
The Bilinear-Exponential Closed-Orbit Model
and its Application to

Storage Ring Beam Diagnostics

Bernard Riemann

2016-04

eingereicht als Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenscha�en
(Dr. rer. nat.)

Fakultät Physik
Technische Universität Dortmund



Erster Gutachter Prof. Dr. �omas Weis
Zweiter Gutachter Prof. Dr. Andreas Jankowiak

Wissenscha�licher Mitarbeiter Dr. Ulf Berges
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1. Introduction

�e �eld of beam dynamics in closed-orbit accelerators like synchrotrons and synchrotron storage rings is
of ongoing interest, as the analysis of particle oscillations (beam optics) in such a system enables checking
and correction of the components of an accelerator.

In such periodic systems, the ensemble of particles is focused onto one1 speci�c trajectory through the
ring that is repeated (mapped to itself) on each passage and thereby de�ned as closed orbit [7]. One of
the simplest methods to observe this special orbit is given by beam position monitors. In their most basic
implementations, which are installed at presumably every storage ring in existence, these devices allow
to observe the closed orbit in the low-frequency range up to a few Hz.

While experimental data on closed orbits exists in abundance for many accelerators, its use for beam
dynamics studies is sparse in comparison. �is is due to the fact that if the beam optics at monitor
and actuator (corrector) positions are known, closed-orbit perturbations can be computed by elementary
means – but if only closed-orbit perturbations are known, beam optics at monitor and corrector positions
can only be computed with additional data sources or adding assumptions, by non-trivial means. �is
problem, where model parameters (beam optics) are to be computed by measurement data (closed orbits),
belongs to the class of inverse problems [3] and will be described as response problem in this work.

�e LOCO approach [41] (sec. 6.2.1) has been used successfully to approach the response problem by
utilizing an existing detailed simulation of all magnetic �elds in the accelerator under study. �e accel-
erator model parameters are modi�ed by ��ing simulated closed-orbit perturbations to measured ones.
�e simulation has to be tailored to an existing storage ring, containing user-de�ned decisions about
what parameters are di�erent between the accelerator model and reality, which corresponds to an ar-
bitrary set of parameters. �e model is non-analytical as simulated response matrices are generated by
numerical tracking for every optimization step, which results in a non-negligible time for the optimiza-
tion to run [4], especially for larger storage rings. If the deviations between simulation and reality are
too large (e.g. for the DELTA storage ring, chapter 7), LOCO does not converge.

Besides the LOCO approach, methods for measuring beam optics in closed-orbit accelerators extensively
use analysis of oscillation data. �e methods and experiments can roughly be classi�ed into two groups.
Turn-by-Turn analysis [4], working with short transient or coherent excitations, is possible using special
monitors at medium- or small-scale storage rings. AC dipole techniques, on the other hand, do use
standard monitor hardware, while excitation is performed using special magnets called AC dipoles [5].
�is technique, which yielded impressive results, has only been possible at large storage rings like LHC
and RHIC [43, 85] or the Fermilab Tevatron [44], where the beam eigenfrequencies (which essentially
scale inversely to the ring circumference) are very low in comparison to typical storage rings (≤ 25 kHz,
sec. 6.2.2).

For both TbT analysis and AC dipole techniques, additional dedicated hardware needs to be available at
the closed-orbit accelerator under consideration. In addition, the available installation space in existing
storage rings is o�en limited.

1In the nonlinear case, more than one closed orbit is possible to exist. In practice, this only occurs deliberately, e.g. in the
transverse plane using resonant extraction [1], or in longitudinal direction (α-buckets) [2].
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1. Introduction

1.1. Scope of this work

�e procedure for studying an inverse problem can be divided into the steps [3]

1) parameterization with a minimal set of model parameters,
2) forward modeling and 3) inverse modeling.

Considering LOCO, it is possible to �nd a more suitable model and optimization in the context of in-
verse problems, with an emphasis on step 1). �e goal is to reduce the model to its dependencies in the
measured closed orbits alone (“Occam’s razor” [42]). �is leads to a modi�cation of the subsequent steps.

Resulting from the aforementioned situation, the scope of this work can be subsumed as the completion
of the following two tasks.

1. Build an elementary and general model for (small) closed orbit perturbations.

When approaching this task, it becomes clear that most of the existing beam optics parameteri-
zations are unsuitable, either due to super�uous assumptions (decoupled approximation) or large
’calculation overhead’. �erefore, one task of this work is the reduction of single particle and closed
orbit motion into a simpli�ed framework without unnecessary assumptions. Here, removing as-
sumptions does not necessarily imply that the resulting model has small number of free variables
– as the model is more general, it is required to be more complex than e.g. decoupled models.

On the way of extracting the relations between closed orbits and single particle oscillation (forward
modeling), one obtains a natural parameterization of the problem based on eigenorbits. Reduction
of the parameters to observable quantities by elementary means leads to the expressions for the
Bilinear-Exponential model (sec. 3.2).

2. Find an algorithm to solve the inverse problem.

During development of a solution to the problem, parts of existing diagnostics routines [17, 23, 29,
30] will be incorporated and reused. From a conceptual standpoint, only a few key ideas will need
to be added to sketch the structure of the solution. �en a step-by-step solution of the inverse
problem in form of the COBEA algorithm is shown to be possible (chapter 6).

To validate the algorithm, its results are compared with results from other successful diagnostic
methods, based on experiments done in three storage rings (chapters 7–9). All of the compared
methods either need more input data respectively assumptions or additional measurement devices
in comparison to the method presented in this work.

In this work, the model building corresponds to the forward modeling, in which a type of ”natural param-
eterization” is derived without further e�orts. �e inverse modeling part corresponds to the construction
of the algorithm.

If the algorithm works as expected, we can consider the response problem as solved.

1.2. Further remarks

In this work, a colloquial style is used instead of a more traditional passive form. �e ’we’ statements
include author and reader and do not imply a third contributing party.

While the author has taken care to introduce variables and operators in a meaningful and su�cient order,
the interested reader is referred to an overview of used symbols and brief descriptions of variables, which
can be found in sec. 1.3.
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1.3. De�nitions and syntax

1.3. Definitions and syntax

A�er a short description of mathematical operations, this section describes the terms and de�nitions
used in this work, followed by separated index de�nitions.

If not stated otherwise in the context,

1. real-valued scalars and vectors are wri�en using lowercase le�ers, e.g. x, ~g,

2. complex-valued scalars and vectors are wri�en using uppercase le�ers, e.g. X, ~G.

3. An index is wri�en lowercase, e.g. m, while its range is wri�en uppercase, e.g. M . �is does not
hold for the direction index w, which range is also M by de�nition (see sec. 1.3.3).

4. Matrices M are wri�en in bold shape. Any multi-dimensional array with dimension ≥ 2 is also
wri�en in bold shape. No rules apply for uppercase or lowercase.

5. Operators are wri�en in calligraphic style, e.g. K .

1.3.1. Mathematical operations

conjugation •∗
changes the sign of the imaginary part of a complex number, so that for real a, b, (a + ib)∗ = a − ib.
Works element-wise on vectors and matrices.

real part < {}
Returns the real part of a complex number. Works element-wise on vectors and matrices. 2< {x} = x+x∗.

imaginary part = {}
Returns the imaginary part of a complex number. Works element-wise on vectors and matrices. 2i= {x} =
x − x∗.

matrix adjunct •†
Transpose a matrix and replace all entries by their complex conjugates. When used on real matrices,
reduces to transpose. Turns column vectors into (conjugate) row vectors. (A†)mn = A∗nm.

1.3.2. Terms and definitions

BE-d model An elementary model developed in this work that can be used to represent any valid
general response matrix without dispersion. (chapter 3)

BE+d model An extension of the BE-d model that allows to treat dispersion and can be used to repre-
sent any valid general response matrix of a storage ring. (chapter 3)

9



1. Introduction

BESSY II A 1.7 GeV storage ring built to produce synchrotron radiation for external users, located in
Berlin and run by HZB. (chapter 9)

(Betatron) tunes A colloquial term for modal phase advances (see eigenorbit). In a narrow sense, the
fractional betatron tune is the modal phase advance per unit circle µm/(2π). In a broader sense, the
betatron tune also includes the integer windings of the complex eigenorbit around the ring. To give an
example, an integer tune of 9 and a fractional tune µm/(2π) = 0.16 results in a betatron tune of 9.16.

CMmapping Corrector-Monitor mapping, an algorithm developed in [23] and this work to compute
all monitor vectors and corrector parameters from a given subset of monitor vector and phase advances.
(sec. 5.1)

COBEA An algorithm developed in this work that solves the response problem with the only additional
information of accelerator topology (represented by the topology matrix S). (chapter 6)

Corrector parameters Akm

Complex scalars that hold perturbation information for a speci�c corrector k and mode m. �ey can be
related to optical parameters at the corrector location s̃k with additional assumptions. (sec. 3.1)

DELTA �e Dortmund electron storage ring facility is a 1.5 GeV synchrotron light source located in
Dortmund, NRW, Germany. (chapters 7 and 8)

DTFT Discrete-Time Fourier Transform, the continuous band-limited spectrum of a sequence [73].

Eigenorbit ~Rm(s), X (s)
A complex-valued orbit which is the solution of the eigenvalue problem for the linear one-turn operator
of a segment as de�ned in this work. �e absolute value of all eigenorbit components at start and end
positions of a segment is identical, while the complex phases at both positions di�er by the modal phase
advance µm. (sec. 2.3)

FFT Fast Fourier Transform algorithm [73], used to compute the DTFT (respectively DFT) at equidis-
tant frequencies.

General response matrix r with components ~r jk and coe�cients r jkw
A matrix in which each column k holds the orbit perturbations originating from the corrector indexed
with k . A general response matrix is not normalized, and the speci�c kick angles θk may be unknown.
Note that for an accurate response matrix to be recorded, the additional perturbations to the closed orbit
must be small (linearization around an arbitrary closed orbit).

In the cases discussed in this work, a general response matrix can be either a current-response matrix,
where the excitation current is known, or an angle-response matrix, for which the kick angle is known
and normalized out.

HZB Helmholtz-Zentrum Berlin, a part of the Helmholtz Association (government-funded).
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1.3. De�nitions and syntax

MCS Monitor-Corrector Subspace algorithm (developed in this work), with which an approximate set
of BE+d parameters can be obtained from a general response matrix. Used as start-value layer of COBEA.
(secs. 5.2, 6.1)

MLS Metrology Light Source, a small storage ring facility located in Berlin, used by Germany’s national
metrology institute PTB and operated by HZB. (chapter 9)

Modal phase advance µm, µx

See eigenorbit and betatron tune. (sec. 2.3)

Monitor vectors ~Rjm with components Rjmw

Complex-valued vectors that represent eigenorbits for mode m at monitor j in direction w.

PCA Principal Component Analysis [31, 32].

Perturbed segment A segment which is voluntarily perturbed during a diagnostic measurement by
the accelerator operator. In this de�nition, any storage ring setup which is not subjected to a measure-
ment process is considered as unperturbed, including rings with undesired magnetic �eld deviations.

(sec. 2.2)

Principal orbits 〈r〉 with components 〈~r jp〉 and coe�cients 〈r jpw〉
Orbits obtained from a PCA [31, 32] using SVD [28] (sec. A.3.1) on a subset of monitors and correctors
(“block”) from a general response matrix.

Rectification Jacobian Dj (~r
#
j )

Distorted measurements of closed orbits respectively response matrices can be compensated posterior to
the optimization procedure if the Jacobian of the recti�cation (inverse distortion) around the measured
unperturbed closed orbit is known. (sec. 3.2.5)

Response problem Given a valid general response matrix, how can optical parameters at monitor
and corrector positions (represented by BE+d model parameters) be found with a minimum of additional
information? (chapter 4)

SVD Singular Value Decomposition [28]. (sec. A.3.1)

TbT Turn-by-Turn, a term used for data and data sources in which the sampling rate of the respective
device is equal to the circulation frequency of particles in the accelerator. (sec. 8.2)

Topology matrix S with components Sjk

�e entries Sjk ∈ {−1,+1} of this matrix state whether monitor j is located ”upstream” (s j < sk ) or
”downstream” (s j > sk ) of corrector k .
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1. Introduction

1.3.3. Definition of indices

If not stated otherwise, indices start from 1. �is is the case for all indices but the turn number. Note
that the following de�nitions only hold if the indices are not de�ned in a di�ering, local context. �is is
especially the case for the seldom used indices p, n.

direction index w ≤ M
�e direction index w represents either the horizontal (w = 1 ≡ x) or vertical (w = 2 ≡ y) direction. Note
that for the direction index, numbers and direction characters x,y are exactly equivalent. �e number of
considered directions is given as M and is either 1 or 2.

monitor index j ≤ J
Each monitor index j represents a monitor in the storage ring. In this work, we assume “twin-view”
monitors which can measure the beam position in horizontal and vertical direction simultaneously.

corrector index k ≤ K
Each monitor index k represents a corrector in the storage ring. If not stated otherwise, it is generally
not assumed that the angle or direction of the corrector kick ~θk is known.

mode index m ≤ M
�e mode index distinguishes oscillation eigenmodes. In the M-dimensional (quasi-)harmonic oscillator
considered as approximation for betatron motion, the number M of modes and dimensions must be
identical.

principal component / partial orbit index p ≤ P
�e orbit in an unperturbed segment in a storage ring, generated by perturbations outside of that seg-
ment, can be described completely by 5 principal or partial orbits, which form a complete basis for all
“allowed” orbits in a segment. �is basis is the relevant quantity, and therefore the directions of speci�c
vectors in that basis are arbitrary. �erefore, the index also denotes the pth principal orbit of a PCA of
measured orbits [31, 32].

turn number (sec. 8.2) 0 ≤ n ≤ N − 1
In the TbT analysis chapter, n refers to the turn number. �e typical case for DELTA is N = 2048.
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2. Linear particle motion

�e general motion of particles in storage rings is a topic that has been discussed extensively in many
works, e.g. [6, 7, 8, 9]. �e common notation for linearized motion around a reference trajectory (de-
coupled linear optics) in accelerators is Courant-Snyder parameterization [10]. Although this notation
is reasonable for many cases, using it would vastly complicate the expressions in chapter 5.1 and the
decomposition of perturbations in chapter 6.1 On the other hand, using Hamiltonian mechanics [7, 8]
would add super�uous complexity to the derivations.

�erefore we introduce a “natural” parameterization for the problem based on the concept of segment
eigenorbits, which is closely related to Floquet normal forms [12], but adapts the typical coordinate sys-
tem of storage rings. It may also be interpreted as a complex analogue to [13] (sec. A.1.2) or a complex-
Cartesian analogue to the (coupled) Mais-Ripken parameterization [14, 15] (sec. 2.4.4). Due to its simplic-
ity and elementary interpretation (sec. 2.3.3 and Fig. 2.3), it is bene�cial for the derivations performed in
this thesis.

2.1. Coordinate system

In any particle accelerator, the particles are guided along a reference trajectory. �is special trajectory
de�nes a Frenet-Serret coordinate system [7] with a momentous path length s and transverse coordi-
nates x, y, so that the motion of particles is considered in terms of deviation from the reference orbit.
�e classical particle state is completely described by the corresponding spatial deviations x, y, δs and
momentum deviations px, py, δps .

In the common notation used for particle trajectories in accelerators, the transverse deviations of mo-
mentum are replaced by proportional derivatives x ′, y′ with respect to s [7]. �roughout this work, •′ is
used as an abbreviation for the derivative d • /ds. In all cases for which experiments were performed in
this thesis, we can use the ultra-relativistic and small-angle approximations (no path-length e�ects), so
that px = x ′ |~p|.
Instead of using the impulse deviation δps for the longitudinal coordinate, it is also common to use the
relative momentum deviation [7]

δ =
δ |~p|
|~p| .

�e particle state respectively orbit relative to the aforementioned design trajectory can then be repre-
sented by a phase space vector

~z(s) =
(
~r (s)
~r ′(s)

)
=

(
x y δs x ′ y′ δ

)†
.

1In [11], which emphasized the strictly decoupled case, the author used chains of angular functions and substitutions exten-
sively to derive expressions for β, φ directly; thus turning simple linear equation systems to nonlinear ones.
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2. Linear particle motion

In consequence, one may de�ne a vector-valued function or map between two positions s̃, s, which can
be expressed using an s−dependent operatorM (s) by

~z(s) =M (s)~z(s̃ = 0).

For the linear case,2 maps reduce to translations ~z0(s) and transfer matrices M(s) via

M (s)~z(s̃ = 0) = ~z0(s) +M(s)~z(s̃ = 0).

2.2. Segment types

For the following considerations, we will classify partitions of the beam path (segments) of an accelerator
structure by their role in the measurement process into the three classes

1. known segments,

2. unperturbed segments and

3. perturbed segments.

A known segment is also either an unperturbed segment (true for all discussions in this work) or a
perturbed segment.

�e following discussion is limited to the start-to-end map of a segment. For a segment of length l, it is
simply de�ned as

T =M (s = l).

2.2.1. Known segments

�e designation known segment implies that the start-to-end map T of the segment (implicitly de�ned
by electromagnetic �elds) is known, either analytically or by measurements. �e simplest example for a
known segment is a dri� space with known length.

Phase space vectors in known segments

In advance of sec. 3.2.1 we state that the particle orbit in an accelerator is o�en only known by its trans-
verse position x, y. �e start-to-end transfer map T of any segment can be decomposed into block
operators, so that

~rend = Tr→r~rstart + Tr′→r~r ′start

~r ′end = Tr→r′~rstart + Tr′→r′~r ′start.

From the equation for ~rend, one can obtain the orbit derivative at the entry plane of the known segment

~r ′start(~rstart,~rend) = T −1
r′→r (~rend − Tr→r~rstart). (2.1)

2applications of nonlinear maps are considered in chapter 10.
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2.2. Segment types

Dri� segments

�e simplest possible segment is a dri� space with length ldrift. For this known segment, by use of the
intercept theorem, the block operators resolve to

Tr′→r~r ′ = ldrift~r ′, Tr→r~r = ~r,

so that ~r ′start(~rstart,~rend) =
~rend − ~rstart

ldrift
. (2.2)

For dri� spaces, the components of ~r,~r ′ are also decoupled from each other, so that x ′, y′ can be obtained
at the start position from x, y at the ends without knowledge of δ.

2.2.2. Unperturbed segments

In unperturbed segments, arbitrary but quasi-static forces exist. In this context, quasi-static forces imply
that fast, transitory perturbations of forces in the time scale of passage time through the segment do not
exclude a segment of being unperturbed.

In consequence, the transfer mapsM (s) in such segments are also assumed to be quasi-static.

Independent orbits in unperturbed segments

For the following, we will consider the setup in Fig. 2.1 with an emphasis on the unperturbed segment
with a start-to-end transfer map T . �e orbit ~r (s) inside the segment can then be described by a map in
the form

~r (s) =Mr′→r (s)~r (s = 0) +Mr′→r~r ′(s = 0)

and thus only depends on the initial conditions in ~z(s = 0). �is fact will be used in the following to
decompose orbits inside a segment into linear combinations of P partial orbits,

~r (s) =
P∑

p=1

ap~rp (s).

For a general, nonlinear map of a given order, P is the number of monomial summands in the compo-
nents up to that order (see chapter 10). In this work we will only consider the following linear cases of
unperturbed segments, in which the maximum value of P is the number of phase space dimensions.

• Linear unperturbed segments with static �elds.

If a segment is governed by time-independent �elds, it is a time-invariant system, and thus the
arrival time expressed by δs cannot have an in�uence on the particle trajectory. �erefore, P = 5
initial conditions remain, corresponding to the number of partial orbits.

• Linear unperturbed segments with dynamic �elds.

�is case occurs when either radio-frequency cavities are installed, or non-negligible changes along
the cross section of the particle chamber occur. �en no further constraints can be stated, and P = 6
partial orbits exist.
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2. Linear particle motion

Obtaining maps of unperturbed segments

If an unperturbed segment is enclosed by two known segments, it is possible to recover its transfer map
T (Fig. 2.1). �is fact has been in long-term use for measuring segments of linear accelerators, called ’R
matrix from Trajectory Fit’ [16, 17] in this context. �e idea might also have been put to use sporadically
to measure unperturbed segments in rings [18].3

As noted in sec. 2.2.1, it is possible to recover the phase space coordinates of a known segment using
spatial coordinates from its ends. �us if the unperturbed segment is enclosed by two known segments,
their phase space vectors can in turn be used to recover the start-to-end map T by the relation

~zend
p = T ~zstart

p with 1 ≤ p ≤ P

with a �nite number of perturbation measurements P that matches (error-free measurement) or exceeds
(noisy measurement) the number of independent orbits in the unperturbed segment.

To give an example without further constraints (see sec. 2.3.1), P = 5 measurements would be needed to
obtain the linear transfer map of an unperturbed segment with static �elds.

T

Figure 2.1.: Illustration of the ’R matrix from Trajectory Fit’ method, described in [16, 17] for the decou-
pled case, by which the start-to-end map T of an unperturbed segment (light green) can be
obtained. Monitor positions are denoted by white boxes, the particle source is denoted by a
half circle. Perturbations are generated upstream (that is in reverse beam direction) of the seg-
ment (perturbed segment, blue), e.g. by dipole correctors (white triangles). �e unperturbed
segment is enclosed by known segments (dark green).

2.2.3. Perturbed segments

Perturbed segments are the most general segment type. In these segments, arbitrary time-varying forces
act on the particle which may change in the course of subsequent measurements.

Again, the nature of the perturbation is assumed to be quasi-static. �us transient e�ects on the time-
scale of the passage time through to a segment are not considered as perturbations that would classify a
segment as perturbed.

3�is basic idea is expanded in chapter 6 and incorporated into the start-value layer to allow measurement of one-turn maps.
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2.3. Linearized motion in rings

2.3. Linearized motion in rings

Two complementary approaches exist to discuss the motion of particles in accelerators, which we will
call device-based approach and Poincaré-based approach. �e device-based approach follows the argu-
mentation of

1. assuming a longitudinal piece-wise constant force with a de�nite transverse force pa�ern de�ned
by a given magnetic element or multipole decomposition,

2. computing a transfer map between phase space points at entry and exit planes of the magnet
element or multipole,

3. building of periodic solutions by di�erent magnet combinations.

While this approach is useful in the design process of accelerators, many assumptions are o�en posed
implicitly, e.g. decoupled, linear motion around a prede�ned design trajectory in step 1, or speci�c
symmetries of solutions in step 3.

Poincaré theory has been an active topic of research, starting with the divergence of the series expan-
sion for the three-body problem [19]. �e Poincaré-based approach in the context of this thesis can be
subsumed by the following procedure.

1. Find one or multiple �xpoints of transfer maps (Poincaré sections) for any respectively all longi-
tudinal positions, where the stable �xpoint(s) represent the closed orbit solutions,

2. discuss properties of particle oscillations in Poincaré sections around the stable �xpoint(s),

3. �nd a suitable parameterization for the problem.

Using this approach, fewer and weaker assumptions are posed on the particle trajectories in comparison
to the device-based approach. �is is important in the development of diagnostic methods, as the neces-
sity of their use implies that the magnetic �elds of the accelerator di�er considerably from the desired
pa�erns and values.

For the scope of this thesis, it is thus su�cient to use only the second approach and discuss general
properties of such maps. In consequence, magnetic devices are not discussed. Many steps in the following
derivation are analogous to the ones found in [15, 20].

Figure 2.2.: Particle motion in a ring for two consecutive
passages or turns. �e ring is assumed as un-
perturbed segment of a �xed length, begin-
ning at s = 0. For every turn, the orbit is de-
scribed by another combination of indepen-
dent orbits. �e change of turns is de�ned by
the longitudinal reference position s = 0.

s = 0
turn n = 0
turn n = 1
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2. Linear particle motion

2.3.1. Separation of static and dynamic orbits

Let us assume the storage ring as an unperturbed segment with dynamic �elds (sec. 2.2.2) which start and
end planes are connected to each other and the start position being referenced as s = 0 (ring topology,
Fig. 2.2). From sec. 2.1 it is known that the particle state space has an even number of dimensions, which
we will assume to be 2M .

We de�ne a map T (s) that maps the orbits phase space ~z(s) at any position s to the next turn. If the
motion is stable, then at least one orbit ~r0(s) must exist for which

T (s)~z0(s) = ~z0(s). (2.3)

�is orbit will be called closed orbit in the following and is thus de�ned by the �xpoints in the Poincaré
section plane. Its properties and perturbations will be discussed extensively in chapter 3.

�en, the map T (s) can be linearized around z0 as4

T (s)~z(s) = ~z0(s) + T(s)(~z(s) − ~z0(s)) + O(2).

for all positions s. For all following considerations, we will substitute ~z(s) ← ~z(s)−~z(s0) without loss of
generality, which means that the unperturbed closed orbit is set as reference orbit. �is is a reasonable
shi� of our coordinate system, as we are only interested in deviations from the unperturbed closed orbit,
which are either static, as discussed in sec. 3.1, or transient, as discussed in the following.

2.3.2. Oscillation modes

To study the motion of particles around a closed orbit, we are interested in properties of the one-turn
transfer matrix T(s). We neglect synchrotron radiation e�ects and state that the phase space density of
the resulting system must be preserved due to Liouville’s theorem [6, 7]. From this, it follows that the
transfer matrix must have full rank and preserves the phase space volume so that det T(s) = 1.

We can also assume that the particle motion for subsequent turns n is bound and a particle beam can
thus be contained in the ring. It can be shown that this is only possible if T(s) has a valid eigendecom-
position (see sec. A.1.1).5 In this case, one may characterize T(s) completely by 2M eigenvalues λm and
eigenvectors ~Zm(s) that solve the eigenproblem

T(s)~Zm(s) = λm~Zm(s). (2.4)

Note that ~Zm(s) at a single arbitrary position s characterizes a complete orbit in the unperturbed segment.
In consequence, the eigenvalues λm are global quantities of that segment.

�en, ~z can be wri�en as a linear combination of all eigenvectors ~Zm. As (2.4) can be multiplied by any
complex number, the coe�cients of this combination can be omi�ed or chosen arbitrarily. Here, we use
pre-factors 1/2 to simplify following expressions, so that

~z(s) =
1

2

2M∑

m

~Zm(s)

and Tn(s)z(s) =
1

2

2M∑

m=1

~Zm(s)λnm. (2.5)

4In other words, T is the Jacobian of the map T at ~z0.
5An example for a matrix without valid eigendecomposition is the transfer matrix of a dri� space. Although assuming a unit

determinant, the motion in an accelerator without focusing is unbound.
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2.3. Linearized motion in rings

Further constraints can be applied on eigenvectors and -values. As we assume that the particle motion
is bound, the condition |λm | ≤ 1 must hold for every eigenvalue. Furthermore, we also assume that
the particle motion in an accelerator is governed, in very good approximation, by magnetic �elds which
do not change the energy of the system. �en, by Liouville’s theorem, the phase space volume must be
preserved for any transfer, and

det T =
2M∏

m=1

λm
!
= 1 leading to |λm | = 1 and λm = eiµm,

where the modal phase advances µm ∈] − π, π] are proportional to the fractional betatron and/or syn-
chrotron tunes.

As Tn(s)~z(s) must be a real-valued vector for all turns n, and all eigenvalues λm are located on the
complex unit circle, it follows from (2.5) that the eigenvectors and eigenvalues must occur in complex-
conjugate pairs if T is nondegenerate. We choose the pairs so that the indices up to M hold one item of
each pair, resulting in eigenvalues λm+M = λ∗m and eigenvectors ~Zm+M = ~Zm(s)∗. �en, the summation
reduces to

Tn~z(s) =
1

2



M∑

m=1

~Zm(s)λnm +
M∑

m=1

(~Zm(s)λnm)∗

=

1

2



M∑

m=1

~Zm(s)einµm +

M∑

m=1

~Zm(s)∗e−inµm


.

From here on we will always assume that the summation over m extends from 1 to M if not stated
otherwise, and obtain a concise expression for subsequent turns in phase space (<: real part)

~zn(s) = Tn~z(s) = <



∑

m

~Zm(s)einµm


. (2.6)

In summary, we have formalized the reasonable notion that any motion in a bound, undamped, M-
dimensional system with linearized forces can be described as a combination of M oscillators. Contrary
to intuition, the usage of harmonic functions einµm has not implied that these oscillators are harmonic
oscillators in the strict sense (see sec. 2.3.4), as they have more degrees of freedom than required. �ese
degrees of freedom are contained in the phase space vectors ~Zm(s).

Synchrotron radiation damping

It was assumed that synchrotron radiation can be neglected. If this is not the case, one can either consider
these damping e�ects as perturbations, or simply assume that the one-turn transfer matrix is not defective
(sec. A.1.1).

�en the above derivation can be generalized to linear damping e�ects and we can include a damping
factor ζ in the respective eigenvalues which are then located either on or inside the complex unit circle,
so that

λ = eiµ−ζ and λ∗ = e−iµ−ζ with ζ ≥ 0.
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2. Linear particle motion

2.3.3. Eigenorbits

One may split (2.6) into spatial and s-derivative components, so that

~rn(s) = <



∑

m

~Rm(s)einµm



(2.7)

and ~r ′n(s) = <



∑

m

~R′m(s)einµm


.

Di�erentiation of (2.7) with respect to s leads to the second equation, so that (2.7) is equivalent to (2.6).

To clarify the interpretation of the complex trajectory ~Rm(s), we construct a linear one-turn operator6

N = Tr→r + Tr′→r
d

ds

that maps any orbit for a turn n in the considered segment to the next turn n + 1,

~rn+1(s) = N~rn(s) with s ∈ [0, L[.

In consistence with the previous considerations in this section, it can be shown by elementary means
that the eigenproblem for N is then given by

eiµm ~Rm(s) = N ~Rm(s),

where ~Rm(s) is the eigenorbit of the one-turn operator on the segment.7

Although being complex-valued quantities, eigenorbits have the same transformation behavior as real
orbits and can be mapped using transfer matrices. �ey may be interpreted as spirals in the complex
plane which map to subsequent trajectories for turns n by rotating the spiral about µm for each turn and
then projecting it into the real trajectory plane (Fig. 2.3).

6Expressing the dynamics by one-turn operators should also be possible for the nonlinear case, although it is unlikely to be
treated using the eigenvalue problem.

7�e complete derivation could also be done starting with the introduction of one-turn operators; this approach was discarded
to gain more familiarity with existing approaches.

Figure 2.3.: Illustration of an eigenorbit
(white line) ~Rm(s) in a given di-
rection w and its beam envelope
(surface). �e complex angle of
the eigenorbit is equivalent to the
oscillation phase (respectively
betatron phase). To obtain the
trajectory for a given turn n
according to (2.7), the eigenorbit
is rotated by nµm and then
projected onto the<− s plane.
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2.3. Linearized motion in rings

Relation to Floquet normal forms

Eigenorbits of segments are closely related to Floquet normal forms, which appear as solutions to di�er-
ential equations of the form [12]

∂s~r (s) = A(s)~r (s) with A(s) = A(s + L),

and are de�ned as
~r (s) =

∑

q

~gq (s)esBq with ~g(s) = ~g(s + L).

For multiple turns, we would have

~r (s + nL) =
∑

q

~gq (s)esBqenLBq .

For stable motion all Bq must be imaginary. We can then identify µm = LBm/i and limit B−m = −Bm.
Also, we have ~Rm(s) = 1

2~gm(s)esBq and ~g−m = ~g∗m.

We conclude that the signi�cant di�erence between eigenorbits and normal forms is that Floquet theory
treats all points along the periodic dimensions in an equal fashion, while the segment on which the one-
turn operator is de�ned has a start (s = 0) and end plane. �is is in accordance with coordinate systems
used for storage rings and therefore useful for following calculations.

2.3.4. Decoupled motion

Synchrotrons and storage rings are o�en designed for ”decoupled optics” in which, by de�nition, each
modal oscillation only occurs in a given direction w. When we de�ne the w-th component of an eigenor-
bit ~Rm(s) as (Rm(s))w , and use an analog de�nition for ~R′m, the decoupled optics assumption can be
formalized as

( ~Rm(s))w =




m = w = 1 : X (s)
m = w = 2 : Y (s)
m , w : 0

, ( ~R′m(s))w =




m = w = 1 : X ′(s)
m = w = 2 : Y ′(s)
m , w : 0

. (2.8)

By this assumption one can further reduce (2.7), limiting the discussion to a spatial deviation xn and an
angle deviation x ′n in that plane. A�er substitution of the remaining µm by µx for clarity, one obtains

xn(s) = <
{
X (s) einµx

}
, (2.9)

x ′n(s) = <
{
X ′(s)einµx

}
, (2.10)

which means that the phase space motion for any mode m should correspond to a phase space plane
spanned up by two axes of the coordinate system.
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2. Linear particle motion

2.4. Invariants of motion and normalization

We have found expressions for linearized trajectories around a reference orbit by using eigenorbits. In
accelerator physics and modeling of beam dynamics, the quantities of interest are the inherent properties
of the magnetic la�ice, and not properties of the special single-particle motion respectively its initial
conditions. �erefore one would like to obtain normalized quantities which some or all of the initial
conditions are removed by normalization. �is can be accomplished by computing invariants of motion,
which are also called Courant-Snyder invariants in this context [10].

2.4.1. Invariants for decoupled motion

We investigate the resulting two-dimensional phase space for all possible phases that can occur and
substitute nµx → φ. As the exponential term has exactly the same imaginary argument in both x and x ′,
the resulting curve for any given complex amplitudes or phasors X j, X ′ j is always a 1:1 Lissajous �gure
and thus an ellipse.

One condition for a term to be an invariant is that it is constant for all φ. �us one invariant candidate is
the area πIx of the ellipse which is quadratic in phase space coordinates.8 �e ellipse area can be found,
either by construction (Fig. 2.4) or by sec. A.1.2, to be a product of phasors

Ix = −= {
X X ′∗

}
=

i

2

(
X∗X ′ − X X ′∗

)
. (2.11)

�e second condition for an invariant is that it does not change when transfers along the ring are applied.
As motion is decoupled, the transfer can be split into M di�erent 2 × 2 independent transfer matrices,
of which each determinant must equal unity. Due to the size of the decoupled matrix, this is exactly
equivalent to preservation of area under transformation. �is also holds for the full decoupled transfer
matrix, where the sub-plane areas are preserved. As Ix also ful�lls this second condition, it is indeed
an invariant of motion. If we interpret the unit circle as phase space trajectory of a harmonic oscillator
with normalized energy 1, we can interpret the invariant Ix as proportional to the energy stored in the
oscillation. As such, all invariants must be positive (see sec. 6.1.2).

8similar to a circle, which area is proportional to x2 + y2.

Figure 2.4.: Motion in a decoupled phase space plane and its rela-
tion to phasors X, X ′. All blue shapes have the same
area. An area spanned up by two complex vectors ~a, ~b
is given as |=(a∗b) |; thus the area of the blue shapes is
|=(X∗ei(−φ+φ) X ′) | = |=(X∗X ′) | = |Ix |.

x

x′

ℑ

ℜ

X ′eiφ

Xeiφ
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2.4.2. Invariants for general coupled motion

Next, we discuss the general trajectory (including betatron coupling) for a given mode in phase space.
For this, we assume that the only oscillation occurs with a phase advance µm and the other modes are
not excited. �en, we motivate the concepts of general invariants of motion by the decoupled invariants.
Nevertheless, the expressions for the invariants will be completely general and not depending on the
decoupled assumption.

As discussed in sec. 2.3, T is invariant on complex scaling of ~Z , so the trajectory shape is encoded in the
remaining degrees of freedom. All possible ~z for a given amplitude are part of a curve

~z ∈ <
{
~Zeiφ

}
= <~Z cos φ − =~Z sin φ,

with arbitrary φ. We conclude that the motion for each mode always happens on a plane spanned up by
<~Z and =~Z , and the aforementioned curve is again an ellipse on that plane.

In the decoupled case (sec. 2.3.4), we have found one invariant of motion in the (x, x ′) phase space (2.11),
and corresponding expressions exist for the other spatial directions. We are looking for an invariant
that can be generalized to the coupled case, but returns the decoupled invariant if the corresponding
eigenvectors are used. �is is accomplished by a bilinear form

Im = ~Z†mΩ~Zm = =
{
~R†jm ~R′jm

}
,

where we used a matrix9

Ω =
i

2

(
+1

−1

)
. (2.12)

By de�nition, the invariants Im must not change when moving along a segment of the ring, which map-
ping is described by a segment transfer M. As eigenvectors can be traced like phase space points, the
eigenvectors at the new positions are M~Z , and (M~Z )† evaluates to ~Z†M†, we have

~Z†mM†ΩM~Zm
!
= ~Z†mΩ~Zm for all modes m,

so that M†ΩM = Ω must hold. (2.13)

Any matrix M that ful�lls this condition is called a symplectic matrix. It can be shown by elementary
means that the product of two symplectic matrices is also a symplectic matrix; this property is used in
the following.

For the decoupled case, the expressions reduce to the ones for Ix, Iy. For this expressions, we have already
stated that they are invariants of motion. �us, any 2 × 2 matrix that describes motion in a plane10 is
area-preserving and thus symplectic independently of the other planes, so that e.g. focusing terms in
di�erent planes are not in any way connected when the full decoupled transfer matrix is considered.

To test the coupled case, we just check if any rotated segment

Mrot = R†MR with a spatial rotation R =

(
Rsp

Rsp

)

is symplectic. R and R† are symplectic matrices, and so the rotated segment transfer Mrot must also be
symplectic.

9�is is not the standard symplectic form due to its scaling factor; nevertheless it is valid.
10By the assumptions made, this holds for any 2 × 2 matrix with unit determinant. A reason that symplecticity is hard to

illustrate is that an even number of dimensions is required, but it is equivalent to volume preservation for two dimensions.
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2. Linear particle motion

�erefore, we have shown that any rotated (including ”tilted”) decoupled transfer element with indepen-
dent focusing terms in di�erent directions has a symplectic transfer matrix, which includes all rotated
quadrupolar-like �elds (upright and skew components) and bends (weak focusing) of the coordinate
system in arbitrary directions. �en, by the product rule, any combination of decoupled and coupled
transfer matrices is also symplectic, and this elementary proof is already su�cient for studies in most
storage rings and for the experiments discussed in this thesis, excluding solenoids.11

By using Hamiltonian mechanics for electromagnetic forces in a curvilinear coordinate system [7, 20],
it has been shown that any segment that describes interaction with magnetic �elds is symplectic when
neglecting synchrotron radiation.12

2.4.3. Normalized eigenorbits

A�er �nding the invariants, one may now de�ne normalized13 eigenorbits via

R̂m(s) =
1√
Im

~Rm(s). (2.14)

which only depend on the magnetic la�ice and an arbitrary complex phase (betatron phase) o�set that
has no physical relevance. As shown in sec. A.1.3, the phasor vectors can be traced through the ring like
phase space vectors. �erefore, we have found a linear beam optics quantity that is easy to compute and
track through the ring.

2.4.4. Relation to common parameterizations

�e normalized eigenorbits that have been found need to be related to standard notations of beam op-
tics. We have circumvented such parameterizations until now because all common notations have an
essentially polar form. �us, they o�en must be subjected to elaborate schemes (e.g. tensor transform
for the amplitudes / Betamatrix [6] approach) in derivations. Eigenorbits ~R can be transformed by mul-
tiplying their phase space vectors ~Z with the respective transfer matrices (like real orbits), and thus ease
derivations enormously even in the decoupled case.

Courant-Snyder parameterization [10] is the �rst and, so it seems, the only one that is used in the ac-
celerator community for the decoupled case. For general linear (coupled) motion, common approaches
either use Edwards-Teng [21, 22] or Mais-Ripken14 [14, 15, 20] parameters.

�e approach of Edwards and Teng transforms an arbitrary phase space ellipsoid into a decoupled frame,
which is then described by Courant-Snyder parameters. As this transformation involves locations and
momenta of particles, it can not be related in a straightforward way to spatial vectors respectively mon-
itor measurements and is thus not discussed in the following. By contrast, Mais-Ripken parameters
can be directly related to spatial motion due to their parameters being constructed independently from
eigenorbits for locations and momenta.
11A proof in this framework should also be possible but is not investigated here.
12As any such transfer mapM is symplectic [7], this also holds for its Jacobian M.
13Note that theˆsymbol is used for general normalization and does not require Euclidean norm to be unity.
14�ese parameters are also sometimes called Ripken-Mais or “Ripken’s style” parameters.
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2.4. Invariants of motion and normalization

Courant-Snyder parameters

For decoupled optics, one can connect the phasors to Courant-Snyder parameters [10] by comparing
expressions for successive turns on the phase space ellipse (Fig. 2.5), which leads to the equation

X̂ =
X√
Ix
=

√
βeiφ so that βx(s j ) = R̂j1 · R̂∗j1 = X̂ j X̂∗j .

One can also obtain the betatron phase by the elementary relation

φx(s j ) = arg X j . (2.15)

Furthermore, the comparison yields

γx(s j ) = X̂ ′j (X̂ ′ j )∗ and αx(s j ) = −<
{
X̂∗j X ′j

}
.

Mais-Ripken parameters

By their derivation using normalized eigenvectors Ẑ , the normalized eigenorbits are closely related to
the Mais-Ripken parameterization [14, 15, 20], which is the real, polar-like analogue, by

(
R̂m(s)

)
x
=

√
βmx(s)eiφmx (s)

where the relations also hold when replacing all x with y.

Courant-Snyder parameters can be treated as a special case of Mais-Ripken parameters, which is the
approach used for presenting results of our algorithm (sec. 6.1.2).

Figure 2.5.: Relations of decoupled phasors
X, X ′ in di�erent phases, the phase
space ellipse, and Courant-Snyder
parameters.
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3. Closed-orbit perturbations using eigenorbits

Building up on the eigenorbit concept, we derive new, generic expressions for orbit perturbations in
storage rings, which hold for more general types of perturbations than commonly considered (sec. 3.1).
�e di�erences in underlying assumptions can be seen by their reintroduction for comparison purposes
in secs. 3.1.3 and 3.1.4.

�is approach leads to the de�nition of the Bilinear-Exponential model (sec. 3.2), which is the basis for
the development of all new algorithms and results in this work. �e model has also been used in a slightly
di�erent form in [23].

For the following derivation, the exact nature of the perturbation inside the perturbed segment is not
of interest. �e only assumption made is that the perturbations are located in a �nite segment of the
storage ring.

3.1. Continuous closed-orbit perturbations

We examine the closed orbit and its quasi-static perturbation, which was separated from the oscillation
modes and eigenorbits in sec. 2.3.1. We are interested how the �xpoint solution, given by (2.3) as

T (s)
(
~r (s)
~r ′(s)

)
=

(
~r (s)
~r ′(s)

)
,

changes when additional magnetic �elds are applied. Still neglecting the unperturbed closed orbit con-
tribution without loss of generality (sec. 2.3.1), ~r (s) represents the closed-orbit perturbation.

3.1.1. Arbitrary orbit perturbations in a storage ring

Again the storage ring is assumed as an unperturbed segment with dynamic �elds (see sec. 2.2.2), so that
six independent orbits could exist for such a segment.

�e closed orbit is linked to the condition that the kinetic energy loss by a particle on this trajectory must
equal the energy gain obtained by traveling through the ring and its (radio-frequency) �elds; otherwise,
the orbit cannot be ring-periodic. �is condition links the coordinates δs and δ and thus absorbs one
degree of freedom from the orbit, so that P = 5 independent orbits remain.

�en one can separate a dispersion orbit ~d(s) that occurs depending on the energy deviation δ from the
other orbits by de�ning1

~rfull(s) = ~r (s) + ~d(s)δ.

Until further notice, only the subspace ~r (s) will be considered, which can be decomposed into P − 1 = 4
partial orbits.

1One could also de�ne this orbit to depend on δs instead of δ due to the above condition.
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3. Closed-orbit perturbations using eigenorbits

Next we assume that a local perturbation has occured, which can thus be assigned to a perturbed segment,
while the rest of the ring is treated as an unperturbed segment with four partial orbits (see Fig. 3.1). �e
four partial orbits in this subspace can be chosen arbitrarily as long as they are independent and thus
form a complete basis for the subspace. Considering sec. 2.3 (2.7) for the linear case in which monitor
vectors were de�ned, we state that the oscillation’s eigenorbits <R̂m(s),=R̂m(s) for M = 2 modes are
linearly independent and thus can be used for this purpose. �en for the path from s+ up to before the
reference point s = 0, the four initial conditions (e.g. amplitude and phase for each oscillation mode) can
be expressed as

s ≥ s+ : ~r (s) =
∑

m

[
am<~Rm(s) + am+M=~Rm(s)

]

= <



∑

m

(am − iam+M ) ~Rm(s)


.

For the part of the unknown segment in non-negative s direction (s ≥ 0), the trajectory is described by
the next turn of the oscillation (n = 1). �e unperturbed phase advance µ is included into the expression
via

s ≤ s− : ~r (s) = <



∑

m

(am − iam+M )eiµm ~Rm(s)


.

It is emphasized that µm denotes the unperturbed modal phase advance and thus is not changed by any
perturbation. �e perturbed modal phase advances may di�er considerably from the unperturbed ones
without in�uencing this equation.

To simplify expressions, one rede�nes the orbit’s initial conditions as M complex quantities

Am = (am + iam+M )e−iµm/2

Furthermore, a coordinate s̃ is introduced by the condition s− < s̃ < s+. With these de�nitions, the
perturbed orbit inside the unperturbed segment can be summarized as

s <]s−, s+[: ~r (s) = <



∑

m

A∗mei sign(s̃−s)µm/2 ~Rm(s)


, (3.1)

with ei sign(s̃−s)µm/2 =



e−iµm/2 if s ≥ s+ > s̃
e+iµm/2 if s ≤ s− < s̃

.

Figure 3.1.: An arbitrary orbit perturbation (oscillating
line) in a storage ring. �e perturbed segment
(blue) between s− and s+ is governed by un-
known quasi-static �elds. In the unperturbed
segment (green), the magnetic �elds do not
change, so its non-dispersive orbit subspace
is not in�uenced by the perturbation and can
be expressed by unperturbed eigenorbits. As
the unperturbed orbit parts can cross the ref-
erence plane s = 0, it splits the orbits into
di�erent turn parts.

s = 0

s−

s+

turn n = 0

turn n = 1
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3.1. Continuous closed-orbit perturbations

By the �xpoint condition, any perturbation pa�ern originating in the perturbed segment will cause an
orbit perturbation in the unperturbed segment with distinct Am values. In conclusion, (3.1) is su�cient
to study the linear transfer maps M(s) and segment maps T(s+ → s−) for the unperturbed segment,
without knowing what and where exactly in ]s−, s+[ the perturbation is.

As our condition with four principal orbits applies only to the unperturbed segment, the start-to-end
transfer map of the perturbed segment under consideration may also be nonlinear. Note that when
excluding this case, the superposition principle holds for Am with linear combinations of di�erent per-
turbations in the region ]s−, s+[.

3.1.2. Scaling invariance of eigenorbits and corrector quantities

One may note that a scaling invariance exists, as the simultaneous scaling by any set of M complex
numbers Cm

~Rm(s) ↔ Cm
~Rm(s) and Am ↔ 1

C∗m
Am =

Cm

|Cm |2 Am

does not have any e�ect on the le�-hand side of the considered closed-orbit equations. �e two degrees
of freedom for each mode m correspond to the invariant Im of the orbit, and its unknown betatron o�set
for all modes which does not possess physical relevance.

A�er having de�ned normalized orbit vectors, we use the scaling invariance and scale with C = 1/
√

Im
to de�ne normalized corrector quantities via the normalized closed-orbit equation

s <]s−, s+[: ~r (s) = <



∑

m

Â∗mei sign(s̃−s)µm/2 R̂m(s)


. (3.2)

3.1.3. Arbitrary orbit perturbations for decoupled motion

A�er reviewing the general full-coupled case of orbit perturbation, one can consider expressions for the
special case of decoupled motion.

�ese expressions are only used to cross-check their coherence with common descriptions in literature
and to clarify notions for the introduced variables. �e approximations shown in the following are not
necessary for the methods discussed in this thesis, which are implemented for general coupled motion
(M = 2).

Inserting (2.8) into (3.2) while evaluating only in the horizontal direction results in

~zx(s) =
(

x(s)
x ′(s)

)
= <

{(
X (s)
X ′(s)

)
ei sign(s̃−s)µx/2 A∗x

}
. (3.3)

All calculations and results for Ax and the horizontal decoupled closed orbit in this section also hold for
Ay and the vertical closed orbit when substituting all x indices and components with their y counterparts.
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3. Closed-orbit perturbations using eigenorbits

3.1.4. Corrector quantities in the decoupled, dipolar, thin-lens approximation

In addition to the decoupled assumption, it is assumed in the following that the perturbation is located
in an in�nitely small segment located as s̃. It is then possible to formulate a condition on the corrector
quantity Âx by using (3.3) with normalized quantities around s̃. �e expression can be reduced to2

lim
ε→0

[
~zx(s+ = s̃ + ε ) − ~zx(s− = s̃ − ε )

]
= 2 sin(µx/2)=

{
Â∗x

(
X̂ (s̃)
X̂ ′(s̃)

)}
!
=

(
0
θx

)
.

From the �rst equation of the system one can deduce X̂ and Ax are parallel, so that

Âx = X̂ (s̃) Ā with Ā ∈ R.

�en by using (2.11), the braced term in the second equation simpli�es to

=
{

Â∗x X̂ ′(s̃)
}
= Ā=

{
X̂∗(s̃) X̂ ′(s̃)

}
= Ā

and results in the corrector quantity Âx = X̂ (s̃)
θx

2 sin(µx/2)
. (3.4)

�erefore we have related the corrector quantities to optical functions by stating the additional (decou-
pled, dipolar, thin-lens) assumptions commonly used in literature.

Rewriting the closed-orbit perturbation equation in the decoupled, dipolar, thin-lens assumption (3.4)

x(s) = <
{

Â∗xei sign(s̃−s)µx/2 X̂ (s)
}

=
θx

2 sin(µx/2)
<

{
X̂∗(s̃) ei sign(s̃−s)µx/2 X̂ (s)

}

=
θx

2 sin(µx/2)

√
β(s) β(s̃) cos

(
φ(s) − φ(s̃) − µ

2
sign(s − s̃)

)
,

one therefore arrives at the standard closed-orbit equation from literature as found e.g. in [7, 16] with
equivalent parameters.

2�is can be regarded as a system of equations containing< to be solved for the unknown complex parameter A∗x (sec. 5.1.1).
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3.2. �e Bilinear-Exponential (BE) model

3.2. The Bilinear-Exponential (BE) model

�e general treatment of continuous closed orbit perturbations now has to be reduced to handle ob-
servable quantities only. It is emphasized that the closed-orbit equation (3.1) and thus the resulting
Bilinear-Exponential model does not depend on the exact alignment of magnetic structures in the ring,
but only on the topology of elements.

3.2.1. Monitors, correctors, and general response matrix

In the following, we will only assume that the orbit can be observed at J given

monitor positions s j for 1 ≤ j ≤ J

in the ring. In abbreviation, we call the eigenorbits at these positions

monitor vectors ~Rjm ≡ ~Rm(s j ) ∈ CM .

Furthermore, we assume that the origin positions of K closed-orbit perturbations are �xed on a set of

corrector positions s̃k for 1 ≤ k ≤ K,

leading to the de�nition of

corrector parameters Akm ≡ Am(s̃k, θk ) ∈ C.
Now that a setup is de�ned where many perturbations can occur, we can subsume the K perturbed orbits
as columns of a general response matrix r of size J ×K , so that each vector element ~r jk denotes the orbit
perturbation observed at monitor j and originating from corrector k .

�e general response matrix can thus be understood as orbit response matrix with unknown kick angles
θk , and a connection to common decoupled kick-angle response matrices xrsp, yrsp exists via

x jk = xrsp
jk
θk with k ∈ Kx,

yjk = y
rsp
jk
θk with k ∈ Ky.

Note that for decoupled motion, the corrector indices k are grouped into two subsets Kx,Ky, and the
response matrices in each plane are o�en only measured for the indices in the respective subset (see also
sec. 4.3).

3.2.2. Monitor-corrector topology

In conclusion one can treat the exponential term by de�ning3

phase jump coe�cients Ejkm = ei sign(sj−s̃k )µm/2.

Note that the only dependence on j, k of the coe�cients is given in the sign term. �us, there is no
dependence on the distance between s j and sk in the expression, but only one on the Boolean value of
the expression s j > s̃k or the ordering of s j, s̃k .

�is ordering is equivalent to the ordering of the elements j, k along the ring. For example, we could
de�ne an ordered list like

(mon 1, corr 7, mon 2, mon 3, corr 4, . . . )
3Note that the positions of s̃ and s̃ have been switched in the de�nition, so that E∗ occurs in (3.6).
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3. Closed-orbit perturbations using eigenorbits

Figure 3.2.: Example topology for DELTA stan-
dard correctors (chapter 7). Blue
color indicates a negative sign (re-
spectively -1), green color indicates
a positive sign (respectively +1).
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consisting of J +K identi�ers that are ordered towards increasing s coordinates along the ring, which is
simply along the beam path. Here, the mon identi�ers represent the respective j index of the response
matrix, while the corr identi�ers represent the respective k index. By comparing the indices n of each
monitor and corrector in this list against each other,

Sjk = sign(n(mon j) − n(corr k)) !
= sign(s j − s̃k ) ∈ {−1,+1}.

In practice, the ordered list will contain element names instead of row/column identi�ers, and two lists
containing the names of all monitors and correctors for each row and column of the response matrix
are given. While the matrix Sjk is almost always created from an ordered list, we will consider Sjk to
be given as input to the algorithms and de�ne S as topology matrix. One can then write the phase jump
coe�cients as

Ejkm = eiS jkµm/2. (3.5)

Note that the ordered list and Sjk originates from elementary topological properties of the accelerator
– the order along the path in which monitors and correctors are installed. No knowledge of magnetic
properties or detailed positioning is needed. An example for a topology matrix is shown in Fig. 3.2.

3.2.3. Bilinear-Exponential model without dispersion (BE-d model)

By localizing s̃ between two adjacent monitors, we have ensured that s j <]s−, s+[ for all j . �erefore one
may rewrite (3.1) as

~r jk = <



∑

m

~RjmE∗jkmA∗km


. (3.6)

�is linear equation (which does not include dispersion) is the starting point for the description of mon-
itor and corrector subroutines in the next chapter.

�e scaling invariance discussed in sec. 3.1.2 is also valid for the monitor vectors and corrector parame-
ters. In consequence, an equation with normalized quantities follows as

~r jk = <



∑

m

R̂jmE∗jkm Â∗km


. (3.7)
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3.2. �e Bilinear-Exponential (BE) model

3.2.4. Bilinear-Exponential model with dispersion (BE+d model)

Again integrating the dispersive e�ects (sec. 3.1.1), one may de�ne

dispersion vectors ~d j ≡ ~d(s j ) and dispersion coe�cients bk .

�e dispersion coe�cients represent energy deviations of the orbit for a given perturbation k , which
result from an interplay between path length changes and di�erent energy gains in the cavity or cavities,
leading to a new equilibrium. �us, we arrive at the BE model with dispersion, given by

~r jk = <



∑

m

~RjmE∗jkmA∗km


+ bk ~d j

= <



∑

m

~Rjme−iS jkµm/2 A∗km


+ bk ~d j .

(3.8)

�is equation will be treated as part of a decomposition problem in chapters 4 and 6.

Note that it is possible to include the dispersion summand into the modal sum by de�ning an additional
mode 0,

~r jk = <



M∑

m=0

~Rjme−iS jkµm/2 A∗km



with λ0 ≡ 1, ~Rj0 ≡ ~d j, Ak0 ≡ bk .

3.2.5. E�ects of monitor distortions

We investigate how systematic inaccuracies of a monitor e�ect the applicability of the BE±d models.
Approximating the deviations from the unperturbed closed orbit ~r to be small, such monitor distortions
at a monitor j can be modeled via a recti�cation Jacobian Dj (~r

#
j ) for the unperturbed closed orbit as

computed by the monitor system (#) at monitor j . Abbreviating the Jacobian as Dj , one obtains

~r jk = Dj~r
#
jk
= <

{ ∑

m

Dj
~R#
jm︸ ︷︷ ︸

~R jm

E∗jkmA∗km
}
+Dj

~d#
j︸︷︷︸

~d j

bk .

�us monitor distortions e�ect the model monitor parameters ~Rjm and ~d j to their # counterparts, but
will not prevent the applicability of the BE±d models. �is also means that the correction of monitor
distortions can be applied to the monitor parameters (see sec. 6.1.2).
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3. Closed-orbit perturbations using eigenorbits

Summary

To close this chapter, we summarize properties of the Bilinear-Exponential model that distinguish it from
existing approaches to parameterize closed orbits.

1. Monitor distortions. Naturally, the values of BE+d monitor parameters change, but the resulting
response can still be decomposed into a BE+d model, and recti�cation can be performed in the
model parameters.

2. Unknown corrector strengths and multipole �elds. Unknown corrector characteristics again only
in�uence the corrector parameters Akm. As no assumptions about the exact nature of the pertur-
bation were made but the fact that they only occur in the space between two adjacent monitors,
multipolar errors of any kind will only change the Akm values (as long as the beam is not lost by
the perturbation).

If, on the other hand, the kick angle θk is known, the corrector can be approximated as having
no extension in beam direction, not producing additional multipolar perturbations, and motion
is decoupled (sec. 3.1.4), additional optical information is available at the correctors via (3.4), as
(analogous for y)

X̂ (s̃k ) =
√
β(s̃k )eiφ(s̃k ) = 2

sin(µx/2)
θk

Âkx for k ∈ Kx.

3. Inclusion of strong betatron coupling has been performed without further considerations.

Further bene�ts of this model become apparent in chapters 4 and 5.
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4. The response problem

Having developed the Bilinear-Exponential model with dispersion in chapter 3, we are able to rephrase
and clarify the inverse problem mentioned in the introduction (chapter 1). A�er some considerations
about the solvability of the problem under ideal conditions (no measurement errors, sec. 4.1), it is re-
formulated into an optimization problem (sec. 4.2) which will be the problem statement used by the
optimization layer of the algorithm to be developed (sec. 6.1.1).

4.1. Problem statement and solvability

In the following considerations, we include dispersion and use the BE+d model (3.8),

r jkw =
∑

m

<
{
Rjmwe−iS jkµm/2 A∗km

}
+ d jwbk, (4.1)

where w denotes the respective vector component.1

As the available input data consists only of a general response matrix r and the topology matrix S of
an accelerator, the inverse problem brie�y discussed in the introduction (chapter 1) can be rephrased as
shown in the following.

For given general response matrix r and topology matrix S,

�nd all parameters of the BE+d model, given as
Rjmw, Akm, µm, d jw, bkw for each monitor j, corrector k, and direction w,

so that (4.1) is ful�lled.

Taking into account the phase advances µm, the number of dimensions for the search space is

D = M + 2(K M + JM2) + K + JM for the BE+d model and
D = M + 2(K M + JM2) for the BE-d model,

both with JK M constraints.

4.1.1. Scaling invariants

In (4.1), each response component consists of M + 1 summands. For the modal summands starting with
<, we already know from sec. 3.1.2 that the monitor vector and corrector parameters for a given mode m
can be scaled by any complex quantity Cm, which results in 2M degrees of freedom that do not change
the summand. �ese degrees of freedom are equivalent to the unknown invariant of motion and starting
phase of the respective oscillation mode m.

In addition, if all factors in the < summands are simultaneously conjugated, the summand will not
change. �is ambiguity is equivalent to the quadrant problem (secs. 5.1.3 and 6.1.2).

1In other words, Rjmw respectively d jw denotes the component of ~Rjm respectively ~d j in direction w.
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4. �e response problem
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Figure 4.1.: Solvability of the response problem without dispersion (BE-d model) in dependence of the
number of monitors J and correctors K for M = 1 (le�) and M = 2 (right). Light green
indicates that the problem is solvable. �e dashed line separates the region in which solutions
can be found by the MCS algorithm (sec. 5.2) from the one for few correctors and monitors
for which this is impossible.

Further degrees of freedom are contained in the dispersion term, as any scaling by a real number does not
a�ect the summands. �is leads to Dinv = 2M scaling invariants for the BE-d model and Dinv = 2M + 1
scaling invariants for the BE+d model, which do not change any summand of the equations.

�is means that a solution can be constructed if D − Dinv ≤ JK M , which is equivalent to

(2M + 1)(K + JM) ≤ (K J + 1)M + 1 for the BE+d model and
or 2(K + JM) ≤ K J + 1 for the BE-d model.

�e solvability of a set of equations in dependence of J and K is shown in Figs. 4.1 and 4.2.

4.1.2. BE+d model with fixed µ as bilinear equation system

One may reformulate (4.1) by constructing a vector ~x that holds the components of all Akm and bk , and
a vector ~y that holds components of all ~Rjm and ~d j (sec. A.3.4). Using a set of JK M di�erent sparse
matrices Bjkw which components are either zero, e±iµm/2, or one, the equations can then be rewri�en as
(sec. A.3.4)

r jkw = <
{
~y†Bjkw~x

}
.

For a �xed set of matrices Bjkw (µm) and unknown ~x, ~y, this is a bilinear equation system [24, 25].2

Several strategies exist to solve bilinear systems, which is generally considered a non-trivial task and an
active topic of research [24, 25]. At the moment, no directly applicable global one-step solution3 seems
to exist. Even if it existed, we would have to include µm into an outer optimization loop (similar to LSSA
optimization, sec. 8.2.1).

2Usually being de�ned for real-valued ~x, ~y,B and a single index ( j, k,w) → b, the above system can be rede�ned by elementary
means to ful�ll this condition.

3without selecting rows or columns like in the MCS algorithm (sec. 5.2)
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4.1. Problem statement and solvability

�adratic surfaces and solution spaces

�e aforementioned system is asymmetric and contains the < operator. To obtain more insight into
the problem, we reformulate the bilinear system into a quadratic system. We obtain a set of quadratic
(hyper)surface equations

2r jkw =
(
~x
~y

)†
*
,

B†
jkw

Bjkw

+
-

(
~x
~y

)
.

Each equation of this system (indexed by j, k,w) de�nes the solution to reside on a surface in the search
space. Assuming no measurement noise, the solution is thus the intersection of all JK M surfaces de�ned
by the equations. If noise is included in r jkw , one would like to �nd the point that is closest to being an
intersection by a given measure (see sec. 4.2).

If all hypersurfaces are di�erent from each other, then each intersection of two surfaces reduces the
dimension of the resulting solution space by at least one. �is is the case if all matrices Bjkw/r jkw di�er
from each other (see sec. A.3.4) and all r jkw , 0.

For construction of bilinear equations, we have neglected and �xed the modal phase advances µm to
their optimal values. If they are subjected to variation and not all Sjk are identical, the orientation of the
quadric surfaces relative to another will change due to their dependence on Bjkw , excluding the case of
conjugating the respective summands (and thus changing the sign of µm) and the periodicity of µm.

While a full proof that a unique solution exists for all thinkable situations could not be given, we conclude
that the solution is unique in the bilinear subspace (which only holds M dimensions less than the full
problem) and very likely to be unique in the full solution space for non-degenerate oscillation eigenmodes
at monitor and corrector positions. Note that in all cases where the MCS algorithm (sec. 5.2) can be
applied, a unique solution must exist when neglecting dispersion; this is the case for common setups
with K ≥ 4M and J ≥ 4 (see sec. 5.2 and Figs. 4.1, 4.2).

5 10 15
J

5

10

15

K

5 10 15
J

5

10

15

Figure 4.2.: Solvability of the response problem with dispersion (BE+d model) with identical indicators
as in Fig. 4.1. Note that an overlap of unsolvable combinations and applicability of the MCS
algorithm (sec. 5.2) occurs. For these 3 (M = 1) respectively 1 (M = 2) cases, the resulting
BE+d model would be ambiguous.
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4. �e response problem

4.2. Restatement as an optimization problem

We described the general response problem without any measurement error in the form of a bilinear-
exponential equation system. In alternative to this approach, one may express the general response
problem as a nonlinear least-squares problem [26] as follows.

For a given general response matrix r of size J × K with vector elements ∈ RM and a topology matrix S
of size J × K ,

�nd Rjmw, Akm, µm, d jw, bk for all monitors j, correctors k, modes m, directions w

so that χ2 =
∑

jkw

[
f jkw (. . . , S) − r jkw

]2
is minimal.

In this context, each f jkw (. . . , S) is a regression function which is given by the right-hand side of (4.1)
and thus depends on all variables therein. We can further abbreviate the notation by de�ning the BE+d
vector ~ρwhich components contain all Rjmw, Akm, µm, d jw, bk in an arbitrary but �xed order, and which
is located in a D-dimensional (sec. 4.1) search space. By this de�nition one arrives at the following for-
mulation.

Find a BE+d vector ~ρ so that χ2 =
∑

jkw

[
f jkw

(
~ρ, S

) − r jkw
]2

is minimal. (4.2)

As stated in sec. 4.1, this problem has D free parameters corresponding to dependent variables respec-
tively number of dimensions of ~ρ. Many of such high-dimensional problems are only solvable in rea-
sonable time scales if information about gradients and higher derivatives is provided. As f jkw consists
only of linear and exponential parameters in the B±d model, we can �nd equivalently simple analytical
expressions for gradient and second-order derivatives.

4.2.1. Gradient of χ2 in search space (Jacobian matrix)

We follow the standard procedure of nonlinear regression problems [26]. To �nd the gradient, we intro-
duce component residuals, we express the squared error in (4.2) as

χ2 =
∑

jkw

χ2
jkw with �t residualsχ jkw = f jkw (ρ, S) − r jkw .

�e gradient of the objective function in respect to ~ρ, respectively its components ρn, is then given via
chain rule as

∂

∂ρn
χ2 =

∑

jkw

∂ χ jkw

∂ρn

∂ χ2

∂ χ jkw
= 2

∑

jkw

∂ f jkw
∂ρn

χ jkw .

�e remaining problem consists of �nding the gradient of f jkw in the space of dependent variables. By
an index mapping ( j, k,w) → b, this can be rewri�en de�ning the Jacobian matrix of residuals in search
space J by

∂

∂ρn
χ2 = 2

∑

b

Jnp (ρ) χb with Jnb (~ρ) =
∂ fb (~ρ)
∂ρn

or ~∇ρ χ2 = 2 J(~ρ) ~χ.

�e Jacobian matrix can be constructed by analytically calculating all respective gradients as done in
the following. As some dependent variables are complex and others real, it is advisable to construct ~ρ

using real and imaginary parts of the complex quantities separately. �is corresponds to the following
treatment of derivatives.
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4.2. Restatement as an optimization problem

Gradients of linear quantities

With an arbitrary, complex constant a and a dependent variable ρm, we obtain two useful relations for
the derivatives of linear quantities

∂

∂<ρm
∑

n

< {
a∗nρn

}
=

∂

∂<ρm
∑

n

< {
anρ

∗
n

}
= δmn<an,

∂

∂=ρm
∑

n

< {
a∗nρn

}
=

∂

∂=ρm
∑

n

< {
anρ

∗
n

}
= δmn=an.

To prevent index mixing, we replace the indices j, k,m,w corresponding to identical indices in the re-
spective derivative variable by barred counterparts. �en we obtain the Jacobian matrix elements

∂ f jk̄w
∂<Akm

=
∂

∂<Akm

∑

m̄

<
{

Rjm̄wE∗
jk̄m̄

A∗
k̄m̄

}
,

= δk̄k<
{

RjmwE∗
jk̄m

}

∂ f jk̄w
∂=Akm

= δk̄k=
{

RjmwE∗
jk̄m

}

for the corrector parameters, so the corresponding objective function derivatives are

∂

∂<Akm
χ2 = 2

∑

jk̄w

δk̄k χ jk̄w<
{

RjmwE∗
jk̄m

}

= 2
∑

jw

χ jkw<
{
RjmwE∗jkm

}
, (4.3)

∂

∂=Akm
χ2 = 2

∑

jw

χ jkw=
{
RjmwE∗jkm

}
. (4.4)

With a similar computation, we have monitor vector gradients of f jkw as elements of the Jacobian matrix
brie�y de�ned by

(
∂

∂<Rjmw
+ i

∂

∂=Rjmw

)
f j̄kw̄ = δ j̄ jδw̄w AkmE j̄km, so that (4.5)

(
∂

∂<Rjmw
+ i

∂

∂=Rjmw

)
χ2 = 2

∑

k

χ jkw AkmEjkm. (4.6)

Likewise we obtain the derivatives regarding dispersion parameters as

∂

∂bk
f jk̄w = δk̄kd jw ⇒ ∂

∂bk
χ2 = 2

∑

jw

χ jkwd jw (4.7)

∂

∂d jw
f j̄kw̄ = δ j̄ jδw̄wbk ⇒ ∂

∂d jw
χ2 = 2

∑

k

χ jkwbk . (4.8)
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4. �e response problem

Phase advance derivatives

As the modal phase advances µm only occur in f jkw as exponential dependencies (Ejkm = eiS jkµm ), one
can compute the respective derivatives by elementary means as4

∂ f jkw
∂µm̄

=
1

2

∑

m

(
Rjmw

∂

∂µm̄
E∗jkmA∗km + R∗jmw

∂

∂µm̄
EjkmAkm

)

=
Sjk

4i

(
Rjm̄wE∗jkm̄A∗km̄ − R∗jm̄wEjkm̄Akm̄

)

=
Sjk

2
=

{
Rjm̄wE∗jkm̄A∗km̄

}
.

�e corresponding derivative of the objective function follows as

∂

∂µm
χ2 =

∑

jk

Sjk

∑

w

χ jkw=
{
RjmwE∗jkmA∗km

}
. (4.9)

One concludes that (a�er a lengthy but straightforward computation) all elements of the Jacobian matrix
respectively the complete gradient information for the general response problem have been calculated.

4.2.2. Error computations and approximate Hessian

If we had found an optimal solution to the general response problem, contained in the solution vector
~ρopt, we would like to know how sensitive the solution is to small changes in that vector respectively
the dependent variables. �is information is contained in the Jacobian matrix for the solution J(~ρopt).

In vicinity of the optimal solution ~ρopt, the nonlinear problem is approximately equivalent to a least-
squares linear problem of the form

rb = χb +
∑

n

Jnb · (ρn − ρopt
n ) with J = J(~ρopt) = const.

For this case and identical noise levels for all inputs, one may compute an estimate of the covariance
matrix as [26]

C = σ2(JJ†)−1,

where σ2 can be interpreted as the best approximation error given in [27]. �e signi�cance respectively
reliability of this error depends on an “overdetermination factor”, which is the ratio of input data com-
ponents JK M and the VC dimension [27], being D − Dinv in our case. Including its dependence on the
estimated in-sample error χ2, the best approximation error can be estimated as [27]

σ2 =
JK M

JK M − D + Dinv
χ2.

As a rule of thumb, the estimation becomes inaccurate for overdetermination factors ≤ 10 [27].
4For purposes of implementation, one could de�ne variables cjkwm = RjmwE∗

jkm
A∗
km

that can be used in the following and
for computing the f jkw terms.
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4.2. Restatement as an optimization problem

ρ1

ρ 2

χ
2

ρ1

ρ 2

χ
2

Figure 4.3.: Residual error function χ2 in vicinity of a valid solution (black points and lines) to a two-
dimensional optimization problem with isolines. Le�: fully constrained problem. Right: un-
derconstrained problem.

Hessian matrix

As f jkw is an analytical expression, it is also possible to calculate higher-order derivatives. For the
second-order derivative, this information is contained in the Hessian matrix H of the function χ2(~ρ),
de�ned by its components via

Hmn =
∂

∂ρm

∂

∂ρn
χ2 =

∂

∂ρm
2
∑

b

Jnb (~ρ) χb

= 2
∑

b

χb
∂

∂ρm
Jnb (~ρ) + 2

∑

b

Jmb Jnb

In the case of linearization with constant J, this reduces to an approximate Hessian in vicinity of the
solution vector

H̃ = 2JJ†, so that C = 2σ2H̃−1.

Due to its symmetry, this approximate Hessian must be positive semide�nite, which is useful if its inverse
has to be computed. Due to the scaling invariants (sec. 4.1.1) respectively the fact that the expressions
f jkw are underconstrained in terms of ~ρ, we cannot expect H̃ to possess full rank (see Fig. 4.3).

As the computation of an appropriate (pseudo-)inverse is required,5 it is useful to express the covariance
matrix by SVD [28] of J (sec. A.3.1) as

C = σ2 pinv(JJ†) = σ2 pinv(J†) pinv(J) = σ2 USinv (USinv)†.

It is possible to use an analytical cuto� criterion (sec. A.3.1) on Sinv. As the number of scaling invari-
ants (sec. 4.1.1) is known for a given model, we set the same number of smallest singular values in the
pseudoinverse to zero and invert the remaining singular values.

5Another numerical reason is the fact that computing the eigenvalues of H̃ may be more e�cient (especially as J is sparse,
see sec. 6.1.2), but precision is lost due to explicit component multiplication. �is is also circumvented by SVD [28].
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4. �e response problem

4.3. Response assumptions

Up to this point, we have implicitly assumed that all general response matrix elements r jkw are known.
�is is not given for many data sets recorded in storage rings.

In some measurement setups, the orbit perturbation in the direction w which is not under consideration
is simply set to zero, so that

r jkw = 0 for k < Kw .

Here, Kw is the set of corrector indices of the respective direction. �is setup assumption is called de-
coupled measurement assumption in the following, in contrast to the coupled measurement assumption
being used when all general response matrix elements are known.

As a result, two fully independent sets of equations

x jk = <
{
X je

−iS jkµx/2 A∗kx

}
+ d jxbkx for k ∈ Kx, and

yjk = <
{

Yj e−iS jkµy/2 A∗ky

}
+ d jybky for k ∈ Ky

(4.10)

exist for the decoupled measurement assumption. �ese two sets can each be represented by (4.1), when
assuming the number of modes and directions M = 1, and then identifying x jk respectively yjk with r j11

and X j respectively Yj with Rj11. In consequence, the resulting optimization problem can be split into
two optimization problems.

By inspecting (4.1), we note that only one dispersion orbit ~d j exists in independence of the oscillation
mode m. �us, when using decoupled response matrices, the relative scaling of the dispersion orbit in
horizontal and vertical direction is lost, and di�erent bkw variables are used for each direction w.

Note that this is only an assumption for a limited measurement, while the physics of the problem is
always governed by (4.1). �erefore, it is always advisable to use complete response data and the coupled
response assumption whenever possible. In consequence, we can only hope to describe the problem
properly with (4.10) if the beam optics are decoupled in good approximation, that is Rjmw ≈ 0 for m , w.
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5. Procedures to find approximate BE
parameters

Having described the general response problem as a nonlinear regression problem in sec. 4.2, su�cient
starting values (respectively BE+d parameters) for the optimization procedure need to be found. �us
we introduce basic algorithms that can be used to extract approximate BE+d parameters from a general
response matrix without optimization, gradually removing additional assumptions and input information
but topology and increasing abstraction from existing measurement techniques.

Corrector-Monitor mapping (sec. 5.1) uses systems of linear equations to compute all monitor vectors
from a subset of monitor information (neglecting dispersion) [23], formalizing and extending existing
notions [29, 30, 11]. �e missing monitor subset information has to be obtained by other means, e.g.
la�ice assumptions [29, 30] or multiturn measurements, as shown for a predecessor of CM mapping
with additional assumptions in [11].

�e Monitor-Corrector Subset algorithm (sec. 5.2) computes this missing information from a small num-
ber of r elements and topology, subsequently utilizing CM mapping to compute B-d parameters. While
no additional assumptions are placed, the method relies on the accuracy of monitors in the arbitrarily
chosen subset – a property originating from the MCS algorithm using CM mapping as a subroutine.

5.1. Corrector-Monitor (CM) mapping

By use of the BE-d model (sec. 3.2.3), we are able to obtain optical parameters at all monitors if monitor
vectors at a su�cient subset of monitors are available (e�ectively mapping known to unknown monitors
vectors). �is is facilitated by subsequent application of the corrector (sec. 5.1.2) and monitor (sec. 5.1.1)
subroutines, which is named as CM mapping (sec. 5.1.3) in this work.

Somewhat outside of the scope of this thesis, we will show a basic example of using CM mapping to
process incomplete Turn-by-Turn (TbT) data. �is technique called TbT-assisted mapping (sec. 5.1.4) has
been developed by the author in previous works [23, 11]. Note that the MCS algorithm (sec. 5.2) which
uses CM mapping does not require any TbT data as input.

5.1.1. Monitor subroutine

�e basic notion for the development of the monitor subroutine has been used in determining β functions
based on la�ice model values [29]. Numerical validation of a monitor subroutine precursor had been
performed for a simulation of the Fermilab Tevatron [29], while a similar technique was also developed
and used for measurements at the KEKB storage rings, again using la�ice model data as input [30, 16, 17].

Equation system for all correctors and one monitor

Reviewing (3.6), it is valid to replace the braced term by its complex conjugate. Also, we transpose both
sides of the equation. As the le� side is real, transpose and matrix adjunct refer to the same operation.
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5. Procedures to �nd approximate BE parameters

�erefore we can apply the matrix adjunct to the braced term and the le� side of the equation, so that

~r†
jk
= <




∑

m

AkmEjkm
~R†jm



= <




(
Ak1Ejk1 . . . AkMEjkM

) *...
,

~R†j1
...

~R†jM

+///
-




As this matrix does not depend on the k index, one can create a linear equation system

*...
,

~r†j1
...

~r†jK

+///
-

= <



Gj

*...
,

~R†j1
...

~R†jM

+///
-




or

(
~r j1 . . . ~r jK

)†
= <

{
Gj

(
~Rj1 . . . ~RjM

)†}
(5.1)

which includes all corrector parameters. In the process of simpli�cation we have introduced J matrices
Gj with components de�ned by

(
Gj

)
km
= AkmEjkm = AkmeiS jkµm/2. (5.2)

One concludes that, if not being underconstrained, (5.1) can be used to obtain unknown monitor vectors
~Rjm from (all) corrector parameters, corresponding orbit perturbations at the monitors, and knowledge
of µm.

Decoupled case Note that the monitor equation system is independent for di�erent column vectors
of the monitor matrix and the general response matrix, which correspond to di�erent directions. �us,
in the decoupled case, the system can be simpli�ed as e.g. for a horizontal corrector k , the columns
corresponding to vertical deviations are zero and do not contribute to the solution.

Equation systems containing<

Although being a system of linear equations, (5.1) has the slightly unusual form

~b = < {
C~x

} or bp =
∑

q

<
{
Cpqxq

}
.

�is is not problematic, as each summand on the right-hand side can be rewri�en as

<
{
Cpqxq

}
= <Cpq<xq − =Cpq=xq .

By this equivalence one may reformulate the original system as

~b =
(
<C −=C

) (<~x
=~x

)

which is a standard, real-valued equation system. In comparison with the original system, it has the same
number of unknowns, which were contained pairwise in complex numbers of the original form.

�us, (5.1) is only solvable for all monitor vectors ~Rjm if K ≥ 2M , so that each considered oscillation
mode m requires application of K = 2 di�erent orbit perturbations to be solved. If the system is overde-
termined, the SVD algorithm can be used to �nd the least-squares result (sec. A.3.1).
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5.1. Corrector-Monitor (CM) mapping

Gj regions and matrix conditions dependent on correctors

As the only dependence of matrix Gj in (5.2) on j is given by the phase jump coe�cients Ejkm = sign(s̃k−
s j ), it can be stated that many Gj matrices are identical, and that in fact only K +1 di�erent matrices Gj

can occur in the equations. Of these, the two matrices Gj for s j > s̃K and for s j < s̃1 are also identical
up to a phase factor, which corresponds to the “switching of turns” at s = 0.

To solve (5.1) for monitor vectors, the system matrix generated from Gj using sec. 5.1.1 must be non-
singular. �is condition can be formalized for special cases, in which all correctors are located between
a given pair of monitors p and p + 1. �en,

Sjk = sign(p + 1/2 − j) =



+1 for j ≤ p
−1 for j ≥ p + 1

Consequently, only two unique Gj exist in this special case, which are identical up to phase factors and
are equally well conditioned. �e matrices are singular

if
(
<A =A

)
is singular.

�is statement is equivalent to the one that di�erent correctors should not be placed at conditions with
the same betatron phase in any direction to prevent the resulting orbit perturbations to be identical, in
which case the correctors cannot span the set of independent orbits. �us storage rings are very o�en
designed to prevent this case by choosing the corrector positions so that independent perturbations occur.

In the general case, the above condition is modulated by the phase jump coe�cients in the di�erent
corrector regions. Nevertheless, there are usually enough correctors in a ring to span the orbit space in
each region, and the conditioning can also be checked by numerical means.

5.1.2. Corrector subroutine

Again starting from the BE-d model, we construct a simple corrector subroutine with which unknown
corrector parameters can be found from a subset of monitor vectors.

Monitor subsets

In the following, beam oscillation parameters from a subset of input monitors will be mapped to those
of output capable monitors. In consequence, the set of all monitors represented by the index set

J =
{
j | j ∈ N+ ∧ j ≤ J

}

will be split into subsets (N+ does not include zero).

�e previous expressions in which j occured, e.g. (5.1), have been independent for each j and thus are
indi�erent to the ordering of elements ∈ J as long as the ordering is consistent throughout the calcula-
tions. �is statement also holds for any subset of J. To keep the ordering consistent, we de�ne a monitor
subset by a sequence j f of length F that contains only unique elements, so that

Jsub =
{

j f | f ∈ N+ ∧ f ≤ F ∧ j f ∈ J
}
,

with f being a second-order index set (see Fig. 5.1). Naturally any equation in chapter 3 including j and
the BE-d model (3.6) can be applied to a monitor subset by replacing j → j f .
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5. Procedures to �nd approximate BE parameters

j1 j2 j3 j4

1 2 3 4 5 6 7 8 9

Figure 5.1.: �e sequence j f ∈ Jsub includes all monitor indices of the subset. �e �gure shows a subset
with F = 4.

Equation system for multiple monitors and one corrector

Reviewing (3.6), we can separate A∗
km

from the other components and use matrix notation. Furthermore,
we use the subset notation, so that for any monitor subset Jsub

~r j f k = <



(
~Rj f 1E∗

j f k1 . . . ~Rj f ME∗
j f kM

) *..
,

A∗
k1
...

A∗
kM

+//
-



.

Note that we can rewrite the vector containing corrector parameters as
(
Ak1 . . . AkM

)†
. It is clear

that this vector does not depend on the monitor index j respectively j f . �en one system containing all
orbit perturbations and monitor vectors of the subset can be wri�en as

*..
,

~r j1k
...

~r jF k

+//
-
= <




*...
,

~Rj11E∗
j1k1 . . . ~Rj1ME∗

j1kM
...

. . .
...

~RjF1E∗
jF k1 . . . ~RjFME∗

jF kM

+///
-

(
Ak1 . . . AkM

)†



for each k . (5.3)

Considering sec. 5.1.1, each equation system (5.3) consists of MF equations with M unknown complex
numbers implying 2M unknowns. It follows that each system can only be constrained if the monitor
subset holds indices of F ≥ 2 monitors.

Like for the Gj regions in the monitor subroutine, one may apply singularity conditions to the system
matrix of (5.3). Again neglecting phase jumps, the condition reduces to the monitor vectors ~Rj f m being
linear dependent.

Decoupled case Again, we can use the decoupled approximation to simplify (5.3). �is results in
ignoring all rows of the above equation system in which directions and modes are not coupled, so that
K di�erent equation systems

*..
,

x1k
...

xFk

+//
-
= <




*..
,

X1E∗1kx
...

XFE∗
Fkx

+//
-

A∗kx




for each k

exist. �is is also only feasible if the system is not underconstrained, which corresponds to F ≥ 2.

Matrix conditions dependent on the monitor set

As with the corrector subroutine, there are also conditions for the input monitor vectors to be ful�lled so
that the resulting matrix is well-conditioned. In line with the argumentation in sec. 5.1.1 about corrector
regions, we state that in the special case of only two regions, the system matrix is singular

if
(
<R =R

)
with R =

*...
,

~Rj11 . . . ~Rj1M
...

. . .
...

~RjF1 . . . ~RjFM

+///
-

is singular.
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5.1. Corrector-Monitor (CM) mapping

For M = 2, this is e.g. given if the betatron phase advances between two monitor vectors of di�erent
monitors are close to π/2 for both modes. �e matrix condition number is also modulated by the phase
jump coe�cients, but the problem is unlikely to be well-conditioned if the previous singularity condition
is met.

5.1.3. Properties of CM mapping

A�er having characterized two linear equation systems that allow to obtain corrector parameters from
monitor vectors and vice versa, we can summarize that all monitor vectors (for which closed-orbit per-
turbation information exists) can be obtained by mapping a subset of known monitor vectors to unknown
monitor vectors. �is is done by applying the corrector subroutine and the monitor subroutine in suc-
cession, and this procedure will be called CM mapping in the following.

CMmapping and postprocessing steps

By replacing all ~Rj f mEj f km terms in the corrector subroutine equation system with their complex con-
jugates, the resulting corrector parameters Akm will also be conjugated. �is in turn also holds for the
conjugated monitor vectors ~Rjm resulting from application of the monitor subroutine.

As will be shown in sec. 6.1.2, the conjugation of the above terms is exactly what is accomplished by the
quadrant correction. Furthermore, the mapping ~Rj f m to ~Rjm is linear and the mapping from Rj f m to Akm

is inverse. �ese scaling properties are equivalent to scaling invariants (sec. 4.1.1). One may summarize
these properties to the informal statement that the CM mapping commutes with quadrant correction and
invariant normalization.

�is alleviates the conditions on the storage ring to be met for �nding the invariant. If one had to apply
invariant normalization before CM mapping (as was the case for the predecessor of CM mapping in
[11]), a known segment had to exist between the pair of monitors Jsub for which the monitor vectors
were known. Instead, as the postprocessing can be applied a�er CM mapping, there only needs to exist
a known segment between any pair of monitors from J.

Summary

A predecessor of CM mapping has been given in [11] for the standard Courant-Snyder parameterization,
where the complications of using this polar-like parameterization became visible in the resulting nonlin-
ear equation systems and their solutions. Using the BE-d model, both underlying subroutines have been
generalized and expressed in a concise and directly applicable form as linear system solvers.

Besides the storage ring topology S, the input for CM mapping only consists of F ≥ 2 known monitor
vectors and the modal phase advances µm (see also Fig. 5.2), and the origin of this parameters is not
speci�ed. Nevertheless, CM mapping reduces the problem of �nding all parameters of the B-d model to
�nding the aforementioned set of inputs.
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5. Procedures to �nd approximate BE parameters

5.1.4. A digression to TbT-assisted mapping

As an example for the possible direct applications of CM mapping, we will brie�y discuss its application
to extract information from incomplete TbT monitor data (originating from a monitor subset) of a storage
ring.

TbT-assisted mapping [23] is the successor of a method described by the author in [11]. It yields equiva-
lent results in the given case described therein, but drops the condition on a dri� space to be enclosed by
TbT monitors – instead, general monitors enclosing a known segment are su�cient. In contrast to [11],
using the BE-d model allows to write the corrector and monitor subroutines as simple linear equation
systems, while also unifying the treatment of decoupled and coupled linear motion. Its application can
be summarized by the following steps (see Fig. 5.2).

1. Obtain modal phase advances µm and monitor vectors ~Rj f m for the set of TbT-capable monitors
by TbT analysis (sec. 8.2).

For TbT-assisted mapping, the set of TbT-capable monitors corresponds to the monitor subset Jsub

introduced in sec. 5.1.2. In consequence, F corresponds to the number of TbT-capable monitors
installed in the storage ring, and the algorithm can only be applied for F ≥ 2.

2. Apply the CM routine to compute all corrector parameters Akm, and subsequently, all monitor
vectors ~Rjm from closed-orbit perturbations ~r jk .

Any technique relying solely on CM mapping has a characteristic disadvantage, which can be summa-
rized by the statement that the monitors used for input data need to have a high signal-to-noise ratio, as
all other BE-d parameters depend on their accuracy.

Error in the input data will inversely map to the computed corrector parameters and at least linearly
to the computed monitor vectors. �is problem is can be partially circumvented if the errors are not
systematic and input data from a larger number of monitor vectors is available. In this case, the residual
error of the overdetermined monitor equation system is minimized by Singular Value Decomposition
[28] (sec. A.3.1).
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Figure 5.2.: Simpli�ed �ow diagram for TbT-assisted mapping (rectangles denote variables, rounded rect-
angles denote functions, hexagons denote physical processes). Note that all steps outside of
the CM mapping also occur when TbT analysis (sec. 8.2) is performed – in this case, the CM
mapping part is simply reduced to an identity, as TbT monitors then equal all monitors under
consideration.
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5. Procedures to �nd approximate BE parameters

5.2. Monitor-Corrector Subset (MCS) algorithm

�is section describes how approximate BE+d model parameters for a general response matrix can be ob-
tained by performing special computations on four arbitrarily selected monitors j1, . . . , j4. �is approach
works under the following conditions.

1. �e signal-to-noise level is su�ciently high.

2. �e dispersive e�ects occurring in the response are small and can be treated as perturbations.

Revisiting CM mapping, we were able to reduce the number of necessary monitor input vectors to 2.
In fact, this information is only needed to compute the eigenform eiµm, ~Zm(s j ) of a matrix similar or
identical to the one-turn transfer matrix T(s j ) at a single position s j . It is thus a large conceptual, but
small computational step to compute T(s j ) using only closed-orbit perturbations.

We return to the analysis of unknown segments which are enclosed by known segments introduced in
sec. 2.2.2, neglecting dispersive e�ects. While this technique is o�en used to compute transfer maps along
linear accelerators [16, 17], no assumptions have been made that prevent this technique to be applied to
storage rings, as long as the perturbation locations are outside of the segments under consideration.

We introduce the simple but important idea to divide the storage ring into two unknown segments which
ends are connected by two known segments (see Fig. 5.3), so that measurement of the unknown segments’
transfer maps is possible. �en, these can simply be concatenated to obtain the one-turn transfer map at
the start respectively end of any of the segments. �e transfer map can then be decomposed into monitor
vectors and phase advances and used as input for CM mapping.

5.2.1. Monitor and corrector subsets

To formalize the aforementioned notion, we �x the beginnings respectively ends of the segments to
monitor positions s j for the monitor subset j1, . . . , j4 (see Fig. 5.3). �e beginning respectively end of the
�rst known segment along s is linked to the monitors j1 respectively j2, and that of the second known
segment to j3 respectively j4. �en, on the particle path between the monitors j4 and j1, the s coordinate
is reset to s = 0.

We need to introduce corrector subsets to ensure that for each measurement of an unperturbed segment,
only correctors outside of the unperturbed segment and its enclosing known segments are used. For each
measurement cycle A, B (see Fig. 5.3) they are de�ned as

KA =
{
k | s̃k < [s j1, s j4 ]

}
=

{
k | Sj1k > 0 ∨ Sj4k < 0

}

and KB =
{
k | s̃k ∈]s j2, s j3 [

}
=

{
k | Sj2k < 0 ∧ Sj3k > 0

}
.

(5.4)

Like in sec. 5.1.2, we introduce sequences kg, k̄ḡ to enumerate all elements in both index sets with G
respectively Ḡ elements, so that

KA = {k1, k2, . . . , kG } and KB =
{
k̄1, k̄2, . . . , k̄Ḡ

}
hold.
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measurement
cycle A

s = 0

j1
j2

j4
j3

T1→3

measurement
cycle B

s = 0

j1
j2

j4
j3

T3→1

Figure 5.3.: Basic idea for the MCS algorithm (colors and symbols analogous to Fig. 2.1). In each mea-
surement cycle, a transfer map including one of the unknown segments is obtained. Note
that in sec. 5.2.2, the known segments are replaced by unperturbed segments, so that no
requirements on known segments remain to obtain unnormalized monitor data.

5.2.2. One-Turn transfer maps from closed orbits

In sec. 2.2.1, general expressions have been derived to obtain the phase space at the beginning of a known
segment, given here as s j1 and s j3 , so that

~r ′j1k = T−1
r→r′ (s j1 → s j2 )

[
~r j2k − Tr→r (s j1 → s j2 ) ~r j1k

]

and ~r ′j3k = T−1
r→r′ (s j3 → s j4 )

[
~r j4k − Tr→r (s j3 → s j4 ) ~r j3k

]

hold in the linear case for a given perturbation k .

By computing these values, the phase space vectors for each perturbation are known and can be used to
obtain the transfer matrix TA by solving the equation system

(
~rk1 j3 . . . ~rkG j3

~r ′
k1 j3

. . . ~r ′
kG j3

)†
=

(
~rk1 j1 . . . ~rkG j1

~r ′
k1 j1

. . . ~r ′
kG j1

)†
T†

A

for all rows of TA. To obtain TB, the indices of j1 ↔ j3 in the above equation system are permuted
and the sequence k1, . . . , kG is replaced by its counterpart k̄1, . . . , k̄Ḡ for measurement cycle B. Note that
G, Ḡ ≥ 2M is required for the systems not to be underconstrained – this is in coherence with the notion
of four independent orbits which will be used in the next subsection. It also implies that K ≥ G+Ḡ ≥ 4M
is required for the MCS algorithm to be applied to a response matrix.

In conclusion, the straightforward possibility to compute T at s1 (or s3) is then to simply concatenate
the partial transfer matrices by

T(s1) = TBTA.

From this one-turn transfer matrix, µm and ~Zm(s1) can be computed using its eigenform via

eiµm ~Zm(s1) = T(s1)~Zm(s1).
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5. Procedures to �nd approximate BE parameters

Returning to the properties of one-turn transfer matrices described in sec. 2.3.2, it is known that the
eigenvectors and eigenvalues occur in complex-conjugate pairs, so that eigenvalues corresponding to
±µ exist.

One notes that this is the same ambiguity encountered when investing the CM mapping algorithm
(sec. 5.1.3). It was shown that the CM mapping algorithm is indi�erent to this ambiguity, and that the
invariant postprocessing algorithm will correct quadrants and monitor vectors at the end of the compu-
tation (sec. 6.1.2). Hence, the ambiguity is not problematic.

From known to unperturbed segments

Up to now we have assumed that the segment transfer matrices between s1 and s2 respectively s3 and
s4 are known a priori. What statements can be made if this is not the case?

Assuming all segments to be linear, there exists a linear unknown map P1 that relates phase space vectors
~z at the beginning of the segment to the spatial deviations at both ends of it (composite monitor space) via

(
~r j1k
~r j2k

)
= P1

(
~r j1k
~r ′
j1k

)
and

(
~r j3k
~r j4k

)
= P3

(
~r j3k
~r ′
j3k

)
.

We now de�ne a similarity transfer matrix T̃(s1) that does not map from and to the particle phase space,
but from and to the composite monitor space. In analogy to the case of known segments, this matrix
may be computed as a product

T̃(s1) = T̃BT̃A, (5.5)

by solving the system
(
~rk1 j3 . . . ~rkG j3

~rk1 j4 . . . ~rkG j4

)†
=

(
~rk1 j1 . . . ~rkG j1

~rk1 j2 . . . ~rkG j2

)†
T̃†

A
(5.6)

as well as the corresponding system for T̃B.

By de�nition of T̃(s1), we can either relate it to T(s1) via similarity transform

T̃(s1) = P1T(s1)P−1
1

or directly argument with the eigenorbit conditions in sec. 2.3, to arrive at the eigenproblem for T̃(s1)

eiµm

(
~Rj1m

~Rj2m

)
= T̃(s1)

(
~Rj1m

~Rj2m

)
. (5.7)

In conclusion we can indeed obtain data that is equivalent to single-particle motion, given by the monitor
vectors ~Rj1m, ~Rj2m for and modal phase advances µm for all modes m, even if there are only unperturbed
and perturbed segments in the ring. A summary of an algorithm using above relations is given in Fig. 5.4.

As one can obtain monitor vectors for two monitors j1 and j2 using the algorithm, the minimal condition
F ≥ 2 for correct application of monitor and corrector subroutines (chapter 5.1) is ful�lled. It is then
possible to obtain monitor vectors and corrector parameters for all monitors j and correctors k using
CM mapping, entirely without any other measurement data than closed orbits and topology.
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5.2. Monitor-Corrector Subset (MCS) algorithm

Data:
orbit perturbations ~r jk for J ≥ 4 monitors, K ≥ 4M correctors, in M spatial dimensions
monitor-corrector topology Sjk monitor split indices j1 – j4

Result:
oscillation-equivalent data µm, ~Rjm for M modes and spatial dimensions, at monitors j ∈ { j1, j2};

for each measurement cycle A, B do
kg respectively k̄ḡ ← compute the respective subset KA,B (5.4) and enumerate it;
T̃A respectively T̃B ← compute using orbit perturbations (5.6);

end
T̃(s1) = T̃3→1T̃1→3;
for each eigenvalue λm of T̃(s1) do

µm ← complex angle of λm;(
~Rj1m

~Rj2m

)
← eigenvector for λm;

end

Figure 5.4.: Simpli�ed algorithm for generating monitor vectors and modal phase advances (equivalent
to particle oscillation data) from closed-orbit perturbations. Note that the indices j1, j2 have
to be chosen arbitrarily. �e result can then be used as input data for CM mapping (sec. 5.1).

5.2.3. Principal component eigenvalue problem

While the discussed approach to compute T̃ works in principle, it is more susceptible to noise than
necessary. For this reason a possibility to reduce this e�ect is discussed.

In each measurement cycle, there exists a large segment that is treated as unperturbed. �e monitors in
each segment are represented by monitor subsets

JA =
{

j | s j ∈ [s1, s4]
}

and JB =
{

j | s j < [s2, s3]
}
.

As we are still neglecting dispersive e�ects (sec. 3.1.1) it is known that any orbit inside an unperturbed
segment can be expressed as a linear combination of 2M orbits.

�ese relations can be exploited using Principal Component Analysis [31, 32] (PCA) which decomposes a
set of input vectors from the same space into a set of ordered, orthonormal basis vectors called principal
components. �e ordering of principal components depends on their relative, overall contribution to
the input vectors. PCA is usually performed using Singular Value Decomposition [28, 33, 34] (SVD,
sec. A.3.1).

We now take the general response matrix elements for monitor and corrector subsets A and decompose
them into principal components 〈~r〉Ajp . �e �rst P = 4 principal components are then considered as
relevant, while the others are treated as noise, so that

~r jk =
∑

p

〈~r〉Ajpapk + noise

= 〈r〉Aj ~aA
k + noise for j ∈ JA, k ∈ KA.

~aA
k

is a P-dimensional vector for each segment, while 〈r〉Aj is a M × P matrix which columns contain
the P principal orbits for the monitor set JA. An analogous decomposition may also be performed for
segment B.
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5. Procedures to �nd approximate BE parameters

�e principal orbits can then be used directly as a replacement of the real perturbation orbits at the
monitors j1 – j4 when computing T̃1→3, as

(
~r j3k
~r j4k

)†
=

(
~r j1k
~r j2k

)†
T̃†1→3 for k ∈ KA

implies *
,

〈r〉Aj3
〈r〉Aj4

+
-

†
= *

,

〈r〉Aj1
〈r〉Aj2

+
-

†
T̃†1→3. (5.8)

Again, the computation for T̃3→1 is analogous, as then j1, j2 ↔ j3, j4 and A↔ B are interchanged. In
consequence, the solution of the eigenproblem (5.7) bene�ts from this noise reduction scheme.

Note that, although not necessary, it is possible to further extend the use of PCA cleaning and completely
replace the application of the monitor subroutine (sec. A.3.3).

5.2.4. Start values for dispersion coe�icients

By using techniques from this section, we can �nd all BE-d parameters by the following procedure

1. Select two pairs of adjacent monitors j1– j4.

2. Use the PCA-enhanced eigenvalue problem (sec. 5.2.3) to solve (5.7) for monitor vectors at this
monitor subset, together with modal phase advances.

3. Use CM mapping (chapter 5.1) to get all corrector parameters and all other monitor vectors.

On the other hand, the optimization problem discussed in chapter 4 can use dispersion coe�cients as
input. �us we want to obtain starting values for dispersion.

If the dispersion e�ects on a response matrix are considerably small, approximate values can be obtained
by rearranging the BE+d model equation (4.1) to

r jkw −
∑

m

<
{
Rjmwe−iS jkµm/2 A∗km

}
= d jwbk .

As all parameters on the le�-hand side are known in good approximation, and the right-hand side is an
outer product along indices ( j,w) with k , one can use outer product decomposition (sec. A.3.2) to obtain
estimates of d jw and bk up to a global scaling factor from measurement data. �is also allows to check
beforehand if an optimization of dispersion coe�cients is viable or super�uous by checking the signal
contents in the outer product (sec. A.3.2).
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5.2. Monitor-Corrector Subset (MCS) algorithm

5.2.5. Discrete residual error optimization

With approximate BE+d parameters, we can compute a residual error (sec. 4.2.1)

χ2 =
∑

jkw

χ2
jkw = (r jkw − f jkw)2.

�is error depends on the monitor subset j1, . . . , j4 that was chosen arbitrarily. �erefore, it is reasonable
to optimize the chosen monitor subset and select the subset with minimum error. To limit the optimiza-
tion to a range where the maximum number of correctors can be used, we set j2 = j1 +1 and j4 = j3 +1,
so that only j1 and j3 are optimized.

As the number of combinations scales with J2, we want to limit the iterations and put the combinations
with the highest probability of low errors to the beginning. For this, we de�ne ∆ j = j2 − j1 and set its
initial value to ∆J = [J/2]. �en, j1 runs from 1 to the condition j2 = J.

If the number of permi�ed steps is large enough, the next iterations start with ∆J ∈ {J/2 − 1, J/2 +
1, J/2 − 2, J/2 + 2, . . . }. �e pa�ern is shown in Fig. 5.5 for an example value of J.

In all cases presented in this thesis, a small number of only J/2 iterations is su�cient to generate proper
starting values for the optimization layer.
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Figure 5.5.: Selected monitor sets (green) for subsequent iteration numbers and the case J = 11.

Summary

We found a way to compute approximate BE+d parameters for a given response matrix and topology,
neglecting noise and dispersive e�ects. Nevertheless, these values are useful as starting values for the
optimization problem in sec. 4.2. �erefore, we will discuss the implementation of the optimization
problem in the next chapter.
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6. Closed-Orbit Bilinear-Exponential Analysis
(COBEA)

Finding algorithms to compute approximate BE+d parameters (chapter 5) and reformulating the general
response problem as a nonlinear regression problem (chapter 4), it is possible to complete the inverse
modeling procedure by integrating the aforementioned parts into an algorithm to decompose general
response matrices into accurate bilinear-exponential (B+d) parameters (sec. 6.1). �e resulting algorithm
is termed Closed-Orbit Bilinear-Exponential Analysis (COBEA).

�e chapter concludes with a comparison of this algorithm with three techniques (LOCO, AC dipole,
�adrupole Tune Scan) commonly used for beam diagnostics in storage rings (sec. 6.2).

6.1. Architecture of the COBEA algorithm

A�er �nding a su�cient but minimal model for closed-orbit perturbations in storage rings respectively
general response matrices (forward modeling, chapters 1 and 3), one may compute a solution to the
general response problem by implementing the following steps or ’layers’ of the algorithm.

1. Generate approximate BE+d model parameters for optimization. (Start-value layer)

A suitable procedure, the MCS algorithm, has already been discussed in sec. 5.2 and will be used
in the following without further inquiry.

2. Solve the optimization problem (sec. 4.2) using a suitable procedure. (Optimization layer)

As gradients can be computed analytically for the given problem, the optimization procedure
should be able to use this information e�ciently (sec. 6.1.1). For the case of convergence, the
inverse problem can be considered as solved.

3. Compute invariants and errors for the optimal solution. (Postprocessing layer)

�is allows to normalize the optimal BE+d model parameters using additional monitor dri� space
information, while also permi�ing posterior correction of monitor distortion if known (sec. 6.1.2).
Mais-Ripken parameters and their errors can be extracted from the resulting BE+d model by ele-
mentary means; this step is also integrated into the postprocessing.

6.1.1. Optimization layer

For reasonable noise levels, one may use the solution computed by the MCS algorithm (sec. 5.2) to start an
iterative optimization procedure for the general response problem (sec. 4.2). As our optimization function
is smooth in the dependent variables, the class of line-search algorithms is appropriate. �e discussed
algorithm can also use gradient and second-derivative information as inputs, and thus convergence time
can bene�t from the fact that the gradients and Hessians of the problem under consideration can be
computed analytically.
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6. Closed-Orbit Bilinear-Exponential Analysis (COBEA)

Line-search methods

In the theory of nonlinear optimization, line-search methods are based on multidimensional Taylor ap-
proximations around the current optimization vector which are then solved for the minimum argument.
We will brie�y discuss some possible methods without any claims of completeness. For brevity, step size
considerations have been omi�ed in the following line-search examples.

�e most elementary method to use would be gradient descent [26], by stating (see sec. 4.2.1)

~ρn+1 = ~ρn − const.
[
~∇ρ χ2

]
~ρn
= ~ρn − const. J(~ρ) ~χ.

While this procedure converges to local minima, it completely neglects the second-order e�ects leading
to unnecessarily large number of iterations.

If we also use the Hessian, we can �nd the next iteration step via Newton’s method by solving the
equation system

H(~ρn)δ =
[
∇χ2

]
~ρn

for δ = xn+1 − xn. (6.1)

Under the assumption that the starting value for the optimization is reasonably close to the optimum
solution (sec. 4.2.2), we can approximate H with H̃ ∝ JJ† and could thus also use Newton-Raphson [26]
iterations.

Low-memory BFGS (L-BFGS)

While a pursuit of the aforementioned approaches is possible, two complications arise in their imple-
mentation.

1. Singular Hessian. (6.1) is an underconstrained equation system due to the bilinear nature of the
underlying problem and the resulting scaling invariants (sec. 4.1.1). �is problem can be circum-
vented by one of the following options.

a) Solving the system by using the quasi-inverse of the approximate Hessian, given as the co-
variance matrix (sec. 6.1.2). �e computation of the quasi-inverse has higher time complexity
than solving the equation system (6.1) directly.

b) Adding scaling invariant constraints for normalization to χ2. �is would require an addi-
tional discussion about the weighting of this constraint in relation to the other terms in χ2.

2. Large number of dependent variables. For a typical case like the DELTA storage ring, we have
J ≈ K ≥ 50, resulting in ≈ 800 dependent variables respectively dimensions of the optimization
problem. Hence, set up and solution of equation systems like (6.1) can be a ’bo�leneck’ of time
and/or memory complexity.

To circumvent the aforementioned complications, we will use the low-memory BFGS algorithm (L-BFGS)
[35, 36] to optimize the BE+d model. L-BFGS does not use the Hessian matrix directly. Instead, projec-
tions of the inverse Hessian computed from function values and gradients are used to update the search
direction in each iteration.1 �e number of projections stored is limited and results in low memory com-
plexity. Furthermore, as no direct inversion computation is performed, the rank-de�cient Hessian is not
problematic for L-BFGS. A �ow diagram for the resulting optimization layer is shown in Fig. 6.1.

�e problem of a large number of dependent variables is also apparent in the training of deep neural
networks, and L-BFGS and its variants are also used in this �eld [37].

1Alternatively, the projections of the Hessian can be given as input to the algorithm.
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BE+d model (analytical)

S jk

monitor — corrector
topology

R jmw, Akm, d jw, bk, µm

beam optics
(BE+d vector ~ρ)

~ρinit

initial pars.
(start-value layer)

f jkw , ~∇ρ f jkw

simulated general
response & gradient

r jkw

measured
general response

χ2, ~∇ρ χ2

residual error
and gradient

multivariate optimizer
L-BFGS (fval, grad)

Figure 6.1.: Simpli�ed �ow diagram of the optimization layer (identical de�nitions to Fig. 5.2). �e BE+d
model is optimized using residual error between measured and simulated response and the
respective gradient using L-BFGS.

6.1.2. Postprocessing layer

For the case of convergence, the resulting BE+d parameters hold all optical information regarding the
optimal solution.

As many of the underlying principles of postprocessing the data have been discussed in secs. 2.4 and
4.1, we will only brie�y analyze them in the order of their appliance. All of the computational steps
mentioned in the following are optional and depend on additional assumptions.

Monitor distortion rectification

One may assume that a beam position monitor readout is distorted, so that the reported (transverse)
beam position ~r# and the physical beam position ~r are related by a (nonlinear) operator D via

~r = D~r#.

�is relation can be linearized around the unperturbed closed orbit. As we have de�ned the unperturbed
closed orbit as reference orbit in sec. 2.3.1, we can simply write the linearization regarding orbit pertur-
bations as

~r = D~r#.

If the map D and/or the corresponding matrix D are known, one can

1. run the start-value and optimization layer of COBEA on the distorted beam perturbations ~r#
jk

,

2. then replace the resulting monitor and dispersion vectors by their recti�ed equivalents via (sec. 3.2.5)

~Rjm = D~R#
jm,

~d j = D ~d#
j .

�is way the recti�cation of distortion can be carried out or even optimized a�er a successful run of the
optimization layer.
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6. Closed-Orbit Bilinear-Exponential Analysis (COBEA)

Normalization and tunes

Revisiting the expressions for single-particle oscillation (2.7) and orbit perturbations (sec. 3.1.2), we �nd
both being invariant under each of the following variable transformations (sec. 4.1.1).

1. Switch the sign of µm and conjugate Rjm, Akm for a given mode m,

µm → −µm, ~Rjm → ~R∗jm, Akm → A∗km.

2. Scale all monitor vectors and corrector parameters for a given mode m by a complex number Cm

using the rule
~Rjm → Cm

~Rjm(s) and Akm → 1

C∗m
Akm =

Cm

|Cm |2 Akm.

3. Scale the dispersion vectors and coe�cients by a real quantity c using the rule

~d j → c ~d j and bk → bk/c.

To resolve the ambiguity for transformation 1, a criterion is needed on how to decide which phase ad-
vance ±µm respectively conjugation is the correct one. For the typical case of M = 2, there are 4 regions
to choose from, therefore this problem is colloquially known as “quadrant problem”.

We return to the de�nition of invariants of motion, which are proportional to the energy in the oscillation
and must be positive (sec. 2.4.1). Notably, the expression(s) used to compute the invariants change sign
under transformation 1. In consequence,

if the computed invariant Im for a given mode is negative, transformation 1 should be applied.

�us it is advantageous to choose the correct quadrant directly a�er computing the invariants, so that
µm is corrected and ~Rjm is corrected and normalized.

To compute the invariant in the �rst place, the algorithm assumes that a known segment exists between
two monitors for which monitor vector data has been computed. �en, given second-order indices p, q
so that the monitor index at the beginning respectively end of the known segment are given as jp, jq ,
one can linearize (2.1) in sec. 2.2.1 and obtains2

~R′jpm = T−1
r→r′ ( ~Rjqm − Tr→r

~Rjpm),

so that the invariant can be computed by (sec. 2.4.2)

Im = =
{
~R†jpm

~R′jpm
}
.

A�er computing the invariants, we can thus �rst use transformation 1 on any negative invariant. By
this transformation, the sign of the invariant also changes. A�erwards, one can use the invariants as
scaling factors, applying transformation 2 for each mode m with the scaling factor Cm = 1/

√
Im. �e

only transformation which can not be used to remove the respective invariance is transformation 3. To do
so, we would need additional information about the energy deviation δ of the closed orbit when di�erent
correctors are applied.3

A sketch of the resulting algorithm is shown in Fig. 6.2.

2Note that, although its components are complex, the eigenorbit ~Rjm is treated just like any other orbit.
3Such information could be obtained in principle by monitoring the synchronous phase during recording of the general re-

sponse matrix.
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6.1. Architecture of the COBEA algorithm

Data:
Monitor vectors ~Rjm ∈ CM at J monitors for a given mode m meta-indices p, q for known segment
between monitors jp, jq transfer matrix blocks Tr→r,Tr→r′ of known segment

Result:
quadrant-corrected phase advances µm for a given mode m normalized, quadrant-corrected monitor
vectors R̂jm ∈ CM for mode m optional: invariants of motion Im for mode m

~R′m ← T−1
r→r′ ( ~Rjqm − Tr→r

~Rjpm);
Im ← =

{
( ~Rjkm)†( ~R′m)d

}
;

if Im < 0 then
µm ← 2π − µm;
Im ← −Im;
for j ← 1 to J do

~Rjm ← ~R∗jm;
end

end
for j ← 1 to J do

R̂jm ← ~Rjm/
√

Im;
end

Figure 6.2.: Simpli�ed algorithm for postprocessing of invariants.

Optical functions From normalized monitor vectors, it is possible to compute Mais-Ripken parame-
ters via the relations derived in sec. 2.4.4. �ese are given as

φmw = arg( ~Rjmw) = arg(R̂jmw) and β jmw (s) = R̂jmw R̂∗jmw = Cm
~Rjmw

~R∗jmw .

Note that while computing betatron phases is straightforward even if the monitor vectors are not nor-
malized, one can only obtain β values up to a constant factor Cm without the normalization procedure.

�is is analogue to the relations for the corrector parameters in the decoupled, dipolar, thin-lens assump-
tion (sec. 3.1.4), where (3.4) results in

X̂ (s̃) =
2 sin(µx/2)

θx
Âx

so that φkx = arg( Âkx) = arg(Akx) and βkx =
4 sin2(µx/2)

θ2
x

Âkx Â∗kx.

While the relations for the phase are again invariant under transformation 2, this does not hold for the
β values. In addition, the global scaling is modulated by corrector-speci�c coe�cients if the response
matrix is not an angle-response matrix and θk is unknown. In consequence, the phase information for
the corrector parameters is signi�cantly more reliable than the β values.
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6. Closed-Orbit Bilinear-Exponential Analysis (COBEA)

Error estimation

For a multivariate, scalar-valued problem like (4.2), all linear error estimates regarding variances for an
arbitrary variable a can be expressed using the corresponding covariance matrix C (sec. 4.2.2) via [26]

σ2
a =

~A†C~A =
∑

pq

ApCpq Aq with real-valued ~A =
∂a
∂~ρ

. (6.2)

An estimate for the covariance matrix has been given in sec. 4.2.2 using an SVD of the Jacobian matrix
for the solution vector. As (6.2) is a symmetric expression, we can simplify it to

σ2
a = σ

2 ~A†USinv

(
~A†USinv

)†
(6.3)

�e covariance matrix has indices that correspond to a large set of dependent variables. �erefore, instead
of using indices directly, we will use braces, e.g. C(µm,<Dkm), to address components of C in the
following. For computing complicated dependencies on dependent variables via (6.2), it is useful to also
adopt this notation for ~A so that

~A(•) = ∂a
∂• .

In the following, we will use the simplifying assumption that the variances of all measured response
indices are homogeneous.

Bilinear and modal phase advance errors �e above expression becomes very simple if we want
to know the errors of the coordinate variables themselves. For any coordinate, the derivative will equal
unity for the component representing the coordinate, e.g.

~A(d jw) = 1, all other components zero,
so that σ2(d jw) = C(d jw, d jw).

In consequence, the errors for all d jw, bkw, µm, just as the errors for real and imaginary parts of Rjmw

and Akm, are all given as diagonal elements of the covariance matrix (replacing d jw with the respective
variable).

Mais-Ripken parameter errors When changing to the common polar descriptions of beam optics
(sec. 2.4.4), the complexity of expressions slightly increases. However, the Mais-Ripken parameters β, φ
only depend on the local eigenorbit with identical j,m,w indices. �erefore, (6.2) reduces to

σ2
a =

~A(<Rjmw)2C(<Rjmw,<Rjmw) + ~A(=Rjmw)2C(=Rjmw,=Rjmw)+

2~A(<Rjmw) ~A(=Rjmw)C(<Rjmw,=Rjmw),
(6.4)

and the problem of �nding two components of the respective ~A remains.

For the phase errors, we drop the discrete distinction criteria for quadrants of complex numbers and just
assume φ jmw = arctan(=Rjmw/<Rjmw). �en by using ∂ arctan y/∂y = (1 + y2)−1 one obtains

(
~Aφ (<Rjmw)
~Aφ (=Rjmw)

)
=

*.
,

∂
∂<R̂ jmw

∂
∂=R̂ jmw

+/
-
φ jmw =

(−=Rjmw

<Rjmw

)
1

β jmw
.

For the experimental results in this thesis, we will compare phase di�erences

∆φ jmw = φ jmw − φ( j−1)mw
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6.1. Architecture of the COBEA algorithm

between two monitor locations s j, s j−1. �eir error is given by

σ2(∆φ jmw) = σ2(φ jmw) + σ2(φ( j−1)mw).

We assume that the optimization result has been normalized by the invariants of motion. As the normal-
ization has not been part of the optimization procedure, we will only compute the errors for Mais-Ripken
β parameters relative to the normalization. �en

from β jmw =
(
<R̂jmw

)2
+

(
=R̂jmw

)2
one obtains

~Aβ (<Rjmw) =
∂

∂<R̂jmw

β jmw = 2<R̂jmw and

~Aβ (=Rjmw) =
∂

∂=R̂jmw

β jmw = 2=R̂jmw .

We conclude that the expressions for Mais-Ripken parameter errors relative to normalization have been
calculated.

6.1.3. Aspects of implementation

Following the aforementioned procedures, the author has implemented the COBEA algorithm in Python
[38] using the SciPy & NumPy ecosystem [39, 40]. �is has the advantage that a many tested subroutines
are available for prototyping. Although Python is an interpreted (scripting) language, most computa-
tionally expensive operations on NumPy arrays are evaluated by embedded Fortran and C routines.

For the implementation of the residual error and gradient functions, the sparse Jacobian matrix J is not
explicitly constructed. Instead, dense array multiplications using the variables contained in the BE+d
vector are used extensively, which leads to a signi�cant acceleration of function evaluations for L-BFGS.
In the SciPy optimize module, L-BFGS is considered as a special case of the L-BFGS-B algorithm [36].

�e Jacobian matrix used for error estimation has been carefully tested to be exactly equivalent to the
gradient function evaluations.

Although it is possible for the decoupled response assumption (sec. 4.3) to implement COBEA on two
M = 1 cases, the prototype implemented for this work uses the equivalent problem

r jkw = <
{
Rjmwe−iS jkµm/2 A∗km

}
+ d jwbkw,

which is almost identical to the coupled problem, the only di�erence being the substitution bk → bkw for
two separate dispersion orbits. �e gradients are evaluated accordingly, and the resulting optimization
procedure is used throughout chapter 9.

�e optimization procedure for the coupled case is implemented as described in sec. 4.2.
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6. Closed-Orbit Bilinear-Exponential Analysis (COBEA)

6.2. Conceptual comparison to existing methods

Observing the particle motion in accelerators is a non-trivial task, and many methods for diagnostics
exist to obtain normalized monitor vectors at key positions in a storage ring [9, 16, 17]. �erefore the
chapter is concluded by a comparison of COBEA with existing methods and algorithms to solve similar
problems. Besides the LOCO approach (sec. 6.2.1), we also discuss two model-independent techniques in
secs. 6.2.2 and 6.2.3.

6.2.1. Linear Optics from Closed Orbits (LOCO)

In chapter 1, the LOCO method [41] was brie�y introduced as a ��ing routine that matches response
matrices from an accelerator simulation model to measured ones from a real accelerator. We will now
further examine this commonly used and successful method.

One may subsume all magnetic properties that are implicitly (currents) or explicitly (multipole moments
around the beam path) varied into a magnetic la�ice vector ~ρmag. One can then express the core opti-
mization of LOCO in a form similar to the one in sec. 4.2. For a given accelerator model AM,

�nd ~ρmag so that χ2 =
∑

jkw

[
gjkw

(
~ρmag,AM

) − r jkw
]2

is minimal.

�e LOCO approach thus essentially consists of the following steps (Fig. 6.3).

1. Construct a detailed accelerator model AM with almost correct values for all magnetic �elds in the
beam path.

2. Vary magnetic properties ~ρmag according to an optimization rule.

3. For each set of properties, iteratively excite all correctors and record the orbit responses
gjkw (~ρmag,AM) in the simulation.

4. Fit gjkw to the measured response r jkw by iterating steps 2 and 3.

If su�cient measurement data is available, LOCO also allows to optimize a variety of e�ects, e.g. monitor
misalignments. Furthermore, LOCO also allows weighting of di�erent errors and uses other extensions
known for this type of optimization problems.

In essence, LOCO is a nonlinear optimization procedure for closed-orbit perturbations in ring accelerators
and is thus related to the COBEA’s optimization layer. �e signi�cant di�erence between them is that
the model to be optimized is a complete accelerator with all magnetic �elds along the path for LOCO,
and the BE+d model for COBEA.

1. For LOCO to give su�cient results respectively present convergence in local minima of χ2, AM
must be a reasonably correct model of the real-world storage ring. �is includes all magnetic �elds
in the beam path, or, if given implicitly, the magnetic properties of all elements (e.g. temperature
e�ects, hysteresis e�ects, o�sets of magnets in the range 10−4 m).

While this is actually possible for many modern storage rings, it poses an obstacle for accelerators
in which the magnetic properties are not known everywhere along the beam path to a su�cient
degree. If a single element di�ers signi�cantly, the convergence of LOCO is doubtful.

2. Furthermore, the start parameters ~ρ
mag
init must lie in vicinity to their real storage ring values.

3. Depending on the accuracy of the model, a subset of AM properties to be varied via ~ρmag must
be selected. �e selection respectively simpli�ed accelerator modeling is done by the user of the
algorithm. �is is necessary to ensure that the optimization procedure used for LOCO is not under-
determined. In consequence, only e�ects that have been considered in choosing magnet properties
(as variables of the accelerator simulation AM) can be considered in the LOCO result.
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6.2. Conceptual comparison to existing methods

accelerator model (AM, tracking)

β, φ

beam
optics

magnets — dri�s — corrs — BPMs

accelerator
TOPOLOGY

corrs — BPMs — dri�s — magnets

element properties
(varied by ~ρmag)

~ρ
mag
init

initial magnet values
(supplied by user)

g jkw

simulated
response

r jkw

measured
response

χ2

residual
error

multivariate optimizer
(fval)

Figure 6.3.: Simpli�ed �ow diagram for LOCO (identical de�nitions to Fig. 5.2). �e ’beam optics’ step is
usually not explicitly computed during optimization. In comparison of LOCO with COBEA
(Fig. 6.1), the gradient information is not available in the former, while the complete model
but the monitor–corrector topology has been removed in the la�er (”Occam’s razor” [42]).

4. LOCO relies on an external tracking code to create the response matrices for each iteration step.
�ese tracking codes compute particle trajectories by numerical means (e.g. Runge-Ku�a 4 or other
tracking algorithms which are symplectic up to a given order), as the dependence of gjkw on ~ρmag

is not analytically known. For this reason, the gradient ~∇ρgjkw of the optimization problem can
also not be computed by analytical means.

COBEA has the following properties that allow convergence with a signi�cantly reduced amount of input
data.

1. �e information of a full magnetic la�ice model may be split (Fig. 6.3) into (magnetic and geometric)
properties of elements, and the ordering of elements along the beam path (topology). While the
detailed properties of elements can o�en only be obtained by detailed observation or simulation,
the topology is a static property that can be obtained without additional instruments (e.g. by visual
inspection of a storage ring), as the considered elements are macroscopic.

Of these properties, COBEA only uses a part of the topology information, namely the relative order
of monitors and correctors along the beam path (contained in S, sec. 3.2.2).

2. COBEA does not require any start values given as input. �e start values for its optimization layer
are generated by COBEA’s start-value layer using the input response matrix (secs. 5.2, 6.1).

3. For K ≥ 4M and J ≥ 4, the BE+d model used by COBEA is overdetermined by the response matrix
in almost all cases of common storage rings (see Fig. 4.2).

4. As COBEA uses a generic optical model in which the dependence of response matrices to depen-
dent variables is known analytically, its optimizer can utilize gradient information. �is property
allows COBEA to solve the underlying large-scale optimization problem in a reasonable time scale.
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6. Closed-Orbit Bilinear-Exponential Analysis (COBEA)

6.2.2. AC dipole (Driven Turn-by-Turn Oscillation)

�e AC dipole technique [43] is closely related to TbT analysis (see sec. 8.2) with the main di�erence that
a coherent excitation near the eigenfrequencies is performed by a magnetic device called AC dipole, and
not a radio-frequency device. Due to the sinusoidal excitation and the quasi-static low-frequency setup,
higher harmonics called resonance driving terms which correspond to nonlinearities in beam dynamics
can be observed.

�e AC dipole technique can only work on larger storage rings. As there is typically only one AC dipole
installed in a storage ring, the information obtained by a static perturbation (K = 1, sec. 4.1) is incomplete,
and perturbations that are not periodic on the accelerator length need to be excited. �erefore, the AC
dipole excitation frequency should be close to the transverse eigenfrequencies (betatron tunes) to obtain
accurate information about resonance driving terms [44].

�ese eigenfrequencies scale inversely with the accelerator circumference. �is limits the applicability
of AC dipole techniques with regard to storage rings with relatively small circumference. As an example,
AC dipole techniques were applied successfully to the (now decommissioned) Fermilab Tevatron, which
circumference was ≥ 6.4 km [45], and to the CERN SPS with a circumference of ≈ 6.9 km [46]. �e
corresponding maximum of observable frequencies in TbT data [47] are both ≤ 25 kHz.

6.2.3. �adrupole Tune Scan

As dependence of analysis on the accuracy of a speci�c model is undesirable, some techniques have also
been developed to facilitate analysis while reducing reliance on the accurate simulation of the magnetic
la�ice. A widely used technique of this class (due to its robustness) is the �adrupole Tune Scan [6, 16,
17], in which the change of modal phase advances µm due to a known thin-quadrupole perturbation k̃
is considered, and the Courant-Snyder β functions at the position of the perturbation are derived by the
equation

βx = 2
µ̃x − µx

k̃ − k
.

�e unperturbed and perturbed phase advances µ, µ̃ can be obtained from any monitor that is TbT capable
by methods described in sec. 8.2.

While the technique is applicable to many accelerators, one may only obtain averaged β values over
the e�ective length of the perturbed quadrupole magnets. Furthermore, assumptions on quadrupolar
�elds and their modeling still apply, so the magnitude of the perturbation must be exactly known. In
addition, many storage rings do not possess separate power supplies for each quadrupole, but one for
each quadrupole class. �en this technique cannot be applied.
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Figure 7.1.: Sketch of the DELTA synchrotron radiation facility [48], which 3 components (LINAC, BoDo,
Delta) accelerate electrons up to ≈ 1.5 GeV.

7. Data mining at DELTA using COBEA

As COBEA has been introduced in the last chapter, we continue by showing that COBEA is applicable
to real-world storage rings. In the following two chapters, we will evaluate the application of COBEA to
the storage ring of the DELTA synchrotron radiation facility (sec. 7.1).

�e standard response matrix �les from the DELTA control system (sec. 7.2) also include the betatron
tune measured by direct excitation in standard operation. �is additional information is used to validate
COBEAs prediction of modal phase advances respectively betatron tunes from response matrices against
measurement data from single-particle oscillations.

7.1. DELTA overview

Parameter Value

La�ice structure �adrupole triplet
(in arcs) [49, 50]

Reference energy 1.49 GeV [50]
Circumference 115.1638 m [51]
RF frequency 499.819 MHz [50]
harmonic number h 192 [50]
electron beam current max. 130 mA [50]

Table 7.1.: DELTA storage ring parameters

DELTA is a facility run by TU Dortmund university for
the purposes of providing synchrotron radiation to sci-
entists in the NRW region and beyond (≈ 2/3 of opera-
tion time), as well as for accelerator research (≈ 1/3 of
operation time). It can be classi�ed as a 3rd generation
synchrotron light source [52] (Fig. 7.1), consisting of a
75 MeV linac [53], a synchrotron of 50.4 m circumfer-
ence that allows full-energy injection [52] and a stor-
age ring which characteristics are shown in Tab. 7.1
[49, 50, 51]. Further information about DELTA, its de-
sign and applications can be found in [49, 52, 50].
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7. Data mining at DELTA using COBEA

7.1.1. Monitor hardware and pincushion distortion

A beam position monitor at DELTA’s storage ring is based on four pickup electrodes (designed for the
ESRF), installed in but electrically isolated from the vacuum chamber, which are each connected to the
inner conductor of four coaxial cables [54]. Following A.1.4, knowledge of the signal functions Gn(x, y)
for the beam position monitors is needed to accurately measure the transverse beam centroid coordinates
at s j . We introduce electrical coordinates [54]

Sx =
a2 + a4 − a1 − a3

a1 + a2 + a3 + a4
, Sy =

a1 + a2 − a3 − a4

a1 + a2 + a3 + a4

that only depend on the distribution of voltages (or other, linear measurement quantities, like port vari-
ables) on the four pickup electrodes, and thus only on the Green’s functions and not on the total charge
of the beam distribution.

In standard operation, the beam position is determined using a linear approximation around the electrical
center of the monitor, given by

xlin = CxSx, ylin = CySy with Cx = 15.9 mm, Cy = 19.6 mm,

where the values Cx,y stem from a simulation in [54]. While this linearization seemingly is su�cient
for daily orbit correction tasks, it limits the resolution and applicability of beam diagnostics, as DELTA’s
standard orbit deviates up to 10mm from the geometrical monitor center at some monitors. For this large
deviation, the linearization error is signi�cant (Fig. 7.2).

While the correction of this complications is possible for future measurements, a full compensation of
the linearization error via recti�cation Jacobians Dj (~r j

#) (sec. 3.2.5) is complicated as they are unknown
due to the following facts.

1. �e response matrix �les recorded by the DELTA control system do not include the reference orbit.
�is information can possibly be reconstructed by guessing appropriate setup data �les which are
also present in the control system.
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Figure 7.2.: Comparison of computed positions in linear approximation xlin, ylin with real positions x, y
using data from [54]. �e grid lines subdivide distorted squares of 1 mm size in linearized
positions.
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7.1. DELTA overview

2. �e monitor readout ~rread
j = ~r lin

j + ∆~r j from the EPICS control system is described by a �le
(BPM.subst) with deviation vectors ∆~r j . �is �le is routinely modi�ed according to beam-based
calibration measurements. While backups of this �le have been made at di�erent times, a one-to-
one correspondence for a given date and time cannot be guaranteed.

Note that we use the measured response matrices only in conjunction with measurement data from the
same system, at the same unperturbed closed orbit. �erefore the measurements to be compared have
the same (unknown) recti�ed Jacobians for any monitor, and

Dj (~r j
#) ~R#

jm |COBEA = Dj (~r j
#) ~R#

jm |validation method

implies ~R#
jm |COBEA = ~R#

jm |validation method.

�e equivalence does not hold for any squared errors between both methods as det Dj , 1 is possible.
�is is not problematic, as one is anyway only interested in measurement errors (#) for ��ing and
comparison procedures.

Monitors with di�ering electrode-chamber arrangements

�e monitors denoted by BPM43 and BPM44 are installed in a special undulator section in which the beam
chamber is �a�ened in vertical direction. �e linearization coe�cients for these monitors have been
obtained by measurement [55] as

CSAW
x = 10.4 mm, CSAW

y = 23.9 mm

and are assumed to be su�cient if the beam is located near the geometrical center of the monitors. �e
control system of DELTA’s storage ring is set up to assume the standard coe�cients everywhere. �us
the positions can be corrected by multiplying with CSAW

x /Cx and likewise for y.

7.1.2. Monitor readout electronics

To compute positions, signals an originating from the monitor electrodes are processed into intermediate
Sx, Sy values. For the most monitors at DELTA, this computation is accomplished by analog electronics
[56].

To facilitate noise reduction for the static voltage signal, the combination of analog electronics and 8-
bit CAN-bus [57] readout system uses a low-pass �lter with a characteristic frequency of ≈1.5 Hz. �e
resulting analog voltages proportional to Sx, Sy are then converted to digital values, with the sampling
rate of the voltages being limited to 10 Hz by DELTA’s control system. �e low-pass �lter of the analog
electronics thus is the limiting factor (”bo�leneck”) in fast acquisition of orbit data.
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7. Data mining at DELTA using COBEA

TbT-capable readout electronics on a monitor subset

For 10 monitors at DELTA’s storage ring,

BPM 13, 14, 15, 16, 38, 39, 40, 43, 44 and 45,

the position signals are processed by FPGA boards, controlled, read-out and connected to the control
system by a Linux server [58]. �e fast processing and bu�ering of signal voltages allows to acquire
signal frequencies in the MHz range, and thus TbT data of the beam centroid.

�e electronics for BPM 14 are installed parallel to the standard analog electronics using power dividers,
for the purpose of obtaining and correcting the betatron tunes in standard operation [55]. A�er pinging,
N = 2048 turns can be recorded into the bu�er.

�e electronics for BPM 38, 39 and 40 were installed for beam diagnostics in dedicated accelerator shi�s.
�ese are again only used for TbT analysis and installed parallel to analog electronics, and their low-
frequency signals are not used in standard operation.
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7.2. Tune validation experiments with standard correctors

Figure 7.3.: DELTA standard correctors (drawing based on [60]) are installed as additional coils on
quadrupole magnets . For this reason, nonlinear magnetic �elds are produced.

7.2. Tune validation experiments with standard correctors

At the DELTA storage ring, the standard correctors are not implemented as separate-function magnets,
but as additional coil windings installed on the iron yokes of quadrupole magnets. �is setup originates
from DELTA’s original purpose as a test facility without sextupole magnets [49, 59] and is unusual for
modern storage rings, as the additional corrector coil current does not only introduce additional dipolar
�elds, but magnetic multipoles of higher order depending on the speci�c yoke shape.

Nevertheless, the correctors are su�cient for COBEA analysis as no assumptions about multipolar dis-
tortion components of the perturbations have been stated in the derivation of the BE±d model (sec. 3.1.1).
Naturally the decoupled, dipolar, thin-lens assumption (sec. 3.1.4) is challenged and one cannot expect
the corrector parameters to match with optical functions.

�e recording of response matrices is initiated by the accelerator operator. Such recordings are usually
done during DELTA’s accelerator optimization shi�s, or directly before or a�er user operation. �e
recording of a standard response matrix takes ≈ 800 s. For the scope of this thesis, 171 response matrices
were parsed through COBEA with the following available inputs.

7.2.1. Standard DELTA response matrices as input data

From each closed orbit perturbation measurement recorded by the orbit correction application of DELTA
in the past, the following data was available to the author.

1. A coupled angle-response matrix r using the standard correctors that are used for online orbit
correction during operation of the storage ring.

2. a list of identi�ers for each corrector respectively column k of the response matrix,
VK01, VK02, ..., HK01, HK02, ... (max. 56 elements)

For some measurements, single correctors may be missing.

3. a list of identi�ers for each monitor respectively row j of the matrix,
BPM01, BPM02, ..., BPM54 (54 elements)

4. a list of all monitor and corrector identi�ers with the respective elements ordered by increasing s
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7. Data mining at DELTA using COBEA

position along the beam path (“downstream”)

HK01 , BPM01, VK01 , BPM02, BPM03, VK02 , HK02 , VK03 , BPM04, ...

with 110 elements that is printed in sec. A.4.2. �e list has been created by the author on basis of
Fig. 7.1 and has been validated against the elegant model [61] of the DELTA storage ring [51, 62].
As is usually the case for storage rings, the topology of DELTA regarding monitors and quadrupole
correctors is completely known.

5. �e information that

a) a monitor dri� space of length 5.2175 m between BPM14 and BPM15

b) a monitor dri� space of length 0.8678 m between BPM38 and BPM39

exist [51, 62, 61]. �e distances are consistent with the author’s own measurement using a ruler,
with a corresponding relative error of 10−2.

While the input described by items 1–3 may change from measurement to measurement, e.g. if some
correctors or monitors are nonfunctional, the items 4 and 5 are characteristic for the basic storage ring
setup and were compiled by the author. �e topology S is constructed from the three lists included in
items 2–4, in analogy to the approach used in sec. 9.1.1.

Validation data

For validation purposes, we use additional information saved into the response matrix �les, which is
generated by the Q-Pulser application [63] as part of the DELTA control system (Fig. 7.4). �e input and
validation data for each measurement are extracted from a text �le with a strict format, as de�ned by
DELTA’s orbit correction application [60].

Figure 7.4.: Setup for the Q-Pulser measurement
system installed in the DELTA storage
ring, taken from [63].

B A

C D

B

Libera BPM

Kicker Pulser

Linux PC

Trigger Generator

Kicker Beam Position Monitor

Clock Splitter

Machine Clock
System Clock

7.2.2. Running COBEA on 171 response matrices

In the time interval between 2006-03 and 2016-01, 171 response matrices were recorded and saved by
DELTA’s orbit correction application, initiated by the respective operators. Each of these response ma-
trices (see Tab. 7.2) was analyzed using COBEA, with each run of the optimization layer taking ≈ 15 s on
a typical PC.

�e 171 analyzed response matrices were sorted by a chronological index (Response ID) starting from
RID 1. �e indices are related to response matrix �le names in sec. A.4.3.
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7. Data mining at DELTA using COBEA

Overview of results

In Fig. 7.5, the computed COBEA tunes for each response matrix are shown in comparison to the recorded
Q-Pulser tunes. �e �rst 51 matrices cannot be compared with TbT data, as at that time, TbT hardware
was either not installed or the tune was not recorded. One can observe that the average input is larger
when the modal phase advances µ are lower. �is is in consistence with the expected scaling behavior
of closed-orbit perturbations with ∝ 1/ sin(µm/2) (sec. 3). Also the amplitudes signal-to-noise level for
successful measurements is usually larger than 50.

Comparing the results for which TbT tunes are available (Fig. 7.5), we see that from the remaining 120
response matrices,

1. there is a very good agreement between COBEA and TbT measurement for 114 response matrices
(∆µm < π/50 for available m from Q-Pulser).

2. Seven response matrices are found for which recorded TbT tunes and computed COBEA tunes are
signi�cantly di�erent (∆µm ≥ π/50). �ese matrices are discussed in sec. 7.2.3.

3. �ree of the valid response matrices are evaluated by COBEA with (partially) negative modal phase
advances. �ese results are discussed in sec. 7.2.4.

4. A small number of responses with large σ estimations for the µm errors exist. �ese are discussed
in sec. 7.2.5.

�antity Variable Value

number of monitors J 54
max. number of correctors K 56

max. number of inputs size(r) = JK M 6048
Search space dimensions D 822

Table 7.2.: Overview of �xed variable values common to RID datasets.

7.2.3. Explanation of deviations in seven response matrices

From inspection of the deviations shown in Fig. 7.5, six responses exist for which the disagreement
between Q-Pulser and COBEA tunes |∆µm | ≥ π/50. Ordering the response matrices along decreasing
deviations, they are indexed by the numbers 166, 153, 57, 152, 151, 164 and 171. In the following, these
cases will be evaluated using additional information from DELTA’s electronic logbook [64].

RID 166 response.150317-1 550MeV below

�is response was recorded in 550 MeV mode. For the response under consideration, there exists a tune
inconsistency for mode 1 between Q-Pulser measurement and COBEA estimate. At the time of recording,
the stored beam current was signi�cantly lower than average (see Fig. 7.6).

• 550 MeV G. Schmidt, 11:38

With the current setup, 1.3 mA beam current could be stored. As no horizontal orbit correction
was possible, a new response (RID 166) has been measured.

• 550 MeV below G. Schmidt, 12:18

�e tune is still located below 9 in the horizontal plane. . . .
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7.2. Tune validation experiments with standard correctors

Figure 7.6.: Automatically created current-time plot from DELTA’s control system for 2015-03-17.

�e signal-to-noise ratio from COBEA is below 40. Taking into account that the response was recorded
with less than 1.3 mA beam current, this low value can probably be explained by noisy measurements.

RID 151–154 response.140924-*

�ese responses were all recorded on 2014-09-24. �e log entries of that day document a�empts to repair
a beam steering coil (DC1) in the injection region of the storage ring:

• trying to repair DC1 G. Schmidt, 19:21

. . .At that location, one could see that the isolation of the supply cable bursted at a constriction.
A�er disassembly, one could measure current �ow between magnet and this cable. . . .

�e response matrices recorded were thus compromised by short-circuits of the mentioned beam steering
coil (with the possible exception of the last matrix 154, in which no deviations could are observed). �is
is also underpinned by other observations on orbit problems:

• Orbit problems J. Friedl, 19:56

�e orbit correction application (running on RID 153) cannot compensate the occurring deviations.

We can thus assume that the responses indexed with 151 and 153, for which deviations between Q-Pulser
and COBEA tunes occur, have not been recorded properly by the control system.

RID 57 response.081127-2-550MeV

�is matrix has been recorded in the experimental 550 MeV mode using DELTA’s previous optical res-
onator setup [65]. For this day, some problems have also occured with the Q-Pulser system [64].

• Problems with tune measurement J. Friedl, 08:43

�e TbT tune measurement is not working and cannot be restarted.
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Figure 7.7.: Horizontal orbit deviations (top) and the �t residuals to COBEA’s prediction (bo�om) for RID
57.
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7.2. Tune validation experiments with standard correctors

• Tune measurement J. Friedl, 08:51

�e Q-Pulser application can be restarted, but the old window can still not be closed.

�e matrix was recorded in a situation where large re-scaling of quadrupole currents had happened.

• 550 MeV tune quadrant H. Huck, 16:50

I could position the tune into the right quadrant (RID 57) by scaling all QF about +2.9% and all QD
about +0.5%.

It is therefore possible for this measurement that

1. the tune measurement was compromised by large uncompensated chromaticity,

2. the tune recording was compromised by so�ware errors.

Taking into account the good accuracy of the response matrix �t with its signal-to-noise value > 100
(Fig. 7.5), we can safely conclude that COBEAs tune estimate is correct within its own error margins. A
plot of all relevant monitor quantities is shown in Figs. 7.8, 7.9.

RID 164 response.150205 mitSAW-1

On this day, new responses for single-bunch mode have been recorded [64].

• new response matrix, single-bunch beam limit P. Ungelenk, 18:21

Yesterday, the BPMs 54,3,4 and 5 have been calibrated and a new response (RID 163) has been
recorded. �is happened with deactivated SAW.

Today the SAW has been switched on, which resulted in a new single-bunch current limit of about
11 mA. �erefore a new (and visibly di�erent) response (RID 165) has been recorded.

One can state that a new response (RID 165) has been recorded directly a�er the response in question;
for this response, Q-Pulser and COBEA tunes agree very well. It is noteworthy that the tunes predicted
for response 165 are in good agreement with the COBEA tune, but not for the Q-Pulser tune, of RID 164.

One may conclude that, while the possibility that COBEAs tune prediction for mode 2 is false exists, the
high signal-to-noise value for the vertical deviations (Fig. 7.10) and the coincidence with the RID 165
tune are good indicators that COBEAs tune predictions for this response are correct within the predicted
error margins.

RID 171 response.151103-1

�e deviations between measured tunes for TbT and COBEA are marginal. Nevertheless, problems with
the orbit correction have been reported [64] along several other defects for that day.

• Orbit correction works again P. Hartmann, 09:34

with the right correction �le (other RID).

• Error management P. Hartmann, 10:35

- temperature readout works again
. . .
- T2-SSV defective contact→ next shutdown
- automatic plo�ing into the Elog→ in progress
- orbit correction works with the right setup (other RID)

�e recorded orbit correction has seemingly never been used. In addition, the amplitude ratio of the
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Figure 7.8.: Optical functions of mode 1 predicted by COBEA for RID 57 at monitor positions. �e
COBEA-predicted tune for this mode is 9.140 90 ± 1.17 × 10−2, with the TbT tune being
0.091 80.
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Figure 7.9.: Optical functions of mode 2 predicted by COBEA for RID 57 at monitor positions. �e
COBEA-predicted tune for this mode is 3.194 13 ± 1.05 × 10−2, with the TbT tune being
0.205 08.
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Figure 7.10.: Vertical orbit deviations (top) and the �t residuals to COBEA’s prediction (bo�om) for
RID 164. �e COBEA-predicted tune is 9.116 86 ± 1.52 × 10−2 for mode 1 and 3.266 71 ±
1.52 × 10−2 for mode 2, with the horizontal respectively vertical TbT tunes 0.120 12 and
0.279 30.

COBEA �t is low. One can conclude that the measurement is either noisy or in�uenced by malfunction-
ing devices. Nevertheless, the predicted σ error for both tunes is signi�cantly larger than the existing
measurement deviation for this RID.

7.2.4. Results with negative modal phase advances (tunes)

As the Q-Pulser system is only able to record |µm | and the sign information is lost, the actual machine
tunes can be either positive or negative. In DELTA’s typical operation modes, both phase advances are
positive. �erefore we want to check the results with negative µm values, which are nevertheless in
agreement with the TbT measurement, using additional information from DELTA’s electronic logbook
[64] again. �e response matrices with negative µm are indexed by RIDs 54, 55, 75, and 161.

To �nd a simple criterion to check if µ1 is really negative in independence of COBEAs estimation, we
return to the description of Ax in terms of beam optical functions. It was found that Akm ∝ 1/ sin(µm),
thus a sign change of µm for two matrices recorded with otherwise similar beam optics should e�ect the
sign of all Akm for that mode. In a weakly coupled se�ing like that of DELTA, we can then check the
quadrant by the condition

rA
jkwrB

jkw < 0 with w = m and for most j, k . (7.1)
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Figure 7.11.: Horizontal orbit deviations (top) and the �t residuals to COBEA’s prediction (bo�om) for RID
54. �e COBEA-predicted tune is 8.843 99± 1.35 × 10−2 for mode 1 and 3.220 17± 9.72 × 10−3

for mode 2, with one TbT tune being 0.150 39 = 1 − 0.849 61, the other being invalid.

RID {54,55} response.081125-{550MeV, 551 550MeV}

�e signal-to-noise ratio (Fig. 7.5) and the �t errors (Fig. 7.11 for RID 54) indicate a successful optimization
using COBEA for both matrices. In addition, the predictions of absolute value |µ1 | for the mainly hori-
zontal modal phase advance and the full predictions of µ2 for the mainly vertical modal phase advance
are consistent.

For comparison using (7.1), we take RID 57 (see Fig. 7.7) which was also recorded in 550 MeV mode, but
two days later with con�rmed µ1 > 0 from COBEA and Q-Pulser. As can be seen in Fig. 7.12, most
horizontal components compared between 54 and 57 respectively 55 and 57 have changed sign, while
most of these are equal between RID 54 and 55. �is indicates that both µ1 values for RID 54 and 55,
which mainly e�ect the horizontal plane, are indeed negative and COBEAs estimate can be considered
as correct.
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Figure 7.12.: Comparison of sign changes between RIDs 54, 55 and 57 for the horizontal and vertical plane
with respective corrector sets. Green indicates values > 0, light green indicates zero, blue
indicates values < 0.

RID 75 response.100415-FEL-1

�e recording of this matrix is documented in DELTA’s Elog [64].

• Se�ings G. Schmidt, 11:46

. . . For the orbit correction to work, it was required to record a new response matrix (RID 75).
�is response deviates signi�cantly from the one used before (RID 74). Due to this and due to
the behavior of the Q-Pulser tune under variation of quadrupole current, the horizontal tune is
supposedly located below 9. �e QF magnets are run with 2% less current in comparison to old
se�ings.

Again checking (7.1) by comparing RID 74 and 75 (Fig. 7.15), we see that most components have changed
sign as expected for negative phase advances. Also being supported by the Q-Pulser behavior and the
operator, we can consider COBEAs estimate as being correct.

RID 161 response.150121-alternative-optik-bolsinger

�is response has been recorded in a new beam optics mode for the �rst time. As the injection e�ciency
was low, not more than ≈ 1.5 mA could be stored.

As this is the only response for this beam optics mode, we can only compare it (7.1) with the more
common operation modes of DELTA for which an abundance of responses exist. Even a comparison with
RID 160 (Fig. 7.15), which has been recorded 16 days before using di�erent magnet se�ings, indicates that
the sign of µ1 is negative and COBEAs prediction is correct.
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Figure 7.13.: Optical functions of mode 1 predicted by COBEA for RID 55 at monitor positions. �e
COBEA-predicted tune for this mode is 8.838 10 ± 1.56 × 10−2, with the TbT tune being
0.162 11 = 1 − 0.837 89.
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Figure 7.14.: Optical functions of mode 2 predicted by COBEA for RID 55 at monitor positions. �e
COBEA-predicted tune for this mode is 3.215 33 ± 1.10 × 10−2, with the TbT tune being
0.215 82.
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7.2. Tune validation experiments with standard correctors
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Figure 7.15.: Comparison of sign changes between RIDs 74 and 75 (le�) and RIDs 160 and 161 (right) for

the horizontal and vertical plane with respective corrector sets. Green indicates values > 0,
light green indicates zero, blue indicates values < 0.

7.2.5. Results with large COBEA error estimates

RID 22 response.070319-2

�is response has been recorded in 550 MeV mode. At that time, TbT monitors had just been installed
in the storage ring and were in testing mode. In consequence, the orbit deviations recorded by these
monitors are �awed as stated the next day (2007-03-20) in the Elog [64],

• Orbit monitors are �awed H. Huck, 20.03.2007 08:21

. . .A vertical correction step has been applied. �e beam position changed accordingly, which
could be observed from the synchrotron light originating from the undulator. �e monitored beam
positions behaved di�erently. Especially the measured horizontal positions at BPM13 and BPM15
changed by several millimeters. �is cannot be true, to be observed again from the undulator’s
synchrotron light.

�is observation was followed by the recording of a new response matrix (RID 23), for which the σ errors
estimated by COBEA are much smaller. It is interesting to see that the tune estimations between RID
22 and 23 do not change signi�cantly, and one can suppose that a correct tune estimate for RID 22 is
possible.

RID 127 response.120817-1-donotuse

For this RID, problems with two monitors are mentioned in the Elog [64].

• BPM44/45 crashed P. Hartmann, 15:40

A�er opening of the U55 undulator Ulf stated that the BL11 chamber was heating up. �e cause for
this was that BPMs 44 and 45 showed 0 mm as constant beam position. . . .A new response (RID128)
was recorded.
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7. Data mining at DELTA using COBEA

RID 149 response.140821-1

�e Elog [64] reports problems with correctors (also called ’steerers’).

• Steerers cannot be controlled J. Friedl, 15:35

. . .�e orbit correction tried to change the current values (of correctors), but the readouts did not
change.

Although no origin for the large σ of RID 106 can be found from the Elog, one may suspect that they
originate from another unmentioned defect in the storage ring.

We state that for all mentioned response matrices with large σ, the actual tune prediction of COBEA and
TbT tunes match nevertheless with su�cient accuracy. �is is an indicator that the COBEA procedure
is fairly robust.

7.2.6. Summary

171 response matrices recorded at the DELTA storage ring have been evaluated using COBEA. When-
ever complementary data from the Q-Pulser system was available (120 responses), the tunes either were
consistent (114 cases, 94%) or the deviations could be explained by measurement de�ciencies in the re-
spective operation mode of DELTA. �e applicability of COBEA is limited by the quality of closed orbit
data, which is either decreased by small beam currents (RID 166) or magnetic short-circuits (RIDs 151,
153). �e Q-Pulser system is either limited by chromatic e�ects that modulate the free betatron oscilla-
tions with synchrotron sidebands (RID 57) or single-bunch mode with low current (RID 164).

In summary, COBEA has successively analyzed all response matrices for which closed-orbit data of suf-
�cient quality was available. Of the 120 responses which could be validated against Q-Pulser, this was
the case for 117 of 120 matrices.
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Figure 8.1.: Towalski correctors rendered from CAD [66] and mounted onto the beam chamber.

8. COBEA experiments at the DELTA storage
ring

Having used COBEA on already existing data recorded by the DELTA control system, we found the
possibility of validating COBEAs tune predictions by the recorded TbT tunes, which is possible using a
single TbT-capable monitor. As described in sec. 7.1.2, there are 10 TbT-capable monitors installed in the
DELTA storage ring with which it is possible in principle to record monitor vectors. �erefore, the scope
of this chapter is to validate COBEA using monitor vectors.

8.1. Towalski correctors

Additional corrector magnets, called Towalski correctors in the following, have been installed in the
DELTA storage ring for the purpose of fast orbit feedback [66]. Due to the feedback system still being
under commission, these correctors are not used in DELTA’s standard operation mode. �is has the
following advantages.

1. As the correctors are realized as autonomous devices, there is no dependency on other currents in
their yokes.

2. As the correctors are not used, their standard current is zero, and thus hysteresis e�ects are small.
In addition, the interference with DELTA’s operation is minimal.

3. Due to their design purpose as Fast Orbit Feedback correctors, the Towalski correctors have a
characteristic low-pass frequency of ≈ 300 Hz [66] for applying �elds to the beam, only limited
by the particle beam chamber. For the time scale of s considered in this thesis, this results in
quasi-instantaneous beam excitation.

A picture of an installed Towalski corrector is shown in Fig. 8.1. �e detailed topology information is
shown in sec. A.4.1.
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8. COBEA experiments at the DELTA storage ring

8.1.1. Applying and recording perturbations

�e corrector currents are generated by power supplies [67, 66], which can be remotely controlled by
di�erent methods and interfaces. �e most direct but slowest method is given by control over a TCP/IP
socket. A corresponding Python interface has been implemented in [68]. Although excitation of the
beam via these correctors is quasi-instantaneous, we use the TCP/IP socket control, as the recording of
orbit perturbations is anyway limited by the low-pass behavior of DELTA’s standard monitor readout
system (sec. 7.1.2).

�e procedure of obtaining a general response matrix can be split into the following steps.

1. For the given corrector k , apply a current In from a sequence of length N , which last entry is zero.

For our measurements, we use the current values I = (0 A, 1 A, −1 A, 0 A), so that the sum of se-
quence values vanishes. �is has the advantage that the unperturbed closed orbit can be monitored
during measurement, hysteresis e�ects are compensated a�er each corrector cycle and that non-
linear asymmetric behavior can be checked.

2. Measure and record the closed orbit in intervals of ∆t ≈ 0.2 s.

Each measurement is saved into an array r̄ jkwp with increasing p. �is is done S = 25 times so
that low-pass behavior of monitors can be analyzed.

3. Increase n by 1 and apply steps 1 and 2 until the end of the current list is reached. p is only reset
to zero at the end of the current list, so that SN measurement values exist for any �xed j, k,w.
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Figure 8.2.: Recording of perturbations for correctors svk01, shk01, svk02, shk02 as projections onto the
step–corrector (top) resp. step-deviation (bo�om) plane in x (le�) and y (right) direction.
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8.1. Towalski correctors
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Figure 8.3.: Time pa�ern u(tp) resulting from outer product decomposition of measurement data (TID
2), performed separately for standard and TbT-capable monitors.

4. Apply steps 1–3 successively for all K correctors.

�e measured closed orbit deviations are shown in Fig. 8.2, where the step counting p is always increasing
(accumulated steps) to display perturbations of more than one corrector. �e low-pass behavior of the
monitors can be observed.

8.1.2. Building of current-response matrices

Many algorithms are suitable to obtain a current-response matrix from the recorded measurement data.
In our case we must consider the �nite response times due to network latency (TCP/IP), corrector hys-
teresis and monitor low-pass behavior (sec. 7.1.1), of which the la�er is the strongest e�ect.

In the following, we will consider the storage ring as a linear time-invariant system that is excited by dif-
ferent corrector inputs. We assume that, up to a scaling factor, the impulse response from each corrector
k to each monitor j is identical and describe it by a response function u(t). �en we obtain the relation

r̄ jkwp = u(tp)r jkw with tp = p∆t,

which can be used to decompose the measurement data r̄ jkw (tn) into an outer product along indices
( j, k,w) with p (sec. A.3.2). From the resulting values u(tp), the time structure of the response can be
extracted.

�e time pa�ern u(t) has the unit of current. For the sample range in which the �rst non-zero current
occurs, it is necessary to check if In and the corresponding u(tp) values have identical sign. If this is not
the case, the sign of u(t) and all r jkw must be changed. For the time constants occurring in the low-pass
behavior we can then assume that the maximum value is equivalent to the static perturbation excitation

max
p

u(tp) !
= max

n
In

and scale u(t) and all response components r jkw from PCA accordingly, so that their product remains
unchanged. According to our assumptions, r jkw is the current-response matrix for the given corrector
set.

89



8. COBEA experiments at the DELTA storage ring

As the standard and TbT-capable monitor sets at DELTA have di�erent low-pass behavior, we use the
PCA separately on both monitor sets.1 For a typical measurement, this results in the pa�erns shown in
Fig. 8.3, in which the low-pass behavior of the system can be observed.

8.2. TbT data sources and preprocessing

Somewhat a digression on the core topics in this thesis, this chapter describes existing measurement
techniques using special, Turn-by-Turn capable beam position monitors and their limits at storage rings.
It will be shown how eigenorbits at speci�c longitudinal coordinates in the ring can be found using turn-
by-turn (TbT) capable monitors. �e ideas for TbT measurement and analysis have been developed in
a variety of works, e.g. [16, 69, 13, 70], and many of them are thus only re-expressed using eigenorbits
(sec. 2.3) in the following. A comparison of some existing techniques is given in sec. A.2.

Basic Measurement process

We assume that a kicker device exists in the accelerator that de�ects particles from the closed orbit by
a short pulse. �e duration of this pulse is below the circulation time of the beam and thus a transient
e�ect. For the DELTA storage ring, the kicker device is identical to the one used for the Q-Pulser system
[63] (sec. 7.2).

�e measurement process begins directly a�er the pulse has ended with turn n = 0 and proceeds a �nite
time to turn N − 1, consequently, ∑n implies ∑N−1

n=0 in the following. For the considered turns, particles
have a deviation from the closed orbit and behave again like in an unperturbed segment. Using monitor
vector components (sec. 3.2.1), one may rewrite the single particle deviation observed at a TbT-capable
monitor j at turn n in direction w as (2.7)

r̃ jnw = <



∑

m

Rjmweinµm


. (8.1)

For machine studies, it is o�en advisable to use small beam excitations, not only due to minimizing the
risk of beam loss, but also to stay in the linear regime of the oscillations, so that nonlinear e�ects are
very small. In dependence of the beam charge, this approach can result in a small signal-to-noise ratio
for single measurements. To lower the measurement error, it is thus o�en necessary to average over
multiple measurements respectively excitation pulses P.

Due to several problems in DELTA’s TbT measurement system, the only assumptions we will use in the
beginning of our data analysis is that the excitation of the beam leads to oscillation with the two modal
phase advances µm, so that the acquired TbT data should have the form

r̃ jnwp = <



∑

m

Cjmwpeinµm


. (8.2)

1�e discussed techniques are not used for DELTA standard response matrices, but may allow to obtain more precise response
matrices. With further development of the maximum condition into a ��ing of exponential dependencies, the measurement
time may also be decreased.
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8.2. TbT data sources and preprocessing

8.2.1. Least-Squares Spectral Analysis (LSSA)

We can reformulate (8.2) as an optimization problem

�nd µm,Cjmwp for all j,m,w, p so that χ2 =
∑

jnw

������
r̃ jnw −<




∑

m

Cjmwpeinµm



������

2

is minimal. (8.3)

�is type of regression problem is linear in all Cjmwp , but nonlinear in model phase advances µm. Con-
sequently, instead of handling the complete optimization problem using a nonlinear optimizer, one may
separate the linear part and treat it as an overdetermined (JN MP � 2JM2P + M) equation system.

Solving the problem in this context is known as Vanicek [71] or Lomb method [16] and called Least-
Squares Spectral Analysis (LSSA) in the following, based on [71]. LSSA is equivalent to a �t of M cisoids
with �xed, arbitrary phase advances µm to a sequence in n.

One may reorder the the TbT data r̃ jnwp into a two-dimensional matrix B in which the indices j,w, p
are combined into one axis so that the matrix size is N × (JMP). �en LSSA reduces to solving an
overdetermined equation system containing< (see sec. 5.1.1)

B = < {UA} with Unm = einµm (8.4)

and a complex-valued matrix A of size M × (JMP) which holds the reordered phasors Cjmwp . As the
system is overdetermined, one may use SVD (sec. A.3.1) to solve it with a minimal least-square error χ2,
which is also the error to be minimized in (8.3). A sketch of the LSSA optimization step with TbT data is
shown in algorithm 8.4. �e time complexity is discussed in sec. A.2.

Note that µm are only candidates for the correct modal phase advances and thus need to be subjected
to optimization, which implies an ”outer loop” (similar to the one used in NAFF [72], sec. A.2) which is
controlled by a nonlinear bounded optimizer. A way to generate su�cient starting values is discussed in
the next section.

Furthermore, by assuming linearity we have implied energy and transverse amplitude-independent con-
stant model phase advances µm. Taking these dependencies into account leads to decoherence pa�erns
in the TbT data, which are discussed in sec. A.2.3 in conjunction with extensions of LSSA optimization
(sec. A.2.4).

Data:
reshaped TbT data B ∈ RN×(JD) holding deviations (~r jn)d = Bn( jd) ∈ R at J monitors
optional: shape function unm(a1, . . . , aP). if not given, unm ≡ 1.
for each iteration:

µ̃m candidates for 1 ≤ m ≤ M optional: shape parameter candidates a1, . . . , aP

Result:
Residual squared error χ2;
shaped phasor data A ∈ CM×(JD) , holding monitor vectors ( ~Rjm)d = Am( jd) ∈ C for M modes

for m ← 1 to M , n ← 1 to N do
Unm = unm(a1, . . . , aP)eiµ̃mn;

end
solve B = < {UA} for A;
χ2 ← ‖B −< {UA} ‖2;

Figure 8.4.: LSSA optimization step to be encapsulated into a non-linear optimizer for all iteration can-
didates so that χ2 is minimized.
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8. COBEA experiments at the DELTA storage ring

8.2.2. Start values for µ by Fast Fourier Transform (FFT)

As the optimization problem (8.3) is nonlinear in modal phase advances µm, a procedure to �nd proper
starting values is necessary. To process data from TbT monitors, we introduce the Discrete-Time Fourier
transform (DTFT) [73] by an operator F , so that any quantity xn depending on a turn n has a DTFT
spectrum depending on µ, given by

Fµxn =
N∑

n

xne−iµn with µ ∈] − π, π].

In consequence, for single particle motion and in the limit of measuring an in�nite number of turns, one
would obtain a DTFT

lim
N→∞

Fµr̃ jnwp = N




Cjmwp for µ = µm

C∗jmwp for µ = −µm
0 otherwise

, (8.5)

from which µm and Cjmwp can be obtained up to an ambiguity in sign respectively conjugation (see
sec. 6.1.2) by �nding one maximum of |Fµr̃ jnwp |2 and its argument µm.2

In a realistic measurement, N is usually limited to 103–105. For �nite N the leakage e�ect [73] occurs
and the above spectrum is essentially blurred out by a cardinal sine function which characteristic width
scales with 1/N . Due to this blur, we can use the FFT algorithm and only compute the DTFT at N/2 + 1
equidistant positions (bins) [73]. �en, we use the phase advances corresponding to local maxima of the
FFT as starting points for LSSA optimization.

Averaging

�e question remains from which of the JMP di�erent turn series this estimate should be taken. Two
reasonable approaches exist

1. Use the spectrum of the sum of all turn series |Fµ ∑
jwp r̃ jnwp |2. �is approach is advantageous if

the turn series have high coherence and the probability of phasors of di�erent turn series canceling
each other is low.

2. Use the sum of the spectrum of all turn series ∑
jwp |Fµr jnwp |2. �is approach is advantageous if

the turn series are mostly incoherent.

For the results discussed in the following, a su�cient level of coherence in the TbT data exists to use
the �rst approach. In Fig. 8.5 it can be observed that two spectral lines have only small variance under
increase of averaging turn series, which indicates that these signals have high, although not complete,
coherence.

8.2.3. Coherence and Synchronization at DELTA

A�er completing the LSSA-based optimization on a TbT data set, we can further analyze the relation of
phasors in di�erent pulses to each other. If the kicker pulse were perfectly synchronized to the bunch
pa�ern, that is, its repetition time would be an exact multiple of the particle revolution time, and the mea-
surement triggers of the TbT-capable monitors were all triggering at the same turn and bunch position,
we would expect that the phasors do not depend on the pulse p,

Cjmwp = const.Rjmw .

2As the “power spectrum” |Fµ • |2 = (<Fµ•)2 + (=Fµ•)2 takes less steps to compute than the absolute value, we use it to
�nd the maximum instead.

92



8.2. TbT data sources and preprocessing

0.0 0.2 0.4 0.6 0.8 1.0
µ / π

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

|F
µ
∑

jw
p

r̄ j
n
w
p
|2

/N
av

g
N

2 tu
rn

sm
m

2 Navg = 2
Navg = 8
Navg = 32
Navg = 128
Navg = 256
Navg = 1024
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Figure 8.6.: Phasor correlations Dmwp ( jr, j) for m = w = 1 and reference monitor BPM16. Le�: Corre-
lations for two monitors BPM13 and BPM16. Right: Histogram of angle(Dmwp ( jr, j)) for all
monitors.

For the used measurement setup, these assumptions are not true. �e kicker pulse is not synchronized
with the bunch pa�ern and thus excites di�erent parts of the beam with di�erent amplitudes on every
pulse. As the timing of the pulse relative to the monitors is also di�erent, this leads to a phase shi� in the
observed turn series. Both e�ects can be taken into account by a complex pulse coe�cient cmp so that

Cjmwp = cmpRjmw . (8.6)
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8. COBEA experiments at the DELTA storage ring

To check if the second condition holds nevertheless, we could correlate the phasors from di�erent mon-
itors j at the same pulse p with each other,

Dmwp ( j1, j2) = Cj2mwpC∗j1mwp, so that arg Dmwp ( j1, j2) = arg Rj2mwR∗j1mw

should be independent of p. A presentation of all pulses for w = m = 1 and can be found in Fig. 8.6,
which shows that there are essentially two phases arg Dmwp in which every pulse p for a monitor pair
can be grouped into. �erefore the monitors do not all trigger on the same turn at every pulse.

Based on (8.2) and (8.6), a shi� of the turn series by one-turn results in a modi�ed pulse coe�cient

r̃ j (n−1)wp = <



∑

m

Rjmwcmpei(n−1)µm



= <



∑

m

Rjmwc−mpeinµm



with c−mp = cmpe−iµm . (8.7)

�is discrete shi� in the angle of correlation corresponds to the observed behavior in Fig.8.6. To correct
for the turn shi�s, we use the following procedure

1. De�ne a reference monitor jr , which is the monitor with the largest phasor amplitudes.

2. Correlate all Cjmwp to the reference monitor by computing Dmwp ( jr, j).

3. Cluster the Dmwp values for each monitor into two groups separated by the angle µm.

4. rotate all Cjmwp which are classi�ed into the second cluster by µm, computing new phasors C̄jmwp =

Cjmwpeiµm .

Neglecting phasors which are shi�ed by more than one turn, the resulting corrected phasors should now
ful�ll (8.6),

C̄jmwp = c̄mpRjmw,

which is illustrated in Fig. 8.7. Inspection of this equation shows that, for a given m, C̄jmwp is just
an outer product of c̄mp and Rjmw along indices p with ( j,m,w), and we can thus use outer product
decomposition (sec. A.3.2) to obtain both quantities up to constants indexed by m. As the monitor vectors
are only de�ned up to constants indexed by m, we can thus obtain all monitor vectors by this procedure.

An example using measured TbT data is shown in Fig. 8.8. �e residual phasors from our SVD ��ing
procedure are small for a large number of monitor and pulse combinations. Nevertheless, it can be seen
that for some pulses, discrete and comparatively large �t errors occur. �ese errors are likely to stem
from trigger timings of monitors which are more than one circulation time apart, and it is reasonable
that such timing errors occur with a low probability, assuming a normal distribution of timing errors at
all monitors. Neglecting these errors, we are able to reconstruct the input phasors, and thus all monitor
vectors, with good accuracy.

Analysis of coherence by pulse coe�icients

Outer product decomposition allows to check the coherence level a posteriori by discussion of the c̄mp

values. As stated before, the kicker is not synchronized with the circulation frequency of the beam, and
therefore di�erent parts are excited by the same kick envelope, which results in di�erent amplitudes.
�e relative timing of the kicker pulse to the circulation frequency acquisition trigger is proportional to
the phase of the observed signal. �erefore, the shape of the �lling pa�ern respectively its convolution
with the excitation pulse envelope is encoded in the pulse coe�cients.
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8.2. TbT data sources and preprocessing

Summary

Analyzing TbT data, we found that the following problems occur at DELTA.

1. High noise levels and missing kicker-to-monitor synchronization.

We found a way to extract absolute values of monitor vector components with low error levels
by combining an extended LSSA optimization procedure with outer product decomposition on the
input of a large number of independent measurements. If phase information were available, this
procedure can be generalized by elementary means to incorporate phases of monitor vectors.

2. Imperfect monitor-to-monitor synchronization.

�is relates to the monitor triggers in relation to each other, and the missing synchronization of
the 10 Hz Pulser signal (no phase lock). In consequence, the phase information cannot be used
without a detailed investigation that would go beyond the scope of this work.
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Figure 8.7.: Corrected phasor correlations D̄mwp ( jr, j) for m = w = 1 and reference monitor BPM16. Le�:
Correlations for two monitors BPM13 and BPM16. Right: Histogram of angle(Dmwp ( jr, j))
for all monitors.
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for TID 4.
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8.3. Running COBEA

26 closed orbit measurements with Towalski correctors have been performed in the time between 2015-01
and 2015-06 using the measurement procedure described in sec. 8.1.1. Each measurement was processed
to a response matrix with a negligible duration of computation. All obtained response matrices then
were processed with COBEA and are identi�ed by a response matrix index called TID in the following.

A typical run of the COBEA optimization layer took about 30 s on a standard PC including convergence
output. �is fast convergence in comparison to the standard DELTA response matrices relates to the
lower number of used correctors. An example of COBEAs �t performance is given in Fig. 8.11. As can
be observed for this case, the ratio of maximum values of deviation and residuals is > 100.

For 23 of the 26 matrices, additional TbT data has been recorded, which was processed using the tech-
niques described in sec. 8.2. �is allows to compare betatron tunes and monitor vectors at TbT-capable
monitors between TbT measurements and COBEA. �e measurements for which no TbT data is available
can be identi�ed as TID 1, 2, and 8.

8.3.1. Overview of results

A comparison of all computed COBEA tunes in comparison to TbT measurements (sec. 8.2) is shown in
Fig. 8.9. It can be observed that the amplitude ratio is always higher than 60, which is a small improvement
over the standard response matrix computations in sec. 7.2.

It can be seen that extensive use of TbT data processing (sec. 8.2), which is not possible for the Q-Pulser
online feedback allows the TbT predictions to agree very well with those of COBEA. In fact, there is no
single measurement for which tune deviations larger than 1.5 × 10−3 could be found.

8.3.2. Comparison of absolute monitor vectors

As TbT data of multiple monitors has been recorded, we are able to compare the computed TbT monitor
vectors with those of COBEA up to a global scaling factor. Fig. 8.10 shows the computed β j0x values for
all TID responses.

To compare the scaling, we may re-normalize our TbT monitor vectors to the normalized monitor vectors
of COBEA by comparing ∑

j | ~Rjm |2 for both sets and modes. We can now compute β function values that
would be consistent with TbT analysis with those of COBEA and analyze the deviations. An analysis of
β values is shown in Figs. 8.12 and 8.13, where it can be seen that small deviations in β values occur.

As a detailed example, a comparison of monitor vectors with extracted TbT information is shown for
TID 22 in Figs. 8.14 and 8.15.

Summary

As can be seen in the aforementioned �gures, there is a good agreement between COBEA-predicted
optical parameters and TbT-predicted optical parameters at a monitor subset with LSSA optimization.
�erefore one can consider the application of COBEA to the TID datasets successful.
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Figure 8.11.: Orbit deviations and �t residuals to COBEA’s prediction for TID 12 in the horizontal (2 upper
plots) and vertical (2 lower plots) plane.
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Figure 8.14.: Scaled TbT-predicted Mais-Ripkenβ functions and COBEAs prediction for TID 22 in mode
m = 1.
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Figure 8.15.: Scaled TbT-predicted Mais-Ripkenβ functions and COBEAs prediction for TID 22 in mode
m = 2.
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9. COBEA evaluation with HZB data

A�er having validated the COBEA algorithm against TbT data from the DELTA storage ring, we would
like to compare its results with those of the related ��ing routine LOCO. LOCO generates the most
information in comparison to the other validation techniques used in this thesis. �is technique does not
converge su�ciently for the DELTA storage ring due to large di�erences [74] between the real storage
ring’s magnetic �elds and its simulation.

Fortunately, response matrix data for two accelerators installed and operated by Helmholtz-Zentrum
Berlin (HZB) – the Metrology Light Source (MLS) and BESSY II – has been provided [75]. For both
storage rings respectively their simulations, LOCO does converge. It is emphasized that the detailed
magnetic �elds (or, equivalently, the complete accelerator la�ice with all magnet strengths) needed for
an accelerator simulation are unknown to the author. Only a�er preliminary runs and transmission of
the results, the author had access to detailed optical information from successful LOCO application at
HZB [75].

9.1. Comparison with LOCO at the Metrology Light Source (MLS)

�e Metrology Light source is a facility run by the Physikalisch-Technische Bundesanstalt (PTB), Ger-
many’s national metrology institute, with a scope on metrology and research in the THz to extreme UV
spectral range [76]. Of the storage rings considered in this thesis, MLS has the smallest circumference
and is the most recent to be commissioned. Due to its size and steady advances in accelerator construc-
tion, we can assume that it is the most accurately set-up storage ring considered in this work. Further
information about MLS is shown in Fig. 9.1.

Parameter Value

La�ice structure double bend achromat
Injection energy 105 MeV
Maximum energy 630 MeV
Circumference 48 m
Revolution frequency 6.25 MHz
RF frequency 500 MHz
Dipole bending radius 1.53 m
electron beam current 150 mA

Figure 9.1.: Basic parameters and schematic view of MLS, both compiled from [76].
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9.1.1. MLS input data

For the purpose of testing COBEA, the author was kindly provided [75] with input and validation data
originating from the MLS control system. �e input data is composed of

1. decoupled response matrices x, y (sec. 4.3) in units 103 m rad−1.

�e matrices have been produced at HZB by ��ing BPM data and magnet-dependent relations
between applied current and kick angle for each corrector.

2. two lists of identi�ers for each corrector respectively column of the matrix,
HS3M2K1RP, HS1M2K1RP, HS3M1L2RP, ... for x (12 elements) and
VS3M2K1RP, VS2M2K1RP, VS2M1L2RP, ... for y (16 elements).

While the lists were used as given, they could easily be constructed from the �rst list by taking all
elements starting with HS respectively VS in the respective order (matching the columns).

3. a list of identi�ers for each monitor respectively row of both matrices,
BPMZ5K1RP, BPMZ6K1RP, BPMZ7K1RP, ... (28 elements)

Again, this list can be constructed from the �rst identi�er list by taking all entries starting with
BPM.

4. two lists of all monitor and corrector identi�ers with the respective elements ordered by increasing
s position along the beam path (“downstream”),
BPM Z5K1RP , HS3M2K1RP , BPM Z6K1RP , BPM Z7K1RP , HS1M2K1RP , BPM Z1L2RP , ... (x-s plane)
BPM Z5K1RP , VS3M2K1RP , BPM Z6K1RP , VS2M2K1RP , BPM Z7K1RP , BPM Z1L2RP , ... (y-s plane)

with 40 respectively 44 elements. Both lists are printed in sec. A.4.4.

5. To obtain the invariants Ix, Iy , the author was supplied with the information that a dri� space
with the length 2.4068 m exists between the monitors BPMZ4K3RP and BPMZ5K3RP, and another
dri� space of length 5.9068 m exists between the monitors BPMZ4L4RP and BPMZ5L4RP. As the error
of computed invariants reduces for longer dri� space lengths, the author chose the second dri�
space information as input for COBEA.

From the items 2–4 of this list, the topology matrix S (sec. 3.2.2) can be constructed (Fig. 9.2). Note that
although two ordered lists occur, the topology matrix is still unique as only relations between correctors
and monitors and not between correctors are needed.

Validation data

A�er a few successful runs of a preliminary COBEA implementation (missing optimization layer) and
exchange of results, the author was again kindly provided [75] with a validation data set from a run of
Matlab-based LOCO [77] on the previously sent response data with a su�cient model, consisting of

1. Courant-Snyder parameters βx,y(s j ) and φx,y(s j ),

2. Betatron tunes Qx,y.

3. From additional sent �les, the author also extracted the dispersion function d(s j ).

9.1.2. Running COBEA on MLS data

Subsequently, COBEA was applied to the input data. COBEA’s core routine, consisting of local and
global subroutines, took approx. 20 s to converge on a typical modern PC. �e optimization layer took
1251 iterations to converge with standard accuracy se�ings (Fig. 9.2). Note that a�er approx. 250 L-BFGS
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Figure 9.2.: Le�: Topology matrix S constructed from MLS input data. Blue indicates negative sign, green

indicates positive sign. Right: Residual �t error χ2 for MLS data set in dependence to the
number of L-BFGS iterations.

iterations, the residual error does not decrease signi�cantly and an exponential decay to a �nite χ2 limit
can be observed. �is indicates that it might be possible to apply so�er convergence criteria for the
COBEA optimization layer and therefore accelerate it further.

Caution should be exercised in the interpretation of COBEA errors for MLS, as the overdetermination
factor (sec. 4.2) is low due to the small number of monitors and correctors. �erefore, the error estimate
is only a very coarse estimate.

9.1.3. Comparison for x mode

Convergence of the optimization can also be checked by the relative residual �t error of response matrix
elements. In accordance with Fig. 9.3, the maximum of �t deviations is 1.7 × 10−2 of that from the response
matrix deviations. For the ratio of root mean-squared values, this value is 8.1 × 10−3 (see also Tab. 9.1).
�e largest �t residuals are located at BPMZ5K1RP (�rst monitor), BPMZ2K3RP and BPMZ2L4RP.

Starting the comparison of optical parameters (Fig. 9.4) with the betatron phase advances per monitor
∆φ, one can see that the phase advances predicted by LOCO and COBEA are all in the limit of the error
predicted by COBEA and seem almost identical in the plot.

Comparing β functions generated by COBEA and LOCO, one can see that they essentially agree, although
COBEAs error margins are a bit too small. It is noteworthy that, while the LOCO values are symmetric
around BPMZ4K3RP and BPMZ5K3RP up to small deviations, COBEA has optimized an asymmetric β

solution. As no increased �t residual can be found for the two mentioned monitors, this may point to an
actual small asymmetry in the magnetic �elds of MLS at this time.

For x mode, there is non-negligible dispersion indicated by COBEA and LOCO. When scaling COBEAs
dispersion prediction by a global factor to that of the LOCO model, one can �nd that there is a good
agreement of the predicted shapes (Fig. 9.4).

�e betatron tunes found by both methods agree very well within the error margin predicted by COBEA.
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Figure 9.3.: Response matrix (top) and �t residual (bo�om) for x mode of MLS.

�antity Variable Value Error Unit

number of monitors J 28
number of correctors K 28

–x mode 12
–y mode 16

number of inputs size(r)
(decoupled resp. assumpt.) = JK 784

Search space dimensions D 121+133

L-BFGS function eval.s nf 1181
L-BFGS iterations it 1137

Fit error χ2(~ρopt) 1.174 (m rad−1)2

–x mode 0.858 (m rad−1)2

–y mode 0.316 (m rad−1)2

Betatron tune (COBEA)
–x mode QCOBEA

x 3.17766 7.21 × 10−3

–y mode QCOBEA
y 2.23114 6.28 × 10−3

Betatron tune (LOCO)
–x mode QLOCO

x 3.17762
–y mode QLOCO

y 2.23869

Table 9.1.: Ring-global COBEA validation results for MLS.
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Figure 9.4.: MLS x mode monitor result plot for COBEA (green) and LOCO (blue).
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9. COBEA evaluation with HZB data

9.1.4. Comparison for y mode

For y mode, an even be�er agreement of predicted and measured response matrices, measured by the �t
residual, has been found (Fig. 9.5). �e ratio of maximum values is 1.0 × 10−2, with the rms ratio being
6.6 × 10−3. No directly visible pa�erns remain in the �t residual matrix.
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Figure 9.5.: Response matrix (top) and �t residual (bo�om) for y mode of MLS.

Like for x mode, the betatron phase advances for y mode from COBEA (Fig. 9.6) agree very well with
those of LOCO, which values are inside the error margins predicted by COBEA. Very small deviations
can be found around the local maxima of phase advance.

A qualitative comparison of β functions shows a general agreement, although the values predicted by
COBEA are larger on average. One explanation for this behavior are an invariant that is measured with
signi�cant errors – on the other hand, there is a good agreement for many monitors with smaller β

values, and the deviations occur at the local maxima (with regard to positions equipped with monitors).

As to be expected for the vertical plane, no signi�cant dispersion outside of the predicted error margins
could be found.

Analyzing the betatron tunes, we �nd that the tune predicted by COBEA is signi�cantly lower than the
one predicted by LOCO. �is is in consistence with the previously mentioned larger local maxima of β
functions, as β and φ have an inverse relation to each other [6] and thus the phase advance is smaller for
larger β functions. As these relations are not implied by the used BE+d model, both tune and larger β
values indicate that the vertical modal phase advance of MLS is slightly weaker than predicted by LOCO.
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Figure 9.6.: MLS y mode monitor result plot for COBEA (green) and LOCO (blue).

111



9. COBEA evaluation with HZB data

9.2. Comparison with LOCO at BESSY II

BESSY II is classi�ed as a 3rd generation synchrotron radiation source and located in Berlin-Adlershof,
Germany. Its > 50 beamlines provide users with radiation from a 1.7 GeV beam that is pre-accelerated
by a microtron and a synchrotron with 96m circumference [78]. Further information about the BESSY II
storage ring, which will be discussed in the following, is given in Fig. 9.7.

Parameter Value

La�ice structure double bend
achromat[79]

Beam energy 0.9 GeV
–1.9 GeV [78]

Nominal energy 1.72 GeV [78]
Circumference 240 m [79]
Revolution frequency 1.25 MHz[79]
RF frequency 500 MHz [79]
Dipole bending radius 4.355 m [80]
max. beam current 0.3 A [79]
nominal beam current 0.2 A [78]

Figure 9.7.: Basic parameters of BESSY II storage ring (le�) and sketch of the inner accelerator hall based
on [78] (right).

9.2.1. BESSY II input data

Again the author was kindly provided [75] with input and validation data from the BESSY II control
system. �e input data has the same format as that for MLS (sec. 9.1.1), with the following changes in
element topology and dri� space information.

2. two lists of identi�ers for each corrector respectively column of the matrix,
HS4M2D1R, HBM2D1R, HS1MT1R, HBM1T1R, ... for x (80 elements) and
VS3M2D1R, VS2M2D1R, VS2M1T1R, VS3M1T1R, ... for y (64 elements).

3. a list of identi�ers for each monitor respectively row of both matrices,
BPMZ6D1R, BPMZ7D1R, BPMZ1T1R, BPMZ2T1R, ... (108 elements)

4. two lists of all monitor and corrector identi�ers with the respective elements ordered by increasing
s position along the beam path,
HS4M2D1R , BPM Z6D1R, HBM2D1R , BPM Z7D1R, HS1MT1R , BPM Z1T1R, ... (x-s plane)
VS3M2D1R , BPM Z6D1R, BPM Z7D1R, VS2M2D1R , BPM Z1T1R, VS2M1T1R , ... (y-s plane)

with 188 respectively 172 elements. Both lists are printed in sec. A.4.5.

5. To obtain the invariants Ix, Iy , the author was supplied with the information that dri� spaces with
lengths of 4.722 m exist between the monitors BPMZ4TqR and BPMZ5TqR, where q ∈ {1, 2, 7}. As
only one dri� space is required, the author chose q = 7 for the following computations.
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9.2. Comparison with LOCO at BESSY II

Figure 9.8.: Residual �t error χ2 for BESSY II
data set in dependence to the num-
ber of L-BFGS iterations.
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�e validation data provided also follows the same format as given in 9.1.1.

9.2.2. Running COBEA on BESSY II data

COBEAs optimization layer took ≈ 150 s to converge on an average PC. �e convergence data and ring-
global results are shown in Fig. 9.8 and Tab. 9.2.

�antity Variable Value Error Unit

number of monitors J 108
number of correctors K 144

–x mode 80
–y mode 64

number of inputs size(r)
(decoupled resp. assumpt.) = JK 15552

Search space dimensions D 565+517

L-BFGS function eval.s nf 5067
L-BFGS iterations it 4785

Fit error χ2(~ρopt) 4.57477 (m rad−1)2

–x mode 4.20510 (m rad−1)2

–y mode 0.36967 (m rad−1)2

Betatron tune (COBEA)
–x mode QCOBEA

x 17.84740 2.87 × 10−3

–y mode QCOBEA
y 6.74054 3.55 × 10−3

Betatron tune (LOCO)
–x mode QLOCO

x 17.84690
–y mode QLOCO

y 6.74484

Table 9.2.: Ring-global COBEA validation results for BESSY II.
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9. COBEA evaluation with HZB data

9.2.3. Comparison for x mode

Considering the provided response matrix (Fig. 9.9), one can observe the matrix elements with relation
to BPMZ4D2R being large in comparison to the other elements. �is is due to a �t error that has occured
during creation of the input response matrix [75]. It is noteworthy that nevertheless COBEA can �t the
corresponding deviations well, and no large �t residual remains. �e most reasonable explanation for this
behavior is that the mentioned �t error is just a global scaling error of all elements of the monitor, possibly
caused by a false e�ective monitor coe�cient Cx . �is would also explain why the large deviation does
not occur for y mode. �e largest �t residuals for x mode occur at elements involving BPMZ2T4R and
corrector HS1MT2R.
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Figure 9.9.: Response matrix (top) and �t residual (bo�om) for x mode of BESSY II.

Comparing betatron phase advances per monitor (Fig. 9.10), one can observe that the predictions of
COBEA and LOCO qualitatively agree, although di�erences up to ±10◦ can be found, concentrating at
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9.2. Comparison with LOCO at BESSY II

the larger phase advances. Considering the low error margins of phase advances, it can be supposed again
that a LOCO �t parameter that is identical at a set of many magnetic elements, e.g. absolute identical
la�ice cells, limits the LOCO solution to those assumed symmetries. Also note that the phase advances for
the wrong-��ed monitor BPMZ4D2R show good agreement to the phase advances predicted by LOCO,
which reinforces the monitor coe�cient hypothesis.

For β functions, there is a rough qualitative agreement, although the deviations between LOCO and
COBEA are much larger than in the MLS results (sec. 9.1.3). As the deviations between both predictions
have di�erent signs, the e�ect can not be a�ributed solely to possible errors in COBEAs computation of
the invariant of motion. Instead, the small COBEA error margins for relative β errors may indicate that
the actual optics of BESSY II slightly deviate from the ideal assumptions of its la�ice model.

As expected for x mode, non-negligible dispersion e�ects occur in the response matrix data. Although
COBEA in its present implementation and without cavity phase data can only �t dispersion factors up to
a global scaling factor, there is a good agreement on the dispersion shape and the positions of maximum
dispersion. Note that, as the dispersion coe�cients have been extracted from the author by hand from
additional information [75], the assignment of monitor labels to dispersion values is �awed, which could
explain the deviations occurring between the start monitor BPMZ6D1R and monitor BPMZ1D4R (at
monitors BPMZ7T1R and BPMZ7T3R).
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Figure 9.10.: BESSY II x mode monitor result plot for COBEA (green) and LOCO (blue). Corresponding
to the BPMZ4D2R input response error (sec. 9.2.3), the βx value for this monitor has been
removed.
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9.2.4. Comparison for y mode

Figure 9.11.: Histogram of the �t residual matrix
components for y mode of BESSY II.
Up to statistical deviations, the dis-
tribution has a Gaussian shape.
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�e �t residuals for y mode of BESSY II (Fig. 9.12) are small compared to those for x mode, as was the
case for MLS. Here, the ratio of global maxima is 4.4 × 10−3 with the rms ratio being 2.3 × 10−3. Again
there are no visible pa�erns in the residual �t matrix, and a histogram of all elements shows a Gaussian
distribution (Fig. 9.11). �us the elementary necessary conditions for the hypothesis that COBEA has
actually �t the complete y mode response matrix signal up to Gaussian noise are met.

In the result BE+d model and the corresponding optical functions (Fig. 9.13), there is a good agreement
between phase advances predicted by LOCO and COBEA. As the BE+d model has been used in the vertical
plane, where almost no dispersive e�ects occur in the response matrix, at least one super�uous degree of
freedom remains. �is could be an explanation for the seemingly arbitrary ambiguity expressed by the
high σ levels but low response residuals for monitor BPMZ2T4R. On the other hand, the same monitor
has large residuals for the optimization of the X mode.

�e largest deviations become visible at the maximum phase advances. As the �t error is very low and
the average phase advance error per length should be approximately constant, this is in consistence with
small deviations of real and simulated magnetic �elds.

Comparing β functions, one can see that there is a systematic deviation of COBEA with regard to LOCO
as the predicted values of the former are larger on average. While this could point to an invariant scaling
error (due to inaccurate monitor vectors in the monitor dri� space), the overall small error of the monitor
vectors contradicts this assumption. Like for MLS (sec. 9.1.4), the larger β values should correspond to a
lower betatron tune instead.

�is hypothesis is also reinforced by a comparison between the predicted betatron tunes (Tab. 9.2), with
their di�erence being slightly larger than 1σ according to COBEAs prediction. Considering the low �t
error of COBEA, we may assume that the lower tune is closer to reality.
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Figure 9.12.: Response matrix (top) and �t residual (bo�om) for y mode of BESSY II.
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Figure 9.13.: BESSY II y mode monitor result plot for COBEA (green) and LOCO (blue).
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Measurement of closed orbit perturbations respectively response matrices is a technique used for the
majority of accelerator storage rings in existence. While these matrices are o�en used for orbit correction
tasks and thus exist in abundance, their direct relation to beam optical parameters had not been fully
exploited.

In this thesis, the underlying inverse problem of extracting optical parameters from a response matrix
without super�uous or special assumptions and/or additional measurement data has been treated. We
have found a linear, transverse-coupled description model, the bilinear-exponential model with disper-
sion (BE+d model) for closed-orbit perturbations in storage rings. �is model uses comparatively few
and common assumptions and is the cornerstone for all other theoretical results described in this thesis.

Based on this derivation of a model for optical parameters (forward modeling), a procedure called closed
orbit bilinear-exponential analysis (COBEA) has been implemented to decompose measured response
matrices into BE+d model parameters (inverse modeling) using an optimization procedure. �e algorithm
to obtain the start values for this nonlinear problem incorporates and extends ideas used for existing
measurement procedures in linear accelerators and storage rings. �e optimization layer uses analytical
gradient information in search space, which signi�cantly accelerates the convergence time of COBEA.
�is is facilitated by using the closed-form expressions of the BE+d model and would be impossible by
use of numerical particle tracking.

COBEA has been applied to response matrices from the storage rings of DELTA (chapters 7 & 8), MLS
(sec. 9.1) and BESSY II (sec. 9.2). In each case, additional data from complementary diagnostic methods
(either Turn-by-Turn data or LOCO) was available so that di�erent parts of COBEA results could be
validated against their results. Taking into account the discussed and found error sources of these ex-
isting procedures and the measurement of response matrices, it could be shown that COBEA converges
successfully.

�us all tasks in the scope of this thesis (sec. 1.1) have been completed and the inverse problem of de-
composing general response matrices into beam optics information can be considered as solved under
the given assumptions. Due to the low number and weakness of these underlying assumptions and the
availability of the necessary input data, COBEA should be applicable to a large number of existing storage
rings.

�is chapter closes with a short discussion about possible extensions of the COBEA method.

Orbit correction with COBEA-cleaned response matrices

In operating accelerators, unintentional closed orbit perturbations ~runint may be generated by imper-
fectly manufactured and/or installed magnetic elements. �ese closed-orbit perturbations can depend
on magnet currents, temperature and time in general, on the time scale of minutes.

Based on measurement of a current-response matrix r, several techniques exist to counteract these un-
desirable closed-orbit perturbations by shi�ing the closed orbit to its original position. If no model is
included in the correction process, this involves solving the equation system

−~runint = r~I,
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10. Conclusion and Outlook

sometimes including additional boundary conditions based on the accelerator setup (like for limited cor-
rector currents available at DELTA [60]).

Any orbit correction by virtue of an accelerator model results in a “cleaning” of the response matrix,
which means its e�ective replacement by a response matrix from the optimized simulation, e.g.

−~runint = rsim(LAT)~I .

For LOCO (sec. 6.2.1), this is done implicitly by computations in the accelerator simulation.

�is cleaning procedure is also possible using a Bilinear-Exponential model which is optimized by COBEA,

−~runint = f~I,

with the coe�cients f jkw being generated from optimized BE+d parameters (sec. 4.2).

As the response matrix is overdetermined in relation to BE+d parameters, using COBEA-cleaned response
matrices results in a lower noise level of orbit correction. As we only replace the matrix used by the
respective orbit correction, no further changes to existing orbit correction applications that would use
directly measured response matrices otherwise are necessary.

Online analysis and subspace iteration using COBEA

�e approach used in this work for decomposing measurement data is essentially an o�ine analysis, as
it uses response matrices or dedicated machine shi�s to obtain BE+d coe�cients using COBEA. As the
solution of the underlying system by the MCS algorithm (sec. 5.2) is also feasible with a relatively low
number of correctors (K ≥ 4M), it is also possible to obtain a reduced BE+d model with an identical
number of monitor vectors J. Depending on K and additional assumptions, dispersion can be included
or neglected in the analysis.

A special implementation of COBEA tailored to the possibilities and requirements of the DELTA storage
ring is pursued in [68].

For example, it is possible to bene�t from the fact that the TbT tune is known with high accuracy in
standard operation, so that the µm parameters do not need to be optimized in principle. As the resulting
optimization problem is now not bilinear-exponential, but only bilinear, subspace iteration schemes that
map monitor to corrector parameters and vice versa might be used to replace the optimization layer
for DELTA. For the dispersion free case, this would be equivalent to using CM mapping (chapter 5.1)
subsequently for a large number of iterations and tracking the residual error until a convergence criterion
is met.

Magnetic modeling

Closing the gap between known monitor vector at monitors and full optical information, one can recog-
nize that small deviations around the beam path can be linearized, as has been one during the de�nition
of eigenorbits ~Rm(s).

All linear magnetic �elds can be described by magnets up to quadrupolar order. In fact, as the closed
orbit is de�ned by dipolar �elds, only the quadrupolar / focusing �elds remain, with di�erent focusing in
di�erent directions. �e eigenorbit solutions are free of dispersive e�ects by de�nition. �us, eigenorbits
are governed by the homogeneous Hill di�erential equation [81]

d2

ds2
~Rm(s) +K(s) ~Rm(s) = 0.
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In an accelerator, we may assume the real-valued focusing term K(s) to be piece-wise constant along
s, e.g. inside a given magnet s ∈ [sstart

l
, send

l
] indexed by l, K(s) = Kl . �en, the phase-space transfer

matrices between start and end positions of the magnet
(
~Rm(send

l
~R′m(send

l
)

)
=Ml

(
~Rm(sstart

l
)

~R′m(sstart
l

)

)

can be found by elementary means, and are essentially transfer matrices of extended quadrupole magnets
with arbitrary rotation.

Let us assume that the eigenorbit is known at positions s j by COBEA, and a known segment exists
between monitors f and f + 1. �en, the magnet elements between them must connect the linear in a
steady and di�erentiable fashion. Finding the linear magnet properties Kl around the beam for a given
set of monitor vectors from COBEA then reduces to �nding a least squares solution of (Dj : distortion
recti�cation of monitor vector)

~Rjm =
(
Dj 0

) l∈[s f ,sj ]∏

l

Ml (Kl) P f

(
~Rf m

~R( f+1)m

)
for all j .

�is is essentially an optimization procedure that has been applied in a similar fashion for linear accel-
erators and unperturbed storage ring segments in [82] and by the code RESOLVE [83]. By using COBEA
eigenorbits as inputs, one can use this approach to model a storage ring.

One can observe that the optimization only depends on the magnetic properties between the known
segment and the monitor j considered. One can thus start the optimization in a low parameter space for
a few magnets between the �rst monitors a�er f and a�er convergence add more and more monitors
and respective magnets, essentially doing a dispersion-free linear �t of magnet elements in a linac.

As the matrices Ml are known analytically in linear approximation, it is possible to compute the gradient
of this optimization problem. Naturally, the additional information where elements start and end is
required for this approach, and uniqueness of the solution cannot be guaranteed in general, as it depends
on the degrees of freedom Kl in relation to the monitor vectors and their position towards elements l.

Possible inclusion of nonlinear motion

In this work, the discussion has been limited to a linearization of forces around an existing closed orbit,
and it could be shown that the Bilinear-Exponential model can explain the measured closed orbit de-
viations with a relative error ≤ 2 × 10−2, depending on the setup. If a non-linear extension of COBEA
is desired, e.g. to quantify anharmonic e�ects it is thus mandatory to measure with larger excitations
respectively corrector currents than those used in this work, leaving the linear regime.

For analysis of the resulting nonlinear response matrices, it is possible to use a modi�ed start-value layer
(sec. 6.1), where the linear transfer matrices TA,TB are replaced by nonlinear transfer maps TA,TB. For
parameterization, we will discuss a polynomial approach1 in the following.

Polynomial mappings T• can be derived from measurement data as solutions of linear equation systems.
It is also possible in principle to use PCA cleaning techniques (sec. 5.2.3), although the cleaned orbits
should be used explicitly, not implicitly using principal orbits, as the superposition principle does not
hold.

It is possible to obtain �nite symplectic expressions that preserve invariants of motion for a given order.
For the quadratic order P = 2, such expressions can be found in e.g. [86].

1�e use of Lie algebra [84] and resonance driving terms [85] might be equally or even be�er suited for this type of problem.
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A problem occurs when connecting both maps. Due to the polynomial parameterization, a product of
two matrices with order P will have an order of P2 (possibly with some coe�cients missing). �erefore
we either have to neglect coe�cients with higher order than P or use symplectic expressions for the
order P2. In the following, we neglect the coe�cients so that all maps have the same order.

�en it is feasible in principle to build a model, starting from a known or unperturbed segment [s j1, s j2 ],
that is built using the parameters of the symplectic generator function for that order. �is nonlinear
model then replaces the BE+d model in the optimization layer (sec. 6.1.1). From its parameters, one could
then derive the desired quantities by simple computations, or at least by tracking. All linear parameters
and thus all eigenorbits could then also be reconstructed by simple computations on the parameters of
this nonlinear model.

General Floquet-periodic systems

While the only physical system found by the author to be described by the BE±d model is closed-orbit
perturbations in storage rings, our considerations essentially apply to any linear (by Jacobian) system
with periodic boundary conditions in which local translations respectively ”kicks” occur. In such systems,
Floquet normal forms will describe the oscillation solutions, and solutions described in sec. 3.1 will occur
as system-periodic static solutions. In any system in which the solution is monitored along the dimension
of periodicity, and the translations occur at regions between the monitors, the BE±d model and COBEA
are applicable.
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Prüfung anreist, Ulf Berges als Vertreter der wissenscha�lichen Mitarbeiter und Jan Kierfeld als Leiter
der Prüfungskommission dafür, dass sie ihre knappe Zeit für die Begutachtung und Verteidigung meiner
Arbeit zur Verfügung stellen.
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A. Appendix

A.1. Beam Optics

A.1.1. Defective one-turn transfer matrices allow no bound motion

Matrices are called defective if they are not diagonalizable, that is one or more of its eigenvalues are
identical, and its eigenvectors do not form a full basis. We use computations that can be found in [87]
for the following derivation.

When considering a defective matrix T, a multiple eigenvalue λ and a corresponding eigenvector ~v, so
that (T − λ1)~v = 0, the characteristic polynomial has a multiple root λ. One can de�ne a generalized
eigenvector ~v (2) by

(T − λ1)~v (2) = ~v and ~v (2) ⊥ ~v. (A.1)

�is can be done iteratively for generalized eigenvectors by replacing ~v (2) → ~v (3),~v → ~v (2) and so forth
until the multiplicity of the respective eigenvalue has been reached and all (standard and generalized)
eigenvectors form an orthonormal basis.

If ~x†~v (2) does not vanish exactly and by using (A.1), iterative multiplication of any vector ~x with T results
in a term

Tn~v (2) = λn~v (2) + nλn−1~v. (A.2)

�us if a generalized eigenvector exists so that the matrix is defective, and |λ | ≥ 1 holds for the multiple
eigenvalue, any input vector which is not perpendicular to ~v (2) will increase in amplitude for each turn
n, and the motion is not bound.

For our considerations, we have assumed (Liouville’s theorem) that det T =
∏

m λm =
∏

m |λm | = 1.
�us, if any |λm | > 1, at least one other must be |λn | < 1. �ere are two possibilities for the multiple
eigenvalue λ.

1. |λ | ≥ 1. �en by (A.2), the motion is unbound.

2. |λ | < 1. �en at least one other eigenvalue λ̃ and corresponding eigenvector ~u exists so that

Tn~u = λ̃n~u with |λ̃ | > 1,

which also results in unbound motion.

�erefore no multiple eigenvalue and thus no defective matrix allows bound motion.

A.1.2. Real-valued block matrix expressions for eigenorbits

By sec. 5.1.1, we can transform the eigenorbit equations (2.6) respectively (2.7) into real-valued equations
(

x
x ′

)
= <

{(
X
X ′

)
eiφ

}
= L

(
cos φ
sin φ

)
with L =

(<X −=X
<X ′ −=X ′

)

= F

(
cos φ
− sin φ

)
with F =

(<X =X
<X ′ =X ′

)
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�erefore, L respectively F transforms a circle with positive respectively negative rotation into an el-
lipse. Here, connections to Fourier components and a Cartesian parameterization found in [13] can be
constructed by the matrix F. In similar fashion, we can construct relations between normalized eigenor-
bits and matrices P in [13] by

P =

(<X̂ =X̂
<X̂ ′ =X̂ ′

)
.

Obtaining the decoupled invariant analytically

By above considerations, we can conclude that the area π of the unit circle is then scaled by

Ix = det L = <X=X ′ − =X<X ′ = =(X∗X ′).

�is is a signed quantity. If the sign is negative, the direction of rotation is opposite for the unit circle
and the ellipse regarding phase advance.

A.1.3. Tracking phasor (eigen)vectors

~zn, ~Zm from sec. 2.3 are only related by complex scalars, and thus linear operations. �erefore,

~zn →M~zn is equivalent to ~Zm →M~Zm.

As this may seem counterintuitive due to ~Zm being complex quantities, we give a detailed calculation
based on ~zn, ~zn =M~zn in the following. Following (2.5) one may write

~zn =
2M∑

m

1

2
~Zmλ

n
m, ~zn =

2M∑

m

1

2
~Zmλ

n
m,

Le�-multiplying the �rst equation with M, one obtains

M~z =
2M∑

m

1

2
M~Zmλ

n
m

!
= ~zn =

2M∑

m

1

2
~Zmλ

n
m,

By comparison of coe�cients, this yields the expected result ~Zm = M~Zm, thus phasor vectors can be
tracked trough linear maps exactly like phase space vectors. �is also holds for their normalized coun-
terparts, the complex Mais-Ripken vectors, and also for the standard Mais-Ripken vectors.

As the relation also holds for components of ~z, ~Zm related by linear operations, one can, with the same
argument, also evaluate that the intercept theorem

~r ′n(s j ) =
~rn(s j+1) − ~rn(s j )

L
is equivalent to ~R′j,m =

~Rj+1,m − ~Rj,m

L
.

It should be noted that the aforementioned relations do not hold for Courant-Snyder, Mais-Ripken, or
Edwards-Teng parameters, as these are polar-like coordinates for the optical relations and are thus not
used the derivation of optical relations in this work.
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A.1.4. Beam position monitors and their signals

�e standard devices for observation of beam motion are transverse, capacitive beam position monitors,
which can be realized by a variety of possible constructions. For all experiments presented in this thesis,
the monitor hardware is realized by an arrangement of four electrodes, embedded in but electrically
isolated from the particle beam chamber.

We assume in the following that, regarding time constants of the monitor measurement process and
superposition of charges, the accelerator structure is a linear time-invariant system. We denote the port
signal on the n-th electrode by an, so that its relation to a passing particle distribution respectively current
density j (x, y, t) through the monitor plane can be described using a Green’s function

an(t) =
∫

Gn(x, y, t − t ′) j (x, y, t ′) dx dy dt ′.

�e particles in the storage ring are assumed to possess high energies with correspondingly high Lorentz
factors γ � 1 and are thus ultrarelativistic (v ≈ c). �e distribution of electromagnetic �elds, which
couple the pick-up signals to the beam charge distribution, is contracted in the laboratory frame with 1/γ
in �ight direction; thus one may approximate these �elds to be located in a in�nesimally thin transverse
plane around the particle, so that G(x, y, t − t ′) = G(x, y)δ(t − t ′). With this approximation of the
distribution in time, the above relation simpli�es to

an(t) =
∫

Gn(x, y) j (x, y, t) dx dy.

To obtain Gn(x, y), one could choose j to be independent of t, which corresponds to a constant charge
respectively current distribution j (x, y). We also assume that static transverse magnetic �elds do not
in�uence the electrode.1 �us, ignoring changes in the cross-section of the chamber, one can state that
the linear port signals obtained at the electrodes are proportional to the static voltages induced on the
electrodes by the transverse charge distribution ρ(x, y).

For the following, we assume that in the region which is occupied by the charge distribution, the Green’s
function can be linearized around the centroid of the beam at xc, yc to su�cient accuracy, so that

Gn(x, y) ≈ Gn(xc, yc) + (x − xc) [∂xG(x, y)]x=xc + (y − yc) [∂xG(x, y)]y=yc .

�en, the integral term in

an(t) ≈ Gn(xc, yc)
∫

j (x, y, t) dx dy = Gn(xc, yc)I (xc, yc)

evaluates to the static (or average) current of the distribution.

�is is a transverse point-charge aproximation for charge distributions inside the beam chamber. If the
particles were assumed to travel in free space, the linearization of Gn would be equivalent to a far-�eld
approximation a�er which all terms higher than monopole are neglected [88]. �us, if we assume that the
vacuum chamber properties did not signi�cantly perturb the Green’s functions, this would be equivalent
to approximate the transverse spatial distribution of the beam being much smaller than the distance
between beam centroid and each pickup electrode.

1�is assumption has been made implicity when approximating the Green’s function as δ distribution in t,which allows no
�nite time derivatives.
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Figure A.1.: Cu�ing of a sequence with N = 2048 consisting of 2 cisoids (le�) and its DTFT (right).

A.2. Turn-by-Turn data

An important property of DTFTs that will be used in the following is that they comply with the convo-
lution theorem, so that

Fµ (xn ∗ yn) = (Fµxn)(Fµyn).

A.2.1. Numerical Analysis of Fundamental Frequencies (NAFF)

When the �nite sequence only consists of a few number of cisoids with distinct phase advances, the local
maxima of the DTFT are still a good approximation for the respective µm. �e NAFF algorithm [72] uses
this approximation implicitly to obtain the phase advances of cisoids occuring in the sequence.

�e following steps can be performed in a loop to obtain all µm, ~Rjm using a scalar, real-valued DTFT-
derived quantity called | ~F (µ) | in the following. In this context, the DTFT amplitudes are given as ~F.

1. Compute the maximum argument µmax of | ~F (µ) |.
µmax is the DTFT estimate for the phase advance of the strongest (remaining) cisoid in the se-
quence. To obtain proper start values, a preliminary Fast Fourier Transform (FFT) of the data is
performed and the bin number of the maximum amplitude is used to compute the starting value of
the optimization. �en, a (bounded) scalar (maximum) optimizer is applied to |F (µ) |2.2 In standard
NAFF, the accuracy of both estimates is enhanced by using an appropriate window function.

2. Compute the amplitudes ~F (µmax) of the signal.

If the optimization procedure can be manipulated, this step can be integrated into the �rst one as
the components of ~F (µmax) are usually computed during the optimization.

3. Synthesize the corresponding cisoid and substract it from the sequence.

�is cisoid is simply given as ~F (µmax)eiµmaxn/N .

Performing this three steps M times in a loop leads to �nding the phase advances of the M strongest
resonances in the signal, corresponding to the µm phase advances if the signal-to-noise ratio is su�cient.

2In noisy systems where µ can only be obtained to a limited accuracy, it can be avantageous to extend the input timesequence
with a su�cient number of zeros (zero-padding) and use the maximum argument of the resulting interpolated spectrum as
an estimate of µmax instead.
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Algorithm (taken out!) is based on NAFF, but uses multiple sequences in n from all monitors j and
directions d simultaneuosly. To �nd the resonance phase advances µm using a scalar optimizer, we use
a total DTFT power spectrum function

F2(µ) =
J∑

j=1

(F ~r jn)†(F ~r jn) =
J∑

j=1




*
,

∑

n

~r jn cos(µn)+
-

2

+ *
,

∑

n

~r jn sin(µn)+
-

2 

. (A.3)

A.2.2. Interpretation of LSSA in comparison to NAFF

Neglecting details about the solution of the equation system, we state that the pseudoinverse of a matrix
M is de�ned by

pinv M = (M†M)−1M† if M†M is invertible.
In fact, the pseudoinverse of the LSSA system matrix can be reformulated so that the �rst multiplicative
step would correspond to

U†B or, in components,
∑

n

e−inµ̃m Bn( jd) =
∑

n

e−inµ̃m (~r jn)d,

which is a computation that is carried out row-wise as a step of the NAFF algorithm. �us, if the cisoids
are orthogonal, NAFF and LSSA will yield the same result as then M†M is a diagonal matrix and the
substraction of the �rst resonance does not in�uence the optimization of the next. In any other case,
LSSA will yield more exact results than NAFF in the form in which it is introduced here.

A comparison of NAFF and LSSA is shown in Figs. A.2 and A.3 for a timesequence in which the phase
advances of two cisoids are relatively close to each other and thus orthogonality is strongly broken. In
this case, NAFF will produce systematic errors.

Time complexity of LSSA

Using the linearity of the 2JM2P free parameters encoded in all Cjmwp by LSSA reduces the time com-
plexity of the optimization. Although no commonly accepted minimum complexity of nonlinear opti-
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Figure A.2.: Comparison of NAFF and LSSA algorithms for a signal-to-noise level of 4 with 3 channels
and 128 di�erent random timesequences. Shown are M = 2-dimensional histograms of µm
estimates for these timesequences. �e axes are N∆µ/2π, which is the di�erence between
correct and measured µ expressed in units of bins.
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Figure A.3.: Comparison of NAFF and LSSA algorithms for a signal-to-noise level of 8 with the setup
taken from Fig. A.2. Note that a systematic error in NAFF remains.

mization in dependence of dimensions can be found, it is certainly greater than O(C1). Computing the
Moore-Penrose pseudoinverse in our context (with full-column rank) only depends on M, N , and the
remaining matrix multiplication has the complexity O(N JD), so that the complexity in JD is linear,
while the complexity in M remains unchanged.

�e time needed to run the algorithm is about one magnitude greater than that of NAFF, due to the
small-scale inversion of a 2M×2M matrix, and performance of the implementation could be accelerated.
Hoewever, the LSSA implementation used is su�cient so that phasors can be computed in reasonable
time (which for the experiments in this thesis is ≈ 5 seconds).

A.2.3. Decoherence / Filamentation of the beam centroid

So far, our considerations regarding oscillation data were focused on single particle data. For small
transverse dimensions of the particle beam, monitor measurements can be approximated as measuring
the motion of the transverse beam centroid (sec. A.1.4). Due to nonlinear e�ects (see also chapter 10),
the phase advances µm are energy and amplitude-dependent.

�ere are several e�ects that are distinguished in common literature based on the �rst-order expansion
of µ. If we only consider the longitudinal component of ~z corresponding to the energy deviation, the
resulting expansion is

µ̃m = ξm · δ + µm,

where δ = ∆E/E is the relative energy deviation, a component of ~z. In analogy to photons, this is called
chromatic abberation, and ξm is called chromaticity of the mode.

We now want to examine how the motion of the beam centroid is a�ected by chromaticity. A recent
review of this is given in [70], where the authors also conclude that with knowledge of chromaticity and
TbT data,3 it is possible in principle to compute the energy distribution Φ(δ) of the integrated bunch
train.

Here, we are primarily interested in the perturbative nature of this e�ect, that is, if and how we can
extend single-particle considerations to centroids. For this, we use the energy distribution Φ(δ, n) and

3and under the assumption that other nonlinear e�ects are neglible to chromaticity, which is a valid assumption for EMMA
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the linear energy dependence of µ̃ to obtain the spatial motion of the centroid as

~rctr
jn =

∫
~r jn(δ)Φ(δ) dδ =

∫
<




∑

m

~Rjm

∫
Φ(δ)ein(µm+ξmδ) dδ




or ~rctr
jn = <




∑

m

~Rmunmeinµm



with modal envelopes unm =
∫
Φ(δ, n)einξmδ dδ. (A.4)

�erefore, the centroid motion can be interpreted as a single-particle motion that is modulated by a
decoherence term unm for a given mode m at turn n. Without further assumptions, we can also state that
for an in�nite timesequence,

(Funm)(µ = ξmδ) ∝ Φ(δ).

�us, the modi�cations in the DTFT directly depend on the shape of the energy distribution. In the
following, we will discuss two reasonable and common approximations for this distribution which are
connected to corresponding shapes of the modal envelopes unm.4

Static Gaussian energy distribution

We assume that the distribtion is normally distributed with a characteristic relative energy width σ and
thus has the form

Φ(δ) =
1√

2πσ2
e−δ

2/2σ2
.

As unm is essentially an inverse DTFT of the distribution, this results in Gaussians being transformed to
Gaussians, so that

unm(σ) =
1√

2πσ2

∫
e−(µ/ξmσ)2/2 cos(nµ) dµ =

1√
2σ2

e−(nξmσ)2/2.

Oscillating Gaussian energy distribution

So far, we have neglected the possibility that the beam centroid can also be excited by the kick along the
s, s′ direction, oscillating with its synchrotron phase advance µ0. �e derivation of these more general
expressions, also including a term for non-linear betatron motion, has already been done in [89, 90].

DTFT decoherence artefacts

We will shortly consider the leakage e�ect with decoherence. �is can be done by multiplying the rect-
angular sequence into the decoherence term unm, so that

uwin
nm = unmuN

n ,

from which follows that

F zmeas
n = (F uN

n ) ∗ (F ~rctr
jn ) =

∑

m

(F uwin
nm ) ∗ ( ~RjmF eiµmn).

�e DTFT of uwin
nm is also given by the convolution theorem as

F uwin
nm = (F unm) ∗ (F uN

n ). (A.5)
4�e inverse approach of ��ing polynomial expression directly for unm will not work out for �nite timesequences, as the

assumption of a given distribution implicitly allows an extrapolation of the timesequence which is �nite. Fi�ing a set of
spectral sidebands is possible, but neglects the continuity of the distribution.
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If the convolution by the leakage DTFT is initially ignored, it would follow that the phase advance µm
obtained as the DFT maximum corresponds to the maximum of the energy distribution. �en, reintro-
ducing the leakage DTFT convolution will shi� µm into the direction of the mean energy distribution.
�e shi� to the mean will be large if the characteristic width of F unm is small in relation to F uN

n and
vice versa.

In summary, the DTFT maximum thus corresponds to an energy between the maximum argument of
the energy distribution δmax and the mean of the energy distribution 〈δ〉 = 0. It is thus reasonable to
assume that the µm estimate will only slightly be e�ected by decoherence in the common measurement
situation.5

DTFT amplitude errors Any window function like the rectangular sequence or the decoherence win-
dow also modi�es the maximum amplitude of the DTFT and the respective resonance. �is scaling is
global, which means identical for all monitors j and directions d. In consequence, the relative scaling of
the monitor vectors is not in�uenced.

Furthermore, as the obtained monitor vectors will be normalized using the invariant of motion (2.14),
the normalized monitor vectors are independent of the initial amplitude scaling, as this scaling has been
absorbed by the invariant.

A.2.4. Inclusion of decoherence by extended LSSA optimization

Having characterized the decoherence e�ect, our goal is do include this e�ects when decomposing the
timesequence. In sec. 8.2 ��ing of the timesequences by LSSA has been performed, which as a least-
squares optimization procedure is not in�unced by DTFT artefacts. �us the approach of extending
LSSA to include decoherence e�ects is reasonable.

For any distribution with P unknown parameters ap , we can generalize the optimization problem in 8.2.1
as

�nd µm, ~Rjmfor all j,m and a1, . . . , aP so that

χ2 =
∑

j,n

������
~r jn −<




∑

m

~RjmUnm(µm, a1, . . . , aP)



������

2

is minimal.
(A.6)

Here, the elements of U are the only quantities containing the non-linear optimization parameters and
can be de�ned as

Unm(µm, a1, . . . , aP) = unm(a1, . . . , aP)einµm .

In consequence, the optimization goal will be to minimize the error between the cisoids with the given
envelope and the input data. �en, the LSSA equation system (8.4) can be used for optimization with the
increased set of non-linear parameters by using the respective matrix U.

Using the oscillating Gaussian energy distribution, which is characterised by synchrotron phase advance
µ0 and the scaled variance ξmσ, we therefore have

2M + 1 nonlinear variables µ0, µ1, . . . , µM, ξ1σ, . . . , ξMσ

to use in the outer optimization loop.

5If the distribution has only one maximum, the phase advance µm will occur in the oscillation of many particles in the beam.
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A.3. Basic data processing and COBEA computations

A.3.1. Singular Value Decomposition

A singular value decomposition of a matrix M can be described by [28]

M = USV†,

where U,V are unitary matrices, and S is a diagonal matrix with non-negative entries (singular values),
which are arranged in decreasing order. Every rectangular matrix with real or complex entries can be
decomposed into this form. Further conditions exist to make U and V unique [28].

Usage for overdetermined systems

For overdetermined systems of the form B = AX, it is very unlikely that an X exists to solve the system
exactly. Instead, a useful approach is to �nd X so that the error function6

χ2(X) = ‖B −AX‖2 is minimal.

As it is possible that more than one X minimizes χ2, we state the additional condition that Xmin has the
minimal ‖X‖ in this set [28].

�is is accomplished by the pseudoinverse of A via [34, 33]

Xmin = pinv(A) B,

and it can be computed in a numerically robust way by SVD as [28]

pinv(A) = VSinvU†,

where Sinv is a diagonal matrix in which each non-zero singular value (in S) is replaced by its reciprocal.
For consideration of numerical errors, very small singular values (relative to the largest) are also replaced
by zeros in the inverse, depending on a cuto� criterion.

A.3.2. Outer product decomposition

In this thesis, there are many occasions where an input array is decomposed into an outer product. �e
simplest form of an outer product is the product of one-dimensional arrays

Apq = bpc∗q or, using vector notation, A = ~b ⊗ ~c = ~b~c†. (A.7)

While more basic techniques exist to solve this problem (also known as rank-one problem), a robust
and convenient way is Singular Value Decomposition (SVD). As it is also widely available and also used
for the solution of other problems in this thesis, SVD is the technique used in the following. A can be
expressed using its SVD as

Apq =

N∑

n=1

upnσnv
∗
nq .

As an outer product has rank one and the singular values σn are ordered decreasingly, we can assume
that only one non-zero singular value σ1 does exist, so that

Apq = up1σ1v
∗
1q,

�en we can, up to a scaling factor, identify up1 ∝ bp and v1q ∝ cq . We choose to absorb the scaling
factor equally in both terms, so that

bp =
√
σ1up1 and cq =

√
σ1v1q .

6‖ · ‖ indicates the Frobenius norm, with is the root of the sum of absolute element squares of a matrix or vector.
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Multiple indices

In almost all occasions discussed in this thesis, the arrays for decomposition have more than two indices.
Let us assume a problem of the form

Ād f rmj = b̄drmc̄∗f j,

which we can describe as an outer product along indices (d, r,m) with ( f , j). We can de�ne the index
mappings

(d, r,m) ↔ p and ( f , j) ↔ q,

so that we can create a matrix A from the original multi-dimensional input array Ā. �e decomposition
problem is again reduced to the form (A.7). A�er obtaining bp, cq , the arrays b̄drm, c̄f j can be created by
inverting the above index mapping.

Checking the signal contents

By assuming the problem to be rank one, we assume all signals belonging to other singular values but σ1

to originate from noise. One can thus check if enough signal is present for a meaningful decomposition
of the the input array by the condition σ1/σ2 � 1.

A.3.3. Replacing the monitor subroutine

Using PCA, it is also possible to represent the monitor vectors as complex linear combinations of principal
components. For cycle A, this is simply described as

~Rjm =
∑

n

〈~r〉AjncA
nm = 〈r〉Aj ~c A

m for j ∈ JA. (A.8)

For cycle B, the unperturbed segment contains s = 0, so a switching of turns occurs when crossing s = 0.
�en, the monitor vectors in cycle B are given by

~Rjm = 〈r〉Bj c̃ B
m




1 for s j ≥ s3

e−iµm for s j < s3

and j ∈ JB.

At least four monitors j exist at which ~Rjm can be expressed using both A and B; these are represented by
the monitor split indices j1 – j4. We use this property by reformulating these representations as equality
constraints, so that

~Rjm = 〈r〉Aj ~c A
m

!
= e−iµm〈r〉Bj c̃ B

m for j ∈ { j1, j2}
and ~Rjm = 〈r〉Aj ~c A

m
!
= 〈r〉Bj c̃ B

m for j ∈ { j3, j4} .

�ese conditions at the start and end regions of unperturbed segments can be subsumed into a generalized
eigenvalue problem

eiµm

*....
,

〈r〉Aj1 0

〈r〉Aj2 0

0 0
0 0

+////
-

(
~c A
m

c̃ B
m

)
=

*.....
,

0 〈r〉Bj1
0 〈r〉Bj2
〈r〉Aj3 −〈r〉Bj3
〈r〉Aj4 −〈r〉Bj4

+/////
-

(
~c A
m

c̃ B
m

)
.

Note that the eigenvalues are constrained onto the complex unit circle. With included noise, the com-
puted eigenvalue may deviate slightly from this circle, and the monitor vectors computed from this
conditions may increase or decrease systematically at the change from segment A to B.
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Data:
orbit perturbations ~r jk for J ≥ 4 monitors, K ≥ 4M correctors, in M spatial dimensions
element topology (ordered list)
monitor subset j1 – j4

Result:
µm, ~Rjm, ~Dkm for all given j, k,m;
residual decomposition error σ2;

for SEG ∈ {A, B} do
JSEG,KSEG ← element topology;
〈r〉SEG

j ← first 4 principal components of segment orbits 〈~r〉jk for j ∈ JSEG, k ∈ KSEG

end
µm, ~c A

m , ~c
B
m ← set up and solve shi�-ring PCA eigenvalue problem (eq. y) for M eigenvalues;

for SEG ∈ {A, B} do
~c A
m ← ~c A

m eiµm/2 ∀m;
~Rjm ← 〈r〉SEG

j ~cSEG
m for j ∈ JSEG;

end
σ2 ← 0;
for k ← 1 to K do

for j ← 1 to J,m ← 1 to M do
Ejkm ← element topology;

end
Dkm ← set up and solve Corrector system using ~Rjm, Ejkm for all j,m;
for j ← 1 to J,m ← 1 to M do

σ2 ← σ2 +<
{
~RjmEjkmD∗

km

}
;

end
end

Figure A.4.: PCA-enhanced global algorithm with complete replacement of monitor equation systems.

�erefore, we consider to modify the problem by replacing c̃ B
m with ~c B

m by the relation

c̃ B
m = eiµ/2~c B

m ,

which in turn leads to

~Rjm = 〈r〉Bj ~c B
m eiµm sign(sj+1/2−s3) for j ∈ JB

= 〈r〉Bj ~c B
m




eiµm/2 for s j ≥ s3

e−iµm/2 for s j < s3

and j ∈ JB.
(A.9)

�en, one obtains a generalized eigenvalue problem

eiµm/2

*.....
,

〈r〉Aj1 0

〈r〉Aj2 0

0 〈r〉Bj3
0 〈r〉Bj4

+/////
-

(
~c A
m

~c B
m

)
=

*.....
,

0 〈r〉Bj1
0 〈r〉Bj2
〈r〉Aj3 0

〈r〉Aj4 0

+/////
-

(
~c A
m

~c B
m

)
. (A.10)

In this modi�ed generalized eigenvalue problem, the ”un��ing” of the system’s solution is balanced out
between all split monitors, and threfore no systematic increase or decrease along s in monitor vectors is
expected.

We conclude by stating that we can solve the one-turn transfer matrix problem directly without the
intermediate step of computing segment transfer matrices. With PCA, the complete analysis routine
simpli�es to the following procedure.
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• Obtain monitor and corrector subsets JA,B,KA,B from split indices j1 – j4 and topology,

• perform PCA on the two ”blocks” of the general response matrix corresponding to these sets,

• solve the modi�ed generalized eigenvalue problem (A.10),

• reconstruct all monitor vectors ~Rjm by (A.8) and (A.9) and

• use the corrector equation system to solve for all Dkm.

• If a known segment is given, use the invariant postprocessing algorithm to obtain R̂jm.

A sketch of this algorithm is given as algorithm A.4.

A.3.4. Construction of the bilinear system

One may display (4.1) in the following form for M = 2.

r jkw =
∑

m

<
{
Rjmwe−iS jkµm/2 A∗km

}
+ d jwbk

= <
{
~y†jwEjk~xk

}
with ~xk =

*..
,

Ak1

Ak2

bk

+//
-
, ~yjw =

*..
,

Rj1w

Rj2w

d jw

+//
-

and Ejk =
*..
,

eiS jkµ1/2

eiS jkµ2/2

1

+//
-
.

�is system can be expanded with zeros to

r jkw = <
{
~y†Bjkw~x

}
with ~x =

*..
,

~x1
...

~xK

+//
-
, ~y =

*...........
,

~y11
...

~yJ1

~y12
...

~yJ2

+///////////
-

,

and Bjkw just containing one Ejk block at the position which corresponds to the rows for ~yjw and the
columns for ~xk elements.
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A.4. Accelerator properties

A.4.1. Topology for Towalski correctors

Towalski correctors (sec. 8.1) have been installed in the DELTA storage ring for the purpose of fast
orbit feedback. �e criteria for their positioning along the ring and further design studies and general
construction information can be found in [66].

�ey are identi�ed by labels with pre�xes shk for horizontal and svk for vertical correctors. �e following
list shows the labels identifying correctors in relation to the monitors with the pre�x BPM for increasing
s position, starting from s = 0.

BPM01, svk01 , shk01 , BPM02, BPM03, svk02 , shk02 , BPM04, BPM05, BPM06, BPM07, BPM08,
BPM09, svk03 , shk03 , BPM10, BPM11, svk04 , shk04 , svk06 , shk05 , BPM12, BPM13, svk08 ,
shk06 , BPM14, BPM15, BPM16, BPM17, BPM18, BPM19, svk10 , shk08 , BPM20, BPM21, svk11 ,
shk09 , BPM22, BPM23, BPM24, BPM25, BPM26, BPM27, BPM28, BPM29, BPM30, BPM31, BPM32,
BPM33, BPM34, BPM35, BPM36, shk10 , svk12 , BPM37, BPM38, svk14 , shk12 , svk14b , shk12b ,
BPM39, BPM40, BPM41, BPM42, svk16 , shk14 , BPM43, svk17 , shk15 , BPM44, BPM45, shk16 ,
svk18 , BPM46, svk19 , shk17 , BPM47, BPM48, svk20 , shk18 , BPM49, BPM50, svk21 , shk19 ,
BPM51, BPM52, BPM53, BPM54

�e topology matrix constructed from this list is shown in Fig. A.5. �e correctors are controlled by six
power supplies that can be interfaced using TCP/IP communication [67, 68, 66].
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Figure A.5.: Topology matrix for Towalski correctors. Blue indicates Sjk = −1, green indicates Sjk = +1.
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HK01
HK04
HK07
HK10
HK13
HK16
HK19
HK22
HK25
HK28
VK01
VK04
VK07
VK10
VK13
VK16
VK19
VK22
VK25

Figure A.6.: Topology matrix for DELTA standard correctors. �e rows are sorted into blocks for hori-
zontal respectively vertical correctors. Blue indicates Sjk = −1, green indicates Sjk = +1.

A.4.2. Topology for DELTA standard correctors

DELTA standard correctors are realized as additional coil windings on quadrupole magnets that can be
controlled separately. Although this is o�en su�cient for beam steering, the change of corrector currents
induces changes in higher-order multipole components of the magnet, as the magnet yoke is designed
for quadrupole �elds only.

�ey are identi�ed by labels with pre�xes HK for horizontal and VK for vertical correctors. �e following
list shows the labels identifying correctors in relation to the monitors with the pre�x BPM for increasing
s position, starting from s = 0.
HK01 , BPM01, VK01 , BPM02, BPM03, VK02 , HK02 , VK03 , BPM04, BPM05, HK03 , VK04 ,
BPM06, BPM07, HK04 , BPM08, BPM09, VK05 , HK05 , BPM10, BPM11, HK06 , BPM12, VK06 ,
BPM13, HK07 , HK08 , VK07 , BPM14, BPM15, VK08 , HK09 , HK10 , BPM16, VK09 , BPM17,
HK11 , BPM18, BPM19, HK12 , VK10 , BPM20, BPM21, HK13 , BPM22, BPM23, VK11 , HK14 ,
BPM24, BPM25, VK12 , HK15 , VK13 , BPM26, BPM27, HK16 , BPM28, VK14 , BPM29, BPM30,
VK15 , HK17 , VK16 , BPM31, BPM32, HK18 , VK17 , BPM33, BPM34, HK19 , BPM35, BPM36,
VK18 , HK20 , BPM37, HK21 , VK19 , BPM38, BPM39, HK22 , BPM40, BPM41, VK20 , HK23 ,
BPM42, HK24 , BPM43, VK21 , BPM44, HK25 , VK22 , BPM45, HK26 , BPM46, HK27 , VK23 ,
BPM47, BPM48, HK28 , BPM49, BPM50, VK24 , HK29 , BPM51, BPM52, VK25 , HK30 , VK26 ,
BPM53, BPM54

�e topology matrix constructed from this list is shown in Fig. A.6. Note that only the relative ordering
of HK,VK to BPM (and not HK to HK, VK to VK, HK to VK) is relevant.
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A.4.3. DELTA standard responses (RID)

�e following tables show the mapping between Response ID (RID) numbers and standard response ma-
trix �le names as stored in the DELTA control system. Further information about the recorded response
matrices can be found in DELTA’s electronic logbook [64].

RID �le name

1 response.060331-1
2 response.060331-2
3 response.060427-550MeV-1
4 response.060515-1
5 response.060921-NeueOptik-1
6 response.060925-1-Nullorbit
7 response.060928-1
8 response.061013-test
9 response.061016-1

10 response.061128-NeueOptik7
11 response.061128-NeueOptik8
12 response.061201-1
13 response.070108-1
14 response.070109-1
15 response.070110-1
16 response.070110-2-550MeV-2ns
17 response.070205-1
18 response.070206-550MeV-1.bak
19 response.070206-550MeV-1
20 response.070207-1-550MeV
21 response.070319-1
22 response.070319-2
23 response.070320-1
24 response.070320-2
25 response.070502-1
26 response.070504-1
27 response.070525-1
28 response.070625-1
29 response.070731-1
30 response.070801-1
31 response.070802-550MeV-linear-1
32 response.070802-551
33 response.070802-FEL-null
34 response.070803-1
35 response.070807-1
36 response.070814-1
37 response.070827-1
38 response.070903-1
39 response.071008-1
40 response.071030-1
41 response.071116-1
42 response.071130-1
43 response.080128-1

RID �le name

44 response.080225-1_ohneSAW
45 response.080227-550MeV-1
46 response.080505-1
47 response.080529-1
48 response.080602-1
49 response.080806-1
50 response.081013-1
51 response.081027-1
52 response.081124-1_ohne_SAW
53 response.081124-2-AP
54 response.081125-550MeV
55 response.081125-551_550MeV
56 response.081127-1
57 response.081127-2-550MeV
58 response.081128-1
59 response.090216-1-nullorbit
60 response.090216-1-nullorbit2
61 response.090216-2-nullorbit
62 response.090216-3-nullorbit
63 response.090217-nullorbit-1
64 response.090217-nullorbit-2
65 response.090422-flat-SAW-an-DC-aus
66 response.090511-1
67 response.090812-1
68 response.090821-1
69 response.090914-1
70 response.090915-1
71 response.091022-1
72 response.100202-1
73 response.100202-2
74 response.100325-1
75 response.100415-FEL-1
76 response.100429-1
77 response.100527-1
78 response.100608-1
79 response.100608-2
80 response.100610-1
81 response.100614-1
82 response.100621-1
83 response.100707-1
84 response.100707-2
85 response.100708-1
86 response.100720-1
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RID �le name

87 response.100830-1
88 response.100831-1
89 response.101018-1
90 response.101110-nullorbit
91 response.101129-nullorbit
92 response.101130-1
93 response.101130-neueoptik
94 response.101201-1
95 response.101201-neueoptik-1
96 response.101203-1
97 response.110131-1
98 response.110201-1
99 response.110221-1

100 response.110304-1
101 response.110323-1
102 response.110324-Nullorbit
103 response.110506-1-BBC
104 response.110506-1
105 response.110509-1
106 response.110511-1
107 response.110705-1
108 response.110909-2
109 response.111108-1
110 response.111202-1-SAW
111 response.111205-1
112 response.120109-1
113 response.120109-2
114 response.120116-1
115 response.120117-1
116 response.120118-1
117 response.120120-1
118 response.120215-1
119 response.120216-1
120 response.120523-1
121 response.120612-1
122 response.120613-1
123 response.120814-1
124 response.120814-2
125 response.120815-1
126 response.120815-2
127 response.120817-1-donotuse
128 response.120817-2
129 response.120831-1

RID �le name

130 response.120831-2-ohneSAW
131 response.120831-Nullorbit-0.6Sext
132 response.120910-1
133 response.120913-1-Nullorbit
134 response.120914-1
135 response.130204-1-ohneSAW
136 response.130604-1-SB-9mA
137 response.130604-2-SB-16mA-ohneSAW
138 response.130710-1
139 response.131104-1
140 response.131128_SAW_Nullorbit-1
141 response.140106-1
142 response.140106-Nullorbit
143 response.140116-1
144 response.140314-1
145 response.140318-1
146 response.140328-1
147 response.140505-SAW-AN-1
148 response.140818-1
149 response.140821-1
150 response.140923-1
151 response.140924-1
152 response.140924-2
153 response.140924-3
154 response.140924-4
155 response.140930-1
156 response.141007-1
157 response.141007-2
158 response.141110-1
159 response.141208-1
160 response.150105-1
161 response.150121-alternative-optik-bolsinger
162 response.150202-1
163 response.150204-1
164 response.150205_mitSAW-1
165 response.150205_mitSAW-2
166 response.150317-1_550MeV_below
167 response.150318-550MeV-1
168 response.150318-550MeV-standart
169 response.150519-1_550MeV_AP15
170 response.151013-1
171 response.151103-1
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A.4.4. MLS input data

MLS correctors are identi�ed by labels with pre�xes HS for horizontal and VS for vertical correctors. �is
data has been generously provided by [75]. �e respective monitor and corrector lists, which were also
sent, can be reconstructed by taking all respective elements of the list, without rearranging them.

�e following list shows the labels identifying horizontal correctors in relation to the monitors with the
pre�x BPMZ for increasing s position, starting from s = 0.
BPM Z5K1RP , HS3M2K1RP , BPM Z6K1RP , BPM Z7K1RP , HS1M2K1RP , BPM Z1L2RP , BPM Z2L2RP ,
BPM Z3L2RP , HS3M1L2RP , BPM Z4L2RP , BPM Z5L2RP , HS3M2L2RP , BPM Z6L2RP , BPM Z7L2RP ,
BPM Z1K3RP , HS1M1K3RP , BPM Z2K3RP , BPM Z3K3RP , HS3M1K3RP , BPM Z4K3RP , BPM Z5K3RP ,
HS3M2K3RP , BPM Z6K3RP , BPM Z7K3RP , HS1M2K3RP , BPM Z1L4RP , BPM Z2L4RP , BPM Z3L4RP ,
HS3M1L4RP , BPM Z4L4RP , BPM Z5L4RP , HS3M2L4RP , BPM Z6L4RP , BPM Z7L4RP , BPM Z1K1RP ,
HS1M1K1RP , BPM Z2K1RP , BPM Z3K1RP , HS3M1K1RP , BPM Z4K1RP

�e following list shows the labels identifying vertical correctors in relation to the monitors for increasing
s position, starting from s = 0.
BPM Z5K1RP , VS3M2K1RP , BPM Z6K1RP , VS2M2K1RP , BPM Z7K1RP , BPM Z1L2RP , VS2M1L2RP ,
BPM Z2L2RP , BPM Z3L2RP , VS3M1L2RP , BPM Z4L2RP , BPM Z5L2RP , VS3M2L2RP , BPM Z6L2RP ,
VS2M2L2RP , BPM Z7L2RP , BPM Z1K3RP , VS2M1K3RP , BPM Z2K3RP , BPM Z3K3RP , VS3M1K3RP ,
BPM Z4K3RP , BPM Z5K3RP , VS3M2K3RP , BPM Z6K3RP , VS2M2K3RP , BPM Z7K3RP , BPM Z1L4RP ,
VS2M1L4RP , BPM Z2L4RP , BPM Z3L4RP , VS3M1L4RP , BPM Z4L4RP , BPM Z5L4RP , VS3M2L4RP ,
BPM Z6L4RP , VS2M2L4RP , BPM Z7L4RP , BPM Z1K1RP , VS2M1K1RP , BPM Z2K1RP , BPM Z3K1RP ,
VS3M1K1RP , BPM Z4K1RP

�e full topology matrix for MLS constructed from these lists is shown in Fig. 9.2.

A.4.5. BESSY II input data

BESSY II correctors are identi�ed by labels with pre�xes HS, HBM for horizontal and VS for vertical correc-
tors. �is data has been generously provided by [75]. �e respective monitor and corrector lists, which
were also sent, can be reconstructed by taking all respective elements of the list, without rearranging
them.

�e following list shows the labels identifying horizontal correctors in relation to the monitors with the
pre�x BPMZ for increasing s position, starting from s = 0.
HS4M2D1R , BPM Z6D1R, HBM2D1R , BPM Z7D1R, HS1MT1R , BPM Z1T1R, BPM Z2T1R, HBM1T1R ,
BPM Z3T1R, HS4M1T1R , BPM Z4T1R, BPM Z5T1R, HS4M2T1R , BPM Z6T1R, HBM2T1R , BPM Z7T1R,
HS1MD2R , BPM Z1D2R, BPM Z2D2R, HBM1D2R , BPM Z3D2R, HS4M1D2R , BPM Z4D2R, BPM Z5D2R,
HS4M2D2R , BPM Z6D2R, HBM2D2R , BPM Z7D2R, HS1MT2R , BPM Z1T2R, BPM Z2T2R, HBM1T2R ,
BPM Z3T2R, HS4M1T2R , BPM Z4T2R, BPM Z5T2R, HS4M2T2R , BPM Z6T2R, HBM2T2R , BPM Z7T2R,
HS1MD3R , BPM Z1D3R, BPM Z2D3R, HBM1D3R , BPM Z3D3R, HS4M1D3R , BPM Z4D3R, BPM Z5D3R,
HS4M2D3R , BPM Z6D3R, HBM2D3R , BPM Z7D3R, HS1MT3R , BPM Z1T3R, HBM1T3R , BPM Z3T3R,
HS4M1T3R , BPM Z4T3R, BPM Z5T3R, HS4M2T3R , BPM Z6T3R, HBM2T3R , BPM Z7T3R, HS1MD4R ,
BPM Z1D4R, BPM Z2D4R, HBM1D4R , BPM Z3D4R, HS4M1D4R , BPM Z4D4R, BPM Z5D4R, HS4M2D4R ,
BPM Z6D4R, HBM2D4R , HS1MT4R , BPM Z1T4R, BPM Z2T4R, HBM1T4R , BPM Z3T4R, HS4M1T4R ,
BPM Z4T4R, BPM Z5T4R, HS4M2T4R , BPM Z6T4R, HBM2T4R , BPM Z7T4R, HS1MD5R , BPM Z1D5R,
BPM Z2D5R, HBM1D5R , BPM Z3D5R, HS4M1D5R , BPM Z4D5R, BPM Z5D5R, HS4M2D5R , BPM Z6D5R,
HBM2D5R , BPM Z7D5R, HS1MT5R , BPM Z1T5R, BPM Z2T5R, HBM1T5R , BPM Z3T5R, HS4M1T5R ,
BPM Z4T5R, BPM Z5T5R, HS4M2T5R , BPM Z6T5R, HBM2T5R , BPM Z7T5R, HS1MD6R , BPM Z1D6R,
BPM Z2D6R, HBM1D6R , BPM Z3D6R, HS4M1D6R , BPM Z4D6R, HS4M2D6R , BPM Z6D6R, HBM2D6R ,
BPM Z7D6R, HS1MT6R , BPM Z1T6R, BPM Z2T6R, HBM1T6R , BPM Z3T6R, HS4M1T6R , BPM Z4T6R,
BPM Z5T6R, HS4M2T6R , BPM Z6T6R, HBM2T6R , BPM Z7T6R, HS1MD7R , BPM Z1D7R, BPM Z2D7R,
HBM1D7R , BPM Z3D7R, HS4M1D7R , BPM Z4D7R, BPM Z5D7R, HS4M2D7R , BPM Z6D7R, HBM2D7R ,
BPM Z7D7R, HS1MT7R , BPM Z1T7R, BPM Z2T7R, HBM1T7R , BPM Z3T7R, HS4M1T7R , BPM Z4T7R,
BPM Z5T7R, HS4M2T7R , BPM Z6T7R, HBM2T7R , BPM Z7T7R, HS1MD8R , BPM Z1D8R, BPM Z2D8R,
HBM1D8R , BPM Z3D8R, HS4M1D8R , BPM Z4D8R, BPM Z5D8R, HS4M2D8R , BPM Z6D8R, HBM2D8R ,
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BPM Z7D8R, HS1MT8R , BPM Z1T8R, BPM Z2T8R, HBM1T8R , BPM Z3T8R, HS4M1T8R , BPM Z4T8R,
BPM Z5T8R, HS4M2T8R , BPM Z6T8R, HBM2T8R , BPM Z7T8R, HS1MD1R , BPM Z1D1R, BPM Z2D1R,
HBM1D1R , BPM Z3D1R, HS4M1D1R , BPM Z4D1R

�e following list shows the labels identifying vertical correctors in relation to the monitors for increasing
s position, starting from s = 0.
VS3M2D1R , BPM Z6D1R, BPM Z7D1R, VS2M2D1R , BPM Z1T1R, VS2M1T1R , BPM Z2T1R, BPM Z3T1R,
VS3M1T1R , BPM Z4T1R, BPM Z5T1R, VS3M2T1R , BPM Z6T1R, BPM Z7T1R, VS2M2T1R , BPM Z1D2R,
VS2M1D2R , BPM Z2D2R, BPM Z3D2R, VS3M1D2R , BPM Z4D2R, BPM Z5D2R, VS3M2D2R , BPM Z6D2R,
BPM Z7D2R, VS2M2D2R , BPM Z1T2R, VS2M1T2R , BPM Z2T2R, BPM Z3T2R, VS3M1T2R , BPM Z4T2R,
BPM Z5T2R, VS3M2T2R , BPM Z6T2R, BPM Z7T2R, VS2M2T2R , BPM Z1D3R, VS2M1D3R , BPM Z2D3R,
BPM Z3D3R, VS3M1D3R , BPM Z4D3R, BPM Z5D3R, VS3M2D3R , BPM Z6D3R, BPM Z7D3R, VS2M2D3R ,
BPM Z1T3R, VS2M1T3R , BPM Z3T3R, VS3M1T3R , BPM Z4T3R, BPM Z5T3R, VS3M2T3R , BPM Z6T3R,
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Figure A.7.: Topology matrix for BESSY II. �e rows are sorted into blocks for horizontal respectively
vertical correctors. Blue indicates Sjk = −1, green indicates Sjk = +1.
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A.4. Accelerator properties

BPM Z7T3R, VS2M2T3R , BPM Z1D4R, VS2M1D4R , BPM Z2D4R, BPM Z3D4R, VS3M1D4R , BPM Z4D4R,
BPM Z5D4R, VS3M2D4R , BPM Z6D4R, VS2M2D4R , BPM Z1T4R, VS2M1T4R , BPM Z2T4R, BPM Z3T4R,
VS3M1T4R , BPM Z4T4R, BPM Z5T4R, VS3M2T4R , BPM Z6T4R, BPM Z7T4R, VS2M2T4R , BPM Z1D5R,
VS2M1D5R , BPM Z2D5R, BPM Z3D5R, VS3M1D5R , BPM Z4D5R, BPM Z5D5R, VS3M2D5R , BPM Z6D5R,
BPM Z7D5R, VS2M2D5R , BPM Z1T5R, VS2M1T5R , BPM Z2T5R, BPM Z3T5R, VS3M1T5R , BPM Z4T5R,
BPM Z5T5R, VS3M2T5R , BPM Z6T5R, BPM Z7T5R, VS2M2T5R , BPM Z1D6R, VS2M1D6R , BPM Z2D6R,
BPM Z3D6R, VS3M1D6R , BPM Z4D6R, VS3M2D6R , BPM Z6D6R, BPM Z7D6R, VS2M2D6R , BPM Z1T6R,
VS2M1T6R , BPM Z2T6R, BPM Z3T6R, VS3M1T6R , BPM Z4T6R, BPM Z5T6R, VS3M2T6R , BPM Z6T6R,
BPM Z7T6R, VS2M2T6R , BPM Z1D7R, VS2M1D7R , BPM Z2D7R, BPM Z3D7R, VS3M1D7R , BPM Z4D7R,
BPM Z5D7R, VS3M2D7R , BPM Z6D7R, BPM Z7D7R, VS2M2D7R , BPM Z1T7R, VS2M1T7R , BPM Z2T7R,
BPM Z3T7R, VS3M1T7R , BPM Z4T7R, BPM Z5T7R, VS3M2T7R , BPM Z6T7R, BPM Z7T7R, VS2M2T7R ,
BPM Z1D8R, VS2M1D8R , BPM Z2D8R, BPM Z3D8R, VS3M1D8R , BPM Z4D8R, BPM Z5D8R, VS3M2D8R ,
BPM Z6D8R, BPM Z7D8R, VS2M2D8R , BPM Z1T8R, VS2M1T8R , BPM Z2T8R, BPM Z3T8R, VS3M1T8R ,
BPM Z4T8R, BPM Z5T8R, VS3M2T8R , BPM Z6T8R, BPM Z7T8R, VS2M2T8R , BPM Z1D1R, VS2M1D1R ,
BPM Z2D1R, BPM Z3D1R, VS3M1D1R , BPM Z4D1R

�e topology matrix constructed from these lists is shown in Fig. A.7.
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