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Introduction

Flood frequency analysis is a discipline from hydrology dealing with the estimation of
river flow distributions in order to analyze the risk of floods. A flow is the amount of
water in m® per second passing through a measurement station. The ultimate objective
is to determine design characteristics of future flood protection systems, for instance, the
hight of a dam for some predefined non-exceedance probability of p € (0,1).

Official guidelines from the German Hydrological Society define a non-failure probability
of a dam in terms of the distribution function F(y) = P(Y < y) of an annual maximal
flow Y at the location of interest. Essentially they claim that the design of a dam should
be determined by some high quantile F~1(p), where usually practitioners have to deal
with probabilities p > 0.99, depending on the safety-relevance of the local environment.

In practice the unknown distribution function F needs to be estimated. Let Yi,...,Y),
denote a sample of annual maximal flows from the past n years. Practitioners typically
have to deal with sample lengths n that are rather small compared to p. Often we have
that p > 1 — 1/n, which means that F~!(p) is supposed to lie beyond the range of ob-
servations. Non-parametric sample quantiles F, !(p) = Y|up|+1:n computed from order
statistics Y7, < ... < Y}, are unsatisfactory in such situations. It is therefore of inter-
est to introduce additional assumptions on F. This is where extreme value theory comes
into play, with its statistical methods designed for inference on the distribution F at the
boundary of, or even beyond the range of observed data.

The majority of practitioners from flood frequency analysis focuses on the block max-
ima method popularized in the monograph by Gumbel [1958]: Let Z;, Z,, ... denote a
sequence of independent and identically distributed (i.i.d.) random variables and sup-
pose that some mild conditions on z — P(Z; < z) are met. Since Fisher and Tippett
[1928] it is known that, with increasing block length /, the distribution of block maxima
M, = max{Z,...,Z;} is approximated by a parametric extreme value distribution Gy.
Assuming that annual maximal flows Y are exactly extreme value distributed, F = Gg for
some unknown parameter ¢, allows us to apply parametric methods, for instance, maxi-
mum likelihood estimation @y of 8. Plugging in @y into F~! = G yields to efficient
estimates of high quantiles, provided the parametric assumption is reasonably met.
However, considering annual flows, say, Y = max{Z Jan, ZEebs -+ -1 L Dec} a8 maxima over
twelve i.i.d. monthly maximal flows Z,,,,;, within a year does not reflect a realistic sce-
nario. A river flow, just like e.g. temperature and rainfall, is subject to seasonal vari-
ability. In the cold season rivers are fed by large masses of melting snow, while warm
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periods usually are accompanied by short but heavy rainfalls. Therefore, similar to Lek-
ina et al. [2014], we feel that a parametric model Gy is not necessarily the right choice to
describe the behavior of annual maximal flows. This motivated us to take a closer look at
a semi-parametric framework from extreme value theory, referred to as the Pareto-type
distributions. These assume only a certain right-tail behavior while the reminder of the
distribution is left unspecified. A large part of this dissertation is devoted to the adap-
tion and development of familiar techniques from flood frequency analysis under this
semi-parametric framework.

The large estimation uncertainty due to the availability of relatively small sample lengths
n is a serious issue in flood frequency analysis, irrespective of whether we apply the
classical parametric or the semi-parametric framework. To remedy this problem in the
parametric framework, several authors have proposed so-called regional methods, for
instance, the Index Flood approach from the seminal work by Dalrymple [1960]. Es-
sentially, they try to increase the local estimation efficiency by gathering observations
from many measurement stations in the neighborhood, referred to as regional estima-
tion. These methods are based on the idea that stations with similar characteristics (e.g.
catchment area and mean elevation) provide somehow similar river flow distributions
called the regional homogeneity assumption. In the first main contribution of this work
we will show how to adapt this concept to the Pareto-type framework, which will then
be called regional heavy-tail homogeneity.

In some applications practitioners are interested in the joint behavior of flows at two or
more river stations. Suppose that the river at some site of interest is fed by two main
tributaries and that the subject is to control the confluence of the tributaries, for instance,
by construction of a water reservoir [Schulte and Schumann, 2015]. Since catastrophic
floods typically occur when flows from both tributaries are simultaneously exceeding
extraordinary high levels, not only the margins but also their inter-site dependence is of
interest. For the estimation of the joint distribution it is common practice to assume that
the corresponding bivariate observations from the past n time units are identically dis-
tributed, even though the local environment has changed due to human interventions in
nature, for instance, the construction of a dam upstream of one of the tributaries. Several
authors have proposed statistical tests for the detection of such change-points in the dis-
tribution. Inside the block maxima framework considered here, we are going to present
a novel method that is sensitive to changes in extreme value copulas, which will be the
second main contribution of this dissertation. Even more, we will present an extension
of the procedure that allows to ignore known changes in the marginal distributions.

The third main contribution of this work is devoted to the analysis of conditional heavy-
tail behavior and (temporal) trends in the extremes of univariate Pareto-type distribu-
tions. In flood frequency analysis a common technique for the detection of temporal
trends is the Mann-Kendall test [Yue et al., 2002]. However, this test is rather insensitive
against trends in the tail of a distribution, which is of main interest in the applications. We
will present procedures that are sensitive to trends in the relevant right tail. It is the aim
of our work to demonstrate the opportunities and the limits of modeling non-constant
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conditional tail behavior.

The dissertation is organized as follows: In the first chapter we will recapitulate some
theoretical foundations from the extreme value literature. We will introduce the families
of extreme value and of Pareto-type distributions and we will illustrate them on real data
from hydrology. We will also provide some own theoretical results.

Chapter 2 introduces the term heavy-tail homogeneity and its applications in regional
flood frequency analysis. We particularly focus on a novel semi-parametric test of re-
gional homogeneity, which, for the detection of heterogeneity in the right tails, turns out
to be superior to competing methods from the literature.

In Chapter 3 we will deal with a non-parametric test for change-point detection, which
is particularly sensitive to changes in extreme value dependence. The extension of the
test is able to ignore known change-points in the marginal series, which allows us to ex-
amine the question whether the dependence between river stations has changed or not,
irrespective of a possible change in the margins due to the construction of a dam.
Chapter 4 discusses conditional heavy-tail behavior. We present a new estimator for con-
ditional tails based on a model with tail behavior linear in covariates. We particularly
focus on detection of non-constant tail behavior, which is a common assumption in flood
frequency analysis even in non-stationary approaches [see e.g. Cunderlik and Burn, 2003;
El Adlouni et al., 2007; Villarini et al., 2009, and many more].

Further theoretical background from the literature and some own results are summarized
in an appendix.
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Chapter 1

Mathematical preliminaries and a
first data application

The first chapter introduces the reader to the basics of our modeling framework. Both sec-
tions are devoted to certain families of distributions, which play a central role in extreme
value statistics. We begin with the family of multivariate extreme value distributions and
the related concept of extreme value dependence. In the second section we will introduce
a semi-parametric family of univariate heavy-tailed distributions.

A convenient way to describe any multivariate distribution function F(y) = P(Y <'y) of
arandom vector Y = (Yi,...,Yy)" is via a characterization of its margins Fi(y) = P(Y; < y),
j=1,...,d, and its inter-site dependence. One common way of describing dependence
is based on the following result dating back to the seminal work by Sklar [1959]:

Theorem 1.1 (Sklar’s theorem)

Let C : [0,1] — [0,1] be a d-dimensional distribution function with uniform margins called
copula and let Fy,...,F; : R — [0,1] be univariate distribution functions. Then the function
F:R? — R defined by

Fy) =C(F(y),--- Fi(ya)), y = (y1,...,va) €RY, (1.1)

abbreviated F = C(Fy, ..., Fy), is a distribution function on RY.

Conversely, for every distribution function F on R? there exists a copula C and margins Fi, ..., Fy
such that (1.1) holds. If all margins are continuous, then the expression in (1.1) is unique and the
copula is the distribution function

C(u) =P(U <u), ue0,1]%, (1.2)
of the probability transform U = (Fy (Y1), ..., Fs(Yy))".
This result allows us to introduce the family of multivariate extreme value distributions

via a characterization of all possible margins and all possible copulas, which will be car-
ried out in the next section.
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1.1 Multivariate extreme value distributions

Multivariate extreme value distributions play a central role in extreme value statistics.
Their importance in the analysis of extremes is comparable with that of the multivariate
normal in connection with the analysis of mean values.

Definition 1.2 (MEV distributions)

Let F : RY — [0,1] be a d-dimensional distribution function and suppose that there exist
vector sequences a, = (dy1,...,0,4) € lR‘i, by, = (by1,...,bpyg) € R, n € N,and a
distribution function G : RY — [0, 1] with non-degenerate margins such that

r}l_l;l’.}o F" (ﬂn121 + b1, 00424 + bnd) = G(Z) (1.3)

holds for all continuity points z = (z1,...,z4)" of G. Then we say that F lies in the max-
imum domain of attraction of the maximum attractor G. G is also called (multivariate)
extreme value distribution (for 4 > 2). Accordingly, for d > 2, margins and the copula
of maximum attractors G are called univariate extreme value distributions and extreme
value copula, respectively.

The term extreme value stems from the fact that the left-hand side of (1.3) describes the
distribution of a componentwise maximum

M, — (maxlgign(zllw o Zp1) — bnll.”, maxi<i<n(Zid, -, Znd) — bnd)/ (14)
an1 And
over a standardized block of n ii.d. random vectors Z; = (Zj,...,Zy), i = 1,...,n,

with distribution function F(z) = P(Z; < z). Therefore, multivariate extreme value
distributions are defined as the only possible non-degenerate limits of such component-
wise maxima. Surprisingly, every univariate extreme value distribution can be uniquely
identified by a three-dimensional parameter vector 6 = (y,0,¢)":

Theorem 1.3 (Fisher and Tippett [1928])
Let G be a univariate extreme value distribution function, that is, the right-hand side of (1.3) with
d = 1. Then there exist y € R, 0 € Ry and ¢ € R such that

oV
G(z) = G%grg(z) =exp<{ — [1 + CU] ,z2€N00, (1.5)

where the support of G is given by 1,5, = {z€ R: 1+¢(z—p)/0c > 0}. For { = 0, the
distribution function is interpreted as the limit

. Z —
G]l,(T,O(Z) - %1_?(1) G;[,g'lg(z) — EXp {_ eXp <U‘I/l> } , zZ & :[R.

The set {Gy oz : (1,0,8) € R x Ry x R} is called the generalized extreme value (GEV)
family with parameters y, o and ¢ called location, scale and shape, respectively. The
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family is called general, because it unifies the Fréchet (¢ > 0), the Gumbel ({ = 0) and
the Reversed-Weibull (¢ < 0) sub-families of extreme value distributions.

From Theorem 1.3 we have learned that every margin of a multivariate extreme value
distribution is part of the three-parametric GEV family. It turns out that the family of
extreme value copulas cannot be parameterized by a finite-dimensional set of parame-
ters. Still, there is some reduction of dimensional complexity possible, which is precisely
formulated in a characterization due to Pickands [1981].

Theorem 1.4 (Max-stability and Pickands’ characterization)
(i) A d-dimensional copula C is an extreme value copula if and only if it is max-stable, that is, if

n
{C(u%/",...,u;/")} = C(u) forall u= (uy,...,uy) €[0,1)%, n>1. (1.6)
(ii) For every d-dimensional extreme value copula C there exists a convex function A : Sj_1 —

[1/d,1] defined on the (d — 1)-simplex Sy_1 = {(ta,...,t;) € [0, 19 : h+...+t; < 1}
and satisfying max{1 — 2?22 tito,... ta} < Alty,...,t5) < 1such that

d log us log u,
C(u)zexp{( logu'> -A<,..., (1.7)
]g / 27:1 log u; 2721 log u;

holds for all u = (uy, ..., uy)" € [0,1]%. In case of d = 2, the converse is also true: Every convex
function A : [0,1] — [1/2,1] satisfying max{1 — t,t} < A(t) < 1 defines a 2-dimensional
extreme value copula via equation

C(u,v) = exp {log(uv) A <101;Eguz)>> } , u,v € [0,1]. (1.8)

Theorem 1.4 (ii) states that, provided our variables are extreme value dependent, it suf-
fices to consider the (d — 1)-dimensional surface {(t, A(t)) : t € S;_1} embedded in
[0,1]’7’ instead of the usual copula characterization, which is a d-dimensional surface
{(w,C(u)) : u € [0,1]} embedded in [0,1]4"'. This reduction of dimensional com-
plexity and a few other helpful properties of extreme value copulas pay off in finite-data
applications, for instance, in certain change-point problems presented in Chapter 3.

For an illustration in case of d = 2, an exemplary extreme value copula is depicted in Fig-
ure 1.1 via its (left) distribution function C and its (right) Pickands dependence function
A. The dashed line visualizes the restriction max{1 —t,t} < A(t) < 1. Independence
(resp. complete dependence) corresponds to the upper (resp. lower) boundary with
A(t) = 1 (resp. A(t) = max{1 —t,t}). Loosely speaking, the more the graph of A sags
the stronger the amount of extreme value dependence.

Remark 1.5 (Parametric modeling of extreme value dependence)
The Gumbel-Hougaard family {Cy : ¢ € [1,00]} of d-dimensional extreme value copulas
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Figure 1.1: (Left) The copula distribution function (u,v) — C(u,v), C : [0,1]> — |
and (right) its corresponding Pickands dependence function t — A(t), A : [0,1
[1/2,1] of an exemplary bivariate extreme value copula.

is defined through its Pickands dependence functions by

d 1/¢ d
Ag(t) = Ag(ta, ..., tg) = {Zt;?} S h=1-Yt, (1.9)
j=1 j=2

and where A (t) = limy o Ag(t) = max{1 — 2?:2 ti ts,...,ts}. Note that A; and A
correspond to the upper and lower boundaries representing independence and complete
positive dependence, respectively. A drawback of this family is that it only covers sym-
metric (or exchangeable) models in the sense that Cy(u1,...,us) = Co(tizq), .-, Un(a))
for every permutation 7t on {1,...,d}. For instance, this implies that all pairwise depen-
dencies follow the same bivariate copula Cy(u,v,1,...,1), which is a severe restriction
for many applications.

Khoudraji [1995] proposed a simple device that is used for an asymmetric extension of
symmetric copula models: For a = (ay,...,a;) € [0,1]¢ we define

Cag(u) = u?- Cy(u'™?), u € [0,1]%, (1.10)

where, for notational simplicity, wesetl —a = (1—ay,...,1—a4) and u® = (u7', ..., ugd)’.
It is easy to verify that (1.10) indeed defines a d-dimensional copula (a distribution func-
tion with uniform margins). More generally, for arbitrary d-dimensional copulas C;, C>
and a € [0,1]¢ we have that their mixture C(u) = C;(u?) - Co(u'~?) defines a valid cop-
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ula. Even more, if C; and C; are extreme value copulas, so is their mixture C. This is
easily verified by the max-stability property of extreme value copulas stated in (1.6).

1.1.1 Estimation of bivariate extreme value distributions

From the previous section we have learned that every multivariate extreme value distri-
bution is determined by the parameter vectors of its GEV margins and by its Pickands
dependence function. For simplicity and in view of Chapters 2 and 3, we will restrict
ourselves to the case of d = 2. Estimation of Pickands dependence functions in arbitrary
dimensions is similar and can be found in Gudendorf and Segers [2011].

Let us first start with the estimation of a univariate extreme value distribution. Suppose
that Z,,...,Z, is a sample of independent and identically GEV (6 )-distributed random
variables with parameter vector 6y = (4o, 00,80)’ € R x R4+ x R. A maximum likelihood
estimator of 6y over ® C R x R4 x IR is defined by

n
Omr = argmax [ [ fo(Z:), (1.11)
9c® izl

where fy is the density of the GEV distribution and 6 lies in the interior of ®. The first
rigorous proof of the asymptotic normality of 01 has been published in a recent article:

Theorem 1.6 (Asymptotic normality of the ML estimator; Biicher and Segers [2016])
Let (Z;)i>1 denote a sequence of independent and identically GEV (8y) distributed random vari-
ables and let ® C R x R4 X (—1,00) be a compact set with 6y in its interior. Then, for n — oo,

we have that Oy 2% 0.
Furthermore, if ® C R x Ry x (—1/2,00), then, for n — oo, we also have that

Vi (O — 60) - N (o, 1;01) ) (1.12)

where Iy, = — [ 752108 fo(2)|o=s, - fo, (2) dz € R3*3 is the Fisher information matrix of the
GEV distribution [see Beirlant et al., 2006, p. 169 for an explicit expression of Ig].

We now turn to the estimation of the Pickands dependence function A : [0,1] — [1/2,1].
Let (X,Y)’ denote a random vector with P(X < x,Y < y) = C(F(x),G(y)) for all
(x,y)! € R?, whose extreme value copula C is defined through A via equation (1.8).
Let U = F(X), V = G(Y) and recall that C(u,v) = P(U < u,V < v), (u,v) € [0,1]2
Then, for arbitrary t,u € [0,1], we have that

PP (max {F(x)l/(lff),c(y)l/f} < u) =P (u <ul™tv< uf> = C(u"t,ut) = uh®

with the convention u!/? = limp o u!/* = 0 for u € (0,1). This implies that

A(t)

S(t) = E [max {F(X)l/(lft)lc(y)l/t}} _ /01 A(t) - ut® dy = LA
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which, in turn, gives us

A(t) = 15(;)(19) (1.13)

Let (X;,Y;), i = 1,...,n, denote independent copies of (X,Y)’. Since S(t) is simply an
expected value, equation (1.13) suggests to estimate A via A, (t) = S,(t)/(1—S,(t)) with
Su(t) = 1Y max {Uil/(lft),Vil/t}, U; = F(X;) and V; = G(Y;). Because in practice the
margins F and G are unknown, we define the so-called pseudo observations (l:ll-, Vl)’ ,
i=1,...,n with

1 & 1 &

A- = < ; A' - < / .
U; o }:1 1(X, <X;) and V; p— }:1 1(Y,<Yj), (1.14)
and finally set
5 Su(t) e 1 ~1/(1=1) 01/t
Ay(t) = —~2— with §,(t) = =) u. SVilie, te [0,1]. 1.15
n(t) 1= 8,(t) wi n(t) nilmax{ ; f } [0,1] (1.15)

A, as defined in the last equation is an alternative representation of the madogram esti-
mator from Naveau et al. [2009]. We will thus call A, the madogram estimator of A.

An alternative, so-called endpoint-corrected CFG-estimator studied in Genest and Segers
[2009] is probably the most recommended estimator of A in the literature, which has
proven to be a good choice in many comparative studies [Genest and Segers, 2009; Biicher
etal., 2011]. From our own simulations reported in Appendix A.2 we feel that the mado-
gram estimator is less efficient but still pretty competitive. However, what is helpful for
the method presented in Chapter 3 is that the madogram estimator does not need to be
end-point corrected and its asymptotic analysis is simpler than that of the CFG-estimator.

Remark 1.7

Note that pseudo observations in (1.14) are defined in accordance with U; = F(X;) and
Vi = G(Y;) with margins F and G replaced by their empirical counterparts. The scale
1/(n+1) instead of 1/n is used to keep pseudo observations away from the boundaries
of [0,1]?. Since we are dealing with multivariate extreme value distributions, one might
be also willing to replace the margins by parametric estimates of GEV distributions in
the definition of pseudo observations. However, it turns out that estimation of A via
empirical marginal distributions can be more efficient, even if the margins F and G are
completely known [Genest and Segers, 2009, Sec. 4.2]. If, in addition, one considers the
fact that the estimation of GEV parameters is associated with large uncertainty, it is rather
advisable to drop the marginal information, that is, to use (1.14), for the estimation of A.

Proposition 1.8 (Asymptotic normality of the madogram estimator)
Suppose that (X;,Y;)’, i > 1, is a sequence of i.i.d. extreme value dependent random vectors whose
distribution function is continuous and whose Pickands dependence function A is continuously
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differentiable on (0,1). Then, in the space {*([0,1]) equipped with the uniform metric de and
for n — oo, we have that

Vi (A, —A) 2 ({1—|—A(t)}2-/01 CL(u, ut) du> , (1.16)

te[0,1]

where C2 = C¢(0,1, ) is defined in Theorem A.8 of Appendix A.4 with d = 2.

For further details on weak convergence in function spaces ¢*(I) and on empirical copula
processes we refer to Appendix A.1 and A.4, respectively. Proposition 1.8, first proven
in Biicher et al. [2015], is a direct consequence of Theorem 3.4 from Section 3.5.1. For
illustrative purpose, I also give an alternative proof in Appendix A.2, which relies on
the functional delta method and on an auxiliary result from Kosorok [2008] concerning
Hadamard-differentiability.

1.1.2 Data application part one

We conclude Section 1.1 with the analysis of a data set from the river stations Lichten-
waldel and Wechselburg1 located at the Mulde river basin in Saxony. Figure 1.2 displays
a two-dimensional series (X;,Y;)’, i = 1,...,n, of annual maximal flows observed for
n = 103 consecutive years (1910-2012). On the left hand side we see the typical heavy-
tailed behavior of the marginal series. The inter-site dependence is illustrated on the
right hand side via a scatter plot of pseudo observations (Hi, ‘71), i=1,...,n,according
to (1.14).

Recall from the introduction of this thesis that the observations can be viewed as com-
ponentwise maxima over blocks of, say, 12 bivariate vectors of monthly maximal flows.

Marginal series Pseudo observations
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Figure 1.2: (Left) Annual maximal flow series for the period 1910-2012 measured at the
neighboring stations Lichtenwaldel and Wechselburgl. (Right) The corresponding scat-
ter plot of pseudo observations.
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GEV-fit for Lichtenwaldel
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Figure 1.3: (Left) Return level plot for the Lichtenwaldel series of annual maximal flows
and (right) A-plot for the bivariate series of annual maximal flows in Lichtenwaldel and
Wechselburgl. The observation period covers the years 1910-2012.

Thanks to Theorems 1.3 and 1.4, we may conclude that our sample (approximately) fol-
lows a bivariate extreme value distribution H = C(F, G) with margins F ~ GEV (uy, 01, 1)
(Lichtenwaldel) and G ~ GEV (uy, 02, ¢2) (Wechselburgl), and extreme value copula C
defined through its Pickands dependence function A by equation (1.8).

We fitted both marginal series to GEV distributions. The ML-estimates are

(fi1,01,&) = (150.05, 81.30, 0.23) and ({2, 0, &) = (148.68, 73.48, 029)  (1.17)

with estimated standard errors (9.16, 7.49, 0.09) and (8.34, 6.97, 0.09) obtained from the
asymptotic result in (1.12). Our focus lies on the shape parameters ¢; and ¢,. Larger
shape values can be interpreted as a greater risk of extraordinary high floods like in the
year of 2002. Positive shapes { > 0 mean that we are in the so-called Fréchet domain
with a heavy tail to the right which is further specified in Section 1.2.

Figure 1.3 depicts estimates of (left) the first margin and (right) the Pickands dependence
function. The visualization of the second margin is omitted. The points and solid line
in both of the plots represent empirical values and estimates of the joint distribution,
respectively. More specifically, the left-hand side of Figure 1.3 is called a return level plot
with points and solid line defined by

n+1 o\
< X >i1,,..,n and (T, 2 1(1—1/T))

n_1+1’ rn (118)

Te(1, 500)

respectively, where Xj., < ... < X, is the ordered sample. In hydrology it is convenient
to visualize discharge distributions F via their return level curves U(T) = F~1(1—1/T).
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This approach points attention to the relevant upper part of the distribution and it brings
with a natural interpretation: A flood with a flow level of at least U(T) is expected to
occur ones per T time units, for instance, a flood is called Jahrhundertflut if its level ex-
ceeds U(T) with T = 100 years. The order statistics X;,, = U, (T},,) can be considered as
empirical return levels for return periods T;, = (n+1)/(n—i+1),i=1,...,n.

For the left-hand side of Figure 1.3 we set f ~ GE V(p, 0, 61) with solid line correspond-
ing to the curve T — F~!(1 — 1/T) and we note that the return periods T on the x-axis
are spaced on log-scale. A solid line that is close to the points representing the empirical
return levels is interpreted as a good fit of the hypothetical model to the observations. In
the case of the Lichtenwaldel data, the only point far away from the line corresponds to
the largest observation. Interestingly enough, the value X, = 1250 with empirical re-
turn period of T, = n + 1 is not within the 95%-confidence interval CI = (514.4, 1133.8)
obtained from the estimator

A

_ N &
B p) =i+ g { (- loglp)) ™ -1

for the p-quantile for fixed p =1 —1/(n+1) ~ 0.99. The confidence interval is obtained
from the asymptotic normality of the ML estimator (Theorem 1.6) and the delta method.
The right-hand side of Figure 1.3 is a diagnostic tool called A-plot [Cormier et al., 2014],
which can be used to visually examine the extreme value dependence assumption. There
the solid line corresponds to the graph G ; = {(t,A(t)) : t € [0,1]} of the madogram
estimator A from (1.15). For the points in the A-plot consider the set

e - { sy SEstes) - woeion)

defined for arbitrary copulas C. If C is an extreme value copula with Pickands depen-
dence function A, that is, if we have that (1.8) holds, then the set M coincides with the
graph G, of A. On the other hand, if C is not an extreme value copula, then the set M¢
will not coincide with the graph of any Pickands dependence function. The points in the
A-plot are defined similar to those in M¢ but with (1, v) and C replaced by their empiri-
cal counterparts (U;, V;) and C,, i = 1,...,n. If the extreme value dependence is satisfied,
we should expect that most of the points are close to G 4. Besides this visual examination,
we also carried out so-called tests of extreme value dependence [Biicher and Kojadinovic,
2014]. None of the three tests implemented in the copula package [Hofert et al., 2015]
rejected the null at a nominal level of 5%.

Let us again turn to the estimation of marginal distributions. We initially argued that
annual maximal flows are (approximately) GEV distributed, because they can be viewed
as maxima over blocks of 12 monthly maximal flows and because of Theorem 1.3. The
catch to this matter is that Theorem 1.3 requires that, say, the 12 monthly maxima are in-
dependent and identically distributed. We found no evidence against the independence
assumption, but, as illustrated in Figure 1.4 with the Lichtenwaldel data set, there are
plausible reasons to drop the idea of identical monthly distributions.

Each of the box plots in Figure 1.4 is computed from n = 103 monthly maximal flows of
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Monthly maximal flows at Lichtenwaldel (1910-2012)
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Figure 1.4: Box plots of monthly maximal flows observed at Lichtenwaldel for each of
the 12 months. The y-axis is given on log-scale.

a specific month, with y-axis on log-scale. It seems that the location (median) and dis-
persion (interquartile range) of the boxes follow a smooth seasonal pattern, for instance,
with large location but small dispersion in the spring and vice versa in the summer. Be-
sides the evidence from data exploration, there are also physical reasons for the seasonal
variability. In the first months of the year the rivers are fed by large masses of melting
snow, which increases the mean flow behavior and sometimes causes winter floods. The
physical mechanism behind summer floods is completely different. These typically occur
after short but heavy rainfalls, e.g., the severe flood in the summer of 2002.
Summarizing everything up, annual maximal flows from the Mulde river basin follow
heavy-tailed distributions, with a rather strong dependence between stations. In hydrol-
ogy the most popular approach for estimating, say, high quantiles of annual maximal
flow distributions is based on the GEV assumption stemming from Theorem 1.3. The lat-
ter requires identically distributed observations within blocks, which is reasonably not
justified for annual maximal flows. This motivated us to consider estimation of flow
distributions under less restrictive, semi-parametric model assumptions.

1.2 A semi-parametric concept of heavy-tailed distributions

The statistical literature provides different characterizations of the term heavy-tailed. A
definition popularized in extreme value theory calls the right tail of a distribution func-
tion F to be heavy, if, for y — oo, its right tail decay F(y) = 1 — F(y) is of polynomial
order. More formally, we say that a distribution function F has a heavy tail to the right, if
it belongs to the family of Pareto-type distribution.
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Definition 1.9 (Slowly varying functions and Pareto-type distributions)
(i) A measurable function L : R4 — IR is called slowly varying (at infinity) if

im LOY)
tlg?o Tt) =1 forall y > 0. (1.19)
(ii) A univariate distribution function F with unlimited support to the right is called a
Pareto-type distribution with extreme value index 7y > 0, if there exists a slowly varying
function L such that

Fly)=1-F(y) =y /7 L(y), y > 0. (1.20)

The characterization in (1.20) is called semi-parametric, since the parameter -y is of core
interest, while the distribution cannot be characterized completely by a finite-dimensional
parameter due to the presence of the function L. The extreme value index -y controls the
heaviness of the right tail (the polynomial degree of tail decay), with finite (resp. infinite)
r-th moment [~ y" dF(y) for v < 1/r (resp. y > 1/7).

The family of Pareto-type distributions is a very rich class containing many common
distribution families. E.g., Student’s t, with v = 1/v, Fisher’s F,, ; with v = 2//, the
Burr(c,r) with v = 1/(cr), the generalized extreme value GEV (yu, o, ¢) and generalized
Pareto distributions GP(c, ) with positive shape { = <. Furthermore, the family of
Pareto-type distributions coincides with another important class from extreme value the-
ory [de Haan and Ferreira, 2006, Theorem 1.2.1]:

Theorem 1.10 (Fréchet maximum domain of attraction)
Let F denote a univariate distribution function. The following two statements are equivalent:

(i) F lies in the maximum domain of attraction of an extreme value distribution G with positive
shape ¢ > 0 (Definition 1.2; Fréchet domain)

(ii) F belongs to the family of Pareto-type distributions.

Furthermore, the extreme value index -y of F coincides with the shape ¢ of G, that is, ¢ = 7.

The exponential and the normal distribution are typical examples for normal-tailed dis-
tributions. These have a right-tail decay of exponential order. The log-normal distri-
bution, which is not of Pareto-type, is also called heavy-tailed by many statisticians, al-
though all its moments are finite. Its right tail decay can be regarded as somewhere be-
tween exponential and polynomial. We will continue to call distributions F heavy-tailed
to the right, only if they are of Pareto-type.

Typical textbook examples of slowly varying functions are L(y) = log(1 + y) or simply
a constant function L = ¢ > 0. They are slower than polynomials in the sense that
y*L(y) — o0 and y*L(y) — 0 for y — co and any a > 0 [Resnick, 1987, Prop. 0.8]. It
is easily seen that if L; and L, are slowly varying, so is their product L; - L, and their
quotient Ly /L. With a bit more effort we also show that L1 + L, is slowly varying:
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Let y > 0 be fixed. From the triangular inequality, because of L1, L, > 0 and because L;
and L, are slowly varying, we obtain

Li(ty) + La(ty) ‘ <
Ly(t) + La(t) -

Li(ty) — Ll(t)'
Ly(t) + La(t)

Lo(ty) — Lz(f)’
Li(t) + La(t)

La(ty)
La(t)

Ly(t)

for t — co. This implies (1.19) for L = Ly + L,.

The previous properties of slowly varying functions are used by Tucker [1968] to prove
that sums X; + ... + X; over independent and Pareto-type distributed random variables
X; with extreme value index <y; > 0 are again Pareto-type distributed, where the extreme
value index 7 of the sum is obtained from maximization ¢y = max{y1,...,74}-

We prove the same statement for maxima Y = max{Xy,..., Xy }:

< ’Ll(fy) _1‘

—1‘—>0

Corollary 1.11

Suppose that the independent random variables X; are Pareto-type distributed with extreme value
index v; > 0,j = 1,...,d. Then their maximum Y = max{Xy,..., Xy} is also Pareto-type
distributed with extreme value index v = max{y1,...,va}

Proof. Since max{Xj, ..., X;} = max{X;, max{Xy, ..., max{X;_1, X;}...}}, the general
result immediately follows from the case of d = 2. Let W = X;, S = X5 and

Fy(y) =PW<y)=1-y /"Li(y) and Fs(y) =P(S<y)=1—y /"Ly(y)

denote the Pareto-type distribution functions of W and S, respectively. Then, from the
independence of W and S, we obtain

Fy(y) = P(max{W,S} <y) = Fw(y) - Fs(y) = 1—y /7 L(y),

where we set v = max{v1, 72} and

Li(y) +y"/ 77V Ly(y) —y V2L (y) La(y) , if 11 > 72
L(y) =4 Li(y) + L2(y) =y 7Li(y) L2(y) Jifyi =7 .
Lo(y) +y"/ 7" VML (y) —y V"ML (y)La(y) , if 11 <72

We will show that L is a slowly varying function: In case of v = 7; > 7, (and similar for
the third case) we have that

L(ty) =14+ (ty)l/'yfl/'yz _ (ty)fl/”Lz(ty) —51

fort — oo and all y > 0, since v > 7, and s~1/72L(s) — 0 for s — co. This implies that

L(ty) _ Lity) L(ty) Li(H)

L) — Lu(t) Li(ty) L(D)
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fort — oo and all y > 0. In case of v = ;1 = 72 we have that

L(ty) 1 -1/ Li(ty)La(ty)
R A e Es AR

fort — coand all y > 0, since L = Ly - Lo/ (L1 + L) is again a slowly varying function
and because s~!/7L(s) — 0 for s — co. This implies that

L(ty) _ Li(ty) + La(ty) L(ty) L+ L)
L(t) Li(t) + Lo(t)  Lq(ty) + La(ty) L(t)
fort = coand ally > 0. O

Annual flows Y considered in our applications can be regarded as maxima over winter
and summer maximal flows W and S, respectively. From Corollary 1.11 we have learned
that the tail behavior of annual flows is determined by that of the season with the heaviest
tail, which, for the Mulde river basin in Saxony, is supposed to be the summer season.

1.2.1 Hill’s estimator and Weissman’s extrapolation formula

Equation (1.20) is a pure characterization of the right tail behavior of F in the sense that
it says absolutely nothing about the behavior of F restricted to the interval (—oo, u], for
arbitrary constants u € IR. It thus might be not a big surprise that statistical inference
on the extreme value index 7y of a Pareto-type distribution F should be based only on the
largest observations representing F on the tail region (1, o). Roughly speaking, provided
there are no further assumptions, the bulk of the observations representing F on (—co, u]
contains no information on vy at all.

Let Y be a random variable with distribution function F(y) = P(Y < y) defined in (1.20)
and let u > 0 be a real number. The random variable Y /u satisfying Y > u is called
relative excess over the threshold u. From relation (1.20) it immediately follows that

F(uz)
F(u)

In words this means that relative excesses over large thresholds u approximately follow
a simple parametric law, which depends only on the extreme value index < of F. The
limit P, is called Pareto distribution function commonly parameterized Pareto(a) with
parameter « = 1/ > 0, the so called tail index. Note that v = [ log(z) dP,(z), which
suggests to estimate -y from arithmetic means of log-transformed excesses:

— 1z Y7 =P, (z) foru — oo. (1.21)

]P(ZSZ\Y>M>:1—

Let Y3,...,Y, be independent copies of Y. Hill’s popular estimator of - [Hill, 1975] is
defined by

1 k
k,n E Z ( noitl n) s Ukn = Yn—kns (1.22)

i=1 Uk n
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for integers k < n and where we denote order statistics by Y1, < ... < Y. Hyy,
is interpreted as a peaks-over-threshold (POT) approach with peaks Y, ki1, ---, Yun
over the random threshold uy, = Y},_k.,, and with estimation based on maximization of
an approximate likelihood function. This approximation considers the relative excesses
Yy kt1m/ Ukns - - - Yun/ Uk, as independent and exactly distributed from a limit with dis-
tribution function P.,. From this inaccuracy, a bias arises in Hill’s estimator, which heavily
depends on the tuning parameter k and which may vanish asymptotically (under appro-
priate conditions) but still is a big issue in finite-sample applications. The following result
is treated in full detail in Resnick [2007, Sec. 9.1.2].

Theorem 1.12 (Consistency of Hill’s estimator)
Suppose that (Y;);>1 is a sequence of i.i.d. variables with distribution function F(y) = P(Y; < y)
defined in (1.20) and let k = k,, denote a sequence of integers satisfying k — co and k/n — 0 for

n — oo. Then we have Hy ,, LR . Furthermore, assume that

lim vk (%F (Fr—k/m)-y) -y V") =0 (1.23)

n—oo

locally uniformly in (0, co] and

lim vk 100 (EF (P—1(1 —k/n) -s) - s‘”“’) ”:‘; =0. (1.24)

n—oc0 k

Then we also have that \/k (Hy.,, — ) B N(0, 7).

Remark 1.13

Assumptions 1.23 and 1.24 can be substituted by a so-called second order regular vari-
ation condition such that the asymptotic normality of vk(Hy, — ) holds with a not
necessarily centered limiting distribution [de Haan and Ferreira, 2006, Theorem 3.2.5].
No matter what condition is used, they all rely on detailed information on the tail of the
distribution which is however usually not available in practice.

The estimation of -y is only a means to an end. In applications the quantity that is actually
of interest is a quantile F~1(p) or, equivalently, a return level U(T) = F~1(1 —1/T) of
F for rather high probabilities p € (0,1) or long return periods T > 1. In terms of the
return level function U, equation (1.20) is equivalent to

tlgg sz[((t:)) =s7 forall s > 0. (1.25)
Suppose that we have collected n observations from F and that we are interested in the
return level U(T) of a period of T = 2 - n time units, which is the double of the available
observation length 1. Classical non-parametric quantile estimates £~1(p) = Y|up|+1:n aTE
unsatisfactory in situations, where it is reasonable to assume that the true quantile F~!(p)
lies beyond the range of observations, i.e., F -1 (p) > Yu:. They can be used to estimate
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a return level U(t) of, say, a period of t = 0.2 - n within the range of the data. If we now
look again at relation (1.25), we may hope that U(2n) ~ U(0.2n) - s7 for s = T/t = 10.
This is exactly the idea of the high quantile estimator by Weissman [1978]: For a sample
Yi,...,Y, from F, an integer k < n and probabilities p > 1 — k/n we set

¥
ﬁfl(p) = ﬁ’l(p; k,n,9) = uy, - <n(1k—p)> , (1.26)

where 4 is any consistent estimator of v, for instance, 4 = Hy ,. Note that uy, = Y, k.,
is a classical non-parametric estimator of U(t) with t = n/k. Equation (1.26) is also
interpreted as extrapolation beyond the range of observations, with 4 controlling the
extrapolation width.

The following result from de Haan and Ferreira [2006, Sec. 4.3] shows that the asymptotic
behavior of Weissman’s estimator stands in relation to that of estimator § used for the
extrapolation.

Theorem 1.14 (Consistency of Weissman'’s estimator)
Suppose there exists a real p < 0 and a function R satisfying lim;_, R(t) = 0 such that

limw—swsp_1 forall s >0 (1.27)
two  R(t) 0 ’ ’

In addition, assume thatk =k, — o0, k/n — 0, \/ER(n/k) — A € Rand that

o Ukn . , D /
\/%(7—7, U(n/k) 1) — (T, Z2)

for n — oo, where (I', Z)" is jointly normal. Then, for any sequence of probabilities p = py
satisfying n(1 — p)/k — 0andlog(n(1 — p))/vk — 0 for n — o, we have that

A

vk <F_1(P)
log {k/(n(1—p))} \F1(p)

where F~1(p) is defined in (1.26).

- 1> Lor, (1.28)

1.2.2 Data application part two

Let us again look at the Lichtenwaldel series of annual maximal flows X;, i = 1,...,n,
displayed in the top left-hand corner of Figure 1.2. In order to apply the estimation tech-
nique from the previous subsection we need to select first an integer k < n represent-
ing the tail sample size (number of relative excesses). For that purpose we use a visual
method called Hill plot, which displays the graph k — Hy,, k € {1,...,n —1}. Recom-
mended choices of k are those who lie in an approximately constant (stable) part of the
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Figure 1.5: Hill plots for the series of annual maximal flows from the stations (top) Licht-
enwaldel and (bottom) Streckewalde.

Hill plot.

Figure 1.5 shows Hill plots for two series of annual maximal flows. The top one corre-
sponds to station Lichtenwaldel. There we can identify a pretty wide stable part in the
graph around k = 40, with corresponding estimate of -y of around 0.4. For illustrative
purpose, we also present the Hill plot of station Streckewalde, where it is hard to identify
any reasonably stable part in the graph of its Hill plot. In such cases, we might use al-
ternatives to the usual Hill plot [Drees et al., 2000], or we might use the following simple
rule based on the GEV distribution. Suppose that annual maxima are (approximately)
GEV distributed. Then, from Remark 3.1 in Gomes and Pestana [2007], we can take

k= [2n2/3] (1.29)

in Hy ,, which is asymptotically MSE-optimal for GEV distributions with shape ¢ # 1.
Clearly, this GEV-based rule is inconsistent with our intention to present a method that
is free of parametric model assumptions. However, from examinations of Hill plots we
found that rule (1.29) works out well for many of our annual maximal flow series, e.g.,
for Lichtenwaldel with k = |2 - 103%/3] = 43.

Finally, we estimated the return level curve U(T), T > n/k, for the Lichtenwaldel series
with k = 43 and Weissman'’s extrapolation formula. The result is displayed in Figure 1.6
together with the empirical return levels and the ML estimate based on the GEV assump-
tion (see Section 1.1.2). The curves are reasonably close to each other for return periods
of, say, T < 50. They deviate much outside the range of observations, which is due to the
very different extreme value index estimates ¢ = 0.23 and 4 = Hy,,, = 0.42 for the GEV
and semi-parametric approach, respectively (recall that ¢ = 7).
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Estimated return levels at Lichtenwaldel
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Figure 1.6: Return level plot for the Lichtenwaldel series of annual maximal flows based
on (red) maximum likelihood estimation of GEV parameters and (green) Weissman's ex-
trapolation formula with k = |2n%/3].






Chapter 2

Heavy-tail homogeneity

We assume distribution functions F of Pareto-type, where the right tail behavior of F is
characterized by a strictly positive parameter 7, the so-called extreme value index (EVI).
In some applications observations from closely related variables are available, with possi-
bly identical EVI «. If these variables are observed for the same time period, a procedure
called BEAR estimator has recently been proposed. We modify this approach allowing
for different observation periods and pairwise extreme value dependence of the vari-
ables. In addition, we present a new test for equality of the extreme value index. As
an application, we discuss regional flood frequency analysis, where we want to combine
rather short sequences of univariate observations with very different lengths measured
at many stations for joint inference. We illustrate our findings on peak discharges from
18 river stations located at the Mulde basin in Germany, which is known for its severe
summer floods, and identify relevant heterogeneous tail behavior, which is not detected
by other popular methods.

This chapter is based on the article by Kinsvater et al. [2016].

2.1 Introduction

In environmental sciences we are interested in extreme realizations of a variable Y fol-
lowing some distribution function F(y) = IP(Y < y) in order to analyze the frequency of
hazardous events such as floods [Dixon et al., 1998; Hosking and Wallis, 2005] or extreme
precipitations [Cooley et al., 2007]. Measurements are collected at different locations,
with observation lengths for each location being usually rather limited. The analysis is
further complicated by the typical heavy-tailed behavior of these quantities. As an ap-
plication, we will evaluate the flood risk for the Mulde river basin in eastern Germany,
which is known for its severe floods, e.g. in 2002 and 2013.

We concentrate on the challenging and practically relevant case of (right) heavy-tailed
distributions F. As opposed to parametric or Bayesian procedures mentioned above, we
follow a simple and straightforward peaks-over-threshold (POT) approach in a semi-
parametric framework: We start with independent variables Yi,...,Y), from F and de-
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note the corresponding ordered values by Y7, < ... < Yj.,. Avoiding stringent model
assumptions, we focus on the upper k observations Y, 1., ..., Yu:n representing the
right tail of F and assume that these k excesses over the random threshold uy,, = Y, _.,
divided by uy, approximately follow a parametric model (we refer to Section 1.2) with
unknown parameter 7y > 0 called extreme value index (EVI).

Useful estimation of vy is very challenging in this semi-parametric framework, especially
from small samples n. For estimation, the selection of the tail sample size k is associated
with a bias-variance trade-off problem: Smaller numbers k improve the parametric tail
approximation in the POT step and thus decrease the bias, while larger numbers increase
the effective sample size and thus decrease the variability of estimation. Typically, mean
squared error optimal numbers k,; are rather small relative to 1, making statistical infer-
ence on -y valuable only in sufficiently large samples.

In environmental applications, where we observe the same variables at many sites j with
site specific distributions F;, regional frequency analysis provides methods for pooled
estimation to overcome the problem of having only short sequences for each site avail-
able. So called Index Flood procedures [Hosking and Wallis, 2005, Chapter 1.3] are very
popular in hydrology. They are built on the assumption that the quantile functions are
identical up to a site-specific scaling factor,

Ho,ir : Fj_l(p) = ;- G, '(p) fora given setof sites j € {1,...,d}, (2.1)

where {Gg : 6 € O} is a predetermined parametric family of distributions and 0, y; =
u(F),j =1,...,d, are unknown parameters for some factor y (e.g. mean or median)
adjusting for the size of each site. Here theory is developed under weaker assumptions
than stated in (2.1). Essentially, we suppose that a group of similar distributions shares
the same EVI v, i.e.

Hoevi: Y1 =-... =Yg = forsomey >0, (2.2)

where 7 is the EVI of F;. We call this assumption heavy-tail homogeneity. If Hg ., holds,
7 characterizes the tail decay for the whole region and we call y the regional extreme
value index.

Our approach generalizes the BEAR procedure introduced in Dematteo and Clémengon
[2016] to the practically relevant situation where the marginal data sequences are of very
different lengths. As an application we consider observations from 18 river stations from
the Mulde basin in Saxony, which is a state in Eastern Germany. There the lengths vary
between 42 and 100 years of observations per station. The BEAR procedure is based on
an asymptotically optimal weighting scheme that allows to decrease the variability in
joint estimation. As opposed to these authors we also take the dimension d into account
for the bias-variance trade-off problem and we propose a test for hypothesis H ;.

An advantage of POT and related methodology is its semi-parametric character, which
avoids stringent model assumptions. A drawback of the POT approach is the need for
rather long data sequences. The methodology developed in this work remedies this in-
convenience by allowing to combine data from dependent variables with very different,
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possibly short observation lengths, for joint estimation of the EVI . Our main results can
be summarized as follows:

e We extend the theoretical results from Dematteo and Clémengon [2016] to the prac-
tically relevant case of very different lengths of the marginal samples. This allows
us to formulate a joint estimator of v with an arbitrary weighting of the individual
estimators and an asymptotic test for H ey

e For reasonable settings from hydrology with large dimension d, small to moderate
marginal sample sizes nj, j =1,...,d, and under extreme value dependence, the
estimation procedure proposed here significantly reduces the estimation error. It
turns out to be particularly important to take the dimension 4 for threshold selec-
tion into account to reduce a typically dominant bias.

e Under assumption H r stated in (2.1), the bias problem is less critical when the
proposed test is applied. The nominal level is preserved well in reasonable settings
from hydrology. Moreover, when variables are spatially dependent, the new test
turns out to be much more powerful for the detection of heterogeneous heavy-tail
behavior than competing methods known from the literature.

¢ In contrast to other popular methods, our test detects deviations from assumption
Hoevi of d = 18 river stations located at the Mulde river basin in Germany. The
method allows to reduce the detected tail heterogeneity, which is essential for joint
tail estimation.

The rest of this chapter is organized as follows. Section 2.2 presents the main theoretical
result and Section 2.3 discusses difficulties in finite-sample applications, in particular the
bias-variance trade-off problem. A novel semi-parametric test for regional homogeneity
is presented in Section 2.4. Section 2.5 reports a simulation study and in Section 2.6 we
analyze seasonal maxima from a number of river stations located at the Mulde basin
in Germany. We conclude and provide a brief outlook to regional estimation of high
quantiles in Section 2.7. Proofs are deferred to Section 2.8.

2.2 Joint estimation of heavy tails

Our goal is to combine information from d sites for joint tail analysis. LetY = (Y1,...,Y;)’
be a random vector with continuous margins F;(y) = P(Y; <y),j =1,...,d. Below, the
variable Y; will represent the measurements at station j. Unlike in most of the literature
on regional flood frequency analysis, we will not ignore the dependence between the
stations. By Theorem 1.1, the joint distribution function F of Y is uniquely determined
by equation (1.1), where C : [0,1]¢ — [0,1] is the corresponding copula, that is, the
distribution function of the probability transform U = (F;(Y1),...,F;(Y))". The main
assumption of this chapter is as follows:
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Assumption 2.1 (Heavy-tail homogeneity)
Each margin F;, j = 1,...,d, is a Pareto-type distribution function with extreme value
index 7; > 0. Even more, we have that Ho ey : 71 = ... = 74 = 7y holds.

This allows us to estimate <y from observations of all d sites:

LetY; = (Yi1,..., Yild)’ ,i=1,...,n,be independent copies of Y with i indicating time.
Estimation of -y based on polar coordinates and on averaging of local estimates has been
proposed in Einmahl et al. [1993] and Dematteo and Clémencgon [2016], respectively.
However, the usual assumption that all d components Y; ; are observed for the same time
units i € {1,...,n} is very restrictive in regional frequency analysis. In our hydrologi-
cal applications, where data is collected from many sites, this is rarely the case. A more
realistic situation is that at least the beginning of recordings are different at the stations.
Thus, we assume that we have collected a scheme of observations

Yaievjo Yapszjo- - Yoy f =1, d, (2.3)

where the integers 1 < a; < n denote the observation start and n; = n — a; the total
number of observations at site j. In order to account for possibly very different numbers
n; in the asymptotics, we introduce auxiliary numbers 0 < 7; < 1and seta; = [n(1—1;)].
T; is interpreted as the relative sample length available at site j. For 7 = (7y,...,7y)’

/
and k = (ky,...,k;)" € N with k; < n; we set Hy ., — (H(l) HY ) , where

ki,mn’ " kg mn

T
observations from the j-th marginal sample Ytn(l—rj) |4+1,js -+ s Ynj-

the j-th component H,Ej . is Hill’s estimator from (1.22) computed from the k; largest

Assumption 2.2 (Technical assumptions)
The following assumptions, which are also used in Dematteo and Clémengon [2016], are
needed in the proof of the main result.

(i) Forj=1,...,d, kj = k;j(n) is an intermediate sequence of integers, i.e. k; — oo and
k]-/n — 0 for n — oo. In addition, lim;, s ]]i—l =¢j for some ¢ € (0, 00).
]

(ii) We assume that von Mises’ condition holds for all j = 1,...,d: The derivatives
fi = F{ exist and satisfy

im W1 4 2.4)

= 1—Fi(y) 7

(iii) Forj=1,...,d,Uj(t) = F; (1~ 1/t) and n — co we have

00 _ 1) d
o | {I’;pj (U(n/k)) ) — s 1/%}5%0. 5)
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(iv) For1 < /¢ # m < dand n — co we have

n n n 1
efon (U (1) tn () ) = demen)| =0 (1o ) 29

where Fy,,(x,y) =P (Y, > x,Y,, > y) and existing limits

sup
xy>1

Nom(x,y) = tli_)r?ot-ll’(Yg > Up(t/x),Ym > Un(t/y)), 1 < {,m <d.

Remark 2.3
The assumptions can be viewed as a multivariate extension of those from Theorem 1.12.

(i) Assumption k; = o(n) is necessary for consistency. For a non-degenerate limiting
joint distribution we also need that k; /k; — ¢; € R;.

(ii) Von Mises” condition is a strengthening of (1.20) [de Haan and Ferreira, 2006, Th.
1.1.11], which is used to establish asymptotic normality of the Hill estimator [Resnick,
2007, Prop. 9.2]. Assumption (2.5), in turn, guarantees that the weak limit of

\/E (H,EZ)T] T 'y]') is centered [Resnick, 2007, Prop. 9.3].

(iii) A, is called upper tail dependence copula [Schmidt and Stadtmidiller, 2006] of the
joint distribution of (Yy,Y;,)’. This concept is used to describe the extremal de-
pendence of a bivariate distribution. A related copula family consists of so called
extreme value copulas (EVC), which arise as the only possible limits of copulas of
componentwise block maxima (we refer to Section 1.1). In this sense, EVC’s them-
selves characterize extremal dependence. In fact, there is a one-to-one relation be-
tween an EVC Cy,, and the corresponding upper tail dependence copula A, of a
bivariate distribution given by

Nl ) = (x+2) - [1= A (25 ) | and An() = 1= A1 =10

where Ay, is the corresponding Pickands dependence function of C;,, (we refer to
Theorem 1.4).

The convergence speed in (2.6) is rather slow, because we only need convergence
in probability of empirical tail copulas. The same assumption with a faster con-
vergence rate can be used to prove asymptotic normality of empirical tail copulas
[Schmidt and Stadtmidiller, 2006].

The following theorem extends the main result in Dematteo and Clémengon [2016].

Theorem 2.4 (Joint weak convergence)
Weset1=(1,...,1)" € R Under assumptions 2.1 and 2.2 we have, for n — oo, that

Vi (Higr —91) 25 N (0,97 L) 2.7)



24 Chapter 2. Heavy-tail homogeneity

holds, where ¥. € R**4 is defined componentwise by
Zf,m =C¢-Cm- (Té A Tm) 'Af,m ((Tﬁcé)ilz (Tmcm)il) ,1<¢,m<d, (2.8)

and where x Ay = min(x,y). On the diagonal, ¢ = m, the expression is simplified to £y y = cy.

Let W = {w € R?: Y%, w; = 1} denote a set of d-dimensional weightings. Then, from
continuity, and for arbitrary w € W we have that

(A D .
kq (,Yk,T,n(w) - ’)/) — N(O/ ,)/Zwlzw) for ,Yk,T,n(w) =w - Hk,T,n' (29)
This suggests to use Ji . (wopt) as a joint estimator of 7y, where we set

_ . . / _ . /
Wopt = arg min nlgr(}O Var(w' - Hy - ,,) = argmin w'Xw.
weW weW

In Dematteo and Clémengon [2016] only non-negative weights w were considered for the
minimization problem. Here, however, we do not apply this restriction, which allows us
to solve the minimization problem by the Lagrange multiplier technique with solution

-1
Wopt = (1’2*11) *r 1, 1=(1,...,1) €RY, (2.10)

provided X is nonsingular.

2.3 Estimation of X and selection of k in finite samples

The consistent estimation of the covariance matrix ¥ and especially the selection of the
integer vector k is crucial in finite-sample applications. We are particularly interested in
applications under the additional extreme value dependence assumption with only short
data sequences available.

2.3.1 Estimation of X under extreme-value dependence

Recall that the covariance matrix X is defined through its components by
Zf,m =Cy-Cm- (Té A Tm) 'Af,m ((Técé)ilz (Tmcm)il) ,1<{,m<d.

It thus suffices to replace c;, 7; and the upper tail dependence copulas Ay, by consistent
estimates ki /kj, nj/n and Ay, respectively.

Let N = N (¢, m), denote the number of independent copies of (Xy, X;,)" that are available
for estimation of Ay ,,. In the situation of (2.3) we have N(¢,m) = n; A n,, the minimum
of ny and n,,. Let u; and u,, denote two threshold values. The empirical estimator of Ay,
studied in Schmidt and Stadtmiiller [2006] basically counts the number of pairs (X, Xy)
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satisfying X, > u, and X,, > u,, divided by the number K of pairs with X, > u, or
Xm > uy. This means that, similar to the univariate POT approach (we refer to Section
1.2.1), only a representative number K = K(¢, m) of observations from the joint tail region
(11g,00) X (U, o) is taken effectively into account for estimation of Ay ,.

However, we consider componentwise maxima in our application. It is well known that
extreme value copulas are the only possible limits of copulas of componentwise max-
ima of ii.d. vectors. Thanks to Theorem 1.4, we may assume that our observations are
extreme value dependent, which, in turn, allows us to set

Apw(x,y) = (x+y) - [1 — Ay (x_ywﬂ , 2.11)

where A, is the corresponding Pickands dependence function. Several estimators of
the Pickands function A, are known from the literature. In particular, the corrected
CFG-estimator AIC\]F G from Genest and Segers [2009] offers high efficiency.

As opposed to the empirical estimator, an estimator of A, based on the extreme value
dependence assumption, e.g., by plugging in the CFG-estimator, is able to take all N
available observations into account. This advantage over the empirical estimator turns
out to be crucial for an acceptable type-1 error of the test from Section 2.4 when only
small samples N are available. In what follows, we denote the empirical and CFG-based
estimators of X by ﬁemp and %o, respectively.

Proposition 2.5

Suppose that (2.7) holds and let 3 satisfy 3. LN for n — co. Further, let Yopt = Fic,rn(Wopt)
1a

with Yy rqn(w) defined in (2.9) and Wopr = (UE711) " L11. Then, for n — oo, we have that
A D _ _
Vi (Jopr — 1) — N (0, 7. (') 1) : (2.12)

In order to study the gain in efficiency of the optimal weighting scheme, we also consider
the joint estimator with weights w;,,; = k/(1'k) in the simulations. Note that this corre-
sponds to optimal weighting under the assumption of upper tail independence, that is,
Ny = 0for £ # m.

2.3.2 Selection of k for joint estimation

The choice of the integers k representing the effective tail sample size is associated with
a bias-variance trade-off problem. Several methods were proposed to solve this problem
in the univariate setting [Drees et al., 2000]. It soon becomes apparent that the optimal
numbers k; for marginal estimation do not coincide with those k](-d) for joint estimation
from d > 1 sites, even under independence:

Suppose that the observations follow a multivariate extreme value distribution with iden-
tical marginal distributions F; = ... = F; ~ GEV(y, 0, 7) and independent components,
that is, with C(u) = uy - - -1y in (1.1). Let n; denote the number of observations of com-
ponent j = 1,...,d. The optimal k; value that minimizes the asymptotic mean squared
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error (MSE) of the marginal Hill estimator from 7; independent observations is given by

k}l) = L2n]2./ SJ [Gomes and Pestana, 2007, Remark 3.1]. In fact, in this simple case, all ob-

servations are N = Z}i:1 n; realizations of the same GEV distribution, which implies that
a total number K = LZNZ/ 3j out of N observations should be used and which, in turn,
suggests to choose k = [2nj/N'3] < k U for the joint estimation. If ny = ... = ny,
we obtain k](. = LZn?/ 3/d"/3 |, which means that optimal numbers k9
with increasing dimension d. Indeed, from our simulation results presented in Section

2.5.1 we find that the performance of the joint Hill estimator with k L2n2/ 3/dV/3] is

should decrease

overall superior to that with marginally optimal values k](- ) = LZn?/ 3.

Let us return to the general case with not necessarily identical margins and dependent
components. For a more rigorous thought, suppose that each margin F; is a member of
the Hall-Welsh class [Hall and Welsh, 1985; Gomes and Pestana, 2007] such that

_ 1 vB;jt’
F; ! (1 — t> =M;- <1+ o +o(tpf)) (2.13)

holds for t — oo, extreme value index ¢ > 0, constants M; >0 and so-called second
order parameters p; < 0, B; # 0,j = 1,...,d. The Hall-Welsh class is a rich subset of
the Pareto-type distributions. This class allows to study the asymptotic normality of the
Hill estimator with not necessarily vanishing bias term. Although not proven here, it is
likely that the asymptotic normality of the joint Hill estimator 4y , , (w) stated in (2.9) is
also valid for margins within the Hall-Welsh class, with identical limiting variance but
with an additional deterministic bias term. Thus, following Gomes and Pestana [2007,
Sec. 3.1] for the bias calculation, the mean squared error of Jy , ,(w) is approximated by

MSE(§1crn(w)) = Y?wTT(k)w + > (Ew]ﬁ] ”]/_k ), ) (2.14)

for large n with matrix I'(k) ~ %Z defined componentwise by

Ty N\ T ko ki
(F(k))[,m Kk A (Tg, Tm) ,1<t,m<d

From a theoretical point of view the optimal combination of weights w with };w; = 1
and integers k with 1 < k; < n; is achieved by minimizing (2.14) with respect to both w
and k. However, this high dimensional and nonlinear minimization problem is compu-
tationally expensive and associated with the estimation of the second order parameters
Bj and p;. Having our applications from hydrology in mind, we did not further pursue
this problem.
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2.4 Heavy-tail ANOVA

The statistic from the following proposition can be used to investigate the validity of
Assumption 2.1.

Proposition 2.6 (Heavy-tail ANOVA)
Suppose that (2.7) holds for some positive definite covariance matrix X.. Then, for w € W, a
weakly consistent estimator ¥ of & and n — oo, we have that

~ k1 N ra—1 o
Wk,T,n (w) = W (Hk,‘r,n - ’)’k,T,n(w)'l) 2 (Hk,T,n — Yk, (w)l)

PN 23+ Y. 22,

where Z1,...,7Z4_1 are i.i.d. standard normal and Ay = 172711 - wSw > 1. In addition,
let Wicrn = Wicr n(Wopt) with oy = (1T2711)71- 2711, Then, for n — oo, we have that

Wi b, X%—l‘ Conversely, if vy # ym for some 1 < £ # m < d, we have Wy  , L .

According to these results, Wy , , provides an asymptotic significance test of Hg,; under
assumptions 1.-4., which is consistent against arbitrary fixed alternatives.

Heavy-tail ANOVA test:
Reject Hoepi at a significance level « € (0,1), if Wy -, exceeds the (1 — a)-quantile of the
x? distribution with d — 1 degrees of freedom.

The performance of this test for finite samples can be very poor, even for large n. A reason
for this is the bias of the Hill estimator arising from tail approximation in the POT step.
Very different marginal bias terms can lead to a rejection of H i, even if the null hypoth-
esis is true. This bias issue almost vanishes under the classical Index Flood assumption
Ho,ir stated in (2.1), which implies that all marginal variables are equal in distribution up
to scale and because Hill’s estimator is scale invariant. For instance, suppose that each
margin F; is a generalized extreme value distribution GE V( i, 0j, 'yj) with location, scale
and shape pi, 0; and 7y}, respectively. This setting is of practical relevance whenever ob-
servations X; ; can be considered as block maxima, e.g. in many flood studies and also in
the application presented in Section 2.6. Let §; = y;/0; denote the location-scale ratio of
F; and assume that y; > 0,j = 1,...,d. In this GEV setting, hypothesis Ho ;¢ from (2.1)
can be reformulated to

Ho,ir = Ho,eoi N Ho,deltar (2.15)

which means that Hg 4e1ts : 61 = ... = 4 holds in addition to H ¢, from (2.2).

A fundamental question concerning the test is which alternatives can be detected with
satisfactory power. The general idea of the test is to quantify the distance between the
vector of individual estimates and a vector with all components equal to a weighted av-
erage. If the distance is large, we should reject the null hypothesis of equal components.
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Our test considers a Mahalanobis distance, which can be seen as an Euclidean distance
in new coordinates and which is able to account for different uncertainties of deviations
in different directions. In the case of independence, i.e., if we set 3 = diag(¢é1,...,¢5)
the diagonal matrix with entries 6= ki/ k]-, our test can be viewed as a classical analysis
of variance (ANOVA) statistic W = 42 2}1:1 ki(HY) — w'H)?, with v; interpreted as the
approximate population mean of log-transformed peaks divided by the threshold. Inter-
estingly enough, no uniformly most powerful test exists for the problem of testing the
equality of d > 2 population means, even in the simplest ANOVA setting with indepen-
dent normal observations, all having the same known variance [Lehmann and Romano,
2005, Sec. 7.3]. For instance, the alternative y; > 72 = ... = 7, is detected best by an
one-sided two-sample t-test considering the difference between the first and an average
of the last d — 1 components. However, it is known that the classical ANOVA approach
is optimal in some maximin sense, which basically means that the test is good in detect-
ing departures H1 ., from Hg i that result from a combination of many small deviations
of 7y; values from the average. Alternatively, one could consider a max-type test statis-
tic My~ (we refer to Appendix A.3) based on the maximum instead of the Euclidean
distance. Such max-type tests usually offer better power against a few large deviations
in some of the components. In practice the latter situation is less likely to occur, since
experienced practitioners should be able to sort out largely deviating variables manually
when the group of d variables is selected in a preliminary step. E.g., hydrologists select
groups of river stations that share similar site characteristics, which naturally results in
rather homogeneous groups of distributions. From this point of view it is more meaning-
ful to apply the Mahalanobis-type test proposed here.

One needs to keep in mind that we de-correlate the data in both these test statistics in
order to get a pivotal limiting distribution. Thus, in general, these two tests are con-
structed to detect many small and a few large deviations, respectively, in terms of linear
transformations of the original components, so that the previous remarks on Wy , , and
My + » can only be taken as a rough guideline. For a related discussion about maximin
optimality of ANOVA and max-type tests we refer to Arias-Castro et al. [2011].

2.5 Simulation study

Motivated by our illustration presented in Section 2.6, we focus on simulations with mul-
tivariate extreme value distributed sequences. More precisely, we draw independent
vector valued realizations from d dimensional distributions F = C(Fy, ..., F;) with (uni-
variate) extreme value distributed margins F; ~ GE V( Hj, 0j, 'yj), positive extreme value
index 7; > 0 and extreme value copula C from the family

Coa(u) = Cg, (u?) - Cg,(u'™?), (2.16)

where u* = (u}',...,u}'), 1—a = (1—a,...,1—ay), 6 = (61,6,) € [l,e0)% a =
(a1,...,a;) € [0,1]% and Cy is the d-dimensional Gumbel(#) copula. The construction
principle (2.16) is known as Khoudraji's device [Khoudraji, 1995; Durante and Salvadori,
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2010]. It is used to account for possible asymmetry in the dependence, which is also
present in our illustration but not covered by common one-parameter copula families.
Since all considered methods are scale invariant, we pay particular attention to the per-
formance depending on the choice of §; = p;/0;j. Recall that under the classical homo-
geneity assumption stated in (2.1) wehavey; = ... =y =yand é; = ... = §; = 4.
Most simulations are carried out for dimension d = 5 and the following parameter val-
ues:

e n € {50,100} (maximal sample length)
e 7c{(1,1,1,1,1),(1,09,0.8,0.7,0.6)' } (relative marginal sample lengths)
e v€{0.25,05,0.75} (extreme value index)
e b€l 3 (location-scale ratio)
e 0c{(1,1),(1525)} (strength of dependence)
e a=(09,0.7,05,0.3,0.1) (asymmetry of dependence)

These scenarios are supposed to cover many settings from regional flood frequency anal-
ysis. We also studied the performance for d = 10 and d = 15, but many results were
qualitatively similar to those for d = 5 and are thus not reported in full detail. For
d=m-5mé€N,and 7,a € R® from above, the relative sample lengths and asymmetry
coefficients were set to 7, = (7/,7/,...,7") € R™ and a,, = (a’,a’,...,a’)" € R™, re-
spectively.

However, we found that the new test based on statistic Wy r ,, tends to get liberal with in-
creasing dimension d (at constant ). Based on our simulation results, we decided heuris-
tically to multiply the statistic with an asymptotically negligible factor of 1 —d/(5N) with
N = mini<j<4n; at the cost of a loss of power.

Simulations were carried out in R [R Core Team, 2015]. In particular, we used code pro-
vided by the packages copula [Hofert et al., 2015], fExtremes [Wiirtz, 2013], f£gof
[Kojadinovic and Yan, 2012a] and homtest [Viglione, 2012] available on CRAN.

2.5.1 Joint estimation of y

Let Xi, ..., X, be independent copies with the distribution F given aboveand y; = ... =
Y4 = - In contrast to many other comparable studies from hydrology, where typically
¥ < 0.3 is used, we are also interested in more heavy-tailed scenarios with, say, v = 0.5
(see also our illustration in Section 2.6). In this case, the L-moment estimator of the shape
7 of the GEV distribution is not advisable [Hosking et al., 1985]. This is also confirmed by
our simulation results and therefore, we decided to use only a maximum likelihood (ML)
based approach 41 as a benchmark for the performance of several versions of estimator
Y = Fxrn(w) from (2.9).

Letn; = |nT;| denote the number of observations available for component j. We consider
the following joint estimators of -y:
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d=05 d=15

1.0-

0.8-

ML H Hopt H? H? ML H Hopt H? H?

Figure 2.1: Each box plot is derived from 1000 independent realizations of a joint Hill
estimator applied on multivariate data with distribution given in the beginning of Sec-
tion 25 and n = 100, v = 05,6 = 2,0 = (15,25), a = (09,0.7,0.5,0.3,0.1),
7 =(1,0.9,0.8,0.7,0.6), (left panel) d = 5 and (right panel) d = 15.

o ImL =Yg widl), withw; = n;/ Y ng (ML)
o Fr(wig) with kj = [2n77 | (H)
o Fh(topr) with £ = £,y and kj = 2177 (Hopt)
o Fr(wing) with ki = 207/ /d1/° ] (H®)
o Fu(thopr) with £ = £, and ki = 203/ /1] (HS)

'?](\]/I)L denotes the ML estimator of the GEV distribution applied to the j-th marginal se-
ries, j = 1,...,d. A simple weighting scheme is applied, which is common practice in
hydrology [Hosking and Wallis, 2005]. Extensions that also take spatial dependence into
account are computationally difficult because of the complicated likelihood equations.
To the best of our knowledge, this problem has not been solved satisfactorily yet.

The performance of four versions of the joint Hill estimator is compared, using simple
or asymptotically optimal weights and k; = KV = LZn]z/ 3 ork; = k](-d) = LZn]z/ 3/dV3).

]
We also studied estimators (H,p;) and (Hgiz) with & = £, (not reported here). These,
however, are not advisable when the sample lengths n; are small and dimension d is large
because of numerical problems.
We begin with a discussion of the main findings deduced from Figure 2.1. Each of the

five boxplots on the left (4 = 5) and on the right (d = 15) represents the estimation error
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of the above estimators, derived from 1000 repetitions with n = 100, v = 0.5, § = 2,
0 = (15,2.5) and 7 = (1,0.9,0.8,0.7,0.6)". We want to emphasize the following conclu-
sions that were also present for many other settings: First, the bias of the Hill estimator
can be very dominant in the overall estimation error. Second, optimal weighting leads
to a small reduction in variability while the bias remains the same as expected. Third,
taking the dimension d into account in the choice of k is important to decrease a possibly
dominant bias.

1/2

Table 2.1 reports root mean squared errors (E ¥ — 7]2) of all five estimators estimated
from 1000 independent repetitions for each of many different settings. Generally, the op-
(d)
j
has a huge impact on the estimation error. In only a few cases, where the

timal weighting provides only little improvement. As opposed to this, the choice of k

instead of k](-l)

bias of Hill’s estimator is luckily small (e.g. v = 0.5 and é = 3), the error increases when
(d) (1)
the bias] is dominant, tile incorporation of the dimension d into the choice of upper order
statistics notably improves the performance of the joint Hill estimator.

The observation that optimal weighting provides only a small decrease in estimation er-
ror is a little disappointing. Loosely speaking, joint estimation of y benefits only a little
from the asymptotic theory derived in Section 2.2 in case of small to moderately large
samples. This, however, is not true for the test statistic from Proposition (2.6). In fact, the
next subsection demonstrates that the established theory is of key importance in order to
achieve an acceptable type 1 error rate.

using k. instead of k:"’ because of an increase in variability. In “typical cases”, where

2.5.2 Heavy-tail ANOVA as a test against alternatives of H ;r

We studied the finite sample performance of the statistic Wy, ,, as a test for the null hy-
pothesis Hg i stated in (2.1). Other established tests for Hg ;r, which were already com-
pared by simulations in Viglione et al. [2007], are also included in our experiments. The
simulation setting used here differs from Viglione et al. [2007] mainly in the following
aspects: First, we also take into account possible spatial extreme value dependence. In
Viglione et al. [2007] only spatially independent samples are considered, and, second, the
marginal distributions there are characterized in terms of L-moments. We will continue
to use the (v, d) characterization of marginal distributions.

The other competing procedures applied for comparison can be briefly described as fol-
lows:

e The statistic of test HW; is similar to that of Wy , ,. For HW;, each marginal sample
ratio of L-scale divided by L-location is compared with a regional version computed
from the whole data set. Hg r is rejected, if the difference between these L-moment
ratios is too large.

e HW, is similar to HW;, with an additional term incorporating the distance of L-
skewness divided by L-scale. Both, HW; and HW,, are presented in Hosking and
Wallis [2005, Chapter 4.3].
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Table 2.1: RMSE’s estimated from 1000 independent realizations of five joint Hill estima-
tors applied on extreme valued distributed data with distribution given at the beginning
of the simulations section in the main file and with n = 100, 7 = (1,0.9,0.8,0.7,0.6) and
0 =(15,25).

d=5 | d=15

v  Est o0=u/oc
1 15 2 25 3|1 15 2 25 3
025 (ML) 070 .069 .068 .066 .069 |.062 .061 .063 .063 .065
(H) ~ 400 284 206 .152 .108 | .398 .283 .207 .149 .107
(Hopt) 395 281 203 .150 .106 | .388 274 .200 .145 .103
(H®) 260 .194 .145 .110 .080 | 209 .160 .127 .094 .075
(HP)) 258 192 143 108 .079 | 204 155 .122 .091 .070
05 (ML) .080 .79 .079 .078 .078|.077 .074 .077 .075 .072
(H) 303 .183 .099 .059 .065|.301 .178 .103 .057 .060
(Hopt) 297 179 097 .058 .065|.289 .170 .095 .053 .060
(H®) 183 .128 .087 .074 .083|.155 .110 .099 .085 .091
(HP) 182 124 085 .073 083 |.149 .103 .091 .083 .08
075 (ML) .094 .094 .091 .091 .091|.091 .085 .090 .088 .085
(H) 236 .122 .085 .121 .164 | .237 .116 .086 .120 .168
(Hopt) 231 .118 084 .121 .164 | .225 .107 .084 .121 .170
(H®) 161 .123 .111 .133 .154 | .154 .130 .130 .140 .162
(Hg;1> 157 121 109 132 154 | 143 123 126 .137 .161
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Figure 2.2: Rejection rates of H; ., for tests We,, HW;, HW,, AD and DK computed
from 4000 samples such that margins j = 1,2,4,5 follow a GEV(yu = 2,0 = 1,7 = 0.5)
and margin j = 3 follows a GEV(y = 2,0 = 1,77 = <73). All 5 margins have sample
length n = 50 and the spatial dependence corresponds to (2.16) with 8 = (1,1)’ (left) and
0 = (1.5,2.5)' (right).

e The AD test is based on an Anderson-Darling type distance between marginal em-
pirical distributions and a regional version computed from all available observa-
tions. In order to account for possibly different scales under H ;r, all observations
are first divided by their marginal sample median.

e DK is based on a goodness-of-fit statistic proposed by Durbin and Knott [1972].
Just like for AD, all observations are first divided by their marginal sample median.
The test is based on the fact that if F is the true distribution function of a continuous
random variable X, then F(X) has a uniform distribution on [0, 1].

We studied two versions of test Wy , , denoted by W,;,, and W,,, with empirical estimator
Zemp and CFG-based estimator £, respectively, plugged in into the test statistic. Recall
that the bias part in the bias-variance trade-off problem is less pronounced, provided
Ho,ir holds and due to the scale invariance of the Hill estimator. It is thus more impor-
tant to account for the variance part. We decided to choose k; = LZnJZ/ 3] for arbitrary

dimensions d, which was superior to k; = k;d) in our simulation results (not reported
here). However, we needed to account for the dimension d by multiplying the statistic
with an asymptotically negligible factor 1 — d/(5min; #;). This helped us to reduce the
type 1 error at the cost of a slight loss of power. We address the following questions:

(i) How well do the tests keep their nominal level under H ;r?

(ii) Which test has the largest power against certain alternatives of H r? Specifically,
against alternatives (a) H1¢vi N Ho derta OF (b) Hoevi N H1 gerra such that Ho rr holds
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Table 2.2: Rejection rates of HJf in % computed from 4000 samples under H/f. The
nominal level is 5%.

7 =1(1,0.9,0.8,0.7,0.6)

0=(11) \ 0 = (1.5,2.5)
v Test b=ypu/o
1 1.5 2 2.5 3 ‘ 1 1.5 2 2.5 3
n =50

025 Wg 83 40 38 41 40 173 102 78 78 6.5
Wemp 143 98 92 97 92 | 285 215 208 196 18.0
HW, 36 46 50 49 51|07 10 11 14 10
HW, 42 46 50 46 46 | 14 15 17 18 16
AD 47 43 44 46 62 | 23 27 25 27 35
DK 66 38 41 50 62|40 21 23 25 21

0.5 We 51 38 48 57 64 |122 66 62 52 67
Wemp 11.3 100 104 117 123 | 249 191 179 179 184
HW, 76 90 92 95 80| 18 20 19 16 16
HW, 63 76 69 78 74|22 18 20 18 21
AD 43 50 66 73 84 |23 22 31 37 40
DK 45 46 76 103 134 | 25 22 32 45 49

0.75 W 44 51 70 86 11570 66 59 65 73
Wemp 101 112 129 146 178|197 181 171 178 1384
HW; 16,6 186 177 159 164 | 40 54 43 49 40
HwW, 102 125 115 108 125| 34 38 30 40 42
AD 49 73 100 122 134 | 27 40 55 50 70
DK 44 92 164 223 280| 19 41 74 105 128

n =100
025 Wep 36 29 26 32 35|98 73 60 48 47
Wemp 68 58 62 63 65 |175 141 123 109 116
HwW, 33 38 40 39 40|05 09 05 06 07
HwW, 35 36 43 37 42|12 11 10 10 11
AD 51 45 46 51 52 |22 27 30 35 31
DK 70 52 49 54 71 |44 29 22 22 29

0.5 We 33 35 45 56 63 |69 52 56 49 52
Wemp 66 65 82 94 100|128 112 115 105 10.3
HW, 64 60 60 65 54|08 12 11 09 038
HW, 58 50 54 57 47|11 09 14 09 15
AD 40 53 60 71 76 |19 26 34 35 33
DK 52 52 88 117 139 | 25 26 32 51 72

075 Wep 33 39 72 80 103| 55 50 51 66 63
Wemp 70 79 111 120 150 | 11.2 112 100 123 11.2
HW; 96 107 116 106 88 | 25 23 23 12 14
HW, 59 67 80 86 77 |23 25 28 17 14
AD 48 60 91 99 118 22 30 47 49 49
DK 45 11.0 193 259 322 20 45 92 120 157
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for a group of four margins j = 1,2,4,5 and where margin j = 3 differs by either
Y3 # 7y Or 83 # 6.

All tests were carried out at a nominal level of « = 5% and with data drawn from multi-
variate extreme value distributions presented at the beginning of Section 2.5.

Empirical levels under spatial independence: The left part of Table 2.2 reports rejec-
tion rates in percent of all considered tests estimated from 4000 samples under Hg ;r and
0 = (1,1). The level of Wemp is overall not acceptable, whereas test W, keeps its level
reasonably well except for some cases with v = 0.75. With increasing heaviness -y of the
tails, all other tests fail to get close to the nominal level.

Empirical levels under spatial dependence: The right hand side of Table 2.2 reports
rejection rates as before, but with 6 set to (1.5,2.5). In case of a = (0.9,0.7,0.5,0.3,0.1),
this leads to an average Spearman’s rho for the pairs of about p = 0.5. Such a strength
of dependence is not uncommon in hydrological applications. Test W,, keeps its level
reasonably well, except for some settings with v = 0.25. In contrast, all other methods
are overall far from attaining the nominal level of 5%. We also studied the performance
for 7 = (1,2), which led to an average Spearman’s rho of about p = 0.25. The results
were very similar and are therefore not reported here.

Empirical power under H1 .,; N Ho geita: Figure 2.2 presents rejection rates of tests Wy,
HW;, HW,, AD and DK under H1 ¢y N Ho ge1ta versus 3 estimated from 4000 samples
of length n = 50 with T = (1,1,1,1,1) such that all but the third component follow
a GEV with v = 0.5 and § = 2 and the third component follows a GEV with 73 €
{0.2,0.3,...,0.8} and 6 = 2. It is remarkable that all tests except W,, have almost no
power under positive dependence (right plot of Fig. 2.2), while the power of test W, is
even higher than under independence (left plot of Fig. 2.2). The left plot in Figure 2.3,
where we set n = 100, confirms these findings.

Empirical power under Hg i N Hi geita: The right part of Figure 2.3 presents rejection
rates of tests W,,, HW;, HW,, AD and DK under H i N H1geita Versus d3 estimated
from 4000 samples of length n = 100 with T = (1,1,1,1,1) such that all but the third
component follow a GEV with v = 0.5 and § = 2, while the third component follows
a GEV with vy = 0.5 and 43 € {1.25,1.5,...,2.75}. Although test W,, is designed to
detect deviations from Hg i, these results indicate that W,, is rather a test for Hgr.
Note that tests AD and DK are way more powerful than W,, against alternatives from
HO,evi N Hl,delta-

Summing up, the proposed test W,, keeps its level well in reasonable settings from hy-
drology. Additionally, the new test is the only one that detects deviations from Hg .y
under spatial dependence. On the other hand, test W,, has little power against H1 4.,
compared to AD and DK. When hypothesis H rr is rejected by W,,, tests AD and DK
can serve as auxiliary tools to indicate whether the deviation from hypothesis Hg r is
due to Hq gerts O not.
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Figure 2.3: Rejection rates of Hi e (left) and Hj gerr, (right) for tests W,,, HW;, HW,, AD
and DK computed from 4000 samples such that margins j = 1,2,4,5 follow a GEV (u =
2,0 = 1,7 = 05). Margin j = 3 follows a GEV(y = 2,0 = 1,7 = 73) (left) and
GEV(u = 63,0 = 1,7 = 0.5) (right). The spatial dependence corresponds to (2.16) with
a = (1.5,2.5). All 5 margins have sample length n = 100.

2.6 Application: Summer floods at the Mulde river basin

Many studies in regional flood frequency analysis focus on maximal flows Y (in m3/sec)
observed at several stations of some region of interest. In order to avoid non-stationarity
due to seasonal effects, the block maxima method with block length covering one season
is applied on each marginal series. Thanks to Theorems 1.3 and 1.4, these marginal series
can be modeled by the parametric class of generalized extreme value distributions (GEV)
and the spatial dependence by the nonparametric class of extreme value copulas.

Our region of interest is the Mulde river basin in Saxony, Germany. We have monthly
data from 116 stations located in Saxony, with between 6 and 100 years of observations
per station and an average of about 52 years. Here we focus on the analysis of hydrolog-
ical summer maxima, namely the maximal river flow Y measured between May and Oc-
tober for each station and year available. There are two reasons for restricting to summer
maxima. First, most winter floods are produced from melting snow, whereas summer
floods are due to short but heavy rainfalls. These very different meteorological causal-
ities lead to different river flow distributions. Second, extraordinary high flows, which
are of particular interest for the flood protection, have been observed only during the
summer in that region.

For our data set of 116 stations, the difference between winter and summer peaks is illus-
trated in Figure 2.4. Each point represents a ML fit (a1, dp11) to the generalized extreme
value distribution with é = /o, where a fit is based on either the series of summer ()
or winter maxima (A) of the stations. The size of each point is taken proportional to
the corresponding sample length available for estimation. Note that winter and summer
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Figure 2.4: Each point represents a maximum likelihood fit (YmL, 5 ML) of the
GEV(u,o,v) distribution, where § = p/c. We fitted winter (A) and summer maxima
(O) series of 116 stations that are located in Saxony, Germany. The size of each point was
taken proportional to the available sample length at the corresponding station.

maxima are systematically different in distribution and that the range of the summer es-
timates is covered well by our simulation settings from Section 2.5.

We select a group of 18 stations as possibly homogeneous, which are summarized in
Table 2.3 together with some statistics of interest. The selection of this group is based
on a canonical correlation analysis (CCA), which is a popular method in regional flood
frequency analysis [Ouarda et al., 2001]. The goal of CCA is to identify homogeneous
groups, that are stations j € {1,...,d} with marginal distributions F; satisfying (2.1).
This is done by the comparison of a stations basic characteristics (e.g. the hight and size
of the catchment area, mean annual precipitation, slope of main channel, ...) and its
discharge distribution. A disadvantage of CCA (and other classification techniques) is
that the outcome strongly depends on the choice of variables and many tuning parame-
ters. Different hydrologists will usually derive different groups of homogeneous stations.
Therefore, it is advisable to check first the homogeneity assumption of a selected group.
If not rejected, we can continue with the joint tail estimation.

The last column of Table 2.3 consists of p-values of a goodness-of-fit procedure [Kojadi-
novic and Yan, 2012b], which evaluates the assumption that a marginal distribution is of
GEV type and which is of interest in order to apply a ML based approach for compara-
tive reasons. p-values are computed from 1000 parametric bootstrap replicates. It should
be noted that, however, such a goodness-of-fit test has only little power when the num-
ber of observations is small (n < 100). Recall also that the GEV is an asymptotic model
for block maxima distributions with blocks over identically distributed observations and
block size tending to infinity. The assumption that summer maxima are built from, say,
6 i.i.d. monthly observations is little realistic. Altogether it is not clear whether a GEV
model assumption is the right choice for the problem considered here.
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Table 2.3: A group of 18 stations was selected based on a canonical correlation analy-
sis (not reported here). The statistics were computed from the corresponding summer
maxima series. The last column summarizes p-values to evaluate hypothesis H : F; is
GEV-distributed.

# station obs.years T k; H ko | ¥imr 5 ML GoF p-value
1) 560051 1961-2009 .49 26 .75 71 1.76 526
2) 562115 1910-2009 1 43 54 42 1.75 946
3) 563790 1928-2009 .82 37 .63 A48 1.54 732
4) 564410 19102009 1 43 47 21 1.80 .185
5) 566010 1936-2009 .74 35 71 .57 1.39 261
6) 566040 1926-2009 .84 38 71 .56 1.43 435
7) 566100 1961-2009 .49 26 77 .75 1.64 469
8) 567400 1960-2009 50 27 @ 47 46 2.03 .168
9) 567451 1910-2009 1 43 .65 .50 1.44 518

10) 567470 1933-2009 .77 36 .63 40 1.43 .624
11) 567700 1961-2009 .49 26 42 .36 1.85 .005
12) 567850 1921-2009 .89 39 .50 .38 1.62 275
13) 568140 1921-2009 .89 39 .58 A7 1.63 .608
14) 568160 1929-2009 .81 37 .72 45 1.52 .089
15) 568350 1929-2009 .81 37 .59 .36 1.56 .883
16) 576410 1961-2009 49 26 .65 A48 1.55 .064
17) 576421 1966-2009 .44 24 .66 37 1.65 .338
18) 577100 1968-2009 42 12 42 .33 1.45 .385
mean .62 46 1.61

Recall from the simulation results in Section 2.5.2 that k; = k](.l) = LZn?/ %] is appropri-

ate for test W,,, although this choice is not optimal for the joint estimation. We applied
test Wy, on the selected group. The resulting p-value of p = 0.02 indicates that there
is strong evidence against the homogeneity assumption (2.1). In order to reduce the de-
tected heterogeneity, we examined a scatter plot of the 18 pairs (§z, dp1) from Table 2.3.
The points corresponding to the station numbers 1, 4, 7 and 8 are quite isolated from the
others. Moreover, taking into account the multiple testing, there is some weak evidence
that the GEV assumption for station # 11 is violated. Overall we excluded stations 1, 4,
7, 8 and 11 and applied test W,, again. The resulting p-value is p = 0.22, making the
assumption of homogeneity more plausible than for the larger group considered before.
Interestingly enough, none of the competing tests HW;, HW,, AD and DK (see Section
2.5.2) rejects the homogeneity hypothesis for the larger group. A reason for this is the
large spatial dependence, with an average pairwise Spearman’s rho value of about 0.66.
Recall that in such a case the competing methods are not able to detect deviations from
Hoeoi (right plot in Figure 2.2). The fact that tests AD and DK remain quite powerful
against H; 4011, €ven for dependent data (right plot of Figure 2.3) suggests that the het-
erogeneity detected by W,, is indeed due to a violation of assumption Hg ;.

The last part of this section deals with the estimation of ¢ under the assumption that
7 = 7 holds for all 13 stations j within the smaller group. A recommended rule for the
selection of marginally optimal k; values is based on the examination of plotting methods
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[Drees et al., 2000], for instance, the popular Hill plot (k, Hy ;, )1<k<n. Aninteger 1 < k < n
is chosen such that the plot is approximately constant (stable) in a neighborhood of k. On
the other hand, under the assumption that each margin is GEV distributed, we are able
to calculate the asymptotically optimal rate of k; = LZn]z/ %|. Interestingly, for our appli-
cation, both methods yield very similar results, except for station # 18. For that we found
that k13 = 12 is within a stable region in contrast to LZn% 3| =24.

Recall from the discussion in Section 2.3.2 and the simulation results in Section 2.5.1 that
the marginally optimal k; values are not optimal for joint estimation. For the joint esti-

mation we apply the simple rule k](d) = LZn?/S/dl/“o’J, j # 18, and k%‘q’) = |kig/d/3| =5
with d = 13. Together with the asymptotically optimal weights ,,; estimated under the

extreme value dependence assumption we obtain an estimate of 4 = 0.43 with estimated
95% confidence interval [0.27, 0.59] derived from the asymptotic normality in (2.9).

Interestingly enough, the same procedure with marginally optimal integers k; = k](.l) =

LZn?/ 3| (under the GEV assumption) leads to a much heavier index of 4 = 0.59 with

confidence interval [0.45, 0.73]. The ML based joint estimator ML = Yjcc wjYmL; with
weights w; = 1/ Y ;e nyx proportional to the marginal sample lengths gives us ypr =
0.45, which supports the first estimate rather than the second one, provided the GEV
assumption is reasonably met for this data set.

2.7 Conclusion and outlook on regional estimation of quantiles

The problem of estimating the risk of extreme realizations of heavy-tailed distributions is
closely related to the extreme value index estimation problem. Lekina et al. [2014] argue
that parametric models are not always appropriate for the estimation of high quantiles
in flood frequency analysis. On the other hand, the estimation of nonparametric models
is associated with increased uncertainty. Typically, such models are useful only in ap-
plications with many data points available. In regional flood frequency analysis, where
we observe the same variable at many stations, pooling methods are used to overcome
the problem of having only short marginal sequences available. We propose a simple
and straightforward peaks-over-threshold approach that allows us to analyze the joint
behavior of heavy tails without restricting on parametric models. Even more, our test is
able to detect tail heterogeneity, which is hardly detected by competing procedures that
are common in the hydrological literature.

Typically, practitioners are not interested in -, but in the estimation of high quantiles
1—"]"1 (p). In the semi-parametric framework considered here, this is done by plugging in
the joint estimator 4§y - ,(w) into the extrapolation formula of Weissman [1978]. Weiss-
man’s formula is interpreted as extrapolation from moderate to high quantiles, with
moderate quantiles estimated by simple order statistics and <y controlling the width of
extrapolation. Asymptotic properties of this high quantile estimator are closely related
to those of Jx rn(w). Specifically, asymptotic normality of the high quantile estimator
can be deduced from Theorem 1.14.
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Proposition 2.7 (Regional estimation of high quantiles)

Suppose that assumptions 2.1 and 2.2 hold and let j € {1,...,d} be fixed. Furthermore, suppose
that there exists a real p < 0 and a function R satisfying lim; ,. R(t) = 0 such that (1.27)
holds for U = U, with U;(t) = Fj_l(l —1/t) and that /kiR(n/ky) — A € R. Then, for any
sequence of probabilities p = p, satisfying n(1 — p)/k1 — 0and log(n(1— p))/ki — 0 for

n — oo, we have that

Cj

vk E(p) b 72
log{k1/(n(1—p))} (Pj‘l(P) - 1) — N (0, —w Zw) , (2.17)

where we set

A1 k] ’?k,'r,n(w)
Plp) = [T (2.18)
= ()
and where u; = u;(kj, n;) denotes the (nj — k;)-th largest observation from Yo 11, ..., Yu .

Suppose that we have collected annual maximal flows from 4 dependent sites and that
we are interested in the estimation of, say, the 99% quantile of the distribution F; of the
j-th site. Suppose further that the heavy-tail homogeneity assumption Hyepi : 71 = ... =
Y4 = 7y is met for some unknown 7y > 0. Since we are dealing with componentwise max-
ima, it might be reasonable to assume that the observations stem from a d-variate extreme
value distribution with margins F; ~ GEV (y;,0;¢;). These satisfy {1 = ... = {3 = 7 be-
cause of Hj ., and because the shape of a GEV distribution coincides with its extreme
value index. We thus may estimate the shape ¢; of F; by averaging over all d maximum
likelihood estimates 4; of ¢;. Location p; and scale o7 are estimated as usual only from
the local observations. Quantile estimation based on this parametric approach will be
referred to as GEV-ML procedure.

Recall from the last part of Section 1.1.2 that there is evidence for the GEV being not an
appropriate model for annual maximal flows. In such a case, we may prefer the regional
Weissman estimator (2.18) built under less restrictive assumptions. As a first illustration,
simulation results for the estimation of Ffl (0.99) in two different scenarios are presented
in Figure 2.5. The dashed lines correspond to the true quantiles. On the left-hand side, all
the marginal observations were drawn from a GEV distribution, while for the right-hand
side a product of two GEV distribution functions was used: Think of annual maximal
flows Y = max{W, S} being the maximum over winter and summer maximal flows W
and S, respectively. Suppose that W, S are independent and that they follow different
GEYV distribution functions Fy and Fs. Then the distribution of Y is Fy = Fyy - Fs, which is
not necessarily of GEV-type. Each of the box plots is computed from N = 10000 samples
of length n = 100, dimension d € {1,2,5,10} on the x-axis and with inter-site depen-
dence generated by a symmetric Gumbel-Hougaard copula with parameter ¢ = 2. For
the Weissman estimator we have used k; = |2n2/3 /d1/3] in order to be able to decrease
the bias with increasing dimension d (see Section 2.5.1). We conclude:
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Figure 2.5: Each box plot is computed from 10000 samples of length n = 100 and dimen-
siond € {1,2,5,10} drawn from a d-variate distribution with Gumbel-Hougaard copula
with parameter & = 2. The marginal observations follow (left) a GEV distribution func-
tion and (right) a product of two different GEV distributions. The GEV parameters are
selected on the basis of real data from flood frequency analysis.

First note that the GEV-ML approach benefits only very little from the increasing dimen-
sion d. A reason for this might be the relatively high inter-site dependence. However, it
seems that for the Weissman estimator there is a lot more space for improvement with
increasing dimension d making this approach particularly useful in regional estimation.
An advantage of the Weissman estimator over parametric GEV approaches is shown on
the right-hand side of Figure 2.5. There the GEV assumption is misspecified, which re-
sults in a systematic error for the ML approach. This, of course, is not an issue for the
Weissman estimator.

2.8 Proofs

2.8.1 Proof of Theorem 2.4

For sake of readability, the proof of Theorem 2.4 is given for dimension d = 2. The
proof in case of same sample lengths, i.e. 71 = T, = 1, can be found in Dematteo and
Clémengon [2016].

Notation: Let 0 < 71, 7> < 1be fixed. For ease of presentation, we assume the same begin-
ning and different end points, that is, we observe X, ..., X lnt) ™ FxandYj,..., YLnTz |~
Fy from a sequence (X;, Y;);>1 of identically C(F, G) distributed random vectors. In what
follows we will write nt instead of [n7], e.g., Xyr—int = X|pr|—i:|nr] and 1i5y = Zitgj.
The relation f, ~ gu, ¢n # 0, means that f,/g, — 1 for n — oo.
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Let a(t) = F"}Y(1—1/t) and b(t) = G (1 —1/t), t > 1, denote the marginal return

levels. Recall that the empirical counterparts of a ("Tl) and b ( ) are given by

~ [ N7 ~ [ NTy
a = XnTl—klti’lTl and b = anz—kzzn'rz-
k1 k2

The Hill estimator of the first component can be rewritten in the form
k ©1 ”Tl nt dx
klrln_ Z ml ZHnﬁ—/ < >a(k1>-x> (2.19)
=1 nT1 ki:nt 1 X
and similarly, HIEQZ,)'Q, , for the second component.

The first part of the proof considers the arithmetic mean inside the integral in (2.19).
Forget first that 4, b instead of 4, b are involved in the Hill estimators. We set

s (s (5) ) £ (2) 0

and similarly, we define ZY (y) for the second component. The centered version of the
building block involved in (2.19) with 4, b replaced by a, b is given by

( % \/E %ZY ) = <5§(xfT1), SZ(y/Tz))/ = S,u(x,y).

The first goal of our proof is to show weak convergence of S, towards a Gaussian process
in the function space D> = D(IR) x D(R ). The weak convergence of S, together with
the continuous mapping

w0 ([owT [Trn), 0w, 220)

X

helps us to study the joint convergence of the Hill estimators.

The weak convergence of S, follows from that of the usual tail empirical process, e.g., in
the proof of Dematteo and Clémencon [2016] and a Cramer-Wold device for D? [David-
son, 1994, Th. 29.16]: Let A = (A1, A2)" € R? and, without loss of generality, let 1 < .
Then we have that

nt
A Su( Z [Alzx )+ Az ,/:zzy(y) (2.21)
+ ! % A ZY (y)-
5 2
\/>] nt+1

Weak convergence of each of the summands on the right-hand side of (2.21) follows from
the proof in Dematteo and Clémengon [2016]. Because these two summands are inde-
pendent, we also have weak convergence of A’S, for each A € R? and thus, by applying
the Cramer-Wold device for D?, we obtain weak convergence of S, in D2.
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Now let S, denote process S, with a, b replaced by 4, b. From de Haan and Ferreira [2006,
Th. 2.4.8] and with n — oo, we also have that

! <’<> b)) o 1) (2.22)
() 0(2)

Applying the continuous mapping (S(x,v),p,q9) — (S(px,qy)), D> x R? — D?, on S,
and the left-hand side of (2.22) gives us S,. Afterwards, applying the mapping (2.20) on
Sn and letting n — oo results in

S (g [T T4 ) _/°° nw -~ dy
kl (Hk],'fln /ﬁ(?) k1 F(-x) X sz,n,T2 B(%) k2 G(y) y
00 ”T1 no
SN (/ 1 dx/ ):ZY )i/\/(o,z*) (2.23)

for some covariance matrix £* € R?*2. The limit is normally distributed, because the
limit of S, is a Gaussian process. For the calculation of >*, recall that ¢; = lim;, ];( and
note that the asymptotic distribution of each of the components on the left-hand side of
(2.23) does not depend on 71 and 1. Thus, the diagonal elements of ~* are the same as
for 1 = ©» = 1 and given by = 2¢;v? [Dematteo and Clémencon, 2016].

The calculation of X7, requires some more effort. For this, recall that return level func-
tions a,b of Pareto-type distributions F are regularly varying with index <y, which, for
n — oo, means that

-1 -1
na) (o - o o, (n ;
(1) (2 gt ama s (1) 6 (1)
(recall that c; = 1). For n — oo and from Assumption 2.2, we obtain
nn nt
k11P<X1>a<k1 )xY1>b<k2)y)
LA b2 -1/y 4,,—1/v
k H»(mag) ) o (1) <kz>y) (e
1 1/ a (171) 1) b (kﬂl) 1 22

uniformly in x, y, where A is the corresponding upper tail dependence copula. Since, in

addition,
n nn nt
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we conclude that

ntn oolnTz d
ZX(x i‘/ 7Y ()Y

E| [T R LAWT [ Lz
T1/\T2 nt no dxdy

/ / (X1>a<kl>xYl>b<k2>y> xy

=1/y =1/
So(tA) / / < Y ) axdy _ s (2.24)

C2 T Xy

To sum up: The previous part of the proof shows joint asymptotic normality of the Hill
estimators H" and H®

centered by the random values

ki,Ti,n ko, o n
/ L o —x and / —n © Gy dy , (2.25)
(i) B 2) %y

respectively, and with limiting covariance matrix X*. In the remaining part of the proof
we will replace both terms in (2.25) by y. Proceeding in the same lines as in the proof of
Dematteo and Clémencon [2016], the final step that has to be done is the derivation of the
limiting covariance matrix in (2.7).

First, note that f 1°° s~V 7% = 7, which, together with (2.5), implies that

. ©® 1., .dx . ® 1 ., .\ dy
= lim —F(x)— = lim — -,
T o) K (0)— = lim o(12) o v) Y

We can thus write

;}%E [kl ( ﬁl)r T 7) (ngzz,)rz,n N 7)}

0 poo -1/ -1/
— o(uAn) / A (x Y 7) dxdy (2.26)
1 J1 T €21 Xy
(R e, dxe () nn o, dy
~ lim E _kl/um) qu(x)x/b(*;;z) LWy (2.27)
— lim E _kl (H“) —7) / (i) "2 G Y (2.28)
n—co I kv, Tm b(%) k2 Yy
i .ﬁ nn _ d
~ lim E [k (Hg}% —’y) /a (’(;)) f;{? F(x) XI (2.29)
L 1

provided all the limits exist and where we used (2.24). It remains to show that
(2.26) — (2.27) — (2.28) — (2.29) = c2 (T A )72 - A (r;l, (Tzcz)*l) . (2.30)

First, we will use Lemmas 7.5 and 7.6 from Dematteo and Clémengon [2016] to prove
modified versions of Lemmas 7.7, 7.8 and 7.9 from the previous reference. These results
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allow us to calculate analytical expressions of (2.27), (2.28) and (2.29), which, in turn, is
used to show (2.30) in the final step. It should be noted that the tail measure v used in
Dematteo and Clémencon [2016] satisfies v(x,y) = A(x~1/7,y~1/7).

For ease of notation, let p; ,r = " ”’1 , U; = F(X;) and V; = G(Y;). The densities of F
and G will be denoted by f and g, respectwely

Lemma 2.8 (First auxiliary result)
For intermediate sequences ki, ko, i.e. kj — oo and kj /n — 0, we have

E VITZ d
logxnnfﬂrl:nn /b<ETZZ)> %PY(y) ;
ko

with My, v (i,k2), Ryz,5,1(i, ko) and Ry, 7, v, 2 (i, kz) given in the proof and

E

] = Mn,Tl,Tz (i/ kZ) + Rn,-rl,rz,l (i/ kZ) + Rn,n,TZ,Z (i/ kz)

—3/2(loglogn)~1/2(logn) !

Ry p1(ki, ko) =0 < 2(ni /)b k) ) , (2.31)
n=3/4(loglogn)~*(logn)~1/2

S O( (log ?nri /kz)( g") ) . (2.32)

Proof. With Dematteo and Clémengon [2016, Lem. 7.5] we obtain

- (12 y
£ |08 Xrmistam /b(gf>> ’Zz(;@yy]
L )
= E <loga (@) + Pint — %1'1 27;’11 1{Uj§l7i,nrl}> ) (pk,nrz - nlrz ZnTZ {V<pkn‘r2})]
o i nT nT . ”
N R OHOE)
_ T (Pinr ) ?)(?;;2) no dy Thr (pk nr )
E|O #/ —G E |log X, 1y —2\TRnT)
w0 (B [ o0y )| 8 et B

== Mn,‘rl,rz (l/ kZ) + Rn,Tl,Tz,l (l/ kZ) + Rn,rl,‘(z,Z(ir kZ)/
where, since ]P(V] <p)—p=_0forp € (0,1), the first summand is equal to
n% Z?:ﬁl(l{ujémml} —P i'”Tl)%ﬁ anz (1 Vi<prynnt — Phony)
a(nty /i) - f(a(nm /i)) - b(m’z/kz) g(b(nm/ky))

(2.31) and (2.32) follow directly from Dematteo and Clémencon [2016, Lem. 7.7]. |

Mn,n,rz (i/ k2) =E

Lemma 2.9 (Second auxiliary result)
Fori=1,...,k we have that

nt

. n nt
M) ~ (AP (300 (M) > ()
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and in particular

1
Mz m (k1 k2) ~ (T A TZ)VZE A (Tf1, (Czrz)fl) .

Proof. Note that F(a(nt/i)) = 1 — ping ~ 7#1 and thus, by applying the von Mises
condition (2.4), we have

(R (e g ma e () 6 (0 ()~

This leads to

M (i K ) E |:nl-f1 2721(1{ujgp,-m]} - Pi,nn)L Z}izl(l{ngpkMTz} - ka,nTz)]
n1,m\LAR2) =

a (") fla ())b (52) 86 (%2))
P (Xi>a (") >0 (1)) - (0 i) (0~ i)
T b ’

wea () £ (55)) 0 (52) 2 (b ()
n nn nm
~(11 AT2)y? ikzlp (X1 > a( ; ),Yl >b <k2>> )

Consequently,

1n nrt nr
Mn,T],TZ(kl,kz) N(Tl /\Tz)’)’ kikip (Xl >a <k11> ,Yl >b <k22>)

1 _ _
~(T A T2)72E A (T1 L (c2m2) 1) .

Lemma 2.10 (Third auxiliary result)
We have that

k1

x Vv o1\ d
. nt nt _ 4 7x
r}groloz leIP <X1 >4 (T) ! Yl > b <>) = / ( C2T2> X (233)

The proof follows from exactly the same lines as in Dematteo and Clémencon [2016, Lem.
7.9] and is thus omitted.

Now, using the auxiliary Lemmas 2.8, 2.9 and 2.10, we are able to calculate (2.27), (2.28)
and (2.29):

Lemma 2.11 (Calculation of (2.27))
We have that

(2.27) = c2( A Tz)’)/Z -A (Tl_l, (Csz)_l) . (2.34)
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Proof. We use Dematteo and Clémengon [2016, Lem. 7.5] and Lemma 2.9 to get

k /z(kf)) T;fllﬁ(x)d;/bzg) = '(y)dyy]
- Py — Fng (ﬂ (%)) Tnn(Pkl,ml))
"ﬁ{(am)-f(am)) Talw) )
(;9 G ((2)) | T (pioe) )]
b(12)-s(v())  e(3)
i, {néq S P (X > a (52),% >0 (52)) = (1= Prowe) (1= Proes)| ] oll)
k o() (o () 0 (32) s (6 ()

k;kz . Mn,T1,T2 (kl,kz) + 0(1) — C2(T1 AN Tz)’)fz -A (T;l, (Csz)fl) .

E

Lemma 2.12 (Calculation of (2.28) and (2.29))
We have that

x~ 1/ 10 dx
x

(228) = c2(m1 A1) [’y /10°A ( o o) x YA (Tfl, (ch2)1>]

and

_ = 1y Y"\dy -1 -1
(2.29) = c2(11 A 12) ['Y/l A (le C2T2> ? — 1A (Tl ,(c2m2) ) .

Proof. With the same arguments as in Dematteo and Clémencgon [2016, Lem. 7.4] we
arrive at

kq
(2.28) = im Y (M1, (i, k2) — My 7, (k1,k2))
1

n—reo =

ky
Lem 2.9 2 4. n nft nt
ST S CRICORERIC )

— Iim k- Mn,’rl,’rz (kllkz)

n—00

o -1/ 1 d
Lem210, 1 A ) [7/1 A <x > X 2A (Tl—ll(cfrz)—l)] '

n oon) x

Finally, we apply Lemmas 2.11 and 2.12 to calculate (2.30):
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Lemma 2.13 (Calculation of (2.30))
We have that

1/ ,,—1/v ) -1/ ) -1/
Ay [ ) S () 4
T Xy 1 T D X J1 T D y

and in particular, (2.30) follows.

Proof. With v = floos_l/'Y% and A(tx, ty) = tA(x,y) for all t,x,y > 0 [Schmidt and
Stadtmiiller, 2006] we obtain

71/7 SIS -1/
e Vg b
2T ) X T D xy
_/ / xy -1/ y_l/'Y dXdy / / _1/')/ y—l/'Y dxdy
" oD " oD xy
and similarly,
/ 1 y—l/'Y dy / / _1/7 y_l/')’ dydx
i (& X5) "on ) yx
Finally, note that [1,00)2 = {(x,y) oy > 1,x > y}U{(x,y) : x > 1,y > x}. This
completes the proof of Theorem 2.4. O

2.8.2 Proof of Propositions 2.5, 2.6 and 2.7

Proof of Proposition 2.5. Note that
V kq ('?opt - 'Y) = w(/;pt V k1 (Hk,T,n - 71) .

The assertion thus follows from Theorem 2.4, 1, L w,pt, Slutsky’s lemma and from
continuity of linear maps. O

Proof of Proposition 2.6. We denote the centered Hill vector by Hf
Then, for arbitrary weights w € W, we have that

Hk,-r,n - '/Yk,‘r,n (w) 1= Aw : Hf(,-,-,nz

where we set Ay, = I; — 1-w’ € RY*? with identity matrix I; € R7%4,
Let Z denote a random vector with distribution M (0, I;). By assumption we have that

krn Hk,‘r,n - ’)’1-

Vi (Hir — 71) -2 92122

and, as a byproduct, also that Yy, ,(w) i 7. From Slutsky’s lemma and the continuous
mapping theorem, we obtain
k1

- /
Wigrn (w) = =5 (AuHi ) £ AuHy -, =5 7 (AuZY?) 2714, 2122,
')’k,r,n('w)
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Note that the matrix B,, = (Ale/ 2),2_1Aw21/ 2 is symmetric. The spectral theorem
from linear algebra guarantees the existence of a matrix O, with O, - Oy = Oy - O, = I
and a diagonal matrix D,, containing all eigenvalues of B,, on the diagonal, such that

By = O4Dy,0., holds. Note also that O - Z 2 7 for any orthogonal matrix O € R*4,
Summing up, we obtain

Wi rn(w) 25 Z'Dy Z.
We continue with the calculation of the d diagonal elements in D,,, i.e., the eigenvalues
of B,, and their algebraic multiplicity:

e It immediately follows that % ~1/?1 is an eigenvector of B,, with eigenvalue 0.

e Let V,, = span(X71/21,22w) and V,; denote the orthogonal complement of V,,
with respect to the scalar product. Then, for any x € V.., we have that B,x = x.
dim (V) € {d —2,d — 1} implies that 1 is an eigenvalue of B,, with algebraic
multiplicity of d —2ord — 1.

e Ifdim (V+) = d — 1, we are done. Otherwise, let E,, = (£71/21,%1/2w) € R*?,

o —'w’Z'wl 2%2
e (770 1) e

and note that I; — By = EyFwE,,. From linear algebra we know that every non-zero
eigenvalue of Ey Fy E., is necessarily also an eigenvalue of the matrix

g/ Iy —1
FwE:,va:<1 wXwl'X 10).

1211 1

From the last expression we conclude that 1 — Ay, = 1 — w/Zw1’S 71 is an eigen-
value of I; — By, which implies that A,, is an eigenvalue of B,,.

Next note that wéPtZwOptl’Z*H =1 for wops = (1'=711)~!. =~!1. Finally, from Wopt L

w,pt and the continuous mapping theorem, we have that Wy . , 2 X5
For the remaining part of the proof, let Fy, ..., F; be all of Pareto-type with extreme value
indices 71, ..., 74, but with 7; # <, for some 1 < i,j < d. From Theorem 1.12 we have

that Hy  , — Y- (w)1 5 b € RY, b # 0. From the positive definiteness of £ and the

consistency of 3. we thus have Wi rn/k1 B const. > 0, which implies that Wy , , L .
This completes the proof of Proposition 2.6. O

Proof of Proposition 2.7. We only need to verify joint weak convergence of

ui(ki, n;)
Vi [ Agen =1 52 > (2.35)
( F 7 (n/k;)
towards a bivariate normal distribution. Then all the assumptions of Theorem 1.14 are

valid and the assertion follows.
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Recall from the proof of Theorem 2.4 that weak convergence of the first component in
(2.35) is based on that of a stochastic process S, also called tail empirical process. Simi-
larly, weak convergence of the second component in (2.35) can by shown by a more gen-
eral result on tail empirical quantile processes [de Haan and Ferreira, 2006, Def. 2.4.3 and
Th. 2.4.8]. Thanks to Vervaat’s lemma [Vervaat, 1971], these two tail processes are closely
related, which means that both components can be viewed as continuous mappings of
one process up to some negligible summand and joint weak convergence follows. For
details on tail empirical processes we refer to de Haan and Ferreira [2006, Sec. 5.1].



Chapter 3

Detecting change-points in the
dependence of extremes

The aim of this chapter is to test whether the dependence between maximal values has
changed during the observation period. The procedure is also extended to allow for the
detection of changes in the dependence under known abrupt changes in the marginal
distributions. We conclude the chapter with illustrations from flood frequency analysis
considering bivariate time series of river flows, where the behavior of margins possibly
has changed due to the construction of a dam during the observation period and where
still it is of interest to test whether the dependence has changed.

This chapter is based on the article by Biicher et al. [2015] (accepted for publication in
Extremes). The work started with my interest in the madogram estimator (1.15) and re-
lated change-point tests. When noticing that this problem is connected with the theory
developed in Biicher and Kojadinovic [2016], I started collaborating with the authors of
that paper.

My main responsibility lied in the computational and applied part of this work. The theo-
retical results, many related to those in Biicher and Kojadinovic [2016], have been mostly
carried out by Axel Biicher and Ivan Kojadinovic, with their original argumentation sum-
marized in the appendix of Biicher et al. [2015]. Here, however, I have modified some of
the details of the proofs and rearranged the statements in a slightly different order.

3.1 Introduction

The study of maximal values is of importance in many environmental applications. Promi-
nent examples are the analysis of floods [Hosking and Wallis, 2005], heavy rainfalls [Coo-
ley et al., 2007] and extreme temperatures [Katz and Brown, 1992]. Many of these prob-
lems are intrinsically multivariate; for instance, the severity of a flood depends not only
on its peak flow, which is considered in many univariate flood studies, but also on its
volume and its duration [Yue et al., 1999]. Catastrophic floods typically occur when more
than one of these variables is taking a high value and therefore, the analysis of the joint
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behavior is of key importance. In a river system, where flood data are collected from
a number of stations, inference at a specific location can be improved by incorporating
observations from neighboring stations [Hosking and Wallis, 2005]. Similarly, extreme
temperatures are commonly studied at several stations simultaneously.

In such applications, it is common practice to assume that the time series of block max-
ima is temporarily independent, extreme value distributed and stationary. It is the aim of
this paper to develop tests for change-point detection within the distribution of the block
maxima. More precisely, assuming that we observe a sample of independent multivariate
observations Y1, ...,Y,, where each Y; follows a multivariate extreme value distribution
whose distribution function is denoted H), we develop a test for the hypothesis

Ho: HY = ... = H (3.1)

against alternatives involving abrupt changes in the extreme value distribution. Since
the univariate version of this problem has been treated, for instance, in Jaruskova and
Rencova [2008] using results from Chapter 1 of Csérg6 and Horvath [1997], we will be
particularly interested in the multivariate setting throughout this paper.

Outside of the extreme value framework, there is a huge amount of literature on detecting
deviations from Hy. We refer to Aue and Horvéath [2013] for a recent review. It is useful to
note that, by Theorem 1.1, we can rewrite Hg as Ho,» N Ho,, where intersection N means
that both hypotheses are met and where

Ho,m : H(l), ., H™ have same margins, (3.2)
Ho,: H (1), ...,H (") have the same copula (i.e., dependence). (3.3)

Roughly speaking, common tests for H( can be divided into two groups: tests that are
powerful against deviations from Hg, but which are rather insensitive to deviations
from Ho, and vice versa, see Biicher et al. [2014] for a discussion. In the present set-
ting of observing data from a multivariate extreme value distribution, the tests consid-
ered for instance in Jaruskova and Rencova [2008] can be used to detect deviations from
Ho,n, whence it will be our main concern to design a test that is particularly sensitive to
deviations from g, when the copulas C(¥) are known to be of extreme value type. De-
noting the corresponding Pickands dependence function by A() (see Theorem 1.4), we
can rewrite Ho equivalently as

Hon: AV = =AW, (3.4)

The test statistic in the subsequent sections will be particularly designed for detecting
deviations from Hg 4.

Note that none of the existing tests for changes in the copula [see, e.g., Quessy et al., 2013;
Biicher et al., 2014; Dehling et al., 2014; Kojadinovic et al., 2015, among others] incorpo-
rates the information that C is of the extreme-value type, whence an improvement in the
power properties seems possible. In fact, our simulation study reported in Section 3.3
suggests that our proposed testing procedure is indeed superior to existing methods.
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The test tailored to deal with extreme-value dependence that we propose is however
affected by the same limitations as most of the aforementioned more general testing pro-
cedures: it can be used to reject H only if Hy ,, holds. In some situations, although there
are reasons to consider that H ,, is not true, it is still of interest to assess whether H
holds or not. For instance, in the hydrological applications to be presented in Section 3.4,
the construction of dams during the observation period suggests that there might be po-
tential breaks in the marginal distributions of extreme peak flows or volumes, while it
is still of interest to assess whether the dependence between the variables of interest has
changed or not. A second contribution of this work is thus to propose an extension of the
studied testing procedure similar to that considered in Quessy et al. [2013] that can be
used to detect deviations from . under certain types of simple departures from Hg .
The remainder of this chapter is organized as follows: Section 3.2 introduces the test
statistic, its extension and summarizes the main theoretical results. A comparative sim-
ulation study is presented in Section 3.3 and an application to hydrological time series is
given in Section 3.4. Proofs are deferred to Section 3.5.

3.2 A new change-point test under extreme value dependence

For the remainder of this chapter we will restrict ourselves to the case of two-dimensional
time series. All the results below can be extended to arbitrary dimensions d > 2, which
is briefly summarized in Appendix A.5.

Suppose that (X;,Y;)’, i = 1,...,n, is a sequence of independent random vectors with
unknown distribution functions

P(Xi <% Y <y) = HO(xy) = ¥ (F)(x),69(y)), (xy) € R?,
copulas C) and continuous margins F(), G(), We assume that each C) is an extreme

value copula with Pickands dependence function A% : [0,1] — [1/2,1] and we aim at
developing tests for Hg in (3.1) that are particularly powerful against alternatives

Hia: AN = = A £ AHD) — = AM for some unkown . (3.5)

3.2.1 Test statistic for d = 2 under stationarity of the margins

Our test statistic is based on sequential estimation of the Pickands dependence function:
Starting from an adaption of pseudo observations,

1
(—k+2!

1

Yieti = T—k+2:

¢ 4
1 (X] < Xl') and Vk:g,i = 1 (Y] < Yi) ’ (36)
=k =k

computed from arbitrary subsamples (X;,Y;)’, 1 < k < i < ¢ < n, we define

A 1

4
~1/(1-t) o
SMU):g_k+1‘;me%$t%%ﬁ» telo1), (3.7)
1=
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where we set S;.y = 0if k > £. In analogy to (1.15), we define

A o Sk%(t)
Ak:g(t) = 71 — S\k:é(t)/ t e [O, 1]. (38)

Under Hy, we may expect that some distance between Ay and Ak+1:n should be small,
relative to sampling variability and for any k = 1,...,n — 1. The opposite should be
expected, if alternative H; 4 in (3.5) is met. Since we do not know the potential change-
point m in (3.5), it is natural to study the behavior of the stochastic process

Dy(s,) = P L) A (0~ Apepna0), (50 € DA (39)

The standardization in (3.9) is not unusual in such CUSUM-type (CUMulative SUMs)
change-point tests. It is used to prevent processes like ID, from exploding for s at the
boundaries of [0,1]. The following proposition establishes weak convergence of process
D, under Hy in (3.1).

Proposition 3.1
Suppose that Ho holds and that A is continuously differentiable on (0,1). Then, in the normed

space (£°([0,1]2), || - |leo) and for n — oo, we have that D, B D¢, where

Dec(s, ) = {1+ A(H)}? /01 sCc(s, Ly ') — (1 =s)Cc(0,5,y" ", y")dy.  (3.10)

Cc denotes a centered Gaussian process defined in Theorem A.8 and where d = 2.

Most test statistics in the change-point literature are based on a uniform (Kolmogorov—
Smirnov) or L, metric (Cramer-von Mises, Anderson-Darling) of ID,. Throughout this
paper, we focus on the hybrid version

Sy A = max [ }{IDn(k/n,t)}z du(t), (3.11)
01

1<k<n

where y denotes some finite measure on [0,1]. In the simulation experiments of Sec-
tion 3.3 we use 4 = T~ Y ,cr &; for some finite grid T = {ty,...,tr} C [0,1], where &; is
the Dirac mass at . A corresponding two-sample version of the test statistic for detecting
change-points at some pre-specified point 1 < k* < n is defined by

Spa(k) = /[01] (D, (k* /1, )Y du(t). (3.12)

Note that, for the purpose of testing H in (3.1) and because the map s — s/(1 —s) is
one-to-one, we may replace Agy by Sk.e in (3.9). However, additional simulations (not
reported here) revealed that the version based on Ay leads to tests with a better finite-
sample behavior.



3.2 A new change-point test under extreme value dependence 55

The limit process D¢ in (3.10) depends in an intractable way on the unknown copula C,
and, as a consequence, so will do the limit distributions of the test statistics S, 4 in (3.11)
and S, 4 (k*) in (3.12). The following multiplier bootstrap technique allows us to con-
struct suitable approximations of p-values:

Let B be some large integer. Theorem A.9 is used to approximate process Cc appear-

ing in (3.10) by multiplier bootstrap versions ¢, b=1,...,B. We thus may hope that
replacing Cc and A(t) in (3.10) by ¢ and a consistent estimator of A(t), respectively,
gives us bootstrap approximations of IDc. More precisely, a tedious but straightforward
calculation suggests to define

. R ns L R n— |ns
Di(’lb)(sl t) = {1 + Al:n(t)}z LB/J ) \_Ej 161'(b)wtnsj+1:nl( - 713&2 J E C | ns] z
1=|ns|+

for (s, t) € [0,1]?, where, forany 1 <k < ¢ <,

ﬁk () - é\k:E(t)
e (1) + {0t )—Uk;e(t)}jw(t),

with iy, iy, and ., denoting the arithmetic means (overi =k, ..., /) of

Wiepi(t) = Mg (t) — titgei(t) + {fgei(t) — dge(t) } =

A . ~ by - A ~dy.
mkj'i(t) = max(u}lé(zl g Vl/t) uk:ﬁ,i(t) = ukzl{ffl'(t)/(l t)/ vk:é,i(t) = V;k.é'(t)/t/

respectively, and with

~

ﬁk:f(t) = Ak:((t) - tA;cf[n(t)/ Ek:[(t) = Ak:é(t) +t
Cre(t) = Aro(t) + (1= 1) ALy, (1), dio(t) = Ao(t) +1—t,

where, for some positive sequence h, | 0 such that inf,>1 h,/n > 0,
Al () = min[max{Ay}, ,(t),—1},1], t€[0,1], (3.13)

with

1 o n
Apgu(t) = h {Ake(t + 1) = Age(t =) }, (3.14)

for t € (hn,1— hy), while Ay, (t) = AL, (hy) for t < hy and AL, (t) = AL, (1 —hy)
fort >1—h,.

The following proposition establishes the asymptotic validity of the above resampling
scheme under Hj in (3.1).

Proposition 3.2
Under the conditions of Proposition 3.1 and for n — oo,

N

(D, DY, D) L5 (Do, DY, DY)

n (£2([0,1]2), ]| - [leo)BH1, where ]Dg), . .,IDE:B) denote independent copies of Dc.



56 Chapter 3. Detecting change-points in the dependence of extremes

We define multiplier bootstrap versions Sv(bl)L1 of the test statistic in (3.11) by

n,

(b ' b 2
50 = max /[0,11 (DY (k/n,0)}) du(e).

1<k<n

The previous proposition in combination with the continuous mapping theorem allows
us to estimate p-values by

NN
pus =g b‘:, 1 (S,ﬁb,)q > Sn,A) : (3.15)
=1
A test rejecting H if pnp < a for some a € (0,1) asymptotically keeps its nominal level
of « for n — oo followed by B — oo (see Appendix F in Biicher and Kojadinovic [2016]).

3.2.2 Test statistic for d = 2 under known marginal change-points

The test developed in the previous section can be used to reject Ho . in (3.4) only if we are
sure that Hg, in (3.2) holds. Otherwise, it can be considered only as a test for the more
general hypothesis H in (3.1).

In Section 3.4 we will present applications, where it is plausible to believe that H ,, does
not hold and where it is still of interest to test whether # . holds or not. Even more, in
our applications it is reasonable to assume that the potential change-point in the margins
is known, which allows us to consider the following simple alternatives of Hg :

For some known 6 € (0,1), we define

FM = ... = p(ne]) £ p(lne]+1) — ... — p(n)
HY or (3.16)
G =... = Gln6]) £ Gglnbl+1) — ... = Gg(n),

which means that one or even both margins change abruptly at the same known point
of time |nf]. In the applications of Section 3.4, |nf] corresponds to the time point right
before the construction of a dam.

The aim of this section is to provide a modified version 52, 4 of the test statistic S, 4
from the previous section and to study its distribution under ’H%m N Ho,c. In the end,
the only thing we need to adapt is the calculation of sequential pseudo observations: For
1<k<i</t<nweset

U, if |[n0| ¢ {k,... 0},
Up o = § Uk oy if [n8] € {k,...,¢}and i < |nb], (3.17)
U )10 if [n6] € {k,..., L} and i > |n6],

and similarly for Velk;g,i. In words, we need to compute pseudo observations from sta-
tionary sub-subsamples. For instance, if we use these modified pseudo observations in
the definition of the estimator for S, denoting with S,f: ¢» we obtain the representation

[nf]—k+1 & {—|nb| & .
é](z;g(t) — { l—k+1 Sk:LnGJ (t) + g_k_,_ls\_nf)jJrl:Z(t)/ ifk < Lnej </, (3.18)

Ske(t), otherwise,
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which seems to be a natural choice under H?m N Ho,.. To complete the story, the mado-
gram estimator /\2: ,» the statistics D, 5191, A 52, 4(k*) and their multiplier bootstrap repli-
cates are defined in analogy to those from the previous section, provided the initial
pseudo observations (Uy.¢;, Vi.¢;)' are replaced by (Ug.ci, Vorei)' wherever possible.
Thus, from a practical perspective, once the above adapted pseudo observations are com-
puted, the computer code for the simpler setting considered in the previous section can
be fully reused.

The following proposition establishes the joint limit distribution of DY and its multiplier
bootstrap replicates under Ho, N ’H?/m.

Proposition 3.3
Assume that either Ho or Ho, N ’H?,m holds and that A is continuously differentiable on (0,1).

Then, in (£*([0,1]2), || - ||eo) 2+t and for n — oo, we have that
(D4, D4, ") 25 (Dc,D{Y,....D),
where D¢ is defined in (3.10) and ]Dé1 ), ey ]D(CB) denote independent copies of Dc.

As previously, the null hypothesis is rejected at the significance level « if ﬁﬁ/B < a, with
ﬁﬁ,B defined in analogy to (3.15).

3.3 Simulation study

Simulations were carried out in order to evaluate the finite-sample performance of the
tests studied in Sections 3.2.1 and 3.2.2. For the sake of simplicity, we only focused on
the test based on statistic S,, 4 in (3.11) and its adaption SY , to Hﬁ)’m from Section 3.2.2.

Results of the corresponding two-sample tests S, 4 (k*) and Sfl’ 4 (k*) are strongly related.

The finite-sample performance of the tests based on S, 4 and Sz, 4 was compared with
that of three other tests for H in (3.1) designed to be particularly sensitive to Hg in (3.3):

e S, c: A test based on the empirical copula [Biicher et al., 2014, statistic S,,]
e 5. A test based on Spearman’s rho [Kojadinovic et al., 2015, statistic S,, 1]
e S, 1 A test based on Kendall’s tau [Dehling et al., 2014]

These procedures however do not assume the underlying dependence structures to be of
the extreme-value type. The former is sensitive to all kind of changes in the underlying
copula, while the latter two are only sensitive to changes in Spearman’s rho and Kendall’s
tau, respectively.

Attention: All the tests mentioned above are procedures for testing H (resp. ’H(l’,m NHo,)
designed to be particularly sensitive to departures from #g .. They should not be used to
reject Ho, unless we are sure that H ,, (resp. Hf/m) holds.
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The rejection rates of the tests were estimated from samples drawn from bivariate distri-
butions whose copulas are of the form

Ca(1,0) = uv2Cy(u'~",017"2),  (u,0) € [0,1]%, (3.19)

where Cy is a symmetric extreme-value copula with parameter ¢ € R and a = (a1, a) €
[0,1]% is a parameter controlling the amount of asymmetry of C,4. The above copula
construction principle is frequently referred to as Khoudraji’s device [Khoudraji, 1995]. As
long as Cy is an extreme-value copula, so is its potentially asymmetric version C, y. Given
that there is hardly any practical difference among the existing bivariate symmetric para-
metric families of extreme-value copulas [see Genest et al., 2011, for more evidence], Cy
in (3.19) was taken to be the Gumbel-Hougaard copula with parameter ¢ € [1,00). As
an illustrative example, the copula depicted in Figure 1.1 of the first chapter is exactly of
this form.

All the tests considered in our numerical experiments were carried out at the 5% signif-
icance level using B = 1000 multiplier bootstrap replicates. The values 50, 100, 200 and
400 were considered for the sample size n. The measure y involved in the definition of
Spa and Sfl, 4 was taken equal to 971 Y7_; &;/10; finer grids did not appear to lead to better
behaved tests. The bandwidth £, in (3.14) was set to 10~2/+/n; additional simulations
not reported for the sake of brevity indicated that different choices, in particular smaller
values, did not lead to any improvements. With the illustrations of Section 3.4 in mind,
the values 0.25 and 0.5 were considered for 6. For the study of empirical power and for
fixed s € (0,1), we define the alternatives

i,c: Cl:"':CLnsj #CLHSJH:...:CH. (320)

The computations were carried out using the R statistical system [R Core Team, 2015],
and the R packages copula [Hofert et al., 2015] and npcp [Kojadinovic, 2015].

Empirical levels of the tests based on S;, 4, S, c, Si,r and S, Columns 5-8 of Table 3.1
report the rejection rates of the four tests estimated from 4000 random samples generated
under H from c.d.f. C, in (3.19) for various values of a and @. Note that, since ranks
are invariant with respect to strictly monotone increasing transformations, the choice of
the marginal distributions is irrelevant for the results. Standard uniform ones, which
means that we are drawing realizations directly from C, s, are just the most convenient
for simulation. The empirical levels of the tests based on S, 4, S, c and S, are overall
reasonably close to the 5% nominal level in all settings for which Kendall’s tau of C, s
given in the fourth column is strictly smaller than 0.6. For tau > 0.6, the three tests
are overall slightly conservative. On the contrary, the test based on S, can be way too
liberal, especially for n < 100.

Empirical power of the tests based on S, 4, S, ¢, S1p and S, r under changes in the cop-
ula only The right plot of Figure 3.1 displays the rejection rates of the first three tests
estimated from 2000 samples of size n = 100 generated under Hy,, N HJ ., where we set
s = 0.5 such that, for each sample, the first (resp. last) 50 observations were drawn from
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n o a 9 T |Sua Suc Swp Sur S2F 8%
50 (0,00 1 0|49 63 56 61 76 42
125 2|67 62 58 70 79 70

167 4|58 44 39 78 66 61

25 6| 40 37 24 117 56 47

5 8|36 24 09 209 82 27

0,3) 4 56| 45 47 31 78 52 55
100 (0,00 1 0|55 51 58 49 77 54
125 2| 63 54 62 52 74 69

167 4| 62 43 44 54 62 66

25 6|54 30 29 71 60 55

5 8|20 22 10 154 40 26

0,3) 4 56|45 42 38 54 45 50
200 (0,00 1 0 |50 43 48 43 62 56
125 2| 60 48 58 50 64 64

167 4| 59 40 49 48 64 62

25 6|36 28 31 53 44 44

5 8|26 13 20 74 34 34

(0,3) 4 56| 48 40 43 51 52 52
400 (0,00 1 0|55 51 55 50 60 58
125 2|52 47 51 50 55 54

167 4| 49 44 50 46 51 52

25 6|53 39 46 55 55 55

5 8|38 19 27 58 43 42

(0,3) 4 56| 48 40 44 46 48 48

Table 3.1: Rejection rates of H( in % estimated from 4000 random samples generated
under Hg from c.d.f. C, ¢ in (3.19). The column T gives the value of Kendall’s tau of the
copula C, 4.
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Figure 3.1: (Left) Pickands dependence function of the Gumbel-Hougaard copula with
parameter 2 + d9. (Right) Rejection rates of the tests based on S, 4 (O), Syc (4) and
Snp (O) versus d¢ estimated from 2000 bivariate samples of size n = 100 such that, for
each sample, the first (resp. last) 50 observations were drawn from a Gumbel-Hougaard
copula with parameter 2 (resp. 2 + d0).
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Figure 3.2: (Left) Pickands dependence function associated with the copula C, ¢ in (3.19)
with a = (max(0.4 — da,0), max(da — 0.4,0)), for da € {0,0.4,0.8}, and ¢ set to keep
Kendall’s tau of C, 4 equal to 0.5. (Right) Rejection rates of the tests based on S, 4 (O),
Snc (D), Snp (O) and Sy, (©) versus da estimated from 2000 bivariate samples of size
n = 200 such that, for each sample, the first (resp. last) 100 observations were drawn the
above mentioned copula with da = 0 (resp. da € {0,0.1,...,0.8}).
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(3.19) with (a,8) = (0,0,2) (resp. (0,0,2 + d@)). We did not include the results for the
test based on S, because it does not hold its level for the sample size under consider-
ation. As expected, the test based on S, 4 is more powerful than its two competitors in
this simple setting.

To investigate the influence of asymmetry on the power of the four tests, as a second
experiment, we considered again the copula C, y in (3.19), but this time with parameter
a defined as (max(0.4 — da,0), max(da — 0.4,0)), for da € {0,0.1,...,0.8}, and with pa-
rameter ¢ = ¢(a) set to keep Kendall’s tau of C, y equal to 0.5 for all considered values of
a. The corresponding graphs of the Pickands dependence functions for da € {0,0.4,0.8}
are depicted in the left-hand side of Figure 3.2. The right plot displays the rejection rates
of the tests based on S, 4, S, c, Sup and S, versus da estimated from 2000 samples of
size n = 200 under Ho, N ”Hirc, where we set s = 0.5 such that, for each sample, the first
(resp. last) 100 observations were drawn from the above mentioned copula with da = 0
(resp. da € {0,0.1,...,0.8}). Although the rejection rates are overall relatively low, the
test based on S, 4 is by far the best. The fact that the tests based on S, and S, have
very little (if any) power against such alternatives is due to the fact that Kendall’s T (resp.
Spearman’s p) remains constant (resp. almost constant) in this experiment.

Empirical power of the tests based on S, 4, S;, ¢, Sup and S;, r under an abrupt change in
one margin only: Table 3.2 reports rejection rates of H, estimated from 2000 bivariate
samples of size n generated under ’H%m N Ho,c, where Ho, and ’H?m are defined in (3.3)
and (3.16), respectively, such that, for each sample, the first [n0] (resp. last n — |nf])
observations were drawn from a c.d.f. whose copula is the Gumbel-Hougaard, whose
first margin is GEV with parameters 4 = 20, ¢ = 10 and v = 0.25 (resp. 4 = 20 + dy,
o = 10 and 7y = 0.25), and whose second margin is uniform (the results are unaffected by
the choice of the second margin since the test is rank-based).

All tests have little power against such alternatives when the shift du in the location
parameter of the first margin is relatively small (du = 5). This is a desirable property since
the tests were designed to be sensitive to departures from Ho.. Higher rejection rates
were obtained for dyu = 15 and when the dependence is moderate or high, in particular if
the (scaled) change-point in the first margin is non-central (6 = 0.25). The latter results
illustrate the fact that the procedures based on S;, 4, S, Snp and S, - are tests for Ho and
that one should not use them to reject o unless H,,, holds. Additional changes in the
dispersion or scale parameter of the first margin might even increase the phenomenon.

Empirical levels of the test based on SZ, 4+ A consequence of Proposition 3.3 is that the
test based on SY , will hold its level asymptotically under one abrupt marginal change
only (formally, this is a consequence of the results in Appendix F of Biicher and Kojadi-
novic, 2016). To evaluate the corresponding finite-sample behavior, we considered again
the setting of Table 3.1. Indeed, since ranks are invariant with respect to monotone trans-
formations, samples generated under H( can equivalently be regarded as generated from

Ho,c N Him, provided 6 is known. From the last two columns of Table 3.1, we see that the

test based on 52'54 holds its level equally well as the test based on S, 4. The test based on

ngf is however slightly too liberal for n = 50, although the agreement of its empirical



62 Chapter 3. Detecting change-points in the dependence of extremes

6 =05 6 = 0.25
dﬂ n T Sn,A Sn,C Sn,p Sn,T Sn,A Sn,C Sn,p Sn,T

5 50 0 55 62 60 57 |55 63 62 56
025 66 61 62 62|52 41 37 53

05 | 43 33 25 81| 44 28 27 83
07539 22 12 178 | 27 25 11 160

100 O 51 51 54 44 |50 59 60 39
02551 36 51 45| 67 40 49 50

05 | 55 41 43 49 47 29 33 52
07533 10 06 137| 45 28 15 92

200 O 56 48 55 41 | 56 58 54 38
025 48 51 51 36 |39 36 34 44

05 |46 25 29 36 |52 34 40 37

075 40 08 10 20| 50 30 21 74

400 O 46 47 45 32 | 52 42 45 30
025| 54 42 55 47 | 58 41 42 31

05 |55 43 45 52|55 55 59 46

075 66 28 18 382| 97 67 74 67

15 50 0 45 56 53 90| 47 53 53 57
02576 57 50 81| 68 65 68 6.1
05152 28 21 148| 86 67 53 78
0751183 15 03 636|200 159 46 130

100 O 43 44 49 65 | 42 42 46 43
025 47 34 39 90 | 59 43 49 438
05 |72 38 30 234| 90 84 65 69
075 |40.6 100 18 919|420 369 23.0 186
200 O 43 38 54 57 | 42 43 43 34
025 64 55 52 103| 77 55 65 438
05193 74 63 441|141 157 147 10.0
075|752 565 368 998|792 793 715 439
400 O 51 49 56 58|49 51 51 29
025| 64 65 66 139| 81 86 85 45
05 | 164 164 158 718|221 29.6 280 14.0
0.75]98.6 98.0 947 100 | 98.2 99.2 983 874

Table 3.2: Rejection rates of Hy in % estimated from 2000 bivariate samples of size n gen-
erated under H1 ,, N Ho,, where Ho . and H, ,, are defined in (3.3) and (3.16), respectively,
such that, for each sample, the first |n6| (resp. last n — |n6|) observations were drawn
from a c.d.f. whose copula is the Gumbel-Hougaard, whose first margin is GEV with pa-
rameters y = 20, 0 = 10 and y = 0.25) (resp. 4 = 20 +dp, o = 10 and ¢y = 0.25), and
whose second margin is standard normal. The value of the parameter of the Gumbel-
Hougaard copula is set through its one-to-one relationship with Kendall’s tau 7.
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Figure 3.3: Rejection rates of the test based on sz, 4 (0) against 6 € {0.2,0.3,...,0.8}
estimated from 2000 bivariate samples of size n € {100,200,400}, such that, for each
sample, the first |ns*| (resp. last n — | ns*|) observations are generated from a Gumbel-
Hougaard copula with parameter 2 (resp. 3). The dashed line marks the corresponding
estimated rejection rate of the test based on S, 4.

levels with the 5% nominal level improves as n increases.

Empirical power of the test based on Sg, 4: As alast experiment, we investigated the
influence of the value 6 on the power of the test based on sz, 4~ Figure 3.3 displays the
rejection rates of the test based on Sfl’ 4 against 0 € {0.2,0.3,...,0.8} estimated from 2000
bivariate samples of size n € {100,200,400} under Ho,, N Hﬁ*c such that, for each sample,
the first [ns* | (resp. last n — [ns* |) observations are generated from a Gumbel-Hougaard
copula with parameter 2 (resp. 3). The values 0.25 and 0.5 were considered for s*. As one
can see, the rejections rates are not too much affected by the value of 0. In addition, the
power of the test based on Sg, 4 remains overall reasonably close to that of the test based
on S, 4. From a practical perspective, the latter result suggests that, under Hy ,, in (3.2),
the somehow “non optimal” use of the test based on Sfl’ 4 instead that based on S,, 4 does
not incur a large power loss, if any. As a consequence, if one hesitates about which of
Ho,m in (3.2) or H1 4, in (3.16) holds, it seems safer to use the test based on Sg, 4 as, should
‘H1,, be actually true, the latter test is more likely to hold its level by construction, and
should Hg, be true, the power loss, if any, should not be too large.
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Figure 3.4: Left: Annual maximal peak flows and volumes of discharges measured
in Streckewalde, Germany. Right: Corresponding pseudo-observations computed us-
ing (1.14).

3.4 Application: Do dams change dependence?

We consider two related applications from flood frequency analysis. The first time series
consists of n = 86 bivariate annual maxima measured between 1921 and 2011 (five years
of data are missing) at a station located on the river Prefinitz in Streckewalde, Germany.
The variables of interest are Q, the annual maximal peak flow in m3/s,and V, the annual
maximal volume of discharge in 10°m3. The observations are displayed in Figure 3.4.
The joint distribution of Q and V is of interest to hydrologists as it can be used to assess
the risk of catastrophic flood levels. For a recent case study we refer to Mitkovad and
Halmova [2014].

Because we are dealing with bivariate block maxima, it is natural to assume that the data
arise from one or more bivariate extreme-value distributions. The aim of our analysis is
to test for possible changes in the dependence between Q and V that might have occurred
during the long period of observation. An additional element to be taken into account
here is that a dam was built on the river Prefinitz in 1973 (which corresponds to the 48th
observation) a few kilometers upstream from the measurement station. We make the
hypothesis that, if there are changes in the two components series, then, they are unique
and they occurred simultaneously after observation 48 due to the construction of the
dam. In other words, we assume that either H, ,, in (3.2) or H%m in (3.16) with 6 = 48/86
holds. In the former case, it is natural to use the test for change-point detection based on
Sp,4 in (3.11), while in the latter case, the extension from Section 3.2.2 based on Sg, 4 with
6 = 48/86 should be preferred. As mentioned in the previous section (see Figure 3.3 and
the related discussion), using the test based on S}, , for some value of  when Ho,,, in (3.2)
actually holds does not seem to result in a strong power loss, if any. For that reason, we
carried out the test based on S;, , with 6 = 48/86. The resulting approximate p-value
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Figure 3.5: Left: Peak flows in m3/s of 164 summer flood events simultaneously mea-
sured at gauges in Aue and Niederschlema, Germany. Right: Corresponding pseudo-
observations computed using (1.14).

of 0.068, obtained from B = 10000 multiplier bootstrap replicates, indicates that there
is some weak evidence of change in the dependence between Q and V. Interestingly
enough, the maximum over k within the definition of the test statistic was not obtained
for observation 48 but for observation 32 corresponding to year 1953.

The second data set consists of peak flows in m®/s simultaneously measured at two
neighboring stations for n = 164 physically independent summer flood events. The
two stations are located in Germany, in Aue and Niederschlema, respectively, and the
corresponding measurements will thus be denoted by Q4 and Qy, respectively. The
observations, chronologically ordered, span the period 1929-2011 and are displayed in
Figure 3.5.

An event was classified as a flood, if each peak flow exceeded the smallest annual maxi-
mal peak flow measured between 1929 and 2011 in Aue and Niederschlema, respectively.
The period of each flood event was identified by hand and only the largest value (peak
flow) was included in the data set. Hence, by construction, the observations are formed
subject to a block maximal procedure, with possibly slightly differing block sizes for each
of the flood events. It therefore seems sensible to assume that the data-generating distri-
bution(s) are extreme-value distributions.

There were two reasons why only summer events were included in the analysis. First,
typical winter floods are produced from melting snow, whereas summer floods are due
to short but heavy rainfalls. These very different physical mechanisms lead to different
peak flow distributions. Second, very high peak flows, which are of particular interest,
almost exclusively occur during the summer time in that region. We refer to Figures 2.4
for more evidence.

The aim of our analysis is to assess whether the dependence between Q 4 and Qy changed
during the long observation period. As for the previous illustration, it might be impor-
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tant to take into account the fact that dams where constructed on the river Mulde and one
of its tributary upstream of the two gauges Aue and Niederschlema. A first dam, called
Schonheiderhammer, was put in service in 1980 (which corresponds to observation 108)
and a second dam, named Eibenstock, was put into service in 1982. As previously, we
make the hypothesis that, if there are changes in the two components series, then, they
are unique and they occurred simultaneously after observation 108 due to the construc-
tion of the dams (this is in fact a slight simplification, 1980 ~ 1982, which does not have
a big influence on the results). Following the same reasoning as for the first illustration,
we apply the test based on Sg, 4 With 6 = 108/164 and obtain an approximate p-value of
0.195 based on B = 10000 multiplier bootstrap replicates. Hence, there is no evidence for
a change in the dependence between Q4 and Q.

Summing up, we have not found evidence for a change-point in the dependence due to
dams in the present applications and in many more that are not reported here. Intuitively,
it seems to be obvious that dams have no influence on the copula, since, from a simplified
view, it is reasonable to expect that a dam changes margins only in a monotonic way, e.g.,
a location shift x — x — u. It can be easily verified that copulas are invariant to such
strictly increasing transformations of marginal variables.

3.5 Proofs

3.5.1 Proofs of Propositions 3.1 and 3.2

For notational simplicity, we set

ns| — |nr]

Au(r,8) = L for (r,s) € A={(r,s) €[0,1]>: r <s}

and we define the process A, on A x [0,1] by
Ay(r,s,t) = \/ﬁAn(V/S)(ALnrHl:Lnsj - A(f)),
where, for instance, A, (0,1,t) = /n(A,(t) — A(t)) for t € [0,1] and
Dy(s,t) = Au(s,1)A,(0,5,t) — A,(0,5)A,(s,1,t), (s,t) € [0,1]% (3.21)

Theorem 3.4
Under the conditions of Proposition 3.1 and for n — oo, we have that A, B Ac in (°(A x
[0,1]) equipped with the uniform metric, where

2 ! 1—t  t
Ac(r,s,t):{1+A(t)} -/0 Cc (r,s,u ,u) du

and where C is defined in Theorem A.8 with d = 2.
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Proof. Just like in the first lines of the proof of Proposition 1.8 given in Appendix A.2, we
use that

\/ﬁAn(r,s)(SAWHl:LnSJ(t / C,(r,s,u' ™, ut) du —>/ Cc(r,s,ut™",ub) du,
where weak convergence holds in ¢*(A x [0,1]) and where C, and Cc are defined in
Theorem A.8 with d = 2. C(u'~,u!) = u(*) and some simple arithmetic gives us
14+ A(t)
1
fo C[nr]-ﬁ-l:LnsJ (ul_t/ ut) du

Using the fact that C,, is asymptotically uniformly equicontinuous in probability by The-
orem A.8, it remains to show that, for any ¢ € (0,1),

Ay(r,s, t) =

VIR (r,5) (S 4110 (D = S(). (3:22)

sup
(rs)en, s—r>45, t€[0,1]

1

e — Su p
\/E(rs)EAs r>6, t€[0,1] 7’5

1
/ Clur)+1: LnsJ( tr”t) du — 1+A(t)’

/C r,s,ut ™ ut) du

Lo

The latter is a consequence of A, (r,s) > 6/2, s —r >, n sufficiently large, and C,, =
Op(1) due to Theorem A.8. Applying the functional version of Slutsky’s lemma [van der
Vaart and Wellner, 1996, Example 1.4.7] completes the proof of Theorem 3.4. O

Proof of Proposition 3.1. The assertion follows from representation (3.21), the fact that
An = Awith A(r,s) = s —rfor (s,r) € A and from the continuous mapping theorem. O

Recall the definition of the multipliers ((fi(b)), i=1,...,nand b =1,...,B. For the proof
of the validity of the resampling scheme, we set

1
A,(f’)(r, s,t) = {1 +An(t)}2 / ¢ <r,s,u1_t,ut) du,
0

(b) (

where C,/
estimated by C]', nr|+1:[ns) according to

r,s,u,v) is defined in Theorem A.9 with d = 2 but with partial derivatives Cj

Ci(u'~hu) ={A(t) —tA' (1)} .uA(f)
Co(u' "t ut)y ={AMt)+ (1 —t)A'(t)} - u?

and with A and A’ estimated by AW |+1:|ns| and A,L ™ from (3.14), respectively.

nr]+1:

Theorem 3.5
Under the conditions of Proposition 3.2, we have that

v

(a0, A, AP) 25 (e, Al L) (3.23)

in {0=(A x [0,1])}°*, where A(Cl),. e AéB) denote independent copies of Ac.
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Proof. According to Theorem A.9, if we prove that, for any 6 € (0,1) (see also the proof
of Proposition 4.3 in Biicher et al. [2014]),

250,j=1,2,  (324)

Sup ‘]‘,LnrJJrl:LnsJ (let, ut) — C],(ulft, ut)

(r,8)€N,s—r>6,(tu)€[0,1]?

we get, for I,(r, s, t) fo (r,s,u’~*,u )duand]I( r,s,t) fC (r,s,u’~*, u')du and
from the Contmuous mapping theorem,

(11,1,11,(}), N .,TI,SB)) D, (HC,H(C”, . .,II(CB)) (3.25)

in {¢* (A x |0, 1])}B+1, where ]IE:1 ). .,]I(CB) denote independent copies of I defined by
Ic(r,s,t) = fol Cc(r,s,u'™t, ut)du and with Cc defined in Theorem A.8 withd = 2. Asa
byproduct of Proposition 1.8, we also have that 4, L Ain ¢ ([0,1]). From a functional
version of Slutsky’s lemma [van der Vaart and Wellner, 1996, Example 1.4.7], we obtain

(3.25) jointly with A, B A, which gives us (3.23) by another application of the continuous
mapping theorem.
It remains to show (3.24) in order to complete the proof. For that, we first show that

An(r,s,t)

sup A nr|+1:|ns (t) - A(t) = sup
(r,s)eN,s—r>6,t€[0,1] i) } (r,s)eNs—r>6,t€[0,1] fA (1’ S)
< sup o1 ‘n_l/ZAn(r,s,t)’ N

(rs)eq,s—r>6,t€(0,1]

which follows from Theorem 3.4. For the same result with the derivate, let us first con-
sider t € [hy,,1 — hy]. Then, we have that

r I 11 nr 1: 4 t A t —|— hn — A t l
S)EA,5—7 1 ‘ J LZSJ( ) /( )} S Sup ( ) ( n)
( 4 ) /S >‘S/t€[hn, hn te[hn,1 lﬂ] 2 ln

<, 4 hn) An(’,s’i_h )

2hy\/nAy (1, 9)

—A’(t)‘

+ sup
(r;s)eAs—r>8,t€[hy,1—hy]

(3.26)

By the mean value theorem, we can replace the difference quotient in the first summand
by A’(r), where |r; —t| < h, — 0 uniformly in + € (0,1). Since, in addition, A’ is
uniformly continuous on (0,1) (A’ is monotone increasing, bounded and continuous),
we have that the first summand converges to zero.

The second summand converges in probability to zero, because inf, h,,\/n > 0, Ay(r,s) >
0/2 for s —r > ¢ and n sufficiently large and because of the asymptotic equicontinuity
in probability of A, implied by Theorem 3.4. For t € [0,h,) (and similarly for t € (1 —
hy, 1]), we have

Ay (r,s,2hy,)

4 DA (r.5)

|nr|+1:(ns] — A/(t)’ <

' A2h) —1 G

_ /
3 A (t)’ +
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which again converges uniformly in probability to zero. O

Proof of Proposition 3.2. The only part left to show is that, for ]lf),(f)

from Section 3.2.1,
DY (s,1) = Au(s, DAL (0,5,1) — 14(0,5) A (5,1,1), (s,1) € [0,1]2.

The assertion then follows from (3.23) and the continuous mapping theorem.
From the definitions of 4,, b,, ¢, and d, given in Section 3.2.1, we have that

! = (D) 1—t t ! % (b) 1—t t
/OCn (r,sy ,y)dyZ/O B, (r,s,y" " y)dy
1 7 W
_ ﬁ\_i’lrj +1:Lnsj (t) /O ybtnrj-%—l:wsj (t)_l]Bgzb) (1,’ s, ylft’ 1) dy

1 .
- é[nrj +1:|ns] (t) /0 yd[”rHl:LnsJ (t)_llBglb) (r,8,1, yt) dy
:(Il - 12 - 13)(r/ S, t)/

where I1, I and I3 are defined in an obvious manner. Note that we have the identity

|ns]

w»(b) 1—t  t 1 .
B, (r,s,u " u ) =— C T4 1410 s ,i(t)gu
( ) Vi L%H [ {71 o) 1 ) }
1 | ns] A
LnSJ |nr| ; L%-H 1 {m[WJJrl:LnsJ,j(t) < M} }

Consequently, from fol I(m <wu)du=(1—m)for0<m <1, weget

Li(r,s, t) =

s

Zi |nr]+1:|ns j(t) - ncl\_nrj—&-l:\_nsj,i(t)}

and, from fol u' 1 (m < u)dy = (1 —m") /b, we also have that

aALnrJJrl:LnsJ (t) 1 Lns] B A
IZ(V,S, t) - <= C {Ll nr|+1:|ns (t) — W1 +1: s ,i(t)}
bUlrJ-l-l:LnsJ (t) \/>l LanJJrl Lnr | +1: ns] |nr|+1:|ns]

and, similarly,

é[nrJ—i—l;LnsJ (t) 1 A
I3<r/sl t) = = <= C v 1’11’ 1 11 ( ) -0 r 1:|n ,(t) .
dLWJ-ﬁ-l:LnsJ (t) \/E, LnZYJ-H { J+1:ns] |nr | +1: | ns] i }
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3.5.2 Proof of Proposition 3.3
Let 6 € (0,1) be fixed. We define the process A% on A x [0,1] by

AL (rs,t) = \/EAH(V/S)(A(EnrJ—&—l:LnsJ - A(t)),
where Az ; is defined in Section 3.2.2. Note that, for lDfl defined in Section 3.2.2,
DY (s,t) = Au(s, 1)A8(0,s,t) — A, (0,5)A%(s,1,t), (s,t) € [0,1]2
and, by setting
Af{(b)(r, s,t) = {1+ Ag(t)}z . /01 CZ’(Z’) (r, s,ul’t,ut) du,
we also get that
Dy (s,8) = Au(s, DAY (0,5,8) — 1, (0,5) A7 " (5,1,8), (s5,t) € 0,1

Proof of Proposition 3.3. Let us first walk through a sketch of the proof, followed by the
technical details at the end of the section.

We will show that
sup [ Ad(s,1,8) = {An(5,0,6) + An(6,1,)}| = op(1) (3.28)
s€[0,0],t€[0,1]
and
sup [ A%(0,5,8) = {A4(0,60,6) + Au(0,5,1)}| = op(1). (3.29)
s€[0,1],t€[0,1]

This gives us

]Dg(s,t) =An(s,1) {A,(0,sNO, t)+ An(sNB,s,t)}
—An(0,8) {An(s,sVO,t)+A,(sVE,1,t)}+op(1), (3.30)

uniformly in (s, ) € [0,1]2. Similarly, for the bootstrap versions, we can show that

DY) (s, 1) = Au(s, 1) {/Aﬁf) 0,510,t) + AP (sA8,s, t)}
—2(0,5) {Afj’) (5,5v0,1) + ALY (sVve,1, t)} +op(1) (3.31)
uniformly in (s, t) € [0,1]. Finally, note that, under ’Him N Ho,c, the right-hand sides of

(3.30) and (3.31), b =1, ..., B, behaves like under H, and thus, converge jointly towards
the desired limit by Theorem 3.4.
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Let us now turn to the technical details: (3.28), (3.29) and their bootstrap versions. We
will show (3.28). The proof of (3.29) is very similar. Similar to the lines starting from
(3.22), we obtain

1+ A(t

1—t 4t
fo ns+1nu ud“

— {1+ A /0 Cals,0,u' " u') + Co(6,1,u", ) du + op (1)

Al(s,1,t) =

/C (s,0,ut™ ut) + C,(0,1,ut~", u') du

uniformlyin (s, ) € [0,1]2. Using representation (3.22) for both, A,(s,6,t) and A,(6,1,1),
proves (3.28).
The bootstrap version of (3.28), that is,

sup ‘A s1,t)—{M”(s,e,t)+A£}’><e,1,t)}‘:opa), (3.32)
s€[0,0),t€[0,1]

follows, if, for dIBi’(b)(r, S, u,v) = IB?{(”(S, u,v) — Bi’(b)(n u,v) and similarly dBy, we
show that

sup ‘dlB (s,1,u,v) — {dlB,gb)(s, 0,u,v) + d]]v3,(1b)(9, 1, u,v)}’ =op(1), (3.33)
s€[0,0],u,0€[0,1]

in combination with

sup Afnsﬁlzn(t)—A(t)‘:oIp(l) (3.34)
s€[0,0],t€[0,1]
and
sup ‘A’ﬁqulm(t)—A’(t)’:o]p(l). (3.35)
s€[0,6],t€[0,1]

Starting with (3.33), the left-hand side is dominated by

|nf| — |ns|
su = Clps|41:no (1,0
(s,u,v)e[O,g)]x[Ol]z “ns] sl o) (1,0)
n— LnGJ 1 1 (b)
no 1:11(”/7)) - C(u, U) X sup gi
n—[ns| Cloey+ selo) | VI i ansj—i-l
|Cy(s,0,u,v) +Cy(6,1,u,0)|
< sup x Op(1) = op(1)
(s,1,0)€[0,0] x[0,1]2 ViAu(s, 1)

and because, under H(f,m N Ho,c, the processes (s, u,v) — Cy(s,0,u,v) on [0,60] x [0, 1%,
and (u,v) — C,(6,1,u,v) on [0,1]? behave like those under Ho. The fact that

sup =Op(1)

s€(0,0]
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is due to Donsker’s theorem on weak convergence of partial sum processes. Next, in
order to show (3.34), observe that

A (D) — A1) = ,

\/ﬁAi o )Aﬁ (s,1,1)

where sup,c o 1 1ef01] |A%(s,1,t)| = Op(1) due to (3.28) and Theorem 3.4. Finally, for
(3.35), we can use decompositions in analogy to (3.26) and (3.27), where the first sum-

mand is the same and where the second summand vanishes with the same argument as
before. O



Chapter 4

Conditional heavy-tail behavior

This chapter deals with the right-tail behavior of a response distribution Fy conditional
on a regressor vector X = x restricted to the heavy-tailed case of Pareto-type conditional
distributions Fy(y| x) = P(Y < y| X = x), with heaviness of the right tail characterized
by the conditional extreme value index y(x) > 0. We particularly focus on testing the
hypothesis Ho i1 @ 7v(X) = Yo of constant tail behavior for some 7y > 0 and all x.

When considering x as a time index, the term trend analysis is commonly used. In the re-
cent past several such trend analyses in extreme value data have been published, mostly
focusing on time-varying modeling of location and scale parameters of the response dis-
tribution. In many such environmental studies a simple test against trend based on
Kendall’s tau statistic is applied. This test is powerful when the center of the conditional
distribution Fy(y|x) changes monotonically in x, for instance, in a simple location model
u(x) = po + x - p1, x = (1,x)’, but the test is rather insensitive against monotonic tail be-
havior, say, y(x) = 70 + x - 1. This has to be considered, since for many environmental
applications the main interest is on the tail rather than the center of a distribution. Our
work is motivated by this problem and it is our goal to demonstrate the opportunities
and the limits of detecting and estimating non-constant conditional heavy-tail behavior
with regard to applications from hydrology.

We present and compare four different procedures by simulations and illustrate our find-
ings on real data from hydrology: Weekly maxima of hourly precipitation from France
and monthly maximal river flows from Germany.

4.1 Introduction

In recent years considerable attention has been devoted to the analysis of abrupt change-
points and smooth changes in the distribution of environmental variables Y such as
amounts of precipitation, sea storm heights and river flows. While change-points are
motivated by human intervention, for instance, the relocation of a measurement station
or the construction of a river dam, the analysis of smooth changes has gained attention
due to the climate change debate. In the latter context the term trend is used, which
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is usually associated with a smooth monotonic change over time. More generally, the
conditional distribution of Y given some regressor variables X = x, x € &', may be of
interest. Then the interest might be in the change of the conditional distribution over the
regressor space X'.

For many environmental applications the main interest is in the frequency of hazardous
events, e.g., extreme precipitations and floods. Accordingly, there is a number of arti-
cles introducing methodology for change-points [Jaruskova and Rencové, 2008; Kim and
Lee, 2009; Dierckx and Teugels, 2010; Dupuis et al., 2015; Biicher et al., 2015; Kojadinovic
and Naveau, 2015] and regression/trend analysis [Chavez-Demoulin and Davison, 2005;
Wang and Tsai, 2009; Gardes and Girard, 2010; Dierckx, 2011; Wang et al., 2012; Wang
and Li, 2013; Einmahl et al., 2016; de Haan et al., 2015] of extremes, just to name a few
recent contributions. For a case study and an overview of many flood trend analyses we
refer to Mediero et al. [2014].

Our work is motivated by hydrological applications, where we aim at detecting smooth
monotonic relationships between covariates X and the upper tail behavior of river dis-
charges or precipitations Y, in particular, temporal trends in the tail behavior. The meth-
ods considered here are limited to the case of heavy-tailed response distributions Fy,
which are characterized by a right tail behavior decreasing of polynomial order con-
trolled by the so-called extreme value index v > 0.

From a methodological point of view, this chapter is related to Wang and Tsai [2009]
and Wang and Li [2013]. These authors propose different tail estimation procedures,
the former based on parametric extreme value index regression and the latter based on
quantile regression in the tail region. We study a new procedure that can be viewed as
L-estimation from regression quantiles. This, in turn, is a regression analogue of ordinary
L-statistics, with “L” shorthand for linear combination of order statistics. It is known that
estimation from certain L-statistics offers both robustness and high efficiency [Bickel and
Lehmann, 1975].

Our main interest is in testing the hypothesis Hg 4 @ ¥(x) = 7o for some unknown
Yo > 0 of a constant heavy-tail behavior over all possible regressor values x € X'. For
that purpose, we also study a modification of Kendall’s tau test statistic, where we apply
the popular Mann-Kendall test (see Kendall [1948]; Yue et al. [2002]; Chebana et al. [2013];
Mediero et al. [2014] and the references therein) to a properly selected upper fraction of
the sample.

We compare the performance of four different procedures that are constructed to detect
deviations from H 4,;; and that are supposed to hold their nominal level in an asymptotic
sense with sample size tending to infinity. Besides the power of the tests, it is equally im-
portant to study their nominal level under H,;; in finite-sample experiments. It turns
out that, under H ,;, the avoidance of a false alarm (rejection of H ;) is particularly
challenging if a location y(x) or scale parameter o(x) of the conditional distribution is
not constant in x. This is studied in more detail in our simulations section.

The importance of avoiding those false alarms is highlighted in another simulation ex-
periment concerned with the comparison of estimation errors: It is highlighted that the
additional source of uncertainty originating from the estimation of non-constant tail be-
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havior y(x) # 7o is large. Since sample lengths are very limited in many applications
from hydrology, it is often less erroneous (in terms of MSE) to choose a simpler model
and work under H 4,1, even in experiments with a pronounced violation of the simplifi-
cation.

The remainder of this chapter is organized as follows: Section 4.2 introduces the model
and describes the idea of selecting samples from the tails. New methods for the analysis
of conditional tails are presented in Section 4.3 and compared by simulation in Section
4.4. Applications to French weekly precipitation and to river flow data from the Mulde
basin are presented in Section 4.5.

4.2 Heavy tails and relative excesses

All methods considered here are limited to right heavy-tailed response distributions ac-
cording to Definition 1.9: Let (Y, X) be a random element, where Y is a real response
and X = (1,Xy,...,X;)" a vector of regressors with range on a compact set X C R4+,
Throughout the article we assume that the conditional distribution of Y given X = x is of
Pareto-type, that is,

Fr(ylx) = P(Y <y| X=x) =1-y " L(y| %), (4.1)

where v : X — Ry is strictly positive and L( - | x) a slowly varying function for each
x € X. Firstly, our main interest is in the statistical inference on 7y, particularly, in testing
hypothesis

Ho,tair = ¥ (X) = 70 for some 99 > 0and all x € X 4.2)

of heavy-tail behavior constant in x and, secondly, we are also interested in the estimation
of the conditional tail behavior under additional parametric assumptions on y(x).

Recall from Section 1.2.1 that relative excesses from Pareto-type distributions follow an
approximately parametric law, which allows to construct estimators of the extreme value
index and of high quantiles. Suppose that the sample (Y;, X;), i = 1,...,n, consists of
independent copies of (Y, X). The first question to be answered for the analysis of condi-
tional heavy tails is: How to select relative excesses under assumption (4.1)? A practical
solution to this problem is discussed in the following two subsections.

4.2.1 How to choose the threshold conditional on X = x

In usual tail analysis a threshold u € R is set to split the support of a univariate distribu-
tion F into a lower moderate and an upper extreme part (right tail). A natural choice is a
quantile u, = F~!(p) for some high probability p € (0,1). Because here we consider con-
ditional distributions, it is meaningful to choose a conditional quantile u,(x) = F,* (p| x)
in analogy to the unconditional case.
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In practice the conditional distribution is unknown and thus F, L(p| x) needs to be es-
timated. Here we follow a parametric quantile regression approach: Suppose that the
conditional p-quantile of g(Y) given X = x follows a linear model

Fgf&)(m X) = inf{z : Fg(y)(z| x) > P} _ X,,Bp,

where g is a monotone increasing function on the domain of Y and where 3, € RV is
an unknown parameter vector called p-th regression quantile.

Example 4.1

(i: Location-scale model) The following data generating process is frequently applied in
the quantile regression literature. Let X be a random vector on R**! and pu,o € R +!
such that X'o > 0 almost surely. Let ¢ be a random variable independent of X and define
Y = X'+ X'o - &. Then we have

Fl(plx) =Xp+xo-FEHp)=xB,

with B, = p+ oF 1 (p).

(ii: Conditional Pareto) Suppose now that Y given X = x follows a Pareto-type distribu-
tion defined in (4.1) with L(y| x) = o(x)/7®, o(x) = x’¢ > 0 and y(x) = x'8 > 0 for
some deterministic vectors &,0 € R?*!. This distribution is also called two-parametric
Pareto with scale o(x) and shape «(x) = 1/7(x). Then we have

Flggl(y)<P| x) = o(x) —log(l—p) - y(x) = X',@p
with 8, = & —log(1—p) - 6.

A consistent M-estimator of 3, studied in the seminal article of Koenker and Bassett
[1978] is defined by

By = argmin Y _p, (g(Y;) —X;-b), (4.3)
beRIH1 =1

where p,(y) = y - (p — 1{y<0}) is the p-quantile loss function. Since conditional quantiles

are invariant up to monotone increasing transformations, i.e. Fg_(ly) (p|x) =g (F; Y(p| x) ) ,
we set

,(x) = BN (plx) =g~ (¥'3y) - (4.4)
n—k

If welet p = pyn = ;77 with corresponding estimator denoted by uy, = i, we
almost get k out of n elements (Y;, X;) with Y; > 1y ,,(X;) (in simulations mostly between
k — 2 and k 4 2). In what follows, we neglect this small deviation from k. For notational
simplicity, we suppose that we get exactly k out of n excesses if we choose p = py .

The assumption that the conditional quantile is linear after some known transformation
g might be too restrictive. A more flexible approach studied in Mu and He [2007] and also



4.2 Heavy tails and relative excesses 77

applied in Wang and Li [2013] is based on the family {g) : Ry — R | A € R} of Box-Cox
transformations

YU A £ 0
) = { lo?g(y) JifA=0"
In the previous reference it is assumed that the conditional p-quantile of g,(Y) given
X = x follows a linear model, where the parameter A = A, is unknown. Interestingly
enough, Teugels and Vanroelen [2004] showed that the extreme value index 7*(x) of
gA(Y) conditional on X = x satisfies 7*(x) = A - y(x) € R, provided (4.1) holds.
Mu and He [2007] proposed the consistent estimator

= argmin Z n(Xi, A, p)] (4.5)
AeR i=1
of Ay, where
1 n
Ru(x, A, p) = EZI ) [P —1(8a(Y)) < xiBpa)]

j=1

and Bp, A is computed by (4.3) with ¢ = g,.
In summary, the following routine can be applied to select k out of n relative excesses
from a sample (Y;,X;),i =1,...,n, and for a fixed number k < n:

(i) Setp = pkn = 151 kand compute A by (4.5).
(ii) Solve (4.3) with g = g3 and let u(x) = uy,(x) = g/{l (x'By).

(iii) Identify all1 < i < ... < iy < n with Yi]. > u(Xij) and let (Zk,j, Xk,j),j =1,...,k
denote the sample of relative excesses Zy ; = Y;, /u(X;) with corresponding regres-
sors Xj,; = Xi.

For single regressors X = (1, X)" we write (Zy , X ;) instead of (Zy;, (1, X,;)").

4.2.2 How to select k

After discussing the shape of the threshold function u for fixed k, we now turn to the
selection of k representing the number of relative excesses included in the tail analysis.
Wang and Tsai [2009] proposed a data driven selection of k based on the minimization of
a discrepancy measure. Similar to them, we let

1& /a i\
k* = argmin D, (k) = argmin — ) <Uk,]-:k(’?kln) — ]> (4.6)
1<k<n 1<k<n k j=1 k+1
where Ug 14(§4n) < -+ < Ugrx(Fxn) are order statistics from a sample computed by

Ui j (i) = exp (—10g(Zi;) /Fxn(Xkj)), j = 1,...,k, and i ,(x) is an estimator of y(x)
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computed from (Zk,]-, Xk,]-),j =1,...,k

The minimization in (4.6) is interpreted as a solution to a trade-off problem: On the one
hand, large numbers k worsen the approximation of Z; ; being Pareto(1/v(X;)) dis-
tributed and thus, of Uj; = exp (— log(Zk;)/ Yin (Xk,j)) being uniformly distributed. On
the other hand, too small numbers k decrease the efficiency of estimator 4, which, in turn,
deteriorates the approximation of l:lk,j(’?k,n) being uniformly distributed.

4.3 New estimator and tests

In this section we suppress the previous approximation and instead simply assume that
the sample (Zk,j, Xk/j), j = 1,...,k, consists of independent and identically distributed
variables with IP(Z; < z| Xg; = x) = 1 —z71/7¥)_ A similar idea and some theoretical
background for this simplification is presented in Beirlant et al. [2006, Chap. 7.3]. A
more rigorous justification in a related problem is given in Wang and Tsai [2009]. There
it is shown that the asymptotic normality of their estimator remains valid also without
the previous simplification but with an additional bias h included in the mean of the
limiting distribution. For practical reasons, since the estimation of h requires detailed
information on the tail that is very hard to obtain, the bias usually is set to zero in finite-
sample applications [Resnick, 2007; Wang and Tsai, 2009; Wang and Li, 2013].

4.3.1 L-estimation of linear models y(x) = x'n and related tests

Let (Z,X) be a random element on R x R¥*! satisfying
Fz(z| x) =P(Z < z| X =x) =1 -2z with y(x) = x'n
for all x € X and some deterministic vector n = (10,71, .. .,14)" € R4FL. It follows that
Fol (b1 %) = —1(x) -log (1 - p) = X8,

for 8, = —log(1—p)-mandall p € (0,1). In words, conditional quantiles are linear
in covariates x, which allows us to estimate y(x) by linear quantile regression [Koenker,
2005]: Let (Z;,X;),j = 1,...,k, denote independent copies of (Z, X) and

k
By = argmin ) _p, <log(Z]-) - X - b)
beR4+!  j=1

with p, (1) = u- (p —1,<0y). By setting f, = —3,/log(1 — p) we obtain an estimator
of n for each p € (0,1). Restricting on one probability p obviously is not a satisfactory
solution to our estimation problem. Instead we are going to gather information from
estimates ), for multiple probabilities p € p C (0,1). From Theorem A.11 in Appendix
A.6 and the model assumptions stated above, we easily obtain the following result:
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Proposition 4.2
Let p = {p1,...,pe} C (0,1) denote a finite set of distinct probabilities and suppose that | =
E(XX') and H = E (XX'/X'n) € REDXE+1) exist with H positive definite. Then, under the
assumptions from above and for k — oo, we have that
. . "D
Vk (17;,1 — 77’,...,77;,[ — 17/> — N(0,Qp),

where Qp = Ap ® (H Y JH 1) and Ap € R is defined through its entries

Pi\Npj—Pi-pj .
, 14,7 <1
1=pi)(1 = pj)log(1 — p;) log(1 — p)) !
and with ® denoting the Kronecker product.

7

a;; = a(pi, pj) = (

Proof. Recall that 7§, = —log(1 — p)~!3, and n = —log(1 — p)~'B, forall p € (0,1).
Weak convergence towards a multivariate normal distribution follows directly from The-
orem A.11. It remains to verify that ()}, is the corresponding covariance matrix.

Under the conditions from the present section we have that f(-|x) and F(-|x) are the
density and distribution function, respectively, of log(Z) conditional on X = x, which
is exponential with parameter 1/ (x). Following the notation from Theorem A.11, we
have that H, = (1 — p) - H with H;, defined in (A.8), which, for k — oo, gives us

Cov [\/% (p, — ), Vk <ﬁpj — n)} — a(pi,p;)-H'JH™.

a
As a direct application, we are able to derive the limiting distribution of so called L-
estimators A(p,w) = Yr_, w; - 7y, of , where w = (wy,...,wy) is a vector of weights
satisfying Y"!_; w; = 1. We obtain

VE ((p,w) — 1) = N (0, BuQpBly) = N (0,Zpw), (4.7)

where By = (wy - Iji1,...,wp - Ijyq) € REFDXEHDE and ) € REFD*(E+D) is the iden-
tity on R(+1).

As a second application, it is straightforward to construct test statistics for linear hy-
potheses of the form H : Cn =0vs. A: Cn # 0, where C € R™*(d+1) jg g given matrix.
In the simulations section, where we use d = 1, the statistic Tt = \/Eﬁl /01 as a test for
Ho,tail VS. H1,tair is referred to as the L-test.

We close this section with three important remarks:

i): Selection of /, p and w

Next to be answered is how to choose the number ¢ € IN, a set of probabilities p € (0,1)*
and the corresponding weights w = (wy, ..., w,)" with Zle w;j = 1. Let us first consider
the last issue. Suppose that £ and p € (0,1)" are fixed and let 73(p, w) = (o, i1, - --,fa)"-
Then, for arbitrary weights w and for each component 7};, we have that

Var [#)i] ~ cj/k-w'Apw, j=0,...,d,
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where ¢; > 0 does not depend on p and w. It is therefore sensible if we choose

Wopt = Wopt(p) = arg min W'pr = (1'A;11> ! . A;ll,
w

where 1 = (1,...,1)" € R’. This is the solution of the previous minimization problem
obtained by the Lagrange multipliers technique. Note also that the optimal solution Wopt
is the same for all d + 1 components.
Let us now turn to the selection of the number ¢ and the set p € (0,1)’. From a the-
oretical point of view, since w; = 0 is possible in the previous minimization, the more
probabilities p; we include the better the estimation. However, from several simulation
experiments in the semi-parametric setting (4.1) we found that the choice of a moder-
ate number of, say, / = 20 probabilities equally spaced in the upper half [1/2,1 — 1/40]
performs well and including additional probabilities did not improve the efficiency.

ii): Deterministic regressors and non-identically distributed observations

So far, we considered samples (Z]-, X]-), j =1,...,k, as independent and identically dis-
tributed, but sometimes this framework does not cover the actual problem: Suppose
that X; = x; is a deterministic sequence of regressors, for instance, regression over the
(rescaled) time domain. Rescaling is needed for technical reasons. Then, in many situ-
ations, the observations Z;, j = 1,...,k, may still be considered as independent but not
identically distributed (i.ni.d.). Thanks to the theory on quantile regression processes
based on sequences of such observations [Koenker, 2005, Sec. 4.3], it is still possible to
apply the results from the previous section: Let Z; have a Pareto distribution with ex-
treme value index (x;) = x]’n > 0, j € N. Then the assertion of Proposition 4.2 holds
even in this i.ni.d. case if we define | and H by

1 1
J = lim — Zx]'x; and H = lim % ijx</xj77,

k—oo k A k—o00

provided these two limits exist. So, from a computational point of view, there is no dif-
ference to the former case of i.i.d. observations.

iii): Application to samples from the conditional tail

Initially we started with random elements (Y, X) with conditional distribution defined
in (4.1). Assuming that y(x) = x’n > 0 holds for all x € X and some unknown n €
R+, our main interest is in statistical inference on 7. Following the introductory lines of
Section 4.3, it is sensible to apply estimator 7}(p, w) on the sample (Z; ;, X;),j = 1,...,k,
from Subsection 4.2.1, which are approximately distributed like (Z, X). The estimator is
denoted by ﬁlf 0= ﬁ,f . (P, w). Itis left for future research to prove that a statement similar
to (4.7) holds also in this approximate setting, presumably with an additional bias h in
the mean of the limit but with the same limiting covariance matrix. In applications it is
common to ignore a possible bias h and the covariance matrix is estimated by plugging
inJi, = % 2}‘:1 Xk/jX;{,j and Hy , = % 2;?:1 Xk,jX§{,]-/ ﬁ,f,n (Xyj) for ] and H, respectively.
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4.3.2 Kendall’s tau tail-test

In the single regressor setting X = (1, X)’, Kendall’s tau test [Kendall, 1948] is a simple
rank based test against dependence. More precisely, let C denote the copula of (X,Y).
Then we have that

T(X,Y)=4- onr C(u,v)dC(u,v) —1 (4.8)

0,1
defines Kendall’s correlation coefficient. T(X,Y') is a margin-free dependence coefficient
with =1 < 7(X,Y) < 1and 7(X,Y) = 0 for independent variables X and Y. The empiri-

cal counterpart of (4.8) is t, = —2 _ .S, with

n(n—1)
Su= Y sgn(Y;—Y;)-sgn(X;—X;)

1<i<j<n

and sign function

1,z>0
sgn(z){ 0,z=0.

-1,z<0
The statistic S, is used to test H ;,4 : X and Y are independent. Under H ;4 it is known
that the distribution of S, is well approximated by N (0,02) with ¢ = n(n +1)(2n +
5)/18, provided P(X; = X;) = P(Y; = Y;) = 0 for i # j [Kendall, 1948; Yue et al., 2002].
Because here the interest is in the tail behavior of Y conditional on X, we propose the test
statistic

Sk,n = Z sgn(Zk,j — Zk,i) . Sng(Xk/]' — Xk,i)/ (49)

1<i<j<k
which is Kendall’s test for the sample (Zk,j, Xk,j), j = 1,...,k, of relative excesses and
their regressors (see Section 4.2.1). Critical values are computed based on the presumed

D
approximation Sy, ~ N (0,07).

4.4 Simulation study

4.4.1 Detection of conditional heavy-tail behavior

In this section we focus our attention on the problem of testing hypothesis # ;4 of con-
stant heavy-tail behavior stated in (4.2). The following questions are the main sources of
our motivation:

i) Is it realistically possible to distinguish between trends in y(x) and trends in, say,
conditional location y(x) or scale (x) at constant shape y(x) = ? In other words:
Do the tests keep their nominal level under Hj 4,; even in more challenging scenar-
ios than conditional distributions constant in x?
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ii) Under what circumstances is it possible to detect deviations from H ;,;; with satis-
factory power?

It has to be considered that models with non-constant tail behavior 7y (x) # 7 suffer from
this additional source of uncertainty, especially when the focus is on the right tail, say, the
estimation of high quantiles of the conditional distribution. On the one hand, it might be
important to take a non-constant y(x) into account. On the other hand, it might be even
more important to preserve simplicity in order to keep estimation uncertainty as small as
possible.

We restrict our attention to the case d = 1. We consider scenarios with non-constant
conditional location, scale or shape. Anyway, data are generated independently in i by

Y, =Xp+Xo-e, 1<i<n, (4.10)

where X; = (1, X;)’ is a random vector with second component X; uniformly distributed
on X = [—1, 1], and with nonrandom parameter vectors p = (yo, 1)’ and o = (09, 01)’.
Furthermore, the variables ¢; satisfy

Ple; <yl X =x) =exp (= [1+7(0 5] /"),y > ~1/7(x),

for some nonrandom vector n = (170, 71)’. All in all, this means that the variables Y;
conditional on X; = x are generalized extreme value (GEV) distributed with location
u(x) = x'p, scale o(x) = x'e > 0 and shape y(x) = x'n > 0. Recall that the shape of
the GEV is also its extreme value index. Since we are dealing with relative excesses, all
the methods are scale but not location invariant. Studying many river flow time series
from Saxony in Germany we found that a ratio of about po/0y = 2 is common, which,
for simplicity, is used throughout the simulation experiments.

For convenience, we denote the hypotheses of constant location and constant scale by

HO,loc LU= 0 and HO,scale 01 =0,

respectively. Corresponding alternatives with non-zero slope y; # 0 and o7 # 0 are
denoted by H; j,c and H1 scate, respectively. Intersections are abbreviated as

7'[a,b,c = Hu,loc N Hb,scale N Hc,tail fora,b,c ¢ {O/ 1};

where Ho i1 : 11 = 0and Hy g1 : 171 # 0.
We compare the finite-sample performance of

3S: atest based on the three-stage test statistic in (A.12),
K: the test based on the Kendall’s tau statistic (4.9),
L: a two-sided t-test based on the weak limit of estimator #j; in (4.7) and

TIR: a two-sided t-test based on the weak limit of estimator é1 in (A.11) with iy = 0.
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Rejection rates under several scenarios
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Figure 4.1: Rejection rates of four different tests computed from 4000 samples generated
by process (4.10) under (top) scenarios H .9 involving the null H 4,;; and (bottom) scenar-
ios Hqp involving the alternative H; ;. Samples were generated by (4.10) with sample
length n = 500 and parameters set to jip = 2, 0p = 1 and 779 = 0.4. Under H1 ., Hai,c
and H,p1 we set iy = po/4 = 0.5,01 = 0p/4 = 0.25 and 11 = 19/2 = 0.2, respectively.
Note that the y-axis is on square root scale.
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Figure 4.2: Conditional quantile curves F~!(p| x) for probability levels p €
{0.25, 0.5, 0.75, 0.9, 0.95, 0.99} and for a few selected scenarios defined in Section 4.4.1.
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Table 4.1: Rejection rates of hypothesis H, ;,;; computed from 4000 samples under several
scenarios under the null identical with those from the top of Figure 4.1. The nominal level
is 5%.

| L L* TIR TIR* K K

Hooo | 39 31 43 53 49 49
Ho1o | 75 106 95 159 102 138
Higo | 75 120 93 154 110 146
Hi10 |33 36 41 53 52 51

These tests are used to check H 141 vS. H1 1qi at @ nominal level of 5%. The simulation
results are presented in Figure 4.1. We computed rejection rates (y-axis) of the null for
different values of the tuning parameter k (x-axis) and for six scenarios H, ., involving
(top) three H, ;o under the null and (bottom) the others H, } ; under the alternative. Re-
jection rates are computed from 4000 independent samples for each scenario with sample
length n = 500. In all experiments we set g = 2, 0p = 1 and 779 = 0.4. Under scenarios
H1p,er Haj1,c and the alternatives H, 1 we used py = po/4 = 0.5, 01 = 0p/4 = 0.25 and
1 = 10/2 = 0.2, respectively. Note also that the rejection rates on the y-axis are given on
square root scale.

The performance under the null is presented on the upper half of Figure 4.1. It is partic-
ularly interesting to study the impact of the tuning parameter k on the size of the tests.
Recall that our tail model assumptions are built in such a way that the justification of the
approximation improves with smaller values of k. Indeed, the size of the tests is close
to 5% for k being around 50 to 100 in all the considered scenarios under the null. The
performance under H 10 and H o, is particularly interesting. There the tests K and TIR
are too liberal for all values of the tuning parameter k. The overall best performance un-
der the null is given by test L followed by 3S, which hold their nominal level of 5% for a
reasonable range of k values.

Under the alternatives H, 1 presented on the lower half of Figure 4.1, we observe that
the power of tests 35, L and TIR is very similar, with a slight advantage of test TIR.
The fact that test K has the lowest power is not surprising, since this test is based on the
weakest model assumptions.

The same experiments with sample lengths n = 200 and n = 1000 led to qualitatively the
same results and are thus not reported here.

4.4.2 Selection of k

This part of the simulations is devoted to the adaptive selection of k, for instance, rule
(4.6). The simulation results depicted in Figure 4.3 are computed under H; with ob-
servations generated by (4.10), where X is uniformly distributed on [—1, 1], u = (2,0)/,
o = (1,0) and n = (0.4,71)". We compared several versions of the L-estimator 4 (1)
of ¥(1) = 1o+ n1: The L-estimator with (L) k = [2n%/3|, (L*) k* from (4.6), (L*2)
k = |0.75k* | and (L*3) k = |1.25k*|. k = |2n?/3] is the asymptotically optimal choice for
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Figure 4.3: Comparison of L-estimators 4%(1) of (1) = 7o + 171 based on 1000 indepen-
dent samples of DGP (4.10) with p = (2,0)’, & = (1,0)’, n = (0.4, 1) and sample length
n = 500 for different selection rules of k: (L) k = [2n?/3], (L*) k = k*, (L*2) k = | 0.75 - k* |
and (L*3) k = |[1.25 - k*|, where k* is a data-adaptive rule defined in (4.6). The dashed
line corresponds to the true value. The corresponding mean squared errors are given
by (1 = 0) 0.0113,0.0126,0.0124,0.0176, (1, = 0.1) 0.0091,0.0096,0.0104,0.0108 and
(71 = 0.2) 0.0085,0.0087,0.0099, 0.0074.

independent and identically GEV-distributed observations [Gomes and Pestana, 2007]
and indeed, this choice led to the best results in our simple scenarios with GEV innova-
tions. In practice, however, we may not always expect that the observations stem from a
known parametric family and it may be preferable to choose a data adaptive rule. Over-
all, we found that the performance of the L-estimator with k = k* from (4.6) is quite sim-
ilar to that with the asymptotically optimal choice. The modifications (L*2) and (L*3)
perform worse.

Finally, we have also compared the size of the L, TIR and K tests with k = |2n%/3| and
those with a data-adaptive rule for k. For the TIR test we have used the rule proposed
in Wang and Tsai [2009] and for the remaining two tests the rule (4.6) was applied. Data
were generated under the same scenarios like in the top of Figure 4.1. Table 4.1 presents
the simulation results computed from 4000 independent samples of size n = 500. The
size of the tests is reasonably close to the nominal level of & = 5% under scenarios Ho,1
and Hi10. The tests are too liberal under Hg 19 and Hi,0, which is even worse with
data-adaptive selection of k.

4.4.3 Estimation of conditional heavy-tail behavior

In view of the potential applications with its focus on high quantiles and typically rather
limited observation lengths, we may ask: Is it meaningful to consider conditional heavy-
tail behavior in hydrological applications, or is it better to rely on less complex models
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Figure 4.4: Comparison of estimators of (1) = 79 + 11 based on 1000 independent
samples of DGP (4.10) with p = (2,0)/, ¢ = (1,0)/, » = (04,7;) and with sample
length n = 500 and k = |n?/3]. The corresponding mean squared errors are given
by (1 = 0) 0.0140,0.0145,0.0046,0.0089, (1 = 0.1) 0.0144,0.0175,0.0060,0.0142 and
(11 = 0.2) 0.0166, 0.0234, 0.0238, 0.0300.

(work under H, 1,1) even if this simplification is not true?
More precisely, we evaluate the following questions:

i) What is the effect of conditional heavy-tail behavior y(x) = 7o + x#; on quantiles
of the conditional distribution?

ii) What about estimation efficiency? Under what circumstances (sample length, de-
gree of heavy-tail variability) is it worthwhile to estimate non-constant heavy-tail
behavior?

Figure 4.2 illustrates the shape of the conditional distribution as a function of the regres-
sor x € [—1, 1] on different quantile levels. We have selected a few scenarios, which were
already applied in the simulations from the previous section. Particular attention should
be paid to scenario H 1 with trend (x) = 0.4 4+ 0.2x in the shape but constant location
#(x) = 2 and scale o(x) = 1. Note that the lower 75% of the conditional distribution
is almost unchanged over the whole regressor space, while, say, the 99%-quantile drasti-
cally increases by more than 150%. In contrast to that, a pure trend in location (#1,) or
in scale (Ho,1,0) has a rather moderate effect on the different quantiles of the conditional
distribution.

For the evaluation of question ii), suppose that hypothesis H1 is met with observa-
tions generated by (4.10), where again X is uniformly distributed on [—1, 1], u = (2,0)’,
o = (1,0) and n = (0.4,71)". Think of [—1, 1] representing the rescaled time period
in which we have collected our observations. Suppose that we are interested in todays
heavy-tail behavior, that is, in the estimation of v(1) = 7y + #1 at time x = 1. We compare
the following estimators:
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L: Estimator 4%(1) = 4% + A} with A" defined in Section 4.3.1.
TIR: Estimator 47'R(1) = exp(6]'R 4 T'R) with §T'R defined in Section A.7.1.
Hill: The usual Hill estimator from Hill [1975], which assumes that 77; = 0 holds.

Ad.: Anadaptive procedure, which applies the TIR-estimator if the TIR-based test rejects
H : 11 = 0 atalevel of 10%. Otherwise, the Hill estimator is used.

Figure 4.4 shows the simulation results for scenario Hop1 with (left) 7; = 0, (middle)
71 = 0.1 and (right) 71 = 0.2. Boxplots are computed from 1000 independent repeti-
tions with sample length n = 500 and a fixed effective sample size of k = |[n?/3]. As
expected, we observe that the estimation of an additional trend #; (estimators L, TIR and
partly the adaptive method) has to be paid by a large increase of estimation variability.
The Hill estimator is the only one that assumes #; = 0, which results in an increasing
estimation bias with increasing #; > 0. In terms of mean squared errors (see caption of
Figure 4.4), estimators L and TIR are preferable over Hill only in scenario 77; = 0.2. The
adaptive method is preferable in none of the considered cases. The same experiments
with alternative rules for the selection of k and also with n = 1000 (not reported here) did
not change our conclusions. For n = 200 (not reported here) the simple Hill estimator is
preferable in all three scenarios. Summing up, the estimation of non-constant conditional
heavy-tail behavior is useful only if #; is large relative to n, which, for typical applications
from hydrology, presumably is not the case.

4.5 Applications

4.5.1 Weekly maxima of hourly precipitation in France

The left-hand side of Figure 4.5 displays two series of n = 228 weekly maxima of hourly
precipitation measured during the fall season at the stations Nevers and Niort in France.
We are going to analyze whether the right-tail behavior changes over time or not. Re-
cently, Kojadinovic and Naveau [2015] found some evidence for change-points in both
time series. Even more, if these maxima are regarded as (approximately) GEV distributed,
the approach from the previous reference suggests that the change-point in the Nevers
series is due to a change in the tail behavior and that of the Niort series is due to a change
in location and scale.

The fact that a change in the tail behavior is present only in the first series is also con-
firmed by our analysis. The right-hand side of Figure 4.5 depicts the p-values of the
L-test versus k € {10,11,...,100} for both of the series. Small p-values for a wide range
of k values between 20 and 50 suggest that there is indeed a change in the tail behavior
of the first series. The graph for the second series does not show evidence for a change
in the right-tail behavior. In addition, from the application of the usual Mann-Kendall
test [Kendall, 1948; Yue et al., 2002] with resulting p-values of p = 0.20 for Nevers and
p = 0.03 for Niort, respectively, we confirm that there is evidence for a monotonic change
in the location of the second series.
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Figure 4.5: (Left) Weakly maxima of hourly precipitation during the fall season from 1993
to 2011 at the stations Nevers and Niort in France and (right) p-values of the L-test versus
k between 10 and 100. The dashed line corresponds to a level of 5%.

For practitioners, the previous analysis raises the question of how to include the results
into, say, the estimation of high quantiles. Let us start with the second series from Niort.
Since there is no evidence against y(x) = 7 for all x but instead some evidence against
constant location, we slightly modify the extrapolation formula of Weissman [1978] and
set

p-1 X)=1Uu X) - 71( K _E
P =) (i) P> 1

n

where uy ,(x) is defined in Section 4.2.1 and o = %Z;;l log(Zy ;) is computed from
relative excesses Zy ; above “k,n(Xk,j)- For instance, if we choose k = k* = 84 from (4.6),
we obtain 4y = 0.52 with estimated 95%- confidence interval of [0.41,0.63].
We continue with the time series from Nevers. At first, since we have found some weak
evidence against constant tail behavior, we might want to apply the L-estimator from
Section 4.3.1, which, by Proposition 4.2, for k = k* = 97 and for time axis rescaled on
x € [—1,1], gives us §(x) = Ao + f1x with
. / . T N 0.34 0.16
7 = (0.56,0.14)" and estimated variability Var [\/lz(n - n)} = (0.16 0.99> :

Note that the 95%-confidence interval for #; is rather wide with [—0.04,0.24]. From our
experience gained from simulation experiments reported in Section 4.4.3, we would sug-
gest to follow a simpler approach. Because of the large uncertainty of 7j; relative to that of
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o and because of the very limited sample length of n = 228, it is expected that the over-
all estimation error decreases if we mistakenly set 7; = 0, that is, if we estimate the tail
behavior under the assumption y(x) = 9. Applying the same estimator as for the Niort
series with k = k* = 97, we obtain §¢ = 0.54 with estimated 95%-confidence interval of
[0.43,0.65].

4.5.2 Monthly maximal flows at the Mulde river basin in Germany

We analyze river flow series from 16 stations located at the Mulde basin in Germany. A
convenient way to eliminate temporal dependence, which is strongly present in the raw
data, is by considering only monthly maximal flows. For illustrative purpose, our longest
time series of monthly maximal flows is depicted on the left-hand side of Figure 4.6. The
series was observed at station Wechselburgl from November 1909 to October 2012.
Besides the popular annual maxima approach, where only the largest out of twelve
monthly maxima in each year is taken into account, there is an increasing interest in the
hydrological literature on methods based on all values above some selected threshold
[see, e.g., Cunnane, 1973; Madsen and Rosbjerg, 1997; Roth et al., 2016, and the references
therein]. Practitioners usually choose a threshold such that, on average, more than one
value per year is left for the estimation of the tail. The hope from this is an increase in es-
timation efficiency, compared to estimation based only on annual maxima. However, in
the previous references it is assumed that the observations are identically distributed. Re-
cently, Einmahl et al. [2016] showed consistency of classical tail estimators under slightly
weaker assumptions called heteroscedastic extremes, but still they need that the tail be-
havior, i.e., the extreme value index -y is the same for all observations.

In analogy to the previous subsection, we first check whether the extreme value index
of monthly maximal flows is constant over the whole observation period. We computed
p-values of the test based on the L-estimator for all 16 time series, with (4.6) employed for
a data-adaptive selection of k. Ignoring the multiple testing issue, weak evidence against
stationary tail behavior is found only for the series from station Streckewalde with a p-
value of 0.051. So, for the moment, it seems safe to assume that most of our series are
stationary in their tail behavior.

Recall from the discussion in Section 1.1.2 and, in particular, from descriptive evidence
in Figure 1.4 that a serious source of non-stationarity is due to seasonal variability within
a year. In what follows, this is further investigated in terms of tail behavior:

We rearranged the monthly maximal flows according to their appearance within a hydro-
logical year, which, for the series from Wechselburgl, is depicted on the right-hand side
of Figure 4.6. In Germany the j-th hydrological year starts in the first day of November
of the (j — 1)-th calendar year and ends on the last day of October of the j-th calendar
year. November first and October 31st correspond to day 1 and 366, respectively, on the
x-axis of the right-hand side of Figure 4.6. Let x; € {1,2,...,366} denote the hydrological
day of the monthly maximal flow Y; with corresponding extreme value index y(x;) > 0,
which is supposed to depend only on the hydrological day x;, i = 1,...,n = 1236. At
first, a linear model 7y(x) = o + #1x cannot be plausibly assumed because of the natural
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period length of one year. One would rather expect a smooth model with the endpoint
constraint y(1) = 7(366), which is not covered by the methodology considered here.
Still, our L-test is able to detect non-constant tail behavior y(x) # 7o if v(x) exhibits
a monotonic behavior on a broad part of the regressor space. In fact, from descriptive
data analysis, we suspect that y(x) increases from early winter to the middle of sum-
mer followed by an decrease in October. For empirical evidence, we computed the L-test
with k selected by rule (4.6) for all 16 series. Again ignoring the multiple testing, evi-
dence against stationary tail behavior is found for stations Niederstriegis1, Nossenl and
Borstendorf with p-values of about 0.001, 0.04 and 0.03, respectively. Weak evidence was
found for station Goeritzhain with a p-value of about 0.09.

In Great Britain, Switzerland, the United States and some other countries from the north-
ern hemisphere the hydrological year starts in the first October and ends in the last day
of September. Interestingly enough, if we compute x; according to this alternative def-
inition and if we apply the same procedure on the modified series, we even obtain six
p-values below the 5% and two others below the 10% significance level.

Since practitioners usually are interested in estimation and not in testing, the question is
how to proceed with the analysis. Estimation under seasonal variability of river flows
and related problems have already been addressed, for instance, in Schumann [2005],
Strupczewski et al. [2012], Rulfov et al. [2016] and the references therein: Two or more
groups of homogeneous observations, say, winter and summer flows, are identified. Af-
terwards, distributions are estimated under the i.i.d. assumption individually for each
group. The final model is constructed assuming independence between the groups. It
thus might be of interest to check whether there is evidence against stationary tail behav-
ior during winter and summer, respectively.

The L-test with data-adaptive selection of k applied to flows from the hydrological sum-
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Figure 4.6: Monthly maximal flows observed at station Wechselburg starting from
November 1909 till October 2012 in (left) chronological order and (right) ordered accord-
ing to their day of appearance in the German hydrological year.
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mer (May till October) does not provide evidence against stationary tail behavior during
the summer. The application to flows from the hydrological winter (November till April)
gives us only one p-value below 5% and another one below the 10% significance level.
At first, this result sounds logical, since it is consistent with the idea that heterogeneity is
mainly caused by the diversity of physiological causalities: Melting snow in the winter
and heavy rainfalls in the summer time. We thus may expect that observations within
each season are homogeneous in their tail behavior. But note also that the decreased ev-
idence against stationary tail behavior might be also explained by a lack of powert, since
the sample is cut in half for testing on each season. E.g., for the Wechselburl series, in-
stead of n = 1236 only n/2 = 618 observations are left for estimation of winter and
summer distributions, respectively.

4.6 Conclusion and outlook

The analysis of trends in hydrological time series is motivated by a changing climate and
by anthropogenic interference with nature, for instance, the dynamic process of urban-
ization during the past centuries. Little attention has been devoted to the analysis of
trends in the tails in the applied literature, even though the primal interest lies on, say,
high quantiles of distributions. Our work tries to fill this gap in case of heavy tails of
Pareto-type. It turns out that satisfactory inference on non-constant tail-behavior is diffi-
cult under typical circumstances in hydrology, because of the rather limited observation
lengths. In many of the scenarios considered in our simulations it is advisable to ignore
trends in tail-behavior in order to reduce the dominating estimation variability at the
cost of a rather small bias. For instance, we believe that estimation of annual maximal
flow distributions based on the block maxima method should be carried out under the
assumption of stationary tail behavior.

Our work might be extended to regional estimation under the assumption of regional
heavy-tail homogeneity. For statistical inference in such a regional setting it is, in con-
trast to pure local estimation studied here, of practical importance to derive theory under
semi-parametric assumptions in order to be able to estimate the dependence between
local estimates. This indeed is a challenging problem left for future research.






Appendix A

Additional results and further
technical details

A.1 Convergence of random elements in metric spaces

Let (S, d) denote a metric space and let us first assume that the space is complete and sep-
arable. The latter means that there exists a countable dense set in 5. Relevant examples
are S = R? equipped with the euclidean distance and the space S = C (I), I C R, of
continuous functions f : I — R equipped with the uniform metricd(f,g) = ||f — &l =
sup,.; |f(t) — g(t)|. Countable and dense subsets are given by Q7 and by the subset of
continuous functions that are piecewise affine linear between grid points from I N Q?,
respectively.

Let B be the Borel-o-Algebra of (S,d) and let (), A,IP) denote any probability space. A
function Y : Q — S is called measurable (or random element), if Y~!(B) € A for any
B € B.In case of S = R¥ we also call Y a random vector or random variable if d = 1. For
S = C(I) we call Y a random function or stochastic process.

Definition A.1
LetY,,Y : Q — S, n € N, be random elements and let Po Y~! : B — [0,1] denote the
image measure with Po Y~}(B) = P({w € Q: Y(w) € B}). For n — oo, we define:

(i) (Almost sure convergence)
Y, Y, if PHweQ: YVy(w) = Y(w)}) =1.

(ii) (Convergence in probability)
Y, B Y,if P({weQ: dYn(w),Y(w)) >e}) — 0foranye > 0.

(iif) (Convergence in distribution; weak convergence)
Y, 3, if

E[f(Y)] = [faPoy,! — [ faPoy™! = E[f(¥)] (A1)
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forany f € Cp(S) = {h:S — R: h continuous and bounded}.

Almost sure convergence always implies convergence in probability, which, in turn, al-
ways implies convergence in distribution,

Y, Sy =v,5y=v, 2y

Convergence in distribution is thus also called weak convergence.
If Y, 2 Y on S, then, for a second separable metric space T, any continuous map g :

S — T, and from definition (A.1), we also obtain that g(Y) B g(Y)on T, since f €
Cp(T) implies that f o g € Cp(S). Even more, the following result called continuous
mapping theorem states that we only need almost sure continuity with respect to the
limiting image measure Po Y 1.

Theorem A.2 (Continuous mapping theorem)

Let =5 denote either =3, o2, Suppose that Y,,, Y, n € IN, are random elements on the metric
space S such that Y, = Y for n — oo and, for a second metric space T, let g : S — T satisfy

Poy™! ({s € S: gis continuous in s}) =1.
Then, for n — oo, we also have that g(Y,) — g(Y) on T.

In many situations we would like to deduce joint convergence from convergence of the
components: Let ¢,,¢ and 7,7, n € IN, denote two sequences of random elements on
the metric spaces (S1,d1) and (Sp,d2), respectively. We can always consider the tuples
Y, = (&, 1n), Y = (¢, 1) as random elements on the product space

S = Sl X Sz = {(51,82) P51 € 51,52 S Sz}

equipped with the metric d = d; 4+ d,. Then we have that marginal convergence of
deterministic sequences s1,, — 51 on 51 and s, — s2 on 5 is equivalent to convergence
of the tuples (sy1,512) — (s1,52) on the product space 5. We thus immediately obtain
that marginal almost sure convergence ¢, X Fand g, By implies joint convergence
Y, 22 Y, since almost sure events are closed under intersections. The same assertion also
holds with convergence in probability, but not necessarily with weak convergence: For
a counter example, let §, = ¢ be standard normal and let 7, = (—1)"¢. Then we have
M 2 1, which immediately implies 77, B ¢. But we do not have joint weak convergence,
since E(§u1,) = (—1)" /4 contradicts (A.1).

If ¢, and 7, are independent for each n € IN, then, of course, marginal weak convergence
also implies joint weak convergence. Another frequently applied condition is as follows:

Theorem A.3 (Slutsky’s lemma)
Suppose, for n — oo, we have that ¢, 2 ¢ on Sy and n, B aon S,, where a € S, is a
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deterministic element. Then, for n — oo, we also have that (&, 1n) B (&, a) on the product
space 51 X Ss.

Let us now turn to the space S = (*(I) = {f: I — R: sup,., |f(t)| < oo} of bounded
real-valued functions on some index set I. We equip ¢* with the uniform metric do,. This
space plays a central role in empirical process theory. E.g., £°°([0,1]) covers the well-
known cddlag space D(]0,1]) of right-continuous functions with existing left limits and
with the empirical distribution F, as a typical element in it. A difficulty is that (¢°(I), dw)
is not separable [Billingsley, 1968, p. 216], which carries with measurability problems.
Although it is natural to study the empirical process F, = /n(F, — F) as a random
element in ¢ ([0, 1]), it can be shown that [F,, is not Borel-measurable with respect to the
uniform metric [van der Vaart and Wellner, 1996, Chap. 1] and the definition of weak
convergence in (A.1) does not make sense anymore for Y, = F,,.

One classical way to solve this problem consists of replacing do, by Skorohod’s dyp-metric,
which makes DJ0, 1] separable and complete [Billingsley, 1968]. An alternative, modern
solution is due to Hoffman-Jergensen [1994]: Suppose that the limiting element Y in
(A.1) is measurable and replace the expectations on the left-hand side of (A.1) by outer
expectations

E* [Z] =inf{E[U]: U > Z, U measurable and E [U] < oo},

which are also defined for non-measurable maps Z : () — IR. It turns out that most
common results can be extended to the outer expectation case, including the previous
theorems, so, usually, there will be no practical difference when dealing with weak con-
vergence of series of non-measurable random elements, provided the limit is measurable.
For further details and extensions of Theorems A.2 and A3 to § = (®(I) we refer to
Chapter 1 in van der Vaart and Wellner [1996].

The following theorem extends the classical delta method to arbitrary metric spaces [van der
Vaart and Wellner, 1996, Sec. 3.9].

Theorem A.4 (Functional delta method)
Let S and T be metric spaces, s € So C S and, for n — oo, let g : 5o — T be a map satisfying

g(s+tuhy) — g(s)
tn

— &s(h) (A.2)

for some linear map g : S — T (the derivative in s) and all sequences t, € R, h, € S satisfying

ty = 0, hy — h € Sand s+ t,h, € Sy. Suppose further that r,(Y, — s) 2 Zon S, where
P(Z € Sp) = 1and r, — co. Then, for n — oo, we also have that

ru(8(n) —8(5)) = g4(2)
onT.

Property (A.2) is called Hadamard-differentiability of g in s tangentially to Sy. In case of
S = RFand T = R™, Hadamard-differentiability is equivalent to usual differentiability
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with linear function g, = Dg; given by the Jacobi-matrix of g in s.

Note that every function ¢ : | - R, J] C R, can be extended to a map § : f — g(f)
defined on a subset Sy C ¢*°(I), provided the range f(I) C J forall f € Sp. The following
result states that if g is differentiable with derivative ¢’ and if | actually covers a little
bit more than the range of all functions from Sy, then we also have that § is Hadamard-
differentiable with derivative g¢(h) = &'(f) - v

Theorem A.5 (Lemma 12.2 in Kosorok [2008])
Let ¢ : B C R — R be differentiable with continuous derivative ¢’ on all closed subsets of B and
let

So = {f € 1°(I): f(I)° C B for some 5 > 0} C (1),

where f(I)° = {y € R: |y — x| < & for some x € f(I)} denotes the 6-enlargement of the range
f(I) of f. Then the map § : So — (1), f +— g(f), is Hadamard-differentiable on Sy with
derivative & (h) = §'(f) - hin f € So.

In fact, following the arguments in the proof of Kosorok [2008], it is easily verified that
Theorem A.5 generalizes to differentiable maps ¢ : B C R™ — R* for arbitrary m, k €
IN. Firstly, the main argument in the proof is that continuous functions on closed and
bounded sets obtain their maximum. This is also the case for arbitrary m € IN and k = 1.
Secondly, a function g : B C R"™ — R¥ is always of the form ¢ = (g1,...,8x) with g :
B — R and convergence in (A.2) is equivalent to componentwise convergence. In other
words, § is Hadamard differentiable if and only if §;, . . ., §x are Hadamard differentiable.
The Hadamard derivative Dgf : 5o — (*(I)F in f € (*(I)"™ and with Sy C (*(I)" of
§: f g(f)isgivenby Dgs(h) = Dgy - h, where Dg, is the Jacobi matrix of ¢ in x € R"™.

Theorem A.5 is used to prove Proposition 1.8 in the following section.

A.2 The madogram estimator - theory and praxis

The madogram estimator serves as a basic building block for the change-point test in
Chapter 3. With this section, we would like to give a deeper insight into theory and
finite-sample properties of this simple estimator. We start with a proof of Proposition 1.8.

Proof of Proposition 1.8. Recall the definitions of S(t) and S, (t) from (1.13) and (1.15), re-
spectively. We first show weak convergence of the process /7(S, — S) on (£*([0,1]), deo):

Note that fol 1(m <u)du=1—mand C(u',ut) = u2® for 0 < u,m < 1, which gives
us

1 -1
§n(t):1—/ Co(u'™ ut) du  and S(t)zl—/ Clu,ut) du.
0 0

The continuity of A is sufficient for the existence and continuity of Cy and C; on (0,1) x
[0,1] and [0,1] x (0,1), respectively [Segers, 2012, Example 5.3], which, by Theorem A.8,
is sufficient for the weak convergence of the empirical copula process /n(C, — C) =
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c B C% on (£°([0,1]?), d ). Thus, from the continuity of the map f fol Ful=t, ut)du,
(€*(]0,1]?),ds) — (£°([0,1]), do), and from the continuous mapping theorem,

1 1
Vi (8, —8) = — (/ CO(u't,ut) du> 2, (/ Co(u' " uh) du> (A3)
0 t€[0,1] 0 t€[0,1]

on (£°([0,1]),ds). The minus sign on the right-hand side of (A.3) can be dropped be-
cause the limit is a centered Gaussian process.

For the next step of the proof, recall that A(t) = g(S(t)), where the function g : (0,1) —
(0,1), s — s/(1 —s), is differentiable with continuous derivative ¢’(s) = 1/(1 —s)2.
Thanks to Theorem A.5, the extension § : S — ¢°([0,1]), f +— g(f), defined on

So = {f €£*(]0,1]) : f(I)° C (0,1) for some & > 0}

is Hadamard-differentiable with derivative (k) = ¢'(s) - h, h € £°([0,1]). Recall that
a Pickands dependence function A satisfies 1/2 < A(t) < 1 for all + € [0,1]. Since
S(t) = A(t)/(1+ A(t)), we also have that 1/4 < 5(t) < 2/3, which implies that S € .
In addition, from combinatoric arguments it is straightforward to show that

(n(n+1) B n/2(n/2+1)> .3

2 2 4’

1 n i2
i=1

1 A 2
- < — <S5, < —
6<nz(n+1)2_n()_n

which means that §,, takes its values in Sp. Thanks to Theorem A.5 we conclude that
§ is Hadamard-differentiable and we are thus in position to apply the functional delta
method: We conclude that

Vi(Ay — A) = Vi (§(50) - §(S)) 5 85(2) =g'(S) - Z,

where Z is the weak limit on the right-hand side of (A.3). Because of S = A/(1+ A), we
have that ¢/(S) = (1 + A)?. This completes the proof of Proposition 1.8. O

Remark A.6
It is straightforward to extend the madogram estimator to arbitrary dimensions d > 2,
since we also have that

At) = 13(;)0) for S(t) =E [max{u%/tl,...,ll;/td” ,

where U = (U, ..., U,;)" satisfies C(u) = P(U < u). At the cost of a more complex
notation but without any additional technical difficulties, it is easy to extend Proposition
1.8 to arbitrary dimensions d > 2.

Let us finish this section with a closer look at the finite-sample performance of the mado-
gram estimator: Figure A.1 depicts mean squared errors MSE(t) = E [(A(t) — A(t))z}
of different estimators A(t) of the Pickands dependence function A(t) versus t € [0, 1] es-

timated from 4000 independent samples of size n and for four different scenarios accord-
ing to (3.19). Endpoint-corrections are used, if necessary, so that the estimators satisfy



98 Chapter A. Additional results and further technical details

theta=1.5 theta=2.5
0.00075 -
0.00050 - R NS i
A/ N =)
. /// \\ o
. A\ . S
4 * - .
0.00025- )/ \\ — 252 Estimator
S . A S
<y AT e S TN Madogram
w 4 \ — S
W 0.00000 - CEG
= CFG
0.00075 - \ ¢
, PN c. Pickands
K 4 \\ *. o)
0.00050 - R A A
4 A\ oot =
S . T o
Sl \\\ AT TN o
0.00025- . ¥ N\ eyt R\
.l L W R 2 NS
. ¢ W\ . v N
i 4 3 // \\\ -----
0.00000- 7 i T~

000 025 050 075 100000 025 050 075  1.00
t

Figure A.1: Mean squared errors (MSE) of the madogram, CFG, endpoint-corrected CFG
and endpoint-corrected Pickands estimators of A(t) versus t € [0, 1] computed from 4000
independent samples of size n = 100 drawn from a bivariate distribution with copula
(3.19). We used four different scenarios with (left) & = 1.5, (right) ¢ = 2.5, (top) a = (0,0)
and (bottom) a = (0,0.2).

the endpoint constraints A(0) = A(1) = 1 [Genest and Segers, 2009]. For instance, these
modifications significantly improve the finite-sample performance of the Pickands and
CFG estimators. Endpoint-correction of the madogram estimator is not necessary, since
it fulfills the endpoint constraints by construction. From the results in Figure A.1 we find
that the madogram estimator is pretty competitive in terms of MSE. It outperforms the
uncorrected CFG and the corrected Pickands estimator. The difference in performance
of the madogram estimator is small compared to the corrected CFG estimator, which is
recommended by many authors as the best available estimator.

A.3 A max-type test of heavy-tail homogeneity

As an alternative to the heavy-tail ANOVA statistic Wy ., defined in Proposition 2.6,
practitioners might be also interested in a max-type test statistic (see the discussion in
Section 2.4). Let

2
A A k “y n
11/271/2\/7,\71 (Hk,‘l‘,n — ’)’k,‘r,n(wopt>1)

Mk,r,n = 4

7
[ee]
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where U = (@i ...1;_1) € R™(@=1) consists of pairwise orthogonal vectors uy, ..., us_;
with length 1, all orthogonal to i; = £71/21. These can be obtained from the Gram-
Schmidt algorithm.

Theorem A.7
Under the assumptions of Proposition 2.6 and for n — oo, we have that

D
Micrn = |Za—1 |2 = max{Z3,..., 23 |}, (A.4)
where Zy 1 = (Z1,...,Z4_1)" is a vector of independent N (0,1) distributed random variables.

Note that the limiting distribution function can be written as G*~!, where G is the distri-
bution function of a x7 distribution with 1 degree of freedom. Thus, the (1 — a)-quantile
of the limiting distribution is given by the (1 — «)'/(*~1)-quantile of the x? distribution.

Proof. Recall first that (see the proof of Proposition 2.6)

Vvki

~

Y

~ N D
(Hk,-r,n — Yk, ('wopt)l) — A21/2Zd1

where A = Ay,
from a singular value decomposition of the matrix E = % ~1/2A%1/2:

Note that E - E' = B, where B = B,,,, is defined in the proof of Proposition 2.6. Thus
we can decompose E = UV’, where the columns of U € R¥*(@-1) and V e RI*(@-1)
consist of d — 1 orthonormal eigenvectors of EE’ and E’E, respectively. From the proof
of Proposition 2.6 and since we use w = w,y;, we also now that all the eigenvectors
correspond to the eigenvalue of 1. Note also that U'U = V'V = [; ;. Bringing all these
things together completes the proof of (A.4). O

=1I;— 1w[7pt and with identity matrix I; € R¥*4. The proof follows

A.4 Empirical copula processes and multiplier bootstrap

LetY; = (Yi,...,Y), i = 1,...,n, denote a sequence of i.i.d. random vectors with
distribution function

P(Y; <y)=C(E(W),--- Fa(ya), y = (v1,---,va) € RY,

whose margins Fy, ..., F; are continuous. Recall that P(U; < u) = C(u), where we call
U; = (Fi(Yn),...,Es(Yiy))' the probability transform of Y;. For 1 < k <i < £ < n, we
define sequential pseudo observations Uyy; = (U1, - .., Uy g,id), by

1

Ut = 7ok

14
Y 1 (U <Uy),j=1,...,d
m=k
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and, for 1 < k < ¢ < n, the sequential empirical copula by

4
L Z 1 (ﬁk:g,m < u) ,ue [0, 1]d.

Crr(u) = I k+1
m=k

Let A = {(r,s) € [0,1]?: s > r}. The process C, defined on A x [0,1] by

Culrsw = o (0 ) - c), (s w € Ax 0,11

is called two-sided sequential empirical copula process. Biicher and Kojadinovic [2016]
prove weak convergence of C, towards a Gaussian process even under temporal depen-
dence. In case of independence, as considered here, the weak convergence result can be
restated as follows:

Theorem A.8 (Biicher and Kojadinovic [2016])

Suppose that all first order partial derivative C; = dC/duj of C exists and is continuous on
fue01]?: 0<u;<1},j=1,...,d Foru= (uy,...,uy), let ul?) denote the vector
of whose components are equal to one, except the jth which is equal to u;. Then, for n — oo, we
have that C,, 3 Cc on (= (A x [0,1]%) equipped with the uniform metric, where Cc is defined
through

d
Cc(r,s5,u) = {Bc(s,u) — Be(r,u)} — Y Cj(w){Bc(s,u’) — Be(r,ul)} (A.5)
j=1

and where B¢ is a centered Gaussian process on £ ([0, 1]d+1) with covariance kernel
E{Bc(r,u)Bc(s,v)} = (r As){C(u; Aoy, ..., u3 ANvg) — C(u)C(v)}.

The usual empirical copula process and its weak limit are denoted by C% = C,(0,1, ")
and C% = Cc(0,1, ), respectively.

Note that the distribution of the limit C¢ depends on the unknown copula C in a very
complicated way, making it virtually impossible to calculate, say, critical values of test
statistics based on C,. This problem may be solved by the multiplier bootstrap tech-
nique, initially proposed by Scaillet [2005] for C2 and extended by Biicher and Kojadi-
novic [2016] to the sequential case and serial dependence.

Theorem A.9 (Biicher and Kojadinovic [2016])

Let gfb), i>1,b=1,...,B, denote independent standard normal distributed variables, indepen-
dent of (X;,Y;),i > 1. Let,forb=1,...,B,

11“35}’) (s,u) =
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and let C;, denote an estimator of C; satisfying
sup 1Cjn(u) = Cj(u)] L0 (A.6)
ue(0,1)4,u;€[6,1-4]
forsome é € (0,1/2),j=1,...,d. Define ¢ in analogy to (A.5) with B¢ and C; replaced by
]Bg’) and Cj,. Then, under the assumptions of Theorem A.8 and for n — oo, we have that

(Cn,C,S”,...,C,S )> (C C(c)/---/C(CB))

n (= (A %0, 1]"1))3“, where C(Cl), e ,CéB) denote independent copies of Cc.

In analogy to CY, we set Cﬁ'(b) = C,&b) 0,1,-).

A.5 Change-point test statistic ford > 2

In Sections 3.2.1 and 3.2.2, we restricted ourselves to the case d = 2. Results for arbitrary
dimension d > 2 can be established at the cost of a more complex notation but without
significant additional mathematical difficulties. We give the main steps of the general-
ization hereafter. Let Y = (Y7,...,Y;) be a random vector with distribution function and
extreme value copula of the form (1.1) and (1.7), respectively, and suppose that A is con-
tinuously differentiable on the interior of S;_; with partial derivatives A;(t) = dA(t)/dt;,
ji=2,. d t = (tz, ...,ta)" € S;_1. With the notation U; = Fi(Y;),j = 1,...,d, and

tl—tl() 2 2t],t€8d 1, we have, just as for d = 2,
_S(1) _ 1/t 1/t
At) = 1= 5(t) and S(t)—]E{max{ll1 oo Uy H,

with the convention that u'/? = 0 for all u € (0,1).

LetY;, i = 1,...,n, be independent copies of Y and let Uy.p; = (Uppi1,---, Ureia)' be
d-variate generalizations of the subsample pseudo-observations in (3.6). We define a
CUSUM-type process D, on ¢* ([0,1] x S;_1) by

Da(st) = VD (4 (0 = A1),

where, for 1 < k < £ <n, Apo(t) = Sip(t) /{1 — Sp0(t)}, and

A 1 i/t A1/t
Sk (t) = k1 Zmax{ Uieirs- --fuk:ﬁ,fd}

with the convention that Sy = 0if k > /.

Let us introduce some additional notation. For any y € [0,1] and t € S;_1, we define y*
to be the vector (y1,...,y") € [0,1]¢ with the convention that 0° = 1. Furthermore, for
any u € [0,1]and any j = 1,...,d, u'¥) denotes the vector of [0,1]¢ whose components

are all equal to one, except the jth which is equal to u;.
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Proposition A.10
Suppose that all of the above conditions are met. Then, for n — oo, we have that D, B D¢ on

0°([0,1] x Sy_1), where
De(s, t) = {1+ A(t)}? x /01 sCc(s,1,y") — (1 —5)Cc(0,s,y") dy
and where Cc is defined in Theorem A.8.
The proof is almost identical to that of Proposition 3.1. For a corresponding bootstrap

approximation of the limit D¢, let gj.’”, i=1,...,n,b=1,...,B,beii.d. standard normal
multipliers. Furthermore, from (1.7), we have that, forany y € (0,1) and t € S;_1,

E(9Y) yAb-h {A(t) - Y kak(t)} , =1
\y) = b ; ; .
] yAO {A(t) + A - T, tkAk(t)}, ji=2,...,d
The above quantities can be estimated consistently by plugging in subsample estimators
of A and A =dA/dt;, j=2,...,d, respectively, namely Aj.p and
. 1 A A .
Aj,k:é,n(t) = o {Ak:g(t + hne]') — Aot — hnej)} , j=2,...,4,
n

witht+hye; = (to, ..., tj_1,tj £ hy, tjq, ..., t;) and asequence i, | 0such thatinf,>q hy/n >
0 (boundary effects can be dealt with by generalizing the approach adopted below (3.14)).
Then, analogously to the bivariate case, we define

. " ns 1 . n—|ns
D (5,0 = {1+ A (01 < {551 3 g - n3E2J2¢ 1)
i=|ns|+1

where, for1 <k < /¢ <mn,

. i} (Ae,i (t) — Tgepj (1) )Aker ()
Wiet,i (1) = Mgp(t) — g (t) + Z L= !
j=1 bk:ﬁ,j(t)

with 77y, and 7. ; denoting the arithmetic mean overi =k, ..., £ of

7

n N n ~b /t
itk () = max (U}(/;l) and .;i(t) = Ukkgél’] ,

and where

B (1) = Apo(t) = X5 o tj Aj o (b), j=1,
g Aee () + Ajpeon(®) = 5 o tpAjpeon(t), j=2,...,4,
b j(t) = Ago(t) +1—t;.
Test statistics and corresponding multiplier bootstrap replicates can be defined analo-
gously to Section 3.2.1, as functionals of ID,, and DY, b=1,...,B, respectively. In addi-
tion, generalizations adapted to known breaks in the margins can be obtained by com-

puting pseudo observations from the subsamples determined by the marginal change-
points, as explained in Section 3.2.2. We omit the details for the sake of brevity.
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A.6 Quantile regression process

Let Y denote a random variable called response and X = (1, Xy, ..., X;)’ arandom vector
called regressor with support covered by a compact set X C R4+, Throughout this
section we suppose that the conditional distribution F(y|x) = P(Y < y| X = x) of Y
given X = x satisfies

F'(p|x) =inf{y : F(y|x) > p} =3, (A7)

for all x € X, probabilities p € I C [¢,1 — ¢] and an unknown vector-valued function
p — By, p € I, with B, € R?"! called p-th regression quantile [Koenker and Bassett,
1978]. The left-hand side of (A.7) is called generalized inverse or quantile of F(-|x) in
p € I. It coincides with the usual inverse of a function, provided the inverse exists.
Theoretical aspects and many applications of linear quantile regression are presented in
Koenker [2005].

Let (Y;,X;),i =1,...,n,denote independent copies of (Y, X). Estimator

n
Bp = argmin pr (Yi —X;-b)
beR4H! =1

with p,(y) =y - (p — 1{y<oy) is called empirical regression quantile. The following result

establishes asymptotic normality of /1 (8, — 8,) uniformly in p € I, i.e., in (£*(I ))dH.

Theorem A.11 (Angrist et al. [2006])
Suppose that, uniformly in x € X, the conditional density f(y|x) exists, is bounded and uni-
formly continuous in y. Suppose further that E||X||*+° < co for some 6 > 0 and that

J=E[XX] and H,=E [xx’ -f(F*l(p\X)yX)} (A.8)

exist with Hy, positive definite for all p € I. Then, for n — oo, we have that
(Hpv/n (By = Bp)) yoy — Z (A.9)
in (€°°(I)))d+l, where Z. is a centered Gaussian process with E[Z(p)Z(q)'] = (pNg—p-q) - ].

The previous result allows us to estimate the joint distribution of several empirical regres-
sion quantiles. Let p = {p1,...,p¢} C I denote a set of probabilities. Then, for n — oo,
we immediately obtain that

VI (B =By By = Bp) = N (0,%),

where X, is defined piecewise through
Iim Cov |V (B, = By) , v/t By, = By, )| = (pi Apy = pi-py) - Hy TH,

This result is used to prove Proposition 4.2.
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A.7 Conditional heavy-tail behavior - competing methods

A.7.1 Tail index regression (TIR) by Wang and Tsai [2009]

Wang and Tsai [2009] study model (4.1) with a(x) = 1/9(x) = exp(x’'0) for some un-
known parameter vector 6 € R+, They propose the estimator

0., = argmin Z [exp(X(0) - log(Y;/un) — Xi6] - 1(Y; > un) (A.10)
feRI+ =1

with regressor independent threshold u,, — oo for n — 0. (A.10) can be viewed as
an approximate maximum likelihood approach based on the weak approximation of
log(Y/uy) given X = xand Y > u, to an exponential distribution with mean 1/«(x). Let
k = Y7 11(Y; > uy) be the effective sample size in (A.10) and £, = + Y11 X, X/1(Y; >
u,). Under certain technical assumptions, Wang and Tsai [2009] prove

VE-£12.(6—6) 25 N (h, 1) (A.11)

for some vector h and (d + 1)-dimensional identity matrix I;,1. The estimation of the
bias h requires detailed information on the tail, which is hardly available and thus set to
zero in applications.

However, Wang and Tsai [2009] do not consider regressor dependent thresholds u;, like
in Section 4.2.1, which in practice is important to account for regression effects in e.g.
the center of the distribution. In order to reduce this problem, we suggest to apply their
estimation procedure on the sample (Zk,j, Xk,]'), j=1,...,k as givenin Section 4.2.1. That

is, replace éun by
A k
HkT,,I,lR = arg min 2 [exp(X;(/jO) -log(Zk,j) — X,’(,]H}
OcRH+1  j=1

and ﬁun by i“k,}'l = % 2;(:1 Xk/]x;(,]

A.7.2 Three-stage procedure by Wang and Li [2013]

An alternative regression approach focusing on high conditional quantiles Fy ! (p| x), p €
[1 —¢,1), for some small number € > 0 is proposed in Wang and Li [2013]. Their method
is based on the assumption that

Ey(pl %) = X6,

holds for some A € R, Box-Cox transformation g,, regression quantiles f, € R?"! and
all p € [1 —¢,1). They propose an estimator of y(x) based on a three-stage procedure:

(i) Setp = pxn = Z—jl‘ and compute A as in Section 4.2.1.
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(i) Let py_jy = 745 forj=1,...,mwithm = n— |n"] and y = 0.1. Forj = 1,...,m,
estimate F, ' (p,_; 1| x) by the right hand side of (4.4) with g = g3 and p = py_j .
Denote these estimates by 4;(x), j = 1,...,m. If §;(x) is not increasing in j, apply
the rearrangement procedure of Chernozhukov et al. [2010].

(iii) For some integer k < m, estimate y(x) by

k
Z log([%—j) - log(‘infk)-
=[]

R 1
Fin(x) = mj

Thus §y ,(x) is Hill’s estimator [Hill, 1975] applied to the sample of 4(x) values, which
can be seen as pseudo observations from Fy( - | x). Wang and Li [2013] also propose a
test statistic

1 n n
To= 23 (Bea(X0) = 4p)", 4p = Y 4(X0), (A12)

—
Il
—_

as a test for hypothesis H 5 in (4.2). If Ho i1, E(X) = (1,0,...,0)" € R*! and either
7*(x) = 0 or a certain homogeneity assumption are met, Wang and Li [2013] show under
additional technical assumptions that kT, B v%x3 holds. They also derive the limiting
distribution under heterogeneity, which in practice involves the estimation of additional
parameters. For more details we refer to Wang and Li [2013, Th. 3.3 and Cor. 3.1].
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