Logics on Data Words
Expressivity, Satisfiability, Model Checking

Dissertation

zur Erlangung des Grades eines
DOKTORS DER NATURWISSENSCHAFTEN

der Universitat Dortmund
am Fachbereich Informatik
von

Ahmet Kara

Dortmund

2016

Tag der miindlichen Priifung: 12.9.2016
Dekan: Prof. Dr.-Ing. Gernot Fink

Gutachter: Prof. Dr. Thomas Schwentick
Dr. Benedikt Bollig

Preface

I am very grateful to my supervisor Prof. Dr. Thomas Schwentick for all his support and ad-
vises during my time as a research associate at the computer science department of the Technical
University in Dortmund and during the preparation of this work. As an assistant of his lectures,
I experienced personal development and learned how to present and illustrate formal contents.
Moreover, he teached me what it means to integrate problems from the area of theoretical com-
puter science into a wider scientific context and to work technically precise when solving these
problems.

In addition, I acknowledge the financial support of the German Research Foundation (DFG)
under grants SCHW 678/4-1 and SCHW 678/4-2. T also thank Meral Sayan very much for proof-
reading this work. Finally, I thank my family for all their support during my time as a PhD
student.

When I started my work at the university, the original plan was that I would work with Volker
Weber on a project on non-classical logics on structures with data values. Volker Weber had been,
besides Thomas Schwentick, one of the supervisors of my diploma thesis. With him I had my
first discussions on data logics. Unfortunately, he died shortly after I had started working at the
university. This work is dedicated to his memory.

Dortmund, March 2016 Ahmet Kara

II

Contents

1 Introduction

2 An Example Scenario: Server and Clients

A Preliminaries

3 Basics

3.1
3.2

Notational Conventions e
Some Tools e
3.2.1 Two-Way Alternating Automata
3.2.2 Counter Machines e
3.2.3 Well-Structured Transition Systems
3.2.4 Transducers and the Transduction Problem
3.2.5 Post’s Correspondence Problem o000

4 Data Words, their Automata and Logics

4.1
4.2

4.3

Data Words L
Automata for Data Words
4.2.1 Register Automata Lo
4.2.2 Data Automata
4.2.3 Further Automata Models L
Logics for Data Words L
4.3.1 First Order Logic o
4.3.2 Temporal Logic L
4.3.3 Logics based on Regular Expressions
4.3.4 Further Logics

B New Insights on Data Logics

5 Motivating Questions on Data Logics

6 Navigation along Data Values

6.1
6.2
6.3
6.4
6.5

Basic Data Navigation Logic
Decidability of Basic Data Navigation Logic
Basic Data Navigation Logic on Infinite Data Words
Undecidable Extensions of Basic Data Navigation Logic
Decidable Extensions of Basic Data Navigation Logic.

III

13
13
14
14
16
17
18
18

21
21
23
23
25
27
29
30
32
33
35

6.6 Expressivity of Data Navigation Logic
6.7 Discussion

7 The Power of Storing Positions

7.1 Hybrid Temporal Logic on Data Words
7.2 Hybrid Temporal Logic vs. Freeze LTL o ...
7.2.1 Expressivityo

7.2.1.1 Multiple Variables o

7.2.1.2 Ome Variable

7.2.2 SuccInCtnesSs e e

7.3 Hierarchy Results o
7.4 DIsCUSSION o L o e e

8 Automata for Two-Variable Logic

8.1 Weak Data Automata
8.2 Expressivity of Weak Data Automata

8.2.1 Comparison with other Automata Models

8.2.2 Logical Characterization L
8.3 Complexity of Weak Data Automata
8.4 Weak Data Automata on Infinite Data Words
8.5 Discussion e e e

C Models and Model Checking
9 From Finite-State towards Infinite-State Model Checking - A Brief Review
10 Motivating Questions on System Models and Model Checking

11 Three Models - Three Views

11.1 Notational Conventions
11.2 Dynamic Communicating Automata oL
11.2.1 Non-Emptiness o e
11.2.2 State Reachability
11.2.2.1 Dynamic Communicating Automata with Buffers

11.3 Process Register Automata oo Lo
11.3.1 Non-Emptiness o e

11.4 Branching High-Level Message Sequence Charts
11.4.1 Non-Emptiness e
11.4.2 Executability e

11.5 Discussion oL L e

12 New Results on Model Checking
12.1 Model Checking of Dynamic Communicating Automata
12.1.1 Model Checking with Restricted Basic Data LTL
12.1.2 Model Checking with Freeze LTL
12.2 Model Checking of Process Register Automata
12.2.1 Model Checking with Freeze LTL
12.2.2 Model Checking with Hybrid Temporal Logic
12.3 Model Checking of Branching High-Level MSCs
12.3.1 MSC Navigation Logic

75
76
76
76
76
85
88
90
93

95
96
97
97
99
106
108
109

111
115
119

123
123
124
129
133
141
142
146
148
158
159
167

12.3.2 Model Checking with MSC Navigation Logic

12.4 DISCUSSION . .« v v v v i e e e e e e e e e e e e

13 The Journey of Data Logics - A Glance into the Future

Acronyms

Appendix A Full Synax and Semantics of introduced Logics

Al
A2
A3
A4
A5
A6
AT
A8
A9

First Order Logic on Data Words (FO™)
Freeze LTL (LTLY) o . e e
Regular Expressions with Memory (REM)
Two-Way Path Logic (PathLog) it
Constraint Logic (CLTLXF)
Logic of Repeating Values (LRV) o
Basic Data Navigation Logic (B-DNL)
Hybrid Temporal Logic on Data Words (HTL™)
MSC Navigation Logic (MNL)

VI

Chapter 1

Introduction

As a sub-area of formal system verification, model checking deals with the development of formal
models describing software and hardware systems and the design of algorithms testing wether a
given model meets its specification [69]. Finite-state model checking constitutes in this context a
well-established field of research with useful results applied in practice. A successful approach in
finite-state model checking is to model a software or hardware system by a transition system with
finitely many states and to use logics for the formulation of requirements expected from the system.
The states of a transition system are usually equipped with propositions from a finite domain
that are representing relevant system properties in corresponding states. Each path in a transition
system is associated with a sequential structure called trace which is labelled by propositions and
describes changing informations about the modeled system during a single execution. A widely
accepted logic for the specification of system requirements is Linear-Time Temporal Logic (LTL)
which allows to express properties on words with labels from finite domains. Given a transition
system and a formula specifying a system requirement, a classical task in finite-state model checking
is to decide whether the formula is satisfied on all traces of the transition system. Finite-state model
checking with LTL-like logics is a well-studied field with good complexity results which have led
to successful practical applications, especially in the verification of sequential circuit design and
communication protocols [69, 91, 30].

Finite-state models, however, do not always suffice for the adequate description and verification
of software and hardware. Systems exceeding the capabilities of this kind of models are, for instance,
those in which time aspects play a major role or which operate on variables with an infinite range
of possible values. Further example domains are mobile computing and ad-hoc networks in which
the number of participating actors is not know in advance, but changes dynamically during system
executions. Obviously, infinite-state models are harder to analyze and most of the model checking
techniques from the finite-state setting do not extend to the infinite case. Nevertheless, the literature
proposes some frameworks like Regular Model Checking [201, 133] and Well-Structured Transition
Systems [5, 98] to deal with infinite-state models. The questions addressed in these frameworks
are mainly safety problems which are solved by computing a representation of all reachable system
states. There are also attempts to adopt the classical approach of finite-state model checking with
logics to the infinite case [61, 20, 99]. However, in contrast to the finite case, there are neither
standardized system models, nor standardized specification languages for the infinite case.

In recent years, a lot of effort has been devoted to the design and analysis of logics and automata
on so-called data words and data trees, i.e., words and trees labelled by data values from infinite
domains [82, 43, 40, 95]. These works are mainly motivated by the static analysis of semi-structured
data in the area of XML and the verification of systems involving unboundedly many concurrent
processes. Indeed, XML-trees can be modeled by data trees in which data values represent attribute

Chapter 1. Introduction

values or text nodes. Furthermore, traces of systems where the main source of infinity is the
unboundedness of interacting processes can be represented by data words where data values stand
for process IDs. Hence, logics on data words, called data logics in this work, appear as reasonable
formalisms which can be used as specification languages in the model checking of systems with
unboundedly many processes. However, besides some exceptions [85, 45, 110], the most considered
problem for data logics is the satisfiability problem until now, but not the model checking problem.
One possible reason for this might be that, in contrast to formalisms on classical words and trees
with propositions, formalisms on data words have bad computational properties. For instance, while
the satisfiability problem for First-Order Logic on classical words is decidable, the extension of this
logic by an equality relation on data values is undecidable on data words. Undecidability even
holds if only three position variables are allowed. Decidability is obtained in case of two position
variables [43]. Hence, in the first instance, the aim was to find expressive, but decidable logics and
automata. A further reason for the neglect of model checking with data logics could be, as stated
above, the lack of a common system model which can be used in the framework of model checking.

Our main objectives in this work are the continuation of the current research on the expressivity
and complexity of logics and automata on data words, the analysis of models for concurrent systems
with unboundedly many processes and the study of the model checking problem for these models
in combination with data logics. We describe the three directions in our work in more detail:

Study of logics and automata on data words. We design and analyze logics and automata
on data words. We restrict to formalisms where the only predicate on data values is the equality
relation. Results in the literature indicate that even in this case it is quite hard to find expressive
formalisms with good computational properties. Besides the expressive power of the designed logics
and automata, we are interested in the complexity of their satisfiability and non-emptiness problem,
respectively. One of our particular aims in this part is the design of an expressive and decidable data
logic suitable for the usage in the framework of model checking for concurrent systems. Furthermore,
we study cases in which logics, which are expressively equivalent on classical words, disagree on
data words. Finally, we gain new insights into the correspondence between logics and automata
on data words.

Study of models for concurrent systems with unboundedly many processes. As stated
above, there is a lack of standardized infinite-state models in the literature. After a review of existing
models, we focus on three models suited for the design of concurrent systems with unboundedly
many processes. Each model provides a different view on the modeled systems. As a first step
towards model checking, we analyze the computational properties of these models with respect to
common decision problems like non-emptiness and reachability.

Study of model checking with data logics. We investigate the complexity of the model checking
of the three system models, mentioned above, with respect to different data logics and compare
our results to the complexities of the satisfiability and non-emptiness problem of the corresponding
system models and logics. Our results in this part are non-exhaustive and there is no claim to
completeness. As a matter of fact, they function as first insights and provide a basis for further
research on model checking with data logics.

We already mentioned some basic works related to the investigated topics. Further references
are given in corresponding chapters.

Structure of the work
In Chapter 2, we present an exemplary concurrent system to which we refer in subsequent chapters

in order to demonstrate the expressivity of introduced logics and system models.
Part A equips the reader with some background informations. Chapter 3 presents, besides basic

notions and notations, some frameworks and decision problems which are used as auxiliary tools in
the proofs of this work. Chapter 4 contains the definition of data words and an overview of known
automata and logics on these structures along with a summary of basic results on expressivity and
complexity.

Part B contains our new results on the expressivity and complexity of logics and automata on
data words. It starts with some motivating questions in Chapter 5 which are arising from known
results presented in Chapter 4. In the remaining chapters of this part, namely Chapters 6-8, we
address these questions and work out our solutions.

Part C is devoted to models for concurrent systems with unboundedly many processes and our
results on these models. We first give in Chapter 9 a short survey on existing models and model
checking techniques for finite- and infinite-state systems. Then, we concentrate on three models and
formulate some open questions on them in Chapter 10. These questions relate, on the one hand, to
basic decision problems for these models and, on the other hand, to their computational behaviour
with regard to model checking with data logics. The questions of the first kind are tackled in
Chapter 11 and those of the second kind in Chapter 12.

Each chapter containing our new results, i.e., Chapters 6-8, 11 and 12, close with a section in
which we discuss the outcomes, summarize questions left open and explain in which extent the
presented results were already published in our previous papers. A glance into the future of the
research on data logics is given in Chapter 13.

In the main parts of this work we usually explain the semantics of introduced logics only at an
informal level. Precise definitions of semantics can be found in Appendix A.

Chapter 1. Introduction

Chapter 2

An Example Scenario: Server and
Clients

server

()1

client client client

Figure 2.1: Communicating server and clients

In this chapter, we will describe a concurrent system with unboundedly many processes and model
its behaviour at an informal level. Our main purpose is to introduce an exemplary system along
with some of its basic properties to which we can refer when we demonstrate the expressive power
of new logics and system models throughout this work.

We assume that the system we are going to describe realizes some communication protocol
between a server process and unboundedly many client processes. We will not give the details of
the protocol, nor will we propose a concrete (automata) model implementing the system, we will
rather focus on the questions how communication between processes is established and how the
network of processes evolves over time. Furthermore, we will discuss how the traces of the system,
i.e., sequences of relevant system informations evolving during system executions, can look like and
how they can be adequately represented by mathematical structures. Finally, we will state some
requirements which are usually expected to hold on traces and translate them into properties on
the mathematical structures.

These structures which will be described only very briefly in this chapter, will be specified more
formally in subsequent chapters and will be called data words. They build the basic structures on
which formulas of data logics are evaluated. Whenever a new data logic will be introduced, we will
discuss how far the properties listed at the end of this chapter can be formulated with them.

Chapter 2. An Example Scenario: Server and Clients

A communication protocol

We assume that the protocol realized by the system requires that there is initially only a unique root
process. This process creates a server and unboundedly many client processes. Moreover, it informs
the clients how they can reach the server. Having been informed about the server access, the clients
can send requests to the server and receive corresponding acknowledgements. The communication
between the processes is rendezvous-based, i.e., messages are not stored in intermediate buffers,
but are delivered without any delay from sender to receiver. This means that in order to carry
out a sending, the execution of a send action of some process must be paired with a simultaneous
receive action of some other process. This type of communication, also called handshaking, is well-
known and used in many models of communicating concurrent systems in the literature (see, e.g.,
[30, 2, 77]).

An implementation model

We assume that the model implementing the protocol provides a unique ID for every process in the
system. Such an assumption is very common in models implementing systems with unboundedly
many processes (see, e.g., [46, 45]). Each process can create new processes, send informations to
other processes and receive informations from them. A process can send a single message from a
finite alphabet or a tuple consisting of a message and a process ID known by the sender. The set
of IDs known by a process p consists of its own ID, the IDs of the processes created by p and all
IDs sent to p. The only processes to which process p can send informations are those whose IDs
are known by p. We do not make any assumptions regarding the question how a process stores the
received informations internally.

By means of such a model, the protocol described above is implemented as follows: The root
process creating the server and the clients sends to each client the ID of the server along with the
message serv. In this way, the clients get enabled to access the server. Each client which is sending
some request to the server is sending its ID, too. Using these IDs the server is able to respond
to the corresponding clients. In Figure 2.1, we see a network where the root process has already
created three processes besides the server process. An edge from one to another process symbolizes
that the first one knows the ID of the latter one. Observe that in the depicted situation the ID of
one client is not yet known by the server.

A trace of the system is modeled by a sequence of actions executed by (pairs of) processes. Even
though processes act in parallel and may execute concurrent actions, within the trace representation
the actions are put into a strict linear order where the order between concurrent actions is chosen
non-deterministically. Such an interleaving of concurrent actions is a widely-accepted paradigm in
models for parallel systems (see e.g., [30]). This approach assumes that there is only one processor
on which actions are executed. Within a sequence modeling a trace, a create action is represented
by a position which contains the IDs of the creating and created processes and the information that
it is a create action. Similarly, a send action is modeled by a position which contains not only the
information that it is a sending, but also the IDs of the sender and the receiver and possibly the
sent process ID.

A mathematical representation for system traces

We represent a system trace mathematically as a word (of possibly infinite length) where each
position stands for a position in the trace. The word is defined over a finite set Prop of proposi-
tions and a finite set Att of attributes. Each position can carry some propositions and, for each
attribute, some value from an infinite domain. We use propositions to represent action names
and messages. Attribute values serve as process IDs. For the sake of simplicity, let the mes-
sage set contain a message symbol serv notifying that the server ID is sent, a request symbol

req and an acknowledgement symbol ack. Hence, we set Prop = {serv,req,ack} U {crt,snd}
where crt and snd stand for create and send actions, respectively. Moreover, we define Att =
{creator, created, sender, receiver, sentId} and use natural numbers as process IDs. Figure
2.2 depicts a word representation of a trace where the root process with ID 1 creates a server pro-
cess with ID 2 and three client processes with IDs 3, 4 and 5. To each of the clients it sends the ID

snd snd snd snd snd snd snd snd snd
crt crt crt crt

serv serv = req req serv ack ack req ack
creator 1 1 1
created 2 3 4 5
sender 1 1 4 3 1 2 2 5 2

receiver 3 4 2 2 5 3 4 2 5

sentId 2 2 4 3 2 5

Figure 2.2: The word representation of a possible trace

2 of the server along with the message serv. Every client sends a request along with its own ID to
the server and gets an acknowledgement after some time. Note that we did not set any restriction
on the order in which the server handles the requests. Although client 3 sends its request after
client 4, client 3 is satisfied before client 4.

Some example properties on system traces

We now state some requirements which a system designer would usually expect from all traces of the
modeled system. In addition, we also explain for each property how it is translated to a property
on the word representations of traces as described above. We start with a property which does not
refer to process IDs at all and proceed with very simple properties.
CS1: After the first request there is no further process creation.
On the trace representations, it is necessary to check that there is no crt-position after a
reg-position.
CS2: Fwvery client sending a request must be created before.
It has to be checked that every ID which occurs as the value of the sender-attribute of some
reg-position occurs as the value of the created-attribute of some preceding crt-position.
CS3: FEwvery client sending a request gets an acknowledgement after some time.
Every reg-position is followed by some subsequent ack-position such that the sender-value
of the first position is equal to the receiver-value of the second one.
CS4: FEwery client receiving an acknowledgement has previously sent a request.
Every ack-position is preceded by some reg-position such that the sender-value of the latter

position is equal to the receiver-value of the first one.

We now state three properties which have subtle differences. We will see in Part B that the
question whether a logic is decidable or not can depend on the question which of these properties
the logic is able to express.

Chapter 2. An Example Scenario: Server and Clients

CS5: Whenever a client sends a request, it does not send any further requests until it receives an
answer.

Every reg-position is followed by some ack-position such that the sender-value d of the first
one is equal to the receiver-value of the latter one and there is no further reg-position in
between whose sender-value is equal to d.

CS6: Between the creation of a client p and the receiving of the server information by p, there is
no request to the server.

It is never the case that there is a crt-position ¢ and a following serv-position j such that the
created-value at i is equal to the receiver-value at j and there is a reg-position between ¢
and j.

CST7: Whenever a client p receives an acknowledgement, the server gets a request after some time
and the next such request is from a client different from p.

Every ack-position is followed by some reg-position such that the receiver-value of the
first one is different from the sender-value of the latter one and there is no reg-position in
between.

Observe that CS5 and CS6 talk about positions between pairs of positions where the same data
value d occurs. However, while CS5 considers intermediate positions which also carry value d,
CS6 does not set any conditions on the values at intermediate positions. Finally, CS7 talks about
inequality conditions between pairs of positions.

Regarding the possibility that the root process may erroneously create two servers, we formulate
also some stronger versions of the properties given above.

CS8: Requests are always sent to the same server.
There are no two reg-positions with distinct receiver-values.

CS9: FEwvery client sending a request to a server gets an acknowledgement from the same server after
some time.

Every reg-position is followed by some subsequent ack-position such that the sender-value of
the first position is equal to the receiver-value of the second position and the sender-value
of the second position is equal to the receiver-value of the first one.

Observe that except CS1, CS6 and CS7 all listed requirements are fulfilled by the trace repre-
sented in Figure 2.2. The reason why CS7 is not satisfied is that after responding to client 5, the
server does not receive any other request.

Part A

Preliminaries

This part aims to equip the reader with some basic notations, tools and background informations
on data logics in order to be prepared for the new results in Parts B and C. Besides notational
machinery which will be useful throughout this work, Chapter 3 recalls some problems and automata
models which will be used in (un-)decidability proofs in further parts of this work. In Chapter 4,
we first introduce data words which are the basic structures on which most of the data logics we
will deal with are evaluated. The chapter also contains an overview on logics and automata models
proposed in the literature for these structures as well as a summary of known results on their
expressivity and computational properties. Questions arising from these results will be the starting
point of Part B.

11

12

Chapter 3

Basics

In this chapter, we will first define some notations which will be used throughout the entire work.
Then, we will introduce some automata models, problems and techniques which will be helpful in
(un)decidability proofs in later parts.

3.1 Notational Conventions

We denote the set of the natural numbers without 0 by N and for N U {0} we use Ny. For two
integers ¢ < j from Z, the expression [i,. .., j] represents the set {k € Z | i < k < j} of all integers
from ¢ to j while [i,...) stands for the infinite set {k € Z | i < k} of all integers greater or equal to
i. A round bracket at an endpoint excludes the corresponding value from the represented set, for
instance, we have [-3,...,2) = {-3,-2,—1,0,1} and (5,...) = {6,7,8,...}.

The set of all partial mappings from some set A to some set B is denoted by [A — B]. For a
mapping p € [A — B] and some a € A for which p(a) is undefined, we write u(a) = L. Sometimes,
we describe the mapping p also by the set {a — b | p(a) = b € B}. We denote the domain
{a | p(a) # L} of u by dom(u) and its image {b € B | there is some a € A with u(a) = b} by
w(A). For some subset A’ C A and some b € BU{ L}, we let u[A’ — b] be the mapping p’ defined
by: for every a € A’, p/(a) = b and otherwise, p/(r) = p(x). If A’ is some singleton {a} we often
write pla — b] and skip the curly brackets. Finally, we use A, as an abbreviation for the partial
mapping from A with empty domain.

For the sake of legibility, we often use the infix notation for binary relations. This means, for
some binary relation R and two elements a and b with (a,b) € R, we write a Rb.

In this work, we will introduce different automata models which read linearly or partially ordered
structures and are equipped with acceptance mechanisms. Likewise, we will deal with logics whose
formulas are evaluated on such structures. We call the set of all structures accepted by an automaton
A the language of (or decided by) A and denote it by £(.A). Similarly, the set of structures satisfying
a formula ¢ is the language of ¢ and denoted by L(p). We say that a formula or an automaton is
equivalent to an other formula or automaton if the corresponding languages are equal. A logic Lo
is called to be at least as expressive as a logic L1 (written as £1 < L) if for every formula from
L1, there is an equivalent formula in £2. The logic Lo is strictly more expressive than Ly (written
as L1 < L) if £1 < L5 and Ly contains a formula for which there is no equivalent one in L;.
The logics £1 and Lo are called to be expressively equivalent (denoted as L1 = L9) if £1 < Lo and
Lo < Ly. The equivalence between two classes of automata or between a logic and an automata
class is defined analogously.

For logics providing the negation operator — and the and operator A, we usually do not insert

13

Chapter 3. Basics

the or operator V into the formal syntax of formulas but use it with the obvious semantics.

3.2 Some Tools

In this section, we will introduce some auxiliary automata models and frameworks which will be
utilized in our proofs in Parts B and C. We forgo the definitions of the well-known Deterministic
and Non-Deterministic Finite Automata (in short, DFA and NFA) deciding regular languages.

3.2.1 Two-Way Alternating Automata

In some decidability proofs we will make use of two-way alternating automata on finite and infinite
strings. While usual NFA read a string from left to right, a two-way automaton can move its reading
head into both directions. An alternating automaton is able to split the computation into several
sub computations at each step of the run. Informally, it accepts a string if all sub computations
do accept. Despite these abilities the expressive power of two-way alternating automata and that
of two-way alternating Biichi automata do not go beyond the expressive power of usual NFA and
Biichi autmata, respectively. Early references for the definitions of two-way, alternating and two-way
alternating automata and their translations to NFA are [185, 177], [56, 62] and [140]. Translations
of two-way, alternating and two-way alternating Biichi automata to (one-way) Biichi automata can
be found in [198], [163] and [138].

First, we will define alternating automata on finite strings, then, we will describe their extension
to two-way alternating automata and finally, we will adapt these models to w-strings, i.e. strings
of infinite length. Following [185, 177, 138], we will not use additional end-markers on the input
strings like in [56, 62, 140] when we define two-way automata. Furthermore, our definition of the
transition relation of alternating automata is based on positive boolean formulas in the style of
[138] and not like in [56, 62] where general boolean formulas are used.

Before giving the definitions of the automata models, we introduce the notions of positive boolean
formulas and trees. A positive boolean formula over a finite set I' of symbols is a formula using
the symbols in T'U {T, L} as atomic formulas and A and V (and no negation operator) as logical
operators. More formally, the syntax of positive boolean formulas o over I' is defined by

a=T|L|y|laha|aVa

where v € T'. A set IV C T satisfies a positive boolean formula « if « delivers the boolean value true
when T and all symbols from I occurring in « are set to true and all other symbols, inclusively
1 are set to false. For instance, the formula v1 V (72 A 73) is satisfied by the sets {y1,7v3} and
{~2,73} but not by {v3}. The set of all boolean formulas over I is denoted as BT (T).

A tree T'C N* is a (possibly infinite) non-empty subset of N* where for all ve € T with v € N*
and ¢ € N, we have v € T. Each element of T is called a node and the empty string e the root of
T. For every node v in T, all nodes ve € T with ¢ € N are called the children of v. Nodes with no
children are called leaves. The length of a node determines its level in the tree. In particular, the
root ¢ is at level 0. A path m in T is a subset of T such that (i) for every vc € m with v € N* and
¢ € N, we have v € 7 and (ii) for every v € 7 either v has no children or exactly one of its children
is contained in 7. The length of a path 7 is defined as |r| — 1. The depth of a tree without infinite
paths is defined as the length of the longest path in the tree. A TI'-labelled tree (T ¢) for some set
I’ consists of a tree T' and a labelling function ¢ : T~ I' which maps every node in 7" to a symbol
in I'.

14

3.2. Some Tools

Alternating Automata

An Alternating Finite Automaton (AFA) A= (%, S, s0,0, F) is a five-tuple where ¥ is a finite input
alphabet, S is a finite set of states, s¢ is the initial state, § : S X X — BT(S) is a transition function
and F' C S is a set of accepting states. Before defining formally what it means that A accept a
string, we want to give some intuition about the behaviour of AFA'. Let A’ be an NFA with some
transition relation ¢’. Suppose that both, A’ and A, read an input string w = o3 ...0, and reach
some position ¢ with 1 < ¢ < n in some state s. Let §(s,0;) = s1V (s2As3). Intuitively, A’ accepts w
if it accepts o;41 . ..o, starting in one of the states s’ with (s,0;,s’) € §’. In comparison, the AFA
A accepts w if it accepts 041 ...0, (i) starting in state s; or (ii) starting in state s and starting
in state s3. More formally, a run of A on a string w = o1 ...0, € X* of length n is an S-labelled
tree (T, ¢) of depth at most n such that (i) £(g) = so, i.e., the root of T is labelled by s¢ and (ii) for
every level ¢ with 0 < i < n and every node v € T at level i, the set {¢(v-¢)|v-c€ce Nand T}
satisfies 0(¢(v),0i41). A run (T,/) on w is called accepting if all leaves at level n are labelled by
some accepting state. Note that an accepting run can contain leaves v at levels ¢ < n which are
labelled by some non-accepting state s. It follows from the definition that for such nodes it must
hold 6(¢(v),0441) = T. The language L(A) of A is defined as {w € ¥* | there is an accepting run
of A on w}.

Two-Way Alternating Automata

A two-way automaton is able to move its head into both directions. Thus, a Two- Way Alternating
Finite Automaton (AFA*) A= (3,5, so,0, F') differs from a (one-way) AFA only in its transition
function 6 : S x 3 — BT(S x {—1,0,1}) which specifies not only the next states the automaton can
enter, but also the direction in which the reading head of the automaton moves: —1 means that
the reading head moves one step to the left, 0 means that it stays at the current position and 1
means that it moves one step to the right. For instance, if the automaton reads in some state s a
symbol o at some position ¢ of the input string and §(s, o) = (s1,—1) V (s1, 1), it either moves one
step to the left and enters state s; or it moves one step to the right and enters state so. If : =1 it
has to chose the second option. In an accepting run, every computation must either lead to T or
must end up in an accepting state after reading the last symbol of the string and moving one step
to the right.

Formally, a run of A on a string w = o1 ... 0, is a (possibly infinite) S x {1,...,n+ 1}-labelled
tree (T,£) such that (i) the root of T is labelled by (sg, 1) and (ii) for every node v € T labelled
by (s,4) with s € S and 1 < i < n, the set {(s',k) | there is some vc € T with ¢ € N and ¢(vc) =
(s',i+k)} satisfies 6(£(v), 0;). The run (T, ¢) is accepting on w if it is finite and for all nodes v with
L(v) = (s,n+ 1), it holds s € F. The language of A is defined as expected.

Two-Way Alternating Biichi Automata

Alternating Finite Biichi Automata (BAFA) and their two-way version BAFA® read w-words as
inputs. The only difference to AFA and AFA¥ is that they are equipped with a Biichi acceptance
condition. We briefly explain the semantics of BAFA®,| the semantics of the one-way version can
be derived straightforwardly. The components of a BAFA® A = (%, S, s¢, 6, F) are defined exactly
in the same way as the components of a AFA®*. The definition of runs differs slightly since the
automaton can never step out of the string to the right. A run of A on an w-string w = o109 ... is
a (possibly infinite) S x N-labelled tree (T, ¢) such that (i) the root of T is labelled by (sg, 1) and
(ii) for every node v € T labelled by (s,) for some s and 4, the set {(s',k) | there is some ve € T
with ¢ € N and £(ve) = (s',i + k)} satisfies 6(£(v), ;). The run (T, ¢) is accepting on w if for every
infinite path 7 in T, the set {s | s occurs infinitely often on 7} N F' is non-empty.

I The following informal explanation is inspired by [138].

15

Chapter 3. Basics

3.2.2 Counter Machines

We introduce two versions of counter machines, one with an undecidable and one with a decidable
reachability problem.

A Minsky Counter Machine (MCM) [162] is a nondeterministic automaton equipped with coun-
ters. Formally, an MCM is a tuple (k, S, so,d) where k > 1 is the number of the counters, S is
a finite set of states with initial state so and § is a set of transitions of the forms (s,inc;,s’),
(s,dec;,s’) and (s,ifzero;,s’) with i € {1,...,k} and s,s’ € S. Besides changing the state of the
automaton, every transition executes an operation or a test on one of the counters. Initially, the
value of every counter is 0. Informally, a transition (s,inc;,s’) increments the value of counter i
by 1. A transition (s,dec;, s’) decrements its value by 1 and can only be applied if the value is
greater than 0. Finally, a transition (s,ifzero;, s’) performs a zero-test on counter i, i.e. it does
not change any counter value and can only be applied if the value of counter i equals 0. An MCM
with k counters is also called a k-MCM.

In order to give the formal semantics of a k-MCM M = (k, S, s, d), we first define the set of
configurations of M. A configuration (s, vy, ...,vx) € S x NE of M consists of the current state s of

M and the values of all k counters. A configuration ¢ = (s, v1,...,v],) results from a configuration

rn

c=(s,v1,...,0p) (written as ¢ — ¢) if for some ¢ with 1 < ¢ < k, one of the following conditions
holds:

e There is a transition (s, inc;, ') € §, v; = v; + 1 and v; = v; for all j # i.
e There is a transition (s,dec;,s’) € §, v; # 0, v = v; — 1 and v} = v; for all j # i.
e There is a transition (s, ifzero;,s’) € d, v; = 0 and v} = v; for all j.

A configuration (s,v1,...,v;) is called initial if s = sg and v1 = ... = vy = 0. A sequence
co =M --- =M Cpn of configurations of M is called a run of M if ¢y is initial. We say that a
configuration c is reachable by M if there is a run ¢g - p¢ ... = p ¢ of M with ¢, = ¢. Given a
state s € S, the reachability problem for M asks whether (s,0,...,0) is reachable by M.

It is well-known that the reachability problem for 2-MCMs, i.e. MCMs with only two counters,
is not decidable [162]. When proving the undecidability of a computational problem for a formalism
by reduction from the reachability problem for 2-MCMs, it is a common approach to show that
the formalism allows to encode sequences of 2-MCM-transitions and to check whether an encoded
sequence induces a run reaching a designated configuration. Since several undecidability proofs
in this work will be based on such reductions, we list here sufficient conditions implying that a
transition sequence corresponds to a run reaching a configuration in some particular state with all
counter values 0. To this end, let M = (2,5, sp,0) be a 2-MCM and s € S. It is easy to see that
M reaches (s,0,0) if and only if s = sy or there is a sequence T = (s1,acty, s}),. .., (Sn,acty,s))
of transitions from §, such that the following conditions are fulfilled.

e Consistency with respect to states: The first state is initial, the last one is s and states of
consecutive transitions are compatible with each other, that is, s; = sg, s, = s and for all ¢
with 1 <i < n, we have s, = s;41.

e Consistency with respect to counters: For each counter k € {1,2}, there is a one-to-one
mapping between increment and decrement actions for counter k such that each increment
is followed by its corresponding decrement. To put it in formal terms, there is a bijection m
from the set DECS, = {i | 1 < i < n and act; is a decrement action} to the set INCS, = {i |
1 < i< nand act; is an increment action} such that for each counter k& and index i € DECS,
with act; = decy, it holds m(i) < i and act,,(;) = incy.

16

3.2. Some Tools

o (Consistency with respect to zero-tests: Between an increment and the corresponding decrement
of a counter, there is no zero-test for this counter, i.e., for every counter k and index ¢ € DECS,
with act; = decy, there is no ¢ with m(i) < £ < i and acty = ifzeroy.

In our undecidability proofs for satisfiability and model checking questions working with 2-MCMs,
we will encode sequences of 2-MCM-transitions by data words and show that our formalisms are
strong enough to express the conditions above.

We conclude this section by mentioning Multicounter Automata (MCA) which are restrictions
of MCMs not containing any transition performing a zero-test. For every number of counters, the
reachability problem is decidable for MCA [160, 134].

3.2.3 Well-Structured Transition Systems

Decidability results on infinite-state models like Timed Automata [21], Lossy Channel Systems [7],
Vector Addition Systems [132] and Petri Nets [120] motivated the search for common structures in
these models which explain these results. Well-Structured Transition Systems (WSTS) [5, 98, 135]
were proposed as a general framework which incorporates these structures and provides sufficient
conditions for new decidability results on infinite-state models. In this section, we present a re-
sult within the framework of WSTS which was used in the literature in many decidability proofs
concerning safety properties of infinite state models.

First, we introduce some notions regarding well-quasi ordered sets. Let S be a possibly infinite
set and <C S x S a binary relation on S. The relation < is called decidable if there is an algorithm
which for every two elements s; and so from S decides whether s; < s3. The relation < is called
a well-quast ordering on S if it is reflexive, transitive and for every infinite sequence si, ss,... of
elements from S, there are ¢ < j with s; < s;. For a subset U C S, we call 1U = {s € S |
there is some s’ € U with s’ < s} the upward closure of U. The set U is called upward closed if
U =1U. Higman [117] proved that for every upward closed set U, there is a finite basis B C U
such that (i) for every s € U, there is some s’ € B with s’ < s and (ii) the elements in B are
incomparable, i.e., for every two elements s1, so € B, we have that from s; < s5 it follows s; = ss.
Note that an upward closed set can have (infinitely) many different bases.

We consider transition systems A = (S, Sy, —>) where S is a possibly infinite set of states,
So C S is a set of initial states and —C S x S is a transition relation on S. By —* we denote
the reflexive and transitive closure of —, i.e., s —* s2 if $1 = s or there are states sj,..., s},
with n > 2 such that s = s} — s, — ... — s/, = sa. For a state s € S, the set Pre(s) of
predecessors of s is defined as {s' € S| s — s}. We say that a state s € S is reachable in A if
there is some state sg € Sy with sg —™* s. The transition relation — is called monotonic with
respect to some well-quasi ordering < on S if for every three states s, s2,s] with s; — s3 and
s1 = s}, there is some s} such that s§ —* s} and ss < s5.

A transition system A = (S, Sy, —>) is called a WSTS if

(1) there is a well-quasi ordering < on S and
(2) the transition relation — is monotonic with respect to <.

We are interested in the coverability problem for WSTS which, given a WSTS A = (S, Sp, —)
equipped with a well-quasi ordering < on S and a state s € S, asks whether there is some state s’ = s
reachable in A. Before giving sufficient conditions for the decidability of this problem, we introduce
the notion of computable predecessor bases. A WSTS A = (S,Sy —) has computable predecessor
bases if there is an algorithm which computes for every s € S a basis for Pre(f{s})U 1{s}.

The following theorem states two sufficient conditions for the decidability of the coverability
problem.

17

Chapter 3. Basics

Theorem 1 ([5, 98]). Let A = (S, Sy, —) be a WSTS with a well-quasi ordering < on S. If
(1) < is decidable,
(2) A has computable predecessor bases, and
(8) for every s € S, it is decidable whether 1{s} NSy is non-empty,

then the coverability problem for A is decidable.

Observe that item (3) of the theorem above does not follow from item (1), because Sy can be infinite.
The algorithm solving the coverability problem is based on a backward reachability analysis. It
makes use of the fact that every sequence Uy C U; C ... of upward closed sets reaches a fix-point.
Starting from 1{s}, where s is the state for which coverability has to be checked, the algorithm
computes for every ¢ > 0, a basis for the set from which a state in 1{s} is reachable in i or less
steps. Due to the property mentioned above, this procedure has to terminate at some finite basis
B. Finally, thanks to item (3) of Theorem 1, the algorithm decides whether 1B contains an initial
state by checking non-emptiness of 1{s'} NSy for every s’ € B.

3.2.4 Transducers and the Transduction Problem

Letter-To-Letter Transducers occur as an integral part of an important automata model called data
automata which will be introduced in Section 4.2.2 and will play a significant role for our new
results in Part B. Moreover, in Part C we will carry out several undecidability proofs through a
reduction from the Transduction Problem.

We first define Letter-To-Letter Transducers. A Letter-To-Letter Transducer (LLT) T is a tuple
(3,T, S, 80,9, F') where X is a finite input alphabet, T is a finite output alphabet, S is a finite set of
states with initial state sg, 6 € S x X xI' x Sis a transition relation and F' C S is a set of accepting
states. A transition (s,0,7,s’) € ¢ informally means that whenever the transducer T is in state s and
reads symbol o, it can output v and move to state s’. Given a stringv =o01...0, € X*, a runof T
on v is a sequence (89, 01,71, 51)(81,02,72,52) - - . (Sn—1, FnsYn, Sn) of transitions. The run is called
accepting if s, € F. In this case, we say that v is accepted by 7 and the string w =~ ...y, € T'*
is a transduction of T on v. Thus, 7 induces a transduction relation Rel” C ¥* x I'* such that
for every two strings v and w, we have (v,w) € Rel” if w is a transduction of 7 on v. Given a
string v € £*, let T(v) = {w € I'*| (v,w) € Rel” } denote the set of all possible transductions of T~
on v. We extend the notion of transduction to languages £ C ¥* by defining 7(£) = J,c, T (v).
Provided that ¥ =T', we define in an iterative way for every i € Ny, the i-th transduction of 7 on
Lby TY(L) =L and T (L) :=T (T (L)).

Biichi Letter-To-Letter Transducers (BLLT) are a straightforward adaption of LLT to w-strings.
Syntactically, they are defined in exactly the same way as LLT and differ only in their acceptance
condition. A BLLT accepts an w-string if it has a run on the string where at least one accepting
state occurs infinitely often. The notions of transduction and transduction relation carry over to
BLLT straightforwardly.

An instance of the Transduction Problem TransProb consists of a LLT 7 with input and output
alphabet 3 and two NFA A and B with input alphabet 3. In TransProb it is checked whether
there is a number i € Ny such that 7% (£ (A)) N L (B) # 0. The problem TransProb is known to be
undecidable [2].

3.2.5 Post’s Correspondence Problem

Emil L. Post showed that the following problem, known as Post’s Correspondence Problem (PCP),
is not decidable [175]. An instance (u1,v1),..., (ug,vg) € E* x 3* of PCP is a finite list of pairs of

18

3.2. Some Tools

nonempty strings over some finite alphabet 3. Given such an instance I, PCP asks whether there

is a finite sequence 41,...,i, € {1,...,k} of indices such that w;, ...u;, = v;; ...v;,. If the answer
is yes, the sequence 41, . .., i, constitutes a solution and u;, ...u;, the corresponding solution string
for I.

19

Chapter 3. Basics

20

Chapter 4

Data Words, their Automata and
Logics

First, we will first present in Section 4.1 data words which constitute the main kind of mathematical
structures in the core of this thesis. Although the literature mainly considers data words where
each position carries exactly one symbol from a finite alphabet and one data value from an infinite
domain, following [50, 79, 81, 59, 131], we will take generalized data words with multiple symbols
and data values at each position as a basis. In several works, such generalized data words are
suggested as a convenient representation for traces of concurrent systems [59, 44, 45].

In Sections 4.2 and 4.3, we will introduce known automata models and logics on data words
from the literature and will give an overview of the results with regard to their expressivity and
computational properties. As mentioned in the introduction, we focus on formalisms where the
only predicate on data values is the equality relation. Automata models and logics which subsume
most of the formalisms given in the literature or which will be subject to our own analyses in the
following parts of this work, will be explained and illustrated in more detail. Some of the questions
arising from the results presented here will be addressed and tackled in Part B.

4.1 Data Words

Let D be an infinite set of data values, Prop a finite set propositions and Att a finite set of attributes.
Throughout this work we mostly will use the set N of natural numbers as a representative for D.
A data word over Prop and Att is formally defined as a finite sequence (Py,v1) ... (Py, v,) of pairs
(P;,v;) where for every i with 1 < ¢ < n, the component P; C Prop is a set of propositions and
v; € [Att — D] is a partial attribute-value mapping. We introduce a graphical representation for
data words. For instance, the data word

v=({p,q} ,{p=3){p} {a2,0=5}){r,p},{a—5})

of length 3 defined over the proposition set {p,q,r} and attribute set {a, b}, is represented as given
in Figure 4.1. As it can be observed, the value of attribute a at the first position and the value of
attribute b at the last position are not defined.

Given a data word w = (Py,v1)...(Pp,v,), the set {1,...,n} of positions of w is denoted by
pos(w). For every i with 1 < ¢ < n, we call P, the set of propositions at position i of w and
denote it by props(w,i). If v;(a) is defined for some attribute a, it is called the value of attribute
a at position i and is denoted by val(w,i,@a). If for some position ¢ and proposition p we have

21

Chapter 4. Data Words, their Automata and Logics

p,q p T,Dp
a 2 5
b 3 5

Figure 4.1: The graphical representation of v

p € props(w, i), we say that position ¢ of w is labelled by p. For two positions ¢ < j of w, we denote
the subword (P;,v;)...(Pj,v;) of w by w[i,...,j]. The expression wli,...] represents the suffix
(P;,v;)...(Py,v,) of w starting at position i. The word projection wrdproj(w) of wis Py ... P,.
For some d € D, the maximal set of positions in w where at least one attribute has value d is called
a class or the d-class of w and is denoted by clpos(w,d). If clpos(w,d) = {i1 < ... < iy} for
some k, we call P;, ... P;, a class word or the d-class word of w and denote it by clwrd(w,d). For
two positions i < j of w, the d-class subword wqli, ..., j] of w is the restriction of wli, ..., j] to the
d-class of w. In the following, we illustrate on v the introduced notions and notations:

e pos(v) = {1,2,3} constitutes the set of positions of v

e the set of propositions at position 3 of v is props(w,i) = {r,p}
e the value of attribute b at position 2 is val(v,2,0b) =5

e the first position of v is labelled by p and ¢

e v[2,...,3] = ({p},{a— 2,0~ 5} ({r,p},{a— 5})

e the word projection of v is wrdproj(v) = {p, ¢}{p}{r, p}

e the 5-class of v is clpos(v,5) = {2, 3}

e the 5-class word of v is clwrd(v,5) = {p}{r,p}, and

e the 5-class subword of v is vs[1,...,2] = ({p},{a— 2,b—5})

A data word w is called propositionless if for every position i, the set props(w,i) is empty. If
|[Att] = m and at every position ¢ in w, the values of all attributes in Att are defined, w is called
complete, Att-complete or m-complete. In the graphical representation of 1-complete data words
we often skip the attribute name; for instance, the 1-complete data word

({r.a}t,{fa= 3} ({a}, {a = 2H{r,p},{a—5})

will be visualized as given in Figure 4.2. If the attribute value at some position ¢ of a 1-complete

nqg g TP
3 2 5

Figure 4.2: The graphical representation of a 1-complete data word
data word is d we often say that position ¢ carries value d. The literature mainly considers 1-

complete data words where each position is labelled by exactly one proposition. In this work, we
call such structures simple data words. Sequences of proposition sets without any data values are

22

4.2. Automata for Data Words

just called words. To have a clear distinction, we reserve the term string for sequences of symbols
from some finite alphabet.

A data w-word is a data word of infinite length. All notions and notations introduced above can
be adapted to data w-words straightforwardly.

4.2 Automata for Data Words

This section is devoted to known automata models on data words and their properties with respect
to expressivity and complexity. Since Register and Data Automata will play a significant role in
our studies in later parts of this work, their syntax and semantics will be explained in more detail.
For convenience, we will define the automata models over a finite input alphabet ¥ (and possibly
some output alphabet I') of symbols. An input symbol is usually used to represent a finite set of
propositions at a data word position. In the literature, these automata often appear as auxiliary
tools into which logical formulas are converted when the computational properties of data logics
are analyzed. Although they are defined on data words carrying only a single data value at each
position, it will become clear in Part B how they can be used to solve the satisfiability of logical
formulas on general data words.

4.2.1 Register Automata

Register Automata were first introduced in [124] and several variants were studied intensively in
[180, 169, 35, 39, 196]. While they were originally designed for propositionless 1-complete data
words, i.e., sequences of data values, following [39], we present here a straightforward generalization
for data words with propositions.

A Register Automaton (RA) is a finite automaton equipped with finitely many registers in
which data values of input data words can be stored. In each step, the automaton can compare
register contents with the data value at the current position of the input data word. Based on this
comparison, the current state of the automaton and the propositions at the current position, the
automaton can store the current data value in one of its registers and change its state. Formally,
an RA A= (%, R, S, s0,9, F) consists of a finite input alphabet 3, a finite set R of registers, a finite
set S of states with initial state so € S, a set F C S of accepting states and a set § of transitions
of the forms (r,s,0) — s" and (s,0) — (r,s’) where r € R, 3,8’ € S and o € X. Starting in the
initial state with empty registers, an RA reads the input word from left to right. The automaton
can execute a transition (r,s,o) — s’ at some position 4 if its current state is s, the data value
at the i-th position is equal to the current data value in register r, and the set of propositions at
position ¢ is represented by . As a result of such a transition, the automaton changes its state to s’
and goes one position further. It can perform a transition (s,o) — (r, s') at position i if its current
state is s, the data value at the i-th position is not contained in any register and the proposition
set of position 7 is represented by o. If these conditions hold and the automaton executes such a
transition, it changes its state to s’, puts the value of position ¢ into register r and steps one position
further.

For the formal definition of the semantics of RA, let A = (3, R, S, s0,0, F) be an RA with
Y. = 2F°P for some proposition set Prop. A configuration (s, \) of A is a pair consisting of a state s
and a partial register assignment A € [R — D]. A configuration (s’, \') results from (s, \) by reading

P

a data word position (written as (s, \) —= (s’,\')) with P C Prop and d € D if (i) there is a

d
transition (r,s, P) — s’ € 6, AM(r) =d and N = A, or (ii) there is a transition (s, P) — (r,s’) € 4,
M) #d for all ' € Rand X = A[r — d]. A run of A on a 1-complete data word w = 5; = 5”

is a sequence 7 = (80, Ag) ... (8n, An) of configurations such that (i) A\g = R, i.e., initially, all

23

Chapter 4. Data Words, their Automata and Logics

Pitq
register values are undefined, and (ii) for every i with 0 <4 < n, we have (s;, \;) ity (Si415 Aig1)-
The run 7 is accepting if s, € F'. The data word w is accepted by A if there is an accepting run of A
on w. Observe that for each run (sg, Ag) . .. (8n, An) of A on w and each position ¢ of w, the value d;
is contained in the image of \;, that is, the data value of the recent position is always contained in
some register of the current configuration. Moreover, all register assignments in runs are injective
which means that two registers can never hold the same data value at the same time.

It is not hard to see that due to the finiteness of its register set, the expressive power of Register
Automata is quite restricted. An RA cannot check, for instance, that all data values of the input
word are pairwise distinct (this insight follows from Proposition 4 in [124]). Nevertheless, there are
many interesting properties decidable by RA. We give two examples:

Example 1. The following property on 1-complete data words can be checked by an RA with only
one register.

Every two consecutive positions have distinct data values.

At each position, the RA checks via a transition of the form (s,o) — (r,s’) that the current data
value d of the input word is not contained in its register and puts d into its register. o

Example 2. To check the following property, an RA needs only two registers.

There are three positions i < j < k such that i is labelled by proposition p, j is labelled by
proposition p’, k is labelled by proposition p”, and positions ¢ and k carry the same data value.

Let 71 and ro be the two registers of the RA. The second register serves as an auxiliary register
storing irrelevant data values. The automaton “guesses” the two positions ¢ < k which are supposed
to be the p and p”’-position, respectively. At each position less or equal to 4, it uses r1 as a storage
for the current data value, that is, if a current data value d is not contained in any register, d is
put into r1, and if the current value is in 71, the registers are left unchanged. If the automaton
reaches position 4, it assures that ¢ is labelled by p. At each position between i and k, it stores the
current input value into 79 if the value is not equal to the content of 1. Additionally, it checks that
proposition p’ occurs at some position j with ¢ < j < k. At position k, it assures that the current
data value is stored in register ry. O

The reader may have recognized the fact that the current input data value has always to be stored
in some register what makes it a bit uncomfortable to describe algorithms on RA. For instance,
the automaton in Example 2 needs register ro basically only for technical reasons. Therefore,
in subsequent chapters where we explain at an informal level the construction or behaviour of a
Register Automaton, we will take a relaxed, but expressively equivalent RA-version as a basis. This
version allows the simultaneous containment of the same data value in different registers and has
transitions of the forms (E,s,0) — s’ and (U, s,0) — (r,s’) where E and U are sets of registers,
r is a single register or of the form 1, s and s’ are states and o is an input symbol. Informally, a
transition of the first type checks that the current data value is equal to the contents of all registers
in E. A transition of the second form assures that the current value d is unequal to the value of
each register in U and stores d into register r, unless » = L. Obviously, transitions of the forms
(r,s,0) — s and (s,0) — (r,s’) of an usual RA with register set R can be simulated by transitions
of the forms ({r},s,0) — s and (R,s,o) — (r,s'), respectively, of a relaxed RA. There is also an
easy translation from a relaxed RA A with k registers to an usual RA A’ with k + 1 registers and
an exponentially bigger state space compared to the state set of A. The automaton A’ maintains
in its state an equivalence relation on the register set so that all registers in an equivalence class
simulate registers which are carrying the same data value. The additional register of A’ is needed
to store incoming data values which are not stored by .A.

24

4.2. Automata for Data Words

The Biichi, two-way and alternating versions of Register Automata are defined in the obvious
way. We only emphasize on the main differences. Biichi Register Automata read data w-words and
differ from their non-Biichi versions only in the acceptance condition. A data w-word is accepted
by a Biichi Register Automaton if the automaton has a run on the word which infinitely often visits
an accepting state. An alternating Register Automaton can split runs into sub runs such that all of
them have to accept so that the input word can be accepted. The transitions of two-way Register
Automata contain additional information on the direction of the next step of the reading head (for
the formal definition of alternation and two-wayness for classical automata, see Section 3.2.1). We
add to the acronym RA a preceding “A” to denote the alternating version of Register Automata and
we add a “B” in case of Biichi Register Automata. Two-wayness is symbolized by the superscript
. Given a Register Automata version C and a k > 1, we denote by k-C the restriction of C to k
registers. For instance, by 2-BARA*" we mean the class of Two-Way Alternating Biichi Register
Automata with two registers.

In [180], [82, 83] and [72], complexity analyses on different versions of Register Automata are
carried out. The version considered in [180] is the original model introduced in [124] which works on
propositionless 1-complete data words, i.e., sequences of data values. The model in [82, 83] and [72]
is an extension on simple data words, that is, 1-complete data words carrying a single proposition
at each position. For the original model, it is shown that non-emptiness is NP-complete [180] on
finite data words. Compared to this, the problem is PSPACE-complete for the model in [32, 83]
on finite and infinite data words. Two-way Register Automata are strictly more expressive than
their one-way version, since they can test that all data values occurring in a data word are pairwise
distinct, a property which is not expressible with one-way (non-alternating) Register Automata
[124]. However, it is shown that for the two-way version of the model in [82, 83], non-emptiness
is undecidable already on finite data words and in case of one register [72]. In spite of this, non-
emptiness for the (one-way) alternating version with one register on finite data words is decidable
with non-primitive recursive complexity [82, 83]. The problem becomes undecidable if a further
register is added or if data words of infinite length are considered [82, 83].

4.2.2 Data Automata

Just as Register Automata, also Data Autormnata [41] are defined on 1-complete data words. Before
presenting their definition, we introduce the notion of marked word projections of 1-complete data
words. Remember that in Section 4.1 we have defined the word projection of a data word as the
sequence of proposition sets which we get after discarding all data values (along with attributes). A
marked word projection contains for every position the additional information whether the position

carries the same data value as the next position or not. Formally, given a 1-complete data word
P P,
e &

defined as (Py,b1) ... (Pp,by) € 277°P x {1, T} where for every ¢ with 1 <i <mn, b; = T if and only
if position ¢ + 1 exists and d; = d;1.

w = over some proposition set Prop, the marked word projection mwrdproj(w) of w is

A Data Automaton (DA) A = (B,C) is a pair consisting of a base automaton B and a class
automaton C. The base automaton is a non-deterministic Letter-To-Letter Transducer (LLT) as
defined in Section 3.2.4 with input alphabet ¥ x { L, T} for some finite ¥ and some output alphabet
I'. The class automaton is a classical NFA over I". The set ¥ is regarded as the input alphabet
of A. To put it briefly, a 1-complete data word w is accepted by a A if B accepts mwrdproj(w)
after transforming the propositional part of w and C accepts all class words (for the definition of

L U
i e be a

1-complete data word over some proposition set Prop and A = (B,C) a DA with input alphabet
Y = 2F%°P_ The data word w is accepted by A if

classes, see Section 4.1) of the resulting data word. To be more precise, let w =

25

Chapter 4. Data Words, their Automata and Logics

e there is some v = 71 ..., with mwrdproj(w)RBv, i.e., v is a transduction of B on the marked
word projection of w, and

Mmoo, M

e C accepts all class words of i an -

We demonstrate the expressive power of DA by some examples. Checking the property which
says that all consecutive positions of the input data word carry different values and which is captured
by Register Automata as shown in Example 1, is obviously an easy job for DA, because base
automata get the information about the equality of consecutive data values in their input. The
following example shows that DA can even check properties which are not captured by Register
Automata:

Example 3. Remember from Section 4.2.1 that Register Automata are not able to check the
following property:

All data values of the input word are pairwise distinct.

This property can easily be checked by a DA. Note that propositions do not play any role for this
property. The base automaton accepts all input words and outputs at all positions an arbitrary
symbol. The class automaton only has to check that all input words have length 1. o

Since class automata navigate through class words, it is easy to construct a DA checking regular
constraints within class words:

Example 4. Let us consider the following property:

Every position labelled by proposition p is followed by some position labelled by proposition q and
carrying the same data value.

The base automaton of a DA checking this property accepts all input words and outputs at each
position a symbol representing the set of propositions of the position. The class automaton has to
check the regular property that every p-position is followed by some g-position. O

At first glance, it might not seem obvious that DA are able to check some involved relationships
between different classes. The next example demonstrates that DA can “look beyond” single classes
up to a certain degree. In Section 6.5, we will see that DA can capture even more complicated
properties.

Example 5. We take the following property:

There is a position which is labelled by p and followed by a position labelled by q such that both
positions carry distinct data values.

The class automaton checks that the input word has at least one p- and a following ¢-position. If
this is the case, it outputs at exactly one such p-position a designated symbol, let us say #, and
at exactly one following ¢-position another designated symbol, let us say $. The outputs at other
positions are irrelevant, except that the designated symbols must not be used. The class automaton
just checks that # and $ do not occur within the same input word. o

In [41], the authors give the definition of Biichi Data Automaton (BDA), that is, an adaption
of DA for data w-words. A BDA A = (B,C,C,) consist of

e a base automaton B which is a non-deterministic Biichi Letter-To-Letter Transducer (BLLT)
with some input alphabet ¥ x {1, T} and some output alphabet T,

26

4.2. Automata for Data Words

e a class automaton C over I' for classes of finite length and
e a class automaton C, over I' for classes of infinite length.

The class automaton C is a classical NFA and the class automaton C,, is a classical Biichi automaton.
P, P
d; dz ..

A= (B,C,C,) with input alphabet 3 = 2P*°P if

A 1-complete data w-word w = - over some proposition set Prop is accepted by a BDA

e there is some transduction v = 4172 ... of B on mwrdproj(w),

e C accepts all class words of Zi Zz .-+ which have finite length and
e C, accepts all class words of gi ZZ ... which have infinite length.

In [41], it is shown that the non-emptiness problem for both, DA and BDA, is decidable, however,
an elementary upper is not known. Remember that in the definition of DA borrowed from [41], the
base automaton reads the marked word projection of the input word, i.e., at each position it “sees”
whether the data value of the current position is different from the data value of the next one or
not. In [39], it is shown that DA in which the base automaton reads only the (unmarked) word
projection of the input word, are expressively equivalent to usual DA. Moreover, the authors prove
that every RA can be converted into an equivalent DA'.

4.2.3 Further Automata Models

Recall that during a run, a Register Automaton cannot store any data value which does not appear
in the input word. Moreover, due to the finiteness of its register set, a one-way Register Automaton
can “remember” only a finite amount of the data values appeared in the “history” of a run. To
overcome these limitations several extensions are introduced in [127, 196, 197]. In [127], Register
Automata are allowed to store in each step non-deterministically an arbitrary data value. We
call this form of Register Automata Guessing Register Automata (GRA). In [196], Fresh-Register
Automata (FRA) are considered, which can check that an incoming data value is different not only
from the current content of the registers, but from all data values seen so far in the current run.
Since both automata models can, for instance, test that the last data value of an input word differs
from all previous ones, they are strictly more expressive than usual RA. An extension of FRA,
called History-Register Automata (HRA), is presented in [197]. Besides usual registers, an HRA
is equipped with finitely many unbounded history sets. In each step an HRA can ask whether
an incoming data value is contained in some register or history set and can update and reset
registers and history sets. The non-emptiness problem of all three extensions of Register Automata
is decidable. In addition, it is shown that in terms of expressivity FRA are subsumed by DA and
HRA and that the latter are incomparable with DA. Extensions of Register Automata by pushdown
stacks or on trees are studied in [65, 126, 123].

In [39], a model called Class Memory Automata (CMA) is introduced which has the same
expressive power as DA. While acceptance of an input word by a DA depends on several runs on
the word (a single run of the base automaton and multiple runs of the class automaton), a CMA
simulates all runs of a DA within a single run. Intuitively, a state of a CMA is a composition
of a state of the base automaton and several states of the class automaton belonging to runs on
classes. In the context of designing learning algorithms for data languages, a restriction of DA
called Transparent Data Automata (TDA) is studied in [74]. Just like a DA, a TDA consist of a

IThe authors of [39] have recognized that there is a bug in the proof of this result. During the completion of this
work they were fixing the bug and were convinced that the result holds.

27

Chapter 4. Data Words, their Automata and Logics

base automaton and a class automaton. The difference is that the base automaton is a usual NFA
which only has to accept the word projection of an input word. Furthermore, the language of the
base automaton has to be included in that of the class automaton. As checking non-emptiness of
TDA reduces to checking non-emptiness of the class automaton, non-emptiness for TDA is NL-
complete. It is not hard to prove that the class of languages decided by TDA is strictly included
in the class of languages of DA. The models TDA and RA are not comparable with respect to
expressivity. Motivated by the design of an automata model capturing XPath, the class of Extended
Data Automata (EDA) is introduced in [42]2. They differ from DA only with regard to the class
automaton part. While the class automaton of a DA reads class words, the one of an EDA can also
see positions outside a class. To be more precise, the class automaton reads for every class C, the
entire word where all positions belonging to C' are marked by a special symbol. While usual DA
capture RA, the extension EDA subsume even 1-ARA. It is not surprising that the non-emptiness
problem for EDA is not decidable [42].

In [158], the authors introduce Data Walking Automata (DWA), a two-way automata model. At
each position of the data word, a DWA can not only “step” to the direct predecessor or successor
position, but also to the predecessor or successor in the class of the current data value. The
non-emptiness problem for DWA is as hard as the same problem for DA. Expressivity-wise, DWA
are strictly included in DA and are subsumed by 1-RA*” but not comparable with RA [158].

Recall that a Register Automaton memorizes data values and not word positions. With other
words, it “forgets” the positions the data values in its registers originate from. In [169], Pebble
Automata (PA) are introduced which can place pebbles on word positions and refer to these positions
(and the corresponding data values) during their runs. The pebbles are placed according to a stack
discipline. Each new pebble is placed at the initial word position and serves as the current head of
the automaton. The authors also consider Weak Pebble Automata (WPA) where new pebbles are
placed at the current position. In terms of expressivity, PA are strictly more expressive than their
weak versions [169] and DWA [158], but are incomparable with RA [191]. While non-emptiness
for both PA-versions is undecidable [169], the problem is shown to be decidable for a restriction
version called Top-View Weak Pebble Automata (TWPA) [192]. In the latter model, equality tests
can only be performed between the data values at the positions of the two most recently placed
pebbles. Decidability is shown by reduction to 1-ARA.

Variable Finite Automata (VFA) [109] constitute a simple extension of classical NFA to words
with data values. In this model, transitions can be labelled by data values and by variables which
serve as placeholders for arbitrary data values. It is distinguished between bounded and free vari-
ables. Once assigned to a data value, bounded variables cannot change their value whereas free
variables can always be assigned to fresh values. The non-emptiness problem for VFA is NL-
complete, thus, its complexity does not go beyond that of classical NFA. However, its expressive
power is quite limited. For instance, it cannot decide the language of data words where the data
value of every odd position is equal to the data value of the consecutive position. This language
can easily be decided by an RA with two registers. On the other hand, VFA can check that the
value of the last position is different from all other values in the data word. As this property cannot
be checked by RA, the expressive power of VFA is not comparable to that of RA. However, VFA
are strictly less expressive than GRA. Due to the fact that DA cannot handle constants, VFA and
DA are not comparable with respect to expressivity. If constants are skipped, VFA-languages are
strictly included in the class of DA-languages.

In Figure 4.3, we give an overview of the relative expressivity of the automata models mentioned
in this chapter. A dashed line from a lower to a higher logic indicates that expressivity-wise the
latter model captures the first one. If the line is solid it indicates that the inclusion is strict. A

2 Although the model introduced in [42] is called Class Automata, we use here the term Extended Data Automata
to avoid naming conflicts with class automata which constitute a sub component of Data Automata.

28

4.3. Logics for Data Words

dotted line between two models signalizes incomparability. The labels at the edges are references
to the literature the results stem from. Note that some works consider Register Automata starting
with an initial register assignment containing data values which serve as constants. Similarly, as
mentioned above, VFA can deal with constant data values. The other introduced models, however,
are not equipped with mechanisms dealing (directly) with constants. To make the comparison
between the models easy, in Figure 4.3, we assume that the depicted Register Automata versions
do not have initial register assignments and VFA do not contain constants.

In Figures 4.4 and 4.5, we list results on the complexity of the non-emptiness problem of the
automata models. A “c” after a complexity class signalizes that the problem is complete for the
class. It has to be mentioned that for questions which are left open in the figures, we did not find
any results in the literature.

[192]

Figure 4.3: Comparison of automata models with respect to expressivity (a dashed line from a
lower to a higher logic indicates that expressivity-wise the latter model captures the first one; if
the line is solid it indicates that the inclusion is strict; a dotted line between two models signalizes
incomparability; the considered Register Automata versions do not have initial register assignments
and the considered VFA version does not contain constants)

4.3 Logics for Data Words

In this section, we will give an overview of so-called data logics, i.e., logics on data words, and
summarize known results on their expressivity and complexity. Due to our investigations in Parts
B and C, particular emphasis will be set on logics based on first order concepts, temporal navigation
and regular expressions. While most of the data logics given in the literature are defined on simple
data words, we will present their generalizations on data words with multiple values at each position.

In this section as well as in the entire main part of this work, the semantics of logics will
be explained at a more informal level, but the precise definitions can be found in the Appendix
(Appendix A). We assume that the reader is familiar with classical First Order Logic (FO), Linear-

29

Chapter 4. Data Words, their Automata and Logics

|| on finite data words

| on infinite data words

RA PSPACE-c [83] PSPACE-c [83]
1-RA® undecidable [72] undecidable [72
1-ARA || decidable, non-prim. rec. [83] undecidable [83
2-ARA undecidable [83] undecidable [83

DA decidable [41 decidable [41]
CMA decidable [39
TDA NL-c [71]

EDA undecidable [42] undecidable [42]
DWA decidable [158]

PA undecidable [169] undecidable [169]
WPA undecidable [169] undecidable [169]
TWPA || decidable, non-prim. rec. [192]

Figure 4.4: Complexity of the non-emptiness problem for automata on simple data words

|| on finite data words | on infinite data words

RA NP-c [180] in PSPACE [83]
GRA decidable [127

FRA decidable [196

HRA || decidable, non-prim. rec. [197]

VFA NL-c [109] NL-c [109]

Figure 4.5: Complexity of the non-emptiness problem for automata on sequences of data values

Time Temporal Logic (LTL) and its extension PLTL by past operators. Therefore, we leave out
their formal definitions on usual string.

4.3.1 First Order Logic

In [169] and [41], First Order Logic on 1-complete data values is investigated. While we comply
with the notation used in these works, we present an extension to general data words and notate
the logic by FO~. Besides existential and universal quantifiers over position variables, the classical
unary relations for propositions and the binary relations =, Suc and < on word positions, the logic
contains the binary relations ~ and Suc... The interpretation of the relations mentioned first is
as usual: the atomic formula p(z) for a proposition p and a position variable 2 holds on a data
word if the position assigned to x is labelled by p; the formula x = y holds if the z-postion is equal
to the y-position; Suc(z,y) is true if the y-position is the immediate successor of the z-position;
x < y holds if the y-position is strictly greater than the x-position. The relations ~ and Suc.. are
used in the forms z.@a~y.@b and Suc.(z.@a,y.0b), respectively, for position variables 2 and y and
attributes a and b. The first formula holds on a data word if the data value of attribute a at the
z-position is equal to the data value of attribute b at the y-position. The second formula logically
implies the first one and additionally requires that there is no position z between x and y such that
attribute b at the z-position has the same value as attribute a at the xz-position.

We illustrate the semantics of the logic by expressing some properties from our introductory
client-server example from Chapter 2. The full formal semantics is given in the Appendix (Section
Al).

30

4.3. Logics for Data Words

Example 6. We first take Property CS8:
Requests are always sent to the same server.

The property can be expressed by the following FO™-formula:

—323y(req(w) A req(y) A v.@receiver £y.Creceiver)?

We now consider property CS9:

FEvery client sending a request to a server gets an acknowledgement from the same server after
some time.

The property can be expressed as follows:
Va[req(z) — Jy(y > x A ack(y) A z.@sender ~y.Q@receiver A z.Q@receiver ~y.0sender])
O

If FO™ is evaluated on data words with a single attribute, for convenience, we usually skip the
attribute name in formulas: for instance, we write dx3y x ~y instead of dzdy z.@a~y.0a.

The extensions MSO™ and EMSO™ are defined analogously to MSO and EMSO on strings. The
logic MSO™ allows universal and existential set quantifications of the forms VX and 3X and atomic
formulas X (z) where X is a set and x a position variable. The atomic formula X (z) means that the
position assigned to z is contained in the set assigned to X. By EMSO"™ we denote the fragment
of MSO™ consisting of formulas of the form 3X; ...3X,¢ for n > 0 where each X is a set variable
and ¢ does not contain any set quantification.

Given a k > 1, the restriction of a logic £ € {MSO™,EMSO™,FO™} to formulas which con-
tain at most k different position variables is denoted by L. For £ € {MSO~,EMSO~,FO~} U
{MSO%, EMSO%,FO% | k > 1} and O C {Suc, <, Suc. }, the logic £(O) stands for the restriction
of L to formulas in which the relations in {Suc, <,Suc.}\O are not allowed. For instance, by
EMSO3%(Suc) we mean the restriction of EMSO™ where at most 2 position variables are allowed
and the relations < and Suc., are skipped.

The literature mainly considers FO™ on data words with a single proposition at each position.
Unless stated otherwise, the following results belong to such structures. The satisfiability problem
for EMSO™ is not decidable [43]. Undecidability holds even for the first-order fragment FO3(Suc)
with three position variables on finite 1-complete data words. Therefore, the authors in [43] focus
on the fragment of EMSO™ with only two position variables. It turns out that while on 2-complete
data words, satisfiability for FO%(Suc, <) remains undecidable, the problem becomes decidable for
EMSO3(Suc, <) in the 1-complete case. Decidability is obtained by showing that every formula can
be converted into an equivalent DA for which non-emptiness is decidable. The complexity of the
problem is as hard as non-emptiness for Multicounter Automata (MCA) for which no elementary
upper bound is known [106, 134, 160]. The decidability result for EMSO?%(Suc, <) carries over
to infinite data words by using BDA as the target automata model [43]. Satisfiability for the
fragment FO3(<) on finite 1-complete data words is NEXPTIME-complete [43]. On the same kind
of structures the problem is in 2NEXPTIME for FO%(Suc), even in the case of multiple propositions
at each position [170]. However, it is unclear whether this upper bound is optimal. The best known
lower bound is NEXPTIME [94].

We conclude by mentioning some relationships between FO™-like logics and automata. We
already mentioned that on finite and infinite 1-complete data words EMSO7%(Suc, <)-formulas can
be converted into equivalent DA and BDA, respectively. In [43], it is moreover shown that DA
are logically characterized by EMSO3(Suc, Suc..) on finite 1-complete data words. From the last
results it is obtained that the latter logic is decidable on these structures. Finally, it follows from
[169] that on the same kind of structures full FO™-formulas can be converted into equivalent PA.

3Note that we use x.@a{y.@b as an abbreviation for =(z.@a~y.@b).

31

Chapter 4. Data Words, their Automata and Logics

4.3.2 Temporal Logic

The logic Freeze LTL (LTLY) [32] basically extends classical LTL [174] by the ability to store data
values in freeze registers and compare them with other data values occurring in the data word. That
is, in contrast to FO~-formulas which memorize positions by variables, LTL-formulas memorize
data values by freeze registers. Given a set Prop of propositions, a set Att of attributes and an
infinite supply R of freeze registers, the syntax of LTL¢-formulas is defined as follows:

pu=p| o pAplev fleal Xo | 0Up | X7 | U ¢

with r € R, p € Prop and a € Att.

Formulas of LTLY are evaluated with respect to a current position of a data word and a register
assignment defining the contents of the registers. The operators X (next), U (until), X (previous)
and U (since) are called temporal operators. The formula X expresses that the current position
is not the last one and that ¢ holds at the immediate successor position. The formula ¢, Ugpy is
true at a current position i if there is a position & > ¢ such that 5 holds at position k& and ¢1 holds
on all positions in [j,...,k — 1]. The temporal operators X~ and U are the past counterparts of
X and U, respectively. Additionally, we use the abbreviations F (future), G (globally in the future),
F“ (past) and G* (globally in the past) defined by Fo = TUp, Gy = =F-p, F ¢ = TU p and
G~ ¢ = “F~—¢. The formula |g,.¢o demands that the data value of attribute a is defined at the
current position, stores this value in register r and evaluates ¢. The atomic formula g, is true at
the current position if the value of attribute a is defined and equal to the value in register r.

We give some example formulas:

Example 7. We start with Property CS4 from Chapter 2. Due to the benefits of past operators,
we can express it in a very simple way:

FEvery client receiving an acknowledgement has previously sent a request.

G[aCk %“greceiver'Fk (req/\ ﬂgsender)] .

We now express the three discussed Properties CS5, CS6 and CS7 which have subtle differences
with regard to the access of data values:

Whenever a client sends a request, it does not send any further request until it receives an answer.
G [req _>‘U£sender‘X((req — ﬂgsender)U(aCkA ﬂgreceiver))}

Between the creation of a client p and the receiving of the server information by p, there is no
request to the server.

ﬁF (Crt/\ ﬁgcreated'XF (req A XF(serv/\ ﬂgreceiver)))

Whenever a client p receives an acknowledgement, the server gets a request after some time and
the next such request is from a client different from p.

G |:aCk %ﬁgreceiver'x((ﬁreq)U(req A ﬂgsender))}
Finally, we formulate CS9 which we was also used in Example 6:

FEvery client sending a request to a server gets an acknowledgement from the same server after
some time.

32

4.3. Logics for Data Words

Remember that position variables of FO™ are assigned to positions and freeze registers of LTL' are
assigned to data values. Therefore, while in FO™ we managed this property with a single variable,
here we need two registers r; and rs:

T1 T2 1 r2
G[req %ll@sender' @receiver'F(aCk/\ @receiver/\ @sender)]

O

The full semantics of LTLY is given in the Appendix (Section A.2).

The fragment of LTLY where at most k > 1 freeze registers are allowed in formulas is denoted
by LTLY,.. For a logic £ € {LTLY} U{LTLY% | £ > 1} and a set O of temporal operators, we denote
by L£(O) the fragment of £ in which only temporal operators from O can be used.

In LTLY-formulas we often skip the register name, i.e., we write, for instance, Jea and g
instead of |5, and {,. Moreover, if it is clear from the context that an LTLY-formula is evaluated
on data words with a single attribute we skip the the attribute name in formulas; for instance, we
write |} and)" instead of |g, and {g,.

The results mentioned below refer to 1-complete data words with a single proposition at each
position. In [82], it is shown that the satisfiability problem for LTLY (X, U), i.e., the future fragment
of LTLY with only one freeze variable, is decidable on finite data words. Decidability is proven by
a reduction to the non-emptiness problem for Alternating Register Automata with a single register
(I-ARA). The problem has non-primitive recursive complexity. This lower bound holds even for
the fragment LTLY (F) [97]. In contrast to EMSO3%(Suc, <), decidability of LTLY (X, U) does not
carry over to w-words. Moreover, as soon as a further freeze variable or the past operator F< is
added, the problem becomes undecidable [82, 97]. In [82], it is moreover shown that for every k > 1,
every LTLY-formula on finite data words can be converted into an equivalent k&-ARA*. In case of
infinite words, the automaton is a Biichi ARA® and if past operators are skipped it suffices that
the automaton is one-way. Formulas of LTLY (X, U) can also be converted into equivalent TWPA
[192].

4.3.3 Logics based on Regular Expressions

We introduce two logics from the literature which are closely related to Regular Expressions, namely
Regular Ezxpressions with Memory and Two- Way Path Logic.

Searching for suitable query languages for graph databases, the authors in [147] invented Regular
Expressions with Memory (REM). They can be seen as usual regular expressions with additional
registers whose usage is similar to those in LTLY. While classical regular expressions only specify
the order of occurrences of symbols, an REM-expression can additionally impose conditions on
data values. Roughly speaking, the basic components of REM-expressions are of the form p[c] [&
where p is a proposition, ¢ consists of a set of register conditions, R is a set of registers and a is
an attribute. It expresses that the current position is labelled by p and its data values satisfy the
conditions in ¢. Moreover, it requires that the value of attribute a is assigned to all all registers in
R. A register condition is a boolean formula over atomic components of the form 15, for registers
r and attributes a asserting that the a-value is equal to the input of register r. For instance, the
expression p[Tes A~ Te2] {:3} means that (i) the current position is labelled by p, (ii) the values of
a and 7 are currently defined and equal, (iii) either one of the values of b and r2 are not defined
or they differ and (iv) the value of ¢ is assigned to register r3. A REM-expression is composed of
concatenation, disjunction and iteration over (), ¢ and such basic components. Formally, the syntax
of a REM-expression over a proposition set Prop, an attribute set Att and a register set R is defined
by the following grammar:

a:=0]c|pldil |a-alatala’

33

Chapter 4. Data Words, their Automata and Logics

where p € Prop, a € Att, c is a register condition and R’ C R.
Example 8. We first conisder property CS1 from Chapter 2 which does not refer to data values:
After the first request there is no further process creation.

The following expression describing this property says that either (i) there is no reg-position in
the entire trace, or (ii) after the first occurrence of such a position there is no crt-position. Due to
the syntax of REM, the expression makes needless accesses to attribute-values which are not stored
in any register:
0]] *
(Crt[T] \lf@creator + serv[T] *L@sender + aCk[T] *L@sender)

+
|:(Crt[—|—] ‘l’gcreator + SerV[T] ‘l’gsender + aCk[T] *Lgsender)* ' req[T] *Lgsender'

*
(req[—l—] *Lgsender + serv[T] \lfgsender + aCk[T] \Lgsender) :|
We conclude with property CS8 which says:
Requests are always sent to the same server.

In the following formulation we use one register r in which the receiver-value of the first req-
position is stored and compared with the receiver-values of all subsequent reqg-positions:

(Crt[T] \l/gcreator + SerV[T] ‘l’gsender + aCk[T] ‘l’gsender) :

+
]] 0 * {r})
(CI‘t [T] ‘L@creator + serv[T] ‘L@sender + aCk[T] \L@sender) req[T] receiver

(req[Tgreceiver] ‘l’gsender + serv[T] \Lgsender + aCk[T] \Lgsendercrt[—r] \Lgcreator) *:|
o

The full syntax and semantics of REM is given in Section A.3 of the Appendix.

The language Two-Way Path Logic (PathLog) [96] was invented as a fragment of XPath [66]
on simple data words. It can be seen as a sort of temporal logic where temporal operators are
expressed by some kind of regular expressions. Given a proposition set Prop and an attribute set
Att, formulas are composed of path ezpressions a and position formulas ¢:

¢:=p|oala ~a)eb|ea(® ¢ @)eb | ¢ |pAp
a=c|[p]
with p € Prop and a,b € Att.

We say that a position j is reachable from a position i by a path expression a = [p1] - [¢n]
composed of position formulas ¢ ..., if there are positions ¢ < ¢; < ... <4, = j such that for
every k with 1 < k < n, the formula ¢, is satisfied at position i;. Analogously, j is said to be
backward reachable from i by « if there are positions ¢ > 41 > ... > i, = j such that for every
k, formula @y holds at position ix. The position formula p € Prop is satisfied at a position 4 if
i is labelled by p. A formula @a(@ ~ F)@b holds at 4 if there are positions j and k such that
k is reachable from ¢ by 3, j is backward reachable from i by a and the a-value at j and the
b-value at k are both defined and equal. Conversely, the formula @a(H ol ﬁ}@b demands that the
corresponding values of positions j and k are distinct from each other. Note that the order of the
formulas composing a path expression is not strict. Therefore, @a(f;] ~ [q] - [¢])@a is equivalent to
@a(? ~ 7>@a. The logic consists of all position formulas.

34

4.3. Logics for Data Words

Example 9. We express Property CS8 from Chapter 2 by a PathLog-formula. The property says:
Requests are always sent to the same server.

Our formula checks that there is no reg-position followed by another reg-position such that the
receiver-values are distinct. Since formulas of PathLog turn out to become quite cumbersome,
here we use the abbreviation {«) to express that a position can be reached by «. Observe that this
can be formulated by a disjunction over all possible equality conditions between attribute values
at the current and the target position. Using the abberaviation, Property CS8 can be described as
follows:

—([req A @receiver(s [rea)oreceiver])
O

The full definition of the semantics of PathLog is given in the Appendix (Section A.4).

As usual, we skip the attribute name in REM- and PathLog-formulas when only a single attribute
is used.

As far as we know, the literature provides complexity results for PathLog and REM only with
regard to finite simple data words, that is, 1-complete data words with a single proposition at
each position. The satisfiability problem for PathLog is EXPSPACE-complete [96]. In comparison,
satisfiability for REM is only PSPACE-complete [147]. Tt is further shown in [147] that REM and
RA are expressively equivalent. In the same work, the authors introduce a restriction of REM
called Regular Expressions with Equality (REME) where equality tests between data values are
only allowed at the beginning and at the end of subwords matching subexpressions. This formalism
is strictly weaker than REM and its satisfiability problem is in PTIME.

4.3.4 Further Logics

Due to the results on LTLY mentioned in Section 4.3.2, several works arose that were searching
for decidable fragments of LTLY which contain past operators or preserve decidability on w-words.
One example is the consideration of the safety fragment of LTLul(X,U) in [142, 143]. A formula
of LTLul(X,U) is considered to be in the safety fragment if the operator U does not occur in
the scope of an even number of negations. While safety LTLY (X, U) is expressively equivalent to
full LTLY (X, U) on finite words it is strictly less expressive than LTLY (X, U) on w-words. The
satisfiability problem for safety LTLY (X, U) is shown to be EXPSPACE-complete on infinite data
words with a single proposition and a single data value at each position. Adding the F~-operator or
a further freeze register leads immediately to undecidability. As an intermediate step in the proof of
the upper bound of the satisfiability of safety LTLY (X, U) on infinite words, the authors show that
each formula of this logic can be converted into an equivalent so-called safety 1-BARA. Languages
of these automata are safety properties, i.e., every word not satisfying such a property must have
a finite prefix such that every possible extension of the prefix does not satisfy the property either.
Further attempts to design decidable logics on w-words are made in [80, 81]. In [80], a two-way
fragment of LTLY, called Constraint Logic (CLTL*), on propositionless data words with multiple
data values at each position is considered. In CLTL*", the freeze operator | is not used explicitly,
but the access to data values is realized through atomic formulas of the forms @a ~ X‘@b and
@a ~ ()@b where a and b are attributes. Additionally, it contains the past counterpart @a ~ ()~@b
of the latter kind of formulas. The formula @a ~ X’b is equivalent to the LTL"-formula Un XA,
and @a ~ ()@b is equivalent to |5, . XF {4,. The full syntax and semantics of CLTL* can be found
in the Appendix (Section A.5). It is shown that the satisfiability problem for CLTL*" on finite and
infinite data words is decidable and, in case of one data value at each position, PSPACE-complete
[80]. The work on CLTL¥ is continued in [$1]. The authors consider an extension of CLTL* called

35

Chapter 4. Data Words, their Automata and Logics

Logic of Repeating Values (LRV). Instead of @a ~ ()@b, LRV uses formulas of the forms @a ~ (¢)@b
and @a 7 (p)@b. The first formula can be expressed by |g,.(XF fig, A) while the second one is
equivalent to {g,.(XF— figy A ¢). The extension of LRV by the past counterparts of these formulas
is denoted by PLRV. Full syntax and semantics of LRV and PLRV are given in Section A.6 of the
Appendix. The decidability of the satisfiability problem for CLTL** on finite and infinite words
carries over to PLRV. For LRV, the problem is even 2EXPSPACE-complete.

In [125], some kind of regular expressions on infinite alphabets is introduced. However, as argued
in [147], these expressions are not very intuitive and do not even allow inequality tests between data
values. Therefore, they are not able to define, for instance, the simple language of data words where
the first two positions have different data values.

FO~

(82, 169)]

[52]

81]

[143] f L
ty LTLY (X, U
FO3(Suc,<) LTLY(X,U) = (ji gg’ite datlaf . d)s) PLRV PathLog

[143] [81]

safety LTLY (X, U)

XF
(on infinite data words) CLTL

Figure 4.6: Comparison of data logics with respect to expressivity (a dashed line from a higher to a
lower logic indicates that the first one is at least as expressive as the latter one; a solid line means
that the inclusion is strict)

In Figure 4.6, we give an overview on the expressive power of some basic logics introduced in
this section. Just like in Figure 4.3, a dashed line from a higher to a lower logic indicates that the
first one is at least as expressive as the latter one. A solid line means that the inclusion is strict.
The depicted relationship between FO™ and LTLY follows from the results that FO™ can express
a property which cannot be tested by any ARA [169] and each LTL%-formula can be converted
into an equivalent ARA [82]. The languages REM and REME are not comparable to any of
the depicted logics besides PathLog. On the one hand, REM and REME capture conventional
regular expressions which is not the case for any of the logics in the figure. On the other hand,
due to the equivalence between REM and RA, the languages REM and REME cannot even test
simple properties like the requirement that all data values of a data word are pairwise distinct. The
relationship between REM and REME on the one side and PathLog on the other side is unclear.
Figures 4.7 and 4.8 give an overview about known results on the satisfiability problem for data logics.
Figure 4.9 contains some known results on the relationship between data logics and automata on
data words.

36

4.3. Logics for Data Words

on finite data words

on infinite data words

FO%

undecidable [41]

undecidable [41]

EMSO3(Suc, <)
FO3(Suc, <)

decidable [41]

decidable [41]

EMSO3(Suc, Suc..)

decidable [41]

FO3%(Suc, Suc..)
FO3(Suc) in 2NEXPTIME [170] decidable [41
FO3(<) NEXPTIME-c [41] decidable [41
LTLL(F) undecidable [97 undecidable [97
LTLL (F<,F) undecidable [97 undecidable [97
L{I;Ef&‘?) decidable, non-prim. rec. [82, 97] undecidable [82, 97]
safety LTLY (X, U) decidable, non-prim. rec. [142, 143] EXPSPACE-c [142, 143
PLRV decidable, non-prim. rec. [81] decidable, non-prim. rec.[81]
LRV 2EXPSPACE-c [81] 2EXPSPACE-c [81]
CLTL* PSpace-c [30] PSpace-c [30]
PathLog EXPSPACE-c [96]
REM PSPACE-c [147
REME in PTIME [147

Figure 4.7: Complexity of the satisfiability problem for data logics on 1-complete data words (the
2NEXPTIME upper bound for FO3(Suc) holds for data words with multiple propositions at each
position; all results for PLRV, LRV and CLTLX*F hold for propositionless data words; all other

results hold for data words with a single proposition at each position)

|| on finite data words

on infinite data words

FO%

undecidable [41]

undecidable [41]

EMSO3(Suc, <)

undecidable [41]

undecidable [41]

FO3(Suc, <)
LTLL(F) undecidable [97 undecidable [97
LTLY (F-,F) undecidable [97 undecidable [97
L{I;Ef&‘?) undecidable [82, 97]
PLRV decidable, non-prim. rec. [81] | decidable, non-prim. rec.[81]
LRV 2EXPSPACE-c [81] 2EXPSPACE-c [81]
CLTL* decidable [80] decidable [30]

Figure 4.8: Complexity of the satisfiability problem for data logics on m-complete data words for
m > 2 (all results for PLRV, LRV and CLTL*F hold for propositionless data words; all other results

hold for data words with a single proposition at each position)

37

Chapter 4. Data Words, their Automata and Logics

on finite data words | on infinite data words
FO~ < PA [169]
EMSO75(Suc, <) < DA [41] EMSO3(Suc, <) < BDA [11]
EMSO7%(Suc, Suc..) = DA [11]
for every k > 1, LTLY, < k-ARA® [32] for every k > 1, LTLY, < k-BARA® [32]

for every k > 1, LTLY% (X, U) < k-ARA [82] | for every k > 1, LTLY% (X, U) < k-BARA [32]

LTLY (X, U) < TWPA [197]

safety LTLY (X, U) < safety 1-ARA [143]

REM < RA [117]

Figure 4.9: Correspondence between data logics and automata on 1-complete data words

38

Part B

New Insights on Data Logics

39

In this part, we first formulate some questions on the expressivity and complexity of logics and
automata on data words which arise from the results summarized in Sections 4.2 and 4.3 of the last
part. In Chapters 6, 7 and 8, we try to answer these questions.

41

42

Chapter 5

Motivating Questions on Data
Logics

Designing a logic for system verification

As mentioned in the introduction of this work, although data logics were studied mainly with regard
to expressivity and satisfiability until now, in many works it is stated that this kind of logics can be
appropriate to be applied in the field of model checking of concurrent systems with unboundedly
many processes (see, e.g., in [41, 45, 44, 47]). As illustrated in Chapter 2, traces of such systems
can be represented by data words where data values stand for process IDs. Thus, data logics can be
used to specify desired properties on traces. Then, by means of suitable model checking procedures,
it can be tested whether all traces of a system satisfy the requirements. One of our aims in this
part of the work is the design of an expressive, but decidable data logic suitable for the usage in
the framework of model checking concurrent systems with unboundedly many processes.

In order to get an idea about the features such a logic should have, we take a closer look at
the area of finite-state model checking with LTL where systems are usually described by Kripke-
structures [30]. Firstly, we observe that system traces are modeled by words where each position can
carry multiple propositions which stand for properties at specific states. Secondly, since systems are
ideally expected to run ad infinitum, traces are usually modeled as infinite words. Thirdly, though
it is known that past operators do not have any effect (besides succinctness) on the expressive
power of LTL, it is argued (see, e.g., in [141]) that past operators make it more comfortable to
express system properties. If we turn our gaze towards systems with unboundedly many processes
and consider our initial example in Chapter 2 as well as the model in [45] where model checking
with data logics is studied, it seems that it is convenient to describe system traces by words with
multiple data values at each position so that all IDs of processes participating in a common action
at a certain time can be grouped at a single position. From this train of thought we can conclude
that it would be beneficial if the data logic we are going to design (i) contains operators enabling
reference to the past and (ii) is decidable on data w-words where (iii) every position can have
multiple propositions and data values.

Now, we review the logics introduced in Section 4.3 with respect to these features. We first
recognize that, although we have presented their extensions on general data words, almost all of
them were originally introduced and studied either on propositionless data words as, for instance,
CLTL* and PLRV, or on words with at most one proposition at each position as, for instance, LTLY
and PathLog. Nonetheless, at least in terms of decidability, extensions to multiple propositions per
position do not seem to be a cause for major harms. Yet, the logics have further peculiarities which
are more crucial with regard to the features mentioned above. As we have stated in Section 4.3.2,

43

Chapter 5. Motivating Questions on Data Logics

the quite convenient and expressive logic LTLY (X, U) looses its decidability when past operators
are added or w-words are taken under consideration. These results led to several attempts to find a
fragment of LTLY which gives the ability to explicitly access past positions and which preserves its
decidability on w-words. One outcome of this search was the study of safety LTL% (X, U) which does
not contain past operators, but is decidable on 1-complete w-words. However, the strong syntactical
restriction that the U-operator must not occur under an even number of negations can lead to very
long and inconvenient safety LTLY (X, U)-formulas. For instance, the authors in [142] express the

simple U-formula Uy by = [(ﬁz/})U(ﬁw/\ (wp\/ﬁXT))} and it does not seem that there is a shorter

equivalent formula in safety LTLY (X, U). A further logic which is expressivity-wise subsumed by
LTLY is FO3(Suc, <). Due to its order relation, it allows to distinguish between the future and the
past of positions and is, moreover, decidable on 1-complete data w-words. However, it looses its
decidability when more than one data value per position is allowed. Another fragment of LTLY (and
an extension of CLTL*) is PLRV. This logic contains past operators and is decidable on infinite
data words with multiple data values at each position. However, one shortcoming in PLRV is that
the access to data values is limited. Besides formulas of the form @a ~ X*@b which allow to compare
data values of positions of some bounded distance ¢, the access to data values is realized by formulas
of the forms @a ~ (¢)@b and @a % (p)@b. They allow to fix some data value d of the current position,
to “jump” to some target position where some constraint with respect to d holds and to evaluate
some formula ¢ at the target position. The shortcoming of this kind of formulas is that the distance
between the current and the target position within the class of d is arbitrary. This makes it difficult
to express properties talking about all consecutive positions within a single class like Property CS5
which we formulated in LTLY by G[req —l enger- X ((T€q = = Tosender) U(2CKA Noreceiver))] -

The logic PLRV constitutes the starting point for the design of our new logic in Chapter 6. We
propose a logic called Data Navigation Logic which (i) contains past operators, (ii) is strictly more
expressive than PLRV (and the decidable fragment of FO7(Suc, <)), (iii) allows navigation via reg-
ular expressions in the spirit of REM and PathLog and (iv) remains decidable on finite and infinite
data words with multiple data values and propositions at each position. Our logic is also inspired
by [115, 116, 146, 181, 48] which propose different temporal logics containing regular expressions to
describe paths on finitely labelled structures. Naturally, in order to preserve decidability, we have
to be careful with regard to the access of data values. We call our concept of data value access
navigation along data values. This means that besides the classical navigation along consecutive
word positions (like, for instance, in LTL), our logic additionally allows navigation along consecutive
class positions. For example, the LTL*-formula above can be expressed in Data Navigation Logic by
G[req — Cogenger (X=((—Teq)U—ack))|. Here, the class operator C allows to “dive” into the class
of the sender-value at the current position whereupon temporal operators are evaluated within this
class. Since Data Navigation Logic allows to simulate all classical temporal LTL-operators, we used
them as abbreviations in the latter formula. Our decidability proof is quite simple and relies on a
reduction to the non-emptiness problem for Data Automata. We also show that limited extensions
of this kind of navigation result in undecidability. Finally, we discuss how far our logic can be
extended by some kind of navigation along unequal data values while preserving its decidability.

Storage of positions vs. storage of data values

In Section 4.3.2, we introduced LTLY [82] and summarized known results on this logic. To put it
in a nutshell, the logic is an extension of usual LTL which allows to store data values in registers
({la,) and to ask whether the value of some attribute is equal to the input of some register (). In
[82, 84, 200], the authors noted that LTLY is essentially a hybrid temporal logic. The term hybrid
logics appears in the literature as a generic term for modal and temporal logics extended by first-
order concepts of binding variables to positions. Hybrid logics were first considered in [176] and

44

intensively studied on linear structures in, e.g., [28, 100, 184]. Besides the operator |z which binds
a variable x to the current position, hybrid logics usually contain expressions like on(z).¢! and x.
The formula on(z).p demands that ¢ holds at the position bound to x and the atomic formula
evaluates to true only at the x-position. It is known that such a “hybrid machinery” does not give
additional expressive power to LTL on classical words [102, 100].

In Chapter 7, we introduce Hybrid Temporal Logic on data words (HTL™) and compare it to
LTLY in terms of expressivity. Instead of the LTLY-operators |/5, and f}3,, the logic HTL™ contains
the operators |* and @a ~ x.@b for variables x and attributes a and b. Additionally, it contains
atomic formulas of the forms z and on(z).p. We highlight the differences between the binding
mechanism in HTL™ and the freezing mechanism in LTLY: While the LTL"%-operator |5, stores in
register r only the value of attribute a at a current position 7, the HTL™-operator |* memorizes the
whole position i by assigning x to it. After having left position i, LTL'-operations of the form %,
allow to compare current data values only against values stored in registers, while HTL™ -operations
of the form @b ~ x.0a allow equality tests between all attributes a at the z-position and all attributes
b at the current position.

We show in Chapter 7 that HTL" is strictly more expressive than LTLY and there is actually
an HTL™-formula using only two variables and one attribute for which no equivalent LTLY-formula
exists. Moreover, HTL™-formulas can be non-elementarily more succinct than LTLY-formulas.
Surprisingly, the additional expressive power vanishes when the consideration is restricted to a
single variable. We show that every HTL™ -formula using at most one variable can be translated
into an equivalent LTLY-formula. If we restrict the number of attributes to one, it can be even
shown that HTL™ with a single variable and LTLY with a single register are expressively equivalent.
Yet, HTL™-formulas with only one variable can be exponentially more succinct than LTL*. Finally,
we show that the variable hierarchy of HTL™ and the register hierarchy for LTL" are infinite, i.e.,
for every natural number k there is always a k' > k such that HTL™ with &’ variables is strictly
more expressive than with k variables and LTLY with &’ registers is strictly more expressive than
with k registers.

Designing an automata model for two-variable logic

In Section 4.3.1, we mentioned that in [41] the decidability of EMSO7%(Suc, <) on 1-complete data
words was shown by a reduction to the non-emptiness problem for Data Automata. Moreover, the
authors proved that this automata model can be characterized logically by EMSO3(Suc, Suc..). The
complexity of FO3(Suc, <) (and that of EMSO?%(Suc, <)) was shown to be equivalent to reachability
in Petri Nets [106] which is a hard problem whose precise complexity is not known yet. This result
motivated the search for fragments of FO3%(Suc, <) with moderate complexities. If the successor
relation Suc is skipped in FO3(Suc, <), complexity drops down to NEXpPTIME [41]; if, instead, the
linear order < is skipped, complexity drops down to 2NEXPTIME [170]. Here, we focus on the latter
fragment, namely FO%(Suc), and its extension EMSO3%(Suc). To the best of our knowledge, there
is no automata model which, in analogy to the relationship between EMSO%(Suc, Suc..) and DA,
corresponds to EMSO%(Suc). Thus, one arising question is whether there is a natural restriction of
Data Automata which complexity-wise behaves well and is logically characterized by EMSO%(Suc).
Such a model can be useful in the study of expressivity questions and the design of model checking
procedures for FO3(Suc).

In Chapter 8, we introduce a restriction of Data Automata called Weak Data Automata (WDA)
for which we prove that it is expressively equivalent to EMSO7%(Suc) on finite data words. Weak
Data Automata differ from Data Automata in that they do not contain any class automaton, but
can check simpler conditions on sets of data values. We show that WDA are strictly less expressive

'In hybrid logics, the operator on(z) is usually notated as @z. To avoid confusion with the operator @a which
accesses the data value of attribute a in data logics, we use a different notation here.

45

Chapter 5. Motivating Questions on Data Logics

than Data Automata and incomparable with Register Automata. With the help of this model
we can prove that EMSO%(Suc) is strictly less expressive than EMSO3%(Suc, <), a contrast to the
equivalence of these logics on classical strings. Furthermore, we derive from existing results that
the non-emptiness problem for WDA can be solved in non-deterministic doubly exponential time.

As one of the motivations for the design of WDA is model checking and system traces are
usually modeled as infinite words, we are also interested in the question whether the complexity
and expressivity results for WDA carry over to data w-words. Following the approach in Biichi Data
Automata, we define Weak Biichi Data Automata (WBDA) which result from WDA by equipping
the base automata by a Biichi acceptance condition. We show that WBDA can be characterized by
EMSO7%(Suc) extended by existential quantification over infinite sets. Furthermore, all expressivity
results for WDA carry over to WBDA, that is, WBDA are strictly less expressive than Biichi
Data Automata and incomparable with Biichi Register Automata. Finally, there is a polynomial
reduction from the non-emptiness problem for WBDA to the same problem for WDA. The last
result is not presented in this work, but can be found in our work [130].

46

Chapter 6

Navigation along Data Values

<

p,q
a 2

p

=

nqg p,T

NOEIEES
o @)

N Co ot

@) =

(@)

oo N Ot

As mentioned in Chapter 5, in this chapter we will design and study a logic called Data Nav-
igation Logic which allows navigation by regular expressions and enables reference to the past.
The logic is strictly more expressive than PLRV on general data words and than FO3(Suc, <) on
1-complete data words. Furthermore, it preserves decidability on finite and infinite data words.
First, we will introduce in Section 6.1 Basic Data Navigation Logic, the core of Data Navigation
Logic, which, besides navigation along consecutive positions, allows navigation along consecutive
class positions. To give an example from this fragment, the formula (¥])¥s simulates the LTL-
formula 1)1 Ut)e. Similarly, the formula Cea(¢)7)=1)2 demands that ¢, Uty holds within the class of
the value of attribute a at the current position. Within brackets of the forms () and ()=, the logic
also allows arbitrary regular expressions over formulas so that its navigational capabilities exceed
classical LTL. The decidability of the satisfiability problem of this logic is obtained by reduction to
the non-emptiness problem for Data Automata. In Section 6.2, we will stress the main techniques
in this reduction in the case of finite data words. In Section 6.3, we will show that these techniques
can be adapted to the case of data w-words. Afterwards, we will demonstrate in 6.4 that subtle
extensions in the style of navigation lead to undecidability. In brief, these extensions include the
ability to access positions between consecutive class positions, the restriction of the scope of past
navigation and the simultaneous navigation along two data values. In Section 6.5, we will turn to-
wards features allowing inequality tests on data values and discuss how far Basic Data Navigation
Logic can be enriched by them such that decidability is preserved. Our discussion will be conducted
around a powerful U-like operator allowing inequality tests at some target position as well as all
positions between the current and the target position. As two outcomes of these discussions we will
define Data Navigation Logic and Extended Data Navigation Logic. While for the first logic we will
show that it remains decidable on finite and infinite data words, for the latter one we will only be
able to prove decidability for the finite case. In Section 6.6, we will compare the expressive power
of Data Navigation Logic to other logics introduced in Section 4.3. Open questions and further
works which build on our results, but were published during the preparation of this thesis will be
discussed in the concluding Chapter 6.7.

47

Chapter 6. Navigation along Data Values

6.1 Basic Data Navigation Logic

In Data Navigation Logic we distinguish between global formulas, class formulas, global path ex-
pressions and class path expressions. Class formulas and class path expressions only occur in the
scope of the class quantifier C. Path expressions describe navigation on the data word and can be
seen as generalizations of the temporal operators of LTL. In this section, we introduce Basic Data
Navigation Logic (B-DNL), the core of Data Navigation Logic. Given a set Prop of propositions and
a set Att of attributes, the syntax of global formulas ¢ and class formulas ¢ in B-DNL is defined
as follows:

e=p|w|leAp|{phe|{p) ¢ |Coth
V=@ | [YA | (0)=y | (0)Zt) |~Ca

with p € Prop, a € Att and ¢ € Z. Next, we give the syntax of global path expressions p and class
path expressions 6:

p=clelp-plptplp
O:=€|y|60-0160+0]06"

where ¢ is a global and 1 a local formula. The logic B-DNL consists of all global formulas.

Intuitively, global path expressions are used for navigation along consecutive positions while
class path expressions enable navigation in classes. Observe that the elementary components of
these expressions are not only propositions, but entire formulas. The global formula (p)y holds at
a position ¢ of a data word w if there is some position j > ¢ in w such that ¢ holds at j and the
expression p holds on w[i,...,j — 1], i.e., the subword of w from ¢ to j — 1. The application of
the class operator Cs, at some position 7 (i) restricts navigation to the class word of the value of
attribute a at position ¢ and (ii) starts the evaluation of the formula in its scope at position i + £.
Let (0)_1 and ~@b be class formulas occurring within the scope of a class operator which restricts
navigation to the class of some data value d. Then, the formula (#)—1 holds at some position i of w
if there is a position 7 > i carrying value d for some attribute, 1) holds at position j and 6 holds on
wqlt, . ..,7 — 1], i.e., the subword of w from ¢ to j — 1 restricted to the class of d. The formula ~@b
is true at position 7 if the value of attribute b is defined at 7 and equal to d. The path expressions
(p)~ and (A)Z are the counterparts of (p) and (f)_ and describe navigation to the past. The full
formal definition of the semantics can be found in the Appendix (Section A.7).

We call formulas of the forms (p)y and (0)=1) future formulas and those of the forms (p)“ ¢ and
(0)=1p past formulas. The superscript £ in C&, is called the shift value of the class operator. We
often omit the shift value if it is equal to 0. Furthermore, in formulas over a single attribute a we
usually skip the attribute reference @a and write C* and ~ instead of C§, and ~@a, respectively.

Classical LTL-navigation can be easily expressed in B-DNL. We define Xy = (T)¢, v1Ups =
()2, Xy = (T)=yp and)1 U_1py = (¢])=1)s for global formulas ¢, p1, 92 and class formulas
1, 11,%2. The operators F, F_, G and G- and the past-versions of all of these LTL-operators are
defined analogously. For convenience, we will often use LTL-operators within B-DNL-formulas. The
fragment of B-DNL where in place of path expressions only these restricted operators are allowed,
is called Basic Data LTL (B-DLTL).

We proceed with some example formulas.

Example 10. We first consider Property CS3 from our initial example in Chapter 2:
FEvery client sending a request gets an acknowledgement after some time.

The property is expressed by the following B-DNL-formula:

G |req — Cogenger (F=(ackn fv@receiver))}

48

6.2. Decidability of Basic Data Navigation Logic

We now turn to the three Properties CS5, CS6 and CS7 to which we drew particular attention
in Chapter 2. Property CS5 says:

Whenever a client sends a request, it does not send any further request until it receives an answer.
Since this property can be checked by exploring the classes of all process IDs separately and B-DNL
is tailored for this purpose, the formulation of this property is an easy task:

G |req — Cq ((ﬂreq)U:ack)} .

@sender

However, it is not clear how to express the following Property CS6:

Between the creation of a client p and the receiving of the server information by p, there is no
request to the server.

The reason is that the property talks about all positions between two positions in the same class.
Indeed, we will see in Section 6.4 that extending B-DNL by some ability to capture this kind of
properties leads to undecidability. Now, we look at Property 7:

Whenever a client p receives an acknowledgement, the server gets a request after some time and
the next such request is from a client different from p.

The property talks about two distinct data values at two distinct positions. While by formulas of
the form —Cg,~@b we can express that attribute values of positions of some bounded distance ¢ are
not equal, it is not obvious how to express the same for positions of arbitrary distance. However,
in contrast to the case with CS6, we will show in Section 6.5 that there is a decidability preserving
extension of B-DNL capturing properties like CS7. o

Before we continue, we recall some notions and notations useful in the following sections. For
¢ € 7, the shortcut X’ stands for (i) ¢ consecutive repetitions of X if £ > 0 and (ii) |¢| consecutive
repetitions of X, otherwise. Likewise, for ¢ € Ny and path expressions 7, we use 7 as a shortcut
for the ¢-times concatenation of 7. For example, p> = p-p-p. For a finite word w = w; ... w,
of length n, we denote by w!* = w,, ...w; the reverse of w. For a langage £ consisting of finite
words, the reverse L of £ is defined as {w® | w € £}. Accordingly, by the reverse language of an
automaton A deciding words of finite length, we mean the language {w’ | w is accepted by A}.

6.2 Decidability of Basic Data Navigation Logic

This section is devoted to the decidability proof of the satisfiability problem for B-DNL. First we
will show that the satisfiability problem for this logic is decidable on 1-complete data words. To
this end, we will define a normal form for B-DNL-formulas and proof that every B-DNL-formula
can be translated into an equivalent formula in normal form. Then, we will explain how some
parts of B-DNL-formulas in normal form can be expressed by NFA and Register Automata (RA).
Remember that RA (and of course NFA) are captured by Data Automata (DA) [39]. With the help
of these auxiliary automata we will reduce the satisfiability problem of B-DNL on 1-complete data
words to the non-emptiness problem for DA which is decidable [41]. Finally, we will proof that the
satisfiability problem for B-DNL on general data words is reducible to the the same problem on
1-complete data words.

We start with some new notions. We call formulas of the forms {p) and {(p)“ ¢ basic global
formulas and those of the forms (p)_1 and (p)= basic class formulas. By basic formula we mean all
formulas of these kinds. We say that a B-DNL-formula is in normal form if in all of its sub-formulas
of the form Cgaw with ¢ # 0 either we have 1) =~@b or 1) = = ~@b for some attribute b.

49

Chapter 6. Navigation along Data Values

Next, we define an auxiliary formula which will be useful in the translations of B-DNL-formulas
into formulas in normal form. Givenan ¢ > 1,a k € [0,..., /], an attribute set Att and an attribute
a € Att, we define the formula countﬁi,@a in normal form which is true at a position ¢ of a data
word w over Att if and only if position ¢ + ¢ exists and (4,...,i + ¢] N clpos(w,val(w,i,@a)) = k,
i.e., there are exactly k positions in (4,...,7¢ + £] where the value of attribute a from position i
occurs:

countfi@a =XTA \/ [(/\ \/ cl ~@b) A (/\ /\ ~CJ, N@b)}

IC[1,...,0),|T|=k jE€IbEhtt FE[L,...,¢)\I bEAtE
For ¢ < —1 and k € [0,..., |¢|]] we can similarly define a formula countfgi,@a which expresses that
position 7 + ¢ exists and there are exactly k positions in [i + 4,...,47) where the a-value of position

1 appears.

Proposition 1. Every B-DNL-formula can be translated into an equivalent formula in normal
form.

Proof. Let ¢ be a B-DNL-formula over some attribute set Att. We give a procedure which trans-
lates ¢ into an equivalent formula in normal form. Starting from the innermost sub-formulas, the
procedure converts every sub-formula into an equivalent one in normal form. Clearly, it suffices to
consider formulas of the form C§,.

Let C4,% be a sub-formula of ¢ such that £ # 0 and 1 is already in normal form, but neither of
the form ~@b nor of the form = ~@b for any attribute b. By performing the following steps, Cs,v
is converted into an equivalent formula in the desired form.

1. Using the rules of De Morgan, the formula v is translated into an equivalent formula where the
negation operator occurs at most immediately in front of global formulas, basic class formulas
and the ~@-operator.

2. With the help of the equivalences

b Céa(Xl A XQ) = C(gaxl A Céax27
o Céulx1V x2) = Chix1 V Céaxe,

o Cb,—X = Cea ~0a A X T A=CE x (observe that Co, ~@a just guarantees that the value of
attribute a is defined at the current position), and

e Cix = X’y for global formulas x

it is enforced that in all sub-formulas of the form C§,x, the sub-formula Y is either a basic
class formula or of the form ~@a. Thus, it remains to deal with formulas Céax where x is a
basic class formula.

3. In this step, every formula of the form C§,x where x is a basic class formula, is replaced by
an equivalent formula y§, in normal form which uses the auxiliary formula count’:,ﬁy@a. The
definition of x&, depends on whether £ is positiv or negativ and x is a future or a past formula.
For instance, in case that £ > 0 and Y is a future formula, the formula x5, evaluates x at the
smallest position which is in the class of the current data value and greater by at least ¢. In
the case that ¢ > 0 and x is a past formula, y is evaluated at the greatest class position of
distance at most ¢. Observe that this is in accordance with the formal semantics of B-DNL.
We give the full definition of x§,:

50

6.2. Decidability of Basic Data Navigation Logic

e If x is a future formula and ¢ > 0, then

¢
Xéa = \/ [countf,ﬁﬁ@a/\ [((\/ Céa N@b) /\C@OaX’;x)\/((ﬁ \/ Céa N@b) /\C@OaX’iHX)H .

k=0 beAtt beAtt

If x is a past formula and ¢ < 0, then

€|
vea = \/ [countfe‘;@w [((\/ €&, ~ab) A CoX"x)v

k=0 beAtt

(- ¢h~aw) n cgax:<k+1>x)ﬂ.

beAtt

If x is a future formula and ¢ < 0, then

€]

k.l —
Xéa = \/ (CountAtt,@a A CgaX:kX)‘
k=0

If x is a past formula and ¢ > 0, then

14

k0
Xéa = \/ (CountAtt,@a A CgaXiX)
k=0

O

Next, we highlight the relationship between path expressions and DFA. To this end, we first
define some notions. Let p be a global path expression. The component set Comp(p) of p consists of
all maximal formulas the expression p is composed of. More formally,

e Comp(p)=0if p=e,

e Comp(p) = {p} if p is a global formula ¢,

p)
e Comp(p) = Comp(p1) U Comp(p2) if p is of the form p; - p2 or p; + po, and
p)

e Comp(p) = Comp(p’) if p is of the form p™*.

We define Prop|, as the set {py|p € Comp(p)} of propositions. For instance, for p = (((p - p) +
q)r - (r*)p)* we have Propg = {P((p-p)+q)r Pr+)p}- Obviously, if p’ results from p by replacing every
maximal formula ¢ € Comp(p) by py, then, p’ constitutes a usual regular expression over Propg. For
a basic global formula ¢ = (p)x, we call the regular language described by the regular expression
p' - py the regular language induced by ¢. The induced language for basic class formulas is defined
analogously. The following observation is straightforward.

Observation 1. For every basic formula ¢, one can construct a DFA A, which decides the regular
language induced by ¢.

The class of RA constructed in the proof of the next proposition will help to deal with the shift
values of class operators in the decidability proof for B-DNL. We say that a 1-complete data word
w is valid with respect to a proposition =, with £ € Z if for every position ¢ of w it holds that i is
labelled by =, if and only if position ¢ + ¢ exists and has the same data value as position i. For
€ Z,let L_, be the language of 1-complete data words over the single proposition =, which are
valid with respect to =y.

51

Chapter 6. Navigation along Data Values

Proposition 2. For every ¢ € Z, the language £_, can be decided by an RA.

12

Proof. We show that for every ¢ € Z, one can construct an RA which decides the language L—,.
For the sake of simplicity, we describe a relaxed register automaton as introduced in Section 4.2.1.
The automaton needs only ¢ registers. We define its input alphabet by ¥ = {0, {=,}}. In case of
¢ = 0 the construction of the automaton is obvious. We consider the case for £ > 0. The strategy
of the automaton is described as follows. In each step, the automaton holds the data values of the
last ¢ positions in its registers. Furthermore, it keeps in its state the equality conditions for all
registers, i.e., the answer of the question after how many steps the input of which register has to be
equal or unequal to the data value at that position. If an equality test succeeds at some position
i, the corresponding register r is rewritten by the data value of position ¢ and, depending on the
proposition at i, the equality conditions are updated. In particular, if position i is marked by =,
the automaton updates its state by the information that the data value of position ¢ + ¢ has to be
equal to the data value of register r. Analogously, if it is not marked by =,, the automaton stores
the information that position i + ¢ must not exist or must have a different data value than that of
r. Note that an equality test with some register r can be carried out by a (relaxed) transition of
the form (r,s,0) — s and an inequality test by one of the form ({r},s,o) — (1/,s’). In case of
¢ < 0 the only difference is that for each position, the automaton guesses in advance whether the
{-next position is marked by =, or not. o

After these preparations, we can give the proof of the following theorem.
Theorem 2. Satisfiability for B-DNL on finite 1-complete data words is decidable.

Proof. Let ¢ be a B-DNL-formula over some proposition set Prop and a single attribute. We will
construct a DA D, = (B,,C,) which is non-empty if and only if ¢ is satisfiable. Having this, the
desired result follows from the decidability of the non-emptiness problem for DA [40].

Due to Proposition 1, w.l.o.g. we can assume that ¢ is in normal form. We introduce the

proposition set Prop$™® = {p, | x is a (global or class) sub-formula of ¢}. In order to deal with

the class operator C*, we additionally define the proposition set Prop, = {=r,=r41s s =k-1,=k}
where 7 and k are, respectively, the smallest and greatest shift values occurring in ¢. The DA
D, reads 1-complete data words over the proposition set Prop U Propfpub U Prop,. We say that a
1-complete data word w is wvalid with respect to a sub-formula x of ¢ if for every position i of w, it
holds that i is labelled by p, if and only if

e w,i =y in the case that x is a global formula, and
e w,i = Cy in the case that x is a class formula.

It is easy to see that ¢ is satisfiable if and only if there is a data word w such that w is valid with
respect to all sub-formulas of ¢, it is valid with respect to all propositions in Prop; and the first
position of w is labelled by p,. Keeping in mind that DA are closed under intersection [40], it is
easy to see that D, is obtained by the intersection of

e some DA Diy;¢ which checks that the first position of the input word is labelled by p,,

e some DA D_, for every =¢€ Prop_, which checks that the input word is valid with respect
to =¢, and

e some DA D, for every sub-formula x of ¢, which checks that the input word is valid with
respect to x, under the assumption that it is valid with respect to all strict sub-formulas of x.

52

6.2. Decidability of Basic Data Navigation Logic

The construction of Dip;4 is easy. By Proposition 2, for every =,€ Prop_, one can construct an
RA which tests that the input word is valid with respect to =p. As RA are captured by DA [39],
the DA D_, is constructible for every =,€ Prop,. It remains to show how for every sub-formula
x of ¢, the automaton D,, can be constructed. We make a case distinction on the structure of x
and remind the reader that ¢ is in normal form. This means that no basic class formula is in the
scope of any class operator with another shift value than 0. Note also that for every sub-formula
X of ¢, we can assume that D, reads data words which are already valid with respect to all strict

sub-formulas of x. We omit the straightforward cases.

e x = {(p)y: The main work is done by the base automaton of D,. The class automaton
accepts all input words. The base automaton is constructed as follows. By Observation 1,
we can construct a DFA A, which decides the regular language induced by x. Let A} be a
simple extension of A, which checks that the input word has a prefix matching a word from
the language of A,. Moreover, let A_;(be the automaton deciding the complement of the
language of A . Using A} and A_;(we can construct a Finite Alternating Automaton (AFA,
for definition, see Section 3.2) A7 which starts A} at every position marked by p, and starts
A_;(at all other positions. By [56, 62] A} can be converted into a DFA AY’. From this DFA
we easily construct a Letter-To-Letter Transducer (LLT) which simulates A;’ on the input
part and outputs arbitrary symbols. This LLT constitutes the base automaton of D,.

e x = (p)“1: The construction is similar to the last case. The main difference is that the base
automaton results from a Two-Way Alternating Finite Automaton (AFA) which at every
position marked by p, starts a sub automaton A;(which moves backwards and ensures that
the so far read word has a suffix matching a word from the reverse language of that induced
by (p)i. At positions which are not marked by p, it is checked by a complementary sub
automaton that there is no such suffix.

e x = (0)_1: Note that due to the definition of the normal form, y cannot occur in the scope of
a class formula whose shift value is different from 0. Thus, we can assume that x is implicitly
preceded by C°. Moreover, due to the semantics of B-DNL, it can be assumed that all formulas
in the component set of § and the formula 1 are also implicitly preceded by C°. Hence, by
the assumption that the input word w is valid with respect to all strict sub-formulas of y,
it suffices to check that every position ¢ with some data value d the label p, is a starting
point of a sequence in the d-class in w which matches a word from the language induced by
x. Consequently, this case is analogue to the case x = (p)1 with the difference that the roles
of the base and class automaton are interchanged. Here, the class automaton fulfills the main
work and the base automaton just relays the input symbols to the output. The construction of
the class automaton is analogue to the construction of the base automaton in case x = (p)1.
To be precise, we first construct an automaton A, which decides the language induced by
(#)—1. Then, the class automaton is the DFA resulting from the AFA which (i) for every
position marked by p,, starts a sub automaton assuring that the remaining part of the word
has a prefix matching a word in the language of A, , and (ii) for every other position, spawns
an automaton testing that there is no such prefix.

e Y = Cv: Due to the validity of the input word with respect to strict sub-formulas of y, it
suffices that the base automaton checks that a position is labelled by p, if and only if it is
labelled by py, also. There is no task to do for the class automaton.

e x = Cl~ with £ # 0: As it can be assumed that the input word is valid with respect to =y,
the base automaton just ensures that a position is labelled by p, if and only if it is labelled

by =y.

53

Chapter 6. Navigation along Data Values

e x = C’~~ with ¢ # 0: In analogy to the latter case, the base automaton makes sure that a
position is labelled by p, if and only if it is not labelled by =,.

e y =~: Since formulas of the form C’~ with ¢ # 0 are handled separately, we can assume here
that x is implicitly preceded by C. Then, due to the reason that we deal with 1-complete data
words, such a formula holds at all positions. Hence, the base automaton guarantees that all
positions are labelled by p,.

e = —): Observe that, due to our construction in the other cases, it is sufficient that the base
automaton assures that a position is labelled by p,, if and only if it is not labelled by py.

O
Now, we can state the main theorem of this section.
Theorem 3. Satisfiability for B-DNL on finite data words is decidable.

Proof. We will show that the general satisfiability problem for B-DNL can be reduced to the sat-
isfiability problem for B-DNL on 1-complete data words. Then, the result follows by Theorem
2.

Let ¢ be a B-DNL formula. Due to Proposition 1, we can assume w.l.o.g. that ¢ is in normal
form. We will translate ¢ into a formula ¢’ such that ¢ is satisfiable if and only if ¢’ is satisfiable
on 1-complete words. The formula ¢’ will simulate ¢ on an encoding of general data words which
is similar to the encoding used in [79].

Let Prop and Att = {aj,...,an} be, respectively, the set of propositions and attributes occur-
ring in . We first explain how we encode general data words over Prop and Att by 1-complete ones
over a single attribute and the proposition set Prop U {a1,...am, D} with some fresh proposition
D ¢ PropU{ai,...,an} Figure 6.1 presents the encoding of an exemplary word.

b, q T rp
ap 2
ag
as 7 5 8
a;, D ap a3, D e el B a;, D a,D a3, D
P4 P4 P:q ’ T T r rp rp r,p

2 1 7 3 7 5 9 4 6 2 5 8

Figure 6.1: The encoding of a general data word by a 1-complete one

Every position i of a general data word w is represented in an encoding w’ by a sequence of m
positions called the block for position i. Each position of such a block carries the proposition set
props(w,i). Moreover, for every j € {1,...,m}, the j-th position of the block carries proposition
a; and no other a; with k # j. Furthermore, if attribute a; is defined at position ¢ of w, then, the
Jj-th position of the block additionally carries proposition D and the data value val(w,i,@a;) of
attribute a; at position 4 of w. Otherwise, the j-th position of the block does not have proposition
D and it carries an arbitrary data value not appearing anywhere else in the encoding.

The formula ¢’ is evaluated on 1-complete data words over the proposition set Prop U {ay, ...,
am, D} and a single attribute, say a. It enforces that every satisfying word represents an encoding
of a data word over Prop and Att. The formula consists of a conjunction of the formulas pe and
t(¢) where pe expresses that the data word is indeed an encoding as described above and t(y)
simulates ¢ on the encoding.

54

6.2. Decidability of Basic Data Navigation Logic

The formula e is the conjunction of e, peq and pe;. The first conjunct expresses that every

position carries exactly one proposition from {aj, ..., a,} and the word consists of blocks of length
m:
m m m—1
Ye; =ai A G[\/ a; A /\ (ai — /\ —|aj) A /\ (ai — Xai+1) A (am - (Xay Vv ﬁXT))}
i=1 i=1 je{1,...,mp\{i} i=1

The second conjunct e, states that all positions within the same block carry the same propositions

from Prop:
m—1

@eQZG{ /\ (ai — /\ (pHXp))]

=1 pEProp

The last conjunct guarantees that each data value appearing at a position without proposition D
occurs only once:

pes = G[~D — C(-X"T A =XT)].

Before giving the full definition of the translation ¢, we illustrate by an example the underlying
idea. Suppose that m equals 5. We will define ¢ in such a way that for a formula

§= (P q)(Coay(r*)=q)

the formula ¢(€) is equivalent to

(p-T*-q - THX? (D AC([E S0 ((r Ay A count]{f;;'a) TR *):q).

Due to our assumption that every block has length 5, after the evaluation of each of the formulas
p and ¢, the control moves (by T%) to the last position of the current block so that the following
formula is evaluated in the following block. As the class operator in £ fetches the data value of
ag, the control in the resulting formula first navigates (by X?) to the position representing ag in
the current block, assures (by D) that the value of this attribute is defined and applies the class
operator. In order to avoid the failure that two concatenated formulas within the following class
path expression are evaluated in the same block, the control is shifted to the last class position
within the current block after each evaluation of r. The distance of these position is determined
with the help of the attribute represented by the current position and the auxiliary formula count.

We now describe the definition of translation ¢ in detail. Given a formula 1, we obtain the
formula ¢(1) by inductive construction. The construction makes use of the auxiliary translations
tiy tgex, tcex, tgex and to,,. For a global formula y, the formula #;(x) enforces that x is evaluated on
the i-th position of the current block:

ti(x) = _/\(aj - X"7x)

The other auxiliary translations are applied on path expressions and will be explained later. In the
following, please keep in mind that ¢ gets formulas in normal form. We start with the translation
of global formulas. Recall that ¢ steps into one direction on the original word corresponds to m/
steps into the same direction on the encoding:

e t(p) = p for propositions p

e t(—x) = —t(x)

55

Chapter 6. Navigation along Data Values

e 1(x1 A x2) =tx1) At(xz)

o t({p)x) = (tgex(p))t(x)

o t({p)"X) = (tgex(p)) “t(x)

o 1(Cs,, ~@aj) =t;(D AC™HI /(DA ~)) for i,j € {1,...,m} and £ € Z

o 1(Céy,~ ~Qaj) =t;(D AC™ I (=D V = ~)) fori,j€{l,...,m} and £ € Z
o (Caa,X) = t;(D ACt(y)) for i € {1,...,m}.

We proceed with the translation for class formulas. Remember that the data values of a single
position in the original word are distributed over an entire block in the encoding;:

o {(~0Qa;) = /\;n:1 (a; — C*J(DA ~)) where i € {1,...,m}
o t((0)=x) = (teex(0))=t(x)
o t({0)2X) = (fex(0))Zt(X)-

Now, we present with the translation of global path expressions. As demonstrated in the example
translation of &, for global formulas y that are occurring within future expressions, the formula
tgex(X) first evaluates x on the current position and then navigates to the last position of the current
block. The result is that a potentially concatenated following global formula will be evaluated on the
consecutive block. For global formulas that are occurring in past expressions, the first position of
the current block has to be found. The distance of the last or first position of a block is determined
with the help of the propositions {ay,...,amn}:

o i

(
(
(
® lgex(p1 - p2) = tgex(p1) - tgex(p2) and toee(p1 - p2) = tgex(p1) - tgex(p2)
® tgex(p1 + p2) = tgex(p1) + tgex(p2) and ty., (p1 4 p2) =t (p1) + tgex(p2)
(

Finally, we give the translation for class path expressions. The evaluation of formulas within class
path expressions is similar to that in global path expressions. If a formula x occurs within a future
class path expression, the evaluation of x is followed by a navigation to the last position of the
current class within the current block. Analogously, if x occurs in a past expression, the control
moves to the first position of the current class within the current block. In order to find these
position we use the auxiliary formula count:

o teex(t)) = D S ((H(1) A ai A count o) - TF)

o i (V)= E;’;IE}:;O(t(w) Aa; A countl{c;‘;(@:l) STH.

We omit the translations for more complex class path expressions as their translations are along
the lines of the translations for global path expressions. O

56

6.3. Basic Data Navigation Logic on Infinite Data Words

6.3 Basic Data Navigation Logic on Infinite Data Words

In this section, we will work out how the decidability proof for the satisfiability of B-DNL on finite
data words which has been given in the previous section can be extended to data w-words. We will
highlight the main differences between the finite and infinite cases.

First of all, note that the translation given in Proposition 1 carries over to B-DNL-formulas
on w-words which means that every B-DNL-formula on data w-words can be converted into an
equivalent one in normal form. Moreover, we observe that the encoding of general data words by
1-complete ones developed in Theorem 3 as well as the simulation of B-DNL-formulas (in normal
form) on this encoding works smoothly for infinite words. Thus, satisfiability for B-DNL on data
w-words can be reduced to the satisfiability for B-DNL on 1-complete data w-words. Therefore, it
suffices to transfer the result in Theorem 2 to w-words, i.e., to prove that satisfiability for B-DNL
on 1-complete data w-words is decidable.

To this end, we first notice that Observation 1 and Proposition 2 used in the the proof of Theorem
2 can be easily extended to data w-words and Biichi automata. We just have to adapt some notions.
Let p’ be the regular expression resulting from a global path expression p by replacing every formula
¢ from the component set of p by p,. For a basic global formula ¢ = (p)x, we call the w-regular
language consisting of all w-words which contain a prefix matching p’ - p, the w-regular language
induced by . The induced w-regular language for basic class formulas is defined analogously. Using
these notions, the adaption of Observation 1 is straightforward:

Observation 2. For every basic formula ¢ one can construct a Biichi automaton A, which decides
the w-regular language induced by .

Now, we turn to the adaption of Proposition 2. For £ € Z, let w-L—, be the set of all 1-complete
data w-words over the single proposition =, which are valid with respect to =,. Basically, the same
technique described in the proof of Proposition 2 can be used to decide these languages by a Biichi
Register Automata (BRA). Thus we get:

Proposition 3. For every ¢ € Z, the language w-L_, can be decided by a BRA.

4

After this preparation we can state the w-counterpart of Theorem 2. While there, decidability
was established by reduction to non-emptiness of Data Automata, here, we reduce to non-emptiness
of Biichi Data Automata (BDA).

Theorem 4. Satisfiability for B-DNL on 1-complete data w-words is decidable.

Proof. Let ¢ be a B-DNL-formula over some proposition set Prop and a single attribute. We
construct a BDA D, = (B,C,C,,) which is non-empty if and only if ¢ is satisfiable. Then, the result
follows from the decidability of the non-emptiness problem for BDA [40].

The proof proceeds along the same lines as that of Theorem 4. We put particular emphasis on
the differences. We assume that ¢ is in normal form. In analogy to the finite case, the automaton
D, reads 1-complete data w-words over the proposition set Prop U Propf’P“b U Prop, and is the
intersection of several auxiliary data automata which check that (i) the first position of the input
word is labelled by p,, (ii) the word is valid with respect to every =,& Prop_, and (iii) it is valid
with respect to every sub-formula x of ¢, under the assumption that the it is valid with respect
to all strict sub-formulas of x. If we can show that these auxiliary automata are constructible, the
constructibility of D, will follow easily from the closure of BDA under intersection [40].

In the rest of this proof, we deal with the construction of the mentioned auxiliary BDA. The
question how it can be checked that the initial position of the input word is marked by p, does
not need any explanation. Moreover, using Proposition 3 we can construct for every =,& Prop,, a
BRA which checks the validity of the input word with respect to =,. By [39, 41] BRA are captured
by BDA.

57

Chapter 6. Navigation along Data Values

In the following, we explain how to construct an automaton D, for every sub-formula x of ¢
which checks the validity of the input word with respect to x under the assumption that the word
is valid with respect to all strict sub-formulas of x. We omit the cases where the construction is
almost the same as in the case of finite words:

e x = (p)t: Such formulas are checked by the base automaton. The difference to the proof of
Theorem 2 is that we use, instead of Alternating Finite Automata, Alternating Finite Biichi
Automata (BAFA, for definition, see Section 3.2) as an intermediate tool for the construction
of the base automaton. By Observation 2, we can construct a Biichi automaton A, which
decides the w-regular language induced by x. It is known that Biichi automata are closed under
complementation [193]. Let -A_x be the Biichi automaton deciding the complement language
of A,. Using these automata we construct a BAFA which starts A, at every position marked
by p, and starts -A_x at all other positions. By [163], this automaton can be converted into
a Biichi automaton A;(. From this we obtain easily a Biichi Letter-To-Letter Transducer
(BLLT) simulating A’ . The latter BLLT constitutes the base automaton of D.

e x = (p)“¢: In comparison to the proof of Theorem 2, in this case we work with Two-Way
Alternating Biichi Automata (BAFA®"). At every position marked by p, the automaton starts
an automaton which checks that the so far read word has a suffix matching a word from the
reverse language of the language induced by (p)1. At positions not marked by p, it is checked
that there is no such suffix. By [138], this BAFA*" can be converted into a Biichi automaton
from which we get the base automaton of D, .

e x = (p)=t: This kind of formulas are checked by the class automaton of D,. The main
difference to the proof of Theorem 2 is that we have to take into account that the data w-
word can have finite as well as infinite classes. The finite classes are handled by C, the infinite
ones by C,.

O

Based on the reduction in Theorem 3 we conclude:

Theorem 5. Satisfiability for B-DNL on data w-words is decidable.

6.4 Undecidable Extensions of Basic Data Navigation Logic

In this section, we show that small extensions of B-DNL lead to undecidability of the satisfiability
problem. In all proofs of this section, we reduce some undecidable problem to the satisfiability
problem of the considered extended logic, i.e., we construct a formula on finite data words encoding
the problem. Nevertheless, the same problems can easily be encoded on data w-words by requiring
that a finite prefix of the words are labelled by some special proposition and restricting formula
evaluation to these prefixes. Therefore, although our proofs are carried out on finite words, the
results hold also for w-words.

Breaking up class navigation

Basically, the very essence of B-DNL is constituted by navigation along consecutive word positions
and consecutive class positions. Therefore, its abilities to express properties between two class
positions are restricted. If the corresponding class positions are of bounded distance, specifying
positions in between is easy. For instance, the property saying that

58

6.4. Undecidable Extensions of Basic Data Navigation Logic

there is a p-position i and a following r-position j such that i and j have distance 5, they agree
on the value of attribute a and there is a q-position in between

is expressed by the formula F(pACS, (~@aAr) A\t Xiq). However, it is not clear how the following
Property CS6 discussed in Chapter 2 and Example 10 can be expressed in B-DNL, because there
is no bound on the distance between the creation of the client and the receiving of the server
information:

Between the creation of a client p and the receiving of the server information by p, there is no
request to the server.

In the sequel, we will introduce a new operator which makes it possible to express CS6 but whose
availability leads B-DNL to undecidability. We consider an operator E with five arguments. The
evaluation of the operator does not depend on a current position. For a data word w, two attributes
a,b and three propositions p1, ps, p3, we define:

o w = Egaev(p1,p2,p3) if there are positions ¢ < j < k in w such that (w,q) E p1, (w,j) = pa2,
(w, k) | ps and val(w,i,@a) and val(w, k,@b) are (defined and) equal.

Using this operator, we can express Property CS6 easily by —Eecreated,ereceiver (CTt, req, serv). It
is interesting that even though the property expressed by E (on 1-complete data words) can be
checked by Register Automata (by Example 2 in Section 4.2.1) and these automata as well as
B-DNL can be converted into equivalent Data Automata which are decidable, the addition of E to
B-DNL leads to undecidability.

Theorem 6. Satisfiability for B-DNL extended by E is undecidable on finite (and infinite) data
words.

Proof. We will show that the logic is undecidable even in the case with one attribute. The proof is
by reduction from the reachability problem for Minsky Machines with two counters (2-MCM, for
definition, see Section 3.2.2). As this problem is not decidable [162], the result follows.

Given a 2-MCM M = (2,5, s0,9) and a state s € S, we will construct a B-DNL-formula ¢
involving the E-operator such that the configuration (s, 0,0) is reachable in M if and only if v is
satisfiable. Without loss of generality, we assume that s # so (otherwise it is obvious that (s,0,0) is
reachable and the construction of @ is trivial). The formula ¢y is defined over a single attribute
and the proposition set S U Actionsy with Actionsyg = {incy,decy,ifzero; | 1 < k < 2}. Tt
encodes a sequence of transitions of M as a 1-complete data word and ensures that this sequence
induces a run of M reaching (s,0,0).

Before giving the definition of ¢, we first reiterate briefly the three consistency conditions
listed in Section 3.2.2 which ensure that a sequence of transitions corresponds to a run reaching
(s,0,0). Then, we describe how a sequence of transitions can be encoded as a 1-complete data
word. Finally, we show how such an encoding and the consistency conditions can be expressed in
B-DNL by means of the E-operator.

According to Section 3.2.2, a sequence 7 = (s1,acty, s}), ..., (Sn,acty, s,,) of transitions from
0 induces an M-run reaching (s, 0,0) if and only if the following conditions are fulfilled:

o (Consistency with respect to states: It holds that s; = s, s, = s and for all ¢ with 1 <7 < n,
S; = Si+1-

e Consistency with respect to counters: There is a bijection m from the set DECS, = {i | 1 <4 <
n and act; is a decrement action} to the set INCS, = {i | 1 < i < n and act; is an increment

action} such that for each counter k and index ¢ € DECS, with act; = decy, it holds m(i) < i
and act,,;) = incg.

59

Chapter 6. Navigation along Data Values

o (Consistency with respect to zero-tests: For every counter k and index ¢ € DECS, with act; =
decy, there is no ¢ with m(:) < £ < i and acty = ifzero.

Now, we explain how a sequence of n transitions can be encoded as a 1-complete data word
w of length n over the proposition set S U Actionsy. Every position ¢ of w carries exactly one
proposition s; € S and exactly one proposition act; € Actionsys. The propositions s; and act;
represent the transition (sg,actq, s1) and for every ¢ with 1 < @ < n, the propositions s; and act;
represent a transition (s;—1,act;, s;).

The fact that the value of the single attribute is defined at each position can be expressed by
GC~. The property that a word encodes a sequence of transitions which is consistent with respect
to states is also an easy task and can be done without referring to data values. In order to ensure
that an encoding is consistent with respect to counters, we simulate the bijection m by making use
of data values. We assure that the word respects the following conditions:

(1) All data values at inc-positions are pairwise distinct; the same holds for all data values at
dec-positions.

(2) For each counter k with 1 < k < 2 and for every incg-position, there is a greater decg-position
with the same data value.

(3) Likewise, for each counter k with 1 < k < 2 and for every decg-position, there is a smaller
incg-position with the same data value.

Consistency with respect to zero-tests is assured by the following property:

(4) There is no counter k with 1 < k < 2 such that there is an ifzerog-position between an
incg-position and its corresponding decg-position with the same data value.

Property (1) is expressed by

/\ G{inck%C((ﬂX:F: \/ incy) A (-XZFZ \/ incz))}

1<k<2 1<0<2 1<0<2

AN
/\ G[deckﬁc —|X F_ \/ decy) A (-XZFZ \/ decy) }
1<k<2 1<0<2 1<0<2

The following formula expresses Properties (2) and (3):

/\ G[(inck — CF:deck) A (deck — CF;inck)}.

1<k<2

Property (4) is expressed by means of the E-operator. Since we have only one attribute, we forgo
the attribute names attached to the operator:

/\ —E(incy, ifzeroy, decy).
1<k<2

60

6.4. Undecidable Extensions of Basic Data Navigation Logic

Setting limits to the past

The From-Now-On-operator N was introduced in [141] for temporal logics with access to the past
and is used to restrict the range of past operators. If the operator N is applied at a position ¢, the
range of all temporal operators within the scope of N is restricted to positions j > i. After defining
the formal semantics of N, we will show that B-DNL extended by N is not decidable.

We use the operator N only in front of global formulas. Given a data word w, a position 4 in w
and a global B-DNL-formula ¢, we define:

o (w,i) E Ny if (w[i,...],0) = .

Theorem 7. Satisfiability for B-DNL extended by N is undecidable on finite (and infinite) data
words.

Proof. The proof is again by reduction from the reachability problem for 2-MCMs and along the
same lines as the proof of Theorem 6. We highlight the differences. Given a 2-MCM M =
(2,5, 50,0), we encode sequences of transitions in the same way as in that proof. Observe that
the formulas expressing Properties (1)-(3) use usual B-DNL-operators. Thus, we only have to show
how Property (4) ensuring consistency with respect to zero-tests can be expressed in B-DNL+N.
Here, we make use of the N-operator. In order to determine the sequence between an inc- and
its corresponding dec-position, we apply the N-operator at the inc-position, “jump” to the dec-
position and from then on we can be sure that all past positions are in between the two positions:

/\ G [inc;€ — NCF_(decy A G*ﬁifzerok)}

1<k<2

Navigation along tuples of data values

In B-DNL, class navigation is performed with respect to a single data value: the class operator
C§, fixes the data value of attribute a and restricts navigation to the class of this data value. As
demonstrated in Example 10 of Section 6.1, this form of navigation suffices to express properties
like CS3. For this property it is enough to keep track of the ID of the sending process. However,
Property CS9 (see formulations in FO™~ and LTL' in Examples 6 and 7) talks repeatedly about
interactions of two processes, namely a selected server and a selected client. In order to express
properties like CS9, it would be desirable to equip the class operator by the ability to fix the data
values of two attributes so that navigation is restricted to all positions where both values occur.
However, in the following we will show that even a restricted version of such a tuple navigation
leads to undecidability.

We introduce the Tuple-Next-operator TX with three arguments and the following semantics:
Given two attributes a,b and a global formula ¢, the formula TXgaer holds at some position ¢ of
a data word w if

e val(w,i,0a) = d, and val(w,i,@b) = dp for some data values d, and dy,
e there is a position j € pos(w) with j > i where val(w,j,@a) = d, and val(w,j,@b) = dy, and
e at the smallest such j, formula ¢ holds.
We additionally define the Tuple-Previous-operator TX™ as the past counterpart of TX.
Theorem 8. Satisfiability for B-DNL extended by TX and TX" is undecidable on finite (and

infinite) data words.

61

Chapter 6. Navigation along Data Values

Proof. The proof is along the lines of [41]. We reduce from Post’s Correspondence Problem (PCP,
for definition, see Section 3.2.5).

Before giving the reduction, we note that every PCP instance I over an alphabet ¥ can be
extended to an instance I’ such that I has a solution if an only if I’ has a solution with a solution
word of odd length. The instance I’ results from I by adding for each pair (u;,v;) in I, a pair
(#u;, #v;) where # is a new symbol not occurring in X. Observe that a word w is a solution word
for I if and only if #u is a solution word for I'.

Now, let I = (u1,v1),..., (uk,vx) be a PCP instance over . We assume w.l.o.g. that if I has
a solution, it has one with a solution word of odd length. We will construct a B-DNL-formula ;
which includes the operators TX and TX™ and is satisfiable if and only if there is a solution for
I. The formula ; is defined over the proposition set ¥ U Y and the attribute set {a,b} where
Y := {5 | 0 € £}. It encodes a possible solution word u;, ...u;, for I as an {a,b}-complete data
word w with word projection u;, Vg, ... u;, Vs, where for every j with 1 < j < n, v;; results from
v;; by replacing every symbol o by 7. Additionally, the formula checks by access to data values
that w indeed induces a solution word for I. More precisely, the formula ¢; expresses the following
properties:

(1) At every position, both attribute values are defined and exactly one proposition holds. More-
over, the word projection of the data words is of the form w; v;; ... w;, v, with é1,...,i, €

a,....k}.

(2) The data values in the sub-word corresponding to u = w;, ... u;
pattern.

are subject to the following

n

a dl d1 d4 d4 . dm72 dm
b dy d3 dz ds A1 dm—1

The data values for the sub-word corresponding to ¥ = 7;; ... 7;, have the same pattern.

(3) Every data value occurring in the sub-word corresponding to u does occur exactly twice in this
sub-word, except for the data value of attribute b at the first position and the data value of
attribute a at the last position. The same holds for the data values occurring in the sub-word
corresponding to v. Note that from this it follows that the b-value at the first position and
the a-value at the last position must be unique.

(4) Every pair (d,, dp) of data values occurring at some position does occur exactly twice, once in
the u-part and once in the v-part. Moreover, the corresponding position in the u-part carries
a proposition o if and only if the corresponding position in the T-part carries @.

Note that Conditions (2)-(4) guarantee that u = v" where v’ results from T by replacing every
7€ X by o.

Condition (1) can easily be expressed in B-DNL. Next, we explain how the pattern mentioned
in Condition (2) can be expressed for the u-part. The T-part can be handled analogously. Let m
be the length of the longest word occurring in I. For every ¢ with 1 < ¢ < m, we define a formula
)TZ which states that the closest position to the right carrying a proposition from ¥ is ¢ positions
far away, i.e.,)TZ holds at a position ¢ if and only if position ¢ + £ exists, it is labelled by some
proposition from ¥ and all positions j with i < j < i + ¢, are labelled by propositions from X:

ﬁ(xf\/a)A[\lXi\/E.

ceX TES

62

6.5. Decidable Extensions of Basic Data Navigation Logic

Likewise, let)Z be the past counterpart of)7%, ie.,)Z holds at a position 7 if and only if position
1 — £ exists, it is labelled by some proposition from ¥ and all positions j with ¢ — ¢ > j > i are
labelled by propositions from ¥. Using these formulas, the u-part of Condition (2) can be expressed
by the following formula. Note that for every position, there are at most one ¢; and one /5 such
that X—tﬁ> and % hold.

G[<\/o/\(XF \V o) AXF\/ a)> —
ceY gEX gEX

m

([\7 (X A Cl, ~@a) A \7 (Xe A Codf ~©b)} v {

(%0 1 Chy ~b) A \/ (57 1 Cat ~ea)])]
=1 =1

=1
The property referring to the u-part in Condition (3) is expressed by the following formula:
G[(\/ o ANXF \/ a) —
[oceX

(c@a ([XZT AX=(~ea A =X_T)] V [-X=T A XZ(~ea A ~XT)]))

A

G[<U\€/EUAX“F“ \/ a) -

[

(c@b ([XZT AX(~@b A =X_T)] V [-X=T A XZ(~eb A ~XT)]))

The property belonging to the v-part in Condition (3) can be expressed analogously.
Finally, by means of TXeaer and TXg,q, we express Condition (4):

G [/\ (U — ([TX@a@bE A ﬁTX(@:i@bT A ﬁTX@a@bTX@a@bT} V
ocX

[TX 52057 A “TX a0 T A “TX 500 TX g0 T])) A

G [(E — ([TX@a@bU A ﬁTXf@_a@bT A ﬁTX@a@bTX@a@bT} V
TeED

[TX 52000 A ~TXoae T A ﬂTX@“a@bTX@“a@bT}))

6.5 Decidable Extensions of Basic Data Navigation Logic
In the previous section, we discussed the restricted ability of B-DNL to refer to positions between

positions in the same class. A further weakness of B-DNL is that it does not provide operators which
allow to move to some position of unbounded distance which has a data value which is different from

63

Chapter 6. Navigation along Data Values

some value at the current position. For instance, it is not obvious how the following Property CS7,
which we presented in our introductory client-server example and formulated in LTLY (Example
7), can be expressed in B-DNL:

Whenever a client p receives an acknowledgement, the server gets a request after some time and
the next such request is from a client different from p.

One difficult aspect in this property is to identify pairs , j of positions of unbounded distance which
belong to distinct client IDs. The second challenge is to set conditions on all positions between &
and j. In this section we will discuss in what extent B-DNL can be expanded so that properties
like CS7 can be expressed and decidability is preserved.

We will consider a strong U-like operator U and its past counterpart U”™. Roughly speaking,
they allow to fix some data value from a current position 4, move to some position j where some
constraints with respect to d hold and set further constraints on positions between ¢ and j. The
operators are used in the forms %mﬂéas&tar and @intﬂgfcptar where a is an attribute, ¢ € Z
and @int and @ar are called the intermediate and the target formula, respectively. The syntax of
intermediate and target formulas x is defined as follows:

X=¢|xXVXx|xAx|~@eb | ~Cb

where ¢ is a global formula and b is an attribute. The formula %mﬂéas&tar and its past counterpart
are treated as global formulas and evaluated with respect to a data word w and a position i. We give
the semantics for the future version of the operator. The semantics of the past version is defined
analogously:

o (w,i) @intﬂéawtar if val(w,i,@a) = d is defined, there is some position j > i + ¢ on w such
that (w, j,d) |E @rar and (w, k,d) = @i for all k with i + 0 < k < j

Satisfaction of intermediate and target formulas is defined with respect to a data word w, a position
1 and a data value d:

o (w,i,d) E ¢ if (w,i) = ¢ for global formulas ¢
o (w,i,d) E~@a if val(w,i,0a) =d
o (w,i,d) E ~@a if val(w,1,@a) is defined and val(w,i,@a) # d

As usual, if the shift-value ¢ equals 0, we skip it in the notation and if formulas are defined over a
single attribute a, we skip the attribute reference in formulas. That is, we write =~ and U instead
of ~@a and Uj,, respectively.

We first observe that Condition (4) assuring consistency with respect to zero-tests on transition
sequences of 2-MCMs in the proof of Theorem 6 can be expressed by the formula

/\ G {inc;c — (—ifzeroU(~ /\deck))]
1<k<2

This means that if we allow positive attribute tests ~@b in target formulas, the logic immediately
becomes undecidable. Therefore, we focus on target formulas without positive attribute tests.
As @US (01 V @) is equivalent to (pUs,1) V (pUs.02) and global formulas are closed under
conjunction, we can go a step further and concentrate on target formulas of the form y A ~@b; A

. A\ ~@b,,. Our decidability proof which we are going to present works for very limited forms of
intermediate and target formulas. However, if we restrict ourselves to finite data data words, we
can allow quite sophisticated types of intermediate formulas. Nevertheless, we cannot determine

64

6.5. Decidable Extensions of Basic Data Navigation Logic

the precise decidability borders, because there are more general forms of intermediate and target
formulas for which we do not know whether their usage leads to undecidability or not. We will
discuss open questions in Section 6.7.

The logic for which we will show decidability on finite and infinite data words is called Data
Navigation Logic (DNL) and results from B-DNL by extending the grammar of global formulas
by the formation rules <pintg§a<pm | gpintg(;egptar where o is restricted to formulas of the type
~@b A € with global formula £ and @i, = T. We also introduce Extended Data Navigation Logic
(X-DNL) for which we are able to show decidability only on finite data words. The latter logic
allows formulas gomtgga%ar and @intﬂ(‘;f(ptar where

® i is of the type ~@b A € where ¢ is a global formula and

® ©in is of the form x V (~@ A x~) V (~@b A x7) where b is the same attribute used in the
target formula and x, Y= and x7 are global formulas such that x7 logically implies x=, i.e.,
for every data word w and position 4, we have (w,4) = x7 = (w,i) = x~.

Example 11. Observe that Property CS7 mentioned above can be expressed in X-DNL by the
formula

—Qreceiver

G [ack — ((—meq)U1 (req A fv@sender))}
where we abbreviated the intermediate formula. O

For convenience, we use the abbreviation F&, (~@bA¢) (and Fy.(~@bA£)) expressing that there
is some future (past) position where £ holds and the b-value differs from the value of attribute a
at the current position. Observe that the operators U and U in DNL can be expressed via these
abbreviations. In the rest of this section we first show the decidability of X-DNL on finite data
words and conclude with the decidability of DNL on finite as well as infinite data words.

Decidability of X-DINL on finite data words

The proof strategy for the decidability of X-DNL follows the same steps as in the corresponding
proof for B-DNL (Section 6.2). We first show that X-DNL is decidable on 1-complete data words
and then reduce the general case to the 1-complete case.

Before diving into the proof of the first part, we introduce the notion of Backward Register
Automata (RA*) which are RA reading words from right to left. In more detail, the components
of a RA® A= (X,R, S, so,0, F) and its configurations are defined exactly in the same way as for
usual RA. Given a proposition set Prop, a run of a RA* A with input alphabet ¥ = 2F*°P on a

1-complete data word w = 5; . 5’” over Prop is a sequence (8o, Ao) - - - (85, An) of configurations
such that (i) so is the initial state of A, (ii) Ao = R, is the empty register assignment, and

Pp_1

(iii) for every ¢ with 0 < ¢ < n, we have (s;, \;) ey (8i+15Ai+1). The run is accepting if s, € F. In
Section 4.2.2, we stated the result that every RA can be converted into an equivalent DA which can
in turn be converted into an equivalent DA where the base automaton reads the (unmarked) word
projection of the input word [39]. From this we can easily derive that RA* can also be converted
into equivalent DA. To see this, let A be a RA* and A’ a usual RA whose components are defined
exactly in the same way as for A. Obviously, the language of A’ is the reverse language of A. Thus,
by the results above, we can construct a DA D which decides £(.A)® and whose base automaton
reads word projections. Then, we can easily derive from D a DA D’ deciding £(.A). In order to
obtain D’ we basically “reverse” the base and class automaton of D by using standard techniques
for finite automata. Hence, we remark:

65

Chapter 6. Navigation along Data Values

Observation 3. Every RAT can be converted into an equivalent DA.
Now, we can turn towards the proof that X-DNL is decidable on finite 1-complete data words.
Theorem 9. Satisfiability for X-DNL on finite 1-complete data words is decidable.

Proof. The proof is an extension of the decidability proof for B-DNL on 1-complete data words
(Theorem 2). That proof basically relied on the idea that for every B-DNL-formula ¢ one can
construct a DA D, which checks that a data word is valid with respect to ¢, given that it is valid
with respect to all strict sub-formulas of ¢. Remember that validity of some data word w with
respect to some global formula ¢ means that a position i of w is labelled by proposition p,, if and
only if ¢ holds at i. Accordingly, in this proof we will show that, given a formula ¢ = iU prar
or p = @intﬂgecptar, we can construct a DA D, which checks that an input word is valid with
respect to ¢, assumed that it is valid with respect to all strict sub-formulas of ¢.

Before we explain the construction of D, we observe that, w.l.o.g., we can restrict consideration
to syntactically simplified forms of ¢. The first simplification is that we can assume that U’ only
occurs with positive shift-value ¢ and U~* only with negative £. We explain the idea underlying the
elimination of U’ in case of ¢ < 0. The operator U~* with ¢ > 0 is handled analogously. If ¢/ = 0,
we can replace ¢ by 1, because we deal with 1-complete words. Otherwise, assume that a formula
Sﬁintﬂesatar with some ¢ < 0 holds at some position i. Then, the target position j satisfying ¢rar
can either be smaller or grater than i. In the first case, the intermediate formula holds at positions
[i +¢,...,7) and the target formula holds at j. As the cardinality of [i + ¢, ..., j] is bounded by
|¢], we can make a disjunction over all positions at which @int Or @ar can hold without using the
operator U’. In the other case, the intermediate formula holds at the positions [i + ¢,...,4) and
the formula gpmglwm holds at position 7. Thus, wintﬂewtar with ¢ < 0 can be replaced by

-1

j—1 -1
\/ (@%ar A /\ Sﬁlicnt) vV (/\ @j_km; A @intglsﬁtar)
k=t

j=¢ k=¢
where for k € [(,...,—1], the formulas ¢ and @F, result from @i and @ar, respectively, by
replacing
o x by X*x,

o ~ Ax~ by XEx=ACF ~,
e ~ A X7 by XFx# ACF- ~, and
o ~ A& by XFEACHA ~.

The second simplification relies on the observation that the sub-formula x in intermediate formulas
can be “pushed” into x~ and x7, i.e., we can replace x V (~ Ax~) V (= A x7) equivalently by
(~ A(XT VX))V (FA(XT VY)). Therefore, it suffices to consider intermediate formulas of the form
(~ AXT) V(R AXT).

In this proof, we will concentrate on the future operator U’ and give at the end some notes how
our construction can be adapted to the case for U™, Thus, let ¢ = ((~ Ax™)V (FAX?))U (= AE)
with £ > 0. We introduce some notions and explain the main idea of the construction of D,. We
call a position special if Y= holds at that position but not xy#. The restriction that xy* implies x=
leads to the observation that ¢ holds at a position i of a 1-complete data word if and only if there
is a &-Position j > i + £ such that

e j has a different data value than i,

66

6.5. Decidable Extensions of Basic Data Navigation Logic

e at all positions in [i + £, ...,), it holds x= or x7, and
e all special positions in [i + £, ..., j) have the same data value as 1.

The construction is primarily based on the insight that the data value of a potential p-position @
is determined by the special positions in the sequence from i 4+ ¢ to the next £-position. Let us
formulate it in a comprehensible way for the case £ = 1: Assume we pass the word backwards and
find a special position j with data value d which is not a ¢-position. Until we meet a £-position, a
position i can be considered as a potential ¢-position only if ¢ and all special positions in [i, ..., j)
have data value d.

The validity of a 1-complete data word with respect to ¢ can be tested by RA“. As these
automata can be converted into DA (Observation 3), the result follows. In order to split the
validity test into sub tasks which can be fulfilled by rather simple RA“, we consider data words
enriched with additional propositions u, ug, us and ut. In the following, we will first define what it
means that a data word is valid with respect to these propositions. Then, we will show how this kind
of validity can be checked with RA* . Finally, we will explain how, based on these propositions, it
can be ensured that a 1-complete data word is valid with respect to .

We say that a data word is valid with respect to ug (or us, respectively) if for all positions 7 it
holds that ¢ is labelled by we (or us, respectively) if and only if there is a pe- position (or special
position, respectively) j > ¢ and the smallest such position carries a different data value than i.
Validity with respect to ug (or u') is defined similarly with the difference that the corresponding
j-position has to be at least ¢ positions far away. That is, a data word is valid with respect to
ug (or u’, respectively) if for all positions i it holds that i is labelled by ug (or u’, respectively) if
and only if there is a pe-position (or special position, respectively) j > ¢ + £ and the smallest such
position carries a different data value than .

Now, we describe how validity with respect to ug can be checked by an RA“ assumed that
validity with respect to £ is given. The cases for the other propositions can be solved analogously.
For the validity check with respect to ué we use an RAY with ¢ registers. Informally, at each
position ¢ of the data word and for every k with 1 < k < ¢, the automaton keeps track of the data
value at position ¢ 4 k if this position is labelled by ps. Additionally, it keeps track of the data
value of the smallest p¢-position j > i + £ if such a position exists. Furthermore, it assures that
the current position is labelled by ug if such a position j exists and its data value differs from the
current one. After this informal description, we work out some technical details of the behaviour
of the RA“. Assume that the registers are numbered from 1 to ¢. The automaton preserves in its
state a partial history mapping m € [{1,...,¢} — {1,...,¢}] such that when reading a position ¢,

(1) for every k with 1 < k < ¢, we have m(k) = k' for some register k' if position i + k carries p¢
as well as the data value of register k', and

(2) m(¢) = ¢ for some register ¢ if there is a pe-position j > ¢ + £ and the smallest such j carries
the data value of register £'.

The maintenance of the history mapping and the validity check are realized by the following strategy.
At the beginning, the mapping is undefined on the entire domain. When after some step 7 with
current history mapping m; the automaton reads position ¢ — 1 (remember that the automaton
moves backwards), it assures that position ¢ — 1 is labelled by ug if and only if m;(¢) is defined and
register m;(¢) contains a different data value than that of position ¢ — 1. Moreover, m;_1 results
from m; as follows:

e For every k with 1 < k < £, we have m;_1(k) = m;(k — 1).

o If m;(¢ — 1) is defined, then m;_1(¢) = m;(¢£ — 1), otherwise m;_1(£) = m;(£).

67

Chapter 6. Navigation along Data Values

o If position i — 1 is labelled by p¢, then the value of position ¢ — 1 is stored in some register
and m;_1(1) is mapped to this register, otherwise m;_1(1) is undefined (observe that there is
always at least one register whose input can be overwritten).

Before we turn to the question how with the help of the propositions w, ug, us and u’ the
validity of a 1-complete data word with respect to ¢ can be checked, we introduce the notion of
consistency between two positions. We call two positions ¢ and j with j > i+ ¢ consistent if (i) all
positions in [i 4+ ¢,...,j) are labelled by py= or p,», (ii) and all special positions in [i +¢,...,j)
have the same data value as i. Now, given that a data word is valid with respect to x=, x7, &
and the propositions ug, ug, us, u’, validity with respect to ¢ can be reformulated by the following
- Validity Condition: For all positions 4, it holds that it is labelled by p, if and only if one of the
following conditions holds:

(1) Position 4 is labelled by ué and the smallest pe-Position j > i + ¢ is consistent with i.

(2) There is a pe-position j > ¢ + ¢ consistent with ¢ such that there is a pe-position in i +¢,. .., j)
labelled by .

To be convinced of the correctness of this condition, let w be a 1-complete data word valid with
respect to ¢ and let ¢ be some position. Position i is labelled by p,, if and only if there is a pe-position
j > i+ carrying a different data value than i and the smallest such position is consistent with 7.
This in turn is equivalent to saying that ¢ is labelled by p,, if and only if either (i) the smallest
pe-position j > ¢ + ¢ is consistent with ¢ and carries a different data value than 4, or (ii) there is
a pg-position j > i + ¢ consistent with ¢ such that all pe-positions in [i + ¢, ...,) have the same
data value as ¢ and last pe-position in [i + 4, ..., j) has a different data value than j. The latter is
equivalent to the ¢-Validity Condition.

Now, we turn to the construction of the data automaton D,,. First, we formulate the ¢-Validity
Condition in first order logic. Observe that on words which are valid with respect to us; and uﬁ, the
property that all special positions in some [i + 4, ..., j) have the same data value as i is equivalent
to the conjunction of the following two properties:

e If there is special position in [i + ¢, ..., j), then i is not labelled by u’.
e There are no two special positions k1 < kg in [i + ¢, ..., J), such that k; is labelled by us.

Thus, the consistency between two positions ¢ and j can be expressed by the following first order
formula @ cons(x, y) with two free variables « and y representing positions ¢ and j:

Ceons(T,y) =y > x—l—f/\v,z[(z >x+lNnz< y) — (pX:(z)\/pX#(z))}/\
[Ez(z >z +UAz <yApy=(2) Ay, (2) = ﬂuﬁ(x)}/\
_‘321322{21 >x+lAz<yNzm>xc+LlAzo<yAz <22/\u5(z1)]

Now, part (1) of the ¢-Validity Condition can be expressed by the following formula with a free
variable x representing position i:

v1(z) = ug(x) A Jy [y >+ LAPe(Y) A Peons(@,y) AN=Fz(z >+l A2 <y /\pg(z))].

Part (2) is expressed by

wa(x) = Ey{y >z +LAPe(Y) A Peons(z,Y) /\Ez(z >rx+lNz< y/\udz))}

68

6.5. Decidable Extensions of Basic Data Navigation Logic

Combining both formulas, we describe the p-Validity Condition by

V| (1(@) V pa()) pyla)].

Let A be an NFA equivalent to the above formula. The desired DA D, is the intersection of the
DA equivalent to the RA* checking validity with respect to u, ug, us and v/ and the automaton
A which can be seen as a data automaton not using its class automaton.

The construction for U~ (with ¢ < 0) proceeds along the same lines. In this case, for each
notion introduced in this proof, we define its dual past counterpart and use usual (forward) RA
instead of backward ones. For instance, we introduce the past counterpart u; of us and define that
a data word is valid with respect to u{ if a position ¢ is labelled by wu if and only if there is a
special position j < i and the greatest such position carries a different data value than 4. Such a
property can easily be tested by usual RA. o

It is worth noting that the technique in the last proof does not extend to w-words as we use
RA* which are not defined for infinite words.
Now, we generalize the last result to data words with multiple attributes.

Theorem 10. Satisfiability for X-DNL on finite data words is decidable.

Proof. The proof is an adaption of the proof of Theorem 3 to X-DNL. We reduce the satisfiability
problem for the general case to the 1-complete case. Then, the result follows from Theorem 9.
We use the same encoding of general data words by 1-complete ones and the same translation of
formulas as in the proof of Theorem 3. We just have to give the translation #(y) for formulas
P = (x V (~0a; A x7) V (~@a; A X)) U, (~@a; A&):

Hp) =t [(400) v =ai) v (~ Aas A D AHK) V (= Aai AD A U™ T [nag A D AHE)] |

Note that the formula first navigates to the position representing attribute a; in the current block,
fizes its data value and evaluates ¢ at the i-th position of the block encoding the /-next position in
the original word.

The translation for the past operator H(;i is defined analogously. O

DNL on infinte data words

Remember that DNL is the extension of B-DNL by F and F~ which are restrictions of U and
U™, respectively. As the translation in Theorem 10 works on finite as well as infinite words, the
reduction in that theorem smoothly carries over to DNL on data w-words. Hence, it remains to
show that satisfiability for DNL on 1-complete data w-words is decidable.

Theorem 11. Satisfiability for DNL on I1-complete data w-words is decidable.

Proof. Like in Theorem 4, the proof is by reduction to the non-emptiness problem for Biichi Data
Automata (BDA). We outline the main ideas for the construction of BDA checking that input data
words are valid with respect to formulas xy = Ee(ﬁ AE) and x = Ft (= A E). According to the
argumentation on the shift-values of U’ and U~* in the case for X-DNL, we can assume, w.l.o.g.,
that F* occurs only with positive £ and F* only with negative ¢. In this proof, we focus on |¢| = 1.
The generalization is straightforward.

° = E“l(ﬁ A€): This case is handled in analogy to the sketched case for U~ in the proof of
Theorem 9. We construct a Biichi Register Automaton (BRA) with a single register checking
that input data words are valid with respect to x. Then, we refer to the result that for every

69

Chapter 6. Navigation along Data Values

BRA one can construct an equivalent BDA [39, 41]. The BRA works as follows: As long as it
does not read any pe¢-position, it assures that no position is labelled by p,. When it reads the
first pe-position, it stores its data value d in its register. Then, as long as it does not meet any
further pe-position with a different data value than d, it checks that exactly those positions
are labelled with p, which do not carry value d. When it passes a pg-position whose value is
not equal to d, it assures that all positions are labelled by p,, because they all have in their
past at least one pe-position with a different data value.

e x = F'(= A &): Here, we adapt an idea from the decidability proof for FO3(Suc, <) in
[41]. Remember that BDA contain two class automata, one for finite classes, another one
for infinite classes. In the following, whenever we say that the BDA marks some position
1 by some symbol z, we mean that it outputs x at i. For the sake of systematization, we
partition the behaviour of the BDA in sub tasks, but it should be clear that all of them can
be accomplished in parallel by a single BDA.

The base automaton first guesses whether

(1) the word does not contain any pe-position,
(2) there is at least one but there are only finitely many pe-positions,

(3) there are only finitely many classes with pg-positions and there is exactly one class ¢ with
infinitely many pe-positions,

(4) there are at least two classes with infinitely many pe-positions, or
(5) there are infinitely many classes with pe-positions'.

Next, we explain how the BDA assures that its guess is correct. In the first two cases, the
base automaton can check by itself that its guess is correct. In the other cases, it needs the
help of the class automata. In Case (3), it first ensures that pe occurs infinitely often. Then,
it marks some pg¢-position for which it assumes that this and all following p¢-positions are
in ¢, by some special symbol z. Additionally, it marks all pg-positions after = by z’. The
class automaton for finite classes checks that none of x and x’ occurs. The class automaton
for infinite classes assures that either none or both of x and z’ occur. In Case (4), the base
automaton checks that there are infinitely many pe¢-positions and outputs = and y at two
different p¢-positions. The class automaton for infinite classes ensures that x and y do not
occur in the same input word and if one of them occur, infinitely many p¢-positions follow.
In Case (5), the base automaton outputs at infinitely many pe-positions the symbol z. The
class automaton for infinite classes checks that in every word there are only finitely many .

Now, we describe for each case, how the BDA decides that an input data word is valid with
respect to .

In Case (1), the base automaton just checks that there are no p,-positions.

In Case (2), the base automaton first checks that no p,- occurs at the last pg-position or later.
Then, it guesses whether all pe are in the same class (Case (2.a)) or at least in two different
classes (Case (2.b)). In order to assure that its guess is correct, in Case (2.a) it marks the
first pe-position by x, the last one by y and all intermediate pe-postions by y’. The class
automata assure that they either do not see any of z, ¥’ and y or all of them. For the sake of
validity with respect to x they further check that exactly those positions are labelled by p,
which are not followed by y. For the assurance that the guess is correct in Case (2.b), the base
automaton marks the last p¢-position by y and marks one position for which it assumes that
it is the largest p¢-position before y which is in a different class class than y, by . Moreover,

1We believe that this case is missing in [41].

70

6.6. Expressivity of Data Navigation Logic

it marks all positions between x and y by y’. The class automata check that z and y do
not appear in the same word and that every pe-position which is marked by y’ is followed by
y. For validity with respect to x, the base automaton assures that all positions until z are
labelled by p,. Additionally, the class automata check that a y’-position is labelled by p, if
and only if it is not followed by .

In Case (3), the base automaton first guesses whether all p¢ are in ¢ (Case (3.a)) or there
is at least one class besides ¢ containing a pe-position (Case (3.a)). In Case (3.a), it marks
exactly one pe-position by some y. The class automata check that input words contain a
pe-position if and only if they also contain the y-position. They additionally assure: if no y
occurs, then, all positions are labelled by p,, otherwise, no position is labelled by p,. We
now turn to Case (3.b). Let i be the first pe-position in ¢ whereupon all pe-positions are in
c. The base automaton guesses this position, marks it by y, marks all following p¢-positions
by 3" and marks the last pe-position before y (which has to be in a different class than i) by
z. Additionally, it checks that all positions before z are labelled by p,. The class automata
ensure that (i) z and y do not occur in the same word, (ii) a word either contains none of
y and y’ or both of them, and (iii) all positions of all words which do not contain any y are
labelled by p,.

In Cases (4) and (5), the base automaton just guarantees that all positions carry p,.

Together with the reduction in the proof of Theorem 10, we conclude:

Theorem 12. Satisfiability for DNL on data w-words is decidable

6.6 Expressivity of Data Navigation Logic

In this section, we compare the expressive power of DNL with the expressivity of some logics
introduced in Section 4.3. First, we formulate some observations. We consider the following property
EVEN.

EVEN: The word is of even length.

This property can be easily expressed in DNL by the formula (T - (T - T)*)=(T)T. As it does
not refer to data values, the corresponding language must contain data words where all attribute
values are undefined. Obviously, on such words, FO™ is expressively equivalent to FO and LTLY is
expressively equivalent to PLTL. As neither FO nor PLTL is able to express that a word is of even
length [194], it follows that EVEN cannot be expressed in FO™ or LTLY. By taking into account
that LTLY captures PLRV [81], we observe:

Observation 4. (1) EVEN is expressible in DNL.
(2) EVEN is not expressible in LTLY, FO™ or PLRV.

Let us consider now the following property parametrized by three propositions p, ¢ and r on
data words with a single attribute:

TRIPLE(p,q,r): There are positions i < j < k such that i is labelled by p, j is labelled by q, k is
labelled by r and positions i and k carry the same data value.

71

Chapter 6. Navigation along Data Values

This property can be expressed with the operator E introduced in Section 6.4: E(p,q,r). For
the sake of contradiction, assume that there is a DNL-formula ¢g equivalent to this formula. It
follows from Theorem 6 in Section 6.4 that the satisfiability problem for B-DNL extended by ¢g is
not decidable. As this contradicts the decidability of DNL (Theorem 12), property TRIPLE(p, q,7)
cannot be expressible in DNL. On the other hand, by Example 2 in Section 4.2.1 and the result
that REM are expressively equivalent to Register Automata (RA) [147], TRIPLE(p, q,r) must be
expressible in REM. Moreover, it can also be formulated by the following two logics:

o LTLY: FlpA LF(gAF(rA)]

o PathLog: (£) ~ (g Al ~ () v () 2 (g A (o)) ~ (1)
We conclude:
Observation 5. (1) TRIPLE is expressible in LTLY, PathLog and REM.
(2) TRIPLE is not expressible in DNL.

From Observations 4 and 5, it directly follows:

Proposition 4. In terms of expressivity, LTLY and DNL are not comparable.

As mentioned in [96], PathLog cannot express that the underlying word contains at least two
positions, because it contains only reflexive and transitive modalities. This property is expressed
by the DNL-formula (T)T. Together with Observation 5 we obtain:

Proposition 5. In terms of expressivity, PathLog and DNL are not comparable.

The DNL-formula G(C(—-XT A =X*“T)) expresses that all data values of the underlying 1-
complete data word are pairwise distinct. This property is not expressible in RA [124] nor in REM
as RA and REM are equivalent [147]. Together with Observation 5 we conclude:

Proposition 6. In terms of expressivity, REM is not comparable with DNL.

As stated in Section 4.3.1, FO3(Suc, <) is decidable on 1-complete data words and looses its
decidability when a further position variable is included or two data values at each position are
allowed. We can prove that on 1-complete structures, DNL strictly subsumes this decidable fragment
of FO™:

Proposition 7. On 1-complete data words, DNL is strictly more expressive than FO%(Suc, <).

Proof. Due to Observation 4, it suffices to show that every formula in FO3(Suc, <) using at most
one attribute can be expressed in DNL. In [82] it is shown that this fragment of FO%(Suc, <)
is equivalent to the simple fragment of LTLY%. As temporal operators, this fragment only allows
X, X“ and combinations of the forms XXF and X“X“F. Each of the latter combinations is
considered as a single temporal operator. Furthermore, each occurrence of a temporal operator
must be immediately preceded by | (and | must not occur anywhere else). We will describe a
translation ¢ which converts formulas of simple LTLY, into equivalent formulas in DNL.

We call a formula elementary if (i) it is a proposition, (ii) it is of one of the forms 1} or {.x’, or
(iii) it is the negation of one of these formulas. We omit the straightforward cases in the definition
of t:

o (1) =~
o H(.X0) = C'1(¥)

72

6.7. Discussion

e {({.XXF1) is obtained as follows:

1. Using classical rules in propositional logic, || . XXF1 is converted into an equivalent
formula ¢ ={.XXFv' where ¢’ is a disjunction of conjunctions of elementary formulas.

2. Using the equivalence || . XXF(¢1 V ¢2) = . XXF1V || XXFis, we get from ¢ a
disjunction ¢’ of formulas . XXF1" where 1" is a conjunction of elementary formulas.

3. Every disjunct {.XXFv" in ¢’ is replaced as follows:

— If 9" contains f} as well as = 1} as conjuncts, . XXF1)" is replaced by L.

— If 9" contains at least one {} and no — {} as conjuncts, ||.XXF1" is replaced by
C?F_y""" where ¥ results from v’ by replacing every conjunct f by ~ and all
other conjuncts x by t(x).

— If " contains at least one — 1} and no 1} as conjuncts, ||.XXFv" is replaced by
F2y"" where 1" results from 1" by replacing every conjunct — 4} by =~ and all other
conjuncts x by t(x).

— If 9" contains neither 1} nor — 1} as conjuncts, ||.XXF1" is replaced by XXFy""’
where ¢ results from ¥" by replacing every conjunct x by ¢(x).

O

Among the logics introduced in Part A, the logic CLTL* and its extensions PLRV were the only
ones for which decidability on data words with multiple data values at each position was shown. It
is not hard to prove that PLRV is entirely captured by DNL.

Proposition 8. DNL is strictly more expressive than PLRV.

Proof. Again, we give a translation ¢ which converts every PLRV-formula ¢ into an equivalent
formula t(¢) in DNL. The strictness follows from Observation 4. We omit the straightforward
cases:

o t(@a ~ X'@b) = C{, ~@b o t(Ga ~ (p)@b) = C¢,F_(~@b A t(p))
o #(Qa 7 ()@b) = Fq, (~@b A () o #(0a~ ()" @b) = Co,' F=(~Cb A t(y))

o t(0a o (p)"@b) = Fg.”' (~@ A t(y))

6.7 Discussion

We introduced and analyzed Data Navigation Logic (DNL), a logic for which we argued in Chapter
5 that it can be suitable for the usage in the framework of model checking of concurrent systems
with unboundedly many processes. We first proved that the fragment B-DNL of DNL is decidable
on finite and infinite data words and showed that this decidability carries over to full DNL. We
moreover showed that the latter logic is strictly more expressive than FO3(Suc, <) on 1-complete
and than PLRV on general data words. Even though some extensions of B-DNL lead to undecid-
ability, we were able to show that X-DNL, the extension of DNL containing the powerful U-operator
(and its past version), is decidable on finite data words. As explained in the corresponding section,
our proof technique used for the decidability of X-DNL on finite words does not extend to infinite
words. Thus, one open question is whether X-DNL remains decidable on the latter kind of struc-
tures. Furthermore, recall that it turned out that the permission of positive attribute tests in target

73

Chapter 6. Navigation along Data Values

formulas of the operator U leads to undecidability. However, whether X-DNL remains decidable on
finite words if inequality tests on more than one attribute are permitted, is a further open question.
Likewise, the intermediate formulas of the U-operator in X-DNL are still quite restricted. It is an
interesting challenge to pinpoint how far one can allow more general boolean combinations of global
formulas and attribute tests in intermediate formulas while preserving decidability.

We conclude by mentioning some works built upon our results presented in this chapter. First,
recall that we defined Basic Data LTL (B-DLTL) as the restriction of B-DNL which uses temporal
operators instead of path expressions. In [75], the authors consider two fragments of B-DLTL,
namely Class Future Basic Data LTL (B-DLTL") and Class Past Basic Data LTL (B-DLTL™).
In B-DLTL™ (or, respectively, B-DLTL™), the class past operators X= and UZ (or, respectively,
the class future operators X_and U.) are not allowed. The authors show that each formula of
B-DLTL™ can be converted to Locally Prefiz-Closed Data Automata (PDA) such that the formula
is satisfiable if and only if the automaton is non-empty. There is also an analogous translation
from B-DLTL ™ -formulas to Locally Suffiz-Closed Data Automata (SDA). A PDA (or, respectively,
SDA) is a restriction of a usual DA where every state of the class automaton is accepting (or,
respectively, initial). Non-emptiness for these automata is in EXPSPACE. With the help of these
automata, the authors show that satisfiability for B-DLTL™ as well as for B-DLTL™ is 2EXPSPACE-
complete on finite and infinite data words. The authors also consider Nested Data LTL (N-DLTL),
an extension of B-DLTL with a restricted form of tuple navigation. Recall from Theorem 8 that
extending B-DLTL by the ability to choose two arbitrary attributes a and b at some position ¢ and
to navigate to the next or previous position where these attributes carry the same data values as
at i, leads to undecidability. The logic N-DLTL allows tuple navigation only with respect to some
tree order defined on the set of attributes. The fragments N-DLTL"T and N-DLTL™ result from
N-DLTL by imposing the same restrictions used to obtain B-DLTL™ and B-DLTL™ from B-DLTL.
While full N-DLTL on finite and infinite and N-DLTL™ on infinite data words are undecidable, it
is shown that N-DLTL™ on finite and N-DLTL™ on finite and infinite data words are decidable and
Ackermann-hard. To simplify the decidability proofs, the authors introduce Nested Data Automata
(NDA) which contain multiple linearly ordered class automata, one for each attribute. While
formulas of N-DLTL* are converted into Locally Prefiz-Closed Nested Data Automata (PNDA),
those of N-DLTL™ are translated into Locally Suffiz-Closed Nested Data Automata (SNDA).

Recall from Section 4.2.3 that Class Memory Automata, simulating runs of the base and class
automaton of a Data Automaton within a single run, are expressively equivalent to Data Automata.
Natural restrictions and extension of Class Automata corresponding to PDA and PNDA are consid-
ered in [71]. In [70], PNDA are used to decide observational equivalence of call-by-value functional
languages.

The results presented in this chapter are extensions of results published in [131] which was a joint work
with Thomas Schwentick and Thomas Zeume. In [131], the logic Basic Data LTL and some extensions
were considered. While the navigational abilities in Basic Data LTL are based on LTL-operators, the logic
presented here is an extension whose navigation is based on regular expressions. Hence, the decidability
proofs in [131] had to be adapted to this extension. The proofs for the decidability of B-DNL on finite
and infinite data words presented in Sections 6.2 and 6.3 are adaptions of the decidability proofs in
[131] for Basic Data LTL on such structures. Moreover, I recognized that the decidability proof in
[131] for Extended Data LTL including the U-operator does not work. In Section 6.5, I presented for
X-DNL which also contains this operator a shorter proof which works at least on finite data words. On
infinite data words I gave a proof for DNL which contains only a restricted version of this operator.
Furthermore, I compared the expressivity of DNL with more logics than in [131]. Finally, I added a

further undecidability result (Theorem 6) which helped to find new expressivity results in Section 6.6.

74

Chapter 7

The Power of Storing Positions

Fot

¥
Positions: 1 2 37 4 5
pg p 1,0

<
S

14
b 7 3 9
5 2

NN Ot
co

As we mentioned in Chapter 5 of motivating questions, in this chapter we will introduce Hybrid
Temporal Logic (HTL™) on data words and compare its expressivity to LTLY (for the definition of
LTLY, see Section 4.3.2). The logic HTL™ is an extension of LTL where formulas allow to assign
some variable z to the “current” position (}%), to compare some data value of the current position
to a data value at the x-position (6a~x.@b), to shift evaluation to the z-position (on(x).1)) and to
ask whether the current position is the z-position ().

After having defined the syntax and semantics of the logic in Section 7.1, we will describe
in Section 7.2.1.1 how it can be derived from existing results in the literature that HTL™ is in
general strictly more expressive than LTLY. Then, we will strengthen this result by proving that
even HTL™ with only two variables can express properties which are not expressible in full LTLY.
Afterwards, we will try to figure out by which operators this additional expressive power of HTL"™
is caused. It will turn out that the ability of HTL™-formulas to shift evaluation to positions bound
to variables is an important factor. Such shifts can be realized by formulas of the form on(z).¢) or
the permission of atomic formulas x in the presence of past operators. Indeed, we will show that
every HTL™ -formula where these (combinations of) operators are prohibited can be converted into
an equivalent LTLY-formula. A further case where the expressive power of HTL™ is tamed is the
case where the number of variables is restricted to one. This fragment of HTL™ will be considered
in Section 7.2.1.2. We will prove that HTL™-formulas which use at most one variable can also be
converted into equivalent LTL¥-formulas. In addition, it will be shown that, in the case where the
number of attributes is restricted to one, HTL™ with one variable is expressively equivalent to LTL¢
with one freeze register. The question whether this equality carries over to the case with multiple
attributes remains open and will be discussed at appropriate points.

Compared to LTLY, the logic HTL"™ is not only more expressive, but it also provides the opportu-
nity to express properties with shorter formulas. In Section 7.2.2 we will show that HTL™-formulas
can be non-elementarily more succinct than LTL¢-formulas. Even in the case of a single variable

75

Chapter 7. The Power of Storing Positions

the succinctness is at least exponentially.

Finally, we will show in Section 7.3 that the variable and register hierarchies for HTL™ and LTLY,
respectively, are infinite, that is, for every k there is K’ > k such that HTL™ with &’ variables is
strictly more expressive than with k variables and LTL¥ with &’ registers is strictly more expressive
than with k registers. We will derive these results from the strictness of the variable hierarchy of
first-order logic on finite undirected ordered graphs [178].

In the proofs of this chapter we will deal with finite data words, but our main results carry over
easily to data w-words. We will provide some notes on this issue in the discussion section.

7.1 Hybrid Temporal Logic on Data Words

We give the formal syntax of HTL™ and describe informally its semantics. As usual, the full formal
semantics can be found in the Appendix (Section A.8). Let Prop be a finite set of propositions, Att
a finite set of attributes and PV an infinite supply of position variables. Formulas of HTL™ over
Prop, Att and PV are constructed according to the following grammar:

pu=plrloAp|-p[lp|ea~z.6b|on(z).p|Xp|pUp| X ¢ |pU ¢

where p € Prop, a,b € Att and x € PV.

An HTL"-formula is evaluated with respect to a data word w, a position ¢ on w and a variable
assignment (i, i.e., a partial mapping assigning variables in PV to positions of w. Loosely speaking,
the formula |*.¢ places variable x on the current position and evaluates ¢. The operator on(z) is
used to “jump” to the z-position. Hence, the formula on(z).¢ evaluates ¢ at the position where
refers to. The only position at which the atomic formula x evaluates to true is the position where
the variable is currently placed. Finally, @a~ 2.@b holds at some position if the value of attribute
a at the current position and the value of attribute b at the xz-position are both defined and equal.
The temporal operators X, U, X~ and U are defined as in LTL. If a formula ¢ is satisfied by
a data word w, a position ¢ and an assignment p, we write (w,i,u) E . If ¢ uses only a single
variable z, we also write (w, 4, u(z)) = ¢. We say that a data word w satisfies a formula ¢ (written
as w = @) if (w,1,PV 1) | ¢, i.e., @ evaluates to true at the initial position with empty variable
assignment.

The abbreviations F, G, F~ and G~ are defined as usual. If a formula is set up over a single
attribute a, we skip the reference @a in formulas. The notions of bounded and free variables are
defined as in FO. A formula is called closed if no free variable occurs. The fragment of HTL™
where at most k£ > 1 variables are allowed is denoted as HTL%. For a set O of temporal operators
and a logic £ € {HTL~} U {HTLY% | k > 1}, we denote by £(O) the fragment of £ where at most
temporal operators from O are used.

7.2 Hybrid Temporal Logic vs. Freeze LTL

7.2.1 Expressivity
7.2.1.1 Multiple Variables

In this section, we will compare HTL™ and LTL" with respect to expressivity in the case that there
is no bound on the number of HTL™-variables. First, we will show that HTL"™ is strictly more
expressive than LTLY and actually, it only needs two variables to express a property that is not
expressible in LTLY. Then we will identify fragments of HTL™ in which the expressive power of
the logic does not go beyond that of LTLY.

Let us try two filter out the two main differences between HTL™ and LTL at an informal level:

76

7.2. Hybrid Temporal Logic vs. Freeze LTL

(1) Moving to fized positions: The logic HTL™ provides operators to “fix” positions and “shift”
evaluation to them. By applying |* a HTL™-formula “memorizes” a current position ¢: as
long as z is not shifted it can always “move back” to position ¢ and call a sub-formula v at
that position (by formulas of the forms on(z).1) and FF<(z A ¢)). Compared to this, with
the application of g, at i, an LTLY- formula, roughly speaking, records only a data value of
position ¢, but not the position itself. After having left position i, the abilities of the formula
to “find” position ¢ is restricted, at least, the logic does not provide explicit operators which
allow to “move back” to position ¢ and evaluate some sub-formula at that position.

(2) Accessing all attributes of fized positions: The logics HTL™ and LTLY differ in their way they
access attributes. By applying |4, at a position 7, an LTLY-formula “decides” which attribute
(in this case a) is going to be compared to attributes of other positions. More precisely, in
the scope of |g,, as long as the |J-operator is not reapplied, only attribute a of position ¢ can
be used for comparisons with attributes of positions different from i. On the other side, the
HTL™-operation |* does not restrict to any attribute of the current position. Thus, in the scope
of |” all attributes of the x-position can be used for comparisons against other attributes.

We will show that, in spite of the difference in the access of attributes, every LTL-formula can be
translated into an equivalent HTL™-formula. However, translations into the other direction are in
general not possible. This insight will be formulated in Corollary 1. Then, we will try to understand
from which features HTL™ gains its additional expressive power. It will turn out that the ability
of HTL™-formulas to move to positions fixed by variables, mentioned in (1), is a critical factor.
Indeed, in cases where we allow the usage of the on-operator or the combined usage of atomic
formulas x and past operators, HTL"™ needs only two variables to express a property which is not
expressible in full LTLY (Corollary 3). Otherwise, there is always a translation from HTL™-formulas
into equivalent LTLY-formulas (Propositions 11 and 12).
We start with the result that HTL™ is at least as expressive as LTLY.

Lemma 1. For every k > 1, every closed LTLUk—formula can be translated into an equivalent
HTLY-formula.

Proof. The main idea of the translation is that every sub-formula of the form |g,.1) can be replaced
by %4’ for some variable x where 1)’ results from ¢ by taking into account that z has to be used
in relation to attribute a, i.e., comparisons of the form f}g, have to be translated into @b ~ x.@a.
We additionally have to keep the subtle peculiarity in mind that operations |, implicitly demand
that the value of a is defined at the current position.

Now, we give the details of the translation. Let ¢ be an LTLY%-formula for some k > 1.
Without loss of generality, we assume that ¢ uses registers from R = {r1,...,rs} and attributes
from A = {a1,...,an,} for some m > 1. Furthermore, let V' = {z1,...,2;} be a set of HTL™-
variables. Our translation simulates every register 7; with 1 < j < k by a variable z; and uses z;
in relation with the attributes whose data values are stored in r;. We establish this correspondence
between variables and registers by a mapping « from variables to attributes. Figure 7.1 illustrates
the relationship between a register assignment A, a corresponding variable assignment p and the
mapping x linking the two assignments. Now, we formalize the correspondence between register
and variable assignments. Given a data word w over an attribute set A’ D A, we say that a register
assignment A € [R — D] is compatible with a variable assignment p € [V — pos(w)] on w if there
is some partial mapping x € [V — A] such that for every j with 1 < j < k, we have \(r;) = d for
some data value d if and only if p(x;) and k(x;) are defined and val(w, u(z;), @x(z;)) = d.

We define for every mapping « € [V — A], a translation ¢, which converts each sub-formula 1)
of ¢ into an HTL%-formula ¢, (1) such that for every data word w, every position i and every pair
of a register assignment A and a variable assignment u which are compatible on w due to &, it holds

(w,, A) | < (w, i, p) = (1)),

7

Chapter 7. The Power of Storing Positions

Ty Ty
Splg) S
K(z;) A(ry)
Positions: 1 2 3 4 5
mqg p P v g
az 7 3 5 8
a3 5 2 2

Figure 7.1: Correspondence of p and A established by &

Then, it follows for every data word w:

wEeewEtg, (9

We omit the straightforward cases in the definition of ¢,:
* tu(p) =p

o ti(loa, 1) =179.(Qap~z;.0ap At ypisa,) (1))

o tnl(fher,) = @agN.T] @k (z5)

o 1:(X)) = Xtr(¢)

o tx(11Ut2) = t,(¥1) Uty (t2)

o 1:(XTY) = X"t (v)

o 1(V1UY2) = (1)U Lk (¢2)

for propositions p, j € {1,...,k} and £ € {1,...,m}. Note that |®.Qa, ~ x;.0a, just ensures that
the value of attribute a at the current position is defined. o

In order to prove that HTL"™ is strictly more expressive than LTLY, we first show that HTL™
and FO™ have the same expressive power.

Proposition 9. The logics HTL™ and FO™ are expressively equivalent.

Proof. By a standard translation (similar to that in [100]), for every k > 1, each closed HTL%-
formula can be translated into an equivalent FO™-formula with at most k& + 3 variables. The
translation of closed first-order formulas into HTL™-formulas is also along standard lines. One
important issue in the translation is the simulation of FO™-quantifications of the form Jz which
choose an arbitrary position and assign it to variable z. As we permit past operators in HTL™,
such quantifications can always be simulated by FF< |% In order to emulate FO™-comparisons
of the form x.@a ~ y.@b, the corresponding HTL™-formula first navigates to one of the positions
assigned to x or y and then performs the comparison.

Now, we describe the details of the translation. Given a k > 1, we will define a translation ¢
from FO%-formulas ¢ into HTL%-formulas ¢(p) such that for every data word w, every position i
in w and every variable assignment u, we have

(w, 1) ¢ & (w,i, 1) = Hp)-
Obviously, this results in w = ¢ < w = t(p). We omit the trivial cases:

78

7.2. Hybrid Temporal Logic vs. Freeze LTL

t(p(x)) = on(x).p
o t(30v) = FF~ [24(1)

(
(
(z =
o t(Suc(z,y)) = on(z).Xy
(
(

t(x <y) = on(z).XFy
e ¢(x.0a~y.0b) = on(x).@a~y.Cb
for propositions p, variables x,y and attributes a, b. O

In the sequel, we will explain how it can be inferred from the last proposition and results in
[169] and [82] that there is a property expressible in HTL™ which cannot be expressed in LTLY.
Then, by Lemma 1, it will follow that HTL™ is strictly more expressive than LTLY.

First, we introduce the notion of hypersets. A 1-hyperset over the set D of data values is a finite
subset of D. For every natural number m > 1, an m-hyperset is a finite set of (m — 1)-hypersets.
In [169], the authors develop an encoding for hypersets by sequences of data values. For m € N,
we call a sequence u#v of values from D U { #}, with some fresh data value # not contained in
D, proper with respect to m, if u and v encode the same m-hyperset. The authors in [169] consider
for every m € N, the language L,, consisting of sequences of data values proper with respect to m.
Furthermore, they introduce two-way alternating register automata which are similar to ARA*" as
defined in Section 4.2.1 and read sequences of data values as inputs. It is proven that

(1) for every m > 1, the language L,, can be expressed in FO™, and
(2) for m > 4, there is no two-way alternating register automaton deciding L,,

The proof of (2) is based on a communication complexity argument (see, e.g., [118]). The main
idea is that on a sequence w = u#v € L,, for some m > 4, two-way alternating register automata
are not able to transfer enough information from the u-part to the v-part of w and vice-versa,
in order to check that both parts encode the same m-hyperset. Even though the definition of
two-way alternating register automata given in [169] does not coincide completely with ARA,
the argument in [169] carries over to ARA® easily. Since we know from [82] that every property
expressible in LTLY can be decided by ARA*, it immediately follows that for m > 4, there cannot
be any LTL-formula describing the language £,,. Along with (1), Proposition 9 and Lemma 1, we
get:

Corollary 1. The logic HTL™ is strictly more expressive than LTLY.

Next, we will investigate how much hybrid machinery is indeed needed in HTL™ in order to
express a property which is not expressible in LTLY. For a fragment £ of HTL™ and O C {on, z},
we write £~© for the restriction of £ for which it holds:

e If on € O, then sub-formulas of the form on(x).1 for any variable are not contained in £~©.
o If z € O, then atomic formulas of the form x for any variable 2 are not contained in £-©.

We will prove that even in HTL5(X, U)~{#} it is possible to express a property for which there is
no equivalent formula in entire LTLY. Before doing that, we need some preparations. We proceed
by defining an encoding for hypersets which is very similar to the one given in [169]. We encode
m-hypersets as simple data words over the proposition set {z,b1,€1,...,bm,em}. A 1-hyperset

79

Chapter 7. The Power of Storing Positions

H = {di,...,d;} C D is represented by the data word w = l;; dzl dzj Zl, where n and n’ are

arbitrary data values. If for some m > 2 and ¢ > 1, the data words wq, ..., wy represent (m — 1)-

hypersets Hy,—1(w1), ..., Hp—1(we), then, w = 27:1 wy - Wy Te;” with arbitrary data values n,,

and n) represents the m-hyperset H,(w) = {Hp-1(w1),..., Hn—1(we)}. For instance, the data
word w in Figure 7.2 represents the 2-hyperset

HQ(w) = {{1’ 2}a {7’ 8, 9}7 {25 5}}

Note that the order of data values within a sequence encoding a 1-hyperset and the order of subse-

by b1 2z =z e by 2z z z e b 2z 2z €1 €

4 5 1 2 2 3 7 9 8 2 1 2 5 9 3

Figure 7.2: Data word w representing Ha(w)

quences encoding (m — 1)-hypersets within a data word representing an m-hyperset are irrelevant.

;) by by z z €1 b zzel by 2z 2z €1 € ~ -
Thus, the data word w’' = O 0000 0000 6660 O O also encodes the 2-hyperset rep

resented by w. If a data word w does not represent any m-hyperset, we set H,,,(w) = L. For every
m > 1, we define the language L of data words over {s,z,b1,€1,...,bm,em} as

Ly, ={w1 jws | Hy(wi) = Hy(ws) # L, d € D}.

The argumentation in [169] leading to the result that the languages £, with m > 4 cannot be
decided by two-way alternating register automata carries over to the sets £, and ARA® easily.
Thus, the proof of the following proposition is an easy adaption of the proof of the corresponding
result in [169].

Proposition 10. ([169]) For m > 4, there is no ARA*" deciding L.

However, these languages can be expressed in HTL3(X, U), even without using atomic formulas of
the form =z.

Theorem 13. For every m > 1, there is a formula in HTL3(X,U)~ {2} expressing L.

Proof. For every m > 1, we define a formula ¢, in HTL3(X, U) — {x} over the proposition set
{s,2z,b1,€e1,...,bm, em} and some single attribute such that for every data word w, it holds w € L,
if and only if w |= ¢,. The formula ¢,, is a conjunction of several sub-formulas which we describe
separately. The following three sub-formulas Xone, Xmain and Xpyp €xpress that w is a 1-complete

data word of the form w; ng with H,,(w1) # L and H,,(w2) # L.

e The formula x,ne is a straightforward formula expressing that every position carries a data
value and exactly one proposition from {z,$,b1,...,bm,e1,...,em}.

e The formula X mqin expresses that w is of the form w; 2 ws, wy and wy start with a b,,,-position

and end with an e,,-position and there are no other positions carrying b,,, €,, or s.

Xomain = b AX lﬁ (bm Vs \/em>U<em /\X(s/\X(bm A (=(b V 5V €) U (em A ﬂXT))))ﬂ

80

7.2. Hybrid Temporal Logic vs. Freeze LTL

e The formula Xy, expresses that both sides of w are encodings of hypersets. Note that we
have to take into account that hypersets may be empty. In more detail, the formula expresses

that
— every bi-position is immediately followed by a z- or an e;-position,
— for ¢ with 2 < i < m, every b;-position is immediately followed by a b;_1- or an e;-position,
— every z-position is immediately followed by a z- or an ej-position, and
— for i < m, every e;-position is immediately followed by a b;- or an e;1-position.

Xhyp = G|:(b1 — X(z\/el)) /\/\ (bz — X(bi,1 \/61))/\2’ — X(z\/el)/\ (61' — X(bi\/61+1)):|

m m

=2 i3

Next, we construct a formula v, that expresses Hp,(w1) = Hyp,(w2), ie., wy and wy encode the
same hyperset. The formula is defined inductively.

e Given that the variables x and y are bound to bi-positions, the formula ; checks that the
two 1-hypersets whose encodings start at x and y, respectively, are equal. To describe it
like a procedure, the formula first “jumps” to the z-position, navigates towards the next e;-
position and checks during this navigation that every data value found between the z- and
the corresponding e;-position is also available in the 1-hyperset encoding preceded by y. The
same procedure with reversed roles for x and y is performed for the sequence between the y-
and its next ej-position.

U1 :on(x).X[(—'el/\ Zon(y).X(—e; U(—e1 A Nx)))Uel} A

on(y).X [(—'61/\ Pon(z).X(—e1 U(—er A Ny)))Uel]

e Likewise, for 2 < i < m the formula ; expresses that, if z and y are bound to b;-positions,
the i-hypersets starting at and y, respectively, are equal. To this end, on every b;_;-position
located between the x- and its corresponding e;-position, the formula “places” the variable x
(thus, z is reused), guesses a corresponding b;_1-position in the sequence starting at y, places
the variable y at that position and “calls” ;1 which by induction checks that the sequences
starting at the (new) a- and y-positions encode the same b;_;-hyperset. Observe that z and y
are reused in the scope of [*and Y. An analogous procedure is conducted for all b;_1-positions
in the sequence starting at the y-position.

P; = on(m).((bi_l —>¢Z.on(y).(ﬁeiU(bi_1/\ i,y.’lbi_l)))Uei)/\

on(y). ((bi,1 %Ly.on(x).(ﬁeiU(bi,l/\ ¢I¢Z,1)))U61)

Finally, the desired formula is ©m = Xone A Xmain A XhypN $5F (s A X [Yahy,).
Every word w = w; ng € L7, satisfies Xone; Xmain and Xhyp by construction. As w; and wa

represent the same hypersets, both parts of 1, are satisfied, too.

If a data word w satisfies ,,, the formulas Xone, Xmain and Xnyp ensure that w is of the form
wy ;wy and that w; and wy encode m-hypersets. The two parts of 1, make sure that every (m—1)-
hyperset encoded in w; also occurs in ws and vice-versa. Thus, the completeness and correctness
of ¢y, follow. O

81

Chapter 7. The Power of Storing Positions

From Proposition 10 and Theorem 13, we get:
Corollary 2. The logic LTLY cannot express all properties expressible in HTL3(X, U)’{z}.

As already observed in [184], in hybrid logics on linear structures, sub-formulas of the form on(z).1
can be replaced by FF<(x A ¢). From this and Theorem 13 it follows:
Corollary 3. The logic LTLY cannot express all properties expressible in HTL;f{O"}.

To forge a link to our initial discussion in this section on the differences between HTL™ and
LTLY ((1) moving to fixed positions and (2) accessing all attributes of fixed positions), we observe
that formulas in HTL3(X, U)~{#} or HTLS_{M}, roughly speaking, have the ability to “move
back” to positions “fixed” by variables. In HTL3(X,U)~{*} this is realized by the on-operator
and in HTLZ_{"“} by FF(x A 1)). Next, we will examine two fragments, namely HTL™~{one}
and HTL™ (X, U)~{°?} | in which the mentioned ability is not supported explicitly by operators. It
will turn out that all formulas in both fragments can be translated into equivalent LTL*-formulas.
From this we can conclude that the ability of HTL™ to “move” to positions referenced by variables,
mentioned in item (1), is an important factor for the additional expressive power of HTL™ compared
to LTLY.

Before we continue, we outline a technique which will be used in the translations in the following
two proofs. The technique helps to deal with the difference stated in item (2). Remember that in the
scope of % an HTL™-formula is able to access all attributes of the z-position. The LTL*-operator
Jea, however, makes only a single attribute accessible for sub-formulas in its scope. Therefore, when
translating from HTL™ to LTLY, we simulate the operation |* at some position i by a sequence
of |l-operations which store all available data values at position 7. To do this, we first have to
check which attributes are defined at position . Whether an attribute a is defined can be tested by
Jea- NNea- If an attribute a is not defined, equality tests @a~x.@b in the scope of |* can be replaced
by L. For instance, one can translate [*.F(@a~ xz.0a A =@b~ z.0b) to the following LTL-formula
with two registers, one for attribute a and the other for b.

Ta Ta b ATb Ta Tb Ta b Ta Ta b Tb Ta Ta
[(oa- Tea/N Uep i) —Uea- Vob-F(fhea A = @b)} A {(on- Nea A = Uob- Nhop) —doa-F @a}/\

[Wz A Vg i) = 1] A (- Yz e A Ui) — 1]

As it can be seen, by an inductive application of this technique during a translation, the length of
a formula can grow exponentially. _
In the following proofs, we use for j € N and L = {/1,...,¢,} C N, the expression |7 as an

abbreviation for llgng” . ggz}f")
Proposition 11. For every £ > 1 and m > 0, each closed formula in HTL;f{on’x} using m

attributes can be translated into an equivalent LTLY, ,-formula.

Proof. In case m = 0, we can simply delete expressions of the form | ¥ and get an equivalent
PLTL-formula. We consider the case for m > 1. For some k > 1, let ¢ be a closed formula of
HTL;_{on’I} using m attributes. Without loss of generality, we assume that ¢ uses variables from
V = {x1,...,25} and attributes from A = {ay,...,a,}. We will translate ¢ into a formula using
a register r(; ¢y for every pair of a variable z; and an attribute a;. Thus, we use the register set
R={r;en|1<j<kand1<{<m}. Wewill define a translation which relates every variable z;
with the registers r(;1),...,7(;m) and takes for every operation |*7 into account which attributes
at the current position are defined.

82

7.2. Hybrid Temporal Logic vs. Freeze LTL

Given a data word w, we call a variable assignment p € [V — pos(w)| and a register assignment
A € [R — D] consistent on w if X = {r(; ¢ = val(w,i,@ar) | 1 < j < k,1 < < m and the mappings
p(z;) =i and val(w, ¢, @ay) are defined}. Figure 7.3 illustrates the relationship between consistent

variable and register assignments. We define for every mapping x € [{1,...,k} — 2{b-m}],
Tj TG2) TG3)
i), ArGa)" o Argas)
Positions: 1 2 3 4 5
P, q e g

aj ‘; Z’

a2 7 38 9,75 8

a3 5 2 2

Figure 7.3: Consistent assignments p and A

a translation t, such that for every sub-formula ¥ of ¢, every data word w, every position
and every pair consisting of a consistent variable assignment p and a register assignment A\ with
k={j—L|1<j<kLC{l,...,0}, p(z;) =i is defined and L is the set of all £ such that
val(w,i,@ap) is defined}, it holds

Then, by the definition of the semantics of HTL™ and LTLY, it follows for every data word w that
wkEeewlEt(p)

We omit the straightforward cases in the definition of ¢:

Vicgmy [(Aer 405" 462" A Aeqtmpe = Vo 105) 4 s 1 ()]

.....

ﬂ;u,s)’ if k(j) is defined and s € k(j)

° tN(Qagwxj.Qas) = {Laf othormise

o 1,(Xep) = Xt (¢)
L4 tn(7/)1U7/)2) = tn(wl)Utn(w2)

where p is a proposition, j € {1,...,k} and £,s € {1,...,m}. O

The proof of the following proposition is an extension of the last one.

Proposition 12. For every k > 1 and m > 0, every closed formula in HTL%(X, U)~{°*} using m
attributes can be translated into an equivalent LTLY,,;(X, U)-formula.

83

Chapter 7. The Power of Storing Positions

Proof. For some k > 1 and m > 0, let ¢ be a closed formula in HTL% (X, U)~{°2} using m attributes.
We will first give the translation for the case where the HTL% (X, U)~{°2}formula does not use any
attributes, i.e., m = 0. Note that in this case, no atomic formula of the form @a~ x.@b can occur in
. Then, we will explain, how, using the ideas in the proof of Proposition 11, the translation can
be extended to the case m > 1.

The idea is that in a formula %1 atomic formulas z evaluate to true as long as some temporal
operator does not “move” the current position. Thus, it suffices to keep track of whether a sub-
formula of ¢ is evaluated on a position bound to a variable or not. Depending on this, atomic
formulas x can be replaced by T or L. For instance, the formula |* Xz is equivalent to the formula
X1.

Now, we explain the details of the translation. Without loss of generality, we assume that at
most variables from V = {z1,...,2x} occur in . For every subset S C {1,...,k}, we define a
translation tg on sub-formulas of ¢ such that for every sub-formula v, every data word w, every
position i, every register assignment A and every variable assignment p with S = {j | p(x;) =4}, it
holds

w, i, p =Y S w, i\ Ets(¥).

Then, it obviously follows for every data word w,
w e wE=ty(p).

In the definition of tg we content ourselves with the interesting cases:

e ts(p)=p

ts (o)) T, ifjes
x;) =
SL 1, otherwise

o ts(1"9) = tsugn (V)
ts(X’l/J) = Xt@(lﬂ)

s (U1 U2) = ts(2) V (ts(1) A X (to (1) Uty (2)))

for every proposition p and j € {1,...,k}.

If attributes ay, ..., a,, with m > 1 occur in ¢, we translate the formula into an LTLUmk(X, U)-
formula which uses registers from {r¢ ;) |1 < j <k and 1 </£ < m}. The idea how attributes are
handled is the same as in the proof of Proposition 11. We extend the translation tg to a translation
t(s,x) Where for every variable ; pointing to some position i, (i) the registers 7(; 1),...,7(;m) store
all data values at position ¢ and (ii) x(j) keeps track of all £ such that the value of a; is defined at
position . We only consider sub-formulas whose translations differ from the case without attributes:

L4 t(S,n)(\l/Ij'w) =
Vic, .m [(/\éeL Yoo Mess” A Neer, iz = Your - Mhass ™) =V, Esugshmtim) (%)

..........

Qay

° t(syﬁ)(@agwx]‘.@as) = N

, otherwise

{ﬂm,s)’ if k(j) is defined and s € k(j)

where j € {1,...,k} and £,s € {1,...,m}.
Thus, the formula ¢ is equivalent to the LTLY,; (X, U)-formula t@,r.)(P)-

84

7.2. Hybrid Temporal Logic vs. Freeze LTL

We note that for HTL™ similar observations can be made as for hybrid temporal logic on linear
frames in [100]. In particular, for k > 1, every HTLY; formula can be converted into an equivalent
HTL%42(X, U)-formula. The idea is to fix an additional variable at the first position of the word
and to bind the second additional variable to the current position whenever a past formula has to
be evaluated. For instance, given that the additional variables are x and y, the sub-formula pU*“ ¢
can be expressed by |Y.on(z).F[Fy AgA (yV XG(Fy — p))]. A similar technique was used in [200]
in the context of branching time logics.

7.2.1.2 One Variable

In this section, we will focus on HTLT, i.e., HTL™ with a single variable. In the last section, we have
seen that HTL"™ is strictly more expressive than LTLY and that there is even an HTL3-formula that
cannot be translated into any equivalent LTL-formula. In contrast to this result, we will show in
this section that every HTLj-formula can be translated into an equivalent LTL-formula. However,
the resulting formula uses as many registers as there are attributes in the original formula. Together
with Lemma 1 it follows that, in the setting with a single attribute, HTL7T is expressively equivalent
to LTLY. A generalization of this result to multiple attributes is presumably not possible, but
remains as an open question.

We will first give the translation from HTL}-formulas with at most one attribute into LTLY-
formulas. Then, we will explain how, using the technique in the proofs of Propositions 11 and
12, this result can be extended to multiple attributes. Finally, we will say a few words about the
question whether LTLY, and HTLY are expressively equivalent in general.

We start with the translation of HTL7-formulas with at most one attribute to LTLlﬁ—formulas.
The translation relies on a kind of separation property. We will show that in formulas of the form
J%x the top level of x can be rewritten into a Boolean combination of future and past formulas.
This makes it easy to eliminate sub-formulas of the forms z and on(z).¢).

We introduce some new notation needed for the proof. For a set ® of HTL7-formulas, let Prop®
denote the set {py | ©» € ®} of fresh propositions disjunct from the propositions occurring in the
formulas in ®. For a data word w, a position j of w and a set ® of HTL7-formulas, we denote by
(w,7)?® the word that is obtained from w by removing the attributes (along with the data values)
and adding to each position 4 all propositions py, from Prop® for which (w,4,j) = 1. A sub-formula
1 of an HTLT-formula ¢ is called a top-level sub-formula of ¢ if 1 is not in the scope of any |-
operator. For every HTL7-formula ¢ using at most one variable x and one attribute, let T (¢) be
a set such that for every top-level sub-formula ¢ of ¢, we have: (i) if ¢ is in one of the forms |%x,
~x or on(x).x, then, ¢ is contained in ?((p), and (ii) if ¢ is in one of the forms X<y or xU“¢E,
then, on(x).1 is contained in 7T (). We define Ti(gp) analogously, but with the additional atomic
formula x.

We say that an HTL7-formula is in normal form if in every sub-formula of the type %1, the
formula) is of one of the forms ~x, Xx, x1Ux2, X x or x1U x2. Due to the equivalences

e [“p=p,

o |Zx=T,

e [on(z).x =|"x,

o |Z—y = |y and

o [%(x1 A xz) =l xan xe

every HTL7-formula can be translated into an equivalent formula in normal form.

85

Chapter 7. The Power of Storing Positions

The following two lemmas will help to rewrite a sub-formula ¢ in formulas |"1 as a Boolean
combination of past and future formulas.

Lemma 2. For every HTLT-formula ¢ using at most the variable x and a single attribute, there
is an LTL-formula ? such that for every data word w and all positions i and j on w, it holds

(w,i,5) =% & ((w,3)7®),i) = B.

Proof. Let ¢ be an HTL7-formula ¢ using at most the variable = and one attribute. We inductively
define for every top-level sub-formula ¢ of ¢, a PLTL-formula #(¢)) such that for all positions i, j
with 5 <4, it holds

(wid) Ew & (w.d)™@0) i) (7.1)

We make a case distinction on the structure of v:
e t(p) = p for propositions p

x) = ~t(x)

. t(-
o t(x1 A x2) =t(x1) At(x2)

o t(x) = py if x is of one of the forms z, ~a, |%¢ and on(z).¢

o t(Xx) = Xi(x)

o t(x1Uxz2) = t(x1)Ut(x2)

o t(X7x) = (mpz AXTHX)) V (P A Pon(z).xy)

o t(x1U"x2) = (=0 At(x1))U[(—pz At(x2)) V (P A Pon(z).x1 U x2)]

That is, the usual evaluation of past operators is restricted to positions greater or equal to j. If
this is insufficient, then the new propositions are used. It is straightforward to show by induction
that the equivalence 7.1 indeed holds.

Let now ;1 be the formula that results from t(p) by replacing every occurrence of p, with

—y

—X*“T. Clearly, for all data words w and positions j < 4, it holds ((w, j)™*(#), i) = t(y) if and only
it (0,)T,), (i = + 1)) b= @1 where (w,5)T @)[j,...) is the suffix of (w,)T starting at
J.

By [101, Theorem 2.4] the PLTL-formula ¢; can be effectively translated into an LTL-formula
? that is initially equivalent to ¢1. As the positions smaller than j are irrelevant for the validity
of ? at position j, altogether the lemma follows. O

Similarly, we let for every HTL7-formula ¢ with variable x and a single attribute, ?(cp) be
the set of all top-level sub-formulas of ¢ that are of one of the forms |*x, ~z, on(z).x and of all
formulas on(x).Xx and on(x).xU¢ for which Xy or xU¢, respectively, are top-level sub-formulas
of ¢. The proof of the following lemma is analogous to the proof of Lemma 2.

Lemma 3. For every HTLT-formula ¢ using at most the variable x and one attribute, there is a
PLTL-formula ? which does not use any future operator such that for every data word w and all
positions i, on w it holds

(w,1,7) B ¢ & (w,1) (f(w) i) = §z

Now, we are prepared to define the translation from HTL7-formulas with a single attribute to
equivalent LTLY -formulas.

86

7.2. Hybrid Temporal Logic vs. Freeze LTL

Theorem 14. FEwvery closed HTLT-formula using at most one attribute can be translated into an
equivalent LTLY -formula.

Proof. Let ¢ be a closed HTL7-formula using at most one variable z and one attribute. Without
loss of generality, we assume that ¢ is in normal form. We translate ¢ into an LTLY%- formula using
at most one register r. The translation is defined by mutual recursion between three translations ¢,
t, and tT where (i) t is responsible for the translation of sub-formulas which are not in the scope
of any |% (ii) t, translates sub-formulas which are in the scope of |” but there is no data value
defined at the a-position and (iii) ¢+ deals with sub-formulas which are in the scope of |* and the
data value at the z-position is defined. The desired formula is ().
The definition of ¢ is straightforward. We omit the the Boolean cases:

e i(p) = p for propositions p

o t(J70) = [(W A7) =t ()] A [(= 17 A7) = tL ()]
(X¢h) = Xt(1)
(
(
(¥

o

t(y1Ug) = t(2p1)Ut(h2)
o (X< Xt(v)
Y1 U a) = t(1) Ut (2h2)

We now define ¢+ (1) and ¢, (1) for formulas 1 which follow immediately after |* As the original
formula ¢ is in normal form, we can assume that v is of one of the forms ~z, Xy, x1Ux2, X“x or
x1 U x2. We consider the ﬁrst three cases and benefit from Lemma 2. The other cases are handled

t

analogously and involve Lemma 3. For b € {T, L}, we reach t,(¢) in three steps. First, let 1/) be

the LTL-formula guaranteed by Lemma 2. Remember that 1 can contain atomic formulas of the
forms pjzy, Pre and pog(z).y, but no atomic formula p,. Note further that due to Lemma 2, for
every data word w and all positions ¢ and j of w, it holds

o . =
w,ij G & ()T .
~ —
Now, let ¢ be the formula which results from v by replacing

e cach pp, by [(lV. 1) —>lV.t-r(Xﬂ A [(ﬁ P A" = M(X)}, and
e cach p., by 1" if b =T and by L, otherwise.

Note that in case b = L, there is no data value defined at the x-position. Since in this case ~ x
cannot hold at any p081t1on we replace p~, with L. It only remains to eliminate atomic formulas of

the kind pon(z).y in . For every assignment a € [T (¢) = {T,L}] let o be the formula resulting
from 1/1 by replacing every occurrence of an atomic formula pp(s)., With a(on(x).x). We finally get

1 (1) = \V b A AN 0N N).
€T ()—{T.L}) on(z).X€T (1) on(z).X€T (1)
a(on(z).x)=T a(on(z).x)=L1
Note that t,(¢)) is evaluated at the z-position. Informally, ¢,(1)) guesses for every formula on(z).x €

(1) whether y holds at the a-position or not, replaces the occurrences of on(x).y in ’L//J\ according
to its guess by T or L and checks at the “current” position - which is the z-position - that its guess
is correct. O

87

Chapter 7. The Power of Storing Positions

The combination of Theorem 14 and Lemma 1 delivers:

Corollary 4. In the setting where at most one attribute is allowed, HTLT is expressively equivalent
to LTLY.

The translation given in the proof of Theorem 14 can be extended easily to a translation from
HTL7Y with m > 1 attributes to LTLY, by applying the technique used in Propositions 11 and 12.
In a nutshell, we simulate an HTL}-formula ¢ with attributes ai, ..., a, by an LTLY-formula with
registers 71, ..., 7, such that for every £ with 1 < ¢ < m, register ry is responsible for attribute a,.
During the translation, for every sub-formula |".¢, we have to take into account which attributes
are defined at the z-position. To be more precise, we define for every D C {1,...,m}, a translation
tp such that sub-formulas which are not in the scope of any |* are translated by t; and sub-formulas
in the scope of |* are translated by some ¢p such that the attributes whose values are defined at the
a-position are exactly {a; | £ € D}. The overall translation basically differs from that given in the
proof of Theorem 14 only with regard to the handling of formulas of the forms "1 and @a, ~ x.@ay:

e tp(1"y) =
Vie(e, ecii,..m} K/\ZGL oac- Moae A Neeg,..mpr ™ Yoa,- ggz) —lgay, - - - Yoay, L2 (V)

Tk if ke D
o tp(Qa;~x.0a;) = {faw i)therwise

Thus, we conclude:

Corollary 5. FEvery closed HTLT-formula using m attributes can be translated into an equivalent
LTLY, -formula.

The question whether the result of Theorem 14 can be generalized to multiple attributes, i.e.,
whether HTLY is expressively equivalent to LTLY remains as an open question. We assume that
the answer is negative. We think that Property CS9 saying that

every client sending a request to a server gets an acknowledgement from the same server after
some time

and expressed by the HTL7-formula G(req —] “F(ack A @receiver ~ z.@sender A @sender ~
x.@receiver)) cannot be expressed in LTLY. It seems that even the property that there are two
positions agreeing on the values of two attributes is not expressible by using only one freeze register.
The fact that the logic FO%(Suc, <) with multiple attributes is strictly more expressive than with
a single attribute [41] also supports our belief.

7.2.2 Succinctness

In Section 7.2.1.1 we have seen that HTL3(X, U) can express properties that cannot be expressed
by any LTL"-formula. In this section we will show that there are LTL"-expressible properties which
can be expressed non-elementarily more succinct in HTLS, even in HTL%(X, F). Furthermore, even
though HTL?Y is not more expressive than LTLY (Section 7.2.1.2), we will prove that it can express
properties exponentially more succinct than LTLY.

We will consider properties which do not set any constraints on data values and we will make use
of the simple observation that for the formulation of such properties the expressive power of LTLY
does not go beyond PLTL. More formally, we call a property P data insensitive if for every data
word w = (S1,v1)(S2,v2) ... over some attribute set Att and every sequence v, v}, ... of partial
attribute-value mappings from Att to D, w satisfies P if and only if (S, v])(S2,v5) ... satisfies P.

88

7.2. Hybrid Temporal Logic vs. Freeze LTL

In other words, data values are irrelevant for the satisfaction of P. For instance, Property CS1
from Chapter 2 is data insensitive. Now, let ¢ be an LTL'-formula describing a data insensitive
property. As operations of the form |3, require that the value of attribute a must be defined at
the “current” position, the formula ¢ must be equivalent to the possibly shorter PLTL-formula
resulting from ¢ by replacing all sub-formulas of the form |g,.¢» by L. Thus, we observe:

Observation 6. For every data insensitive property P, the shortest LTL"-formula expressing P is
a PLTL-formula.

Based on this observation we can reuse some known results on PLTL in the following proofs. We
start with the succinctness of HTL™ with two variables.

Proposition 13. The logic HTL3(X, F) is non-elementarily more succinct than LTLY.

Proof. The result is basically a corollary from results in [189], [188] and [184]. In [189)], it is shown
that there are star-free regular expressions (o,),>1 built from union, concatenation, and negation
such that there is no elementary function f for which f(n) bounds the length of the smallest string
satisfying a,,, for every n > 1. In [94], it is explained how one can build an equivalent FO-formula
for every star-free regular expression. Following a similar technique, [184] gives a translation from
star-free regular expressions « to formulas ¢, of hybrid temporal logic on linear frames such that
e 1is satisfied by a model if and only if the model encodes a string satisfying a. We can translate
©q easily into an HTL3(X, F)-formula of size linear in |«| expressing the data insensitive property
that the propositional part of the underlying data word matches «. This means that for every n,
the expression «;, can be translated into a corresponding HTL%(X, F)-formula ¢,, of size linear in
o .

On the other hand, as PLTL is expressively complete [128, 102], the expressions «, can be
translated into PLTL-formulas and hence, by definition, also into LTL*-formulas. For every n > 1,
let 1),, be the shortest LTLY-formula equivalent to ¢,. By Observation 6, every 1, must be a
PLTL-formula. Every PLTL-formula in turn can be translated into an equivalent LTL-formula of
length at most triply exponential in the size of the original one [159]. Moreover, [188] proves that
every satisfiable LTL formula can be satisfied by a word of length at most exponential in the size
of the formula. It follows that there is no elementary function bounding the length of the formulas

Vn. O
We now turn to HTL™ with a single variable.
Proposition 14. The logic HTL7(F) is exponentially more succinct than LTLY.

Proof. The proof essentially follows the proof of [94, Theorem 3 (1)] that FOs is exponentially more
succinct than unary LTL. We consider for every n > 1, the following data insensitive property P,
on data words over the proposition set {pg,...,pn}:

Any two positions of the word that agree on propositions p1,pa, - .., Pn also agree on proposition pg.

Let for every n > 1, the set £,, be the language of all data words fulfilling P,. For every n > 1, the
language L,, is characterized by the following HTLT(F)-formula ¢,, of length O(n):

on = G[EG(\(Bi © on@)) = (po > onle)-p0))].

Since each ¢, uses only one variable and does not refer to any attribute, due to Theorem 14
there must be an equivalent LTLY-formula 1,. Let for every n > 1, ! be the shortest LTLY-
formula equivalent to ,. By Observation 6, every), must be a PLTL-formula. For the sake of

89

Chapter 7. The Power of Storing Positions

contradiction, let us assume now that for every n > 1, we have |¢/, | = 2°("). Tt follows from [199]
that for every n > 1, there must be a non-deterministic automaton for 1!, of size lvnl = 927
However, it can be shown as in [94] that every automaton deciding P, requires at least 22" states

which results in a contradiction. O

7.3 Hierarchy Results

In this section, we will show that the variable hierarchy for HTL™ and the register hierarchy for
LTLY are infinite, i.e., there is no k > 1 such that for all i > k& we have HTL7 < HTL?% or such that
for all ¢ > k we have LTL% < LTLUk. It will turn out that this can be concluded from the result
that the variable hierarchy of first order logic on finite undirected ordered graphs is strict [178]. We
will first introduce undirected ordered graphs and define first order logic on such structures. Then,
we will provide an encoding of these structures by data words. Subsequently, we will describe how
first order formulas on these structures can be simulated by HTL™-formulas on the encodings and
how HTL"™-formulas on the encodings can be converted back to first order formulas on the original
graphs. Finally, we will explain how from this and the mentioned result in [178] the infinity of the
hierarchies for LTLY and HTL™ can be followed.

A finite undirected ordered graph G = (V, E, <) consists of a finite set V' of nodes, a finite set of
undirected edges E C {{u,v} | u,v € V and u # v} and a strict ordering < on the node set V. Note
that G cannot contain self-loops, that is, an edge from a node to itself. First order logic (FO) on
undirected ordered graphs can use, besides universal and existential quantification over graph nodes
and Boolean connectives, the edge relation and the ordering on nodes. For instance, the formula

Prig2small = V$1(3£E2(£E2 < 561) — El:CQ(.TQ <x1 A E(SCl,SCQ)))

expresses for every node u that if there exists a smaller node, then, u has an edge to one such node.
As usual, for k£ > 1, we denote the fragment of FO on finite undirected ordered graphs where at
most k variables are allowed, by FOg. Our results in this section rely on the following theorem:

Theorem 15. [178] For every k > 1, FO, < FO41 on finite undirected ordered graphs.

Next, we define canonical encodings of finite undirected ordered graphs by 1l-complete data
words. A 1-complete data word w is a canonical encoding of a finite ordered undirected graph
G = (V, E, <) if the following conditions hold:

e The word w has a node position n(u), for every u € V and two edge positions e(u,v) and
e(v,u), for every edge {u,v} € E. Thus, w counsists of |V|+ 2|E| positions.

e Node positions n(u) have a unique data value and carry only the proposition n.

e Forevery u,v € V with {u,v} € E, the edge positions e(u, v) and e(v, u) carry only proposition
e and have the same data value which does not occur anywhere else.

e The order of the positions obeys for every u,u’,v,v" € V and {u,v}, {u,v'},{v/,v'} € E the
following rules:

if u <’ then n(u) < e(u’,v")
— if v < v’ then e(u,v) < e(u,v’)

if u < v then n(u) < n(v)
— if u < o/ then e(u,v) < n(u).

Note that these rules define a unique order on every canonical encoding w.

90

7.3. Hierarchy Results

Example 12. Let G = ({a,b,c,d}, {{a,b},{a,c},{b,c},{c,d}}, <) be the following undirected
ordered graph where the nodes are ordered by a < b < ¢ < d.

050
0'@

The following data word

Positions: 1 2 3 4 5 6 7 8 9 10 11 12
n e e n e e n e e e n e
7T 8 3 2 8 1 6 3 1 5 4 5

is a canonical encoding of G. The nodes a, b, ¢, and d are represented by the positions 1, 4, 7 and
11, respectively. The correspondence between edges and word positions is as follows:

e The edge {a, b} is represented by postions 2 and 5,
e {a,c} by 3 and 8,

e {b,c} by 6 and 9 and

e {c,d} by 10 and 12.

It should be observed that the underlying linear order on data values is not relevant for the encoding.
O

A maximal sub-word in a canonical encoding where only the first position is labelled by n is called
a node block. To give an example, the sub-word from the 4th to the 6th position of the above
encoding constitutes a node block.

The following two Lemmas will be helpful to derive from Theorem 15 the infinity of the variable
hierarchies for HTL™ and LTLY .

Lemma 4. For every formula ¢ € FOy ,there is a formula ¢’ € LTLUkH such that for every finite
undirected ordered graph G and every canonical encoding wg of G, it holds G |E ¢ & wa E ¢.

Proof. Let for some k > 1, ¢ be a formula from FOy on finite undirected ordered graphs. Without
loss of generality, we assume that ¢ uses at most the variables {z1,...,zr}. We will show how ¢
can be translated into an LTLUk+1-formula t(¢) such that for all graphs G and canonical encodings
we, it holds G = ¢ & wa | t(p).

The formula ¢(¢) uses for every variable z; with 1 <14 < k, a register r; simulating x;. Addition-
ally, it uses an auxiliary register r which helps to determine edge connections. For each variable z;
pointing to some node u, the register r; stores the data value of the first position of the node block
associated with u. The question whether two nodes bounded to variables x; and z; are connected
by an edge can be tested by checking whether the blocks whose initial data values are stored in r;
and r;, respectively, share some data value. We define the translation ¢ inductively.

o t(3wh) = FF~ |".(n At())
o ta; = ;) = FE~ ({7 A 1)
o i(z; < 2;) = FE~(1% A XF 47)

91

Chapter 7. The Power of Storing Positions

o t(E(z;,z;)) = FF< < 7 A X(eU(e/\ P F(" AX(eU(en ﬂr)))))>

t(—p) = —t(v)
t(h1 Ath2) = t(h1) A t(yh2)
where i,5 € {1,...,k}. O

Lemma 5. For every formula ¢ € HTLY, there is a formula ¢ € FOopi¢ such that for every finite
undirected ordered graph G and every canonical encoding wg of G, it holds wg = p < G = ¢.

Proof. Given a ¢ € HTL7, for some k, the translation consists of two steps. First, we construct,
as in the proof of Theorem 9, an FOy3-formula ¢ that is equivalent to ¢ on data words. Then,
we transform $ into ¢’ by means of a quantifier-free logical interpretation [90, Section 11.2] that
defines, for every finite undirected ordered graph G = (V, E, <), a (unique) representation of the
canonical encodings of G on the set V x V. However, the translation of ¢ into ¢’ requires two
variables ' and z” for every variable x of p. Thus, the resulting formula potentially has 2k + 6
variables. More precisely, the logical interpretation ® = (ou, ©n, e, P<, p~) is defined as follows:

e oy(x1,x2) defines the set of pairs that are actual positions of the representation of the canon-
ical encodings. Thus, it is just 1 = 2 V (E(z1,22) A E(22,21)).

e . (x1,x2) defines the positions that carry the proposition n and is, thus, 1 = xs.
e ©.(x1,x2) defines the positions carrying e and is E(z1,22) A E(xa,z1).

e o (x1,22,y1,y2) defines the linear order on positions. It is
[T1 =22 Ay1 = y2 A1 < 1]V
[t1 =22 NE(y1,y2) A (1 Sy Vo < y2)]V
[(.Tl,l‘g ANYyr =1y A (.Tl <Y1 Vg < yl)]
[E(z1,22) AN E(y1,y2) A1 Sy1Var <yaVas <y Vs <yl

Finally, o~ (21,22, y1,y2) defines the pairs of positions that have the same data value. It is
[T1 =y1 Axo = yo] V [11 = Y2 Az = y1].

It is not hard to see that ® indeed defines, for every graph G, the unique representation of the
canonical encodings of G. (]

From the last two lemmas and Theorem 15 we can derive the main theorem of this section:
Theorem 16. The LTLY-hierarchy and the HTLY-hierarchy are infinite.
Proof. For the sake of contradiction, assume that there is some k > 1 such that
(1) for every i > k we have LTLY = LTLY, or
(2) for every i > k we have HTL7 = HTLY.

Let ¢ € FOgx47 be an arbitrary formula on finite undirected ordered graphs. By Lemma 4 there is a
formula ¢ € LTL%kJ,.S such that for all finite undirected ordered graphs G and canonical encodings
wg, it holds G | ¢ < wg | 1. No matter which case in the assumption above holds, it follows
from Lemma 1 that there must be a formula 1)’ € HTL% equivalent to :

e In case (1) there is an LTLY-formula equivalent to ¢ which we can convert to an equivalent
HTL%-formula by Lemma 1.

92

7.4. Discussion

e In the other case, ¥ can first be converted into an equivalent formula 12 € HTL;4+g using
Lemma 1, then, by assumption, there must be an HTL%-formula equivalent to .

Then, by Lemma 5 there is a formula ¢’ € FOqxyg such that for every finite undirected ordered
graph G and every canonical encoding wg, it holds wg E ¥ & G | ¢'. Thus, ¢ is equivalent
to ¢’ on finite undirected ordered graphs. As ¢ was chosen arbitrarily from FOggy7, we can
conclude that FOqp47 is expressively equivalent to FOgx16 on finite undirected ordered graphs, a
contradiction. O

We conjecture that both hierarchies are even strict, that is, for every k > 1, it holds HTL% 41 >
HTL7% and LTLukH > LTL%. We believe that the strictness of the hierarchies can be concluded
from their infinity by means of an Ehrenfeucht-Fraissé game in a similar way as it was done for the
FOg-hierarchy in [178].

7.4 Discussion

We introduced HTL"™, i.e., Hybrid Temporal Logic on data words, and compared it to LTL*. One
of our main results is that HTL™ is strictly more expressive than LTL% and that it only needs
two variables to express a property which is not expressible in LTLY¥. This is in contrast to the
equivalence of these logics on classical words without data values. A further surprising result
is that in the case of one variable, HTL"™ looses its additional expressive power with respect to
LTLY. While every HTL™-formula with only one variable can be transformed into an equivalent
LTLY-formula, 1-variable-HTL™ and 1-register-LTL¢ coincide in terms of expressivity if only one
attribute is allowed. The question whether this equivalence can be generalized to multiple attributes
remains open. As we stated in the corresponding section we do not assume that this question can
be answered affirmatively, because we do not believe that the property that an underlying word
contains two arbitrary positions which agree on the values of two attributes can be expressed in the
1-register fragment of LTLY.

In terms of succinctness, we showed that HTL™-formulas in the 1-variable fragment can be
exponentially more succinct than LTLY-formulas. Formulas with multiple variables can even be
non-elementarily more succinct than LTL*-formulas.

We finally derived from the variable hierarchy of FO on finite ordered undirected graphs [178]
that the variable hierarchy for HTL™ and the register hierarchy for LTLY are both infinite. We
conjecture that the strictness of both hierarchies can be concluded from their infinity in a similar
way as it was done for FO in [178].

We conclude by mentioning that all our results, besides the results on succinctness, carry over to
data w-words. The translations in Lemmas 1-3, Propositions 9, 11, 12, Theorem 14 and Corollary
5 work on w-words without any changes. The expressibility results in Corollaries 1-3 and Theorem
13 and the hierarchy results in Theorem 16 also carry over to w-words, because every separating
language can be turned into a language of w-words by padding every word in the language with an
infinite number of positions labelled by a special proposition.

The results presented in this chapter are generalizations of the results in [129] which was a joint
work with Thomas Schwentick. While in [129] we studied HTL™ on 1l-complete data words, in this
work I considered HTL™ on general data words. Unlike the 1-complete case, the containment of LTL*
in HTL™ on general data words is not given by definition. This made the adaption of some results
like Proposition 12 and Theorem 14 a bit more complicated than in [129]. Moreover, some results like
Lemma 1, Proposition 11 and Corollary 5 which are in the 1-complete case self-evident or follow from

other results, needed a proof in the general framework.

93

Chapter 7. The Power of Storing Positions

94

Chapter 8

Automata for Two-Variable Logic

EMSO3 (Suc, <) < Data Automata
\Y \
EMSO3 (Suc) = Weak Data Automata

As announced in Chapter 5, we will introduce and analyze Weak Data Automata which are a
restriction of Data Automata and expressively equivalent to EMSO%(Suc). Due to the reason that
Data Automata are defined on 1-complete data words, we will restrict our studies in this chapter
to this kind of structures. A Weak Data Automaton contains, instead of a class automaton, data
constraints which set simpler conditions on the data values of the underlying words.

In Section 8.1, we will give the formal definition of Weak Data Automata on finite data words
and explain their semantics. In Section 8.2.1, we will show that Weak Data Automata are strictly
less expressive than Data Automata and incomparable with RA. Section 8.2.2 is devoted to the
proof that Weak Data Automata are expressively equivalent to EMSO%(Suc). From this result and
the fact that the language separating Data Automata from Weak Data Automata can be expressed
in FO%(Suc, <), it follows that FO3(Suc, <) is strictly more expressive than FO%(Suc). In Section
8.3, we will see that it can be derived from [73] that the non-emptiness problem for Weak Data
Automata can be solved in non-deterministic doubly exponential time.

In Section 8.4, we will introduce Weak Biichi Data Automata on infinite data words and ask
whether the expressivity and complexity results for Weak Data Automata carry over to this model.
Our answers will be positive. Weak Biichi Data Automata extend the base automaton of Weak Data
Automata by a Biichi acceptance condition. We will show that this model can be characterized
logically by the extension of EMSO%(Suc) by existential quantifiers over infinite sets. Moreover,
Weak Biichi Data Automata are strictly less expressive than Biichi Data Automata and incompara-
ble with Biichi Register Automata. We can also show that the non-emptiness for Weak Biichi Data
Automata can be polynomially reduced to the non-emptiness for Weak Data Automata resulting
in a non-deterministic doubly exponential upper bound for the complexity of Weak Biichi Data
Automata. However, this result will not be presented here, but can be found in [130]. In the last
section of this chapter we will discuss some open questions.

95

Chapter 8. Automata for Two-Variable Logic

8.1 Weak Data Automata

In this section, we will introduce a new automata model called Weak Data Automata (WDA)
which follows a similar approach as Data Automata (DA). Just like a DA, a WDA contains a
non-deterministic Letter-To-Letter Transducer (LLT) which reads and transforms the marked word
projection of the input data word. However, unlike a DA which requires all class words of the
resulting data word to be accepted by a finite automaton, a WDA imposes some weaker conditions
called data constraints on the class words.

We start with the formal definition data constraints. Let w be a simple data word over some
alphabet I'. That is, w carries at each position a single symbol from I" and a single data value. For
some v € T', let Values(w,y) be defined as {d | there is some position i labelled by v which carries
data value d}. We define three kinds of data constraints.

e Key constraints key(vy) with v € I': These constraints express that a symbol does not occur
at two different positions with the same data value. Thus, given a v € I', the key constraint
key(7y) holds on w (written as w |= key(y)) if for all distinct positions ¢ and j of w labelled
by v, the data values at positions ¢ and j are distinct.

o Inclusion constraints V() C V(I") with v € ' and IV C I": This kind of constraints state
that the data values occurring at positions labelled by some symbol occur also at positions
labelled by some other symbols. To define it formally, for some v € I"and IV C T", the inclusion
constraint V() C V(I”) holds on w (written as w = V(vy) C V(I")) if Values(w,vy) C

U, e Values(w,).

e Denial constraints V(y) NV (y') = 0 with «,+" € T': This type of constraints require that two
symbols do not share the same data values. In formal terms, for two symbols v, € T, the
denial constraint V(y) N V(') = () is satisfied by w (written as w | V(y) NV (y) = 0) if
Values(w,v) NValues(w,~") = 0.

It should be observed that the satisfaction of a data constraint on a data word does not depend on
the order of positions in the word. For a set C of constraints, we write w = C if for every C € C,
we have w = C.

Note that the key constraints defined above are a restricted version of those introduced in [170].
In the notation of [170], the constraint key(7y) can be expressed by ({v, e}).

A WDA A = (B,C) consists of a base automaton B and a finite set C of data constraints.
Like in the case for DA, the base automaton is a non-deterministic LLT with some input alphabet
¥ x {L, T} and some output alphabet I'. We consider ¥ as the input alphabet of A. Remember
from Section 4.2.2 that the marked word projection of a 1-complete data word w contains at every

position i, besides the propositions at position i of w, the symbol T if and only if position ¢ + 1 of
P P,
di e i

proposition set Prop is accepted by a WDA A = (B, C) over the input alphabet ¥ = 2F*°P if

w exists and it carries the same data value as position i. A data word w = over some

e there is a transduction v = 7 ..., of B on the marked word projection of w, and

Mmoo, M

e all data constraints in C are satisfied by i &

We give some example WDA:
Example 13. In Example 3 of Section 4.2.2, we described how a DA can check the property:

All data values of the input word are pairwise distinct.

96

8.2. Expressivity of Weak Data Automata

This property can also be checked by a simple WDA A = (B, C) where B outputs at every position
the same symbol v and C consists of the single key constraint key(7). O

We will see in later sections that the DA-expressible property that every p-position is followed
by some g-position with the same data value, considered in Example 4 of Section 4.2.2; is not
expressible with WDA. Nevertheless, the next examples show that it is easy to describe properties
with WDA in which the order of positions does not play any role.

Example 14. We consider the following property:

For every position labelled by proposition p, there is a position labelled by proposition q which
carries the same data value.

To check this property, the base automaton outputs at every p-position a symbol v and at every
g-position a symbol 4/. The only constraint we need is the inclusion constraint V(v) C V({+'}). O

Example 15. Let us have a look at the following property:

For every position labelled by proposition p, there is a position labelled by proposition q which
carries a different data value.

The base automaton first guesses whether the data word contains (1) no g-positions, (2) at least
one g-position and all ¢g-positions are in the same class, or (3) at least two ¢-positions in distinct
classes. In the following, we say that the base automaton marks some position ¢ by some symbol ~y
if it outputs 7 at 7. In Case (1), the base automaton just checks that the word neither contains any
g- nor any p-position. In Case (2), it assures that there is at least one ¢ position and no position
labelled by p and ¢. It additionally marks the first ¢-position by a symbol «, all other g-positions
by ' and all p-positions by §. The constraint set contains the inclusion constraint V(o) C V({a})
and the denial constraints V(8) NV (a) = 0 and V(8) NV (/) = 0. Observe that in Case (3), it just
has to be checked that the guess of the base automaton is correct. To this end, the base automaton
chooses two ¢-positions, marks the first one by v and the second one by +'. By the denial constraint
V(y)NV(y) =0, it is assured that v and v are in different classes.

It is worth to mention that whatever the base automaton guesses, the data constraints do not
disturb each other. If, for instance, it guesses Case (2), the constraints of Case (3) hold, because
no position is marked by v or v'.

O

8.2 Expressivity of Weak Data Automata

In this section, we will devote our attention to the expressive power of WDA. In Section 8.2.1, we
will compare WDA to DA and RA. It will turn out that WDA are strictly less expressive than
DA. We will also show that WDA and RA are not comparable in terms of expressivity. The focus
of Section 8.2.2 will be on the logical characterization of WDA. We will prove that WDA are
expressively equivalent to EMSO7%(Suc).

8.2.1 Comparison with other Automata Models

First, we will prove that WDA are strictly less expressive than DA. Then, we will show that they
are incomparable with RA in terms of expressivitiy.
We consider the two properties E,«, and Eps, on data words over the proposition set {p, ¢}:

Ep<q: For every position i labelled by p, there is a position j > i such that j is labelled by q and
carries the same data value as j.

97

Chapter 8. Automata for Two-Variable Logic

Epoq: For every position i labelled by p there is a position j with j =i+ 2 such that j is labelled by
q and carries the same data value as j.

Note that every data word fulfilling E,s, satisfies Ej,<q, too. Let £, and £,<, be the languages
of data words satisfying Ep2, and E,4, respectively.

Lemma 6. None of the languages Ly<q and Lyaq can be decided by WDA.

Proof. Our argumentation uses some kind of pumping property for WDA. We first show that
there cannot be any WDA deciding Lp24. For the sake of contradiction, assume that L9, is
decided by some WDA A = (B,C) with some output alphabet I' for B. Let n = |['|* + 1 and

dy,dy,da,db, . .., dy,d, be pairwise different data values. We consider the data word
w_ PP 9 a PP g a PP a4
T ody dy di dy dy dy dy df d, d, d, d,

of length 4n. Obviously, w is contained in £,9, and its marked word projection is ((p, L) (p, L)
(¢, L) (g, L))™. As w is accepted by A, there must exist a transduction 71 . .. y4, of B on the marked
word projection of w such that all constraints in C are satisfied by

Y1 Y2 Y3 Y4 Y5 Ve Y7 8 Yan—3 VY4n—2 Van—1 YVin
dq d’1 dq d’1 do d’2 do d’2 d, d;L d, djl

Due to the choice of n, there must exist natural numbers 7,7 with 0 < ¢ < j < n such that
Vait1Vai+2V4i+3Vdi+4 = Vaj+1VAj+2Y4j+3V4j+4- Let w’ be the data word obtained from w by inter-
changing the data values of positions 4i + 3 and 47 + 4 with those of 45 + 3 and 45 + 4. That

is,

’ p P q9 q p p q q p p q q p qa g

p
di dy dy &y di diyy djpn djy T dip dj dipn digy n dn dn dy
Clearly, w' ¢ Lp2,. However, as the marked word projections of w and w’ are identical, the string
1 ... Yan is also a possible output of B on the marked word projection of w’. Let

;Y1 Y2 Y3 V4 Y4i+1 V4i+2 V4i+3 V4it+4 Y4541 Y4542 V4543 V4544 Yan—3 Van—2 Van—1 Vin

YWy dydy &) dia diyy diy1 djpq dipr diq dign diyy 0 dy d;, d, d,

be a data word whose sequence of data values is equal to that of w’. Observe that v’ results from
u by changing the order of positions. As u satisfies all constraints in C and the satisfaction of data
constraints does not depend on the order of positions of the underlying data word, u’ satisfies all
constraints in C, too. Thus, w’ € L(A,C) which is a contradiction.

The proof for £, is exactly the same. Obviously, w € L,<,. Moreover, w’ & L, since for
the p-position 45 + 1 there is no subsequent position with the same data value. O

With the help of the last lemma we can prove the following theorem:
Theorem 17. (a) In terms of expressivity, RA and WDA are incomparable.
(b) DA are strictly more expressive than WDA.

Proof. (a) From Lemma 6 we know that the language L2, cannot be recognized by a WDA whereas
it can be decided by an RA using two registers. At every p-position i, the RA stores the data
value at ¢ and checks whether position i + 2 exists, is labelled by ¢ and carries the same data

98

8.2. Expressivity of Weak Data Automata

value as position ¢. After position i+ 2 the data value of position ¢ is not needed any more and
the corresponding register can be overwritten. Thus, two registers suffice to decide Lya4.

On the other side, as mentioned before, it follows from Proposition 4 in [124] that the language
of all data words in which every data value occurs at most once, cannot be decided by any RA.
However, as demonstrated in Example 13 this language can be decided by a WDA.

(b) We show that every WDA can be translated into an equivalent DA. The strictness follows
from (a) and the result that the class of all languages decided by RA is included in the class of
languages decided by DA [39].

Let A = (B,C) be an arbitrary WDA. We construct a DA A" = (B,(’) whose base automaton
is the same as that of A and whose class automaton C’ results from the intersection of all finite
automata in {C,|C' € C} where for every C' € C the automaton C, behaves as follows:

o If C is a key constraint key(y), then C, checks that the input string contains at most one
position labelled by ~.

e If C'is an inclusion constraint V() C V(I"), then, C{, tests that if the input string contains
a y-position, then it contains also a +'-position for some v € T".

e If C is a denial constraint V() NV (y') = 0, then, C{, ensures that the input word does
not contain two positions where one of them is labelled by v and the other by +’.

O

8.2.2 Logical Characterization

In this section, we will show that the class of all languages decided by WDA can be characterized by
EMSO%(Suc). Our result can be considered as an analogue of the characterizations of Biichi, Elgot
and Trakhtenbrot [57, 92, 195] for string languages. A corresponding result on strings is that the
regular languages are characterized by EMSO2(Suc). Since the empty word & cannot be expressed
in the logic, we follow the common approach of ignoring the empty word in logical characterizations.
That is, we associate every WDA with an EMSO?%/(Suc)-formula such that if the automaton accepts
the empty word, then, its language is the language of the formula augmented by the empty word.
First, we prove that for every WDA there is a corresponding EMSO3%(Suc)-formula.

Lemma 7. For every WDA A, a corresponding EMSO3(Suc)-formula ¢ with L(A) — {e} = L(p)
is constructible in polynomial time.

Proof. Let A= (B,C) be a WDA with B = (2,1, 5, sg,d, F) such that > = 2P*°P for some proposi-
tion set Prop, S = {sq, $1,-..,8n} and I' = {~1,...,v¢}. We will construct an EMSO%(Suc)-formula
¢ over Prop with £(A) — {e} = L(¢). The construction is very similar to the classical translation
of finite automata into MSO-formulas (see, e.g., in [194]).

In the sequel, for o € ¥ and a position variable z, we use o(x) as an abbreviation for A, p(z) A
/\pEProp\U —p(z). Moreover, we assume, without loss of generality, that A uses the initial state sg
only once. The formula ¢ is of the form

HRsl e ERsn,ER’h e HRWZ ((ppsart A (JDII;art A (Pstart N (ptrans N (Paccept N (Pconstr)-
We give an informal description of the formula:

e The variables R,,,..., R, , Ry, ... Ry, are set variables with the following intended meaning:
Each R,, with 1 <4 < n, consists of all positions of the underlying word which, after being
read, move the automaton B into state s;. Each R, with 1 < j </, consists of all positions
at which B outputs ;.

99

Chapter 8. Automata for Two-Variable Logic

e The formulas gpsart and wgart assert that R ,..., R, as well as R,,,..., R, partition the
position set of the input word.

e The formula @gsiary €xpresses that the automaton starts in state sg.

The formula (rans ensures that the sets Rg,,...,Rs,, Ry, ... R,, are consistent with the
transition relation of B.

The formula @accept requires that the marked word projection of the input word is accepted
by B.

e The formula ¢copstr guarantees that the data constraints in C are fulfilled.
Now, we give the formal definition of ¢.
e The definitions of gogart and gogart are easy:

Sﬁgart:vx{ \/ Rsi(z)/\ /\ (Rsl-(z)H /\ ﬁst(z))}a

1<i<n 1<i<n Je{1,....,n}\{i}

e =Ve|) Ru@n N\ (Ru@— A -R,@)].

1<i<e 1<i<e JE{1,... . L3\ {3}

e The formula @giart ensures that the state and output of B, after reading the first position
of the marked word projection of the input word, are in accordance with the label at that
position and the transition relation. Remember that the label of a position in the marked
word projection depends on the equality relation between its own data value and that of its
neighbour.

Pstart =T [ﬁﬂySuc(y,)A

/\ ({(O’(SC) A Fy(Suc(z,y) Az~y)) — \/ (Rs(z) A R»Y(ZL')):|/\

o€ (s0,(0,T),7,5)€8

[(0(3@) A —Ty(Suc(z,y) Az~y)) — \/ (Rs(z) A Rv(x))})

(s0,(o,L),7,8)€8

e The formula @irans is a generalization of the assertions above to all positions. That is, it
checks that the states and output symbols associated with the positions are consistent with
the transition relation.

Ptrans =VILVY lSuc(x, y) —

A ([not) nsasicta nami) 5 (Rel) RG]

ocEX,s€S (s,(0,T),y,s")€b

(.0 o) A -stsuctna) o) &\ (Rt AR,)])
(s,(0,L),v,8")€d

100

8.2. Expressivity of Weak Data Automata

e The formula @accepr Only checks that the last position is contained in some Ry with s € F'.

Jz[-JySuc(z,y) A \/ Ry()]

seF

e Remember that the data constraints are formulated on the output alphabet I' of B and that
the outputs of the latter are determined by the sets R,,,..., Ry,. The formula ¢conser is a
conjunction A\ ¥c such that

— if C' is a key constraint key(7), then
Yo =Vavy[(Ry(z) A Ry(y) Ao ~y) =z =1y],

— if C is an inclusion constraint V(y) C V(I"), then

Yo =VaIy[R,(z) — \/ (Ry(y) N ~y)],and
y'er’

— if C is a denial constraint V() NV (y') = 0, then
Yo = vay[(R'y(x) ARy (y)) =~z ~ y]

The length of ¢ is O(|Z[|S||6] + |C]). The correctness of the formula is straightforward and, thus,
omitted. (|

In [43] it is shown that every EMSO3%(Suc, <)-formula can be translated into an equivalent DA
in doubly exponential time. We give an analogous result for EMSO%(Suc) and WDA.

Lemma 8. For every EMSO3(Suc)-formula, an equivalent WDA A = (B,C) is constructible in
doubly exponential time. The size of the output alphabet of B and the number of the constraints in
C are at most exponential.

Proof. Let ¢ be an EMSO%(Suc)-formula using propositions from the set Prop = {p1,...,pe}. We
will give an algorithm running in doubly exponential time which translates ¢ into an equivalent
WDA A = (B,C).

First we explain some terms and notational elements which we are going to use in the proof.
The base automaton B uses a finite input alphabet ¥ x { L, T} where each o € ¥ represents a subset
of Prop. Similarly, each symbol from the output alphabet I' of BB represents a finite set of unary
relation symbols. When we say that B outputs some relation symbol R at some position, we mean
that it outputs a symbol representing a set including R. Likewise, we use boolean combinations
of relation symbols to describe output symbols within data constraints. For instance, for three
relation symbols R;, Ro, R3, the expression key(R; A Ra A —R3) is an abbreviation for the set of
key constraints key(vy) with Ry, Ry € v and Rz & . Given a set R of unary relation symbols
and a data word position 7, we say that a subset R’ C R is the full atomic type of ¢ with respect
to R,ifi € R forall R € R' and ¢« ¢ R for all R € R\R'. Likewise, a quantifier-free FO-
formula «(x) is called a full atomic type with respect to R if there is a subset R’ C R such that
(2) = Apers (@) A Nper\rr ~R(2).

The sequel of the proof is structured as follows. First, we will convert ¢ into an equivalent
formula ¢’ in normal form. Then, we will introduce some relations on word positions which will
help to describe the strategy of A. Finally, we will explain how, by means of these relations and
some data constraints, the base automaton B tests that an input data word satisfies ¢’.

101

Chapter 8. Automata for Two-Variable Logic

We start with the normal form. Following [43], we first transform ¢ into an equivalent formula

¥ =3R;...3R, [VaVy X' A /\ VzIy xi]

i=1

in Scott normal form [107] where x' and each x} are quantifier-free FO™-formulas and the size of
1) is linear in the size of . Note that the FO™-part of 9 can contain, besides the unary relation
symbols representing propositions, the relation symbols Ry, ..., R,. For simplicity, we refer to the
relation symbols for the propositions p1,...,ps as Ry41,- .., Rute. In the next step, we rewrite the
formula ’ into a conjunction

k
/\ z) A Bi(y) A (x,y) Aej(a,y))

where k is at most exponential and for every j, we have that

a;(x) and B;(y) are full atomic types with respect to R = {R1, ..., Rots},
d0; is either x ~ y or -z ~ y and

gj(z,y) is of one of the forms z = y, Suc(z,y), Suc(y,x) and F(z,y), where F(x,y) is an
abbreviation for the formula —Suc(x,y) A =Suc(y,) A =z = y expressing that the distance of
x and y is at least two.

Likewise, we rewrite every x; into a disjunction

h
= V@0 A5 A5 A5

where h is again at most exponential and each conjunct is of the respective form as above.
The base automaton B guesses for each position to which of the following relations the position
does belong to and outputs the corresponding symbol at that position.

Relations Ry, ..., R,+¢ have the expected semantics. We refer to the full atomic type of a
position with respect to the relations Ry,..., R4/ as its SNF-type.

Relations Py, Py, P3, P#!, P#2 P#3 with the following intention: If a class contains at least
three positions of some SNF-type «, then exactly one of them is in Ps. If it contains at least
two a-positions, then exactly one of them is in P, but not in Ps. If it contains at least one
a-position, then exactly one of them is contained in P;, but not in P, or Pj.

Moreover, if a class contains at least three a-positions, then all a-positions of the class are
contained in P#3, but not in any other P, with k # 3. If it contains exactly k a-positions
with 1 < k < 2, all a-positions of the class are contained in P#*, but not in any other P,
with r # k.

Relations C1, Cy, Cs, C# C#2 C#3 with the following meaning: If there are at least three
classes containing some position of some SNF-type «, then in exactly one of this classes, all
a-positions are in Cs. If there are exactly k, 1 < k < 2, classes containing a-positions, then
all a-positions of exactly one of this classes are contained in Cj, but in no other C, with
r % k.

Furthermore, if there are at least three classes containing a-positions, then all a-positions of
the whole word are in C#3, but not in any C#" with k # r. If there are exactly k € {1,2}

102

8.2. Expressivity of Weak Data Automata

classes containing a-positions, then all a-positions in the entire word are in C#3, but not in
any other C#" with k # r.

We refer to the full atomic type of a position with respect to all P, P#* Cy and C#* with
1 <k < 3 as its occurrence type.

e Relations %, E with the following intention: A position is in % (respectively, E) if its left
(respectively, right) neighbour exists and has the same data value.

e The relations %k,ﬁk for k € {1,...,n+ ¢} and $k,$#k,gk,g#k,?k,?#k,8k,8#k
for k € {1,...,3} with the following intention: For each position ¢, it holds that ¢ is in a
relation with an arrow pointing to the left (respectively, right), if its left (respectively, right)
neighbour is in the corresponding relation without an arrow. We refer to the full atomic type
of a position with respect to these relations and the relations % and ﬁ as its neighbourhood

type.

Now, we explain how it can be ensured by B and C that the guesses of B are consistent with
regard to the intentions described above.

e The consistency with respect to the relations R, +1,..., R,+¢ can be checked easily by B with
the help of the read input symbols. Note that there are no consistency conditions with respect
to Rl,...,Rn.

e The consistency with respect to the Py- and P#*-relations can be tested as follows: For every
«, the automaton B can ensure:
— Each a-position is in at most one Pj- and exactly one P#*-relation.
— Each a-position which is in Ps or not in any P is contained in P#3.
— Each a-position in P, is contained in P#2 or P#3.
— Each a-position in Pj is contained in P#!, P#2 or P#3,
The following inclusion constraints enforce for every a and every class that (i) the class
contains an a-position in Ps if it contains an a-position which is not in any Pk-relation and
(ii) it contains an a-position in Py_1 if it contains an a-position in Py, with 2 < k < 3:
*V(O&/_‘Pl _‘PQ)CV(O[/\PB)
—V(CY/\P3 CV(CY/\PQ P#3)
— V(a APy AP#3) CV(aA P A P#3)
V(a A Py A P#2) CV(a A Py A P#2)

The next inclusion constraints guarantee that if a class contains an a-position in some P#*,
then it contains at least k a-positions:

— V(a APy AP#3) CV(an Py A P#3)

— V(aA P AP#2) CV(a APy A P#2)

— V(a APy AP#3) CV(aA Py A P#3)
To complete the correctness, we have to assure that each class contains for every « and relation
Py, at most one a-position in P;. This can be done by key constraints. Note that by these

constraints we implicitly avoid that a class contains an a-position in some P#* and another
a-position in some P#" with k # r.

103

Chapter 8. Automata for Two-Variable Logic

e The consistency with respect to the Cj- and C#*-relations can be tested in a similar fashion.
For every a, the base automaton checks that if there is at least one a-position, then

— every a-position is in at most one Cy,

— there is exactly one k such that all a-positions are in C#* but not in any other C#"
with k # r,

— if all a-positions are in C#3, then there are a-positions in Cs3, a-positions in Cy and
a-positions in C1,

— if all a-positions are in C#2, then there are a-positions in Cy and a-positions in C; and
every a-position is either in C5 or C4, and

— if all a-positions are in C#!, then all a-positions are in C;.

The property that in every class containing an a-position, either no a-position belongs to
any C} or all a-positions belong to exactly one C} can be ensured by denial constraints. The
requirement that a Cy-relation does not contain two a-positions from different classes can be
guaranteed by a joint work between the base automaton B and some inclusion constraints:
For every C} containing at least one a-position, the base automaton chooses exactly one a-
position in Ck and outputs a special relation symbol C}, at that position. Moreover, C involves
the inclusion constraint V(o A Ck) C V(a A Cy).

e The consistency with respect to neighbourhood types can be tested easily by B. Remember
that the marked word projection contains for every position the information about whether
the next position exists and has the the same data value or not.

Now we describe how it can be tested by B and C that for all positions x and y of the input word,
the formula x is satisfied. For every conjunct —(a;(x) A B;(y) A dj(z,y) Aej(z,y)) with 1 < j <k,
we distinguish between the following cases:

e ¢;(z,y) is © = y: Note that in the case that J§;(z,y) is ~x ~y or a; and 3; are different
SNF-types, the formula obviously holds. In the remaining case, such a formula just forbids
the occurrence of the SNF-type a; which can be checked easily by B.

o ¢;(x,y) is Suc(z,y) or Suc(y,x): Such formulas state that the SNF-types «; and §; are
forbidden as neighbours with equal or different data values. As this is a question of consistency
between the SNF-type and the neighbourhood type of a position, it can be tested by B.

o ¢;(x,y) is F(z,y) and §;(z,y) is « ~ y: This kind of formulas state that there should not
be an «aj-position s and a f;-position ¢ in the same class with |s —¢| > 1. This kind of
constraints can be tested by the base automaton, by using neighbourhood types and some
denial constraints. We exemplarily show for some cases how the validity of such a constraint
can be ensured.

Let a; # (3; and s be an aj-position such that the left neighbour is a 3;-position with the
same data value as s and the right neighbour is not a 3;-position. In such a case, there should
not be a further §;-position in the class of s. Thus, the base automaton just checks that the
left neighbour of s is contained in P#1.

If 5 is an aj-position such that neither the left nor the right neighbour is a 3;-position, it has

to be assured that there is not any S;-position in the class of s. The base automaton does
YR —

not check anything, but C includes the denial constraint V(a; A=5; A—5;) NV (B;) = 0; here

%
we use E (respectively, ;) as an abbreviation for the Boolean combination of neighbourhood
types expressing that the left (respectively, the right) neighbour is not a 3;-positions.

104

8.2. Expressivity of Weak Data Automata

o c;(x,y) is F(z,y) and 6;(z,y) is -z ~ y: Such formulas postulate that a;-positions s and
Bj-positions ¢ with |s —¢| > 1 need to be in the same class. This can be tested by B and some
inclusion constraints. We describe some example scenarios:

If o; = B; and s is an aj-position such that neither the left nor the right neighbour of s is an
aj-position, then it has to be ensured that all a;-positions are in the same class. Thus, the
base automaton just checks that s is in C#!.

Assume that «; # ;. Moreover, let s be an o;-position whose left neighbour is a /3;-position
with the same data value as s and the right neighbour is a ;-position with a different data
value. Then, the task is to check that there is no further ;-position in the class of the
right neighbour of s and there are no more than two different classes containing §;-positions.
Therefore, the base automaton assures that the left neighbour of s is in C#?2 and the right
neighbour is in C#2 and P#!.

In cases where the data values of both neighbours of s differ from the data value of s, we use
inclusion constraints.

What remains to be shown is how the formulas y; can be tested. For each ¢ < m and each
position s, it has to be checked that there is a witness position ¢ such that some disjunct (a;'- () A
Bi(y) A O (x,y) Ael(x,y)) of x; is satisfied for © = s and y = t. This can be accomplished in the
following way. For every ¢ < m and every position s, the base automaton B guesses for which j
there is a witness position ¢ such that the formula (o’ (x) A Bi(y) A 8% (x,y) A €}(x,y)) holds for
z = s and y = t. Clearly, if Eé(:c,y) is equal to = y, Suc(x,y) or Suc(y,z), the existence of a
witness position can be checked by SNF- and neighbourhood types, hence, by B without using any
constraints. In the case that €§-(1‘, y) is equal to F'(z,y) and 5;—(1', y) is equal to x~y, the existence
of witness positions can be guaranteed by the base automaton and by inclusion constraints using a
new relation symbol W The case where €}(z,y) is equal to F(z,y) and &’(z, y) is equal to ~z~y
can be handled by B and some denial constraints using a symbol W#. We describe the behaviour

of B in the last two cases in more detail.

o c'(x,y) is F(x,y) and 0%(x,y) is 2 ~y: For every a-position s, it has to be ensured that
there is a ﬁ;-position t with |s —¢| > 1 such that s and ¢ have the same data value. For the
case that aé #* 6;, we consider some example positions s.

Let s be an aé--position whose left neighbour has a different data value and the right neighbour
is a fj-position with the same data value as s. In this case, it is required that there is a further
Bj-position in the class of s. Thus, the base automaton checks that the right neighbour of s
is in P#2 or P#3.

If sis an aé-position such that both neighbours have different data values than s, it has to be
guaranteed that there is a §}-position in the class of s. To this end, the automaton outputs W~

at position s. Moreover, C includes the inclusion constraint V(aé A—~E A-E A w~) C V(ﬁ;)

o ci(x,y) is F(z,y) and &}(z,y) is ~w~y: Such a formula holds for an a}-position s if there is
a ﬂ;-—position t such that |s —¢| > 1 and ¢ ha s a different data value than s.

Let O‘;‘ #* ﬁ; and s be an aé-position for which B assumes that such a formula holds. Let the
left neighbour of s be a [i-position with the same data value as s and the right neighbour
be a Bg—position with a different data value. In this case, either there must be a third class
containing a fj-position or the class of the right neighbour of s has to include a further ;-

position. Consequently, the base automaton just checks that the right neighbour of s is in
C#3, P#2 or P#3.

105

Chapter 8. Automata for Two-Variable Logic

If neither the left nor the right neighbour of s is a ﬁ§—position or has the same data value as
s, it must be assured that there is a ﬁ§—position outside the class of s. In this case, the base
automaton either ensures that there is a Si-position in the whole word included in C#2 or it

- — =
outputs W7 at s. Additionally, we have the denial constraint V(a} A ﬁ% A ﬁﬁ A=B5 N=B5 A
W*) N V(BiACy) =0 in C.

It should be noted that the number of the relations used by B and C is O(|¢|). Thus, the size
of the output alphabet of B and the number of constraints are at most exponential in |p|. As the
normal form in the first part of the proof has at most exponential length, the number of the states
of B and the overall construction time of A are at most doubly exponential. O

From Lemmas 7 and 8, we conclude:
Theorem 18. Weak data automata and EMSO3(Suc) are expressively equivalent.

It is known that EMSO3(Suc) and EMSO2(Suc, <) are expressively equivalent on usual strings.
Due to the above characterization and Lemma 6, this equivalence does not carry over to data words:
EMSO%(Suc) is expressively equivalent to WDA (Theorem 18) by which the language £,, cannot
be decided (Lemma 6). However, as £,<4 can be expressed by the EMSO%(Suc, <)-formula

VyJy(p(z) — (2 <y Aqly) Nz~y)),
it follows:

Corollary 6. The logic EMSO3%(Suc, <) is strictly more expressive than EMSO%(Suc).

8.3 Complexity of Weak Data Automata

While an elementary upper bound for the complexity of the non-emptiness problem for DA is not
known yet, we will show in this section that in the case of WDA this problem can be solved in
non-deterministic doubly exponential time. It will turn out that this result can be derived easily
from [73].

We first discuss some extended versions of key and inclusion constrains studied in [73]. Let I’
be a finite alphabet:

e Disjunctive key constraints key(I') with TV C I": Such a constraint is satisfied by a data word
w if each of its classes has at most one position with a symbol from I'. That is, key(I"”) holds
on w (written as w = key(I'")) if w does not contain any class with distinct positions i and j
such that both are labelled by some symbol from I".

o Disjunctive inclusion constraints V(I') C V(I'") with I,T” C I': This constraint is satisfied
by a data word w if each class containing a position labelled by a symbol from I, contains
also a position labelled by a symbol from I'. More formally, we write w | V(') C V(") if

U, er Values(w,v) € U, epn Values(w, 7).

A WDA is attributed with the term extended if it allows disjunctive key and inclusion constraints,
besides the usual key, inclusion and denial constraints.

Before proving the upper complexity bound for WDA, we introduce a further automata model
with constraints. A Profile Automaton A = (B,C) consists of a usual NFA B with some input
alphabet I' x {L, T} and a set C of (extended) data constraints over I We call " the input
alphabet of A. A simple data word w over I' is accepted by A if B accepts the marked word
projection of w and w satisfies all constraints in C. We formulate a simple observation:

106

8.3. Complexity of Weak Data Automata

Observation 7. The non-emptiness problem for extended WDA can be polynomially reduced to
the non-emptiness problem for Profile Automata.

Given an extended WDA (B, C), one can construct a Profile Automaton (B’,C) whose input alphabet
equals the output alphabet of B and B’ simply guesses a word projection and simulates B on it.
To describe it technically, for every transition (s1,(o,b),~,s2) of B, the NFA B’ has a transition
(31’ (’7) b)a 52)'

With the help of the last observation we can derive from [73] the upper complexity bound for
WDA.

Theorem 19. The non-emptiness problem for WDA is in 2NEXPTIME.

Proof. In [73], it is shown that the non-emptiness problem for Profile Automata whose sets of
constraint include only disjunctive key and disjunctive inclusion constraints, can be decided in non-
deterministic doubly exponential time. By Observation 7, the non-emptiness problem for extended
WDA without denial constraints can be polynomially reduced to the non-emptiness problem of
Profile Automata without denial constraints. It, thus, only remains to show that the non-emptiness
problem for WDA can be polynomially reduced to the non-emptiness problem for extended WDA
without denial constraints.

To this end, let A = (B,C) be a WDA with B = (3,T, S, s¢, d, F'). We will construct an equivalent
extended A’ = (B’,(’) without denial constraints. The idea is that for every v occurring in some
denial constraint in C and every class in which B outputs « at some position, the automaton
B’ guesses exactly one 7-position and outputs some fresh symbol 7 instead of 7. That the 7-
positions cover all y-classes can be ensured by inclusion constraints. Then, each denial constraint
V(1) NV (v2) = 0 in C can be replaced by a disjunctive key constraint key({71,72}) stating that
no class contains two positions with symbols from {71,72}.

In the following, we explain the technical details. Let Tgen = {7 | v occurs in some denial
constraint in C}. The base automaton B’ is defined as (3,7, S, s9,¢’, F) withTV = TU{5 | 7 € T4en}
and ¢ = 0 U {(s1,(0,b),7,s2) | (s1,(0,b),7,s2) € 6 and v € I'qen}. The constraint set C’ results
from C as follows:

e For every 7 € Tqen we add the inclusion constraint V(y) C V(7).

e Every inclusion constraint V(y) C V(I") in C is replaced by the disjunctive inclusion constraint
VU [€{vtNTaen}) SVIU{Y [€ "N Tden}).

e Every denial constraint V(v1) NV (y2) = @ in C is replaced by the disjunctive key constraint
key({71,72})-

Now, let w be a data word accepted by (B,C). This means that there is a data word u which
satisfies all constraints in C and results from w after B transforms the marked word projection of
w. Let u’ be the data word resulting from u after replacing for every v € I'gen and every class
word of u containing a ~-position, exactly one occurrence of v by 4. By construction, the word
projection of u’ is a possible transduction of B’ on the marked word projection of w. Furthermore,
by construction of C’, all constraints in C’ are satisfied by «'. Thus, w is accepted by (A’,C").

The opposite direction is along the same lines. Let w be a data word accepted by (B’,C’). Then,
there is some data word u which satisfies all constraints in C’ and results from w after B’ converts
the marked word projection of w. Let v’ be the data word resulting from u by replacing all symbols
7 with v € T'4en by 7. Obviously, the word projection of u’ is a possible transduction of B on the
marked word projection of w. As by construction all constraints in C are satisfied by «/, the word
w is accepted by (A,C). O

107

Chapter 8. Automata for Two-Variable Logic

We conclude by noting that the doubly exponential term in the complexity of the upper bound
for Profile Automata given in [73], depends only on the alphabet size. The combination of this
result with the translation in Lemma 8 delivers an upper complexity bound of 3NEXPTIME for the
satisfiability for FO%(Suc) which is worse than the bound in [170] (2NEXPTIME).

8.4 Weak Data Automata on Infinite Data Words

In this section, we will present a straightforward adaption of WDA to data w-words. Moreover, we
will give a logical characterization for this automata model by a simple extension of EMSO3(Suc)
on data w-words. Finally, we will explain that all expressivity results from Section 8.2 easily carry
over to infinite words.

A Weak Bichi Data Automaton (WBDA) is a tuple (B,C) where the base automaton B is a
non-deterministic Biichi Letter-To-Letter Transducer over some input alphabet ¥ x {1, T} and
some output alphabet I'. Furthermore, C is a set of data constraints over I', defined in the same
way as for WDA. The semantics of WDA is defined as expected. The extension of EMSO%(Suc)
on data w-words is denoted by E.oMSO3%(Suc) and consists of all formulas of the form

JooR1 ... 3o Rim3S1 ... 3Sep

where m, ¢ > 0 and ¢ € FO3(Suc). The semantics of E.cMSO%(Suc) is defined in the same way as
for EMSO%(Suc) with the additional constraint that relation symbols quantified by 3. have to be
bound to infinite sets.

The generalization of Lemmas 7 and 8 to WBDA and E..MSO%(Suc) is an easy task:

Theorem 20. Weak Biichi Data Automata and E-, MSO3(Suc) are expressively equivalent.

Proof. Compared to the translation in Lemma 7, the translation from WBDA to E.,cMSO3(Suc)
uses an additional relation symbol quantified by J.,, in order to describe the acceptance condition
of the base automaton. More precisely, a WBDA A = (B,C) where F is the set of accepting states
of B, is converted into a formula

EOORHRSI R ERSTL ElR'Yl c. HRW (Sﬁpsart A @gart N Ystart N Ptrans N\ Paccept N\ Sﬁconstr)

where all sub-formulas are defined as in Lemma 7 except @accept Which is defined as

Vo (R(z) — \/ Rs(x)).
seF

The only basic difference of the translation in the opposite direction and the translation given in
Lemma 8 is that the base automaton checks with the help of the Biichi condition that sets quantified
with Jo, are indeed infinite. O

Let E;l‘jq and 53;5{1 be the languages of infinite data words satisfying, respectively, properties
Ep<q and Epy, from Section 8.2.1. The proof of Lemma 6 can be turned into a proof that WBDA
can neither decide £;§“<fq nor K;;gf], because the words used in that proof can easily be turned into w-
words by padding them with infinitely many positions with a dummy symbol. Combining this with
Theorem 20 and the fact that the FO3(Suc, <)-formula given at the end of Section 8.2.2 describes
L3, we get that B, MSO3%(Suc) is strictly less expressive than EMSO%(Suc, <).

Moreover, in the same way as an RA decides L34, a BRA can decide L;gg. Furthermore, it
follows from [124] that BRA cannot check the property that all data values of a data word are
pairwise distinct. However, the job done by the WDA of Example 13 to check this property can

also be done by a WBDA. Thus, WBDA and BRA are incomparable in terms of expressivity.

108

8.5. Discussion

Additionally, as BRA can be converted into equivalent BDA [39, 41], the language L35 can
be decided by a BDA. As, moreover, the translation from WDA to DA in the proof of Theorem
17 works smoothly for WBDA and BDA, it follows that BDA are strictly more expressive than
WBDA.

In [130] we show that the non-emptiness problem for WBDA can be polynomially reduced to
the non-emptiness problem for WDA. The reduction is based on the insight that if a data w-word
is accepted by a WBDA, then there is a finite data word uv on which the base automaton has an
accepting run looping over v. From the combination of this result with Theorem 19, it follows that
the non-emptiness problem for WBDA is in 2NEXPTIME.

8.5 Discussion

We introduced and studied the automata model WDA on data words. We showed that the model is
strictly less expressive than DA, incomparable with RA and logically characterized by EMSO3%(Suc).
We followed from our results that FO%(Suc) is strictly less expressive than FO3(Suc, <) which is
a contrast to the equivalence of these logics on classical strings. Moreover, we showed that the
non-emptiness problem for WDA is in 2NEXPTIME. We finally introduced WBDA, an extension
of WDA to w-words and showed that all expressivity and complexity results for WDA carry over to
WBDA. We conclude with some open questions and the results of a recent work generalizing our
results.

The precise complexity of WDA is still open. Recall that testing satisfiability of a FO%(Suc)-
formula by translating it to a WDA and testing the latter for non-emptiness, results in an algorithm
running in non-deterministic triply exponential time. With regard to the fact that satisfiability
for FO%(Suc) can be solved in 2NEXPTIME, it may be possible that the procedure translating
FO3%(Suc)-formulas to WDA or the procedure solving the non-emptiness problem for WDA can be
improved complexity-wise.

We mentioned in Chapter 5 that one motivation for the design of an automata model cor-
responding to FO3%(Suc) comes from the area of verification of systems with unboundedly many
processes. It would be interesting to experience whether WDA are indeed suitable for the usage in
model checking procedures for FO3(Suc).

In [202], the author asks for the genuine reason accounting for the elementary complexity of
WDA. His answer is the commutativity of class conditions. To underpin his claim, he designs
and investigates Commutative Data Automata (CDA) which are Data Automata where class con-
ditions are restricted to commutative regular languages. Commutative Data Automata are strictly
more expressive than WDA | since they can express that in each class of a data word, a particular
proposition occurs an even number of times. They are strictly less expressive than Data Automata,
since they cannot decide the language £,<, from Section 8.2.1. It is shown that the upper bound
for non-emptiness of CDA is indeed elementary, namely 3ANEXPTIME. The author also gives a
logical characterization for CDA in terms of Presburger logic. Finally, for a straightforward Biichi
extension of CDA, it is shown that non-emptiness is in 4NEXPTIME.

The results presented in this chapter originate from [130] which was a joint work with Thomas
Schwentick and Tony Tan. The only difference to [130] is that I considered data words which at each
position can carry multiple propositions, instead of a single symbol.

109

Chapter 8. Automata for Two-Variable Logic

110

Part C

Models and Model Checking

111

This part of the work is devoted to formalisms describing systems with unboundedly many
concurrent processes and the investigation of their model checking with data logics. In Chapter 9,
we will give an overview on existing finite- and infinite-state models and mention important model
checking techniques proposed in the literature. Our focus will be on models for concurrent systems.
Some questions arising from the work done until now will be formulated in Chapter 10. These
questions will concentrate on open problems with regard to Dynamic Communicating Automata
defined in [47], Process Register Automata which are a restriction of a model introduced in [45]
and Branching High-Level Message Sequence Charts which was designed by Benedikt Bollig in a
joint work [46]. The first reason for the choice of these particular models is that they generate
system traces which can be represented by structures with data values, particularly with data
words. Moreover, each of the models provide a different view to the described systems. Dynamic
Communicating Automata allow to look at the systems from the point of view of single processes,
why they are often assigned to the category of implementation models. Process Register Automata
provide a global view to the systems and are, therefore, considered as a specification model to be
used in early design stages. While these two formalisms generate traces which impose a strict linear
order on the executed actions, the structures generated by Branching High-Level Message Sequence
Charts define only a partial order on actions.

In Chapter 11, we will define these three models formally and analyze their computational
properties with respect to basic problems like non-emptiness, state reachability and executability.
In the last chapter of this part, we will deal with the model checking problem of these models with
regard to different data logics. While for Dynamic Communicating Automata and Process Register
Automata we will use logics introduced in Parts A and B, in case of Branching High-Level Message
Sequence Charts, we will introduce in Section 12.3.1 a logic which is similar to DNL, but suited for
the navigation on partial orders.

113

114

Chapter 9

From Finite-State towards
Infinite-State Model Checking - A
Brief Review

The word model checking is a generic term for the design of algorithms testing whether a system
model meets its formal specification. In this wide area of research, finite-state model checking builds
a well-studied sub field [30, 155, 67, 156, 68, 199, 37]. A successful approach in the latter field is
to model (concurrent) systems as transition systems, also called Kripke structures, with finitely
many states. Each state of a Kripke structure contains some atomic propositions from a finite
set which stand for relevant system properties in the corresponding situation of the system. The
computation tree of a Kripke structure is a labelled tree which results from the “unraveling” of the
Kripke structure at the initial state and where tree nodes represent states of the Kripke structure.
Each node in the computation tree is labelled by the propositions of the corresponding state and the
children of a node correspond to immediate follower states in the Kripke structure. Each path in the
computation tree starting at the root is called a system trace and corresponds to a possible system
run. The linear-time logic LTL and the branching-time logic CTL are two popular logics proposed
for the formulation of system properties. While LTL-formulas are evaluated on single traces in
computation trees, CTL-formulas can specify branching structures and are, therefore, interpreted
on whole computation trees. Given a Kripke structure K and a formula ¢ specifying desired system
properties, the model checking problem asks whether the model meets its specification, i.e., whether
¢ holds on the computation tree of . If ¢ is an LTL-like linear-time formula, the usual task is
to check whether ¢ holds on all traces in the computation tree. If it is a formula of a branching-
time logic like CTL, it is checked whether the formula is satisfied on the entire computation tree.
Finite-state model checking has good computational properties which build the basis for successful
applications of model checking algorithms in practically useful verification tools. For more details
on the practical aspects of finite-state model checking we refer the reader to [69, 36, 91].

However, finite-state models often do not suffice to represent software or hardware systems
adequately. For instance, if a system involves values from infinite domains and the properties to
be checked refer to these value, there might not always be an adequate finite abstraction for the
unbounded values. Possible sources for infinity are data structures like integers and unbounded
stacks and channels. A further reason which gives rise to infinite-state models and is in the main
focus of our studies in this part of the work, is the unboundedness of the number of processes
involved in concurrent systems. In the following, we first give an overview of some models and model
checking techniques for systems where the primary source of infinity are unbounded stacks, channels

115

Chapter 9. From Finite-State towards Infinite-State Model Checking - A Brief Review

or system values on which the systems operate. Then, we turn to systems with unboundedly many
processes.

In several works, (classes of) systems of the first category are modeled by Relational Automata
[60, 61], Timed Automata [20, 23], Pushdown Systems [58, 99, 49], Petri Nets [120, 121] and
Lossy Channel Systems [7, 13]. In a recently published work [110], the authors aim to find a
straightforward extension of the classical approach of LTL model checking described above to infinite
domains. On the side of system models, the work introduces abstract systems which are extensions
of Kripke structures where propositions are parameterized by variables. These variables can be
assigned to values from infinite domains during system executions. Transitions of abstract systems
are equipped with inequality conditions and reset actions which allow to set constraints on the values
assigned to variables. On the specification side, the authors propose Variable LTL, an extension
of usual LTL by propositions parameterized with variables which can be quantified universally and
existentially. To give an example, assume that a system deals with an infinite set of message symbols.
The Variable LTL-formula VzG(req.z — ack.z) expresses that each request is not only followed
by some acknowledgement, but also that the contents of the sent and received messages agree with
each other. While model checking of abstract systems with Variable LTL is undecidable in general,
it turns out that in the case where existential quantification is not allowed in the logic, the problem
becomes PSPACE-complete, thus, not harder than LTL model checking in the classical case. In
[L11], the authors develop an automata-theoretic approach to model checking with Variable LTL
and design some kind of generalized register automata into which abstract systems and formulas of
Variable LTL can be converted.

In [86, 87], the authors model systems operating on infinite data by Minsky Machines with one
counter (1-MCMs, for definition see Section 3.2.2) and consider their model checking with the data
logics LTLY (X, U) and FO™(Suc, <). The main results are that model checking of deterministic
1-MCMs with these logics is PSPACE-complete. For non-deterministic 1-MCMs, the problems are
undecidable. An interesting further direction which arose in recent years and is also closely related
to the topics studied in this work, is based on the approach of representing data structures like
arrays and unbounded lists by data words and using register and data automata for the analysis of
programs accessing these structures [19, 17, 18, 108].

An important specification model for systems with unbounded channels are Message Sequence
Charts (MSCs) [179] which were standardized by the International Telecommunication Union (ITU)
[119] and occur also in some modified version in UML where they are called Sequence Diagrams.
Message Sequence Charts provide a convenient graphical representation and are used to describe
communication protocols for finitely many processes communicating through unbounded channels.
A single MSC describes a finite execution of a system by a partially ordered set of events caused by
the involved processes. In its graphical representation, an MSC contains for each process a single
vertical line modeling the lifetime of the process. Horizontal lines stand for message sending between
processes. To describe infinite sets of MSCs, one can use formalism like automata or graphs where
each transition or node is labelled by some MSC. Similar to finite automata describing regular
languages, these formalisms allow to combine MSCs by choice, concatenation and repetition. The
literature proposes several versions of such formalisms under different names like Hierarchical MSC's
or MSC Graphs [22, 103, 113, 150, 166, 167]. In this work, we refer to all of them by the term High-
Level Message Sequence Charts (HMSCs). There are different approaches to check HMSCs against
temporal properties. One approach is to describe the requirements to be checked as template MSCs
or template HMSCs and to test whether a given template matches a given model [168, 165]. Loosely
speaking, a template MSC or HMSC 7T is defined like a usual MSC or HMSC and it matches a model
HMSC H if the events in T occur in H in the relative order as defined in 7 while allowing other events
in between. Model checking by templates can be useful if the purpose is to test whether an unwanted
execution occurs in the MSCs generated by H. A second approach, which is for instance studied
in [25], considers linearizations of the partially ordered events of MSCs. Given an HMSC H and a

116

property specified by a finite automaton or a linear-time temporal formula, it is checked whether the
property holds on all linearizations of all MSCs generated by H. Yet, another approach, which will
be interesting for our studies in the following chapters, is to use languages like Temporal Logic for
Causalities (TLC) [24] or Propositional Dynamic Logic (PDL) [48] whose formulas are interpreted
directly on the partial order of MSCs why they are also called structural logics [173, 154, 153]. To
put it simply, formulas of these logics are able to navigate along the process and message axes of
MSCs, but cannot distinguish between different (order respecting) interleavings of the events of
the same MSC. While MSCs and HMSCs are formalisms proposed for early system design stages,
Communicating Automata (CA) [54], a further popular model for communication protocols, are
seen as a formalism which is closer to the implementation phase. An important problem considered
in the literature is the realizability of HMSCs, i.e., the question whether for a given HMSC one can
construct a CA describing the same set of executions [22, 150, 105, 104, 114, 151, 164].

Now, we turn to model checking techniques for concurrent systems with unboundedly many
processes. Systems where the number of processes is given as a parameter are called parameterized
systems and verification methods for them are subsumed under the term parameterized verification
[93, 33, 8]. We observe that many protocols like mutual exclusion or leader election algorithms pre-
sented in the literature are designed for an unbounded number of processes and it is expected that
the protocols work correctly regardless the number of participating processes. In an early work, it
was proven that the verification of parameterized systems with identical finite-state processes is in
general undecidable [27]. This result motivated the search for classes of systems and verification
problems where parameterized verification becomes decidable. One important research branch was
the design of general frameworks which cover many parameterized systems and deliver decidability
results for interesting verification questions. One such framework is that of Well-Structured Tran-
sition Systems (WSTS) [5, 98] which we briefly introduced in Section 3.2.3. Successful applications
can be found in [77, 78, 2] where decidability for the state reachability problem for classes of ad-hoc
networks of homogenous communicating processes is shown. State reachability is concerned with
the question whether there is a number of processes organized in some communication topology
such that after some time the system enters a situation in which one of the processes is in some
certain (unwanted) state. Many safety problems for parameterized systems can be reduced to state
reachability. Another widely used framework is called Regular Model Checking [201, 133, 52, 12].
In this framework, a configuration involving an unbounded number of finite-state processes is mod-
eled as a word-, ring- or tree-like structure over a finite alphabet. This view makes it possible
to represent infinite sets of configurations by regular languages of these structures. To simulate
transitions on configurations, regular transducers are used. The computation of (an approximation
of) the set of all reachable configurations is carried out mostly by computing the transitive closure
of the transducers. The most considered model checking tasks in this framework are tests for safety
and liveness properties which again reduce to the computation of reachable configurations. Ap-
plications on parameterized systems with linear or ring-formed topologies can be found in [122, 6]
and on those with tree-like topologies in [14, 9, 51]. Algorithms based on the computation of the
transitive closure of transducers are developed in [122, 10, 11].

A further framework in the context of parameterized systems are Population Protocols [26,
29, 64]. Originally motivated by mobile sensor networks and collections of molecules undergoing
chemical reactions, these protocols serve as a model for large collections of tiny identical finite-state
devices which are interacting with each other in order to carry out computations. The computational
power of Population Protocols depends less on the computational power of individual agents, but
rather on the synergy of interaction. In the original model, the agents cannot send any messages
and do not share memory. An interaction between two agents just leads to a change of the states of
the agents. The question which agents may interact with each other is answered by an interaction
graph, usually modeling distances between agents. The input to a population protocol is distributed
across the initial states of the agents. Moreover, each state of an agent is related to some output

117

Chapter 9. From Finite-State towards Infinite-State Model Checking - A Brief Review

symbol. The mostly considered problem on Population Protocols is whether for some input spread
over initial states, the outputs of the agents converge to a correct answer. For the basic model of
Population Protocols it is shown that the predicates computable on input values are exactly the
semi-linear predicates. In [34, 112, 190], stronger self-stabilizing models are considered which can
deal with failures. An extended model, called Mediated Population Protocols, in which interaction
links between agents are enriched by memories, is introduced in [63]. It turns out that the latter
model is strictly more expressive than the classical one and is able to compute interesting properties
with regard to maximal matchings and transitive closures of the underlying interaction graphs.

Another model for concurrent systems with unboundedly many processes are Data Multi- Pushdown
Automata (DMPA) which were introduced in [45]. These are Register Automata equipped with
finitely many stacks and, similar to HMSCs, used to describe the “global” behaviour of concurrent
systems. A DMPA can dynamically create new processes and store them in its registers and stacks.
To preserve decidability of the model, the access to stacks underlies some restrictions. Neverthe-
less, the authors show that the model is expressive enough to describe token-based leader election
protocols (see, e.g., in [152]) for unboundedly many processes. In contrast to HMSCs, the runs of
DMPA generate traces with a strict linear order. These traces are modeled by data words. Similar
to the model checking approach explained in the finite case, the authors use data logics for the
formulation of requirements on system traces. It is shown that model checking against full MSO™
is decidable.

Further models for systems where the number of processes is not fixed a priori, but grows
dynamically during system runs are introduced in [145] and [47]. In [145], the authors define MSC-
Grammars which, as the name already indicates, generate sets of MSCs over an unbounded number
of processes. They show that model checking against MSO-formulas describing structural properties
is decidable. In [47], the authors introduce Dynamic Communicating Automata (DCA) which are
basically classical CA extended by the ability to create new processes. Following the studies on
HMSCs for finitely many processes, the main question considered in [47] is the realizability of
MSC-Grammars by DCA.

118

Chapter 10

Motivating Questions on System
Models and Model Checking

Local control of behaviour: Dynamic Communicating Automata

In the last chapter, we talked about Communicating Automata (CA) [54] which are a well-known
computational model for systems with a finite number of processes communicating asynchronously
through unbounded FIFO-channels. As mentioned before, one research branch deals with the
realizability of High-Level Message Sequence Charts (HMSCs) by CA [22, 15, 114]. Communicating
Automata also appear as a model for wireless ad-hoc networks [187, 186, 77, 78, 76, 2]. Usually, an
ad-hoc network consists of a fixed number of processes performing rendezvous-based communication
which means that messages are delivered directly from sender to receiver without any intermediate
storage. Even though there are works considering settings where the communication topology
between processes can change dynamically during system executions (see, e.g., in [187, 77]), in
most of the settings the number of processes as well as the communication topology are a priori
fixed. An intensively studied problem in the realm of ad-hoc networks is the parameterized control
state reachability problem. For a given process description (in form of a communicating automaton)
and a process state target, this problem asks whether there is an arbitrary number of processes
and an arbitrary communication topology such that the network reaches a situation where at least
one of the processes is in state target.

Just like in the areas of HMSCs and ad-hoc networks mentioned above, many frameworks us-
ing CA restrict to a fixed number of processes. This makes it difficult to apply CA in areas like
mobile computing where the number of interacting processes is not known in advance. Due to this
shortcoming of the classical CA-model, the authors in [47] introduced Dynamic Communicating
Automata (DCA) which extend CA by the ability to spawn processes. In a network induced by a
DCA A, all processes behave according to A. Each process possesses a unique process ID within
the network and is, similar to Register Automata introduced in Section 4.2.1, equipped with finitely
many registers in which IDs of other processes can be stored. Starting from an initial network con-
figuration consisting of a single process, each process can create new processes and send messages
to processes whose IDs are stored in its registers. Besides sending message symbols from a finite
alphabet like in the case of classical CA, a process can also send IDs from its registers. Processes
receiving messages can store incoming IDs in their registers. Thus, the number of processes within
the network as well as the communication structure is flexible and can change during system execu-
tions. Since DCA describe the behaviour of single processes and allow to look at the whole network
from the point of view of a process, they are considered as an implementation model suitable for late
stages of system design. Hence, following the classical approach for CA and HMSCs, the authors

119

Chapter 10. Motivating Questions on System Models and Model Checking

in [47] deal with the realizability of MSC-grammars by DCA, that is, the question whether for a
given MSC-grammar there is a DCA which generates the same set of executions.

In this work, we are interested in the computational properties of DCA which were neither
considered in [47], nor in any other follow-up paper. In particular, our focus is on the verification
and model checking of DCA. Due to the tight links between non-emptiness and model checking,
we first consider the non-emptiness problem. In [47], DCA are equipped with accepting states.
Hence, the non-emptiness problem for DCA asks whether there is at least one system execution
which reaches a configuration where all processes are in accepting states. The second direction
attracting our attention is the state reachability question for DCA. As argued in [77, 78], the state
reachability problem covers many interesting properties, like safety conditions, arising in ad-hoc
networks. This suggests to transfer the studies on ad-hoc networks with classical CA to DCA-
networks and to investigate the state reachability problem in the latter framework. Finally, we are
interested in the model checking of DCA with data logics. In [17], the authors define a trace of a
DCA-system as a finite sequence of actions leading to an accepting configuration. Each position
of the trace carries the IDs of the processes involved in the corresponding action. Hence, traces of
DCA can be seen as data words in which propositions indicate executed actions and data values
represent process IDs. This view makes DCA quite suitable for the framework of model checking
with data logics. In analogy to the classical finite-state model checking with LTL, our aim is to
use DCA as a specification model for systems and to use data logics as a specification language for
system requirements. Then, the model checking question that has to be considered is as follows:
Given a DCA and a formula of some suitable data logic, does the formula hold on all traces of the
DCA?

In Section 11.2, we introduce the version of DCA which we take as a basis for our investigations in
this work. The basic difference to the model in [47] is that in our definition the communication is not
asynchronous, but based on rendezvous without intermediate storage. One reason why we choose
such a definition is that we want to keep our initial investigations on DCA simple. Indeed, it is
well-known that even for networks with finitely many processes communicating through unbounded
perfect channels, many interesting verification problems are undecidable [54]. Moreover, since our
version of DCA is close to the model used in classical ad-hoc networks, it is easier to transfer proof
concepts from that area.

In Section 11.2.1, we study the non-emptiness problem for DCA. We first show that this problem
is undecidable, even in the case where processes have only one register. Then, we turn our attention
to selective DCA, i.e., DCA where in each send action not only the sender has to know the ID of
the receiver, but also vice-versa. While non-emptiness remains undecidable for selective DCA with
two registers, we get decidability in the case where we restrict to one register. We prove that in the
latter case the problem is solvable in PTIME.

Control state reachability is considered in Section 11.2.2. This section also starts with bad news:
Control state reachability is not decidable for DCA, even in the case of one register. In oder to
find decidable restrictions, we follow here a different direction than in the case of non-emptiness.
Inspired by recent works on the verification of ad-hoc networks [77, 2], we focus on the analysis of
DCA where actions are only allowed if they lead to network configurations in which the maximum
length of simple paths in the induced communication graph is bounded by a given natural number.
Unfortunately, even in the case where all (un-)directed simple paths in communication graphs are
bounded by some constant, state reachability remains undecidable (in contrast to results in ad-hoc
networks [77, 78, 76, 2]). Then, inspired by lossy channel systems [7, 13], we consider degenerative
DCA where every processes can loose non-deterministically register inputs. This kind of DCA can be
used to model unexpected loss of communication links in mobile ad-hoc networks. While reachability
for degenerative DCA is in general undecidable, we show that the problem becomes decidable if all
allowed configurations are strongly bounded. We close our considerations on state reachability by
summarizing our results from [4] on buffered DCA which, in terms of communication, are closer to

120

the original DCA-model from [47]. Each process described by a buffered DCA is equipped with a
FIFO-mailbox so that communication is carried out asynchronously.

In Section 12.1, we consider the model checking of DCA with data logics introduced in previous
parts of this work. We concentrate on fragments of Basic Data LTL (B-DLTL) and Freeze LTL
(LTLY). It is easy to see that all fragments of DCA with an undecidable non-emptiness problem
must also have an undecidable model checking problem with these logics. As our results on non-
emptiness do not leave many choices, we consider selective 1-register DCA for model checking.
On the logic side, we first consider a restriction of B-DLTL where all shift values ¢ in formulas of
the form C& ¢ equal 0. We show in Section 12.1.1 that the model checking problem for selective
1-register DCA is decidable for this fragment of B-DLTL. We assume that our decision procedure
can be easily extended such that it covers full B-DLTL. However, this question as well as the
question whether model checking with full Extended Data Navigation Logic is decidable remain
open. We show in Section 12.1.2 that model checking with LTLY (X, U), i.e., the future fragment
of LTLY with a single freeze register, is undecidable.

These results indicate that DCA have hard decision problems. Our model checking results,
moreover, illustrate how unlike the finite-state setting, model checking with a decidable logic (in
this case LTLY (X, U)) can become undecidable if the interplay between system model and logic
allows to encode undecidable problems.

Global control of behaviour: Process Register Automata

In the last chapter, we mentioned Data Multi-Pushdown Automata (DMPA) which were introduced
in [45] as a model whose traces are data words with multiple data values at each position. A DMPA is
a finite automaton equipped with finitely many registers and stacks to store data values. Each action
of a DMPA can use, on the one hand, data values from registers and stacks, and, on the other hand,
values which are fresh with respect to the whole run leading to the current action. Furthermore,
an action can update register contents and push data values to the stacks. The data word resulting
from a run carries at each position, besides a symbol associated with the corresponding action in
the run, also the data values used by the action. Equipped with mechanisms to store and create
new data values, DMPA are proposed as a suitable formalism to model concurrent systems with
dynamic process creation [45]. In this context, DMPA provide, unlike DCA, a more global view
to systems. Therefore, they are considered by the authors as a model to be used in early design
stages. In the mentioned work, the authors investigate the model checking problem for DMPA with
MSO™. By a reduction to the satisfiability of classical MSO over nested words [139], they show that
model checking is decidable for DMPA where in each run the number of switches between stacks is
bounded by some constant. In contrast to our model checking results for DCA, this result shows
that model checking with an undecidable logic like MSO™ can be decidable when the structures,
generated by the underlying system model, are restrictive enough.

The authors in [45] do not give any complexity bounds for the model checking problem for
DMPA and MSO™. However, we can conclude from [139] that the problem has non-elementary
complexity. Our primary question is whether there are expressive fragments of MSO™ for which
model checking of DMPA delivers good complexity results. Furthermore, can we determine the
borders after which the problem becomes non-elementary? Like in the case of DCA, we cannot
give complete answers, but provide some first insights. As a starting point, we investigate Process
Register Automata (PRA), the fragment of DMPA which does not contain any stacks. On the logic
side, we consider fragments of LTLY and HTL" introduced in the first two parts of this work.

We give in Section 11.3 the formal definition of PRA and show in Section 11.3.1 that its non-
emptiness problem is NP-complete. In Section 12.2.1, we prove that the model checking of PRA
with LTL¥(X, U) can be solved in EXPSPACE. Although we cannot show that this upper bound is
tight, we conclude from our decision procedure that for every k£ > 1, the model checking problem

121

Chapter 10. Motivating Questions on System Models and Model Checking

with LTLY (X, U) is PSPACE-complete, thus, not harder than satisfiability for LTL. In Section
12.2.2, we turn to model checking with HTL™. Here, things get more complicated. While for
HTL7T, i.e., HTL™ with only one variable, the problem is EXPSPACE-complete, it becomes already
non-elementary as soon as a second variable is added. The last results raise hopes that LTLY (X, U)
and HTL; can deliver elementary complexity for the model checking of DMPA.

From linear to partial orders: Branching High-Level Message Sequence Charts

An execution of a concurrent system can contain simultaneous actions of distinct processes. Thus,
from a temporal point of view, actions are basically partially ordered. A classical approach is to rep-
resent traces of concurrent systems as linearizations of actions respecting the partial order. The two
models DCA and PRA, which we explained in the previous paragraphs, are based on this approach.
Each trace of a system execution represents exactly one linearization of the underlying partial or-
der. A second well-known approach is to model system traces as partially ordered structures. As
mentioned in the last chapter, a popular formalism in this context are MSCs [119, 179] which come
along with a convenient graphical representation. A single MSC describes a single execution of a
system with finitely many concurrent processes. The literature proposes different versions of High-
Level Message Sequence Charts (HMSCs) in forms of automata and graphs which allow to describe
infinite sets of MSCs [22, 103, 113, 150, 166, 167]. In the last chapter, we already gave an overview
of different model checking techniques for HMSCs. Here, we would like to emphasize some specific
approaches. An important question considered for HMSCs is their realizability by Communicating
Automata (CA), i.e., the question whether for a given HMSC, there is a CA describing the same
set of executions. The model checking of HMSCs by logics is divided into two approaches. The
first one uses logics on linear structures and investigates the question whether all linearizations of
all MSCs, generated by a given HMSC, satisfy a given formula. The second approach works with
so-called structural logics whose formulas cannot distinguish between different linearizations of the
same MSC. It turns out that, compared to the first approach, the second one delivers quite good
decidability and complexity results [25, 22, 48, 173, 153, 154].

In [46], Benedikt Bollig designed Branching High-Level Message Sequence Charts (BHMSCs)
which, similar to the generalization of CA to DCA, extend HMSCs by process creation. Just
like DCA, BHMSCs use finitely many registers to store process IDs and are based on branching
automata [148, 149]. Following the lines of the studies on classical HMSCs, we investigate the
non-emptiness of BHMSCs, their realizability by DCA and their model checking by appropriate
structural logics.

We first show that the non-emptiness problem is ExXpTiME-complete. It follows from known
results that realizability is not decidable for BHMSCs, even not in the case of finitely many pro-
cesses [22, 114]. Therefore, we introduce and study the notion of executability for BHMSCs which
is a necessary condition for realizability. Informally, the executability problem asks whether in each
MSC, generated by a given BHMSCs, every sending process is aware of the ID of the receiver at
the time of communication. We prove that also the executability problem is EXPTIME-complete.
Moreover, we design a CTL-like logic called MSC Navigation Logic (MNL). Similar to Data Nav-
igation Logic considered in Chapter 6, it allows to navigate along the actions of a single process.
Moreover, like in Propositional Dynamic Logic [48] and Temporal Logic of Causalities [24, 173],
formulas can distinguish between process axes, on the one hand, and message and create axes, on
the other hand. Furthermore, the logic allows quantification and navigation over paths in MSCs.
We prove that model checking of BHMSCs with MNL is as hard as non-emptiness and executability
for this model, namely EXPTIME-complete.

In Section 11.4, we give the formal definition of BHMSCs and consider non-emptiness and
executability. The definition of MNL and the study of the model checking problem with this logic
can be found in Section 12.3.

122

Chapter 11

Three Models - Three Views

crt crt snd,m 2
2 creator 1 2 3
/(> created 2 3
sender 2 o
1 3 receiver 3

In this chapter, we will introduce three models for concurrent systems with unboundedly many
processes and study their basic computational properties with respect to decision problems like
non-emptiness, reachability and executability. In all three models, processes are equipped with
unique process IDs and are able to spawn new processes. Moreover, they can send messages to each
other consisting of message symbols and IDs. The first model, called Dynamic Communicating
Automata and originally introduced in [47], is used to describe the behaviour of a single process
within a network. Therefore, it is usually considered as a model to be used in design phases which
are close to implementation. The second model, namely Process Register Automata, is a restriction
of Data Multi-Pushdown Automata [45], provides a more global view to the designed systems and
abstracts from implementation details. While the first two models generate linear traces which will
be represented by usual data words, the structures generated by the third model, called Branching
High-Level Message Sequence Charts [46], are MSCs which are based on partial orders on actions.
Before defining these modes formally, we will prepare in the next section a repertoire of useful
notions and notations.

11.1 Notational Conventions

A message alphabet A is a finite set of symbols such that every symbol m € A has an arity
ar(m) € Ny. Given a set N of process names and a message alphabet A, we denote by A(N)
the set of all messages of the form m(ni,...,narpm)) With m € A and ni,...,Nar(m) € N. By
Actions(A, N), we denote the set of all create actions crt(n,n’) and send actions snd(n,n’, msg)
such that n,n’ € N and msg € A(N). Informally, crt(n,n’) means that process n creates a process
n', and snd(n,n’,msg) stands for the sending of the message msg from n to n’. For create actions
act = crt(n,n’), we define the two parameters creator and created with creator(act) = n
and created(act) = n’. A send action act = snd(n,n’,m(n1,...,Nar(m))) has the parameters
sender, receiver, msym and mpary,...,mpar, ., with sender(act) = n, receiver(act) = n/,
msym(act) = m and mpar,(act) = n, for every ¢ € {1,...,ar(m)}. Other parameters are not

123

Chapter 11. Three Models - Three Views

defined for actions.

We fix an infinite supply P of process IDs. For convenience, we often represent process IDs
by natural numbers. The set N in A(N) and Actions(A, N) will often be instantiated by the set
P. In case of N = P, the messages in A(N) and the actions in Actions(A4, N) are usually called
concrete messages and concrete actions, respectively. Otherwise, they are called symbolic messages
and actions. In the next sections, we will represent traces of Dynamic Communicating Automata
and Process Register Automata by data words. These traces result from sequences of concrete ac-
tions. We define a data word representation for such actions. Let Actions(A,P) be a set of concrete
actions for some message alphabet A. Each action act in this set is represented by a data word po-
sition dwrep(act) over the proposition set PropZ, = {crt,snd}UA and the attribute set Attri, =
{creator, created, sender,receiver} U {mpar,...,mpar,} where a is the highest arity assigned
to a symbol in A. Figure 11.1 demonstrates how two actions from Actions(A,P) for some message
alphabet A are represented by data word positions in the case that the highest arity in A is 2. We de-

crt snd, m
creator 1 creator
created 2 created

dwrep(crt(1,2)) = sender dwrep(snd(1,2,m(5,6))) = sender 1
receiver receiver 2

mpar, mpar, 5

mpar, mpar, 6

Figure 11.1: Representing actions by data word positions

fine the data word representation dwrep(act) of a concrete act formally as follows: If act is a create
action of the form crt(p,p’), then, dwrep(act) = ({crt}, {creator — p,created — p'}). If act is
a send action of the form snd(p, p’,m(p1, ..., Par(m))), then, dwrep(act) = ({send, m}, {sender
p,receiver — p’,mpar; — pi,... S MPAT () Par(m)}).

We close this section by the definition of transition systems. A transition system 7T is a triple
(Conf, Confiyiy, —, Confacc), where Conf is a (possibly infinite) set of configurations, Confiniy C
Conf is a set of initial configurations, —C Conf X Conf is a transition relation and Conf,.. C Conf
is a set of accepting configurations. For i € Ny, we use —* to denote the i-times composition of
—. We use —™ to denote the reflexive and transitive closure of —. In cases where the set of
accepting configurations of a transition system does not play any role for our considerations (for
instance, in the context of reachability questions), we usually skip this set in the formal description
of the transition system.

11.2 Dynamic Communicating Automata

In this section, we introduce Dynamic Communicating Automata (DCA) and analyze the non-
emptiness and the reachability problem for this model. This formalism was originally defined in
[47] as an implementation model for MSC-Grammars. Since our investigations in this work are
first steps with regard to the verification of DCA, we here define a more simplified version of
DCA. While in the original model, processes communicate asynchronously through unbounded
channels and messages can contain multiple process IDs, our DCA-version is based on rendezvous
communication and messages are restricted to at most one ID.

124

11.2. Dynamic Communicating Automata

A DCA is a finite automaton which is equipped with finitely many registers and describes the
behaviour of processes within a dynamic network. Each process can perform a local action that
changes its current state. It can also spawn new processes and store their IDs in its registers.
Moreover, it can send messages to processes whose IDs are stored in its registers. Similar to our
introductory example in Chapter 2, the type of communication is rendezvous-based, i.e., messages
are not stored intermediately, but delivered directly from sender to receiver. A message contains
a symbol from a finite message alphabet and possibly a process ID which can be the ID of the
sending process or an ID stored in one of its registers. A receiving process can store incoming IDs
in its registers. Thus, the number of processes as well as the communication topology are not fixed,
but change dynamically. In the sequel, we will first give the formal syntax of DCA and illustrate
their semantics through an example. Then, we will describe the semantics formally and define some
computational problems for DCA.

Formally, a DCA A = (A, R, S, s9, 6, F) consists of a finite message alphabet A in which the arity
of message symbols is at most one, a finite set R of registers, a finite set S of states, an initial state
s0 €5, aset F C S of accepting states and a finite set & of transitions of the form (s1,a, s2) where
s1,s2 € S. For each form the argument a can take, we give its informal interpretation:

e a = \: The process performs a local action.

e a=r —crt(s,r) for r,7’ € R and s € S: The process creates a new process with a fresh ID
in state s. The ID of the new process is stored in register r of the creating process and the
ID of the creating process is stored in register r’ of the new process.

e a = snd(r,m) for r € R and m € A with ar(m) = 0: The process sends message symbol m to
the process whose ID is stored in register r.

e a =snd(r,m(r)) forr € R, 7' € RU{self} and m € A with ar(m) = 1: The process sends a
message to the process whose ID is stored in register r. The message contains symbol m and
either the ID contained in register r’ of the sending process or the ID of the sending process
itself (self).

e a =rcv(r,m) for r € R and m € A with ar(m) = 0: The process receives message symbol m
from the process whose ID is stored in register r. As the process from which the message comes
is determined by the input of register r, such actions are called selective symbol reception.

e a =rcv(x,m) for m € A with ar(m) = 0: The process receives message symbol m from some
other process. We call such actions non-selective symbol reception.

e a =rcv(r,m(r’)) for r,”’ € R and m € A with ar(m) = 1: The process receives a message
from the process whose ID is stored in register r. The message contains message symbol m
along with an ID. In case that the incoming ID is not the ID of the receiver, it is stored in
register r’. Such actions are called selective ID reception.

e a = rcv(x,m(r')) for v’ € R and m € A with ar(m) = 1: The process receives a message
from some other process. The message contains message symbol m along with an ID to be
stored in register r’. We refer to such actions as non-selective ID reception.

e a =res(r) for r € R: The process resets its register r so that it becomes empty.

Before presenting the formal semantics of DCA, we illustrate the semantics through an example
DCA:

125

Chapter 11. Three Models - Three Views

Example 16. We design a DCA implementing the client-and-server protocol from our introductory
example in Chapter 2. The DCA uses two registers r; and 79, two message symbols serv and req
of arity 1 and one message symbol ack of arity 0. The symbol serv is used by the root process
to inform clients about the server ID. By means of the symbol req, client processes send to the
server requests along with their own IDs. The symbol ack represents acknowledgements from server
to clients. The graphical representation of the DCA is given in Figure 11.2. The sub automaton

ro «= crt(c1,r1)

: ry = crt(si,) /\A
-@ :

snd(r2, serv(ry)) snd(rq,req(self))

@_/ =

rcv(*, ack)
B
—_
= =3
i — B
=] =
> O >
19 © R
o . ®
= = S
X 5 0
> S o,
(9]
] =2
=

Cq

@

Figure 11.2: An example DCA implementating the client-and-server protocol from Chapter 2

consisting of the states i1 to i3 describes the behaviour of the initial root process. The part consisting
of states s1 to s4 belongs to the server process. The part which consists of states ¢; to ¢4 describe
client processes. Note that the initial state is marked by an incoming sourceless arrow. Accepting
states have surrounding circles. The root process first creates a server process starting in state s;
and stores the ID of the server in its first register 1. The ID of the root process is stored in register
rq of the server process. Then, arbitrarily often the root process creates a new client, stores its ID
in register ro and sends him the ID of the server along with the message symbol serv. Each client
stores the received server ID in its register r;. Holding the server ID, a client can send arbitrarily
often a request to the server along with its own ID. Observe that in the designed DCA, at any time,
each client can have at most two open requests. After being created by the root process, the server
can receive requests associated with the IDs of the senders. In order not to lose the connection to
the sending clients, the server stores the incoming sender IDs in its registers. Using these IDs, it
acknowledges the requests of the clients. Similar to clients, a server can never have more than two
open requests. o

Configurations and their graph encodings

A configuration ¢ = (P,s,r) of a DCA A = (A, R, S, 50,9, F) is a tuple where P C P is a finite
set of processes, s € [P — S] with dom(s) = P maps each process p € P to its current state and

126

11.2. Dynamic Communicating Automata

r € [P — [R — PJ]] with dom(r) = P maps every process p € P to its register contents. For two
processes p1,p2 € P and r € R, r(p1)(r) = p2 means that register r of p; contains the ID of po. If
r(p1)(r) is not defined, then register r of p; is empty. We use s € ¢ to denote that there exists a
process p € P in ¢ such that s(p) = s. The set of all configurations of A is denoted by Conf(A).

Given a configuration ¢ = (P, s,r) and a set P’ C P, the sub configuration of ¢ induced by P’ is
defined as ¢/ = (P’,s’,r’) where s’ results from s by restricting the domain of s to P’ and r’ results
from r by restricting the the domain of r to P’ and setting r'(p)(r) = L for every p € P, 7 € R
and r(p)(r) ¢ P’. Two configurations ¢; = (Py,s1,r1) and co = (Pa,s2,12) are called isomorphic
if one of them can be obtained from the other by process renaming. That is, there is a bijection
b: P — Py such that (i) for every process p € P;, we have s(p) = s(b(p)), and (ii) for all processes
p1,p2 € Py and all registers r € R, we have r(p1)(r) = p2 if and only if r(b(p1))(r) = b(p2).

In our proofs in the next sections it will sometimes be useful to work with graph encodings of
configurations. Before defining such encodings, we introduce some notions on graphs. A labelled
directed graph G is a tuple (V, X,, 3., A\, E) where V is a finite set of vertices, ¥, is a set of vertex
labels, Y. is a set of edge labels, A : V — X, is a vertex labelling function, and E CV x ¥, x V is
a set of labelled edges. A path in G is a finite sequence T = v1vs ... v of vertices where for every i
with 1 < < k, there is an a € 3, such that (v;, a,v;41) € E. We say that 7 is simple if all vertices
in 7w are pairwise different. The length length (7) of 7 is defined as k — 1. We set the diameter
diameter(G) of G as the largest k such that there is a simple path 7 in G with length (7)) = k.
We also consider node-labelled directed and node-labelled undirected graphs where edge labels are
skipped. In the first kind of structures, an edge is described by an ordered pair of nodes and in the
latter one, as a set of two distinct nodes. The notions of simple path and diameter are adapted in
a straightforward way to node-labelled directed and undirected graphs.

In the graph encoding of a configuration, every process is represented by a vertex labelled with
the state of the process. Furthermore, there is an edge from vertex u to vertex v labelled with
r € R if the process corresponding to u has the ID of the process corresponding to v in its register
r. Formally, the encoding of a configuration ¢ = (P, s,r) is defined as the labelled directed graph
enc(c) = (P,S,R,s,E ={(p,r,q) | r(p)(r) = q}. For the sake of simplicity, we will often skip node
and edge labels in figures depicting graph encodings.

The transition relation on configurations

We define a transition relation — 4 on the set Conf(A) of configurations of A. Given two configu-
rations ¢, ¢’ € Conf(A) with ¢ = (P,s,r) and ¢ = (P’,s/,r’), we have ¢ — 4 ¢ if one of the following
conditions holds:

Local There is a transition (s1, A, s2) € § and a process p € P such that (i) P’ =P andr’ =r,
i.e., the processes and registers are left unchanged, (ii) s(p) = s1, and (iii) s’ = s[p > sa]. A
local transition changes the state of one process. If ¢’ results from ¢ by the execution of a
local action, we also write ¢ -4 c’.

Create There is a transition (sq1,r «= crt(s,r’),s2) € § and a process p € P such that (i) s(p) =
s1, (ii) P = P U {q} for some process ¢ ¢ P, (iii) s’ = s[p — s2][q¢ —], i.e., process ¢
is spawned in state s, while the new state of process p is sa, and (iv) ' = r[p — r(p)[r —
qlllg — {r' — p}], i.e., register r of process p is assigned the ID of the new process ¢ and

register 7’ of ¢ is assigned the ID of p. If ¢ results from ¢ by such a create action, we also

. t(p,
write CM)AC/.

Selective symbol sending There are two different processes p and ¢ in P and two transi-
tions (s1,snd(r,m),s2) and (ss,rcv(r’,m),s4) in § such that (i) s(p) = s1 and s(q) = ss,
(ii) r(p)(r) = q and r(q)(r') = p, i.e., the sender p has the ID of ¢ in its register and the

127

Chapter 11. Three Models - Three Views

receiver ¢ has the ID of p in its register 7/, (iii) s’ = s[p — s2][q¢ — s4], and (iv) r’ = r. Such
a transition on configurations is also denoted as ¢ sndgm), ac.

Selective ID sending The set P contains two different processes p and ¢ and § contains two
transitions (s1,snd(r1,m(r})), s2) and (ss,rcv(re,m(r})), s4) such that (i) s(p) = s1 and
s(q) = s3, (ii) r(p)(r1) = ¢ and r(q)(r2) = p, (iii) 8’ = s[p > s2][q — s4], (iv) either 7} = self
(in this case, we set p’ = p) or r} is a register such that r(p)(r}) is defined (in this case, we
set p’ =r(p)(r})), i.e., the ID to be sent should be the ID of some process, and (v) if p’ # g,
then, ' = r[g — r(q)[ry — p’]], otherwise, r' = r, i.e., if ¢ does not receive its own ID, it
updates its register 5 with the incoming ID. If ¢’ results from ¢ by such an action, we also
write ¢ S24@.am@’) e

Register resetting There is a transition (sj,res(r),s2) € 0 and a process p € P such that
(i) s(p) = s1 and 8’ = s[p — so], and (ii) ¥’ = r[p — r(p)[r — L]], i.e., register r of process p
is reset. Such a transition is also notated as ¢ <3 4 ¢/

There are also transitions between configurations caused by non-selective symbol or ID reception.
The only difference to Selective symbol sending and Selective ID sending is that the receiver
does not need to have the ID of the sender in its registers. We skip the formal definition of these
kinds of transitions.

The transition system, runs and traces

A configuration ¢ = (P,s,r) is said to be initial if it contains exactly one process (i.e., P = {p}
for some p € P), the process is in the initial state (i.e., s(p) = so) and the registers of the process
are empty (i.e., r(p) = R). The set of initial configurations of A is denoted by Confinit(A). A
configuration ¢ = (P,s,r) is accepting if all processes in ¢ are in accepting states, i.e., s(p) € F for
all p € P. We denote the set of accepting configurations by Conf,..(.A). The transition system
induced by A is defined by T(A) = (Conf(A), Confinit(A), —> 4, Confacc(A)).

t t acty,— th .
A sequence T = cg v 401 2y 4 L A Cr1 ==y 4 ¢, of configurations and labelled

transitions is called a run of A if ¢y € Conf;nit(A). A run which ends up in a configuration from
Confacc(A) is called accepting. As signalized in Section 11.1, we model the traces of the DCA
A by data words over the proposition set Propfct and the attribute set Attrfct. We define the
traces of A in such a way that only create and send actions are visible. If 7, as given above, is an
accepting run, we define the trace of 7 as the data word trace(r) = dwrep(acti)...dwrep(act,)
where dwrep(e) = ¢ is the empty word. The language L(A) of A is defined as the set of all non-
empty traces (i.e., traces of length at least 1) resulting from accepting runs of A. We refer to the
traces in L£(A) as the traces of \A. Observe that it follows from definition that each trace of A must
start with a create action.

Example 17. Figure 11.3 depicts a trace of the DCA given in Example 16. The ID 1 belongs to
the root process, ID 2 belongs to the server process and the remaining IDs 3 and 4 belong to client
processes. First, the root process creates the server and a client with ID 3. Then, it sends the ID
of the server to client 3. After that, client 3 sends to the server a request along with its own ID.
This is followed by the creation of client 4 by the root process. Then, the server ID is sent from
the root process to the newly created client 4. Just like client 3, also client 4 sends a request to the

server. Finally, the server first acknowledges the request of client 4 and then that of client 3.
O

A DCA which does not contain non-selective symbol or ID reception is called a selective DCA.
If a DCA contains exactly k registers, we call it a k-DCA.

128

11.2. Dynamic Communicating Automata

snd snd snd snd snd snd
crt crt crt
serv req serv req ack ack
creator 1 1
created 2 3 4
sender 1 3 1 4 2 2
receiver 3 2 4 2 4 3
mpar, 2 3 2

Figure 11.3: A trace of the DCA given in Example 16

As expected, the non-emptiness problem for DCA asks whether the language of a given DCA is
non-empty. We further define the state reachability problem for DCA. A state target of a DCA A
is called reachable in the transition system of A if there exists a run cqg —% ¢, with target € c,.
The state reachability problem STATEREACH(C) for a class C of DCA asks the following question:
Given a DCA A from C and a state target of A, is target reachable in the transition system of
A?

11.2.1 Non-Emptiness

First, we will show that the non-emptiness problem for DCA is undecidable, even in the case with
one register. Then, we will concentrate on selective DCA, i.e., DCA where a message can only be
sent if the ID of the sender is stored in the registers of the receiver. We will see that the construction
used in the undecidability proof for general 1-register DCA can be easily transferred to the setting
of selective 2-register DCA, which means that for the latter case non-emptiness is also not decidable.
Finally, we will prove that we get decidability if we restrict to selective 1-register DCA.

We start with general 1-DCA. The proof idea of the following theorem stems from our work [3].

Theorem 21. The non-emptiness problem for 1-DCA is undecidable.

Proof. The proof is by reduction from TransProb which we defined in Section 3.2.4. As this problem
is undecidable [2], the result follows. By definition, a DCA is non-empty if and only if it has an
accepting run. Given an instance of TransProb, i.e., two NFA A and B and a non-deterministic
Letter-To-Letter Transducer T over the same alphabet X, the encoding of TransProb into the non-
emptiness problem of DCA consists of constructing a transduction chain where the first element p_4
of the chain is a process simulating A, the last one is a process pp simulating 55 and all intermediate
processes p%— encode T. Figure 11.4 illustrates the graph representation of a transduction chain
with 4 transducer processes (for simplicity, we skip the state and register labels).

pA T T Pr Pr ps

Figure 11.4: A transduction chain constructed by a 1-DCA

In order to construct such a chain, the initial process p 4 first spawns a new process in one of
the two states s+ and sp and then starts simulating A. The choice between s and sp is made
non-deterministically. If the new process starts from state sy, it spawns, similarly to the initial
process, a new process in s7 or sp and then starts simulating transducer 7 and so on. If a process
is set to start from sp, it does not spawn any new process and simulates B. Thus, we obtain a chain

129

Chapter 11. Three Models - Three Views

of processes whose head simulates A, the tail simulates B and all processes in between simulate
transducer 7. Note that one register suffices to construct such a transduction chain.

The simulation of A, B and T works as follows: The first process p4 sends a word from >*,
symbol by symbol, to its successor in the chain. If the word is accepted by A, it sends a special
acceptance symbol to its successor and moves to an accepting state. Meanwhile, each intermediate
process pir sends to its successor for every incoming symbol o € ¥, a symbol corresponding to
the output of 7 when reading o. If an intermediate process gets the acceptance symbol, it checks
whether the so far received word is accepted by 7. If it is the case, it transmits the acceptance
symbol to the next process and enters an accepting state. Otherwise, it enters an error state. At
the reception of the acceptance symbol, the last process pg checks whether the so far received word
is accepted by B. If yes, it moves to an accepting state, otherwise, it moves to an error state. Note
that if there are no intermediate processes simulating 7, process p4 sends the symbols directly to
ps. It can easily be shown by induction that there exists an i > 0 with T* (L (A)) N L (B) # 0 if
and only if a transduction chain of length i + 2 where all processes reach an accepting state can be
constructed. O

DCA with selective communication

Note that the transduction chain, given in the proof of Theorem 21, uses non-selective communi-
cation, i.e., each element in the chain can receive information from its predecessor without having
the ID of the sender in its register. A similar transduction chain can be established by selective
DCA with two registers where the first chain element maintains a link to its successor, the last one
maintains a link to its predecessor and every inner chain element maintains a link to its predecessor
as well as a link to its successor. Thus, we conclude:

Corollary 7. The non-emptiness problem for selective 2-DCA is undecidable.

If we restrict our consideration to selective 1-register DCA, we get decidability for the non-
emptiness problem. We will show that the problem is solvable in polynomial time. Before presenting
the proof, we would like to state some easy observations on the shape of configurations of selective
1-register DCA.

Given a configuration containing two processes p; and ps, we say that there is a one-directed
link from p; to po if the register of p; holds ps, but not vice-versa. First, observe that in the setting
of selective 1-register DCA, a process can never receive (via a receive-action) an ID, besides its own
and the one which is already in its register. To be convinced, think of two processes p; and ps. To
make communication between p; and ps possible, the register of p; must hold ps and vice-versa. In
such a situation ps can only send its own ID which is already in the register of p; or the ID in its
register which is the ID of p; itself. As the only remaining way for a process to get a new ID is to
create a process, we conclude that in each configuration c¢ of a selective 1-register DCA, a process
p1 is enabled to send (or receive) some information to (or from) a process po, if (i) there is some
previous configuration where one of the processes p; and ps spawned the other one, and (ii) none of
them has executed a spawn or reset action until configuration ¢. A further conclusion is that one-
directed links within configurations are redundant in the sense that a process with a one-directed
link to another process behaves like a process whose register is empty. Eliminating all one-directed
links results in configurations where every weakly connected component in the corresponding graph
encodings is either a single node or consists of two nodes with edges to each other. The observation
that configurations of selective 1-register DCA can be simulated by such simplified configurations
paves the way for deciding the non-emptiness problem.

We proceed with a second simple observation which also holds for general DCA. Let ¢ be a
configuration and let ¢; and cs be two isomorphic sub configurations corresponding to two weakly
connected components in the graph encoding of c. Note that all actions executable by a process

130

11.2. Dynamic Communicating Automata

in ¢; are also executable by the corresponding process in c¢o and vice-versa. Moreover, all config-
urations evolving from ¢; can (up to isomorphism) also be derived from ¢y and vice-versa. Now,
let S ={S51,...,5,} be a partitioning of the set of all sub configurations of ¢ which correspond to
weakly connected components such that sub configurations in the same S; are isomorphic and sub
configurations from distinct sets are not. It is easy to see that an accepting configuration can be
reached from c if and only if for every i € {1,...,n}, there is a sub configuration ¢’ € S; such that
an accepting configuration can be reached from c’.

Now, let us put our observations into some formal shape. Let A = (A4,{r},S,s0,0,F) be a
selective DCA with one register r. Given a configuration ¢ = (P, s,r) of A, the register content of
some process p; in ¢ is called redundant if r(p;)(r) = pa for some process pa, but r(p2)(r) # p1. In
the following, we use brackets in form of {| and [} to define multisets which can contain multiple
copies of the same element. We call a process p in ¢ a single if r(p)(r) = L and there is no
process p’ € P with r(p’)(r) = p. A pair p1,p2 of two distinct processes in ¢ is called a couple if
r(p1)(r) = pa, r(p2)(r) = p1 and there is no other process p’, besides p; and p2 with r(p')(r) = p1
or r(p')(r) = pa. The type of a single p is defined as s(s) and that of a couple consisting of p;
and p2 as {s(p1),s(p2)[}. For a single type s, an s-configuration is a configuration consisting of a
single of type s. Analogously, for a couple type {|s1, s2[}, an {|s1, s2[}-configuration is a configuration
consisting of a couple of type {|s1, s2[}. Given a configuration ¢, we define Types(c) = {s | ¢ contains
a single of type s} U {{/s1,s2[} | ¢ contains a couple of type {|s1,s2/}}. We call a configuration ¢/
the simplification of some configuration c if ¢’ results from c by deleting the inputs of all redundant
registers. Figure 11.5 illustrates the graph representations of an exemplary configuration and its
simplification.

s S
N —
s U «—— S s u s
t t
=>4
S =
t — u S t u s
/ Y/
—~ A A
s —— u t U S U t u
- -

Figure 11.5: The simplification of a configuration

We formulate:

Observation 8. For every configuration c of a selective 1-DCA, its simplification consists of singles
and couples.

Now, we define a simplified transition relation —5™ on the set of configurations of A. For two
configurations ¢; and co, we set ¢; —>i{“" co if there is some configuration ¢] with ¢; — 4 ¢} and co
is the simplification of ¢}. We call a sequence 7 = ¢y =3"¢1 ... cn—1 =%" ¢, a simplified run of A
starting at cg. The sequence T is called a simplified run if ¢ is an initial configuration. A simplified
run is accepting if it ends up in an accepting configuration. According to our informal explanations

above, we observe:

Observation 9. A selective 1-DCA has an accepting run if and only if it has a simplified accepting
run.

Our discussion on isomorphic sub configurations implies that the problem of finding an accepting
run can even be made more simple.

131

Chapter 11. Three Models - Three Views

Observation 10. Let A be a selective 1-DCA and ¢ a simplified configuration of 4. There is a
simplified accepting run of A starting at ¢ if and only if for every ¢ € Types(c), there is a simplified
accepting run of A starting at an arbitrary t-configuration.

Using Observations 8-10, we can easily show that non-emptiness for selective 1-register DCA is
solvable in polynomial time.

Theorem 22. The non-emptiness problem for selective 1-DCA is in PTIME.

Proof. Recall that it follows from the definition of DCA-traces that the language of a DCA is non-
empty if and only if the DCA has an accepting run containing at least one create action. Given a
selective 1-DCA, we will describe a polynomial time algorithm which, starting from a representation
of all accepting configurations, computes a representation of all configurations from which there is
an accepting run containing at least one create action. Then, the language of the DCA is non-empty
if and only if an initial configuration is contained in the computed set.

Let A = (4, R,{r},S,s0,9, F) be a selective 1-DCA with a single register r. It follows from
Observations 8-10 that an accepting configuration is reachable from a simplified configuration c
if and only if there is a (simplified) configuration ¢ with ¢ —5"¢ and for every t € Types(c’),
there is an arbitrary t-configuration reaching an accepting configuration. Hence, the non-emptiness
problem for A can be solved by (i) computing the set of all singles and couples from which there
is a simplified accepting run containing at least one create action, and (ii) checking whether the set
contains at least one single representing an initial configuration. Observe that the mentioned set
is in general infinite, because we have an infinite supply of process IDs. However, since we do not
have to distinguish between singles or couples of the same type, we represent the set by the finite
set of occurring types.

Now, we explain the details of the algorithm. Besides usual types of the forms s and {|s1, sal},

the set computed by the algorithm can also contain elements of the forms § and {|s1, s2|} with
the following meaning: If a single type s (or a couple type {s1, sa[}, respectively) is contained in
the set, then, there is an accepting run of A which starts at an s-configuration (or an {|s1, s2|}-
configuration, respectively) and does not contain any create action. If the set contains an § (or

an {|s1, sa}, respectively) then, there is an accepting run of A which starts at an s-configuration
(or an {|s1, s2[}-configuration, respectively) and contains at least one create action. The algorithm
first constructs the set N = S U {{/s1, s2[} | s1,52 € S} of all possible types and the set My =
F U {{s1, s2|} | 51,82 € F'} of all types representing accepting configurations. Then, it iteratively
computes successor sets M; for ¢ > 1 until it reaches a fixed point, i.e., an ¢ > 1 with M; = M;_1.
Let for some ¢ > 0, M; be the current set. The successor set M;41 is defined by M; U M/ where M
contains all possible predecessor types for the types in M;. Formally, the set M/ is the smallest set
fulfilling the conditions given below. We start by the enumeration of cases implying the containment
of single types s in M/:

o If there is a single type s € N, there is a local transition (s, A, s’) or a reset transition
(s,res(r),s’) in 0 and s is contained in M;, then, s is contained in M].

o If there is a single type s € N, there is a create transition (s,r «— crt(s”,r),s’) € § and
{¢', s"|} is contained in M;, then, s is contained in M.

We now enumerate cases in which a couple type must be contained in M. Please keep in mind
that in the framework of selective 1-register DCA, symbol sending and ID sending have the same
effect.

o If there is a couple type {|s1, s2[} € N, there is a local transition (s1, A, s}) € 6 and {|s, s2|}
is contained in M;, then, {|s1, s2|} is contained in M.

132

11.2. Dynamic Communicating Automata

o If there is a couple type {|s1, s2[} € N, there is a reset transition (s1,res(r),s}) € 6 and s
and sy are contained in M;, then, {|s1, saf} is contained in M.

e If there is a couple type {|s1, s2|} € N, there is a create transition (s1,r «— crt(s,r),s}) € §
and {|s}, s[} and so are contained in M;, then, {|s1, s2|} is contained in M.

e If there is a couple type {s1, s2[} € N, there are transitions (s1, snd(r,m), s}), (s2, rcv(r,m), sb)
€ 0 or transitions (s1, snd(r,m(r')), s]), (s2, rcv(r,m(r)), sh) € § and {|s}, sh|} is contained in
M;, then, {|s1, sa|} is contained in M.

The cases in which elements of the forms 5 or {|s1, s2[} must be contained in M, are straightforward
extensions of the ones above. We exemplarily give two cases implying the containment of such
elements in M]:

e If there is a single type s € N, there is a create transition (s,r « crt(s”,r),s’) € § and

{Is’,s"|} or {|s/’,?|} is contained in M;, then, § is contained in M.

. If there is a couple type {|51,52|} € N, there is a reset transition (s1,res(r),s}) € § and

—_—
51,52 € M; or s},5 € M, or s}, 5 € M;, then, {|s1, s2} is contained in M.

If the algorithm reaches a set M; with ¢ > 1 and M; = M;_1, it just checks whether s is contained
in M; and outputs that the language of A is non-empty if and only if this element is available in
M;.

Observe that the sizes of N and My are at most |S|+[S|? and |F|+|F|?, respectively. Moreover,
after at most 2| V| iterations, the algorithm must reach a fixed point. In each iteration, the compu-
tation of a new set M; can be performed in time O(|N||d|). The test whether §g is contained in the
final set can be done in time O(|N|). Thus, the overall algorithm works in polynomial time. O

11.2.2 State Reachability

In this section, we will consider the state reachability problem for DCA. As accepting states
do not play any role in reachability questions, throughout this section we will skip the sets of
accepting states and accepting configurations in the definitions of DCA and their corresponding
transition systems. We will first explain that it easily follows from the undecidability of the non-
emptiness of 1-DCA that reachability for this fragment is also not decidable. Searching for fragments
with a decidable reachability problem, we will follow a different path than in the case of non-
emptiness. Inspired by recent approaches in the verification of ad-hoc networks [77, 2], we will focus
on DCA with bounded transition systems, i.e., transition systems where transitions are only allowed
if they lead to configurations where the length of directed paths in the underlying communication
graphs are bounded by some constant. It will turn out that also in this case, state reachability
remains undecidable. Decidability cannot even be achieved for strongly-bounded transition systems
which restrict to configurations where communication paths are bounded regardless the directions of
edges. Therefore, we will introduce degenerative DCA, i.e., DCA where processes can lose register
contents non-deterministically. While reachability for degenerative DCA with bounded transition
systems is still undecidable, we will show that this problem is decidable for degenerative DCA if the
corresponding transition systems are strongly bounded. Our proof is by a non-trivial instantiation
of the framework of Well-Structured Transition Systems introduced in Section 3.2.3. We will close
our studies on reachability by a summary of our results on buffered DCA in [4]. In terms of
communication, this kind of DCA are closer to the original DCA-model [47], because processes of
buffered DCA communicate asynchronously via unbounded FIFO-mailboxes.

Now, we describe our results in detail. The undecidability of the state reachability for 1-DCA
can be derived easily from the proof of the undecidability of the non-emptiness of 1-DCA (Theorem

133

Chapter 11. Three Models - Three Views

21). Remember that the result was obtained by reduction from the problem TransProb. We briefly
recall the idea of that reduction. For two NFA A and B and a transducer 7, we gave a 1-DCA which
constructs a transduction chain where the first process p4 simulates A, the last process pg simulates
B and all intermediate processes py imitate transducer 7. After the construction phase, p4 sends
a word accepted by A, symbol by symbol, to its successor and finally moves to an accepting state.
Each process py forwards for each received symbol an output symbol to its successor according
to the behaviour of 7. If the entire received word is accepted by 7, the process ps enters an
accepting state. Finally, process pg checks whether the received word is accepted by B and goes
into an accepting state if the answer is yes. We can easily turn this construction into an encoding
of TransProb into STATEREACH(1-DCA). Given two NFA A, B and a transducer T, we designate
a special state target and design a 1-register DCA which allows the construction of the same
transduction chain with the difference that p4 and each intermediate process pr, after confirming
that the received word is accepted by the corresponding automaton (A or 7, respectively), moves
to an idle state, instead of an accepting one. Furthermore, process pp enters state target if and
only if it decides that the received word is accepted by B. Thus, T* (L (A)) N L (B) # () for some
1 > 0 if and only if the transduction chain reaches a configuration where one process is in state
target. We conclude:

Corollary 8. The problem STATEREACH (1-DCA) is undecidable.

An important point in the reduction from TransProb to the non-emptiness or the state reacha-
bility of 1-DCA is that the communication paths in the constructed transduction chains are allowed
to be as long as necessary. With communication path we mean a sequence p1, ..., p, of processes
such that every p; with 1 < i < n holds the ID of p;y; in its register. If we forbid such paths
of unbounded length, our reductions do not work in this form. Next, we will show that even in
the case where the length of communication paths is bounded by some constant, state reachability
remains undecidable.

Bounded state reachability

We define bounded configurations and bounded state reachability for DCA. Let A be a DCA and
T(A) = (Conf(A), Conf;pnit(A), —> 4) its corresponding transition system. For a natural number k,
we say that a configuration ¢ € Conf(.A) is k-bounded if the diameter of its graph encoding is bounded
by k, i.e., diameter(enc (c)) < k. Given a set B C Conf(A) of configurations, we use B2* to denote
the set of k-bounded configurations in B. The restriction of — 4 to the set Conf (A)@* of k-bounded
configurations is defined as —4¥=— 4 N((Conf(A)?*) x (Conf(A)2*)). We use T2 (A) to denote
the resulting transition system defined by 72%(A) = (Conf(A)2*, Conf it (A)2F, —%").

For a class C of DCA and a natural number k, we denote by BOUNDSTATEREACH(C, k) the
following k-bounded state reachability problem: Given a DCA A € C and a state target of A, is
there a reachable configuration ¢ in 7@*(A) with target € ¢?

By an adaption of the transduction chain construction introduced in the proof of Theorem
21 and adjusted for Corollaries 7 and 8, we can show that even for DCA with two registers the
2-bounded state reachability problem is not decidable.

Theorem 23. The problem BOUNDSTATEREACH (2-DCA,2) is not decidable.

Proof. We reduce TransProb to the 2-bounded state reachability problem for 2-register DCA. Given
an instance of TransProb, we construct a DCA which builds configurations reproducing the purpose
of the transduction chain that we described in the proof of Theorem 21. The challenge of the
encoding is to keep the simple path length in the graph encodings of configurations bounded by 2.
In order to do that, we make use of additional relay processes as well as reset transitions.

134

11.2. Dynamic Communicating Automata

Let A, B be some NFA and 7T a transducer over some alphabet ¥ which serve as inputs for
TransProb. We construct a DCA with two registers and a designated state target such that there is
some i > 0 with 7% (£ (A))NL (B) # () if and only if target is reachable in the 2-bounded transition
system of the DCA. To give the overall idea about the structure of the configurations produced by
the DCA, we present in Figure 11.6 exemplarily the final shape of configurations in the case of i = 3
transductions. The processes p4, pk, p>, p> and pp in the graphic encode a transduction chain in

Po pr P2 jod

SN N NN

DA P % 22 pB

Figure 11.6: A transduction chain with relay processes constructed by a 2-DCA

the sense that the head p4 simulates A, the tail pp simulates B and all intermediate processes pir
imitate 7. The remaining processes p.. with 0 <14 < 3 are relay processes which are responsible for
forwarding messages between each two consecutive processes of the chain.

Now, we explain how configurations of this shape are constructed. In the beginning, the initial
process p4 creates a process p). The latter process proceeds by reseting its register containing the ID
of process p 4 and creating a new process, either pg or plT. The choice is made non-deterministically.
After spawning the new process, p resets its register containing the ID of the new process and moves
to a certain relay state s, from which it will relay messages. If the process that p? spawned is B,
no further processes are created and the construction of the chain ends. Otherwise, i.e., if p%— has
been created, the construction of the chain continues by reproducing the same scheme: The process
p%— spawns the second relay process p: and so on until pg is spawned. Thus, we obtain shapes with
simple paths of length at most two.

Given that at the end of the chain construction phase, a configuration where the number of
processes simulating 7 is m (m = 3 in the example of Figure 11.6) is obtained, we define our
transduction chain as the sequence of processes p 4, p%—, .., P7,ps- Even though there is no simple
path between two consecutive processes in the transduction chain, we will show how symbols can be
transmitted from one process to the next one in the chain along relay processes pi.. Once the final
shape of the chain is built, each relay process must be in state s,. Consider the first two processes
p4 and p%— in the chain. Process p0 plays the role of a relay between these processes. Let o € ¥
be a symbol that has to be sent from p4 to p%—. The sending happens in two steps. First, process
pa sends (o, out) to p? which moves p? to some state s,. Process p? stays in that state until it
receives a symbol (o, in) from p*-. Meanwhile, the latter process tries to send a symbol (¢”,in) to
p? where ¢’ is a symbol which transducer T can read as an input in its particular state. If the
symbols match, i.e., if the symbol that p- sends is (o, n), then (i) p? receives the symbol from pk-
and returns to the relay state s,, and (ii) p%— moves to a temporary state from which it will send to
the next relay process pl the output symbol of T corresponding to the input symbol which it has
just synchronized with p0. Otherwise, i.e., if the symbols do not match, process p? stays in state s,
and so does process plT. Thus, instead of executing receive and send transitions for T-transitions,
process plr simulates a transducer transition by two send actions, the first one to the previous relay
process, the second one to the next relay process.

Following this mode of communication, symbols are handed over from the head p4 to the tail
pp. Finally, ps moves to state target if and only if the entire word, which it receives via p;*, is
accepted by B. It is easy to see that there is some i > 0 with 7 (£ (A)) N L (B) # 0 if and only if
the 2-register DCA produces a transduction chain consisting of processes p.4, p%—, ceey piT, pp along

135

Chapter 11. Three Models - Three Views

with relay processes p!, ..., pl such that pg reaches state target.
O

Hence, bounding the diameter of the graph encodings of configurations does not provide de-
cidability for state reachability. Next, we consider a stronger restriction on the set of allowed
configurations. It sets a bound on the length of paths in the graph representations regardless the
edge direction.

Strongly bounded state reachability

Before introducing strongly bounded state reachability for DCA, we define the closure of labelled
directed graphs. Given a directed labelled graph G = (V,%,, X, A\, E), the closure closure (G)
of G is the node-labelled undirected graph obtained from G by removing labels and directions
of edges, i.e., closure(G) = (V,Zy, A\, {{u,v}| (u,0,v) € E}). We say that a ¢ € Conf(A) of
a DCA A is k-strongly bounded for some natural number k if diameter(closure(enc(c))) < k.
Given a B C Conf(A), we use B®* to denote the set of k-strongly bounded configurations in
B, ie., B® = {c € B| diameter(closure (enc (c))) < k}. We define the transition relation —s%"
by —&F=—s4 N(Conf(A)®* x Conf(A)®") and the transition system T®%(A) by T®(A) =
(Cont (A)®*, Cont i (A)®F, —).

For a class C of DCA and a natural number k, we denote by STRONGBOUNDSTATEREACH(C, k)
the following k-strongly bounded state reachability problem: Given a DCA A € C and a state target
of A, is there a reachable configuration ¢ in 7®*(A) with target € ¢?

In [3], we show that even in this restrictive setting, state reachability remains undecidable:

Theorem 24. The problem STRONGBOUNDSTATEREACH (2-DCA,4) is not decidable.

The proof is carried out by a reduction from the reachability problem for Minsky 2-Counter Machines
(2-MCM, for definition, see Section 3.2.2). Here, we do not give the full proof.

In the following, we will show that strongly bounded state reachability becomes decidable if
we restrict to degenerative DCA, i.e., DCA which are allowed to execute non-deterministic reset
transitions at each state. Formally, a degenerative DCA A = (A, R, S, s0,0) is a DCA where for
every state s € S and register r € R, the transition (s, res(r), s) is contained in §. The degenerative
counterpart Deg (A) of a DCA A results from A by adding to the transition relation of A a transition
(s,res(r),s) for every state s and register r.

The rest of this section is devoted to the proof of the following theorem:

Theorem 25. For every k > 1, the problem STRONGBOUNDSTATEREACH (degenerative DCA,k)
1s decidable.

The proof is carried out by a non-trivial instantiation of the framework of Well-Structured Tran-
sition Systems (WSTS) defined in Section 3.2.3. Let k > 1 be a natural number, A = (4, R, S, s¢, J)
a degenerative DCA and target a state from S. We first fix some notations. For the sake of readabil-
ity, we set Cipic = Confiniy (A)®k and C' = Conf (A)®k. Thus, the k-strongly bounded transition
system T®k(A) induced by A is described by (C, Ciyix, —>§k). We use ~<22°%, , C C' x C' to denote

. oy . . . t .
an arbitrary reset-transition, i.e., for two configurations ¢ and ¢/, it holds ¢ =22 4 ¢/ if ¢’ result

from ¢ by the execution of a reset transition from {(s,res(r),s) | s € S,r € R} C 4. The reset prefix
reset

;o —>§k. Note that the reflexive transitive closures
of aws and — %" are identical. Hence, target is reachable in T®(A) = (C, Cinir, —§") if and
only if it is reachable in T2F(A) = (C, Cinir, ww).

We will prove that the reachability of target in T2F(A) is decidable. To this end, we will
first show that 7.2F(A) is a Well-Structured Transition System equipped with some well-quasi

transition relation ~»ww» is defined as

136

11.2. Dynamic Communicating Automata

ordering < on C. Then, we will explain that one can fix a configuration ctarger € C such that the
coverability of Cyarget in T2k (A) is equivalent to the reachability of target in the same transition
system. Finally, we will prove that < is decidable, T.2F (A) has computable predecessor bases and
for every ¢ € C, it is decidable whether 1{c} N Ciynit is non-empty. By Theorem 1, these conditions
suffice to conclude that coverability and, hence, reachability in 7;%& (A) is decidable.

For the proof that TEF(A) = (C, Cinst,) is a Well-Structured Transition System, we have
to define a well-quasi ordering < on C and to show that ~w~ is monotonic with respect to <.

A well-quasi ordering on C. We use Cg,; to denote the sub-graph embedding relation defined
on labelled graphs which is defined as follows: For two labelled graphs (V1,%,,%., A1, E1) and
(Va, 5y, Be, A2, E2), we have (V1,%,, 3¢, A1, B1) Coup (V2, Xy, Be, A2, Ea) if there exists an injective
mapping t : V3 — V5 that is label and edge preserving, i.e. Vu,u € V; and Va € ¥, we have
A (v) = Ag (t(v)) and (v,a,u) € Ey = (t(v),a,t(u)) € Ey. The embedding relation over node-
labelled undirected graphs is defined analogously. The ordering < over the set of configurations is
defined as follows: Given two configurations ¢; = (Py,s1,r1) and cg = (Ps,82,r2), we have ¢1 < ¢o
if enc(c1) Coup enc(ce). Note that ¢; < co is equivalent to saying that there exists an injective
mapping g : P; — P» such that (i) for every p € Py, it holds s; (p) = sz (¢ (p)), and (ii) for every
p1,p2 € Py and every r € R, it holds r; (p1) (1) =p2 = r2 (9 (p1)) (r) = g (p2). Figure 11.7 shows
the graph encodings of three configurations ¢; < ¢2 < c3.

U U

« /< /0
A A A

S t s t S t
* -

Figure 11.7: The well-quasi ordering < on configurations

Lemma 9. The relation < is a well-quasi ordering on C.

Proof. We have to show that for every infinite sequence (¢;);>¢ of configurations from C, there are
two indices ¢ < j with ¢; < ¢;. We will do this by making use of a theorem in [88] which says
that sub-graph ordering on node-labelled directed graphs is a well-quasi ordering, given that the
underlying undirected graphs, namely the closures of the directed graphs, have a bounded diameter.

First, we define an operation [f which converts labelled directed graphs into node-labelled ones
by replacing each edge by a node labelled with the label of the edge. Formally, given a labelled
directed graph G = (V,X,,X., A\, E), the node-labelled directed graph If(G) is defined as If(G) =
(V' 2, UX., N, E"), where V! =V U {v(ul7a7u2)| (u1,a,u9) € E}, the vertex labelling function)\
is defined by X (v) = A (v) for v € V and N (v(ul7a7u2)) = a for v(y, q,u,) € V'\V and the set E’ of
edges is given by E' = {(ul,v(ulyaﬂu)), (V(ur,a,u0)> w2)| (U1, a,uz) € E} Note that for two labelled
graphs G; and Ga, we have Gy Cgyp G if and only if If(G1) Caup If(G2). Note also that if the
diameter of the closure of a labelled graph G is k, then, the diameter of the closure of If(G) is
at most 2k + 2. For the proof of this, let G be a labelled graph, closure(G) = (V,X,,\, E) be
of diameter k and closure (If(G)) = (V',,,N,E’). For the sake of contradiction, assume now
that there is a simple path © = vy ... vag44 of length 2k + 3 in closure (If (G)). By construction of
closure (If (G)), the nodes in m must alternate between nodes from V' and nodes from V’\V which
arose after eliminating labelled edges in G. We assume that v is from V' (the other case is handled
analogously). Then, by construction of closure (If (G)), for every odd ¢ with 1 < i < 2k + 1, we
have {v;,v;42} € E. Thus, the subsequence of 7 consisting of all odd positions builds a simple

137

Chapter 11. Three Models - Three Views

path of length k + 1 in closure (G) which is a contradiction to our assumption that the diameter of
closure (G) is k.

Now, let (¢;);>0 be an infinite sequence of configurations from C. For every ¢ > 0, the diameter
of the graph closure (enc (¢;)) must be bounded by k, because ¢; is k-strongly bounded. We consider
the sequence (If(enc (¢;)))i>0. Due to our explanations above, for every i > 0, closure (If (enc (¢;)))
is a graph of diameter at most 2k + 2. By Theorem 2.6 in [88], subgraph ordering on node-labelled
directed graphs is a well-quasi ordering!, under the condition that the closures of the underlying
undirected graphs have a bounded diameter. Thus, as the closure of every graph in (If (enc (¢;)))i>o0
has a diameter of at most 2k + 2, the subgraph relation on these graphs is a well-quasi ordering.
Hence, there are i < j with If(enc (¢;)) Csup if (enc (¢;)). It follows that there are ¢ < j such that
enc (¢;) Ceup enc (c;), and thus ¢; < ¢;. O

Monotonicity. Now, we turn towards the second condition expected from Well-Structured Tran-
sition Systems.

Lemma 10. The transition relation ~w> is monotonic with respect to <.

Proof. In order to proof that »w-» is monotonic with respect to <, we have to show that for every
three configurations c1, co and c3 from C with ¢;wwsco and ¢; < c3, there is a fourth configuration
cq € C with c3wwweq and 3 < cy.

To this end, let ¢1, co and c3 be three configurations from C' such that ¢; ~w» ¢ and ¢; < cs.
From ¢ < c¢3 it follows that the graph encoding of ¢; can be embedded into the graph encoding of
c3. Hence, by the execution of several reset transitions, one can obtain from c3 a configuration cj3
which consists of isolated single processes and an isolated sub configuration cgy, which is isomorphic
to ¢1 (see Figure 11.8). Observe that the diameters of ¢; and ¢§ must be equal. Moreover, as c§

u u u
reset * reset * Rk
—> 40 *).A
7 x 7 A
S t Csub @ S t v w
w~ : _— ~
~ A
: T reset * Rk
S S t : —> 40 —)A v L w

Figure 11.8: Simulation of transitions on small configurations on greater ones

contains a sub configuration which is isomorphic to ¢, it can execute the same transitions which
led from ¢; to co. This results in a configuration ¢4 such that ¢4 does not violate bound k£ and ¢

can be embedded into c¢y4.
O

From state reachability to coverability. From Lemmas 9 and 10 we derive that 7.2F (A) is a
well-structured transition system equipped with the well-quasi-ordering <. We now explain that
one can construct a configuration crarger € C' such that target is reachable in Tk (A) if and only if

IThe definition of subgraph in [88] assumes the existence of a well-quasi ordering on the labels of vertices and
requires that each vertex of the smaller graph has, w.r.t. the label ordering, a smaller label than the label of the
corresponding vertex in the bigger graph. The equality ordering over the finite set ¥, U X = S U R of vertex labels
is in fact a well-quasi ordering.

138

11.2. Dynamic Communicating Automata

Ctarget 1S coverable in ’E%f (A). We consider the configuration ctarger = ({p},s,r) which is composed
of a single process p whose state is target (i.e., s(p) = target) and whose registers are empty (i.e.,
for all » € R, r(p)(r) is undefined). Note that the upward closure 1{ctarget} = {¢ € C' | Crarger < ¢}
of Ctarget consists exactly of those configurations in C where at least one process is in state target.
Moreover, recall that the coverability of ctarget in Tk (A) means that there is an initial configuration
co and some configuration ¢ in 1{¢target } such that co s *c. Thus, the state reachability of target
in ’7;%5 (A) is equivalent to the coverability of Ctarget il the same transition system.

We conclude the proof of Theorem 25 by showing that the remaining conditions listed in Theorem
1 hold for 7.8F(A). These conditions require that (i) < is decidable, (ii) the non-emptiness of
t{c} N Cinse is decidable for every configuration ¢, and (iii) 727 (A) has computable predecessor
bases. For (i), note that testing ¢; < c2 for two configurations ¢; and ¢y amounts to checking
whether a graph is embeddable in another graph. It is well-known that this problem is decidable.
For (ii), observe that for every configuration ¢, non-emptiness of 1{c} N Cini can be easily decided
by testing that ¢ consists of a single process in the initial state with empty registers. For (iii), we
prove:

Lemma 11. The transition system T2r(A) has computable predecessor bases.

Proof. We have to show that for every configuration ¢ € C, a basis for Pre(1{c})U 1{c} is com-
putable. Let ¢ = (P,s,r) € C be a configuration. Given a transition ¢ € § of A, we use Pre; (1{c})
to denote the set of configurations ¢’ such that the execution of ¢ at ¢’ leads to some configuration
¢’ %= c. Let min be a function which for every upward closed set returns a basis. Observe that the
set of bases of Uies min (Preq(T{c})U 1{c}) is equal to the set of bases of Pre(1{c})U 1{c}. Hence,
it suffices to show that for every ¢ € d, a finite basis B; for Pre,(T{c})U 1{c} is computable.

Computing a set B; for Pre;(1{c})U 1 {c} where t corresponds to a local action, a symbol
sending or a symbol reception is rather simple, because register mappings are not affected by these
transitions. Conversely, transitions corresponding to create actions, ID sending, ID reception or
register resetting can affect register mappings. Please keep in mind that a send transition always
needs a receiving counterpart and vice-versa. In this proof, we concentrate on the computability
of a finite basis B, for Pre;(T{c})U 1{c} where ¢ corresponds to a create action or an ID sending
which is paired with a non-selective ID reception. The other cases can be handled analogously.

Let t = (s1,7 <= crt(s,r’),s2) € 6. We construct B; as the smallest set of k-strongly bounded
configurations which contains ¢ and configurations ¢’ = (P’,s’,r’) such that one of the following
properties is satisfied:

e Case where the creating as well as the spawned process is in ¢: There are two processes
p1,p2 € P such that

— s(p1) = s2 and s (p2) = s,

— r(p1) (r) = p2, r(p2) (') = p1, v (p2) () is undefined for all registers # # r/, and for all
processes p € P and registers 7 € R, it holds: if r (p) (#) = pa, then p = p; and # =7,

- P'= P\{ps},
— 8’ =s[p1 — s1][p2 — L], and

— v’ =r[p2 = L[p1 = r(p1)[r — L]

e Case where only the creating process is in ¢: There is some process p; € P such that

— s(p1) = s2,
— r(p1) (r) is undefined,
P =P

139

Chapter 11. Three Models - Three Views

— s’ =s[p1 + 51, and
— r'(p) = r(p) for all processes p # p1 and r'(p1)(r”) = r(p1)(r") for all registers r"” € R
with r” # r.

e Case where only the created process is in ¢: There are processes po € P and p; € P’ such that

s (p2)
— r(p2)
- P'=(PU{pi})\{p:},
— 8’ =s[p1 — s1][p2 — L], and

— I =7T.

:S,

= R, and there is no process p € P and no regster # € R with r (p) (7) = pa,

The case where neither the spawning, nor the created process is in ¢ is captured by the fact that c
is contained in Bj;.

Now, let (s1,snd(r,m(r')), s2) € § be an ID sending transition from §. We construct B; as the
smallest set of k-strongly bounded configurations which contains ¢ and configurations ¢’ = (P, s, r’)
such that there is a non-selective ID receiving transition (s3,rcv(x,m(r")), s4) € 6 and one of the
following properties is satisfied. For simplicity, we only consider the case where the sent process is
in ¢

e Case where the sending and the receiving process are in ¢: There are processes p1,p2 € P
with p; # p2 such that
— 8(p1) = s2 and s(p2) = s4,

— r(p1)(r) = p2, and
* if r = self then r(p2)(r”) = p1,
* otherwise r(p1)(r’) is defined and r(p2)(r”) = r(p1)(r'),

- P =P

— 8’ =s[p1 — s1][p2 — s3], and

)

— ' =r[py — r(p2)[r” — L]].
e Case where the sending process is in configuration ¢, but not the receiving one: There are
processes p1 € P and py € P’ with p; # ps such that
— s(p1) = s,
— r(p1)(r) is not defined and if ' # self then r(p;)(r’) is defined,
- P'=P U {pQ}a
— s’ =s[p1 — s1][p2 — s3], and
—r' =rp1 — r(p1)[r— pa]llp2 — R
e Case where the receiving process is in configuration ¢, but not the sending one: There are

processes pa, ps € P and p; € P’ with p; # py such that

= 8(p2) = 54,
— r(p2)(r") = ps (note that due to our assumption that the sent D must be in ¢, it cannot
be the ID of the sender),

7P/:Pu{p1}a

140

11.2. Dynamic Communicating Automata

— s’ =s[p1 > s1][p2 > s3], and

— 1 =r[py = r(p2)[r” — L]][p1 — {r+— pa, 7’ = p3} U{F— L| 7€ R\{r,r"}}]

e Case where neither the sending, nor the receiving process is in ¢: There is a process p3 € P
and processes p1,p2 € P’ with p; # po such that

- P/ = PU{p17p2}7
— s’ =s[p1 = s1][p2 — s3], and

— ' =r[pa— Ri|[p1— {r = p2, 7 = pstU{Ff— L|#e R\{rr}}]
O

We conclude this section by a summary of some further insights from our work [3]. The unde-
cidability results from Corollary 8 and Theorem 23 also hold for degenerative DCA. Furthermore,
by a reduction from the reachability problem for Lossy Counter Machines [183], we can show that
strongly bounded reachability for degenerative DCA is non-primitive recursive.

It is obvious that for every DCA A, its degenerative counterpart Deg (A) is an over-approximation
in terms of reachable states, i.e., every state reachable in the transition system of A is also reachable
in the transition system of Deg (A). We can even show that the reachable sets are equal. Moreover,
for every k, the set of reachable states in the k-strongly bounded transition system of A is included
in the set of reachable states in the k-strongly bounded transition system of Deg (A). Furthermore,
the set of k-strongly bounded reachable states by Deg (A) is included in the set of all reachable
states in the full transition system of A. Thus, strongly bounded reachability for Deg (.A) can be
considered as a good under-approximation of reachability for A.

By a simple graph theoretical observation, one remarks that any k-bounded configuration of a
DCA with 1 register must be 2k-strongly bounded. Thus, using Theorem 25, we can directly con-
clude that for every k > 1, the problem BOUNDSTATEREACH(degenerative 1-DCA k) is decidable.

Recall that k-(strongly) bounded transition systems forbid transitions to configurations which
are not k-(strongly) bounded. An interesting question is whether the undecidability results
in Theorems 23 and 24 still hold if we consider DCA where all reachable configurations are k-
(strongly) bounded. We call a DCA k-safe (or k-strongly safe) if every reachable configuration
in the corresponding transition system is k-bounded (or k-strongly bounded). It turns out that
while STATEREACH(k-safe DCA) and STATEREACH(degenerative k-safe DCA) remain in general
undecidable, STATEREACH(k-strongly safe DCA) is decidable for every k > 1.

11.2.2.1 Dynamic Communicating Automata with Buffers

In [4], we considered Buffered Dynamic Communicating Automata (bDCA) which, compared to the
model presented here, is closer to the original model in [47, 46] in terms of communication. In this
section, we will briefly describe the differences between DCA and bDCA and summarize our results
on the latter model.

While DCA-communication is rendezvous-based, the communication of bDCA-processes is asyn-
chronous and realized through the usage of buffers. Besides finitely many registers, each process
described by a bDCA is equipped with an unbounded FIFO-buffer. Like in the case of DCA, a
process can create new processes and communicate with other processes whose IDs are stored in
its registers. It can send messages (symbols as well as IDs) to the buffer of other processes, read
messages from its own buffer and store incoming IDs in its own registers. Thus, message sending
and receiving occur asynchronously. The other major difference is that instead of reset actions,
processes can execute disconnect actions which detach them from the whole network. The result of
a disconnect action by a process p is that the contents of all registers belonging to p or containing

141

Chapter 11. Three Models - Three Views

p are reset, the buffer of p is emptied and the ID of p is deleted in the buffers of all other processes
in the network. We also considered lossy bDCA, a version of bDCA in which each process can
non-deterministically disconnect itself from the network.

As there is no obvious simulation of reset actions by disconnect actions or vice-versa, there
is no simple reduction of the state reachability problem from one to the other model. We first
showed that, in terms of reachable states, every bDCA is equivalent to its lossy counterpart. Then,
we proved that the state reachability problem for (lossy) bDCA is undecidable, even in the case
where only configurations with a single communication edge are allowed. Therefore, we considered
a restriction on (lossy) bDCA that diminishes the power of the model with regard to buffers: we
set a bound on the length of buffers. However, even if the capacity of the buffers is restricted to
at most one message, the problem remains undecidable. The undecidability result still holds if we
bound simple paths in communication graphs.

Then, we concentrated on the strongly bounded reachability problem for bDCA with bounded
buffers. The definition of strongly bounded configurations takes, besides communication edges, also
edges into account which come from the containment of IDs in buffers. While strongly bounded
reachability for bDCA with bounded buffers is still undecidable, we obtained decidability in the case
of lossy bDCA. Finally, we proved the decidability of the strongly bounded reachability problem for
full bDCA in the case that communication graphs are acyclic. Such a restriction was not considered
for DCA.

11.3 Process Register Automata

In this section, we define Process Register Automata (PRA) and analyze their non-emptiness prob-
lem. The model is basically a restriction of Data Multi-Pushdown Automata [45] where stacks
are skipped. Recall that a DCA describes a single template according to which each process of
the designed system behaves. Compared to DCA, PRA provide a more global view to systems.
A PRA is a finite automaton equipped with finitely many registers in which process IDs can be
stored. In contrast to DCA, these registers do not belong to single processes, but are some kind of
global system registers. Only processes which are stored in some registers are able to participate
in actions. A PRA has only two kinds of transitions: create transitions and send transitions. A
create transition enforces that a process contained in some register creates a new process which is
again stored in some register. A send transition enforces that a process in some register sends some
message to a process in some other register. Besides a message symbol, a message can contain a
list of processes which are currently stored in registers. Thus, although a PRA is able to produce
unboundedly many processes during a run, at any time the number of processes which are able to
participate in actions is bounded by the number registers.

Now, we define PRA formally. A PRA A = (4, R,ro,S5, s0,0, F) consists of a finite message
alphabet A, a finite set R of registers with initial register ro € R, a finite set S of states with initial
state so € S, a finite set I C S of accepting states and a set ¢ of transitions of the form (s1,act, s2)
where s; and so are states from S and act is a symbolic action from the set Actions(A4, R) as
defined in Section 11.1.

We demonstrate the semantics of PRA by an example:

Example 18. We construct a PRA modeling the client-and-server protocol from Chapter 2. The
PRA has four registers, ro to r3, and uses the message symbols serv, req, ack and noti. The
first two symbols have arity 1 and the latter two have arity 0. Register r¢ is reserved for the root
process, register 1 is reserved for the server process and the remaining two registers are kept for
client processes. The message symbols serv, req and ack are used for the same purpose as in the
DCA implementation in Example 16. The additional symbol noti is used by clients to inform the

142

11.3. Process Register Automata

root process that there are no more requests to be sent to the server. The PRA is depicted in
Figure 11.9.

snd(rq, rg,noti)

snd(ra, 71, req(rs))

) crt(ro,r1) KZ\\ 5
& crt(rg,m2) snd(rg, r2, serv(ry))

snd(rq,re, ack)

6//

snd(rs, ro,noti)
snd(r3, o, noti)

((T4)axes ‘€. 04)pus

snd(ry, 73, ack) snd(r3, 71, req(rs))

¢)

snd(rs, r1,req(rs))

7

6/

crt(ro,m2)

snd(r1, r3, ack)

snd(rg, 7o, noti)

Figure 11.9: An example PRA modeling the client-and-server protocol from Chapter 2

At the beginning, all registers except rg, containing the root process, are empty. The overall
idea is that the root process first creates a server whose ID is stored in register 1 and then creates
client processes to be stored in registers ro and r3. Each client receives from the root process the
server ID is stored in register r1. By means of this ID and the message symbols req and ack, the
clients can communicate with the server. Moreover, they can send to the root process a notification
that no further communication with the server is needed. After the reception of such a notification
from a client from some register r; with i € {2,3}, the root process creates a new client which is
stored in 7;. Thus, the ID of the former client in r; is overwritten and cannot participate in actions
anymore.

State 2 represents a situation where both client registers are empty or have already informed
the root process that they have stopped communication with the server. In state 4, register ro is
occupied by a client sending requests to the server and register rs is either empty or the correspond-
ing client has already announced that it has stopped sending requests. In state 6, both clients of
registers ro and 73 are still active and sending requests. Finally, state 8 stands for a situation where
only the client in r3 is communicating with the server. o

Configurations

Before defining the configurations of a PRA A = (A, R,ro,S, s0,d, F), we introduce some no-
tations. Let crt(r,7') and snd(r,7’,m(r1,...,7ar(m))) be, respectively, a symbolic create and
a symbolic send action with 7,7',71,...,7a(m) € R. Given a partial register assignment v €

143

Chapter 11. Three Models - Three Views

[R — P] defined on all registers r,7",71,..., ar(m), We set v(crt(r,7’')) = crt(v(r),v(r')) and
v(snd(r, 7', m(r1, .. ., Tar(m)))) = snd(v(r), v(r'), m(v(r1), ..., ¥(Tax(m))))- A configuration of A con-
sists of three components s, v and E where s € S is the current state of the system, v € [R — PJ
describes the current contents of the registers and E is the set of all processes created so far during
the system run. Thus, we define the set of configurations of A as Conf(A) = S x [R — P] x 2F.

The transition relation on configurations

We say that a create transition (s1, crt(r,r’), s2) € ¢ is enabled at some configuration ¢ = (s, v, E)
if s = 51 and v(r) is defined. Likewise, a send transition (s1,snd(r,r’,m(r1,..., az(m))), 52) € 0
is enabled at ¢ if s = sy and v(7) is defined for every 7 € {r,7/,71,...,Tar(m)}. We will see
that the execution of an enabled transition at a configuration can lead to infinitely many possible
successor configuration. Now, we define a transition relation — 4 on configurations of A. For two
configurations ¢, ¢’ € Conf(A) with ¢ = (s,v, E) and ¢ = (¢/,v/, E’), we have ¢ — 4 ¢’ if one of the
following conditions holds:

e There is a transition (s1,crt(r,r’),s2) € § enabled at ¢ and there is a process p’ € P with
p' ¢ E such that (i) v/ =v[r' — p'], (ii) B/ = EW{p'}, and (iii) s’ = sa.

e There is a transition (si, snd(r,7’,m(71, ..., Tar(m))), 52) € 0 enabled at c such that (i) ' = v,
(ii) E' = E, and (iii) s’ = so.

If a transition ¢ — 4 ¢ with ¢ = (s',1/, E’) is caused by a J-transition (s1,act, s2), we also write

v (act) 4. Observe that while a send transition leads to exactly one successor configuration, a

create transition gives rise to infinitely many successor configurations, because there are infinitely
many processes in P which can be chosen as new process.

The transition system, runs and traces

A configuration ¢ = (s,v, E) is called initial if s = so, E = {p} for some arbitrary process p and
v ={ro — p}. It is called accepting if s € F. Thus, the transition system of A is defined as T(A) =
(Conf(A), Confinit(A), —> 4, Confacc(A)) where Confiyir(A) and Confac.(A) are, respectively, the
set of initial and the set of accepting configurations. A sequence 7 = c¢g =<2y 4 ... 2<% ey
(where transitions are labelled by concrete actions over P) is called a run of A if ¢y is an initial
configuration. Observe that each register assignment within a run must be injective which means
that PRA cannot contain the same ID in two different registers. A run which ends up in an
accepting configuration is called accepting. Like in the case of DCA, we define the traces of PRA

as data words over the proposition set Prop;“Ct and the attribute set Attr’,. For an accepting run

act*
T = co = 4. 2% e, of A, we call the data word trace(r) = dwrep(act;)...dwrep(act,,)

the trace of 7. A trace, resulting from an accepting run, is called a trace of A if its length is at least
1, i.e. the data word contains at least one position. The language £(.A) of A consists of all traces

of A.

Example 19. Figure 11.3 shows a trace of the PRA designed in Example 18. The ID 1 identifies
the root process, the ID 2 belongs to the server process and the IDs 3 to 5 identify clients. First, the
root process creates the server and then it creates client 3. Afterwards, the root process sends the
server ID to client 3. Having communicated with the server via a request and an acknowledgement,
client 3 informs the root process (by the message symbol noti) that it stops the communication
with the server. Thereafter, the root process creates two new clients 4 and 5. Finally, client 5 sends
a request to the server and receives an acknowledgement. O

144

11.3. Process Register Automata

snd snd snd snd snd snd snd snd
crt crt . crt crt
serv req ack noti serv serv req ack
creator 1 1 1 1
created 2 3 4 5
sender 1 3 2 3 1 1 5 2
receiver 3 2 3 1 4 5 2 5
mpar, 2 3 2 2

Figure 11.10: A trace of the PRA given in Example 18

The symbolic behaviour of PRA

When dealing with the algorithmic properties of a PRA, we will often make use of its symbolic
transition system. A symbolic transition system contains symbolic configurations, runs and traces
which are not defined over processes, but registers. The distinction between usual transition systems
and symbolic ones is analogous to the distinction between concrete and symbolic actions. To avoid
confusion, we will often use the prefix “concrete” for usual transition systems, configurations, runs
and traces.

We first give the formal definition of symbolic configurations of a PRA A = (A, R, 19, S, s0,0, F).
A symbolic configuration sc = (s, D) consists of a state s from S and a set D C R of registers which,
intuitively, represents the domain of register assignments of possible concrete instantiations of sc.
The set of all symbolic configurations of A is denoted as SConf(.A). The conditions for the execution
of a transition at a symbolic configuration are defined similarly to the case of concrete configurations:
A create transition (s1,crt(r,7’),s2) is enabled at a symbolic configuration sc = (s, D) if s = $1
and r € D. A send transition (si,snd(r,r’,m(r1,..., ar(m))), s2) is enabled at sc if s = s and
7,771, Tar(my € D. The definition of the transition relation —>j on symbolic configurations is
much more simpler than in the concrete case. The execution of a create transition (s, crt(r,r’), s2)
at a symbolic configuration sc = (s, D) leads to the symbolic configuration (s2, D U {r’}). When
a send transition (s1,snd(r, 7', m(r1,. .., ar(a))), S2) is executed at sc, we obtain the successor
configuration (so, D). If a symbolic configuration s¢’ results from sc by the execution of a transition
(s1,act, s2), we write sc a—“)jsc’. A symbolic configuration sc = (s, D) is called initial if s = sg
and D = {ro}, it is accepting if s € F. The sets of initial and accepting symbolic configurations
of A are denoted as SConfin;(A) and SConfa..(A), respectively. Thus, we obtain the symbolic
transitions system ST (A) = (SConf(A), SConfiyn;t(A), =75, SConfacc(A)) for A.

A sequence 0 = scg Ltl{z ...Lt"ilscn of symbolic configurations and actions is called a

symbolic run of A if scg is initial. A symbolic run is accepting if the last configuration is accepting.
Traces of symbolic runs are usual words with propositions (and without data values) that signalize
at each position which symbolic action is currently executed with which parameters. For a message
alphabet A and a register set R, we define Propai = {snd, crt} U {[par, par(act)] | act is an
action in Actions(A, R) with parameter par} as the set of propositions for symbolic traces. Recall
from Section 11.1 that the parameters of create actions are creator and created and those of
send actions with some message symbol m are sender, receiver, msym and mpar, for every ¢ €
{1,...,ar(m)}. A symbolic action act within a trace is represented by a word position wrep(act)
carrying exactly the propositions in {p} U {[par,par(act)] | par is a parameter for act} where
p = snd if act is a send action and p = crt, otherwise. The symbolic trace of an accepting
symbolic run 6 = scg Ltl)i e Lt"i“scn is the word strace(f) = wrep(acty)...wrep(act,). The
set of symbolic traces of A consists of all symbolic traces which are induced by symbolic runs of A
and are of length at least one. Finally, the symbolic language SL(A) of A consists of all symbolic

145

Chapter 11. Three Models - Three Views

traces of A.

Example 20. We give in Figure 11.11 the first four positions of the symbolic trace corresponding

to the concrete trace in Figure 11.10 of the PRA in Figure 11.9. (]
s p— snd snd
[[~ e ——— [sender, r¢], [receiver, 3] [sender,r3)], [receiver, 1]
[msym, serv], [mpar,, 7] [msym, req], [mpar, r3]

Figure 11.11: A prefix of the symbolic trace associated with the concrete trace in Figure 11.10 of
the PRA in Figure 11.9

We define a straightforward mapping from concrete runs to their symbolic counterparts. In-
tuitively, from a concrete run we get its corresponding symbolic run by skipping the processes in
configurations and replacing concrete actions by corresponding symbolic actions from 4. We first
define a mapping symb from concrete configurations to symbolic ones and then extend the mapping
to runs. For a concrete configuration ¢ = (s,v, E), we set symb(c) = (s,dom(v)). Given a concrete
run

v1 (acty) v (acty,)
T=co A ACn

with ¢; = (s, v4, E;) for every i € {0, ...,n}, we define

act; s act, s (C)
n)-

symb(7) = symb(co) — ... — symb

Observe that it easily follows from the definition of symbolic runs 7 that symb(7) is well-defined.
The following observation is straightforward:

Observation 11. Let A = (4, R, 1o, S, 0,0, F) be a PRA. For every accepting concrete run 7 of
A, symb(7) is an accepting symbolic run of A. Likewise, for every accepting symbolic run 6 of A,
there is an accepting concrete run 7 of A with symb(7) = 0.

11.3.1 Non-Emptiness

We show that the non-emptiness problem for PRA is NP-complete. The idea of the proof originates
from our paper [40].

Theorem 26. The non-emptiness problem for PRA is NP-complete.

Proof. Let A = (A,R,r0,S,50,0,F) be a PRA. We first consider the upper bound of the non-
emptiness problem. It follows by definition that A is non-empty if and only if there is an accepting
concrete run of A containing at at least one concrete action. Due to Observation 11, the latter
holds if and only if there is an accepting symbolic run of A containing at at least one symbolic
action. Thus, we can reduce the non-emptiness problem for A to the problem of finding a witness
sequence

(507 DO)(S()v aCtl; Sl)(517 Dl)(slv aCtQ; 52) e (Snflv anl)(snflv aCtnv Sn)(snv Dn)
of symbolic configurations and transitions such that
(a) n>1, Do ={ro}, sn € F, and

(b) for every i with 1 <i <mn,

146

11.3. Process Register Automata

e if act; is a create action, then, creator(act;) € D;—; and D; = D;_1 U {creator(act;)},
and

o if act; is a send action, then, par(act;) € D;_; for all parameters par of act; besides
msym and D; = D;_;.

First of all, note that the sets D; are monotonically increasing. Furthermore, unlike accepting
paths in NFA, the elimination of sub sequences leading from a state to itself within a (symbolic)
accepting run does not necessarily result again in a run, since a loop may yield a configuration
where more transitions are enabled than before. The reason is that the set of enabled transition
at a configuration (s, D) also depends on the set D of registers and a loop can enlarge this set.
However, taking the same loop twice does not bring any benefit. Thus, if there is a witness sequence
for A, then there is one of length polynomial in the size of A. Furthermore, whether a given sequence
constitutes a witness sequence can be tested in at most polynomial time: Whether the first state is
initial, the states of consecutive transitions and configurations comply with each other and condition
(a) holds can be assured in polynomial time. Moreover, for the test of condition (b), a comparison
between all consecutive three tuples in the sequence suffices. Hence, the non-emptiness problem is
in NP.

We show the lower bound by a reduction from the NP-complete problem 3-CNF-SAT. First,
let us briefly recall this problem. Let V = {4;,..., A,} be a finite set of propositional variables.
A variable A or its negation —A is called a literal. A disjunction of literals constitutes a clause. A
formula over V' is a Boolean combination of variables in V. Given a formula o = A¥_, (11 v 1§ V 13)
in conjunctive normal form where each [} is a literal, the problem 3-CNF-SAT asks whether there
is a truth assignment A € [V — {true, false}] for the variables in V satisfying ¢.

We reduce 3-CNF-SAT to the non-emptiness problem for PRA as follows. Given a formula
p = /\le(li V 15V 15) over V, we construct a PRA A, over a single message symbol m of arity 0.
The automaton A, contains the register set R = {ro} U {ra,7a | A € V} where each register r4
represents the propositional variable A and each register 74 corresponds to =A. The automaton
is shown in Figure 11.12. In the picture, for every ¢,j with 1 < ¢ < k and 1 < j < 3, register rj»
represents 7 if l; = A and it represents 74 if l; = —A.

crt(ro,ra,) crt(ro,ra,) crt(ro,ra,)
— Qg ay as LR (=] an,

crt(ro, Ta;) crt(ro, 7a;) crt(ro,Ta,)
wn 19} —~
2 B\ g
o N
K bS]
2 S

snd(ro, r§,m) snd(rg, 77, m)

@ snd(7‘077‘2,771 m

snd(ro, 7§, m) snd(rg,73,m)

Figure 11.12: Encoding 3-CNF-SAT into the non-emptiness problem for PRA

The behaviour of the automaton is separated into an assignment phase and a test phase. The
assignment phase, which starts in the initial state ag and ends in state a,, constructs a truth

147

Chapter 11. Three Models - Three Views

assignment for the variables in V' and the test phase, starting in state a,, and continuing until the
final state t¢,,, checks whether this truth assignment satisfies all clauses in . The more detailed
description of the automaton is as follows. In the assignment phase, the root process in ry chooses
for each ¢ with 1 < ¢ < n, non-deterministically one of the registers r4, and 7a,, spawns a new
process and stores it in the chosen register. Each register assignment v obtained at the end of the
assignment phase corresponds to a unique truth assignment A for V in the sense that for every
A €V, it holds A(A) = true if and only if v(r4) is defined. In the second phase, the root process
chooses for each i with 1 < i < k, non-deterministically a register r5 € {r{,r3,7{} and attempts to
send a message to the process of that register. Obviously, the message can only be sent if the input
of register rj» is defined by the register assignment at the end of the assignment phase. As register
assignments correspond to truth assignments, the sending of a message to some r§ means that the
truth assignment defined in the assignment phase satisfies the clause (11 V15 V 1%).

The correctness of the construction can be shown easily. To this end, assume that A, is non-
empty. This means that there is a trace w = w1 .. . WpWn41 . . . Wngm of A, induced by an accepting
TUD T = Co — A, ...~ 4, Cn Entt A, - Dt A, Cntm- By construction of A, the register
assignment v, in ¢, must have the property that for every ¢ with 1 < ¢ < n, v,(ra,) is defined if
and only if v(74,) is undefined. We define a truth assignment A on V as follows: for every ¢ with
1 < ¢ <n, \MA;) = true if and only if v(r4,) is defined. Due to the construction of the test phase
of A,, for every ¢ with 1 < ¢ < k, there must be some register rj» such that 1/(7";) is defined. If
ri = ra for some variable A, then, by definition, A(4) = true which means that (If V15V 1}) is
satisfied by A. Analogously, if rj» = T2, then, by definition, l; = —A and A\(A) = false from which
it again follows that \ satisfies (11 V I5 Vv 1%). Hence, \ satisfies ¢.

Assume now that ¢ is satisfiable. By definition, there is a truth assignment A on V satisfying
¢. In particular, for every clause C* = Ii Vv I§ v I%, there must be a literal l} satisfied by A\. We

now show that there must be an accepting run for A,. Let 7 = ¢ acts Ay - actn A, Cn be

an (incomplete) run of A, where each ¢, with 1 < £ < n results from cp_1 by the execution of
crt(ro,r4,) if A(A¢) = true and by the execution of crt(rg,7a,), otherwise. Hence, the register
assignment v in ¢, must correspond to the truth assignment A. Consequently, for every clause
C*, there must be a witness literal I}, and a variable A, such that either I{, = A, and v(ra,) is
defined or I, = = A, and v(7z,) is defined. Thus, the run 71 can be extended to an accepting run

tn . .
o L’”)A =i A, Cn 2etnil A, - actntm A, Cn+m Where each ¢; with n 41 < i < k results

from c¢;_1 by the execution of snd(rg,ra,, m) if I!; = Ay, and by the execution of snd(ro,74,,m) if
I{, = = A,. It follows that the language of A must be non-empty.

Note that the size of A is polynomial in the size of ¢. Thus, 3-CNF-SAT is polynomially
reducible to the satisfiability problem for PRA. We conclude that the latter problem is NP-hard
and, together with the upper bound, NP-complete. o

11.4 Branching High-Level Message Sequence Charts

In this section, we will define Branching High-Level Message Sequence Charts (BHMSCs) and
analyze the non-emptiness and the executability problem for this model. Unlike DCA and PRA
which generate traces based on a liner order, the structures produced by BHMSCs are Message
Sequence Charts (MSCs) which are based on partially ordered sets of events. First, we will introduce
MSCs, then, we will explain the concatenation of MSCs. Finally, we will define BHMSCs. Non-
emptiness and executability of BHMSCs will be studied in the two following subsections.

Message Sequence Charts. A single MSC describes the interaction between finitely many pro-
cesses within a dynamic system. Message Sequence Charts have a convenient graphical representa-
tion. Before defining MSCs formally, we present an example MSC:

148

11.4. Branching High-Level Message Sequence Charts

Example 21. Figure 11.13 depicts an MSC describing a possible execution of our introductory
example system in Chapter 2. The natural numbers represent process IDs. A vertical line below
an ID models the lifetime of the corresponding process. Horizontal arrows with a single arrow head
stand for send actions, those with two heads describe process creation. The starting event of the
initial process is modeled by a small circle.

In the presented MSC, the initial process with ID 1 models the root process of our example
system. It first creates the server with ID 2 and then a client with ID 3. Thereafter, it sends to
the client the server ID along with the message symbol serv. Then, the client sends to the server
a request and its own ID. The execution ends with an acknowledgement from server to client.

req(3

Figure 11.13: An MSC

O

We introduce some notations helpful for the formal definition of MSCs. The set of (action)
types for MSCs is defined as T = {start,crt, snd, rec} where start stands for the initial events
of processes and the other types correspond, respectively, to create, send and receive actions. For
some finite set F of events and a set N of process names, let A € [E — N x T] be a mapping
assigning to every event a corresponding process name along with an action type. For a type 8 € T,
we define E) = {e € E | A(e) € N x {0}} as the subset of E consisting of all events assigned to
type 0. Likewise, for a process name n € N, we define E; = {e € E | A(e) € {n} x T} as the subset
which consists of all events assigned to n. If A is clear from the context, we skip the superscripts in
Eé\ and E;}

Though the MSC in Figure 11.13 contains concrete process IDs, we will also consider MSCs
containing registers. Therefore, we define MSCs over an abstract set of process names. An MSC M
over some message set A and a set N of process names is a tupe (E, <, A\,) where E is a nonempty
finite set of events, < is the edge relation partitioned into <I=<lproc W <crt W <Insg Of process edges,
create edges and message edges, A € [E — N x T assigns to every event a corresponding process
name and a type and p € [<lpsg— A(N)] labels every message edge in M by a message. The MSC
M has to fulfill the following conditions:

e The reflexive and transitive closure <1* of < constitutes a partial order on E with a unique
minimal element init(M) € Fgiars. As demonstrated in Figure 11.13; we symbolize init(M)
in the graphical representation of M by a circle without any incoming or outgoing message
or create edge.

e The relation <iproc is a subset of |J,,c i (En X E,) such that for every n € N, <proc N(En X Ep)
is a total order on F,,, called the process relation for n.

o The set Egare Of start events consists of all events e such that there is no event e’ with
€’ <proc €.

149

Chapter 11. Three Models - Three Views

e The relations <ler¢ and <lpgg are subsets of (En x Ep).

n,meN n#m

e The relation <.,y induces a bijection between FEcp and Fgpare\{init(M)}, i.e., for every
create event, there is exactly one start event which is not init(M), and vice-versa.

e Similarly, <nsg induces a bijection between Egng and E... and satisfies the following FIFO-
condition: for all process names n and m and all events eq, eg E E, and ¢}, ¢, € E,, with
€1 <lnsg €] and ez <ngg €5, it holds ey < . ez if and only if €] <

proc 62

The set of all MSCs over A and N is denoted as MISC(A, N). We call two MSCs from MSC(A, N)
equivalent if one can obtain one from the other by renaming processes. The equivalence class of
an MSC M with respect to renaming processes is denoted as [M]. For a set £ of MSCs, we set
[£] = Upres[M]. The set L is called closed if £ = [L].

Partial Message Sequence Charts. Given an MSC M = (E, <, A\, i), we call a (with respect
to <*) downward closed subset E' C E complete with respect to message and create edges if for all
(e,€') E<lcre U <Insg, we have that ¢’ € E’ implies e € E'. If E’ is downward closed with respect
to <* and complete with respect to message and create edges, the restriction of M to E’ is called
a partial MSC. Note that a partial MSC does not have to contain a unique minimal element. All

notions and notations for (full) MSCs carry over to partial ones. The set of all partial MSCs over
A and N is denoted by PMSC(A, N).

Branching High-Level Message Sequence Charts. We introduce some further notations.
Given a (partial) MSC M = (E, <, A\, u) € PMSC(A, N), we denote by MsgPar(M) the set of process
names occurring as parameters in messages in M, i.e., MsgPar(M) = {n | there is m(ny,...,n;) €
(<msg) With n € {ny,...,ni}}. For every process name n € N with E, # () , we denote the
single minimal and the single maximal event with respect to <lproc NE, by min, (M) and max, (M),
respectively. We further define Min(M) = {min,(M) | n € N and E,, # 0}. The set Max(M) is
defined analogously. We set Pids(M) = {n € N | E, # 0} and define the set Free(M) of free
process names in M as {n € Pids(M) | Estare N E, = 0}. The set Bnd(M) of bounded process
names in M is defined, as expected, as Pids(M)\Free(M). Next, we define the concatenation of two
partial MSCs. Two partial MSCs M = (E, <, A\, u) and M’ = (E’, <, N, i) can be concatenated to
a new partial MSC M o M’ if Pids(M)NBnd(M’) = (). To explain it Vlsually, M o M’ is obtained by
connectlng the process edges of the same process names. Forlrnadly7 M o M’ is defined as (E <, h))
where E = EW E', Qproc =<proc U <. frocr Uert =<lert U Uy, <meg =<meg U g X =AUN and
o= pUp'. Note that Pids(MoM') = Plds(M)UPlds(M') and Bnd(MoM') = Bnd(M)UBnd(M’)

A Branching High-Level Message Sequence Chart (BHMSC) is a tuple H = (A, L, Linit, Lacec,
R,r9,6) where A is a message alphabet, L is a finite set of locations, Lipit, Lacc C L are sets of
initial and accepting locations, R is a finite set of registers with initial register ro and ¢ is a finite set
of transitions. There are two sorts of transitions, namely sequential transitions and fork-and-join
transitions:

proc

e A sequential transition (¢, M,¢) (also written as written as ¢ LR ¢) is an element of L x
PMSC(A, R) x L such that Free(M) # () and MsgPar(M) N Bnd(M) = (.

e A fork-and-join transition is of the form ¢ — {(¢1, R1,41), ..., (ln, Rn,€))} — ¢ where n > 1
is the degree of the transition, ¢, ¢y,...,0,,¢,,...,¢ ¢’ € L are locations and Ry,..., R, are

rvn

pairwise disjoint nonempty subsets of R. We depict a fork-and-join transition by:

150

11.4. Branching High-Level Message Sequence Charts

Informally, a sequential transition (¢, M, ¢') enforces that an instantiation of M by concrete processes
is appended to the MSC leading to location ¢. A fork-and-join-transition £ — {(¢1, R1,¢}), ...,
(b, Ry, l))} — ¢ expresses that for each i € {1,...,n}, the processes stored in the register in R;
are sent to a sub computation starting in location ¢;. Within the sub computation, the registers in
R; can be updated. After the sub computation reaches location ¢}, the entire system resumes its

execution at location ¢’ by using the register contents obtained at location #;.

Example 22. We give an example BHMSC modeling the client-and-server scenario from Chapter
2. To demonstrate the expressive power of BHMSCs, we extend the setting in Chapter 2 by a
second server and by giving clients the ability to spawn sub processes. The BHMSC is depicted
in Figure 11.14. It uses five registers, ro to r4, and the message symbols serv, req, ack and noti

T 73 To 1
req(rs) req(ro)
o s ack ro "3 ack
> To T3
serv(r1) <:’~j> serv(ry) <j#‘:> noti
To 1
5 6

> T2 /E

serv(ry) \
\

To 3 T4
noti

noti

Figure 11.14: An example BHMSC modeling the client-and-server protocol from Chapter 2

with the same meaning as in the PRA in Example 18. The MSCs at the edges are defined over
registers. The overall MSCs, generated by the BHMSC, are compositions of concrete instantiations
of the MSCs on edges.

At the beginning, all registers, besides ry which contains the root process, are empty. The
BHMSC starts with the execution of the MSC leading to location 2. In this MSC, the root process
creates two servers and stores their IDs in registers r1 and ry. In the next MSC, the root process
creates two clients to be stored in r3 and r4, sends to the first one the server ID in r; and to the
latter one the server ID in 7. Then, the computation splits into two parallel sub computations.
Registers r; and r3 are transmitted to the first sub computation and registers ro and r4 to the
second one. We explain the behaviour of the BHMSC in the first sub computation. The behaviour
of the second one is analogous and can be obtained from the first one by replacing r; and r3 with

151

Chapter 11. Three Models - Three Views

ro and 74, respectively. Recall that r; contains the ID of the first server and r3 the ID of the first
client. While going from location 3 to location 4, all registers, besides r; and 73 are emptied. In
the loop at location 4, the client in register r; sends arbitrarily often a request to the server in r3
and gets acknowledgments. Then, it creates a sub client which is stored in r¢. Additionally, the sub
client gets from the super client the server ID in r;. After that, similar to the super client, the sub
client communicates arbitrarily often with the server via requests and acknowledgements within
the loop at location 5. Thereafter, it notifies the super client that it stops communication with the
server. At location 6, the sub computation stops. When going from locations 6 and 6’ to location
7, the contents of registers 1 and r3 are kept as in location 6 and the contents of registers ro and
r4 are kept as in location 6’. However, the content of rq is rewritten by its content before entering
the sub computations. This means that the sub client spawned in the meantime is overwritten by
the root process. In the MSC at the edge leading from location 7 to 2, the clients in registers rs
and r4 send notifications to the root process meaning that the communication with the servers is
completed. At state 2, the automaton can stop or continue. In the latter case, two new clients are
crated and stored in registers r3 and r4 and new sub computations are started. o

Runs and languages of BHMSCs

Just like in the case of Process Register Automata, we call an injective partial mapping v € [R — P]
from the set of registers to the set of processes a register assignment. For a register assignment v
and a set @ C R, we define the restriction vjg of v to Q as {r — v(r) | r € dom(r) N Q}. For two

register assignments v,/ and a partial MSC M € PMSC(A4, R), we write v M, it
e Free(M)UMsgPar(M) C dom(v),
e v and v/ coincide on R\Bnd(M), i.e., for every r € R\Bnd(M), v(r) = v/(r), and
e dom(v') = dom(v) UBnd(M) and v/ (Bnd(M)) Nv(R) = 0.

A run G = (V,T,loc,reg,p) of the BHMSC #H is a finite directed acyclic graph (V,T) with
a unique source node in(G), a unique sink node out(G) and labelling functions loc : V +— L,
reg: V= [R—P)and p: T — 2B UPMSC(A,P). We define the set of all runs of H inductively.
For the sake of simplicity, we mostly only give a convenient graphical representation of runs and
skip their formal definitions.

e For two register assignments v,1’ € [R — P] and a sequential transition ¢t = £ 2 ¢ € 5 such

that v -5 o/, let M’ € PMSC(A,P) be the partial MSC obtained from M by replacing every
register r by v/(r). Then, the following graph G is an atomic run of H.

G = M’

Z/

We set Pids(G) = v(R) UPids(M’) and Bnd(G) = Bnd(M’).

e Let G1 and Gy be the following two runs of H such that Pids(G;) N Bnd(G2) = 0.

152

11.4. Branching High-Level Message Sequence Charts

Then, the following graph G is a run of H.

We set Pids(G) = Pids(G;) UPids(G2) and Bnd(G) = Bnd(G1) U Bnd(Ga).

e Forn > 1, let

G = G, =

be runs of H and

a fork-and-join transition of . Furthermore, let v and v/ be two register assignments such
that Bnd(G;)N(v(R)UU,; Pids(G;)) = 0 and v; = vp, for all i with 1 <4 < n. Furthermore,
let v/ = v1r, UU;e(r,. 0y (V) 1R, Where Ro = R\(R1U...UR,). Then, the following graph G
is also a run of H.

! 121
Gy —
! - > 0
Rl Rl
v . v
G = l o 4
k‘ %,
G, = by ------- > 0
Un l/,

We set Pids(G) = v(R) U, ;<;<,, Pids(G;) and Bnd(G) = U, ;<;<,, Bnd(G;). Observe that,
as illustrated in Example 22, each v; is the restriction of v to R;. Moreover, ' results from

v and vy,...,v, by taking the inputs of the registers in Ry from v and taking the inputs of
the registers in R; from v}, for every i € {1,...,n}.
Given a run G of H, let My,..., M, be an arbitrary enumeration of all MSCs occurring in

G that respects the partial order induced by the edge relation of the run. We define the MSC
M(G) € PMSC(A, P) resulting from G as Mjo...0M,. Since the sub computations in fork-and-join

153

Chapter 11. Three Models - Three Views

transitions employ disjoint sets of process IDs, the MSC M (G) is well defined and does not depend
on the chosen enumeration. A run G = (V, T, loc, reg, p) is called accepting if loc(in(G)) € Lipis,
loc(out(G)) € Lacc and reg(in(G)) = {ro — p} for some p € P. The language L(H) of H is defined

p
as { + o M(G) | G = (V,T,1loc,reg, p) is an accepting run of H with reg(in(G)) = {ro — p}} .
Observe that the language of H is closed, i.e., L(H) = [L(H)].

The symbolic behaviour of BHMSCs

Recall that in Section 11.3 we had defined symbolic configurations, runs and traces for Process
Register Automata. They helped to solve the non-emptiness problem for that model. Similarly,
we here define symbolic runs for BHMSCs which will later be used in several decision procedures
for BHMSCs. Like in the case for Process Register Automata, usual runs will sometimes be called
concrete runs in order to avoid confusion. Let H = (A, L, Linit, Lacc, R, 70,9) be a BHMSC. A
symbolic run S = (V, T, loc,def,) of H is a labelled graph which is almost defined like a concrete
run of H. However, instead of a function reg that maps nodes to register assignments, the symbolic
run S contains the mapping def mapping nodes to sets of registers. Informally, these sets are
the domains of register assignments in corresponding concrete runs. Moreover, the partial MSCs
assigned to the edges of S are not defined over processes from P, but over registers from R. To
reflect this latter difference, we denote the edge labelling in S by 7 instead of p.

Just like in the concrete case, we define the set of symbolic runs of H inductively. Before diving
into the definition, we introduce the convention that for a partial MSC M € PMSC(A, R) and sets

D, D' C R, we write D M, prit Free(M)UMsgPar(M) C D and D’ = D UBnd(M).

e Let D, D’ be subsets of R and M a partial MSC such that £ M visa sequential transition
in § with D 4 Dr. Then, the following graph

D D’

= M
s Lt —— U

is a symbolic atomic run of % with Bnd(S) = Bnd(M).

e If S; and S5 are the following symbolic runs of H

D1 Dz D2 DS
Sl - Zl --------- > Zz 52 - Zz --------- > Z3
then, the run
D, D, D3
S =
21 --------- > fz --------- > 53

is also a symbolic run of H with Bnd(S) = Bnd(S7) U Bnd(Ss).

154

11.4. Branching High-Level Message Sequence Charts

e Let for some n > 1, the graphs

D, D D, D!
- ------- > 0 ce e by —---mmm - N

be symbolic runs and

a fork-and-join transition of H. Given two sets D, D’ C R with D; = R;ND fori € {1,...,n}
and D' = (D N Ro) UU;eqr,..ny (D N Ry) (again, we use Ro for R\(Ry U...Ry)), then the
following graph S is also a symbolic run of H.

D, D,
= b —=----- > 0
Rl Rl
D o D’
s= (4 . e
Sn = Zn ------- ~ Z;L
D D,

We set Bnd(S) = |, ;<;<,, (Bnd(S;) N R;).

We call a symbolic run S = (V, T, loc,def, 7) accepting if loc(in(S)) € Linis, Loc(out(S)) € Lace,
and def(in(S)) = {ro}.

Just like in the case with Process Register Automata, we define a mapping symb from concrete
runs to symbolic runs of H. Intuitively, from a concrete run G, we get the corresponding symbolic
run symb((G) by replacing register assignments at nodes by their domains and the MSCs at edges
by the MSCs over R which belong to the corresponding sequential transitions from which the edges
result. More formally, for a run G = (V, T, loc, reg, p), we set symb(G) = (V, T, loc,def, w) where
def and 7 are defined as follows:

e def(v) = dom(reg(v)) for all v € V, and
, R, if p(v,o')=R' CR
o w(v,v') = M
M, if (v,v’) results from some sequential transition £ — ¢’
for all (v,v') € T.

The following lemma, highlighting the relationship between concrete runs and symbolic ones, is
an analogon of Observation 11 for BHMSCs.

155

Chapter 11. Three Models - Three Views

Lemma 12. Let H be a BHMSC.

(a) For every concrete run G of H, symb(G) is a symbolic run of H. Furthermore, symb(G) is
accepting if and only if G is accepting.

(b) For every symbolic run S of H, there exists a concrete run G of H such that S = symb(G).

Proof. Statement (a) follows by straightforward induction. In order to prove (b), we argue by
induction over the structure of symbolic runs that for every symbolic run S, one can construct a
concrete run G with symb(G) = S.

e In the base case, we consider a symbolic run

L ——

resulting from a sequential transition ¢ M, ¢/ Let v and v/ with dom(v) = D and dom(v') = D’
be two register assignments such that (i) v assigns pairwise distinct process IDs to the registers
in D and v/ assigns pairwise distinct process IDs to the registers in D’, (ii) v and v/ coincide
for R\Bnd(M), and (iii) v/(Bnd(M)) Nv(R) = (. Since there is an infinite supply of process
IDs, the existence of v and v/ is guaranteed. Furthermore, note that due to the definitions of

M
v and v/, we have v — /. Thus, we can construct a concrete run

1 !
G= V(M)

Lt —— U

for which it clearly holds symb(G) = S.

o Let

be a symbolic run resulting from the (sub) runs

D1 D2 d D2 D3
— an —
Sl fl --------- > Zz SZ fz --------- > [3

G, = and Go =

156

11.4. Branching High-Level Message Sequence Charts

with symb(G71) = S1 and symb(G2) = S2. We can modify G and Go in such a way that
vy equals 4 and all process IDs appearing in Ga, but not in v4(R), are different from all
process IDs in GG; (this is possible, since infinitely many IDs are available). Then, due to the
construction rules for concrete runs, we can build

As symb(G1) = Sy, symb(G2) = Sz and S results from the concatenation of S and Ss, it
easily follows symb(G) = S.

e Now, let
D1 Dll
S = by ------- > 0
Rl Rl
D 5 D’
5= ; . 1
R, 4
Sn = Zn ------- ~ Z;L
D, D,
be a symbolic run resulting from sub runs Si,...,S, for some n > 1 by a fork-and-join

transition ¢t. By induction hypothesis, there are runs

such that symb(G;) = S; for all ¢ with 1 <4 < n. Again, we can assume that there is no ID
occurring in some G; which also occurs in some other j # i. Let v and v/ be two register
assignments with dom(v) = D and dom(v') = D’ such that v/ = v1r, UU;eq1,. 0y (V) 15, and
for every ¢ with 1 < i < mn, v; = vg, and Bnd(G;) Nv(R) = (). Using transition ¢, we can
construct the concrete run

157

Chapter 11. Three Models - Three Views

L4 1Z
Gy —
! - > 0
Rl Rl
v . o
G= L 0 4
k‘ Ry,
G, = by ------- > 0
Un v

By the choice of v and v/ and the fact that for every i, we have symb(G;) = S;, it follows
symb(G) = S.
O

11.4.1 Non-Emptiness

The non-emptiness problem for BHMSCs is EXPTIME-complete. In our work [46], the lower bound
is shown by a reduction from the intersection non-emptiness problem for deterministic top-down
automata on binary trees. Here, we present the proof of the upper bound. Thanks to Lemma 12,
the question of non-emptiness for a BHMSC can be solved by searching for an accepting symbolic
run. We show that such a search can be concluded in exponential time:

Lemma 13. The non-emptiness problem for BHMSCs is in EXPTIME.

Proof. We first note that the non-emptiness problem for BHMSCs can be reduced to the problem
of deciding whether a given BHMSC has an accepting symbolic run. Indeed, given a BHMSC H,
the following equivalences hold:

L(H)#0 < thereis an MSC M € L(H)
< there is an accepting run G of H (by definition of L(H))
< there is an accepting symbolic run S of H (by Lemma 12)

It remains to give an algorithm which for every BHMSC H = (A, L, Linit, Lace, R, 70, 9) decides
in exponential time whether H has an accepting symbolic run. We first define symbolic states for H.
A symbolic state is a pair s = (¢, D) with £ € L and D C R. Each symbolic state (¢, D) represents a
node v in a symbolic run S = (V, T, loc, def,) of H with loc(in(v)) = £ and def(in(v)) = D. Our
algorithm computes the set P of all pairs (s1, s2) of symbolic states for which there exists a symbolic
run from s; to sg. It decides that H is non-empty if and only if there is a pair ((¢, {ro})(¢', D)) € P
with ¢ € Linit, £ € Lace and some D C R.

The set P can be computed by a straightforward monotone fixed point computation. Since the
number of symbolic states is at most exponential in the size of H, an exponential number of iterations
suffice to compute P. In each iteration, the algorithm checks for an (at most) exponential number
of pairs (s1, s2) of symbolic states whether the pair can be obtained by a sequential transition, by
concatenation or by parallel composition (i.e., by means of a fork-and-join transition) of given pairs.
In the first case, it browses the transition relation § which has at most linear size. In the second
case, it has at most polynomially many choices among the given symbolic states. In the last case,
the number of choices is at most exponential. Altogether, the running time of the algorithm is at
most exponential. O

158

11.4. Branching High-Level Message Sequence Charts

11.4.2 Executability

In Chapters 9 and 10, we gave several references to works studying the realizability problem for
High-Level Message Sequence Charts (HMSCs) over finite sets of processes. Realizability deals with
the question whether for a given HMSC, there is a communicating automaton (CA) describing the
same sets of executions. As BHMSCs and DCA are basically dynamic extension of HMSCs and
CA, it is quite natural to consider the realizability problem for BHMSCs with respect to DCA.
Unfortunately, it follows from known results that this problem is not decidable [22, 114]. Therefore,
we will analyze the executability problem, a necessary criterion for realizability. At an informal
level, a BHMSC is called executable if at every sending event in the generated MSCs, the sender
is “aware” of the receiver and the sent processes in its message. We will show that, just like non-
emptiness, executability is EXPTIME-complete. We will get the lower bound by a reduction from
the non-emptiness problem. For the upper bound, we will first define a notion of executability
on symbolic runs of BHMSCs. Then, we will prove that the executability of all symbolic runs
of a BHMSC corresponds to the executability of all generated (concrete) MSCs. Finally, we will
show that it can be checked in exponential time whether all symbolic runs of a given BHMSC are
executable.

Executability of BHMSCs. Before defining executability formally, we introduce some notations.
Given a mapping A € [E — N x T] from an event set F to pairs of process names and action types,
we define the mapping pid* € [E +— N] with pid* = {e > n | A(e) € T x {n}}. If X is clear from
the context, we skip it in the notation of pid*. Let M = (E, <, A\, u) € MSC(4, N) be an MSC
over some message alphabet A and a set N of process names. For a process name n and an event
e in M, we write n ~»)s e if there is a path from min, (M) to e in M. This path might involve
the reversal of the create edge that starts n. Formally, n ~ys e if (min,(M),e) € (< U <g%)*.
Intuitively, n ~~»s e indicates that the process executing e is aware of n.

Let M = (E,<,A\pn) € MSC(A,P). A message edge (e,e’) €<y in M with a message
m(p1, ..., Par(m)) 18 executable if p ~ps e, for every p € {pid(e'),p1,...,Par(m)}. The MSC M
is executable if each of its messages is executable. Finally, a BHMSC H is executable if all MSCs
in L(H) are executable.

Example 23. In the MSC in Figure 11.15, the message edge from process 1 to 3 is not executable,
because process 1 cannot be aware of the ID of process 3. It follows that the whole MSC is not
executable.

m

Figure 11.15: A non-executable MSC

We first prove the lower bound of the executability problem.
Lemma 14. The executability problem for BHMSCs is EXPTIME-hard.

Proof. The proof is by reduction from the non-emptiness problem for BHMSCs. Since the latter
problem is EXPTIME-hard [46], the result follows.

159

Chapter 11. Three Models - Three Views

Given an algorithm A solving the executability problem, we can easily extend A to an algorithm
B for the non-emptiness problem. The latter algorithm works as follows. Given a BHMSC H =
(A, L, Lipit, Lace, R, 70,0) as input, it asks A whether H is executable or not. If A answeres “not
executable”, then, by definition of executability, this means that there exists an accepting run of
H which is not executable. Thus, algorithm B outputs “non-empty”. Otherwise, if algorithm A
says “executable”, this either means that (a) H has at least one accepting run and all accepting
runs are executable, or (b) it has no accepting run at all. In order to check this, B extends H to
a BHMSC H’ with two new registers and a new initial non-executable transition. More formally,
H = (A, LU{l},{lo}, Lace, RW {r}, 74}, r0,d") where 6" W {{y ELNY | £ € Linit} where M is an
arbitrary non-executable MSC, for instance, the MSC in Figure 11.15. Note that every run in H’
has to start with M. After the construction of H', B asks A whether H' is executable. If A answers
“executable”, this means that H’, and thus H, does not have any accepting run. Consequently, B
outputs “empty”. In the other case, it means that the existing runs of A turned to non-executable
runs by appending them to M. Thus, B outputs “non-empty”. o

Now, we turn to the upper bound of the executability problem. Like in the case for non-
emptiness, we want to reduce the question of executability of a BHMSC to a test on its symbolic
runs. But first, let us analyze how the executability of an MSC M, resulting from a concrete
run, can be inferred from properties of the partial MSCs composing M. To find an answer to this
question, we adapt the notion of executability to partial MSCs. Consider a partial MSC M’ which
is part of M. The executability of a message edge e in M’ does not only depend on the relation
~ - within M’. Rather, we have to take into account the set of all processes the process executing
e is “aware of” when entering M.

Executability of partial MSCs. We define the executability of partial MSCs with respect to
awareness relations K C P x P. Intuitively, K(p,q) means that process p is aware of process gq.
We require that the awareness relation is reflexive. We say that a partial MSC M = (E, <, A, i)
over A and P is exzecutable at some awareness relation K if for every message edge (e, f) €<insg
with message m(p1, ..., Par(m)) and for every ¢ € {pid(f),p1,.-.,Par(m)}, either ¢ ~» s e or there
is a ¢’ such that K(q',q) and ¢’ ~>ps; e. Similarly, a run G is called executable at K if M(G) is
executable at K. Clearly, after the execution of an MSC, the set of processes a process is aware
of may be updated. We formalize this issue as follows: For a partial MSC M which is executable
under an awareness relation K, we write K M, K’ where K is the resulting awareness relation and
is defined as K U {(p,q) | ¢ ~>n max,(M) or there is ¢’ such that K(¢',q) and ¢’ ~p max,(M)}.

. . M(G
For a concrete run G, we write K KK L>) K.

We formulate three observations which will be helpful in the proof of the upper bound of exe-
cutability problem for BHMSCs.

Observation 12. A partial MSC M is executable at some K if and only if M is executable at
K[Free(M) .

Observation 13. For a partial MSC M = M; o M5, we have K M, K’ for some K and K" if and
only if there is some K; such that K ﬂ Ky and K, % K’

Observation 14. For a partial MSC M = Mj o...o M, where for every two i,j € {1,...,n} with

i # j, M; and M; do not share any process, it holds K M, K’ if and only if K ELIN K; for all

i€{l,...,n} where K’ = U;cq, 1 Ki.

Notice that we have defined the notions of executability and awareness relations on MSCs and
runs over P. However, since we aim to check the executability of a BHMSC H on the basis of its
symbolic runs, we have to understand what the executability of a BHMSC means for the symbolic

160

11.4. Branching High-Level Message Sequence Charts

runs of H. Therefore, we will define executability and awareness relations on symbolic runs and
MSCs over R. When we deal with executability on symbolic runs, we have to be careful, because we
have to take into account that the same register may represent different processes within a symbolic
run.

Before defining executability and awareness on symbolic runs of a BHMSC H = (A, L, Linit,Lacc,
R, 1,9), we introduce some further notations. For an awareness relation K and a register assign-
ment v, we define the induced symbolic awareness relation symb,(K) as the set {(r,s) € R x R |
(v(r),v(s)) € K}. For every partial MSC M over P, we define the flow relation £lwys which,
loosely speaking, describes the “information flow” within M. The set flwys consists of all pairs
(p,q) of processes such that (i) p = ¢ and p ¢ Pids(M), or (ii) ¢ € Free(M) and there is a
path from the minmial event of ¢ to the maximal event of p in M. That is, flwy = {(p,p) €
PxP|p¢PidsM}U{(p,q) € PxP|q € Free(M) and ¢q ~»ps max,(M)}. For a concrete run
G with initial register assignment v € [R — P] and final register assignment v’ € [R — P|, we
define flug = {(r,5) € R x R | (V'(r),v(s)) € flwpc)}. Observe that (r,s) € flwg means that
there is an “information flow” from the process in s at the time of enetring M(G) to the process
in 7 at the time of exiting M(G). Furthermore, we define the set Bg of refreshed registers by
Be ={r e R| vV (r) #v(r)}. Note that v/(r) # v(r) holds in particular if v/(r) is defined and v(r)
not.
Executability of symbolic runs. The executability of symbolic runs is defined in dependency
with symbolic awareness relations SK C R x R. We also define the effect of the execution of
a symbolic run which consists of a new symbolic awareness relation, a flow relation and a set of
refreshed registers.

o Let

be an atomic concrete run, resulting from a sequential transition ¢ Moy 1M (G) is exe-
G

cutable with K "9 K for awareness relations K and K ', then S = symb(G) is executable at

symb,, (K) with effect (symb,(K), flwg, Bg) and write symb,, (K) N (symb,(K), flwg, Bg)

o Let

with SK; 2% (SKs, £1w, By) and SKa =2 (SKj3, £lws, Bs). Then, S is executable at SK;
with effect (SKg, le2 9] flwl, B1 U BQ) (Written as SKl i) (SKg, leQ o flwl, Bl @] BQ))

161

Chapter 11. Three Models - Three Views

o Let
Dy D}
1= b ------- > 0
R1 Rl
D o D’
S= ¢ . v
R, A(
Sp = O . Z;’L
D, D!,
be a symbolic run resulting from sub runs Si,...,S5, for some n > 1 by a fork-and-join
transition. The run S is executable at some SK if for each i € {1,...,n}, the sub run S; is

executable at SKg,. Moreover, if SK g, N (SK/, f1w}, B!) for each i € {1,...,n}, then
SK 2 (SK', 1w, B") where

- B= Uie{l n}(le' N R;),
— fw' = {(r,7) | (r,r) € SK and r ¢ B’} U Uie{17...,n}(flw’i)mi, and
— SK' is the set of all pairs (r, s) for which one of the following conditions holds:
(i) r € Ry, (r,s) € SK and y ¢ B,
(ii) for some i € {1,...,n} andt € R, r € R;, (t,s) € SK, (r,t) € 1w, and s ¢ B/,
(iii) for some i € {1,...,n}, r,s € R; and (r,s) € SK].

We say that a symbolic run is executable if it is executable at {(rq,r0)}.

It should be noted that in the definition above, the information whether a register value is
defined at some node is implicitly given by the corresponding symbolic awareness relation SK: r is
defined if (r,r) € SK. Furthermore, and crucial for the algorithm below, the definition only makes
use of concrete MSCs in the base case.

In order to characterize the executability of a BHMSC in terms of symbolic runs, we will use the
following lemma which will be proven at the end of this section. It clarifies the strong relationship
between the executability of concrete runs and the executability of their symbolic counterparts.

Lemma 15. Given a BHMSC H, for every concrete run G of H with initial register assignment
v, final register assignment v’ and awareness relations K and K', it holds:

(a) If symb(G) is executable at symd,(K), then G is executable at K.

(b) If G is executable at K, then symb(G) is executable at symbd,(K).

(c) If K S5 K, then symb,,(K) () (symb,, (K'), flug, Ba).

Using this lemma we can easily proof:

Lemma 16. A BHMSC H is executable if and only if every accepting symbolic run of H is exe-
cutable.

162

11.4. Branching High-Level Message Sequence Charts

Proof. Let H = (A, L, Linit, Lace, R, 70,0) be a BHMSC.

H is executable < every MSC in L(H) is executable (by the definition of the executability

of BHMSCs)

< every accepting run G of H with reg(in(G)) = {r¢ — p} for some
process p € P is executable at {(p,p)} (by the definition of
awareness relations)

< every accepting symbolic run of H is executable at {(ro,70)}
(by Lemmas 12 and 15)

& every accepting symbolic run of H is executable (by the
definition of the executability of symbolic runs)

O

Based on the last statement of the last lemma we can prove the upper bound complexity of the
executability of BHMSCs:

Lemma 17. The executability problem for BHMSCs is in EXPTIME.

Proof. By Lemma 16, the executability problem for BHMSCs can be reduced to the question
whether all accepting symbolic runs of a given BHMSC are executable. We present an algorithm
which checks in exponential time whether there is an accepting run which is not executable. The al-
gorithm can be seen as an extension of the algorithm in Lemma 13, because it constructs inductively
bigger symbolic runs from small ones.

Given a BHMSC H = (A, L, Linit, Lacc, R, 70,9), the algorithm works in two steps. In the first
step it computes the set ET of all tuples (¢, SK, ¢, SK’, £1w', B’) for which there is a symbolic run

S from location £ to location ¢ with SK (SK',£1w', B’). This can be done inductively using
the rules defined for the executability of symbolic runs. It should be noted that only the base case
explicitly involves MSCs. Due to Observation 12 and the definition of partial MSCs occurring in
symbolic runs, the executability of atomic symbolic runs can be checked by simple reachability tests.
Furthermore, as awareness relations implicitly contain the sets of defined registers, it is always easy
to check which tuples from ET can be combined to obtain tuples for bigger symbolic runs.

In the second step, the algorithm computes the set NT of all tuples (¢,SK, ¢, D) for which
there is an accepting symbolic run S from location ¢ to ¢’ with def(out(S)) = D’ which is not
executable at the symbolic awareness relation SK. For atomic symbolic runs, resulting from some

sequential transition £ M,y , it has to be verified that M is not executable at SKpree(nr)- For sym-
bolic runs, resulting from concatenation, the algorithm either combines (i) a tuple (¢1, SK1, {2, D2)
from NT with a tuple (b2, SKs, {5, SK3,flws, Bs) from ET resulting in a tuple (¢1,SK1,¢s, D3)
such that the set of registers occurring in Dy is equal to the set of registers occurring in SKs
and the set of registers occurring in D3 is equal to the set of registers occurring in SKs, or
(ii) a tuple (¢1,SK1, 02, SKo,flus, By) from ET with a tuple (€2, SKa, 3, D3) from NT with the
resulting tuple (¢1,SK1,¢s,D3), or (iii) a tuple (¢1,SKji,¥2,Ds) from NT with a further tuple
(02, SKo, 3, D3) from NT such that Ds and SK> have the same sets of registers and the resulting
tuple is (¢1,SK1,43,D3). To obtain symbolic runs constructed from fork-and-join transitions, it
combines an arbitrary number of tuples (¢;, SK;, ¢;, SK/, £1w}, B}) from ET with at least one tu-
ple (¢;, SK;, 0}, D}) from NT, resulting in a tuple (¢, SK,{', D') where SK and D’ are computed
according to the rules given in the definition of executable symbolic runs.

The algorithm decides that H has an accepting, but non-executable run if it finds a tuple (¢,
{ro,m0}, ¢, D) in NT with £ € Lip;y and ¢/ € Lacc. As the number of tuples in ET and NT is at
most exponential and each iteration adds at most one tuple in exponential time, the overall time is
exponential. O

163

Chapter 11. Three Models - Three Views

From Lemmas 14 and 17, we get the main result of this section:
Theorem 27. The executability problem for BHMSCs is EXPTIME-complete.
It remains to proof Lemma 15.

Proof of Lemma 15. Let H be a BHMSC and G a concrete run of H. We argue by induction on
the structure of G.

e For the base case, let

be an atomic run resulting from a sequential transition ¢ M, ¢ and K and awareness relation.
By the definition of the executability of symbolic runs, G is executable at K if and only if
symb(G) is executable at symb,(K). From this, we immediately get (a) and (b). Item (c)
follows by the definition of the effects of the executions of symbolic runs.

e In the induction step, we first consider runs resulting from concatenation. Let

G = and Go =

and K; an awareness relation.

For the proof of (a), let us assume that symb(G) is executable at SK; = symb, (K1). By
definition, it follows that symb(G1) is executable at SK; with some effect (SKo, 1wy, B1) and
symb(G2) is executable at SKy with some effect (SK3,flwg, By). By induction,

— G is executable at K with effect Ky such that symb,, (K2) = SKs, and

— (9 is executable at K.
It follows by the definition of the executability of runs and Observation 13 that G is executable
at K.
Concerning (b), let G be executable at K;. Then, again by Observation 13, G; must be
executable at Ky with K i> K5 for some effect K5 and G5 must be executable at Ko with

K, 22 K3 for some K3. It follows by induction that symb(G1) is executable at symb,, (K1)

with symb, (K7) svzb(G) (symb,, (K2),flwg,, Bg,) and symb(G?2) is executable at symb,, (K2)

with symb,, (K2) symb(C'2) (symb,, (K3), flwg,, Bg,). By the definition of executable symbolic

runs, it follows that symb(G) is executable at symb, (K7).

164

11.4. Branching High-Level Message Sequence Charts

Now, we show item (c). To this end, let K3 N K3. By Observation 13, there is a Ky with

mb(G
Ky 9% Ky and Ky 22 K3. By induction, it follows symb, (K1) Svmo(G) (symb,, (K2), flwg, ,
mb(G
Bg,) and symb,, (K>2) svme(G2) (symb,, (K3), flwg,, Bg,). From this and the definition of
G
executable symbolic runs, it follows symb, (K1) SYM) (symb,, (K3), flwg, o flug,, Bg, U
Bg,). Thus, it remains to show that flwg, o flwg, = flwg and Bg, U Bg, = Bg.

To see that Bg = Bg, U Bg,, just observe that a register is “refreshed” in G if and only if it
is refreshed in G or Gs.

For the proof of flwg = flwg, oflug,, we first show that for every r, s € R with (r, s) € flug,
it follows (r,s) € flwg, o flwg,. Thus, assume for some r,s € R that (r,s) € flug. By
definition of flwg, one of the following cases holds:

(i) vi(r) = v3(s) and vy (s) does not occur in M(G), or

(ii) v1(s) € Free(M(G)) and vi(s) ~pr(q) max,, (r)(M(G)).

First, we consider case (i). By the definition of runs, it must hold r = s and v1(r) = va(r) =
v3(r). As v1(r) does not occur in M(G) at all, it follows (r,r) € flwg, and (r,r) € flug,.
Thus, (r,r) € flug, o flwg,. Case (ii) has three sub cases depending on where the path from
min,, 5 (M(G)) to max,, (M (G)) starts and ends:

(1) it starts and ends in M (Gy),
(2) it starts and ends in M (G3), or
(3) it starts in M (G;) and ends in M (G3).

We first deal with case (1). As v41(s) € Free(M(G)), it follows v1(s) € Free(M(G)). More-
over, as v3(r) occurs in M (G1), by the definition of runs, it must hold v2(r) = v3(r). Thus, we
get v1(s) € Free(M(G1)) and v1(s) ~~ () max,, (M (G1)) which means (r, s) € flug,. As
va(r) = v3(r) and vo(r) does not occur in M(G2) (otherwise max,,) (M (G)) would not be in
M(Gh)), we get (r,r) € flug,. Together with (r, s) € flwg,, it follows (r, s) € flug, oflug, .

Case (2) is analogue. As vq(s) occurs in M(Gs), it must hold v1(s) = va2(s) and, as it
does not occur in M(G1), we get (s,s) € flug,. Moreover, observe that it follows from
v1(8) = 12(s) € Free(M(G)) and v1(s) € Pids(M(G2)) that v2(s) must be in Free(M(G2)).
Furthermore, as vi(s) = v2(s) and the path vi(s) ~) max,,)(M(G)) starts and ends
in M(Gz), we get v2(s) ~n(a,) MmaXy,) (M(G2)). Thus, (r,s) € flug,. Together with
(s,8) € flug,, it follows (r,s) € flug, o flug,.

For case (3), observe that there has to be some ¢ € R such that v1(s) ~ (@) max,,q) (M(G1)),
va(t) € Free(M(G2)) and va(t) ~ar(ay) maxXy,) (M(Ge)). Thus, (t,s) € flug, and (r,t) €
flug,. It follows (r,s) € flwug, o flug,.

For the other direction, namely that for every r,s € R with (r,s) € flug, o flwg,, it fol-
lows (r,s) € flwg, the main observation is that two paths v1(s) ~(a,) max,,@)(M(G1))
and va(t) ~ar(q,) maxy,qy(M(Gz)) can be put together to a single path vi(s) ~)
max,,) (M(G)).

e We finally consider runs resulting from fork-and-join transitions. Let

165

Chapter 11. Three Models - Three Views

be a run resulting from the sub runs Gy, ..., G,.

For the proof of (a), assume that symb(G) is executable at symb,(K). By definition, each
symb(G;) is executable at symb,(K);r, = symb, (K). By induction, each G; is executable
at Kgr,. By Observation 12 and because Free(M(G;)) C R;, each G; is executable at
K pree(n1(a,))- Again by Observation 12, each G; is executable at K. As there are no i, j such
that M (G;) and M (G};) share a process, we can follow by Observation 14 that G is executable
at K.

The proof of statement (b) is similar. Assume that G is executable at K. Then, by Observation
14, each G; must be executable at K. By Observation 12 and because Free(M(G;)) C R;,
for every i, each G; must be executable at K;g,. Therefore, by induction, each symb(G;) is
executable at symb, (K)g,. It follows by definition that symb(G) is executable at symb,, (K).

Now, we turn towards the proof of statement (c¢). Assume K G, K’ and SK)
(SK’,f1w', B') with SK = symb,(K). We have to show that SK’ = symb,, (K'), flv =
flwy oy and B’ = Bg.

We start with the proof of the first equality. We show that for two registers r, s € dom(¢’), it
holds (v'(r),v'(s)) € K’ if and only if (r,s) € SK'.

To this end, let r and s be registers with (v/(r),/(s)) € K’. We consider three possible cases
and conclude in each case that (r,s) € SK’. In the following, by (i)-(iii) we refer to the three
conditions on SK’ in the fork-and-join case in the definition of executable symbolic runs

— (V' (r),V'(s)) € K: Since v/(r) and v/(s) are already present in K, they cannot be in B’.
Thus, v(r) = v/(r) and v(s) = v/'(s) and, therefore, (r,s) € SK. We distinguish two sub
cases. If r € Ry, then (r,s) € SK’ by (i). Otherwise, let r € R; for some i € {1,...,n}.
Asr ¢ B', we get (r,r) € £1w;. Thus, (r,s) € SK' by (ii) with ¢ = r.

— V'(8) ~m(e) max, -y (M(G)): In this case, the path is in some M (G;). Thus (r,s) € SK]
and, by (iii), (r,s) € SK'.

— (¢,V'(s)) € K and q ~ () max,: () (M(G)) for some process ¢: In this case, there is
a register ¢t with /() = ¢ such that r and ¢ are in some R; and (V/(¢),v/(s)) € K. By
definition, we have (r,t) € £1w, and due to (¢,s) € SK, we get (r,s) € SK’ by (ii).

Let us now assume (r,s) € SK’. Due to the definition of SK’, we distinguish three cases and
show in each case that (v/(r),v/(s)) € K':

—r € Ry, (r,s) € SK and s ¢ B’: By definition of SK, we have (v(r),v(s)) € K.
However, as 7 € Ry and s ¢ B’, we get v'(r) = v(r) and v/'(s) = v(s). Therefore,
(), (5)) € K.

166

11.5. Discussion

— for some i € {1,...,n}and t € R, r € R;, (r,t) € £1w}, (t,s) € SK and s ¢ B’: In this
case, V(t) ~nr(q,) max,) (M(G;)) and (v(t),v(s)) € K. As furthermore v'(s) = v(s),
we conclude (V/(r),v'(s)) € K’ by the definition of K.

— forsomei € {1,...,n},r,s € R;and (r,s) € SK|: By induction, it follows (v (r), Vi(s)) €
K. Due to the definition of K’, we get (/(r),v'(s)) € K'.

Now, we show B’ = B, that is, U,cqq, ., (Bi N Ri) = {r € R|v(r) # v/(r)}. By induction,
for every i, B, = Bg,. Thus, r € B] if and only if v;(r) # v/(r). This yields the desired
equality, as Bg = Uie{17._.,n}{7“ € R; | vi(r) #vi(r)}.

It remains to show that £l is the same as £1w' = {(r,7) [(r,r) € SK, v € B’} UU,c 1, ny
(f1w})1r,. We first show that for every pair (r,s) € R x R with (r,s) € flwg, it holds
(r,s) € £1w'. To this end, let for some (r,s) € R x R, (r,s) € flug. By definition, either
(1) r = s, V' (r) = v(r) and v(r) does not occur in M(G), or (2) v(s) € Free(M(G)) and
there is a path from v(s) to v/(r) in M(G). If (1) holds, then (r,7) € SK and r ¢ B’. Thus,
by definition, (r,s) € £1w’. If, on the other hand, (2) holds, then r, s € R; and the path from
v(s) to v/(r) must be in M(G;) for some i. Thus, by induction, (r,s) is in £1w}, hence, in
flv'.

Now, let (r,s) € R x R a pair such that (r,s) € £lw'. There are two possibilities: either
(1) (r,s) € (£1w}) g, for some i, or (2) r = s with (r,r) € SK and r ¢ B’. In the former
case, we obtain by induction that (r,s) € flwg,. Therefore, by definition of flwg, it holds
(r,s) € flug. The latter case has two sub cases: r € Ry and r € R; for some i. If r € Ry,
then, v(r) = v(s) and v(r) has no event in M (G). By definition, it follows (r,r) € flug. In
the second case, it must hold (r,r) € (f1w})r,. By induction, we get (r,7) € flug.

O

11.5 Discussion

In this chapter, we introduced DCA, PRA and BHMSCs and analyzed some of their basic computa-
tional properties. We summarize our main results. For DCA | we first showed that the non-emptiness
problem is not decidable, even not in the case of a single register. Then, we considered selective
DCA, i.e., DCA where in each send action, the receiver has to be aware of the sender. While for
selective 2-register DCA the problem remains undecidable, we were able to show that for selective
1-register DCA the problem is solvable in polynomial time. Inspired by recent works on the veri-
fication of ad-hoc networks, we also considered the state reachability problem for DCA. We first
showed that, just like in the case of non-emptiness, state reachability is not decidable for 1-register
DCA. Then, we focused on (strongly) bounded DCA, that is, DCA where executions of actions
are only allowed if they lead to configurations where simple paths in the underlying (un-)directed
communication graphs remain bounded by some constant. In contrast to results on ad-hoc net-
works, state reachability remains undecidable for strongly bounded DCA. As a further restriction,
we considered degenerative DCA, i.e., DCA where processes are subjected to unexpected losses
of register inputs. Surprisingly, each DCA is equivalent to its degenerative counterpart in terms
of reachable configuration sets. While for bounded degenerative DCA, state reachability is unde-
cidable, we showed by a non-trivial instantiation of the framework of Well-Structured Transition
Systems that the problem becomes decidable if we restrict to strongly bounded degenerative DCA.

In the course of our considerations on PRA, we defined symbolic runs for this model and
observed that for every usual run of a PRA, there is a corresponding symbolic run and vice-
versa. This relationship between usual and symbolic runs established the basis for our decision

167

Chapter 11. Three Models - Three Views

procedure solving the non-emptiness problem for which we proved NP-completeness. The latter
result should be compared with the complexities of usual Register Automata and Fresh-Register
Automata. Recall that when a PRA executes a create transition, a new process ID, which is
fresh with respect to the whole run so far, is generated. The non-emptiness problem for Register
Automata without such a freshness assumption is NP-complete on sequences of data values [124]
and PSPACE-complete on simple data words [83]. For Fresh-Register Automata, which are equipped
with transitions testing input data values for freshness, the authors in [196] only give the result
that non-emptiness is decidable.

Similar to the case of PRA, we defined symbolic runs also for BHMSCs and worked with these
structures in our decision procedures for this model. We proved ExpTIME-completeness for the non-
emptiness of BHMSCs. In this work, we only gave the proof of the upper bound and referred for the
lower bound to our paper [46]. Moreover, we studied the executability problem for BHMSCs which
is a necessary criterion for the realizability of BHMSCs by DCA. It turned out that executability
is ExpTIME-complete, thus, it has the same complexity as non-emptiness.

Our results contain several open questions attracting our attention. The open questions are in
particular related to DCA. For instance, the decidability result on selective 1-register DCA relies
heavily on the fact that configurations of this DCA-class have restricted shapes: each configuration
can be represented by a set of isolated processes and pairs of processes. Presumably, decidability
can be extended to DCA-classes where configurations can be represented by sets of more complex,
but finitely many shapes. Then, an interesting question would be whether one can find syntactical
restrictions for DCA whose configurations are as described. The second issue, leaving room for open
questions, is that our searches for DCA-classes with decidable non-emptiness followed a different
direction than in case of reachability. Thus, natural questions are, on the one hand, whether the
decidability of reachability for strongly bounded degenerative DCA can be carried over to non-
emptiness, and, on the other hand, whether we can obtain decidability for reachability if we relax
the bounds on paths in configurations, but restrict to selective DCA. Finally, the DCA-version
which we studied in this work is particularly with regard to two aspects a restriction of the original
model in [47]: Firstly, messages in our model are restricted to at most one process ID. We assume
that it should not be difficult to show that our results also hold in the case of multiple IDs in
messages. Secondly, the style of communication in our model is rendezvous-based while the original
model allows asynchronous communication through unbounded channels. It is well-known that,
even for finitely many processes communicating via perfect unbounded channels, many verification
problems are undecidable [54]. Nevertheless, it would be interesting to consider DCA with different
kinds of asynchronous communication through bounded, lossy or unordered channels. Our results
from [4] on DCA with buffers, which we summarized in Section 11.2.2.1, are first steps into this
direction.

From our results in this chapter we conclude that DCA, a specification model for late design
stages, are inherently harder to analyze than PRA and BHMSCs, which are suited for early design
phases since they allow a more global view to systems. It is easy to see that the non-emptiness
problem for our models is reducible to the model checking against logical formulas if the used logic is
expressive enough to express L. In view of our non-emptiness results on DCA, this observation does
not leave much room for decidability results on the model checking of DCA with logics. As the only
DCA-class for which we proved decidable non-emptiness is the class of selective 1-register DCA, we
will focus our studies on model checking of DCA in the next chapter on this class. Conversely, the
non-emptiness results on PRA and BHMSCs are quite promising. Moreover, symbolic runs turned
out to be a useful formalism in decision procedures for computational problems on these models.
In the next chapter, we will show how symbolic runs can be used in the design of model checking
algorithms for PRA and BHMSCs.

168

11.5. Discussion

The results on state reachability for DCA in Section 11.2.2 of this chapter stem from [3, 4] which
were joint works with Parosh Aziz Abdulla, Mohamed Faouzi and Othmane Rezine. In those papers, I
defined the starting model and formulated initial questions. Furthermore, I was involved in discussions
on proof strategies. The results on non-emptiness and executability of BHMSCs in Sections 11.4.1 and
11.4.2 originate from [46], a joint paper with Benedikt Bollig, Aiswarya Cyriac, Loic Hélouét and Thomas
Schwentick. The mentioned results are those on which I spent the most effort during the preparation
of that paper. The remaining results in this chapter, namely the results on non-emptiness of DCA
and PRA in Sections 11.2.1 and 11.3.1, are not published anywhere and I obtained them during the
preparation of this thesis.

169

Chapter 11. Three Models - Three Views

170

Chapter 12

New Results on Model Checking

Xy P 1
crt crt snd,m 2
creator 1 2 3
created 2 3 Xt
sender 2 o|_m
receiver 3

In this chapter, we will study the verification of concurrents systems with unboundedly many
processes by model checking. As system models, we will concentrate on the three automata models
DCA, PRA and BHMSCs which were introduced in the last chapter. On the logic side, we will use
for DCA and PRA data logics that were introduced in Parts A and B of this work. For BHMSCs,
we will introduce in Section 12.3.1 a logic called MSC Navigation Logic (MNL) suited for the
navigation on MSCs. It is inspired by Data Navigation Logic (DNL) from Chapter 6 and Temporal
Logic of Causalities (TLC) [24, 173]. The model checking problem asks whether a given formula
holds on all structures in the language of a given system description. As defined in the previous
chapter, if the system description is given by an instance of DCA or PRA, the generated structures
are data words and if the description is a BHMSC, the structures are MSCs. Recall that a formula
of data logics is satisfied on a data word if it is satisfied at the first position of the word. For MNL,
we will similarly define that a formula is satisfied on an MSC if it is satisfied at the initial event of
the MSC. In the context of model checking, this means that we ask whether a given formula holds
on the first position or event of each generated structure. This approach, often called the anchored
viewpoint [182, 157], is very common in program verification.

Our results in this chapter do not give an exhaustive picture of model checking results for
the mentioned system models. They should rather be considered as first insights. In terms of
complexity, we will consider combined complexity where both, a system model as well as a formula,
are parts of the input. Precise analyses of program and formula complexities where one of the
components is fixed are left for future work.

In all of our (un-)decidability proofs, we will actually solve the ezxistential model checking prob-
lem which checks for a system model and a formula whether there is at least one structure generated
by the automaton and satisfying the formula. The term existential model checking occurs in the
literature (see, e.g., in [38]) and the mentioned approach of solving the (general) model checking
problem by considering its existential version is common in the area of finite-state model checking.
Indeed, it is easy to see that a formula holds on all generated structures of a system automaton if
and only if there is no generated structure satisfying the negation of the formula. Thus, as long as

171

Chapter 12. New Results on Model Checking

the considered logics are closed under negating formulas, decidability results for one version of the
model checking problem also hold for the other one. Additionally, if for a system model and a logic
one version of the problem is contained in a complexity class which is closed under complementation,
then also the other version is contained in the class.

In several decidability proofs, we will apply extensions of the well-known technique of labelling
positions of the underlying structures by consistent sets of formulas. This approach is often used in
model checking algorithms for finite-state systems and temporal logics (see, e.g., in [199]). However,
as we deal with different system models and logics, in each case we have to redefine what consistency
means. We finish this introduction by a formal definition of the usual and existential model checking
problem.

The (existential) model checking problem. Let C be a class of system automata and £ a logic.
The model checking problem MODCHECK(C, £) for C and L asks the following question: Given an
automaton A from C and a formula ¢ from £, does ¢ hold on all structures in the language of A?
The existential model checking problem EMODCHECK(C, £) asks whether for a given automaton A
from C and a formula ¢ from L, there erists a structure in the language of A satisfying (.

12.1 Model Checking of Dynamic Communicating Automata

We will consider the model checking of DCA with restrictions of B-DLTL and LTLY. As the
widest DCA-class for which we were able to show decidable non-emptiness was the class of selective
1-register DCA, this class will be subject of our investigations in this section. Remember from
Chapter 6 that B-DLTL is the fragment of B-DNL using the temporal operators X, U, X_, U_
and their past counterparts instead of path expressions. The fragment with which we will work
here is called Restricted Basic Data LTL (RB-DLTL) and results from B-DLTL by restricting all
shift values ¢ in formulas of the form Cg,¢ to 0. Recall that for a DCA with message alphabet
A, we defined its traces as data words over the proposition set PropZ. = {crt,snd} U A and the
attribute set AttrZ, = {creator, created, sender, receiver}U {mpar,,...,mpar,} where a is the
highest arity assigned to a symbol in A. Hence, our logics in this section will be defined over the
same proposition and attribute set.

We will first show that the the model checking problem for selective 1-register DCA is decidable
for RB-DLTL. If the considered logic is LTLY, the problem is undecidable, even for the fragment
LTLY (X, U). The latter result is interesting when we take into account that non-emptiness for
selective 1-register DCA as well as satisfiability for LTLY (X,U) (on 1-complete data words) are
both decidable.

12.1.1 Model Checking with Restricted Basic Data LTL

The main goal of this subsection is to prove the decidability of the model checking problem for
selective 1-register DCA and RB-DLTL. Actually, we will show that the corresponding existential
model checking problem is decidable and follow from this and the closure of RB-DLTL under
negating formulas that the original model checking problem is decidable. Our proof is based on a
reduction to reachability in Multicounter Automata (MCA, for definition, see Section 3.2.2).
Before starting with the technical part of the proof, we would like to explain why we do not chose
the obvious proof strategy of reducing the existential model checking problem to the decidable non-
emptiness problem for Data Automata (DA, for definition, see Section 4.2.2). Recall from Section
6.2 that every B-DNL-formula ¢ can be translated into a formula ¢’ simulating ¢ on encodings of
general data words by 1-complete ones. Moreover, every B-DNL-formula on 1-complete data words
can be translated into an equivalent DA D, '. This strategy suggests to solve the existential model

ITo be precise, in Section 6.2 we actually showed that for every B-DNL-formula ¢’ on 1-complete data words,

172

12.1. Model Checking of Dynamic Communicating Automata

checking problem for a selective 1-register DCA A and an RB-DLTL-formula ¢ according to an
analogous plan: construct a DA D, obtained from ¢ as above, construct a second DA D 4 deciding
exactly the set of 1-complete encodings of all traces of A and check intersection non-emptiness of
the languages of Dy, and D 4. Since the latter problem is decidable [41], such a strategy would be
an elegant way to solve the existential model checking problem. However, the snag in this strategy
is that we do not see how a DA can check that an input word represents a correct DCA-trace.
Recall that our 1-complete encoding requires to represent a single trace position by a block of at
least four positions, one for each of the attributes creator, created, sender and receiver. Now,
think of a selective 1-register DCA describing a system where each process created by the initial one
creates a new process and sends him a message. On 1-complete encodings of traces, this means that
for every block representing a create action (not performed by the initial process), there is some
following block of arbitrary distance representing a send action such that the values at the creator-
and created-positions in the create block are, respectively, equal to the values at the sender- and
receiver-positions in the send block. As the ability of DA to check equality between data value
tuples of arbitrary distance is limited, we believe that 1-complete encodings of such traces cannot
be decided by DA.

Therefore, we follow here a different strategy to solve the existential model checking problem for
selective 1-register DCA and RB-DLTL. We benefit from Observations 8 and 9 in Section 11.2.1
which state that runs of such automata can be simulated by runs with simplified configurations
containing singles and couples. Using this, we reduce existential model checking to reachability
for MCA where the constructed MCA simulates a run of a given DCA by counting the number of
singles and couples in configurations and by assuring that all of them are accepting at the end.

We proceed with the technical preparations for our decidability proof. We first introduce a
negation normal form for RB-DLTL-formulas where negation symbols can only occur in front of
atomic formulas. In addition to the usual operators and atomic formulas, a formula in negation
normal form can contain the release operators R and R— (along with their past counterparts R<
and RZ) and atomic formulas of the forms start, start_, end, end— and L, for attributes a. The
global atomic formula start is only true at the initial positions of data words and is equivalently
expressed by =X T. Analogously, the global atomic formula end only holds at the last position
(if there exists one) of each data word and is equivalent to =X T. Their class counterparts start—
and end_ are expressed by -XZ T and -X_T, respectively. The atomic formula |, expresses that
the value of attribute a at the current position is not defined and can be equivalently formulated
as —Cea ~@a. The temporal operator R has the following formal semantics: given a data word w,
a position ¢ in w and two global formulas p; and ¢s, it holds (w,i) | p1Rps if

e (w,j) | @2 for all positions j > 4, or
e there is a position j > i such that (w,j) E ¢1 and (w, k) |E @2 for all positions i < k < j.

It follows by definition that R is the dual of U, i.e., for all formulas ¢, and @2, we have o Ups =
—(—p1R—p2) and 1Rpa = (-1 U—gps). Likewise, R—, R~ and RZ are defined as the duals of
U_, U and UZ, respectively. Global formulas ¢ and class formulas ¢ of RB-DLTL in negation
normal form are constructed according to the following grammar:

@:=p|p| Llea|start|end|pAp|[pVe|Xp|XT¢|pUp | U ¢ | pRyp | pR"¢ | Ceat)
Y=g YA |V | Xop | XSy | Uy | YUZY | YRt | YRIY | @a | - ~0a

there is a DA D,/ which reads words with additional propositions and is, therefore, not equivalent to ', but non-
empty if and only if ¢’ is satisfiable. However, D,/ can easily be turned into a DA D:p, equivalent to . The base

automaton of D:P , can “guess” the additional propositions and forward them as outputs to the class automaton such
that base and class automaton can check in a joint work that the guess of the base automaton is correct.

173

Chapter 12. New Results on Model Checking

where p is a proposition and a an attribute.

Observe that we explicitly add the V-operator to the syntax as it is not obvious how to express
it with other operators in a formula in negation normal form. It is easy to see that thanks to De
Morgan’s rules and the equivalences

o Xy =endV X, " X9 =start VX",

o - X_t =end_ VX_—, " XZ¢ = start_ V XZ,

¢ Ceat) = Lea V Coa ¢,

o ~(11Up2) = (=p1R=¢p2), =(p1U2) = (21 R7=p2),

o (p1U=¢p2) = (mp1R=¢2), and ~(p1UZ¢s) = (mp1RZ-¢2),

every RB-DLTL-formula can be converted into an equivalent formula in negation normal form by
“pushing” the negation symbols inwards. Such a transformation yields a formula of at most linear
length with respect to the size of the original one.

Given an RB-DLTL-formula ¢ in negation normal form over the proposition set PropZ. and

attribute set AttrZ for some message alphabet A, we define the closure set Closure(y) of ¢ as

the smallest set containing
e start, end, start_, end— and le, for every attribute a,
e every sub-formula of ¢,
o X(¢1Utbg) for every sub-formula 11U of ¢,
o X (1 U 9s) for every sub-formula ¢, U 15 of o,
e X(1)1Rabs) for every sub-formula 1)1 Ri)s of ¢,

o X (1R 1)) for every sub-formula 1 R 1) of ¢,
o X_ (41 U_1)g) for every sub-formula ¢; U_1)5 of ¢,
o X (Y1 UZ1s) for every sub-formula ¢, UZ 1, of o,
o X_(y11R=1)9) for every sub-formula 1 R_t9 of ¢, and
o X (Y1 RZ1)s) for every sub-formula 11 RZs of .

Note that for every formula ¢, the size of the set Closure(y) is at most polynomial in the length
of ¢. A set C C Closure(yp) is called initial with respect to global formulas (or, respectively, class
formulas) if it does not contain any formula of the form X (or, respectively, XZv). It is final
with respect to global formulas (or, respectively, class formulas) if it does not contain any formula
of the form Xt (or, respectively, X_1). Given two sets Cq,Co C Closure(p), Cs is a successor
of Cy with respect to global formulas if for every formula Xy € C4, 9 is contained in C5 and for
every formula X“¢ € Cb5, 9 is contained in Cy. Likewise, Cy is a successor of C1 with respect
to class formulas if for every formula X_1 € Ci, the formula v is in Cy and for every formula
Xy € Oy, the formula ¢ is in Cy. If Cy is a successor of C; with respect to global formulas (or,
respectively, class formulas), then, C; is called a predecessor of Cy with respect to global formulas
(or, respectively, class formulas).

Let [C,act, g] be a triple where C' C Closure(p), act € Actions(A,P) and g is a function
which maps every process in act to some subset of Closure(y). Furthermore, let C;, = {g(p) | p
is a process occurring in act} be the set of all subsets of Closure(p) assigned to processes in act.
The tuple [C, act, g] is called consistent if it respects the following rules:

174

12.1. Model Checking of Dynamic Communicating Automata

rule for global formulas: If there is some C’ € C, containing some global formula 1, then, ¢
is contained in C.

rules for propositions: — If act is a create action, then, C' does not contain snd, —crt or
any message symbol m € A.

— if act is a send action with some message symbol m, then, C does not contain crt, —snd,
—m or any m’ € A with m # m/.

L-rule: If for some a € Attrd

¢, the parameter a(act) is defined, then, Le, is not contained in C.

C-rule: If for some attribute a € AttrZ,, the formula Ceat) is contained in C, then, a(act) is
defined and ¢ € g(a(act)).
@-rules: For every process p in act and attribute a € Attra,:

— If ~@a € g(p), then, a(act) is defined and p = a(act).
— If = ~@a € g(p), then, a(act) is not defined or p # a(act).

A-rule: If there is some C' € {C'} UC, with 1 A € C', then, ¢ € C" and ¢ € C'.
V-rule: If there is some C’ € {C} UC, with 11 V ¢3 € C’, then, ¢1 € C’ or 99 € C'.
U-rule: If 1 Uyy € C, then,

— g€ C or
— 41 € C and X(¢1 Uyhs) € C.

U“-rule: If YU Y9 € C, then,

— g€ Cor
— 41 € C and X~ (1 U 1)) € C.

R-rule: if ¢y Rs, € C, then,

— g € C' and
—end € Cor ¢; € C or X(¢1Ryps) € C.

R -rule: if y1 R, € C, then,

— 19 € C' and
— start € Cor 91 € C or X (1 R7) € C.

U_-rule: If there is some C’ € Cy with ¢, U1, € C’, then,

— e C’ or
— 11 € C" and X_ (1 Uebs) € C'.

UZ-rule: If there is some C’ € C4 with 1 UZe, € C’, then,

— 1y € C' or
— 1 € C" and XZ (1 UZehe) € C.

175

Chapter 12. New Results on Model Checking

Additionally, we have R_- and RZ-rules which are defined in analogy to the rules for R and R,
respectively, by using the atomic class formulas start— and end-.

Let 7 = cog == pc1. . cno1 =225 4 ¢, be a run of a DCA A and let T = {i; < ... < s}
be the set of all indices i such that act;, # e. Given k, k" € {1,...,¢} with k£ < k’ and a
process p, we call k' the p-successor of k in 7 if (i) both, act;, and act;,, contain p and (ii) there
is no k" with k < k” < k' such that act;,, also contains p. The notion of p-predecessors is
defined analogously. Observe that p-successors and p-predecessors correspond to successors and
predecessors in the p-class of the trace of 7. Let h be a function which maps every k € {1,...,¢}
to some consistent tuple. The function h is called a validity mapping for 7 if for each k, the action
in h(k) is act,,, i.e., h(k) = [C,act,,,g| for some C' and g. Given that h is a validity mapping
for 7 with h(k) = [Ck, act;,, g for every k € {1,...,£}, we say that h is correct with respect to
successors if for every k, the following conditions are fulfilled:

e If C} is not final with respect to global formulas, then, &k + 1 < ¢ and Cg41 is a successor of
C}, with respect to global formulas.

e If C is not initial with respect to global formulas, then, kK —1 > 1 and Cy_; is a predecessor
of C with respect to global formulas.

e For every process p occurring in act;,:
— If gi(p) is not final with respect to class formulas, then, k has a p-successor k&’ such that
gi (p) is a successor of gi(p) with respect to class formulas.
— If gr(p) is not initial with respect to class formulas, then, k& has a p-predecessor &’ such

that gi (p) is a predecessor of gi(p) with respect to class formulas.

Observe that from these conditions it follows that C; must be initial with respect to global formulas,
Cy must be final with respect to global formulas and for every k € {1,...,¢} and process p in act,, ,
it holds that (i) if k£ does not have a p-predecessor, then g (p) is initial with respect to class formulas
and (ii) if & does not have a p-successor, then g (p) is final with respect to class formulas. Assume
that h is a validity mapping for 7 which is correct with respect to successors. The pair (7, h) is
called a op-run of A if

e [is non-empty,
e p€(q, and
e forall k € {1,...,/}, it holds that

— if start € Cy, then, k =1,
— if end € C, then, k =/,

— if there is some process p occurring in act;, such that start— € gi(p), then, &k has no
p-successor, and

— if there is some process p occurring in act;, such that end— € gr(p), then, k has no
p-predecessor.

We say that the pair (7, h) is an accepting @-run, if it is a ¢-run and ¢, is an accepting configuration

of A.

Lemma 18. A DCA A has a trace satisfying an RB-DLTL-formula ¢ in negation normal form if
and only if there is an accepting p-run of A.

176

12.1. Model Checking of Dynamic Communicating Automata

Proof. Let A= (A, R, S, sg,0,F) be a DCA and ¢ an RB-DLTL-formula in negation normal form.
We first prove the “only if”-direction. Let w be the trace of an accepting run 7 = ¢g =<5 4 ¢;

1 2 4 e, of A satisfying ¢. This means that (i) the set I = {i; < ... < ip} of all
indices iy with act;, # € is non-empty (otherwise, 7 would induce an empty word which cannot
be satisfied by any formula), (ii) w = wy ... wy with wy, = dwrep(act;,) for every € {1,...,¢} and
(i) w E . We will construct a validity mapping h and show that (7, k) constitutes an accepting
e-run. For every k with 1 < k < ¢, we set h(k) = [Ck,act;,, gr] where C, consist of all global
formulas ¢ € Closure(y) with (w, k) = ¢ and for each process p in act;, , gr(p) consists of all class
formulas ¥ with (w, k,p) = ¢. First, we will show that for every k, the tuple h(k) is consistent.
We will do this by explaining that all consistency rules defined above hold for h(k). Observe that
compliance with the rules for global formulas, those for propositions and the -, A-, V-rules follow
directly from construction. Among the remaining rules, we pick out some interesting ones and
proof that they must hold. The proofs for the omitted cases can be derived straightforwardly. Let
kEe{l,...,(}.

e C-rule: Assume that for some attribute a € Attrfct, the formula Cea® is contained in C;, . By
the construction of h(k), we conclude (w, k) |= Ceatp. By the semantics of the class operator,
this means that a(act;,) = p is defined and (w, k,p) = 1. Again by construction of h(k), we

get ¥ € gr(p).
e @-rules: Let p be a process occurring in act;, and a € A‘c‘cr;“‘Ct an attribute.

— If ~@a € gi(p), then, by construction of hy, it must hold (w, k, p) E~@a. Thus, by the
semantics of RB-DLTL, a(act;,) must be defined and it must be equal to p.

— If = ~@a € gi(p), then, by construction, it follows (w, k,p) E = ~@a. According to the
semantics of RB-DLTL, either a(act;,) is not defined or it is not equal to p.

e R-rule: Let ¥1Ripy € Cy. By construction of h(k), we have (w,k) E ¥1Ris. By the
semantics of the R-operator, this means that (i) (w,?) = 9 for all positions ¢ with k <i < £,
or (ii) there is a position ¢ > k such that (w,i) = ¥ and (w,j) E 2 for all positions j
with k& < j < i. This is equivalent to requiring that (i) (w,k) = ¥2 and (ii) (w,k) E end

r (w, k) E Y1 or (w,k) E X(¢¥1Rps). Again by construction of h(k), we conclude that
(i) 2 € Ck and (ii) end € Cy; or ¢; € Cy or X (1 Rps) € Cy.

e UZ-rule: Assume that there is some process p in act;, with 11 UZes € gr(p). By construc-
tion, it must hold (w, k,p) | ¥1UZwy. Thus, by the semantics of UZ, there is some i < k
such that (w,4,p) | ¥2 and (w, j,p) = ¢ for all positions j in the p-class of w with i < j < k.
The latter is equivalent to the requirement that (i) (w, k,p) = ¥2 or (ii) (w,k,p) E ¢1 and
(w, k,p) E XZ (1 UZeh). Consequently, by construction of gx(p), it must hold (i) ¥ € gi(p)
or (i) 1 € gu(p) and X= (41 UZtiz) € gi(p).

It easily follows from construction that ¢ must be contained in C;. Moreover, the atomic formula
start (or, respectively, end) can be contained at most in C; (or, respectively, Cy). Likewise,
start_ (or, respectively, end_) can occur in some gi(p) for some k and process p only if & has
no p-predecessor (or, respectively, p-successor). Furthermore, as 7 is an accepting run, ¢, must
be an accepting configuration. Thus, for the proof that (7, k) is an accepting p-run, it remains to
show that h is correct with respect to successors. Also this follows more or less straightforwardly
from the construction of h. Here, we content ourselves by showing that for every k& € {1,...,¢}
and process p occurring in act;, such that gi(p) is not initial with respect to class formulas, it
holds that k has a p-predecessor k' such that gxs(p) is a predecessor of gr(p) with respect to class
formulas. To this end, suppose that X2 € gx(p) for some k and process p. We have to show that k

177

Chapter 12. New Results on Model Checking

has a p-predecessor k' such that ¢ € g (p). By construction, it must hold (w, k, p) = XZv. By the
semantics of X2, there must exist a predecessor &’ of k in the p-class of w with (w, k', p) = ¢. By
the definition of the p-predecessor and the construction of h, it follows that &’ is the p-predecessor
of k and 1) € gis(p). This concludes the proof of the “only if”-part of the lemma.

With regard to the proof of the “if”-direction, assume that there is an accepting run 7 = ¢g
2 er e a1 2 4 ¢, of A and a validity mapping h on 7 such that (7, k) is an accepting
-run of A. We will show that the trace of 7 must satisfy . Let T = {i; < ... < iy} be the set of
all indices i such that act;, # e. Just like in the proof of the “only if”-part, we denote for every
k € {1,...,¢}, the tuple h(k) by [Ck,act;,, gr]. Observe that by the definition of ¢-runs, I must
not be empty. Moreover, the trace of A is defined by w = dwrep(act;,)...dwrep(act;,). We will
show that for every formula ¢ € Closure(y) and every k € {1,...,£}, it holds:

e If ¢ is a global formula and contained in Cy, then, (w, k) | 1.

e If ¢ is a class formula, but not a global formula, and contained in gi(p) for some process p
occurring in act;, , then, (w, k,p) = 1.

As ¢ is a global formula and, by the assumption that (7,h) is a @-run, contained in Cy, it will
follow that (w,1) = ¢ and, thus, w satisfies .

The proof is by induction on the structure of RB-DLTL-formulas 1. We restrict ourselves to the
consideration of some interesting cases. The skipped cases can be handled analogously. Observe
that in the cases where 1 is a proposition, a negated proposition or one of the atomic formulas
start, start—_, end and end—, our claim follows directly from the definition of consistent tuples
and accepting @-runs. We start with some cases where 1 is an atomic formula:

e) = |, for some attribute a: Note that le, is a global formula and assume that e, € Cy
for some k € {1,...,k} (otherwise, there is nothing to show). Due to the L-rule, a(act;,)
cannot be defined. Thus, (w, k) E Lea.

e i) =~@a for some attribute a: The formula ~@a is a class but not a global formula. Suppose
that ~@a € g (p) for some k € {1,...,¢} and some process p in act;, . According to the @-rules,
a(act;,) = p. In compliance with the semantics of RB-DLTL, we can derive (w, k, p) E=~0a.

The case for ¥» = = ~@a is handled analogously. We now turn to the cases where v is neither an
atomic, nor a negated atomic formula:

e) = Coax for some attribute a: The formula is a global formula. Assume that Ceax € Ch
for some k € {1,...,¢}. Tt follows from the C-rule that a(act;) = p for some process p
and x € gi(p). If x is a global formula, then, by definition of consistent tuples, x € Cj.
Then, by induction, we deduce that (w, k) = x, thus, (w, k) E Ceax. If x is a class formula
and not a global formula, it follows directly by induction that (w,k,p) E x and, therefore,

(w, k) E CoaX-

e ¢y = Xyx: Note that 1 is a global formula and, due to the formation rules for RB-DLTL-
formulas, x is also a global formula. Let us assume that Xy € Cy, for some k € {1,...,¢}. As
h is correct with respect to successors, k+ 1 < ¢ and ¢ € Ciy1. By induction, (w,k+1) = x
and, consequently, (w, k) E Xx.

e b = x1Uxa: By the definition of RB-DLTL-formulas, the formulas 1, x1 and x2 must be
global formulas. Provided that ¢ is contained in Cj, for some k € {1,...,¢}, it follows from
the U-rule that (i) x2 € Cf or (i) x1 € Ck and X(x1Uxz2) € Cj. By taking into account
that h is correct with respect to successors and by applying the U-rule repeatedly, we deduce

178

12.1. Model Checking of Dynamic Communicating Automata

that there must be some j with £ < j < £ such that (i) x2 € C; and (ii) x1 € Cj for all
j" with k < 7/ < j. By induction, we infer that there is some j with k¥ < j < £ such that
(1) (w,7) E x2 and (i) (w,j") | x1 for all j/ with k < j° < j. By the semantics of the
U-operator, it directly follows (w, k) = x1Uxa.

e ¢ = x1UZx2: Note that in this case, ¥ is a class, but not a global formula. Let us assume
that y; and x2 are also class formulas. The other cases can be solved analogously. Assume
further that 1 is contained in g(p) for some k € {1,...,¢} and some process p in act;, . By
the UZ-rule, we infer (i) x2 € gr(p) or (i) x1 € gx(p) and XZ(x1UZx2) € gi(p). Taking
into account that h is correct with respect to successors, we deduce that there is a subset
{j1 < ... < jm =k} C{1,...,£} such that (i) for every r with 1 < r < m, j,._1 is the
p-predecessor of j,, (ii) x2 € g5, (p) and (iii) x1 € g;,(p) for every r with 1 < r < m. By
induction, the construction of w and the assumption that x; and xs are class formulas, we
infer that there is some position j < k in the p-class of w such that (i) (w,j,p) E x2 and
(ii) (w,j’,p) E xa for every position j’ in the p-class of w with j < j/ < k. By the semantics
of the UZ-operator, we conclude (w, k,p) E x1UZx2.

This concludes the “if”-part of the proof. O

The latter lemma encourages to solve the question whether a given DCA A has a trace satisfying
a given formula ¢ by trying to construct an accepting p-run for A. However, finding an accepting
@-run subsumes finding an accepting run which is in general not decidable for DCA (Theorem
21 in Section 11.2.1). By Theorem 22, the non-emptiness problem for selective 1-register DCA
is decidable. Moreover, from Observations 8 and 9, we know that every run of such a DCA can
be simulated by a simplified run where every configuration consists of isolated single processes
and couples of processes. Due to these facts, loosely speaking, for a procedure constructing an
accepting p-run for selective 1-register DCA, it suffices to take care about the number of these singles
and couples in configurations. This idea paves the way for solving the model checking problem
for selective 1-register DCA and RB-DLTL through a reduction to reachability for Multicounter
Automata (MCA) introduced in Section 3.2.2.

Theorem 28. The problem MODCHECK (selective 1-DCA,RB-DLTL) is decidable.

Proof. We reduce EMODCHECK (selective 1-DCA ,RB-DLTL) to the reachability problem for MCA
which is decidable [160, 134]. As RB-DLTL is closed under negation, the decidability of MoD-
CHECK (selective 1-DCA,RB-DLTL) follows.

Recall that MCA are counter machines which contain only increment and decrement transitions,
but no zero-tests. Given an MCA M and a state target of M, the reachability problem for M
asks whether from the initial configuration, i.e., the unique configuration where the state of M is
initial and all counters have value 0, the configuration where the state is target and all counter
values are 0 is reachable.

Let A = (A, {r}, S, 50,6, F) be a selective 1-DCA with the single register r and let ¢ be an
RB-DLTL-formula. We will describe the construction of an MCA M 4 ,, which reaches a designated
state target if and only if A has a trace satisfying 1. We first convert ¢ into an equivalent formula
¢ in negation normal form. By Lemma 18, A has a trace satisfying ¢ if and only if there is an
accepting @-run of A. Recall that an accepting ¢-run consists of an accepting run of A and some
suitable validity mapping associating the actions in the run with consistent tuples. We also recall
that by Observation 9, A has an accepting run if and only if it has an accepting simplified run
T =cp —>Sjlmcl e Cne1 —>Sjl"‘cn where ¢ is initial and for every ¢ with 0 < i < n, ¢; is a simplified
successor of ¢;_1. The latter means that there is some configuration ¢, with ¢;_1 _octiy A and ¢
results from ¢; by deleting the register input of every process p such that r(p)(r) = p’ for some

179

Chapter 12. New Results on Model Checking

process p’, but r(p’)(r) # p. We further know from Observation 8 that every configuration in a
simplified run of a selective 1-register DCA must consist of single processes called singles and pairs
of processes called couples. A single p in a configuration ¢ = (P, s,r) does not have any connection
to other processes, i.e., r(p)(r) = L and there is no process p’ € P with r(p')(r) = p. The two
processes p; and ps in a couple have only connection to each other, i.e., r(p1)(r) = pa2, r(p2)(r) = p1
and there is no other process p’, besides p; and po, with r(p’)(r) = p1 or r(p’)(r) = p2. These
observations justify to construct M 4, in such a way that it simulates an accepting ¢-run (7, h)
of A where 7 is simplified. In the sequel, we will first give a rough idea on how A-configurations
within a ¢-run are represented by M 4 -configurations. Then, we will informally describe the
overall behaviour of M 4 . Finally, we will explain in more detail how A-transitions are simulated
1)57 JA/1“4,1b.

For each pair (s,C) € S x 9Closure(¢) the counter machine is equipped with a counter cnt(s,0)-
Additionally, it has for each multiset {| (s1,C1), (s2,C2) [} consisting of two pairs (s1,C1), (s2,C2) €

S x 201osure(¥) 5 counter which we denote by ent{(s,,C1), (s2,Ca) - L€t T = co =40 C1 . Cn1 = Cn
act;

be a simplified run of A where for every ¢ with 0 < ¢ < n, it holds that ¢;—1 —— 4 ¢} for some action
act; and some configuration ¢} such that ¢; is a simplification of ¢;. Furthermore, let I = {i; < ... <
i¢} be the set of indices i, with act;, # € and h be a validity mapping with h(k) = [C, act;, , gk for
every k € {1,...,¢} such that (7,h) is a p-run. We describe how configurations of such a ¢-run are
represented by M 4 y-configurations. For every ¢ with i; < ¢ <n, we call a tuple [C, act;, , gi| the
closest predecessor of i in Iif iy, is the greatest index in I such that iy, < i. The tuple [Cy, act;, , gi]
is called the closest p-predecessor of i in I if iy is the greatest number in I such that i <4 and p
occurs in act;,. Observe that for every ¢ with ¢ < ¢, the action act; is not visible in the trace of 7
and configuration c¢; consists of a single process. Such a configuration is represented by some M 4 -
configuration ¢! where all counters have value 0 and the state of the single process is encoded in
the state of cf\/l. We now consider a configuration ¢; with ¢ > 4;. Notice that every process in
¢; must occur in some act;, with i, < %, because the initial process must have created at least
one process and all processes, besides the initial one, must have been created at some time. Let
[C,act, g] be the closest predecessor of ¢ in I and let [C), act,, gp] the closest p-predecessor of ¢ in
I for every process p in ¢;. The configuration c; is represented by a M 4 4-configuration CZM with
the following properties:

e The set C is encoded in the state of ¢. We call this set the global set encoded in ¢

A

e For every A-state s € S and every set C' C Closure(yp), the value of counter cnt(, 4 ()
corresponds to the number of singles p in ¢; which are in state s and for which g,(p) = C
The set C' is called the local set of process p in C{Vl.

e Likewise, for every two A-states s1, s € S and sets C,Cy C Closure(yp), the value of counter
enty(s,,cy),(s2,Co)p cOrresponds to the number of couples {| p1,p2 [} in ¢; such that p; is in
state s1, po is in state pa, gp, (p1) = C1 and gp, (p2) = Cs. Like above, we refer to C7 and Cs
as the local sets of p; and po, respectively, in cZM.

We now describe in an informal manner how M 4, simulates an accepting ¢-run of 4. At the
beginning of the simulation, all counters are 0. As long as the initial process of the run does not
create any new process, the machine M 4 4 just takes care about the state of the initial process.
When the initial process performs its first create action, the machine M 4, chooses a global set C'
and two local sets C; and Cs such that (i) C is initial with respect to global formulas and contains
¢, (ii) C1 and Cy are initial with respect to class formulas, and (iii) the sets C, Cy and Cs represent
a consistent tuple. The machine enters a configuration where the global set is C' and the counter
Cnty(s;,C1),(s2,Ca)]y» Where s1 and sg are the new states of the two current processes, is incremented
by 1. In each simulation of further transitions leading from an A-configuration to the next one, the

180

12.1. Model Checking of Dynamic Communicating Automata

machine possibly changes the encoded global set and updates some counters such that the tuple
represented by the current global and local sets is consistent with the previous one. Later, we will
explain in detail that for each simulated A-transition, it suffices to update at most three counters.
The machine further checks that the atomic formulas start and end occur at most in the first and
last global sets, respectively. Likewise, it is checked that the formulas start— and end— occur at
most in first and last local sets of processes, respectively. In a situation where the current global
set is final with respect to global formulas, M 4 4 decides non-deterministically that it has reached
the final configuration of the simulated @-run and enters the decrement phase. In this phase, it
decrements arbitrarily often all counters cnt(, ¢y and cntys, cy),(ss,00)p Where s, s1 and sy are
accepting states from S and C, C and Cs are final with respect to class formulas. Then, it moves
to state target. It is easy to see that M 4 reaches a configuration where the state is target
and all counter values are 0 if and only if it reaches, just before entering the decrement phase, a
configuration where (i) the global set is final, (ii) all counters cnt(,) where s is not accepting or
C is not final with respect to class formulas have value 0, and (iii) all counters cntys, cy),(s5,09)}
where one of the states s; and so is not accepting or one of the sets C; and Cs is not final with
respect to class formulas have value 0. Thus, target is reachable in M 4 if and only there is an
accepting p-run for A.

Now, we explain in more detail how A-transitions within a simplified ¢-run are simulated by
M 4,p. In order to facilitate the explanations, we make use of consistent tuples [C,act, g] where
act € Actions(A4, N) for some set N of process names and, accordingly, g maps elements from N
to subsets of Closure(yp). We skip the description of the simulation of A-transitions which are exe-
cuted at configurations containing only the initial process and focus on transitions at configurations
containing at least two processes. Now, let ¢; be an A-configuration and ¢/ be the representing
M 4 y-configuration. Since we assume that ¢; contains at least two processes, the p-run leading to
c1 has to contain at least one create action Therefore, ¢{! must encode some global set which we
denote in the sequel by C. We distinguish between the different A-transitions which can be fired
at c¢;. It is worth mentioning that the simulation of a transition leading from ¢; to some other
A-configuration c» can require several consecutive M 4 y-transitions. In the following, we neglect
the descriptions of the intermediate M 4 y-configurations and give directly the configuration et
encoding cs.

Local Since local actions are not visible in traces, they do not require an update of global or
local sets. Assume that there is a transition (s1, A, s2) € §. This means that the machine
M4,y can enter a configuration which has the same global set as c¢i! and results from ¢!
either (i) by decrementing a counter cnt(,, ¢,) by 1 and incrementing cnt,, ¢,y by 1, or
(ii) by decrementing a counter cnty,, c,),(s’,co)p Py 1 and incrementing cnty(s, c,) (5,2}
by 1. Observe that case (i) corresponds to the execution of a local action by some single and

the other case to the execution of a local action by some process within a couple.

Register resetting Reset actions also belong to those actions which are not visible in traces.
Recall that the execution of a reset action by a single only changes the state of the single.
In contrast, the execution of such an action by a process within a couple results in two
new singles. We assume that there is a transition (si,res(r),ss) € §. The machine M 44
can enter a configuration which has the same global set as ¢;! and results from ¢! either
(i) by decrementing a counter cnt(,, ¢,y by 1 and incrementing cnt(,, ¢,y by 1, or (ii) by
decrementing a counter cntys, cy),(s',Co)p Py 1 and incrementing both counters cnt(s,, c)
and cnt(y c,), respectively, by 1.

Create Since create actions are visible in traces, they require an update of the global and local
sets. We again distinguish between the cases whether a spawn action is performed by a
single or by a process within a couple. Let (s1,7 «= crt(s,r),s2) be a transition in § and

181

Chapter 12. New Results on Model Checking

[C’, crt(ny, n2), g] a consistent tuple such that C’ is a successor of (the current global set) C
with respect to global formulas and g(ns) is initial with respect to class formulas. Moreover,
let C be a predecessor of g(n1) with respect to class formulas. The machine M 4, can enter
a configuration which results from ¢ by setting the global set to C’ and (i) decrementing
cnt, & by 1 and incrementing cnty(s,,g(n1)),(s,9(n2))p PY 1, OF (ii) decrementing a counter
Cty o). (s.)] by 1 and incrementing both counters cnt o and cnt (s, ,g(n1)),(s,9(n2))[}
respectively, by 1.

Selective symbol sending Send actions are also visible in traces and, therefore, require an up-
date of global and local sets. Remember also that they can only be performed by processes
within couples. Finally, recall that in configurations of selective 1-register DCA, the execu-
tion of a send action only changes the states of sender and receiver. Let (s1,snd(r,m), sz2),
(s3,rcv(r,m),s4) € 6 and [C’, snd(ny,na, m), g] some consistent tuple such that C” is a suc-
cessor of C' with respect to global formulas. Furthermore, let C; be a predecessor of g(n1)
and Cy a predecessor of g(ng) with respect to class formulas. The machine M 4 4 can enter
a configuration which results from ¢! by setting the global set to C’, decrementing counter
centy(s,,Cy),(ss,C2)[} by 1 and incrementing counter CNt{(sy,9(n1)),(54,9(n2))} by 1.

The case for selective ID sending is handled analogously to the last case. O

12.1.2 Model Checking with Freeze LTL

Remember from the results in Part A that the satisfiability problem for LTLY (X, U) (on 1-complete
data words) is decidable. Although the non-emptiness problem for selective 1-register DCA is also
decidable, the next result surprisingly states that the combination of these formalisms delivers an
undecidable model checking problem.

Theorem 29. The problem MODCHECK (selective 1-DCA,LTLY (X, U)) is not decidable.

Proof. We will give a reduction from the reachability problem for Minsky Counter Machines with
two counters (2-MCMs, for definition, see Section 3.2.2) to the existential model checking of selective
1-DCA with LTLY (X,U). As reachability for 2-MCMs is not decidable [162] and LTLY (X,U) is
closed under negation, the result follows.

We recall that, given a Minsky Counter Machine M and a state target of M, the reachability
problem for M and target asks whether M has a run reaching configuration (target,0,0), that is,
the configuration where the state is target and both counter values are 0. Now, let M = (2, S, s¢, 9)
be a 2-MCM and target a state from S. We will construct a selective 1-register DCA A and an
LTLY (X, U)-formula ¢ such that M reaches (target,0,0) if and only if A has a trace satisfying
®.

Without loss of generality, we assume that the initial state sy of M is not equal to target
(otherwise, the construction of some DCA and a formula is trivial). In the sequel, we will first
recall the consistency properties from Section 3.2.2 ensuring that a sequence of transitions of M
induces a correct run reaching (target,0,0). Then, we will explain how sequences of transitions
can be encoded as traces. After that, we will describe the construction of a selective 1-DCA
A whose traces are such encodings. We will see that the traces of A already satisfy some of
the consistency properties. Finally, we will construct an LTLY (X, U)-formula ¢ expressing the
remaining properties. Hence, by construction, it will follow that A has a trace satisfying ¢ if and
only if M reaches (target,0,0).

From Section 3.2.2 we know that a sequence 7 = (s1,acty,s}),..., (Sn,acty,s)) of transitions
from ¢ represents an M-run reaching (target, 0, 0) if and only if the following consistency properties
are satisfied.

182

12.1. Model Checking of Dynamic Communicating Automata

o (Consistency with respect to states: We have that s; = sg, s, = target and for all ¢ with
1<i<n,s;=si1.

e Consistency with respect to counters: There is a bijection m from the set DECS, = {i | 1 <1i <
n and act; is a decrement action} to the set INCS, = {i | 1 < i < n and act; is an increment
action} such that for each counter k and index ¢ € DECS, with act; = decy, it holds m(i) < i
and act,(;) = incg.

e (Consistency with respect to zero-tests: For every counter k and index i € DECS, with act; =
decy, there is no ¢ with m(i) < £ < ¢ and acty = ifzeroy.

We encode sequences of M-transitions by traces where the transitions are represented by mes-
sage symbols. More precisely, the traces are defined over the proposition set Prop;:‘Ct and the
attribute set AttrZ, where A contains for every M-transition (s,act,s’), the message symbol
(s,act, s’) of arity 0. Given a trace w over Prop’, and Attri,, we call w' a restriction of w
to send positions if it results from w by eliminating all positions representing create actions. Let
T = (s1,acty, s}) ... (sn,acty, s,) be a sequence of M-transitions, w a tace over PropZ., and Attril,
and w' its restriction to send positions. We call w an encoding of T if w’ is of length n and every
position ¢ of w’ carries the propositions snd and (s;, act;, s;). Figure 12.1 presents for a sequence
T, a trace encoding and its restriction to send positions.

T = (80,1incy, 81)(81, inca, s2)(s2, deca, s3)(s3, ifzeros, s4)(s4,decy, target)

crt crt crt snd crt snd crt snd snd snd
(so,incy, s1) (s1,inca, $2) (s2,deca, s3) (s3,ifzerog, s4) (s4,decq, target)
creator 1 1 2 3
created 2 3 4 5 6
sender 2 3 3 1 2
receiver 4 5 5 6
snd snd snd snd snd
(s0,incy, s1) (s1,inca, 52) (s2,decs, s3) (s3,ifzeros, s4) (s4,decy, target)
creator
created
sender 2 3 3 1 2
receiver 4 5 5 6 4

Figure 12.1: An encoding of 7 and its restriction

We now describe the construction of the selective DCA A which has only one register r and

whose traces are encodings of sequences of M-transitions. Let {t;",... t:21}, {#95er, ... jtdecr
ifzero; ifzero incg inc decg dec ifzeroz ifzero :
{t1 s bpremork {0 e} {115t) {f) s 1e29T92) be, respectively, the

sets of all incq-, decq-, ifzero;-, incs-, deco- and ifzeros-transitions in 6. The automaton A
is depicted in Figure 12.2. In the following, whenever we say that a process sends (or receives) a
transitions t, we mean that it sends (or receives) the message symbol standing for t. The automaton
A consists basically of four parts: two parts dealing with the sending and receiving of inc- and
dec-transitions and two parts dealing with the sending and receiving of ifzero-transitions of M.
We give a high-level description of the behaviour of the processes induced by A. First, the initial
process spawns arbitrarily many new processes starting in state ;1 whose task is to deal with inc-
and dec-transitions. Then, it spawns a process starting in state z and sends him arbitrarily many
ifzero-transitions. The process starting in z only serves for receiving ifzero-transitions. Each
process starting in z; first spawns a new process starting in y and builds a couple with this new

183

Chapter 12.

New Results on Model Checking

r «—crt(zy,r)

r —crt(z,r)

sending zero-tests

— ()

@

receiving increments and decrements

rev(r, %)

rev(r, 13)

rev(r, t9°°?)

rev(r, tf;”)

rev(r, ")

rcv(r, ti2e1)

’» Ynq
rev(r, ti“”)

rev(r, tiee?)

snd(r, i)

snd(r, thzemer)
snd(r, tifzer”)

snd(r, t,7°7°2)

receiving zero-tests

rev(r, tifzeml)

rcv(r, t,ifazeml)
@ rcv(r, tifzemz)

rev(r, tfzero?)

sending increments and decrements

Figure 12.2: The selective 1-DCA A whose traces encode transition sequences of M

process. Subsequently, it sends an incg-transition for some counter k& and sends then a decy-
transition for the same counter. Thus, processes starting in y only serve for receiving one inc- and
one subsequent dec-transition for the same counter. Observe that in each trace of A, it holds that
for every incg-position for some counter k, there is exactly one subsequent decg-position with the
same process ID and vice-versa. From this, it directly follows that for every trace of A there is a
bijection m guaranteeing consistency with respect to counters.

Now, we construct the formula ¢ using the single freeze variable x. As the traces of A are already
consistent with respect to counters, it remains to express the other two consistency properties. The
property requiring consistency with respect to states does not refer to data values, wherefore its
formulation is an easy task. We only give the formula for the third property requiring consistency
with respect to zero-tests. Notice that it follows from the construction of A that every inc-position
carries the same process ID as its corresponding dec-position. Moreover, these IDs do not occur
at any other inc- or dec-position. Thus, it suffices to express that for every k € {1,2} and every
incg-position, there is no ifzerog-position until the corresponding decg-position with the same

184

12.2. Model Checking of Process Register Automata

1D:

/\ G{ \/ (s,incg,s’) %l%sender.((—' \/ (s,ifzerok,s'))U(Nesender /\ \/ (s,deck,s')))}

ke{1,2} s,s’eS s,8’€S s,s’eS

O

12.2 Model Checking of Process Register Automata

In this section, we investigate the model checking of PRA against formulas from the logics LTL¢
and HTL"™.

In case of LTLY, we restrict to the future fragment, i.e., LTLY(X,U). We show that model
checking of PRA with LTLY(X, U) with unboundedly many freeze registers is decidable in expo-
nential space. Moreover, we prove that for every k& > 1, model checking with LTLY% (X, U), i.e.,
LTLY(X, U) with at most k freeze registers, is complete for PSPACE. However, we cannot answer
the question whether the upper bound for full LTL¥(X, U) is tight, and we also have not figured
out yet how our proof techniques may be extended to past operators.

In case of HTL™, we can show that model checking of PRA with the 1-variable fragment of HTL™
is EXPSPACE-complete. If one more variable is added to the logic, the problem remains decidable,
but has non-elementary complexity. Observe that all mentioned logics, besides LTLY (X, U), have
an undecidable satisfiability problem, even on data words with a single data value per position.

12.2.1 Model Checking with Freeze LTL

We will first show that the model checking problem for PRA and LTLY(X, U) with unboundedly
many freeze registers is in EXPSPACE. Similar to our decidability procedure for the non-emptiness
problem of PRA in Section 11.3.1, our proof will be carried out using symbolic runs. It will
easily follow from our construction that for every k£ > 1, the complexity of model checking with
LTLY, (X, U) drops down to PSPACE. Moreover, by a reduction from the satisfiability of LTL, we
will follow a PSPACE lower bound for all mentioned logics. From these results, we will derive that
for every k > 1, model checking of PRA with LTLY% (X, U) is PSPACE-complete. However, the
precise complexities in the cases of LTLY(X, U) and LTLY remain open questions. At appropriate
point, we will mention the complications we have to deal with if we extend our construction in the
decision procedure to past operators.

Solving model checking with LTLJ(X, U) on symbolic runs

We will prove that the existential model checking problem EMODCHECK(PRA, LTLY (X,0)) is in
EXPSPACE. Since EXPSPACE is closed under complementation and LTLY(X, U) is closed under
negation, it will follow that MopCHECK(PRA, LTL(X,U)) is also in EXPSPACE. Thanks to
Observation 11, we will work with symbolic configurations and runs of PRA. The procedure we
are going to describe checks whether a given PRA has an accepting symbolic run such that a given
formula is satisfied by the traces of corresponding concrete runs.

To facilitate the distinction between the registers of LTLY and those of PRA, we will notate
LTLU—registers by x,x1,T2,... and call them freeze variables. Mappings from these variables will
be called freeze assignments. The registers of a PRA will be notated, as usual, by r,71,72,... and
associated mappings will be called register assignments.

Before diving into the technical details of our procedure, we roughly describe the underlying idea.
Given a PRA A and a formula ¢, our procedure checks whether there is a trace of A satisfying

185

Chapter 12. New Results on Model Checking

¢. Observe that during the evaluation of an LTLY(X, U)-formula, a |} 3,-operation at a trace

el . oy v(act . .
position resulting from a transition c viact), 4 ¢ from some configuration ¢ to some configuration

¢, stores a process v(r) assigned to some A-register r into the freeze variable z. Likewise, g,
tests whether the process stored in a equals to some process v(r’) assigned to some A-register 7.
Due to the definition of runs, we know that a process which is stored in some freeze variable x,
but not in any A-register of a current configuration, cannot occur at any following trace position.
Thus, since our logic does not allow past operators, equality tests with z will evaluate to false in
the rest of the evaluation process (unless x is overwritten by the input of some current A-register).
Hence, as soon as the input of a freeze variable is deleted from a current register assignment, it
has not to be “remembered” anymore. Therefore, a freeze assignment at a trace position can be
adequately simulated by a (symbolic) mapping from freeze variables to A-registers which paves the
way for working with symbolic runs. Due to these observations, instead of searching for a concrete

trace satisfying ¢, our procedure tries to construct an (extended) symbolic run. Every transition
act s

t = sc—— sc' in this run is equipped with a set C' of pairs (1, o) where ¢ is a sub-formula of

¢ and o0 € [X — R] is a freeze assignment mapping freeze variables to A-registers. The intuition

is that for every concrete trace position resulting from a concrete instantiation e Et), ac of t

and for every pair (¢,0) € C, the formula ¢ is true on that position under a freeze assignment
A € [X — P] where A results from o by replacing every A-register r by v(r). A crucial point in the
construction is the preservation of consistency between sets C; and Cy assigned to two consecutive
transitions sc; Ltli" sch Ltz)j sca. Here, we have to make sure that for every pair (X, 01) € C,
there is some (¢, 09) € Co where o9 is an update of o1 based on the following observations: If acts
is a send action, then, due to the definition of A-runs, the A-registers do not change their inputs in
concrete instantiations when going from scj to sca. Therefore, there is no need to update oy and we
set o9 = 01. If, conversely, act is a create action, it means that the input of r = created(actsg) is
updated by some fresh process in concrete instantiations of scy. Observe that the “old” process in r
cannot occur in the rest of the current run anymore. In this case, we obtain o2 from ¢; by mapping
every freeze variable x with o1 () = r to a pseudo-register 7, . In doing so, we symbolically express
that every x with og9(x) = r, points to a process which cannot belong to the current or following
configurations. The main goal of our procedure is to find an accepting extended symbolic A-run
where the first transition is equipped with a set C' containing (¢, o[X — L]).

We now explain the technical details. Similar to the negation normal form for RB-DLTL, given in
Section 12.1.1, we introduce a negation normal form for LTLY (X, U)-formulas. Like in the case for
RB-DLTL, an LTLY(X, U)-formula in negation normal form can contain, in addition to the usual
atomic formulas and operators, the release operator R, the atomic formula end and the atomic
formula L, for all attributes a. We briefly recall their semantics. The formula end = = Xtrue only
holds at the last positions of data words, L, = = |g,. 1g. expresses that the value of attribute a
at the current position is not defined and the operator R is the dual of U, i.e., for all formulas ¢,
and sy, we have ¢ Upy = =(=p1R—¢y) and p1R@s = —(—p1U=gs). An LTLY (X, U)-formula ¢
is in negation normal form if all negation symbols are immediately in front of propositions or the
-operator, i.e., if it results from the following formation rules:

:=p|pfeal " Nealend| Lea| @A@ |0V g.e|Xe|eUp| Ry

where z is a freeze variable, p a proposition and a an attribute.
Using De Morgan’s rules and the equivalences =Xy = end V X—p, = |g.,.¢¥ = LeaV 5..m¢ and
—(p1Ups) = (mp1R—¢py), every LTLY (X, U)-formula can be converted into an equivalent formula
in negation normal form with length linear with respect to the size of the original formula.

Let A = (A4, R,79, S, 50,0, F) be a PRA and ¢ an LTLY (X, U)-formula in negation normal form
which uses propositions from Propfct, attributes from Attrfct and freeze variables from some set
X. The closure set Closure(y) of ¢ is the smallest set such that

186

12.2. Model Checking of Process Register Automata

e every sub-formula of ¢ is contained in Closure(yp),
e for every sub-formula ¢; Ut of ¢, the formula X (11 U)s) is contained in Closure(y), and
e for every sub-formula 1)1 Rs of ¢, the formula X ()1 R)3) is contained in Closure(yp).

Let R’ = RU{r,}. We now define consistent tuples [C,act] for ¢ and A with C' C Closure(yp) x
[X — R’] and act € Actions(A4, R). Intuitively, a tuple [C, act] is called consistent if for a possible
trace position that is resulting from act, C' describes a possible set of pairs (1, o) such that ¢ holds
at that position under the freeze assignment o. The registers in o which belong to R represent
corresponding processes in the current configuration and the special register r, stands for “old”
processes which cannot occur in the suffix of the underlying trace. Formally, a tuple [C,act] is
consistent if it fulfills the following rules for every freeze assignment o € [X — R’], attribute a,
freeze variable x and formulas 1, ¥ and)s:

rules for propositions: — If (crt,o) € C or (—snd, o) € C, then, act is a create action.

— If (snd, o) € C or (—crt,o) € C, then, act is a send action.

— If (m,0) € C for some message symbol m, then, act is a send action with message
symbol m.

If (—m, o) € C for some message symbol m, then, act is not a send action with message
symbol m.

f-rules: — If (f12,,0) € C, then, parameter a(act) is defined for act and o(z) = a(act).
— If (= 115,,0) € C, then, parameter a(act) is not defined or o(x) # a(act).

L-rule: If (Lea,0) € C, then, parameter a is not defined for act.

J-rule: If (J3,.¢,0) € C, then, parameter a(act) is defined and (¢, o[z — a(act)]) € C.
A-rule: If (11 Atba,0) € C, then, (¢1,0) € C and (¢2,0) € C.

V-rule: If (1)1 V4)a,0) € C, then, (¢1,0) € C or (¢2,0) € C.

U-rule: If (¢)1Uthe,0) € C, then,

— (o,0) € C or
— (¢1,0) € C and (X(1Ut)z),0) € C.

R-rule: If (¢1Rya,0) € C, then,

— (¢2,0) € C and
— (end,o) € C or (¢1,0) € C or (X(1Rape),0) € C.

A consistent tuple [C’,act’] is called a successor of some consistent tuple [C,act] (notated as
[C,act] — [C’,act/]) if for every (X4, 0) € C, it holds:

e if act’ is some create action with created(act’) = r for some register r € R, then, (¢, o[X’ —
ri]) € C" where X' ={x | o(z) =1},

e if act’ is some send action, then, (¢,0) € C'.

187

Chapter 12. New Results on Model Checking

Observe that every ¢’ in C' maps all freeze variables, belonging to processes which cannot occur
in subsequent trace positions, to ;. A consistent tuple is called final if it does not contain any
formula of the form Xap.

actq acty,

Let 0" = sco ——}5C1...5¢,—1 —"}5¢, be a symbolic run of A. An extension of ¢ to

0 = sco Mﬂ 8C] . ..8Cn—1 M)j sc, by consistent tuples is called a symbolic p-run of A

if (i) (¢, o[X — 1]) € C1, (ii) [Cy,act;] =[Ciy1,actiyq] for every ¢ with 1 <4 < n, and (iii) if
there is some ¢ and some freeze assignment o such that (end, o) € C;, then, i = n. The sequence 6
is called an accepting symbolic @-run, if it is a symbolic p-run, ¢’ is accepting and C), is final.
Before establishing the link between symbolic ¢-runs and concrete traces satisfying ¢, we for-
mulate an observation on the relationship between freeze assignments which coincide with respect
to data values occurring in some suffix of a data word. Given a data word w, let us denote the set
of all data values occurring in w by Val(w). Two freeze assignments A\, \' € [X — D] are called

equivalent on a data word w = wy ... wy, from position i on (written as A g) if for all z with
Az) € Val(wl[i,...]) (recall that w[i,...] denotes the suffix of w starting at ¢), it holds X' (z) = A\(x),
and for all with A(z) ¢ Val(wli,...]), it holds N (z) ¢ Val(wli,...]).

Observation 15. Let w be a data word, ¢ some position in w and A\, X € [X +— D] two freeze

assignments such that A E N. Then, for every ¢ € LTLY(X, U) in negation normal form, it holds
(w,i,\) E v if and only if (w,, \') 1.

The correctness of the model checking procedure, we are going to describe, relies on the following
lemma.

Lemma 19. Given a PRA A and an LTLY(X,U)-formula ¢ in negation normal form, the au-
tomaton A has a trace satisfying ¢ if and only if there is an accepting symbolic p-run of A.

Proof. Let A= (A, R,19,S5,50,6,F) be a PRA and ¢ an LTLb(X, U)-formula in negation normal
form using freeze variables from some set X. We first deal with the proof of the “only if”-direction.
To this end, assume that ¢ satisfies a concrete trace w = ws ... w, of A resulting from an accepting
concrete run

7" = (0,0, Fo) ﬂ>A(Sh vi, Br) .o (Sn—1,Vn—1, En_1) M>A(Sn, Vn, En).
Recall that w; = dwrep(v;(act;)) for every i € {1,...,n}. Let

T = (80, Lo, E()) MA(Sl, v, El) e (Snfl, VUn—1, En,1> w)/\(sn, Vn, En>

be an extension of 7 where for every formula ¢ € Closure(y), freeze assignment A € [X — PJ
and ¢ € {1,...,n}, we have (¢, \) € C; if and only (w,i,\) = ¥. Based on 7, we will construct a
symbolic accepting ¢-run 6 for A. Before doing this, we define for freeze assignments A € [X — P]
and register assignments v € [R — P, functions which “extract” from A a corresponding freeze
assignment from [X — RU {r }]. That is, for every freeze assignment A € [X — P| and register
assignment v € [R — P, we define extr,(\) = {x — 7 | A(z) = v(r)} U{z — r1L | A(x) is defined
and A\(z) ¢ v(R)}. Then,

[Clract] s [C},actn] s
0 = sco ———5C1 ... 8Ch_1 — "7 5Cp

is the sequence obtained from 7 such that scg Ltl)jscl . SCn1 Lt")jlscn is symb(7) (whose
existence is guaranteed by Observation 11) and for every i € {1,...,n}, C/ = {(¢,0) | there is

(¥, \) € C; with 0 = extr,,(\)}. We now show that € is indeed an accepting symbolic p-run
for A. First of all, notice that it follows from the definition of 7 and the construction of 6 that
(p,0[X — 1]) € C1. It remains to prove that every [C!, act;] with 1 <4 < n is consistent, every

188

12.2. Model Checking of Process Register Automata

[Ci,1,actiy1] with 1 < i < n is a successor of [C],act,], 6 is accepting and end can only occur in
/
..

We start with the proof the consistency of all [C}, act;] with 1 < i < n. We consider an arbitrary
[C!,act;]. We have to show that all rules for consistent tuples, defined above, hold for [C], act,].
We focus on some interesting cases. For the other cases the argumentation is similar:

e rules for propositions:

— Let (crt,o) € Cf for some o. It follows from construction that (crt,\) € C; with
o = extr,, (). By definition of C;, (w,i,A) = crt. By the definition of traces, v;(act;)
and, thus, act; must be a create action.

— Assume (—m, o) € C! for some message symbol m and freeze assignment o. Again, by
construction, (-m,) € C; with ¢ = extr,,(\). By definition of C;, (w,i,\) = —-m.
Consequently, v;(act;) and act; cannot represent send actions with message symbol m.

e f-rules:

— Assume that (11%,,0) € C/ for some freeze variable z, attribute a and freeze assignment
o. Tt follows that there must be a pair (f15,,\) € C; with o = extr,,(\). Thus,
(w,i,\) Efte,. Consequently, val(w,i,@a) must be defined and val(w,i,@a) = A(z).
This means that, a(y;(act;)), i.e., the parameter a of v;(act;) must be defined and
Az) = a(vi(act;)). We first observe that a(act;) must also be defined. Moreover, let
r € R be the register such that a(v;(act;)) = vi(r) = A(z). By the definition of v;(act;)
and the equality o = extr,,()), it follows that a(act) = r = o(z). Thus, o(z) = a(act).

— Now, let (= 112, 0) € C!. Hence, there must be some (= %,, A) € C; with o = extr,, ()).
By the definition of Cj, it must hold (w,i,A) E — 1%,. By the semantics of the {-
operator, either val(w,i,@a) is not defined or A\(z) # val(w,i,@a). By the definition
of traces, either a(v;(act;)) is not defined or A(z) # a(v;(act;)). By the definition of o
and the construction of symbolic runs, this means that either a(act;) is not defined or

o(x) # a(act;).

o J-rule: Let (Y5,.9,0) € C} for some freeze variable z, attribute a, formula ¢ and freeze
assignment . By construction of 6, there is ({g,.¥,A) € C; with 0 = extr,,(\). By the
definition of C;, (w,i,\) El&,.%. Due to the semantics of the |J-operator, val(w,i,@a) must
be defined and (w,i, A[x — val(w,i,@a)]) = ¢. By the relationship between concrete traces
and runs, a(v;(act;)) must be defined and (w, i, \[z — a(v;(act;))]) = . Hence, by definition
of C;, (¢, ANz — a(vi(act;))]) € C;. Let r be the A-register such that v;(r) = a(v;(act;)).
Note that due to the construction of runs, r = a(act;). By the construction of # and the
relationship between A and o, the parameter a(act;) = r is defined and (¢, o[z — 7]) € CL.

e R-rule: Let (Y1R)2,0) € C! for some freeze assignment o and formulas ¢ and 5. By
construction of 6, there is (1 Ra)o, A) € C; with o = extr,,(A\). Hence, (w,i,\) E ¥1Ras. It
follows from the semantics of the R-operator that (i) (w,i,A) = ¢2, and (ii) (w, 4, \) = end or
(w,i,A) =91 or (w,i,\) E X(1Raps). By the construction of C;, we have (i) (2,) € Cy,
and (ii) (end, \) € C; or (¥1,A) € C; or (¥1Ra, A) € C;. By the construction of 6, we get
(1) (¢2,0) € CI, and (ii) (end, o) € C} or (¢1,0) € C! or (Y1R)e,0) € C..

We now show that for every 7 with 1 <4 < n, the tuple [C}, |,act;11] is a successor of [C], act,],

ie., [C] act;] = [C],,act;y1]. Thus, with regard to the definition of successive tuples, for every

(X1, 0) € Cf with 1 < i < n, we have to assure:

189

Chapter 12. New Results on Model Checking

e If act;;1 is some create action with created(act;+1) = r for some register r € R, then,
(Y, 0[X" = rL]) € Cf,; where X' = {x|o(z) =r}, and

e if act;;; is some send action, then, (1,0) € Cj,

To this end, let for some ¢ with 1 < i < n, (X,0) € C. By definition of 6, there must be some
(X1, A) € C; with extr,,(A\) = 0. By the construction of Cj, it must hold (w,i,\) = Xi. It
follows from the semantics of the X-operator that (w,i + 1,\) = v, thus (¢, A) € Cij11. We first
consider the easy case that v;11(act;+1) is a send action. Note that in this case, v; = v;41. Thus,
o = extr,, () = extr,,, (\). By construction of 0, we get (¢, o) € C},,. Now, we consider the case
where v;11(act; 1) is a create action. Let r be an A-register such that creator(v;+1(act;11)) =
vit+1(r). Due to the behaviour of PRA, register r is refreshed at step ¢ + 1 and if v;(r) is defined, it
does not occur in any v;j(R) with j > i+ 1. Thus, by the definition of extr, extr,,, , (\) = o[X' —
r1] where X' = {z € X | o(x) = r}. Together with (1), \) € Ciy1, we get (¢, o[X" = r1]) € Cf, .

Finally, we explain that § must be accepting and the atomic formula end can only occur in C/,.
First note that it follows from Observation 11 that the underlying symbolic run of 6 (devoid of
consistent tuples) is accepting. Moreover, as on the last position of trace w, there cannot hold any
formula of the form X1, such a formula can neither be contained in Cy,, nor in C},. Hence, C/, is
final. Furthermore, observe that there cannot be any trace position ¢ € {1,...,n — 1} where end
holds, because end can only hold on the last position of the trace. This means that there cannot be
any set C;, and by construction, any set C/, with ¢ € {1,...,n— 1} containing end. This completes
the proof of the “only if”-part of the lemma.

We now turn towards the proof of the “if”-direction. Assume that there is an accepting symbolic
p-run

[C1,acty] s [Ch,acty,] s

0 = sco) 8C1 ... SCp] ———— SCp

of A obtained from the underlying symbolic run

0" = scy Ltli‘ SC|...8Cn_1 Lt")jscn
It has to be shown that there is a trace of A satisfying ¢. Before that, we introduce functions
which, in contrast to extractions used above, “expand” freeze assignments which map to registers
to freeze assignments which map to processes. Let p; ¢ P be a designated process not contained
in P. For every register assignment v € [R — P] and freeze assignment o € [X — RU{r,}], we
define exp,(0) = {x — v(r) |o(z) =r € R}U{z—pi |o(z) =rr}. Let
7-/ = (505 Lo, EO) M%A(Sla V1, El) e (Snflv VUn—1, E’nfl) M)A(Sn, Vn, E’n)
be a concrete accepting run of A with symb(7') = 6’ as guaranteed by Observation 11 and let
w = w ... w, be the trace of 7/. We remind the reader that w; = dwrep(v;(act;)), for every
i€ {l,...,n}. We will show that ¢ holds on w. To this end, we construct
C! v (act Cl,,vn(acty
7 = (80,0, Eo) MA(SM vi, Br) .o (Sn—1,Vn—1, En—1) ¢>A(Sn, Vn, En)

as an extension of 7/ where for every ¢ with 1 < ¢ < n, C/ results from C; by replacing every
(¢,0) € C; by a pair (1, \) with A = exp,, (o). We will prove that for every i and every (¥, \) € C},
it holds (w, 4, \) = 1. As by construction, (¢, A[X — L]) € Cf, it will follow that ¢ holds on w.

Our argumentation is by induction on the structure of formulas 1). We do not consider all types
of formulas and leave those out which can be handled in analogy to the considered cases. Now, let
(1, A) € C] for some i with 1 < ¢ < n and some freeze assignment A € [X — P U {p, }]. We first
consider the cases where 1 is an atomic formula:

190

12.2. Model Checking of Process Register Automata

e) = crt: By construction of C/, there must be some (crt,o) € C;. As 0 is a symbolic ¢-
run, we can derive from the rules concerning propositions that act; must be a create action.

Thus, as w; = dwrep(y;(act;)), position ¢ of w must contain proposition crt. Therefore,
(w,i,A) = crt.

e ¢y = —m for some message symbol m: It follows from construction that there is some o such
that (—m, o) € C;. By the rules for propositions in symbolic ¢-runs, act; is not a send action
with message symbol m. Consequently, position ¢ of w cannot contain proposition m. It
follows (w,i,\) E —m.

o ¢ =ftg, for some freeze variable x and attribute a: By construction of 7, there must be
(16as0) € C; with A = exp, (0). As 0 must fulfill the f-rules, there must be some r such
that (i) a(act;) = r, and (ii) o(z) = r. From (i) it follows that attribute a(v;(act;)) = p
for some process p. From A\ = exp, (o) and (ii) it follows that A\(z) = p = a(vi(act;)). As
w; = dwrep(v;(act;)) and, therefore, val(w,i,@a) = A(x), we get (w, i,) ENe,.

e) = — fig, for some freeze variable x and attribute a: By construction of 7, C; contains the
pair (= 1g,,0) with A\ = exp, (0). As 7 follows the {-rules, this means that (i) a(act;)
does not exist, or (ii) o(z) # a(act;). From (i) it follows that parameter a is not defined
for v;(act;). From (ii) and the definition of A, we derive that A(z) # a(v;(act;)) and, thus,
A(z) # val(w,i,@a). By the disjunction of these two conclusions, we get (w, i, A) | = 113,.

e) = Lo, for some attribute a: Due to the construction of 7, (Lea, o) must be contained in
C; for some o. By the L-rule for ¢-runs, it follows that parameter a is not defined for act;.
Hence, it cannot be defined for v;(act;) from which it follows that the value of a is not defined
in dwrep(v;(act;)). We get (w,7,A) = Lea.

We now consider more complex formulas).

o 1 =|g,.x for some freeze variable z, attribute a and formula x: By construction, ({3,.x,0) €
C; with exp, (0) = A. Due to the |J-rule, (i) a(act;) = r for some register r € R and
(ii) (x,olx — r]) € C;. It follows from construction and (ii) that (x, ') € C} where X' =
exp, (o[z + r]). We get by induction that (w,i,\) = x. Furthermore, from (i), it follows
that the value of attribute a at position ¢ of w must be defined with val(w,i,@a) = v;(r).
Thus, by the definitions of A" and A, we get X' = A[z — val(w,1,0@a)]. Due to (w,i,\') | X,
it follows (w, i, Alx — val(w,i,@a)]) = x. By the semantics of the |-operator, we conclude

(w, 4, A) F=lgax-

e ¢ = x1Uya for formulas x; and x2: By construction of 7, it holds (x1Uxz,0) € C; with A =
exp,. (o). As 7 obeys the U-rule, it follows (i) (x2,0) € C; or (i) (x1,0), (X(x1Ux2),0) € Ci.
According to the conditions required from successive tuples, it follows that there must be a
7 > 1 such that

(Xl,a’i) eCyy..., (Xl,a’j_l) S Cj_l and (XQ,O’]‘) S Cj

where 0; = ¢ and for every k with i < k < j, o is obtained from oy_1 as follows:

— If acty is some spawn action with created(act) = r € R, then, o) = op_1[X' — 7]
where X' = {z | ox_1(x) =}, and

— if acty is some send action, then, o, = o%_1.

Please keep in mind that the register r; in some oy, represents a process which cannot occur
in the suffix w[k,...] of w starting at k. Due to the structural properties of 7, it must hold

(Xl;/\i) S Cz/’ e (Xl;/\jfl) € C;’—l and (Xg,)\j) € C;

191

Chapter 12. New Results on Model Checking

such that A = \; and exp,, (o) = A for all k with ¢ < k < j. By induction, we have

(w,z’,/\i) ': X1y~ - .,(w,j — 15/\j*1) ': X1 and (’LU,j, Aj) ': X2-

Note that for every k with ¢ < k < j, the register assignment Ay differs from A;_; at most
with respect to processes represented by r, i.e., with respect to those which never occur in
wlk, ...]. Hence,

.

wit! wit? w

)\ué)\i)‘i+1 =)\i+2...)\j_1 =)\j.

Due to Observation 15, we deduce

(waia)‘)): Xla--'a(waj - 15)‘)): X1 and (’LU,_],)\) ': X2-

Finally, by the semantics of the U-operator, it follows (w, 4, A) E x1Uxe.
This concludes the proof of the “if”-part of the lemma. O

Using Lemma 19, we can reduce the existential model checking problem for PRA and LY (X,0)
to the problem of constructing a symbolic run for the PRA extended by consistent tuples. In the
proof of the following theorem we show that such a construction can be done in exponential space.
This leads to the result that the general model checking problem for PRA and LTLU(X, U) is in
EXPSPACE.

Theorem 30. The problem MODCHECK(PRA, LTLU(X,U)) s in EXPSPACE.

Proof. We will show that the existential model checking problem for PRA and LTLU(X, U) can be
solved by a non-deterministic algorithm using exponential space. As LTL“(X, U) is closed under
negation and space complexity classes are closed under complementation and determinization [172],
the result follows.

Now, we describe the non-deterministic algorithm which, given a PRA A = (A, R, 7, S, 0,6, F)
and an LTLY (X, U)-formula 1), decides whether A has a concrete trace satisfying ¢. We let X be
the set of freeze variables used in 1. The algorithm first converts v into an equivalent LTLb(X, U)-
formula ¢ in negation normal form. Note that according to our explanations concerning this normal
form, the transformation to ¢ does not need more than polynomial space. By Lemma 19, A has a
trace satisfying ¢ if and only if there is an accepting symbolic p-run for A. Our algorithm guesses
a symbolic accepting p-run

Ci,acty] s Ca,acta] s Chyactn] s
(s0, Do) ¥>A(Sl,D1)QM(Ssz)---(Sn—laDn—l)QM(Sn,Dn)

encoded as a witness sequence
[Cy,acty, s1, D1][Ca, acta, s2, D3] ... [Cp,acty, Sn, Dy

and checks that its guess is correct. Remember that each D; is a subset of R and each Cj is a subset
of Closure(yp) x [X — RU{ry}]. While the size of Closure(y) is at most polynomial in the length
of ¢, the size of the set [X — R U {r}] is polynomial in the size of R and exponential in the size
of X. Thus, a tuple of the form [C;, act;, s;, D;] requires a space of at most exponential size and
there are at most doubly exponentially many different tuples. It follows that if there is a witness
sequence inducing an accepting symbolic ¢-run, then, there is one of at most doubly exponential
length. The algorithm first guesses the length n (which is stored in binary encoding) of the witness
sequence and then constructs this sequence tuple by tuple. The important point is that in each
step it does not keep more than two consecutive tuples in its memory why a space of exponential
size suffices for the entire algorithm.

192

12.2. Model Checking of Process Register Automata

The detailed description of the algorithm is as follows. The algorithm first constructs a tuple
[Cy,acty, s1, D1] and ensures that it holds (s, {ro}) Ltl); (s1, D7) and that [C4,act] constitutes
a consistent tuple with (p, o[X +— 1)) € Cy. If n = 1, it further ensures that C is final by checking
that it does not contain any pair of the form (Xy, o). If the test succeeds, the computation stops
by outputting a positive answer. If n > 1, the procedure assures that (end,o) ¢ Cy and, while
keeping the first tuple in its memory, it guesses a second tuple [Ca,acts, s2, Da]. Like before, it
tests that [Cy, actg] is consistent, [Ca, acts] is a successor of [C1,actq] and (s1, D;) Lt%j(s% D).
If n = 2, it additionally checks that C5 is final and stops with a positive answer if the test succeeds.
However, if n > 2, it assures that end is not contained in Cs, deletes the first tuple [C1, actq, s1, D1]
from its memory, creates a third tuple [C3, acts, s3, D3] and carries out the same test between the
second and the third tuple as between the first and the second one. This procedure continues until
n successive consistent tuples are constructed. o

A closer inspection of the complexity of the algorithm in the proof of the last theorem leads
to the insight that the exponential blowup of the size of the memory of the algorithm is caused
by the exponential number of possible freeze assignments in [X — RU {r }]. If we allow only
a constant number of freeze variables, the size of this set becomes polynomial and the number of
possible tuples [Cy,acty, $n, Dy] exponential. We conclude that the model checking problem for
PRA and LTLU(X, U) with a constant number of freeze variables is solvable in polynomial space.

Corollary 9. For every k > 1, the problem MODCHECK(PRA, LTLY (X, U)) is in PSPACE.

An extension of our construction of symbolic runs labelled by consistent tuples [C,act] to
formulas with past operators entails some complications which we were not able to solve yet. Recall
that each set C' within such a run consists of pairs (1, o) where ¢ is a symbolic freeze assignment
mapping freeze variables to the registers of the automaton and the pseudo register v, symbolizing
“old” processes which will not occur in the rest of the run. Note that our construction uses the
same register r) for different old processes. Suppose that at some point of a symbolic run, we have
a tuple [C, act] such that C contains a pair (X, 0) where o maps different freeze registers « and
y to r1. To assure consistency of [C,act] with its predecessor [C’, act’], we have to determine for
which of the variables x and y, the register r, has to be replaced by a register of the automaton
when going from [C,act] to [C’,act’]. In our current construction we do not see yet how this can
be done.

From satisfiability of LTL to model checking with LTL'(X, U)

We turn towards the lower bound of the model checking of PRA with LTLY(X, U). We will show
that the problem is PSPACE-hard, even in the case with plain LTL. The proof is carried out by
a polynomial reduction from the satisfiability problem for LTL to the existential model checking
problem with LTL. From this, the PSPACE-hardness of LTL [188] and Corollay 9 we get that for
every k > 1, the problem MobCHECK(PRA, LTLY, (X, U)) is PSPACE-complete.

Lemma 20. The problem MODCHECK(PRA, LTL) is PSPACE-hard.

Proof. We give a polynomial reduction from the satisfiability problem for LTL to to the existential
model checking of PRA with LTL. As satisfiability for LTL is PSpAcE-hard [188] and LTL is
closed under negation, the result follows. The reduction consists of two steps. First, we reduce
the satisfiability problem for LTL on words (with multiple propositions at each position) to the
satisfiability problem of LTL on strings (with a single proposition per position). Then, we reduce
the latter problem to EMODCHECK(PRA, LTL).

We start by describing a representation for finite words over some proposition set Prop by finite
strings over PropU{px } with a fresh proposition px which is not contained in Prop. In a string over

193

Chapter 12. New Results on Model Checking

PropU{ps}, we call a maximal sub sequence where only the first position is a px-position, a #-block.
A word w over Prop is represented by strings w’ where every #-block encodes exactly one position
in w. More precisely, for a word w = Py ... P, with Pi,..., P, C Prop, every string w’ of the form
pupt . D puph . PNy . pupl ... pkr such that for every i€ {1,...,n}, {p},...,pF'} = P, is a
representation for w. Observe that a proposition p at a position in w can be encoded by a #-block
with multiple occurrences of p. Hence, there are infinitely many string-representations for the same
word. Figure 12.3 presents two different string-encodings for a word w.

w= pPq r
P# q p q P# P# r r T

Pp# q p p Py DP# r

Figure 12.3: Two different string-encodings for the word w

Next, we define a translation ¢ from LTL-formulas ¢ on words to LTL-formulas ¢(¢) on string-
representation such that t(p) simulates the “behaviour” of ¢. The main idea in the translation is
that for every proposition p for which it is assumed that it holds at some position of a word w, the
translated formula ensures that p occurs in the corresponding #-block of string-representations w’
of w. Moreover, one step to the right in w corresponds to a navigation to the next #-block in w’.
We define ¢ inductively, but omit the Boolean cases. For a better understanding of the translation,
it is worth mentioning that the simulation of each sub-formula of an input formula starts at the
first position of some #-block.

e t(p) = X(—pxUp) for every proposition p € Prop
o {(Xy) = X(ﬁP#U(P# A t(lﬂ)))

o t(1Uypn) = (P# — t(lﬂl))U(P# A f(wz))

Now, let ¢ be an LTL-formula over Prop. Obviously, px At(¢) is an LTL-formula of polynomial
length which is satisfiable on strings if and only if ¢ is satisfiable on words with propositions. This
concludes the first step in our reduction.

We now reduce the satisfiability problem for LTL on strings to EMODCHECK(PRA, LTL). For
this purpose, let ¥ be an LTL-formula with propositions from Prop = {p1,...,pr}. The idea is to
construct a PRA Ay,; over a message set which contains for every proposition, a message symbol
representing this proposition. While the PRA Ay,; produces traces containing all possible sequences
of message symbols, we design a formula 1)’ testing whether there is a trace of Ayy; satisfying the
property expressed by 1.

We explain the details of the construction. The PRA Ay; = (A4, R,79, 5, 50,0, F) has two
registers 79,71 € R and is defined over the message set A = {mg,..., mp} where all message
symbols have arity 0. The automaton is depicted in Figure 12.4. First, the initial process in register
ro creates a process and stores it in register 1. Then, arbitrary messages are sent arbitrarily often
from the process in 79 to the process in r1. Furthermore, we translate ¢ into an LTL-formula v’
simulating ¢ on the traces of A,;. The formula ¢’ ignores the first positions of the traces (as they
do not contain any message symbol) and interprets the message symbols as propositions from Prop.
That is, ' = X" where 9" results from ¢ by replacing every p; by m;.

194

12.2. Model Checking of Process Register Automata

snd(rg,r1,m1)

crt(ro, 1)

snd(rg, r1, mg)

Figure 12.4: The PRA Ayy;

It is easy to see that v is satisfiable if and only if there is a trace of A, satisfying ¢/’. Moreover,
note that the sizes of A,,; and ¢’ are polynomial in the size of). This completes the second part
of the reduction. O

The combination of the results in Corollary 9 and Lemma 20 delivers:

Theorem 31. For every k > 1, the problem MoDCHECK(PRA, LTL"% (X, U)) is PSPACE-complete.

12.2.2 Model Checking with Hybrid Temporal Logic

In this section, we consider the model checking of PRA with HTL™. We will prove that for every
k > 1, model checking with HTL is as hard as the satisfiability problem for HTLj. Then, we
will derive from known results that MODCHECK(PRA, HTLY) is EXPSPACE-complete and for every
k > 2, MopCHECK(PRA, HTLY) is decidable with non-elementary complexity. We first deal with
the upper bound complexities.

From model checking with HTL"™ to satisfiability of HTL

We will show that for every k > 1, the existential model checking problem for PRA and HTLY is
polynomially reducible to the satisfiability problem for HTLj. Similar to the case with LTLU(X, U),
the proof makes use of symbolic runs and traces of PRA.

Proposition 15. For every k > 1, the problem EMODCHECK(PRA, HTLY) can be polynomially
reduced to the satisfiability problem for HTLy.

Proof. Recall from Section 11.3 that concrete traces of a PRA A = (A4, R, 19, S, so,0, F) are defined
over the proposition set PropZ, = {crt,snd} U A and the attribute set AttrZ, = {creator,
created, sender, receiver} U {mpar,,...,mpar,} where ¢ is the maximal arity of the message
symbols in A. Symbolic traces are defined over Propad = {snd,crt} U {[par,par(act)] | act
is an action in Actions(A, R) with parameter par}. We introduce the existential symbolic model
checking problem for PRA which searches for a symbolic trace satisfying a formula. To be precise,
for a class C of PRA and a logic £, the existential symbolic model checking problem ESMCH(C,L)
asks the following question: Given a PRA A from C and a formula ¢ from L, is there a symbolic
trace of A satisfying ¢? For a k > 1, the reduction from EMODCHECK(PRA, HTLY%) to the
satisfiability of HTLy consists of two main steps. We first reduce EMODCHECK(PRA, HTLY) to
ESMCH(PRA,HTLy), then we show that the latter problem can be encoded into the satisfiability
problem for HTLy.

We describe the main idea of the first reduction. By definition, each concrete trace of a PRA
results from one of its concrete runs. Likewise, each symbolic trace belongs to a symbolic run
of the PRA. Moreover, by Observation 11, we know that for every concrete run 7, there is a

195

Chapter 12. New Results on Model Checking

corresponding symbolic run symb(7) which is obtained from 7, basically by replacing processes by
corresponding registers. Furthermore, the same observation tells us that for every symbolic run,
there is a corresponding concrete run. Thus, for the first reduction, it suffices to show how an
HTL%-formula on concrete traces of a PRA can be simulated by an HTLg-formula on symbolic
traces of the automaton. Obviously, the main challenge is to recover data equality on symbolic
traces. With regard to this, we first recall that it follows from the definition of PRA that two
different registers in the same run can never contain the same process. Moreover, whether at two
different positions ¢ < j of a run, the same register r points to the same process or not can be
checked as follows: r points at positions ¢ and j to the same process if and only if r has an input
at position ¢ and this input is not overwritten by a create action between position ¢ and j.

We now dive into the details of the first reduction. Let A = (A4, S, so, R, 70, d, F') be a PRA and ¢
an HTL%-formula for some k& > 1. We translate ¢ into an HTLg-formula ¢(¢) of polynomial length
such that ¢ is satisfied by a concrete trace of A if and only if t(y) is satisfied by the corresponding
symbolic trace. The transformation ¢ is defined inductively. We omit the Boolean cases:

e t(crt) =crt

o {1 U thy) = (1)U t(1)2)

o t(on(z).¢}) = on(x).£(th) for every variable
o i(x) = x for every variable z

o t(17h) =|=4()) for every variable &

e In the translation of an atomic formula @a~ z.@b for attributes a,b € AttrZ, and a variable
x, we first ensure that there is some register r such that [a,r] holds at the current position
i. Note that this corresponds to the fact that there is some action performed at position ¢
which uses the process of register r. This means that the process of this register is defined at
position ¢ of the corresponding concrete run. Then, we assure that parameter b of the action
at the x-position j is also defined as r. Additionally, in order to guarantee that register r
represents the same process at both positions, the following properties are tested: If j < ¢,
then, in the sub sequence j + 1,...,17, there is no create operation overwriting r. In the other
case, namely if j > 4, there must not be any create action overwriting r on any position in the
sequence i + 1,...,j. Note that the update of r at position j in the first case or at ¢ in the
second case, does not violate the semantics of the original HTL™ -formula. Thus, we have:

t(Ga~x.@b) = \/ ([a, r] A ({ﬁ[created, rJU" (x A [b,r])}\/

reR

{X(ﬂ[created, r]U(—[created,r] Az A [b, T])):|))

196

12.2. Model Checking of Process Register Automata

Observe that compared to ¢, the formula ¢(p) does not use any additional variable. Moreover, the
blow-up caused by sub-formulas of the form @a~x.@b is linear in |R| and, thus, linear in the size of
A. Altogether, we get that for every k > 1, EMODCHECK(PRA, HTLY) is polynomially reducible
to ESMCH(PRA,HTLy).

Next, we show that for every k > 1, there is a polynomial reduction from ESMCH(PRA ,HTLy)
to the satisfiability of HTLg. Given a PRA A = (4, R, r0, S, $0,9, F) and a formula ¢ € HTLy, we
define a PLTL-formula ¢4 whose models are encodings of symbolic traces of A and ask whether
there is a word satisfying ¢ 4 and the property defined by ¢.

The idea of encoding paths in Kripke-structures by LTL-formulas is well-known (see, e.g., in
[182]). For the encoding of symbolic traces, we additionally have to take into account that the
execution of actions depends on the set of defined registers. We encode a symbolic trace of A
by a word which not only describes the trace, but also the symbolic run the trace results from.
To be more precise, word encodings of symbolic traces of A are words over the proposition set
Propisit UPropg UPropy where Propg = {p, | s € S} and Propy = {p, | » € R}. Each position
of the encoding models a symbolic configuration along with the action leading to it. A proposition
from Propg represents the state of the configuration, those from Propj symbolize the set D of
defined registers and those from Prop?a’ﬁ the executed actions. As each symbolic run starts at the
same initial configuration, the latter is not represented in the encoding. Figure 12.5 presents the
word encoding of a symbolic trace containing 3 symbolic actions.

0 = (s0, {ro}) <0rss (g1 {rg,m }) 20258 (65 Lo, 1y, rp}) 2228 (o0 L vy, 7))

p517p'r07pr1 p527p7‘07p7“17p7‘2 pssvp’rovaprQ
crt, [creator, 1], crt, [creator,), snd, [sender, r¢), [receiver, ro],
[created, rq] [created, o] [msym, m], [mpar,, r1]

Figure 12.5: The word encoding of a symbolic trace 6 of A.

In the following, we describe the precise properties of the encoding and show that the conjunction
of all of them can be expressed in some PLTL-formula ¢ 4.

e Every position carries exactly one proposition from Propg, some propositions from Propp

and a set P C Prop.o® such that P = wrep(act) for some action act. This can easily be
described by LTL.

e The action and the state at the first position represent an enabled transition at the initial
configuration. Note that due to the definition of PRA, the first action must be a create action.
Moreover, for every position ¢ > 1, the state of position 7 — 1, the action at position ¢ and the
state at position ¢ represent a transition enabled at the configuration represented by position

17— 1:
\/ (ps A crt A [creator, ro] A [created, 7’])
(s0,crt(ro,r),s)€S
N
XT = XG \/ (X“(ps ADpr) Apsr A crt A [creator, r] A [created, r’])
(s,crt(r,r’),s’)€S
V

197

Chapter 12. New Results on Model Checking

(X* (Ps ADr ADr ADpy Ao ADr) ADs A snd A [sender, 7]A
(s,50d(r,7" ;M (71, Tar(m))),s")ES

[receiver, '] A [msym, m] A [mpar;, 7] A... A [mpar,, (., rar(m)])} .

e The register set of the first position consists of register ro and the parameter created of the
first create action. Furthermore, for every position ¢ > 1, we have: If the action at position ¢
is a create action, then, the register set at position ¢ is the union of the register set at i — 1
and the parameter created of the action at ¢. Otherwise, the register set at ¢ is the same as
the one at ¢ — 1:

Dro N /\ (pr 4> [created, 1))
reER—{ro}

A

XT - XG l(crt — /\ (pr < (X“py V [created, r]))) A (snd — /\ (pT - X“pT))])

reR rER

e The run is accepting:

F(-XT A \/ ps).
seF

Observe that every symbolic trace of A has a corresponding encoding and every encoding repre-
sents a symbolic trace. Thus, by construction, A has a symbolic trace if and only if 4 is satisfiable.
Moreover, A has a symbolic trace satisfying ¢ if and only if ¢ 4 A ¢ is satisfiable. Finally, observe
that the length of ¢ 4 A ¢ is at most polynomial in the size of A and . This completes the second
polynomial reduction in the proof. O

From Proposition 15 and the fact that for every k > 1, HTLY% is closed under negation and
HTLg is decidable, we obtain:

Lemma 21. For every k > 1, the problem MODCHECK (PRA,HTLY,) is decidable.

For k =1, we can even strengthen this result. Since satisfiability for HTL; is EXPSPACE-complete
[53] and the class EXPSPACE is closed under complementation, we formulate:

Lemma 22. The problem MODCHECK (PRA,HTL?Y) is in EXPSPACE.

From satisfiability of HTL to model checking with HTL"™

We now show that for every k > 1, there is also a polynomial reduction from the satisfiability
problem for HTL; to EMODCHECK(PRA,HTLy). The reduction is a simple extension of the
reduction from LTL to EMODCHECK(PRA,LTL) in the proof of Lemma 20. From this result, we
will follow lower bounds for the general model checking problem for PRA and fragments of HTL™.

Proposition 16. For every k > 1, the satisfiability problem for HTL; can be polynomially reduced
to EMODCHECK(PRA,HTLy,).

198

12.2. Model Checking of Process Register Automata

Proof. Let kK > 1. Like in the proof of Lemma 20 where the satisfiability of LTL is reduced to
model checking of PRA with LTL, we first reduce from the satisfiability of HTLy on words with
propositions to the satisfiability of HTL; on strings. Then, we reduce from the latter problem to
EMODCHECK(PRA,HTLy). In this proof, we only emphasize on the additional cases which have
to be taken into account when going from LTL to HTL. Recall that HTL extends LTL by variables
and past operators.

In the first reduction, we take the same string encoding as in the proof of Lemma 20 as a basis.
In the definition of the translation ¢ converting formulas on words with propositions to formulas on
string representation, we add the cases for past operators and the operations on variables. Note that
since the evaluation of each sub-formula starts at the pu-position of a current #-block, variables x
are always assigned to such positions:

e t(on(x).1)) = on(x).t(v)
o H(17) =21(Y)

o t(x)==x

o {(XY) =X~ (ﬁP#U* (p# A t(lﬂ)))

t(p1UTehg) = (p# - t(%))UH (p# A t(7/)2))

In the second reduction, namely from satisfiability of HTL; on strings to the existential model
checking of PRA with HTLy, we use the same PRA Ay,; with message set A constructed in the proof
of Lemma 20 which generates all possible sequences of message symbols. However, when translating
an HTLg-formula v into a corresponding HTLg-formula 1’ on traces of Ay, we additionally have
to make sure that the range of past operators do not reach the first position of traces, because they
do not represent any string position. That is, ¢’ = X1 where 1" results from v by

e replacing every p; by m;,
e every sub-formula X<y by X7 (\/,,c4m A X), and
e cvery sub-formula x; U x2 by x1U“(V,,cam A X2).

O

From the last proposition and the fact that satisfiability for HTL; is EXPSPACE-hard [53], we
conclude:

Lemma 23. The problem MODCHECK(PRA, HTLY) is EXPSPACE-hard.
Combined with Lemma 22, we get the main result of this section:
Theorem 32. The problem MODCHECK(PRA, HTLY) is EXPSPACE-complete.

From [184] it follows that HTL with only two variables has already non-elementary complexity.
Thus, together with Lemma 21, we derive:

Theorem 33. For every k > 2, the problem MODCHECK(PRA, HTLY,) is decidable with non-
elementary complexity.

199

Chapter 12. New Results on Model Checking

12.3 Model Checking of Branching High-Level MSCs

As announced in the introductory part of this chapter, we introduce in this section MSC Navigation
Logic (MNL) which allows existential and universal quantification over paths of events and naviga-
tion on these paths via temporal operators. The logic is inspired by Temporal Logic of Causalities
(TLC) defined in [24] on partially ordered structures and used in [173] for the model checking of
HMSCs with finitely many processes. We will show that model checking of BHMSCs with MNL
is EXpTIME-complete, thus, as hard as non-emptiness and executability for this model. Similar
to the decision procedures for the mentioned problems, our model checking algorithm works with
symbolic runs of BHMSCs.

12.3.1 MSC Navigation Logic

Let A be a message alphabet. Formulas ¢ of MSC Navigation Logic (MNL) over A are constructed
according to the following formation rules:

ei=p|lploAe|X'o | X | pU'¢ | E(¢Uy) | A(Uyp)

where p € {start,crt} U {snd(m),rec(m) | m € A}.

Formulas of MNL are evaluated on events of MSCs. The atomic formulas start, crt, snd(m)
and rec(m) are true at an event if the event is from the corresponding type and, in case of snd(m)
and rec(m), the sent or received message symbol is m. Intuitively, the operator X* allows to make a
step forward along a process edge and X~ describes a step forward along a create or message edge.
The operator U' allows until-navigation along process edges starting at the current event. The
quantifiers E and A express existential and universal quantification over paths which can contain
process, message and create edges. We say that an MNL-formula holds on an MSC M if it is
satisfied at the initial event init(M) of M.

We illustrate the semantics of MNL by an example and leave the formal definition of the se-
mantics to the Appendix (Section A.9):

Example 24. Let us go back to our initial client-and-server example in Chapter 2 and consider
Property CS3:

FEvery client sending a request gets an acknowledgement after some time.

This can be expressed by the MNL-formula
AG(snd(req) — F'rec(ack))
containing the usual abbreviations AGy = —E(TU-y) and Ftp = TU'¢p. o

Observe that in extended scenarios with two servers, properties like CS9 which demand that
every client gets its acknowledgment from the server to which it sent the request, cannot be for-
mulated in MNL. To express such a property, MNL would need some kind of freeze mechanism
memorizing processes. Moreover, the logic does not allow to access processes in messages. We leave
such extensions to future work.

12.3.2 Model Checking with MSC Navigation Logic

We will prove that model checking of BHMSCs with the logic MNL is EXPTIME-complete. The
lower bound is obtained from the lower bound of the non-emptiness problem for BHMSCs. For
the upper bound, we give an EXPTIME-procedure which, similar to the executability procedure in

200

12.3.

Model Checking of Branching High-Level MSCs

Section 11.4.2, constructs symbolic runs where at each location, each register r is assigned to a set
of formulas holding at the last event of the process represented by r. We start by explaining how
the validity of an MNL-formula on an MSC can be checked based on the syntactical material of the
formula.

From semantical to syntactical validity

We first define the closure set Closure(y) of an MNL-formula ¢ over some message alphabet A.
For an MNL-formula ¢, the set Closure(y) is the smallest set such that

T € Closure(yp),

X!T € Closure(yp),

X~ T € Closure(yp),

all sub-formulas of ¢ are contained in Closure(yp),

for every formula in Closure(yp), its negation is in Closure(y) (identifying —— with 1),
for every formula ¢)U'y € Closure(yp), the formula X*(¢)U'y) is in Closure(y),

for every formula E(¢Uy) € Closure(y), we have that X'E(¢Uy) and X E(Uy) are
contained in Closure(y), and

for every formula A(¢)Uy) € Closure(yp), it holds that X' A(¢Uy) and X7 A()Uy) are
contained in Closure(yp).

A set C C Closure(y) is a consistent set of ¢ if

T is included in C,
exactly one atomic formula from {start,crt} U {snd(m),rec(m) | m € A} is included in C,

for every formula 1) € Closure(yp), ¢ is contained in C' if and only if —) is not contained in
C (identifying ——1 with),

for every ¥1 A 12 € Closure(y), 11 A 9y is contained in C if and only if ¢; and 9 are
contained in C,

for every formula 11 U'epy € Closure(yp), 11Uy is contained in C if and only if (i) 12 is
contained in C, or (ii) ¥ and X*(¢); U'4pe) are contained in C,

for every formula E(¢;Uty) € Closure(y), the formula E(y;Uts) is in C if and only if
(i) 9o is in C, or (ii) ¢ and X'E(yUts) are in C, or (iii) ¢ and X7 E(yUty) are in C,
and

for every formula A (1)1 U1)e) € Closure(yp), the formula A (1)1 Ubs) is in C if and only if (i) o
is in C, or (if) ¢, ~X~T and X' A (1 Uths) are in C, or (iii) b1, —X'T and X~ A (¢ Uthy)
are in C, or (iv) 1, X A (¢ Urhs), and X~ A (1)1 Ut)y) are in C.

A consistent set is called final if it does not contain any formula of the form X*'v. The set of all
consistent sets of ¢ is denoted by ConSets(y).

In the sequel, we show how the question whether a formula holds on an MSC can be solved by
labelling the events of the MSC by consistent sets of ¢ and checking some conditions between the
labels of neighbouring events. To this end, let M = (E, <, A, 1) be an MSC with <9=<lproc W <crt
W <nsg- A labelling h € [— ConSets(y)] is valid for M if it obeys the following rules:

201

Chapter 12. New Results on Model Checking

e For every event e € E and atomic formula p € {start,crt} U {snd(m),rec(m) | m € A},
the formula p is contained in h(e) if A maps e to the type corresponding to p and, in case of
p = snd(m) or p = rec(m), the sent or received symbol is m.

e Vertical necessity condition: For every event e, it holds that if a formula X'¢ € Closure(yp)
is contained in h(e), then, there is an event ¢’ with e <lproc € such that ¢ is contained in
h(e’).

e Horizontal necessity condition: For every event e, it holds that if a formula X~ € Closure(p)
is contained in h(e), then, there is an event ¢’ with e <cre U <psg €’ such that ¢ is contained
in h(e).

o Vertical consistency condition: For every two neighbouring events e; and ex with €1 <proc €2
and every formula X' € Closure(y), it holds that X' is contained in h(e1) if and only if
1 is contained in h(ez). If for two events e; and eq, the vertical consistency condition holds,
then, ey is called vertically consistent to e;.

e Horizontal consistency condition: For every two neighbouring events e; and ey with e; <l¢rt
U <Insg €2 and every formula X719 € Closure(y), it holds that X~ is contained in h(e1) if
and only if ¢ is contained in h(ez). Similar to above, if for two events e; and es the horizontal
consistency condition holds, we call ey horizontally consistent to ey.

Note that it follows from the conditions above that a valid labelling cannot assign formulas of the
form X' to the last events e of processes in M, i.e., to those for which there is no €’ with e <\proc €’
A labelling i on a partial MSC M is called valid up to a set P C P of processes if h is valid for M
except that for the last events of processes in M which are contained in P, the vertical necessity
condition does not have to hold. We say that a (full) MSC M can be ¢-labelled if there is a valid
labelling h for M such that ¢ € h(init(M)).

Proposition 17. For every MSC M and MNL-formula ¢, it holds that ¢ holds on M if and only
if M can be p-labelled.

Proof. Let M = (E, <, A\, i) be an MSC with <=<proc & <ere W <nsg and ¢ an MNL-formula.
We first proof the“only if”-direction. Let M = ¢ and h be a labelling function mapping events
in E to subsets of Closure(y) such that for every e € F and ¢ € Closure(yp), the formula 1 is
contained in h(e) if and only if (M, e) = . The labelling h obviously constitutes a valid -labelling.
To be convinced, first observe that ¢ € h(init(M)) and for every e € E, the set h(e) must be
a consistent set. Furthermore, by construction of h, for every e € E and every atomic formula
p € {start,crt} U {snd(m),rec(m) | m € A}, the formula p is contained in h(e) if and only if
the type and possible message symbol at e correspond to p. Finally, the necessity and consistency
conditions hold. We exemplarily show that the horizontal consistency condition is not violated. Let
€1 <ert U <Insg €2 be two neighbouring events in M and X~ € Closure(yp). By construction of
Closure(p), we have ¢ € Closure(yp). As h labels every event with those formulas from Closure(p)
which are true at that event, it must hold X7 € h(e1) < ¥ € h(ez).

We now deal with the “if”-direction of the statement of the proposition. Let h be a valid
p-labelling for M. We will show that for every event e and every ¢ € Closure(y), it holds
¥ € h(e) & M, e = 1. Then, since ¢ € h(init(M)), the result follows. The proof is by induction
on the structure of 1. We exemplarily consider the induction steps in the cases 1 = X'y and

Y = A(1Uro).

e 1) = X'y: Let X'y € h(e) for some event e. By the necessity and consistency conditions, this
holds if and only if there is a successor €’ of e with e <lproc € and x € h(e’). By induction
hypothesis, the latter is equivalent to (M, e’) |= x. This in turn is equivalent to (M, e) = X*y.

202

12.3. Model Checking of Branching High-Level MSCs

o) = A(y1Uty): Let A(y1Uvxs) € h(e). By the definition of consistent sets and valid
labellings, this holds if and only if for all sequences e; < ... < e, with e =e and n > 1, we
have 19 € h(e,) and ¥ € h(e;) for all ¢ with 1 <4 < n. By induction hypothesis, this is true
if and only if for all such sequences e1 < ... < ey, it holds (M, e,) = 92 and (M, e;) = 1o for
all 7 with 1 <4 < n. Obviously, this is equivalent to (M, e) = A(¢1Us).

O

Solving model checking with MINL on symbolic BHMSC-runs

As usual, we will reduce the model checking problem for BHMSCs and MNL to the existential model
checking problem for these formalisms. The decidability proof of the latter problem consists of two
main steps: First, we will show that the problem can be reduced to some reachability problem on
symbolic runs. Then, we will give a decision procedure for this reachability problem. In the sequel,
we introduce some notions and preliminary propositions that will be helpful for the decidability
proof. For the rest of this section, we fix a BHMSC H = (A, L, Linit, Lace, R, 70,96) and a formula
©.

Process validity mappings. A process validity mapping PV € [P — ConSets(y)] is a partial
function which maps processes in P to consistent sets of . Next, we define transitions of the form

% between process validity mappings where M is a partial MSC, P a set of processes and h a
h|P

labelling function on M which is valid up to P. Given two process validity mappings PV and PV,
the intuitive meaning of PV hI|V—[P> PV’ is as follows: Imagine that there is some MSC M labelled

via some mapping h. Assumed that PV represents the labels of the last events of the processes in
M, the MSC M can be appended to M such that h can be continued on M using h. Moreover, the
process validity mapping PV’ represents the labels of the last events of some processes occurring in
MoM. The only reason why A is valid up to P is that we keep the option open that the processes in
P can be continued in some further MSC appended to M. More formally, for a partial MSC M with
event set F, two process validity mappings PV and PV’, a labelling function h € [E — ConSets(p)]

and a set P C P, we write PV # PV’ if the following conditions hold:
P

1. Free(M) C dom(PV).

2. his up to P a valid labelling for M such that for every process p € Free(M), it holds: if e is
the first event of p in M, then, h(e) is vertically consistent to PV (p).

3. PV and PV’ have the following properties:

(a) dom(PV’) C dom(PV) UBound(M),
(b) for all p € dom(PV)\(Pids(M) U dom(PV")) (recall that Pids(M) denotes the set of all
processes in M), the set PV (p) is final,
(c) for every process p € dom(PV"), it holds:
e if p occurs in M with last event e, then, PV'(p) = h(e),
e otherwise, PV'(p) = PV (p).
The intuition behind condition (3.b) is that the set dom(PV)\(Pids(M) U dom(PV’)) contains
processes which will never occur in MSCs appended to M.

Register validity mappings. Register validity mappings can be seen as symbolic counterparts of
process validity mappings and build the key elements for our procedure solving the model checking

203

Chapter 12. New Results on Model Checking

problem for BHMSCs on symbolic runs. A register validity mapping RV € [R — ConSets(p)] is
a partial function mapping registers in R to consistent sets of ¢. The process validity mapping
induced by a register assignment v € [R — P] and a register validity mapping RV is denoted by
PV, ryvy and is defined as follows: For every process p € P, it holds (i) if for some register r, v/(r)
is defined by p and RV (r) is defined, then, PV}, ry}(p) = RV (r), and (ii) otherwise, PV, ry}(p)
is undefined. Conversely, we define the register validity mapping RV[, py} induced by a register
assignment v and a process validity mapping PV by: For every register r € R, we have (i) if
for some process p, v(r) is defined by p and PV (p) is defined, then, RV}, pyy(r) = PV (p), and
(ii) otherwise, RV, pyy(r) is undefined. Let G be a run with input register assignment v and
output register assignment v/, let RV be a register validity mapping with dom(RV) = dom(v) and

let R C R. We write RV % RV”, if there exists some labelling h (on the event set of M (G)) such

that PV, rvy %

The following two propositions describe how register validity mappings for complex runs can be
obtained from the register validity mappings of sub runs. As usual, for a mapping f € [A — B] and
a subset A’ C A, we mean by f;4/ the mapping which results from f by restricting its domain to
A’. Recall that for two mappings f1 € [A; — B] and f2 € [A; — B] with A; N Ay =), the mapping
f1U fa € [A1 U Ag — B] is defined by: for every a € A; U Ag, it holds that (i) f1 U fa(a) = fi(a) if
a € Ay and fi(a) is defined, (ii) f1 U f2(a) = fa(a) if a € Az and fa(a) is defined and (iii) f1 U fa(a)
is undefined, otherwise.

P‘/{UI,RV/}'

Proposition 18. Let GG be a run resulting from the concatenation of two runs G; and G5 and let
R' C R. Then, RV 1% RV’ if and only if there is an RV; such that RV % RV; % RV’

Proof. Let G be a run resulting from the concatenation of two runs G; and Gs and let R’ C R.

Furthermore, let v and v/ be the input and output register assignments of G' and v; the output

register assignment of G1. Let M(G) = (E, <, A\,) and M(G;) = (E;, <4, Ai, u;) for i € {1,2}.
We start with the proof of the “only if”-direction. From RV %) RV’ it follows by definition

(@)

that there exists some labelling i on E such that PV, ryy PViy ryry. We can show

h | V(R
that there exists some PV with dom(PVy) = v1(R) such that (i) PVy, gyy % PV and
1By | V1
.o I\/[(GZ) . o G1 G2 /
(ii) PV, P PV, gvry. Then, it follows by definition that RV ? RV pviy R—> RV,
1By | V(R ’

For the sake of the correctness of (i) and (ii), it can easily be checked that all conditions in the
definition of transitions on process validity mappings are satisfied. We just explain why for case
(i) condition (3.b) must hold. Let p € PV, gryy\(Pids(M(G1)) U dom(PVi)). Observe that it
follows p & PViy v} \(Pids(M(G)) U dom(PViyr gv:y). Since PViupvy o (/C(’;/)
definition, PVy,, gyy(p) must be final and, thus, condition (3.b) is satisfied.

‘We now turn towards the “if”-direction. From RV % RV %) RV’ it follows by definition that

PV{V’,RV’}? by

there exist some labellings h; and hs on E; and FEs, respectively, such that PV, rvy ;Ml(—Gl()g)%
M(G2) . . M(G)
PVi,, rviy —————— PV, gpyn. We can easily show that we get (i) PVy,
bRV S @y R Y gt () PYorvy 5o

PVi, ryry. From the latter it follows by definition that that RV %) RV'. For the correctness of

(i), we again only consider condition (3.b). Let p € PV{, gyy\(Pids(M(G))Udom(PVy,s gyry)). As
it follows p € PV, gyy\(Pids(M(G1)) U dom(PVyy, rvyy)), the set PVy, ryy(p) must be final. O

204

12.3. Model Checking of Branching High-Level MSCs

Proposition 19. Let G be a run resulting from some runs Gy, ..., G, via a fork-and-join transition
= {(l1,R1,0}),...,(ln, Ry, ?),)} — £ and let R' C R. Then,

RV % RV if and only if RVip, RGTR’ RV/ for every i € {1...,n}

where RV' = RVig, UU <;<, BV g,

Proof. Assume that G is a run resulting from subruns Gi,...,G, via a fork-and-join transition
l— {(fl, Rl,fll), ey (fn, Rmf%)} — (. Let M(G) = (E, <,)\,/L) and M(Gz) = (Ei, <,)\ia/j/i) for
every 7 with 1 <7 < n. Moreover, let v and v/ be the input and output register assignments of G
and v; and v} the input and output register assignments of each G;. Finally, let R’ C R.

We first deal with the “only if”-direction of the proposition. From the definition of RV % RV’

M(G)

it follows PVy, rvy W PV, ry+y for some labelling function h. It can easily be checked that

M(G;)

from this it follows that for every i € {1,...,n}, it holds PVy,, rv,, } I)
" b, | V(RiNR!

PV, rvyy

such that RV’ = RVir, UU, <<, RV,

/FRi' Thus, we get RV r,nr N RV! for every i € {1,...,n}.

The “if”-direction can be shown as follows. Let RVjg,

i

RG—iR> RV/ for every i € {1,...,n}.

iNR/

By definition, it holds that for every ¢ € {1,...,n}, there is some mapping h; on E; such that
M(G) M(G)

hi | v/ (RiNR') h| (R

Uiel,...,n hi and RV' = RV|g, U U1§z‘§n RV,

PViv, rVin,} PV ryyy. 1t follows PVi, ryy) PViy gyry where h =

%

'\ ;- By definition, it follows RV -2 RV". m

Register validity mappings on symbolic runs. We now define a transition relation on register
validity mappings which does not refer to concrete runs, but to symbolic ones. This definition and
the following lemma provide the basis for our model checking procedure on symbolic runs.

Let S be a symbolic run with input register set D and output register set D', let RV and RV’ be
register validity mappings with dom(RV) = D and dom(RV’) = D’ and let R’ C D’. We inductively
define what RV % RV’ means:

e Assume that S is a symbolic run resulting from a sequential transition (¢, M, ¢') € §. Then,
RV %) RV’ if for every r € Bound(M) N D, the consistent set RV (r) is final and there is
some labelling A such that RV %) RV'. Note that in the last expression, the registers are
interpreted as processes.

e Assume that S is a symbolic run resulting from the concatenation of S; and S;. Then,
RV 5 RV’ if RV 5 RV; 2% RV for some RV},

e Now, assume that S is a symbolic run resulting from subruns Si,...,S5, by a fork-and-
join transition ¢ — {(¢1, R1,¢}),...,(¢n, Rn,?,)} — ¢'. Then, RV % RV’ if for every
i€ {l,...,n}, it holds RV}g, RS—iR> RV/ with RV’ = RV}, UJ; RV;I[R"

Zm !/ T
Recall that in Section 11.4, we defined a mapping symb from concrete BHMSC-runs to symbolic

ones and proved in Lemma 12 that the mapping is surjective. We use this mapping in the following
lemma to build a bridge between register validity mappings on concrete and symbolic runs.

205

Chapter 12. New Results on Model Checking

Lemma 24. Let G be a run, R' C R and RV and RV' two register validity mappings. Then,

RV ;% RV if and only if RV —’"’”}_’;ﬁb RV'.

Proof. o If G is a run resulting from a sequential transition (¢, M, ¢') € ¢, then, by defi-
nition, it holds RV %) RV’ if and only if there is some labelling function h such that

(@)
—T
h | V(R
registers are interpreted as processes and for every r € Bound(M)N D the consistent set RV (r)
is final. The latter condition is needed to meet condition (3.b) from the definition of the tran-

PV, rvy PVy, gyry. Note that this is equivalent to RV # RV’ where the

sitions on process validity mappings. Finally, by definition, RV #) RV’ is equivalent to
R/

Ry 229, gy,

e Assume that GG is a run resulting from the concatenation of some runs G; and Gs. By
Proposition 18, we have RV % RV’ if and only if there is some RV; such that RV %)

symb(G1 symb(G2)

R/

RVy % RV’. By induction hypothesis, this holds if and only if RV) RVy

symb(G
(@)

R/

RV'. By definition, this is equivalent to RV RV'.

e Let G be a symbolic run resulting from runs Gy, ..., G, via a fork-and-join transition ¢ —
{(t1,R1,0}), ..., (Ln, R, 0.} — ¢'. By Proposition 19, it holds RV Ri> RV’ if and only if
G;

RVig, —— RV/ for every i € {1,...,n} with RV’ = RV|g, UUlgign RV,

! . .
R;NR’ i 1Ry By induction

symb(G,
ymb(G)

hypothesis, this is equivalent to RV}g, RV/! for 1 < i < n. By definition, the latter

. /
i

mb(G
is equivalent to RV % RV'.

Now, we are ready to state and prove the main theorem of this section.
Theorem 34. The problem MODCHECK (BHMSC,MNL) is ExpTIME-complete.

Proof. The lower bound follows from the EXpPTIME-hardness of the non-emptiness problem for
BHMSCs [46] and the fact that MNL is closed under negating formulas. For the upper bound, we
will show that the existential model checking problem EMODCHECK(BHMSC,MNL) is in EXPTIME.
Then, the result easily follows. For the proof that EMODCHECK(BHMSC,MNL) is in EXPTIME,
we first observe the following equivalences. Let H = (A, L, Lipit, Lacc, R, 70,0) be a BHMSC and ¢
an MNL-formula.

206

12.4. Discussion

There is an MSC M € L(H) with M = ¢
there is an MSC M € L(H) which can be ¢-labelled (Proposition 17)

there is a an accepting run G of H with some initial process p, a set C' € ConSets

containing ¢ and a labelling h such that {p — C} ﬂﬁ‘% PV’ for some process va-
h
lidity mapping PV’ (by the definition of the transitions on process validity mappings)

< there is a an accepting run G of H and a set C' € ConSets containing ¢ such that

te

{ro — C} % RV’ for some register validity mapping RV’ (by the definition of the

transitions on register validity mappings)
< there is a an accepting symbolic run S of H and a set C' € ConSets containing ¢

such that {ro — C} % RV’ for some RV’ (by Lemma 24)

Thus, the question whether a given BHMSC ‘H with initial register ro generates an MSC satisfying
a given formula ¢ can be answered by searching for a symbolic run S for H such that {ro —

C} % RV’ for some consistent set C' containing ¢ and some register validity mapping RV’. We

design an algorithm which, similar to the non-emptiness procedure in the proof of Lemma 13
and the executability procedure in the proof of Lemma 17, computes for a given BHMSC H =
(A, L, Lipit, Lace, R,70,0) and a formula ¢, the set T of all tuples (¢, RV, ¢, RV’ R’) such that
there is some symbolic run S, the input location of S is ¢, its output location is ¢’ and it holds

RV % RV’. If T contains a tuple (¢, {ro — C},¢, RV’,0) with £ € Linit, £ € Lacc and C is

a consistent set containing ¢, the procedure returns yes, otherwise no. Observe that there are at
most (20(“/"))‘3‘ different register validity mappings (and exponentially many different subsets of
R). Hence, the cardinaity of T is at most exponential. In each iteration, our procedure checks for
every tuple t = (¢, RV,¢', RV’ R') whether it can be obtained via a symbolic run resulting from
a sequential transition, a concatenation of symbolic runs or a fork-and-join transition. In the first
case, the algorithm tests in time at most exponential in the length of ¢ and the size of § whether
there is a sequential transition in § containing an MSC whose events can be labelled by consistent
sets such that the labels of the first events fit to RV and those of the last ones fit to RV’. In the
second case, it checks whether among the tuples computed so far, there is a pair of tuples which
can be concatenated such that t is obtained. The number of choices to decide this test is at most
polynomial in the number of computed tuples. In the last case, it tests whether there is a fork-
and-join transition and a set of tuples which can be combined such that ¢ results. The number of
choices for the latter task is polynomial in the number of computed tuples and exponential in |4].
Since the computation of T requires at most exponential iterations and each iteration requires at
most exponential time, the overall computation time is at most exponential. O

12.4 Discussion

We considered the model checking of DCA, PRA and BHMSCs by data logics. Our results should
be seen as first steps towards the investigation of the verification of systems with unboundedly
many processes by the use of data logics.

In case of DCA, we restricted our considerations to selective 1-register DCA, since this is the
biggest DCA-fragment for which we were able to show decidable non-emptiness (and in our setting,
model checking is at least as hard as non-emptiness). For the model checking of this fragment, we
used RB-DLTL, a restriction of B-DLTL where shift values are skipped, and LTLY.

207

Chapter 12. New Results on Model Checking

In case of PRA, our original motivation was driven by a result from [45] which says that model
checking of Data Multi-Pushdown Automata (DMPA) with full MSO™ is decidable. Our aim was to
find interesting fragments of MSO™ which can deliver moderate, at least elementary, model checking
complexity for DMPA. To obtain a full understanding of the inherent complexity of the system
model, we restricted our investigations to PRA which is a fragment of DMPA where pushdown
stacks are skipped. On the logic side, we considered subsets of LTLY and HTL".

As explained in Chapter 10, there are two popular approaches in the verification of high-level
MSC-descriptions. In the first approach, formulas are evaluated on all linearizations of events of
MSCs. This approach mostly results in high model checking complexities (see, e.g., in [25]). The
second approach, which yields better complexity results, uses structural logics whose formulas can
navigate on partially ordered sets, but cannot distinguish between different linearizations of the
same MSC. Following the second approach and inspired by structural logics on MSCs considered
in [48, 173, 153, 154], we designed the logic MNL and used it for the model checking of BHMSCs.

Our complexity results are summarized in Figure 12.6. A “c” behind a complexity class means

|| selective 1-DCA | PRA | BHMSCs
RB-DLTL dec. (12.1.1) in EXPSPACE -
LTLY% (X, U) for k> 1 || undec. (12.1.2) PSPACE-c (12.2.1) -
LTLY(X,U) undec. in EXPSPACE (12.2.1) -
HTLY undec. EXPSPACE-c (12.2.2) -
HTLY, for k > 2 undec. dec., non-el. (12.2.2) -
MNL - - ExpTIME-c (12.3.2)

Figure 12.6: Our model checking results in this chapter

that the problem is complete for this class. A “-” indicates that the corresponding system model
and the logic are not compatible with each other. The numbers in brackets indicate the sections in
which the results are proven. In the sequel, we first discuss some questions left open and then state
some conclusions.

We assume that our technique in the decidability proof for the model checking of selective 1-
DCA with RB-DLTL can be extended to B-DLTL. Remember that we showed in Proposition 1 of
Section 6.2 that every B-DNL-formula can be translated into an equivalent formula in normal form
where in all sub-formulas of the form C&, ¢ with £ # 0, it holds 1) =~@b or 1) = = ~@b. The latter
formulas express (un-)equality conditions on data values of positions of bounded distance. It can
easily be observed that the translation given in Section 6.2 also works for B-DLTL-formulas. Hence,
in order to extend our model checking procedure with RB-DLTL to B-DLTL, it would suffice to
take such assertions into account. Moreover, recall that the decidability of MODCHECK (selective
1-DCA,RB-DLTL) relies on the fact that configurations of this DCA-fragment can be separated into
isolated sub configurations consisting of single processes and pairs of processes (Observations 8 and
9 in Section 11.2.1). It seems that our decision procedure can be extended to all DCA-fragments
where configurations can be separated into finitely many sets of isolated sub configurations such
that elements in the same set are of the same shape. Yet, the most interesting question with regard
to selective 1-DCA is whether model checking with full Data Navigation Logic (DNL) is decidable.
The undecidability result in case of LTLY (X, U) does not give any hint here, because it follows
from Theorem 6 in Section 6.4 that the property expressed by LTLY% (X, U) in Theorem 29 cannot
be formulated in DNL. Finally, we assume that, similar to the lower bound of the satisfiability
of FO3(Suc, <) [41], it can be shown that MODCHECK (selective 1-DCA,RB-DLTL) is as hard as
non-emptiness of Multicounter Automata for which no elementary upper bound is known.

The upper bound of MODCHECK(PRA,RB-DLTL) is derived from the result for MODCHECK

208

12.4. Discussion

(PRA, HTL7Y). The precise complexities of MODCHECK(PRA,RB-DLTL) and MODCHECK(PRA,
LTLY(X,U)) remain open. Due to the complications explained in Section 12.2.1, the extension
of our model checking algorithm for MODCHECK(PRA,LTLY(X, U)) to past operators remains an
interesting challenge.

Observe that MNL is quite restrictive as it does not contain past operators. Furtermore, it does
not provide mechanisms in the style of LTLY to “freeze” processes at events in order to compare them
with processes at other events. Due to this shortcoming, it is not clear how to express properties
like CS9 from Chapter 2. We think that, just like automata constructions for PLTL, our strategy
of labelling events by consistent sets in the upper bound proof for MODCHECK(BHMSC,MNL) in
Section 12.3.2 can easily be extended to past operators. The insertion of freeze mechanisms could
be handled by consistent sets of pairs of formulas and freeze assignments, like in the model checking
algorithm for MODCHECK(PRA,LTLY (X, U)).

We conclude from our results that model checking of DCA which describe the behaviour of
single processes is much more difficult than the model checking of PRA and BHMSCs which describe
systems from a more global point of view. Particularly in case of PRA, we surprisingly recognize that
model checking with undecidable logics like LTLY (X, U) and HTLT deliver elementary complexities.
However, concerning our initial motivation with respect to DMPA, we unfortunately must notice
that already for the DMPA-fragment PRA and the MSO™-fragment HTL?3, the complexity of model
checking becomes non-elementary. Nevertheless, an interesting question for future work is whether
the complexity of model checking with logics like LTL¥(X, U) and HTL7 remains elementary if PRA
are extended by a stack, resulting in a model which is closer to DMPA. Moreover, the symbolic
representation of runs of PRA (and BHMSCs) turned out to be useful method which might be
employed in further investigations.

It should be noted that the system models considered in this work generate finite traces and
MSCs. In classical system verification it is usually assumed that systems run ad infinitum (see,
e.g., in [30]). We think that further investigations on model checking with data logics should take
this into account and consider system models with infinite traces and MSCs.

| The results presented in this chapter are developed by myself and not published in any paper.

209

Chapter 12. New Results on Model Checking

210

Chapter 13

The Journey of Data Logics - A
Glance into the Future

In this work, we studied logics and automata on data words. We first investigated their expressiv-
ity and their complexity with respect to satisfiability and non-emptiness. Then, we took first steps
towards the study of the computational properties of data logics in the area of model checking of
concurrent systems with unboundedly many processes. To this end, we searched for models which
are suitable for the description of such systems. In particular, we were interested in models whose
traces can be represented by data words. Then, we decided for the three models Dynamic Com-
municating Automata, Process Register Automata and Branching High-Level Message Sequence
Charts. Before the investigation of their model checking with respect to data logics, we analyzed
different problems like non-emptiness, reachability and executability for these models. As explained
in previous chapters, in our setting, the complexity of non-emptiness for these models sets a lower
bound for their model checking complexity with data logics. Summaries of obtained results and
discussions of questions left open were already given in the final sections of the corresponding chap-
ters. In this concluding chapter, we would like to formulate some general thoughts, based on our
insights in this work, about future research on data logics.

As stated in the introduction, even though the verification of systems with unboundedly many
processes was one of the main motivations for the investigation of logics and automata on data
words, the most considered problems in previous works were satisfiability and non-emptiness until
now. We explained this fact by the lack of standardized system models and the intention to
find expressive, but decidable logics and automata which can constitute a foundation for model
checking. Nevertheless, we observe that in recent years the research on formalisms on data words
approaches more and more the field of verification and model checking. For instance, in [19, 108] it is
discovered that Data and Register Automata form convenient tools for the verification of programs
that are accessing arrays and lists with data. Moreover, the designers of newly introduced logics
and automata on data words put particular emphasis on the usefulness of their formalisms for the
verification of concurrent systems [75, 71]. We also find recent publications which use data logics
for the model checking of parameterized systems [110, 111]. These works raise the expectation that
future works on data logics will mainly focus on verification and model checking. Our results in
this work, in particular those in Part C, should be seen as a contribution in this respect.

One of our main conclusions is that the bad properties of data logics with respect to satisfi-
ability should not prevent from the investigation of these logics in the verification of concurrent
systems with unboundedly many processes. We admit that one of our results provides a bad
example: It turned out that the combination of selective 1-DCA and LTLY (X, U), which are de-

211

Chapter 13. The Journey of Data Logics - A Glance into the Future

cidable with regard to non-emptiness and satisfiability, respectively, leads to an undecidable model
checking problem. On the contrary, our decidability results on PRA and BHMSCs are quite mo-
tivating. In particular in case of PRA, we found out that model checking with undecidable logics
like LTLY(X,U) and HTL7 is decidable with elementary complexity. An obvious reason for this
is that the traces which are generated by PRA are represented by data words of restricted nature.
In [45], it is mentioned that the decidability of the model checking problem for DMPA, a general-
ization of PRA, with full MSO™ relies on the bounded tree-width of the traces of this model. As a
possible future work, it should be investigated whether there is a more specific characterization for
PRA-traces which can be formalized independently from the system model. Such a characterization
can offer the opportunity to design more powerful models with traces which are subject to similar
restrictions. In the area of XML and XPath, we observe that similar strategies have led to fruitful
results. Several characterizations like bounded guidance width [42], bounded braid width [32] and
bounded match width [32] on classes of data trees have formed the basis for new expressivity and
decidability results in the area of XML and XPath. We think that in the future, such strategies
should be also pursued in the area of model checking with data logics.

212

Acronyms

CA Communicating Automaton. 117-120, 122, 159
DCA Dynamic Communicating Automaton. 118-122, 124-126, 128-136, 141, 142, 144, 148,
159, 167-169, 171-173, 176, 177, 179, 180, 182-184, 192, 207, 208, 211
bDCA Buffered Dynamic Communicating Automaton. 141, 142
CLTL*F Constraint Logic. 35-37, 43, 44, 73, 234, 235
CMA Class Memory Automaton. 27, 29, 30
CTL Computational Tree Logic. 115, 122
DA Data Automaton. 25-31, 38, 45, 49, 52, 53, 65-67, 69, 74, 96-99, 101, 106, 109, 172, 173
BDA Biichi Data Automaton. 26, 27, 31, 38, 57, 69, 70, 109
CDA Commutative Data Automaton. 109
EDA Extended Data Automaton. 28-30
NDA Nested Data Automaton. 74
PNDA Locally Prefix-Closed Nested Data Automaton. 74
SNDA Locally Suffix-Closed Nested Data Automaton. 74
PDA Locally Prefix-closed Data Automaton. 74
SDA Locally Suffix-closed Data Automaton. 74
TDA Transparent Data Automaton. 27-30
WBDA Weak Biichi Data Automaton. 46, 108, 109
WDA Weak Data Automaton. 45, 46, 96-99, 101, 106-109
DMPA Data Multi-Pushdown Automaton. 118, 121, 122, 207, 208, 212
DNL Data Navigation Logic. 65, 69, 71-74, 113, 171, 208
B-DLTL Basic Data LTL. 48, 74, 121, 172, 207, 208
B-DLTL* Class Future Basic Data LTL. 74
B-DLTL™ Class Past Basic Data LTL. 74
N-DLTL Nested Data LTL. 74
N-DLTL™ Class Future Nested Data LTL. 74
N-DLTL™ Class Past Nested Data LTL. 74
RB-DLTL Restricted Basic Data LTL. 172-174, 176-179, 186, 207, 208
B-DNL Basic Data Navigation Logic. 48-54, 57-59, 61-66, 69, 72-74, 121, 172, 207, 235
X-DNL Extended Data Navigation Logic. 65, 66, 69, 73, 74
DWA Data Walking Automaton. 28-30
HTL Hybrid Temporal Logic. 122, 195, 196, 198, 199
HTL"™ Hybrid Temporal Logic on Data Words. 45, 75-80, 82-93, 121, 122, 185, 195, 196, 198, 199,
207, 208, 212, 237
LLT Letter-to-Letter Transducer. 18, 25, 53, 96
BLLT Biichi Letter-To-Letter Transducer. 18, 26, 58
LRV Logic of Repeating Values. 36, 37, 235
PLRV Logic of Repeating Values with Past. 36, 37, 43, 44, 47, 71, 73, 235

213

Acronyms

LTL Linear-Time Temporal Logic. 1, 29, 32, 43-45, 47, 48, 74-76, 86, 87, 89, 115, 116, 120, 122,
185, 193, 194, 197, 198
PLTL Linear Temporal Logic with Past Operators. 29, 71, 82, 86, 88, 89, 197, 208
LTLY Linear-Time Temporal Freeze Logic. 32, 33, 35-38, 43-45, 61, 64, 71, 72, 75-79, 82-93, 116,
121, 122, 172, 182, 185, 186, 188, 192, 193, 195, 207, 208, 211, 212, 232, 234, 237
MCM Minsky Counter Machine. 16, 17, 59, 61, 64, 116, 136, 182
MCA Multicounter Automaton. 17, 31, 172, 173, 179
MNL MSC Navigation Logic. 122, 171, 199, 200, 202, 206208, 237, 238
MSC Message Sequence Chart. 116-118, 120, 122-124, 148-155, 158-163, 171, 200-203, 206, 207,
209, 238
BHMSC Branching High-Level Message Sequence Chart. 122, 148, 150-152, 154-156, 158—
164, 167-169, 171, 199, 200, 202, 203, 205-208, 212
HMSC High-Level Message Sequence Chart. 116-119, 122, 159, 199
MSO Monadic Second Order Logic. 31, 99, 118, 121
EMSO Existential Monadic Second Order Logic. 31, 99, 106
FO First Order Logic. 29, 71, 76, 89-93, 101
MSO™ Monadic Second Order Logic on Data Words. 31, 118, 121, 207, 208, 212, 231
E. . MSO™ Existential Monadic Second Order Logic on Data w-Words. 108
EMSO™ Existential Monadic Second Order Logic on Data Words. 31, 33, 37, 38, 45, 46, 95,
97, 99, 101, 106, 108, 109, 231, 232
FO™ First Order Logic on Data Words. 30-33, 36-38, 44-47, 61, 70-73, 78, 79, 88, 95, 102,
108, 109, 116, 208, 231
NFA Non-Deterministic Finite Automaton. 14, 15, 18, 25, 27, 28, 49, 69, 106, 107, 129, 134, 135,
147
AFA Alternating Finite Automaton. 15, 53
AFA* Two-Way Alternating Finite Automaton. 15, 53
BAFA Alternating Finite Biichi Automaton. 15, 58
BAFA® Two-Way Alternating Finite Biichi Automaton. 15, 58
DFA Deterministic Finite Automaton. 14, 51, 53
PA Pebble Automaton. 28-31, 38
TWPA Top-View Weak Pebble Automaton. 28-30, 33, 38
WPA Weak Pebble Automaton. 28-30
PCP Post’s Correspondence Problem. 18, 19, 62
PDL Propositional Dynamic Logic. 117
PRA Process Register Automaton. 121, 122, 142-148, 151, 167-169, 171, 185, 186, 188, 190,
192-199, 207, 208, 212
PathLog Two-Way Path Logic. 34-37, 43, 44, 72, 234
RA Register Automaton. 23-25, 27-30, 35, 36, 38, 49, 51-53, 65, 69, 72, 95, 97-99, 108, 109
ARA Alternating Register Automaton. 28-30, 33, 38
ARA* Two-Way Alternating Register Automaton. 33, 36, 38, 79, 80
BARA Alternating Biichi Register Automaton. 35, 38
BARA® Two-Way Alternating Biichi Register Automaton. 25, 38
BRA Biichi Register Automaton. 57, 69, 70, 108, 109
FRA Fresh-Register Automaton. 27, 29, 30
GRA Guessing Register Automaton. 27-30
HRA History-Register Automaton. 27, 29, 30
RA“ Backward Register Automaton. 65-67, 69
RA“ Two-Way Register Automaton. 28-30
REM Regular Expressions with Memory. 33-38, 44, 72, 233
REME Regular Expressions with Equality. 35-37

214

Acronyms

TLC Temporal Logic of Causalities. 117, 171, 199
TransProb Transduction Problem. 18, 129, 134, 135

VFA Variable Finite Automaton. 28-30

WSTS Well-Structured Transition System. 17, 18, 117, 136

215

Acronyms

216

Bibliography

21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seat-

tle, WA, USA, Proceedings, IEEE Computer Society, 2006.

P. A. ABpuLA, M. F. ATIG, AND O. REZINE, Verification of directed acyclic ad hoc networks,

P.

in FMOODS/FORTE, 2013, pp. 193-208.

A. ABpuLrLA, M. F. A1iG, A. KARA, AND O. REZINE, Verification of dynamic register
automata, in 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India,
V. Raman and S. P. Suresh, eds., vol. 29 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2014, pp. 653-665.

. A. ABpUuLLA, M. F. ATiG, A. KARA, AND O. REZINE, Verification of buffered dynamic

register automata, in NETYS 2015, May 11-13, Agadir, Morocco, Springer Berlin/Heidel-
berg, 2015.

. A. ABpuLLA, K. CERANS, B. JONSSON, AND Y. TsAy, General decidability theorems

for infinite-state systems, in Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, IEEE Computer
Society, 1996, pp. 313-321.

. A. ABpULLA, G. DELZANNO, N. B. HENDA, AND A. REZINE, Regular model checking

without transducers (on efficient verification of parameterized systems), in Tools and Al-
gorithms for the Construction and Analysis of Systems, 13th International Conference,
TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, O. Grum-
berg and M. Huth, eds., vol. 4424 of Lecture Notes in Computer Science, Springer, 2007,
pp. 721-736.

. A. ABDULLA AND B. JONSSON, Verifying programs with unreliable channels, in Proceed-

ings of the Eighth Annual Symposium on Logic in Computer Science (LICS ’93), Montreal,
Canada, June 19-23, 1993, IEEE Computer Society, 1993, pp. 160-170.

. A. ABDULLA AND B. JONSSON, Model checking of systems with many identical timed

processes, Theor. Comput. Sci., 290 (2003), pp. 241-264.

. A. ABDULLA, B. JONSSON, P. MAHATA, AND J. D’ORSO, Regular tree model checking,

in Computer Aided Verification, 14th International Conference, CAV 2002,Copenhagen,
Denmark, July 27-31, 2002, Proceedings, E. Brinksma and K. G. Larsen, eds., vol. 2404
of Lecture Notes in Computer Science, Springer, 2002, pp. 555-568.

. A. ABDULLA, B. JONSsON, M. NILSSON, AND J. D’ORS0, Regular model checking made

simple and efficient, in Brim et al. [55], pp. 116-130.

. A. ABDULLA, B. JONSSON, M. NILSSON, AND J. D’ORSO, Algorithmic improvements in

reqular model checking, in Computer Aided Verification, 15th International Conference,

217

Bibliography

22]

[23]

[24]

[25]

CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, W. A. H. Jr. and F. Somenzi,
eds., vol. 2725 of Lecture Notes in Computer Science, Springer, 2003, pp. 236-248.

. A. ABDULLA, B. JONSSON, M. NILSSON, AND M. SAKSENA, A survey of reqular model

checking, in CONCUR 2004 - Concurrency Theory, 15th International Conference, Lon-
don, UK, August 31 - September 3, 2004, Proceedings, P. Gardner and N. Yoshida, eds.,
vol. 3170 of Lecture Notes in Computer Science, Springer, 2004, pp. 35-48.

. A. ABDULLA AND M. KINDAHL, Decidability of simulation and bisimulation between lossy

channel systems and finite state systems (extended abstract), in Lee and Smolka [144],
pp. 333-347.

. A. ABDULLA, A. LEGAY, J. D’ORSO, AND A. REZINE, Tree regular model checking: A

simulation-based approach, J. Log. Algebr. Program., 69 (2006), pp. 93-121.

. ApsuL, M. MUKUND, K. N. KUMAR, AND V. NARAYANAN, Causal closure for MSC

languages, in FSTTCS 2005: Foundations of Software Technology and Theoretical Com-
puter Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, R. Ramanujam and S. Sen, eds., vol. 3821 of Lecture Notes in Computer
Science, Springer, 2005, pp. 335-347.

ALBERS, A. MARCHETTI-SPACCAMELA, Y. MaATias, S. E. NIKOLETSEAS, AND
W. THOMAS, eds., Automata, Languages and Programming, 36th Internatilonal Collo-
quium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, vol. 5556 of
Lecture Notes in Computer Science, Springer, 2009.

. ALUR AND P. CERNY, Algorithmic verification of single-pass list processing programs,

CoRR, abs/1007.4958 (2010).

. ALUR AND P. CERNY, Streaming transducers for algorithmic verification of single-pass

list-processing programs, in Ball and Sagiv [31], pp. 599-610.

. ALUR, P. CERNY, AND S. WEINSTEIN, Algorithmic analysis of array-accessing programs,

in Computer Science Logic, 23rd international Workshop, CSL 2009, 18th Annual Confer-
ence of the EACSL, Coimbra, Portugal, September 7-11, 2009. Proceedings, E. Gradel and
R. Kahle, eds., vol. 5771 of Lecture Notes in Computer Science, Springer, 2009, pp. 86—101.

. ALUR, C. COURCOUBETIS, AND D. L. DiLL, Model-checking for real-time systems, in

Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990, IEEE Computer Society, 1990, pp. 414—
425.

. ALUR AND D. L. DiLL, Automata for modeling real-time systems, in Automata, Lan-

guages and Programming, 17th International Colloquium, ICALP90, Warwick University,
England, July 16-20, 1990, Proceedings, M. Paterson, ed., vol. 443 of Lecture Notes in
Computer Science, Springer, 1990, pp. 322-335.

. ALUR, K. ETESSAMI, AND M. YANNAKAKIS, Realizability and verification of MSC graphs,

in Orejas et al. [171], pp. 797-808.

. ALUR AND T. A. HENZINGER, A really temporal logic, in 30th Annual Symposium on

Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 Oc-
tober - 1 November 1989, IEEE Computer Society, 1989, pp. 164-169.

. ALUR, D. PELED, AND W. PENCZEK, Model-checking of causality properties, in LICS,

IEEE Computer Society, 1995, pp. 90-100.

. ALUR AND M. YANNAKAKIS, Model checking of message sequence charts, in CONCUR

'99: Concurrency Theory, 10th International Conference, Eindhoven, The Netherlands,

218

Bibliography

C.

August 24-27, 1999, Proceedings, J. C. M. Baeten and S. Mauw, eds., vol. 1664 of Lecture
Notes in Computer Science, Springer, 1999, pp. 114-129.

. ANcLUIN, J. ASPNES, Z. DiamaDI, M. J. FISCHER, AND R. PERALTA, Computation

in networks of passively mobile finite-state sensors, in Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Distributed Computing, PODC 2004, St. John’s,
Newfoundland, Canada, July 25-28, 2004, S. Chaudhuri and S. Kutten, eds., ACM, 2004,
pp- 290-299.

. R. ApT AND D. KOZEN, Limits for automatic verification of finite-state concurrent sys-

tems, Inf. Process. Lett., 22 (1986), pp. 307-309.

ARECES, P. BLACKBURN, AND M. MARX, The computational complexity of hybrid tem-
poral logics, Logic Journal of the IGPL, 8 (2000), pp. 653-679.

J. ASPNES AND E. RUPPERT, An introduction to population protocols, Bulletin of the EATCS,

V.

K.

93 (2007), pp. 98-117.

. BAIER AND J.-P. KATOEN, Principles of model checking, MIT Press, 2008.
. BALL AND M. SAGIv, eds., Proceedings of the 88th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, ACM, 2011.

BARANY, M. BoJAaNCzZYK, D. FIGUEIRA, AND P. PARYS, Decidable classes of documents
for xpath, in D’Souza et al. [89], pp. 99-111.

BAUKkuUS, Y. LAKHNECH, AND K. STAHL, Verification of parameterized protocols, J. UCS,
7 (2001), pp. 141-158.

J. BEAUQUIER, J. CLEMENT, S. MESSIKA, L. RosAz, AND B. Rozoy, Self-stabilizing count-

ing in mobile sensor networks, in Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2007, Portland, Oregon, USA,
August 12-15, 2007, I. Gupta and R. Wattenhofer, eds., ACM, 2007, pp. 396-397.

. BENEDIKT, C. LEY, AND G. PuPPIS, Automata vs. logics on data words, in CSL,

A. Dawar and H. Veith, eds., vol. 6247 of Lecture Notes in Computer Science, Springer,
2010, pp. 110-124.

. BERARD, M. Bipoir, A. FINKEL, F. LAROUSSINIE, A. PETIT, L. PETRUCCI, AND

P. SCHNOEBELEN, Systems and software verification: model-checking techniques and tools,
Springer Science & Business Media, 2013.

. BERNHOLTZ, M. Y. VARDI, AND P. WOLPER, An automata-theoretic approach to

branching-time model checking (extended abstract), in Computer Aided Verification, 6th
International Conference, CAV ’94, Stanford, California, USA, June 21-23, 1994, Pro-
ceedings, D. L. Dill, ed., vol. 818 of Lecture Notes in Computer Science, Springer, 1994,
pp. 142-155.

. BIERE, A. CivATTI, E. M. CLARKE, AND Y. ZHU, Symbolic model checking without

bdds, in Tools and Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999,
Proceedings, R. Cleaveland, ed., vol. 1579 of Lecture Notes in Computer Science, Springer,
1999, pp. 193-207.

. BJORKLUND AND T. SCHWENTICK, On notions of reqularity for data languages, Theor.

Comput. Sci., 411 (2010), pp. 702-715.

219

Bibliography

[49]

[50]

[53]

[54]

M. BoJanczyk, C. DaviD, A. MuUsSCHOLL, T. SCHWENTICK, AND L. SEGOUFIN, Two-

variable logic on data trees and XML reasoning, in PODS, S. Vansummeren, ed., ACM,
2006, pp. 10-19.

. BoJsanczyk, C. DaviD, A. MuscHOLL, T. SCHWENTICK, AND L. SEGOUFIN, Two-

variable logic on data words, ACM Trans. Comput. Log., 12 (2011), p. 27.

. BOJANCZYK AND S. LASOTA, An extension of data automata that captures XPath, in

LICS, IEEE Computer Society, 2010, pp. 243-252.

. Bosanczyk, A. MuscHOLL, T. SCHWENTICK, L. SEGOUFIN, AND C. DAvID, Two-

variable logic on words with data, in LICS [1], pp. 7-16.

. BorLrig, An automaton over data words that captures EMSO logic, in CONCUR, J.-P.

Katoen and B. Koénig, eds., vol. 6901 of Lecture Notes in Computer Science, Springer,
2011, pp. 171-186.

. BoLriG, A. CYRIAC, P. GASTIN, AND K. N. KUMAR, Model checking languages of data

words, in FoSSaCS, L. Birkedal, ed., vol. 7213 of Lecture Notes in Computer Science,
Springer, 2012, pp. 391-405.

. BorLiGg, A. Cyriac, L. HELoUET, A. KARA, AND T. SCHWENTICK, Dynamic com-

municating automata and branching high-level MSCs, in Language and Automata Theory
and Applications - 7th International Conference, LATA 2013, Bilbao, Spain, April 2-5,
2013. Proceedings, A. H. Dediu, C. Martin-Vide, and B. Truthe, eds., vol. 7810 of Lecture
Notes in Computer Science, Springer, 2013, pp. 177-189.

. BoLLIG AND L. HELOUET, Realizability of dynamic MSC languages, in CSR, F. M. Ablayev

and E. W. Mayr, eds., vol. 6072 of Lecture Notes in Computer Science, Springer, 2010,
pp- 48-59.

. BoLriG, D. KUSKE, AND I. MEINECKE, Propositional dynamic logic for message-passing

systems, in FSTTCS 2007: Foundations of Software Technology and Theoretical Com-
puter Science, 27th International Conference, New Delhi, India, December 12-14, 2007,
Proceedings, V. Arvind and S. Prasad, eds., vol. 4855 of Lecture Notes in Computer
Science, Springer, 2007, pp. 303-315.

. Bouajjani, J. EspArzA, AND O. MALER, Reachability analysis of pushdown automata:

Application to model-checking, in Mazurkiewicz and Winkowski [161], pp. 135-150.

. Bouajjani, P. HABERMEHL, Y. JURSKI, AND M. SIGHIREANU, Rewriting systems with

data, in Fundamentals of Computation Theory, 16th International Symposium, FCT 2007,
Budapest, Hungary, August 27-30, 2007, Proceedings, E. Csuhaj-Varji and Z. Esik, eds.,
vol. 4639 of Lecture Notes in Computer Science, Springer, 2007, pp. 1-22.

. BouaJjjaNi, P. HABERMEHL, A. ROGALEWICZ, AND T. VOJNAR, Abstract reqular tree

model checking, Electr. Notes Theor. Comput. Sci., 149 (2006), pp. 37—48.

. Bouajjani, B. JonssoN, M. NILSSON, AND T. TouiLl, Regular model checking, in

Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL,
USA, July 15-19, 2000, Proceedings, E. A. Emerson and A. P. Sistla, eds., vol. 1855 of
Lecture Notes in Computer Science, Springer, 2000, pp. 403-418.

. BozzeLLl AND R. LANOTTE, Complexity and succinctness issues for linear-time hybrid

logics, Theor. Comput. Sci., 411 (2010), pp. 454—469.

. BRAND AND P. ZAFIROPULO, On communicating finite-state machines, J. ACM, 30

(1983), pp. 323-342.

220

Bibliography

[55] L. BRiM, P. JANCAR, M. KRETINSKY, AND A. KUCERA, eds., CONCUR 2002 - Concur-

61] K.

62] A.

rency Theory, 13th International Conference, Brno, Czech Republic, August 20-23, 2002,
Proceedings, vol. 2421 of Lecture Notes in Computer Science, Springer, 2002.

. A. BrRz0zOWSKI AND E. L. LEISS, On equations for regular languages, finite automata,

and sequential networks, Theor. Comput. Sci., 10 (1980), pp. 19-35.

. R. BUcHI, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundl.

Math., 6 (1960), pp. 66-92.

. BURKART AND B. STEFFEN, Composition, decomposition and model checking of pushdown

processes, Nord. J. Comput., 2 (1995), pp. 89-125.

. CasseL, F. HowaRr, B. JONSSON, M. MERTEN, AND B. STEFFEN, A succinct canonical

register automaton model, in ATVA, T. Bultan and P.-A. Hsiung, eds., vol. 6996 of Lecture
Notes in Computer Science, Springer, 2011, pp. 366-380.

. CERANS, Feasibility of finite and infinite paths in data dependent programs, in Logical

Foundations of Computer Science - Tver ’92, Second International Symposium, Tver,
Russia, July 20-24, 1992, Proceedings, A. Nerode and M. A. Taitslin, eds., vol. 620 of
Lecture Notes in Computer Science, Springer, 1992, pp. 69-80.

CERANS, Deciding properties of integral relational automata, in Automata, Languages
and Programming, 21st International Colloquium, ICALP94, Jerusalem, Israel, July 11-
14, 1994, Proceedings, S. Abiteboul and E. Shamir, eds., vol. 820 of Lecture Notes in
Computer Science, Springer, 1994, pp. 35—46.

K. CHANDRA, D. KozEN, AND L. J. STOCKMEYER, Alternation, J. ACM, 28 (1981),
pp. 114-133.

[63] I. CHATZIGIANNAKIS, O. MICHAIL, AND P. G. SPIRAKIS, Mediated population protocols, in

Albers et al. [16], pp. 363-374.

[64] 1. CHATZIGIANNAKIS, O. MICHAIL, AND P. G. SPIRAKIS, Recent advances in population

[65]

[71]

E.

protocols, in Kralovic and Niwinski [137], pp. 56-76.

Y. C. CHENG AND M. KawmInski, Context-free languages over infinite alphabets, Acta
Inf., 35 (1998), pp. 245-267.

CLARK, S. DEROSE, ET AL., XML path language (XPath) version 1.0, 1999.

. M. CLARKE AND E. A. EMERSON, Design and synthesis of synchronization skeletons

using branching-time temporal logic, in Kozen [136], pp. 52-71.

M. CLARKE, E. A. EMERSON, AND A. P. SISTLA, Automatic verification of finite-state
concurrent systems using temporal logic specifications, ACM Trans. Program. Lang. Syst.,

8 (1986), pp. 244-263.

. M. CLARKE, O. GRUMBERG, AND D. A. PELED, Model checking, MIT Press, 2001.

. COTTON-BARRATT, D. HOPKINS, A. S. MURAWSKI, AND C. L. ONG, Fragments of ML

decidable by nested data class memory automata, in Foundations of Software Science and
Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, A. M. Pitts, ed., vol. 9034 of Lecture Notes
in Computer Science, Springer, 2015, pp. 249-263.

. COTTON-BARRATT, A. S. MURAWSKI, AND C. L. ONG, Weak and nested class memory

automata, in Language and Automata Theory and Applications - 9th International Confer-
ence, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, A. H. Dediu, E. Formenti,

221

Bibliography

C. Martin-Vide, and B. Truthe, eds., vol. 8977 of Lecture Notes in Computer Science,
Springer, 2015, pp. 188-199.

. DAVID, Mots et données infinies, Master’s thesis, LIAFA, (2004).

. DaviDp, L. LiBKIN, AND T. TAN, On the satisfiability of two-variable logic over data words,

in LPAR (Yogyakarta), 2010, pp. 248-262.

. DECKER, P. HABERMEHL, M. LEUCKER, AND D. THOMA, Learning transparent data

automata, in Application and Theory of Petri Nets and Concurrency - 35th International
Conference, PETRI NETS 2014, Tunis, Tunisia, June 23-27, 2014. Proceedings, G. Ciardo
and E. Kindler, eds., vol. 8489 of Lecture Notes in Computer Science, Springer, 2014,
pp- 130-149.

. DECKER, P. HABERMEHL, M. LEUCKER, AND D. THOMA, Ordered navigation on multi-

attributed data words, in CONCUR 2014 - Concurrency Theory - 25th International Con-
ference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, P. Baldan and
D. Gorla, eds., vol. 8704 of Lecture Notes in Computer Science, Springer, 2014, pp. 497—
511.

. DELZANNO, A. SANGNIER, R. TRAVERSO, AND G. ZAVATTARO, On the complexity of

parameterized reachability in reconfigurable broadcast networks, in D’Souza et al. [89],

pp- 289-300.

. DELZANNO, A. SANGNIER, AND G. ZAVATTARO, Parameterized verification of ad hoc

networks, in CONCUR 2010 - Concurrency Theory, 21th International Conference, CON-
CUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, P. Gastin and
F. Laroussinie, eds., vol. 6269 of Lecture Notes in Computer Science, Springer, 2010,
pp. 313-327.

. DELZANNO, A. SANGNIER, AND G. ZAVATTARO, On the power of cliques in the parameter-

ized verification of ad hoc networks, in Foundations of Software Science and Computational
Structures - 14th International Conference, FOSSACS 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbriicken,
Germany, March 26-April 3, 2011. Proceedings, M. Hofmann, ed., vol. 6604 of Lecture
Notes in Computer Science, Springer, 2011, pp. 441-455.

. DEMRI, D. D’Souza, AND R. GASCON, A decidable temporal logic of repeating values,

in LFCS, S. N. Artémov and A. Nerode, eds., vol. 4514 of Lecture Notes in Computer
Science, Springer, 2007, pp. 180-194.

. DEMRI, D. D’Souza, AND R. GASCON, Temporal logics of repeating values, J. Log.

Comput., 22 (2012), pp. 1059-1096.

. DEMRI, D. FIGUEIRA, AND M. PRAVEEN, Reasoning about data repetitions with counter

systems, in LICS, IEEE Computer Society, 2013, pp. 33—42.

. DEMRI AND R. LaAzic, LTL with the freeze quantifier and register automata, in LICS [1],

pp. 17-26.

. DEMRI AND R. LAzic, LTL with the freeze quantifier and register automata, ACM Trans.

Comput. Log., 10 (2009).

. DEMRI, R. LAzic, AND D. NOWAK, On the freeze quantifier in constraint ltl: Decidability

and complezity, Inf. Comput., 205 (2007), pp. 2—-24.

. DEMRI, R. LAziC, AND A. SANGNIER, Model checking freeze LTL over one-counter au-

tomata, in FoSSaCS, R. M. Amadio, ed., vol. 4962 of Lecture Notes in Computer Science,
Springer, 2008, pp. 490-504.

222

Bibliography

[36]

[87]

[90]
[91]

[92]

[93]

[103]

S. DEMRI, R. LAzic, AND A. SANGNIER, Model checking memoryful linear-time logics over
one-counter automata, Theor. Comput. Sci., 411 (2010), pp. 2298-2316.

S. DEMRI AND A. SANGNIER, When model-checking freeze LTL over counter machines be-
comes decidable, in FOSSACS, C.-H. L. Ong, ed., vol. 6014 of Lecture Notes in Computer
Science, Springer, 2010, pp. 176-190.

G. DING, Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16 (1992), pp. 489—
502.

D. D’Souza, T. KAVITHA, AND J. RADHAKRISHNAN, eds., JARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012,
December 15-17, 2012, Hyderabad, India, vol. 18 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

H.-D. EBBINGHAUS AND J. FLUM, Finite Model Theory, Springer, Heidelberg, 2005.

C. EISNER AND D. FISMAN, A Practical Introduction to PSL, Series on Integrated Circuits
and Systems, Springer, 2006.

C. C. ErLcor, Decision problems of finite automata design and related arithmetics, Transac-
tions of The American Mathematical Society, 98 (1961), pp. 21-21.

E. A. EMERSON AND V. KAHLON, Reducing model checking of the many to the few, in Au-
tomated Deduction - CADE-17, 17th International Conference on Automated Deduction,
Pittsburgh, PA, USA, June 17-20, 2000, Proceedings, D. A. McAllester, ed., vol. 1831 of
Lecture Notes in Computer Science, Springer, 2000, pp. 236—-254.

K. ETEssami, M. Y. VARDI, AND T. WILKE, First-order logic with two variables and unary
temporal logic, Information and Computation, 179 (2002), pp. 279 — 295.

D. FIGUEIRA, Satisfiability of downward XPath with data equality tests, in PODS,
J. Paredaens and J. Su, eds., ACM, 2009, pp. 197-206.

D. FIGUEIRA, A decidable two-way logic on data words, in LICS, IEEE Computer Society,
2011, pp. 365-374.

D. FIGUEIRA AND L. SEGOUFIN, Future-looking logics on data words and trees, in Krélovic
and Niwinski [137], pp. 331-343.

A. FINKEL AND P. SCHNOEBELEN, Well-structured transition systems everywhere!, Theor.
Comput. Sci., 256 (2001), pp. 63-92.

A. FINKEL, B. WILLEMS, AND P. WOLPER, A direct symbolic approach to model checking
pushdown systems, Electr. Notes Theor. Comput. Sci., 9 (1997), pp. 27-37.

M. FRANCESCHET, M. DE RIJKE, AND B.-H. SCHLINGLOFF, Hybrid logics on linear struc-
tures: Expressivity and complezity, in TIME, IEEE Computer Society, 2003, pp. 166-173.

D. M. GABBAY, The declarative past and imperative future: Executable temporal logic for
interactive systems, in Temporal Logic in Specification, 1987, pp. 409—448.

D. M. GABBAY, A. PNUELI, S. SHELAH, AND J. STAVI, On the temporal basis of fairness, in
Conference Record of the Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, USA, January 1980, P. W. Abrahams, R. J. Lipton, and
S. R. Bourne, eds., ACM Press, 1980, pp. 163—-173.

B. GENEsST, Compositional message sequence charts (CMSCs) are better to implement than
MSCs, in Tools and Algorithms for the Construction and Analysis of Systems, 11th In-
ternational Conference, TACAS 2005, Held as Part of the Joint European Conferences on

223

Bibliography

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceed-
ings, N. Halbwachs and L. D. Zuck, eds., vol. 3440 of Lecture Notes in Computer Science,
Springer, 2005, pp. 429-444.

. GENEST, D. KUSKE, AND A. MUSCHOLL, A kleene theorem and model checking algorithms

for existentially bounded communicating automata, Inf. Comput., 204 (2006), pp. 920-956.

. GENEST, A. MUSCHOLL, H. SEIDL, AND M. ZEITOUN, Infinite-state high-level MSCs:

Model-checking and realizability, in Automata, Languages and Programming, 29th Inter-
national Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, P. Wid-
mayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo, eds., vol. 2380
of Lecture Notes in Computer Science, Springer, 2002, pp. 657-668.

. L. GISCHER, Shuffle languages, Petri nets, and context-sensitive grammars, Commun.

ACM, 24 (1981), pp. 597-605.

. GRADEL AND M. OTTO, On logics with two variables, Theoretical Computer Science, 224

(1999), pp. 73-113.

. GRIGORE, D. DISTEFANO, R. L. PETERSEN, AND N. TZEVELEKOS, Runtime verification

based on register automata, in Tools and Algorithms for the Construction and Analysis
of Systems - 19th International Conference, TACAS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, N. Piterman and S. A. Smolka, eds., vol. 7795 of Lecture Notes
in Computer Science, Springer, 2013, pp. 260—-276.

. GRUMBERG, O. KUPFERMAN, AND S. SHEINVALD, Variable automata over infinite al-

phabets, in LATA, A. H. Dediu, H. Fernau, and C. Martin-Vide, eds., vol. 6031 of Lecture
Notes in Computer Science, Springer, 2010, pp. 561-572.

. GRUMBERG, O. KUPFERMAN, AND S. SHEINVALD, Model checking systems and specifi-

cations with parameterized atomic propositions, in Automated Technology for Verification
and Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapuram, India,
October 3-6, 2012. Proceedings, S. Chakraborty and M. Mukund, eds., vol. 7561 of Lecture
Notes in Computer Science, Springer, 2012, pp. 122-136.

. GRUMBERG, O. KUPFERMAN, AND S. SHEINVALD, An automata-theoretic approach to

reasoning about parameterized systems and specifications, in Automated Technology for
Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam,
October 15-18, 2013. Proceedings, D. V. Hung and M. Ogawa, eds., vol. 8172 of Lecture
Notes in Computer Science, Springer, 2013, pp. 397-411.

. GUERRAOUI AND E. RUPPERT, Names trump malice: Tiny mobile agents can tolerate

byzantine failures, in Albers et al. [16], pp. 484-495.

. L. GUNTER, A. MUSCHOLL, AND D. PELED, Compositional message sequence charts,

in Tools and Algorithms for the Construction and Analysis of Systems, 7th International
Conference, TACAS 2001 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, T. Margaria
and W. Yi, eds., vol. 2031 of Lecture Notes in Computer Science, Springer, 2001, pp. 496—
511.

[114] J. G. HENRIKSEN, M. MUKUND, K. N. KUMAR, M. A. SOHONI, AND P. S. THIAGARAJAN,

A theory of regular MSC languages, Inf. Comput., 202 (2005), pp. 1-38.

[115] J. G. HENRIKSEN AND P. S. THIAGARAJAN, A product version of dynamic linear time

temporal logic, in Mazurkiewicz and Winkowski [161], pp. 45-58.

224

Bibliography

[116] J. G. HENRIKSEN AND P. S. THIAGARAJAN, Dynamic linear time temporal logic, Ann. Pure
Appl. Logic, 96 (1999), pp. 187-207.

[117] G. HIGMAN, Ordering by divisibility in abstract algebras, Proceedings of the London Mathe-
matical Society, (1952), pp. 326-336.

[118] J. HrROMKOVIC, Communication complexity and parallel computing, Texts in theoretical com-
puter science, Springer, 1997.

[119] ITU-TS, ITU-TS Recommendation Z.120: Message Sequence Chart (MSC), Geneva, 1997.

[120] P. JANCAR, Decidability of a temporal logic problem for Petri nets, Theoretical Computer
Science, 74 (1990), pp. 71-93.

[121] P. JANCAR AND F. MOLLER, Checking regular properties of Petri nets, in Lee and Smolka
[144], pp. 348-362.

[122] B. JONSSON AND M. NILSSON, Transitive closures of reqular relations for verifying infinite-
state systems, in Tools and Algorithms for Construction and Analysis of Systems, 6th
International Conference, TACAS 2000, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April
2, 2000, Proceedings, S. Graf and M. I. Schwartzbach, eds., vol. 1785 of Lecture Notes in
Computer Science, Springer, 2000, pp. 220—-234.

[123] M. JURDZINSKI AND R. Lazic, Alternating automata on data trees and XPath satisfiability,
ACM Trans. Comput. Log., 12 (2011), p. 19.

[124] M. KAMINSKI AND N. FRANCEZ, Finite-memory automata, Theor. Comput. Sci., 134 (1994),
pp- 329-363.

[125] M. KAMINSKI AND T. TAN, Regular expressions for languages over infinite alphabets, Fun-
dam. Inform., 69 (2006), pp. 301-318.

[126] M. KAMINSKI AND T. TAN, Tree automata over infinite alphabets, in Pillars of Computer
Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th
Birthday, A. Avron, N. Dershowitz, and A. Rabinovich, eds., vol. 4800 of Lecture Notes
in Computer Science, Springer, 2008, pp. 386-423.

[127] M. KAMINSKI AND D. ZEITLIN, Extending finite-memory automata with non-deterministic
reassignment (extended abstract), in Automata and Formal Languages, 12th International
Conference, AFL 2008, Balatonfiired, Hungary, May 27-30, 2008, Proceedings., E. Csuhaj-
Varji and Z. Esik, eds., 2008, pp. 195-207.

[128] H. KAMP, Tense logic and the theory of linear order, (1968).

[129] A. KARA AND T. SCHWENTICK, Ezpressiveness of hybrid temporal logic on data words, Electr.
Notes Theor. Comput. Sci., 278 (2011), pp. 115-128.

[130] A. KAarA, T. SCHWENTICK, AND T. TAN, Feasible automata for two-variable logic with
successor on data words, in LATA, A. H. Dediu and C. Martin-Vide, eds., vol. 7183 of
Lecture Notes in Computer Science, Springer, 2012, pp. 351-362.

[131] A. Kara, T. SCHWENTICK, AND T. ZEUME, Temporal logics on words with multiple data
values, in FSTTCS, K. Lodaya and M. Mahajan, eds., vol. 8 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2010, pp. 481-492.

[132] R. M. Karp AND R. E. MILLER, Parallel program schemata, Journal of Computer and
system Sciences, 3 (1969), pp. 147-195.

[133] Y. KESTEN, O. MALER, M. MARCUS, A. PNUELI, AND E. SHAHAR, Symbolic model check-
ing with rich assertional languages, in Computer Aided Verification, 9th International

225

Bibliography

Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, O. Grumberg, ed.,
vol. 1254 of Lecture Notes in Computer Science, Springer, 1997, pp. 424-435.

[134] S. R. KOSARAJU, Decidability of reachability in vector addition systems, in Proceedings of the

[135] O.
[136] D.

[137] R.

[138] O.

[139] S.

[140] R.

[141] F.

[142] R.

[143] R.

14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco,
California, USA, H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H. Landweber, eds.,
ACM, 1982, pp. 267-281.

KOUCHNARENKO AND P. SCHNOEBELEN, A model for recursive-parallel programs, Electr.
Notes Theor. Comput. Sci., 5 (1996), p. 30.

KOZEN, ed., Logics of Programs, Workshop, Yorktown Heights, New York, May 1981,
vol. 131 of Lecture Notes in Computer Science, Springer, 1982.

KRALOVIC AND D. NIWINSKI, eds., Mathematical Foundations of Computer Science 2009,
34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, Au-
qust 24-28, 2009. Proceedings, vol. 5734 of Lecture Notes in Computer Science, Springer,
2009.

KupPFERMAN, N. PITERMAN, AND M. Y. VARDI, Extended temporal logic revisited, in
CONCUR 2001 - Concurrency Theory, 12th International Conference, Aalborg, Denmark,
August 20-25, 2001, Proceedings, K. G. Larsen and M. Nielsen, eds., vol. 2154 of Lecture
Notes in Computer Science, Springer, 2001, pp. 519-535.

LA TORRE, P. MADHUSUDAN, AND G. PARLATO, A robust class of context-sensitive
languages, in 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12
July 2007, Wroclaw, Poland, Proceedings, IEEE Computer Society, 2007, pp. 161-170.

E. LADNER, R. J. LipTON, AND L. J. STOCKMEYER, Alternating pushdown automata
(preliminary report), in 19th Annual Symposium on Foundations of Computer Science,
Ann Arbor, Michigan, USA, 16-18 October 1978, IEEE Computer Society, 1978, pp. 92—
106.

LAROUSSINIE AND P. SCHNOEBELEN, A hierarchy of temporal logics with past, Theor.
Comput. Sci., 148 (1995), pp. 303-324.

Lazic, Safely freezing LTL, in FSTTCS 2006: Foundations of Software Technology and
Theoretical Computer Science, 26th International Conference, Kolkata, India, December
13-15, 2006, Proceedings, S. Arun-Kumar and N. Garg, eds., vol. 4337 of Lecture Notes
in Computer Science, Springer, 2006, pp. 381-392.

Lazic, Safety alternating automata on data words, ACM Trans. Comput. Log., 12 (2011),
p- 10.

[144] 1. LEE AND S. A. SMOLKA, eds., CONCUR ’95: Concurrency Theory, 6th International

[145] M.

[146] M.

[147] L.

Conference, Philadelphia, PA, USA, August 21-24, 1995, Proceedings, vol. 962 of Lecture
Notes in Computer Science, Springer, 1995.

LEUCKER, P. MADHUSUDAN, AND S. MUKHOPADHYAY, Dynamic message sequence
charts, in FSTTCS, M. Agrawal and A. Seth, eds., vol. 2556 of Lecture Notes in Computer
Science, Springer, 2002, pp. 253-264.

LEUCKER AND C. SANCHEZ, Regular linear temporal logic, in Theoretical Aspects of
Computing - ICTAC 2007, 4th International Colloquium, Macau, China, September 26-
28, 2007, Proceedings, C. B. Jones, Z. Liu, and J. Woodcock, eds., vol. 4711 of Lecture
Notes in Computer Science, Springer, 2007, pp. 291-305.

LIBKIN AND D. VRGOC, Regular expressions for data words, in LPAR, N. Bjgrner and

A. Voronkov, eds., vol. 7180 of Lecture Notes in Computer Science, Springer, 2012,
pp. 274-288.

226

Bibliography

[148]
[149]
[150]
[151]

[152]
[153]

[154]

[155]

[156]

[157]

[158]

[159]
[160]

[161]

[162]
[163]

[164]

K.

K.

M.

M.

A.

N.

A.

M.

R.

LobpayAa AND P. WEIL, Series-parallel languages and the bounded-width property, Theor.
Comput. Sci., 237 (2000), pp. 347-380.

Lobpaya AND P. WEIL, Rationality in algebras with a series operation, Inf. Comput., 171
(2001), pp. 269-293.

LOHREY, Safe realizability of high-level message sequence charts, in Brim et al. [55],
pp. 177-192.

LOHREY, Realizability of high-level message sequence charts: closing the gaps, Theor.
Comput. Sci., 309 (2003), pp. 529-554.

. A. LyNcH, Distributed Algorithms, Morgan Kaufmann, 1996.

. MADHUSUDAN, Reasoning about sequential and branching behaviours of message sequence

graphs, in Orejas et al. [171], pp. 809-820.

. MADHUSUDAN AND B. MEENAKSHI, Beyond message sequence graphs, in FST TCS 2001:

Foundations of Software Technology and Theoretical Computer Science, 21st Conference,
Bangalore, India, December 13-15, 2001, Proceedings, R. Hariharan, M. Mukund, and
V. Vinay, eds., vol. 2245 of Lecture Notes in Computer Science, Springer, 2001, pp. 256—
267.

. MANNA AND A. PNUELL, The modal logic of programs, in Automata, Languages and Pro-

gramming, 6th Colloquium, Graz, Austria, July 16-20, 1979, Proceedings, H. A. Maurer,
ed., vol. 71 of Lecture Notes in Computer Science, Springer, 1979, pp. 385-409.

. MANNA AND A. PNUELL, Verification of concurrent programs: Temporal proof principles,

in Kozen [136], pp. 200-252.

. MANNA AND A. PNUELIL, The anchored version of the temporal framework, in Linear

Time, Branching Time and Partial Order in Logics and Models for Concurrency, School/-
Workshop, Noordwijkerhout, The Netherlands, May 30 - June 3, 1988, Proceedings, J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, eds., vol. 354 of Lecture Notes in Computer
Science, Springer, 1988, pp. 201-284.

MANUEL, A. MuscHOLL, AND G. Puppis, Walking on data words, in Computer Science
- Theory and Applications - 8th International Computer Science Symposium in Russia,
CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings, A. A. Bulatov and A. M.
Shur, eds., vol. 7913 of Lecture Notes in Computer Science, Springer, 2013, pp. 64-75.

MARKEY, Temporal logic with past is exponentially more succinct, concurrency column,
Bulletin of the EATCS, 79 (2003), pp. 122-128.

. W. MAYR, An algorithm for the general Petri net reachability problem, SIAM J. Comput.,

13 (1984), pp. 441-460.

W. MAZURKIEWICZ AND J. WINKOWSKI, eds., CONCUR °'97: Concurrency Theory,
8th International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, vol. 1243 of
Lecture Notes in Computer Science, Springer, 1997.

L. MInskyY, Computation: finite and infinite machines, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1967.

. Mivano AND T. HAvAsHI, Alternating finite automata on omega-words, Theor. Comput.

Sci., 32 (1984), pp. 321-330.

MORIN, Recognizable sets of message sequence charts, in STACS 2002, 19th Annual Sym-
posium on Theoretical Aspects of Computer Science, Antibes - Juan les Pins, France,
March 14-16, 2002, Proceedings, H. Alt and A. Ferreira, eds., vol. 2285 of Lecture Notes
in Computer Science, Springer, 2002, pp. 523-534.

227

Bibliography

[165)

[166]

[167]

[168]

[169]

[170]

[171]

[172]
[173]

[174]
[175]

[176]
[177]

[178]
[179]

[180]

. MUscHOLL, Matching specifications for message sequence charts, in Foundations of Soft-

ware Science and Computation Structure, Second International Conference, FoSSaCS’99,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings, W. Thomas,
ed., vol. 1578 of Lecture Notes in Computer Science, Springer, 1999, pp. 273—-287.

. MuscHOLL AND D. PELED, Analyzing message sequence charts, in SAM 2000, 2nd Work-

shop on SDL and MSC, Col de Porte, Grenoble, France, June 26-28, 2000, E. Sherratt,
ed., VERIMAG, IRISA, SDL Forum, 2000, pp. 3—17.

. MuscHOLL AND D. PELED, Deciding properties of message sequence charts, in Scenarios:

Models, Transformations and Tools, International Workshop, Dagstuhl Castle, Germany,
September 7-12, 2003, Revised Selected Papers, S. Leue and T. Systa, eds., vol. 3466 of
Lecture Notes in Computer Science, Springer, 2003, pp. 43-65.

. MuscHOLL, D. PELED, AND Z. SU, Deciding properties for message sequence charts, in

Foundations of Software Science and Computation Structure, First International Confer-
ence, FoSSaCS’98, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings,
M. Nivat, ed., vol. 1378 of Lecture Notes in Computer Science, Springer, 1998, pp. 226-242.

. NEVEN, T. SCHWENTICK, AND V. VIANU, Finite state machines for strings over infinite

alphabets, ACM Trans. Comput. Log., 5 (2004), pp. 403-435.

. NIEWERTH AND T. SCHWENTICK, Two-variable logic and key constraints on data words,

in ICDT, T. Milo, ed., ACM, 2011, pp. 138-149.

. OrEJAS, P. G. SPIRAKIS, AND J. VAN LEEUWEN, eds., Automata, Languages and Pro-

gramming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, vol. 2076 of Lecture Notes in Computer Science, Springer, 2001.

. H. PApADIMITRIOU, Computational complexity, Addison-Wesley, 1994.

. PELED, Specification and verification of message sequence charts, in Formal Techniques

for Distributed System Development, FORTE/PSTV 2000, IFIP TC6 WG6.1 Joint In-
ternational Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE XIII) and Protocol Specification, Testing and Verifi-
cation (PSTV XX), October 10-13, 2000, Pisa, Italy, T. Bolognesi and D. Latella, eds.,
vol. 183 of IFIP Conference Proceedings, Kluwer, 2000, pp. 139-154.

. PNUELL, The temporal logic of programs, in Foundations of Computer Science, 1977., 18th

Annual Symposium on, IEEE, 1977, pp. 46-57.

. L. Post, A variant of a recursively unsolvable problem, Bulletin of the American Mathe-

matical Society, 52 (1946), pp. 264—269.

. PRIOR, Past, Present, and Future, Oxford University Press, 1967.

. O. RABIN AND D. ScoTT, Finite automata and their decision problems, IBM journal of

research and development, 3 (1959), pp. 114-125.

. RosSsMAN, On the constant-depth complexity of k-clique, in STOC, C. Dwork, ed., ACM,

2008, pp. 721-730.

. RupoLpPH, P. GRAUBMANN, AND J. GRABOWSKI, Tutorial on message sequence charts,

Computer Networks and ISDN Systems, 28 (1996), pp. 1629-1641.

. SAKAMOTO AND D. IKEDA, Intractability of decision problems for finite-memory au-

tomata, Theor. Comput. Sci., 231 (2000), pp. 297-308.

228

Bibliography

[181] C. SANCHEZ AND M. LEUCKER, Regular linear temporal logic with past, in Verification, Model
Checking, and Abstract Interpretation, 11th International Conference, VMCAI 2010,
Madrid, Spain, January 17-19, 2010. Proceedings, G. Barthe and M. V. Hermenegildo,
eds., vol. 5944 of Lecture Notes in Computer Science, Springer, 2010, pp. 295-311.

[182] P. SCHNOEBELEN, The complexity of temporal logic model checking, in Advances in Modal
Logic 4, papers from the fourth conference on ” Advances in Modal logic,” held in Toulouse
(France) in October 2002, P. Balbiani, N. Suzuki, F. Wolter, and M. Zakharyaschev, eds.,
King’s College Publications, 2002, pp. 393-436.

[183] P. SCHNOEBELEN, Revisiting Ackermann-hardness for lossy counter machines and reset Petri
nets, in Mathematical Foundations of Computer Science 2010, 35th International Sympo-
sium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings, P. Hlineny
and A. Kucera, eds., vol. 6281 of Lecture Notes in Computer Science, Springer, 2010,
pp. 616-628.

[184] T. SCHWENTICK AND V. WEBER, Bounded-variable fragments of hybrid logics, in STACS,
W. Thomas and P. Weil, eds., vol. 4393 of Lecture Notes in Computer Science, Springer,
2007, pp. 561-572.

[185] J. C. SHEPHERDSON, The reduction of two-way automata to one-way automata, IBM Journal
of Research and Development, 3 (1959), pp. 198-200.

[186] A. SINGH, C. R. RAMAKRISHNAN, AND S. A. SMOLKA, A process calculus for mobile ad hoc
networks, in Coordination Models and Languages, 10th International Conference, COOR-
DINATION 2008, Oslo, Norway, June 4-6, 2008. Proceedings, D. Lea and G. Zavattaro,
eds., vol. 5052 of Lecture Notes in Computer Science, Springer, 2008, pp. 296-314.

[187] A. SingH, C. R. RAMAKRISHNAN, AND S. A. SMOLKA, Query-based model checking of ad
hoc network protocols, in CONCUR 2009 - Concurrency Theory, 20th International Con-
ference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings, M. Bravetti
and G. Zavattaro, eds., vol. 5710 of Lecture Notes in Computer Science, Springer, 2009,
pp. 603-619.

[188] A. P. SisTLA AND E. M. CLARKE, The complexity of propositional linear temporal logics, J.
ACM, 32 (1985), pp. 733-749.

[189] L. STOCKMEYER, The complexity of decision problems in automata and logic, 1974.
Ph.D. Thesis, MIT, 1974.

[190] Y. Supo, J. NAKAMURA, Y. YAMAUCHI, F. OOSHITA, H. KAKUGAWA, AND T. MASUZAWA,
Loosely-stabilizing leader election in population protocol model, in Structural Information
and Communication Complexity, 16th International Colloquium, SIROCCO 2009, Piran,
Slovenia, May 25-27, 2009, Revised Selected Papers, S. Kutten and J. Zerovnik, eds.,
vol. 5869 of Lecture Notes in Computer Science, Springer, 2009, pp. 295-308.

[191] T. TAN, Graph reachability and pebble automata over infinite alphabets, in LICS, IEEE Com-
puter Society, 2009, pp. 157-166.

[192] T. TAN, On pebble automata for data languages with decidable emptiness problem, J. Comput.
Syst. Sci., 76 (2010), pp. 778-791.

[193] W. THOMAS, Automata on infinite objects, in Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), 1990, pp. 133-192.

[194] W. THOMAS, Languages, automata, and logic, in Handbook of Formal Languages, Vol. III,
G. Rozenberg and A. Salomaa, eds., Springer, New York, 1997, pp. 389-455.

[195] B. TRAKHTENBROT, Finite automata and logic of monadic predicates, Doklady Akademii
Nauk SSSR, 140 (1961), pp. 326-329.

229

Bibliography

[196] N.

[197] N.

[198] M.

[199] M.
[200] V.

[201] P.

[202] Z.

TZEVELEKOS, Fresh-register automata, in Ball and Sagiv [31], pp. 295-306.

TZEVELEKOS AND R. GRIGORE, History-register automata, in Foundations of Software
Science and Computation Structures - 16th International Conference, FOSSACS 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, F. Pfenning, ed., vol. 7794 of
Lecture Notes in Computer Science, Springer, 2013, pp. 17-33.

Y. VARDI, A temporal fixpoint calculus, in Conference Record of the Fifteenth Annual
ACM Symposium on Principles of Programming Languages, San Diego, California, USA,
January 10-13, 1988, J. Ferrante and P. Mager, eds., ACM Press, 1988, pp. 250-259.

Y. VARDI AND P. WOLPER, An automata-theoretic approach to automatic program veri-
fication (preliminary report), in LICS, IEEE Computer Society, 1986, pp. 332-344.

WEBER, Branching-time logics repeatedly referring to states, Journal of Logic, Language
and Information, 18 (2009), pp. 593-624.

WOLPER AND B. BOIGELOT, Verifying systems with infinite but reqular state spaces, in
Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC,
Canada, June 28 - July 2, 1998, Proceedings, A. J. Hu and M. Y. Vardi, eds., vol. 1427 of
Lecture Notes in Computer Science, Springer, 1998, pp. 88-97.

Wu, Commutative data automata, in Computer Science Logic (CSL’12) - 26th Inter-
national Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6,
2012, Fontainebleau, France, P. Cégielski and A. Durand, eds., vol. 16 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012, pp. 528-542.

230

Appendix A

Full Synax and Semantics of
introduced Logics

In this appendix, we give the full syntax and semantics of the main logics mentioned in this work.
All logics are defined over some set Prop of propositions and some Att of attributes.

A.1 First Order Logic on Data Words (FO™)

Syntax
Let PV be an infinite supply of position variables. The syntax of FO™ is defined as follows:

p:=Vep|zp | v |pAp|x=y]|Suc(z,y) |z <y]|pl)|=z.a~y.0b|Suc.(z.0a,y.Cb)

with € PV, p € Prop and a,b € Att.

The logic MSO™ extends FO™ by universal and existential set quantifications VX and 93X and
atomic formulas X (x) where z is a position variable from PV and X is a set variable from an infinite
supply SV. We denote the fragment of MSO™ which consists of formulas of the type 3X; ...3X,p
such that n > 0, every X; with i € {1,...,n} is a set variable and ¢ is an MSO™-formula which
does not contain any set quantification, by EMSO™.

Semantics

We give the semantics of full MSO™. The satisfaction of an MSO™ -formula is defined with respect
to a data word, a partial mapping from PV to the set of positions of the word and a partial mapping
from SV to the power set of the set of positions. Thus, let w be a data word and p € [PV — pos(w)]
and v € [SV — 2P°5(¥)] the respective mappings.

o (w,v,) VX if for all S € 20°5(%) it holds (w, v[X — S], u) | ¢

e (w,v, 1) = IX ¢ if there exists S € 2P5() with (w,v[X + S|, u) = ¢

) 3

v, i) = Jxyp if there exists i € pos(w) with (w, v, plx —i]) E ¢

) 3

o if (w,v, 1) = ¢
E e A if (w,v,p) F ¢ and (w, v, p)

w, Vv,

(w, v, p)
(w, v, p)
o (w,v,pu) EVrp if (w,v, ple — i) = ¢ for all i € pos(w)
(w, v,)
(w, v, p)
(w, v, p)

w, v

) 3

231

Appendix A. Full Synax and Semantics of introduced Logics

w,v,p) =y if p(z) = py)
w, v, 1) |= Suc(z, y) if p(y) = p(z +1)
w,v,p) o <yif p(z) < py)
;1) = p(x) if p € props(w, pu(x))
1)

= 2.0a~y.0b if val(w, u(x),@a) and val(w, u(y), @) are defined and equal

w,

w,

(
(
(
(
(
(

w, v, 1) = Suc.(z.0a,y.0b) if z < y, val(w, u(z),@a) and val(w, u(y),@b) are defined and
equal and for every z with z < z < y, it does not hold val(w, u(x),@a) = val(w, u(z), @)

o (w,v,p) b= X(2) if p(x) € v(X)

We say that a data word w satisfies an EMSO™-formula ¢ (written as w = ¢) if (w, SV 1, PV, 1) =
©.

A.2 Freeze LTL (LTLY)

Syntax

Given an infinite supply R of freeze registers, LTL'-formulas are constructed according the following
grammar:

pu=plop|eAe lee? Mo | Xl eUp | XTp | pU ¢
with r € R, p € Prop and a € Att.

Semantics

A register mapping A is a partial mapping from R to D. An LTL%-formula is evaluated with respect
to a data word w, a position i € pos(w) and a register mapping .

w,i,\) E pif p € props(w, i)
E —pif (w,i,\) @
E o1 A g if (w,i,A) E @1 and (w,i,A) E 9

A)
A)
w, i, A) Ella,-¢ if val(w,i,@a) is defined and (w, i, A[r — val(w,i,@a)]) = ¢
A)
A)

o (w,i,

wala

(
(
(
(
(
* (
(
(
(
(
(

o (w,i,\) Figq ¢ if val(w,i,@a) is defined and A(r) = val(w,i,@a)
w,i,\) = Xpifi+1 € pos(w) and (w,i+ 1,) = ¢

o (w,i,A) &= p1Ups if there is a position j € pos(w) with j > ¢ such that (w,j,\) E ¢2 and
w, k,A\) |E 1 for all k with ¢t <k < j

o (Wi, \)EFX"pifi—1>1and (w,i—1,A) ¢

o (w,i,A) |E p1 U 9 if there is a position j € pos(w) with j < ¢ such that (w, 7, \) E 2 and
w, k,\) |E @1 for all k with j <k <4

A formula ¢ is satisfied by a data word w (written as w |= ¢) if (w,1, R1) = ¢.

232

Appendix A. Full Synax and Semantics of introduced Logics

A.3 Regular Expressions with Memory (REM)

Syntax

First, we introduce register conditions. A register condition over a register set R is formulated
according to the following grammar:

c:=T|L|Teal "¢l cAc
with a € Att and r € R. Next, we define the grammar of REM-expressions over R:
ai=0]e|pldd [a-alatala’
where p is from Prop, ¢ a register condition and R’ a subset of R.
Semantics

Register conditions are evaluated with respect to an attribute-value mapping v € [Att — D] and a
register assignment A € [R — D]:

e (N ET

(v,) 2 L

(v,A) ET4a if A(r) and v(a) are defined and equal
A)
' A)

* (v,

E —cif (v,\) FEc
e (V,A)EcAeaif (v,A) E e and (v, A) E o

A REM-expression « is evaluated with respect to a data word w and a “current” register assignment
A/
A. The evaluation delivers a resulting register assignment A\’ (written as (w, \) = «).
e () is not satisfied by any pair of a data word and a register assignment
A/

(w,\) Eeifw=cand X =\

N ,
(w,\) = plc] L& if w = (P,v) consists of a single position with p € P, (v,)) | ¢, v(a) is
defined and X' = A[R' — v(a)]

A/

e (w,\) E a; - ay if w = wiwsy and there exists an assignment A; such that (wy, A) |:1 a1 and

A/
(w27)\1) ': Qo

Y PY Y

o (w,\) Eal+asif (w,\) Eajor (w,\) Eas
A,

o (w,\) Ea*if

—w=cand N =Xor
A1
— w = wyws and there is some register mapping A; such that (w1,) | @ and (we, A1) | o*
A word w belongs to the language of some expression « if there is some register assignment \ with

bV

(w,R1) F a.

233

Appendix A. Full Synax and Semantics of introduced Logics

A.4 Two-Way Path Logic (PathLog)

Syntax
Position formulas ¢ and path expressions a of PathLog are defined as follows:
pi=p|ea(~@)eb | eal@ # @)eb | ~p|p Ay
a:=c¢lp]
with p € Prop and a,b € Att. The language PathLog consists of all position formulas.
Semantics

Satisfaction of a path expression « is defined with respect to a data word w and two positions
i,7 € pos(w). We distinguish between future satisfaction (denoted as (w,i,j) E— «) and past
satisfaction (denoted as (w,i,7) F).

o (w,i,j) Eo e and (w,4,j) Ecifi=j

o (w,i,7) Eo [p] - a if there exists k with ¢ < k < j such that (w, k) E ¢ and (w, k,j) E5 «

o (w,i,J) E [¢] - a if there exists k with ¢ > k > j such that (w, k) = ¢ and (w,k,j) Ee «
Position formulas are evaluated with respect to a data word w and a position i.

e (w,i) = pif p € props(w,1)

o (w,i) = ealy ~ ?>@b if there are j <4 and k > i such that (w,i,5) Fe o, (w,i,k) E= S
and val(w, j,@a) and val(w, k, @b) are both defined and equal,

o (w,i) = @a($¥ £ B)@b if there are j < i and k > i such that (w4,) Ee a, (w,i,k) o 8
and either one of val(w, j,@a) and val(w,k,@b) is not defined or they are not equal

Evaluation of formulas of the form =@ and 1 A @9 is defined as expected. A data word w satisfies
a formula ¢ (written as w =) if (w, 1) E .

A.5 Constraint Logic (CLTLXY)

Syntax

p:=0an~ X[~ ()ob|Ca~ ()" |-p|pAp|Xp|pUp|X 0| pUp
with ¢ € N and a,b € Att.
Semantics

A CLTL*-formula is evaluated with respect to a propositionless Att-complete data word w and a
position ¢ € pos(w). We leave out the cases for boolean and temporal operators. The latter are
interpreted as in LTLY.

o (w,i) = @a~ X*@b if i + ¢ € pos(w) and val(w,i,@a) = val(w,i + £,@b)

o (w,i) E @a ~ ()@b if there is some j € pos(w) with ¢ < j such that val(w,i,@a) =
val(w,j,@b)

e (w,i) = @a ~ ()< @b if there is some j with 1 < j < 4 such that val(w,i,@a) = val(w, j,@b)

A data word w satisfies a formula ¢ (written as w | ¢) if (w,1) | .

234

Appendix A. Full Synax and Semantics of introduced Logics

A.6 Logic of Repeating Values (LRV)

Syntax

We give the full syntax of PLRV. The fragment LRV results from this logic by skipping sub-formulas
of the forms @a ~ ()~ @b and 0a % (p)~@b.

@ = @a ~ X‘@b | @a ~ (p)@b | @a o (p)Gb | Ga ~ (©) @b | @a £ (p)~ @b |
e lene| Xe | eUp | XTp | pUTp
where £ € N and a,b € Att.

Semantics

A PLRV-formula is evaluated with respect to an Att-complete data word w and a position i €
pos(w). We only give the cases for sub-formulas not contained in CLTL*.

o (w,i) = @ ~ ()@ if there is some j € pos(w) with ¢ < j such that val(w,i,@a) =
val(w,j,@) and (w,j) = ¢

o (w,i) = @a o (p)@b if there is some j € pos(w) with ¢ < j such that val(w,i,@a) #
val(w, j,@b) and (w,j) E ¢

o (w,i) = @a ~ (p)~@b if there is some j with 1 < j < 4 such that val(w,i,@a) = val(w, j, @b)
and (w, j) |= ¢

o (w,i) = 0@a ¢ ()~ @b if there is some j with 1 < j < 4 such that val(w,i,@a) # val(w, j,@b)
and (w,j) = ¢

A data word w satisfies a formula ¢ (written as w = ¢) if (w,1) | .

A.7 Basic Data Navigation Logic (B-DNL)

Syntax

The syntax of global formulas ¢ and class formulas ¢ is defined as follows:
p=pl-¢lone | (e | (M e| Coath

Y= [[YAy [(0)=y [(0)=¢ |~ea

where p € Prop, a € Att and ¢ € Z.
Next we give the syntax of global path expressions p and class path expressions 6.

p=clelp-plp+tplp

0:=c|v|0-0|0+0]0"

where ¢ and 1 are global and class formulas, respectively.
The logic B-DNL consists of the set of all global formulas.

235

Appendix A. Full Synax and Semantics of introduced Logics

Semantics

While global formulas are evaluated with respect to a data word w and a single position 4, the
evaluation of global path expressions depends on w and two positions ¢ and j. For the evaluation
of their class versions, in both cases we additional refer to some data value d. Moreover, for
path expressions we distinguish between a future and a past satisfaction relation denoted by = and
= past, respectively. Intuitively, (w, 4, j) Epest p holds if j < ¢ and w(j, . .., 7] matches p “backwards”.
Note that the following semantic definition involves mutual recursion between the different types
of formulas and expressions. We omit the boolean cases and start with global formulas.

We proceed with class formulas.
o (w,i,d) E ¢ if (w,1) E ¢ for global formulas ¢

o (w,i,d) E (8)= if there is some position j € clpos(w,d) with j > ¢ such that (w,%’,j,d) E 6
and (w, j,d) = ¢ where i’ is the minimal position in clpos(w,d) with i’ >

o (w,i,d) = (0)Z4 if there is some position j € clpos(w,d) with j < i such that (w,d’, j, d) Epast
0 and (w, j,d) = 1 where i’ is the maximal position in clpos(w,d) with i’ <4

o (w,i,d) E~@a if val(w,i,@a) =d
We now turn towards global path expressions.
o (i) Feifi=j
o (w,i,j)Epifj=i+1and (w,i) =¢
e (w,i,j) = p1- p2 if there is some k with ¢ < k < j, such that (w,4, k) = p1 and (w, k,j) = pa
(w,,5) = p1 + p2 if (w,d,5) = p1 or (w,4,j) = p2
(

w,,7) | p*ifi = j or there is a sequence ¢ = ig < i1 < ... <4, = j such that (w, ix, ix+1) E
p for every k with 0 < k <n

g

8, J) Epast pif j=1—1and (w,i) E ¢

(

(w,4,7) Epast p1 - p2 if there is some k with ¢ > k > j, such that (w,i,k) |Fpest p1 and
(’LU, k,j)):past P2
(w
(

18, J) Fpast p* if @ = j or there is a sequence i = iy > i; > > 4, = j such that

W, ik, tkt1) Fpast p for every k with 0 <k <n
We conclude with class path expressions.

236

Appendix A. Full Synax and Semantics of introduced Logics

(w,1,j,d) E ¢ if j is the immediate successor of i in clpos(w,d) and (w,i,d) = 9

(w,i,7,d) = 0105 if if there is some k € clpos(w,d) with ¢ < k < j such that (w, i, k,d) = 6;
and (w, k, j,d) = 02

(w,i,j,d) E 0* if i = j or there is a sequence i = ip < i3 < ... < i, = j € clpos(w,d) of
d-class positions such that (w, i, ig+1,d) = 0 for every k with 0 < k <n

(w, 3, j,d) Epast ¥ if § is the immediate predecessor of ¢ in clpos(w,d) and (w,4,d) = ¢

(w,1, j,d) Epast 01-02 if there is some k € clpos(w,d) withi > k > j such that (w, i, k, d) Fpast
61 and (w, k, j,d) Epast 02

(w, 4, j,d) FEpast 0% if i = j or there is a sequence i = ig > i1 > ... > i, = j € clpos(w,d) of
d-class positions such that (w, ik, igt+1,d) Epast 0 for every k with 0 <k <n

A data word w satisfies a formula ¢ (written as w | ¢) if (w,1) | .

A.8 Hybrid Temporal Logic on Data Words (HTL™)

Syntax
Let PV be an infinite supply of position variables.
pu=plrlene]-p[%e]e~zeb|on(r).p|Xe|pUp | X7¢|pU ¢

where p € Prop, a,b € Att and x € PV.

Semantics

An HTL™-formula is evaluated with respect to a data word w, a position ¢ on w and a variable
assignment y € [PV — pos(w)]. The evaluation of propositions and temporal operators is defined
like in LTLY. We give the semantics for constructs not contained in LTLY:

o (w,i,u) Eaxif plz) =1
o (w,i) EVp i (w1 o 1]) b=

o (w,i,u) E Ga~ x.0b if val(w,i,@a) and val(w, pu(x),@b) are defined and val(w,i,@a) =
val(w, u(x),@b)

o (w,i,p) = on(z).¢ if (w, p(x), 1) = ¢

A data word w satisfies an HTL™-formula ¢ (denoted as w = ¢) if (w,1,PV, 1) E .

A.9 MSC Navigation Logic (MNL)

Syntax

Formulas of MNL over some message alphabet A are constructed according to the following gram-
mar:

pi=pl-elene| XX o] Ule| E(¢Uy) | A(pUyp)
where p € {start,crt} U {snd(m),rec(m) | m € A}.

237

Appendix A. Full Synax and Semantics of introduced Logics

Semantics

Formulas of MNL are evaluated with respect to an MSC and an event. Thus, let M = (E, <1, A,)
with <I=<lproc W Dert W <Insg be an MSC and e € E and event in M.

e (M,e) = p for some p € {start,crt} U {snd(m),rec(m) | m € A} if A maps e to a type
corresponding to p and, in case of p = snd(m) or p = rec(m), the sent or received symbol is
(M,e) = X' if there is an event €/ € E with e <proc € and (M, €’) = ¢
o (M,e) |= X~y if there is an event €’ € E with € <cpy U <pgg € and (M, €) = ¢

(M,e)

e) E 1 Uty if there is a sequence e; <proc --- proc €n Of events such that e; = e,
n>1, (M,e,) E @2 and (M,e;) = ¢y foralli with 1 <i<n

(M,e) = E(p1Ugps) if there is a sequence e; <1 ... < e, of events such that e; = e, n > 1,
(M,en) = w2 and (M, e;) |E @1 for all ¢ with 1 <i<n

(M,e) E A(p1Ugs) if for all sequences e; < ... < e, of events such that e; = e and n > 1,
it holds (M, e,) = @2 and (M, e;) = @1 for all i with 1 <i<mn

For an MSC M and a formula ¢ we say that ¢ holds on M (written as M =) if (M, init(M)) = ¢,
i.e., ¢ holds at the first event of the initial process in M.

238

	Introduction
	An Example Scenario: Server and Clients
	A Preliminaries
	Basics
	Notational Conventions
	Some Tools
	Two-Way Alternating Automata
	Counter Machines
	Well-Structured Transition Systems
	Transducers and the Transduction Problem
	Post's Correspondence Problem

	Data Words, their Automata and Logics
	Data Words
	Automata for Data Words
	Register Automata
	Data Automata
	Further Automata Models

	Logics for Data Words
	First Order Logic
	Temporal Logic
	Logics based on Regular Expressions
	Further Logics

	B New Insights on Data Logics
	Motivating Questions on Data Logics
	Navigation along Data Values
	Basic Data Navigation Logic
	Decidability of Basic Data Navigation Logic
	Basic Data Navigation Logic on Infinite Data Words
	Undecidable Extensions of Basic Data Navigation Logic
	Decidable Extensions of Basic Data Navigation Logic
	Expressivity of Data Navigation Logic
	Discussion

	The Power of Storing Positions
	Hybrid Temporal Logic on Data Words
	Hybrid Temporal Logic vs. Freeze LTL
	Expressivity
	Multiple Variables
	One Variable

	Succinctness

	Hierarchy Results
	Discussion

	Automata for Two-Variable Logic
	Weak Data Automata
	Expressivity of Weak Data Automata
	Comparison with other Automata Models
	Logical Characterization

	Complexity of Weak Data Automata
	Weak Data Automata on Infinite Data Words
	Discussion

	C Models and Model Checking
	From Finite-State towards Infinite-State Model Checking - A Brief Review
	Motivating Questions on System Models and Model Checking
	Three Models - Three Views
	Notational Conventions
	Dynamic Communicating Automata
	Non-Emptiness
	State Reachability
	Dynamic Communicating Automata with Buffers

	Process Register Automata
	Non-Emptiness

	Branching High-Level Message Sequence Charts
	Non-Emptiness
	Executability

	Discussion

	New Results on Model Checking
	Model Checking of Dynamic Communicating Automata
	Model Checking with Restricted Basic Data LTL
	Model Checking with Freeze LTL

	Model Checking of Process Register Automata
	Model Checking with Freeze LTL
	Model Checking with Hybrid Temporal Logic

	Model Checking of Branching High-Level MSCs
	MSC Navigation Logic
	Model Checking with MSC Navigation Logic

	Discussion

	The Journey of Data Logics - A Glance into the Future
	Acronyms
	Appendix Full Synax and Semantics of introduced Logics
	First Order Logic on Data Words (FO)
	Freeze LTL (LTL"322B37F)
	Regular Expressions with Memory (REM)
	Two-Way Path Logic (PathLog)
	Constraint Logic (CLTLXF)
	Logic of Repeating Values (LRV)
	Basic Data Navigation Logic (B-DNL)
	Hybrid Temporal Logic on Data Words (HTL)
	MSC Navigation Logic (MNL)

