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Introduction

In condensed matter physics we generally have to deal with a large number O(10%) of
interacting particles. Their interaction is described quantum-mechanically by a Hamil-
tonian, and their interplay may result in a collective behaviour, which can only be
understood in a many-body picture. Examples for collective phenomena are supercon-
ductivity [1, 2], Bose-Einstein condensation (BEC) [3] and superfluidity [4].

In the BEC a large number of non-interacting bosonic particles undergo a phase tran-
sition at low temperatures contributing all to the same quantum ground state and,
hence, expanding it on a macroscopic scale. Although “He atoms [5] are interacting,
these bosonic particles show a BEC at a temperature ~ 2 K, leading to a superfluid
behaviour, namely a frictionless flow of the superfluid. Also the fermionic *He atoms
[6] exhibit a superfluid phase at ~ 3 mK. For fermionic atoms one has to distinguish
whether the interaction, which leads to a formation of a spinless singlet bound pair,
is strong or weak [7]. For a strong interaction the pairs are composite bosons. If the
overlap between two pairs is smaller than the pair spacing (low density), the pairs can
be understood as a gas of free bosonic particles and the gas undergoes a BEC below
a critical temperature. Experiments confirmed the BEC in ultra-cold gases [6-11]. On
the other hand, if the interaction is weak, the spatial extension of the formed pairs is
greater than the pair spacing, leading to a large overlap between pairs. The ground
state has the same structure as for a strong interaction but the analogy to a free bosonic
bath fails. Nevertheless, a gas of these weakly-bounded pairs has a superfluid ground
state. The superfluid phase vanishes above a critical temperature when the pairs break
up. Certain metals, such as mercury [12, 13], show a resistanceless current at low
temperatures indicating superconductivity. Bardeen, Cooper and Schrieffer [14] have
explained the superconductivity by the binding of two electrons with opposite spin
through a phonon-mediated attractive electron-electron interaction. Superconductivity
may be viewed as a BEC of weakly-bounded Cooper pairs.

Beside of these collective phenomena which are connected to bulk phase transitions
at a finite temperature, there are quantum phase transitions (QPTs) at zero tempera-
ture, where the transition is only driven by quantum fluctuations. They occur both for
bulk materials, such as for heavy-fermion systems [15], and quantum impurity sys-
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tems (QISs), where only a part of the material undergoes a QPT. A QIS consists of an
impurity, described by a finite number of degrees of freedom (DOFs), which couple to
an infinite bath with a macroscopically large number of non-interacting particles. For a
QPT a non-thermal control parameter r is varied and the QPT occurs at the quantum
critical point (QCP), which is associated with the critical parameter r.. The QPT is only
driven by quantum fluctuations and features a quantum critical region close to r, for
finite temperatures.

A possible realisation of a QIS is a non-magnetic host material (e.g. Cu, Ag and Au)
with a small concentration of strongly correlated atoms (e.g. Mn or Fe), which are ran-
domly distributed in the host material. In such correlated systems we have to take into
account a finite Coulomb interaction U between pairs of valence electrons, e.g. in par-
tially filled 3d or 4f shells in an atom. Anderson [16] has shown that a strong Coulomb
interaction U /Ty > 1, compared to the charge-fluctuation scale Ty, is crucial for the for-
mation of localised magnetic moments. These moments are formed for the QISs stated
above. Since the repulsive Coulomb interaction determines the physics, it is convenient
to simplify the system to the single-impurity Anderson model (SIAM) [16]. The im-
purity is a spin-degenerate d level with the Coulomb repulsion U in presence of two
electrons with opposite spin. The impurity is embedded in a bath of non-interacting
fermionic particles, the conduction band. The hybridisation of the impurity with the
conduction band enables the move of electrons from the impurity into the band and
vice versa. The hybridisation competes with the Coulomb interaction on the establish-
ment of the magnetic local moment. The SIAM has been thoroughly investigated on its
equilibrium properties e.g. with Bethe ansatz technique [17, 18] and Wilson’s numerical
renormalisation group (NRG) [19, 20]. The hybridisation is affected by the scattering
rate T'(e) « |e|", which is given in a generalised pseudo-gap (pg) form [21] here. In
metals the exponent is 7 = 0 and the non-zero hybridisation at the Fermi energy e = 0
features the Kondo screening of the impurity [22]. In insulators a finite bandgap at the
Fermi energy prevents the Kondo screening because no electronic excitations are pos-
sible for low temperatures [23]. An infinitely narrow gap is associated with the limit
r — oo. Dilute magnetic impurities in unconventional d- and p-wave superconductors
[24, 25] can be described with the exponents r = 1 and r = 2. Furthermore, r = 1
features the physics in two-dimensional materials, such as in graphene sheets at the
Dirac points [26, 27]. If we treat the generalised pg form the SIAM shows in the range
0 < r < 1/2aQPT between two stable fixed points (FPs) at zero temperature [25]. The
two FPs are separated by a QCP at the critical Coulomb interaction U,. For U > U, the
impurity emerges a free magnetic local moment (LM) defining the LM FP. Whereas,
for U < U, the local moment undergoes the Kondo screening leading to the symmetric
strong coupling (SSC) FP: The impurity local moment is screened by the surrounding
conduction band electron spins at low temperatures, due to resonant spin-flip scat-
tering, forming collectively an spatial extended Kondo singlet state. As Kondo [27]
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explained with a perturbative approach, these spin-flip processes between the impu-
rity and the surrounding electron spins yield an additional logarithmic contribution to
the electrical resistance. This contribution increases with decreasing temperature and,
since in Matthiensen’s rule [25] all contributions to the resistance are summed up, the
increasing logarithmic contribution balances with the other decreasing contributions
at a minimum in the resistance at a finite temperature, such as for impure gold [29]
at 3.7 K. For T — 0 the logarithmic contribution of the resistance diverges, which is
artificial and originates from the shortcomings of the perturbative approach. Since the
concentration of the impurity atoms is finite, the resistance increases to a finite value
in the limit T — 0.

QISs can also be useful to explain physics in lattices. For example, the Mott-insulator
transition of a metal due to a strong Coulomb repulsion [30, 31] is correctly described
by the dynamical mean-field theory (DMFT) [32-34]. Within the DMFT the lattice self-
energy is approximated to be momentum-independent and the lattice is mapped onto
an effective impurity model. This approximation becomes exact in the limit of an infi-
nite number of next neighbours [35]. The local Coulomb interaction of one lattice site
is treated non-perturbatively on the impurity and the correlations with the other lattice
sites are mapped to a bath of non-interacting particles, which couple to the impurity.
The properties of the impurity model are extracted from the Green’s function of the
lattice. In the impurity model a new self-energy is calculated and used in the lattice
model again for each lattice site. This is repeated self-consistently until the self-energy
is converged.

In other QISs the bath may consist of bosons, e.g. phonons or magnons, or is a mixture
of bosonic and fermionic DOFs.

To describe quantum dissipation and decoherence in the limit of a two-state system,
which interacts with its environment, the spin-boson model (SBM) [36, 37] is suitable to
feature the essential physics. It has been applied to several effects: to friction in electron
transfer and pair hopping in biomolecules [358—-40], to the polarisation of an impurity
spin [4]1-44], to quantum entanglement between a qubit and its environment [45] and
to transport dynamics through quantum dots (QDs) [46—48]. A QD is a semi-conduc-
tor device and features discrete energy levels [49, 50]. The QD can be used to trap an
electron or hole and may, in addition, be coupled to one or multiple leads to enable
electron transport [47, 51]. Since a QD is a built object one may refer to it as an artificial
atom which may be used as a qubit to realise a quantum computer [52, 53]. Since a
gate voltage applied to a QD is never perfectly constant, one can either neglect this or
model the fluctuations in the gate voltage as a bosonic DOF [54] and receive a Bose-
Fermi quantum impurity system (BF-QIS). These BF-QISs [55-57] reveal new QPTs by
an interplay of fermion-induced Kondo screening and boson-induced friction. The
Bose-Fermi Anderson model (BFAM) is one example for a BF-QIS. It has been recently
studied [56, 57] with the Bose-Fermi numerical renormalisation group (BF-NRG). Fur-
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thermore, these BF-QISs can be used as effective impurity models within the DMFT. In
this case, the bosonic DOFs on the impurity re-introduce fluctuations of the surround-
ing lattice f shell moments, which are neglected by the mean-field approach.

We have extended the BF-NRG [55] for BF-QISs to non-equilibrium using the time-
dependent numerical renormalisation group (TD-NRG) [42]. Similar to experimental
measurements [55] of the spin configuration in single-electron transistors by a sudden
change in the gate voltage, we perform sudden quenches at ¢t = 0 in local parameters,
like the Coulomb repulsion, the level energy or the couplings to the fermionic and
bosonic bath. Suitable models for such a system are the SIAM as well as the BFAM.
If particle-hole (ph) symmetry is maintained, the level occupation (n4(t)) is constant
over time and we will only present the real-time dynamics of the double occupancy
(D(t)). Since both models, the SIAM and the BFAM, exhibit a rich phase diagram, we
are able to present quenches within one phase and over QCPs into other phases. We
will show that the local dynamics equilibrates for all regarded quenches onto a steady-
state value. This value coincides with its thermal equilibrium value if the quench is
within or into a strong coupling (S5C) phase, otherwise the steady-state value deviates
systematically from its thermal equilibrium value, since effective DOFs decouple from
the system preventing the complete relaxation of the steady-state. In the former case
we refer to thermalisation, since the thermal equilibrium value is reached, which itself
is calculated independently by an equilibrium NRG calculation. Although it has been
argued that the Wilson chain does not represent a thermal reservoir [59], we will show

that thermalisation occurs.

This thesis is organised as follows: In Chap. 1 we introduce the models of interest.
We start with the explanation of the Kondo effect as an example for a collective phe-
nomenon. There, a screening of an impurity spin is achieved by the build-up of a
collective mode comprising the spin DOFs of the impurity and of the conduction band.
As basis for a fermionic QIS we reflect the QPT in the SIAM, and the QPT in the
SBM as basis for a bosonic QIS. Then, we briefly introduce the Bose-Fermi Kondo
model (BFKM) and the BFAM as simple models for BF-QISs.

In Chap. 2 we explain, in more general, what a QPT is and show how we can track
its QCP. We discuss in detail the quantum criticality due to a pseudo-gap density of
states (pg-DOS) in the SIAM and the BFAM. Wherein, we present the rich phase di-
agrams for both models and summarise the equilibrium properties of the stable FPs,
as well as the unstable QCPs. A closer look on the quantum criticality in the Kondo
model (KM) and the BFKM is given in App. A. At a QCP the static local response func-
tion may show an exponential behaviour revealing critical exponents. These exponents
are probably connected via hyperscaling relations. A comprehensive overview of the
critical exponents is given in App. B.

The numerical methods to calculate the equilibrium properties, as well as the local
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real-time dynamics, are sketched in Chap. 3. We introduce Wilson’s NRG and explain
the modifications to incorporate additional bosonic DOFs revealing the BF-NRG. The
chapter is completed with on overview of the TD-NRG.

In Chap. 4 we are interested in the local dynamics in the SIAM questioning thermali-
sation and leading time scales. To enable a QPT between a SSC and a LM phase, we
use a pg coupling function I'(e)  |e|". We will show that the local dynamics within
or into the SSC phase thermalises nicely. Whereas, within or into the LM phase, a
deviation between the steady-state value and its thermal equilibrium emerges due to
a decoupling of an effective local moment from the system. We will enlighten a sys-
tematic dependence of this deviation on a crossover energy scale T* tracking the build-
up of the effective local moment, which combines local DOFs and DOFs of the whole
conduction band. Furthermore, this crossover scale can be related to a spatial exten-
sion of the effective local moment using the Fermi velocity of the host: * = hog/T*.
Since this spatial extension is described accurately with the NRG, we will compare our
dynamics with recent data of a time-dependent Gutzwiller approach [60]. In contrast,
this approach restricts the effective local moment formation only on the impurity site,
leading to an overestimation of the Coulomb repulsion and hence to a strong oscilla-
tory dynamics.

We have extended the SIAM to the BFAM through the coupling to an additional bosonic
bath. We will analyse the real-time dynamics in the BFAM in Chap. 5. Using our
novel approach, we will address the question how the bosonic bath influences the real-
time dynamics in comparison to the purely fermionic model. For a strongly-coupled
bosonic bath, which is characterised by its spectral function J(w) o w®, the bosonic
localised (L) phase emerges. The QCP separating the L phase from the SSC phase has
critical exponents depending on the specific combination of the bath exponents (7,s)
[57]. Three types of combinations can be distinguished: For a certain combination
of the parameters (r,s), the critical exponents of the fermionic model are obtained,
and therefore, the combination (r,s) is of the F type. While for another combination
(r,s) the exponents of the bosonic model are observed, defining the B-type combina-
tions. For a third mixed combination the critical exponents do not correspond to ones
of these limiting models. We will show that for a F-type combination, the dynamics
of the BFAM can completely be expressed by the dynamics of a SIAM with properly
chosen parameters. In equilibrium the bosonic bath renormalises the Coulomb inter-
action U > 0 to smaller or even attractive values. For the B-type, this occurs at lower
energy scales compared to the F-type. Hence, it slows down the dynamics at inter-
mediate times compared to corresponding dynamics in the SIAM where the Coulomb
interaction reveals its full influence directly from the beginning. Furthermore, we will
show that the L phase and the LM phase are mirror images of each other with an
effective charge moment or an effective local moment, respectively, decoupling from
the system and hence preventing thermalisation of the local dynamics. The more spa-
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tially extended the effective moment the stronger the steady-state value deviates from
its thermal equilibrium value. Whereas, quenches within or into the SSC phase ther-
malise within the accuracy of the TD-NRG. We will present that this is also fulfilled
for quenches starting from a ph symmetry broken initial configuration.

To conclude our investigations on BF-QISs, we will briefly discuss the real-time spin
polarisation (S,(t)) of an initially polarised spin in the BFKM in Chap. 6. We will
enlighten that the decay of the polarisation is induced by the coupling to the fermionic
bath and undergoes a friction-induced slowdown due to the bosonic coupling.

We summarise our results in Chap. 7.



Chapter 1

Models

The interest in quantum impurity systems (QISs) arose by a measured unexpected min-
imum in the electrical resistance at a low temperature for apparently pure metals, such
as gold [29]. Further investigations revealed that the metal was not completely pure
and contained a small concentration of magnetic impurities, such as iron or manganese
atoms. These impurities are randomly distributed and well dispersed. Hence, we can
effectively describe such a QIS by a Hamiltonian

HQIS = Hirnp + Hpamn + Hcoup (1.1)

modelling one impurity in a surrounding bath continuum. The Hamiltonian H;y,, de-
scribes the local impurity, e.g. represented by a spin-1/2 particle. The Hamiltonian
Hy.y, refers to the bath which is in comparison infinite and consists of non-interacting
particles, e.g. the conduction band electrons of a host metal. Consequently, the cou-
pling term H,,,,, mediates the interaction between both subsystems.

Although the minimum in the electrical resistance has already been measured in the
early 1930s, it took nearly 30 years until Kondo [18, 22] provided a physical explanation
for this effect. We will explain the Kondo effect in Sec. 1.1. Kondo’s perturbative ansatz
revealed the existence of the minimum. Nevertheless, his ansatz fails in describing the
low-temperature physics accurately. It took another 10 years until Wilson [19] devel-
oped his numerical renormalisation group (NRG) in 1975. This numerical approach
captures the low-temperature physics accurately and will be presented in Sec. 3.1.

In the following we introduce the single-impurity Anderson model (SIAM) in Sec. 1.2
and the spin-boson model (SBM) in Sec. 1.3 as basic fermionic or rather bosonic QIS.
Both exhibit a quantum phase transition (QPT) with respect to a variation in a non-
thermal control parameter [61]. Furthermore, we combine bosonic and fermionic baths
and present in Sec. 1.4 the Bose-Fermi Kondo model (BFKM) and the Bose-Fermi An-
derson model (BFAM) as exemplary Bose-Fermi quantum impurity systems (BF-QISs).
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1.1 The Kondo model

The temperature dependence of the electrical resistance in metals is expressed by the
sum of different scattering contributions, known as Matthiensen’s rule [28], here for
low temperatures:

o(T) = po +aT? +bT°> . (1.2)

Electron scattering processes lead to a contribution proportional to T?. Through the vi-
bration of the lattice structure an additional electron-phonon contribution proportional
to T° is gained. This electron-phonon interaction is present for temperatures below the
Debye temperature. For higher temperatures all vibrational modes are aggregated and
the contribution becomes linear in T.

In Fig. 1.1 a sketch shows the resistance for low temperatures in different cases. With
decreasing temperature the electron-electron and the electron-phonon interaction van-
ish. Therefore, for a pure metal the resistance decreases down to a residual resistance
po [29]. This is represented by the blue curve. Some metals become superconducting
(green curve) below a critical temperature T, and the resistance vanishes at T, to zero.
On the other hand, for a metal which contains a small concentration of magnetic im-
purities, e.g. iron atoms in gold, the resistance increases again for temperatures T < Ty
below the Kondo temperature. This is called the Kondo effect (red curve). Several ex-
perimental measurements showed a linear dependence between the residual resistance
and the concentration of the impurities in the host metal [62].

To gain some understanding in the physics of the Kondo effect, Kondo [22] made some
simple assumptions: The concentration of the impurity atoms in the host material is
small and the impurities are well distributed, hence, the system is represented by a
single impurity atom interacting with an uncorrelated host metal. Kondo described
the impurity atom by a spin-1/2 particle!. This impurity spin interacts with the local
spin density of the surrounding electrons in the host metal on the impurity. Kondo
showed that this interchange coupling tends to infinity in the limit T — 0.

The Hamiltonian of this so-called Kondo model (KM) is given by

KM — Zek,aclt,vck,o + ]§§ (13)
k,o

with

chka Dc,BCk/ (14:)
kK" o, p

1 InKondo’s explanation [18, 22] of the Kondo effect, he uses a spin-1/2 as impurity for the iron atoms,

although it is more reasonable that iron atoms have a spin S = 3/2 [63].
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p(T) 4

— : > T

~ 10 K

Figure 1.1: Electrical resistance p(T) in dependence of the temperature T for a pure metal
(blue curve), for a superconductor (green curve) and for a metal with a small con-
centration of randomly distributed impurities (red curve) which cause the Kondo
effect. Taken from [64].

being the projection of the conduction band electron spins onto the place of the im-
purity. The operator c;;a creates an electron with spin ¢ and momentum k in the
conduction band, which has the dispersion ¢, ,. The impurity spin S couples via the
Kondo coupling ] to the conduction band spin 5. N is the number of lattice places and

7 = (o, 0y, ,)T contains the Pauli matrices.

A ferromagnetic coupling | < 0 favours a parallel polarisation of the conduction band
spins in the vicinity of the impurity. Whereas, an antiferromagnetic coupling | > 0
favours an antiparallel orientation of the spins and enables spin-flip scattering pro-
cesses between two energy-degenerated states. Kondo treated this system with per-
turbation theory up to third order in the coupling | and revealed that through spin-
flip scattering processes an additional contribution to the resistance in Eq. (1.2) pro-
portional to In(T) emerges [22]. Hence, the resistance shows a minimum at a finite
temperature where the decreasing contributions of Eq. (1.2) and the increasing Kondo
contribution balance. Since in the limit T — 0 the logarithmic contribution diverges,
the predicted behaviour of the resistance is artificial. The amount of impurities in the
host metal is small and the resistance has to reach some finite value for T — 0. This
logarithmic singularity is also called the infra-red problem within quantum-field theo-
ries.

Consequently, there is a finite temperature below which the perturbative approach
fails. This is the Kondo temperature

Ty o De #1 (1.5)

with p being the density of states (DOS) of the conduction band and p] being the bare
coupling constant. Kondo showed that the effective scattering rate becomes of the
order O(1) at this exponentially small temperature.

Over the time it turned out, that the Kondo temperature Ty represents a crossover
temperature below which all physical quantities show universal behaviour. Below Ty
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a Fermi-liquid phase is formed. The resistance and the impurity contribution to the
magnetic susceptibility obey a scaling law proportional to (T/Tk)?.

1.1.1 The poor man’s scaling

In the late 1960s Anderson [65] has gained further insight in the Kondo problem with
perturbative renormalisation group (RG) techniques. By his so-called poor man’s scaling
an effective low-energy model is generated by integrating out the high-energy con-
tributions. His approach can also treat the more complex anisotropic KM which is
described by the Hamiltonian

1 _ _
Haxn = Y €koChoCho + 1,55, + §h (sTS™+s7S%) . (1.6)
k,o

Here, the interaction is split into a polarisation part J, and a spin-flip component | .
The anisotropic KM corresponds to the isotropic KM in Eq. (1.3) for | = J, = J,. The
conduction band has a non-vanishing DOS at the Fermi energy. Although the high-
energy part of the DOS may be rather complicated for real materials such as gold,
the low-temperature physics is only driven by the DOS near the Fermi energy € = 0.
Therefore, we can replace the real DOS by a simple assumption,

ple) = Dole ) = 50D~ (17)

namely a constant DOS in the range [—D, D] with 2D being the bandwidth. This
consequently alters slightly the high-energy physics but models the low-energy physics
accurately.

The key idea in the perturbative RG is to generate an effective low-energy Hamiltonian
and to map it onto a KM with effective parameters. This is reproduced iteratively until
a FP is reached. If an effective Hamiltonian H* stays constant under a RG step R, we
talk about a FP Hamiltonian R(H*) = H*.

To generate the effective low-energy Hamiltonian, we divide the Hamiltonian H into a
diagonal part Hp and an off-diagonal part V:

H = PHP + QHQ + PHQ + QHP . (1.8)
=Hp, =V

Here we use the projector P for the low-energy states and Q = 1 — P for the high-
energy states. The off-diagonal part V connects the high- and low-energy states. To
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incorporate the virtual excitations of the high-energy part into an effective low-energy

Hamiltonian we transform the Hamiltonian by a unitary transformation?

© 1
1 __ S -S _
H' =e°He —H+;a[5,H]n (1.9)
® 1
:HD+V+[S,HD]+[S,V]+ZE[S,H]H : (1.10)
n=2""

Our aim is to eliminate the contributions of V' in first order such that the low-energy
part of H' contains the virtual excitations only in second order. This is a Schrieffer-
Wolff transformation (SWT) [67] and the linear term vanishes for

[S,Hp] = -V . (1.11)

Then, the transformed Hamiltonian reads

1 © 1
H =Hp+ = [s VI+3IS, an : (1.12)

We assume that the eigenstates and eigenenergies of the diagonal part are known,
Hplp) =E,|lp) and Hplq) = Ejlq) , (1.13)

with p labelling the low-energy part and g the high-energy part. This additionally
leads to the projectors

P=Y|p){pl| and Q=) |9){q| . (1.14)
p q

Here we have assumed that the interaction in Hp between the low- and high-energy
part is small and that we can, therefore, build the projectors simply of the diagonal
part Hp rather than of the full Hamiltonian H.

Hence, the matrix elements of the transformation are

v
Spq= 10— (1.15)
pA —

EP E‘i

and the second-order correction of the low-energy part is given by

1
AH,,y = (p|P5[S, VIPIp') (1.16)

1 1
qu qp(p_EJrE/_Eq) : (1.17)

2 We use theBaker-Campbell-Hausdorff formula [66] to calculate the transformation.
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If we neglect the higher order corrections we gain the effective low-energy Hamiltonian
H' = PHP + AH. We do not go into the details of the derivation, which can be
looked up in Ref. [65]. If we assume an infinitesimally small high-energy part, which
is integrated out, and repeat the procedure iteratively, we can gain by this perturbative
RG approach differential equations in the coupling constants. For the Hamiltonian in
Eq. (1.6) one can derive two coupled differential equations

dTL o ¥ T d]z _ 72
S5 = T, and = (1.18)

Here D is the effective bandwidth, an energy scale which divides the high-energy from
the low-energy regime, and | = Jp is the dimensionless coupling strength. Combining
both equations leads to the relation J? - fi = const which means that the parameters J,
and ], are connected by a hyperbolic curve in the parameter space (J,, ] | ), as depicted
in Fig. 1.2. Furthermore, the flow equations in Eq. (1.18) have two FPs. The trivial FP
is given for J; = % = 0. There, the spin is decoupled from the conduction band. This
LM FP is unstable for any finite J,, ], > 0. The second FP is the stable SC FP. It is
characterised by diverging couplings J, J* — co. In this FP the impurity spin forms a
bond state with the spins of the conduction band electrons and is, hence, completely
screened by the conduction band electrons.

The flow of the couplings J, and ], is sketched in Fig. 1.2. The flow is indicated by
the incoming and outgoing arrows. In addition to the two FPs above, there are two
lines of FPs. One line of stable FPs when the flow is stopped with 5 = 0 for a ferro-
magnetic J; < 0 and one line of unstable FPs when the flow begins at J% = 0 for an
antiferromagnetic J; > 0. In the former case the spins of the conduction band electrons
in the vicinity of the impurity are polarised parallel to the impurity spin. If we switch
on the spin-flip term with any finite J, > 0 it does not affect the polarised spin state
and, therefore, these FPs are stable. Whereas in the latter case for the antiferromag-
netic J, > 0 the spins of the conduction band electrons near the impurity are aligned
antiparallel to the impurity spin. If we switch on any finite ]| > 0, the impurity spin
and the conduction band spins interact via spin-flip scattering. Consequently these FPs
are unstable.

For the isotropic Hamiltonian in Eq. (1.3), the differential equation is given by

d _ »
dinD J (1.19)
and via integration we gain
JoIn(D/Dy)

J= ToIn(D/Dy) + 1 (1.20)
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> ],
Figure 1.2: Flow of the coupling constants J, and J, with the SC FP in the upper right corner
(J,, ]| — o). Taken from [65].

This solution breaks down when the denominator diverges for D = Ty. Therefore, we
get the low-energy scale

-1
T¢ = Dpe 1o (1.21)

which is the original Kondo temperature, cf. Eq. (1.5). With Anderson’s perturbative
RG approach [65] different low-energy FPs have been revealed. Nevertheless, due to
its perturbative nature the accurate description of the low-energy physics below Ty
fails. This was first achieved by Wilson’s NRG [19], which will be presented in detail
in Sec. 3.1

1.1.2 Further Kondo models

Due to the great success of Wilson’s NRG in investigating the physics at zero temper-
ature, different classes of KMs have been derived and expansions to more complex
impurities, like the SIAM in Sec. 1.2, have been done. In general, real magnetic impu-
rities in metals have both orbital and spin DOFs and the resulting low-energy effective
impurity models can be very complicated [18]. If the ground state is an orbital singlet,
e.g. Mn atoms in metals, the effective impurity model can be described by the multi-
channel Kondo model (MCKM) [68]. Its Hamiltonian is extended from Eq. (1.3) with a
spin of size S and a sum over n conduction bands. This MCKM shows for an antifer-
romagnetic coupling | > 0 a complete screening of the Kondo spin for n = 25, as the
standard KM, and hence behaves as a Fermi liquid.

In the case n > 2§, for example in the two-channel Kondo model (TCKM) [69, 70] the
spin-1/2 couples to two bands and is overscreened in the zero-temperature limit. Both
conduction bands try to screen the impurity spin at once, hence, a new net spin-1/2
is formed with a zero-temperature entropy In(2)/2, indicating a half-fermionic exci-
tation, and the spin susceptibility shows a logarithmic divergence. The SC FP, which
shows Fermi-liquid behaviour for a single channel, is unstable in this case. A new
intermediate-coupling FP emerges and shows non-Fermi-liquid behaviour.
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For n < 25, the Kondo impurity is underscreened meaning that the coupled bands are
unable to screen the full spin and a residual moment remains in the zero-temperature
limit. One example for the case 1 = n < 2§ is a single band with a spin-1 particle
[71]. Interestingly, the spectrum of the zero-temperature FP corresponds to the one of
a standard ferromagnetic spin-1/2 KM. In the limit T — 0, this residual moment van-
ishes very slowly. The thermodynamic quantities show logarithmic corrections at low
temperatures, instead of power-law corrections as for the completely screened case.
Therefore, they are sometimes named singular Fermi liquids [72]. Nevertheless, the
underscreened KM is a Fermi liquid.

Another nice feature appears for a spin-1 QD with two bands [73]. There, n = 25 is
fulfilled but the screening of the Kondo spin takes place in two steps. First the impurity
spin is screened half at Ty, and then completely at a temperature Ty, < Ty;. Within
the regime Ty, < Ty < Tk, the system shows the underscreened behaviour.

Furthermore, to derive new types of KMs, one can expand the impurity to two or more
spins. The two-impurity Kondo model (TIKM) consists of two spin-1/2 particles at
some distance R which couple to one conduction band [74, 75]. Both spins can inter-
act indirectly with each other via the conduction band. This leads to the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction Izxky [76-79], which was already described
by second-order perturbation theory in the 1950s. The RKKY interaction is dependent
on the distance R of both spins. It can be antiferromagnetic and ferromagnetic in de-
pendence of R and decreases with R for large distances so that in the limit R — oo
both spins are decoupled from each other. Combined with a direct interaction between
both spins, an effective interaction I emerges due to the competition of the local
Kondo exchange and the intersite RKKY interaction. For [ — —oo both spins form a
spin-1 which interacts antiferromagnetically with two conduction band channels (even
and odd parity). The coupling strengths ], , (k) are in general energy dependent. For
I — +oo both spins form an intersite non-magnetic singlet and the Kondo effect is
absent. It is argued that a QPT occurs between these two limits, the magnetic and the
non-magnetic ground state [75, 80]. However, a QPT is only present if the coupling
strengths are approximated by J,,,(kg) at the Fermi momentum k. for a constant DOS.
If one considers the full energy-dependent coupling strengths, the QPT in the TIKM is
replaced by a simple crossover [20].

1.2 The single-impurity Anderson model

A slightly more complex model is the single-impurity Anderson model (SIAM). It deals
with a spin-degenerate energy level as impurity, which can carry zero to two electrons.
This generalisation leads to new interesting physics such as charge fluctuations at the
impurity. The SIAM was introduced and first investigated by Anderson [16] in the early
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1960s. His investigation was a first attempt on the description of localised magnetic
states in metals and makes use of a self-consistent Hartree-Fock calculation. There, the
magnetic state in the 4 shell depends on the free electron DOS, the Coulomb repulsion
U within the d shell and the s-d admixture matrix element.

The Hamiltonian of the single-impurity Anderson model (SIAM) is given by

Hgiam = Hsiamimp + Hsiampath + Hsiamcoup (1.22)

The impurity is coupled to a conduction band, which is given by

.'.
Heiampath = Y €kChoCh o (1.23)
ko

and consists of non-interacting electrons. The fermionic operator c,t/ » Creates an electron
with spin ¢ and momentum k in the conduction band. The energy dispersion of the
conduction band is given by €. The Hamiltonian of the impurity, which consists of the
spin-degenerate d-shell energy level, is given by

Hsiamimp = 3 €aded, + Udldydd) . (1.24)
a

Here, d!. creates an electron at the impurity with spin ¢ and the level energy €4. In
presence of two electrons on the impurity site (in the d shell) an additional repulsive
Coulomb energy U has to be paid. The coupling term, Anderson’s s-d admixture,

HSIAM,Coup = Z Vk (Ci,gda + dgck,a) ’ (1'25)
ko

enables the hopping of an electron with spin ¢ and the momentum k from the impu-
rity into the bath and vice versa. The hybridisation and the energy-dependent DOS
p(€) = Yx 6(e — €;) of the conduction band enter the model only in combination in the
scattering rate

T(e)=n) d(e—e)VE=mp(e)Vi(e) , (1.26)
k

if we assume a k-independent hybridisation Vj(e). While for gapless Fermi systems
the assumption of a constant DOS p, = 1/(2D) and a constant hybridisation is a well-
proved choice, some Fermi systems show a pg at the Fermi energy; e.g. for d supercon-
ductors [24, 81] or graphene sheets [27, 82] I'(e) is a complicated function of energy.
Nevertheless, it has been realised [25, 83, 84] that for the low-energy physics only the
spectrum close to the Fermi energy is relevant. Therefore, a power-law scattering rate

M(e) =Ty (r+1) | 5| @D~ lel) = Ty p, (e) (127)
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is a good assumption. The energy dependence is completely shifted into the pg-DOS
1 €|
ple) = Yole—e) =po-prle) = 55 - D[S @D —le])  (1.28)
k

with the bath exponent r. Ty = 7p V¢ is the charge-fluctuation scale. While r = 0,1,2
are prototypical experimental realisations [51], we take r as an arbitrary parameter. The
use of a pg-DOS for impurity models was imposed in the 1990 by Withoff and Fradkin
[21] who examined the pseudo-gap Kondo model (pg-KM) with a poor man’s scaling
approach.

While for the constant DOS the SIAM exhibits only the SC FP at zero temperature, the
phase diagram becomes richer by the pg-DOS. Due to the pseudo-gap fewer DOFs
are present near the Fermi energy with increasing r > 0. For simplicity we assume
ph symmetry here. In the range 0 < r < 1/2 the competition between the coupling
to the bath according to I'y and the Coulomb repulsion U leads to a QPT. If the
charge-fluctuation scale I'j is strong compared to the Coulomb repulsion U, the known
Kondo screening of the impurity DOFs occurs. This classifies the SC FP, due to the
pseudo-gap the impurity DOFs are only fractionally screened. In the opposite case, a
strong Coulomb repulsion favours an unscreened local moment. The DOFs near the
Fermi energy are too weak to screen the moment. This characterises the LM FP. A
QPT between these two stable FPs emerges. Its unstable QCP is dependent on the
ratio U /T or in other words on a critical charge-fluctuation scale I' (U). For a bath
exponent 1/2 < r, the DOFs near the Fermi energy are in total too weakly coupled and
the SC FP disappears.

Furthermore, as Fig. 1.3 illustrates, the phase boundary between the SC and LM phase
is a line of QCPs depending on the bath exponent . The presence or absence of ph
symmetry additionally effects the properties of the FPs. This is discussed in detail in
Sec. 2.3. Briefly, in the ph-symmetric case the critical coupling I'. diverges for r —
(1/2)~ and only the LM FP remains for r > 1/2. Whereas, for ph asymmetry no
divergence occurs since the SC FP becomes the stable asymmetric strong coupling
(ASC) FP for r > r* ~ 0.375 and the QPT between the ASC an the LM FP is present for
all r > r*.

Another possible realisation for the DOS is a hard gap [23]

pr€) = 57557l = 4)O(D — [e] (1.29)

with a bandgap width 2A. In presence of ph symmetry, the SIAM with the hard
gap features only the LM FP. This is reasonable because no exications are possible
within the gap and, hence, no screening of the impurity occurs. An infinitely small
hard gap is equivalent to the pg-DOS in the limit r — oco. For ph asymmetry the
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Figure 1.3: Sketch of the phase boundary I'. for a fixed U between the SC and LM phase in
dependence of the bath exponent » for ph symmetry and asymmetry. After [87].

impurity DOFs are screened completely if A < Tg. This refers to the ASC FP. Kondo
screening is suppressed, if the bandgap is bigger than Ty, and an unscreened moment
remains [23, 85, 86]. Anyway, in this thesis the hard-gapped DOS is not part of further

investigations.

1.3 The spin-boson model

So far we discussed fermionic QISs with an impurity represented by either a spin or an
energy level. This section deals with the SBM: A spin-1/2 impurity couples to a bath
of non-interacting bosonic modes. The SBM arises naturally in the description of a
quantum dissipative system (QDS), as it is done in Ref. [36]. For an arbitrary real sys-
tem, which shows a potential V(q) with two separate minima regarding a continuous
DOF g, the SBM is sufficient to describe the essential physics. In Fig. 1.4 such a double-
well potential in the two-state limit is shown. If we assume that the barrier Vi between
both minima is large compared to the energy hierarchy fiw, ~ fiw_ ~ hw, of both
minima, the quantum motion is in either well separately semi-classical. Within each
well the separation between the ground state and the first excited state is of the order
fiw,. 1f the bias € between the two ground states of the wells is small compared to the
ground state energies, € < hwy, the system is effectively restricted to the two-dimen-
sional Hilbert space of the two ground states in the low-temperature limit kgT < fiwy.
Furthermore, the model allows a tunnelling between both wells according to a typi-
cal matrix element A, as indicated by the dashed left-right arrow in Fig. 1.4. Under
the assumption V5 > hw, the tunnelling is exponentially small compared to w, and
an admixture of excited states of the system into the ground states may be neglected.
Consequently, here we deal with a two-state system, which can be easily written with
the help of the Pauli matrices & = (c,,0y,0,)".

yr“z
It is adequate for most purposes that the coupling of the two-state system to its en-
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(Uz = _1) (Oz = +1)

Figure 1.4: Sketch of a double-well potential to motivate the impurity of the SBM. Both ground
states differ in the energy € and a tunnelling according to A between both wells
is possible. Vj is the barrier height separating both wells. The ground state of
each well can be identified with a spin state: 0, = +1. After [36].

vironment is mediated through ¢,V with V being some operator of the environment.
Any interaction proportional to ¢y and ¢,, which have only off-diagonal elements in
the basis of ¢, has to be of the order of the exponentially small tunnelling amplitude
[36]. This interaction is not necessarily unimportant in special cases but is neglected
at this stage. Furthermore, the environment in such QDS can be described by a set of
harmonic oscillators with a coupling linear in the oscillator elongation [55].

Hence, the full Hamiltonian of the spin-boson model (SBM) reads

A 1
fﬁm=§%—2@+2%(;%dﬁ+¢0>+;wwwq- (1.30)

The first two terms describe the impurity. Through the energy splitting term the spin-
up and spin-down state differ in energy by €. The tunnelling between both spin states
is mediated by the tunnelling amplitude A. The third term describes the friction due
to the coupling of the z polarisation to the elongation X, = (4); + ¢,) of each bosonic
mode g of the environment. The last term, consequently, describes the environment of
non-interacting bosonic modes with 4>;f creating an excitation with energy w,.

For a better understanding of the friction term we assume A = 0 = €. Then, the Fock
space of the SBM separates with respect to the ¢, basis into a spin-up and a spin-down
subspace. For example in the spin-up subspace the elongations {X,} of the friction
term can be incorporated into new free bosonic bath modes 43:; = 4>;f — ©,. These
modes are displaced bosonic modes with ®, = A,/(2w,) and they are shifted in the
opposite direction in the opposite spin sub-space. This leads to an impurity entropy
Simp = In(2) because there are two possible ground states. Whereas, if the tunnelling
amplitude is finite A > 0 and we decouple the impurity from the bath, the ground
state is a non-degenerated admixture of the spin-up and spin-down state.
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>
1 S
Figure 1.5: Schematic phase diagram of the SBM in the plane spanned by the coupling pa-
rameter ¢ and the bath exponent s. With smaller tunnelling parameter A the
phase boundary is shifted to smaller couplings. After [37].

The bosonic bath consists of independent bosonic modes with only positive frequen-
cies. The bath can be completely described by its spectral bath function

J(w)=nY AZb(w—w,) . (1.31)
q

So far, the parameters A, are arbitrary and depend on the physical system of interest
[69]. For the low-temperature physics, similarly to the fermionic bath, the spectral
function can be replaced by an easier function which captures the essential low-energy
physics. In the limit T — 0, the physics is dominated by the low-frequency modes
and, hence, for w — 0 real systems show a dependence J(w) ~ w®. This leads to the
standard power-law form of the spectral function [36]

J(w) = 2ngw P w® O(w)O(w, — w) . (1.32)

This form includes a hard high-frequency cut-off w. and a dimensionless parameter
g, which determines the coupling strength between the impurity and the bath. The
bosonic bath exponent s determines the type of the bath: For 0 < s < 1 it is sub-ohmic
[90], for s = 1 it is ohmic [36] and for 1 < s it is super-ohmic [91]. For example, the
ohmic type can be mapped onto the anisotropic KM [92].

The SBM with € = 0, A > 0 and ¢ > 0 has two stable FPs within the sub-ohmic
regime 0 < s < 1: the localised (L) and the delocalised (D) FP. A QCP separates these
two stable FPs at a critical g.(A, s) and the phase boundary in dependence of the bath
exponent s is depicted in Fig. 1.5. For the L FP, the tunnel amplitude A is renormalised
to zero by the coupling to the bosonic bath. This corresponds to a spontaneous broken
symmetry. The spin has to be either in the one or the other ground state with |(S,)| > 0
leading to a two-fold-degenerated ground state with impurity entropy S;,,, = In(2).
Consequently, we are talking about localisation [37, 93]. The eigenenergies in the L FP
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are also two-fold degenerated. Furthermore, under localisation an initially prepared
impurity spin state, e.g. (S,) = 1/2, remains unchanged under time evolution. On
the other hand, if a finite renormalised tunnelling amplitude A,,,, remains, the ground
state is a superposition of the spin-up and spin-down state with [(S,)| = 0 and the
impurity entropy Sin,, = In(1) vanishes. Then, we are talking about the D FP.

In the ohmic case, s = 1, the SBM as well undergoes the QPT between the L and D
phase. Here, the QPT is of the Kosterlitz-Thouless type, which is explained in Sec. 2.1.
If we increase the bath exponent further to 1 < s, the SBM is in the super-ohmic
regime. There, no QPT occurs because for all g the bosonic bath couples too weakly to
the impurity and a finite A, remains [93]. Consequently, the D FP is the only stable
FP for the super-ohmic regime.

In the sub-ohmic regime (0 < s < 1) the SBM can be used to describe the physics of
a small QD which is part of a mesoscopic ring and capacitively coupled to an exter-
nal circuit with a dissipative impedance [94]. The external circuit is the source of the
quantum fluctuations which drive the QPT. The bosonic bath models the quantum
fluctuations of the electromagnetic field of the external circuit since it is never perfectly
constant. In the context of quantum computation [52, 53, 95] the SBM is applicable
to simple realisations of qubits: For example, the qubit is an electron spin confined
in a QD [96]. Due to its interaction with the environment the qubit is perturbed and
information is lost [97]. The interaction with the dissipative environment is expressed
by the bosonic bath which models a collective vibrational mode built up by the sur-
rounding electrons or nuclear spins.

Furthermore, electron transport properties through QDs under the influence of such an
external noise show a competition of the tunnelling between the leads and the bosonic
damping. This directly leads to BF-QISs which we will discuss next.

1.4 Bose-Fermi quantum impurity models

Since the pure fermionic and pure bosonic QISs show QPTs under certain condi-
tions, it is an interesting question how combined Bose-Fermi quantum impurity sys-
tems (BF-QISs) are related to these QPTs. Here we introduce the Bose-Fermi Kondo
model (BFKM) and the Bose-Fermi Anderson model (BFAM) and present their QPTs
in Sec. 2.4.

In the simplest case, we combine the KM of Sec. 1.1 and the SBM of Sec. 1.3 because
both consist of an impurity spin-1/2 particle. Hence, we derived the Bose-Fermi Kondo
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model (BFKM). If we avoid a potential scattering term which breaks ph symmetry, the
Hamiltonian of the BFKM reads

HBFKM = 5§+ ]§§+ Zek,aclt,ack,(r + Sz (Z)‘q ((Pt;r + q)q)) + Z%‘P;% : (1-33)
q 9

k,o

The first term can be interpreted as a local magnetic field & = (—A,0,¢)7 applied to
the impurity spin with the energy level splitting € and the tunnelling amplitude A,
both known from the SBM. The second term describes the Kondo coupling with the
coupling strength | and with

- + =
s = N chﬁ,lxafx,ﬁcﬁaﬁ (1.34)

being the local spin density of the fermionic bath. The fermionic bath is given with
the dispersion ¢, in the third term. The operator c,’;a creates an electron with spin ¢
and momentum k. The fourth term is the known bosonic coupling term of the SBM.
The impurity spin only couples with its z component to the bosonic bath while all its
components couple to the fermionic bath. The last term represents the bosonic bath®
with the operator 4); creating a bosonic excitation with energy w,. In the following we
assume an antiferromagnetic Kondo coupling | > 0 which enables spin-flip scattering
processes.

Under the restrictions that (i) we have no magnetic field 5 = 0, (ii) the fermionic DOS
is a real pg with 0 < r < 1/2 and (iii) the bosonic spectral function is sub-ohmic with
1/2 <'s < 1, the BFKM yields two types of localisation which both destroy the Kondo
screening of the impurity spin: Either by a free local moment due to weak couplings
or by the formation of a partially unscreened local moment due to a strong bosonic
coupling.

For a weak coupling | < J.(¢ = 0) to the fermionic and no coupling to the bosonic
bath, the impurity spin remains a free local moment, indicating the LM FP, and no
Kondo screening occurs. For any finite bosonic coupling ¢ > 0 exists a line J.(g) (or
2.(])) of QCPs separating the Kondo SC phase for | > ], from the L phase for | < J.
In the L FP a partially unscreened effective local moment is formed due to the strongly
coupled (¢ > g.) bosonic bath. This effective moment decouples from the rest of the
system and the Kondo screening is partially suppressed.

Thorough numerical investigations on the BFKM, as well as the development of the
BF-NRG, have been done in Refs. [55, ]. Within the extended dynamical mean-field

3 We like to emphasise that the bath indeed has to be a continuum of bosonic DOFs. If only a small

number of bosonic DOFs is present, as for models similar to the Anderson-Holstein model [98, 99],
the bosonic DOFs can be incorporated into the first Wilson shell and the standard fermionic NRG
can be used.
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theory (EDMFT) [101, ] the BFKM serves as effective impurity model. For a heavy-
fermion QPT, the competition between the screening of the f-shell moments by the
conduction band and their magnetic ordering by the RKKY interaction is relevant, as
described by the Kondo lattice model (KLM) [103, ]. In the EDMEFT the lattice of
the KLM is mapped onto a BFKM with the bosonic part representing the fluctuating
effective magnetic field generated by the other f moments. Also in the modelling of
QDs such a BF-QIS is important. Since a gate voltage applied to a QD is never perfectly
constant, one can either neglect this or model the fluctuations in the gate voltage as
bosonic DOFs [54].

While in the BFKM the impurity interacts only via spin-flip scattering with the con-
duction band, we want to enable charge scattering processes as well. Therefore, we
use the SIAM and additionally couple the impurity to a bosonic bath. Hence, we get
the so-called charge-coupled Bose-Fermi Anderson model (BFAM). The BFAM is used,
similar to the BFKM, as effective impurity model within the EDMFT. Its Hamiltonian
is given by

Higanm = Y €adid, + Udld,d}d, (1.35a)
g

+ Y Vi (e ode + dlers ) + L erct otio (1.35b)
k,o k,o
+ (Z dld, — 1) (Z A, (gbz; - qbq)> +Y w.ptp, (1.35¢)
v q q

The impurity part in Eq. (1.35a) describes the spin-degenerate energy level with energy
€4. The level can be either zero-occupied |0), single-occupied |1) or ||), or double-oc-
cupied [1]). In the last case an additional Coulomb repulsion U at the impurity has to
be paid. While the single-occupied states carry spin and no charge, the zero-occupied
and double-occupied state carry the charge Q = +£1, regarding half-filling, and are
spinless. Consequently, the impurity has the symmetry SU(2),in X SU(2) sharge-

The fermionic bath and its coupling term to the impurity are given in Eq. (1.35b). The
Hamiltonian of the conduction band has the dispersion €; and the operator Cz,a creates
a fermion in the conduction band with energy €, and momentum k. The hybridisation
of the impurity to the fermionic bath is mediated by V; which will be assumed to be
independent of k in the following.

The bosonic parts in Eq. (1.35¢c) comprise the bosonic bath with the operator (p;r creating
an excitation with energy w, in the bath and the bosonic coupling term. In contrast to
the SBM, here the elongation X, = (4):1r + ¢,) of mode q couples via A, to the impurity
charge (Y, did, — 1) with respect to half-filling. Therefore, only the charge-full impu-
rity states are coupled to the bosonic bath whereas the spin-full impurity states are only
indirectly effected over the fermionic bath. This coupling type features a localisation
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in the sense that one of the charge states is favoured. Furthermore, one pronounced
effect is a renormalisation of the Coulomb repulsion U and will be explained later in
Sec. 5.2.1. Combined with the possibility of spin and charge fluctuations between the
impurity and the conduction band the BFAM has a very rich phase diagram, which
will be presented in more detail in Sec. 2.4.

Under the restrictions that (i) we have no magnetic field cj“ = 0, (ii) the fermionic DOS
is a real pg with 0 < r < 1/2 and (iii) the bosonic spectral function is sub-ohmic
with 1/2 <'s < 1, the BFAM also yields two types of localisation which both destroy
the Kondo screening of the impurity orbital. A positive U and weak couplings to the
fermionic and bosonic bath favour a localisation in the spin sector by the local moment
formation indicating the LM FP. Whereas, a strong coupling to the bosonic bath, in-
duces an attractive Coulomb interaction and hence, a localisation in the charge sector
revealing the L FP. Hence, both effects favour different outcomes and compete with
each other depending on the specific choice of I'y and g for fixed U.






Chapter 2

Quantum criticality

Quantum mechanical systems, such as quantum impurity systems (QISs), may un-
dergo a zero-temperature phase transition upon the variation of a non-thermal control
parameter [61]. The order is destroyed solely by quantum fluctuations which make the
transition to a quantum phase transition (QPT). A QPT occurs through a competition
of different ground state phases and can be classified into a first-order or a continuous
transition. The value of the non-thermal control parameter, at which the QPT occurs,
defines the quantum critical point (QCP). This transition point is typically charac-
terised by a critical continuum of excitation energies and can lead to unconventional
behaviour; e.g. non-trivial power laws or non-Fermi liquid physics. For QISs we deal
with boundary transitions where the degrees of freedom (DOFs) of a small subsystem,
mainly but not necessarily only the impurity DOFs, become critical. For example, the
impurity contributions of the free energy become singular at the QCP.

A well-written overview of QPTs is given in Ref. [51] and provides the major input
for this section. In the 1970s the QPTs in the anisotropic Kondo model (KM) [18, ]
were the first investigated ones. A decade later the dissipative spin-boson model (SBM)
[36, 91] became of interest. While QPTs occur in Kondo-type models with a fermionic
bath and in dissipative models with a bosonic bath, it has been shown that these two
classes are not fundamentally different and can be investigated with the same methods.
Throughout this thesis we will use the numerical renormalisation group (NRG) to
investigate QPTs. Nevertheless, there are several publications using other methods, as
perturbative renormalisation group (RG) [¢1], Bethe ansatz [72, 106, 107] and conformal
tield theory techniques [108-110].

2.1 Classification of quantum phase transitions

A QPT in a QIS can be continuous or discontinuous. The latter one is typically a first-
order transition. The continuous QPT can be classified either by a transition with a

25
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(a) (b) (c)
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Figure 2.1: Classification of QPTs by their finite-temperature properties in dependence of the
non-thermal control parameter r. A and B are stable phases. The transition is of
(a) first order, (b) second order and (c) infinite order.

power-law behaviour, which is typical a second-order transition, or with an exponen-
tial behaviour. The latter type is an infinite-order transition, for example the Kosterlitz-
Thouless QPT in the ohmic SBM. The order n of the QPT is defined by the n-th
derivative of the impurity contribution to the ground state energy which shows a dis-
continuity with respect to a control parameter [51]. A sharp boundary transition for
QISs only occurs at temperature T = 0. In Fig. 2.1 we summarise the different types of
QPTs. A and B are stable phases, e.g. the SC and the LM phase of the SIAM of Sec. 1.2.
Via the non-thermal control parameter r the system is driven through the phases. The
critical parameter 7. marks the QCP at zero temperature.

A first-order transition is a simple level crossing in the ground state of the system and
is depicted in Fig. 2.1(a). The stable phases A and B are two disconnected minima in
the energy landscape of the system. At finite temperature near the QCP (r ~ r.) the
properties of the system are a thermodynamic mixture of the two phases.

For a second-order transition, as depicted in Fig. 2.1(b), a true quantum critical re-
gion (QCR) is present. At zero temperature a QCP exists at the critical parameter r,
with a RG level spectrum of an unstable FP. At finite temperature the QCR is controlled
by this unstable FP and is bounded by the temperature

v
T o | e 2.1)

e

with the correlation-length exponent v. For the pg versions of the KM and the SIAM,
as well as, for the SBM the exponent v depends on a continuous parameter, which is
dependent on the low-energy power-law form of the bath’s DOS, e.g. on the exponent
sin J(w). This parameter takes the role of a dimension. As a function of this dimension,
the line of second-order transitions may terminate at a lower-critical dimension. As
the lower-critical dimension is reached, v diverges and the transition changes its type
to the Kosterlitz-Thouless type. The pg models additionally feature an upper-critical
dimension where the interacting critical FP changes to a non-interacting one and above
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the upper-critical dimension the transition is of first order.

In Fig. 2.1(c) the infinite-order transition of the Kosterlitz-Thouless type is depicted.
There exists no unstable FP at T = 0. The QCP at r, belongs to the stable phase A. At
finite temperature, the thermodynamic properties are separated by only one crossover
line and the temperature T* vanishes exponentially at the QCP.

2.2 Susceptibilities

To track the impurity QPT we need a thermodynamic property which shows a criti-
cal behaviour at the QCP. The thermodynamic property has to contain an impurity
contribution, which consists of the local impurity contribution, as well as, the cross
effects between the environment and the impurity, but without the pure effect of the
environment itself. For this, we define the operation

A(X) = (X) = (X)m, (2.2)

which measures by (X) an observable X in presence of the impurity and the envi-
ronment, and subtracts from it the effect (X)y of this observable for a pure reference
system H,. The reference system H is given by the same system without the impu-
rity. For example, we can extract from the free energy F = —T'In Z, with the partition
function Z = e PH, the impurity contribution Fyy,, = A(F).

2.2.1 Total responses

We now apply bulk fields to the whole system to derive the impurity contribution of
the total responses of the system. A total magnetic field = and a total electrical potential
® act on the full system via the additional Hamiltonian

Hi = ESZ,tot + PQyor (2.3)

with the total spin in z direction S, \, = S, 4 + S pui- the total charge Qyr = Qg + Qpuk
and the definition of the charge Q4 = (¥, d}d, — 1) at the impurity with respect to half-
filling.
Static response functions are defined as second derivative of a thermodynamic poten-
tial, e.g. of the free energy F = —TIn Z. Therefore, the static impurity spin susceptibil-
ity Xsimp and the static impurity charge susceptibility xim, are given by

0*F, 92F.

imp imp

Xs,imp = T ToE? and Xejmp = — D2 (2.4)
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respectively. These impurity contributions show a discontinuity with respect to E or ®
over the impurity QPT. If we perform the derivations above, we gain for the suscepti-
bilities the expressions

TXs,imp = A (<S§,tot(T)> - <Sz,tot(T)>2) and (25)
TXc,imp =A (<Q%ot(T)> - <Qtot(T)>2) s (26)

which can be calculated numerically with the NRG. In the zero-temperature limit
the susceptibilities diverge and the expressions in Egs. (2.5) and (2.6) approach finite

values:
%gTMmMD:yQ and g%mmmuv:qxﬁ. (2.7)

Here, 1% is the effective local moment and Q2 the effective charge moment. For the pg
models the effective local moment can be 0 < %, < 1/4, with the lower boundary of a
completely screened effective local moment and the upper boundary of a free moment.
The same boundaries hold for the effective charge moment Q%

2.2.2 Local responses

So far we applied total fields to the system. Now we restrict ourselves on local fields

Hy=85,4+¢Qq (2.8)

which only act on the impurity. With the help of the local magnetic field ¢ and the local
electrical potential ¢ it is also possible to track the QCP. The local response functions,
therefore, are given by

0%F 0°F
Xs,loc = _ai(:z and Xc,loc = _w (29)
where we used the free energy F. Furthermore, the local magnetisation m,,. and the
local charge g, are given by

oF oF
Myoe = <Sz,d> = _% and loc = <Qd> = _ﬁ . (2.10)

For completeness, the local static response functions depend on the local expectation
values in the limits

Xeroe = — Hm 1€ and  xojee = — lim Toc (2.11)
- C_>0 é’ 7

¢—0 ¢
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For example, the quantities m,. and g,. turned out to be good order parameters to
probe QPTs in the pg versions of the KM [111] and of the BFAM [56]. There, both
quantities vanish continuously by a second-order transition as the QCP is reached for
"=

2.3 Criticality in the SIAM

The first investigation on the SIAM with the NRG was done in the 1980s by Krishna-
murthy, Wilkins and Wilson [112, ] who calculated the FP spectrum and several
static quantities. Historically, the SIAM was investigated for a constant DOS. The use
of a pg-DOS for impurity models was proposed in 1990 by Withoff and Fradkin [21]
who examined the pg KM via a poor man’s scaling approach. In 1995 the pg KM was
investigated with the NRG [114]. For the pg SIAM investigations with the NRG have
been performed by several authors [25, 83, 115-117]. Ref. [25] is the most comprehen-
sive review. In the following we omit the prefix pg.

2.3.1 Renormalisation group flow

The presentation of the RG flow follows Ref. [118]. The FP properties of the SIAM
strongly depend on the presence or absence of ph symmetry. Here, we start with the
description of the RG flow and summarise the characteristics of the FPs in Sec. 2.3.2.

For particle-hole symmetry

In Fig. 2.2 the RG flow is depicted in presence of ph symmetry. According to the ex-
ponent r the RG flow is divided into four regimes: (a) r = 0, (b) 0 < r < 1/2, (c)
1/2 <r <1and (d) 1 <r. The plane is spanned by the bare parameters, the hybridi-
sation strength I'y and the level energy €4 = —U/2, which incorporates the Coulomb
repulsion. For given I'j and U, the parameters renormalise in the direction of the ar-
rows to a stable FP, which is marked by a filled circle. The unstable FPs are represented
by unfilled circles.

For the metallic case r = 0, in Fig. 2.2(a), the flow for any finite hybridisation strength
I'y > 0is towards the metallic Kondo-screened SC FP. With increasing Coulomb repul-
sion U > 0 the flow is stronger attracted by the unstable LM FP at first, then it reaches
the stable SC FP. The LM FP corresponds to €4 = —oo (U = o) and I'j = 0 and consists
of a free spin doublet (|1), |{)). On the other hand, for an attractive Coulomb repulsion
U < 0, on the right side of the graph, the flow is with increasing |U| at first attracted
towards the unstable local moment prime (LM’) FP and then to the stable SC FP. This
LM’ FP at ¢4 = co (U = —o0) and I'j = 0 consists of a free charge doublet (|0), |1])).
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(a) r=0 (b) 0<r<1/2

» €43
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LM LM’
Y
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Figure 2.2: RG flow for the SIAM for ph symmetry with e; = —U/2. The plane is spanned
by the hybridisation strength I’y and the level energy 4 which incorparates the
Coulomb repulsion U. The figure is subdivided into four regimes: (a) r = 0, (b)
0<r<1/2,(c)1/2<r<1and(d)1 <r. Filled circles are stable, unfilled circles
are unstable FPs. The FPs are explained in the text. After [118].

For 0 < r < 1/2, in Fig. 2.2(b), a small hybridisation strength and U > 0 (U < 0)
lead to an unscreened impurity spin (charge). This is indicated by the flow towards
the LM (or LM’) FP. In this regime the LM and LM’ FP are stable. Between the stable
LM (or LM’) FP and the stable SSC FP a new unstable symmetric critical (SCR) (or
symmetric critical prime (SCR’)) FP at finite I, |e4| emerges. It separates the flow to-
wards the LM (or LM’) and towards the SSC FP. The SSC FP differs from the SC FP of
the previous regime by a fractional screening of the effective moments and a residual
entropy, cf. Sec. 2.3.2. As r — 0 the SCR FP merges with the LM FP with a diverging
correlation-length exponent, as it is characteristic for a lower-critical dimension [118].
As r — 1/2 the SCR FP merges with the SSC FP with the same characteristic.
Therefore, in the regime 1/2 < r < 1, in Fig. 2.2(c), the critical FPs are gone. Further-
more, the SSC FP becomes unstable and divides the flow towards the LM and towards
the LM’ FP, which are still stable. In the limit » — 1 this unstable SSC FP moves to
I'y = 0 and merges with the free impurity (FI) FP. Consequently, in the regime 1 <7,
in Fig. 2.2(d), no non-trivial FP is left.

For particle-hole asymmetry

While the fermionic DOS p(e) o« |e|" is ph symmetric, the asymmetry has to be ex-
pressed by the impurity states: 0 < U # —2e4. It is pointed out in Refs. [25, 118] that
the critical properties of the SIAM are independent of the strength of the ph asymme-
try. Therefore, we look at the SIAM with maximal ph asymmetry, i.e. U = oo (and |e4]
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Figure 2.3: RG flow for the SIAM for maximal ph asymmetry with U = oo in the regime (a)
0375 ~ r* < r < 1and(b)1 < r. Filled circles are stable, unfilled circles are
unstable FPs. The FPs are explained in the text. After [118].

finite). In this case the double-occupied impurity state is excluded and the RG flow
alters fundamentally.

According to the exponent r the RG flow is divided into four regimes: (a) r = 0, (b)
0<r<r*(c)r* <r<land(d)1 <r. Atfirst, we explain the existence of the specific
parameter r*. For ph symmetry, U > 0 and 0 < r < 1/2 there exists the SCR FP as
stated above. If we break ph symmetry, the SCR FP remains stable with respect to the
symmetry break for r close to 0. But it is unstable with respect to the symmetry break
for r near 1/2 and is replaced by a new asymmetric critical (ACR) FP. Therefore, there
is a specific r* ~ 0.375 above which the ACR FP is present due to ph asymmetry. For
r — r*T the ACR FP collapses with the SCR FP because the ph symmetry is dynami-
cally restored.

In the case r = 0, the ph symmetry break has no effect on the FPs meaning that the SC
FP is stable regarding ph asymmetry. Consequently, for r = 0 the RG flow is identical
to the symmetric case in Fig. 2.2(a). As mentioned above the ph symmetry is dynami-
cally restored in the regime 0 < r < r* and the RG flow is identical to the symmetric
case in Fig. 2.2(b). The ph-symmetry break leads to a different RG flow for r* < r
as depicted in Fig. 2.3. AtTj = 0, ¢4 = 0 the FI FP of the ph-symmetric case is now
replaced by the valence fluctuation (VF) FP. The VF FP consists of three states since the
double-occupied impurity state is excluded by the maximal ph asymmetry. For 5 < 0
the ground state is a spin doublet leading to the LM FP, whereas for ¢4 > 0 the zero-
occupied singlet state remains in the zero-temperature limit. This can be interpreted
as an ASC FP because no spin moment is left*. Between these two stable FPs a new
unstable ACR FP emerges in the regime r* < r < 1 at finite Iy, €4, cf. Fig. 2.3(a). It
separates the flow towards the LM FP from the flow towards the ASC FP. For 1 <,
in Fig. 2.3(b), the hybridisation I'j is irrelevant and the transition is in leading order a
level crossing at the VF point (I'y = 0, ¢4 = 0). The ASC FP of the previous regime

The maximal ph asymmetry can also be achieved by e; = —co and U finite which leads to the exclu-
sion of the zero-occupied impurity state. Then, the double-occupied singlet state remains in the zero-
temperature limit to which is referred as asymmetric strong coupling prime (ASC’) FP. Nevertheless,
both ways of achieving maximal ph asymmetry are interchangeable by a ph transformation.
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FP Mas Qayt Simp
sC 0 0 In(1)
LM 1/4 0 In(2)
LM’ 0 1/4 In(2)
SSC r/8 r/8 2rIn(2)
FI 1/8 1/8 In(4)
ASC 0 0 In(1)
VF 1/6 1/18 In(3)

Table 2.1: Overview of the FP values for the SIAM in the zero-temperature limit with
limy_g u2e(T) = plge limy_o Q2g(T) =: Q% and limy_,g Sipy (T) = Sipmy-

merges with the VF FP for r — 1. For ph symmetry r — 0" is a lower-critical di-
mension and r — (1/2)~ an upper-critical dimension. For both limits the correlation-
length exponent diverges. For ph asymmetry the upper-critical dimension is shifted to
r—1".

2.3.2 Fixed point properties

To characterise and distinguish the different FPs we use the effective moments: the ef-
fective local moment p2;(T) and the effective charge moment Q2;(T), both introduced
in Sec. 2.2.1. In Tab. 2.1 the FP values of the effective moments and the impurity en-
tropy Simp are collected in the zero-temperature limit T — 0.

In the case of ph symmetry and U > 0, as mentioned above, exists the SCR FP separat-
ing the flow towards the LM FP and the flow towards the SSC FP for the bath exponent
0 <r =04 < 1/2. For a fixed coupling strength I';/D = 0.01 the SCR FP emerges at
a critical coupling strength U./T'jy = 0.19387(0) for the NRG discretisation parameter
A = 2. For an attractive Coulomb repulsion U < 0, the SCR” at —U, /T, separates the
flow towards the LM’ FP and towards the SSC FP.

In Fig. 2.4 we present’ for the SIAM the effective local moment in Fig. 2.4(a) and the
effective charge moment in Fig. 2.4(b) for a Coulomb repulsion in the range [—5U,, 5U_]
in presence of ph symmetry, ¢4 = —U/2. For a Coulomb repulsion U > U, the system
is in equilibrium in the LM phase, meaning that in the zero-temperature limit T — 0
the effective moments reach their values of the LM FP. For U — U_." the FP values
are only reached in the limit T — 0. Otherwise, for e.g. U/U,. = 5, the FP values are
already reached for a finite low temperature. In the LM FP the effective local moment is
ple = limy_o % (T) = 1/4 and the effective charge moment Q2 := limy_,q Q%(T) =
0; cf. Tab. 2.1. Consequently, the unstable SCR FP and, therefore U (T), is defined
by the effective moments being constant at low temperature without reaching one of

5 We like to note that due to the even-odd oscillations the effective moments are averaged over splines

which are produced separately for the even and for the odd iteration numbers.
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Figure 2.4: Effective local moment in (a) and effective charge moment in (b) for the SIAM
with Ty/D = 0.01 and r = 0.4 in presence of ph symmetry, e; = —U/2. The NRG
parameters are A = 2, Ng = 2000, N = 52 and N, = 8. The critical Coulomb
repulsion is U./T, = 0.19387(0).

the stable FPs. For this low-temperature FP at U.(T'j) both effective moments have r-
dependent values which obviously are between the LM and SSC FP values. Decreasing
the Coulomb repulsion further drives the system into the SSC phase in equilibrium.
This means that for —U. < U < U, the effective moments reach at least in the limit
T — 0 their SSC FP values: p%; = r/8 and Q%; = r/8. Similarly to the SCR FP, the
SCR’ FP at —U.(Ty) is defined by constant effective moments for low temperatures.
Their values at the SCR’ FP are r-dependent, as well, and are between the values of the
SSC and the LM’ FP. Anyway, the value of effective local moment 2 in one critical
FP, e.g. the SCR FP, is identical to the value of the effecive charge moment ngf in the
other critical FP, e.g. the SCR’ FP, and vice versa. To conclude this description, for a
strong attractive Coulomb interaction U < —U, the system is driven in the LM’ phase.
There, the effective moments reach at least for T — 0 the values of the LM’ FP: p%, = 0
and ngf =1/4.

If we break ph symmetry with —2e4 # U > 1, the double-occupied impurity state
is irrelevant in the zero-temperature limit. The impurity level energy €4 is the control
parameter which drives the system in equilibrium through the different phases. For
the ph-asymmetric SIAM with I'j)/D = 0.01, U/I'j; = 100 and r* < r = 0.4 a QPT for
€q < 0 emerges. This unstable ACR FP at €4.(U,T) separates the flow towards the
LM FP and towards the ASC FP as long as U > U.(T).

In Fig. 2.5 for the ph asymmetric SIAM we present the effective local moment in
Fig. 2.5(a) and the effective charge moment in Fig. 2.5(b) for a level energy in the range
[5€4,cs —€4,)- Starting with a strong negative €4 < €4, .8. €53/€4,. = 5 in Fig. 2.5, the
system is driven in equilibrium in the LM phase. The LM FP has the same properties
as in the ph symmetric case: u2; = 1/4 and Q%; = 0. Dueto U, < U > land ¢4 < 0
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Figure 2.5: Effective local moment in (a) and effective charge moment in (b) for the SIAM
with Ty/D = 0.01 and r = 0.4 for ph asymmetry —2¢4 # U/T; = 100. The NRG
parameters are A =2, Ng = 2000, N = 52 and N, = 8. The critical level energy
is eq./Ty = —0.6279(5).

the double-occupied and zero-occupied impurity states are suppressed by the RG and
in the zero-temperature limit a spin doublet remains, as it is characteristic for the LM
FP. The ACR FP, which separates the LM and the ASC FP, is defined by constant ef-
fective moments in the zero-temperature limit at €4 .(U, T'y). The values of the effective
moments in the ACR FP depend on r, similarly to the other unstable QCPs. For the
effective local moment this value is between the values of the LM and ASC FP, whereas
for the effective charge moment this is not the case. The effective charge moment is
zero for both FPs but, anyway, at the ACR FP it is finite.

An increased level energy €4 . < €4 drives the system into the ASC FP in equilibrium.
If we look at the effective local moment, with increasing €4 it renormalises faster, mean-
ing that it reaches the ASC FP value at higher temperatures. We see the same effect in
the effective charge moment. With increasing €4 the ASC FP value is reached at higher
temperatures. Additionally, the effective charge moment forms a peak for this regime.
This reflects that with increasing €4 and for a constant U the double-occupied and the
single-occupied states are less stronger separated. This leads to a more pronounced
influence of the double-occupied state at high temperatures which favours a build-up
of the effective charge moment.

2.4 Criticality in the BFAM

The RG flow, as well as the FP properties, of the BFAM are summarised in Refs. [56, 57].
They provide the main input for this section. Since the KM can be derived from the
SIAM by a SWT, the BFKM is a limiting model for the BFAM. Hence, we discuss only
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(b) 0<r<1/2

Figure 2.6: RG flow for the ph symmetric BFAM with a pg-DOS. The plane is spanned by the
Coulomb repulsion U and bosonic coupling g. While the bosonic bath exponent is
in the sub-ohmic range 0 < s < 1, we distinguish by the fermionic bath exponent
in (@) r =0and (b) 0 < r < 1/2. A finite coupling T'; > 0 to the conduction band
is present. (Un)Filled circles are (un)stable FPs.

the more general BFAM here. We refer the reader to App. A.1 for the RG flow and the
FP properties of the KM, and to App. A.2 for the critical properties of the BEKM.

2.4.1 Renormalisation group flow

The impurity is under all considerations constantly coupled to the conduction band
with Iy /D = 0.01. Consequently, in the limiting SIAM (the BFAM for ¢ = 0) features
a QPT by varying over U. The unstable SCR FP of the QPT has a critical Coulomb
repulsion U.(I'j) > 0. For a negative U, the LM and SCR FPs have to be replaced
by the primed FPs. In Fig. 2.6 we span the plane for the RG flow by the Coulomb
repulsion U and the bosonic coupling g. Due to I'y > 0, there is no limiting purely
bosonic model. Nevertheless, the bosonic bath favours a stable L FP if the bosonic
coupling g is large enough. Hence, there has to be at least one unstable Bose-Fermi
critical (BFCR) FP which separates the stable FPs of the limiting SIAM from the stable
L FP. In fact, the presented BFCR FP in Fig. 2.6 is dependent on the Coulomb repulsion
U. Therefore, to be more precise, there is actually a line of BFCR FPs represented by
the red line. Only one representative FP is drawn in Fig. 2.6 to add the RG flow arrows.
For a constant fermionic DOS, in Fig. 2.6(a), the limiting SIAM favours only the stable
SSC FP towards which the flow is directed. In presence of the bosonic coupling ¢ > 0
a new unstable BFCR FP emerges at a critical coupling g.(U). It separates the flow
towards the stable SSC FP for ¢ < g. from the flow towards the stable L FP for g. < g.



36 Chapter 2. Quantum criticality

FP Mage Qle Simp Deq
SSC r/8 r/8 2rin(2) 1/4
LM 1/4 0 In(2) 0
LM’ 0 1/4 In(2) 1/2
L 0 1/4 In(2) 1/2

Table 2.2: Overview of the FP values of the BFAM in the zero-temperature limit with
limp_g ple(T) = i limp_o Q2(T) =1 Qg limr_,gSimp(T) =: Sim, and
1imT—>0<D>eq(T) = Deq'

For a pg-DOS with 0 < r < 1/2, in Fig. 2.6(b), the LM and LM’ FP in the limiting
SIAM become stable and in addition two unstable FPs emerge: the SCR FP at U.(T)
and the SCR’ FP at —U(T), respectively. The SCR FP separates the flow towards the
SSC FP and towards the LM FP, as the SCR’ FP separates the flow towards the SSC FP
and owards the LM’ FP. In presence of the bosonic bath, the flow is towards the L FP
for ¢ > g.. The fermionic LM’ FP is only accessible for ¢ = 0 (indicated by the blue
line in Fig. 2.6(b)) because for U — —U the critical bosonic coupling ¢. — 0 vanishes.
The energy spectrum of the LM’ and of the L FP are composed of purely fermionic and
purely bosonic energies. Both FPs contain the fermionic energies of the LM’ FP of the
SIAM. The LM’ FP additionally contains the energies of a free bosonic bath, while the
L FP features the energies of the bosonic L FP of the SBM. Although both FPs differ in
their energy spectrum, we claim that the L FP and the LM” FP are alike for the BFAM
in the sense that both FPs favour a build-up of an effective charge moment.

The LM and LM’ FP are stable for the pg-DOS in absence of the bosonic bath. With
respect to any finite bosonic coupling 0 < g, the LM’ becomes unstable and the flow
is towards the L FP. Whereas, the LM FP remains stable for 0 < ¢ < ¢* and the
flow is towards the FP. At the critical coupling ¢*(U) a second unstable Bose-Fermi
critical star (BFCR*) FP emerges, separating the flow towards the LM FP and towards
the SSC FP. In the range ¢* < ¢ < g. in between the BFCR* and the BFCR FP,
the flow is directed to the SSC FP. Otherwise, for g > g, the flow is towards the L
FP. Furthermore, the SSC FP is stable and its energy spectrum contains the fermionic
energies of the SSC FP of the SIAM and, additionally, the eigenenergies of a free bosonic
bath.

2.4.2 Fixed point properties

Similarly to the SIAM in Sec. 2.3.2, we characterise the FPs by the effective moments:
the effective local moment y2.(T) and the effective charge moment Q%;(T). In Tab. 2.2
the FP values of the effective moments, the impurity entropy and the equilibrium dou-
ble occupancy are presented in the zero-temperature limit T — 0. More information
on the equilibrium double occupancy will be given in Sec. 5.2.2.
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Figure 2.7: Effective local moment ;2,(T) in (a) and effective charge moment Q2.(T) in (b)
for the BFAM with bath exponents r = 0.4 and s = 0.8 without z-averaging. The
model parameters are T'y/D = 0.01, U/Ty = 1 and ph symmetry, e; = —U/2, is
maintained. The FP values in the zero-temperature limit are stated in Tab. 2.2. The
unstable FPs are at the couplings ¢* = 0.11496(5) (BFCR* FP) and g. = 0.12847(7)
(BFCR FP). The NRG parameters are A = 6, Ng = 1000, Ng = 10, N = 40.

While we maintain ph symmetry and for a finite fermionic coupling I'y > 0, the
BFAM exhibits three stable and two unstable FPs for the bath exponents in the range
0<r<1/2and 1/2 < s < 1. The LM FP and the SSC FP are known from the SIAM
in Sec. 2.3.2. In the LM FP the impurity forms solely, or in correlation with the con-
duction band electrons, a full effective local moment with limy_,q#2;(T) = 1/4 and
limr_, ngf(T) = 0. In the Kondo-screened SSC FP the impurity DOFs are partially
screened by the conduction band electrons. This leads to limy o u24(T) = r/8 and
limr o Q%(T) = r/8. In the L FP the impurity DOFs are controlled by the bosonic
coupling and spin flips or charge fluctuations of the impurity with its environment are
suppressed: The Kondo effect is forbidden. This Kondo destruction due to the locali-
sation leads to the effective moments limy o #2;(T) = 0 and limy_,, Q%(T) = 1/4.

In the following the repulsive Coulomb repulsion U > U, is held constant. U, is the
critical Coulomb repulsion known by the SIAM. By varying over the bosonic coupling
g we are able to drive the system in one of the stable FPs at low temperature.

In Fig. 2.7 we present the effective moments for a set of different bosonic couplings g:
the effective local moment y2;(T) in Fig. 2.7(a) and the effective charge moment Q% (T)
in Fig. 2.7(b). The BFAM parameters are U/I'y =1, Ij/D = 0.01, r = 0.4, s = 0.8. The
FP values are reached in the zero-temperature limit, ie. p%; = limy o pu2(T) and
Q% = limy_,) Q%(T). Due to the chosen parameters the limiting SIAM for ¢ = 0 is in
the LM FP for low temperatures. Therefore, the effective local moment 2 is built-up
completely while the effective charge moment Q2 is zero.
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Figure 2.8: Schematic phase diagram of the BFAM in dependence of the Coulomb repulsion
U (for a finite I'y > 0) and the bosonic coupling g. The bath exponents are in the
regimes 0 <r <1/2and 1/2 < s < 1. The critical U.(T,) is known in the context
of the SIAM (¢ = 0). The phase boundaries g* and g. separate the LM, the SSC
and the L phase, respectively.

With increasing bosonic coupling 0 < g < ¢* up to the critical coupling g*, the LM
FP stays stable. The phase boundary at g*(U) corresponds to the unstable BFECR* FP
at which both effective moments reach a constant FP value at low temperature. These
values are r dependent and lay between the FP values of the LM and SSC FP. The
bosonic exponent s alters the slope of 12;(T) and Q?%((T) but not the FP values.
Increasing the bosonic coupling further, ¢* < ¢ < g, the SSC FP is reached at low
temperature. The critical g.(U) marks the second phase boundary and corresponds to
the unstable BFCR FP. Its FP values for the effective moments lay between the values
of the SSC and the L FP. For a stronger bosonic coupling g. < g, the system is in the L
FP in equilibrium with a full built-up charge moment and a vanishing local moment.

According to the former description, we present a schematic phase diagram of the
BFAM in Fig. 2.8. Here, ph symmetry is maintained, the fermionic coupling I'y > 0 is
finite and the bath exponents are in the ranges 0 < r < 1/2and 1/2 < s < 1. Although
there have been several publications about this model [56, 57] a full phase diagram
has not been published yet. Furthermore, these investigations of the BFAM have only
considered a repulsive Coulomb interaction U > 0. The phase boundaries start at
the well-known phase boundary points of the SIAM [53, ] for the same fermionic
exponent r: U, separates the LM and the SSC phase and —U, separates the SSC and
LM’ phase. For a finite bosonic coupling g, the phase boundary g* is given for the
former separation while the phase boundary g. separates the SSC and L phases.

To conclude this section, we comment why we leave the LM” FP out of scope in the
following. As mentioned in Sec. 2.4, the LM’ FP is only accessible for ¢ = 0. Neverthe-
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Figure 2.9: Exponent types in the BFAM in dependence of (r,s). Taken from [57].

less, the characteristics of the LM’ and the L FP regarding the effective moments are
identical, cf. Tab. 2.2. Both FPs favour a complete build-up of the charge moment at
low temperature. Furthermore, for our analysis of the time-dependent dynamics for
the BFAM we switch on the bosonic coupling ¢ for times t > 0. Hence, the dynamics
can not be driven by the LM” FP. Consequently, this FP is out of scope for the BFAM,
whereas for the SIAM the LM’ FP is of course relevant.

2.4.3 Critical exponents

In presence of a local magnetic field Hy = ¢S, ; we can measure the local magnetic
susceptibility X o, which has been introduced in Sec. 2.2.2. At a QCP, it shows an
exponential behaviour

Xs,loc(g =8 T) < T™* (212)

with the exponent x. Since the BFCR FP of the BFAM is an interacting QCP the ex-
ponent x is connected to other critical exponents via hyperscaling relations [57]. For a
detailed introduction to the critical exponents and their specific appearance for several
models, we refer the reader to App. B.

The exponent x in the BEFAM can be related to its fermionic xg(r) counterpart of the
SIAM, as well as to its bosonic xg(s) counterpart of the SBM. Three types of quantum
criticality in the BFAM can be distinguished [57] and are shown for different bath
exponent combinations (r,s) in Fig. 2.9:

F For the fermionic type, the critical exponents are identical to those of the purely
fermionic SIAM with the same r: x(r,s) = xp(r).

B For the bosonic type, the critical exponents are identical to those of the purely
bosonic SBM with the same s: x(7,s) = xp(s).
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M For the mixed type, the critical exponents satisfy x(r,s) = xp, but the order-
parameter correlation-length exponent, cf. Sec. 2.1, lies between the values for
the SBM and the SIAM: v (r) < v71(r,s) < vz (s).
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Numerical methods

The discovery of the Kondo effect in the early 1930s led to several approaches to explain
it. The first approach which captures the low-temperature physics accurately has been
done by Wilson in 1975. Wilson’s numerical renormalisation group (NRG) [19] treats
the Kondo model (KM) in a systematic and non-perturbative way. The prior pertur-
bative approaches failed for the low-temperature physics due to infrared divergences
at arbitrary small energies. The NRG proved to be suitable to solve other quantum
impurity systems (QISs) as well, e.g. the symmetric [112] and asymmetric [113] single-
impurity Anderson model (SIAM). We will introduce the NRG in Sec. 3.1.

Up to now, several extensions of the NRG have been developed. A very comprehensive
overview is given in Ref. [20]. One extension is the bosonic NRG for bosonic environ-
ments, e.g. for the spin-boson model (SBM) [37, 90] or for more complex impurities,
such as a DNA base pair in a bosonic environment [39, 40]. A hybrid NRG [120, ]
combines features of the NRG and density matrix renormalisation group (DMRG) to
access long-time dynamics which is inaccessible for the NRG alone. Furthermore, the
Bose-Fermi numerical renormalisation group (BF-NRG) [100] has been established to
deal with a mixture of bosonic and fermionic baths. The relevant Bose-Fermi quantum
impurity systems (BF-QISs) for the BF-NRG are the Bose-Fermi Kondo model (BFKM)
[55, , ] and the Bose-Fermi Anderson model (BFAM) [56, 57]. In Sec. 3.2 we will
explain the additional modifications to the NRG to expand the NRG to BF-QISs.

With all these NRG variants equilibrium and dynamical properties of the QISs are
accessible. To calculate real-time dynamics the time-dependent numerical renormal-
isation group (TD-NRG) has been developed [42, 123]. With this approach the real-
time dynamics of the spin in the KM and the SBM has been investigated [123]. Re-
cent improvements on pulsed dynamics [124] extended the possible applications of the
TD-NRG. We will summarise the basic steps of the TD-NRG in Sec. 3.3.

41



42 Chapter 3. Numerical methods

3.1 The numerical renormalisation group

The discussion below follows primarily the presentation of the NRG in Ref. [20]. As
exemplary impurity model, we use the SIAM of Sec. 1.2. Its Hamiltonian in Eq. (1.22)

is given by
Hgiam = Hsiamimp + Hsiampath + Hsiam coup 3.1)
with
Hiamimp = ) €adody, + Udidyd]d, (32)
ag
HsiaMpath = Y_ €kChoCry and (3.3)
k,o
HSIAM,coup = 2 Vi (Cz,ada + d;ck,a) : (3.4)
ko

It is convenient to re-write the Hamiltonian of Eq. (3.1) in a continuum form [83]

D D
HSIAM = HSIAM,imp + Z / de g(e)a:,aae,a + Z / de h((—?) <d;ae,¢7 + a:,ada> . (35)
7D 7D

In this representation the operator® al  creates one fermion with energy € and spin o
€,0 y

in the bath. The energy dispersion is expressed via g(€) and the hybridisation by h(e).
Both functions are related to the scattering rate I'(e) via

de(w)
dw

I'(w) = h?(e(w)) (3.6)
with €(w) being the inverse function of g(e). It connects the continuum dispersion
g(€e) and continuum hybridisation /(e) to €, and V. The scattering rate I'(¢) can be
divided in many different ways according to Eq. (3.6) into g(e) and h(e).

For simplicity we make the assumption that the hybridisation V, = V}, is k independent
and that we deal with a gapless Fermi system. Hence, the accurate low-energy physics
can be obtained for a constant scattering rate I'(e) = [\@(D — |e|) with Ty = 7p V@
and a constant conduction band DOS p(e) = py®(D — |e|) with p, = 1/(2D). For
the constant DOS Eq. (3.6) is satisfied for €(w) = w and h*(e) = T/, as shown in
Ref. [112]. To handle an energy-dependent hybridisation, e.g. for a pg-DOS, one keeps
the hybridisation /#?(€) only in subintervals of the full band constant [33]. We will use
the charge-fluctuation scale I'y as physical energy unit for our results concerning the

6  The fermionic operator a! , fulfils the standard anticommutator relation {a, ,,a’, .} = d(e —€')3, .
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SIAM and BFAM later. Nevertheless, for the following discussion of the NRG we use
D as energy unit.

3.1.1 Logarithmic discretisation

The Hamiltonian in Eq. (3.5) reveals that the impurity is coupled to the whole energy
continuum of the bath. This corresponds to a Hamiltonian matrix of infinite dimension
and has to be restricted in some clever way. Wilson’s proposal [19] to discretise the bath
on a logarithmic mesh is the most efficient way to achieve a suitable energy hierarchy.

The discretisation points of the logarithmic mesh are
xf=+DA™" , n=0,1,23,.. (3.7)

with the discretisation parameter A > 1 and the index n counting the discretisation
points. The interval width between two neighbouring discretisation points is

1
d, = |xy — x| =DA™" (1 — > (3.8)

A
and shrinks logarithmically with increasing n. This produces a high resolution at
energies close to the Fermi energy, which is relevant regarding the low-temperature
physics.

In Fig. 3.1 the effect of the discretisation is sketched. In Fig. 3.1(a) the impurity couples
to the whole energy continuum as described in Eq. (3.5). By introducing discretisation
points and performing the following steps, the impurity couples only to one discrete
energy for each subinterval, as depicted in Fig. 3.1(b) and as Eq. (3.14) will reveal.

So far, the energy continuum is only divided into subintervals. To achieve a discretised
form of the Hamiltonian in Eq. (3.5) we introduce for each subinterval a new complete
set of orthonormal functions [20]

—L_etiwure  for xf;rl <te<xf

¥E, () = { Vi (39)
0 outside this interval ,

with the frequency w,, = 27t/d,, and the index p € Z. To expand the fermionic operator

+

ey

in this basis we have to distinguish between positive and negative energies, hence,

+ .t
Xpt17Xn ]

The conduction band operator reads in

we introduce two fermionic creation operators: a}; for the positive subinterval |
and b} for the negative subinterval [x,,, x
this basis

nel:

at, =Y (a,t,p,U‘F,f,p(e) n b;,p,;f,;p(e)) . (3.10)
n,p
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Figure 3.1: Discretisation of the conduction band with a constant DOS in the interval [-D, D).
In (a) the impurity couples via H, to the whole energy continuum. In (b) the

coup
continuum is divided into subintervals [x, x n+l} For each subinterval one dis-

crete energy is used which couples to the impurity.

This corresponds to a Fourier transformation in each subinterval. We now take a closer

look on the second part of H,,,, in Eq. (3.5) and re-write it in this new basis:

/deh )al .d a%(a;/pﬂ/*”de h(e)‘I’ﬁ, (e )+bzpa/ de h(e)¥, (e ))

(3.11)

where we used the definitions

+n n —n n+1
de = / de and de — / de . (3.12)

¥
Xn41

As expressed in Eq. (3.6), the energy dependence of the hybridisation function can
be arbitrarily divided into g(e) and h(e). If we choose h(e) = h to be constant’, the
integrals in Eq. (3.11) become

/ de H¥E,(€) = \/d,hd, (3.13)

and filter out the p = 0 component of the new basis. Therefore, the impurity couples
only to the p = 0 component, or in other words, to one discrete energy value for the

7 For a non-constant DOS, e.g. a pseudo-gap DOS or a bosonic power-law DOS, it is convenient

to hold the hybridisation constant in each subinterval so that it is possible to perform the same
steps and approximations. Bulla et al. [83] showed that it is a convenient choice to set the coupling

strength 1t = L [ =M e 1T (e) to its mean value in the subinterval [x |, x;*]. By this, the energy

1 X
dependence is shifted into the dispersion g(x,,) = x,, which exactly reproduces the energy dispersion
at the discretisation points x,,, while for intermediate points g(x) = x is not fulfilled.
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whole subinterval [x;, It is possible to re-write the full Hamiltonian of Eq. (3.5)

J
n+1
in this new basis. The main approximation of the NRG is that we neglect the p # 0
components because they do not couple to the impurity directly. The p = 0 and
p # 0 components are still connected with each other in the free bath part Hy,q. This
connection will be neglected, as well. Hence, we do not need the index p any longer.
The impact of this approximation is not obvious at this point. It can only be justified
by the accuracy of the results, obtained for the p = 0 component, which are good and
even good for large A. Furthermore, the p = 0 and p # 0 components couple to each
other with a prefactor (1 — 1/A), which vanishes in the continuum limit A — 17 [20].

In this new basis the full Hamiltonian of Eq. (3.5) reads

= Hinp + L (8000 + G Ut

(3.14)
fz (d* Vi o+ T bug) + (Vi @he + bl ) do)
with the definitions
e “"deT
vE = / deT(e) and ¢&f = W (3.15)

More details on the derivation of Eq. (3.14) are given in Ref. [20].

3.1.2 Mapping onto a semi-infinite chain

The Hamiltonian in the discretised form in Eq. (3.14) has a star topology, namely
the impurity couples to each discrete energy. Via a Householder transformation it
is changed to a chain topology as depicted in Fig. 3.2. The unitary transformation
maps the operators a,, and b, to c,. The Hamiltonian in Eq. (3.14) is transformed to

H = Hypy +\[ 2 5 (0, + <o,
(3.16)
+ Z (6 Cna na+t ( na n+10+cn+1g na)>

n=0,0

with ¢, = fPD de T(e). The operator ¢}, , creates an electron with spin ¢ on the n-th
site of the so-called Wilson chain. The impurity (d operators, green in Fig. 3.2) only
couples to the zeroth chain site (c, operators) with the coupling strength /&,/7. A
Wilson chain site couples to its next neighbour with the hopping term f, and has the
on-site energy €, which is zero for a ph symmetric bath.

In general, the chain parameters €, and ¢, have to be calculated numerically which
is explained in detail in Ref. [20]. For a few special cases analytical expressions for
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T
Figure 3.2: Hamiltonian mapped onto the semi-infinite Wilson chain with the on-site energies
€, and the hopping terms ¢,,. The impurity only couples to the first chain site with

the coupling strength /&,/ .

the chain parameters have been gained. For example, for a constant DOS® Wilson has
already derived the chain parameters in the context of the KM [19]. The on-site energy
is €, = 0 for all n, since the conduction band is ph symmetric, and the hopping term is

(14+1/A)(1 —1/A"1) DA/

= 3.17
n 2\/1 _ 1/A2n+1\/1 —1/A\2n+3 ( )
In the limit n > 1, namely for long chains, the formula reduces to
b (14 1) DA (3.18)
" 5 A . .

This reveals that the hopping terms fall off exponentially with increasing chain length
which is a direct consequence of the used logarithmic mesh.

The coupling between the impurity and the zeroth Wilson chain site is simply given by
\/€o/ 7 =V, for a k-independent hybridisation. In general, this coupling is underesti-
mated within the NRG due to the discretisation A > 1. To achieve the correct coupling
in the continuum limit A — 1 the coupling Vj = /A, V, is scaled by the correction
factor A, [112, 126]. For a constant DOS’ this correction factor is given by

Ay=-"""1InA . (3.20)

Although this is a common procedure, in this thesis all results are calculated without

this correction factor.

Also for other DOSs analytical expressions have been derived, for example the hopping term ¢, for
a pg-DOS in Ref. [83]. In the case of a bosonic bath with the standard power-law coupling function
J(w), cf. Sec. 3.2, the on-site energy €, and the hopping term f,, have been calculated analytically in
Ref. [125]. Due to the length of the formulas we only cite the references here.

In the case of a pg-DOS with the exponent r the correction factor is

1—1/AZ N\ T+r \27
AA(r):( - ) (1_1/AW> InA (3.19)

and has been derived in Ref. [25]. For a bosonic coupling function J(w) an analytical form is not
known.
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3.1.3 Iterative diagonalisation

The chainlike Hamiltonian in Eq. (3.16) can be viewed as a sequence of Hamiltonians

N—

HN = A¥ <Himp =+ % Z (d;CO,U =+ Cg,ada
o

(3.21)
N ) N-1 . .
=+ encn,acn,a + Z tn (Cn,aanrl,a + Cn+1,acn,a)
n=0,0 n=0,0
with the finite chain length N 41 which approaches H in the limit

. N1

H= 1im A™ 7 Hy . (3.22)
N—co

The scaling factor A in Eq. (3.21) cancels the N dependence of the hopping term
ty_1 between the last two chain sites. Therefore, the hopping term becomes of the
order O(1), which is useful for the discussion of FPs.

The RG concept of the NRG is expressed in the connection of two successive elements
of the sequence, i.e.

N
Hyy = VAHy+A2Y (€N+lc+N+l,U’CN+1,0’ +ity (C}L\J,UCNH,U + C;r\i+1,aCN,¢r)) , (3.23)
g
which can be shortly written as Hy . = R(Hy). The starting Hamiltonian for the RG
is given by

1 g
Hy= A~ (Himp + Y eochocos + 1/ LY (dheo, + c$,0d0)> (3.24)
g g

which consists of the impurity coupled to a one-site Wilson chain. In Fig. 3.3 the RG
procedure of the NRG is depicted: The innermost box is the starting Hamiltonian for
the RG. In each NRG step one Wilson chain site is added to the chain and the enlarged
chain is marked by the next-outer box. The RG step in Eq. (3.23) is independent of the
specific impurity which only enters the starting Hamiltonian in Eq. (3.24).

To solve the Hamiltonian H in the limit of Eq. (3.22), we make use of the RG step in
Eq. (3.23). Within the NRG we express the Hamiltonian Hy, by its many-body eigenen-
ergies and compare eigenenergies of different RG steps to classify the RG energy flow.
Hence, the problem for a given N, can be written as

Hy|r)y = En(M)Ir)n »  r=1,.,Ns , (3.25)
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Figure 3.3: Subdivision of the impurity (green) and the semi-infinite Wilson chain (blue) into
finite chains of length N + 1 marked by the different boxes. Each box represents
a Wilson shell. The innermost box marks the starting condition of the NRG and
each next-outer box corresponds to a chain enlarged by one chain site.

with the eigenenergies Ey () and the corresponding eigenstates |r) 5. The Hamiltonian
Hy has the dimension Ns. If we perform the RG step of Eq. (3.23), the basis of Hy; is
given by the product states

1,8 = 1)y @ [s(N +1)) (3.26)

with the eigenstates |r)y of Hy and a suitable basis [s(N + 1)) of the added Wilson
chain site. For the fermionic bath the latter one may be |0), |1), |{) and |1]). Using the
basis of Eq. (3.26) we can express the matrix elements of the Hamiltonian Hy1:

Hy i (r,s;7",8") = (r,s|Hypa|?, §) (3.27a)
N
= \/XEN(r)(Sr,r,(SS,S/ + A2 ZGN_H (s]c}L\,HﬂcNHﬂ $')6,

o

N
+ A2 Z tn(r, s (C;r\r,aCNJrl,a + C;r\r+1,aCN,o) r',s)
g

(3.27b)

The numerical diagonalisation of the matrix Hy ; in Eq. (3.27b) provides new eigen-
values Ey,q(w) and eigenstates |w) 1, which are related to the basis |r,s) 1 Via a
unitary transformation

(w)ns1 = Y U(w;r,s)|r,s)ne1 - (3.28)

.8
By replacing the label w by r we gain the eigenbasis of Hy .

Therefore, we achieved an iterative procedure to perform the limit in Eq. (3.22) by
successively applying the former presented steps. Of course, the numerics has some
limitations. Firstly, the number of eigenstates increases exponentially by adding new
sites to the Wilson chain. With each chain site it increases by the dimension of the basis
|s(N +1)). To keep the iterative procedure manageable'” the new basis |r)y,; has to
be truncated: Only the Ny eigenstates with the lowest many-body eigenenergies are

10 The restriction to a fixed number of states in each iteration guarantees that the computation time

increases linearly with N. The truncation scheme is motivated in Sec. 3.1.4 and the number of kept
states Ng highly depends on the model and has to be adjusted according to reliable results.
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Figure 3.4: Flow diagram of the energy levels versus (a) odd and (b) even iteration numbers
N for a free fermionic bath with the NRG parameter A = v/2 and Ng = 2000 states
kept in each iteration.

kept for the next RG step. Secondly, the limit in Eq. (3.22) is considered to be achieved
if the flow of the eigenenergies Ey/(r) is converged into a FP spectrum. Due to the
scaling factor A"z in the RG step, cf. Eq. (3.23), the eigenenergies are of the order
O(1) for all iterations. A FP is reached if the Hamiltonian H* is invariant under the RG
step R(H*) = H*.

For the free fermionic bath, the flow of the eigenenergies is shown in Fig. 3.4. The
fermionic bath has only FPs under the RG transformation R? because of the even-
odd asymmetry: At an even iteration the number of electrons is even and they can
form a singlet while for an odd iteration on electron is left over. Therefore, we show
the eigenenergies at odd iterations in Fig. 3.4(a) and at even iterations in Fig. 3.4(b),
respectively. With the chosen parameters A = /2 and Ng = 2000 the eigenenergies
converge into the free bath FP after 15 iterations.

3.1.4 Calculation of impurity expectation values

With the help of the many-body eigenenergies, the NRG is capable to calculate ther-
modynamic expectation values of an operator O of the zeroth Wilson shell. In general,
the expectation value is given by

(0) = %Tr (e—ﬁHo) (3.29)

with the inverse temperature = 1/T and the partition function Z = Tr (e ). As
described in the previous section the full Hamiltonian H is approximated by the dis-
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cretised and truncated Hamiltonian Hy with the eigenstates Hyl|r)y = En(7)|r)n,
r =0, ..., Ng, and the eigenenergies Ey/(r). Hence, the partition function is given by

Zy =Y e PNEN) yyith (3.30)
r
By =PBATT . (3.31)
The inverse temperature By =: B = O(1) is set to the order of one. Then, for a

given temperature T = 1/p the eigenenergies Ey(r) > A~(N-1/28 are suppressed
by the Boltzmann factor and do not contribute significantly to the expectation value'!.
This supports the argumentation why the truncation of high-energy states is a good
approximation. By Eq. (3.31) and By =: B = O(1) a discretised temperature

N-11
2 =
p

can be introduced. The temperature decreases exponentially with the iteration N. Fi-

Ty =A" (3.32)

nally, we can re-write Eq. (3.29) to

_N-1
(O)y = ZiTr <e—/3A ? Hwo> (3.33)
N
1 — r
= a Ze ‘BNEN( )N<V‘O’r>N . (3.34)
-

This describes a sequence of expectation values (O)y at decreasing temperatures Ty;.
Additionally, it is possible to re-write the calculation of the expectation value

(0) = %Tr (e—ﬁHo> = Tr (pO) (3.35)

with the density operator p, which is given in the discretised and truncated form by

1 — r
N = 57— ) e ANEND 1y on(r] (3.36)
N r

Performing the limit N — oo, the expectation value (O)y — (O) reaches the low-
temperature limit. In fact, generally it is sufficient to iterate until the expectation value
has reached a FP value. To evaluate the expectation value for a finite temperature
T > 0 the discretisation parameter A, the number of iterations N and the inverse
temperature'? B have to be chosen such that T = Ty is fulfilled.

' To ensure that the full Hamiltonian H is well approximated by the discretised and truncated

Hamiltonian Hy, it is important to keep enough Ny states at each iteration so that the condition
En(r) > A~(N=1)/28 js still fulfilled.

12 Normally, the inverse temperature B = 1 is set to one.
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3.1.5 Improvement: Oliveira’s averaging

In Sec. 3.1.1 the discretisation of the bath continuum has been described. By the dis-
cretisation finite-size effects emerge within the NRG and, consequently, also for the
derived methods, which are based on the NRG. These finite-size effects may cause
the calculation of physical quantities, e.g. non-physical oscillations in the long-time
dynamics for TD-NRG calculations. The greater the discretisation parameter A, the
stronger are these non-physical effects.

To cure this problem Oliveira et al. [127-129] modified the logarithmic discretisation
points of Eq. (3.7) by

xF=+DA D 1=0,1,2,3,... , (3.37)

with A > 1and 0 < z < 1. Averaging over N, different discretisations'® of the bath for
a fixed set of temperatures Ty is a successful way to avoid non-physical oscillations,
e.g. in the impurity magnetic susceptibility of the KM.

This averaging is meant to re-introduce the continuum limit to some content and it is
able to suppress oscillations introduced by the use of large A [129]. Nevertheless, it is
not the same as the true continuum limit A — 17.

3.2 The Bose-Fermi numerical renormalisation group

The first implementation of the NRG for a bath with bosonic DOFs was achieved by
Bulla et al. [37, 90] in 2003. They examined the equilibrium properties of the SBM. The
BF-NRG to investigate QIS with an environment consisting of bosonic and fermionic
DOFs has been developed by Ingersent et al. [100] in 2005. They studied the BFKM
[55, , ] and the BFAM [56, 57]. The following discussion reflects primarily the
presentation of the BE-NRG in Ref. [55] and is faithful to the bosonic bath description
in Ref. [90]. In principle the BF-NRG works with the same steps as the NRG, hence,
we only point out the additional steps which have to be done for the bosonic parts.

We explain the BE-NRG examplified for the BFAM whose Hamiltonian in Eq. (1.35) is
given by

Hipam = Hsiam + Hppath + Hpcoup  With  Hppan = Y w dn ¢y (3.38)
q

and  Hp coup = (Zd;d,, — 1) Y oA, (qb; - q>q) : (3.39)
o q

13 Typically, the z values are set to z; = i/N, with i = 1,...,N, and should be chosen in multiples of

four to produce the best results [128].
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The parameters A, and w, solely depend on the bosonic bath as stated in the context
of the SBM in Sec. 1.3. They are determined by the bosonic spectral bath function

J(w) = 2mgws™ w® O(w)O(w, — w) (3.40)

given in its power-law form. The bosonic bath consists only of positive energies with
the high-energy cut-off w., which may be used as energy unit.

Similarly to the NRG, the Hamiltonian in Eq. (3.38) can be re-written in the continuum

form
D D
Hppam = Himp + Z / de gF(e)a:,aae,a + Z / de hg(€) (d:;“e,a + “:,ada>
o o
Jr o (3.41)
+/¢MHWﬂ%+(Zﬁ%w4>/wwﬂ®Qﬁ+%)
0 v 0

The fermionic parts are the same as in Eq. (3.5). The function gg,5(x) for the energy
dispersion and hg,g(x) for the coupling function'* are related to each other via

[(x) = hi(ep(x)) de;}(cx) , for fermionic relation, and (3.42)
J(x) = nhZB(eB(x))c%ix) , for bosonic relation, (3.43)

with eg,/p(x) being the inverse function of gg,5(x). While Eq. (3.42) for the fermionic
relation is identical to Eq. (3.6), the relation in Eq. (3.43) describes the bosonic case
regarding the spectral function J(x).

3.2.1 Discretisation and mapping

The spectral function J(w) is discretised on a logarithmic mesh with the discretisation
points

Xy, =w A, m=0,1,23.. , (3.44)

with the discretisation parameter A > 1 and the index m counting the discretisation
points. In contrast to the fermionic discretisation in Sec. 3.1.1, we have here only posi-
tive energies. Since we discretise in the fermionic and the bosonic case with the same
discretisation points, we imply in the following that the fermionic bandwidth and the
bosonic cut-off are equal: w./D = 1. This is a rather strong assumption because in the

14 The coupling function g 5(x) is called hybridisation function in the fermionic case and coupling

function in the bosonic case.
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Figure 3.5: Hamiltonian mapped onto two semi-infinite Wilson chains. The fermionic Wilson
chain (blue) has the on-site energies ¢, and the hopping terms ¢,. The bosonic
Wilson chain (red) has the on-site energies w,, and the hopping terms t,,. The
impurity only couples to the first site of each chain with the coupling strength
\/Go/ t for the fermionic chain and /7, /7 for the bosonic chain.

—

context of the Anderson-Holstein model [99, 130] the phonon frequency is typically a
small fraction of the bandwidth, i.e. w./D = 0.01. Nevertheless, instead of only one
phonon, we deal here with a full continuum of bosonic DOFs. Hence, the specific
choice of w./D = 1 does not influence the low-temperature physics.

Similarly to the standard NRG, the fermionic and the bosonic baths are mapped sepa-
rately onto two semi-infinite chains, as depicted in Fig. 3.5. The Wilson chain sites for
both chain types couple only to their next neighbour with the hopping term ¢, for the
fermionic and with 1, for the bosonic type. The fermionic on-site energy €, is zero
for all n in the case of a ph symmetric bath, whereas the bosonic on-site energy w,, is
finite due to the purely positive spectral function. Since the fermionic bath contains
positive and negative energies, the fermionic hopping term t, o« DA~ ("/2) scales ex-
ponentially with the index n/2, while the bosonic hopping term' t,, « w A™" scales
with the index m. Hence, the bosonic hopping term T, falls off twice as fast as the
fermionic hopping term ¢, if we increase both indices by one. If we bind the bosonic
index m to the fermionic index n via m = |n/2|, both Wilson chains obey to the same
energy hierarchy. The bosonic sites are assigned to the even-numbered fermionic sites
as depicted in Fig. 3.5.

15 A full analytical derivation of the on-site energy w,, and the hopping term T,, for the standard

parametrisation of J(x) in Eq. (3.40) can be looked up in Ref. [125].
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3.2.2 lterative diagonalisation

For the RG transformation Hy = R(Hy_;), we have to distinguish if N is an even
or an odd number due to the different scaling of the hopping terms. Two successive
elements of the sequence Hy are connected by

Hy = VAHy_4 (3.45a)
+ AT t +t t +cf 3.45b)

Y (enclotne +tn-1 (CN-1,0N0 + CNoCN-1,0 3.

a
_ wngt + Ty (gt +4t _ for N even ,
n AN ( MIMIM T TM-1 (qulqM ImIm 1)) (3.450)
0 for N odd
The starting Hamiltonian for the RG is given by
Hy=A"?[H, i Soy (gt b od
0 imp + Z eOCO,(TCO,lT + T Z O'CO,IT + CO,U o

7 7 (3.46)

+ wogodo + \/'7:’ (Zdida - 1) (a8 + %)) :
o

with the local couplings &, = f_DD de T'(e) and 15y = [;"dx J(x). The operator cf,
creates an electron with spin ¢ on the n-th site of the fermionic Wilson chain, the
operator d. creates an electron with spin ¢ on the impurity and the operator g, creates

an excitation on the m-th site of the bosonic Wilson chain.

For the RG step N — N + 1 the product basis of Hy,; contains a suitable basis
{|s(N+1))} of the added Wilson chain site(s). For an odd iteration number N only
a fermionic site is added and {|s(N + 1))} = {|F)} containing the fermionic oc-
cupation eigenstates {|F)} = {|0),|1),|{),|T})}. For an even iteration number N
a fermionic and a bosonic site are added which determine the suitable eigenstates
|s(N+1)) = |F) ® |B) as a direct product of the fermionic basis {|F)} and the bosonic
occupation basis'® {|B)}. In general, the bosonic occupation basis g},q,,|1,) = 1,1,
with the occupation number 7,, of the m-th chain site, is infinite. For the numerics we
have to restrict it to a finite number Ny of states: n,, = 0,1,..., Ng and consequently
{IB)} = {|0),]1),...,INg) }. Then, we have a well-defined basis for Hy; and can diag-
onalise the matrix of Hy, to provide new eigenenergies Ey_ (7) with the eigenstates
|")n41 and proceed with the next RG step. With the eigenenergies Ey(r) and eigen-
states |r) .1 we have all information needed to calculate impurity expectation values

16 Within this thesis we only use the bosonic occupation basis, which has already been used in several

publications [37, 39, 55, 90, ]. Of course, other bases are also possible, e.g. consisting of coherent
states [131] or displaced oscillator states [90]. The latter one has been used in the context of the SBM
which was treated with a starlike NRG where the impurity couples to all representative energies
directly.
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Figure 3.6: Flow diagram of the energy levels versus (a) odd and (b) even iteration numbers
N. The energy levels of the system consisting of a free fermionic and bosonic bath
are coloured in red. Additionally, the energy levels of a free fermionic bath are
coloured in blue. The NRG parameters are A = 2, s = 0.5, Ng = 8 and Ng = 1000.

as described in Sec. 3.1.4. Through the iterative diagonalisation a flow of the eigenener-
gies En(7) is generated, which can be used to characterise a specific FP. In Fig. 3.6 the
flow of eigenenergies, called level flow, is shown in red colour for a system consisting
of a free fermionic and a free bosonic bath. It is distinguished between even and odd
iterations due to the even-odd oscillations of the fermionic bath, cf. the discussion at
the end of Sec. 3.1.3. After a few iterations (N ~ 15) the levels converge and classify
the so-called free baths FP. Its level structure is simply a linear combination of the
level structures of the free fermionic bath FP, which are coloured in blue, and the free
bosonic bath FP. This is easy to see for the even iterations in Fig. 3.6(b). The lowest
red curve is the eigenenergy e?. The second and third lowest red curves are integral
multiples, 2¢? and 3e?, of this eigenenergy. The lowest blue curve, which is greater than
zero, is the lowest fermionic eigenenergy e}, which was calculated separately with the
standard NRG. The next higher red eigenenergies are linear combinations of the two
lowest bosonic and the second lowest fermionic eigenenergies: Ey = k-eP +1-ef. The
level structure of the combined system for the even FP, therefore, consists of these
eigenenergies: 0, e7, 2¢F, 3¢P, el 4eP, of + €8, 568, ef 4 268, 668, ef + 3eP and ef.

3.3 The time-dependent numerical renormalisation
group

F. B. Anders and A. Schiller [42, 123] developed the time-dependent numerical renor-
malisation group (TD-NRG) in 2005 to investigate real-time dynamics of QISs. The ba-
sic idea for the calculation of real-time dynamics is that a complete basis set is needed
because the discarded high-energy states of the NRG are relevant for the dynamics at



56 Chapter 3. Numerical methods

short times. In the past decade the TD-NRG has been used for the investigations of
several models: the KM [42, ], the SIAM [117, ], the SBM [43] and with this thesis
of BF-QISs. Furthermore, the TD-NRG is a powerful tool for complex effects, as the
build-up of Kondo correlations [133], steady-state currents through nano devices [134]
or complex electron dynamics of molecule compounds [39, 40]. Recent improvements
on pulsed dynamics [124] extended the possible applications of the TD-NRG.

At the time t = 0 a sudden quench disturbs the Hamiltonian locally, in the zeroth
Wilson shell. We can express this time-dependent Hamiltonian

H(t) = HO(—t) + H'O(t) (3.47)

by two time-independent parts H! before and HF after the quench. The time evolution
O(t) = Tr (p(t)O) of a local operator O depends on the time-dependent density oper-
ator p(t). For the initial system according to H'! the NRG provides the eigenenergies
and eigenstates in equilibrium. Hence, the initial density operator is given by

I e PH

0= T (o) (3.48)

After switching to the time-independent Hamiltonian H' the density operator evolves

in time
p(t) = e M pl el (3.49)

with respect to HY for t > 0. To calculate p(t) we need the eigenenergies and eigen-
states of HY, which are provided by the NRG, and additionally overlap matrices to
rotate the initial density operator p! into the basis of HF.

3.3.1 Complete basis set

For an accurate description of the time evolution all energy scales are relevant, hence,
a complete basis set is needed. In the NRG high-energy eigenstates are discarded at
each iteration. For the TD-NRG these discarded states, as well as the transformation
matrices, have to be stored on the hard drive. While for the NRG the Wilson chain
is extended iteratively until a finite chain length N + 1 is reached, we deal directly
with the full Wilson chain of length N + 1 for the TD-NRG. In analogy to the NRG
we can say that at the beginning all hopping terms ¢, are set to zero and the impurity
couples only to the zeroth Wilson chain site. With each iteration step the next hopping
term ¢, is set to its NRG value and the impurity couples to an enlarged chain until the
Wilson chain has its full length. This leads to a subdivision of the full Wilson chain as
depicted in Fig. 3.7. The full Wilson chain consists of (i) the already built-up chain H;
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Figure 3.7: The Wilson chain of length N + 1 is divided into two subchains: The subchain H;
of length L + 1 and the environment subchain R; 5 with switched-off couplings
t,=0for L <n < Nin gray.

with the length L +1(< N+ 1) and ¢, > 0 for n < L and (ii) the remaining chain R y
with t, = 0 for L < n < N, which will be called environment in the following. The
Hamiltonian H; always acts on the Fock space of the full Wilson chain

HL’T, ‘XL+1’ veey DCN> = EL(T') |T’L, IXL+1, veey [XN> (350)

with the product state
r o, an) = [rL) @ o) © - @ fay) (3.51)

consisting of the eigenstates |r; ) of H;, with the eigenenergies E; (7), as well as the con-
figurations {|a,)} of the n-th site, L < n < N, which do not couple to the subchain H;.
Hence, the environment causes an extra degeneracy d¥ L for each eigenenergy E; (r)
with d being the number of distinct configurations of one chain site and (N — L) being
the length of the environment chain. In the following we use |r,¢; L) as a diminutive of
|rL, & 41, ay) With e = {a} ¢, ..., ay} labelling the environment variables.

If we perform one iteration step by switching on the hopping term ¢; , ;, the new eigen-
states

e, L+1) = ) U {r,apq)Hrapa} L) (3.52)

741

of the enlarged Hamiltonian H;,; can be obtained by a unitary transformation as
mentioned in the context of Eq. (3.28). Here, ¢/ = {a; 5, ..., ay} labels the remaining
environment variables.

Within the NRG only Ng states with the lowest many-body eigenenergies are kept at
each iteration to hold the computational effort manageable. Therefore, there is a first
iteration L, ;, at which the complete set of states

{’1’, €; Lmin>} = {|}’, € Lmin>kp} + {|1’, € Lmin>dis} (353)

is divided into a set of Ng states which are kept (kp) for the next iteration step and a
set of discarded (dis) states which are now stored on the hard drive. If we consider
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all eigenstates of the last iteration (L = N) also as discarded, then, all discarded states
form a complete basis set with the completeness relation

Z Z’T ¢ L chs dlS r, € L’ =1 (354)

mm

L=

which can obviously be divided 1 = 1. + 1{ into two complementary parts

1 = Z Z]r ;L") gis aisr & L'| and (3.55)
7me
1/ = Z Y e L) g aisit e L] (3.56)
=L+1 re

The projector 1, projects on all retained states at iteration L, spanning the retained
subspace of Hy ;1 with L < N. It can, therefore, be expressed by the kept states:

L =Yl e L plre Ll . (3.57)

r,.e

3.3.2 Time evolution of a local operator

The time evolution of a local operator O is given by

O( ) TI‘ Z Z dlS re L|p O|7’ 2 L>dls (3.58)
L= r.e

mm

with the trace expressed in the complete basis set. By inserting the completeness rela-
tion between the density operator and the local operator and by following the discus-
sion in Ref. [42], the time evolution becomes

trun

Z ZZ dlsre L’P |1’ e L>dls dls<r E L|O‘7’ €; L>d1s . (359)

/
L=L_;, 1,7 ee

The restricted sum Y ;5" requires that at least one of the two states r,’ is discarded at
iteration L. At the beginning of this section we claimed that O is a local operator. This
is not necessarily the case, we only have to require that the operator O acts on states
which are still available. This is the case for L < L, ;., so that the operator O may act
on the impurity alone or also in its vicinity. This is a rather weak requirement since a

lot of operators fulfil it.
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Due to this locality, the operator O is independent of the DOFs of the environment and,
hence,

dis<r/l e/; L’O|1’, ¢ L>dis = 5e’,eorg,r : (3.60)

If we further use the NRG basis set, generated for the final Hamiltonian HF, and the
standard NRG approximation HF|r,e; L) = E;(r)|r,e; L), the density operator can be
expressed by

ar & Llp(8)[r, ¢'; L) gis = BB pd (L) (3.61)

r,r

where we defined the reduced density matrix
pret (L) = Lailr, & Llo' & Lais - (3.62)
e

Combining all this leads to the centrepiece of the TD-NRG, the time evolution formula

N trun ,
o(t) = Z Zezt(EL(r)—EL(r))orL,’rp;,eg(L) . (3.63)

— !
L_Lmir\ r,y

To make some comments to this formula: Firstly, no restrictions on the initial density
operator p! were needed for the derivation. Secondly, all energy scales are indeed taken
into account because all states of the finite Fock space are retained. And thirdly, it be-
comes exact in the limit t — 0. One significant approximation through the derivation
is HY|r,e;L) = E (r)|r,e;L), to which Wilson [19] has already shown in the context
of the NRG that the associated error in the thermodynamic quantities is small and
perturbative due to the separation of the energy scales by the logarithmic discretisa-
tion. Nevertheless, the discretisation of the bath limits the low-energy resolution and,
therefore, Eq. (3.63) may become inaccurate for times t > 1/Ty, with the tempera-
ture Ty o« DA~(N1)/2 representing the energy scale of the last Wilson chain site N.
Anyway, the NRG can reach arbitrary low energy scales and, therefore, the TD-NRG
arbitrary long times. At the same time, a continuous spectrum is vital for a complete
relaxation in the system. This constitutes a fundamental error source for any solution
and we mention two methods to reduce this error in Sec. 3.3.5.

3.3.3 Reduced density matrix

So far we only defined the reduced density matrix in Eq. (3.62), now we explain how
to compute it. In the basis of the initial Hamiltonian H' the density operator p' is
simply given by its thermal representation as in Eq. (3.48), but for Eq. (3.61) we used
the eigenstates of the final Hamiltonian HY to construct the reduced density matrix.
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Therefore, we need transformation matrices which relate between these two basis sets.
To distinguish between these two basis sets, we use the superscript I or F for the
corresponding eigenstates. The reduced density matrix p! in the basis of the initial
Hamiltonian H! is given by

pEN(L) = Y glr e Llp'|r, e L)k (3.64)
e

For the complete basis of H' we can write a completeness relation Z = Z; + I,
similarly to Eq. (3.54), with

L—1
Ip = ), YlneLl)gsalr el and (3.65)
Ll:Lmin re
I =) 19,6 L)gs aila & L| (3.66)
L],C

where we used the calligraphic Z, instead of 1 in Eq. (3.54), to emphasise the basis of
the initial Hamiltonian H'. If we now insert Z before and after the density operator,
in Eq. (3.62), which was defined in the final basis set, the reduced density matrix
decomposes into four contributions

Ot (L) = o7 (L) + o (L) + o, (L) + oy (L) (3.67)
with the definition
oP5 (L) =Y air e LIZL "Il | e, L) K (3.68)
e

++
7,1

and p,p’ = £. Only the contribution p/ (L) can be directly related to the initial

density matrix:
or (L) = Laslr & LIZ 0TI e L (3.69)
e

=YY Y alr e Lld, e L aisld €5 L10" 9, € LYis qis(q, € LI, €; L) g (3.70)

e gq.gee
and leads to the transformation matrix
L. . .7\F
Sor(L) = aisld, e LY, e L) g - (3.71)

It is independent in the environmental DOFs and, therefore, the index e is omitted. The
matrix S(L) is the wanted transformation matrix'” at iteration L which transforms the

17" We like to mention that the transformation matrix S(L) is generally not unitary because the basis is

reduced in each iteration step. Therefore, S*(L)S(L) # 1 and/or S(L)S*(L) # 1.
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basis states from H! to HY and vice versa. A systematic way to compute the transfor-
mation matrices is explained in detail in the appendix of Ref. [42].

The other contributions to pred( ) in Eq. (3.67) describe how low- and high-energy
states of the initial Hamiltonian H! are coupled. For the NRG we deal with an initial
density operator p' which is in thermal equilibrium at low temperature. Hence, there
are no significant contributions from high-energy states and the terms p;fr,_ (L), pr_j,'(L)
and p, /(L) may be neglected. If we start with an initial configuration far away from
thermal equilibrium these contributions have to be taken into account, as it is discussed
and has been done by Nghiem and Costi for periodic switching in Ref. [124].

With the transformation matrix S(L) we simply obtain via rotation

o (L Zs L) o} 4(L) Sq (L) (3.72)

out of the initial density matrix pj, (L) = 4q’,¢; L|o'[q, €; L) -

To set up a recurrence relation with respect to L for the reduced density matrix, we
compute the reduced density matrix for the last iteration N. It is easy to write down
the reduced density matrix

plr'ersll( ) = 51’ =1 ZI 5EI ) (3.73)

with the initial partition function Z! = ¥, e PEN() and the initial eigenenergies EX (7).
For an arbitrary L < N, we can split the sum over the environment e = {a; 4, ¢’} into
a part of the next chain site a; , ; and the rest environment R; , , 5y with ¢’ encoding the
remaining labels «; 5, ..., ay. Substituting Z;", ;o Iz 4 for pl in Eq. (3.64) leads to the
recurrence relation

kept

(L) = Yo Y Py lap Py lapalof s (L +1) (3.74)
X1 9,9
with the definition
Py olaria] = ailr e LI, e L+ 1)g; (3.75)

for the overlap matrix elements. The overlap matrices connect two successive NRG
steps of the initial Hamiltonian H'. The sum over g’ and g in Eq. (3.74) is restricted to
the states which are kept at iteration L + 1. Furthermore, for L = N — 1 the sum runs
over all states of the last NRG iteration. If the state r or #’ is discarded at iteration L,
the reduced density matrix pred !(L) vanishes because of the orthogonality of the basis
set.
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3.3.4 TD-NRG algorithm

The TD-NRG algorithm consists of two parts: (i) the forward iterations of the Hamil-
tonians H' and HY and (ii) the backward iteration according to the recurrence relation
in Eq. (3.74).

In order to evaluate the time dependence of an operator O at a desired temperature
T, one first has to adjust the discretisation parameter A and the number of iteration N
such that T ~ Ty is fulfilled. Then, the forward iteration starts:

(i) Two normal NRG runs for both Hamiltonians H' and HF are performed,

(ii) the transformation matrices S(L) of Eq. (3.71) are calculated at each NRG step
and

(iii) the discarded states {|,¢e; L)q;s }, the transformation matrices S(L) and the overlap
transformations P[x; | are stored on the hard drive.

After this has been done the backward iteration starts and reads in the stored data.
Then,

(i) the reduced density matrix of Eq. (3.73) at the last Wilson chain site is calculated
with the initial eigenenergies,

(ii) the matrices P[a; 1] are used to perform one backward step and calculate p™%!(L)
out of p"4(L + 1) via Eq. (3.74),

(iii) the reduced density operator p™4!(L) is transformed via Eq. (3.69) with the help
of S(L) into the basis of the final Hamiltonian H' and

(iv) with the use of the time evolution formula in Eq. (3.63) the expectation values
(O(t;)), for all points in time t; are computed at each backward iteration step L.

These steps are repeated until iteration L = L,;, is reached, where no discarded states

min

are left. Finally, we calculate the expectation value (O(t;)) = Y1 (O(t;)); at time t; by a
sum over all contributions of the iterations.

3.3.5 Improvements: Oliveira’s averaging and damping

For the real-time dynamics of impurity expectation values strong non-physical oscil-
lations may appear due to the discretisation of the bath(s). In the context of the NRG
we introduced Oliveira’s averaging in Sec. 3.1.5 to cure these non-physical effects by

averaging over different discretisations.
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Another way to smooth these oscillations is to explicitly damp them down. In the
original implementation of the TD-NRG [42] each phase factor in Eq. (3.63) is Lorentz-
broadened,

eit(EL(r)—EL(S)) N eit(EL(r)_EL(s))_rLt , (3.76)

with a damping factor I, = ae;. It is energy dependent on the energy scale ¢; =
DA~(=1/2(1 4 1/A)/2 at iteration L. The factor a is of the order O(1) if E;(r) —
E; (s) # 0, otherwise it is set to zero. Such a broadening smoothes the discretisation-
related oscillations in the same spirit as the broadening of the NRG Lehmann repre-
sentation of equilibrium spectral functions [20, —-137].

However, such a broadening could wrongly damp out oscillatory contributions at long
times. In order to avoid any prejudice, we usually set « = 0 in this thesis and use
Oliveira’s averaging instead to minimise discretisation-related oscillations. Therefore,
usually all our data contains some finite-size related noise at very long times.






Chapter 4

Real-time dynamics
in gapless Fermi systems

In this chapter we focus on the real-time dynamics in gapless Fermi systems, which
contain a small concentration of magnetic impurities embedded in a non-magnetic
metallic host. Since the concentration is small and the impurities are randomly dis-
tributed, the interaction between each other can be neglected, and we model this sys-
tem by a single impurity in a conduction band: The impurity is a localised orbital and
hybridises to the conduction band enabling charge scattering between the impurity
and the band. For an energy-dependent scattering rate I'(e)  |e|" this single-impurity
Anderson model (SIAM), cf. Sec. 2.3, features a quantum critical point (QCP) separat-
ing the local moment (LM) phase with an unscreened spin moment from a symmetric
strong coupling (5SC) phase with a fractionally screened spin moment.

We investigate the local real-time dynamics upon equilibration and thermalisation for
interaction quenches and hybridisation quenches by using the time-dependent numer-
ical renormalisation group (TD-NRG). We find that, in all cases we looked at, the
system equilibrates after quenching on a steady-state value, even for quenches across
the QCP. For quenches within or into the LM phase no thermalisation occurs and the
deviation from the thermal equilibrium systematically depends on the distance to the
QCP. Furthermore, our numerical data agrees nicely with results of a perturbation-
theory calculation, which becomes exact at short times. In a comparison of our results
with previously published dynamics calculated with a time-dependent Gutzwiller vari-
ational approach, we see clear discrepancies which are related to restrictions in the
wave-function ansatz of the Gutzwiller theory. Whereas, in the numerical renormalisa-
tion group (NRG) the formation of a spatially extended effective local moment in the
unscreened phase is accurately described.

We like to note that this chapter is an abridged version of our publication in Ref. [117].
We start with an introduction and explain the physical picture of the decoupling effec-
tive local moment in Sec. 4.1. Then, we briefly portray the equilibrium properties of
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the SIAM in Sec. 4.2 with a special focus on the equilibrium double occupancy, since a
more general discussion has been done in Sec. 2.3.

For interaction quenches in Sec. 4.3 we study the real-time double occupancy in pres-
ence of particle-hole (ph) symmetry within the SSC phase, as well as for quenches from
the SSC over the QCP into the LM phase. We supplement our investigations with re-
sults beyond ph symmetry.

For the second investigated type, the hybridisation quenches in Sec. 4.4, we focus on
quenches within the LM phase and augment our numerics with perturbation theory
results which show a perfect agreement. Furthermore, we discuss the energy flow from
the impurity into the bath and explain the differences in our results compared to simi-
lar investigations with a time-dependent Gutzwiller ansatz. We summarise our results
in Sec. 4.5.

4.1 Introduction

Elzerman et al. [55] have used gate-voltage pulses for a single-shot readout of the spin
configuration in a single-electron transistor in a finite magnetic field. A suitable model
for such a setup is given by the SIAM [16]. The metallic SIAM has a rather simple
phase diagram [20, 112, 113] and it can be viewed as a special case of a more general
class of models [25, 81, 83, 84]. For those, the coupling function I'(e) « |e|" between
the impurity and the non-interacting metallic host contains a real pseudo-gap (pg).
The metallic case is equivalent to r = 0, and for 0 < r < 1/2 the system exhibits
[25, 83, 114, 115] a critical coupling strength T'. governing the transition between a
LM phase for a weak coupling and a SSC phase for a large coupling to the metallic
host. The SIAM has been extensively investigated in the context of Kondo impurities
in unconventional superconductors [25, 81, 83, 84, , ] or in the context of defects
in graphene sheets [119, ]. Some of the low-energy properties have been worked
out in detail [118, ; ] and it has been shown that the universality class of the FPs
changes with the coupling function exponent r. We are interested in the influence of
these different ground states for the different phases on the real-time dynamics of a
system driven out of equilibrium by a quantum quench.

The non-equilibrium dynamics in the metallic STAM has been investigated [123] with
the TD-NRG [42, 123, 124]. However, the dynamics with a real pseudo-gap for quenches
within one phase and across the QCP has only recently been addressed by a time-de-
pendent Gutzwiller ansatz [60]. With this non-equilibrium extension [60, , 1
of the well-established variational Gutzwiller technique [143, ] it has been demon-
strated [60] that the pg coupling function yields non-trivial dynamics as a consequence
of the diverse low-energy FPs. In the LM phase an effective local moment decouples
from the impurity. The properties of this spin DOF have a strong influence on the
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formation of the steady state, as well as on thermalisation. We will show that an over-
simplified picture for the description of the local moment is used in the Gutzwiller
ansatz. For all quenches we will find a well-defined steady state at long times. The
deviation of the steady-state value from the thermal equilibrium measures the degree
of thermalisation. We will find thermalisation for quenches within or into the SSC
phase, within the numerical accuracy of the TD-NRG [42, , ]. Interestingly, we
will show that thermalisation also occurs for quenches out of the SSC phase across
the QCP (but only very close to the QCP). For even stronger quenches, the deviation
between the steady state and the thermal state increases continuously with increasing
distance to the critical coupling.

4.1.1 Physical picture

In the SSC phase, the Kondo temperature Ty governs the excitations around the SSC
FP. Ty vanishes at the QCP and increases with increasing coupling to the conduction
band. In analogy, in the LM phase one can define a crossover scale T* which takes the
role similar to T in the SSC phase and characterises the excitations around the LM FP.
T* decreases with increasing coupling and also vanishes at the QCP. To these crossover
energy scales there are associated length scales ¢* = vg/T* and {x = vg/Tx with vg
being the average Fermi velocity of the conduction band. These length scales can be in-
terpreted as spatial extension of the decoupled local moment in the LM phase or of the
Kondo singlet in the SSC phase. The larger the local Coulomb repulsion U the larger
the crossover scale T* becomes and the more closely to the impurity the local moment
is formed. Hence, an ansatz for the ground state which restricts the local moment
formation only on the impurity site, as used in the Gutzwiller approach [60, 141-143],
significantly overestimates the critical Coulomb repulsion U.. In such an approach the
local moment formation can only occur at a much larger local Coulomb repulsion U
or a much lower coupling I' compared to accurate NRG calculations. This also leads
to differences in the real-time dynamics: For quenches into the LM phase close to the
QCP the decoupling effective LM is extended and a local observable explores still a
large phase space of itinerant states. Hence, these quenches also thermalise. If we
increase U > U,, we reduce the size of the local moment such that it is more localised
to the impurity. This leads to an increasing non-decaying fraction [145-147] of the
expectation value. Hence, the steady-state value deviates significantly from the ther-
mal equilibrium value. For the local double occupancy we will show an increasing
deviation between the steady-state value and the thermal equilibrium value the more
strongly the effective local moment is localised. On the other hand, for the energy flow
into the conduction band, which is indicated by the hybridisation energy, we will find
thermalisation even for quenches within the LM phase, although it has been questioned
that the TD-NRG might not be suitable to describe the energy flow [59].
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4.2 Equilibrium properties

Throughout this chapter we use the ph-symmetric coupling function [21, 25, 81, 83, 84,

7 ]
T (e) =T, (r+1)‘%‘r®(D—\e|) 4.1)

with the cut-off D defining the effective bandwidth. The parameter I serves as energy
scale of the problem and turns into the standard charge-fluctuation scale for a constant
DOS. The normalisation factor (r + 1) ensures that the integral over the coupling
function,

mVE = / de T'(e) =2I,D (4.2)

remains independent of the bath exponent r > 0. While r = 0 and r = 1 are the pro-
totypically experimental realisations, we take r as an arbitrary parameter of the model.
Unless otherwise stated, we focus on the ph symmetric case with Ae = 2e4 + U = 0.
As described in Sec. 2.3, the phase diagram of the SIAM is very rich and reveals a
QCP between the SSC and LM phase. In equilibrium, the SSC FP can be reached in
two ways: choosing the charge-fluctuation scale I'y > I'.(U) for fixed U or by setting
U < U.(Ty) for fixed T'y. We show these phase boundaries in Fig. 4.1 for the ph sym-
metric SIAM. We observe a strong influence of the bandwidth D on the critical U, and
I'.. Furthermore, our I'. agrees excellently with Fig. 5 in Ref. [25]. Since we systemat-
ically eliminate the high-energy degrees in the RG procedure, a finite U only matters
once the effective bandwidth D — D¢ has reached the order U. At those energies, the
system starts to detect the differences between the local double-occupied state and the
local moment states. Then, the effective coupling to the remaining conduction band is
given by I'(U) which decreases with increasing r or increasing D. Consequently, U,
has to decrease in these cases as well.

In Ref. [60] the ground state of the SIAM for a finite hybridisation has been approxi-
mated by a Gutzwiller wave-function ansatz. For r = 0 the quasi-particle renormalisa-
tion factor Z o T¢"# o exp(—7tU/16I) is a smooth function of the Coulomb interac-
tion U and has been interpreted as effective Kondo temperature within the Gutzwiller
approach [143]. We like to note that the exponent of T¢" differs by a factor 2 from the
standard Kondo temperature such that the exponential decay is underestimated [145].
Furthermore, an incorrect Kondo scale is found for the wide-band limit as it has been
pointed out in Ref. [148]. The Gutzwiller aproach features a QCP at a finite critical U,
for all ¥ > 0. The Gutzwiller prediction for U./Ty = 16(r +1)/(7tr) has been added
to Fig. 4.1 as an analytical curve for large bandwidths. Since for r > 1/2 the SIAM
only features the stable LM FP for all U > 0, the validity of the Gutzwiller approach is
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Figure 4.1: Phase diagram for different bath exponents r and bandwidths D. For comparison
the analytical form of the Gutzwiller ansatz (cf. Ref. [60]) is added. Taken from

[117].

restricted to r < 1/2. In comparison with the accurate NRG phase boundaries which
are presented in Fig. 4.2, it becomes apparent that the renormalisation effects are un-
derestimated by the Gutzwiller ansatz and, hence, there is an overestimation of the
critical U,.. These limitations are also affect the real-time dynamics of the time-depen-
dent Gutzwiller approach [60], as we will show by comparision with our TD-NRG
calculations later.

Since we investigate the real-time dynamics of the double occupancy (D(t)) through-
out this chapter, we first look at the equilibrium double occupancy (D)eq versus U /T,
for fixed D /Ty = 100 in Fig. 4.2. The NRG results depicted in Fig. 4.2(a) demonstrate
that (D)eq
across the QCP has already been identified by Gonzalez-Buxton and Ingersent more

is continuous across the QCP at U.. This continuity of local observables

than 15 years ago, cf. Fig. 8 in Ref. [25]. In Fig. 4.2(b) we show the equilibrium dou-
ble occupancy calculated with the Gutzwiller approach for the same coupling func-
tion T'(e). The double occupancy clearly differs from the NRG results. Within the
Gutzwiller ansatz, the double occupancy vanishes at the QCP, i.e. (D(U,)) eq = 0, and
remains zero for U > U.. Consequently, the physical properties of the Gutzwiller
approach deviate significantly from the true ground state, as obtained by the NRG.
Apparently, the Gutzwiller wave function ansatz cannot be applied in the LM phase
close to the QCP since it misses the spatial extension of the effective local moment.

We will focus on the non-equilibrium dynamics of the ph symmetric SIAM close to and
across the QCP. There are two different ways to drive the system across the QCP for
0 <r < 1/2: For a fixed value of U we can switch the hybridisation strength I'y, which
will be called hybridisation quench in the following, or for a fixed I'y we can change U
which defines the interaction quench.
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Figure 4.2: Equilibrium expectation value of the double occupancy (D)4 versus U for dif-
ferent bath exponents r and a bandwidth D/I'y = 100 calculated (a) with the
equilibrium NRG and (b) with the equilibrium Gutzwiller ansatz [60, ]. Taken
from [117].

4.3 Interaction quenches

For an interaction quench, we switch the Coulomb repulsion from its initial value U
for times t < 0 to the value U; for t > 0. In order to maintain ph symmetry at
all times, i.e. U(f) + 2e4(f) = 0, we enforce also a switching in the d-level energy:
—2e4(t) = O(—t)U; + O(t)U;. The hybridisation strength I'(t) = T; = Iy = I is
kept constant and is used as unit of energy. Short, intermediate, and long times will
correspond to tI'y < 1, tI'y ~ 1 and tI'j > 1.

We prepare the system initially in the uncorrelated state by setting U; = €4; = 0. Since
the impurity is coupled to the conduction band, the system approaches the SSC FP
for T — 0. Therefore, the initial double occupancy is given by the uncorrelated value
(D)eq = 1/4. In the LM FP, the double-occupied and the zero-occupied state on the
impurity remain unoccupied, and (D)¢q = 0.

4.3.1 Quenches within the SSC phase

If we switch on the Coulomb repulsion at ¢t = 0, the system remains either in the
SSC phase for U; < U, or is driven by the equilibrium properties of the LM phase for
U; > U.. Since we maintain ph symmetry, the level occupancy (n4(t)) = 1 remains
at half-filling for all times and is unaffected by the quench. Hence, we focus on the
dynamics of the double occupancy (D(t)). For a good energy separation between the
bandwidth D and the charge-fluctuation scale I'y, we use 1 < 10 < D /I’y < 100.

We present the time-dependent double occupancy (D(t)) for quenches within the SSC
phase (U; < U.) for multiple bandwidths D and r = 0.4 in Fig. 4.3. All curves start
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Figure 4.3: Time-dependent double occupancy (D(t)) for quenches within the SSC phase
for D/T, = 100 for different final Coulomb repulsions U;/T, = 0.05,0.1,0.2 <
U./Ty ~ 0.34 in (a) and for different initial values U; with fixed U;/T; = 0.2 in
(b). In (c): (D(t)) is shown for a smaller bandwidth D/T; = 10 with Coulomb
repulsion U;/Ty = 0.3,0.7,1.1 < U./Ty ~ 1.51. In (d): (D(t)) for a set of different
bandwidths with fixed U;/T, = 0.2 versus the crossover time scale ., with the
dependence of ¢, on D given in the inset. After [117].

at the non-interacting value (D(t = 0)) = 1/4 and reduce to smaller values since
the Coulomb repulsion suppresses the charge fluctuations and the double occupancy.
Quenches within the SSC phase equilibrate for long times to a steady-state value. The
corresponding equilibrium value of the quenched system, which is obtained from an
independent NRG calculation and is indicated in the figure by an arrow, agrees per-
fectly with the steady-state value. Hence, we conclude that (D(t)) thermalises for long
times. This thermalisation is independent of the initial value U; as shown in Fig. 4.3(b).
We have plotted (D(t)) versus t/U;D in Figs. 4.3(a) to 4.3(c) to emphasise the quadratic
decrease'® (D(t)) = 0.25(1 — a(t/tyr)?) with the short-time time scale 1/13 o U
It stems from a linear contribution of Un4n| in a perturbative expansion of the time-
dependent density operator after the interaction quench [149].

18 In our publication [117, Fig. 3] we plotted for the same quenches as in Figs. 4.3(a) to 4.3(c) (D(t)) ver-

sus tU;. However, the perturbatively gained quadratic decrease in (D(t)) for short times seams more
reasonable and should also hold for the dynamics which we presented in [117, Fig. 3]. Therefore,
here in Figs. 4.3(a) to 4.3(c) we show (D(t)) versus t/UD.
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The double occupancy does not expose any oscillations, which is in contrast to the
predictions made by the time-dependent Gutzwiller approach, cf. Fig. 2 in Ref. [60].
Nevertheless, the this approach reveals the thermalisation of (D(t)) for those type of
quenches [60] which is a non-trivial result.

In order to compare the dynamics independently of the long-time steady-state value
(D(00)), we define the function

S0 = D)~ (D)) “3)

It starts at f(0) = 1 and approaches f(co) = 0 at infinitely long times independent of
the parameters. The data of Fig. 4.3(a) and Fig. 4.3(c) collapses for different Coulomb
repulsion Uy, since the bandwidth D = const is unaltered. There is still a weak depen-
dence on U; (about 2%) but it is negligible compared to the dependence of f(t) on the
ratio D/Tj. To eliminate further the dependence on D/T), we define a crossover time
scale t.,, which fulfils the condition f(t.,) = 1/2. Plotting f(t) versus the dimension-
less time scale t/t., maps all data for different ratios D /I’y onto one unique curve, as
depicted in Fig. 4.3(d). Only the curve for D /I’y = 10 deviates slightly from the others
since the separation of energy scales is rather small. Furthermore, the dependence of
t., on D/T is illustrated in the inset in Fig. 4.3(d). By fitting the numerical data we
find that

1 /D

b= |2 44
co & 1—'0 1"0 ( )

Since the U; dependence enters primarily via (D(o0)), the remaining real-time dynam-
ics is governed by the time scale t.,, depending on D and I'j, and universality in the
dynamics f(t/t.,) has been found.

Now, we investigate the influence of the exponent r = 0,0.1,0.2,0,3 on the dynamics
for quenches within the SSC phase. Again, we find universality for each exponent,
expressed by f,(t/t.,). In Fig. 4.4(a) we present the different universal functions for
different . With decreasing r the universal curve emerges a dip at short times, after
which it increases again to the steady-state value. The occurrence time of the dip corre-
lates to the inverse temperature of the maximum in the effective local moment 2 (T).
In the inset of Fig. 4.4(a) y?;(T) is depicted for r = 0.2,0.4 and reveals a maximum
for the small » = 0.2 while for r = 0.4 j2,(T) decreases continuously. Consequently,
the dynamics for » = 0.4 does not reveal this dip. We show the r dependence of the
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Figure 4.4:In (a): The universal f,(t) versus t/t, for different exponents r =
0,0.1,0.2,0.3,0.4. In the inset of (a) the temperature-dependent equilibrium ef-
fective local moment y2,(T) is depicted for HY, D/T, = 100, and r = 0.2,0.4.
In (b): The dependence of t Iy on the exponent r with a linear relation of
In(t.,Iy+/rTy/D) vs rin the inset. After [117].

universality time scale t., in Fig. 4.4(b). If we scale t., with /7 for r > 0.1, we find an
exponential dependence of the crossover time scale t., on r:

emD)r D
©% VT,

with a bandwidth-dependent exponent m(D), obtained for the data in Fig. 4.4(a). We

(4.5)

like to note, that the phenomenological estimate (4.5) for the time scale does not inter-
polate to r — 0 and, therefore, is only valid for 0.1 < r < 1/2. The inset in Fig. 4.4(b)
reveals the linear dependence of In(t.,I'y+/rTy/D) on r.

4.3.2 Quenches across the QCP

In the following we start from the SSC FP (U; = €4; = 0) at t = 0 and quench over the
QCP into the LM phase by setting U; > U.. The equilibrium properties of HY, which
govern the real-time dynamics, describe an effective local moment, which decouples
from the conduction band leading to an effectively free conduction band. This effective
local moment is composed of contributions of the local impurity spin, as well as of the
conduction band electron spins. Hence, also in the LM phase a finite double occupancy
(D)eq is possible.

In Fig. 4.5 we show NRG calculations for the effective local moment for a set of
Coulomb repulsions U, /Ty ~ 0.3392 < U;/Ty = 0.4,0.6,1,4 for r = 0.4. As the Kondo
temperature T determines the low-energy crossover to the SSC FP, we can define a
similar characteristic temperature T*, which fulfils

Hage(T*) = 0.21 (4.6)
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Figure 4.5: Effective local moment ygff(T) of the impurity spin for different Coulomb repul-
sions U, /Ty ~ 0.3392 < U;/Ty = 0.4,0.6,1,4 with D/T; = 100 in (a). In (b) scaled
data of (a) versus T/T* with the inset showing the correlation-length exponent
of T*. After [117].

and tracks the crossover near the QCP to the LM FP. We added the condition of
Eq. (4.6) in Fig. 4.5(a) as horizontal line. To reveal the universality of T* we plot the
data of Fig. 4.5(a) in Fig. 4.5(b) versus T/T*. We note that T* vanishes at the QCP
and we show its dependence T* o (U — U.)"(") on the distance to the QCP with the
correlation-length exponent v(r = 0.4) = 3.92 in the inset of Fig. 4.5(b). If U is close
to U, all energy scales contribute to the local moment formation in the LM phase.
Similarly to the spatial extension of the Kondo cloud by ¢x = vg/Tk in the SSC phase
[133, —154], with the Fermi velocity vg, we can interpret {* = ovg/T* as spatial
extension of the local moment decoupling from the conduction band. Hence, in the
limit U — U, the spatial extension of the local moment diverges. On the other side,
the spatial extension of the local moment decreases with increasing U and, hence, the
decoupled spin DOFs become more strongly localised to the impurity. In consequence,
the thermalisation for this quenches is increasingly suppressed with increasing U.

In Fig. 4.6 we present (D(t)) for quenches over the QCP with U.(D /Ty = 100)/T =~
0.3392 < U /Ty = 0.4,0.6,1,4 at the temperature T /I’y ~ 10710, Since T < T* the real-
time dynamics is temperature-independent and only governed by the overlap of the
initial ground state with the eigenstates of the final Hamiltonian. To reveal the short-
time dynamics we plot (D(t)) versus the dimensionless time tU; in Fig. 4.6(a). For these
quenches across the QCP into the LM phase, we find coinciding short-time dynamics
which are proportional to 1/U;. Probably the Coulomb repulsion U;/T is too strong
for a perturbative statement of the short-time dynamics, as is has been done in Fig. 4.3.
For the two smallest interactions, U;/Ty = 0.4,0.6, we the steady-state value is very
close to the thermal equilibrium value, which is indicated by an arrow in the figure.
Consequently, we consider both quenches as thermalised. For a strong interaction,
U¢/Ty = 4, we observe a damped oscillatory behaviour with a frequency proportional
to U;. The long-time steady-state value strongly deviates from its thermal equilibrium
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Figure 4.6: Double occupancy (D(t)) for quenches from the SSC FP (U; = 0) over the QCP
into the LM phase for different Coulomb repulsions U_/T; ~ 0.3392 < U;/T =
0.4,0.6,1,4 with D/T,, = 100. In (a): (D(t)) versus tU; at T /T, ~ 10~1%, Thermal
expectation values as arrows at the right side of the graph. In (b): The data of (a)
scaled via EqQ. (4.3) to f(t) versus t/t.,. In the inset the dependence of ¢, on U;
is shown. Taken from [117].

value revealing non-thermalisation. Plotting the data of Fig. 4.6(a) via Eq. (4.3) as
f(t) versus t/t., in Fig. 4.6(b), we can extract the dependence of U; on the crossover
time scale, as depicted in the inset in Fig. 4.6(b). In equilibrium we have shown for the
double occupancy (D)4 a continuous decrease with increasing U even across the QCP.
Whereas, the outcome for the dynamics for quenches across the QCP in Fig. 4.6(a) and
for quenches within the SSC phase in Sec. 4.3.1 is significantly different. In both cases,
the double occupancy equilibrates to a steady state but thermalises only in the SSC
phase. For quenches within the SSC phase the characteristic time scale ., depends in
leading order on I'y/D and shows universal behaviour, whereas for quenches across
the QCP the real-time dynamics is governed by 1/U;.

To investigate the connection between the spatial extension of the effective local mo-
ment and the degree of thermalisation, we take a look at the difference between the
long-time steady-state value

D* = lim ~ [ dt (D()) 47)

and the thermal equilibrium value (D).q. The deviation AD = D* — (D), for a set of
different U; for the bandwidth D /Ty = 100, as in Fig. 4.6, are depicted in red versus
T* /Ty in Fig. 4.7. Close to the QCP the deviation is less than 3% which is of the order of
discretisation-related errors of the TD-NRG. For increasing U; the deviation increases.
We supplement data for fixed U;/I'y = 1 and a variation of D in blue to Fig. 4.7. The
deviation AD follows the same trend and agrees within the numerical error with the
data for fixed D/T; when approaching the QCP. AD systematically increases with
increasing T*, either by increasing U; or increasing D/I'y. This supports the picture
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U; or for fixed U; /T, and a variation of D. Taken from [117].

of an increasingly localised effective moment and leads to an increasing non-decaying
fraction of the local double occupancy, which prevents the thermalisation of the local
expectation value.

The same type of quenches has been analysed with the time-dependent Gutzwiller ap-
proach in Fig. 3 of Ref. [60]. There the double occupancy (D(t)) strongly oscillates and
never reaches a steady-state value at long times. This is in strong contrast to our re-
sults which reveal a steady state for long time for these quenches. Since the Gutzwiller
wave function ansatz for the time-dependent Gutzwiller equation does not describes
the the LM phase properly the Gutzwiller approach reveals completely different real-
time dynamics. In the Gutzwiller approach the ansatz for the LM phase is defined by

a vanishing (D)eq for U > U,. This is a strong shortcoming since (D)., is continuous

e

across the QCP at U, as equilibrium NRG calculations [25] have proxczlen. While the
NRG correctly contains the spatial extension of the decoupling effective local moment,
the Gutzwiller state restricts this moment to the local impurity site. We conclude that
the time-dependent Gutzwiller approach can only be applied to the strong coupling

phase.

In Fig. 4.8 we show the effect on the real-time dynamics for a variation in the band-
width D and for a variation in the bath exponent r. We use a set of different bandwidths
D/T, = 100,125,175,200 and a fixed U;/T’jy = 3 in Fig. 4.8(a). The critical Coulomb
repulsion U.(D/Ty = 100)/T, = 0.3358 is the largest for D/I'; = 100 and decreases
with increasing bandwidth. Hence, U; exceeds U, almost by one decade even for the
largest U,.. With increasing bandwidth, we quench deeper into the LM phase. There-

fore, the thermal double occupancy (D)., represented by an arrows at the right side

eq’
of the graph, decreases with increasing 5. For this strong interaction U;/Tj = 3 the
spatial extension of the effective local moment is small and a damped oscillation due to
strong local dynamics on the zeroth Wilson shell emerges. Furthermore, with increas-
ing bandwidth D, the amplitude of the damped oscillation in (D(t)) is increased, due
to the more strongly localised local moment, while the frequency is only proportional

to Uf.
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Figure 4.8: Double occupancy (D(t)) for quenches from the SSC FP into the LM phase. In (a):
(D(t)) versus tT, for different bandwidths D /T, = 100,125,175,200 with r = 0.4
and U;/Ty = 3 > U.. In (b): (D(t)) versus tU; for different exponents r with
D /Ty =100 and (D(U,7))eq = 0.02 by Ug(r = 0.4) /T = 14.72, U(r = 0.3)/Ty =
17.73, Ug(r = 0.2) /Ty = 21.06, and U;(r = 0.1)/T, = 24.79. Taken from [117].

If we use a set of exponents r = 0.1,0.2,0.3,0.4 with D/I'j; = 100, we have to adjust
the Coulomb repulsion such that (D(Uj)).q ~ 0.02 remains nearly constant for all r as
indicated by the arrows on the right side in Fig. 4.8(b). We plot in Fig. 4.8(b) (D(t))
versus tU; to remove the leading frequency-dependent order of the oscillations for dif-
ferent Coulomb repulsions U;. The remaining small frequency shift with increasing r
is related to the different ratios U;/I'y. As shown in Fig. 4.2(a), the double occupancy
(D)eq is stronger suppressed with increasing r for a constant U/ T. For quenches from
the SSC FP into the LM phase we have shown that (D(t)) overestimates for long times
the thermal equilibrium value more strongly the stronger the effective local moment is
localised, which is equivalent to a smaller (D). Since we hold (D).(r) constant in
Fig. 4.8(b), the overestimation in (D(t)) increases with increasing r.

4.3.3 Quenches from the LM phase

Next we reverse the direction of the quenching and start within the LM phase with an
initial U; > U,. The Coulomb repulsion is reduced to U;, which is either 1 < U;/U, =
1.2,1.5 reflecting a quench within the LM phase, or 1 > U;/U. = 0.25,0.5 to quench
over the QCP into the SSC phase. The initial double occupancy (D(t = 0)) decreases
with increasing distance U; — U, and vanishes in the limit U; — oo.

We present (D(t)) for U;/ U, = 10 in Fig. 4.9(a) and for U;/U, = 100 deeper in the LM
phase in Fig. 4.9(b). The double occupancy (D(t)) increases Us-independently with a
slightly oscillatory behaviour. It reaches a Ug-dependent steady-state value at roughly
g >~ 1.

For quenches over the QCP into the SSC phase (U;/ U, < 1), the steady-state value and
corresponding thermal expectation value coincide independent of the initial prepara-
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Figure 4.9: Double occupancy (D(t)) for quenches from the LM phase for the initial Coulomb
repulsion U; /U, = 10 in (a) and U;/U. = 100 in (b). Either for quenching within
the LM phase for Uy /U, = 1.2,1.5 or over the QCP into the SSC phase for U;/ U, =
0.25,0.5. Taken from [ 1.

tion. The thermal values are represented by the arrows on the right side of Fig. 4.9(a).
We interpret this as indication for thermalisation. Whereas, for quenches within the
LM phase (Ug/U. > 1), the steady-state value and the thermal value differ about 7%
in Fig. 49(a). Hence, we conclude that quenches within the LM phase do not ther-
malise. This statements also holds if the quench starts stronger in the LM phase, as
in Fig. 49(b). The stronger the initial effective local moment is localised the more
DOFs are prevented from relaxing to thermal equilibrium and, hence, the deviation for
U;/U. = 1.5 in Fig. 4.9(b) increases up to 15%. Since we start with a strongly localised
effective local moment in Fig. 4.9(b) also the quenches into the SSC phase show a slight
deviation between the steady-state value and the thermal value. Nevertheless, we have
recognised these quenches as thermalised.

4.3.4 Quenches with particle-hole asymmetry

We focus here on quenches with broken ph symmetry. The ASC FP features in equilib-
rium a complete screening of the impurity spin, independent of r as stated in Sec. 2.3.2.
eqr Which is (D).q = 1/4 for ph
symmetry, increases with increasing asymmetry |U — 2¢4| or increasing exponent r

[25].
In Fig. 4.10(a) the time-dependent double occupancy (D(t)) is shown for two different

Furthermore, the equilibrium double occupancy (D)

initial conditions: The solid curves describe the dynamics starting in the ASC phase
using the parameters U; = 0 and €4;/I'y = —0.1, while the dashed curves depict the
dynamics starting from the SSC FP with U; = €4; = 0. The colours of the curves
distinguish the different final parameters. Additionally, we present for these quenches
the real-time level occupancy (n4(t)) in Fig. 4.10(b) since the filling is also changing
with time. All quenches equilibrate to a steady state. The thermal expectation values
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Figure 4.10: Double occupancy (D(t)) (a) and level occupancy (n4(t)) (b) versus Ty for
ph asymmetry. Quenching from the SSC FP (U; = e4; = 0) or the ASC FP
(U; = 0,e4;/Ty = —0.1) into or within the ASC phase with three different fi-
nal configurations. All data has been obtained for D/Ty = 100 and r = 0.4.
Taken from [ 1.

are indicated by the arrows on the right side in Fig. 4.10. They reveal that only for
quenching within the ph symmetry broken phase thermalisation occurs. Quenching
into ph-symmetric final conditions leads to a deviation between the steady-state value
and the thermal value. This is a known shortcoming of the TD-NRG [42, , ]
depending on the change in the degree of the ph asymmetry. This has recently been
investigated in great detail in Ref. [124]. If we scale the data of Fig. 4.10(a) via Eq. (4.3)
to f(t), which is not shown here, the universal behaviour of f(t) is lost and the shape
of the function depends on the degree of the ph asymmetry.

4.4 Hybridisation quenches

For the second type of quenches, the hybridisation quenches, we change the hybridi-
sation strength Ty — I'(t) = O(—1)T; + O(¢)I'; between the initial value T; and the
final value I'; at time t = 0. Since for this quench type the Coulomb repulsion is
U; = Uy = U = const over time, the system is after quenching either characterised
by the LM phase for I'y < T'.(U) or by the SSC phase for I'y > T'.(U). We set
€4; = €4 = —U/2 to maintain ph symmetry. As reference point we use the LM
FP by setting I'; = 0. Its ground state is U independent and features the double occu-
pancy (D(t = 0)) = 0. Since we change I'(t), we use in the following the bandwidth D
as unit of energy.
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Figure 4.11: Quenches from the LM FP (T; = 0) at time £ = 0 within the LM phase. The hy-
bridisation is T/ D = 0.00002, 0.00004, 0.00008,0.00012,0.00016 < I'./D ~ 0.019
with a constant Coulomb repulsion U/D = U;/D = U;/D = 0.01 and r = 0.4.
We show the double occupancy (D(t)) linear for short and intermediate dimen-
sionless times t,/T¢D and on a log time scale for long times. As a guide to the
eye (D)., after quenching is indicated by arrows. After [117].

4.4.1 Quenches within the LM phase

In Fig. 4.11 we show weak quenches]9 within the LM phase, ie. I't < T, for a wide
bandwidth D/U = 100. We show all data versus the dimensionless time T = t/T{D
revealing U-independent short-time dynamics which is only driven by the final hy-
bridisation strength I'y. The time-dependent double occupancy (D(t)) is plotted linear
in time for f/T¢{D < 10 and logarithmically for longer times. The hybridisation is
switched on to very small values: I';/D = 0.00002, 0.00004, 0.00008, 0.00012,0.00016 <
I.(U/D =0.01)/D ~ 0.019.

Starting from the initial value (D(t = 0)) = 0, the double occupancy (D(t)) rises
quickly and exhibits a peak at intermediate dimensionless times t/T(D =~ 1 before it
falls off towards a steady-state value for long times. With increasing hybridisation I';
the peak height rises and its width increases. Although the system equilibrates for
long times, the steady-state value deviates significantly from the thermal value which
is depicted by an arrow on the right side in Fig. 4.11. The deviation increases with
increasing hybridisation I';. This indicates that the real-time dynamics is not governed
by the FP properties but rather by the overlap of the initial wave function with the
excited states of HY. For Iy < T the system approaches the LM FP with the twofold-
degenerate ground state for low energies. Since an increasing I'; reduces the differ-
ence |T'. — I'{|, the characteristic energy scale T* decreases, as well. In consequence,
the effective local moment which decouples from the rest of the system becomes more
extended. Therefore, a larger fraction of the impurity DOFs hybridises with the con-

duction band and (D)., increases continuously. The spatially more extended the local

q

19 In our publication [117] we produced a wrong Fig. 12 by mistake. The numerical value of the hybridi-

sation there stated is given in units of I'y/U but wrongly named as in units of I';/D. Furthermore,
the scaling presented there went wrong by a factor of 10. All data is correctly scaled now and the
captions are corrected. The following figures, which are based on the same data, are corrected as
well.
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moment for I’y > 0 the more strongly differs it in the contributing states forming the
local moment, compared to the initial ground state. Hence, the non-relaxing part in-
creases and the steady-state differs significantly from the thermal state.

To augment our data obtained by the TD-NRG we analytically calculate the time-de-
pendent double occupancy (D(t)) with perturbation theory for short times. Since for
I', = 0 we know all eigenstates and eigenenergies, we evolve the time-dependent den-
sity operator in powers of the hybridisation I'; and evaluate (D(t)) exactly up to second
order. The detailed derivation can be looked up in Refs. [117, 1.

The short-time dynamics of the double occupancy is given by the analytic expression

r) & (— 2n €
(D(t)) = F;Dﬂ*zrf(i: ),?_:2((2111))! /OD)D

“(e—ey—U)H¥de  (48)

which is asymptotically exact for t — 0. We gain a quadratic increase of (D(t)) in
leading order in t. The increase is proportional to the factor I'tD /7t and, hence, U
independent. It verifies the dimensionless short-time time scale T = t/T(D, which we
used in Fig. 4.11. A U dependence enters only higher orders in t and yields a weak
oscillation. To emphasise the universality in the short-time TD-NRG calculation, we
present the data of Fig. 4.11 on a log-log scale in Fig. 4.12. We augment the analytical
results of Eq. (4.8) for selected times as crosses in the same colour and see an excel-
lent agreement between the numerical and analytical results up to ty/T¢D ~ 10. The
analytical result does not only describe the leading time dependence correctly, it also
accounts for the deviation from the parabola starting at +/T¢D ~ 102 and for the
existence of a long-time steady state”’.

20 Since we work with a perturbative approach, the deviation between the steady-state value of the

TD-NRG and the steady-state value of the perturbation theory increases with increasing I';.
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4.4.2 Energy flow in the LM phase

For the double occupancy we showed, that there is a significant deviation AD = D% —
(D)eq between the long-time steady-state value D* and the thermal expectation value
(D)eq. The question arises if this deviation is operator dependent. For an operator O
the long-time value is given by [155, ]

1 N trun d
0~ = Jim - /O dt { Z Z o ped(n) | (4.9)
E E

Together with the thermal expectation value (O)., gained by an independent NRG
calculation with the final Hamiltonian, we look at the deviation AO = O%® — (O)q. If
AO is operator dependent, different physical properties may show different behaviour
regarding thermalisation for the same quench.

It has been conjectured [59] that a Wilson chain might not be able to serve as a heat
reservoir for a larger change in the hybridisation energy and, therefore, unable to de-
scribe thermalisation correctly. However, Wilson’s NRG, as well as the TD-NRG, target
only the local dynamics. There is no physical meaning for any bath expectation value.
A discretised finite bath, as used in any NRG calculation, has always only finite en-
ergy content, while the thermodynamic bath provides a reservoir with infinitely large
energy. A quantum state can never thermalise by itself, since it evolves under the en-
ergy-conserving Schrodinger equation. Hence, one has to restrict such an investigation
to quantum impurity expectation values [117]. From our point of view, it is a good
way to reveal the thermalisation of a quantum impurity subsystem by a comparison of
its long-time limit with a corresponding equilibrium NRG calculation with the same
discretisation parameters.

To shed some light on the operator dependence of AO, we look at the local energy flow
for quenches within the LM phase. The hybridisation energy?! Epyp(t) = (Hyyp(t))
with Hygp, = Yp o Vk(ck i +Cr) is presented in Fig. 4.13 for the same parameters as
in Fig. 4.11. For those parameters we have already shown that the double occupancy
(D(t)) does not thermalise and I'; > 0 leads to an overestimation of the double oc-
cupancy compared to the thermal expectation value. In Fig. 4.13(a) Eyy,(t) is shown
versus the time scale T = t/T(D for a constant U/D = 0.01. Clearly, the dynamics is
not governed by the characteristic time scale of the double occupancy. As Fig. 4.13(a)
reveals, the main contribution to the impurity energy is Epy(t), since it is huge com-
pared to the contribution steaming from U(D(t)), cf. Fig. 4.11. Also the contribution
E4q(ngq(t)) is negligible. Egng is discontinuous at t = 0 for ph symmetry, but after

2l 1t is noted in Ref. [117] that the hybridisation energy Ehyb(t) involves in addition to the impurity
operator only the local host DOFs on the first Wilson shell [20, , ] and, therefore, is a local
operator as required for the TD-NRG [42, 123].
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Figure 4.13: Hybridisation energy Ehyb(t) for hybridisation quenches within the LM phase
using a constant Coulomb repulsion U;/D = U;/D = U/D = 0.01 and a set of
hybridisation strengths I';/U = 0.002,0.004, 0.008,0.0012,0.0016 <« I'./U ~ 1.9.
In (a): Epyp(t)/U versus the dimensionless time T = t/I'D characterising the
dynamics of (D(t)). In (b): Eyy(t)/T¢ versus tD to reveal I' dependence. For
the TD-NRG calculations instead of Oliveira’s averaging, a broadening with o« =
0.4 was used. Taken from [117].

quenching it remains constant for t > 0. We depict the thermal expectation value as
arrow at the right side of the graph in Fig. 4.13(a). The long-time steady-state value and
the thermal value coincide perfectly. In consequence, the hybridisation energy Ehyb(t)
thermalises although the system stays in the LM phase with a non-thermalising double
occupancy (D(t)).

Hybridisation energy Eyy, is proportional to Y, Vi(dber ;) o Tr. Hence, we divide
out the leading factor I't and plot Eyy,(t)/T'¢ versus tD in Fig. 4.13(b). The dynamics
of Ehyb(t) /Tt appears to be universal and is driven by the bandwidth D. For r = 0.4,
as in Fig. 4.13(b), the magnitude of Eyy, is determined by Iy, whereas for r = 0 it can
be shown that Ey, /T o In(D/T) in equilibrium. It seems that with increasing r the
hybridisation energy Ey,/I's is weaker dependent on the ratio D/T’y. Furthermore, the
hybridisation energy Eyp,(t) equilibrates very fast, one order of magnitude faster than
the double occupancy. It seems that the hybridisation energy Ej, is not influenced
by the build-up of low-energy correlations for the LM FP since it has approached its
steady-state value on a time scale where long-time correlations have not had a chance
to develop.

Our findings indicate that indeed AO strongly depends on the operator O. This is
reasonable since the double occupancy and the hybridisation energy are different in
their physical content. The former operator provides a major contribution to the local
moment formation, which decouples from the system in the LM phase. The latter oper-
ator instead probes the coupling to the full bath continuum. The number of bath DOFs
contributing to the formation of the effective moment is of a measure zero in the inte-
gration over all k states. Therefore, the main error in Ey,(#) is related to unavoidable
TD-NRG discretisation errors.
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Figure 4.14: Comparison between the TD-NRG and time-dependent Gutzwiller ansatz for a
hybridisation quench, T; = 0 — T¢/D = 0.01, and r = 0.4. The Gutzwiller
data is taken from Ref. [60] and has been obtained for U/Ty = 9. The dou-
ble occupancy (D(t)) in (a) and the hybridisation energy Ey;,(f) in (b) have
been calculated with the NRG parameters U, /Ty = U; /I’ = 1.6 and augmented
with the Gutzwiller data. The NRG parameters have been chosen such that
DS _nre = D&, for a quantitative comparison. Taken from [117].

4.4.3 Comparison with the Gutzwiller results

We have already discussed in Sec. 4.2 that the equilibrium properties calculated with
the approximate Gutzwiller ansatz technique differ significantly from those of the ac-
curate NRG. This discrepancy has been explained by the restriction of the Gutzwiller
ansatz in which the effective local moment can only be formed on the impurity site.
Whereas, the NRG features the extended nature of the local moment formation. Conse-
quently, the Gutzwiller ansatz largely overestimates the critical U... For a comparison of
real-time dynamics provided by both techniques, we adjust our NRG parameters such
that the long-time double occupancy is approximately equal: D7 _nrg =~ DGy, The
Gutzwiller data is taken from Fig. 2 in Ref. [60] and describes a hybridisation quench
(I'; =0—=TI¢{/D = 0.01) with U/T; = 9, and r = 0.4. This quench mediates from the
initial LM phase over the QCP into the SSC phase. If we used these parameters for U
and r in the NRG, the final Hamiltonian would be situated deeply in the LM phase.
Therefore, we have to reduce U to U.(T; = 0) /Ty < U; /Ty = 1.6 = U;/Ty < U.(T¢/D =
0.01) /T for the TD-NRG calculation to quench into the SSC phase.

In Fig. 4.14(a) we compare the dynamics of the double occupancy (D(t)) obtained by
the TD-NRG and by the Gutzwiller approach. The latter predicts for 0 < tI'y < 1 a
very long silent phase which is followed by a steep rise of (D(t)) for 1 < tI'y until
it exploits a damped oscillation and reaches its steady-state value for long times. In
strong contrast to that, the TD-NRG data perfectly agrees with the analytical prediction
of Eq. (4.8) for short times. We augment our comparison with the results for the time-
dependent hybridisation energy Ey,(t) in Fig. 4.14(b). Not only that for long times the
energies differ for both techniques, but also the different characteristics of the short-



4.4. Hybridisation quenches 85

0.25

(a) (b) ()

3
020 | 020 | — 020 -

0.15 - 0.15 Y 1 0.15

“-....m.v ()
0.10 | 7 010 ¢

Io/U =10 }xf _
0.05 1 005 |,

#3&(‘”
#E(T)
)

0.10 -

005 | "
oo

B ————————

.....
______
----------

0.00 L L L L L 0.00 e 4 L L 0.00 L L Aeree
10761075 107* 1073 102 107" 10° 10' 107 1070107 10* 1073 102 107! 10° 10" 102 0 02 04 06 08 1 1.2
T/T, T/T, r

Figure 4.15: Equilibrium properties of the SIAM in dependence of the bath exponent r for
fixed D/T, = 100. Effective local moment y2.(T) (a) in a strongly correlated
regime I'y/U = 0.1, and (b) in a weakly correlated regime I'y/U = 10. In (c):
The equilibrium double occupancy <D>eq for both regimes in the limit T — 0.
Taken from [117].

time dynamics are even stronger pronounced for Ey,(#) due to the ultrafast behaviour
of Enyp(t) for the TD-NRG.

The long silent phases for the double occupancy, as well as for the hybridisation en-
ergy, in the Gutzwiller approach are due to strong analytical restrictions. These strong
restrictions in the parameter space for the equation of motion can be looked up in the
Supplement Material of Ref. [60].

4.4.4 Quenches for exponents r > 1/2

While for the exponent 0 < r < 1/2 and ph symmetry the SIAM exhibits a QCP
for U > 0, the LM FP is the only stable FP for 1/2 < r independent of U [25]. In
Fig. 4.15 we show the equilibrium properties in dependence of r for a strongly corre-
lated regime I'y /U = 0.1 and a weakly correlated regime I'y/U = 10. The effective local
moment 1%, (T) is plotted versus the temperature for the strongly correlated regime in
Fig. 4.15(a) and for the weakly correlated regime in Fig. 4.15(b). For r = 0 the system al-
ways approaches the SC FP with p2,(0) = limy_,o #%,(T) = 0 while for 0.2 < r < 1/2,
the SSC FP with 32,(0) = r/8 for I;/U = 10, and the LM FP with p2.(0) = 1/4 for
I'y/U = 0.1 is reached. For 1/2 < r, the system always flows to the LM FP, and the
crossover scale T* increases with increasing r. We augment the equilibrium proper-
ties by the equilibrium double occupancy (D). plotted versus r in Fig. 4.15(c). In the
weakly correlated regime (I'y/U = 10) the double occupancy (D).q remains close to
the uncorrelated value of 0.25. Its slow decrease with increasing 0 < r < 1/2 is related
to a reduced screening of the residual effective local moment y2,(0) in Fig. 4.15(b). For
1/2 < r the double occupancy (D)eq declines much faster with increasing r since the
system approaches the LM FP in the limit T — 0. For the strongly correlated regime
(Tp/U = 0.1) the double occupancy (D)., is already strongly suppressed for small 7,
since for r > 0.1 the system is in the LM phase.
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Figure 4.16: Double occupancy (D(t)) for hybridisation quenches from the LM FP (T; = 0)
into a weakly correlated regime I';/U = 10 in (a) and into a strongly correlated
regime I't/U = 0.1 in (b) with D/U = 100 and U = U; = U; = const. In (b)
we divided (D(t)) by D* to enlighten the oscillatory behaviour independently
of the absolute value of (D(t)). Arrows indicate the thermal (D).q. Taken from

[117].

In Fig. 4.16 we present the time-dependent double occupancy (D(t)) for hybridisation
quenches with different bath exponents » = 0,0.2,0.4,0.6,0.8,1.0,1.2. For the weakly
correlated regime in Fig. 4.16(a) we find, as expected, thermalisation only for quenches
into the SSC phase. For 1/2 < r the quench is within the LM phase and the steady-
state value of (D(t)) is reduced with increasing r. The value deviates increasingly
from thermal equilibrium due to quenching deeper in the LM phase with increasing
r. Using the time scale T = t/T(D clearly reveals the universal r-independent time
scale of the short-time dynamics, which has been predicted by the perturbation theory.
For quenches remaining in the LM phase, we observe oscillations proportional to U at
intermediate times, which are weaker damped with increasing r.

For the strongly correlated regime in Fig. 4.16(b) we quench for r > 0 within the LM
phase. The double occupancy (D(t)) rises from its initial value towards its steady-
state value which differs significantly from thermal equilibrium. By dividing out the
steady-state value and showing (D(t))/D® in Fig. 4.16(b) we illustrate the short-time
oscillatory behaviour independently of the absolute value of (D(t)). Due to this rescal-
ing, the time scale T = 1//T(D governing the dynamics is not directly discernible as
in Fig. 4.16(a). For intermediate times, we observe a damped oscillatory behaviour for
small r. These oscillations are stronger pronounced with increasing r due to a more
concentrated effective local moment around the impurity. This leads to a more empha-
sised local dynamics between the impurity and the zeroth Wilson chain site, hence, in
the first Wilson shell. Due to the increasingly localised local moment the deviation of
the steady-state value from the thermal equilibrium value, which is indicated by the
arrow on the right of the graph, increases with increasing r.
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4.5 Conclusion

In this chapter we have analysed the local dynamics in the SIAM. We have used
three different methods, the TD-NRG, the perturbation theory and a time-dependent
Gutzwiller approach, and compared their different outcomes. In addition to the known
equilibrium properties of the SIAM, we discussed the restrictions of the Gutzwiller
ansatz in equilibrium in Sec. 4.2: Only in the LM phase it allows a decoupling of an ef-
fective local moment which is located on the impurity site, whereas the NRG accurately
generates a ground state describing a spatially extended effective local moment.

For the dynamics we have either changed the Coulomb repulsion in time for the inter-
action quenches in Sec. 4.3 or the hybridisation strength for the hybridisation quenches
in Sec. 4.4. For interaction quenches within the SSC phase the double occupancy (D(t))
reveals for a scaling function f(t) an in leading order Ug-independent universal be-
haviour. The main dependence of f(t/t.,) on the bandwidth D and the bath exponent
r can be expressed by a crossover time scale t.,. For interaction quenches into the LM
phase, we have extracted the crossover energy scale T* tracking the build-up of the ef-
fective local moment from the temperature-dependent effective local moment p%;(T).
T* depends on the distance U — U, and vanishes for U — UZ. Since T* reflects the
approach to the LM FP, 1/T* can be interpreted as a characteristic length scale of the
effective local moment formation. With increasing T* the effective local moment, which
decouples from the system, is more strongly localised at the impurity. Interestingly, the
deviation between the long-time steady-state value D* and the thermodynamic value
(D)eq only depends on T*. It is unimportant if T* is altered by a variation of U at fixed
D or by a variation of D for fixed U;. Furthermore, the spatial extension of this de-
coupling effective local moment can only be accounted by the NRG. In the Gutzwiller
approach the restriction to a local moment formation on the impurity site yields a dif-
ferent dynamics.

For the hybridisation quenches, we have done a perturbation theory calculation in sec-
ond order in the hybridisation and have verified our TD-NRG results for small hybridi-
sation strengths. Hence, we confirmed that the short-time dynamics is governed by the
time scale 1//T¢D which is independent of the Coulomb interaction. By comparison
of our data to the recent Gutzwiller results we have demonstrated that these results
are limited due to the strong locality of the ansatz. The dynamics of the variational
Gutzwiller ansatz already deviates strongly from the asymptotically exact perturba-
tion theory result for short times.

For quenches within or into the SSC phase, independent of the quench type, the dou-
ble occupancy thermalises, meaning that the long-time steady-state value agrees with
the thermal equilibrium value of an independent NRG calculation for HY within the
errors of the TD-NRG. Whereas, for quenches within or into the LM phase we have
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demonstrated non-thermalisation for the double occupancy due to the extended na-
ture of the decoupling effective local moment. Furthermore, we have revealed that the
hybridisation energy, which tracks to the whole bath continuum, thermalises fast for
hybridisation quenches, even within the LM phase. Hence, the question of thermalisa-
tion is dependent on the operator of interest.



Chapter 5

Influence of bosonic DOFs on
the real-time dynamics in the BFAM

Since we have focused on the real-time dynamics of purely fermionic quantum im-
purity systems (QISs), in particular of the single-impurity Anderson model (SIAM)
in the previous chapter, we will extend our investigation to BF-QISs. We work with
the Bose-Fermi Anderson model (BFAM) here which is driven by a competition be-
tween the fermion-induced charge fluctuations with an energy-dependent scattering
rate I'(e) « |e|” and a friction induced by the continuum of bosonic DOFs with the
bath spectral function J(w) o w®. This yields a complex set of fixed points (FPs) which
we have already presented in Sec. 2.4. Interestingly, the Bose-Fermi critical (BFCR)
FP shows three different types of quantum criticality in equilibrium depending on the
combination of bath exponents (7, s). We will analyse the influence of the bosonic DOFs
on the real-time dynamics and show that for the F-type bath exponents the dynamics of
the BFAM can be completely reproduced by the purely fermionic SIAM with a renor-
malised Coulomb interaction U,.,. Whereas for the B-type bath exponents a one-to-

one correspondence fails.

We would like to note that parts of this chapter will be published [157] elsewhere. We
will begin with a more general introduction in Sec. 5.1 and summarise the relevant
known equilibrium properties in Sec. 5.2. There we will enlighten that the bosonic
DOFs produce an effective renormalisation of the Coulomb repulsion even to an attrac-
tive interaction leading to a charge-Kondo (cK) and a localised (L) phase. Furthermore,
we will propose a way to gain appropriate parameters for the SIAM which corresponds
to the BFAM with a given bosonic coupling g.

Our study of the dynamics, especially on the local double occupancy (D(t)), consid-
ers F-type bath exponents in Sec. 5.3 and B-type exponents in Sec. 5.4. There, we
will analyse different quench types, e.g. within one phase and over one or two quan-
tum critical points (QCPs), and use a scaling function f(¢/t.,) in combination with a
crossover time scale ¢, to reveal the leading order influences of the dynamics. For all

89
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these quenches we will augment our data with corresponding dynamics of the SIAM to
demonstrate that only for the F-type bath exponents the dynamics is in leading order
driven by the fermionic DOFs.

We will close our investigation in Sec. 5.5 with dynamics of the level occupancy (n4(t))
for quenches out of a particle-hole (ph) symmetry-broken state into ph symmetric final
conditions showing a friction-induced retardation of the dynamics. A brief conclusion

in Sec. 5.6 summarises our main findings.

5.1 Introduction

To gain a better understanding in nanoscale devices, such as semi-conductor QDs,
or qubits for quantum computation [158], a lot of work has been done to investigate
QISs [20]. Since the 1980s fermionic QISs [19, 25, 83, , ] have been analysed

extensively. In the last decade bosonic DOFs [36] instead of [37, 90] or in addition
[55-57, 81, 100, 122, 159-161] to the fermionic ones became accessible by the NRG and
extended some earlier work [162—164].

The spin-1/2 impurity BEKM [55] and its extension to the charge sector, the BFAM
[56, 57], are the most intensively examined models. They may serve as effective site in
the EDMFT [101, ] to address the occurrence of magnetic QPTs in heavy fermions
[165, ] and in the KLM [24, . The fluctuating magnetic order parameter field,
which is generated by the other f moments, is represented by the bosonic continuum
in the BFAM. In the KLM the magnetic ordering induced by the RKKY interaction
[76=79] competes with the screening of the f-shell moments due to the Kondo effect
[22, 80]. The model has been applied to the equilibrium properties of a noisy QD
system [54, 167] where the fluctuations of the gate voltage are modeled by the bosonic
DOFs. The following investigation of the non-equilibrium dynamics for these BF-QIS
is important for the understanding of relaxation and dissipation for such nano devices.

To investigate the real-time dynamics and the steady state of these BF-QISs one can
use rate equations and Born-Markov approaches [168, ], but these methods can
only be applied for weak couplings and are not applicable close to the QPT. Therefore,
we will use the non-equilibrium extension of Wilson’'s NRG approach [19, 20], the
TD-NRG [42, 123] to access both, the weak coupling and the strong coupling regime.
While the TD-NRG has already been used to access the real-time dynamics in QISs
with purely fermionic or bosonic baths [42, 43, , , , , ] or steady-state
currents through nano-devices [99, , ], we have extended the recently introduced
BF-NRG [55] to non-equilibrium for combined BF-QIS using the TD-NRG.

The BFAM [56, 57] reveals in equilibrium a QPT with hyperscaling behaviour in the
regimes 0 <r < 1/2and 1/2 < s < 1. The specific combination of the bath exponents
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(r,5) has not only a profound impact on the equilibrium properties of the QPT, but
also divides different regimes in the real-time dynamics. We will show that for a final
Hamiltonian whose low-energy FP is mainly governed by the fermionic bath proper-
ties (F-type), the non-equilibrium dynamics of the BFAM can be exactly reproduced by
a purely fermionic SIAM replacing the bare U by an U,,,, which includes the attractive
electron-electron interaction mediated by the bosonic bath. For exponents where the
FP is governed by the bosonic bath (B-type) [57], the real-time dynamics shows dis-
tinctive differences to a SIAM: In this case U, is dynamically generated leading to a
characteristic slowdown of the decay time.

For quenches of the gate voltage, we will find different steady-state values for the im-
purity charge filling for identical bath couplings depending on the choice of the initial
conditions since the FP of the final Hamiltonian is in the localised phase. Furthermore,
we will demonstrate thermalisation within the numerical accuracy of the method for
Hamiltonians approaching the SSC FP.

5.2 Equilibrium properties

In the previous chapter we have specified the energy-dependent power-law coupling
function I'(€) in Eq. (4.1). This definition has been chosen in accordance to the time-
dependent Gutzwiller results of Ref. [60] and features a r-independent coupling Vj
between the impurity and the zeroth Wilson chain site. For a better comparison of the
known equilibrium properties of BF-QISs we change the coupling function to

M) =To| 5| @D~ le)) (5.1)

as it has been used in the literature [57]. Therefore, the integral over the coupling
function, 7V§ = [de T'(e) = 2I\D/(r + 1), is dependent on the bath exponent r > 0:
With increasing r the hybridisation Vj, decreases. The parameter I'j, which we will
use as energy scale in the following, is related to I5AM of the previous chapter by
Iy =I5AM/(r 4 1). The bosonic spectral function J(w) has been introduced in Sec. 1.3

in the context of the SBM and is approximated by the power-law form [36]
J (w) = 2mgwl ™ w® @ (w, — w) . (5.2)

The cut-off w, defines the high-energy scale while the overall coupling strength be-
tween the impurity and the bosonic bath is denoted by the dimensionless coupling g.
Since the exponent s separates different bath types, 0 <s < 1 for a sub-ohmic bath [90],
s = 1 for ohmic bath [36] and s > 1 for a super-ohmic bath [91], we restrict ourselves to
bosonic exponents 1/2 < s in this chapter due to so far unresolved problems applying
the NRG [172] for the sub-ohmic SBM with 0 <s < 1/2.
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For simplicity, we set both bath cut-offs equal: D/w, = 1. This assumption introduced
by Glossop et al. [55] is well justified when targeting the low-energy physics and QPTs.
Since for a greater fermionic bandwidth Dy >> D it is possible to gain a reduction in the
bandwidth to Dy — D ~ w, via a perturbative RG treatment leading to an effective
impurity model with also renormalised parameters for €4, U and T'(e). Nevertheless,
this renormalisation only effects the high-energy regime and has no impact on the low-
energy physics.

The equilibrium properties of the BFAM are well understood by several publications
[25, 56, 57, 83, , , , , , ]. The phase diagram of the BFAM and the
different NRG FP properties have been discussed in Sec. 2.4 in detail. Depending on
the combination (r,s) of the bath exponents three types of quantum criticality have
been identified in the model, cf. Ref. [57] and Sec. 2.4.3. For small r, the bosonic bath
properties govern the critical exponents in equilibrium defining a B-type regime with
a boundary 0.5 < s = 1—2r < 1. For large r and s the critical exponents are given
by the fermionic bath properties, hence defining the F-type regime with a non-linear
boundary. Between the two regimes there is a mixed (M) type regime where the critical
exponents do not decompose in fermionic and bosonic parts.

Independently of the specific type of (r,s), the BFAM features three stable phases for
ph symmetry and two QCPs between them. For U > U, and I'y > 0, all phases can be
addressed by varying over the bosonic coupling g. As the phase diagram of the BFAM
in Fig. 2.8 reveals, for U > U, I'y > 0 and g = 0 the system is characterised by the LM
FP describing a decoupled effective local moment. As we will show in the next section,
the main effect of the bosonic bath is the renormalisation of the Coulomb repulsion
U > 0 to a smaller or even attractive Coulomb interaction. Hence, an increase in g
corresponds to a decrease in U. For g* < ¢ < g the absolute value of the renormalised
Coulomb repulsion is smaller than the critical value |U,,,| < U. and forces the system
in the SSC FP with a partially screened effective local moment. With an even stronger
coupling g. < g, the system is driven into the L phase where the effective local moment
vanishes and an effective charge moment is built up. The critical coupling g* refers to
the BFCR* FP and g, to the BFCR FP, as introduced in Sec. 2.4.1.

5.2.1 Renormalisation of the Coulomb repulsion

To enlighten the main effect of the bosonic bath, we neglect the conduction band and
its coupling to the impurity for a moment. Then, the resulting Hamiltonian is given by

Hipan = Y €adody, + Ud‘{deId L+ quqa;(pq
T q

+ (;df;d(, — 1) (;Aq (¢;+¢q)>

(5.3)
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In presence of the bosonic bath, the Coulomb repulsion U undergoes a reduction due
to a boson-induced effective electron-electron interaction. This was first shown for
the Holstein model [164, —175].  The Hamiltonian in Eq. (5.3) is bi-linear in the
bosonic operators. Thus, it can be diagonalised on the operator level by displaced
bosonic operators 43; = 4),;r + 6, with the displacement 6,. The electronic subspace of
the impurity is spanned by the impurity occupation states |0), |1), |{) and |1]). For
|1) and |]) the bosonic bath plays no role because the coupling term is zero for half-
filling. The effective bath Hamiltonians are

s A2
(0|H|0) :Zwﬁ;(pq—zwi and (5.4)
q q q
s A2
(TLH| 1)) =2eq + U+ Y wufydy— )1 (5.5)
q q q

To achieve this diagonal form in the bosonic operator cf)gﬂ, the displacement has to be
0, = Ay/w,. We re-define the energy shift into the Coulomb repulsion and gain the
renormalised Coulomb repulsion

A2 we
uren:u_zizu_/ dw J(w)
- W, o T w (5.6)
:u_chuC ,

S

for which we have used the bosonic coupling function J(w) of Eq. (5.2). Hence, a
repulsive Coulomb repulsion U > 0 is reduced by the bosonic bath. It can even change
sign and become attractive for g > Us/(2w,). Consequently, we define the coupling

,  Us
$ = 2w

(5.7)
C

where the renormalised Coulomb repulsion U,,, is zero. Due to this sign change at ¢/,
there is a simple level crossing from a spin-doublet ground state consisting of 1) and

|4) for ¢ < ¢’ to a charge-doublet ground state consisting of the two charged states |0)
and [1]) for ¢’ < g [56].

5.2.2 Equilibrium double occupancy

So far, we have demonstrated that the coupled bosonic bath renormalises the Coulomb
repulsion U — U,,. If we additionally couple the impurity to the fermionic bath, the
bare Coulomb repulsion U, the fermionic coupling strength I'y and the bosonic cou-
pling ¢ influence the equilibrium properties. To estimate the renormalised Coulomb re-
pulsion we take a closer look on the equilibrium double occupancy (D).q = (d*deId 1)
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Figure 5.1: Equilibrium double occupancy <D)eq of the BFAM versus the bosonic coupling g
for fixed U/I'y =1, Ty/D = 0.01 and ph symmetry. In (a) the fermionic exponent
is varied for fixed s = 0.8 while in (b) the bosonic exponent is varied for fixed
r = 0.4. For the curve representing (r = 0.4, s = 0.8) the critical couplings ¢*
and g, are complemented. The NRG parameters are A = 6, Ng = 1000, Ny = 10,
N =40 and N, = 1. All data is obtained at the temperature T ~ 1.4-10~'°. Taken
from [157].

at the impurity. We will show that the local equilibrium double occupancy (D), is
continuous over the QCPs. This is similar to the purely fermionic SIAM, for which
eq OVer a QPT has been stated in Refs. [25, ]. Whereas, the
zero-temperature values of the effective moments y2, and Q are discontinuous over
the QCPs and indicate the QPTs as depicted in Fig. 2.7. Hence, the effective moments
combine both local DOFs and conduction band DOFs.

the continuity of (D)

In Fig. 5.1 we present the equilibrium double occupancy (D)., in dependence of the

e
bosonic coupling g for various combinations of bath exponent: (r,s). We use a set of
fermionic exponents r and a fixed s = 0.8 in Fig. 5.1(a), and a set of bosonic exponents
s and a fixed r = 0.4 in Fig. 5.1(b). The equilibrium double occupancy is always greater
than zero because the fermionic coupling I'y > 0 is finite.

The equilibrium double occupancy (D)., at the vertical axis (¢ = 0) in Fig. 5.1(a)

e
decreases with increasing 0 < r < 1/2 bcjcause for I'y = const the low-energy contri-
butions according to Eq. (5.1) are weaker due to the change of the exponent » and also
the r-dependent hybridisation Vj, is smaller. Since for 1/2 < r the SSC FP is absent, the
ground state in equilibrium is either characterised by the LM FP with (D).q — 0 for a
positive Coulomb interaction U, (g < g') or by the L FP with (D).q — 0.5 for a nega-
tive Uy, (¢ < g)- Therefore, the double occupancy (D).q shows a step-like behaviour
at the coupling ¢’ reflecting the level crossing of the two ground states.

If the Coulomb repulsion is renormalised to zero, all four impurity states contribute
equally and the equilibrium double occupancy is consequently (D).q = 1/4. We add
a horizontal line for this value in Fig. 5.1. In the previous section, we have calculated
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Figure 5.2: Dependence of the coupling ¢’ on the bosonic bath exponent s. Data for ¢’ is
taken from Fig. 5.1(b). The dashed line is a linear regression for the points in the
sub-ohmic regime 0 < s < 1.

the analytical expression for ¢’ in Eq. (5.7) for a decoupled fermionic bath revealing a
vanishing Coulomb repulsion in the range 1073 < ¢’ < 1072 for the parameters stated
in Fig. 5.1(b). In presence of the finite fermionic coupling I'y/D = 0.01, as in Fig. 5.1(b),
the coupling to the bosonic bath has to be much greater to reduce the Coulomb repul-
sion to zero. The bosonic coupling ¢’ is much greater since (i) the fermionic coupling
I'y > 0 induces correlations between the impurity and the fermionic bath and (ii) the
renormalisation due to the bosonic bath acts only locally on the impurity. Therefore,
for the full model, we re-define the coupling ¢’ by the empirical definition

(D)eq(8') = i : (5.8)

All curves in Fig. 5.1(a) intersect at this point. Hence, the fermionic bath exponent r
influences the slope of the renormalisation but not its strength and U,.,(¢’,s) = 0 is
independent of r. Furthermore, the influence of the Coulomb repulsion is non-linear:
For a ten-times-greater Coulomb repulsion with (r,s) = (0.4,0.8) and I'j)/D = 0.01,
the bosonic coupling ¢’ only increases from g'(U/Ty = 1) = 0.122 to ¢'(U/T, =
10) = 0.387. As Fig. 5.1(b) reveals, the bosonic exponent s determines the strength of
the renormalisation: With increasing exponent s a stronger coupling ¢’ is needed to
achieve U, = 0. Surprisingly, it is unimportant if we stay in the sub-ohmic regime,
or have ohmic or even super-ohmic dissipation. To reveal if g’ depends linearly on the
bosonic bath exponent s for the full model, as implied by Eq. (5.7) for zero hybridisa-
tion, we plot the coupling ¢’ in Fig. 5.2 for the data of Fig. 5.1(b) versus s. In the sub-
ohmic regime, the points and their linear regression curve agree very well. This ver-
ifies the linear dependence on s in the sub-ohmic regime. The ohmic dissipation also
agrees fine with the regression curve. Only in the super-ohmic regime the dependence
is weaker than linear.

Furthermore, if the renormalised Coulomb repulsion vanishes, the system is in the
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phase Coulomb repulsion bosonic coupling

spin-Kondo o<u 0<g<g
/

charge-Kondo o<u § <8< &

-U.<u<o 0<g<g

Table 5.1: Phase boundaries of the sK and cK phases in accordance to Fig. 2.8 and to ¢’ in
Eq. (5.8).

SSC FP. Therefore, ¢’ is not connected to one of the QCPs (¢* or g.), which we com-
plemented in Fig. 5.1. The critical coupling g. (¢*) is always greater (smaller) than
g, reflecting that the build-up of the effective charge (local) moment needs a finite

negative (positive) Coulomb interaction.

Spin-Kondo and charge-Kondo phases

Since the BFAM can be mapped to a KM containing either a spinful impurity spin or
a chargeful pseudo impurity spin, see App. A.1, we refer to the former case as spin-
Kondo (sK) phase and to the latter case as charge-Kondo (cK) phase. For ph symmetry,
both cases lead to the SSC FP in equilibrium. Hence, the presented SSC phase in Fig. 2.8
can be subdivided into the sK phase and the cK phase. The level spectrum of the SSC
FP is unique. It does not distinguish whether the system is in the sK or cK phase, nor
are the effective moments 2, and Q2 of help since they are identical for both phases.
Nevertheless, we can use the renormalised Coulomb repulsion U,,, as indicator for the
type of the phase. For U, > 0 the two single-occupied impurity states are favoured
and form the spinful impurity, while for U,,,, < 0 the zero- and double-occupied states
are favoured and form a chargeful impurity. Hence, for (D).q < 1/4 the system is in
the sK phase and otherwise for (D)4 2 1/4 in the cK phase. This leads to the phase
boundaries stated in Tab. 5.1.

Effective parameters for a corresponding SIAM

Since the three stable phases of the BFAM can be reached as well for ¢ = 0 by tuning
U, the question arises what the influence of the additional bosonic bath is beyond a
renormalisation U — U,,(g) on the real-time dynamics compared to the SIAM. The
equilibrium double occupancy <D>eq monotonically increases with increasing g in the
BFAM, and decreases with increasing U in the SIAM, as depicted in Fig. 5.3. While
(D)eq(U) in the SIAM is symmetric around (D).q = 1/4, in the BFAM the increase of
(D)eq(g) shows no symmetric behaviour and its slope depends on the specific choice
of (r,s). By the requirement

(D)ég™(8) = (D)eg™ (U/To) (5.9)
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Figure 5.3: Equilibrium double occupancy (D)eq of the BFAM versus the bosonic coupling g
for U/Ty = 1, Ty/D = 0.01, r = 04 and s = 0.8 and of the SIAM versus the
Coulomb repulsion U /T, for I'y/D = 0.01 and r = 0.4. All data is obtained in the
limit T — 0 and averaged over N, = 8 realisations. Taken from [157].

we define an effective SIAM with the same r which has the same local fermionic equi-
librium expectation values. Furthermore, we can estimate with this requirement the
renormalised Coulomb interaction in the BFAM due to the bosonic coupling: U,.,(g) =
US™AM if Bq. (5.9) is fulfilled.

5.2.3 Preliminary remarks to the real-time dynamics

Since we can track all three phases by varying the bosonic coupling g for U > U, we
switch g; — gf =: g at time ¢ = 0 and hold all other parameters constant. We focus on
the dynamics of the double occupancy (D(t)) for the F type in Sec. 5.3 and the B type in
Sec. 5.4. All quenches are augmented with comparable quenches according to Eq. (5.9)
with the SIAM to check if the real-time dynamics of the BFAM can be reproduced by
the purely fermionic SIAM. For all these quenches we maintain ph symmetry leading
to a level occupancy (n4(t)) = 1 for all times. In absence of a magnetic field, there
are two pairs of locally degenerate states: the empty- and the double-occupied state
|0), |2) and the two spin states |1), |{) which contain exactly one electron.

Furthermore, we address the dynamics of quenches out of a ph broken phase into the
ph symmetric phases by switching the level energy —U;/2 > €4; — €45 = —U;/2
at t = 0 with U; = U; = U. We restrict ourselves to » = 0. Since we know that for

ph symmetry the level occupancy is given by (n4)., = 1, we focus on the real-time

€q
dynamics of (n4(t)) and investigate the deviation between the long-time expectation

value and the thermal equilibrium in Sec. 5.5.

For the calculations of the BFAM we use U/I'y = 1, I'j/D = 0.01 and vary over the
bosonic coupling g. For the comparison with the SIAM, we also use I'j/D = 0.01
but vary over U/T; with the same bath exponent r. All our (TD-)NRG calculations
are done with A = 6, and N = 40 NRG iterations. For the BEAM we use the NRG
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Phase (D)eq g u/r,
LM 0.065119 0 1
0.069507 0.04 0.8917
0.076314 0.06 0.7557
0.089795 0.08 0.5628
0.122573 0.1 0.3098
0.195940 0.114 0.09381
0.214397 0.116 0.06031
0.234426 0.118 0.02601
SSC 0.250000 0.119488 0
0.276720 0.122 -0.0449
0.297465 0.124 -0.0816
0.316741 0.126 -0.1188
0.392307 0.14 -0.3999
0.428959 0.16 -0.8580
0.446127 0.18 -1.3860
L 0.456499 0.2 -1.9872

Table 5.2: Correspondence between the bosonic coupling g of the BFAM with U/T, = 1,
I'y/D = 0.01, r = 0.4 and s = 0.8 and the Coulomb repulsion U /T, of the SIAM.
The initial conditions are printed in bold. All data is obtained in the limit T — 0.

parameters Ng = 1000, Ny = 10 and for the SIAM Ng = 2000. We average over N, = 8
different bath realisations.

5.3 Quenches with F-type bath exponents

For the F-type bath exponents (r,s) = (0.4,0.8) we present different quenches in the
BFAM with U/T; =1,T/D = 0.01 and in the SIAM with I'j/D = 0.01. For the former
model, we quench over the bosonic coupling ¢; — g; = g, and for the latter model over
the Coulomb repulsion U; — U;. We use three representative initial values: (i) g; = 0
starting from the LM FP, (ii) ¢* < g; = 0.119488 < g. starting from the SSC FP with
(D)eq(&i) = 1/4 (Upen = 0), as well as (iii) g. < g; = 0.2 starting from deep in the L
phase. For g =: ¢ we select a series of values within each phase. We will show that for
the F-type bath exponents the real-time dynamics can be fully understood by mapping
the BFAM onto a corresponding SIAM defined by the requirement in Eq. (5.9). The
corresponding values of U /T for the given g are stated in Tab. 5.2.

5.3.1 Quenches within one phase

In Fig. 5.4 we show the real-time dynamics of the double occupancy (D(t)) for quenches
within each of the three stable phases. In addition to the dynamics in the BFAM we
present the dynamics for the corresponding SIAM in black in the background. All
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Figure 5.4: Real-time double occupancy (D(t)) (coloured curves) of the BFAM for bath expo-
nents r = 0.4 and s = 0.8 with U/T'y = 1 and I'j/D = 0.01. Black curves in the
background are the corresponding double occupancy for the SIAM. We perform
guenches within the (a) L phase, (b) SSC phase and (c) LM phase. Details on the
chosen couplings g; and g are given in Tab. 5.2. Taken from [157].

quenches equilibrate for long times but only the quenches within the SSC phase ther-
malise.

The quenches within the L phase are shown in Fig. 5.4(a) where we start with a double
occupancy near (D(t = 0)) ~ 0.5 due to a large negative U,,, for g; = 0.2. Since g < g;,
a reduction of (D) is expected. The double occupancy (D(t)) smoothly declines on a
time scale roughly given by 1/T'; with some small g-dependent corrections.

In Fig. 5.4(b) the quenches start from the SSC FP (g; = 0.119488) where all local states
are degenerated, hence (D(t = 0)) = 1/4 and U,., = 0. For ¢ > g;, (D(t)) increases,
while for g < g; (D(t)) decreases in time. The corresponding thermal equilibrium val-
ues, indicated as arrows at the right side of the graph, demonstrate thermalisation in
the long-time limit since the long-time expectation value agrees with the thermal one.
Starting from a decoupled bosonic bath (g; = 0) and quenching within the LM phase,
we show the dynamics of (D(t)) for this case in Fig. 5.4(c). Similarly to the quenches
in the L phase in Fig. 5.4(a) the long-time value of (D(t)) deviates from the thermody-
namic equilibrium: With increasing g the deviation increases, although the deviations
are very small. This expected behaviour is related to the decoupling effective local
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Figure 5.5: In (a): Scaled dynamics of all BFAM quenches of Fig. 5.4 according to Eq. (5.10)
versus the crossover time scale t_,. In (b): Crossover time scale ¢, versus g for
all three quench types. Taken from [157].

moment in the LM phase, as already discussed in the previous chapter for the SIAM.
In analogy, the deviation between the steady-state value and the thermal equilibrium
value increases with decreasing g for the quenches within the L phase, since the over-
lap in the effective charge moment, which decouples in the L phase, between the initial
and the final preparation decreases with decreasing g.

In addition, we have investigated the same type of quenches using a corresponding
SIAM by setting ¢; = g; = 0 and switching between the corresponding U values that
lead to identical (D).q. The real-time dynamics of (D(t)) has been added as black
curves to the graphs of Fig. 5.4. For all investigated cases, the corresponding SIAM re-
sults agree perfectly with those of the BFAM. Hence, for this F-type bath exponents the
dynamics of the BFAM can fully be expressed by a corresponding SIAM determined
by the requirement in Eq. (5.9) and the fermionic bath exponent r.

In analogy to our results of the SIAM in the previous chapter, we scale the dynamics
by the function

ft) = (5.10)

of Eq. (4.3) to eliminate the influence of the different long-time expectation values
(D(t — o0)). We define the crossover time scale t., by f(f,,) = 1/2 and scale all
BFAM quenches of Fig. 5.4 as f(t/t.,) and show the resulting dynamics in Fig. 5.5(a).
While the dynamics for quenches within the SSC phase (blue curves) show universal
behaviour, this is not the case for quenches within the L or LM phase for times t/t., >
1. Nevertheless, for the L and LM phase f(t/t.,) reveals comparable shapes which
only slightly differ from the SSC case for t/t., < 1.

The crossover time scales for the different quenches are depicted in Fig. 5.5(b). The
vertical line marks the coupling (D).q(g" = 0.119488) = 1/4 where the renormalised
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Figure 5.6: Real-time double occupancy (D(t)) (coloured curves) of the BFAM with the same
parameters as in Fig. 5.4. Black curves in the background show the corresponding
double occupancy for the SIAM. In (a): Quenching from the initial SSC FP (g; =
0.119488) into the L and LM phase. In (b): Scaled data of BFAM quenches of (a)
via Eq. (5.10) versus the time scale t_,. The inset shows the dependence of ¢, on
g. Taken from [157].

Coulomb repulsion vanishes. The crossover time scale’” shows an ascending slope for
U,en — 07 and a descending slope for an increasing attractive U,,, — —oo. This is

independent of the quench type.

5.3.2 Quenches over QCPs

In Fig. 5.6 we quench over one QCP from the SSC FP (g; = 0.119488) with (D(0)) =
1/4 into the L and the LM phase. The used parameters for the BFAM and SIAM
quenches are stated in Tab. 5.2. The time-dependent double occupancy (D(t)) per-
forms a damped oscillation independent of the quench type, as Fig. 5.6(a) reveals. The
oscillation frequency depends on the renormalised Coulomb repulsion |U,.,|. Those
values can be estimated from the corresponding dynamics in the SIAM and, hence,
U,en = U of the SIAM in Tab. 5.2. All quenches equilibrate to a steady-state value for
long times. This steady-state value deviates significantly from the thermal equilibrium
value which is indicated as arrow on the right side of the graph. With increasing dif-
ference ¢* — g > 0 or g — g. > 0 respectively, the decoupling effective local moment
or rather the effective charge moment is stronger localised to the impurity. Hence, the
damping is reduced and the oscillation in (D(t)) is more strongly pronounced.

22 Since the dynamics of the BFAM can be completely reproduced here by a corresponding SIAM, we

like to mention that the crossover time scale ¢, for the SIAM here depends stronger on U; compared
to the presented results for the same quench types in Sec. 4.3. There, the variation of t., for the
quenches within the SSC phase is of the order of 2% and has been neglected. The stronger influence
here originates in the larger A = 6 used for our calculations in this chapter and the fact that we do not
include the discretisation correction factor A, [112, ]. Therefore, the hybridisation is effectively
smaller for A = 6 leading to a smaller critical Coulomb repulsion U.. Since the Coulomb repulsions
U/T used in Fig. 5.4 are an order of magnitude smaller compared the the same quenches in Sec. 4.3,
the crossover time scales t, are larger and their variation is greater.
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Figure 5.7: Real-time double occupancy (D(t)) (coloured curves) of the BFAM with the same
parameters as in Fig. 5.4. Black curves in the background show the corresponding
double occupancy of the SIAM. Quenches from the L and LM starting point into
the SSC phase. In (a) we show (D(t)) versus tI'y and the scaled data of the BFAM
quenches via Eq. (5.10) versus t, in (b). The inset in (b) depicts the dependence
of t., on g for these quenches. Taken from [157].

We extract the crossover time scale t., and scale the data of Fig. 5.6(a) as f(t) versus
t/t., in Fig. 5.6(b). There, the positions of the minima and maxima of the oscillations
agree well. The inset of Fig. 5.6(b) shows the dependence of ¢, on the bosonic coupling
and is given approximately by t., >~ 2/ |U,ep]|-

For the reverse quench direction, we start from the LM or L FP and quench into the
SSC phase. As presented in Fig. 5.7(a), the double occupancy (D(t)) equilibrates via a
smooth crossover to a steady-state value for both quench types. Although the finial
Hamiltonian HY is identical for both quench types, their steady-state values differ
slightly. However, the value for a quench starting from the L FP always exceeds the
value for the quench starting from the LM FP. The deviation between the steady-state
value and the thermal value is small and probably related to TD-NRG discretisation
errors. Hence, we conclude that the quenches into the SSC phase thermalise in the
continuum limit. Since Fig. 5.7(b) shows perfect universality of the dynamics scaled
via f(t/t.,), we conclude that the quenches from the L and LM FP are mirror images
of each other.

Quenching over two QCPs, from the LM phase into the L phase or vice versa, is the
extremest case. The dynamics of the double occupancy (D(t)) is shown in Fig. 5.8(a)
and Fig. 5.8(b), respectively. Although the double occupancy equilibrates to a steady-
state value, the deviation between this value and the thermal equilibrium is very strong
and stronger compared to the previous case for quenches from the SSC FP over one
QCP into the L or LM phase. Since for both the initial and the final preparation we
have to deal with a decoupling effective local or charge moments, the overlap between
the initial and final ground state is even smaller and, hence, the system does not relax
completely to the thermal value. In Fig. 5.8(c) the data of Figs. 5.8(a) and 5.8(b) is scaled
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Figure 5.8: Real-time double occupancy (D(t)) (coloured curves) of the BFAM with the same
parameters as in Fig. 5.4. Black curves in the background show the corresponding
double occupancy of the SIAM. Quenches from the LM starting point into the L
phase in (a) and vice versa in (b). The scaled dynamics of the BFAM quenches
versus t., are shown in (c) and the inset reveals the dependence of ¢, on g. Taken
from [ 1.

via Eq. (5.10) and plotted versus t/t.,. In this relative perspective the resemblance
between the quenches into the LM and L phase is recognisable. For example, the
quenches with ¢ = 0.02 and g = 0.17 are very much alike. The inset in Fig. 5.8(c) shows
t.o- The values are very similar in absolute value and in the functional dependence on
g to the ones in Fig. 5.6 over one QCP.

5.4 Quenches with B-type bath exponents

In this section we switch to bath exponents of the B type and use exemplary (r,s) =
(0.1,0.6) for the BFAM and the same r for the corresponding SIAM. The BFAM ex-
hibits the same three phases, but the critical exponents are governed by the properties
of the bosonic bath [57]. For the previously examined dynamics, for the F-type bath
exponents, we have demonstrated that the real-time dynamics can be completely re-
produced by an effective SIAM with the same fermionic exponent r, since the non-
equilibrium dynamics are driven by the fermionic bath. Now, we address the question
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Phase (D)eq g u/r,
L 0.468771 0.50 -12.335
0.464730 0.49 -10.904
0.452747 0.47 -8.142
0.428493 0.48 -5.455
SC 0.250000 0.420422 0
0.088760 0.38 4.392
0.053475 0.34 7.215
0.040793 0.30 9.417

Table 5.3: Correspondence between the bosonic coupling g of the BFAM with U /Ty = 16,
I'y/D = 0.01, r = 0.1 and s = 0.6 and the Coulomb repulsion U /T, of the SIAM.
The initial conditions are printed in bold. All data is obtained in the limit T — 0.

whether the real-time dynamics of the BFAM is also governed by the details of the
bosonic bath, which would lead to differences in the dynamics of the BFAM and the
effective SIAM. We only look at quenches within the L and the SSC phase since the
LM phase is a mirror image of the L phase. The initial conditions for the quenches are
(i) gi = 0.5 for the L FP and (ii) g; = 0.420422 for the SSC FP at which (D(g;))eq = 1/4.
The phases of the system for t > 0 are distinguished by their zero-temperature FPs and
the final conditions are stated in Tab. 5.3.

In Fig. 5.9 we present the time-dependent double occupancy (D(t)) for the BFAM
(coloured curves) and for the corresponding SIAM (black curves). For the quenches
within the L phase in Fig. 5.9(a), as well as for the quenches within the SSC phase in
Fig. 5.9(b), the dynamics between the BFAM and the SIAM differs significantly. Their
agreement for short and long times is caused by the mapping of the model parame-
ters. The dynamics in the SSC phase start in Fig. 5.9(b) from (D(f = 0)) = 1/4 which
corresponds to U; = 0 in the SIAM. Since we use U/I'j = 16 in the BFAM, a small
change in g translates into a strong variation of U, as stated in Tab. 5.3. The strong
suppression of the double occupancy in the long-time limit yields damped oscillatory
real-time dynamics. Again the damping in the BFAM exceeds the one in the effective
SIAM and the oscillation frequency is reduced. Furthermore, the oscillations, which
are present in the corresponding SIAM, are completely suppressed in the BFAM for
quenches within the L phase, as shown in Fig. 5.9(a).

Similar to the quenches for the F-type bath exponents, the dynamics is slowed down
with decreasing g for quenches within the L phase and with increasing g for quenches
within the SSC phase. Hence, the crossover time scale t.,, not shown here, reveals the
same functional dependence on g as for the F-type bath exponents. Furthermore, this
is in accordance with our findings for the interaction quenches in the SIAM in Sec. 4.3,
where the short-time dynamics is proportional to (D(t)) « 0.25(1 — a(t/+/U;D)?) lead-
ing here to an increasing slowdown with increasing U,,.

If we compare the dynamics of (D(t)) in the BEAM to the corresponding black curve in
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Figure 5.9: Real-time double occupancy (D(t)) (coloured curves) of the BFAM for B-type bath
exponents » = 0.1 and s = 0.6 with U /T’y = 16 and I'j/D = 0.01. Black curves in
the background are the corresponding double occupancy of the SIAM with T, /D =
0.01 and r = 0.1. We perform quenches within (a) the L phase and (b) the SSC
phase.

the background, (D(t)) is more strongly slowed down with decreasing g in the L phase
and with increasing g in the SSC phase. Consequently, the slowdown of (D(t)) in the
BFAM compared the same quench in the SIAM increases with decreasing |U,.,|. This
is somehow counter-intuitive since one would expect that the renormalisation in U,
is dynamically built up at lower energy scales and hence affects the dynamics at larger
time scales, while the full U in the SIAM is already effective directly from the begin-
ning. Hence, one would suggest an increasing deviation with increasing |U,,|. At this
stage, this remains an open question and will be addressed in a following publication.

5.5 Quenches out of a particle-hole asymmetric phase

For a particle-hole (ph) symmetric broken model, the different asymmetric FPs for the
SIAM have been introduced in Sec. 2.3.2. Since we change the level energy in time,
we are interested in the dynamics of the level occupancy (ng4(t)) for quenches out of
a strongly ph-asymmetric state into ph-symmetric phases. We will commentate on
the differences in the dynamics between the BFAM and an effective SIAM with the
same equilibrium double occupancy (D).q. We show the dynamics for a constant DOS
(r = 0) and s = 0.6. In equilibrium both, the BFAM and the SIAM, emerge the zero-
temperature ASC FP if ph symmetry is broken and |U/Iy| > 0, ¢ > 0. Similar to the
SBM [36, 37] no QCP can occur in the asymmetric case.

To break the ph symmetry for t < 0, we set |e4;/Ty| > 1. In the context of a QD this is
essentially a large positive or negative gate voltage [55] which depletes or completely
fills the local orbital. Since we hold U; = U; = U = const for all times, we investigate
the different dynamics whether (a) the bosonic bath is constantly coupled (g; = g;) for
all times or (b) at t = 0 in addition switched from g; = 0 to g > 0. The time evolution
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(D)eq Phase S u/r,
L 02> g, 8
0.4558 L 04 > g, 6
sC (SIAM) ~13.144
SC 02 < g, -2
0.3977 L 04> g, 11
sC (SIAM) —6.223
SC 02 < g 46
0.2156 sC 04 < g, 15
SC (SIAM) 1.1753

Table 5.4: Set of final parameters for the quenches in Figs. 5.10 and 5.12 in presence of ph
symmetry —2eq¢ = Up = U.

is driven by a ph symmetric H, since we switch the level energy to eg¢ = —U/2 at
t = 0. The BFAM then features the SSC FP for g; < g. and the L FP for g; > g. in
equilibrium.

We can adapt the bosonic coupling ¢ and the Coulomb repulsion U such that there
are two parameter pairs (g, Us); , which have the same equilibrium double occupancy
(D)eq = const. The two pairs can be adjusted such that they belong to (A) the L phase,
(C) the SSC phase or (B) are located in two different phases with g¢; < g. and g¢, > g..
The corresponding SIAM with the same (D), only reveals the SSC FP after quenching
for ph symmetry. The fermionic bath is for all calculations time-independently coupled
withI;,/D =T¢/D =Ty/D = 0.01.

We present the real-time dynamics of the level occupancy (n4(t)) for three represen-
tative (D).q = const in Figs. 5.10(a) for (A), 5.10(b) for (B) and 5.12 for (C). Since we
maintain ph symmetry after quenching, the thermal expectation value is (1g)eq = 1
and the steady state of (n4(t)) is expected to reach this value for long times. For each
case (A) - (C), we use the two coupling strengths ¢¢; = 0.2 and g;, = 0.4. The corre-
sponding values for U; for the three cases are collected in Tab. 5.4. We augment our
data of the BFAM with the dynamics of the corresponding SIAM with one black curve
in the background.

eq = 0.4558 > 1/4
for all HY, which corresponds to an attractive Coulomb interaction U,,, < 0. Both final

We start with case (A) with the equilibrium double occupancy (D)

values (g¢,8¢,) = (0.2,0.4) are located in the L phase. The resulting real-time dy-
namics of (ny4(t)) is depicted in Fig. 5.10(a) and reveals characteristic differences. With
increasing bosonic coupling the steady-state value

n = lim & [ dt (ng(t)) (5.11)

T—oo T Jo

increases and in addition, if g; = g = const, the bosonic system maintains its iner-
tia and the relaxation on the thermal value is more strongly suppressed. Since in the
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Figure 5.10: Dynamics of the level occupancy (nq4(t)) of the BFAM with r = 0 and s = 0.6
for quenches from ph asymmetry to ph symmetry at finite temperature T/D ~
1.2 - 10~7 with the equilibrium double occupancy (a) <D>eq ~ 0.4558 and (b)

(D)eq =~ 0.3977. NRG parameters are A = 6, N5 = 800, Ny = 8, N, = 8 for the
BFAM and changed to Ng = 2000 for the SIAM. Taken from [157].

SIAM, the system is set in the SSC phase, the dynamics in (n4(t)) (black curve) clearly
differs from those quenches approaching the L phase in the BFAM. Nevertheless, the
dynamics is unique for tI'y < 1 in all curves. This may indicate that the charge flow
off the impurity is governed by the charge-fluctuation scale I'j. The black curve sig-
nificantly deviates from the coloured ones for times tI'; > 1, when the bosonic bath
influences significantly the dynamics. A friction-induced slowdown can be observed.
Since in the localised phase an effective charge DOF decouples from the rest of the
bath, its overlap with the initial state prevents the system to approach its thermal equi-
librium value. Our results agree with previous real-time investigations on the SBM
[42, 43], where in the localised phase the spin polarisation is constant over a long
stretch of time. However, (114(t)) remains constant even for times T > 1, for the finite
temperature T/D ~ 1.2-1077 of our calculations. This may indicate that thermal fluc-
tuations do not influence the long-time behaviour of the level occupancy in contrary to
the ohmic SBM, since here the total spin of the system is conserved. Nevertheless, the
TD-NRG only provides reliable results for times t < 1/T.

In Fig. 5.10(b) the dynamics are shown for the case (B) <D>eq ~ (0.3977. There we use
two parameter pairs (g, Ug)1, such that for g¢; = 0.2 < g. the system approaches
with HY the SSC FP, while for 8, = 04 > g  the system is driven by the L FP. For
all cases, the initial decay is governed by I'y and for exponentially long times the sys-
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Figure 5.11: Dependence of ny on A marked as rhombuses and calculated for the effective
SIAM with U /T, = —6.223 as used in Fig. 5.10. The dashed line is an optimal fit-
ting curve extrapolating n3’ in the limit A — 1*. NRG parameters as in Fig. 5.10.
Taken from [ 1.

tem equilibrates to a steady state. We present data for the two complementary cases,
(ng(t =0)) ~0and (ng(t =0)) ~ 2, to demonstrate the ph symmetry of these curves.
For quenches in the L phase with g > g, the deviation of the steady-state value from
the thermal equilibrium value (n4)eq = 1 is strong for g; = g but smaller for g; = 0.
Since for g; = g; the correlations with the bosonic bath are already present in the initial
preparation, the deviation is stronger pronounced. Hence, for g; = g; the relaxation
is significantly suppressed, similar to case (A), while for g; = 0 the build-up of cor-
relations in the L phase needs some time and 13’ is closer to the thermal value. For
(g; = & = 0.2 < g.) the steady-state values agree perfectly with those obtained from
the effective SIAM. The dynamics in the BFAM for (g; = g = 0.2 < g.) and (g; = 0,
8¢ = 0.2 < g.) are very similar those of the the corresponding SIAM. The decrease
(or increase) in (D(t)) is slowed down due to the bosonic coupling but the slopes are
identical to the dynamics in the SIAM, in contrast to the quenches into the L phase
where the dynamics shows a different dependence on tI',.

We see a clear discrepancy between the steady-state value n3’ and the equilibrium value
(ng)eq = 1 even for quenches in the SSC FP where for all other quench types thermal-
isation has been confirmed. We assume that this deviation is related to discretisation
artefacts of the TD-NRG [42, 120, 121] which occur for quenching over different de-
grees of ph asymmetry. Hence, we claim that the presented results for quenches into
the SSC phase in Fig. 5.10(b) indeed show thermalisation. To confirm our argument,
we perform non-equilibrium calculations for identical model parameters but different
values of A and depict the results in Fig. 5.11. Using a fitting function, it becomes
apparent that lim, ,;+ n3(A) = 1. The small difference to n§ = 1 is related to the
finite number of states which has to be used for each calculation.

The dynamics for the last case (C) (D)eq =~ 0.2156 with g;;, 8¢, < g. are presented in
Fig. 5.12. Within the numerical accuracy thermalisation is found for all different pa-
rameters. Again, the initial decay is equal for all bosonic coupling constants and only
governed by T as before. The steady-state value is found up to tIy = 1-10'? although
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Figure 5.12: Dynamics of the level occupancy (n4(t)) of the BFAM with r = 0 and s = 0.6
for quenches from ph asymmetry to ph symmetry at finite temperature T/D ~
1.2-1077 for (D), =~ 0.2156. NRG parameters as in Fig. 5.10. Taken from [157].

eq —
only data up to tI'y = 1-10* is depicted in the figure. After a fast initial decay, we
note a slowdown of the dynamics in the presence of a large coupling to the bosonic
bath. The slowdown is stronger either by a larger g; or by a time-independent bosonic
coupling.

5.6 Conclusion

We have extended our investigation of local real-time dynamics on QIS which deal
with fermionic and bosonic DOFs. For the equilibrium we revealed that the bosonic
bath induces a renormalisation of the Coulomb repulsion to U,, even to large attrac-
tive values enforcing the formation of an effective decoupling charge moment in the L
phase. To estimate U, we equate the equilibrium double occupancy of the BFAM for
a finite bosonic coupling and of the SIAM with the bare value of U. Then we conclude
U — ySaM

ren . There is a one-to-one correspondence of the QPT between (i) the spin-

Kondo effect and the local moment phase to (ii) the charge-Kondo effect and the lo-
calised phase. The spin-Kondo regime and the charge-Kondo regime are adiabatically
connected, and there is one unique SSC FP with identical spin and charge moment,
2 = Q2% = r/8 depending on the fermionic exponent.

We have revealed that the real-time dynamics of the BFAM can be completely repro-
duced by a corresponding SIAM for ph symmetry, if the critical exponents are in lead-
ing order influenced by the low-energy properties of the fermionic bath, as it is the
case for the F-type bath exponents. In addition, we have investigated quenches for B-
type bath exponents showing that the coupling to the bosonic bath yields a retarda-
tion of the dynamics and a suppression of the oscillatory behaviour with increasing
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bosonic coupling strength. Although the major effect of the bosonic bath can still be
attributed to a renormalisation of U, the non-equilibrium dynamics of the full BFAM
differs significantly from that of the effective SIAM. While the short-time dynamics is
governed by the hybridisation strength I, the low-frequency bosonic modes cause a
slowdown of the decay at intermediate time scales compared to the dynamics in the
effective SIAM. The dynamics in the effective SIAM is significantly faster than the one
in the full BFAM. However, the dynamics in the BFAM and in the SIAM differ for the
same quench more strongly with decreasing |U,,|.

Although all quenches equilibrate for long times to a steady-state value, thermalisa-
tion is only found for quenches into the SSC phase or very close to the QCP where
the characteristic low-energy scale vanishes. With increasing distance to the QCP, the
low-energy LM or L FP is approached at higher temperatures in the NRG, indicating
a smaller spatial extension [19, , , ] of the decoupled effective moment. This
leads to a greater overlap of the local operators with the decoupled effective moment
and, hence, the deviation between the steady-state value and the thermal equilibrium
increases.

For quenches out of a strongly ph asymmetric phase into ph symmetric phases, we
investigated the dynamics of the level occupancy. Since we work only with r = 0, the
BFAM features after quenching the SSC and the L phase in equilibrium, while the corre-
sponding SIAM only exhibits the SSC FP. For all quenches, the level occupancy (nq4(t))
equilibrates to a steady state. Nevertheless, quenching in the L phase (g > g.) leads to
a strong deviation of the steady state from thermal equilibrium, which is obtained by
an independent NRG calculation. This is related to a decoupling of an effective charge
DOF preventing the system to relax to the thermal equilibrium. If the system is initially
decoupled from the bosonic bath (g; = 0), the build-up of the decoupling charge DOF
takes more time and, hence, the deviation is smaller. For quenches in the SSC phase
(g < &), the dynamics of (n4(t)) in the BFAM is alike to the dynamics in the SIAM,
although the presence of the bosonic coupling yields a slowdown of the dynamics.
Nevertheless, for all cases with ¢ < g, the system thermalises to the equilibrium value
for long times within the accuracy of the TD-NRG, as we have shown in the continuum
limit limp 1+ n3(A) = 1.



Chapter 6

Spin relaxation influenced
by bosonic and fermionic DOFs

In this chapter we are interested in the real-time dynamics of a spin-1/2 particle
trapped in a noisy QD. The QD is coupled to a conduction band and additionally
to a bosonic continuum, which mimics some noise within the QD. Therefore we use
the BFKM of Sec. 1.4, which is an extension of the well-known Kondo model (KM).

In the BFKM, the impurity spin S couples with the coupling strength J to the spin den-
sity § of the surrounding conduction band electrons, whereas only its z component S,
couples with the coupling strength ¢ to the bosonic bath. We assume a gapless Fermi
system and use a constant density of states (DOS) which enables a Kondo screening
of the impurity spin for any finite antiferromagnetic coupling | > 0, in absence of
the bosonic bath. The bosonic continuum, which is described by the spectral function
J(w) o w®, leads to a localisation of the impurity spin for any finite ¢ > 0, in absence of
the fermionic bath. Since we couple the impurity to both baths, these effects compete
with each other and yield a quantum phase transition (QPT) between the symmetric
strong coupling (SSC) and localised (L) phase. We refer the reader to App. A.2 for
further information on the quantum criticality in the BFKM.

We focus on the real-time decay in the spin polarisation (S,(t)) of an initially polarised
spin [(S,(t = 0))| > 0. The polarisation at + = 0 is achieved by applying a local
magnetic field € 2 0 in z direction. For times t > 0, we switch off the magnetic field
and enable a decay of the polarisation through spin-flip processes with the conduction
band electron spins by J; > 0. For a sufficiently strong bosonic coupling the BFKM
features in equilibrium the L phase, in which the Kondo screening of the impurity
spin is suppressed. Therefore, we are interested in the effect of the bosonic coupling
on the dynamics of (S,(t)). We will show that an increasing coupling to the bosonic
bath will yield a stronger slowdown in the dynamics of (S,(t)). For quenches in the
L phase a suppression of the decay will be revealed. The retardation, as well as the
prevention of the decay in the L phase, are known effects, which also occur in the
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spin-boson model (SBM) for an oscillating spin with a strong coupling to the bosonic
bath. Furthermore, we will reveal that the dynamics of (S,(t)) depends on the initial
preparation of the system leading to strongly deviating steady states.

We will introduce the essential physics in the BFKM in Sec. 6.1 and summarise the
relevant equilibrium properties in Sec. 6.2. In Sec. 6.3 we will present the real-time de-
cay of the spin polarisation (S,(t)) and close this brief investigation with a conclusion
in Sec. 6.4.

6.1 Introduction

Different QISs [20] have been studied in the last decades to gain a detailed compre-
hension of effects as dissipation and decoherene in nanoscale devices. Basic models
are the KM and the SBM consisting of an impurity spin which couples to a fermionic
or a bosonic environment, respectively. Both models [18, 21, 36, 37, 90, ] feature
different phases in equilibrium and reveal QPTs with special properties. Also the real-
time dynamics [42, 43, 132, 176] driven by the equilibrium phases has been of great
interest.

In equilibrium the combined BFKM [55, 57, -102, , ] shows a rich phase
diagram and exhibits both fermion-induced Kondo screening and boson-induced lo-
calisation. The BFKM adresses, as well as the BFAM, the physics of dissipative meso-
scopic qubit devices [54, 167], and of heavy-fermion systems [166]. Within the EDMFT
[101, 102] the KLM is mapped to a BF-QIS in which the bosonic DOFs mimic these
magnetic fluctuations. The additional quantum fluctuations provided by the bosonic
DOFs yield a QPT [55, ] due to a friction-induced localisation, as in the SBM, and
therefore yield a breakdown of the Kondo physics.

Here we are interested in the real-time dynamics of the impurity spin polarisation
(S,(t)) and use our non-equilibrium extension of the BF-NRG. With this non-perturba-
tive approach we can accurately track the breakdown of the Kondo phyics and perform
quenches into both equilibrium phases, the SSC and the L phase. For our calculations,
we assume a gapless fermionic environment with a constant DOS p(e) = p,@ (D — |e|)
with pg = 1/(2D). The bosonic environment is represented by the spectral bath func-
tion in its power-law form J(w) = 2ntgw!*w*O(w, — w) as it has been introduced in
Eq. (1.32) in the context of the SBM. The strength of the coupling between the impurity
and the bosonic bath is given by ¢. We are interested in the sub-ohmic regime and
select exemplified s = 0.6.

If not otherwise stated, we use the following NRG parameters for the calculations in
this chapter: A =6, Ng = 800, Ny =6, N, = 8.
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6.2 Equilibrium properties

Since we apply a local magnetic field € 2 0 only in z direction (A = 0), we gain a
full polarisation [(S,).q| = 1/2 for a decoupled spin in the zero-temperature limit. If
we couple the spin to the fermionic bath with | > 0, a competition arises between
the Kondo screening by the fermionic bath and the polarisation due to the magnetic
field. In consequence, the equilibrium value is in the range 0 < [(S,)¢q] < 1/2 re-
vealing a partial Kondo screening of the impurity spin. The stronger the coupling to
the fermionic bath /e > 1, the stronger the polarisation is suppressed. In contrast, a
strong magnetic field €/] > 1 favours a full polarisation of the spin and prevents the
Kondo screening. If we, instead, couple the spin only to the bosonic bath, the system
is set in the L phase for € = 0, independent of the bosonic coupling strength ¢ > 0
and has a twofold-degenerated ground state. Whereas, for € = 0 a unique ground
state is selected and, if the impurity spin is coupled to the fermionic bath leading to
a polarisation in the range 0 < [(S,).q| < 1/2, an additional coupling to the bosonic
bath simply increases the polarisation |(S,)¢q| with increasing g.

For both couplings | > 0 and ¢ > 0 a competition between the Kondo screening and
the localisation emerges in the full model. For no local magnetic field (¢ = A = 0) and
J > 0, the BFEKM features a QPT between the Kondo-screened SSC phase and the L
phase if we vary the bosonic coupling ¢ > 0 [55]. The QCP at g. can be identified by
a change in the zero-temperature value of the effective local moment, which is defined
in Sec. 2.2.1. The effective local moment has the zero-temperature value p%; = 0 in
the SSC FP and is unique for all g < g., whereas it is finite 0 < ygff(g) < 1/4 in the
L FP and increases with increasing ¢ > g.. These two phases characterise the final
Hamiltonian HF in equilibrium and, hence, drive the dynamics.

In Fig. 6.1 we present the temperature-dependent effective local moment 12 (T) for a
sub-ohmic (s = 0.6) bosonic bath in Fig. 6.1(a) and for an ohmic (s = 1) bosonic bath in
Fig. 6.1(b). The coupling to the fermionic bath is Jp, = 0.05 and we vary the bosonic
coupling g.

We can define several crossover energy scales which will be helpful to characterise the
dynamics of the spin polarisation (S,(t)) later. The crossover to the SSC FP is tracked
by the Kondo temperature Ty with the effective local moment value p2(Ty) = 0.07.
In analogy, T* tracks the crossover to the L FP: T* marks at which temperature 3% (T)
is reduced by 80% towards its zero-temperature value. Furthermore, the temperature
Ty indicates the L FP: The effective local moment reaches its finite zero-temperature
value p2.(T < Ty) = p2; = const > 0. For the presented coupling strengths in Fig. 6.1
the Kondo temperatures Ty are in the same range 107% < Ty /D < 107° for both
bosonic exponents s = 0.6,1. Whereas, the crossover temperatures T} and T*, which
are related to the L FP, are shifted by one to three magnitudes. Hence, for quenches in
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Figure 6.1: Effective local moment 3%, (T) for a sub-ohmic (s = 0.6) bosonic bath in (a) and
for an ohmic (s = 1) bosonic bath in (b). The fermionic coupling is Jp, = 0.05.
The critical couplings are g.(s = 0.6, Jo, = 0.05) = 0.1311(8) and g.(s = 1, Jpy =
0.05) = 1.5(0).

the L phase, the dynamics will show significant differences regarding a sub-ohmic or
an ohmic bath.

6.3 Real-time spin relaxation

A finite polarisation of the impurity spin for times ¢t < 0 is achieved by setting the
initial magnetic field to €0y = —0.5 and A; = 0. After the quench for t > 0 the
magnetic field is switched off, and the spin polarisation decays to zero due to spin-
flip scattering processes with the fermionic bath for an antiferromagnetic J; > 0. We
will show that an additional coupling to the bosonic bath yields a retardation in the
dynamics.

In Fig. 6.2 we show the decay of the spin polarisation (S,(t)) for a sub-ohmic bosonic
bath (s = 0.6) with an antiferromagnetic coupling Jioy = 0.05. The coupling to the
bosonic bath is constant over time in Fig. 6.2(a), while it is additionally switched on at
t = 0 in Fig. 6.2(b). We vary over the bosonic coupling g < g.(s = 0.6, Jpy = 0.05) =
0.1311(8) to show a slowdown in the dynamics with increasing coupling to the bosonic
bath, as well as a suppression of the decay for quenches in the L phase.

For g < g. the system is quenched in the SSC phase with a vanishing equilibrium
polarisation. The decay of the polarisation in Fig. 6.2(a) equilibrates to a steady-state
value for long times without reaching the thermal value, which is marked by the ar-
row at the right side of the graph. The deviation between the steady-state and the
thermal value is significant but independent of the coupling g¢(< g.). For stronger
couplings g; > g., the dynamics is driven by the L FP and both time scales t* = 1/T*
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Figure 6.2: Real-time spin polarisation (S,(¢)) in z direction for a spin (a) constantly bosonic-
coupled (g; = g¢) and (b) initially decoupled. The initial polarisation is achieved
by the magnetic field €;0, = —0.5. For times ¢ > 0 the magnetic field is switched
off and the fermionic (and the bosonic) coupling is switched on: J;o, = 0.05.
The critical coupling is g.(s = 0.6, J;oy = 0.05) = 0.1311(8). The data has been
obtained for the finite temperature T/D ~ 3-10~1°,

and t; = 1/7T are marked in Fig. 6.2. The spin-flip processes (J; > 0) drive the dynam-
ics of the polarisation (S,(t)) in leading order for times tJ; < 1. The decay of (S,(t))
is slowed down due to the bosonic friction. Therefore, at the crossover time scale t*
the polarisation (S,(t*)) increases with increasing g;. For times t > t;, the decay is
stopped. The greater g, the smaller both time scales t* and t; are and, hence, the
decay stops at earlier times.

In Fig. 6.2(b) we additionally switch the bosonic coupling (g; = 0 — g;), dealing with
an initially decoupled, polarised impurity spin. In contrast to Fig. 6.2(a), here the de-
cay of the polarisation (S,(t)) for quenches in the L phase (g; > g.) takes place over
a longer time interval leading to a smaller deviation of the steady-state value from
the thermal value. The correlations forming the L FP have to be built up dynamically
through the NRG and hence low-energy contributions affect the dynamics. Therefore,
the time scales t* (and t) reflect nicely in Fig. 6.2(b) the build-up of the correlations
by a strong change in (S,(t)) in the time interval 107! < t/#* < 10!. Whereas, in
Fig. 6.2(a) these correlations are already present in the initial preparation and hence,
the dynamics occurs on shorter time scales leading already to a stop of the decay for
times tT; > 1. For quenches in the SSC phase (g; < g.) in Fig. 6.2(b), the deviation of
the steady-state value from the thermal value depends on the bosonic coupling g; and
increases slightly with increasing g;. We suggest that this reflects the increasing mis-
match in the bosonic DOFs between the initial and the final configuration. Whereas,
for (g; = g¢) in Fig. 6.2(a) the overlap in the bosonic DOFs stays constant over time
and, hence, the deviation between the steady-state value and the thermal value is g¢-
independent.
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Figure 6.3: In (a): Scaled real-time dynamics of Fig. 6.2(a) versus the Kondo temperature Ty
for quenches in the SSC phase with the Kondo temperatures given in the inset. In
(b): Crossover time scale ¢, versus the bosonic coupling g; for the data of Fig. 6.2.

Furthermore, it is interesting to note that by comparing Figs. 6.2(a) and 6.2(b) for
quenches in the L phase different initial preparations lead to different dynamics of the
spin polarisation (S,(t)) and to different steady states for the same final configuration.

To shed some more light on the characteristic time scales of the dynamics, we show
in Fig. 6.3(a) the dynamics of (S,(t)) scaled versus the Kondo temperature Ty for
quenches in the SSC phase with the same parameters as in Fig. 6.2(a). The Kondo
temperature Ty tracks the crossover to the SSC FP and decreases exponentially with
increasing coupling g — g.~, as shown in the inset in Fig. 6.3(a). Hence, due to the
bosonic friction the fermionic bath screens the impurity spin for lower temperatures.
The bosonic coupling induces a slowdown in the dynamics of (S,(t)), although for
small bosonic couplings g¢/g. < 1 the curves are alike. The long-time effects are uni-
versal and are related to the low-energy Kondo temperature. The curves in Fig. 6.3(a)
intersect at (S,(t)) ~ 0.25. Consequently, the decay is faster before and slower after the
intersection point with increasing g;. Nevertheless, the Kondo temperature describes
the universal behaviour for quenches in the SSC phase and reflects by itself the friction-
induced retardation.

Furthermore, we use the data of Fig. 6.2 and scale it with the scaling function f(t) of
Eq. (4.3), which we have already used in the previous chapters. With the requirement
f(te) = 1/2, we extract the crossover time scale f, to illustrate the strength of the
retardation induced by the bosonic bath. We present the crossover time scale ¢, versus
the bosonic coupling g; in Fig. 6.3(b) for both initial conditions (g; = 0) and (g; = ).
The faster the decay in (S,(t)) reaches its steady-state value, the smaller the crossover
time scale t.,, and hence, with increasing g; the time scale t., increases. The retarda-
tion by the bosonic bath leads to an exponentially increasing t, for a linearly increasing
g¢(< g.)- For quenches in the SSC FP the crossover time t, is smaller, if the spin is
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Figure 6.4: Real-time spin polarisation (S,(t)) for a spin which is initially polarised due to
€;,00 = —0.5 and is constantly bosonic-coupled (g; = g¢). For times ¢ > 0 the

magnetic field is switched off and the fermionic coupling is switched on: Jio, =
0.5. The critical coupling is g.(s = 0.6, J;pg = 0.5) = 2.352(5). The data has been
obtained for the finite temperature T/D ~ 2-1078,

initially decoupled (g; = 0). If the spin is constantly bosonic-coupled (g; = g;), the
bosonic influence is present directly at the beginning and has to be compensated in ad-
dition, so that (S,(t)) reaches the SSC FP value at larger times. Hence, the retardation
and the crossover time scale ¢, are greater in the latter case.

In Fig. 6.4 we present quenches in analogy to Fig. 6.2(a) with g; = g and s = 0.6 but
for a stronger fermionic coupling J;oq = 0.5. In this case the spin-flip processes due to
J; are very strong, and the local dynamics on the first Wilson shell — the interaction
between the impurity and the zeroth Wilson chain site — yields a strong oscillation
imposed on the decay with a frequency proportional to J;. Due to the stronger J; the
critical coupling is shifted to g.(s = 0.6, Jpg = 0.5) = 2.352(5). With increasing bosonic
coupling g; the oscillation is more strongly suppressed leading to a reduction in the
amplitude. Each quench equilibrates to a steady-state value, which is g; independent
for quenches in the SSC FP. For the quench with g; = 0, the steady-state value is
different and is imposed by a strong oscillation. Since g; = 0, the oscillation can not
be damped through additional bosonic DOFs, but can be reduced if one increases
the z averaging. The deviation of the steady-state value from its thermal value has,
except for g; = 0, roughly the same absolute value as in Fig. 6.2(a). The deviation
may be related to finite-size artefacts in the TD-NRG and should decrease in the limit
A — 17; this is up to further investigation. For quenches in the L phase (g; > g.), the
polarisation (S,(t)) decreases very slowly over several decades to a steady-state value.
The superimposed oscillation due to J; is damped strongly by the strongly coupled
bosonic bath. The long-time residual polarisation increases with increasing g, similar
to Fig. 6.2(a).

In Fig. 6.5 we present the influence of different initial bosonic couplings g; while the
fermionic coupling J(t)p, = 0.5 is constant over time. Since J; and ¢; are of the same
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Figure 6.5: Real-time spin polarisation (S,(t)) of an impurity spin constantly coupled to the
fermionic bath and initially polarised with €;0, = —0.5 for different initial bosonic
couplings g;. For times ¢t > 0 the magnetic field is switched off and the bosonic
coupling is changed to ¢ = 2. The data has been obtained for the finite temper-

ature T/D ~ 21078,

order, the initial bosonic coupling has a strong influence on the initial polarisation
(S,(t = 0)). With increasing g; the initial polarisation (S,(t = 0)) is stronger. The
decay of the polarisation is imposed by an oscillatory behaviour: The oscillation is in-
duced by the strong fermionic coupling Jioq = 0.5, reflecting the local dynamics on
the first Wilson shell, and has a small amplitude due to the strong bosonic coupling
g = 2. However, with increasing difference |g; — g¢| the polarisation reaches its steady-
state value independently of the initial polarisation (S,(t = 0)) at shorter times. Fur-
thermore, the deviation of the steady-state value from its thermal value is significantly
smaller, since we hold the fermionic coupling constant over time here. We suggest that
this is due to a greater overlap in the fermionic DOFs between the initial and the final
configuration for J; = J;. Whereas, the overlap is smaller for the presented quenches in
Fig. 6.4 with J; = 0, where in the initial preparation no correlations with the fermionic
DOFs are present.

We now change the type of the bath and present the decay of the spin polarisation
(S,(t)) for an ohmic bath (s = 1) in Fig. 6.6. The figure is organised similar to Fig. 6.2
to make them more easily comparable. In Fig. 6.6(a) the impurity is time-indepen-
dently bosonic coupled (g; = g¢), whereas in Fig. 6.6(b) the spin is initially decoupled.
The critical bosonic coupling is g.(s = 1, Jipy = 0.05) = 1.5(0). As shown for the equi-
librium properties in Fig. 6.1, the crossover energy scale T*(g) is larger for s = 1 than
for s = 0.6. We augment the corresponding time scale t* in Fig. 6.6. Since the bosonic
correlations are also present in the initial configuration in Fig. 6.6(a) and the bosonic
coupling is large, the decay of the polarisation is nearly completely suppressed, if we
quench in the L phase (g; > g.). Otherwise, if we quench in the SSC phase (g; < g.),
the polarisation decays to a g-independent steady-state value. The decay is more
strongly slowed down with increasing g;. Furthermore, the change in the bath expo-
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Figure 6.6: Real-time spin polarisation (S,(t)) for an initially (¢;0, = —0.5) polarised spin for a
ohmic bosonic bath (s = 1). In (a) the spin is constantly bosonic-coupled (g; = g)
and in (b) it is initially decoupled. For times ¢t > 0 the magnetic field is switched
off and the fermionic (and the bosonic) coupling is switched on: J;o, = 0.05. The
critical coupling is g.(s = 1, Jipg = 0.05) = 1.5(0). The data has been obtained for
the finite temperature T/D ~ 3-10716,

nent s is balanced by an increased coupling strength g; so that the Kondo temperatures,
which drive the dynamics, are similar for the quenches presented here to those of the
corresponding quenches in the sub-ohmic bath. On the other hand, for the initially
decoupled impurity in Fig. 6.6(b), the correlations are built up dynamically and the
time scale #* indicates a time interval 107! < t/t* < 10!, in which the polarisation
is decreased strongly. Since for the ohmic bath t* < tx = 1/Tg, the decays for the
quenches in the L phase are faster than those for the quenches in the SSC phase. For
the former quenches the polarisation deviates more strongly from thermal equilibrium
than for the latter ones, as already discussed for the sub-ohmic bath.

6.4 Conclusion

In this chapter we have analysed the relaxation of a polarised impurity spin due to
spin-flip scattering processes with surrounding conduction band electrons under the
additional influence of a bosonic bath. The decay of the polarisation (S,(¢)) undergoes
an exponentially increasing slowdown with an increasing coupling g; to the bosonic
bath. All our data reveal a steady state for long times which deviates systematically
from the thermal equilibrium, even for quenches in the SSC phase. This may be an
artefact of the TD-NRG and remains an open question.

After the quench the system emerges two stable phases: the SSC phase with a crossover
energy scale Ty and the L phase with the crossover energy scale T*. We have shown
that for an initially decoupled impurity spin, the dynamical build-up of correlations
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is tracked by these crossover temperatures and hence, we used them to reveal charac-
teristic time scales. For quenches in the SSC phase, the dynamics for times tTi > 1
is universal. The Kondo temperature reflects the boson-induced retardation leading to
an intersection of different strong quenches at (S,(tTx)) = 1/4. We have scaled these
dynamics with f(t/t.,) and have extracted the crossover time scale t.,. For quenches
in the SSC phase initial bosonic correlations (g; = g;) lead to larger crossover time
scales ¢, revealing a stronger retardation compared to an initially bosonic-decoupled
impurity spin. Furthermore, with increasing bosonic coupling g; the retardation and
hence, t., increases exponentially.

For quenches in the L phase, the polarisation changes most strongly in the time inter-
val 1071 < tT* < 10!, if the impurity spin is initially bosonic-decoupled. In contrast,
for an initially bosonic-coupled (g; = ;) impurity spin, the relaxation of the polari-
sation occurs on shorter time scales, since the correlations with the bosonic DOFs are
already present in the initial configuration at ¢t = 0. The different initial preparations
(g = 0 or g; = gp) yield different outcomes in the dynamics and in the steady state.
The steady state deviates stronger from its thermal equilibrium if the bosonic cou-
pling is already present in the initial preparation. Hence, for the same final conditions
the initial preparation of the system has a profound impact on the dynamics and the
long-time behaviour for quenches in the L phase. Whereas, for quenches in the SSC
phase the dynamics is slowed down but the steady state is only slightly affected by the
initial bosonic configuration: The steady-state value is independent of g; for a time-
independent bosonic coupling (g; = g¢), whereas, it shows a slight g; dependence for
an initially bosonic-decoupled (g; = 0) impurity spin, because the correlations are built
up dynamically.

For an ohmic bosonic bath we have revealed the same functional dependences of the
dynamics and the steady state on the bosonic coupling, as stated above for the sub-
ohmic bath. Since for an ohmic bath, the crossover to the L FP occurs at higher tem-
peratures, the dynamics for quenches in the L phase are faster because t*(s = 1,g) <
t*(s =0.6,9).



Chapter 7

Summary

In this thesis we have investigated the real-time dynamics of QISs in which the impurity
is coupled either only to a fermionic environment or in addition to a continuum of
bosonic DOFs.

In Chap. 4 we have used the SIAM to analyse the dynamics which is only driven by
the fermionic environment. In equilibrium the QPT between the SSC and LM phase is
tuned by the ratio U/I',. The formation of the effective local moment, which decou-
ples from the rest of the system in the LM FP, is tracked by a crossover energy scale
T*. This can be interpreted as a characteristic spatial extension ¢* o< 1/T* of the effec-
tive local moment. With increasing Coulomb repulsion the effective moment is more
strongly localised to the impurity revealing a stronger suppression of the local double
occupancy. The spatial extension is accurately described by the NRG leading to a con-
tinuous decrease of the double occupancy over the QCP. Whereas, the description of
the LM phase by the Gutzwiller ansatz assumes a vanishing of the double occupancy
at the QCP and, therefore, overestimates the critical U.(T'y). This corresponds to an
effective local moment formation only on the impurity site.

We have performed different quenches within one phase and over the QCP and have
presented the real-time dynamics of the local double occupancy (D(t)). For inter-
action quenches we have found a universal behaviour of the double occupancy for
quenches within the SSC phase. Quenching from the SSC FP over the QCP into the LM
phase leads to a damped oscillatory behaviour in (D(t)). Since the effective local mo-
ment decouples from the system, the relaxation of the double occupancy to its thermal
equilibrium is more strongly suppressed with increasing localisation of the effective
moment for interaction quenches. In absence of ph symmetry, the dynamics starting
from the ASC FP thermalise nicely within the ASC phase, but not if the quench starts
from the ph-symmetric SSC FP due to shortcomings in the TD-NRG.

For hybridisation quenches we start at t = 0 from a strongly localised effective mo-
ment, which gets spatially more extended with increasing hybridisation strength as
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long as Ty < T'.(U). The double occupancy does not thermalise for quenches within
the LM phase. The deviation between its steady-state value and its thermal value in-
creases with the more extended effective local moment because the overlap between
the initial and the final ground state is reduced, leading to an increasing non-decaying
fraction. While the double occupancy does not thermalise, the hybridisation energy,
which couples to the whole bath continuum, thermalises fast even before long-time
correlations can be formed. Furthermore, we have demonstrated that the time-depen-
dent Gutzwiller approach is unsuitable for addressing the real-time dynamics in such
a system: The approach can only describe the formation of a decoupling local moment
on the impurity and, consequently, it overestimates the critical value of U, leading to
a strongly oscillating dynamics in the LM phase. While the accurate TD-NRG reveals
that the dynamics is driven by the charge-fluctuation scale I';, in the time-dependent
Gutzwiller approach the local dynamics evolves only for times t > I';. Beside this,
we have validated our results for the hybridisation quenches by a perturbation-theory
calculation which becomes exact in the limit t — 0 and we have revealed that the short-
time behaviour is proportional to 1/+/T;D and independent of the Coulomb repulsion.

We have extended the BF-NRG to non-equilibrium using the TD-NRG and have studied
the real-time dynamics in the BFAM in Chap. 5 for different quenches. In equilibrium
the additional coupling to the bosonic bath leads to a renormalisation of the Coulomb
repulsion U — U, < U and, consequently, to an increasing double occupancy. The
renormalised Coulomb repulsion U,,(g) in the BFAM is estimated from an effective
SIAM with the same r and I'y. In the SIAM we vary over U and on the condition that
both models have the same equilibrium double occupancy, we identify U,,(g) = U.
The SSC FP is unique and the spin-Kondo (charge-Kondo) subspace can only be in-
directly identified by the double occupancy (D).q < (Z)1/4. The QPT from the SSC
phase to the LM phase is similar to the QPT from the SSC phase to the L phase lead-
ing to a decoupling effective local moment in the former case and an effective charge
moment in the latter case. At the BFCR FP, which separates the SSC and L phase, the
critical exponents show hyperscaling and three different types (F/M/B) of quantum
criticality with respect to the bath exponent combination (7, s) are known.

For F-type bath exponents we have verified that the real-time dynamics of (D(t)) in
the full BFAM can completely be reproduced in an effective SIAM with thoughtfully
adjusted parameters for the same fermionic bath exponent r. The crossover time scale
t., for quenches within the LM and L phase decreases the stronger the decoupling ef-
fective moment is localised on the impurity. Also for quenches over one or both QCPs,
the crossover time scale t., shows the same functional dependence for the same final
phase. Since in the LM and L phase an effective moment decouples from the system,
no thermalisation occurs for quenches into these phases. The deviation between the
steady-state value and the thermal value increases the more localised the decoupled
moment is. Furthermore, we have emphasised that the LM and L phase are mirror



123

images of each other. Quenches from the SSC FP into both phases collapse under the
scaling function f(t) for the same |U,,| on one curve. Also for quenches from both
phases into the SSC phase the curves collapse supporting the mirror-image statement.
For the B-type bath exponents the low-energy modes of the bosonic bath drive the dy-
namics, and at intermediate times the dynamics in the BFAM differ from those in the
effective SIAM. The bosonic DOFs yield a retardation, since the renormalisation of U is
built up through the NRG at lower energies, and hence, needs some time to influence
the dynamics. Whereas, in the SIAM the Coulomb repulsion is effective directly with
its full strength at t = 0.

Furthermore, we have examined the effect of a strongly ph-symmetric-broken initial
condition on the real-time dynamics of the level occupancy. After quenching, the
system evolves under the influence of the ph-symmetric SSC and L FP. While for
short times tI'y < 1 the dynamics is universal, the additionally coupled bosonic DOFs
yield an increasing slowdown in the dynamics with an increasing coupling. We have
demonstrated that the quenches into the SSC phase thermalise within the accuracy of
the TD-NRG which we checked with the continuum limit A — 1. Whereas, those
into the L phase equilibrate to a steady-state value which deviates more strongly from
the thermal value the more localised the decoupling charge moment is. If the system
is initially decoupled from the bosonic bath (g; = 0), this deviation is smaller, since the
correlations to the bosonic continuum are built up dynamically.

In context of the BFKM we have investigated the real-time polarisation (S,(t)) of an
initially polarised spin in Chap. 6. The decay in (S,(t)) is driven by spin-flip processes
with the surrounding conduction band electron spins. The decay is additionally slowed
down by the coupled bosonic bath, leading to a suppression of the decay for quenches
in the L phase. The crossover energy scales Ty and T* reflect the build-up of correla-
tions for the SSC and the L FP, respectively. If the dynamics is driven by the SSC FP,
an increasing bosonic coupling yields an increasing retardation in the decay leading to
an exponentially increasing crossover time scale t.,. Furthermore, the Kondo temper-
ature Ty is ¢ dependent and reflects the induced retardation, so that for times tTy > 1
the dynamics is universal. The initial preparation of the system affects the dynamics
for quenches in the SSC phase: For an initially bosonic-decoupled (g; = 0) impurity
spin t.,(g¢) is smaller than for an time-independently coupled (g; = g;) impurity spin,
where the initially present bosonic correlations have to be reduced dynamically in ad-
dition. Under the influence of the L FP, the decay of an initially polarised, decoupled
impurity spin is driven by the time scale t* = 1/T*. The polarisation changes most
strongly in the time interval 107! < #T* < 10!. The initial preparation of the system,
whether it is initially decoupled (g; = 0) or time-independently coupled (g; = g;), has
a profound impact on the dynamics for quenches in the L phase, as well. In the latter
case the bosonic correlations are already present at time t = 0 leading to an almost
complete suppression of the decay. Furthermore, for an increasing bosonic bath expo-
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nent s the dynamics in the L phase is speeded up and occurs at shorter time scales,
ie. t*(s = 1,8) < t*(s = 0.6,g). Whereas under the influence of the SSC FP, the
Kondo temperature Ty drives the dynamics and the change in s can be balanced by an

adjusted bosonic coupling revealing the same Ty.



Appendix A

Notes on Kondo models

A.1 Relation between the SIAM and the KM

As mentioned in Sec. 2.3.1 the particle-hole (ph) symmetry in the SIAM is controlled by
the impurity states. If U = —2¢4, ph symmetry is preserved and the full symmetry of
the SIAM is SU(2)gpin X SU(2)charge: The two SU(2) symmetries are related to pseudo-
spins consisting of the degenerated spin doublet |1), |]) and the degenerated charge
doublet |0), 1)), respectively.

Different symmetry transformations to the model are applicable [115]. To exchange
particles and holes we use the transformation

dy —d}l and c., —cl, . (A.1)

Therefore, the states |1) and |]) get interchanged, as well as the states |0) and |1]).
Another way to achieve the same, is to simply change ¢ — —(eq + U) and V;, — —V,.
More interesting is the interchange of the two SU(2) symmetries via

dy —>dy , d — dI , Cep = Cep and ¢ — CZ,J( . (A.2)

This transforms |1) <> |T)) and ||) <> |0). Consequently, the spin doublet and the
charge doublet are interchanged.

The KM can now be understood as a limiting case of the SIAM. In the case that the
single-occupied states are favoured over the zero- and double-occupied state, namely
for

—€4, U—|—€d > ro, kBT P (A3)

only a pure spin DOF remains on the impurity in the zero-temperature limit. This is
essentially the KM. Via a SWT [67] the standard KM with its Hamiltonian in Eq. (1.3)
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Figure A.1: Flow of the coupling constants J, and J, for the ph-symmetric KM with the bath
exponent 0 < r < 1/2. (Un)Filled circles are (un)stable FPs. After [81].

LM

can be obtained. The Kondo coupling | is related to the parameters of the SIAM
through

1 1
J=2V§ <\€d|+!U+ed|> : (A4)
Here, ph symmetry is maintained and we use a pg-DOS. If we express the KM by its
anisotropic Hamiltonian in Eq. (1.6), with the spin polarisation term |, and the spin-flip
term ], we can make some comments on the RG flow concerning both parameters.
For the metallic case (r = 0) we gain the flow which has already been presented in
Fig. 1.2. For 0 < r < 1/2 the KM exhibits a QPT between the LM and SC phase with
the previously stated SCR FP in the context of the SIAM. In Fig. A.1 the RG flow for
this case is shown.

For ph asymmetry an additional potential scattering term

Hps =V ) cf o (A.5)
kKo

is produced by the SWT with the coefficient

VZ
V:0<1_1> ) (A.6)
2 \leq| U+ eq]

With the help of the two parameters | and V we can describe the RG flow of the KM.
As NRG calculations have established, the low-energy properties of the KM and the
SIAM are identical [25]. Therefore, the FPs are the same and we can refer to their
classification presented in Sec. 2.3.1. In Fig. A.2 we summarise the RG flow for the
three regimes (a) 0 < r < r*, (b) ¥* < r < 1/2 and (c) 1/2 < r. We have already
introduced these regimes in the context of the ph-asymmetric SIAM with r* ~ 0.375.

As the flow for the metallic case (r = 0) is simply towards the SSC FP for V = 0 and
towards the ASC FP for V > 0, we forgo to draw an extra diagram here. In the regime
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Figure A.2: RG flow for the KM with a pg-DOS. The plane is spanned by the Kondo coupling
J and the potential scattering V. The figure is subdivided into three regimes: (a)
0<r<r*(b)r* <r<1/2and(c)1/2 <r. (Un)Filled circles are (un)stable FPs.
After [25].

0 < r < r*, in Fig. A.2(a), and in presence of ph symmetry (V = 0) the unstable SCR FP
separates the flow towards the LM FP from the flow towards the SSC FP. The former
one describes a free impurity spin while for the latter one the impurity spin is screened
by the conduction band. Due to the pg-DOS a residual spin moment :“iff = r/8 remains
unscreened. In presence of the potential scattering V > 0 the ph symmetry is broken
and the flow is either towards the LM or towards the ASC FP. There is a dividing line
for finite V which joins the SCR FP at V = 0. On the one side, for | < ], the flow is
towards the LM FP, which is stable regarding ph asymmetry. On the other side, for
J. < ], the flow is towards the ASC FP. Consequently, the SSC FP is only reached for
strict ph symmetry.

In the second regime r* < r < 1/2, in Fig. A.2(b), above the specific r* the ACR FP
emerges in the plane at finite V. The ACR FP at the critical coupling J." < J. reflects
that for | < J < J. the ph symmetry cannot be restored by reaching the LM FP.
Instead the flow is towards the ASC FP. Only for | < J.” the flow is towards the LM
FP. For r — 1/2 the SCR FP merges into the SSC FP. Hence, for the regime 1/2 < r, in
Fig. A.2(c), in presence of ph symmetry the flow is simply towards the LM FP, while
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in absence of it the flow is towards the LM FP for | < J." and towards the ASC FP for
J <]

A.1.1 Charge-Kondo regime

By the condition in Eq. (A.3), we have related the SIAM to the KM with a SU(2) impu-
rity spin which contains the spinful states of the SIAM. Therefore, the standard KM is
a spin-type KM.

If we instead favour the zero- and double-occupied impurity state over the single-
occupied states, e.g. by a strong attractive Coulomb interaction,

—U, —U—ed > ro, kBT P (A7)

only the chargeful impurity states remain in the zero-temperature limit. This leads to
a KM consisting of a SU(2) impurity spin containing the chargeful zero- and double-
occupied state. Hence, we call the model with a prime: KM/, the charge-type KM. For
the KM’ the FP spectrum and the RG flow diagrams are identical to the ones of the KM
presented above, if we replace the LM FP of the KM by the LM’ FP for the KM’ since
the free moment consists of the two chargeful states.

A.2 Criticality in the BFKM

Since both limiting models of the BFKM, the SBM and the KM, exhibit a QPT under
certain parameters, these QPTs have to occur in the combined model as well. In order
to discuss the FPs and the RG flow of the BFKM we have to set some restrictions: (I)
We omit the potential scattering term and, hence, maintain ph symmetry. Therefore,
the limiting KM contains only the LM, SSC and SCR FP, depending on the specific
choice of r. (II) We use a sub-ohmic bosonic bath exponent, 0 < s < 1, so that a QPT
due to localisation may take place. If no local magnetic field is applied (A = € = 0),
the limiting SBM is in the L FP for all g > 0.

The RG flow of the BFKM, under the restrictions stated above, is given in Fig. A.3. The
horizontal axis represents the limiting SBM with the bosonic coupling g, whereas the
vertical axis represents the limiting KM with the Kondo coupling J.

If we use a constant DOS, in Fig. A.3(a), the LM FP of the free impurity spin is unstable
as J,g > 0. Either the flow is towards the SSC FP for | > 0,¢ = 0 or towards the L
FP for | = 0,g > 0. If both couplings are switched on, there is a competition between
the Kondo screening due to the fermionic bath and the localisation due to the bosonic
bath. Indeed, between both stable FPs, a new unstable BFCR FP emerges and separates
the flow towards both FPs.
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Figure A.3: RG flow for the ph-symmetric BFKM with a pg-DOS. The plane is spanned by the
Kondo coupling J and bosonic coupling g. While the bosonic bath exponent is
in the sub-ohmic range 0 < s < 1, we distinguish the fermionic bath exponent
in(a) r =0and (b) 0 < r < 1/2. (Un)Filled circles are (un)stable FPs. After
[55, 81, 159].

For a pg-DOS with 0 < r < 1/2, in Fig. A.3(b), the LM FP becomes stable for ¢ = 0 and
the SCR FP emerges on the vertical axis at J.. It separates the flow towards the LM and
SSC FP, which we already know from the limiting KM. The SCR FP merges with the
LM FP for r — 0. Anyway, the LM FP is still unstable regarding the bosonic coupling.
Therefore, for any ¢ > 0 and | < ], the flow is towards the L FP. While the BFCR FP
emerges due to the competition between the Kondo screening and the localisation, the
critical coupling J. gpcr > Jcscr ©f the BFCR FP has to be greater than the one of the
SCR FP.

The energy spectrum of the FPs naturally contains purely fermionic energies, purely
bosonic energies and linear combinations of them, cf. Sec. 3.2.2 and Ref. [55]. For the
fermionic FPs, the LM and SSC FP, the bosonic coupling g is renormalised to zero
and the bosonic energies are the energies of a free bosonic bath. For the L FP the
bosonic energies are identical to the energies in the L FP in the SBM with the same
exponent s. While the Kondo coupling term in Eq. (1.33) is SU(2) symmetric, the
bosonic coupling term breaks the spin rotational invariance. Therefore, the fermionic
energies correspond to an anisotropic KM with a renormalised |, to zero and a finite
], for ¢ > g.. Furthermore, J, diverges for ¢ — ¢.™: ], « (¢ — g.)7F.






Appendix B

Critical exponents

Now we want to derive the critical exponents and the hyperscaling relations between
them. For simplicity we only take into account a local magnetic field Hy; = ¢S, ;, but
for a local electrical potential it is straight forward to derive the same behaviour.

We start with a scaling ansatz [61]

Fop = T f(tT*ﬂ,gT*b) (B.1)

for the impurity contribution of the free energy. It depends on the local magnetic field
¢, the dimensionless measure t = (r —r.) /7. of the distance to criticality, a = 1/v and
b= (14x)/2. Here, v is the correlation-length exponent which describes the vanishing
of the temperature scale T* « [t|" bounding the quantum critical region in which the
critical behaviour is observed. With the local magnetisation m,,. in Eq. (2.10) and the
corresponding susceptibility xg o in Eq. (2.11) the critical exponents are defined [61]

by
x (—t)f (B.2a)
<&, (B.2b)

x T and (B.2¢)
xt™ T (B.2d)

To connect the critical exponents B, §, x and 7 to the scaling parameters a and b we
have to work on the scaling ansatz. The free energy F is near the QCP a generalised
homogeneous function in the temperature T > 0 and, therefore, the scaling function f
can be re-written [178] to

F(rTo,eT ) = T (1) (B3)
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with the dimension d = 1 for the Wilson chain concept. If we take the partial derivative
with respect to ¢ on both sides we gain

d d
T’ba—{: f(tT*a,gT*b) - T’la—g f(te) . (B.4)

Multiplying both sides with the temperature T and recognising m,,. = —T% leads to
T <tT_”,§T_b> =T 'me () . (B.5)

To reveal the scaling according to the exponent B, we set ¢ = 0 and T = (—t)/* > 0,
then,

(—1) " mpge (—1,0) = (—8) "#1myoc (—£,0) (B.6)
~ mloc (—t, 0) = (_t)Tmloc (_1/ 0) (B7)

the scaling of m,,. with the exponent § = (1 —b)/a is revealed. Similarly, by setting
t=0and T = " we gain

Mg (0,&) = &7 mye (0,1) (B.8)

and reveal the exponent § = b/(b —1). The other exponents are straight forward
to calculate over the corresponding second derivative and lead to x = 2b — 1 and
vy=(2b-1)/a.

Inserting the exponent relations into each other we finally achieve the hyperscaling
relations

B 1+x ~v(1—x)
y=vx |, 5_1—x and 5—72 . (B.9)

Such hyperscaling indicates that the QCP is interacting [61]. This is, for example, found
for the QCP between the screened and the unscreened phase in the pg-KM [111]. If we
use a local electrical potential ¢, instead of the local magnetisation ¢, the QCP between
the localised and the delocalised phase in the BFAM (with a constant fermionic DOS)
is revealed to be interacting, as well. For this QCP the exponent x is equivalent to the
bosonic bath exponent s [56].

B.1 Critical exponents in the KM and the SIAM

As NRG calculations have established, the low-energy properties of the KM and the
SIAM are identical [25]. Therefore, the FPs are the same and we can refer here to the
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simplier KM with a pg-DOS in the range 0 < r < 1. The exponents of the SCR and
ASC FP in the context of the KM are investigated with the NRG in Ref. [111].

For a local magnetic field & at the impurity site, the local magnetisation m,,. = (S, 4)
obeys via

Myoe(] < Joh=0,T=0) (] =] )F and (B.10)
Mige(] = Jo, T = 0) o 1|75 (B.11)

to the exponents B and 4.

It is pointed out in Ref. [111] that in the full range 0 < r < 1 for both FPs hyperscaling
relations according to Eq. (B.9) are fulfilled. It is interesting to note, that in the range
r* < r < 1/2 the SCR and ACR FP have different exponents but for each FP the set
of exponents obey separately the hyperscaling relations. Anyway, within this regime
there is no easy dependence of the exponents  and ¢ on the bath exponent r. Further-
more, whereas for r < 1 the exponents take non-trivial r-dependent values and obey to
hyperscaling, the exponents are trivial for » > 1 and hyperscaling is violated [25, 111].
These findings suggest to identify » = 1 as upper-critical dimension of the problem,
whereas r = 0 plays the role of a lower-critical dimension [115].

B.2 Critical exponents in the SBM

In the SBM the QPT occurs between a D and L phase. To describe the properties of the
QPT for the sub-ohmic regime 0 < s < 1 in more detail, we exemplary look at the local
magnetisation 1, = (S, 4). It is connected via

mloc(g > 8, €= O/ T= 0) & (g - gc)'B and (BlZ)
Mioe(§ = e T = 0) o |e] 75 (B.13)

to the exponents  and 4.

In the last years there has been a discussion about the values these critical exponents
take in the sub-ohmic regime. For the case 1/2 < s < 1 all agreed that they obey hy-
perscaling relations. Nevertheless, for 0 < s < 1/2 there are two competing opinions.

One group claims that in this regime the exponents take mean-field values: § = 1/2
and 6 = 3. It is argued that by quantum-to-classical mapping [51] the SBM is mapped
to the one-dimensional Ising model with long-range interactions J;; = J/|i —j |1Fs.
While this Ising model obeys mean-field exponents [179-181], the SBM shell obey them
as well. The other group claims that the hyperscaling relations of the exponents hold
for the full sub-ohmic regime with g = (1 —s)/(2s) and § = (1+5s)/(1 —s) and that
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mean-field behaviour is not observed. Consequently, the quantum-to-classical map-
ping fails in their point of view for 0 <s < 1/2.

Although the first publication [182] which claimed hyperscaling relations of the expo-
nents has been withdrawn [153] by the authors and detailed explanations why the NRG
fails to reproduce the correct mean-field values has been presented in Refs. [172, 1,
there are still claims that the NRG works correctly and quantum-to-classical mapping
fails [185, ]. Anyway, the consensus which is reached within the past years is that
the critical exponents obey to mean-field behaviour for 0 < s < 1/2 and show hyper-
scaling for 1/2 < s < 1. This is also supported by quantum Monte Carlo (QMC) [187],
exact diagonalisation (ED) [188] and DMRG [189] studies.

It is pointed out in Ref. [172] that two errors are responsible for the not reproduction
of the quantum-to-classical mapping with the NRG: (i) the truncation of the bosonic
Hilbert space [190, ] and (ii) the mass-flow error [172, ]. The interplay between
those two independent errors leads to a hyperscaling of the critical exponents. Since
we only treat the BF-QIS in the range 1/2 < s < 1, we do not go into the details of
these errors.

B.3 Critical exponents in the BFAM

The QPT at g., namely at the BFCR FP, is of great interest. While the limiting models
of the BFAM enable QPTs with hyperscaling exponents, it is an interesting question
what the fermionic and bosonic influence on the QPT is like.

In the following we focus on the exponent x belonging to the local spin susceptibility

Xs,loc(g =8 T) <T™% . (814)

For the limiting models of the BFAM, the critical exponents have been investigated in
detail. With xg(r) we refer to the exponent x of the SIAM, where the SCR FP has been
analysed. Numerical values for xp(r) in dependence of the fermionic bath exponent
0 < r < 1/2 are given in Ref. [111]. With xg(s) we refer to the exponent x of the SBM
[90]. For the QCP between the D and L FP the exponent x is identical to the bosonic
bath exponent s: xg = s for 1/2 < s < 1. Furthermore, for both limiting models the
exponents obey to hyperscaling relations and, thus, indicate an interacting QCP.

For the BFAM the investigation of the BFCR FP at g. has been done with continuous-
time quantum Monte Carlo (CT-QMC) and NRG techniques in Ref. [57]. There, the
authors identify three types of quantum criticality:

F For the fermionic type, the critical exponents are identical to those of the purely
fermionic STAM with the same r: x(r,s) = xp(7).
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Figure B.1: Exponent types of the BFAM in dependence of the bath exponents » and s. Black
boundaries are explained in the text. Taken from [57].

B For the bosonic type, the critical exponents are identical to those of the purely
bosonic SBM with the same s: x(7,s) = xg(s)

M For the mixed type, the critical exponents satisfy x(r,s) = xg, but the order-
parameter correlation-length exponent, cf. Sec. 2.1, lies between the values for
the SBM and the SIAM: v ! (r) < v71(r,s) < v5'(s).

If xg(s) < xg(r) the bosonic bath should dominate the singular part of the spin re-
sponse. Otherwise, for xg(s) > xg(r) one should find fermion-dominated spin dynam-
ics [55].

Astonishingly, the critical exponent x for the BFAM is simply the smaller of the expo-
nents of the limiting models:

x(r,s) = min(xg(r), xg(s)) . (B.15)

Furthermore, for all combinations (r,s) in 0 < r < 1/2 and 1/2 < s < 1 the critical
exponents obey hyperscaling relations.

In Fig. B.1 we show the type of the quantum criticality for combinations (7, s) in the
ranges 0 < r < 1/2and 1/2 < s < 1. The three types are separated by two boundaries.
The solid boundary, s = 1 — 2r, marks the line of equality of the frequency exponents of
the bare bosonic propagator and the fermionic ph bubble [57]. The dashed boundary?®
is related to Eq. (B.15) and marks the line of equal exponents x(r,s) = xg(s) = s =

xg (7).

2 To draw the dashed boundary in Fig. B.1 a regression function f(x) = 1 — ax” has been adjusted to

the data of xp(r) in Ref. [111].
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