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Chapter 1

Introduction

In solid-state physics one typically has to deal with a large number of particles of
the order 10%°. For such a large number of particles it is not possible to solve the
Schrodinger equation anymore, and one must find a different approach to handle the
problem. One of the most successful methods is the density functional theory (DFT)
[1, 2] which is based on the Hohenberg-Kohn theorem [3]. This theorem states that
a nondegenerate ground state of a system is unambiguously defined by the electron
density. An approximation of this electron density is self-consistently determined by
solving the Kohn-Sham equations [4] which are similar to a one-particle Schrodinger
equation with an effective potential. Since in this set of equations the particles are
noninteracting, the computational effort to solve the problem is significantly reduced.
All many-particle interactions are comprised in an exchange-correlation potential V..
which cannot be denoted exactly. The most common approximations for V. are the lo-
cal density approximation (LDA) where the potential is only a function of the electron
density and the generalized gradient approximation (GGA) where the potential is a
function of the electron density and its first derivative. By use of the DFT it is possible
to compute bond lengths, binding energies and band structures of many systems. For
the development of the DFT Walter Kohn has been rewarded with the Nobel prize in
chemistry in 1998 [5].

However, the DFT often fails to describe strongly correlated systems which are partic-
ularly interesting due to their unusual properties. An example of such an correlation
effect is superconductivity [6, 7] where the electrical resistivity of an material suddenly
vanishes below a critical transition temperature. This superconducting phase was first
discovered by Kamerlingh Onnes in 1911. It took more than four decades until Bardeen,
Cooper and Schrieffer could give an explanation of this effect with their BCS theory.
An electron-phonon interaction leads to an effective attractive electron-electron inter-
action causing the binding of two electrons to a Cooper pair of bosonic-like nature. For
temperatures below the transition temperature these Cooper pairs form a Bose-Einstein
condensate [8, 9] where a large fraction of bosons occupy the ground state forming a
macroscopic quantum state. For the explanation of superconductivity Bardeen, Cooper
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and Schrieffer have been rewarded with the Nobel prize in physics in 1972.
Another prominent example of a strongly correlated system is the Mott insulator [10-
] where a material becomes insulating due to strong correlation effects. The Mott
insulator is a classic example where the DFT fails to capture the correct physics [14].
In contrast to a band insulator, the Fermi energy is located within a conduction band
instead of a gap, however, strong Coulomb repulsions prevent the motions of the elec-
trons.
A third well-known example of a strong correlation effect is the Kondo effect [15]. In
1934 de Haas, de Boer and van den Berg observed the increase of the electrical resis-
tivity of a gold probe contaminated with iron atoms upon lowering the temperature
[16]. This is unusual since typically the resistivity only decreases if the temperature is
lowered. Jun Kondo has been able to ascribe this effect to the interactions between the
magnetic moments of impurity spins and the electron spins of the conduction band
[17]. The Kondo effect will be discussed in more detail later on in Sec. 2.2. As for the
Mott insulator, the DFT is not able to describe the Kondo effect correctly.
Besides impurities diluted in host materials, the Kondo effect is often observed in
quantum dots [18-23]. Quantum dots are zero-dimensional structures which confine
a charge in all three space dimensions and, hence, exhibit discrete energy levels [24]
similar to a particle in a box. Theoretically, such a system can be described by the
single impurity Anderson model (SIAM) [25-27] where an energy level with an on-site
Coulomb repulsion couples to a fermionic bath.
In recent years quantum dots have received much attention since a confined spin in the
quantum dot may be used as a qubit for quantum computers [28-31]. With a quantum
computer one hopes to simulate a quantum many-body system more efficiently than
with a classical computer. Furthermore, it is known that some algorithms can be imple-
mented faster on a quantum computer [32, 33] where the most prominent example is
the Shor algorithm [34, 35] which is used for integer factorization. For the use of a spin
as a qubit it is very important to have a long coherence time and that the spin relaxes
slowly [28], therefore, the time-dynamics of quantum dots are particularly interesting
[36-38].
Another reason why quantum dots are currently in the focus of intense research is that
their magnetic properties may be used for spintronic devices [39-41]. In a spintronic
device the magnetic moment of an electron alone or in addition to the electronic charge
is used in order to increase data processing speed or to decrease the power consump-
tion compared to conventional charged-based devices [42].
Up until now, the most common device that makes use of the spin is a hard disk
drive (HDD) where the spins are used to store information. In a HDD the read heads
use the giant magnetoresistance (GMR) [43, 44] or tunnel magnetoresistance (TMR)
[45, 46] effect to readout the stored information. Both effects are based on the fact
that the electric resistance through two adjacent ferromagnetic layers is dependent on



whether the spins in the layers are parallel or antiparallel aligned. For the discovery
of the GMR effect Albert Fert and Peter Griinberg have been awarded with the Nobel
prize in physics in 2007.

For the application of quantum dots as qubits or for spintronic devices it is crucial to
gain a better understanding of the spin and charge properties of quantum impurity
systems (QISs).

In this thesis we will investigate the equilibrium and nonequilibrium properties of
different QISs. At first, we will consider the Kondo model where a local magnetic
moment of an impurity is coupled via a Heisenberg interaction to a fermionic bath.
We will examine how the Kondo correlations are built up and propagate through the
conduction band. For this purpose we will study the spin-spin correlation function
between the impurity spin and the spin density of the conduction band at a certain
distance. To set the stage for the nonequilibrium calculations, we will first investigate
the equilibrium properties and improve the results found in the literature [47] in the
way that the spin-spin correlation function now fulfills an analytically known sum-
rule. The nonequilibrium results will show that most of the correlations propagate
within a light cone defined by the Fermi velocity. Interestingly, we will also observe
the buildup of correlations outside the light cone which do not decay exponentially.
With a second-order perturbation theory in the coupling, we will be able to reveal that
these correlations are connected to the intrinsic correlations of the Fermi sea which are
already present before the coupling between the impurity and the conduction band is
switched on. Furthermore, we will compute the retarded susceptibility that describes
the response of the conduction band spin density at a certain distance to a small mag-
netic field applied to the impurity spin. Using this susceptibility, we will clarify that
for a real response no correlations outside the light cone are observed.

Moreover, we will present an experiment where a metal-molecule complex is formed
by reacting a perylene-tetracarboxylic dianhydride (PTCDA) molecule, adsorbed on an
Au(111) surface, with a single Au atom leading to the emergence of a radical. The
observed Kondo effect in the scanning tunneling spectroscopy (STS) spectrum is an
unambiguous proof of a local moment formation. A DFT calculation shows that the
local moment resides in a 7r-orbital that is extended over almost the entire Au-PTCDA
complex. This makes this system very interesting for the investigation of interactions
between magnetic molecules and for the usability as spintronic devices since the de-
localized character of the 7r-orbital increases the probability of the local moments to
interact with adjacent complexes. However, a correct physical description of the lo-
cal moment formation and the Kondo effect is not possible with the DFT. Therefore,
we employ a combined DFT+NRG approach where we use the projected density of
states (PDOS) of the m-orbital and the Coulomb repulsion, both obtained from a com-
bination of many-body perturbation theory (MBPT) and DFT calculation, as a first
principle input for our numerical renormalization group (NRG) calculations. We will
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show that the results of the experiment and NRG are in perfect agreement without any
fitting parameters. In particular, the Kondo temperatures, which are extracted by a
temperature-dependent fit of the zero-bias conductance from both spectra, deviate by
only 1 K. In order to provide a reliable method to experimentally extract the Kondo
temperature in a particle-hole asymmetric system, we will make a careful scaling anal-
ysis of various definitions of the Kondo temperature and will demonstrate that indeed
the fit to the zero-bias conductance is the best method.

If two Au atoms are adsorbed on adjacent PTCDA molecules, the STS spectrum exhibits
in some cases a gap around the Fermi energy rather than a Kondo peak. By mapping
the system onto a two impurity Anderson model (TIAM), we will reveal that this gap
is caused by a strong nonmagnetic chemical interaction between the 7-orbitals of both
complexes. The DFT calculations show that the strength of this interaction depends on
the precise adsorption position of the Au atoms on the PTCDA molecules. Only for
certain configurations the interaction is sufficient to produce the gap in the spectrum.
Using our NRG results we will provide a detailed analysis of the occurring quantum
phase transition (QPT) which is caused by a competition between the gain of kinetic
energy due to the entanglement with the substrate and the binding energy gain due to
the chemical interaction between the 7r-orbitals. We will also discuss the relevance of
parity-symmetry breaking for the observation of the gap in the STS spectrum.

At the end, we will consider the equilibrium and nonequilibrium properties of the two
impurity Kondo model (TIKM) which exhibits a QPT if the energy dependence of the
couplings to the conduction bands are artificially neglected. We will demonstrate that
it is possible to restore this QPT in the full energy-dependent model with appropriate
potential scattering terms. Afterwards, the time-dynamics of the spin polarization and
the spin-spin correlation function of both impurity spins after a quench in the direct
spin-spin interaction between the impurity spins will be investigated. For this purpose,
we will examine the two different initial conditions of parallel and antiparallel aligned
spins in the case of constant as well as energy-dependent couplings. We will explain
that the main differences between both initial conditions are caused by the fact that
for antiparallel aligned spins local oscillations between both impurity spins can occur
even without a coupling to the conduction band. It will be shown that a sufficiently
large antiferromagnetic spin-spin interaction prevents a thermalization of the correla-
tion function since in this case the impurities decouple from the conduction band. To
conclude our investigations, we will reveal that the time-dependent behavior of the full
energy-dependent model is essentially the same as the one for the model with constant
couplings. The slight differences originate from details of the energy-dependent model
such as the emergence of potential scattering terms.



Chapter 2

Quantum phase transitions and quantum
impurity models

In this chapter we will briefly discuss the concept of quantum phase transitions (QPTs)
and present the quantum impurity models that are used throughout this thesis.

The following section 2.1 is devoted to the QPTs and explains the different existing
types. In contrast to "conventional” phase transitions, a QPT occurs upon variation of a
nonthermal control parameter at zero temperature and order is not destroyed by ther-
mal fluctuations but by quantum fluctuations. We will consider the properties of the
Kondo model which describes a local magnetic moment that is coupled via a Heisen-
berg interaction to the spin density of a conduction band in Sec. 2.2. The Kondo effect
will be explained and we will discuss the QPT that arises in the Kondo model. For
this purpose, we will analyze how the coupling to the conduction band in an effective
low energy Hamiltonian changes upon lowering the temperature. In Sec. 2.3 the two
impurity Kondo model (TIKM) will be introduced which is an extension of the Kondo
model. In the TIKM two impurity spins are coupled to one conduction band which
gives rise to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction that is an indirect
spin-spin interaction between both impurity spins mediated by the conduction band
electrons. A competition between the Kondo effect and an antiferromagnetic spin-spin
interaction may lead to the emergence of a QPT, and we will clarify under which con-
ditions this QPT occurs. Furthermore, we will consider the single impurity Anderson
model (SIAM) which also includes charge fluctuations instead of only spin fluctuations
in Sec. 2.4. The SIAM describes an energy level with an on-site Coulomb repulsion that
hybridizes with a conduction band. We will analyze the different unstable and stable
fixed points the SIAM passes through upon lowering the temperature and will reveal
that for a large Coulomb repulsion the SIAM can be mapped onto a Kondo model
at low temperature via a Schrieffer Wolff transformation. Afterwards, the impurity
spectral function for small and large Coulomb repulsions will be shown. The spectral
function is of great relevance for scanning tunneling microscopy (STM) measurements
on quantum dots since the differential conductance of a current through the quantum
dot at low temperatures is directly proportional to the spectral function.
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Figure 2.1: Schematic representation of the finite-temperature phase diagrams of impurity
QPT near the QCP. A and B are both stable phases, r is a nonthermal tuning
parameter and r. the position of the QCP. (a) First-order transition: the finite-
temperature region A+B is a simple thermodynamic mixture of the two phases.
(b) Second-order transition: the quantum critical region is bounded by T* « |t|",
where t = (r —r.)/r, is a dimensionless parameter measuring the distance to
the QCP and v is the correlation length exponent. (c) A transition of Kosterlitz-
Thouless type, sometimes also called an infinite-order transition. In contrast to
(b), the two phases are not separated by an unstable fixed point.

2.1 Quantum phase transitions

Phase transitions cause a qualitative change of the properties of a system and arise
from a variation of an external control parameter. In a "traditional" phase transition,
which occurs at finite temperature, a macroscopic order is destroyed by thermal fluc-
tuations. In contrast, a quantum phase transition (QPT) [48-50] takes place at zero
temperature and emerges upon variation of a nonthermal control parameter. In a QPT
order is destroyed solely by quantum fluctuations which always appear according to
the Heisenberg uncertainty principle. A QPT results from a competition between dif-
ferent ground state phases and can be classified into first-order and continuous transi-
tions. The transition point of a continuous transition between the two phases is called
quantum critical point (QCP) and can lead to unconventional behavior of the system
such as non-Fermi liquid behavior.

One type of QPTs are the so-called bulk transitions where the whole system shows
critical behavior. In this thesis, however, we focus on the class of boundary transitions
where only degrees of freedom of a subsystem become critical. In particular, we con-
sider zero-dimensional boundaries where only the contribution of an impurity shows
critical behavior. These types of transitions are called impurity quantum phase transi-
tions. A first example of such an impurity QPT is the anisotropic Kondo model [15, 51]
that will be discussed in the following section 2.2. Note that an impurity QPT is com-
pletely independent of a possible bulk phase transition in the bath.

The interplay between the quantum and classical fluctuations leads in the vicinity of
the QCP to phase diagrams that are schematically depicted in Fig. 2.1.

Figure 2.1a shows the phase diagram of a first-order transition which is a simple level
crossing in the ground state of the system. Here, A and B indicate two distinct sta-



2.2. Kondo model 7

ble phases while the finite-temperature region A+B above the transition point is just a
thermodynamic mixture of the two phases. The parameter on the x-axis r indicates a
nonthermal tuning parameter and r, is the position of the QCP.

A second-order transition is depicted in Fig. 2.1b. The system exhibits an unstable fixed
point at the QCP r = r. which separates the two phases. The so-called quantum critical
region above the QCP is controlled by this unstable fixed point. In this region both
thermodynamic as well as quantum fluctuations are important and its boundaries are
determined by T* « |t|' = |(r — r.)/r.|", where v is the correlation length exponent'.
The physics inside the quantum critical region is governed by thermal excitations of the
quantum critical ground state which may lead to unusual finite-temperature behavior
of the system such as unconventional power laws or non-Fermi liquid behavior.
Figure 2.1c shows a QPT of Kosterlitz-Thouless type. In contrast to Fig. 2.1b, a renorm-
alization group (RG) analysis shows that this kind of transitions are not related to a
unstable fixed point separating the two stable phases. Therefore, a quantum critical
region does not emerge in the vicinity of the QCP and the leading thermodynamic be-
havior shows only one crossover line. At the transition point T* vanishes exponentially.
Since the Kosterlitz-Thouless transition does not show a discontinuity in any derivative
of the free energy at the transition point, it is also sometimes called an infinite-order

transition.

2.2 Kondo model

W. ]J. de Haas, ]J.H. de Boer and G.J. van den Berg observed in 1934 that the electric
resistivity of a gold sample, which was contaminated with a small percentage of iron,
shows a minimum at low temperatures and increases again for even smaller temper-
atures [16]. Since both the electron-phonon scattering as well as the electron-electron
scattering contribution to the resistivity are expected to decreases upon lowering the
temperature, the total resistivity should also only decreases until for T — 0 a constant
residual resistance originating from impurities remains [52]. This counter-intuitive be-
havior indicates that a completely different mechanism must cause the increase of the
resistivity.

It took more than 30 years until Jun Kondo could give an explanation for the observed
increase of the electric resistivity in 1964 [17]. The reason are magnetic exchange inter-
actions between the magnetic moments of the impurities and the electron spins of the

In the present (0+1)-dimensional models there is no independent dynamical exponent which means
z=1
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conduction band. The simplest Hamiltonian describing such a system is the so-called
Kondo Hamiltonian

Hy = _Z:eka koo + ]Slmp (2.1)

Here, a local impurity spin S, couples via an effective Heisenberg interaction J to the

mp

unit-cell volume averaged conduction electron spin s, with

Sc = N 4 chka YapCr'p (2.2)
KK ap

where c%a creates a conduction electron with momentum k and spin «, €1 is the conduc-
tion band dispersion, N the number of unit cells and ¢ is a vector comprising the Pauli
matrices. While for a ferromagnetic interaction (J < 0) the conduction band electron
spins align parallel to the impurity spin, for an antiferromagnetic interaction (J > 0)
the spins align antiparallel enabling spin-flip scattering processes between two degen-
erated states. Employing a perturbation theory up to third order in the coupling ],
Jun Kondo showed that these spin-flip scatterings generate a temperature dependent
contribution to the resistivity which is proportional to & —In(T). This contribution
explains the minimum in the resistivity, however, since — In(T) diverges for T — 0,
this perturbative approach produces unphyiscal results for small temperatures. Exten-
sions to the perturbative approach using many-body techniques also lead to diverging
contributions to the scattering rate below an exponential small temperature T < Ty
where

=D \/pJe 7 2.3)

is the so-called Kondo temperature with p being the density of states (DOS) of the
conduction band. In quantum-field theories such a logarithmic singularity is called an
infra-red problem.

In 1970 P. W. Anderson gave an explanation for the breakdown of the perturbative
approaches by employing a perturbative renormalization group (RG) procedure which
is known as "poor man scaling". In this procedure an effective low-energy model is
generate by perturbatively eliminating high order excitations. Applying the "poor man
scaling" to the more general anisotropic Kondo model

Zeka ko ka+]Z lmPS +]i(sﬁnps +Slymp )
ko

_Zekg fo kg+]z impSc¢ e+ ]L(S:npsc +51mp c )/ (2.4)
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Figure 2.2: Flow of the couplings ], and J, for the anisotropic Kondo model. For —J, > |J |
and J, < 0 the local moment fixed point (LM) on the line (J, < 0,], = 0) is

reached while for all other conditions the system flows to the strong coupling
fixed point (SC) in the upper right corner.

yields differential equations for the flow of the effective couplings. These equations
describe how the couplings of the effective low-energy Hamiltonian change while de-
creasing the bandwidth D and they are given by

. _ .
z 2
inD 1 2.6)

Here we defined | = p] with the DOS of the conduction band p. Dividing Eq. (2.5) by
Eq. (2.6) and afterwards integrating the equation yields

73 — ﬁ = const. (2.7)

The couplings J, and ], are thus located on a hyperbolic curve in the parameter space
(T zs ]~ 1 ) :

The flow of the couplings is depicted in Fig. 2.2. Equations (2.5) and (2.6) reveal that
the flow always stops for ]| = 0. This is the so-called local moment (LM) fixed point
and it is reached for —J, > |J, | and J, < 0. For all other conditions J, remains finite
and leads in the case of a ferromagnetic J, to a sign change of the z-component of
the coupling. In this case the coupling flows to the strong coupling (SC) fixed point
J.,J, = co. The line |, | = —], represents a transition of the Kosterlitz-Thouless type.
If only the isotropic Kondo model | = J, = ], is considered, Egs. (2.5) and (2.6)
simplify to

=—J (2.8)
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Integrating this differential equation yields for the coupling

To

/ "1+ JyIn(Dy/D’)

(2.9)

which diverges at the Kondo ’cernpera‘cure2 Tx = Doeii.

For a diverging coupling | — oo, a bound singlet consisting of the impurity spin and
a conduction band electron spin is formed which decouples from the rest of the con-
duction band. The impurity spin is hence completely screened by the conduction band
electron spins and one obtains a singlet and a free conduction band with one electron
removed from it.

The divergence of coupling | — oo for temperatures T < Ty is the reason why a pertur-
bative approach in the coupling | can yield reliable results only for high temperatures
and brakes down at small temperatures since in this case the coupling can no longer
be considered to be small. The search of a solution which is also valid for T < Ty is
known as the Kondo problem.

K. G. Wilson [53] enhanced the "poor man scaling" approach and devised the nonper-
turbative numerical renormalization group (NRG). He was the first who was able to
solve the Kondo problem in 1974/75 using the NRG. This achievement was awarded
with the Nobel prize in physics in 1982 [54]. The NRG, which will be discussed in
detail in Sec. 3.1, provides the tool to solve the Kondo model for arbitrary parameters
and temperature including the case T < Tx.

Later in 1980 an alternative approach was developed by N. Andrei [55] and P.B. Vigman
[56]. Both applied independently of each other the Bethe-ansatz technique, which was
developed by H. A. Bethe in 1931 to solve the one dimensional Heisenberg model [57],
to the Kondo model in order to construct a complete set of eigenstates. The analytical
results obtained by Andrei and Vigman confirmed Wilson’s NRG calculations.

2.3 Two impurity Kondo model

An extension of the Kondo model is given by the two impurity Kondo model (TIKM)
where, for a specific type of particle-hole symmetry, the competition between magnetic
exchange interactions and the Kondo effect can lead to the emergence of a new QPT.
The Hamiltonian of the TIKM is given by

2
Hriem = Z%C%UCEU + 7). 55.(R;) + Himp (2.10)

Ko i=1

The square-root pre-factor /pJ in Eq. (2.3) is obtained if in Eq. (2.8) also terms up to the order 7
are considered. This pre-factor in Ty is often dropped in qualitative discussions, but it is important
for more quantitative comparison.
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where the impurity spin S; at position R; couples via a Heisenberg interaction J to the
conduction electron spin expanded in plane waves

Zcha Wrcklg/e i k)7 (2.11)

! o

oo’ kk'

The last term H;y,, comprises all operators that act only on the impurity degrees of
fre_)ec_l»om such as a direct spin-spin interaction between the impurity spins Hj,, =
KS$:S, and will be discussed in more detail later on.

The first two terms in Eq. (2.10) generate an indirect magnetic exchange interaction
Kriky between both impurity spins which is known as the RKKY interaction [58-60].
This indirect exchange interaction is mediated by the conduction electrons and can
be ferro- or antiferromagnetic depending on the value 2kgR. Here, R is the distance
between both impurities and kg is the Fermi wave vector.

In order to formulate the model as a linear chain problem that can be solved using
the NRG, which will be discussed in detail in Sec. 3.1, one needs an orthonormal
basis set. However, the local conduction electron states coupling to the impurities
are not orthonormal. Originally, Jones etal. [61, 62] extended the NRG to the TIKM
by mapping the conduction electrons onto orthonormal even (e¢) and odd (o) parity
eigenstates. This transformation is described in detail in appendix A. The Hamiltonian
in this basis is given by

Hrin =Ho + Hine + Himp (2.12)

where

HO Z Z/eceaa €o,u (2-13)

a=e0 o

describes the conduction band that has been divided into two bands, one with even
and one with odd parity symmetry. The interaction between these conduction bands
and the two impurity spins is given by

Hipe :é / /g \/m%'

% (81 + 82) (Ne(IN(€) el + No(€)N, () )
+(§1 — §2)N€(€)No(e/) (CZM dolot cem o e)] de de’. (2.14)
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Here p(e) is the DOS of the original conduction band and N, ,(€) are normalization
factors that depend on the dimension and the distance between the impurities R =
R; — R,. In three dimensions they are for example given by

sin (kgR(1+ §))

2 _
Ne/o(e)lo(e) - 2100 1+ kFR(1+ %)

(2.15)

with D being the half bandwidth. For the derivation of Eq. (2.15) we assumed a con-
stant DOS p(e) = p, and a linear dispersion (k) = vg(|k| — k), where vy, is the Fermi
velocity. The normalization factors also enter the definition of the effective parity DOSs

Pe(o)(e) ) Ne(a)(e)p(e)' (2.16)

where the normalization constant is given by N,(,) = \/ [ de Nez(o) (e)p(e).

Due to the energy-dependent parity DOSs, the Hamiltonian in Eq. (2.14) is particle-
hole asymmetric. Since the energy dependence of the DOS is known to be generally
irrelevant in the Kondo model, Jones etal. [61-63] neglected the energy dependence
Nez/o(e)p(e) = NEZ/O(O)p(O) = NeZ/opo and hence obtained a particle-hole symmetric
model. However, this simplification leads to a RKKY interaction that is always fer-
romagnetic % = —%2 In(2)(N? — N?)2. For a detailed derivation of the RKKY
interaction for constant as well as energy-dependent DOSs we refer the reader to ap-
pendix B. In order to achieve also antiferromagnetic interactions, they included an
additional direct exchange interaction Hiy,, = KS,S, between the impurity spins so
that the total effective magnetic interaction is given by K. = K 4 Kgggy-

Investigating this simplified model, Jones etal. observed two different phases depend-
ing on the ratio between the effective magnetic interaction and the Kondo temperature
Kegs/ Tk For K¢/ Ty — —oo the two impurities form a S = 1 spin which interacts anti-
ferromagnetically with two conduction bands. In the case of asymmetric couplings to
the conduction bands N, # N,,, this results in a two-stage Kondo effect where at higher
temperatures the S = 1 spin is partially screened by the stronger coupled conduction
band and afterwards the residual spin 1/2 is screened by the other conduction band at
lower temperatures. This leads to a Fermi liquid ground state with a §,,, = 77/2 scat-
tering phase shift for electrons in the even and odd channel. In this thesis we denote
this phase as the Kondo phase.

In contrast, for K./ Tx — oo the impurity spins form a singlet S = 0 which decouples
from the conduction bands. Consequently, no Kondo effect occurs and the phase shift
in both channels is zero 6,,, = 0. In the following, this phase called the decoupled
singlet phase.

Jones etal. found that both phases are separated by a continuous QPT [64] with an un-
stable fixed point at the QCP K¢/ Tx ~ 2.2 [62, 63]. Right at the QCP the phase shifts
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J./, change discontinuously and the staggered susceptibility, which is the response to
(S, — S,), as well as the linear coefficient of the specific-heat diverge [62, 64] indicat-
ing non-Fermi liquid behavior.

The spin-spin correlation function between both impurity spins (S;5,) changes contin-
uously through the unstable fixed point. For |K.¢| < Tk the spin correlation function
is given by (5,5,) ~ 0 and the impurities are independently screened. In contrast, for
larger spin-spin interactions the impurities develop magnetic correlations as the tem-
perature is lowered up to T where both impurities are collectively screened with a
finite residual spin-spin correlation for T — 0. Note that the Kondo correlations also
persist in the decoupled singlet phase [63] because otherwise one would always obtain
(5,5,) = —0.75 at low temperatures. At the QCP the spin-spin correlation function is
approximately given by (5,5,) ~ —0.25 for small Kondo couplings | [65]. This is the
midpoint between the values (S;S,) = 0.25 for K./ Tx — —o0 and (5;5,) = —0.75 for
Ko/ Tg — 0o.

In contrast to Jones observations, quantum Monte Carlo (QMC) [66-68] and later on
NRG [69] calculations including the full energy-dependent DOSs have not seen such a
QPT. Taking into account the proper energy dependence of the even and odd DOSs
makes the model particle-hole asymmetric, destroys the QCP and leads to a continu-
ously crossover between the two phases.

Affleck etal. [64] found that the emergence of the QPT is related to a specific type of
particle-hole symmetry. If the model is particle-hole symmetric under the transition

—>C+

C —€o,e

eo,e

Cerp =€ eoo (2.17)

the scattering phase shift can only take the values J,,, = {0, 5} which can be seen if
the boundary conditions of the incoming and outgoing operators

out _ 2i, in

Cege =€ ecea,e

out _ 2if, in

Cevo =€ Ucea,o (2'18)

are inserted into Eq. (2.17). This implies that there must be a QCP where the phase
shifts change discontinuously.
However, if the model is particle-hole symmetric under the transition

—>C+

¢ —€0,0

€o,e

Ceoo —C coe s (2.19)

the phase shifts must only fulfill the condition §, = —¢, which means that they may
take arbitrary values. Consequently, the phase shift changes continuously between the
phases, leading to a crossover rather than a QPT.
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Therefore, if the energy dependence of the DOSs are taken into account, the TIKM
generally does not exhibit a QPT.

2.4 Single impurity Anderson model

A more general quantum impurity system that also includes charge fluctuations is
given by the single impurity Anderson model (SIAM). In the SIAM the impurity is
represented by a spin degenerated energy level with an on-site Coulomb repulsion
which hybridizes with a fermionic conduction band. The SIAM was introduced and
first investigated by Anderson in 1964 [25]. His investigation was a first attempt to de-
scribe localized magnetic states in metals. Although his mean field approach provides
a mechanism for the formation of local magnetic moments, his solution leads to an un-
physical spin-polarized ground state which contradicts the Mermin Wagner theorem
[70].

The Hamiltonian of the SIAM is given by

T t t t T t
HSIAM = Z€FCE,0_CE,U + Zeddtfd(f + UdeTdid\L + Z VF(CE,UdU + dUCE,U’) (220)
ko

ko g

with the dispersion of the conduction band €;, the level energy €, a Coulomb repulsion
U and the hybridization strength V;. Here, c%/g creates a conduction band electron with
momentum k and spin ¢ and d. creates an electron on the impurity with spin ¢. The
dispersion €; as well as €; are measured from the Fermi energy.

The effect of the conduction band on the impurity is completely determined by the

hybridization function

[(w) =r Y d(e; — w) Vi = mp(w)V?(w). (2.21)
k

where p(w) is the DOS of the conduction band. For simplicity we consider only the
case of a constant hybridization function I'(w) = I' = mpV? in the following.
If the impurity is decoupled I' = 0, the energy level is unoccupied for €; > 0, occupied
with one electron for €; < 0, U +¢; > 0 and doubly occupied in the case U + ¢, < 0.
Switching on I' causes these states to be mixed up. However, if the coupling to the
conduction band is weak, the above picture helps understanding the properties of the
system for different temperature regimes. In the most interesting case for ¢; < 0,
U+ e; > 0 and a small hybridization I' < U, |e4| the system shows a variety of dif-
ferent properties depending on the temperature regime. Under a RG transformation
these temperature regimes can be related to different unstable and stable fixed points.
For each fixed point the system exhibits a characteristic value of the effective local mag-
netic moment of the impurity ylg. In the following, we will briefly discuss the different
fixed points the system passes through upon lowering the temperature [26, 27].
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For large temperatures all impurity configurations are equally populated and the ef-
fective local magnetic moment is ;l/lgff = 1/8. Under a RG transformation this regime is
associated with the unstable free-orbital fixed point.

If the temperature is lowered, the unstable valence fluctuation fixed point is reached.
This fixed point is only present in the particle-hole asymmetric case €; # —U /2. Here,
the situation corresponds to the case where either the singly occupied n; = 0 or the
doubly occupied n,; = 2 state can be removed from consideration because in the effec-
tive low energy Hamiltonian its excitation energy is shifted to infinity. The remaining
states are equally populated so that the effective local magnetic moment in this regime
is given by ]/lgff =1/e6.

Upon further decreasing the temperature, the system passes over to the LM fixed point
in which only the n; = 1 configuration of the impurity is present. In this regime the
SIAM can be mapped to a Kondo model with an additional potential scattering term
via a Schrieffer-Wolf transformation [71]

+ g = +
Hin et = Zehc%gc%g +7 Simpsc + Z Kep e, (2.22)

ko kE o

where the Heisenberg coupling and the potential scattering are given by

1 /2T 2r
= | =+ 2.23
ol ”(\ed’+u+€d> 229
1 r r
K=— - . 2.24
= (5w ren) 22
Note that if the model is particle-hole symmetric ; = —U/2, the scattering term van-

ishes and the simple Kondo model with p] = % is obtained. The magnetic moment
in this regime is ]/lgff =1/4.

If the temperature is further lowered, the behavior of the SIAM is similar to the one
of the Kondo model. In particular, for T — 0 the stable SC fixed point is reached
where the coupling to the conduction band diverges p] — 0. This corresponds to the
situation where the impurity is strongly coupled to the conduction band electron state
at the impurity site so that both degrees of freedom are frozen out. Consequently, the
effective local magnetic moment in this regime vanishes ‘Mgff =0.

In contrast to the case discussed above, for I' > U there is always a direct transition
from the free orbital fixed point to SC fixed point without passing through the valence
fluctuation or LM fixed point. Therefore, only for I' < U and I' < |¢4] a local magnetic
moment is formed on the impurity.

The formation of local moments has also a crucial effect on the conductance through
a quantum impurity when it is placed between two leads. In experiments the en-
ergy level can be changed by applying a small gate voltage V, and it is then possible
to pass a small current through the impurity. At low temperatures the differential
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Figure 2.3: Impurity spectral function of the SIAM in the particle-hole symmetric case ¢; =
—U/2 forT <« U (red curve) and T > U (blue curve). For T > U only one
broad peak at the Fermi energy with half width T is observed. In contrast, for
I' <« U a three peak structure typical for a Kondo effect with a very narrow Kondo
resonance at w = 0 is observed. NRG parameters are A = 1.8, N, = 1200 and a
broadening b = 0.5.

conductance is directly proportional to the spectral function of the quantum impurity
%(vg) x pg(w = eVy) [72]. A measurement of the differential conductance as a func-
tion of the gate voltage V, generally yields two peaks where the differential conduc-
tance is amplified. These peaks correspond to the cases in which either the unoccupied
state n; = 0 or the doubly occupied state n; = 2 is shifted to the Fermi energy e = 0.
Between these two values the differential conductance is suppressed. This phenomena
is known as the Coulomb blockade [73-75].

However, the Kondo effect opens a new channel for transport due to the strong en-
tanglement with the conduction electrons. Figure 2.3 shows the spectral function of
the impurity p;(w) in the particle-hole symmetric case €; = —U/2 for I' < U and for
comparison also for I' > U. In the latter case only one broad peak at the Fermi energy
with width T' is observed. The spectral function in this regime is given by

1 T

pq(w) = 1 lim ImGy(w +i6) = —

_— 2.25
T =0t T (? + I? ( )

with the Green'’s function of the impurity G;(w + id).

For I' < U the spectral function looks completely different. The formerly broad peak
splits into three peaks, two broad peaks at the energies w = €; and w = €; + U,
which correspond to charge excitations, and a very narrow "Kondo resonance" at the
Fermi energy which can be related to spin fluctuations of the local moment. The
half width of the Kondo resonance is approximately given by the Kondo temperature
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Tx. Interestingly, the height of the Kondo resonance is independent of the Coulomb
repulsion U and is determined by the phase shift of the conduction band electrons ¢

[76-79]

.2
pa(w =0) =SH71T§5>- (2.26)

This three peak structure is typical for the Kondo effect and the Kondo resonance at
w = 0 leads to a strong enhancement of the differential conductance g—{/ (Vg =0).






Chapter 3

Methods

In the last decades the interest in quantum impurity systems (QISs) has risen signifi-
cantly, among other reasons because they may be used as qubits for quantum comput-
ers. However, a theoretical treatment of these systems is difficult. One major problem
is the coupling to a continuum of excitations with arbitrary small energies which pos-
sibly results in infrared divergences in perturbative treatments. A classic example of
this difficulty is the Kondo problem which has been presented in Sec. 2.2. The numeri-
cal renormalization group (NRG) was originally developed by Wilson [53] to solve the
Kondo problem in a systematic and non perturbative way. However, the NRG proved
to be suitable to solve other problems as well, e.g. the symmetric [26] and asymmetric
[27] single impurity Anderson model (SIAM). Nowadays, the NRG is a commonly
used method to solve many different QISs [80] and numerous extension were imple-
mented, e.g. the coupling to a bosonic bath [31, 52] or even a mixture of fermionic and
bosonic baths [83].

In the following Sec. 3.1 we will introduce the basic concepts of the NRG. Since it is
beyond the scope of this thesis to consider all the extensions of the NRG, we restrict our
discussion to the variants used in this work: the time-dependent numerical renormali-
zation group (TD-NRG) is described in detail in Sec. 3.2 and the calculation of dynamic
correlation functions is presented in Sec. 3.3. At the end, we will give a brief overview
about the calculation of potential scattering terms of an effective low energy Hamilto-
nian in Sec. 3.4. We will also discuss some benchmark calculations since this method
has been developed to calculate the renormalized parameters of an effective Anderson
model and we adapt it to fulfill our purposes.

3.1 Numerical renormalization group

In this section we will introduce the NRG. At first, the general structure of a Hamilto-
nian which can be solved by the NRG is discussed. Afterwards, the three major steps
of the NRG are presented: (i) logarithmic discretization of the bath, (ii) mapping the

19
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model onto a semi-infinite chain, and (iii) solving this chain iteratively. The discussion
below primarily follows the presentation of Ref. [50].

3.1.1 Structure of the Hamiltonian

The general structure of a QIS consists of three parts that are given by
H= Hbath + Hint + Himp ’ (31)

where Hy,.y, describes the bath/conduction band, Hiy,, the quantum impurity and Hj,
the interaction between the bath and the impurity. The contribution of the bath is given
by

Hpath = ), €ixChkoCiko / (3.2a)

ik,o

where the index i denotes different conduction bands. The fermionic operator Cj,k,a
creates an electron with spin ¢ and momentum k in the conduction band i and €; is
the dispersion of the corresponding conduction band.
The impurity is described by different energy levels which couple to the baths. The
interaction between the baths and the impurity described by H;,,, is thus given by

t n
Hpe =YY Vijk (Ci,k,adj,a + dj,zfci,k,(7> - (3.2b)
i) ko

Here d}ta denotes a creation operator of the energy level j and V, ;. describes the k-
dependent hybridization between bath i and energy level ;.
The specific form of Hiy,, which describes the impurity remains arbitrary at this point.
The only requirement is that the Hilbert space is small enough so that Hj,, can be
diagonalized exactly.
For simplicity we will drop the indices i for the baths and j for the energy levels in the
following discussion. This means that we consider a model with only one bath and
one energy level. However, a generalization to a model with more than one bath or
energy level is straightforward.

The effect of the bath on the impurity is completely determined by the hybridization
function I'(w):

T(w) =7 Vid(e — w). (3.3)
K

For the simple case of a constant hybridization V;, = V Eq. (3.3) can be written as

I(w) = nVp(w), (34)
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where p(w) is the density of states of the conduction band.

We assume that p(w) lies completely in the interval [—D, D] so that we have a band
width of 2D. It was shown in [84] that if we are only interested in the impurity contri-
bution to the physics, the Hamiltonian can be rewritten in energy space as

D D
H = Hirnp + Z / de g(e)a:,aae,rf + Z / de h(e) (d;ae,a + daa:,a) ’ (35)
7 Db b

") fulfills

with the dispersion g(e) and hybridization %(e). The fermionic operator a.;

the standard anticommutation relation {a c o ,az/ U/} = 6(e — €')6, , and annihilates
(creates) a conduction band electron with energy € and spin ¢. The two Hamiltonians

(3.2) and (3.5) have the same action on the impurity if [84]

hle(w))?, (3.6)

where e(w) is the inverse function to g(€) (gle(w)] = w). Eq. (3.6) connects the new
dispersion g(e) and hybridization h(e) with €, and V;. For a given hybridization
function I'(w) there are many possibilities to divide the energy dependence between
g(€) and h(e). This feature is used in [84] to handle energy dependent hybridizations
within the NRG. For a constant hybridization function I'(w) = T, within the interval
[—D, D] Eq. (3.6) can be satisfied by €(w) = w ( corresponding to g(€) = €) and h*(e) =
I'y/ . This leads to the solution which Krishna-Murty et al. already derived in [26].
In this approach the one dimensional energy representation of Eq. (3.5) was arrived by
expressing the conduction band states in spherical waves around the impurity.

In the following discussion the energy cutoff of the conduction band D is used as the
energy unit and thus set to D = 1.

3.1.2 Logarithmic discretization

Following Wilson’s proposal [53] the conduction band is now discretized on a logarith-
mic mesh. As shown in Fig. 3.1 this defines a set of discretization points
x, = tA"", n=0,12,... (3.7)

with the so-called discretization parameter A > 1. The width of the interval between
two points is given by

d =A" (1 - A_l) . (3.8)

Due to the logarithmic discretization the width of an interval shrinks logarithmically
with the interval index n. Within each interval now a complete set of orthonormal
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Figure 3.1: The discretization parameter A introduces a logarithmic set of intervals. The
impurity couples to all energies of the continuous conduction band which is de-
scribed by the hybridization function I'(w). Adapted from Ref. [80].

functions is introduced and the conduction band electron operators a., are expanded
in this orthonormal basis. Here it is necessary to distinguish between positive and
negative energies. Therefore, the expansion of the band electron operators contains
two new fermionic operators a2 and b. Because the impurity directly couples to only
one energy mode in each interval, all other energy modes which appear in the bath
Hamiltonian are neglected. This is the major approximation of the NRG. Since each
interval now consists of only one energy mode, we have transformed the continuous
band into a discretized one which is shown in Fig. 3.2. As can be seen, the number of
representative energy modes of each interval becomes more dense around the Fermi
energy and contains only a few high-energy states. This is justified by the fact that we
are more interested in the low temperature behaviour of the system and thus energies
around the Fermi energy play the dominant role.

After the expansion of 4., and only keeping one energy mode in each interval, the
Hamiltonian is given by

H =Hip + Y (&5 00+ E Bl obie )

n,o

}Z(ff(vn M+7nbm) (vate+ 7o) dr) (3.9)

no
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A T'(w)

Figure 3.2: From each continuous energy interval only one energy mode is kept. The impurity
couples to the discrete energy levels of the conduction band. Adapted from Ref.

[80].

with
2 +,n
o= / de T(e) (3.10)
+,n
+ [T deT(e)e
Cu = deT(e) (3.11)

and the convention
+,n X, —n —Xp41
/ de = / de, / de = / de . (3.12)
xn+1 —Xp

A complete derivation of Eq. (3.9) can be found in [80] and a detailed discussion of an
energy dependent hybridization function I'(w) and the importance of Eq. (3.6) is given
in [84].

3.1.3 Mapping on a semi-infinite chain

In the next step of NRG algorithm the Hamiltonian of Eq. (3.9) is mapped on a semi-
infinite chain where the impurity only couples to the first site of the chain, cf. Fig. 3.3.
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Figure 3.3: The model is mapped onto a semi-infinite chain which is often referred as the
Wilson Chain. The impurity couples only to the first site of the chain with the

strength %) The on-sites energies ¢;, hopping parameters t; and the coupling

to the impurity %’ are defined by I'(w). Adapted from Ref. [80].

After a Householder transformation which transforms the operators a,, and b,, to a new
fermionic operator c,, the Hamiltonian takes the form

4 T +
H :Himp + %O Z (daco,a + CO,UdO')
P

. t t t
+ Z [encn,acn,a + tn <Cn,acn+1,¢7 + Cn—&-l,acn,a)} (3~13)
o,n=0
1
with & = / de T(c) . (3.14)

-1

The operator C,(:(), annihilates (creates) an electron on the n-th site of the so-called Wilson
chain. The on-site energies €, and the hopping parameters f,, are defined by I'(w) and
have to be in general calculated numerically [80]. For the simple case of a constant
hybridization function I'(w) = T, these parameters can be calculated analytically and
the hopping parameters are given by

I+AHA-AT"Y ap

N T N —= 07 (3.15)

Since for a constant hybridization function I'y the model is particle-hole symmetric, all

on-sites energies must vanish €, = 0. In the limit of large n the expression for the
hopping parameters reduces to

1 Ay
tn—>§(1+A )A (3.16)

and we can see that t,, exponentially decreases with the distance from the impurity.
This originates from the logarithmic discretization and is vital for the NRG because
this guarantees the separation of the energy scales.
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Furthermore, the coupling between the impurity and the first Wilson site is sometimes
multiplied by the factor [55]

1A+1
in order to compensate the shortcoming of the NRG to underestimate the coupling. In
this thesis it will be marked if the A, factor is used.

3.1.4 Iterative diagonalization

In the previous section the Hamiltonian was mapped onto the form of the semi-infinite
chain of Eq. (3.13). In the following we will define an iterative renormalization proce-
dure for this semi-infinite chain. At this step finally the renormalization group (RG)
character of the NRG enters.

The chain Hamiltonian Eq. (3.13) is written as a series of Hamiltonians Hy; in which H
is reached in the limit N — oo:

H= lim A-N"Y2g (3.18)

N—oco

with

N-1 g t t
HN :A( )/2 (Hlmp + ;O Z(dUCO,U + CO,(TdU)
I

N N-1
+ + +
+ Z €nCn,oCno Tt Z tn(cn,acnﬂ,a+Cn+1,acn,a)> . (3.19)
o,n=0 o,n=0
(N-1)

The scaling factor A /2 has been introduced to cancel the N dependence of the last
hopping parameter ty_;. This yields a hopping parameter of the order O(1) which is
useful for the discussion of fixed points.

It is straight forward to derive the RG transformation of the NRG

N/2 + + t
Hy 1 =VAHy +AY ) <€N+1CN+1,UCN+1,¢7 +tn(eNeCNt1e T CN+1,aCN,a)> (3.20)

g

with the starting Hamiltonian

Hy =A"12 <Himp +Y eoch o0 + % Y (dheo, + cg,gd(,)> : (3.21)
[ [

Equation (3.21) describes a two-site cluster which is formed by the impurity and the
first site of the Wilson chain.
The next step is to set up an iterative scheme for the diagonalization of Hy using the
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recursion relation of Eq. (3.20). Therefore, we assume that the problem for a given N
has already been diagonalized

Hylr)y =En(M)|r)n,  r=1,...,N;, (3.22)

with the eigenstates |r)y, eigenenergies Ey(7) and the dimension of the Hamiltonian
N;. The basis of Hy, 4 is then given by the product states

7;8) N1 =17y @ [s(N +1)) (3.23)

consisting of the eigenbasis of Hy and a suitable base |s(N + 1)) of the added Wilson
site, e.g. |0), (1), |4), |T}) for a fermionic bath. In this basis Hy; can be written as

Hy1(rs,7's") =(r;s|Hyya|r'; ")
N/2 t
:\/KEN(r)dr,r’és,s’ +A Z EN+1 <S|CN+1,¢7CN+1,0

g

+ AN/2 Z tN ((7’,‘ S‘C+N,UCN+1,0’ + C-II-\/-l-l,(TCN,O"r/; Sl)) . (324)

(28

S/>5 /

r,r

A further diagonalization of Hy 1 (rs,7's’) in Eq. (3.24) yields new eigenvalues Ey_ 1 (w)
and new eigenstates |w)y,; which are related to the basis |r;s)y, via the unitary
matrix U:

’w>N+l :Zuw,rs r;5>N+l . (3.25)
rs
For simplicity the ground-state energy is set to zero after each diagonalization.
With this method, however, long Wilson chains cannot be diagonalized. Since the num-
ber of states increases by a factor (in general this factor is given by the dimension of
the basis |s(N + 1))) when a new site is added, the Hilbert space grows exponentially
with the chain length N. Therefore, the dimension of the matrices becomes very large
after a few iterations and the matrices cannot be diagonalized any longer.
To avoid this problem a simple truncation scheme is introduced: after each diagonal-
ization only the N; eigenstates with the lowest many-particle energies are kept. This
leads to a fixed dimension of the Hilbert space and a linear increase of the computation
time with the chain length. A justification of this truncation scheme is given in the next
section 3.1.5. Suitable values for N, highly depend on the model, therefore, different
calculations with increasing N; should be done till the results are converged.
Furthermore one usually wants that the results also converge with the number of iter-
ations [86] which means that the RG transformation has reached a stable fixed pointl.
We can write Eq. (3.20) symbolically as Hy,; = 7 [Hy| and a fixed point is a Hamil-

1 This corresponds to a zero temperature T = 0 calculation. For a finite temperature one has to stop

at a certain iteration. For more details see sec. 3.1.5.
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Figure 3.4: Energy-flow of the lowest eigenenergies of a free electron gas with A = 1.5 and
N, = 1000 kept states, (a) shows only the odd and (b) only the even iterations.
The fixed point is reached for N > 10 iterations.

tonian H" that remains invariant under that transformations: 7[H"] = H". In fact T
has no fixed point but Hy., = T>[Hy] = T[T[Hy]] has one. The reason for this lies
in the even-odd asymmetry, e.g. if the model has for even iterations in average an even
number of electrons, they can form a singlet ground state while for odd iterations one
electron spin will be left over. In the numerics a fixed point is characterized by a set of
many-particle energy levels that repeat themselves when the iterative diagonalization
is performed twice. Figure 3.4a shows the so-called level- or energy-flow of the free
electron gas which means the lowest many-particle energies in dependence of the iter-
ations N for odd iterations while Fig. 3.4b shows the level-flow for even iterations. For
A = 1.5 the level-flow of the free electron gas shows a stable fixed point for N > 10,
therefore, the chain length in this case should be chosen larger than 10.

3.1.5 Calculation of impurity properties

Beside the low many-particle energies the NRG is also able to calculate thermodynamic
expectation values of an operator O. In general the expectation value is given by

(0) = %Tr [e—ﬁHo] , (3.26)

where f is the inverse temperature and Z is the partition function. In the NRG the
Hamiltonian H is approximated with the discretized and truncated version Hy

_N-1
(0) zZiTr [eﬁA : HNO] (3.27)
N
1 _
e PNEN() L Or) N (3.28)

_TNr
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with the eigenstates Hy |r)y = En(7)|r) 5 and the partition function Zy = ), e PNEN(T)
Here we have introduced the iteration dependent inverse temperature

By =BAT T . (3.29)

In the NRG the expectation value of an operator is calculated in the following way:
We choose a constant value B of the order O(1) and set By = B ~ 1. This effectively
means that we introduce an iteration dependent tempemture2 Ty which decreases
exponentially with N

N-1

Ty=A 7 (3.30)

™I =

Finally, we evaluate Eq. (3.28) and get a series of expectation values O(Ty) at different
temperatures Ty for each iteration N.

As mentioned above the lowest eigenenergies are of the order O(1) due to the rescaling
of the energies. Together with a fixed B this leads to less and less contributing high
energy states because they are exponentially reduced by the Boltzmann factor e PENT),
Since these high energy states do not contribute significantly to Eq. (3.28) they can be
neglected. This provides the justification why the truncation of these high energy states
is a good approximation.

If we want to evaluate Eq. (3.28) for a finite temperature T > 0 the number of iterations
N, the discretization parameter A and the inverse temperature B have to be chosen
such that T = Ty is fulfilled.

3.2 Time-dependent numerical renormalization group

The TD-NRG is an expansion of the NRG and was developed by F. B. Anders and A.
Schiller [87, 88] to track the real time dynamics of a QIS after a sudden quench at time
t = 0. Recently, Nghiem and Costi presented an improvement for the TD-NRG that
also allows multiple quenches [89]. However, in the following we will restrict ourself
to the case of only one quench.

This quench perturbs an initial Hamiltonian H " and the system is henceforth described
by a final Hamiltonian H/ = H' + AH. Both Hamiltonians H' and H' are of the
form of Eq. (3.1). The basic strategy of the TD-NRG is to calculate the equilibrium
density matrix with H " and compute the time-evolution of this density matrix with the
perturbed Hamiltonian H’. Therefore, one has to diagonalize both Hamiltonians using
the NRG and calculate the transformation matrix that rotates the initial eigenbasis into

2 Note that in the employed program the definition of the series in Eq. (3.18) is slightly modified

to H = limy_,o %(1 + A_l)A_(N_l)/ 2HN and all equations adapted accordingly. Therefore, in the

N—
used program the iteration dependent temperature is given by Ty, = %(1 + Afl)AfTl 1

=l
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‘ 0 ——- —_— m m+1 - N
to | tm+1  tN-1

Hm Rm7N

Figure 3.5: The Wilson chain of length N is divided into a subchain of length m and the "en-
vironment" R, . In the TD-NRG the Hamiltonian H,, is viewed as acting on the
full chain of length N, but with the hopping elements ¢,,,. .., fy_; all set to zero.
Adapted from Ref. [88].

the final eigenbasis.

However, for an accurate description of the time-evolution all energy scales are relevant
and one needs a complete basis set. This is problematic in the NRG since high energy
states are truncated at each iteration. To circumvent this problem in the TD-NRG these
truncated states are stored on a hard disk drive (HDD) and a complete basis set is
constructed out of the NRG eigenstates. Therefore, all states that contribute to the
time-evolution are considered.

The discussion below primarily follows the presentation of Ref. [55].

3.2.1 Complete basis set

In the previous Sec. 3.1 an iterative NRG solution was presented in which in each
iteration step the Wilson chain is enlarged by one additional site. An alternative inter-
pretation that is used in the TD-NRG is to start with the full chain of length N where
at first all hopping matrix elements ¢, are set to zero. At each successive step another
hopping matrix element is switched on, until the complete Hamiltonian Hy; is recov-
ered. The Hamiltonian H,, with m < N and t,, = 0 for all n > m always acts on the
Fock space of the whole chain of length N

Hy |t a1, an) =E 1, 01,0 an)- (3.31)

Here, the product state |r,a,,, 1, ..., ay) is the eigenstate of H,, belonging to the eigenen-
ergy E;" and {«a;} denotes the configuration of the i-th site that does not couple to rest of

dN"" where d is the number

the Wilson chain. Each eigenenergy has a degeneracy of
of distinct configurations of each site. The degeneracy stems from the N — m decou-
pled "environment sites", denoted by R,, 5 in Fig. 3.5. In the following, we will use
the shorthand notation |r,e;m) for the eigenstates where the "environment" variable
e={a,1,..., 0y} encodes the N — m site labels.

When the hopping matrix element ¢,,,; is switched on, the new eigenstates of H,,

are obtained from the unitary transformation

reim+1) =Y Uy, |7, yyiq, €5 m). (3.32)

r/‘merl
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An alternative notation is given by

¥ esm41) = Y Py [a q]|r apg€5m), (3.33)

741

r,re,

with Py e, q] = U, .y and ¢/ encoding the N — m — 1 site labels {a,,,,...,a,}.
Since in the NRG high energy states are discarded at each iteration in order to keep
a manageable number of basis states, we divide the states at each iteration in two
distinct classes: the discarded high energy states |/, e; )4, and the kept low energy
states |k, ¢; m}kp. If all eigenstates of the final iteration N are also regarded as discarded,
all discarded states form a complete basis set and the following completeness relation
holds:

N
Yo Y |Lem)gis ais(le;m| =1. (3.34)
=m

M=Mmin le

The summation over m starts from the first iteration m,;,, at which states are discarded.
Equation (3.34) can obviously be divided into two complementary parts:

1, = Z DI esm) s ais (1 €ml, (3.35)
mlnl e

+ al ! !/

L= Y Y eim)g a(l,eiml. (3.36)

m'=m+11,¢
The completeness relation can therefore be rewritten as
1=1,+1. (3.37)

Since the Operator 1, projects onto the states which are retained at iteration , it can
be expressed by the kept states

=Y |k e;m)ip p (k, e;m]. (3.38)
ke

3.2.2 Time-evolution of a local Operator

The time-evolution of an expectation value of a local operator is given by

O(t) =Tt [p(+)O] (3.39)
N
Z dlS l 2 m|p )O|l/e;m>disl (340)
m=mpy, e
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where we used the basis set {|l,¢;m) 4} that was introduced in the previous section.
Inserting the completeness relation (3.37) between p(t) and O yields

N
Z Z chs Z € m’p( ) <1; +1z) O’lIE;m>diS' (341)
=m

m min L€

After further transformations, which are discussed in detail in [88], we obtain

trun

Z ZZ s,e;m|p(t)|r, e ;m)(r, ¢ ;m|Ols, e;m). (3.42)

M=Mpmin 1,8 EE

trun

Here, the resticted sum ) requieres that at least one of the states r and s is discarded
7,8

at iteration m. In the following we make the assumption that the operator O acts on
the degrees of freedom of the impurity or on close by sites 7 such that all states are
still available (i.e. 1 < m,;,). Such a local operator O is independent of and, therefore,
diagonal in the environmental degrees of freedom,

(r,e’;m|Ols,e;m) =6, 4O} (3.43)

If we use the NRG basis set generated for the perturbed Hamiltonian H’, which is
f

motivated by the time-dependence of the density operator p(t) = e~ HH 0™, we

obtain

trun

Z Y eEED oM gred (i), (3.44)

M=Mupin 7,8

where we used the standard NRG approximation H’|k,e;m) ~ EJ'|k,e;m). The re-
duced density matrix pi (1) is given by

o) =Y (s, e;m|pg|r, e;m). (3.45)
e

Since Eq. (3.44) is the centerpiece of the TD-NRG approach several comments should
be made about it. At first, we want to emphasize that no restrictive assumptions were
made about p,, it can be an arbitrary density of states. Second, all states of the finite
Fock space are retained and therefore all energy scales are taken into account.
Nevertheless two approximations were made in Eq. (3.44). The first one is the conven-
tional NRG approximation 2 |k, e;m) ~ E{'|k, e;m). However, Wilson [53] showed that
the associated error in thermodynamic quantities is perturbative and small because
of the separation of energy scales due to the logarithmic discretization. The second
more significant error originates from the discretized finite-size representation of the

continuous bath. Because of the limited energy resolution at low energy scales, Eq.
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(3.44) may become inaccurate for times t > 1/Dy, where Dy is the energy scale of
the N-th site. However, the NRG can reach arbitrary low energy scales and thus the
TD-NRG arbitrary long times. Furthermore, a continuous spectrum is necessary for a
complete relaxation in the system and the discretization may lead to unphysical oscil-
lations [90, 91]. One way to minimize these discretization errors is discussed in Sec.
3.2.5.

3.2.3 Reduced density matrix

In order to calculate the time-dependence of a local operator, we still need to compute
the reduced density matrix p;erd(m) in Eq. (3.44). In the basis set of the initial Hamil-
tonian H' the density matrix p) has a simple representation. If we start from thermal
equilibrium, p, is given by e Py Z; where Z, is the initial partition function. However,
in Eq. (3.44) the reduced density matrix was constructed for the NRG eigenstates of the
final Hamiltonian H/ , therefore, we have to transform between the two basis sets.

To simplify the notation we distinguish the two sets by the labels. In the following
the NRG states of the initial Hamiltonian H' will be marked by an index i, for exam-
ple |I;,e;;m). The NRG states belonging to H' will be labeled as before without any
indices, as in |I,e;m). In the basis of the initial Hamiltonian H' the reduced density

matrix is given by

d,
pﬁirio(m) =) _(si eismlpo|r; em). (3.46)

€

Similar to Eq. (3.37) we can write a completeness relation using the NRG states of H i

1=I, +1I,, (3.47)
with
— = ’o ro
Ly =Y Yl esm ) ailieim| (3.48)
m/:mmin ZI{/C;
and
L = Y|4 e5m) (gi, e5m]. (3.49)
qi/€;

Here we changed the notation from 1,, to I,, as we shifted the iteration m’ = m from
Eq. (3.35) to Eq. (3.38). This allows us to sum over all states g; of a given iteration m.
Inserting Eq. (3.47) two times into Eq. (3.45) yields four contributions

ot =p (m) + ol (m) + oo, (m) + 5, (m) (3.50)
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with

/

o (m) =Y s, e;m| Lo Il Ir,esm),  (p,p = ). (351)
e

In the following we restrict our attention to the case where p, corresponds to thermal

equilibrium. In this case the only relevant combination is given by

P;rJr(m) = Z(S, e; m\lnfpol,;: v, e; m)
e

=2.) ) (s.esmlqi, ei;m) {qi, ei; mlpo|a;, e;m) (g, eimlr, e;m). (3.52)

e ! /
qi;i €is€;

The terms p,, (m), p., (m) and p;,” (m) describe how high- and low-energy states of
H' are coupled and are only important if p, contains significant contributions from
high-energy states. If we start from a state well removed from thermal equilibrium, we
have to take all combinations of Eq. (3.50) into account as it is discussed by Nghiem
and Costi in Ref. [89].

For the simple case that we only consider p; .7 (m), the overlap matrix elements
(q;,e;;m|r,e;m) are independent of and diagonal in the environment degrees of free-

dom
<qi/ e;;m|r, e;m) :5ei,esqi,r(m)' (3.53)

Here we have introduced the reduced matrix S(m) which records the overlap matrix
elements between the NRG eigenstates of H' and H. A systematic way to compute

the matrix S(m) is detailed in the appendix of Ref. [35]. With S(m) we obtain p;," (m)
red,0
qidi

oLy (m) = Y 8y, ()52 (m)S, (m). (3.54)
qiqi

by a simple rotation of p',“""(m) into a new basis

We now elaborate a recursion equation which allows us to compute pred’o(m) recur-
sively from pred’o(m +1). For the last iteration N the reduced density matrix is given

by

1 _ggeN
red,O _ ﬁEs- (3'55)

= —e i
S/l Sili 7.
ZZ
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N
with Z; =} . e PEi . To execute the sum over e; in Eq. (3.46) we set ¢; = {a;, ¢!}, where
e, is the state variable for the environment R, +1,N- Substituting I HpOI,]: 41 for py in
Eq. (3.46) and using the overlap matrix elements

(si e mlki ei;m+1) =Py (@11 (3.56)
yields
red,0 o retain P P* red,0 1 7
psi,ri (m) - Z Z k?,si [D‘m—&-l] ki, [‘Xm—s—l] pk’~,k~ (m + ) (3~5 )
i1 kK, v

retain
The sum ) is restricted to the states retained at iteration m + 1. For the case

ki ki
m = N — 1 the sum runs over all states of the final NRG iteration. If at least one of

d,0
s, (

the states s; or r; is discarded at iteration m, the reduced density matrix p; . (m) van-

ishes because of the orthogonality of the basis set.

3.2.4 TD-NRG algorithm

In the following we will present the different steps of the TD-NRG algorithm. To
evaluate the time-dependence of an operator O at a desired temperature T, one first
has to select the discretization parameter A and the chain length N such that T = Ty,
cf. Sec. 3.1.5. Afterwards two simultaneous NRG runs are performed, one for the
Hamiltonian H' and another for H/. All eigenenergies of these two Hamiltonians are
stored up to the final iteration N and at each iteration m the overlap matrices S(m)
of Eq. (3.53) are computed. This information, as well as the matrices Py [a,,]| are
stored on a HDD. After both NRG runs finished, the equilibrium density matrix of
Eq. (3.55) is calculated using the eigenenergies of the initial Hamiltonian H'. At this
point the TD-NRG starts backward iterations beginning from iteration m = N. For
each backward iteration the following three steps are performed:

(1) The matrices Py [a,,] are used to calculate 0 (m — 1) from "% (m) using Eq.
(3.57).

(2) With the help of the overlap matrices S(m — 1) and Eq. (3.54) p™%° (m — 1) is rotated
into the basis of the final Hamiltonian H’.

(3) Using Eq. (3.44) the contribution of iteration m to O(tj) is calculated simultaneously

red(

for all times of interest ;. Subsequently p™" (m) can be deleted from the memory.

These steps are repeated until iteration m = m,,;, is reached, below which no states
have been discarded.
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3.2.5 Restoring the continuous bath: the z-trick

It was already mentioned in Sec. 3.2.2 that the discretization of the continuous bath
may lead to errors like unphysical oscillations [90, 91]. Oliveira and co-workers [92]
already presented in the context of the equilibrium NRG a way how to reduce dis-
cretization errors. In the so-called z-trick a z dependent logarithmic discretization
according to [1,1\_2,/\_2_1,...,A_Z_”_l,...} is introduced. Unphysical oscillations
can be removed by integrating the expectation values with respect to 0 < z < 1 which
mimics a continuous bath.

We use the same method for the TD-NRG by computing the time-evolution of Eq.
(3.44) for each value of z; = i/N,, withi =1,...,N,, and average over all the different
realizations. Here N, is the number of all the different z-values and should be chosen
in multiples of 4 which produces the best results [92].

3.3 NRG Green’s functions

The NRG is not only suitable for the calculation static properties, but also local dynam-
ical quantities can be calculated with it. In the following, a method for the calculation
of dynamical correlation functions of QISs in equilibrium with the NRG is presented.
Like the TD-NRG it is based on a complete basis set of the Wilson chain. In contrast
to all previous methods [93-96] this approach has no issues with the correct mixing
of different energy shells. Due to the complete basis set, phenomenological patching
algorithms that merge contributions of different energy shells and often suffer from
overcounting of contributions become obsolete. Furthermore, the complete basis set
ensures the fulfillment of spectral sum rules independently of the number of kept
states. Hence, the spectral functions become more robust to truncation errors.

Below, we will first discuss the derivation of a discrete spectrum of an impurity Green’s
function. This discussion primarily follows the presentation in [97]. Afterwards, we
will describe how to get a smooth spectrum by replacing the delta functions with some
smooth distributions. At the end, an improvement for the calculation of impurity
Green’s functions of the SIAM is presented. In this approach the impurity Green’s
function is not calculated directly with the NRG but the correlation part of the self-
energy by expressing it as a ratio of two impurity correlation functions.

3.3.1 Derivation of the NRG Green’s function
In general the retarded Green’s function is given by
Gap(t) =—i0(t)Tr [p [A(t),B]_,], (3.58)

with [A(f),B]_, = A(t)B—sBA(t) and s = +1/ — 1 for bosonic/fermionic operators A
and B. As it was already mentioned in Sec. 3.2.3 for the TD-NRG, the thermodynamic
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density operator p is in thermal equilibrium only given by the states of the last iteration
N. The reason for this is that the states for all iterations m < N are exponentially
reduced by the Boltzmann factor e PH" and can therefore be neglected. The density
operator is thus given by

1 _
p=oe M=) pllN)(LN| (3.59)
1

with p; = efﬁE}V/ZN and Zy =Y efﬁE’N.
Inserting the completeness relation Eq. (3.37) into the first term of the commutator of
Eq. (3.58) yields

Tr [pethAe_thB] =Y ) (L e;m|Ae ™\, ¢/, m") (I'e'; m|Bpe' |1, e; m)
lLem l/,e',m’

=Y ) asLemlAe M, ¢ im) g il €' m|Boe'™ |1, ¢;m) g
Lemy ¢

+ 3 ) aisllem|Ae™ ke i (K, € m|Bpe™ |1, ¢;m)

Lem k¢
+ YN (e m(Boe™ [k, e;m)yy 1y (K, €;m| AeT L € m) .
kem ¢

(3.60)

For the second term of the commutator of Eq. (3.58) one can easily derive a similar
expression. The first line of Eq. (3.60) represents the case where m’ = m, the second
m' > m and the third m’ < m. Here we made use of Eq. (3.38) which connects the
kept states of iteration m to the discarded states of all later iterations m’ > m. This
allows us to sum over equal shell contributions only. In the following we will drop the
indications "kp" and "dis" and use the index [ for a discarded state while the index k
represents a kept state at a certain iteration m.

Since the states |1, e;m) and |k, e; m) are both eigenstates of H,,, we will use the standard
NRG approximation H|s,e;m) ~ E_'|s,e; m) which is justified by the energy hierarchy
due to the logarithmic discretization. After a Laplace transformation, we obtain for the
first term of Eq. (3.60) and the corresponding second term from the commutator

Giy 5(2) == Y (I NIA|I; N)(I'; N|B|I N)e_ﬁE'N —se P
AB\Z2) == ; ; ; ; ,
A z+EY —EY

(3.61)

where we used the orthogonality of the states and the form of the density operator p
in Eq. (3.59), so that p|l,e;m) = 0 for m < N. Therefore, only the last iteration m = N
contributes in the sum over all iterations m.

However, since the kept states |k, e; m) are not orthogonal to |/; N), the summation over
all energy shells has to be evaluated for the last two terms in Eq. (3.60). Inserting the
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completeness relation (1,, + 1,;) into these two terms and their corresponding second

terms from the commutator, we finally obtain

—5
GlfllB ; ;mm;ZAZk )0 k m)By (m)iz TE—E (3.62)
and
lll Nil 1
Gag( B, v (m)ps(m) Ay (m) ——————, (3.63)
mZm:mle:kk’ kk R

where we used
(k,e;m|Alle;m) = §"¢ 8, Ay (m). (3.64)

Here n, denotes the number of fermions in the environment times the total number of
fermions created by A. The total phase factor for both operators A and B is given by
s"/]* = 1 assuming that the operators A and B cause the same change of the particle
number. The contribution G”(z) describes negative and G"/(z) positive frequency ex-
citations because E; — E; > 0 applies for all iterations. The reduced density matrix is
given by

o (m) =Y (k,e;m|o[K',e;m), (3.65)

and has already been introduced in Eq. (3.45).
The full Green’s function G, 3(z) is then given by

Gap(2) =Gup(2) + G p(2) + Gap(2) (3.66)

and computed in two steps. First, the contribution of GZ’B(Z) is calculated at the end
of the final NRG iteration N. Afterwards, the NRG proceeds, similarly to the TD-NRG,
with backward iterations starting from m = N — 1 and ending at iteration m = m,,;,
below which no state has been discarded. For each backward iteration the density
matrix pi‘f L (m) is computed from oy k(m + 1) using the recursion relation of Eq. (3.57)
and the contribution of G 5(z) and G4 5(z) to the full Green’s function G, p(z) is
calculated.

3.3.2 Broadening

With the procedure described above we only obtain a discrete spectrum that consists
of delta functions é(w = f, ;) at frequencies f,; = E, — E; > 0. For a comparison with
the experiment we have to smooth the spectrum and replace the delta functions by a
smooth distribution P(w = f, ;). There are many option how to choose such a smooth
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Figure 3.6: Logarithmic Gaussian P, (w — f,) for different values of the broadening b and
frequencies f, .

distribution but the most frequently used [93, 96, 95] and the one we are using in the

following is the logarithmic Gaussian

2

—-b"/4

e —In(lw ) 2 /12

PLG(Wifr,s) :We In(|wl/ frs)"/ b (3.67)
1,5

with the broadening parameter b that determines the width of the logarithmic Gaussian
peak. Typical values for the broadening are b = 0.3 — 0.8. The logarithmic Gaussian
is shown for different broadenings b and frequencies f, ; in Fig. 3.6. In contrast to a
normal Gaussian, the logarithmic Gaussian gives little weight to low energy excitations
and more weight to higher excitations. Furthermore, the broadening of P, is propor-
tional to the energy which seems to be a better choice for a logarithmic discretization.
However, the difference in using a normal Gaussian is small [50].

Due to the proportionality of the broadening to the energy, a peak of width I at fre-
quency () is well resolved provided that () < I'. However, a peak at higher frequencies
may be insufficiently resolved due to the low logarithmic resolution at such high fre-
quencies. Therefore, the width and height of such a high energy peak may be captured
incorrectly. An example of such high energy peaks are the resonant level peaks of a
SIAM. A method how to handle this problem for a SIAM is given in the next section.
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3.3.3 Self-energy of the single impurity Anderson model

In the following we will present an improvement to the calculation of the STAM Green'’s
function. In this approach, which was developed by Bulla et al. [99], the correlation part
of the one-particle self-energy is calculated directly by writing this quantity as a ratio
of two correlation functions. The advantages of this method are the explicitly included
single-particle broadening and the accurate calculation of the self-energy. An accurate
self-energy of the SIAM is particularly important for applications to dynamical mean
field theory (DMFT), where the self-energy of a lattice in infinite dimensions is mapped
onto an impurity self-energy [100, 101].

As described in Sec. 2.4, the Hamiltonian of the SIAM is given by

H =Y ech oo+ Y Vi (dheys + chody ) + Y eadid, + Udfd;dld,. (3.68)
o

k,o k,o

The final goal is to calculate the impurity Green’s function G, .+(z) which can be

written in general as

1

.k (3.69)

ded;(z) =< dv‘d; > (z) =

Here, we introduced the one-particle self-energy ¥, (z) that includes all effects of the
bath on the impurity. We now express the self-energy in terms of standard impurity

correlation functions, using the equation of motion
z < A|B> (2)+ < [H,A] |B> (z) = ([A B]_,), (3.70)

with [A(t),B]_, = A(t)B —sBA(t) and s = 1 if both A and B are bosonic operators,

while s = —1 for fermionic operators. The correlation functions are defined as

< AB> (z) = — i/ow e ([A(t), B]_.) dt. (3.71)

Inserting A = d, and B = d! into the equation of motion Eq. (3.70) yields
(z—€1)G, 1(z) — U < d,dyds|dy > (z) = Y Vi < ppldh > (z) = 1, (3.72)
orro k

with the new two-particle correlation function < d,drd,|d} > (z) and the one-particle
correlation function < ck,0|d$ > (z). The letter one can be associated with G, ,(z)

via the equation of motion Eq. (3.70) using A = ¢, and B = dl

(z =€) < ¢pldg > (2) = ViG, (2) =0. (3.73)
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Inserting the result of Eq. (3.73) into Eq. (3.72), we finally obtain

Fy(2)
((Z - €d) — Um - A(Z)> ded:; (Z) = 1/ (374)
where we have defined
Vz
F,(z) =< d,did,|d} > (z) and A(z) = Zz ke . (3.75)
k - %k

A(z) is a given quantity and can be calculated exactly. Its imaginary part is related to
the hybridization function I'(w) of Eq. (3.3) via the equation

[(w) =-ImA(w+i07) = Y VZ(w — €). (3.76)
k

By a comparison of Eq. (3.74) with Eq. (3.69) we obtain for the total self-energy
T,(2) =A(z) + 5 (2), (3.77)

where the contribution of the Coulomb correlations to the self-energy ZUU (z) is given
by

u _ Fa(z)
»d(z) = um (3.78)

The impurity Green’s function is calculated in the following way: The spectral density
4 4 (z) and F,(z) is calculated using NRG as described
above in Sec. 3.3.1. Via a Kramers-Kronig transformation the corresponding real parts

of both correlation functions G

of the correlation functions are obtained and the self-energy X, (z) is computed using
Eq. (3.77). Inserting X, (z) into Eq. (3.69) finally yields the impurity Green’s function
and its spectral density is given by

1 )
pdwd;(w) = —EImded;(w +i07). (3.79)

The main advantage of using Eq. (3.69) instead of the impurity Green’s function which
has been directly calculated with the NRG is that the single-particle broadening A(z)
is included exactly and thus the resolution of the high energy peaks is improved. Fur-
thermore, Eq. (3.78) provides an accurate way for the calculation of the correlation part
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of the self-energy 23’ (z) which is needed in a DMFT application. An alternative and
more naive approach for the calculation of £ (z) is given by

S5 (z) =z —€;— Az) = G, 4 (2). (3.80)
However, Eq. (3.78) is numerically more stable due to the division instead of the sub-

traction of correlation functions. Therefore, one should always use Eq. (3.78) for the
calculation of the impurity self-energy.

3.4 Parameters of an effective low energy Hamiltonian

In this section we will show how to determine the parameters of an effective low energy
Hamiltonian by assuming that the fixed point spectrum describes a Fermi liquid. This
method was originally developed by Hewson etal. [102] to calculate the renormalized
parameters of an effective Anderson model. However, we will modify this method and
use it to calculate the effective potential scattering terms of a particle-hole asymmetric
two impurity Kondo model (TIKM), where the effective low energy Hamiltonian is
given by the Hamiltonian of the free-electron gas plus potential scatterings.

The main idea of this method is to calculate the Green’s function of the effective Hamil-
tonian expressed in the form of a semi-infinite Wilson chain and treating the lowest
particle and hole excitations E,, and E;, of a NRG calculation as if they were excitations
of this effective low energy Hamiltonian.

3.4.1 Effective low energy Hamiltonian

As described in Sec. 2.3, the TIKM exhibits two different low temperature phases de-
pending on the ratio between the Kondo temperature Ty and the effective spin-spin
interaction between the impurity spins K. For kgTi > K¢ the model is in the Kondo
phase where the impurities are magnetically screened by the conduction electrons. In
the case of large antiferromagnetic interactions K. > kgTx the model is in the decou-
pled singlet phase where the two impurities are locked in a singlet and decouple from
the conduction band.

In both cases the effective low energy Hamiltonian of the TIKM can be related to the
free-electron Hamiltonian which consists of two free Wilson chains if the conduction
band is separated in conduction bands with even and odd parity. In a particle-hole
asymmetric case the effective low energy Hamiltonian also exhibits potential scatter-
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Figure 3.7: (a) The fixed point energy levels of the particle-hole symmetric TIKM in the Kondo
phase at even iterations correspond to the (b) fixed point energy levels of the
free-electron gas at odd iterations. The same is true for the odd iterations of the
TIKM and the even iterations of the free-electron gas.

TIKM parameters: constant even and odd densities of states (DOSs), p] = 0.3,
N,/N, =1and K = 0D. NRG parameters: A = 3 and N, = 2000.

ings and thus two potential scattering terms must be added to the two free Wilson
chains. The total effective low energy Hamiltonian is then given by

(N-1)/ +
HO N _A [ Z 2 tn o ( zx n+1,0 zx n,o + Ca,n,aca,n+1,¢7)

={e,0},0 n=0

E Zena vcna an0+ 2 VcaOU aOa]- (3-81)

a={e,0},0n=0 a={e,0},0

with the hopping elements ¢, , and onsite energies €, , introduced in Sec. 3.1.3.

The potential scatterings ) ,— (.1 ¢ Vacllolgcalolg are the only terms that might addition-
ally appear in the effective Hamiltonian. Since the TIKM is invariant under the ex-
change of the impurity spins S; <> S,, all combinations that mix even and odd sites
like ¢! J0i0Co/eio are excluded because they break the parity symmetry. Furthermore,
the combinations CZ,O,UCD‘,O,U with « = {e, 0} are the only that yield marginal contribu-

SN /4

tions since ¢, o , & A , 27,53]. All other combinations that include operators

of Wilson sites i > 0 only lead to irrelevant contributions because with increasing N
they are decreasing even faster than ¢, , €.g. ¢, 1, & AR

For the decoupled singlet phase, where no Kondo effect occurs, the impurity spins
form a singlet, the Kondo coupling is renormalized to zero | — 0 and hence the impu-
rity spins decouple from the conduction band. The fixed point spectrum in this phase
is, therefore, given by the spectrum of the free-electron Hamiltonian plus potential
scatterings which is described by the Hamiltonian Hj y.

In the Kondo phase the coupling is renormalized to | — oo and the impurity spins are
screened by conduction electrons. As shown in figure Fig. 3.7a and b in this phase the
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fixed point spectrum of the even iterations of the particle-hole symmetric TIKM cor-
responds exactly to the fixed point spectrum of the free-electron Hamiltonian at odd
iterations. The same applies for the odd iterations of the TIKM and the even iterations
of the free-electron Hamiltonian. This can be explained by the fact that the electrons
that screen the two impurity spins are locked into a singlet with these impurity spins
and therefore each chain has one free electron less. Hence, the fixed point spectrum
at iteration N can be described by the free-electron Hamiltonian at iteration N — 1. As
before, in the particle-hole asymmetric case potential scatterings have to be added to
the free-electron Hamiltonian. Therefore, the fixed point spectrum of the particle-hole
asymmetric TIKM in the Kondo phase at iteration N can be described by H n_.

3.4.2 Algorithm

With the equation of motion technique of Eq. (3.70) one can calculate the Green’s func-
tion of the zeroth Wilson site i = 0 which is given by

1
w — VWA(N_D/Z - eO,zxA(N_l)/z - A(N_l)t%,agll,zx (w)

Gooa(w) = , (3.82)

where g;; ,(w) is the Green’s function of site i = 1 described by the Hamiltonian H y.
Here H; y is the part of the effective low energy Hamiltonian of Eq. (3.81) without the
potential scatterings and the Wilson chains are starting at sites i rather than at the sites
0. The Green'’s function g1 ,(w) is given by

1
(w) = , (3.83)
gllla w — el,aA(Nil)/z - A(Nil)tiagZZ,a(w)

with ¢, ,(w) the Green’s function of site i = 2 described by the Hamiltonian H, 5. An
extension of this procedure can be used to calculate g, ,(w) in the form of a continued
fraction. The one-particle excitations E, of chain « are given by the poles of the Green’s
function in (3.82)

Enc - VocA(Nil)/Z - €O,D¢A(N71)/2 - A(Nil)té,agll,zx(Ea) = 0. (3~84)

If Eg/a (N) and E,?,,X (N) are the lowest particle and hole excitations of the corresponding
chain a from the ground state of the Hamiltonian H, y, then the effective potential
scattering V, is given by

7, = lim A~ONU2ED (N) = g = ANTH g1 o (Ep 1 (N)) (3.85)
= lim —A*(Nfl)/ZEgla(N) — €0 — A(Nfl)/Zt%,agn’“(_Egla(N))- (3.86)

N—oo
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In the limit of N — co, which means at low temperatures, when the model can be
described by the effective Hamiltonian of Eq. (3.81), the obtained effective potential
scattering V, should not only be converged and hence be independent of N but also
both excitations, particle and hole, should yield the same effective V.

The Green'’s function gll’“(Egllx(N )) is calculated iteratively using the form of a contin-
ued fraction of Eq. (3.83). The iteration starts with the calculation of Green’s function
of the last site gNN,a(Egl(X(N)) =1/ (Egﬂ(N) - (—:N,“A(N_l)ﬂ) and inserts this result into
the corresponding form of Eq. (3.83) for gN,W,M(Eg/a(N )). Afterwards this result is
inserted in gN,ZN,Z,,X(ES,“(N )). This procedure can be continued until 811,a(E2,a(N )
is reached.

To measure the potential scattering in the Kondo phase the same algorithm as de-
scribed above is used. However, since in this case the Wilson chains in the effective low
energy Hamiltonian have one chain site less, the calculation of the Green’s function
811,a(E2,a(N )) slightly changes. This time the iteration to compute the Green’s func-
tion g11,4(Ep o (N)) starts with gy_in_1,4(Epa(N)) = 1/ (VAE 4 (N) — ey_1,, AN 72
rather than with gNN,a(Egla(N ). The factor v/A needs to be added so that the energies
of the last iteration N are on the energy scales of the Wilson sites N — 1. The effective
potential scatterings obtained from this method will be marked with an index K, e.g.

V, k, to distinguish them from the potential scatterings obtained from the full chain.

3.4.3 Benchmark calculations

In Fig. 3.8a a benchmark calculation of a free electron gas for constant even and odd
DOSs and with initial potential scatterings V, = 0.2D and V, = —0.1D is shown. The
measured effective potential scatterings V, and V, coincide with the input parameters
V, and V, for every iteration which must be the case since this model is exactly de-
scribed by the Hamiltonian of Eq. (3.81) for every iteration N.

In the following Ve,( k) and VO/( k) always denote the measured effective potential scatter-
ings of the last iteration where they have already been converged and are independent
of the iteration N.

Figure 3.8b shows the measured effective potential scatterings of a TIKM for constant
DOSs, N,/N, = 1 and with initial potential scatterings V, = 0.2D and V, = —0.1D.
The Hamiltonian of such a system is given by

t t
Hrimpot =Hriem + ) |:V6Ce,0,ace,0,a + ViC0,0,0C0,0,0 (3.87)
a

where Hrpgy is the Hamiltonian (2.12) of the TIKM and ¢, /, o, the operator that creates
an electron on the zeroth site of the even/odd Wilson chain. The measured scattering
terms V, and V, are plotted against the coupling p] for different antiferromagnetic di-
rect impurity spin-spin interactions K. These large antiferromagnetic K ensure that the
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Figure 3.8: Benchmark calculations: (a) A free electron gas for constant even and odd DOSs
and with potential scatterings V, = 0.2D and V, = —0.1D. The measured ef-
fective potential scatterings V, and V, coincide with input parameters for every
iteration. (b) The measured potential scatterings of a TIKM for constant DOSs,
N,/N, = 1 and with potential scatterings V, = 0.2D and V, = —0.1D plotted
against the coupling pJ for different large antiferromagnetic direct impurity spin-
spin interactions K. For small couplings pJ the measured scatterings coincide
with the input parameters but with increasing pJ they are renormalized to larger
values. This effect of renormalization is stronger for smaller K.

NRG parameters: A =3, Ny = 2000 and N = 60.

decoupled singlet is the ground state and, therefore, the effective low energy Hamilto-
nian at iteration N is given by H, 5y where both chains have the full length of N sites.
For small couplings p] the measured scatterings coincide with the input potential scat-
terings V, and V,. With increasing p] the absolute values of the effective potential
scatterings grow since the input potential scatterings are renormalized to larger values.
However, the effect of renormalization becomes weaker for larger K. The reason for this
is that with increasing K the impurity spins form a singlet at higher temperatures and
hence decouple earlier from the chain which leads to a cutoff of the renormalization.
Therefore, for a large K the potential scatterings are almost not renormalized even for
large p]J.

Figure 3.9a shows the measured effective potential scatterings V, x and V, x of a TIKM
in the Kondo phase for constant DOSs, N,/N, = 1 and with potential scatterings
V, = 0.2D and V, = —0.1D plotted against the coupling p] for different large ferro-
magnetic interactions K. The ferromagnetic interactions ensure that the model is in
the Kondo phase at low temperatures. As before, for small couplings pJ the mea-
sured potential scatterings coincide with the input parameters. This time, however,
with increasing p] the potential scatterings are renormalized to smaller values. As in
the decoupled singlet phase the effect of renormalization becomes weaker for larger
ferromagnetic interactions K. This is caused by the fact that for larger ferromagnetic
interactions between the impurity spins the effective coupling /.4 to the conduction
band decreases [103] since the second part of the interaction between the impurity
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Figure 3.9: Benchmark calculation: a) The measured potential scatterings V, , and V, x of a
TIKM in the Kondo phase for constant DOSs, N,/ N, = 1 and with potential scatter-
ings V, = 0.2D and V, = —0.1D plotted against the coupling pJ for different large
ferromagnetic direct impurity spin-spin interactions K. With increasing pJ the po-
tential scatterings are renormalized to smaller values. This effect is stronger for
smaller K. b) The measured potential scatterings V, and V, for the same model.
Using V, and V, in the Kondo phase yields potential scatterings that do not agree
with the input parameters V, = 0.2D and V, = —0.1D. NRG parameters: A = 3,
N, = 2000 and N = 100.

spins and the conduction bands in Eq. (2.14), which is proportional to « (S; — S,), is
suppressed leading to the weaker renormalization.

For comparison Fig. 3.9b shows the measured effective potential scatterings for the
Wilson chains of the full length V, and V, for the same TIKM. The absolute values of
the measured scatterings are much larger than the input parameters V, = 0.2D and
V, = —0.1D and even start growing with increasing coupling pJ. This demonstrates
that one really needs to distinguish the two phases and take the different chain lengths
in the effective low energy Hamiltonians seriously. Therefore, one has to use V,, in
the decoupled singlet phase and V,, x in the Kondo phase in order to get reliable esti-
mates for the potential scatterings.

The appendix A of Ref. [27] derives a connection between V, and V,  for constant
DOSs which is given by3

L 1 In(A) 1

Voxk(Vy) =— ———==. 3.88
Dc,K( vc) T — A_1 sz ( )

Note that the potential scatterings occurring in (3.88) are measured in units of the band

width D and are, hence, dimensionless. Figure 3.10a shows a comparison between the

In the appendix A of Ref. [27] an additional factor 2 occurs in the formula. However, different bench-

mark calculations for the free-electron gas with various discretization parameters A have shown that
this factor 2 yields results in which the measured scatterings are twice as large as the input scatter-
ings. The reason for the difference is not clear since all relevant definitions in this work and in [27]
seem to be equal.
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Figure 3.10: Benchmark calculation: a) A comparison between the directly measured V,,
and the calculated V,,,(V,, k) for the free-electron gas with potential scatter-
ings V, = 0.2 and V, = —0.1 plotted against the discretization parameter A. The
absolute value of the calculated V,,(V,, k) is slightly larger than the directly

measured V,,,. b) The measured scatterings V, of Fig. 3.9b are used to cal-
culate the effective potential scatterings of the TIKM in the Kondo phase. NRG
parameters: A =3 and N, = 2000.

directly measured V,,, and the calculated V,,,(V,,,x) for the free-electron gas with
initial potential scatterings V, = 0.2 and V, = —0.1 for different discretization param-
eters A. V,,,(V,,,x) denotes the potential scattering calculated with Eq. (3.88) for the
decoupled singlet phase where the measured V,,, x was used as an input parameter.
The absolute values of the calculated V,,,(V,,, k) are slightly larger than the directly
measured V,,, and the input parameters. The difference between V,,, and V,,,(V, /. k),
however, is always smaller than 7%. In Fig. 3.10b the measured scatterings V,,, of Fig.
3.9b are used to calculate the effective potential scatterings of the TIKM in the Kondo
phase. A comparison with Fig. 3.9a shows that the absolute value of the calculated
V, k(V,) are only slightly larger than the directly measured V, x.

Therefore, for constant DOSs we can in principle either use the directly measured
V. k or the calculated V,, (V) to determine the effective scattering of the TIKM in the
Kondo phase. However, we will always use the directly measured potential scatterings,
namely V, ¢ in the Kondo phase and V, in the decoupled singlet phase.

The method outlined above will be used to determine the automatically generated
effective potential scattering terms of an energy dependent particle-hole asymmetric
TIKM in order to find corresponding counter potential scatterings which make the
model particle-hole symmetric again. However, as can already been seen in the bench-
mark calculation above, even if one uses V,, in the decoupled singlet and V,, x in the
Kondo phase, the renormalization may lead to completely different potential scatter-
ings than the original input parameters V, and V,. Therefore, in general it will not be
possible to simply set V, = —Ve(/K) and V, = —VO(,K) to make the model particle-hole

symmetric again.






Chapter 4

Spatial and temporal propagation of
Kondo correlations

While the equilibrium properties of the Kondo problem were studied over the last
decades and are now theoretically well understood by virtue of Wilson’s numerical
renormalization group (NRG), cf. Sec. 3.1, and the exact Bethe-ansatz solution [104],
its nonequilibrium properties are subject to recent and active research [37, 88, 105-115].
In this chapter we investigate the fundamental question how spatial Kondo corre-
lations are building up in time when the impurity spin §imp is initially decoupled
from the conduction band using the time-dependent numerical renormalization group
(TD-NRG) which has been introduced in Sec. 3.2. For this purpose we examine the
time-dependent spin correlation function x(7,t) = <§imp§ (7)) (t) in the Kondo model.
The correlation function x (7, t) vanishes for times t < 0 since the impurity spin and the
conduction electron spin density are initially uncorrelated. Therefore, we can use it to
measure the buildup of entanglement between the impurity spin and the spin density
at distance R = |7|.

The equilibrium spatial correlation function x, (¥) = lim,_,, x(7,t) of the Kondo model
must be recovered for infinitely long times. This correlation function has been investi-
gated by Affleck and co-workers [116-119] using field theoretical methods. However,
the field theory yields results that are only valid for distances R < {x or R > iy
and lacks the possibility to determine the correlation function for intermediate values
R =~ (k. Here ¢x = vp/Tx is the characteristic length scale at which the crossover
between different power-law decays in x.(7) occurs [47, 120-122], where vy denotes
the Fermi velocity and Ty the Kondo temperature. A standard interpretation of the
so-called Kondo length scale (g is that the impurity spin is screened by a surrounding
cloud of conduction electrons with a spatial extent of ¢y [116-119, 123]. Furthermore,
the equilibrium correlation function x,(¥) has also been recently investigated using a
real-space density matrix renormalization group (DMRG) [120]. Therefore, the two ref-
erence points t = 0 and ¢ = co are known and can be compared with our calculations.
Borda was the first who calculated the equilibrium spatial correlation function for the
Kondo model using the NRG [47]. He has realized that the mapping that was used to

49
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calculate the two-impurity Kondo model with the NRG [61, 62, 64] can also be used to
calculate x,(7), where the second impurity spin has to be removed and the spin den-
sity s(7) at distance R is introduced to probe the spatial correlations. In this approach
the calculation of spatial correlations becomes accessible by mapping the problem onto
two 7-dependent linear combinations of conduction electrons, one with even and one
with odd symmetry under spatial inversion around the midpoint 7/2. For each dis-
tance R a single two-band NRG run is required and, therefore, the numerical effort to
calculate the R-dependent correlation function is high.

In the following, we will present an improved mapping compared to the one of Borda.
With our modifications we are able to (i) accurately reproduce the analytically known
sum rules [47, , ] for the spin-correlation function at least in one dimension,
(ii) reproduce the analytical spin-spin correlation function of the decoupled Fermi sea,
and (iii) obtain sign changes in x,,(¥) at short and intermediate distances which are ex-
pected for RKKY mediated correlations and have also been observed recently in DMRG
calculations [115]. In contrast, Borda reports [47] that the correlation function X, (7)
is negative for all distances R and couplings J. We observe oscillating and power-law
decaying x.,(¥) < 0 only for distances R > g which is in accordance with previous
analytical 1D field theory predictions [47, ]. Since for distances R < ¢k the Kondo
screening is incomplete, alternating signs can be found in x,, (7). However, we are not
able to tell the exact differences of our mapping to the one in [47] because Borda does
not provide a detailed derivation of his mapping.

For the nonequilibrium correlation function x(7,t) we find for an antiferromagnetic
coupling | > 0 that, as a consequence of spin conservation, a ferromagnetic correla-
tion propagates with the Fermi velocity vp away from the impurity. In addition to the
correlations inside the light cone, also finite and nonexponential correlations outside
of the light cone are observed. We are able to trace the origin of these correlations
outside of the light cone back to the intrinsic entanglement of the Fermi sea by using a
second-order expansion in the coupling | and comparing the perturbative results with
TD-NRG results. Since x (7, t) is not a response function, nonexponential contributions
outside the light cone are allowed.

The TD-NRG and perturbation theory results agree remarkably well for short and
intermediate time and length scales. However, for large distances R > ¢ the perturba-
tion theory fails to capture the Kondo effect and, therefore, yields incorrect power-law
decays for the long-time limit of x (7, ¢).

Our data confirm the recent findings by Medvedyeva etal. [114] and their suggestion
that the correlations outside the light cone originate from the intrinsic entanglement of
the Fermi sea. However, we considerably extend their work: we include the full spatial
dependence that allows us to access the full 2kg oscillations inherent to the RKKY me-
diated correlations. Furthermore, with the NRG we are able to capture the crossover
between short and long distance behaviour, including the Kondo physics at low tem-
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peratures.

We also discuss the spectral functions of the retarded spin-spin susceptibility as a func-
tion of R and use these results to calculate the linear response of the host spin density
at a distance R to a local magnetic field applied to the impurity. Any real response
must vanish outside of the light cone in accordance with relativity if the momentum
cutoff is sent to infinity [114]. However, for a finite momentum cutoff, as we use in the
NRG, this statement is weakened to a fast decay on the length of the inverse momen-
tum cutoff. Therefore, we find an algebraic decay and a suppression of the response
outside of the light cone. The calculations of the NRG spectral functions are bench-
marked with the retarded spin susceptibility of the host without impurity for which
the susceptibility can be calculated analytically. We find that the analytically calcu-
lated susceptibility agrees only for short distances with the NRG susceptibility since
the NRG cannot capture high energy oscillations that occur for larger distances. There-
fore, the results for the real response are restricted to small distances where the NRG
yields reliable results.

This chapter is organized as follows: At first, we derive the mapping to the two-
impurity model and discuss the sum rules for the spatial correlation function in Sec.
4.1. In Sec. 4.2 we present the results of our equilibrium NRG calculations for different
dimensions and compare them to the data of Borda [47]. The nonequilibrium data ob-
tained from the TD-NRG and the results of the second-order perturbative calculations
are presented in Sec. 4.3. Afterwards, the results for the retarded spin-spin susceptibil-
ity and the response function are discussed in Sec. 4.4. At the end we conclude with a
summary in Sec. 4.5.

Most of the following results and figures in this chapter have already been published
in [124]. In the following, we recapitulate these results and augment them.

4.1 Theory

4.1.1 The Hamiltonian and the spin density
If the spin density 5(7) is expanded in plane waves [15], it is given by

1

k 170
2N il

—.\—»

iRy
ey, (4.1)
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where N is the number of unit cells in the volume V, V,, = V/N is the volume of such
a unit cell, k a momentum vector and & a vector of the Pauli matrices. The Kondo

Hamiltonian in energy representation can be written as
H =H, + Hg, (4.2)
P t
H, = Z/ deecl,c.,,
7 J-D
HK :]gimpgc (0)

Hy describes how a local impurity spin located at the origin couples via an effec-
tive Heisenberg coupling | to the unit-cell volume averaged conduction electron spin
5.(7) = V,5(7) and H, accounts for the energy of the free conduction electrons. For a
more detailed discussion of the Kondo model see Sec. 2.2.

While Wilson’s original approach of the NRG was intended to calculate only the prop-
erties of the impurity and those of the conduction band close to the impurity, we are
explicitly interested in the spatial correlation function <§imp§(?)) which only depends
on the distance R = |7| if the system is rotationally invariant.

Borda [47] was the first who realized that the calculation of the spatial correlations is
related to a simplified two impurity Kondo model (TIKM). He has used the same map-
ping originally Jones etal. [61, 62] have used to extend the NRG to the TIKM with one
impurity spin at the position R, = +7/2 and the other at R_ = —7/2. In the following
we will give a brief overview of this mapping, a more detailed derivation can be found
in appendix A.

In this approach the spatial dependence is included into two nonothogonal energy
dependent field operators

Y b(e—ep)c, e, (4.3)

which are combined to even (¢) and odd (o) parity eigenstates

1
Cea,e‘ = Ne(e) (Cea,+ + Ceo’,—) 7
1
Cero :m (Ceo,+ - CeU,—) ’ (4.4)

with the dimensionless normalization functions

RSy

)
) 45)

2 _L € — €7 COS2
NE(E) =gy Lole e (

RSy

4 .
NZ(e) “No@ ;5(e — €;) sin® <
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Here p(e) denotes the density of states (DOS) of the original conduction band. The
normalization functions N, /,(€) are chosen such that the anti-commutator relation
{ceonr c:/g/,a/} = (e —€')0,,/8,, is fulfilled. Note that both functions N, (¢) and N, ()
depend on the distance R = |F| and are not normalized.

The TIKM can be written in terms of these even and odd fields and solved using
the NRG. If we omit the impurity spin at postion R_, the original Kondo model
Hamiltonian of Eq. (4.2) with the impurity spin the position R  is recovered. We can
then use §(R_) to probe the spin density at a distance R from the impurity.

The local even or odd parity conduction electron operator coupling to the impurity

spin takes the form

1
an,e(o) :Ne(o) / de \/ P(G)Ne(o)(e)cev,e(o)- (4.6)

The normalization constants

R =/ [ de Ny (©te) u7)

are determined by the anticommutator {fy, (), fgalle(o)} = 4, , and depend on the

distance R. These constants also enter the definition of the effective parity DOS

1
pe(o)(e) :TNez(o)(e)p(e)' (4.8)
Ne(o)

These DOSs contain the spatial information and are used to construct the NRG tight-
binding chains, cf. Eq. (3.4).

Positioning the impurity spin at R -+ and expanding the original Kondo Hamiltonian of
Eq. (4.2) in these orthogonal even and odd fields yields

D
H=) ) /D de eczaracew

o x=e,0

+ é Z (Nefga,e + NofJa,o) _'0'0'/ (NefOO,e + NOfOU',D) . (49)
oo

The spin density 5(R_) at position R_ entering the spatial spin-spin correlation func-
tion is then given by

1

5’(]_?’7) = E (Nefga,e - NofJa,o) 5'0'0', (NefOU,e - NUfOO’,O) s (4‘10)

/
u oo

where V,, accounts for its dimensions.

Note that the inclusion of the proper R-dependent normalization constants N, and N,
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into the Hamiltonian (4.9) and the spin density operator of Eq. (4.10) is crucial for
recovering the exact sum rules that are discussed in the following section.

4.1.2 Sum rules of the spatial correlation function

The quality of our calculated spartial correlation function can be verified by exact sum
rules at zero temperature T = 0. For an antiferromagnetic coupling | > 0, the Hamil-
tonian approaches the strong coupling (SC) fixed point at low temperatures and the
ground state |0) is a singlet. Therefore, the application of the total spin operator Siot
comprising the impurity spin and the total conduction electron spin

Siot|0) = < lmp+/ >|o ) =0 (4.11)

must vanish. Consequently, the correlator (0|§imp§t0t|0> also vanishes

(013 mpSctl0) =5 + [ (013,5(P)]0) 7 =0, @12)

where we have used <O\Slmp 1mp]0> 2. Hence, x,,(7) must obey the sum rule

[ xel) d°r = / (Simp3(7)) 4P = —% (4.13)

at T = 0. For a generic system the spin-spin correlation function is isotropic and
the angular integration can be performed analytically. Substituting the dimensionless
variable x = kgR/ 7 and integrating over the angles yields

CDT[D /00 D—1 3
X o(X)dx=—-, 4.14

where D is the dimension, C; = 2, C, = 2 and C3 = 4.

In the case of a linear dispersion €(|k|) = vg(|k| — kg) the Fermi wave vector in different
dimensions is given by ky = 7t/(2V,,) in 1D, kg = \/7t/V,, in 2D and kg = (T[Z/Vu)1/3
in 3D. Note that the volume of a unit cell V,, in the Fermi wave vector cancels the factor
1/V, in the spin density §(x) of Eq. (4.10).

Using the NRG to evaluate the sum rule (4.14), we are able to confirm the theoretical
value of —% with an error of less than 2% in 1D. In higher dimensions it is more
complicated to confirm the sum rule. Since ), (R) o R™P*Y for R — oo, the integral
kernel RP~! Xo(R) is very susceptible to numerical errors in higher dimensions, which
leads to a decreasing of the accuracy with increasing dimension. Therefore, to prevent
the integral f0°° RP x4 (R) dR from diverging, a very high number of kept states in
the NRG is needed.

In the case of a ferromagnetic coupling | < 0, the Hamiltonian approaches the local
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moment (LM) fixed point with a decoupled impurity spin. For the local moment fixed
point the effective magnetic moment of the impurity is given by jiZ = 3 [26, 27], cf.
Sec. 2.4. In the NRG the effective magnetic moment ﬁgﬁl is defined by the difference of
the total magnetic moment of the system with and without the impurity [26, 27, 53]:

— !

ﬁiff = <Stot§tot> - <§bath§bath> =, (4.15)

>~ W

with Sy, = [5(7) dPr. If we insert the definition of Siot from Eq. (4.11), the correlator
of the bath (S} ,,Spam) is canceled and we obtain the sum rule

[ (Simp3() d°r =0 (4.16)

which is valid for T = 0 and | < 0. Consequently, we expect an oscillatory solution for
Xe(R) with sign changes at all length scales and a decay R™* with « > D. Therefore,
the spin correlation function will be significantly different in the ferromagnetic ] < 0
and in the antiferromangetic | > 0 regime.

4.1.3 Effective densities of states in 1D, 2D and 3D

The spatial correlations depend on the dimensionality of the host. At a constant dis-
tance R, the dimensionality primarily enters via the dimension of the wave vector k
which occurs in Egs. (4.5) and the energy dispersion €; of the host.

In the following, we assume an isotropic linear dispersion €; = v (\E| - kF> in order

to obtain information on generic spectral densities Nf(o) (€)p(e) appearing in Egs. (4.7)
and (4.8). Here vy is the Fermi velocity and kr denotes the Fermi wave vector. Inserting
the dispersion in Egs. (4.5) yields in 1D

NZ"(O)(G)p(e) =20, [1 + cos (xn (1 + %))} (4.17)

where py = 1/2D is the constant DOS of the original conduction band and x = kzR /.
In higher dimensions we can perform the angular integration analytically and obtain
for 2D

2 _ 3
Nioy(€)p(e) = 209 [1 +J (xn (1 + D))} (4.18)
with the zeroth Bessel function Jy(x). In 3D, the effective DOSs [61, 62] is given by

sin (x7 (1+ 5))
xmt (14 §)

(4.19)

Neoy(€)p(€) = 20q [1 +

Note that in 2D and 3D p(e) is not constant for a linear dispersion, and hence p(e) =
po = 1/2D is a simplification.
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Figure 4.1: Normalization constants N, , for different dimensions D vs. the dimensionless

distance x = kgR/m. For R — 0 the odd band decouples and for R — oo the
normalization constant N, is equal to N,,.
Figure taken from [124].

The distance R dependent normalization constants Ne(o) that occur in the Hamilto-
nian (4.9) and the spin density (4.10) reveal important information on the admixture
of even and odd bands. These normalization constants are shown as a function of the
dimensionless distance x = kgR/ 7 for different dimensions D in Fig. 4.1. Clearly, for
N,(x = 0) = 0 the odd band decouples from the problem in any dimension, and the
standard Kondo model is recovered which allows to calculate local (R = 0) expectation
values within a standard single band NRG L

As can be seen from Eqs. (4.17)-(4.19), the oscillations of the even and odd DOS p,,

decay as « RU-D)/2

with increasing distance R. For large distances R — oo the even
and odd bands become equal and as shown in Fig. 4.1 the normalization constants
approach the same value. In the case of 1D, strong oscillations are observed for N,
for short distances that are suppressed in higher dimensions. Apparently, the R de-
pendence will be more pronounced in lower dimensions and the correlation function

will decay with a different power law than in higher dimensions.

1 In order to avoid different numerical accuracy for R = 0 and R > 0 calculations, we have used

kgR/m = 0.01 in the NRG calculations for R — 0.
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po) Tx/D krlx
0.05 1-10° 1 1-10%
0.075 1.7-1077 5.88-10°
0.1 75-107° 1.33-10°
0.15 39-107* 2564.10
0.2 24-107° 421.59
0.25 0.0077 129.87
0.3 0.0178 56.31
0.35 0.0290 34.53
0.4 0.0418 23.90
0.45 0.0578 17.30
0.5 0.0749 13.35
0.6 0.115 8.69
0.7 0.2103 4.76

Table 4.1: The Kondo temperature T and Kondo length scale { for different Kondo couplings
0oJ. The Kondo temperatures have been obtained from the NRG level flow and is
defined as the energy scale at which the first excitation reaches 80% of its fixed
point value.

4.2 Equilibrium

4.2.1 Kondo regime (J>0): short distance versus large distance
behavior

The problem has two characteristic length scales: é defined by the metallic host
which governs the power-law decay of x,(R) and its Ruderman-Kittel-Kasuya-Yosida
(RKKY) oscillations, and the Kondo length scale xx = %, sometimes referred to as
the size of the Kondo screening cloud [116-119, , ]. The Kondo length scale ¢y
depends exponentially on the coupling p,/, therefore, we use different p,J to present
results for the two different regimes R > ¢y and R < (k.
Since the Kondo temperature is a crossover scale, it is only defined up to an arbitrary
constant of the order one. We define the Kondo temperature Ty from the NRG level
flow as the energy scale at which the first excitation reaches 80% of its fixed point
value. Table 4.1 shows the Kondo temperature as well as the Kondo length scale ¢y for
different couplings p,]/.
In Fig. 4.2a the spin correlation function is shown for R < g and T—TK — 0. We
rescaled the correlation function x.(R) with the distance R to reveal the % decay at
short distances in 1D which originates from the analytical form of the RKKY inter-
action. In contrast to Bordas original work [47], we observe ferromagnetic as well as
antiferromagnetic correlations for short distances in accordance with predictions [116—
, , ] made by Affleck and his co-workers. For short distances R < (i the
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Figure 4.2: (a) The rescaled spin correlation function Ry (R) plotted against the dimension-
less distance x = kgR /7t in 1D for different couplings p,]/, T% — 0 and % <1.A

RKKY interaction between the impurity spin and a fictitious probe spin in distance
R is added for comparison. (b) szm(R) plotted against the dimensionless dis-
tance x in 1D for different large couplings p,J. The rescaling with R? reveals the
# decay at large distances R > k. The inset shows the values of the correlation

function at the origin x.,(0)V,, versus p,]J. For large couplings p,] the correlation
function reaches the value —3.

Kondo effect has no influence, the impurity is still unscreened and behaves more like
a free spin.

Along with the correlation function Fig. 4.2a also show the RKKY interaction Kgyyy be-
tween the impurity spin and a fictitious probe spin at distance R from the impurity for
comparison. Krxgy is obtained from second-order perturbation theory in | and details
of the calculation of the RKKY interaction can be found in appendix B. As can be seen,
the oscillating part of x.,(R), and the position of the minima and maxima nicely agree
with the RKKY interaction o cos(2kgR). For multiples of the integer x = kgR/m = n
the correlation function and Kggyy exhibit minima and for odd multiple x = n + %
they have maxima.

Figure 4.2b shows the correlation function for larger couplings p,/ so that we can ac-
cess distances R > ¢x. This time the correlation function is rescaled with R? in order
to reveal the % decay at large distances. In contrast to the short distance behavior we
only find antiferromagnetic correlations for R > {, and x.,(R) remains negative at all
distances. In this regime, the maxima have the value x,,(R) = 0 which is in accordance
with field theory predictions [116-119, 125, 126]. For such large distances the impu-
rity spin is screened by the conduction band electrons and, therefore, the envelope of
Xoo(R) has to decrease faster.

Since we have plotted Ry« (R) and R*x.,(R) which vanish for R = 0, the information
of X (0) is not included in Fig. 4.2. Therefore, the inset of Fig. 4.2b shows the local
spin correlation function x,,(0) plotted against the coupling p,]. As expected for an
antiferromagnetic coupling, the correlation function is always negative x,,(0) < 0, and
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Figure 4.3: The envelope of the correlation function Xoo(R) rescaled with the Kondo length
scale ¢ plotted against the rescaled distance R o for different couplings p,J and
temperatures The rescalmg leads to universal behavior. The crossover from
the 1 % (pink line) to the L (black line) decay is around the Kondo length scale
R = (k. Finite temperature introduces a new length scale ¢ = ”TF beyond which

the correlations are exponentially suppressed. NRG parameters are A = 3 and
N, = 2000.

for very large couplings py] the strong coupling value of —3 is approached. For such
large couplings almost the whole contribution to the sum rule (4.14) lies in the first an-
tiferromagnetic minimum at R = 0, and consequently x.,(R) has to decay very rapidly
with increasing distance R.

Figure 4.3 shows the envelope of the correlation functions ). (R) rescaled with the
Kondo length scale ¢y plotted against the rescaled distance % for different couplings
poJ and temperatures. The envelope is defined by x.,(kgR = n7), where n is an in-
teger. Due to the rescaling, the envelope functions for different couplings p,] nicely
collapse onto one universal curve. Like in Ref. [47] the envelope functions decay as %
for large distances, indicated by the black line, while for short distances the envelope
functions show a % decay which is indicated by the pink line. The crossover between
these different decays occurs at around the Kondo length scale {x. This supports the
interpretation that the impurity spin is screened by a cloud of surrounding electron
spins with a size of Cy.

For finite temperature a new length scale & = % is introduced. While for R < ¢ the
correlation function x,(R) is almost unaffected, for R > ¢ correlations are exponen-
tially suppressed. When the temperature is much smaller than the Kondo temperature



60 Chapter 4. Spatial and temporal propagation of Kondo correlations

0.015 , , , |
0.01 | ]
0.005
o ATRRATER AR ORRA R R RRA R AR ARHAACH AR
= | | LA |
e -0.005
&
=2 001 |
N
= -0.015 | |
J
—  -0.02 | 0.95 | .pO - |
é 0.2t e
< -0.025 | e 15
p =
- £ 0.1 } 1= ]
0.03 St 7
-0.035 b poJ =—0.5 0 o |
poJ = —=0.1 —— 5 -4 -3 -2 -1 0
-004 L 1 1 |
0 20 40 60 80 100
kFR/T('

Figure 4.4: The spin correlation function Rx.,(R) as a function of the dimensionless distance
x = kgR/m in 1D for two different ferromagnetic Kondo couplings p,J = —0.1,
po] = —0.5and T — 0. For ferromagnetic couplings x,(R) decays with % atevery
distance. The inset shows x.,(0)V, vs. py]. For large ferromagnetic couplings the
value 0.25 is reached. NRG parameters are A = 3 and N, = 1400. Figure taken
from Ref. [ 1.

T < Ty, the corresponding thermal length scale is much larger than the Kondo length
scale ¢ > Cy. Therefore, the effect of a small finite temperature is just a small correc-
tion to the perfectly screened impurity at T = 0. On the other hand, for T > Ty the
thermal length scale is shorter than the Kondo length scale {t < ¢ and the impurity
spin is no longer fully screened.

4.2.2 Ferromagnetic couplings | < 0

So far we have only investigated the model for antiferromagnetic couplings which
leads to a Kondo singlet for T — 0 and the Hamiltonian approaches the strong cou-
pling fixed point. We now extend our discussion to ferromagnetic couplings. The
ferromagnetic regime is characterized by the local moment fixed point and a twofold
degenerated ground state. As mentioned above in Sec. 4.1.2, the sum rule for x.(R)
with ferromagnetic couplings | < 0 predicts that the spatial integral of the correlation
function vanishes. We numerically checked the sum rule for different couplings and
found almost no deviations from zero in 1D.

Figure 4.4 shows the rescaled spin correlation function Ry, (R) plotted against the di-
mensionless distance x = kpR/ 7t for two different ferromagnetic couplings p,] = —0.1
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and p,] = —0.5. For ferromagnetic couplings, the Kondo length scale diverges {x — o,
and, therefore, we observe a cos(2kgR) oscillation and a % decay for all distances in
1D. The RKKY oscillations and the £ decay of the envelope function are clearly visible
even up to very large distances kgR = 1007t.

In the ferromagnetic regime, the local spin correlation function x,,(0) must be positive
and approaches its upper limit of x,,(0) = } for py] — —oco as shown in the inset of Fig.
4.4. Note that x.,(R) does not oscillate symmetrically around the x-axis since in order
to fulfill the sum rule, x,,(R) must be slightly shifted to antiferromagnetic correlations
to compensate the ferromagnetic peak at R = 0.

4.2.3 Spin correlation function in 2D and 3D

We now investigate the equilibrium spin correlation function for 2D and 3D disper-
sions. Figure 4.5a shows the short distance behavior of the rescaled spin correlation
function R*x«(R) in 2D. As for 1D, the oscillating part and the positions of the minima
and maxima of x,(R) and the 2D RKKY interaction nicely agree. Both the RKKY in-
teraction and the correlation function decay as % for short distances in 2D. In contrast
to 1D, the RKKY interaction acquires a more complex mathematical structure even for
a simple linear dispersion replacing the simple cos(2kgR) oscillations in 1D. In Fig.
4.5b, the short distance behavior of R Xoo(R) for a 3D dispersion is shown. As before,
the oscillating part of the 3D RKKY interaction and yx,,(R) nicely agree and like in 2D,
the RKKY interaction and X, (R) have a more complicated structure than the simple
oscillations in 1D. Furthermore, in 3D the expected % decay of the RKKY interaction
and X (R) is observed for short distances.

In Fig. 4.5¢ the envelope of the correlation function x,,(R) for a 2D dispersion is shown.
In 2D the correlation function ), (R) has to be rescaled with (jﬁ in order to make it di-
mensionless and consequently to observe universal behavior. Note that the positions
of the minima and maxima of the correlation function change in higher dimensions,
therefore, in 2D the envelope is defined by x.,(kgR = n7 + 1), with the integer n. The
observed oscillations of the envelope function originate from the more complicated
structure of the envelope in 2D where every second maximum has a lower amplitude.
For short distances R < Ji a % decay is observed, which is marked by the blue line.
For larger distances R > (i the envelope function decays faster and approaches the
expected % decay [125, 126] that is indicated by the black line.

In order to observe the real —; decay of the correlation function, we would need to go

1
3
to even larger distances R >>R Ck. This is, however, a challenging task since due to the
fast decay of the correlation function in higher dimensions, the numerical noise of the
NRG rapidly exceeds the value of x,,(R). Although larger distances R can be reached
with an increase of the discretization parameter A and the number of kept states N, an

unsuitable high number of kept states Ny would be needed in order to actually observe
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Figure 4.5: The rescaled spin correlation functions (a) R%x.,(R) in 2D and (b) R*x.,(R) in 3D
as a function of the dimensionless distance x = kzR/ 7. Both in 2D and 3D, the
envelope of the RKKY interaction and x.,(R) has a more complicated structure
than in 1D. NRG parameters are (a) A = 5 and N, = 3000 and (b) A = 10 and
N, = 4000. (c) The envelope of the correlation function x.(R) rescaled with

the Kondo length scale §2K plotted against the rescaled distance % in 2D. As in
1D, universal behavior is observed. For short distances the envelope decays with

1/R? (blue line) and for larger distances it approaches the 1/R? (black line) decay.
NRG parameters are A =5 and N, = 3500.

the % decay. Therefore, it is even more desperate to observe the % decay for a 3D

dispersion.

4.3 Nonequilibrium

After discussing the equilibrium properties of the correlation function, we now turn
to the results of the full time-dependent correlation function x(7,¢). In the TD-NRG
calculations the Kondo coupling p,] between the prior decoupled impurity spin and
conduction band is switched on at time f = 0. As described in Sec. 2.2, the NRG
fixed point differs for different signs of the Kondo coupling. For an antiferromagnetic
coupling | > 0 the system approaches the strong coupling fixed point while for | < 0
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Figure 4.6: The time- and spatial-dependent spin-spin correlation function x(R,t) vs. the
dimensionless distance kgR /7t and dimensionless time ¢D for the Kondo coupling
poJ = 0.3 as a color contour plot. The correlation propagates with the Fermi
velocity vg, which is added as a white line as a guide to the eye. NRG parameters
are A =3, Ny = 1400 and N, = 4. Figure taken from Ref. [124].

the local moment fixed point is reached. Therefore, we present data for both regimes
and begin with the investigation of antiferromagnetic Kondo couplings and compare
the results with our perturbation theory. Afterwards we turn to the ferromagnetic
J < 0 case.

4.3.1 Time-dependent spatial correlation function in the Kondo
regime

The full time-dependent spin-spin correlation function x(7,t) is shown as a function
of the dimensionless distance kgR/7t and the dimensionless time tD for a moderate
antiferromagnetic Kondo coupling p,] = 0.3 as a color contour plot for 1D in Fig. 4.6.
Since each distance R requires a single TD-NRG run, we have restricted ourselves to
N, = 4 values for the z-averaging and only use a moderate number of N; = 1400 kept
NRG states.

The development of the ferromagnetic correlation maximum at kgR/7 = 3 is clearly
visible already after very short times, cf. Fig. 4.2a. For large times t — oo the equilib-
rium correlation function x,,(R) with the RKKY oscillations is recovered. The correla-
tion function has maxima for kgR/7m = n + % and minima for kgR /7 = n, with n being
an integer. For large times and distances the ferromagnetic correlations are suppressed
so that the maxima have the value x(R,t) = 0 and purely antiferromagnetic correla-
tions are observed, as expected from the equilibrium correlation function.
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Figure 4.7: The time-dependent spin correlation function x (R, t) for a fixed distance kgR /7w =
0.51 vs. the dimensionless time tD for different numbers of z-averages N, and
po] = 0.3. The black arrow indicates the value of the equilibrium correlation
function x. (R = 0.517t/k). NRG parameters are A = 3 and N, = 1600.

After the ferromagnetic maximum has passed, we observe for x(R = const, t) some
weak oscillations in time. Figure 4.7 shows the correlation function x(kgR/m = 0.51, t)
for a constant distance and different numbers of z-averages N, in order to distinguish
between the in Sec. 3.2 described finite size oscillations originating from the bath dis-
cretization and the real nonequilibrium dynamics of the continuum. As can be seen,
the short-time oscillations clearly converge with increasing N, so that the curves for
N, = 32 and N, = 100 are almost identical. Therefore, we can conclude that the short-
time oscillations contain relevant real-time dynamics and will be analysed in more
detail below.

In the long-time limit, the TD-NRG oscillates around a time average, which is inde-
pendent of N, and is very close to the equilibrium value of the correlation function
Xoo(R = 0.5171/kg) indicated by the black arrow in Fig. 4.7. The difference between
the long-time average and the equilibrium value is smaller than 3%. These oscillations
around the time average are partially related to the bath discretization and are sup-
pressed for increasing number of z values N,, decreasing discretization parameter A
and increasing number of kept NRG states N, cf. Sec. 3.2. Therefore, we can con-
clude that the thermodynamic equilibrium is reached up to the well understood small

discretization errors.
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Figure 4.8: (a) Time-dependent correlation function x (R, t) vs. t' = t — R /v for four different
distances kzR/7 = 0.01,0.51,1.01,1.51 and the Kondo coupling p,J = 0.3. (b)
Rescaled time-dependent correlation function x(R,t)/xmax Plotted against the
shifted time t — ¢, for kgR/ 7 = 2.01 and for different couplings p,J. Here ¢,
denotes the position and x,,., the amplitude of the ferromagnetic peak. NRG
parameters are A = 3, N, = 1200 and N, = 32.

00] 0.05 0.1 0.15 0.2 0.3 0.4
toan/ T 1.91 1.95 1.97 1.99 2.02 2.00
X 0.0052  0.0101 00147 00183  0.0201 0.0151

Table 4.2: The coupling dependent positions ¢,,,,, and maximum amplitude of the ferromag-
netic peaks for the fixed distance kgR/m = 2.01. Until the medium coupling
strength py] = 0.3 the position f,,, is shifted to larger times with increasing cou-
pling. For small couplings the maximum amplitude .. iS proportional to the
coupling py].

How are the Kondo correlations building up at different distances with
time?

The propagation of the ferromagnetic correlation away from the impurity with the
Fermi velocity vg is clearly visible in Fig. 4.6. For an antiferromagnetic coupling p,] we
observe an antiferromagnetic spin-spin correlation at the impurity site that develops
rather rapidly. Since the total spin in the system is conserved, a ferromagnetic corre-
lation at R = 0.57/kg is built up the same time as the antiferromagnetic correlation at
R = 0. This ferromagnetic correlation propagates spherically away from the impurity
through the system. The added white line R = vt in Fig. 4.6 serves as a guide to
the eye to exemplify this point. This line represents the analog to a light cone in the
electrodynamics.

Inside the light cone, after the ferromagnetic correlation wave has passed, the equilib-
rium value of the correlation function is reached rather fast. In Fig. 4.8a the correlation
function x(R,t) is plotted against the relative time t' = t — % for four different dis-
tances R to illustrate this. Negative times t' < 0 correspond to correlations outside of
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the light cone, while for ¢ > 0 the spin correlation function (R, t) inside the light cone
is depicted.
At the origin of the impurity” (R = 0.01) , an antiferromagnetic correlation develops

on the time scale L-: the short time dynamics is linear in the Kondo coupling and

VI
proportional to t*. This will be discussed in greater detail below in Sec. 4.3.2.

At t' = 0 and finite distance R > 0, a significant ferromagnetic correlation peak is
observed which decays rather rapidly. The position of this ferromagnetic peak cor-
responds to the ferromagnetic correlation wave that defines the yellow light cone in
Fig. 4.6. In order to investigate this rapid decay in more detail, in Fig. 4.8b the ratio
X(R, 1)/ Xmax 18 plotted against (f — f,,)D for the constant distance kF?R = 2.01 and
different couplings pyJ. Xmax i defined as the maximum of the ferromagnetic peak
Xmax = X(R, tmax), and .. is the position of this ferromagnetic peak. The different
values of t,,, and X . are shown in Tab. 4.2.

Note that f,,,,
medium couplings p,J, the position ¢, is slightly shifted to larger times with in-

slightly differs from the bare time scale of the light cone v% Up until

creasing coupling pyJ. The increasing shift for small and medium couplings can be
understood analytically with second-order perturbation theory in the coupling | and
is discussed in more detail in Sec. 4.3.2 below.

After dividing the correlation function by the amplitude x,,., we find universal behav-
ior for small couplings p,J. Once again, this can be explained by perturbation theory.
For small couplings, the correlation function is essentially described by first-order per-
turbation theory which is proportional to the coupling strength o p,J. Therefore, as
can be seen in Tab. 4.2, for small couplings py/ the maximum amplitude x,,., is also
proportional to « p,J. Hence, the division of x(R,t) by xmax cancels the coupling
dependence of the time-dependent correlation function and the curves fall onto one
universal curve.

For comparison we also plotted cos(t' D) (pink dashed line) and find a remarkable
agreement with the oscillations of the correlation function for times 0 < t'D < 1 for
all coupling strengths. This indicates that for a fixed distances the functional form of
the correlation function x(R,t) consists of a damped oscillating cos(t'D) term whose
maximum is reached when the ferromagnetic correlation wave reaches the distance R
at time f,,. Since x(kgpR/m = 2.01, t) has to approach a finite antiferromagnetic value
for larger times t/, the oscillations in the TD-NRG are not centered around the origin
X(R, t) = 0 but shifted to negative values as can be seen in Fig. 4.8b by comparing with
the undamped cos (' D) curve.

However, most striking is the built up of correlations for ' < 0 outside of the light
cone. These correlations seem to be purely antiferromagnetic and show a nonexpo-

A two-channel NRG calculation requires a finite N,. For zero distance R = 0 the normalization N,
would also be zero and the numerics break down. Therefore, we use a small but finite distance to
mimic R — 0.
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Figure 4.9: The time-dependent correlation function x(R,t) for different ratios R/{x as a
color contour plot. (a) The oscillation between ferromagnetic and antiferromag-
netic correlations is only observed for small distances R <« &x. (b) For larger
distances and long times, only oscillations between zero and antiferromagnetic
correlations are observed. The ferromagnetic propagation vanishes at around
R = (k. Both long time behaviors are in good agreement with the NRG equilib-
rium results. NRG parameters are A = 3, N, = 1400 and N, = 32.

nential decay in time. They appear shortly in front of the light cone, have their largest
absolute value for odd numbers of kgR = 1+ % and decay with a power law as tD goes
to zero.

As we will show below in Sec. 4.3.2, these correlations also appear in the results ob-
tained from perturbation theory. Such a build up of correlations outside of the light
cone has also recently be reported in a perturbative calculation at the Toulouse point
of the anisotropic Kondo model [114] neglecting, however, the 2kg oscillations. In con-
trast to Ref. [114] we present here results for a full nonperturbative calculation which
includes the Friedel oscillations containing the RKKY mediated effective spin-spin in-
teraction. These results have recently been confirmed by DMRG calculations [115].
We will provide a detailed analysis of the origin of these correlation outside the light
cone and present an analytical calculation in | that agrees remarkably well with the
observed TD-NRG results below in Sec. 4.3.3.

The different behavior of the correlation function for short and long distances plotted
against % is shown in Fig. 4.9a and b respectively. For short distances R < ¢y we find
the distinctive ferromagnetic correlation waves that propagates with Fermi velocity vg
through the system. Inside the light cone we observe the RKKY like 2k oscillations
between ferromagnetic and antiferromagnetic correlations. In Fig. 4.9b the behavior of
the correlation function for larger distances is depicted. We find that the ferromagnetic
propagation vanishes at around the Kondo length scale R ~ (. At these distances we
only observe oscillations between zero and antiferromagnetic correlations inside the
light cone. Therefore, we can conclude that for short as well as for long distances the
long-time behavior agrees remarkably well with the NRG equilibrium results.
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Figure 4.10: The perturbatively calculated (a) first-order contribution x(R, )/ (po]) and (b)

second-order contribution x (R, t)/(p0])2 evaluated numerically as color contour
plots. The light cone R = vyt has been added as a white line.

4.3.2 Perturbation theory

The most surprising result of the TD-NRG results is the build up of spin correla-
tions outside of the light cone which do not decay exponentially. In order to exclude
TD-NRG artefacts and investigate the origin of these correlations, we perturbatively
calculate x(7,t) = <§imp§(?)) () up to second order in the coupling J. For this purpose
we transform all operators into the interaction picture since only the part of the free
conduction electrons Hj, enters the initial density operator. After integrating the von

Neumann equation, we obtain for the density operator in the interaction picture

p' (1) =py ""i/ot [Pof HIQ(tl)} dty
toph
_/0 /0 HPO'HIQ(tz)] fHII<(f1>} dt, dt,, (4.20)

which is exact in second order in the Kondo coupling J. Here the index I labels the op-
erators in the interaction picture A’(t) = e/’ Ae "' The initial condition is given by
o' (t = 0) = p,. Using this density operator p'(t), we calculate the spin-spin correlation
function

X7 1) = Tr o' ()8’ (7,1)] (4.21)

where only expectation values with respect to the initial density operator p, enter. The
occuring tedious commutators can be calculated analytically and details about the per-
turbative calculation of x(7,t) can be found in appendix C. The time integrals can
simply be performed analytically, however, the multiple momenta integrations of the
free conduction electron states have to be performed numerically.

The first- and second-order contribution of the perturbatively calculated correlation
function x(R,t) are shown in Fig. 4.10a and Fig. 4.10b. For the leading order in
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the Kondo coupling p,], the ferromagnetic wave propagates exactly on the light cone
R = vgt. Furthermore, some small antiferromagnetic correlations outside of the light
cone are already visible. In contrast to the first-order, the second-order contribution
of the correlation function is zero exactly on light cone. Directly in front of the light
cone a strong antiferromagnetic correlation is observed and immediately after the light
cone follows a strong ferromagnetic correlation. For the first-order as well as for the
second-order contribution we observe the distance dependent 2kg oscillations between
ferromagnetic and antiferromagnetic correlations for long times.

In Sec. 4.3.1 we found that the positions of the ferromagnetic peaks ¢ which are

max’
listed in Tab. 4.2, are coupling dependent. For up to medium coupling strengths p,]/,
the positions t,,,, are slightly shifted to larger times with increasing coupling. Our
analytical analysis can provide a detailed understanding of this effect. While the first-
order contribution Eq. (C.6) yields a peak of the ferromagnetic correlations positioned
exactly on the light cone, the maximum of the second-order contribution Eq. (C.7) is
shifted to slightly larger times. If we add both contributions, a J-dependent line for the
ferromagnetic peak position away from the light cone is generated. The larger the cou-
pling ], the later the ferromagnetic maximum occurs due to the increasing importance
of the second-order contribution.

Furthermore, the rising influence of the second-order contribution also explains the in-
creasing antiferromagnetic correlations with increasing coupling p,/ for short times in
Fig. 4.8b. The antiferromagnetic correlations for t —t,,, < 0 originate from the large
antiferromagnetic correlations directly in front of the light cone in the second-order
contribution and, therefore, they are only observed for larger couplings p,] where the
second-order contribution has a significant influence.

However, our second-order perturbation theory cannot explain the effect that ¢,,,, once

max
again decreases with increasing p,J for very large couplings, cf. Tab. 4.2. Since the
second-order perturbation theory is not valid anymore for such large couplings, we
would need to calculate higher-order contributions to get an insight in this effect.

The sum of the first- and second-order contributions to x(R,t) for the medium cou-
pling po] = 0.3 is shown in Fig. 4.11. Clearly, the Kondo physics is not included in such
a perturbative approach and the result remains only valid for R < {x and t < 1/Tx.
Therefore, we expect deviations at large distances and times from the NRG results.
Nevertheless, the results of the perturbation theory qualitatively agree very well with
the NRG results depicted in Fig. 4.6. As in the TD-NRG, a ferromagnetic wave prop-
agates away from the impurity with the Fermi velocity v which is added as a white
line in Fig. 4.11. Since such a perturbative approach is only expected to work well for
short times, it is surprising that even the distance dependent 2kg oscillations between
ferro- and antiferromagnetic correlations are recovered for long times. Furthermore,
we also find the same antiferromagnetic correlations outside of the light cone as in the
TD-NRG results. Again, the maxima of these correlations are located at odd multiples
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Figure 4.11: The sum of the first- and second-order contributions of the perturbatively cal-

culated correlation function x(R, t) for the medium coupling p,J = 0.3 as a color
contour plot. The light cone R = vyt has been added as a white line.

of kp R/t =n+ %

While these spatial oscillations are implicitly encoded in the effective even and odd
DOS in the NRG calculations, they are explicitly generated by the momenta integra-
tions in the perturbative calculation. This confirms our TD-NRG results and provides
a better understanding of the numerical data.

However, a comparison between Fig. 4.6 and Fig. 4.11 shows the shortcomings of the
perturbative approach which remains only valid for R < {. As discussed for the equi-
librium correlation function in Sec. 4.2 above, in 1D the decay of the envelope function
crosses over from a Rl toa R% behavior at around R ~ {x due to the Kondo screening
of the local moment. Since the perturbative approach is unable to reproduce the Kondo
singlet formation, the long-time behavior of the perturbative solution depicted in Fig.
4.11 always shows a & decay for all distances. Furthermore, for tD — oo the pertur-
batively calculated correlation function x(R,t) remains oscillating between ferro- and
antiferromagnetic correlations for all distances, while the TD-NRG correctly predicts
oscillations only between zero and antiferromagnetic correlations once R exceeds the
Kondo length scale ¢y.

4.3.3 Intrinsic correlations of the Fermi sea

Since our perturbative results agree remarkably well with our TD-NRG results, we
can use our analytical approach to gain some insight into the correlations outside of
the light cone. Medvedyeva proposed [114] that these correlations originate from the
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intrinsic spin-spin correlations in the Fermi sea (5(0)s(7)) which are already present
prior to the coupling of the impurity. These intrinsic entanglements of the Fermi sea
between the local spin density and the spin density at a distance R are instantaneously
probed once the impurity is coupled to the local spin density s(0) at time t = 0.

For a decoupled impurity | = 0, (5(0)S(R)) can be calculated analytically and in 1D it
is given by

_ 3sin(kpR) sin(kFTR) cos(3kgR)

((O(R) LR

. (4.22)

A detailed derivation of Eq. (4.22) can be found in appendix D. As shown in Fig. 4.12a,
the exact result of Eq. (4.22) coincides with the NRG data obtained by setting | = 0 in
an equilibrium NRG calculation. This excellent agreement between the analytical and
NRG results serves as a further evidence for the numerical accuracy of our mapping of
Egs. (4.6)-(4.8) to the two discretized and properly normalized Wilson chains for even
and odd parity conduction bands.

In order to connect the intrinsic spin entanglement of the decoupled Fermi sea with
the observed antiferromagnetic correlations outside of the light cone, we expand the
perturbatively calculated x(R,t) up to second order for small times 0 < tD < 1 and
perform the momentum integrations for the first- and second-order contributions an-
alytically. Since the first-order term in the time tD vanishes, the leading order term is
proportional to o (tD)2 and decays as % with the distance in 1D. Note the difference
between the % decay outside of the light cone for short times and the well understood
Ri decay inside the light cone when the equilibrium is reached. Therefore, we have
plotted the perturbative results in 1D as x(R, t)V, (tklg—i) : in Fig. 4.12b to eliminate the
time-dependence and compensate the spatial decay of the envelope function. For the
coupling p,] = 0.3 the first-order contribution is shown as a red line, the second-order
as a blue, and the sum of both is depicted as a green line in Fig. 4.12b.

Since the second-order in | contribution to x (0, t) remains always zero in a short-time
expansion, the time evolution of the antiferromagnetic correlation at the origin R = 0
is dominated by the first-order term which is proportional to o | 2. This leads to a time
scale for the initial fast buildup of the antiferromagnetic correlation that is given by %
which confirms the short-time results of the TD-NRG for kgR /7t = 0.01 as depicted in
Fig. 4.8a.

The largest contribution for short times stems from the ferromagnetic correlation peak
at around kgR/m = 0.65. However, correlations are visible at all length scales which
develop quadratically in time and decay with % in distance. A comparison with Fig.
4.12a shows that the position of the maxima and minima agree remarkably well with

those of the intrinsic correlation function (5(0)S(R)) of the Fermi sea and, furthermore,
both envelope functions decay with %
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Figure 4.12:

(a) The intrinsic spin-spin correlations of the Fermi sea between the spin densi-
ties 5(0) and 5(R) in 1D. Via the mapping to the even and odd conduction bands,
we are able to measure bath properties at distance R with the NRG and get a
perfect agreement between theory and NRG results. NRG parametersare A =3
and N, = 1200. Figure taken from Ref. [124].

(b) For small times tD <« 1 expanded first- and second-order contributions of
X(R,t) forpyJ = 0.3in 1D. Even for short times, we observe correlations for large
distances. A comparison with (a) shows that the positions of these correlations
coincide with the positions of the intrinsic correlations of the Fermi sea. So the
correlations outside the light cone originate from these intrinsic correlations.
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Since the first-order contribution is sensitive to the sign of ], its maxima contribute with
equal sign as (5(0)S(R)) for ferromagnetic | and with opposite sign for an antiferro-
magnetic coupling. The second-order terms are independent of the sign of the coupling
and only add antiferromagnetic contributions to x (R, t). The positions of the antiferro-
magnetic peaks of the second-order contribution coincide with the antiferromagnetic
peak positions of the spin-spin correlation function (5(0)s(R)) of the decoupled Fermi
sea shown in Fig. 4.12a. However, the second-order contribution has no peaks and
remains zero at the locations of the ferromagnetic peaks of (s(0)s(R)). In contrast, the
tirst-order contribution shows peaks at every position where the intrinsic correlation
function of the Fermi sea has a peak. If we add both contributions for antiferromagnetic
couplings, the ferromagnetic peaks of the first-order contribution are attenuated by the
antiferromagnetic peaks of the second-order contribution. Therefore, the sum of both
orders contains only small ferromagnetic correlations for larger distances kgR/m > 1
and py] = 0.3. The larger the coupling | the smaller these ferromagnetic correlations
are due to the increasing influence of the second-order term.

We can conclude from this detailed analysis that the antiferromagnetic correlations di-
rectly on front of the light cone originate from the antiferromagnetic correlation peak at
kgR/m ~ 1.6. This antiferromagnetic correlation also propagates with the Fermi veloc-
ity through the conduction band. The propagation of antiferromagnetic correlation for
larger distances are not or only barely visible because of the % decay of the intrinsic
correlations.

4.3.4 Local moment regime: ferromagnetic coupling | <0

We now extend our investigation of the full time-dependent correlation function x (R, t)
to ferromagnetic Kondo couplings. For ferromagnetic couplings the Hamiltonian ap-
proaches the local moment fixed point and the ground state is twofold degenerate in
the absence of an external magnetic field. In the renormalization group (RG) process,
the Kondo coupling is renormalized to zero. Nevertheless, the equilibrium spatial cor-
relation function X (R) remains finite for T — 0 as discussed in Sec. 4.2.2. The reason
for this is that the renormalization of the coupling to zero occurs on a lower energy
scale than the formation of the correlations.

Figure 4.13 shows the time-dependent spin correlation function x(R,t) for the ferro-
magnetic coupling p,] = —0.1. While panel (a) shows the TD-NRG calculation, the
analytical result for the same parameters obtained in second-order perturbation theory
is shown in panel (b). The analytical result differs significantly from the antiferromag-
netic regime depicted in Fig. 4.11 since the first-order term is sign sensitive.

As in the Kondo regime, the perturbation theory and the TD-NRG results agree qual-
itatively remarkably well. The 2kp oscillations known from the RKKY interaction
are clearly visible inside the light cone. Note that due to the sign change there is
a phase shift compared to the Kondo regime: now the ferromagnetic correlations
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Figure 4.13: (a) Time-dependent spin correlation function x(R,t) for a ferromagnetic cou-
pling pg] = —0.1 in 1D as a color contour plot. NRG parameters are A = 3,
N, = 1400 and N, = 32. (b) The correlation function x (R, t) for the same param-
eters calculated perturbatively in second-order perturbation theory in J. Figures
taken from [124].

occur at kgR/m = n and the antiferromagnetic correlations at half integer values
keR/m=n+1.

Since a ferromagnetic correlation is built up at the impurity spin position R = 0 on a
very short time scale o %, and the total spin must be conserved, this time an antifer-
romagnetic correlation wave propagates spherically away from the impurity through
the system with the Fermi velocity, which again has been added as a white line in
both panels. Due to the sign change of the first-order contribution, the peak position
of the propagation t,,, is slightly shifted to earlier times with increasing p,/ for fer-
romagnetic couplings. Compared to the Kondo regime, the correlations outside of the
light cone are stronger suppressed. Again, we can trace the origin of these correlations
outside the light cone to the intrinsic entanglement of the Fermi sea which has already
been discussed in the previous section 4.3.3.

4.3.5 Finite temperature: cutoff of the Kondo correlations

So far we have only investigated the time-dependent correlation function x(R,t) for
zero temperature. Now we extend the discussion to the propagation of the correlations
at finite temperature. In Fig. 4.14 the difference between the time-dependent correla-
tions functions for the two different temperatures (a) T = 0 and (b) T = 2T is shown.
Note that for Fig. 4.14a we have used the same data as for Fig. 4.6, however, this time
the distance R is measured in units of the Kondo length scale (.

For both temperatures we observe the 2kg oscillations for long times, the correlations
outside of the light cone and the propagation of a ferromagnetic correlation wave with
the Fermi velocity vg as already discussed in Sec. 4.3.1. While for % < 0.15 the corre-
lation functions for both temperatures agree well, for larger distances the correlations
in and outside of the light cone are strongly suppressed for the finite temperature



4.3. Nonequilibrium 75

(a)

70 g 0.05 0.05

60

- 5 -0.05
50 1 0.05 0.05
-0.1 -0.1

40

tD

-0.15 -0.15
30
-0.2 -0.2
20

-0.25 -0.25

10 03 0.3

0 -0.35
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08

R/f[\’ R/EK

-0.35

Figure 4.14: The correlation function x(R,t) computed with the TD-NRG plotted as a color
contour plot for the medium coupling p,J = 0.3 and a 1D dispersion for differ-
ent temperatures. A comparison between the different correlation functions for
(a) zero temperature and (b) the finite temperature T = 2Ty reveals that the
correlations inside and outside of the light cone vanish at around R = 0.5¢ for
T = 2Tk. NRG parameters are A = 3, N; = 1400 and N, = 4.

T = 2Tk. Once R exceeds the thermal length scale {t = ;TFK = 0.5¢x, these correlations
are cut off. However, the ferromagnetic wave that propagates through the conduction
band is amplified. An explanation for this effect is that due to the spin conservation
and the strong suppression of the correlations inside and outside the light cone, the
total spin has to be distributed over a larger area.

The approach to the equilibrium correlation function at large times is shown in Fig.
4.15. Here the spatial dependence of the correlation function x(R,tD = 70) at the
largest time tD = 70 is plotted for both temperatures using the data of Fig. 4.14. In the
T = 0 case, the 2kg oscillations between ferromagnetic and antiferromagnetic correla-
tions are observed for small distances while for larger distances only antiferromagnetic
correlations appear. For the finite temperature T = 2Ty, however, the correlations are
cut off and due to the fast decay, only the first few oscillations are visible.

The inset of Fig. 4.15 shows the envelope of the correlation function x(R,tD = 70)
for the two different temperatures. To increase the numerical accuracy and reduce the
unphysical oscillations, we used a higher number of kept NRG states N; and higher
number of z-averages N, compared to Fig. 4.14. As expected from the equilibrium
calculations, the envelope of the correlation function for T = 0 shows a power-law
decay with the distance. For the finite temperature T = 2T the envelope exhibits
the expected exponential decay at short distances. At larger distances, although we
have used higher values for N; and N,, the numerical noise of the TD-NRG exceeds
the rapid suppression of the correlation function. Therefore, the inset shows only the
beginning of the exponential decay of the correlation function for T = 2Ty. In order to
observe the exponential decay at larger distances, one needs to resort the equilibrium
NRG, cf. Fig. 4.3.
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Figure 4.15: The correlation function x(R, tD = 70) for the two different temperatures T = 0
and T = 2Ty for the medium coupling pyJ = 0.3 and the constanttime tD = 70in
1D. For T = 0, the RKKY-like 2k oscillations are observed while for T = 2T the
correlations are cut off. We used the same data as for Fig. 4.14. The inset shows
the envelope function of x(R, tD = 70). To increase the numerical accuracy we
used A =3, N, = 2400 and N, = 16 as NRG parameters for the inset.

4.4 Response

Now we extend the discussion to a real response function. We investigate the conduc-
tion electron spin-density polarization (S(R,t)) as a function of an externally applied
local field B(t) within linear response theory. The retarded spin-spin susceptibility ten-
sor must be diagonal and proportional to the unit matrix because the Kondo Hamil-
tonian is rotationally invariant in the spin space. Therefore, we only investigate the
conduction electron spin-density polarization in z direction (s*(R,t)) at a distance R
caused by applying a local magnetic field B(t) = B¢, acting on the impurity spin §imp
with €, being the unit vector in z direction.

Within the linear-response theory we can write the spin-density polarization (s*(R, t))

(s*(R, 1)) =(s*(R, t = —c0)) + / Xomp—e (Rt — £)A(E) dF’ (4.23)
where the retarded spin susceptibility

Kimp-e (R, ) = = i{[s*(R, ), Sip | )6() (424)
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is a true response function and A(t) = gugB(t) is the locally applied time-dependent
Zeeman splitting. At t = —oco the system is unpolarized and, therefore, the term
(s°(R,t = —o0)) = 0 can be neglected. Since the spin-density s*(R, t) and the impurity
spin Sfmp are both Hermitian operators, the spectrum

r o 1o ,
pimp—c(w) - (Sli>r(rjl+ _;ImXimp—c(R/w + 15) (425)
has to be an odd function pj;, (W) = —Pimp—c(—w) [127]. Here Ximp (R, w +i6) is

the Laplace transformation of Xirmp— (R, t). Therefore, we can write the inverse Laplace

transformation as a purely real integral

Xfmp—c(R/ t) = 2/ pirmp—c(R/w) Sin(wt)e(t) dw. (4-26)
0

To calculate the response function using the NRG, we first compute the spectral func-
tion pirmp_c(w) as described in Sec. 3.3 and insert this result into Eq. (4.26). Finally, the
spin-density polarization (s*(R,t)) can be calculated using the convolution Eq. (4.23).

4.4.1 Retarded host susceptibility x| .(R,¢)

Before we discuss the susceptibility Xirmp,c(R, t), we investigate the retarded equilib-
rium host spin-density susceptibility

Xe—c(R,t) = —i([s°(R, 1),57(0,0)])6(¢) (4.27)

which can be calculated analytically for | = 0. A detailed discussion about the analyti-
cal derivation of x._.(R,t) and its spectral function p.__(r,w) can be found in appendix
E. For a 1D dispersion, we obtain for the spectral function

pe(Rw) = ¥ [fle) ~ fer,)]

= 2.2
2ntViNT ¢ %,

X (ncos [(ky —k1)R]6(w — (e, — €,)) + sin [(?2 — kl)R)]> . (4.28)
w — (&, — €,

This analytical expression of the spin-spin susceptibility contains the dimensionless
frequency kgR that causes increasing frequency oscillations with increasing distance R.
Since the high energy spectrum of the NRG is much less accurate than the low energy
part, the numerical effort for a calculation of these retarded spin-spin susceptibilities
and their spectral functions using the NRG grows exponentially at large distances.
While the analytical calculation makes full use of the bath continuum, the conduc-
tion band is discretized on a logarithmic energy scale and consist of only a few bath
sites representing the high energy spectrum. Note that the NRG is geared towards the
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Figure 4.16: The spectral function p/._.(R,w) of the retarded host spin-density susceptibility
Xe_c(R, t) for a decoupled impurity (J = 0) and different distances R. The solid
lines show the exact analytical result and the dashed lines the results obtained
from a NRG calculation. NRG parameters are A = 3, N; = 3000 and N, = 16.
Figure taken from [124]

calculation of the impurity properties, while in this case we are using it to compute
a bath correlation function. Therefore, we are limited to short distances in the NRG
calculation because for larger distances the NRG cannot capture the high frequency
oscillations at high energies.

To illustrate this point, Fig. 4.16 shows a comparison between the analytical and the
NRG spectral function as a benchmark. Apart from the fact that the NRG spectrum is
slightly shifted to higher energies due to the NRG spectral broadening, the agreement
between the analytical and NRG results is very good at short distances. However, sig-
nificant deviations are observed for kpR = 2.017r. While for these distances also the
low energy parts of the spectra agree very well, the NRG completely fails to capture
the high energy maximum at & ~ 1.7 due to the limitation of the NRG to accurately
resolve the high energy parts of the oscillations in the spectrum. The frequency scale
of these oscillations is of the order of the bandwidth D as can be seen from Eq. (4.28).
For large distances R, these high energy oscillations cannot be properly resolved by
the NRG because for a finite A > 1 the NRG provides only a very low resolution of
excitations energies in this frequency range. However, the low energy spectrum is ex-
cellently recovered by the NRG as expected.

After benchmarking the accuracy of the spectral functions at small distances, we have
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Figure 4.17: (a) The retarded host spin-density susceptibility x._.(R,t) plotted vs. the time
for different distances R. The solid lines show the exact analytical result while
the dashed lines depict the results obtained from a NRG calculation. The ar-
rows in the top indicate the time T = R/vg. (b) The conduction electron spin-
density polarization (s*(R,t)) vs. time as a response to a Zeeman splitting
A(t) = gugBO(t) locally applied to the spin-density s*(0) at the origin. (s*(R,t))
has been normalized to the Zeeman energy A, = gugB. For the calculation of
(s*(R,t)) the convolution Eq. (4.23) and the susceptibility x._.(R,t) shown in
(a) have been used. As before, the arrows indicate the time t = R/vg. NRG
parameters are A = 3, N, = 3000 and N, = 16.

used the corresponding version of Eq. (4.26) for x._.(R, t) to calculate the retarded host
spin-density susceptibilities in time domain. The x._.(R, t) obtained from the NRG are
shown in Fig. 4.17a as dashed lines while the analytical susceptibilities are depicted as
solid lines. We observe a maximum that is followed by a minimum and both propagate
with the Fermi velocity vp through the system. The agreement between the analytical
and NRG results is quite good, however, the NRG results are slightly shifted to earlier
times which originates from the shift of spectral weight to higher energies due to the
spectral broadening in the NRG as illustrated in Fig. 4.16. The center of the propa-
gation is expected to be at the time 7 = f—F which is marked by arrows in the top of
Fig. 4.17a. The analytical susceptibility can be calculated for arbitrary distances R. In-
deed, we find that for the distance kzR/7r = 2 and larger distances’ the zero-crossing
between the maximum and the minimum of the analytical result is exactly located at
the time T = v% Furthermore, the RKKY-like 2k oscillations can already be observed
in x{_.(R, t) since for odd distances kgR/7 = n + 3 the maximum is larger while for
multiples of the distance kgR /7t = n the minimum is larger.

To clearly see the RKKY-like oscillations and how a response propagates through
the system, we calculate the time- and spatially-dependent conduction electron spin-
density polarization (s*(R,t)). For this purpose we apply a local fictitious Zeeman
splitting A(t) = gugBO(t) locally to s*(0) at the origin that induces a spin-density
polarization. A comparison between the analytical results (solid lines) and the NRG

3 For clarity, distances larger than kgR/7 = 2 are not shown in Fig. 4.17a and b.
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results (dashed lines) is shown in Fig. 4.17b. Here we have normalized (s*(R,t)) to
the Zeeman energy Ay = gugB to eliminate the trivial proportionality to the applied
field strength. For the calculation of both spin-density polarizations we have used the
convolution of Eq. (4.23), where Xirmp,c(R, t) has been replaced by x._.(R,t).

The induced time-dependent spin-density polarization can be understood as a re-
sponse to a spin wave propagating with the Fermi velocity vy through the system and
a consecutive fast equalization. In the time-dependent spin-density polarization the
RKKY-like 2kg oscillations are clearly visible. For multiples of the distance kgR/7m = n
the long-time value of (s*(R,t)) aligns parallel, and for odd multiples of the distance
keR/m = n +  antiparallel to the spin-density at the origin s*(0). In the analytical
results the maximum of the spin wave is located at the expected time T = % for dis-
tances kpR/ 7t > 2 while for shorter distances we observe a slight shift. In Fig. 4.17b the
time 7 is also indicated by arrows. As for x._.(R,t) the slight shift of the NRG results
to earlier times can be traced back to the NRG spectral broadening. Some response
is found outside of the light cone related to the finite width of the spin wave. This
response originates from the maximum directly in front of T = % in the susceptibility
Xe—c(R, t). The reason for the finite width of the spin wave is the finite spatial resolu-
tion which is directly linked to the momentum cutoff in the analytical formula defined
by the restriction of the k values to the first Brillouin zone. A sharp suppression of the
signal outside of the light cone would require to send the momentum cutoff to infinity
as done in the analytical calculation of Ref. [114].

By comparing the numerical results with the analytical ones, it becomes clear that the
small oscillations after the spin wave around the long-time limit of the spin-density are
not a numerical artifact due to the NRG discretization errors but related to the finite
bandwidth and the linear conduction band dispersion.

Note that we observe for the distance kgR /7t = 0.01 a significant deviation between the
long-time limit of the analytically calculated spin-polarization and the one calculated
with the NRG. In appendix F we show that the stationary value is determined by the

Pe—c(Rw)
w

integral over . As discussed above and shown in Fig. 4.16, the finite resolution

and the NRG broadening shifts some spectral weight to higher energies compared to

the exact solution and, therefore, we find a reduced value for |(s*(0,t — o0))| since

Pe_c(0,w)
w

creases once the spectral function exhibits sign changes because in this case the broad-

does not change sign. The accuracy of the long-time limit (s*(R,t — o0)) in-

ening errors partially cancel out.

4.4.2 Retarded susceptibility x., (R, t)

Now we turn to the retarded spin susceptibility xirmp_c(R, t) for finite couplings J de-
scribing the response of the conduction band spin-density at a distance R to a pertur-
bative magnetic field in z direction applied locally to the impurity spin. The spectral
function of )(irmp,c(R, t) is shown in Fig. 4.18 for different distances R to illustrate the
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Figure 4.18: The spectral function of the retarded spin susceptibility pirmp_c(R,w) plotted vs.

w/ D for different distances and p,J = 0.3. Compared to p._.(R,w) spectral
weight is shifted to lower energies. The distinctive peak at w ~ Ty reflects the
Kondo physics. NRG parameters are A = 2.25, N, = 3000 and N, = 16.

changes due to the presence of the Kondo spin. We restrict ourselves to distances
keR/m < 2 because we expect that, as before for Xe_c(R,t), the NRG cannot capture
the high frequency oscillations at high energies for large distances.

The increasing number of oscillations in the frequency spectra with increasing dis-
tance R are clearly visible. We observe a change of sign in pirmp_c(R,w) compared to
pe_¢(R,w) due to the antiferromagnetic coupling J. Furthermore, significant spectral
weight is now located at low energies. The Kondo physics is reflected in a distinctive
peak at w ~ Ty which appears for all distances R.

Figure 4.19a shows the time-dependent susceptibility )(irmp_c(R, t) vs. the rescaled time
tTy for different distances. The inset of Fig. 4.19a shows Xirmp_c(R, t) vs. tD for short
times and the arrows indicate the time T = f—F We observe a maximum that propa-
gates with the Fermi velocity vg through the conduction band and for larger distance
the center of the maximum is around 7. However, we expect that the real susceptibility
is slightly shifted to larger times because, as for x._.(R, t), the spectrum shown in Fig.
4.18 should be slightly shifted to higher energies due to the broadening in the NRG.
Compared to the retarded host susceptibility x;_.(R,#) it takes much longer until the
susceptibility is zero once again after the maximum has passed: the time scale is given
by the slow Kondo time scale TLK

In Fig. 4.19b, the time-dependent spin-polarization (s*(R,t)) is shown vs. the rescaled
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Figure 4.19: (a) The time-dependent retarded spin susceptibility ;(fmp_c(R, t) plotted against
the rescaled time tTy for different distances and py] = 0.3. (b) The time-
dependent spin-polarization (s*(R,t)) vs. the rescaled time tTy after switching
on the Zeeman splitting A(t) = gugB6(t) on the impurity spin. Dashed lines
indicate (s*(R,t)) calculated with the TD-NRG for a very weak magnetic field

SugB/D = 10~° applied to the impurity. In the insets the respective short-time
behaviors are shown and the arrows indicate the time T = R/vg. The horizontal
lines on the right of (b) mark the equilibrium value (s*(R,))/(gugB) obtained
from an equilibrium NRG calculation with N, = 1 and a small applied magnetic

field gugB/D = 107°. NRG parameters are A = 2.25, N, = 3000 and N, = 16.

time Ty for a Zeeman splitting A(t) = gugB0(t) applied to the impurity spin. Due to
the antiferromagnetic coupling ], we observe a sign change in the response compared
to the response obtained from x._.(R,t). Now for multiples of kgR/7t = n the conduc-
tion electron spin-density aligns antiparallel, and for odd multiples of kgR/7m = n + 1
the spin-density aligns parallel to the impurity spin for long times. These 2k oscilla-
tions for the long-time limit of the spin-polarization reflect the RKKY mediated spin
response.

As for the susceptibility )(irmp,c(R, t) we can identify two relevant time scales in the
induced spin-density: the fast light cone time scale T = % and the slow Kondo time
scale %K The inset of Fig. 4.19b shows the spin-density polarization for short times
and the arrows once again indicate the time 7. Until the spin-wave has propagated
from the impurity to the distance R, the spin-density polarization remains almost zero
and afterwards (s*(R,t)) starts to build up. Again, we can trace back the finite width
of the spin-wave to the finite momentum cutoff of our single symmetric conduction
band used in the NRG calculations as already discussed in Sec. 4.4.1. In contrast to
the fast response of the decoupled Fermi sea, where the equilibrium value of the spin-
polarization is reached rather fast on the time scale %, the steady state value of the
response for a finite coupling ] is reached very slowly. The long-time approach is gov-
erned by the Kondo time scale %K and independent of the distance R as shown in Fig.
4.19b.

To gauge the quality of the long-time value of the spin-polarization (s*(R,t)) obtained
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from the linear response theory, we have used a NRG equilibrium calculation to com-

(s*(R,00))
gusB

to the impurity spin. These values are shown as horizontal lines on the right of Fig.

pute the equilibrium value for a very small magnetic field % =10"° applied
4.19b. For a vanishing magnetic field, the linear response theory becomes exact and the
steady state value must coincide with the equilibrium expectation value. Similar to the
case for the decoupled Fermi sea, the absolute value of the steady state |(s*(R,t — o0))]
calculated from the spectral function is slightly smaller than the equilibrium value due
to the shift of spectral weight to higher energies caused by the NRG broadening.

As a second verification of the quality, we measure (s*(R,t)) after switching on a very
weak magnetic field % = 107° applied to the impurity spin using the TD-NRG.
These results are depicted as dashed lines in Fig. 4.19b. The agreement between
(s°(R,t)) calculated from xin, (R, t) and the one obtained from the TD-NRG is re-
markably good especially for short times which are shown in the inset of Fig. 4.19b.
Only for longer times both curves start to deviate and the spin polarization of the
TD-NRG reaches, as expected, the equilibrium long-time value (s*(R, o)) marked by
the horizontal lines. This demonstrates that the NRG provides reliable results for the
spectral function pf,,, (R, w) at short distances.

4.5 Summary

We have presented a detailed study of the temporal and spatial propagation of Kondo
correlations for ferro- and antiferromagnetic Kondo couplings | using the TD-NRG.
In our NRG approach we have divided the conduction band into two distance depen-
dent even and odd parity bands and have used these parity bands to construct two
Wilson chains. Furthermore, we have considered the full energy-dependence and the
correct normalization of the bands to obtain accurate results. The quality of our map-
ping has been benchmarked by: (i) calculating the intrinsic spatial dependence of the
spin-spin correlation of the decoupled (] = 0) Fermi sea with the equilibrium NRG
which perfectly coincides with the exact analytical calculation for the full continuum,
and (ii) checking the fulfillment of the analytically known sum rules of the equilibrium
correlation function for ferro- and antiferromagnetic couplings. The deviation of our
numerical data from the sum rule is only 2% for a 1D dispersion. This provides a
second independent check of our distance dependent NRG mapping.

The results obtained from our equilibrium NRG calculations significantly differ from
previous NRG results [47] where only antiferromagnetic correlation for all distances R
were found. While for large distances R > ¢y = % our results agree with the previ-
ous ones [47] in the way that we also only observe antiferromagnetic correlations, we
find oscillations between ferro- and antiferromagnetic correlations for short distances
R < ¢k which is, however, in accordance with predictions made by Affleck and his
co-workers [125]. In agreement with Ref. [47], a R% decay at short distances R < ¢k



84 Chapter 4. Spatial and temporal propagation of Kondo correlations

and a ﬁ decay at large distances R > (i is observed for the envelope function of
Xoo(R) for a D-dimensional dispersion. The crossover between these two decays occurs
at around the Kondo length scale R ~ (i which supports the common interpretation
of (i as being the size of the Kondo screening cloud.

In the ferromagnetic regime, the Kondo length scale ¢y diverges and, therefore, a R%
decay and oscillations between ferromagnetic and antiferromagnetic correlations is ob-
served for all distances. Additionally, the positions of the minima and maxima are
interchanged due to the sign change of the Kondo coupling J.

For the full time-dependent correlation function x (R, t) we find a light cone defined by
the Fermi velocity vg that divides the parameter space of x(R,t) into two parts. As a
consequence of a build up of local antiferromagnetic correlations, a ferromagnetic wave
propagates on the light cone away from the impurity location. Inside the light cone,
the correlation function develops rather rapidly and approaches towards the equilib-
rium correlation function. In accordance with this equilibrium correlation function, for
long times the typical decaying RKKY-like 2kg oscillations in spatial dependence are
observed. Additionally, the long-time behavior exhibits only antiferromagnetic corre-
lations for large distances R > (. For ferromagnetic couplings, the long-time limit
of the time-dependent correlation function also agrees with the equilibrium correlation
function so that x(R,t — o0) remains oscillating between ferro- and antiferromagnetic
correlations and always decays as +.

Surprisingly, we have found in our TD-NRG data for ferro- as well as antiferromagnetic
Kondo couplings a build up of correlations outside of the light cone that do not decay
exponentially. Using a second-order perturbative expansion in the Kondo coupling
J, we have been able to trace back these correlations to the intrinsic entanglement of
the Fermi sea. Furthermore, the sum of the first- and second-order contribution pro-
vides an explanation for the observed difference between ferro- and antiferromagnetic
Kondo couplings which originate from the fact that the first order is sensitive to the
sign of the coupling J.

The extension of our NRG and TD-NRG calculations to finite temperatures have shown
the emergence of a new length scale {7 = “£. Once the distance R exceeds ¢ both cor-
relations, in- and outside of the light cone, are exponetially cut off.

Moreover, we have presented data for the retarded susceptibility Xirmp,c and its spectra
for different distances R. We have used this susceptibility to calculate the response of
the spin-density polarization (s*(R,t)) induced by a very weak magnetic field applied
locally on the impurity spin. For the real-time response of (s*(R,t)) we have found
almost no correlations outside of the light cone. The finite width of the spin wave that
propagates through the system could be traced back to the finite momentum cutoff.
However, benchmark calculations with the retarded host spin-density susceptibility
Xe—c(R,t), which can be calculated analytically, have shown that this method yields
reliable results only for short distances kgpR/ 7T < 2.



Chapter 5

Metal-molecule complexes on an
Au(111l) surface

A comparison between STS and NRG spectra

In the last few years the interest in magnetic properties of nanoscale structures has been
growing rapidly. The reason for this is the demand to design miniaturized spin-based
devices, e.g. for spintronics or quantum computation [30, 128]. The idea of combining
the molecular pathway with magnetism is now attracting more attention [129, 130] be-
cause molecular compounds demonstrate a remarkable tendency to self-assemble. For
this reason it is essential to obtain a better understanding of spin and charge transfer
processes between molecules, surfaces and even single atoms. In this context, dimers
of two molecules constitute important model systems, since they are simple and yet
embody the crucial physics: the competition of interactions within the nanostructure
with those between the nanostructure and its environment.

This chapter is divided into two parts: At first, in Sec. 5.1 the formation of a radical and
the existence of a local moment after adsorption of a single Au atom onto a PTCDA
molecule deposited on an Au(111) surface is demonstrated by observing a zero-bias
differential conductance peak in the scanning tunneling spectroscopy (STS) spectrum
that originates from the Kondo effect. For the theoretical description of the properties
of the Au-PTCDA complex a hierarchy of methods is used, ranging from density func-
tional theory (DFT) including a van der Waals correction to many-body perturbation
theory (MBPT) and the numerical renormalization group (NRG) approach. The com-
bined DFT/MBPT+NRG approach provides an accurate description of the low-energy
excitation spectrum of the spin degree of freedom, predicting a Kondo temperature
very close to the experimental value. Furthermore, we provide a guideline how to ex-
tract the Kondo temperature reliably from the experiment in a particle-hole asymmetric
case by analyzing the universality of various definitions of the Kondo temperature Ty
in detail.

In the second part in Sec. 5.2 the interaction between two adjacent Au-PTCDA com-
plexes is investigated. We propose a novel approach to tailor the magnetic properties

85
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of a nanostructure which is not based on a magnetic exchange interaction. Instead, it
relies on the systematic use of the ubiquitous non-magnetic chemical interaction be-
tween the components of the nanostructure. The approach is based on spin-moment
carrying orbitals of the Au-PTCDA that are extended in space and allow, therefore, the
direct coupling of magnetic properties to wave function overlap. If the wave function
overlap between the two monomers is changed, the dimer is tuned through a quantum
phase transition from a triplet to a singlet ground state.

Since we compare the results of the NRG with experimental data, we use the A, factor
of Eq. (3.17) in this chapter in order to achieve more accurate results.

5.1 Monomer

We start with the investigation of the monomer where a metal-molecule complex is
constructed that is a paramagnetic radical. Unlike common molecule magnets where
the spin is usually located in a d or f orbital, the spin is transferred into a 7r-orbital
that extends over the whole molecule. The advantage of such an extended radical is its
increased probability to interact with its neighbors, offering the potential to utilize this
coupling. In the experiment, chemically bonded metal-molecule complexes are formed
by reacting perylene-tetracarboxylic dianhydride (PTCDA) molecules, which are ad-
sorbed on an Au(111) surface, with a single Au atoms. These Au-PTCDA complexes
are investigated by means of scanning tunneling microscopy (STM).

The observation of the Kondo effect in the experiment is an unambiguous proof that
the Au-PTCDA complex has indeed an unpaired electron. This electron generates a
local moment in the 7r-orbital due to the large Coulomb interaction compared to the
electron substrate coupling.

On the theory side, a DFT calculation including van der Waals corrections is used to
describe the geometrical structure of the Au-PTCDA complex. The results are in per-
fect agreement with the experimental observations.

However, a correct physical description of the local moment formation and the Kondo
effect is not possible with such a mean field approach. Therefore, we use the DFT
plus MBPT results as input parameters for NRG calculations and obtain the excitation
spectrum of the complex at high and low energies.

For this purpose the full energy dependent hybridization function between the Au-
PTCDA complex and the substrate is employed which is extracted from the DFT/MBPT
approach. This enables us to achieve a quantitative description of the electronic prop-
erties of the Au-PTCDA/Au(111) complex, predicting a Kondo temperature which is
within 1 K of the experimentally measured one.

The results of this section have already been published in [131].
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5.1.1 Experiment and DFT: setup and theory

In the following, we briefly discuss the experimental setup and the theory for the
DFT calculations. The experiments were done at the Peter Griinberg Institute in the
Forschungszentrum Jiilich by Taner Esat, Christian Wagner, Ruslan Temirov and F.
Stefan Tautz while the DFT calculations were carried out at the Institut fiir Festkor-
pertheorie at the Westfédlische Wilhelms-Universitidt Miinster by Thorsten Deilmann,
Peter Kriiger and Michael Rohlfing.

Experimental setup

For the experimental setup an atomically clean Au(111) surface was prepared. Af-
terwards a submonolayer film of PTCDA molecules was deposited onto the Au(111)
surface using a Knudsen cell. The whole sample was then transferred into a low-
temperature STM with a base-temperature of T = 9.5 K. By heating a thin gold wire,
gold atoms were evaporated onto the PTCDA submonolayer. The clean gold surface
was then scanned with the STM until the spectroscopic signature of the adsorbed Au
atoms appeared and differential conductance dI/dV (V) spectra were recorded.

For the investigation of the Kondo effect the differential conductance spectrum was
measured at different temperatures. Since broadening effects due to temperature have
a crucial effect on the linewidths of narrow peaks in STS, it is essential to take these
effects into account. Therefore, the measured spectra were deconvoluted [132].

DFT: theory

In addition to the experimental measurements, the system is also investigated theoreti-
cally by computing its geometrical and electronic structures. The geometrical structure
is calculated with DFT using a generalized gradient approximation (GGA) [133] which
also considers the van der Waals interaction [134] while for the mean field electronic
structures a hierarchy of DFT calculations with local density approximation (LDA) or

local spin density approximation (LSDA) combined with MBPT is employed.

This combined approach is required since the electronic properties of organic molecules
in LDA often suffer from a distinct underestimation of the gap between the highest oc-
cupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).
Therefore, the MBPT replaces the exchange potential of the DFT by the self-energy
operator, for which the GW approximation [135] is used resulting in more realistic

quasiparticle (QP) energies. However, including the metal substrate in a GW calcu-
lation is a difficult task and, hence, a perturbative L(S)DA+GdW approach [136] as a
further approximation is introduced which yields reliable QP energies by employing a
model for the dielectric screening due to the substrate. In this approach the substrate
is only included in terms of its dielectric polarization. Previous investigations using

this method have shown good agreement with experiment [137].
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The spectrum of a state |¢;) in the full system is then given by its projected density of
states (PDOS)

0i(E— D) = Y [(¥ul¢) | 6(E = E, — A). (5.1)
n
Here, E, is the energy of the full Au-PTCDA/Au(111) system corresponding to the
wave function |¥,), |¢;) denotes the wave functions of a few relevant states of the
Au-PTCDA system where the Au(111) surface has been excluded and A; is the QP
correction obtained from the L(S)DA+GdW.
The occupation of the orbital i is determined by the PDOS according to

1y = /EF 0,(E — A}) dE (5.2)

while the intraorbital Coulomb repulsion U; in orbital i is given by

U= [ [6@PWEDp )P drad, (5.3)

where W is the screened Coulomb interaction. For further details about the calcula-
tions of the PDOS, the QP shift and the intraorbital Coulomb repulsion we refer the
reader to Ref. [138].

Note, that such a mean field approach is incapable to describe the local moment for-
mation or the Kondo effect correctly and, therefore, NRG calculations are required to
incorporate dynamical correlation effects. However, the LDA-GdW results can be used
as a starting point for the NRG.

5.1.2 Experiment and DFT: results

The Au-PTCDA complex and its structure

Figure 5.1 shows the PTCDA layer after the Au atoms have been deposited. In the
inset the area around the adsorbed Au atoms is depicted in more detail. The PTCDA
molecules arranged into the so-called herringbone structure on the Au(111) surface are
clearly visible. The adsorbed Au adatoms appear as circles with a diameter of about
10 A in the STM images.

The precise adsorption positions of the Au atoms relative to the PTCDA layer are
shown in more detail in Fig. 5.2a. The centers of the adsorbed Au atoms (blue spots)
are close to one of the two carbon atoms (gray circles) that are located midway along the
edges of the PTCDA molecule. Due to the symmetry of the unit cell of the freestanding
PTCDA layer, all data points can be displayed within one of its quadrants. This allows
four equivalent adsorption positions on one PTCDA molecule.

The agreement between the experimentally observed adsorption positions of the Au
atoms and the positions predicted by DFT calculations is very good. The potential
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Figure 5.1: Constant current STM image after deposition of single Au atoms on a PTCDA sub-
monolayer on Au(111) (710 A x 710 A). The inset shows the area around the
adsorbed Au atoms in more detail. The adsorbed Au atoms appear as circles with
a diameter of about ~ 10 A. Figure taken from Ref. [131].

energy surface calculated with the DFT for the Au atoms on the PTCDA monolayer
is shown in Fig. 5.2b. Two nearly equivalent minima A and B with binding energies
of 0.69 eV and 0.66 eV are found. Near the oxygen atoms (red circles) the interaction
with the Au atoms almost vanishes. Due to the symmetry, four such minima are found
labeled by A, B, A’ and B’. The Au atoms are adsorbed in a height of 2.1 A above
the monolayer with a distance of 2.2 A to the nearest carbon atom. This bonding
distance indicates a formation of a covalent bond between the PTCDA and the Au
atom which is in agreement with the observations in Ref. [139]. Consequently, what
at first sight appeared to be an Au atom in Fig. 5.1 is in fact a covalently bonded Au-
PTCDA complex. The image is predominantly formed by the Au atom which sticks
out of the surface layer.

A second set of calculations have been carried out including the topmost three layers of
the Au(111) surface to determine the influence of the metal substrate on the Au atom
bonding. The adsorption sites relative to the PTCDA molecule stay the same as in the
freestanding case, however, the binding energy in the minima becomes larger due to
the interaction with the surface. Essentially, the whole potential energy landscape is
shifted by 0.15 eV to larger binding energies compared to the freestanding layer. The
distance to the nearest carbon is again 2.2 A and the adsorbed atom is located 5.4 A
above the topmost Au(111) surface layer.
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Figure 5.2: (a) Experimentally determined centers of the adsorbed Au atoms (blue spots) in
the PTCDA unit cell on Au(111). The white, gray and red circles indicate hydrogen,
carbon and oxygen atoms of the PTCDA molecule. The golden spheres denote the
positions of the Au atoms in the topmost layer of the Au surface. (b) Potential en-
ergy surface in eV for an Au atom adsorbed on a PTCDA freestanding monolayer.
Adapted from Ref. [131].

Scanning tunneling spectra of the Au-PTCDA complex: Kondo effect

Having established the existence of covalent bonded Au-PTCDA complexes, in the
following the electronic properties of this complex on the Au(111) surface are studied
by using STS.

Figure 5.3 shows the differential conductance spectrum of an Au-PTCDA complex. A
peak at zero-bias voltage and three peaks at —800, 500 and 1200 mV are observed.
A comparison of the peak at zero-bias with the other peaks in the spectrum reveals
that the former is much sharper and has a Lorentzian lineshape. This suggests that
the zero-bias peak does not correspond to an electronic eigenstate of the Au-PTCDA
complex.

It is known from earlier work that charge transfer to the PTCDA molecule may cause
a Kondo effect [140]. Since the formation of a chemically bonded complex may lead to
such a charge transfer and a formation of a radical, it seems reasonable to suppose that
the zero-bias peak is in fact a Kondo resonance. This assumption is confirmed by the
analysis of its full width at half maximum (FWHM) and the peak height (dI/dV(V =
0)) as a function of the temperature.

The extracted FWHMSs of the zero-bias peaks are depicted in Fig. 5.4a. The data shows
the expected temperature dependence of a Kondo resonance. The Kondo temperature
is extracted by fitting the expression [141]

FWHM = \/ (akpT)? + (2kp TEPTVHM)2 (5.4)
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Figure 5.3: d1/dV (V) spectrum of an Au-PTCDA complex. Three broad peaks at —800 mV,
500 mV and 1200 mV are visible. Additionally, a very sharp peak at 0 mV appears.

exp,FWHM

to the data. Here a and the Kondo temperature Ty are fitting parameters. This
procedure yields a Kondo temperature of TEXP’FWHM = (30.7 £1.0) K and a value of
a« = (5.3 £0.2) where « is in a good agreement with the theoretical value [142] of

x =54

Figure 5.4c shows the height of the zero-bias peak plotted against the temperature. To
extract the zero-bias peak, the data points for all temperatures have been measured on
the same Au atom with the same tip. The tip has always been stabilized at a constant
height above the Au-PTCDA complex. Some spectra acquired with this method are
shown on Fig. 5.4d for different temperatures.

By fitting the data shown in Fig. 5.4c to the empirical formula [143]

ar, G
(V=0 = [1+(21/S—01) <TTb>]

with s = 0.22 for a spin 1/2 system, a Kondo temperature of T2 = (38 + 8) K
(zbc=zero-bias conductance) and a value of Gy = (4.1 £+ 0.3) nS is obtained. Note that
changing the distance between the tip and the Au-PTCDA complex does not change

(5.5)

the measured Kondo temperature.

Both Kondo temperatures TEXP’FWHM and Tﬁbc agree within the error ranges. However,
there is no unique definition of the Kondo temperature and, therefore, different ap-
proaches to determine Ty may lead to slightly different values. This will be discussed
later on in Sec. 5.1.3 below. We can conclude that the Au-PTCDA complex is indeed a
spin 1/2 radical which gives, together with the itinerant electrons of metal substrate,
rise to a Kondo effect.
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Figure 5.4: (a) FWHM of the differential conductance peak at zero-bias for different temper-
atures. The data has been deconvoluted to take the broadening due to finite
temperature into account. (b) dI/dV (V) conductance (not deconvoluted) of an
Au-PTCDA complex at T ~ 5 K. (c) Peak heights of the differential conductance
peak at zero-bias for different temperatures. (d) dI/dV (V) conductance of an
Au-PTCDA complex measured at different temperatures. Figure taken from Ref.

[131].

Electronic properties of the Au-PTCDA: DFT results

Having proven that the Au-PTCDA complex on the Au(111) surface undergoes a Kondo
effect, the DFT results of the electronic properties of the Au-PTCDA complex in the gas-
phase are briefly discussed in the following.

The isosurfaces of some Au-PTCDA frontier wave functions are shown in Fig. 5.5 in
comparison with those of the bare PTCDA and Tab. 5.1 lists some contributions to the
most important states of the gas-phase Au-PTCDA complex. Note that the numbers in
each line of Tab. 5.1 do not sum up to one since many other states which contribute to a
smaller extent are neglected. It turns out that the LUMO of the bare PTCDA molecule
hybridizes strongly with the Au 6s level of the adsorbed atom, forming a bonding
LUMO+Au and an antibonding LUMO-Au combination.

Since the Au-PTCDA complex has an odd number of electrons (Au 651), its highest oc-
cupied level is half filled and it turns out that this is the LUMO+Au state. Therefore, we
can conclude that it is the LUMO+Au level which contributes the most to the Kondo ef-
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Au,, Aug, HOMO LUMO LUMO+3

HOMO+Au 0.14 0.00 0.74 0.01 0.00
LUMO+Au 029 0.07 0.16 0.31 0.03
LUMO—-Au 0.12 0.07 0.01 0.64 0.07

Table 5.1: The orbital composition of the three most important states of the gas-phase Au-
PTCDA complex in terms of projection amplitudes onto states of the Au atom
(6s,6p) and the PTCDA molecule (HOMO, LUMO, LUMO+3). The states of the Au-
PTCDA complex are labeled according to their dominant character as HOMO+Au,
LUMO+Au and LUMO—Au. Only the most significant contributions are listed. Table
taken from Ref. [131].

PTCDA Au-PTCDA

HOMO HOMO-Au

Figure 5.5: Wave functions of the PTCDA (left side) and the Au-PTCDA (right side) for orbitals
around the Fermi energy Ep calculated within LDA. Green indicates positive and
red negative isosurfaces. Figure taken from Ref. [131].

fect. A comparison between the experimental spectrum of Fig. 5.3 with spin-polarized
electronic structure LSDA+GdW calculations for the Au-PTCDA complex adsorbed on
the Au(111) surface suggests that the measured peaks at —800 mV and 500 mV can be
assigned to charge excitations of the LUMO+Au while the large peak at 1200 mV can
be ascribed to the LUMO-Au.

Before turning to the NRG calculations, we make a few comments on the accuracy of
the input parameters for the NRG. At first, there is a small difference in the adsorp-
tion height of the PTCDA calculated with the GGA compared to the experiment which
is of the order of 0.1 A. This may influence the level positions with respect to the
Fermi energy of the substrate. Furthermore, there is an uncertainty in the QP correc-
tion calculated with the LDA+GdW which cannot be reduced to less than 0.1 eV. As a
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LDA+GdW ——
LDA+GdW+NRG ——

PDOS/p(E) [a.u.]

-1 —0.5 0 0.5 1
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Figure 5.6: Comparison between the projected density of states of the LUMO+Au orbital

from a LDA+GdW calculation (black line) and the spectrum obtained from a
LDA+GdW+NRG calculation for T=0Kand U = 1.2 eV.

consequence of these inaccuracies, and additionally because a finite k point mesh and a
finite broadening for the calculation of the PDOS have been employed, an uncertainty
of An = 0.05 in the occupation of LUMO+Au state cannot be excluded. This will affect
the level position €, and the hybridization in the same order. Finally, the Coulomb
repulsion U slightly differs for different Au atom positions in the unit cell (positions
A, A’, B, B’ in Fig. 5.2) in the range of 0.1eV.

5.1.3 NRG studies of the electronic properties
Combining the LDA+GdW and the NRG

We now discuss the NRG calculations to incorporate dynamical correlation effects into
the spectrum of the Au-PTCDA on the Au(111) surface. This procedure has already
been employed in Ref. [138]. In this approach the LDA+GdW result is mapped onto a
single impurity Anderson model (SIAM) which is then solved using the NRG in order
to properly incorporate the Kondo effect that is experimentally observed in the dI/dV
spectrum in Fig. 5.3. It is sufficient to use only a single-orbital Anderson model to
model the dynamical coupling of the LUMO+Au orbital to the substrate since only the
LUMO+Au state shows a significant contribution to the spectral function around the
Fermi energy Eg.

The basic idea of this combined approach is to treat the PDOS, which is obtained by
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Figure 5.7: The full energy-dependent hybridization function I'(E) which is obtained from the
LDA+GdW PDOS. Since T'(E) is independent of the Coulomb interaction U, for
every NRG calculation with an energy-dependent hybridization this T'(E) is used.
Figure taken from [ 1.

the LDA+GdW and shown in Fig. 5.6 (black line), as an effective mean field spectrum
Pcaw (E). By equating

N 1
peaw(E) = lim Im - o U~ A(E — )’ 56)

we are able to extract the bare level position €, and the complex coupling function A(E)
between Au-PTCDA complex and the substrate. Here, U labels the estimated intraor-
bital Coulomb interaction obtained from Eq. (5.3), and n the occupation number of the
energy level given by Eq. (5.2). Details about the calculations of the NRG parameters
can be found in appendix G.

Since the LDA+GdW and LSDA+GdW predict slightly different Coulomb interactions
(see also the discussion at the end of Sec. 5.1.2), we take U as a model parameter and
vary the interaction within the predicted bounds. While the LDA+GdW yields U = 1.1
eV with an occupation n = 0.71, the LSDA+GdW predicts U = 1.3 eV and an occu-
pation of n = 0.5. The parameters U, €, and A(z) enter a NRG calculation. Here
I'(E) = —lim,;  ,+ ImA(E + i) (c.f. Eq. (3.3)) is the hybridization strength between
the Au-PTCDA complex and the substrate. It will turn out that it is crucial to retain
the full energy-dependence of the hybridization function I'(E) to obtain the correct
Kondo temperature from the NRG calculations. The extracted I'(E), which is used in
all following NRG calculations with an energy-dependent hybridization, is plotted in
Fig. 5.7. Using Eq. (5.6) we find that the energy level ranges from ¢, = —0.88 eV for
U=11eV,overey=—095eVforU=12eVtoey=—1.02¢eV for U=1.3¢€V.
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A resulting NRG spectrum for U = 1.2 eV is depicted in Fig. 5.6 (blue line). Indeed,
the spectrum now shows a sharp Kondo peak at the Fermi energy E = 0 and two
charge excitation peaks at —0.9 eV and 0.25 eV. The charge excitation peaks are found
reasonably close to the experimental positions (—0.8 eV and 0.5 eV) depicted in Fig. 5.3.
Given the uncertainties of the LDA+GdW input parameters into the NRG, the agree-
ment with the experimental measured charge excitations to within 0.25 eV is pretty
good which shows that our modeling describes the system at a quantitative level. Note
that we observe in the NRG a slight reduction of the "effective U" which is defined as
the difference between the two charge excitation peaks. For the spectrum shown in Fig.
5.6 this reduction is given from U = 1.2 eV to U = 1.15 eV.

To illustrate the effect of the above mentioned uncertainties of the Coulomb interaction
U, the NRG spectrum is plotted in Fig. 5.8a for different interactions U and a temper-
ature of T = 5 K. With increasing interaction U we observe a narrowing of the Kondo
resonance and, consequently, a reduction of the Kondo temperature. This effect can be
explained by the analytical formula of the Kondo temperature which is stated in Eq.
(5.9) below.

Results for the Kondo temperature

We now turn to the investigation of the Kondo temperatures resulting from the NRG
calculations. Since the Kondo temperature depends extremely sensitively on the physi-
cal parameters such as the metal-molecule coupling, the energy level and the Coulomb
interaction, a comparison of the LDA+GdW+NRG predicted Kondo temperatures with
those obtained by the experiment is a very sensitive measurement of the accuracy of
the first-principle DFT/MBPT analysis.

However, since the Kondo temperature is a crossover scale rather than a transition
scale, there is a no unique definition. Therefore, we employ three different approaches
to obtain the Kondo temperature: At first, we make a fit to the temperature dependent
zero-bias conductance which should be a universal function of T/Tg. This leads to a
Kondo temperature which we denote bec (zbc =zero-bias conductance). Afterwards,
we evaluate the analytic formula for the Kondo temperature of the particle-hole asym-
metric SIAM in which the same orbital parameters from our DFT/MBPT calculations
enter but where we replace the full energy-dependent hybridization strength I'(E) by
its value at the Fermi energy I' = I'(0). This leads to an analytic estimate of the Kondo
temperature which is denoted by T (T, €y, U) in the following. At the end, we analyze
the FWHM of the zero-temperature spectral function around the chemical potential
which provides the Kondo temperature VM,

We start with the discussion of the Kondo temperature T2 obtained from the zero-
bias conductance. Figure 5.8b shows the spectral function pyrg(E) of the combined
LDA+GdW+NRG approach for the LUMO+Au orbital at fixed U = 1.2 eV for three
different temperatures. The spectra are in a good agreement with the corresponding
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Figure 5.8: Results of the combined LDA+GdW+NRG approach for the Au-PTCDA complex
on an Au(111) surface. (a) Spectral function for three different values of the
Coulomb interaction U = 1.1,1.2,1.3 eV and T = 5 K. The width of the Kondo res-
onance and consequently the Kondo temperature is increasing with decreasing
U. (b) The Kondo resonance for U = 1.2 eV and the three different tempera-
tures T = 7.8,15.1,22.5 K. (c) The temperature dependent zero-bias differential
conductance for different interactions U as a universal function of T/Tlibc. (d)
Zero-temperature spectra for the interactions U = 1.1 eV and U = 1.3 eV and
their Fano fits to extract the FWHM. Figure taken from [131].

experimental results of the differential conductance dI/dV (V) which are shown in Fig.
5.4. However, the NRG spectrum is slightly more asymmetric which will be discussed
later on.

The temperature dependent spectral function pyrc(E) enters the calculation of the
differential conductance [144, ] in the tunneling regime,

22(V) =Gy [ AE AT (Edprrc(E)(~fip(E V), 67)

where the reference conductance G is given by [144]

_ 2¢° 4L, (0)r(0)
O T (0) + T >
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8]
Exp. 1.1eV 1.2eV 1.3eV
T2 38+8 60.3 37.0 27.4
T (T, €0, U) n/a 41.7 28.4 195
T VM 30.7+1 51.0 429 30.2

Table 5.2: Experimental and calculated Kondo temperatures in K. For the calculated T¢™ and

T,EWHM we have used the full energy-dependent I'(E), while for Ty (T, €y, U) Eq. (5.9)
has been evaluated for I' = T(0) = 86 meV. Table taken from [131]

Go depends only on I'(0) and I';,(0) which are the charge fluctuation scales at the
chemical potential induced by the coupling to the substrate and the tip, respectively.
fip(E, V) denotes the Fermi distribution of the STM tip also including the bias volt-
age V. Note that for a STM tunneling I';,(E) — 0, the reference conductance is
given by G, — (2¢°/ h)(4Tp(0)/T(0)) and hence the tunnel current is strongly sup-
pressed. For zero temperature the derivative of the Fermi distribution is — ft/ip(E, V)=
J(E — eV) and the formula for the differential conductance simplifies to dI/dV (V) =
nGol'(eV)pnra(eV).

Fitting the zero-bias conductance of Eq. (5.7) using the pnrg(E) obtained from the
LDA+GdW+NRG approach to the empirical formula Eq. (5.5) yields Kondo tempera-
tures that range from T& = 27.4 K for U = 1.3 eV to T2 = 60.3 K for U = 1.1 eV.
These values are perfectly bracketing the experimentally estimated Kondo temperature
of TEXP’ZbC = (38 £ 8) K. The best agreement is given for U = 1.2 €V for which we ob-
tain T2 = 37.0 K. The values of the Kondo temperature for all Coulomb interactions
U are listed in Tab. 5.2.

The calculated zero-bias differential conductance, normalized to G, is depicted in Fig.
5.8¢ as a universal function of T/ TZ™.

We now turn to the investigation of the analytic Kondo temperature. In general the
Kondo temperature is defined as the universal energy scale governing the excitation
and the thermodynamic response at low temperatures. However, physical properties
may also depend on the degree of particle-hole asymmetry. This degree is not only
responsible for the asymmetric shapes of the spectral function and dI/dV curves but
also enters the analytic expression of the Kondo temperature Ty.

Krishna-murthy etal. [27] have shown that for a particle-hole asymmetric SIAM with
constant hybridization function I'(E) = I' = const. the Kondo temperature is given by

\ 1
T (T, €p, U) =0.182|Ej| /0ot €XP (—p ; ff) (5.9)

for the regime where double occupancy of the level is energetically suppressed and the
orbital remains close to integer valence. Here, E; is the solution of the self-consistent
equation Ey = €y + (['/7)In(—U/Ej) [146] and describes the renormalization of the
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bare level due to high-energy charge fluctuations. pJ.¢ = pJ[1 + (77pK)?*] " is an effec-
tive Kondo coupling that not only contains the bare Kondo coupling

T /1 1
_ 5.10
pr== <|E§\+e0+u> (5.10)

but also a modification by the degree of particle-hole asymmetry

T 1 1
K=o (o ———— ), 5.11
e 27T(|E(’§| eo—l—LI) (5-11)

which are both obtained from a Schrieffer-Wolff transformation [71]. Note that for
particle-hole symmetry, the particle-hole symmetry breaking term pK vanishes and
that for weak coupling Ej ~ €.

Because the Kondo effect is dominated by the low-energy excitations, we use in Eq. (5.9)
the constant value I'(E = 0) ~ 86 meV which is the value of the energy-dependent hy-
bridization function at the Fermi energy (cf. Fig. 5.7). For ¢y = —0.95eV and U = 1.2
eV we obtain Ty = 28.4 K which agrees well with the numerical fit to the differential
conductance T2 = 37 K. The Kondo temperatures for the other values of the Coulomb
interaction U can be found in Tab. 5.2.

As already mentioned above, we found an increase of the Kondo temperature for a
decreasing Coulomb interaction U. This behavior can be explained by the exponential
dependence of the Kondo temperature on the Kondo coupling p] given by Eq. (5.10).
T (T, €9, U) has a minimum for the particle-hole symmetric case €, = —U/2 and two
maxima, one at €, = 0 and the second for ¢ = —U. In the case discussed above, we
move with decreasing U further away from particle-hole symmetry towards the mixed
valence regime where €, ~ —U and, hence, the Kondo temperature is rising.
However, we stress that this analytical Kondo temperature neglects effects stemming
from an energy-dependent hybridization I'(E). Therefore, we can use Tx (I, €y, U) only
as a preliminary estimate that needs modifications by the full LDA+GdW+NRG ap-
proach to describe the experiment properly.

TIEWHM obtained from the width of the
Kondo resonance at zero temperature. In the experiment the FWHM of the d1/dV (V)

Finally, we discuss the Kondo temperature

spectrum has been fitted to Eq. (5.4) to calculate the Kondo temperature. We now ap-
ply the same technique to the data of the combined LDA+GdW+NRG approach shown
in Fig. 5.8a. The results are depicted in Fig. 5.8d.

For the results of the NRG a temperature dependent fit is not needed since the NRG is
able to reach arbitrarily small temperatures, therefore, Eq. (5.4) simplifies to

FWHM(T = 0) =2kg T "™, (5.12)
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Furthermore, in the tunneling regime the differential conductance is proportional to

the spectral function dI/dV (V) « p(E = eV) for T — 0 and hence the Kondo tem-

FWHM

perature Ty can be estimated directly from the spectral function. However, in a

particle-hole asymmetric case, the spectra and the dI/dV curves have an asymmetric

shape. Given this asymmetry, three questions arise, namely (i) how to extract TIEWHM

7

(ii) do the different fit procedures yield comparable values and (iii) how do the various
TIEWHM compare with the other estimates of the Kondo temperature, namely Tﬁbc and
Tk (T, ep,U)?

The simplest approach would be to take the definition full width at half maximum
(FWHM) literally. In addition to the Kondo peak, however, the spectra also contain
broad charge excitations peaks at high energy (c.f. blue curve of Fig. 5.6) that invali-

date such a procedure. The estimated TIEWHM

are typically double the value of those
obtained by the fit procedure Eq. (5.5) due to this background.

The experimental FWHM shown in Fig. 5.4 were extracted from a Lorentzian fit but
since the NRG spectrum is slightly more asymmetric, we allow an asymmetry [147, 145]
in the fitting process and employ a Fano resonance line shape for the Kondo peak of

the form p(E) = py + A(;’%%Z with € = (E — E) /T to extract its FWHM. Here, E, de-
termines the location of the resonance which is shifted slightly away from the chemical
potential in accordance with the Friedel sum rule [76, 79, 149]. While q parameterizes
the asymmetry of the spectrum, I' denotes the width of the peak and defines, therefore,
the fit for TIEWHM

U =1.1¢eV and U = 1.3 €V and their corresponding Fano fits are depicted in Fig. 5.8d.

. The zero-temperature spectra for the two different interaction values

Extracting the Kondo temperature from the NRG spectra, we find Kondo temperatures
ranging from TIEWHM =302KforU =13to TIEWHM = 51.0 K for U = 1.1 which again
brackets the experimentally measured TEXP’FWHM = (30.7+1.0) K.

Note that when using Eq. (5.4) or Eq. (5.12) in a high particle-hole asymmetric case,

the extracted Kondo temperature T "M

slightly depends on the fitted function which
requires a significant modification from a symmetrical Lorentzian. We will show in
the following that Tg" "™ can only yield the correct order of magnitude of the Kondo
temperature since its value is definition dependent and does not need to coincide with
the Kondo temperature defined in Eq. (5.9) that has been derived from the screening of
the local spin moment. Again, we have listed all obtained Kondo temperatures VM

together with the experimental ones in Tab. 5.2.

Comparison of the Kondo temperatures

In the following, we will compare the various calculated Kondo temperatures among
each other to provide a guideline for a reliable extraction of the Kondo temperature Ty
from the experiment.

The Kondo temperature is only defined up to an arbitrary constant of the order of one

o . : ,)JFWHM
since it is only a crossover scale. Therefore, the question arises whether TI(pr ) ex-
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8]

Exp. 1.1eV 1.2eV 1.3eV
T2 3848 98.0 63.0 4238
Ty (T, €, U) n/a 417 28.4 19.5
T WVHEM 30.7 + 1.0 74.8 57.0 429
T} n/a 49.9 34.2 23.9
Ty (T, €0, U) / Tk - 0.836 0.830 0.810
T (T, e, U)/TE - 0.426 0.450 0.456
Ty (T, €0, U) /"M - 0.577 0.498 0.455

Table 5.3: Experimental and calculated Kondo temperatures in K. Note that for the calculated
Kondo temperatures a constantI' = 86 meV has been used. Table taken from [131].

tracted from the FWHM and TlgeXp’)ZbC obtained from the zero-bias conductance should
indeed be expected to be universal up to a universal scaling constant.

With the NRG we have an optimal tool at disposal to investigate the differences be-
tween the various definitions of the Kondo scale systematically. Since we have ne-
glected the energy-dependence of the hybridization function I'(E) for the calculation
of the analytical Kondo temperature Ty (I, €y, U), we have repeated the NRG calcu-
lations with a constant hybridization I' = 86 meV and extracted the new values of
TE"V™ and T2 from these calculations in order to exclude an influence of the energy-
dependent hybridization on the comparison. The new values can now be compared
directly with the analytic estimate T (T, €y, U). The obtained new Kondo temperatures
are listed in the upper part of Tab. 5.3. The table contains also the value of the new
Kondo scale Tj which is again determined for a constant hybridization T' = 86 meV.
Originally, Wilson [27] has defined the Kondo temperature as the temperature Ty at
which the local moment is reduced to approximately 26% of its original value. This
reduction is caused by screening through conduction electrons. At zero temperature
T = 0 the system is in a Kondo singlet ground state and the effective local moment is
Zero. TIZ follows then from the implicit equation

i =TEx(TE) = 0.07, (5.13)

where ‘ugﬁt is the effective local magnetic moment and x(T) its isothermal magnetic
susceptibility. Note that this screening has also entered the analytical Kondo tempera-
ture Ty (T, g, U) in Eq. (5.9).

Calculating the ratios Ty(T, e, U)/TE and Ty(T, ey, U)/TEC for the three different
Coulomb interactions U = 1.1,1.2,1.3 eV, corresponding to ¢y = —0.88, —0.95, —1.02 eV,
we observe almost constant ratios of Ty (T, €y, U)/ Ty ~ 0.83 and Ty (T, €y, U)/ TEC ~
0.45. Consequently, all three definitions Ty (T, €y, U), Tfé and TIZ<bC are connected by uni-
versal scaling factors and hence fully equivalent.
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/ TIEWHM are not constant and de-

In contrast, Tab. 5.3 shows that the ratios T (T, ¢, U)
pendent on the Coulomb interaction U, varying over a range from ~ 0.58 to ~ 0.46.
This situation does not change if we use different fitting procedures of the zero-bias
conductance peak to extract the FWHM. In particular, we have tested three different
methods: (i) a Lorentz-fit to the symmetrized spectrum pg (E) = 0.5(0(E) + p(—E)),
(ii) a Lorentz-fit to the low-energy part of the spectrum, and (iii) the above mentioned
and in Fig. 5.8d shown Fano line shape fit. With all three procedures we obtain roughly

TIEWHM

the same Kondo temperatures . Therefore, we can conclude that the Kondo tem-

perature T "™ is nonuniversal and depends on the degree of particle-hole asymmetry.
In particular, for small Coulomb interactions U we find a TIEWHM that is much smaller
than T2, while it approaches the fit of the zero-bias conductance for U = 1.3 where
the spectrum is narrower and much more symmetric. Note that in fact particle-hole
symmetry was explicitly assumed in the derivation of Eq. (5.4) [141].

The discussion above shows that the difference between TIEWHM and Tﬁbc originate
from a nonuniversal scaling factor. We can, therefore, summarize that the fit to the
zero-bias conductance Tébc is the most reliable way to extract the Kondo temperature
from experiments since in this case at temperature T only excitations of the order of

T enter. In contrast, for TIEWHM

measured at temperature T/Tyx < 1 always contains
high-energy excitations in addition to errors stemming from nonequilibrium effects
due to a finite current through the molecule for larger bias voltages. However, as Tab.

5.3 shows, TIEWHM

can still serve as a reasonable estimate for the Kondo temperature
which provides the correct order of magnitude of T.

Note that the Kondo temperatures calculated with a constant hybridization I are signif-
icantly different from those obtained with the full energy-dependent I'(E) which agree
with the experimental Ty very well. The Kondo temperatures for constant I" are up to a
factor of two larger than the Ty for nonconstant hybridization I'(E). Therefore, we can
conclude that the combined full LDA+GdW+NRG approach is needed to explain the
experimental data on a quantitative level. In particular, a perfect match between the
experimental Kondo temperature TEXP ¢ ~ 38 K and the Kondo temperature Tﬁbc ~ 37

K obtained from the NRG for U = 1.2 eV is achieved.

Occupancy of the LUMO+Au orbital

At the end, we discuss the occupancy of the LUMO-Au orbital. The LDA+GdW pre-
dicts an occupancy per spin of about n = 0.71 while the inclusion of correlation effects
in the NRG reduces this value to n ~ 0.55. Since the Coulomb interaction strongly
suppresses double occupancy and hence constrains the filling closer to half-integer
values, such a reduction is expected. However, both methods the LDA+GdW and the
LDA+GdW+NRG agree in predicting the binding of an extra fraction of an electron
that is drawn from the substrate (LDA+GdW+NRG: 0.1 electrons, LDA+GdW: 0.4 elec-
trons), in addition to the one electron from the Au atom.
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5.1.4 Monomer: Summary

It has been demonstrated that when doping a PTCDA /Au(111) monolayer with a sin-
gle Au atom, an Au-PTCDA complex is formed by a chemical reaction. Due to an un-
paired electron drawn of the Au 6s orbital, this complex is a radical with spin S = 1/2.
Remarkably, the orbital in which the unpaired spins resides extends almost over the
whole molecule. In particular, this orbital is given by the bonding combination of the
Au 6s and the LUMO of the free PTCDA.

On the Au(111) surface an additional small fraction of electrons (about 0.1) is drawn
from the surface into the LUMO+Au orbital of the complex. This additional charge
transfer is, however, limited by the strong Coulomb repulsion which prevents dou-
ble occupation. In fact, the LUMO+Au orbital remains close to single occupation.
One can think of the Au-PTCDA complex as an intermediate between the PTCDA on
Au(111) where no charge transfer occurs [150] and PTCDA on Ag(111) where almost
two electrons are transfered from the surface to the molecule [151]. For the case of Au-
PTCDA/Au(111) discussed here, the coupling to the substrate is much weaker than
for PTCDA/Ag(111), so that for similar intraorbital Coulomb repulsion the double
occupancy is only suppressed for Au-PTCDA /Au(111). In contrast, if we compare Au-
PTCDA/Au(111) to PTCDA/Au(111), where the LUMO remains unfilled, the charge
transfer from the adsorbed Au atom to the 7-system bypasses the charging barrier for
PTCDA on Au(111) that is caused by the large work function of Au(111).

As a consequence of the single occupation, a local moment is formed. The spin of the
complex interacts with the conduction electrons and, therefore, a Kondo effect emerges
in this system. In the experimental STS spectra, the Kondo effect is revealed by a sharp
resonance at the chemical potential. An analysis of the temperature dependent FWHM
and the zero-bias conductance yields Kondo temperature of about T;Xp’ZbC ~ 38 K for
the zero-bias conductance and TEXP’FWHM ~ 31 K for the FWHM. The observation of
the Kondo effect is an unambiguous proof that the Au-PTCDA complex is indeed a
paramagnetic radical.

On the theory side, a fully quantitative description of the Au-PTCDA complex was
achieved by employing a DFT with generalized gradient approximation (GGA), in-
cluding van der Waals corrections, as well as a combined LDA+GdW+NRG approach.
The DFT predicted adsorption positions of the Au atom relative to the PTCDA are in
perfect agreement with the experimental observed positions of the Au atom.

To describe the electronic properties of the Au-PTCDA complex, including the low-
energy region, we have mapped the DFT/MBPT results on the S = 1/2 SIAM. We
have considered the full energy-dependent hybridization function, which turns out to
be crucial for the quantitatively correct description of the system.

The NRG spectrum consists of two broad charge excitation peaks which are both within
0.25 eV of the experimental values, and a sharp Kondo resonance at the Fermi energy
Eg. Due to the strong particle-hole asymmetry of the system, we observe an asymmet-
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ric lineshape of the Kondo resonance. In the experiments the asymmetry of the Kondo
peaks is less obvious, although the charge excitation peaks clearly show the particle-
hole asymmetry in the measured spectra.

We have carried out a careful analysis of the scaling behavior of various definition of
the Kondo temperature in order to provide a guideline how the Kondo temperature
can be extracted reliably from the experiment for particle-hole asymmetric systems.
Since the Kondo temperature is a crossover scale, Kondo temperatures extracted from
a NRG calculation or an experiment my vary up to a scaling factor. However, this
scaling factor has to be universal for a valid extraction scheme.

In the present case, we find that the Kondo temperatures obtained from the zero-bias
conductance and the screening of the effective local moment scale universally with the
analytic formula for the particle-hole asymmetric SIAM. In contrast, the Kondo temper-
ature derived from the FWHM of the zero-bias peak scales nonuniversally, no matter
which fitting function is used to extract the FWHM. This means for the experiment
that one should use the zero-bias conductance to obtain the Kondo temperature since
it is not affected by nonuniversal aspects of the lineshape. If we apply this method to
experiment and NRG, we obtain a NRG Kondo temperature of Ty ~ 37 K for U = 1.2
which is in perfect agreement with the experimental Kondo temperature of Ty = 38 K.
Furthermore, we stress that it is not sufficient to replace the full energy-dependent hy-
bridization I'(E) by its value I'(0) at the Fermi energy to obtain a correct Ty, in spite of
the fact that the Kondo effect is determined by low-energy excitations.

Since the Kondo temperature depends very sensitively on the coupling to the substrate,
the energy level and the Coulomb interaction, the good agreement between theory and
experiment observed here shows that the structural and electronic properties of the
Au-PTCDA complex are accurately described by the DFT/MBPT and NRG.

Note that the delocalized character of the spin-carrying rr-orbital makes the Au-PTCDA
complex to an ideal candidate for the quantitative study of interactions between ex-
tended molecular magnets. Such an interacting system will be investigated and dis-
cussed in detail in the next section 5.2.

5.2 Dimer

We now discuss the case when two Au atoms adsorb on adjacent PTCDA molecules
and thus interact with each other.

Usually, when two local moments on a metal surface interact, this is discussed in
terms of a competition between the Kondo effect and the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [152-156]. The RKKY interaction is an indirect exchange
interaction which is mediated by the conduction electrons [58-60] and has already
been introduced in Secs. 2.3 and 4.2. Depending on distance, it favors ferromagnetic
or antiferromagnetic alignments of local moments, whereas the Kondo effect tends to
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quench the moments locally with the help of the conduction electrons [62-64, 66, 156].
Here, however, we describe a different scenario. In this case the driving force of a

quantum phase transition (QPT) in a system of two local moments on a metal sur-
face is the competition between the kinetic energy gain due to the entanglement with
the substrate and the binding energy gain due to the chemical interaction between
the moment-carrying orbitals. Interestingly, in this scenario the Kondo effect favors a
ferromagnetic alignment of the two local moments while the chemical interaction pro-
motes the formation of a local singlet. The mechanism is expected to be generic and
widespread, because it relies only on very general features of chemical interactions
and Kondo physics. Moreover, since it is straightforward to engineer the chemistry,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>