Cet. 1276

Gerd Wegner
Abt. Mathematik
Univ. Dortmund
Postfach 500500
D-4600 Dortmund 50

Graphs with given diameter and a coloring problem

1. Introduction. Within the vast literature on colorability there are only a few papers concerning the following coloring problem. By an r-coloring relative to distance k of a graph G — throughout graphs are finite, undirected, without loops and multiple edges — we mean an assignment of at most r colors to the vertices of G so that the distance between any two vertices having the same color is greater than k. Let $\chi_k(G)$ denote the smallest number r such that G has an r-coloring relative to distance k, which we abbreviate $\frac{r-coloring(k)}{r}$. Of course $\chi_1(G)$ is the usual chromatic number of G. r-colorings(k) have been considered by F.Kramer and H.Kramer [16], [17], [18]; especially they calculate the numbers $\chi_k(C_n)$ of circuit graphs C_n and characterize those graphs G which have $\chi_k(G) = k+1$ or $\chi_k(G) = \chi_{k+1}(G) = k+2$. In his forthcoming thesis C.Ivan [13] considers r-colorings(k) for cacti.

Now let \mathcal{G} be a family of graphs; then we define

$$\chi_{\mathbf{k}}(\mathcal{G}) := \sup\{ \chi_{\mathbf{k}}(G) \mid G \in \mathcal{G} \}.$$

If φ contains graphs with arbitrarily high maximum degree, then $\chi_k(\varphi) = \infty$ for $k \ge 2$. In order to obtain nontrivial results we consider the families φ_d [resp. φ_d] of all graphs [resp. all planar graphs] with maximum degree not exceeding d. Obviously $\chi_k(G) = n$, if the graph G has n vertices and diameter $d(G) \le k$. Therefore we have

(1)
$$\chi_{\mathbf{k}}(\mathcal{L}) \geq n_{\mathbf{k}}(\mathcal{L})$$
,

where $n_k(\mathcal{G})$ denotes the maximum number of vertices of those graphs in \mathcal{G} whose diameter is not greater than k. Because of (1) it seems to be suitable to collect the results (some known and some new) on the numbers $n_k(\mathcal{G}_d)$ and $n_k(\overline{\mathcal{G}}_d)$. This is the aim of the next two sections; in section 4 we return to χ_k .

2. The numbers $n_k(\mathcal{G}_d)$. Trivially $n_1(\mathcal{G}_d) = d+1$ because of $k_{d+1} \in \mathcal{G}_d$ and and $n_k(\mathcal{G}_2) = 2k+1$ because of $C_{2k+1} \in \mathcal{G}_2$. Now suppose k > 1 and d > 2. We have $(2) \qquad n_k(\mathcal{G}_d) \leq N(d,k) := 1 + d \frac{(d-1)^k - 1}{d-2}$

with equality iff a (d,k)-Moore graph exists, that is only if k=2 (see H.D.Friedman [11], R.M.Damerell [8], E.Bannai - T.Ito [4]) and even then only for d=2, 3, 7 and possibly d=57 (A.J.Hoffman - R.R.Singleton [12]). In any other case we have $n_k(\mathcal{G}_d) < N(d,k)$ resp. even $n_k(\mathcal{G}_d) < N(d,k) - 1$, if d and N(d,k)-1 both are odd numbers (since a graph in \mathcal{G}_d with diameter $\leq k$ and more than $\sum_{i=0}^k (d-1)^i = N(d,k) - \frac{(d-1)^k - 1}{d-2}$ vertices is necessarily regular of degree d, if such a graph exists at all; compare also B.Elspas [9]). General lower bounds have been given by H.D.Friedman [10] and I.Korn [15], overhauling the general bounds given by B.Elspas [9]:

(3)
$$n_{2h}(\mathcal{G}_d) \ge 2 d \frac{(d-1)^h - 1}{d-2}$$
 [10]

(4)
$$n_{2h+1}(\mathcal{G}_d) \ge 2 \frac{2(d-1)^{h+1}-d}{d-2}$$
 [15]

But these formulas don't yield useful estimates for small values of d and k . Especially

for k = d - 1 S.B.Akers [2] proved

$$(5) n_{d-1}(\boldsymbol{\mathcal{Y}}_d) \geq \binom{2d-1}{d}$$

which is in the cases $d \le 12$ better than (3) and (4), but apart from d = 2, 3 and possibly d = 4 by no means best possible. First we give now an improvement of both (3) and (4).

Theorem 1. Let $h \ge 1$, $d > d_1 \ge 0$ and $k = k_1 + 2h$. Then

(6)
$$n_k(\mathcal{G}_d) \ge n_{k_1}(\mathcal{G}_{d_1}) \frac{2(d-d_1)(d-1)^h + d(d_1-2)}{d-2}$$
.

Remark: With $d_1 = k_1 = 0$ and $n_0(\mathcal{G}_0) = 1$ one gets Friedman's formula (3) and with $d_1 = k_1 = 1$ and $n_1(\mathcal{G}_1) = 2$ Korn's formula (4). But for d > 4 and suitable choice of k_1 and d_1 one gets with (6) better results than with (3) and (4).

Proof of (6): The construction is similar to that of Friedman and Korn. We start our construction with a graph G_1 of diameter k_1 and maximum degree d_1 having N vertices. Now we take a rooted tree with radius h, whose root has valency $d-d_1$ and whose further vertices other than endvertices have valency d. We identify each vertex of G_1 with the root of a copy

Fig. 1

of such a tree thus obtaining a graph with diameter $k_1 + 2h$ and $N + N(d - d_1) + N(d - d_1)(d - 1) + \dots + N(d - d_1)(d - 1)^{h-1}$

vertices. It is easy to see that the diameter remains unchanged if we take d copies of this graph and identify their endvertices (see. figure 1). The resulting graph has maximum degree d and

$$N(d-d_1)(d-1)^{h-1} + d[N + N(d-d_1) + N(d-d_1)(d-1) + ... + N(d-d_1)(d-1)^{h-2}] = \frac{N}{d-2}[2(d-d_1)(d-1)^h + d(d_1-2)]$$

vertices. //

For odd diameter we get bounds sometimes better than those arising from (6) by the following formula:

(7)
$$n_{2k+1}(\mathcal{L}_{d+1}) \ge n_k(\mathcal{L}_d) [n_k(\mathcal{L}_d) + 1]$$

Proof. Let G be a graph with diameter k , maximum degree d and N vertices. Take N+1 copies of G and label them $0,1,\ldots,N$. Label the vertices of G_i with the same numbers

omitting the number i, for each i. Then join the vertex of G_i labelled i_2 with the vertex of G_i labelled i_1 for every pair of numbers $i_1 \not= i_2$. Thus any two of the copies of G are i_1 joined by just one edge and its clear that the resulting graph has diameter 2k+1, maximum degree d+1 and N(N+1) vertices. //

The application of both (6) and (7) needs good estimations for $n_k(\mathcal{L}_d)$ for small values of k and d. Now we shall collect the results for these values.

Fig. 2

d-1 copies of C_5 , pairwise connected by additional edges such that each pair yields a Peterson graph (see fig. 2 for d=4), show

																			_	_			
	1	1	1	1	1											•	•	•		•	·•	•	•
1		1				1	1	1						•		٠	•	•	٠	•	•	٠	٠
1	1								1	1	1						٠			٠	•	·	٠
1	-							_				1	1	1	1				•		•		
														•,		1	1	1	1		٠		
1																	•			1	1	1	1
Γ.	1	-			$\overline{\cdot}$		•			-		1	1			1				1	•		
	1		١.											1			1	1		١.	1		٠
	1	•													1				1			1	1
Ė	-	1			•	١.		•				1	1		•				1		1		
		1										١.			1	١.	1	1		1			
Ľ		1												1		1				١.		1	1
Ė	Ť	_	1		÷	1	•		ī	-	•	Ι,			•	Γ.	1		•	١.	•	•	1
1.			ī			1			1									1				1	
Ľ			1				1				1								1	1			
Ľ	•		1					1		1		١.				1					1	•.	
ŀ.	Ť	÷	Ī.	i		1	-	•		•	1		-	•	1		-	•	•	٦.	1	•	
I.				1			1			1		1				١.				١.		1	
Ľ	-		1.	1			1	٠		1			1			١.				١,			1
Ľ	-		ĺ.	1			-	1	1					1		١.		:		1			
ľ.	Ť	·	Ť.	_=	1	1	Ť.		t.	1	•			1		١.			1	Τ.	•		٠.
ľ.	•		I.		1	1	1		li			١.			1	1				١.			
ľ	•		Ľ		1	L		1	1.		1	١.	1			١.	1			١.			
ľ	•		l.		ī	L		ī	1.		1	li				١.		1		١.			
ı.	<u>.</u>	_:	1:	_:	-	٠.	÷	_==	٠.	·	_	-	÷	_	<u></u>	٠.	Ť	=				_	

Fig. 3

(8)
$$n_2(\mathcal{L}_d) \ge 5d - 5$$
.

In (8) we have equality not only for d=2, 3, as is well known, but also for d=4; this value has been given by B.Elspas [9] together with $n_2(\mathcal{G}_5)=24$, both without proof. While it is not hard to prove $n_2(\mathcal{G}_4)=15$, the inequality $n_2(\mathcal{G}_5)\geq 24$ in [9] is erroneously based upon a graph by M.W.Green, which does not have diameter 2. Nevertheless the inequality is correct and figure 3 displays the adjacency matrix of a graph with 24 vertices, diameter 2 and degree 5. — For d=6 we have

(9)
$$n_2(\mathcal{L}_6) \ge 32$$
.

The graph which proves this inequality is built up by the two subgraphs shown in figure 4. Each vertex of the graph on the left hand — the graph of the dodecahedron together with its ten diagonals — has to be joined with two vertices of the graph on the right hand as indicated

Fig. 4

by numbers. (The construction of this graph has been inspired by a 5-valent graph with girth 5 and 30 vertices given by N.Robertson [19]).

Next we consider k=3. $n_3(\mathcal{L}_3)=20$ has been proved by B.Elspas [9]. We draw this graph (which possibly is unique) in a somewhat different manner (figure 5) to exhibit its relationship to the Peterson graph.

From (5) we have $n_3(\mathcal{G}_4) \ge 35$, which is best possible up to now.

Further we have

(10)
$$n_k(\mathcal{L}_d) \ge 2 \frac{(d-1)^k - 1}{d-2}$$
 for $d = 3, 4, 6$; $d-1$ a prime power,

since the corresponding d-regular graphs with girth 2k given by F.Karteszi [14], W.G.Brown [7] and C.T.Benson[5] also have diameter k (compare also R.Singleton [20]). In the case k=6 this fact is not explicitly mentioned by Benson [5], but easy to prove by counting vertices: A d-regular graph with girth 2k and diameter > k would have necessarily more than

$$1 + d + d(d-1) + \dots + d(d-1)^{k-2} + (d-1)^{k-1} = 2 \frac{(d-1)^k - 1}{d-2}$$

vertices. — For k=3 (10) yields $n_3(\mathcal{L}_d) \ge 2d^2-2d+2$, for d-1 a prime power, and concerning the other cases we have Elspas' result [9]

(11)
$$n_3(\mathcal{L}_d) \ge 2d^2 - 3d + 1$$
.

Finally a graph showing

(12)
$$n_5(\mathcal{G}_3) \ge 46$$

is given in figure 6.

Table 1 summarizes the results on $\,n_k(\, \not\!\!\!\!\!/_d)\,$ for small values of $\,k\,$ and $\,d\,$. The number in brackets indicates the formula from which this lower bound results.

Table 1

d k	2	3	4	5	6	7	
1	3	4	5	6	7	8	
2	5	10	1 5	24	36 (9) 32	50	
3	7	20	52 (5) 35	104 (10) 42	186 (10) 62	300 (11) 78	
4	9	44 (1 o) 30	160 (10) 80	424 (10) 170	936 (1 o) 312	1812	
5	11	92 (1 2) 46	484 (7) 110	1704 (7) 240	4686 (7) 600	10884 (7) 1056	
6	13	188 (10) 126	1456 (10) 728	8824 (10) 2730	23436 (10) 7812	65317	

Fig. 6

3. The numbers $n_k(\vec{\xi}_d)$. Trivial upper bounds for $n_k(\vec{\xi}_d)$ we get from the previous section since

(13)
$$n_k(\vec{Q}_d) \leq n_k(\vec{Q}_d)$$
.

Thus we have N(d,k) as an upper bound and since every planar graph contains vertices of degree < 5 one may improve this bound for d > 5 immediately to

(14)
$$n_k(\vec{y}_d) \leq 1 + 5 \frac{(d-1)^k - 1}{d-2}$$
 (d > 5).

Although this is a rather rough bound, it seems to be hard to give general improvements.

For k = 1 we have

(15)
$$n_1(\overline{\mathcal{G}}_d) = \begin{cases} d+1 & d \leq 3 \\ 4 & \text{for } d > 3 \end{cases}$$

because of the nonplanarity of K_{d+1} for d>4. Of course $n_k(\overline{\mathcal{G}}_2)=n_k(\mathcal{G}_2)=2\,k+1$ since $C_{2k+1}\in\overline{\mathcal{G}}_2$. For k=2 we prove:

Theorem 2.

$$(16) \qquad \left[\frac{3d}{2}\right] + 1 \leq n_2(\overline{\mathscr{L}}_d)$$

$$(17) \qquad \frac{3d}{2} + 8 \ge n_2(\overline{\mathscr{L}}_d) \qquad \text{for } d \ge 22.$$

Inequality (16) is proved by the graph of figure 7, where dotted lines may be added in the cases $d \ge 4$ in order to obtain a 3-connected graph, if desired.

In order to prove the second inequality we give a preparatory lemma.

Lemma. Let G be outerplanar and let be given a plane embedding of G with straight edges such that all vertices of G are situated on a circle C (this is always possible). Let A, B be two sets of vertices of G with the following properties: A and B are separable by some straight line, $|A| \ge 4$, $|B| \ge 4$ and any pair a, b of vertices $a \in A$, $b \in B$ has distance at most 2 in G. Then there exists a vertex x in G dominating both A and B. (We say that a vertex x dominates A iff each vertex $a \in A$, $a \nmid x$, is adjacent to x.)

Proof. Because of the separability we may assume that $a_1, \dots, a_m, b_1, \dots, b_n$ is a labelling of $A \cup B$ in counterclockwise order on C.

Case 1: There exist $i \in \{2, \ldots, m-1\}$ and $j \in \{2, \ldots, n-1\}$ such that $a_i \sim b_j$. Now the edge (a_i, b_j) separates a_1 and b_1 ; to ensure $dist(a_1, b_1) \le 2$ we must have $a_1 \sim a_i \sim b_1$ or $a_1 \sim b_j \sim b_1$, say $a_1 \sim a_i \sim b_1$. Considering further pairs of vertices we see that a_i dominates $A \cup B$.

^{*)} $a \sim b$ denotes adjacency of a and b.

Case 2: None of a_2 , ..., a_{m-1} is adjacent to any of the vertices b_2 , ..., b_{n-1} . Then there exists $x \notin \{a_2, \ldots, a_{m-1}, b_2, \ldots, b_{n-1}\}$ such that $a_2 \sim x \sim b_2$. By arguments similar to those above we see that x is a dominating vertex. $/\!/$

Proof of (17): Let $G \in \overline{\mathcal{G}}_m$ have diameter 2.

Case 1: There exists a separating set T of at most three vertices a_i . Because of diam G=2 T is a dominating set in G. Let R , S be the two sets of vertices separated by $T=\{a_1,a_2,a_3\}$. and r:=|R| , s:=|S| , $n:=|\operatorname{vert} G|$. By R_i [resp. R_{ij}] we denote the set of vertices of R having in T only a_i [resp. a_i and a_j] as neighbour, likewise S_i and S_{ij} ; as above $r_i:=|R_i|$ and so on. The numbers r_{123} and s_{123} of vertices of R and S adjacent to all three vertices of T is O or 1.

Case 1.1: Each vertex of R \cup S is adjacent to at least two vertices of T . Then $2(r+s) \le 3d$ and thus $n=3+r+s \le 3+\frac{3d}{2}$.

Case 1.2: There exist vertices in R \cup S adjacent to just one vertex in T , say $r_1 \neq 0$. Then $r_{23} \leq 2$ [and $s_2 = s_{23} = s_3 = 0$] and

(*) $r_1 + r_{12} + r_{13} + r_{123} + s \le d$

since any vertex of S must be adjacent to a_1 .

Case 1.2.1: $r_2 + r_{23} + r_3 \le d$. Then $n = 3 + r + s \le 3 + \frac{3d}{2}$.

Case 1.2.2: $r_2+r_{23}+r_3>d$. Then $r_2+r_3>\frac{d}{2}-2$; since d>16 we may assume $r_2 \ge 4$ and so $r_{13} \le 2$.

If also $r_3 \neq 0$, then $r_{12} \leq 2$, $s = s_{123} = 1$ and $r_1 + r_2 + r_3 \leq d + 5$ in view of the lemma: Assume $r_1 + r_2 + r_3 > d + 5$; since $r_i \leq d - 1$ at least two of these numbers are greater than 3, say r_1 and r_2 , taking $A = R_1$ and $B = R_2 \cup R_3$ we see that there exist a dominating vertex of degree $\geq r_1 + r_2 + r_3 - 1$, which is impossible. Thus

 $n = 3 + r_1 + r_2 + r_3 + r_{12} + r_{13} + r_{23} + r_{123} + s \le 3 + d + 5 + 2 + 2 + 2 + 1 + 1 = d + 16 \le \frac{3d}{2} + 5$ for $d \ge 22$.

Now assume $r_3=0$. Then $r_2>\frac{d}{2}-2$ and with the help of the lemma $r_1+r_{13}\leq \frac{d}{2}+2$ (take $A=R_2$ and $B=R_1\cup R_{13}$), thus $n\leq \frac{3d}{2}+5$ since similar to (*) $r_2+r_{12}+r_{23}+r_{123}+s\leq d$.

Case 2: Any separating set of vertices has at least 4 vertices. Then G cannot contain vertices of degree ≤ 3 . Let x be a vertex of minimum degree k (k = 4 or 5) and y_1 , ..., y_k its neighbours labelled according to their plane cyclical order. Any further vertex of G is adjacent to at least one of y_1 , ..., y_k . y_i cannot be adjacent to y_j unless $j \equiv i \pm 1 \pmod{k}$ otherwise $\{x, y_i, y_i\}$ would be a separating set.

Case 2.1: Two of y_1 ,..., y_k , say y_j , y_l , that are not cyclically neighboured, have a common neighbour $z \nmid x$. Omitting x and adding edges (y_i, y_{i+1}) (i mod k) so far $y_i \not \sim y_{i+1}$ we get a graph $G' \in \mathcal{G}_{d+1}$ with diam $G' \leq 2$ having the separating set $\{y_j, y_l, z\}$ and so $n \leq 1 + \frac{3(d+1)}{2} + 5$ according to case 1.

Case 2.2: Any further vertex belongs to some set R_i of vertices adjacent to y_i only or to some set $R_{i,i+1}$ of vertices adjacent to both y_i and y_{i+1} (i mod k). We have $|R_{i,i+1}| \leq 1$, otherwise we would have a separating triple. Now with $A_i = R_i \cup R_{i,i+1} \cup R_{i+1}$ and $B = R_{i+2} \cup R_{i+2,i+3} \cup \cdots \cup R_{i-1}$ (i mod k) we may apply the lemma. Thus either there exists i such that both $|A_i| \geq 4$ and $|B_i| \geq 4$ and then according to the lemma $|A_i| + |B_i| \leq d$ and so $n \leq d+2+5+1 = d+8$, or we have for each i either $|A_i| \leq 3$ or $|B_i| \leq 3$. But then there is at most one j such that $|A_i| \geq 4$, on the other hand we have $|R_{j,j-1} \cup R_j \cup R_{j,j+1}| \leq d-1$ and so $n \leq d-1+3+3+1+k+1 \leq d+12$. //

For $3 \le d \le 5$ we have

(18)
$$n_2(\overline{\mathcal{G}}_3) = 7$$
, $n_2(\overline{\mathcal{G}}_4) = 9$, $n_2(\overline{\mathcal{G}}_5) = 10$.

Graphs showing " \geq " are given in figure 8, the proofs of " \leq " are elementary, but tedious; we omit details.

Fig. 8

It is worth noting that the first graph of figure 8 is not 3-connected. Indeed for the class \mathcal{P}_3 of 3-valent, 3-connected planar graphs (i.e. the graphs of simple 3-polytopes) we have $n_2(\mathcal{P}_3) = 6$.

Figure 9 shows

(19)
$$n_2(\overline{\mathcal{G}}_6) \ge 11$$
 , $n_2(\overline{\mathcal{G}}_7) \ge 12$

and we conjecture:

Conjecture.
$$n(\overline{\mathcal{G}}_d) = d + 5$$
 for $d = 6, 7$

$$n(\overline{\mathcal{G}}_d) = \left\lceil \frac{3d}{2} \right\rceil + 1 \text{ for } d \ge 8$$

Fig. 9

Finally we give by some easy constructions shown for $r \neq 2$ in figures 10 - 12 general lower bounds and it seems very likely that these bounds are close by the exact values.

(20)
$$n_{2r+1}(\overline{\xi}_d) \ge 3(d-1)^r + 4\frac{(d-1)^r - 1}{d-2}$$
 for $d = 3, 4$ (see figure 10).

Fig. 10

Fig. 11

(21)
$$n_{2r+1}(\overline{\xi}_d) \ge (4d-2)(d-1)^{r-1}$$
 for $d > 4$ (see figure 11).

(22)
$$n_{2r}(\overline{\xi}_d) \ge \frac{1}{d-2}[(d+2)(d-1)^r - 4]$$
 (see figure 12).

In general these inequalities will not be best possible, for instance we have

(23)
$$n_3(\overline{\xi}_3) \ge 12$$
 (see figure 13).

Fig. 13

4. The coloring numbers $\chi_k(\mathcal{G}_d)$ and $\chi_k(\mathcal{G}_d)$. As noted in section 1 we have $\chi_k(\mathcal{G}_d) \geq n_k(\mathcal{G}_d)$ and $\chi_k(\mathcal{G}_d) \geq n_k(\mathcal{G}_d)$. For d=2 we have equality in both cases, so we restrict our attention in the following to $d \geq 3$. And as just used in [1] the problem of finding an r-coloring(k) of a graph G may be reduced to the problem of finding an ordinary coloring by considering the k-th power of $G: \chi_k(G)$ equals the ordinary chromatic number $\chi(G^k)$ of G^k . If we define the clique number $\delta_k(G)$ relative to distance k to be the maximum number of vertices of subgraphs G' of G with diam $G \leq k$, then we have similarly $\delta_k(G) = \delta(G^k)$, where δ denotes the usual clique number. Of course $\chi_k(G) \geq \delta_k(G)$. If G has maximum degree d, then G^k has maximum degree N(d,k)-1. Thus according to a wellknown theorem $\chi(G^k) \leq N(d,k)$ for every $G \in \mathcal{G}_d$ and we have

$$(24) \quad n_{k}(\mathcal{G}_{d}) = \delta_{k}(\mathcal{G}_{d}) = \chi_{k}(\mathcal{G}_{d}) = N(d,k)$$

whenever a (d,k)-Mooregraph exists (this cases are listed in section 2, now including k=1), while in any other case we get using a theorem of Brooks [5]

(25)
$$n_k(\mathcal{C}_d) \leq \delta_k(\mathcal{C}_d) \leq \chi_k(\mathcal{C}_d) < N(d,k)$$
.

The difficulty to prove further restrictions on $\chi_k(\zeta_d)$ becomes evident if we now consider the case of planar graphs. Again we have $\chi_k(\zeta_2) = n_k(\zeta_2) = 2k+1$ and for $k \ge 3$ similarly to (25)

$$(26) n_k(\overline{\xi}_d) \le c_k(\overline{\xi}_d) \le \chi_k(\overline{\xi}_d) < N(d,k)$$

for any $d \ge 3$ and $k \ge 2$, since all the Moore graphs in question are not planar. For k = 1 we know $\chi_1(\ \overline{\mathcal{G}}_d) = 4$ for $3 \le d \le 5$ (see J.M.Aarts - J.de Groot [1]), but the question whether $\chi_1(\ \overline{\mathcal{G}}_d) = 4$ holds for all $d \ge 3$ is precisely the famous and long standing four color problem, which just has been solved by K.Appel and W.Haken with a proof that is very long and depends heavily on extensive use of computers (see K.Appel - W.Haken [3]).

In order to stimulate further research we venture a challenging conjecture:

Conjecture: For any $d \ge 3$, $k \ge 1$

$$n_k(\xi_d) = \delta_k(\xi_d) = \chi_k(\xi_d)$$
 and $n_k(\xi_d) = \delta_k(\xi_d) = \chi_k(\xi_d)$.

As noted above one cannot expect a general answer but it would be interesting to settle some cases. As a first step in this direction we prove $\chi_2(\overline{\xi}_3) \leq 8$ and it remains open whether $\chi_2(\overline{\xi}_3) = 7$ or $\chi_2(\overline{\xi}_3) = 8$.

Theorem 3.
$$\chi_2(\overline{\xi}_3) \leq 8$$
.

^{*)} where $\delta_k(\mathcal{G}) := \sup \{ \delta_k(G) \mid G \in \mathcal{G} \}$.

Proof. Let G be a graph of $\overline{\zeta}_3$ with $\chi_2(G) \ge 9$ and minimum number of vertices. We prove by contradiction that such a graph cannot exist. In order to do this we first deduce some properties of G.

(a) G is regular of degree 3 and does not contain 3-circuits or pairs of 4-circuits with an edge in common.

Otherwise let $\,v\,$ be a vertex of degree < 3 or a vertex of some 3-circuit or a vertex of an edge belonging to two 4-circuits. The antistar $\,G'\,$ of $\,v\,$ in $\,G\,$ is 8-colorable(2) by minimality of $\,G\,$. But this coloring can be extended to $\,G\,$ since $\,v\,$ has at most $\,7\,$ neighbours of first and second order, a contradiction. $\,/\,$

(b) G is 3-connected.

Clearly G is connected. Assume that G is not 3-connected and let $e_1 = (v_1', v_1'')$ and $e_2 = (v_2', v_2'')$ be two edges separating G into two components G' and G' with $v_1' \in G'$ and $v_1'' \in G''$ [omit e_2 in the case of 1-connectedness] *). We are able to color G' rel. to distance two with 8 colors — this coloring may be described by a function f: vert $G' \longrightarrow \{1, 2, \dots, 8\}$ — such that $f(v_1')$, $f(v_2') \in \{1, 2\}$ and none of the neighbours of v_1' and v_2' has color 3 or 4 (since there are at most 4 neighbours). Likewise we color G'' such that $f(v_1'')$, $f(v_2'') \in \{3, 4\}$ and none of the neighbours of v_1'' , v_2'' has color 1 or 2. Obviously both colorings may be fitted together to yield an 8-coloring(2) of G.

It is worth noting that in so far we didn't make use of the planarity of $\mbox{\ G}$.

(c) G cannot contain 4-circuits.

Assume that x_1, \ldots, x_4 are the vertices of some 4-circuit C of G. Because of (a) and (b) each x_i has a neighbour $y_i \notin C$ and all y_i are different and nonadjacent $(y_1 \not \to y_3)$ and $y_2 \not \to y_4$ involve together with (b) the planarity of G).

Omitting C and the edges incident with C we get a graph G' (see figure 13) which has an 8-coloring(2). We try to extend this coloring to G. Consider one fixed \mathbf{x}_i ; coloring this \mathbf{x}_i we have to avoid the colors of five vertices of G'. Thus in view of G' we can assign to each \mathbf{x}_i a set \mathbf{A}_i of at least three admissible colors. Now it is possible to choose for all \mathbf{x}_i different admissible colors provided that not all \mathbf{A}_i consist of the same three colors, say the colors 6,7,8. In that case we change the coloring of \mathbf{y}_1 in G'. First note that the colors assigned to \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_4 , \mathbf{u} , \mathbf{v} (see figure 14) all are

Fig. 14-

different, otherwise at least four colors would be admissible for $\mathbf{x_1}$. Further at least one of the colors $f(\mathbf{y_2})$, $f(\mathbf{y_4})$, 6, 7, 8 does not occur within the colors of the (at most four) neighbours of second order of $\mathbf{y_1}$ (among which may be some $\mathbf{y_1}$). Recoloring $\mathbf{y_1}$ with that color $\mathbf{x_1}$ has four admissible colors or an admissible triple different from that of $\mathbf{x_3}$, which remains unchanged. After recoloring we have the general case of above. /

In the last step of the proof we show that $\,G\,$ cannot contain 5-circuits. Since every 3-connected, planar graph contains n-circuits with $\,n < 6\,$ this proves the nonexistence of $\,G\,$.

^{*)} In the case of cubic graphs edge-connectivity coincides with vertex-connectivity.

The procedure in this last step is the same as in the proof of (c). Let x_1, \ldots, x_5 be the vertices of a 5-circuit C of G; each x_i has a neighbour $y_i \notin C$ and all y_i are different and nonadjacent. Let be given an 8-coloring(2) of the antistar G' of C in G. As in (c) denote by A_i the set of colors admissible for x_i (in view of G'). In any way we have up to permutation of vertices or colors one of the following cases.

Case 1: $f(y_1) = f(y_2) = f(y_3)$. Then $|A_2| \ge 5$, $|A_1| \ge 4$ and $|A_3| \ge 4$ and the A_1 have in either case a transversal, which means we can assign to all x_1 different admissible colors.

In the following we consider only the "critical cases" where such a transversal does not necessarily exist and we indicate which vertex of G' should be recolored in that case.

Case 2: $f(y_1) = f(y_2) = f(y_4)$. The critical case is $|\bigcup_{i=1}^{5} A_i| = 4$. In that case recolor y_i !

Case 3: $f(y_1) = f(y_2)$, but none of the cases above. Then $|A_1| \ge 4$ and $|A_2| \ge 4$. The critical case is $A_3 \cup A_4 \cup A_5 \subseteq A_1 = A_2$. Then $f(y_3)$, $f(y_5) \notin A_1$ and say $f(y_3) + f(y_4)$ ($f(y_3)$ and $f(y_5)$ cannot both equal $f(y_4)$, otherwise case 1). Then recolor y_3 !

Case 4: $f(y_2) = f(y_5)$, but none of the cases above. Then $f(y_3) \neq f(y_4)$, $|A_1| \ge 4$ and the critical case is: $|A_1| = 4$ and $A_2 \cup A_3 \cup A_4 \cup A_5 \subseteq A_1$. Then not both $f(y_3)$, $f(y_4) \in A_1$, say $f(y_3) \notin A_1$. Recolor y_3 !

Case 5: All colors $f(y_i)$ are pairwise different. Then we have two critical cases: $|\bigcup_{i=1}^{5} A_i| \le 4$ or some four of the A_i consist of the same triple of colors.

If in that cases for some i $y_i \in A_{i+2}$ or $y_i \in A_{i-2}$ (i mod 5), say $y_1 \in A_3$, then recolor y_5 ! Otherwise necessarily all A_i consist of the same triple of colors and recoloring any of y_i reduces also that case to one of the cases above. $/\!/$

References.

- [1] J.M.Aarts J.de Groot: A case of coloration in the four colour problem, Nieuw Arch. Wisk. (3) 11 (1963) 10-18.
- [2] S.B.Akers: On the construction of (d,k) graphs, IEEE Trans. Electron. Comput. EC-14 (1965) 488.
- [3] K.Appel W.Haken: Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976) 711 712.
- [4] E.Bannai T.Ito: On finite Moore graphs,
 J. Fac. Sci. Univ. Tokyo Sect. I A <u>20</u> (1973) 191 208.
- [5] C.T.Benson: Minimal regular graphs of girths eight and twelve, Can. J. Math. <u>18</u> (1966) 1091-1094.
- [6] R.L.Brooks: On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.
- [7] W.G.Brown: On Hamiltonian regular graphs of girth six, J. London Math. Soc. <u>42</u> (1967) 514-520.
- [8] R.M.Damerell: On Moore graphs,
 Proc. Cambridge Philos. Soc. 74 (1973) 227 236.

- [9] B.Elspas: Topological constraints on interconnection-limited logic,
 IEEE Conf. Record on Switching circuit theory and logical design, Vol. S-164 (1964) 133-137.
- [10] H.D.Friedman: A design for (d,k) graphs,
 IEEE Trans. Electron. Comput. EC-15 (1966) 253 254.
- [11] H.D.Friedman: On the impossibility of certain Moore graphs,
 J. Combinat. Theory 10 (1971) 245 252.
- [12] A.J.Hoffman R.R.Singleton: On Moore graphs with diameters 2 and 3, IBM J. Res. Develop. $\underline{4}$ (1960) 497 504.
- [13] C.Ivan: Dissertation, GH Duisburg.
- [14] F.Kárteszi: Piani finiti ciclici come risoluzioni di un certo problema di minimo, Boll. Un. Mat. Ital. (3) 15 (1960) 522 528.
- [15] I.Korn: On (d,k) graphs,

 IEEE Trans. Electron, Comput. EC-16 (1967) 90.
- [16] F.Kramer: Sur le nombre chromatique K(p,G) des graphes,
 Revue Franc. d'Automatique, Inf. Rech. Oper. R-1 (1972) 67-70.
- [17] F.Kramer H.Kramer: Ein Färbungsproblem der Knotenpunkte eines Graphen bezüglich der Distanz p, Revue Roumaine Math. Pur. Appl. 14 (1969) 1031 1038.
- [18] F.Kramer H.Kramer: Un problème de coloration des sommets d'un graphe, C.R.Acad. Sci. Paris <u>268</u> A (1969) 46 - 48.
- [19] N.Robertson: Ph. D. Thesis, Univ. of Waterloo, Waterloo, Canada 1969.
- [20] R.Singleton: On minimal graphs of maximum even girth, J. Combinat. Theory 1 (1966) 306-322.