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Chapter 1

Introduction

In solid-state physics one typically has to deal with a large number of particles of
the order 1023. For such a large number of particles it is not possible to solve the
Schrödinger equation anymore, and one must find a different approach to handle the
problem. One of the most successful methods is the density functional theory (DFT)
[11, 22] which is based on the Hohenberg-Kohn theorem [33]. This theorem states that
a nondegenerate ground state of a system is unambiguously defined by the electron
density. An approximation of this electron density is self-consistently determined by
solving the Kohn-Sham equations [44] which are similar to a one-particle Schrödinger
equation with an effective potential. Since in this set of equations the particles are
noninteracting, the computational effort to solve the problem is significantly reduced.
All many-particle interactions are comprised in an exchange-correlation potential Vxc

which cannot be denoted exactly. The most common approximations for Vxc are the lo-
cal density approximation (LDA) where the potential is only a function of the electron
density and the generalized gradient approximation (GGA) where the potential is a
function of the electron density and its first derivative. By use of the DFT it is possible
to compute bond lengths, binding energies and band structures of many systems. For
the development of the DFT Walter Kohn has been rewarded with the Nobel prize in
chemistry in 1998 [55].
However, the DFT often fails to describe strongly correlated systems which are partic-
ularly interesting due to their unusual properties. An example of such an correlation
effect is superconductivity [66, 77] where the electrical resistivity of an material suddenly
vanishes below a critical transition temperature. This superconducting phase was first
discovered by Kamerlingh Onnes in 1911. It took more than four decades until Bardeen,
Cooper and Schrieffer could give an explanation of this effect with their BCS theory.
An electron-phonon interaction leads to an effective attractive electron-electron inter-
action causing the binding of two electrons to a Cooper pair of bosonic-like nature. For
temperatures below the transition temperature these Cooper pairs form a Bose-Einstein
condensate [88, 99] where a large fraction of bosons occupy the ground state forming a
macroscopic quantum state. For the explanation of superconductivity Bardeen, Cooper
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2 Chapter 1. Introduction

and Schrieffer have been rewarded with the Nobel prize in physics in 1972.
Another prominent example of a strongly correlated system is the Mott insulator [1010–
1313] where a material becomes insulating due to strong correlation effects. The Mott
insulator is a classic example where the DFT fails to capture the correct physics [1414].
In contrast to a band insulator, the Fermi energy is located within a conduction band
instead of a gap, however, strong Coulomb repulsions prevent the motions of the elec-
trons.
A third well-known example of a strong correlation effect is the Kondo effect [1515]. In
1934 de Haas, de Boer and van den Berg observed the increase of the electrical resis-
tivity of a gold probe contaminated with iron atoms upon lowering the temperature
[1616]. This is unusual since typically the resistivity only decreases if the temperature is
lowered. Jun Kondo has been able to ascribe this effect to the interactions between the
magnetic moments of impurity spins and the electron spins of the conduction band
[1717]. The Kondo effect will be discussed in more detail later on in Sec. 2.22.2. As for the
Mott insulator, the DFT is not able to describe the Kondo effect correctly.
Besides impurities diluted in host materials, the Kondo effect is often observed in
quantum dots [1818–2323]. Quantum dots are zero-dimensional structures which confine
a charge in all three space dimensions and, hence, exhibit discrete energy levels [2424]
similar to a particle in a box. Theoretically, such a system can be described by the
single impurity Anderson model (SIAM) [2525–2727] where an energy level with an on-site
Coulomb repulsion couples to a fermionic bath.
In recent years quantum dots have received much attention since a confined spin in the
quantum dot may be used as a qubit for quantum computers [2828–3131]. With a quantum
computer one hopes to simulate a quantum many-body system more efficiently than
with a classical computer. Furthermore, it is known that some algorithms can be imple-
mented faster on a quantum computer [3232, 3333] where the most prominent example is
the Shor algorithm [3434, 3535] which is used for integer factorization. For the use of a spin
as a qubit it is very important to have a long coherence time and that the spin relaxes
slowly [2828], therefore, the time-dynamics of quantum dots are particularly interesting
[3636–3838].
Another reason why quantum dots are currently in the focus of intense research is that
their magnetic properties may be used for spintronic devices [3939–4141]. In a spintronic
device the magnetic moment of an electron alone or in addition to the electronic charge
is used in order to increase data processing speed or to decrease the power consump-
tion compared to conventional charged-based devices [4242].
Up until now, the most common device that makes use of the spin is a hard disk
drive (HDD) where the spins are used to store information. In a HDD the read heads
use the giant magnetoresistance (GMR) [4343, 4444] or tunnel magnetoresistance (TMR)
[4545, 4646] effect to readout the stored information. Both effects are based on the fact
that the electric resistance through two adjacent ferromagnetic layers is dependent on
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whether the spins in the layers are parallel or antiparallel aligned. For the discovery
of the GMR effect Albert Fert and Peter Grünberg have been awarded with the Nobel
prize in physics in 2007.
For the application of quantum dots as qubits or for spintronic devices it is crucial to
gain a better understanding of the spin and charge properties of quantum impurity
systems (QISs).
In this thesis we will investigate the equilibrium and nonequilibrium properties of
different QISs. At first, we will consider the Kondo model where a local magnetic
moment of an impurity is coupled via a Heisenberg interaction to a fermionic bath.
We will examine how the Kondo correlations are built up and propagate through the
conduction band. For this purpose we will study the spin-spin correlation function
between the impurity spin and the spin density of the conduction band at a certain
distance. To set the stage for the nonequilibrium calculations, we will first investigate
the equilibrium properties and improve the results found in the literature [4747] in the
way that the spin-spin correlation function now fulfills an analytically known sum-
rule. The nonequilibrium results will show that most of the correlations propagate
within a light cone defined by the Fermi velocity. Interestingly, we will also observe
the buildup of correlations outside the light cone which do not decay exponentially.
With a second-order perturbation theory in the coupling, we will be able to reveal that
these correlations are connected to the intrinsic correlations of the Fermi sea which are
already present before the coupling between the impurity and the conduction band is
switched on. Furthermore, we will compute the retarded susceptibility that describes
the response of the conduction band spin density at a certain distance to a small mag-
netic field applied to the impurity spin. Using this susceptibility, we will clarify that
for a real response no correlations outside the light cone are observed.
Moreover, we will present an experiment where a metal-molecule complex is formed
by reacting a perylene-tetracarboxylic dianhydride (PTCDA) molecule, adsorbed on an
Au(111) surface, with a single Au atom leading to the emergence of a radical. The
observed Kondo effect in the scanning tunneling spectroscopy (STS) spectrum is an
unambiguous proof of a local moment formation. A DFT calculation shows that the
local moment resides in a π-orbital that is extended over almost the entire Au-PTCDA
complex. This makes this system very interesting for the investigation of interactions
between magnetic molecules and for the usability as spintronic devices since the de-
localized character of the π-orbital increases the probability of the local moments to
interact with adjacent complexes. However, a correct physical description of the lo-
cal moment formation and the Kondo effect is not possible with the DFT. Therefore,
we employ a combined DFT+NRG approach where we use the projected density of
states (PDOS) of the π-orbital and the Coulomb repulsion, both obtained from a com-
bination of many-body perturbation theory (MBPT) and DFT calculation, as a first
principle input for our numerical renormalization group (NRG) calculations. We will
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show that the results of the experiment and NRG are in perfect agreement without any
fitting parameters. In particular, the Kondo temperatures, which are extracted by a
temperature-dependent fit of the zero-bias conductance from both spectra, deviate by
only 1 K. In order to provide a reliable method to experimentally extract the Kondo
temperature in a particle-hole asymmetric system, we will make a careful scaling anal-
ysis of various definitions of the Kondo temperature and will demonstrate that indeed
the fit to the zero-bias conductance is the best method.
If two Au atoms are adsorbed on adjacent PTCDA molecules, the STS spectrum exhibits
in some cases a gap around the Fermi energy rather than a Kondo peak. By mapping
the system onto a two impurity Anderson model (TIAM), we will reveal that this gap
is caused by a strong nonmagnetic chemical interaction between the π-orbitals of both
complexes. The DFT calculations show that the strength of this interaction depends on
the precise adsorption position of the Au atoms on the PTCDA molecules. Only for
certain configurations the interaction is sufficient to produce the gap in the spectrum.
Using our NRG results we will provide a detailed analysis of the occurring quantum
phase transition (QPT) which is caused by a competition between the gain of kinetic
energy due to the entanglement with the substrate and the binding energy gain due to
the chemical interaction between the π-orbitals. We will also discuss the relevance of
parity-symmetry breaking for the observation of the gap in the STS spectrum.
At the end, we will consider the equilibrium and nonequilibrium properties of the two
impurity Kondo model (TIKM) which exhibits a QPT if the energy dependence of the
couplings to the conduction bands are artificially neglected. We will demonstrate that
it is possible to restore this QPT in the full energy-dependent model with appropriate
potential scattering terms. Afterwards, the time-dynamics of the spin polarization and
the spin-spin correlation function of both impurity spins after a quench in the direct
spin-spin interaction between the impurity spins will be investigated. For this purpose,
we will examine the two different initial conditions of parallel and antiparallel aligned
spins in the case of constant as well as energy-dependent couplings. We will explain
that the main differences between both initial conditions are caused by the fact that
for antiparallel aligned spins local oscillations between both impurity spins can occur
even without a coupling to the conduction band. It will be shown that a sufficiently
large antiferromagnetic spin-spin interaction prevents a thermalization of the correla-
tion function since in this case the impurities decouple from the conduction band. To
conclude our investigations, we will reveal that the time-dependent behavior of the full
energy-dependent model is essentially the same as the one for the model with constant
couplings. The slight differences originate from details of the energy-dependent model
such as the emergence of potential scattering terms.



Chapter 2

Quantum phase transitions and quantum
impurity models

In this chapter we will briefly discuss the concept of quantum phase transitions (QPTs)
and present the quantum impurity models that are used throughout this thesis.
The following section 2.12.1 is devoted to the QPTs and explains the different existing
types. In contrast to "conventional" phase transitions, a QPT occurs upon variation of a
nonthermal control parameter at zero temperature and order is not destroyed by ther-
mal fluctuations but by quantum fluctuations. We will consider the properties of the
Kondo model which describes a local magnetic moment that is coupled via a Heisen-
berg interaction to the spin density of a conduction band in Sec. 2.22.2. The Kondo effect
will be explained and we will discuss the QPT that arises in the Kondo model. For
this purpose, we will analyze how the coupling to the conduction band in an effective
low energy Hamiltonian changes upon lowering the temperature. In Sec. 2.32.3 the two
impurity Kondo model (TIKM) will be introduced which is an extension of the Kondo
model. In the TIKM two impurity spins are coupled to one conduction band which
gives rise to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction that is an indirect
spin-spin interaction between both impurity spins mediated by the conduction band
electrons. A competition between the Kondo effect and an antiferromagnetic spin-spin
interaction may lead to the emergence of a QPT, and we will clarify under which con-
ditions this QPT occurs. Furthermore, we will consider the single impurity Anderson
model (SIAM) which also includes charge fluctuations instead of only spin fluctuations
in Sec. 2.42.4. The SIAM describes an energy level with an on-site Coulomb repulsion that
hybridizes with a conduction band. We will analyze the different unstable and stable
fixed points the SIAM passes through upon lowering the temperature and will reveal
that for a large Coulomb repulsion the SIAM can be mapped onto a Kondo model
at low temperature via a Schrieffer Wolff transformation. Afterwards, the impurity
spectral function for small and large Coulomb repulsions will be shown. The spectral
function is of great relevance for scanning tunneling microscopy (STM) measurements
on quantum dots since the differential conductance of a current through the quantum
dot at low temperatures is directly proportional to the spectral function.
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6 Chapter 2. Quantum phase transitions and quantum impurity models

Figure 2.1: Schematic representation of the finite-temperature phase diagrams of impurity
QPT near the QCP. A and B are both stable phases, r is a nonthermal tuning
parameter and rc the position of the QCP. (a) First-order transition: the finite-
temperature region A+B is a simple thermodynamic mixture of the two phases.
(b) Second-order transition: the quantum critical region is bounded by T∗ ∝ |t|ν,
where t = (r − rc)/rc is a dimensionless parameter measuring the distance to
the QCP and ν is the correlation length exponent. (c) A transition of Kosterlitz-
Thouless type, sometimes also called an infinite-order transition. In contrast to
(b), the two phases are not separated by an unstable fixed point.

2.1 Quantum phase transitions

Phase transitions cause a qualitative change of the properties of a system and arise
from a variation of an external control parameter. In a "traditional" phase transition,
which occurs at finite temperature, a macroscopic order is destroyed by thermal fluc-
tuations. In contrast, a quantum phase transition (QPT) [4848–5050] takes place at zero
temperature and emerges upon variation of a nonthermal control parameter. In a QPT
order is destroyed solely by quantum fluctuations which always appear according to
the Heisenberg uncertainty principle. A QPT results from a competition between dif-
ferent ground state phases and can be classified into first-order and continuous transi-
tions. The transition point of a continuous transition between the two phases is called
quantum critical point (QCP) and can lead to unconventional behavior of the system
such as non-Fermi liquid behavior.
One type of QPTs are the so-called bulk transitions where the whole system shows
critical behavior. In this thesis, however, we focus on the class of boundary transitions
where only degrees of freedom of a subsystem become critical. In particular, we con-
sider zero-dimensional boundaries where only the contribution of an impurity shows
critical behavior. These types of transitions are called impurity quantum phase transi-
tions. A first example of such an impurity QPT is the anisotropic Kondo model [1515, 5151]
that will be discussed in the following section 2.22.2. Note that an impurity QPT is com-
pletely independent of a possible bulk phase transition in the bath.
The interplay between the quantum and classical fluctuations leads in the vicinity of
the QCP to phase diagrams that are schematically depicted in Fig. 2.12.1.
Figure 2.12.1a shows the phase diagram of a first-order transition which is a simple level
crossing in the ground state of the system. Here, A and B indicate two distinct sta-
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ble phases while the finite-temperature region A+B above the transition point is just a
thermodynamic mixture of the two phases. The parameter on the x-axis r indicates a
nonthermal tuning parameter and rc is the position of the QCP.
A second-order transition is depicted in Fig. 2.12.1b. The system exhibits an unstable fixed
point at the QCP r = rc which separates the two phases. The so-called quantum critical
region above the QCP is controlled by this unstable fixed point. In this region both
thermodynamic as well as quantum fluctuations are important and its boundaries are
determined by T∗ ∝ |t|ν = |(r − rc)/rc|ν, where ν is the correlation length exponent11.
The physics inside the quantum critical region is governed by thermal excitations of the
quantum critical ground state which may lead to unusual finite-temperature behavior
of the system such as unconventional power laws or non-Fermi liquid behavior.
Figure 2.12.1c shows a QPT of Kosterlitz-Thouless type. In contrast to Fig. 2.12.1b, a renorm-
alization group (RG) analysis shows that this kind of transitions are not related to a
unstable fixed point separating the two stable phases. Therefore, a quantum critical
region does not emerge in the vicinity of the QCP and the leading thermodynamic be-
havior shows only one crossover line. At the transition point T∗ vanishes exponentially.
Since the Kosterlitz-Thouless transition does not show a discontinuity in any derivative
of the free energy at the transition point, it is also sometimes called an infinite-order
transition.

2.2 Kondo model

W. J. de Haas, J.H. de Boer and G.J. van den Berg observed in 1934 that the electric
resistivity of a gold sample, which was contaminated with a small percentage of iron,
shows a minimum at low temperatures and increases again for even smaller temper-
atures [1616]. Since both the electron-phonon scattering as well as the electron-electron
scattering contribution to the resistivity are expected to decreases upon lowering the
temperature, the total resistivity should also only decreases until for T → 0 a constant
residual resistance originating from impurities remains [5252]. This counter-intuitive be-
havior indicates that a completely different mechanism must cause the increase of the
resistivity.
It took more than 30 years until Jun Kondo could give an explanation for the observed
increase of the electric resistivity in 1964 [1717]. The reason are magnetic exchange inter-
actions between the magnetic moments of the impurities and the electron spins of the

1 In the present (0+1)-dimensional models there is no independent dynamical exponent which means
z = 1.
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conduction band. The simplest Hamiltonian describing such a system is the so-called
Kondo Hamiltonian

HK =∑
~k,σ

ε~k,σc†
~kσ

c~kσ
+ J~Simp~sc. (2.1)

Here, a local impurity spin ~Simp couples via an effective Heisenberg interaction J to the
unit-cell volume averaged conduction electron spin~sc with

~sc =
1

2N ∑
~k,~k′

∑
α,β

c†
~kα
~σαβc~k′β (2.2)

where c†
~kα

creates a conduction electron with momentum~k and spin α, ε~k is the conduc-
tion band dispersion, N the number of unit cells and~σ is a vector comprising the Pauli
matrices. While for a ferromagnetic interaction (J < 0) the conduction band electron
spins align parallel to the impurity spin, for an antiferromagnetic interaction (J > 0)
the spins align antiparallel enabling spin-flip scattering processes between two degen-
erated states. Employing a perturbation theory up to third order in the coupling J,
Jun Kondo showed that these spin-flip scatterings generate a temperature dependent
contribution to the resistivity which is proportional to ∝ − ln(T). This contribution
explains the minimum in the resistivity, however, since − ln(T) diverges for T → 0,
this perturbative approach produces unphyiscal results for small temperatures. Exten-
sions to the perturbative approach using many-body techniques also lead to diverging
contributions to the scattering rate below an exponential small temperature T ≤ TK

where

TK =D
√

ρJe−
1
ρJ (2.3)

is the so-called Kondo temperature with ρ being the density of states (DOS) of the
conduction band. In quantum-field theories such a logarithmic singularity is called an
infra-red problem.
In 1970 P. W. Anderson gave an explanation for the breakdown of the perturbative
approaches by employing a perturbative renormalization group (RG) procedure which
is known as "poor man scaling". In this procedure an effective low-energy model is
generate by perturbatively eliminating high order excitations. Applying the "poor man
scaling" to the more general anisotropic Kondo model

HAK =∑
~k,σ

ε~k,σc†
~kσ

c~kσ
+ JzSz

impsz
c + J⊥(S

x
impsx

c + Sy
impsy

c )

=∑
~k,σ

ε~k,σc†
~kσ

c~kσ
+ JzSz

impsz
c +

1
2

J⊥(S
+
imps−c + S−imps+c ), (2.4)
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Figure 2.2: Flow of the couplings J̃⊥ and J̃z for the anisotropic Kondo model. For − J̃z > | J̃⊥|
and J̃z < 0 the local moment fixed point (LM) on the line ( J̃z < 0, J̃⊥ = 0) is
reached while for all other conditions the system flows to the strong coupling
fixed point (SC) in the upper right corner.

yields differential equations for the flow of the effective couplings. These equations
describe how the couplings of the effective low-energy Hamiltonian change while de-
creasing the bandwidth D and they are given by

dJ̃⊥
d ln D

=− J̃⊥ J̃z (2.5)

dJ̃z
d ln D

=− J̃2
⊥ (2.6)

Here we defined J̃ = ρJ with the DOS of the conduction band ρ. Dividing Eq. (2.52.5) by
Eq. (2.62.6) and afterwards integrating the equation yields

J̃2
z − J̃2

⊥ = const. (2.7)

The couplings J̃z and J̃⊥ are thus located on a hyperbolic curve in the parameter space
( J̃z, J̃⊥).
The flow of the couplings is depicted in Fig. 2.22.2. Equations (2.52.5) and (2.62.6) reveal that
the flow always stops for J̃⊥ = 0. This is the so-called local moment (LM) fixed point
and it is reached for − J̃z ≥ | J̃⊥| and J̃z < 0. For all other conditions J̃⊥ remains finite
and leads in the case of a ferromagnetic J̃z to a sign change of the z-component of
the coupling. In this case the coupling flows to the strong coupling (SC) fixed point
J̃⊥, J̃z → ∞. The line | J̃⊥| = − J̃z represents a transition of the Kosterlitz-Thouless type.
If only the isotropic Kondo model J̃ = J̃z = J̃⊥ is considered, Eqs. (2.52.5) and (2.62.6)
simplify to

dJ̃
d ln D

=− J̃2. (2.8)
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Integrating this differential equation yields for the coupling

J̃ =
J̃0

1 + J̃0 ln(D0/D′)
(2.9)

which diverges at the Kondo temperature22 TK = D0e
− 1

J̃0 .
For a diverging coupling J → ∞, a bound singlet consisting of the impurity spin and
a conduction band electron spin is formed which decouples from the rest of the con-
duction band. The impurity spin is hence completely screened by the conduction band
electron spins and one obtains a singlet and a free conduction band with one electron
removed from it.
The divergence of coupling J → ∞ for temperatures T ≤ TK is the reason why a pertur-
bative approach in the coupling J can yield reliable results only for high temperatures
and brakes down at small temperatures since in this case the coupling can no longer
be considered to be small. The search of a solution which is also valid for T ≤ TK is
known as the Kondo problem.
K. G. Wilson [5353] enhanced the "poor man scaling" approach and devised the nonper-
turbative numerical renormalization group (NRG). He was the first who was able to
solve the Kondo problem in 1974/75 using the NRG. This achievement was awarded
with the Nobel prize in physics in 1982 [5454]. The NRG, which will be discussed in
detail in Sec. 3.13.1, provides the tool to solve the Kondo model for arbitrary parameters
and temperature including the case T ≤ TK.
Later in 1980 an alternative approach was developed by N. Andrei [5555] and P.B. Vigman
[5656]. Both applied independently of each other the Bethe-ansatz technique, which was
developed by H. A. Bethe in 1931 to solve the one dimensional Heisenberg model [5757],
to the Kondo model in order to construct a complete set of eigenstates. The analytical
results obtained by Andrei and Vigman confirmed Wilson’s NRG calculations.

2.3 Two impurity Kondo model

An extension of the Kondo model is given by the two impurity Kondo model (TIKM)
where, for a specific type of particle-hole symmetry, the competition between magnetic
exchange interactions and the Kondo effect can lead to the emergence of a new QPT.
The Hamiltonian of the TIKM is given by

HTIKM = ∑
~k,σ

ε~kc†
~kσ

c~kσ
+ J

2

∑
i=1

~Si~sc(~Ri) + Himp (2.10)

2 The square-root pre-factor
√

ρJ in Eq. (2.32.3) is obtained if in Eq. (2.82.8) also terms up to the order J̃3

are considered. This pre-factor in TK is often dropped in qualitative discussions, but it is important
for more quantitative comparison.



2.3. Two impurity Kondo model 11

where the impurity spin ~Si at position ~Ri couples via a Heisenberg interaction J to the
conduction electron spin expanded in plane waves

~sc(~r) =
1
2

1
N ∑

σσ′
∑
~k~k′

c†
~kσ
~σσσ′c~k′σ′e

i(~k′−~k)~r. (2.11)

The last term Himp comprises all operators that act only on the impurity degrees of
freedom such as a direct spin-spin interaction between the impurity spins Himp =

K~S1
~S2 and will be discussed in more detail later on.

The first two terms in Eq. (2.102.10) generate an indirect magnetic exchange interaction
KRKKY between both impurity spins which is known as the RKKY interaction [5858–6060].
This indirect exchange interaction is mediated by the conduction electrons and can
be ferro- or antiferromagnetic depending on the value 2kFR. Here, R is the distance
between both impurities and kF is the Fermi wave vector.
In order to formulate the model as a linear chain problem that can be solved using
the NRG, which will be discussed in detail in Sec. 3.13.1, one needs an orthonormal
basis set. However, the local conduction electron states coupling to the impurities
are not orthonormal. Originally, Jones et al. [6161, 6262] extended the NRG to the TIKM
by mapping the conduction electrons onto orthonormal even (e) and odd (o) parity
eigenstates. This transformation is described in detail in appendix AA. The Hamiltonian
in this basis is given by

HTIKM =H0 + Hint + Himp (2.12)

where

H0 = ∑
α=e,o

∑
σ

∫
εc†

εσ,αcεσ,α dε (2.13)

describes the conduction band that has been divided into two bands, one with even
and one with odd parity symmetry. The interaction between these conduction bands
and the two impurity spins is given by

Hint =
J
8

∫ ∫
∑
σσ′

√
ρ(ε)ρ(ε′)~σσσ′

×
[
(~S1 + ~S2)

(
Ne(ε)Ne(ε

′)c†
εσ,ecε′σ′,e + No(ε)No(ε

′)c†
εσ,ocε′σ′,o

)
+(~S1 − ~S2)Ne(ε)No(ε

′)
(

c†
εσ,ecε′σ′,o + c†

ε′σ,ocεσ′,e

)]
dε dε′. (2.14)
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Here ρ(ε) is the DOS of the original conduction band and Ne/o(ε) are normalization
factors that depend on the dimension and the distance between the impurities ~R =
~R1 − ~R2. In three dimensions they are for example given by

N2
e/o(ε)ρ(ε) = 2ρ0

[
1± sin

(
kFR(1 + ε

D )
)

kFR(1 + ε
D )

]
(2.15)

with D being the half bandwidth. For the derivation of Eq. (2.152.15) we assumed a con-
stant DOS ρ(ε) = ρ0 and a linear dispersion ε(~k) = vF(|~k| − kF), where vF is the Fermi
velocity. The normalization factors also enter the definition of the effective parity DOSs

ρe(o)(ε) =
1

N̄2
e(o)

N2
e(o)(ε)ρ(ε). (2.16)

where the normalization constant is given by Ne(o) =
√∫

dε N2
e(o)(ε)ρ(ε).

Due to the energy-dependent parity DOSs, the Hamiltonian in Eq. (2.142.14) is particle-
hole asymmetric. Since the energy dependence of the DOS is known to be generally
irrelevant in the Kondo model, Jones et al. [6161–6363] neglected the energy dependence
N2

e/o(ε)ρ(ε) = N2
e/o(0)ρ(0) = N2

e/oρ0 and hence obtained a particle-hole symmetric
model. However, this simplification leads to a RKKY interaction that is always fer-

romagnetic KRKKY
D = − J2ρ2

0
16 2 ln(2)(N2

e − N2
o )

2. For a detailed derivation of the RKKY
interaction for constant as well as energy-dependent DOSs we refer the reader to ap-
pendix BB. In order to achieve also antiferromagnetic interactions, they included an
additional direct exchange interaction Himp = K~S1

~S2 between the impurity spins so
that the total effective magnetic interaction is given by Keff = K + KRKKY.
Investigating this simplified model, Jones et al. observed two different phases depend-
ing on the ratio between the effective magnetic interaction and the Kondo temperature
Keff/TK. For Keff/TK → −∞ the two impurities form a S = 1 spin which interacts anti-
ferromagnetically with two conduction bands. In the case of asymmetric couplings to
the conduction bands Ne 6= No, this results in a two-stage Kondo effect where at higher
temperatures the S = 1 spin is partially screened by the stronger coupled conduction
band and afterwards the residual spin 1/2 is screened by the other conduction band at
lower temperatures. This leads to a Fermi liquid ground state with a δe/o = π/2 scat-
tering phase shift for electrons in the even and odd channel. In this thesis we denote
this phase as the Kondo phase.
In contrast, for Keff/TK → ∞ the impurity spins form a singlet S = 0 which decouples
from the conduction bands. Consequently, no Kondo effect occurs and the phase shift
in both channels is zero δe/o = 0. In the following, this phase called the decoupled
singlet phase.
Jones et al. found that both phases are separated by a continuous QPT [6464] with an un-
stable fixed point at the QCP Keff/TK ≈ 2.2 [6262, 6363]. Right at the QCP the phase shifts
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δe/o change discontinuously and the staggered susceptibility, which is the response to
~h(~S1 − ~S2), as well as the linear coefficient of the specific-heat diverge [6262, 6464] indicat-
ing non-Fermi liquid behavior.
The spin-spin correlation function between both impurity spins 〈~S1

~S2〉 changes contin-
uously through the unstable fixed point. For |Keff| � TK the spin correlation function
is given by 〈~S1

~S2〉 ≈ 0 and the impurities are independently screened. In contrast, for
larger spin-spin interactions the impurities develop magnetic correlations as the tem-
perature is lowered up to TK where both impurities are collectively screened with a
finite residual spin-spin correlation for T → 0. Note that the Kondo correlations also
persist in the decoupled singlet phase [6363] because otherwise one would always obtain
〈~S1

~S2〉 = −0.75 at low temperatures. At the QCP the spin-spin correlation function is
approximately given by 〈~S1

~S2〉 ≈ −0.25 for small Kondo couplings J [6565]. This is the
midpoint between the values 〈~S1

~S2〉 = 0.25 for Keff/TK → −∞ and 〈~S1
~S2〉 = −0.75 for

Keff/TK → ∞.
In contrast to Jones observations, quantum Monte Carlo (QMC) [6666–6868] and later on
NRG [6969] calculations including the full energy-dependent DOSs have not seen such a
QPT. Taking into account the proper energy dependence of the even and odd DOSs
makes the model particle-hole asymmetric, destroys the QCP and leads to a continu-
ously crossover between the two phases.
Affleck et al. [6464] found that the emergence of the QPT is related to a specific type of
particle-hole symmetry. If the model is particle-hole symmetric under the transition

cεσ,e →c†
−εσ,e

cεσ,o →c†
−εσ,o , (2.17)

the scattering phase shift can only take the values δe/o = {0, π
2 } which can be seen if

the boundary conditions of the incoming and outgoing operators

cout
εσ,e =e2iδe cin

εσ,e

cout
εσ,o =e2iδo cin

εσ,o (2.18)

are inserted into Eq. (2.172.17). This implies that there must be a QCP where the phase
shifts change discontinuously.
However, if the model is particle-hole symmetric under the transition

cεσ,e →c†
−εσ,o

cεσ,o →c†
−εσ,e , (2.19)

the phase shifts must only fulfill the condition δe = −δo which means that they may
take arbitrary values. Consequently, the phase shift changes continuously between the
phases, leading to a crossover rather than a QPT.
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Therefore, if the energy dependence of the DOSs are taken into account, the TIKM
generally does not exhibit a QPT.

2.4 Single impurity Anderson model

A more general quantum impurity system that also includes charge fluctuations is
given by the single impurity Anderson model (SIAM). In the SIAM the impurity is
represented by a spin degenerated energy level with an on-site Coulomb repulsion
which hybridizes with a fermionic conduction band. The SIAM was introduced and
first investigated by Anderson in 1964 [2525]. His investigation was a first attempt to de-
scribe localized magnetic states in metals. Although his mean field approach provides
a mechanism for the formation of local magnetic moments, his solution leads to an un-
physical spin-polarized ground state which contradicts the Mermin Wagner theorem
[7070].
The Hamiltonian of the SIAM is given by

HSIAM =∑
~k,σ

ε~kc†
~k,σc~k,σ + ∑

σ

εdd†
σdσ + Ud†

↑d↑d
†
↓d↓ + ∑

~k,σ

V~k(c
†
~k,σdσ + d†

σc~k,σ) (2.20)

with the dispersion of the conduction band ε~k, the level energy εd, a Coulomb repulsion
U and the hybridization strength V~k. Here, c†

~k,σ creates a conduction band electron with

momentum~k and spin σ and d†
σ creates an electron on the impurity with spin σ. The

dispersion ε~k as well as εd are measured from the Fermi energy.
The effect of the conduction band on the impurity is completely determined by the
hybridization function

Γ(ω) =π ∑
~k

δ(ε~k −ω)V2
~k = πρ(ω)V2(ω). (2.21)

where ρ(ω) is the DOS of the conduction band. For simplicity we consider only the
case of a constant hybridization function Γ(ω) = Γ = πρV2 in the following.
If the impurity is decoupled Γ = 0, the energy level is unoccupied for εd > 0, occupied
with one electron for εd < 0, U + εd > 0 and doubly occupied in the case U + εd < 0.
Switching on Γ causes these states to be mixed up. However, if the coupling to the
conduction band is weak, the above picture helps understanding the properties of the
system for different temperature regimes. In the most interesting case for εd < 0,
U + εd > 0 and a small hybridization Γ � U, |εd| the system shows a variety of dif-
ferent properties depending on the temperature regime. Under a RG transformation
these temperature regimes can be related to different unstable and stable fixed points.
For each fixed point the system exhibits a characteristic value of the effective local mag-
netic moment of the impurity µ2

eff. In the following, we will briefly discuss the different
fixed points the system passes through upon lowering the temperature [2626, 2727].
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For large temperatures all impurity configurations are equally populated and the ef-
fective local magnetic moment is µ2

eff = 1/8. Under a RG transformation this regime is
associated with the unstable free-orbital fixed point.
If the temperature is lowered, the unstable valence fluctuation fixed point is reached.
This fixed point is only present in the particle-hole asymmetric case εd 6= −U/2. Here,
the situation corresponds to the case where either the singly occupied nd = 0 or the
doubly occupied nd = 2 state can be removed from consideration because in the effec-
tive low energy Hamiltonian its excitation energy is shifted to infinity. The remaining
states are equally populated so that the effective local magnetic moment in this regime
is given by µ2

eff = 1/6.
Upon further decreasing the temperature, the system passes over to the LM fixed point
in which only the nd = 1 configuration of the impurity is present. In this regime the
SIAM can be mapped to a Kondo model with an additional potential scattering term
via a Schrieffer-Wolf transformation [7171]

HLM,eff =∑
~k,σ

ε~k,σc†
~kσ

c~kσ
+ J~Simp~sc + ∑

~k,~k′,σ

Kc†
~kσ

c~k′σ (2.22)

where the Heisenberg coupling and the potential scattering are given by

ρJ =
1
π

(
2Γ
|εd|

+
2Γ

U + εd

)
(2.23)

ρK =
1
π

(
Γ

2|εd|
− Γ

2(U + εd)

)
. (2.24)

Note that if the model is particle-hole symmetric εd = −U/2, the scattering term van-
ishes and the simple Kondo model with ρJ = 8Γ

πU is obtained. The magnetic moment
in this regime is µ2

eff = 1/4.
If the temperature is further lowered, the behavior of the SIAM is similar to the one
of the Kondo model. In particular, for T → 0 the stable SC fixed point is reached
where the coupling to the conduction band diverges ρJ → ∞. This corresponds to the
situation where the impurity is strongly coupled to the conduction band electron state
at the impurity site so that both degrees of freedom are frozen out. Consequently, the
effective local magnetic moment in this regime vanishes µ2

eff = 0.
In contrast to the case discussed above, for Γ � U there is always a direct transition
from the free orbital fixed point to SC fixed point without passing through the valence
fluctuation or LM fixed point. Therefore, only for Γ� U and Γ� |εd| a local magnetic
moment is formed on the impurity.
The formation of local moments has also a crucial effect on the conductance through
a quantum impurity when it is placed between two leads. In experiments the en-
ergy level can be changed by applying a small gate voltage Vg and it is then possible
to pass a small current through the impurity. At low temperatures the differential
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Figure 2.3: Impurity spectral function of the SIAM in the particle-hole symmetric case εd =
−U/2 for Γ � U (red curve) and Γ � U (blue curve). For Γ � U only one
broad peak at the Fermi energy with half width Γ is observed. In contrast, for
Γ� U a three peak structure typical for a Kondo effect with a very narrow Kondo
resonance at ω = 0 is observed. NRG parameters are Λ = 1.8, Ns = 1200 and a
broadening b = 0.5.

conductance is directly proportional to the spectral function of the quantum impurity
dI
dV (Vg) ∝ ρd(ω = eVg) [7272]. A measurement of the differential conductance as a func-
tion of the gate voltage Vg generally yields two peaks where the differential conduc-
tance is amplified. These peaks correspond to the cases in which either the unoccupied
state nd = 0 or the doubly occupied state nd = 2 is shifted to the Fermi energy εF = 0.
Between these two values the differential conductance is suppressed. This phenomena
is known as the Coulomb blockade [7373–7575].
However, the Kondo effect opens a new channel for transport due to the strong en-
tanglement with the conduction electrons. Figure 2.32.3 shows the spectral function of
the impurity ρd(ω) in the particle-hole symmetric case εd = −U/2 for Γ � U and for
comparison also for Γ� U. In the latter case only one broad peak at the Fermi energy
with width Γ is observed. The spectral function in this regime is given by

ρd(ω) = − 1
π

lim
δ→0+

ImGd(ω + iδ) =
1
π

Γ

ω2 + Γ2 (2.25)

with the Green’s function of the impurity Gd(ω + iδ).
For Γ � U the spectral function looks completely different. The formerly broad peak
splits into three peaks, two broad peaks at the energies ω = εd and ω = εd + U,
which correspond to charge excitations, and a very narrow "Kondo resonance" at the
Fermi energy which can be related to spin fluctuations of the local moment. The
half width of the Kondo resonance is approximately given by the Kondo temperature



2.4. Single impurity Anderson model 17

TK. Interestingly, the height of the Kondo resonance is independent of the Coulomb
repulsion U and is determined by the phase shift of the conduction band electrons δ

[7676–7979]

ρd(ω = 0) =
sin2(δ)

πΓ
. (2.26)

This three peak structure is typical for the Kondo effect and the Kondo resonance at
ω = 0 leads to a strong enhancement of the differential conductance dI

dV (Vg = 0).





Chapter 3

Methods

In the last decades the interest in quantum impurity systems (QISs) has risen signifi-
cantly, among other reasons because they may be used as qubits for quantum comput-
ers. However, a theoretical treatment of these systems is difficult. One major problem
is the coupling to a continuum of excitations with arbitrary small energies which pos-
sibly results in infrared divergences in perturbative treatments. A classic example of
this difficulty is the Kondo problem which has been presented in Sec. 2.22.2. The numeri-
cal renormalization group (NRG) was originally developed by Wilson [5353] to solve the
Kondo problem in a systematic and non perturbative way. However, the NRG proved
to be suitable to solve other problems as well, e.g. the symmetric [2626] and asymmetric
[2727] single impurity Anderson model (SIAM). Nowadays, the NRG is a commonly
used method to solve many different QISs [8080] and numerous extension were imple-
mented, e.g. the coupling to a bosonic bath [8181, 8282] or even a mixture of fermionic and
bosonic baths [8383].
In the following Sec. 3.13.1 we will introduce the basic concepts of the NRG. Since it is
beyond the scope of this thesis to consider all the extensions of the NRG, we restrict our
discussion to the variants used in this work: the time-dependent numerical renormali-
zation group (TD-NRG) is described in detail in Sec. 3.23.2 and the calculation of dynamic
correlation functions is presented in Sec. 3.33.3. At the end, we will give a brief overview
about the calculation of potential scattering terms of an effective low energy Hamilto-
nian in Sec. 3.43.4. We will also discuss some benchmark calculations since this method
has been developed to calculate the renormalized parameters of an effective Anderson
model and we adapt it to fulfill our purposes.

3.1 Numerical renormalization group

In this section we will introduce the NRG. At first, the general structure of a Hamilto-
nian which can be solved by the NRG is discussed. Afterwards, the three major steps
of the NRG are presented: (i) logarithmic discretization of the bath, (ii) mapping the

19
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model onto a semi-infinite chain, and (iii) solving this chain iteratively. The discussion
below primarily follows the presentation of Ref. [8080].

3.1.1 Structure of the Hamiltonian

The general structure of a QIS consists of three parts that are given by

H = Hbath + Hint + Himp , (3.1)

where Hbath describes the bath/conduction band, Himp the quantum impurity and Hint

the interaction between the bath and the impurity. The contribution of the bath is given
by

Hbath = ∑
i,k,σ

εi,kc†
i,k,σci,k,σ , (3.2a)

where the index i denotes different conduction bands. The fermionic operator c†
i,k,σ

creates an electron with spin σ and momentum k in the conduction band i and εi,k is
the dispersion of the corresponding conduction band.
The impurity is described by different energy levels which couple to the baths. The
interaction between the baths and the impurity described by Hint is thus given by

Hint = ∑
i,j

∑
k,σ

Vi,j,k

(
c†

i,k,σdj,σ + d†
j,σci,k,σ

)
. (3.2b)

Here d†
j,σ denotes a creation operator of the energy level j and Vi,j,k describes the k-

dependent hybridization between bath i and energy level j.
The specific form of Himp which describes the impurity remains arbitrary at this point.
The only requirement is that the Hilbert space is small enough so that Himp can be
diagonalized exactly.
For simplicity we will drop the indices i for the baths and j for the energy levels in the
following discussion. This means that we consider a model with only one bath and
one energy level. However, a generalization to a model with more than one bath or
energy level is straightforward.
The effect of the bath on the impurity is completely determined by the hybridization
function Γ(ω):

Γ(ω) = π ∑
k

V2
k δ(εk −ω) . (3.3)

For the simple case of a constant hybridization Vk = V Eq. (3.33.3) can be written as

Γ(ω) = πV2ρ(ω) , (3.4)
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where ρ(ω) is the density of states of the conduction band.
We assume that ρ(ω) lies completely in the interval [−D, D] so that we have a band
width of 2D. It was shown in [8484] that if we are only interested in the impurity contri-
bution to the physics, the Hamiltonian can be rewritten in energy space as

H = Himp + ∑
σ

D∫
−D

dε g(ε)a†
ε,σaε,σ + ∑

σ

D∫
−D

dε h(ε)
(

d†
σaε,σ + dσa†

ε,σ

)
, (3.5)

with the dispersion g(ε) and hybridization h(ε). The fermionic operator a(†)ε,σ fulfills

the standard anticommutation relation
{

aε ,σ , a†
ε′,σ′
}

= δ(ε − ε′)δσ,σ′ and annihilates
(creates) a conduction band electron with energy ε and spin σ. The two Hamiltonians
(3.23.2) and (3.53.5) have the same action on the impurity if [8484]

Γ(ω) = π
dε(ω)

dω
h[ε(ω)]2 , (3.6)

where ε(ω) is the inverse function to g(ε) (g[ε(ω)] = ω). Eq. (3.63.6) connects the new
dispersion g(ε) and hybridization h(ε) with εk and Vk. For a given hybridization
function Γ(ω) there are many possibilities to divide the energy dependence between
g(ε) and h(ε). This feature is used in [8484] to handle energy dependent hybridizations
within the NRG. For a constant hybridization function Γ(ω) = Γ0 within the interval
[−D, D] Eq. (3.63.6) can be satisfied by ε(ω) = ω ( corresponding to g(ε) = ε) and h2(ε) =

Γ0/π. This leads to the solution which Krishna-Murty et al. already derived in [2626].
In this approach the one dimensional energy representation of Eq. (3.53.5) was arrived by
expressing the conduction band states in spherical waves around the impurity.
In the following discussion the energy cutoff of the conduction band D is used as the
energy unit and thus set to D = 1.

3.1.2 Logarithmic discretization

Following Wilson’s proposal [5353] the conduction band is now discretized on a logarith-
mic mesh. As shown in Fig. 3.13.1 this defines a set of discretization points

xn = ±Λ−n, n = 0, 1, 2, . . . (3.7)

with the so-called discretization parameter Λ > 1. The width of the interval between
two points is given by

dn = Λ−n
(

1−Λ−1
)

. (3.8)

Due to the logarithmic discretization the width of an interval shrinks logarithmically
with the interval index n. Within each interval now a complete set of orthonormal
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Figure 3.1: The discretization parameter Λ introduces a logarithmic set of intervals. The
impurity couples to all energies of the continuous conduction band which is de-
scribed by the hybridization function Γ(ω). Adapted from Ref. [8080].

functions is introduced and the conduction band electron operators aε,σ are expanded
in this orthonormal basis. Here it is necessary to distinguish between positive and
negative energies. Therefore, the expansion of the band electron operators contains
two new fermionic operators a and b. Because the impurity directly couples to only
one energy mode in each interval, all other energy modes which appear in the bath
Hamiltonian are neglected. This is the major approximation of the NRG. Since each
interval now consists of only one energy mode, we have transformed the continuous
band into a discretized one which is shown in Fig. 3.23.2. As can be seen, the number of
representative energy modes of each interval becomes more dense around the Fermi
energy and contains only a few high-energy states. This is justified by the fact that we
are more interested in the low temperature behaviour of the system and thus energies
around the Fermi energy play the dominant role.

After the expansion of aε,σ and only keeping one energy mode in each interval, the
Hamiltonian is given by

H =Himp + ∑
n,σ

(
ξ+n a†

n,σan,σ + ξ−n b†
n,σbn,σ

)
+

1√
π

∑
n,σ

(
d†

σ

(
γ+

n an,σ + γ−n bn,σ

)
+
(

γ+
n a†

n,σ + γ−n b†
n,σ

)
dσ

)
(3.9)
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Figure 3.2: From each continuous energy interval only one energy mode is kept. The impurity
couples to the discrete energy levels of the conduction band. Adapted from Ref.
[8080].

with

γ±
2

n =
∫ ±,n

dε Γ(ε) (3.10)

ξ±n =

∫ ±,n dε Γ(ε)ε∫ ±,n dε Γ(ε)
(3.11)

and the convention∫ +,n
dε ≡

∫ xn

xn+1

dε,
∫ −,n

dε ≡
∫ −xn+1

−xn

dε . (3.12)

A complete derivation of Eq. (3.93.9) can be found in [8080] and a detailed discussion of an
energy dependent hybridization function Γ(ω) and the importance of Eq. (3.63.6) is given
in [8484].

3.1.3 Mapping on a semi-infinite chain

In the next step of NRG algorithm the Hamiltonian of Eq. (3.93.9) is mapped on a semi-
infinite chain where the impurity only couples to the first site of the chain, cf. Fig. 3.33.3.
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Figure 3.3: The model is mapped onto a semi-infinite chain which is often referred as the
Wilson Chain. The impurity couples only to the first site of the chain with the
strength

√
ξ0
π . The on-sites energies εi, hopping parameters ti and the coupling

to the impurity
√

ξ0
π are defined by Γ(ω). Adapted from Ref. [8080].

After a Householder transformation which transforms the operators an and bn to a new
fermionic operator cn, the Hamiltonian takes the form

H =Himp +

√
ξ0

π ∑
σ

(
d†

σc0,σ + c†
0,σdσ

)
+

∞

∑
σ,n=0

[
εnc†

n,σcn,σ + tn

(
c†

n,σcn+1,σ + c†
n+1,σcn,σ

)]
(3.13)

with ξ0 =

1∫
−1

dε Γ(ε) . (3.14)

The operator c(†)n,σ annihilates (creates) an electron on the n-th site of the so-called Wilson
chain. The on-site energies εn and the hopping parameters tn are defined by Γ(ω) and
have to be in general calculated numerically [8080]. For the simple case of a constant
hybridization function Γ(ω) = Γ0 these parameters can be calculated analytically and
the hopping parameters are given by

tn =
(1 + Λ−1)(1−Λ−n−1)

2
√

1−Λ−2n−1
√

1−Λ−2n−3
Λ−n/2 . (3.15)

Since for a constant hybridization function Γ0 the model is particle-hole symmetric, all
on-sites energies must vanish εn = 0. In the limit of large n the expression for the
hopping parameters reduces to

tn →
1
2

(
1 + Λ−1

)
Λ−n/2 (3.16)

and we can see that tn exponentially decreases with the distance from the impurity.
This originates from the logarithmic discretization and is vital for the NRG because
this guarantees the separation of the energy scales.
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Furthermore, the coupling between the impurity and the first Wilson site is sometimes
multiplied by the factor [8585]

AΛ =
1
2

Λ + 1
Λ− 1

ln Λ (3.17)

in order to compensate the shortcoming of the NRG to underestimate the coupling. In
this thesis it will be marked if the AΛ factor is used.

3.1.4 Iterative diagonalization

In the previous section the Hamiltonian was mapped onto the form of the semi-infinite
chain of Eq. (3.133.13). In the following we will define an iterative renormalization proce-
dure for this semi-infinite chain. At this step finally the renormalization group (RG)
character of the NRG enters.
The chain Hamiltonian Eq. (3.133.13) is written as a series of Hamiltonians HN in which H
is reached in the limit N → ∞:

H = lim
N→∞

Λ−(N−1)/2HN , (3.18)

with

HN =Λ(N−1)/2

(
Himp +

√
ξ0

π ∑
σ

(d†
σc0,σ + c†

0,σdσ)

+
N

∑
σ,n=0

εnc†
n,σcn,σ +

N−1

∑
σ,n=0

tn(c
†
n,σcn+1,σ + c†

n+1,σcn,σ)

)
. (3.19)

The scaling factor Λ(N−1)/2 has been introduced to cancel the N dependence of the last
hopping parameter tN−1. This yields a hopping parameter of the order O(1) which is
useful for the discussion of fixed points.
It is straight forward to derive the RG transformation of the NRG

HN+1 =
√

ΛHN + ΛN/2 ∑
σ

(
εN+1c†

N+1,σcN+1,σ + tN(c
†
N,σcN+1,σ + c†

N+1,σcN,σ)
)

(3.20)

with the starting Hamiltonian

H0 =Λ−1/2

(
Himp + ∑

σ

ε0c†
0,σc0,σ +

√
ξ0

π ∑
σ

(d†
σc0,σ + c†

0,σdσ)

)
. (3.21)

Equation (3.213.21) describes a two-site cluster which is formed by the impurity and the
first site of the Wilson chain.
The next step is to set up an iterative scheme for the diagonalization of HN using the
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recursion relation of Eq. (3.203.20). Therefore, we assume that the problem for a given N
has already been diagonalized

HN |r〉N =EN(r)|r〉N , r = 1, . . . , Ns , (3.22)

with the eigenstates |r〉N , eigenenergies EN(r) and the dimension of the Hamiltonian
Ns. The basis of HN+1 is then given by the product states

|r; s〉N+1 =|r〉N ⊗ |s(N + 1)〉 (3.23)

consisting of the eigenbasis of HN and a suitable base |s(N + 1)〉 of the added Wilson
site, e.g. |0〉, |↑〉, |↓〉, |↑↓〉 for a fermionic bath. In this basis HN+1 can be written as

HN+1(rs, r′s′) =〈r; s|HN+1|r′; s′〉
=
√

ΛEN(r)δr,r′δs,s′ + ΛN/2 ∑
σ

εN+1〈s|c†
N+1,σcN+1,σ|s′〉δr,r′

+ ΛN/2 ∑
σ

tN

(
〈r; s|c†

N,σcN+1,σ + c†
N+1,σcN,σ|r′; s′〉

)
. (3.24)

A further diagonalization of HN+1(rs, r′s′) in Eq. (3.243.24) yields new eigenvalues EN+1(w)

and new eigenstates |w〉N+1 which are related to the basis |r; s〉N+1 via the unitary
matrix U:

|w〉N+1 =∑
rs

Uw,rs|r; s〉N+1 . (3.25)

For simplicity the ground-state energy is set to zero after each diagonalization.
With this method, however, long Wilson chains cannot be diagonalized. Since the num-
ber of states increases by a factor (in general this factor is given by the dimension of
the basis |s(N + 1)〉) when a new site is added, the Hilbert space grows exponentially
with the chain length N. Therefore, the dimension of the matrices becomes very large
after a few iterations and the matrices cannot be diagonalized any longer.
To avoid this problem a simple truncation scheme is introduced: after each diagonal-
ization only the Ns eigenstates with the lowest many-particle energies are kept. This
leads to a fixed dimension of the Hilbert space and a linear increase of the computation
time with the chain length. A justification of this truncation scheme is given in the next
section 3.1.53.1.5. Suitable values for Ns highly depend on the model, therefore, different
calculations with increasing Ns should be done till the results are converged.
Furthermore one usually wants that the results also converge with the number of iter-
ations [8686] which means that the RG transformation has reached a stable fixed point11.
We can write Eq. (3.203.20) symbolically as HN+1 = T [HN ] and a fixed point is a Hamil-

1 This corresponds to a zero temperature T = 0 calculation. For a finite temperature one has to stop
at a certain iteration. For more details see sec. 3.1.53.1.5.
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Figure 3.4: Energy-flow of the lowest eigenenergies of a free electron gas with Λ = 1.5 and
Ns = 1000 kept states, (a) shows only the odd and (b) only the even iterations.
The fixed point is reached for N > 10 iterations.

tonian H∗ that remains invariant under that transformations: T [H∗] = H∗. In fact T
has no fixed point but HN+2 = T 2[HN ] = T [T [HN ]] has one. The reason for this lies
in the even-odd asymmetry, e.g. if the model has for even iterations in average an even
number of electrons, they can form a singlet ground state while for odd iterations one
electron spin will be left over. In the numerics a fixed point is characterized by a set of
many-particle energy levels that repeat themselves when the iterative diagonalization
is performed twice. Figure 3.43.4a shows the so-called level- or energy-flow of the free
electron gas which means the lowest many-particle energies in dependence of the iter-
ations N for odd iterations while Fig. 3.43.4b shows the level-flow for even iterations. For
Λ = 1.5 the level-flow of the free electron gas shows a stable fixed point for N > 10,
therefore, the chain length in this case should be chosen larger than 10.

3.1.5 Calculation of impurity properties

Beside the low many-particle energies the NRG is also able to calculate thermodynamic
expectation values of an operator O. In general the expectation value is given by

〈O〉 = 1
Z

Tr
[
e−βHO

]
, (3.26)

where β is the inverse temperature and Z is the partition function. In the NRG the
Hamiltonian H is approximated with the discretized and truncated version HN

〈O〉 ≈ 1
ZN

Tr
[

e−βΛ−
N−1

2 HN O
]

(3.27)

=
1

ZN
∑

r
e−βN EN(r)

N〈r|O|r〉N (3.28)
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with the eigenstates HN |r〉N = EN(r)|r〉N and the partition function ZN = ∑r e−βN EN(r).
Here we have introduced the iteration dependent inverse temperature

βN = βΛ−
N−1

2 . (3.29)

In the NRG the expectation value of an operator is calculated in the following way:
We choose a constant value β of the order O(1) and set βN = β ≈ 1. This effectively
means that we introduce an iteration dependent temperature22 TN which decreases
exponentially with N

TN = Λ−
N−1

2
1
β

. (3.30)

Finally, we evaluate Eq. (3.283.28) and get a series of expectation values O(TN) at different
temperatures TN for each iteration N.
As mentioned above the lowest eigenenergies are of the order O(1) due to the rescaling
of the energies. Together with a fixed β this leads to less and less contributing high
energy states because they are exponentially reduced by the Boltzmann factor e−βEN(r).
Since these high energy states do not contribute significantly to Eq. (3.283.28) they can be
neglected. This provides the justification why the truncation of these high energy states
is a good approximation.
If we want to evaluate Eq. (3.283.28) for a finite temperature T > 0 the number of iterations
N, the discretization parameter Λ and the inverse temperature β have to be chosen
such that T = TN is fulfilled.

3.2 Time-dependent numerical renormalization group

The TD-NRG is an expansion of the NRG and was developed by F. B. Anders and A.
Schiller [8787, 8888] to track the real time dynamics of a QIS after a sudden quench at time
t = 0. Recently, Nghiem and Costi presented an improvement for the TD-NRG that
also allows multiple quenches [8989]. However, in the following we will restrict ourself
to the case of only one quench.
This quench perturbs an initial Hamiltonian Hi and the system is henceforth described
by a final Hamiltonian H f = Hi + ∆H. Both Hamiltonians Hi and H f are of the
form of Eq. (3.13.1). The basic strategy of the TD-NRG is to calculate the equilibrium
density matrix with Hi and compute the time-evolution of this density matrix with the
perturbed Hamiltonian H f . Therefore, one has to diagonalize both Hamiltonians using
the NRG and calculate the transformation matrix that rotates the initial eigenbasis into

2 Note that in the employed program the definition of the series in Eq. (3.183.18) is slightly modified
to H = limN→∞

1
2 (1 + Λ−1)Λ−(N−1)/2HN and all equations adapted accordingly. Therefore, in the

used program the iteration dependent temperature is given by TN = 1
2 (1 + Λ−1)Λ−

N−1
2 1

β
.
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m+1m

Figure 3.5: The Wilson chain of length N is divided into a subchain of length m and the "en-
vironment" Rm,N. In the TD-NRG the Hamiltonian Hm is viewed as acting on the
full chain of length N, but with the hopping elements tm, . . . , tN−1 all set to zero.
Adapted from Ref. [8888].

the final eigenbasis.
However, for an accurate description of the time-evolution all energy scales are relevant
and one needs a complete basis set. This is problematic in the NRG since high energy
states are truncated at each iteration. To circumvent this problem in the TD-NRG these
truncated states are stored on a hard disk drive (HDD) and a complete basis set is
constructed out of the NRG eigenstates. Therefore, all states that contribute to the
time-evolution are considered.
The discussion below primarily follows the presentation of Ref. [8888].

3.2.1 Complete basis set

In the previous Sec. 3.13.1 an iterative NRG solution was presented in which in each
iteration step the Wilson chain is enlarged by one additional site. An alternative inter-
pretation that is used in the TD-NRG is to start with the full chain of length N where
at first all hopping matrix elements tn are set to zero. At each successive step another
hopping matrix element is switched on, until the complete Hamiltonian HN is recov-
ered. The Hamiltonian Hm with m ≤ N and tn = 0 for all n ≥ m always acts on the
Fock space of the whole chain of length N

Hm|r, αm+1, . . . , αN〉 =Em
r |r, αm+1, . . . , αN〉. (3.31)

Here, the product state |r, αm+1, . . . , αN〉 is the eigenstate of Hm belonging to the eigenen-
ergy Em

r and {αi} denotes the configuration of the i-th site that does not couple to rest of
the Wilson chain. Each eigenenergy has a degeneracy of dN−m, where d is the number
of distinct configurations of each site. The degeneracy stems from the N − m decou-
pled "environment sites", denoted by Rm,N in Fig. 3.53.5. In the following, we will use
the shorthand notation |r, e; m〉 for the eigenstates where the "environment" variable
e = {αm+1, . . . , αN} encodes the N −m site labels.
When the hopping matrix element tm+1 is switched on, the new eigenstates of Hm+1

are obtained from the unitary transformation

|r′, e′; m + 1〉 = ∑
r,αm+1

Ur′,rαm+1
|r, αm+1, e′; m〉. (3.32)
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An alternative notation is given by

|r′, e′; m + 1〉 = ∑
r,αm+1

Pr′,r[αm+1]|r, αm+1, e′; m〉, (3.33)

with Pr′,r[αm+1] = Ur′,rαm+1
and e′ encoding the N −m− 1 site labels {αm+2, . . . , αn}.

Since in the NRG high energy states are discarded at each iteration in order to keep
a manageable number of basis states, we divide the states at each iteration in two
distinct classes: the discarded high energy states |l, e; m〉dis and the kept low energy
states |k, e; m〉kp. If all eigenstates of the final iteration N are also regarded as discarded,
all discarded states form a complete basis set and the following completeness relation
holds:

N

∑
m=mmin

∑
l,e
|l, e; m〉dis dis〈l, e; m| = 1. (3.34)

The summation over m starts from the first iteration mmin at which states are discarded.
Equation (3.343.34) can obviously be divided into two complementary parts:

1−m =
m

∑
m′=mmin

∑
l′,e′
|l′, e′; m〉dis dis〈l′, e′; m|, (3.35)

1+m =
N

∑
m′=m+1

∑
l′,e′
|l′, e′; m〉dis dis〈l′, e′; m|. (3.36)

The completeness relation can therefore be rewritten as

1 =1−m + 1+m . (3.37)

Since the Operator 1+m projects onto the states which are retained at iteration m, it can
be expressed by the kept states

1+m =∑
k,e
|k, e; m〉kp kp〈k, e; m|. (3.38)

3.2.2 Time-evolution of a local Operator

The time-evolution of an expectation value of a local operator is given by

O(t) =Tr [ρ(t)O] (3.39)

=
N

∑
m=mmin

∑
l,e

dis〈l, e; m|ρ(t)O|l, e; m〉dis, (3.40)
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where we used the basis set {|l, e; m〉dis} that was introduced in the previous section.
Inserting the completeness relation (3.373.37) between ρ(t) and O yields

O(t) =
N

∑
m=mmin

∑
l,e

dis〈l, e; m|ρ(t)
(

1−m + 1+m
)

O|l, e; m〉dis. (3.41)

After further transformations, which are discussed in detail in [8888], we obtain

O(t) =
N

∑
m=mmin

trun

∑
r,s

∑
e,e′
〈s, e; m|ρ(t)|r, e′; m〉〈r, e′; m|O|s, e; m〉. (3.42)

Here, the resticted sum
trun
∑
r,s

requieres that at least one of the states r and s is discarded

at iteration m. In the following we make the assumption that the operator O acts on
the degrees of freedom of the impurity or on close by sites m̄ such that all states are
still available (i.e. m̄ ≤ mmin). Such a local operator O is independent of and, therefore,
diagonal in the environmental degrees of freedom,

〈r, e′; m|O|s, e; m〉 =δe,e′O
m
r,s. (3.43)

If we use the NRG basis set generated for the perturbed Hamiltonian H f , which is

motivated by the time-dependence of the density operator ρ(t) = e−itH f
ρ0eitH f

, we
obtain

O(t) =
N

∑
m=mmin

trun

∑
r,s

eit(Em
r −Em

s )Om
r,sρ

red
s,r (m), (3.44)

where we used the standard NRG approximation H f |k, e; m〉 ≈ Em
k |k, e; m〉. The re-

duced density matrix ρred
s,r (m) is given by

ρred
s,r (m) =∑

e
〈s, e; m|ρ0|r, e; m〉. (3.45)

Since Eq. (3.443.44) is the centerpiece of the TD-NRG approach several comments should
be made about it. At first, we want to emphasize that no restrictive assumptions were
made about ρ0, it can be an arbitrary density of states. Second, all states of the finite
Fock space are retained and therefore all energy scales are taken into account.
Nevertheless two approximations were made in Eq. (3.443.44). The first one is the conven-
tional NRG approximation H f |k, e; m〉 ≈ Em

k |k, e; m〉. However, Wilson [5353] showed that
the associated error in thermodynamic quantities is perturbative and small because
of the separation of energy scales due to the logarithmic discretization. The second
more significant error originates from the discretized finite-size representation of the
continuous bath. Because of the limited energy resolution at low energy scales, Eq.
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(3.443.44) may become inaccurate for times t ≥ 1/DN , where DN is the energy scale of
the N-th site. However, the NRG can reach arbitrary low energy scales and thus the
TD-NRG arbitrary long times. Furthermore, a continuous spectrum is necessary for a
complete relaxation in the system and the discretization may lead to unphysical oscil-
lations [9090, 9191]. One way to minimize these discretization errors is discussed in Sec.
3.2.53.2.5.

3.2.3 Reduced density matrix

In order to calculate the time-dependence of a local operator, we still need to compute
the reduced density matrix ρred

s,r (m) in Eq. (3.443.44). In the basis set of the initial Hamil-
tonian Hi the density matrix ρ0 has a simple representation. If we start from thermal

equilibrium, ρ0 is given by e−βHi
/Zi where Zi is the initial partition function. However,

in Eq. (3.443.44) the reduced density matrix was constructed for the NRG eigenstates of the
final Hamiltonian H f , therefore, we have to transform between the two basis sets.
To simplify the notation we distinguish the two sets by the labels. In the following
the NRG states of the initial Hamiltonian Hi will be marked by an index i, for exam-
ple |li, ei; m〉. The NRG states belonging to H f will be labeled as before without any
indices, as in |l, e; m〉. In the basis of the initial Hamiltonian Hi the reduced density
matrix is given by

ρred,0
si ,ri

(m) =∑
ei

〈si, ei; m|ρ0|ri, ei; m〉. (3.46)

Similar to Eq. (3.373.37) we can write a completeness relation using the NRG states of Hi

1 =I−m + I+m , (3.47)

with

I−m =
m−1

∑
m′=mmin

∑
l′i ,e
′
i

|l′i , e′i; m′〉dis dis〈l′i , e′i; m′| (3.48)

and

I+m = ∑
qi ,ei

|qi, ei; m〉〈qi, ei; m|. (3.49)

Here we changed the notation from 1m to Im as we shifted the iteration m′ = m from
Eq. (3.353.35) to Eq. (3.383.38). This allows us to sum over all states qi of a given iteration m.
Inserting Eq. (3.473.47) two times into Eq. (3.453.45) yields four contributions

ρred
s,r =ρ++

s,r (m) + ρ+−s,r (m) + ρ−+s,r (m) + ρ−−s,r (m) (3.50)
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with

ρpp′
s,r (m) =∑

e
〈s, e; m|Ip

mρ0 Ip′
m |r, e; m〉, (p, p′ = ±). (3.51)

In the following we restrict our attention to the case where ρ0 corresponds to thermal
equilibrium. In this case the only relevant combination is given by

ρ++
s,r (m) =∑

e
〈s, e; m|I+m ρ0 I+m |r, e; m〉

=∑
e

∑
qi ,q
′
i

∑
ei ,e
′
i

〈s, e; m|q′i, e′i; m〉〈q′i, e′i; m|ρ0|qi, ei; m〉〈qi, ei; m|r, e; m〉. (3.52)

The terms ρ+−s,r (m), ρ−+s,r (m) and ρ−−s,r (m) describe how high- and low-energy states of
Hi are coupled and are only important if ρ0 contains significant contributions from
high-energy states. If we start from a state well removed from thermal equilibrium, we
have to take all combinations of Eq. (3.503.50) into account as it is discussed by Nghiem
and Costi in Ref. [8989].
For the simple case that we only consider ρ++

s,r (m), the overlap matrix elements
〈qi, ei; m|r, e; m〉 are independent of and diagonal in the environment degrees of free-
dom

〈qi, ei; m|r, e; m〉 =δei ,eSqi ,r(m). (3.53)

Here we have introduced the reduced matrix S(m) which records the overlap matrix
elements between the NRG eigenstates of Hi and H f . A systematic way to compute
the matrix S(m) is detailed in the appendix of Ref. [8888]. With S(m) we obtain ρ++

s,r (m)

by a simple rotation of ρred,0
q′i ,qi

(m) into a new basis

ρ++
s,r (m) = ∑

q′i ,qi

S∗q′i ,s(m)ρred,0
q′i ,qi

(m)Sqi ,r(m). (3.54)

We now elaborate a recursion equation which allows us to compute ρred,0(m) recur-
sively from ρred,0(m + 1). For the last iteration N the reduced density matrix is given
by

ρred,0
si ,ri

=δsi ,ri

1
Zi

e−βEN
si (3.55)
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with Zi = ∑si
e−βEN

si . To execute the sum over ei in Eq. (3.463.46) we set ei = {αi, e′i}, where
e′i is the state variable for the environment Rm+1,N . Substituting I+m+1ρ0 I+m+1 for ρ0 in
Eq. (3.463.46) and using the overlap matrix elements

〈si, ei; m|k′i, e′i; m + 1〉 =Pk′i ,si
[αm+1] (3.56)

yields

ρred,0
si ,ri

(m) = ∑
αm+1

retain

∑
ki ,k
′
i

Pk′i ,si
[αm+1] P∗ki ,ri

[αm+1] ρred,0
k′i ,ki

(m + 1). (3.57)

The sum
retain

∑
ki ,k
′
i

is restricted to the states retained at iteration m + 1. For the case

m = N − 1 the sum runs over all states of the final NRG iteration. If at least one of
the states si or ri is discarded at iteration m, the reduced density matrix ρred,0

si ,ri
(m) van-

ishes because of the orthogonality of the basis set.

3.2.4 TD-NRG algorithm

In the following we will present the different steps of the TD-NRG algorithm. To
evaluate the time-dependence of an operator O at a desired temperature T, one first
has to select the discretization parameter Λ and the chain length N such that T ≈ TN ,
cf. Sec. 3.1.53.1.5. Afterwards two simultaneous NRG runs are performed, one for the
Hamiltonian Hi and another for H f . All eigenenergies of these two Hamiltonians are
stored up to the final iteration N and at each iteration m the overlap matrices S(m)

of Eq. (3.533.53) are computed. This information, as well as the matrices Pl′,l [αm] are
stored on a HDD. After both NRG runs finished, the equilibrium density matrix of
Eq. (3.553.55) is calculated using the eigenenergies of the initial Hamiltonian Hi. At this
point the TD-NRG starts backward iterations beginning from iteration m = N. For
each backward iteration the following three steps are performed:

(1) The matrices Pl′,l [αm] are used to calculate ρred,0(m − 1) from ρred,0(m) using Eq.
(3.573.57).

(2) With the help of the overlap matrices S(m− 1) and Eq. (3.543.54) ρred,0(m− 1) is rotated
into the basis of the final Hamiltonian H f .

(3) Using Eq. (3.443.44) the contribution of iteration m to O(tj) is calculated simultaneously
for all times of interest tj. Subsequently ρred(m) can be deleted from the memory.

These steps are repeated until iteration m = mmin is reached, below which no states
have been discarded.
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3.2.5 Restoring the continuous bath: the z-trick

It was already mentioned in Sec. 3.2.23.2.2 that the discretization of the continuous bath
may lead to errors like unphysical oscillations [9090, 9191]. Oliveira and co-workers [9292]
already presented in the context of the equilibrium NRG a way how to reduce dis-
cretization errors. In the so-called z-trick a z dependent logarithmic discretization
according to

[
1, Λ−z, Λ−z−1, . . . , Λ−z−n−1, . . .

]
is introduced. Unphysical oscillations

can be removed by integrating the expectation values with respect to 0 < z ≤ 1 which
mimics a continuous bath.
We use the same method for the TD-NRG by computing the time-evolution of Eq.
(3.443.44) for each value of zi = i/Nz, with i = 1, . . . , Nz, and average over all the different
realizations. Here Nz is the number of all the different z-values and should be chosen
in multiples of 4 which produces the best results [9292].

3.3 NRG Green’s functions

The NRG is not only suitable for the calculation static properties, but also local dynam-
ical quantities can be calculated with it. In the following, a method for the calculation
of dynamical correlation functions of QISs in equilibrium with the NRG is presented.
Like the TD-NRG it is based on a complete basis set of the Wilson chain. In contrast
to all previous methods [9393–9696] this approach has no issues with the correct mixing
of different energy shells. Due to the complete basis set, phenomenological patching
algorithms that merge contributions of different energy shells and often suffer from
overcounting of contributions become obsolete. Furthermore, the complete basis set
ensures the fulfillment of spectral sum rules independently of the number of kept
states. Hence, the spectral functions become more robust to truncation errors.
Below, we will first discuss the derivation of a discrete spectrum of an impurity Green’s
function. This discussion primarily follows the presentation in [9797]. Afterwards, we
will describe how to get a smooth spectrum by replacing the delta functions with some
smooth distributions. At the end, an improvement for the calculation of impurity
Green’s functions of the SIAM is presented. In this approach the impurity Green’s
function is not calculated directly with the NRG but the correlation part of the self-
energy by expressing it as a ratio of two impurity correlation functions.

3.3.1 Derivation of the NRG Green’s function

In general the retarded Green’s function is given by

GA,B(t) =− iθ(t)Tr
[
ρ [A(t), B]−s

]
, (3.58)

with [A(t), B]−s = A(t)B− sBA(t) and s = +1/− 1 for bosonic/fermionic operators A
and B. As it was already mentioned in Sec. 3.2.33.2.3 for the TD-NRG, the thermodynamic
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density operator ρ is in thermal equilibrium only given by the states of the last iteration
N. The reason for this is that the states for all iterations m < N are exponentially
reduced by the Boltzmann factor e−βEm

l and can therefore be neglected. The density
operator is thus given by

ρ =
1
Z

e−βH ≈∑
l

ρl |l; N〉〈l; N| (3.59)

with ρl = e−βEN
l /ZN and ZN = ∑l e−βEN

l .
Inserting the completeness relation Eq. (3.373.37) into the first term of the commutator of
Eq. (3.583.58) yields

Tr
[
ρeiHt Ae−iHtB

]
= ∑

l,e,m
∑

l′,e′,m′
〈l, e; m|Ae−iHt|l′, e′; m′〉〈l′e′; m|BρeiHt|l, e; m〉

= ∑
l,e,m

∑
l′,e′

dis〈l, e; m|Ae−iHt|l′, e′; m〉dis dis〈l′, e′; m|BρeiHt|l, e; m〉dis

+ ∑
l,e,m

∑
k,e′

dis〈l, e; m|Ae−iHt|k, e′; m〉kp kp〈k, e′; m|BρeiHt|l, e; m〉dis

+ ∑
k,e,m

∑
l,e′

dis〈l, e′; m|BρeiHt|k, e; m〉kp kp〈k, e; m|Ae−iHt|l, e′; m〉dis.

(3.60)

For the second term of the commutator of Eq. (3.583.58) one can easily derive a similar
expression. The first line of Eq. (3.603.60) represents the case where m′ = m, the second
m′ > m and the third m′ < m. Here we made use of Eq. (3.383.38) which connects the
kept states of iteration m to the discarded states of all later iterations m′ > m. This
allows us to sum over equal shell contributions only. In the following we will drop the
indications "kp" and "dis" and use the index l for a discarded state while the index k
represents a kept state at a certain iteration m.
Since the states |l, e; m〉 and |k, e; m〉 are both eigenstates of Hm, we will use the standard
NRG approximation H|s, e; m〉 ≈ Em

s |s, e; m〉 which is justified by the energy hierarchy
due to the logarithmic discretization. After a Laplace transformation, we obtain for the
first term of Eq. (3.603.60) and the corresponding second term from the commutator

Gi
A,B(z) =

1
Z ∑

l,l′
〈l; N|A|l′; N〉〈l′; N|B|l; N〉e

−βEN
l − se−βEN

l′

z + EN
l − EN

l′
, (3.61)

where we used the orthogonality of the states and the form of the density operator ρ

in Eq. (3.593.59), so that ρ|l, e; m〉 = 0 for m < N. Therefore, only the last iteration m = N
contributes in the sum over all iterations m.
However, since the kept states |k, e; m〉 are not orthogonal to |l; N〉, the summation over
all energy shells has to be evaluated for the last two terms in Eq. (3.603.60). Inserting the
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completeness relation (1−m + 1+m) into these two terms and their corresponding second
terms from the commutator, we finally obtain

Gii
A,B(z) =

N−1

∑
m=mmin

∑
l

∑
k,k′

Al,k′(m)ρred
k′,k(m)Bk,l(m)

−s
z + El − Ek

(3.62)

and

Giii
A,B(z) =

N−1

∑
m=mmin

∑
l

∑
k,k′

Bl,k′(m)ρred
k′,k(m)Ak,l(m)

1
z + Ek − El

, (3.63)

where we used

〈k, e; m|A|l, e′; m〉 = sn
e′ δe,e′Ak,l(m). (3.64)

Here ne′ denotes the number of fermions in the environment times the total number of
fermions created by A. The total phase factor for both operators A and B is given by
[sn

e′ ]2 = 1 assuming that the operators A and B† cause the same change of the particle
number. The contribution Gii(z) describes negative and Giii(z) positive frequency ex-
citations because El − Ek > 0 applies for all iterations. The reduced density matrix is
given by

ρred
k,k′(m) =∑

e
〈k, e; m|ρ|k′, e; m〉, (3.65)

and has already been introduced in Eq. (3.453.45).
The full Green’s function GA,B(z) is then given by

GA,B(z) =Gi
A,B(z) + Gii

A,B(z) + Giii
A,B(z) (3.66)

and computed in two steps. First, the contribution of Gi
A,B(z) is calculated at the end

of the final NRG iteration N. Afterwards, the NRG proceeds, similarly to the TD-NRG,
with backward iterations starting from m = N − 1 and ending at iteration m = mmin

below which no state has been discarded. For each backward iteration the density
matrix ρred

k′,k(m) is computed from ρred
k′,k(m + 1) using the recursion relation of Eq. (3.573.57)

and the contribution of Gii
A,B(z) and Giii

A,B(z) to the full Green’s function GA,B(z) is
calculated.

3.3.2 Broadening

With the procedure described above we only obtain a discrete spectrum that consists
of delta functions δ(ω ± fr,s) at frequencies fr,s = Er − Es > 0. For a comparison with
the experiment we have to smooth the spectrum and replace the delta functions by a
smooth distribution P(ω ± fr,s). There are many option how to choose such a smooth
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Figure 3.6: Logarithmic Gaussian PLG(ω − fr,s) for different values of the broadening b and
frequencies fr,s.

distribution but the most frequently used [9393, 9696, 9898] and the one we are using in the
following is the logarithmic Gaussian

PLG(ω± fr,s) =
e−b2/4

b fr,s
√

π
e− ln(|ω|/ fr,s)

2/b2

(3.67)

with the broadening parameter b that determines the width of the logarithmic Gaussian
peak. Typical values for the broadening are b = 0.3− 0.8. The logarithmic Gaussian
is shown for different broadenings b and frequencies fr,s in Fig. 3.63.6. In contrast to a
normal Gaussian, the logarithmic Gaussian gives little weight to low energy excitations
and more weight to higher excitations. Furthermore, the broadening of PLG is propor-
tional to the energy which seems to be a better choice for a logarithmic discretization.
However, the difference in using a normal Gaussian is small [8080].
Due to the proportionality of the broadening to the energy, a peak of width Γ at fre-
quency Ω is well resolved provided that Ω� Γ. However, a peak at higher frequencies
may be insufficiently resolved due to the low logarithmic resolution at such high fre-
quencies. Therefore, the width and height of such a high energy peak may be captured
incorrectly. An example of such high energy peaks are the resonant level peaks of a
SIAM. A method how to handle this problem for a SIAM is given in the next section.
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3.3.3 Self-energy of the single impurity Anderson model

In the following we will present an improvement to the calculation of the SIAM Green’s
function. In this approach, which was developed by Bulla et al. [9999], the correlation part
of the one-particle self-energy is calculated directly by writing this quantity as a ratio
of two correlation functions. The advantages of this method are the explicitly included
single-particle broadening and the accurate calculation of the self-energy. An accurate
self-energy of the SIAM is particularly important for applications to dynamical mean
field theory (DMFT), where the self-energy of a lattice in infinite dimensions is mapped
onto an impurity self-energy [100100, 101101].
As described in Sec. 2.42.4, the Hamiltonian of the SIAM is given by

H =∑
k,σ

εkc†
k,σck,σ + ∑

k,σ
Vk

(
d†

σck,σ + c†
k,σdσ

)
+ ∑

σ

εdd†
σdσ + Ud†

↑d↑d
†
↓d↓. (3.68)

The final goal is to calculate the impurity Green’s function Gdσ ,d†
σ
(z) which can be

written in general as

Gdσ ,d†
σ
(z) =� dσ|d†

σ � (z) =
1

z− εd − Σσ(z)
. (3.69)

Here, we introduced the one-particle self-energy Σσ(z) that includes all effects of the
bath on the impurity. We now express the self-energy in terms of standard impurity
correlation functions, using the equation of motion

z� A|B� (z)+� [H, A] |B� (z) = 〈[A, B]−s〉, (3.70)

with [A(t), B]−s = A(t)B− sBA(t) and s = 1 if both A and B are bosonic operators,
while s = −1 for fermionic operators. The correlation functions are defined as

� A|B� (z) =− i
∫ ∞

0
eizt〈[A(t), B]−s〉 dt. (3.71)

Inserting A = dσ and B = d†
σ into the equation of motion Eq. (3.703.70) yields

(z− εd)Gdσ ,d†
σ
(z)−U � dσd†

σ̄dσ̄|d†
σ � (z)−∑

k
Vk � ck,σ|d†

σ � (z) = 1, (3.72)

with the new two-particle correlation function� dσd†
σ̄dσ̄|d†

σ � (z) and the one-particle
correlation function � ck,σ|d†

σ � (z). The letter one can be associated with Gdσ ,d†
σ
(z)

via the equation of motion Eq. (3.703.70) using A = ck,σ and B = d†
σ

(z− εk)� ck,σ|d†
σ � (z)−VkGdσ ,d†

σ
(z) = 0. (3.73)
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Inserting the result of Eq. (3.733.73) into Eq. (3.723.72), we finally obtain(
(z− εd)−U

Fσ(z)
Gdσ ,d†

σ
(z)
− ∆(z)

)
Gdσ ,d†

σ
(z) = 1, (3.74)

where we have defined

Fσ(z) =� dσd†
σ̄dσ̄|d†

σ � (z) and ∆(z) = ∑
k

V2
k

z− εk
. (3.75)

∆(z) is a given quantity and can be calculated exactly. Its imaginary part is related to
the hybridization function Γ(ω) of Eq. (3.33.3) via the equation

Γ(ω) =− Im∆(ω + i0+) = π ∑
k

V2
k δ(ω− εk). (3.76)

By a comparison of Eq. (3.743.74) with Eq. (3.693.69) we obtain for the total self-energy

Σσ(z) =∆(z) + ΣU
σ (z), (3.77)

where the contribution of the Coulomb correlations to the self-energy ΣU
σ (z) is given

by

ΣU
σ (z) = U

Fσ(z)
Gdσ ,d†

σ
(z)

. (3.78)

The impurity Green’s function is calculated in the following way: The spectral density
of both correlation functions Gdσ ,d†

σ
(z) and Fσ(z) is calculated using NRG as described

above in Sec. 3.3.13.3.1. Via a Kramers-Kronig transformation the corresponding real parts
of the correlation functions are obtained and the self-energy Σσ(z) is computed using
Eq. (3.773.77). Inserting Σσ(z) into Eq. (3.693.69) finally yields the impurity Green’s function
and its spectral density is given by

ρdσ ,d†
σ
(ω) = − 1

π
ImGdσ ,d†

σ
(ω + i0+). (3.79)

The main advantage of using Eq. (3.693.69) instead of the impurity Green’s function which
has been directly calculated with the NRG is that the single-particle broadening ∆(z)
is included exactly and thus the resolution of the high energy peaks is improved. Fur-
thermore, Eq. (3.783.78) provides an accurate way for the calculation of the correlation part
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of the self-energy ΣU
σ (z) which is needed in a DMFT application. An alternative and

more naive approach for the calculation of ΣU
σ (z) is given by

ΣU
σ (z) =z− εd − ∆(z)− G−1

dσ ,d†
σ
(z). (3.80)

However, Eq. (3.783.78) is numerically more stable due to the division instead of the sub-
traction of correlation functions. Therefore, one should always use Eq. (3.783.78) for the
calculation of the impurity self-energy.

3.4 Parameters of an effective low energy Hamiltonian

In this section we will show how to determine the parameters of an effective low energy
Hamiltonian by assuming that the fixed point spectrum describes a Fermi liquid. This
method was originally developed by Hewson et al. [102102] to calculate the renormalized
parameters of an effective Anderson model. However, we will modify this method and
use it to calculate the effective potential scattering terms of a particle-hole asymmetric
two impurity Kondo model (TIKM), where the effective low energy Hamiltonian is
given by the Hamiltonian of the free-electron gas plus potential scatterings.
The main idea of this method is to calculate the Green’s function of the effective Hamil-
tonian expressed in the form of a semi-infinite Wilson chain and treating the lowest
particle and hole excitations Ep and Eh of a NRG calculation as if they were excitations
of this effective low energy Hamiltonian.

3.4.1 Effective low energy Hamiltonian

As described in Sec. 2.32.3, the TIKM exhibits two different low temperature phases de-
pending on the ratio between the Kondo temperature TK and the effective spin-spin
interaction between the impurity spins Keff. For kBTK � Keff the model is in the Kondo
phase where the impurities are magnetically screened by the conduction electrons. In
the case of large antiferromagnetic interactions Keff � kBTK the model is in the decou-
pled singlet phase where the two impurities are locked in a singlet and decouple from
the conduction band.
In both cases the effective low energy Hamiltonian of the TIKM can be related to the
free-electron Hamiltonian which consists of two free Wilson chains if the conduction
band is separated in conduction bands with even and odd parity. In a particle-hole
asymmetric case the effective low energy Hamiltonian also exhibits potential scatter-
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Figure 3.7: (a) The fixed point energy levels of the particle-hole symmetric TIKM in the Kondo
phase at even iterations correspond to the (b) fixed point energy levels of the
free-electron gas at odd iterations. The same is true for the odd iterations of the
TIKM and the even iterations of the free-electron gas.
TIKM parameters: constant even and odd densities of states (DOSs), ρJ = 0.3,
No/Ne = 1 and K = 0D. NRG parameters: Λ = 3 and Ns = 2000.

ings and thus two potential scattering terms must be added to the two free Wilson
chains. The total effective low energy Hamiltonian is then given by

H0,N =Λ(N−1)/2

[
∑

α={e,o},σ

N−1

∑
n=0

tn,α

(
c†

α,n+1,σcα,n,σ + c†
α,n,σcα,n+1,σ

)

∑
α={e,o},σ

N

∑
n=0

εn,αc†
α,n,σcα,n,σ + ∑

α={e,o},σ
Ṽαc†

α,0,σcα,0,σ

]
. (3.81)

with the hopping elements tn,α and onsite energies εn,α introduced in Sec. 3.1.33.1.3.
The potential scatterings ∑α={e,o},σ Ṽαc†

α,0,σcα,0,σ are the only terms that might addition-
ally appear in the effective Hamiltonian. Since the TIKM is invariant under the ex-
change of the impurity spins ~S1 ↔ ~S2, all combinations that mix even and odd sites
like c†

e/o,i,σco/e,i,σ are excluded because they break the parity symmetry. Furthermore,
the combinations c†

α,0,σcα,0,σ with α = {e, o} are the only that yield marginal contribu-
tions since cα,0,σ ∝ Λ−(N−1)/4 [2626, 2727, 5353]. All other combinations that include operators
of Wilson sites i > 0 only lead to irrelevant contributions because with increasing N
they are decreasing even faster than cα,0,σ, e.g. cα,1,σ ∝ Λ−3(N−1)4.
For the decoupled singlet phase, where no Kondo effect occurs, the impurity spins
form a singlet, the Kondo coupling is renormalized to zero J → 0 and hence the impu-
rity spins decouple from the conduction band. The fixed point spectrum in this phase
is, therefore, given by the spectrum of the free-electron Hamiltonian plus potential
scatterings which is described by the Hamiltonian H0,N .
In the Kondo phase the coupling is renormalized to J → ∞ and the impurity spins are
screened by conduction electrons. As shown in figure Fig. 3.73.7a and b in this phase the
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fixed point spectrum of the even iterations of the particle-hole symmetric TIKM cor-
responds exactly to the fixed point spectrum of the free-electron Hamiltonian at odd
iterations. The same applies for the odd iterations of the TIKM and the even iterations
of the free-electron Hamiltonian. This can be explained by the fact that the electrons
that screen the two impurity spins are locked into a singlet with these impurity spins
and therefore each chain has one free electron less. Hence, the fixed point spectrum
at iteration N can be described by the free-electron Hamiltonian at iteration N − 1. As
before, in the particle-hole asymmetric case potential scatterings have to be added to
the free-electron Hamiltonian. Therefore, the fixed point spectrum of the particle-hole
asymmetric TIKM in the Kondo phase at iteration N can be described by H0,N−1.

3.4.2 Algorithm

With the equation of motion technique of Eq. (3.703.70) one can calculate the Green’s func-
tion of the zeroth Wilson site i = 0 which is given by

G00,α(ω) =
1

ω− ṼαΛ(N−1)/2 − ε0,αΛ(N−1)/2 −Λ(N−1)t2
0,αg11,α(ω)

, (3.82)

where g11,α(ω) is the Green’s function of site i = 1 described by the Hamiltonian H1,N .
Here Hi,N is the part of the effective low energy Hamiltonian of Eq. (3.813.81) without the
potential scatterings and the Wilson chains are starting at sites i rather than at the sites
0. The Green’s function g11,α(ω) is given by

g11,α(ω) =
1

ω− ε1,αΛ(N−1)/2 −Λ(N−1)t2
1,αg22,α(ω)

, (3.83)

with g22,α(ω) the Green’s function of site i = 2 described by the Hamiltonian H2,N . An
extension of this procedure can be used to calculate g11,α(ω) in the form of a continued
fraction. The one-particle excitations Eα of chain α are given by the poles of the Green’s
function in (3.823.82)

Eα − ṼαΛ(N−1)/2 − ε0,αΛ(N−1)/2 −Λ(N−1)t2
0,αg11,α(Eα) = 0. (3.84)

If E0
p,α(N) and E0

h,α(N) are the lowest particle and hole excitations of the corresponding
chain α from the ground state of the Hamiltonian H0,N , then the effective potential
scattering Ṽα is given by

Ṽα = lim
N→∞

Λ−(N−1)/2E0
p,α(N)− ε0,α −Λ(N−1)/2t2

0,αg11,α(E0
p,α(N)) (3.85)

= lim
N→∞

−Λ−(N−1)/2E0
h,α(N)− ε0,α −Λ(N−1)/2t2

0,αg11,α(−E0
h,α(N)). (3.86)
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In the limit of N → ∞, which means at low temperatures, when the model can be
described by the effective Hamiltonian of Eq. (3.813.81), the obtained effective potential
scattering Ṽα should not only be converged and hence be independent of N but also
both excitations, particle and hole, should yield the same effective Ṽα.
The Green’s function g11,α(E0

p,α(N)) is calculated iteratively using the form of a contin-
ued fraction of Eq. (3.833.83). The iteration starts with the calculation of Green’s function
of the last site gNN,α(E0

p,α(N)) = 1/(E0
p,α(N)− εN,αΛ(N−1)/2) and inserts this result into

the corresponding form of Eq. (3.833.83) for gN−1N−1,α(E0
p,α(N)). Afterwards this result is

inserted in gN−2N−2,α(E0
p,α(N)). This procedure can be continued until g11,α(E0

p,α(N))

is reached.
To measure the potential scattering in the Kondo phase the same algorithm as de-
scribed above is used. However, since in this case the Wilson chains in the effective low
energy Hamiltonian have one chain site less, the calculation of the Green’s function
g11,α(E0

p,α(N)) slightly changes. This time the iteration to compute the Green’s func-

tion g11,α(E0
p,α(N)) starts with gN−1N−1,α(E0

p,α(N)) = 1/(
√

ΛE0
p,α(N)− εN−1,αΛ(N−1)/2)

rather than with gNN,α(E0
p,α(N)). The factor

√
Λ needs to be added so that the energies

of the last iteration N are on the energy scales of the Wilson sites N − 1. The effective
potential scatterings obtained from this method will be marked with an index K, e.g.
Ṽα,K, to distinguish them from the potential scatterings obtained from the full chain.

3.4.3 Benchmark calculations

In Fig. 3.83.8a a benchmark calculation of a free electron gas for constant even and odd
DOSs and with initial potential scatterings Ve = 0.2D and Vo = −0.1D is shown. The
measured effective potential scatterings Ṽe and Ṽo coincide with the input parameters
Ve and Vo for every iteration which must be the case since this model is exactly de-
scribed by the Hamiltonian of Eq. (3.813.81) for every iteration N.
In the following Ṽe,(K) and Ṽo,(K) always denote the measured effective potential scatter-
ings of the last iteration where they have already been converged and are independent
of the iteration N.
Figure 3.83.8b shows the measured effective potential scatterings of a TIKM for constant
DOSs, No/Ne = 1 and with initial potential scatterings Ve = 0.2D and Vo = −0.1D.
The Hamiltonian of such a system is given by

HTIKM+pot =HTIKM + ∑
σ

[
Vec

†
e,0,σce,0,σ + Voc†

o,0,σco,0,σ

]
(3.87)

where HTIKM is the Hamiltonian (2.122.12) of the TIKM and ce/o,0,σ the operator that creates
an electron on the zeroth site of the even/odd Wilson chain. The measured scattering
terms Ṽe and Ṽo are plotted against the coupling ρJ for different antiferromagnetic di-
rect impurity spin-spin interactions K. These large antiferromagnetic K ensure that the
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Ṽ
e/
o
/D

N

Ve
Vo

(b)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ṽ
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Figure 3.8: Benchmark calculations: (a) A free electron gas for constant even and odd DOSs
and with potential scatterings Ve = 0.2D and Vo = −0.1D. The measured ef-
fective potential scatterings Ṽe and Ṽo coincide with input parameters for every
iteration. (b) The measured potential scatterings of a TIKM for constant DOSs,
No/Ne = 1 and with potential scatterings Ve = 0.2D and Vo = −0.1D plotted
against the coupling ρJ for different large antiferromagnetic direct impurity spin-
spin interactions K. For small couplings ρJ the measured scatterings coincide
with the input parameters but with increasing ρJ they are renormalized to larger
values. This effect of renormalization is stronger for smaller K.
NRG parameters: Λ = 3, Ns = 2000 and N = 60.

decoupled singlet is the ground state and, therefore, the effective low energy Hamilto-
nian at iteration N is given by H0,N where both chains have the full length of N sites.
For small couplings ρJ the measured scatterings coincide with the input potential scat-
terings Ve and Vo. With increasing ρJ the absolute values of the effective potential
scatterings grow since the input potential scatterings are renormalized to larger values.
However, the effect of renormalization becomes weaker for larger K. The reason for this
is that with increasing K the impurity spins form a singlet at higher temperatures and
hence decouple earlier from the chain which leads to a cutoff of the renormalization.
Therefore, for a large K the potential scatterings are almost not renormalized even for
large ρJ.
Figure 3.93.9a shows the measured effective potential scatterings Ṽe,K and Ṽo,K of a TIKM
in the Kondo phase for constant DOSs, No/Ne = 1 and with potential scatterings
Ve = 0.2D and Vo = −0.1D plotted against the coupling ρJ for different large ferro-
magnetic interactions K. The ferromagnetic interactions ensure that the model is in
the Kondo phase at low temperatures. As before, for small couplings ρJ the mea-
sured potential scatterings coincide with the input parameters. This time, however,
with increasing ρJ the potential scatterings are renormalized to smaller values. As in
the decoupled singlet phase the effect of renormalization becomes weaker for larger
ferromagnetic interactions K. This is caused by the fact that for larger ferromagnetic
interactions between the impurity spins the effective coupling Jeff to the conduction
band decreases [103103] since the second part of the interaction between the impurity
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Figure 3.9: Benchmark calculation: a) The measured potential scatterings Ṽe,K and Ṽo,K of a
TIKM in the Kondo phase for constant DOSs, No/Ne = 1 and with potential scatter-
ings Ve = 0.2D and Vo = −0.1D plotted against the coupling ρJ for different large
ferromagnetic direct impurity spin-spin interactions K. With increasing ρJ the po-
tential scatterings are renormalized to smaller values. This effect is stronger for
smaller K. b) The measured potential scatterings Ṽe and Ṽo for the same model.
Using Ṽe and Ṽo in the Kondo phase yields potential scatterings that do not agree
with the input parameters Ve = 0.2D and Vo = −0.1D. NRG parameters: Λ = 3,
Ns = 2000 and N = 100.

spins and the conduction bands in Eq. (2.142.14), which is proportional to ∝ (~S1 − ~S2), is
suppressed leading to the weaker renormalization.
For comparison Fig. 3.93.9b shows the measured effective potential scatterings for the
Wilson chains of the full length Ṽe and Ṽo for the same TIKM. The absolute values of
the measured scatterings are much larger than the input parameters Ve = 0.2D and
Vo = −0.1D and even start growing with increasing coupling ρJ. This demonstrates
that one really needs to distinguish the two phases and take the different chain lengths
in the effective low energy Hamiltonians seriously. Therefore, one has to use Ṽe/o in
the decoupled singlet phase and Ṽe/o,K in the Kondo phase in order to get reliable esti-
mates for the potential scatterings.
The appendix A of Ref. [2727] derives a connection between Ṽα and Ṽα,K for constant
DOSs which is given by33

Ṽα,K(Ṽα) =−
1
π

ln(Λ)

1−Λ−1
1

Ṽα

. (3.88)

Note that the potential scatterings occurring in (3.883.88) are measured in units of the band
width D and are, hence, dimensionless. Figure 3.103.10a shows a comparison between the

3 In the appendix A of Ref. [2727] an additional factor 2 occurs in the formula. However, different bench-
mark calculations for the free-electron gas with various discretization parameters Λ have shown that
this factor 2 yields results in which the measured scatterings are twice as large as the input scatter-
ings. The reason for the difference is not clear since all relevant definitions in this work and in [2727]
seem to be equal.
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(Ṽ

e/
o
)/
D

ρJ

K = −1D, Ve
K = −1D, Vo
K = −2D, Ve
K = −2D, Vo
K = −3D, Ve

K = −3D, Vo
K = −4D, Ve
K = −4D, Vo
K = −5D, Ve
K = −5D, Vo

Figure 3.10: Benchmark calculation: a) A comparison between the directly measured Ṽe/o
and the calculated Ṽe/o(Ṽe/o,K) for the free-electron gas with potential scatter-
ings Ve = 0.2 and Vo = −0.1 plotted against the discretization parameter Λ. The
absolute value of the calculated Ṽe/o(Ṽe/o,K) is slightly larger than the directly
measured Ṽe/o. b) The measured scatterings Ṽα of Fig. 3.93.9b are used to cal-
culate the effective potential scatterings of the TIKM in the Kondo phase. NRG
parameters: Λ = 3 and Ns = 2000.

directly measured Ṽe/o and the calculated Ṽe/o(Ṽe/o,K) for the free-electron gas with
initial potential scatterings Ve = 0.2 and Vo = −0.1 for different discretization param-
eters Λ. Ṽe/o(Ṽe/o,K) denotes the potential scattering calculated with Eq. (3.883.88) for the
decoupled singlet phase where the measured Ṽe/o,K was used as an input parameter.
The absolute values of the calculated Ṽe/o(Ṽe/o,K) are slightly larger than the directly
measured Ṽe/o and the input parameters. The difference between Ṽe/o and Ṽe/o(Ṽe/o,K),
however, is always smaller than 7%. In Fig. 3.103.10b the measured scatterings Ṽe/o of Fig.
3.93.9b are used to calculate the effective potential scatterings of the TIKM in the Kondo
phase. A comparison with Fig. 3.93.9a shows that the absolute value of the calculated
Ṽα,K(Ṽα) are only slightly larger than the directly measured Ṽα,K.
Therefore, for constant DOSs we can in principle either use the directly measured
Ṽα,K or the calculated Ṽα,K(Ṽα) to determine the effective scattering of the TIKM in the
Kondo phase. However, we will always use the directly measured potential scatterings,
namely Ṽα,K in the Kondo phase and Ṽα in the decoupled singlet phase.
The method outlined above will be used to determine the automatically generated
effective potential scattering terms of an energy dependent particle-hole asymmetric
TIKM in order to find corresponding counter potential scatterings which make the
model particle-hole symmetric again. However, as can already been seen in the bench-
mark calculation above, even if one uses Ṽe/o in the decoupled singlet and Ṽe/o,K in the
Kondo phase, the renormalization may lead to completely different potential scatter-
ings than the original input parameters Ve and Vo. Therefore, in general it will not be
possible to simply set Ve = −Ṽe(,K) and Vo = −Ṽo(,K) to make the model particle-hole
symmetric again.





Chapter 4

Spatial and temporal propagation of
Kondo correlations

While the equilibrium properties of the Kondo problem were studied over the last
decades and are now theoretically well understood by virtue of Wilson’s numerical
renormalization group (NRG), cf. Sec. 3.13.1, and the exact Bethe-ansatz solution [104104],
its nonequilibrium properties are subject to recent and active research [8787, 8888, 105105–115115].
In this chapter we investigate the fundamental question how spatial Kondo corre-
lations are building up in time when the impurity spin ~Simp is initially decoupled
from the conduction band using the time-dependent numerical renormalization group
(TD-NRG) which has been introduced in Sec. 3.23.2. For this purpose we examine the
time-dependent spin correlation function χ(~r, t) = 〈~Simp~s(~r)〉(t) in the Kondo model.
The correlation function χ(~r, t) vanishes for times t < 0 since the impurity spin and the
conduction electron spin density are initially uncorrelated. Therefore, we can use it to
measure the buildup of entanglement between the impurity spin and the spin density
at distance R = |~r|.
The equilibrium spatial correlation function χ∞(~r) = limt→∞ χ(~r, t) of the Kondo model
must be recovered for infinitely long times. This correlation function has been investi-
gated by Affleck and co-workers [116116–119119] using field theoretical methods. However,
the field theory yields results that are only valid for distances R � ξK or R � ξK

and lacks the possibility to determine the correlation function for intermediate values
R ≈ ξK. Here ξK = vF/TK is the characteristic length scale at which the crossover
between different power-law decays in χ∞(~r) occurs [4747, 120120–122122], where vF denotes
the Fermi velocity and TK the Kondo temperature. A standard interpretation of the
so-called Kondo length scale ξK is that the impurity spin is screened by a surrounding
cloud of conduction electrons with a spatial extent of ξK [116116–119119, 123123]. Furthermore,
the equilibrium correlation function χ∞(~r) has also been recently investigated using a
real-space density matrix renormalization group (DMRG) [120120]. Therefore, the two ref-
erence points t = 0 and t = ∞ are known and can be compared with our calculations.
Borda was the first who calculated the equilibrium spatial correlation function for the
Kondo model using the NRG [4747]. He has realized that the mapping that was used to

49
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calculate the two-impurity Kondo model with the NRG [6161, 6262, 6464] can also be used to
calculate χ∞(~r), where the second impurity spin has to be removed and the spin den-
sity s(~r) at distance R is introduced to probe the spatial correlations. In this approach
the calculation of spatial correlations becomes accessible by mapping the problem onto
two~r-dependent linear combinations of conduction electrons, one with even and one
with odd symmetry under spatial inversion around the midpoint ~r/2. For each dis-
tance R a single two-band NRG run is required and, therefore, the numerical effort to
calculate the R-dependent correlation function is high.
In the following, we will present an improved mapping compared to the one of Borda.
With our modifications we are able to (i) accurately reproduce the analytically known
sum rules [4747, 116116, 123123] for the spin-correlation function at least in one dimension,
(ii) reproduce the analytical spin-spin correlation function of the decoupled Fermi sea,
and (iii) obtain sign changes in χ∞(~r) at short and intermediate distances which are ex-
pected for RKKY mediated correlations and have also been observed recently in DMRG
calculations [115115]. In contrast, Borda reports [4747] that the correlation function χ∞(~r)
is negative for all distances R and couplings J. We observe oscillating and power-law
decaying χ∞(~r) < 0 only for distances R � ξK which is in accordance with previous
analytical 1D field theory predictions [4747, 116116]. Since for distances R � ξK the Kondo
screening is incomplete, alternating signs can be found in χ∞(~r). However, we are not
able to tell the exact differences of our mapping to the one in [4747] because Borda does
not provide a detailed derivation of his mapping.
For the nonequilibrium correlation function χ(~r, t) we find for an antiferromagnetic
coupling J > 0 that, as a consequence of spin conservation, a ferromagnetic correla-
tion propagates with the Fermi velocity vF away from the impurity. In addition to the
correlations inside the light cone, also finite and nonexponential correlations outside
of the light cone are observed. We are able to trace the origin of these correlations
outside of the light cone back to the intrinsic entanglement of the Fermi sea by using a
second-order expansion in the coupling J and comparing the perturbative results with
TD-NRG results. Since χ(~r, t) is not a response function, nonexponential contributions
outside the light cone are allowed.
The TD-NRG and perturbation theory results agree remarkably well for short and
intermediate time and length scales. However, for large distances R ≥ ξK the perturba-
tion theory fails to capture the Kondo effect and, therefore, yields incorrect power-law
decays for the long-time limit of χ(~r, t).
Our data confirm the recent findings by Medvedyeva et al. [114114] and their suggestion
that the correlations outside the light cone originate from the intrinsic entanglement of
the Fermi sea. However, we considerably extend their work: we include the full spatial
dependence that allows us to access the full 2kF oscillations inherent to the RKKY me-
diated correlations. Furthermore, with the NRG we are able to capture the crossover
between short and long distance behaviour, including the Kondo physics at low tem-
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peratures.
We also discuss the spectral functions of the retarded spin-spin susceptibility as a func-
tion of R and use these results to calculate the linear response of the host spin density
at a distance R to a local magnetic field applied to the impurity. Any real response
must vanish outside of the light cone in accordance with relativity if the momentum
cutoff is sent to infinity [114114]. However, for a finite momentum cutoff, as we use in the
NRG, this statement is weakened to a fast decay on the length of the inverse momen-
tum cutoff. Therefore, we find an algebraic decay and a suppression of the response
outside of the light cone. The calculations of the NRG spectral functions are bench-
marked with the retarded spin susceptibility of the host without impurity for which
the susceptibility can be calculated analytically. We find that the analytically calcu-
lated susceptibility agrees only for short distances with the NRG susceptibility since
the NRG cannot capture high energy oscillations that occur for larger distances. There-
fore, the results for the real response are restricted to small distances where the NRG
yields reliable results.
This chapter is organized as follows: At first, we derive the mapping to the two-
impurity model and discuss the sum rules for the spatial correlation function in Sec.
4.14.1. In Sec. 4.24.2 we present the results of our equilibrium NRG calculations for different
dimensions and compare them to the data of Borda [4747]. The nonequilibrium data ob-
tained from the TD-NRG and the results of the second-order perturbative calculations
are presented in Sec. 4.34.3. Afterwards, the results for the retarded spin-spin susceptibil-
ity and the response function are discussed in Sec. 4.44.4. At the end we conclude with a
summary in Sec. 4.54.5.
Most of the following results and figures in this chapter have already been published
in [124124]. In the following, we recapitulate these results and augment them.

4.1 Theory

4.1.1 The Hamiltonian and the spin density

If the spin density~s(~r) is expanded in plane waves [1515], it is given by

~s(~r) =
1
2

1
NVu

∑
σσ′

∑
~k~k′

c†
~kσ
~σσσ′c~k′σ′e

i(~k′−~k)~r, (4.1)
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where N is the number of unit cells in the volume V, Vu = V/N is the volume of such
a unit cell, ~k a momentum vector and ~σ a vector of the Pauli matrices. The Kondo
Hamiltonian in energy representation can be written as

H =H0 + HK, (4.2)

H0 =∑
σ

∫ D

−D
dε ε c†

εσcεσ,

HK =J~Simp~sc(0).

HK describes how a local impurity spin located at the origin couples via an effec-
tive Heisenberg coupling J to the unit-cell volume averaged conduction electron spin
~sc(~r) = Vu~s(~r) and H0 accounts for the energy of the free conduction electrons. For a
more detailed discussion of the Kondo model see Sec. 2.22.2.
While Wilson’s original approach of the NRG was intended to calculate only the prop-
erties of the impurity and those of the conduction band close to the impurity, we are
explicitly interested in the spatial correlation function 〈~Simp~s(~r)〉 which only depends
on the distance R = |~r| if the system is rotationally invariant.
Borda [4747] was the first who realized that the calculation of the spatial correlations is
related to a simplified two impurity Kondo model (TIKM). He has used the same map-
ping originally Jones et al. [6161, 6262] have used to extend the NRG to the TIKM with one
impurity spin at the position ~R+ = +~r/2 and the other at ~R− = −~r/2. In the following
we will give a brief overview of this mapping, a more detailed derivation can be found
in appendix AA.
In this approach the spatial dependence is included into two nonothogonal energy
dependent field operators

cεσ,± =
1√

Nρ(ε)
∑
~k

δ(ε− ε~k)c~kσ
e±i~k~r/2, (4.3)

which are combined to even (e) and odd (o) parity eigenstates

cεσ,e =
1

Ne(ε)

(
cεσ,+ + cεσ,−

)
,

cεσ,o =
1

No(ε)

(
cεσ,+ − cεσ,−

)
, (4.4)

with the dimensionless normalization functions

N2
e (ε) =

4
Nρ(ε) ∑

~k

δ(ε− ε~k) cos2

(
~k~r
2

)
,

N2
o (ε) =

4
Nρ(ε) ∑

~k

δ(ε− ε~k) sin2

(
~k~r
2

)
. (4.5)
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Here ρ(ε) denotes the density of states (DOS) of the original conduction band. The
normalization functions Ne/o(ε) are chosen such that the anti-commutator relation
{cεσ,α, c†

ε′σ′,α′} = δ(ε− ε′)δαα′δσσ′ is fulfilled. Note that both functions Ne(ε) and No(ε)

depend on the distance R = |~r| and are not normalized.
The TIKM can be written in terms of these even and odd fields and solved using
the NRG. If we omit the impurity spin at postion ~R−, the original Kondo model
Hamiltonian of Eq. (4.24.2) with the impurity spin the position ~R+ is recovered. We can
then use~s(~R−) to probe the spin density at a distance R from the impurity.
The local even or odd parity conduction electron operator coupling to the impurity
spin takes the form

f0σ,e(o) =
1

N̄e(o)

∫
dε
√

ρ(ε)Ne(o)(ε)cεσ,e(o). (4.6)

The normalization constants

N̄e(o) =

√∫
dε N2

e(o)(ε)ρ(ε) (4.7)

are determined by the anticommutator { f0σ,e(o), f †
0σ′,e(o)} = δσ,σ′ and depend on the

distance R. These constants also enter the definition of the effective parity DOS

ρe(o)(ε) =
1

N̄2
e(o)

N2
e(o)(ε)ρ(ε). (4.8)

These DOSs contain the spatial information and are used to construct the NRG tight-
binding chains, cf. Eq. (3.43.4).
Positioning the impurity spin at ~R+ and expanding the original Kondo Hamiltonian of
Eq. (4.24.2) in these orthogonal even and odd fields yields

H =∑
σ

∑
α=e,o

∫ D

D
dε εc†

εσ,αcεσ,α

+
J
8 ∑

σσ′

(
N̄e f †

0σ,e + N̄o f †
0σ,o

)
~σσσ′

(
N̄e f0σ,e + N̄o f0σ,o

)
. (4.9)

The spin density ~s(~R−) at position ~R− entering the spatial spin-spin correlation func-
tion is then given by

~s(~R−) =
1

8Vu
∑
σσ′

(
N̄e f †

0σ,e − N̄o f †
0σ,o

)
~σσσ′

(
N̄e f0σ,e − N̄o f0σ,o

)
, (4.10)

where Vu accounts for its dimensions.
Note that the inclusion of the proper R-dependent normalization constants N̄e and N̄o
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into the Hamiltonian (4.94.9) and the spin density operator of Eq. (4.104.10) is crucial for
recovering the exact sum rules that are discussed in the following section.

4.1.2 Sum rules of the spatial correlation function

The quality of our calculated spartial correlation function can be verified by exact sum
rules at zero temperature T = 0. For an antiferromagnetic coupling J > 0, the Hamil-
tonian approaches the strong coupling (SC) fixed point at low temperatures and the
ground state |0〉 is a singlet. Therefore, the application of the total spin operator ~Stot

comprising the impurity spin and the total conduction electron spin

~Stot|0〉 =
(
~Simp +

∫
~s(~r) dDr

)
|0〉 = 0 (4.11)

must vanish. Consequently, the correlator 〈0|~Simp
~Stot|0〉 also vanishes

〈0|~Simp
~Stot|0〉 =

3
4
+
∫
〈0|~Simp~s(~r)|0〉 dDr = 0, (4.12)

where we have used 〈0|~Simp
~Simp|0〉 = 3

4 . Hence, χ∞(~r) must obey the sum rule

∫
χ∞(~r) dDr =

∫
〈~Simp~s(~r)〉 dDr = −3

4
(4.13)

at T = 0. For a generic system the spin-spin correlation function is isotropic and
the angular integration can be performed analytically. Substituting the dimensionless
variable x = kFR/π and integrating over the angles yields

CDπD

kD
F

∫ ∞

0
xD−1χ∞(x) dx = −3

4
, (4.14)

where D is the dimension, C1 = 2, C2 = 2π and C3 = 4π.
In the case of a linear dispersion ε(|~k|) = vF(|~k| − kF) the Fermi wave vector in different
dimensions is given by kF = π/(2Vu) in 1D, kF =

√
π/Vu in 2D and kF = (π2/Vu)

1/3

in 3D. Note that the volume of a unit cell Vu in the Fermi wave vector cancels the factor
1/Vu in the spin density~s(x) of Eq. (4.104.10).
Using the NRG to evaluate the sum rule (4.144.14), we are able to confirm the theoretical
value of − 3

4 with an error of less than 2% in 1D. In higher dimensions it is more
complicated to confirm the sum rule. Since χ∞(R) ∝ R−(D+1) for R → ∞, the integral
kernel RD−1χ∞(R) is very susceptible to numerical errors in higher dimensions, which
leads to a decreasing of the accuracy with increasing dimension. Therefore, to prevent
the integral

∫ ∞
0 RD−1χ∞(R) dR from diverging, a very high number of kept states in

the NRG is needed.
In the case of a ferromagnetic coupling J < 0, the Hamiltonian approaches the local
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moment (LM) fixed point with a decoupled impurity spin. For the local moment fixed
point the effective magnetic moment of the impurity is given by ~µ2

eff =
3
4 [2626, 2727], cf.

Sec. 2.42.4. In the NRG the effective magnetic moment ~µ2
eff is defined by the difference of

the total magnetic moment of the system with and without the impurity [2626, 2727, 5353]:

~µ2
eff = 〈~Stot

~Stot〉 − 〈~Sbath
~Sbath〉

!
=

3
4

, (4.15)

with ~Sbath =
∫
~s(~r) dDr. If we insert the definition of ~Stot from Eq. (4.114.11), the correlator

of the bath 〈~Sbath
~Sbath〉 is canceled and we obtain the sum rule∫

〈~Simp~s(~r)〉 dDr = 0 (4.16)

which is valid for T = 0 and J < 0. Consequently, we expect an oscillatory solution for
χ∞(R) with sign changes at all length scales and a decay R−α with α ≥ D. Therefore,
the spin correlation function will be significantly different in the ferromagnetic J < 0
and in the antiferromangetic J > 0 regime.

4.1.3 Effective densities of states in 1D, 2D and 3D

The spatial correlations depend on the dimensionality of the host. At a constant dis-
tance R, the dimensionality primarily enters via the dimension of the wave vector ~k
which occurs in Eqs. (4.54.5) and the energy dispersion ε~k of the host.

In the following, we assume an isotropic linear dispersion ε~k = vF

(
|~k| − kF

)
in order

to obtain information on generic spectral densities N2
e(o)(ε)ρ(ε) appearing in Eqs. (4.74.7)

and (4.84.8). Here vF is the Fermi velocity and kF denotes the Fermi wave vector. Inserting
the dispersion in Eqs. (4.54.5) yields in 1D

N2
e(o)(ε)ρ(ε) = 2ρ0

[
1± cos

(
xπ
(

1 +
ε

D

))]
(4.17)

where ρ0 = 1/2D is the constant DOS of the original conduction band and x = kFR/π.
In higher dimensions we can perform the angular integration analytically and obtain
for 2D

N2
e(o)(ε)ρ(ε) = 2ρ0

[
1± J0

(
xπ
(

1 +
ε

D

))]
(4.18)

with the zeroth Bessel function J0(x). In 3D, the effective DOSs [6161, 6262] is given by

N2
e(o)(ε)ρ(ε) = 2ρ0

[
1± sin

(
xπ
(
1 + ε

D

))
xπ
(
1 + ε

D

) ]
. (4.19)

Note that in 2D and 3D ρ(ε) is not constant for a linear dispersion, and hence ρ(ε) =

ρ0 = 1/2D is a simplification.
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Figure 4.1: Normalization constants N̄e(o) for different dimensions D vs. the dimensionless
distance x = kFR/π. For R → 0 the odd band decouples and for R → ∞ the
normalization constant N̄e is equal to N̄o.
Figure taken from [124124].

The distance R dependent normalization constants N̄e(o) that occur in the Hamilto-
nian (4.94.9) and the spin density (4.104.10) reveal important information on the admixture
of even and odd bands. These normalization constants are shown as a function of the
dimensionless distance x = kFR/π for different dimensions D in Fig. 4.14.1. Clearly, for
N̄o(x = 0) = 0 the odd band decouples from the problem in any dimension, and the
standard Kondo model is recovered which allows to calculate local (R = 0) expectation
values within a standard single band NRG 11.
As can be seen from Eqs. (4.174.17)-(4.194.19), the oscillations of the even and odd DOS ρe(o)

decay as ∝ R(1−D)/2 with increasing distance R. For large distances R → ∞ the even
and odd bands become equal and as shown in Fig. 4.14.1 the normalization constants
approach the same value. In the case of 1D, strong oscillations are observed for N̄e(o)

for short distances that are suppressed in higher dimensions. Apparently, the R de-
pendence will be more pronounced in lower dimensions and the correlation function
will decay with a different power law than in higher dimensions.

1 In order to avoid different numerical accuracy for R = 0 and R > 0 calculations, we have used
kFR/π = 0.01 in the NRG calculations for R→ 0.
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ρ0 J TK/D kFξK

0.05 1 · 10−10 1 · 1010

0.075 1.7 · 10−7 5.88 · 106

0.1 7.5 · 10−6 1.33 · 105

0.15 3.9 · 10−4 2564.10
0.2 2.4 · 10−3 421.59
0.25 0.0077 129.87
0.3 0.0178 56.31
0.35 0.0290 34.53
0.4 0.0418 23.90
0.45 0.0578 17.30
0.5 0.0749 13.35
0.6 0.115 8.69
0.7 0.2103 4.76

Table 4.1: The Kondo temperature TK and Kondo length scale ξK for different Kondo couplings
ρ0 J. The Kondo temperatures have been obtained from the NRG level flow and is
defined as the energy scale at which the first excitation reaches 80% of its fixed
point value.

4.2 Equilibrium

4.2.1 Kondo regime (J>0): short distance versus large distance
behavior

The problem has two characteristic length scales: 1
kF

defined by the metallic host
which governs the power-law decay of χ∞(R) and its Ruderman-Kittel-Kasuya-Yosida
(RKKY) oscillations, and the Kondo length scale χK = vF

TK
, sometimes referred to as

the size of the Kondo screening cloud [116116–119119, 123123, 125125]. The Kondo length scale ξK

depends exponentially on the coupling ρ0 J, therefore, we use different ρ0 J to present
results for the two different regimes R� ξK and R� ξK.
Since the Kondo temperature is a crossover scale, it is only defined up to an arbitrary
constant of the order one. We define the Kondo temperature TK from the NRG level
flow as the energy scale at which the first excitation reaches 80% of its fixed point
value. Table 4.14.1 shows the Kondo temperature as well as the Kondo length scale ξK for
different couplings ρ0 J.
In Fig. 4.24.2a the spin correlation function is shown for R � ξK and T

TK
→ 0. We

rescaled the correlation function χ∞(R) with the distance R to reveal the 1
R decay at

short distances in 1D which originates from the analytical form of the RKKY inter-
action. In contrast to Bordas original work [4747], we observe ferromagnetic as well as
antiferromagnetic correlations for short distances in accordance with predictions [116116–
119119, 123123, 125125] made by Affleck and his co-workers. For short distances R � ξK the
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Figure 4.2: (a) The rescaled spin correlation function Rχ∞(R) plotted against the dimension-
less distance x = kFR/π in 1D for different couplings ρ0 J, T

TK
→ 0 and R

ξK
� 1. A

RKKY interaction between the impurity spin and a fictitious probe spin in distance
R is added for comparison. (b) R2χ∞(R) plotted against the dimensionless dis-
tance x in 1D for different large couplings ρ0 J. The rescaling with R2 reveals the
1

R2 decay at large distances R� ξK. The inset shows the values of the correlation
function at the origin χ∞(0)Vu versus ρ0 J. For large couplings ρ0 J the correlation
function reaches the value − 3

4 .

Kondo effect has no influence, the impurity is still unscreened and behaves more like
a free spin.
Along with the correlation function Fig. 4.24.2a also show the RKKY interaction KRKKY be-
tween the impurity spin and a fictitious probe spin at distance R from the impurity for
comparison. KRKKY is obtained from second-order perturbation theory in J and details
of the calculation of the RKKY interaction can be found in appendix BB. As can be seen,
the oscillating part of χ∞(R), and the position of the minima and maxima nicely agree
with the RKKY interaction ∝ cos(2kFR). For multiples of the integer x = kFR/π = n
the correlation function and KRKKY exhibit minima and for odd multiple x = n + 1

2

they have maxima.
Figure 4.24.2b shows the correlation function for larger couplings ρ0 J so that we can ac-
cess distances R � ξK. This time the correlation function is rescaled with R2 in order
to reveal the 1

R2 decay at large distances. In contrast to the short distance behavior we
only find antiferromagnetic correlations for R� ξK, and χ∞(R) remains negative at all
distances. In this regime, the maxima have the value χ∞(R) = 0 which is in accordance
with field theory predictions [116116–119119, 125125, 126126]. For such large distances the impu-
rity spin is screened by the conduction band electrons and, therefore, the envelope of
χ∞(R) has to decrease faster.
Since we have plotted Rχ∞(R) and R2χ∞(R) which vanish for R = 0, the information
of χ∞(0) is not included in Fig. 4.24.2. Therefore, the inset of Fig. 4.24.2b shows the local
spin correlation function χ∞(0) plotted against the coupling ρ0 J. As expected for an
antiferromagnetic coupling, the correlation function is always negative χ∞(0) < 0, and
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Figure 4.3: The envelope of the correlation function χ∞(R) rescaled with the Kondo length
scale ξK plotted against the rescaled distance R

ξK
for different couplings ρ0 J and

temperatures. The rescaling leads to universal behavior. The crossover from
the 1

R (pink line) to the 1
R2 (black line) decay is around the Kondo length scale

R ≈ ξK. Finite temperature introduces a new length scale ξT =
vF
T beyond which

the correlations are exponentially suppressed. NRG parameters are Λ = 3 and
Ns = 2000.

for very large couplings ρ0 J the strong coupling value of − 3
4 is approached. For such

large couplings almost the whole contribution to the sum rule (4.144.14) lies in the first an-
tiferromagnetic minimum at R = 0, and consequently χ∞(R) has to decay very rapidly
with increasing distance R.
Figure 4.34.3 shows the envelope of the correlation functions χ∞(R) rescaled with the
Kondo length scale ξK plotted against the rescaled distance R

ξK
for different couplings

ρ0 J and temperatures. The envelope is defined by χ∞(kFR = nπ), where n is an in-
teger. Due to the rescaling, the envelope functions for different couplings ρ0 J nicely
collapse onto one universal curve. Like in Ref. [4747] the envelope functions decay as 1

R2

for large distances, indicated by the black line, while for short distances the envelope
functions show a 1

R decay which is indicated by the pink line. The crossover between
these different decays occurs at around the Kondo length scale ξK. This supports the
interpretation that the impurity spin is screened by a cloud of surrounding electron
spins with a size of ξK.
For finite temperature a new length scale ξT = vF

T is introduced. While for R� ξT the
correlation function χ∞(R) is almost unaffected, for R � ξT correlations are exponen-
tially suppressed. When the temperature is much smaller than the Kondo temperature
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Figure 4.4: The spin correlation function Rχ∞(R) as a function of the dimensionless distance
x = kFR/π in 1D for two different ferromagnetic Kondo couplings ρ0 J = −0.1,
ρ0 J = −0.5 and T → 0. For ferromagnetic couplings χ∞(R) decays with 1

R at every
distance. The inset shows χ∞(0)Vu vs. ρ0 J. For large ferromagnetic couplings the
value 0.25 is reached. NRG parameters are Λ = 3 and Ns = 1400. Figure taken
from Ref. [124124].

T � TK, the corresponding thermal length scale is much larger than the Kondo length
scale ξT � ξK. Therefore, the effect of a small finite temperature is just a small correc-
tion to the perfectly screened impurity at T = 0. On the other hand, for T > TK the
thermal length scale is shorter than the Kondo length scale ξT < ξK and the impurity
spin is no longer fully screened.

4.2.2 Ferromagnetic couplings J < 0

So far we have only investigated the model for antiferromagnetic couplings which
leads to a Kondo singlet for T → 0 and the Hamiltonian approaches the strong cou-
pling fixed point. We now extend our discussion to ferromagnetic couplings. The
ferromagnetic regime is characterized by the local moment fixed point and a twofold
degenerated ground state. As mentioned above in Sec. 4.1.24.1.2, the sum rule for χ∞(R)
with ferromagnetic couplings J < 0 predicts that the spatial integral of the correlation
function vanishes. We numerically checked the sum rule for different couplings and
found almost no deviations from zero in 1D.
Figure 4.44.4 shows the rescaled spin correlation function Rχ∞(R) plotted against the di-
mensionless distance x = kFR/π for two different ferromagnetic couplings ρ0 J = −0.1
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and ρ0 J = −0.5. For ferromagnetic couplings, the Kondo length scale diverges ξK → ∞,
and, therefore, we observe a cos(2kFR) oscillation and a 1

R decay for all distances in
1D. The RKKY oscillations and the 1

R decay of the envelope function are clearly visible
even up to very large distances kFR = 100π.
In the ferromagnetic regime, the local spin correlation function χ∞(0) must be positive
and approaches its upper limit of χ∞(0) =

1
4 for ρ0 J → −∞ as shown in the inset of Fig.

4.44.4. Note that χ∞(R) does not oscillate symmetrically around the x-axis since in order
to fulfill the sum rule, χ∞(R) must be slightly shifted to antiferromagnetic correlations
to compensate the ferromagnetic peak at R = 0.

4.2.3 Spin correlation function in 2D and 3D

We now investigate the equilibrium spin correlation function for 2D and 3D disper-
sions. Figure 4.54.5a shows the short distance behavior of the rescaled spin correlation
function R2χ∞(R) in 2D. As for 1D, the oscillating part and the positions of the minima
and maxima of χ∞(R) and the 2D RKKY interaction nicely agree. Both the RKKY in-
teraction and the correlation function decay as 1

R2 for short distances in 2D. In contrast
to 1D, the RKKY interaction acquires a more complex mathematical structure even for
a simple linear dispersion replacing the simple cos(2kFR) oscillations in 1D. In Fig.
4.54.5b, the short distance behavior of R3χ∞(R) for a 3D dispersion is shown. As before,
the oscillating part of the 3D RKKY interaction and χ∞(R) nicely agree and like in 2D,
the RKKY interaction and χ∞(R) have a more complicated structure than the simple
oscillations in 1D. Furthermore, in 3D the expected 1

R3 decay of the RKKY interaction
and χ∞(R) is observed for short distances.
In Fig. 4.54.5c the envelope of the correlation function χ∞(R) for a 2D dispersion is shown.
In 2D the correlation function χ∞(R) has to be rescaled with ξ2

K in order to make it di-
mensionless and consequently to observe universal behavior. Note that the positions
of the minima and maxima of the correlation function change in higher dimensions,
therefore, in 2D the envelope is defined by χ∞(kFR = nπ + 1

4 ), with the integer n. The
observed oscillations of the envelope function originate from the more complicated
structure of the envelope in 2D where every second maximum has a lower amplitude.
For short distances R � ξK a 1

R2 decay is observed, which is marked by the blue line.
For larger distances R > ξK the envelope function decays faster and approaches the
expected 1

R3 decay [125125, 126126] that is indicated by the black line.
In order to observe the real 1

R3 decay of the correlation function, we would need to go
to even larger distances R � ξK. This is, however, a challenging task since due to the
fast decay of the correlation function in higher dimensions, the numerical noise of the
NRG rapidly exceeds the value of χ∞(R). Although larger distances R can be reached
with an increase of the discretization parameter Λ and the number of kept states Ns, an
unsuitable high number of kept states Ns would be needed in order to actually observe
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Figure 4.5: The rescaled spin correlation functions (a) R2χ∞(R) in 2D and (b) R3χ∞(R) in 3D
as a function of the dimensionless distance x = kFR/π. Both in 2D and 3D, the
envelope of the RKKY interaction and χ∞(R) has a more complicated structure
than in 1D. NRG parameters are (a) Λ = 5 and Ns = 3000 and (b) Λ = 10 and
Ns = 4000. (c) The envelope of the correlation function χ∞(R) rescaled with
the Kondo length scale ξ2

K plotted against the rescaled distance R
ξK

in 2D. As in
1D, universal behavior is observed. For short distances the envelope decays with
1/R2 (blue line) and for larger distances it approaches the 1/R3 (black line) decay.
NRG parameters are Λ = 5 and Ns = 3500.

the 1
R3 decay. Therefore, it is even more desperate to observe the 1

R4 decay for a 3D
dispersion.

4.3 Nonequilibrium

After discussing the equilibrium properties of the correlation function, we now turn
to the results of the full time-dependent correlation function χ(~r, t). In the TD-NRG
calculations the Kondo coupling ρ0 J between the prior decoupled impurity spin and
conduction band is switched on at time t = 0. As described in Sec. 2.22.2, the NRG
fixed point differs for different signs of the Kondo coupling. For an antiferromagnetic
coupling J > 0 the system approaches the strong coupling fixed point while for J < 0
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velocity vF, which is added as a white line as a guide to the eye. NRG parameters
are Λ = 3, Ns = 1400 and Nz = 4. Figure taken from Ref. [124124].

the local moment fixed point is reached. Therefore, we present data for both regimes
and begin with the investigation of antiferromagnetic Kondo couplings and compare
the results with our perturbation theory. Afterwards we turn to the ferromagnetic
J < 0 case.

4.3.1 Time-dependent spatial correlation function in the Kondo
regime

The full time-dependent spin-spin correlation function χ(~r, t) is shown as a function
of the dimensionless distance kFR/π and the dimensionless time tD for a moderate
antiferromagnetic Kondo coupling ρ0 J = 0.3 as a color contour plot for 1D in Fig. 4.64.6.
Since each distance R requires a single TD-NRG run, we have restricted ourselves to
Nz = 4 values for the z-averaging and only use a moderate number of Ns = 1400 kept
NRG states.
The development of the ferromagnetic correlation maximum at kFR/π = 1

2 is clearly
visible already after very short times, cf. Fig. 4.24.2a. For large times t → ∞ the equilib-
rium correlation function χ∞(R) with the RKKY oscillations is recovered. The correla-
tion function has maxima for kFR/π = n + 1

2 and minima for kFR/π = n, with n being
an integer. For large times and distances the ferromagnetic correlations are suppressed
so that the maxima have the value χ(R, t) = 0 and purely antiferromagnetic correla-
tions are observed, as expected from the equilibrium correlation function.
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ρ0 J = 0.3. The black arrow indicates the value of the equilibrium correlation
function χ∞(R = 0.51π/kF). NRG parameters are Λ = 3 and Ns = 1600.

After the ferromagnetic maximum has passed, we observe for χ(R = const, t) some
weak oscillations in time. Figure 4.74.7 shows the correlation function χ(kFR/π = 0.51, t)
for a constant distance and different numbers of z-averages Nz in order to distinguish
between the in Sec. 3.23.2 described finite size oscillations originating from the bath dis-
cretization and the real nonequilibrium dynamics of the continuum. As can be seen,
the short-time oscillations clearly converge with increasing Nz so that the curves for
Nz = 32 and Nz = 100 are almost identical. Therefore, we can conclude that the short-
time oscillations contain relevant real-time dynamics and will be analysed in more
detail below.
In the long-time limit, the TD-NRG oscillates around a time average, which is inde-
pendent of Nz and is very close to the equilibrium value of the correlation function
χ∞(R = 0.51π/kF) indicated by the black arrow in Fig. 4.74.7. The difference between
the long-time average and the equilibrium value is smaller than 3%. These oscillations
around the time average are partially related to the bath discretization and are sup-
pressed for increasing number of z values Nz, decreasing discretization parameter Λ
and increasing number of kept NRG states Ns, cf. Sec. 3.23.2. Therefore, we can con-
clude that the thermodynamic equilibrium is reached up to the well understood small
discretization errors.



4.3. Nonequilibrium 65

(a)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 10 20 30 40 50

χ
(R
,t
)V

u

(t−R/vF)D

kFR/π = 0.01
kFR/π = 0.51
kFR/π = 1.01
kFR/π = 1.51

(b)

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4

χ
(R
,t
)/
χ
m
ax

(t− tmax)D

ρ0J = 0.05
ρ0J = 0.1
ρ0J = 0.15
ρ0J = 0.2
ρ0J = 0.3
ρ0J = 0.4
cos(t′D)

Figure 4.8: (a) Time-dependent correlation function χ(R, t) vs. t′ = t− R/vF for four different
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denotes the position and χmax the amplitude of the ferromagnetic peak. NRG
parameters are Λ = 3, Ns = 1200 and Nz = 32.

ρ0 J 0.05 0.1 0.15 0.2 0.3 0.4
tmax/π 1.91 1.95 1.97 1.99 2.02 2.00

χmax 0.0052 0.0101 0.0147 0.0183 0.0201 0.0151

Table 4.2: The coupling dependent positions tmax and maximum amplitude of the ferromag-
netic peaks for the fixed distance kFR/π = 2.01. Until the medium coupling
strength ρ0 J = 0.3 the position tmax is shifted to larger times with increasing cou-
pling. For small couplings the maximum amplitude χmax is proportional to the
coupling ρ0 J.

How are the Kondo correlations building up at different distances with
time?

The propagation of the ferromagnetic correlation away from the impurity with the
Fermi velocity vF is clearly visible in Fig. 4.64.6. For an antiferromagnetic coupling ρ0 J we
observe an antiferromagnetic spin-spin correlation at the impurity site that develops
rather rapidly. Since the total spin in the system is conserved, a ferromagnetic corre-
lation at R = 0.5π/kF is built up the same time as the antiferromagnetic correlation at
R = 0. This ferromagnetic correlation propagates spherically away from the impurity
through the system. The added white line R = vFt in Fig. 4.64.6 serves as a guide to
the eye to exemplify this point. This line represents the analog to a light cone in the
electrodynamics.
Inside the light cone, after the ferromagnetic correlation wave has passed, the equilib-
rium value of the correlation function is reached rather fast. In Fig. 4.84.8a the correlation
function χ(R, t) is plotted against the relative time t′ = t − R

vF
for four different dis-

tances R to illustrate this. Negative times t′ < 0 correspond to correlations outside of
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the light cone, while for t‘ > 0 the spin correlation function χ(R, t) inside the light cone
is depicted.
At the origin of the impurity22 (R = 0.01) , an antiferromagnetic correlation develops
on the time scale 1√

J : the short time dynamics is linear in the Kondo coupling and

proportional to t2. This will be discussed in greater detail below in Sec. 4.3.24.3.2.
At t′ = 0 and finite distance R > 0, a significant ferromagnetic correlation peak is
observed which decays rather rapidly. The position of this ferromagnetic peak cor-
responds to the ferromagnetic correlation wave that defines the yellow light cone in
Fig. 4.64.6. In order to investigate this rapid decay in more detail, in Fig. 4.84.8b the ratio
χ(R, t)/χmax is plotted against (t − tmax)D for the constant distance kFR

π = 2.01 and
different couplings ρ0 J. χmax is defined as the maximum of the ferromagnetic peak
χmax = χ(R, tmax), and tmax is the position of this ferromagnetic peak. The different
values of tmax and χmax are shown in Tab. 4.24.2.
Note that tmax slightly differs from the bare time scale of the light cone R

vF
. Up until

medium couplings ρ0 J, the position tmax is slightly shifted to larger times with in-
creasing coupling ρ0 J. The increasing shift for small and medium couplings can be
understood analytically with second-order perturbation theory in the coupling J and
is discussed in more detail in Sec. 4.3.24.3.2 below.
After dividing the correlation function by the amplitude χmax we find universal behav-
ior for small couplings ρ0 J. Once again, this can be explained by perturbation theory.
For small couplings, the correlation function is essentially described by first-order per-
turbation theory which is proportional to the coupling strength ∝ ρ0 J. Therefore, as
can be seen in Tab. 4.24.2, for small couplings ρ0 J the maximum amplitude χmax is also
proportional to ∝ ρ0 J. Hence, the division of χ(R, t) by χmax cancels the coupling
dependence of the time-dependent correlation function and the curves fall onto one
universal curve.
For comparison we also plotted cos(t′D) (pink dashed line) and find a remarkable
agreement with the oscillations of the correlation function for times 0 < t′D < 1 for
all coupling strengths. This indicates that for a fixed distances the functional form of
the correlation function χ(R, t) consists of a damped oscillating cos(t′D) term whose
maximum is reached when the ferromagnetic correlation wave reaches the distance R
at time tmax. Since χ(kFR/π = 2.01, t) has to approach a finite antiferromagnetic value
for larger times t′, the oscillations in the TD-NRG are not centered around the origin
χ(R, t) = 0 but shifted to negative values as can be seen in Fig. 4.84.8b by comparing with
the undamped cos(t′D) curve.
However, most striking is the built up of correlations for t′ < 0 outside of the light
cone. These correlations seem to be purely antiferromagnetic and show a nonexpo-

2 A two-channel NRG calculation requires a finite N̄o. For zero distance R = 0 the normalization N̄o
would also be zero and the numerics break down. Therefore, we use a small but finite distance to
mimic R→ 0.
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Figure 4.9: The time-dependent correlation function χ(R, t) for different ratios R/ξK as a
color contour plot. (a) The oscillation between ferromagnetic and antiferromag-
netic correlations is only observed for small distances R � ξK. (b) For larger
distances and long times, only oscillations between zero and antiferromagnetic
correlations are observed. The ferromagnetic propagation vanishes at around
R ≈ ξK. Both long time behaviors are in good agreement with the NRG equilib-
rium results. NRG parameters are Λ = 3, Ns = 1400 and Nz = 32.

nential decay in time. They appear shortly in front of the light cone, have their largest
absolute value for odd numbers of kFR = n+ 1

2 and decay with a power law as tD goes
to zero.
As we will show below in Sec. 4.3.24.3.2, these correlations also appear in the results ob-
tained from perturbation theory. Such a build up of correlations outside of the light
cone has also recently be reported in a perturbative calculation at the Toulouse point
of the anisotropic Kondo model [114114] neglecting, however, the 2kF oscillations. In con-
trast to Ref. [114114] we present here results for a full nonperturbative calculation which
includes the Friedel oscillations containing the RKKY mediated effective spin-spin in-
teraction. These results have recently been confirmed by DMRG calculations [115115].
We will provide a detailed analysis of the origin of these correlation outside the light
cone and present an analytical calculation in J that agrees remarkably well with the
observed TD-NRG results below in Sec. 4.3.34.3.3.
The different behavior of the correlation function for short and long distances plotted
against R

ξK
is shown in Fig. 4.94.9a and b respectively. For short distances R� ξK we find

the distinctive ferromagnetic correlation waves that propagates with Fermi velocity vF

through the system. Inside the light cone we observe the RKKY like 2kF oscillations
between ferromagnetic and antiferromagnetic correlations. In Fig. 4.94.9b the behavior of
the correlation function for larger distances is depicted. We find that the ferromagnetic
propagation vanishes at around the Kondo length scale R ≈ ξK. At these distances we
only observe oscillations between zero and antiferromagnetic correlations inside the
light cone. Therefore, we can conclude that for short as well as for long distances the
long-time behavior agrees remarkably well with the NRG equilibrium results.
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Figure 4.10: The perturbatively calculated (a) first-order contribution χ(R, t)/(ρ0 J) and (b)
second-order contribution χ(R, t)/(ρ0 J)2 evaluated numerically as color contour
plots. The light cone R = vFt has been added as a white line.

4.3.2 Perturbation theory

The most surprising result of the TD-NRG results is the build up of spin correla-
tions outside of the light cone which do not decay exponentially. In order to exclude
TD-NRG artefacts and investigate the origin of these correlations, we perturbatively
calculate χ(~r, t) = 〈~Simp~s(~r)〉(t) up to second order in the coupling J. For this purpose
we transform all operators into the interaction picture since only the part of the free
conduction electrons H0 enters the initial density operator. After integrating the von
Neumann equation, we obtain for the density operator in the interaction picture

ρI(t) ≈ρ0 + i
∫ t

0

[
ρ0, H I

K(t1)
]

dt1

−
∫ t

0

∫ t1

0

[[
ρ0, H I

K(t2)
]

, H I
K(t1)

]
dt2 dt1, (4.20)

which is exact in second order in the Kondo coupling J. Here the index I labels the op-
erators in the interaction picture AI(t) = eiH0t Ae−iH0t. The initial condition is given by
ρI(t = 0) = ρ0. Using this density operator ρI(t), we calculate the spin-spin correlation
function

χ(~r, t) = Tr
[
ρI(t)~Simp~s

I(~r, t)
]

, (4.21)

where only expectation values with respect to the initial density operator ρ0 enter. The
occuring tedious commutators can be calculated analytically and details about the per-
turbative calculation of χ(~r, t) can be found in appendix CC. The time integrals can
simply be performed analytically, however, the multiple momenta integrations of the
free conduction electron states have to be performed numerically.
The first- and second-order contribution of the perturbatively calculated correlation
function χ(R, t) are shown in Fig. 4.104.10a and Fig. 4.104.10b. For the leading order in
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the Kondo coupling ρ0 J, the ferromagnetic wave propagates exactly on the light cone
R = vFt. Furthermore, some small antiferromagnetic correlations outside of the light
cone are already visible. In contrast to the first-order, the second-order contribution
of the correlation function is zero exactly on light cone. Directly in front of the light
cone a strong antiferromagnetic correlation is observed and immediately after the light
cone follows a strong ferromagnetic correlation. For the first-order as well as for the
second-order contribution we observe the distance dependent 2kF oscillations between
ferromagnetic and antiferromagnetic correlations for long times.
In Sec. 4.3.14.3.1 we found that the positions of the ferromagnetic peaks tmax, which are
listed in Tab. 4.24.2, are coupling dependent. For up to medium coupling strengths ρ0 J,
the positions tmax are slightly shifted to larger times with increasing coupling. Our
analytical analysis can provide a detailed understanding of this effect. While the first-
order contribution Eq. (C.6C.6) yields a peak of the ferromagnetic correlations positioned
exactly on the light cone, the maximum of the second-order contribution Eq. (C.7C.7) is
shifted to slightly larger times. If we add both contributions, a J-dependent line for the
ferromagnetic peak position away from the light cone is generated. The larger the cou-
pling J, the later the ferromagnetic maximum occurs due to the increasing importance
of the second-order contribution.
Furthermore, the rising influence of the second-order contribution also explains the in-
creasing antiferromagnetic correlations with increasing coupling ρ0 J for short times in
Fig. 4.84.8b. The antiferromagnetic correlations for t− tmax < 0 originate from the large
antiferromagnetic correlations directly in front of the light cone in the second-order
contribution and, therefore, they are only observed for larger couplings ρ0 J where the
second-order contribution has a significant influence.
However, our second-order perturbation theory cannot explain the effect that tmax once
again decreases with increasing ρ0 J for very large couplings, cf. Tab. 4.24.2. Since the
second-order perturbation theory is not valid anymore for such large couplings, we
would need to calculate higher-order contributions to get an insight in this effect.
The sum of the first- and second-order contributions to χ(R, t) for the medium cou-
pling ρ0 J = 0.3 is shown in Fig. 4.114.11. Clearly, the Kondo physics is not included in such
a perturbative approach and the result remains only valid for R � ξK and t � 1/TK.
Therefore, we expect deviations at large distances and times from the NRG results.
Nevertheless, the results of the perturbation theory qualitatively agree very well with
the NRG results depicted in Fig. 4.64.6. As in the TD-NRG, a ferromagnetic wave prop-
agates away from the impurity with the Fermi velocity vF which is added as a white
line in Fig. 4.114.11. Since such a perturbative approach is only expected to work well for
short times, it is surprising that even the distance dependent 2kF oscillations between
ferro- and antiferromagnetic correlations are recovered for long times. Furthermore,
we also find the same antiferromagnetic correlations outside of the light cone as in the
TD-NRG results. Again, the maxima of these correlations are located at odd multiples
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Figure 4.11: The sum of the first- and second-order contributions of the perturbatively cal-
culated correlation function χ(R, t) for the medium coupling ρ0 J = 0.3 as a color
contour plot. The light cone R = vFt has been added as a white line.

of kFR/π = n + 1
2 .

While these spatial oscillations are implicitly encoded in the effective even and odd
DOS in the NRG calculations, they are explicitly generated by the momenta integra-
tions in the perturbative calculation. This confirms our TD-NRG results and provides
a better understanding of the numerical data.
However, a comparison between Fig. 4.64.6 and Fig. 4.114.11 shows the shortcomings of the
perturbative approach which remains only valid for R� ξK. As discussed for the equi-
librium correlation function in Sec. 4.24.2 above, in 1D the decay of the envelope function
crosses over from a 1

R
to a 1

R2 behavior at around R ≈ ξK due to the Kondo screening
of the local moment. Since the perturbative approach is unable to reproduce the Kondo
singlet formation, the long-time behavior of the perturbative solution depicted in Fig.
4.114.11 always shows a 1

R decay for all distances. Furthermore, for tD → ∞ the pertur-
batively calculated correlation function χ(R, t) remains oscillating between ferro- and
antiferromagnetic correlations for all distances, while the TD-NRG correctly predicts
oscillations only between zero and antiferromagnetic correlations once R exceeds the
Kondo length scale ξK.

4.3.3 Intrinsic correlations of the Fermi sea

Since our perturbative results agree remarkably well with our TD-NRG results, we
can use our analytical approach to gain some insight into the correlations outside of
the light cone. Medvedyeva proposed [114114] that these correlations originate from the
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intrinsic spin-spin correlations in the Fermi sea 〈~s(0)~s(~r)〉 which are already present
prior to the coupling of the impurity. These intrinsic entanglements of the Fermi sea
between the local spin density and the spin density at a distance R are instantaneously
probed once the impurity is coupled to the local spin density~s(0) at time t = 0.
For a decoupled impurity J = 0, 〈~s(0)~s(R)〉 can be calculated analytically and in 1D it
is given by

〈~s(0)~s(R)〉 =3 sin(kFR) sin( kFR
2 ) cos( 3

2 kFR)

4V2
u (kFR)2 . (4.22)

A detailed derivation of Eq. (4.224.22) can be found in appendix DD. As shown in Fig. 4.124.12a,
the exact result of Eq. (4.224.22) coincides with the NRG data obtained by setting J = 0 in
an equilibrium NRG calculation. This excellent agreement between the analytical and
NRG results serves as a further evidence for the numerical accuracy of our mapping of
Eqs. (4.64.6)-(4.84.8) to the two discretized and properly normalized Wilson chains for even
and odd parity conduction bands.
In order to connect the intrinsic spin entanglement of the decoupled Fermi sea with
the observed antiferromagnetic correlations outside of the light cone, we expand the
perturbatively calculated χ(R, t) up to second order for small times 0 ≤ tD � 1 and
perform the momentum integrations for the first- and second-order contributions an-
alytically. Since the first-order term in the time tD vanishes, the leading order term is
proportional to ∝ (tD)2 and decays as 1

R2 with the distance in 1D. Note the difference
between the 1

R2 decay outside of the light cone for short times and the well understood
1

R
decay inside the light cone when the equilibrium is reached. Therefore, we have

plotted the perturbative results in 1D as χ(R, t)Vu

(
kFR
tDπ

)2
in Fig. 4.124.12b to eliminate the

time-dependence and compensate the spatial decay of the envelope function. For the
coupling ρ0 J = 0.3 the first-order contribution is shown as a red line, the second-order
as a blue, and the sum of both is depicted as a green line in Fig. 4.124.12b.
Since the second-order in J contribution to χ(0, t) remains always zero in a short-time
expansion, the time evolution of the antiferromagnetic correlation at the origin R = 0
is dominated by the first-order term which is proportional to ∝ Jt2. This leads to a time
scale for the initial fast buildup of the antiferromagnetic correlation that is given by 1√

J
which confirms the short-time results of the TD-NRG for kFR/π = 0.01 as depicted in
Fig. 4.84.8a.
The largest contribution for short times stems from the ferromagnetic correlation peak
at around kFR/π = 0.65. However, correlations are visible at all length scales which
develop quadratically in time and decay with 1

R2 in distance. A comparison with Fig.
4.124.12a shows that the position of the maxima and minima agree remarkably well with
those of the intrinsic correlation function 〈~s(0)~s(R)〉 of the Fermi sea and, furthermore,
both envelope functions decay with 1

R2 .
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Figure 4.12: (a) The intrinsic spin-spin correlations of the Fermi sea between the spin densi-
ties~s(0) and~s(R) in 1D. Via the mapping to the even and odd conduction bands,
we are able to measure bath properties at distance R with the NRG and get a
perfect agreement between theory and NRG results. NRG parameters are λ = 3
and Ns = 1200. Figure taken from Ref. [124124].
(b) For small times tD � 1 expanded first- and second-order contributions of
χ(R, t) for ρ0 J = 0.3 in 1D. Even for short times, we observe correlations for large
distances. A comparison with (a) shows that the positions of these correlations
coincide with the positions of the intrinsic correlations of the Fermi sea. So the
correlations outside the light cone originate from these intrinsic correlations.
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Since the first-order contribution is sensitive to the sign of J, its maxima contribute with
equal sign as 〈~s(0)~s(R)〉 for ferromagnetic J and with opposite sign for an antiferro-
magnetic coupling. The second-order terms are independent of the sign of the coupling
and only add antiferromagnetic contributions to χ(R, t). The positions of the antiferro-
magnetic peaks of the second-order contribution coincide with the antiferromagnetic
peak positions of the spin-spin correlation function 〈~s(0)~s(R)〉 of the decoupled Fermi
sea shown in Fig. 4.124.12a. However, the second-order contribution has no peaks and
remains zero at the locations of the ferromagnetic peaks of 〈~s(0)~s(R)〉. In contrast, the
first-order contribution shows peaks at every position where the intrinsic correlation
function of the Fermi sea has a peak. If we add both contributions for antiferromagnetic
couplings, the ferromagnetic peaks of the first-order contribution are attenuated by the
antiferromagnetic peaks of the second-order contribution. Therefore, the sum of both
orders contains only small ferromagnetic correlations for larger distances kFR/π > 1
and ρ0 J = 0.3. The larger the coupling J the smaller these ferromagnetic correlations
are due to the increasing influence of the second-order term.
We can conclude from this detailed analysis that the antiferromagnetic correlations di-
rectly on front of the light cone originate from the antiferromagnetic correlation peak at
kFR/π ≈ 1.6. This antiferromagnetic correlation also propagates with the Fermi veloc-
ity through the conduction band. The propagation of antiferromagnetic correlation for
larger distances are not or only barely visible because of the 1

R2 decay of the intrinsic
correlations.

4.3.4 Local moment regime: ferromagnetic coupling J < 0

We now extend our investigation of the full time-dependent correlation function χ(R, t)
to ferromagnetic Kondo couplings. For ferromagnetic couplings the Hamiltonian ap-
proaches the local moment fixed point and the ground state is twofold degenerate in
the absence of an external magnetic field. In the renormalization group (RG) process,
the Kondo coupling is renormalized to zero. Nevertheless, the equilibrium spatial cor-
relation function χ∞(R) remains finite for T → 0 as discussed in Sec. 4.2.24.2.2. The reason
for this is that the renormalization of the coupling to zero occurs on a lower energy
scale than the formation of the correlations.
Figure 4.134.13 shows the time-dependent spin correlation function χ(R, t) for the ferro-
magnetic coupling ρ0 J = −0.1. While panel (a) shows the TD-NRG calculation, the
analytical result for the same parameters obtained in second-order perturbation theory
is shown in panel (b). The analytical result differs significantly from the antiferromag-
netic regime depicted in Fig. 4.114.11 since the first-order term is sign sensitive.
As in the Kondo regime, the perturbation theory and the TD-NRG results agree qual-
itatively remarkably well. The 2kF oscillations known from the RKKY interaction
are clearly visible inside the light cone. Note that due to the sign change there is
a phase shift compared to the Kondo regime: now the ferromagnetic correlations
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Figure 4.13: (a) Time-dependent spin correlation function χ(R, t) for a ferromagnetic cou-
pling ρ0 J = −0.1 in 1D as a color contour plot. NRG parameters are Λ = 3,
Ns = 1400 and Nz = 32. (b) The correlation function χ(R, t) for the same param-
eters calculated perturbatively in second-order perturbation theory in J. Figures
taken from [124124].

occur at kFR/π = n and the antiferromagnetic correlations at half integer values
kFR/π = n + 1

2 .
Since a ferromagnetic correlation is built up at the impurity spin position R = 0 on a
very short time scale ∝ 1√

J , and the total spin must be conserved, this time an antifer-
romagnetic correlation wave propagates spherically away from the impurity through
the system with the Fermi velocity, which again has been added as a white line in
both panels. Due to the sign change of the first-order contribution, the peak position
of the propagation tmax is slightly shifted to earlier times with increasing ρ0 J for fer-
romagnetic couplings. Compared to the Kondo regime, the correlations outside of the
light cone are stronger suppressed. Again, we can trace the origin of these correlations
outside the light cone to the intrinsic entanglement of the Fermi sea which has already
been discussed in the previous section 4.3.34.3.3.

4.3.5 Finite temperature: cutoff of the Kondo correlations

So far we have only investigated the time-dependent correlation function χ(R, t) for
zero temperature. Now we extend the discussion to the propagation of the correlations
at finite temperature. In Fig. 4.144.14 the difference between the time-dependent correla-
tions functions for the two different temperatures (a) T = 0 and (b) T = 2TK is shown.
Note that for Fig. 4.144.14a we have used the same data as for Fig. 4.64.6, however, this time
the distance R is measured in units of the Kondo length scale ξK.
For both temperatures we observe the 2kF oscillations for long times, the correlations
outside of the light cone and the propagation of a ferromagnetic correlation wave with
the Fermi velocity vF as already discussed in Sec. 4.3.14.3.1. While for R

ξK
< 0.15 the corre-

lation functions for both temperatures agree well, for larger distances the correlations
in and outside of the light cone are strongly suppressed for the finite temperature
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Figure 4.14: The correlation function χ(R, t) computed with the TD-NRG plotted as a color
contour plot for the medium coupling ρ0 J = 0.3 and a 1D dispersion for differ-
ent temperatures. A comparison between the different correlation functions for
(a) zero temperature and (b) the finite temperature T = 2TK reveals that the
correlations inside and outside of the light cone vanish at around R ≈ 0.5ξK for
T = 2TK. NRG parameters are Λ = 3, Ns = 1400 and Nz = 4.

T = 2TK. Once R exceeds the thermal length scale ξT = vF
2TK

= 0.5ξK, these correlations
are cut off. However, the ferromagnetic wave that propagates through the conduction
band is amplified. An explanation for this effect is that due to the spin conservation
and the strong suppression of the correlations inside and outside the light cone, the
total spin has to be distributed over a larger area.
The approach to the equilibrium correlation function at large times is shown in Fig.
4.154.15. Here the spatial dependence of the correlation function χ(R, tD = 70) at the
largest time tD = 70 is plotted for both temperatures using the data of Fig. 4.144.14. In the
T = 0 case, the 2kF oscillations between ferromagnetic and antiferromagnetic correla-
tions are observed for small distances while for larger distances only antiferromagnetic
correlations appear. For the finite temperature T = 2TK, however, the correlations are
cut off and due to the fast decay, only the first few oscillations are visible.
The inset of Fig. 4.154.15 shows the envelope of the correlation function χ(R, tD = 70)
for the two different temperatures. To increase the numerical accuracy and reduce the
unphysical oscillations, we used a higher number of kept NRG states Ns and higher
number of z-averages Nz compared to Fig. 4.144.14. As expected from the equilibrium
calculations, the envelope of the correlation function for T = 0 shows a power-law
decay with the distance. For the finite temperature T = 2TK the envelope exhibits
the expected exponential decay at short distances. At larger distances, although we
have used higher values for Ns and Nz, the numerical noise of the TD-NRG exceeds
the rapid suppression of the correlation function. Therefore, the inset shows only the
beginning of the exponential decay of the correlation function for T = 2TK. In order to
observe the exponential decay at larger distances, one needs to resort the equilibrium
NRG, cf. Fig. 4.34.3.
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Figure 4.15: The correlation function χ(R, tD = 70) for the two different temperatures T = 0
and T = 2TK for themedium coupling ρ0 J = 0.3 and the constant time tD = 70 in
1D. For T = 0, the RKKY-like 2kF oscillations are observed while for T = 2TK the
correlations are cut off. We used the same data as for Fig. 4.144.14. The inset shows
the envelope function of χ(R, tD = 70). To increase the numerical accuracy we
used Λ = 3, Ns = 2400 and Nz = 16 as NRG parameters for the inset.

4.4 Response

Now we extend the discussion to a real response function. We investigate the conduc-
tion electron spin-density polarization 〈~s(R, t)〉 as a function of an externally applied
local field ~B(t) within linear response theory. The retarded spin-spin susceptibility ten-
sor must be diagonal and proportional to the unit matrix because the Kondo Hamil-
tonian is rotationally invariant in the spin space. Therefore, we only investigate the
conduction electron spin-density polarization in z direction 〈sz(R, t)〉 at a distance R
caused by applying a local magnetic field ~B(t) = B~ez acting on the impurity spin ~Simp

with ~ez being the unit vector in z direction.
Within the linear-response theory we can write the spin-density polarization 〈sz(R, t)〉

〈sz(R, t)〉 =〈sz(R, t = −∞)〉+
∫ ∞

−∞
χr

imp−c(R, t− t′)∆(t′) dt′ (4.23)

where the retarded spin susceptibility

χr
imp−c(R, t) =− i〈

[
sz(R, t), Sz

imp

]
〉θ(t) (4.24)
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is a true response function and ∆(t) = gµBB(t) is the locally applied time-dependent
Zeeman splitting. At t = −∞ the system is unpolarized and, therefore, the term
〈sz(R, t = −∞)〉 = 0 can be neglected. Since the spin-density sz(R, t) and the impurity
spin Sz

imp are both Hermitian operators, the spectrum

ρr
imp−c(ω) = lim

δ→0+
− 1

π
Imχr

imp−c(R, ω + iδ) (4.25)

has to be an odd function ρr
imp−c(ω) = −ρr

imp−c(−ω) [127127]. Here χr
imp−c(R, ω + iδ) is

the Laplace transformation of χr
imp−c(R, t). Therefore, we can write the inverse Laplace

transformation as a purely real integral

χr
imp−c(R, t) =− 2

∫ ∞

0
ρr

imp−c(R, ω) sin(ωt)θ(t) dω. (4.26)

To calculate the response function using the NRG, we first compute the spectral func-
tion ρr

imp−c(ω) as described in Sec. 3.33.3 and insert this result into Eq. (4.264.26). Finally, the
spin-density polarization 〈sz(R, t)〉 can be calculated using the convolution Eq. (4.234.23).

4.4.1 Retarded host susceptibility χr
c−c(R, t)

Before we discuss the susceptibility χr
imp−c(R, t), we investigate the retarded equilib-

rium host spin-density susceptibility

χr
c−c(R, t) =− i〈

[
sz(R, t), sz(0, 0)

]
〉θ(t) (4.27)

which can be calculated analytically for J = 0. A detailed discussion about the analyti-
cal derivation of χr

c−c(R, t) and its spectral function ρr
c−c(r, ω) can be found in appendix

EE. For a 1D dispersion, we obtain for the spectral function

ρr
c−c(R, ω) =

1

2πV2
u N2 ∑

k1,k2

[
f (εk2

)− f (εk1
)
]

×
(

π cos [(k2 − k1)R] δ(ω− (εk1
− εk2

)) +
sin [(k2 − k1)R]
ω− (εk1

− εk2
)

)
. (4.28)

This analytical expression of the spin-spin susceptibility contains the dimensionless
frequency kFR that causes increasing frequency oscillations with increasing distance R.
Since the high energy spectrum of the NRG is much less accurate than the low energy
part, the numerical effort for a calculation of these retarded spin-spin susceptibilities
and their spectral functions using the NRG grows exponentially at large distances.
While the analytical calculation makes full use of the bath continuum, the conduc-
tion band is discretized on a logarithmic energy scale and consist of only a few bath
sites representing the high energy spectrum. Note that the NRG is geared towards the
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Figure 4.16: The spectral function ρr
c−c(R, ω) of the retarded host spin-density susceptibility

χr
c−c(R, t) for a decoupled impurity (J = 0) and different distances R. The solid

lines show the exact analytical result and the dashed lines the results obtained
from a NRG calculation. NRG parameters are Λ = 3, Ns = 3000 and Nz = 16.
Figure taken from [124124]

calculation of the impurity properties, while in this case we are using it to compute
a bath correlation function. Therefore, we are limited to short distances in the NRG
calculation because for larger distances the NRG cannot capture the high frequency
oscillations at high energies.
To illustrate this point, Fig. 4.164.16 shows a comparison between the analytical and the
NRG spectral function as a benchmark. Apart from the fact that the NRG spectrum is
slightly shifted to higher energies due to the NRG spectral broadening, the agreement
between the analytical and NRG results is very good at short distances. However, sig-
nificant deviations are observed for kFR = 2.01π. While for these distances also the
low energy parts of the spectra agree very well, the NRG completely fails to capture
the high energy maximum at ω

D ≈ 1.7 due to the limitation of the NRG to accurately
resolve the high energy parts of the oscillations in the spectrum. The frequency scale
of these oscillations is of the order of the bandwidth D as can be seen from Eq. (4.284.28).
For large distances R, these high energy oscillations cannot be properly resolved by
the NRG because for a finite Λ > 1 the NRG provides only a very low resolution of
excitations energies in this frequency range. However, the low energy spectrum is ex-
cellently recovered by the NRG as expected.
After benchmarking the accuracy of the spectral functions at small distances, we have
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Figure 4.17: (a) The retarded host spin-density susceptibility χr
c−c(R, t) plotted vs. the time

for different distances R. The solid lines show the exact analytical result while
the dashed lines depict the results obtained from a NRG calculation. The ar-
rows in the top indicate the time τ = R/vF. (b) The conduction electron spin-
density polarization 〈sz(R, t)〉 vs. time as a response to a Zeeman splitting
∆(t) = gµBBθ(t) locally applied to the spin-density sz(0) at the origin. 〈sz(R, t)〉
has been normalized to the Zeeman energy ∆0 = gµBB. For the calculation of
〈sz(R, t)〉 the convolution Eq. (4.234.23) and the susceptibility χr

c−c(R, t) shown in
(a) have been used. As before, the arrows indicate the time τ = R/vF. NRG
parameters are Λ = 3, Ns = 3000 and Nz = 16.

used the corresponding version of Eq. (4.264.26) for χr
c−c(R, t) to calculate the retarded host

spin-density susceptibilities in time domain. The χr
c−c(R, t) obtained from the NRG are

shown in Fig. 4.174.17a as dashed lines while the analytical susceptibilities are depicted as
solid lines. We observe a maximum that is followed by a minimum and both propagate
with the Fermi velocity vF through the system. The agreement between the analytical
and NRG results is quite good, however, the NRG results are slightly shifted to earlier
times which originates from the shift of spectral weight to higher energies due to the
spectral broadening in the NRG as illustrated in Fig. 4.164.16. The center of the propa-
gation is expected to be at the time τ = R

vF
which is marked by arrows in the top of

Fig. 4.174.17a. The analytical susceptibility can be calculated for arbitrary distances R. In-
deed, we find that for the distance kFR/π = 2 and larger distances33 the zero-crossing
between the maximum and the minimum of the analytical result is exactly located at
the time τ = R

vF
. Furthermore, the RKKY-like 2kF oscillations can already be observed

in χr
c−c(R, t) since for odd distances kFR/π = n + 1

2 the maximum is larger while for
multiples of the distance kFR/π = n the minimum is larger.
To clearly see the RKKY-like oscillations and how a response propagates through
the system, we calculate the time- and spatially-dependent conduction electron spin-
density polarization 〈sz(R, t)〉. For this purpose we apply a local fictitious Zeeman
splitting ∆(t) = gµBBθ(t) locally to sz(0) at the origin that induces a spin-density
polarization. A comparison between the analytical results (solid lines) and the NRG

3 For clarity, distances larger than kFR/π = 2 are not shown in Fig. 4.174.17a and b.
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results (dashed lines) is shown in Fig. 4.174.17b. Here we have normalized 〈sz(R, t)〉 to
the Zeeman energy ∆0 = gµBB to eliminate the trivial proportionality to the applied
field strength. For the calculation of both spin-density polarizations we have used the
convolution of Eq. (4.234.23), where χr

imp−c(R, t) has been replaced by χr
c−c(R, t).

The induced time-dependent spin-density polarization can be understood as a re-
sponse to a spin wave propagating with the Fermi velocity vF through the system and
a consecutive fast equalization. In the time-dependent spin-density polarization the
RKKY-like 2kF oscillations are clearly visible. For multiples of the distance kFR/π = n
the long-time value of 〈sz(R, t)〉 aligns parallel, and for odd multiples of the distance
kFR/π = n + 1

2 antiparallel to the spin-density at the origin sz(0). In the analytical
results the maximum of the spin wave is located at the expected time τ = R

vF
for dis-

tances kFR/π ≥ 2 while for shorter distances we observe a slight shift. In Fig. 4.174.17b the
time τ is also indicated by arrows. As for χr

c−c(R, t) the slight shift of the NRG results
to earlier times can be traced back to the NRG spectral broadening. Some response
is found outside of the light cone related to the finite width of the spin wave. This
response originates from the maximum directly in front of τ = R

vF
in the susceptibility

χr
c−c(R, t). The reason for the finite width of the spin wave is the finite spatial resolu-

tion which is directly linked to the momentum cutoff in the analytical formula defined
by the restriction of the k values to the first Brillouin zone. A sharp suppression of the
signal outside of the light cone would require to send the momentum cutoff to infinity
as done in the analytical calculation of Ref. [114114].
By comparing the numerical results with the analytical ones, it becomes clear that the
small oscillations after the spin wave around the long-time limit of the spin-density are
not a numerical artifact due to the NRG discretization errors but related to the finite
bandwidth and the linear conduction band dispersion.
Note that we observe for the distance kFR/π = 0.01 a significant deviation between the
long-time limit of the analytically calculated spin-polarization and the one calculated
with the NRG. In appendix FF we show that the stationary value is determined by the
integral over ρr

c−c(R,ω)
ω . As discussed above and shown in Fig. 4.164.16, the finite resolution

and the NRG broadening shifts some spectral weight to higher energies compared to
the exact solution and, therefore, we find a reduced value for |〈sz(0, t → ∞)〉| since
ρr

c−c(0,ω)
ω does not change sign. The accuracy of the long-time limit 〈sz(R, t → ∞)〉 in-

creases once the spectral function exhibits sign changes because in this case the broad-
ening errors partially cancel out.

4.4.2 Retarded susceptibility χr
imp−c(R, t)

Now we turn to the retarded spin susceptibility χr
imp−c(R, t) for finite couplings J de-

scribing the response of the conduction band spin-density at a distance R to a pertur-
bative magnetic field in z direction applied locally to the impurity spin. The spectral
function of χr

imp−c(R, t) is shown in Fig. 4.184.18 for different distances R to illustrate the
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Figure 4.18: The spectral function of the retarded spin susceptibility ρr
imp−c(R, ω) plotted vs.

ω/D for different distances and ρ0 J = 0.3. Compared to ρr
c−c(R, ω) spectral

weight is shifted to lower energies. The distinctive peak at ω ≈ TK reflects the
Kondo physics. NRG parameters are Λ = 2.25, Ns = 3000 and Nz = 16.

changes due to the presence of the Kondo spin. We restrict ourselves to distances
kFR/π ≤ 2 because we expect that, as before for χr

c−c(R, t), the NRG cannot capture
the high frequency oscillations at high energies for large distances.
The increasing number of oscillations in the frequency spectra with increasing dis-
tance R are clearly visible. We observe a change of sign in ρr

imp−c(R, ω) compared to
ρr

c−c(R, ω) due to the antiferromagnetic coupling J. Furthermore, significant spectral
weight is now located at low energies. The Kondo physics is reflected in a distinctive
peak at ω ≈ TK which appears for all distances R.
Figure 4.194.19a shows the time-dependent susceptibility χr

imp−c(R, t) vs. the rescaled time
tTK for different distances. The inset of Fig. 4.194.19a shows χr

imp−c(R, t) vs. tD for short
times and the arrows indicate the time τ = R

vF
. We observe a maximum that propa-

gates with the Fermi velocity vF through the conduction band and for larger distance
the center of the maximum is around τ. However, we expect that the real susceptibility
is slightly shifted to larger times because, as for χr

c−c(R, t), the spectrum shown in Fig.
4.184.18 should be slightly shifted to higher energies due to the broadening in the NRG.
Compared to the retarded host susceptibility χr

c−c(R, t) it takes much longer until the
susceptibility is zero once again after the maximum has passed: the time scale is given
by the slow Kondo time scale 1

TK
.

In Fig. 4.194.19b, the time-dependent spin-polarization 〈sz(R, t)〉 is shown vs. the rescaled
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Figure 4.19: (a) The time-dependent retarded spin susceptibility χr
imp−c(R, t) plotted against

the rescaled time tTK for different distances and ρ0 J = 0.3. (b) The time-
dependent spin-polarization 〈sz(R, t)〉 vs. the rescaled time tTK after switching
on the Zeeman splitting ∆(t) = gµBBθ(t) on the impurity spin. Dashed lines
indicate 〈sz(R, t)〉 calculated with the TD-NRG for a very weak magnetic field
gµBB/D = 10−6 applied to the impurity. In the insets the respective short-time
behaviors are shown and the arrows indicate the time τ = R/vF. The horizontal
lines on the right of (b) mark the equilibrium value 〈sz(R, ∞)〉/(gµBB) obtained
from an equilibrium NRG calculation with Nz = 1 and a small applied magnetic
field gµBB/D = 10−6. NRG parameters are Λ = 2.25, Ns = 3000 and Nz = 16.

time tTK for a Zeeman splitting ∆(t) = gµBBθ(t) applied to the impurity spin. Due to
the antiferromagnetic coupling J, we observe a sign change in the response compared
to the response obtained from χr

c−c(R, t). Now for multiples of kFR/π = n the conduc-
tion electron spin-density aligns antiparallel, and for odd multiples of kFR/π = n + 1

2

the spin-density aligns parallel to the impurity spin for long times. These 2kF oscilla-
tions for the long-time limit of the spin-polarization reflect the RKKY mediated spin
response.
As for the susceptibility χr

imp−c(R, t) we can identify two relevant time scales in the
induced spin-density: the fast light cone time scale τ = R

vF
and the slow Kondo time

scale 1
TK

. The inset of Fig. 4.194.19b shows the spin-density polarization for short times
and the arrows once again indicate the time τ. Until the spin-wave has propagated
from the impurity to the distance R, the spin-density polarization remains almost zero
and afterwards 〈sz(R, t)〉 starts to build up. Again, we can trace back the finite width
of the spin-wave to the finite momentum cutoff of our single symmetric conduction
band used in the NRG calculations as already discussed in Sec. 4.4.14.4.1. In contrast to
the fast response of the decoupled Fermi sea, where the equilibrium value of the spin-
polarization is reached rather fast on the time scale 1

D , the steady state value of the
response for a finite coupling J is reached very slowly. The long-time approach is gov-
erned by the Kondo time scale 1

TK
and independent of the distance R as shown in Fig.

4.194.19b.
To gauge the quality of the long-time value of the spin-polarization 〈sz(R, t)〉 obtained
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from the linear response theory, we have used a NRG equilibrium calculation to com-
pute the equilibrium value 〈s

z(R,∞)〉
gµBB for a very small magnetic field gµBB

D = 10−6 applied
to the impurity spin. These values are shown as horizontal lines on the right of Fig.
4.194.19b. For a vanishing magnetic field, the linear response theory becomes exact and the
steady state value must coincide with the equilibrium expectation value. Similar to the
case for the decoupled Fermi sea, the absolute value of the steady state |〈sz(R, t→ ∞)〉|
calculated from the spectral function is slightly smaller than the equilibrium value due
to the shift of spectral weight to higher energies caused by the NRG broadening.
As a second verification of the quality, we measure 〈sz(R, t)〉 after switching on a very
weak magnetic field gµBB

D = 10−6 applied to the impurity spin using the TD-NRG.
These results are depicted as dashed lines in Fig. 4.194.19b. The agreement between
〈sz(R, t)〉 calculated from χr

imp−c(R, t) and the one obtained from the TD-NRG is re-
markably good especially for short times which are shown in the inset of Fig. 4.194.19b.
Only for longer times both curves start to deviate and the spin polarization of the
TD-NRG reaches, as expected, the equilibrium long-time value 〈sz(R, ∞)〉 marked by
the horizontal lines. This demonstrates that the NRG provides reliable results for the
spectral function ρr

imp−c(R, ω) at short distances.

4.5 Summary

We have presented a detailed study of the temporal and spatial propagation of Kondo
correlations for ferro- and antiferromagnetic Kondo couplings J using the TD-NRG.
In our NRG approach we have divided the conduction band into two distance depen-
dent even and odd parity bands and have used these parity bands to construct two
Wilson chains. Furthermore, we have considered the full energy-dependence and the
correct normalization of the bands to obtain accurate results. The quality of our map-
ping has been benchmarked by: (i) calculating the intrinsic spatial dependence of the
spin-spin correlation of the decoupled (J = 0) Fermi sea with the equilibrium NRG
which perfectly coincides with the exact analytical calculation for the full continuum,
and (ii) checking the fulfillment of the analytically known sum rules of the equilibrium
correlation function for ferro- and antiferromagnetic couplings. The deviation of our
numerical data from the sum rule is only 2% for a 1D dispersion. This provides a
second independent check of our distance dependent NRG mapping.
The results obtained from our equilibrium NRG calculations significantly differ from
previous NRG results [4747] where only antiferromagnetic correlation for all distances R
were found. While for large distances R � ξK = vF

TK
our results agree with the previ-

ous ones [4747] in the way that we also only observe antiferromagnetic correlations, we
find oscillations between ferro- and antiferromagnetic correlations for short distances
R � ξK which is, however, in accordance with predictions made by Affleck and his
co-workers [125125]. In agreement with Ref. [4747], a 1

RD decay at short distances R � ξK
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and a 1
RD+1 decay at large distances R � ξK is observed for the envelope function of

χ∞(R) for a D-dimensional dispersion. The crossover between these two decays occurs
at around the Kondo length scale R ≈ ξK which supports the common interpretation
of ξK as being the size of the Kondo screening cloud.
In the ferromagnetic regime, the Kondo length scale ξK diverges and, therefore, a 1

RD

decay and oscillations between ferromagnetic and antiferromagnetic correlations is ob-
served for all distances. Additionally, the positions of the minima and maxima are
interchanged due to the sign change of the Kondo coupling J.
For the full time-dependent correlation function χ(R, t) we find a light cone defined by
the Fermi velocity vF that divides the parameter space of χ(R, t) into two parts. As a
consequence of a build up of local antiferromagnetic correlations, a ferromagnetic wave
propagates on the light cone away from the impurity location. Inside the light cone,
the correlation function develops rather rapidly and approaches towards the equilib-
rium correlation function. In accordance with this equilibrium correlation function, for
long times the typical decaying RKKY-like 2kF oscillations in spatial dependence are
observed. Additionally, the long-time behavior exhibits only antiferromagnetic corre-
lations for large distances R � ξK. For ferromagnetic couplings, the long-time limit
of the time-dependent correlation function also agrees with the equilibrium correlation
function so that χ(R, t → ∞) remains oscillating between ferro- and antiferromagnetic
correlations and always decays as 1

R .
Surprisingly, we have found in our TD-NRG data for ferro- as well as antiferromagnetic
Kondo couplings a build up of correlations outside of the light cone that do not decay
exponentially. Using a second-order perturbative expansion in the Kondo coupling
J, we have been able to trace back these correlations to the intrinsic entanglement of
the Fermi sea. Furthermore, the sum of the first- and second-order contribution pro-
vides an explanation for the observed difference between ferro- and antiferromagnetic
Kondo couplings which originate from the fact that the first order is sensitive to the
sign of the coupling J.
The extension of our NRG and TD-NRG calculations to finite temperatures have shown
the emergence of a new length scale ξT = vF

T . Once the distance R exceeds ξT both cor-
relations, in- and outside of the light cone, are exponetially cut off.
Moreover, we have presented data for the retarded susceptibility χr

imp−c and its spectra
for different distances R. We have used this susceptibility to calculate the response of
the spin-density polarization 〈sz(R, t)〉 induced by a very weak magnetic field applied
locally on the impurity spin. For the real-time response of 〈sz(R, t)〉 we have found
almost no correlations outside of the light cone. The finite width of the spin wave that
propagates through the system could be traced back to the finite momentum cutoff.
However, benchmark calculations with the retarded host spin-density susceptibility
χr

c−c(R, t), which can be calculated analytically, have shown that this method yields
reliable results only for short distances kFR/π ≤ 2.



Chapter 5

Metal-molecule complexes on an
Au(111) surface

A comparison between STS and NRG spectra

In the last few years the interest in magnetic properties of nanoscale structures has been
growing rapidly. The reason for this is the demand to design miniaturized spin-based
devices, e.g. for spintronics or quantum computation [3030, 128128]. The idea of combining
the molecular pathway with magnetism is now attracting more attention [129129, 130130] be-
cause molecular compounds demonstrate a remarkable tendency to self-assemble. For
this reason it is essential to obtain a better understanding of spin and charge transfer
processes between molecules, surfaces and even single atoms. In this context, dimers
of two molecules constitute important model systems, since they are simple and yet
embody the crucial physics: the competition of interactions within the nanostructure
with those between the nanostructure and its environment.
This chapter is divided into two parts: At first, in Sec. 5.15.1 the formation of a radical and
the existence of a local moment after adsorption of a single Au atom onto a PTCDA
molecule deposited on an Au(111) surface is demonstrated by observing a zero-bias
differential conductance peak in the scanning tunneling spectroscopy (STS) spectrum
that originates from the Kondo effect. For the theoretical description of the properties
of the Au-PTCDA complex a hierarchy of methods is used, ranging from density func-
tional theory (DFT) including a van der Waals correction to many-body perturbation
theory (MBPT) and the numerical renormalization group (NRG) approach. The com-
bined DFT/MBPT+NRG approach provides an accurate description of the low-energy
excitation spectrum of the spin degree of freedom, predicting a Kondo temperature
very close to the experimental value. Furthermore, we provide a guideline how to ex-
tract the Kondo temperature reliably from the experiment in a particle-hole asymmetric
case by analyzing the universality of various definitions of the Kondo temperature TK

in detail.
In the second part in Sec. 5.25.2 the interaction between two adjacent Au-PTCDA com-
plexes is investigated. We propose a novel approach to tailor the magnetic properties

85
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of a nanostructure which is not based on a magnetic exchange interaction. Instead, it
relies on the systematic use of the ubiquitous non-magnetic chemical interaction be-
tween the components of the nanostructure. The approach is based on spin-moment
carrying orbitals of the Au-PTCDA that are extended in space and allow, therefore, the
direct coupling of magnetic properties to wave function overlap. If the wave function
overlap between the two monomers is changed, the dimer is tuned through a quantum
phase transition from a triplet to a singlet ground state.
Since we compare the results of the NRG with experimental data, we use the AΛ factor
of Eq. (3.173.17) in this chapter in order to achieve more accurate results.

5.1 Monomer

We start with the investigation of the monomer where a metal-molecule complex is
constructed that is a paramagnetic radical. Unlike common molecule magnets where
the spin is usually located in a d or f orbital, the spin is transferred into a π-orbital
that extends over the whole molecule. The advantage of such an extended radical is its
increased probability to interact with its neighbors, offering the potential to utilize this
coupling. In the experiment, chemically bonded metal-molecule complexes are formed
by reacting perylene-tetracarboxylic dianhydride (PTCDA) molecules, which are ad-
sorbed on an Au(111) surface, with a single Au atoms. These Au-PTCDA complexes
are investigated by means of scanning tunneling microscopy (STM).
The observation of the Kondo effect in the experiment is an unambiguous proof that
the Au-PTCDA complex has indeed an unpaired electron. This electron generates a
local moment in the π-orbital due to the large Coulomb interaction compared to the
electron substrate coupling.
On the theory side, a DFT calculation including van der Waals corrections is used to
describe the geometrical structure of the Au-PTCDA complex. The results are in per-
fect agreement with the experimental observations.
However, a correct physical description of the local moment formation and the Kondo
effect is not possible with such a mean field approach. Therefore, we use the DFT
plus MBPT results as input parameters for NRG calculations and obtain the excitation
spectrum of the complex at high and low energies.
For this purpose the full energy dependent hybridization function between the Au-
PTCDA complex and the substrate is employed which is extracted from the DFT/MBPT
approach. This enables us to achieve a quantitative description of the electronic prop-
erties of the Au-PTCDA/Au(111) complex, predicting a Kondo temperature which is
within 1 K of the experimentally measured one.
The results of this section have already been published in [131131].
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5.1.1 Experiment and DFT: setup and theory

In the following, we briefly discuss the experimental setup and the theory for the
DFT calculations. The experiments were done at the Peter Grünberg Institute in the
Forschungszentrum Jülich by Taner Esat, Christian Wagner, Ruslan Temirov and F.
Stefan Tautz while the DFT calculations were carried out at the Institut für Festkör-
pertheorie at the Westfälische Wilhelms-Universität Münster by Thorsten Deilmann,
Peter Krüger and Michael Rohlfing.

Experimental setup

For the experimental setup an atomically clean Au(111) surface was prepared. Af-
terwards a submonolayer film of PTCDA molecules was deposited onto the Au(111)
surface using a Knudsen cell. The whole sample was then transferred into a low-
temperature STM with a base-temperature of T = 9.5 K. By heating a thin gold wire,
gold atoms were evaporated onto the PTCDA submonolayer. The clean gold surface
was then scanned with the STM until the spectroscopic signature of the adsorbed Au
atoms appeared and differential conductance dI/dV(V) spectra were recorded.
For the investigation of the Kondo effect the differential conductance spectrum was
measured at different temperatures. Since broadening effects due to temperature have
a crucial effect on the linewidths of narrow peaks in STS, it is essential to take these
effects into account. Therefore, the measured spectra were deconvoluted [132132].

DFT: theory

In addition to the experimental measurements, the system is also investigated theoreti-
cally by computing its geometrical and electronic structures. The geometrical structure
is calculated with DFT using a generalized gradient approximation (GGA) [133133] which
also considers the van der Waals interaction [134134] while for the mean field electronic
structures a hierarchy of DFT calculations with local density approximation (LDA) or
local spin density approximation (LSDA) combined with MBPT is employed.
This combined approach is required since the electronic properties of organic molecules
in LDA often suffer from a distinct underestimation of the gap between the highest oc-
cupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).
Therefore, the MBPT replaces the exchange potential of the DFT by the self-energy
operator, for which the GW approximation [135135] is used resulting in more realistic
quasiparticle (QP) energies. However, including the metal substrate in a GW calcu-
lation is a difficult task and, hence, a perturbative L(S)DA+GdW approach [136136] as a
further approximation is introduced which yields reliable QP energies by employing a
model for the dielectric screening due to the substrate. In this approach the substrate
is only included in terms of its dielectric polarization. Previous investigations using
this method have shown good agreement with experiment [137137].
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The spectrum of a state |φi〉 in the full system is then given by its projected density of
states (PDOS)

ρi(E− ∆i) = ∑
n
|〈Ψn|φi〉|2 δ(E− En − ∆i). (5.1)

Here, En is the energy of the full Au-PTCDA/Au(111) system corresponding to the
wave function |Ψn〉, |φi〉 denotes the wave functions of a few relevant states of the
Au-PTCDA system where the Au(111) surface has been excluded and ∆i is the QP
correction obtained from the L(S)DA+GdW.
The occupation of the orbital i is determined by the PDOS according to

ni =
∫ EF

−∞
ρi(E− ∆i) dE (5.2)

while the intraorbital Coulomb repulsion Ui in orbital i is given by

Ui =
∫ ∫

|φi(~r)|2W(~r,~r′)|φi(~r
′)|2 d3rd3r′, (5.3)

where W is the screened Coulomb interaction. For further details about the calcula-
tions of the PDOS, the QP shift and the intraorbital Coulomb repulsion we refer the
reader to Ref. [138138].
Note, that such a mean field approach is incapable to describe the local moment for-
mation or the Kondo effect correctly and, therefore, NRG calculations are required to
incorporate dynamical correlation effects. However, the LDA-GdW results can be used
as a starting point for the NRG.

5.1.2 Experiment and DFT: results

The Au-PTCDA complex and its structure

Figure 5.15.1 shows the PTCDA layer after the Au atoms have been deposited. In the
inset the area around the adsorbed Au atoms is depicted in more detail. The PTCDA
molecules arranged into the so-called herringbone structure on the Au(111) surface are
clearly visible. The adsorbed Au adatoms appear as circles with a diameter of about
10 Å in the STM images.
The precise adsorption positions of the Au atoms relative to the PTCDA layer are
shown in more detail in Fig. 5.25.2a. The centers of the adsorbed Au atoms (blue spots)
are close to one of the two carbon atoms (gray circles) that are located midway along the
edges of the PTCDA molecule. Due to the symmetry of the unit cell of the freestanding
PTCDA layer, all data points can be displayed within one of its quadrants. This allows
four equivalent adsorption positions on one PTCDA molecule.
The agreement between the experimentally observed adsorption positions of the Au
atoms and the positions predicted by DFT calculations is very good. The potential
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10A°

Figure 5.1: Constant current STM image after deposition of single Au atoms on a PTCDA sub-
monolayer on Au(111) (710 Å × 710 Å). The inset shows the area around the
adsorbed Au atoms in more detail. The adsorbed Au atoms appear as circles with
a diameter of about ≈ 10 Å. Figure taken from Ref. [131131].

energy surface calculated with the DFT for the Au atoms on the PTCDA monolayer
is shown in Fig. 5.25.2b. Two nearly equivalent minima A and B with binding energies
of 0.69 eV and 0.66 eV are found. Near the oxygen atoms (red circles) the interaction
with the Au atoms almost vanishes. Due to the symmetry, four such minima are found
labeled by A, B, A’ and B’. The Au atoms are adsorbed in a height of 2.1 Å above
the monolayer with a distance of 2.2 Å to the nearest carbon atom. This bonding
distance indicates a formation of a covalent bond between the PTCDA and the Au
atom which is in agreement with the observations in Ref. [139139]. Consequently, what
at first sight appeared to be an Au atom in Fig. 5.15.1 is in fact a covalently bonded Au-
PTCDA complex. The image is predominantly formed by the Au atom which sticks
out of the surface layer.
A second set of calculations have been carried out including the topmost three layers of
the Au(111) surface to determine the influence of the metal substrate on the Au atom
bonding. The adsorption sites relative to the PTCDA molecule stay the same as in the
freestanding case, however, the binding energy in the minima becomes larger due to
the interaction with the surface. Essentially, the whole potential energy landscape is
shifted by 0.15 eV to larger binding energies compared to the freestanding layer. The
distance to the nearest carbon is again 2.2 Å and the adsorbed atom is located 5.4 Å
above the topmost Au(111) surface layer.
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Figure 5.2: (a) Experimentally determined centers of the adsorbed Au atoms (blue spots) in
the PTCDA unit cell on Au(111). The white, gray and red circles indicate hydrogen,
carbon and oxygen atoms of the PTCDA molecule. The golden spheres denote the
positions of the Au atoms in the topmost layer of the Au surface. (b) Potential en-
ergy surface in eV for an Au atom adsorbed on a PTCDA freestanding monolayer.
Adapted from Ref. [131131].

Scanning tunneling spectra of the Au-PTCDA complex: Kondo effect

Having established the existence of covalent bonded Au-PTCDA complexes, in the
following the electronic properties of this complex on the Au(111) surface are studied
by using STS.
Figure 5.35.3 shows the differential conductance spectrum of an Au-PTCDA complex. A
peak at zero-bias voltage and three peaks at −800, 500 and 1200 mV are observed.
A comparison of the peak at zero-bias with the other peaks in the spectrum reveals
that the former is much sharper and has a Lorentzian lineshape. This suggests that
the zero-bias peak does not correspond to an electronic eigenstate of the Au-PTCDA
complex.
It is known from earlier work that charge transfer to the PTCDA molecule may cause
a Kondo effect [140140]. Since the formation of a chemically bonded complex may lead to
such a charge transfer and a formation of a radical, it seems reasonable to suppose that
the zero-bias peak is in fact a Kondo resonance. This assumption is confirmed by the
analysis of its full width at half maximum (FWHM) and the peak height (dI/dV(V =

0)) as a function of the temperature.
The extracted FWHMs of the zero-bias peaks are depicted in Fig. 5.45.4a. The data shows
the expected temperature dependence of a Kondo resonance. The Kondo temperature
is extracted by fitting the expression [141141]

FWHM =

√
(αkBT)2 + (2kBTexp,FWHM

K )2 (5.4)
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Figure 5.3: dI/dV(V) spectrum of an Au-PTCDA complex. Three broad peaks at −800 mV,
500 mV and 1200 mV are visible. Additionally, a very sharp peak at 0 mV appears.

to the data. Here α and the Kondo temperature Texp,FWHM
K are fitting parameters. This

procedure yields a Kondo temperature of Texp,FWHM
K = (30.7± 1.0) K and a value of

α = (5.3 ± 0.2) where α is in a good agreement with the theoretical value [142142] of
α = 5.4.
Figure 5.45.4c shows the height of the zero-bias peak plotted against the temperature. To
extract the zero-bias peak, the data points for all temperatures have been measured on
the same Au atom with the same tip. The tip has always been stabilized at a constant
height above the Au-PTCDA complex. Some spectra acquired with this method are
shown on Fig. 5.45.4d for different temperatures.
By fitting the data shown in Fig. 5.45.4c to the empirical formula [143143]

dI
dV

(V = 0) =
G0[

1 +
(

21/s − 1
)(

T
Tzbc

K

)]s (5.5)

with s = 0.22 for a spin 1/2 system, a Kondo temperature of Tzbc
K = (38 ± 8) K

(zbc=zero-bias conductance) and a value of G0 = (4.1± 0.3) nS is obtained. Note that
changing the distance between the tip and the Au-PTCDA complex does not change
the measured Kondo temperature.
Both Kondo temperatures Texp,FWHM

K and Tzbc
K agree within the error ranges. However,

there is no unique definition of the Kondo temperature and, therefore, different ap-
proaches to determine TK may lead to slightly different values. This will be discussed
later on in Sec. 5.1.35.1.3 below. We can conclude that the Au-PTCDA complex is indeed a
spin 1/2 radical which gives, together with the itinerant electrons of metal substrate,
rise to a Kondo effect.
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Figure 5.4: (a) FWHM of the differential conductance peak at zero-bias for different temper-
atures. The data has been deconvoluted to take the broadening due to finite
temperature into account. (b) dI/dV(V) conductance (not deconvoluted) of an
Au-PTCDA complex at T ≈ 5 K. (c) Peak heights of the differential conductance
peak at zero-bias for different temperatures. (d) dI/dV(V) conductance of an
Au-PTCDA complex measured at different temperatures. Figure taken from Ref.
[131131].

Electronic properties of the Au-PTCDA: DFT results

Having proven that the Au-PTCDA complex on the Au(111) surface undergoes a Kondo
effect, the DFT results of the electronic properties of the Au-PTCDA complex in the gas-
phase are briefly discussed in the following.
The isosurfaces of some Au-PTCDA frontier wave functions are shown in Fig. 5.55.5 in
comparison with those of the bare PTCDA and Tab. 5.15.1 lists some contributions to the
most important states of the gas-phase Au-PTCDA complex. Note that the numbers in
each line of Tab. 5.15.1 do not sum up to one since many other states which contribute to a
smaller extent are neglected. It turns out that the LUMO of the bare PTCDA molecule
hybridizes strongly with the Au 6s level of the adsorbed atom, forming a bonding
LUMO+Au and an antibonding LUMO-Au combination.
Since the Au-PTCDA complex has an odd number of electrons (Au 6s1), its highest oc-
cupied level is half filled and it turns out that this is the LUMO+Au state. Therefore, we
can conclude that it is the LUMO+Au level which contributes the most to the Kondo ef-
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Au6s Au6p HOMO LUMO LUMO+3
HOMO+Au 0.14 0.00 0.74 0.01 0.00
LUMO+Au 0.29 0.07 0.16 0.31 0.03
LUMO−Au 0.12 0.07 0.01 0.64 0.07

Table 5.1: The orbital composition of the three most important states of the gas-phase Au-
PTCDA complex in terms of projection amplitudes onto states of the Au atom
(6s, 6p) and the PTCDA molecule (HOMO, LUMO, LUMO+3). The states of the Au-
PTCDA complex are labeled according to their dominant character as HOMO+Au,
LUMO+Au and LUMO−Au. Only the most significant contributions are listed. Table
taken from Ref. [131131].

PTCDA

HOMO

LUMO

HOMO+Au

Au–PTCDA

LUMO+Au

LUMO–Au

Figure 5.5: Wave functions of the PTCDA (left side) and the Au-PTCDA (right side) for orbitals
around the Fermi energy EF calculated within LDA. Green indicates positive and
red negative isosurfaces. Figure taken from Ref. [131131].

fect. A comparison between the experimental spectrum of Fig. 5.35.3 with spin-polarized
electronic structure LSDA+GdW calculations for the Au-PTCDA complex adsorbed on
the Au(111) surface suggests that the measured peaks at −800 mV and 500 mV can be
assigned to charge excitations of the LUMO+Au while the large peak at 1200 mV can
be ascribed to the LUMO-Au.
Before turning to the NRG calculations, we make a few comments on the accuracy of
the input parameters for the NRG. At first, there is a small difference in the adsorp-
tion height of the PTCDA calculated with the GGA compared to the experiment which
is of the order of 0.1 Å. This may influence the level positions with respect to the
Fermi energy of the substrate. Furthermore, there is an uncertainty in the QP correc-
tion calculated with the LDA+GdW which cannot be reduced to less than 0.1 eV. As a
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Figure 5.6: Comparison between the projected density of states of the LUMO+Au orbital
from a LDA+GdW calculation (black line) and the spectrum obtained from a
LDA+GdW+NRG calculation for T = 0 K and U = 1.2 eV.

consequence of these inaccuracies, and additionally because a finite~k point mesh and a
finite broadening for the calculation of the PDOS have been employed, an uncertainty
of ∆n = 0.05 in the occupation of LUMO+Au state cannot be excluded. This will affect
the level position ε0 and the hybridization in the same order. Finally, the Coulomb
repulsion U slightly differs for different Au atom positions in the unit cell (positions
A, A’, B, B’ in Fig. 5.25.2) in the range of 0.1 eV.

5.1.3 NRG studies of the electronic properties

Combining the LDA+GdW and the NRG

We now discuss the NRG calculations to incorporate dynamical correlation effects into
the spectrum of the Au-PTCDA on the Au(111) surface. This procedure has already
been employed in Ref. [138138]. In this approach the LDA+GdW result is mapped onto a
single impurity Anderson model (SIAM) which is then solved using the NRG in order
to properly incorporate the Kondo effect that is experimentally observed in the dI/dV
spectrum in Fig. 5.35.3. It is sufficient to use only a single-orbital Anderson model to
model the dynamical coupling of the LUMO+Au orbital to the substrate since only the
LUMO+Au state shows a significant contribution to the spectral function around the
Fermi energy EF.
The basic idea of this combined approach is to treat the PDOS, which is obtained by
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LDA+GdW PDOS. Since Γ(E) is independent of the Coulomb interaction U, for
every NRG calculation with an energy-dependent hybridization this Γ(E) is used.
Figure taken from [131131].

the LDA+GdW and shown in Fig. 5.65.6 (black line), as an effective mean field spectrum
ρGdW(E). By equating

ρGdW(E) ≡ lim
δ→0+

Im
1
π

1
E− iδ− ε0 − nU − ∆(E− iδ)

, (5.6)

we are able to extract the bare level position ε0 and the complex coupling function ∆(E)
between Au-PTCDA complex and the substrate. Here, U labels the estimated intraor-
bital Coulomb interaction obtained from Eq. (5.35.3), and n the occupation number of the
energy level given by Eq. (5.25.2). Details about the calculations of the NRG parameters
can be found in appendix GG.
Since the LDA+GdW and LSDA+GdW predict slightly different Coulomb interactions
(see also the discussion at the end of Sec. 5.1.25.1.2), we take U as a model parameter and
vary the interaction within the predicted bounds. While the LDA+GdW yields U = 1.1
eV with an occupation n = 0.71, the LSDA+GdW predicts U = 1.3 eV and an occu-
pation of n = 0.5. The parameters U, ε0 and ∆(z) enter a NRG calculation. Here
Γ(E) = − limδ→0+ Im∆(E + iδ) (c.f. Eq. (3.33.3)) is the hybridization strength between
the Au-PTCDA complex and the substrate. It will turn out that it is crucial to retain
the full energy-dependence of the hybridization function Γ(E) to obtain the correct
Kondo temperature from the NRG calculations. The extracted Γ(E), which is used in
all following NRG calculations with an energy-dependent hybridization, is plotted in
Fig. 5.75.7. Using Eq. (5.65.6) we find that the energy level ranges from ε0 = −0.88 eV for
U = 1.1 eV, over ε0 = −0.95 eV for U = 1.2 eV to ε0 = −1.02 eV for U = 1.3 eV.
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A resulting NRG spectrum for U = 1.2 eV is depicted in Fig. 5.65.6 (blue line). Indeed,
the spectrum now shows a sharp Kondo peak at the Fermi energy E = 0 and two
charge excitation peaks at −0.9 eV and 0.25 eV. The charge excitation peaks are found
reasonably close to the experimental positions (−0.8 eV and 0.5 eV) depicted in Fig. 5.35.3.
Given the uncertainties of the LDA+GdW input parameters into the NRG, the agree-
ment with the experimental measured charge excitations to within 0.25 eV is pretty
good which shows that our modeling describes the system at a quantitative level. Note
that we observe in the NRG a slight reduction of the "effective U" which is defined as
the difference between the two charge excitation peaks. For the spectrum shown in Fig.
5.65.6 this reduction is given from U = 1.2 eV to Ueff = 1.15 eV.
To illustrate the effect of the above mentioned uncertainties of the Coulomb interaction
U, the NRG spectrum is plotted in Fig. 5.85.8a for different interactions U and a temper-
ature of T = 5 K. With increasing interaction U we observe a narrowing of the Kondo
resonance and, consequently, a reduction of the Kondo temperature. This effect can be
explained by the analytical formula of the Kondo temperature which is stated in Eq.
(5.95.9) below.

Results for the Kondo temperature

We now turn to the investigation of the Kondo temperatures resulting from the NRG
calculations. Since the Kondo temperature depends extremely sensitively on the physi-
cal parameters such as the metal-molecule coupling, the energy level and the Coulomb
interaction, a comparison of the LDA+GdW+NRG predicted Kondo temperatures with
those obtained by the experiment is a very sensitive measurement of the accuracy of
the first-principle DFT/MBPT analysis.
However, since the Kondo temperature is a crossover scale rather than a transition
scale, there is a no unique definition. Therefore, we employ three different approaches
to obtain the Kondo temperature: At first, we make a fit to the temperature dependent
zero-bias conductance which should be a universal function of T/TK. This leads to a
Kondo temperature which we denote Tzbc

k (zbc =zero-bias conductance). Afterwards,
we evaluate the analytic formula for the Kondo temperature of the particle-hole asym-
metric SIAM in which the same orbital parameters from our DFT/MBPT calculations
enter but where we replace the full energy-dependent hybridization strength Γ(E) by
its value at the Fermi energy Γ = Γ(0). This leads to an analytic estimate of the Kondo
temperature which is denoted by TK(Γ, ε0, U) in the following. At the end, we analyze
the FWHM of the zero-temperature spectral function around the chemical potential
which provides the Kondo temperature TFWHM

K .
We start with the discussion of the Kondo temperature Tzbc

k obtained from the zero-
bias conductance. Figure 5.85.8b shows the spectral function ρNRG(E) of the combined
LDA+GdW+NRG approach for the LUMO+Au orbital at fixed U = 1.2 eV for three
different temperatures. The spectra are in a good agreement with the corresponding
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Figure 5.8: Results of the combined LDA+GdW+NRG approach for the Au-PTCDA complex
on an Au(111) surface. (a) Spectral function for three different values of the
Coulomb interaction U = 1.1, 1.2, 1.3 eV and T = 5 K. The width of the Kondo res-
onance and consequently the Kondo temperature is increasing with decreasing
U. (b) The Kondo resonance for U = 1.2 eV and the three different tempera-
tures T = 7.8, 15.1, 22.5 K. (c) The temperature dependent zero-bias differential
conductance for different interactions U as a universal function of T/Tzbc

K . (d)
Zero-temperature spectra for the interactions U = 1.1 eV and U = 1.3 eV and
their Fano fits to extract the FWHM. Figure taken from [131131].

experimental results of the differential conductance dI/dV(V) which are shown in Fig.
5.45.4. However, the NRG spectrum is slightly more asymmetric which will be discussed
later on.
The temperature dependent spectral function ρNRG(E) enters the calculation of the
differential conductance [144144, 145145] in the tunneling regime,

dI
dV

(V) =G0

∫
dE πΓ(E)ρNRG(E)(− f ′tip(E, V)), (5.7)

where the reference conductance G0 is given by [144144]

G0 =
2e2

h
4Γtip(0)Γ(0)

(Γtip(0) + Γ(0))2 . (5.8)
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U
Exp. 1.1 eV 1.2 eV 1.3 eV

Tzbc
K 38± 8 60.3 37.0 27.4

TK(Γ, ε0, U) n/a 41.7 28.4 19.5
TFWHM

K 30.7± 1 51.0 42.9 30.2

Table 5.2: Experimental and calculated Kondo temperatures in K. For the calculated Tzbc
K and

TFWHM
K we have used the full energy-dependent Γ(E), while for TK(Γ, ε0, U) Eq. (5.95.9)

has been evaluated for Γ = Γ(0) = 86meV. Table taken from [131131]

G0 depends only on Γ(0) and Γtip(0) which are the charge fluctuation scales at the
chemical potential induced by the coupling to the substrate and the tip, respectively.
ftip(E, V) denotes the Fermi distribution of the STM tip also including the bias volt-
age V. Note that for a STM tunneling Γtip(E) → 0, the reference conductance is
given by G0 → (2e2/h)(4Γtip(0)/Γ(0)) and hence the tunnel current is strongly sup-
pressed. For zero temperature the derivative of the Fermi distribution is − f ′tip(E, V) =

δ(E− eV) and the formula for the differential conductance simplifies to dI/dV(V) =

πG0Γ(eV)ρNRG(eV).
Fitting the zero-bias conductance of Eq. (5.75.7) using the ρNRG(E) obtained from the
LDA+GdW+NRG approach to the empirical formula Eq. (5.55.5) yields Kondo tempera-
tures that range from Tzbc

K = 27.4 K for U = 1.3 eV to Tzbc
K = 60.3 K for U = 1.1 eV.

These values are perfectly bracketing the experimentally estimated Kondo temperature
of Texp,zbc

K = (38± 8) K. The best agreement is given for U = 1.2 eV for which we ob-
tain Tzbc

K = 37.0 K. The values of the Kondo temperature for all Coulomb interactions
U are listed in Tab. 5.25.2.
The calculated zero-bias differential conductance, normalized to G0 is depicted in Fig.
5.85.8c as a universal function of T/Tzbc

K .
We now turn to the investigation of the analytic Kondo temperature. In general the
Kondo temperature is defined as the universal energy scale governing the excitation
and the thermodynamic response at low temperatures. However, physical properties
may also depend on the degree of particle-hole asymmetry. This degree is not only
responsible for the asymmetric shapes of the spectral function and dI/dV curves but
also enters the analytic expression of the Kondo temperature TK.
Krishna-murthy et al. [2727] have shown that for a particle-hole asymmetric SIAM with
constant hybridization function Γ(E) = Γ = const. the Kondo temperature is given by

TK(Γ, ε0, U) =0.182|E∗0 |
√

ρJeff exp
(
− 1

ρJeff

)
(5.9)

for the regime where double occupancy of the level is energetically suppressed and the
orbital remains close to integer valence. Here, E∗0 is the solution of the self-consistent
equation E∗0 = ε0 + (Γ/π) ln(−U/E∗0) [146146] and describes the renormalization of the
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bare level due to high-energy charge fluctuations. ρJeff = ρJ[1 + (πρK)2]−1 is an effec-
tive Kondo coupling that not only contains the bare Kondo coupling

ρJ =
2Γ
π

(
1
|E∗0 |

+
1

ε0 + U

)
(5.10)

but also a modification by the degree of particle-hole asymmetry

ρK =
Γ

2π

(
1
|E∗0 |
− 1

ε0 + U

)
, (5.11)

which are both obtained from a Schrieffer-Wolff transformation [7171]. Note that for
particle-hole symmetry, the particle-hole symmetry breaking term ρK vanishes and
that for weak coupling E∗0 ≈ ε0.
Because the Kondo effect is dominated by the low-energy excitations, we use in Eq. (5.95.9)
the constant value Γ(E = 0) ≈ 86 meV which is the value of the energy-dependent hy-
bridization function at the Fermi energy (cf. Fig. 5.75.7). For ε0 = −0.95 eV and U = 1.2
eV we obtain TK = 28.4 K which agrees well with the numerical fit to the differential
conductance Tzbc

K = 37 K. The Kondo temperatures for the other values of the Coulomb
interaction U can be found in Tab. 5.25.2.
As already mentioned above, we found an increase of the Kondo temperature for a
decreasing Coulomb interaction U. This behavior can be explained by the exponential
dependence of the Kondo temperature on the Kondo coupling ρJ given by Eq. (5.105.10).
TK(Γ, ε0, U) has a minimum for the particle-hole symmetric case ε0 = −U/2 and two
maxima, one at ε0 = 0 and the second for ε0 = −U. In the case discussed above, we
move with decreasing U further away from particle-hole symmetry towards the mixed
valence regime where ε0 ≈ −U and, hence, the Kondo temperature is rising.
However, we stress that this analytical Kondo temperature neglects effects stemming
from an energy-dependent hybridization Γ(E). Therefore, we can use TK(Γ, ε0, U) only
as a preliminary estimate that needs modifications by the full LDA+GdW+NRG ap-
proach to describe the experiment properly.
Finally, we discuss the Kondo temperature TFWHM

K obtained from the width of the
Kondo resonance at zero temperature. In the experiment the FWHM of the dI/dV(V)

spectrum has been fitted to Eq. (5.45.4) to calculate the Kondo temperature. We now ap-
ply the same technique to the data of the combined LDA+GdW+NRG approach shown
in Fig. 5.85.8a. The results are depicted in Fig. 5.85.8d.
For the results of the NRG a temperature dependent fit is not needed since the NRG is
able to reach arbitrarily small temperatures, therefore, Eq. (5.45.4) simplifies to

FWHM(T = 0) =2kBTFWHM
K . (5.12)
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Furthermore, in the tunneling regime the differential conductance is proportional to
the spectral function dI/dV(V) ∝ ρ(E = eV) for T → 0 and hence the Kondo tem-
perature TFWHM

K can be estimated directly from the spectral function. However, in a
particle-hole asymmetric case, the spectra and the dI/dV curves have an asymmetric
shape. Given this asymmetry, three questions arise, namely (i) how to extract TFWHM

K ,
(ii) do the different fit procedures yield comparable values and (iii) how do the various
TFWHM

K compare with the other estimates of the Kondo temperature, namely Tzbc
K and

TK(Γ, ε0, U)?
The simplest approach would be to take the definition full width at half maximum
(FWHM) literally. In addition to the Kondo peak, however, the spectra also contain
broad charge excitations peaks at high energy (c.f. blue curve of Fig. 5.65.6) that invali-
date such a procedure. The estimated TFWHM

K are typically double the value of those
obtained by the fit procedure Eq. (5.55.5) due to this background.
The experimental FWHM shown in Fig. 5.45.4 were extracted from a Lorentzian fit but
since the NRG spectrum is slightly more asymmetric, we allow an asymmetry [147147, 148148]
in the fitting process and employ a Fano resonance line shape for the Kondo peak of

the form ρ(E) = ρ0 + A (q+ε)2

1+ε2 with ε = (E− E0)/Γ to extract its FWHM. Here, E0 de-
termines the location of the resonance which is shifted slightly away from the chemical
potential in accordance with the Friedel sum rule [7676, 7979, 149149]. While q parameterizes
the asymmetry of the spectrum, Γ denotes the width of the peak and defines, therefore,
the fit for TFWHM

K . The zero-temperature spectra for the two different interaction values
U = 1.1 eV and U = 1.3 eV and their corresponding Fano fits are depicted in Fig. 5.85.8d.
Extracting the Kondo temperature from the NRG spectra, we find Kondo temperatures
ranging from TFWHM

K = 30.2 K for U = 1.3 to TFWHM
K = 51.0 K for U = 1.1 which again

brackets the experimentally measured Texp,FWHM
K = (30.7± 1.0) K.

Note that when using Eq. (5.45.4) or Eq. (5.125.12) in a high particle-hole asymmetric case,
the extracted Kondo temperature TFWHM

K slightly depends on the fitted function which
requires a significant modification from a symmetrical Lorentzian. We will show in
the following that TFWHM

K can only yield the correct order of magnitude of the Kondo
temperature since its value is definition dependent and does not need to coincide with
the Kondo temperature defined in Eq. (5.95.9) that has been derived from the screening of
the local spin moment. Again, we have listed all obtained Kondo temperatures TFWHM

K

together with the experimental ones in Tab. 5.25.2.

Comparison of the Kondo temperatures

In the following, we will compare the various calculated Kondo temperatures among
each other to provide a guideline for a reliable extraction of the Kondo temperature TK

from the experiment.
The Kondo temperature is only defined up to an arbitrary constant of the order of one
since it is only a crossover scale. Therefore, the question arises whether T(exp,)FWHM

K ex-
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U
Exp. 1.1 eV 1.2 eV 1.3 eV

Tzbc
K 38± 8 98.0 63.0 42.8

TK(Γ, ε0, U) n/a 41.7 28.4 19.5
TFWHM

K 30.7± 1.0 74.8 57.0 42.9
Tµ

K n/a 49.9 34.2 23.9
TK(Γ, ε0, U)/Tµ

K - 0.836 0.830 0.810
TK(Γ, ε0, U)/Tzbc

K - 0.426 0.450 0.456
TK(Γ, ε0, U)/TFWHM

K - 0.577 0.498 0.455

Table 5.3: Experimental and calculated Kondo temperatures in K. Note that for the calculated
Kondo temperatures a constant Γ = 86meV has been used. Table taken from [131131].

tracted from the FWHM and T(exp,)zbc
K obtained from the zero-bias conductance should

indeed be expected to be universal up to a universal scaling constant.
With the NRG we have an optimal tool at disposal to investigate the differences be-
tween the various definitions of the Kondo scale systematically. Since we have ne-
glected the energy-dependence of the hybridization function Γ(E) for the calculation
of the analytical Kondo temperature TK(Γ, ε0, U), we have repeated the NRG calcu-
lations with a constant hybridization Γ = 86 meV and extracted the new values of
TFWHM

K and Tzbc
K from these calculations in order to exclude an influence of the energy-

dependent hybridization on the comparison. The new values can now be compared
directly with the analytic estimate TK(Γ, ε0, U). The obtained new Kondo temperatures
are listed in the upper part of Tab. 5.35.3. The table contains also the value of the new
Kondo scale Tµ

K which is again determined for a constant hybridization Γ = 86 meV.
Originally, Wilson [2727] has defined the Kondo temperature as the temperature Tµ

K at
which the local moment is reduced to approximately 26% of its original value. This
reduction is caused by screening through conduction electrons. At zero temperature
T = 0 the system is in a Kondo singlet ground state and the effective local moment is
zero. Tµ

K follows then from the implicit equation

µ2
eff =Tµ

Kχ(Tµ
K) = 0.07, (5.13)

where µ2
eff is the effective local magnetic moment and χ(T) its isothermal magnetic

susceptibility. Note that this screening has also entered the analytical Kondo tempera-
ture TK(Γ, ε0, U) in Eq. (5.95.9).
Calculating the ratios TK(Γ, ε0, U)/Tµ

K and TK(Γ, ε0, U)/Tzbc
K for the three different

Coulomb interactions U = 1.1, 1.2, 1.3 eV, corresponding to ε0 = −0.88,−0.95,−1.02 eV,
we observe almost constant ratios of TK(Γ, ε0, U)/Tµ

K ≈ 0.83 and TK(Γ, ε0, U)/Tzbc
K ≈

0.45. Consequently, all three definitions TK(Γ, ε0, U), Tµ
K and Tzbc

K are connected by uni-
versal scaling factors and hence fully equivalent.
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In contrast, Tab. 5.35.3 shows that the ratios TK(Γ, ε0, U)/TFWHM
K are not constant and de-

pendent on the Coulomb interaction U, varying over a range from ≈ 0.58 to ≈ 0.46.
This situation does not change if we use different fitting procedures of the zero-bias
conductance peak to extract the FWHM. In particular, we have tested three different
methods: (i) a Lorentz-fit to the symmetrized spectrum ρsym(E) = 0.5(ρ(E) + ρ(−E)),
(ii) a Lorentz-fit to the low-energy part of the spectrum, and (iii) the above mentioned
and in Fig. 5.85.8d shown Fano line shape fit. With all three procedures we obtain roughly
the same Kondo temperatures TFWHM

K . Therefore, we can conclude that the Kondo tem-
perature TFWHM

K is nonuniversal and depends on the degree of particle-hole asymmetry.
In particular, for small Coulomb interactions U we find a TFWHM

K that is much smaller
than Tzbc

K , while it approaches the fit of the zero-bias conductance for U = 1.3 where
the spectrum is narrower and much more symmetric. Note that in fact particle-hole
symmetry was explicitly assumed in the derivation of Eq. (5.45.4) [141141].
The discussion above shows that the difference between TFWHM

K and Tzbc
K originate

from a nonuniversal scaling factor. We can, therefore, summarize that the fit to the
zero-bias conductance Tzbc

K is the most reliable way to extract the Kondo temperature
from experiments since in this case at temperature T only excitations of the order of
T enter. In contrast, for TFWHM

K measured at temperature T/TK � 1 always contains
high-energy excitations in addition to errors stemming from nonequilibrium effects
due to a finite current through the molecule for larger bias voltages. However, as Tab.
5.35.3 shows, TFWHM

K can still serve as a reasonable estimate for the Kondo temperature
which provides the correct order of magnitude of TK.
Note that the Kondo temperatures calculated with a constant hybridization Γ are signif-
icantly different from those obtained with the full energy-dependent Γ(E) which agree
with the experimental TK very well. The Kondo temperatures for constant Γ are up to a
factor of two larger than the TK for nonconstant hybridization Γ(E). Therefore, we can
conclude that the combined full LDA+GdW+NRG approach is needed to explain the
experimental data on a quantitative level. In particular, a perfect match between the
experimental Kondo temperature Texp,zbc

K ≈ 38 K and the Kondo temperature Tzbc
K ≈ 37

K obtained from the NRG for U = 1.2 eV is achieved.

Occupancy of the LUMO+Au orbital

At the end, we discuss the occupancy of the LUMO-Au orbital. The LDA+GdW pre-
dicts an occupancy per spin of about n = 0.71 while the inclusion of correlation effects
in the NRG reduces this value to n ≈ 0.55. Since the Coulomb interaction strongly
suppresses double occupancy and hence constrains the filling closer to half-integer
values, such a reduction is expected. However, both methods the LDA+GdW and the
LDA+GdW+NRG agree in predicting the binding of an extra fraction of an electron
that is drawn from the substrate (LDA+GdW+NRG: 0.1 electrons, LDA+GdW: 0.4 elec-
trons), in addition to the one electron from the Au atom.
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5.1.4 Monomer: Summary

It has been demonstrated that when doping a PTCDA/Au(111) monolayer with a sin-
gle Au atom, an Au-PTCDA complex is formed by a chemical reaction. Due to an un-
paired electron drawn of the Au 6s orbital, this complex is a radical with spin S = 1/2.
Remarkably, the orbital in which the unpaired spins resides extends almost over the
whole molecule. In particular, this orbital is given by the bonding combination of the
Au 6s and the LUMO of the free PTCDA.
On the Au(111) surface an additional small fraction of electrons (about 0.1) is drawn
from the surface into the LUMO+Au orbital of the complex. This additional charge
transfer is, however, limited by the strong Coulomb repulsion which prevents dou-
ble occupation. In fact, the LUMO+Au orbital remains close to single occupation.
One can think of the Au-PTCDA complex as an intermediate between the PTCDA on
Au(111) where no charge transfer occurs [150150] and PTCDA on Ag(111) where almost
two electrons are transfered from the surface to the molecule [151151]. For the case of Au-
PTCDA/Au(111) discussed here, the coupling to the substrate is much weaker than
for PTCDA/Ag(111), so that for similar intraorbital Coulomb repulsion the double
occupancy is only suppressed for Au-PTCDA/Au(111). In contrast, if we compare Au-
PTCDA/Au(111) to PTCDA/Au(111), where the LUMO remains unfilled, the charge
transfer from the adsorbed Au atom to the π-system bypasses the charging barrier for
PTCDA on Au(111) that is caused by the large work function of Au(111).
As a consequence of the single occupation, a local moment is formed. The spin of the
complex interacts with the conduction electrons and, therefore, a Kondo effect emerges
in this system. In the experimental STS spectra, the Kondo effect is revealed by a sharp
resonance at the chemical potential. An analysis of the temperature dependent FWHM
and the zero-bias conductance yields Kondo temperature of about Texp,zbc

K ≈ 38 K for
the zero-bias conductance and Texp,FWHM

K ≈ 31 K for the FWHM. The observation of
the Kondo effect is an unambiguous proof that the Au-PTCDA complex is indeed a
paramagnetic radical.
On the theory side, a fully quantitative description of the Au-PTCDA complex was
achieved by employing a DFT with generalized gradient approximation (GGA), in-
cluding van der Waals corrections, as well as a combined LDA+GdW+NRG approach.
The DFT predicted adsorption positions of the Au atom relative to the PTCDA are in
perfect agreement with the experimental observed positions of the Au atom.
To describe the electronic properties of the Au-PTCDA complex, including the low-
energy region, we have mapped the DFT/MBPT results on the S = 1/2 SIAM. We
have considered the full energy-dependent hybridization function, which turns out to
be crucial for the quantitatively correct description of the system.
The NRG spectrum consists of two broad charge excitation peaks which are both within
0.25 eV of the experimental values, and a sharp Kondo resonance at the Fermi energy
EF. Due to the strong particle-hole asymmetry of the system, we observe an asymmet-



104 Chapter 5. Metal-molecule complexes on an Au(111) surface

ric lineshape of the Kondo resonance. In the experiments the asymmetry of the Kondo
peaks is less obvious, although the charge excitation peaks clearly show the particle-
hole asymmetry in the measured spectra.
We have carried out a careful analysis of the scaling behavior of various definition of
the Kondo temperature in order to provide a guideline how the Kondo temperature
can be extracted reliably from the experiment for particle-hole asymmetric systems.
Since the Kondo temperature is a crossover scale, Kondo temperatures extracted from
a NRG calculation or an experiment my vary up to a scaling factor. However, this
scaling factor has to be universal for a valid extraction scheme.
In the present case, we find that the Kondo temperatures obtained from the zero-bias
conductance and the screening of the effective local moment scale universally with the
analytic formula for the particle-hole asymmetric SIAM. In contrast, the Kondo temper-
ature derived from the FWHM of the zero-bias peak scales nonuniversally, no matter
which fitting function is used to extract the FWHM. This means for the experiment
that one should use the zero-bias conductance to obtain the Kondo temperature since
it is not affected by nonuniversal aspects of the lineshape. If we apply this method to
experiment and NRG, we obtain a NRG Kondo temperature of TK ≈ 37 K for U = 1.2
which is in perfect agreement with the experimental Kondo temperature of TK = 38 K.
Furthermore, we stress that it is not sufficient to replace the full energy-dependent hy-
bridization Γ(E) by its value Γ(0) at the Fermi energy to obtain a correct TK, in spite of
the fact that the Kondo effect is determined by low-energy excitations.
Since the Kondo temperature depends very sensitively on the coupling to the substrate,
the energy level and the Coulomb interaction, the good agreement between theory and
experiment observed here shows that the structural and electronic properties of the
Au-PTCDA complex are accurately described by the DFT/MBPT and NRG.
Note that the delocalized character of the spin-carrying π-orbital makes the Au-PTCDA
complex to an ideal candidate for the quantitative study of interactions between ex-
tended molecular magnets. Such an interacting system will be investigated and dis-
cussed in detail in the next section 5.25.2.

5.2 Dimer

We now discuss the case when two Au atoms adsorb on adjacent PTCDA molecules
and thus interact with each other.
Usually, when two local moments on a metal surface interact, this is discussed in
terms of a competition between the Kondo effect and the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [152152–156156]. The RKKY interaction is an indirect exchange
interaction which is mediated by the conduction electrons [5858–6060] and has already
been introduced in Secs. 2.32.3 and 4.24.2. Depending on distance, it favors ferromagnetic
or antiferromagnetic alignments of local moments, whereas the Kondo effect tends to
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quench the moments locally with the help of the conduction electrons [6262–6464, 6666, 156156].
Here, however, we describe a different scenario. In this case the driving force of a
quantum phase transition (QPT) in a system of two local moments on a metal sur-
face is the competition between the kinetic energy gain due to the entanglement with
the substrate and the binding energy gain due to the chemical interaction between
the moment-carrying orbitals. Interestingly, in this scenario the Kondo effect favors a
ferromagnetic alignment of the two local moments while the chemical interaction pro-
motes the formation of a local singlet. The mechanism is expected to be generic and
widespread, because it relies only on very general features of chemical interactions
and Kondo physics. Moreover, since it is straightforward to engineer the chemistry,
the mechanism will allow for an easy tuning of the magnetic interaction between local
moments.
To demonstrate the novel scenario, we use dimers formed by two Au-PTCDA com-
plexes that each consists of a perylene-tetracarboxylic dianhydride (PTCDA) molecule,
adsorbed on the inert Au(111) surface, and a single Au atom. The interaction be-
tween those Au-PTCDA complexes is investigated by means of scanning tunneling
spectroscopy (STS). Specifically, we show that the dimers are indeed located very close
to a quantum critical point (QCP) [157157, 158158], so that depending on the precise configu-
ration of the dimer distinct ground states (singlet or triplet) are realized.
The results of this section have been submitted to Nature Physics [159159].

5.2.1 Dimer: Experiment and DFT

The experimental setup and the theory of the combined DFT/MBPT approach is the
same as for the monomer, therefore, we refer the reader to Sec. 5.1.15.1.1 for a more de-
tailed discussion. Here, we only briefly present the differences compared to the case of
a single noninteracting Au-PTCDA complex.
As for the monomer, the experiments have been done at the Peter Grünberg Institute
in the Forschungszentrum Jülich by Taner Esat, Christian Wagner, Ruslan Temirov and
F. Stefan Tautz while the density functional theory (DFT) calculations have been car-
ried out at the Institut für Festkörpertheorie at the Westfälische Wilhelms-Universität
Münster by Thorsten Deilmann, Peter Krüger and Michael Rohlfing.

Setup and theory

The investigated dimers are formed by two adjacent metal-molecules that each consists
of a PTCDA molecule, adsorbed on the inert Au(111) surface, and a single Au atom.
As discussed above in Sec. 5.15.1, in each monomer the 6s electron of the Au atom is
transferred into an empty π-orbital of the PTCDA that is only weakly coupled to the
substrate and, consequently, forms a well-defined spin moment delocalised over the en-
tire PTCDA molecule. A large scale image of a PTCDA layer on which Au atoms have
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(a) (b)

Figure 5.9: (a) Constant current STM image after the deposition of Au atoms on a PTCDA
submonolayer on Au(111). The white circle indicates the formation of a dimer.
(b) Herringbone structure of the PTCDA on Au(111). Numbers indicate possible
Au sites in Au-PTCDA monomers. Dimer configurations can be classified as nij
(normal) or pij (parallel), with the index i(j) specifying the position in themolecule.
The white, gray and red circles indicate hydrogen, carbon and oxygen atoms of
PTCDA. Figures taken from [159159].

been deposited is shown in Fig. 5.95.9a, each bright spot indicates an Au-PTCDA com-
plex. The white circle in Fig. 5.95.9a reveals a dimer that has formed spontaneously upon
Au deposition. The interaction between the two spin moments on both monomers are
investigated by STS to detect the ground state of the dimer.
Within the DFT the dimer structures are optimized in a cell including eight PTCDA
molecules. Only the situation where two Au atoms adsorb on neighbouring PTCDA
molecules is analyzed since in the experiment the binding of two Au atoms to the same
PTCDA molecule was never observed. As for the monomer case, the Au atom can bind
to a PTCDA on one of four positions so that together with the herringbone structure
of the PTCDA, with two inequivalent molecules in the unit cell, there are 32 struc-
turally distinct dimers. The different configurations are shown in Fig. 5.95.9b, where pij

(nij) labels a dimer consisting of two complexes whose PTCDA backbones are parallel
(normal) to each other, with the Au atom in the first (second) complex in position i(j).
The binding energies of all 32 positions vary by less than 10 meV which agrees with
the experiment where indeed most of the configurations are observed. Note that in
contrast to the monomer in the previous Sec. 5.15.1, the surface atoms are fixed at the
experimental molecule surface distance of 3.3 Å.
Similarly to Eq. (5.35.3) for the isolated monomer, the intraorbital Coulomb interactions
on complex i is given by

Ui =
∫ ∫

|Ψi
LUMO+Au(~r)|2W(~r,~r′)|Ψi

LUMO+Au(~r
′)|2 d3rd3r′ (5.14)
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where W(~r,~r′) is the screened Coulomb interaction and Ψi
LUMO+Au(~r

′) the wave func-
tion of the LUMO+Au orbital of monomer i. For the Coulomb interaction Uj of
monomer j an analogous formula holds. In contrast to the case of an isolated monomer
in Sec. 5.15.1, slightly increased Coulomb interactions of about U = 1.4 eV are found. The
generally larger U values calculated for the dimer are caused by the different compu-
tational set up, namely slightly different unit cells and the usage of the experimental
molecule surface distance.
In analogy to Eq. (5.145.14), an interorbital Coulomb repulsion can be calculated according
to

U′ij =
∫ ∫

|Ψi
LUMO+Au(~r)|2W(~r,~r′)|Ψj

LUMO+Au(~r
′)|2 d3rd3r′. (5.15)

Interestingly, the intraorbital Coulomb interaction U is reduced by a factor of 2 if the
surrounding PTCDA molecules and the surface are included in the calculations while
U′ is reduced by a factor of 7 due to the metal screening.
In addition to the Coulomb interactions, a tunneling between the two monomers is
calculated. This tunneling corresponds to the level splitting between even and odd
combinations of monomer LUMO+Au orbitals and is computed by performing local
density approximation (LDA) calculations of two Au-PTCDA complexes in the gas
phase. The tunneling t is then given by

t = EEven − Eodd. (5.16)

Furthermore, a direct exchange interaction J between the monomers can be calculated.
However, evaluating these interactions for different dimer configurations yields inter-
actions that are in the range of the direct exchange term Jex ≈ t2/(U −U′) [160160, 161161]
which is caused by the finite tunneling t between the two monomers. Therefore,
we neglect an additional direct exchange interaction J in the two impurity Anderson
model (TIAM) later on and set it to zero.

Results

Figure 5.105.10a shows the STS spectra of different dimer configurations. In most cases
(black line) the Au-PTCDA complexes undergo a S = 1/2 Kondo effect like in the
case of a single noninteracting monomer (gray line), however, for some configurations
the dimers show broader (red line) or even gapped (green and blue lines) zero-bias
peaks. This suggests that the local moments on the two monomers interact with each
other. An analysis of the spectra reveals that broadened or gapped zero-bias peaks
exclusively occur in the n11, n12 and n32 configurations.
For atoms on surfaces, gapped zero-bias peaks have been associated with a competition
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Figure 5.10: (a) dI/dV conductance spectra of Au-PTCDA monomers and several dimers
measured at T = 9.5 K. The latter are recorded on one of the two Au atoms. The
insets show STM images of the corresponding dimers with Au-PTCDA molecules
overlayed. nij configurations are explained in Fig. 5.95.9b. (b) Au-Au distances
for the various dimer configurations and (c) chemical splitting t for the various
dimer configurations, both calculated in LDA. Symbols in panels (b) and (c) re-
fer to spectral properties, black diamonds: unbroadened Kondo peaks, stars:
broadened or gapped zero-bias peaks, with colors as in panel (a) (orange n31
not observed in the experiment). Figures taken from [159159].

nij j = 1 j = 2 j = 3 j = 4 pij j = 1 j = 2 j = 3 j = 4
i = 1 30.5 52.7 9.7 10.2 i = 1 7.9 3.4 6.8 1.5
i = 2 4.6 5.7 3.1 3.1 i = 2 8.0 15.1 7.2 6.7
i = 3 41.6 55.1 12.9 13.6 i = 3 17.8 11.0 15.1 3.4
i = 4 9.8 21.4 4.5 4.6 i = 4 9.0 17.8 8.0 7.9

Table 5.4: Calculated splittings t in meV for all configurations. Only for the normal nij config-
urations large splittings are found. Table taken from [159159].

between the Kondo effect and the RKKY [152152–155155] or exchange interaction [162162]. This
requires a clear correlation of the spectra to the distance between the local moments.
However, Fig. 5.105.10c shows that in the present case such a correlation is not found. As
depicted in Fig. 5.105.10a, a first hint is the fact that the dimer configuration has a profound
influence on the spectra. The dimers of the configuration n11 show a single broadened
zero-bias peak while the n12 and n32 exhibit gaps of 6.7 meV and 8.6 meV, respectively.
In order to explain these observations, the influence of the dimer configuration on the
interaction between the monomers is analyzed with the DFT. Indeed, a splitting t
between the even and odd combination of the complexes is found that ranges from
t = 1.5 meV to t = 55.1 meV, suggesting a weak chemical interaction. The various
values of the tunneling t between the monomers are listed in Tab. 5.45.4 for all possible



5.2. Dimer 109

Figure 5.11: Schematic view of the two impurity Anderson model (TIAM) with the level ener-
gies E1 = E2 = E, the intraorbit Coulomb interaction U, the interorbit Coulomb
interaction U′, the Heisenberg interaction J and the hybridizations V1/2,k. In the
case discussed here, the Heisenberg interaction is set to zero J = 0.

configurations. Figure 5.105.10c reveals that there is a strong correlation of the formation
of a gap to the orbital splitting, while Fig. 5.105.10b shows that the Au-Au distance seems
to play no role. Only for the two largest splittings t = 55.1 meV and t = 52.7 meV
a gap in the spectrum is observed, while an intermediate splitting of t = 30.5 meV
for the n11 configuration leads only to a single broadened zero-bias peak. For all other
configurations the orbital splitting is smaller than t < 22 meV and a zero-bias peak with
essentially the same width as for the monomer is found. Note that the configuration
n31 with a predicted splitting of t = 41.6 meV was not observed in the experimental
ensemble along with the n41 and n42 configurations.

5.2.2 NRG mapping and transmission function

Mapping onto a TIAM

While we have mapped the single Au-PTCDA complex onto a single impurity An-
derson model (SIAM), we map the dimer, based on the above considerations of the
monomer-monomer interactions, on a two impurity Anderson model (TIAM) [163163–
165165]. A schematic view of the model is depicted in Fig. 5.115.11. Its Hamiltonian consists
of three parts HTIAM = H0 + Hd + Hhyb. The first term H0 describes a single conduction
band

H0 = ∑
~k,σ

ε~kσ
c†
~k,σc~k,σ (5.17)

where c†
~k,σ creates an electron with spin σ and momentum~k and the conduction band

dispersion is given by ε~k. Hd labels the part of the impurities and can be written as

Hd =∑
j,σ

Ejd
†
j,σdj,σ + U ∑

j
nj,↑nj,↓ + U′ ∑

σ,σ′
n1,σn2,σ′ +

t
2 ∑

σ

(
d†

1,σd2,σ + d†
2,σd1,σ

)
. (5.18)
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Here d†
j,σ creates an electron with spin σ on monomer j with the energy Ej. The tun-

neling between the two monomers is given by t while U and U′ denote the intra- and
interorbital Coulomb interaction, respectively. As already discussed above, the DFT
does not predict any additional direct spin interactions and we, therefore, omit an di-
rect Heisenberg interaction J between the monomers in Eq. (5.185.18). The hybridization
between the conduction band and the impurities is given by

Hhyb = ∑
j∈{1,2}k,σ

Vj,kc†
~k,σei~k~Rj dj,σ + h.c., (5.19)

with the hybridization strength Vj,~k and ~Rj being the location of the π-orbital Ψj.
In the following, we will use the simplification V1,~k = αV2,~k, based on the assumption
that the energy dependencies of the monomer coupling functions

Γ1(ε) =π ∑
~k

|V1,~k|
2δ(ε− ε~k) = πα2 ∑

~k

|V2,~k|
2δ(ε− ε~k) = α2Γ2(ε) (5.20)

only differ by an overall scaling factor α which becomes α = 1 for fully identical
monomers. As already discussed in Sec. 3.1.13.1.1 the effect of the bath on an impurity is
completely determined by the hybridization function Γ(ε) (cf. Eq. (3.33.3)). Therefore, the
~k-dependence of Vj,~k only enters Γj(ε) = πVjρc(ε) via the energy-dependent effective
density of states (DOS) ρc(ε). Here, Vj is given by

πVj
2
=
∫

Γj(ε) dε. (5.21)

To solve the TIAM using the numerical renormalization group (NRG), we have to

transform the operators c~k,σei~k~Rj to an orthogonal even/odd basis [4747, 6161, 6262, 6464, 124124,
165165] (cf. also with Sec. 4.1.14.1.1 and appendix AA). For this purpose, the origin of the
coordinate system is placed in the middle between the two orbital positions and the
vector distance ~R = ~R1− ~R2 between both orbitals is introduced. In the new even/odd
basis, Hhyb reads in energy representation as

Hhyb =
1
2 ∑

σ

∫
dε
√

ρc(ε)
{

Ne(ε, ~R)c†
εe,σ(V1d1,σ + V2d2,σ)

+No(ε, ~R)c†
εo,σ(V1d1,σ −V2d2,σ)

}
+ h.c., (5.22)

where the energy-dependent field operators cεe/o,σ are defined by Eq. (A.5A.5) and the
normalization factors Ne/o(ε, ~R) are given by Eq. (A.9A.9). Note that in the definitions
of cεe/o,σ and Ne/o(ε, ~R) the DOS ρ(ε) has to be replaced by the effective DOS ρc(ε).
As for the two impurity Kondo model (TIKM) described in Sec. 2.22.2 and appendix AA,
the two impurities couple to two effective conduction bands, one with even parity and
the other with odd parity. Since the size of the LUMO+Au orbitals is similar to the
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distance R between the monomers, we neglect the detailed spatial dependence and let
R→ 0. With this approximation, the normalization factor of the odd conduction band
vanishes No(ε, R → 0) → 0, and the odd-parity band completely decouples from the
impurity, yielding

Hhyb =∑
σ

∫
dε
√

ρc(ε)[c
†
εe,σ(V1d1,σ + V2d2,σ) + h.c.]. (5.23)

If we assume identical orbital energies E = E1 = E2 in both monomers, the single-
particle eigenbasis in the presence of the tunneling term t in the dimer is given by the
even- and odd-parity orbitals

de/o,σ =
1√
2
(d1,σ ± d2,σ). (5.24)

With these new impurity operators, Hhyb can be written as

Hhyb =∑
~k,σ

[c†
~k,σ(Ve,~kde,σ + Vo,~kdo,σ) + h.c.] (5.25)

without referring to an energy representation and using the new hybridizations

Ve/o,~k =
1√
2
(V1,~k ±V2,~k). (5.26)

Note that in the limit ~R → 0 the even conduction electron band is identical to the
original band, and the odd band vanishes. Transforming Hd into these new impurity
operators yields

Hd =∑
σ

[
Eed†

e,σde,σ + Eod†
o,σdo,σ

]
+

1
2 ∑

abcd∈{e,o},σσ′
Ũabcdd†

a,σd†
b,σ′dc,σ′dd,σ , (5.27)

with Ee/o = E± t/2 and the non-vanishing matrix elements of Ũabcd are given by

Ũ =Ũaaaa =
U + U′

2
(5.28)

Ũ′ =Ũabba =
U + U′

2
(5.29)

J̃ =Ũabab = Ũaabb =
U −U′

2
, (5.30)
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ensuring rotational invariance in spin space [166166]. The general form of Eq. (5.275.27) is
equivalent to

Hd = ∑
α={e,o},σ

Eαd†
α,σdα,σ + Ũ ∑

α

nα,↑nα,↓ +
2Ũ′ − J̃

2 ∑
σ,σ′

ne,σno,σ′

− 2 J̃~Se
~So + J̃

(
d†

e,↑d
†
e,↓do,↓do,↑ + h.c.

)
, (5.31)

using the three parameters Ũ, Ũ′ and the effective ferromagnetic (U > U′) Heisenberg
interaction between the even and odd orbital J̃.
Note that if we consider the full parity symmetric case E1 = E2 and also V1,~k = V2,~k,
the odd-parity orbital decouples from the conduction band according to Eqs. (5.255.25)
and (5.265.26). However, it turns out that in order to explain the experimentally observed
formation of a gap in the spectra, a small parity asymmetry is needed so that the even
conduction electrons weakly hybridize with the odd dimer orbital. We consider parity
breaking by introducing a small scaling factor q = Vo,~k/Ve,~k = (α − 1)/(α + 1). For
q 6= 0 the hybridization strengths V1,~k and V2,~k of the two monomers slightly differ by
an overall scaling factor α = (1 + q)(1− q) 6= 1.
The assumption of a parity breaking is justified since the local environments around
the monomer orbitals are in general slightly different due to the alignments of the
PTCDA molecules. Therefore, the single particle energies are slightly different, too,
i.e. E1 6= E2. Nevertheless, even for E1 6= E2 we are still able to diagonalize the
single-particle basis of the two monomer orbitals into a new basis of a bonding and an
antibonding orbital, albeit with a modified unitary transformation

de,σ =a1d1,σ + a2d2,σ

do,σ =a2d1,σ − a1d2,σ (5.32)

which lacks even and odd symmetry for generic linear combinations a2
1 + a2

2 = 1.
Using the same unitary transformation for the hybridization matrix, Eq. (5.265.26) will
be modified analog to Eq. (5.325.32). Consequently, even for V1,~k = V2,~k a finite matrix
element Vo,~k is generated which is enhanced by the slight symmetry breaking of V1,~k 6=
V2,~k. The Hamiltonian in the even/odd basis is, hence, the generic description where t
parameterizes the total splitting stemming from E1 − E2 as well as the hopping term,
and q = Vo,~k/Ve,~k denotes the generic degree of asymmetry. It turns out that the
precise value of q � 1 does not influence the gap formation, the gap width as well as
the location of quantum phase transition which will be discussed later on.
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Parameters of the TIAM

As for the monomer, the parameters of the model are extracted from the DFT/MBPT
calculations by treating the projected DOS ρGdW as an effective mean-field spectrum

ρGdW(ε) ≡ lim
δ→0+

Im
1
π

1
ε− iδ− Ej − nU − ∆j(ε− iδ)

(5.33)

with ∆j(z) =
∫

dεΓj(ε)/(z− ε). For this purpose we use the same ρGdW(ε) as for the
monomer shown in Fig. 5.65.6 (black line) yielding the same hybridization strength Γ(E)
depicted in Fig. 5.75.7. The hybridization functions of the even and odd orbitals are then
defined by

2Γ(E) = Γe(E) + Γo(E) = (1 + q2)Γe(E). (5.34)

For the intraorbital Coulomb interaction we use a uniform U = 1.4 eV for both mono-
mers. This value is slightly larger than the values obtained for the monomer (see
discussion above in Sec. 5.2.15.2.1) and we, therefore, also derive a different level energy
of about E = −1.09 eV for both Au-PTCDA complexes. The interorbital Coulomb
interaction U′ calculated for the n32 configuration is given by U′ = 0.12 eV11. Note that
while in the NRG the tunneling t is a continuously tunable parameter, in experiment
it is determined by the dimer configuration nij and hence discrete, albeit with a rather
dense spacing.

Conduction electron transmission function

We now discuss the quantity that can be directly compared to experimental STS spec-
tra. Since only the linear combination

A†
σ =

1√
V2

1 + V2
2

(
V1d†

1,σ + V2d†
2,σ

)
=

1√
1 + q2

(d†
σ,e + qd†

σ,o) (5.35)

of orbitals couple to the substrate according to Eq. (5.255.25), the spectrum of conduction
electron transmission function which is accessible to the STS is given by ρσ(ω) =

ImGσ(ω − i0+)/π with the Green’s function Gσ(z) = 〈Aσ|A†
σ〉(z). Any position-

dependent scanning tunneling microscopy (STM) matrix elements have not been taken
into account. Since we solve the TIAM in the limit R → 0 and thus neglect any spatial
dependence, this approximation is justified. Convoluting ρσ(ω) with the derivative of
the Fermi functions yields the differential conductance dI/dV(V) up to a prefactor.
Note that for the parity symmetric case (q = 0), the odd orbital decouples and hence
only the properties of the even orbital are measured.

1 For the other configurations U′ ranges from 0.06 eV to 0.14 eV.
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Figure 5.12: (a) dI/dV spectra from NRG for different values of t, q = Vo/Ve = 0.1 and T =

0.42 ≈ 0 mK. The parameters of the TIAM E = −1.089 eV, U = 1.4 eV, U′ = 0.12
eV and J = 0 are extracted from the LDA+GdW. (b) dI/dV spectra from NRG for
the same temperature as in the experiment T = 9.5 K, all other parameters as
in panel (a). (c) Experimentally measured dI/dV conductance spectra of a n32
dimer recorded at three different temperatures. (d) dI/dV spectra from NRG for
the same temperatures as in panel (c), using parameters from panel (a), t = 40
meV (as best fit of the gap) and q = 0.1.

Furthermore, we investigate the orbital diagonal spectral functions of the even and odd
orbital which are defined as

ρσ,e(ω) =
1
π

Im〈dσ,e|d†
σ,e〉(ω− io+) (5.36)

ρσ,o(ω) =
1
π

Im〈dσ,o|d†
σ,o〉(ω− io+). (5.37)

The mixed contributions ρσ,eo(ω) and ρσ,oe(ω) could in principle be calculated by the
difference between ρσ(ω), ρσ,e(ω) and ρσ,o(ω) with the appropriate weight factors.
However, it is not expected that these contributions contain new information, besides,
the mixed contributions vanish for the parity symmetric case (q = 0) and, therefore,
their contributions to the measured spectra for a small parity asymmetry q � 1 are
expected to be weak.



5.2. Dimer 115

Figure 5.13: (a) For t < tc the ground state consists of the three triplet states Sz = 1, 0,−1.
The yellow dashed line indicates that the screening of the spin in the even orbital
by the conduction band electrons due to the Kondo effect. (b) The ground state
for t > tc is a singlet which is a linear combination of the two doubly occupied
orbitals. For t = 0 and a particle-hole symmetric substrate the coefficients are
given by α = β = 1/

√
2.

5.2.3 NRG results

Comparison with experiment

Figures 5.125.12a and b show the results of the combined DFT+MBPT+NRG calculation for
the different temperatures T = 0.42 ≈ 0 mK and T = 9.5 K, respectively. The results
for T = 9.5 K are in excellent agreement with the experimental data depicted in Fig.
5.105.10a, without any fitting parameters. The agreement covers the monomer spectrum,
which has been discussed in Sec. 5.15.1, and the configuration dependence of the dimer
spectra. Using the corresponding t for the different configurations, which are obtained
from the DFT, we find a single zero-bias peak for n11 (red curve) and gapped peaks
for n12 (green curve) and n32 (blue curve). The LDA+GdW+NRG predicts also a gap
for the n31 configuration (orange curve, t = 41.6 meV), however, this configuration was
not observed in the experiment. For T ≈ 0 (Fig. 5.125.12a) the single peak of the n11 con-
figuration (red curve) turns into a very narrow gap. However, this gap cannot be seen
in the experiment because of the finite temperature of about T = 9.5 K. Furthermore,
also the temperature evolution of the experimentally measured dI/dV curves shown in
Fig. 5.125.12c agrees very well with the one observed in the NRG spectra depicted in Fig.
5.125.12d. Note that the gaps for n12 and n32 are a factor of two larger in the calculation
than in experiment. However, since the size of the gap depends very sensitively on t,
U′ and via the Kondo temperature also exponentially on the Coulomb interaction U, a
reduction of t by less than 10 meV would bring the calculated gap into agreement with
experiment.

Detailed analysis: Quantum critical points

After we have verified the excellent agreement between the experimental dI/dV curves
and the spectra obtained from the LDA+GdW+NRG approach, we now turn to a de-
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Figure 5.14: (a) Occupation numbers per spin ne, no and ntot = ne + no as a function of t for
q = 0.1. At the QCPs t±c steps in the occupation occur. The dotted line indicates
the overall increase of ntot in the singlet state. (b) Expectation value of the
hybridization energy 〈HHyb〉 as a function of t for q = 0.1. At the QCPs t±c the
hybridization |〈HHyb〉| drops sharply. For t−c < t < t+c the triplet ground state
is stabilized by 〈HHyb〉. The dashed line indicates the overall increase of the
energy gain due to hybridization in the singlet state.

tailed discussion of the NRG results. Since the isolated Au-PTCDA monomers carry a
S = 1/2 moment in their LUMO+Au orbital, the two Au-PTCDA monomers, brought
together in close vicinity, maintain a four-fold spin-degenerate ground state consist-
ing of three triplet states |↑1, ↑2〉, |↓1, ↓2〉, 1√

2
(|↑1, ↓2〉 + |↓1, ↑2〉) and one singlet state

1√
2
(|↑1, ↓2〉 − |↓1, ↑2〉), if all additional interactions besides U and U′ are neglected.

From the ground state the two singlet states |↑↓1, 02〉 and |01, ↑↓2〉 are separated by the
energy difference U −U′.
The same degeneracy is also found in the even-odd basis. The ground state comprises
the three triplet states |↑e, ↑o〉, |↓e, ↓o〉, 1√

2
(|↑e, ↓o〉 + |↓e, ↑o〉) which are shown in Fig.

5.135.13a. However, the singlet state 1√
2
(|↑e, ↓o〉 − |↓e, ↑o〉) is separated from the triplet by

2 J̃ = U −U′. This shift is caused by the fourth term of Eq. (5.315.31). The large pair hop-
ping term (last term of Eq. (5.315.31)) leads to an entanglement between the two doubly
occupied states, while the singlet state 1√

2
(|↑↓e, 0o〉+ |0e, ↓↑o〉) is shifted to an energy

U −U′ above the ground states, the combination 1√
2
(|↑↓e, 0o〉 − |0e, ↓↑o〉) is shifted to

lower energies, leading to a four-fold spin-degenerate ground state which again con-
sists of three triplet and one singlet state.
However, interactions between the monomers have to be taken into account. A finite
tunneling t/2 between the two monomer valence orbitals generates an antiferromag-
netic exchange Jex ≈ t2/(U −U′) promoting independently of the sign of t the dimer
singlet ground state α(t)|↑↓e, 0o〉 − β(t)|0e, ↑↓o〉 which is depicted in Fig. 5.135.13b. Here,
α(t) and β(t) are coefficients depending on the splitting t which define the admixtures
of the even and odd orbital to the singlet state. Jex, however, is too small to explain the
width and the temperature dependence of the gaps in the spectra, hence, the exchange
interaction alone cannot be responsible for the observations.
Additionally, also the coupling to the conduction band has to be considered. Since the
electrons in the singlet state are more localized, the system gains kinetic energy in the
triplet state. Furthermore, the two monomer local moments couple antiferromagneti-
cally to the local even conduction electron spin via an effective Kondo coupling JK [8080]
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at low temperatures. Consequently, the Kondo effect yields an additional energy gain
of the local triplet over the singlet ground state.
With increasing splitting t, the energy of the singlet is lowered and once |t| exceeds
critical values |t±c |, defining two QCPs, a QPT occurs since the singlet is favored over
the kinetic energy gain which leads to a breakdown of the Kondo effect.
Because the singlet state is related to the double occupancy of the even and odd or-
bital, the QPT also involves a sudden change of the occupancy of the orbitals which
is shown in Fig. 5.145.14a. For t−c < t < t+c both the even and the odd orbital are almost
singly occupied while for t > t+c the occupancy of the odd orbital suddenly rises and
the occupancy of the even orbital drops down. For t < t−c the opposite is the case.
This is in accordance with a single particle picture in which a positive splitting lowers
the energy level of the odd orbital Eo = E− t/2 leading to an almost doubly occupied
odd orbital (|α(t)| < |β(t)|), while for negative t the energy level of the even orbital
Ee = E + t/2 is shifted to lower energies (|α(t)| > |β(t)|).
We now address the mechanism in more detail which at finite t stabilizes the triplet
states with one electron each in the even and odd orbitals against the singlet and thus
leads to quantum phase transitions at finite t±c . Usually the separation of a triplet and
a singlet is governed by the exchange interaction [163163]. Since DFT predicts a negligibly
small exchange interaction |Jex| � t±c , the stabilization of the triplet state at finite t is
related to the gain of additional kinetic energy due to the hybridization with the sub-
strate. For illustration, the total hybridization energy 〈Hhyb〉 is plotted as a function of
t in Fig. 5.145.14b. In the local singlet regime (t < t−c and t+c < t), 〈Hhyb〉 decreases nearly
linearly as function of t, as indicated by the dashed line interpolating the energy in
the triplet regime. The reason for this is that the more the even orbital is depleted, the
more its electron becomes itinerant, resulting in larger |〈Hhyb〉|. In the triplet regime,
however, additional hybridization energy is gained. This is observed in the interval
t−c < t < t+c , where 〈Hhyb〉 lies below the interpolated singlet hybridization energy.
〈Hhyb〉 changes continuously across the QCP, and only its derivative diverges at the
QCP. Moreover, the Kondo effect yields a further energy gain of the triplet over the
singlet ground state at low temperatures.
Although a QPT occurs for positive and negative tunnelings t, only a positive t yields a
perfect agreement with the experiment which is, however, in agreement with DFT that
also predicts a positive t. The asymmetry between the two values t+c and t−c , shown
in Figs. 5.145.14a and b, is generated by the strongly energy-dependent coupling to the
substrate. The real part of the complex coupling function ∆(z) shifts the energy levels
slightly to higher energies. Since the even orbital hybridizes more strongly to the sub-
strate, the even orbital is shifted above the odd orbital already for t = 0. Afterwards,
only a relatively small additional positive molecular t is needed to drive the system
across the QCP. This means that it is "easier" to achieve the singlet state where the odd
orbital is almost doubly occupied than the almost even doubly occupied state.
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Figure 5.15: Spectral functions of the (a) even orbital and (b) odd orbital in the parity sym-
metric case (q = 0) for different splittings t. (c) Even and (d) odd orbital spectral
functions for various t in the parity broken case (q = 0.1). Colors as in Fig. 5.105.10.
The insets show the spectral functions for a larger energy range.

Finally, we stress that the presented microscopic mechanism based on a chemically
driven QPT is generic. Including an additional finite direct J only influences the values
of the critical splitting t±c , but not the quantum critical scenario. Only for a very large
direct antiferromagnetic coupling J the QPT is destroyed and no Kondo effect can be
detected.

Origin of the gap in the STM spectra

In order to investigate the physics of the gap in the zero-bias peak in more detail, we
now examine the spectral functions of the even and odd orbital (Eqs. (5.365.36) and (5.375.37))
separately. For this purpose, we first consider the parity symmetric case (q = 0) and
afterwards the parity broken (q = 0.1).
The spectral functions of the even and odd orbital for the parity symmetric case are
shown in Fig. 5.155.15a and b, respectively. In the spectral function of the even orbital for
t < t+c ≈ 30.5 meV the Kondo resonance of an underscreened S = 1 Kondo effect is
clearly visible. If an electron is injected into the even orbital, the system responds by
ejecting an electron with opposite spin into the conduction band because of the large
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Coulomb interaction U. Therefore, this injection provokes a transition between the two
degenerate triplet states Sz = 1 and Sz = 0. As a consequence of this spin-flip exci-
tation, the previously mentioned Kondo resonance at E = 0 appears in the spectrum.
The underscreened Kondo effect arises from the fact that in the parity symmetric case
only the spin in the even orbital is screened by the conduction band electrons while the
odd orbital completely decouples and hence remains unscreened. However, the spin
of the odd orbital fluctuates as well since it is ferromagnetically coupled to the spin in
the even orbital via the Heisenberg interaction J̃.
For t > t+c ≈ 30.5 meV the Kondo effect breaks down indicating a change of the many-
body ground state. As discussed above, this breakdown of the Kondo effect is caused
by the transition from the triplet (Fig. 5.135.13a) to the singlet state (Fig. 5.135.13b). The change
of the ground state is also visible in the high energy peaks shown in the inset of Fig.
5.155.15a. After the breakdown of the Kondo effect spectral weight is shifted to the high
energy peaks at E ≈ −1.0 eV and E ≈ 0.4 eV where the peak at positive energies is
larger because for a positive tunneling |α(t)| < |β(t)| applies, cf. Fig. 5.135.13b.
In contrast, the spectrum for the odd orbital shows a completely different behavior.
Since the odd orbital is decoupled from the conduction band, charge fluctuations from
and into the orbital do not occur and thus there is no dynamical spin degree of free-
dom of the scatterer, except that it suddenly changes its occupation once. The potential
scattering of the conduction electrons due to this structureless scatterer gives rise to
the gap in the spectral function that is similar to x-ray absorption edges [167167]. The side
peaks of the gap are single particle signatures of an imminent change of the many-
body ground state in which the odd state becomes either completely empty or filled.
For t < tc the peaks correspond to an excitation from the triplet to the singlet state. If
the odd orbital is suddenly occupied (peak at positive energies), the system can only
respond by transferring the electron of the even orbital into the conduction band due
to the large Coulomb interactions since the odd orbital is decoupled and hence cannot
be depleted. On the other hand, if an electron is removed from the odd orbital (peak
at negative energies), an additional electron is transferred from the conduction band
into the even orbital so that it is doubly occupied. Accordingly, the peaks correspond
to excitations from the singlet to the triplet state if the splitting is increased beyond the
QCP t > tc.
Unlike the triplet-triplet transition in the even orbital, this is not a zero-energy transi-
tion but involves a finite transition energy. As a consequence, the spectral signature
of this process occurs at finite energy. The threshold energy is related to the energy
difference between the two competing ground states (triplet vs. singlet) of the dimer.
At the QCP (t = tc) the energy difference between the triplet and the singlet ground
state diminishes and, therefore, the width of the gap vanishes. This can be seen in Fig.
5.155.15b for t = 30.5 meV which is very close to the QCP.
Since for this process the overcoming of a certain threshold, namely the energy dif-
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ference between singlet and triplet states, is required, the spectral signatures appear
as sharp adsorption edges. However, due to the broadening in the NRG spectra, these
sharp edges are smoothed. In contrast to the spin-flip excitations in the even orbital, in
this process the many-body ground state changes from a triplet to a singlet and, there-
fore, gives rise to a different potential which is felt by the conduction band electrons.
By injecting an electron into or extracting an electron from the odd orbital, the dimer
becomes a charged scatterer.
Note that these excitations are entirely different from the high energy charge excitations
shown in the inset since the total occupation number of the dimer does not change.
As already mentioned above, the STM can only detect those parts of the local spec-
tral function that are included in the conduction electron transmission function of Eq.
(5.355.35). In the parity symmetric case the odd spectral function and hence the gap is not
detectable.
Therefore, the experimental spectra prove that parity symmetry must be broken in the
dimer, as it is also expected considering the lack of symmetry in the dimer. If parity is
broken, the odd orbital also couples to the even conduction band and thus properties
of the odd orbital are weakly mixed into the spectral function of the even orbital (Figs.
5.155.15c and d) as well as into the total transmission function (Fig. 5.125.12a). Below the QCP
at t < t+c ≈ 30 meV the system is in the triplet state (black curve) and the picture is es-
sentially unchanged compared to the parity symmetric case since the Kondo resonance
in the even spectrum dominates over the other terms. In contrast, for t > t+c ≈ 30
meV the total spectrum is now determined by the absorption edges of the odd orbital
because the Kondo peak in the even orbital has collapsed. This opens the gap in the
STM spectrum. The physics of the gapped ‘Kondo peak’ is hence not the Kondo effect
itself, but a remnant of the gap in the odd spectrum, which in turn is related to the fact
that in the parity symmetric case the spin-dynamics in the odd orbital decouples from
the conduction electrons.
The size of the odd admixture determines mainly the height of the spectral features
but has only a small influence on the width of the gap or the positions of the QCPs.
As for the parity symmetric case, the width of the gap reflects the distance to the QCP.
This is illustrated by Figs. 5.155.15c and d for t = 30.5 meV (red curve) which corresponds
to the experimental configuration n11. Located very close to the QCP, at finite temper-
ature the spectral properties are those of the Kondo effect. Only at an exponentially
small temperature that is not accessible to the experiment, a very small gap opens. In
particular, for t = 30.5 meV (red curve in Figs. 5.125.12a and b) the edges above and below
the Fermi level merge to a single peak for T = 9.5 K which is in agreement with the
experimental observations for the n11 configuration depicted in Fig. 5.105.10a.
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5.2.4 Dimer: Summary

In this section we have investigated the interaction between two adjacent Au-PTCDA
complexes adsorbed on an Au(111) surface. The spin carrying orbitals in the Au-
PTCDA are delocalized over the complete molecules leading to a strong chemical hy-
bridization between the molecular monomers. This ordinary chemical hybridization
is strong enough to drive a QPT from a Kondo singlet with almost equally populated
orbitals to a local singlet with orbital ordering, without the need for an additional ex-
change interaction.
In the experiment the QPT could be revealed by means of STS. While for dimer con-
figurations with a weak hybridization between the monomers a Kondo resonance has
been observed, the particularly strong interactions of specific dimer configurations lead
to a formation of a gap in the STS spectrum.
As for the case of a single Au-PTCDA complex, presented in Sec. 5.15.1, the experimen-
tal data and the results of the combined LDA+GdW+NRG approach are in excellent
agreement. In particular the LDA+GdW+NRG is able to predict the formation of a gap
in the spectrum for the correct dimer configurations without any fitting parameters.
For adatoms on a metallic surface the formation of a gap in the spectrum is often asso-
ciated with the competition between an indirect exchange interaction (RKKY) and the
Kondo effect. However, the RKKY interaction, although present in the model, does not
materialize in this system since an expected distance dependence of the spectra is not
found.
It is remarkable that in the present case the entanglement with the substrate stabilizes
the local triplet state against the preference of the local singlet state due to chemical hy-
bridization. The subsequent underscreened Kondo effect yields a further energy gain
and reduces the triplet moment to an effective S = 1/2.
In contrast to the case discussed here, in the conventional generic two-impurity Kondo
physics [6262–6464, 6666, 154154, 156156] no QPT and only a crossover is found, cf. Sec. 2.32.3. In ad-
dition, the screening of the local triplet is complete and occurs via a two-stage Kondo
effect involving even as well as odd conduction electron states. These profound differ-
ences between the conventional scenario and our situation are related to the spatially
extended nature of the individual monomer π-orbitals which are large compared to
the lattice spacing of the underlying substrate as well as the shortest distance between
the two monomers.
Finally, we stress that mere changes of the relative orientations of the monomers, and
thus tiny changes in the wave function overlap, are enough to drive the system through
the QCP. Thus, we have here an extremely sensitive chemical handle on the magnetic
properties of a supermolecular architecture. Because it relies only on general principles
of chemical interactions and Kondo physics, we expect this mechanism to be of general
validity, opening up a new road to engineer magnetic interactions.





Chapter 6

Two impurity Kondo model

The particle-hole symmetric two impurity Kondo model (TIKM) with constant even
and odd densities of states (DOSs) exhibits a quantum critical point (QCP) which sep-
arates the Kondo phase and the decoupled singlet phase [6262, 6363]. Its position depends
on the ratio between the Kondo temperature TK and the effective spin-spin interaction
between the two impurity spins ~S1 and ~S2. However, the constant DOSs are an ap-
proximation which always leads to a ferromagnetic RKKY interaction for all distances
[6161, 6262]. On the other hand, quantum Monte Carlo (QMC) calculations [6464, 6767, 6868]
with energy-dependent couplings have not seen such a QCP and, therefore, this QCP
is often considered to be artificial. Taking into account the proper energy-dependence
of the even and odd DOSs makes the model particle-hole asymmetric, destroys the
QCP and leads to a continuous crossover between the two phases. For a more detailed
description of the TIKM and its QCP we refer the reader to Sec. 2.32.3.
In this chapter we demonstrate how the QCP of the energy-dependent TIKM can be
restored by adding potential scattering terms to the Hamiltonian of the TIKM

HTIKM+pot =HTIKM + ∑
σ

[
Vec

†
e,0,σce,0,σ + Voc†

o,0,σco,0,σ

]
(6.1)

where HTIKM is the Hamiltonian (2.122.12) of the TIKM and ce/o,0,σ the operator that creates
an electron on the zeroth site of the even/odd Wilson chain. These initial potential
scatterings are intended to compensate the potential scatterings that are automatically
generated by the numerical renormalization group (NRG) in a particle-hole asymmetric
case [2727]. Furthermore, we present some first basic nonequilibrium results of the TIKM
with constant as well as with energy-dependent DOSs after a quench in the spin-spin
interaction between the two impurity spins for two different kinds of initial conditions.
This chapter is organized as follows: Section 6.16.1 deals with the equilibrium properties
of the TIKM, the method how the QCP is restored as well as the occurring problems
are discussed in detail. Afterwards, we turn to the investigation of the nonequilibrium
dynamics. At first, we present in section 6.26.2 the nonequilibrium data for different
spin-spin interaction quenches within a phase as well as quenches over the QCP for

123



124 Chapter 6. Two impurity Kondo model

(a)

0

0.5

1

1.5

2

2.5

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

E
n
er
gy

le
ve
ls

K/D

(b)

0

0.5

1

1.5

2

2.5

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

E
n
er
gy

le
ve
ls

K/D

Figure 6.1: (a) Fixed point spectrum of the TIKM with constant DOSs vs. the spin-spin inter-
action K for even iterations, ρJ = 0.2 and No/Ne = 1. The two different phases
and the QCP at Kc ≈ 0.01D which separates them are clearly visible. (b) Even
iterations fixed point spectrum of the TIKM with full energy-dependent DOSs plot-
ted against K for kFR/π = 0.6591 and ρJ = 0.2. Degeneracies are lifted by the
particle-hole asymmetry and the QCP is replaced by a crossover. NRG parameters
are Λ = 3 and Ns = 1500.

constant DOSs so that the model always exhibits a QCP. This section is intended to set
the stage for the next section 6.36.3 where we investigate the nonequilibrium data for the
full energy-dependent TIKM after the QCP has been restored and compare the results
with those for the constant DOSs in Sec. 6.26.2. At the end we give a short conclusion and
outlook in Sec. 6.46.4.

6.1 Restoring the quantum critical point

In this section we briefly summarize how the QCP can be restored in the particle-hole
asymmetric TIKM with energy dependent DOSs. This method is based on the fact that
the fixed point Hamiltonian in both the Kondo phase and the decoupled singlet phase
can be related to the Hamiltonian of the free electron gas. In the particle-hole asym-
metric case the fixed point Hamiltonian contains additional potential scattering terms
which break the particle-hole symmetry [2727].
The idea to restore the QCP is to add initial potential scattering terms of the form
Ve/oc†

e/o,0,σce/o,0,σ to the Hamiltonian of the TIKM. These initial scattering terms are
adjusted so that they compensate the scattering terms that are generated during the
NRG steps due to particle-hole asymmetry. Here the operator c†

e/o,0,σ creates an elec-
tron on the zeroth site of the even/odd Wilson chain. More details about the fixed
point spectra and Hamiltonians of the TIKM with and without particle-hole symmetry
can be found in Sec. 3.43.4 where the measurement of the potential scatterings Ṽe/o of an
effective low energy Hamiltonian is described.
The fixed point spectrum of the TIKM for even iterations with constant even and odd
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Figure 6.2: (a) The measured potential scatterings of the TIKM with constant DOSs vs. the
interaction K. For K → ∞ the scatterings Ṽe/o are exactly zero while for K → −∞
the measured scatterings of the Kondo phase Ṽe/o,K vanish. At the QCP the scat-
terings diverge. (b) In the particle-hole asymmetric case the potential scatterings
are always finite Ṽe/o(,K) 6= 0 and continuously change between the two phases.
NRG parameters are Λ = 3 and Ns = 1500.

DOSs is shown versus the spin-spin interaction K in Fig. 6.16.1a. For K → ∞ the system
is in the decoupled singlet phase and the fixed point spectrum coincides with the fixed
point spectrum of the free electron gas for even iterations while for K → −∞ the sys-
tem is in the Kondo phase and the spectrum coincides with the fixed point spectrum
of the free electron gas for odd iterations, cf. Sec. 3.4.13.4.1. The QCP that separates the
Kondo phase from the decoupled singlet phase is clearly visible at Kc ≈ 0.01D.
For comparison Fig. 6.16.1b shows the fixed point spectrum of the TIKM with full energy-
dependent DOSs plotted against the interaction K. Due to the particle-hole asymmetry,
more energy levels are visible in the spectrum since degeneracies are lifted. Further-
more, the QCP is replaced by a continuous crossover between the two phases.
Figures 6.26.2a and 6.26.2b show the measured potential scatterings for the TIKM with con-
stant and with energy-dependent DOSs, respectively. Here, Ṽe/o denotes the measured
potential scattering in the decoupled singlet phase where the fixed point spectrum is
that of a free electron gas with potential scattering terms and Ṽe/o,k denotes the mea-
sured scattering in the Kondo phase where the spectrum coincides with the one of the
free electron gas with one electron less plus scattering terms. Details about the differ-
ence between Ṽe/o and Ṽe/o,k and the way they are measured within the NRG can be
found in Sec. 3.4.23.4.2.
In the case of constant DOSs the measured potential scattering Ṽe/o,K is exactly zero
in the Kondo phase while Ṽe/o is zero in the decoupled singlet phase since the model
is particle-hole symmetric and, thus, no potential scattering terms occur. Directly at
the QCP, which separates both phases, all potential scatterings diverge. In contrast,
the potential scatterings of the particle-hole asymmetric model with energy-dependent
DOSs are always finite and continuously change between the two phases. Since for the
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phase shifts in the even and odd channel δe = −δo must apply, we find Ve(,k) ≈ −Vo(,k)

up to numerical errors, cf. Sec. 2.32.3.
In order to compensate the generated potential scatterings and, hence, restore the QCP,
the naive expectation would be to adjust the initial scattering terms Ve/o = −Ṽe/o(,K).
However, already the benchmark calculations in Sec. 3.4.33.4.3 show that the initial scatter-
ings Ve/o are renormalized depending on the Kondo coupling J to a different effective
potential scattering. Furthermore, the generated potential scattering depends on the
value of the spin-spin correlation function 〈~S1

~S2〉 [168168], therefore, the generated scat-
terings are different in the Kondo and in the decoupled singlet phase and change
continuously near the QCP. To make matters worse, generally the initial scatterings
Ve/o also influence the effective RKKY interaction. Therefore, if we change Ve/o to com-
pensate the generated potential scattering, we move on the K-axis of Fig. 6.26.2b and end
at a different effective interaction K where we in general need a different Ve/o to restore
the particle-hole symmetry.
Only in the limits K = ±∞ it is relatively easy to restore the particle-hole symmetry
since the change of the RKKY interaction is negligible compared to K and the spin
correlation takes the constant values 〈~S1

~S2〉 = −0.75 for K = ∞ and 〈~S1
~S2〉 = 0.25 for

K = −∞. The only remaining difficulty is the renormalization of the initial scatter-
ings Ve/o which, however, means that particle-hole symmetry can be restored if we set
Ve/o = −αe/o(J)Ṽe/o(,K) where αe/o(J) is a J dependent factor. Nevertheless, the model
becomes particle-hole asymmetric again if we approach the crossover regime.
Therefore, it seems to be impossible to restore the QCP with the use of the potential
scattering terms but there are two important restrictions which help us:
An effective generated potential scattering of the form Ṽ(c†

e,0,σce,0,σ + c†
o,0,σco,0,σ) only

shifts both the Kondo resonance in the even and in the odd channel equally away from
the Fermi energy [6363, 168168] and can, thus, be considered as only a shift of the chemical
potential. For Ṽe 6= Ṽo, however, the Kondo resonances of both channels split and the
QCP vanishes [6464, 168168]. Consequently, we do not need to restore the full particle-hole
symmetry, it is sufficient to move the Kondo resonances back on top of each other such
that Ṽe − Ṽo = 0.
Secondly, we do not need to adjust Ṽe = Ṽo for every K. It follows from Ref. [6464]
that for Ṽe = Ṽo the scattering phase shifts δe and δo can only take the two val-
ues δe = δo = π/2 + δV , which means that the system is in the Kondo phase, or
δe = δo = 0 + δV , where the system is in the decoupled singlet phase, cf. Sec. 2.32.3.
Here δV is the trivial phase shift originating from the scattering term Ṽe = Ṽo = Ṽ.
Therefore, it is sufficient to adjust Ṽe = Ṽo in the vicinity of the QCP since in this case
the scattering phase shifts must suddenly jump from 0 + δV to π/2 + δV .
Even with this simplifications it is a tedious task to restore the QCP. To do this we
proceed as follows: At first, we adjust the spin-spin interaction K so that the spin cor-
relation function takes the value 〈~S1

~S2〉 = −0.25 which is the value the correlation
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Ṽo,K

Figure 6.3: (a) Even iterations fixed point spectrum of the TIKM with full energy-dependent
DOSs plotted against K after the QCP has been restored for kFR/π = 0.6591,
ρJ = 0.2 and Ve = 0.48725D. The spectrum suddenly changes at the QCP at
Kc ≈ 0.0188D (b) The measured potential scatterings of the TIKM with full energy-
dependent DOSs plotted against K after the QCP has been restored for the same
parameters as in (a). Only at the QCP the generated potential scatterings coincide
Ṽe = Ṽo. NRG parameters are Λ = 3 and Ns = 1500.

function takes in the vicinity of the QCP, cf. Sec. 2.32.3. Afterwards, the potential scatter-
ing11 Ve is changed in order to achieve Ṽe − Ṽo = 0. However, due to the change of the
potential scattering, we also change the effective spin-spin interaction. Therefore, we
have to re-adjust the spin-spin interaction K to tune the correlation function once again
to the value 〈~S1

~S2〉 = −0.25 and, afterwards, adjust the potential scattering again. The
whole procedure is repeated until both the spin-spin interaction K and the potential
scattering Ve converge.
Figure 6.16.1a shows the fixed point spectrum of the TIKM with full energy-dependent
DOSs plotted against K after the QCP has been restored. A comparison with Fig. 6.16.1b
shows that due to the initial potential scattering Ve = 0.48725D, the QCP re-emergence
at the critical spin-spin interaction Kc ≈ 0.0188D. Like in the particle-hole symmet-
ric case shown in Fig. 6.16.1a, the level flow suddenly changes from the spectrum of the
Kondo phase for K → −∞ to the spectrum of the decoupled singlet phase for K → ∞.
However, since the model is still particle-hole asymmetric Ve = Vo 6= 0, the spectrum
exhibits more energy levels in comparison to the particle-hole symmetric case shown
in Fig. 6.16.1a.
The measured potential scatterings after the QCP has been restored are depicted in
Fig. 6.36.3b. In the Kondo phase Ṽe,K and Ṽo,K are constant but in contrast to Fig. 6.26.2a
not zero since the model is not particle-hole symmetric. The divergence of Ṽe → −∞
and Ṽo → ∞ in this regime reflects the π/2 phase shift due to the Kondo effect. In the
decoupled singlet phase the opposite is the case, here Ṽe,K and Ṽo,K diverge and Ṽe and

1 In principle we could either change Ve, Vo or both to achieve Ṽe − Ṽo = 0. However, we only change
the scattering of the even conduction band Ve.



128 Chapter 6. Two impurity Kondo model

(a)

0

0.5

1

1.5

2

2.5

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

E
n
er
gy

le
ve
ls

K/D

(b)

0

0.5

1

1.5

2

2.5

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

E
n
er
gy

le
ve
ls

K/D

Figure 6.4: (a) Even iterations fixed point spectrum of the TIKM with full energy-dependent
DOSs plotted against K after the QCP has been restored for kFR/π = 0.59, ρJ =
0.4 and Ve = 0.54D. The QCP occurs at Kc ≈ 0.21D (b) For comparison, the fixed
point spectrum for the same parameters but with Ve = 0 so that the QCP is not
restored and the system instead exhibits crossover. NRG parameters are Λ = 3
and Ns = 1500.

Ṽo take approximately the same constant values as Ṽe,K and Ṽo,K in the Kondo phase.
Both phases are separated by the QCP where all potential scatterings change abruptly.
As it has been adjusted, directly at the QCP the lines of Ṽe and Ṽo intersect so that
Ṽe = Ṽo.
The fixed point spectrum for a different larger Kondo coupling ρJ = 0.4 and a different
distance22 kFR/π = 0.59 is shown in Figs. 6.46.4. Panel (a) shows the spectrum after the
QCP has been restored for Ve = 0.54D while panel (b) shows the spectrum without any
initial scattering terms Ve = Vo = 0 for comparison. As it turns out the potential scat-
tering needed to restore the QCP is also of the order of D/2 and is only slightly larger
in comparison to the ρJ = 0.2 case. Therefore, Ve = 0.5D seems to be a good starting
point for the restoration of the QCP and only needs to be fine-tuned depending on the
Kondo coupling J and distance R.
Figure 6.56.5 shows the spin-spin correlation function 〈~S1

~S2〉 for ρJ = 0.4 versus the spin
interaction K before (red line) and after (blue line) the QCP has been restored. The
same data as in Fig. 6.46.4 has been used. The blue curve is slightly shifted to antifer-
romagnetic interactions because due to the initial potential scattering Ve = 0.54D, the
effective RKKY interaction becomes more ferromagnetic. Both curves change continu-
ously from 0.25 for K = −∞ to −0.75 for K = ∞. The inset of Fig. 6.56.5 shows that for
the blue curve the derivative of the correlation function with respect to the interaction
K diverges at the QCP. This has already been observed for the TIKM with constant
DOSs [6262, 169169] and reflects that directly at the QCP the staggered susceptibility, which
is the response to ~H · (~S1 − ~S2), diverges [6262–6464], cf. Sec. 2.32.3.

2 The distance kFR/π = 0.59 is chosen such that the correlation function 〈~S1
~S2〉(K = 0) = 0 vanishes

for K = 0.
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Figure 6.5: The spin-spin correlation function 〈~S1
~S2〉 plotted against the interaction K for ρJ =

0.4 and kFR/π = 0.59. The red line shows the correlation function before (Ve = 0)
and the blue line after (Ve = 0.54D) the QCP has been restored. In the inset the
derivative of 〈~S1

~S2〉 with respect to K is shown. At the QCP the derivative of the
blue curve diverges. The same data as in Fig. 6.46.4 has been used. NRG parameters
are Λ = 3 and Ns = 1500.

Since we have shown that it is in principle possible to restore the QCP with initial
potential scattering terms, we now want to say some words about an experimental re-
alization. The restoration of the QCP in the experiment is an even more difficult task
than in the NRG since one cannot directly change the potential scattering term of the
even or odd conduction band. One way to influence the particle-hole symmetry in
the experiment is to vary the energy levels of both impurities via a gate voltage which
would generate a potential scattering term of the form V(c†

1,σc1,σ + c†
2,σc2,σ) provided

that the change of the energy levels of both impurities is equal. Here c1/2,σ is an anni-
hilation operator for conduction electrons in a spherical wave around impurity 1 and
2 respectively. However, potential scatterings of this form would, if mapped to even
and odd conduction bands, only create a scattering V(c†

e,0,σce,0,σ + c†
o,0,σco,0,σ) which can

be considered as only a shift of the chemical potential and, thus, does not shift the
even and odd Kondo resonances back onto each other. Nevertheless, such a term also
generates33 a potential scattering term of the form V12(c

†
e,0,σce,0,σ − c†

o,0,σco,0,σ) [168168] in
second order in the Kondo coupling J with V12 = (Ve − Vo)/2 ∝ J2V which is exactly
the form needed to restore the QCP.
An alternative approach would be to tune the tunneling t between the two impurities.
It is known that such a tunneling term destroys the QCP of the two impurity Ander-
son model (TIAM) even for constant DOSs [170170–175175]. The reason for this is that if the

3 A term V12(c
†
e,0,σce,0,σ − c†

o,0,σco,0,σ) is only generated in the case Ne(ε) 6= No(ε) which effectively
means in the case R < ∞.
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impurities are mapped to an even and odd basis de/o = d1± d2, the tunneling shifts the
even and odd energy levels differently εe/o = ε± t. Here, d1/2 annihilates an electron
on the first/second impurity and ε = ε1 = ε2 is the energy level of both impurities.
The different energy levels also generate different potential scattering terms Ve 6= Vo

which produce a shift between the even and odd Kondo resonances. However, in the
full energy-dependent model, where the resonances are separated anyway, it should be
possible to shift the Kondo resonances back on top of each other using the tunneling.

6.2 Nonequilibrium TIKM: constant densities of states

In this section we present nonequilibrium results of the TIKM with constant DOSs in
order to set the stage for the full energy-dependent model in Sec. 6.36.3. Note that we
do not use any initial potential scatterings in this section since the TIKM with constant
DOSs always exhibits a QCP and we, therefore, do not need to restore it. Since for
constant DOSs the RKKY interaction automatically generated by the NRG is always
ferromagnetic [6161, 6262], cf. appendix BB, we use a direct spin-spin interaction K between
the impurity spins to achieve antiferromagnetic interactions. For simplicity we adjust
No/Ne = 1 which means that the RKKY interaction in Eq. (B.9B.9) vanishes and, hence, K
is the only remaining interaction between the impurity spins.
In the following, we investigate different quenches in the interaction K within a phase
and also over the QCP. For this purpose we consider the two different initial condition
of parallel and antiparallel aligned impurity spins.

6.2.1 Parallel aligned impurity spins

We start with the investigation of the initial condition where both impurity spins are
parallel aligned. Considering that, we prepare the two impurity spins with two strong
magnetic fields H1 = H2 = −10D that act locally on the z-component of the impurity
spins such that both impurities are fully polarized and in a spin up state. At time
tD = 0 the magnetic fields are switched off and the direct spin-spin interaction K is
switched on.
Figure 6.66.6a shows the time-dependent expectation value 〈~S1/2〉(t) for ρJ = 0.4 and
different ferro- and antiferromagnetic spin-spin interactions K on a logarithmic time
scale. Since the initial state is symmetrical with respect to the two impurity spins, the
time evolution of both spins is identical 〈Sz

1〉(t) = 〈Sz
2〉(t).

The decrease of the polarization for short times can only be caused by spin-flip pro-
cesses with conduction electrons because the initial state is an eigenstate of the in-
teraction K~S1

~S2. Therefore, the short-time dynamic is completely independent of the
spin-spin interaction K and only depends on the Kondo coupling J.
In order to investigate the time scales for short times, the short-time behavior of
〈Sz

1/2〉(t) is plotted in Fig. 6.66.6b for different couplings and no spin-spin interaction
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Figure 6.6: (a) The time-dependent expectation values 〈Sz
1〉(t) = 〈Sz

2〉(t) for ρJ = 0.4 and
different spin-spin interactions K. With increasing antiferromagnetic K the polar-
ization decreases faster. The short-time behavior is independent of the spin-spin
interaction K. (b) Short-time behavior of 〈~S1/2〉(t) for different Kondo couplings J
and K = 0 vs. the rescaled time tJ. The relevant time scale is given by 1/J. NRG
parameters are Λ = 3, Ns = 1500 and Nz = 16.

K = 0 against the rescaled time tJ. The polarization decreases quadratically as one
expects from Fermi’s golden rule and the time scale is given by 1/J.
Figure 6.66.6a shows that with increasing antiferromagnetic interaction the polarization
decreases faster and finally reaches the value 〈Sz

1/2(t → ∞)〉 ≈ 0.05. The finite long-
time value 〈Sz

1/2〉(t → ∞) 6= 0 and the small oscillations around it both originate
from discretization errors of the time-dependent numerical renormalization group
(TD-NRG) [8888, 9191]. While a larger number of z-averages leads to a reduction of the
oscillations, the long-time value will remain finite for a finite discretization parameter
Λ. The reason for this is that the polarization on the impurity spin cannot be com-
pletely transfered to the Wilson chain. Due to the exponential decreasing hopping
parameters of the Wilson chain, a fraction of the spin polarization is reflected to the
impurity at each Wilson site. A way to circumvent this shortcoming may be the re-
cently developed hybrid NRG-DMRG approach [9191].
In order to identify the relevant long-time scale, we rescale the data of Fig. 6.66.6a with
the thermodynamic Kondo temperature TK. TK is defined from the equilibrium NRG
level flow and is the energy scale at which the first excitation of the even iterations
reaches 80% from its fixed point value. The obtained values for the Kondo tempera-
ture and corresponding time scales tKD = D/TK are shown in Tab. 6.16.1. The table only
contains Kondo temperatures up to the antiferromagnetic interaction K = 0.20D since
larger antiferromagnetic interactions exceed the critical value Kc = 0.241D, which is
the position of the QCP, and, consequently, the Kondo effect breaks down for these
interactions. Table 6.16.1 shows that the Kondo temperature is largest for the interaction
K = 0 and decreases for ferromagnetic as well as for antiferromagnetic interactions.
The reason for this is that for a ferromagnetic interaction the two impurity spins form
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K/D TK/D · 102 tKD = D/TK

−0.95 1.029 97, 16
−0.20 2.200 45.45
−0.15 2.351 42.53
−0.10 2.520 39.69
−0.05 2.681 37.30
0.00 2.756 36.29
0.05 2.642 37.85
0.10 2.279 43.88
0.15 1.563 63.96
0.20 0.441 226.51

Table 6.1: The Kondo temperature TK and the corresponding time scale tKD = D/TK for
different spin-spin interactions K. The Kondo temperatures have been obtained
from the NRG level flow - see text.

K/D 0.0 0.1 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9
tlowD 5.03 4.24 3.63 3.4 3.24 3.11 3.00 2.84 2.73 2.65 2.59 2.55

Table 6.2: The time scale tlow at which the polarization reaches 40% of its initial value
〈~Sz

1,2〉(tlow) = 0.2 for different spin-spin interactions K.

a triplet and hence the second part of the interaction between the impurity spins and
the conduction bands in Eq. (2.142.14), which is proportional to ∝ (~S1 − ~S2), is suppressed
[103103] while for antiferromagnetic correlations the first part ∝ (~S1 + ~S2) is suppressed.
In both cases the effective coupling to the conduction band decreases and, therefore,
also the Kondo temperature decreases.
Figure 6.76.7 shows the time-dependent expectation value 〈Sz

1/2〉(t) vs. the rescaled time
tTK. For long times, the data for zero and ferromagnetic spin-spin interactions K ≤ 0
(solid lines) fall onto one universal curve. The long-time behavior is determined by the
Kondo effect and the relevant time scale is given by tK = 1/TK. The same behavior has
been observed for the standard Kondo model with just one impurity spin coupling to
the conduction band [8888]. However, in Ref. [8888] the change of the Kondo temperature
TK has been induced by directly changing the Kondo coupling to the conduction band
J while in our case the effective coupling to the conduction band is changed by varying
the spin-spin interaction K.
In contrast, antiferromagnetic spin-spin interactions K < 0 (dashed lines) amplify the
decay of the polarization additionally to the decay caused by the Kondo effect since
for antiferromagnetic interactions a formation of a singlet between the impurity spins
is favored. Therefore, a rescaling with TK only does not yield universal behavior as it
was the case for ferromagnetic interactions.
To investigate the behavior for antiferromagnetic interactions, we define a new time
scale tlow at which the polarization reaches 40% of its initial value 〈Sz

1,2〉(tlow) = 0.2.
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ters as in Fig. 6.66.6a rescaled with the Kondo temperature TK. Solid lines indicate
spin-spin interactions K ≤ 0 while the dashed lines mark antiferromagnetic in-
teractions. For K ≤ 0 the long-time value of 〈Sz

1/2〉(t) shows universal behavior.
NRG parameters are Λ = 3, Ns = 1500 and Nz = 16.

The obtained values tlow are listed in Tab. 6.26.2 and the time-dependent polarization is
plotted against the rescaled time t/tlow in Fig. 6.86.8 for different interactions K. In con-
trast to the rescaling with TK only, the rescaling with the new time scale tlow yields
also universal long-time behavior for up to the medium antiferromagnetic interaction
K = 0.30D. In this regime the long-time behavior is determined by both the Kondo
effect and the spin-spin interaction.
For larger antiferromagnetic interactions the behavior starts to differ from the univer-
sal long-time behavior until for very large interactions K ≥ 0.60D universal behavior is
found again not only for the long-time behavior but for the entire decay of the polariza-
tion. Furthermore, after the decay of the polarization for these very large interactions
damped oscillations are observed which will be discussed later in more detail.
The reason for the universal behavior for the entire decay is that the polarization does
not decrease faster anymore with increasing antiferromagnetic interaction K. This can
be seen in the inset of Fig. 6.86.8 where the time scale tlow is plotted against the interac-
tion K. For up to medium antiferromagnetic interactions the time scale tlow decreases
with increasing antiferromagnetic K while for K > 0.5D the time scale approaches the
fixed value tlowD ≈ 2.5. For such interactions the time is only rescaled with a constant
which means that the decay of the polarization must also show universal behavior even
without any rescaling as shown in Fig. 6.106.10a.
The constant time scale tlowD for large interactions is caused by the fact that the short-
time behavior is independent of K and, therefore, the coupling to the conduction band
J acts as a bottleneck for the decay.
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Figure 6.8: The time-dependent polarization 〈Sz
1/2〉(t) rescaled with tlow. For up to the

medium antiferromagnetic interaction K ≤ 0.30D the long-time behavior of the
decay shows universal behavior. For very large interactions K ≥ 0.60D universal
behavior is found for the entire decay of the polarization. Dashed lines show no
universal behavior. The inset shows the time scale tlow vs. the spin-spin interac-
tion K.

The time-dependent spin-spin correlation function 〈~S1
~S2〉(t) is plotted for ρJ = 0.4 and

different interactions K in Fig. 6.96.9. Since in the initial state the two impurities form a
triplet, the correlation function starts at the maximal value 〈~S1

~S2〉(t) = 0.25. As for
the polarization, the short-time behavior is independent of the interaction K and the
correlation decreases quadratically with time. For ferromagnetic and moderate anti-
ferromagnetic spin-spin interactions K < Kc the correlation function 〈~S1

~S2〉(t) reaches
its equilibrium value for t → ∞ which is indicated by arrows in the right of Fig. 6.96.9.
For larger antiferromagnetic interactions, thermalization is not observed anymore. For
such large antiferromagnetic K, the system is quenched from the Kondo phase over
the QCP at Kc = 0.241D into the decoupled singlet phase. In the decoupled singlet
phase, the two impurity spins form a singlet and the Kondo coupling is renormalized
to zero J → 0. Due to the renormalization J → 0 for times t → ∞, the impurity spins
are no longer coupled to the conduction band, the decrease of the correlation function
〈~S1

~S2〉(t) stops and, consequently, the system does not thermalize. A similar effect has
been recently observed and extensively discussed for the pseudogap single impurity
Anderson model (SIAM) [176176]. In the pseudogap SIAM a Coulomb interaction quench
over the QCP also leads to a decoupling of an effective local magnetic moment which
prevents the thermalization of the system.
Most interestingly, however, is the occurrence of oscillations in the polarization and
correlation function for large antiferromagnetic interactions K as shown in Fig. 6.106.10.
These damped oscillations have the same frequency for 〈Sz

1/2〉(t) and 〈~S1
~S2〉(t) and the
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Figure 6.9: The time-dependent spin-spin correlation function 〈~S1
~S2〉(t) for ρJ = 0.4 and dif-

ferent interactions K. The arrows indicate the equilibrium value of 〈~S1
~S2〉 calcu-

lated with the equilibrium NRG. For ferromagnetic and moderate antiferromag-
netic interactions K < Kc the correlation function 〈~S1

~S2〉(t) reaches its equilibrium
value for large times. As soon as K exceeds the critical value Kc = 0.241D, the
correlation function 〈~S1

~S2〉(t) no longer thermalizes. NRG parameters are Λ = 3,
Ns = 1500 and Nz = 16.

amplitude increases with increasing interaction K. Since these oscillations only occur
for very large interactions K, it is obvious that they must be caused by the first few
Wilson sites which account for the high energy part of the NRG.
Therefore, we plotted the time-dependent polarization and spin-spin correlation func-
tion for different numbers of NRG-iterations NIter in Figs. 6.116.11a and b, respectively.
Note that we used βD = 105 in the TD-NRG calculations instead of the usual βD = 1
in order to obtain results for T ≈ 0 even for the first iterations. Since the polarization
for NIter = 0 does not oscillate with a fixed frequency and shows a chaotic behavior,
we omit this curve in Fig. 6.116.11a for clarity.
In contrast to the polarization, the spin-spin correlation function shows an oscillation
with a constant frequency for NIter = 0, however, this oscillation is much faster than the
oscillations observed for the full TD-NRG calculations shown in Fig. 6.106.10. Adding a
second Wilson site at iteration NIter = 1 changes the picture. Now the time-dependent
polarization and spin-spin correlation function show undamped oscillations with the
same frequency. This frequency, however, is still 1.5 times larger than the one observed
in Fig. 6.106.10. If we add a third Wilson site at iteration NIter = 2 the oscillations are
damped and the frequency is lowered. Adding further Wilson sites increase the damp-
ing and the frequency further decreases. At NIter ≥ 7 the polarization and spin-spin
correlation both converge and the frequency coincides exactly with the frequency ob-
served in the full TD-NRG calculations. Therefore, we can conclude that the oscillations
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Figure 6.10: (a) The time-dependent polarization 〈Sz
1/2〉(t) and (b) spin-spin correlation func-

tion 〈~S1
~S2〉(t) for ρJ = 0.4 and different large spin-spin-interactions K. For both

expectation values damped oscillations with the same frequency are observed.
NRG parameters are Λ = 3, Ns = 1500 and Nz = 16.
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Figure 6.11: (a) The time-dependent polarization 〈Sz
1/2〉(t) and (b) spin-spin correlation func-

tion 〈~S1
~S2〉(t) for ρJ = 0.4, K = 1.0D and different numbers of NRG-iterations

NIter.

for large interactions K are caused by the first two Wilson sites. Adding further Wilson
sites only results in a damping of the oscillations and a small shift of the frequency.
To further investigate these oscillations and their precise origin, we plotted the fre-
quency f of the oscillations for NIter = 1 against the spin-spin interaction for different
Kondo couplings in Fig. 6.126.12a. The frequency decreases with increasing K until f
has a minimum at K = 2t0 for all Kondo couplings ρJ and afterwards it is increasing
again. The decay of the frequency becomes stronger with decreasing coupling ρJ. Here
t0 = 0.577D is the hopping between the zeroth and first Wilson site. For the Kondo
coupling44 ρJ = 5 · 10−4 ≈ 0 we can identify a f (K) = |2t0 − K| behavior for the K

4 Since the initial state where both impurity spins point upwards is an eigenstate of K~S1
~S2, the Kondo

coupling must be finite ρJ 6= 0 in order to obtain a dynamic for the impurity spins. Therefore, we
use ρJ = 5 · 10−4 to approximate the ρJ = 0 solution.
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Figure 6.12: (a) The frequency f of the oscillations in the polarization and spin-spin correla-
tion function for NIter = 1 vs. the interaction K for different Kondo couplings.
For ρJ = 0.0005 ≈ 0 the dependence of the frequency from the interaction is
given by f (K) = |2t0−K|. (b) The measured frequency (red solid line) for K = 0
and NIter = 1 plotted against the Kondo coupling ρJ. The analytically calculated
frequency (green dashed line) agrees perfectly with the measured frequency.

Figure 6.13: In the simplified model one impurity spin couples to a Wilson chain consisting of
just two sites which are coupled via the hopping t0. The bath can be diagonalized
by the linear combinations c±,σ = 1/

√
2(c0,σ± c1,σ) with the new onsite energies

ε± = ±t0.

dependent frequency.
To explain this behavior for ρJ ≈ 0, we consider a simplified model where at first
only one impurity spin couples to a Wilson chain with only two sites which corre-
sponds to NIter = 1. The two Wilson sites are coupled via the hopping t0 ≈ 0.577D.
In a particle-hole symmetric case the onsite energies ε0/1 = 0 are zero and the sub-
system of the bath with the two sites can be diagonalized by the linear combinations
c±,σ = 1/

√
2(c0,σ ± c1,σ) where ci,σ annihilates an electron of the i-th Wilson site with

spin σ. The onsite energy of the new sites is given by ε± = ±t0 so that the difference
between them is ε+ − ε− = 2t0. The simplified model and the diagonalization of the
bath is shown in Fig. 6.136.13.
In the initial ground state the |−〉-site is doubly occupied because ε− is negative while
the |+〉-site is unoccupied which means that the electrons in the bath form a sin-
glet. Since the impurity spin points upwards and both the particle number and the
z-component of the total spin are conserved quantities, the relevant subspace for the
dynamics is given by Q = 0 and Sz = +1/2 where Q measures the particle number
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from half-filling and Sz is the z-component of the total spin.
In order for the impurity spin to flip, the down-spin of the bath must also flip due to
spin conservation. Because of the Pauli principle, this is only possible if the bath spin
is excited into the |+〉-site, so that both |±〉-sites are occupied with an up-spin. This
state, however, is separated by ε+ − ε− = 2t0 from the ground state. Therefore, we
observe for K = 0 a frequency of 2t0 ≈ 1.155D for the oscillations.
If we also consider a finite spin-spin interaction K between the two impurity spins, the
energy difference between the impurity triplet and singlet is given by K. Since the im-
purities can be regarded as almost uncoupled from the conduction band (ρJ ≈ 0), the
total energy difference to the ground state after an impurity spin flip is simply given
by 2t0 − K so that we finally obtain f (K) = |2t0 − K| for the K-dependent frequency.
At K = 2t0 the spin-spin interaction compensates the energy difference ε+ − ε− and
consequently the oscillations vanish as shown in Fig. 6.126.12a.
For ρJ > 0 the model becomes more complicated and the K dependence deviates from
the simple f (K) = |2t0 − K| behavior. Although the frequency no longer vanishes, it
still has a minimum at K = 2t0 for ρJ > 0.
Furthermore, for finite ρJ and K = 0 the frequency also differs from 2t0, however, for
the simple case of vanishing spin-spin interaction the problem can be solved analyti-
cally since the two impurity spins are completely independent. For this purpose we
consider the same simplified model as before where only one impurity spin couples to
a single Wilson chain consisting of two sites as shown in Fig. 6.136.13. As already men-
tioned above, only the Q = 0 and Sz = 1/2 subspace is relevant because of particle
and spin conservation. This subspace has only a dimension of 5× 5 and can, hence,
be diagonalized analytically with a computer algebra system. As it turns out, the fre-
quency for K = 0 coincides exactly with the energy difference between two eigenstates.
However, the analytical formula is very cumbersome, therefore, we only plot the result
together with the measured frequency against the Kondo coupling in Fig. 6.126.12b. The
measured (red solid line) and the analytically calculated frequency (green dashed line)
are in a perfect agreement. Note that the dependence of the frequency from the Kondo
coupling shown in Fig. 6.126.12b is not a parabola.
Therefore, we can conclude that the oscillations for large antiferromagnetic spin-spin
interactions are a remnant of the oscillations for NIter = 1 where the system oscillates
between two states and the frequency not only depends on ρJ and K but also on the
hopping t0 between the zeroth and first Wilson site.

6.2.2 Antiparallel aligned impurity spins

We now turn to the investigation of a different initial condition where the impurity
spins are antiparallel aligned. As before, the two magnetic fields H1 = −10D and
H2 = 10D that act locally on the z-component of the two impurity spins Sz

1 and Sz
2 are

switched off and the spin-spin interaction is switched on at time tD = 0.
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Figure 6.14: (a) The time-dependent spin polarization 〈Sz
1〉(t) = −〈Sz

2〉(t) for ρJ = 0.4 and dif-
ferent interactions K. For larger ferromagnetic (solid lines) as well as for larger
antiferromagnetic (dashed lines) interactions K the polarization decays faster.
The short-time behavior is K dependent. (b) The spin-spin correlation function
〈~S1

~S2〉(t) for ρJ = 0.4 and different interactions K. The arrows indicate the equi-
librium value of the correlation function. Only for interactions K ≤ Kc = 0.241D
the correlation function thermalizes for long times. The short-time behavior is
independent of the interaction K. NRG parameters are Λ = 3, Ns = 1500 and
Nz = 16.

Figure 6.146.14a shows the time-dependent spin polarization of the two impurities for
ρJ = 0.4 and different spin-spin interactions K. In comparison to the case discussed
above, here, the time-evolution of the polarization of the two impurity spins is anti-
symmetrical 〈Sz

1〉(t) = −〈Sz
2〉(t) due to the antisymmetrical initial condition.

In contrast to the case where both spins are parallel aligned, we find that the polariza-
tion now decays faster for antiferromagnetic as well as for ferromagnetic interactions K.
The reason for this is that the initial state, where one impurity is in a spin up state and
the other in a spin down state, is not an eigenstate to the interaction K~S1

~S2 anymore.
Unlike the case where both spins were parallel aligned and spin flips could only be
caused by the bath coupling, spin flips can now be performed locally on the impurity
sites. This is also the reason why, in contrast to the case discussed above, the short-time
behavior is dependent of the spin-spin interaction as the curves for K = ±0.95D show.
Without a coupling to the conduction band one would observe oscillations of the spin
polarizations between the values −0.5 and 0.5 with the frequency |K| so that it would
make no difference if the interaction is ferro- or antiferromagnetic.
A notable effect is that for every finite interaction K the long-time value of the spin
polarization reaches the expected value of 〈Sz

i 〉(t = ∞) = 0 and, therefore, the system
thermalizes. However, for small interactions the polarization first reaches a plateau
and further decreases for larger times which can be seen most clearly for K = ±0.05D.
This behavior is unphysical and must be a feature of the TD-NRG because there is no
reason why the decay of the polarization should stop at a certain value and decrease
later on. An explanation for this effect is that due to the antiparallel aligned impurity
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K/D −1.0 −0.9 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.9 1.0
tlowD 0.91 0.99 3.12 3.73 4.45 5.03 5.20 4.96 4.41 1.11 1.01

Table 6.3: The time scale tlow of the antiparallel aligned impurity spins at which the polar-
ization reaches 40% of its initial value |〈~Sz

1,2〉(tlow)| = 0.2 for different spin-spin
interactions K. The time scale tlow in dependence of the interaction K is also de-
picted in the inset of Fig. 6.156.15a.

spins, there emerge overdamped oscillations locally on the impurity sites which cause
the further decreases of the polarization. The fact that the curves for K and −K fall
onto one curve for large times supports this assumption because the frequency of these
local oscillations is only determined by the absolute value of the interaction |K|.
The time-dependence of the spin-spin correlation function 〈~S1

~S2〉(t) is shown in Fig.
6.146.14b for different interactions K. For long times we observe the same behavior as
for the case where both spins are parallel aligned. For interactions K < Kc = 0.241D
the system reaches the equilibrium value that is marked by the arrows while for large
antiferromagnetic interactions K > Kc the system does not thermalize. As before the
reason for this is that the system is quenched into the decoupled singlet phase where
the coupling to the bath J is renormalized to zero which prevents thermalization.
Unlike the spin polarization, the short-time behavior of the correlation function is in-
dependent of K. For all interactions the correlation function first increases until for
large antiferromagnetic interactions 〈~S1

~S2〉(t) starts to decrease. The time at which the
correlation starts to decrease depends on the interaction K.
To understand this short-time behavior one can perturbatively calculate 〈~S1

~S2〉(t) by
expanding the time-dependent density operator in orders of J similar to the pertur-
bative calculation of the correlation function 〈~Simp~s(~r, t)〉 in Sec. 4.3.24.3.2. It is straight
forward to see that an interaction K~S1

~S2 has no influence on the correlation function
for short times because the commutator

[
K~S1

~S2,~S1
~S2

]
vanishes.

As it turns out, a rescaling of the time with the Kondo temperature TK only never yields
universal behavior since due to the antiparallel initial configuration, the interaction K
always has a direct impact on the decay of |〈Sz

i 〉(t)|. This is in contrast to the case
with parallel aligned impurity spins where ferromagnetic interactions only influence
the Kondo temperature and, therefore, a rescaling with TK leads to universal long-time
behavior.
As before, we hence define a new time scale |Sz

i (tlow)| = 0.2 at which the polarization
reaches 40% of its initial value in order to investigate the decay of the spin polarization
in more detail.
The obtained time scales tlow for the different spin interactions K are listed in Tab. 6.36.3
and shown in the inset of Fig. 6.156.15a. Unlike before, the time scale does not reach a
constant value for large interactions but continues to decrease. The inset also shows
that the maximum of tlow is not exactly located at K = 0 but slightly shifted to small
antiferromagnetic interactions K > 0. An explanation for this will be discussed below



6.2. Nonequilibrium TIKM: constant densities of states 141

(a)

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 10 100

0

2

4

6

−1 −0.5 0 0.5 1

〈S
z 1
〉(t

)
=
−
〈S

z 2
〉(t

)

t/tlow

K=-0.15
K=-0.10
K=-0.05
K= 0.00
K= 0.05
K= 0.10
K= 0.15

t l
o
w
D

K/D

(b)

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 10 100

−0.2

0

0.2

0.4

1

〈S
z 1
〉(t

)
=
−
〈S

z 2
〉(t

)

tK

K=-1.0
K=-0.9
K=-0.8
K=-0.7
K=-0.6
K= 0.7
K= 0.8
K= 0.9
K= 1.0

Figure 6.15: (a) The spin polarization 〈Sz
1〉(t) = −〈Sz

2〉(t) for ρJ = 0.4 vs. the rescaled time
t/tlow. For small spin-spin interactions |K| ≤ 0.15D universal long-time behavior
is found. The inset shows the time scale tlowD versus the interaction K/D.
(b) The polarization plotted against tK for different large interactions K. The
inset shows the decay in more detail and reveals a slight shift between the
ferromagnetic (solid lines) and antiferromagnetic (dashed lines) interactions.
NRG parameters are Λ = 3, Ns = 1500 and Nz = 16.

in the context of the oscillations that arise for large spin-spin interactions.
The spin polarization |〈Sz

i 〉(t)| versus the rescaled time t/tlow is depicted in Fig. 6.156.15a
for different small interactions. As for the parallel aligned impurity spins, universal
long-time behavior is found for ferro- as well as for antiferromagnetic interactions. In
this regime the long-time behavior is determined by both the Kondo effect and the
spin-spin interaction.
Figure 6.156.15b shows the time-dependent polarization for larger interactions plotted
against the rescaled time tK. For such large interactions the decay is dominated by the
local oscillations of the two impurity spins with frequency K. Therefore, after a rescal-
ing of time with the interaction K the curves almost fall onto one curve and universal
behavior is found for the entire decay of the polarization. However, the inset, which
shows the decay in more detail, reveals that there is a slight shift between the ferromag-
netic (solid lines) and antiferromagnetic (dashed lines) interactions. This asymmetry
between ferromagnetic and antiferromagnetic interactions can already be seen in Fig.
6.146.14a where a slight shift between the curves for K = −0.95D and K = 0.95D can be
observed and is also reflected in the asymmetric shape of the time scale tlow shown in
the inset of Fig. 6.156.15a.
Furthermore, the asymmetry is also visible in the damped oscillations for large in-
teractions K which are shown in Fig. 6.166.16a for ferromagnetic and in Fig. 6.166.16b for
antiferromagnetic interactions. The frequency of both oscillations slightly differ with
the oscillations for ferromagnetic interactions being a little bit faster. Both frequencies,
however, are much faster than the frequency of the oscillations observed in the parallel
aligned case for large ferromagnetic spin-spin interactions. Once again the reason for
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Figure 6.16: The spin polarization 〈Sz
1〉(t) = −〈Sz

2〉(t) for large (a) ferromagnetic and (b)
antiferromagnetic spin-spin interactions K. In both cases damped oscillations
are observed, however, the frequency is slightly different. In comparison to
Fig. 6.106.10a the oscillations are much faster. (c) The spin-spin correlation function
〈~S1

~S2〉(t) for large antiferromagnetic spin-spin interactions. Damped oscillations
with the same frequency as in Fig. 6.106.10b are observed. NRG parameters are
Λ = 3, Ns = 1500 and Nz = 16.

this is that the antiparallel aligned initial condition gives rise to another spin flip pro-
cess locally on the impurity sites that occurs on the time scale 1/|K| which can be very
short for large |K|.
The slight frequency shift between the two oscillations indicates that depending on the
sign of the K once the interaction is added and once subtracted from another occur-
ring frequency. This suggestion is supported by the fact that the oscillations look more
complicated in comparison to the case discussed above and differ from a simple cosine
shape which is also an indication that multiple frequencies are involved. The frequency
shift as well as the more complicated structure of the oscillations are already visible at
the first iteration NIter = 1 and one could now carry out a similar investigation as it has
been done for the parallel aligned case. However, this investigation will be even more
complicated than the already long and cumbersome discussion of the parallel aligned
case so that we omit a detailed analysis of the frequencies.
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In contrast to the spin polarization, oscillations in the time-dependent spin-spin cor-
relation function 〈~S1

~S2〉(t) are only observed for large antiferromagnetic interactions
K � 0 which is depicted in Fig. 6.166.16c. The frequency coincides exactly with the
frequency observed for the polarization and spin correlation function in the parallel
aligned case. The reason is that a change of the correlation function 〈~S1

~S2〉(t) cannot
be caused by an interaction of the form K~S1

~S2 and must happen via the interaction
with the conduction band. Therefore, the fast local oscillations, which originate from
the antiparallel initial configuration, do not have a direct influence on 〈~S1

~S2〉(t) and we
observe the same oscillations as for the parallel aligned case discussed above.

6.3 Nonequilibrium TIKM with restored QCP

In the following we investigate the nonequilibrium dynamics of the model with full
energy-dependent DOSs after the QCP has been restored. In contrast to Sec. 6.26.2 where
we have adjusted the constant No/Ne = 1 so that the RKKY interaction vanishes at
all energy scales, in this section the RKKY interaction at low temperatures is given
by55 KRKKY ≈ −0.072D for ρJ = 0.4, kFR/π = 0.59, Ve = 0.54D. Therefore, the total
effective spin-spin interaction for times tD ≥ 0 is given by the sum of the direct and
RKKY interaction Keff = K + KRKKY.

6.3.1 Parallel aligned impurity spins

We again start with the initial condition where the impurity spins are parallel aligned.
With two magnetic fields Hz

1 = Hz
2 = −10D that act locally on the z-component of the

impurity spin both spins are fully polarized. These magnetic fields are switched off
and the direct spin-spin interaction K is turned on at time tD = 0.
Figure 6.176.17a shows the time-dependent polarization 〈Sz

1/2〉(t). As before, the time-
evolution of both impurities is also symmetrical 〈Sz

1〉(t) = 〈Sz
2〉(t) due to the sym-

metrical initial condition. The short-time behavior is once again independent of the
spin-spin interaction since the initial state is an eigenstate of the interaction K~S1

~S2.
Similar to the case of constant DOSs, for short time scales the polarization decreases
quadratically with time.
For medium and larger time scales we observe the same behavior as in Sec. 6.2.16.2.1, for an-
tiferromagnetic effective spin-spin interactions the polarization decreases faster while
for ferromagnetic interactions 〈Sz

1/2〉(t) decreases more slowly. As for constant DOSs
the decrease of the polarization stops at a finite value 〈Sz

1/2〉(t→ ∞) 6= 0 which can be
traced back to discretization errors of the TD-NRG. However, a comparison with Fig.
6.66.6a shows that the long-time value of the polarization is slightly larger compared to

5 The RKKY interaction is determined from the spin-spin correlation function 〈~S1
~S2〉 shown in Fig.

6.56.5. For K = −KRKKY the direct interaction compensates the RKKY interactions and, consequently,
the correlation function vanishes 〈~S1

~S2〉 = 0.
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Figure 6.17: (a) The time-dependent expectation value 〈Sz
1〉(t) = 〈Sz

2〉(t) for ρJ = 0.4,
kFR/π = 0.59, Ve = 0.54D and different effective spin-spin interactions Keff =
K + KRKKY. With increasing antiferromagnetic Keff the polarization decreases
faster. The short-time behavior is independent of the spin-spin interaction Keff.
(b) Same data as in (a) plotted against the rescaled time tTK. Only for ferro-
magnetic interactions Keff ≤ −0.10D (solid lines) universal long-time behavior
is observed. NRG parameters are Λ = 3, Ns = 1500 and Nz = 16.

the case of constant DOSs. This will be discussed in more detail later on.
In order to investigate the long-time behavior of 〈Sz

1/2〉(t), we rescale the time with the
Kondo temperature TK. As before, the Kondo temperature is defined by the energy
scale at which the first excitation of the even iterations reaches 80% of its fixed point
value. The obtained Kondo temperatures TK are listed for the different effective inter-
actions Keff in Tab. 6.46.4. The time-dependent polarization 〈Sz

1/2〉(t) versus the rescaled
time tTK is shown in Fig. 6.176.17. For ferromagnetic interactions Keff ≤ −0.10D (solid
lines) the polarization shows universal long-time behavior. In contrast, for the constant
DOSs we have found universal long-time behavior for all ferromagnetic interactions
K ≤ 0 and only the data for antiferromagnetic interactions K > 0 have not shown
universal behavior when rescaled with TK. The reason for this is that we must adjust
an antiferromagnetic direct spin interaction K = −KRKKY = 0.072D to achieve that
the total effective interaction Keff = K + KRKKY vanishes. However, since the RKKY
interaction only emerges at low energy scales, at medium and high energy scales the
total effective spin-spin interaction Keff is antiferromagnetic. Therefore, we only ob-
serve universal long-time behavior if for the direct interaction K ≤ 0 applies since only
in this case the total effective spin-spin interaction Keff is not antiferromagnetic for all
energy scales.
Figure 6.186.18a shows a comparison between the time-dependent polarization with energy-
dependent DOSs (red curve) and with constant DOSs (blue curve) for a vanishing total
effective spin-spin interaction Keff = 0. The naive expectation would be that the po-
larization for energy-dependent DOSs decreases faster because the effective interaction
at high and medium energy scales is slightly antiferromagnetic which amplifies the
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Keff/D −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10
TK/D · 102 2.00 2.32 2.71 3.41 4.30 5.07 6.25 6.39 6.67

Table 6.4: Kondo temperatures TK for the different effective spin-spin interactions Keff.
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Figure 6.18: (a) A comparison between the time-dependent polarization with energy-
dependent DOSs (red curve) and constant DOSs (blue curve) for a vanishing
total effective spin-spin interaction Keff = 0. The dashed green curve for con-
stant DOSs and Ve = Vo = 0.4D shows that the scattering terms are responsi-
ble for the slower decay. (b) The time-dependent spin-spin correlation function
〈~S1

~S2〉(t). For effective spin-spin interactions larger than the critical interaction
Keff,c ≈ 0.138D the system does not thermalize. The arrows on the right indicate
the equilibrium value. NRG parameters are Λ = 3, Ns = 1500 and Nz = 16.

decrease. In contrast to this expectation, the polarization value for constant DOSs de-
creases faster. Even for short time scales the two curves differ from each other which
indicates that not the effective spin-spin interaction is responsible for the two different
decays since the short-time behavior is independent of K.
The green dashed line in Fig. 6.186.18a shows the time-dependent polarization with con-
stant DOSs and initial potential scatterings66 Ve = 0.4D and Vo = 0.4D. The effective
spin-spin interaction is the same as for the blue curve (Keff = 0) since for No/Ne = 1
and Ve = Vo the RKKY interaction is not changed [6464, 168168]. Although the effective inter-
actions Keff are equal, the polarization of the green dashed curve decreases slower than
the one of the blue curve even for short times and also the long-time value 〈Sz

i (t→ ∞)〉
is slightly larger. Due to the scattering terms, the occupation of the first Wilson sites
differs from half-filling and, therefore, the transport of the polarization to the bath is
suppressed which leads to a slower decay of the polarization and the previously men-
tioned slight increase of the long-time value 〈Sz

i (t→ ∞)〉.
The time-dependent spin-spin correlation function 〈~S1

~S2〉(t) is depicted in Fig. 6.186.18b.

6 We have chosen Ve = Vo = 0.4D as the potential scatterings because for energy-dependent DOSs,
kFR/π = 0.59 and Ve = 0.54D the potential scatterings of the zeroth even and odd Wilson sites are
also around ≈ 0.4D.
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Figure 6.19: (a) The time-dependent polarization 〈Sz
1/2〉(t) and (b) spin-spin correlation func-

tion 〈~S1
~S2〉(t) for ρJ = 0.4, kFR/π = 0.59, Ve = 0.54D and different large an-

tiferromagnetic effective spin-spin-interactions Keff. For both expectation val-
ues only the first maximum of the damped oscillations is visible. (c) Com-
parison between the polarization for energy-dependent DOSs (red line), con-
stant DOSs (blue line) and constant DOSs with additional initial scattering terms
Ve = Vo = 0.4D (green dashed line). (d) The same comparison for the spin-spin
correlation function. NRG parameters are Λ = 3, Ns = 1500 and Nz = 16.

We observe exactly the same behavior as for the constant DOSs. For spin-spin interac-
tions K < Keff,c ≈ 0.138D the equilibrium value is reached as indicated by the arrows
on the right of Fig. 6.186.18b. However, if we quench the system over QCPs into the decou-
pled singlet phase, the system does not thermalize anymore. As before, the reason for
this is that in the decoupled singlet phase the Kondo coupling is renormalized to zero
J → 0. Therefore, the impurities decouple from the conduction band which prevents
thermalization.
Figures 6.196.19a and 6.196.19b show the time-dependent polarization 〈Sz

1/2〉(t) and spin-spin
correlation function 〈~S1

~S2〉(t) for different large antiferromagnetic effective spin-spin-
interactions Keff. For short times the behavior is the same as in Sec. 6.2.16.2.1 for constant
DOSs, the entire decay of the polarization and correlation function is independent of
the large effective interaction. As before, the reason for this is that the short-time be-
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havior for both expectation values is completely independent of K and, therefore, the
coupling to the conduction band J works as a bottleneck for the decay.
In contrast to the case for constant DOSs where we have observed damped oscillations
with the same frequency for the expectation values 〈Sz

1/2〉(t) and 〈~S1
~S2〉(t), for the

energy-dependent DOSs only the first maximum is visible. Figure 6.196.19c shows a com-
parison between the polarization for energy-dependent DOSs (red line), constant DOSs
(blue line) and constant DOSs with additional initial scattering terms Ve = Vo = 0.4D
(green dashed line) while Fig. 6.196.19d shows the same comparison for the spin-spin cor-
relation function. While the first few maxima of the blue curves are clearly pronounced,
the damping for the curves with potential scatterings (red and green dashed lines) is
much stronger and, therefore, only the first maximum of the oscillations is clearly vis-
ible. We can, therefore, again trace the origin of the increased damping back to the
potential scattering terms.
Here the oscillations of the red curves are even stronger suppressed than those of the
green dashed curves because for energy-dependent DOSs scattering terms emerge at
every Wilson site. In contrast, for the green dashed curve we have only introduced
potential scatterings on the zeroth Wilson sites and in Sec. 6.2.16.2.1 we have shown that
not only the zeroth sites are important for the occurring oscillations but also the first
few following Wilson sites.

6.3.2 Antiparallel aligned impurity spins

We now turn to the investigation of the initial condition where the impurity spins are
antiparallel aligned. We only briefly discuss the obtained results since they are very
similar to the results for the constant DOSs in Sec. 6.2.26.2.2 and the influence of the poten-
tial scatterings have already been discussed in the previous section 6.3.16.3.1.
Figure 6.206.20a shows the time-dependent polarization 〈Sz

1〉(t) = −〈Sz
2〉(t) for different

effective spin-spin interactions Keff. As before, the polarization decreases faster for
antiferromagnetic interactions. In contrast to the initial condition where the impurity
spin are parallel aligned, the short-time behavior depends on the effective interaction
Keff which can be seen most clearly for Keff = −0.95D and Keff = 0.95D. As already
discussed in Sec. 6.2.26.2.2 for constant DOSs, the reason for the different short-time behav-
ior is that the initial state is not an eigenstate to the interaction K〈~S1

~S2〉 anymore.
Furthermore, the long-time value 〈Sz

i 〉(t → ∞) = 0 vanishes which has also already
been observed in Sec. 6.2.26.2.2 and can again be traced back to the local oscillations of the
two impurities. However, in contrast to the case of constant DOSs, even the long-time
value of Keff = 0 vanishes because the RKKY interaction only emerges at low tempera-
tures so that the effective interaction Keff is finite at higher energy scales.
The time-dependent spin-spin correlation function 〈~S1

~S2〉(t) for different interactions
is shown in Fig. 6.206.20b. The behavior is exactly the same as for the constant DOSs shown
in Fig. 6.146.14b. For short times the correlation function is independent of the interaction
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Figure 6.20: (a) The polarization 〈Sz
1〉(t) = −〈Sz

1〉(t) for ρJ = 0.4, kFR/π = 0.59, Ve = 0.54D
and different effective interactions Keff. With increasing antiferromagnetic in-
teraction the polarization decays faster. The short-time behavior depends
on Keff. (b) The time-dependent correlation function 〈~S1

~S2〉(t) for ρJ = 0.4,
kFR/π = 0.59, Ve = 0.54D and different effective interactions Keff. The ar-
rows on the right indicate the equilibrium value. For times tD → ∞ the system
thermalizes only for interactions Keff < Keff,c ≈ 0.138D. NRG parameters are
Λ = 3, Ns = 1500 and Nz = 16.

Keff/D −1.00 −0.90 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.90 1.00
tlowD 0.99 1.09 4.51 5.23 5.92 6.40 6.14 5.40 4.55 1.04 0.95

Table 6.5: The time scale tlow at which the polarization reaches 40% of its initial value for
different effective interactions Keff. The time scale is shown in the inset of Fig.
6.216.21a plotted against Keff.

Keff and always increases. As before, for long times t → ∞ and interactions smaller
than the critical interaction Keff < Keff,c = 0.138D the correlation function reaches its
equilibrium value which is indicated by the arrows on the right of Fig. 6.206.20b. However,
for larger interactions Keff > Keff,c the system is quenched into the decoupled singlet
phase and does not thermalize anymore.
Figure 6.216.21a depicts the time-dependent polarization 〈Sz

1〉(t) plotted against the rescaled
time t/tlow. Again, tlow is the time at which the polarization reaches 40% of its initial
value 〈Sz

1〉(tlow) = 0.2 and the obtained values for tlow are listed in Tab. 6.56.5 for differ-
ent interactions Keff. In contrast to Sec. 6.2.26.2.2, for energy-dependent DOSs no universal
long-time behavior is found.
The inset of Fig. 6.216.21a shows the time scale tlow plotted against the effective interac-
tion Keff. As before, the shape of the time scale is not symmetrical in Keff but slightly
shifted to antiferromagnetic interactions with the peak at Keff ≈ 0.025D. However,
the observed shift is smaller than the shift for constant DOSs shown in the inset Fig.
6.156.15a. A comparison between TD-NRG calculations for constant DOSs with and with-
out initial potential scattering terms Ve = Vo on the zeroth Wilson sites reveals that
the decreasing asymmetry is caused by the potential scattering terms which occur in
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Figure 6.21: (a) The time-dependent polarization versus the rescaled time t/tlow. In contrast
to the case with constant DOSs no universal behavior is found. The inset shows
the time scale tlow plotted against the effective interaction Keff. (b) The time-
dependent polarization for large interaction Keff versus the rescaled time tKeff.
For such large interactions the decay is dominated by the local oscillations of
the impurity spins with frequency Keff. NRG parameters are Λ = 3, Ns = 1500
and Nz = 16.

the energy-dependent model. Due to these scatterings, the occupation of the zeroth
Wilson sites differs from half filling and, consequently, the influence of the conduction
bands on the local spin-flip processes, which are symmetrical in Keff, is weakened. For
Ve/o → ±∞ the zeroth Wilson sites would be unoccupied/doubly occupied and, there-
fore, spin-flips between the impurity spins and conduction band electron spins would
be completely suppressed so that only the local oscillations occur.
This smaller shift is also noticeable in Fig. 6.216.21b where the time-dependent polariza-
tion is depicted versus the rescaled time tKeff for large interactions. As for constant
DOSs, the decay for such large interactions is dominated by the local oscillations of the
impurities with frequencies Keff and, therefore, a rescaling with Keff leads to universal
behavior. However, since the shift between ferromagnetic and antiferromagnetic inter-
actions is much smaller, an offset between the curves for ferromagnetic (solid lines)
and antiferromagnetic (dashed lines) is not visible as it was the case in Fig. 6.156.15b.
The time-dependent polarization 〈Sz

i 〉(t) is shown for different large ferro- (solid lines)
and antiferromagnetic (dashed lines) interactions Keff in Fig. 6.226.22a. As for the constant
DOSs the observed frequencies are much faster than those for parallel aligned impurity
spins shown in Fig. 6.196.19a because of the fast local oscillations. In contrast to the case
of parallel aligned spins and energy-dependent DOSs where only the first maximum
is visible, here, the oscillations are clearly visible since the potential scattering terms,
which are responsible for the increased damping in the parallel aligned case, do not
influence the local oscillations of the impurity spins.
The asymmetry for ferro- and antiferromagnetic interactions Keff is also visible in the
frequency of the oscillations. For the same absolute value of the effective interac-
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Figure 6.22: (a) The time-dependent polarization for ρJ = 0.4, kFR/π = 0.59, Ve = 0.54D and
different large ferro- (solid lines) and antiferromagnetic (dashed lines) interac-
tions Keff. For the same absolute value of the interaction |Keff|, the damped oscil-
lations for ferromagnetic interactions are slightly faster. (b) The time-dependent
correlation function 〈~S1

~S2〉(t) for different large antiferromagnetic interactions.
Only the first maximum of the damped oscillation is visible and its position co-
incides exactly with the one observed in Fig. 6.196.19b.

tion |Keff|, the frequencies of the oscillations for ferromagnetic interactions are slightly
faster than the frequencies for antiferromagnetic interactions. This has also been ob-
served and discussed for constant DOSs, however, since the asymmetry here is smaller,
the difference between the frequencies is also reduced.
Figure 6.226.22b depicts the time-dependent correlation function 〈~S1

~S2〉(t) for different
large ferromagnetic interactions Keff. As it has been the case for constant DOSs, the
frequency of the oscillations coincides with the frequency of the oscillations in the po-
larization and correlation function for parallel aligned impurity spins which have been
shown in Fig. 6.196.19a and Fig. 6.196.19b respectively. The reason for this is that a change of
the correlation can only be caused by a coupling to the conduction band. Therefore,
the potential scattering terms once again increase the damping and, consequently, only
the first maximum of the oscillation is visible.

6.4 Summary and outlook

The QCP of the TIKM is often considered to be artificial [6767, 6868] due to the approxi-
mation of energy independent DOSs. In this chapter, however, we have been able to
demonstrate that it is actually possible to restore the QCP in the full energy-dependent
TIKM using initial potential scattering terms. Instead of restoring the full particle-hole
symmetry of the model, it has turned out that it is sufficient to shift the Kondo reso-
nances of the even and odd conduction band again on top of each other in the vicinity
of the QCP.
The QCP has the same properties as the QCP of the model with constant DOSs since
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the spin-spin correlation function between the two impurity spins 〈~S1
~S2〉 changes con-

tinuously and the staggered susceptibility diverges at the QCP. A remaining task is to
ensure that also the linear coefficient of the specific heat diverges at the QCP [6262, 6363],
cf. Sec. 2.32.3.
In reality, however, the direct tuning of the even and odd potential scattering terms Ve

and Vo is impossible. Nevertheless, in experiment there are two options to shift the
two Kondo resonances on top of each other. At first, the energy level of both impuri-
ties can be changed via a gate voltage which, if mapped to even and odd conduction
bands, would at first sight only shift both Kondo resonances equally Ve = Vo = V [2727].
However, it has been shown that such a term would also generate scattering terms in
second order of the Kondo coupling J of the form Ve − Vo ∝ J2V [168168]. Such a gener-
ated potential scattering could in principle shift the Kondo resonances back on top of
each other.
A second method would be to tune the tunneling between the two impurities. This
would shift the energy levels of the even and odd linear combinations of the impurities
differently and, therefore, also generate different potential scattering terms Ve 6= Vo.
Consequently, it should be in principle possible to shift the even and odd Kondo reso-
nances back on top of each other using the tunneling.
It would be, therefore, interesting to investigate the TIAM and examine if it is possible
to restore the QCP with the methods described above and estimate the magnitude of
the tunneling and gate voltage required for this purpose.
After discussing the restoration of the QCP we have investigated the nonequilibrium
dynamics of the TIKM exhibiting a QCP for two different initial conditions. For the first
one the impurity spins have been parallel and for the second one antiparallel aligned.
To set the stage for the full energy-dependent model, at first we have studied the TIKM
with constant DOS and no initial potential scatterings.
For the parallel aligned initial condition we have discovered that for ferromagnetic
interactions K ≥ 0 between the two impurity spins the long-time behavior of the time-
dependent polarization is determined by the Kondo effect. Furthermore, it has turned
out that the time-dependent spin-spin correlation function 〈~S1

~S2〉(t) reaches the equi-
librium value for times t → ∞ only if the interaction is smaller than the critical in-
teractions K < Kc since for larger interactions the system is driven to the decoupled
singlet phase where the impurity spins decouple from the conduction band preventing
thermalization. Interestingly, we have observed coherent oscillations for large anti-
ferromagnetic interactions in the polarization and correlation function with the same
frequency. These oscillations could be connected to the local oscillations which already
occur for the first NRG iteration NIter = 1.
For the initial condition of antiparallel aligned impurities, all differences in the time-
dependent spin polarization compared to the case of parallel aligned spins originate
from the local oscillations of the two impurity spins which emerge due to the fact that



152 Chapter 6. Two impurity Kondo model

the initial state is not an eigenstate to the interaction K~S1
~S2 anymore. These local oscil-

lations are clearly visible in the spin polarization for large antiferromagnetic as well as
ferromagnetic interactions K and are much faster than the oscillations observed for par-
allel aligned impurity spins. However, the behavior of the time-dependent spin-spin
correlation function has been the same as for parallel aligned spins since a change of
the correlation function cannot be caused by the direct interaction K but must happen
via a coupling to the conduction band.
Moreover, we have investigated the TIKM with full energy-dependent DOSs after the
QCP has been restored. The nonequilibrium dynamics of the system have been essen-
tially the same as for the TIKM with constant DOSs. The slightly different short-time
behavior and increased damping of the oscillations could be traced back to the poten-
tial scattering terms whereas the differences in the universal long-time behavior of the
polarization for weak ferromagnetic effective interactions has been related to the fact
that in contrast to the direct interaction K, the RKKY interaction only emerges at low
energy scales.
However, the nonequilibrium results presented in this chapter are only the outcome of
a first investigation and it would be interesting to examine also different initial condi-
tions and different types of quenches. An alternative quench would be a change of the
distance R between the two impurities which changes the RKKY interaction and could,
therefore, also drive the system from the decoupled singlet phase to the Kondo phase
or vice versa. Another example would be a quench in the Kondo coupling J. Since the
position of the QCP depends on the ratio between the effective spin-spin interaction
and the Kondo temperature Keff/TK [6262, 6363] and since the Kondo temperature changes
exponentially in J whereas the RKKY interaction depends quadratically on the Kondo
coupling, it is possible to drive the system from one phase to another by changing the
Kondo coupling J. In an experiment the Kondo coupling could be controlled by an
external gate voltage [7171].
It would also be worthwhile to study the differences between the time-dependent be-
havior of the full energy-dependent TIKM with and without restored QCP. In this way
one could directly observe the influence of the QCP on the nonequilibrium dynamics.
Furthermore, it would be very interesting to investigate how the correlations between
the two impurity spins propagate through the system for different types of quenches
and initial conditions as it has been done in Sec. 44 for the correlations between an
impurity spin and the spin density of the conduction band at a certain distance.



Chapter 7

Conclusion

In this thesis we have investigated the equilibrium and nonequilibrium properties of
different fermionic quantum impurity systems, employing the numerical renormaliza-
tion group (NRG) and time-dependent numerical renormalization group (TD-NRG).
In particular, we have studied the spatial and temporal propagation of Kondo corre-
lations for ferro- and antiferromagnetic Kondo couplings J. For this purpose we have
investigated the time-dependent spin-spin correlation function between the impurity
spin and the spin density of the conduction band at a certain distance R.
To set the stage for the nonequilibrium calculations, we have first measured the equi-
librium spin-spin correlation function. Surprisingly, for antiferromagnetic Kondo cou-
plings we have found significant deviations from previous NRG results by Borda [4747]
where only antiferromagnetic correlations have been observed. In contrast, our results
have shown distance dependent oscillations between ferromagnetic and antiferromag-
netic correlations for small distances compared to the size of the Kondo screening cloud
vF/TK in accordance with analytical calculations by Affleck et al. [125125]. The quality of
our results has been checked by an analytically known sum rule from which our nu-
merical data deviates by less than 2% in 1D. For large distances our equilibrium results
agree with the observations in Ref. [4747].
Inside the Kondo screening cloud the spin-spin correlation function decreases slowly
with a powerlaw decay of 1/RD while outside of the screening cloud a 1/RD+1 decay
of the correlations has been found, with D being the dimension. In the case of a fer-
romagnetic Kondo coupling, we have observed oscillations between ferromagnetic and
antiferromagnetic correlations and a 1/RD decay for all distances since for a ferromag-
netic coupling the size of the screening cloud diverges. At finite temperature a new
length scale has emerged beyond which the correlations are exponentially cut off.
For the full time-dependent correlation function we have found that most of the corre-
lations propagate within a light cone defined by the Fermi velocity vF. Precisely on the
light cone a ferromagnetic wave propagates away from the impurity location. The cor-
relations inside the light cone develop rather quickly towards their equilibrium value.
Surprisingly, we have seen for ferro- as well as for antiferromagnetic Kondo couplings
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the buildup of correlations outside of the light cone that do not decay exponentially.
As a main result of our investigations, we have been able to trace back these correla-
tions to the intrinsic entanglement of the Fermi sea using a second-order perturbative
expansion in the Kondo coupling J.
Furthermore, we have calculated the retarded susceptibility describing the response
of the conduction band spin density at certain distance to a magnetic field applied to
the impurity spin. We have used this susceptibility to calculate the response of the
spin-density polarization induced by a very weak magnetic field. For the real-time
response we have found no correlations outside of the light cone. However, a bench-
mark calculation with the analytically known retarded equilibrium host spin-density
susceptibility has revealed that this method is limited to short distances.
Moreover, we have demonstrated in this thesis that the NRG is capable to reproduce
the data of a scanning tunneling spectroscopy (STS) experiment with excellent agree-
ment. For this purpose we have used the results of a density functional theory (DFT)
calculation as a first principle input for the NRG calculations. In particular, we have
investigated the adsorption of single Au atoms on a PTCDA monolayer physisorbed
on an Au(111) surface. The chemical reaction between the Au atom and PTCDA leads
to the formation of a metal-molecule complex occupied with an unpaired spin. In the
experiment this radical formation has been observed as an additional zero-bias differ-
ential conductance peak in the STS spectra originating from the Kondo effect. In order
to describe the electronic properties of the Au-PTCDA complex, including the low en-
ergy physics, we have applied the above mentioned combined DFT+NRG approach. It
has turned out to be crucial to employ the full energy-dependent hybridization func-
tion for a correct quantitative description of the system.
Furthermore, we have carried out a careful analysis of the scaling behavior of various
definitions of the Kondo temperature using the NRG in order to provide a systematical
way to extract the Kondo temperature reliably from an experiment for a particle-hole
asymmetric system. We have found that a temperature dependent fit to the zero-bias
conductance is the best way to extract the Kondo temperature since it is not affected
by nonuniversal aspects of the lineshape. Remarkably, we have found a Kondo tem-
perature from our combined DFT+NRG approach that deviates only 1 K from the
experimentally measured TK.
A special feature of the Au-PTCDA complex is that the local moment resides in a
π-orbital which is delocalized over the entire complex. The advantage of such an
extended orbital is its increased probability to interact with neighbors, offering the
possibility to use this interaction for spintronics.
Such an interaction between two adjacent Au-PTCDA complexes has been revealed in
the experiment by the observation of a gap in the measured STS spectra. Mapping the
system onto a two impurity Anderson model (TIAM), we have been able to trace back
this effect to a strong direct tunneling between both complexes. Usually, the formation
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of a gap in the spectrum of adatoms on a metallic surface is often associated with the
competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the
Kondo effect. In our case, however, the ordinary chemical hybridization between the
molecular monomers is sufficient to drive a quantum phase transition (QPT) between
a partially Kondo-screened local triplet and a local singlet.
The QPT originates from a competition between the kinetic energy gain due to the
entanglement with the substrate and the binding energy gain due to the chemical in-
teraction between the moment-carrying orbitals. In the experiment the strength of the
tunneling is determined by the specific adsorption sites of the Au atoms on the PTCDA
molecules. While for a dimer configuration with a weak tunneling a Kondo resonance
has been observed, the particularly strong interactions of specific dimer configurations
have led to a formation of a gap in the STS spectra. As for a single noninteracting
Au-PTCDA complex, we have found an excellent agreement between the results of the
combined DFT+NRG approach and the experimental data. In particular, we have been
able to predict the formation of a gap for the correct dimer configurations without any
fitting parameters. Furthermore, we have revealed that only in the parity-broken case
the gap can be observed in the STS spectra.
We have also investigated the equilibrium and nonequilibrium properties of the two
impurity Kondo model (TIKM). This model exhibits a QPT if the energy-dependence
of the coupling constants is artificially neglected. However, we have shown that it is
possible to restore the QPT with potential scattering terms even in the full energy de-
pendent model. In the experiment these potential scattering terms could, in principle,
be generated by applying a gate voltage to the impurities or by changing the tunneling
between both impurities.
Next, we have examined the nonequilibrium dynamics of the TIKM exhibiting a QPT
for two different initial conditions, namely for parallel and antiparallel aligned impu-
rity spins. In the case of constant couplings, we have revealed that for a ferromagnetic
direct spin-spin interaction the decay of the spin-polarization is only determined by
the Kondo effect for long times. An antiferromagnetic interaction leads to an increased
decay of the polarization since for an antiferromagnetic interaction a singlet ground
state is favorable. We have been able to relate the coherent oscillations that emerge
for very large antiferromagnetic interactions in the spin-polarization as well as in the
correlation function to the oscillations that already occur for the first NRG iteration.
All differences between the initial conditions of parallel and antiparallel aligned im-
purities have been connected to the local oscillations between both impurity spins.
These local oscillations occur since the antiparallel aligned initial condition is not an
eigenstate of the direct spin-spin interaction anymore. As a result, we have observed
a spin-spin interaction dependent short-time behavior and fast coherent oscillations
in the spin-polarization for large ferro- as well as antiferromagnetic interactions. The
time dependence of the spin-spin correlation function, however, has been essentially
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the same as for the parallel aligned initial conditions because a change of the correla-
tion function cannot be caused by a direct interaction between the impurity spins but
must happen via a coupling to the conduction band.
The nonequilibrium dynamics of the full energy-dependent TIKM have been very
similar to the case of constant couplings. We have been able to relate the slightly
different short-time behavior and increased damping to the potential scattering terms
occurring in the energy-dependent model. The different universal long-time behav-
ior has been associated with the circumstance that the indirect RKKY interaction only
emerges at low energy scales.
In all cases discussed above, we have found that the time-dependent spin-spin correla-
tion function only thermalizes if the system is quenched into the Kondo phase while
for a quench into the decoupled singlet phase both impurities decouple from the con-
duction band preventing a thermalization.
However, our nonequilibrium results of the TIKM are only the outcome of a first in-
vestigation and it would be interesting to examine also different initial conditions and
different types of quenches. Furthermore, it would be very interesting to analyze the
spatial and temporal propagation of the correlations between both impurity spins sim-
ilar to our studies of the correlations between the impurity spin and the conduction
band spin density at a certain distance in the Kondo model.



Appendix A

Mapping the TIKM to even and odd parity
states

In order to solve the two impurity Kondo model (TIKM) using the numerical renorm-
alization group (NRG), the conduction band operators that couple to the impurities
must be orthogonal. Therefore, we derive in this appendix the Hamiltonian of the
TIKM in an orthogonal even-odd parity basis [6161, 6262, 6464].
The TIKM Hamiltonian can be divided into three terms

HTIKM =H0 + Hint + Himp, (A.1)

where H0 = ∑~kσ
ε(~k)c†

~kσ
c~kσ

accounts for the conduction band with the dispersion ε(~k)
and Himp contains all interactions which only act on the impurities, e.g. a direct spin-
spin interaction between the impurity spins Himp = K~S1

~S2. Hint describes the interac-
tion between the conduction band and the impurity spins and can be written as

Hint =J
(
~S1sc(~R1) + ~S2sc(~R2)

)
, (A.2)

where ~Si is an impurity spin located at position ~Ri coupled via the effective Heisenberg
coupling J to the unit-cell volume averaged conduction electron spin sc(~r) = Vu~s(~r).
Here,~s(~r) is the conduction band spin density operator expanded in planar waves

~s(~r) =
1
2

1
NVu

∑
σσ′

∑
~k~k′

c†
~kσ
[~σ]σσ′c~k′σ′e

i(~k′−~k)~r, (A.3)

with N being the number of unit cells in the volume V, Vu = V/N the volume of such
a unit cell,~k a momentum vector and ~σ a vector of the Pauli matrices.
In the following, we set the origin of the coordinate system in the middle of the two
impurities such that ~R1 = ~R/2 and ~R2 = −~R/2. In order to employ the NRG, the
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Hamiltonian has to be transformed into energy-space. For this purpose, we define new
energy-dependent field operators that also include the spatial dependence

cεσ,± =
1√

Nρ(ε)
∑
~k

δ(ε− ε(~k))c~kσ
e±i~k~R/2, (A.4)

with the dispersion ε(~k) and the density of states (DOS) ρ(ε) of the conduction band.
These new operators can be combined to even (e) and odd (o) parity eigenstates

cεσ,e =
1

Ne(ε)

(
cεσ,+ + cεσ,−

)
cεσ,o =

1
No(ε)

(
cεσ,+ − cεσ,−

)
. (A.5)

The normalization factors Ne/o(ε) are chosen such that they fulfill the standard anti-
commutator relation {cεσ,α, c†

ε′σ′,α′} = δ(ε− ε′)δαα′δσσ′ :

{cεσ,e/o, c†
ε′σ′,e/o} =

1

N2
e/o(ε)

1
Nρ(ε) ∑

~k~k′
δ(ε− ε(~k))δ(ε′ − ε(~k′))

·
∣∣∣ei~k~R/2 ± e−i~k~R/2

∣∣∣2 {c~kσ
, c†
~k′σ′}︸ ︷︷ ︸

δ~k,~k′ δσ,σ′

(A.6)

=
δσ,σ′

N2
e/o(ε)

1
Nρ(ε) ∑

~k

δ(ε− ε(~k))δ(ε′ − ε(~k))︸ ︷︷ ︸
δ(ε−ε′)δ(ε−ε(~k))

∣∣∣ei~k~R/2 ± e−i~k~R/2
∣∣∣2 (A.7)

=δ(ε− ε′)δσ,σ′
1

N2
e/o(ε)

1
Nρ(ε) ∑

~k

δ(ε− ε(~k))
∣∣∣ei~k~R/2 ± e−i~k~R/2

∣∣∣2 . (A.8)

A comparison of Eq. (A.8A.8) with the standard anticommutator yields for the two nor-
malization factors

N2
e (ε) =

4
Nρ(ε) ∑

~k

δ(ε− ε~k) cos2

(
~k~R

2

)
,

N2
o (ε) =

4
Nρ(ε) ∑

~k

δ(ε− ε~k) sin2

(
~k~R

2

)
. (A.9)

Note that both normalizations depend on the distance ~R between the two impurities.
If we consider the case that the dispersion depends only on the absolute value of the
momentum vector ε(~k) = ε(|~k|) = ε(k), we can perform the angular integration in the
continuum limit ∑~k → N

(2π)3

∫
d3k. This yields in 1D

N2
e/o(ε)ρ(ε) = 2ρ(ε) [1± cos (k(ε)R)] (A.10)
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with R = |~R| and k(ε) being the inverse function of ε(k). For the simple case of
a linear dispersion ε(k) = vF(k − kF), the inverse function is for example given by
k(ε) = kF +

ε
vF

= kF(1 + ε
D ). Here, vF is the Fermi velocity, kF the length of the Fermi

wave vector and D = vFkF the half bandwidth. In 2D we obtain after the integration
over the angular

N2
e/o(ε)ρ(ε) = 2ρ(ε) [1± J0 (k(ε)R)] (A.11)

where J0(x) is the zeroth Bessel function and for 3D the integration gives

N2
e/o(ε)ρ(ε) = 2ρ(ε)

[
1± sin (k(ε)R)

k(ε)R

]
. (A.12)

Inserting cεσ,± into the Hamiltonian Eq. (A.2A.2) yields

Hint =
J
2

∫ ∫
∑
σσ′

√
ρ(ε)ρ(ε′)

(
c†

εσ,+~σσσ′cε′σ′,+
~S1 + c†

εσ,−~σσσ′cε′σ′,−~S2

)
dε dε′ (A.13)

which can be further rewritten in terms of the parity eigenoperators cεσ,e and cεσ,o

Hint =
J
8

∫ ∫
∑
σσ′

√
ρ(ε)ρ(ε′)~σσσ′[

(~S1 + ~S2)
(

Ne(ε)Ne(ε
′)c†

εσ,ecε′σ′,e + No(ε)No(ε
′)c†

εσ,ocε′σ′,o

)
+(~S1 − ~S2)Ne(ε)No(ε

′)
(

c†
εσ,ecε′σ′,o + c†

ε′σ,ocεσ′,e

)]
dε dε′. (A.14)

We finally obtain for the Hamiltonian of the TIKM

HTIKM = ∑
α=e,o

∑
σ

∫
εc†

εσ,αcεσ,α dε + Hint + Himp, (A.15)

where the first term describes the conduction band that has been divided into two
conduction bands with even and odd parity symmetry and Hint is given by Eq. (A.14A.14).
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RKKY interaction

In this appendix, we briefly summarize the perturbative calculation of the RKKY in-
teraction between two impurity spins mediated by a conduction band in second-order
in the Kondo coupling J. The interaction part of the Hamiltonian, which describes the
interaction between the impurity spins and the conduction band electron spins, can be
expanded in even (e) and odd (o) parity states, cf. appendix AA, and is given by

Hint =
J
8 ∑

σ,σ′

∫ ∫
dε dε′

√
ρ(ε)ρ(ε′)~σσ,σ′

×
[(

~S1 + ~S2

) (
Ne(ε)Ne(ε

′)c†
εσ,ecε′σ′,e + No(ε)No(ε

′)c†
εσ,ocε′σ′,o

)
+
(
~S1 − ~S2

) (
Ne(ε)No(ε

′)c†
εσ,ecε′σ′,o + No(ε)Ne(ε

′)c†
εσ,ocε′σ′,e

)]
. (B.1)

The normalization factors
√

ρ(ε)Ne/o(ε) have been defined in appendix AA and are
given by Eq. (A.10A.10) in 1D, by Eq. (A.11A.11) in 2D and by Eq. (A.12A.12) in 3D. The RKKY
interaction is generated by a propagation of spin excitations in the conduction band
between the two impurities. The second-order Feynman diagram generating the lowest
order contribution to the RKKY interaction is shown in Fig. B.1B.1. Integrating out the
conduction electron degrees of freedom leads to the effective RKKY interaction

HRKKY =
1
β ∑

iωn

∫ ∫
dε dε ∑

α,α′
G0(ωn, ε)G0(ωn, ε′)V

~R1
α,α′

(ε, ε′)V
~R2
α′,α

(ε′, ε). (B.2)

This expression is exact up to second-order in the coupling J. The vertex function

V
~Ri
α,α′

(ε, ε′) at the position ~Ri of the impurity spin ~Si can be deduced from the Hamilto-
nian Hint in Eq. (B.1B.1) and is given by

V
~Ri
α,α′

(ε, ε′) = ci
p,p′

J
8

√
ρ(ε)ρ(ε′)Np(ε)N′p(ε

′)~σσ,σ′
~Si. (B.3)
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Figure B.1: The Feynman diagram of the leading second-order contribution to the RKKY inter-
action between localized spins mediated by a spin excitation propagating through
the conduction band. Figure taken from [177177].

The index α = (σ, p) combines the spin index σ and parity index p and the sign factor
ci

p,p′ is defined as

ci
p,p′ =

−1 if p 6= p′ and i = 2

1 otherwise
. (B.4)

G0(ωn, ε) = 1
iωn−εk+iδ denotes the Green’s function of a free conduction electron and

iωn is the fermionic Matsubara frequency. A standard evaluation of the summation
over the Matsubara frequencies [178178] yields

1
β ∑

iωn

G0(ωn, ε)G0(ωn, ε′) =
f (ε)− f (ε′)

ε− ε′
, (B.5)

where f (ε) is simply the Fermi-Dirac distribution function. For T = 0 Eq. (B.5B.5) van-
ishes if both energies ε and ε′ are above or below the Fermi energy. Therefore, we
obtain for a particle-hole symmetric conduction band at T = 0

HRKKY = ∑
α,α′

∫ 0

−D
dε
∫ D

0
dε′

V
~R1
α,α′

(ε, ε′)V
~R2
α′,α

(ε′, ε)

ε− ε′
+

V
~R2
α,α′

(ε, ε′)V
~R1
α′,α

(ε′, ε)

ε− ε′

 . (B.6)

Performing the spin and parity summation yields for the effective spin-spin interaction

HRKKY =
∫ 0

−D
dε
∫ D

0
dε′ ρ(ε)ρ(ε′)

J2

16

(
N2

e (ε)N2
e (ε
′) + N2

o (ε)N2
o (ε
′)

ε− ε′

−N2
e (ε)N2

o (ε
′) + N2

o (ε)N2
e (ε
′)

ε− ε′

)
~S1
~S2, (B.7)
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from which we can read the distance dependent effective RKKY interaction constant

KRKKY =
∫ 0

−D
dε
∫ D

0
dε′ ρ(ε)ρ(ε′)

J2

16

×
(

N2
e (ε)N2

e (ε
′) + N2

o (ε)N2
o (ε
′)

ε− ε′
− N2

e (ε)N2
o (ε
′) + N2

o (ε)N2
e (ε
′)

ε− ε′

)
. (B.8)

The distance dependence is implicitly encoded in the distance dependent parity densi-
ties Ne(ε) and No(ε). In general, the integration over the energies in Eq. (B.8B.8) has to be
performed numerically. In the simple case that the energy dependent parity densities
are replaced by constants ρ(ε)N2

p(ε) = ρ0N2
p , we recover the approximation of Jones

and Varma [6161]

KRKKY

D
=− J2ρ2

0

16
2 ln(2)

(
N2

e − N2
o

)2
. (B.9)

However, this RKKY interaction remains ferromagnetic for all distances R and is, there-
fore, insufficient to capture the correct spatial dependent RKKY interaction which
should oscillate between ferro- and antiferromagnetic interactions as a function of the
distance R between the impurities. As pointed out by Affleck and co-workers [6464], it is
crucial to maintain the energy dependence to gain the alternating ferro- and antiferro-
magnetic interaction between the impurity spins.



Appendix C

Perturbative approach of spin-spin
correlation function χ(~r, t)

In this section, we will show how to calculate the time-dependent correlation func-
tion χ(~r, t) perturbatively up to second-order in J. Therefore, the Hamiltonian is di-
vided into two parts H = H0 + HK with H0 = ∑σ,~k ε~k c†

~kσ
c~kσ

, the free conduction band
dispersion ε~k and HK = J~Simp~sc(0). The time-dependent spin correlation function
χ(~r, t) = 〈~Simp~s(~r)〉(t) can be written as

〈~Simp~s(~r)〉(t) = Tr
[
ρI(t)~Simp~s

I(~r, t)
]

, (C.1)

where the index I means that the operator is transformed into the interaction picture
which is defined for any operator A as

AI(t) = eiH0t Ae−iH0t. (C.2)

Since the impurity spin commutes with H0, ~Simp remains time-independent. The real-
time evolution of ρI(t) is derived from the von Neumann equation

∂tρ
I(t) = i

[
ρI(t), H I

K(t)
]

, (C.3)

which is integrated to

ρI(t) =ρ0 + i
∫ t

0

[
ρ0, H I

K(t1)
]

dt1 −
∫ t

0

∫ t1

0

[[
ρI(t2), H I

K(t2)
]

, H I
K(t1)

]
dt2 dt1, (C.4)
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where we used the boundary condition ρI(0) = ρ0. Replacing ρI(t2) by ρ0 in the second
integral yields an approximate solution in O(J2). If we substitute (C.4C.4) into (C.1C.1) and
cyclically rotate the operators under the trace, we obtain

〈~Simp~s(~r)〉(t) ≈Tr
[
ρ0
~Simp~sI(~r, t)

]
+ i

∫ t

0
Tr
[
ρ0

[
H I

K(t1),~Simp~sI(~r, t)
]]

dt1

−
∫ t

0

∫ t1

0
Tr
[
ρ0

[
H I

K(t2),
[

H I
K(t1),~Simp~s

I(~r, t)
]]]

dt2 dt1. (C.5)

This expression contains only expectation values that involve the initial density oper-
ator ρ0 in which the impurity spin and the conduction electrons factorize since in H0

the impurity spin is decoupled from the conduction band. In the absence of magnetic
fields the first term vanishes, and the initial correlation function is zero at t = 0.
The calculation of the first-order and especially the second-order contribution is, how-
ever, a cumbersome task. In the following, we will, therefore, only present the final
results of the first and second-order integral kernel.
Calculating the commutator of the first order yields

Tr
[
ρ0

[
H I

K(t1),~Simp~s
I(~r, t)

]]
= −3

4
J

VuN2 ∑
~k,~q

f (ε~k+~q) sin
(
~q~r + (ε~k+~q − ε~k)(t1 − t)

)
.

(C.6)

For a linear dispersion in 1D, the argument of the sine contains (εk+q − εk) = vFq
contributions. The kernel remains phase coherent on the light cone q(r − vFt) and,
thus, generates the response on this light cone line.
The second-order correction is given by

Tr
[
ρ0

[
H I

K(t2),
[

H I
K(t1),~Simp~s

I(~r, t)
]]]

=
3
8

J2

VuN3 ∑
~k,~q1,~q2

f (ε~k+~q1
) f (−ε~k−~q2

)

×
{

cos
[
~q1~r + (ε~k+~q1

− ε~k−~q2
)t1 +(ε~k−~q2

− ε~k)t2 + (ε~k − ε~k+~q1
)t
]

+ cos
[
~q2~r + (ε~k+~q1

− ε~k−~q2
)t1 +(ε~k − ε~k+~q1

)t2 + (ε~k−~q2
− ε~k)t

]
− cos

[
(~q1 +~q2)~r− (ε~k+~q1

− ε~k−~q2
)t −(ε~k−~q2

− ε~k)t2 − (ε~k − ε~k+~q1
)t1

]
− cos

[
(~q1 +~q2)~r− (ε~k+~q1

− ε~k−~q2
)t −(ε~k − ε~k+~q1

)t2 − (ε~k−~q2
− ε~k)t1

]}
. (C.7)

Due to the simple sine and cosine structure, the time-integration can be done analyti-
cally for both the first and second-order contribution. For the momentum integrations
over~k, ~q1 and ~q2 we insert a 1D linear dispersion for ε~k. If we expand (C.6C.6) and (C.7C.7)
for small times around t = 0, the momentum integrations can also be calculated ana-
lytically otherwise a numerical integration has to be performed.



Appendix D

Intrinsic spin-spin correlation function of
the Fermi sea 〈~s(0)~s(R)〉

In the following, we will briefly derive an analytical expression for the intrinsic host
spin-spin correlation function of the decoupled Fermi sea 〈~s(0)~s(~r)〉. If we insert the
definition of the host spin density

~s(~r) =
1

2VuN ∑
~k,~k′

∑
σ,σ′

~σσ,σ′c
†
~k,σc~k′,σ′e

i(~k′−~k)~r, (D.1)

into 〈~s(0)~s(~r)〉, we obtain for the intrinsic correlation

〈~s(0)~s(~r)〉 = 1

4N2V2
u

∑
~k1
~k′1

σ1σ′1

∑
~k2
~k′2

σ2σ′2

~σσ1,σ′1
~σσ2,σ′2

〈c†
k1,σ1

ck′1,σ′1
c†

k2,σ2
ck′2,σ′2
〉ei(~k′2−~k2)~r. (D.2)

Since we consider only the decoupled J = 0 case, the Hamiltonian describing this
system is given by the bilinear Hamiltonian of a free electron gas H0 = ∑~k,σ ε~kc†

~k,σc~k,σ.
Therefore, we can apply Wick’s theorem to simplify the expectation value of Eq. (D.2D.2)

〈c†
k1,σ1

ck′1,σ′1
c†

k2,σ2
ck′2,σ′2
〉 =〈c†

k1,σ1
ck′1,σ′1
〉〈c†

k2,σ2
ck′2,σ′2
〉

− 〈c†
k1,σ1

c†
k2,σ2
〉〈ck′1,σ′1

ck′2,σ′2
〉+ 〈c†

k1,σ1
ck′2,σ′2
〉〈ck′1,σ′1

c†
k2,σ2
〉 (D.3)

= f (ε~k1
)δ~k1,~k′1

δσ1,σ′1
f (ε~k2

)δ~k2,~k′2
δσ2,σ′2

+ f (ε~k1
)δ~k1,~k′2

δσ1,σ′2
f (−ε~k2

)δ~k′1,~k2
δσ′1,σ2

. (D.4)

Equation (D.4D.4) has two contributions to the intrinsic correlation function. While exe-
cuting the spin summation over the first term yields

∑
σ1,σ′1

∑
σ2,σ′2

=δσ1,σ′1
δσ2,σ′2

~σσ1,σ′1
~σσ2,σ′2

= ∑
σ1,σ2

~σσ1,σ1
~σσ2,σ2

= 0 (D.5)
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the summation over the spin in the second line of (D.4D.4) results in

∑
σ1,σ′1

∑
σ2,σ′2

=δσ1,σ′2
δσ′1,σ2

~σσ1,σ′1
~σσ2,σ′2

= ∑
σ1,σ′1

~σσ1,σ′1
~σσ′1,σ1

= Tr
[
σ2

x + σ2
y + σ2

z

]
= 6. (D.6)

Thus, only the second term of the expectation value contributes to the intrinsic spin-
spin correlation function. Inserting the results of Eqs. (D.4D.4)-(D.6D.6) into Eq. (D.2D.2) yields

〈~s(0)~s(~r)〉 = 3

2N2V2
u

∑
~k1
~k′1

∑
~k2
~k′2

δ~k1,~k′2
δ~k′1,~k2

f (ε~k1
) f (−ε~k2

)ei(~k′2−~k2)~r

=
3

2V2
u

 1
N ∑

~k1

f (ε~k1
)ei~k1~r

 1
N ∑

~k2

f (−ε~k2
)e−i~k2~r

 . (D.7)

The two summations over the momenta factorize and can be carried out independently
of each other. If we use a particle-hole symmetric 1D linear dispersion εk = vF(|k| − kF)

and transform the discrete summation over k into a continuous integral 1
N ∑k → Vu

2π

∫
dk,

we obtain at T = 0 for both momenta summations

1
N ∑

k
f (εk)e

ikr =
Vu
2π

∫ kF

−kF

eikr dk =
Vu
πr

sin(kFr) (D.8)

and

1
N ∑

~k2

f (−ε~k2
)e−i~k2~r =

Vu
2π

∫ −kF

−2kF

e−ikr dk +
Vu
2π

∫ 2kF

kF

e−ikr dk

=
Vu
πr

[sin(2kFr)− sin(kFr)] . (D.9)

Inserting these terms into Eq. (D.7D.7) results in

〈~s(0)~s(r)〉 = 3

8V2
u

1

(kFr)2 sin(kFr) [sin(2kFr)− sin(kFr)] , (D.10)

where we have used that the Fermi wave vector for a 1D linear dispersion is given by
kF = π

2Vu
. With the addition theorem sin(2kFr)− sin(kFr) = 2 cos( 3

2 kFr) sin( 1
2 kFr) the

expression for 〈~s(0)~s(r)〉 can be further simplified and we finally obtain

〈~s(0)~s(r)〉 = 3

4V2
u

1

(kFr)2 sin(kFr) cos(
3
2

kFr) sin(
1
2

kFr). (D.11)

This analytical known expression for 〈~s(0)~s(r)〉 provides an excellent tool to check the
accuracy of our NRG mapping to the even and odd parity states and, indeed, we find
a perfect agreement between the analytical calculated 〈~s(0)~s(r)〉 and the one calculated
with the NRG, cf. Fig. 4.124.12a.



Appendix E

Retarded host spin-spin susceptibility
χr

c−c(R, t)

In this appendix, we will derive the analytical spectral function ρr
c−c(R, ω) of the re-

tarded host spin-spin correlation function

χr
c−c(R, t) = −i〈

[
sz(R, t), sz(0, 0)

]
〉θ(t). (E.1)

The time-dependent spin density operator in the Heisenberg picture is given by

sz(R, t) =
1

2VuN ∑
k1,k2

∑
α,β

σz
α,βc†

k1,αck2,βe−i(k1−k2)Rei(εk1
−εk2

)t. (E.2)

The insertion of sz(R, t) into Eq. (E.1E.1) yields

χr
c−c(R, t) =

−iθ(t)
4V2

u N2 ∑
k1,k2
k3,k4

∑
α,β

α′,β′

σz
α,βσz

α′,β′e
−i(k3−k4)Rei(εk3

−εk4
)t〈[c†

k3,α′ck4,β′ , c†
k1,αck2,β]〉. (E.3)

Using Wick’s theorem or the rule for commutators

[AB, CD] = A{B, C}D− AC{B, D} − C{A, D}B + {A, C}DB, (E.4)

we can simplify the expecation value to

〈[c†
k3,α′ck4,β′ , c†

k1,αck2,β]〉 =δα,β′δβ,α′δk1,k4
δk2,k3

[
f (εk2

)− f (εk1
)
]

, (E.5)

where we have used {ck1,α, c†
k2,β} = δα,βδk1,k2

and 〈c†
k1,αck2,β〉 = δα,βδk1,k2

f (εk1
). After

carrying out the spin and k3, k4 summations, the retarded susceptibility is given by

χr
c−c(R, t) =

−iθ(t)
2V2

u N2 ∑
k1,k2

e−i(k2−k1)Rei(εk2
−εk1

)t
[

f (εk2
)− f (εk1

)
]

. (E.6)
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By a Fourier transformation the analytical expression

χr
c−c(R, z) =

−i
2V2

u N2 ∑
k1,k2

∫ ∞

0
eizte−i(k2−k1)Rei(εk2

−εk1
)t
[

f (εk2
)− f (εk1

)
]

dt (E.7)

=
1

2V2
u N2 ∑

k1,k2

[
f (εk2

)− f (εk1
)
]

e−i(k2−k1)R

z− (εk1
− εk2

)
(E.8)

is gained, where the θ-function entered in the lower bound of the integral and a slight
imaginary frequency Im z > 0 was used to guarantee the convergence of the intergral.
Due to the complex phase factor exp[−i(k2 − k1)R], the spectral function ρr

c−c(R, ω)

defined as

ρr
c−c(R, ω) =− 1

π
lim
δ→0

Im[χr
c−c(R, ω + iδ)], (E.9)

has two contributions. The first contribution originates from the delta function stem-
ming from the limδ→0 Im 1

ω+iδ−ε = −πδ(ω − ε) term and the second originates from
Im exp[−i(k2 − k1)R] = − sin[(k2 − k1)R]. For the spectral function we finally obtain

ρr
c−c(R, ω) =

1

2πV2
u N2 ∑

k1,k2

[
f (εk2

)− f (εk1
)
]

×
[

π cos[(k2 − k1)R]δ(ω− (εk1
− εk2

)) +
sin[(k2 − k1)R]
ω− (εk1

− εk2
)

]
. (E.10)

If we measure the momenta in units of kF, it becomes clear that Eq. (E.10E.10) contains the
dimensionless frequency kFR, which is directly related to the increasing oscillations
with increasing distance R.



Appendix F

The long-time value of the spin
polarization 〈sz(R, t)〉

In the following, we will briefly show how to calculate the long-time limit of the spin
polarization 〈sz(R, t)〉. In linear response theory the polarization is given by

〈sz(R, t)〉 =〈sz(R, t = −∞)〉+
∫ ∞

−∞
χr(R, t− t′)∆(t′) dt′ (F.1)

where 〈sz(R, t = −∞)〉 vanishes if no magnetic field is applied. For a Zeeman splitting
∆(t) = ∆0θ(t) = gµBBθ(t) and no magnetic field, Eq. (F.1F.1) can be written as

〈sz(R, t)〉 = ∆0

∫ ∞

0
χr(R, t− t′) dt′. (F.2)

For simplicity we set ∆0 = 1 in the following because 〈sz(R, t)〉 is trivially proportional
to the applied field.
The long-time value of the spin polarization 〈sz(R, t→ ∞)〉 = 〈sz(R)〉 is obtained from

〈sz(R)〉 = lim
T→∞

1
T

∫ T

0
dt
∫ ∞

0
dt′ χr(R, t− t′). (F.3)

Since the spectral function of this susceptibility defined as

ρr(ω) = lim
δ→0+

− 1
π

Imχr(R, ω + iδ) (F.4)

has to be an odd function ρr(ω) = −ρr(−ω) [127127], we can write χr(R, t) as a purely
real integral

χr(R, t) = −2
∫ ∞

0
ρr(R, ω) sin(ωt)θ(t) dω. (F.5)
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Inserting this expression for the susceptibility into Eq. (F.3F.3) yields

〈sz(R)〉 =− 2
∫ ∞

0
dωρr(R, ω) lim

T→∞

1
T

∫ T

0
dt
∫ t

0
dt′ sin(ω(t− t′)), (F.6)

where we have made explicit use of the θ-function of Eq. (F.5F.5). Since the spectral
function is independent of the time, the time-integrations can easily be performed
analytically which results in

〈sz(R)〉 =2
∫ ∞

0
dω

[
− 1

ω
ρr(R, ω) + lim

T→∞
ρr(R, ω)

sin(ωT)
ω2T

]
. (F.7)

Using a representation for the delta distribution

lim
T→∞

sin(ωT)
πω

= δ(ω) (F.8)

we obtain for the second part of Eq. (F.7F.7) in the long-time limit T → ∞

∫ ∞

−∞
dω ρr(R, ω)

sin(ωT)
ω2T

≈
∫ ∞

−∞
dω

ρr(R, ω)

ωT
δ(ω). (F.9)

Since at ω = 0 the spectral function vanishes ρr(R, ω = 0) = 0, the second contribution
of Eq. (F.7F.7) must also vanish for times T → ∞. Finally the long-time value of the spin
polarization is given by

〈sz(R)〉 =− 2
∫ ∞

0
dω

ρr(R, ω)

ω
. (F.10)

As described in appendix EE, the retarded host spin-spin susceptibility χr
c−c(R, t) can

be calculated analytically and is, therefore, suitable as a benchmark for Eq. (F.10F.10). If
we substitute χr

c−c(R, t− t′) for χr(R, t− t′) in Eq. (F.1F.1) and perform the convolution
for large times t → ∞, we find a perfect agreement between 〈sz(R, t → ∞)〉 calculated
with Eq. (F.1F.1) and the long-time value 〈sz(R)〉 computed with Eq. (F.10F.10).



Appendix G

Derivation of NRG parameters from a
mean field spectrum

In this appendix we show how the energy level ε0 and the hybridization strength Γ(E)
can be extracted from the DFT mean field spectrum and Coulomb repulsion U of a
single impurity Anderson model (SIAM).
The Hamiltonian of the SIAM is given by

H =∑
~k,σ

ε~kc†
~k,σc~k,σ + ∑

~k,σ

[V~kc†
~k,σdσ + V∗~k d†

σc~k,σ] + ε0nd + Und,↑nd,↓, (G.1)

with nd = nd,↑+ nd,↓ and nd,σ = d†
σdσ. Here, ε~k is the dispersion of the conduction band,

c†
~k,σ the creation operator of a conduction band electron and d† creates an electron on

the impurity. In a mean field approximation the last term Und,↑nd,↓ simplifies to

Und,↑nd,↓ → Und,↑〈nd,↓〉+ U〈nd,↑〉nd,↓ −U〈nd,↑〉〈nd,↓〉. (G.2)

Therefore, we obtain a shift of the energy level according to

ε0 → εMF,σ = ε0 + U〈nd,−σ〉. (G.3)

With the equation of motion technique (c.f. Sec. 3.3.33.3.3) it is straight forward to derive
the Green’s function of the impurity in mean field approximation

Gd(z) =
1

z− εMF,σ − ∆(z)
=

1
z− ε0 −U〈nd,−σ〉 − ∆(z)

. (G.4)

Here, ∆(z) =
∫

dω 1
π

Γ(ω)
z−ω denotes the complex coupling function where the hybridiza-

tion strength is given by Γ(ω) = πρ(ω)V2(ω), with ρ(ω) being the DOS of the con-
duction band.
For a NRG calculation the parameters ε0, U and Γ(E) are required. The Coulomb in-
teraction U is received directly from the density functional theory (DFT) calculations
via Eq. (5.35.3) while the energy level ε0 and the hybridization strength Γ(E) have to be
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extracted from the DFT spectrum ρDFT(E) and the Coulomb interaction U.
The Green’s function in mean field approximation is calculated from the mean field
DFT spectrum ρDFT(E) via a Hilbert transformation

Gd(z) =
1
π

∫
dε

ρDFT(ε)

z− ε
. (G.5)

The level energy ε0 is computed according to

ε0 = εMF,σ −U〈nd,−σ〉 =
∫ D

−D
ρDFT(ω)ω dω−U〈nd,−σ〉, (G.6)

where the occupation number is given by 〈nd,−σ〉 =
∫ 0
−D ρDFT(ω) dω. The hybridiza-

tion function Γ(E) is finally obtained from the imaginary part of the coupling function
∆(z)

Γ(E) = − lim
δ→0

Im[∆(E + iδ)], (G.7)

where the complex coupling function can be calculated from the mean field energy
level εMF,σ and Green’s function Gd(z) using Eqs. (G.4G.4) and (G.5G.5)

∆(z) = z− εMF,σ − G−1
d (z). (G.8)
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