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1 Introduction

This thesis is devoted to the mathematical analysis of a spatially coupled Reaction-
Diffusion System for Signaling Networks in Biological Cells. Biological cells consist of a
phospholipid bilayer membrane surrounding the cytoplasma and thereby seperating the
cell from the ambient environment. Cells receive and process signals from the nearby
environment and respond adequatly; these complex mechanism are entitled as Signaling
Networks. As a key player in membrane trafficking, signal transduction or cytoskele-
ton organization, GTP-binding proteins (GTPase) have been identified. These protein
families were detected on the cell membrane, on the membrane of inner compartments,
the so-called endosomes, and in the cytoplasma. All have in common that they shuttle
between an active and inactive state. In addition, these proteins diffuse in the cytosol
and with lateral diffusion on the cell membrane. A mathematical model that describes
the relative density of these proteins either in their active or inactive state, led to an
evolution system of partial differential equations of this type in [RR12]. The goal of this
thesis is the analysis of a generalized system in order to prove that this mathematical
model is well-posed. This generalized model accounts for additional biological obser-
vations, such as generalized reaction rates and position dependent diffusion on the cell
membrane but still covers the system from [RR12].

The main challenges and difficulties of this thesis are the interaction of processes in
the three-dimensionsal bulk (the cytoplasma) and the two-dimensional boundary surface
(cell membrane), the particular coupling in the form of an outflow boundary condition
for the volume equation and a source term in the membrane equation and the structure
of the nonlinearities. Some authors in the field of mathematical biology consider local
membrane processes by assuming a locally flat boundary. Global three-dimensional ap-
proaches assume spherical symmetries and other simplifications without coupling effects.
In contrast to that, we assume a global approach establishing a rather general domain in
R

3 as a model of a cell or an endosome. According to a survey of M. Pierre, see [Pie10],
the choice of the nonlinear growth rates is crucial to prove global in time existence results
in the field of Reaction-Diffusion Systems. Throughout this thesis we focus on sublinear
growth rates, since it covers a major part of common model approaches in mathematical
biology and allows to obtain the well-posedness of the system.

In this thesis we consider spatially coupled systems of the following type: A spatially
coupled system of three species with specific regularity assumptions on the given bulk
will be denoted by (FCRD). It includes surface operators as well as nonlinearities that
allow for classical solutions. A generalized version with position dependent diffusion
operators in divergence form is denoted by (GFCRD). Afterwards, we assume that the
cytosolic diffusion constant of (GFCRD) tends to infinity. Then, the given system
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1 Introduction

formally converges to a reduction, given by a two variable system on the membrane,
but including a nonlocal contribution that is a remnant of the spatial coupling. Such
a reduced sytem is similar to the so-called Shadow Systems in the analysis of a two
variable system in a flat domain, see [Ni11; Kee78].

This thesis is structured as follows. We begin our deductions with an introduction of
Signaling Networks and G-proteins. Afterwards, we specify constitutive assumptions for
our spatially coupled Reaction-Diffusion Systems and introduce the formal reduction in
form of a system similar to Shadow Systems to state the main results of this thesis. Next,
we give a survey of the relevant literature and introduce some notation. In Chapter 2
we prove the existence of classical solutions of (FCRD) with a maximum principle and
Schauder techniques. In Chapter 3 we show the well-posedness of (GFCRD). We apply
these results in Chapter 4 to prove that (GFCRD) converges to a Shadow System.
Chapter 5 will contain the summary of this thesis, in the Appendix we list auxiliary
results and background material.

Signaling Networks and G-proteins One specific motivation for investigating bio-
logical cells and the behaviour of so-called Ras family G-proteins is the observation that
in 15% of all human tumors a protein of the Ras G-protein family is mutated [BRW07].
Consisting of five principal families, i.e. Ras, Rho, Rab, Arf and Ran families [WRD05],
these G-proteins control a huge variety of signaling, nutrient transport and formation
processes of a cell. The receptor sites of these G-proteins can be manipulated by drugs
to inhibit signal transduction processes and therefore influence propagation of deseases.
The aim of all such experiments and their corresponding biological and mathematical
models is to gain deeper insights in the complex interactions of proteins and trace in
which mechanisms defects might occur to develop new defect prevention strategies.

The spatio-temporal evolution of G-proteins is determined by diffusion effects in cor-
respondance to their local density and to reactions with other proteins and catalytic
effectors. Throughout this thesis we call these G-proteins or guanine-tri-phosphate-
binding proteins ’GTPases’. Besides the ability of a phosphate molecule to losely attach
to proteins, there exists a tight binding of GTPase to guanine-tri-phosphate (GTP) on
the cell membrane. We call the complex ’GTPase–GTP’ the active state of GTPase.
Active GTPase can for example interact with and activate so-called downstream targets
inducing a signal which triggers a cellular response, see for example [SA05]. Moreover,
activated GTPase proteins induce cell polarization effects which lead to pattern forma-
tion, see [RR14] and the references therein. In both cases, the activation-deactivation
cycle is part of a signal transduction chain; Signaling Networks occur.

Reversely, if a GTPase–GTP complex replaces GTP with guanine-di-phosphate (GDP)
it changes to its inactive state denoted by GTPase–GDP, see [Alb+08, p. 179]. Due
to observations of [GRA05], there is a high affinity of inactive GTPase–GDP to bind
to a GDP-dissociatior-inhibitor (GDI) inside the cell, inhibiting GTPase–GDP from
binding to the cell membrane. In fact, inactive GTPase in complex with GDI plays a
predominant role in the cytosol. How inactive GTPase attaches to the membrane is less
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clear. A possible mechanism is that a GDI displacement factor (GDF) decouples GDI
and GTPase–GDP, mediating inactive GTPase to the cell membrane [Pfe03].

In general, the reaction speed on the cell membrane of the described activation and
deactivation processes is slow. Observations yield that catalysis quickens these reactions.
In particular, there exists a guanine exchange factor (GEF), catalyzing the activation
process and a GTPase activating protein (GAP) forcing hydrolysis, see [GRG05] and
[BRW07]. In addition, as a self-sustaining feedback loop, there exists a cytosolic GEF-
effector complex being recruited by GTPase–GTP, resulting in an amplified production
of activated GTPase, see [GON06] and [Wed+03]. This mechanistic description was
considered in [RR12] for a representant of the G-protein family, namely Rab5–GTPase.
A schematic illustration of the GTPase cycle can be found in Figure 1.1, see also [RR12].

For the fully coupled models in the latter we assume that the diffusion inside the
cytosol is constant at first. Due to observations in [Pos+04], the cytosolic diffusion
is much larger than the diffusion on the membrane, therefore the formal assumption of
infinite diffusion speed might be used in a model reduction approach. For lateral diffusion
on the membrane we observe the following: According to [SK94], the cell membrane has
a compartmentalized structure. In those compartments the diffusion speed differs from
other compartments. The local diffusion in those compartments is constant and strictly
positive, but jumps in diffusion coefficients may occur whenever the sharp border of a
compartment will be passed.

This description is already a severe simplification of reality and shows how complex
cell biological processes are and how many key players have to be integrated to obtain
an adequate model of a signaling process in a cell.

Spatially coupled Reaction-Diffusion Systems We start our mathematical inves-

tigations by considering I
def
= (0, T ) for T > 0 as a time-interval of observation and let

Ω ⊂ R
3 be a bounded domain describing the cell. Throughout this thesis let Γ

def
= ∂Ω be

the smooth boundary of Ω modelling the cell membrane, and let ν : Γ → S2 denote the
outer normal vector of Ω. Let corresponding time-space cylinders be denoted by

ΩT
def
= Ω × (0, T ) and ΓT

def
= Γ × (0, T )

and the closure of ΩT be denoted by ΩT . For an intermediate value t ∈ (0, T ) we set

Ωt
def
= Ω × (0, t), resp. Γt

def
= Γ × (0, t). The densities of the GTPase proteins are denoted

by (V, u, v) with unknowns V : Ω × I → R and u, v : Γ × I → R. Here, V describes
the inactive GDP-bound state inside the cytosol, v denotes the density of the inactive
GTPase–GDP state of molecules attached to the membrane and, finally, u describes the
active GTPase–GTP state on the cell membrane. All densities depend on the position
x ∈ Ω and x ∈ Γ, respectively and on time t ∈ I. We write V = V (x, t), u = u(x, t) and
v = v(x, t). In addition, we assume that nonnegative initial conditions V0, u0, and v0

are given.
Deterministic descriptions of reaction and attachment / deattachment processes are

based on ordinary differential equations where biochemical reactions are translated into
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Figure 1.1: This figure displays a schematic Rab5–GTPase cycle. Rab5–GTPase is
inactive in the cytosol and attaches to the membrane loosing the attached
GDI-complex and shuttles back to the inside. The GTPase–GDP complex
on the cell membrane is also called inactive. On the membrane GTPase–
GDP is replaced by GTPase–GTP and becomes active. An additional catal-
ysed activation process is being displayed in form of a GEF–effector com-
plex.

linear and nonlinear rate laws, see [KS09]. Fundamental reaction laws are for example the
law of mass action, catalysis reactions modeled by Michaelis-Menten enzyme kinetics or
cut-off functions that model saturation phenomena called Langmuir rate law, see [KS09,
p. 1ff.], [Nel08, p. 433ff.], [Kel09, p. 8f.]. We cover these reaction effects on the cell
membrane Γ in the following way: For f1, f2 : R

2
+ → R and q1, q2 : R

2
+ → R we set

f : R2 → R and q : R3 → R, such that

f(u, v)
def
= f1(u, v)v − f2(u, v)u,

q(u, v, V )
def
= q1(u, v)V − q2(u, v)v

holds, where fi, qi are nonnegative and bounded. These describe activation / deactivation
contributions in the case of f and attachment / deattachment contributions in the case
of q, respectively. We will specify assumptions more precisely in Section 1.1.

We are facing diffusion processes on the cell boundary and inside the cell. Let D > 0
denote the diffusion constant in Ω. Lateral diffusion on the cell membrane will math-
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ematically be described by the action of the Laplace-Beltrami operator ∆Γ. With the
help of lateral differential operators in divergence form we describe jumps in diffusion
coefficients in dependence of the position on the membrane. Let

Au, Av : Γ → R
3×3, Au(p), Av(p) : TpΓ → TpΓ with p ∈ Γ

be linear tangent operators on the cell boundary Γ and consider the associated differential
operator ∇Γ ·Au∇Γ and ∇Γ ·Av∇Γ. The Laplace-Beltrami operator then corresponds
to the special case Au = Av = Id. A detailed introduction to differential geometrical
concepts is presented in the Appendix, see Subsection A.1.3.

The most general model we consider in this thesis is the generalized fully coupled
Reaction-Diffusion System (GFCRD) given by the following equations:

(GFCRD)



























































∂tu = ∇Γ · (Au∇Γu) + f1(u, v)v − f2(u, v)u on Γ × I,

∂tv = ∇Γ · (Av∇Γv) − f1(u, v)v + f2(u, v)u

+ q1(u, v)V − q2(u, v)v on Γ × I,

∂tV = D∆V in Ω × I,

−D∇V · ν = q1(u, v)V − q2(u, v)v on Γ × I,

V (·, 0) = V0 in Ω,

v(·, 0) = v0 and u(·, 0) = u0 on Γ.

This initial value problem (GFCRD) covers the biological effects discussed before, in
particular, we allow for jumps in diffusion constants on the cell membrane. We notice
that (GFCRD) is given in divergence form including a Robin-boundary condition. This
sometimes called third-type boundary condition covers mass transport from the cytosol
to the membrane and back to the inside. In particular, the system introduced in [RR12]
is covered within (GFCRD). As a first consequence we find that the initial mass of the
system given by

m0
def
=

∫

Ω
V0(x)dx+

∫

Γ
(u0(x) + v0(x)) dσ (1.1)

is being preserved over time, i.e. the time-derivative of m(t) defined by

m(t)
def
=

∫

Ω
V (x, t)dx+

∫

Γ
(u(x, t) + v(x, t)) dσ

is zero. Well-posedness of (GFCRD) highly depends on the regularity of the given
differential operators Au and Av and the growth conditions and regularity assumptions
on the nonlinearities f and q. Since we assumed Au and Av to be nonsmooth to cover
jump effects in diffusion constants, classical solutions for (GFCRD) will in general not
exist. We collect sufficient conditions for the differential operators and nonlinearities
later to find weak solutions and in particular well-posedness of (GFCRD) in Theorem 1.2
in Section 1.1.
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1 Introduction

We now consider the case of regular data and a less general formulation that still covers
many situations of interest. In this model variant we assume Au = Id and Av = d · Id
for a diffusion constant d > 1. Then, as a modification of (GFCRD) we introduce the
fully coupled Reaction-Diffusion System (FCRD) given by

(FCRD)



























































∂tu = ∆Γu+ f1(u, v)v − f2(u, v)u on Γ × I,

∂tv = d∆Γv − f1(u, v)v + f2(u, v)u

+ q1(u, v)V − q2(u, v)v on Γ × I,

∂tV = D∆V in Ω × I,

−D∇V · ν = q1(u, v)V − q2(u, v)v on Γ × I,

V (·, 0) = V0 in Ω,

v(·, 0) = v0 and u(·, 0) = u0 on Γ.

Even in this case, where diffusion on Γ is simply given by the Laplace-Beltrami operator
∆Γ on Γ, the different diffusion constants still might lead to blow up effects in finite
time, see [Pie10]. Existence and uniqueness is again depending on the choice of the
nonlinearities. In Section 1.1 we collect conditions such that (FCRD) admits classical
solutions, see Theorem 1.1.

In [RR12] the authors suggest a model reduction by sending the cytosolic diffusion to
infinity, i.e. D → ∞. Then, formally, the cytosolic concentration is spatially constant.
In this case the variable V only depends on time. The equations on the boundary are no
longer spatially coupled to the equation in the cytosol. The prize for this simplification
is the appearance of a nonlocal functional on the boundary which is induced by the mass
conservation property,

V [u+ v](t) =
1

|Ω|m0 − 1

|Ω|

∫

Γ
(u+ v)(t)dσ.

The model reduction of (GFCRD) is then given by











































∂tu = ∇Γ · (Au∇Γu) + f1(u, v)v − f2(u, v)u on Γ × (0, T ),

∂tv = ∇Γ · (Av∇Γv) − f1(u, v)v + f2(u, v)u

+ q1(u, v)V [u+ v] − q2(u, v)v on Γ × (0, T ),

V [u+ v](t) =
1

|Ω|m0 − 1

|Ω|

∫

Γ
(u+ v)(t)dσ for t ∈ [0, T ),

v(·, 0) = v0 and u(·, 0) = u0 on Γ.

(1.2a)

(1.2b)

(1.2c)

(1.2d)

We show in Theorem 1.3 rigorously that for D → ∞ the system (GFCRD) tends to
(1.2a)–(1.2d). In particular, the case in [RR12] is included in this Theorem.

The introduced models contain several mathematical difficulties such as nonsmooth
differential operators in divergence form on a smooth manifold Γ, Reaction-Diffusion
Systems on Γ, mass transport via Robin-boundary condition, control of growth rates for
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1.1 Main results

nonlinearities and convergence including a nonlocal functional on the boundary Γ. In
particular the coupling between bulk and surface partial differential systems keeps us
away from using standard theory to study the solvability of the particular models.

1.1 Main results

In this section we state the main results of this thesis. To improve readability, background
material considering the occuring function spaces, facts and concepts from differential
geometry are collected in the Appendix.

We begin with the notion of classical solutions of (FCRD), adequate system assump-
tions and the main result for (FCRD).

Classical solutions of (FCRD) The triplet (V, u, v) is called classical solution for
(FCRD) if V ∈ C2,1(ΩT ) ∩ C1(Ω × (0, T )) and u, v ∈ C2,1(ΓT ) ∩ C0(ΓT ) holds while
(V, u, v) suffices (FCRD) in a pointwise sense. Here, we denote by C2,1 the space of
functions which are twice continuously differentiable in space and continuously differen-
tiable in time. Let C2+α denote the space of functions such that the second derivative
is α-Hölder continuous. We assume sufficiently regular initial data and a compatibility
condition.

Assumption 1.1 (Initial conditions for classical solutions). The initial data is prescribed
to be essentially bounded, nonnegative and of class C2+α for some 0 < α < 1, i.e.

u0, v0 ∈ C2+α(Γ), V0 ∈ C2+α(Ω) and u0, v0, V0 ≥ 0.

Moreover, let the compatibility condition

−D∇V0(x) · ν(x) = q1(u0(x), v0(x))V0(x) − q2(u0(x), v0(x))v0(x), x ∈ Γ (1.3)

hold, for ν ∈ S2 being the outer normal vector of Ω.

A fundamental assumption to achieve long-time existence results for classical solutions
in Reaction-Diffusion Systems are growth rates for the nonlinearities. For counterexam-
ples and positive results on existence see [Pie10]. Here, motivated by the protein reaction
laws from [RR12] we assume a sublinear regime and a specific decomposition of the rate
laws into activation / deactivation and attachment / deattachement contributions.

Assumption 1.2 (Assumption for nonlinearities in the classical solutions case). Let
f : R2 → R and q : R3 → R, such that

f(u, v) = f1(u, v)v − f2(u, v)u, (1.4)

q(u, v, V ) = q1(u, v)V − q2(u, v)v (1.5)

7



1 Introduction

holds. Let f1, f2 : R2 → R and q1, q2 : R2 → R be twice continuously differentiable and
nonnegative, i.e.

f1, f2 , q1 , q2 ∈ C2(R2), (1.6)

f1, f2, q1, q2 ≥ 0 on R
2. (1.7)

In addition, let Cq, Cf ≥ 0 be constants, such that 0 ≤ qj ≤ Cq and 0 ≤ fj ≤ Cf for
j = 1, 2 holds.

Let H2+α,(2+α)/2 denote parabolic Hölder spaces of class 2 + α. These spaces consist
of functions such that the second derivative in space is still α-Hölder continuous and
the first derivative in time is α/2-Hölder continuous, see for example [LSU68]. A more
detailed description of parabolic Hölder spaces is presented in the Appendix.

Well-posedness of a system of partial differential equations in the sense of Hadamard’s
definition is to show the existence of a solution, the uniqueness of solutions and the
continuous dependency on data, see [Eva10, S. 7]. Chapter 2 is devoted to the following
result for (FCRD) on well-posedness.

Theorem 1.1 (Classical solutions for (FCRD)). For T > 0 and 0 < α < 1, let ini-
tial data (V0, u0, v0) satisfy Assumption 1.1. Moreover, let the nonlinearities of system
(FCRD) be given as in Assumption 1.2. Then, the fully coupled system (FCRD) has a
unique, nonnegative, classical solution (V, u, v) of parabolic Hölder class H2+α,(2+α)/2.
Moreover, classical solutions of (FCRD) depend continuously on its initial data. There-
fore, the system (FCRD) is well-posed.

Well-posedness of (GFCRD) As the main result we find the well-posedness for weak
solutions of (GFCRD). Here, we can allow for weaker assumptions on initial data and
nonlinearities.

Assumption 1.3 (Initial conditions for weak solutions). Let initial conditions be essen-
tially bounded, nonnegative and L2-interable, i.e.

V0 ∈ L2(Ω) and u0, v0 ∈ L2(Γ)

with u0, v0, V0 ≥ 0.

Assumption 1.4 (Nonlinearities in the case of weak solutions). Let the nonlinearities
f : R2 → R and q : R3 → R still be decomposed as in (1.4) and (1.5) and let the non-
linearities f1, f2 : R2 → R and q1, q2 : R2 → R be bounded and nonnegative, there exist
constants Cq, Cf ≥ 0, such that 0 ≤ qj ≤ Cq and 0 ≤ fj ≤ Cf holds for j = 1, 2. We
further assume that the nonlinearities f1, f2, q1, q2 are Lipschitz continuous on R

2,

f1, f2, q1, q2 ∈ C0,1(R2).
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1.2 Survey of literature

Assumption 1.5. Let the linear differential operators Au and Av of the form

Auw = ∇Γ · (Au∇Γw) and Avw = ∇Γ · (Av∇Γw)

be uniformly elliptic on Γ. This means that Au, Av : Γ → R
3×3 with Au(p), Av(p) :

TpΓ → TpΓ for every p ∈ Γ satisfy the following ellipticity condition: there exist con-
stants cu, cv > 0, such that

ξ ·Au(p)ξ ≥ cu|ξ|2 and ξ ·Av(p)ξ ≥ cv|ξ|2 (1.8)

holds for every ξ ∈ TpΓ and every p ∈ Γ. Moreover, let Au and Av be measurable and
essentially bounded, i.e. there exist constants CAu , CAv > 0, such that

‖Au‖L∞(Γ,R3×3) < CAu and ‖Av‖L∞(Γ,R3×3) < CAv (1.9)

holds.

We cannot expect classical solution in this context according to the fact that Au

and Av are not differentiable, i.e. no pointwise solution concept exists. The concept
of weak solutions takes the usual form for parabolic divergence form operators. For a
precise formulation see Section 3.1. The following result will be proven in Chapter 3. It
guarantees the well-posedness of (GFCRD) for weak solutions.

Theorem 1.2 (Well-posedness for (GFCRD) in a weak sense). For T > 0 and given
initial conditions (V0, u0, v0) let (GFCRD) satisfy Assumptions 1.3–1.5. Then, there
exists a unique solution of (GFCRD), i.e. a solution triplet (V, u, v) in L2(0, T ;H1(Ω))×
(L2(0, T ;H1(Γ)))2. Moreover, solutions are nonnegative, essentially bounded on (0, T ),
depend continuously on the initial data and are L2-continuous. Therefore, the generalized
system (GFCRD) is well-posed.

Convergence to a Shadow System We have introduced a so-called Shadow System
reduction for (GFCRD) in (1.2a)–(1.2d). Such systems lie in between an ODE reduction
and the fully coupled model of partial differential equations. We show in Chapter 4
rigorously that (GFCRD) tends to (1.2a)–(1.2d).

Theorem 1.3 (Convergence to a Shadow System). Let Assumptions 1.3–1.5 hold and
let (Dk)k∈N be a sequence of diffusion coefficients and (Vk, uk, vk)k∈N be a sequence of
solutions of (GFCRD) with D replaced by Dk. Then, a subsequence of (Vk, uk, vk)k∈N

converges to a weak solution (V∞, u∞, v∞) of (1.2a)–(1.2d).

1.2 Survey of literature

Biological observations on cell polarization, long-term behavior and diffusion effects on
cell membranes led to a huge variety of mathematical models in the past decades. In par-
ticular Reaction-Diffusion Systems were set up to reasonably demonstrate and explain

9



1 Introduction

the observed effects, see [GP08; Wed+03] and the references therein. The biomathemat-
ical models evolved from basic two species models in R

2 and basic reaction rates towards
multispecies approaches in R

3 with spatially coupled, nonsmooth diffusion operators on
cell membranes, see for example [GP08; Gie+15; MCV15; MS15]. Besides biomathemat-
ical models, several publications present a linear stability analysis or numerical simula-
tions to varify the occurance of Turing pattern formation or cell polarization properties,
see for example [RR12; Gie+15; MCV15]. Rigorous existence results and well-posedness
of solutions are more or less left as open questions. This thesis focusses on existence and
well-posedness results for a specific spatially coupled Reaction–Diffusion System which
is motivated by the above mentioned biological obeservations. In this survey we give
a brief overview of mathematical difficulties in Reaction–Diffusion Systems and specific
bulk-surface coupled systems and finally discuss model reductions in form of so-called
Shadow Systems.

Mathematical difficulties Whereas existence of classical solutions for short-times is
often rather easy, the development of adequate a priori estimates is the key step to find
global in time solutions of Reaction-Diffusion Systems. This will mainly be achieved by
maximum principles, invariant region approaches, abstract semigroup theory or uniform
Lp-estimates, see for example [Smo83; Ali11]. We point out that these approaches are
not providing a priori estimates in every case. According to [Pie10], even in rather simple
systems blow-up effects may occur in finite time. Assumptions as nonnegativity and mass
conservation are also not sufficient to ensure global existence. Besides different diffusion
constants and growth rates of nonlinearities, in our particular case spatial coupling effects
and nonflat metrics determine the behavior of Reaction–Diffusion Systems and makes it
even more difficult to establish a priori estimates.

Bulk-surface coupling As a first basic example for the analysis of coupling effects
between bulk and surface processes a sample system was stated in [ER13], where a
stationary diffusion equation in the bulk was coupled to a linear stationary diffusion
equation on the cell membrane with a linear Robin boundary condition. Such an elliptic
problem can be seen as a toy problem for steady-states in parabolic initial-boundary
problems. This system allows for unique solutions of class H2(Ω) ×H2(Γ) according to
Lax-Milgram techniques and regularity theory.

In a recent preprint a general bulk surface Reaction–Diffusion System of similar type as
(FCRD) is analyzed , cf. [MS15]. The respective Reaction–Diffusion System is defined
on a bounded domain with smooth boundary. Several species inside the bulk may
diffuse with different diffusion constants than the species attached to the boundary. The
diffusion equations are coupled via a mass transport boundary condition of Robin-type.
The authors show that if the given nonlinearities satisfy some particular polynomial
growth condition and conservation of mass, then there exists a unique componentwise
nonnegative, global classical solution, see [MS15, Theorem 3.3, p. 7]. In comparison
to (FCRD), the considered Reaction–Diffusion System is generalized in the number of

10



1.2 Survey of literature

species, the dimension of the given domain and source/sink contributions for the bulk
equation. The assumptions in [MS15] are different from ours. Super-linear growth is
allowed in some of the variables but at the same time more restrictive assumptions on
the structure of the nonlinearities are imposed. In particular, the assumptions in [MS15]
are in general not satisfied for (FCRD). Moreover, only smooth coefficients and classical
solutions are considered.

Cell polarization has motivated many further biomathematical models with bulk sur-
face interactions in the past years, see for example [Mar+07]. Extending [GP08], the
authors of [Gie+15] introduced a two-dimensional model where an annulus represents
the two-dimensional section of a cell with the outer boundary part refering to the cell
membrane and the inner boundary part is an inner cell compartment like an organelle. In
a very similar manner compared to the nonsmooth diffusion operators in (GFCRD), the
authors describe a single species reaction and diffusion equation on the outer membrane
with mass transport to the cytosol. There is no flux to the inner boundary part, the
diffusion operator inside the cell is also assumed to be nonsmooth. The focus of [Gie+15]
lies more on numerical simulations for a model reduction and not on rigorous proofs on
existence and uniqueness of this particular model but it shows the recent relevance and
necessity for analyzing systems with nonsmooth differential operators.

Shadow Systems A complexity reduction for Reaction–Diffusion Systems in flat space
called Shadow Systems were first introduced in [Kee78]. These reductions are well-
studied for the Gierer–Meinhardt system, see for example [NL09]. A Shadow System re-
duction of a Reaction–Diffusion System is a formal limit of a multiple variable Reaction–
Diffusion System where one of the diffusion coefficients is considered to be infinitely large.
To figure out the different analytical behaviour of system reductions and the appearance
of Shadow System we return to R

n models. The authors in [Mar+16] consider a system
of two coupled Reaction-Diffusion equations in a given domain with zero flux boundary
condition. This system has a unique nonnegative global-in-time solution under reason-
able initial conditions. A vanishing diffusion coefficient then implies that the solution
blows-up in finite time, so-called diffusion-driven blow-up occurs. This is an example for
the occurance of a Shadow System revealing completely different analytical properties
compared to the initial system.

We already mentioned the model proposed in [GP08] to study cell polarization prop-
erties. The framework we consider in our fully coupled Reaction-Diffusion System
(FCRD) was motivated by the model proposed in [RR14]. Very similar, [GP08] and
[RR14] introduce an asymptotic model reduction with a nonlocal term based on mass
conservation. The results suggests that in both cases a diffusion-driven pattern forma-
tion occurs due to the fact that bulk diffusion is much larger than lateral diffusivity.
With the results in Theorem 1.3 we find a rigorous justification of the asymptotic model
reduction in [RR14].

11



1 Introduction

1.3 Notation

For the sake of improved readability, background material and auxiliary results are
collected in the Appendix. Still, it is necessary to introduce conventions on notation in
this section. Let w : Ω → R. If w is integrable over Ω, then we make use of the notation

∫

Ω
w dL3 =

∫

Ω
w(x) dx =

∫

Ω
w.

For Γ as above we denote by σ the surface area measure on Γ. If ŵ : Γ → R is integrable
with respect to σ, then

∫

Γ
ŵ(x) dσ(x) =

∫

Γ
ŵ dσ =

∫

Γ
ŵ

denotes integration over Γ. Let w̃ : Γ × I → R, then integration over ΓT = Γ × (0, T ) for
integrable w̃ will be achieved by Tonelli’s Theorem for measure spaces, i.e.

∫

ΓT

w̃(x, t) d(σ ⊗ L1) =

∫ T

0

∫

Γ
w̃(x, t) dσ(x) dL1(t) =

∫

Γ

∫ T

0
w̃ dL1dσ =

∫

ΓT

w̃.

12



2 Existence Theory for classical

solutions

In this chapter we investigate the existence of classical solutions (V, u, v) for the fully
coupled Reaction-Diffusion system given by

(FCRD)



























































∂tu = ∆Γu+ f1(u, v)v − f2(u, v)u on Γ × (0, T ),

∂tv = d∆Γv − f1(u, v)v + f2(u, v)u

+ q1(u, v)V − q2(u, v)v on Γ × (0, T ),

∂tV = D∆V in Ω × (0, T ),

−D∇V · ν = q1(u, v)V − q2(u, v)v on Γ × (0, T ),

V (·, 0) = V0 in Ω,

v(·, 0) = v0 and u(·, 0) = u0 on Γ

for given T > 0. Let Ω and Γ be given as in Section 1.1 and let Assumptions 1.1 and
1.2 hold as it was described in Section 1.1. The main result of this Chapter is to prove
Theorem 1.1. The proof is divided into four major steps, see Section 2.1–Section 2.4.
First, we give a detailed outline of the proof, introduce auxiliary problems and find
a priori estimates. Then, we deduce the existence and uniqueness of solutions of a
nonlinear parabolic system on the boundary Γ without spatial coupling to the bulk in
suitable spaces with estimates in parabolic Hölder norms. In Section 2.3 we prove that
there exist unique solutions of an initial-boundary value problem with mass-transport
boundary condition in Ω for given input data on the boundary and obtain suitable
estimates. We finish the proof of the existence result from Theorem 1.1 in Section 2.4
with the help of Schauder’s Fixed-Point Theorem. Complementary, we deduce a result
on uniform L∞-bounds and continuous dependance on initial data.
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2 Existence Theory for classical solutions

2.1 Auxiliary problems and a priori estimates

First, we introduce auxiliary problems and a priori estimates. The idea is to rescale the
system (FCRD) by multiplying the variables (V, u, v) with a time-dependent exponential
factor e−λt, for fixed λ > 0 which will be specified later. In this rescaled framework
we denote variables by (Ṽ , ũ, ṽ). We specify auxiliary problems and deduce a priori
estimates in this section. We begin with a detailed outline of the proof of Theorem 1.1.

2.1.1 Outline of the proof

We want to show that (FCRD) has a unique classical solution (V, u, v) on a time-interval
(0, T ) for a given finite T > 0. Therefore, we multiply the variables (V, u, v) with a time-
dependent exponential factor e−λt for fixed λ > 0 that will be specified later. We consider
Ṽ : Ω × [0, T ] → R, ũ, ṽ : Γ × [0, T ] → R with:

Ṽ (x, t)
def
= e−λtV (x, t) for x ∈ Ω, t ∈ [0, T ], (2.1)

ũ(x, t)
def
= e−λtu(x, t) for x ∈ Γ, t ∈ [0, T ], (2.2)

ṽ(x, t)
def
= e−λtv(x, t) for x ∈ Γ, t ∈ [0, T ]. (2.3)

We justify in Subsection 2.1.2 that (FCRD) is then equivalent to































































∂tũ = ∆Γũ+ f̃1(t, ũ, ṽ)ṽ − f̃2(t, ũ, ṽ)ũ− λũ on Γ × (0, T ),

∂tṽ = d∆Γṽ − f̃1(t, ũ, ṽ)ṽ + f̃2(t, ũ, ṽ)ũ

+ q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ − λṽ on Γ × (0, T ),

∂tṼ = D∆Ṽ − λṼ in Ω × (0, T ),

−D∇Ṽ · ν = q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ on Γ × (0, T ),

Ṽ (·, 0) = V0 in Ω,

ũ(·, 0) = u0 and ṽ(·, 0) = v0 on Γ.

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

(2.4f)

where the nonlinearities are now explicitly time-dependent, see a corresponding definition
in (2.9)–(2.10).

We establish an updating procedure to prove that (2.4a)–(2.4f) has a unique solution
(Ṽ , ũ, ṽ) of parabolic Hölder class H2+α,(2+α)/2. Therefore, we start with a given function
Ṽ : Ω × [0, T ] → R with Ṽ ∈ Hβ,β/2(ΩT ) for a Hölder coefficient 0 < β ≤ α to be chosen
later. Here, according to Assumption 1.1 we assume that the initial data Ṽ (·, 0) = V0

is of class C2+α(Ω). A possible choice for Ṽ would be to continue the initial profile V0

to a function which is constant in time on (0, T ) and multiply it afterwards with e−λt.

14



2.1 Auxiliary problems and a priori estimates

We consider Ṽ as input data for the following system of nonlinear partial differential
equations on the boundary



























∂tũ = ∆Γũ+ f̃1(t, ũ, ṽ)ṽ − f̃2(t, ũ, ṽ)ũ− λũ on Γ × (0, T ),

∂tṽ = d∆Γṽ − f̃1(t, ũ, ṽ)ṽ + f̃2(t, ũ, ṽ)ũ

+ q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ − λṽ on Γ × (0, T ),

ũ(·, 0) = u0 and ṽ(·, 0) = v0 on Γ.

(2.5a)

(2.5b)

(2.5c)

We show the existence of unique solutions (ũ, ṽ) of (2.5a)–(2.5c) on Γ×[0, T ] of parabolic
Hölder class (2 + β). In addition, we control the solution pair (ũ, ṽ) uniformly by
C0([0, T ];C1+σ(Γ))-norms for any 0 ≤ σ < 1 and by adequate parabolic Hölder norms in
dependence of the given data, see Section 2.2. One central ingredient is the development
L∞-estimates. If Ṽ is essentially bounded on Ω × (0, T ) by a constant Λ̃1 > 0, then ũ,
ṽ are essentially bounded on Γ × (0, T ) by a constant Λ̃2 > 0, see Lemma 2.3 (i).

The next step of this updating procedure is to find unique solutions and estimates of
an updated function Vnew, see Section 2.3. In the rescaled framework we multiply the
updated variable Vnew with a time-dependent exponential factor e−λt for fixed λ > 0 and
consider Ṽnew : Ω × [0, T ] → R with

Ṽnew(x, t)
def
= e−λtVnew(x, t) for x ∈ Ω, t ∈ [0, T ]. (2.6)

Consider ṽ and ũ as input data for a Robin-boundary problem given by















∂tṼnew = D∆Ṽnew − λṼnew in Ω × (0, T ),

−D∇Ṽnew · ν = q̃1(t, ũ, ṽ)Ṽnew − q̃2(t, ũ, ṽ)ṽ on Γ × (0, T ),

Ṽnew(·, 0) = V0 on Ω.

(2.7a)

(2.7b)

(2.7c)

This will be done with the help of nonlinear Schauder theory described in [LSU68,
Theorem 5.3, p. 320f.] and [LSU68, Theorem 7.1, p. 478]. Besides obtaining a unique
classical solution Ṽnew, these Theorems provide two crucial estimates: first, the parabolic
Hölder norm of Ṽnew of order (2 + β) is estimated by the initial data and parabolic
Hölder norms of ũ and ṽ of order (1 + β). Second, there exists 0 < κ < 1 depending on
C0([0, T ];C1(Γ))-norms of ũ and ṽ such that the parabolic Hölder norm of Ṽnew of order
κ will be estimated in terms of system constants and C0([0, T ];C1(Γ))-norms of ũ and
ṽ. For a suitable choice of β depending on κ and α the estimates the parabolic β-Hölder
norm of Ṽnew is only depending on given data, see Proposition 2.6 for details. This
estimate in the parabolic Hölder norm of order β will be the basis to perform a fixed-
point argument for the updating procedure in the latter. The aforementioned strategy
of considering a given function Ṽ and finding an updated function Ṽnew is a decoupling
procedure of the given problem (2.4a)–(2.4f).

In Section 2.4 we use the updating strategy to show that there is a fixed-point, such
that Ṽ = Ṽnew holds. According to compactness arguments in terms of Hölder norms
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2 Existence Theory for classical solutions

and Schauder’s Fixed-Point Theorem, there exists a limit object (Ṽ , ũ, ṽ) of parabolic
Hölder class β. By repeating the updating structure we find that (Ṽ , ũ, ṽ) solves (2.5a)–
(2.5c) and (2.7a)–(2.7c), and therefore is also a solution of (2.4a)–(2.4f) of parabolic
Hölder class 2 + β. In particular, we apply a bootstrapping strategy to find that the
solutions are of parabolic Hölder class 2 + α as the initial data indicated. In addition,
we find that this system depends continuously on the given initial data. Consequently,
by rescaling, (V, u, v) given by (2.1)–(2.3) is then a classical solution of (FCRD). We
deduce uniqueness with the independent results of Chapter 3.

The tools and spaces we use in this Chapter are collected in Section A.1 of the Ap-
pendix. We introduce global constants that depend on the system constants, i.e. Λ̃1 > 0
will be specified later, we set

Λ̃2
def
= max{‖u0‖L∞(Γ), ‖v0‖L∞(Γ)} and Cfq

def
= max{Cf , Cq}. (2.8)

2.1.2 Auxiliary problems

First, we show that with the definition of the rescaled framework in (2.1)–(2.3) we find
(FCRD) to be equivalent to (2.4a)–(2.4f).

Assume that (V, u, v) is a classical solution of (FCRD) and λ > 0 fixed, then the
regularity of (V, u, v) carries over to (Ṽ , ũ, ṽ) by (2.1)–(2.3) and for example the time-
derivative of ũ is derived by

∂tũ = e−λt∂tu− λe−λtu

= e−λt (∆Γu+ f1(u, v)v − f2(u, v)u) − λe−λtu

= ∆Γũ+ f1(eλtṽ, eλtṽ)ṽ − f2(eλtũ, eλtṽ)ũ− λũ,

where we used the first equation of (FCRD). Note that now fi and qi are explicitly
depending on t for i = 1, 2. Therefore, we define

f̃i : R × R
+
0 × R

+
0 → R, f̃i(t, ũk, ṽk)

def
= fi(e

λtũk, e
λtṽk), (2.9)

q̃i : R × R
+
0 × R

+
0 → R, q̃i(t, ũk, ṽk)

def
= qi(e

λtũk, e
λtṽk), (2.10)

for i = 1, 2. The corresponding equations for ṽ and Ṽ follow in the same way. Since there
is no time-derivative included in the Robin-boundary condition, we simply multiply with
e−λt and find equation (2.4d). In addition, this rescaling operation leaves the initial con-
ditions untouched having ũ(·, 0) = u0, ṽ(·, 0) = v0 and Ṽ (·, 0) = V0, respectively, on the
corresponding domains. Therefore, classical solutions of (FCRD) are classical solutions
of (2.4a)–(2.4f).

Vice versa, if (Ṽ , ũ, ṽ) is a classical solution of (2.4a)–(2.4f) for fixed λ > 0, then there
exists a uniquely defined triple (V, u, v) given by (2.1)–(2.3), such that

∂tv = ∂t(e
λtṽ) = λeλtṽ + eλt∂tṽ

= λv + eλt
(

∆Γṽ − f̃1(t, ũ, ṽ)ṽ + f̃2(t, ũ, ṽ)ũ+ q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ − λṽ
)

= ∆Γv − f1(u, v)v + f2(u, v)u+ q1(u, v)V + q2(u, v)v
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2.1 Auxiliary problems and a priori estimates

holds on Γ × (0, T ). Here, we used the definition of the nonlinearities and that (2.4b)
holds true. With a similar calculation the other equations follow. The initial conditions
remain the same and the boundary condition follows by multiplying with eλt. In sum
we find that (2.4a)–(2.4f) is a rescaled system of (FCRD) and the solution concepts
coincide for fixed λ > 0. In the same fashion we find a justification for the subsystems
(2.5a)–(2.5c) and (2.7a)–(2.7c) from (2.4a)–(2.4f).

We need to introduce another auxiliary system that yields a suitable comparison
function for the solution of the bulk system. The crucial point about maximum bounds
and a priori estimates is to control the boundary flux condition of the inner variable
Ṽnew. Therefore, we introduce µ̃ > 0 to be a fixed constant to be chosen later. Since
we only work in the rescaled framework we introduce the problem of a heat equation
inside Ω, with constant boundary flux of amount µ̃ observed on a time-interval [0, T ]
with nonnegative initial data Ψ̃0 ∈ C2+α(Ω) given by















∂tΨ̃ = D∆Ψ̃ − λΨ̃ in Ω × (0, T ),

−D∇Ψ̃ · ν = −µ̃ on Γ × (0, T ),

Ψ̃(·, 0) = Ψ̃0 on Ω,

(2.11a)

(2.11b)

(2.11c)

where Ψ̃ : Ω × [0, T ] → R with Ψ̃ = Ψ̃(x, t). We assume that the compatibility condi-
tion regarding initial data is satisfied, i.e. −D∇Ψ̃0 · ν = −µ̃ holds. Then, according
to [LSU68, IV. Theorem 5.3, p. 320f.], (2.11a)–(2.11c) has a unique classical solution
Ψ̃ ∈ H2+β,(2+β)/2(ΩT ) for 0 < β ≤ α. In the latter it is necessary to obtain an upper
bound for Ψ̃ on Ω × [0, T ] and an explicit dependency on the diffusion constant D > 0.
Therefore, we formulate the following statement.

Lemma 2.1 (Uniform maximum bound for the auxiliary problem). Let Ψ̃ be the unique
solution of (2.11a)–(2.11c) of class H2+β,(2+β)/2(ΩT ). Then, there exists a constant
c0 = c0(Ω, D) > 0 being uniformly bounded for diffusion constants D ≥ 1, such that

Ψ̃(x, t) ≤ sup
Ω

Ψ̃0 + µ̃ec0T (2.12)

for any (x, t) ∈ Ω × [0, T ].

Proof. We define two subproblems to split boundary and initial conditions from the
original problems. First, let



















∂tϑ1 = D∆ϑ1 − λϑ1 in Ω × (0, T ),

−D∇ϑ1 · ν = −µ̃ on Γ × (0, T ),

ϑ1(·, 0) = Ψ̃0 − sup
Ω

Ψ̃0 on Ω

(2.13a)

(2.13b)

(2.13c)
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hold. Second, we investigate the behavior of



















∂tϑ2 = D∆ϑ2 − λϑ2 in Ω × (0, T ),

−D∇ϑ2 · ν = 0 on Γ × (0, T ),

ϑ2(·, 0) = sup
Ω

Ψ̃0 on Ω.

(2.14a)

(2.14b)

(2.14c)

We notice that the initial data is in both cases compatible to the Neumann-boundary
condition. Both problems, (2.13a)–(2.13c) and (2.14a)–(2.14c) have unique classical
solutions.

1st step: For 0 < δ ≤ 1/4 let hδ ∈ C∞(R) be a function satisfying

hδ(r) =















r for |r| ≤ δ,

2δ for r ≥ 3δ,

−2δ for r ≤ −3δ,

with a smooth monotone transition on (−3δ,−δ) and (δ, 3δ), respectively. Moreover,
|h′

δ| ≤ 1 and |h′′

δ | ≤ 1
δ holds. For Γ = ∂Ω we introduce the signed distance function

sdist : R3 → R given by

sdist(x,Γ)
def
= dist(x,Ω) − dist(x,Ωc) for x ∈ R

3.

For γ > 0, let φ : R3 → [1/2, 3/2] be defined as

φ(x)
def
= 1 − hδ

(

sdist(x,Γ)

γ

)

.

According to [GT01, Lemma 14.16, p. 355], sdist is in particular of class C2 sufficiently
close to the boundary of Ω since Γ was assumed to be smooth. Then, by the definition
of hδ and the assumptions on Γ, φ ∈ C2(R3) for γδ sufficiently small. In particular,
φ(x) = 1 for x ∈ Γ, 1 ≤ φ ≤ 3/2 on Ω. For the gradient of φ we find

∇φ(x) = −h′
δ

(

sdist(x,Γ)

γ

)

1

γ
∇sdist(x,Γ)

= − 1

γ
ν(x) for x ∈ Γ,

where we used that on Γ the gradient of the signed distance function is given by the

outer normal vector ν for Ω. Moreover, we set c∗
def
= γδ and find that there exists a

constant c1 > 0 depending on the geometry of Γ and δ and c2 > 0 depending on the
geometry of Γ, such that

|∇φ| ≤ c1

γ
and |∆φ| ≤ c2

γ2
|h′′

δ | ≤ c2

γc∗

holds.
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2.1 Auxiliary problems and a priori estimates

2nd step: Let λ > 0 be a constant to be chosen later. Let ϑ̃1 : Ω × [0, T ] → R be
defined as

ϑ̃1(x, t)
def
= e−λtϑ1(x, t)φ(x) for (x, t) ∈ Ω × [0, T ].

Hence, we obtain

∂tϑ̃1−D∆ϑ̃1 + λϑ̃1 + 2D∇ϑ̃1 · ∇φ
φ

= −λϑ̃1 + e−λtφ∂tϑ1 −De−λtφ∆ϑ1 − 2De−λt∇ϑ1 · ∇φ

−De−λtϑ1∆φ+ λϑ̃1 + 2De−λt∇ϑ1 · ∇φ+ 2De−λtϑ1

φ
|∇φ|2

= −λϑ̃1 + e−λtφ (D∆ϑ1 − λϑ1) −De−λtφ∆ϑ1

−De−λtϑ1∆φ+ λϑ̃1 + 2D
ϑ̃1

φ2
|∇φ|2

= ϑ̃1

(

2D
|∇φ|2
φ2

−D
∆φ

φ
− λ

)

, (2.15)

where we used (2.13a)–(2.13c). With λ = Dc1/γ2 + Dc2/γc∗ we find that the factor in the
brackets on the right-hand side of (2.15) is strictly negative. For the boundary condition
of ϑ̃1 we compute

−D∇ϑ̃1 · ν = −De−λtφ∇ϑ1 · ν −De−λtϑ1∇φ · ν

= −e−λtµ̃+Dϑ̃1
1

γ
, (2.16)

where we used the properties of φ from the first step.

3rd step: We set M
def
= supΩT

ϑ̃1 = ϑ̃1(x0, t0) and find that M ≤ 0 holds for t0 = 0 and

for all x0 ∈ Ω according to the given initial condition. If x0 ∈ Ω and t0 > 0, then

0 ≤
(

∂tϑ̃1 −D∆ϑ̃1 + 2D∇ϑ̃1 · ∇φ
φ

)

(x0, t0) < 0

if M > 0, which is a contradiction. For x0 ∈ Γ and t0 > 0 we obtain with (2.16)

0 ≥ −D∇ϑ̃1 · ν(x0, t0) = −e−λt0 µ̃+
D

γ
ϑ̃1(x0, t0).

Since ϑ̃1(x0, t0) = M , we find

M ≤ γµ̃e−λt0

D
≤ γµ̃

D
.
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2 Existence Theory for classical solutions

Consequently, ϑ̃1 ≤ γµ̃
D . We set γ

def
= D to find hat

ϑ1(x, t) ≤ eλtµ̃ ≤ e
(

c1
D

+
c2
c∗

)

tµ̃ ≤ ec0tµ̃

holds, for a constant c0 > 0 depending on the geometry of Γ and D remaining bounded
for positive diffusion constant D > 0.

4th step: We consider (2.14a)–(2.14c). We use [Jos07, Satz 4.1.1, p. 80] to obtain

ϑ2 ≤ sup
(Ω×{0})∪ΓT

ϑ2 = sup
Ω×{0}

ϑ2 = sup
Ω

Ψ̃0.

By setting Ψ̃
def
= ϑ1 + ϑ2, we reassamble the auxiliary problem (2.11a)–(2.11c) with max-

imum bound

Ψ̃(x, t) ≤ sup
Ω

Ψ̃0 + µ̃ec0T for all (x, t) ∈ Ω × [0, T ]

to finish the proof.

2.1.3 Nonnegativity and a priori estimates

In the following we work in the rescaled framework considering variables Ṽ , Ṽnew, ũ, ṽ
introduced in Subsection 2.1.2. In this case the purpose of rescaling is the following: we
want to find a finite but large parameter λ > 0, such that the values of all members of
the updating procedure remain in a nonnegative rectangular, namely [0, Λ̃1] × [0, Λ̃2]2

for Λ̃1 > 0, Λ̃2 > 0. In Lemma 2.2 we prove that the updating procedure accounts for
nonnegative solutions, where in Lemma 2.3 we deduce maximum bounds for the updating
procedure.

Lemma 2.2. Let Assumptions 1.1–1.2 hold. Assume Ṽ is nonnegative. For a constant
C = C(Ω) > 0 set

λ ≥ max

{

C(Ω)C2
q

D
, 2(Cf + Cq)

}

. (2.17)

Then, the updating procedure yields that Ṽnew, ũ, ṽ satisfying (2.5a)–(2.5c) and (2.7a)–
(2.7c) are all nonnegative for all times t ∈ (0, T ).

Proof. We assumed that (Ṽnew, ũ, ṽ) satisfy the given rescaled systems. Therefore, we
find that the negative parts given by

Ṽ −
new

def
= max{−Ṽnew, 0}, ũ− def

= max{−ũ, 0} and ṽ− def
= max{−ṽ, 0},

are admissible test-functions for (2.5a)–(2.5c) and (2.7a)–(2.7c). We use −Ṽ −
new, −ũ− and

−ṽ− as testfunctions and the fact that ṽ = ṽ+ − ṽ− ≥ −ṽ− holds, ũ ≥ −ũ− respectively.
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2.1 Auxiliary problems and a priori estimates

With the nonnegativity of Ṽ we obtain for the sum of (2.5a)–(2.5c) and (2.7a)–(2.7c)
that

−1

2

∫

Ω

d

dt
|Ṽ −

new|2 − 1

2

∫

Γ

(

d

dt
|ũ−|2 +

d

dt
|ṽ−|2

)

=

∫

Ω
(∂tṼnew)(−Ṽ −

new) +

∫

Γ

(

(∂tũ)(−ũ−) + (∂tṽ)(−ṽ−)
)

=

∫

Ω

(

λ(Ṽ −
new)2 +D|∇Ṽ −

new|2
)

+

∫

Γ

(

λ((ũ−)2 + (ṽ−)2) + |∇Γũ
−|2 + d|∇Γṽ

−|2
)

+

∫

Γ

(

−q̃1(t, ũ, ṽ)(Ṽ −
new)2 + q̃2(t, ũ, ṽ)ṽṼ −

new + q̃1(t, ũ, ṽ)Ṽ ṽ− − q̃2(t, ũ, ṽ)(ṽ−)2
)

+

∫

Γ

(

−f̃1(t, ũ, ṽ)(ṽ−)2 + f̃2(t, ũ, ṽ)ũṽ−
)

+

∫

Γ

(

f̃1(t, ũ, ṽ)ṽũ− − f̃2(t, ũ, ṽ)(ũ−)2
)

(2.18)

holds. We estimate (2.18) from below by
∫

Ω

(

λ(Ṽ −
new)2 +D|∇Ṽ −

new|2
)

+

∫

Γ

(

λ((ũ−)2 + (ṽ−)2) + |∇Γũ
−|2 + d|∇Γṽ

−|2
)

+

∫

Γ

(

−Cq(Ṽ −
new)2 − Cqṽ

−Ṽ −
new − Cq(ṽ−)2

)

+

∫

Γ

(

−Cf (ṽ−)2 − Cf ũ
−ṽ− − Cf ṽ

−ũ− − Cf (ũ−)2
)

≥
∫

Ω

(

λ(Ṽ −
new)2 +D|∇Ṽ −

new|2
)

+

∫

Γ

(

λ(ũ−)2 + (ṽ−)2) + |∇Γũ
−|2 + d|∇Γṽ

−|2
)

−
∫

Γ

(

3

2
Cq(Ṽ −

new)2 +

(

3

2
Cq + 2Cf

)

(ṽ−)2 + 2Cf (ũ−)2
)

, (2.19)

where we applied Young’s Inequality, estimates for the negative parts and Assump-
tion 1.2 which remains valid for f̃i and q̃i for i = 1, 2. We apply the Trace Theorem, see
Lemma A.5 from the Appendix with ε = D/3Cq to find that the right-hand side of (2.19)
is estimated from below by

∫

Ω

(

λ−
C(Ω)C2

q

D

)

(Ṽ −
new)2 +

D

2

∫

Ω
|∇Ṽ −

new|2 +

∫

Γ
(λ− 2Cf )(ũ−)2 +

∫

Γ
|∇Γũ

−|2

+

∫

Γ

(

λ−
(

3

2
Cq + 2Cf

))

(ṽ−)2 +

∫

Γ
d|∇Γṽ

−|2 (2.20)

with a constant C = C(Ω) > 0. We obtain from (2.19) and (2.20) with λ > 0 from (2.17)
that

1

2

∫

Ω

d

dt
|Ṽ −

new|2 +
1

2

∫

Γ

(

d

dt
|ũ−|2 +

d

dt
|ṽ−|2

)

≤ 0

holds, therefore the solutions remain nonnegative whenever the initial values are non-
negative.
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2 Existence Theory for classical solutions

Lemma 2.3 (A priori estimates). Let Assumptions 1.1–1.2 hold, Λ̃2 and Cfq be given
as in (2.8). Let

λ ≥ max

{

C2
fq

D
C(Ω), 4Cfq, Cfq

(

1 + C1Cfq +
2‖V0‖L∞(Ω) + 1

Λ̃2

)}

, (2.21)

such that Condition (2.17) from Lemma 2.2 is satisfied with C1 = C1(T,Ω, D) > 0 and
C(Ω) > 0. There exists a constant Λ̃1 > 0 depending on T,D,Cf , Cq,Ω, V0, u0 and v0

with the following properties:

(i) If ‖Ṽ ‖L∞(ΩT ) ≤ Λ̃1 and ũ, ṽ solve (2.5a)–(2.5c), then ‖ũ‖L∞(ΓT ), ‖ṽ‖L∞(ΓT ) ≤ Λ̃2

and,

(ii) if ‖ũ‖L∞(ΓT ), ‖ṽ‖L∞(ΓT ) ≤ Λ̃2 and Ṽnew is the solution of (2.7a)–(2.7c), then the

updated function Ṽnew remains essentially bounded by Λ̃1, i.e.

‖Ṽnew‖L∞(ΩT ) ≤ Λ̃1

uniformly in every update step.

Proof. The function (Ṽnew − Ψ̃)+ is an admissible testfunction for the auxiliary system
(2.11a)–(2.11c), with partial integration we find that

0 =

∫

Ω
(∂tΨ̃)(Ṽnew − Ψ̃)+ +

∫

Ω
D∇Ψ̃ · ∇(Ṽnew − Ψ̃)+

+ λ

∫

Ω
Ψ̃(Ṽnew − Ψ̃)+ −

∫

Γ
µ̃(Ṽnew − Ψ̃)+ (2.22)

holds. By testing (2.7a)–(2.7c) with (Ṽnew − Ψ̃)+ we obtain that

0 =

∫

Ω
(∂tṼnew)(Ṽnew − Ψ̃)+ +D

∫

Ω
∇Ṽnew · ∇(Ṽnew − Ψ̃)+

+

∫

Γ
(q̃1(t, ũ, ṽ)Ṽnew − q̃2(t, ũ, ṽ)ṽ)(Ṽnew − Ψ̃)+ + λ

∫

Ω
Ṽnew(Ṽnew − Ψ̃)+ (2.23)

holds. Analogously, we find for (2.5a)–(2.5c) tested by (ũ− Λ̃2)+ and (ṽ − Λ̃2)+ that

0 =

∫

Γ
(∂tũ)(ũ− Λ̃2)+ +

∫

Γ
∇Γũ · ∇Γ(ũ− Λ̃2)+ + λ

∫

Γ
ũ(ũ− Λ̃2)+

+

∫

Γ
(−f̃1(t, ũ, ṽ)ṽ + f̃2(t, ũ, ṽ)ũ)(ũ− Λ̃2)+, (2.24)

0 =

∫

Γ
(∂tṽ)(ṽ − Λ̃2)+ + d

∫

Γ
∇Γṽ · ∇Γ(ṽ − Λ̃2)+ + λ

∫

Γ
ṽ(ṽ − Λ̃2)+

+

∫

Γ

(

f̃1(t, ũ, ṽ)ṽ − f̃2(t, ũ, ṽ)ũ− q̃1(t, ũ, ṽ)Ṽ + q̃2(t, ũ, ṽ)ṽ
)

(ṽ − Λ̃2)+. (2.25)
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2.1 Auxiliary problems and a priori estimates

We drop the arguments of f̃i and q̃i for i = 1, 2, substract (2.22) from (2.23) and add
this to the sum of (2.24) and (2.25) to find

1

2

d

dt

(
∫

Ω
(Ṽnew − Ψ̃)2

+ +

∫

Γ
(ṽ − Λ̃2)2

+ +

∫

Γ
(ũ− Λ̃2)2

+

)

=

∫

Ω
(∂t(Ṽnew − Ψ̃))(Ṽnew − Ψ̃)+ +

∫

Γ
(∂tṽ)(ṽ − Λ̃2)+ +

∫

Γ
(∂tũ)(ũ− Λ̃2)+

= −D
∫

Ω
|∇(Ṽnew − Ψ̃)+|2 −

∫

Γ
|∇Γ(ũ− Λ̃2)+|2 − d

∫

Γ
|∇Γ(ṽk − Λ̃2)+|2

− λ

∫

Ω
(Ṽnew − Ψ̃)2

+ − λ

∫

Γ
ũ(ũ− Λ̃2)+ − λ

∫

Γ
ṽ(ṽ − Λ̃2)+

+

∫

Γ

(

f̃1ṽ − f̃2ũ
)

(ũ− Λ̃2)+ +

∫

Γ

(

−f̃1ṽ + f̃2ũ+ q̃1Ṽ − q̃2ṽ
)

(ṽ − Λ̃2)+

+

∫

Γ

(

−q̃1Ṽnew + q̃2ṽ
)

(Ṽnew − Ψ̃)+ − µ̃

∫

Γ
(Ṽnew − Ψ̃)+. (2.26)

We have to control the right-hand side of (2.26) appropriately. To obtain a higher
clarity we demonstrate the arising computations separately. With Cfq > 0 we find for
the following nonlinear expressions that

∫

Γ

(

f̃1ṽ − f̃2ũ
)

(ũ− Λ̃2)+

≤
∫

Γ
Cfqṽ(ũ− Λ̃2)+ =

∫

Γ
Cfq(ṽ − Λ̃2 + Λ̃2)(ũ− Λ̃2)+

=

∫

Γ
Cfq(ṽ − Λ̃2)(ũ− Λ̃2)+ +

∫

Γ
CfqΛ̃2(ũ− Λ̃2)+

≤
∫

Γ

Cfq

2
(ṽ − Λ̃2)2

+ +

∫

Γ

Cfq

2
(ũ− Λ̃2)2

+ +

∫

Γ
CfqΛ̃2(ũ− Λ̃2)+, (2.27)

holds, where we used Young’s Inequality. With ‖Ṽ ‖L∞(ΩT ) ≤ Λ̃1 we obtain

∫

Γ

(

−f̃1ṽ + f̃2ũ+ q̃1Ṽ − q̃2ṽ
)

(ṽ − Λ̃2)+

≤
∫

Γ

Cfq

2

(

(ũ− Λ̃2)2
+ + (ṽ − Λ̃2)2

+

)

+

∫

Γ
Cfq

(

Λ̃2 + Λ̃1

)

(ṽ − Λ̃2)+. (2.28)
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2 Existence Theory for classical solutions

The remaining nonlinear expression is defined on Γ but has to be controlled by ex-
pressions defined on Ω. Therefore, the Trace Theorem according to Lemma A.5 with
ε = D/Cfq and a constant C = C(Ω) > 0 yields

∫

Γ

(

−q̃1Ṽnew + q̃2ṽ
)

(Ṽnew − Ψ̃)+

≤
∫

Γ
Cfqṽ(Ṽnew − Ψ̃)+

=

∫

Γ
Cfq(ṽ − Λ̃2)(Ṽnew − Ψ̃)+ +

∫

Γ
CfqΛ̃2(Ṽnew − Ψ̃)+

≤
∫

Γ

Cfq

2
(ṽ − Λ̃2)2

+ +

∫

Γ

Cfq

2
(Ṽnew − Ψ̃)2

+ +

∫

Γ
CfqΛ̃2(Ṽnew − Ψ̃)+

≤
∫

Γ

Cfq

2
(ṽ − Λ̃2)2

+ +
D

2

∫

Ω
|∇(Ṽnew − Ψ̃)+|2

+

∫

Ω

C2
fq

2D
C(Ω)(Ṽnew − Ψ̃)2

+ +

∫

Γ
CfqΛ̃2(Ṽnew − Ψ̃)+. (2.29)

Moreover, we notice that

−λ
∫

Γ
ũ(ũ− Λ̃2)+ = −λ

∫

Γ
(ũ− Λ̃2)2

+ − λ

∫

Γ
Λ̃2(ũ− Λ̃2)+, (2.30)

−λ
∫

Γ
ṽ(ṽ − Λ̃2)+ = −λ

∫

Γ
(ṽ − Λ̃2)2

+ − λ

∫

Γ
Λ̃2(ṽ − Λ̃2)+ (2.31)

holds. Then, we estimate the right-hand side of (2.26) from above by using (2.27)–(2.31)
by

−D

2

∫

Ω
|∇(Ṽnew − Ψ̃)+|2 +

(

C2
fq

2D
C(Ω) − λ

)

∫

Ω
(Ṽnew − Ψ̃)2

+

+ (Cfq − λ)

∫

Γ
(ũ− Λ̃2)2

+ +

(

3

2
Cfq − λ

)
∫

Γ
(ṽ − Λ̃2)2

+

+ (Cfq − λ)Λ̃2

∫

Γ
(ũ− Λ̃2)+ + (Cfq(Λ̃1 + Λ̃2) − λΛ̃2)

∫

Γ
(ṽ − Λ̃2)+

+ (CfqΛ̃2 − µ̃)

∫

Γ
(Ṽnew − Ψ̃)+, (2.32)

where we dropped gradient expressions on Γ. Here, we choose µ̃ = CfqΛ̃2 and choose
Ψ̃0, such that Ψ̃0 satisfies the compatibility condition

−D∇Ψ̃0 · ν = −CfqΛ̃2,

V0 ≤ Ψ0 and ‖Ψ̃0‖L∞(Ω) ≤ 2‖V0‖L∞(Ω) + 1, which accounts for vanishing initial of V0.

According to this choice we apply Lemma 2.1 and (2.12) to find that Ψ̃ is essentially
bounded on ΩT with a constant C1 = C1(D,Ω, T ) > 0, i.e.

‖Ψ̃‖L∞(ΩT ) ≤ ‖Ψ̃0‖L∞(Ω) + C1CfqΛ̃2.
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2.1 Auxiliary problems and a priori estimates

We extend the condition for λ from (2.17) and choose

λ ≥ max

{

C2
fq

D
C(Ω), 4Cfq, Cfq

(

1 + C1Cfq +
2‖V0‖L∞(Ω)+1

Λ̃2

)}

,

which is solely depending on system constants. Considering

Λ̃1
def
= 2‖V0‖L∞(Ω) + 1 + C1CfqΛ̃2,

then all coefficients of (2.32) are less or equal zero. The settings above and the estimates
from (2.26)–(2.32) imply that

d

dt

(

‖(Ṽnew − Ψ̃)+(t)‖2
L2(Ω) + ‖(ũk − Λ̃2)+(t)‖2

L2(Γ) + ‖(ṽk − Λ̃2)+(t)‖2
L2(Γ)

)

≤ 0

holds for all t ∈ (0, T ). We obtain with the assumptions of this lemma that

‖(Ṽnew−Ψ̃)+(t)‖2
L2(Ω) + ‖(ũk − Λ̃2)+(t)‖2

L2(Γ) + ‖(ṽk − Λ̃2)+(t)‖2
L2(Γ)

≤ ‖V0 − Ψ0‖2
L2(Ω) + ‖u0 − Λ̃2‖2

L2(Γ) + ‖v0 − Λ̃2‖2
L2(Γ) = 0 (2.33)

for every t ∈ (0, T ). In particular, assertion (i) follows, since the boundedness for ũ and
ṽ just relies on the boundedness assumption for Ṽ and is independent from calculations
for Ṽnew. For the rescaled functions we conclude that there exists a finite λ > 0, such
that

‖ũ‖L∞(ΓT ), ‖ṽ‖L∞(ΓT ) ≤ Λ̃2,

‖Ṽnew‖L∞(ΩT ) ≤ ‖Ψ̃‖L∞(ΩT ) ≤ 2‖V0‖ + 1 + C1CfqΛ̃2

where we used Lemma 2.1. These maximum bounds are only depending on the initial
values, T and system constants. Therefore, the second assertion holds.
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2 Existence Theory for classical solutions

2.2 Solutions on the boundary

In this Subsection we find that there exist solutions ũ, ṽ of (2.5a)–(2.5c) in the parabolic
Hölder space H2+β,(2+β)/2(ΓT ), where 0 < β ≤ α if only u0, v0 are of class C2+α(Γ) and

Ṽ ∈ Hβ,β/2(ΩT ) holds. We denote the corresponding Hölder norms by | · |(2+β)
ΓT

and

| · |(2+β)
ΩT

, respectively. A detailed description of Hölder spaces is presented in the Ap-
pendix, see Section A.1. For given q ∈ (2,∞) we use parabolic Sobolev spaces denoted
by W 2,1

q (ΓT ), see [LSU68, p. 5] for further details. Here, let ‖ · ‖2,1
q,ΓT

denote the corre-
sponding norm. We prove the following statement:

Proposition 2.4 (Solutions on the boundary). Let Assumptions 1.1–1.2 hold, let T > 0
and assume 0 < β ≤ α. Let ‖Ṽ ‖L∞(ΩT ) < Λ̃1 for Λ̃1 > 0 from Lemma 2.3, let λ > 0

satisfy Conditions (2.17), (2.21) and Ṽ be of class Hβ,β/2(ΩT ). Then, the following
assertions hold:

(i) there exists a unique solution (ũ, ṽ) ∈
(

H2+β,(2+β)/2(ΓT )
)2

of (2.5a)–(2.5c),

(ii) for a constant Cuv
1 = Cuv

1 (T,Ω, β) > 0 the solution (ũ, ṽ) satisfies the estimates

|ũ|(2+β)
ΓT

, |ṽ|(2+β)
ΓT

≤ Cuv
1

(

|Ṽ |(β)
ΩT

+ ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

)

,

(iii) for all 0 ≤ σ < 1 there exists a constant Cuv
2 = Cuv

2 (T,Ω, σ) > 0, such that

|ũ|(σ)
ΓT
, |ṽ|(σ)

ΓT
≤ Cuv

2

(

Λ̃1 + Λ̃2 + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

)

,

(iv) for all 0 ≤ σ < 1 there exists a constant Cuv
3 > 0 depending on T , Λ̃1, Λ̃2, σ,

‖u0‖C2+α(Γ) and ‖v0‖C2+α(Γ), such that

‖ũ‖C0([0,T ];C1+σ(Γ)), ‖ṽ‖C0([0,T ];C1+σ(Γ)) ≤ Cuv
3 .

Before we start with the proof of Proposition 2.4, we have to prove Lemma 2.5. In the
proof we are referring to a family of local charts {ϕα}α to cover the smooth manifold
Γ. Since Γ is compact we find that there exists a finite number N ∈ N and local charts
ϕi : Ui ⊂ R

2 → Wi ⊂ Γ for i = 1, . . . , N , such that Γ is covered. These local charts imply
a pull back metric denoted by g. This atlas will be denoted by A = (Wi, ϕi)i=1,...,N . A
more detailed description is presented in Subsection A.1.3 in the Appendix.

Lemma 2.5. Let d ≥ 1 and q ∈ (2,∞) be arbitrary. We assume that F ∈ C0(Γδ) for
given δ > 0 and w0 ∈ C2(Γ). Let

w ∈ C([0, δ), C2(Γ)) ∩ C2,1(Γ × (0, δ))

be a solution of
{

∂tw − d∆Γw = F on Γ × (0, δ),

w(·, 0) = w0 on Γ.

(2.34a)

(2.34b)

26



2.2 Solutions on the boundary

Then, for any q ≥ 2 there exists a constant Cw
q > 0 depending on δ, q and Γ,such that

‖w‖2,1
q,Γδ

≤ Cw
q

(

‖F‖C0(Γδ) + ‖w0‖C2(Γ)

)

holds. Moreover, for any 0 ≤ σ < 1 there exists a constant Cw
σ > 0 depending on δ, q, σ

and Γ, such that

‖w‖C0([0,δ];C1+σ(Γ)) + |w|(σ)
Γδ

≤ Cw
σ

(

‖F‖C0(Γδ) + ‖w0‖C2+α(Γ)

)

.

Proof. The proof consists of three steps. First, we localize the given solution and
pull back to a family of flat domains in the plane to find an auxiliary problem. For
the auxiliary problem we establish estimates in parabolic Sobolev spaces which will be
applied to the original problem resulting in the first claim. In addition, we deduce
suitable estimates in Hölder spaces of order σ in the third step.

1st step: In the following we choose a suitable atlas A. Let W
∼

i ⊂⊂ Wi ⊂ Γ for
i = 1, . . . , N be compactly included subsets of Γ, such that

N
⋃

i=1

W
∼

i ⊃ Γ

holds and such that local parametrizations ϕi : B2(0, 2) → Wi exist, such that

ϕi

(

B2(0, 2)
)

= Wi and ϕi

(

B2(0, 1)
)

= W
∼

i

holds for all i = 1, . . . , N . Let B2(0, r) denote the ball of radius r with center zero in
R

2. By restricting ourselves to W
∼

i on Γ or B2(0, 2) in R
2, respectively, and setting

w∼ i
def
= w ◦ ϕi we obtain that w∼ i satisfies







∂tw
∼

i − dA
∼

: D2w∼ i +B
∼ · ∇w∼ i = F

∼

i in B2(0, 2) × (0, δ),

w∼ i(·, 0) = w∼ i,0
def
= w0 ◦ ϕi in B2(0, 2),

(2.35a)

(2.35b)

where A
∼

, B
∼

: B2(0, 2) → R are uniformly bounded by a constant determined only by the
atlas and where F

∼

i = F ◦ ϕi.
2nd step: We will next establish ‖ · ‖2,1

q,Γδ
-estimates for w∼ i for an arbitrary fixed

q ≥ 2. Therefore, we first assume that w∼ i,0 = 0 and extend w∼ i by setting w∼ i = 0 on
B2(0, 2) × (−∞, 0). Moreover, we set

F
∼

(·, t) = 0 for t ∈ (−∞, 0),

to find that w∼ i is a W 2,1-solution of

∂tw
∼

i − dA
∼

: D2w∼ i +B
∼ · ∇w∼ i = F

∼

i in B2(0, 2) × (−∞, δ). (2.35a’)
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2 Existence Theory for classical solutions

It follows from the interior Lp-estimates [Lie96, Theorem 7.22, p. 175] that

‖D2w∼ i‖Lq(B2(0,1)×(0,δ)) + ‖∂tw
∼

i‖Lq(B2(0,1)×(0,δ))

≤ c1

(

‖F∼ i‖Lq(B2(0,2)×(0,δ)) + ‖w∼ i‖Lq(B2(0,2)×(0,δ))

)

(2.36)

holds, where c1 > 0 only depends on the diffusion constant d and the atlas A. Now

‖F∼ i‖Lq(B2(0,2)×(0,δ)) ≤ c2‖F‖Lq(Γ×(0,δ)) and ‖w∼ i‖Lq(B2(0,2)×(0,δ)) ≤ c3‖w‖Lq(Γ×(0,δ))

for constants c2, c3 > 0 only depending on A. Using an Ehrling-type inequality [Rou13,
p. 207] we deduce that

‖w∼ i‖2,1
q,(B2(0,1)×(0,δ)) ≤ c4

(

‖F‖Lq(Γ×(0,δ)) + ‖w‖Lq(Γ×(0,δ))

)

(2.37)

for c4 > 0. In the case of general initial datum w∼ i,0 we can apply this result to w∼ i −w∼ i,0

and deduce that

‖w∼ i‖2,1
q,(B2(0,1)×(0,δ)) ≤ c5

(

‖F‖Lq(Γ×(0,δ)) + ‖w‖Lq(Γ×(0,δ)) + ‖w0‖C2(Γ)

)

for c5 > 0 depending on d, A and δ. Using that w∼ i = w ◦ ϕi we find

‖w‖2,1

q,W
∼

i×(0,δ)
≤ c6

(

‖F‖Lq(Γ×(0,δ)) + ‖w‖Lq(Γ×(0,δ)) + ‖w0‖C2(Γ)

)

and, since Γ ⊂ ∪N
i=1W

∼

i we obtain

‖w‖2,1
q,Γ×(0,δ) ≤ c7

(

‖F‖Lq(Γ×(0,δ)) + ‖w‖Lq(Γ×(0,δ)) + ‖w0‖C2(Γ)

)

, (2.38)

where c7 > 0 only depends on d, A and δ. Next, we observe with (2.38) that

d

dt
‖w(·, t)‖q

Lq(Γ) =

∫

Γ
q∂tw(·, t)|w(·, t)|q−1

≤ q‖∂tw(·, t)‖Lq(Γ)‖w(·, t)‖q−1
Lq(Γ)

≤ c8

(

‖F (·, t)‖Lq(Γ) + ‖w(·, t)‖Lq(Γ×(0,δ)) + ‖w0‖C2(Γ)

)

‖w(·, t)‖q−1
Lq(Γ)

≤ c8

(

‖w(·, t)‖q
Lq(Γ) +

(

‖F (·, t)‖Lq(Γ) + ‖w0‖C2(Γ)

)

‖w(·, t)‖q−1
Lq(Γ)

)

≤ c8‖w(·, t)‖q
Lq(Γ) + c8

(

‖F (·, t)‖q
Lq(Γ) + ‖w0‖q

C2(Γ)

)

, (2.39)

where c8 = c8(q) > 0 changes from line to line and we used Hölder’s and Young’s In-
equality. We apply Gronwall’s Lemma A.9 to (2.39) to find a bound for the Lq-norm of
w∼ i and in particular

‖w‖Lq(Γ×(0,δ)) ≤ c9

(

‖F‖Lq(Γ×(0,δ)) + ‖w0‖C2(Γ)

)

(2.40)
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2.2 Solutions on the boundary

with a constant c9 > 0. We finally obtain from (2.40) and (2.38) that

‖w‖2,1
q,Γ×(0,δ) ≤ Cw

q

(

‖F‖Lq(Γ×(0,δ)) + ‖w0‖C2(Γδ)

)

, (2.41)

where Cw
q > 0 depends on δ, d, q and A and therefore on the geometry of Γ.

3rd step: It remains to prove the estimate for the parabolic Hölder norm for |w|(σ)
Γδ

and

its first spatial derivative. In the flat case, such that Γ ⊂ R
2 would be an open domain

with sufficiently smooth boundary, [LSU68, Lemma 3.3, p. 80] implies the following. For
any 0 ≤ σ < 1, we choose q ∈ (4,∞), such that q > 4/(1 − σ) holds. Then, there exist
constants c∼1, c

∼

2 > 0 depending on q, σ and Γ, such that

|w∼ i|(σ)
Γδ

≤ c∼1‖w∼ i‖2,1
Γ×(0,δ) and |Dw∼ i|(σ)

Γδ
≤ c∼2‖w∼ i‖2,1

Γ×(0,δ)

holds. Using a suitable atlas A as above one therefore deduces the estimates claimed in
the Lemma.

Proof of Proposition 2.4. We divide the proof into three steps. We begin with an
existence and uniqueness result for solutions (ũ, ṽ) of (2.5a)–(2.5c) for a short-time δ > 0
according to the results of Lamm. Afterwards, we treat the given equations separately
and find suitable estimates in parabolic Sobolev spaces and parabolic Hölder spaces with
the help of Lemma 2.5. According to uniform estimates of parabolic Hölder norms of
order (2+α) we deduce that the short-time solution can be continued to [0, T ] such that
assertions (i)–(iv) hold.

1st step: For convenience, we restate system (2.5a)–(2.5c), i.e.


























∂tũ = ∆Γũ+ f̃1(t, ũ, ṽ)ṽ − f̃2(t, ũ, ṽ)ũ− λũ on Γ × (0, T ),

∂tṽ = d∆Γṽ − f̃1(t, ũ, ṽ)ṽ + f̃2(t, ũ, ṽ)ũ

+ q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ − λṽ on Γ × (0, T ),

ũ(·, 0) = u0 and ṽ(·, 0) = v0 on Γ,

(2.5a)

(2.5b)

(2.5c)

where Ṽ is assumed to be essentially bounded by Λ̃1 > 0 from Lemma 2.3 and being in the
space Hβ,β/2(ΩT ). Then, for the system (2.5a)–(2.5c), we find with Assumption 1.2 that
the coefficients are β-Hölder continuous. Then, [Lam02, Satz 2.4.5, p. 57] in combination
with [Lam02, Bemerkung 2.4.4, p. 56] and the observation that this Theorem holds also
true for systems of strongly parabolic equations on a compact manifold Γ yields that there
exists a δ > 0 and a unique solution (ũ, ṽ) of (2.5a)–(2.5c) of class H2+β,(2+β)/2(Γδ). We
notice that δ > 0 depends on the Lipschitz-constants of the nonlinearities, d, ‖u0‖C2+α(Γ),

‖v0‖C2+α(Γ), |Ṽ |(β)

ΩT
.

2nd step: We treat (2.5a) and (2.5b) on (0, δ) separately to work with scalar parabolic
equations on Γ. According to the regularity assumptions for the initial conditions u0 and
v0 we deduce parabolic regularity results in Sobolev spaces and Hölder spaces to find the
desired estimates afterwards. We begin with the observation that since ‖Ṽ ‖L∞(ΩT ) ≤ Λ̃1

Lemma 2.3 is applicable. We find that

‖ũ‖L∞(Γδ), ‖ṽ‖L∞(Γδ) ≤ Λ̃2
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2 Existence Theory for classical solutions

for Λ̃2 > 0 from Condition (2.8). Let functions F̃ , G̃ : Γ × (0, δ) → R be given by

F̃ (x, t)
def
= f̃1(t, ũ(x, t), ṽ(x, t))ṽ(x, t) − f̃2(t, ũ(x, t), ṽ(x, t))ũ(x, t) − λũ(x, t),

G̃(x, t)
def
= −f̃1(t, ũ(x, t), ṽ(x, t))ṽ(x, t) + f̃2(t, ũ(x, t), ṽ(x, t))ũ(x, t)

+ q̃1(t, ũ(x, t), ṽ(x, t))Ṽ (x, t) − q̃2(t, ũ(x, t), ṽ(x, t))ṽ(x, t) − λṽ(x, t),

for (x, t) ∈ Γ × (0, δ). Since ũ, ṽ and Ṽ are known objects we obtain a pair of scalar
parabolic equations given by















∂tũ = ∆Γũ+ F̃ on Γ × (0, δ),

∂tṽ = d∆Γṽ + G̃ on Γ × (0, δ),

ũ(·, 0) = u0 and ṽ(·, 0) = v0 on Γ.

(2.43a)

(2.43b)

(2.43c)

With the deductions above we have

‖F̃‖L∞(Γδ) ≤ c1Λ̃2 and ‖G̃‖L∞(Γδ) ≤ c1(Λ̃1 + Λ̃2) (2.44)

where c1 > 0 is a constant depending on the system constants Cf , Cq and on λ. Note
that F̃ and G̃ are continuous on Γ × [0, δ] and ũ is a unique solution of (2.43a) and ṽ is
a unique solution of (2.43b) with the corresponding initial data.

Then, Lemma 2.5 implies that for any q ≥ 2 there exists constants C ũ
q , C

ṽ
q > 0 de-

pending on δ, q and Γ, such that the following estimates for parabolic Sobolev norms
hold

‖ũ‖2,1
q,Γδ

≤ C ũ
q

(

‖F̃‖C0(Γδ) + ‖u0‖C2(Γ)

)

,

‖ṽ‖2,1
q,Γδ

≤ C ṽ
q

(

‖G̃‖C0(Γδ) + ‖v0‖C2(Γ)

)

,

and for any 0 ≤ σ < 1 there exists q ≥ 4 satisfying q > 1/(1 − σ) and constants C ũ
σ , C

ṽ
σ > 0

depending on δ, q, σ and Γ such that the parabolic σ-Hölder norms are estimated by

|ũ|(σ)
Γδ

≤ C ũ
σ

(

‖F̃‖C0(Γδ) + ‖u0‖C2(Γ)

)

, (2.45)

|ṽ|(σ)
Γδ

≤ C ṽ
σ

(

‖G̃‖C0(Γδ) + ‖v0‖C2(Γ)

)

. (2.46)

In particular, this holds true for σ = β. Moreover, we obtain that with Lemma 2.5 that

‖ũ‖C0([0,δ];C1+σ(Γ)) ≤ C ũ
σ

(

‖F̃‖C0(Γδ) + ‖u0‖C2(Γ)

)

,

‖ṽ‖C0([0,δ];C1+σ(Γ)) ≤ C ṽ
σ

(

‖G̃‖C0(Γδ) + ‖v0‖C2(Γ)

)

.

With this in hand we go back to the definition of F̃ and G̃ and find with the regularity
of f̃1, f̃2, q̃1 and q̃2 and, additionally with Ṽ ∈ Hβ,β/2(ΩT ) that there exists a constant
CF G = CF G(δ,Γ, β) > 0 such that

|F̃ |(β)
Γδ
, |G̃|(β)

Γδ
≤ CF G

(

Λ̃1 + Λ̃2 + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ) + |Ṽ |(β)
ΩT

)

.
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This regularity property of the right-hand sides of (2.43a)–(2.43b) gives with [Lam02,
Satz 2.4.3, p. 55] in combination with [Lam02, Bemerkung 2.4.4., p. 56] an estimate on
the Hölder norms of class (2 + β), i.e. there exists a constant Cuv = Cuv(δ,Γ, β) > 0
such that

|ũ|(2+β)
Γδ

, |ṽ|(2+β)
Γδ

≤ Cuv

(

Λ̃1 + Λ̃2 + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ) + |Ṽ |(β)
ΩT

)

holds on (0, δ). Moreover, we deduce from (2.45) and (2.46) that

‖ũ‖C0([0,δ];C1+σ(Γ)), ‖ṽ‖C0([0,δ];C1+σ(Γ)) ≤ C
∼ uv

3 ,

where C
∼ uv

3 depends on δ, Λ̃1, Λ̃2, σ and the initial data of ũ and ṽ of class 2 + α.
3rd step: If δ = T holds, then assertions (i)–(iii) follows. If δ < T , then we assume

that (0, δ) is the maximal interval of existence for ũ and ṽ. Pick any t̂ ∈ (δ − ε, δ), ε > 0
and let δ2 > 0. We introduce û, v̂ : Γ × (0, δ2) → R satisfying (2.5a)-(2.5b) with initial
condition û(·, 0) = ũ(·, t̂) and v̂(·, 0) = ṽ(·, t̂). The second step implies that the initial
conditions have enough regularity to apply the first step. Then, (û, v̂) is a solution on
(t̂, t̂+ δ2) of class H2+β,(2+β)/2(Γ × [t̂, t̂ + δ2]). We notice that according to the first
step, the existence time δ2 > 0 is independent of t̂ and only depending on ‖ũ(t̂)‖C2+β(Ω),

‖ṽ(t̂)‖C2+β(Ω), the nonlinearities and |Ṽ |(β)
ΩT

. Therefore, t̂+ δ2 > δ for (δ − t̂) ≪ 1 suffi-

ciently small. This yields that (0, δ) was not maximal, a contradiction to our assumption.
Step two implies also that the claimed estimates hold on (0, T ). In sum, we find that
assertions (i)–(iv) hold.
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2 Existence Theory for classical solutions

2.3 Solutions in the bulk

In this section we obtain that there exists a unique solution Ṽnew of (2.7a)–(2.7c) for
given ũ, ṽ in suitable parabolic Hölder spaces of order 2 + β. The following Proposition
is based on [LSU68, Theorem 5.3, p. 320] and [LSU68, Theorem 7.1, p. 478].

Proposition 2.6 (Solutions for Robin-boundary conditions). Let 0 < β ≤ α, T > 0 and
Assumptions 1.1–1.2 hold. Let λ > 0 be given as in Conditions (2.17) and (2.21). As-
sume ũ, ṽ ∈ H2+β,(2+β)/2(ΓT ) with ‖ũ‖L∞(ΓT ), ‖ṽ‖L∞(ΓT ) ≤ Λ̃2 with constants Λ̃1, Λ̃2 > 0
as introduced in Lemma 2.3. Then

(i) there exists a unique solution Ṽnew ∈ H2+β,(2+β)/2(ΩT ) of (2.7a)–(2.7c),

(ii) for a constant CV
1 > 0 depending on Ω and |ũ|(1+β)

ΓT
+ |ṽ|(1+β)

ΓT
, the solution Ṽnew

satisfies the estimate

|Ṽnew|(2+β)
ΩT

≤ CV
1

(

1 + ‖V0‖C2+α(Ω)

)

(iii) there exists 0 < κ < 1 depending on ‖ũ‖C0([0,T ];C1(ΓT )), ‖ṽ‖C0([0,T ];C1(ΓT )), T , Λ̃1

and Λ̃2 and a constant CV
2 > 0 depending on ‖ũ‖C0([0,T ];C1(ΓT )), ‖ṽ‖C0([0,T ];C1(ΓT )),

T , Λ̃1, Λ̃2 and ‖V0‖Cβ(Ω), such that

|Ṽnew|(κ)
ΩT

≤ CV
2 .

Proof. The proof is based on the deductions in [LSU68, p. 318ff.] obtaining Schauder
estimates of a parabolic Robin-boundary problem. We state [LSU68, problem (5.4),
p. 318ff.] and switch to the variable Ṽnew to avoid misconceptions. Let T > 0, then we
consider for linear uniformly parabolic operators L with smooth coefficients



































LṼnew(x, t)
def
= (∂t −D∆)Ṽnew(x, t) = ψ(x, t) in ΩT ,

Ṽnew

∣

∣

∣

t=0
= φ(x) in Ω,

3
∑

i=1

bi(x, t)
∂Ṽnew

∂xi
+ b(x, t)Ṽnew

∣

∣

∣

∣

∣

ΓT

= Φ(x, t) on ΓT

(2.47)

(2.48)

(2.49)

with additional compatibility conditions of order zero for x ∈ Γ in t = 0, i.e.

(

3
∑

i=1

bi(x, t)
∂Ṽnew

∂xi
+ b(x, t)Ṽnew

)
∣

∣

∣

∣

∣

t=0

= Φ(x, 0) for all x ∈ Γ, (2.50)

see Ladyzhenskaja et. al. [LSU68, p. 320f.] for further details. We specify bi, ψ, ϕ, b
and Φ in the latter. We restate the following Theorem.
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2.3 Solutions in the bulk

Theorem 2.7 ([LSU68, Theorem 5.3, p. 320f.], Existence and uniqueness in parabolic
Hölder-spaces of order 2 + β). Let β ∈ (0, 1) and Γ be C2+β-regular, the coefficients of
the operator L shall be in the class Hβ,β/2(ΩT ) and bi, b ∈ H1+β,(1+β)/2(ΓT ). Then
for any ψ ∈ Hβ,β/2(ΩT ), φ ∈ C2+β(Ω) and Φ ∈ H1+β,(1+β)/2(ΓT ) satisfying compati-
bility condition of order zero, problem (2.47)–(2.49) has a unique solution Ṽnew of class
H2+β,(2+β)/2(ΩT ) and there exists a constant c = c(Γ,Ω,L, b, b) > 0 being independent
of φ and Φ with

|Ṽnew|(2+β)
ΩT

≤ c
(

|ψ|(β)
ΩT

+ ‖φ‖C2+β(Ω) + |Φ|(1+β)
ΓT

)

.

Note that we stated the result of Theorem 2.7 for the case of (2 + β)-regularity. In
particular it yields much higher regularity, if all other regularity assumptions are higher.

To prove Proposition 2.6, we show that Theorem 2.7 can be applied, set ψ ≡ 0 and
let φ = V0, b = −Dν, b = q̃1(t, ũ, ṽ) and we set Φ = q̃2(t, ũ, ṽ)ṽ. Then, equations (2.47)–
(2.49) are just the same as equations (2.7a)–(2.7c). We assumed that Γ is a smooth
manifold, in particular it is C2+β-regular. The coefficients of the operator L are of
class Hβ,β/2(ΩT ), conditions on b are fulfilled as well as for ψ. With Assumption 1.1,
initial conditions are of class C2+α, α ≥ β, moreover the compatibility conditions of
order ⌊(1 + β)/2⌋ = 0 hold, see equation (2.50) compared to equation (1.3). Assump-
tion 1.2 yields that the nonlinearities fi, qi, i = 1, 2 are twice continuously differentiable,
in particular this holds for f̃i and q̃i. This implies that for ũ, ṽ ∈ H2+β,(2+β)/2(ΓT )
the nonlinearities b = q̃1(t, ũ, ṽ) ∈ H1+β,(1+β)/2(ΓT ) as well as Φ ∈ H1+β,(1+β)/2(ΓT ).
Theorem 2.7 yields a unique solution Ṽnew ∈ H2+β,(2+β)/2(ΩT ) with the estimate

|Ṽnew|(2+β)
ΩT

≤ c
(

‖φ‖C2+β(Ω) + |Φ|(1+β)
ΓT

)

≤ c
(

‖V0‖C2+β(Ω) + |q2(ũ, ṽ)ṽ|(1+β)
ΓT

)

≤ c
(

‖V0‖C2+β(Ω) + c1

(

|ũ|(1+β)
ΓT

+ |ṽ|(1+β)
ΓT

))

≤ c
(

‖V0‖C2+β(Ω) + |ũ|(1+β)
ΓT

+ |ṽ|(1+β)
ΓT

)

,

where c1 > 0 depends on the system constant Cq and bounds on the derivative of q2.
This proves Proposition 2.6 (i)–(ii). We remark that Theorem 2.7 assures existence of
the solution on the a priori given time-interval [0, T ).

To prove assertion (iii) we want to apply [LSU68, Theorem 7.1, p. 478]. There are

two crucial conditions to check. First, the function θ(x, t, Ṽnew)
def
= −q̃1(t, ũ, ṽ)Ṽnew +

q̃2(t, ũ, ṽ)ṽ representing the boundary condition has to satisfy the following requirements:
there exists a constant µ > 0 such that

∣

∣

∣

∣

θ,
∂θ

∂Ṽnew
,
∂θ

∂x

∣

∣

∣

∣

≤ µ

holds, see [LSU68, condition (7.5), p. 476]. With Lemma 2.3 and Assumption 1.2 we
find that

|θ| ≤ Cq(Λ̃1 + Λ̃2) and

∣

∣

∣

∣

∂θ

∂Ṽnew

∣

∣

∣

∣

= |−q̃1| ≤ Cq.
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Moreover, we compute
∣

∣

∣

∣

∂θ

∂x

∣

∣

∣

∣

=

∣

∣

∣

∣

(

−∂q̃1

∂ũ
(t, ũ, ṽ)ũx − ∂q̃1

∂ṽ
(t, ũ, ṽ)ṽx

)

Ṽ

+

(

∂q̃2

∂ũ
(t, ũ, ṽ)ũx +

∂q̃2

∂ṽ
(t, ũ, ṽ)ṽx

)

ṽ + q̃2(t, ũ, ṽ)ṽx

∣

∣

∣

∣

≤ 2LqΛ̃1 (|ũx| + |ṽx|) + 2LqΛ̃2 (|ũx| + |ṽx|) + Cq|ṽx|,
where Lq > 0 denotes a local Lipschitz-constant of the nonlinearity. The appearing
spatial derivatives of ũ and ṽ are controlled by ‖ũ‖C0([0,T ];C1(ΓT )) and ‖ṽ‖C0([0,T ];C1(ΓT )).

Therefore, [LSU68, Condition (7.5), p. 476] is satisfied with µ depending on Λ̃1, Λ̃2,
‖ũ‖C0([0,T ];C1(ΓT )), ‖ṽ‖C0([0,T ];C1(ΓT )) and given system constants.

Second, the estimate in [LSU68, Theorem 7.1, p. 478] first only controls oscillations
locally in suitable subsets of the time-space cylinder ΩT (adjacent to a portion of Γ that
is contained in a chart of Γ). For ε > 0 we define

Ωε
def
= {x ∈ Ω, dist(x,Γ) > ε}.

By B(xi, 2ε) we denote balls of radius 2ε with center xi ∈ Γ. According to the compact-
ness of Γ there exists a finite set of points {xi}i=1...N for N ∈ N, such that

Ω ⊂
N
⋃

i=1

B(xi, 2ε) ∪ Ωε.

To localize solutions on Γ we introduce a family of compactly supported functions
{ηi}i=1,...,N such that ηi ∈ C∞

c (Wi) with
∑N

i=1 ηi(x) ≡ 1 for every x ∈ Γ and Wi =

Γ ∩B(xi, 4ε). We find that T def
= (Wi, ϕi, ηi) is a local trivialization triplet on Γ. Then,

dist(B(xi, 2ε),Γ \B(xi, 4ε)) ≥ ε.

In this setting [LSU68, Theorem 7.1, p. 478] is applicable to

Ωi
def
= Ωε ∪B(xi, 2ε).

To be more precise, for ̺ ∈ (0, ε) we set

Q̺
def
= B(x, ̺) × (t0, t0 + ̺2) for x ∈ Ω and t0 ∈ (0, T ).

Then, for all Q̺ ⊂ (Ωi × (0, δ)) not intersecting (Γ \Wi) × (0, δ) there exists 0 < κ < 1
determined by Λ̃1 and µ and constants ci > 0 depending on Λ̃1, µ and ‖V0‖Cβ(Ω) and

the distances of x to Γ \ Wi which are at least ε, such that the oscillations of Ṽnew are
bounded, i.e.

osc{Ṽnew, Q̺ ∩ ΩT } ≤ ci̺
κ.

We point out that µ depends on ‖ũ‖C0([0,T ];C1(ΓT )) and ‖ṽ‖C0([0,T ];C1(ΓT )) for arbitrary

small σ > 0. With Ω ⊂ ∪iΩi and [LSU68, Definition (1.7), p. 7] the bounds on oscilla-
tions are sufficient to control the κ-Hölder norm of Ṽnew. This finishes the proof.
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2.4 Classical solutions to the fully coupled model

The aim of this Subsection is to find that the updating procedure introduced in Sub-
section 2.1.1 has a fixed-point Ṽ = Ṽnew. We use Schauder’s Fixed-Point Theorem to
find this particular fixed-point and conclude that (Ṽ , ũ, ṽ) is a classical solution of the
rescaled system (2.4a)–(2.4f). We use the independent results of Chapter 3 to find that
this solution is unique. Moreover, we deduce in Proposition 2.11 that solutions depend
continuously on their initial data, also using an L2-continuity property from Chapter 3.

Proposition 2.8 (Existence and uniqueness result for classical solutions of (FCRD)).
Let Assumptions 1.1, 1.2 hold, let T > 0 be arbitrary. Then, (FCRD) has a unique
solution (V, u, v) of class H2+α,(2+α)/2 on the time-interval [0, T ].

Before we start with the proof of Proposition 2.8, we state Schauder’s Fixed-Point
Theorem for convenience.

Theorem 2.9 ([Sch13, p. 309], Schauder’s Fixed-Point Theorem). Let X be a Banach
space. Suppose M ⊂ X is non-empty, bounded and convex. Then, every continuous and
compact operator F : M → M has a fixed-point in M .

Proof of Proposition 2.8. In this proof we follow the updating procedure introduced in
Subsection 2.1.1. For arbitrary T > 0 we set

M
def
=
{

Ṽ ∈ Hβ,β/2(ΩT ) : ‖Ṽ ‖L∞(ΩT ) ≤ Λ̃1, |Ṽ |(β)
ΩT

≤ Λ∗
1

}

,

for Λ̃1 > 0 as introduced in Lemma 2.3 and Λ∗
1 > 0 to be specified later. Let F : M → M

describe the updating proceduce by F : Ṽ 7→ Ṽnew. We verify that the conditions of
Theorem 2.9 are satisfied in this situation.

Let β = min{α, κ} ∈ (0, 1) for given α, κ ∈ (0, 1), where κ was introduced in Proposi-
tion 2.6. We show below that κ only depends on the data, cf. (2.53). A possible choice
for an initial Ṽ would be to continue V0 ∈ C2+α(Ω) as a constant function onto the
time-interval [0, T ) an multiply it with e−λt, where λ > 0 is already chosen, see Condi-
tion (2.21). Then, with an apropriate choice of Λ∗

1 > 0 we obtain that M is non-empty.
Consider Ṽ ∈ M , then ‖V0‖L∞(Ω) ≤ Λ̃1 holds and we obtain with Lemma 2.3 (i) that

‖ũ‖L∞(ΓT ), ‖ṽ‖L∞(ΓT ) ≤ Λ̃2.

Moreover, the nonnegativity result from Lemma 2.2 holds. Then, with Proposition 2.4 we

find a unique solution (ũ, ṽ) ∈
(

H2+β,(2+β)/2(ΓT )
)2

of (2.5a)–(2.5c), where the following

estimates hold for any 0 ≤ σ < 1:

|ũ|(2+β)
ΓT

, |ṽ|(2+β)
ΓT

≤ Cuv
1

(

|Ṽ |(β)
ΩT

+ ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

)

, (2.51)

|ũ|(σ)
ΓT
, |ṽ|(σ)

ΓT
≤ Cuv

2

(

Λ̃1 + Λ̃2 + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ)

)

, (2.52)

‖ũ‖C0([0,T ];C1+σ(Γ)), ‖ṽ‖C0([0,T ];C1+σ(Γ)) ≤ Cuv
3 , (2.53)
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for constants Cuv
1 = Cuv

1 (T,Ω, β) > 0, Cuv
2 = Cuv

2 (T,Ω, σ) > 0 and Cuv
3 > 0 depending

on T, Λ̃1, Λ̃2, σ, ‖u0‖C2+α(Γ) and ‖v0‖C2+α(Γ). Proposition 2.6 yields that for given

(ũ, ṽ) ∈ H2+β,(2+β)/2(ΓT ) there exists a unique solution Ṽnew ∈ H2+β,(2+β)/2(ΩT ) of
(2.7a)–(2.7c), such that the estimate

|Ṽnew|(2+β)
ΩT

≤ CV
1

(

‖V0‖C2+α(Ω) + |ũ|(1+β)
ΓT

+ |ṽ|(1+β)
ΓT

)

(2.54)

hold for a constant CV
1 = CV

1 (Ω) > 0 and such that

|Ṽnew|(κ)
ΩT

≤ CV
2 , (2.55)

holds, where CV
2 depends on ‖ũ‖C0([0,T ];C1(Γ)), ‖ṽ‖C0([0,T ];C1(Γ)), T , Λ̃1, Λ̃2 and ‖V0‖Cβ(Ω)

and κ depends on ‖ũ‖C0([0,T ];C1(Γ)), ‖ṽ‖C0([0,T ];C1(Γ)), T , Λ̃1 and Λ̃2. Combining this

with (2.53) we obtain that κ depends only T , Λ̃1 and Λ̃2 and that there exists a constant
Λ∗

1 > 0, such that

|Ṽnew|(β)
ΩT

≤ Λ∗
1

holds, where Λ∗
1 depends on T , Λ̃1, Λ̃2 and β. In addition, Lemma 2.3 (ii) implies that

‖Ṽnew‖L∞(ΩT ) ≤ Λ̃1 holds. This finishes the updating procedure with a new function

Ṽnew.
According to the aforementioned estimates, see Lemma 2.3, Proposition 2.4 and

Proposition 2.6 we obtain that F maps from M back to M . We study this function
F in more detail: From the above estimates we find that the image of F satisfies
F (Ṽ ) ∈ H2+β,(2+β)/2(ΩT ), in particular we find with (2.54), (2.51) and (2.55) and a
constant c1 > 0 that

|F (Ṽ )|(2+β)
ΩT

≤ CV
1 (Ω)

(

‖V0‖C2+α(Ω) + |ũ|(1+β)
ΓT

+ |ṽ|(1+β)
ΓT

)

≤ c1(T,Ω, β)
(

‖V0‖C2+α(Ω) + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ) + |Ṽ |(β)
ΩT

)

≤ c1(T,Ω, β)
(

‖V0‖C2+α(Ω) + ‖u0‖C2+α(Γ) + ‖v0‖C2+α(Γ) + Λ∗
1

)

. (2.56)

Therefore, F (Ṽ ) is contained in a bounded subset of H2+β,(2+β)/2(ΩT ) and there exists
a compact embedding into Hβ,β/2(ΩT ), see for example [Alt12, Theorem 8.6, p. 321] for
the elliptic setting, for parabolic spaces this is true since ΩT has compact closure and
Arzelà-Ascoli’s Theorem finds application. Therefore, F is a compact operator.

To find that F is continuous and compact we assume a second solution (Ṽ
(2)

new, ũ(2), ṽ(2))
with same initial data generated by a different initiating function Ṽ (2) ∈ Hβ,β/2(ΩT ).
Then, these are solutions of (2.5a)–(2.5c) and (2.7a)–(2.7c). By substracting the corre-
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sponding equations we find a new difference system. The boundary equations are given
by

∂t(ũ− ũ(2)) = ∆Γ(ũ− ũ(2)) + f̃1(t, ũ, ṽ)ṽ − f̃1(t, ũ(2), ṽ(2))ṽ(2)

− f̃2(t, ũ, ṽ)ũ+ f̃2(t, ũ(2), ṽ(2))ũ(2),

∂t(ṽ − ṽ(2)) = d∆Γ(ṽ − ṽ(2)) − f̃1(t, ũ, ṽ)ṽ + f̃1(t, ũ(2), ṽ(2))ṽ(2)

+ f̃2(t, ũ, ṽ)ũ− f̃2(t, ũ(2), ṽ(2))ũ(2) + q̃1(t, ũ, ṽ)Ṽ − q̃1(t, ũ(2), ṽ(2))Ṽ (2)

− q̃2(t, ũ, ṽ)ṽ + q̃2(t, ũ(2), ṽ(2))ṽ(2)

on Γ × (0, T ). The bulk equation and the corresponding boundary flux equation are
given by

∂t(Ṽnew − Ṽ (2)
new) = D∆(Ṽnew − Ṽ (2)

new) on Ω × (0, T ),

−D∇(Ṽnew − Ṽ (2)
new) · ν = q̃1(t, ũ, ṽ)Ṽnew − q̃1(t, ũ(2), ṽ(2))Ṽ (2)

new

− q̃2(t, ũ, ṽ)ṽ + q̃2(t, ũ(2), ṽ(2))ṽ(2) on Γ × (0, T ),

with complementary initial conditions

(ũ− ũ(2))(·, 0) = 0, (ṽ − ṽ(2))(·, 0) = 0 on Γ,

(Ṽnew − Ṽ (2)
new)(·, 0) = 0 on Ω.

We apply the Mean Value Theorem for the given nonlinearities in the boundary flux
condition

q̃1(t, ũ, ṽ)Ṽnew−q̃1(t, ũ(2), ṽ(2))Ṽ (2)
new − q̃2(t, ũ, ṽ)ṽ + q̃2(t, ũ(2), ṽ(2))ṽ(2)

= q̃1(t, ũ, ṽ)(Ṽnew − Ṽ (2)
new) + (q̃1(t, ũ, ṽ) − q̃1(t, ũ(2), ṽ(2)))Ṽ (2)

new

− q̃2(t, ũ, ṽ)(ṽ − ṽ(2)) + (−q̃1(t, ũ, ṽ) + q̃2(t, ũ(2), ṽ(2)))ṽ(2)

= q̃1(t, ũ, ṽ)(Ṽnew − Ṽ (2)
new) + Ṽ (2)

new ∇q̃1|ξ1
·
(

(ũ− ũ(2)), (ṽ − ṽ(2))
)T

− q̃2(t, ũ, ṽ)(ṽ − ṽ(2)) + ṽ(2) ∇q̃2|ξ2
·
(

(ũ− ũ(2)), (ṽ − ṽ(2))
)T

,

for ξ1, ξ2 ∈ R
2. In this case we apply [LSU68, Theorem 5.3, p. 320] to this structure to

find that

|Ṽnew − Ṽ (2)
new|(2+β)

ΩT
≤ c2(Ω)

(

|ũ− ũ(2)|(1+β)
ΓT

+ |ṽ − ṽ(2)|(1+β)
ΓT

)

, (2.57)
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with c2 = c2(Ω) > 0. We exemplarily examine the second equation on the surface, in
particular the nonlinearities are of interest. We obtain

Φ2
def
= −f̃1(t, ũ, ṽ)ṽ + f̃1(t, ũ(2), ṽ(2))ṽ(2) + f̃2(t, ũ, ṽ)ũ− f̃2(t, ũ(2), ṽ(2))ũ(2)

+ q̃1(t, ũ, ṽ)Ṽ − q̃1(t, ũ(2), ṽ(2))Ṽ (2) − q̃2(t, ũ, ṽ)ṽ + q̃2(t, ũ(2), ṽ(2))ṽ(2)

= (ṽ − ṽ(2))(−f̃1(t, ũ, ṽ)) + ṽ(2)(−f̃1(t, ũ, ṽ) + f̃1(t, ũ(2), ṽ(2)))

+ f̃2(t, ũ, ṽ)(ũ− ũ(2)) + (f̃2(t, ũ, ṽ) − f̃2(t, ũ(2), ṽ(2)))ũ(2)

+ q̃1(t, ũ, ṽ)(Ṽ − Ṽ (2)) + (q̃1(t, ũ, ṽ) − q̃1(t, ũ(2), ṽ(2)))Ṽ (2)

+ (ṽ − ṽ(2))(−q̃2(t, ũ, ṽ)) + (q̃2(t, ũ(2), ṽ(2)) − q̃2(t, ũ, ṽ))ṽ(2). (2.58)

Since the nonlinearities are in particular differentiable we obtain with the Mean Value
Theorem from (2.58)

(ṽ − ṽ(2))(−f̃1(t, ũ, ṽ) − q̃2(t, ũ, ṽ))

+ f̃2(t, ũ, ṽ)(ũ− ũ(2)) + q̃1(t, ũ, ṽ)(Ṽ − Ṽ (2))

+ ∇f̃1

∣

∣

∣

(ξ1
1 ,ξ1

2)
·
(

(ũ(2) − ũ), (ṽ(2) − ṽ)
)T

ṽ(2)

+ ∇f̃2

∣

∣

∣

(ξ2
1 ,ξ2

2)
·
(

(ũ− ũ(2)), (ṽ − ṽ(2))
)T

ũ(2)

+ ∇q̃1|(ξ3
1 ,ξ3

2) ·
(

(ũ− ũ(2)), (ṽ − ṽ(2))
)T

Ṽ (2)

+ ∇q̃2|(ξ4
1 ,ξ4

2) ·
(

(ũ(2) − ũ), (ṽ(2) − ṽ)
)T

ṽ(2),

where (ξi
1, ξ

i
2) ∈ R

2, i = 1, . . . , 4 are intermediate points and the gradient expression shall
not be effecting the time-variable of the nonlinearities. The coefficient expressions with
(ũ − ũ(2)), (ṽ − ṽ(2)) and (Ṽ − Ṽ (2)) are uniformly bounded with a uniform bound

controlled by |Ṽ |(2+β)
ΩT

, |Ṽ (2)|(2+β)
ΩT

and (2.56). Analogously we define Φ1 and find also

expressions depending on (ũ − ũ(2)) and (ṽ − ṽ(2)). If we consider these two equations
as a system on the surface, then Proposition 2.4 implies that there exists a constant
c3 = c3(T,Ω, β) > 0, such that

|ũ− ũ(2)|(2+β)
ΓT

, |ṽ − ṽ(2)|(2+β)
ΓT

≤ c3

(

|Ṽ − Ṽ (2)|(β)
ΩT

)

, (2.59)

holds. In sum we find from (2.57) in combination (2.59) that

|Ṽnew − Ṽ (2)
new|(2+β)

ΩT
≤ c2(Ω)

(

|ũ− ũ(2)|(1+β)
ΓT

+ |ṽ − ṽ(2)|(1+β)
ΓT

)

≤ c4

(

|Ṽ − Ṽ (2)|(β)
ΩT

)

, (2.60)

for a constant c4 > 0. Therefore, F is a continuous and compact operator.
In this situation Schauder’s Fixed-Point Theorem 2.9 can be applied to F . There exists

a fixed-point Ṽ = Ṽnew in Hβ,β/2(ΩT ). We notice that this fixed-point does not have to
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be unique at first sight. With Proposition 2.4 we find (ũ, ṽ) ∈ H2+β,(2+β)/2(ΓT ) and in
turn with Proposition 2.6 that Ṽ is in H2+β,(2+β)/2(ΩT ). Then, (Ṽ , ũ, ṽ) is a triplet of
class H2+β,(2+β)/2 and we find that equations (2.5a)–(2.5c) and (2.7a)–(2.7c) are solved.
This implies that they are no longer decoupled. Since Ṽ is of class H2+β,(2+β)/2(ΩT ), it
is of class Hα,α/2(ΩT ). Then, according to Proposition 2.4 we find that ũ and ṽ are of
parabolic Hölder class (2 + α) and therefore in particular Ṽ is parabolic (2 + α)-Hölder
regular.

Since we deduced these equations by a rescaling argument from (FCRD), the rescaled
functions (V, u, v) are a solution triplet of (FCRD) of parabolic Hölder class 2 + α since
the scaling factor e−λt is sufficiently smooth, see also Subsection 2.1.2.

Moreover, we find that (V, u, v) is also a weak solution of (GFCRD). Chapter 3 im-
plies that weak solutions of (GFCRD) are unique, therefore (V, u, v) as a solution of
(FCRD) is unique. This completes the proof.

Proposition 2.10 (Uniform estimates for classical solutions). Let Λ̃1, Λ̃2, Cfq, C1, C2

be given as in Lemma 2.3 and

λ ≥ max

{

C2
fq

D
C(Ω), 4Cfq, Cfq

(

1 + C1Cfq +
2‖V0‖L∞(Ω) + 1

Λ̃2

)}

.

Then, the unique classical solution (V, u, v) of (FCRD) is nonnegative and uniformly
bounded,

‖u‖L∞(ΓT ), ‖v‖L∞(ΓT ) ≤ eλT Λ̃2,

‖V ‖L∞(ΩT ) ≤ eλT Λ̃1.

Proof. We consider the rescaled framework for variables (Ṽ , ũ, ṽ) being the unique
solution of the rescaled fully coupled system (FCRD) on [0, T ]. According to the proof
of Proposition 2.8, the set M contains the unique fixed-point Ṽ being essentially bounded
by Λ̃1 on ΩT . With Lemma 2.3 (i) we obtain that ũ and ṽ are essentially bounded by
Λ̃2. With the definitions posed in (2.1)–(2.3) we find the desired estimates for V , u and
v.

Proposition 2.11 (Continuous dependence of classical solutions on initial data). Let the
assumptions of Proposition 2.8 hold. Then, solutions (V, u, v) of (FCRD) depend con-

tinuously on their initial data. For (V (1), u(1), v(1)) with initial data (V
(1)

0 , u
(1)
0 , v

(1)
0 ) and

(V (2), u(2), v(2)) with initial data (V
(2)

0 , u
(2)
0 , v

(2)
0 ) being solutions of (FCRD) on [0, T ],

then there exists a constant Ĉ > 0, such that

|V (1) − V (2)|(2+α)

ΩT
+ |u(1) − u(2)|(2+α)

ΓT
+ |v(1) − v(2)|(2+α)

ΓT

≤ Ĉ(T,Ω, α)
(

‖V (1)
0 − V

(2)
0 ‖C2+α(Ω) + ‖u(1)

0 − u
(2)
0 ‖C2+α(Γ) + ‖v(1)

0 − v
(2)
0 ‖C2+α(Γ)

)

.
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Proof. We work in the rescaled framework and assume that two different solutions
(Ṽ (1), ũ(1), ṽ(1)) and (Ṽ (2), ũ(2), ṽ(2)) of the rescaled system related to (FCRD) are given

with initial data (V
(1)

0 , u
(1)
0 , v

(1)
0 ) in the case of (Ṽ (1), ũ(1), ṽ(1)) and (V

(2)
0 , u

(2)
0 , v

(2)
0 ) for

(Ṽ (2), ũ(2), ṽ(2)). We remark that the inital data in this framework coincides with the
given initial data without rescaling. Then, we find for ũ(1) − ũ(2) that

∂t(ũ
(1) − ũ(2)) = ∆Γ(ũ(1) − ũ(2)) + f̃1(t, ũ(1), ṽ(1))ṽ(1) − f̃1(t, ũ(2), ṽ(2))ṽ(2)

− f̃2(t, ũ(1), ṽ(1))ũ(1) + f̃2(t, ũ(2), ṽ(2))ũ(2) on Γ × (0, T )

holds, where ṽ(1) − ṽ(2) satisfies

∂t(ṽ
(1) − ṽ(2)) = d∆Γ(ṽ(1) − ṽ(2)) − f̃1(t, ũ(1), ṽ(1))ṽ(1) + f̃1(t, ũ(2), ṽ(2))ṽ(2)

+ f̃2(t, ũ(1), ṽ(1))ũ(1) − f̃2(t, ũ(2), ṽ(2))ũ(2)

+ q̃1(t, ũ(1), ṽ(1))Ṽ (1) − q̃1(t, ũ(2), ṽ(2))Ṽ (2)

− q̃2(t, ũ(1), ṽ(1))ṽ(1) + q̃2(t, ũ(2), ṽ(2))ṽ(2) on Γ × (0, T ).

For the bulk equations we find

∂t(Ṽ
(1) − Ṽ (2)) = D∆(Ṽ (1) − Ṽ (2)) on Ω × (0, T ),

−D∇(Ṽ (1) − Ṽ (2)) · ν = q̃1(t, ũ(1), ṽ(1))Ṽ (1) − q̃1(t, ũ(2), ṽ(2))Ṽ (2)

− q̃2(t, ũ(1), ṽ(1))ṽ(1) + q̃2(t, ũ(2), ṽ(2))ṽ(2) on Γ × (0, T ).

The initial data is given by

(ũ(1) − ũ(2))(·, 0) = u
(1)
0 − u

(2)
0 and (ṽ(1) − ṽ(2))(·, 0) = v

(1)
0 − v

(2)
0

on Γ and

(Ṽ (1) − Ṽ (2))(·, 0) = V
(1)

0 − V
(2)

0 on Ω.

With the same calculations as in the proof of Proposition 2.8 we rewrite the right-hand
sides of this difference system to separate the differences ũ(1) − ũ(2), ṽ(1) − ṽ(2) and
Ṽ (1) − Ṽ (2), respectively. This linearization procedure now reveals the same structure
as (2.5a)–(2.5c) and (2.7a)–(2.7c). We successively apply Proposition 2.4 and Proposi-
tion 2.6 to the differences of the given functions in their corresponding parabolic Hölder
norms of order 2 + α and find with regard to the dependencies in the given constants
that

|ũ(1) − ũ(2)|(2+α)
ΓT

+ |ṽ(1) − ṽ(2)|(2+α)
ΓT

+ |Ṽ (1) − Ṽ (2)|(2+α)
ΩT

≤ c1(T,Ω, α)
(

|Ṽ (1) − Ṽ (2)|(α)
ΩT

+ ‖u(1)
0 − u

(2)
0 ‖C2+α(Γ) + ‖v(1)

0 − v
(2)
0 ‖C2+α(Γ)

+‖V (1)
0 − V

(2)
0 ‖C2+α(Ω) + |ũ(1) − ũ(2)|(1+α)

ΓT
+ |ṽ(1) − ṽ(2)|(1+α)

ΓT

)

≤ c2(T,Ω, α)
(

|Ṽ (1) − Ṽ (2)|(α)
ΩT

+ ‖V (1)
0 − V

(2)
0 ‖C2+α(Ω)

+ ‖u(1)
0 − u

(2)
0 ‖C2+α(Γ) + ‖v(1)

0 − v
(2)
0 ‖C2+α(Γ)

)

(2.61)

40



2.4 Classical solutions to the fully coupled model

for constants c1, c2 > 0. We use an Ehrling-type estimate, see for example [Rou13,
p. 207], to deduce an estimate of the remaining Hölder-norm of order α for ε > 0 and a
constant c3 > 0 that

|Ṽ (1) − Ṽ (2)|(α)
ΩT

≤ ε|Ṽ (1) − Ṽ (2)|(2+α)
ΩT

+ c3(ε)‖Ṽ (1) − Ṽ (2)‖L2(ΩT )

holds. We absorb |Ṽ (1) − Ṽ (2)|(2+α)
ΩT

to the left-hand side of (2.61) and find with the
continuous dependence on initial data from Chapter 3 that

|ũ(1) − ũ(2)|(2+α)
ΓT

+ |ṽ(1) − ṽ(2)|(2+α)
ΓT

+ |Ṽ (1) − Ṽ (2)|(2+α)
ΩT

≤ c4(T,D,Ω, α)
(

‖V (1)
0 − V

(2)
0 ‖L2(Ω) + ‖u(1)

0 − u
(2)
0 ‖L2(Γ) + ‖v(1)

0 − v
(2)
0 ‖L2(Γ)

+ ‖V (1)
0 − V

(2)
0 ‖C2+α(Ω) + ‖u(1)

0 − u
(2)
0 ‖C2+α(Γ) + ‖v(1)

0 − v
(2)
0 ‖C2+α(Γ)

)

≤ Ĉ(T,D,Ω, α)
(

‖V (1)
0 − V

(2)
0 ‖C2+α(Ω) + ‖u(1)

0 − u
(2)
0 ‖C2+α(Γ) + ‖v(1)

0 − v
(2)
0 ‖C2+α(Γ)

)

holds, what was asserted.
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3 Weak Existence Theory

In this Chapter we present a proof of Theorem 1.2. We show existence, uniqueness,
uniform boundedness, nonnegativity and continuous dependency on initial data for a
weak solution (V, u, v) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;H1(Γ)) × L2(0, T ;H1(Γ)) for the
generalized fully coupled Reaction-Diffusion system (GFCRD) given by

(GFCRD)



























































∂tu = ∇Γ · (Au∇Γu) + f1(u, v)v − f2(u, v)u on Γ × I,

∂tv = ∇Γ · (Av∇Γv) − f1(u, v)v + f2(u, v)u

+ q1(u, v)V − q2(u, v)v on Γ × I,

∂tV = D∆V in Ω × I,

−D∇V · ν = q1(u, v)V − q2(u, v)v on Γ × I,

V (·, 0) = V0 in Ω,

v(·, 0) = v0 and u(·, 0) = u0 on Γ.

Here Au, Av are given as in Assumption 1.5, Assumption 1.3 provides conditions on the
initial data and nonlinearities are specified in Assumption 1.4. In Section 3.1 we present
a weak formulation of (GFCRD) and deduce a time-discrete recursive approximation
scheme in Section 3.2. We solve this recursive approximation scheme using the theory
of compactly perturbed monotone operators. Afterwards, we prove the nonnegativity
of these time-discrete solutions. In Section 3.3 we show that there exists a limit triplet
(V, u, v) of the time-discrete approximation and that (V, u, v) solves (GFCRD). Sec-
tion 3.4 is devoted to the continuous dependency of solutions on the initial data which
implies uniqueness. Additionally, we find that the unique weak solution is nonnegative
and satisfies a maximum principle. On the one hand, these bounds are of interest regard-
ing numerical stability and provide on the other hand precise dependencies of maximum
bounds on system constants, which will be applied in Chapter 4.
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3 Weak Existence Theory

3.1 Weak formulation of (GFCRD)

In this Section we introduce a weak formulation of (GFCRD). The triplet (V, u, v)
is called weak solution of (GFCRD), if the functions V ∈ L2(0, T ;H1(Ω)) and u, v ∈
L2(0, T ;H1(Γ)) satisfy the equations of the fully coupled weak system (WS) given by

(WS)







































∫

ΩT

∂tη1(V − V0) = D

∫

ΩT

∇V · ∇η1 +

∫

ΓT

q(V, u, v)η1,

∫

ΓT

∂tη2(u− u0) =

∫

ΓT

Au∇Γu · ∇Γη2 −
∫

ΓT

f(u, v)η2,

∫

ΓT

∂tη3(v − v0) =

∫

ΓT

Av∇Γv · ∇Γη3 +

∫

ΓT

f(u, v)η3 −
∫

ΓT

q(V, u, v)η3,

for all

η1 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

η2, η3 ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1(Γ)).

Here we assume vanishing final data of the testfunctions, i.e. η1(·, T ) ≡ 0, η2(·, T ) ≡ 0
and η3(·, T ) ≡ 0 in the trace sense.

We remark the following: If (V, u, v) is a strong solution triplet of (GFCRD), then
(V, u, v) is also a solution triplet of (WS). We exemplarily varify this claim for the bulk
equation. Let η1 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) with η1(T ) ≡ 0. For V being a
strong solution an integration by parts in time and space yields that

∫

ΩT

∂tη1(V − V0) −D

∫

ΩT

∇V · ∇η1 −
∫

ΓT

q(V, u, v)η1

= −
∫

ΩT

η1∂t(V − V0) +

∫

Ω
η1(V − V0)

∣

∣

∣

∣

T

0
+D

∫

ΩT

(∆V )η1

−D

∫

ΓT

∇V · ν η1 −
∫

ΓT

q(V, u, v)η1

= −
∫

ΩT

η1∂tV −
∫

Ω
η1(·, 0)(V − V0)(·, 0) +D

∫

ΩT

(∆V )η1

−
∫

ΓT

η1 (D∇V · ν − q(V, u, v))

=

∫

ΩT

η1 (−∂tV +D∆V ) +

∫

ΓT

η1 (−D∇V · ν + q(V, u, v)) = 0

is satisfied for V (·, 0) = V0 in Ω. In the particular case of strong solutions we find the V
lies in H1(0, T ; (H1(Ω))∗), i.e. there exists a time-continuous representant V according
to the density of smooth functions in H1(0, T ; (H1(Ω))∗). Therefore, the initial data is
attained. The remaining equations of system (WS) are obtained in the same way.
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3.2 Time-discrete approximation

3.2 Time-discrete approximation

In this section we introduce the notion of time-discretization and compactly perturbed
monotone operators in order to show that there exists a solution to (GFCRD). At the
end of the section we show that the solutions are nonnegative if the initial data was
nonnegative.

3.2.1 A time-discretization scheme

Here we formulate an implicit Euler scheme for (WS). Let 0 < h < h0 be a time-step for
0 < h0 < 1 fixed. For fixed i ∈ {1, . . . , ⌊T

h ⌋ + 1}, and already determined

(Vi−1, ui−1, vi−1) in L2(Ω) × L2(Γ) × L2(Γ)

the aim is to find solutions (Vi, ui, vi) : Ω×Γ×Γ → R
3, with Vi ∈ H1(Ω), ui, vi ∈ H1(Γ),

such that the recursive scheme (WS)h
i given by

(WS)h
i



































1

h

∫

Ω
(Vi − Vi−1)η1 +D

∫

Ω
∇Vi · ∇η1 =

∫

Γ
−q(Vi, ui, vi)η1,

1

h

∫

Γ
(ui − ui−1)η2 +

∫

Γ
Au∇ui · ∇η2 =

∫

Γ
f(ui, vi)η2,

1

h

∫

Γ
(vi − vi−1)η3 +

∫

Γ
Av∇vi · ∇η3 =

∫

Γ
(q(Vi, ui, vi) − f(ui, vi))η3

(3.1)

(3.2)

(3.3)

is satisfied for all η1 ∈ H1(Ω), η2, η3 ∈ H1(Γ). For given initial data V0, u0 and v0

according to Assumption 1.3, this recursive scheme is a time-discrete approximation of
(WS) for a given time-step h.

We obtain the recursive scheme (WS)h
i via integration by parts in time in (WS) and

discretizing the time-derivatives. Then, the system reduces from a parabolic system to
a recursive elliptic system.

3.2.2 Reformulation as a variational inequality

Let M1 def
= H1(Ω) ×H1(Γ) ×H1(Γ) with the product norm on M1 given by

‖(V, u, v)‖M1
def
= ‖V ‖H1(Ω) + ‖u‖H1(Γ) + ‖v‖H1(Γ)

and let M0 def
= L2(Ω) × L2(Γ) × L2(Γ). Let (M1)∗ be the dual space of M1. We define

the following operators

F : M1 −→ (M1)∗, F1 : M1 −→ H1(Ω)∗, F2, F3 : M1 −→ H1(Γ)∗,
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3 Weak Existence Theory

where

〈η1, F1(Vi, ui, vi)〉 def
=

∫

Ω

1

h
(Vi − Vi−1)η1 +

∫

Ω
D∇Vi · ∇η1 +

∫

Γ
q(Vi, ui, vi)η1,

〈η2, F2(ui, vi)〉 def
=

∫

Γ

1

h
(ui − ui−1)η2 +

∫

Γ
Au∇Γui · ∇Γη2 −

∫

Γ
f(ui, vi)η2,

〈η3, F3(Vi, ui, vi)〉 def
=

∫

Γ

1

h
(vi − vi−1)η3 +

∫

Γ
Av∇Γvi · ∇Γη3

+

∫

Γ
f(ui, vi)η3 −

∫

Γ
q(Vi, ui, vi)η3,

〈(η1, η2, η3), F (Vi, ui, vi)〉 def
= 〈η1, F1(Vi, ui, vi)〉 + 〈η2, F2(ui, vi)〉 + 〈η3, F3(Vi, ui, vi)〉

for all (η1, η2, η3) ∈ M1 and a given previous solutions triplet (Vi−1, ui−1, vi−1) ∈ M0.
Exemplarily we varify the well-posedness of F1 using Assumption 1.4, i.e.

∫

Ω

1

h
(Vi−Vi−1)η1 +

∫

Ω
D∇Vi · ∇η1 +

∫

Γ
q(Vi, ui, vi)η1

≤ 1

h
(‖Vi‖L2(Ω) + ‖Vi−1‖L2(Ω))‖η1‖L2(Ω) +D‖∇Vi‖L2(Ω)‖∇η1‖L2(Ω)

+ ‖q1(ui, vi)Vi − q2(ui, vi)vi‖L2(Γ)‖η1‖L2(Γ)

≤ 1

h

(

(1 +D)‖Vi‖H1(Ω) + ‖Vi−1‖L2(Ω)

)

‖η1‖H1(Ω)

+ Cq(‖Vi‖L2(Γ) + ‖vi‖L2(Γ))Ctr‖η1‖H1(Ω)

≤ C(Ω)‖η1‖H1(Ω)

((

1

h
(1 +D) + CqC(Ω)

)

‖Vi‖H1(Ω)

)

+ C(Ω)‖η1‖H1(Ω)

(

Cq‖vi‖L2(Γ) + ‖Vi−1‖L2(Ω)

)

Here, we applied the Trace Theorem with C(Ω) > 0, see Corollary A.6, to estimate the
boundary values of η1 and Vi. This yields that the operator norm of F1 is bounded for
L2-bounded vi and Vi ∈ H1(Ω). According to Assumption 1.4 the nonlinearity f(ui, vi)
can be estimated by a constant Cf > 0, ui and vi. This yields that the operator F2, resp.
F3, is well-posed with bounded ‖vi‖L2(Γ) and ‖ui‖H1(Γ) norms, resp. bounded ‖ui‖L2(Γ),
‖vi‖H1(Γ) and ‖Vi‖H1(Ω) norms.

Lemma 3.1 (A variational formulation). Fix i ∈ {1, . . . , ⌊T
h ⌋ + 1} and assume that

(Vi−1, ui−1, vi−1) ∈ M0 holds. If (Vi, ui, vi) ∈ M1 solves the variational inequality

〈(Vi, ui, vi) − (η1, η2, η3), F (Vi, ui, vi)〉 ≤ 0, for all (η1, η2, η3) ∈ M1, (3.4)

then (Vi, ui, vi) solves the time-discrete system (WS)h
i .

Proof. Since (Vi, ui, vi) is a solution of (3.4) the inequality

0 ≥ 〈(Vi, ui, vi) − (η1, η2, η3), F (Vi, ui, vi)〉
= 〈Vi − η1, F1(Vi, ui, vi)〉 + 〈ui − η2, F2(ui, vi)〉 + 〈vi − η3, F3(Vi, ui, vi)〉, (3.5)
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3.2 Time-discrete approximation

holds for every (η1, η2, η3) ∈ M1. We choose an arbitrary ζ ∈ H1(Ω). Testing (3.5) with
(η1, η2, η3) = (Vi + ζ, ui, vi) and (Vi − ζ, ui, vi) yields

0 = 〈ζ, F1(Vi, ui, vi)〉

=

∫

Ω

1

h
(Vi − Vi−1)ζ +D

∫

Ω
∇Vi · ∇ζ +

∫

Γ
q(Vi, ui, vi)ζ.

Since ζ ∈ H1(Ω) was arbitrary, this implies that equation (3.1) holds. Testing with
(η1, η2, η3) = (Vi, ui ± ζ, vi) and (η1, η2, η3) = (Vi, ui, vi ± ζ), where ζ ∈ H1(Γ), we
achieve that equations (3.2) and (3.3) hold and Lemma 3.1 follows.

3.2.3 Weak solutions to the time-discretization

In order to show that there exists a weak solution to the time-discrete system (WS)h
i for

given h > 0 and a fixed time-step i, we represent F as a sum of two operators. The first
part of the operator will be linear and monotone, where the second part is a compact
pertubation. We begin with the following definitions.

Let M1 be given as above being a separable, reflexive Banach space. Let (M1)∗ be the
dual space of M1 and 〈·, ·〉 : M1 × (M1)∗ → R be the duality product. We say that the
map F : M1 → (M1)∗ is bounded if F maps bounded subsets of M1 on bounded subsets
of (M1)∗. Additionally, F is coercive if

〈η, F (η)〉
‖η‖M1

→ ∞ for η ∈ M1 (3.6)

holds for ‖η‖M1 → ∞. We say that F is a compactly perturbed monotone operator if
for L,K : M1 → (M1)∗, we have that F (η) = L(η) + K(η) for η ∈ M1 satisfying the
following properties:

- L is a monotone operator, i.e. for all η, ζ ∈ M1 the inequality

〈η − ζ, L(η) − L(ζ)〉 ≥ 0 (3.7)

holds with equality iff η = ζ (strictness),

- L is continuous on finite dimensional subspaces,

- K : (M1,weak) → ((M1)∗,weak-∗) is continuous and

- 〈·,K(·)〉 : (M1,weak) → R is lower semi-continuous.

Moreover, we say that K is a completely continuous operator if for an arbitrary sequence
{ζl} ⊂ M1 and ζ ∈ M1 the weak convergence ζl ⇀ ζ in M1 for l → ∞ implies that
K(ζl) → K(ζ) strong in (M1)∗ for l → ∞, i.e. K : (M1,weak) → ((M1)∗, strong).

According to these definitions, we are able to formulate the following abstract result
about compactly perturbed monotone operators, see [Sch13, Corollary 17.20, p. 342]. It
yields existence of solutions to a variational identity if the respective operator satisfies
appropriate structure assumptions.
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3 Weak Existence Theory

Proposition 3.2. Let M1 be a separable, reflexive Banach space. Let F : M1 → (M1)∗

be a compactly perturbed monotone operator. Moreover, let F be bounded and coercive.
Then there exists ζ ∈ M1 such that the variational inequality

〈ζ − η, F (ζ)〉 ≤ 0

is satisfied for all η ∈ M1.

We now define the operators L and K and prove the necessary conditions of Propo-

sition 3.2 to apply it afterwards. Let L,K : M1 → (M1)∗ for η
def
= (η1, η2, η3) ∈ M1 be

defined by

〈η, L(Vi, ui, vi)〉 def
=D

∫

Ω
∇Vi · ∇η1 +

∫

Γ
Au∇Γui · ∇Γη2 +

∫

Γ
Av∇Γvi · ∇Γη3

+
1

h

∫

Ω
Viη1 +

1

h

∫

Γ
(uiη2 + viη3), (3.8)

〈η,K(Vi, ui, vi)〉 def
=

∫

Γ
(q(Vi, ui, vi)η1 − f(ui, vi)η2 + (f(ui, vi) − q(Vi, ui, vi))η3)

− 1

h

(
∫

Ω
Vi−1η1 +

∫

Γ
ui−1η2 +

∫

Γ
vi−1η3

)

. (3.9)

We remark that K = K(i) is depending on the previous time-step. First, we show that
the operator L has the following properties:

Lemma 3.3. We have

(i) F = (L+K),

(ii) L : M1 → (M1)∗ is linear,

(iii) L is bounded,

(iv) L is coercive and

(v) L is monotone.

Proof.

(i) This property follows immediately.

(ii) Since the differential operators Au∇Γ, Av∇Γ and ∇ are linear the claim follows.
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3.2 Time-discrete approximation

(iii) Consider (ζ1, ζ2, ζ3) ∈ M1. Applying Cauchy-Schwarz’ Inequality, we estimate that

〈η, L(ζ1, ζ2, ζ3)〉 ≤ D‖∇ζ1‖L2(Ω) ‖∇η1‖L2(Ω) + ‖Au∇Γζ2‖L2(Γ) ‖η2‖L2(Γ)

+ ‖Av∇Γζ3‖L2(Γ) ‖η3‖L2(Γ) +
1

h
‖ζ1‖L2(Ω) ‖η1‖L2(Ω)

+
1

h
‖ζ2‖L2(Γ) ‖η2‖L2(Γ) +

1

h
‖ζ2‖L2(Γ) ‖η3‖L2(Γ)

≤ max

{

D,
1

h

}

‖ζ1‖H1(Ω)‖η1‖H1(Ω)

+ max

{

CAu ,
1

h

}

‖ζ2‖H1(Γ)‖η2‖H1(Γ)

+ max

{

CAv ,
1

h

}

‖ζ3‖H1(Γ)‖η3‖H1(Γ)

≤ c1‖η‖M1‖(ζ1, ζ2, ζ3)‖M1

holds, where we used uniform boundedness of Au and Av, see Assumption 1.5.
Here, c1 > 0 depends on h, D, CAu and CAv . This shows that

‖L(ζ1, ζ2, ζ3)‖(M1)∗ ≤ c1‖(ζ1, ζ2, ζ3)‖M1

holds, hence L : M1 → (M1)∗ is bounded and thereby continuous.

(iv) The coercivity of L follows by testing with (ζ1, ζ2, ζ3) ∈ M1, i.e.

〈(ζ1, ζ2, ζ3),L(ζ1, ζ2, ζ3)〉 = D

∫

Ω
|∇ζ1|2 +

∫

Γ
Au∇Γζ2 · ∇Γζ2 +

∫

Γ
Av∇Γζ3 · ∇Γζ3

+
1

h

∫

Ω
ζ2

1 +
1

h

∫

Γ

(

ζ2
2 + ζ2

3

)

≥ D‖∇ζ1‖2
L2(Ω) +

1

h
‖ζ1‖2

L2(Ω) + cu‖∇Γζ2‖2
L2(Γ)

+
1

h
‖ζ2‖2

L2(Γ) +
1

h
‖ζ3‖2

L2(Γ) + cv‖∇Γζ3‖2
L2(Γ), (3.10)

where we used the uniform ellipticity condition (1.8), see Assumption 1.5. Then
inequality (3.10) yields

〈(ζ1, ζ2, ζ3), L(ζ1, ζ2, ζ3)〉 ≥ min

{

1

h
,D

}

‖ζ1‖2
H1(Ω)

+ min

{

1

h
, cu

}

‖ζ2‖2
H1(Γ) + min

{

1

h
, cv

}

‖ζ3‖2
H1(Γ)

≥ min

{

1

h
,D, cu, cv

}

(

‖ζ1‖2
H1(Ω) + ‖ζ2‖2

H1(Γ) + ‖ζ3‖2
H1(Γ)

)

≥ c2‖(ζ1, ζ2, ζ3)‖2
M1 ,

where we used that 0 < h < h0 < 1. Here, c2 > 0 depends on D, cu and cv. There-
fore, L is coercive.
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(v) For two elements η, ζ ∈ M1 we compute for L

〈η − ζ, L(η) − L(ζ)〉 = 〈η − ζ, L(η − ζ)〉 ≥ c2‖η − ζ‖2
M1 > 0,

for all η 6= ζ. Here, we used the linerarity and coercivity properties of L. Hence,
L is a strictly monotone operator.

We remark that the continuity of L implies the continuity on finite dimensional sub-
spaces. Now we let the operator K come into play, which covers the nonlinearities of
the system.

Lemma 3.4. We have

(i) K is bounded,

(ii) F = L+K is bounded,

(iii) K is a completely continuous operator,

(iv) K : (M1,weak) → ((M1)∗,weak-∗) is continuous,

(v) 〈·,K(·)〉 is lower semi-continuous and

(vi) F = L+K is coercive.

Proof.

(i) Assume that (Vi−1, ui−1, vi−1) ∈ M0. Let ζ = (ζ1, ζ2, ζ3) ∈ B ⊂ M1, where B is a
bounded subset of M1. We estimate with Cauchy-Schwarz’ Inequality to find

|〈η,K(ζ)〉| =

∣

∣

∣

∣

∫

Γ
q(ζ1, ζ2, ζ3)(η1 − η3) +

∫

Γ
f(ζ2, ζ3)(η3 − η2)

− 1

h

∫

Ω
Vi−1η1 − 1

h

(
∫

Γ
ui−1η2 +

∫

Γ
vi−1η3

)∣

∣

∣

∣

≤
∫

Γ
(|q1(ζ2, ζ3)| |ζ1| |η1 − η3| + |q2(ζ2, ζ3)| |ζ3| |η1 − η3|)

+

∫

Γ
(|f1(ζ2, ζ3)| |ζ3| |η3 − η2| + |f2(ζ2, ζ3)| |ζ2| |η3 − η2|)

+
1

h

(

‖Vi−1‖L2(Ω)‖η1‖L2(Ω) + ‖ui−1‖L2(Γ)‖η2‖L2(Γ)

+‖vi−1‖L2(Γ)‖η3‖L2(Γ)

)

. (3.11)
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3.2 Time-discrete approximation

We apply Assumption 1.4 for f and q and see that with respect to the right-hand
side of (3.11) we obtain

|〈η,K(ζ1, ζ2, ζ3)〉| ≤
∫

Γ
Cq|ζ1| |η1 − η3| +

∫

Γ
Cq|ζ3| |η1 − η3| (3.12)

+

∫

Γ
Cf |ζ3| |η3 − η2| +

∫

Γ
Cf |ζ2| |η3 − η2| (3.13)

+
1

h

(

‖Vi−1‖L2(Ω)‖η1‖L2(Ω) + ‖ui−1‖L2(Γ)‖η2‖L2(Γ)

+‖vi−1‖L2(Γ)‖η3‖L2(Γ)

)

. (3.14)

We estimate (3.14) from above with Hölder’s Inequality and the Trace Theorem
to obtain

Cq(‖ζ1‖L2(Γ) + ‖ζ3‖L2(Γ))(‖η1‖L2(Γ) + ‖η3‖L2(Γ))

+ Cf (‖ζ3‖L2(Γ) + ‖ζ2‖L2(Γ))(‖η3‖L2(Γ) + ‖η2‖L2(Γ))

+
1

h
‖η‖M1

(

‖Vi−1‖L2(Ω) + ‖ui−1‖L2(Γ) + ‖vi−1‖L2(Γ)

)

≤ Cq(C(Ω)‖ζ1‖H1(Ω) + ‖ζ3‖H1(Γ)) · (C(Ω)‖η1‖H1(Ω) + ‖η3‖H1(Γ))

+ Cf (‖ζ3‖H1(Γ) + ‖ζ2‖H1(Γ))(‖η3‖H1(Γ) + ‖η2‖H1(Γ))

+
1

h
‖η‖M1

(

‖Vi−1‖L2(Ω) + ‖ui−1‖L2(Γ) + ‖vi−1‖L2(Γ)

)

≤ 2CqC(Ω)‖(ζ1, ζ2, ζ3)‖M1(‖η1‖H1(Ω) + ‖η3‖H1(Γ))

+ 2Cf ‖(ζ1, ζ2, ζ3)‖M1(‖η2‖H1(Γ) + ‖η3‖H1(Γ))

+
1

h
‖η‖M1

(

‖Vi−1‖L2(Ω) + ‖ui−1‖L2(Γ) + ‖vi−1‖L2(Γ)

)

≤ ‖η‖M1
1

h

(

‖Vi−1‖L2(Ω) + ‖ui−1‖L2(Γ) + ‖vi−1‖L2(Γ)

)

+ 4‖η‖M1(CqC(Ω) + Cf )‖(ζ1, ζ2, ζ3)‖M1

holds, where C(Ω) > 0 may change from line to line. Hence, K is bounded on
bounded subsets B ⊂ M1.

(ii) Since L and K are bounded, F = L+K has the same property.

(iii) K is completely continuous if for {ζ l} ⊂ M1, ζ ∈ M1, ζ l ⇀ ζ implies strong con-
vergence K(ζ l) → K(ζ) in (M1)∗ for l → ∞. Therefore, we have to control the
operator norm of K(ζ l) −K(ζ). The expressions from the previous time-step in
K cancel, since they are not depending on ζ or ζ l. We define the sequence (ζ l)l in

M1 as ζ l def
= (ζ l

1, ζ
l
2, ζ

l
3) and write

ql def
= q(ζ l

1, ζ
l
2, ζ

l
3) = ql

1ζ
l
1 + ql

2ζ
l
3 = q1(ζ l

2, ζ
l
3)ζ l

3 + q2(ζ l
2, ζ

l
3)ζ l

3, (3.15)

f l def
= f(ζ l

2, ζ
l
3) = f l

1ζ
l
2 + f l

2ζ
l
3 = f1(ζ l

2, ζ
l
3)ζ l

2 + f2(ζ l
2, ζ

l
3)ζ l

3. (3.16)
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3 Weak Existence Theory

If ‖K(ζ l) −K(ζ)‖(M1)∗ should vanish for l → ∞, it is sufficient to show that the
right-hand side of the expression

sup
‖η‖

M1 ≤1
|〈η,K(ζl) −K(ζ)〉| ≤ sup

‖η‖
M1 ≤1

(∣

∣

∣

∣

∫

Γ
η1(ql − q)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Γ
η2(f − f l)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Γ
η3(f l − f)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Γ
η3(q − ql)

∣

∣

∣

∣

)

vanishes for l → ∞. Here, let q and f denote the nonlinearities in dependence of
the limit objectst (ζ1, ζ2, ζ3) and (ζ2, ζ3), respectively. Let s ∈ (4

3 , 2) and r be the
Hölder conjugate, i.e. 1

r + 1
s = 1, then r ∈ (2, 4). With this in hand, one computes

with (3.15) and (3.16) and Hölder’s Inequality that

|〈η,K(ζ l)−K(ζ)〉| ≤ ‖η1‖Lr(Γ)

(

‖ql
1ζ

l
1 − q1ζ1‖Ls(Γ) + ‖q2ζ3 − ql

2ζ
l
3‖Ls(Γ)

)

+ ‖η2‖Lr(Γ)

(

‖f l
1ζ

l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

)

+ ‖η3‖Lr(Γ)

(

‖f l
1ζ

l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

)

+ ‖η3‖Lr(Γ)

(

‖q1ζ1 − ql
1ζ

l
1‖Ls(Γ) + ‖ql

2ζ
l
3 − q2ζ3‖Ls(Γ)

)

(3.17)

holds. The aim is now to estimate the right-hand side of (3.17) by the norm on
M1, therefore we want to apply Sobolev’s Embedding Theorem A.7. With the
setting of Hölder conjugates above we find that the embedding H1(Γ) →֒ Lr(Γ) is
compact, since 0 > −2

r is always satisfied. We have to treat η1 ∈ Lr(Γ) slightly
different, since we need the embedding H1(Ω) →֒ Lr(Γ) to be compact. The con-
dition for compact embeddings here is 1 − 3

2 > −2
r , which is satisfied since r < 4.

In the latter we use constants c1, c2 > 0 from Sobolev’s Embedding Theorem A.7.
Additionally, we introduce a constant c0 > 0 being the maximum of the aforemen-
tioned constants. Thus, the right-hand side of inequality (3.17) is estimated from
above by

c1‖η1‖H1(Ω)

(

‖ql
1ζ

l
1 − q1ζ1‖Ls(Γ) + ‖q2ζ3 − ql

2ζ
l
3‖Ls(Γ)

)

+ c2‖η2‖H1(Γ)

(

‖f l
1ζ

l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

)

+ c2‖η3‖H1(Γ)

(

‖f l
1ζ

l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

)

+ c2‖η3‖H1(Γ)

(

‖q1ζ1 − ql
1ζ

l
1‖Ls(Γ) + ‖ql

2ζ
l
3 − q2ζ3‖Ls(Γ)

)

≤ c0‖η‖M1

(

‖ql
1ζ

l
1 − q1ζ1‖Ls(Γ) + ‖q2ζ3 − ql

2ζ
l
3‖Ls(Γ) + ‖f l

1ζ
l
2 − f1ζ2‖Ls(Γ)

+ ‖f2ζ3 − f l
2ζ

l
3‖Ls(Γ) + ‖f l

1ζ
l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

+‖q1ζ1 − ql
1ζ

l
1‖Ls(Γ) + ‖ql

2ζ
l
3 − q2ζ3‖Ls(Γ)

)

≤ 2c0‖η‖M1

(

‖ql
1ζ

l
1 − q1ζ1‖Ls(Γ) + ‖q2ζ3 − ql

2ζ
l
3‖Ls(Γ)

+‖f l
1ζ

l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

)

. (3.18)

52



3.2 Time-discrete approximation

Now, we focus on the expression in between the brackets of the right-hand side of
(3.18), since this is the expression that has to vanish for l → ∞. We estimate using
Triangle Inequality to find

‖ql
1ζ

l
1 − q1ζ1‖Ls(Γ) + ‖q2ζ3 − ql

2ζ
l
3‖Ls(Γ)

+ ‖f l
1ζ

l
2 − f1ζ2‖Ls(Γ) + ‖f2ζ3 − f l

2ζ
l
3‖Ls(Γ)

≤ ‖ql
1(ζ l

1 − ζ1)‖Ls(Γ) + ‖ζ1(ql
1 − q1)‖Ls(Γ) + ‖ζ3(q2 − ql

2)‖Ls(Γ)

+ ‖ql
2(ζ3 − ζ l

3)‖Ls(Γ) + ‖f l
1(ζ l

2 − ζ2)‖Ls(Γ) + ‖ζ2(f l
1 − f1)‖Ls(Γ)

+ ‖ζ3(f2 − f l
2)‖Ls(Γ) + ‖f l

2(ζ3 − ζ l
3)‖Ls(Γ). (3.19)

Then, we use Assumption 1.4 on q and f to have boundedness of ql
i and f l

i , i = 1, 2
such that the right-hand side of (3.19) is estimated from above by

Cq‖ζ l
1 − ζ1‖Ls(Γ) + ‖ζ1(ql

1 − q1)‖Ls(Γ) + ‖ζ3(q2 − ql
2)‖Ls(Γ)

+ Cq‖ζ3 − ζ l
3‖Ls(Γ) + Cf ‖ζ l

2 − ζ2‖Ls(Γ) + ‖ζ2(f l
1 − f1)‖Ls(Γ)

+ ‖ζ3(f2 − f l
2)‖Ls(Γ) + Cf ‖ζ3 − ζ l

3‖Ls(Γ). (3.20)

In (3.20) there are two cases occuring: first, terms that are linear in ζ l, ζ and
second, the convergence of nonlinearity sequences. We prove the following claims.

Claim. If (ζ l
1, ζ

l
2, ζ

l
3) ⇀ (ζ1, ζ2, ζ3) in M1, then

‖ζ l
1 − ζ1‖Ls(Γ), ‖ζ l

2 − ζ2‖Ls(Γ), ‖ζ l
3 − ζ3‖Ls(Γ) −→ 0, for l → ∞. (3.21)

Proof. The compact version of Sobolev’s Embedding Theorem A.7, yields that
the embedding H1(Ω) →֒ Ls(Γ) is compact for s < 4 and that H1(Γ) →֒ Ls(Γ) is
compact for any s ∈ [1,∞). The choice of s ∈ (4

3 , 2) guarantees that both compact
embeddings hold. After choosing a subsequence of ζ l, which we are denoting with
the same index (l), the sequence ζ l converges strongly in (Ls(Γ))3. That proves
the convergence in (3.21).

Claim. If (ζ l
1, ζ

l
2, ζ

l
3) ⇀ (ζ1, ζ2, ζ3) in M1, then

‖ζ1(ql
1 − q1)‖Ls(Γ), ‖ζ3(q2 − ql

2)‖Ls(Γ),

‖ζ2(f l
1 − f1)‖Ls(Γ), ‖ζ3(f l

2 − f2)‖Ls(Γ) → 0 (3.22)

for l → ∞.

Proof. We use Hölder’s Inequality and constants c3, c4 > 0 to obtain

‖ζ1(ql
1 − q1)‖Ls(Γ) ≤ ‖ζ1‖L2s(Γ)‖ql

1 − q1‖L2s(Γ) ≤ c3‖ζ1‖H1(Ω)‖ql
1 − q1‖L2s(Γ),

‖ζ3(q2 − ql
2)‖Ls(Γ) ≤ ‖ζ3‖L2s(Γ)‖q2 − ql

2‖L2s(Γ) ≤ c4‖ζ3‖H1(Γ)‖q2 − ql
2‖L2s(Γ),

‖ζ2(f l
1 − f1)‖Ls(Γ) ≤ ‖ζ2‖L2s(Γ)‖f l

1 − f1‖L2s(Γ) ≤ c4‖ζ2‖H1(Γ)‖f l
1 − f1‖L2s(Γ),

‖ζ3(f2 − f l
2)‖Ls(Γ) ≤ ‖ζ3‖L2s(Γ)‖f2 − f l

2‖L2s(Γ) ≤ c4‖ζ3‖H1(Γ)‖f1 − f l
1‖L2s(Γ),
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where we used Sobolev’s Embedding Theorem A.7 with s < 2. The previous claim
implies that (ζ l

1, ζ
l
2, ζ

l
3) → (ζ1, ζ2, ζ3) is strongly converging in

(

L2s(Γ)
)3

for s < 2.
Strong convergence in Lp-spaces implies pointwise, almost everywhere convergence
for a suitable subsequence. Here, we denote this subsequence by (l) again. The
nonlinearities f and q are supposed to be continuous functions, see Assumption 1.4,
wherefore the pointwise almost everywhere convergence remains valid. We have
that

q1(ζ l
2, ζ

l
3) → q1(ζ2, ζ3), q2(ζ l

2, ζ
l
3) → q2(ζ2, ζ3) pointwise a.e.,

f1(ζ l
2, ζ

l
3) → f1(ζ2, ζ3), f2(ζ l

2, ζ
l
3) → f2(ζ2, ζ3) pointwise a.e.

holds. With Assumption 1.4 we find that

|ql
1|, |ql

2| ≤ Cq and |f l
1|, |f l

2| ≤ Cf

holds, hence Cq, Cf > 0 are integrable L2s-majorants. Then, by Generalized Le-
besgue Convergence Theorem A.5, we find

q1(ζ l
2, ζ

l
3) → q1(ζ2, ζ3), q2(ζ l

2, ζ
l
3) → q2(ζ2, ζ3) in L2s(Γ),

f1(ζ l
2, ζ

l
3) → f1(ζ2, ζ3), f2(ζ l

2, ζ
l
3) → f2(ζ2, ζ3) in L2s(Γ).

Hence, the claim and the convergence in (3.22) is proved.

According to (3.17)–(3.20) and the claims above we find that

sup
‖η‖

M1 ≤1
|〈η,K(ζ l) −K(ζ)〉| ≤ sup

‖η‖
M1 ≤1

2c5‖η‖M1

(

Cq‖ζ l
1 − ζ1‖Ls(Γ)

+ (Cf + Cq)‖ζ3 − ζ l
3‖Ls(Γ) + Cf ‖ζ l

2 − ζ2‖Ls(Γ)

+ ‖ζ1(ql
1 − q1)‖Ls(Γ) + ‖ζ3(q2 − ql

2)‖Ls(Γ)

+ ‖ζ2(f l
1 − f1)‖Ls(Γ) + ‖ζ3(f2 − f l

2)‖Ls(Γ)

)

→ 0

for l → ∞ and a constant c5 > 0. Therefore, K is completely continuous.

(iv) Complete continuity of K implies (weak,weak-∗)-continuity of K, hence the prop-
erty follows.

(v) For ζ l → ζ the complete continuity of K implies K(ζ l) → K(ζ) in (M1)∗, hence

〈ζ,K(ζ)〉 = lim
l→∞

〈ζ l,K(ζ l)〉 = lim inf
l→∞

〈ζ l,K(ζ l)〉

holds, in particular 〈·,K(·)〉 is lower semi-continuous.
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3.2 Time-discrete approximation

(vi) To prove coercivity of F we calculate

〈ζ, F (ζ)〉 = 〈ζ, L(ζ)〉 + 〈ζ,K(ζ)〉

= D‖∇ζ1‖2
L2(Ω) +

∫

Γ
Au∇Γζ2 · ∇Γζ2 +

∫

Γ
Av∇Γζ3 · ∇Γζ3

+
1

h

(

‖ζ1‖2
L2(Ω) + ‖ζ2‖2

L2(Γ) + ‖ζ3‖2
L2(Γ)

)

+

∫

Γ
(q(ζ)ζ1 − f(ζ2, ζ3)ζ2 + f(ζ2, ζ3)ζ3 − q(ζ)ζ3)

− 1

h

(
∫

Ω
Vi−1ζ1 +

∫

Γ
ui−1ζ2 +

∫

Γ
vi−1ζ3

)

. (3.23)

Since we are interested in coercivity we are focussing on finding a lower bound
with respect to norms tending quadratically to infinity for ‖ζ‖M1 → ∞. For the
nonlinearities we calculate

∫

Γ
q(ζ)ζ1 =

∫

Γ
(q1(ζ2, ζ3)ζ1 − q2(ζ2, ζ3)ζ3)ζ1

≥
∫

Γ
q1(ζ2, ζ3)ζ2

1 −
∫

Γ
Cq|ζ1| |ζ3|

≥
∫

Γ
q1(ζ2, ζ3)ζ2

1 − 1

2
Cq

∫

Γ
ζ2

1 − 1

2
Cq

∫

Γ
ζ2

3 . (3.24)

In the same way follows

−
∫

Γ
f(ζ2, ζ3)ζ2 =

∫

Γ
(−f1(ζ2, ζ3)ζ3 + f2(ζ2, ζ3)ζ2)ζ2

≥
∫

Γ
−Cf |ζ3| |ζ2| +

∫

Γ
f2(ζ2, ζ3)ζ2

2

≥ −1

2
Cf

∫

Γ
ζ2

3 − 1

2
Cf

∫

Γ
ζ2

2 +

∫

Γ
f2(ζ2, ζ3)ζ2

2 . (3.25)

We then compute

∫

Γ
(f(ζ2, ζ3) − q(ζ))ζ3 =

∫

Γ
(f1(ζ2, ζ3)ζ3 − f2(ζ2, ζ3)ζ2)ζ3

+

∫

Γ
(−q1(ζ2, ζ3)ζ1 + q2(ζ2, ζ3)ζ3)ζ3

≥
∫

Γ
(f1(ζ2, ζ3) + q2(ζ2, ζ3))ζ2

3 − Cf

∫

Γ
|ζ2| |ζ3| −

∫

Γ
Cq|ζ1| |ζ3|

≥
∫

Γ
(f1(ζ2, ζ3) + q2(ζ2, ζ3))ζ2

3

−
∫

Γ

(

1

2
Cfζ

2
2 +

1

2
Cfζ

2
3 +

1

2
Cqζ

2
1 +

1

2
Cqζ

2
3

)

. (3.26)
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Inequalities (3.24)–(3.26) imply that

∫

Γ
(q(ζ)ζ1 − f(ζ2, ζ3)ζ2 + (f(ζ2, ζ3) − q(ζ))ζ3)

≥
∫

Γ
q1(ζ2, ζ3)ζ2

1 +

∫

Γ
f2(ζ2, ζ3)ζ2

2 +

∫

Γ
(f1(ζ2, ζ3) + q2(ζ2, ζ3))ζ2

3

−
∫

Γ
(Cqζ

2
1 + Cqζ

2
3 + Cfζ

2
3 + Cfζ

2
2 )

≥
∫

Γ
−Cq(ζ2

1 + ζ2
3 ) −

∫

Γ
Cf (ζ2

2 + ζ2
3 ) (3.27)

holds. These estimates hold on the boundary Γ. To control ζ1 by an appropriate
term we use

‖ζ1‖2
L2(Γ) ≤ C(Ω)

1

ε
‖ζ1‖2

L2(Ω) + ε‖∇ζ1‖2
L2(Ω) (3.28)

for ε > 0, C(Ω) > 0, see Lemma A.5. We collect expressions in ζ1 from the right-

hand side of (3.23), set ε
def
= D

2Cq
to find the following estimate for the boundary

term with (3.28)

D‖∇ζ1‖2
L2(Ω) +

1

h
‖ζ1‖2

L2(Ω) − Cq

∫

Γ
ζ2

1

≥ (D − Cqε)‖∇ζ1‖2
L2(Ω) +

(

1

h
− CqC(Ω)

1

ε

)

‖ζ1‖2
L2(Ω)

≥ D

2
‖∇ζ1‖2

L2(Ω) +

(

1

h
− C2

qC(Ω)
2

D

)

‖ζ1‖2
L2(Ω). (3.29)

We choose h0 <
D

2C2
q C(Ω)

, i.e. let h < h0 = h0(Ω, Cq, D) be sufficiently small to have

a positive coefficient for ‖ζ1‖2
L2(Ω). Considering the estimates from (3.24)–(3.29)

we derive from (3.23) that

〈ζ, F (ζ)〉 ≥
∫

Γ
Au∇Γζ2 · ∇Γζ2 +

∫

Γ
Av∇Γζ3 · ∇Γζ3

+
D

2
‖∇ζ1‖2

L2(Ω) +

(

1

h
− C2

qC(Ω)
2

D

)

‖ζ1‖2
L2(Ω)

+

(

1

h
− Cq − Cf

)

‖ζ3‖2
L2(Γ) +

(

1

h
− Cf

)

‖ζ2‖2
L2(Γ)

− 1

h

(
∫

Ω
Vi−1ζ1 +

∫

Γ
ui−1ζ2 + vi−1ζ3

)

(3.30)

holds. The boundedness of ‖Vi−1‖L2(Ω), ‖ui−1‖L2(Γ) and ‖vi−1‖L2(Γ) yields with
Cauchy-Schwarz’ Inequality, that the last term of (3.30) can be estimated by a
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3.2 Time-discrete approximation

constant times the norm of ζ. This will be denoted by Clin‖ζ‖M1 . Therefore, and
with uniform ellipticity for Au and Av, see Assumption 1.5, we have that

〈ζ, F (ζ)〉 ≥cu‖∇Γζ2‖2
L2(Γ) + cv‖∇Γζ3‖2

L2(Γ) +
D

2
‖∇ζ1‖2

L2(Ω)

+

(

1

h
− Cf

)

‖ζ2‖2
L2(Γ) +

(

1

h
− C2

qC(Ω)
2

D

)

‖ζ1‖2
L2(Ω)

+

(

1

h
− Cq − Cf

)

‖ζ3‖2
L2(Γ) − 1

h
Clin‖ζ‖M1

≥D

2
‖∇ζ1‖2

L2(Ω) + cu‖∇Γζ2‖2
L2(Γ) + cv‖∇Γζ3‖2

L2(Γ)

+
1

2h

(

‖ζ1‖2
L2(Ω) + ‖ζ2‖2

L2(Γ) + ‖ζ3‖2
L2(Γ)

)

− 1

h
Clin‖ζ‖M1

≥c6

(

‖∇ζ1‖2
L2(Ω) + ‖∇Γζ2‖2

L2(Γ) + ‖∇Γζ3‖2
L2(Γ)

)

+
1

2h

(

‖ζ1‖2
L2(Ω) + ‖ζ2‖2

L2(Γ) + ‖ζ3‖2
L2(Γ)

)

− 1

h
Clin‖ζ‖M1

holds. Here, we assumed that 1
2h0

> Cq + Cf and 1
2h0

> C2
qC(Ω) 2

D holds and set

c6 > 0 with c6
def
= min{cu, cv,

D
2 }. Then, for 1

2h0
> c6 we find

〈ζ, F (ζ)〉 ≥c6 (cu, cv, D) ‖ζ‖2
M1 − 1

h
Clin‖ζ‖M1 . (3.31)

We fix 0 < h < h0, then for ‖ζ‖M1 → ∞, the right-hand side of (3.31) tends to
infinity. This yields coercivity for F .

With the preceding results we state the main proposition of this section.

Proposition 3.5 (Existence of solutions for (WS)h
i ). Choose h0 = h0(Ω, D,Cq, Cf ) > 0

sufficiently small, namely

h0 < min

{

1,
1

4(Cf + Cq)
,

D

2C2
qC(Ω)

,
1

2cu
,

1

2cv
,

1

D

}

. (3.32)

Then, for any h < h0 and any i ∈ {1, . . . , ⌊T
h ⌋ + 1} with Vi−1 ∈ L2(Ω), ui−1, vi−1 ∈ L2(Γ)

there exists a triplet (Vi, ui, vi) ∈ H1(Ω) ×H1(Γ) ×H1(Γ), such that the weak, implicit
Euler scheme (WS)h

i is solved.

Proof. Lemma 3.1 yields that if one finds a solution (Vi, ui, vi) ∈ M1 to the variational
inequality (3.4), then the weak, implicit Euler scheme (WS)h

i is solved. Proposition 3.2
provides a solution to the variational inequality under appropriate conditions on the
structure of the operator F . Let F be defined as in the assumptions of Proposition 3.2
and as in (3.8)–(3.9). Lemma 3.4 (ii) implies that F = L+K : M1 → (M1)∗ is bounded,
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3 Weak Existence Theory

coercivity follows from Lemma 3.4 (vi) We find that F is a compactly perturbed mono-
tone operator according to Lemma 3.3 (v), (ii) and (iii) and Lemma 3.4 (iv) and (v).
Proposition 3.2 implies then, that there exists a solution (Vi, ui, vi) to the variational in-
equality (3.4). The conditions on the time-step 0 < h < h0 are given in condition (3.32).

3.2.4 Nonnegativity of time-discrete solutions

Proposition 3.5 yields the existence of solutions (Vi, ui, vi) ∈ M1 for any i = 1, . . . , ⌊T
h ⌋+1

to the time-discrete system (WS)h
i . We want to show that these solutions are nonnega-

tive.

Lemma 3.6 (Nonnegative solutions). Let solutions in a previous time-step i − 1 be
nonnegative, i.e. Vi−1, ui−1, vi−1 ≥ 0 and 0 < h < h0(Ω, Cf , Cq). Then, the solution

(Vi, ui, vi) for the time-discrete system (WS)h
i remains nonnegative.

Proof. Let (Vi, ui, vi) ∈ M1 be a solution to the weak, time-discrete system (WS)h
i . The

triplet (−V −
i ,−u−

i ,−v−
i ) consists of admissible testfunctions for the time-discrete system

(WS)h
i according to Stampacchias Lemma, see [Sch13, Lemma 7.4, p. 146], where the

negative parts of the solution (Vi, ui, vi) are defined as

V −
i

def
= max{−Vi, 0}, u−

i
def
= max{−ui, 0} and v−

i
def
= max{−vi, 0}.

We test (WS)h
i with −V −

i , −u−
i and −v−

i to find

0 =
1

h

∫

Ω
(Vi − Vi−1)(−V −

i ) +D

∫

Ω
∇Vi · ∇(−V −

i ) +

∫

Γ
q(Vi, ui, vi)(−V −

i ), (3.33)

0 =
1

h

∫

Γ
(ui − ui−1)(−u−

i ) +

∫

Γ
Au∇ui · ∇(−u−

i ) −
∫

Γ
f(ui, vi)(−u−

i ), (3.34)

0 =
1

h

∫

Γ
(vi − vi−1)(−v−

i ) +

∫

Γ
Av∇vi · ∇(−v−

i )

−
∫

Γ
(q(Vi, ui, vi) − f(ui, vi))(−v−

i ). (3.35)

The sum of (3.33)–(3.35) is then given by

0 =
1

h

(
∫

Ω
(Vi−1 − Vi)V

−
i +

∫

Γ
(ui−1 − ui)u

−
i +

∫

Γ
(vi−1 − vi)v

−
i

)

+

∫

Ω
D|∇V −

i |2 +

∫

Γ
Au∇Γui · ∇Γu

−
i +

∫

Γ
Av∇Γvi · ∇Γv

−
i

+

∫

Γ
q(Vi, ui, vi)(v

−
i − V −

i ) +

∫

Γ
f(ui, vi)(u

−
i − v−

i ). (3.36)
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3.2 Time-discrete approximation

Since the previous solution (Vi−1, ui−1, vi−1) is nonnegative. We estimate (3.36) from
above by

1

h

(
∫

Ω
(V −

i )2 +

∫

Γ
(u−

i )2 + (v−
i )2

)

+

∫

Ω
D|∇V −

i |2

+

∫

Γ
Au∇Γui · ∇Γu

−
i +

∫

Γ
Av∇Γvi · ∇Γv

−
i

+

∫

Γ
q(Vi, ui, vi)(v

−
i − V −

i ) +

∫

Γ
f(ui, vi)(u

−
i − v−

i )

≥ 1

h

(
∫

Ω
(V −

i )2 +

∫

Γ
(u−

i )2 + (v−
i )2

)

+

∫

Ω
D|∇V −

i |2

+

∫

Γ
cu|∇Γu

−
i |2 +

∫

Γ
cv|∇Γv

−
i |2

+

∫

Γ
q(Vi, ui, vi)(v

−
i − V −

i ) +

∫

Γ
f(ui, vi)(u

−
i − v−

i ). (3.37)

In (3.37) we used uniform ellipticity of Au and Av, see Assumption 1.5, to have nonneg-
ative gradient terms. We take a closer look at the last two terms in (3.37).

1. For the first term we have with Young’s Inequality and 0 ≤ q1(ui, vi), q2(ui, vi) ≤ Cq

that
∫

Γ
q(Vi, ui, vi)(v

−
i − V −

i ) =

∫

Γ
(q1(ui, vi)Vi − q2(ui, vi)vi)(v

−
i − V −

i )

=

∫

Γ
q1(ui, vi)Viv

−
i −

∫

Γ
q2(ui, vi)viv

−
i

+

∫

Γ
−q1(ui, vi)ViV

−
i +

∫

Γ
q2(ui, vi)viV

−
i

=

∫

Γ
q1(ui, vi)Viv

−
i +

∫

Γ
q2(ui, vi)(v

−
i )2

+

∫

Γ
q1(ui, vi)(V

−
i )2 +

∫

Γ
q2(ui, vi)viV

−
i

≥ −
∫

Γ
q1(ui, vi)V

−
i v−

i −
∫

Γ
q2(ui, vi)V

−
i v−

i

≥ −
∫

Γ

1

2
((V −

i )2 + (v−
i )2)(q1(ui, vi) + q2(ui, vi))

≥ −
∫

Γ
Cq((V −

i )2 + (v−
i )2), (3.38)

holds.

59



3 Weak Existence Theory

2. For the second term we compute

∫

Γ
f(ui, vi)(u

−
i − v−

i ) =

∫

Γ
(f1(ui, vi)vi − f2(ui, vi)ui)(u

−
i − v−

i )

≥ −
∫

Γ
f1(ui, vi)u

−
i v

−
i −

∫

Γ
f2(ui, vi)u

−
i v

−
i

≥ −
∫

Γ

1

2
((u−

i )2 + (v−
i )2)(f1(ui, vi) + f2(ui, vi))

≥ −
∫

Γ
Cf ((u−

i )2 + (v−
i )2). (3.39)

The combination of equations (3.38) and (3.39) with (3.37) yield

0 ≥
(
∫

Γ
(u−

i )2
(

1

h
− Cf

))

+

(
∫

Γ
(v−

i )2
(

1

h
− Cq − Cf

))

+

∫

Ω

1

h
(V −

i )2 +D

∫

Ω
|∇V −

i |2 −
∫

Γ
Cq(V −

i )2

≥
(
∫

Γ
(u−

i )2
(

1

h
− Cf

))

+

(
∫

Γ
(v−

i )2
(

1

h
− Cq − Cf

))

+

∫

Ω

(

1

h
− 2C(Ω)

C2
q

D

)

(V −
i )2 +

D

2

∫

Ω
|∇V −

i |2, (3.40)

where we applied Lemma A.5 with ε = D
2Cq

and C(Ω) > 0. We choose h0 according to

(3.32) to find that for any 0 < h < h0 all summands on the right-hand side of (3.40) are
nonnegative. Thus, we see from (3.37) using (3.38)–(3.40), that all sets where Vi, ui and
vi are negative have Lebesgue measure, resp. Hausdorff measure zero. This completes
the proof.
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3.3 Compactness and limit equations

3.3 Compactness and limit equations

In this Section we use the time-discrete solutions we have found in Section 3.2 to con-
struct piecewise constant functions and affine linear interpolations on the time-interval
(−∞, T ) depending on the time-step h. We introduce energy bounds uniformly in h and
appropriate convergence results for a suitable subsequence of (hk)k → 0 to find a candi-
date triplet (V, u, v) to be a solution of the weak system (WS). Then, the main result of
this section is that the triplet candidate (V, u, v) ∈ L2(0, T ;H1(Ω)) × (L2(0, T ;H1(Γ))2

indeed satisfies the weak system (WS).

3.3.1 Formulation as step functions and affine linear interpolations

We consider initial conditions from Assumption 1.3 and a given time-step 0 < h < h0

sufficiently small satisfying Condition (3.32). Then, Proposition 3.5 provides that there
exists solutions (Vi, ui, vi) ∈ M of (WS)h

i for all i ∈ {1, . . . , ⌊T
h ⌋ + 1}.

Piecewise constant approximations We define piecewise constant approximations

V h : (−∞, T ) → H1(Ω), uh, vh : (−∞, T ) → H1(Γ)

by setting

V h(t)
def
=

{

V0, for t ≤ 0,

Vi, for (i− 1)h < t ≤ ih, i = 1, . . . , ⌊T
h ⌋ + 1

uh(t)
def
=

{

u0, for t ≤ 0,

ui, for (i− 1)h < t ≤ ih, i = 1, . . . , ⌊T
h ⌋ + 1

vh(t)
def
=

{

v0, for t ≤ 0,

vi, for (i− 1)h < t ≤ ih, i = 1, . . . , ⌊T
h ⌋ + 1.

We set

qh
def
= q(V h, uh, vh) and fh

def
= f(uh, vh).

Claim 3.1. The triplet (Vh, uh, vh) satisfies the system

0 =

∫

ΩT

∂−h
t V hη1 +D

∫

ΩT

∇V h · ∇η1 +

∫

ΓT

qhη1, (3.41)

0 =

∫

ΓT

∂−h
t uhη2 +

∫

ΓT

Au∇Γuh · ∇Γη2 −
∫

ΓT

fhη2, (3.42)

0 =

∫

ΓT

∂−h
t vhη3 +

∫

ΓT

Av∇Γvh · ∇Γη3 +

∫

ΓT

(fh − qh)η3 (3.43)

for all η1 ∈ L2(0, T ;H1(Ω)), η2, η3 ∈ L2(0, T ;H1(Γ)).
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3 Weak Existence Theory

Proof. Choose an arbitrary η1 ∈ L2(0, T ;H1(Ω)), then η1(t) ∈ H1(Ω) is valid for almost
every t ∈ (0, T ). For every t ∈ (0, T ) there exists a unique i ∈ {1, . . . , ⌊T

h ⌋ + 1}, such

that qh(V h, uh, vh) = q1(ui, vi)Vi − q2(ui, vi)vi (fh analogously). The expression ∂−h
t V h

is uniquely given by

∂−h
t V h

∣

∣

∣

t
=

1

h
(Vi − Vi−1)

almost everywhere in Ω. The time-discretization scheme (WS)h
i now yields that

0 =

∫

Ω
∂−h

t V hη1 +D

∫

Ω
∇V h · ∇η1 +

∫

Γ
qhη1

pointwise almost everywhere on (0, T ). Therefore, equation (3.41) holds. Equations
(3.42) and (3.43) follow by the same arguments.

Affine linear interpolations We introduce affine linear interpolations. For given
0 < h < h0 we divide the interval [0, T ] into subintervals [ti−1, ti] with ti = ih for i =
1, . . . , ⌊T

h ⌋ + 1. Let t0 = 0, we define

Vh : (−∞, T ] → H1(Ω), uh, vh : (−∞, T ] → H1(Γ)

by

Vh(t)
def
=

{

V0, t < 0,

µVi−1 + (1 − µ)Vi, t = µti−1 + (1 − µ)ti, µ ∈ [0, 1],

uh(t)
def
=

{

u0, t < 0,

µui−1 + (1 − µ)ui, t = µti−1 + (1 − µ)ti, µ ∈ [0, 1],

vh(t)
def
=

{

v0, t < 0,

µvi−1 + (1 − µ)vi, t = µti−1 + (1 − µ)ti, µ ∈ [0, 1].

Let t ∈ (ti−1, ti). Then, the time-derivatives of Vh, uh and vh satisfy

∂tVh(t) =
Vi − Vi−1

ti − ti−1
=
Vi − Vi−1

h
= ∂−h

t V h,

∂tuh(t) =
ui − ui−1

ti − ti−1
=
ui − ui−1

h
= ∂−h

t uh,

∂tvh(t) =
vi − vi−1

ti − ti−1
=
vi − vi−1

h
= ∂−h

t vh.

With this and (Vi, ui, vi) ∈ M0 for all i ∈ {1, . . . , ⌊T
h ⌋ + 1} we find that

Vh ∈ H1(0, T ;H1(Ω)) and uh, vh ∈ H1(0, T ;H1(Γ))

62



3.3 Compactness and limit equations

holds. Therefore, in comparison to Claim 3.1 the following equations are satisfied

0 =

∫ T

0

∫

Ω
∂tVhη1 +D

∫ T

0

∫

Ω
∇V h · ∇η1 +

∫ T

0

∫

Γ
qhη1, (3.44)

0 =

∫ T

0

∫

Γ
∂tuhη2 +

∫ T

0

∫

Γ
Au∇Γuh · ∇Γη2 +

∫ T

0

∫

Γ
(−fh)η2, (3.45)

0 =

∫ T

0

∫

Γ
∂tvhη3 +

∫ T

0

∫

Γ
Av∇Γvh · ∇Γη3 +

∫ T

0

∫

Γ
(−qh + fh)η3 (3.46)

for all η1 ∈ L2(0, T ;H1(Ω)), η2, η3 ∈ L2(0, T ;H1(Γ)).

3.3.2 Limit functions and convergence properties

In this Subsection we identify a limit triplet (V, u, v), such that the interpolations from
Subsection 3.3.1 converge weakly in suitable spaces of type L2(0, T ;X) for X = H1(Ω)
and X = H1(Γ), respectively. We apply Lions-Aubin’s Lemma to obtain strong conver-
gence in spaces of type L2(0, T ;Y ) with Y = L2(Ω) and Y = L2(Γ), respectively.

Lions-Aubin’s Lemma To pass from time-discrete to time-continuous equations one
often uses Lions-Aubin’s Lemma which we state next.

Lemma 3.7 (Lions-Aubin). Let X →֒ Y →֒ X∗ be Banach spaces with X,X∗ reflexive
Banach spaces. Let the embedding X →֒ Y be compact and Y →֒ X∗ be continuous.
Then, the embedding

L2(0, T ;X) ∩H1(0, T ;X∗) →֒ L2(0, T ;Y ) (3.47)

is compact. In particular, every sequence (wk)k being bounded in both spaces on the
left-hand side of embedding (3.47) has a converging subsequence in L2(0, T ;Y ).

Proof. The proof can be found in [Sch13, p. 206 ff.].

We first identify suitable triples of type (X,Y,X∗).

Claim 3.2. The triple (H1(Ω), L2(Γ), (H1(Ω))∗) satisfies the prerequisites from Lions-
Aubin Lemma 3.7.

Proof. Recall that H1(Ω) is compactly embedded into L2(Γ) by Sobolev’s Embedding
Theorem A.7. For the operator

T : L2(Γ) → (H1(Ω))∗ with < Tu, v >
def
=

∫

Γ
uv

we have for c1 > 0

|〈Tu, v〉| ≤ ‖u‖L2(Γ)‖v‖L2(Γ) ≤ c1‖u‖L2(Γ)‖v‖H1(Ω).
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3 Weak Existence Theory

Therefore, T is continuous. We have found a suitable triple and the claim is proved.

We easily find that also

(H1(Ω), L2(Ω), (H1(Ω))∗) and (H1(Γ), L2(Γ), (H1(Γ))∗)

are suitable triples in the sense of Lions-Aubin Lemma 3.7.

Uniform bounds, energy estimates and Convergence results For convenience
we introduce the following notation

L2M0 def
= L2(0, T ;L2(Ω)) × L2(0, T ;L2(Γ)) × L2(0, T ;L2(Γ)),

L2M1 def
= L2(0, T ;H1(Ω)) × L2(0, T ;H1(Γ)) × L2(0, T ;H1(Γ)).

Lemma 3.8 (Uniform bounds, energy estimates). Let Assumptions 1.3 and 1.4 be stat-
isfied. Moreover, let (Vh, uh, vh) and (V h, uh, vh) be given approximations according to
Subsection 3.3.1. Then, the following propositions are satisfied:

(i) There exists a constant Λ1 = Λ1(T,Ω, Cq, Cf , D) > 0 independent of the time-step
h and uniformly bounded for D ≥ 1, such that

ess sup
t∈[0,T ]

(

‖V h(t)‖2
L2(Ω) + ‖uh(t)‖2

L2(Γ) + ‖vh(t)‖2
L2(Γ)

)

+

∫ T

0

(

D‖∇V h(t)‖2
L2(Ω) + 2cu‖∇Γuh(t)‖2

L2(Γ) + 2cv‖∇Γvh(t)‖2
L2(Γ)

)

dt

≤ Λ1

(

‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

)

holds. Therefore, (V h, uh, vh) ∈ L2M1.

(ii) There exists a constant Λ2 = Λ2(T,Ω, Cq, Cf , D) > 0 independent of h and uni-
formly bounded for D ≥ 1, such that the affine linear interpolations (Vh, uh, vh)
are uniformly bounded in L2M1, i.e.

‖(Vh, uh, vh)‖2
L2M1 ≤ Λ2.

(iii) The time-derivative ∂tVh is uniformly bounded in L2(0, T ; (H1(Ω))∗) and ∂tuh,
∂tvh are uniformly bounded in L2(0, T ; (H1(Γ))∗), i.e. there exists a constant Λ3 =
Λ3(T,Ω, Cq, Cf , D) > 0, such that

‖∂tVh‖L2(0,T ;(H1(Ω))∗) ≤ Λ3,

and Λ′
3 = Λ′

3(T,Ω, Cq, Cf , CAu , CAv , D) > 0 uniformly bounded for D ≥ 1, such
that

‖∂tuh‖L2(0,T ;(H1(Γ))∗), ‖∂tvh‖L2(0,T ;(H1(Γ))∗) ≤ Λ′
3.
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Proof.

(i) We test the sum of (WS)h
i with (Vi, ui, vi) ∈ M1 and multiply by h. Accord-

ing to the computations about coercivity of the operator F in (3.23)–(3.30), see
Lemma 3.4 (vi), we find with (ζ1, ζ2, ζ3) = (Vi, ui, vi) that

‖VN ‖2
L2(Ω) + ‖uN ‖2

L2(Γ) + ‖vN ‖2
L2(Γ)

+ h
N
∑

i=1

(

D‖∇Vi‖2
L2(Ω) + 2cu‖∇Γui‖2

L2(Γ) + 2cv‖∇Γvi‖2
L2(Γ)

)

≤ ‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

+ h
N
∑

i=1

(

4C(Ω)

D
C2

q ‖Vi‖2
L2(Ω) + 2Cf ‖ui‖2

L2(Γ) + 2(Cq + Cf )‖vi‖2
L2(Γ)

)

(3.48)

holds for C(Ω) > 0. Let N = ⌊T
h ⌋ + 1, then for any t ∈ (0, T ) there exists a

uniquely determined i ∈ {1, . . . , N} such that the piecewise constant representa-
tion (V h, uh, vh) yields with (3.48) that

∫

Ω
|V h(t)|2 +

∫

Γ
|uh(t)|2 +

∫

Γ
|vh(t)|2

≤ ‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

+

∫ t

0

(

4C(Ω)C2
q

D

∫

Ω
|V h(s)|2 + 2Cf

∫

Γ
|uh(s)|2

)

ds

+

∫ t

0

(

2(Cq + Cf )

∫

Γ
|vh(s)|2

)

ds.

holds. Hence, Gronwall’s Lemma (A.9) implies for all t ∈ (0, T ) the uniform bound
∫

Ω
|V h(t)|2 +

∫

Γ
|uh(t)|2 +

∫

Γ
|vh(t)|2

≤
(

‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

)

ec1t,

where c1 = max

{

4C(Ω)C2
q

D , 2(Cq + Cf )

}

. We notice that c1 is uniformly bounded

for D ≥ 1. With this and (3.48) we find an energy estimate for piecewise constant
approximations, i.e.
∫

Ω
|V h(t)|2 +

∫

Γ
|uh(t)|2 +

∫

Γ
|vh(t)|2

+

∫ t

0

(

D

∫

Ω
|∇V h(s)|2 + 2cu

∫

Γ
|∇Γuh(s)|2 + 2cv

∫

Γ
|∇Γvh(s)|2

)

ds

≤ ‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

+
(

‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

)

ec1t

≤ Λ1(T,Ω, Cq, Cf , D)
(

‖V0‖2
L2(Ω) + ‖u0‖2

L2(Γ) + ‖v0‖2
L2(Γ)

)
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holds for all t ∈ (0, T ) which implies Lemma 3.8 (i).

(ii) We find that the gradient expressions of affine linear interpolations (Vh, uh, vh)
are bounded by gradient expressions of piecewise constant approximations. For
example we have

1

6

∫ T

h
‖∇Vh(t)‖2

L2(Ω)dt ≤ h
N
∑

i=1

‖∇Vi‖2
L2(Ω) =

∫ T

0
‖∇V h(t)‖2

L2(Ω)dt,

where the same inequalities holds for ∇Γuh and ∇Γvh, see [Sch13, p. 213f]. The
same inequality holds when replacing ∇Vh by Vh, uh and vh, respectively. Since
the initial data is not of class H1 we shift the time interval (0, T ) by h to (h, T +h)
and let the shifted space L2M1 be denoted by L2M1

h . Then, we find

‖(Vh, uh, vh)‖2
L2M1

h
=

∫ T +h

h

(

‖Vh(t)‖2
H1(Ω) + ‖uh(t)‖2

H1(Γ) + ‖vh(t)‖2
H1(Γ)

)

dt

≤ 6

∫ T +h

0
‖(V h(t), uh(t), vh(t))‖2

M1dt ≤ Λ2

Lemma 3.8 (i) confirms the existence of a constant Λ2 > 0 being independent of
the time-step h and uniformly bounded for D ≥ 1, such that the assertion follows.

(iii) For the third part we treat every time-derivative separately, i.e.

∣

∣

∣

∣

∣

∫ T

0
〈∂tVh, η1〉L2(Ω)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫

Ω
(∂tVh)η1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

(

−
∫

Ω
D∇V h · ∇η1 +

∫

Γ

(

−q1(uh, vh)V h + q2(uh, vh)vh

)

η1

)

∣

∣

∣

∣

∣

≤ D‖∇V h‖L2(0,T ;L2(Ω))‖∇η1‖L2(0,T ;L2(Ω))

+ Cq

(

‖V h‖L2(0,T ;L2(Γ)) + ‖vh‖L2(0,T ;L2(Γ))

)

‖η1‖L2(0,T ;L2(Γ))

≤ D‖∇V h‖L2(0,T ;L2(Ω))‖∇η1‖L2(0,T ;L2(Ω))

+ CqC(Ω)
(

‖V h‖L2(0,T ;L2(Ω)) + ‖∇V h‖L2(0,T ;L2(Ω)) + ‖vh‖L2(0,T ;L2(Γ))

)

· C(Ω)
(

‖η1‖L2(0,T ;L2(Ω)) + ‖∇η1‖L2(0,T ;L2(Ω))

)

≤ D‖V h‖L2(0,T ;H1(Ω))‖η1‖L2(0,T ;H1(Ω))

+ CqC(Ω)‖V h‖L2(0,T ;H1(Ω))‖η1‖L2(0,T ;H1(Ω))

+ CqC(Ω)‖vh‖L2(0,T ;H1(Γ))‖η1‖L2(0,T ;H1(Ω)) (3.49)
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3.3 Compactness and limit equations

where we used (3.44), Cauchy-Schwarz’ Inequqality and the Trace Theorem for
C(Ω) > 0 which may change from line to line. We use Lemma 3.8 (i) to obtain
from (3.49) that

∣

∣

∣

∣

∣

∫ T

0
〈∂tVh, η1〉L2(Ω)

∣

∣

∣

∣

∣

≤ D‖V h‖L2(0,T ;H1(Ω))‖η1‖L2(0,T ;H1(Ω))

+
(

CqC(Ω)‖V h‖L2(0,T ;H1(Ω)) + CqC(Ω)Λ1

)

‖η1‖L2(0,T ;H1(Ω))

≤ Λ3‖η1‖L2(0,T ;H1(Ω)), (3.50)

where Λ3 > 0 depends on T , Ω, Cq, Cf and D, as it was claimed in Lemma 3.8 (iii).
With (3.45) we compute

∣

∣

∣

∣

∣

∫ T

0
〈∂tuh, η2〉L2(Γ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫

Γ
(∂tuh)η2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

(

−
∫

Γ
Au∇Γuh · ∇Γη2 +

∫

Γ
(f1(uh, vh)uh − f2(uh, vh)vh) η2

)

∣

∣

∣

∣

∣

≤ CAu‖∇Γuh‖L2(0,T ;L2(Γ))‖∇Γη2‖L2(0,T ;L2(Γ))

+ Cf

(

‖uh‖L2(0,T ;L2(Γ)) + ‖vh‖L2(0,T ;L2(Γ))

)

‖η2‖L2(0,T ;L2(Γ))

≤ CAu‖uh‖L2(0,T ;H1(Γ))‖η2‖L2(0,T ;H1(Γ))

+ Cf

(

‖uh‖L2(0,T ;H1(Γ)) + ‖vh‖L2(0,T ;H1(Γ))

)

‖η2‖L2(0,T ;H1(Γ)). (3.51)

We find with Lemma 3.8 (i) and (3.51) that

∣

∣

∣

∣

∣

∫ T

0
〈∂tuh, η2〉L2(Γ)

∣

∣

∣

∣

∣

≤ (CAuΛ1 + 2Cf Λ1) ‖η2‖L2(0,T ;H1(Γ)) (3.52)
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3 Weak Existence Theory

holds, where for D ≥ 1 the constants appearing on the right-hand side of (3.52)
are uniformly bounded. With (3.46) and the Trace Theorem we obtain that

∣

∣

∣

∣

∣

∫ T

0
〈∂tvh, η3〉L2(Γ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫

Γ
(∂tvh)η3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

(

−
∫

Γ
Av∇Γvh · ∇Γη3 +

∫

Γ
(−f1(uh, vh)uh + f2(uh, vh)vh) η3

+

∫

Γ

(

q1(uh, vh)V h − q2(uh, vh)vh

)

η3

)∣

∣

∣

∣

≤ CAv ‖∇Γvh‖L2(0,T ;L2(Γ))‖∇Γη3‖L2(0,T ;L2(Γ))

+ Cf

(

‖uh‖L2(0,T ;L2(Γ)) + ‖vh‖L2(0,T ;L2(Γ))

)

‖η3‖L2(0,T ;L2(Γ))

+ Cq

(

‖V h‖L2(0,T ;L2(Γ)) + ‖vh‖L2(0,T ;L2(Γ))

)

‖η3‖L2(0,T ;L2(Γ))

≤ CAv ‖vh‖L2(0,T ;H1(Γ))‖η3‖L2(0,T ;H1(Γ))

+ Cf

(

‖uh‖L2(0,T ;H1(Γ)) + ‖vh‖L2(0,T ;H1(Γ))

)

‖η3‖L2(0,T ;H1(Γ))

+ CqC(Ω)
(

‖V h‖L2(0,T ;H1(Ω)) + ‖vh‖L2(0,T ;H1(Γ))

)

‖η3‖L2(0,T ;H1(Γ))

(3.53)

holds. Applying the same argument as in (3.52) to (3.53), we find a constant
Λ′

3 > 0 which is uniformly bounded for D ≥ 1 depending on T , Ω, Cq, Cf , D, CAu

and CAv , such that

max{CAv Λ1 + 2Cf Λ1 + 2CqC(Ω)Λ1, CAv Λ1 + 2Cf Λ1} ≤ Λ′
3

holds. This finishes the proof.

With Lemma 3.8 we find the following weak and strong convergence statements.

Lemma 3.9. There exists a subsequence (hk)k with hk → 0 for k → ∞ and a limit object
(V, u, v) ∈ L2M1 such that the following assertions hold:

(i) (Vhk
, uhk

, vhk
) ⇀ (V, u, v) weakly in L2M1,

(ii) (Vhk
, uhk

, vhk
) → (V, u, v) in L2M0,

(iii) Vhk
→ V in L2(0, T ;L2(Γ)) and

(iv) (V hk
, uhk

, vhk
) → (V, u, v) in L2M0 and V hk

→ V in L2(0, T ;L2(Γ)).

Proof. We choose successively subsequences of h → 0 that, without relabeling, we always
denote by (hk)k, hk → 0 as k → ∞.
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3.3 Compactness and limit equations

(i) The first assertion is a consequence of the uniform boundedness of (Vh, uh, vh)h in
L2M1 from Lemma 3.8 (ii) in combination with the observation that the product
space L2M1 of Bochner-type is reflexive since H1(Ω) and H1(Γ) are reflexive Ba-
nach spaces. Therefore, bounded sets are weakly precompact in L2M1, see [Sch13,
Theorem 4.13, p. 79], a limit object (V, u, v) ∈ L2M1 and a subsequence (hk)k with
hk → 0 for k → ∞ exists such that the assertion follows.

ii) We apply Lions-Aubin’s Lemma 3.7 to (Vh, uh, vh) to show Lemma 3.9 (ii). With
Lemma 3.8 (ii) we find that (Vh, uh, vh) ∈ L2M1. With Lemma 3.8 (ii) and (iii) we
obtain

Vh ∈ H1(0, T ; (H1(Ω))∗) and uh, vh ∈ H1(0, T ; (H1(Γ))∗).

For (H1(Ω), L2(Ω), (H1(Ω))∗) and (H1(Γ), L2(Γ), (H1(Γ))∗) we can apply Lions-
Aubin’s Lemma 3.7 and find with the compactness of the embedding that there
exists a strongly convergent subsequence of (Vhk

, uhk
, vhk

)h in L2M0, which shows
Lemma 3.9 (ii).

(iii) We have that Vh ∈ L2(0, T ;H1(Ω)) and ∂tVh ∈ L2(0, T ; (H1(Ω))∗). With the triple
(H1(Ω), L2(Γ), (H1(Ω))∗) and Lions-Aubin’s Lemma 3.7 we find a subsequence of
(hk)k such that Vhk

→ V in L2(0, T ;L2(Γ)). The assertion follows.

(iv) Lemma 3.9 (ii) and (iii) imply the strong convergence for linear interpolations
(Vhk

, uhk
, vhk

) → (V, u, v) in L2M0 and Vhk
→ V ∈ L2(0, T ;L2(Γ)). The compari-

son of linear affine interpolations and piecewise constant functions will be stated
in Lemma 3.10 where either X = L2(Ω) or X = L2(Γ). Then, Lemma 3.10 implies
the existence of a subsequence (hk)k such that piecewise constant step-functions
(V hk

, uhk
, vhk

) → (V, u, v) in L2M0 and V hk
→ V ∈ L2(L2(Γ)).

For the sake of completeness we state a lemma taken from [Sch13, p. 213ff].

Lemma 3.10. Let X be a Hilbert space, T > 0 and h → 0, such that for every h > 0
with 0 = t0, . . . , tN = T the interval [0, T ] is divided into [ti−1, ti) for i = 1, . . . , N . Let
wh

i ∈ X be the evaluation in ti. Introduce wh : [0, T ] → X to be the piecewise con-
stant step functions and wh : [0, T ] → X to be piecewise affine interpolations, such that
wi = wh(ti) = wh(ti) holds. If in this case there is a function w ∈ L2(0, T ;X) with

wh −→ w in L2(0, T ;X) for h → 0,

then

wh −→ w in L2(0, T ;X) for h → 0.

Proof. A proof can be found in [Sch13, pp. 213ff].

According to Lemma 3.9 we have found a triplet (V, u, v) that is a candidate for a
solution of the fully coupled weak system (WS).
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3.3.3 Solution of the fully coupled weak system

In this Subsection we find that the triplet (V, u, v) is indeed a solution of the fully coupled
weak system given in (WS).

Proposition 3.11 (Limit in the equations). The triplet (V, u, v) ∈ L2(0, T ;H1(Ω)) ×
(

L2(0, T ;H1(Γ))
)2

is a solution of the fully coupled weak system (WS).

Proof. The proof is structured as follows: First, we assume to have smooth testfunctions
in (3.41)–(3.43). We prove that the limit process h → 0 and integration are commutable
by treating every term separately. Afterwards, we relax the smoothness assumption for
the testfunctions and show that the fully coupled weak problem (WS) has a solution.

Recall that for 0 < h < h0, with h0 specified in (3.32), the piecewise constant time-
discrete approximation satisfies

0 =

∫

ΩT

∂−h
t V hη1 +D

∫

ΩT

∇V h · ∇η1 +

∫

ΓT

qhη1, (3.41)

0 =

∫

ΓT

∂−h
t uhη2 +

∫

ΓT

Au∇Γuh · ∇Γη2 +

∫

ΓT

−fhη2, (3.42)

0 =

∫

ΓT

∂−h
t vhη3 +

∫

ΓT

Av∇Γvh · ∇Γη3 +

∫

ΓT

(fh − qh)η3 (3.43)

for all η1 ∈ L2(0, T ;H1(Ω)), η2, η3 ∈ L2(0, T ;H1(Γ)).
First, we assume that the considered testfunctions are smooth in time with compact

support in [0, T ) and of class H1 in space, i.e.

η1 ∈ C∞
c ([0, T );H1(Ω)) and η2, η3 ∈ C∞

c ([0, T );H1(Γ)).

We apply a discrete partial integration to find in (3.41)
∫

ΩT

∂−h
t V hη1 =

∫

ΩT

∂−h
t (V h − V0)η1

=

∫

ΩT

∂−h
t (η1(V h − V0)) −

∫

ΩT

(∂−h
t η1)(V h − V0)(· − h)

= − 1

h

∫ 0

−h

∫

Ω
(η1(V h − V0)) +

1

h

∫ T

T −h

∫

Ω
(η1(V h − V0))

−
∫ T −h

−h

∫

Ω
∂h

t η1(V h − V0), (3.54)

where we used that the discrete time-derivative of the initial data V0 is zero. Since
V h = V0 for t ≤ 0 holds, the first term on the right-hand side of (3.54) vanishes. Fur-
thermore, we assume h > 0 sufficiently small enough such that η1 = 0 on (T − h, T )
holds. This implies that the second term of the right-hand side of (3.54) vanishes. With
these two arguments we shift the domain of integration from (−h, T −h) to (0, T ). This
yields the equality

∫

ΩT

(∂−h
t V h)η1 = −

∫

ΩT

∂h
t η1(V h − V0).
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Lemma 3.9 (iv) yields that V hk
→ V in L2(ΩT ) holds for a subsequence hk → 0 for

k → ∞. With the convergence ∂hk
t η1 → (η1)t in C0([0, T ], H1(Ω)) for hk → 0 with

k → ∞ we find

−
∫

ΩT

(∂hk
t η1)(V hk

− V0) → −
∫

ΩT

(∂tη1)(V − V0). (3.55)

In the same way we find on ΓT that

−
∫

ΓT

(∂hk
t η2)(uhk

− u0)(t) → −
∫

ΓT

(∂tη2)(u− u0), (3.56)

−
∫

ΓT

(∂hk
t η3)(vhk

− v0)(t) → −
∫

ΓT

(∂tη3)(v − v0) (3.57)

hold for a subsequence hk → 0 with k → ∞.
The weak convergence statement from Lemma 3.9 (i) implies that for a subsequence

hk → 0 for k → ∞ we find
∫

ΩT

D∇V hk
· ∇η1 →

∫

ΩT

D∇V · ∇η1, (3.58)

∫

ΓT

Au∇uhk
· ∇η2 →

∫

ΓT

Au∇u · ∇η2, (3.59)

∫

ΓT

Av∇vhk
· ∇η3 →

∫

ΓT

Av∇v · ∇η3. (3.60)

The nonlinearities are treated in the following way. According to Lemma 3.9 (iv) we
find that (V hk

, uhk
, vhk

) → (V, u, v) is strongly convergent in L2M0 and V hk
→ V is

strongly convergent in L2(0, T ;L2(Γ)). After possibly passing to a further subsequence
(hk)k in addition V hk

→ V pointwise a.e. in ΩT and uhk
→ u and vhk

→ v pointwise
a.e. in ΓT .

Since the nonlinearities are assumed to be continuous, see Assumption 1.4, we find
the following pointwise a.e. convergence statements

qhk
= q1(uhk

, vhk
)V hk

− q2(uhk
, vhk

)vhk
→ q1(u, v)V − q2(u, v)v,

fhk
= f1(uhk

, vhk
)uhk

− f2(uhk
, vhk

)vhk
→ f1(u, v)u− f2(u, v)v.

The nonlinearities qh and fh are bounded which yields

|qhk
| = |q1(uhk

, vhk
)V hk

− q2(uhk
, vhk

)vhk
|

≤ Cq|V hk
| + Cq|vhk

| → Cq(V + v) in L2(ΓT ),

|fhk
| = |f1(uhk

, vhk
)uhk

− f2(uhk
, vhk

)vhk
|

≤ Cf |vhk
| + Cf |uhk

| → Cf (u+ v) in L2(ΓT ),

where we have used that Lemma 3.9 (iv) holds. Then, with Generalized Lebesgue The-
orem A.10 we find strong convergence

q1(uhk
, vhk

)V hk
− q2(uhk

, vhk
)vhk

→ q1(u, v)V − q2(u, v)v in L2(ΓT ),

f1(uhk
, vhk

)uhk
− f2(uhk

, vhk
)vhk

→ f1(u, v)u− f2(u, v)v in L2(ΓT ).
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This strong convergence statement implies that for the subsequence chosen above
∫

ΓT

qhk
η1 =

∫

ΓT

q(V hk
, uhk

, vhk
)η1 →

∫

ΓT

q(V, u, v)η1, (3.61)

∫

ΓT

−fhk
η2 =

∫

ΓT

−f(uhk
, vhk

)η2 →
∫

ΓT

−f(u, v)η2 (3.62)

∫

ΓT

(fhk
− qhk

)η3 =

∫

ΓT

(f(uhk
, vhk

) − q(V hk
, uhk

, vhk
))η3

→
∫

ΓT

(f(u, v) − q(V, u, v))η3 (3.63)

holds.
With the observations from (3.55)–(3.57), (3.58)–(3.60) and (3.61)–(3.63) we conclude

that for the subsequence chosen above equations (3.41)–(3.43) result in the limit equa-
tions given by

0 = −
∫

ΩT

(∂tη1)(V − V0) +D

∫

ΩT

∇V · ∇η1 +

∫

ΓT

q(V, u, v)η1, (3.64)

0 = −
∫

ΓT

(∂tη2)(u− u0) +

∫

ΓT

Au∇Γu · ∇Γη2 +

∫

ΓT

−f(u, v)η2, (3.65)

0 = −
∫

ΓT

(∂tη3)(v − v0) +

∫

ΓT

Av∇Γv · ∇Γη3 +

∫

ΓT

(f(u, v) − q(V, u, v))η3 (3.66)

for all (η1, η2, η3) ∈ C∞
c ([0, T );H1(Ω)) ×

(

C∞
c ([0, T );H1(Γ))

)2
.

The last step in this proof is to change the assumption on the regularity in time from
being C∞ to H1 for the testfunctions. Consider testfunctions

ζ1 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

ζ2, ζ3 ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1(Γ))

with vanishing final data, i.e. ζj(T, ·) = 0 for j = 1, 2, 3. Then, there exist sequences
(ζk

1 )k ∈ C∞
c (0, T ;H1(Ω)), (ζ l

2)l and (ζm
3 )m ∈ C∞

c (0, T ;H1(Γ)) with

ζk
1 → ζ1 in L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), (3.67)

ζ l
2 → ζ2, ζ

m
3 → ζ3 in L2(0, T ;H1(Γ)) ∩H1(0, T ;L2(Γ)) (3.68)

for k, l,m → ∞ according to the density property of the given spaces. Since equations
(3.64)–(3.66) hold, we find for every ζk

1 , ζ
l
2 and ζm

3 the following equations

0 = −
∫

ΩT

(∂tζ
k
1 )(V − V0) +D

∫

ΩT

∇V · ∇ζk
1 +

∫

ΓT

q(V, u, v)ζk
1 ,

0 = −
∫

ΓT

(∂tζ
l
2)(u− u0) +

∫

ΓT

Au∇Γu · ∇Γζ
l
2 +

∫

ΓT

−f(u, v)ζ l
2,

0 = −
∫

ΓT

(∂tζ
m
3 )(v − v0) +

∫

ΓT

Av∇Γv · ∇Γζ
m
3 +

∫

ΓT

(f(u, v) − q(V, u, v))ζm
3 .
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3.3 Compactness and limit equations

Here, we pass to the limit k, l,m → ∞ using (3.67) and (3.68). We find that

∫

ΩT

V (ζ1)t +

∫

Ω
(ζ1)0V0 = D

∫

ΩT

∇V · ∇ζ1 +

∫

ΓT

q(V, u, v)ζ1,

∫

ΓT

u(ζ2)t +

∫

Γ
(ζ2)0u0 =

∫

ΓT

Au∇Γu · ∇Γζ2 +

∫

ΓT

−f(u, v)ζ2,

∫

ΓT

v(ζ3)t +

∫

Γ
(ζ3)0v0 =

∫

ΓT

Av∇Γv · ∇Γζ3 +

∫

ΓT

(f(u, v) − q(V, u, v))ζ3

holds for all

ζ1 ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)),

ζ2, ζ3 ∈ L2(0, T ;H1(Γ)) ∩H1(0, T ;L2(Γ))

and the assertion follows.

Remark 3.12. We remark in accordance to [Sch13, Theorem 10.9, p. 201f.] that there
exists continuous representants V, u, v ∈ C0([0, T ];X) for X = L2(Ω) or X = L2(Γ),
respectively. Due to this fact the initial data V0, u0 and v0 is consistent to the solution
(V, u, v) for the limit t → 0, see [Sch13, Bemerkung 11.5, p. 215]. ⊳
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3 Weak Existence Theory

3.4 Continuous dependence on initial data and uniqueness

In this Section we verify that solutions of (GFCRD) depend continuously on the initial
data and satisfy an L2-continuity property. As a corollary result we find that solutions
of (GFCRD) are unique.

Proposition 3.11 yields that there exists a weak solution (V, u, v) ∈ L2M1 of (GFCRD),
in other words, the fully coupled weak system (WS) given by

(WS)







































∫

ΩT

∂tη1(V − V0) = D

∫

ΩT

∇V · ∇η1 +

∫

ΓT

q(V, u, v)η1,

∫

ΓT

∂tη2(u− u0) =

∫

ΓT

Au∇Γu · ∇Γη2 −
∫

ΓT

f(u, v)η2,

∫

ΓT

∂tη3(v − v0) =

∫

ΓT

Av∇Γv · ∇Γη3 +

∫

ΓT

f(u, v)η3 −
∫

ΓT

q(V, u, v)η3,

is satisfied for all

η1 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

η2, η3 ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1(Γ)),

where we assume vanishing final data of the testfunctions. The crucial part concerning
the proof of Proposition 3.13 is that we have to test the above system with the solution
(V, u, v) while it does not provide a time-derivative at first glance and is a priori not a
testfunction since it does not vanish in t = T .

Proposition 3.13. Let T > 0, f, q be given as described in the Assumptions in Sec-
tion 1.1. Let (V, u, v) and (Ṽ , ũ, ṽ) be solutions of (GFCRD) with initial data (V0, u0, v0)
and (Ṽ0, ũ0, ṽ0). Then, there exists a constant Λ = Λ(T,D,Ω,Γ) > 0, such that

‖V − Ṽ ‖2
L2(0,T ;H1(Ω)) + ‖u− ũ‖2

L2(0,T ;H1(Γ)) + ‖v − ṽ‖2
L2(0,T ;H1(Γ))

≤ Λ
(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

holds.

We easily conclude from Proposition 3.13 that solutions are unique.

Corollary 3.14 (Uniqueness of weak solutions). Let the assumptions of Proposition 3.13
hold. Then, for given initial data (V0, u0, v0) the triplet (V, u, v) ∈ L2M1 is a unique
solution of (GFCRD).

Proof of Proposition 3.13. The idea of this proof is the following: for two given solutions
(V, u, v) and (Ṽ , ũ, ṽ), we build the difference of the given weak systems (WS). We test
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3.4 Continuous dependence on initial data and uniqueness

this system with the difference of the solutions to find that the sum is estimated from
above by the initial data. We substract the corresponding equations to obtain

0 =

∫

ΩT

−(V − Ṽ )∂tη1 +

∫

ΩT

(V0 − Ṽ0)∂tη1 +D

∫

ΩT

∇(V − Ṽ ) · ∇η1

+

∫

ΓT

(q(V, u, v) − q(Ṽ , ũ, ṽ))η1, (3.69)

0 =

∫

ΓT

−(u− ũ)∂tη2 +

∫

ΓT

(u0 − ũ0)∂tη2 +

∫

ΓT

Au∇Γ(u− ũ) · ∇Γη2

+

∫

ΓT

(−f(u, v) + f(ũ, ṽ))η2, (3.70)

0 =

∫

ΓT

−(v − ṽ)∂tη3 +

∫

ΓT

(v0 − ṽ0)∂tη3 +

∫

ΓT

Av∇Γ(v − ṽ) · ∇Γη3

+

∫

ΓT

(f(u, v) − f(ũ, ṽ) − q(V, u, v) + q(Ṽ , ũ, ṽ))η3. (3.71)

Following the deductions in [Alt03, p. 286 ff.] we want formally to plug in testfunctions
that behave like cut-off functions in 0 < t0 < T , i.e.

η1 = χ(−∞,t0](V − Ṽ ), η2 = χ(−∞,t0](u− ũ) and η3 = χ(−∞,t0](v − ṽ),

where χ(−∞,t0] : R → {0, 1} is a characteristic function in time. As these functions do not
have enough regularity in time, in particular are not even continuous, we approximate
them with the following setting. The following computations are easily applicable to
(u− ũ) and (v − ṽ). We exemplarily perform them for (V − Ṽ ) in the latter. Let

0 < t0 < T and τ > 0 sufficiently small. Then, for ϕ
def
= χ(−∞,t0] we approximate in time

by

ΨV
τ (t)

def
=

1

τ

∫ t+τ

t
(ϕ(V − Ṽ ))(s)ds.

The differentiation of this parameter integral yields that

d

dt
ΨV

τ (t) = ∂τ
t (ϕ(V − Ṽ )) ∈ L2(0, T ;L2(Ω))

holds. So, ΨV
τ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) is an admissible testfunction in equa-

tion (3.69). Basically, this is an implication of the fact that this is a convolution of
ϕ(V − Ṽ ) with a Dirac sequence and has therefore higher regularity. Similarly, we set
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3 Weak Existence Theory

Ψu
τ (t)

def
= 1

τ

∫ t+τ
t ϕ(u − ũ) and Ψv

τ (t)
def
= 1

τ

∫ t+τ
t ϕ(v − ṽ). For the terms in (3.69)–(3.71)

including a time-derivative we then compute that

−
∫

ΩT

∂tΨ
V
τ

(

(V − Ṽ ) − (V0 − Ṽ0)
)

−
∫

ΓT

∂tΨ
u
τ ((u− ũ) − (u0 − ũ0))

−
∫

ΓT

∂tΨ
v
τ ((v − ṽ) − (v0 − ṽ0))

= −
∫

R

(
∫

Ω
∂τ

t (ϕ(V − Ṽ ))
(

(V − Ṽ ) − (V0 − Ṽ0)
)

+

∫

Γ
∂τ

t (ϕ(u− ũ)) ((u− ũ) − (u0 − ũ0))

+

∫

Γ
∂τ

t (ϕ(v − ṽ)) ((v − ṽ) − (v0 − ṽ0))

)

=

∫

R

(
∫

Ω
(ϕ(V − Ṽ ))∂−τ

t

(

(V − Ṽ ) − (V0 − Ṽ0)
)

+

∫

Γ
(ϕ(u− ũ))∂−τ

t ((u− ũ) − (u0 − ũ0))

+

∫

Γ
(ϕ(v − ṽ))∂−τ

t ((v − ṽ) − (v0 − ṽ0))

)

=

∫ t0

0

(
∫

Ω
(V − Ṽ )∂−τ

t (V − Ṽ ) +

∫

Γ
(u− ũ)∂−τ

t (u− ũ)

+

∫

Γ
(v − ṽ)∂−τ

t (v − ṽ)

)

(3.72)

holds, where we used discrete partial integration in time, the fact that the characteristic

function is defined on (−∞, t0] together with (V − Ṽ )(t)
def
= (V0 − Ṽ0) for t < 0, u − ũ,

v− ṽ analogously. We remark that if H is a Hilbert space with an inner product 〈·, ·〉H ,
then the following Hilbert space inequality holds:

〈w,w − w̃〉H =
1

2
〈w + w̃, w − w̃〉H +

1

2
〈w − w̃, w − w̃〉H

≥ 1

2
〈w + w̃, w − w̃〉H =

1

2

(

‖w‖2
H − ‖w̃‖2

H

)

,

where w, w̃ are elements of H, see [Alt03, p. 273]. Then, for any function t 7→ w(t) ∈ H
we find

〈w(t), ∂−τ
t w(t)〉H ≥ 1/2∂−τ

t ‖w(t)‖2
H
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3.4 Continuous dependence on initial data and uniqueness

for τ > 0 as introduced above . We notice that L2(Ω) is a Hilbert space, respectively
L2(Γ). Then, (3.72) is estimated from below by

1

2

∫ t0

0

(

∂−τ
t ‖V − Ṽ ‖2

L2(Ω) + ∂−τ
t ‖u− ũ‖2

L2(Γ) + ∂−τ
t ‖v − ṽ‖2

L2(Γ)

)

=
1

2τ

∫ t0

t0−τ

(

‖(V − Ṽ )(s)‖2
L2(Ω) + ‖(u− ũ)(s)‖2

L2(Γ) + ‖(v − ṽ)(s)‖2
L2(Γ)

)

ds

− 1

2

(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

(3.73)

Since (V − Ṽ ) ∈ L2(0, T ;L2(Ω)) and (u−ũ), (v− ṽ) ∈ L2(0, T ;L2(Γ)) we find a sequence
(τk)k with τk → 0 for k → ∞ such that (3.73) converges for almost every t0 ∈ (0, T ) to

1

2

(

‖(V − Ṽ )(t0)‖2
L2(Ω) + ‖(u− ũ)(t0)‖2

L2(Γ) + ‖(v − ṽ)(t0)‖2
L2(Γ)

)

− 1

2

(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

. (3.74)

As we noticed before, the function ΨV
τ is defined as a convolution of ϕ(V − Ṽ ) ∈

L2(0, T ;H1(Ω)) and δτ
def
= 1

τ χ[0,τ ], a Dirac sequence (δτ )τ for the characteristic func-

tion χ[0,1]. This yields ΨV
τ → ϕ(V − Ṽ ) in L2(0, T ;H1(Ω)) which causes

D

∫ T

0

∫

Ω
∇(V − Ṽ ) · ∇ΨV

τk

→ D

∫ T

0

∫

Ω
ϕ|∇(V − Ṽ )|2 = D

∫ t0

0
‖∇(V − Ṽ )‖2

L2(Ω)(s)ds (3.75)

as τk → 0 for k → ∞. Similarly, we find for gradient expressions on Γ that

∫

ΓT

Au∇Γ(u− ũ) · ∇ΓΨu
τk

→
∫ t0

0

∫

Γ
Au∇Γ(u− ũ) · ∇Γ(u− ũ), (3.76)

∫

ΓT

Av∇Γ(v − ṽ) · ∇ΓΨv
τk

→
∫ t0

0

∫

Γ
Av∇Γ(v − ṽ) · ∇Γ(v − ṽ) (3.77)

holds as τk → 0 for k → ∞.
For the nonlinear terms we deduce the following: According to Lemma 3.9 (iv), V and

Ṽ are in L2(0, T ;L2(Γ)) and with Proposition 3.11 system (WS) is statisfied. There-
fore, for any sequence (τk)k with τk → 0 for k → ∞ such that ΨV

τk
(t) → ϕ(V − Ṽ ) in

L2(0, T ;L2(Γ)), we obtain

∫

ΓT

(q(V, u, v) − q(Ṽ , ũ, ṽ))ΨV
τk

→
∫ t0

0

∫

Γ
(q(V, u, v) − q(Ṽ , ũ, ṽ))(V − Ṽ ). (3.78)
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3 Weak Existence Theory

In the same way we obtain convergence for the remaining testfunctions η2 = Ψu
τ and

η3 = Ψv
τ in the nonlinear equations, i.e.

∫

ΓT

(−f(u, v) − f(ũ, ṽ))Ψu
τk

→
∫ t0

0

∫

Γ
(f(u, v) − f(ũ, ṽ))(u− ũ), (3.79)

∫

ΓT

(−q(V, u, v) + q(Ṽ , ũ, ṽ) + f(u, v) − f(ũ, ṽ))Ψv
τk

→
∫ t0

0

∫

Γ
(−q(V, u, v) + q(Ṽ , ũ, ṽ) + f(u, v) − f(ũ, ṽ))(v − ṽ). (3.80)

So we have found admissible testfunctions η1 = ΨV
τ , η2 = Ψu

τ and η3 = Ψv
τ for (3.69)–

(3.71). We use the convergence results (3.74)–(3.80) for τk → 0 as k → ∞ to obtain
with Assumption 1.5 on Au and Av

‖V − Ṽ ‖2
L2(Ω)(t0)+‖u− ũ‖2

L2(Γ)(t0) + ‖v − ṽ‖2
L2(Γ)(t0) + 2D‖∇(Ṽ − V )‖2

L2(Ωt0 )

+ 2cu‖∇Γ(ũ− u)‖2
L2(Γt0 ) + 2cv‖∇Γ(ṽ − v)‖2

L2(Γt0 )

≤
(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

+ 2

∫

Γt0

(q(Ṽ , ũ, ṽ) − q(V, u, v))(V − Ṽ )

+ 2

∫

Γt0

(f(u, v) − f(ũ, ṽ)(u− ũ)

+ 2

∫

Γt0

(f(ũ, ṽ) − f(u, v) + q(V, u, v) − q(Ṽ , ũ, ṽ))(v − ṽ). (3.81)

The nonlinear parts f1, f2, q1 and q2 are Lipschitz continuous, see Assumption 1.4. Let
CL > 0 denote the maximal Lipschitz-constant for all nonlinearities, then we estimate
the nonlinearities of the right-hand side of (3.81) from above by

2

∫

Γt0

(

CL|V − Ṽ |(|v − ṽ| + |V − Ṽ |) + CL|v − ṽ|(|v − ṽ| + |V − Ṽ |)
)

+ 2

∫

Γt0

(CL|u− ũ|(|u− ũ| + |v − ṽ|) + CL|v − ṽ|(|u− ũ| + |v − ṽ|))

≤ 2

∫

Γt0

((

CL +
1

2

)

(

|V − Ṽ |2 + |v − ṽ|2
)

+

(

CL +
1

2

)

(

|v − ṽ|2 + |V − Ṽ |2
)

)

+ 2

∫

Γt0

((

CL +
1

2

)

(

|u− ũ|2 + |v − ṽ|2
)

+

(

CL +
1

2

)

(

|u− ũ|2 + |v − ṽ|2
)

)

≤ (8CL + 4)

∫

Γt0

(

|V − Ṽ |2 + |u− ũ|2 + |v − ṽ|2
)

(3.82)
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3.4 Continuous dependence on initial data and uniqueness

where we used Young’s Inequality. We set c1
def
= 8CL + 4 to apply Lemma A.5 on

∫

Γt0
|Ṽ−

V |2 with ε = D
c1

and a constant C(Ω) > 0 to find that (3.81) in combination with (3.82)
yields

‖V − Ṽ ‖2
L2(Ω)(t0) + ‖u− ũ‖2

L2(Γ)(t0) + ‖v − ṽ‖2
L2(Γ)(t0)

+D‖∇(Ṽ − V )‖2
L2(Ωt0 ) + 2cu‖∇Γ(ũ− u)‖2

L2(Γt0 ) + 2cv‖∇Γ(ṽ − v)‖2
L2(Γt0 )

≤
(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

c1

∫ t0

0

(

‖u− ũ‖2
L2(Γ) + ‖v − ṽ‖2

L2(Γ)

)

+
c2

1C(Ω)

D

∫ t0

0
‖V − Ṽ ‖2

L2(Ω). (3.83)

Since the norm is a nonnegative function we find for almost every t0 ∈ (0, T ) that the
pointwise evaluation in t0 is less or equal the integral expression. This is related to
the fact that almost every t0 ∈ (0, T ) is a Lebesgue point for L1-summable functions.
Therefore, we write the left-hand side of (3.83) in terms of corresponding H1-norms to
obtain

‖(V − Ṽ )(t0)‖2
H1(Ω) + ‖(u− ũ)(t0)‖2

H1(Γ) + ‖(v − ṽ)(t0)‖2
H1(Γ)

≤
(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

c1

∫ t0

0

(

‖u− ũ‖2
H1(Γ) + ‖v − ṽ‖2

H1(Γ)

)

+
c2

1C(Ω)

D

∫ t0

0
‖V − Ṽ ‖2

H1(Ω).

With Gronwall’s Lemma A.9 we find for almost every t0 ∈ (0, T ) and a constant c2 > 0
depending on D, Cf , Cq and Ω, such that

‖(V − Ṽ )(t0)‖2
H1(Ω) + ‖(u− ũ)(t0)‖2

H1(Γ) + ‖(v − ṽ)(t0)‖2
H1(Γ)

≤
(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

exp (c2t0)

≤
(

‖V0 − Ṽ0‖2
L2(Ω) + ‖u0 − ũ0‖2

L2(Γ) + ‖v0 − ṽ0‖2
L2(Γ)

)

exp (c2T )

holds. With Λ = exp (c2T ) the continuous dependence on initial data and an L2-continuity
property follows.
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3 Weak Existence Theory

3.5 Uniform boundedness

In this Section we introduce a maximum principle for (GFCRD) to afterwards apply
it in Chapter 4. We work in a rescaled framework: We multiply (V, u, v) with an
exponential factor in time e−λt for λ > 0 to be specified later, apply the technique and
auxiliary problems we already used in Section 2.1.2 and deduce maximum bounds. For
convenience, we state the rescaling procedure once again. Moreover, in the weak regime
it is not obvious that solutions are admissible testfunctions, see Section 3.4. Therefore,
we recall the correct testfunctions and results in the proof of Proposition 3.16 again.

We multiply (GFCRD) with e−λt, λ > 0 and find with partial integration and (2.1)–
(2.3) that






























































































∫

ΩT

∂tη1(Ṽ − V0) = D

∫

ΩT

∇Ṽ · ∇η1 + λ

∫

ΩT

Ṽ η1

+

∫

ΓT

(

q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ
)

η1,

∫

ΓT

∂tη2(ũ− u0) =

∫

ΓT

Au∇Γũ · ∇Γη2

−
∫

ΓT

(

f̃1(t, ũ, ṽ)ṽ − f̃2(t, ũ, ṽ)ũ
)

η2 + λ

∫

ΓT

ũη2,

∫

ΓT

∂tη3(ṽ − v0) =

∫

ΓT

Av∇Γṽ · ∇Γη3 +

∫

ΓT

(

f̃1(t, ũ, ṽ)ṽ − f̃2(t, ũ, ṽ)ũ
)

η3

−
∫

ΓT

(

q̃1(t, ũ, ṽ)Ṽ − q̃2(t, ũ, ṽ)ṽ
)

η3 + λ

∫

ΓT

ṽη3,

(3.84)

(3.85)

(3.86)

holds for all

η1 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

η2, η3 ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1(Γ)).

The functions f̃i and q̃i for i = 1, 2 are defined as in Section 2.1.2. In t = 0 the initial
data for the rescaled functions and (V, u, v) coincide.

Remark 3.15 (Invariant Region Principle). Another canonical approach in Reaction-
Diffusion Systems is to apply an invariant region approach, see for example [Smo83,
p. 192ff.]. An invariant region is a bounded, in our case rectangular region in the phase
space such that the boundary has a repelling property. Whenever initial data lies in that
region, one can show that the evolution in time does not leave this region. In general,
for our system, this cannot be easily deduced from an invariant region principle. Instead
we use a different technique on finding L∞-a priori estimates as in Chapter 2, namely,
based on appropriate testfunctions and comparison functions. ⊳

Proposition 3.16. Let Assumptions 1.3–1.4 hold and Λ̃2, Cfq be given as in (2.8). Let

λ ≥ max

{

C2
fq

D
C(Ω), 4Cfq, Cfq

(

1 + C1Cfq +
2‖V0‖L∞(Ω) + 1

Λ̃2

)}

, (3.87)
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3.5 Uniform boundedness

be a fixed constant, where C(Ω) > 0 and C1(T,Ω, D) > 0 is uniformly bounded for D ≥ 1.
Then, any solution of (GFCRD) is nonnegative and essentially bounded, i.e.

‖u‖L∞(ΓT ), ‖v‖L∞(ΓT ) ≤ eλT Λ̃2,

‖V ‖L∞(ΩT ) ≤ eλT
(

2‖V0‖L∞(Ω) + 1 + C1CfqΛ̃2

)

.

Proof. For both, the nonnegativity and uniform boundedness, we have to test the given
weak regime (3.84)–(3.86) with testfunctions that consist basically of a solution triplet

(Ṽ , ũ, ṽ) or variations of it. According to Section 3.4 we set ϕ
def
= χ(−∞,t], where χ(−∞,t] :

R → {0, 1} is a characteristic function in time for t ∈ (0, T ). Then, we have justified
that the formal choice (ϕṼ , ϕũ, ϕṽ) as testfunction is justified with an approximation of
admissible testfunctions. At this point we avoid to repeat the proof in detail. As a result
we find for example for Ṽ that the term including the time-derivative can be estimated
in the following way:

∫

ΩT

∂tη1(Ṽ − V0) ≤ 1

2

(

‖V0‖2
L2(Ω) − ‖Ṽ (t)‖2

L(Ω)

)

for η1 = ϕṼ . For the remaining terms there are no changes except that the cut-off
functions determines the time-interval. With this observation we begin the proof and
show that weak solutions (V, u, v) of (GFCRD) are nonnegative.

We consider (Ṽ , ũ, ṽ) and test the corresponding rescaled equations (3.84)–(3.86) for-
mally with (−ϕṼ −,−ϕũ−,−ϕṽ−). We find for any t ∈ (0, T ) with integration over ΩT

and ΓT and the fact that ṽ = ṽ+ − ṽ− ≥ −ṽ− holds, ũ ≥ −ũ− respectively, that

1

2

(

‖Ṽ −
0 ‖2

L2(Ω) + ‖ũ−
0 ‖2

L2(Γ) + ‖ṽ−
0 ‖2

L2(Γ)

)

− 1

2

(

‖Ṽ −(t)‖2
L2(Ω) + ‖ũ−(t)‖2

L2(Γ) + ‖ṽ−(t)‖2
L2(Γ)

)

≥
∫

Ωt

(

λ(Ṽ −)2 +D|∇Ṽ −|2
)

+

∫

Γt

(

λ((ũ−)2 + (ṽ−)2) + cu|∇Γũ
−|2 + cv|∇Γṽ

−|2
)

+

∫

Γt

(

−q̃1(·, ũ, ṽ)(Ṽ −)2 + q̃2(·, ũ, ṽ)ṽṼ −
)

+

∫

Γt

(

q̃1(·, ũ, ṽ)Ṽ ṽ− − q̃2(·, ũ, ṽ)(ṽ−)2
)

+

∫

Γt

(

−f̃1(·, ũ, ṽ)(ṽ−)2 + f̃2(·, ũ, ṽ)ũṽ−
)

+

∫

Γt

(

f̃1(·, ũ, ṽ)ṽũ− − f̃2(·, ũ, ṽ)(ũ−)2
)

≥
∫

Ωt

(

λ(Ṽ −)2 +D|∇Ṽ −|2
)

+

∫

Γt

(

λ((ũ−)2 + (ṽ−)2) + |∇Γũ
−|2 + d|∇Γṽ

−|2
)

+

∫

Γt

(

−2Cq(Ṽ −)2 − 2Cq(ṽ−)2 − 2Cf (ṽ−)2 − 2Cf (ũ−)2
)

, (3.88)
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3 Weak Existence Theory

where we applied Young’s Inequality, estimates for the negative parts and Assump-
tion 1.4 which remains valid for f̃i and q̃i for i = 1, 2. The Trace Theorem implies that
the right-hand side of (3.88) is estimated from below by

∫

Ωt

(

λ−
C(Ω)C2

q

D

)

(Ṽ −)2 +
D

2

∫

Ωt

|∇Ṽ −|2 +

∫

Γt

(λ− 2Cf )(ũ−)2 +

∫

Γ
|∇Γũ

−|2

+

∫

Γt

(λ− 2 (Cq + Cf )) (ṽ−)2 +

∫

Γt

d|∇Γṽ
−|2 (3.89)

with a constant C(Ω) > 0. We obtain from (3.88) and (3.89) for any λ > 0 satisfying

λ ≥ max

{

C2
fq

D
C(Ω), 4Cfq

}

,

that

1

2

(

‖Ṽ −(t)‖2
L2(Ω) + ‖ũ−(t)‖2

L2(Γ) + ‖ṽ−(t)‖2
L2(Γ)

)

≤ 1

2

(

‖Ṽ −
0 ‖2

L2(Ω) + ‖ũ−
0 ‖2

L2(Γ) + ‖ṽ−
0 ‖2

L2(Γ)

)

holds. The initial data was assumed to be nonnegative, therefore the Lebesgue measure
and respectively Hausdorff measure of the negative parts (Ṽ , ũ, ṽ) are zero for every
t ∈ (0, T ). By rescaling we obtain that also (V, u, v) is nonnegative for all times.

To derive a maximum principle we follow the proof of Lemma 2.3. We restate an
auxiliary problem given by a heat equation with constant boundary flux to control the
Robin-boundary condition of the bulk equation we introduced in Subsection 2.1.2. Let
Ψ̃ : Ω × (0, T ) → R be the classical solution of















∂tΨ̃ = D∆Ψ̃ − λΨ̃ in Ω × (0, T ),

−D∇Ψ̃ · ν = −µ̃ on Γ × (0, T ),

Ψ̃(·, 0) = Ψ̃0 on Ω,

(2.11a)

(2.11b)

(2.11c)

where µ̃ > 0 is a constant to be specified later and Ψ̃0 will be chosen below satisfying
the compatibility condition

−D∇Ψ̃0 · ν = −µ̃. (3.91)

Lemma 2.1 implies that

Ψ̃(x, t) ≤ sup
Ω

Ψ̃0 + µ̃ec0T (3.92)

where c0 = c0(Ω, D) > 0 is uniformly bounded for D ≥ 1.
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We test (2.11a)–(2.11c) with a testfunction η1 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
that will be specified later to find

0 = −
∫

ΩT

∂tη1(Ψ̃ − Ψ̃0) +D

∫

ΩT

∇η1 · ∇Ψ̃ + λ

∫

ΩT

Ψ̃η1 −
∫

ΓT

µ̃η1. (3.93)

We find that the difference of (3.93) and (3.84) is given by

0 = −
∫

ΩT

∂tη1(Ṽ − Ψ̃) +

∫

ΩT

∂tη1(Ṽ0 − Ψ̃0) +D

∫

ΩT

∇η1 · ∇(Ṽ − Ψ̃)

+

∫

ΓT

(q̃1(·, ũ, ṽ)Ṽ − q̃2(·, ũ, ṽ)ṽ)η1 + λ

∫

ΩT

η1(Ṽ − Ψ̃) + µ̃

∫

ΓT

η1. (3.94)

We claim that V0 ≤ Ψ̃0 holds. Then, with the deductions of Section 3.4 we find for
η1 = ϕ(Ṽ − Ψ̃)+ from (3.94) that

0 ≥ 1

2
‖(Ṽ − Ψ̃)+(t)‖2

L2(Ω) +D‖∇(Ṽ − Ψ̃)+‖2
L2(Ωt) + µ̃

∫

Γt

(Ṽ − Ψ̃)+

+

∫

Γt

(q̃1(·, ũ, ṽ)Ṽ − q̃2(·, ũ, ṽ)ṽ)(Ṽ − Ψ̃)+ + λ

∫

Ωt

(Ṽ − Ψ̃)2
+, (3.95)

since the initial values are equal. Analogously, we find for (3.85) and (3.86) tested with
(ũ− Λ̃2)+ and (ṽ − Λ̃2)+ that

0 ≥ 1

2
‖(ũ− Λ̃2)+(t)‖2

L2(Γ) +

∫

Γt

Au∇Γũ · ∇Γ(ũ− Λ̃2)+ + λ

∫

Γt

ũ(ũ− Λ̃2)+

+

∫

Γt

(−f̃1(·, ũ, ṽ)ṽ + f̃2(·, ũ, ṽ)ũ)(ũ− Λ̃2)+, (3.96)

0 ≥ 1

2
‖(ṽ − Λ̃2)+(t)‖2

L2(Γ) +

∫

Γt

Av∇Γṽ · ∇Γ(ṽ − Λ̃2)+ + λ

∫

Γt

ṽ(ṽ − Λ̃2)+

+

∫

Γt

(

f̃1(·, ũ, ṽ)ṽ − f̃2(·, ũ, ṽ)ũ− q̃1(·, ũ, ṽ)Ṽ + q̃2(·, ũ, ṽ)ṽ
)

(ṽ − Λ̃2)+. (3.97)

We drop the arguments of f̃i and q̃i for i = 1, 2 and add (3.95)–(3.97) to find

1

2

(

‖(Ṽ − Ψ̃)+(t)‖2
L2(Ω) + ‖(ũ− Λ̃2)+(t)‖2

L2(Γ) + ‖(ṽ − Λ̃2)+(t)‖2
L2(Γ)

)

≤ −D
∫

Ωt

|∇(Ṽ − Ψ̃)+|2 − cu

∫

Γt

|∇Γ(ũ− Λ̃2)+|2 − cv

∫

Γt

|∇Γ(ṽk − Λ̃2)+|2

− λ

∫

Ωt

(Ṽ − Ψ̃)2
+ − λ

∫

Γt

ũ(ũ− Λ̃2)+ − λ

∫

Γt

ṽ(ṽ − Λ̃2)+

+

∫

Γt

(

f̃1ṽ − f̃2ũ
)

(ũ− Λ̃2)+ +

∫

Γt

(

−f̃1ṽ + f̃2ũ+ q̃1Ṽ − q̃2ṽ
)

(ṽ − Λ̃2)+

+

∫

Γt

(

−q̃1Ṽ + q̃2ṽ
)

(Ṽ − Ψ̃)+ − µ̃

∫

Γt

(Ṽ − Ψ̃)+. (3.98)
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3 Weak Existence Theory

We have to control the right-hand side of (3.98) appropriately. To obtain a higher clarity
we demonstrate the arising computations separately. With a constant Cfq > 0 defined
above, we basically copy the estimates from the proof of Lemma 2.3 with one exception,
i.e.

∫

Γt

(

−f̃1ṽ + f̃2ũ+ q̃1Ṽ − q̃2ṽ
)

(ṽ − Λ̃2)+

≤
∫

Γt

(

Cfq

2
(ũ− Λ̃2)2

+ + Cfq(ṽ − Λ̃2)2
+ +

Cfq

2
(Ṽ − Ψ̃)+

)

+

∫

Γt

Cfq

(

Λ̃2 + Ψ̃
)

(ṽ − Λ̃2)+, (3.99)

where we used Young’s Inequality. We modify (2.27), (2.29)–(2.31) by additionally
integrating over (0, t). Then, (3.98) is estimated from above by using the aforementioned
inequalities and (3.99) by

−D

2

∫

Ωt

|∇(Ṽ − Ψ̃)+|2 +

(

C2
fq

2D
C(Ω) − λ

)

∫

Ωt

(Ṽ − Ψ̃)2
+

+ (Cfq − λ)

∫

Γt

(ũ− Λ̃2)2
+ + (2Cfq − λ)

∫

Γt

(ṽ − Λ̃2)2
+

+ (Cfq − λ)Λ̃2

∫

Γt

(ũ− Λ̃2)+ +

∫

Γt

(Cfq(Ψ̃ + Λ̃2) − λΛ̃2)(ṽ − Λ̃2)+

+ (CfqΛ̃2 − µ̃)

∫

Γt

(Ṽ − Ψ̃)+, (3.100)

where we dropped gradient expressions on Γ and C(Ω) > 0 is a given constant. We set
µ̃ = CfqΛ̃2 and choose λ according to (3.87). We choose Ψ̃0, such that V0 ≤ Ψ̃0 holds,
the compatibility condition stated in (3.91) is satisfied and

‖Ψ̃0‖L∞(Ω) ≤ 2‖V0‖L∞(Ω) + 1

holds. Then, Ψ̃ is determined and we set C1(T,Ω, D)
def
= ec0T being uniformly bounded

for D ≥ 1. Let

Λ̃1
def
= 2‖V0‖L∞(Ω) + 1 + C1CfqΛ̃2.

These choices yield that all coefficients of (3.100) are less or equal zero. The settings
above and the estimates from (3.98)–(3.100) imply that

1

2

(

‖(Ṽ − Ψ̃)+(t)‖2
L2(Ω) + ‖(ũ− Λ̃2)+(t)‖2

L2(Γ) + ‖(ṽ − Λ̃2)+(t)‖2
L2(Γ)

)

≤ 0

for t ∈ (0, T ). For the rescaled functions we conclude that there exists a finite λ > 0,
such that

‖ũ‖L∞(ΓT ), ‖ṽ‖L∞(ΓT ) ≤ Λ̃2,

‖Ṽ ‖L∞(ΩT ) ≤ ‖Ψ̃‖L∞(ΩT ) ≤ 2‖V0‖L∞(Ω) + 1 + C1CfqΛ̃2,
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3.5 Uniform boundedness

where we used (3.92). In turn, we conclude for the rescaled variables that

‖u‖L∞(ΓT ), ‖v‖L∞(ΓT ) ≤ eλT Λ̃2,

‖V ‖L∞(ΩT ) ≤ eλT
(

2‖V0‖L∞(Ω) + 1 + C1CfqΛ̃2

)

.

holds, which finishes the proof.

Consequences for generalized nonlinearities The nonlinearities f1, f2, q1 and q2

throughout this Chapter are assumed to be Lipschitz continuous on R
2 and are therefore

bounded on compact subsets of R2, see Assumption 1.4. An example for f1(u, v) is given
in [RR12] by f1 : R2 → R with

f1(u, v) = γa1 + γ(a3 − a1)
u

a2 + u
,

being independent of v with constants a1, a2, a3, γ > 0 satisfying a3 > a1. Here, as in
many other cases, the choice of constitutive functions is only derived for the biological
relevant domain of nonnegative values. In this particular case f1 becomes unbounded
as u → −a2 and is therefore not covered by Assumption 1.4. We modify f1 to find that
systems of type (GFCRD) incorporating such kind of nonlinearity are also covered by
Theorem 1.2.

Let Π : R2 → R
2
≥0 be the closest-point projection. We set

f̃(x, y)
def
= f(Π(x, y)) (3.101)

to find that f̃ leaves f untouched on R
2
≥0, while it is Lipschitz continuous on R

2 satisfying
Assumption 1.4. Theorem 1.2 yields that this modified system of type (GFCRD) has a
unique, nonnegative solution (V, u, v). The nonnegativity of u guarantees that f does not
blow up in the biological nonrelevant sector. This observation implies that Theorem 1.2
can be extended to nonlinearities f1, f2, q1 and q2 only being Lipschitz-continuous on
R

2
≥0. This corollary result weakens Assumption 1.4.
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4 Application: A Shadow System

reduction

In this Chapter we discuss an asymptotic model reduction of our fully coupled model
(GFCRD) that in particular covers the model in [RR12]. According to the observation
that the cytosolic diffusion is typically much larger than on the membrane, the authors
assume an infinite cytoplasmic diffusion and spatially constant concentrations in Ω. This
leads to a reduced system where only partial differential equations on the membrane Γ
remain and the time-dependent but spatially constant concentration in Ω is determined
just by a mass conservation condition. On the other hand the evolution on the membrane
now includes a nonlocal contribution. The resulting system can be compared to so-called
Shadow Systems in the analysis of two variable Reaction-Diffusion equations in flat space,
see [Ni11; Kee78]. Here, we present a rigorous proof of a convergence to such a nonlocal
reduction of the system (GFCRD).

Rigouros proof of the existence of a nonlocal functional

We consider system (GFCRD), where D is replaced by Dk, k ∈ N, where (Dk)k is any
sequence with Dk → ∞. This results in a family of systems of type (GFCRD) for every
k ∈ N. The corresponding weak solutions (Vk, uk, vk), k ∈ N, are characterized by

∫

ΩT

∂tη1 (Vk − V0) = Dk

∫

Ω
∇Vk · ∇η1 +

∫

Γ
(q1(uk, vk)Vk − q2(uk, vk)vk) η1, (4.1)

∫

ΓT

∂tη2 (uk − u0) =

∫

ΓT

Au∇Γuk · ∇Γη2 +

∫

ΓT

(−f1(uk, vk)vk + f2(uk, vk)uk) η2, (4.2)

∫

ΓT

∂tη3 (vk − v0) =

∫

ΓT

Av∇Γvk · ∇Γη3 +

∫

ΓT

(f1(uk, vk)vk − f2(uk, vk)uk

−q1(uk, vk)Vk + q2(uk, vk)vk) η3 (4.3)

for all

η1 ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) and

η2, η3 ∈ L2(0, T ;H1(Γ)) ∩H1(0, T ;L2(Γ))

with ηi(T ) ≡ 0 for i = 1, 2, 3, compare (WS) in Section 3.1.
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4 Application: A Shadow System reduction

Weak solutions and uniform boundedness Theorem 1.2 guarantees the existence
and uniqueness of a family of nonnegative weak solutions (Vk, uk, vk) in L2M1 for every
k ∈ N. We have to ensure that the respective bounds are uniform in k.

In Proposition 3.16 have we found that the weak solutions are bounded uniformly.
According to Proposition 3.16 the maximum bounds remain uniform in k. Hence, there
exist Λ1,Λ2 > 0 depending on T and system constants but independent of k, such that

‖uk‖L∞(ΓT ), ‖vk‖L∞(ΓT ) ≤ Λ1 and ‖Vk‖L∞(ΩT ) ≤ Λ2 for all k ∈ N. (4.4)

Moreover, by Lemma 3.8 we find uniform energy estimates for uk and vk, i.e. uk, vk

are of class L2(0, T ;H1(Γ)). By Lemma 3.8 (iii) we find that there exists a constant
Λ′

3 = Λ′
3(Ω, Cq, Cf , CAu , CAv , T ) > 0, such that

uk, vk ∈ H1(0, T ; (H1(Γ))∗),

‖∂tuk‖L2(0,T ;(H1(Γ))∗), ‖∂tvk‖L2(0,T ;(H1(Γ))∗) ≤ Λ′
3 (4.5)

holds for all k ∈ N. Since (L2(0, T ;H1(Γ)))2 is a reflexive Banach space we find that
bounded sets are weakly precompact in (L2(0, T ;H1(Γ)))2, see [Sch13, Theorem 4.13,
p. 79]. This holds also true for L2(0, T ;L2(Ω)). Hence, there exists a limit object we
denote with (V∞, u∞, v∞) in L2(0, T ;H1(Ω)) × (L2(0, T ;H1(Γ)))2 and a subsequence
k → ∞ (not relabled), such that

(Vk, uk, vk) ⇀ (V∞, u∞, v∞) for k → ∞ in L2(0, T ;H1(Ω)) × (L2(0, T ;H1(Γ)))2. (4.6)

Spatial homogeneity With the deductions in Section 3.4 we obtain the following
inequality that can be formally obtained by the choice η1 = Vk in (4.1), i.e.

Dk

∫

ΩT

|∇Vk|2 ≤ 1

2

(

‖V0‖2
L2(Ω) − ‖Vk(T )‖2

L2(Ω)

)

+

∫

ΓT

(−q1(uk, vk)Vk + q2(uk, vk)vk)Vk

≤ 1

2

(

‖V0‖2
L2(Ω) − ‖Vk(T )‖2

L2(Ω)

)

+
1

2

∫

ΓT

Cq

(

(vk)2 + (Vk)2
)

(4.7)

holds, where we used Young’s Inequality and the nonnegativity of the first nonlinear
expression, see Assumption 1.4. With ε = Dk

Cq
in Lemma A.5 we estimate (4.7) from

above and absorb the respective gradient into the right-hand side. Therefore

Dk‖∇Vk‖2
L2(ΩT ) ≤ ‖V0‖2

L2(Ω) − ‖Vk(T )‖2
L2(Ω) + Cq‖vk‖2

L2(ΓT ) +
C(Ω)Cq

Dk
‖Vk‖2

L2(ΩT )

≤ ‖V0‖2
L2(Ω) + Cq|Γ| |T | Λ2

1 +
C(Ω)Cq

Dk
|Ω| |T | Λ2

2
def
= Λ̂ (4.8)

holds with a constant C(Ω) > 0, according to (4.4). Using weak lower semi-continuity
of the norm and (4.6), we find

∫ T

0

∫

Ω
|∇V∞|2 ≤ lim inf

k→∞

∫ T

0

∫

Ω
|∇Vk|2 ≤ lim inf

k→∞

Λ̂

Dk
= 0,
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i.e. ∇V∞ = 0 almost everywhere in Ω × (0, T ). This implies that the cytosolic concen-
tration is spatially constant.

Strong convergence and a limit of Vk With (4.5) we have found that uk and vk

are in H1(0, T ; (H1(Γ))∗). According to Lions-Aubin’s Lemma 3.7 applied to the triple
(H1(Γ), L2(Γ), (H1(Γ))∗) we find a subsequence k → ∞ (not relabled), such that uk and
vk converge strongly in L2(0, T ;L2(Γ)), i.e.

uk → u∞ and vk → v∞ in L2(0, T ;L2(Γ)). (4.9)

The strong convergence for Vk in L2(0, T ;L2(Ω)) cannot be shown with equation (4.1),
since the expression Dk

∫

ΩT
∇Vk · ∇η1 is apparently not under control for k → ∞. We

follow a different strategy to obtain a convergence result and claim the following.

Lemma 4.1. For the subsequence k → ∞, such that (4.6) holds and the weak L2-limit
V∞ we have

V∞ ∈ W 1,∞(0, T ) and

∫

Ω
Vk(t)dx → V∞(t) |Ω| for any t ∈ (0, T ),

where we have chosen a continuous representative of V∞.

Proof. We use spatially constant testfunctions η1 = η1(t) in equation (4.1) to find that
t 7→

∫

Ω Vk(x, t)dx is weakly differentiable with

d

dt

∫

Ω
Vk(x, t)dx =

∫

Γ
q1(uk, vk)Vk + q2(uk, vk)vk.

In addition, by Assumption 1.4 and (4.4)

∣

∣

∣

∣

∫

Γ
q1(uk(x, ·), vk(x, ·))Vk(x, ·) − q2(uk(x, ·), vk(x, ·))vk(x, ·))dσ(x)

∣

∣

∣

∣

≤ c1(Cq,Λ1,Λ2)T.

is uniformly bounded in L∞(0, T ) and c1 > 0. This implies that
∫

Ω Vk(x, ·)dx is in
W 1,∞(0, T ) and is uniformly bounded. With Sobolev’s Embedding Theorem A.7, we find
for every α ∈ (0, 1) that there is a compact embedding from W 1,∞(0, T ) into C0,α([0, T ]).
The compactness implies that there exists a subsequence k → ∞ and

w ∈ C0,α([0, T ]) ∩W 1,∞(0, T ),

such that
∫

Ω
Vk(x, t)dx → w(t) holds for any t ∈ [0, T ].

89



4 Application: A Shadow System reduction

Here, we have to check if the limit objects w(t) and
∫

Ω V∞(t)dx are the same. We use
the weak convergence Vk ⇀ V∞ in L2(0, T ;L2(Ω)) and the spatial homogeneity of V∞

to compute for every η ∈ L2(0, T )

∫ T

0
η(t) (w(t) − V∞|Ω|) dt

= lim
k→∞

∫ T

0
η(t)

∫

Ω
Vk(x, t)dxdt−

∫ T

0

∫

Ω
η(t)V∞(x, t)dxdt

= lim
k→∞

(

∫ T

0
η(t)

∫

Ω
Vk(x, t)dxdt−

∫ T

0
η(t)

∫

Ω
Vk(x, t)dxdt

)

= 0.

All together, this shows that the limits are the same.

By similar arguments we also observe that

t 7→
∫

Γ
u∞(x, t)dx, t 7→

∫

Γ
v∞(x, t)dx

have continuous representatives.

Mass conservation We set ηi ≡ 1 and find by adding equations (4.1)–(4.3) that for
every k the mass is being conserved, i.e.

∫

Ω
Vk(x, t)dx+

∫

Γ
(uk + vk)(x, t)dσ(x) =

∫

Ω
V0dx+

∫

Γ
(u0 + v0)dσ(x) (4.10)

for almost every t ∈ (0, T ). Passing to the limit k → ∞ in equation (4.10), we find with
the deductions from above that

V∞(t)|Ω| +

∫

Γ
(u∞ + v∞)(x, t)dσ(x) =

∫

Ω
V0dx+

∫

Γ
(u0 + v0)dσ(x). (4.11)

holds.

The nonlocal functional We conclude from (4.11) that

V∞(t) =
1

|Ω|m0 − 1

|Ω|

∫

Γ
(u∞ + v∞)(t)dσ(x)

for every t ∈ (0, T ) for m0 being the mass stored in the system, see (1.1). We remark
that if the initial spatial concentration V0 is constant as in [RR12], then

V∞(t) = V0 +
1

|Ω|

∫

Γ
(u0 + v0)dσ(x) − 1

|Ω|

∫

Γ
(u∞ + v∞)(t)dσ(x)

holds.
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Limit in the equations We follow the deductions in Subsection 3.3.3. The convergence
results for uk and vk according to (4.5) and (4.6) imply that we are allowed to pass to
the limit in (4.2) to find that (1.2a) holds.

For a convergence result for (4.3) we have to control Vk on Γ and have to ensure that
Vk converges to V∞. We consider the following estimate for w ∈ H1(Ω) with mean value
zero. A boundary type inequality holds,

1

|Γ|1/2
‖w‖L2(Γ) ≤ ‖w‖L4(Γ) ≤ c2‖∇w‖L2(Ω), (4.12)

where c2 > 0 depends on Ω, see Lemma A.4 for γ = 1. We apply (4.12) to Vk decreased
by its mean value to obtain

∫ T

0
‖Vk(·, t) − 1

|Ω|

∫

Ω
Vk(x, t)dx‖2

L2(Γ)dt ≤ c3

∫ T

0
‖∇Vk(·, t)‖2

L2(Ω)dt

≤ c3
Λ̂

Dk
→ 0 as k → ∞,

for a constant c3(Ω) > 0, where we used (4.8). Then, for Vk on Γ we obtain

lim
k→∞

Vk

∣

∣

∣

∣

Γ
= lim

k→∞

1

|Ω|

∫

Ω
Vk = V∞

in L2(ΓT ). Then, the convergence results for uk, vk and Vk imply that we are allowed to
pass to the limit in (4.3), see the arguments in the proof of Proposition 3.11. We obtain
that (1.2b) holds and the limit function of Vk on Γ is the same as in the bulk Ω. This
completes the proof of Theorem 1.3.
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5 Summary

The main purpose of this thesis was the mathematical analysis of certain spatially cou-
pled Reaction-Diffusion Systems arising in the description of Signaling Networks in bi-
ological cells. The spatial coupling between a diffusion e.g. in the cytosolic bulk and
reaction and diffusion processes on the boundary surface is given by a Robin-type bound-
ary condition that introduces a source term in one of the membrane GTPase equations
given by the outflux from the bulk of cytosolic GTPase. There is a great interest in un-
derstanding the implications of such type of spatially coupled systems. Our main goal
here was to provide existence and well-posedness results for prototypes of such models,
like (FCRD) and (GFCRD), as they are not covered by standard theory. These main
results can now be used as a starting point to examine more complex spatially coupled
systems and to rigorously investigate qualitative properties. The applied methods to
prove the main results were the following:

In the second chapter we have considered regular data and classical diffusion operators
(in case of the surface equations expressed by the Laplace-Beltrami operator). The result
on existence of classical solutions for (FCRD) in Theorem 1.1 was based on an operator
splitting approach that decouples bulk and surface equations. With the help of L∞-
a priori estimates, short-time existence for Reaction-Diffusion Systems on manifolds,
regularity results for scalar parabolic equations on manifolds and nonlinear theory of
parabolic initial-boundary problems we were able to obtain Schauder estimates in Hölder
spaces of different orders. It turned out that the combination of such estimates was
sufficient to apply Schauder’s Fixed-Point Theorem to an updating procedure. The
uniqueness of the resulting fixed-point was independently achieved with weak theory
from Chapter 3; bootstrapping arguments led to a classical solution triplet (V, u, v) of
the fully coupled Reaction-Diffusion System (FCRD) of parabolic Hölder order (2 + α)
for given α ∈ (0, 1) on a given time-interval [0, T ], for T > 0. Moreover, we here obtained
that solutions depend continuously on the initial data and are essentially bounded and
nonnegative. The system (FCRD) is well-posed.

Complementary to the classical setting we have also considered possibly nonsmooth
diffusion operators that for example can model heterogeneous domains with specific
properties on the membrane. The existence and well-posedness result from Theorem 1.2
for (GFCRD) was based on an implicit discretization in time which reduced the given
nonlinear parabolic system to a sequence of nonlinear recursive elliptic problems. This
was then solved by an application of the theory of monotone perturbed operators. We
furthermore here proved continuous dependence on the initial data, an L2-continuity
property and that solutions are essentially bounded on bounded time intervals. In gen-
eral, for our system, this cannot be deduced from an invariant region principle. Instead
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5 Summary

we use a different technique on finding L∞-a priori estimates as in Chapter 2, namely,
based on appropriate testfunctions and comparison functions.

Furthermore, in Chapter 4 we applied the results from the weak theory to find that
an asymptotic model reduction for (GFCRD) can be deduced rigorously, cf. Theo-
rem 1.3. In fact, when the cytosolic diffusion constant formally tends to infinity, then
the concentration in the bulk is spatially constant. A reduced system of partial differen-
tial equations remains on the boundary incorporating a nonlocal functional; a so-called
Shadow System appears.

Let us finally point out two directions of more complex models motivated by Signal-
ing Networks in biological cells. Firstly, one could integrate directed signaling pathways
on the inside of a cell, i.e. information is being distributed along microtubulis or the
cell skeleton. In this case, drift terms occur in the bulk equations, which need fur-
ther investigation, see [Cal+12] and the recent contribution [AR16] for some simplified
models in that direction. Secondly, the assumption that the cell has a fixed geometry
is very restrictive and in many cases not realistic. Blood cells, human skin cells and
pancreas cells bend and stretch forced by external and internal influences. Therefore, it
becomes necessary to consider a moving membrane surface coupled to the bulk-surface
Reaction-Diffusion System. Under proper assumptions on the geometric evolution, like
a preserved regularity of the manifold, and reasonable governing equations for bending
and stretching operations, our results and methods of proof may be transferred to such
extended systems.
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Appendix: background material and

auxiliary results

In this Chapter we state and prove auxiliary results which we have referred to in the
other Chapters of this thesis.

A.1 Inequalities, notation and function spaces

A.1.1 Inequalities

For convenience, we state the following inequalities.

• For ε > 0, each of the inequalities

2ab ≤ εa2 +
b2

ε
and ab ≤ εa2 +

b2

4ε

is called Young’s Inequality, see for example [Eva10, B.2., p. 706ff.].

• Letm ∈ N and wi ∈ Lpi(µ) for i = 1, . . . ,m with pi, q ∈ [1,∞] satisfying
∑m

i=1
1
pi

=
1
q , then the product w1 · · ·wm is in Lq(µ) and Hölder’s Inequality

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∏

i=1

wi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lq(µ)

≤
m
∏

i=1

‖wi‖Lpi (µ)

holds. Here, µ is an appropriate measure, for example the Lebesgue measure on Ω
or the surface area measure on Γ, see [Alt12, p. 54ff.].

A.1.2 Function spaces on flat domains

In this subsection we introduce Hölder spaces, parabolic Hölder spaces, Sobolev and
Bochner spaces for a domain Ω ⊂ R

n or ΩT ⊂ R
n+1, respectively.

Hölder spaces and parabolic Hölder spaces The set of continuously differentiable
functions w : Ω → R of order k shall be denoted by Ck(Ω), such that there exists a con-
tinuation on the boundary of Ω for derivatives up to order k. We define a corresponding
norm by

‖w‖Ck(Ω)
def
=

k
∑

j=0

‖Djw‖C0(Ω)
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Appendix: background material and auxiliary results

with supremum norm ‖w‖C0(Ω) = sup{|w(x)| : x ∈ Ω}. For 0 < β < 1 and w : Ω → R

let the quantity

hölβ(w,Ω)
def
= sup

{ |w(x) − w(y)|
|x− y|β , x, y ∈ Ω, x 6= y

}

∈ [0,∞]

be the Hölder constant of w. The Banach space given by

Ck+β(Ω)
def
= {w ∈ Ck(Ω) , hölβ(∂sw,Ω) < ∞, |s| = k},

‖w‖Ck+β(Ω)
def
=
∑

|s|≤k

‖∂sw‖C0(Ω) +
∑

|s|=m

hölβ(∂sw,Ω)

is called Hölder space of order (k + β) for β ∈ (0, 1), for further details and properties
see [Alt12, p. 46]. We denote the space of Lipschitz continuous functions by C0,1(Ω).

A function w : ΩT → R lies in the space Hk+β,(k+β)/2(ΩT ) if the corresponding norms

we denote with |w|(k+β)
ΩT

are finite. The cases where k = 0, 1, 2 are of interest in this
thesis. We write the norms out in full for k = 1, 2, i.e.

|w|(1+β)
ΩT

= ‖w‖C0(ΩT ) + ‖Dxw‖C0(ΩT ) + 〈Dxw〉(β)

x,ΩT

+ 〈w〉((1+β)/2)

t,ΩT
+ 〈Dxw〉(β/2)

t,ΩT
, (A.1)

|w|(2+β)
ΩT

= ‖w‖C0(ΩT ) + ‖Dxw‖C0(ΩT ) + ‖D2
xw‖C0(ΩT ) + ‖Dtw‖C0(ΩT )

+ 〈D2
xw〉(β)

x,ΩT
+ 〈Dtw〉(β)

x,ΩT
+ 〈Dtw〉(β/2)

t,ΩT

+ 〈Dxw〉((1+β)/2)

t,ΩT
+ 〈D2

xw〉(β/2)

t,ΩT
, (A.2)

〈w〉(β)

x,ΩT
= sup

(x,t),(x′,t)∈ΩT

|x−x′|≤̺0

|w(x, t) − w(x′, t)|
|x− x′|β ,

〈w〉(β)

t,ΩT
= sup

(x,t),(x,t′)∈ΩT

|t−t′|≤̺0

|w(x, t) − w(x, t′)|
|t− t′|β ,

where we adopted the notation from [LSU68, p. 7f.]. Here, ̺0 > 0 is a fixed constant.
Remark that

|w|(1+β)
ΩT

≤ C(̺0, β)|w|(2+β)
ΩT

holds.

Sobolev and Bochner spaces Consider the measure space (Ω,B,L3) for a σ-algebra
B on Ω.

Lp(Ω) = {w : Ω → R , w is L3 measurable and

∫

Ω
|w|pdL3 < ∞},
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A.1 Inequalities, notation and function spaces

where p ∈ [1,∞). For p = ∞, let L∞(Ω) be the set of essentially bounded and L3-
measurable functions. For p ∈ [1,∞) let Lp(Ω) be the Banach space consisting of all
equivalence classes of functions w : Ω → R, such that

∫

Ω |w|pdL3 < ∞ holds . The
corresponding norm is given by

‖w‖Lp(Ω) =

(
∫

Ω
|w|pdL3

)1/p

.

Let L∞(Ω) with the norm ‖w‖L∞(Ω)
def
= supx∈Ω |w(x)| denote the space of essentially

bounded functions on Ω. With these definitions we are able to define Sobolev spaces on
Ω. For k ∈ N and p ∈ [1,∞] we set

W k,p(Ω) = {w ∈ Lp(Ω) , Dβw ∈ Lp(Ω) for β ∈ N
3, |β| ≤ k},

‖w‖W k,p(Ω) =







(

∑

|β|≤k ‖Dβw‖p
Lp(Ω)

)1/p
for 1 ≤ p < ∞

∑

|β|≤k ‖Dβw‖L∞(Ω) for p = ∞.

For p = 2, we write Hk(Ω) = W k,2(Ω) for convenience. The dual space of Hk(Ω) shall
be denoted by (Hk(Ω))∗. For further results on Sobolev spaces we refer to [Bre11] or
[MS11].

For a proper formulation of time and space dependent functions it is convenient to
define Bochner spaces. Let X be a Banach space, T > 0 and p ∈ [1,∞). For strongly
measurable functions w : [0, T ] → X we set the space Lp(0, T ;X) equipped with the
norm

‖w‖Lp(0,T ;X)
def
=

(

∫ T

0
‖w(t)‖p

Xdt

)1/p

< ∞

to be a Banach space of Bochner-type. Here, w is a representant of an equivalence class
such that all functions in this class coincide for almost every t ∈ [0, T ]. This definition
was taken from [Sch13, p. 191ff.], where further properties of Bochner spaces can be
found.

A.1.3 Definitions and properties from differential geometry

The following general definitions and properties can be found in [Aub98].

Smooth manifolds We assume that Γ ⊂ R
3 is a Riemannian manifold of dimension

2 or, in a more abstract sense, is a topological Hausdorff space, such that for every
point p ∈ Γ, there exists a neighbourhood homeomorphic to R

2. We assume that Γ is
of class C∞, i.e. local charts parametrize smoothly, coordinate changes are smooth. We
remark that the C∞-assumption is not necessary and one could assume a less regular
Riemannian manifold. Moreover, we assume that Γ is orientable, compact and closed
that is represented as boundary Γ = ∂Ω of an open domain Ω ⊂ R

3. In particular, there
exist exactly two different continuous normal fields, there exists a finite atlas and Γ has
no boundary.
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Appendix: background material and auxiliary results

Tangential space, Riemannian metric Let p ∈ Γ, then ṽ ∈ R
3 is called tangen-

tial vector at p, if there exists a C1-curve γ : (−ε, ε) → Γ for ε > 0 with γ(0) = p and
γ̇(0) = ṽ. The space of all tangential vectors in p is denoted by TpΓ and called tangential
space in p. Let ϕ : U ⊂ R

2 → W ⊂ Γ be a local chart and x0 ∈ U , then the matrix

g(x0)
def
= DϕT (x0)Dϕ(x0) ∈ R

2×2,

which we identify with its induced bilinear form gx0(v1, v2)
def
= v1 ·g(x0)v2 for v1, v2 ∈ R

2,
is the pullback metric in x0. The matrix gij(x0) is symmetric and positive definite, the
inverse shall be denoted by (gij)1≤i,j≤2 = gij . This gives rise to the definition of the
first fundamental form on Γ as a scalar product of two vectors of the tangential plane,
i.e. Ip(ṽ1, ṽ2) = ṽ1 · ṽ2 = gx0(v1, v2) where Dϕx0v1 = ṽ1 and Dϕx0v2 = ṽ2. In our case
g(x0) exists for every x0 ∈ Γ. Therefore, we say that (Γ, g) is a smooth differentiable
Riemannian manifold.

Covariant derivative and surface gradient The motivation to introduce covariant
derivatives is that one wants to measure the derivative on non-flat spaces, lateral deriva-
tives, which is different to the usual derivative in space. There are several definitions
to determine covariant derivatives, namely for functions, for vector fields, covector fields
and tensor fields on Γ. We focus on the first case and begin with the following: for
w ∈ C1(Γ), we define the map DΓwp : TpΓ → R via d(w ◦ ϕ)x(v) = DΓwϕ(x)Dϕ(x)v for
all v ∈ TpΓ and all local charts ϕ with ϕ(x) = p. Here, we demand that the usual chain
rule holds. The operator DΓ on the right-hand side is called the covariant derivative
of w in p. For w ∈ C1(Γ) the surface gradient ∇Γw(p) for p ∈ Γ is given as the unique
vector ∇Γw(p) ∈ TpΓ, such that

∇Γw(p) · ṽ = DΓwpṽ

holds for all ṽ ∈ TpΓ.

Divergence and the Laplace-Beltrami operator Since we are interested in second
order partial differential equations, we introduce higher order surface derivatives by
inductively applying the surface gradient ∇Γ to functions w. Analogously, higher order
covariant derivatives Dj

Γ are defined. If these derivatives of order k exist, then w ∈ Ck(Γ)
and the corresponding norm is given by

‖w‖Ck(Γ) =
k
∑

j=0

sup
x∈Γ

|∇j
Γw(x)|.

For a vector field X ∈ C1(Γ;R3) the tangential divergence is defined by divΓX
def
= tr∇ΓX.

For w ∈ C2(Γ) the Laplace-Beltrami operator ∆Γw ∈ C0(Γ) is defined by

∆Γw
def
= divΓ∇Γw.
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Integration on manifolds For the oriented manifold Γ we define

dvg
def
=
√

det g dx1dx2,

where {x1, x2} is the local coordinate system corresponding to a local chart ϕ. This
oriented Riemannian volume element is compatible to the surface area measure dσ,
the Hausdorff measure on Γ. For a local chart ϕ : U → W and a continuous function
w : W → R with compact support on W , we set

∫

Γ∩W
wdσ(x) =

∫

Γ∩W
wdσ =

∫

Γ∩W
wdvg =

∫

U
(w ◦ ϕ)

√

det g dx1dx2.

The map w 7−→
∫

Γwdvg defines a positive Radon measure, see [Aub98, p. 29ff.]. We
remark that Gauss’ Divergence Theorem holds.

Theorem A.1 (Gauss’ Divergence Theorem). For Γ compact, a tangent vector field
X ∈ C1(Γ,R3) and for all η ∈ C1(Γ) we find

∫

Γ
η divΓXdσ = −

∫

Γ
∇Γη ·Xdσ.

Function spaces on manifolds In the last paragraph we already defined spaces of
continuous differentiable functions up to order k on Γ. Here, we are introducing Hölder
spaces, parabolic Hölder spaces and Sobolev spaces on Γ. We begin with the definition
of a distance function. We define

dg(p, q)
def
= inf{L(γ) | γ : [0, 1] → Γ, γ(0) = p, γ(1) = q},

with L(γ) =
∫ 1

0

√

g(γ′(t), γ′(t))dt for p, q ∈ Γ. For β ∈ (0, 1) the function w is in Cβ(Γ)
is the corresponding norm

‖w‖Cβ(Γ) = sup |w| + sup
p 6=q

|w(p) − w(q)|
(dg(p, q))β

is bounded. Then, Ck+β(Γ) for k ∈ N0 consists of functions, such that the k-th derivative
is β-Hölder continuous. Vice versa, parabolic Hölder spaces take the corresponding time-
derivatives and some mixed derivatives into account. In the manifold case, we denote
these spaces by Hk+β,(k+β)/2(ΓT ). The first number k + β denotes the order of the
Hölder norm in space, (k + β)/2 denotes the order of time-derivatives. We denote the
supremum norm with ‖ · ‖C0(Γ). A function w : ΓT → R is in Hk+β,(k+β)/2(ΓT ), if the
quantity we denote with

|w|(k+β)
ΓT

= ‖w‖C0(ΓT ) +
k
∑

j=1

∑

2r+s=j

‖Dr
tD

s
Γ,xw‖C0(ΓT )

+
∑

2r+s=k

〈Dr
tD

s
Γ,xw〉(β)

x,ΓT
+

∑

0<k+β−2r−s<2

〈Dr
tD

s
Γ,xw〉(

k+β−2r−s
2 )

t,ΓT
(A.3)
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is finite. Here, for some function w̃ : Γ × (0, T ) → R we have

〈w̃〉(β)

x,ΓT
= sup

(x,t),(x′,t)∈ΓT

dg(x,x′)<̺0

|w̃(x, t) − w̃(x′, t)|
(dg(x, x′))β

,

〈w̃〉(β/2)

t,ΓT
= sup

(x,t),(x,t′)∈ΓT

|t−t′|<̺0

|w̃(x, t) − w̃(x, t′)|
(|t− t′|)(β/2)

,

for β ∈ (0, 1), where we used the notation in [LSU68, p. 7f]. The parameter ̺0 > 0
is an injectivity radius which is strictly greater than zero since we are on a compact
manifold and geodesics are uniquely defined. For convenience, we used the notation
DΓ,x and Dt standing for the covariant derivative DΓ for spatial dependency on Γ and
the time-derivative. These norms are quite similar to the flat case of an open domain
Ω ∈ R

n.
We denote by Lp(Γ) for p ∈ [1,∞) the class of all measurable functions w on Γ, such

that the quantity (
∫

Γ |w|pdσ)1/p is finite. Then, Lp(Γ) is defined in the common Lebesgue
sense endowed with norm

‖w‖Lp(Γ) =

(
∫

Γ
|w|pdvg

)
1
p

.

Moreover, the space L∞(Γ) shall consists of all measurable functions that are essentially
bounded with respect to the Hausdorff measure.

Let φ be of class C∞(Γ). Let Cp
k(Γ) be the space of functions, such that ∇j

Γφ ∈ Lp for
0 ≤ j ≤ k. The completion of Cp

k(Γ) with respect to the norm

‖φ‖W k,p(Γ) =
k
∑

j=0

‖∇j
Γφ‖Lp(Γ)

is called Sobolev space W k,p(Γ) on Γ. For p = 2, we write Hk(Γ).

A.2 Gagliardo-Nirenberg and boundary estimates

We aim on finding estimates for functions w : Ω → R, such that expressions w ∈ Lp(Γ)
are estimated by terms defined in Ω. We begin with a variation of Gagliardo-Nirenberg
estimates which is taken from [LU68, p. 45].

Lemma A.2 (Gagliardo-Nirenberg-type inequality). For a bounded domain Ω ⊂ R
n, let

w ∈ W 1,m(Ω), m ∈ N, have a mean-value of zero, i.e.

∫

Ω
w(x)dx = 0,
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then the inequality

‖w‖Lp(Ω) ≤ c‖∇w‖γ
Lm(Ω)‖w‖1−γ

Lr(Ω)

holds, whenever n
p = γ n−m

m + (1 − γ)n
r , r ≥ 1 and γ ∈ [0, 1] for c = c(m, p, r, n, α) > 0.

Proof. The proof of this classical interpolation estimate can be found in several books,
for example in DiBenedetto [DiB02, p. 423ff.]. The ideas stem from the papers of
Gagliardo [Gag58] and Nirenberg [Nir59].

As a corollary we formulate this statement for a compact, smooth 2-manifold Γ.

Corollary A.3. Let Γ ⊂ R
3 be a smooth, compact 2-manifold. Let w ∈ H1(Γ) have a

mean value of zero. Then there exists a constant c > 0, such that

‖w‖Lp(Γ) ≤ c‖∇Γw‖γ
L2(Γ)‖w‖1−γ

Lr(Γ), (A.4)

where 1
p = 1−γ

r for γ ∈ (0, 1).

Proof. See [DHV99].

The connection of boundary values and values inside a domain is described by the
following lemma.

Lemma A.4 (Multiplicative Gagliardo-Nirenberg-type inequality). Let Ω ⊂ R
n be a

bounded Lipschitz domain and Γ be its boundary. Then for w ∈ H1(Ω) with mean value
zero we have

‖w‖Lp(Γ) ≤ c‖∇w‖γ
L2(Ω)‖w‖1−γ

L2(Ω) (A.5)

with γ ∈ [0, 1], p = 2(n−1)
n−2γ and c = c((Ω), p) > 0.

Proof. This assertion follows for example with [MS11, Corollary 2, p. 82]. In the
corresponding notation we set µ = H2, the Hausdorff measure on Γ, k = 0, l = 1 and
s = 2. After rearranging the notation we find

‖w‖Lp(Γ) ≤ c‖w‖γ
H1(Ω)‖w‖1−γ

L2(Ω), (A.6)

where c = c(Ω) > 0. Since the mean value of w was claimed to be zero, Poincaré’s
Inequality implicates the desired inequality.

The statements above lead to an Lp-boundary estimation by arbitrarily small amounts
of the L2-gradient norm and the L2-norm.

Lemma A.5 (ε-estimation on the boundary). Let Ω ⊂ R
n be a bounded domain and Γ

be its Lipschitz boundary. For an arbitrary function w ∈ H1(Ω) and 0 < ε < 1 we have

‖w‖2
Lp(Γ) ≤ ε‖∇w‖2

L2(Ω) + ε
−β

1−βC(Ω)‖w‖2
L2(Ω) (A.7)

with p = 2(n−1)
n−2β and β ∈ (0, 1).
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Proof. A proof can be found in [Gri85, Theorem 1.5.1.10, p. 41].

Corollary A.6. Let Ω ⊂ R
3 be a bounded domain and Γ be its boundary being a compact,

smooth manifold. For w ∈ H1(Ω) with 0 < ε < 1 we have

‖w‖L2(Γ) ≤ C(Ω)

(√
ε‖∇w‖L2(Ω) +

1√
ε

‖w‖L2(Ω)

)

with C(Ω) > 0.

A.3 Sobolev Embeddings

In this subsection we are restating Sobolev’s Embedding Theorem and in particular
results about compact embeddings. For the case of a domain with Lipschitz boundary
we have the following result.

Theorem A.7 (Sobolev’s Embedding Theorem, flat case). Let Ω ⊂ R
n be a domain and

Γ be its Lipschitz boundary.

1. To embed Sobolev spaces into Hölder spaces, let k ∈ N, m ∈ N0 and 1 ≤ p < ∞.

a) If k − n
p ≥ m+ γ holds for 0 < γ < 1, then Id : W k,p(Ω) →֒ Cm+γ(Ω) is a

continuous embedding, i.e. there exists c1
def
= c1(Ω, n,m, p, k, γ), such that for

w ∈ W k,p(Ω) the inequality

‖w‖Cm+γ(Ω) ≤ c1‖w‖W k,p(Ω)

holds.

b) If k − n
p > m+ γ, then Id : W k,p(Ω) →֒ Cm+γ(Ω) is a continuous and com-

pact embedding.

2. To embed Sobolev spaces into Sobolev spaces, let k1, k2 ∈ N0 and 1 ≤ p1, p2 < ∞.

a) If k1 − n
p1

≥ k2 − n
p2

with k1 ≥ k2, then Id : W k1,p1(Ω) →֒ W k2,p2(Ω) is a

continuous embedding and there exists a constant c2
def
= c2(n,Ω, k1, p1, k2, p2),

such that for w ∈ W k1,p1(Ω) the inequality

‖w‖W k2,p2 (Ω) ≤ c2‖w‖W k1,p1 (Ω)

holds.

b) If k1 − n
p1

> k2 − n
p2

with k1 > k2, then Id : W k1,p1(Ω) →֒ W k2,p2(Ω) is a
continuous and compact embedding.

Proof. The proof is given, for example, in [Alt12, p. 345ff., 350ff.].

For functions defined on a compact 2-manifold Γ we cite the following embedding theo-
rem taken from [Aub82, 2.20 Theorem, p. 44].

Theorem A.8 (Sobolev’s Embedding Theorem on compact manifolds). For compact
manifolds Sobolev’s Embeddings Theorem A.7 holds.
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A.4 Gronwall’s Lemma

Here we restate a differential and integral formulation of Gronwall’s Lemma.

Lemma A.9 (Gronwall’s Lemma). Let w, β and γ be nonnegative continuous functions
defined on [0, T ].

(i) If w satisfies the integral inequality

w(t) ≤ β(t) +

∫ t

0
γ(s)w(s)ds for all t ∈ [0, T ],

then

w(t) ≤ β(t) +

∫ t

0
β(r)γ(r) exp

(
∫ t

r
γ(s)ds

)

dr for t ∈ [0, T ].

(ii) If w is differentiable in (0, T ) satisfying

w′(t) ≤ β(t) + γ(t)w(t) for all t ∈ (0, T ),

then

w(t) ≤ w(0) exp

(
∫ t

0
γ(s)ds

)

+

∫ t

0
β(r) exp

(
∫ t

r
γ(s)ds

)

dr.

Proof. The proof for the integral form can be found for example in [Pac98, Theo-
rem 1.3.2, p. 13] and the second assertion can be found for example in [Eva10, p. 708].

A.5 Generalized Lebesgue Convergence Theorem

Here we restate a generalized Lebesgue Convergence Theorem. This standard result can
for example be found in [Alt12, 1.25, p. 62].

Theorem A.10 (Generalized Lebesgue Convergence Theorem). Let Ω ⊂ R
n be a boun-

ded domain, p ∈ [1,∞) and gk, hk : Ω → R, k ∈ N, and g, h : Ω → R for k → ∞. If
gk → g pointwise a.e. and |gk| ≤ hk with hk → h in Lp(Ω), then

g ∈ Lp(Ω) and gk → g in Lp(Ω)

holds.
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