βn → ∞, βnsn = o((nhn(x))
1/2), βn

(
n

hn(x)

)1/2

α(sn) → 0, as n→ ∞.

Then define the length rn of the big blocks as rn := ⌊
√

nhn(x)

βn
⌋. It follows that

sn/rn → 0, rn/n→ 0, n/rnα(sn) → 0, rn/
√
nhn(x) → 0, as n→ ∞.

Now we are ready to cope with the small blocks. Observe that Vni are centered for all
1 ≤ i ≤ kn, too.

E[(
kn∑

i=1

Vni)
2] =

kn∑

i=1

V ar(Vni) +
∑

1≤i 6=j≤kn

Cov(Vni, Vnj).

The variance of Vni can be derived by the help of the previous findings as follows:

V ar(Vnj) = V ar




j(rn+sn)∑

i=(j−1)(rn+sn)+rn+1

hn(x)
1/2 1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi




= hn(x)

j(rn+sn)∑

i=(j−1)(rn+sn)+rn+1

V ar

(
1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi

)

+ hn(x)
∑

(j−1)(rn+sn)+rn+1≤i 6=k≤j(rn+sn)

Cov

(
1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi,

1

hn(Xk)
K

(
x−Xk

hn(Xk)

)
εk

)

= hn(x)snV ar

(
1

hn(X1)
K

(
x−X1

hn(X1)

)
ε1

)

+ 2hn(x)sn

sn∑

i=2

(
1− i

sn

)
Cov

(
1

hn(X1)
K

(
x−X1

hn(X1)

)
ε1,

1

hn(Xi)
K

(
x−Xi

hn(Xi)

)
εi

)

= sn(σ
2(x)fX(x)||K||22 + o(1)).

By the use of the stationarity of Vni, we can conclude that

kn∑

i=1

V ar(Vni) ≤ knsn(σ
2(x)fX(x)||K||22 + o(1))

kn=⌊ n
rn+sn

⌋
≤ nsn

sn + rn
(σ2(x)fX(x)||K||22 + o(1))

=
n sn

rn
sn
rn

+ 1
(σ2(x)fX(x)||K||22 + o(1)) = o(n), as n→ ∞,
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because sn/rn → 0 as n→ ∞.
Now we will focus on the covariances. This procedure is rather simple, because the main
work has been done already.

∑

1≤i 6=j≤kn

Cov(Vni, Vnj) =
∑

1≤i 6=j≤kn

Cov




i(rn+sn)+sn∑

l=i(rn+sn)+rn+1

ξl,

j(rn+sn)+sn∑

m=j(rn+sn)+rn+1

ξm




index shift
=

∑

1≤i 6=j≤kn

sn∑

m=1

sn∑

l=1

Cov
(
ξi(rn+sn)+rn+m, ξj(rn+sn)+rn+l

)
.

The lag between two of the ξi‘s amounts at least rn (this is the case, where two consecutive
small blocks and the rightmost- and leftmost-lying random variables inside both blocks
are considered). Thus, we will consider all covariances of random variables, whose lag is
at least rn:

∣∣∣∣
∑

1≤i 6=j≤kn

Cov(Vni, Vnj)

∣∣∣∣

≤ 2hn(x)
n−rn∑

l=1

n∑

m=l+rn

∣∣∣∣Cov
(

1

hn(Xl)
K

(
x−Xl

hn(Xl)

)
εl,

1

hn(Xm)
K

(
x−Xm

hn(Xm)

)
εm

) ∣∣∣∣

index shift
=: 2hn(x)

n−rn∑

l=1

n−l∑

m=rn

|Cov(ξ′l, ξ′m)| ≤ 2nhn(x)
n−1∑

m=rn

|Cov(ξ′1, ξ′m+1)|

≤ 2nhn(x)
n−1∑

m=1

|Cov(ξ′1, ξ′m+1)| = o(n) as n→ ∞,

where the last equality comes from the fact that the covariances are asymptotically van-
ishing, as we have already seen.
Therefore:

E



(

kn∑

i=1

Vni

)2

 = o(n) ⇔ 1

n
E



(

kn∑

i=1

Vni

)2

 = o(1), as n→ ∞.

Now we are ready to make sure that the residual block Wn converges to zero as n → ∞
in probability, too:

1

n
E[W 2

n ] =
hn(x)

n
E






n∑

i=kn(rn+sn)+1

ξi




2


=
hn(x)

n
· (n− kn(rn + sn))V ar(ξ1) +

hn(x)

n

∑

kn(rn+sn)+1≤i 6=j≤n

Cov(ξ′i, ξ
′
j)
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≤ hn(x)

n
· (n− kn(rn + sn))V ar(ξ1) + 2hn(x)

n−1∑

j=1

|Cov(ξ′1, ξ′j)|

≤ hn(x)

n
· (rn + sn) + o(1) = o(1) as n→ ∞

since n− kn(rn + sn) ≤ rn + sn, and rn/n→ 0 as n→ ∞.
Now we can summarize what we have shown and what is left to be established:

n−1/2

n∑

i=1

ξi = n−1/2

kn∑

i=1

Uni + n−1/2

kn∑

i=1

Vni + n−1/2Wn

= n−1/2

kn∑

i=1

Uni + oP (1)

!
D−→ N (0, σ2(x)fX(x)||K||22).

For the sake of brevity, we will shorten the proof and will only focus on the idea behind it.
At first, recall that the random variables Uni are not independent. Now consider random
variables U ′

n1, . . . , U
′
nkn

, which have the same distribution as Uni for all i and n, and
which additionally are independent. We will use Lemma 3.9 and, in particular, Corollary
3.10 to show that n−1/2

∑kn
i=1 Uni is asymptotically normally distributed, if and only if

n−1/2
∑kn

i=1 U
′
ni is. Consider therefore the random variables YU := e

itUn1
τ(x)

√
n and ZU = e

itUn2
τ(x)

√
n ,

where τ 2(x) := σ2(x)fX(x)||K||22. Observe that |YU |, |ZU | ≤ 1 and conclude that:

∣∣∣∣E
[
[exp

(
it(Un1 + Un2)

τ(x)
√
n

)
]

]
− E

[
exp

(
it(U ′

n1 + Un2′)
τ(x)

√
n

)] ∣∣∣∣

=

∣∣∣∣E
[
exp

(
it(Un1 + Un2)

τ(x)
√
n

)]
− E

[
exp

(
itU ′

n1

τ(x)
√
n

)]
E

[
exp

(
itU ′

n2

τ(x)
√
n

)] ∣∣∣∣

=

∣∣∣∣E
[
exp

(
it(Un1 + Un2)

τ(x)
√
n

)]
− E

[
exp

(
itUn1

τ(x)
√
n

)]
E

[
exp

(
itUn2

τ(x)
√
n

)] ∣∣∣∣
= |Cov(Y, Z)| ≤ 16α(sn).

Via induction, we find out that

∣∣∣∣E
[
exp

(
it
∑kn

i=1 Uni

τ(x)
√
n

)]
−

kn∏

i=1

E

[
exp

(
itU ′

ni

τ(x)
√
n

)] ∣∣∣∣ ≤ 16(kn − 1)α(sn)

≤ 16knα(sn) ≤ 16
nα(sn)

rn + sn
= 16

n/rn · α(sn)
1 + sn/rn

= o(1), as n→ ∞.

We see that the characteristic function of
it
∑kn

i=1 Uni

τ(x)
√
n

converges to e−t2/2, if and only if

it
∑kn

i=1 U
′
ni

τ(x)
√
n

does.
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Now we shorten the proof and indicate that the asymptotic variance of
∑kn

i=1 U
′
ni is given

by

V ar

(
kn∑

i=1

U ′
ni

)
→ τ(x)2 = σ2(x)fX(x)||K||22, as n→ ∞.

Moreover, one can show that by Assumption B2, ix) (see also Cai (2001)), the independent
and identically distributed random variables U ′

nj fulfill the Lindeberg condition such that
finally

n−1/2

kn∑

j=1

U ′
nj

D−→ N (0, τ 2(x)), as n→ ∞.

Therefore, we have finished our proof.

3.4 Asymptotic mean squared error

A natural question is now, how to use these results to actually improve -even in an
asymptotical sense- the rate of convergence of the considered Nadaraya-Watson estimator.
For this purpose, we will now state the rates for the asymptotic mean squared error and
compare them to the classical case, where h(Xi) ≡ h.

Lemma 3.11. Under assumptions B1 and B2, provided that fX(x) > 0, we have the
following representation of the asymptotic mean squared error (“MSE”) of m̂ANW (x)

AMSE(m̂ANW (x)) = AV ar(m̂ANW (x)) + (ABias(m̂ANW (x)))2

=
1

nh(x)

V ar(Y |X = x)

fX(x)
||K||22 +

µ2
2(K)

4

(
h2(x)m′′(x) + 2

m′(x)(fX(x)h
2(x))′

fX(x)

)2

=
1

nh

V ar(Y |X = x)

h̄(x)fX(x)
||K||22 +

h4µ2
2(K)

4

(
h̄2(x)m′′(x) + 2

m′(x)(fX(x)h̄
2(x))′

fX(x)

)2

,

where we used h(x) = hh̄(x).

In contrast to the result of the adaptive version, we recall the result in the classical case
such that

m̂(x) =
1
nh

∑n
i=1K

(
x−Xi

h

)
Yi

1
nh

∑n
i=1K

(
x−Xi

h

) .

Under appropriate smoothness assumptions on m and fX , the AMSE of m̂(x) has the
form

AMSE(m̂(x)) =
1

nh

V ar(Y |X = x)

fX(x)
||K||22 +

h4µ2
2(K)

4

(
m′′(x) + 2

m′(x)f ′
X(x)

fX(x)

)2

.
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It is notable that the terms are almost the same for the adaptive and the classical
Nadaraya-Watson estimator. The only difference, which impact should now be exam-
ined, is that the bandwidth function has moved under the differential operator.
Now focus again on the asymptotic bias of m̂ANW (x):

Bias(m̂ANW (x))2 =
h4µ2

2(K)

4

(
h̄2(x)m′′(x) + 2

m′(x)(fX(x)h̄
2(x))′

fX(x)

)2

=
h4µ2

2(K)

4f 2
X(x)

(
h̄2(x)fX(x)m

′′(x) + 2m′(x)(fX(x)h̄
2(x))′

)2

=
h4µ2

2(K)

4f 2
X(x)

(
h̄2(x)(2m′(x)f ′

X(x) +m′′(x)fX(x)) + 2(h̄2(x))′m′(x)fX(x)
)2
.

Our aim is now to choose h̄(x) such that the term inside the brackets vanishes. For this
purpose, we suppose thatm′ 6= 0. The concerning term is an ordinary differential equation
with variable coefficients of order one. We can solve this equation and get

h̃opt(x) =

{
C1(fX(x))

−1/2(m′(x))−1/4, for m′(x) > 0

C1(fX(x))
−1/2(−m′(x))−1/4, for m′(x) < 0.

Therefore, we can formulate the following corollary as a direct consequence of this choice
of the bandwidth function:

Corollary 3.12. By choosing h(x) = hh̄(x) = hnh̃opt(x), it follows that

ABIAS(m̂ANW (x)) = o(h2n), as n→ ∞.

This rate of convergence is generally reserved for kernels of higher orders. For simulation
purposes, it is necessary to construct the optimal bandwidth hopt(x) via pilot estimators
of the appearing unknown values, namely m′(x) and fX(x). For nonparametric density
estimation, where Abramson´s square root law yields an optimal choice of the bandwidth
function h(x) according to

h(Xi) = hf
−1/2
X (Xi),

Silverman (1986, Section 5.3.1) proposes a strategy for implementing this bandwidth based
on a pilot estimate f̂P (x) such that f̂P (Xi) > 0 for all i = 1, ..., n. For example, f̂P (x) can
be an ordinary density estimator with fixed bandwidth.
We propose a comparable strategy, but in our case, we have to use pilot estimates for two
unknown quantities. Hence, choose a pilot estimate f̂P (x) at first such that f̂P (Xi) > 0
for all i = 1, ..., n. Then, choose an estimator for the derivative of m(x), for example

m̂′(x) =
1

n

n∑

i=1

∂

∂x
Wni(x)Yi,
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where

Wni(x) =
1
nh
K
(
x−Xi

h

)

1
nh

∑n
i=1K

(
x−Xi

h

)

denotes the Nadaraya-Watson weight with fixed bandwidth. After that, estimate h̄opt(x)by

ˆ̄hopt(x) := (C|m̂′(x)|1/2f̂P (x))−1/2,

where C denotes a real and positive constant. In performed simulations by Silverman
(1986) as well as Terrell and Scott (1992), C was chosen as the geometric mean g of
f̂P (Xi):

log(g) =
1

n

n∑

i=1

log(f̂P (Xi)).

Demir and Töktamis (2010) used various methods for choosing the constant C, for example
a weighted average, the harmonic mean, and the arithmetic mean of f̂P (Xi). As already
mentioned, they did not focus on the asymptotic analysis and, hence, their simulations are
based on Abramson´s square root law. In this section, we have seen that this square root
law has to be adapted in regression models, such that the optimal bandwidth possesses a
different form.

3.5 Adaptive Nadaraya-Watson like estimators for stochastic

differential equations

After this excursion in the discrete time series context, we will now again focus on stochas-
tic differential equations. Our aim is to adapt the findings of the previous section to the
nonparametric drift estimation in diffusion models. We will only focus on ordinary dif-
fusions without jumps. Hence, reconsider a stochastic process X = (Xt)t≥0 fulfilling the
stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0
D
= η.

Again, we observe a high-frequency sample {Xk∆, k = 0, ..., n} and aim to estimate the
unknown drift function b. In analogy of the previous section, we define the adaptive version
of the nonparametric drift estimator b̂(x) according to

b̂A(x) :=

1
n

∑n−1
i=0

1
h(Xi∆)

K
(

Xi∆−x
h(Xi∆)

)
(X(i+1)∆−Xi∆)

∆

1
n

∑n−1
i=0

1
h(Xi∆)

K
(

Xi∆−x
h(Xi∆)

) .
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We will not focus on the nonparametric estimation of the diffusion coefficient here, but
an analogous adaptive version of this estimator is given by

σ̂2(x) :=

1
n

∑n−1
i=0

1
h(Xi∆)

K
(

Xi∆−x
h(Xi∆)

)
(X(i+1)∆−Xi∆)2

∆

1
n

∑n−1
i=0

1
h(Xi∆)

K
(

Xi∆−x
h(Xi∆)

) .

We will specify the asymptotic properties of the adaptive drift estimator.

Lemma 3.13. Under assumptions A1, A2 iii), B1 and B2 i), provided that π(x) > 0,
ξ ≡ 0, and b, σ, π ∈ C2(R), we find that

i.) ABias(b̂A(x)) =
µ2(K)

2π(x)

(
h2(x)(b′′(x)π(x) + 2b′(x)π′(x)) + 2(h2(x))′b′(x)π(x)

)
,

ii.) AV ar(b̂A(x)) =
σ2(x)||K||22
n∆h(x)π(x)

, as n→ ∞.

In particular, the consistency of b̂A(x) can be deduced by this representation of the mean
squared error.

Corollary 3.14. Under the assumptions of Lemma 3.13, b̂A(x) is a pointwise weak con-
sistent estimator of b(x).
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4 Boundary bias correction methods

In the following chapter, we will face a problem occurring in nonparametric estimation
approaches, which are based on symmetrical kernels. We will start with an intuitive il-
lustration of the so-called “boundary bias” problem and will introduce some methods
avoiding the bias near endpoints of the support of the underlying stationary density
corresponding to the considered stochastic process X. Our main interest will lie in the
exploration of certain properties of the class of asymmetric kernel estimators, which were
originally proposed by Chen (1999, 2000). After introducing this approach in the context
of density estimation, we will also focus on the regression case. Moreover, we show how
to use asymmetric kernels in the context of estimation of diffusion models and, finally, we
will leave the one-dimensional setting and focus on multivariate diffusions. We will present
a non-negative multiplicative bias correction method for the estimation of multivariate
densities and use this method afterwards to construct nonparametric estimators for the
drift vector of a multivariate diffusion process.

4.1 Boundary bias of nonparametric kernel estimators

In this section, we will introduce the boundary bias problem of nonparametric kernel
based estimators. For illustration purposes, we will focus on a discrete sample {Xi}i=1,...,n

of independent and identically distributed random variables with density f . Moreover, we
assume that the support of f fulfills

supp(f) = [0,∞)

and, hence,
Xi ≥ 0, a.s. for every i = 1, ..., n.

We suppose that f is unknown and twice continuously differentiable and we want to
estimate it at a certain point x ∈ R

+ by the use of the ordinary kernel based estimator

f̂(x) =
1

n

n∑

i=1

Kh(x−Xi),

where h denotes the bandwidth again and Kh(x) =
1
h
K(x/h) is the already introduced

symmetric kernel function. For technical reasons, we assume here that K has bounded
support [−1, 1]. For the sake of our estimation, we will distinguish between two cases,
namely points “near” the origin and those lying in the interior region of the support of
f . To concretize this idea, we state the following definition.

Definition 4.1. A point x ∈ R
+ is called an interior point, if x > h. In contrast, it is

called a boundary point, if it exists a ρ ∈ [0, 1], such that x = ρh.
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We are now ready to determine the bias of f̂(x) under our used assumptions.

E[f̂(x)] =

∫ 1

0

Kh(x− y)f(y)dy = −
∫ (x−1)/h

x/h

K(u)f(x− uh)du

=

∫ x/h

(x−1)/h

K(u)

(
f(x)− uhf ′(x) +

(uh)2

2
f ′′(x)

)
du+ o(h2) as n→ ∞.

If x lies in the interior region, then

x/h > 1 as well as (x− 1)/h < −1

for n large enough and we get the usual result that

E[f̂(x)] = f(x) +O(h2), as n→ ∞

and, hence, the boundedness of supp(f) does not influence the rate of convergence.
But, if, in contrast, x lies in the boundary region, then

x = ρh ≤ 1− h

for n large enough and thus

E[f̂(x)] =

∫ x/h

(x−1)/h

K(u)

(
f(x)− uhf ′(x) +

(uh)2

2
f ′′(x)

)
du+ o(h2)

= f(x)

∫ ρ

−1

K(u)du− hf ′(x)

∫ ρ

−1

uK(u)du+
f ′′(x)h2

2

∫ ρ

−1

K(u)u2du+ o(h2),

as n→ ∞.
For the variance of f̂(x) we get

V ar(f̂(x)) =
f(x)

nh

∫ ρ

−1

K2(t)dt+ o((nh)−1) as n→ ∞

by the use of an analogous argumentation. We conclude that the rate of the variance is
not influenced through the bounded support of f , whereas the bias is highly affected. For
example, we get that

E[f̂(0)] = f(0)/2 +O(h), as n→ ∞,

by the symmetry of K. Provided that f(0) 6= 0, we see that f̂ produces a bias near the
origin, which is not even asymptotically vanishing. In general, we see that the true density
is underestimated inside this region. There are many approaches to avoid this effect, for
example:

• the reflection method; see Cline and Hart (1991) and Schuster (1985) among others
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Figure 3: Plot of the true density in a dark solid line and the resulting kernel estimator
based on three observations in a dark thin line. The dashed line denotes the reflected
estimated density. Source: Schmid and Trede (2006): Finanzmarktstatistik, p. 106.

• the use of boundary kernels; see Jones (1993) and Zhang and Karunamuni (2000)
among others

• a transformation method; see Karunamuni and Alberts (2005)

• a pseudo-data method; see Cowling and Hall (1996)

• convolution power based estimators; see Comte and Genon-Catalot (2012).

An approach which has attracted some attention in recent literature is the one by Chen,
firstly used for the estimation of compact supported densities in 1999 and for the esti-
mation of positive supported densities in 2000. We will now introduce his ideas. Consider
therefore a random sample {Xi}i=1,...,n of independent and identically distributed random
variables and assume that every Xi has a density f with respect to the Lebesgue mea-
sure, which is supported on the positive real line. Consider now the density G(p, γ) of a
Gamma-distributed random variable with parameter p and γ, which is defined as

G(p, γ)(u) =
up−1e−u/γ

γpΓ(p)
· 1{u≥0}, p, γ > 0.
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Now choose p = x/h+ 1 and γ = h such that

G(x/h+ 1, h)(u) =
ux/he−u/h

hx/h+1Γ(x/h+ 1)
, u ≥ 0.

Suppose again that f is twice continuously differentiable. Chen (2000) has now proposed
the use of

f̂G(x) = n−1

n∑

i=1

G(x/h+ 1, h)(Xi),

where h denotes the bandwidth such that h→ 0 and nh→ ∞ as n→ ∞. For illustration
purposes, we will now shortly explore the explicit forms of the pointwise bias and variance
of this estimator. The crucial observation is the following basic identity:

E[f̂G(x)] = E[G(x/h+ 1, h)(X1)] =

∫ ∞

0

G(x/h+ 1, h)(y)f(y)dy = E[f(ξx)],

where ξx
D
= G(x/h + 1, h). Using the well-known moment properties of the Gamma dis-

tribution, we see that

E[ξx] = (x/h+ 1)h = x+ h, V ar(ξx) = (x/h+ 1)h2 = xh+ h2.

By assuming that f is twice continuously differentiable and by using a Taylor expansion,
we find out that the bias can be derived as

E[f̂G(x)] = E[f(ξx)] = E[f(E[ξx] + ξx − E[ξx])]

= f(E[ξx]) +
1

2
f ′′(x)V ar(ξx) + o(h), as n→ ∞

= f(x) + h(f ′(x) +
1

2
xf ′′(x)) + o(h) → f(x) , as n→ ∞.

The bias of f̂G(x) is independent of the location of x of order O(h) as n → ∞. The
variance can be established in the following way; see Chen (2000):

V ar(f̂G(x)) = n−1V ar(G(x/h+ 1, h)(X1)) = n−1E[G2(x/h+ 1, h)(X1)] +O(n−1).

Now let ηx ∼ G(2x/h+ 1, h) and Bh(x) :=
h−1Γ(2x/h+1)

22x/h+1Γ2(x/h+1)
, then it holds that

E[G2(x/h+ 1, h)(X1)] = Bh(x)E[f(ηx)].

Moreover, let R(z) :=
√
2πe−zzz+1/2/Γ(z + 1) for z ≥ 0. Hence

hBh(x) =
h1/2x−1/2R2(x/h)

2
√
πR(2x/h)

.
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Due to Brown and Chen (1999), we get by monotonicity arguments that

Bh(x)
·
=

{
h−1/2x−1/2

2
√
π

, as x/h→ ∞
Γ(2κ+1)h−1

21+2κΓ2(κ+1)
, as x/h→ κ > 0.

Therefore, we finally get that

V ar(f̂G(x))
·
=

{
n−1h−1/2x−1/2f(x)

2
√
π

, as x/h→ ∞
Γ(2κ+1)h−1n−1f(x)

21+2κΓ2(κ+1)
, as x/h→ κ > 0.

Now we can summarize these results and state the following lemma

Lemma 4.2. [Chen (2000), Section 2 and 3] Let h = hn be a positive sequence such that
h→ 0, nh→ ∞ as n→ ∞. Moreover, let f be an unknown probability density, which is
twice continuously differentiable as well as supported on the positive real line. Then,

MSE(f̂G(x)) =




h2
(
f ′(x) + xf ′′(x)

2

)2
+ f(x)

nh1/2x1/22
√
π

, as x/h→ ∞

h2
(
f ′(x) + xf ′′(x)

2

)2
+ Γ(2κ+1)f(x)

nh21+2κΓ2(κ+1)
, as x/h→ κ > 0.

Corollary 4.3. Under the assumptions of Lemma (4.2), f̂G(x) is a weak consistent esti-
mator of f(x) for x ∈ R

+.

We see that the bias of the Gamma kernel estimator is of order O(h), which is slower
compared to the rate for the classical kernel estimator (O(h2)). Nevertheless, this class
of estimators possesses many attractive properties, which make it worth taking a closer
look at them. At first, the smoothing changes in an adaptive manner, which means that
for each x, the shape of the kernel function varies and, therefore, an individual smoothing
takes place. This opposes the classical case, where the amount of smoothing does not
change. Moreover, one can show that f̂G(x) reaches the optimal rate of convergence of the
mean integrated squared error in the class of kernels of order two. Finally, the variance
is inversely proportional to the location of the design point x and, hence, as x moves far
from the origin, the variance shrinks.
Asymmetric kernel estimators are not restricted to the Gamma distribution. Although
this concept is quite new in the literature, there are several choices of proper distri-
butions available, like the use of Modified Gamma kernels (Chen (2000)), Log Normal
and Birnbaum Saunders kernels (Jin and Kawczak (2003)), as well as Inverse Gaussian
and Reciprocal Inverse Gaussian kernels (Scaillet (2004)). The exploration of asymptotic
properties of all the mentioned choices rely on distribution-specific properties like moment
relations and are, hence, diversified approaches. A relatively new paper by Hirukawa and
Sakudo (2015) provides a remedy for this aspect. They introduce a family of asymmetric
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Table 1: Univariate Asymmetric Kernels

Kernel Explicit Form

G KG,h,x(z) =
zx/h exp(−z/h)

hx/h+1Γ(x/h+1)

MG KMG,h,x(z) =
zρh(x)−1 exp(−z/h)

hρh(x)Γ(ρh(x))
,

where ρh(x) =
x
h
1(x ≥ 2h) + ( x2

4h2 + 1)1(x < 2h)
IG KIG,h,x(z) =

1√
2πhz3

exp
[
− 1

2hx
(z/x− 2 + x/z)

]

RIG KRIG,h,x(z) =
1√
2πhz

exp
[
− (x−h)

2h
(z/(x− h)− 2 + (x− h)/z)

]

LN KLN,h,x(z) =
1

z
√
2πhz

exp
(
− (log(z)−log(x))2

2h

)

BS KBS,h,x(z) =
1

2x
√
2πh

(
(x/z)1/2 + (x/z)3/2

)

· exp
(
− 1

2h
(z/x− 2 + x/z)

)

NM KNM,h,x(z) =
2zα−1 exp(−(z/(βΓ(α/2)/Γ((α+1)/2)))2)

(βΓ(α/2)/Γ((α+1)/2))αΓ(α/2)
,

where (α, β) =

{(
x
h
, x
)
, for x ≥ 2h(

x2

4h2 + 1, x
2

4h
+ h
)
, for x < 2h

B KB,h,x(z) =
zx/h(1−z)(1−x)/h

B(x/h+1,(1−x)/h+1)

kernels for which bias and variance approximations can be employed by general assump-
tions on the whole set of possible kernel functions. Examples of distributions contained in
this family are the Modified Gamma kernels (see also Chen (2000)) and the Nakagami-
m-kernels. For an overview see Table 1, where several choices of possible kernel functions
are displayed. Furthermore, in the context of estimating a density with compact support,
Chen (1999) suggested the use of Beta-kernels. We will return to this class of estimators
later on, when we focus on nonparametric estimation of copula densities, which are nat-
urally supported on the unit hyper cube [0, 1]d, d ≥ 2.

Referring to our context, it is mentionable that asymmetric kernels were also used for
the nonparametric estimation of the coefficients of an ordinary diffusion process driven
by a Brownian motion; see Gospodinov and Hirukawa (2012). After introducing two mul-
tiplicative bias corrected density estimators in the following section, we will propose the
use of those estimators in the context of multivariate diffusion models.

4.2 Multivariate density estimation via asymmetric kernels

In this section we will at first introduce a product Gamma kernel based estimator for
multivariate densities. Afterwards, we will present two non-negative multiplicative bias
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correction (“MBC”) methods, which improve the rate of convergence of the product ker-
nel estimator. Finally, asymmetric kernels are used for the estimation of the drift of a
multivariate diffusion process.
As we already mentioned, the boundary bias problem of classical symmetric kernel esti-
mators has been dealt within the literature by several works. Although this problem plays
even a more significant role in higher dimensions, due to the fact that the boundary re-
gion increases as the dimension does, there are only a few papers which provide boundary
correction methods for higher dimensions. In the context of density estimation, we are
only aware of Müller and Stadtmüller (1999) who extended the boundary kernel approach
from the univariate to the multivariate case and Bouezmarni and Rombouts (2010) who
investigated an asymmetric product kernel based estimator. We will now focus on the
latter one and state their main results and will afterwards introduce a bias corrected ver-
sion of this estimator. The following explanations are mainly listed in Funke and Kawka
(2015), where the already mentioned MBC technique for multivariate density estimation
was introduced.
Given a random sample {(Xi1, ..., Xid)}i=1,...,n of independent and identically distributed
random vectors with positively supported marginals, Bouezmarni and Rombouts (2010)
estimate the unknown joint density function f using a product kernel estimator

f̂m,h(x) = f̂m,h(x1, ..., xd) :=
1

n

n∑

i=1

d∏

j=1

Km,hj ,xj
(Xij),

where h := (h1, ..., hd) denotes the vector of bandwidths and m= G or MG.
Based on this approach, they derived asymptotic approximations of bias and variance and,
moreover, determined the optimal rate of convergence of the asymptotic mean integrated
squared error (“AMISE”). For the sake of simplicity we cite here Theorem 1 of Bouezmarni
and Rombouts (2010) only for the case

xj/hj → ∞ as n→ ∞ for all j = 1, ..., d.

Theorem 4.4 (Bouezmarni and Rombouts (2010), Theorem 1, p.141). Let f be the joint
density of the random vector (X1, ..., Xd) which is twice continuously differentiable in all
components such that

∫

Rd

(
d∑

j=1

∂f(x)

∂xj

)2

dx <∞

and ∫

Rd

(
d∑

j=1

xj
∂2f(x)

∂2xj

)2

dx <∞
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Let the bandwidths hj, j = 1, ..., d, fulfill

hj → 0 and n−1

d∏

j=1

h
−1/2
j → 0 as n→ ∞.

Then the optimal bandwidths, which minimize the AIMSE, are given by

hj,opt := cjn
−2/(d+4).

Furthermore, the optimal AIMSEopt can be in this case decomposed into

AIMSEopt =



∫

Rd

(
d∑

j=1

cjBj(x)

)2

dx+
d∏

j=1

c
−1/2
j

∫

Rd

V (x)dx


n−4/(d+4),

where

Bj(x) :=
∂f(x)

∂xj
+
xj
2

∂2f(x)

∂2xj

and

V (x) :=
(
2
√
π
)−d

f(x)
d∏

j=1

x
−1/2
j .

We see, that the optimal AIMSE is of order O(n−4/(d+4)), which is the same rate as for the
classical symmetric kernel based estimator; see for example Silverman (1986). In contrast
to this approach, the Gamma kernel estimator avoids the boundary problem and does not
place weights outside the support of f .
Moreover, we recognize the well-known “curse of dimensionality”: the rate of convergence
gets slower, when the dimension of the random vector X increases. Further, it can be
shown that the variance in the interior region is smaller than in the boundary region; see
the Appendix in Bouezmarni and Rombouts (2010).

4.3 MBC techniques for multivariate density estimation

In this section, we will now introduce two MBC techniques, originally proposed by Jones
et al. (1995) and Terrell and Scott (1980) for univariate kernel density estimation based
on symmetric kernels. In the context of asymmetric kernel estimation, both techniques
were extended inside the univariate setting to the use of Beta kernels (Hirukawa (2010))
as well as Gamma and Generalized Gamma kernels (Hirukawa and Sakudo (2014, 2015)).
We will now extend the results to the multivariate case and start with the formula-
tion of the multivariate Jones, Linton and Nielsen (“MV-JLN”) estimator as well as the
multivariate Terrell Scott estimator (“MV-TS”). Consider therefore a random sample
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{Xi1, ..., Xid}i=1,...,n of independent and identically distributed random vectors with joint
density f . The MBC technique proposed by Jones et al. (1995) is based on the identity

f(x) = f̂m(x)

(
f(x)

f̂m(x)

)
.

In this sense, the unknown density f at a vector x = (x1, ..., xd) ∈ (R+)d is estimated via

f̂JLN,m,h(x) := f̂m,h(x)
1

n

n∑

i=1

∏d
j=1Km,hj ,xj

(Xij)

f̂m,h(Xi)
,

where Xi := (Xi1, ..., Xid) and m = G, MG, IG, RIG, LN, BS, NM or B; see Table 1. The
second MBC technique, published by Terrell and Scott (1980), is based on a geometric
extrapolation originating from numerical mathematics. Hence, let cd ≡ c ∈ (0, 1) be a
constant depending on the dimension d. The unknown density function f is now estimated
by

f̂TS,m,h(x) :=
(
f̂m,h(x)

) 1
1−c
(
f̂m,h/c(x)

)− c
1−c

.

In contrast to other boundary correction methods like boundary kernels or local linear
estimators, both estimators only produce positive values for f .
We will now develop the asymptotic properties of our estimators. Due to notational limi-
tations and for the sake of brevity, we will only focus on the case where h1 = ... = hd ≡ h
and also where all components of the vector x lie in the interior region or at the boundary
of the support. Results for more involved locations as well as unequal bandwidths can
be examined in a straight forward manner. In contrast to Bouezmarni and Rombouts
(2010), we have to strengthen the assumptions on the unknown joint density f . Roughly
speaking, f has to be four times continuously differentiable in each component. Hence,
we assume that

Assumption C1

i) f has four continuous and bounded partial derivatives.

ii) The bandwidth h fulfills h→ 0 as well as nhd(rj+1/2)+2 → 0 as n→ ∞, where

rj =





1/2, for j = G, MG, RIG, NM, B

1, for j = LN, BS,

3/2, for j = IG.

Assumption C1, i) is usually needed for estimation via fourth order product kernels. As-
sumption C2, ii) is used to control the convergence order of remainder terms appearing
in certain Taylor expansions within the proofs. Now state the bias and variance approxi-
mations of both MBC methods dependent on the location of x.
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Theorem 4.5. Let x := (x1, ..., xd) be a given design point such that f(x) > 0. Under
Assumptions 1 and 2, the bias of the MV-TS MBC estimator is given by

Bias
(
f̂TS,m,h(x)

)
=
h2

c

[
a21,m(x; f)

f(x)
− a2,m(x; f)

]
+ o(h2) := h2

pm(x; f)

c
+ o(h2),

where aj,m(x; f) := aj,m(x1, ..., xd; f), j = 1, 2 are functions depending on the choice of
the kernel and their explicit forms are given in Tables 2 and 3. The variance can be
approximated by

Var
(
f̂TS,m,h(x)

)
=

{
n−1h−d/2f(x)νm(x)λd(c) + o(n−1h−d/2), for an interior vector x,

O(
(
nhd(rj+1/2))−1

)
, for a boundary vector x,

where

λd(c) :=
(1 + c)d/2

(
1 + c(d+4)/2

)
− (2c)(d+2)/2

(1− c)2(1 + c)d/2

and

νm(x) := νm(x1, ..., xd) = (2
√
π)−d

d∏

j=1

x
−rj
j .

Theorem 4.6. Let x be a given design point such that f(x) > 0. Under Assumptions 1
and 2, the bias of the MV-JLN MBC estimator is given by

Bias
(
f̂JLN,m,h(x)

)
= −h2f(x)a1,m(x; g) + o(h2) := qm(x; f)h

2 + o(h2),

where a1,m(x; g) is defined by replacing f in the definition of a1,m(x; f) by

g := g(x; f) :=
a1,m(x; f)

f(x)
.

Furthermore, the variance can be approximated by

Var
(
f̂JLN,m,h(x)

)
=

{
n−1h−d/2f(x)νm(x) + o(n−1h−d/2), for an interior vector x,

O(
(
nhd(rj+1/2))−1

)
, for a boundary vector x.

The rate of the mean squared error (“MSE”) can now easily be derived using Theorems
4.5 and 4.6. Therefore, let x = (x1, ..., xd) be a vector of interior points, then:

MSE
(
f̂TS,m,h(x)

)
=
h4p2m(x; f)

c2
+ n−1h−d/2f(x)νm(x)λd(c) + o(h4 + n−1h−d/2)

as well as

MSE
(
f̂JLN,m,h(x)

)
= h4q2m(x; f) + n−1h−d/2f(x)νm(x) + o(h4 + n−1h−d/2).
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Table 2: Explicit formulas for a1,m(x; f)

Kernel a1,m(x; f)

G
∑d

j=1

(
∂f(x)
∂xj

+
xj

2
∂2f(x)
∂2xj

)

MG
∑d

j=1

(
xj

2
∂2f(x)
∂2xj

1(xj > 2h) + ξh(xj)
∂f(x)
∂xj

1(xj ≤ 2h)
)
,

where ξh(xj) := ρh(xj)− xj

h
= O(1)

IG 1
2

∑d
j=1 x

3
j
∂2f(x)
∂2xj

RIG 1
2

∑d
j=1 xj

∂2f(x)
∂2xj

LN 1
2

∑d
j=1 xj

(
∂f(x)
∂xj

+ xj
∂2f(x)
∂2xj

)

BS 1
2

∑d
j=1 xj

(
∂f(x)
∂xj

+ ∂2f(x)
∂2xj

)

NM
∑d

j=1

(
xj

4
∂2f(x)
∂2xj

1(xj > 2h) + ξh(xj)
∂f(x)
∂xj

1(xj ≤ 2h)
)
,

B
∑d

j=1

(
(1− 2xj)

∂f(x)
∂xj

+ 1
2
xj(1− xj)

∂2f(x)
∂2xj

)

This yields to the optimal smoothing parameters

hopt,TS,m = n−2/(8+d)

(
f(x)νm(x)λd(c)c

2d

8p2m(x; f)

)2/(8+d)

(4.13)

and

hopt,JLN,m = n−2/(8+d)

(
f(x)νm(x)d

8q2m(x; f)

)2/(8+d)

. (4.14)

These parameters lead us now to the optimal rate of convergence of the MSE for an
interior vector x:

MSEopt

(
f̂TS,m,h(x)

)
∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)
γd(c)p

2d/(8+d)
m (x; f) (νm(x)f(x))

8/(8+d)

and

MSEopt

(
f̂JLN,m,h(x)

)
∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)
q2d/(8+d)
m (x; f) (νm(x)f(x))

8/(8+d) ,

where

γd(c) :=
λd(c)

8/(8+d)

c2d/(8+d)
=

(
(1 + c)d/2(1 + c(4+d)/2)− (2c)(2+d)/2

cd/4(1 + c)d/2(1− c)2

)8/(8+d)

. (4.15)
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Table 3: Explicit formulas for a2,m(x; f)

Kernel a2,m(x; f)

G
∑d

j=1

(
∂2f(x)
∂2xj

+ 5
6
xj

∂3f(x)
∂3xj

+ 1
8
xj

∂4f(x)
∂4xj

)

+
∑

i 6=j

(
∂2f(x)
∂xj∂xi

+ xi

2
∂3f(x)
∂2xi∂xj

+
xixj

4
∂4f(x)

∂2xi∂2xj

)

MG
∑d

j=1

(
xj

3
∂3f(x)
∂3xj

+
x2
j

8
∂4f(x)
∂4xj

)
1(xj > 2h)

+1
2

∑d
j=1

(
ξ2h(xj) + ξh(xj) +

xj

h

)
∂2f(x)
∂2xj

1(xj ≤ 2h)

+
∑

i 6=j
xixj

4
∂4f(x)

∂2xj∂2xi
1(xi > 2h; xj > 2h)

+
∑

i 6=j ξh(xj)ξh(xi)
∂2f(x)
∂xj∂xi

1(xj ≤ 2h; xi ≤ 2h)

IG 1
2

∑d
j=1

(
x5j

∂3f(x)
∂3xj

+
x6
j

4
∂4f(x)
∂4xj

)
+
∑

i 6=j

x3
i x

3
j

4
∂4f(x)

∂2xj∂2xi

RIG 1
2

∑d
j=1

(
∂2f(x)
∂2xj

+ xj
∂3f(x)
∂3xj

+
x2
j

4
∂4f(x)
∂4xj

)
+
∑

i 6=j
xixj

4
∂4f(x)

∂2xj∂2xi

LN
∑d

j=1

(
xj

8
∂f(x)
∂xj

+
7xj

8
∂2f(x)
∂2xj

+
3x3

j

4
∂3f(x)
∂3xj

+
x4
j

8
∂4f(x)
∂4xj

)

+
∑

i 6=j xixj

(
∂2f(x)
∂xj∂xi

+ 2xi
∂3f(x)
∂2xi∂xj

+
xixj

4
∂4f(x)

∂2xi∂2xj

)

BS
∑d

j=1

(
3x2

j

4
∂2f(x)
∂2xj

+
3x3

j

4
∂3f(x)
∂3xj

+
x4
j

8
∂4f(x)
∂4xj

)

+
∑

i 6=j xixj

(
∂2f(x)
∂xj∂xi

+
xixj

4
∂4f(x)

∂2xi∂2xj

)
+

x2
i

2
∂3f(x)
∂2xi∂xj

NM 1
8

∑d
j=1

(
∂2f(x)
∂2xj

+
xj

3
∂3f(x)
∂3xj

+
x2
j

4
∂4f(x)
∂4xj

)
1(xj > 2h)

+
∑

i 6=j
xixj

16
∂4f(x)

∂2xj∂2xi
1(xi > 2h; xj > 2h)

+
∑d

j=1

((
ξh(xj) +

xj

h

)2 Γ

(

ξh(xj)+
xj
h

2

)

Γ

(

ξh(xj)+
xj
h

2
+1

)

Γ2

(

ξh(xj)+
xj
h

+1

2

)

−2xjξh(xj)

h
+
(xj

h

)2
)
1(xj ≤ 2h)

+
∑

i 6=j ξh(xj)ξh(xi)
∂2f(x)
∂xj∂xi

1(xj ≤ 2h; xi ≤ 2h)

B
∑d

j=1

(
−2(1− 2xj)

∂f(x)
∂xj

+ 1
2
(11x2j − 11xj + 2)∂

2f(x)
∂2xj

)

+
∑d

j=1

(
5
6
xj(1− xj)(1− 2xj)

∂3f(x)
∂3xj

+ 1
8
x2j(1− xj)

2 ∂
4f(x)
∂4xj

)

+
∑

i 6=j

(
(1− 2xi)(1− 2xj)

∂2f(x)
∂xj∂xi

+ 1
2
(1− 2xi)xj(1− xj)

∂3f(x)
∂xi∂2xj

)

+
∑

i 6=j
1
4
xi(1− xi)xj(1− xj)

∂4f(x)
∂2xi∂2xj
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Remark 4.7. Observe that Assumption 2 guarantees that the smoothing parameter h
converges slower than O(n−1/((rj+1/2)d+2)). As we can see, the optimal bandwidth parameter
hopt is of order O(n−2/(8+d)) for both estimators. This means that our requirement is
fulfilled for the G, MG, RIG, NM and B kernel only in the case d < 4. For other kernels,
hopt does not fulfill this assumption. From a practical point of view, this should not be
a major problem, due to the fact that the bandwidth in finite sample examples is often
chosen by a data driven method and nonparametric density estimation suffers extremely
from the curse of dimensionality in dimensions higher than 3.

Similarly, we can derive the rates for boundary vectors. The MSE of both estimators is
in this case of order O(h4 + (nhd(rj+1/2))−1) and the optimal bandwidth parameter h∗opt
consequently fulfills h∗opt = O(n−1/(4+d(rj+1/2))), which leads to an optimal mean squared
error for boundary vectors of order

MSE∗
(
f̂JLN,m,h(x)

)
=MSE∗

(
f̂TS,m,h(x)

)
= O(n−4/((4+d(rj+1/2)))).

It is reasonable to include also a global performance criterion such as the mean integrated
squared error (“MISE”). As suggested in Chen (2000), a trimming argument yields that
the unwanted slower rates near the origin do not affect the global performance. One can
easily use this argument in each direction due to the product form of the chosen kernel;
see Bouezmarni and Rombouts (2010). Thus, we have the following rates for the MISEs
of the proposed estimators:

MISE
(
f̂TS,m,h(x)

)
=
h4

c2

∫ ∞

0

p2m(x)dx+
λd(c)

nhd/2

∫ ∞

0

f(x)νm(x)dx+ o(h4 + n−1h−d/2)

as well as

MISE
(
f̂JLN,m,h(x)

)
= h4

∫ ∞

0

q2m(x)dx+
1

nhd/2

∫ ∞

0

f(x)νm(x)dx+ o(h4 + n−1h−d/2),

provided that all appearing integrals exist.
The optimal smoothing parameters for the MISE are, hence, given by

h̄opt,TS,m = n−2/(8+d)

(
λd(c)c

2d
∫∞
0
f(x)νm(x)dx

8
∫∞
0
p2m(x; f)

)2/(8+d)

and

h̄opt,JLN,m = n−2/(8+d)

(
d
∫∞
0
f(x)νm(x)dx

8
∫∞
0
q2m(x; f)dx

)2/(8+d)

.

Consequently, the optimal MISEs are of order

MISEopt(f̂TS,m,h(x))

∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)
γd(c)

(∫ ∞

0

p2m(x; f)dx

)2/(8+d)(∫ ∞

0

νm(x)f(x)dx

)8/(8+d)
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and

MISEopt(f̂JLN,m,h(x))

∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)

(∫ ∞

0

q2m(x; f)dx

)2/(8+d)(∫ ∞

0

νm(x)f(x)

)8/(8+d)

.
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Figure 4: Plots of the functions γd(c) (cf. (4.15)) for c ∈ (0, 1). Left γ2, right γ3.

Plots of the functions γ2 and γ3 are displayed in Figure 4. We see that γ2 as well as γ3 are
strictly decreasing on the interval (0, 1]. We decided to present both plots here to show
that monotonicity property not only holds in the two-dimensional case. For the simula-
tions in Funke and Kawka (2015), c was chosen according to c = 0.7, because there is not
much difference between γ2(0.7) ≈ 2.0974 and limc→1 γ2(c) ≈ 2.0814.

Remark 4.8. We can easily transmit the results when bias and variance have to be
established at a generic vector x ∈ (Rd)+. As we have seen, the bias remains unchanged
and is uniformly of order O(h2) over the whole support. Moreover, the variance exhibits
the following order:

V ar
(
f̂JLN,m,h(x)

)
= V ar

(
f̂TS,m,h(x)

)
= O

(
n−1

d∏

l=1

h−(1/2+rj1l)

)
,

which depends on the location of the components and, furthermore, where 1l := 1(xl/h→
κl > 0) is a function indicating whether a component lies in the boundary region.

Proof of Theorem 4.5. The proof largely follows Hirukawa (2010) and can also be found
in Funke and Kawka (2015). For the sake of brevity, we will only focus on the proof for
the use of Gamma kernels. Moreover, in Hirukawa and Sakudo (2012), the univariate case
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is studied in more detail compared to Hirukawa and Sakudo (2014).
For the bias of the MV-TS estimator, we start with a multivariate Taylor expansion of f up
to order 4. Therefore, let Yi, i = 1, ..., d, be independent and Gamma-distributed random
variables such that Yi ∼ G(xi/h + 1, h) with mean µi = xi + h. Using the smoothness
assumption on the unknown density f as well as the fact that

E[(Yi − xi)
r] = O(h3), as n→ ∞ for r ≥ 5,

(see Lemma B2 in Gospodinov and Hirukawa (2007)), we can derive that

Ih(x) := E[f̂G,h(x)]

=

∫

R+

...

∫

R+

d∏

j=1

KG,h,xj
(yj)f(y1, ..., yd)dy1...dyd = E[f(Y1, ..., Yd)]

= f(x1, ..., xd) +
d∑

j=1

E[Yj − xj]
∂f(x1, ..., xd)

∂xj
+

d∑

j=1

E[(Yj − xj)
2]

2

∂2f(x1, ..., xd)

∂2xj

+
∑

i 6=j

E[Yi − xi]E[Yj − xj ]
∂2f(x1, .., xd)

∂xi∂xj
+

d∑

j=1

E[(Yj − xj)
3]

6

∂3f(x1, .., xd)

∂3xj

+
∑

i 6=j

E[(Yj − xj)]E[(Yi − xi)
2]

2

∂3f(x1, .., xd)

∂xj∂2xi
+

d∑

j=1

E[(Yj − xj)
4]

24

∂4f(x1, .., xd)

∂4xj

+
∑

i 6=j

E[(Yj − xj)
2]E[(Yi − xi)

2]

4

∂4f(x1, .., xd)

∂2xj∂2xi
+ o(h2)

= f(x1, ..., xd) + h

(
d∑

j=1

(
∂f(x1, ..., xd)

∂xj
+
xj
2

∂2f(x1, ..., xd)

∂2xj

))

+ h2
( d∑

j=1

(
∂2f(x1, ..., xd)

∂2xj
+

5xj
6

∂3f(x1, ..., xd)

∂3xj
+
xj
8

∂4f(x1, ..., xd)

∂4xj

)

+
∑

i 6=j

(
∂2f(x1, .., xd)

∂xi∂xj
+
xixj
4

∂4f(x1, ..., xd)

∂2xj∂2xi
+
xi
2

∂3f(x1, ..., xd)

∂2xi∂xj

))
+ o(h2)

:= f(x1, ..., xd)

(
1 + h

a1,G(x; f)

f(x)
+ h2

a2,G(x; f)

f(x)
+ o(h2)

)
,

where all appearing Landau symbols describe the asymptotical order as n→ ∞, which is
also true for the following derivations in this proof.
We remark that the main difference between the univariate and the multivariate case is
the appearance of cross derivatives. One important tool is the independence of the random
variables Yj, j = 1, ..., d, in order to derive the mixed moments. Moreover, not all families
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of asymmetric kernels are exactly centered at x, i.e. the Gamma kernels. Hence, in such
cases additional cross terms appear.
The terms Ih(x) and Ih/c(x) can be handled in an analogous manner. Thus, taking the
logarithm on both sides and expanding the logarithm by a Taylor expansion yields

log(Ih(x)) =: log(f(x)) + log(1 + ã(x))

= log(f(x)) + h
a1,G(x; f)

f(x)
+ h2

a2,G(x; f)

f(x)
− h2

a21,G(x; f)

2f 2(x)
+ o(h2)

= log(f(x)) + h
a1,G(x; f)

f(x)
+

h2

f 2(x)

(
f(x)a2,G(x; f)−

a21,G(x; f)

2

)
+ o(h2).

In addition, for log(Ih/c(x)) we have that

log(Ih/c(x)) = log(f(x)) +
ha1,G(x; f)

cf(x)
+

h2

c2f 2(x)

(
a2,G(x; f)−

a21,G(x; f)

2

)
+ o(h2)

and, consequently,

1

1− c
log(Ih(x))−

c

1− c
log(Ih/c(x))

= log(f(x))− h2

c

(
a2,G(x; f)f(x)− a21,G(x; f)/2

f 2(x)

)
+ o(h2).

In a first order approximation of the exponential function, the following statement holds:

(Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c = f(x)

(
1 +

h2

c

(
a21,G(x; f)

2f 2(x)
− a2,G(x; f)

f(x)

)
+ o(h2)

)

= f(x) +
h2

c

(
a1,G(x; f)

2f(x)
− a2,G(x; f)

)
+ o(h2).

Now let Z := f̂G,h(x)−Ih(x) andW := f̂G,h/c(x)−Ih/c(x). As we will see in the derivation
of the variance, E[Z2], E[W 2], and E[ZW ] are at most of order O(n−1b−d) as n → ∞.
Using C1, ii), we can deduce that

O(n−1b−d) = o(h2).

By a first order Taylor expansion of the function f̃(x) := (1+ x)a, a > 0, around zero, we
find that

f̂TS,G,h(x) = (Ih(x))
1

1−c

(
1 +

Z

Ih(x)

) 1
1−c (

Ih/c(x)
) −c

1−c

(
1 +

W

Ih/c(x)

) −c
1−c

= (Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c

(
1 +

Z

(1− c)Ih(x)

)(
1− cW

(1− c)Ih/c(x)

)

= (Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c +

Z

1− c

(
Ih(x)

Ih/c(x)

) c
1−c

− cW

1− c

(
Ih(x)

Ih/c(x)

) 1
1−c

+O(n−1h−d).

(4.16)
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Using the approximations of the expectations Ih(x) and Ih/c(x), we see that they are
asymptotically equivalent in terms of their order, which means that

Ih(x) = Ih/c(x) +O(h).

Using this property together with Assumption C1, ii) as well as the fact that Z and W
are centered, we conclude that

E[f̂TS,G,h(x)] = (Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c +O(n−1h−d)

= f(x) +
h2

c(1− c)

(
a21,G(x; f)

2f(x)
− a2,G(x; f)

)
+ o(h2), as n→ ∞.

Making use of (4.16), the variance can be decomposed as follows:

V ar
(
f̂TS,G,h(x)

)
= E

[(
Z

1− c
− cW

1− c

)2
]
+O(n−1)

=
1

(1− c)2

(
V ar(f̂G,h(x))− 2cCov(f̂G,h(x), f̂G,h/c(x)) + c2V ar(f̂G,h/c(x))

)
+O(n−1).

We will restrict ourselves only to the case where x is a vector including interior components
xj for all j = 1, ..., d. Using the results in Bouezmarni and Rombouts (2010), we can
conclude that

V ar(f̂G,h(x)) = n−1h−d/2(2
√
π)−df(x1, ..., xd)

d∏

j=1

x
−1/2
j + o(n−1h−d/2),

V ar(f̂G,h/c(x)) = n−1h−d/2cd/2(2
√
π)−df(x1, ..., xd)

d∏

j=1

x
−1/2
j + o(n−1h−d/2),

and

Cov(f̂G,h(x), f̂G,h/c(x)) = n−1E

[
d∏

j=1

KG,h,xj
(X1j)

d∏

k=1

KG,h/c,xk
(X1k)

]
+O(n−1)

= n−1

d∏

j=1

Ch(xj)(f(x1, ..., xd) + o(1)) +O(n−1),

where

Ch(xj) :=
Γ
(

xj(1+c)

h
+ 1
) (

h
1+c

)xj(1+c)

h
+1

Γ
(xj

h
+ 1
)
h

xj
h
+1Γ

( cxj

h
+ 1
) (

h
c

) cxj
h

+1
.
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Using equation (6) in Hirukawa (2010) and its adjacent derivations for the function Ch(xj),
the covariance can be approximated by

Cov(f̂G,h(x), f̂G,h/c(x)) = n−1h−d/2

(
2c

1 + c

)d/2

f(x1, ..., xd)
d∏

j=1

x
−1/2
j + o(n−1h−d/2).

Bringing all three parts of the variance of the MV-TS estimator together, we are finally
able to deduce that

V ar
(
f̂TS,G,h(x)

)
·
=

1

(1− c)2

(
n−1h−d/2 f(x1, ..., xd)

(2
√
π)d
∏d

j=1 x
1/2
j

(
1− 2c

(
2c

1 + c

)d/2

+ c2+d/2

))

= n−1h−d/2 f(x1, ..., xd)

(2
√
π)d
∏d

j=1 x
1/2
j

(
(1 + c)d/2(1 + c(d+4)/2)− (2c)(d+2)/2

(1− c)2(1 + c)d/2

)

:= n−1h−d/2 f(x1, ..., xd)λd(c)

(2
√
π)d
∏d

j=1 x
1/2
j

.

Now we will state the proof of the bias and variance approximation for the MV-JLN
estimator. Again, the proof is based on the results in Hirukawa (2010) and can be found
in Funke and Kawka (2015).

Proof of Theorem 4.6. We will start with the derivation of the bias term. For this purpose,
we decompose the considered estimator as follows:

f̂JLN(x) = f̂G(x)α̂(x) = f(x)

(
1 +

f̂G(x)− f(x)

f(x)

)
((α̂(x)− 1) + 1),

where

α̂(x) = α̂(x1, ..., xd) :=
1

n

n∑

i=1

∏d
j=1KG,h,xj ,(Xij)

f̂G(Xi)
.

The expectation of the proposed estimator can therefore be decomposed as

E[f̂JLN(x)] = f(x)

+ f(x)

(
E

[
f̂G(x)− f(x)

f(x)

]
+ E[(α̂(x)− 1)]E

[
(f̂G(x)− f(x))

f(x)
(α̂(x)− 1)

])

:= f(x) + f(x)(I + II + III).
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We will handle the terms inside the brackets separately and start with term II. Using a
geometric expansion around f(x), α̂(x) can be approximated by the following:

α̂(x) =
1

n

n∑

i=1

∏d
j=1KG,h,xj

(Xij)

f(Xi)

(
1− f̂G(Xi)− f(Xi)

f(Xi)

+

(
f̂G(Xi)− f(Xi)

f(Xi)

)2)
+ o(h2 + (nhd/2)−1), as n→ ∞.

Notice that the order of the remainder term is o(h2+(nhd/2)−1) = o(h2) due to Assumption
C1, ii). Moreover, the order of the remainder term can be determined by the bias and
variance approximation of the uncorrected product estimator examined in Bouezmarni
and Rombouts (2010). Now we will evaluate the first moment conditioned on Xi :=
(Xi1, ..., Xid)

E

[
f̂G(Xi)− f(Xi)

f(Xi)

∣∣∣∣Xi

]
= E

[
f(Yi)− f(Xi)

f(Xi)

∣∣∣∣Xi

]
,

where Yi := (Yi1, ..., Yid) is a random vector such that Yij
D
= G(Xij/h + 1, h). A Taylor

expansion around (µi1, ..., µid) := (Xi1 + h, ..., Xid + h) yields

E[f(Yi)|Xi] = E

[
f(µi1, ..., µid) +

1

2

d∑

j=1

(Yij − µij)
2 ∂

2f

∂2xj
+

1

6

d∑

j=1

(Yij − µij)
3 ∂

3f

∂3xj

+
1

24

d∑

j=1

(Yij − µij)
4 ∂

4f

∂4xj
+

d∑

j 6=k

(Yij − µij)
2(Yik − µik)

2 ∂4f

∂2xj∂2xk

∣∣∣∣Xi

]
+ o(h2)

= f(µi1, ..., µid) +
1

2

d∑

j=1

V ar(Yij|Xi)
∂2f

∂2xj
+

1

6

d∑

j=1

E[(Yij − µj)
3|Xi]

∂3f

∂3xj

+
1

24

d∑

j=1

E[(Yij − µij)
4|Xi]

∂4f

∂4xj
+

d∑

j 6=k

V ar(Yij|Xi)V ar(Yik|Xi)
∂4f

∂2xj∂2xk
+ o(h2)

= f(µi1, ..., µid) +
1

2

d∑

j=1

(Xijh+ h2)
∂2f

∂2xj
+

1

6

d∑

j=1

(2h2Xij + 8h3)
∂3f

∂3xj

+
1

24

d∑

j=1

3h2
∂4f

∂4xj
+

d∑

j 6=k

(Xijh+ h2)(Xikh+ h2)
∂4f

∂2xj∂2xk
+ o(h2).

Note that the other terms vanish due to the independence of the Gamma distributed
random variables Yij for j = 1, ..., d. Now expand these terms again, but now around the
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point of interest Xi = (Xi1, ..., Xid):

f(µi1, ..., µid) +
1

2

d∑

j=1

(Xijh+ h2)
∂2f

∂2xj
+

1

6

d∑

j=1

(2h2Xij + 8h3)
∂3f

∂3xj

+
1

24

d∑

j=1

3h2
∂4f

∂4xj
+

d∑

j 6=k

(Xijh+ h2)(Xikh+ h2)
∂4f

∂2xj∂2xk
+ o(h2)

= f(Xi1, ..., Xid) + h

d∑

j=1

∂f

∂xj
+
h2

2

d∑

j=1

∂2f

∂2xj
+ h2

d∑

j 6=k

∂2f

∂xj∂xk

+
1

2

d∑

j=1

(Xijh+ h2)

(
∂2f

∂2xj
+ h

∂3f

∂3xj

)
+

1

6

d∑

j=1

2h2Xij
∂3f

∂3xj

+
h2

8

d∑

j=1

∂4f

∂4xj
+ h2

d∑

j 6=k

XijXik
∂4f

∂2xj∂2xk
+ o(h2)

= f(Xi) + h

(
d∑

j=1

∂f

∂xj
+

1

2
Xij

∂2f

∂2xj

)

+ h2

(
d∑

j=1

∂2f

∂2xj
+

5Xij

6

∂3f

∂3xj
+

1

8

∂4f

∂4xj
+

d∑

j 6=k

∂2f

∂xj∂xk
+XijXik

∂4f

∂2xj∂2xk

)
+ o(h2).

Therefore, we can approximate the first conditional moment of the examined difference
as

E

[
f̂G(Xi)− f(Xi)

f(Xi)

∣∣∣∣Xi

]
:= h

a1(Xi)

f(Xi)
+ h2

a2(Xi)

f(Xi)
+ o(h2)

:= hg1(Xi) + h2g2(Xi) + o(h2), as n→ ∞,

where the functions g1 and g2 are defined as

g1(x) =
a1,G(x)

f(x)
=

∑d
j=1

(
∂f
∂xj

+ 1
2
xj

∂2f
∂2xj

)

f(x)

as well as

g2(x) =
a2,G(x)

f(x)
=

∑d
j=1

(
∂2f
∂2xj

+
5xj

6
∂3f
∂3xj

+ 1
8

∂4f
∂4xj

)
+
∑d

j 6=k

(
∂2f

∂xj∂xk
+ xjxk

∂4f
∂2xj∂2xk

)

f(x)
.

Using the usual bias and variance decomposition and under the already known order of
the variance, we can conclude that

E



(
f̂G(Xi)− f(Xi)

f(Xi)

)2 ∣∣∣∣Xi


 = h2g21(Xi) + o(h2), as n→ ∞.
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Conditioned on Xi, the i-th summand of α̂(x) can be approximated by

∏d
j=1KG,h,xj

(Xij)

f(Xi)

(
1− hg1(Xi)− h2(h2g(Xi)− g2(Xi))

)
+ o(h2), as n→ ∞.

Now we are able to derive the unconditioned expectation of α̂(x):

E[α̂(x)] = E[E[α̂(x)|Xi]]

= E

[∏d
j=1KG,h,xj

(Xij)

f(Xi)

]
− hE

[
g1(Xi)

∏d
j=1KG,h,xj

(Xij)

f(Xi)

]

+ h2E

[
(g2(Xi)− g21(Xi))

∏d
j=1KG,h,xj

(Xij)

f(Xi)

]
+ o(h2)

=

∫ ∞

0

...

∫ ∞

0

∏d
j=1KG,h,xj

(yj)

f(y1, ..., yd)
f(y1, ..., yd)dy1...dyd − hE[g1(Z)]

+ h2E[(g2(Z)− g21(Z))] + o(h2), as n→ ∞,

= 1− hE[g1(Z)] + h2E[(g2(Z)− g21(Z))] + o(h2), as n→ ∞,

where Z := (Z1, ..., Zd) denotes a random vector consisting of independent Gamma dis-
tributed margins with Zk ∼ G(xk/h+1, h), k = 1, ..., d. Now we expand both summands by
a Taylor expansion. At first, we expand g1 and g2 around (ν1, ..., νd) := (x1+h, ...., xd+h)
and, afterwards, around x = (x1, ..., xd) to obtain

E[g1(Z)] = g1(x) + h

d∑

j=1

(
∂g1
∂xj

+
xj
2

∂2g1
∂2xj

)
+ o(h), as n→ ∞

as well as
E[(g2(Z)− g21(Z))] = g2(x)− g21(x) +O(h), as n→ ∞.

Thus, the term II can finally be approximated by

II = E[α̂(x)− 1]

= −hg1(x)− h2

(
d∑

j=1

(
∂g1
∂xj

+
xj
2

∂2g1
∂2xj

)
+ g2(x)− g21(x)

)
+ o(h2), as n→ ∞.

Using the above results, term I is of the following form

I = E

[
(f̂G(x)− f(x))

f(x)

]
= hg1(x) + h2g2(x) + o(h2), as n→ ∞.
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Finally, by the use of the Cauchy-Schwarz inequality and the derived results for terms I
and II, we have for the last term III that

III = E

[
(f̂G(x)− f(x))

f(x)
(α̂(x)− 1)

]
= −h2g21(x) + o(h2), as n→ ∞.

Assembling all results, we have for the bias of our proposed estimator that

E[f̂JLN(x)] = f(x) + f(x)

(
hg1(x) + h2g2(x)

− hg1(x)− h2

(
d∑

j=1

(
∂g1
∂xj

+
xj
2

∂2g1
∂2xj

)
+ g2(x)− g21(x)

)
− h2g21(x)

)
+ o(h2)

= f(x)− h2f(x)
d∑

j=1

(
∂g1
∂xj

+
xj
2

∂2g1
∂2xj

)
+ o(h2), as n→ ∞,

=: f(x)− h2f(x)a1,G(x; g) + o(h2), as n→ ∞.

We will now turn to the variance of the MV-JLN estimator. At first, we observe that,
under the consistency of the product Gamma kernel based estimator and a geometric
expansion, the following asymptotic representation of f̂JLN(x) holds true.

f̂JLN(x) = f̂G(x)

(
1

n

n∑

i=1

∏d
j=1KG,h,xj

(Xij)

f̂G(Xi)

)

= f(x)

(
1 +

f̂G(x)− f(x)

f(x)

)(
1

n

n∑

i=1

∏d
j=1KG,h,xj

(Xij)

f(Xi)

)

×
(
1− f̂G(Xi)− f(Xi)

f(Xi)
+ oP

(
f̂G(Xi)− f(Xi)

f(Xi)

))

= f(x)

(
1

n

n∑

i=1

∏d
j=1KG,h,xj

(Xij)

f(Xi)

)(
2− f̂G(Xi)

f(Xi)

)
+ oP ((nh

d/2)−1)

:= f(x)
1

n

n∑

l=1

ζ(Xl) + oP ((nh
d/2)−1),

where

ζ(u) := ζ(u1, ..., ud) = 2

∏d
j=1KG,h,xj

(uj)

f(u1, ..., ud)
− 1

n

n∑

i=1

∏d
j=1KG(Xij, h)(uj)KG(xj, h)(Xij)

f 2(Xi1, ..., Xid)

:= ζ1(Xl)− ζ2(Xl).
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We will now approximate the average ζ2 for a given data vector

Xi := (Xi1, ..., Xid) 6= (0, ..., 0)

as follows:

ζ2(Xi1, ..., Xid) = ζ2(Xi)
·
= ψ2(Xi)

:= E

[
1

n

n∑

j=1

∏d
k=1KG,h,Xjk

(Xik)KG,h,xk
(Xjk)

f 2(Xj)

∣∣∣∣Xi

]

= E

[∏d
k=1KG,h,Xjk

(Xik)KG,h,xk
(Xjk)

f 2(Xj)

∣∣∣∣Xi

]

=

∫

(R+)d

∏d
k=1KG,h,yk(Xik)KG,h,xk

(yk)

f 2(y1, ...yd)
f(y1, ..., yd)dy1...dyd

:=

∫

(R+)d
ψG(y1, ..., yd)

d∏

k=1

KG,h,yk(Xik)dy1...dyd

=

∫

(R+)d
ψG(y1, ..., yd)

d∏

k=1

X
yk/h
ik exp(−Xik/h)

hyk/h+1Γ(yk/h+ 1)
dy1...dyd, (4.17)

where

ψG(y1, ..., yd) :=

∏d
k=1KG,h,xk

(yk)

f(y1, ..., yd)
.

Let us now approximate the integrands using Stirling´s approximation of the Gamma
function. Due to the fact that h→ 0 as n→ ∞, we will only focus on first and second order
expansions and omit the remainder terms converging with a faster rate. Now approximate
the following term for every j = 1, ..., d:

u
yj/h
j exp(−uj/h)

hyj/h+1Γ(yj/h+ 1)
= exp

(yj
h
log(uj)−

uj
h

− log(yj)−
yj
h
log(h)− log

(
Γ
(yj
h

)))
.

Make then use of Stirling´s series for the Gamma function; see Wrench (1968). It holds
that

log
(
Γ
(yj
h

))
= (

yj
h
−1

2
) log(yj)−(

yj
h
−1

2
) log(h)−yj

h
+log(

√
2π)+

h

12yj
+O(h3), as n→ ∞.
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Now we are able to approximate the integral term 4.17 according to

∫

(R+)d
ψG(y1, ..., yd)

d∏

k=1

X
yk/h
ik exp(−Xik/h)

hyk/h+1Γ(yk/h+ 1)
dy1...dyd

=

∫

(R+)d
ψG(y1, ..., yd)

d∏

k=1

1√
ykh2π

× exp

(
yk
h

log

(
Xik

yk

)
− (Xik − yk)

h
− h

12yk
+O(h3)

)
dy1...dyd.

We will further approximate this integral and utilize the substitution

wk =
Xik − yk
h1/2

, k = 1, .., d.

Using a first order Taylor Expansion of the logarithm and the exponential function we
have

∫ Xi1/h
1/2

−∞
...

∫ Xid/h
1/2

−∞
ψG(Xi1 − h1/2w1, ..., Xid − h1/2wd)

d∏

k=1

(2π)−1/2

(Xik − h1/2)1/2

× exp

((
Xik − h1/2wk

h

)
log

(
Xik

Xik − h1/2wk

)

− h−1/2wk −
h

12(Xik − h1/2wk)
+O(h3)

)
dw1...dwd

=

∫ Xi1/h
1/2

−∞
...

∫ Xid/h
1/2

−∞
ψG(Xi1 − h1/2w1, ..., Xid − h1/2wd)

d∏

k=1

(2π)−1/2

(Xik − h1/2)1/2

× exp

(
− w2

k

2uik

)(
1− h1/2w3

k

6X2
ik

− hw4
k

12X3
ik

− h

12Xik

+
hw6

k

72X4
ik

+O(h3/2)

)
dw1...dwd. (4.18)

Now make use of the final substitution

vk =
wk

X
1/2
ik

, k = 1, ..., d,

and denote, as usual, by φ the density and by Φ the cumulative distribution function of
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a standard normal distributed random variable. It holds that 4.18 can be expressed as

∫ √
Xik/h

−∞
...

∫ √
Xid/h

−∞
ψG(Xi1 − (hXi1)

1/2v1, ..., Xid − (hXid)
1/2vd)

d∏

k=1

√(
Xik

Xik − (Xikh)1/2vk

)
φ(vk)

×
(
1− h1/2v3k

6
√
Xik

− hv4k
12Xik

− h

12Xik

+
hv6k
72Xik

+O(h3/2)

)
dv1...dvd

·
= ψG(Xi1, ..., Xid)×

d∏

k=1

{
1 , if Xik/h→ ∞, a.s.

Φ(κ
1/2
k ) , if Xik/h→ κk; a.s.

; as n→ ∞

=
d∏

k=1

KG,h,xk
(Xik)

f(Xi1, ..., Xid)
×
{
1 , if Xik/h→ ∞, a.s.

Φ(κ
1/2
k ) , if Xik/h→ κk; a.s.

; as n→ ∞.

To conclude the rate of the variance, we have to determine the second moment of the
function ζ, where we use the following abbreviation:

ρk =

{
1 , if Xik/h→ ∞, a.s.

2− Φ(κ
1/2
k ) , if Xik/h→ κk; a.s.

; as n→ ∞.

Now observe that, by adapting the trimming argument of Chen (1999) to the multivariate
case (see Bouezmarni and Rombouts (2010), equation 7b), it holds that

E[ζ2(X11, ..., X1d)] = E



(

d∏

k=1

ρk
KG,h,xk

(X1k)

f(X1)

)2



=
d∏

k=1

A(xk, h)E[f
−1(Y1, ..., Yd)] = f−1(x1, ..., xd)

d∏

j=1

A(xj, h) +O(h),

where Yi, i = 1, ..., d are independent and Gamma distributed such that Yi ∼ G(2xi/h +
1, h/2) and

A(xj, h) :=
h−1Γ(2xj/h+ 1)

22xj/h+1Γ2(xj/h+ 1)
=





h−1/2

2
√
πxj

, if xj/h→ ∞
h−1Γ(2κj+1)

22κj+1Γ2(κj+1)
, if xj/h→ κj.
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Therefore, we finally have for an interior vector x = (x1, ..., xd) that

V ar(f̂JLN(x)) =
f 2(x)E[ζ2(X1)]

n

=
f(x)

nhd/2

d∏

k=1

1

2
√
πxk

+ o((nhd/2)−1), as n→ ∞.

4.4 Bandwidth selection for MBC estimators

In this section, we shortly want to focus on the problem of selecting a proper bandwidth
for the proposed two MBC estimators. We will restrict ourselves to the case d = 2, in
order to keep the notations and formulas as simple as possible. According to (4.13) and
(4.14), the optimal bandwidths hopt,TS,m and hopt,JLN,m for the MSE are proportional to
n−1/5. Hence, an intuitive and rather simple choice is given by letting

hopt,TS,m = hopt,JLN,m = Coptn
−1/5,

where Copt is a generic constant, which has to be chosen by the practitioner.
The rule of thumb by Scott for multivariate nonparametric density estimation (see Sil-
verman (1986)) is given by

hj = σ̂jn
−1/6, j = 1, 2,

where σ̂j denotes the standard deviation of the j-th component of the random vector
(X1, X2). This leads to an analogous rule of thumb in our context, which will be used
in the following section. Due to the fact that comparable selection procedures are highly
computable, a rule of thumb provides a very simple and fast way to select a suitable band-
width for checking the performance of a proposed estimator, although it only minimizes
theoretically the pointwise M(I)SE.
When invoking the integrated squared error (“ISE”) for a general density estimator f̂(x)

ISE(h) :=

∫
(f̂(x)− f(x))2 dx =

∫
f̂ 2(x) dx− 2

∫
f̂(x)f(x) dx+

∫
f 2(x) dx,

where h = (h1, h2), as global performance criterion, a widely used approach for minimizing
this error is the so called least squares cross-validation (“LSCV”) method. Since the last
term of the ISE is independent of h, we are only interested in finding a minimum of the
remaining two terms. The integral in the middle still depends on the unknown density
function f , but we can represent this expression as

∫
f̂(x)f(x) dx = E[f̂(X)].

120



The LSCV selected bandwidth h is hence defined as

LSCV(h) = argminh1,h2

(∫
f̂ 2
g,m,h(x) dx− 2Ê[f̂g,m,h(X1, X2)]

)
,

where Ê denotes the expectation with respect to the empirical distribution and g =TS or
JLN. The last expression is determined via the so-called “leave-one-out” estimator, which
we define as

Ê[f̂TS,m,h(X1, X2)] :=
1

n

n∑

i=1

f̂TS,m,h,−i(Xi1, Xi2)

=
1

n2

n∑

i=1

(
n∑

j=1
j 6=i

Km,h1,Xi1
(Xj1)Km,h2,Xi2

(Xj2)

) 1
1−c

(
n∑

j=1
j 6=i

Km,h1/c,Xi1
(Xj1)Km,h2/c,Xi2

(Xj2)

)− c
1−c

for the TS estimator and as

Ê[f̂JLN,m,h(X1, X2)] =
1

n

n∑

i=1

f̂JLN,m,h,−i(Xi1, Xi2)

=
1

n2

n∑

i=1

(
n∑

j=1
j 6=i

Km,h1,Xi1
(Xj1)Km,h2,Xi2

(Xj2)
n∑

j=1
j 6=i

Km,h1,Xi1
(Xj1)Km,h2,Xi2

(Xj2)∑n
k=1Km,h1,Xj1

(Xk1)Km,h2,Xj2
(Xk2)

)

for the JLN estimator. The integral is approximated via a proper discretization. For further
details, we refer to Funke and Kawka (2015), where this criterion is used for selecting the
bandwidth in a real data example.

4.5 Finite sample performance

In this section, we shortly want to present some finite sample results for the proposed
MBC estimators. The following results originate from Funke and Kawka (2015), where
a variety of additional performances were made. For illustration purposes, we will only
focus on selected results and refer the interested reader to the aforementioned article for
further details. Hence, let

g(x) =

(
2x

3

)1/2

exp
(
− (2x/3)3/2

)
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Figure 5: Surface and contour plots of estimated Weibull (1.5, 1.5) density. (a),(d): JLN-
estimated density with G kernel. (b),(e): True density. (c),(f): Squared error.

be the univariate density of a Weibull distribution with parameters (1.5, 1.5) and, more-
over, let

f(x, y) = g(x)g(y)

be the joint density of two independent Weibull (1.5, 1.5) distributed random variables.
We simulated 1000 data sets of n = 250 and n = 500 data points and performed a kernel
estimation via the Gamma and the Modified Gamma kernels. Furthermore, we measured
the performance in terms of the mean root integrated squared error (“MRISE”), which is
defined by

MRISE
(
f̂g,m,h

)
= E

[(∫ (
f̂g,m,h(x)− f(x)

)2
dx

)1/2
]
,

as well as the integrated absolute bias (“IAB”)

IAB
(
f̂g,m,h

)
=

∫ ∣∣∣E
[
f̂g,m,h(x)

]
− f(x)

∣∣∣ dx,

where g = TS, JLN or C. Here, C denotes the classical product kernel estimator, based
on asymmetric kernels. Moreover, the expected values are approximated by the sample
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Table 4: Simulation results: MRISE, Standard deviation (SD), and IAB for the estimation
of f(x, y) = g(x)g(y), where g is either the density of a Gamma(1.5,1) or a Weibull(1.5,1.5)
random variable

Distribution: Gamma Weibull

Kernel: G MG G MG

Panel 1: n = 250

TS MRISE 0.0654 0.0688 0.0697 0.0701
SD 0.0125 0.0111 0.0151 0.0119
IAB 0.0851 0.1098 0.1052 0.1172

JLN MRISE 0.0629 0.0638 0.0662 0.0676
SD 0.0121 0.0085 0.0145 0.0103
IAB 0.1220 0.0923 0.1345 0.0968

C MRISE 0.0680 0.0653 0.0729 0.0689
SD 0.0114 0.0106 0.0130 0.0123
IAB 0.1354 0.1366 0.1440 0.1448

Panel 2: n = 500

TS MRISE 0.0564 0.0570 0.0578 0.0566
SD 0.0093 0.0068 0.0114 0.0084
IAB 0.0752 0.0939 0.0895 0.0992

JLN MRISE 0.0541 0.0556 0.0547 0.0559
SD 0.0090 0.0058 0.0111 0.0073
IAB 0.1010 0.0820 0.1119 0.0827

C MRISE 0.0574 0.0538 0.0606 0.0554
SD 0.0086 0.0079 0.0104 0.0093
IAB 0.1133 0.1116 0.1199 0.1168

mean. The integrals are approximated on an equidistant grid of 1002 points over the
square (0, 5)× (0, 5), because the probability mass of the given distributions is nearly zero
outside this square.
The bandwidths are chosen according to the mentioned rule of thumb

h1 = σ(X1)n
−1/5 and h2 = σ(X2)n

−1/5.

The results can be found in Table 4, which originates from Funke and Kawka (2015).
It turns out that the MBC methods work quite well and, moreover, especially in terms
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of the IAB, a significant improvement is obtained. In particular, when estimating the
joint density of two independent Gamma(1.5, 1) distributed random variables via the TS
estimator, the IAB for the Gamma kernel is 0.0851 whereas the IAB for the classical
product kernel is 0.1354. For further discussions and additional examples we refer to
Funke and Kawka (2015).

4.6 Nonparametric inference for multivariate diffusions

In order to create a link to the first part of this thesis, we will now again focus on time-
continuous stochastic processes, in particular on multivariate diffusions. We will see that
comparable approximations of the unknown components of the appearing drift vector
exist, as it was the case for univariate diffusions.
Hence, focus on the following multivariate diffusion model

dX t = b(X t)dt+ σ(X t)dW t, X0
D
= η, (4.19)

where
b : Rd → R

d

is a d-dimensional drift vector and

σ : Rd → R
d×d

is a dispersion matrix. Moreover, W =
(
W (1), ...,W (d)

)
is a d-dimensional Brownian mo-

tion independent of η. In our subsequent analysis, we will impose assumptions, which
ensure that (4.19) possesses a stationary solution equipped with a time invariant proba-
bility measure Γ(dx) such that η ∈ L2(Γ(dx)). Based on a high-frequency sample, we will
introduce a nonparametric estimator of b(x) for a generic vector x := (x1, ..., xd) ∈ R

d.
Afterwards, we will present an estimator based on the already introduced MBC technique
via asymmetric kernels.
Nonparametric inference for multivariate diffusion models has been considered, for in-
stance, in Bandi and Moloche (2008) and in Schmisser (2013). Bandi and Moloche (2008)
focused on non-stationary processes, which are at least Harris-recurrent. They developed
an asymptotic theory for product kernel based estimators of b and σσT . Nevertheless, we
will impose alternative assumptions and will work in a stationarity framework. In contrast
to the kernel based approach, Schmisser (2013) used a penalized least squares approach
based on model selection, which was already introduced in the first part of this thesis. In
particular, the approach of Comte et al. (2007) was adapted to the multivariate setting.
The justification of using kernel based estimators in the multivariate setting, too, lies in
the fact that b and σσT can also be recovered via infinitesimal conditional moments. In
fact, following Karatzas and Shreve (1996), Chapter 5, pp. 281, we have that

bi(x) =
1

∆
E

[
X

(i)
t+∆ −X

(i)
t

∣∣∣∣Xt = x

]
+O(∆), as ∆ → 0
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as well as

aik(x) =
1

∆
E

[(
X

(i)
t+∆ −X

(i)
t

)(
X

(k)
t+∆ −X

(k)
t

) ∣∣∣∣Xt = x

]
+O(∆), as ∆ → 0,

where Xt := (X
(1)
t , ..., X

(d)
t ) and

aik(x) :=
d∑

l=1

σil(x)σlk(x).

These approximations suggest the use of multivariate regression techniques in analogy to
the univariate case.
Therefore, let us impose that we observe a high-frequency sample

X0,X∆, ...,Xn∆

of d-dimensional random vectors, where we assume that ∆ ≡ ∆n → 0 and n∆ := T → ∞
as n → ∞. Hence, we will work in a double asymptotics scheme, which was one of the
crucial assumptions in the first part of this thesis, too.
Let us, therefore, propose the drift vector estimator b̂ according to

b̂(x) :=
1

nhd

∑n−1
i=0 K

(
Xi∆−x

h

) (
X(i+1)∆ −X i∆

)

∆
nhd

∑n−1
i=0 K

(
Xi∆−x

h

)

:=

1
nhd

∑n−1
i=0

∏d
j=1 k

(
X

(j)
i∆−x(j)

h

)(
X(i+1)∆ −X i∆

)

∆
nhd

∑n−1
i=0

∏d
j=1 k

(
X

(j)
i∆−x(j)

h

) ,

where x = (x(1), ..., x(d)), h ≡ hn denotes the bandwidth and

X i∆ :=
(
X

(1)
i∆ , ..., X

(d)
i∆

)T
.

Now let 〈x, y〉 :=∑d
l=1 xlyl be the standard scalar product on R

d and ||x|| its associated
norm. For convenience, we will choose the Euclidean as the associated norm. Moreover,
||A|| denotes a matrix norm for A ∈ R

d×d. Now we will make the following assumptions
on the considered model:

Assumption D1

i) The drift vector b and the diffusion matrix σ are globally Lipschitz-continuous.
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ii) The drift vector b is elastic:

∃ M ∈ R
+ : ∀x, ||x|| > M : 〈b(x), x〉 . −||x||2.

iii) The matrix A(x) := σT (x)σ(x) = {aij(x)}1≤i,j≤d fulfills

0 < min
1≤i,j≤d

aij(x) ≤ a0.

Moreover, let

Tr(A(x)) =
d∑

l=1

all(x) ≤ σ2
0 ∀ x ∈ R

d.

iv) For the matrix A, there are constants λ−, λ+ > 0 such that for all x ∈ R
d

λ−||x||2 ≤ 〈A(x), x〉 ≤ λ+||x||2.

Assumption D1, i) guarantees the existence and uniqueness of a solution of (4.19); see
Karatzas and Shreve (1996), Theorem 2.9. Assumptions D1, ii) and D1, iii) ensure that
the solution is endowed with an invariant measure Γ(dx), which is additionally abso-
lutely continuous with respect to the Lebesgue measure; see Schmisser (2013). Hence, a
stationary density π(x) of the process exists.

v) To ensure that X is stationary, we further assume that

η ∼ π(x)dx.

According to Pardoux and Veretennikov (2001) and assumptions D1, i)− iv), the process
X is exponentially β-mixing, too. Therefore, X admits the ergodicity property that for
all g such that

∫
Rd |g(y)|Γ(dy) <∞ we can deduce that

1

T

∫ T

0

g(Xs)ds
P−→
∫

Rd

g(y)π(y)dy, as T → ∞.

In analogy to the kernel specific assumptions of the first part of this thesis, we have to
ensure that comparable assumptions also hold true for the product kernel.

Assumption D2

i) For x ∈ R
d let K(x) =

∏d
j=1 k(xj), where the univariate kernel k is a symmetric,

bounded, differentiable, and Lipschitz-continuous probability density function.
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ii) Let the product kernel K fulfill

∫

Rd

z2K(z)dz <∞ and

∫

Rd

K2(z)dz <∞.

iii) Let the sampling frequency and the bandwidth be coupled according to

∆1/2

h2d
→ 0 as well as

1

n∆h2d
→ 0 as n→ ∞.

We briefly remark that K is also bounded and Lipschitz-continuous by the use of assump-
tion D1, i). In particular, let x, y ∈ R

d, then we can conclude that

|K(x)−K(y)| =
∣∣∣∣

d∏

j=1

k(xj)−
d∏

j=1

k(yj)

∣∣∣∣ ≤ ||k||d−1
∞

d∑

j=1

|k(xj)− k(yj)|

≤ ||k||d−1
∞ Lk

d∑

j=1

|xj − yj| := LK ||x− y||.

The following theorem states the consistency of b̂(x) under assumptions D1 and D2. As
already mentioned, Bandi and Moloche (2008) derived the consistency and asymptotic
normality of b̂(x) in a non-stationary framework under alternative assumptions. Never-
theless, we think that it is worth mentioning this theorem, because it leads us, afterwards,
to the use of the introduced MBC techniques for improving this class of estimators under
the stationarity assumption.

Theorem 4.9. Under assumptions D1 and D2, provided that π(x) > 0, we have that

b̂(x)
P−→ b(x), as n→ ∞.

A useful proposition, which has already been established for Lévy driven univariate dif-
fusions in Proposition 2.3, is also useful in the present context. It is stated in Schmisser
(2013) and can also be found in Glotter (2000) for the univariate case.

Proposition 4.10 (Proposition 5, Schmisser (2013)). Let X = (X t)t≥0 be the solution
of (4.19). Under assumption D1, provided that ∆ ≤ 1, we have that

E

[
sup

|s−t|≤∆

||b(Xs)− b(X t)||
]
. ∆1/2.
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Proof of Theorem 4.9. We will only give a sketch of the proof and start with a decompo-
sition as follows:

X(i+1)∆ −X i∆

∆
= b(X i∆) +

1

∆

∫ (i+1)∆

i∆

σ(Xs)dW s +
1

∆

∫ (i+1)∆

i∆

(b(Xs)− b(X i∆)) ds

The second summand is a noise term whereas the third summand is a remainder one.
Furthermore, all appearing integrals are understood coordinatewisely.
Using the boundedness of K, we find that

E

[∣∣∣∣
∣∣∣∣
1

nhd

n−1∑

i=0

K

(
X i∆ − x

h

)
1

∆

∫ (i+1)∆

i∆

(b(Xs)− b(X i∆)) ds

∣∣∣∣
∣∣∣∣

]

≤ ||k||d∞
n∆hd

n−1∑

i=0

∫ (i+1)∆

i∆

E [||b(Xs)− b(X i∆)||] ds .
∆1/2

h2d
.

For the noise term, define the random vector

1

n∆hd

n−1∑

i=0

K

(
X i∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dW s =: Z :=
(
Z(1), ..., Z(d)

)T
,

where

Z(j) :=
1

n∆hd

n−1∑

i=0

K

(
X i∆ − x

h

)∫ (i+1)∆

i∆

d∑

l=1

σjl(Xs)dW
(l)
s .

Using the independence of the components of W , the Itô-isometry as well as the bound-
edness of the trace of the matrix A, we can conclude that

E[ZTZ] =
1

n2∆2h2d

n−1∑

i=0

E

[
K2

(
X i∆ − x

h

)∫ (i+1)∆

i∆

d∑

l=1

all(Xs)ds

]

≤ ||k2||d∞σ2
0

n∆h2d
.

Using assumption D1, we are able to deduce that both terms are negligible. Moreover,
we are able to finish the proof of the consistency of b̂(x) due to the following reasons.
Firstly, the denominator is a consistent estimate of the stationary density π(x), which
can be deduced in an analogous manner to the univariate case; see Bandi and Moloche
(2008). Moreover,

1

nhd

n−1∑

i=0

K

(
X i∆ − x

h

)
b(X i∆)

=
1

nhd

n−1∑

i=0

d∏

j=1

k

(
X

(j)
i∆ − x(j)

h

)
b(X i∆)

P−→ b(x)π(x), as n→ ∞.
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The latter statement can be deduced by standardly used arguments which were taken
into account in the first part of this thesis.

To get into account of the usage of asymmetric kernels in this context, we will at first
focus on Gospodinov and Hirukawa (2012), who investigated a univariate diffusion model

dXt = b(Xt)dt+ σ(Xt)dWt, X0
D
= η,

where b and σ are unknown and W is a Brownian motion independent of η. This process
is assumed to be almost surely positive and, furthermore, that a high-frequency sam-
ple {Xi∆}i=1,...,n is observed. In an analogous manner to Bandi and Phillips (2003), the
unknown drift b is estimated at a point x via

b̂G(x) :=
1

n∆

∑n−1
i=1 G(x/h+ 1, h)(Xi∆)(X(i+1)∆ −Xi∆)

1
n

∑n−1
i=1 G(x/h+ 1, h)(Xi∆)

,

where G(x/h+ 1, h)(u) denotes the already introduced density of a Gamma distribution
with parameters p = x/h + 1 and γ = h. They show in Theorem 1 and also in Corollary
1 that, under the assumption that it exists a stationary solution X of the considered
stochastic differential equation, the asymptotic distribution of b̂G(x) can be derived in
dependency of the location of x. For an interior point x, the asymptotic distribution is
given by

√
n∆h1/2

(
b̂G(x)− b(x)− h

(
b′(x)

(
1 +

xπ′(x)

π(x)

)
+
xb′′(x)

2

))
D−→ N

(
0,

σ2(x)

2
√
πxπ(x)

)

as n→ ∞ and h = O((n∆)−2/5).
For a boundary point x = ρh, 0 < ρ ≤ 1, the bias is negligible due to the choice of h and
the asymptotic distribution can be deduced as

√
n∆h

(
b̂G(x)− b(x)

)
D−→ N

(
0,

Γ(2ρ+ 1)σ2(x)

22ρ+1Γ2(ρ+ 1)π(x)

)
, as n→ ∞.

This work acts as a motivation for us to consider multivariate diffusions, where the com-
ponents are almost surely positively supported. Under the upper sampling scheme and in
view of Bandi and Moloche (2008) as well as Bouezmarni and Rombouts (2010), a natural
estimator of b̂G(x) is given by

b̂G(x) :=
1
n

∑n−1
i=1

∏d
l=1G(xl/h+ 1, h)(X

(l)
i∆)(X(i+1)∆ −X i∆)

∆
n

∑n−1
i=1

∏d
l=1G(xl/h+ 1, h)(X

(l)
i∆)

,

where h1 = ... = hd ≡ h for the sake of simplicity.
In view of the previous chapter, a further improvement of this estimator can be established
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by using the proposed MBC techniques. In order to propose adequate estimators, let us,
in a first step, use the following identity

b(x) =



b1(x)
...

bd(x)


 =




b̂1(x)
b1(x)

b̂1(x)
...

b̂d(x)
bd(x)

b̂d(x)


 .

In view of the JLN technique, a possible estimator of the j-th component of b is given by

b̂j,G,JLN(x) := b̂G,j(x)
n−1∑

i=1

(
X

(j)
(i+1)∆ −X

(j)
i∆

)∏d
l=1G(xl/h+ 1, h)(X

(l)
i∆)

∆b̂G,j(X i∆)
∑n−1

m=1

∏d
k=1G(xk/h+ 1, h)(X

(k)
m∆)

,

where

b̂G,j(x) :=

∑n−1
i=1

(
X

(j)
(i+1)∆ −X

(j)
i∆

)∏d
l=1G(xl/h+ 1, h)(X

(l)
i∆)

∆
∑n−1

i=1

∏d
l=1G(xl/h+ 1, h)(X

(l)
i∆)

, j = 1, ..., d.

Finally, we suggest the use of

b̂(x) =



b̂1,G,JLN (x)

...

b̂d,G,JLN (x)


 .

An analogous construction can be executed for the derivation of the Terrell Scott estima-
tor.
However, it seems to be quite complicated to derive the asymptotic properties of these
estimators. Nevertheless, we conjecture that, due to the findings for the i.i.d. case, those
estimators are also consistent when dealing with stationary and exponential β-mixing
data.
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5 Nonparametric estimation of copula densities

In this section, we will introduce the concept of copula functions and present methods
for the estimation of unknown copula densities. Copulas are multivariate distribution
functions, which are able to cover the whole dependence structure of random vectors.
Especially, they are able to capture non-linear dependence between the coordinates and
are, thus, a more useful tool than correlations. We will start with a short presentation
of the most important properties of copulas, in particular, the theorem of Sklar will play
a central role. Subsequently, we will introduce two methods for the nonparametric es-
timation of such densities. At first, we will have a look at Beta product kernel based
estimators, which were introduced in the previous section. Afterwards, we will make use
of a multivariate version of the Weierstrass approximation theorem, which states that
every continuous function f defined on a compact interval [a, b]d, can be uniformly ap-
proximated via a sequence of multidimensional polynomials. In our case, we have a = 0
and b = 1 and choose the Bernstein polynomials as approximating sequence. They have
appealing properties, which will be explored later on. Afterwards, we will turn to the
estimation of joint densities and conditional densities via the corresponding copula rep-
resentation. Finally, we will describe how conditional moments can be estimated via a
Bernstein polynomial based copula estimator. This allows us to present a substantially
different way of estimating the coefficients in a diffusion model and to create a link to the
first part of this thesis.

5.1 Copula functions and multivariate distributions

In view of the previous section, the estimation of unknown copulas and their densities is
highly influenced by the boundary bias effect. The support of copula densities is naturally
given by the unit hyper cube [0, 1]d, where d denotes the dimension of the underlying
data set. Hence, when estimating a multivariate compact supported density, the bound-
ary region increases exponentially in terms of d. Thus, the adequate choice of boundary
corrected kernels is of major interest in higher dimensions.
As toy-examples of such functions, we will now introduce the concept of copulas. A stan-
dard reference in this context is “An introduction to Copulas” by Nelsen (1999), where
the following introductory definitions, lemmas, and theorems are taken from.

Definition 5.1. A multivariate distribution function C(x1, ..., xd), such that the marginal
distributions are uniformly distributed on the unit interval (0, 1), is called a copula.

Lemma 5.2. Let C(x1, ..., xd) be a copula and let F1, ..., Fd be univariate distribution
functions, then

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))

is a multivariate distribution function possessing the margins F1, ..., Fd.
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The upper lemma describes the close relation between copulas and multivariate distribu-
tion functions. Probably the most famous theorem in this context is the converse statement
of Lemma 5.2, which goes back to Sklar (1959).

Theorem 5.3 (Sklar´s theorem). Let F be a d-dimensional distribution function possess-
ing the margins F1, ..., Fd. Then, a copula C exists such that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)).

Moreover, if F1, ..., Fd are continuous, C is unique.

Another interesting property is the existence of upper and lower bounds for every copula
C given by the so-called Fréchet-Hoeffding bounds.

Proposition 5.4. For every d-dimensional Copula C, it holds that

max

{ d∑

j=1

uj + 1− d; 0

}
≤ C(u1, ..., ud) ≤ min{u1; ...; ud}.

The upper bound is a copula, too, whereas the lower is a copula iff d = 2.

An additional useful property is the fact that copulas are invariant under strictly increas-
ing transformations.

Lemma 5.5. Let X1, ..., Xd be random variables possessing the copula C and margins
F1, ..., Fd. Let

Tk : Dk → R, k = 1, ..., d,

be strictly increasing functions, each defined on the range Dk of the random variable Xk.
Let X̃k := Tk(Xk) with corresponding margins F̃k, then the joint distribution F̃ is given
by

F̃ (x1, ..., xd) = C(F̃1(x1), ..., F̃d(xd)).

The copula will only be slightly different, if Tk is strictly decreasing.
We will now state some important examples of copulas, which can be found in Schmidt
(2007):

Example 5.6. i) Using Sklar´s theorem, we are easily able to deduce that

C(u1, ..., ud) =
d∏

j=1

uj,

if and only if the random variables X1, ..., Xd are independent.

132



ii) As already mentioned, the Fréchet-Hoeffding upper bound

M(u1, ..., ud) := min{u1, ..., ud}

is also a copula, which is often referred to as the comonotonicity copula. This copula
describes perfect positive dependence. Indeed, for a random variable X1 and strictly
increasing functions Tk, k = 2, ..., d, define Xk = Tk(X1). Then, we have that

CX1,...,Xd
(u1, ..., ud) =M(u1, ..., ud).

iii) In the case d = 2, the Fréchet-Hoeffding lower bound is a copula, too. It is often
referred to as the countermonotonicity copula and is given by

W (u1, u2) := max{u1 + u2 − 1; 0}.

It describes perfect negative dependence and can, analogously to ii), be constructed
by setting T1(X1) := X2 for a strictly decreasing function T1 defined on the range of
X1.

iv) Sklar´s theorem allows us to construct copulas for given margins F1, ..., Fd and the
joint distribution F via the representation

C(u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud)) and the relation Fk(F

−1
k (y)) ≥ y.

Recall that the generalized inverse F−1
k (y) is defined as

F−1
k (y) := inf{x ∈ R : F (x) ≥ y}.

Hence, let X1, ..., Xd be standard normally distributed random variables, which are
also jointly normally distributed with mean vector 0 and correlation matrix Σ. The
Gaussian copula CΣ,G is then defined as

CΣ,G(u1, ..., ud) = ΦΣ(Φ
−1(u1), ...,Φ

−1(ud)),

where ΦΣ denotes the multivariate and Φ the univariate normal distribution func-
tion.

v) Another famous example of a distributional construction of a copula is given by the
Student copula

Cν,Σ,t(u1, ..., ud) := tν,Σ(t
−1
ν (u1), ..., t

−1
ν (ud)),

where tν,Σ describes the cumulative distribution function of the multivariate Stu-
dent distribution with parameter ν and correlation matrix Σ. Moreover, tν is the
univariate distribution function of the Student distribution with ν degrees.
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vi) The class of Archimedean copulas is widely used, because it provides a possibility
to construct several copulas having desired properties for certain purposes. We will
omit the exact definition and refer the interested reader to Nelsen (1999), Chapter
4. Instead, we will state three different examples of bivariate Archimedean copulas,
which are defined in terms of one parameter.
The Gumbel copula is defined as

Cθ,Gu(u1, u2) = exp

(
−
(
(− ln u1)

θ + (− ln uu)
θ
) 1

θ

)
,

where θ ≥ 1. In terms of θ, this family of copulas interpolates between the indepen-
dence (θ = 1) and the comonotonicity (θ → ∞) copula. For values θ > 1, these
copulas exhibit a tail dependence corresponding to high profits in both components.
The Clayton copula

Cθ,Cl(u1, u2) =
(
max{u−θ

1 + u−θ
2 − 1; 0}

)− 1
θ ,

where θ ∈ [−1,∞)\{0} interpolates between the countermonotonicity (θ = −1),
the independence (θ → 0), and the comonotonicity (θ → ∞) copulas. Thus, this
Copula family is able -comparable to the Gumbel copula family- to capture various
dependence structures.
The last example of an Archimedean copula is the Frank copula

Cθ,Fr(u1, u2) := −1

θ
ln

(
1 +

(
e−θu1 − 1

)
·
(
e−θu2 − 1

)

e−θ − 1

)
,

where θ ∈ R\{0}. This copula possesses a bounded density and will be of interest in
the following section.

For our purposes, it suffices to finish this introductory section by some remarks concerning
the question why correlation is not able to capture general dependency.
There are several different concepts of measuring dependency of bivariate random vectors;
see Schmidt (2007), Section 4. Linear correlation as a measure of dependence is only
reasonable when dealing with, for example, normally distributed random variables.
But in general, besides the fact that correlation is invariant under linear transformation,
it can change under general transformations. See the following example.

Example 5.7. Let X1 ∼ Exp(2) be an exponentially distributed random variable with
parameter 2, then we can deduce that

E[X1] =
1

2
and V ar(X1) =

3

4
.
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Now let X2 = X2
1 , then it obviously holds that

E[X2] = 1 and V ar(X2) = 11.

The correlation coefficient ρ can now be determined by

ρ(X1, X2) =
Cov(X1, X2)√

V ar(X1) ·
√
V ar(X2)

=
2.5
√
33
2

≈ 0.87.

Although X1 and X2 = X2
1 are perfectly dependent, the correlation coefficient is not equal

to 1. The corresponding copula is, in view of Lemma 5.5, invariant under the transfor-
mation.
Moreover, let X3 = X4

1 , then

ρ(X2, X3) =
Cov(X2, X3)√

V ar(X2) ·
√
V ar(X3)

=
348√
220176

≈ 0.74.

Even when the pair (X2, X3) can be derived by squaring the components of (X1, X2), the
correlation coefficient changes.

5.2 Nonparametric estimation of copulas

In this section, we will briefly describe how estimators for unknown copula functions are
constructed.
Hence, let {Xi1, ..., Xid}, i = 1, ..., n, be a sample of identically distributed random vectors,
which are not necessarily independent. Recall that, by Sklar´s theorem, a copula C exists
such that

C(u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud)) uk ∈ [0, 1]d.

When no additional information, concerning the margins, is available, a natural nonpara-
metric choice for an estimator of Fk is the empirical distribution function

F̂k(x) :=
1

n

n∑

j=1

1(Xjk ≤ x), k = 1, ..., d,

which yields to a consistent asymptotically normally distributed estimator. Moreover, the
joint distribution function F can be estimated via the joint empirical distribution function
according to

F̂ (x1, ..., xd) :=
1

n

n∑

j=1

1(Xj1 ≤ x1, ..., Xjd ≤ xd).
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Thus, a natural estimator of the corresponding copula is given by its empirical counterpart:

Ĉ(u1, ..., ud) :=
1

n

n∑

j=1

1(Xj1 ≤ F̂−1
1 (u1), ..., Xjd ≤ F̂−1

1 (ud)) = F̂ (F̂−1
1 (u1), ..., F̂

−1
1 (ud)),

(5.20)

which has been introduced in Deheuvels (1979) and has further been studied in Fermanian
et al. (2004) as well as Doukhan et al. (2004). This method is fully nonparametric and no
additional smoothing parameters have to be chosen. Moreover, Ĉ is a consistent estimator
of C and the empirical copula process

√
n(Ĉ(u)− C(u))

converges weakly to a Gaussian process by Donsker´s theorem; see Fermanian et al. (2004)
or Bücher and Volgushev (2013). One disadvantage is the fact that Ĉ is not differentiable
by construction. In our subsequent analysis, we are interested in estimators for the copula
density c, which is defined as the derivative of C with respect to (u1, ..., ud):

c(u1, ..., ud) :=
∂d

∂u1...∂ud
C(u1, ..., ud), at every u = (u1, ..., ud) ∈ [0, 1]d.

Therefore, an alternative method is provided by using smoothed estimators such that the
joint distribution function is estimated by

F̂ (x1, ..., xd) =
1

n

n∑

j=1

d∏

k=1

K

(
Xjk − xk

h

)
,

where K(z) :=
∫ z

−∞ k(y)dy is the distribution function corresponding to the probability
measure k(z)dz. Note that the bandwidth h only occurs in the argument of K which
opposes the density estimation case. The usual product kernel based estimator for prob-
ability densities can easily be derived by differentiation of F̂ with respect to (x1, ..., xd).
Furthermore, the margins can be consistently estimated by the use of ordinary kernel
based estimators.

5.3 Copula density estimation and the boundary bias effect

In this section, we want to state possible estimation approaches for estimating copula
densities nonparametrically and additionally by incorporating of their bounded support.
Let (X1, ..., Xd) be a random vector with marginal distribution functions Fk and corre-
sponding copula C. Due to the fact that

(F1(X1), ..., Fd(Xd)) ∼ C
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by Sklar´s theorem, a natural estimator of the copula density c is given by

ĉK(u) :=
∂d

∂u1...∂ud
ĈK(u), u = (u1, ..., ud) ∈ [0, 1]d,

where ĈK denotes a kernel based estimator for the unknown copula C based on the
observations

(F̂1(Xi1), ..., F̂d(Xid)), i = 1, ..., n.

For the sake of simplicity, we restrict ourselves to the case d = 2 and define

ĉK(u1, u2) :=
1

nh2

n∑

i=1

K

(
u1 − F̂1(Xi1)

h

)
K

(
u1 − F̂2(Xi2)

h

)
,

where K is a symmetrical univariate probability density, whose support is [−1, 1] and

F̂1(Xi1) =
1

n+ 1

n∑

j=1

1(Xj1 ≤ Xi1) ∈
{

1

n+ 1
, ...,

n

n+ 1

}

denotes the rescaled rank of Xi1. The scaling by 1
n+1

has technical reason and should
avoid estimation problems in the corners. This estimator has been investigated by Gijbels
and Mielniczuk (1990) as well as Behnen et al. (1985). Note that ĉK is based on so-called
pseudo-observations (F̂1(Xi1), F̂2(Xi2)).
By assuming that c is twice continuously differentiable, this estimator is consistent at
every interior point (u, v) ∈ (0, 1), but in contrast it is biased at any corner and on the
interior of the borders; see Charpentier et al. (2006), page 12. In fact, Charpentier et al.
(2006) derived

E[ĉK(0, 0)] =
1

4
c(0, 0) +O(h), as n→ ∞

and

E[ĉK(0, v)] =
1

2
c(0, v) +O(h), v ∈ (0, 1) as n→ ∞.

This is the already known boundary bias effect for multivariate compact supported prob-
ability densities. To face this problem, several techniques have been considered. Most
of them are already presented in the previous section. Figure 6 shows the mirror image
method, which consists of the reflection of the sample points with respect to all edges and
corners. In the sequel analysis, we will present two methods introducing alternative ap-
proaches for estimating unknown copula densities. The first one uses Beta kernels, which
were already used in the previous chapter as a starting point for the proposed correc-
tion methods. The other method is based on Bernstein polynomials and will lead us to a
regression estimator.
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Figure 6: Plot of seven data points inside the unit square [0, 1]2 in black and their re-
flected pseudo counterparts, which are black-rimmed. Source: Schmid and Trede (2006):
Finanzmarktstatistik, p. 106.

5.4 Beta kernel based copula density estimation

We will now introduce the beta kernel based copula density estimator, for which the
asymptotic mean squared error as well as the asymptotic normality for strongly mixing
data are determined. To the best of our knowledge, this has not been investigated in the
literature before. We are only aware of an article by Bouezmarni et al. (2010), where the
asymptotic normality and the consistency of the Bernstein density copula estimator has
been derived under weakly dependent data.
Hence, suppose that {(Xi1, ..., Xid)}, i = 1, ..., n, is a sample of d−dimensional random
vectors, which are α-mixing with joint cumulative distribution function F and joint prob-
ability density function f . Moreover, let

C(F1(u1), ..., Fd(ud)) := F (u1, ..., ud)
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be the corresponding copula function C possessing a density c. Further, assume that the
mixing coefficient α(k) fulfills

α(k) ≤ ρk, ρ ∈ (0, 1).

We will focus on the nonparametric estimation of the copula density c of the random
vector X. For this purpose, we use an estimator based on Beta kernels

ĉ(u1, ..., ud) :=
1

n

n∑

i=1

d∏

j=1

KB

(
Uij,

uj
h

+ 1,
1− uj
h

+ 1

)
,

where KB

(
x, x

h
+ 1, 1−x

h
+ 1
)
denotes the Beta density with parameters

(a, b) =

(
x

h
+ 1,

1− x

h
+ 1

)
,

h is a bandwidth, and

Ui := (Ui1, ..., Uid) = (F1(Xi1), ..., Fd(Xid)) ∈ [0, 1]d.

Note that the random vector Ui is distributed according to

Ui = (Ui1, ..., Uid) ∼ C.

We will investigate the asymptotic bias, the variance, as well as the asymptotic normality.

Lemma 5.8. Suppose that c is twice continuously differentiable and that the function

gi := fU1,Ui
− fU1fUi

is uniformly bounded for all i by a non-random constant. Let h→ 0 and n−1h−d/2 → 0 as
n→ ∞. For an interior point u ∈ (0, 1)d, it holds that

E[ĉ(u)] = c(u) + h

(
d∑

j=1

(1− 2uj)
∂c(u)

∂uj
+

1

2
uj(1− uj)

∂2c(u)

∂2uj

)
+ o(h), as n→ ∞.

Moreover, for an interior point u ∈ (0, 1)d, it holds that

V ar(ĉ(u)) =
c(u)

nhd/2(4π)d/2
∏d

j=1

√
uj(1− uj)

+ o((nhd/2)−1), as n→ ∞.
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Proof of Lemma 5.8. We will start with the derivation of the bias term:

E[ĉ(u)] = E

[
d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

)]

=

∫

[0,1]d

d∏

j=1

KB

(
yj,

uj
h

+ 1,
1− uj
h

+ 1

)
c(y1, ..., yd)d(y1, ..., yd) = E[c(Y )],

where Y = (Y1, ..., Yd) consists of independent and Beta distributed random variables with

Yj
D
= B

(
uj
h

+ 1,
1− uj
h

+ 1

)
.

Now we will make use of a Taylor-Expansion around µ := (µ1, ..., µd), where µi := E[Yi]:

c(y1, .., , yd) = c(µ) +
d∑

j=1

(yj − µj)
∂c(µ)

∂uj
+

1

2

d∑

j=1

(yj − µj)
2∂

2c(µ)

∂2uj

+
1

2

∑

1≤j 6=l≤d

(yj − µj)(yl − µl)
∂c(µ)

∂uj

∂c(µ)

∂ul
+ o(h2), as n→ ∞.

Taking the expectation on both sides yields to

E[c(Y )] = c(µ1, ..., µd) +
1

2

d∑

j=1

V ar(Yj)
∂2c(µ)

∂2uj
+ o(h), as n→ ∞.

Note that V ar(Yj) = huj(1 − uj) and make use of a Taylor-Expansion around u =
(u1, ..., ud) such that

c(µ1, ..., µd) = c(u1, ..., ud) +
d∑

j=1

(µj − uj)
∂c(u)

∂uj
+
h

2

d∑

j=1

uj(1− uj)
∂2c(u)

∂2uj
+ o(h)

= c(u) +
d∑

j=1

(1− 2uj)
∂c(u)

∂uj
+
h

2

d∑

j=1

uj(1− uj)
∂2c(u)

∂2uj
+ o(h), as n→ ∞.
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We will now derive the variance as follows:

V ar(ĉ(u)) = V ar

(
1

n

n∑

i=1

d∏

j=1

KB

(
Uij,

uj
h

+ 1,
1− uj
h

+ 1

))

=
1

n
V ar

(
d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

))

+
2

n

n−1∑

i=1

(1− i

n
)

Cov

(
d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

)
,

d∏

j=1

KB

(
Ui+1j,

uj
h

+ 1,
1− uj
h

+ 1

))

=: A+ B

Using the Davydov-inequality for α-mixing time series, we observe that

∣∣∣∣Cov
(

d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

)
,

d∏

j=1

KB

(
Ui+1j ,

uj
h

+ 1,
1− uj
h

+ 1

)) ∣∣∣∣

≤ 4α(i)

∣∣∣∣
∣∣∣∣

d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

) ∣∣∣∣
∣∣∣∣
2

∞

(∗)
≤ 4α(i)O((h−d/2)) ≤ Cρih−d,

where inequality (∗) is derived via Stirling´s formula and from the fact that x is the mode
of the Beta kernels; see Chen(2000), p. 88.
Furthermore, because ||gi||∞ ≤ C2, observe that

∣∣∣∣Cov
(

d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

)
,

d∏

j=1

KB

(
Ui+1j ,

uj
h

+ 1,
1− uj
h

+ 1

)) ∣∣∣∣

≤ ||gi+1||∞
∫

[0,1]d

d∏

j=1

KB

(
s1j,

uj
h

+ 1,
1− uj
h

+ 1

)∫

[0,1]d

d∏

j=1

KB

(
s̃i+1j,

uj
h

+ 1,
1− uj
h

+ 1

)
dsds̃

≤ C2
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Now conclude that the covariances are bounded by

|B| ≤

≤ 2

n

⌊Tn⌋∑

i=1

∣∣∣∣Cov
(

d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

)
,

d∏

j=1

KB

(
Ui+1j ,

uj
h

+ 1,
1− uj
h

+ 1

)) ∣∣∣∣

+
2

n

n−1∑

i=⌊Tn⌋+1

∣∣∣∣Cov
(

d∏

j=1

KB

(
U1j,

uj
h

+ 1,
1− uj
h

+ 1

)
,

d∏

j=1

KB

(
Ui+1j ,

uj
h

+ 1,
1− uj
h

+ 1

)) ∣∣∣∣

≤ 2C2Tn
n

+
8C

nhd

n−1∑

i=⌊Tn⌋+1

ρi,

where Tn is a sequence such that Tn → ∞ as n → ∞ and Tn = O(h−κ), κ ∈ (0, d/2).
Hence, we can deduce that B = o(n−1h−d/2), because

∑n−1
i=⌊Tn⌋+1 ρ

i = o(1) as n → ∞.
Now examine the first term A:

A =
1

n
V ar

(
d∏

j=1

KB

(
U1j ,

uj
h

+ 1,
1− uj
h

+ 1

))

=
1

n


E



(

d∏

j=1

KB

(
U1j,

uj
h

+ 1,
1− uj
h

+ 1

))2



+O(n−1)

:=
1

n

d∏

j=1

Aj(uj;h)E[c(Z)] +O(n−1),

where Z = (Z1, ..., Zd) is a random vector of independent random variables such that

Zj
D
= B

(
2uj

h
+ 1,

2(1−uj)

h
+ 1
)
and

Aj(uj;h) :=
B
(

2uj

h
+ 1,

2(1−uj)

h
+ 1
)

(
B
(

uj

h
+ 1,

(1−uj)

h
+ 1
))2 ,

where B(α, β) denotes the Beta-function. The asymptotic behavior of Aj(uj;h) as h→ 0
was investigated in Chen (2000), p. 86:

Aj(uj;h) =





1

2
√

πuj(1−uj)h
, if uj/h→ ∞ and (1− uj)/h→ ∞,

Γ(2κ+1)
21+2κΓ2(κ+1)

, if uj/h→ κ or (1− uj)/h→ κ,

142



as h→ 0 and κ is a positive constant.
Finally, a first order Taylor-expansion yields to

E[c(Z)] = c(u) +O(h), as n→ ∞.

Therefore, we can conclude that, for an interior point u,

V ar(c(u)) =
c(u)

nhd/2
√
(4π)d

∏d
j=1 uj(1− uj)

+ o(n−1h−d/2), as n→ ∞.

The variance at a generic point u ∈ (0, 1)d is proportional according to

V ar (ĉ(u)) = O

(
n−1

d∏

l=1

h−(1/2+1/2·1l)

)
,

which depends on the location of the components. Moreover, 1l := 1(xl/h → κl > 0)
is a function indicating whether a component lies in the boundary region; see also the
proposed MBC techniques in section 4.3.
We will now derive the asymptotic normality of the proposed estimator. For this purpose,
we make use of the big-block and small-block technique, which we already used for the
adaptive version of the Nadaraya-Watson estimator.

Proposition 5.9. Suppose that c is twice continuously differentiable and suppose that Xi

is an α-mixing time series of d-dimensional random vectors with mixing coefficients

α(k) ≤ ρk, ρ ∈ (0, 1).

If h = O(n−2/(d+4)) it holds that

√
nhd/2(ĉ(u)− E[ĉ(u)])

D−→ N (0, σ2(u)), as n→ ∞

for u ∈ (0, 1)d and where σ2(u) := c(u)
√

(4π)d
∏d

j=1 uj(1−uj)
. If h = o(n−2/(d+4)), then

√
nhd/2(ĉ(u)− c(u))

D−→ N (0, σ2(u)), as n→ ∞.

Proof. The second statement is a direct consequence of the first one by considering the
fact that

Bias(ĉ(u)) = O(h), as n→ ∞.
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Hence, we only state proof for the first statement. Now define

n1/2hd/4

(
ĉ(u)− E[ĉ(u)]√

σ2(u)

)

=

n1/2hd/4

n

∑n
i=1

(∏d
j=1KB

(
Uij ,

uj

h
+ 1,

1−uj

h
+ 1
)
− E

[∏d
j=1KB

(
Uij,

uj

h
+ 1,

1−uj

h
+ 1
)])

√
σ2(u)

:= n−1/2hd/4
n∑

i=1

Yi := n−1/2ξn(u).

We will make use of the aforementioned big-block and small-block technique. Therefore,
decompose the sum in alternate big and small blocks and a remainder block.
Let i = 1, ..., r and consider the big blocks

Vi := hd/4(Y(i−1)(p+q)+1 + ...+ Yip+(i−1)q),

the small blocks
V ∗
i := hd/4(Yip+(i−1)q+1 + ...+ Yi(p+q)),

and finally the remainder block: for r(p+ q) ≤ n ≤ r(p+ q + 1):

R :=
n∑

i=r(p+q)

Yi.

Therefore, we decompose the sum in

ξn(u) =
r∑

i=1

Vi +
r∑

i=1

V ∗
i +R

At first, we show that

n−1/2(
r∑

i=1

V ∗
i +R)

P−→ 0, as n→ ∞.

For this purpose, it suffices to show that

1

n
V ar

(
r∑

i=1

V ∗
i

)
= o(1) and

1

n
V ar




n∑

i=r(p+q)

Yi


 = o(1), as n→ ∞.

Now choose r = O(na), p = O(n1−a), and q = O(nc), a ∈ (0, 1), c ∈ (0, 1 − a) and start
with the small blocks:

V ar

(
r∑

i=1

V ∗
i

)
=

r∑

i=1

V ar(V ∗
i ) +

∑

1≤i 6=j≤r

Cov(V ∗
i , V

∗
j ) := I + II.
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We will start with I. Under the stationary condition and the previous computations
concerning the covariances, it holds that

I =
r∑

i=1

V ar




i(p+q)∑

l=ip+(i−1)q+1

hd/4Yl




=
r∑

i=1




i(p+q)∑

l=ip+(i−1)q+1

V ar(hd/4Yl) +
∑

ip+(i−1)q+1≤l 6=m≤i(p+q)

Cov(hd/4Yl, h
d/4Ym)




=
r∑

i=1


qhd/2V ar(Y1) + hd/2

∑

ip+(i−1)q+1≤l 6=m≤i(p+q)

Cov(Yl, Ym)




= r

(
q + hd/2

∑

p+1≤l 6=m≤p+q

Cov(Yl, Ym)

)

= O(rq) + o(r) = O(na+c) + o(na), as n→ ∞.

For the second summand II, we again make use of the knowledge that the covariances
are asymptotically negligible:

∑

1≤i 6=j≤r

Cov(V ∗
i , V

∗
j )

=
∑

1≤i 6=j≤r

hd/2
i(p+q)∑

l=ip+(i−1)q+1

j(p+q)∑

m=jp+(j−1)q+1

Cov(Yl, Ym) = o(n), as n→ ∞.

Therefore, the small blocks converge to zero in probability:

1

n
V ar

(
r∑

i=1

V ∗
i

)
= O(na+c−1) + o(na−1) + o(1) → 0, as n→ ∞.

The remainder terms can analogously be treated. We omit the proof and approximate
ξn(u) by

n−1/2ξn = n−1/2

r∑

i=1

Vi + oP (1).

Now use Lemma 3.9 to conclude that

∣∣∣∣E
[
exp

(
it

r∑

i=1

Vi

)]
−

r∏

i=1

E[exp(itVi)]

∣∣∣∣ ≤ 16(r − 1)α(q + 1)

≤ 16rα(q + 1) = 16naρq+1 = 16naρn
c+1 = 16ρna exp(log(ρ)nc) = o(1), n→ ∞
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and apply Lyapunov´s central limit theorem for δ = 1:
∑r

i=1E[|Vi|3]
(rV ar(V1))3/2

≤ ||Vi||∞(rV ar(V1))
−1/2

≤ hd/4p||Y1||∞
(
r

(
p∑

j=1

V ar(hd/4Yj) + hd/2
∑

1≤j 6=l≤p

Cov(Yj, Yl)

))−1/2

. hd/4ph−d/2(nan1−a)−1/2 = O
(
n

d+2
d+4

−a
)
.

Now choose a such that 0 < d+2
d+4

< a < 1. For this choice, the Lyapunov condition is
fulfilled and it holds that

n−1/2

r∑

i=1

Vi
D−→ N (0, 1), as n→ ∞.

5.5 Bernstein copula density estimator

In this section, we will briefly introduce the concept of Bernstein copulas and correspond-
ing estimators for copula densities. The Bernstein copula was defined by Sancetta and
Satchell (2004) and is used for the nonparametric estimation of a d-dimensional copula
C. To motivate the estimation procedure, we will focus on a multivariate version of the
uniform approximation of a continuous function by a sequence of Bernstein polynomials.

Proposition 5.10. Let f : [0, 1]d → R be a continuous function and define

Bf,k1,...,kd(x1, .., xd) :=

k1∑

ν1=0

...

kd∑

νd=0

f(ν1/k1, ..., νd/kd)
d∏

j=1

(
kj
νj

)
x
νj
j (1− xj)

nj−νj .

Now the following approximation holds for all (x1, ..., xd) ∈ [0, 1]d:

f(x1, ..., xd) = lim
k1→∞,...,kd→∞

Bf,k1,...,kd(x1, .., xd).

Due to the fact that every copula C is continuous (i.e. C is Lipschitz-continuous; see Nelsen
(1999)), we can make use of this approximation as a starting point for the construction
of a nonparametric estimator for C. Moreover, because we now smooth the estimator by
the use of Bernstein polynomials

Pkj ,νj(xj) =

(
kj
νj

)
x
νj
j (1− xj)

kj−νj ,
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this leads us to an alternative estimator of a copula density c by differentiation. Now let
X = (X1, ..., Xd) be a random vector possessing the unknown copula C. By substitution
of C via its empirical counterpart Ĉ (see (5.20)), we derive the empirical Bernstein copula
according to

ĈB(u1, ..., ud) =

k1∑

ν1=0

...

kd∑

νd=0

Cn(ν1/k1, ..., νd/kd)
d∏

j=1

Pkj ,νj(uj).

By assuming that C possesses a density c, we derive the Bernstein copula density estimator
of cB by differentiation according to

ĉB(u1, ..., ud) =

k1∑

ν1=0

...

kd∑

νd=0

Cn(ν1/k1, ..., νd/kd)
d∏

j=1

P ′
kj ,νj

(uj),

where
P ′
kj ,νj

(uj) = kj(Pkj−1,νj−1(uj)− Pkj ,νj−1(uj))

by the well-known properties of the Bernstein polynomials; see Lorentz (1986) for an
appealing survey of certain properties of this class of polynomials.
Using the upper identity of the derivative of a Bernstein polynomial, we are able to derive
an alternative form of the Bernstein copula density estimator by setting k1 = ... = kd ≡ k
as follows:

ĉB(u1, ..., ud) =
kd

n

n∑

i=1

k−1∑

ν1=0

...
k−1∑

νd=0

1(Si ∈ Bν)
d∏

j=1

Pk−1,νj(uj),

where
Si := (F̂1(Xi1), ..., F̂d(Xid))

and

Bv :=

[
ν1
k
,
ν1 + 1

k

]
× ...×

[
νd
k
,
νd + 1

k

]
.

The Bernstein copula estimator has been studied by Janssen et al. (2012), where the
strong consistency and the asymptotic normality for i.i.d. d-dimensional random vectors
Xi, i = 1, ..., n, were derived. The Bernstein copula density estimator has been studied
by Bouezmarni et al. (2010) in the case of α-mixing data under the assumption that
the marginal distributions are known. They derived the consistency and the asymptotic
normality, too. In fact, we will present the derived rates for the asymptotic bias and
variance below.

Proposition 5.11 (Proposition 1 and 2, Bouezmarni et al. (2010)). Let X = {(Xi1, ..., Xid)}
, i = 1, ..., n, be a sample of n observations of α-mixing random vectors with unknown cor-
responding copula C, copula density c, joint distribution F , and joint density f . Assume
that the mixing coefficients fulfill

α(k) ≤ ρk, ρ ∈ (0, 1).
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Moreover, assume that the copula density is twice continuously differentiable and fix a
vector u = (u1, ..., ud) ∈ (0, 1)d. If k → ∞ we have for known marginals Fk, k = 1, ..., d,
that

E[ĉB(u)] = c(u) + k−11

2

d∑

j=1

(
∂c

∂uj
(1− 2uj) +

∂2c

∂2uj
uj(1− uj)

)
+ o(k−1).

For the derivation of the asymptotic variance, we further assume that

||gj||∞ := ||fX1,Xj
− fX1fXj

||∞ ≤ C,

where fX1,Xj
denotes the joint density of the random vectors X1 and Xj, j = 2, ..., n. In

addition, let the regularization parameter k fulfill n−1kd/2 → 0 as n→ ∞. Then, we have
that

V ar(ĉB(u)) = n−1kd/2
c(u)

(4π)d/2
∏d

j=1(uj(1− uj))1/2
+ o(n−1kd/2), as n→ ∞.

Comparing the asymptotic properties of the Beta kernel and the Bernstein polynomial
based estimator, we see that the variance is actually the same, whereas the bias differs
only in a slightly manner. Nevertheless, the rates coincide for both components.
In a recent paper, Janssen et al. (2014) derived the asymptotic properties of the Bern-
stein copula density estimator, where the marginals are estimated via their empirical
counterparts. In the case of i.i.d. data, they derived the asymptotic distribution and the
exact representation of the bias term. For α-mixing data, the corresponding asymptotic
properties are not derived, yet.

5.6 Nonparametric estimation approaches via copula based rep-

resentations

In this section, we will describe how the presented copula density estimators can be used
for the estimation of joint densities, conditional densities, and conditional expectations.
For this purpose, consider the theorem of Sklar again, which states that

C(F1(x1), ..., Fd(xd)) = F (x1, ..., xd)

for a d-dimensional random vector X possessing the multivariate joint distribution func-
tion F with marginals Fk and a corresponding copula C. Now let C be twice differentiable
such that the joint density f can be represented by

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))
d∏

j=1

fj(xj),
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where fj denotes the marginal density of the j-th component of X. The nonparametric
estimation of joint densities suffers from the curse of dimensionality. This effect describes
that the rate of convergence decreases as the dimension d increases. Liebscher (2005)
used the upper representation of f to construct a semiparametric estimator f̂ . Liebscher
assumes that the corresponding copula density c is known to belong to a parametric class
of copulas and is, hence, known up to a finite dimensional parameter ϑ. Due to the fact
that the unknown parameter ϑ can be

√
n-consistently estimated, the proposed estimator

f̂(x1, ..., xd) = c(F̂1(x1), ..., F̂d(xd); ϑ̂)
d∏

j=1

f̂(xj)

overcomes the curse of dimensionality. Nevertheless, in many practical situations, the
knowledge of a corresponding parametric family of copulas cannot be guaranteed. A recent
work by Dette et al. (2014) illustrates with rather simple examples, which kind of impact
a misspecification of the copula family has.
Now consider the case d = 2 and a bivariate random vector (Y,X). The conditional
density fY |X=x(y, x) can be represented by

fY |X=x(y, x) =
fY,X(x, y)

fX(x)
= c(G(y), F (x))g(y),

where Y ∼ G andX ∼ F . Moreover, c denotes the copula density as well as f and g denote
the marginal densities. In Faugeras (2009), this representation is used as a starting point
for the construction of a nonparametric estimator of the conditional density. Faugeras
(2009) called this the “quantile-copula approach” and estimated the copula density by
means of symmetric kernels, which cause an additional bias near the boundaries. This
was also mentioned in Faugeras (2009) in Remark 4. Hence, in order to overcome this
drawback, we propose an alternative estimator f̂Y |X=x(y, x) based on Bernstein polyno-
mials in view of the previous findings. Therefore, define the Bernstein polynomial based
conditional density estimator f̂Y |X=x(y, x) as follows:

f̂Y |X=x(y, x) = ĉB(Ĝ(y), F̂ (x))ĝ(y)

:=
m∑

k=0

m∑

l=0

Cn

(
k

m
,
l

m

)
P ′
mk(Ĝ(y))P

′
ml(F̂ (x))

1

nh

n∑

i=1

K

(
y − Yi
h

)
,

where we chose an ordinary density estimator for the estimation of g. This estimator can
also be replaced by a Gamma kernel estimator or a Beta kernel estimator, whether the
support is bounded or not. This copula based representation possesses some appealing
advantages over the ordinary representation

fY |X=x(y, x) =
fY,X(y, x)

fX(x)
.
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In fact, the quotient-shaped plug-in estimator suffers from the fact that it may shows an
explosive behavior in numerical implementations as the denominator too small. Moreover,
from a theoretical point of view, the marginal density has to be bounded away from zero
at x to guarantee that the quotient is well-defined. Furthermore, the upper estimator
overcomes these problems and is free of boundary bias, too.
We will omit the exact proof of the asymptotic properties and only remark that the
consistency as well as the derivation of the asymptotic distribution are based on the
following decomposition:

f̂Y |X=x(y, x)− fY |X=x(y, x) = ĉB(Ĝ(y), F̂ (x))ĝ(y)− c(G(y), F (x))g(y)

= (ĝ(y)− g(y))ĉB(Ĝ(y), F̂ (x)) + g(y)(ĉB(Ĝ(y), F̂ (x))− c(G(y), F (x)))

= (ĝ(y)− g(y))(ĉB(Ĝ(y), F̂ (x))− ĉB(G(y), F (x)))

+ (ĝ(y)− g(y))(ĉB(G(y), F (x))− c(G(y), F (x))) + (ĝ(y)− g(y))c(G(y), F (x))

+ g(y)(ĉB(Ĝ(y), F̂ (x))− ĉB(G(y), F (x))) + g(y)(ĉB(G(y), F (x))− c(G(y), F (x)))

:=
5∑

i=1

cB,i(y, x).

Applying the consistency result of Janssen et al. (2014) to the terms cB,2(y, x) and
cB,5(y, x) as well as the well-known rates of the ordinary kernel density estimator to
the terms cB,1(y, x), cB,2(y, x), and cB,3(y, x), yields to the desired consistency as

m→ ∞, h→ 0, nm−1 → ∞, nh→ ∞, as n→ ∞.

Moreover, for the derivation of this result, the continuity of the Bernstein polynomials
as well as the consistency of the empirical distribution function are used for the terms
cB,1(y, x) and cB,4(y, x). Furthermore, under additional smoothness assumptions on c and
g, the asymptotic normality can be derived, if m increases not too fast. In fact, this means
that m = o(n1/2); see Janssen et al. (2014) for further details.
To illustrate the upper results, we present the following figure. We simulated n = 100
independent copies of the two-dimensional random vector (X, Y ) such that the marginals
are given by

Xi ∼ N (0, 1) and Yi ∼ N (0, 1), ∀ i = 1, ..., n.

Moreover, let the corresponding copula of the random vector (X, Y ) be given by the Frank
copula

Cθ,Fr(u, v) =
−1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)

with parameter θ = 5.7, which corresponds to Kendalls τ of 0.5. We estimated the condi-
tional density fY |X=x(y, x) via two different ways. At first, we used the ordinary quotient-
shaped approach. It turns out, that this estimator is sensitive in such a way that it is
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unbounded in some areas, where the denominator gets too small. In contrast, the Bern-
stein polynomial based estimator does not suffer from this effect, although its resulting
estimate is not really smooth anymore. The latter fact rises due to the construction via a
smoothed version of the empirical copula function. Nevertheless, it can be seen that the
copula based estimator provides better results in this case.
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Figure 7: Surface plots of estimated conditional density fY |X=x(y, x). (a): True density ,(b):
Ordinary symmetrical kernel based estimator. (c): Bernstein polynomial based estimator.

Finally, we will focus on the estimation of conditional expectations relying on the corre-
sponding copula representation. By taking the upper findings into account, the conditional
moment of a random variable Y given X = x ∈ R can be represented as follows:

m(x) := E[Y |X = x] =

∫

R

yfY |X=x(y, x)dy

=

∫

R

yc(G(y), F (x))g(y)dy = E[Y c(G(Y ), F (x))].

In view of Liebscher (2005), Noh et al. (2013) proposed a regression estimator m̂(x) based
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on i.i.d. random variables according to this representation as

m̂(x) =

∫

R

yc(Ĝ(y), F̂ (x), ϑ̂)dĜ(y) =
1

n

n∑

i=1

Yic(Ĝ(Yi), F̂ (x), ϑ̂),

where ϑ̂ denotes the maximum likelihood estimator based on the pseudo observations
(Ĝ(Yi), F̂ (Xi)). Noh et al. (2013) derived a stochastic expansion of this estimator and,
thus, deduced the consistency as well as the asymptotic normality of m̂(x) under common
regularity assumptions on c and E[|Y |] <∞.

Example 5.12. If (G(Y ), F (X)) ∼ Gaussian copula with parameter ρ1, Y
D
= N (µY , σ

2
Y ),

and X
D
= N (µX , σ

2
X), then

m(x) = E[Y |X = x] = µY + σY ρ1Φ
−1(F (x)).

For further examples see Noh et al. (2013), Section 5.

In the already mentioned article by Dette et al. (2014), it is illustrated that this estimator
reveals extremely dissatisfying results, provided that the parametric copula family is not
known a priori.
This observation motivates the construction of a fully nonparametric estimator m̂(x) of
m(x) according to

m̂(x) :=
1

n

n∑

i=1

YiĉB(Ĝ(Yi), F̂ (x)),

where cB denotes either the Bernstein polynomial based or the Beta kernel based copula
density estimator.
The derivation of the asymptotic properties is sophisticated due to the twofold estimation
of the unknown distribution of Y and the unknown copula density c.
To create a link to the first part of this thesis, it would be interesting, if the class of
these estimators could be used for the meaningful estimation of coefficients of diffusion
processes by the approximation via conditional expectations. Hence, when observing a
high-frequency sample

X0, X∆, ..., Xn∆

of a univariate ordinary diffusion driven by a Brownian motion, a potential estimator of
the drift function would be given by

b̂C(x) =
1

n∆

n−1∑

i=0

Y(i+1)∆ĉB

(
F̂Y (Y(i+1)∆), F̂X(x)

)
,

where
Y(i+1)∆ := X(i+1)∆ −Xi∆
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and F̂Y (y) :=
1
n

∑n−1
i=0 1(Yi∆ ≤ y) denotes the empirical distribution function of the incre-

ments of the process X.
Due to the fact that, even in the discrete time analysis, only the results for i.i.d. data
are available, we think that a generalization towards continuous-time processes requires
a lot of additional effort. Especially, the generalization to dependent data should be a
challenging task.
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6 Conclusion

In this section, we shortly want to summarize the topics and results of the present thesis.
The main subject of the first part was the nonparametric estimation of the drift function
in a jump diffusion model. In particular, the process under investigation was driven by a
pure jump Lévy process and a Brownian motion, which were independent. Motivated by
approximations of the infinitesimal generator, we constructed a pointwise kernel estima-
tor of the unknown drift function via techniques which originate from classical regression
analysis in discrete time. Our findings are coherent to those of Bandi and Phillips (2003)
as well as Bandi and Nguyen (2003), where analogous estimators were investigated in a
diffusion model and a jump diffusion model where the driving process possesses finite ac-
tivity. In particular, we derived the weak consistency and the asymptotic normality of the
proposed estimator. In view of the mentioned articles, a possible extension would be given
by more general drivers, such that the solution of the considered stochastic differential
equation is still a semimartingale.
Moreover, we analyzed the case where one only observes a noise-contaminated sample.
Using the pre-averaging approach, firstly proposed in Podolskij and Vetter (2006), we
were able to handle this data adequately and derived the corresponding asymptotic prop-
erties. In view of Comte et al. (2010) as well as Kanaya and Kristensen (2015), the use
of the proposed kernel estimators and the incorporation of noisy data in the context of
stochastic volatility models would be interesting.

In the second part, we investigated several bias reduction techniques. The main aspect
was the use of asymmetric kernels (see Chen (1999) and (2000)) in the context of non-
parametric density and regression estimation. Our main contribution was the formulation
of a multiplicative bias corrected multivariate nonparametric density estimator based on
asymmetric kernels. This estimator overcomes the boundary bias effect and, moreover,
possesses an optimal rate of convergence of the MSE which is proportional to n−8/(8+d),
where d denotes the dimension of the underlying data set. This rate is considerably faster
than n−4/(4+d), which can be derived for the classical product kernel based estimator using
asymmetric kernels. We quantified the performance of the new proposed estimator in a
short finite sample Monte Carlo study, which originates from Funke and Kawka (2015).
In view of these considerations and additionally motivated by Gospodinov and Hirukawa
(2012), the use of asymmetric kernels for the estimation of jump diffusion models and mul-
tivariate diffusions, would be an interesting further topic. We think that, from a practical
point of view, asymmetric kernels should be invoked when estimating positive economic
processes of interest, which possess a natural boundary at the origin.

In our last part, we focused on copulas and their nonparametrically guided estimation.
Using Sklar´s theorem, an alternative product-shaped representation of conditional ex-
pectations involving the corresponding copula density can be derived. In view of this
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findings, an alternative estimator for conditional expectations can also be defined. Ac-
cording to this representation, it would be interesting, if these estimators can be used for
the estimation of the coefficients of diffusion models, too.

Finally, we conclude that this thesis generalizes existing ideas for the nonparametric
estimation of diffusions due to more general drivers. Moreover, it presents a couple of
intentions how to expedite the presented techniques for the reasonable estimation of
continuous-time stochastic processes by invoking data-specific properties like positivity
or an accumulation of non-negative data near the origin.
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