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Abstract—. Model-based optimization and control is 

becoming more and more important in the process industries and 

in general. Modelling almost always involves the estimation of 

parameters from available data. The parameter estimation 

problem is usually posed as the minimization of the prediction 

error or the maximization of the likelihood function. If the 

uncertainty of the measurements taken from a real process is 

assumed to be an interval around the measured values, a set of 

parameter vectors exists that is able to describe the behavior of 

the systems within these uncertainties. Guaranteed parameter 

estimation deals with the problem of determining all parameter 

vectors that are compatible with uncertain observations. The 

solution of guaranteed parameter estimation problems for 

nonlinear dynamic models is computationally very demanding. 

In this contribution we present a memetic algorithm that 

determines the sets of feasible model parameters efficiently. It is 

applied to the estimation of kinetic parameters of a model that 

describes a copolymerization reaction. In the memetic algorithm, 

the fitness evaluation is based on the distance of the feasible 

solutions to each other, thus the presented approach is not 

restricted to a specific type of models.  

Keywords—guaranteed parameter estimation, memetic 

algorithm, measurement uncertainty 

I. INTRODUCTION 

When developing dynamic models of plants in the process 
industries, two main steps have to be executed. The first step is 
to decide about the model structure, i.e. should a black box 
model, a rigorous model or any other type be chosen to 
describe the mechanisms of interest in the process. Also the 
complexity of the model or the phenomena that are taken into 
account have to be chosen. The second step is to parameterize 
the selected model structure. The choice of the model structure 
is made in an iterative process where models are formulated, 
parameters of the model are chosen or fitted to data, and the 
models are validated against observations. Usually not all 
model parameters are available from the literature or from 
independent experiments, so fitting a model to data by adapting 
model parameters is needed. One issue in dealing with 
experimental data is the uncertainty of the data which can be 
caused by several reasons, e.g. inaccuracy of the measurement 
device and noise (stochastic errors) in the measurements. 
Secondly structural plant-model mismatch has to be taken into 
account which is caused by effects that are not reflected in the 
model or wrong assumptions on the basic laws that are chosen. 
Usually, one set of parameters is estimated, using a least 

squares or maximum likelihood criterion and the uncertainties 
are reflected in confidence intervals of the parameters. These 
confidence intervals are hyper ellipsoids in the parameter space 
that are computed based on sensitivities of the experiments to 
the parameters, so they are valid for small errors around a 
nominal model. A more rigorous way of computing the 
uncertainties in model parameters is guaranteed parameter 
estimation [1]. The idea is to determine the complete sets of 
model parameters which are compatible with the observations 
within the known uncertainties of the measurements.  To 
determine these sets is computationally very demanding, as the 
problem is nonlinear and nonconvex. A lot of current research 
discusses how to compute approximations of the true sets of 
the possible parameters efficiently, e.g. [2] and [3]. In this 
contribution we present a new approach to determining the 
feasible parameter sets of given models for uncertain 
measurement data. The approach employs an evolutionary 
algorithm in combination with a local gradient-based 
optimization (memetic algorithm). The method is demonstrated 
for the example of a kinetic model of a complex 
polymerization process. The paper is organized as follows. In 
Section 2 the guaranteed parameter estimation problem is 
introduced, Section 3 deals with the memetic algorithm and 
introduces the optimization criterion. Section 4 explains the 
modelling of the copolymerization example and the 
measurements.  In section 5, the results of the guaranteed 
parameter estimation are presented, in Section 6 conclusions 
are drawn and an outlook on future work is given. 

II.  THE GUARANTEED PARAMETER ESTIMATION PROBLEM 

In this contribution we assume that a dynamic model in the 
form  

y(t) = f(u(τ), 0 ≤ τ ≤ t, x0, pf, pe)  (1) 

 
has been set up where y denotes the output vector of the model, 
u describes the input vector, x0 describes the initial state, pf 
represents the vector of fixed parameters, pe contains the 
parameters that have to be estimated and t denotes time. 
Usually the solution of a classical parameter estimation 
problem is a unique parameter set ��∗ that is calculated by the 
following optimization problem  ��∗ = min�	 ∑ (�
(��� − �(���������   (2a) 

s.t. y(t) = f(u(τ), 0 ≤ τ ≤ t,x0,pf,pe)  (2b) 

  



 

Figure 1: Possible model predictions including uncertainty in four 
measurements 

which depends on the difference of the model prediction y(ti) 
and the measurement ym(ti) at several points in time. As the 
measurements contain measurement errors and hence are 
uncertain, one has to consider the effect of the uncertainty on 
the estimation problem. Figure 1 illustrates the uncertainty of 
the measurements.  

Each measurement of the j-th measured variable at the i-th 
point in time is assumed to be a tuple consisting of the mean 
values ��
,�,�and stochastic errors within the intervals [- δj,i,  δj,i]. 

Fig. 1 shows the space of possible predictions of the models 
that are restricted at the points in time where the measurements 
have been taken and even at these points in time there are 
intervals of possible values through which the trajectories must 
pass. The extension of the measurement values to intervals 
leads to a modification of the optimization problem, as not a 
unique solution can to be found but every set of parameters that 
makes the trajectories pass through the measurement intervals 
is a solution. We define the set of parameters, for which the 
simulated trajectories pass through the measurement intervals, 
as P* which is subject to the following conditions 

P*={p� ∈[p�,p�]�	f u(τ�. 0 % τ % t, '(, �) , ��* ∈+�
,�(t�� , -�,�]} (3)  

pl and pu denote lower and upper values for each estimated 
parameter that may be given from prior knowledge (e.g. certain 
parameters cannot be negative). In the following sections we 
define a feasible solution as a parameter set that is an element 
of P*. In order to determine P* in the parameter space we 
propose a memetic algorithm which is presented in the 
following section. 

III. THE MEMETIC ALGORITHM  

The memetic algorithm used in this work is based on the 
evolutionary algorithm from [4] and based on the memetic 
algorithm proposed in [5] where the combination of an 
evolutionary algorithm with a conventional local optimization 
solver was proposed and applied to chemical engineering 
design problems. The underlying ideas are to use the 
evolutionary part of the algorithm to explore the parameter 
space, while the local optimization deals with the search in a 
specific region of the search space as it is more efficient in 
finding local minima with respect to real variables than an 
evolutionary algorithm. This strategy is efficient for highly 
non-convex optimization problems that potentially may have 
disconnected solution sets with local optima. The algorithm is 
also able to solve problems to compute feasible regions under 
constraints as e.g. finding product ranges for specific 
polymerization processes as presented in [6]. The search space 

in the case of the guaranteed parameter estimation is defined 
by a k-dimensional cube, which is bounded by pk,l and pk,u of 
the k parameters  that are  

recombination 

+

immigration 

µ → λ

mutation

µ + λ

selection

µ + λ → µ

stopping 

criterion?
result

initialization

µ

evaluation + 

local 

optimization

µ

evaluation

µ + λ 

local 

optimization

yes no

 

Figure 2: Scheme of the memetic algorithm [6] 

determined from the measurements. In this contribution we 
applied a [µ+λ,κ]- algorithm following the notation in [7]. An 
immigration of individuals during the recombination step of 
the algorithm is added to enable a better coverage of the search 
space also for higher numbers of generations. The structure of 
the memetic algorithm is depicted in Fig. 2.  

The first generation consists of µ individuals that are drawn 
assuming a uniform distribution within the search space. The 
evaluation after the initialization includes also a local 
optimization step and is used to determine if an individual is 
part of P*, to calculate the maximum distance from the 
feasibility boundaries and to maximize the volume of the 
feasible parameter space.  The first two objectives are 
evaluated by the distance db of an individual characterized by 
the parameter set pe towards the feasibility boundary. The 
distance function is defined as 

./(��� = max2 0, ��,3 − ��,3 , ��,3 − ��,3 , �
,�(t�� − -�,�* − 	f u, u(, p), p� , t�*,f u, u(, p), p� , t�* −  �
,�(t�� 4 -�,�* 5	 
for 6 ∀8 ∈ +1,… ,;
�<=�>�
�?@A∀B ∈ +1,… , ���CD	EF	GCHDIJCGCK�DA∀k	 ∈ +1, … ,N�<><
�@�>=A 	 (4) 

The distance towards the boundary equals 0 if the constraints 
defined by the upper and lower parameter limits or by the 
measurements are fulfilled, otherwise the value is positive and 
represents the maximum distance towards the feasibility 
boundary. In order to maximize the volume of the feasible 
parameter space a second evaluation function is introduced, 
which calculates the distance of the the feasible solutions 
towards all other feasible solutions found during the execution 
of the memetic algorithm. The second evaluation criterion is 

.�?N,O∗(��� = ∑ ∑ ��P,QR�P,	��S	QT
�UQVQW	X	VT3���S	QT<�� 	. (5) 

This function is used by the local optimization solver as the 
cost function in order to increase the volume of P*. By a 
different local optimization, the number of feasible individuals 
within the search space is increased. Depending on the 
feasibility of the individual the local search algorithm and the 



cost function differ. If the individual is infeasible (./(���	 > 0), 
(4) is used as the cost function value in a minimization by a 
call of the KNITRO solver taken from the TOMLAB toolbox 
Ver. 7.7. Otherwise the CONOPT solver, taken also from the 
TOMLAB suite, is used to maximize (5) under the condition 
that (4) is non-positive, which is used as a constraint. The 
reason for choosing two different solvers is the different 
performance of both solvers for the different optimization 
problems. The presented strategy of the local optimization is 
also applied during the repeated evaluation in the algorithm.  

During the recombination, 90% of the λ-µ individuals are 
generated by exchanging the information of two arbitrarily 
chosen individuals. The remaining 10% are generated by the 
initialization mechanism, which can be interpreted as an 
immigration of individuals to the current population. The 
following mutation is realized by applying a step size based 
method presented in [8]. As shown in (6)-(8) the mutation step 
size is calculated based on two numbers taken from a normal 
distribution with a mean value of 0 and a standard deviation of 
1. The first one, Ngen, is calculated globally for each generation, 
while the second one, Nk,n, differs for each of the n individuals 
in a generation and for each entry of the corresponding 
individual. Y
�@,?�ZP,[ = ;3,\ ∙ Y
�@,^�N ∙ C_`	[�`	[a_b[c�P,[ (6) de�? = (2;�<><
�@�>=�R(.g   (7) d�?N = (2(;�<><
�@�>=�(.g�R(.g  (8) 

 
This mechanism results in a step size which is decreasing with 
the number of generations, which narrows the search for higher 
numbers of generations. The step size of the mutation is 
restricted to the interval [Y
�@,�,3, Y
�@,�,3 ] in order to avoid a 
negligible mutation or a competition with the recombination 
mechanism, which is responsible for large steps in the search 
space. The direction of the mutation is oriented towards better 
areas of the search space by the selection step. If the upper and 
lower limits of the parameters are exceeded due to the 
recombination or the mutation, a mirroring at the 
corresponding boundary is performed to avoid the creation of a 
priori infeasible individuals. After the mutation step, an 
evaluation, including the local optimization strategy, of the 
existing µ+λ individuals is performed.  

The following selection step is performed based on a two stage 
tournament selection. In order to adjust the selection pressure, 
subgroups with a size of nsub individuals taken from the current 
generation are generated. The scheme is shown in Fig. 3. 
Applying this scheme, either the best infeasible individual or 
the best feasible individual is selected to form the following 
parent generation. During the selection individuals with a 
higher lifetime than κ are discarded. In order to avoid the loss 
of the information of feasible solutions, every feasible 
individual is stored in an archive, which is used in the 
calculation of (5). After the selection step, the current lifetime 
of each selected individual is increased by one. The stopping 
criterion used in the proposed algorithm is the number of 
generations investigated. The total number of individuals in the 
initial generation depends on the number of parameters to be 
estimated in order to achieve a reliable coverage of each axis in 
the k-dimensional search space. The reproduction rate was 

taken from [7]. The choice of the maximum lifetime is a trade-
off between the mortality rate of the individuals and the storage 
capacity of good individuals over a certain amount of 
generations in order to avoid both a search within the zone of 
attraction of a single local optimum and the unproductive 
investigation of specific areas within the search space. The 
parameters chosen for the investigation of the case study are 
shown in Tab. 1. During the execution of the algorithm the 
degrees of freedom and the measurements are scaled between 0 
and 1 according to equation (9) in order to avoid numerical 
issues and to simplify the representation of the results. The 
minimum and maximum values of the degrees of freedom are 
taken from the assumed boundaries. 

'=h<��N = ij[TkQl	cRiWb[iWQmRiWb[ 	  (9) 
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Figure 3: Scheme of the two-stage selection step [6] 

Table 1: Parameters used in the memetic algorithm [6] 

parameter description value 

µ 
number of individuals in the 

parental generation 

100 

Nparameters  nμ reproduction rate 7 

κ 
maximum lifetime of an 

individual 
5  

ninit 
newly initialized individuals 

during recombination 

n − μ10  

Y
�@,�,3 
lower step size limit during 

mutation 

I3,�100 

Y
�@,�,3 
upper step size limit during 

mutation 

I3,�10  

nsub 
size of subgroup during 

selection 

pg 

individuals 

ngen 
maximum number of 

evaluated generations 
30 

 

IV. COPOLYMERIZATION CASE STUDY 

In order to test the novel guaranteed parameter estimation 
technique a copolymerization process was chosen where six 
kinetic parameters must be estimated. The investigated process  

  



Table 2: Reaction scheme of a radical polymerization 

 

is a polymerization in a stirred tank where a reaction system 
that consists of two different monomers that react following a 
radical polymerization mechanism in the presence of an 
initiator. The model we chose to describe the reaction 
mechanism is based on the so-called terminal model that is 
commonly used to model radical polymerizations, see e.g. [9]. 
The reaction scheme is shown in Tab. 2. The initiator I 
decomposes into two radicals R0, which act as the starting 
point for the generation of active chains Pi,MX. The growth of 
the chains happens by the propagation steps where one 
monomer unit is added to the chain. Active chains become 
inactive ones, labeled D, when they lose their radical. The 
deactivation can be caused by different mechanisms by which 
two active chains are deactivated. In total 13 reactions are 
taking place in the process, resulting in 26 kinetic parameters, 
where an Arrhenius approach is used to describe the 
temperature dependency of the reaction rates. Previous 
investigations, e.g. in [6], showed that the number of reaction 
rates that are needed to describe a copolymerization system can 
be reduced to six. These six reaction rates are two reactivity 
ratios r1 and r2, that describe the ratios of homopolymerization 
and crosspropagation, the homopropagation rates kp11, kp22 and 
two general termination rates kt1 and kt2. Due to the statistical 
nature of the reaction mechanism, the resulting product cannot 
be described by single product quality. One of the accepted 
indicators for the product quality of a polymer product is the 
chain length distribution. Two indicators that describe the 
distribution are the corresponding number average (NA) and 
the weight average (WA). In order to reduce the computational 
overhead for the calculation of these indicators, the method of 
moments is applied. The kinetic model consists in total of 23 
ODEs describing the concentrations of the small molecules and 
the moments up to the 2

nd
 moment of the active and inactive 

chains. The set of ODEs can be found in [9]. 

The process considered in this contribution takes place in a 
stirred tank reactor that is operated in an isothermal mode of 
operation, which results in only six kinetic parameters that 
have to be estimated. We assume to have the data of three 
different (simulated) experiments available. The three 

experiments are described by different feeding strategies of the 
monomers. For all experiments a prefilling of the reactor with 
all components, a solvent, initiator and, depending on the 
chosen experiment, one or two monomers takes place. The data 
consists of one copolymerization experiment (feeding of two 
monomers) and one homopolymerization experiment for each 
monomer. The mean values of the measurements of the 
experiments were generated by using the same model as was 
used for the parameter estimation, which results from our 
assumption that the model structure represents the reality 
correctly. The measurement devices are assumed to be a 
discontinuously operated concentration measurement device 
for both monomers and a discontinuously operated device to 
determine the number average and weight average of the 
resulting chain length distribution. The uncertainty of the 
concentration measurement device is assumed to be 10% of the 
mean value, the uncertainty in the device measuring the chain 
length distribution is assumed to be 5% of the measured value. 
While the latter device is assumed to be available only in the 
homopolymerization experiments, the first one is available in 
all experiments. The reason for the limitation is to investigate 
the influence of available data on the quality of the guaranteed 
parameter estimation and to show the potential of the 
guaranteed parameter estimation to determine which 
information is required to arrive at a reasonably accurate 
model. Therefor we apply two different runs of the algorithm. 
The first one is performed using the information taken only 
from the copolymerization experiment, while in the second run 
the data of all three experiments is used. This will highlight the 
potential of guaranteed parameter estimation for the decision 
whether a model with the determined parameters is sufficiently 
accurate or whether further data is needed. The generated data 
for the guaranteed parameter estimation is shown in Figs. 4 to 
6. The concentration measurements for both monomers are 
taking place at the same time. During the copolymerization 
experiment the concentration measurement of monomer 1 is 
assumed to take place every 10 minutes for the first 200 min, 
while the measurement of the concentration of the second 
monomer is spread over the whole duration of the experiment. 
The duration of every experiment is fixed to 2000 min. The 
gap between each concentration measurement in the 
homopolymerization experiments is set to 50 minutes, similar 
to the time gap for the measurement of the chain length 
distribution. The amounts of prefilled components are assumed 
to be known. Thus the starting points are not shown in the 
concentration profiles (Figs. 4-6). The trajectories of the 
experiments are obtained by applying the nominal values 
shown in Tab. 3, which also contains the upper and lower 
limits used for scaling the parameters according to (9). 

 
Figure 4: Generated data of the copolymerization experiment; 20 data points 

for cM1 and 200 data points for cM2 

reaction step reaction equation 

initiator decomposition I 
ki(T)rst  2 R0* 

chain initiation 
R0* + M1 

ki,1(T)rsst  P1,M1* 

R0* + M2 
ki,2(T)rsst  P1,M2* 

propagation 

Pn,M1* + M1

kp11(T)rsst Pn+1,M1* 

Pn,M1* + M2

kp12(T)rsst Pn+1,M2* 

Pn,M2* + M1

kp21(T)rsst Pn+1,M1* 

Pn,M2* + M2

kp22(T)rsst Pn+1,M2* 

termination by 

combination 

Pn,M1* + Pm,M1*
ktc1(T)rsst Dn+m 

Pn,M1 or M2* + Pm,M2 or M1*
ktc12(T)rssst Dn+m 

Pn,M2* + Pm,M2*
ktc2(T)rsst Dn+m 

termination by 

disproportionation 

Pn,M1* + Pm,M1*
ktd1(T)rsst Dn+ Dm 

Pn,M1 or M2* + Pm,M2 or M1*
ktd12(T)rssst Dn+ Dm 

Pn,M2* + Pm,M2*
ktd2(T)rsst Dn	+ Dm 



 

Figure 5: Generated data of the homopolymerization experiment of M1; 40 
data points from the concentration measurement and from the chain length 

distribution 

 
Figure 6: Generated data of the homopolymerization experiment of M2; 40 
data points from the concentration measurement and from the chain length 

distribution 

Table 3: Parameters limits and values used for generating the experimental 
data and the scaling according to (9) in Figs. 7-11 

parameter lower limit nominal value upper limit 

r1 10-4 10-4 104 

r2 10-4 10-2 104 

kp11 104 104.23 108 

kp22 104 104.31 108 

kt1 108 1012 1015 

kt2 108 1012.30 1015 

V. RESULTS OF THE GUARANTEED PARAMETER ESTIMATION 

The information shown in Fig. 4 is used in the first run of 
the algorithm. As information about the chain length 
distribution is missing, the experiment is used as an example 
for insufficient experimental data that is used for parameter 
estimation. The additional information taken from the 
homopolymerization experiments (Fig. 5-6) shows the 
significant effect on the results of the guaranteed parameter 
estimation if this information is also considered in the 
algorithm. The results of the memetic algorithm for the first 
experiment are shown in Fig. 7 and Fig. 8. As the information 
content for determining the propagation parameter space 
consisting of kp11, kp22, r1 and r2 is limited to the concentration 
profiles that are obtained from a copolymerization experiment, 
it is not possible to determine the three ratios. Besides the 
uncertainty of the measurements, the reason is that two 
different effects are causing the decrease of the corresponding 
monomer concentration, namely the homopropagation (kp11, 
kp22) and the crosspropagation (kp12, kp21). There is no 
possibility to distinguish the two effects and therefore one 
degree of freedom can be chosen freely, when trying to 
determine the propagation parameters. In Fig. 8 the resulting 
parameter space of the termination mechanism is shown. The 
termination rates, kt1 and kt2, have no effect on the decrease of 
the concentration of both monomers and therefore the 
algorithm cannot determine a suitable set of kt1 and kt2, which 
is reflected by the resulting ranges of both parameters. The 
analysis of the resulting ranges enables the decision on suitable 

experiments to determine a more precise parameter set for the 
given reaction system. This knowledge cannot be generated 
when classical parameter estimation is performed. Every 
trajectory of a model with parameters from the feasible set of 
parameters might be a solution of the classical parameter 
estimation problem for a particular set of measurements. In our 
case study the missing information can be generated by 
performing two additional homopolymerization experiments  

 

Figure 7: Set of propagation parameters calculated from the information 
obtained by the copolymerization experiment; true scaled values r1=0,              

r2 = 0.25, kp11/kp22=0.85  

  

Figure 8: Set of termination parameters calculated from the information 
obtained by the copolymerization experiment; true scaled values: kt1=0.57,       

kt2 =0.61 

  

Figure 9: Set of propagation parameters calculated from the information 
obtained by all experiments; true scaled values r1=0, r2 = 0.25, kp11/kp22=0.85  

 

Figure 10: Set of termination parameters calculated from the information 
obtained by all experiments; true scaled values: kt1=0.57, kt2 =0.61 



and adding the information about the chain length distribution 
to the parameter estimation. Due to the inclusion of the 
concentration information of the homopolymerization 
experiments, the set of possible propagation parameters 
becomes much smaller, as these experiments provide the 
information about kp11 and kp22. The concentration 
measurements taken from the copolymerization experiment 
provide the information for determining both, the homo- and 
crosspropagation parameters. Additionally, the information 
about the chain length distributions enables the estimation of a 
smaller feasible set for the termination rates kt1 and kt2, as these 
parameters influence the chain length distribution but not the 
concentration profiles. The resulting parameter sets are shown 
in Fig. 9 and in Fig. 10. 

The total computation time for the presented memetic 
algorithm, which is used to determine the 6 kinetic parameters, 
is 97 hours when applying a local optimization to each of the 
investigated 144,000 individuals. The computation time of the 
algorithm without applying the local optimization procedure is 
6 hours. This shows that the main effort is spent for the local 
optimization of the individuals found during the memetic 
algorithm, while the time spent for the evaluation of the fitness 
function is negligible. The shown overall computation time of 
the memetic algorithm represents the time needed to achieve a 
fine resolution of the boundary of the feasible parameter space 
for the applied set of parameters (Tab. 1). The feasible areas 
shown in Figs. 7-10 are generated by the local optimization of 
all individuals. The resulting trade-off between the 
computation time and the resolution of the boundary can be 
adapted by the number of individuals to which the local 
optimization is applied. In Fig. 11 the difference in the 
resolution of the boundary of the feasible parameter set of kt1 
and kt2 is shown in detail for the same situation as in Fig. 10. 
The boundary is created by a linear interpolation of 
neighboring solutions. The number of solutions at the boundary 
and the values of the parameters kt1 and kt2 differ as the local 
optimization produces solutions on the boundary of the feasible 
set whereas without it more solutions lie inside the set.   

 

Figure 11: Resolution of the boundary of the set of scaled termination 
parameters calculated from the information obtained by all experiments; grey: 

boundary obtained from the memetic algorithm; black: boundary obtained 
without local optimization   

VI. CONCLUSION 

The presented results show the capability of the memetic 
algorithm that employs a space exploring fitness evaluation to 
determine the feasible parameter sets for on a given set of 
noisy measurements in guaranteed parameter estimation. The 
boundaries of the feasible parameter sets result from the 
feasible solutions that are found. The size of the resulting 
parameter sets indicates whether the experimental data is 
sufficient or more or other experiments are needed. In the 
approach, the models are used as black boxes that predict the 
measured values, so no constraints on the type of models are 
present (except for the computation time needed). In further 
investigations, the presented algorithm will be tested with 
hybrid models, e.g. continuous polymerization processes with 
side injections, in order to show the capability to handle 
different types of models.  
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