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Abstract: 
Thousands of age at death inscriptions from Roman epitaphs are statistically analyzed. 
The Gompertz distribution is used to estimate survivor functions. The smoothed 
distributions are classified according to the estimation results. Similarities and differences 
can be detected more easily. Parameters such as mean, mode, skewness, and kurtosis are 
calculated. Cluster analysis provides three typical distributions. The analysis of the force 
of mortality function of the three clusters yields that the epigraphic sample is not 
representative of the mortality in the Roman Empire. However, the data is not worthless. 
It can be used to show and to explain the differences in the burial and commemorative 
processes. Finally, the bias due to a growing population is discussed. A simple formula is 
proposed for estimating the growth rate. The paper also discusses some special parameter 
constellations of the Gompertz distribution, since in this special application it cannot be 
approximated by the Gumbel distribution (as is often done in life table analysis). 
 
Keywords: Gompertz distribution, data analysis, cluster analysis, mortality, life table, 
Roman demography 
 

1.  Introduction 

Thousands of inscriptions from epitaphs of the Roman Empire that record the age at 
death of the individual have been collected (e.g., Beloch 1886, Harkness 1896, 
Macdonnell 1913, Russell 1958, Szilágyi 1961, 1962, 1963). The life expectancy at age x 
is calculated as the ratio of the sum of total years lived to the total number of individuals 
of that age. It has long been thought that this number reflects the life expectancy of 
Roman men and women.  However, since Durand’s (1959) and Hopkins’s (1966) work it 
has been known that these epigraphic samples are not representative of the mortality in 
the Roman Empire, even if one assumes a stationary population. Infant mortality is 
always underestimated, and old age mortality is generally underestimated. Epitaphs of 
elderly deceased individuals are sometimes evidence of a remarkable longevity. Even in 
the middle age groups of, say, 10 to 60 years, the tombstone inscriptions do not, in 
general, give an accurate record of mortality (Parkin 1992, p 7). These findings are 
clearly shown in, for example, Figure 1, where force of mortality functions of 6,008 
Roman males and 3,972 Roman females have been calculated. The force of mortality 
function shows, approximately, the number of individuals dying at age x as a percentage 
of those surviving to that age. These functions are compared with the force of mortality 
function of the Suessmilch life table, which represents the mortality of the eighteenth 
century (Suessmilch 1775). Johann Peter Suessmilch (1707-1767), one of the founding 
fathers of demography in Germany, published a life table with a life expectation at birth 
of about 29 years. 
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Figure 1: Force of mortality functions (Rome) 

 
Other sources of error and bias are mentioned by Clauss (1973), who offers the most 
detailed demonstration, or Parkin (1992, pp. 6-18): age rounding by multiples of 5,1 a 
gender bias, as men are more likely than women to have an epitaph with an age 
inscription (which is reflected by a high sex ratio (see Figure 2)), and a serious class bias 
(not all classes are represented, because inscribed tombstones were not cheap; Burn 
(1953) states that tombstones with ages were found primarily in the middle-class and 
lower middle-class urban population, whereas members of the upper classes generally did 
not give ages on tombstones (Burn, p. 7)). Figure 3 shows as an example the distributions 
of age at death in the castrum Mogontiacum, a military camp, precursor to the German 
city of Mainz. The shape of the distribution is very different from the shape of the 
distribution in Rome (see Figure 2), because of the high proportion of soldiers in the age 
information (88%, see Clauss 1973, p. 399). In sum, we cannot use the data to calculate 
demographic parameters, such as life expectancy, of the Roman population. Nevertheless, 
the data are not worthless. They can be used to show and to explain the differences in the 
burial and commemorative processes. For example, the considerable preponderance of 
boys points to the high value attached to male offspring in a male-oriented society (Laes 
2007, p. 33). “The ages reflect something of the structure of these societies, and attitudes 
towards age and the life course. They reflect the way in which different age groups are 
judged differently, and the interplay between age and gender” (see Revell, 2005, p. 46). 
In this paper Roman funerary data of the Italian cities and European provinces of the 
Roman Empire is re-examined. Age at death distributions are analyzed and categorized.  
 
 

                                                 
1 The phenomenon of a preference for ages ending in 0 and 5 was extensively analyzed by 
Duncan-Jones (1990, 79-92). However, age rounding is a minor problem. Smoothing the 
distributions with a Gompertz distribution (see Appendix 1) reduces the biases. 
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Figure 2: Recorded and smoothed age at death distributions (male and female), survivor 

functions lx, and recorded and smoothed age specific sex ratios (Rome) 
 

 
Figure 3: Recorded and smoothed age at death distribution (male), sex ratio is 209:33 

(Mogontiacum) 
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2. Data and Distributions 

The inscriptions number 24,854 (15,173 males, 9,681 females), and were collected by the 
Hungarian scholar Szilágyi (1961, 1962, 1963). The data comes from 48 cities and 
provinces of the European part of the Roman Empire between the first and the seventh 
centuries (see Table A2 in Appendix 2). Minor addition errors in Szilágyi’s data were 
corrected. The age at death distributions were smoothed, because the dominance of ages 
that are multiples of 5 hides the essential shape of the distributions. The smoothing 
function was the Gompertz distribution (see Appendix 1), which was fitted to the 
corresponding survivor functions by non-linear least squares. As a result, we can 
represent the age at death distributions by a two-parameter function with A and k. From 
Figure 4 it can be seen that the survivor functions can be well represented by survivor 
functions of the Gompertz distribution. The smoothed age at death distributions shown in 
Figure 5 seem, at first glance, very different. We have distributions that are skewed to the 
left, symmetrical distributions, and distributions that are skewed to the right. The mean 
ranges between 21 and 47 (see Table A3). The mean age and the other parameters have 
been calculated from the fitted Gompertz distribution by numerical integration. The 
statistics presumably represent normal or average conditions of mortality during a period 
of several centuries. The last three columns of Table A2 represent the proportion of 
individuals, l(25), who are at least 25 years old. The difference F(25)=1-l(25) is the 
proportion of inscriptions for those whom we may conventionally consider young, as 
Laes (2007) did. He concluded in his investigation that this proportion is about 61% (see 
Laes, 2007, p. 28). 
 

Age

l(
x)

0.
0

0.
6

Apulum

0 50

0.
0

0.
6

Aquileia

0.
0

0.
6

Aquincum

0 50

0.
0

0.
6

Arelate

0.
0

0.
6

Beneventum

0 50

0.
0

0.
6

Brigetio

0.
0

0.
6

Brundisium

0.
0

0.
6

Burdigala

0.
0

0.
6

Capua

0.
0

0.
6

Caralis/Sa

0.
0

0.
6

Carnuntum

0.
0

0.
6

Catina

0.
0

0.
6

Celeia

0.
0

0.
6

Colonia

0.
0

0.
6

Emerita

0.
0

0.
6

Emona

0.
0

0.
6

Fl. Solva

0.
0

0.
6

Gades

0.
0

0.
6

Intercisa

0.
0

0.
6

Lugdunum

0.
0

0.
6

Mediolanum

0.
0

0.
6

Misenum

0.
0

0.
6

Mogontiacu

0.
0

0.
6

Olisippo

0.
0

0.
6

Ostia

0.
0

0.
6

ProvBrit

0.
0

0.
6

ProvDac

0.
0

0.
6

ProvDal

0.
0

0.
6

ProvGal

0.
0

0.
6

ProvGer

0.
0

0.
6

ProvHisp

0.
0

0.
6

ProvItal

0.
0

0.
6

ProvMoes

0.
0

0.
6

ProvNor

0.
0

0.
6

ProvPan

0.
0

0.
6

ProvRaet

0.
0

0.
6

ProvSiz

0.
0

0.
6

Puteoli

0.
0

0.
6

Ravenna

0.
0

0.
6

Rom

0.
0

0.
6

Saguntum

0.
0

0.
6

Salonae

0.
0

0.
6

0 50

Sarmizeget

0.
0

0.
6

Tarquinii

0.
0

0.
6

0 50

Treveri

0.
0

0.
6

Vienna

0.
0

0.
6

0 50

Viminacium

0.
0

0.
6

Virunum

lx
lxd

 
Figure 4: Survivor functions (recorded=lx, fitted=lxd) 

(Fl. Solva: Flavia Solva;  ProvBrit:  Province Britannia; Dac: Dacia; Ger: Germania; Gal: Gallia; Hisp: 
Hispania; Ital: Italia; Moes: Moesia, Nor: Noricum; Pan: Pannonia; Raet: Raetia; Siz: Sizilia) 
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Figure 5: Fitted age at death distributions 

(Fl. Solva: Flavia Solva;  ProvBrit:  Province Britannia; Dac: Dacia; Ger: Germania; Gal: Gallia; Hisp: 
Hispania; Ital: Italia; Moes: Moesia, Nor: Noricum; Pan: Pannonia; Raet: Raetia; Siz: Sizilia) 

 
The shapes of the distributions are determined by the parameters A and k of the 
Gompertz distribution, which are shown as a scatter plot in Figure 6. We can identify 
groups or clusters of similar parameters. The points in the lower right corner are 
characterized by high values of k and low values of A, whereas the points in the upper 
left corner show low k values and high A values. The typical A-k constellation of a real 
life table has very low A values, and k values ranging between 0.05 and 0.13. The 
parameters of the Suessmilch life table, for example, are A=0.00081 and k=0.065, 
whereas the parameters of the German life table (female) 2007-2009 are A=0.00000199 
and k=0.125. The graph is divided into three segments by the two straight lines A=k and 

1
A k

6.4339
  (skew=0). Constellations in the upper left corner form distributions that are 

strongly skewed to the right (in fact the Gompertz distribution tends to the exponential 
distribution if k tends to zero, and we can approximate the Gompertz distribution by the 
simpler exponential distribution, see Appendix 1), whereas constellations in the lower 
right corner form distributions that are skewed to the left. Measure of skewness (and 
kurtosis) are given in Table A3. Distributions with constellations of A and k that are near 
the line A=k can be approximated by the LHR-distribution (linear hazard rate, see 

Appendix 1). Since the median of the Gompertz distribution is 
0.5

A k ln 2
ln

A
x

k

 



 
 
  , we 

can solve this equation for A and obtain 
 0.5

ln 2
A k

exp k x 1
 

 
. If we set 
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0.5
x 20, 25, 30, 40 , we obtain the so called iso-median-lines, which represent points of 

equal median values, and are shown in Figure 6.2 A distribution that is skewed to the 
right (skew>0) typically has a median smaller than its mean.  

 
Figure 6: Parameters A and k of the theoretical distributions, and iso-median-lines 

23: Mogontiacum, 24: Olisoppo, 22: Misenum, 11: Carnuntum, 30: Province Germania, 
2: Aquileia, 45: Treveri, 9: Capua, 40: Rome, 5: Beneventum, 46: Vienna 

48: Virunum, 36 Province Raetia 
 
 

3. Cluster Analysis 

In the next step, a cluster analysis is applied in order to group the different smoothed 
distributions into similar categories. We perform k-means clustering on a data matrix that 
contains each of the 35 values of A and k and the proportion of military epitaphs pmil.

3 
The method requires one to specify the number of clusters to be extracted. After some 
trials with different numbers, we concluded that the number of clusters should be 3. The 
results are seen in Figure 7, Table 1 and Table A4. Averages are not weighted. Because 
of the high distribution of males, only small differences between the set of the graphs dx 
and dxm at the top of Figure 7 can be seen. We therefore restrict our explanation to the 
male (dxm) and female (dxw) age distributions (but see Fig A1 in the Appendix 2). We 
get a distribution with a very high proportion of military persons (n=3), a distribution 
with a medium proportion of military persons (n=7), and a distribution with mostly 
civilians (n=25 or n=24). Since the k-value for the females of Olisippo was regarded as 
an outlier, it was omitted, and the cluster analysis was carried out with only 24 cities.  

                                                 
2 Iso-mean-lines are not drawn because there is no simple relationship between A and k. 
3 The proportion of military epitaphs was given for 35 cities (see Clauss 1973, pp. 415-416). In the 
cluster analysis, Olisippo was removed for the female population, because of its outlier value of k. 
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Figure 7: Age at death distributions in different clusters (numbers represent cluster size, 

dx=all, dxm=male, dxw=female) 
 
In essence, we can identify three distributions for the males. It should be clear that the 
theoretical distributions cannot be used for very low ages (see Figure 2). In the “military” 
cluster with n=3 are the military camps from different regions, Carnuntum (Pannonia), 
Misenum (Italia), and Mogontiacum (Germania). The mode in the cluster is nearly 40 
years. The distribution is slightly skewed to the left, which means that the proportion of 
young ages is small. Indeed, l(25)=0.771, which means that only 32.9% of the 
inscriptions with an age indication can be considered as those of young people. The next 
largest cluster (n=7) contains six cities from the Danube provinces of Dacia, Pannonia, 
and Moesia, and Ravenna in Italy (see Table A4). In these cities, the proportion of 
civilians and non-civilians is equal. The male age distribution is similar to that of the 
previous “military” cluster, but the variance is much larger. The civilian population 
means that the proportion of tombstones with young and old age inscriptions is higher. In 
the “civilian male” cluster are 25 cities (see Table A4) with a very low proportion of 
military inscriptions. The distribution is strongly skewed to the right, with a heavy right 
tail (mode=3.1, mean=29). The ratio of young inscriptions is 49%. This is less than the 
percentage of 61.1% which is reported in Laes (2007, p. 28). The difference can be 
explained by the selected cities. On the other hand, the percentage in Rome for the male 
population is 60%, and in Ostia it is 72.5% (see Table A2). Remember that in our cluster 
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analysis the results are not weighted by the number of inscriptions. The shape can be 
partly explained by two factors (see Hopkins 1966, p. 263). Sons were commemorated by 
their parents earlier and until much greater ages than daughters, because of son 
preferences, and since husbands were in general older than wives and were survived by 
them, wives could commemorate husbands at much later ages than husbands 
commemorated wives. The “civilian” cluster for females (n=24), in contrast, is unimodal 
with a mode of 18 years. The proportion of very old and very young ages is smaller than 
in the “civilian” male cluster, for the reasons that have been just mentioned. The modal 
value could reflect a higher mortality during the reproductive period. But as Hopkins 
(1966, p. 262) points out, a young wife can be commemorated by her husband and by 
their parents. “Wives who died young had a greater chance of being commemorated.” 
The pattern of female mortality is more or less independent of the proportion of military 
inscriptions in Carnuntum, Misenum, and Mogontiacum, as can be seen in Figure 7. The 
age distributions for females (n=7) in the six cities in the Danube provinces and Ravenna, 
where proportion of military inscriptions is 50%, exhibit a rather different pattern. The 
distribution is strongly skewed to the right, with a modal value of zero. Daughters are 
relatively more likely to be commemorated than sons. Is this shape a result of the small 
sample size, which is only 197, or is it an indication of higher infant mortality of girls in 
these provinces, or does the low sex ratio reflect an increased social importance of 
daughters in these cities? In contrast to other cities, the sex ratio in the age ranges 0-10 
and 0-20 is less than 1. In Aquincum, for example, the sex ratio in the age group 0-10 (0-
20) is only 0.88 (0.9), whereas in Rome it is 1.58 (1.36). 
 
Table 1: Parameters of the different clusters 

all  A k Mean Mode StD Skew Kurt n l25 pmil 

 1 0.0044 0.0727 33.4 38.7 13.7 -0.30 -0.52 3 0.732 0.853 
 2 0.0129 0.0297 33.7 28.0 20.4 0.38 -0.56 7 0.62 0.505 
 3 0.0194 0.0261 27.8 11.5 18.6 0.60 -0.26 25 0.505 0.064 

male  
 1 0.0032 0.0812 34.5 39.8 13.0 -0.42 -0.36 3 0.771 0.853 
 2 0.0092 0.0360 36.8 38.0 20.1 0.18 -0.70 7 0.689 0.505 
 3 0.0201 0.0215 29.0 3.1 20.2 0.69 -0.08 25 0.514 0.064 

female  
 1 0.0165 0.0384 26.2 22.0 15.8 0.37 -0.56 3 0.5 0.853 
 2 0.0281 0.0233 22.5 0 16.3 0.80 0.16 7 0.385 0.505 
 3 0.0181 0.0331 26.4 18.3 16.7 0.47 -0.45 24 0.495 0.064 

pmil=proportion of military epitaphs among all epitaphs 

Mode 

A
ln

k
m

k
 

 
 
   if m>0, else m=0; StD=Standard deviation, Kurt=Kurtosis. Mean, standard 

deviation, skewness and kurtosis have been calculated by numerical integration. 
 
 
Figure 8 exhibits the force of mortality functions in the three clusters for the male and 
female populations. The functions of the epitaph populations are compared with the force 
of mortality function of the Suessmilch life table from the eighteenth century. 
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Figure 8: Force of mortality functions in different clusters (n=cluster size) 

 
 
Similar results for the male population (n=24) were obtained by Hopkins (1966, p. 256). 
There is an underestimation of mortality at young ages and very old ages, and an 
overestimation in the middle age classes. Hopkins uses as a reference UN model life 
tables with a life expectancy of 20 and 30 years. Since Hopkins’ functions are not 
sufficiently smoothed, the comparison between the different functions is more difficult. 
However, in contrast to Hopkins, the force of mortality in the upper age classes of the 
female epitaph population in our investigation is much higher than in real or model life 
tables with a high mortality (Hopkins 1966, p. 257). The pattern of mortality from the age 
of 40 for military personnel and civilians in Hopkins (1966, p. 258) is similar to our 
results: there is a steep increase for military persons and a shallow increase for mostly 
civilian persons from age 40. 
We can summarize our findings and, of course, those of Hopkins with a concise quote 
from Scheidel (2007 p. 8): “The resultant statistics merely reveal the average death [or 
more general the mortality pattern] of those individuals who happened to be 
commemorated in stone: far from generating demographically representative samples of 
actual populations, commemorative practices were shaped by a variety of factors such as 
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geographical provenance, class, religion, language, gender and, most crucially, age. 
Because of these manifold distortions, age distributions derived from epigraphic samples 
do not normally match any demographically creditable pattern, except very occasionally 
by chance.” 
 

4. The influence of the population growth rate 

Finally, we will analyze the influence of the population growth rate on the estimates (see 
also Durand 1959, pp. 370 ff.). In general, a stationary and closed population is assumed: 
the numbers of yearly births and deaths are equal and constant, and the age structure is 
not affected by migration (see, e.g. Pflaumer 2015a). Willcox (1938) has already 
remarked that the large numbers of deaths in early adulthood in some areas, like Rome, 
are not only the result of premature mortality but also the result of high migration of 
young persons to the capital city. In demography it has long been known that the age 
distribution of deaths depends on the population growth rate (see, e.g., Keyfitz 1977). 
The mean is a decreasing function of the growth rate. The proportion of deaths in the 
younger age groups will increase, whereas the proportion of deaths in the older age 
groups will decrease, if the growth rate is positive. The opposite would be true if the 
population is decreasing. 
One obtains the stationary distribution of the age at death from a discrete stable 
population growing by a factor q>1 simply by multiplying the number of deaths at age x 
by the factor qx , x=0, 1, 2, …This result was first found by Euler (1760). 
We now assign this result to our continuous density distributions. 
If f(x) is the density of the observed deaths, which is biased by a positive growth rate r, 

then we get the density of the stationary population by 
r x

S

r x

0

f (x) e
f (x)

f (x) e dx










. Assuming 

a Gompertz distribution, it is easy to show with calculus that the modal value m of the 
stationary density is given by 

A
ln

k r
m

k

 

 
 
  . Solving the equation for r yields k mr Ae k  . 

 
This equation gives an estimate of the unknown population growth rate if the modal m 
value is known. The age at death distributions of Rome in Figure 2 are strongly skewed 
to the left. There is a predominance of deaths at young ages. The Roman age distribution 
falls in cluster 3 (see Table 1), where the modal values are 11.5 years (all), 3.1 years 
(male), and 18.3 years (female). If we assume these modal values for Rome as well, then 
we estimate a yearly growth rate of about 2% with the parameters A and k that are given 
in Table A2. With this result, we could adjust the distribution of age at death in Rome so 
as to eliminate the effect of population growth. 
 

5. Conclusion 

Age at death distributions can be fitted by a relatively simple function, the Gompertz 
distribution. It is somewhat surprising that only two parameters need to be known in 
order to model these distributions sufficiently for all the cities and provinces in the 
Roman Empire. This fit removes the irregularities of age rounding and enables a clearer 
analysis. Although earlier results that epitaph material is not suitable for calculating life 
tables for the Roman population could only be confirmed, the different types of 
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distribution can give evidence about commemorative habits in the Roman Empire. 
Similarities and differences can be detected more easily. In particular, possible missing 
values at age x (e.g., sex ratio) or biases due to population growth can be estimated by the 
model. The theoretical distributions simplify the comparison and facilitate the search for 
differences and similarities with advanced statistical methods.  
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Appendix: 
 
1. Formulas of the Gompertz distribution: 

(see also, e.g., Pflaumer 2011 or Pollard 1991) 

Force of mortality: k x(x) A e     

Survivor function: ( ) exp ( ) exp
0

              

x A A k xl x u du e
k k

  

Density function: dl(x)
f (x) (x) l(x)

dx
    

Table A1: Skewness and kurtosis of the Gompertz distribution 

Parameter Ratio (A>0, k>0) Skewness Kurtosis Remarks 
 
k=0 

k
0

A
  

 
2 

 
6 

Exponential 
distribution 

A xl(x) e   
 
k<A 

k 1

A 6.433902376
  
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Values of the Gompertz distribution have been obtained by numerical integration 

 
If 0<A<<k, then the Gompertz distribution can be approximated by a Gumbel 
distribution, whose moments can be determined analytically. This is the case for modern 
life tables with low mortality. If k<0, then we obtain the negative Gompertz distribution 
(see Marshall and Olkin 2007, p. 368) with an exponentially decreasing force of mortality 
function. Its skewness exceeds 2. It is an improper distribution, since lim l(x) 0

x



. If 

A=k, the Gompertz distribution can be approximated for small values of x by the linear 

hazard rate (LHR) distribution, whose force of mortality function is 2
(x) A A x   . Its 

survivor function is  A xl(x) exp 1 e   . Mean, variance and skewness are: 

0.6557
E(X)

A
 , 

2

0.2587
Var(X)

A
 , and sk(X)=1.089. 

JSM 2016 - Social Statistics Section

200



  

2. Tables and Figures 

Table A2: Estimation results and parameters 

 Unit Province km Am kw Aw k A Nm Nw N SR l25 l25m l25w 

1 Apulum Dacia 0.0274 0.0099 0.0364 0.0137 0.0271 0.0119 40 21 61 1.90 0.655 0.701 0.572 

2 Aquileia Italia 0.0070 0.0393 0.0268 0.0318 0.0133 0.0369 141 95 236 1.48 0.335 0.342 0.322 

3 Aquincum Pannonia 0.0291 0.0108 0.0191 0.0314 0.0217 0.0167 110 52 162 2.12 0.575 0.671 0.366 

4 Arelate Gallia 0.0197 0.0180 0.0446 0.0148 0.0278 0.0173 53 40 93 1.33 0.536 0.560 0.506 

5 Beneventum Italia 0.0136 0.0322 0.0378 0.0226 0.0204 0.0293 72 28 100 2.57 0.385 0.384 0.391 

6 Brigetio Pannonia 0.0334 0.0109 0.0351 0.0155 0.0316 0.0129 65 36 101 1.81 0.611 0.654 0.539 

7 Brundisium Italia 0.0280 0.0097 0.0248 0.0118 0.0265 0.0106 124 89 213 1.39 0.687 0.704 0.665 

8 Burdigala Gallia 0.0360 0.0086 0.0460 0.0075 0.0395 0.0082 101 78 179 1.29 0.704 0.705 0.704 

9 Capua Italia -0.0022 0.0347 0.0113 0.0347 0.0008 0.0358 88 59 147 1.49 0.405 0.430 0.367 

10 Caralis/Sa Italia 0.0280 0.0103 0.0339 0.0107 0.0296 0.0106 104 74 178 1.41 0.675 0.690 0.657 

11 Carnuntum Pannonia 0.0706 0.0045 0.0287 0.0162 0.0633 0.0057 167 37 204 4.51 0.707 0.737 0.553 

12 Catina Italia 0.0172 0.0205 0.0092 0.0255 0.0135 0.0227 53 47 100 1.13 0.509 0.527 0.488 

13 Celeia Noricum 0.0272 0.0093 0.0373 0.0079 0.0308 0.0088 115 91 206 1.26 0.717 0.716 0.721 

14 Colonia Germania 0.0395 0.0100 -0.0048 0.0691 0.0286 0.0153 47 10 57 4.70 0.571 0.654 0.196 

15 Emerita Hispania 0.0224 0.0104 0.0532 0.0067 0.0313 0.0097 73 72 145 1.01 0.693 0.706 0.705 

16 Emona Pannonia 0.0289 0.0090 0.0357 0.0065 0.0319 0.0078 66 50 116 1.32 0.741 0.718 0.768 

17 Flavia  Solva Noricum 0.0132 0.0166 0.0410 0.0109 0.0213 0.0150 42 33 75 1.27 0.609 0.612 0.622 

18 Gades Hispania 0.0214 0.0112 0.0249 0.0109 0.0228 0.0111 75 62 137 1.21 0.688 0.691 0.686 

19 Intercisa Pannonia 0.0215 0.0123 0.0245 0.0210 0.0190 0.0167 50 39 89 1.28 0.586 0.665 0.485 

20 Lugdunum Gallia 0.0079 0.0247 0.0459 0.0174 0.0178 0.0234 127 98 225 1.30 0.478 0.505 0.442 

21 Mediolanum Italia 0.0063 0.0220 0.0169 0.0225 0.0100 0.0228 72 67 139 1.07 0.523 0.551 0.496 

22 Misenum Italia 0.0754 0.0025 0.0543 0.0139 0.0671 0.0037 212 32 244 6.63 0.788 0.831 0.477 

23 Mogontiacum Germania 0.0977 0.0026 0.0323 0.0194 0.0878 0.0037 209 33 242 6.33 0.717 0.754 0.474 

24 Olisippo Hispania 0.0709 0.0090 0.1345 0.0019 0.0870 0.0062 58 22 80 2.64 0.572 0.538 0.671 

25 Ostia Italia 0.0031 0.0497 0.0276 0.0332 0.0121 0.0428 387 265 652 1.46 0.286 0.275 0.302 

26 ProvBrit Britannia 0.0514 0.0073 0.0227 0.0201 0.0410 0.0106 152 69 221 2.20 0.629 0.689 0.509 

27 ProvDac Dacia 0.0177 0.0151 0.0327 0.0134 0.0217 0.0148 177 96 273 1.84 0.612 0.623 0.596 

28 ProvDal Dalmatia 0.0295 0.0132 0.0220 0.0180 0.0263 0.0150 348 230 578 1.51 0.588 0.614 0.550 

29 ProvGal Gallia 0.0221 0.0202 0.0483 0.0152 0.0290 0.0190 290 168 458 1.73 0.497 0.509 0.478 

30 ProvGer Germania 0.0594 0.0055 0.0358 0.0117 0.0537 0.0066 197 52 249 3.79 0.706 0.729 0.624 

31 ProvHisp Hispania 0.0275 0.0106 0.0322 0.0123 0.0284 0.0116 1066 827 1893 1.29 0.656 0.684 0.623 

32 ProvItal Italia 0.0156 0.0227 0.0242 0.0242 0.0171 0.0240 2045 1305 3350 1.57 0.474 0.500 0.435 

33 ProvMoes Moesia 0.0321 0.0075 0.0246 0.0150 0.0282 0.0098 284 136 420 2.09 0.699 0.749 0.595 

34 ProvNor Noricum 0.0265 0.0122 0.0335 0.0094 0.0293 0.0110 207 149 356 1.39 0.668 0.650 0.693 

35 ProvPan Pannonia 0.0228 0.0126 0.0226 0.0165 0.0221 0.0140 379 204 583 1.86 0.626 0.653 0.575 

36 ProvRaet Raetia 0.0155 0.0142 0.0149 0.0182 0.0148 0.0157 54 31 85 1.74 0.621 0.648 0.576 

37 ProvSiz Italia 0.0201 0.0213 0.0170 0.0207 0.0185 0.0211 114 86 200 1.33 0.511 0.501 0.524 

38 Puteoli Italia 0.0141 0.0294 0.0301 0.0206 0.0206 0.0254 358 268 626 1.34 0.435 0.415 0.464 

39 Ravenna Italia 0.0520 0.0059 0.0341 0.0267 0.0386 0.0106 94 30 124 3.13 0.641 0.740 0.348 

40 Rome Italia 0.0124 0.0311 0.0297 0.0286 0.0165 0.0312 6008 3972 9980 1.51 0.381 0.401 0.346 

41 Saguntum Hispania 0.0277 0.0107 0.0506 0.0071 0.0365 0.0092 72 61 133 1.18 0.686 0.679 0.699 

42 Salonae Dalmatia 0.0322 0.0200 0.0387 0.0200 0.0345 0.0201 341 236 577 1.44 0.450 0.463 0.431 

43 Sarmizeget Dacia 0.0250 0.0099 0.0368 0.0104 0.0277 0.0105 44 30 74 1.47 0.685 0.710 0.654 

44 Tarquinii Italia 0.0362 0.0052 0.0316 0.0069 0.0343 0.0059 69 60 129 1.15 0.792 0.808 0.770 

45 Treveri Gallia 0.0030 0.0318 0.0017 0.0420 0.0017 0.0358 78 48 126 1.63 0.401 0.438 0.342 

46 Vienna Gallia 0.0015 0.0255 0.0061 0.0285 0.0032 0.0270 68 55 123 1.24 0.496 0.522 0.464 

47 Viminacium Moesia 0.0490 0.0044 0.0190 0.0192 0.0415 0.0063 41 9 50 4.56 0.760 0.805 0.541 

48 Virunum Noricum 0.0381 0.0293 0.0586 0.0231 0.0455 0.0269 36 29 65 1.24 0.286 0.294 0.270 

(N = number of cases, SR=Sex Ratio, l25=survival rate to age 25, m=male, w=female) 
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Table A3: Parameters: mean, standard deviation, and skewness 

Unit all  male  female  
 mean sdv skew kurtosis mean sdv skew kurtosis mean sdv skew kurtosis 

Apulum 36.7 22.3 0.38 -0.55 40.4 23.6 0.31 -0.62 29.8 17.5 0.32 -0.61 
Aquileia 21.0 17.2 1.14 1.21 22.0 19.4 1.41 2.34 19.8 14.3 0.79 0.15 

Aquincum 32.7 22.0 0.61 -0.23 37.5 22.1 0.32 -0.62 21.9 16.7 0.93 0.51 
Arelate 29.1 18.9 0.52 -0.37 32.2 22.3 0.68 -0.10 26.0 15.0 0.27 -0.65 

Beneventum 22.7 16.9 0.87 0.35 23.3 18.7 1.08 0.98 22.0 14.1 0.51 -0.40 
Brigetio 32.8 19.6 0.35 -0.58 35.0 20.1 0.27 -0.65 28.2 17.2 0.39 -0.55 

Brundisium 39.5 23.6 0.35 -0.59 40.5 23.5 0.29 -0.64 38.3 23.6 0.41 -0.52 
Burdigala 37.1 19.5 0.10 -0.72 38.1 20.5 0.15 -0.71 35.6 17.8 0.02 -0.73 

Capua 27.3 26.8 1.88 5.09 30.9 33.6 2.69 15.55 22.8 18.9 1.19 1.37 
Caralis/Sa 37.6 22.0 0.30 -0.63 39.2 23.0 0.31 -0.62 35.1 20.0 0.26 -0.66 
Carnuntum 33.2 14.7 -0.18 -0.64 33.8 14.0 -0.28 -0.54 29.9 19.0 0.48 -0.43 

Catina 30.5 23.3 0.94 0.53 30.7 22.3 0.79 0.15 30.4 24.9 1.14 1.21 
Celeia 40.7 22.7 0.22 -0.68 42.0 24.3 0.29 -0.64 39.0 20.5 0.11 -0.72 

Colonia 31.0 19.5 0.46 -0.46 33.7 18.4 0.17 -0.70 15.7 17.2 2.86 19.75 
Emerita 38.4 21.8 0.25 -0.67 43.0 26.4 0.40 -0.53 34.5 16.3 -0.07 -0.70 
Emona 42.5 23.0 0.16 -0.71 41.5 23.6 0.25 -0.67 43.7 22.3 0.05 -0.73 

Flavia Solva 35.2 23.3 0.57 -0.29 38.5 28.2 0.81 0.20 31.7 17.5 0.19 -0.70 
Gades 41.1 25.4 0.42 -0.51 42.0 26.3 0.45 -0.47 40.0 24.3 0.38 -0.55 

Intercisa 34.2 23.6 0.66 -0.13 39.6 25.3 0.49 -0.42 27.0 18.5 0.65 -0.15 
Lugdunum 27.7 20.4 0.83 0.25 32.1 26.7 1.19 1.39 23.5 13.9 0.33 -0.61 

Mediolanum 32.6 26.1 1.06 0.93 36.7 30.9 1.24 1.56 28.9 21.3 0.84 0.27 
Misenum 37.4 15.0 -0.32 -0.49 39.2 14.2 -0.46 -0.28 24.4 13.3 0.18 -0.70 

Mogontiacum 31.3 11.9 -0.40 -0.38 32.3 11.2 -0.51 -0.17 25.6 16.5 0.51 -0.40 
Olisippo 26.3 11.1 -0.25 -0.58 25.8 12.2 -0.07 -0.70 27.9 8.6 -0.66 0.16 

Ostia 18.9 15.9 1.24 1.58 19.0 18.0 1.72 3.99 19.0 13.8 0.80 0.16 
ProvBrit 32.2 17.6 0.18 -0.70 33.9 16.5 -0.03 -0.72 28.5 19.7 0.67 -0.12 
ProvDac 35.3 23.2 0.56 -0.32 37.5 25.7 0.65 -0.15 31.6 18.9 0.36 -0.58 
ProvDal 32.5 20.7 0.49 -0.43 33.4 20.3 0.39 -0.55 31.0 21.1 0.63 -0.19 
ProvGal 27.0 17.7 0.54 -0.34 28.7 19.9 0.68 -0.10 24.7 14.1 0.25 -0.66 
ProvGer 34.5 16.3 -0.08 -0.70 35.0 15.6 -0.17 -0.65 32.7 18.7 0.27 -0.65 
ProvHisp 36.5 21.8 0.35 -0.58 38.9 23.0 0.33 -0.60 33.4 19.7 0.33 -0.61 
ProvItal 27.5 20.5 0.86 0.32 29.4 22.0 0.88 0.36 24.6 17.4 0.72 -0.02 

ProvMoes 40.1 23.3 0.29 -0.64 43.2 23.2 0.14 -0.71 33.3 21.5 0.51 -0.39 
ProvNor 37.0 21.8 0.32 -0.61 36.5 22.4 0.40 -0.53 37.8 21.0 0.21 -0.69 
ProvPan 36.2 23.6 0.53 -0.36 38.2 24.2 0.47 -0.44 32.4 21.6 0.59 -0.27 
ProvRaet 38.7 27.5 0.74 0.04 40.8 28.3 0.68 -0.09 34.9 25.4 0.80 0.17 
ProvSiz 29.5 21.2 0.77 0.11 28.5 20.3 0.74 0.04 30.6 22.3 0.80 0.17 
Puteoli 25.0 18.3 0.81 0.18 24.8 19.6 1.03 0.81 25.4 16.7 0.56 -0.31 

Ravenna 33.1 18.4 0.20 -0.69 36.8 17.1 -0.10 -0.69 20.6 13.9 0.62 -0.22 
Rome 22.9 17.8 0.99 0.68 24.4 19.7 1.10 1.07 20.6 14.4 0.70 -0.05 

Saguntum 36.6 19.9 0.17 -0.71 38.6 22.8 0.33 -0.60 34.6 16.8 -0.03 -0.72 
Salonae 24.4 15.6 0.50 -0.41 25.2 16.3 0.52 -0.38 23.4 14.6 0.45 -0.48 

Sarmizeget 39.0 23.0 0.33 -0.61 42.1 25.1 0.34 -0.59 34.3 19.1 0.21 -0.69 
Tarquinii 46.7 23.6 0.03 -0.73 47.9 23.3 -0.03 -0.72 45.3 24.0 0.12 -0.72 
Treveri 26.7 25.6 1.77 4.34 28.9 26.8 1.61 3.38 22.9 22.1 1.80 4.53 
Vienna 33.4 30.5 1.55 3.01 37.1 35.3 1.73 4.07 29.6 25.7 1.35 2.03 

Viminacium 40.8 20.1 -0.01 -0.72 42.9 19.0 -0.18 -0.64 31.2 22.0 0.72 -0.01 

Virunum 18.4 11.8 0.50 -0.41 18.6 12.5 0.61 -0.23 18.0 10.7 0.34 -0.60 
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 Table A4: Cluster results 

ID Unit pmil Province Cluster ID Unit pmil Province Cluster 

11 Carnuntum 0.734 Pannonia 1 20 Lugdunum 0.097 Gallia 3 

22 Misenum 0.889 Italia 1 21 Mediolanum 0.035 Italia 3 

23 Mogontiacum 0.937 Germania 1 24 Olisippo 0.012 Hispania 3 

1 Apulum 0.377 Dacia 2 25 Ostia 0.027 Italia 3 

14 Colonia 0.438 Germania 2 38 Puteoli 0.041 Italia 3 

19 Intercisa 0.584 Pannonia 2 40 Rome 0.083 Italia 3 

39 Ravenna 0.581 Italia 2 41 Saguntum 0.015 Hispania 3 

3 Aquincum 0.463 Pannonia 2 42 Salonae 0.09 Dalmatia 3 

47 Viminacium 0.6 Moesia 2 43 Sarmizeget 0.216 Dacia 3 

6 Brigetio 0.49 Pannonia 2 44 Tarquinii 0.015 Italia 3 

10 Caralis/Sa 0.067 Italia 3 45 Treveri 0.031 Gallia 3 

12 Catina 0.01 Italia 3 48 Virunum 0.153 Noricum 3 

13 Celeia 0.136 Noricum 3 4 Arelate 0.032 Gallia 3 

15 Emerita 0.062 Hispania 3 5 Beneventum 0.02 Italia 3 

16 Emona 0.034 Pannonia 3 7 Brundisium 0.023 Italia 3 

17 Flavia Solva 0.148 Noricum 3 8 Burdigala 0.022 Gallia 3 

18 Gades 0.007 Hispania 3 9 Capua 0.068 Italia 3 

2 Aquileia 0.148 Italia 3      

Female Population without Olisippo (Outlier); pmil=proportion of military epitaphs 
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Figure A1: Comparison of life table and death density functions 

(Ulpian´s Table: see Pflaumer, 2015b, Table 3; Cluster 3 and Cluster 1+2 (weighted average): see Table 1)  
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