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Abstract

U-shaped intraday periodicity (IP) is a typical stylized fact characterizing intraday returns

on risky assets. In this study we focus on the realized volatility and bipower variation

estimators for daily integrated volatility (IV ) which are based on intraday returns follow-

ing a discrete-time model with IP. We demonstrate that neglecting the impact of IP on

realized estimators may lead to non-valid statistical inference concerning IV for the com-

monly available number of intraday returns, moreover, the size of daily jump tests may be

distorted. Given the functional form of IP, we derive corrections for the realized measures

of IV . We show in a Monte Carlo and an empirical study that the proposed corrections

improve commonly point and interval estimators of the IV and tests for jumps.

Keywords: bipower variation, daily integrated volatility, jump detection, realized volatility

1 Introduction

The availability of high-frequency data allows the construction of precise estimators of daily

integrated volatility (IV ) for risky asset returns. The realized volatility (RV ) defined as a

sum squared intraday returns is known as a consistent estimator of daily IV in absence of

jumps. Other realized measures such as the bipower variation (BV ) should be used for IV

estimation in presence of jumps during the day. Barndorff-Nielsen and Shephard (2002) derive

the asymptotic properties of these measures under quite mild assumptions on the underlying

continuous pricing process with jumps. The common practice is to use BV for a day where a

statistical test decision is to reject the hull hypothesis of “no jumps” and RV otherwise.
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On the other hand the presence of a persistent intraday pattern (IP) which usually takes a U-

form during the trading time of the day is a well documented empirical feature of the intraday

volatility (Wood et al. (1985), Harris (1986)). As it appears to be highly correlated with the

intraday variation of trading volume, Admati and Pfleiderer (1988) propose to explain the daily

U-shape by strategic interaction of traders around market openings and closures. For longer

time periods (week, month, etc.) the IP could be explained by the impact of slowly varying

macroeconomic fundamentals (Andersen and Bollerslev (1998b), Andersen et al. (2001, 2003)).

In this paper we investigate the impact of IP on the finite sample properties of RV and BV

estimators of daily IV . To the best of our knowledge, this research agenda has not been inves-

tigated yet, although there is a vast amount of literature concerning modeling and estimating

IP (Engle et al. (1990), Hamao et al. (1990), Boudt et al. (2011), Engle and Sokalska (2012),

Andersen et al. (2012)). Thus our results provide uselful insights in the differences between the

asymptotic theory and the practical performance of realized measures based on intraday data.

For this purpose we consider the discrete time model without jumps in the spirit of Andersen

and Bollerslev (1997), where the variance of intraday returns is written as a product of the

deterministic periodic and stochastic volatility components. The IP is assumed to be constant

for all days, whereas the stochastic volatility part is changing over time, e.g. from one day

to another. We show that for the commonly available number of intraday returns, say M ,

neglecting the impact of IP would lead to non-valid statistical inference concerning daily IV

and may distort the size of commonly used tests for jumps. For a given IP, we compute the first

and the second moments of RV and BV , moreover, we derive the impact of IP on the realized

tri-power (TP ) and quad-power (QP ) estimators of daily integrated quarticity (IQ) required

for statistical inference about IV . We also establish the asymptotic bivariate distribution of

these measures as M → ∞ and suggest a correction for tests on daily jumps based on the

distance between RV and BV estimators (Huang and Tauchen (2005), Barndorff-Nielsen and

Shephard (2006)).

Our major finding is that for the commonly available number of intraday returns the impact

of IP should be explicitly addressed in any statistical inference concerning IV . While the RV

estimator of IV is unaffected by IP, BV has a finite sample bias which can only be neglected

for a extremely large sample sizes, which are usually not available in applications. Moreover,

in the computation of the second moments (IQ) of realized estimators one needs to account

for a scaling factor (independently of the sample size), which depends on the functional form

of the IP. Also tests for a daily jump component have to be corrected because otherwise they

do not keep their nominal level and lead to a detection of spurious jumps. For a given form of

IP, we provide corrections and demonstrate the necessity of these modifications accounting for

IP in any valid statistical inference concerning IV .

Our results are supported by a Monte Carlo study, where we investigate the impact of IP on

various commonly used realized measures and tests for jumps and the “IP corrected” procedures

proposed in this paper. In the empirical application we estimate the IP and provide jump
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test results for the Dow Jones daily volatility. We show that the corrected tests detect a

substantially smaller number of days with jumps than the unadjusted ones. Hence, our results

underscore that a common practice to estimate the daily IV (Andersen et al. (2011)) as “start

by testing for jumps during the day, then use BV if the Null ‘no jumps’ is rejected and RV

otherwise” could be misleading if a pronounced IP is neglected. Thus, accounting for IP form

is crucial for computing IV estimators widely used for portfolio selection, option pricing or

Value-at-Risk calculation purposes.

The rest of the paper is organized as follows. In Section 2 we introduce the model for intraday

returns and discuss the realized estimators for daily IV . The theoretical results are derived in

Section 3 where we establish both finite sample and asymptotic stochastic properties of realized

IV estimators for a given IP pattern. Our approach is illustrated in Section 4 by means of a

Monte Carlo simulation study and in Section 5 by an empirical application. Section 6 concludes

the paper whereas the proofs are put in the Appendix.

2 Modeling and measuring daily volatility based on in-

traday information

We start from a very general jump-diffusion model for log price increments in order to define

the objects of our interest, namely daily integrated volatility and daily integrated quarticity.

Next, we present realized estimators of daily volatility and quarticity which are based on M

intraday returns. These realized measures are consistent estimators for M → ∞, however, in

practice M is finite due to market microstructure noise. Thus, it is of importance to study the

finite sample stochastic properties of realized estimators. For this reason we then consider a

discrete time model for intraday returns with an explicit specification of intraday periodicity

(IP). Our aim is to investigate the impact of IP on realized measures for finite values of M .

2.1 Model for intraday returns and realized measures

A commonly assumed general model presumes that log-prices of risky assets p(t) = lnPt follow

a continuous time process with a jump component (Andersen et al. (2007)):

dp(t) = µ(t)dt+ σ(t)dWt + κ(t)dq(t), (2.1)

where Wt is a Brownian motion. The jump occurrence is governed by a counting process q(t)

and the size of jumps is given by κ(t). As the drift component µ(t) is rather small and hardly

predictable, we assume zero mean µ(t) = 0 without loss of generality.

We consider a day t as the period of interest with the daily return rt = pt−pt−1. Our attention
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is focused on the daily integrated volatility (IV ), which is defined for day t as

IVt = σ2
t =

t∫
t−1

σ2(u)du.

In order to make statistical inference about IV measures we also need the statement concerning

the integrated quarticity (IQ) defined as

IQt =

t∫
t−1

σ4(u)du.

The availability of intraday returns allows to construct precise realized estimators (Andersen

and Bollerslev (1998a)) for the daily IV which are consistent in the general model (2.1). Assume

that there are M equally spaced intraday returns for day t denoted by rt,m = pt,m−pt,m−1 with

t = 1, ..., T and m = 1, ...,M . Note that the daily return rt is obtained as a sum of intraday

returns, i.e. rt =
∑M

m=1 rt,m. The most popular IV estimator is the realized volatility (RV )

measure which is given as

RVt =
M∑
m=1

r2t,m.

Barndorff-Nielsen and Shephard (2002) show the consistency of RVt for IVt in model in (2.1)

in the case of no jumps, i.e. RVt → IVt as M → ∞. Although RVt possesses a set of

appealing properties, it is not appropriate in the presence a non-zero jump component as

RVt → IVt +
∑Jt

j=1 κ
2
t,j where κt,j is the size of the jth jumps and Jt is a number of jumps at

day t. The bipower variation (BV )

BVt =
π

2

M∑
m=2

|rt,m||rt,m−1|.

proposed by Barndorff-Nielsen and Shephard (2004) is a jump-robust and consistent estimator

of IV even in the presence of jumps, i.e. BVt → IVt as M → ∞. However, RV has a smaller

variance than BV if there are no jumps as it is shown in Theorem 3 of Barndorff-Nielsen and

Shephard (2006). For this reason the common practice (Huang and Tauchen (2005)) is to start

from testing for a jump component during each day t. Then, in case of a significantly large

positive distance between RV and BV indicating jumps, one should use BV ; otherwise the

application of RV is recommended.

Intraday returns are also useful for the purpose of estimating the unknown integrated quarticity

(IQ) required for computing variances of RV and BV measures. The realized quarticity (RQ)
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is given as (Andersen et al. (2014))

RQt =
M

3

M∑
m=1

r4t,m,

which is consistent estimator of IQ is case of no jumps, i.e. RQt → IQt as M →∞. However,

to address jumps, Barndorff-Nielsen and Shephard (2004) suggest to use the realized tri-power

(TP ) and quad-power (QP ) measures defined by

QPt = M · π
2

4
·
M∑
m=4

|rt,m−3||rt,m−2||rt,m−1||rt,m|, (2.2)

TPt = Mµ−34
3

M∑
m=3

|rt,m−2|
4
3 |rt,m−1|

4
3 |rt,m|

4
3 (2.3)

where µr = 2r/2Γ((r+ 1)/2)/Γ(1/2) is the rth absolute moment of a standard normal distribu-

tion and Γ(·) denotes the Gamma function so that µ4/3 = 0.8309.

The realized estimators are of immense practical importance for estimation and inference

concerning daily volatility. However, although both RV and BV estimators have appealing

stochastic properties as M → ∞, their practical implementation is usually based on (say) 10

min intraday returns which makes, for example, M = 36 intraday observations for a six hours

trading day. Thus, the number of intraday returns M used for construction of realized mea-

sures is comparatively small in applications. This happens due to highly persistent empirical

(stylized) facts which hinder the use of ultra high frequency data for construction of realized

estimators (McAleer and Medeiros (2008)). In particular, such empirical features as market

microstructure noise (MMN) should be accounted for. One possibility to overcome this problem

is to robustify the realized estimators or the sampling schemes as e.g. in Bandi and Russell

(2008) and the following literature. However, the common practice to overcome MMN-related

problems for construction of realized estimators remains to use not very frequent sampling, i.e.

intraday returns at 5-, 10-, or 15-min frequencies (Andersen et al. (2011)). For these reasons

finite M stochastic properties of realized measures are of great practical interest.

2.2 Discrete time model for intraday returns

In order to investigate the impact of IP on realized measures for the the commonly used number

M of intraday returns, we now consider a discrete time model where IP is specified explicitly.

There is a substantial scope of recent literature concerning discrete-time modeling of intraday

returns whereas the IP is assumed to be a multiplicative scaling component (Boudt et al.

(2011), Engle and Sokalska (2012), Bekierman and Gribisch (2016)). Following the approach

of Andersen and Bollerslev (1997), we assume the stochastic model for intraday return without
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jumps given as

rt,m = σt,m · ut,m, with ut,m
iid∼ N (0, 1),

σ2
t,m =

1

M
· s2t,m · γ2t,m,

where st,m > 0 is the deterministic IP volatility component, whereas γ2i,t > 0 is the stochastic

volatility. We presume that the stochastic volatility component remains constant over day t

(Andersen and Bollerslev (1998b), Hecq et al. (2012)), i.e. γt,m = σt for all m = 1, ...,M but

may change from one day to another. In Section 4 we relax this assumption in the Monte Carlo

simulation study by assuming that the intraday stochastic volatility follows a GARCH(1,1)

diffusion as e.g. in Goncalves and Meddahi (2009).

In line with the current literature (Hecq et al. (2012)), we assume that the IP remains constant

at different days, i.e. the time index is skipped with st,m = sm. Moreover, the periodic

component is standardized such it sums up to 1 over the day:

1

M

M∑
m=1

s2m = 1.

Of course, a special case sm = 1 for all m = 1, ...,M corresponds to no IP. Thus, in our model we

separate the intraday periodic component sm and interday stochastic component σt by writing

σ2
t,m =

1

M
· s2m · σ2

t . (2.4)

Our model without jumps in (2.4) and (2.4) is fairly simple compared to much more advanced

approaches (Bekierman and Gribisch (2016)). However, it is still widely used for modeling IP

(Boudt et al. (2011), Hecq et al. (2012), Engle and Sokalska (2012)). The measure of interest,

the IV for the day t, is given as

IVt = V ar(rt) =
M∑
m=1

V ar(rt,m) =
1

M

M∑
m=1

s2mσ
2
t = σ2

t ,

whereas the IQ can be written by (Andersen et al. (2014))

IQt = E(RQt) =
M

3

M∑
m=1

E(r4t,m) =
σ4
t

M

M∑
m=1

s4m. (2.5)

3 The impact of intraday periodicity on RV and BV

Now we provide our statements about the impact of IP on the stochastic properties of realized

measures for the model in (2.4) and (2.4). For convenience, we model IP by replacing the
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normalized function sm by

s2m =
g( m

M )

gM
, with gM =

1

M

M∑
m=1

g( m
M ), (3.1)

where g : [0, 1] 7→ R is a given function. The functional form of g(·) could be very flexible and is

subject to very general regularity conditions specified in the following propositions. Empirically,

it is usually of U-shape for different classes of risky assets due to strategic interaction of traders

during opening and closing trading hours (Admati and Pfleiderer (1988)).

3.1 Finite sample results

For the discrete model of intraday returns (2.4)-(2.4) and given the form of IP {g(m/M)}Mm=1,

we derive some stochastic properties of RV and BV estimators of daily IV in the following

proposition for finite M .

Proposition 1 Assume that the IP component is given by (3.1) for some function g : [0, 1] 7→ R.

(A) The estimator RVt for daily IV is unbiased so that E[RVt] = IVt. The estimator BVt is biased,

that is E[BVt] = σ2t (1−RM ) = IVt(1−RM ), where the factor RM is given by

RM =

(
g( 1

M ) +

M∑
m=2

g( m
M )1/2[g( m

M )1/2 − g(m−1
M )1/2]

)
/

M∑
m=1

g( m
M ).

If g(·) is continuously differentiable on interval [0, 1], we have as M →∞

M ·RM =

[
1

2

∫ 1
0 g
′(x)dx∫ 1

0 g(x)dx
+

g(0)∫ 1
0 g(x)dx

]
·
(
1 + o(1)

)
,

so that limM→∞RM = 0, i.e. BVt is an asymptotically unbiased estimator of IV .

(B) The (co)variances of RVt and BVt are given as

V ar(BVt) =
π2

4

σ4t
M2g2M

{(
1− 4

π2

) M∑
m=2

g( m
M )g(m−1

M ) +

(
4

π
− 8

π2

) M∑
m=3

g( m
M )1/2g(m−1

M )g(m−2
M )1/2

}
,

V ar(RVt) =
2σ4t

M2g2M

M∑
m=1

g2( m
M ),

Cov(RVt, BVt) =
σ4t

M2g2M

[
M∑
m=2

g(m−1
M )1/2g( m

M )3/2 +
M−1∑
m=1

g(m+1
M )1/2g( m

M )3/2

]
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Moroever, if M →∞ we have

V ar(BVt) =
σ4t
M

(π2
4
− 3 +

π

4

)
ξ (1 + o(1)), ,

V ar(RVt) =
2σ2t
M

ξ (1 + o(1)),

Cov(RVt, BVt) =
2σ4t
M

ξ (1 + o(1)).

where the scaling factor is given by

ξ =

∫ 1
0 g

2(x)dx

(
∫ 1
0 g(x)dx)2

(3.2)

Moreover, we have ξ ≥ 1 and ξ = 1 if and only if g(·) is almost everywhere constant (uniform IP).

Thus, in the case of IP, RV is an unbiased estimator for IV but BV has a finite sample bias

which should be corrected for finite M . Since the expectation of BV is given by

E[BVt] =
σ2
t

M · gM
·
M∑
m=2

g( m
M )1/2g(m−1

M )1/2 =
σ2
t

M
·
M∑
m=2

smsm−1,

we suggest the following bias-corrected measure B̃V t for finite M :

B̃V t =
π

2
·M ·

(
M∑
m=2

smsm−1

)−1
·
M∑
m=2

|rm| · |rm−1| = M

(
M∑
m=2

smsm−1

)−1
BVt.

Note that for an IP slowly changing over day time with sm ≈ sm−1 we get E[BVt] = IVt · (M −
1)/M , i.e. in this case BV remains an approximately unbiased estimator of IV .

In the following proposition we provide the expectation of realized TP and QP measures for

IQ under our model in (2.4) and (2.4) for the given IP g(·)

Proposition 2 Assume that IP is given by (3.1), then the expectations of RQt, QPt and TPt

are given as

E[RQt] =
σ4
t

M · g2M

M∑
m=4

g( m
M )2,

E[QPt] =
σ4
t

M · g2M

M∑
m=4

[g(m−3
M )g(m−2

M )g(m−1
M )g( m

M )]
1
2 ,

E[TPt] =
σ4
t

M · g2M

M∑
m=3

[g(m−2
M )g(m−1

M )g( m
M )]

2
3 .

Moreover, if g(·) is square integrable we have as M →∞

lim
M→∞

E[RQt] = E[TPt] = E[QPt] = σ4
t · ξ = IQt,
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where the scaling factor ξ comprising the impact of IP is given by (3.2).

Then we suggest the following finite M IP corrections for TP and QP :

R̃Qt = M
( M∑
m=1

s4m

)−1
RQt,

Q̃P t = M
( M∑
m=4

(smsm−1sm−2sm−3)
1/2
)−1

QPt,

T̃P t = M
( M∑
m=3

(smsm−1sm−2)
2/3
)−1

TPt.

3.2 Asymptotic results

The asymptotic distribution for realized measures given the IP is required for statistical in-

ference concerning IV as well as for conducting tests for daily jumps. We provide the corre-

sponding bivariate limit distribution for RVt and BVt as M → ∞ for our discrete time model

of intraday returns.

Theorem 1 Consider model (2.4) and (2.4) and assume that the IP component is given by

(3.1) with a continuously differentiable function g : [0, 1] 7→ R. Then, as M →∞,

M1/2 · IQ−1/2t ·

(
RVt − σ2

t

BVt − σ2
t

)
L−→ N

([
0

0

]
,

[
vrr vrq

vqr vqq

])
.

with the constants vrr = 2, vqr = vrq = 2 and vqq = π2/4 + π− 3. The quarticity IQ is given by

IQt = ξ · σ4
t and can be consistently estimated by either TPt or QPt.

Thus, a pronounced IP with ξ ≥ 1 causes more variability of IV estimators compared to the

case of no IP where ξ = 1. The asymptotic (1 − α)-confidence interval for daily IV based on

RV and RQ measures is given in case of no jumps as

CIt(1− α) = [RVt + zα/2 · v1/2rr ·RQ
1/2
t /M1/2, RVt − zα/2 · v1/2rr ·RQ

1/2
t /M1/2],

where zα/2 is the α/2-quantile of the standard normal distribution. The confidence intervals

based on BV , TP and QP are constructed in the same way.

The results in Proportion 2 and Theorem 1 are useful for making statistical inference concerning

the IV . If M is sufficiently large one could robustly estimate IQ by TP or QP as in (2.3) or

(2.2) without estimating ξ separately. However, as we show later in the Monte Carlo simulation,

the approximation TPt ≈ IQt as in Proposition 2 is only precise enough for a fairly large M .

Based on our Monte Carlo results, we strictly recommend to use the IP-corrected estimators

Q̃P t or T̃P t for the construction of confidence intervals.
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3.3 Test for jumps

In order to decide, whether RV or BV estimator should be used for measuring IV at day t, one

needs to make a test for jumps during this day. Here we consider tests for jumps during this

day (Barndorff-Nielsen and Shephard (2006), Huang and Tauchen (2005))1, which are based on

a “standardized” difference RVt − BVt. Several tests where a jump is detected if the distance

between RV and BV is statistically significant are investigated by Huang and Tauchen (2005).

For the sake of brevity we concentrate here on the test which uses the realized quad-power

variation (QP ), whereas tests using TP are constructed in a similar way.

A popular test is based on the statistic

Tt =
(RVt −BVt)/RVt(

π2/4+π−5
M

·max
{

1, QPt

BV 2
t

})1/2 , (3.3)

which we correct in order to address the impact of IP, that is

T̃t =
(RVt − B̃V t)/RVt(

π2/4+π−5
M

· ξ ·max

{
1, Q̃P t

B̃V
2

t

})1/2
, (3.4)

We have (even in case of jumps) BV 2
t → σ4

t , B̃V
2

t → σ4
t , QPt → ξσ4

t and Q̃P t → σ4
t as M →∞

and therefore a straightforward application of Theorem 1 and the Delta method shows that

under the null hypothesis of ‘no jumps’ the statistics Tt and T̃t have an asymptotic standard

normal distribution N (0, 1) as M → ∞ due to limM→∞max{QPt/BV 2
t } = max{1, ξ} = 1, by

Theorem 1.

Note that there is no difference between the corrected and original test if M is very large.

However, we show in Section 4 by means of a Monte Carlo study that for realistic sample sizes

the differences are substantial. Even in the case of a quite large M = 1152 we observe test size

distortions, see Figure 5. Thus, in order to correct the tests for the impact of IP one has to

estimate the finite sample correction factors which are based on estimators of g(·).

4 Simulation study

We illustrate our theoretical findings by means of a Monte Carlo simulation study. First we

introduce the functional form of the IP and discuss the choice of the parameters within the

model in (2.4)-(2.4) whereas the volatility component σ2
t assumed to be constant during the

day. The generated intraday returns are used for the construction of the realized measures.

We study the impact of IP on the obtained estimators in Section 4.2. Then we analyse the

performance of jump tests given the IP form for both constant as well as stochastic volatility

1But not tests for jumps in a selected intraperiod return, as in Lee and Mykland (2008), Boudt et al. (2011).
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Figure 1: Values of the scaling factor ξ defined in (3.2) for different amounts of curvature.

whereas the latter model is presented in Section 4.3.

4.1 Design of the study

We consider three different settings with M = 24, M = 48 and M = 1152, which corresponds

to sampling frequencies of 20 min, 10 min and 25 sec for an 8-hours trading day, respectively.

Note that in the case M = 1152 there exists an adverse impact of MMN, and we only consider

this case to illustrate the large sample properties of the estimators of IV in presence of IP. We

generate M intraday day returns for each of T = 104 days with rm,t ∼ N (0, σ2
t s

2
m/M). The

value σ2
t is fixed to σ2 = 1 which also implies that IV = σ2 = 1 as well as σ4 = 1. In line with

empirical evidence, we assume a quadratic convex U-shape for the intraday profile with

g(m/M) = c1 + c2(m−M/2)2, c1, c2 > 0.

The standardized IP values are obtained by s2m = g(m/M)/gM . Taking into account the

constraint
∑M

m=1 s
2
m = M , the parameter c2 determines the curvature and can be exactly

computed given a fixed value of c1, i.e.

c2 =
(1− c1) · 12

M2 + 2
.

We consider c1 ∈ {0.01, 0.11, . . . , 0.91, 1} whereas c1 = 1 corresponds to no IP (no curvature)

and for c1 → 0+ the curvature is most pronounced. The values of the scaling factor ξ defined in

(3.2) as a function of c1 are plotted in Figure 1 where we observe that ξ is substantially larger

than one even for moderate curvature with values of c1 close to one.

As in practice the IP is unknown, we estimate it in our study as well. Parametric and non-

parametric methods for estimating the IP have been proposed by Andersen and Bollerslev

(1997) and Taylor and Xu (1997), respectively. In order to construct estimators for ĝ(·) and

ŝ2(·), we apply the robust non-parameter weighted standard deviation (WSD) estimator of
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Boudt et al. (2011). By contrasting the finite sample variance of RV obtained from Proposition

1 as (2/M2) ·σ4 ·
∑
s4m and its asymptotic counterpart (2/M) ·σ4 ·ξ from Theorem 1, we suggest

to use the finite sample estimator

ξ̂ =
1

M
·
M∑
m=1

ŝ4m.

4.2 The impact of IP on realized measures

Here we investigate the IP impact on daily realized measures such as BV and RV for IV and

TP and QP for IQ. After generating intraday returns, we compute RVt, BVt, TPt QPt for

each day t = 1, ..., T . Next, we apply the usual finite sample corrections of these multipower

measures required as the number of sum elements is smaller than M , e.g. M/(M − 1) for BV ,

(M − 3)/M for QP etc. We denote these measures as ‘uncorrected’ in order to distinguish

them from IP-corrected measures denoted by B̃V t, etc. Then we average realized measures

over T = 104 days by computing RV = (1/T ) ·
∑T

t=1RVt etc. They are shown for different M

and c1 values in Figure 3 for RV and BV , and in Figure 4 for TP and QP . The uncorrected

measures are shown in the left panels, whereas IP-corrected on the right ones.

Consistent with our theoretical considerations, the mean of RV is not affected by IP. The

bias in BV due to IP is strongly pronounced for M = 24 and M = 48 for large and medium

curvature but almost disappears for large M = 1152. The bias-corrected mean of B̃V is close

to the true IV for all considered values of M , so the suggested correction appears to be useful

even for the relatively large sample size M = 1152.

The means of both uncorrected TP and QP as well as of corrected T̃P and Q̃P reported in

Figure 4 show quite distinct behavior for different values of M . We observe in the left panel

in Figure 4 that for M = 1152 the means of the uncorrected estimates are rather close to

the scaling factor ξ as it is shown in Proposition 2 (note that σ4 = 1). However, for small

values such as M = 24 and M = 48 the behaviour of these measures is completely different. In

particular, the mean of the uncorrected TP is even smaller than 1 in the case of large curvatures

and M = 24. In the right panel of Figure 4 we observe that the proposed IP-corrections work

well for all considered values of M . Summarizing, the IP has a substantial influence on BV as

well as on TP and QP measures. The proposed IP-corrections are necessary in order to obtain

valid statistical inference.

4.3 The impact of IP on jump tests

Next, we investigate the impact of IP on the size and power of the jump tests for both un-

corrected (3.3) and corrected (3.4) test statistics. Given the nominal size 5%, we compute the

actual size of the tests for different values of M and curvature ξ which is determined by c1.

In order to generate intraday return we use both, a constant intraday volatility model as

described earlier as well as a stochastic intraday volatility model. The latter is defined by
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assuming that rm,t ∼ N (0, s2m · γ2t,m/M). The stochastic volatility is governed by the process

∆γ2t,m = 0.035(0.636− γ2t,m) ∆t+ 0.144γ2t,mut,m
√

∆t,

with ∆t = 1/M and ut,m ∼ N (0, 1). The initial value is set to γ21,1 = 1. The model is a

discretized version of the GARCH (1,1) diffusion studied by Andersen and Bollerslev (1998a)

and Goncalves and Meddahi (2009). Note that the process for ∆γ2t,m is mean-reverting which

ensures boundedness.

The test size for different curvatures measured by c1 is shown in Figure 5 for both constant

and stochastic intraday volatility models. The results are very similar for both volatility spec-

ifications. In case of no curvature, the actual test size is equal to the nominal 5%. For sample

sizes M = 24 and M = 48, the uncorrected tests exceed their nominal level substantially for

c1 = 0.01 (large curvature) and approaches the nominal level (5%) slowly as the curvature

decreases. Test size distortion due to IP is still present for M = 1152 for pronounced IPs. On

the other hand the corrected tests proposed in this paper keep their nominal level for all c1 and

M values. These observations support the necessity to use the IP-corrected test statistic given

in (3.4).

The test of Kolmogorov-Smirnov is applied in order to check whether the empirical distribution

of test statistics Tt and T̃t for M = 1152 and M = 11520 deviates from the standard normal

distributionN (0, 1) under the null hypothesis ‘no jumps’. We consider different curvatures with

the largest ξ = 2.7635 to no curvature case ξ = 1 for both constant and stochastic volatility.

The corresponding p-values are provided in Table 1. In the case M = 11520 which is completely

unrealistic from the practical point of view the p-values are large for all scaling factors ξ so

that the null hypothesis of a standard normal distribution cannot be rejected. However, for

M = 1152, the p-values are rather close to zero even for quite moderate curvature in the case of

the uncorrected test statistic. We observe the p-values for the corrected test statistic are larger

compared to the uncorrected one, however, they are still quite close to zero for large curvature

in the casef M = 1152,. These findings point on the necessity of IP correction for the jump

test as well as that even M = 1152 is not enough to guarantee the correct test size for large

intraday curvatures.

For the power analysis, we model one additive jump per day of a fixed size κ which appears at

a random time point during the daily trading. We consider jumps of small (κ = 0.1 κ = 0.2),

medium (κ = 0.5) and large (κ = 1) size. We analyse three different amounts of curvature ξ

with the nominal size set to be 5%. The results of the power analysis for different jump sizes

and confidence levels are collected in Table 2 for constant intraday volatility (upper part) and

for stochastic intraday volatility (lower part).

For the case of constant volatility, as expected, the power of the corrected and uncorrected

test are identical in case of no curvature ξ = 1. Generally, the power of both tests is not

very high for small M and jumps of small size κ. For medium and large jumps and small

M , the uncorrected test has higher power, but this seemingly superiority can be explained
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constant intraday volatility stochastic intraday volatility

M = 1152 Tt T̃t
c1 = 0.01 ξ =2.7635 0.0000 0.0186
c1 = 0.11 ξ =2.6047 0.0000 0.0261
c1 = 0.21 ξ =2.4163 0.0000 0.0334
c1 = 0.31 ξ =2.2010 0.0000 0.0435
c1 = 0.41 ξ =1.9655 0.0000 0.0416
c1 = 0.51 ξ =1.7217 0.0001 0.0526
c1 = 0.61 ξ =1.4865 0.0016 0.0920
c1 = 0.71 ξ =1.2800 0.0213 0.1228
c1 = 0.81 ξ =1.1219 0.1596 0.0639
c1 = 0.91 ξ =1.0270 0.4789 0.0545
c1 = 1 ξ =1.0000 0.0562 0.0562

M = 11520 Tt T̃t
c1 = 0.01 ξ =2.7635 0.9305 0.9921
c1 = 0.11 ξ =2.6047 0.8893 0.9953
c1 = 0.21 ξ =2.4163 0.9101 0.9998
c1 = 0.31 ξ =2.2010 0.8684 0.9993
c1 = 0.41 ξ =1.9655 0.8867 0.9980
c1 = 0.51 ξ =1.7217 0.7480 0.9707
c1 = 0.61 ξ =1.4865 0.9112 0.9614
c1 = 0.71 ξ =1.2800 0.6836 0.9291
c1 = 0.81 ξ =1.1219 0.9831 0.9928
c1 = 0.91 ξ =1.0270 0.9991 0.9950
c1 = 1 ξ =1.0000 0.7738 0.7738

M = 1152 Tt T̃t
c1 = 0.01 ξ =2.7635 0.0000 0.0008
c1 = 0.11 ξ =2.6047 0.0000 0.0009
c1 = 0.21 ξ =2.4163 0.0000 0.0010
c1 = 0.31 ξ =2.2010 0.0000 0.0007
c1 = 0.41 ξ =1.9655 0.0000 0.0015
c1 = 0.51 ξ =1.7217 0.0000 0.0014
c1 = 0.61 ξ =1.4865 0.0000 0.0052
c1 = 0.71 ξ =1.2800 0.0000 0.0098
c1 = 0.81 ξ =1.1219 0.0012 0.0255
c1 = 0.91 ξ =1.0270 0.0349 0.1886
c1 = 1 ξ =1.0000 0.4190 0.4190

M = 11520 Tt T̃t
c1 = 0.01 ξ =2.7635 0.5691 0.2372
c1 = 0.11 ξ =2.6047 0.6927 0.3238
c1 = 0.21 ξ =2.4163 0.8463 0.5438
c1 = 0.31 ξ =2.2010 0.8714 0.6839
c1 = 0.41 ξ =1.9655 0.6717 0.6497
c1 = 0.51 ξ =1.7217 0.7383 0.5028
c1 = 0.61 ξ =1.4865 0.6774 0.5359
c1 = 0.71 ξ =1.2800 0.6472 0.4395
c1 = 0.81 ξ =1.1219 0.8830 0.8950
c1 = 0.91 ξ =1.0270 0.9259 0.9440
c1 = 1 ξ =1.0000 0.8701 0.8701

Table 1: Kolmogorov-Smirnov p-values for both uncorrected and corrected jump test statistics
T and T̃ which are standard normally distributed under H0.

by the fact the uncorrected tests exceed the nominal level substantially. Even for M = 1152

the power is low for both tests in the case of small jumps but approaches 1 as the jump size

increases. In the stochastic volatility the p-values are close but slightly higher to those in the

constant volatility case confirming that more intraday variability causes more frequent rejects

of the null hypothesis (Andersen et al. (2012)). This is in line with the findings of Huang

and Tauchen (2005), whose simulations show that time varying intraday volatility following a

simple stochastic volatility model does not have an adverse effect on the performance of the

jump tests.
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constant intraday volatility σ2
t

uncorrected test, high curvature (ξ = 2.7635)

M / κ 0.1 0.2 0.5 1
24 0.2245 0.2355 0.4200 0.8059
48 0.1805 0.2012 0.4492 0.8984

1152 0.0988 0.2540 0.9955 1.0000
uncorrected test, medium curvature (ξ = 1.9655)

M / κ 0.1 0.2 0.5 1
24 0.1719 0.1786 0.3412 0.7860
48 0.1494 0.1674 0.4334 0.9124

1152 0.1019 0.2950 0.9983 1.0000
uncorrected test, no curvature (ξ = 1)

M / κ 0.1 0.2 0.5 1
24 0.0517 0.0590 0.1899 0.6769
48 0.0526 0.0727 0.3264 0.9284

1152 0.0972 0.3930 1.0000 1.0000

corrected test, high curvature (ξ = 2.7635)

M / κ 0.1 0.2 0.5 1
24 0.0524 0.0536 0.1028 0.4328
48 0.0586 0.0622 0.1895 0.7584

1152 0.0722 0.2099 0.9948 1.0000
corrected test, medium curvature (ξ = 1.9655)

M / κ 0.1 0.2 0.5 1
24 0.0525 0.0536 0.1116 0.4999
48 0.0575 0.0619 0.2130 0.8291

1152 0.0809 0.2554 0.9982 1.0000
corrected test, no curvature (ξ = 1)

M / κ 0.1 0.2 0.5 1
24 0.0517 0.0590 0.1899 0.6769
48 0.0526 0.0727 0.3264 0.9284

1152 0.0972 0.3930 1.0000 1.0000

stochastic intraday volatility σ2
t,m

uncorrected test, high curvature (ξ = 2.7635)

M / κ 0.1 0.2 0.5 1
24 0.2273 0.2450 0.4223 0.8124
48 0.1719 0.2032 0.4513 0.9001

1152 0.1047 0.2608 0.9961 1.0000
uncorrected test, medium curvature (ξ = 1.9655)

M / κ 0.1 0.2 0.5 1
24 0.1731 0.1845 0.3420 0.7916
48 0.1409 0.1697 0.4337 0.9143

1152 0.1056 0.3014 0.9989 1.0000
uncorrected test, no curvature (ξ = 1)

M / κ 0.1 0.2 0.5 1
24 0.0552 0.0622 0.1944 0.6889
48 0.0511 0.0704 0.3302 0.9282

1152 0.0918 0.4021 1.0000 1.0000

corrected test, high curvature (ξ = 2.7635)

M / κ 0.1 0.2 0.5 1
24 0.0512 0.0587 0.1069 0.4288
48 0.0545 0.0641 0.1914 0.7639

1152 0.0779 0.2184 0.9960 1.0000
corrected test, medium curvature (ξ = 1.9655)

M / κ 0.1 0.2 0.5 1
24 0.0552 0.0622 0.1944 0.6889
48 0.0511 0.0704 0.3302 0.9282

1152 0.0918 0.4021 1.0000 1.0000
corrected test, no curvature (ξ = 1)

M / κ 0.1 0.2 0.5 1
24 0.0517 0.0590 0.1899 0.6769
48 0.0526 0.0727 0.3264 0.9284

1152 0.0972 0.3930 1.0000 1.0000

Table 2: Power of the jump test for different M and curvature for constant and stochastic
intraday volatility. The test size is set to be α = 0.05.
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5 Empirical study

5.1 Design of the study

In the empirical study, we consider intraday returns of the Dow Jones Industrial Average

Index with the aim to make statements concerning daily IV . Our data set consists of intraday

observations for the period from January 1996 to December 2010. In our application we consider

15 and 10 min intraday returns because of two reasons. First, it is done due to reported

difficulties in estimating integrated quarticity from higher frequency data (Andersen et al.

(2014), Bandi and Russell (2008)). Secondly, the conditional normality is more appropriate for

these frequencies of intraday data than for higher ones where the use of t-distribution could be

more suitable (Bekierman and Gribisch (2016)). As IP estimation requires a consistent number

of observations per day, we skip days with missing observations. The final sample consists of

3329 days with M = 25 (15-min) or M = 38 (10-min) observations per day. Due to a possible

bias caused by overnight effects, we exclude the first observation of the day.

The study is organized as follows: first, we estimate the intraday IP sm, curvature measure

ξ and the correction factors derived in Section 3. Then we present descriptive statistics for

the realized measures RV , BV , TP and QP . Finally, we conduct both the uncorrected and

IP-corrected jump test and analyze differences in their performance.

5.2 Estimation of intraday pattern and descriptive statistics

As in the simulation study, the IP is estimated from the data via the non-parametric WSD

estimator proposed by Boudt et al. (2011). We choose this estimator as it is robust to jumps

and does not require a-priori specification of the IP’s functional form. During the considered

period of time the IP form remains almost unchanged whereas for monitoring changes in IP

shapes one can apply methods from functional data analysis as in Kokoszka and Reimherr

(2013) and Gabrys et al. (2013).

The estimated IP components for 15 and 10 minute returns are illustrated in Figure 2. The

components are normalized such that they sum up to M . For both sampling frequencies, the

pattern has a convex U-shape as one could expected from both theory (Admati and Pfleiderer

(1988)) and previous empirical work (Andersen and Bollerslev (1997)). It is high during morning

and evening hours and low during the lunch break. In numerical terms, volatility is about twice

as high during the peak in the morning compared to the middle of the day. Both patterns look

very similar, although in case of the 10 minute returns there are more pronounced small activity

spikes which are smoothed out if sampling frequency is lower.

Given the estimated IP, we calculate correction factors for realized BV , QP and TP as well

as the estimate for ξ, all reported in Table 3. The estimated scaling factor ξ̂ is quite close

to 1 and numerically almost identical for both sampling frequencies. Note, however, that the

factor ξ corresponds to the asymptotic case M → ∞ whereas we have finite M here. Thus,
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ŝ
m

0.6

0.8

1

1.2

1.4

1.6

15 min ret

m

10 20 30

ŝ
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Figure 2: Intraday patterns of Dow Jones, full sample WSD estimation.

the estimated finite sample corrections for BV , TP , and QP in Table 3 are of more practical

importance. The correction factor for BV defined by the ratio BV/B̃V is small for both

sampling frequencies, indicating that BV is biased downwards 6% resp. 3% for 15 resp. 10 min

returns. The correction factors for TP and QP are much larger, e.g. TP/T̃P=1.2283 in case

of 15 min returns so that there is a downward bias of almost 20% in QP . Thus, even for IP

with low curvature there is a substantial downward bias in the estimators of IQ. For 10 min

returns, the bias reduces to QP/Q̃P = 1.1225 which is consistent with the simulation results

where we find that the finite sample IP-bias reduces with increase of M . The correction factors

for TP are lower in magnitude than those for QP but still far away from negligible.

Correction factor 15-min (M = 24) 10-min (M = 37)

BV/B̃V 1.0619 1.0375

TP/T̃P 1.1325 1.0610

QP/Q̃P 1.2283 1.1225

ξ̂ 1.0445 1.0452

Table 3: Empirically estimated IP correction factors, full sample.

Next, we provide descriptive statistics of realized estimators requires for jump tests as described

in Section 3.3. In Table 4 we report the full sample averages of both uncorrected and IP-

corrected measures. The average RV is stable across sampling frequencies, whereas the average

BV is biased downwards compared to RV even after the IP correction. The average corrected

TP is almost the same for the both 15 and 10 min sampling frequencies, so the finite M IP

correction seems to function properly here. Alternatively, QP shows more variability although

the corrected values are close to those of TP . Another important quantity is the relative jump
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component (RV −BV )/RV which, as expected, reduces substantially after correcting BV for IP

bias both for 15 and 10 min frequencies. Thus, it is not a surprise that the average uncorrected

test statistics TQP is much larger than of the corrected T̃QP .

Uncorrected estimators

average 15-min 10-min
RV × 10−3 0.0944 0.0971
BV × 10−3 0.0840 0.0899
TP × 10−6 0.0433 0.0465
QP × 10−6 0.0316 0.0442

(RV −BV )/RV 0.1100 0.0748
TQP 0.6727 0.6424

Corrected estimators

average 15-min 10-min
RV × 10−3 0.0944 0.0971

B̃V × 10−3 0.0892 0.0932

T̃P × 10−6 0.0490 0.0493

Q̃P × 10−6 0.0388 0.0497

(RV -B̃V )/RV 0.0549 0.0401

T̃QP 0.3260 0.3754

Table 4: Means of relevant quantities for both uncorrected and corrected estimators.

5.3 Performance of jump tests

Finally, we investigate the percentage of days identified as jump days both by the corrected

and uncorrected tests given in (3.3) and (3.4), respectively. We consider tests exploiting both

QP and TP measures of IV . The results are reported in Table 5 for different α-significance

levels.

Uncorrected test

based on QP
α, % 10 5 1 0.5 0.1

15-min 27.87 18.17 7.50 4.77 1.65
10-min 26.55 18.35 6.84 4.71 1.68

based on TP
α, % 10 5 1 0.5 0.1

15-min 27.40 17.72 7.21 4.48 1.53
10-min 26.31 17.72 6.49 4.39 1.50

Corrected test

based on Q̃P
α, % 10 5 1 0.5 0.1

15-min 19.07 12.31 4.62 2.94 0.90
10-min 20.54 13.24 4.71 3.24 1.02

based on T̃P
α, % 10 5 1 0.5 0.1

15-min 18.89 11.93 4.42 2.82 0.87
10-min 20.19 12.32 4.57 3.15 1.02

Table 5: Percentage of days with jumps detected for different significance levels α.

First notice that in all cases the percentage of detected jumps is higher than it is expected

under H0. There are only minor differences between the reject percentages for 15 and 10 min

frequencies, moreover, the results are quite similar for QP and TP measures. Compared to the

uncorrected test, the IP-corrected test detects a smaller percentage of jumps for all significance

levels. This is consistent with the findings in Table 4 that the relative jump component (RV −
BV )/RV is smaller in case of the corrected test. Moreover, it is in line with our results in

the simulation study in Section 4.3, where we show that ignoring IP correction for tests could
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lead to detection of spurious jumps. Another difference between uncorrected and IP-corrected

test results is that for the former more jumps are detected at 15 min frequency whereas for

the latter it is vice versa. As expected, there is not a single day where only the corrected test

detects a jump. This can be interpreted as the evidence that additional jumps detected by the

uncorrected test may indeed be spurious.

6 Summary

Based on intraday high frequency observations, realized volatility (RV ) and bipower variation

(BV ) are used as estimators of daily integrated volatility whereas tri-power (TP ) and quad-

power (QP ) variations serve as measures for integrated quarticity. In this paper we investigate

the impact of intraday periodicity (IP) on the finite sample properties of these realized measures.

For our analysis we assume the discrete time model for intraday returns on risky assets and

postulate a multiplicative deterministic IP component which is usually of U-shape empirically.

Although asymptotically the impact of IP is negligible, it is shown in this paper that finite

sample corrections of BV as well as of TP and QP measures are necessary to obtain valid

statistical inference. Moreover, we also demonstrate that tests for a jump component need a

finite sample IP-correction, because otherwise the commonly used tests exceed their nominal

level substantially. Our results are illustrated by means of a Monte Carlo simulation study

for both constant and stochastic intraday volatility models. Finally, we estimate IP correction

factors for the intraday returns of the Dow Jones Industrial Average Index.
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Appendix: proofs

Proof of Proposition 1. Note that the statement for RVt is obvious and consider only BVt =
π
2

∑M
m=2 |rt,m||rt,m−1|. We use the fact that E[|X|] =

√
2/π σ if X is a centered normal distributed

random variable with variance σ2, which implies

E[BVt] =
σ2t
M

M∑
m=2

smsm−1 = σ2t

∑M
m=2[g( m

M )g((m− 1)/M)]1/2∑M
m=1 g( m

M )
= σ2t (1−RM ),

where the term RM is given by

RM =
g( 1

M ) +
∑M

m=2 g( m
M )1/2(g( m

M )1/2 − g(m−1
M )1/2)∑M

m=1 g( m
M )

.

If g is continuously differentiable we obtain by the mean value theorem

RM =
1
M

∑M
m=2 g( m

M )1/2(g1/2)′(ξm) + g(1/M)∑M
m=2 g( m

M )
,

where ξm ∈
(
(m−1)/M,m/M

)
(m = 2, . . . ,M). Consequently, using the fact that (g1/2)′(x) = 1

2
g′(x)
g1/2(x)

and an approximation of the sums by a Riemann integral it follows that

M ·RM =
(1

2

∫ 1
0 g
′(x)dx∫ 1

0 g(x)dx
+

g(0)∫ 1
0 g(x)dx

)
· (1 + o(1)) ,

which proves the statement (A) of Proposition 1.

For the statement (B) in order to computeV (BVt) we first look at E(BVt)
2, setting rt,m = rm for the

sake of a simple notation. We have

E(BVt)
2 =

[σ2t
M

M∑
m=2

smsm−1

]2
=

σ4

M2

[ M∑
m=2

smsm−1

]2
=
π2

4
E
[ M∑
m1=2

M∑
m2=2

|rm1 ||rm1−1|]|rm2 ||rm2−1|
]
.

As the random variables rm are independent, the double sum contains three types of non-vanishing
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expectations

E(|r2m1
||r2m1−1|) =

σ4

M2
s2ms

2
m−1

E(|rm1 ||r2m1−1||rm1−2|) =

√
2σ2

πM
s2m1

σ2

M
s2m1−1

√
2σ2

πM2
s2m1−2 =

2σ4

πM2
sm1s

2
m1−1sm1−2

E(|rm1 ||rm1−1||rm2 ||rm2−1|) =
4σ4

π2M2
sm1sm1−1sm2sm2−1.

This yields

V (BVt) =
π2

4

σ4

M2

{ M∑
m1=2

s2ms
2
m−1 +

4

π

M∑
m1=3

sm1s
2
m1−1sm1−2

+
4

π2

M∑
m1=2

M∑
m2=2︸ ︷︷ ︸

|m1−m2|>1

sm1sm1−1sm2sm2−1

}
− σ4

M2

[ M∑
m=2

smsm−1

]2
.

Observing the definition of s2m in (3.1), we get

V (BVt) =
π2

4

σ4

M2g2M

{
(1− 4

π2
)

M∑
m1=2

g(m1

M )g(m1−1
M )

+
4

π

(
1− 2

π

) M∑
m1=3

{
g(m1

M )
}1/2

g(m1−1
M )

{
g(m1−2

M )
}1/2}

,

which proves the first assertion regarding the variance of BVt. The approximation finally follows

by interpreting the sum as approximations of a Riemann integral. The expressions V (RVt) and the

covariance Cov(RVt, BVt) are obtained by similar arguments, and the statement (B) of Proposition 1

follows.

Proof of Theorem 1. It follows from Proposition 2 that

V (BVt) =
σ4

M
(
π2

4
+ π − 3)ξ · (1 + o(1)),

V (RVt) = 2
σ4

M
ξ · (1 + o(1)),

Cov(RVt, BV ) = 2
σ4

M
ξ · (1 + o(1)).

where

ξ =

1∫
0

g2(x)dx
/( 1∫

0

g(x)dx
)2
≥ 1.

by the Cauchy Schwarz inequlality. Therefore Theorem 1 follows by a straightforward application of

a CLT for triangular arrays of m-dependent random variables [see Romano and Wolf (2000)] and the

Cramer Wold device.
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Proof of Proposition 2. Recall the definition of QPt in (2.2) and (3.1), then

E[QPt] = M
π2

4

{
M∑
m=4

E [|rm−3|]E [|rm−2|]E [|rm−1|]E [|rm|]

}
=
σ4

M

M∑
m=4

sm−4sm−2sm−1sm

=
σ4t
M

(gM )−2
M∑
m=4

[
g(m−3

M )g(m−2
M )g(m−1

M )g( m
M )
]1/2

=
σ4t
M
ξ (1 + o(1)),

where the last line follows again by a Riemann integral. Next consider TPt defined in (2.3) and

observe that E[|Z|4/3] = µ 4
3
σ4 = σ4

√
π

22/3Γ(76) if Z is a centered normal distributed random variable

with variance σ2. This yields observing (3.1)

E[TPt] = Mµ−34
3

M∑
m=3

{
E
[
|rm−2|

4
3

]
E
[
|rm−1|

4
3

]
E
[
|rm|

4
3

]}
=
σ4

M

M∑
m=3

s
4
3
m−2s

4
3
m−1s

4
3
m

=
σ4t
M

(gM )−2
M∑
m=3

[
g(m−2

M )g(m−1
M )g( m

M )
]2/3

=
σ4t
M
ξ (1 + o(1)).
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Figure 3: Bias in RV and BV measure, uncorrected (left) and corrected (right) as a function
of curvature (c1 = 1 means no curvature) for different numbers of intraday returns M .
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Figure 4: QP and TP , uncorrected (left) and corrected (right) are a function of curvature
(c1 = 1 means no curvature) for different numbers of intraday returns M . Note that for no IP
(c1 = 1) we have QP = TP = 1.
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Figure 5: Empirical test size for different M for constant (upper plots) and stochastic (lower
plots) volatility for nominal size 5%.
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