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Graphs with gliven diameter and a cecloring problen

1. Introduction. Within the vast literature on colorability there are only a few papers
concerning the following coloring problem. By an r-coloring relative to distance k of a

graph G -— throughout graphs are finite, undirected, without loops and multiple edges —

we mean an assignment of at most r colors to the vertices of G so that the distance between

any two vertices having the same color is greater than k . Let xk(G) denote the smallest
number r such that G has an r-coloring relative to distance k , which we abbreviate
r-coloring(k) . Of course xl(G) is the usual chromatic number of G . r-colorings(k) have

been considered by F.Kramer and H.Kramer [16],[17], [18]; especially they calculate the
numbers xk(Cn) of circuit graphs Cn and characterize those graphs G which héxve :

xk(G) = k+1 or xk(G) - xk+1(G) = k+2 . in his forthcoming thesis C.Ivan {13] considers
r-colorings(k) for cacti.

Now let ‘(;, be a family of graphs; then we define

xk(‘g,) = sup{ x, (&) | G € %)
1f ”5— contains graphs with arbitrarily high maximum degree, then xk(\g_) = o for k & 2.
In order to obtain nontrivial results we consider the families ';.d [resp. 5-:1] of all graphs
{resp. all planar graphs] with maximum degree not exceeding d. Obviously Xk(G) - n, if
the graph G bhas n vertices and diameter d(G) S k. Therefore we have

1 x (€)% n (€,

where nk( 5;_) denotes the maximum number of vertices of those graphs in ‘é__ whose diameter is
not greater than k . Because of (1) it seems to be suitable to collect the results (some
known and some new) on the numbers nk( ﬁd) and “k( ‘;!:d) . This is the aim of the next two
sections; in section 4 we return to Xy *

2. The numbers n, ( %.). Trivially n;(4,) = d+1 because of X, , € %q and

and nk( ‘52) = 2k+1 because of C,, ., € 42. Now suppose k> 1 and d > 2 . We have
k
im (d-1)" - 1
(2) n (g = Ndk) := 1+ d->g7

with equality iff a (d,k)-Moore graph exists, that is only if k = 2 (see H.D.Friedman (nl,
R.M.Damerell [8], E.Bannai - T.Ito [4]) and even then only for d = 2,3, 7 and possibly
d = 57 (A.J.Hoffman - R.R.Singleton [12]). In any other case we have n, ( ‘§_d) < N(d,k) resp.
even "k( ;d) < N(d,k) -1, it d ar;:i N(d,k)~1both are odd numbers (since a graph in g'_“
with diameter = k and more than ) (d- n! - N(d,k) - %12—2'—1 vertices is necessarily
regular of degree d , if such a gra:t:oexists at all; compare also B.Elspas [9]). General lower

bounds have been given by H.D.Friedman {10] and I.Korn [15], overhauling the general bounds
given by B.Elspas [9]:

h
3) fon{ %y) R (10]

v

h+1
2 (d-1)" g
(%) ny (%) =2 o2 == [15]

But these formulas don't yield useful estimates for small values of d and k. Especially



for k =d-1 S.B.Akers [2] proved

() om0y = (277

which is in the cases d = 12 better than (3) and (4), but apart from d = 2,3 and
possibly d = 4 by no means best possible. First we give now an improvement of both (3) and (4).

1 20 and k = k1 + 2h . Then

2 (d-d ) (d-1)" +d (d;-2)
d -2

Theorem 1. Let hz 1 ,d>4d

(8) nk(‘gd) z nkl( ﬁdl)

Remark: With d1 = kl = 0 and no( ﬁb) = 1 one gets Friedman's formula (3) and with d1 =
~k; =1 and nl(gl) = 2 Korn's formula (4). But for d > 4 and suitable choice of k;
and d1 one gets with (6) better results than with (3) and (4).

Proof of (6): The construction is similar to that of Friedman and Korn. We start our construction
with a graph G1 of diameter kl and maximum degree d1 having N vertices. Now we take

a rooted tree with radius h , whose root has valency d- d1 and whose further vertices other

than endvertices have valency d . We identify each vertex of G1 with the root of a copy

of such a tree thus obtaining a graph with diameter k1 + 2h and

N + N(d-d;) + NMd—d)(d-1) + ... + N(d—dl)(d-l)h-l '
vertices. It is easy to see that the diameter remains unchanged if we take d copies of this
graph and identify their endvertices (see. figure 1). The resulting graph has maximum degree d and

N(d-d,)(d-1P 4+ a[ N + N(d-d;) + N(d-d,)(d-1) + ... + N(d-d)d-D?F] -

N h
g (2(d-d)@-D" + d(d, -2) ]

vertices. //

For odd diameter we get bounds sometimes better than those arising from (6) by the following formula:

n Roke1( Garr) 2 M%) [me( ) + 1]
Proof. Let G be a graph with diameter k , maximum degree d and N vertices. Take N+1
copies of G and label them 0,1, ..., N. Label the vertices of G; with the same numbers



omitting the number i , for each i. Then join the vertex of Gi labelled i2 with the
vertex of G; labelled i, for every pair of numbers i, 4 iy . 1 Thus any two of the copies
of G are joined by just one edge and it's clear that the resulting graph has diameter
2k+1, maximum degree d+1 and N(N+1) vertices. //

The application of both (6) and (7) needs good estimations for nk( ‘gd) for small values
of k and d . Now we shall collect the results for these values.
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a Peterson graph (see fig. 2 for d = 4), show Fig. 3

(8) nz(‘éd) z 5d-5 .

In (8) we have equality not only for d = 2,3 , as is well known, but also for d = 4; this

value has been given by B.Elspas [9] together with 1, ( '45;5) = 24, both without proof. While it
is not hard to prove n,( ‘g,h) = 15 , the inequality ny( ‘§5) 2 24 in [9] is erroneously based
upon a graph by M.W.Green, which does not have diameter 2 . Kevertheless the ineguality is correct

and figure 3 displays the adjacency matrix of a graph with 24 vertices, diameter 2 and
degree 5. — For d =6 we have

(9) n2( ?’6) 2z 32
The graph which proves this inequality is built up by the two subgraphs shown in figure 4 .

Bach vertex of the graph on the left hand -— the graph of the dodecahedron together with its
ten diagonals — has to be joined with two vertices of the graph con the. right hand as indicated

[}
N

[}
L
-
\
L
N

by numbers. (The construction of this graph has been inspired by a 5-valent graph with girth 5

and 30 vertices given by N.Robertson [19]).



Next we consider k = 3. nB(%;3) = 20 has
been proved by B.Elspas [9]. We draw this
graph (which possibly is unique) in a somewhat
different manner (figure 5) to exhibit its
relationship to the Peterson graph.

From (5) we have n3(‘§4) z 35, which is
best possible up to now.

Further we have

(@-1% -1 .
(10) nk(‘g_d) z 2 for d =3,4,6; d-1 a prime power ,

since the corresponding d-regular graphs with girth -2k given by F.Kérteszi [14],
W.G.Brown [7] and C.T.Benson[5] also have diameter k (compare also R.Singleton [20]).
In the case k = 6 this fact is not explicitly mentioned by Benson [5], but easy to prove
by counting vertices: A d-regular graph with girth 2k and diameter > k would have
necessarily more than

Kk
(d-1)" -1
273

-2d+ 2, for d-1 a ’;’;rime power,

1+d+dld-1) + ... + d(d-1)52 4 (ga-1)¥1

vertices. — For k = 3 (10) yields n,( %d) z 24°

and concerning the other cases we have Elspas' result [9]

(11) (4 = 24 -3a+1.

Finally a graph showing

(12) ng( 93) = 48

is given in figure 6.

Table 1 summarizes the results on nk(lgd) for
small values of k¥ and d . The number in

brackets indicates the formula from which
this lower bound results.

Table 1
d 2 3 4 5 5] 7
Fig. 6
k g
1 3 4 5 6 7 8
36
2 5 10 15 24 (s)| 50
32
52 104 186 300
3 7 20 (s) (10 (10) (11
35 42 62 78
44 160 Lah 936 1812
4 9 (1o (10 (1o (10)
30 80 170 312
92 L84 1704 4686 10884
5 1 (12 (7) (7) (7) (7)
46 110 240 600 1056
188 1456 8824 23436 65317
6 13 (10) (10 (10 (10)
126 728 2730 7812




3. The numbers nk(_?d) . Trivial upper bounds for nk( ?d) we get from the previous section since

(13) 0 (&) = gy .

Thus we have N(d,k) as an upper bound and since every planar graph contains vertices of

degree < 5 one may improve this bound for d > 5 immediately to

_ K
(18) n(Fp = 1+544=1) -1 @as 5.

x

Although this is a rather rough bound, it seems to be hard to give general improvements.

For k =1 we have

) _ {d+1 d =3
15) n. ( Yy = for
lgd 4 d >3

because of the ninplanarity of Xy, for d> 4. Of course nk(gz) = nk( %) = 2k+1
since C2k+1 € ﬁz . For k =2 we prove:

Theorem 2.
3d >
1o [H] 1 = 0Fp
(17) 3d . 8 =z n (@) for dz 22
2 2 ny( %y z22.

Inequality (16) is proved by the graph of figure 7, where dotted lines may be added in the
cases d 2 4 in order to obtain a 3~connected graph, if desired.

%] -1 vertices

Q.

—] -1 vertices

™)

Fig. 7

In order to prove the second inequality we give a preparatory lemma.

Lemma. Let G be outerplanar and let be given a plane embedding of G with straight edges
such that all vertices of G are situated on a circle C (this is always possible). Let A, B
be two sets of vertices of G with the following properties: A and B are separable by some
straight line, |al 2 4 , |Bl = & and any pair a,b of vertices a € A, b € B has distance
at most 2 in G . Then there exists a vertex x in G dominating both A and B .

(We say that a vertex x dominates A iff each vertex a € A , a + x, is adjacent to x .)

Proof. Because of the separability we may assume that 8y s -es s ap, bl s ey bn is a labelling
of AU B in counterclockwise order on .C .

Case 1: - There exist i€ {2, ...,m-1} and j € (2, ..., n-1} such that a;~ bj . ®
Now the edge (ai’bj) separates a, and b1 ; to ensure dist(al,bl) = 2 we must have

a,~a.~Db ~ b‘j Nbl , say 2, ~va; ~ b1 . Considering further pairs of vertices

1 i 1 1
we see that a; dominates A UB .

or a

*y a o~ b denotes adjacency of a and b .



Case 2: None of 895 00,2 is adjacent to any of the vertices b2 g eeey bn—l . Then

m-1
21 crer@n 15Dy, e 'bn-l}
similar to those above we see that x is a dominating vertex. //

there exists x ¢ {a such that ag ~ X ~ b2 . By arguments

Proof of (17): Let G € ?; have diameter 2 .

»

Case 1: There exists a separating set T of at most three vertices a, . Because of diam G = 2
T 1is a dominating set in G . Let R , S be the two sets of vertices separated by T = (al,az,as}-
and r= |R| , s=]|s|, n= |vert G] . By R; [resp. Rij] we denote the set of vertices

of R having in T only ay {resp. a,; and aj] as neighbour, likewise Si and Sij;

as above ry = lRiI and so on. The numbers T1s3 and $123 of vertices of R and S

adjacent to all three vertices of T is O or 1 .

Case 1.1 : Each vertex of R U S 1is adjacent to at least two vertices of T . Then

2(r+s) = 3d and thus n = 3+r+s§3+§§- .

Case 1.2 : There exist vertices in R U S adjacent to just one vertex in T , say Ty + o .
Then 1,5 =2 [and Sy = Sg3 = S5 = 0] and

12 + r13 + r123 +s = d

since any vertex of S must be adjacent to a; -

(*) ry+r

Case 1.2.1: Ty +# Tog +¥g = d. Then n = 3 +r+s = 3+ %g .
. d L es
Case 1.2.2: Ty + Tgg + X3 > d . Then Ty + rg > 3 - 2 ; since d > 16 we may assume

ry 2 4  and so ry3 £2
If also Ty $0 , then Tig =2, 5= S193 = 1 and ry + Tyt Tg = d+ 5 in view of the

lemma : Assume r1 + r2 + r3 > d + 5 ; since ri =d-1 at least two of these numbers are
greater than 3, say ry and r2 , taking A = Rl and B = R2 U R3 we see that there exist a
dominating vertex of degree = ry + Ty + ry - 1 , which is impossible. Thus
. 3d
= = = —_—
n 3+r1+r2+r3+r12+r13+r23+r123+_s = 3+d+5+2+2+2+1+1 d + 16 = 5 + 5

for d=z 22.

Now assume 'r, = O . Then r, > 9-2 and with the help of the lemma r,+7r = -+2 (take
3 2 2 34 i 13 2

A=R, and B = R U 313), thus n = 55+ 5 since similar to (*)

Ty # Ty + Fgg + Tio3 + 8 = d.

Case 2: Any separating set of vertices has at least 4 vertices. Then G cannot contain
vertices of degree = 3. Let x be a vertex of minimum degree k (k = 4 or 5) and Yioomee s ¥
its neighbours labelled according to their plane cyclical order. Any further vertex of G 1is
adjacent to -at least one of ¥y +++» ¥ - ¥; cannot be adjacent to v unless j = i*1 (mod k)

otherwise (x, Yy yj} would be a separating set.

Case 2.1: Two of Yy » e s Vg » SAY yj, ¥y s that are not cyclically neighboured, have a

common neighbour =z $+ x . Omitting x and adding edges (¥y,,¥5,) (imodk) so far yif+/ Yie1

we get a graph G' ¢ %z with diam G' = 2 having the separating set {y.} ¥y, , 2} and
3(d+ d+1 3 1

so n £ 1+ —57?—1 + 5 according to case 1.

Case 2.2 : Any further vertex belongs to some set Ri of vertices adjacent to Y5 only or to

. : ; =
somerset Ri,i+1 of vertices adjacent to both v and Yis1 (imod k). We have lRi,i+1| =1,
otherwise we would have a separating triple. Now with Ai = Ri U Ri i+l U Ri+1 and

’

B = Ri+2 V] Ri+2,i+3 U eou U Ri—l (imod k) we may apply the lemma. Thus either there exists i
such that both lAiI =z 4 and lBiI z 4 and then according to the lemma lAiI + lBiI sd
and so n = d+2+5+1 = d+ 8, or we have for each i either IAil =3 or IBil = 3.
But then there is at most one j such that IAil z 4 , on the other hand we have

IRy 5.1 UR U Ry jppl % d-1 andso n = d-1+3+3+1+k+1 £ d+12. /



For 3=d =5 we have

(18 my(4g) = 7, ny(g) =9 n(€5) = 10 .

Graphs showing "z=" are given in figure 8, the proofs of "= are elementary, but tédiouS'
we omit details. ’

Fig. 8

It is worth noting that the first graph of figure 8 is not 3-connected. Indeed for the class ?3
of 3-valent, 3-connected planar graphs (i.e. the graphs of simple 3-polytopes) we have n2( P3) = 6.

Figure 9 shows
(19) nz((gs) = 11 , nz( €7 = 12

and we conjecture:

5 for d =6,7

Conjecture. n( ‘—gd) = d +
n(€) = (3241 for az8 Fig. 9
a 5 | * =z
Finally we give by some easy constructions shown for r = 2 in figures 1C~ 12 general lower
bounds and it seems very likely that these bounds are close by the exact values.

T
(20) n2r+1( 't;d) 3(d-1F + 4 fa-1)° -1 for d = 3,4 (see figure 10).

d - 2

v

Fig; 10 Fig., 11
(21)  ny (G = (bd-2)@-DT for d>4  (see figure 11) .
(22) 0, (€ = iy la+2)@-1)7 - 4] (see figure 12) .

In general these inequalities will not be best possible, for instance we have

(23) n3( g3) =z 12 (see figure 13) .



Fig. 12 Fig. 13

4, The coloring numbers x( Gq) _and  x,( g_'d) . As noted in section 1 we have x, (%) = m (%)
and xk( ’§_d) z n.( g’d) . For d =2 we have equality in both cases, so we restrict our

attention in the following to d = 3. And as just used in [1 ] the problem of finding an
r~coloring{k) of a graph G may be reduced to the problem of finding ar ordinary coloring by
considering the k-th power of G : Xk(G) equals the ordinary chromatic number x(G ) of Gk .

1f we define the clique number 6k(G) relativ'e to distance k to be the maximum numberkof

vertices of subgraphs G' of G with diamG = k, then we have similarly ak(G) = 6(G) ,

where ¢ - denotes the usual clique npumber. Of course xk(G) z 6,(G). If G bhas maximum

degree d , then Gk has maximum degree N(d,k)-1. Thus according to a wellknown theorenm

x(Gk) = N(d,k) for every G € %4 and we have

ah o) = 6 (g = g% = NaB )

whenever a (d,k)-Mooregraph exists (this cases are listed in section 2 , now including k = 1),

while in any other case we get using a theorem of Brooks f53

(25) m (g = 50%) 2 (%) < N¥d,K)

The difficulty to prove further restrictions on xk( ‘g_d) becomes evident if we now consider the
case of planar graphs. Again we have xk( ‘€2) = nk( ?2) = 2k+1 and for dz 3 similarly to (25)

(26)  n(§y) = 6(F) 5 x(Eyp < N4,k

for any d2 3 and k=z 2 , since all the Moore graphs in question are not planar. For k=1
we know Xl(‘gd) 4L for 3 =d =5 (see J.M.Aarts - J.de Groot [1]), but the question
whether ,\'1( gd) = 4 holds for all d 2 3 1is precisely the famous and long standing four

color problem, which just has been solved by K.Appel and W.Haken with a proof that is ve'ry

[

long and depends heavily on extensive use of computers {(see K.Apprel - W.Haken [3]) )
In order to stimulate further research we venture a challenging conjecture:

Conjecture: For any d 2 3 , k & 1
n (%) = 6.(%) = x (%) and
m € id) = 68 = x (&) -

As noted above one cannot expect a general answer but it would be interesting to settle some
cases.As a first step in this direction we prove xz(?—s) = 8 and it remains open whether

x20 §g) = 7 or x,(%y) - 8.

Theorem 3 . X2( gs) = 8 .

*)  where 6,(%) = sup { 6,.(G) | Geg } .



Proof. Let G be a graph of §3 with Xz(G) Z 9 and minimum number of vertices. We prove
by contradiction that such a graph cannot exist. 1In order to do this we first deduce some
properties of G .

(a) G 1is regular of degree 3 and does not contain 3-circuits or pairs of 4-circuits with
an edge in common.

Otherwise let v be a vertex of degree < 3 or a vertex of some 3-circuit or a vertex of an
edge belonging to two 4-circuits. The antistar G' of v in G is 8-colorable(2) by

minimality of G . But this coloring can be extended to G since v has at most 7 neighbours

of first and second order, a contradiction. /
(b) G 1is 3-connected.

Clearly G 1is connected. Assume that G is not 3-connected and let e, = (vi, v{) and
e, = vy, vf) be two edges separating G into two components G' and G" with v € G’
and vy € G" {omit e, in the case of l-connectedness] *) . We are able to color &'
rel. to distance two with 8 colors - this coloring may be described by a function

f:vert G'—{1,2,...,8} — such that f(vi), f(vé) € {1,2} and none of the neighbours of

vi and v, has color 3 or 4 (since there are at most 4 neighbours). Likewise we color
G" such that f(vf) ,f(vg) € {3,4}) and none of the neighbours of vf ,vg has color 1 or
Obviously both colorings may be fitted together to yield an 8-coloring(2) of G .*/

It is worth noting that in so far we didn't make use of the planarity of G .

() G cannot contain 4-circuits.

Assume that x,,...,x, are the vertices of some L4-circuit € of G . Because of (a) and (b)

each Xy has a neighbour ¥ ¢ C and all y; are different and nonadjacent (y1/14 Y3 and
y21+1y4 involve together with (b) the planarity of G). ) :
Cmitting C and the edges incident with C we get a

graph G' (see figure 13) which has an B8-coloring(2). 'A::S& -
We try‘to exﬁend this coloring to G . Consider one Y4 N

fixed x; ; coloring this x; we have to avoid the }?ﬁ _

colors of five vertices of G'. Thus in view of G’

we can assign to each x; a set Ai of at least
three admissible colors. Now it is possible to choose
for all x5 different admissible colors provided that

net all Ai consist of the same three cclors, say i
the colors 6, 7, 8. In that case we change the /{u

coloring of RZ in G'. First note that the colors Fig. 14
assigned to y;, ¥y, ¥, 4,V (see figure 14) all are

different, otherwise at least four colors would be admissible for Xy - Further at least one
of the colors f(yz), f(yh), 6, 7,8 does not occur within the colors of the (at most four)

neighbours of second order of ¥q (among which may be some yi). Recoloring ¥ with that

color has four admissible colors or an admissible triple different from that of X3

x
1
which remains unchanged. After recoloring we have the general case of above. /

In the last step of the proof we show that G cannot contain 5-circuits. Since every

3-connected, planar graph contains n-circuits with n < 6 this proves the nonexistence of G .

*) In the case of cubic graphs edge-connectivity coincides with vertex-connectivity.



The procedure in this last step is the same as in the proof of (c). Let Xy s 00 Xg be the
vertices of a 5-circuit € of G ; each Xy has a neighbour ¥y ¢ ¢ and all y; are different
and nonadjacent. Let be given an 8-coloring(2) of the antistar G' of C in G . As in {c)
denote by Ai the set of colors admissible for x. (in view of G'). In any way we havg up

i
fo permutation of vertices or colors one of the following cases.

Case 1: f£(y;) = f(y,) = £(y3)- Then |A2| z5, lAll z 4 and }A3| Zz 4 and the A
have in either case a transversal, which means we can assign to all xy different ,admissible

colors.

In the following we consider only the "ecritical cases" where such a transversal does not
necessarily exist and we indicate which vertex of G' should be recolored in that case.

5
Case 2: f(y;) = f(yy) = £(y,). The critical case is l\,/ Ail =4 ., In that case
recolor Yy ! i=1

Case 3: £(y;) = £(y,) , but none of the cases above. Then IAll z 4 and lAzi z 4 .

iti i = b4
The critical case is Ag U A, U A ¢ Ay A, . Then f(ys), f(y5) ¢ A, and say f(y3) + (Yh)
(f(y3) and f(y5) cannot both equal f(yh) , otherwise case 1). Then recolor y4 !

Case 4 : f(yz) = f(y5) , but none of the cases above. Then f(ys) + f(yu) , Igil =z 4 and
the critical case is: |A1| =4 and A, UA3 U4, UAg < A . ;
Then not both f(yg) , £(y,) € A; , say f(yy) ¢ A; . Recolor yg'!

Case 5: All colors f(yi) are pairwise different. Then we have two critical cases:

5
I\ Ai| £ 4 or some four of the A; consist of the same triple of colors.
i=1

If in that cases for some i y; € A, , or y; €A, , (imod5), say y; € A3, then recolor yg!
Otherwise necessarily all Ai consist of the same triple of colors and recoloring any of ¥y

reduces also that case to one of the cases above. [/
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