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In recent years system-level understand-

ing has become a cutting edge topic in toxi-
cology (Geenen et al., 2012; Marchan et al., 
2012; Widom et al., 2014; Kell, 2010). Re-
cently, a definition of Systems Toxicology 
has been suggested: “Systems Toxicology is 
the integration of classical toxicology with 
quantitative analysis of large networks of 
molecular and functional charges occurring 
across multiple levels of biological organiza-
tion” (Sturla et al., 2014). Although this def-
inition has been published by outstanding 
scientists in this field of research it leaves 
some questions open. Is “analysis of large 
networks” really an essential requirement of 
Systems Toxicology? It is out of question 
that understanding the interactions of differ-
ent levels of biological organization is of 
high interest. However, is the analysis of 
“charges occurring across multiple levels of 
biological organization” another indispensi-
ble necessity of Systems Toxicology? And 
how is “classical toxicology” integrated 
“with quantitative analysis of large net-
works”? Does not already “classical toxicol-
ogy” use quantitative methods and e. g. net-
work analysis? I will stop here torturing the 
reader with further questions. The point I 
wish to make is that I feel sometimes a bit 
defeated by the awesome but not fully clear 
sentences in this field of research. Important, 
in my opinion, is whether Systems Toxicol-
ogy leads to answers of questions that are 

otherwise difficult to obtain. This will be il-
lustrated by three examples: 
 The liver is known for its outstanding ca-

pacity to regenerate after toxic damage. 
Within a relatively short period of time 
millions of cells find their new position to 
restore functional tissue architecture. Until 
recently, little was known which mecha-
nisms orchestrate this process (Drasdo et 
al., 2014a, b). In principle cytokines re-
leased from dead cells may be responsible. 
However, numerous further possibilities, 
e.g. oxygen gradients, cytokine release 
from stellate cells or Kupffer cells, etc., 
may alternatively play a role. However, 
Systems Toxicology based simulations 
demonstrated that a so far unknown mech-
anism, named “hepatocyte sinusoid align-
ment” (HAS) is crucial (Hoehme et al., 
2007, 2010; Hammad et al., 2014). During 
HAS hepatocytes align in the direction of 
the endothelial cells of the sinusoids. 
Therefore, the endothelial cells control the 
architecture of the liver’s sheets of hepato-
cytes and also give the critical stimuli to 
proliferate. This Systems Toxicology driv-
en prediction of the key role of endothelial 
cells was later confirmed by knockout ex-
periments (Ding et al., 2010, 2014). The 
practical relevance for toxicology: as soon 
as sinusoidal endothelial cells are de-
stroyed by chemicals the risk of fibrosis 
strongly increases. 
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 Recently, a Systems Toxicology approach 
with a metabolic model of ammonia me-
tabolism predicted that under specific con-
ditions of hyperammonemia, glutamate de-
hydrogenase (GDH) may switch its direc-
tion from ammonia production to ammonia 
consumption (Schliess et al., 2014; Ghallab 
et al., 2015). This discovery could be used 
for normalizing increased levels of ammo-
nia in blood of mice by infusing GDH and 
its cofactors at optimized concentrations. 

 Cholestasis in liver disease triggers prolif-
erative responses of the biliary tree. With 
the help of systems simulations it could be 
shown that adaptive remodeling of inter-
lobular bile ducts aims at optimizing the in-
traluminal surface area by corrugation and 
branching (Vartak et al., 2015). This is part 
of a process to adapt to a situation where 
increased amounts of bile salts must be re-
absorbed. Therefore, therapy of cholestasis 
should not aim at antagonizing prolifera-
tive responses of the biliary tree, because it 
represents an adaptive response to avoid 
organ failure. 

Understanding the mechanisms of organ 
toxicity has always been a major goal in tox-
icology (Campos et al., 2014; Hammad, 
2014; Godoy et al., 2015, 2013, 2012, 2009; 
Dias da Silva et al., 2013; Driessen et al., 
2013; Shimada et al., 2012; Baulies et al., 
2015; Reif, 2014a, b). In many circumstanc-
es Systems Toxicology techniques may help 
to gain a deeper understanding, particularly 
in situations where several mechanisms in-
teract and due to high complexity the situa-
tion is difficult to understand intuitively 
(Widera et al., 2014; Friebel et al., 2015; 
Bartl et al., 2015). Nevertheless, it is im-
portant that clear hypotheses are addressed 
by the simulations and that model predic-
tions can be confirmed or rejected experi-
mentally. 
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