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Summary 

Drug-induced liver injury represents one of the most critical issues during drug development 

and leads to failure of many drug candidates in preclinical or clinical studies. Currently, the 

common model for safety evaluation and human health risk assessment is repeated dose 

toxicity (RDT) testing in rodents. However, RDT studies require numerous animals and the 

capacity for this conventional testing is limited. There is an urgent need for the development 

of novel test systems, where complex in vivo processes and different mechanisms of toxicity 

can be addressed. In recent years, numerous research groups have focused on the identifica-

tion and development of biomarkers of hepatotoxicity. In this context, genomic approaches 

are used to identify patterns in mRNA expression changes, referred to as toxicogenomics. 

Emerging databases provide a vast amount of transcriptomics data from compound-exposed 

hepatocytes, as well as rodent livers. This large amount of publically available genome wide 

expression data provides valuable information for the identification and development of 

novel biomarkers of hepatotoxicity. However, a comprehensive analysis summarizing the key 

features of chemically-influenced gene expression has not yet been performed.  

The first part of this thesis focusses on the definition of key principles of global expression 

alterations in compound-exposed hepatocytes. Therefore, genome wide expression data 

from the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-

GATES) database were used. This database comprises gene array data from primary human 

hepatocytes that were incubated with 150 compounds for several time points and concen-

trations. Before analyzing the structure of the database, a number of curation steps were 

performed to improve the data set. Genes were only considered to be up or down regulated 

when the mean alteration was at least 3 fold compared to the untreated control condition. 

Furthermore, the concentration progression of each compound was analyzed and com-

pounds that followed an implausible concentration progression were excluded from the data 

set. With the final optimized dataset, a toxicotranscriptomics directory was developed, 

which indicates whether a particular gene is altered upon chemical exposure. If there are 

gene expression changes, the type and number of compounds inducing this change could 

also be identified. The directory further provides information on whether a gene is also al-

tered in human liver diseases, such as hepatocellular carcinoma (HCC), non-alcoholic steato-

hepatitis (NASH) or cirrhosis, thus implying in vivo relevance. Genes that are influenced by 

the hepatocyte isolation and cultivation procedures are highlighted and defined as unstable 

baseline genes. Finally biomarker candidates were chosen that are altered by a large set of 

chemicals that simultaneously overlap with those deregulated in liver diseases, but not by 

the hepatocyte isolation and cultivation procedures. Based on these criteria, the toxicoge-

nomics directory was used to identify a set of seven potential biomarker candidates: The 

cytochrome P450 isoenzymes 1B1 (CYP1B1) and 3A7 (CYP3A7), the cytoskeletal protein tu-

bulin 2B (TUBB2B), sulfotransferase 1C2 (SULT1C2), the stress response gene FBXO32, regu-
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lator of cell cycle (RGCC), and glucose-6 phosphate dehydrogenase (G6PD). These genes cov-

er a broad range of toxicological motifs, such as the metabolism of xenobiotics, energy and 

lipid metabolism, cytoskeleton, cell cycle and protein degradation. 

The second part of this thesis focusses on the applicability of the selected genes to predict 

human hepatotoxicity. In a pilot study, a biomarker and cytotoxicity-based in vitro system 

was established, which predicts human blood concentrations that are associated with an 

increased risk of hepatotoxicity. A set of 12 hepatotoxic compounds, as well as 9 non-

hepatotoxic compounds were identified. The former are associated with an increased risk of 

hepatotoxicity when administered at therapeutic doses; whereas, the latter are considered 

harmless in the therapeutic concentration range. For each compound, a literature search 

was performed to identify the resulting blood concentrations from therapeutic doses. 

HepG2 cells, as well as primary human hepatocytes were treated with each compound in a 

concentration range that included the peak plasma concentration identified for the thera-

peutic dose, in addition to doses that resulted in a slightly cytotoxic concentration. Two 

readouts – biomarker expression and cytotoxicity tests – were used to identify critical con-

centrations in vitro. The lowest observed effect concentrations (LOECs) in vitro were finally 

compared to peak plasma concentrations of therapeutic doses in vivo.  

In HepG2 cells, the biomarker-based in vitro system was able to adequately discriminate be-

tween the two sets of compounds. The prediction sensitivity improved in primary human 

hepatocytes, because the model was able to identify hepatotoxic effects at even lower con-

centrations. The results revealed that for a large amount of compounds, the in vitro model 

precisely predicted human blood concentrations that are associated with an increased risk of 

hepatotoxicity. However, the model is not yet applicable to all compounds, because for 

many of them it still underestimates the risk of hepatotoxicity. Future studies should identify 

further biomarkers that are able to capture more compounds and allow a more precise pre-

diction. 

Based on the so far available biomarkers, the presented model allows for an approximation 

whether a therapeutic dose would be associated with a high or a low risk of hepatotoxicity in 

vivo. Although it is still in its developmental stage, the model shows promise as it identifies a 

number of idiosyncratic hepatotoxic compounds, which are distinguishable from non-

hepatotoxic compounds. The clustering within the set of hepatotoxic or non-hepatotoxic 

compounds allows the estimation of the hepatotoxic potential of an unknown compound. In 

conclusion, the novel prediction system represents a promising tool to assess a putative risk 

of hepatotoxicity for unknown compounds and provides valuable knowledge that contrib-

utes to, for example the ranking and prioritization of compounds in early drug development. 
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Zusammenfassung 

Eine der größten Herausforderungen bei der Entwicklung neuer Medikamente sind Chemika-

lien-induzierte Leberschäden. Oftmals wird neben dem gewünschten therapeutischen Effekt 

auch Lebertoxizität beobachtet, wodurch vielversprechende Kandidaten während der vorkli-

nischen und klinischen Phase scheitern oder auch häufig nach der Zulassung noch vom 

Markt genommen werden. In der gängigen Praxis werden zur Sicherheitseinstufung und Risi-

kobewertung von Medikamenten vor allem Tiermodelle genutzt, bei welchen die Tiere nach 

wiederholter Applikation auf Anzeichen von Toxizität untersucht werden. Dieses Verfahren 

bedarf jedoch einer sehr großen Anzahl an Tieren, ist sehr kostenintensiv und übersteigt die 

Prüfkapazität für neue Substanzen um ein Vielfaches. Demnach stellt die Entwicklung neuar-

tiger Testsysteme eine dringende Notwendigkeit dar.  

In den letzten zwei Jahrzehnten konzentriert sich ein Großteil der Forschungsvorhaben auf 

die Identifizierung und die Entwicklung von Biomarkern, welche einen hepatotoxischen Ef-

fekt frühzeitig signalisieren. In diesem Zusammenhang stellt die Entwicklung von –omics 

Technologien, insbesondere Toxicogenomics, einen prominenten Ansatz dar. Genomweite 

Analysen werden herangezogen, um Muster in Chemikalien-induzierten Genexpressionsver-

änderungen zu detektieren. Transkriptomdaten von Substanz-exponierten Zellen und Nage-

tier-Lebern sind in Datenbanken im Internet öffentlich zugänglich und bieten einen großen 

Informationspool für die Entwicklung genomischer Biomarker. Um diese umfangreichen Da-

tenmengen jedoch optimal für die Entwicklung neuartiger Biomarker nutzen zu können, ist 

das Verständnis von Schlüsseleigenschaften Chemikalien-induzierter Genexpressionsverän-

derungen von großem Vorteil. Dennoch gibt es bislang keine umfassenden Studien, die sich 

mit typischen Merkmalen Chemikalien-induzierter Transkriptionsveränderungen beschäfti-

gen.  

Um ein generelles Verständnis globaler Expressionsveränderungen in Substanz-exponierten 

Hepatozyten zu erlangen, beschäftigt sich der erste Teil dieser Doktorarbeit mit der Definiti-

on von Schlüsselprinzipien, welche Chemikalien-induzierten Transkriptionsmustern unterlie-

gen. Dazu wurden globale Expressionsstudien der öffentlichen Datenbank Toxicogenomics 

Project-Genomics Assisted Toxicity Evaluation System (TG-GATES) herangezogen, in welcher 

Gene Array Daten primärer humaner Hepatozyten von 150 getesteten Substanzen zusam-

mengefasst sind. Um besagte Schlüsselmerkmale optimal herausarbeiten zu können, wurden 

zunächst einige Optimierungsschritte am Datensatz vorgenommen. Es wurden z.B. nur Gene 

als hoch- oder herunter reguliert betrachtet, wenn eine Deregulation im Vergleich zur unbe-

handelten Kontrolle um mindestens den Faktor 3 vorlag. Weiterhin wurden die Konzentrati-

onsverläufe aller Substanzen analysiert. Substanzen, die beispielsweise Gene bei einer nied-

rigen, nicht jedoch einer höheren Konzentration deregulieren, weisen einen unlogischen 

Konzentrationsverlauf auf und wurden von der weiteren Analyse ausgeschlossen. Mit dem 

optimierten Datensatz wurde anschließend ein Toxicotranskriptom-Verzeichnis entwickelt. 

Dieses gibt Auskunft darüber, ob ein Gen durch Chemikalien beeinflusst wird und wenn ja, 

durch wie viele und welche Art von Substanzen. Weiterhin werden Gene gekennzeichnet, 
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deren Expression auch in Leberkrankheiten wie Zirrhose, hepatozelluläres Karzinom oder bei 

einer nicht-alkoholischen Fettleber verändert ist. Ein derartiger Überlapp impliziert eine 

mögliche Relevanz des Gens in vivo und minimiert die Wahrscheinlichkeit, dass sich bei der 

Chemikalien-induzierten Expressionsveränderung um einen in vitro Artefakt handelt. Gene, 

welche durch die Isolierungs- und Kultivierungsbedingungen beeinflusst werden, sind eben-

falls hervorgehoben.  

Gene, welche von möglichst vielen unterschiedlichen Substanzen dereguliert werden, eben-

falls in Leberkrankheiten verändert sind, jedoch nicht durch die Isolierungs- und Kultivie-

rungsbedingungen beeinflusst werden, repräsentieren potentielle Biomarker-Kandidaten. 

Basierend auf diesen Kriterien wurde das Toxicotranskriptom-Verzeichnis genutzt, um sieben 

mögliche Kandidaten zu identifizieren: Die Cytochrom P450 Isoenzyme CYP1B1 und CYP3A7, 

das zytoskeletale Protein Tubulin 2 B (TUBB2B), die Sulfotransferase SULT1C2, das Stress-

induzierte Gen FBXO32, das Zellzyklus-regulierende Protein RGCC und das Gen der Glucose-

6-Phosphat Dehydrogenase (G6PD). Diese Gene decken eine Vielzahl möglicher Toxizitäts-

mechanismen ab, nämlich den Metabolismus von Xenobiotika, den Energie- und Lipidstoff-

wechsel, das Zytoskelett, den Zellzyklus und den Abbau von Proteinen.  

Der zweite Teil dieser Arbeit konzentriert sich auf eine mögliche Anwendbarkeit der ausge-

wählten Gene, um humane Hepatotoxizität vorher zu sagen. In einer Teststudie wurde ein 

Biomarker- und Zytotoxizität-basiertes in vitro System entwickelt, was die Vorhersage hu-

maner Blutkonzentrationen ermöglicht, welche mit einem erhöhten Risiko für Lebertoxizität 

assoziiert sind. Dazu wurden 12 hepatotoxische sowie 9 nicht-hepatotoxische Substanzen 

ausgewählt. Hepatotoxische Substanzen weisen bei therapeutisch wirksamer Dosierung ein 

erhöhtes Risiko für Lebertoxizität auf, während bei nicht-hepatotoxischen Substanzen in die-

ser Konzentrationsspanne keine Gefahr für einen Leberschaden besteht. Für alle Substanzen 

wurden im Rahmen einer Literaturrecherche die Plasmakonzentrationen einer therapeuti-

schen Dosis identifiziert. HepG2 Zellen sowie primäre humane Hepatozyten wurden mit den 

jeweiligen Substanzen inkubiert, wobei sowohl therapeutisch wirksame, bis hin zu leicht zy-

totoxischen Konzentrationen getestet wurden. Um die jeweils niedrigste Konzentration zu 

ermitteln, bei welcher in vitro ein hepatotoxischer Effekt auftritt, wurden sowohl Zytotoxizi-

tätsexperimente durchgeführt, als auch die Expression der ausgewählten Biomarker Gene 

analysiert. Anschließend wurden diese kritischen Konzentrationen in vitro mit der Plasma-

konzentration einer therapeutischen Dosis in vivo verglichen. 

Sowohl für HepG2 Zellen, als auch in primären humanen Hepatozyten, konnte eine Separie-

rung hepatotoxischer und nicht-hepatotoxischer Medikamente beobachtet werden. Mit den 

primären Zellen wurde zudem eine wesentlich sensitivere Vorhersagbarkeit für einen mögli-

chen Leberschaden erzielt, da hepatotoxische Effekte in vitro bereits bei niedrigeren Kon-

zentrationen auftraten. Erste Ergebnisse zeigen, dass das beschriebene in vitro Modell be-

reits für eine große Anzahl an Substanzen humane Blutkonzentrationen relativ genau vor-

hersagen kann, bei denen ein erhöhtes Risiko für einen Leberschaden besteht. Dennoch ist 

das Modell noch nicht vollständig ausgereift und für alle Substanzen anwendbar, da es das 

Risiko einer hepatotoxischen Wirkung für manche Medikamente noch unterschätzt. Zukünf-

tige Experimente werden sich mit der Identifizierung weiterer Biomarker beschäftigen, die 
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einen weiteren Bereich an Substanzen abdecken und eine genauere Vorhersagbarkeit er-

möglichen. 

Basierend auf den bisher vorliegenden Biomarkern ist das entwickelte in vitro Modell in der 

Lage, einzuschätzen, ob eine therapeutisch wirksame Dosis eines Medikaments mit einem 

hohen oder einem niedrigen Risiko für einen Leberschaden einhergeht. Die Gruppierung 

innerhalb der Klasse hepatotoxischer oder nicht-hepatotoxischer Substanzen kann dafür 

genutzt werden, das Risiko für einen hepatotoxischen Effekt einer noch unbekannten Sub-

stanz abzuschätzen. Demnach stellt das im Rahmen dieser Arbeit entwickelte Modell einen 

erfolgreichen Ansatz dar, um bei der Entwicklung neuer Medikamente vielversprechende 

Kandidaten zu sondieren und somit das Risiko für einen möglichen Leberschaden zu mini-

mieren. 
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Abbreviations 

AA  Allyl alcohol 

ABC  ATP-binding cassette  

ADME  Absorption, distribution, metabolism, excretion 

AFB1  Aflatoxin B1 

Akt  Protein kinase B 

ALDH  Alcohol dehydrogenase 

ALT  Alanine aminotransferase 

ALP  Alkaline phosphatase 

ANGPTL4 Angiopoietin-like 4 

APAP  Acetaminophen 

ASP  Aspirin 

AST  Aspartate aminotransferase 

ATP  Adenosine triphosphate 

ATF3  Activating transcription factor 3 

AXL  AXL receptor tyrosine kinase 

BEA  Bromoethylamine 

BCL2A1 BCL2-related protein A1 

BPR  Buspirone 

Bsep  Bile salt export pump 

Ca  Calcium 

CBX4  E3 SUMO-protein ligase CBX4 

CBZ  Carbamazepine 

CCL2  Chemokine (C-C motif) ligand 2 

CCl4  Carbon tetrachloride 

CCNE2  Cyclin E2 

CDK  Cycline dependent kinase 

CDKN2C Cyclin-Dependent Kinase Inhibitor 2C 

cDNA  Coding deoxyribonucleic acid 

CHL  Chlorpheniramine 

CHX  Cycloheximide 

CLON  Clonidine 

CLRN  Clarin 

CoA  Coenzyme A 

CO2  Carbon dioxide 

CPS  Carbamoyl phosphatate synthase 

Ct  Cycle threshold 

CUX2  Cut-Like Homeobox 2 

CYP  Cytochrome P450 enzymes 
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DEPC  Diethylpyrocarbonate  

DFN  Diclofenac  

DHFR  Dihydrofolate reductase 

DILI  Drug-induced liver injury 

DMEM  Dulbecco’s Modified Eagle’s Medium  

DMSO  Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

Dntp  Di-deoxyribonucleic acid 

EDTA  Ethylene diamine tetra acidic acid 

EFNA1  Ephrin-A1 

EGTA  Ethylene glycol tetraacetic acid  

EtOH  Ethanol 

FAM  Famotidine 

FBXO32 F-Box Protein 32 

FC  Fold change 

FCS  Fetal calf serum 

FDR  False discovery rate 

FRET  Fluorescence resonance energy transfer 

g  Standard gravity 

g   Gram 

G6PD  Glucose-6-hosphate dehydrogenas 

GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase 

GATA  Erythroid transcription factor also known as GATA-binding factor 1 

GDF15  Growth differentiation factor 15 

GO  Gene Ontology 

h  Hour 

H2O  Water 

HCC  Hepatocellular carcinoma 

HNF4  Hepatocyte nuclear factor 4 

HNMT  Histamine N-methyl transferase 

HOGA1 4-hydroxy-2-oxoglutarate aldolase 

HSPA6  Heat shock protein 6 

HYZ  Hydroxyzine 

ID1  Inhibitor Of DNA Binding 1 

INAH  Isoniazid 

INSIG  Insulin-induced gene 

KC  Ketoconazole 

KCl  Potassium chloride 

KCNJ8  Potassium channel, inwardly rectifying subfamily J, member 8 

kg  Kilogram 

KH2PO4 Potassium dihydrogen phosphate 

L  Liter 
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LAB    Labetalol 

LEV  Levofloxacine 

LOEC  Lowest observed effect concentration 

LPS  Lipopolysaccharide 

M  Molar 

MEF2  Myocyte enhancer factor 2 

MEL  Melatonin 

mg  Milligram 

min  Minute 

mL  Milliliter 

mM  Millimolar 

mRNA  Messenger RNA 

NaCl  Sodium chloride 

NADPH Nicotinamide adenine dinucleotide phosphate 

NaH2PO4 Sodium dihydrogen phosphate 

NaOH  sodium hydroxide  

NASH  Non-alcoholic steatohepatitis 

NAT  N-acetyltransferase 

NF-kB  Nuclear factor kappa B 

NFT  Nitrofurantoin 

NIM  Nimesulide 
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n-Myc  n-Myc proto-oncogenic transcription factor 

NREP  Neuronal regeneration related protein 
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PBLD  phenazine biosynthesis-like protein domain containing protein 
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PCA  Principal component analysis 
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PCR  Polymerase chain reaction 

PDK  Pyruvate dehydrogenase kinase 
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1 Introduction 

1.1 Critical aspects of drug-induced liver injury and models for hepatotoxici-

ty prediction 

The liver represents the central organ of metabolism and detoxification in the body (Bandara 

and Kennedy 2002). Its primary functions comprise intermediary and energetic metabolism, 

as well as biotransformation of various substances, which makes the liver the major target of 

drug toxicity (Gomez-Lechon et al. 2010). Consequently, drug-induced liver injury (DILI) is 

one of the most critical issues during drug development and leads to failure of many drug 

candidates during preclinical or clinical studies (Jaeschke et al. 2002). In addition, hepatotox-

icity is the main reason for drug withdrawal from the market. It is a reported side effect of 

more than 900 drugs and is responsible for 5 % of all hospital admissions and for 50 % of all 

acute liver failures, (Ostapowicz et al. 2002; Wilke et al. 2007; Pandit et al. 2012). Unfortu-

nately, up to 10 % of DILI patients will develop jaundice and eventually die (Navarro and 

Senior 2006). For this reason, a major goal of the pharmaceutical industry is to market safer 

drugs with less adverse effects, predictable pharmacokinetic properties and quantifiable 

drug-drug interactions. In order to achieve this, the evaluation of potential hepatotoxic ef-

fects represents a critical step in drug development (Gomez-Lechon et al. 2010).  

During the last decades, several animal models have been used to study cytological, physio-

logical, metabolic and morphological endpoints to illustrate clinical and pathophysiological 

injury (Suter et al. 2004). Among the most frequently used tools in preclinical evaluation are 

two year repeated dose toxicity rodent studies, as well as conventional toxicity tests, which 

focus on transaminase levels and histopathological findings (Cheng et al. 2011). Currently, 

animal in vivo studies represent the best model to mimic the physiological microenviron-

ment in humans, but do not allow high-throughput screenings with a large number of com-

pounds. For practical, as well as ethical reasons, only a small number of preselected com-

pounds can be examined in vivo (Cheng et al. 2011). In addition, screening large sets of 

chemicals is limited due to high costs, and the large number of animals and extensive time 

needed to conduct such experiments.  

However, due to interspecies differences in hepatocellular function, pharmacokinetics, as 

well as administration, distribution, metabolism and excretion (ADME) information for a par-

ticular test compound or drug gained from animal models cannot simply be transferred to 

the human system. It is estimated that preclinical evaluation of drug candidates using con-

ventional clinical pathology and animal testing fails to detect up to 40% of potentially hepa-

totoxic drugs in humans (Aubrecht et al. 2013). Since human in vivo studies cannot be per-

formed for ethical reasons, human hepatocyte in vitro systems are frequently applied to 

mimic the human in vivo situation. These in vitro models generally comprise immortalized 

human hepatic cell lines, such as HepG2 or HepaRG cells, primary hepatocytes, liver slices, 

stem cell derived hepatocytes and 3D systems, such as liver spheroids. Furthermore, co-
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cultures with non-parenchymal liver cells are used to enable cross-talk between hepatocytes 

and further liver cells, thus stabilizing hepatic functionality and thereby minimizing discrep-

ancies between in vitro and in vivo models (Jiang et al. 2015; Nibourg et al. 2012). These sys-

tems offer the possibility to investigate specific parameters in a controlled environment 

(Tuschl et al. 2008). On the other hand, in vitro test systems do not fully reflect systemic in-

fluences and hepatocellular toxic effects, such as transaminase induction and toxicity related 

to in vivo metabolites or mitochondrial dysfunction (Cheng et al. 2011). 

To reduce the number of animals and to minimize the risk of hepatotoxicity in humans, the 

early detection of drug-induced hepatotoxicity is essential before compounds are tested in 

animals or clinical trials (O'Brien et al. 2006). In the current clinical practice, liver injury is 

detected by measuring circulating molecules, indicating alterations in liver function and ho-

meostasis, or changes in tissue or cell integrity (Aubrecht et al. 2013). These biomarkers en-

compass for example, total bilirubin, total bile acids, alanine- (ALT) and aspartate ami-

notransferase (AST) levels, alkaline phosphatase (ALP), lactate dehydrogenase and 

-glutamyl transpeptidase concentrations (Aubrecht et al. 2013; Giannini et al. 2005; Navarro 

and Senior 2006). However, these clinical biomarkers detect liver injury only after a signifi-

cant injury has already occurred, but not before liver function is compromised. Total biliru-

bin levels for example, increase only after the liver has lost approximately half of its excreto-

ry capacity (Navarro and Senior 2006). In general, the listed biomarkers are often sensitive, 

but not necessarily specific for the target organ. Some markers are more sensitive than oth-

ers or are elevated by non-hepatic injury. For example, ALT is not necessarily specific for liver 

injury and ALT levels do not always correlate to the extent of liver injury (Sun et al. 2014; 

Yang et al. 2012). 

Since the currently-available toxicity test systems are obviously not sufficient to predict hu-

man hepatotoxicity, and because current serum markers indicate hepatotoxicity only at a 

progressed state of liver injury, there is an urgent need for novel tools to predict human 

hepatotoxicity. Ideally, new test systems should be robust, cheaper, faster and more conven-

ient for screening than the so far available test systems and cover even complex in vivo pro-

cesses, such as ADME and different mechanisms of toxicity. The overall aim of this work is 

therefore to identify novel biomarkers which are organ specific and can identify the hepato-

toxic potential of compounds prior to the development of clinical signs. Optimally, these 

biomarkers are applicable in in vitro systems to predict the risk of hepatotoxicity of a particu-

lar compound in vivo.  

 

1.2 Toxicogenomics for the identification of novel biomarkers of toxicity 

Technological advances in the field of omics technologies have shown promise in the area of 

biomarker development. Genomics, proteomics and metabolomics play an important role in 

uncovering novel biochemical pathways and are used in preclinical animal studies, as well as 

clinical investigations to evaluate markers of hepatotoxicity in tissues and in easily-obtained 

body fluids, such as urine or serum (Yang et al. 2012).  
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While proteomics are used as a tool to identify cytokines and cellular stress markers of hepa-

totoxicity, metabolomics analyze for example, bile acid metabolism or hepatic glutathione 

depletion (Yang et al. 2012). Another important aspect is the use of genomics, particularly 

toxicogenomics to get insight into the molecular mechanisms of drug toxicity.  

Toxicogenomics combines conventional toxicology with genomics and bioinformatics to 

study adverse effects of chemicals. Genome wide expression data are analyzed for gene ex-

pression changes that influence, predict or help to define drug toxicity (Suter et al. 2004). 

Although the relationship between changes of gene expression and adverse effects in vivo 

are not yet fully understood, the evaluation and characterization of differentially expressed 

genes in chemically-exposed cells can be used to predict toxicologic outcomes and to identi-

fy mechanisms of action. Several studies demonstrate that compounds, which cause the 

same toxic end points, also generate a unique gene expression pattern (Gomez-Lechon et al. 

2010). For example, a previous study successfully showed the usefulness of clustering hepa-

totoxins by gene expression profiling (Ellinger-Ziegelbauer et al. 2008). In this study gene 

expression profiles of drug-exposed rat livers were analyzed and the authors were able to 

distinguish between genotoxic and non-genotoxic carcinogens. Another study has shown 

that gene expression profiles can discriminate between hepatotoxic and non-hepatotoxic 

compounds in rats (Zidek et al. 2007). This study identified a set of marker genes, which re-

flected typical hepatotoxic responses and allowed the prediction of compound classes. Fur-

thermore, differently acting hepatotoxins can be distinguished according to their gene ex-

pression profile. This was for example shown by a research group who identified highly dis-

criminating genes which differentiated between enzyme inducing compounds and peroxi-

some proliferators in exposed rat livers (Hamadeh et al. 2002a; Hamadeh et al. 2002b). 

However, although the results of the aforementioned studies are promising, it is unclear 

how relevant biomarkers identified in in vivo animal models are representative of the situa-

tion in the human liver.  

Besides the rodent in vivo studies, other groups focused on toxicogenomics-based hepato-

toxicity prediction in human hepatic cell lines. Cha et al. identified 77 specific genes, which 

may be indicative of early, as well as the later onset of non-steroidal anti-inflammatory drug 

(NSAID) - induced hepatotoxicity in HepG2 cells (Cha et al. 2010). A set of hepatotoxic and 

non-hepatotoxic compounds were used to validate the model and 100 % prediction accuracy 

was achieved. However, gene expression of HepG2 cells does not represent the real situa-

tion of gene expression in the human liver in vivo and the reliability of the prediction system 

has not yet been confirmed in primary hepatocytes or in vivo studies (Godoy et al. 2013).  

Currently, the best available modeling systems to identify novel biomarkers for the predic-

tion of hepatotoxicity include a combination of in vivo animal data and data from exposed 

human cell lines and cultivated primary cells in vitro. It is a long term goal to identify bi-

omarkers in in vitro systems, which are capable to predict mechanisms of toxicity in vivo. 

However, this requires comprehensive knowledge of ideally all mechanisms leading to ad-

verse effects, as well as an in vitro system that reflects critical mechanisms of in vivo toxicity. 

Since the link between gene expression alteration and adverse effects in vivo is not com-

pletely understood, it is of great importance to understand which of the responses observed 
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in the in vitro systems are relevant for the situation in vivo. It was shown that clusters of 

genes are up or down regulated simply by the hepatocyte isolation and cultivation proce-

dure (Zellmer et al. 2010). Consequently, this response represents a pure in vitro artifact. 

Likewise, it is reported that cultivated primary hepatocytes become resistant to apoptosis in 

culture, which might result in a repression of certain in vivo relevant responses (Godoy et al. 

2009; Godoy et al. 2010a; Godoy et al. 2010b). In contrast, a systematic comparison of gene 

expression profiles from exposed rat livers in vivo and cultivated rat hepatocytes in vitro re-

vealed a good correlation for some cellular stress, as well as DNA damage and metabolism 

associated genes (Heise et al. 2012). 

To bridge the gap between biomarkers of toxicity identified from in vitro systems and their 

potential function in vivo, one research group focused on a set of genes that are associated 

with elevated serum ALT levels after exposure to six heterogeneous compounds (Cheng et 

al. 2011). Thirty-two genes were used as a multi gene expression signature to predict hepa-

totoxicity in rats in vivo, and in HepG2 cells, as well as primary human hepatocytes in vitro. 

Different degrees of toxicity in response to drug concentrations were evaluated, allowing the 

estimation of the general hepatotoxic potential of a compound and its toxic concentration. 

However, pharmacokinetic differences between the in vivo and in vitro systems might lead 

to discrepancies in the drug-induced gene expression alterations (Schug et al. 2013). In gen-

eral it is recommended that in vitro concentrations are selected, which reflect critical con-

centrations in vivo. For instance, physiologically-based pharmacokinetic (PBPK) models are 

used to predict doses that result in critical concentrations in the target cells in vivo. One 

study was able to show that the gene expression pattern induced by a histamine 3 receptor 

inverse agonist was comparable between exposed rat livers in vivo and corresponding con-

centrations in primary human hepatocytes in vitro, representing the maximal blood concen-

tration (Roth et al. 2011). The group focused on genes that were critical for the hepatotoxici-

ty induced by the compound, and was able to extrapolate the toxic effects to an unknown 

compound of the same compound class. This example demonstrates the identification of 

specific biomarkers for a selected compound and the applicability of the toxicogenomics tool 

to predict hepatotoxicity for uncharacterized compounds. Nevertheless, the identification of 

predictive biomarkers of toxicity remains challenging, since different compounds may induce 

different forms of liver toxicity (such as metabolic perturbations, cell death or mitochondrial 

dysfunction), which could result in unique gene expression profiles (Cheng et al. 2011).  

Ideally, novel biomarkers of hepatotoxicity will cover a broad range of toxic mechanisms to 

capture as many compounds as possible. To identify potentially hepatotoxic drugs in preclin-

ical studies, these biomarkers should give alerts independent of the chemical structure or 

the toxic mode of action. To evaluate which biomarker candidate genes might be of interest, 

it is critical to obtain a comprehensive overview of chemically-induced gene expression al-

terations.  
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1.3 Publically available transcriptomics databases – challenges and limita-

tions 

In recent years, several public databases, such as DrugMatrix, diXa and Toxicogenomics Pro-

ject-Genomics Assisted Toxicity Evaluation System (TG-GATES), have emerged, providing 

gene array data of chemically-exposed hepatocytes and other cells from different organs 

(Jiang et al. 2015). All three databases encompass in vitro and in vivo transcriptomics data of 

compound-exposed rat organs or cultivated primary cells with multiple doses and time 

points (Chen et al. 2012; Hendrickx et al. 2015). Hundreds of compounds acting via various 

mechanisms were tested, including therapeutic, industrial, and environmental chemicals at 

both non-toxic and toxic doses. In addition to the transcriptomics data, some of the data-

bases also provide additional information for each compound, also collecting including tox-

icity data and relevant sources from literature, together with available proteomics, metabo-

lomics and epigenetics data (Hendrickx et al. 2015).  

The scope of this thesis utilizes the transcriptomics data set of the publically available data-

base, Open-TG-GATE. The database consists of transcriptomics data from 158 chemicals 

tested in cultivated primary human and primary rat hepatocytes, as well as in vivo data of 

exposed rat livers. Hepatotoxic and non-hepatotoxic drugs and some experimental hepato-

toxic compounds were tested at three different time points, in three different concentra-

tions, with the highest dose approaching cytotoxicity.  

Although the vast amount of transcriptomics data may provide useful insights into various 

toxic mechanisms, the handling of this huge amount of data is not trivial. On the one hand, 

working with large data sets, especially when generated by several research consortia with 

independent contributors, is challenging because experimental errors and artifacts cannot 

be excluded (Grinberg et al. 2014). Having to combine several analytical batches, which will 

undoubtedly contain experimental errors in a subset of samples, is often unavoidable, and 

may lead to misinterpretation of the data. Exclusion of implausible data may improve the 

reliability of the Open TG GATEs transcriptomics data and form a basis for the identification 

of novel biomarkers of toxicity. On the other hand, the extraction of specific biomarkers of 

toxicity from such a large amount of data requires a general understanding, not only of pos-

sible mechanisms of action, but also of the typical changes in the cells as they undergo 

chemically-induced stress. Understanding the patterns of up or down regulated genes of 

chemically-exposed cells in vitro could provide valuable information for the extraction of 

potential biomarker genes and for the identification of toxic mechanisms. However, despite 

the frequent use of the previously mentioned in vitro test systems, a comprehensive analysis 

of genes altered by chemicals in vitro has not been performed. Therefore, in order to obtain 

a better understanding of global gene expression profiles after chemical exposure, this thesis 

summarizes key features of chemically-influenced genes and provides a guideline for the 

identification of novel biomarkers of hepatotoxicity. 
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1.4 Aim of this work 

The aim of this thesis was to establish a guideline to describe how transcriptomics data of 

large data sets can be used to extract specific biomarkers of human hepatotoxicity.  

For this purpose, genome wide expression data obtained from chemical-exposed primary 

human hepatocytes from the Open TG-GATES database is considered. The first part of this 

thesis focusses on the in silico characterization and curation of the Open TG-GATES data-

base. To improve the reliability of the data, batch effects are identified and controlled, the 

data reproducibility across replicates is assessed and compounds following an implausible 

concentration are excluded from further analysis. With the curated data set, comprehensive 

bio-statistical analysis is performed and a novel toxicogenomics directory is established. The 

goal of establishing such a directory is to improve the understanding of how genes are typi-

cally altered by chemicals in vitro, which may contribute towards the identification of poten-

tial biomarkers of toxicity.  

Since the heterogeneity of compounds involves various mechanisms of toxicity, it was as-

sumed that the database comprised a comprehensive overview of all genes that could be 

deregulated in primary human hepatocytes after compound exposure. To enable the extrac-

tion of potential biomarker candidate genes, the structure of chemical-induced gene expres-

sion is analyzed and the altered genes are categorized using the following strategy: 

 

 Identification of genes which are altered by many compounds. A change in the ex-

pression of these frequently altered genes represents a stereotypical response to cel-

lular stress. 

 Identification of genes which are also associated with human liver diseases. 

 Exclusion of unstable baseline genes, which are altered because of the hepatocyte 

isolation and cultivation conditions. 

 Identification of biological motifs to cover the most relevant toxic mechanisms.  

 

Based on these key principles, the second part of the thesis focusses on the identification of 

novel biomarkers of human hepatotoxicity. Two different in vitro systems, namely HepG2 

cells and cultivated primary human hepatocytes will be used to analyze the expression of the 

selected marker genes and to evaluate their applicability to predict human hepatotoxic 

blood concentrations that are associated with an increased risk of hepatotoxicity in vivo. 

A set of hepatotoxic, as well as non-hepatotoxic chemicals is used to validate the expression 

of the selected biomarkers at concentrations, which reflect critical, as well as therapeutic 

doses in vivo. In the event that the set of biomarkers is able to differentiate between hepa-

totoxic and non-hepatotoxic compounds at therapeutic doses, the novel prediction system 

will provide a promising tool to identify hazardous compounds during early screening pro-

cesses in drug development. Furthermore, predicting the blood concentrations that are as-

sociated with an increased risk of hepatotoxicity in vivo will provide a valuable method to 

evaluate the safety of novel drugs at therapeutic doses in humans. 
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2 Material and methods 

2.1 Material 

2.1.1 Technical equipment 
Table 2.1: Technical equipment in the laboratory 

Equipment Company 

Balance EW, Kern 

Bunsen Burner IBS Fireboy Plus, Integra Bioscences 

Bright Field Microscope Primo Vert, Zeiss, Software ZEN from Zeiss 

Casy  Innovatis 

Centrifuge Megafuge 1.0R, Thermo Scientific 

Centrifuge Centrifuge 5415 R, Eppendorf 

Centrifuge with cooling function 5424R, Eppendorf 

Centrifuge with cooling function Biofuge Fresco, Heraeus 

Incubators CO2 Incubator C150 R Hinge 230, Binder 

Laminar Flow Hood Electronics FAZ 2, Waldner 

Magnetic stirrer IKAMAG RCT, IKA 

Microcentrifuge Mini Spin Plus, Eppendorf 

Microscope CCD-Camera AxioCam ICm 1 

Minicentrifuge FVL-2400N Combi-Spin, Biosan 

pH meter CG 842, Schott 

Pipetteboy Integra 

Pipettes Research and Reference, Eppendorf 

Infinite M200 Pro Plate reader Tecan 

Precision balance EW 150-3M, Kern 

Real Time PCR System 7500 Real-Time PCR System, Applied Biosystems 

Real Time PCR System 7900 HT, Applied Biosystems 

Sonicator Bandelin, SONOPLUS 

Spectrometer NanoDrop 2000, Thermo Scientific 

Thermocycler TGRADIENT, Biometra 

Vacuum pump Diaphragm Vacuum Pump, Vacuumbrand 

Vortex Vortex-Genie 2, Bender&Hobein 

Water purification system Maxima Ultra-Pure Water, ELGA 

Waterbath GFL 1083, Gesellschaft für Labortechnik 
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2.1.2 Chemicals and kits 
Table 2.2: Compounds and kits 

Compound Company Catalog number 

2-Propanol Carl Roth, Karlsruhe, Germany 7590.1 

Acetaminophen Sigma-Aldrich Corp., St. Louis, MO, USA A7085 

Acetic acid Carl Roth, Karlsruhe, Germany 3738.5 

Aspirin Sigma-Aldrich Corp., St. Louis, MO, USA A5376 

Buspirone Sigma-Aldrich Corp., St. Louis, MO, USA B7148 

Carbamazepine Sigma-Aldrich Corp., St. Louis, MO, USA C4024 

Cell Titer Blue Assay Promega G8081 

Chloroform Carl Roth, Karlsruhe, Germany 7331.2 

Chlorpheniramine Sigma-Aldrich Corp., St. Louis, MO, USA C3025 

Clonidine Sigma-Aldrich Corp., St. Louis, MO, USA C7897 

DEPC sterile water Invitrogen   

Diclofenac Sigma-Aldrich Corp., St. Louis, MO, USA D6899 

Disodium hydrogen phosphate Carl Roth, Karlsruhe, Germany T876.2 

Ethanol VWR Chemicals, Germany 20821.33 

Famotidine Sigma-Aldrich Corp., St. Louis, MO, USA F6889 

High Capaccity cDNA Reverse Transcription Kit Applied Biosystems 4368813 

Hydroxyzine Sigma-Aldrich Corp., St. Louis, MO, USA H8885 

Isoniazid Sigma-Aldrich Corp., St. Louis, MO, USA I3377 

Ketoconazole Sigma-Aldrich Corp., St. Louis, MO, USA K1003 

Labetalol Sigma-Aldrich Corp., St. Louis, MO, USA L1011 

Levofloxacin Sigma-Aldrich Corp., St. Louis, MO, USA 40922 

Melatonin Sigma-Aldrich Corp., St. Louis, MO, USA M5250 

Nimesulide Sigma-Aldrich Corp., St. Louis, MO, USA N1016 

Nitrofurantoin Sigma-Aldrich Corp., St. Louis, MO, USA N7878 

Phenylbutazone Sigma-Aldrich Corp., St. Louis, MO, USA P8386 

Potassium chloride Fluka Chemie AG, Switzerland 60129 

Potassium dihydrogen phosphate Merk, Darmstadt, Germany 1.04873.1000 

Promethazine Sigma-Aldrich Corp., St. Louis, MO, USA P4651 

Propranolol Sigma-Aldrich Corp., St. Louis, MO, USA P0884 

QiazolLysis Reagent Qiagen Sciences, Maryland, USA 79306 

Rifampicin Sigma-Aldrich Corp., St. Louis, MO, USA R3501 

Sodium chloride Carl Roth, Karlsruhe, Germany 3957.2 

Sodium hydroxid Merk, Darmstadt, Germany 1.06482 

Valproic acid Sigma-Aldrich Corp., St. Louis, MO, USA PHR1061 
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2.1.3 Consumables 
Table 2.3: Consumables 

Compound Company Catalog number 

Biosphere Filtered Tip, 1000uL Sarstedt, Numbrecht, Germany 70.762.211 

Biosphere Filtered Tip, 100uL Sarstedt, Numbrecht, Germany 70.760.212 

Biosphere Filtered Tip, 200uL Sarstedt, Numbrecht, Germany 70.760.211 

Biosphere Filtered Tip, 20uL Sarstedt, Numbrecht, Germany 70.1116.210 

Cell culture microtiter plate, 96 well Greiner bio-one 655986 

Cell Scraper, 25cm Sarstedt, Numbrecht, Germany 83.183 

Falcon tube, 15mL Sarstedt, Numbrecht, Germany 62.554.512 

Falcon tube, 50mL Sarstedt, Numbrecht, Germany 62.547.254 

Parafilm Wrap Cole-Parmer, Kehl/Rhein, Germany PM-992 

Pipette Tips, 1000uL Sarstedt, Numbrecht, Germany 70.762 

Pipette Tips, 200uL Sarstedt, Numbrecht, Germany 70.760.002 

Pipette Tips, 20uL Sarstedt, Numbrecht, Germany 70.1116 

RNase-free Microfuge Tubes 1.5 mL Ambion, Thermo Fischer Scientific, USA AM12400 

RNaseZap® RNase Decontamination Solution Ambion, Thermo Fischer Scientific, USA AM9780/AM9782 

SafeSeal 0.5mL microtube Sarstedt, Numbrecht, Germany 72.699 

SafeSeal 1.5mL micotube Sarstedt, Numbrecht, Germany 72.706 

SafeSeal 2.0mL microtube Sarstedt, Numbrecht, Germany 72.695.500 

Serological Pipette, 10mL Sarstedt, Numbrecht, Germany 86.1254.001 

Serological Pipette, 25mL Sarstedt, Numbrecht, Germany 86.1685.001 

Serological Pipette, 5mL Sarstedt, Numbrecht, Germany 86.1253.001 

Tissue Culture Plate Flat-Bottom 12-Well Plate VWR Chemicals, Germany 734-2324 

Tissue Culture Plate Flat-Bottom 24-Well Plate Sarstedt, Numbrecht, Germany 83.1836 

Tissue Culture Plate Flat-Bottom 6-Well Plate Sarstedt, Numbrecht, Germany 83.1839 

Vacuum Filtration Unit, 0.22um, 250mL Sarstedt, Numbrecht, Germany 83.1822.001 
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2.1.4 Cell culture material and buffers 
Table 2.4: Cell culture supplies 

Compound Company 
Catalog  

number 

Casyton solution Roche Diagnostics GmbH, Manheim 5651808001 

Collagen lyophilize (rat-tail), 10mg Roche Diagnostics GmbH, Manheim 11171179001 

Dexamethason Sigma-Aldrich Corp., St. Louis, MO, USA D4902-25MG 

Dimethyl sulfoxid (DMSO) Sigma-Aldrich Corp., St. Louis, MO, USA 472301 

DMEM low glucose 1.0 g/L 10x BioConcept, Allschwil, Switzerland 1-25K03-I 

Dulbecco's modified eagle's medium (DMEM)  PAN Biotech GmbH, Aidenbach, Germany P04-04500 

Gentamicin PAN Biotech GmbH, Aidenbach, Germany P06-13001 

Insulin supplement (ITS) Sigma-Aldrich Corp., St. Louis, MO, USA 3146 

Penicillin/Streptomycin PAN Biotech GmbH, Aidenbach, Germany P06-07100 

Sera Plus (Special Processed FBS) PAN Biotech GmbH, Aidenbach, Germany 3702-P103009 

Stable L-Glutamin PAN Biotech GmbH, Aidenbach, Germany P04-82100 

Trypan blue solution Sigma-Aldrich Corp., St. Louis, MO, USA T8154 

Trypsin/EDTA Sigma-Aldrich Corp., St. Louis, MO, USA P10-023100 

William's E medium PAN Biotech GmbH, Aidenbach, Germany P04_29510 

 

 

2.1.4.1 Phosphate buffered saline (PBS) buffer for cell culture 

For 5 L 10x PBS:  

 

KCl   10 g 

KH2PO4  10 g 

NaCl   400 g 

Na2HPO4  46 g 

 

All reagents were dissolved in double distilled water and the pH was adjusted to pH 7.4. Af-

terwards the buffer was sterile filtered. For application in the cell culture, 10x PBS was dilut-

ed to 1x PBS with double distilled water and autoclaved before usage. 

 

2.1.4.2 HepG2 cell line 

HepG2 liver cells were purchased from ATCC LGC Standards, product number HB-8065. The 

cell line was generated from a 15 year old Caucasian male with hepatocellular carcinoma.   
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2.2 Methods 

2.2.1 Cell culture of HepG2 cells 

2.2.1.1 Cultivation of HepG2 cells  

HepG2 cells were cultivated in Dulbecco's modified eagle's medium (DMEM) containing 

4.5 % glucose, 1 % penicillin/streptomycin mixture and 10 % heat inactivated FCS. The FCS 

heat inactivation was performed at 56 °C for 30 minutes in a water bath. The cells were 

seeded in conventional T75 or T175 flask and kept at 37°C with constant humidity and 5 % 

CO2 content. 

2.2.1.2 Thawing and freezing HepG2 cells 

For thawing, the frozen cell suspension was thawed in a water bath (37 °C) and immediately 

transferred into a Falcon tube. Afterwards the suspension was diluted in 7-8 mL medium and 

centrifuged for 5 minutes at 600 rpm at room temperature to remove the freezing medium. 

The cell pellet was re-suspended in 1 mL medium and given into a T75 cell culture flask with 

9 mL medium.  

For storage, cells were preserved in freezing media containing the regular media plus 10 % 

DMSO. Cells were usually frozen when reaching 80-90 % confluency. The cells were tryp-

sinized  by adding 1 mL trypsin per T75 flask or 2 mL per T175 flask and subsequently re-

suspended in 5 mL (for T75 flask) or 10 mL media (for T175 flasks). The cell suspension was 

then transferred into a Falcon tube and centrifuged at 800 xg for 5 minutes to form a clear 

pellet. The supernatant was aspirated and the cells were re-suspended in freezing media 

(3 mL per T75 flask, 6 mL per T175 flask). 1 mL cryo vial aliquots were prepared and kept on 

ice for 20 minutes before storage at -80°C. For long time incubation the cells were stored in 

liquid nitrogen. 

 

2.2.1.3 Passaging HepG2 cells 

Upon 80-90 % confluency, the HepG2 cells were either sub-cultured or seeded in multi well 

plates for further experiments. For splitting, the cells were washed once with 10 mL sterile 

PBS, the PBS was aspirated and 4 mL Trypsin/EDTA were added. The cells were incubated for 

7 minutes in Trypsin/EDTA at 37°C in the incubator to detach from the plastic surface. The 

enzymatic reaction was stopped by adding 20 mL of warm cultivation medium. The trypsin 

was removed by centrifugation at 600 rpm for 5 minutes at room temperature. The obtained 

cell pellet was re-suspended initially in 1 mL cultivation medium and gently pipetted up and 

down with a 1 mL tip of an Eppendorf pipette. Subsequently the dense cell suspension was 

diluted with further 9 mL medium and distributed 1:3 or 1:10 into new T175 cell culture 

flasks. In a total volume of 25 mL, cells were kept at 37°C until 80-95 % confluency was 

reached again.  
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2.2.1.4 Seeding and treatment of HepG2 cells 

For counting cells with the CASY Cell Counter, 100 µL of the cell suspension diluted in 10 mL 

Casyton.  

For gene expression analysis (two days in culture, 24h compound exposure) 500,000 cells 

per well were seeded in conventional 6-well plates in 2 mL medium per well. For cytotoxicity 

tests (three days in culture, 48 h compound exposure) the cells were cultivated in 24-well 

plates, 62,500 cells seeded per well in 500 µL medium. Compound exposure was started the 

next morning after plating the cells.  

For gene expression analysis as well as cytotoxicity experiments each compound was tested 

in 5 different concentrations plus vehicle control. The chemical amount for the highest con-

centration was weighed and dilution series were prepared for the lower concentrated solu-

tions. In case of water soluble compounds, substances were dissolved in medium and sterile 

filtered before adding to the cells. If the compound amount for the highest concentration 

was below 1 mg, 100x higher concentrated stock solutions in sterile water were prepared. 

DMSO soluble compounds were dissolved in a higher concentrated DMSO stock solution and 

dilution series were prepared (see Table 3.17). Cells were exposed for 24 hours at 37°C at 

constant humidity and 5 % CO2. 

 

2.2.2 Cell culture of primary human hepatocytes 

2.2.2.1 Medium for cultivated primary human hepatocytes 

Primary hepatocytes were cultivated in William’s E medium (PAN Biotech, P04_29510) with 

100 U/mL penicillin, 0,1 mg/mL streptomycin, 10 µg/mL gentamicin, 2 mM stable glutamin, 

100 nM dexa-methasone and 2 nM insulin-transferrin- selenite (ITS) supplement. When plat-

ing cells, 10 % fetal calf serum was added for the first 3-4 h of cultivation. 

 

2.2.2.2 Isolation of primary human hepatocytes  

Primary human hepatocytes were isolated from liver sections of patients undergoing surgical 

liver resection. Prior to the resection, informed content was obtained from each patient. The 

isolation procedure was performed in three cooperating clinics, the Charité Berlin, and the 

university hospitals Munich and Regensburg. 

Resected tissue samples were immediately transported into a sterile vessel containing PBS 

or culture medium, in order to prevent warm ischemia. Upon arrival in the laboratory, the 

tissue was placed on a sterile Petri dish and prepared for perfusion: Remaining blood was 

removed by using an aseptic gauze and buttoned cannula were placed into several vessels of 
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the resection side and fixed with tissue glue. Depending on the size of the tissue and by us-

ing the biological blood vessel architecture, 3-8 cannula are sufficient to perfuse the whole 

piece of liver (Godoy et al. 2013). Liver perfusion for hepatocyte isolation was implemented 

by a two-step isolation procedure which was developed by Seglen et al. and processed as 

recently described by Shinde et al. (Seglen 1976; Shinde et al. 2015). During the first perfu-

sion step, the piece of liver is rinsed for approximately 10 minutes with a pre-warmed EGTA 

containing buffer (Godoy et al. 2013). EGTA is added to prevent coagulation, to remove the 

residual blood and to deplete calcium from the vessels. Calcium is important for cellular ad-

hesion, therefore, the washing out of these ions depletes adhesion factors, results in loosen-

ing of the tissue and promotes the perfusion process (Moscona et al. 1956 and Gingell et al. 

1970). The flow rate of the perfusion solution through the tissue is about 15mL/min. An op-

timal rinsing of the tissue with the buffer is accompanied by a tissue color change from 

brownish red to beige. In the second perfusion step, the piece of liver is perfused with a pre-

warmed collagenase containing buffer (Godoy et al. 2013). For optimal enzymatic activity, 

calcium has to be added to the perfusion solution. In this perfusion step the extracellular 

matrix of the liver tissue is gradually digested within 5-15 minutes. Cannula have to be pulled 

out quickly before the piece of digested liver is placed in a Petri dish with stop solution for 

enzyme inactivation. By cutting the perfused liver piece into two halves and gently shaking 

the tissue, hepatocytes are released into the stop solution. The cell suspension was passed 

through a funnel of gauze in order to remove tissue debris. A centrifugation step was includ-

ed to separate non parenchymal liver cells from the more heavy hepatocytes. The centrifu-

gation was carried out at 50-100xg at 4°C for 5 minutes. The cell pellet was re-suspended in 

PBS or hepatocyte culture medium and placed on ice. The transport of the cells from the 

surgical departments to our laboratory was accomplished overnight in cold stored suspen-

sions on ice. Upon arrival, cells were re-suspended in fresh cultivation medium and the via-

bility was determined using trypan blue exclusion method.  

 

2.2.2.3 Determination of cell viability and cell yield with trypan blue vital stain 

Trypan blue is a commonly used dye to selectively stain dead cells or tissue. Vital cells with 

intact cell membranes cannot incorporate the dye, but dead cells with perforated, destroyed 

cell membranes easily take up the stain. In order to determine cell yield and viability, an ali-

quot of cell suspension was diluted 1:10 in hepatocyte culture medium and mixed 1:2 with a 

0,4 % sterile filtered trypan blue solution. The obtained mixture (1:20 dilution) was filled into 

the chamber of a hemocytometer and the cells in the outer four counting grid squares were 

counted. Vital, unstained cells as well as dead, blue colored cells were counted and the cell 

yield as well as the cell viability was calculated as follows: 

(i) Total amount of cells per m = (counted cells/number of counted square grids) x 

104 x dilution factor 

(ii) Cell viability (%) = number of vital cells x 100 / total number of cells 
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2.2.2.4 Cultivation of primary hepatocytes in collagen sandwich system 

Primary hepatocytes were seeded in conventional 6-well plates between two soft layers of 

collagen gel. For the gel preparation, a bottle of 10 mg lyophilized rat tail collagen was dis-

solved overnight in 9 mL 0.2 % acetic acid at 4°C. Before plating cells dissolved collagen was 

placed on ice, mixed 1:10 with 10x DMEM and drop wise neutralized with 1M NaOH until the 

color turned from yellow to pink. The obtained gel has now a concentration of 1 mg/mL.  

Using conventional 6-well plates, each well was coated with 350 µL of collagen gel for the 

first layer (Godoy et al. 2013) and left for polymerization for 30-45 minutes at 37°C. After 

successful gelation, cells were plated in FCS containing medium into the wells of each plate 

and kept at 37°C in the incubator for at least 3 hours. During this time the cells attach to the 

collagen matrix. For homogenous distribution of the cells, the plate was carefully shaken 

every 5-10 minutes during the first half hour of incubation. After the incubation period, the 

cells were carefully washed 3 x with warm sterile PBS before the second layer of collagen 

was added. The gel of the second layer polymerized at 37 °C for 30-45 min in the incubator. 

Afterwards, 2mL warm FCS free medium was added per well and the cells were kept at 37°C 

in the incubator overnight.  

 

2.2.2.5 Treatment of cultivated primary human hepatocytes  

Gene expression experiments were carried out using 1,500,000 cells per well plated in con-

ventional 6-well plates between the two soft collagen gel layers and 2 mL medium per well. 

Analogue to HepG2 cells, compound exposure was started the morning after the day of plat-

ing. For gene expression analysis, the cells were exposed for 24 hours before RNA was col-

lected. Cytotoxicity experiments followed an incubation period of 48 hours. 

 

2.2.3 RNA sample collection and isolation procedure 

For RNA sample collection, the plates were transferred on ice and the medium supernatant 

was immediately aspirated. QIAzol lysis reagent was applied according to the manufacturer’s 

protocol (1mL QIAzol/well in a 6-well plate format) and the cells were lysed by mechanical 

scraping with a cell scraper. After transferring the liquid into a sterile 2 mL Eppendorf tube, 

the lysates were sonicated on ice for 30 seconds (5 sec pulse, 2 sec break). Samples from 

freshly isolated hepatocytes were processes similarly: 1-1.5 Mio cells were transferred in a 

reaction tube on ice for some minutes. During this time, the cells accumulate at the bottom 

of the reaction tube and the supernatant can be removed carefully. 1mL QIAzol was added 

and the lysate was sonicated as described. 
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RNA was isolated by using QIAzol lysis reagent for phenol-chloroform extraction. QIAzol 

comprises a guanidinium-thiocyanat-phenol mixture, which lyses the cells and supports deg-

radation of proteins. Addition of chloroform results into a phase separation. Under acidic 

conditions the denaturated proteins and DNA partition in the organic phase and interphase, 

while the RNA remains soluble and accumulates in the aqueous phase. Subsequently, the 

aqueous phase was separated and RNA was precipitated by addition of isopropanol. Several 

washing and centrifugation steps with ethanol were performed to increase the RNA purity. 

The amount of QIAzol as well as the following sample procession was modified depending on 

the plate format.  

Samples were further processed as followed: 200 µL chloroform was added to each reaction 

tube and the samples were strongly shaken for approximately 15 seconds. After 2-3 minutes 

incubation at room temperature, a first phase separation was observed. After a centrifuga-

tion step at 4°C for 15 minutes at 12,000xg the upper aqueous phase was transferred into a 

new reaction tube and the RNA was precipitated with adding 500 µL of isopropanol. The 

samples were incubated at room temperature for 10 minutes, centrifuged at 12,000xg for 15 

minutes at 4°C and the supernatant was removed from the RNA pellet. 1 mL of 100% ethanol 

was added to wash the RNA pellet, followed by a centrifugation step at 7,500xg and 4°C for 5 

minutes. After two more washing and centrifugation steps with 80 % and 75 % ethanol (each 

1 mL), the supernatant was again removed carefully and the RNA pellet was air dried for 

some minutes. Depending on the RNA pellet size, 7.5-15 µL RNAse free DEPC water was used 

to re-suspend the RNA. Isolated RNA was stored at -80°C until further usage. The RNA quan-

tity of each sample was determined photometrically with the NanoDrop 2000.  

 

2.2.4 cDNA synthesis 

For quantification of gene expression, the isolated RNA had to be reversely transcribed into 

cDNA. This reaction step is catalyzed by the enzyme reverse transcriptase, which is capable 

to create single stranded DNA from a RNA template. For this purpose the High Capacity 

cDNA Reverse Transcription Kit from Applied Biosystems was used. 500 ng – 2 µg RNA were 

reversely transcribed according to the manufacturer’s protocol. The volumes for the reaction 

mixture are listed in Table 2.5. 
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Table 2.5: Reaction mixture for cDNA synthesis 

Compound Volume per reaction 

10x RT buffer 2  µL 

Random primers 2  µL 

dNTPs 0.8 µL 

Reverse Transcriptase 1 µL 

DEPC H2O 4.2 µL 

Mastermix volume 1 10 µL 

RNA 500ng - 2µg 

DEPC H2O up to 10µL 

Total volume 2 10 µL 

    

Final volume in total 20 µL 

 

Thermal cycling conditions were chosen as follows: 

Table 2.6: Conditions for the thermal cycling program 

Step Temperature Time 

Incubation 25°C 10 min 

Reverse Transcription 37°C 120 min 

Inactivation 85°C 5 sec 

  4°C hold 

 

The concentration of the cDNA was adjusted with DEPC- treated water to a final concentration 

of 10 ng/µL. The samples were stored at -20°C until further usage. 

 

2.2.5 Quantitative Real Time PCR (qRT-PCR) 

Quantitative real time PCR is applied to detect and quantify expression of target genes, 

which are altered in comparison to a stable expressed housekeeping gene. The procedure 

follows the conventional PCR method: Based on thermal cycling, primers bind to defined 

areas of a single DNA template strand and function as starting point for the enzyme Taq pol-

ymerase, which elongates the strand with deoxy nucleotide triphosphates (dNTPs) until the 

complementary strand is completed. Within 40 cycles of the reaction program, the template 

DNA is exponentially amplified. In contrast to the conventional PCR, qRT-PCR additionally 

enables the quantification of the synthesized DNA by combining each amplification cycle 

with a fluorescence signal. The PCR product concentration correlates with the fluorescence 

intensity (Wong and Medrano 2005). Formats for the fluorescence detection are for example 
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hydrolysis probes, such as TaqMan probes or molecular beacons, hybridization probes or 

double stranded DNA binding fluorescing dyes such as SYBR Green (Holzapfel and Wickert, 

2007). In this thesis, the template strand was hybridized to TaqMan probes, which are pri-

mers carrying a fluorescence resonance energy transfer (FRET) pair. This FRET pair consists 

of a fluorescence donor, emitting light of a particular wave length, and a quencher, whose 

absorption spectrum overlaps with the emission spectrum of the donor and thereby 

quenches its fluorescence. In every amplification step, primers bind to the template strand 

and the polymerase elongates the complementary strand in 5’ 3’ direction. During this 

extension step, the enzyme separates the TaqMan probe from the template strand with its 

exonuclease activity and splits it into single nucleotides (Holland et al. 1991). By splitting the 

probe, donor and quencher fluorescence molecules of the FRET pair are separated and a 

fluorescent signal occurs. The fluorescence signal increases proportional to the amount of 

newly synthesized DNA product. During 40 cycles, the fluorescence is detected as a function 

of time and so called Cycle threshold (Ct) values are registered. The Ct-value is defined as the 

number of cycles that is required to cross a certain fluorescence threshold. Consequently, 

with an initial high amount of template DNA, a significant change in the fluorescence signal 

is observable at an early time point. 

The measurements were performed using TaqMan –PCR technology with a 7500 Real-Time 

PCR System. Buffers and reagents for the PCR reaction were used as a TaqMan Universal PCR 

Master Mix from Applied Biosystems. Table 2.7 shows the volumes for the reaction mixture 

for one sample: 

 

 
Table 2.7: qRT-PCR reaction mixture per sample 

Compound Volume 

Universal PCR Master Mix  10 µL 

DEPC treated H2O 6.5 µL 

Taqman probe 1 µL 

25 ng cDNA 2.5 µL 

Final volume  20 µL 

 

Selected TaqMan probes for all genes are listed in Table 2.8.  
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Table 2.8: TaqMan probes from Applied Biosystems for gene expression quantification. 

Probe Number Gene 

Hs00164383_m1  Cyp1B1 

Hs00426361_m1 Cyp3A7 

Hs00602560_m1 SULT1C2 

Hs00166169_m1 G6PD 

Hs00603550_g1 TUBB2B 

Hs00204129_m1 RGCC 

Hs01041408_m1 FBXO32 

Hs01037712_m1  PDK4 

Hs01650979_m1  INSIG1 

Hs01572978_g1  PCK1 

Hs00930058_m 1 THRSP 

 

Samples were measured in technical duplicates. Negative controls with water instead of 

template DNA were included. The conditions for the PCR reactions are shown in Table 2.9. 

 
Table 2.9: Thermal conditions for qRT-PCR measurements 

Stage Temperature Time Repetitions 

1 50 °C 2 min 1 

2 95 °C 10 min 1 

3 

94 °C 

60 °C 

72 °C 

15 sec 

30 sec 

35 sec 

40-45 

4 

95 °C 

60 °C 

95 °C 

60 °C 

15 sec 

20 sec 

15 sec 

15 sec 

1 

 

PCR products were analyzed with the 7500 Real-Time PCR System software. To determine 

the expression of a target gene, the expression of an endogenous reference, so called 

housekeeping gene needs to be quantified. An ideal reference gene features a consistent 

gene expression level, independent of the cell cycle state, of the cell type or any treatments 

and conditions during the experimental procedure (Holzapfel and Wickert, 2007). Common 

reference genes are for example ubiquitine, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), b-actin or 18 S RNA (Goidin et al. 2001). To quantify the gene expression levels of a 

target gene, several quantification methods are available: The standard curve method, the 

relative quantification method and the comparative threshold method (= Ct method). In 

this thesis, the Ct method was applied for data analysis and GAPDH expression was used 

as endogenous control. The Ct method is a relative method which shows a correlation 

between the gene expression in compound exposed cells compared to untreated controls, 

but not giving absolute values. In a first step the expression level of a target gene is normal-
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ized to the expression level of a stable expressed housekeeping gene. Next, the normalized 

data of untreated cells is subtracted from data of exposed cells. Relative expression is de-

termined according to the following calculation steps: 

1. Ct1 = Ct target gene – Ct house keeper 

2. Ct2 = Ct target gene control samples – Ct house keeper control samples 

3. Ct = Ct1 – Ct2 

4. Calculation of 2-Ct 

 

Finally, the 2-Ct is depicted in a histogram, showing the relative genes expression values 
for every experimental condition.  

 

2.2.6 Cytotoxicity tests with the CellTiter-Blue® Cell Viability Assay 

For cytotoxicity testing in HepG2 cells as well as primary human hepatocytes, the CellTiter-

Blue® Cell Viability Assay from Promega was applied. The assay is based on the metabolic 

capacity of cells and analyzes the reduction rate of the dark blue indicator dye resazurin to 

the pink and highly fluorescent dye resofurin. While resazurin is only slightly fluorescent, 

resofurin is highly fluorescent and can be quantified at its emission maximum at a wave-

length of 584 nm (Figure 2.1). Vital cells exhibit a strong metabolization capacity for resaz-

urin, and the fluorescence intensity in the medium supernatant is increasing. In contrast, 

non-viable cells show a decreased resazurin metabolization capacity, resulting in lower fluo-

rescence intensity or, in case of dead cells the dark blue resazurin is not even metabolized. 

 

Figure 2.1: A The CellTiter-Blue® Cell reaction is based on the metabolization of resazurin to the highly fluores-
cent dye resofurin. The fluorescence intensity correlates with the vitality of the cell system metabolizing the 
dye. B Resofurin is excitated at wavelength of 579 nm and exhibtis an emission maximum at 584 nm. Refer-
ence: promega.com. 
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For cytotoxicity testing the cells were isolated and plated as described. HepG2 cells were 

seeded in 24-well plates, 62,500 cells per well whereas primary human hepatocytes were 

plated in a collagen sandwich matrix, 1,000,000 cells per well in a 6-well format. The day 

after plating, the cells were exposed to appropriate concentration series of selected com-

pounds. After 48 h of compound exposure, the medium was aspirated and fresh medium 

with 20 µL CellTiter-Blue® reagent per 100 µL medium were added to the cells. HepG2 cells 

were exposed to the resazurin reagent for 2 hours whereas primary human hepatocytes 

were exposed for four hours. After wards, the supernatant was transferred to 96-well plates 

and the fluorescence intensity was read out with the Tecan Infinite M200 Pro plate reader 

using the i-control software (version 1.7.1.12). Untreated cells and cells incubated with vehi-

cle controls only underwent the same procedure as the compound exposed cells and were 

used as a reference for 100 % viability. Cell viability was calculated after background subtrac-

tion and expressed as percentage of control. The incubations were performed for three in-

dependent experiments (3 biological replicates) for HepG2 cells and preliminary results with 

one biological replicate (cells from one donor) were obtained in primary human hepatocytes. 

From each biological replicate, three technical replicates were applied for the fluorescence 

read out.  

 

2.2.7 Statistical analysis 

The statistical part of this thesis was performed in close cooperation with the statisticians 

Jörg Rahnenführer, Marianna Grinberg and Eugen Rempel from the Technical University of 

Dortmund. The following context corresponds in large parts to the publication Grinberg et al. 

(2014). 

 

2.2.7.1 Download and processing of the OPEN TG GATEs data 

The Open TG-GATEs (Toxicogenomics Project—Genomics-Assisted Toxicity Evaluation Sys-

tem) database (NIBIO 2013) compiles publically available Affymetrix HG U133 Plus 2.0 gene 

expression microarray data (54,675 probe sets, corresponding to 19,945 uniquely annotated 

Gene Symbol IDs) from monolayer cultured primary human hepatocytes. 158 compounds 

were tested in total and for each compound corresponding untreated controls were gener-

ated. A subset of 52 compounds was tested using three concentrations (low, middle and 

high) at three incubation periods (2 h, 8 h, and 24 h). For the additional 106 compounds the 

concentration and time sets are incomplete. The compounds were tested either for only one 

or two incubation periods, or with only two concentrations (Table 3.1 and Supplemental 

Table 1).  
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Based on LDH release, the highest tested concentration (or the only tested concentration if 

only one was analyzed) was chosen as a slightly cytotoxic concentration yielding an 80–90 % 

relative survival rate. In case of non-cytotoxic compounds, a concentration of 10 mM or the 

highest soluble concentration was defined as the highest concentration. Solvent controls 

were routinely used at 0.1 % DMSO concentration, which was increased to maximum 0.5 % 

DMSO for compounds with low solubility. In total, six batches of human hepatocytes were 

used. Together with the gene expression raw data in Open TG-GATEs, information on the 

gender of the donor is given. Hepatocytes from ‘male’ and ‘female’ were specified by the 

columns ‘sex_type’ in the ‘Attribute.tsv’ file. 

For 155 of the 158 compounds two replicates were available. Single experiments without 

replication were not considered in this study. For all compounds and conditions the raw mi-

croarray data (CEL files) were downloaded from the Open TG-GATEs website 

(http://toxico.nibio.go.jp/) . Robust Multi-Array Average (RMA) algorithm was used to nor-

malize the entire set of expression arrays. This algorithm uses background correction, log2 

transformation, quantile normalization, and a linear model fit to the normalized data to ob-

tain a value for each probe set (PS) on each array (Harbron et al. 2007; Krug et al. 2013). For 

each compound, concentration and incubation period, the fold change of gene expression 

between compound exposed samples and corresponding untreated controls was calculated 

based on the average of replicate values. Data preprocessing and all subsequent analyses 

were performed using the statistical programming language R, version 3.0.1 (R Development 

Core Team 2013). 

 

2.2.7.2 Visualization of high dimensional gene expression data 

Unsupervised hierarchical clustering was applied to visualize matrices of gene expression 

values. The expression alterations in these heat maps range from low expression (blue color) 

to high expression (red color) (Figure 3.11). To visualize expression data in two dimensions, 

principal component analysis (PCA) was used. The first two principal components represent 

the two orthogonal directions of the data with the highest variance. Both, heat maps and 

PCA were generated on the basis of the 100 top-ranking genes with highest fold change (ab-

solute values) across all compounds. These genes were selected separately for all nine com-

binations of concentration and exposure periods.  

 

2.2.7.3 Gene set enrichment methods 

The topGO package (Alexa and Rahnenführer 2010) was applied for gene ontology enrich-

ment analysis. This package uses the Fisher’s exact test and considers only results from the 

biological process ontology. The cutoff for the enrichment p value was set to 0.001.  



Material and methods 

22 
 

Transcription factor binding site (TFBS) enrichment was analyzed using the PRIMA algorithm 

(http://acgt.cs.tau.ac.il/prima/) (Elkon et al. 2003) provided in the Expander software suite 

(version 6.04; 43 http://acgt.cs.tau.ac.il/expander/) (Ulitsky et al. 2010). The cutoff for the 

enrichment p value was set to 0.01.  

 

2.2.7.4 Definition of indices for concentration progression 

Two indices were introduced to analyze the progression of gene expression alterations with 

increasing concentrations – the ‘progression profile index’ and the ‘progression profile error 

indicator’. For each compound and for each adjacent concentration, both indices were calcu-

lated. 

The ‘progression profile index’ was defined as the proportion of genes which is at least 2 fold 

up or down regulated (compared to control) at a higher compared to a respective lower con-

centration. If only a few additional genes were deregulated at the next higher concentration, 

the value is close to zero. A value close to one indicates that the number of deregulated 

genes increases concentration dependently. 

In contrast, the second index, the ‘progression profile error indicator’, determines the pro-

portion of genes deregulated exclusively at a lower compared to a respective higher concen-

tration. A value above 0.5 indicates an implausible concentration progression of a com-

pound. However, if only a few genes in total were deregulated exclusively at the lower com-

pared to the higher concentration, these genes were considered as outliers. Compounds 

following a very implausible concentration progression were excluded from the study. In 

case only a few genes followed an implausible concentration progression, meaning the ‘pro-

gression profile error indicator’ value is above 0.5 and at most 20 genes in total are altered 

at the respective lower concentration, the ‘modified progression profile error indicator’ was 

introduced. The ‘modified progression profile error indicator’ is an adjustment of the ‘pro-

gression profile error indicator’ and sets the index to zero to decrease the influence of a few 

outlying genes. For all three incubation periods of 2, 8 and 24 h the three progression indices 

were calculated separately. 

 

2.2.7.5 Principles for differentiation between stereotypic and compound specific gene 

expression responses 

To distinguish between stereotypic and compound specific gene expression responses of 

chemical exposed hepatocytes, the selection value concept is introduced. If a gene is deregu-

lated by many compounds, this expression response is considered as a stereotypic effect. In 

case a gene is altered by only a few compounds, the response is defined as rather compound 

specific. The selection value is defined as the number of compounds which induces the ex-

pression of a given probe set at least three fold. It relates to a specific concentration and 

incubation time. For the selected condition, compounds are ranked in order of their fold 
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change for each probe set. For up regulated probe sets, the compounds are ranked from a 

high to a low fold change whereas compounds are ranked in reverse order to obtain the set 

of down regulated probe sets. Accordingly, the selection value x for a single probe set corre-

sponds to compound on rank x, indicating that the probe set is altered at least 3 fold by at 

least x compounds. Considering selection value 20 (SV 20), a list of genes is obtained which 

are at least 3 fold up or down regulated by at least 20 compounds. In contrast, a selection 

value of 5 (SV 5) gives a list of genes which are at least 3 fold deregulated by at least 5 com-

pounds. The threshold of 3-fold induction is chosen arbitrarily to keep the number of also 

positive genes relatively low. 

 

2.2.7.6 Liver disease dataset analysis 

To establish a link between genes that are deregulated by compounds in vitro and a possible 

relevance in vivo, human gene array data from patients with liver diseases was investigated. 

Microarray datasets comprising global gene expression alterations in liver diseases were 

obtained from public data repositories ArrayExpress (E-MEXP-3291) and Gene Expression 

Omnibus (GSE25097). E-MEXP-3291 (Lake et al. 2011) was analyzed on Affymetrix GeneChip 

Human 1.0 ST arrays and used to compare 16 samples of non-alcoholic steatohepatitis 

(NASH) liver tissue to data from 19 samples of healthy liver tissue. GSE25097 (Tung et al. 

2011) was analyzed on Human RSTA Affymetrix 1.0 Custom CDF microarrays and was used to 

compare cirrhotic liver (40 samples) to non-tumor liver tissue (243 samples). Normalized 

RNA sequencing (RNA-Seq) data was obtained from The Cancer Genome Atlas (TCGA) 

(http://cancergenome.nih.gov/) and analyzed on the Illumina HiSeq platform to study gene 

expression alterations in hepatocellular carcinoma (HCC) (163 samples) as compared to 

matched non-tumor liver tissue (49 samples). Processing and quantile normalization of the 

microarray data was performed with the Piano R package (Varemo et al. 2013). This package 

was also applied to analyze differential gene expression; p values were corrected for multi-

ple testing by the method of Benjamini and Hochberg (Benjamini and Hochberg 1995). The 

RNA-Seq data was analyzed for differential expression using the R package DESeq (Anders 

and Huber 2010). Comparing healthy/non-tumor tissue to diseased tissue, genes were con-

sidered to be differentially expressed when having a fold change of minimum 1.3 and a false 

discovery rate (FDR) adjusted p value of ≤0.05.  

For a direct comparison of differentially expressed genes in liver diseases and genes altered 

by chemicals in human hepatocytes in vitro, probe sets included on the Affymetrix arrays 

were converted into uniquely annotated Ensembl Gene IDs. 18,809 genes were considered 

for the Open TG-GATEs dataset (originally 54,675 probe sets), 19,477 genes for E-MEXP-3291 

(originally 32,321 probe sets), and 25,426 genes for GSE25097 (originally 37,582 probe sets). 

Only genes being present in both, the Open TG-GATEs dataset and E-MEXP-3291 (17,663 

genes) or GSE25097 (16,514 genes), respectively, were included for the final comparison. A 

direct comparison of the TCGA dataset (20,471 genes, as recognized by a unique Entrez 

Gene ID) to the probe sets of the Open TG-GATEs data was enabled by converting the ap-
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propriate Affymetrix probe sets into Entrez IDs. Therefore, manufacturer mapping after du-

plicate removal was used, resulting in 19,944 uniquely annotated genes and 17,895 genes 

included in the final comparison. 
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3 Results 

Excerpts of this thesis have been published in Grinberg et al. (2014). The content of pages 25 

to 68 corresponds largely to the mentioned publication. 

3.1 Establisment of a toxicogenomics directory for compound-exposed pri-

mary human hepatocytes based on the Open TG-GATEs transcriptomics 

data 

3.1.1 In silico characterization and curation of the Open TG GATES data 

The Open TG-GATES toxicogenomics database is comprised of gene expression profiles de-

rived from cultivated and compound-exposed primary human hepatocytes. 158 chemicals 

and drugs were tested with corresponding untreated controls in different concentrations 

and for three incubation periods (2h, 8h and 24h) and two replicates per experiment were 

generated. For 52 of the 158 compounds gene array data is available. These compounds 

were tested in a high, middle and a low dosage. The concentrations were selected based on 

cytotoxicity: the high dose represents a 80-90% relative survival ratio or was defined by the 

maximal solubility of the compound, the ratio of the concentrations for the low, middle and 

high dose was 1:5:25 (Igarashi et al. 2015). For the remaining 106 compounds, the data set is 

incomplete in terms of time points and concentration sets. For one compound, pherone 

(PHO), gene expression data for the 24h time point with the highest concentration is miss-

ing. Three further compounds (bromoethylamine (BEA), lipopolysaccharide (LPS) and tri-

methadione (TMD) were tested with only 1 replicate for the highest dose. The 24h time 

point, highest concentration was therefore excluded for the four mentioned compounds. 

Seven of the tested compounds were cytokines (interferon alpha, interleukin 1 beta, inter-

leukin 6, transforming growth factor beta 1, hepatocyte growth factor, tumor necrosis fac-

tor) and LPS, which were all excluded from further analysis. In total, 151 chemicals were in-

cluded in the analysis. An overview of the compounds and tested concentrations of the 

available data set is given in Table 3.1. A detailed overview of the data set is shown in Supp-

lemental Table 1. 

Table 3.1: Matrix of the tested compounds. The tables provide the numbers of compounds tested under the 
indicated conditions for each combination of concentration and exposure period 

A. Before excluding cytokines and LPS from the analysis.  

  2hr 8hr 24hr Overlap time points 

Low 53 82 81 52 

Middle 53 153 157 52 

High 53 153 153 52 

Overlap concentrations 53 82 78 52 
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B. After excluding cytokines and LPS from the analysis.  

  2hr 8hr 24hr Overlap time points 

Low 48 75 75 48 

Middle 48 146 151 48 

High 48 146 148 48 

Overlap concentrations 48 75 72 48 

 

C. Overview of the experimental design including the number of all available time and concentration sets, as 

well as replicates. 

Number of chemicals Number of concentrations Number of time points Number of replicates 

71 2 2 2 

52 3 3 2 

26 3 2 2 

5 2 1 2 

3 3 2 High, 24h only 1 sample* 

1 3 2 High, 24h not available** 

 

3.1.2 Identification and control of batch effects 

To illustrate the alterations of gene expression in primary human hepatocytes under the 

exposure of chemicals, principal component analysis (PCA) was performed. The 100 top 

ranking genes with the highest fold changes (absolute values) across all compounds were 

included in the analysis. Supplemental Figure 1, Supplemental Figure 2 and Supplemental 

Figure 3 show nine combinations of concentration and incubation periods. The strongest 

effect on gene expression was observed for the 24h time point at the highest concentration 

(Figure 3.1 A).  
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Figure 3.1: Principal component analysis of gene expression data from primary human hepatocytes after 24h 
incubation with 148 chemicals (green) and 7 cytokines (red) at the highest concentration. A Overview of all 
samples and replicates. Light green samples illustrate the exposed samples, dark green are the corresponding 
controls. Cytokines are illustrated in red. B Connecting lines show the degree of variability between 2 repli-
cates. C Data points represent the mean values of the replicates. D Connecting lines illustrate the distance 
between the exposed samples and the corresponding controls. E Distribution of the exposed samples after 
subtraction of the corresponding controls. 

 

The controls are located within two main clusters whereas the majority of compound-

exposed samples move into the direction of the first principal component. Connecting lines 

between replicates (Figure 3.1 B) demonstrate a low degree of technical variability, since 

most of the paired replicates are located close to each other. For this reason, the following 

PCAs include only the mean values of two matching replicates (Figure 3.1 C). Connecting 

lines between compound-exposed samples and corresponding controls illustrate that treat-

ment-control pairs are located in the same main cluster (Figure 3.1 D), suggesting that the 

reason for the formation of the two main clusters can be explained by experimental variabil-

ity, a so called batch effect. The subtraction of the controls from the corresponding com-

pound-exposed samples reverses the cluster formation, which supports the assumption that 

there is no effect related to a biological or scientific variable (Figure 3.1 E). 
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3.1.3 Evaluation of data reproducibility across replicates 

In order to assess the reproducibility between the two replicates of a sample, the Euclidean 

distances between all pairs of replicates (replicate sample pairs, as well as control-treatment 

sample pairs) in the PCA plot were determined. For the samples that were tested at the 

highest concentration for 24 h, the median distance between control-treatment replicates 

was 4.9-fold higher than the median distances between the two identically treated replicate 

pairs. The frequency distribution of Euclidean distances of the replicate sample pairs is illus-

trated in Figure 3.2A.  

 

Figure 3.2: Reproducibility between replicates. A Frequency distribution of the Euclidean distance between all 
pairs of sample replicates. The red line shows the 5 % largest observed distances between the replicates. B PCA 
analysis of the 24h highest concentration subset. The connecting lines indicate that 14 out of 148 (9.5 %) tested 
compounds belong to the five percent of the replicate sample pairs with the highest Euclidean distance in the 
PCA plot.  

 

The red line in the histogram in Figure 3.2 A separates the five percent largest observed dis-

tances from the main distribution, representing 14 out of 148 tested compounds (9.5 %) 

tested in the 24 h, high concentration subset. Related replicate pairs are shown by connect-

ed lines in the PCA plot (Figure 3.2 B). Compared to the much larger compound effects (Figure 

3.1), the variability among replicates with the highest Euclidean distance is relatively small. 

Therefore, the reproducibility among replicates is most widely very high and the degree of 

variability in gene expression of identically treated samples is in an acceptable range. 
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3.1.4 Number of deregulated genes per compound 

Comparison of the number of deregulated genes among different compounds revealed that 

the majority of gene expression effects can be attributed to a relatively small subset of com-

pounds. There is a time and concentration dependent increase in the number of significantly 

up regulated genes per compound for the fold changes 1.5, 2 and 3 fold (Figure 3.3).  

 
Figure 3.3: Number of significantly up regulated genes per compound. For all concentration and time series, all 
compounds are listed on the x-axis. The y-axis illustrates the number of up regulated genes with at least 1.5, 2 
or 3 fold up regulation. Dark green: more than 1.5 fold up regulated; light green: more than 2 fold up regulated; 
black: more than 3 fold up regulated.  

 
Substantial differences between the compounds cycloheximide (CHX) and triazolam (TZM) 

were observed for the latest time point (24h) at the highest concentration. While CHX up 

regulated expression of 8,558 genes (5,124 genes with at least 1.5 fold induction, 2,547 

genes with at least 2 fold induction and 887 genes which are at least 3 fold up regulated), 

TZM deregulated under the same conditions only 38 genes in total – 6 genes were at least 

1.5 fold up regulated, 31 down regulated and only one gene was at least 2 fold down regu-

lated.  

The situation for the down regulated genes was similar (Figure 3.4). There was a time and 

concentration dependent increase in the number of significantly down regulated genes. The 

strongest effects on gene expression can be attributed to a relatively small subset of com-

pounds, whereas the majority of compounds show less strong effects.  
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Figure 3.4: Number of significantly down regulated genes per compound. For all concentration and time series, 
all compounds are listed on the x-axis. The y-axis illustrates the number of down regulated genes with at least 
1.5, 2 or 3 fold down regulation. Dark green: more than 1.5 fold down regulated; light green: more than 2 fold 
down regulated; black: more than 3 fold down regulated. 

 

Among the 151 tested compounds, 48 substances showed a very weak effect on gene ex-

pression and up or down regulated not more than 20 genes in total for each time point at 

any concentration (Supplemental Table 2). Surprisingly, among these compounds was also 

carbon tetrachloride (CCl4), a compound that is well documented to be hepatotoxic (Bauer 

et al. 2009; Hoehme et al. 2010; Weber et al. 2003). Eleven of the 48 compounds exhibited 

even less effect on gene expression and deregulated at most 20 genes in total, independent 

of the direction (induction or down regulation) and time period. These compounds are 

amiodarone, bromobenzene, cimetidine, clofibrate, coumarin, gemfibrozil, glibenclamide, 

haloperidol, hexachlorobenzene, phenytoin and sulfasalazine. 

In contrast, the strongest effects with the highest fold changes among all genes and across 

all compounds were attributed to a small set of compounds. Figure 3.5 and Figure 3.6 show 

to which degree the compounds contribute to the 100 most up or down regulated genes for 

all incubation periods. The black bars give the number of genes which belong to the TOP 100 

fraction, whereas the white bars indicate how many of the TOP 100 genes are at least two 

fold up or down regulated. For all conditions, the number of compounds with the strongest 

effects on gene expression was comparably low. The amount of at least twofold induced or 

down regulated genes increased concentration dependently. The strongest induction was 

observed for the 24h high-concentration time point, where all TOP 100 genes were at least 

twofold deregulated. However, only 32 compounds were responsible for the 100 most up 

regulated genes at this time point and only 23 compounds were responsible for the 100 

strongest down regulations.  
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Figure 3.5: Analysis of the strongest up regulated genes with the highest fold change across all compounds. The 
x-axis lists the compounds which are responsible for the 100 induced genes with the highest fold change. The y-
axis gives the number of significantly up regulated genes for the listed compounds. The black bars illustrate the 
contribution of genes for the appropriate compound that is among the 100 genes with the strongest fold 
change. How many of these genes are up regulated with a fold change of at least 2 is demonstrated by the 
white bars. 

This result indicates that either a large fraction of the 151 compounds cause only weak gene 

expression alterations or that strong effects on gene expression requires a higher concentra-

tion than the slightly cytotoxic one that was tested. Previous studies have shown that the 

identification of close to cytotoxic concentrations is challenging, especially for compounds 

with steep dose response curves (Krug et al. 2013; Waldmann et al. 2014). In addition, the 

method by which toxicity is determined may play a role.  
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Figure 3.6: Analysis of the strongest down regulated genes with the highest fold change across all compounds. 
The x-axis lists the compounds which are responsible for the 100 strongest down regulations with the highest 
fold change. The y-axis gives the number of significantly down regulated genes for the listed compounds. The 
black bars illustrate the contribution of genes for the appropriate compound that is among the 100 genes with 
the strongest fold change. How many of these genes are up regulated with a fold change of at least 2 is demon-
strated by the white bars. 

 

3.1.5 Exclusion of compounds following an implausible concentration progression 

A logical assumption is that genes, which are deregulated at a low concentration of a par-

ticular compound, are also deregulated at a respective higher concentration. If such a dose 

response relationship is not given, further analysis is required to interpret the data. Two 

types of analysis were performed to elucidate the concentration progression across the data 

base. To describe, at which concentration (low, middle or high) the deregulation of a gene 

occured, the ‘progression profile index’ was created. Second, compounds following an im-

plausible concentration progression (deregulating a large fraction of genes at a lower, but 

not at a higher dose) were identified by introducing the ’progression profile error indicator’.  

The analysis of concentration progression is exemplary shown for the 4 compounds valproic 

acid (VPA), propranolol (PPL), triazolam (TZM) and allyl alcohol (AA) (Figure 3.7). All 4 com-

pounds exhibited different concentration progression profiles. Whereas for VPA a large frac-

tion of genes was deregulated at the middle concentration and even more genes at the 

highest concentration, AA and PPL deregulated the largest fraction of genes only at the 

highest, but not at any lower concentration. TZM exhibited an unusual concentration pro-

gression and showed an effect on gene expression only at the lowest concentration, but no 

additional genes were altered with increasing concentrations. The graphs shown comprise 

exclusively genes which are at least twofold significantly up or down regulated, independent 
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of the direction of deregulation. Corresponding Venn diagrams show the amount and over-

lap of deregulated genes across the concentrations. 

 
Figure 3.7: Analysis of concentration progression with the ‘principal progression profile index’ and ‘error indica-
tor’, shown for the compounds valproic acid (VPA), propranolol (PPL), triazolam (TZM) and allyl alcohol (AA) 
after 24h of exposure. The first row shows the expression course of all at least 2 fold significantly deregulated 
genes by the considered compounds across the 3 concentrations. The corresponding Venn diagrams are shown 
in the middle, illustrating the overlap of at least 2 fold up or down regulated genes at the different concentra-
tions. The lowest panel shows the distribution of the compounds in the progression profile index. In blue, the 4 
mentioned compounds are marked; triangles represent the later excluded compounds. 
 

The ‘progression profile index’ illustrates the fraction of genes, which were at least twofold 

up or down regulated at a higher concentration compared to a lower concentration. Every 

symbol in the diagram represents one compound. For each substance the proportions mid-

dle vs. high (y-axis) and low vs. middle (x-axis) were calculated (Figure 3.7). A value close to 

one indicates that a large fraction of genes is altered at a higher, compared to a respective 

lower concentration. If only a few additional genes were deregulated with an increased con-

centration, the value is closer to zero. VPA is positioned in the upper right of the panel. With 

each concentration step, additional genes became deregulated. However, TZM deregulated 

genes only at the lowest concentration and therefore clusters in the lower right corner. This 

compound follows an implausible concentration progression, since no additional genes were 

deregulated with an increasing concentration. PPL and AA exhibited a pattern of concentra-

tion dependent deregulation where most genes were altered at the highest concentration. 
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Nevertheless, these compounds cluster in different regions in the ‘progression profile index’ 

plot, due to one outlying gene altered by the middle concentration of allyl alcohol.  

An overview of the ‘progression profile indices’ for all 151 compounds across all time points 

is shown in Figure 3.8. In a first step, the genes up or down regulated (at least twofold de-

regulated compared to the controls) at a higher concentration were determined. Second, 

the proportion of genes that were not altered at the lower concentration was determined. 

This was achieved by comparing the middle versus low (x-axis) and the high versus middle (y-

axis) concentration.  

 
Figure 3.8: Progression profile index for all compounds which have been tested at the three concentrations 
across all time points. Each point represents one compound. Triangles show the latter excluded compounds. 
Gray symbols: compounds which deregulate at most 20 genes in total. Black symbols: compounds which de-
regulate more than 20 genes in total. 
 

The number of compounds causing up and down regulation of target genes, increased over 

time. Gradually, from 2h to 24h of exposure, most compounds cluster in the upper right cor-

ner, indicating that additional genes become up or down regulated with increasing concen-

tration steps. Compounds that up or down regulate more than 20 genes are shown in black; 

the gray symbols represent the fraction of relatively weak compounds that deregulate at 

most 20 genes in total (Supplemental Table 2). The second biggest cluster is located in the 

upper left corner and represents the compounds where the largest fraction of genes was 

deregulated by increasing the concentration from middle to high, whereas no genes were 

altered at a lower concentration. Compounds that deregulate genes solely at the lowest, but 
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only a few additional genes at a higher concentration, cluster in the lower left corner. All of 

these compounds show only weak effects in gene expression and deregulate at most 20 

genes in total. In general, the clustering of weak compounds mainly occurs in the left part of 

the ‘progression profile index’ plot.  

To elucidate whether a compound mainly deregulates genes at a lower, but not at a respec-

tive higher concentration, the ‘progression profile error indicator’ was introduced (Figure 

3.9). In this case the x-axis reflects the ratio middle/low, whereas the y-axis represents the 

ratio high/middle. Ideally both values are below 0.5. Compounds cluster in the left part of 

the plot if they mainly up and/or down regulate genes at the middle dose compared to the 

lowest dose. When even more genes are deregulated by increasing the middle to the highest 

dose, the compounds cluster in the lower left corner. Values above 0.5 indicate an implausi-

ble concentration progression; in these cases the compounds deregulate genes mainly at a 

lower, but not at a respective higher concentration. If only a few genes are altered at lower, 

but not with increasing concentrations, they can be interpreted as outliers. 

 
Figure 3.9: Progression profile error indicator for up and down regulated genes at different time points. A high 
value means that a high fraction of genes is deregulated exclusively at a lower compared to a respective higher 
concentration.  Each point represents one compound. Black symbols indicate that a compound deregulates 
more than 20 genes in total and that both values are ≥ 0.5. Gray symbols represent compounds that deregulate 
at most 20 genes in total. Red marked compounds deregulate more than 20 genes in total but exhibit at least 
one error indicator value above 0.5. Triangles show mark compounds that are excluded from further analysis. 

Again the time dependent increase in the amount of compounds that cause gene expression 

becomes obvious. For the up and down regulated genes, more and more compounds cluster 

within time in the left part of the ‘progression profile error indicator’ plot, indicating that 
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genes are predominantly deregulated at the middle and the highest concentration. Although 

the majority of substances clusters in the lower left part, exhibiting a small high/middle error 

indicator value, a large subset of compounds obviously induces gene expression at the me-

dium concentration, meaning that only a few more genes are induced at the highest concen-

tration (red symbols in Figure 3.9). Compounds which cluster in the lower right part of the 

error indicator plot follow a non-monotonous concentration progression. The largest 

amount of genes that are deregulated by these compounds is found to be altered at low 

concentration already, stays deregulated at the middle and the highest concentration, but 

does not increase dose dependently.  

Due to the calculation procedure of the ‘progression profile indices’, the influence of outliers 

is immense. Single genes that are deregulated at a lower, but not at a respective higher con-

centration, may increase the error indicator value to a large extent.  This can be demon-

strated by comparing the progression profile indices of the previously mentioned com-

pounds valproic acid, triazolam, propranolol and allyl alcohol (Figure 3.10).  

 
Figure 3.10: Progression profile indices for all 151 compounds after 24h of exposure. In blue, the 4 mentioned 
compounds are marked, red shows the 11 compounds which deregulate at most 20 genes in total. Triangles 
represent the later excluded compounds. 
 

As an example, the gene expression profiles and Venn diagrams of propranolol and allyl al-

cohol (Figure 3.7) show that both compounds dose dependently increase the number of de-

regulated genes after 24 h of exposure. The largest fraction of genes is not altered at the 

lowest and the middle concentration and most events happen only at the highest, slightly 

cytotoxic concentration. However, propranolol and allyl alcohol cluster in different regions 

of the ‘progression profile index’ and the ‘progression profile error indicator’ plot. According 

to the Venn diagrams, a single gene is deregulated by allyl alcohol at the middle, but not at 

the highest concentration – which leads to a high high/middle ratio in the ‘progression pro-

file error indicator’. To decrease the influence of such outliers, the modified ‘progression 

profile error indicator’ was introduced. It is an adjustment of the ‘progression profile error 

indicator’ which sets the index of a compound to zero if the error indicator value of two 

compared concentrations is ≥0.5 and if the number of genes, which are deregulated at the 

lower concentration, is at most 20. The modified ‘progression profile error indicator’ evalu-

ates all compounds and compares the low/middle ratio and the middle/high ratio of deregu-

lated genes and it considers the amount of at least twofold up and down regulated genes. 
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Meaning, if the error indicator value for low vs. middle is ≥ 0.5 and if the compound does not 

alter more than 20 genes in total at the lower concentration, the index is set to zero. Analo-

gously, if the error indicator middle vs. high is ≥0.5 and if the compound does not alter more 

than 20 genes at the middle concentration, the index is set to zero. In case of allyl alcohol, 

normalizing the ‘progression profile error indicator’ value artificially to zero results into the 

exclusion of the single outlying gene from the analysis and allyl alcohol re-clusters close to 

propranolol in the modified ‘progression profile error indicator´ plot (Figure 3.10). However, 

triazolam exhibits an ambiguous concentration progression. One hundred and eight genes 

were up regulated at the lowest concentration, but no genes were altered at the middle and 

the high concentration (Fig. AA7). This results in a high value for the middle to low ratio and 

triazolam clusters in the lower right corner in the ‘progression profile error indicator’ plot, as 

well as in the modified ‘progression profile error indicator’ plot. Since this compound follows 

an implausible concentration progression, it was excluded for further analysis. In contrast, 

valproic acid and propranolol directly exhibit a small error indicator value, indicating that the 

deregulation of genes follows a monotonous concentration progression. Their position does 

not change in the modified ‘progression profile error indicator’ plot, as well. 

On the basis of the modified ‘progression profile error indicator’, a ‘progression error profile’ 

was developed for each compound. The following labels are introduced to annotate the con-

centration progression for each time point. NA: the compound was not tested for the re-

spective time point. OO: the number of differentially expressed genes is zero for all concen-

trations. o: indicates that the number of differentially expressed genes is ≤ 20 for the tested 

time point. +: the number of differentially expressed genes is ≥ 20 and that both ‘progression 

profile error indicator’ values are above 0.5. -: the number of differentially expressed genes 

is ≥ 20 but at least 1 error indicator value is above 0.5. The concentration progression for 

each individual compound is given as follows: 2h up │8h up │24h up │ 2h down │ 8h down 

│24h down (Table 3.2 and Supplemental Table 3). Compounds with the same concentration 

progression profile can be assigned to a group. In total, 63 different profiles were observed. 

The largest group of compounds with the same profile comprised 35 compounds, represent-

ing the concentration progression pattern NA │ + │ + │NA │ + │ +, which exhibits a plausible, 

monotonous concentration progression for the 8 h and 24 h incubation period. For the 2 h 

time point, no data is available. Five compounds follow an implausible concentration pro-

gression and were excluded from further analysis: doxorubicin ( NA │ - │ - │ NA │ + │ + ), tria-

zolam (NA │ o │ - │ NA│ OO │ OO), tetracycline ( o │o │ - │ OO │ OO ), ticlopedine ( NA │ o │o 

│ NA │ o │ - ) and carbon tetra chloride (CCl4). CCl4 features the concentration progression 

profile o │ o │ + │o │ o │ o that is also found by the compounds aspirin, indomethacin and 

methyltestosterone. According to the strong hepatotoxic potential of CCl4, this expression 

response is unexpected, since the compound represents a strong hepatotoxin with a well 

characterized mechanism of toxicity (Bauer et al. 2009; Hoehme et al. 2010; Weber et al. 

2003). However, CCl4 is a highly lipophilic compound and dissolving it in aqueous solutions is 

technically challenging. An inhomogeneous distribution of the compound in the medium 

supernatant of the cells may explain the experimental results. Follow-up studies will be re-
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quired to reanalyze the compounds which have been excluded due to implausible concen-

tration progression.  

 

Table 3.2: Progression error profiles for all compounds. Based on the modified error indicator values the com-
pounds were assigned to the labels “NA”, “OO”, “o”, “+” and “-“.”NA”: the compound was not tested for the 
respective time point. “OO”: the number of differentially expressed genes is zero for all concentrations. o: 
indicates that the number of differentially expressed is ≤ 20 for the tested time point. “+”: the number of dif-
ferentially expressed genes is ≥ 20 and that both ‘progression profile error indicator’ values are above 0.5. “-“: 
the number of differentially expressed genes is ≥ 20 but at least 1 error indicator value is above 0.5. For each 
time point (up- and down) one label was annotated so that the profile for one compound is composed is de-
signed as follows: "2h Up| 8h Up|24h Up|2h Down|8h Down|24h Down". Compounds marked in red follow an 
implausible concentration progression and were excluded from further analysis. 
 

Abbr. Compound name Progression error profile 
 

Abbr. Compound name Progression error profile 

2NF 2-nitrofluorene NA|o|o|NA|o|+ 
 

CAF caffeine NA|+|+|NA|+|+ 

AA allyl alcohol +|+|+|+|+|+ 
 

CAP captopril NA|+|+|NA|+|+ 

AAA acetamide NA|OO|OO|NA|OO|OO 
 

CBZ carbamazepine o|o|+|o|OO|+ 

AAF acetamidofluorene NA|+|+|NA|+|o 
 

CCL4 carbon tetrachloride o|o|+|o|o|o 

ACA acarbose NA|o|o|NA|OO|o 
 

CFB clofibrate o|o|o|o|o|o 

ACZ acetazolamide NA|OO|OO|NA|OO|OO 
 

CHL chlorpheniramine NA|OO|o|NA|OO|o 

ADM alpidem NA|NA|o|NA|NA|+ 
 

CHX cycloheximide NA|+|+|NA|+|+ 

ADP adapin o|+|+|o|+|+ 
 

CIM cimetidine o|o|o|OO|OO|o 

AFB1 aflatoxin B1 NA|+|+|NA|+|+ 
 

CLM chlormadinone NA|+|+|NA|+|+ 

AJM ajmaline NA|+|+|NA|o|+ 
 

CMA coumarin OO|o|o|o|o|o 

AM amiodarone OO|OO|o|o|o|o 
 

CMN chlormezanone NA|OO|o|NA|o|o 

AMB amphotericin B NA|+|+|NA|+|+ 
 

CMP chloramphenicol NA|o|o|NA|o|+ 

AMT amitriptyline NA|o|o|NA|o|o 
 

COL colchicine NA|+|+|NA|+|+ 

ANIT naphthyl isothiocyanate OO|+|+|OO|+|+ 
 

CPA cyclophosphamide o|o|+|o|o|+ 

APAP acetaminophen o|+|+|+|+|+ 
 

CPM clomipramine NA|OO|OO|NA|o|o 

APL allopurinol OO|o|+|+|o|+ 
 

CPP chlorpropamide NA|o|o|NA|o|o 

ASA aspirin o|o|+|o|o|o 
 

CPX ciprofloxacin NA|o|OO|NA|OO|o 

AZP azathioprine OO|+|+|o|+|+ 
 

CPZ chlorpromazine +|o|+|o|o|+ 

BBr benzbromarone +|+|+|o|+|+ 
 

CSA cyclosporine A NA|+|-|NA|o|+ 

BBZ bromobenzene OO|o|OO|o|o|o 
 

CZP clozapine NA|NA|+|NA|NA|+ 

BCT bucetin NA|o|o|NA|o|o 
 

DAPM methylene dianiline NA|+|+|NA|+|+ 

BDZ bendazac NA|o|+|NA|o|+ 
 

DEM diethyl maleate NA|+|+|NA|+|+ 

BEA bromoethylamine NA|+|+|NA|+|+ 
 

DEN nitrosodiethylamine NA|OO|o|NA|o|+ 

BHA butylated hydroxyanisole NA|+|+|NA|+|+ 
 

DEX dexamethasone NA|o|+|NA|o|+ 

BPR buspirone NA|NA|+|NA|NA|+ 
 

DFN diclofenac o|+|+|o|+|+ 

BSO buthionine sulfoximine NA|OO|o|NA|o|o 
 

DIL diltiazem NA|o|+|NA|+|+ 

BZD benziodarone NA|o|+|NA|o|+ 
 

DIS disopyramide NA|+|+|NA|+|+ 

 

  



Results 

39 
 

Abbr. Compound name Progression error profile 
 

Abbr. Compound name Progression error profile 

DNP 2,4-dinitrophenol NA|+|+|NA|+|+ 
 

MTZ methimazole NA|+|+|NA|+|+ 

DNZ danazol NA|+|+|NA|+|+ 
 

MXS moxisylyte NA|+|+|NA|+|+ 

DOX doxorubicin NA|-|-|NA|+|+ 
 

NFT nitrofurantoin o|+|+|o|+|+ 

DSF disulfiram NA|+|o|NA|+|o 
 

NFZ nitrofurazone NA|o|+|NA|o|+ 

DTL dantrolene NA|+|o|NA|+|OO 
 

NIC nicotinic acid NA|OO|o|NA|+|o 

DZP diazepam o|+|+|+|+|+ 
 

NIF nifedipine NA|+|+|NA|+|+ 

EBU ethambutol NA|+|+|NA|+|+ 
 

NIM nimesulide NA|+|+|NA|+|+ 

EE ethinylestradiol NA|o|o|NA|o|o 
 

NMOR N-nitrosomorpholine NA|o|o|NA|OO|o 

EME erythromycin ethylsuccinate NA|o|o|NA|OO|o 
 

NPAA phenylanthranilic acid NA|+|+|NA|+|+ 

ENA enalapril NA|+|+|NA|+|+ 
 

NPX naproxen NA|o|+|NA|+|+ 

ET ethionine o|+|+|o|+|+ 
 

NZD nefazodone NA|NA|+|NA|NA|+ 

ETH ethionamide NA|o|+|NA|o|+ 
 

OPZ omeprazole +|-|+|o|+|+ 

ETN ethanol NA|o|o|NA|o|o 
 

PAP papaverine NA|+|+|NA|+|+ 

ETP etoposide NA|+|+|NA|+|+ 
 

PB phenobarbital +|+|-|+|+|+ 

FAM famotidine NA|OO|o|NA|OO|o 
 

PCT phenacetin NA|o|o|NA|o|o 

FFB fenofibrate NA|o|o|NA|OO|o 
 

PEN penicillamine NA|o|+|NA|+|+ 

FLX fluoxetine hydrochloride NA|+|+|NA|+|+ 
 

PH perhexiline o|+|+|o|+|+ 

FP fluphenazine o|o|+|o|o|+ 
 

PHA phalloidin NA|+|+|NA|+|+ 

FT flutamide +|+|+|o|+|+ 
 

PhB phenylbutazone o|+|+|o|o|+ 

FUR furosemide NA|+|+|NA|+|+ 
 

PHE phenytoin OO|o|o|o|OO|o 

GaN galactosamine NA|o|+|NA|+|+ 
 

PHO phorone NA|-|o|NA|+|+ 

GBC glibenclamide o|o|o|OO|o|o 
 

PML pemoline NA|o|OO|NA|OO|OO 

GF griseofulvin o|o|o|o|o|+ 
 

PMZ promethazine NA|+|+|NA|+|+ 

GFZ gemfibrozil o|o|o|o|OO|o 
 

PPL propranolol NA|+|+|NA|+|+ 

HCB hexachlorobenzene o|o|o|o|o|o 
 

PTU propylthiouracil o|+|+|o|+|+ 

HPL haloperidol OO|o|o|o|o|o 
 

QND quinidine NA|o|+|NA|o|+ 

HYZ hydroxyzine NA|o|+|NA|+|+ 
 

RAN ranitidine NA|+|+|NA|+|+ 

IBU ibuprofen NA|o|+|NA|+|o 
 

RGZ rosiglitazone maleate NA|+|+|NA|+|+ 

IM indomethacin o|o|+|o|o|o 
 

RIF rifampicin OO|o|+|o|o|o 

IMI imipramine NA|OO|o|NA|OO|OO 
 

ROT rotenone NA|o|OO|NA|o|o 

INAH isoniazid OO|+|+|+|+|+ 
 

SLP sulpiride NA|+|+|NA|+|+ 

IPA iproniazid NA|+|+|NA|o|+ 
 

SS sulfasalazine o|o|o|o|o|o 

KC ketoconazole o|+|+|o|+|+ 
 

SST simvastatin NA|o|+|NA|o|+ 

LBT labetalol o|+|+|o|+|+ 
 

SUL sulindac NA|+|-|NA|+|+ 

LNX lornoxicam NA|o|OO|NA|OO|OO 
 

TAA thioacetamide OO|o|+|o|o|o 

LS lomustine o|+|o|o|+|+ 
 

TAC tacrine NA|o|+|NA|+|+ 

MCT monocrotaline NA|o|o|NA|o|o 
 

TAN tannic acid NA|+|+|NA|+|+ 

MDP methyldopa NA|o|o|NA|o|OO 
 

TBF terbinafine NA|o|o|NA|OO|o 

MEF mefenamic acid NA|o|o|NA|+|o 
 

TC tetracycline o|o|-|OO|o|o 

MEX mexiletine NA|+|+|NA|o|+ 
 

TCP ticlopidine NA|o|o|NA|o|- 

MFM metformin NA|+|+|NA|+|+ 
 

TEO theophylline NA|-|+|NA|+|+ 

MLX meloxicam NA|OO|o|NA|o|OO 
 

TIO tiopronin NA|o|OO|NA|OO|o 

MNU N-methyl-N-nitrosourea NA|+|+|NA|+|+ 
 

TLB tolbutamide NA|o|+|NA|o|+ 

MP methapyrilene +|+|+|o|+|+ 
 

TMD trimethadione NA|o|OO|NA|OO|OO 

MTS methyltestosterone o|o|+|o|o|o 
 

TMX tamoxifen NA|OO|o|NA|OO|OO 
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Abbr. Compound name Progression error profile 
 

Abbr. Compound name Progression error profile 

TRZ thioridazine o|o|o|OO|o|+ 
 

VLF venlafaxine NA|NA|+|NA|NA|+ 

TUN tunicamycin NA|+|+|NA|+|+ 
 

VPA valproic acid +|+|+|+|+|+ 

TZM triazolam NA|o|-|NA|OO|OO 
 

WY WY-14643 o|o|+|OO|o|o 

VA vitamin A NA|o|+|NA|-|o 
    

 

Compounds which deregulate more than 20 genes and have an error indicator value > 0.5 

are listed in Table 3.3. Small error indicator values between 0.1 and 0.4 across all time points 

are observed for all 32 (23) compounds that contribute to the 100 most up (down) regulated 

genes (Figure 3.5 and Figure 3.6). In contrast, compounds with weak effects on gene expres-

sion that deregulate less than 20 genes in total, exhibit the highest error indicator values of 

all compounds (Supplemental Table 3). Since these compounds deregulate the majority of 

genes at the lowest concentration only, they cluster in the right part of the ‘progression pro-

file error indicator’ plot and indicate a high low/middle ratio, as well as middle/high ratio. 

Neither the concentration progression from the middle to low, nor from the high to middle 

concentration follows a monotonous course. In conclusion, implausible concentration pro-

gression profiles were mainly observed for compounds with weak gene expression respons-

es. For this reason the rest of the study focusses on the compounds with strong effects on 

gene expression, whereas compounds with an unusual concentration progression have been 

removed. 

 
Table 3.3: Compounds that deregulated (2-fold up or down compared to control) more than 20 genes in total 
at any concentration and yield at least one error indicator value which is greater than 0.5. 

Up regulation Down regulation 

 

Up regulation Down regulation 

2 h 

 

24 h 

allyl alcohol 

valproic acid 

allyl alcoholc 

acetaminophen 

allopurinol 

phenobarbital 

 
allyl alcohol 

adapin 

benbromarone 

carbon tetrachloride 

chlorpromazine 

cyclosporine A 

diethyl maleate 

2,4-dinitrophenol 

doxorubicin 

fluotexine hydrochlo-

ride 

fluphenazine 

galactosamine 

methapyrilene 

phenobarbital 

phenylbutazone 

tetracycline 

triazolam 

chlorpromazine 

cyclosporine A 

dexamethasone 

diclofenac 

2,4-dinitrophenol 

griseofulvin 

isoniazid 

methapyrilene 

perhexilene 

 

 

 8 h 

 
azathioprine 

benzbromarone 

bromoethylamine 

doxorubicin 

methapyrilene 

pmeprazole 

phenobarbital 

perhexilene 

phenylbutazone 

phorone 

rosiglitazone maleate 

allyl alcohol 

diclofenac 

flutamide 

labetalol 

lomustine 

methapyrilene 

omeprazole 

phenobarbital 

phorone 
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3.1.6 Reproduction of the gene expression effects observed by TG GATES in vitro 

Microarray technology provides a powerful tool for gene expression analysis, but the speci-

ficity, sensitivity and reproducibility is often controversial (Draghici et al. 2006; Kothapalli et 

al. 2002). In order to evaluate the reproducibility of the TG GATES data on chemically-

induced gene expression effects, quantitative real time PCR (qPCR) of compound-exposed 

primary human hepatocytes was performed.  

 

Table 3.4: Comparison of TG-GATES gene array data with qPCR data from compound treated primary human 
hepatocytes. Quantitative gene expression was performed for 2-5 replicates (cells from different donors). Only 
the highest concentration at time point 24 h was validated. 

Compound Gene 

TG-GATES data: fold changes Quantitative real time PCR data: fold changes 

Probe  

set 1 

Probe  

set 2 

Probe  

set 3 

Probe  

set 4 
Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Mean SD 

V
al

p
ro

ic
 a

ci
d

 
5

m
M

 

G6PD 23.71       37.16 8.61 39.61 21.59 43.30 30.05 14.57 

PDK4 4.23 3.74 1.01   2.93 3.25 1.57 2.16 5.85 3.15 1.64 

PCK1 2.27       5.45 13.10 4.99 3.30 7.43 6.86 3.79 

INSIG 2.08 2.44 2.16 2.27 1.10 1.39 0.39 0.68 0.54 0.82 0.41 

K
e

to
co

n
az

o
le

 
1

5
µ

M
 

G6PD 3.40       2.50 1.00   1.66 1.30 1.61 0.65 

PDK4 0.99 0.87 0.94   0.47 2.12   0.77 0.33 0.92 0.82 

PCK1 0.06       0.28 2.67   0.80 0.15 0.97 1.16 

INSIG 0.89 10.79 5.43 10.73 1.79 1.89   1.82 1.66 1.79 0.09 

A
ce

ta
m

in
o

- 
p

h
en

 
5

m
M

 

G6PD 7.30         3.00 4.67 4.02 7.44 4.78 1.90 

PDK4 3.37 3.34 1.08     0.53 0.36 1.77 0.82 0.87 0.63 

PCK1 0.13         0.68 0.56 0.81 0.35 0.60 0.19 

INSIG 0.93 2.10 1.14 1.36   0.28 0.50 1.02 0.34 0.54 0.34 

G
al

ac
to

- 
sa

m
in

e 
1

0m
M

 

G6PD 1.02           16.71   0.95 8.83 11.14 

PDK4 0.84 0.43 1.09       1.77   0.58 1.18 0.85 

PCK1 1.03           2.56   1.11 1.84 1.03 

INSIG 0.61 1.52 1.10 1.18     0.33   0.13 0.23 0.14 

Is
o

n
ia

zi
o

d
e 

1
0m

M
 

G6PD 2.42       1.08 0.87       0.98 0.15 

PDK4 0.71 0.38 0.95   0.08 0.34       0.21 0.18 

PCK1 0.13       1.33 1.00       1.17 0.23 

INSIG 0.97 2.61 3.24 4.63 0.37 0.35       0.36 0.02 

Replicates listed in one column are from cells of the same donor. Probe set numbers of respective genes are: 
G6PD: 202275_at, PDK4 no. 1, 2 and 3 in stated order 205960_at; 225207_at; 1562321_at, PCK1: 208383_s_at and IN-
SIG1 no. 1, 2, 3 and 4 in stated order 209566_at; 201625_s_at; 201626_at; 201627_at 
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Hepatocytes were obtained from five different donors and isolated and cultivated as de-

scribed. Five compounds out of the Open TG GATES compound set were selected for treat-

ment: valproic acid, ketoconazole, isoniazid, galactosamine, and acetaminophen. The treat-

ment was carried out under the same conditions as in TG GATES but only the latest time 

point of 24 h incubation was analyzed for the highest concentration. To assess qualitative 

agreement between the Open TG-GATES data and the more sensitive qPCR, four genes in-

volved in energy and lipid metabolism were selected to validate the compound-induced ef-

fect in vitro: glucose-6-phosphate-dehydrogenase (G6PD), phosphoenolpyruvate carboxyki-

nase 1 (PCK1), pyruvate dehydrogenase kinase 4 (PDK4) and insulin-induced gene 1 (IN-

SIG1)(Table 3.4). Up to four probe sets were analyzed in the gene array to measure altera-

tions of a target gene. A gene was considered to be deregulated in the gene array, when the 

majority of probe sets indicated a distinct direction of gene expression alteration. In the 

qPCR analysis a gene was considered to be deregulated with a change of minimum twofold, 

which implies a 2-Ct value of at least two for up regulation and a 2-Ct value of maximum 

0.5 for down regulation. Between two and five replicates, meaning samples from independ-

ent experiments with cells from different donors were measured for each gene. Although 

fold change quantities between qPCRs of different replicates alter strongly, a distinct direc-

tion of gene expression alteration is observed in most cases. 

The strong induction of G6PD by valproic acid, acetaminophen and ketoconazole (23.71 fold, 

7.3 fold and 3.4 fold) that was observed in the gene array was qualitatively confirmed, in 

contrast to the induction of G6PD by isoniazid. Galactosamine caused large differences in 

gene expression among the different donors. Up regulation of PDK4 (4.2 fold) in compound-

exposed hepatocytes was reproduced for valproic acid, but not for acetaminophen (3.2 fold 

induction in the gene array).  

Although the set of selected genes is very small, the majority of the results obtained for gene 

expression induction in compound-exposed primary hepatocytes qualitatively agree with the 

qPCR of the tested donors and the TG GATEs data. Especially for genes that are found to be 

up-regulated in the gene array, many expression changes were confirmed by qPCR. Never-

theless, independent confirmation is necessary to obtain higher reliability.  
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Table 3.5: Comparison of TG-GATES gene array data with qPCR data from treated primary human hepatocytes. 
Gene expression levels for THRSP were measured for 2-4 replicates (cells from different donors). Cells were 
treated for 24 h before sample collection. 

Compound Conc. 
TG-GATES data: fold changes quantitative real time PCR data: fold changes 

1553583_a_at 229476_s_at 229477_at Rep. 1 Rep. 2 Rep. 3 Rep. 4 Mean SD 

Valproic 

acid 

0.2mM 1.172 1.482 1.142 1.833 1.502 1.398 1.805 1.634 0.22 

1mM 3.002 6.802 5.610 1.705 2.074 3.107 1.613 2.125 0.68 

5mM 13.595 27.209 26.246 1.506 2.035 1.694 0.492 1.432 0.66 

Ketocon-

azole 

0,6µM 1.358 0.755 0.834 1.064 0.960 0.264   0.763 0.43 

3µM 1.204 1.080 1.214 0.832 1.134 0.554   0.840 0.29 

15µM 17.077 41.614 41.413 1.429 0.794 0.447   0.890 0.50 

Isoniazide 

0.4mM 1.120 1.111 1.107 1.111 1.538     1.324 0.30 

2mM 1.311 1.619 1.724 2.682 1.854     2.268 0.58 

10mM 4.497 10.600 8.718 0.698 0.417     0.557 0.20 

 

Particularly, expression changes of the gene thyroid hormone responsive spot 14 (THRSP) 

illustrate the importance of independent confirmation. THRSP is a gene involved in hepatic 

lipogenesis and biosynthesis of triglycerides; hence it was suggested that it plays a role in 

hepatic steatosis (Wu et al. 2013; Zhu et al. 2001). In the Open TG-GATES gene array data of 

cultivated primary human hepatocytes, THRSP was strongly up regulated by a large set of 

chemicals after 24 h of exposure at a slightly cytotoxic concentration. For instance, THRSP 

was strongly induced by valproic acid, ketoconazole and isoniazid. However, none of the 

inductions were confirmed by qRT-PCR (Table 3.5). Although valproic acid slightly elevated 

THRSP levels in primary human hepatocytes, the quantities are not comparable to the gene 

array results. The majority of reproduced gene expression alterations observed by TG-GATES 

were confirmed by qRT-PCR, however, this example demonstrates that a high risk of false 

positive results cannot be excluded. This underlines the importance of independent confir-

mation of gene expression alterations before focusing on single compound effects that were 

identified by microarray technology. 

 

3.1.7 Characterization of unstable baseline genes 

Isolation and cultivation of primary hepatocytes is known to cause strong effects in gene 

expression. More than 3000 genes are up or down regulated as a consequence of isolation 

stress and because of the culture conditions (Godoy et al. 2013). The majority of gene ex-

pression changes occur during the first 24 h of cultivation (Zellmer et al. 2010). Upregulated 

genes are predominantly associated with inflammation whereas down regulated genes 

mainly affect xenobiotic and endogenous metabolism.  

To identify stress and cultivation-induced genes, gene expression profiles of freshly isolated 

hepatocytes were compared to those of cultivated hepatocytes after 1, 2, 3, 5, 7, 10 and 14 

days in collagen sandwich culture. Gene array analysis identified 1086 genes (1509 probe 
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sets) that were up regulated and 988 genes (1754 probe sets) which were found to be down 

regulated in culture. These ‘unstable baseline genes’ may be responsible for false positive 

effects among compound-induced gene expression changes. Moreover, unstable baseline 

genes may cover compound-induced effects, if a chemical induces the same set of genes. In 

this case, a biological relevance of the respective gene may not become obvious, since the 

compound-induced effect is difficult to distinguish from the stress-induced alteration. In any 

case, genes belonging to the set of unstable baseline genes should be considered with cau-

tion and are therefore for highlighted in the toxicotranscriptomics directory. 

 

3.1.8 Detection of biological motifs 

After the aforementioned curation steps, gene array data of 143 compounds remained for 

further analysis. For the 24 h incubation time point at the highest concentration, unsuper-

vised cluster analysis was performed to characterize the 100 strongest deregulated genes 

across all remaining compounds (Table 3.6 and Figure 3.11). Cluster analysis revealed a pat-

tern where compounds with strong effects on gene expression cluster in the lower part of 

the heat map whereas rather weak compounds cluster in the upper part. Three of the clus-

ters could be manually associated with biological motifs: a large set of proliferation associat-

ed genes in the left corner of the heat map (blue color) is strongly down regulated (com-

pounds AFB1 – CHX; genes CXCL6 to CDK1). This list of genes includes well characterized 

genes coding for proteins involved in cell cycle progression, such as cyclin dependent kinases 

(CDK) and cyclins (CCN proteins), proteins involved in DNA uncoiling and replication, such as 

topoisomerase 2 (TOP2A), as well as several genes associated with the mitotic spindle for-

mation. The second cluster is located in the middle of the heat map and illustrates com-

pound-induced phase I metabolism of xenobiotics. It comprises the cytochrome P450 isoen-

zymes (CYP 3A4, 3A7, 1B1, 1A1 and 1A2), which are predominantly induced by a large set of 

chemicals. Finally, a third biological motif was identified, representing genes that are associ-

ated with different forms of cellular stress. This set of genes includes, for example, thiore-

doxin interacting protein (TXNIP), a gene coding for an oxidative stress mediator protein or 

the ER stress inducible activating transcription factor 3 (ATF3). Furthermore, heat shock 70-

KD protein 6 (HSPA6) is upregulated by various compounds, as well as regulator of cell cycle 

(RGCC), which is induced by p53 in response to DNA damage. Pyruvate dehydrogenase ki-

nase 4 (PDK4) is also detected among the up regulated genes – it is a gene involved in energy 

and lipid metabolism and reported to be induced upon starvation or hypoxia (Lee et al. 

2012). 
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Figure 3.11: Unsupervised Clustering of the 100 most deregulated genes across all compounds tested at the 
highest concentration for 24h of incubation. Compounds are listed in lines whereas columns represent the 100 
strongest deregulated genes. Up- regulated genes are marked in red, down regulated genes are shown in blue. 
The left column of the heat map shows a further classification of the compounds in terms of their potential in 
genotoxicity, hepatotoxicity and Bsep inhibiting capacity. 

The compounds were further classified according to their potential in genotoxicity and hepa-

totoxicity, as well as inhibition of the bile salt export pump (Bsep) (Figure 3.11). Bsep is re-

sponsible for the active transport of bile acids from the cytosol across the hepatocyte cana-

licular membrane into the bile. Therefore, inhibited Bsep activity may indicate a cholestatic 

effect of a compound. Reduced Bsep activity has been reported for various cholestasis-

inducing drugs, such as troglitazone and glibenclamide (Kis et al. 2012). 
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Table 3.6: The 100 strongest deregulated genes at the highest tested concentration for the incubation period 
of 24h across all compounds. For each probe set the compounds were ranked in order of their fold change and 
the top 100 probe sets with the highest absolute value of fold change were included. 
 

Probe sets Gene Symbol 

 

Probe sets Gene Symbol 

 

Probe sets Gene Symbol 

209613_s_at ADH1B 

 

219250_s_at FLRT3 

 

1555366_at NSAP11 

222608_s_at ANLN 

 

206952_at G6PC 

 

219148_at PBK 

1552619_a_at ANLN 

 

1555612_s_at G6PC 

 

208383_s_at PCK1 

220468_at ARL14 

 

202275_at G6PD 

 

225207_at PDK4 

242496_at ART4 

 

225420_at GPAM 

 

205960_at PDK4 

207220_at ART4 

 

225424_at GPAM 

 

218009_s_at PRC1 

219918_s_at ASPM 

 

208808_s_at HMGB2 

 

213093_at PRKCA 

202672_s_at ATF3 

 

207165_at HMMR 

 

228273_at PRR11 

221530_s_at BHLHE41 

 

213418_at HSPA6 

 

228708_at RAB27B 

209183_s_at C10orf10 

 

117_at HSPA6 

 

216880_at RAD51B 

216598_s_at CCL2 

 

224469_s_at INF2 

 

214409_at RFPL3S 

203418_at CCNA2 

 

201626_at INSIG1 

 

218723_s_at RGCC 

266_s_at CD24 

 

201627_s_at INSIG1 

 

201890_at RRM2 

216379_x_at CD24 

 

202503_s_at KIAA0101 

 

209773_s_at RRM2 

209771_x_at CD24 

 

218755_at KIF20A 

 

203789_s_at SEMA3C 

202870_s_at CDC20 

 

201650_at KRT19 

 

203625_x_at SKP2 

203213_at CDK1 

 

205569_at LAMP3 

 

206535_at SLC2A2 

210559_s_at CDK1 

 

223913_s_at MIR7-3HG 

 

220786_s_at SLC38A4 

204470_at CXCL1 

 

232325_at NA 

 

218087_s_at SORBS1 

209774_x_at CXCL2 

 

235456_at NA 

 

204955_at SRPX 

206336_at CXCL6 

 

244567_at NA 

 

233194_at STARD13-AS 

205749_at CYP1A1 

 

AFFX-M27830_5_at NA 

 

229476_s_at THRSP 

207608_x_at CYP1A2 

 

215078_at NA 

 

229477_at THRSP 

202437_s_at CYP1B1 

 

202581_at NA 

 

201291_s_at TOP2A 

206424_at CYP26A1 

 

210387_at NA 

 

201292_at TOP2A 

205999_x_at CYP3A4 

 

235681_at NA 

 

213293_s_at TRIM22 

208367_x_at CYP3A4 

 

230554_at NA 

 

243483_at TRPM8 

243015_at CYP3A5 

 

237031_at NA 

 

201008_s_at TXNIP 

205939_at CYP3A7 

 

200800_s_at NA 

 

201010_s_at TXNIP 

203764_at DLGAP5 

 

243631_at NA 

 

225655_at UHRF1 

225645_at EHF 

 

235102_x_at NA 

 

1555068_at WNK1 

231292_at EID3 

 

218663_at NCAPG 

 

224185_at WRAP53 

225803_at FBXO32 

 

204162_at NDC80 

 

    

222853_at FLRT3 

 

206801_at NPPB 
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3.1.9 Stereotypic versus compound specific gene expression responses 

Whereas some clusters of genes are deregulated by a large set of chemicals (see Figure 3.5), 

other genes are affected by individual compounds only. One intention of the toxicogenomics 

directory is to systematically distinguish between consensus or stereotypical gene expres-

sion effects and more compound specific effects. Therefore, the selection value concept was 

introduced, which was based on the sample subset of 24 h exposure at the highest concen-

tration. Each probe set was considered individually and a list was generated that ranks the 

compounds in the order to their fold change. The list of up regulated probe sets ranks the 

compounds from the highest to the lowest fold change whereas the list of down regulated 

probe sets considers the compound ranking from the lowest to the highest fold change.  

With this ranking concept, selection value (x) was defined as the list of probe sets that are at 

least 3 fold up or down regulated by at least x compounds. Accordingly, selection value 1 

(SV 1) delivers the list of genes that are at least threefold deregulated by at least one com-

pound; each gene on the list is represented by the particular compound with the strongest 

impact on this gene. SV 5, for example, delivers the list of genes which are at least threefold 

deregulated by at least five compounds. Figure 3.12 illustrates the number of deregulated 

genes for each selection value in a time and concentration dependent manner. As previously 

described, most genes are deregulated in a time and concentration dependent manner 

(Figure 3.3 and Figure 3.4). For this reason, the 24 h time point with the highest concentra-

tion for cell exposure is most suitable for considering high selection values representing a 

stereotypic gene expression response. Applying this concept to the Open TG GATES data, 

4,135 probe sets were found to be up regulated (4,479 down regulated) for SV 1; 1,101 

probe sets were up regulated (1,713 down regulated) for SV 3; 531 (857) for SV 5 and 31 

probe sets (179) were induced for SV 20. Figure 3.13 gives an overview in how far genes 

overlap within the different SV lists. 
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Figure 3.12: A: Selection values for the up regulated genes and B: for the down regulated genes. The number of 
deregulated probe sets per selection value increases time and concentration dependently. A selection value of 
for example 5 means that at least 5 compounds up or down regulate the indicated gene. 
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Figure 3.13: Overview of the selection value 1, 3, 5 and 20 genes. Each selection value (x) delivers the list of 
genes that are at least threefold up or down regulated by at least x compounds. 

Accordingly, selection value 20 (SV 20) comprises the list of genes, which are at least three-

fold deregulated by at least twenty compounds.  This list delivers the genes that are altered 

as a stereotypical response to chemical exposure. Keeping in mind that only 32 of the 143 

compounds show strong effects on gene expression, 20 compounds represent a large frac-

tion for defining a stereotypic response. 31 probe sets were identified as up regulated, 

whereas 179 probe sets were at least threefold down regulated by at least 20 compounds 

(Figure 3.13). The SV 20 genes were studied individually and assigned to biological categories 

(Table 3.7). 
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Table 3.7: Consensus genes deregulated in human hepatocytes by chemical exposure. The listed genes are at least 3-
fold up (A) or down regulated (B) by at least 20 of the 148 studied chemicals (selection value 20). 

1
Gene deregulated 

in liver disease (NASH, cirrhosis and/or HCC). 
2
Unstable baseline gene. 

3
Not annotated, functionally unclear probe set. 

A. Upregulated consensus genes       

Symbol Gene Probe set Function of the Gene Product 

Category: Metabolism, Xenobiotics       

CYP1A1 cytochrome P450, sub-fam. 1A, polypeptide 1 205749_at 

metabolic enzyme in the ER 

p
h

as
e 

I e
n

zy
m

es
 CYP2C9 cytochrome P450, sub-fam. 2C, polypeptide 9 217558_at 

CYP3A4 cytochrome P450, sub-fam. 3A, polypeptide 4 
205999_x_at 
208367_x_at 

CYP3A52 cytochrome P450, sub-fam. 3A, polypeptide 5 
214235_at 
243015_at 

CYP3A71 cytochrome P450, sub-fam. 3A, polypeptide 7 
205939_at 
211843_x_at 

SULT1C21 sulfotransferase 1C2 205342_s_at 

cytosolic enzyme; catalyzes sulfonation  

p
h

as
e 

II
  

en
zy

m
es

 

SULT2A1 sulfotransferase 2A1 
206292_s_at 
206293_at 

Category: Differentiation and Development 

FGF21 fibroblast growth factor 21 221433_at secreted growth factor; mitosis and survival 

gr
o

w
th

 

 f
ac

to
r 

GDF151 growth/differentiation factor 15 221577_x_at secreted growth factor; inflammation and apoptosis 

IFRD1 
interferon-related developmental  

regulator 1 
202147_s_at 

nuclear protein; regulation of gene expression in proliferative 
and differentiative pathways in

te
rf

e-
ro

n
-

re
la

te
d

 
si

gn
al

in
g 

EFNA11 ephrin-A1 202023_at receptor tyrosine kinase; migration and adhesion  o
th

er
 

Category: Protein Modification and Degradation 

CBX41 E3 SUMO-protein ligase CBX4 227558_at  protein ligase; SUMO1 conjugation and proteasomal degradation 

FBXO321 F-box protein 32 225803_at cytosolic protein; ubiquitination and proteasomal degradation  

KLHL24 kelch-like protein 24 
221985_at 
221986_s_at 

cytosolic protein; role in protein degradation 

Category: Stress Response 

ATF3 activating transcription factor 3 
202672_s_at 
1554980_a_at 

transcription factor; stress response, further involved in cell 
cycle regulation, DNA repair, apoptosis 

ce
ll 

cy
cl

e
 

ar
re

st
 

RGCC1 regulator of cell cycle  218723_s_at 
cytosolic protein;  induced by p53 modulates the activity of cell 
cycle specific kinases in response to DNA damage 

CREBRF CREB3 regulatory factor 225956_at 
nuclear protein; regulates transcription, negative regulator of 
the ER stress response 

st
re

ss
 r

e
sp

o
n

-

se
/ 

  E
R

 s
tr

es
s 

PPM1E phosphoprotease 1E  205938_at 
serine/threonine protein phosphatase; negative regulator of 
cell stress response pathways 

Category: Energy and Lipid Metabolism 

PDK41 pyruvate dehydrogenase kinase 225207_at 
mitochondrial membrane enzyme; increased PDK4 leads to 
enhanced gluconeogenesis 

gl
u

co
se

 
m

et
ab

o
lis

m
/ 

h
o

m
eo

st
as

is
 

PPM1L2 protein phosphatase 1L 228108_at membrane bound enzyme; regulation of blood-glucose  

Category: Other 

SLC7A111 solute carrier fam. 7 member 11 217678_at membrane anchored protein; cysteine and glutamate transport 

ZCCHC61 terminal uridylyltransferase 7 242776_at enzyme involved in RNA processing 

3236542_at1, 237031_at 
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B. Downregulated consensus genes. The 100 probe sets (74 genes) with the highest fold change are given below. 

Symbol Gene Probe set Function of the Gene Product 

Category: Cell Cycle Progression and Regulation 

ASPM abnormal spindle protein homolog 219918_s_at 
cytosolic protein; role in mitotic spindle regulation and coordination of mitotic 
processes 

AURKA aurora kinase A 208079_s_at cytosolic kinase; regulation of cell cycle progression 

AURKB aurora kinase B 209464_at cytosolic kinase; regulation of cell cycle progression 

BIRC5 baculoviral IAP repeat-containing protein 5 202095_s_at 
cytosolic protein; chromosome alignment and segregation during mitosis, 
further role as apoptotic factor 

CENPK centromere protein K 222848_at 
nuclear protein; assembly of kinetochore proteins, mitotic progression and 
chromosome segregation 

FAM83D protein FAM83D 225687_at cytosolic protein; chromosome alignment on the spindle 

MLF1IP centromere protein U 218883_s_at 
component of a nucleosome-associated complex; assembly of kinetochore 
proteins 

NCAPG condensin-2 complex subunit G2 
218662_s_at 
218663_at 

nuclear protein; regulation of mitotic chromosome architecture 

OIP5 Opa-interacting prot. 5 213599_at nuclear protein; chromosome segregation  

TTK dual specificity protein kinase TTK 204822_at 
protein kinase; centrosome duplication and mitosis progression, associated 
with cell proliferation 

CCNA2 cyclin A2 
203418_at 
213226_at 

nuclear protein; cell cycle control at the G1/S and  G2/M transitions 

CCNB1 cyclin B1 
214710_s_at 
228729_at cytosolic and nuclear protein; cell cycle control at the G2/M  transition 

CCNB2 cyclin B2 202705_at 

CCNE22 cyclin E2 
205034_at 
211814_s_at 

nuclear protein; controls the cell cycle at the late G1 and early S phase 

CDC20 cell division cycle 20 homolog 202870_s_at cytosolic protein;regulation of anaphase initiation and mitotic exit 

CDC6 cell division control protein 6 homolog 
203967_at 
203968_s_at 

cytosolic and nuclear protein; control and initiation of DNA replication 

CDCA3 cell division cycle-associated protein 3 223307_at cytosolic protein; required for entry into mitosis 

CDK1 cyclin-dependent kinase 1 
203213_at 
203214_x_at 
210559_s_at 

kinase, cell cycle control by modulation of the centrosome cycle and mitotis 
initiation 

CDKN3 cyclin-dependent kinase inhibitor 3 
209714_s_at 
1555758_a_a 

cytosolic protein; cell cycle regulation 

DLGAP5 discs, large homolog-associated protein 5 203764_at 
cytosolic and nuclear protein; cell cycle  
regulator 

DTL denticleless protein homolog 
218585_s_at 
222680_s_at 

cytosolic and nuclear protein; cell cycle control, DNA repair 

HMMR hyaluronan-mediated motility receptor  
207165_at 
209709_s_at 

cell surface receptor; required for entry and regulation of mitosis 

MELK maternal embryonic leucine zipper kinase 204825_at 
serine/threonine-protein kinase; modulator of intracellular signaling, further 
role in apoptosis 

TRIP13 thyroid receptor-interacting protein 13 204033_at 
transcription factor interacting protein; checkpoint arrest, chromosome re-
combination and structure development during meiosis, role in DNA double 
strand break repair 

BUB1 serine/threonine-protein kinase BUB1 209642_at cytoplasmic and nuclear kinase; mitotic checkpoint, required for normal mito-
sis progression BUB1B serine/threonine-protein kinase BUB1b 203755_at 

CASC5 cancer susceptibility candidate 5 228323_at 
nuclear protein; spindle-assembly checkpoint signaling and chromosome 
alignment 
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INSC protein inscuteable homolog 237056_at cytosolic protein; spindle orientation  

MAD2L1 mitotic arrest-deficient 2L1 
203362_s_at 
1554768_a_at 

cytosolic and nuclear protein; spindle-assembly checkpoint 

NDC80 kinetochore protein NDC80 homolog 204162_at nuclear protein; chromosome segregation and spindle checkpoint activity 

NEK2 never in mitosis A-related kinase 2 204641_at 
mitotic kinase; controls centrosome separation and bipolar spindle formation 
in mitotic cells 

SPC25 kinetochore protein Spc25 209891_at nuclear protein; chromosome segregation, spindle checkpoint activity 

TPX2 targeting protein for Xklp2 210052_s_at 
spindle associated protein; spindle assembly factor, colocalises with  
apoptotic microtubules 

ZWINT ZW 10 interactor 204026_s_at 
nuclear protein of the MIS12 complex; kinetochore formation and spindle 
checkpoint activity 

GINS1 GINS complex subunit 1 206102_at nuclear protein; initiation of DNA replication and progression of DNA replica-
tion forks GINS2 GINS complex subunit 2 221521_s_at 

KIAA0101 PCNA-associated factor 202503_s_at cytosolic and nuclear protein; regulates DNA repair during DNA replication 

LMNB1 lamin-B1 203276_at 
membrane protein in the nuclear laminar;  DNA replication, stress response 
and development 

MCM10 minichromosome maintenance 10 220651_s_at nuclear protein; functions as replication initiation factor 

TOP2A topoisomerase II alpha  
201291_s_at 
201292_at 

nucleoplasm enzyme; transiently breaks and reunites double strand DNA 
during replication 

KIF23 kinesin-like protein KIF23 204709_s_at protein required for the myosin contractile ring formation during cytokinesis 

KIF4A chromosome-associated kinesin KIF4A 218355_at microtubulus motor protein; spindle formation 

NUSAP1 nucleolar and spindle-associated protein 1 
218039_at 
219978_s_at 

cytosolic and nuclear protein; stabilization of microtubules 

ANLN anillin 
222608_s_at 
1552619_a_at 

nuclear, actin binding protein; role in cytokinesis, deregulated in many cancers 

CEP55 centrosomal protein 55 kDa 218542_at cytosolic and nuclear protein; mitotic exit and cytokinesis 

PRC1 protein regulator of cytokinesis 1 218009_s_at 
cytosolic and nuclear protein; regulator of cytokinesis, cross-links antiparallel 
microtubules 

PBK PDZ binding kinase 219148_at mitotic kinase; phosphorylates MAP kinase p38, only active during mitosis 

PRR11 proline rich 11 228273_at cytosolic protein; expression increases from G1 to G2/M phase 

E2F8 transcription factor E2F8 219990_at 
transcription factor; regulates transcription of other transcription factors with 
role in cell cycle 

MYBL1 myeloblastosis-related protein A 213906_at 
transcriptional activator;  master regulator of meiotic genes, role in prolifera-
tion and differentiation 

HELLS lymphoid-specific helicase 
223556_at 
227350_at 

helicase with role in normal development and survival, chromatin remodeling 
and DNA methylation 

Category: DNA Synthesis, Recombination and Repair 

DHFR1,2 dihydrofolate reductase  202533_s_at enzyme in folate metabolism; synthesis of purines 
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RRM2 ribonucleotide reductase M2 polypeptide 
201890_at 
209773_s_at 

cytosolic enzyme; biosynthesis of deoxyribonucleotides, inhib-
its Wnt signaling 

TK1 thymidine kinase 
202338_at 
1554408_a_at 

cytosolic kinase for DNA synthesis; phosphorylation of thymi-
dine to deoxythymidine monophosphate 

TYMS thymidylate synthase 
202589_at 
1554696_s_at 

enzyme which contributes to the de novo mitochondrial thy-
midylate biosynthesis pathway 

FANCI fanconi-associated nuclease 1 213007_at 
nuclease; required for maintenance of chromosomal stability, 
key role in DNA repair  

D
N

A
 r

ep
ai

r/
   

re
co

m
b

i-

n
at

io
n

 

RAD51AP1 RAD51-associated protein 1 204146_at nuclear, DNA binding protein; DNA damage response 
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Category: Immune Response and Inflammation 

CCL21 C-C motif chemokine 2 216598_s_at secreted protein; chemotactic factor attracting monocytes and basophils 

CXCL61 chemokine (C-X-C motif) ligand 6  206336_at 
secreted protein with chemotactic activity for neutrophils; inflammation and 
development 

FSTL11 follistatin-related protein 1 208782_at 
secreted glycoprotein; inflammatory protein, enhancing synthesis of pro-
inflammatory cytokines and chemokines by immune cells 

HAVCR1 hepatitis A virus cellular receptor 1 207052_at 
membrane protein receptor; role in T-helper cell development, cell-surface 
receptor for the virus 

Symbol Gene Probe set Function of the Gene Product 

Category: Cytoskeleton and Trafficking 

ARL14 ADP-ribosylation factor-like 14 220468_at 
cytoplasmic vesicle GTPase; controls transport of vesicles along 
microtubules 
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KIF20A kinesin-like protein KIF20A 218755_at cytosolic protein; controls transport along microtubules 

KRT71 keratin type II cytoskeletal 7 209016_s_at 
cytoplasmic intermediate filament protein; responsible for 
structural cell integrity, stimulates DNA synthesis 
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PALMD palmdelphin 
218736_s_at 
222725_s_at 

cytosolic protein; role in the cell shape control and cell dynam-
ics 

Category: Metabolism 

ALDH8A11 aldehyde dehydrogenase fam. 8 member A1 220148_at cytosolic enzyme; converts 9-cis-retinal to 9-cis-retinoic acid 

CPS11,2 carbamoyl-phosphate synthase 
204920_at 
217564_s_at 

mitochondrial protein; role in the urea cycle, removes excess ammonia 

from the cell 

Category: Other 

ABCA81,2 ATP-binding cassette sub-family A, member 8 204719_at membrane located, ATP-dependent lipophilic drug transporter 

BCL2A11,2 Bcl-2-related protein A1 205681_at cytoplasmic protein involved in apoptosis regulation 

DEPDC1 DEP domain-containing protein 1A 
222958_s_at 
232278_s_at 

nuclear protein; involved in transcriptional regulation as a transcriptional 
corepressor 

SHCBP1 SHC SH2 domain-binding protein 1 219493_at 
cytosolic protein; signaling pathways in proliferation, cell growth and differen-
tiation 

UBE2C 
ubiquitin-conjugating  
enzyme E2 C 

202954_at enzyme involved in protein ubiquitinylation and degradation 

UHRF1 
ubiquitin-like PHD and RING finger domain-
containing protein 1 

225655_at 
nuclear epigenetic regulator enzyme; bridges DNA methylation and chromatin 
modification 

WDR721,2 WD repeat-containing protein 72 227174_at 
mutations in this gene have been associated with amelogenesis imperfecta 
hypomaturation type 2A3 

3204962_s_at, 225834_at, 229490_s_at, 230554_at, 232325_at1, 244567_at 

 

Most of the SV 20 genes that are up regulated as a stereotypical expression response were 

associated with biological functions, such as phase I and II metabolism of xenobiotics, devel-

opment and differentiation, protein modification and degradation, stress response and en-

ergy and lipid metabolism (Table 3.7 A). Down regulated consensus genes are mainly in-

volved in cell cycle progression, but a smaller fraction of genes can be attributed to catego-

ries, such as DNA repair and synthesis, immune response, cytoskeleton and intracellular traf-

ficking and metabolism (Table 3.7 B). 
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In order to consider rather compound specific gene expression alterations, detailed analysis 

was also performed for the SV 3 genes. This list comprises the genes which are at least 

threefold up or down regulated by at least three chemicals. More individual gene expression 

responses may be obtained with the SV 1 list, because the SV 1 list gives each top gene with 

the highest fold change for each compound. However, there are only 2 replicates per sam-

ples available and the amount of false positive results within the multiple testing may be 

relatively high. Considering the genes that are deregulated by at least three compounds, 

offers a compromise between individuality and reliability in order to identify rather com-

pound specific effects. This list of genes also comprises the SV 20 genes, but covers an even 

more diverse pattern of biological functions (Table 3.8). Up regulated SV 3 genes were as-

signed to categories, such as energy and lipid metabolism, inflammatory response and the 

immune system, development and differentiation, protein modification and degradation, 

regulation of transcription, metabolism, stress response and apoptosis, transport, as well as 

cytoskeletal factors (Table 3.8 A). 

 
Table 3.8: SV 3 genes deregulated in human hepatocytes by chemical exposure. The listed genes are A up or B 
down regulated by at least 3 of the 143 studied chemicals (selection value 3). The genes PCK1, ADH1B and CPS1 
are among the TOP150 up- and downregulated genes, the deregulations are caused by different chemicals.  
1
Gene deregulated in liver disease (NASH, cirrhosis and/or HCC). 

2
Unstable baseline gene. 

3
Not annotated 

probe set. 

A. Up regulated SV 3 genes. The 118 probe sets (85 genes) with the highest fold changes are given below.  32 probe sets (17 
genes) are overlapping with upregulated genes in SV20 and are not listed here. 

Symbol Gene Probe set Function of the Gene Product 

Category: Energy and Lipid Metabolism 

 

G6PC 
glucose-6-phosphatase, catalytic 
subunit  

202275_at 
206952_at 

enzyme in  regulation of blood glucose levels; role in pentose 
phosphate way, fatty acid and nucleic acid synthesis 
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 SDS serine dehydratase 205695_at 

enzyme with role in gluconeogenesis; catalyzes serin into 
ammonia and pyruvate 

PCK1 
phosphoenolpyruvate carboxykinase 1 
(soluble)  

208383_s_at 
gluconeogenic enzyme; production of glucose from lactate 
and other precursors derived from the citric acid cycle 

PDK4 
pyruvate dehydrogenase kinase,  
isozyme 4  

205960_at 
mitochondrial membrane enzyme; increased PDK4 leads to 
enhanced gluconeogenesis 

PPARGC1A 
peroxisome proliferator-activated 
receptor gamma, coactivator 1 alpha  

219195_at 
transcriptional coactivator for steroid and nuclear receptors 
and genes involved in glucose and fatty acid metabolism 

HMGCS2 
3-hydroxy-3-methylglutaryl-CoA  
synthase 2  

204607_at mitochondrial enzyme; catalyzes HMG-CoA formation 
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AKR1D1 
aldo-keto reductase family 1,   mem-
ber D1 

207102_at 
cytosolic aldoketo reductase; reduction of several steroid 
hormones and bile acid intermediates 

FABP1 fatty acid-binding protein 1 205892_s_at 
cytosolic protein; regulates intracellular lipid transport, re-
quired for cholesterol synthesis and metabolism lip

id
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MGEA5
1
 

meningioma expressed antigen 5 
(hyaluronidase)  

223494_at 
235868_at 

glycosidase; removes O-GlcNAc modifications; further regu-
lates DNA metabolic processes D
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Category: Inflammatory Response and Immune System 

 

C2CD4A 
C2 calcium-dependent domain  
containing 4A  

241031_at 
nuclear protein; involved in inflammatory processes, cell 
architecture and adhesion 
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IL33
1
 Interleukin 33 209821_at 

inflammatory cytokine; dual function as cytokine and nuclear 
factor with transcriptional regulatory properties 

NDST1
1
 

N-deacetylase/N-sulfotransferase 
(heparan glucosaminyl) 1  

1554010_at 
bifunctional enzyme; involved in heparan sulfate biosynthesis 
and the inflammatory response 

HAMP hepcidin antimicrobial peptide  220491_at 
secreted signaling molecule; maintenance of iron homeo-
stasis; disrupts the cell membranes of cellular pathogens 
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IFIT2 
interferon-induced protein with tetra-
tricopeptide repeats 2  

226757_at 
cytoplasmic, antiviral protein; immune response,  inhibits 
expression of viral messenger RNAs, can promote apoptosis 

RSAD2
2
 

radical S-adenosyl methionine domain 
containing 2  

242625_at 
interferone inducible membrane protein; inhibits DNA and 
RNA viruses, T-cells activation and differentiation 

CEBPA 
CAAT/enhancer binding protein 
(C/EBP), alpha  

204039_at 
transcription factor; differentiation of granulocytes and mye-
loid cells, further role in inhibition of proliferation 

UNC5B
1
 unc-5 homolog B 226899_at 

membrane recptor; immune cell adhesion, migration, in-
flammatory response, further role in apoptosis 

CLEC2B 
C-type lectin domain family 2,    mem-
ber B  

209732_at 
myeloid-specific activating membrane receptor; involved in 
cross-talk between myeloid cells and NK cells  

TSC22D3 TSC22 domain family, member 3  208763_s_at 
peptide with role in  anti-inflammatory and immunesuppres-
sive effects, acts as transcriptional regulator 

Category: Development and Differentiation 

 

EFNB2 ephrin-B2 202668_at 
cell surface transmembrane ligand; involved in migration, 
adhesion, is further involved in angiogenesis  
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EPC1 enhancer of polycomb homolog 1 238633_at 
nuclear protein; growth regulation, differentiation and DNA 
repair  

GAREM GRB2 associated, regulator of MAPK1  228115_at 
adapter protein that plays a role in intracellular signaling  
cascades and proliferation 

GEM 
GTP binding protein overexpressed in 
skeletal muscle  

204472_at 
regulatory membrane protein; functions in signal transduc-
tion, is induced by mitogens 

LATS2
1
 large tumor suppressor kinase 2  230348_at 

serine/threonine kinase; regulation of cytokinesis, cell prolife-
ration, apoptosis, component in the Hippo signaling pathway 

NEDD9
1
 

neural precursor cell expressed, devel-
opmentally down-regulated 9 

1569020_at 
docking protein for tyrosine-kinase-based signaling; cell adhe-
sion, growth control and proliferation 

S100P
1,2

 S100 calcium binding protein P  204351_at 
signaling molecule; functions as calcium sensor, stimulates 
proliferation in an autokrine manner 

SPATA5 spermatogenesis associated 5  241546_at ATPase; differentiation, functions as chaperone 

WNK1
1
 WNK lysine deficient protein kinase 1  1555068_at 

cytosolic enzyme; regulation of sodium and chloride ion 
transport, cell signaling, survival and proliferation 

ADM adrenomedullin 202912_at 
secreted hormone; regulates hormone secretion, growth 
modulation, angiogenesis and antimicrobial activity 
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DKK3 
dickkopf WNT signaling pathway  
inhibitor 3  

230508_at secreted protein; antagonizes canonical Wnt signaling 

FIBIN
1
 fin bud initiation factor homolog 226769_at secreted growth factor; function in limb development 

HBEGF
1
 heparin-binding EGF-like growth factor  

38037_at 
203821_at 

secreted growth factor; mediates its effects via EGFR, in-
volved in macrophage-mediated cellular proliferation 
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TSKU 
tsukushi, small leucine rich proteogly-
can  

218245_at 
secreted protein; involved in intracellular transport and extra-
cellular secretion 

NOV1 nephroblastoma overexpressed gene 214321_at 
secreted protein;  role in cell growth regulation, proliferation 
and differentiation 

FOS
1
 

FBJ murine osteosarcoma viral oncoge-
ne homolog  

209189_at 
proto-oncogenic transcription factor;  signal transduction, cell 
proliferation and differentiation 
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RBPMS
1
 

RNA binding protein with multiple 
splicing 

1557223_at 
nuclear protein acting as a coactivator of transcriptional  
activity; interaction with SMAD proteins 

Category: Protein Modification and Degradation 
 

DNAJC12 
DnaJ (Hsp40) homolog, subfamily C,  
member 12  

223722_at 
molecular chaperone of HSP70 proteins; involved in protein 
folding and export 
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HSPD1 
heat shock 60kDa protein 1 (chap-
eronin)  

241716_at 
mitochondrial chaperone; protein folding, mitochondrial 
protein import and macromolecular assembly 

HSPA6 heat shock 70kDa protein 6 (HSP70B')  
117_at 
213418_at 

chaperone; function in protein stabilization and folding 

KLHL20 kelch-like family member 20  210634_at 
adaptor for ubiquitin ligase complex, interferon response and 
Golgi to endosome transport,  negative regulator of apoptosis 
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MKRN1 makorin ring finger protein 1 209845_at 
enzyme; catalyzes ubiquitinylation of substrate proteins for 
proteasomal degradation 

UBE2D3 ubiquitin-conjugating enzyme E2D 3  240383_at 
membrane protein; ubiquitinylation and proteasomal degra-
dation, involved in DNA damage repair and apoptosis 

MMP1 matrix metallopeptidase 1  204475_at secreted protease; degrades extracellular matrix proteins 

Category: RNA processing, DNA Repair and Recombination 

 

EIF4G3
1
 

eukaryotic translation initiation factor 4 
gamma, 3  

1554309_at 
scaffold protein for transcription factors; recognition of the 
mRNA cap and recruitment of mRNA to the ribosome 
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ZFC3H1
1
 zinc finger, C3H1-type containing  1553736_at metal ion binding enzyme in RNA processing 

EID3 
EP300 interacting inhibitor of  
differentiation 3  

231292_at 
nuclear protein; repair of DNA double-strand breaks, re-
pressor of nuclear receptor-dependent transcription 
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Category: Metabolism, Xenobiotics 

 
ADH1B 

alcohol dehydrogenase 1B (class I), 
beta polypeptide  

209612_s_at 
209613_s_at 

cytosolic enzyme; ethanol metabolism 
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CYP1A2 
cytochrome P450, subfamily 
1A,  polypeptide 2 

207608_x_at 

membrane bound metabolic enzyme 

CYP1B1 
cytochrome P450, subfamily 
1B, polypeptide  1 

202437_s_at 

CYP3A 4 
cytochrome P450, sub-fam. 3A, poly-
peptide4 

231704_at 

CYP2C8 
cytochrome P450, sub-fam. 
2C, polypeptide 8 

208147_s_at 

TAT tyrosine aminotransferase 214413_at 
cytosolic enzyme; involved in tyrosine and phenylalanin  
catabolism 
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MTHFD2 
methylenetetrahydrofolate dehydro-
genase (NADP+ dependent) 2, methe-
nyl-tetrahydrofolate cyclohydrolase  

201761_at 
mitochondrial enzyme; methylenetetrahydrofolate dehydro-
genase and methenyltetrahydrofolate cyclohydrolase activity 
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SULT1C2 
sulfotransferase family, cytosolic, 1C, 
member 2  

211470_s_at cytosolic enzyme; catalyzes sulfonation  
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ARG1 arginase 1 206177_s_at final enzyme of the urea cycle 
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CPS1 carbamoyl-phosphate synthase 1 
204920_at 
217564_s_at 

mitochondrial protein; important role in the urea cycle by 
removing excess ammonia from the cell 

Category: Stress Response and Apoptosis (ER stress, cell cycle arrest) 

 

BCL10 B-cell CLL/lymphoma 10  1557257_at cytosolic protein; promotes apoptosis 
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BEX2 brain expressed X-linked 2  224367_at 
cytosolic protein; regulator of mitochondrial apoptosis and 
cell cycle   

DEDD2 death effector domain containing 2 225434_at 
nuclear protein; mediates apoptosis, cell cycle  regulation and 
inhibits mitosis 

GULP1
1
 

GULP, engulfment adaptor PTB domain 
containing 1  

204237_at 
adapter protein; phagocytosis of apoptotic cells; glycol-
sphingolipid and cholesterol transport, endosomal trafficking 

STK17B
1
 serine/threonine kinase 17b  205214_at 

calmodulin-dependent kinase; functions  as positive regulator 
of apoptosis 

DDIT3 DNA-damage-inducible transcript 3 209383_at 
transcription factor; induces cell cycle arrest and apoptosis in 
response to ER stress 
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ERN1 
endoplasmic reticulum to nucleus 
signaling 1  

235745_at 
kinase in the ER membrane; sensor for unfolded protein 
inside the ER, triggers growth arrest and apoptosis  

FAM129A
1
 

family with sequence similarity 129,  
member A  

217967_s_at 
cytosolic protein; involved in apoptosis, survival and ER stress 
response 

MT1G metallothionein 1G  210472_at havy metal binding protein, role in protective stress responses 

PPP1R15A 
protein phosphatase 1, regulatory  
subunit 15A  

202014_at 
37028_at 

phosphatase; mediates growth arrest and apoptosis in re-
sponse to DNA damage ; transcriptional activities 

SESN3
1,2

 sestrin 3  235683_at 
stress-induced protein; reduces intracellular oxygen species, 
role in regulation of blood glucose and lipid storage 

ZFAND2A
1
 zinc finger, AN1-type domain 2A 226650_at 

zinc ion binding protein; proteasomal degradation during  
cell stress 

Category: Transporter 
 

BLZF1 basic leucine zipper nuclear factor 1  210462_at 
protein in the Golgi lumen; protein transport  from the ER 
through the Golgi apparatus to the cell surface 
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XPO1
1
 exportin 1  235927_at 

nuclear protein; nuclear export of RNAs and proteins (cargos), 
role in proliferation and chromosome region maintenance  

SLC20A1 
solute carrier family 20 (phosphate 
transporter), member 1  

230494_at membrane protein with role in phosphate transport 
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SLC30A1 
solute carrier family 30 (zinc  
transporter), member 1  

228181_at membrane protein; involved in zinc transport out of the cell 

SLC7A11 solute carrier family 7 member 11 209921_at 
membrane anchored transport protein; cystine and glutamate 
transporter 

STC2
1
 stanniocalcin 2  203438_at 

secreted glycoprotein hormone; regulation of calcium and 
phosphate transport and homeostasis 
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Category: Cytoskeleton and Cell Cycle 
 

MYLIP
1
 

myosin regulatory light chain interact-
ing protein  

228098_s_at 
transmembrane protein; links actin to membrane-bound 
proteins at the cell surface, inhibitor of cholesterol uptake 
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SH3BP4
1
 SH3-domain binding protein 4  231468_at 

membrane protein involved in endocytosis; regulates cell 
growth, proliferation and autophagy 

SMEK2
1
 SMEK homolog 2, suppressor of mek1 1568627_at 

cytosolic enzyme; regulates microtubule organization, role 
in cell cycle and cytoskeleton 

SPTBN1
1
 spectrin, beta, non-erythrocytic 1 226342_at 

cytoskeletal, calmodulin binding protein; cell shape, organi-
zation of organelles and molecular traffic 

SERTAD1 SERTA domain containing 1  223394_at 
nuclear protein; cell cycle regulation by activation and 
formation of CDK4 complexes 
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WRAP53 
WD repeat containing, antisense to 
TP53  

224185_at nuclear protein; replication of chromosome termini  

Category: Other 

 

ANKRD33 ankyrin repeat domain 33  242209_at 
protein motif, ankyrin repeat proteins are composed of tandem repeats 
of a basic structural motif  

HMOX1 heme oxygenase (decycling) 1  203665_at 
oxygenase for heme degradation; functions in apoptosis and vasculari-
zation 

KANSL3
1
 KAT8 regulatory NSL complex subunit 3 1558652_at nuclear protein; role in regulation of transcription 

NPTX2 neuronal pentraxin II  213479_at 
secreted protein with biochemical properties of a Ca-dependent lectin; 
modifies properties underlying longterm plasticity 

31553133_at, 31556602_at, 31557459_at, 31569403_at, 3200800_s_at, 3202581_at, 3204760_s_at, 3208180_s_at, 3210387_at, 3214469_at,  3214472_at, 
3215078_at, 3215779_s_at, 3218541_s_at, 3227099_s_at, 3232035_at, 3235102_x_at, 3235456_at, 3236898_at, 3239203_at, 3239845_at, 3242981_at, 
3243631_at, 3243918_at, 3244677_at, 3AFFX-M27830_5_at 

 

Down regulated SV 3 genes overlap in large parts with down regulated SV 20 genes that are 

associated with cell cycle progression. Further SV 3 genes belong to biological categories, 

such as differentiation, endogenous and xenobiotics metabolism, cytoskeletal organization, 

immune response, transporters, energy and lipid metabolism, and apoptosis (Table 3.8 B). 
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B. Down regulated SV 3 genes. The 60 probe sets (47 genes) with the highest fold changes are given below.  90 probe sets (66 
genes) are overlapping with downregulated genes in SV20 and are not listed here. 

Symbol Gene Probe set Function of the Gene Product 

Category: Development and Differentiation 
 

AXL
1,2

 AXL receptor tyrosine kinase  202686_s_at 
receptor tyrosine kinase; signal transduction regulating 
survival, proliferation, migration and differentiation  
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ATAD2 
ATPase family, AAA domain containing 
2  

222740_at 
ATPase; involved in genome regulation for proliferation, 
cell growth, differentiation and apoptosis 

PTPN14 
protein tyrosine phosphatase, non-
receptor type 14  

226282_at 
non-receptor tyrosine phosphatase; involved in adhesion, 
migration, cell growth and proliferation 

TRIM55 tripartite motif containing 55  236175_at 
RING finger zinc containing protein; signal transduction, 
development, transcription repression and ubiquitination 

NREP
2
 neuronal regeneration related protein  201310_s_at cytosolic protein with roles in in cellular differentiation 

ARID5B
1
 

AT rich interactive domain 5B (MRF1-
like)  

212614_at 
transcription coactivator; key role in liver development, 
regulation of adipogenic genes 
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 CUX2
1
 cut-like homeobox 2  213920_at 

transcription factor; STAT5 dependent and GH regulated, 
controls proliferation and differentiation 

SOX6
1
 SRY (sex determining region Y)-box 6  227498_at 

transcription factor; role in several developmental process-
es 

EGR1
1,2

 early growth response 1  227404_s_at 
transcription factor; role in mitogenesis and differentiation; 

directly controls TGF- expression 

CTGF
1,2

 connective tissue growth factor  209101_at 
secreted extracellular matrix protein; proliferation, migra-
tion, adhesion, survival, differentiation, induces EMT 
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SEMA3C semaphorin 3C  203789_s_at secreted protein; regulation of developmental processes 

Category: Metabolism, Xenobiotics 
 

ADH1B
1,2

 
alcohol dehydrogenase 1B (class I), 
beta polypeptide  

209613_s_at cytosolic enzyme; ethanol metabolism 
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AKR1B10 
aldo-keto reductase family 1, member 
B10 (aldose reductase)  

206561_s_at 
secreted enzyme; reduction and detoxification of aliphatic 
and aromatic aldehydes 

CHST9 
carbohydrate (N-acetylgalactosamine 
4-0) sulfotransferase 9  

223737_x_at 
224400_s_at 

enzyme that sulfates carbohydrates and glycolipids 

CYP4A11
1,2

 
cytochrome P450, subfamily 
4A, polypeptide 11 

207407_x_at 

membrane bound phase I metabolic enzyme 

CYP8B1
1
 

cytochrome P450, subfamily 
8B polypeptide 1 

232494_at 

UGT2A3 
UDP glucuronosyltransferase 2 family, 
polypeptide A3  

219948_x_at 
membrane protein; conjugates lipophilic substrates with  
glucuronic acid  p

h
as

e 
II

  

en
zy

m
e

 

UGT2B15
1,2

 
UDP glucuronosyltransferase 2 family, 
polypeptide B15 

207392_x_at 
216687_x_at 

GBA3
1,2

 glucosidase, beta, acid 3 222943_at 
cytosolic enzyme; involved in carbohydrate metabolic 
processes 

gl
yc

o
si

d
e 

 

m
et

ab
o

l. 
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Category: Cytoskeleton and Trafficking 

 

COTL1
1,2

 coactosin-like F-actin binding protein 1 224583_at actin binding protein; regulates the actin cytoskeleton 

cy
to

sk
el

et
al

  

o
rg

an
iz

at
io

n
 KRT19 keratin 19 201650_at 

intermediate filament protein; involved in the organization 
of myofibers 

MICAL2 
microtubule associated monooxygen-
ase, calponin and LIM domain contain-
ing 2  

212473_s_at 
nuclear monooxygenase; promotes F-actin depolymeriza-
tion  

SORBS2
1
 sorbin and SH3 domain containing 2  225728_at 

cytoskeletal adapter protein; assembles signaling complex-
es, promotes ubiquitination and proteosomal degradation 

FLRT3
1
 

fibronectin leucine rich transmembrane 
protein 3  

219250_s_at 
222853_at 

membrane protein; function in cell adhesion and receptor 
signaling ad

h
e-

si
o

n
 

RAB27B RAB27B, member RAS oncogene family  228708_at 
prenylated, membrane-bound protein involved in vesicular 
fusion and trafficking 

ve
si

cu
la

r 

tr
af

fi
ck

in
g 

ANXA1 annexin A1 201012_at 
calcium/phospholipid-binding protein; promotes mem-
brane fusion and is involved in endocytosis 

Category: Immune Response 

 

CXCL1 chemokine (C-X-C motif) ligand 1  204470_at secreted protein with chemotactic activity for neutrophils; 
role in inflammation and development 

C
yt

o
ki

n
es

/ 
 

ch
em

o
ki

n
es

 

CXCL2
1,2

 chemokine (C-X-C motif) ligand 2  209774_x_at 

IL18 interleukin 18 206295_at 
secreted, proinflammatory cytokine; augments natural 
killer and T-cell activity   

TRIM22
1
 tripartite motif containing 22  213293_s_at 

interferon-induced antiviral protein; involved in cell innate 
immunity, blocks viral transcription and replication 

o
th

er
 

UBASH3B 
ubiquitin associated, SH3 domain con-
taining B domain-containing protein B 

238462_at 
protein tyrosine phosphatase; regulates receptor mediated 
signaling in T-cells, ubiquitin ligand for t-cells 

Category: Transporter 

 

ATP2B4 
ATPase, Ca++ transporting, plasma 
membrane 4 

212136_at 
membrane bound enzyme; catalyzes the hydrolysis of ATP 
coupled with the transport of calcium out of the cell 

io
n

 t
ra

n
sp

o
rt

 

SLC26A2
1
 solute carrier family 26 member 2 205097_at transmembrane glycoprotein; sulfate transporter 

TRPM8
1,2

 
transient receptor potential cation 
channel, subfamily M, member 8  

243483_at 
membrane located, Ca(2+)-permeable cation channel; 
activated by  temperature or pH changes 

SLC2A10
1,2

 solute carrier family 2 member 10 221024_s_at 
membrane integrated glucose transporter, role in main-
taining glucose homeostasis 

o
th

er
 

SLC38A4
1,2

 solute carrier family  38, member 4 220786_s_at 
membrane bound, sodium-dependent amino acid trans-
porter 

Category: Energy and Lipid Metabolism 
 

PCK1
1,2

 
phosphoenolpyruvate carboxykinase 1 
(soluble)  

208383_s_at 
gluconeogenic enzyme; production of glucose from lactate 
and other precursors derived from the citric acid cycle 

gl
u

co
se

 

h
o

m
eo

-s
ta

si
s 

SLC2A2
2
 solute carrier family 2, member 2 206535_at 

glucose transporter; transfer of glucose across the plasma 
membrane 

GPAM
1
 glycerol-3-phosphate acyltransferase 225424_at 

mitochondrial membrane enzyme; glycerolipid biosyn-
thesis, regulates of triacylglycerol and phospholipid levels lip

id
 

sy
n

th
es

is
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Category: Cell Cycle and Cytoskeleton 

 

MCM6 
minichromosome maintenance com-
plex component 6  

201930_at replicative helicase; essential for 'once per cell cycle' DNA replication 

MKI67 marker of proliferation Ki-67  212022_s_at nuclear protein; required for maintaining cell proliferation 

NUF2 
NUF2, NDC80 kinetochore complex 
component  

223381_at 
nuclear protein; chromosome segregation and spindle checkpoint activi-
ty 

Category: Apoptosis 
 

BRI3BP BRI3 binding protein  225716_at 
membrane protein; negative regulator of the p53 tumor suppressor, 
involved in apoptosis mediated by TNF 

CASP1
1
 

caspase 1, apoptosis-related cysteine 
peptidase 

211367_s_at 
211368_s_at 

cytosolic protease; promotes apoptosis, regulates inflammatory pro-
cesses by proteolytical cleavage of IL proteins 

Category: Other 
 

ART4
1
 

ADP-ribosyltransferase 4 (Dombrock 
blood group) 

242496_at 
lipid anchor protein; covalent transfer of ADP-ribose residue from NAD

+
 

to amino acids in target proteins 

CLRN3
1
 clarin 3 229777_at transmembrane protein with homology to the tetraspanin family 

HNMT
1,2

 histamine N-methyltransferase  228772_at 
cytosolic protein;  inactivates histamine by N-methylation, role in de-
grading histamine 

3206963_s_at, 3210289_at, 3214069_at, 3227794_at, 3230554_at, 3241914_s_at, 31562049_at, 3230577_at, 3233604_at 

 

The overlap between unstable baseline genes and stereotypically altered SV 20 genes, as 

well as rather compound specific SV 3 genes, is illustrated in Figure 3.14. The Venn diagrams 

show how many and, for the SV 20 genes, which genes are altered by the hepatocyte isola-

tion and cultivation procedures. These gene expression changes are possibly not related to 

compound-induced effects.  
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Figure 3.14: Overlap between ‘unstable baseline genes’ (CS) and the SV 20 (SV 3) genes. The uniquely annotat-
ed genes in the overlap of the SV20 genes are listed below the corresponding Venn diagrams (the asterisk re-
fers to probe sets that are not annotated). 

 

3.1.10 Over representative gene ontology groups and transcription factor binding 

sides 

In addition to the manual classification of the genes, gene ontology analysis was performed 

to assign the stereotypic response genes to biological categories (Table 3.9 A). This computa-

tional analysis revealed up regulation of genes involved in metabolism of xenobiotics and 

endogenous compounds as predominant biological function and down regulation of cell cy-

cle and proliferation associated genes. Thus, it confirmed the manually obtained results.  

Furthermore, transcription factor binding sides (TFBS) were analyzed by PRIMA software 

(Table 3.9 B). Among the up regulated motifs are binding sides for transcription factors like 

hepatocyte nuclear factor 4 (HNF 4) and further transcription factors involved in develop-

mental and differentiation processes, TCF-4, Nkx and GATA. HNF4 represents a well charac-

terized transcription factor with a pivotal role in regulation of liver function and differentia-

tion (Kamiya et al. 2003; Watt et al. 2003). It influences the expression of large sets of genes 

controlling liver functions, such as xenobiotics detoxification, energy metabolism, bile acid 

synthesis and serum protein production (Hayhurst et al. 2001; Inoue et al. 2002; Li et al. 

2000; Stoffel and Duncan 1997; Tirona et al. 2003).  
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Table 3.9: A Overrepresented GO groups for sv20 genes (unadjusted p-value ≤0.01, in total 13 up-regulated, 
here are all listed, in total 88 down-regulated, here only the top 15 are listed). B Overrepresented TFBS (unad-
justed p-value ≤ 0.01). 
 

A. Overrepresented GO groups 

Up 

xenobiotic metabolic process (GO:0006805); exogenous drug catabolic process (GO:0042738); nega-
tive regulation of transcription from RNA polymerase II promoter (GO:0000122); oxidative demeth-
ylation (GO:0070989); phosphatidylethanolamine biosynthetic process  (GO:0006646); monoterpe-
noid metabolic process (GO:0016098); alkaloid catabolic process (GO:0009822); response to unfold-
ed protein (GO:0006986); negative regulation of endoplasmic reticulum unfolded protein response 
(GO:1900102); glucose 6-phosphate metabolic process (GO:0051156); steroid metabolic process
  (GO:0008202); nucleosome assembly (GO:0006334); glucosamine biosynthetic process 
(GO:0006042); triglyceride metabolic process (GO:0006641); response to sucrose stimulus 
(GO:0009744); negative regulation of apoptotic process (GO:0043066); negative regulation of fatty 
acid biosynthetic process (GO:0045717); bile acid catabolic process (GO:0030573); endocardial cush-
ion to mesenchymal transition involved in heart valve formation (GO:0003199); negative regulation 
of fat cell differentiation (GO:0045599) 

Down 
mitotic prometaphase (GO:0000236); cell division (GO:0051301); cell cycle checkpoint 
(GO:0000075); DNA strand elongation involved in DNA replication (GO:0006271); regulation of tran-
scription involved in G1/S phase of mitotic cell cycle (GO:0000083); DNA replication initiation 
(GO:0006270); S phase of mitotic cell cycle (GO:0000084); G1/S transition of mitotic cell cycle 
(GO:0000082); M/G1 transition of mitotic cell cycle (GO:0000216); DNA replication (GO:0006260); 
response to progesterone stimulus (GO:0032570); response to drug  (GO:0042493); mitotic 
chromosome condensation (GO:0007076); DNA unwinding involved in replication (GO:0006268); 
CENP-A containing nucleosome assembly at centromere (GO:0034080) 

 

B. Overrepresented TFBS 

Up 
N-Myc (M00055); HNF4 (M01032); Helios_A  (M01004); GATA-1 (M00127); AHRHIF (M00976); MEF-
2 (M00006); Oct-1 (M00162); ETF (M00695); NF-AT (M00302); COMP1 (M00057); MZF1 (M00084); 
RSRFC4 (M00026); ZF5 (M00333); Freac-3 (M00291); AIRE (M00999); NF-kappaB_(p65) (M00052); 
Nkx2-5 (M00240); TATA (M00216); SRY (M00148); GCM (M00634) 

Down 
HNF4 (M01032); Helios_A (M01004); POU6F1 (M00465); Cdc5 (M00478); Pax-4 (M00377); POU1F1 
(M00744); MEF-2 (M00006); Nkx6-2 (M00489); Oct-1 (M00162); TEF-1 (M00704); E2F (M00024); 
Oct-1 (M00137); ETF (M00695); NKX3A (M00451); HFH-1 (M00129) 

 

Down regulated transcription factor binding motifs comprise, for example, E2F and activat-

ing transcription factors (ATF), which are associated with hepatocyte proliferation. These 

TFBS results are consistent with the GO analysis and the manual classification of stereotypi-

cally altered genes.  

In addition, the SV 3 genes were verified with computational analysis. An overview of GO 

groups and TFBS of genes that are deregulated as a consequence of rather compound specif-

ic effects is depicted in Table 3.10. GO analysis of deregulated SV 3 genes revealed a broad 

spectrum of biological functions, including also the stereotypic gene expression responses. 

SV 3 up regulated genes belong to categories, such as xenobiotic and energy and lipid me-
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tabolism, and exogenous drug catabolism, but also include diverse biosynthetic processes, 

stress response and many more effects. Again, the manual classification of gene expression 

alterations was confirmed. Similar results were obtained with the TFBS analysis, which iden-

tified motifs for transcription factors involved in various biological functions. Up regulated 

TFBS were determined for several transcription factors involved in development (myocyte 

enhancer factor 2 (MEF2), GATA-binding factor 1, the n-Myc proto-oncogenic transcription 

factor); furthermore, binding sites for Helios A were found to be altered, a well-established 

player in immune cell activation (Akimova et al. 2011). In addition, TFBS for nuclear factor 

kappa B (NF-kB) are induced, a transcription factor playing a role in the regulation of various 

biological processes, such as immune response, proliferation, or cell death. In conclusion, 

the expression response observed for SV 3 genes is much more diverse than for the stereo-

typic SV 20 genes. 
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Table 3.10: A Overrepresented GO groups for SV 3 genes (unadjusted p-value ≤0.01, in total 129 up-regulated, 
here only the top 20 are listed, in total 135 down-regulated, here only the top 15 are listed). B Top 20 of the 
overrepresented TFBS for up regulated genes and top 15 of the overrepresented TFBS for down regulated 
genes (unadjusted p-value ≤ 0.01). 
 

A. Overrepresented GO groups 

Up 

xenobiotic metabolic process (GO:0006805); exogenous drug catabolic process (GO:0042738); nega-

tive regulation of transcription from RNA polymerase II promoter (GO:0000122); oxidative demeth-

ylation (GO:0070989); phosphatidylethanolamine biosynthetic process  (GO:0006646); monoterpe-

noid metabolic process (GO:0016098); alkaloid catabolic process (GO:0009822); response to unfold-

ed protein (GO:0006986); negative regulation of endoplasmic reticulum unfolded protein response 

(GO:1900102); glucose 6-phosphate metabolic process (GO:0051156); steroid metabolic process

  (GO:0008202); nucleosome assembly (GO:0006334); glucosamine biosynthetic process 

(GO:0006042); triglyceride metabolic process (GO:0006641); response to sucrose stimulus 

(GO:0009744); negative regulation of apoptotic process (GO:0043066); negative regulation of fatty 

acid biosynthetic process (GO:0045717); bile acid catabolic process (GO:0030573); endocardial cush-

ion to mesenchymal transition involved in heart valve formation (GO:0003199); negative regulation 

of fat cell differentiation (GO:0045599) 

Down 

mitotic prometaphase (GO:0000236); cell division (GO:0051301); cell cycle checkpoint 

(GO:0000075); DNA strand elongation involved in DNA replication (GO:0006271); regulation of tran-

scription involved in G1/S phase of mitotic cell cycle (GO:0000083); DNA replication initiation 

(GO:0006270); S phase of mitotic cell cycle (GO:0000084); G1/S transition of mitotic cell cycle 

(GO:0000082); M/G1 transition of mitotic cell cycle (GO:0000216); DNA replication (GO:0006260); 

response to progesterone stimulus (GO:0032570); response to drug  (GO:0042493); mitotic 

chromosome condensation (GO:0007076); DNA unwinding involved in replication (GO:0006268); 

CENP-A containing nucleosome assembly at centromere (GO:0034080) 

 

B. Overrepresented TFBS 

Up 

N-Myc (M00055); HNF4 (M01032); Helios_A  (M01004); GATA-1 (M00127); AHRHIF (M00976); MEF-

2 (M00006); Oct-1 (M00162); ETF (M00695); NF-AT (M00302); COMP1 (M00057); MZF1 (M00084); 

RSRFC4 (M00026); ZF5 (M00333); Freac-3 (M00291); AIRE (M00999); NF-kappaB_(p65) (M00052); 

Nkx2-5 (M00240); TATA (M00216); SRY (M00148); GCM (M00634) 

Down 

HNF4 (M01032); Helios_A (M01004); POU6F1 (M00465); Cdc5 (M00478); Pax-4 (M00377); POU1F1 

(M00744); MEF-2 (M00006); Nkx6-2 (M00489); Oct-1 (M00162); TEF-1 (M00704); E2F (M00024); 

Oct-1 (M00137); ETF (M00695); NKX3A (M00451); HFH-1 (M00129) 
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3.1.11 Overlap of chemical-induced gene expression alterations and gene expres-

sion changes in liver diseases  

Transcriptome analysis of compound-exposed primary human hepatocytes in vitro offers a 

new approach to identify biomarkers of toxicity in humans, but a direct comparison to possi-

ble effects in vivo is for ethical reasons not possible. It remains challenging to assess whether 

genes which are found to be deregulated in vitro would respond similarly under the same 

conditions of in vivo exposure. Moreover, human in vivo data is restricted to tissue from in-

toxicated patients or patients with liver diseases undergoing surgery, and the conditions of 

exposure are not precisely defined. 

To bridge the gap between gene expression alterations in vitro and a possible relevance for a 

gene in vivo, publically available whole transcriptome data sets from liver tissue samples of 

liver disease patients were used. Liver disease tissue transcriptomics data from patients suf-

fering from liver diseases, such as hepatocellular carcinoma (HCC), cirrhosis or non-alcoholic 

steatohepatitis (NASH) was compared to healthy or non-tumor tissue. Overlapping genes 

that are altered in liver disease tissue, as well as by chemicals in vitro, may hint at a possible 

relevance for a gene in vivo and decreases the probability that the effect observed in vitro is 

just an in vitro artifact. 

 

 

Figure 3.15: Overlap of SV 20 genes altered by chemicals and genes deregulated in the human liver diseases 
non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). The genes in the overlap 
are listed below the corresponding Venn diagrams. 
 

The overlap between liver disease and stereotypic response SV 20 genes is depicted in Figure 

3.15. 13 – 21.7 % of the up regulated SV 20 genes were found to be also induced in cirrhotic 

and hepatocellular carcinoma tissue, and the overlap among down regulated genes was 13.2 

- 15.6 %. 26.1 % of the SV 20 genes were also found to be induced by NASH, but the fraction 

of overlapping down regulated genes is 4 % only. One of the genes that are altered as a ste-

reotypical response to chemically-induced stress, as well as in human liver diseases, is, for 
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example, CYP3A7. CYP3A7 is a phase I enzyme involved in metabolism of endogenous and 

xenobiotic compounds. It represents the predominant cytochrome P450 enzyme in human 

fetal liver and accounts for 30–50% of the total CYP in fetal liver and 87–100% of total fetal 

hepatic CYP3A content (Pang et al. 2012). In addition, SULT1C2 was found to be induced. 

This phase II metabolic enzyme belongs to the family of sulfotransferases and probably rep-

resents the major detoxification enzyme system expressed in the human fetus (Stanley et al. 

2005). Regulator of cell cycle (RGCC) is another gene which is up regulated in vitro after 

chemical-exposure and in liver diseases. RGCC is reported to be induced by p53 and modu-

lates the activity of cell cycle specific kinases in response to DNA damage (Huang et al. 2009; 

Saigusa et al. 2007).  

Among the down regulated genes in the overlap of liver disease genes and chemically al-

tered SV 20 genes are the aldehyde dehydrogenase family members ALDH8A1 and ALDH4, 

the gluconeogenesis regulating enzyme PCK1, the sterol and fatty acid metabolizing cyto-

chrome P450 isoenzymes CYP8B1 and CYP4A11, the ATP dependent lipophilic drug trans-

porter ABCA8, the urea cycle enzyme CPS1 and the glucose transporter SLC2A2.   

Similarly, the SV 3 genes revealed a strong overlap with genes altered in human liver diseas-

es (Figure 3.16). 12.9 - 18.6 % of the SV 3 induced genes were altered in the same direction 

of expression in NASH, HCC and cirrhosis.  

 

 

Figure 3.16: Overlap of SV 3 genes altered by chemicals and genes deregulated in the human liver diseases 
non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). The genes in the overlap 
are listed in Supplemental Table 4  
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Down regulated SV 3 genes overlap about 23 % with genes that are down regulated in cir-

rhosis and HCC, but only 5.7 % of down regulated SV 3 genes are also altered in NASH. The 

small overlap between liver disease genes and SV 20 and SV 3 genes, respectively, may be 

explained by the small data set, which is available from patients suffering from NASH. A de-

tailed overview of individual SV 3 genes overlapping with human liver disease genes is given 

in Supplemental Table 4. 

 

3.2 Application of the toxicogenomics directory: Identification of biomarker 

candidate genes and their potential to predict human hepatotoxic blood 

concentrations. 

The second part of this thesis focusses on the identification of biomarker genes based on the 

toxicogenomics directory and the applicability of these genes in predicting blood concentra-

tions that are associated with hepatotoxicity in vivo. Ideally, a biomarker gene differentiates 

between hepatotoxic and non-hepatotoxic compounds and changes its expression only in 

case of a hepatotoxic or cytotoxic effect. Unsupervised cluster analysis of the Open TG- 

GATEs data (Figure 3.11, 24h exposure at a slightly cytotoxic concentration) did not differen-

tiate between hepatotoxic and non-hepatotoxic compounds. However, the compounds were 

tested in a slightly cytotoxic, but not an in vivo relevant concentration range, so that cytotox-

ic effects may have covered differences in gene expression between the two groups of com-

pounds. To test whether a compound is associated with an increased risk of hepatotoxicity in 

vivo, it is recommendable to analyze biomarker expression within an in vivo relevant concen-

tration range, which covers also the plasma concentration of a therapeutic dose. The follow-

ing sections of this thesis will describe, step by step, how suitable biomarkers of toxicity 

were extracted from the curated data base and how these genes were analyzed in vitro and 

applied to predict human hepatotoxic blood concentrations. HepG2 cells and primary human 

hepatocytes were chosen as in vitro systems. 

 

3.2.1 Selection of compounds  

 

Two sets of compounds were defined, namely a set of compounds that are associated with a 

high risk of hepatotoxicity at therapeutic doses and a set of compounds for which no hepa-

totoxic effects are reported (Table 3.11). Additionally, the drug acetaminophen was included 

in the set of hepatotoxic compounds. Acetaminophen is not associated with increased risk 

for hepatotoxicity at therapeutic doses, but the toxic blood concentration is well document-

ed in literature. Liver toxicity due to intoxication from acetaminophen overdose represents a 

pervasive problem in society. 

The selection of compounds is based on a manual literature search in Pubmed [1] and data 

from the database Livertox [2], which delivers information on the hepatotoxic potential of 
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numerous compounds. Compounds were considered as hepatotoxic if a relatively high num-

ber of patients developed any kind of liver injury after taking a therapeutic dose. 

 

Table 3.11: Selection of compounds with increased risk of hepatotoxicity and negative control compounds 
without reported liver toxic effects. Information on hepatotoxicity was obtained by searching in Pubmed [1] 
and the Livertox database [2]. 
 

Hepatotoxic compounds Non-hepatotoxic compounds 

APAP Acetaminophen BPR Buspirone 

ASP Aspirin CHL Chlorpheniramine 

CBZ Carbamazepine CLO Clonidine 

DFNa Diclofenac FAM Famotidine 

INAH Isoniazid HYZ Hydroxyzine 

KC Ketoconazole LEV Levofloxacin 

LBT Labetalol MEL Melatonin 

NIM Nimesulide PMZ Promethazine 

NFT Nitrofurantoin PPL Propranolol 

PhB Phenylbutazone     

RIF Rifampicin     

VPA Valproic acid     

 

Compounds were considered as non-hepatotoxic if the following criteria were fulfilled: (i) 

the compound was not listed as hepatotoxic in the livertox database and (ii) Pubmed search 

based on the terms ‘compound’ AND hepatotoxicity OR liver toxicity’ was performed but no 

evidence for hepatotoxicity in humans at therapeutic doses was obtained. Compounds 

which were difficult to interpret are listed in Table 3.12. These compounds were mainly 

found to be harmless, but single cases of acute liver injury were reported.  
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Table 3.12: Compounds which are questionable regarding their hepatotoxic potential. For these compounds 
single cases of hepatotoxicity in different contexts were reported, but evidence for a direct liver toxic effect is 
missing. 

Compounds Hepatotoxic effect Reference 

Famotidine 

rare cases of clinically apparent liver injury, cases varied in the time to onset 

and pattern of injury; in the reported cases famotidine was combined with 

other drugs 

Gupta et al. 2009 

Ament et al. 1994 

Hashimoto et al. 1994 

Chlorpheniramine 
clinically apparent liver injury exceedingly rare, few cases reported in the litera-

ture but it is not considered to be a hepatotoxic drug 

Mignot et al. 2000 

Pagani et al. 1987 

Farrell et al. 1994 

Stricker et al. 1995 

Levofloxacin 

rare instances of clinically apparent hepatic injury marked by a short latency 

period and a hepatocellular pattern of enzyme elevations; used as non-

hepatotoxic control compound by Cosgrove et al. (2009) 

Karim et al. 2001 

Gulen et al. 2015 

 

For the set of hepatotoxic compounds, a more detailed overview of hepatotoxic effects, pos-

sible mechanisms of toxicity and frequencies of liver injury when administered at therapeu-

tic doses were elaborated (Table 3.13 and Table 3.14).  
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Table 3.13: Medication, phenotype and frequency of liver injury observed for the selected hepatotoxic com-
pounds.  

Compound Medication 
Phenotype of  

hepatotoxicity 
Frequency of liver injury References 

Acetamino- 

phen 

Non-steroidal anti- 

inflammatory drug,  

analgesic and anti-

pyretic agent 

necrosis 

Not hepatotoxic at therapeutic 

doses; but toxic doses account for 

approx. 50% of all acute liver failure 

cases in the USA and many Western 

countries 

Lee 2012 

Aspirin 

Non-steroidal anti- 

inflammatory drug,  

analgesic and anti-

pyretic agent 

hepatitis, steatosis,  

Reye syndrome  

(lactic acidosis, 

microvesicular fat,  

hepatic dysfunction) 

At least 6 cases of severe liver injury 

have been reported. 

Musumba et al. 2004 

Kanada et al. 1978 

Laster and Satoskar 2014 

Chen et al. 2001 

Carbamaze- 

pine 

Anticonvulsant, 

used for the treat-

ment of epilepsy 

and psychatric 

disorders 

cholestasis 

hepatitis 

In 165 cases of CBZ hypersensitivity 

up to 1998, 47% of the cases were 

associated with liver injury. CBZ-

induced liver injury is estimated to 

occur in 16 per 100,000 patients per 

year. 

Pirmohamed et al. 2013 

Feldmann et al. 2015 

Diclofenac 

Non-steroidal anti-

inflammatory drug,  

treatment of mild 

to moderate pain, 

treatment of arthri-

tis 

hepatitis,  

necrosis 

cholestasis (rare) 

Published cases of severe hepato-

toxicity amount to approximately 

250 reports, with a case fatality rate 

of approximately 10%. DFN-induced 

liver injury occurs with a frequency 

of 1-5 cases per 100,000 patients. 

Lewis et al. 2003 

Garcia Rodriguez et al. 

1994 

Chitturi and George 2002 

Isoniazid 

Antibiotic agent,  

used for treatment 

of tuberculosis 

hepatitis 

In a study with 2,321 men treated 

with isoniazid, 19 patients showed 

clincial signs of liver disease and 2 

patients died. Another study re-

vealed 1% of 14,000 individuals 

treated with INAH developed hepa-

titis. The frequency of INAH-induced 

liver injury is estimated to occur in 

1.6 % of all patients, in 

2.55 % when combined therapy 

with rifampicin. 

Kopanoff et al. 1978 

Garibaldi et al. 1972 

Saukkonen et al. 2006 

Steele et al. 1991 

Ketoconazole 
Treatment of fungal 

infections 

hepatitis,   

phospholipidosis in 

mice 

Up to 1987 there were 82 reports of 

possible hepatotoxicity in patients 

taking oral ketoconazole, including 

five deaths. The frequency of KC-

induced liver injury is estimated to 

occur in 0.1 - 1% of all patients 

Lake-Bakaar et al. 1987 

Rodriguez and Acosta 1997 

Labetalol 

Anti-hypertensive 

agent, used for the 

treatment of high 

blood pressure 

hepatitis,  

necrosis 

At least 5 cases of severe liver injury 

have been  

reported. 

Long et al. 2007 

Marinella 2002 

Stronkhorst et al. 1992 

Douglas et al. 1989 

Clark et al. 1990 
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Compound Medication 
Phenotype of  

hepatotoxicity 
Frequency of liver injury References 

Nimesulide 

Non-steroidal anti-

inflammatory drug,  

analgesic and antipy-

retic agent 

hepatitis 

A number of severe cases of 

NIM-induced hepatotoxicity 

have been reported. The fre-

quency of NIM-induced liver 

injury is estimated to be 0.1 of 

100,000 patients. 

Tan et al. 2007 

Merlani et al. 2001 

Chatterjee et al. 2008 

Bessone 2010 

Boelsterli 2002 

Nitro- 

furantoin 

Antibiotic agent, 

treatment of bladder 

infections 

granulomatous, cho-

lestatic or chronic 

hepatitis 

A number of severe cases of 

NFT-induced hepatotoxicity 

have been reported. The fre-

quency of NFT-induced liver 

injury is estimated to be 

0.00003%  

Kiang et al. 2011 

Appleyard et al. 2010 

Amit et al. 2002 

Sherigar et al. 2012 

Moseley 2013 

Phenyl- 

butazone 

Non-steroidal anti-

inflammatory drug,  

analgesic and antipy-

retic agent for short 

term treatment in 

animals 

necrosis, hepatitis 

Severe hepatotoxic effects 

have been observed in a large 

number of patients. Several 

studies revealed severe liver 

injury in 1-5 % of all patients at 

therapeutic doses of 

400mg/day. 

Benjamin et al. 1981 

Feldmann et al. 2015 

Rifampicin 

Antibiotic agent, used 

for treatment of tuber-

culosis, leprosy and 

legionella 

necrosis, hepatitis, 

cholestasis 

Although RIF-induced hepato-

toxicity is especially associated 

with elevated transaminase 

levels, a number of severe 

cases of liver injury have been 

reported. Hepatotoxicity oc-

curs in up to 1 % of all patients. 

Prince et al. 2002 

van Hest et al. 2004 

Steele et al. 1991 

Valproic acid 

Anticonvulsant, used 

for the treatment of 

epilepsy 

microvesicular steato-

sis 

In one study, 1197 patients 

were monitored. 42 cases of 

severe hepatitis, 3 cases Reye's 

like syndrome and 22 instances 

of hyperammonemia were 

observed. The risk of fatal 

hepatotoxicity by VPA is esti-

mated to affect 1/500 children 

below the age of 2 years, 

1/12,000 in adults used in 

polytherapy and 1/37,000 in 

adults used in monotherapy. 

Powell-Jackson et al. 

1984 

Ahmed and Siddiqi 

2006 
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Table 3.14: Suggested mechanisms and possible explanations underlying the hepatotoxic effect of the selected 
compounds. 

Compound Suggested mechanisms of hepatotoxicity References 

Acetamino- 

phen 

Metabolism via CYP2E1, 3A4 and 1A2 produces the highly reactive me-

tabolite N-acetyl-p-benzoquinone imine (NAPQI). NAPQI is detoxified by 

glutathione and eliminated into the urine. With increased doses of APAP, 

NAPQI covalentely binds to proteins and depletes the glutathione stores, 

resulting in oxidative stress.  

Daly et al. 2008 

Dart et al. 2006 

James et al. 2003 

Aspirin 

ASP mediated hepatotoxicity occurs only at high doses. The mechanism is 

not fully elucidated but mitochondrial dysfunction is reported to play an 

important role. Inhibition of the β-oxidation and the delivery of metabo-

lites to the electron transport chain; the mitochondrial fuel supply and 

energy flux are reduced. ASP further causes intracellular ATP decrease, 

which leads to hepatocellular injury mediated by lipid peroxidation. 

Fromenty and Pessayre 1995 

Doi and Horie 2010 

Carbamaze- 

pine 

The mechanism of CBZ hepatotoxicity appears to be hypersensitivity or 

an immunological response to a metabolically generated drug-protein 

complex. Metabolization via CYP3A4 leads to the formation of reactive 

metabolites, which further involve the immune system and results in 

tissue injury. 

Pandit et al. 2012 

Forbes et al. 1992 

Mitchell et al. 1981 

Diclofenac 

Extensive metabolization in the liver via cytochrome P450 enzymes 

CYP2C 9 and CYP2C8. The toxic products, acyl glucuronide and benzoqui-

none imines modify proteins covalently.  Accumulation of reactive me-

tabolites generates oxidative stress and is accompanied by mitochondrial 

impairment.  

Pandit et al. 2012 

Ponsoda et al. 1995 

Bort et al. 1999 

Chitturi and George 2002 

Isoniazid 

Metabolism via the N-acetyltransferase 2 to monoacetyl hydrazine, which 

is further metabolized via CyP2E1 to toxic metabolites that covalently 

bind to hepatic macromolecules. Hepatotoxicity seems to be an idiosyn-

cratic response and is dependent on the CYP2E1 genotype. INAH has an 

inhibitory effect on CYP1A2, 2A6, 2C19 and 3A4 activity. It can induce its 

own toxicity, probably by the induction or inhibition of these enzymes. 

Pandit et al. 2012 

Tostmann et al. 2008 

Lauterburg et al. 1985 

Steele et al. 1991 

Ketoconazole 

Biotransformation to N-desacetyl ketoconazole (DAK) and further metab-

olization of DAK by flavin-containing mono-oxygenases results in covalent 

binding to hepatic proteins and glutathione depletion. 

Greenblatt and Greenblatt 2014 

Rodriguez and Acosta 1997 

Rodriguez et al. 1999 

Rodriguez and Buckholz 2003 

Labetalol 
The mechanism of LAB-induced hepatotoxicity is unknown. Histological 

patterns of inflammation suggest an immune-mediated response. 

Halegoua-De Marzio and Navar-

ro 2013 

Clark et al. 1990 

[3] 

Nimesulide 

NIM has been associated with idiosyncratic hepatotoxicity in susceptible 

patients. The molecular mechanisms of NIM-induced hepatotoxicity have 

not yet been fully elucidated. It has been suggested that NIM undergoes 

bio-reductive metabolism and forms reactive metabolites, which have 

been implicated in oxidative stress, covalent binding to hepatic proteins 

and mitochondrial injury.  

Chitturi and George 2002 

Tripathi et al. 2010 

Singh et al. 2012 

Bessone et al. 2010 

Boelsterli 2002 

Nitro- 

furantoin 

The mechanism of NFT-mediated hepatotoxicity is poorly understood and 

presumed to be the result of an immunologic process or a direct cytotox-

ic reaction. Its nitro-reductive metabolism produces oxidative free radi-

cals, which result in hepatocyte damage.  

 

 

Sakaan et al. 2014 

Moseley et al. 2013 
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Compound Suggested mechanisms of hepatotoxicity References 

Phenyl- 

butazone 

PhB is extensively metabolized in the liver to oxyphenbutazone, gamma-

hydroxyphenylbutazone and p, gamma-dihydroxyphenyl-butazone. In-

volved enzymes and the underlying mechanism of hepatotoxicity are not 

well understood. 

Dieterle et al. 1976 

Aarbakke et al. 1977 

Aronson 2009 

Rifampicin 

RIF is a potent inducer of the hepatic CYP450 system, such as CYP 2C and 

3A, thereby increasing the metabolism of other compounds. The detailed 

mechanism of its hepatotoxicity is not well understood. RIF is often com-

bined with isoniazid, leading to an increased risk of hepatotoxicity. The 

cause of injury is most likely due to idiosyncratic metabolic products that 

are either directly toxic or induce an immunologic reaction.  

Grange et al. 1994 

Tostmann et al. 2008 

Pandit et al. 2012 

Steele et al. 1991 

Valproic acid 

Metabolism via glucuronidation and mitochondrial b-oxidation. VPA 

enters the mitochondria via the long chain fatty acid transport system, 

which uses carnitine as a co-factor. VPA is first attached to coenzyme A to 

form VPA-CoA. VPA-CoA is then esterified with L-carnitine to form VPA-

carnitine ester, which is subsequently transported into the mitochondrial 

matrix by carnitine translocase in exchange for free carnitine. Conjugation 

of VPA to carnitines results in carnitine depletion, which inhibits -

oxidation of endogenous lipids and results in microvesicular steatosis and 

mitochondrial dysfunction. Further reports show that VPA is associated 

with the formation of increased reactive oxygen species. 

Sztajnkrycer 2002  

Pandit et al. 2012 

Pourahmad et al. 2012 

Begriche et al. 2011 

 

3.2.1 Identification of peak plasma concentrations and selection of a concentra-

tion range  

To evaluate a risk of hepatotoxicity in vivo, concentrations for all compounds used in this 

study were selected based on in vivo relevant concentrations. For all 21 compounds, a litera-

ture search was performed to identify peak plasma concentrations of therapeutic doses in 

patients. These results are summarized in Table 3.15 and Table 3.16, which deliver infor-

mation on therapeutic doses of a compound and the resulting peak plasma concentration. 

The study is based on free, meaning non-protein bound, concentrations.  
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Table 3.15: Overview of peak plasma concentrations of compounds which are associated with a high risk of hepatotoxicity at therapeutic doses. The table is based on 
literature search and delivers information on recommended doses and resulting plasma levels of a drug. PPB = plasma protein binding, values are from drugbank.ca; ex-
cept for VPA (reference O’Brien et al. 2006). 

Compound 
Therapeutic 

dose 

Dose and route of applica-

tion 

Peak plasma  

concentration 

Plasma levels 

[M]     
PPB Reference  

A
P

A
P

 

Acetaminophen 
660 - 1000 mg  
every 4 - 6 h 
max. 3 g /day 

a) c) 20-40mg/kg rectal  
3-5h after administr. 
b) 2x 235mg oral dose 
 60-85 min after administr. 

a) c) 10-20ug/ml (40mg/kg) 
<10µg/ml (20 mg/kg)  
b) 6.93 / 7.72µg/ml  
d) 10-20 µg/ml 

a) c) 66.15 - 165.39μM 
 b) 45.85μM/ 51.07µM    
 d) 66.16 - 132.31 μM 

25% 

a) Beck et al.2000 
b) Albert et al. 1974 
c) Stocker and Montgomery 2001 
d) Winek et al. 2001 

A
SP

 

Aspirin 
330 - 660 mg  
every 4 - 6 h 

b) 1200mg oral dose 
peak 10-20 min after administra-
tion 

a) 0.1-2mM  
b) 17-40 µg/ml 

a ) 0.1 - 2 mM 
b) 94-222 µM 

99.50% 
a) Frantz et al. 1995 
b) Seymor et al.1984 

C
B

Z 

Carbamazepine 200 mg 2x daily  
a)  ~ 200 mg oral dose 
mean concentration 

a) 5.4+/-2.5 µg/ml  
b) 4-12 µg/ml 

a) 12.27 -33.44 μM   
b) 16.93 - 50.79 μM 

76% 
a) Eichelbaum et al. 1976 
b) McMillin et al. 2010  

D
FN

 

Diclofenac 
for chronic arthri-
tis  
50 mg  3x daily 

a) 50 mg oral dose 
b) concentration associated with 
efficacy 

a) 1.7 µg/ml  
a) 5.8 µM 
b) 4.2 µM 

99% 
a)  Kircheiner et al. 2003 
b) O'Brien et al. 2006 

IN
A

H
 

Isoniazid 
300 mg daily 
or 900 mg/day  
2-3x/week 

b) 5-10 mg/kg/day in children 
c) 5.15 mg/kg/day daily and 12.8 
mg/kg/day 2x weekly 

a) 0.6-20 µg/ml 
b) 3.2 - 8.11 µg/ml  
c) 2.5 - 3 µg/ml and 
8-10 µg/ml 

a) 4.38 - 145.84 μM 
b) 21.9-36.5 µM 

0-10 % 
a) Winek et al. 2001 
b) Thee et al. 2011 
c) Requena-Méndez et al.(2014 

K
C

 

Ketoconazole 

fungal infections  
200-400 mg daily  
prostate cancer  
400 mg 3x daily 

a) 200mg oral dose  
1h after administr. 
b) 400-2000mg oral dose 4-6h 
after administr. 

a) 3+/- 0.5 µg/ml 
b) 7-17 µg/ml 

a) 4.7 - 6.59 μM  
b) 13- 32 µM 

99% 
a) Schäfer-Korting et al. 1984 
b) Sugar et al 1987 

LB
T 

Labetalol 
200-400 mg  
daily 

a) 200mg oral dose 
2h after administr. 
b) 100-1000 mg dose 3x daily up 
to 6 weeks 
c) 100-400 mg oral dose 

a) 275 +/- 99 ng/ml  
b) 37-510 ng/ml  
c) 100mg: 32 ng/ml; 
200mg: 83 ng/ml;  
400mg: 165 ng/ml 

a) 482.4 nM - 1.025 μM 
b) 101.4 nM - 1.4 μM 
c) 87.7 nM; 227.5 nM; 
452.2 nM 

50% 
a) Lalonde et al. 1990 
b) Sanders al. 1979 
c) Richards et al. 1977  

N
IM

 

Nimesulide 200 -400 mg/day 
a) 100mg oral dose 
30 min after administr. 
b) 100 mg oral dose 

a) 2.0 - 2.5 µg/ml  
b) 1.95 ± 0.67 μg/ml 

a) 6.49 - 8.11μM      
 b) 4.15 - 8.5 μM 

>97.5% 
a) Bianchi et al. 2006  
b) Macpherson et al. 2013 
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Compound Therapeutic 

dose 

Dose and route  of applica-

tion 

Plasma peak  

concentration 

Plasma levels 

[M]     
PPB Reference  

N
FT

 

Nitrofurantoin 
50-100 mg  
4 x daily 

a) 100 mg oral dose 
b) 100mg oral dose 
2-2.3 h after administr. 

a) 1-1.5µg/ml  
b) 0.87-1.1 µg/ml 
c) 1.8 µg/ml 

a) 6.3 μM         
b) 3.65 - 4.62 μM       
c) 7.56 μM 

20-60 % 
a) Albert et al. 1974 
b) Adkison et al. 2008 
c) Winek et al. 2001 

P
h

B
 

Phenylbutazone 50 - 300 mg/day 
a) 50, 100, 200 or 300 mg/day oral 
dose 

a) ~25-100µg/ml 
b) 16-150 µg/ml 

a) 81.07 -324.29 μM 
b) 51.89 - 486.43 μM 

up to 95% 
a) Orme et al. 1976 
b) Winek et al. 2001 

R
IF

 

Rifampicin 
600 mg daily 
(~10 mg/kg)  

a) b) 450 mg oral dose 
c) 600mg, 900mg oral dose 

a) 6-9µg/ml 
b) 4-32 µg/ml 
c) 1-15µg/ml 

a) 10.94 μM     
b) 4.86 - 38.89μM     
 c) 1.215 - 18.22 µM 

89% 
a) Ellenhorn and Barceloux 1988  
b) Mandel and Sande 1985  
c)  Mehta et al. 2001  

V
P

A
 

Valproic acid 
10 - 15 mg/kg/ 
day 

a) 1200-1600mg iv 
a) 50-100µg/ml 
b) 50-100 µg/ml 

a) 346.72 -693.43 μM  
b) 346.72 -693.43  μM 

93% 
a) De Turck et al. 1998 
b) Winek et al. 2001 
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Table 3.16: Overview of peak plasma concentrations of control compounds at therapeutic doses. The table is based on literature search and delivers information on rec-
ommended doses and resulting plasma levels of a drug. PPB =plasma protein binding, values are from drugbank.ca; except for MEL (reference Cardinali et al. 1972). 

Compound 
Therapeutic 

dose 

Dose and route  of ap-

plication 

Peak plasma 

concentrations 

Plasma levels 

[M]     
PPB Reference  

B
P

R
 

Buspirone 
15-30 mg daily 
in devided doses 

a) 20 mg oral dose 
b) 20mg oral dose 
c) 30mg oral dose 

a) 2.5ng/ml 
b) 1.15 +/- 0.77ng/ml  
c)6.6 ± 3.7 ng/ml  

a) 5.9 nM       
b) 0.9 - 4.55 nM  
c) 15.6 - 24.4 nM 

95% 
a) Mahmood and Sahajwalla 1999 
b) Dalhoff et al. 1987 
c) Lamberg 1998 

C
H

L 

Chlorpheniramine 
2-4 mg  
3-4 x daily 

a) 4-10 mg oral dose 
b) 2-6mg oral dose 

a) 11.9-35.6 ng/ml  
b) 2mg: 3.4-7.4 ng/ml  
6mg: 2-14.3 ng/ml 

a) 30.4 nM       
b) 8.7 nM;        
5.1 nM  

72% 
a) Huang et al. 1982 
b) Tagawa et al. 2002  

C
LO

 

Clonidine 
0.1 - 0.6 mg daily 
in 2-3 doses 

a) 150µg iv  
b) 75 - 300µg oral dose 

a) 0.846+/-0.288 ng/ml  
b)  300µg: 1.17+/-0.12 ng/ml  
75µg dose continous treat-
ment steady state level of 0.3-
0.35 ng/ml 

a) 2.1 - 4.3 nM           
b) 3.9 - 4.8 nM;         
1.1 - 1.3 nM   

20-40% 
a) Klein et al. 2013 
b)  Keränen et al. 1978  

FA
M

 

Famotidine 20 mg 2x/day 
b) 40mg oral dose 
40 mg dose 

a) 17 - 139 ng/ml 
b) 4-137 ng/ml for 20mg 
15-358 ng/ml for 40mg 

a) 50.3 - 411.9 nM       
b) 45 - 1060 nM 

15-20% 
a) Morgan et al. 1990 
b) Chremos 1987 

H
YZ

 

Hydroxyzine 
25-100 mg  
3-4 x daily 

b) 50mg oral dose  
(439 ± 66 mg = 07mg/kg) 

a) 0.022-0.08 µg/ml 
b) 116.5+/-60.6 ng/ml 

a) 49.1 - 178.6 nM        
b) 124.8 - 395.5 nM 

93% 
a) Winek et al. 2001 
b) Simons et al. 1989 

LE
V

 

Levofloxacin 250-750 mg daily 
a) 50-1000mg oral dose 
b) 250-500mg iv 
c) 500mg oral dose 

a) 0.6-9.4 µg/ml  
b) 1.2-7.7 µg/ml  
c) 6.34±1.42 µg/ml  

a) 1.66 - 26 μM        
b) 3.32 - 21.3μM         
c)  17.5 - 21.5 μM 

 24-38%  
a) Fish and Chow  1997 
B) Malone et al. 2001  
c) Chien et al. 1997 

M
EL

 

Melatonin 10 mg daily a) 2 mg dose a) 10-23 pg/ml  a) 43 - 99 pM 61–78% a) Aldhous et al. 1985 

P
M

Z 

Promethazine 
12.5 - 25 mg 
every 4-6 h 

a) 50 mg oral dose 
b) 50mg oral dose 
c) 50 mg dose oral or rectal 

a) 19.3 ng/ml  
b) 11-23 ng/ml 4h  
c) 12.1-17.3 ng/ml  

a) 60.1 nM      
b) 34.3 - 71.7 nM 
c) 37.7 - 53.9 nM 

93% 
a) Strenkoski-Nix et al. 2000 
b) Wallace et al. 1981 
c) Schwinghammer et al. 1984 

P
P

L 

Propranolol 
60-240 mg daily  
devided in 2 doses 

a) 40 mg dose peroral and 
sublingual 
b) 20mg oral dose 
c) 160 mg oral dose 

a) Peroral 41 ± 12 ng/ml 
Sublingual 147 ± 72 ng/ml 
b) 24-28.5 ng/ml 
c) 38-194 ng/ml  

a) 98 nM - 740 nM    
b) 81.1 nM - 96.3 nM 
c) 129 - 656 nM 

> 90% 
a) Mansu et al. 1988 
b) Sharoky et al. 1988 
c) Aro et al. 1982 
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HepG2 cells and primary human hepatocytes were exposed for 24 hours and each com-

pound was tested in a concentration range covering the peak plasma concentration of a 

therapeutic dose and increasing up to a slightly cytotoxic concentration (concentrations C1 – 

C5, Table 3.17). The highest concentration (C5) was supposed to be slightly cytotoxic, in the 

range of the IC10 – IC20 (for cytotoxicity tests see Supplemental Figure 6 and Supplemental 

Figure 7). Usually a dilution factor of 5 was chosen. Due to cell killing events, a smaller dilu-

tion factor was chosen for the highest concentration of the hepatotoxic compound ketocon-

azole. For some chemicals, especially the non-hepatotoxic compounds, even higher dilution 

factors were applied for the highest concentration. For this purpose dilution factors of up to 

5,000 (for melatonin) were included. 

Table 3.17: Selection of concentrations for each compound. Five concentrations (C1-C5) were defined, span-
ning from sub therapeutic doses and increasing up to slightly cytotoxic concentrations (C5). Peak plasma con-
centrations are marked by bold letters. 
 

Compound C1 C2 C3 C4 C5 Solvent 
Stock  

solution 

Acetaminophen 8 µM 40 µM 200 µM 1 mM 5 mM Medium - 

Aspirin 8 µM 40 µM 200 µM 1mM  5mM 0.2% DMSO 2.5 M 

Carbamazepine 1.6 µM 8 µM 40 µM 200 µM 1 mM 0.5% DMSO 200 mM 

Diclofenac 64 nM 320 nM 1.6 µM 8 µM 400 µM 0.2% DMSO 200 mM 

Isoniazid 8 µM 40 µM 200 µM 1 mM 10 mM Medium - 

Ketoconazole 0.32 µM 1.6 µM 8 µM 40 µM 100 µM 0.1% DMSO 100 mM 

Labetalol 64 nM 0.32 µM 1.6 µM 8 µM 40 µM Medium - 

Nimesulide 0.32 µM 1.6 µM 8 µM 40 µM 330 µM 0.2% DMSO 165 mM 

Nitrofurantoin 0.32 µM 1.6 µM 8 µM 40 µM 200 µM 0.1% DMSO 200 mM 

Phenylbutazone 1.6 µM 8 µM 40 µM 200 µM 1 mM 0.2% DMSO 500 mM 

Rifampicin 0.32 µM 1.6 µM 8 µM 40 µM 200 µM 0.1% DMSO 200 mM 

Valproic acid 8 µM 40 µM 200 µM 1 mM 5 mM Medium - 

      
 

 Buspirone 0.51 nM 2.6 nM 12.8 nM 64 nM 30 µM 1 % H2O 3 mM 

Chlorpheniramine 2.6 nM 12.8 nM 64 nM 0.32 µM 90 µM 1 % H2O 9 mM 

Clonidine 0.51 nM 2.6 nM 12.8 nM 64 nM 1mM Medium - 

Famotidine 12.8 nM 64 nM 320 nM 1.6 µM 700 µM 0.2% DMSO 350 mM 

Hydroxyzine 12.8 nM 64 nM 320 nM 1.6 µM 40 µM 1 % H2O 4 mM 

Levofloxacin 0.32 µM 1.6 µM 8 µM 40 µM 200 µM 1 % H2O 20 mM 

Melatonin 20 pM 0.1 nM 0.51 nM 2.6 nM 100 nM 0.1% DMSO 100 µM 

Promethazine 12.8 nM 64 nM 320 nM 1.6 µM 35 µM 1 % H2O 3.5 mM 

Propranolol 64 nM 320 nM 1.6 µM 8 µM 40 µM 1 % H2O 10 mM 
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3.2.2 Identification of biomarker candidate genes according to the toxicogenomics 

directory 

In a next step, potential biomarker candidate genes were identified by using genome-wide 

expression data from the Open TG GATEs data base. With the exception of levofloxacin, 

clonidine and melatonin, genome-wide expression data is available for 18 out of the 21 se-

lected compounds. To focus on genes which are strongly altered by chemicals, the top ten 

genes with the highest fold change of induction were characterized for all 18 compounds 

(Table 3.18). Based on literature search, all genes were manually assigned to biological cate-

gories. Next to the biological function of the gene, this list provides information on the over-

lap with liver disease genes, and by how many compounds the expression is influenced. 

 



Results 

80 
 

 

          R
esu

lts 

                     

    8
0 

 

Table 3.18: List of genes which are up regulated with the highest fold change among all 18 compounds where gene array data was available. For each compound the top 
ten genes are listed and characterized according to their function and the marked whether the expression is also altered in liver diseases or because of the culture con-
ditions (CS). SV up and SV down show, by how many compounds the expression of the appropriate gene is altered in which direction. 1 probe set not annotated. 

Symbol Gene Probesets NASH Cirrhosis HCC CS 
SV ↑  
(FC3) 

SV ↓  
(FC3) 

Function of the  
gene product 

Category 

Category: Metabolism, Xenobiotics 
        

ADH1B 
alcohol dehydrogenase 1B 
(class I), beta polypeptide  

209612_s_at 
209613_s_at 

0 0 ↓ ↓ 11 7 cytosolic enzyme; ethanol metabolism 

p
h

as
e 

I e
n

zy
m

es
 

CYP1A1 
cytochrome P450, subfamily 
 1A, polypeptide 1 

205749_at 0 ↓ 0 ↓ 35 0 

metabolic enzyme in the ER 

CYP1A2 
cytochrome P450, subfamily. 
1A, polypeptide 2 

207608_x_at 
207609_s_at 

↓ ↓ ↓ ↓ 18 1 

CYP1B1 
cytochrome P450, subfamily. 
1B, polypeptide 1 

202437_s_at ↑ ↑ 0 0 18 1 

CYP2C9 
cytochrome P450, subfamily  
2C, polypeptide  9 

217558_at 0 ↓ ↓ 0 32 4 

CYP3A4 
cytochrome P450, subfamily  
3A, polypeptide 4 

205998_x_at 
208367_x_at 
231704_at 

0 ↓ ↓ ↓ 7 0 

CYP3A5 
cytochrome P450, subfamily  
3A, polypeptide 5 

214235_at 
243015_at 

0 ↓ 0 ↓ 23 0 

CYP3A7 
cytochrome P450, subfamily  
3A, polypeptide 7 

205939_at 
211843_x_at 

↑ ↑ 0 ↓ 39 0 

SULT1C2 sulfotransferase 1C2 

205342_s_at 
205343_at 
211470_s_at 

↑ ↑ ↑ 0 22 1 

cytosolic enzyme; catalyzes sulfonation  

p
h

as
e 

II
  

en
zy

m
es

 

SULT2A1 sulfotransferase 2A1 
206292_s_at 
206293_at 

0 ↓ ↓ ↓ 25 1 
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Category: Development, differentiation and signal transduction 
    

CTSB cathepsin B 227961_at ↑ ↑ ↓ ↓ 11 1 
protease; degradation and turnover of proteins 
active in tumorigenesis, angiogenesis, invasion and 
metastasis 

d
ev

el
o

p
m

en
t 

an
d

 d
if

fe
re

n
ti

at
io

n
 

ENO2 enolase 2 201313_at 0 0 0 0 10 0 extracellular enzyme; neuronal development 

KISS1R KISS1 receptor 242517_at 0 0 0 0 0 12 
G-protein coupled receptor; metastasis suppressor 
protein, regulation of endocrine function and the 
onset of puberty 

LOX lysyl oxidase  
213640_s_at 
215446_s_at 

0 0 ↑ 0 0 0 
extra cellular matrix protein; cross-linking of  
extracellular matrix proteins 

d
ev

el
o

p
m

en
t 

an
d

 d
if

fe
re

n
ti

at
io

n
 

TMPRSS2 
transmembrane protease,  
serine 2 

211689_s_at 0 ↓ ↓ ↓ 10 0 
serin protease; putative role in angiogenesis and  
development 

TNFSF15 
tumor necrosis factor (ligand)  
superfamily, member 15 

229242_at 0 0 0 0 2 0 
membrane receptor protein;   cell proliferation, 
immune regulation, inflammation, apoptosis 

ADRB1 adrenoceptor beta 1 229309_at 0 0 ↓ ↓ 3 1 G-protein coupled receptor 

se
cr

et
ed

 p
ro

-

te
in

s 
an

d
 h

o
r-

m
o

n
e 

si
gn

al
in

g 

TSKU 
tsukushi, small leucine rich 
proteoglycan  

218245_at 0 0 ↓ 0 17 0 
secreted protein;  intracellular transport and extracel-
lular secretion 

FGF21 fibroblast growth factor 21 221433_at 0 0 0 0 28 2 secreted growth factor; mitosis and survival 

gr
o

w
th

 
 f

ac
to

rs
 

FIBIN 
fin bud initiation factor  
homolog 

226769_at 0 ↑ 0 0 13 0 secreted growth factor; function in limb development 
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ASCL1 achaete-scute family bHLH  
transcription factor 1 

209988_s_at 0 0 0 ↓ 1 0 
transcription factor; neuronal differentiation and 
development 

tr
an

sc
ri

p
ti

o
n

 f
ac

to
rs

 

CEBPA 
CAAT/enhancer binding pro-
tein (C/EBP), alpha  

204039_at 0 ↓ ↑ 0 17 0 
transcription factor; differentiation of granulocytes 
and myeloid cells, inhibition of proliferation 

IRF6 
interferon regulatory  
factor 6 

1552478_a_at 0 0 0 ↑ 4 0 
transcription factor; role in proliferation and 
 differentiation 

Category: Energy and lipid metabolism 
        

ACSS2 
acyl-CoA synthetase short- 
chain family member 2 

234312_s_at ↓ ↓ 0 ↑ 6 0 
cytoplasmic protein; activation of acetate for use  
in lipid synthesis and energy generation 

lip
id

  
sy

n
th

es
is

 

PLA1A 
phospholipase A1  
member A 

219584_at 0 ↓ 0 0 8 0 
secreted enzyme, hydrolyzation of phospholipids  
into  fatty acids 

G6PD 
glucose-6-phosphate  
dehydrogenase 

202275_at 0 0 ↑ 0 7 0 
enzyme in pentose  
phosphate pathway 

fa
tt

y 
ac

id
 

sy
n

th
es

is
 

PPM1L 
protein phosphatase, 
Mg2+/Mn2+ dependent, 1L  

228108_at 
229506_at 

0 0 0 ↑ 23 0 
membrane bound enzyme; regulation of blood-
glucose  gl

u
co

se
 

re
gu

la
ti

o
n

 

INSIG1 insulin induced gene 1 
201625_s_at 
201627_s_at 

0 ↓ 0 ↑ 12 0 
ER membrane protein; control of cholesterol synthe-
sis, may play a role in growth and differentiation of 
tissues involved in metabolic control 

ch
o

le
st

er
o

l a
n

d
 t

ri
gl

yc
e

ri
d

e
 

sy
n

th
e

si
s 

THRSP 
thyroid hormone  
responsive SPOT 14 

229476_s_at 
229477_at 
1553583_a_at 

0 ↓ ↓ ↑ 21 8 
cytosolic protein; involved in lipogenesis and biosyn-
thesis of triglycerides 
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Category: Cytoskeletal organization and cell cycle 
       

KIF5C kinesin family member 5C 203130_s_at 0 0 0 ↑ 1 0 
microtubule motor protein; intracellular transport  
of organelles 

m
ic

ro
tu

b
u

le
 m

o
to

r 
an

d
 s

ta
b

ili
za

ti
o

n
 

p
ro

te
in

s 

TUBB2B tubulin, beta 2B class Iib 214023_x_at 0 ↑ 0 0 5 0 
major constituent of microtubules; mitosis and intra-
cellular transport 

SRPX 
sushi-repeat containing  
protein, X-linked 

204955_at 0 ↑ ↓ ↓ 13 0 
secreted cell surface protein; involved in cell migra-
tion and adhesion 

m
ig

ra
ti

o
n

 
 a

n
d

 

ad
h

es
io

n
 

PLXNC1 plexin C1 213241_at ↑ 0 ↑ ↑ 4 0 
receptor for semaphorines which are involved in  
cytoskeletal rearangement, signal transduction, cell 
adhesion, immune response cy

to
sk

e
le

ta
l 

re
ar

an
ge

m
en

t 

an
d

 a
d

h
es

io
n

 

TEX14 testis expressed 14 221035_s_at 0 0 0 0 2 0 
cytoplasmic protein; role in mitosis and meiosis,  
formation of cell junctions ju

n
ct

io
n

  
fo

rm
at

io
n

 

ATF3 
activating transcription  
factor3 

202672_s_at 
1554420_at 

0 0 ↓ 0 35 0 
transcription factor; stress response, further involved 
in cell cycle regulation, DNA repair, apoptosis 

ce
ll 

cy
cl

e
 

ar
re

st
 

RGCC regulator of cell cycle  218723_s_at ↑ ↑ 0 ↓ 25 0 
cytosolic protein;  induced by p53 modulates the 
activity of cell cycle specific kinases in response to 
DNA damage 

Category: Transport 
         

SLC16A14 
solute carrier family 16,  
member 14 

238029_s_at 0 0 0 ↓ 5 0 membrane protein for mono-carboxylate transport 

io
n

 a
n

d
 s

m
al

l 
m

o
le

cu
le

 t
ra

n
sp

o
rt

 

SLCO4C1 
solute carrier organic anion  
transporter family, member 
4C1 

222071_s_at ↓ 0 ↓ 0 5 1 membrane protein; organic anion transporter 

BSPRY 
B-box and SPRY domain  
containing 

222746_s_at 0 0 0 0 1 0 membrane protein; involved in calcium transport 
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STXBP1 
syntaxin binding protein 1 202260_s_at 0 0 ↑ 0 6 0 cytoplasmic protein; vesicular trafficking 

ve
si

cu
la

r 
tr

af
fi

ck
in

g 

BLZF1 
basic leucine zipper nuclear 
factor 1  

210462_at 0 0 0 0 10 0 
protein in the Golgi lumen; protein transport  from 
the ER through the Golgi apparatus to the cell surface p

ro
te

in
  

an
d

  R
N

A
  

tr
an

sp
o

rt
 

Category: Protein stabilization and degradation 
       

CCT4 
chaperonin containing TCP1, 
subunit 4 (delta) 

227171_at 0 ↑ ↑ ↑ 0 0 
chaperone; function in protein  
stabilization and folding 

p
ro

te
in

 s
ta

b
ili

za
ti

o
n

 
an

d
 t

ra
n

sp
o

rt
 

HSPA6 
heat shock 70kDa  
protein 6 

117_at 
213418_at 

0 0 0 ↓ 16 4 
chaperone; function in protein  
stabilization and folding 

SCG5 secretogranin V  203889_at 0 ↓ 0 0 12 0 
secreted chaperone involved in intracellular protein 
transport 

FBXL16 
F-box and leucine-rich  
repeat protein 16 

227641_at 0 0 ↑ 0 1 0 
protein-ubiquitin ligase,  ubiquitination and  
proteasomal degradation  

p
ro

te
in

  
d

eg
ra

d
at

io
n

 

FBXO32 F-box protein 32 225803_at 0 0 ↑ 0 29 0 
cytosolic protein; ubiquitination and proteasomal 
degradation  

KLHL24 kelch-like family member 24 221986_s_at 0 ↓ 0 ↓ 30 0 cytosolic protein; role in protein degradation 

Category: Apoptosis and ER stress response 
        

FAM129A 
family with sequence similari-
ty 129,  
member A  

217967_s_at ↑ ↑ 0 0 10 2 cytosolic protein; involved in apoptosis, survival and ER stress response 

BEX2 brain expressed X-linked 2  224367_at 0 0 ↑ ↑ 13 0 cytosolic protein; regulator of mitochondrial apoptosis and cell cycle   
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Category: Other 
         

ANKRD33 ankyrin repeat domain 33  242209_at 0 0 ↑ 0 14 0 
protein motif, ankyrin repeat proteins are composed of tandem repeats of a basic 
structural motif  

BTBD11 
BTB (POZ) domain  
containing 11 

238692_at 0 0 0 0 2 0 membrane protein 

HMOX1 heme oxygenase 1  203665_at 0 ↑ 0 ↓ 14 0 oxygenase for heme degradation; functions in apoptosis and vascularization 

KNG1 kininogen 1  217512_at 0 ↓ ↓ ↓ 3 0 
secreted protein; gene product can be processed to 2 isoforms; high molecular weight 
form is involved in blood coagulation, inflammatory response 

LAMP3 
lysosomal-associated  
membrane protein 3 

205569_at 0 0 0 0 3 0 lysosomal membrane protein; role in dendritic cell function and in adaptive immunity 

NPTX2 neuronal pentraxin II  213479_at 0 0 0 0 8 0 
secreted protein with biochemical properties of a Ca-depen-dent lectin; modifies 
properties underlying longterm plasticity 

PKIB protein kinase inhibitor beta 231120_x_at 0 0 ↑ ↑ 6 7 
inhibitor of cAMP-dependent protein  
kinase activity 

PSG9 
pregnancy specific beta-1- 
glycoprotein 9 

209594_x_at 0 0 0 0 4 0 
secreted, pregnancy related signaling  
protein 

RUSC1-
AS1 

RUSC1 antisense RNA 1 230256_at 0 0 ↑ ↑ 4 5   

TRIM73 
tripartite motif  
containing 73 

1554250_s_at 0 0 0 0 3 0 cytosolic ubiquitin ligase 

TTC9 
tetratricopeptide repeat  
domain 9 

213172_at 0 ↑ ↑ 0 2 0 protein containing three tetratricopeptide repeats, gene is hormonally regulated 

ZCCHC6 
zinc finger, CCHC domain 
containing 6  

242776_at ↑ ↓ ↓ 0 23 0 enzyme involved in RNA processing 

1200800_s_at (14/0); 1202581_at (19/0); 1205122_at (2/0); 1208180_s_at (6/0); 1208575_at (2/0); 1214469_at (12/0); 1215078_at (14/4); 1215779_s_at (9/0); 1227062_at (13/0); 1235102_x_at (5/0); 
1236542_at (21/0); 1237031_at (37/0); 1242981_at (14/0); 1243489_at (7/0); 1242313_at (0/2) 
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The selection of potential biomarker genes was based on the following criteria: (i) To cover a 

broad set of chemicals, the biomarker candidate gene should be strongly altered by many 

compounds. (ii) The gene should also be deregulated in human liver diseases. The overlap 

with human liver disease genes implies relevance for the gene in vivo which makes it less 

probable that the chemically-induced response is just an in vitro artifact. (iii) The gene is not 

altered in the same direction of expression alteration by the culture conditions or the isola-

tion procedure and (iv) the most relevant toxic mechanisms should be covered. Seven bi-

omarker candidate genes were selected for further analysis (Table 3.19). Among these genes 

are the aforementioned SV 20 genes CYP3A7, RGCC, SULT1C2 and the stress response pro-

tein, Fbxo32 that polyubiquitinates proteins for proteasomal degradation (Cleveland and 

Evenhuis 2010). In addition, CYP 1B1 was included for further analysis, another isoenzyme of 

the Cytochrome P450 family. This enzyme metabolizes a variety of environmental and xeno-

biotic toxicants and is transcriptionally regulated via the aryl hydrocarbon receptor. Howev-

er, it shows low expression in healthy human liver (Beedanagari et al. 2010; Bhattacharyya et 

al. 1995). From the category ‘energy and lipid metabolism,’ the enzyme glucose-6-phosphate 

dehydrogenase (G6PD) was selected as a potential biomarker. It catalyzes the rate-limiting 

step of the oxidative pentose-phosphate pathway and provides reducing power (NADPH) 

and pentose phosphates for fatty acid and nucleic acid synthesis. Interestingly, G6PD expres-

sion levels were found to be directly correlated to hepatoma cell migration and invasion (Hu 

et al. 2014).  

Table 3.19: Potential biomarker candidate genes for further analysis. The selected genes cover a wide range of 
biological functions, are up regulated in different human liver diseases and are not induced due to cultivation 
conditions or the isolation procedure (CS). 

Symbol 
Liver 

disease 
CS 

SV ↑  

(FC3) 

SV ↓  

(FC3) 
Gene Function Category 

CYP1B1 up 0 18 1 metabolic enzyme in the ER  

(phase I enzyme) Metabolism 

Xenobiotics 

CYP3A7 up down 39 0 

SULT1C2 up 0 22 1 
cytosolic enzyme; catalyzes sulfonation 

(phase II enzyme) 

G6PD up 0 7 0 
enzyme in pentose phosphate  

pathway  fatty acid synthesis 

Energy and 

Lipid metabolism 

TUBB2B up 0 5 0 

major constituent of microtubules; 

functions in mitosis and intracellular 

transport 
Cytoskeleton 

Cell cycle 

RGCC up down 25 0 

cytosolic protein;  induced by p53 mod-

ulates the activity of cell cycle specific 

kinases in response to DNA damage 

FBXO32 up 0 29 0 cytosolic protein; ubiquitination  

and proteasomal degradation  

Protein 

degradation 
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3.2.3 Prediction of hepatotoxic blood concentrations in vivo 

Based on the available biomarkers so far, an in vitro system was established to predict hu-

man hepatotoxic blood concentrations. HepG2 cells and cultivated primary human hepato-

cytes were exposed to the two sets of chemicals for 24 h for the defined concentration 

range. In both cell systems, two read outs were considered: First, the expression of the se-

lected biomarkers was analyzed. Ideally, biomarkers differentiate between hepatotoxic and 

non-hepatotoxic compounds at therapeutic concentrations. However, not all of the com-

pounds may be covered with the selected biomarker genes, but may exhibit other cytotoxic 

effects. For this reason, cytotoxicity tests were included as a second readout to identify the 

lowest cytotoxic concentration in vitro. Based on cytotoxicity and biomarker induction, the 

lowest observed effect concentration in vitro was determined and compared to peak plasma 

concentrations of therapeutic doses.  

 

3.2.3.1 Prediction of hepatotoxic blood concentrations in HepG2 cells 

For the biomarker analysis, gene expression in compound-exposed hepatocytes was quanti-

fied by qRT-PCR. Relative expression values of the analyzed genes in HepG2 cells and primary 

human hepatocytes for all compounds are listed in detail in the Supplemental Table 8 and 

Supplemental Table 9. For each compound, the lowest concentration of biomarker induction 

was identified. This in vitro alert concentration was defined as the lowest concentration that 

causes a significant increase of at least 2.5 fold induction of at least one of the marker genes. 

Figure 3.17, as an example, shows how valproic acid alters the biomarker expression in 

HepG2 cells. Corresponding diagrams for all compounds are given in Supplemental Figure 4 

and Supplemental Figure 5. The fold changes represent mean values of three independent 

experiments. The lowest alert concentration for valproic acid in HepG2 cells is 1mM. Five of 

the selected marker genes respond at similar, but not identical concentrations.  

 

Figure 3.17: Valproic acid induced biomarker expression in HepG2 cells. A gene was considered to be up regu-
lated when crossing the threshold line, which illustrates a significant increase of at least 2.5 fold change induc-
tion. Arrows indicate the lowest alert concentration for biomarker induction in vitro. The error bars illustrate 
the standard deviation of three independent experiments. 
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The lowest concentration of biomarker induction was determined for each compound and 

compared to peak plasma concentrations of therapeutic doses in vivo. Figure 3.18 illustrates 

to which degree the biomarker-based in vitro system predicts human hepatotoxic blood con-

centrations. Red symbols represent compounds which are associated with an increased risk 

of hepatotoxicity when administered at therapeutic doses, whereas green symbols show 

compounds that are considered harmless. Already in HepG2 cells the two groups of com-

pounds cluster mostly apart from each other. Each compound was tested in three independ-

ent experiments. The x-axis shows the lowest concentration of biomarker induction in vitro; 

dots and dashed lines represent differences in the lowest alert concentration of three inde-

pendent experiments with cells from different donors. The median of the three replicates is 

highlighted by enlarged symbols. On the y-axis, the peak plasma concentration of a thera-

peutic dose in vivo is shown and for each compound a concentration range is given. The 

highlighted concentration represents the mean value of peak plasma concentrations that 

were identified in different studies. The diagonal line indicates identical concentrations of 

the lowest biomarker inducing concentration in vitro and the peak plasma concentration 

which has a therapeutic effect in vivo. If a compound is located on this ‘in vivo line’, at least 

one of the selected marker genes was induced at a concentration, which corresponds to a 

dose with a therapeutic effect in vivo. Compounds which cluster below the line induced the 

biomarkers at concentrations which are higher than a therapeutic dose in vivo, meaning the 

genes were induced at a cytotoxic concentration only. Compounds which cluster at the very 

right did not induce any of the marker genes within the tested concentration range. Ideally, 

compounds that are associated with a high risk of hepatotoxicity at therapeutic doses cluster 

close to the ‘in vivo line’, whereas harmless compounds cluster to the lower right. In HepG2 

cells, the two groups of compounds cluster mostly apart from each other, but the majority of 

hepatotoxic compounds cluster below the line, indicating that hepatotoxic effects in vitro 

are observed at concentrations which are higher than critical concentrations in vivo. Howev-

er, the hepatotoxic compounds cluster closer to the line than the non-hepatotoxic com-

pounds.  
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Figure 3.18: The lowest alert concentrations of biomarker induction in exposed HepG2 cells are shown in rela-
tion to peak plasma concentrations that have a therapeutic effect in vivo. In red: compounds which are associ-
ated with increased risk of hepatotoxicity at therapeutic doses; in green: non-hepatotoxic compounds. The x-
axis shows the lowest concentration of biomarker induction in vitro whereas the y-axis gives the peak plasma 
concentration of therapeutic doses in vivo. The peak plasma concentration of each compound is shown as a 
concentration range. Values on the x-axis represent lowest alert concentrations of 3 individual experiments for 
each compound; the median is highlighted by enlarged symbols. The line indicates identical concentrations of 
the biomarker inducing concentration and the in vivo relevant concentration. 

 

With a few exceptions, all hepatotoxic compounds cluster close to the ‘in vivo line’. These 

compounds induced the biomarker genes in vitro at therapeutic or close to therapeutic con-

centrations that are associated with a high risk of hepatotoxicity in vivo. In contrast, all non-

hepatotoxic compounds either did not up regulate these genes or induced them at concen-

trations which lie far above critical concentrations in vivo. 

A close correlation is observed for the hepatotoxic compounds valproic acid (VPA), ketocon-

azole (KC), phenylbutazone (PhB) and acetaminophen (APAP). These compounds show hepa-

totoxic effects in vitro at concentrations which correspond to peak plasma concentrations of 

critical concentrations in vivo. Thus, the biomarker based in vitro model is able to precisely 

predict human hepatotoxic blood concentrations for these compounds. Acetaminophen is 

the only compound among the set of hepatotoxic chemicals which is not associated with 

hepatotoxicity at therapeutic doses. For this reason, in vitro alert concentrations were not 

compared to a dose with a therapeutic effect, but to the well documented toxic plasma con-

centration of 1mM.  

Isoniazid (INAH) clusters relatively far away from the other hepatotoxic compounds; a signif-

icant induction of the biomarkers in HepG2 cells was observed only at a concentration that is 

a factor of about 250 fold higher than the dose with a high risk of hepatotoxicity in vivo. 
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However, isoniazid metabolism requires N-acetyl transferase 2, an enzyme which is only 

marginally expressed in HepG2 cells (Husain et al. 2007; Saukkonen et al. 2006). Due to the 

reduced metabolic capacity of this cell line, isoniazid-induced hepatotoxicity is probably at-

tenuated in these cells. Labetalol (LAB) and aspirin (ASP) represent outliers that cluster out-

side the group of hepatotoxic compounds, because none of the analyzed biomarkers was 

induced up to the tested concentration range. In contrast to hepatotoxic compounds, none 

of the biomarker genes were induced at therapeutic doses of non-hepatotoxic drugs. For 

non-hepatotoxic compounds the predicted blood concentration of hepatotoxicity corre-

sponds to cytotoxic concentrations only. Ideally, the distance between in vitro alert concen-

trations of hepatotoxic compounds and non-hepatotoxic compounds should be larger 

(Figure 3.18). Nevertheless, non-hepatotoxic chemicals cluster apart from the ‘in vivo line’ 

because the factor between an in vivo relevant dose and a cytotoxic concentration is much 

higher than for compounds which are associated with an increased risk of hepatotoxicity. In 

general, the selected biomarkergenes seem to be suitable to predict hepatotoxic blood con-

centrations in HepG2 cells. Keeping in mind that the genes were selected based on data of 

cultivated primary human hepatocytes the result obtained in compound-exposed HepG2 

cells is very promising. With a few exceptions, the set of biomarkers differentiates between 

hepatotoxic and non-hepatotoxic compounds at therapeutic doses. However, not all com-

pounds were captured with the available biomarkers so far, such as labetalol (LAB) and aspi-

rin (ASP). Other compounds, such as isoniazid (INAH), diclofenac (DFN), nimesulide (NIM) 

and nitrofurantoin (NFT) did not induce the biomarker genes at therapeutic, but at slightly 

cytotoxic concentrations only, although these drugs exhibit also a high risk of hepatotoxicity 

in the range therapeutic doses.  

To optimize the prediction of human hepatotoxic blood concentrations, cytotoxicity tests 

were performed as a second readout. For all compounds, alert concentrations of cytotoxicity 

in vitro were identified by using the Cell Titer Blue cytotoxicity test. HepG2 cells were ex-

posed for 48 h and dose response curves were compiled to identify the lowest cytotoxic 

concentration for each compound in vitro (Supplemental Figure 6). The lowest cytotoxic 

concentration was defined as 20% loss of viability after 48h of exposure. The clustering of 

the two groups of compounds based on cytotoxicity is shown in Figure 3.19. Again, the in 

vivo relevant concentration for acetaminophen (APAP) corresponds to the toxic blood con-

centration of 1mM. 

 



Results 

91 
 

 

Figure 3.19: Prediction of toxic blood concentrations in HepG2 cells. Based on cell titer blue cytotoxicity data, 
the lowest cytotoxic concentration, representing 20 % loss of cell viability after 48 h of compound exposure, 
was determined. In red: compounds that are associated with increased risk of hepatotoxicity at therapeutic 
doses; in green: non-hepatotoxic compounds. Each compound was tested in 3 individual experiments. The x-
axis shows the concentration at which the viability decreased by 20 % (IC20) in vitro whereas the y-axis gives 
the peak plasma concentration of therapeutic doses in vivo. The peak plasma concentration of each compound 
is shown as a concentration range. Values on the x-axis represent the IC20 values of 3 individual experiments, 
the mean value by enlarged symbols with the estimated confidence intervals. The line indicates identical con-
centrations of the IC20 in vitro and the therapeutic range in vivo. 

 
The line represents identical concentrations of doses with a therapeutic effect in vivo and 

20 % loss of viability in vitro. Ideally, compounds which are associated with a high risk of 

hepatotoxicity at therapeutic doses cluster close to the line. This is, for example, the case for 

valproic acid (VPA), nitrofurantoin (NFT) and phenylbutazone (PhB). The three compounds 

show cytotoxic effects in vitro at concentrations which correspond to critical concentrations 

in vivo, indicating that the cytotoxicity-based in vitro system precisely predicts hepatotoxic 

blood concentrations. 

The majority of hepatotoxic compounds cluster close to the line, whereas the non-

hepatotoxic compounds cluster apart. A clear cluster formation between the two groups of 

compounds was not observed. A few candidates, such as levofloxacin (LEV), labetalol (LAB) 

or propranolol (PPL) overlap among the two clusters. However, for some compounds, the 

cytotoxicity-based prediction system improves. Carbamazepine (CBZ), phenylbutazone (PhB), 

isoniazid (INAH), aspirin (ASP) and labetalol (LAB) of the hepatotoxic compounds show lower 

effect concentrations in vitro and shift closer to the ‘in vivo line’. Aspirin and labetalol were 

not captured by the biomarker analysis alone, but based on cytotoxicity data they cluster 

closer to the other hepatotoxic compounds. Similarly, the system was more sensitive for the 
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non-hepatotoxic compounds levofloxacin (LEV), famotidine (FAM), buspirone (BPR), melato-

nin (MEL) and chlorpheniramine (CHL). These compounds induced cytotoxic effects at lower 

concentrations at which the biomarkers were not induced, but these cytotoxic concentra-

tions are still far away from doses with a therapeutic effect. In contrast, the lowest cytotoxic 

concentration in vitro of valproic acid (VPA), ketoconazole (KC) and acetaminophen (APAP) is 

much higher than the biomarker-inducing concentration. Thus, the biomarker-based predic-

tion system is more sensitive for these hepatotoxic compounds. 

In summary, cytotoxicity data alone is not sufficient to predict human hepatotoxic blood 

concentrations. The two prediction systems based on biomarker expression and cytotoxicity 

data exhibit individual advantages for a subset of compounds. Some compounds show lower 

alert concentrations based on biomarker expression, others based on cytotoxicity data. To 

capture all compounds and to identify the lowest hepatotoxic concentration in vitro, the two 

readouts were combined. To improve the sensitivity of the prediction system, the in vitro 

alert concentration from the readout that gives the lower concentration was considered for 

further analysis. Based on either cytotoxicity data or biomarker induction, the lowest ob-

served effect concentration (LOEC) in vitro was identified. The LOEC in vitro for all com-

pounds in relation to peak plasma concentrations of a therapeutic dose in vivo is presented 

in Figure 3.20. The combination of the two readouts distinctly improves the prediction quali-

ty of the system. Hepatotoxic compounds cluster closer to the line, indicating that hepato-

toxic effects in vitro are observed at concentrations that are close to critical concentrations 

in vivo. Thus, distance between the two sets of compounds increases and a better clustering 

is achieved.  

A few candidates, such as levofloxacin (LEV), propranolol (PPL), labetalol (LAB) and hydroxyz-

ine (HYZ) remain in the overlap of the two clusters. For labetalol, the available biomarkers so 

far, as well as the cytotoxicity data, were not sufficient to predict hepatotoxicity in the range 

of therapeutic doses. Follow-up studies will focus on the data driven identification of further 

biomarkers, which allow a more precise prediction and a clustering of labetalol within the 

cluster of hepatotoxic compounds. However, the predominant clustering of the two groups 

of compounds demonstrates that the biomarker-based system with HepG2 cells represents 

already a promising tool to predict hepatotoxicity in vivo.  
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Figure 3.20: Prediction of hepatotoxic blood concentrations based on the lowest alert concentration (LOEC) in 
HepG2 cells. The LOEC corresponds either to the concentration where at least one of the selected marker 
genes was induced or to the concentration which was associated with a 20 % decrease of cell viability after 
48 h of compound exposure. In red: compounds associated with high risk for hepatotoxicity. In green: non-
hepatotoxic compounds. The line indicates identical concentration of the LOEC in vitro and the peak plasma 
concentration in vivo. 

 

3.2.3.2 Prediction of hepatotoxic blood concentrations in primary human hepatocytes 

In a next step, primary human hepatocytes were used for the biomarker-based in vitro mod-

el to predict human hepatotoxic blood concentrations. In contrast to the strongly dedifferen-

tiated HepG2 cells, the metabolic capacity in primary hepatocytes is predominantly main-

tained. Therefore, primary human hepatocytes have become the "gold standard" for evalu-

ating hepatotoxicity of drugs.  

The expression of the selected biomarker genes was analyzed in compound-exposed primary 

human hepatocytes and for each compound the lowest concentration of biomarker induc-

tion was identified. This alert concentration in vitro represents a significant increase of at 

least 2.5 fold change induction of at least one biomarker gene. Primilary results with cells 

from 1-3 individual donors revealed to which degree the biomarker-based in vitro system 

with primary human hepatocytes is able to predict human hepatotoxic blood concentrations 

(Figure 3.21).  
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Figure 3.21: The lowest alert concentrations of biomarker induction in exposed primary human hepatocytes 
are shown in relation to peak plasma concentrations of therapeutic doses in vivo. In red: compounds which are 
associated with increased risk of hepatotoxicity at therapeutic doses; in green: non-hepatotoxic compounds. 
The x-axis shows the lowest concentration of biomarker induction in vitro whereas the y-axis gives the peak 
plasma concentration of therapeutic doses in vivo. The peak plasma concentration of each compound is shown 
as a concentration range. Values on the x-axis represent lowest alert concentrations of 1-3 individual experi-
ments with cells from different donors; the median is highlighted in enlarged symbols. The line indicates identi-
cal concentrations of the biomarker inducing concentration and the in vivo relevant concentration. (n=1 for 
NIM, LAB, PPL, HYZ and MEL, n=2 for ASP, DFN, KC, NFT, PhB, CBZ, INAH, BPR, FAM, PMZ, CHL, CLON and LEV, 
n=3 for APAP, RIF and VPA). 
 

First results show that primary human hepatocytes represent a more sensitive in vitro sys-

tem because the compounds show hepatotoxic effects at lower concentrations. The majority 

of compounds cluster closer to the ‘in vivo line’ than it was observed in HepG2 cells. The 

biomarkers of hepatotoxicity were induced at concentrations that have a therapeutic effect. 

In this in vitro model, aspirin (ASP) and isoniazid (INAH) were also captured with the selected 

biomarkers and therefore cluster together with the other hepatotoxic compounds. Labetalol 

(LAB) still represents an outlier and is not captured with the set of biomarkers. Therefore, 

more suitable biomarkers have to be identified.  

As a second read out, Cell Titer Blue cytotoxicity tests were performed in primary human 

hepatocytes. The lowest cytotoxic concentration, representing 20 % loss of viability, was 

determined for each compound, in order to assess whether a clustering of the two sets of 

compounds is also possible based on cytotoxicity data (Supplemental Figure 7). So far, only a 

subset of compounds was tested in cells from 1-2 different donors, including acetaminophen 

(APAP), ketoconazole (KC), nitrofurantoin (NFT), diclofenac (DFN), rifampicin (RIF), valproic 

acid (VPA), nimesulide (NIM), labetalol (LAB), hydroxyzine (HYZ), famotidine (FAM), buspi-

rone (BPR) and melatonin (MEL) (Figure 3.22). The lowest cytotoxic concentration in culti-

vated primary hepatocytes was determined and compared to the concentration, which has a 
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therapeutic effect in vivo. In primary human hepatocytes, a clear separation and clustering 

of the two sets of compounds based on cytotoxicity data alone is not achieved, as well. 

Hepatotoxic compounds cluster closer to the ‘in vivo line’ than non-hepatotoxic compounds 

and show cytotoxic effects at concentrations that are close to therapeutic doses. The predic-

tion efficiency improves for nitrofurantoin (NFT), labetalol (LAB), diclofenac (DFN) and acet-

aminophen (APAP). For these compounds, cytotoxic alert concentrations in vitro were ob-

served at concentrations that are lower than biomarker-inducing concentrations. Similarly, 

the cytotoxicity-based prediction system is more sensitive for the non-hepatotoxic com-

pounds famotidine (FAM), propranolol (PPL) and melatonin (MEL). A risk of hepatotoxicity is 

detected at lower concentrations in vitro, but these alert concentrations are still much high-

er than concentrations that have a therapeutic effect in vivo. 

 

 

Figure 3.22: Prediction of toxic blood concentrations in primary human hepatocytes. Based on cell titer blue 
cytotoxicity data, the lowest cytotoxic concentration, representing 20 % decrease of cell viability after 48 h of 
compound exposure, was determined. In red: compounds which are associated with increased risk of hepato-
toxicity at therapeutic doses; in green: non-hepatotoxic compounds. The x-axis shows the concentration of 20% 
loss of viability in vitro whereas the y-axis gives the peak plasma concentration of therapeutic doses in vivo. The 
peak plasma concentration of each compound is shown as a concentration range. Values on the x-axis repre-
sent the IC20 values of 1-2 individual experiments, the mean value in enlarged symbols with the estimated 
confidence interval. The line indicates identical concentrations of the IC20 in vitro and the therapeutic range in 
vivo. 

 

In contrast to the biomarker-based prediction model, the cytotoxicity-based system is less 

sensitive for rifampicin (RIF), ketoconazole (KC), acetaminophen (APAP) and valproic acid 

(VPA). These compounds showed no cytotoxic effects in vitro at concentrations that resem-

ble critical concentrations in vivo. Cytotoxic effects occur at higher concentrations only 
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which are already in a slightly cytotoxic range. Similarly as observed in HepG2 cells, the pre-

diction system becomes more sensitive when the two readouts were combined, both bi-

omarker expression and cytotoxicity assays (Figure 3.23). With the lowest observed effect 

concentrations (LOECs), hepatotoxic compounds cluster closer to the ‘in vivo line’ and the 

prediction efficiency improves. The majority of hepatotoxic compounds showed hepatotoxic 

effects in vitro at concentrations that correspond to in vivo relevant concentrations with an 

increased risk of hepatotoxicity. For these compounds, the test system predicts a risk of 

hepatotoxicity in vivo. However, the data represent preliminary results, because cytotoxicity 

data is not yet available for all compounds and biomarker expression, as well as cytotoxicity 

has not been analyzed in three independent experiments yet. In case of aspirin (ASP), phe-

nylbutazone (PhB), carbamazepine (CBZ), isoniazid (INAH), chlorpheniramine (CHL), clonidine 

(CLON), levofloxacin (LEV), propranolol (PPL) and promethazine (PMZ) the LOEC corresponds 

to the biomarker inducing concentration. Levofloxacin is not recognized by the biomarkers 

up to the tested concentration, therefore it clusters apart.  

 

Figure 3.23: Prediction of hepatotoxic blood concentrations based on the lowest alert concentration in vitro 
(LOEC) in primary human hepatocytes. The LOEC corresponds either to the concentration where at least one of 
the selected marker genes was induced or to the concentration which was associated with loss of 20 % cell 
viability after 48 h of compound exposure. In red: compounds associated with high risk for hepatotoxicity. In 
green: non-hepatotoxic compounds. The line indicates identical concentration of the LOEC in vitro and the peak 
plasma concentration in vivo. For ASP, PhB, CBZ, INAH, CHL, CLON, LEV, PPL and PMZ cytotoxicity data is still in 
progress, here the LOEC represent the biomarker inducing concentration. 
 

Compared to HepG2 cells (Figure 3.20), primary human hepatocytes represent the more 

sensitive in vitro model to predict hepatotoxic blood concentrations. The compounds show 

lower LOECs, indicating that a risk of hepatotoxicity would be detected at lower concentra-

tions. This is especially the case for the compounds ketoconazole (KC), rifampicin (RIF), phe-
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nylbutazone (PhB), valproic acid (VPA) and carbamazepine (CBZ), which cluster directly on 

the ‘in vivo line’. For these compounds, the biomarker- and cytotoxicity-based in vitro model 

represents a promising tool that precisely predicts blood concentrations, which are associat-

ed with an increased risk of hepatotoxicity in vivo. Similarly, nimesulide (NIM), isoniazid 

(INAH), aspirin (ASP) and diclofenac (DFN) cluster closer to the line in primary human 

hepatocytes than in HepG2 cells. The prediction of hepatotoxic blood concentrations for 

these compounds fluctuates within an error range of factor 5-25. Despite hepatotoxic blood 

concentrations of non-hepatotoxic compounds are far above therapeutic doses, the sensitiv-

ity of the prediction system also improves for some non-hepatotoxic compounds, such as 

buspirone (BPR) and clonidine (CLON). 

Considering biomarker expression and cytotoxicity data individually, the so far available bi-

omarkers capture all hepatotoxic compounds except for labetalol (LAB). A precise prediction 

of hepatotoxic blood concentration based on the biomarkers alone is achieved for rifampic-

in, ketoconazole, valproic acid, acetaminophen, nimesulide and carbamazepine, whereas the 

prediction for the other hepatotoxic compounds fluctuates within an error range of factor 

100-1000. For these compounds, the situation improves when including the cytotoxicity da-

ta. However, cytotoxicity data alone does not achieve a clear cluster formation of the two 

groups of compounds. The combination of the two readouts improves the prediction sensi-

tivity for the hepatotoxic, as well as non-hepatotoxic compounds and a risk of hepatotoxicity 

is detected at lower concentrations. Combining the biomarker and cytotoxicity-based predic-

tion system, the two groups of compounds cluster mainly apart from each other in HepG2 

cells (Figure 3.20) and even more so in primary human hepatocytes (Figure 3.23). Even some 

idiosyncratic hepatotoxic compounds, such as nimesulide, were identified and differentiated 

from non-hepatotoxic compounds, such as clonidine and buspirone. Although the in vitro 

prediction system presented is still in a developmental stage, preliminary results indicate 

that both systems are suitable to predict human hepatotoxic blood concentrations, at least 

within a certain error range.  
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4 Discussion 

4.1 Establishment of a toxicogenomics directory for compound exposed 

hepatocytes 

An overall goal for safety evaluation and human health risk assessment is the prediction of 

hepatotoxicity in vivo based on in vitro data. In recent years, numerous research groups have 

focused on the identification and development of biomarkers of hepatotoxicity, which can 

be applied in in vitro systems. In this context, the use of a genomics approach to identify 

patterns of changes in mRNA transcripts, referred to as toxicogenomics, has gained in popu-

larity (Yang et al. 2012). Genomic biomarkers may be more reliable and sensitive than con-

ventional morphological or serum markers, making it possible to detect hepatotoxicity at 

low doses and during the early stages of drug exposure (Pfannkuch et al., 2014).  Tran-

scriptomics data from rodent liver and cultivated hepatocytes are frequently used to identify 

novel candidate genes for further evaluation, and to elucidate the molecular mechanisms of 

drug-induced liver injury (Mendrick and Schnackenberg 2009; Shi et al. 2010). Several 

emerging data bases, such as DrugMatrix, diXa and Open TG-GATEs comprise genome wide 

expression data from in vivo animal studies, as well as from cultivated hepatic cell lines and 

primary hepatocytes, where hundreds of chemicals have been tested (Jiang et al. 2015). 

However, a comprehensive analysis summarizing the key features of chemically-influenced 

gene expression has not yet been performed. To establish a systematic strategy for the iden-

tification of potential biomarker genes, the first part of this thesis focuses on the definition 

of key principles of global gene expression alterations, by utilizing genome wide expression 

data from the Open TG-GATES database. The database comprises Affymetrix files from the 

analysis of cultivated, primary human hepatocytes that were exposed to 158 chemicals for 

different time points and different concentrations (Igarashi et al. 2015). Furthermore, micro-

array data sets investigating global gene expression changes in human liver diseases were 

acquired from public data repositories. Before analyzing the structure of chemically-induced 

gene expression alterations, a set of curation steps was performed to improve the reliability 

of the underlying data. Based on the optimized dataset, a toxicotranscriptomics directory 

was developed and is now publically available (http://wiki.toxbank.net/toxico-genomics-

map/). For each gene, the following questions were addressed: 

 

(i) Are there alterations in gene expression by chemicals, and if yes, which class of 

compound and how many compounds induced a change in expression? 

(ii) Is the gene also altered in human liver diseases, which implies a potential func-

tion in vivo? 

(iii) Is the change in gene expression influenced by the hepatocyte isolation and culti-

vation procedures? 
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(iv) What is the function of the gene? Is there available evidence of its involvement in 

some toxic mechanism? 

In the following paragraphs, the stepwise development of the toxicogenomics directory, as 

well as the strategy for biomarker identification will be discussed.  

 

4.1.1 Stereotypic versus compound specific gene expression alterations and detec-

tion of biological motifs 

When developing predictive biomarkers of hepatotoxicity derived from gene expression pro-

files of compound-exposed hepatocytes, it is necessary to know whether the expression of 

the gene is frequently altered by any kind of hepatocellular stress or whether the observed 

deregulation can be attributed to a very specific compound. Chemically-induced stress by 

exposure of cells to compounds at a cytotoxic concentration results in the differential ex-

pression of a certain amount of genes as a stereotypical response. This response is inde-

pendent of the toxic mode of action of the compounds and should be differentiated from 

compound-specific effects. A first overview of stereotypical versus compound-specific gene 

expression effects was obtained using an unsupervised cluster analysis, which was per-

formed based on the 100 most deregulated probe sets across all compounds. This analysis 

identified clusters of genes that are deregulated by many compounds (Figure 3.11). Clusters 

of up regulated genes were for example, associated with cellular stress or metabolic activity 

via cytochrome P450 enzymes; whereas, a cluster of proliferation-associated genes was 

found to be strongly down regulated. Similarly, chemically-induced patterns of gene expres-

sion were identified by cluster analysis based on the 100 genes with the highest variability 

(Krug et al. 2013; Waldmann et al. 2014). In addition to providing an overview of the biologi-

cal motifs altered by chemical exposure, this kind of analysis helps to identify interesting 

candidate genes for further evaluation.   

In order to systematically distinguish between stereotypic and compound-specific gene ex-

pression alterations, the selection value (SV) concept was introduced. For example, SV (x), 

delivered a ranked list of genes that were at least three fold up or down regulated by at least 

x compounds. For the identification of stereotypical gene expression alterations, the SV 20 

genes were considered. The expression of these genes was at least three fold up or down 

regulated by at least twenty compounds. Analysis of the proportion of compounds contrib-

uting to the deregulation of the 100 most up and down regulated genes revealed that only 

32 compounds were responsible for the 100 most up regulated genes and only 23 com-

pounds for the 100 strongest down regulations (Figure 3.5 and Figure 3.6). For this reason, 

twenty compounds represent a relatively large fraction to define stereotypical gene expres-

sion responses.  Twenty-two annotated genes (31 probe sets) were identified for the SV 20 

up regulated genes (Table 3.7 A). These genes are associated with biological functions such 

as phase I and II metabolism of xenobiotics, energy and lipid metabolism, development and 
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differentiation, protein processing, as well as stress response. One hundred and seventy nine 

probe sets (74 annotated genes) were down regulated upon chemically-induced stress 

(Table 3.7 B). Most of these genes are associated with cell cycle progression; however, oth-

ers belonged to biological motifs such as DNA repair and synthesis, immune response, cyto-

skeleton, metabolism and intracellular trafficking. Since these SV 20 genes were found to be 

deregulated by many compounds and cover a broad range of biological motifs, they repre-

sent interesting candidates for biomarker genes. Although specific toxic mode of actions 

might not be covered by these genes, they capture a wide spectrum of compounds and are 

indicative of many types of cellular stress.  

In contrast to these stereotypic gene expression alterations, compound-specific effects and 

defined toxic mechanisms were identified with the SV 3 genes, which are genes showing at 

least a threefold up or down regulation in expression by at least three chemicals. Although 

more individual effects could potentially be obtained by considering up or down regulated 

genes of single compounds (SV 1 genes), the risk of false positive results is relatively high 

due to the low number of available replicates. A compromise between reliability and indi-

viduality is given when considering gene expression alterations observed by at least three 

compounds. The SV 3 genes can be attributed to various biological functions, such as energy 

and lipid metabolism, the inflammatory and immune response, development and differenti-

ation, protein modification and degradation, transcriptional regulation, endogenous and 

xenobiotics metabolism, cytoskeleton, transport, stress response and apoptosis (Table 3.8 A 

and B). SV 3 genes are included in the list of SV 20 genes, but cover an even more diverse 

pattern of biological motifs. These genes might be helpful in identifying specific toxic mech-

anisms that underlie the hepatotoxicity of a particular compound.  

 

4.1.2 Overlap with human liver disease genes 

As previously reported one challenge, when extracting biomarker candidates from tran-

scriptomics data, is that compound-induced effects observed in in vitro systems are not au-

tomatically representative for the situation in the human liver (Kienhuis et al. 2009). There-

fore, the toxicogenomics directory also considers whether a gene deregulated by chemicals 

in vitro, is also indicative of a disturbed situation in the human liver in vivo. For this purpose, 

genome wide expression data from liver tissue samples of patients suffering from liver dis-

eases such as hepatocellular carcinoma (HCC), cirrhosis or non-alcoholic steatohepatitis 

(NASH) were used to identify genes that overlap with chemically-induced expression altera-

tions in vitro. Such an overlap would indicate that the gene has some in vivo relevance, and 

decreases the probability that the chemically-induced effect observed in vitro is just an in 

vitro artifact. The directory also provides information as to whether the gene is altered in the 

same direction in human liver diseases. SV 20 genes which are altered by many compounds 

in vitro as well as in human liver diseases, represent the most interesting candidates for bi-

omarkers. Overlapping candidates between the two sets of up regulated genes include the 

regulator of cell cycle (RGCC) and sulfotransferase 1C2 (SULT1C2). The major function of the 
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latter phase II enzyme is the sulfonation of endo- and xenobiotic compounds, thus facilitat-

ing their excretion (Alnouti and Klaassen 2006). SULT1C2 is not expressed in the adult human 

liver, but is predominantly found in the developing fetus, implicating a role in developmental 

physiology (Stanley et al. 2005). Therefore, SULT1C2 expression might reactivate a fetal ex-

pression pattern as a stereotypical response in vivo and in vitro. Sulfonation protects against 

numerous potentially toxic drugs and chemicals; therefore the activation of this detoxifica-

tion system by the up regulation of SULT1C2 expression may be a direct consequence of 

chemical exposure (Blanchard et al. 2004; Coughtrie 2002). In addition, sulfonation can also 

yield unstable electrophilic species, which lead to the formation of protein and DNA adducts, 

or which bind to other macromolecules, resulting in features that are reminiscent of a dis-

eased liver (Glatt et al. 1998).  

RGCC is also up regulated by chemicals in vitro and in liver tissue from patients suffering 

from NASH and cirrhosis. This gene is a direct target of p53 in different human cells and is 

induced in response to DNA damage (Saigusa et al. 2007). RGCC regulates cell cycle by 

modulating the expression and activation of cyclins and cyclin dependent kinases (An et al. 

2009; Badea et al. 2002). Previous studies reported on its induction by hypoxia, showing that 

p53 is activated upon any form of cellular stress (An et al. 2009).  

A strong overlap was observed for a number of down regulated genes between chemically 

deregulated SV 20 genes and liver disease genes. This list of overlapping genes comprises for 

example the aldehyde dehydrogenase (ALDH) family members, ALDH8A1 and ALDH4, phos-

phoenolpyruvate carboxykinase 1 (PCK1), and carbamoyl phosphate synthase 1 (CPS1). 

ALDH8A1 encodes a retinal dehydrogenase isoenzyme, which converts all-trans and 9-cis 

retinol to all-trans and 9-cis retinoic acid (Lin and Napoli 2000). The latter is the major ligand 

of the retinoic acid receptor (RAR) and retinoic X receptor (RXR). RXR represents one of the 

key transcription factors in hepatocellular gene expression and plays a pivotal role in the 

metabolism of xenobiotics in vivo (Cai et al. 2002). ALDH8A1 is down regulated in NASH, cir-

rhosis and HCC, indicating possible pathophysiological relevance. In contrast, the second 

aldehyde dehydrogenase family member among the down regulated SV 20 and liver disease 

genes, ALDH4, is a mitochondrial matrix enzyme with various substrates from numerous en-

dogenous and exogenous precursors (Kimura et al. 2009). ALDH4 was reported to be a nega-

tive regulator of p53-induced apoptosis (Yoon et al. 2004), and its down regulation in chemi-

cally-treated cells, as well as during liver diseases, may indicate that there is a shift in the 

balance from cell survival to death. 

Phosphoenolpyruvate carboxykinase 1 (PCK1) catalyzes the conversion of oxaloacetate to 

phosphoenol pyruvate, the rate limiting step in gluconeogenesis that produces glucose from 

lactate and other precursors derived from the citric acid cycle (Beale et al. 2007). A decrease 

in PCK1 activity due to chemical exposure or liver disease may result in reduced gluconeo-

genesis. The susceptibility of this gene to cellular stress was, for example, shown in severe 

sepsis, where PCK1 activity significantly decreased leading to deregulated gluconeogenesis 

(Feingold et al. 2012). Previous studies have shown that inflammation in several tissues is 

also associated with decreased PCK1 expression (Feingold et al. 2012). 
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CPS1 (carbamoyl phosphate synthase 1) is a mitochondrial, liver specific, rate-limiting en-

zyme in the urea cycle and has a pivotal role in ammonia detoxification (Weerasinghe et al. 

2014). The encoding gene is down regulated in liver diseases, as well as by a large number of 

chemicals. Previous studies reported that CPS1 protein is most readily secreted from 

stressed hepatocytes, for example, in the case of acetaminophen intoxication, under septic 

conditions, or from apoptotic hepatocytes (Weerasinghe et al. 2014). Therefore, CPS1 is a 

potential serum marker for detecting mitochondrial injury of the liver. CPS1 is decreased in 

stressed hepatocytes, due to both a down regulation at the transcriptional level, as well as 

secretion of the protein itself. However, a mechanistic link between this outward transfer 

and liver injury phenotype is not known. 

Altered gene expression – either as a stereotypical response to chemicals or in human liver 

diseases, may serve as markers of an unhealthy liver. These deregulations are not compound 

specific but can result from numerous forms of liver injury. Approximately 20 % of the chem-

ically-induced gene expression alterations in hepatocytes in vitro overlap with the fraction of 

genes that is deregulated in liver diseases. These genes are promising biomarker candidates, 

because a certain in vivo relevance can be assumed. The remaining 80 % are not altered in 

liver diseases, and may rather be representative of more chemically-specific mechanisms of 

toxicity. Further studies will be required to the functional relevance of these genes in vivo.  

 

4.1.3 Unstable baseline genes 

One limitation when using cultivated primary hepatocytes for toxicogenomics studies is that 

the hepatocyte isolation and cultivation procedures already induce strong gene expression 

changes. Genome wide analysis of cultivated primary hepatocytes revealed that the liver 

cells undergo massive gene expression alterations within the first 24h of cultivation (Zellmer 

et al. 2010). This “noisy background” may interfere with chemically-induced gene expression 

alterations. Genes, which are altered in the same direction by the hepatocyte isolation and 

cultivation procedure, as well as a consequence of chemically-induced stress, should be con-

sidered with caution, as they tend to be unsuitable as biomarker candidates. For this reason, 

the toxicogenomics directory also provides information on whether a gene is deregulated by 

the hepatocyte isolation and cultivation procedures. These unstable baseline genes may be 

useful biomarkers, but time-matched untreated controls are then crucial to avoid misinter-

pretation of the data. 
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4.2 Application of the toxicogenomics directory: Identification of biomarker 

candidate genes and their potential to predict human hepatotoxic blood 

concentrations. 

Having established a toxicogenomics directory which summarizes key features of compound- 

exposed hepatocytes, the second part of this thesis focusses on the identification of predic-

tive biomarkers and on their suitability to predict human hepatotoxicity in vivo. In a pilot 

study, a biomarker-based in vitro system was developed which discriminates between hepa-

totoxic and non-hepatotoxic compounds, and predicts blood concentrations that are associ-

ated with an increased risk of hepatotoxicity in humans. The novelty and strength of this 

study are based on two aspects: First, the prediction model represents a human based test 

system, which not only allows for toxicity evaluation in vitro, but also forges a link to the 

human in vivo situation. The model can also be used to analyze the expression of genes that 

are induced as a consequence of chemically-induced stress in vitro, in addition to those that 

are deregulated in human liver diseases, such as NASH, cirrhosis and HCC. Second, the model 

facilitates the prediction of hepatotoxic blood concentrations in humans in vivo by compar-

ing critical concentrations in vitro to in vivo blood concentrations where a therapeutic effect 

was observed. If a compound induces hepatotoxic effects in vitro within the range of in vivo 

therapeutic concentrations, the risk of hepatotoxicity in vivo is increased. For the develop-

ment of the prediction model the following strategy was applied:  

1) Identification of predictive biomarkers of toxicity based on the previously described 

toxicogenomics directory. 

2) Selection of two sets of compounds for testing the predictability of the biomarkers: a) 

set of hepatotoxic compounds, which are associated with an increased risk of hepato-

toxicity when administered at therapeutic doses, and b) a set of non-hepatotoxic com-

pounds. Ideally, the selected biomarker genes discriminate between hepatotoxic and 

non-hepatotoxic compounds. 

3) Identification of in vivo relevant concentrations. For all compounds, a literature search 

was performed to identify peak plasma concentrations at therapeutic doses. If critical 

concentrations in vitro resemble concentrations with a therapeutic effect in vivo, the 

compound has a high risk of hepatotoxicity. 

4) Identification of critical concentrations in vitro. Compound-induced biomarker expres-

sion in HepG2 cells and primary human hepatocytes was analyzed using a range of con-

centrations covering the peak plasma concentration in vivo and increasing up to slightly 

cytotoxic concentrations. For all compounds, the lowest observed effect concentrations 

that induced expression of the biomarker genes, in addition to those that caused cyto-

toxic effects were identified. 

5) Prediction of hepatotoxic blood concentrations. Human in vitro as well as in vivo data 

were integrated into a model that estimates non protein bound plasma concentrations 

associated with an increased risk of human hepatotoxicity. 
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The development of predictive biomarkers of hepatotoxicity derived from gene expression 

profiles of compound-exposed hepatocytes is challenging, and a number of criteria need to 

be fulfilled. Ideally, biomarker genes of toxicity are indicative of many types of cellular stress, 

and therefore strongly respond to a large number of different chemicals when tested at a 

relatively high concentration. Nevertheless, different compounds may induce different forms 

of liver injury and act via various mechanisms of toxicity, which in turn could result in unique 

gene expression profiles. In order to cover a broad spectrum of chemicals, the focus should 

not be on single genes, but rather on a set of biomarker genes that are involved in different 

biological functions, which cover the most relevant toxic mechanisms of action.  

In the present study, potential biomarker candidate genes were identified with the help of 

the previously established toxicogenomics directory. According to the aforementioned strat-

egy, seven biomarker candidate genes were selected to predict human hepatotoxicity (Table 

3.19): the cytochrome P450 isoenzymes CYP1B1 and CYP3A7, the phase II metabolism en-

zyme sulfotransferase SULT1C2, glucose-6-phosphate dehydrogenase (G6PD), the cytoskele-

ton component tubulin 2b (TUBB2B), regulator of cell cycle (RGCC), and the proteasomal 

degradation factor, Fbxo32. Enzymes belonging to the cytochrome P450 family metabolize a 

variety of environmental and xenobiotic toxicants, thereby playing important roles in the 

detoxification and clearance of toxic compounds. For this reason, the expression levels of 

these enzymes are often used to predict potential problems with compound metabolism or 

drug-drug interactions (Cheng et al. 2011).  In this study, the expression of the two isoen-

zyme biomarker candidate genes, CYP3A7 and CYP1B1 was deregulated after treatment of 

five out of ten hepatotoxicants (namely rifampicin, ketoconazole, valproic acid, phenylbuta-

zone and carbamazepine), and could therefore be used to discriminate between hepatotoxic 

and non-hepatotoxic compounds. Since the hepatotoxicity observed in vitro occurred at 

concentrations that correspond to critical concentrations in vivo, it could be concluded that 

these two biomarkers are able to correctly predict blood concentrations that are associated 

with an increased risk of hepatotoxicity. The CYP3A subfamily accounts for as much as 30 % 

of total liver cytochrome P450 content, and metabolizes at least 50 % of all drugs (Burk et al. 

2002). CYP3A7 is predominantly expressed in the fetal human liver; therefore, its induction 

by chemicals, as well as in human liver diseases suggests that under these conditions, the 

liver regresses to a fetal expression pattern (Burk et al. 2002; Pang et al. 2012). Like CYP3A7, 

CYP1B1 is also expressed at low levels in healthy human liver. It is transcriptionally regulated 

by the aryl hydrocarbon receptor, which regulates biological responses to a variety of chemi-

cals. It was also found to be important for fetal liver development (Hakkola et al. 1997; 

Lahvis et al. 2000). 

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme involved in energy and lipid me-

tabolism in the liver. It catalyzes the rate-limiting step of the oxidative pentose-phosphate 

pathway and provides reducing power in the form of NADPH, and pentose phosphates for 

fatty acid and nucleic acid synthesis (Hu et al. 2014; Wang et al. 2014). Due to its essential 

role in the oxidative stress response by producing the main intracellular reductant NADPH, 

G6PD is considered a guardian of cellular redox potential during oxidative stress (Filosa et al. 

2003). Its expression is also strongly induced in many cancers, as well as in compound-
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exposed hepatocytes. Consequently, G6PD is considered as a relevant biomarker for the 

identification of compounds that interfere with hepatic energy homeostasis, as well as those 

that disturb the redox potential of the cell. Another protein involved in the cellular stress 

response is the gene product of the suggested biomarker gene Fbxo32. Fbxo32 is a direct 

target of the transcription factor, FOXO3, which upregulates genes involved in the ubiquitin-

proteasome system (Webb and Brunet 2014). Proteins, which might have accumulated in 

response to hepatocellular injury, are polyubiquitinated by Fbxo32 for proteasomal degrada-

tion (Cleveland and Evenhuis 2010). Fbxo32 was further described as a novel cell death regu-

lator, as a mediator of drug-induced apoptosis, and a disrupter of the pro-survival PI3K/Akt 

pathway (Li et al. 2007; Stitt et al. 2004; Tan et al. 2007).   

Further studies have shown that there are additional classes of genes that are highly predic-

tive of hepatotoxicity, such as inflammatory genes or genes encoding proteins involved in 

DNA repair mechanisms (Cheng et al. 2011). The seven biomarkers identified in the current 

study cover the toxicological motifs energy and lipid metabolism, metabolism of xenobiotics, 

cytoskeleton, cell cycle and protein degradation. In order to test, whether these genes are 

able to predict human hepatotoxicity, two sets of compounds were applied: a set of hepato-

toxic compounds that pose a high risk of hepatotoxicity when administered at therapeutic 

doses, and a set of non-hepatotoxic compounds, which are considered harmless at doses 

providing a therapeutic effect. A summary of the hepatotoxic compounds and their suggest-

ed hepatotoxic mechanism of action are presented in Table 3.14. 

All selected candidate genes represent a set of highly predictive biomarkers, which are able 

to discriminate between hepatotoxic and non-hepatotoxic compounds at given concentra-

tions. In the case of hepatotoxic compounds, the biomarker based in vitro system identifies 

hepatotoxic effects at concentrations within in the range of therapeutic blood concentra-

tions that induced a hepatotoxic effect in vivo. In contrast, non-hepatotoxic compounds ex-

hibit hepatotoxic effects only at concentrations that are already within a toxic range and 

several factors higher than an in vivo therapeutic dose.  

In primary human hepatocytes, the biomarker and cytotoxicity data based discrimination of 

the two sets of compounds has been successfully done (Figure 3.23). The in vitro model is 

applicable for a number of hepatotoxic compounds, such as the anticonvulsant valproic acid, 

and the analgesic acetaminophen, as it precisely predicts the blood concentration that is 

associated with human hepatotoxicity. Valproic acid is an anti-epileptic agent with a well-

characterized toxicity profile. In approximately 0.1 % of all patients, concentrations within a 

range of its therapeutic dose have been associated with increased risk of hepatotoxicity (En-

gel et al. 2007). VPA is primarily metabolized in the liver via glucuronidation and -oxidation 

(Sztajnkrycer 2002). Its hepatotoxic effect is caused by its interference of the -oxidation of 

endogenous lipids. VPA enters the mitochondria via the long chain fatty acid transport sys-

tem, which uses carnitine as a co-factor. VPA is first attached to coenzyme A (CoA) to form 

VPA-CoA. VPA-CoA is then esterified with L-carnitine to form VPA-carnitine ester, which is 

subsequently transported into the mitochondrial matrix by carnitine translocase in exchange 

for free carnitine. Conjugation of VPA to carnitines results in carnitine depletion, which in-
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hibits -oxidation of endogenous lipids. This results in the accumulation of fat, manifesting 

itself as microvesicular steatosis, and leads to mitochondrial dysfunction (Begriche et al. 

2011; Chitturi and George 2002; Sztajnkrycer 2002). Furthermore, VPA cytotoxicity is associ-

ated with increased formation of reactive oxygen species (Tong et al. 2005). With the bi-

omarker based in vitro model, VPA-induced hepatotoxicity is observed with in vitro concen-

trations that correspond to hepatotoxic concentrations in vivo. Similarly, the model correctly 

predicts toxic blood concentrations of acetaminophen. Acetaminophen is a classical dose 

dependent hepatotoxin and not hepatotoxic when administered at therapeutic doses. How-

ever, intoxication with this drug is responsible for almost 50 % of all acute liver failure cases 

in the Western world (Lee 2012). In humans, the risk of hepatotoxicity increases when blood 

concentrations exceed 1 mM (Winek et al. 2001). Based on the selected biomarkers of hepa-

totoxicity, the described in vitro model predicts exactly this concentration for human hepa-

totoxicity in vivo. 

The prediction model is sufficiently sensitive for the antibiotic agent rifampicin, the anti-

fungal drug ketoconazole, as well as for the non-steroidal anti-inflammatory drug (NSAID), 

phenylbutazone. It predicts hepatotoxicity at already very low concentrations, which are 

even lower than therapeutic doses. However, it cannot be excluded that hepatotoxic effects 

in humans in vivo already occur at lower concentrations. Lowest observed effect levels in 

vivo are only available for animal models, and cannot be determined for the human system.  

Correct evaluations of hepatotoxicity were further obtained for a number of non-

hepatotoxic compounds, such as the antihypertensive drug, clonidine or melatonin, which is 

administered to treat sleep disorders. With the biomarker based in vitro system, these com-

pounds are evaluated as harmless. Hepatotoxic effects could only be predicted for very high 

concentrations, which are several orders of magnitudes higher than a dose with a therapeu-

tic effect. The model is indeed promising as a prediction tool for many of the tested com-

pounds; however, it is not yet applicable to all analyzed compounds. It underestimates the 

risk of several hepatotoxic compounds, such as diclofenac or labetalol. Diclofenac is a NSAID 

drug that is used to treat arthritis, and moderate to acute pain. It was previously reported to 

induce severe idiosyncratic liver injury in approximately 1-5 of 100,000 patients (Chitturi and 

George 2002). The mechanism of hepatotoxicity is not fully understood, but the formation of 

toxic metabolites, as well as covalent binding to hepatic proteins leading to oxidative stress 

and mitochondrial impairment have been proposed (Bort et al. 1999; Ponsoda et al. 1995; 

Pandit et al. 2012). Labetalol-induced hepatotoxicity is exceedingly rare and the mechanism 

of hepatotoxicity is unknown. It is primarily metabolized in the liver, ant its metabolic prod-

ucts are thought to induce idiosyncratic drug reactions [3]. Therapeutic doses of diclofenac 

as well as labetalol are associated with an increased risk of liver injury, but the in vitro model 

only detects hepatotoxic effects at concentrations higher than those associated with hepato-

toxicity in vivo. Whereas hepatotoxic blood concentrations of diclofenac are in the range of 

4-5 µM, the in vitro model does not detect hepatotoxicity below a concentration of 400 µM 

(Kirchheiner et al. 2003; O'Brien et al. 2006). In case of labetalol, hepatotoxicity in vitro is 

detected at a concentration that is 1000-fold higher than the dose associated with a hepato-

toxic effect in vivo. One possible reason why the prediction model underestimates the risk of 
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labetalol hepatotoxicity may be that the expression of the selected biomarker candidate 

genes is not influenced by labetalol in vitro. Labetalol is the only compound in this study that 

did not induce any of the marker genes at any tested concentration in HepG2 cells, as well as 

primary human hepatocytes. The lowest observed effect concentration in vitro correspond-

ed to a cytotoxic concentration with 20 % loss of viability. A logical assumption is that gene 

expression alterations always occur prior to cytotoxic effects. Therefore, it is highly probable 

that the so far available biomarkers cannot account for possible mechanisms of toxicity in-

duced by labetalol. To enable a more precise prediction and to detect labetalol-induced 

hepatotoxicity at lower concentrations in vitro, a more sensitive set of biomarkers is re-

quired.  

Assuming that gene expression alterations always occur prior to cell killing events, the in 

vitro based model for the prediction of hepatotoxic blood concentrations would be most 

aptly based solely on biomarker expression. Although the seven biomarkers of hepatotoxici-

ty identified to date already cover the majority of known toxic modes of action, not all hepa-

totoxic compounds could be ascertained. Based on biomarker expression alone (Figure 3.21), 

the system is already very sensitive for the hepatotoxic compounds valproic acid, rifampicin, 

ketoconazole, acetaminophen and phenylbutazone. Nimesulide- and carbamazepine-

induced hepatotoxicity in vitro is detected in a concentration range that is tenfold higher 

than the dose that causes hepatotoxicity in vivo. Because of inter-individual susceptibilities 

among the different donors, predicting a hepatotoxic blood concentration that varies within 

a factor of 10 is still within an acceptable range. However, except for labetalol, hepatotoxic 

blood concentrations could not be precisely predicted for nitrofurantoin, diclofenac, isonia-

zid and aspirin. Biomarker inducing concentrations in vitro are a factor of 100-1000 higher 

than doses associated with hepatotoxicity in vivo. A more accurate prediction for these 

compounds is partially achieved using cytotoxicity data. However, although drug-induced 

cytotoxicity tests in vitro qualitatively support the potential for human toxicity in vivo, they 

were not quantitatively predictive. Prediction of hepatotoxicity based on the lowest cytotox-

ic concentration alone is much less sensitive than biomarker expression, and does not dis-

criminate between hepatotoxic and non-hepatotoxic compounds (Figure 3.22). Because the 

so far available biomarkers do not capture all hepatotoxic compounds, the lowest observed 

effect level from either biomarker induction or 20 % loss of viability are required to discrimi-

nate between the two sets of compounds. Follow up studies aim to identify further bi-

omarkers that are more sensitive and which can more precisely predict hepatotoxic blood 

concentrations in vivo. Data driven test system improvements will be performed to establish 

a set of suitable biomarkers covering all hepatotoxic compounds that will discriminate them 

from harmless drugs.  

The biomarker based in vitro system established in HepG2 cell line also discriminates be-

tween hepatotoxic and non-hepatotoxic compounds, albeit with less sensitivity than primary 

human hepatocytes (Figure 3.20). For a number of compounds, these cells predict hepato-

toxic alert concentrations in a concentration range that is much higher than doses associated 

with hepatotoxicity in vivo. The model underestimates the risk of hepatotoxicity for phenyl-
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butazone, isoniazid, rifampicin, nitrofurantoin and carbamazepine, compared to human pri-

mary hepatocytes, which more accurately predict toxicity. The reduced sensitivity in HepG2 

cells may be due to the limited metabolic capacity of these cells. HepG2 cells are highly de-

differentiated, but display many features of normal liver cells (Sassa et al. 1987). They ex-

press most of the liver specific enzymes (phase I and II metabolism) as well as a number of 

transcription factors, which are essential for drug metabolism and toxicity responses (Adachi 

et al. 2007; Hewitt and Hewitt 2004; Vollmer et al. 1999). However, the expression levels of 

almost all of these enzymes are much lower compared to primary human hepatocytes. Fur-

thermore, the number of differentially expressed genes in this cell line is comparatively low 

(Gerets et al. 2012; Guo et al. 2011; Westerink and Schoonen 2007). The metabolic compe-

tence of HepG2 cells limits the production of reactive metabolites, thus explaining possible 

differences in hepatotoxic effects observed in HepG2 cells and primary human hepatocytes. 

Differences in the metabolic capacity might for instance explain why prediction of hepato-

toxic blood concentrations were less sensitive for isoniazid in HepG2 cells compared to pri-

mary human hepatocytes. Isoniazid (INAH) is an antibiotic agent used to treat tuberculosis 

and is associated with idiosyncratic hepatotoxicity. About 1.6 % of patients taking INAH de-

velop liver injury, ranging from asymptomatic elevation of serum transaminases to hepatic 

failure requiring liver transplantation (Steele et al. 1991; Pandit et al. 2012). Isoniazid is 

cleared mostly by the liver, particularly by acetylation by the N-acetyltransferase 2 (NAT-2) 

(Saukkonen et al. 2006). NAT-2 acetylated INAH is further hydrolyzed via Cyp2E1 to acetyl-

hydrazine, which together with hydrazine, participates in reactions that generate oxidative 

stress [4] (Huang et al. 2003). Previous studies have shown that the key enzyme in INAH me-

tabolism, NAT-2, is not expressed in HepG2 cells, but in primary human hepatocytes and 

liver tissue (Guo et al. 2011; Husain et al. 2007). Reduced production of the toxic metabolite, 

hydrazine may explain why the HepG2-based in vitro model overestimates the hepatotoxic 

blood concentrations. 

A general limitation when using in vitro models to predict hepatotoxicity is that in vitro ob-

served effects might be attenuated or aggravated under conditions of in vivo exposure. Tox-

icities occurring at the organ level, such as cholestasis, cannot efficiently be predicted. This is 

also true for toxicities that arise due to the interaction of organs with the systemic circula-

tion, such as the immune and inflammatory response (O'Brien et al. 2006). In addition, drug 

properties, such as protein binding, transport and pharmacokinetic properties (ADME) are 

not fully modelled in in vitro systems. These limitations may provide a further explanation 

why there was no sensitive prediction of the hepatotoxic blood concentration for all hepato-

toxic compounds. Although the selected biomarkers cover a broad spectrum of toxicological 

motifs and indicate general hepatocellular stress, specific mechanisms of action might not 

have been captured. The in vitro system does not fully reflect the in vivo situation - for ex-

ample, interactions at the organ level or with the systemic circulation are missing. Therefore, 

the prediction model may not be able to accurately predict many different mechanisms of 

toxicity to the same degree. Nevertheless, previous studies have shown that in vitro systems 

are indeed useful to identify hepatotoxic compounds and enable a biomarker based predic-

tion of hepatotoxicity (Cheng et al. 2011; Fischer et al. 2015; Gomez-Lechon et al. 2010). 
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Likewise, the presented pilot study already revealed promising results and captured many 

compounds with different toxic mode of actions and different phenotypes of liver injury. In 

HepG2 cells, and even more sensitive in primary human hepatocytes, the biomarker based in 

vitro model discriminates between hepatotoxic and non-hepatotoxic compounds. In both 

cell systems, hepatotoxic effects in vitro are detected at concentrations that correspond to 

doses with a high risk of hepatotoxicity in vivo. This novel strategy allows the in vitro based 

prediction of human hepatotoxic blood concentrations for a large number of compounds – 

at least within a certain margin of error. Even some idiosyncratic hepatotoxic compounds, 

such as diclofenac and nimesulide were identified and distinguished from non-hepatotoxic 

compounds, such as buspirone and clonidine. This is especially remarkable, because most of 

the so far available test and prediction systems do not cover idiosyncratic hepatotoxic com-

pounds.  

With the selected biomarker set, the prediction model allows a rough estimation of whether 

a therapeutic dose of a novel compound would be associated with a high or a low risk of 

hepatotoxicity in vivo. The clustering within the set of hepatotoxic or the non-hepatotoxic 

compounds provides valuable knowledge, e.g. for ranking and prioritization of compounds in 

early drug development; and therefore, provides a potentially promising tool to assess a 

putative risk of hepatotoxicity for unknown compounds. In conclusion, the presented model 

provides a proof of concept for the use of an in vitro system to evaluate hepatotoxicity. 

However, further optimization steps are required because the prediction model still under-

estimates the risk of hepatotoxicity for some compounds. Follow-up studies will focus on the 

identification of further biomarkers, which enhances prediction and improves the prediction 

model. Validation with independent sets of compounds will include hepatotoxic agents, 

which are usually administered at comparatively low doses, as well as high-dosed non-

hepatotoxic compounds. Altogether, this approach will provide additional evidence that the 

prediction model works independently of concentration effects.  
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6 Appendix 

6.1 Supplemental figures: 
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 Supplemental Figure 1: Corresponding data to Figure 3.1 summarizing all further incubation condi-
tions besides the high concentration and 24h exposure already shown in Fig. 1. NA: A sample for this 
time point and concentration was not available. Low concentration, 2h, 8h and 24h incubation. 
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  Supplemental Figure 2: Corresponding data to Figure 3.1 summarizing all further incubation condi-
tions besides the high concentration and 24h exposure already shown in Fig. 1. NA: A sample for this 
time point and concentration was not available. Middle concentration, 2h, 8h and 24h incubation. 
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  Supplemental Figure 3: Corresponding data to Figure 3.1summarizing all further incubation condi-
tions besides the high concentration and 24h exposure already shown in Fig. 1. NA: A sample for this 
time point and concentration was not available. High concentration, 2h, 8h and 24h incubation. 
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Supplemental Figure 4: Compound induced biomarker expression in HepG2 cells. The presented values (rela-
tive expression fold changes) represent mean values that were calculated from 3-5 independent experiments. 
The error bars illustrate the standard deviation of the independent experiments. A gene was considered to be 
up regulated when crossing the threshold line, which illustrates a significant increase of at least 2.5 fold change 
induction. The presented figure shows exemplary the relative expression values for acetaminophen. The dia-
grams for all compounds are given in digital form on the attached CD. 
 

 

Supplemental Figure 5: Compound induced biomarker expression in primary human hepatocytes. The present-
ed values (relative expression fold changes) represent mean values that were calculated from 1-3 independent 
experiments. The error bars illustrate the standard deviation of the independent experiments. A gene was 
considered to be up regulated when crossing the threshold line, which illustrates a significant increase of at 
least 2.5 fold change induction. The presented figure shows exemplary the relative expression values for buspi-
rone. The diagrams for all compounds are given in digital form on the attached CD. 
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Supplemental Figure 6: Cell Titer blue cytotoxicity data for all compounds in HepG2 cells after 48 h of com-
pound exposure. The presented dose-response curves represent data of three independent experiments with 
three technical replicates each. The cell viability for each concentration is presented as normalized response 
data, representing the percentage of untreated controls. Gray symbols represent the viability values (fluores-
cence measurements) for each technical replicate normalized to untreated controls whereas black symbols 
show the mean values of all technical replicates for each concentration. The blue line indicates the concentra-
tion which causes 20 % loss of viability (red line). The dashed blue lines give the 95 % confidence intervals for 
this concentration. Estimated concentration values for 80 % viability are given in Supplemental Table 6. The 
presented diagram shows the cytotoxicity data for acetaminophen. Corresponding figures for all compounds 
are given in a digital form on the enclosed CD. 
  



Appendix 

133 
 

 

Supplemental Figure 7: Cell Titer blue cytotoxicity data for all compounds in primary human hepatocytes cells 
after 48 h of compound exposure. The presented dose-response curves represent data of 1-2 independent 
experiments with three technical replicates each. The cell viability for each concentration is presented as nor-
malized response data, representing the percentage of untreated controls. Gray symbols represent the viability 
values (fluorescence measurements) for each technical replicate normalized to untreated controls whereas 
black symbols show the mean values of all technical replicates for each concentration. The blue line indicates 
the concentration which causes 20 % loss of viability (red line). The dashed blue line gives the 95 % confidence 
interval for this concentration. Estimated concentration values for 80 % viability are given in Supplemental 
Table 7. The presented diagram shows the cytotoxicity data for nitrofurantoin. Corresponding figures for all 
compounds are given in a digital form on the enclosed CD. 

 

 

6.2 Supplemental tables 

Supplemental Table 1: Matrix of the tested compounds. The table gives full and abbreviated compound names 
as well as the concentration in µM (µg/mL, µg/kg) and the number of independent replicates of gene array 
data available after incubation with a low, middle and high concentration for 2h, 8h and 24h. This table is avail-
able only in digital form on the enclosed CD. 

Table S1 on CD 
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Supplemental Table 2: List of compounds that deregulate (2-fold up or down compared to control) less than 20 
genes in total (i.e. at the low, middle and high concentration). Compounds tested at only two concentrations 
were not considered here. A 2h, B 8h, C 24h. The term in brackets indicates the direction of the deregulation of 
the genes. 

A.  Compounds that up regulate genes  

after 2 hours of exposure  

Compounds that down regulate genes  

after 2 hours of exposure 

Abbreviation Compound name 
 

Abbreviation Compound name 

ADP adapin 

 

ADP adapin 

AM amiodarone 

 

AM amiodarone 

ANIT naphthyl isothiocyanate 

 

ANIT naphthyl isothiocyanate 

APAP acetaminophen 

 

ASA aspirin 

APL allopurinol 

 

AZP azathioprine 

ASA aspirin 

 

BBr benzbromarone 

AZP azathioprine 

 

BBZ bromobenzene 

BBZ bromobenzene 

 

CBZ carbamazepine 

CBZ carbamazepine 

 

CCL4 carbon tetrachloride 

CCL4 carbon tetrachloride 

 

CFB clofibrate 

CFB clofibrate 

 

CIM cimetidine 

CIM cimetidine 

 

CMA coumarin 

CMA coumarin 

 

CPA cyclophosphamide 

CPA cyclophosphamide 

 

CPZ chlorpromazine 

DFNa diclofenac 

 

DFNa diclofenac 

DZP diazepam 

 

ET ethionine 

ET ethionine 

 

FP fluphenazine 

FP fluphenazine 

 

FT flutamide 

GBC glibenclamide 

 

GBC glibenclamide 

GF griseofulvin 

 

GF griseofulvin 

GFZ gemfibrozil 

 

GFZ gemfibrozil 

HCB hexachlorobenzene 

 

HCB hexachlorobenzene 

HPL haloperidol 

 

HPL haloperidol 

IM indomethacin 

 

IM indomethacin 

INAH isoniazid 

 

KC ketoconazole 

KC ketoconazole 

 

LBT labetalol 

LBT labetalol 

 

LS lomustine 

LS lomustine 

 

MP methapyrilene 

MTS methyltestosterone 

 

MTS methyltestosterone 

NFT nitrofurantoin 

 

NFT nitrofurantoin 

PH perhexiline 

 

OPZ omeprazole 

PhB phenylbutazone 

 

PH perhexiline 

PHE phenytoin 

 

PhB phenylbutazone 

PTU propylthiouracil 

 

PHE phenytoin 

RIF rifampicin 

 

PTU propylthiouracil 

SS sulfasalazine 

 

RIF rifampicin 

TAA thioacetamide 

 

SS sulfasalazine 

TC tetracycline 

 

TAA thioacetamide 

TRZ thioridazine 

 

TC tetracycline 

WY WY-14643 

 

TRZ thioridazine 

   

WY WY-14643 
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B.  Compounds that up regulate genes  

after 8 hours of exposure  

Compounds that down regulate genes  

after 8 hours of exposure 

Abbreviation Compound name 
 

Abbreviation Compound name 

2NF 2-nitrofluorene 

 

2NF 2-nitrofluorene 

AAA acetamide 

 

AAA acetamide 

AM amiodarone 

 

AM amiodarone 

APL allopurinol 

 

APL allopurinol 

ASA aspirin 

 

ASA aspirin 

BBZ bromobenzene 

 

BBZ bromobenzene 

BDZ bendazac 

 

BDZ bendazac 

BSO buthionine sulfoximine 

 

BSO buthionine sulfoximine 

CBZ carbamazepine 

 

CBZ carbamazepine 

CCL4 carbon tetrachloride 

 

CCL4 carbon tetrachloride 

CFB clofibrate 

 

CFB clofibrate 

CIM cimetidine 

 

CIM cimetidine 

CMA coumarin 

 

CMA coumarin 

CPA cyclophosphamide 

 

CPA cyclophosphamide 

CPZ chlorpromazine 

 

CPZ chlorpromazine 

DEX dexamethasone 

 

CSA cyclosporine A 

FP fluphenazine 

 

DEX dexamethasone 

GaN galactosamine 

 

FP fluphenazine 

GBC glibenclamide 

 

GBC glibenclamide 

GF griseofulvin 

 

GF griseofulvin 

GFZ gemfibrozil 

 

GFZ gemfibrozil 

HCB hexachlorobenzene 

 

HCB hexachlorobenzene 

HPL haloperidol 

 

HPL haloperidol 

IM indomethacin 

 

IM indomethacin 

MTS methyltestosterone 

 

MTS methyltestosterone 

NMOR N-nitrosomorpholine 

 

NMOR N-nitrosomorpholine 

PHE phenytoin 

 

PhB phenylbutazone 

RIF rifampicin 

 

PHE phenytoin 

ROT rotenone 

 

RIF rifampicin 

SS sulfasalazine 

 

ROT rotenone 

TAA thioacetamide 

 

SS sulfasalazine 

TC tetracycline 

 

TAA thioacetamide 

TMD trimethadione 

 

TC tetracycline 

TRZ thioridazine 

 

TMD trimethadione 

TZM triazolam 

 

TRZ thioridazine 

WY WY-14643 

 

TZM triazolam 

   

WY WY-14643 
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C.  Compounds that up regulate genes  

after 24 hours of exposure  

Compounds that down regulate genes  

after 24 hours of exposure 

Abbreviation Compound name 
 

Abbreviation Compound name 

2NF 2-nitrofluorene 

 

AAA acetamide 

AAA acetamide 

 

AM amiodarone 

AM amiodarone 

 

ASA aspirin 

BBZ bromobenzene 

 

BBZ bromobenzene 

BSO buthionine sulfoximine 

 

BSO buthionine sulfoximine 

CFB clofibrate 

 

CCL4 carbon tetrachloride 

CIM cimetidine 

 

CFB clofibrate 

CMA coumarin 

 

CIM cimetidine 

GBC glibenclamide 

 

CMA coumarin 

GF griseofulvin 

 

GBC glibenclamide 

GFZ gemfibrozil 

 

GFZ gemfibrozil 

HCB hexachlorobenzene 

 

HCB hexachlorobenzene 

HPL haloperidol 

 

HPL haloperidol 

LS lomustine 

 

IM indomethacin 

NMOR N-nitrosomorpholine 

 

MTS methyltestosterone 

PHE phenytoin 

 

NMOR N-nitrosomorpholine 

ROT rotenone 

 

PHE phenytoin 

SS sulfasalazine 

 

RIF rifampicin 

TRZ thioridazine 

 

ROT rotenone 

   

SS sulfasalazine 

   

TAA thioacetamide 

   

TC tetracycline 

   

TZM triazolam 

   

WY WY-14643 

 

Supplemental Table 3: Progression error indices for each compound (for A the up- and B the downregulated 
genes) both the original as well as the modified progression profile error indicator values for the comparison of 
the low versus middle and middle versus high concentration for the three exposure periods 2h, 8h and 24h. 
The compounds that were excluded from further analyses due to their progression error profile are marked in 
red. This table is available only in digital form on the attached CD. 

bb  

Supplemental Table 4: The overlap between ‘differentially expressed liver disease genes’ and chemically de-
regulated genes in vitro, determined by the SV3 lists of differentially expressed genes. The lists of ‘differentially 
expressed liver disease genes’ (false discovery rate (FDR) adjusted p-value ≤ 0.05 and fold-change of at least 
1.3) results from the comparison of healthy human liver tissue to that of liver diseases. The SV3 (selection value 
3) list includes all probe sets where the 3rd highest ranked compound has a fold change of at least 3 at the 
highest tested concentration for the incubation period of 24h. The sheets list for A NASH (Non-alcoholic stea-
tohepatitis), B liver cirrhosis and C hepatocellular carcinoma the up- and down-regulated genes in the overlap. 
The genes can be identified by their Gene Symbol-ID. This table is available only in digital form on the attached 
CD. 

h 
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Supplemental Table 5: Concentrations used for the Cell Titer Blue cytotoxicity tests for all compounds.  

Compounds C1 C2 C3 C4 C5 Solvent 
Stock  

solution 

Final  

DMSO conc. 

Acetaminophen 316µM 1mM 3.16mM 10mM 31.6mM Medium     

Aspirin 316µM 1mM 3.16mM 10mM 31.6mM DMSO 6.32M 0.50% 

Buspirone 100µM 316µM 1mM 3.16mM 6.32mM Medium     

Carbamazepine 31.6µM 100µM 316µM 1mM 3.16mM DMSO 316mM 1% 

Chlorpheniramine 31.6µM 100µM 316µM 1mM 3.16mM Medium     

Clonidine 100µM 316µM 1mM 3.16mM 10mM Medium     

Diclofenac 31.6µM 100µM 316µM 1mM 3.16mM DMSO 316mM 1.00% 

Famotidine 100µM 316µM 1mM 3.16mM 10mM DMSO 1 M 1% 

Hydroxyzine 10µM 31.6µM 100µM 316µM 1mM Medium     

Isoniazid 1mM 3.16mM 10mM 31.6mM 100mM Medium     

Ketoconazole 3.16µM 10µM 31.6µM 100µM 316µM DMSO 63.2mM 0.50% 

Labetalol 3.16µM 10µM 31.6µM 100µM 316µM Medium     

Levofloxacin 100µM 316µM 1mM 3.16mM 10mM Medium     

Melatonin 100µM 316µM 1mM 3.16mM 10mM DMSO 1 M 1% 

Nimesulide 125µM 250µM 500µM 1mM 2mM DMSO 200mM 1% 

Nitrofurantoin 10µM 31.6µM 100µM 316µM 1mM DMSO 100mM 1% 

Phenylbutazone 31.6µM 100µM 316µM 1mM 3.16mM DMSO 632mM 0.50% 

Promethazine 10µM 31.6µM 100µM 316µM 1mM Medium     

Propranolol 30µM 40µM 60µM 80µM 100µM Medium     

Rifampicin 31.6µM 100µM 316µM 1mM 3.16mM DMSO 6.32M 0.20% 

Valproic acid 316µM 1mM 3.16mM 10mM 31.6mM Medium     
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Supplemental Table 6: Estimated concentrations causing 20 % loss of viability for all compounds in HepG2 
cells. The values were calculated based on the fitted dose-response curves (Supplemental Figure 6). 

 

Compound 
Concentration for 

80% viability [mM] 

concentration lower 95 % 

confidence interval [mM] 

concentration upper 95 % 

confidence interval [mM] 

Acetaminophen APAP 3.377 2.321 4.914 

Aspirin ASP 6.620 5.224 8.390 

Buspirone BPR 0.318 0.257 0.392 

Carbamazepine CBZ 0.416 0.275 0.630 

Chlorpheniramine CHL 0.090 0.083 0.099 

Clonidin CLON 0.816 0.672 0.991 

Diclofenac DFN 0.364 0.236 0.560 

Famotidine FAM 1.892 1.365 2.624 

Hydroxizine HYZ 0.053 0.029 0.095 

Isoniazid INAH 2.582 0.558 11.953 

Ketoconazole KC 0.052 0.039 0.069 

Labetalol LAB 0.020 0.009 0.043 

Levofloxacine LEV 0.322 0.247 0.421 

Melatonin MEL 2.986 1.128 7.900 

Nitrofurantoin NFT 0.011 0.004 0.027 

Nimesulide NIM 0.246 0.196 0.308 

Phenylbutazone PhB 0.216 0.158 0.294 

Promethazine PMZ 0.026 0.022 0.031 

Rifampicin RIF 1.198 0.431 3.332 

Valproic acid VPA 1.482 1.010 2.174 
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Supplemental Table 7: Estimated concentrations causing 20 % loss of viability for all compounds in primary 
human hepatocytes. The values were calculated based on the fitted dose-response curves (Supplemental Fig-
ure 7). 

Compound 
Concentration 

for 80% viability [mM] 

concentration lower 95 % 

confidence interval [mM] 

concentration upper 95 % 

confidence interval [mM] 

Acetaminophen APAP 0,92 0,82 1,03 

Buspirone BPR 0,84 0,70 1,01 

Diclofenac DFN 0,23 0,18 0,29 

Famotidine FAM 3,69 0,02 724,58 

Hydroxizine HYZ 0,09 0,06 0,15 

Ketoconazole KC 0,04 0,03 0,06 

Labetalol LAB 0,08 0,00 46,84 

Melatonin MEL 8,34 0,03 2283,82 

Nitrofurantoin NFT 0,04 0,03 0,04 

Nimesulide NIM 1,23 0,49 3,10 

Rifampicin RIF 0,50 0,26 0,94 

Valproic acid VPA 27,09 6,97 105,22 
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Supplemental Table 8: Raw data for gene expression quantification in HepG2 cells. This list gives the Ct values, 
which the calcualtion of expression fold changes is based on. Samples were obtained from 3-4 independent 
experiments; for each experiment 5 different concentrations plus untreated controls were tested. Each sample 
was measured in 2-4 technical replicates. Relative expression of the 7 biomarker genes was determined by 
normalization to the expression of the housekeeping gene GAPDH and in relation to untreated controls. The 
presented list in this printed version provides an insight into the Ct values of acetaminophen deregulated 
genes. Raw data for all compounds and all tested concentrations are shown in digital form on the attached CD. 
 

Sample 

name 
Concentration Ct-Werte values for each gene after 24h of treatment with acetaminophen 

    GAPDH Cyp1B1 Cyp3A7 Tubb2b Sult1C2 G6PD RGCC Fbxo32 

V03_07 0 µM 16.985 31.553 29.863 24.540 26.870 21.348 30.722 30.098 

V03_07 0 µM 14.926 31.700 30.035 24.594 26.756 21.298 30.798 29.732 

V03_07 0 µM 14.866               

V02_19 0 µM 15.572 32.755 30.894 24.835 27.339 21.785 30.145 29.867 

V02_19 0 µM 15.772 32.560 30.980 24.804 27.295 21.756 29.917 29.919 

V02_19 0 µM 16.388               

V01_13 0 µM 14.608 32.404 30.277 23.735 27.384 20.629 27.896 28.813 

V01_13 0 µM 15.466 32.498 30.038 23.665 27.153 20.601 28.199 29.093 

V01_13 0 µM 14.847               

V01_19 0 µM 14.528 33.461 30.305 23.439 26.959 20.842 28.661 28.771 

V01_19 0 µM 14.382 33.293 30.425 23.286 26.685 20.789 28.622 28.876 

V01_19 0 µM 14.587               

                    

V03_08 8 µM 18.729 32.208 29.892 24.450 27.117 21.475 30.008 29.380 

V03_08 8 µM 14.956 32.542 29.832 24.440 27.134 21.343 29.994 29.654 

V03_08 8 µM 14.901               

V02_20 8 µM 15.759 32.844 30.937 24.618 27.289 21.878 29.927 30.357 

V02_20 8 µM 15.934 32.861 31.178 24.716 27.179 21.838 30.366 30.344 

V02_20 8 µM 17.409               

V01_14 8 µM 14.586 31.824 30.465 23.224 27.171 20.307 28.281 28.657 

V01_14 8 µM 14.604 31.880 30.229 23.236 27.165 20.216 28.297 28.747 

V01_14 8 µM 14.959               

V01_20 8 µM 14.358 32.303 29.710 22.788 26.817 20.691 28.636 28.815 

V01_20 8 µM 14.595 32.158 29.925 22.882 26.805 20.701 28.479 28.689 

V01_20 8 µM 14.720               
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Supplemental Table 9: Raw data for gene expression quantification in primary human hepatocytes. This list 
gives the Ct values, which the calculation of expression fold changes is based on. Samples were obtained from 
3-4 independent experiments; for each experiment 5 different concentrations plus untreated controls were 
tested. Each sample was measured in 2-4 technical replicates. Relative expression of the 7 biomarker genes 
was determined by normalization to the expression of the housekeeping gene GAPDH and in relation to un-
treated controls. The presented list in this printed version provides an insight into the Ct values of valproic acid 
deregulated genes. Raw data for all compounds as well as the remaining Ct values for valproic acid induced 
genes are shown in digital form on the attached CD. 
 

Sample 

name 
Concentration 

Ct values GAPDH Ct values  Cyp1B1 Ct values  CYP3A7 Ct values  G6PD 

Repl.1 Repl.2 Repl.1 Repl.2 Repl.1 Repl.2 Repl.1 Repl.2 

V160_25 0 µM 15.873 16.500 26.332 26.784 23.631 23.570 26.756 27.064 

V160_26 8 µM 17.479 17.722 27.495 28.107 24.553 25.117 28.240 27.911 

V160_27 40 µM 17.130 16.483 25.775 26.108 23.131 23.056 26.845 27.508 

V160_28 200 µM 16.671 16.713 25.835 26.684 22.967 23.171 27.050 26.591 

V160_29 1 mM 15.730 16.480 24.708 24.961 22.793 22.215 26.136 26.052 

V160_30 5 mM 16.404 16.658 26.508 26.689 24.251 24.380 26.617 26.444 

  

 

                

V164_7 0 µM 17.833 17.783 28.355 28.330 31.314 31.036 28.379 28.295 

V164_8 8 µM 17.789 17.701 28.882 28.899 32.298 32.366 28.613 28.588 

V164_9 40 µM 17.428 17.591 28.287 28.482 30.964 31.231 27.768 28.199 

V164_10 200 µM 16.583 16.797 27.316 27.122 30.244 30.736 27.096 27.471 

V164_11 1 mM 16.949 16.692 26.624 26.944 29.588 29.266 25.011 24.979 

V164_12 5 mM 17.768 17.318 25.880 25.954 30.245 29.892 22.092 21.921 

  

 

                

V165_25 0 µM 16.319 16.410 28.642 28.678 26.523 26.456 28.058 27.869 

V165_26 8 µM 17.595 17.604 28.630 28.519 26.654 26.892 27.687 27.311 

V165_27 40 µM 16.234 16.344 28.854 28.745 25.060 25.668 27.503 27.481 

V165_28 200 µM 16.559 16.519 28.457 28.810 24.790 24.713 26.896 26.934 

V165_29 1 mM 16.342 16.392 27.706 27.981 23.609 23.524 24.620 24.740 

V165_30 5 mM 16.161 16.023 27.400 27.565 26.343 26.511 22.437 22.411 
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