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1
Introduction

For the numerical solution of partial differential equations, the finite element method is a widely
used discretisation technique which requires a mesh on the (computational) domain ([CR72],
[SF88], [Bra07]). For many partial differential equations, there are error estimates that (under
certain assumptions) guarantee convergence of the discrete to the analytical solution of a certain
order, if the space discretisation (which indirectly means the mesh) is sufficiently refined. These
error estimates directly or indirectly depend on the used mesh, most notably on the cell shapes,
sufficient resolution in regions of interest and that it captures the geometric features of the domain
of interest. In this work, I will call this partial differential equation the original partial differential
equation to set it apart from the mesh optimisation problem, as mesh optimisation is just a tool
to create or improve a suitable space discretisation of the original PDE. Because it is already an
involved topic, I will focus on the mesh optimisation problem itself, and not treat the original PDE
at all, meaning that I only treat the meshes themselves and do not solve any PDE on them.

Very often, the domain of interest and thus the mesh is not stationary, but moves due to various
reasons. This might be a free capillary surface (see [GP92], [BCR+00], [Bän01] for examples) for
flow problems, fluid-structure interactions (e.g. [Wic11], [Ric15] [Bas16]) or even phase trans-
formations (e.g. [BPS13], [BBK15]). A moving mesh introduces the problem of geometric stabil-
ity, which means that intersections of cells (which are fatal for the finite element solution of the
original partial differential equation at hand) cannot be ruled out a priori. This is sometimes called
mesh tangling in the literature, and has to be avoided by employing a suitable mesh optimisation
technique. One of the most common scenarios is that the movement of one or more boundaries is
known and this movement has to be extended to the interior of the domain (to adjust the vertices)
by constructing an extension (or inverse trace) operator. This is called mesh smoothing by some
authors.

Another common scenario is that some cell size distribution is to be enforced or approximated
on a given mesh, e.g. when regions of interest are known a priori (for example near the solid
walls of a channel flow at medium to high Reynolds numbers, to resolve the resulting boundary
layers) or a posteriori (e.g. in an adaptive method using a posteriori error estimates). Then the
space discretisation should be “finer” in these regions, which can be achieved by a variety of
techniques, including h, p and r-adaptivity, where only the latter (rezoning adaptivity) will be
treated in this work. Each technique has its own set of advantages and disadvantages and the
choice of the most suitable one is highly dependent on the situation, like regularity of the solution,
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CHAPTER 1. Introduction

geometric complexity, shape type of the mesh (like simplices or hypercubes) and its quality, the
finite element spaces used etc. For r-adaptivity, where only mesh vertices are moved in space
to increase the mesh resolution in regions of interest, the distinctive advantage is that it does
not modify the structure of the finite element spaces defined on the mesh, meaning it does not
introduce new degrees of freedom or modify the adjacency structure of the existing ones. When
multilevel solvers are used, this is a very desirable feature.

If the domain of interest contains interior surfaces that need to be resolved, this can be done
in several different ways, including fictitious boundary, a phase field or levelset representation, or
a sharp interface representation, each again with different advantages and disadvantages. Impli-
cit representations like the first three share the advantage that the mesh does not need to capture
the surface exactly, although it still needs to be sufficiently resolved. They also allow topology
changes (e.g. two droplets merging), which is desirable from a modelling point of view, although
in many applications (like the aforementioned merging droplets) the physics of the modelled pro-
cess are unclear. However, the finite element spaces defined on a mesh not capturing e.g. regions
with different material properties exactly will have considerably worse approximation properties
(see [LMWZ10]). The order of approximation is the strongest advantage of the sharp interface
representation, but it does in general not allow topology changes, and extreme deformations (or
relative movement) of the corresponding surfaces can be a problem.

The mentioned aspects can be addressed by a variety of methods, see [HR11] for an over-
view. One possibility is to use geometric information (like vertex coordinates, distances etc.) in
algorithms that try to improve the mesh quality, or move vertices to some region of interest. This
may require a lot of combinatorial effort and many ideas do not easily generalise to higher space
dimensions. A different approach is to define a functional measuring the energy of the deformation
of a reference mesh to the current mesh and then to minimise this functional to obtain a new mesh.
One common approach is to use the mesh’s vertex adjacency graph and solve a system of equa-
tions based on the graph-Laplacian to obtain new vertex coordinates. Usually, some weighting is
done on the graph (see [Mün16] for a recent work). This technique is very efficient computation-
ally, but cannot guarantee that the resulting mesh is free of intersecting cells. To have results with
known properties, it is very common to use a mesh quality functional that is based on some partial
differential equation. An important example is solving Laplace’s equation for the vertex coordin-
ates, which is equivalent of finding the stationary point of the harmonic energy of the deformation.
Other well-known partial differential equations can be used to derive mesh quality functionals, and
the available analysis for these equations gives an idea of how the solution (meaning the resulting
mesh) will behave with regard to boundary conditions or changes in geometry.

In the following, I will only treat mesh quality functionals that are derived from some PDE
because of the analysis available and because the tools for the solution of the mesh optimisation
problem are essentially already present, as they are the same that will be employed for solving the
original PDE. One more aspect to mention is that, in the current formulation, the optimised mesh is
directly obtained by minimising the mesh quality functional. Combining the mesh problem and the
original, transient PDE into one system of equations yields a differential algebraic system, which is
difficult to solve. One possible solution to this problem is to formulate the mesh quality functional
in terms of the speeds of the mesh’s vertices (as opposed to their coordinates), so the resulting
system looses its differential algebraic structure. Another approach is to decouple the original
PDE from the geometry problem even it they are coupled. Even when this decoupling of mesh and
original PDE problems is performed, it is still possible to formulate the mesh quality functional in
terms of vertex speeds and then solve an ordinary differential equation in time (or pseudo-time in
the case of stationary problems) like in [GKT08] [GKT10]. Since I do not even solve the original
PDE in this work (as mentioned above), I chose to formulate the mesh optimisation problem
directly in the vertex coordinates.
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1.0.

The purpose of this work is to expand and improve an idea from [Rum96], which is to derive a
mesh quality functional using the stored-energy functional of a hyperelastic material. This allows
the use of all the theory available from mathematical elasticity ([Bal76], [Cia88]) to establish the
existence and nonuniqueness of minimisers. The idea of surface alignment from [BW13] is to be
expanded and combined with r-adaptivity. It will be shown how the class of functionals at hand
allows a very direct control of the cell sizes by specifying an optimal size for every cell, which
is much more direct than the monitor functions used in other methods. In [Rum96] and [BW13],
only simplex meshes were considered, but the concepts will be carried over to hypercube meshes
in this work. However, the numerical effort to solve the resulting mesh optimisation problem is
very high, as it is a nonconvex nonlinear problem with many solutions, which are local minimisers
of the mesh quality functional. For this, a preconditioner is introduced, which makes the solution
process much more efficient in the cases where it is applicable.

This work is organised as follows

In Chapter 2, some notation will be given, followed by definitions of the terms that will be used to
describe meshes and the entities they are comprised of. Theory about the approximation properties
of finite element spaces is given for motivational purposes and to show where some of the terms
later considered in the mesh optimisation problem enter the interpolation error estimates.

The main chapter is Chapter 3. Here, the notion of mesh quality and how it can be defined to
fit a variety of purposes is discussed, with some rather simple but illustrative examples in Section
3.3 and Section 3.4. A mesh quality functional is derived in Section 3.5 from some (reasonable)
assumptions and desirable properties for a notion of mesh quality. Only afterwards, the connec-
tion to hyperelastic materials is made. For hyperelastic materials, there are well-known existence
results, which will be given in Section 3.5.6.

In chapter Chapter 4, numerical methods for the solution of the minimisation problem are in-
troduced and discussed. The finite element spaces for the space discretisation are straightforward,
as they are defined by the transformation used for mapping reference cells to mesh cells. Solvers
are introduced in Section 4.2, where the focus is on line search based methods for large scale
unconstrained optimisation. This class of methods offers the necessary flexibility for the class
of preconditioners that will be introduced later, and based on the properties of the functionals at
hand we cannot expect good results from a full Newton method. Since the aforementioned surface
alignment can be realised through constraints, aspects of constraint optimisation are given in Sec-
tion 4.3. Some examples are given in Section 4.4 to illustrate the difficulties to be expected when
minimising nonconvex functionals without constraints.

The first set of numerical results is presented in Chapter 5. Here, only aspects of the method,
its properties and the behaviour are discussed, while everything solver related (except for an exam-
ination of the characteristics of the quadratic penalty iteration from Section 4.3 in Section 5.6.1)
can be found in Chapter 7. First, heuristics for the cell shape quality and the cell size distribution
defect that are independent of any mesh quality functional used are introduced in Section 5.2.
These will be used to interpret the quality of the meshes generated in this section. For the sta-
tionary model problem in Section 5.3 and the moving boundary problems presented Section 5.4,
comparisons between the results obtained by a quadratic, PDE-based mesh quality functional and
hyperelasticity-based functionals are done. The aspects of r-adaptivity and alignment to (implicit)
surfaces are treated in Section 5.5 and Section 5.6 respectively. Here, no comparisons with mesh
quality functionals of other type are possible.

In Chapter 6, a family of preconditioners for the minimisation of hyperelasticity-based mesh
quality functionals motivated by the functional’s properties on the continuous level is introduced.
There are known limitations with regard to the applicability of this preconditioner (see Section
6.2), and it will be shown that because of the structure of the mesh quality functionals, the precon-
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CHAPTER 1. Introduction

ditioners cannot be expected to give good convergence results in corner cases.
However, for a good range of moving boundary problems, the family of preconditioners sub-

stantially accelerates the iterative solver for the minimisation problem, as is shown in Chapter 7.
Since the solution is nonunique, the use of a preconditioner often makes it possible to find better
local minima of the mesh quality functional, resulting in meshes of better quality.

4



2
Preliminaries

In this chapter, I will introduce some basic notation in Section 2.1 and define various geometric
terms like simplices, hypercubes, edges, faces, vertices and meshes comprised of these entities in
Section 2.2. Finite elements will be introduced in Section 2.3, as will be spaces of parametric finite
elements. In this context, it is easier to deal with affine-equivalent finite elements, so interpolation
error estimates for this special case are presented first in Section 2.4 as they convey the basic
concepts in an easier fashion. The more general case of nonlinear reference cell transformations
is treated in Section 2.5. Note that these estimates will not be used directly in proofs, but for
motivational purposes as to why mesh optimisation is approached in a PDE-based manner in
Chapter 3.

2.1. Notation

The term iff means if and only if.

Sets

i) N is the set of positive integers and N0 := N∪{0}.

ii) card(M) is the cardinality of the set M.

iii) voln(M) is the n-dimensional volume of a measurable set M ⊂ Rd ,1 ≤ n ≤ d. In the case
n = d, the symbol vol(M) is used. For Rd , the volume measure will be denoted dx and the
area or surface measure will be denoted dσ.

iv) For an open subset Ω ⊂Rn, λ ∈ [0,1] and k ∈N, the boundary ∂Ω is said to be of class C0,λ

or Ck iff it can be parametrised by a finite number of maps of the corresponding class, see
below.
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CHAPTER 2. Preliminaries

Matrices

If A ∈ Rm×n (a member of the vector space of real m× n matrices), its elements will be denoted
by Ai j. The inner product of this space is denoted by

A : B :=
m

∑
i=1

n

∑
j=1

Ai jBi j.

If A ∈ Rn×n:

i) det(A) is the determinant of A.

ii) GLd := {A ∈ Rd×d : det(A) ̸= 0} is the general linear group of invertible matrices.

iii) SLd := {A ∈ Rd×d : det(A) > 0} is the special linear group of invertible matrices with
positive determinant.

iv) Cof(A) is the cofactor matrix of A. If A ∈ Rn×n, define A(i, j) ∈ Rn−1×n−1 as the matrix
obtained by deleting the ith column and jth row of A. Then Cof(A)i, j = (−1)i+ j det(A(i, j))
and if A ∈ GLn, Cof(A) = det(A)A−T .

v) tr(A) is the trace of A ∈ Rn×n, tr(A) = ∑
n
i=1 Aii.

Functions and derivatives

Let X ,Y be real normed vector spaces and Ω ⊂ X an open subset and f : Ω → Y .

i) Then f is differentiable iff

∃ f ′(x) ∈ L(X ,Y ) : f (x+h) = f (x)+ f ′(x)h+o(h),

where the space L(X ,Y ) is defined below. f ′(x) is the (Fréchet) derivative of the mapping
f at x ∈ Ω.

ii) The Gâteaux or directional derivative in direction h ∈ X is defined as

f ′(x)h := lim
t→0

f (x+ th)− f (x)
t

=
d
dt

f (x+ th)|t=0 ∈ Y.

Let Ω ⊂ Rn be open, f : Ω → R and denote by ei, i = 1, . . . ,n the canonical basis of Rn.

i) For x ∈ Ω define the partial derivative ∂ f
∂xi
(x) := limh→0

f (x+hei)− f (x)
h if the limit exists.

ii) ∂ f
∂xi

may be abbreviated to ∂i f .

iii) For a multiindex α ∈ Nn
0, define |a| := ∑

n
i=1 αi and for x ∈ Ω

Dα f (x) :=
∂|α| f

∂xα1
1 . . .∂xαn

n

and the set of all partial derivatives of order k ∈ N as

Dk f (x) := {Dα f (x) : |α = k|}.

iv) In general, the notations

f ′(x) := D1 f (x) := (∂1 f (x), . . . ,∂n f (x))T ∈ Rn

for the gradient and
f ′′(x) := D2 f (x) := (∂ j∂i f (x))i j ∈ Rn×n

for the Hessian will be used when f is continuously (or twice continuously, respectively)
differentiable.

6



2.2. Notation

Function spaces

If E,F are topological spaces:

i) Denote by C0(E,F) the space of all continuous mappings from E to F and C0(X) :=
C0(X ,R).

ii) L(E,F) is the space of all continuous continuous linear mappings from E to F .

iii) If E and F are normed vector spaces, the space L(E,F) is a normed vector space equipped
with the norm

∀A ∈ L(E,F) : ∥A∥ := sup
x∈E\{0}

∥Ax∥F

∥x∥E
.

If Ω ⊂ Rn is open and Y is a normed vector space:

i) For k ∈N,1 ≤ k ≤ ∞, denote by Ck(Ω,Y ) the space of all k times continuously differentiable
mappings from Ω to Y and Ck(Ω) := Ck(Ω,R).

ii) ∀λ ∈ [0,1],C0,λ(Ω) is the space of Hölder continuous mappings.

iii) Denote by Lp(Ω) the space of equivalence classes of dx-almost everywhere (a.e.) equal
functions f : Ω → R such that | f |0,p,Ω < ∞, where

| f |0,p,Ω :=

{
(
∫

Ω
| f (x)|pdx)

1
p , 1 ≤ p < ∞

infr≥0{vol({x ∈ Ω : f (x)≥ r}) = 0}, p = ∞
.

iv) ∀1 ≤ p ≤ ∞ denote the Sobolev spaces

W m,p(Ω) := { f ∈ Lp(Ω) : ∀|α| ≤ m : Dα f ∈ Lp(Ω)}.

and let W m,p
0 (Ω) be the closure of { f ∈ C∞(Ω) : supp f is compact } in W m,p(Ω).

v) Denote the Sobolev seminorms and Sobolev norms by

| f |m,p,Ω :=

{(∫
Ω ∑|α|=m |Dα f (x)|pdx

) 1
p , 1 ≤ p < ∞

max|α=m| |Dα f |0,∞,Ω, p = ∞
,

∥ f∥m,p,Ω :=

{(∫
Ω ∑|α|≤m |Dα f (x)|pdx

) 1
p , 1 ≤ p < ∞

max|α≤m| |Dα f |0,∞,Ω, p = ∞
.

vi) Denote

Hm(Ω) :=W m,2(Ω), Hm
0 (Ω) :=W m,2

0 (Ω),

∥ f∥m,Ω := ∥ f∥2,m,Ω, | f |m,Ω := | f |2,m,Ω.

Differential operators

If for d = 1,2,3 Ω ⊂ Rd is open and φ : Ω → Rd .

i) ∇φ : Ω → Rd×d is the deformation gradient of the mapping φ and

∀x ∈ Ω : ∀1 ≤ i, j ≤ d : (∇φ(x))i j =
∂φ j

∂xi
(x).

ii) D(φ) := 1
2(∇φ+(∇φ)T ) is the symmetric part of the deformation gradient of the mapping

φ.

7



CHAPTER 2. Preliminaries

2.2. Geometric entities and meshes

Definition 2.1 (s-dimensional simplices). Let s ∈ {1, . . . ,d} and a0, . . . ,as ∈ Rd such that ∀i ∈
{1, . . . ,s} : (ai −a0) are pairwise linearly independent.

i) Then

S :=

{
x ∈ Rd : x =

s

∑
i=0

λiai, where ∀i ∈ {1, . . . ,s} : λi ∈ R≥0,
s

∑
i=0

λi = 1

}
(2.1)

is called (non-degenerate) s-dimensional simplex in Rd , a0, . . . ,as are called its vertices and
V(S) := {a0, . . . ,as}.

ii) ∀x ∈ S, λ0, . . . ,λs ∈ [0,1] such that x = ∑
s
i=0 λiai,∑

s
i=0 λi = 1 are called the barycentric

coordinates of x with regard to S.

iii) For r ∈ {1, . . . ,s} and a′0, . . . ,a
′
r ∈ {a0, . . . ,as} pairwise unequal,

S′ :=

{
x ∈ Rd : x =

r

∑
i=0

λia′i, where ∀i ∈ {1, . . . ,r} : λi ∈ R≥0,
r

∑
i=0

λi = 1

}
is called r-dimensional sub-simplex of S.

iv) The s-simplex defined by the vertices a0 = 0,∀i= 1, . . . ,s : ai = ei is called the s-dimensional
unit simplex Ŝ.

v) The mapping R : Ŝ → S defined by

R(x̂) = a0 +
s

∑
i=1

x̂iai

is called the parametrisation of S over Ŝ. Because it is linear, we also call it P1-parametri-
sation or -transformation.

Note that in this context, simplices are always straight simplices because the parametrisation
F is linear by definition. Hypercubes are more difficult to describe because there is no equivalent
to the barycentric coordinates λi from 2.1, so we have to define them through the parametrisation
F .

Definition 2.2 (s-dimensional hypercubes). Let s ∈ {1, . . . ,d}.

i) Q̂s := [−1,1]s is called the s-dimensional reference hypercube. For s> 1, its faces or (s−1)-
dimensional sub-hypercubes are the sets

s = 2 :

Q̂′
0 := [−1,1]×{−1}, Q̂′

1 := [−1,1]×{1},
Q̂′

2 := {−1}× [−1,1], Q̂′
3 := {1}× [−1,1],

s = 3 :

Q̂′
0 := [−1,1]× [−1,1]×{−1}, Q̂′

1 := [−1,1]× [−1,1]×{1},
Q̂′

2 := [−1,1]×{−1}× [−1,1], Q̂′
3 :=×[−1,1]×{1}× [−1,1],

Q̂′
4 := {−1}× [−1,1]× [−1,1], Q̂′

5 := {1}× [−1,1]× [−1,1].

8



2.2. Geometric entities and meshes

In the case s = 3, the 2-dimensional reference sub-hypercubes Q̂′
k are 2-dimensional refer-

ence hypercubes embedded in 3d, so their faces are well defined and form the 1-dimensional
reference sub-hypercubes of Q̂3.

ii) Define the functions φi : Q̂s → Rd , i ∈ {0, . . .2d −1} by

s = 1 :

φ0(x̂) :=
1
2
(1− x̂0), φ1(x̂) :=

1
2
(1+ x̂0),

s = 2 :

φ0(x̂) :=
1
4
(1− x̂0)(1− x̂1), φ1(x̂) :=

1
4
(1− x̂0)(1+ x̂1),

φ2(x̂) :=
1
4
(1− x̂0)(1+ x̂1), φ3(x̂) :=

1
4
(1+ x̂0)(1+ x̂1),

s = 3 :

φ0(x̂) :=
1
8
(1− x̂0)(1− x̂1)(1− x̂2), φ1(x̂) :=

1
8
(1+ x̂0)(1− x̂1)(1− x̂2),

φ2(x̂) :=
1
8
(1− x̂0)(1+ x̂1)(1− x̂2), φ3(x̂) :=

1
8
(1+ x̂0)(1+ x̂1)(1− x̂2),

φ4(x̂) :=
1
8
(1− x̂0)(1− x̂1)(1+ x̂2), φ5(x̂) :=

1
8
(1+ x̂0)(1− x̂1)(1+ x̂2),

φ6(x̂) :=
1
8
(1− x̂0)(1+ x̂1)(1+ x̂2), φ7(x̂) :=

1
8
(1+ x̂0)(1+ x̂1)(1+ x̂2).

Let a0, . . . ,a2s−1 ∈ Rd and define the map

R : Q̂s → Rd , R(x̂) =
2d−1

∑
i=0

φi(x̂)ai

and Q := R(Q̂). Q is called non-degenerate s-dimensional hypercube iff

∀x̂ ∈ Q̂ :

{
∇R(x̂) ∈ GLd , s = d
∇R(x̂)T ∇R(x̂) ∈ GLd , s < d

,

a0, . . . ,a2s−1 are called its vertices and R is called the parametrisation of Q over Q̂. Be-
cause it is bilinear by definition in general, we also call it the Q1-parametrisation or Q1-
transformation.

For l ∈ {0, . . . ,2s− 1}, the sets R(Q̂′
l) are called (s− 1)-dimensional sub-hypercubes and

are non-degenerate if Q is non-degenerate. For s = 3, each 2-dimensional sub-hypercube
again has 1-dimensional sub-hypercubes. Note that this more general than what is usually
defined as a hypercube, but for the sake of brevity I will not use the term “generalised
hypercube”.

The converse of the non-degeneracy implication is not true, however. Note that for 3-hypercu-
bes, its 2-subhypercubes are not planar in general, due to the Q1-transformation being nonlinear. It
is possible to show that the Q1-transformation R : Q̂→Q is linear if and only if Q is a parallelpiped
(sometimes called a rhomboid).
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Definition 2.3. Let K ⊂ Rd .

i)
h(K) := sup{∥x1 − x0∥2 : x0,x1 ∈ K}

is called the diameter of K.

ii)
ρ(K) := 2sup{r : ∃x0 ∈ K : Br(x0)⊂ K}

is called the in-circle diameter of S.

iii)

σ(K) :=
h(K)

ρ(K)

is called the aspect ratio of K.

Definition 2.4. Two subsets /0 ̸= K̂,K ⊂ Rd are called affine-equivalent iff ∃B ∈ Rd×d , x̂0 ∈ Rd

such that for R : Rd → Rd defined by R(x̂) := Bx̂+ x̂0 it holds that

R(K̂) = K.

Definition 2.5. Let Ω ⊂ Rd be a polygonally bounded domain. A finite set T of d-simplices or
d-hypercubes is called partitioning of Ω or mesh on Ω iff Ω̄ =

⋃
K∈T K.

This partitioning is called conforming or proper iff

i) ∀K0,K1 ∈ T,K0 ̸= K1 : K̊0 ∩ K̊1 = /0,

ii) ∀K0 ∈ T : ∀ (d −1)-dimensional sub-simplices or sub-hypercubes K′:

K′ ⊂ ∂Ω or ∃!K1 ∈ T \{K0}

such that K′ is a (d −1)-dimensional sub-simplex or sub-hypercube of K1.

Definition 2.6 (Geometric entities). Let Ω ⊂Rd be a polygonally bounded domain and T a parti-
tioning of Ω, meaning that Ω̄ =

⋃
K∈T K.

i) ∀K ∈ T : K̊ is called a d-cell of T and Ed(T) := {K̊ : K ∈ T} is the set of all d-cells.

ii) For r ∈ {1, . . . ,d − 1} : ∀K ∈ T and its r-dimensional sub-hypercubes or sub-simplices K′

are called r-cells and Er(T) is the set of all r-cells of T.

iii) V(T) := E0(T) =
⋃

K∈TV(K) is the set of all vertices of T.

In practice, 1-cells are more often referred to as edges and, for d = 3, 2-cells as faces. For all
d = 1,2,3 we will call d-cells simply cells and (d −1)-cells facets.

Note that all r-cells are open, meaning that we have a disjoint partitioning Ω =
⨄d

r=0E
r(T).

Definition 2.7. Let (Ti)i∈N be a family of meshes. It is called a regular family of meshes iff

i) sup{σ(K) : K ∈
⋃

i∈NTi}=: σ < ∞,

ii) For h(Ti) := maxK∈Ti it holds that

lim
i→∞

h(Ti) = 0.

If there is no ambiguity, we identify Ti with Thi or call the whole family of meshes just (Th).
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2.3. Finite Elements and parametric families of finite element spaces

2.3. Finite Elements and parametric families of finite element spaces

This part follows [Cia78, Chapter 2].

Definition 2.8 (Finite Element). Let K ⊂ Rd be open, K̊ ̸= /0, ∂K ∈ C0,1. Let P := {p : K → R}
and Σ = {φ1, . . . ,φN} ⊂ P′ such that

∀i = 1, . . . ,N : ∃ki ∈ N : φi( f ) = φi(Dβ( f )), |β|= ki

∀α1, . . . ,αN ∈ R : ∃!p ∈ P : ∀i = 1, . . . ,N : φi(p) = αi,

meaning that Σ is P-unisolvent. Furthermore, kΣ := max{ki : i = 1, . . . ,N} and Σ ⊂ Ck(K).

i) Then the triple (K,P,Σ) is called a Finite Element.

ii) The linear forms φi are called the degrees of freedom.

iii) The functions pi ∈ Pi, i ∈ {0, . . . ,N} satisfying φ j(pi) = δi j which exist and are unique due
to the P-unisolvence, are called the finite element basis functions.

By definition, we have dimP = dimΣ = N and

∀p ∈ P : p =
N

∑
i=1

φi(p)pi.

Other common names for the degrees of freedom are node functionals (mostly in connection
with conforming Lagrange elements) or dual basis.

This definition can be extended to m-tuples of finite elements in a natural manner.

Definition 2.9 (P-Interpolation Operator). For a finite element (K,P,Σ) and a function v∈ CkΣ(K),
define the P-interpolant IPv by

IPv =
N

∑
i=1

φi(v)pi.

IPv ∈ P is unambiguously defined because of the P-unisolvence of Σ.

Definition 2.10. Let (Ki,Pki ,ΣKi)i∈N be a family of finite elements. It is called regular iff

i) σ := supi∈N σ(Ki)< ∞,

ii) limi→∞ h(Ki) = 0.

Definition 2.11. Equivalent finite elements
Let the reference finite element (K̂, P̂, Σ̂) be given. Let K ⊂ Rd be open and R : K̂ → K is a

diffeomorphism such that ∀i = 1, . . . ,d : Ri ∈ G with ∃m ∈ N : G ⊆ Pm(Ŝ). Define

PK := {p : K → R : ∃p̂ ∈ P̂ : p = p̂◦R−1
K }

ΣK := {φ̂(p◦RK) : φ̂ ∈ Σ̂}

Then (K,PK ,ΣK) is called

i) affine equivalent to (K̂, P̂, Σ̂) iff G = P1(K̂),

ii) isoparametrically equivalent to (K̂, P̂, Σ̂) iff G = P̂ or

iii) subparametrically equivalent to (K̂, P̂, Σ̂) iff G ⫋ P̂.

11
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iv) superparametrically equivalent to (K̂, P̂, Σ̂) iff G ⫌ P̂.

Definition 2.12. Parametric family of finite elements
Let a reference element (K̂, P̂, Σ̂) be given.
A family (Ki,PKi ,ΣKi)i=1,...,N of finite elements is called either affine, isoparametric, subpara-

metric or superparametric (with regard to the reference element) iff ∀i = 1, . . . ,N : (Ki,PKi ,ΣKi) is
affine (or isoparametrically or subparametrically or superparametrically, respectively) equivalent
(K̂, P̂, Σ̂).

If the family is in either of the three categories, we call it parametric family.

Definition 2.13. Let Ω ⊂Rd ,d = 1,2,3 be polygonally bounded and T be a regular and conform-
ing mesh on Ω. Define the degrees of freedom

Σ̂ = {φi(p) = p(ai) : ai ∈ V(K̂)} (2.2)

and the conforming Pk,Qk reference elements

(Ŝ,Pk(Ŝ), Σ̂) (2.3)

(Q̂,Pk(Q̂), Σ̂) (2.4)

and the conforming Lagrange spaces

Pk(T) := (K,PK ,ΣK)K∈T,∀K ∈ T : (K,PK ,ΣK) is affine equivalent to (Ŝ,Pk(Ŝ), Σ̂)

= {v ∈ C0(Ω) : ∀K ∈ T : ∃P1(K̂) ∋ RK : K̂ → K a diffeomorphism

and ∃v̂ ∈ Pk(K̂) : v = v̂◦R−1
K }

and

Q1(T) := (K,PK ,ΣK)K∈T,∀K ∈ T : (K,PK ,ΣK) is isoparametrically equivalent to (Q̂,Q1(Q̂), Σ̂)

= {v ∈ C0(Ω) : ∀K ∈ T : ∃Q1(K̂) ∋ RK : K̂ → K a diffeomorphism

and ∃v̂ ∈ P(K̂) : v = v̂◦R−1
K }

2.4. Interpolation estimates for affine-equivalent finite elements

Lemma 2.1. Let K̂,K ⊂ Rd be affine-equivalent under the mapping R : Rd → Rd ,R(x) = Bx+
x0,R(K̂) = K and open. Then the estimates

∥B∥2 ≤
h(K)

ρ(K̂)
(2.5)

∥B−1∥2 ≤
h(K̂)

ρ(K)
(2.6)

hold.

Proof. See [Cia78, Theorem 3.1.3].

Lemma 2.2. Let K̂,K ⊂ Rd be affine-equivalent under the mapping R : Rd → Rd ,R(x) = Bx+
x0,R(K̂) = K and open. Let m ∈ N, p ∈ [1,∞] and v ∈ W m,p(K). Define v̂(x̂) := v ◦RK(x̂). Then
v̂ ∈W (K̂)m,p and

∃C =C(m,d) : ∀v ∈W (K)m,p : |v̂|m,p,K̂ ≤C(det(B))−
1
p ∥B∥m|v|m,p,K .
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Analogously, the estimate

∃C =C(m,d) : ∀v̂ ∈W (K̂)m,p : |v|m,p,K ≤C(det(B))
1
p ∥B−1∥m|v̂|m,p,K̂ .

holds.

Proof. See [Cia78, Theorem 3.1.2].

Lemma 2.3. Let (K̂, P̂, Σ̂) be a finite element. Let k,m ∈ N and p,q ∈ [1,∞] such that

W k+1,p ↪→ CkΣ(K̂), (2.7)

W k+1,p ↪→W m,q(K̂), (2.8)

Pk(K̂)⊂ P̂ ⊂W m,q(K̂). (2.9)

Then there exists a constant C = C(K̂, P̂, Σ̂) such that ∀ affine-equivalent finite elements (K,P,Σ)
and ∀v ∈W k+1,p(K) the estimate

|v− IPv|m,q,K ≤C(K̂, P̂, Σ̂)vol(K)(
1
q−

1
p) h(K)k+1

ρ(K)m |v|k+1,p,K

Proof. See [Cia78, Theorem 3.1.5].

Lemma 2.4. Let (Ki,P,Σ)i∈N be a regular affine family of finite elements, whose reference fi-
nite element (K̂, P̂, Σ̂) satisfies the assumptions (2.7) to (2.9). Then there exists a constant C =
C(K̂, P̂, Σ̂) such that

∀Ki : ∀v ∈W k+1,p(Ki) : |v− IPv|m,q,Ki ≤C(K̂, P̂, Σ̂)vol(Ki)
( 1

q−
1
p) h(Ki)

k+1

ρ(Ki)m |v|k+1,p,Ki .

Proof. See [Cia78, Theorem 3.1.6].

Theorem 2.5. Let Ω ⊂ Rd be polygonally bounded, (Th) be a regular family of meshes such
that ∀K ∈ Th : (K,P,Σ) are affine-equivalent to a single reference finite element (K̂, P̂, Σ̂). Let
Xh ⊂ C0(Ω) be the finite element spaces formed by the families of finite elements such that Xh ⊂
V ⊂ H1(Ω). Let k, l ∈ N, l ≤ k such that

Pk(K̂)⊂ P̂ ⊂ H l(K̂),

Hk+1(K̂) ↪→ Ck
Σ̂(K̂).

Then ∃C > 0 independent of h such that

∀v ∈ Hk+1(Ω)∩V :

∀0 ≤ m ≤ min{1, l} : ∥v− IPv∥m,Ω ≤Chk+1−m|v|k+1,Ω

∀2 ≤ m ≤ min{k+1, l} :
√

∑
K∈Th

∥v− IPv∥m,K ≤Chk+1|v|k+1,Ω

Proof. See [Cia78, Theorem 3.2.1].
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2.5. Interpolation estimates for finite elements with nonlinear trans-
formations

In Section 2.4 only affine-equivalent families of finite elements were regarded. This means the
transformation R : K̂ → K was always linear, greatly simplifying several estimates. It also allowed
the expression of ∥∇R∥ in simple geometric terms (Lemma 2.1). In many finite element methods,
it is very important to use transformations that are not linear. Important examples are:

i) The Q1 transformation (see Definition 2.2), because a linear transformation of a hypercube
can map only to parallelpipeds, greatly limiting the geometric flexibility.

ii) Transformations of types Pk,Qk for k > 1. These transformations allow for higher order
discretisations of the the boundary ∂Ω and isoparametric finite elements. [Cia78, Chapter
4.4].

In this work, I will almost exclusively use the Q1,P1 transformations.

Lemma 2.6. Let K̂,K ⊂Rd be open and bounded such that ∃R : K̂ →K sufficiently smooth, one-to-
one and with sufficiently smooth inverse R−1 : K → K̂. Let V : K̂ →R. If for some l ≥ 0, p ∈ [1,∞]
we have v ∈W l,pK̂ and there exist constants C such that

∀v̂ ∈ Lp(K̂) : |v|0,p,K ≤
(
|∇R|0,∞,K̂

) 1
p |v̂|0,p,K̂

∀v̂ ∈W 1,p(K̂) : |v|1,p,K ≤C
(
|∇R|0,∞,K̂

) 1
p |R−1|1,∞,K |v̂|1,p,K̂

∀v̂ ∈W 2,p(K̂) : |v|2,p,K ≤C
(
|∇R|0,∞,K̂

) 1
p
(
|R−1|21,∞,K |v̂|2,p,K̂ +|R−1|2,∞,K |v̂|1,p,K̂

)
∀v̂ ∈W 3,p(K̂) : |v|3,p,K ≤C

(
|∇R|0,∞,K̂

) 1
p
(
|R−1|31,∞,K |v̂|3,p,K̂ + |R−1|1,∞,K |R−1|2,∞,K |v̂|2,p,K̂

+|R−1|3,∞,K |v̂|1,p,K̂
)

Proof. See [Cia78, Theorem 4.3.2] (this is the same lemma as Lemma 2.2 conceptually).

Theorem 2.7. Let Ω̂ ⊂ Rd be open with C0-boundary, R : Ω̂ → Rd , R(Ω̂) = Ω be a Ck-diffeo-
morphism for some k ∈ N. Let Π̂ ∈ L(W k+1,p(Ω̂),W m,p(Ω̂)) with 0 ≤ m ≤ k + 1 and with the
property

∀v̂ ∈ Pk : Π̂v̂ = v̂.

Define Π ∈ L(W k+1,p(Ω),W m,p(Ω)) by

∀v ∈W k+1,p : Π̂v = Π̂v̂.

Then there exists a constant C =C(d,k,m, p,Ω̂,Π̂) such that

∀v ∈W k+1,p(Ω) : |v−Πv|m,p,Ω ≤C
(

supx̂∈Ω̂
|det(∇R(x̂))|

infx̂∈Ω̂
|det(∇R(x̂))|

) 1
p
(

m

∑
l=1

∑
i∈I(l,m)

sup
x∈Ω

m

∏
λ=1

∥DR−1(x)∥iλ

)

·

(
k+1

∑
l=1

|v|l,p,Ω ∑
j∈I(l,k+1)

sup
x̂∈Ω̂

k+1

∏
λ=1

∥DR(x̂)∥iλ

)
,

where

I(l,m) := {a ∈ Nm : ∥a∥1 = l,
m

∑
k=1

kak = m}.

Proof. See [CR72, Theorem 1].

14



3
Mesh optimisation

In this chapter, I want to elaborate the term “mesh quality” and show how mesh quality can be
defined, measured and improved in a PDE-based manner.

The interpolation estimates in Section 2.4 and Section 2.5 form the basis for estimates of the
discretisation error ∥u−uh∥ for various problems, different finite element spaces and correspond-
ing norms ∥ · ∥. I will not give any examples, as the details depend on the specific situation and
instead refer the reader e.g. to [Cia78, Chapters 3 to 7] for various classes of problems.

However, recall the reference mappings RK : K̂ → K from Definition 2.11 and the global ver-
sion R : Ω̂→Rd e.g. from Theorem 2.7, where we can also see the dependence of the interpolation
error estimate on det(∇R). Also note how Theorem 2.5 and Theorem 2.7 depend on a regular fam-
ily of meshes (Th). So if a finite element method is to provide convergence of the discrete to the
continuous solution, e.g.

lim
h→0

∥u−uh∥= 0,

we have to guarantee that (Th)h is a regular and conforming family of meshes. It is possible to
prove this property for a variety of mesh refinement strategies, including regular (global) refine-
ment as well as local refinement e.g. by bisecting simplices. However, as soon as the geometry
discretised by Th is no longer fixed (consider fluid-structure interactions as an example), this be-
comes increasingly difficult. Many strategies for reducing the error ∥u−uh∥ at moderate compu-
tational cost (especially without globally refining Th) by some sort of adaptivity revolve around
modifying Th locally (see Section 3.2.2), so that the regularity of the resulting family (Th)h cannot
be guaranteed a priori.

This serves as motivation to examine mesh quality with special attention paid to the term ∇R.
Note that we encountered the terms ∥∇R∥2 and det(∇R) in Lemma 2.2 (where ∇R = B ∈ Rd×d

due to R being affine). As we will see later (Section 3.5.1 and Remark 3.3), these terms have
interpretations with regard to the scaling of different geometric quantities. I chose the PDE-based
approach, where mesh quality is defined by a functional with an underlying partial differential
equation. A minimiser of such a mesh quality functional is a solution of this PDE in an appropriate
sense, meaning that results about existence and (non-)uniqueness of solutions can be reused. Also,
since all of this is done to obtain a mesh to numerically solve another PDE on, the structures and
tools are already available.
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The chapter is organised as follows:

The terms ∥∇R∥2 and det(∇R) already suggest to look into the field of elasticity, so various related
terms and definitions that will be useful are introduced in Section 3.1. In Section 3.2, I will give
examples of use cases for mesh optimisation, as well as of various ideas of “mesh quality” in
Section 3.3 for the cases d = 1 and d = 2. In a somewhat inverse approach, I will discuss the
use of different PDEs to define mesh quality functionals in Section 3.4 for the computation of an
extension operator for a problem with moving outer boundary. All these sections are supposed to
give some insight on the criteria for designing (or rather choosing) a suitable class of PDEs for use
as the basis of mesh quality functionals.

The main part of this chapter is Section 3.5. In this section, a family of nonlinear mesh quality
functionals is derived based on mechanical principles and some assumptions on the properties we
would expect a mesh quality functional to have (Section 3.5.1 and Section 3.5.2). It turns out that
this class of functionals can be interpreted as stored energy functionals for hyperelastic materials
(Section 3.5.5) and that the choice of reference cells and scales (Section 3.5.3 and Section 3.5.4)
was nothing more than constructing an inhomogeneous material response function. In the field of
elasticity, hyperelastic materials are well-studied, so analysis is available and presented in Section
3.5.6. Section 3.5.7 deals with r-adaptivity and Section 3.5.8 with the alignment of the mesh to
surfaces, which can be used to further adapt the mesh to the requirements of the original PDE.

3.1. Deformations, variations and mesh quality functionals

The term “variation” is taken from [Rum96].

Definition 3.1. The spaces of admissible deformations
Let Ω ⊂ Rd ,d = 2,3 be a bounded domain with

∂Ω ∈ C0,1,Γ0,Γ1,Γ2 ⊂ ∂Ω,vold−1 (∂Ω\ (Γ0 ∪Γ1 ∪Γ2)) = 0.

i) Then
D̃op :=

{
Φ : Ω → Rd : ∀x ∈ Ω : ∇Φ(x) ∈ SLd ,

}
(3.1)

is called the space of orientation preserving deformations.

ii) If Ωh is a polygonal approximation of Ω and Th a regular, conforming mesh on Ωh, define
the discrete space of orientation preserving deformations as

D̃op,h := D̃op,h(Th) := D̃∩Vh,Vh =

{
P1(Th), K̂ = Ŝ
Q1(Th), K̂ = Q̂

. (3.2)

iii) Since we are mainly interested in deformations which preserve the boundary ∂Ω, we also
define the subspaces of boundary preserving deformations

D̃bp := {Φ ∈Dop : ∀x ∈ ∂Ω : Φ(x) ∈ ∂Φ(Ω)}
D̃bp,h := D̃bp,h(Th) := {Φ ∈Dop,h : ∀x ∈ ∂Ωh : Φh(x) ∈ ∂Φh(Ωh)}

To these spaces, a variety of boundary conditions can be applied. Likewise, constraints can be
imposed. Examples are:

iv) Displacement boundary condition: If φ0 : Γ0 → Rd is sufficiently smooth, require that

∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x).
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v) Traction boundary condition: If T̂ : Ω̄× SLd → Rd×d is a response function for the first
Piola-Kirchhoff stress and ν is the outer unit normal field, then a traction boundary condi-
tion is

∀x ∈ Γ1 dσ a.e. : T̂ (x,∇Φ(x))n(x) = ĝ(x,∇Φ(x))n(x).

vi) Unilateral boundary condition of place: For a given Γ ⊂ Rd require that

∀x ∈ Γ2 dσ a.e. : Φ(x) ∈ Γ

vii) Injectivity constraint: ∫
Ω

det(∇(Φ)(x)) dx ≤ vol(Ω).

viii) Locking constraint: See Remark 3.14.

Note that the condition ∀x ∈ Ω : ∇Φ(x) ∈ SLd implies det(∇Φ(x))> 0 and this ensures that Φ

is one to one locally, but not globally. For a discrete deformation Φh which is e.g. piecewise linear
for simplical meshes and det(∇Φh|K) is constant ∀K ∈ Ed(T), one could wonder what happened
if det(∇Φh|K1) changed sign (see Figure 3.1). Because of the continuity, this would lead to cell K1
having an overlap with an adjacent cell K0 where det(∇Φh|K0)> 0 (this is sometimes called mesh
tangling). Because of the boundary conditions, it is in general not possible for a deformation to
change the orientation of all cells, so we do not treat this case specifically.

K0

K1

(i) Initial configuration.

Φ(K0)

Φ(K1)

(ii) After applying the mapping Φ.

Figure 3.1: Overlap of cells resulting from one cell changing orientation.

Remark 3.1. Note that the regularity was left unspecified in some of the definitions. Just formally,
one can assume Φ ∈

(
C1(Ω)

)d at first. Later, we will see that the analysis requires

Φ ∈W 1.p(Ω),Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω)

for some constants p,q,r (Theorem 3.11).

If ∂Ω is a union of smooth surfaces segments, smooth curves and singular points, the definition
of deformations does not prevent vertices of a mesh Th on a polygonal approximation Ωh to Ω

from switching from one part to another as depicted in Figure 3.2. As it is mentioned in [Rum96],
treating this is a combinatorial task and does not fit well into a variational setting. So in the
following, we will work with variations instead of deformations, which is a significant restriction.

Definition 3.2. The space of admissible variations
Let Ω ⊂Rd , d = 2,3 and ∂Ω =

⨄d−1
m=0 ∂Ωm, where ∂Ω0 is a set of singular points and ∂Ωm are

sets of relatively open, smooth m-dimensional manifolds.
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Γ0

v4

v0

v1

v2

v3

Γ1

(i) Initial state.

Γ0

Φ(v0)

Φ(v1)
Φ(v2)

Φ(v3)

Φ(v4)
Γ1

(ii) After applying the deformation Φ.

Figure 3.2: The deformation Φ lets the singular vertex v3 switch to Γ0.

i) Then
D := {Φ ∈ D̃bp : ∀m = 0, . . . ,d −1 : ∀Γ ∈ ∂Ω

m : ∀x ∈ Γ : Φ(x) ∈ Γ} (3.3)

is called the space of variations.

ii) If Ωh is a polygonal approximation of Ω, Th a regular, conforming mesh on Ωh and ∀m =
0, . . . ,d : ∂Ωm

h are the sets of polygonal approximations to ∂Ωm respectively, define the space
of discrete variations as

Dh :=Dh(Th) := {Φ ∈ D̃bp,h : ∀m = 0, . . . ,d −1 : ∀Γ ∈ ∂Ω
m
h : ∀x ∈ Γ : Φ(x) ∈ Γ}, (3.4)

Now we briefly state the definitions of some important quantities from mathematical elasticity
in a less than formal manner to establish the vocabulary. The details are beyond the scope of this
work and the reader is referred to [Cia88, Chapter 2] for a complete presentation.

Definition 3.3.

i) The right Cauchy-Green strain tensor is denoted by

C : Ω̄ → Rd×d
sym ,C(x) := (∇Φ(x))T

∇Φ(x) (3.5)

ii) The Cauchy stress tensor of a deformation Φ is denoted by

T Φ : Φ(Ω)→ Rd×d
sym . (3.6)

iii) The first Piola-Kirchhoff stress tensor is defined by

T : Ω̄ → Rd×d , T (x) := det(∇Φ(x))T Φ(Φ(x))(∇Φ(x))−T . (3.7)

iv) A material is called elastic iff

∃T̂ : Ω̄×SLd → Rd×d : ∀x ∈ Ω̄ : T (x) = T̂ (x,∇Φ(x)) (3.8)

and T̂ is called the material’s response function.

v) A material is called hyperelastic iff

∃L : Ω̄×SLd → R : ∀x ∈ Ω̄ : T̂ (x,∇Φ(x)) =
∂L

∂A
(x,∇Φ(x)) (3.9)

and L is called the material’s stored energy function.
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3.2. Three important aspects for mesh optimisation

Let Ω ⊂ Rd ,d = 1,2,3 be the region of interest, Ωh its polygonally bounded approximation and
Th be a regular, conforming discretisation of Ωh into d-simplices or d-hypercubes. We are looking
for deformations Φ : Ωh →Rd and the optimal deformation Φ∗ that minimises a functional F over
a set V of admissible deformations.

I want to give three important use-cases for this setting.

3.2.1. Computation of inverse trace operators

Assume now that the domain is moving: Ω = Ω(t)∀t ∈ [0, t̄]. Let Ω0 =: Ω(0) be given, but at each
instant t only the position of the boundary ∂Ω(t) is known. That means we are looking for

ϕ :[0, t̄]×Ω0 → Rd ,Ω(t) := ϕ(t,Ω0),

but only

trϕ :[0, t̄]×∂Ω0 → Rd

is known. So we have to find an inverse trace operator that extends the boundary movement into
the interior, which can be formulated as

For t ∈ [0, t̄] find Φ
∗ = argminΦ∈V F(Φ), V = {Φ ∈Dh : ∀x ∈ ∂Ω0 : Φ(x) = trϕ(t,x)}.

In general, trϕ is unknown and part of the solution to the original PDE (like the position of the
free capillary boundary (see e.g. [Bän98]), the evolution of the phase boundary (e.g. [BPS13])
etc.). The difficult part is to find such a functional F such that its minimisers define meshes that
are well suited for the discretisation of the original PDE.

3.2.2. r-adaptivity

Many variational problems give rise to error estimates of the form

∥u−uh∥1,Ω ≤Chk|u|k+1,Ω

which is an error estimate [Cia78, Theorem 3.2.2] for the solution u and its finite element approx-
imation uh of local polynomial degree k to a second order elliptic problem.

To reduce the error without globally refining the mesh Th, there are three common strategies:

i) h-adaptivity: Locally refine cells to reduce h in regions with high contributions to the global
error, creating more DoF. Especially in 3d, devising a local refinement algorithm that guar-
antees lower bounds on geometric quantities like the aspect ratio of the cells and can be
proven to terminate for arbitrary meshes is a challenge [Bän91].

ii) p-adaptivity: Locally use a different FE basis (e.g. of higher polynomial degree k). It is
possible to combine this with h adaptivity. h− p-adaptivity is a very powerful concept and
quite complex, both from a mathematical and an implementation point of view. [SSD03,
Chapter 6]

iii) r-adaptivity: Move mesh vertices according to a mesh density function to reduce h loc-
ally in regions with high contributions to the global error, increasing h in regions with low
contributions to the global error. [HR11, Chapter 6]
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r-adaptivity has the advantage that it does not increase the number of DoF or modify the
adjacency structure of the underlying FE spaces, which is advantageous from a solver perspective.
On the other hand, the local cell size h cannot be varied as quickly as in h-adaptivity, which is due
to the needed regularity of the mesh density (or monitor) function. Also, nonuniform meshes tend
to reduce the effectiveness of some linear solvers. r-adaptivity will be further examined in section
Section 3.5.7.

3.2.3. Mesh alignment to (implicit) surfaces

Interior boundaries like a phase boundary in two phase flow or the liquid-solid boundary in fluid-
structure interactions can be represented in different ways, including:

- Implicit (e.g. levelset or phase field based representation), which allows changes to the
topology and the use of a fixed reference mesh.

- Sharp interface, which makes devising an arbitrary Lagrangian-Eulerian (ALE) formulation
for a moving domain very easy. The drawbacks are that changes to the surface topology
are ruled out by necessary assumptions, and the need for very robust mesh deformation
methods.

One other aspect for choosing one method over the other are the error estimates, which are in
favour of the sharp interface approach in general. Without going into the details, I will just state
results proven in [LMWZ10].

If Ω = Ω1 ∪Ω2 ⊂ Rd ,d = 2,3 is bounded with ∂Ω,∂Ω1,∂Ω2 ∈ C0,1, Ω1 ⊂⊂ Ω,Ω2 = Ω\Ω1
and Γ = ∂Ω1 ∈ C2, consider the elliptic interface problem

∇ · (β∇u) = f in Ω,

u = 0 on ∂Ω,

[u]Γ := (u1|Γ −u2|Γ) = 0,

[β∂νu]Γ := (β1∂ν1u1 +β2∂ν2u2) = 0,

where ui := u|Ωi and βi = β|Ωi . This leads to the following continuous variational problem:

Find u ∈ H1(Ω) such that

a(u,v) = L(v) ∀v ∈ H1
0 (Ω), where (3.10)

a(u,v) :=
2

∑
i=1

∫
Ωi

βi∇u ·∇vdx, L(v) :=
∫

Ω

f vdx

For a given mesh Th on Ω such that every cell K ∈ Th is parametrically (affine or of higher
order) equivalent to Ŝ, define the δ-tube

Sδ(Γ) := {x ∈ Ω : dist(x,Γ)< δ}

and with that the decompositions of Th

Ti
h := {K ∈ Th : K ∩Sδ(Γ) = /0},

T∗ := Th \ (T1
h ∪T2

h),

Ti
∗ := {K ∈ Th : K ⊂ (Ωi ∪T∗)}.
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Assume now that δ ≤ h
2 and Γ is δ-resolved, meaning that T1

∗∩T2
∗ = /0 and T∗ = T1

∗∪T2
∗ and define

Ω̄h,i := {
⋃

K∈Ti
h∪Ti

∗

K̄},

Γh := ∂Ωh,1.

The parameter δ describes how well the interface Γ is approximated. δ ≤ h
2 already means that

∄Th ∋ K ⊂ T1
∗ ∩T2

∗ .
With this we get the following discrete variational problem:

Find uh ∈ Sp(Th) := {v ∈ H1(Ω) : v◦RK ∈ Pp(Ŝ)} such that

ah(u,v) = L(v) ∀v ∈ Sp
0(Th), where (3.11)

ah(u,v) :=
2

∑
i=1

∫
Ωh,i

βi∇u ·∇vdx

Then [LMWZ10, Theorem 4.1] states that, under some assumption on the interpolation operator
IP, the solutions u,uh to the variational problems (3.10), (3.11) with u ∈ H1(Ω)∩Hs(Ω1 ∪Ω2) for
some s ∈ [1, p+1] satisfy the estimates

∀s ∈
[

1,
3
2

)
:∥u−uh∥1,Ω ≤Chs−1∥u∥s,Ω1∪Ω2 , (3.12)

∀s ∈
[

3
2
, p+1

]
∧∇u ∈ B

1
2
2,1(Ω1 ∪Ω2)

⇒ ∥u−uh∥1,Ω ≤Chs−1∥u∥s,Ω1∪Ω2 +
√

δ∥∇u∥
0,B

1
2
2,1(Ω1∪Ω2)

, (3.13)

with the Besov space B
1
2
2,1(Ω1 ∪Ω2) :=

(
L2(Ω1 ∪Ω2),H1(Ω1 ∪Ω2)

)
1
2 ,1

.
Typical values for δ are

δ = O(h), (levelset representation of Γ),

δ = O(hm+1), (sharp interface representation with RK ∈ Pm(Ŝ)).

This leads to [LMWZ10, Theorem 4.12]: If Γ is sufficiently smooth and RK ∈ Pm(Ŝ) with u,uh
as above and u ∈ H p+1(Ω), then

m = p :∥u−uh∥1,Ω ≤Ch
p+1

2 ∥u∥p+1,Ω1∪Ω2 , (3.14)

m ≥ 2p−1 :∥u−uh∥1,Ω ≤Chp∥u∥p+1,Ω1∪Ω2 . (3.15)

If additionally, for f ∈ L2(Ω) : ∃τ > 3
2 and u ∈ H1

0 (Ω)∩Hτ(Ω1 ∪Ω2) that satisfy the a priori
estimate

∥u∥τ,Ω1∪Ω2 ≤C∥ f∥0,Ω,

then in both cases the additional L2 estimate

∥u−uh∥0,Ω ≤Chp+τ−1∥u∥p+1,Ω1∪Ω2

holds. This means that for a sharp interface representation, P1(Th)(m = p = 1) offers the optimal
order of convergence in both L2- and H1-norms, where isoparametric elements suffer an order
reduction in the H1-norm, while still having the optimal order of convergence in the L2-norm.
To recover the optimal order in the H1-norm, one has to resort to superparametric elements (see
Definition 2.11).
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Using an implicit representation of Γ still means δ = O(h) so the order of convergence in the
H1-norm stays limited to

√
h independent of m for s ≥ 3

2 and is optimal only for s = 3
2 .

This means the price paid for the ability to handle topology changes is a harsh limit on the
order of convergence. However, in [BW13] an implicit representation of the surface is used and
the mesh is then aligned with the surface, recovering a sharp interface representation. This will be
elaborated in Section 3.5.8.

3.3. Examples for mesh quality in 1d and 2d

3.3.1. An example for mesh quality in 1d

Mesh optimisation is mostly trivial in 1d, but some important aspects can be discussed in such a
simple setting without technical and geometric difficulties distracting from the main ideas.

Let Ω = [0,1] ⊂ R be given and define the vertices a0 = 0,a1 =
1
3 ,a2 = 1. We can define a

mesh T on Ω consisting of the cells K0 = (a0,a1),K1 = (a1,a2), so we have the geometric entities
E0(T) = {a0,a1,a2} and E1(T) = {K0,K1}, with Ω =

⨄1
r=0E

r(T).

a0 a1 a2

0 1
3

1
| | |

(i) Ω

a0 a1 a2
| | |

b0 (b1)(i)

(b1)(ii) b2

0 1 1.3
| || |

(ii) Ω (in gray) and Ω̃ (in black).

Figure 3.3: The domain of interest.

Assume now that the boundary vertices a0,a2 are moved to the positions b0 = a0 +
3

10 and
b2 = a2+

1
3 and we want to find the new position b1 of the vertex a1. The cell K̃0 = (b0,a1) is very

small as compared to the cell K̃1 = (a1,b2) at the moment, with vol(K̃0) =
3

100 ,vol(K̃1) =
97

100 .
Let us have a look at different strategies for finding b1, or rather, finding a function Φ : Ω → Ω̃,

Φ ∈ C0(Ω), with the properties Φ(a0) = b0,φ(a2) = b2. Ideas are:

i) b1 should be in the centre of gravity of all adjacent vertices, so set b1 =
1
2(b2−b0)=

8
10 . Now

we have vol(K̃0) = vol(K̃1) =
1
2 , meaning we changed the relative sizes of the cells. This

just adjacenty graph based Laplacian smoothing. It can be generalised to other situations,
including weighting, and stays as simple as in the 1d case as (apart e.g. from the weighting
function), it naturally decouples the components.

ii) Conserve the relative cell sizes by setting K̃0
K0

= K̃1
K1

. This is very useful for maintaining a
given cell size distribution e.g. coming from local refinement. This condition gives us

b1 −b0

a1 −a0
=

b2 −b1

a2 −a1

⇔ b1 =
(a1 −a0)b2 +(a2 −a1)b0

(a1 −a0)+(a2 −a1)

=
19
30

.

This condition is harder to generalise to higher space dimensions because of different adja-
cency structures.

iii) Let V := H1(Ω), V0 := H1
0 (Ω), VD := {v ∈ V : v(a0) = b0,v(a2) = b2} and consider the

bilinear form
a(u,v) =

∫
Ω

u′v′dx. (3.16)

22



3.3. Examples for mesh quality in 1d and 2d

We are looking for a deformation Φ ∈VD such that Φ = argminv∈VD
a(v,v). Exploiting finite

element theory and variational calculus, one can show that this is equivalent to ∀v ∈ V0 :
a(Φ,v) = 0.

Now we use ([0,1],P1([0,1]), Σ̂) with Σ̂ = {φ0,φ1}, φ0(v) = v(a0),φ1(v) = v(a2) as our
reference finite element and use that to discretise the minimisation problem (3.16). Recall
the standard P1 transformation F0 for the cell K0:

F0(x̂) = a0(1− x̂)+a1x̂, F ′
0(x̂) = (a1 −a0).

Recalling that

v(x) = v̂(F0)
−1(x),

dv
dx

(x) =
dv̂
dx̂

(F−1
0 (x))

dF−1
0

dx
(x)

and using the transformation theorem, we can rewrite the integration as∫
F0(K̂)

u′v′dx =
∫

K̂

(
û′(x̂)(F−1

0 )′(F0(x̂))
) (

v̂′(x̂)(F−1
0 )′(F(x̂))

)
det(F ′

0(x̂))dx̂

= (a1 −a0)
−1

∫
K̂

û′v̂′dx̂

Now, evaluating this integral for the finite element basis functions φ0,φ1,φ2 for the cells
K0,K1 and writing our solution as Φ = ∑

2
i=0 biφi gives rise to the linear system of equations

(a1 −a0)
−1 −(a2 −a1) 0

−(a1 −a0)
−1 (a1 −a0)

−1 +(a2 −a1)
−1 −(a2 −a1)

0 −(a2 −a1)
−1 (a2 −a1)




b0

b1

b2

=


0

0

0


Because of the boundary values, the first and the last equations are eliminated, leaving only
the second equation, which gives

b1 =
(a1 −a0)b2 +(a2 −a1)b0

(a1 −a0)+(a2 −a1)
=

19
30

as in option ii. This does not generalise for d > 1, however.

Because we are in 1d, a cell only has one quantity describing its quality: Its size, because that
uniquely defines det(∇RK). To define the quality of a mesh, one just has to define an optimal size
for each cell.

In higher space dimensions, more quantities are involved, which gives more freedom to define
quality measures for meshes, as will be shown in the following example.

3.3.2. Examples of mesh quality in 2d

Let Ω = [0,1]2 and T made up of four cells K0, . . . ,K3 as depicted in Figure 3.4. We want to fix all
vertices on the boundary ∂Ω, so the only vertex we are allowed to move is vertex v =

(1
2 ,

1
3

)
.

We now want to optimise the quality of the mesh T by moving vertex v. Without formally
defining the mesh quality functionals, we want to give some examples of criteria. Some of them
are defined directly for the mesh T, some of them are given in more general form.
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v

K0 K1

K2 K3

Figure 3.4: Ω with mesh T.

i) Minimise the distance of each vertex to the centre of gravity of all vertices it shares an edge
with. More formally:

∀v ∈ E0(T) : Vk(v) := {w ∈ E0 : ∃E ∈ Ek(T) : v,w ∈ Ē},

f (v) := v− 1
|V1(v)| ∑

w∈V1(v)

w,

F(T) := ∑
v∈E0(T)

f (v).

ii) Uniformly distribute the volume of T over all cells, meaning

∀Ki,K j ∈ E2(T) : vol(Ki) = vol(K j).

iii) Maximise the minimum angle between two edges.

iv) Distribute the cell volume in a specific way, e.g. such that

vol(K0,1) =
vol(K2)

7
=

vol(K3)

7
.

v) Distribute the cell volume such that

vol(K0) =
vol(K1)

2
.

Note that this prescribes no conditions for K2,3.

The notions of mesh quality (i), (ii) and (iii) are very general and (in this case) have a unique
minimiser leading to regular meshes. The question is if this is still the case for 3d meshes, if
they can be used to construct well-defined mesh quality functionals and how to minimise those
functionals.

Even for 3d and arbitrary complex meshes, the functional from (i) can easily be assembled into
a linear system of equations which is quite easy to solve because it is weakly diagonally dominant
as per construction. In 1d, (ii) can be treated with de Boor’s algorithm (see [HR11, Chapter 2]),
which does not generalise to 2d and 3d. For the higher space dimensions, the formulation of the
equidistribution condition is more involved, as is assembling and solving the resulting system of
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ṽ

(i) Centre of gravity of the sur-
rounding vertices.

ṽ

(ii) Uniform distribution of the
volume.

ṽ

(iii) Maximising the minimum
angle.

Figure 3.5: Well-defined notions mesh quality.

ṽ

(i) vol(K0,1) =
vol(K2)

7 = vol(K3)
7

(non-regular solution).

ṽ
ṽ

(ii) vol(K0) =
vol(K1)

2 (no unique
solution).

Figure 3.6: Notions mesh quality leading to non-regular meshes or nonunique solutions.

equations [HR11, Chapter 4]. (iii) can be used to create a highly nonlinear mesh quality functional,
which is not very useful for practical computations.

To show that not every notion of mesh quality (or rather set of conditions for various quantities)
has good minimisers, examples (iv) and (v) are given. In (iv), the target cell sizes can be chosen to
fulfil the necessary condition ∑K∈T vol(K) = vol(Ω), but since the vertex coordinates on ∂Ω are
fixed, the only possible solution is to degenerate the quadrilaterals to triangles, which means that
the transformation is not injective on those cells. As can be expected, if too few conditions are
specified, the solution might not be unique as it is in example (v). The additional difficulty in this
case is that the solutions are not isolated. Instead, there is a whole connected set of which each
member is a vertex such that the volume distribution condition is fulfilled.

These examples illustrate that it it easy formulate what an “optimal” mesh should be, but not
all of these not all of these notions give rise to unique minimisers, or even minimisers in the
space of orientation preserving deformations. Moreover, finding a numerical method to actually
computing these minimisers might prove difficult.

3.4. Computation of extension operators in 2d

In the examples before, we started with an idea what we would like the mesh quality measure to be
and then sought to define functionals representing this quality measure. In this section, we take the
different approach of using (more or less) well-known functionals and then examining the quality
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of the meshes given by their minimisers.
Set Ω0 := [0,1]2, 0 = t0 < · · ·< t50 = t̄ = 0.5 and let

∀x ∈ ∂Ω0 : ϕΓ(t,x) =

{
(x1,x2 +

1
2 tx2 sin(2πx1))

T , x2 = 1
(x1,x2)

T , else

For a given discretisation Th of a reference domain Ω̂t (assume for now Ω̂t = Ω0) define

V (t) =
{

v ∈ P1(Ω̂t) : v|∂Ω̂t
= ϕΓ(t)

}
,W (t) =

{
w ∈Q1(Ω̂t) : w|∂Ω̂t

= 0
}
.

∀k = 1, . . . ,N : Compute Ω(tk) = ϕ(tk,Ω̂t) by finding Φh ∈V (t) :

∀Ψh ∈W (tk) : F′(Φh)Ψh = 0 and setting Ω(tk) = Φ(Ω̂t).

Figure 3.7: Left: Ω0, right: Ω(t50) with interior mesh computed by a hyperelasticity based mesh
optimiser.

I will now present three different mesh quality functionals. All mesh quality functionals were
implemented using FEniCS 1.6.0 [ABH+15].

3.4.1. Minimisation of harmonic energy

Define the well-known bilinear form

∀(u,v) ∈V (t)×W (t) : ah,t(u,v) =
∫

Ω̂t

∇u : ∇vdx (3.17)

and with this the mesh quality functional

F(u) :=
1
2

ah,t(u,u). (3.18)

Because of the boundedness, coerciveness and symmetry of ah we get the existence and uniqueness
of a solution uh of (3.18) and that

uh = argminu∈V (t)F(u)⇔∀w ∈W (t) :
∂F

∂w
= 0. (3.19)
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The question is now if the discrete solution uh is a variation by Definition 3.2. The simplest
method possible sets Ω̂t = Ω̂0, meaning that we have a fixed reference domain on which we solve
(3.19). The underlying linear system of equations does not change over time, making the method
rather inexpensive computationally.

(i) t15 = 0.15 (ii) t50 = 0.50

Figure 3.8: The mesh as given by the solution of (3.19) with Ω̂tk = Ω̂0.

As it can be seen in Figure 3.8, so called mesh tangling (see [HR11, Chapter 1.6]) occurs:
The condition ∀K0,K1 ∈ E2(Th),K0 ̸= K1 : K0 ∩K1 = /0 is violated. It can be seen that some cells
changed orientation (meaning det(∇RK) < 0) so this overlap occurs. From this we can already
deduce that the discrete solution is not a discrete variation in the sense of Definition 3.2. The
root cause of this is the well-known maximum principle for harmonic functions [Eva98, Chapter
2.2], which carries over to the discrete form in (3.17). In the following, I omit the index h on the
discrete solution.

The deformations utk ,u0 = id are discrete-harmonic and so is utk − u0, which has the bound-
ary values φΓ(tk,x)−ΦΓ(0,x). As the components are decoupled, it suffices to regard the x2-
component, or rather an edge e aligned with the x2-axis. Assume that ē is defined by the vertices
ẑ0 ∈ Γ(0), ẑ1 ∈ ˚̂

Ω0. Because of the discrete maximum principle, and the fact that we can arbitrarily
increase |utl (z0)− z0|, there is a time instant tl for which

|utl (z0)− z0|> |utl (z1)− z1|,

which leads to the aforementioned mesh tangling and is independent of the chosen time step size.
In order to avoid this, we may chose a different reference domain Ω̂tk , for example Ω̂tk = Ω̂tk−1 .

Because the boundary update |(utk −utk−1)|Γ| is now smaller, we do not get the same problems from
the discrete maximum principle or can avoid them by choosing the time step size small enough,
as it can be seen in Figure 3.9.

Note that in both variants of this method, the governing equations for the coordinate’s com-
ponents are decoupled. Because the boundary Γ only moves in x2-direction, the deformations in
x1-direction are the identity at all times (see Figure 3.9). No direct control of det(∇RK) is possible,
although it enters the equations through the transformation and chain rule when assembling the
linear system of equations, meaning that it is entirely coincidental if the solution uh is a discrete
variation.
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CHAPTER 3. Mesh optimisation

(i) t15 = 0.15 (ii) t50 = 0.50

Figure 3.9: The mesh as given by the solution of (3.19) with Ω̂tk = Ω̂tk−1 .

One indicator for the quality of a simplical mesh is the smallest spatial angle between any two
edges. This quantity is plotted over time in Figure 3.10 (i). It can be seen that the mesh tangling
in the method with fixed reference domain occurs in time step 16, meaning from there on the
resulting mesh is no longer suitable for constructing finite element spaces on. For the method
using the moving reference mesh, it can be observed that the angles remain above 1°, but this is
still not a satisfactory lower bound. Computationally, this method is more expensive: In every
time step, the linear system of equations has to be re-assembled and solved anew, whereas for a
fixed reference domain, one could (for a sufficiently small problem) compute the LU factorisation
once and just backwards-substitute in every time step.
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(i) Worst angles using (∇u,∇v)
(see (3.22)).
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(ii) Worst angles using
(D(u),D(v)) (see (3.19)).
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Figure 3.10: Worst angles αw for meshes resulting from different mesh quality functionals.

The next step is now to use a slightly more sophisticated mesh quality functional that couples
the coordinate’s components.
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3.4. Computation of extension operators in 2d

3.4.2. A functional coupling both components

Instead of (3.17) we now use the bilinear form

∀(u,v) ∈V (t)×W (t) : ah,t(u,v) =
∫

Ω̂t

D(u) : D(v)dx (3.20)

and with this the mesh quality functional

F(u) :=
1
2

ah,t(u,u) (3.21)

as before. Again, because of the boundedness, coerciveness and symmetry of ah we get the exist-
ence and uniqueness of a solution uh of (3.21) and that

uh = argminu∈V (t)F(u)⇔∀w ∈W (t) : F′(uh)w = 0. (3.22)

Now the equations for the different components of uh are coupled, meaning that vertices also
move in x1-direction even though the deformation ΦΓ only has an x2 component (see Figure 3.11).

(i) t15 = 0.15 (ii) t50 = 0.50

Figure 3.11: The meshes as given by the solution of (3.22) with Ω̂tk = Ω̂tk−1 .

Using a fixed reference mesh results in mesh tangling again, due to a (different) maximum
principle, as can be expected, so only the meshes for using a moving reference domain are shown
in Figure 3.11. As can be seen from the worst angle plot in Figure 3.10 (ii), the mesh tangling
occurs later than for the decoupled functional (3.19) and the angles are slightly better in the moving
reference domain case, but still far from satisfactory.

This functional is computationally more expensive because the resulting linear system of equa-
tions is more strongly coupled (each component of each DoF is coupled to both components of all
adjacent DoF as opposed to only the corresponding components as in the decoupled functional)
and suffers from the same drawbacks as described in Section 3.4.1.

One common characteristic of both functionals presented so far is that the orientation pre-
serving condition does not appear and is not enforced in any direct manner. This is addressed in
the next example of a (nonlinear) stored-energy functional for hyperelastic materials.
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3.4.3. Minimisation of hyperelastic strain energy

Define the nonlinear functional

F(Φ) =
∫

Ω̂tn

c f (∥∇Φ∥2
F −d)2dx+(det(∇Φ))pd dx+

cd(
det(∇Φ)+

√
δ2

r +(det(∇Φ))2
)pd

dx.

(3.23)
A functional of this class is derived in [Rum96] and other functionals of this class can be found
in [HR11, Example 6.2.3 and Chapter 6.5.5]. More mathematical theory can be found in [Cia88].
This functional is not convex, but polyconvex (see Section 3.5.5), so minimisers are nonunique in
general. However, note that for Φ = id, the Frobenius norm term (∥∇Φ∥2

F −d)2 vanishes and that
cd can be chosen so that Φ = id minimises the other part of the functional.

Let M : R→ Rn×n be a matrix valued mapping. Recall that

d
dt

det(M(t)) = det(M(t)) tr
(

M(t)−1 d
dt

M(t)
)
.

For two variations Φ,η using M(t) := ∇Φ+ t∇η locally on each K ∈ Th, we can compute the
following derivatives:

G1(Φ) := (∥∇Φ∥2
F −d)2, G′

1(Φ)η = 4
(
∥∇Φ∥2

F −d
)

∇Φ : ∇η,

G2(Φ) := det(∇Φ)pd , G′
2(Φ)η = pd det(∇Φ)pd (∇Φ)−T : ∇η,

G3(Φ) :=
(

det(∇Φ)+
√

det(Φ)2 +δ2
r

)−pd

,

G′
3(Φ)η =− pd det(∇Φ) ∇Φ−T : ∇η

(det(∇Φ)2 +δ2
r )

pd
2

(
det(∇Φ)+

√
det(∇Φ)2 +δ2

r

)pd
.

We are now looking for an optimal variation Φ∗
h in the sense that

Φ
∗
h = argminΦ∈V (t)F(Φ), (3.24)

which is not unique (see Section 3.5.6), but still needs to satisfy the necessary condition

∀η ∈W (t) : F′(Φ∗
h)η = 0.

In this example, the parameters are

c f =
1

100
,δr = 10−8, pd = 2,cd = 2

√
δ2

r +1+2(δ2
r +1)+δ

2
r

√
δ2

r +1.

cd is chosen so that Φ = id minimises the det-based part of the functional. More information
about these parameters and their choice will be given in Section 3.5. The fixed reference domain
Ω̂tk = Ω̂0 was used and the resulting minimisation problem was solved by using FEniCS’ Newton-
Krylov solver.

The resulting meshes can be seen in Figure 3.12. A comparison of the worst angles of all the
methods mentioned is in Figure 3.10 (iii). The main improvement is that here, we can directly
control the term 1/det(∇Φ) and guarantee that a discrete solution of (3.24) is indeed in the space
of discrete variations. However, the functional measures the energy of a deformation with regard
to the reference domain (in this case Ω̂0), which means that for every cell it was constructed in
such a way that the identity would be a minimiser if it were in the space of variations with the
correct boundary values. This means that every cell Φ(K) should be “similar” to K, which might
not be ideal if the reference cell K was of poor shape.

This leads to the idea of measuring the energy of a transformation of a different reference cell,
which will be elaborated in Section 3.5.
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3.5. A class of nonlinear mesh quality functionals

(i) t15 = 0.15 (ii) t50 = 0.50

Figure 3.12: The meshes as given by the solution of (3.24) with Ω̂tk = Ω̂0.

3.5. A class of nonlinear mesh quality functionals

Recall (3.23):

F(Φ) =
∫

Ω̂tn

c f (∥∇Φ∥2
F −d)2dx+(det(∇Φ))pd dx+

cd(
det(∇Φ)+

√
δ2

r +(det(∇Φ))2
)pd

dx.

Since we are working with the space D of admissible variations and need to somehow control
∀K ∈ T : det(∇RK), this functional is very useful. In the following section, we want to derive the
more general class of functionals it comes from. It can be shown that a mesh quality functional
has to be of this more general class if it is to have some very important properties.

Note that here, we take a different approach than in the examples in Section 3.4: There, PDE-
based mesh quality functionals were regarded with little to no motivation as to why they might be
suitable. Here, necessary or useful properties of a mesh quality functional are given, which lead
to a certain class of PDEs.

The derivation of this class of nonlinear mesh quality functions follows [Rum96] but uses
more general formulations from [HR11, Chapter 6].

3.5.1. Basic properties

Since we are looking for a functional F : D→ R, it is natural so assume it can be written as

F(Φ) =
∫

Ω

L(x,Φ)dx, (3.25)

which is already a (sensible) assumption on the regularity. In practice, we need Fh : Dh → R, so
the basic axiom is formulated (as in [Rum96]) stronger still:

Axiom 1. A mesh quality functional Fh of a variation Φh ∈Dh should be a weighted sum of local
functionals of the form

Fh(Φh) =
∫

Ω

L(x,Φh)dx = ∑
K∈Th

µK

∫
K
LK(x,Φh)dx, (3.26)
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where the weights fulfil ∀K ∈ Th : µK > 0,∑K∈Th
µK = 1.

This already implies locality in the sense that the functional value is comprised of local func-
tionals independent of each other, meaning the quality of a cell only depends on that cell itself.

Define the local functionals by

Fh(K,Φh) :=
∫

K
LK(x,Φh)dx.

We now state some desirable properties for Fh and thus L.

Translation invariance : ∀c ∈ Rd : F(K,Φ+ c) = F(K,Φ) (3.27)

⇒ ∀K ∈ Th : ∃LG
K : K ×SLd → R :LK(·,Φ) = LG

K(·,∇Φ) (3.28)

From now on, LG
K(·,∇Φ) will be just denoted by LK(·,∇Φ) again and L(·,∇Φ) will be used

in place of L(·,Φ).
Assume that K is given by the reference cell K̂R and the reference mapping RK : K̂R → K. Note

that K̂R ̸= K̂ in general and may be different for every K. The choice of this reference cell is very
important, see Section 3.5.3. We have the relations

Φ :Th → Φ(Th), Φ|K(x) = Φ(RK(x̂)) where RK(x̂) = x

Φ◦RK :K̂ → Φ(RK(K̂)), RK(Φ) = Φ◦RK ,

see Figure 3.13.

K̂R

RK(Φ)

Φ(K)

Φ|KK

RK

Figure 3.13: The relations of the mapping RK .

Ruling out any other dependencies, we deduce that

LK(·,∇Φ) = L(∇RK(Φ)(·)).

Furthermore, there are the principles of

Frame indifference : ∀Q ∈ SOd : L(∇RK(Φ)(·)) = L(Q∇RK(Φ)(·)) . (3.29)

Isotropy : ∀Q ∈ SOd : L(∇RK(Φ), ·) = L(∇RK(Φ)(·)Q). (3.30)

Translation invariance means that the quality of a cell only depends on its shape, not its po-
sition. Frame indifference means that a cell’s quality does not depend on the observer’s position,
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3.5. A class of nonlinear mesh quality functionals

while isotropy means it does not depend on the coordinate system of the reference cell K̂R. It
will be shown in Section 3.5.3 that this already places a restriction on the choice of the reference
element.

For every matrix A∈Rd×d , there exists a left polar decomposition A=Q(AT A)
1
2 with Q∈ SLd .

From the frame indifference, it follows for fixed x ∈ K ∈ Th that

∃Ll : SLd → R : Ll
(
(∇RK(Φ)(x))T (∇RK(Φ)(x))

)
= L(∇RK(Φ)(x)).

Similarly, from the isotropy and the existence of the right polar decomposition A = (AT A)
1
2 Q

with Q ∈ SLd it follows that

∃Lr : SLd → R : Lr
(
(∇RK(Φ)(x))(∇RK(Φ)(x))T )= L(∇RK(Φ)(x)).

With the Rivlin-Erikson Representation Theorem [Cia88, Theorem 3.6-1], we deduce that

∃L :R×R×R→ R∪{∞}
L(x,∇RK(Φ)) = L(∥∇RK(Φ)(x)∥2

F ,∥Cof(∇RK(Φ)(x))∥2
F ,det(∇RK(Φ)(x)))

and define

F(∇RK(Φ)) :=
∫

K
L(∥∇RK(Φ)(x)∥2

F ,∥Cof(∇RK(Φ)(x))∥2
F ,det(∇RK(Φ)(x)))dx, (3.31)

so L is a stored energy function.

Remark 3.2. In this section, the general structure of a mesh quality functional was deduced from
some (reasonable) assumptions on its behaviour. It is no surprise that the resulting stored energy
function fits into a more general framework based on the same set of assumptions, namely the
modelling of compressible, hyperelastic materials (see Section 3.5.5).

Because of this, the complete set of analysis from [Bal76, Cia88] can be applied, see Section
3.5.6, as long as the stored energy function fulfils the basic assumptions of the theorems in that
section, namely polyconvexity, a stability property and coerciveness.

Remark 3.3. Geometric interpretations of the terms
The terms ∥∇Φ∥F ,Cof(∇Φ) and det(∇Φ) have obvious geometric meanings that are well-

known in mechanics. For d = 3

i) ∥∇Φ∥F expresses the length change of curves under the deformation Φ ([Cia88, Section
1.8]),

ii) Cof(∇Φ) expresses the area change of surfaces under the deformation Φ ([Cia88, Theorem
1.7-1]) and

iii) det(∇Φ) expresses the volume change of volumes under the deformation Φ ([Cia88, Section
1.5]).

Obviously, for d = 1 there is only in the change in vol1 and for d = 2 we can only consider vol1
and vol2.
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CHAPTER 3. Mesh optimisation

3.5.2. Properties of the local integrand

Before going deeper into the analysis, I want to discuss some more properties the stored energy
function should have for the specific purpose of mesh optimisation

Note that for simplices or parallelpipeds, ∇RK(Φ) = const. In the following, some properties
of the local stored energy function LK will be derived, from which properties for the local reference
cell K̂ can be deduced.

We for now assume that the map RK is affine, which is the case for simplices or if K is paral-
lelpiped like K̂.

⇒ ∇RK(Φ) = const

⇒ F(∇RK(Φ)) = vol(K)L(∥∇RK(Φ)∥2
F ,∥Cof(∇RK(Φ))∥2

F ,det(∇RK(Φ)))

Since K̂ is the optimal cell for the quality measure defined by L and thus F ,

F(∇RK̂) = F(id) = vol(K) min
A∈SLd

L(∥A∥2
F ,∥Cof(A)∥2

F ,det(A)).

As ∥id∥2
F = d,∥Cof(id)∥= d,det(id)= 1, we demand L and thus F to fulfil the (stronger) condition

L(d,d,1) = min
s∈R3

L(s).

Because we want to stay in the space of variations, we want L to fulfil the additional stability
property

lim
det(A)→0

L(·, ·,det(A)) = ∞, (3.32)

both because a variation with vanishing determinant should blow up the value of the local func-
tional, and because this property is needed for [Cia88, Theorem 7.7-1] (also see [HR11, Theorem
6.2.4]) that ensures (together with other conditions) the existence of a minimiser. This property is
based on the idea that “infinite stress must accompany extreme strains” ([Ant83]) and is revisited
in Section 3.5.5.

If RK is not linear, the same argumentation applies since the integral is monotone and L(·, ·, ·)>
0.

3.5.3. Choosing reference cell shapes

For a given cell K, choosing the reference cell K̂R is equivalent to defining an optimal cell, and
for every cell the quality functional measures the energy of the transformation to its current shape
from this optimal cell. For every K ∈ Th, a different optimal reference cell K̂R can be chosen.

In Section 3.4.3, for every K ∈ Th(tn) its representation in the computational domain Ω̂tk = Ω̂0
was chosen. This means ill-shaped reference cells in the computational domain Ω̂ (which is even
more likely if a truly moving reference domain like Ω̂tk is used) will lead to ill-shaped cells in Ω.

So it is useful to define reference cells that are independent of the computational domain used
for other PDEs. One very important choice are reference cells in which all edges have the same
length, all interior angles are the same and they are normalised in some sense (also see Figure
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3.5. A class of nonlinear mesh quality functionals

3.14).

Hypercubes :

Q̂n = [−1,1]d = Q̂ (3.33)

Simplices :

Ŝn =

{
x ∈ Rd : x =

s

∑
i=0

λiai, where ∀i ∈ {1, . . . ,s} : λi ∈ R≥0,
s

∑
i=0

λi = 1

}
(3.34)

witha0 = (0,0)T ,a1 = (0,1)T ,a2 =
(

1
2 ,

√
3

2

)
, d = 2

a0 = (0,0,0)T ,a1 = (0,1,0)T ,a2 =
(

1
2 ,

√
3

2 ,0
)
,a3 =

(
1
2 ,

√
3

6 ,
√

6
3

)
d = 3

(3.35)

The hypercubes Q̂n are just the regular reference d-hypercubes, while the normalised simplices
Ŝn are not. These reference cells have the additional benefit of requiring no combinatorial testing
in the evaluation of the local integrands L, as they are invariant with regard to their local num-
bering. For a given numbering of the reference cell’s vertices and its faces’ vertices, we consider
permutations of these numberings that do not change the orientation of the respective entities.

For simplices, one can get all local numberings by taking the even permutations of the cell’s
vertices, as every vertex is connected to every other vertex through an edge.

-1

-1

1

1

(i) Ŝn for d = 2.

-1

1

-1

-1

1

1

(ii) Ŝn for d = 3.

a0 a1

a2

(iii) Q̂n for d = 2.

a0
a1

a2

a3

(iv) Q̂n for d = 3

Figure 3.14: Reference cells for d = 2,3.

For hypercubes, there are four local numberings of positive orientation in 2d (see Figure 3.15)
and 24 in 3d.
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(iii)
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(3)

(0)
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Figure 3.15: Four possible local numberings of a reference hypercube in 2d.

Remark 3.4. If other reference cells are chosen which are not invariant with regard to admissible
vertex permutations, one has to check all numberings of the reference cell (for simplices: 2 (d = 1),
3 (d = 2), 12 (d = 3); for hypercubes: 2 (d = 1), 4 (d = 2), 24 (d = 3)) and select the reference cell
which gives the lowest functional value. As this is very costly, it is preferable to use the invariant
reference cells (3.33), (3.34) or to find the right permutation by construction.

Conversely, it can be shown that if the functional is invariant with regard to the numbering of
the reference cell K̃, then the reference cell is Ŝn (or Q̂n, respectively) up to scaling and rotation.

Lemma 3.5. Let P be the set of all mappings defining an admissible vertex permutation on the
reference cell K̃. If every local functional F is invariant with regard to P, meaning

∀Φ ∈Dh : ∀p ∈ P : F(∇Φ◦RK ◦∇p) = F(∇Φ◦RK)

then the reference cell K̃ is Ŝn (if K̃ is a simplex) or Q̂n (if K̃ is a hypercube) up to scaling and
rotation.

Proof. The proof for simplices in 3d can be found in [Rum96, Section 5].
We have

∀Φ ∈Dh : ∀p ∈ P :
∫

K
LK(∇Φ◦RK ◦∇p(x))dx =

∫
K
LK(∇Φ◦RK(x))dx.

If K is such that RK is affine, and Φ is affine too, then all matrices (including ∇p =: P) are constant
in x and we have

LK(∇Φ◦RK ◦P) = LK(∇Φ◦RK)
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3.5. A class of nonlinear mesh quality functionals

Since this has to hold for all admissible (affine) Φ, this implies

∀A ∈ SLd : ∥AP∥F = ∥A∥F ,∥Cof(AP)∥F = ∥Cof(A)∥F ,det(AP) = det(A).

The last identity directly implies det(P) = 1. Let {E i j}1≤i, j≤d be the canonical matrix basis in
Rd×d and define the matrices Ai j = E i j + εId . We can calculate that

∀1 ≤ i ≤ d : det(Ai j) = ε
3,

∀1 ≤ i ≤ d : Cof(Aii)kl =


0, k ̸= l
ε2, k = l ̸= i
ε(1+ ε), k = l = i

,

∀1 ≤ i, j ≤ d, i ̸= j : Cof(Ai j)kl =


0, k ̸= l,(k, l) ̸= (i, j)
ε2, k = l ̸= i
−ε, k = l = i

.

From this it follows that
lim
ε→0

Cof(Ai j) = E i j,

so since ∥ · ∥F is continuous, passing to the limit implies

∥E i jP∥F = ∥P· j∥2 = 1, ∥Cof(P)· j∥2 = 1

⇒ ∀1 ≤ k, l ≤ d,k ̸= l : P·k ⊥ P·l
⇒ P ∈ SLd .

So P is a rotation. For 2-simplices, any even vertex permutation rotates the triangle’s vertices,
so for the functional value to remain unaffected, all edges must have the same length. The same
is true in 3d if one considers an even vertex permutation of 3 vertices, which rotates the corres-
ponding 2-simplex around its centre. Since this can be done for each boundary 2-simplex of the
3-simplex, all edges of the 3-simplex must have the same length.

For 2-hypercubes, by the same argument, every admissible vertex permutation rotates the
quadrilateral around its centre, so all edges have to be of the same length and all angles have
to be π

2 . The same is true for the corresponding rotations in 3d, which concludes the proof.

Remark 3.6. The consequence of this is that the functional’s assumed invariance to the local
numbering of the reference cell already implies the isotropy of the functional F and restricts us
to scaled versions of the reference elements Ŝn and Q̂n. Conversely, if we chose different refer-
ence cells, we lose these important properties and L no longer solely depends on ∥∇RK(Φ)∥2

F ,
∥Cof(∇RK(Φ))∥F and det(∇RK(Φ)), but also on the variant of the reference cell.

In practice, one can very often directly chose the variant of the reference cell corresponding
to the lowest functional value by examining the cell K itself if it already has the right degree of
anisotropy (but not necessarily a good shape). For resolving anisotropies in partial differential
equations, the use of hypercube meshes with a similar anisotropy with regard to the cell’s aspect
ratio is quite popular.

Assume we have a cell K for which we can compute its aspect ratios α1, . . . ,αd , e.g. by
computing some mean values β1, . . . ,βd of lengths of edges whose inverse images are aligned with
the x1, . . . ,xd axis in the reference cell K. Assume that βi = max j=1,...,d β j. Then α j := β j/βi gives
us the anisotropic reference cell K̂n,A = diag(α1, . . . ,αd)K̂n.

If K is a hypercube, then this is already the reference cell variant associated with the lowest
local functional value. For simplices, several possibilities would have to be treated.
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3.5.4. Choosing reference cell scales

Now that the restrictions of the local functional’s isotropy on the reference cell’s shape are clear,
let us examine the scaling of the reference cells. The first question is if a mesh quality functional
can be scaling invariant, meaning an optimal reference cell can be characterised just by its shape
and not its size. This would of course mean that r-adaptivity is not possible, which could partially
be mitigated by pre-refining or condensing the mesh.

Assume for simplicity that RK is affine. Then scaling invariance means that

∀A ∈ SLd : ∀λ ∈ R+ : F(λA) = F(A).

Recalling that

det(λA) = λ
d det(A),∥λA∥2

F = λ
2∥A∥2

F ,∥Cof(λA)∥2
F = λ

d−1∥Cof(A)∥2
F ,

we conclude that if F is scaling invariant, there exists a function f S : R2 → R such that

F(A) = f S
(
∥A∥d−1

F /∥Cof(A)∥F ,∥A∥d
F/det(A)

)
.

A functional based on F cannot be polyconvex as F is not convex in its argument A ∈ Rd×d (see
Section 3.5.5) and does not satisfy the coerciveness condition in Theorem 3.11 as e.g. in general
F(A) < +∞ as det(A) → ∞. Nevertheless, functionals of this form are used in practice and can
apparently be treated by simple numerical methods (see e.g. [FK02]). However, the existence
of minimisers for the discrete (finite dimensional) problem cannot be deduced from results for a
continuous problem. The discrete problem does not converge to a well-posed continuous problem,
which may lead to difficulties for very fine meshes.

Together with the above mentioned restrictions this means that the notion of scaling invariance
it not very useful in this context and we have to define a size for K̂R. Assume for now that we are
in the isotropic case. Because of Lemma 3.5, it is clear that

∀K ∈ Th : ∃h(K) ∈ R+ : K̂R = h(K)K̂n

and we call h the optimal scales. See Figure 3.16 for the connection between RK ,RK,n and Φ◦RK =
RK(Φ).

The question is now how to chose those optimal scales. Assume that we are given a target cell
size distribution, meaning we have some λ satisfying

∀K ∈ Th : λ(K)> 0, ∑
K∈Th

λ(K) = 1.

Since the optimal deformation preserves the volume of Ω, this can be interpreted as

λ(K) =
vol(Φ∗(K))

vol(Ω)
=

vol(K̂n)
∫

K det(∇RK,n(Φ
∗))

vol(Ω)
.

In practice, this will not be exactly true since we are working on Ωh and Th instead. But if ∂Th
(and thus ∂Ωh) is already a good approximation of ∂Ω, we could approximate this condition by
conserving the volume of Th instead, meaning that

λ(K) =
vol(Φ∗(K))

vol(Ωh)
=

∫
K̂n

det(∇RK,n(Φ
∗))

∑T∈Th

∫
K̂n

det(∇RT,n(id))
.
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K̂

1
h(K)

K̂n

RK,n

Φ(K)

RK(Φ)

K
Φ|KRK,n(Φ)

Figure 3.16: The relations of the mapping RK,n.

Since the identity minimises the local functional, the optimal deformation applied to a cell
should result in a cell that has the corresponding reference cell’s volume:

vol(Φ∗(K)) =
∫

K̂
det(∇RK(Φ

∗))dx =
∫

K̂n

det(∇RK,n(Φ
∗))

h(K)d .

For a given cell size distribution λ, we can now compute the optimal scales as

h(K) = d

√
λ(K) ∑

T∈Th

∫
K̂n

det(∇RK,n(id)). (3.36)

Instead of the cell size distribution, one could prescribe a mesh concentration c = c(K) and
then normalise it to obtain

λ(K) =
c(K)

∑T∈Th
c(T )

.

Example 3.7 (Some mesh concentration functions).

i) Equidistribution: c ≡ const, leading to λ(K) = 1/card(Ed(Th)).

ii) Preservation of the cell volume with regard to a reference configuration T̃h: c(K) = |K̃|,
where K̃ is the corresponding cell in T̃h.

iii) Preservation of cell volume with regard to the number of (local) refinements: c(K) = bl(K),
where l(K) the refinement level and b is the refinement base, e.g. b = 2 for bisection-based
local refinement of simplices.

iv) According to the distance to a surface Γ: c(K) = f (dist(sΦ∗(K),Γ)) for some set Γ, where
s(K) is the centre of gravity of K. Here, Γ could be ∂Ω or an inner boundary like a phase
boundary.

v) According to an a posteriori error estimate: c(K) = g(η(K)), where η(K) could come from
various techniques.
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Remark 3.8. Note that in Example 3.7 iv), there is a great difference between

c(K) = f (dist(sΦ∗(K),Γ))

and

c(K) = f (dist(sK ,Γ))

The first concentration function uses the distance of the cell Φ∗(K), which is a priori unknown.
This means that the concentration (and thus the local optimal scale h(K)) becomes part of the
problem and must be treated accordingly. More on this can be found in Section 3.5.7.

The second concentration function uses the distance of the original cell K for computing the
optimal scale h(K). This does not introduce any new difficulties into the functional, but it might
result in a not very useful cell size distribution, as |dist(sΦ∗(K),Γ)−dist(sK ,Γ)| might be large.

3.5.5. Relation to hyperelastic materials, polyconvexity

Let us briefly revisit the class of mesh quality functionals from (3.31) from Section 3.5 to see that
it models an (isotropic), compressible, hyperelastic material.

The first assumption was translation invariance ((3.27)), so the local integrand only depends
on ∇Φ(x). Since we then ruled out any further dependencies and further assumed frame indiffer-
ence, we basically assumed that the underlying Piola-Kirchhoff stress tensor is of the form

∃T̂ : Ω×SLd : ∀x ∈ Ω : T (x) = T̂ (x,∇Φ),

which means it describes an elastic material. An equally important assumption prior to this was
that the strain energy can be expressed in the form

F(Φ) =
∫

Ω

L(x,∇Φ)dx, (3.37)

because this carries the assumption that the response function T̂ is related to a stored energy
function L(x,∇Φ) by

∀A ∈ SLd : T̂ (x,A) =
∂L

∂A
(x,A),

which means the material is already hyperelastic. This carries the additional benefit that the con-
stitutive equation

∀x ∈ Ω : −div
(

∂L

∂A
(x,∇Φ(x))

)
= 0

is formally equivalent to the equations

∀η : Ω̄ → R,η|Γ0 = 0 : F′(Φ∗)η = 0 (3.38)

and that a minimiser of the total energy (which is the same as the strain energy in our case without
body or surface forces) is a solution of the boundary value problem defined by the constitutive
equations, see [Cia88, Theorem 4.1-2] for the details.

Since we do not pose the incompressibility condition det(∇Φ) = 1, the material is compress-
ible. All we did by choosing reference cells and scales in Section 3.5.3 and Section 3.5.4 was to
define a discretised version of a material property function. Choosing reference cells so that the
resulting local functional is isotropic just means we chose an isotropic material, which simplifies
the representation of L, but is not necessary for the existence results in Section 3.5.6.
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We still need to examine the properties of the stored energy function L. The simplest case is
that L is convex in the sense that

x ∈ Ω̄ : L(x, ·) : SLd → R

is convex. If it is furthermore strictly convex, the strain energy (3.37) has at most one stationary
point. This contradicts the lack of uniqueness of solutions to elasticity problems observed in
physical situations see [Gur78, Nol78] for examples.

Even without this contradiction there is the issue of the behaviour of L as det(∇Φ)→ 0, which
corresponds to the scenario of “infinite stress”. Apart from the mathematical reasoning that

lim
det(A)→0

L(x,A) = +∞,A ∈ SLd

because we are working in the space of orientation preserving deformations, there is also the
physically motivated notion that “infinite stress must accompany extreme strains” [Ant83] and
consequently that volumes can only be annihilated by infinite force. But [Cia88, Theorem 4.8-1]
shows that convexity of L contradicts this behaviour.

So indeed it is not feasible to work with a convex stored energy function L. However, John Ball
was able to replace this by the weaker requirement that L is polyconvex and prove the existence
theorems stated in Section 3.5.6.

Definition 3.4. A stored energy function L : Ω̄×SLd → R is called polyconvex, iff

∀x ∈ Ω̄ : ∃Lc(x, ·, ·, ·) : SLd ×SLd × (0,+∞)→ R convex :

∀A ∈ SLd : L(x,A) = Lc(x,A,Cof(A),det(A)).

Example 3.9. Consider the matrices

A =


2

1

1

 ,B =


1

2

1

 and F : [0,1]→ SLd ,F(λ) = λA+(1−λ)B =


1+λ

2−λ

1

 ,

which is the convex combination of A and B.

i) Consider the mapping
f (M) = det(M).

Since det(Fλ) = 2+λ−λ2 and λdet(A)+(1−λ)det(B) = 2, we have f (F1
2
) = 9

4 > 2, this
mapping is not convex in M.

However, it is polyconvex since the function fc : (0,+∞)→ R, fc(δ) = δ is convex.

ii) Consider the mapping
g(M) = ∥Cof(M)∥2

F .

We can compute that

Cof(A) = diag(1,2,2),Cof(B) = diag(2,1,2),Cof(Fλ) = diag(2−λ,1+λ,(2−λ)(1+λ)),

With this, ∥Cof(A)∥2
F = 9 = ∥Cof(B)∥2

F and ∥Cof(Fλ)∥2
F = λ4 −2λ3 −λ2 +2λ+9. Since

g(F1
2
) = 153

16 > 9, it is not a convex function.

It is however polyconvex, since the function fc : SL3 →R, fc(H) = ∥H∥2
F is convex because

∀F,G ∈ SL3 : f
′′
c (F)(G,G) = 2∥G∥2

F ≥ 0.
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iii) If a > 0,b > 0 and Γ : (0,+∞)→ R is convex, the stored energy function

L : Ω̄×SL3, L(x,F(x)) = a∥F(x)∥2
F +b∥Cof(F(x))∥2

F +Γ(det(F(x)))

is polyconvex since the function

Lc : R3×3 ×R3×3 × (0,+∞), L(F,H,δ) = a∥F∥2
F +b∥H∥2

F +Γ(δ)

is convex.

Remark 3.10. Going into the details of polyconvex stored energy functions is beyond the scope
of this work and the reader is referred to [Bal76, Cia88]. Important cases of materials with poly-
convex stored energy functions are Ogden’s materials, compressible neo-Hookian materials, com-
pressible Mooney-Rivlin materials and Hadamard-Green materials, see [Cia88, Chapter 4.10].

3.5.6. Existence of minimisers

The following theorems are taken from [Cia88, Section 7], although the truly pioneering work on
the subject was [Bal76]. The results are for d = 3 but can be restricted to the case d = 2. See
[Mie05] for a reference dealing with the case d = 2.

Theorem 3.11 (Existence of minimisers for pure displacement problems). Assume Ω ⊂ R3 to be
a given domain such that ∂Ω = Γ0 ∪Γ1, Γi dσ-measurable and vol2(Γ0)> 0. Assume further that
we have L : Ω×SL3 → R with the following properties:

i) Polyconvexity:

∀x ∈ Ω a.e. : ∃L̃(x, ·, ·, ·) : SL3 ×SL3 × (0,∞)→ R : ∀F ∈ SL3 :

L(x,F) = L̃(x,F,Cof(F),det(F)),

where ∀(F,H,δ) ∈ SL3 ×SL3 × (0,∞) : L̃(·,F,H,δ) ∈ L1(Ω).

ii) Stability:
∀x ∈ Ω a.e : lim

det(F)→0
L(x,F) = +∞

iii) Coerciveness:

∃α ∈ R+,β ∈ R,2 ≤ p ∈ N,
p

p−1
≤ q ∈ N,1 < r ∈ R :

∀x ∈ Ω a.e.,∀F ∈ SL3 :

L(x,F)≥ α(∥F∥p
F +∥Cof(F)∥q

F +det(F)r)+β

Let φ0 ∈ L1(Γ0,R3) such that

/0 ̸=Dφ0 := {Φ ∈W 1,p(Ω) :Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈ Ω a.e. : det(∇Φ)(x)> 0, ∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x)}

Let f ∈ Lp(Ω) and g ∈ Ls(Γ1) such that the linear form

l : W 1,p(Ω)→ R, l(Φ) :=
∫

Ω

f ·Φdx+
∫

Γ1

g ·Φdσ

is continuous and define

F(Φ) :=
∫

Ω

L(x,∇Φ(x))dx− l(Φ).

Under the assumption that ∃Φ ∈Dφ0 : F(Φ)<+∞, there exists at least one

Φ
∗ ∈Dφ0 : F(Φ∗) = inf

Φ∈Dφ0

F(Φ).
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Proof. See [Cia88, Theorem 7.7-1] and the corresponding proof.

Remark 3.12.

i) The condition Dφ0 ̸= /0 is a condition on φ0, as in general, the traces of W 1,p(Ω) functions
might not have enough regularity [Cia88, Theorem 6.1-7]. In the context of deformations,
the boundary deformation still has to admit some orientation preserving deformation of Ω,
meaning it should not lead to self-intersections of the boundary.

ii) The resulting problem is a pure displacement problem.

iii) The proof does not use the isotropy assumption on the function L̃ and remains valid in the
absence of this property.

iv) The minimiser is not unique in general, which is observed for hyperelastic materials in
practice.

Theorem 3.13 (Existence of minimisers for problems with a unilateral boundary condition of place
and a locking constraint). Assume Ω ⊂ R3 to be a given domain such that ∂Ω ⊃ Γ0,Γ1,Γ2 and
vol2(∂Ω\{Γ0 ∪Γ1 ∪Γ2}) = 0. Let Γi be dσ-measurable, relatively open, disjoint and vol2(Γ0)>
0. Assume further that we have L : Ω×SL3 → R with the same properties as in Theorem 3.11
(polyconvexity, regularity, coerciveness). Let Λ : SL3 → R be a polyconvex function such that

∃Λ̂ : SL3 ×SL3 × (0,+∞)→ R : ∀F ∈ SL3 : Λ(F) = Λ̂(F,Cof(F),det(F)).

Let further Γ ⊂ R3 be closed and φ0 ∈ L1(Γ0,R3) such that

/0 ̸=Dφ0,Γ := {Φ ∈W 1,p(Ω) :Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈ Ω a.e. : det(∇Φ)(x)> 0,

∀x ∈ Ω a.e. : Λ(∇Φ(x))≤ 0,

∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x),

∀x ∈ Γ2 dσ a.e. : Φ(x) ∈ Γ2}

Let f ∈ Lp(Ω) and g ∈ Ls(Γ1) such that the linear form

l : W 1,p(Ω)→ R, l(Φ) :=
∫

Ω

f ·Φdx+
∫

Γ1

g ·Φdσ

is continuous and define

F(Φ) :=
∫

Ω

L(x,∇Φ(x))dx− l(Φ).

Under the assumption that ∃Φ ∈Dφ0,Γ : F(Φ)<+∞, there exists at least one

Φ
∗ ∈Dφ0,Γ : F(Φ∗) = inf

Φ∈Dφ0

F(Φ).

Proof. See [Cia88, Theorem 7.8-1] and the corresponding proof.

Remark 3.14.

i) A variant of this theorem with proof for the discrete case can be found in [Rum96].

ii) The additional boundary condition in Theorem 3.13 is a unilateral boundary condition of
place as defined in Definition 3.1 and is well-known for elasticity problems. It is particularly
useful for the application for mesh deformations and the underlying mathematical property
of the definition of the space of variations (Definition 3.2).
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iii) The function Λ in Theorem 3.13 defining an additional constraint is a locking function as per
Definition 3.1. The notion of a locking constraint was introduced for linearised elasticity in
[Pra57] for materials that become locked if some measure of strain reaches a critical level.
For the nonlinear case, [CN85] proposed a locking constraint based on the deviatoric part
of the Green-St-Venant stress. Let α ∈ R+ and define

E :=
(
(∇Φ)T

∇Φ− I3
)
, Ed := E − 1

3
tr(E)I3,

Λ : SL3 → R, Λ(F) := ∥Ed∥2
F −α.

The locking constraint is entirely optional. Although it has not been used in the current
work, it could provide an additional tool to further improve the methods.

Theorem 3.15 (Existence of minimisers for displacement-traction problems with injectivity con-
straint). Assume Ω ⊂R3 to be a given domain such that ∂Ω ⊃ Γ0,Γ1, and vol2(∂Ω\{Γ0∪Γ1}) =
0. Let Γi be dσ-measurable, relatively open, disjoint and vol2(Γ0) > 0. Assume further that we
have L : Ω×SL3 with the same properties as in Theorem 3.11 (polyconvexity, regularity, coer-
civeness) with p > 3.

Let φ0 ∈ L1(Γ0,R3) such that

/0 ̸=Dφ0 := {Φ ∈W 1,p(Ω) :Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈ Ω a.e. : det(∇Φ)(x)> 0, ∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x),∫
Ω

det(∇Φ)dx ≤ vol(Φ(Ω))}

Let f ∈ Lp(Ω) such that the linear form

l : W 1,p(Ω)→ R, l(Φ) :=
∫

Ω

f ·Φdx

is continuous and define

F(Φ) :=
∫

Ω

L(x,∇Φ(x))dx− l(Φ).

Under the assumption that ∃Φ ∈Dφ0 : F(Φ)<+∞, there exists at least one minimiser

Φ
∗ ∈Dφ0 : F(Φ∗) = inf

Φ∈Dφ0

F(Φ),

and all minimisers Φ∗ : Ω → R3 are injective in Ω a.e..

Proof. See [Cia88, Theorem 7.9-1] and the corresponding proof.

Remark 3.16.

i) The assumption that there is no surface force g was made in [Cia88, Theorem 7.9-1] only
for simplicity.

ii) The results can be extended to the case p > 2.

iii) The additional injectivity constraint
∫

Ω
det(∇Φ)dx ≤ vol(Φ(Ω)) is fulfilled automatically

in the case of a pure displacement problem (vol2(∂Ω\Γ0) = 0 in Theorem 3.11) or fixed in
combination with a unilateral boundary condition of place (vol2(∂Ω \ {Γ0 ∪Γ2}) = 0 and
vol2(∂Φ(Ω)\{φ0(Γ0)∪Γ}) = 0 in Theorem 3.13) fulfilling an appropriate condition on the
volume.
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(i) Initial configuration. (ii) After one iteration. (iii) End of Picard iteration.

Figure 3.17: Iterates of a Picard iteration.

3.5.7. r-adaptivity

As we have seen in Section 3.5.4, r-adaptivity is nothing but choosing the local optimal scales

h(K) = d

√
c(K)

∑T∈Th
c(T ) ∑

T∈Th

∫
K̂n

det(∇RK,n(id))

with a given mesh concentration function c. As was mentioned in Remark 3.8, there are situations
in which we would rather use c = c(Φ∗(K)).

Example 3.17. Recall the two formulations from Example 3.7

c1(K) = f (dist(sΦ∗(K),Γ))

c2(K) = f (dist(sK ,Γ))

and consider the unit square Ω̄ = [0,1]2 and the implicitly given surface

Γ = {x ∈ R2 : ∥x− (0.5,0.5)T∥2 = 0.15},

which is just the boundary of a circle. Let the concentration function c(K) = (α+dist(SK ,Γ))
β be

given, with α,β > 0 and use the mesh quality functional from Section 3.4.3.
This results in a case where |dist(sΦ∗(K),Γ)− dist(sK ,Γ)| is large, as can be seen in Figure

3.17 (ii). A simple Picard iteration computing a sequence (Φ) j of deformations setting

Φ0 = idΩ, ∀ j > 0 : c(K) = f (dist(sΦ j−1(K),Γ))

even fails to converge within 50 iterations.
This is an important example of why the additional nonlinearity introduced by making the

mesh concentration function depend on the solution needs to be incorporated into the functional,
or rather taken into account when computing the derivative.

Some formal differentiation

Assume that we are already in the discrete case, namely we are in the discrete space of admissible
variations (see (3.4)). Then we can formally compute the partial derivative of the optimal scale h
with regard to the degrees of freedom of the finite element function Φh.
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h(K) = d

√
c(K)

∑T∈Th
c(T ) ∑

T∈Th

det(∇RT,n(id))

⇒ ∂h(K)

∂ui
=

1
d

(
c(K)

∑T∈Th
c(T ) ∑

T∈Th

det(∇RT,n(id))

) 1
d −1[

c(K)

∑T∈Th
c(T )

∂

∂ui

(
∑

T∈Th

det(∇RT,n(id))

)

+

∂c(K)
∂ui

∑T∈Th
c(T )+ c(K)∑T∈Th

∂c(T )
∂ui(

∑T∈Th
c(T )

)2

(
∑

T∈Th

det(∇RT,n(id))

)]
,

where ui is a degree of freedom of Φh.

Remark 3.18. The additional dependency of h on the degrees of freedom of a variation Φ does not
affect the polyconvexity of the associated stored energy function by the definition of polyconvexity.
However, it is necessary to establish some lower bound on h as to still satisfy the prerequisites of
the existence theorems in Section 3.5.6.

3.5.8. Alignment to (implicit) surfaces

As described in Section 3.2.3, there are situations where it is very advantageous to align the mesh
with a surface, that might even be given implicitly. Examples are particulate flows (see [BP13]
for a method using interface alignment and [MMT12] for an application of the fictitious boundary
method), fluid-structure interactions (where interface alignment might even be necessary for the
accurate representation of boundary conditions, see e.g. [RTH+12]).

Assume that our domain is Ω = Ω1∪Ω2 and denote by Γ = Ω̄1∩ Ω̄2 the interface between the
two subdomains. The mesh Th on Ω is assumed to already capture Γ sufficiently well, meaning
that Γ is δ = h

2 resolved (see Figure 3.18 (i)).
Recall from Section 3.2.3 the definition of the δ-tube

Sδ(Γ) := {x ∈ Ω : dist(x,Γ)< δ} (3.39)

and with that the decompositions of Th

Ti
h := {K ∈ Th : K ∩Sδ(Γ) = /0},

T∗ := Th \ (T1
h ∪T2

h),

Ti
∗ := {K ∈ Th : K ⊂ (Ωi ∪T∗)}.

If δ ≤ h
2 and Γ is δ-resolved, meaning that T1

∗ ∩T2
∗ = /0 and T∗ = T1

∗ ∪T2
∗ , define

Ω̄h,i := {
⋃

K∈Ti
h∪Ti

∗

K̄},

Γh := ∂Ωh,1.

The parameter δ describes how well the interface Γ is approximated. δ ≤ h
2 already means that

∄Th ∋ K ⊂ T1
∗ ∩T2

∗ . Since we use a P1/Q1 transformation, we can expect to δ = O(h2)-resolve Γ

by suitably aligning the mesh’s vertices with Γ (see Figure 3.18 (ii)).
We now want to define a constraint H such that H(Φ) = 0 implies that Φ(Th) is O(h2)-aligned

with Γ. Consider the term

H1(Φ) = ∑
K∈Φ(Th)

vol(K ∩Ω1)vol(K ∩Ω2).
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Γ

(i) Γ is only δ = h
2 -resolved by Th due to the

shaded cells.

Γ

(ii) The mesh’s vertices have been aligned with
Γ, which is now δ = O(h2)-resolved.

Figure 3.18: Different degrees of alignment of Th to Γ.

It is clear that H1 = 0 only for perfectly aligned meshes, meaning δ = 0. Numerically speaking,
terms like vol(K ∩Ωi) are difficult to compute, let alone differentiate with regard to the vertex
coordinates. Also note that driving vol(K)→ 0 will also satisfy the constraint, so this would need
to be incorporated as well.

Alternatively, we could just take

H2(Φ) = vol(T∗),

with T∗ according to Φ(Th), so we trivially get the notion that for every δ ≥ 0 H2(Φ) = 0 implies
that Φ(Th) is δ-aligned. However, this faces the same difficulties as H1.

So instead, we will derive a constraint based on a signed distance function sΓ with sΓ < 0 on
Ω̊1 and sΓ > 0 on Ω̊2. The idea is then to rule out sign changes of sΓ along any line connecting
two vertices ai,a j of a cell K (see [BW13]) by using the constraint

H(Φ) = ∑
K∈Φ(Th)

 ∑
ai, j∈E0(K),i̸= j

r(sΓ(ai)sΓ(a j))

 , (3.40)

with

r : R→ R≥0, r ∈ C1(R) :

∀x ∈ R : r′(x)≥ 0, r(x)

{
> 0, x < 0
= 0, x ≥ 0

Various regularisations of the Heaviside function could be used for the function r,
For simplices, every local vertex ai is connected to all other local vertices a j by an edge. This

is not the case for hypercubes, where the constraint (3.40) introduces “virtual” edges in the interior
of K.

However, there are geometric situations where such an alignment condition lets the mesh
deteriorate, as even in 2d, an interior angle might be forced towards π, see Figure 3.19. This
is a characteristic of hypercube meshes and cannot be ruled out in advance in a general setting.

There are several ways to overcome this difficulty, which are not discussed further in this work.
In 2d, one approach could be to locally refine a problematic cell to split the angle being forced to
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Γ

(i) The cell K violates the alignment condition.

Γ

(ii) The cell K does not violate the alignment
condition, but is of poor quality.

Figure 3.19: Example of the surface alignment condition (3.40) letting the mesh deteriorate.

π. This involves combinatoric work and the resulting cell still suffer from poor quality. Another
approach would be to split the hypercube into simplices in a suitable way. This can be expressed
as a local modification of the finite element spaces and could even be done without first aligning
vertices to Γ (see [FR14]), although this incurs a serious condition number penalty e.g. for the
stiffness matrix.

Γ

(i) The cell K violating the alignment condition
is split into two triangles.

Γ

(ii) The cell K not violating the alignment con-
dition is split into five hypercubes.

Figure 3.20: Example of the surface alignment condition (3.40) letting the mesh deteriorate.

At this point it is not yet clear how to address the constraint (3.40) numerically. One import-
ant observation is that the constraint is invariant with regard to vertices moving within Γ, which
already means that for a mesh T fulfilling the alignment condition, the derivatives of the constraint
with regard to these movements will be zero. This is a serious drawback which does not seem to
be overcome easily.

An additional problem is the regularity assumption r ∈ C1 in conjunction with the condition
∀x ≥ 0 : r(x) = 0, as this necessarily means r′(0) = 0 and rules out all the constraint qualifications
presented in [Pet73], severely limiting the possibilities so solve the constrained minimisation prob-
lem numerically. It might be possible to devise a formulation of the surface alignment constraint
that is easier to treat in practice, but this is an open problem to the best of my knowledge.

Remark 3.19. When using higher order transformations (Pk,Qk, k > 1), it is still advantageous
to first use the condition (3.40) and then treat the additional DoF. See [Wei12] for details in the
case of simplices, d = 2 and k = 2.
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problems

In this chapter I want to describe how to discretise the system of nonlinear equations arising
from the minimisation of the hyperelasticity-based mesh quality functional. The discretisation is
given in Section 4.1, which is more of a summary of points already discussed. The finite element
spaces are given in Section 4.1.1, but since we are not interested in how well the discrete solution
approximates the continuous problem, I will not give any error analysis. Much of the theory
can be found in [NW06], although I also recommend [BKST15] for some details on nonlinear
multilevel-based solvers and [GK09b], [GK09a] for multilevel trust-region solvers.

4.1. Discretisation

In this part, we want to apply the theoretical background from Section 3.5.6, so we pose the
following general assumptions.

Assume Ω ⊂ Rd to be a given domain such that

∂Ω ⊃ Γ0,Γ1,Γ2,vold−1(∂Ω\{Γ0 ∪Γ1 ∪Γ2}) = 0.

Let Γi be dσ-measurable, relatively open and disjoint. Assume further that we have L : Ω×SLd
with the same properties as in Theorem 3.11:

i) Polyconvexity:

∀x ∈ Ω a.e. : ∃L̃(x, ·, ·, ·) : SL3 ×SL3 × (0,∞)→ R : ∀F ∈ SL3 :

L(x,F) = L̃(x,F,Cof(F),det(F)),

where ∀(F,H,δ) ∈ SL3 ×SL3 × (0,∞) : L(·,F,H,δ) ∈ L1(Ω).

ii) Stability:
∀x ∈ Ω a.e : lim

det(F)→0
L(x,F) = +∞
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iii) Coerciveness:

∃α ∈ R+,β ∈ R,2 ≤ p ∈ N,
p

p−1
≤ q ∈ N,1 < r ∈ R :

∀x ∈ Ω a.e.,∀F ∈ SL3 :

L(x,F)≥ α(∥F∥p
F +∥Cof(F)∥q

F +det(F)r)+β

Let further Γ ⊂ Rd be closed and φ0 ∈ L1(Γ0,Rd) such that

/0 ̸=Dφ0,Γ := {Φ ∈W 1,p(Ω) :Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈ Ω a.e. : det(∇Φ)(x)> 0,

∀x ∈ Ω a.e. : Λ(∇Φ(x))≤ 0,

∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x)

∀x ∈ Γ2 dσ a.e. : Φ(x) ∈ Γ2}

Note that any of the sets Γi might be empty, if there is no part of the boundary where we want
to enforce the corresponding boundary condition. We also assume that L is isotropic and frame
indifference, so that the Rivlin-Erikson Representation Theorem gives that

∃L :R×R×R→ R∪{∞}
∀A ∈ SLd : L(x,A) = L(∥A∥2

F ,∥Cof(A)∥2
F ,det(A))

Under the assumption that ∃Φ ∈Dφ0,Γ : F(Φ)<+∞, Theorem 3.13 gives there exists at least
one

Φ
∗ ∈Dφ0,Γ : F(Φ∗) = inf

Φ∈Dφ0

F(Φ).

Also see [Rum96, Theorem 1] for a proof for simplex meshes in 3d.

4.1.1. Finite Element spaces

Instead of solving the problem in the space Dφ0,Γ, we now use the discrete space Dφ0,Γ ∩Dh.
Recall the definition of the discrete spaces of admissible variations (Definition 3.2) on a do-

main Ω̂:

Dh := {Φ ∈ D̃bp,h : ∀m = 0, . . . ,d −1 : ∀Γ ∈ ∂Ω
m
h : ∀x ∈ Γ : Φ(x) ∈ Γ}

which incorporate the property of being orientation preserving formalised by det(∇Φh)> 0. Like
the divergence-free condition in the Stokes problem, this property is not trivial to incorporate
into standard finite element spaces. Since the stored energy function has the stability property
limdet(F)→0L(x,F) = +∞, a suitable numerical method for minimising F should keep the orient-
ation intact.

Displacement boundary conditions of the type

∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x)

can easily be enforced (in this case even in the strong sense) through a projection operator Pφ0 .
Enforcing the unilateral boundary condition of place

∀x ∈ Γ2 dσ a.e. : Φ(x) ∈ Γ2}

is more difficult, as it involves a projection PΓ of a point Φ(x) to the boundary Γ which must not
violate any of the other constraints for the space Dφ0,Γ ∩Dh, such as the orientation preservation,
and must not lead to self-intersections at the boundary Γ.
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4.1.2. Discretised functional and its gradient

Recall that we constructed the discrete functional Fh according to

Fh(Φh) =
∫

Ω

L(x,Φh)dx = ∑
K∈Th

µK

∫
K
LK(x,Φh)dx.

[Cia88, Theorem 4.1-1, Theorem 4.1-2] gives that the minimisation of this functional is form-
ally equivalent to the equations

∀η ∈D0,Γ : F′
h(Φ

∗)η = 0,

which can be formulated (due to the assumed hyperelasticity) as

F′
h(Φ

∗)η =
∫

Ω

∂L

∂A
(x,∇Φ(x)) : ∇η(x)dx.

Remark 4.1.

i) Note that for quadratic functionals like the D(u) : D(v) functional, the gradient is simply a
matrix, which can be assembled and used in a linear solver. Here, the discrete gradient is
a vector valued nonlinear function. Any iterative solver producing a sequence of iterates
(Φk) will require the gradient to be evaluated at each iterate, which is very costly.

ii) Because
∂det(∇Φ(x))

∂A
= det(∇Φ(x))(∇Φ(x))−T : ∇η(x),

the usual approach for evaluating integrals of using numerical integration does not seem
feasible, as we are dealing with rational functions.

iii) This also means that working with hypercube meshes is significantly more costly that work-
ing with simplex meshes. For simplex meshes, ∀K ∈ Ed(Th) : (∇Φh)|K(x) ≡ const, so
that no real numerical integration has to be performed for evaluating the local integrals∫

K LK(x,Φh)dx. For hypercube meshes, the general case is the one of nonlinear transform-
ations, so numerical integration with a formula of sufficient order or exact integration (for
the rational functions) has to be used. This increases the cost of a single functional or
gradient evaluation by a factor of # integration points used.

4.2. Methods for the unconstrained minimisation of nonconvex func-
tionals

In this section I want to introduce algorithms for the minimisation of nonlinear, nonconvex func-
tionals on finite dimensional spaces. This is the class of methods we need for minimising the
discrete mesh quality functionals from Section 4.1.2.

If f : U → Rn is of class Ck+1, define the kth Taylor polynomial by

Tk f (x,x0) := ∑
|α|≤k

1
α!

Dα f (x0)(x− x0)
α

and the (k+1) rest by

Rk+1,ξ f (x,x0) := ∑
|α|=k+1

1
α!

Dα f (ξ)(x− x0)
α.
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i) If x,x0 ∈U such that for all [x0;x] := {λx+(1−λ)x0,λ ∈ [0,1]} ⊂U , there exists ξ ∈ [x;x0]
such that

f (x) = Tk f (x,x0)+Rk+1,ξ f (x,x0).

ii) For any x0 ∈U and any sequence x → x0 in U

f (x) = Tk f (x,x0)+o(∥x− x0∥p
2).

The proof for this can be found in most elementary analysis textbooks. For solving the (non-
linear) equation f (x) = 0, Newton’s method based on approximating f locally by its first Taylor
polynomial is very popular.

Lemma 4.2. Newton’s method
Let U ⊂ Rn be open, U0 ⊂ U convex such that Ū0 ⊂ U. Let f ∈ C0(U,Rn), x0 ∈ U0 and

α,β,γ ∈ R such that

i) f ′ ∈ C0,1(U0,Rn) with ∀x,y ∈U0 : ∥ f ′(x)− f ′(y)∥ ≤ γ∥x− y∥,

ii) ∀x ∈U0 : ∃( f ′(x))−1 and ∥( f ′(x))−1∥ ≤ β,

iii) ∥( f ′(x0))
−1∥ ≤ α,

with the constants α,β,γ additionally satisfying

αβγ

2
< 1,

Br(x0)⊆U0, where r :=
2α

2−αβγ

Denote h := αβγ

2 . Then

i) For x(0) = x0 the sequence of Newton iterates

x(k+1) = x(k)− f ′(x(k))−1 f (x(k)),k = 0,1, . . . (4.1)

is well-defined and ∀k ∈ N : x(k) ∈ Br(x(0)),

ii) The limit limk→∞ x(k) =: x∗ exists, x∗ ∈ Br(x(0)), f (x∗) = 0 and

iii)

∀k ∈ N0 : ∥x∗− x(k+1)∥ ≤ α
h2k−1

1−h2k . (4.2)

Proof. See [Sto04, Section 5.3].

Remark 4.3. Drawbacks of Newton’s method
If F is sufficiently smooth, we could solve our nonlinear equation F′(Φ∗) = 0 on the finite

dimensional space Dh with Newton’s method (replace f by F′ and x by Φ in Lemma 4.2 above).
However, there are three limiting factors.

i) The method is only convergent if we start close enough Φ∗, which might be difficult to
achieve.
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ii) If an iterate Φ(k) is far away from Φ∗, there is nothing that guarantees that F′′ is non-
singular. Moreover, since the stored energy function is not convex, the Hessian F′′ might be
indefinite, so that the Newton direction d(k) obtained by solving the (linear) system

F′′(Φ(k))d(k) =−F(Φ(k)) (4.3)

is not even a descent direction.

iii) In our case, the Hessian F′′(Φ(k)) is quite expensive to compute and will in general not pos-
sess any structure that lends itself to highly efficient iterative solvers. Using a direct solver
might be the only option to solve the linear system (4.3). However, for other problems with
less pronounced nonlinearity, iterative methods have been applied successfully for solving
(4.3) (see [BKST15] for some examples), even if the true Hessian is not available and has
to be approximated using a divided difference scheme [DHOT13].

These difficulties can be addressed in various ways which mostly revolve around approximat-
ing the Hessian F′′(Φ(k)). Some examples are

i) Trust region methods: Minimising a quadratic model and rejecting steps if the difference
between predicted and true functional value is too large ([NW06, Chapter 4]).

ii) Line search methods: Successive minimisation in search directions (Section 4.2.2).

iii) Quasi Newton methods: Recursive updating of an approximation of the inverse Hessian
(Section 4.2.1).

iv) Inexact or truncated Newton methods: (4.3) is solved only approximately, e.g. by using
an iterative solver and terminating early and/or when the Hessian is indefinite. ([NW06,
Chapter 7]).

All these methods are closely related (e.g. we will see in Section 4.2.2 that quasi and inexact
Newton methods are special preconditioners for line search methods) and have been combined
with each other in about every possible combination. In the following, I will touch quasi New-
ton methods just briefly and then proceed to line search methods. This has the benefit of being
able to derive and use PDE-based preconditioners, instead of using the (more or less) black box
preconditioners given by the various quasi Newton methods, which are more algebraic in nature.

4.2.1. Quasi Newton methods

One idea to overcome the main drawbacks of Newton’s method (Remark 4.3) is to replace the
Hessian F′′(Φ(k)) by matrices H(k). In this section, I will only introduce some general ideas, as
the lBFGS-preconditioned nonlinear steepest descent method (NLSD-lBFGS) will be used later
for comparisons, but I will spend more time on general line search methods.

Definition 4.1. Quasi Newton methods
If the relation

H(k+1)(F′(Φ(k+1)−Φ
(k))) = Φ

(k+1)−Φ
(k) (4.4)

is satisfied, the search direction d(k+1) defined as the solution of

H(k+1)d(k) =−F(Φ(k))

is called quasi Newton direction and the resulting method is a quasi Newton method.
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Remark 4.4.

i) If H(k) is symmetric and positive definite, sometimes the term variable metric method is
used instead of quasi Newton method. This is due to the fact that every H(k) induces a
scalar product inducing a metric which we use for minimisation purposes, but this metric
changes in every iteration.

ii) If H(k+1) is symmetric and positive definite, the quasi Newton direction is a descent direc-
tion, so these are essential properties.

Definition 4.2. Broyden class
Denote

(
H(k)

)−1
=: B(k). Iff the quasi Newton direction is a descent direction, it holds that

0 < (F′(Φ(k)),d(k)) = (F′(Φ(k)),B(k)F′(Φ(k))).

Set p(k) := Φ(k+1)−Φ(k) and q(k) := F′(Φ(k+1))−F′(Φ(k)) and then for some θk > 0

B(k+1) = B(k)+

(
1+θk

(q(k),B(k)q(k))
(p(k),q(k))

)
1

(p(k),q(k))
p(k)
(

p(k)
)T

− 1−θk

(q(k),r(k)q(k))
(B(k)q(k)) ·

(
B(k)q(k)

)T

− θk

(p(k),q(k))
p(k)
((

q(k)
)T

B(k+1)+B(k)q(k)
(

p(k)
)T
)
.

This formula defines the Broyden class of updates for B(k). There are some important special
cases:

i) ∀k ∈ N : θk = 0: Davidon, Fletcher, Powell (DFP) update ([Dav59], [FP63]). This was the
first known efficient update formula.

ii) ∀k ∈N : θk = 1: Broyden, Fletcher, Goldfarb, Shanno (BFGS) update ([Bro70]). Very often,
this is considered the most effective Broyden class update formula [NW06, Chapter 6].

iii) ∀k ∈N : θk = (q(k),p
(k)
)/((q(k),p

(k)
)− (p(k),H(k)q(k)): Symmetric rank one update. This does

not carry the implication that, if H(k) is positive definite, H(k+1) is positive definite, too.

Remark 4.5.

i) It is easy to see that in a Broyden class update, a matrix of rank 2 is added to H(k) to obtain
H(k+1).

ii) Very often, the initial approximation B(0) of the Hessian is chosen to be β id with some β> 0,
or as a diagonal matrix. Other choices are known, but are equally heuristic in nature.

iii) Since B(k) will be dense in general, it cannot be computed and stored explicitly in many ap-
plications. For the BFGS update it is possible to formulate the application of B(k) to a vector
through a recursion using the vectors p0, . . . , p(k−1) and q(0),q(k−1). By keeping only a small
number m of these vectors (e.g. m ∈ {3, . . . ,20}), one can construct an approximation to
B(k) (limited memory BFGS update (lBFGS)), that works well in practice, although it may
converge slowly on ill-conditioned problems and no theory is available. [NW06, Chapter
7.2].
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Although there are theoretical results for Broyden class updates for (at least locally) strongly
convex F, proving local superlinear convergence, there is no proof for more general nonlinear
functionals F. [NW06]

Because of the lack of theoretical results for the class of problems we want to examine, I will
turn to line search based methods next. In practice, both families of methods performed quite
similar in the test cases. As we will see in Section 4.2.2, the construction of the approximation
B(k) to the Hessian F′′(Φ(k)) can be regarded as choosing a preconditioner for a general descent
method.

4.2.2. Line search methods

This section will only give some rough ideas. Refer to [NW06, Chapter 3, Chapter 4] for an
extensive presentation.

In this subsection, assume that F : Rn → R and that for a given initial guess Φ(0) = Φ0 that

U0 := {Φ : F(Φ)≤ F(Φ0)} is compact and (4.5)

∃U0 ⊃U convex and open : F : C1(U,R) (4.6)

For x ∈U , d ∈ Rn is called a descent direction iff (d,F′(x))< 0. Then it follows that

∃α > 0 : F(Φ+αd)< F(Φ).

With this, a general descent method is then of the following form:

Algorithm 4.1 General descent algorithm.

For a given Φ0 and initial descent direction d(0) do k = 0, . . . ,N:

1. Compute a step length α(k) such that F(Φ(k)+αd(k))< F(Φ(k)).

2. Set Φ(k+1) = Φ(k)+αd(k).

3. Compute a new descent direction d(k+1).

In this general form, Algorithm 4.1 will not produce a sequence of iterates that converges to a
local minimum. Without any further conditions, the line search in step 1 might produce arbitrarily
short steps α(k), or the search directions might become nearly orthogonal to the gradient F′(Φ).
These two issues will need to be taken care of.

Definition 4.3. Let an iterate Φ and a search direction d be given.

i) A line search is called exact iff it returns α∗ = argminα∈R+
F(Φ+αd).

ii) A step length α is said to satisfy the Armijo condition with constant c1 ∈ (0,1) iff

F(Φ+αd)≤ F(Φ)+ c1α(F(Φ),d). (4.7)

iii) A step length α is said to satisfy the strong Wolfe conditions with constant c1,2 ∈ (0,1),
c1 < c2 iff it satisfies the Armijo condition with constant c1 and⏐⏐(F′(Φ+αd),d)

⏐⏐≤ c2|(F′(Φ),d)|. (4.8)
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Performing an exact line search will usually decrease the number of iterations the outer general
descent method needs, but it will require very many (costly) evaluations of F and/or F′. An inexact
line search addresses this problem, but needs to be made “exact enough” by requiring that some
conditions hold, like the strong Wolfe conditions above. There are line searches based on just the
Armijo condition, or even the Goldstein conditions ([NW06, Chapter 3.1]) which are similar to
the Wolfe conditions.

Lemma 4.6. Zoutendijk condition
Assume that ∃cl ∈R : F> cl and consider Algorithm 4.1, assuming that ∀k ∈N : d(k) is a des-

cent direction and α(k) is a step length satisfying the strong Wolfe conditions. If F′ ∈ C0,1(U,Rn),
the Zoutendijk condition

∞

∑
k=0

(
−F′(Φ(k)),d(k)

)
∥d(k)∥2

<+∞ (4.9)

holds.

Proof. See [NW06, Theorem 3.2].

The Zoutendijk condition formalises the requirement that all d(k) are descent directions that
do not become orthogonal to the gradient F′(Φ(k)) and can be used to prove global convergence
results for general descent methods.

Theorem 4.7. Convergence of general descent methods
Assume the assumptions from Lemma 4.6 hold and that the descent directions d(k) additionally

satisfy

∃c ∈ R+ : ∀k ∈ N : βk :=

(
−F′(Φ(k)),d(k)

)
∥F′(Φ(k))∥2∥d(k)∥2

≥ c > 0. (4.10)

If the line search step sizes α(k) satisfy the strong Wolfe conditions (4.7), (4.8) and the algorithm
does not terminate after a finite number of steps, it follows that

lim
k→∞

F′(Φ(k)) = 0.

For every accumulation point Φ∗ of the sequence, it holds that F′(Φ∗) = 0. Since the set U0 is is
compact by assumption, the sequence

(
Φ(k)

)
k∈N trivially has at least one accumulation point Φ∗.

Proof. The Zoutendijk condition holds and we have

+∞ >
∞

∑
k=0

(
−F′(Φ(k)),d(k)

)
∥d(k)∥2

=
∞

∑
k=0

∥F′(Φ(k))∥2βk > c
∞

∑
k=0

∥F′(Φ(k))∥2,

which implies limk→∞ ∥F′(Φ(k))∥2 = 0.
Since F is continuous and U0 is compact by assumption (4.5), so

(
Φ(k)

)
k∈N has at least one

accumulation point. If Φ∗ is an accumulation point (since F′ is continuous) we obtain for a con-
verging subsequence (Φ(mk))k∈N

F′(Φ∗) = F′( lim
k→∞

Φ
(mk)) = lim

k→∞

F′(Φ(mk)).
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Remark 4.8.

i) The prerequisites of Lemma 4.6 and Theorem 4.7 are not too restrictive, since F needs to
be bounded from below for the minimisation problem to be well-defined, and the Lipschitz
continuity of F′ is often satisfied in practice.

ii) Theorem 4.7 gives a very strong convergence result that is global in the sense that the ini-
tial guess Φ(0) does not need to be “close” to a stationary point Φ∗ for Algorithm 4.1 to
converge. But the downside is that convergence can become arbitrarily slow. As opposed to
that, Newton’s method (see Lemma 4.2) gives a very strong result and fast convergence, but
only locally.

iii) One important point in Theorem 4.7 is that the line search does not have to be exact, as long
as every step size fulfils the strong Wolfe conditions, as this is much easier numerically. For
theoretical results, it very often remains necessary to assume exact line searches.

iv) Important variants of Algorithm 4.1 are the (nonlinear) steepest descent method (NLSD)
obtained by choosing

d(k) =−1/∥F′(Φ(k))∥2F
′(Φ(k)),

the (nonlinear) conjugate gradient method (NLCG) obtained by setting

d(k+1) = d(k)−βF′(Φ(k)),

where β is set according to a conjugacy condition, see Algorithm 4.2, and various variants
of Newton’s method.

v) In Newton’s method, we have ∀k ∈ N : α(k) = 1 and set the search direction as

d(k) =−
(
F′′(Φ(k))

)−1
F′(Φ(k)).

The conditions in Lemma 4.2 ensure that d(k) is a descent direction, which is only possible
if we start close enough to a stationary point Φ∗. It is possible to replace the fixed step size
α(k) = 1 by a line search (sometimes called damped Newton’s method).

For a quasi Newton method using a matrix
(
H(k)

)−1
to approximate

(
F′′(Φ(k))

)−1
for com-

puting the search direction, one can show that iff

lim
k→∞

| H(k)−F′′(Φ(k))d(k)∥
∥d(k)∥

= 0

and some other assumptions hold, the resulting quasi Newton method converges superlinear
locally (see [NW06, Theorem 3.6]).

vi) It is possible to precondition descent methods by applying the inverse of a symmetric pos-
itive definite matrix H(k) to the descent direction d(k). We immediately see that choosing
H(k) = F′′(Φ(k)) in the NLSD method, we recover a damped Newton method, or even a
quasi Newton method if B(k) is a “good” approximation of the Hessian (e.g. using the
lBFGS update). In the following, I will call this NLSD-lBFGS.

The already mentioned important special case of the NLCG algorithm was introduced in
[FR64]. It is a variant of the well known linear Conjugate Gradient method (see [HS52]). The
main differences are:
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i) F is no longer quadratic as in the linear CG method, so the step size computation by a
truncated Taylor series is no longer exact and has to be replaced by a line search.

ii) In the linear case, the conjugacy of the search directions is in the sense that d(k+1),d(k)

are F′′-orthogonal. In the nonlinear case, the notion of conjugacy changes in every itera-
tion, as F′′ = F′′(Φ) is no longer constant. This means that the search directions quickly
loose conjugacy. There are several non-equivalent ways to chose the search direction update
parameter β(k), see Remark 4.9.

Algorithm 4.2 Preconditioned nonlinear Conjugate Gradient (NLCG) algorithm.

For a given Φ0, preconditioner B : Rd → Rd and initial search direction d(0) do k = 0, . . . ,N:

1. Compute a step length α(k) such that F(Φ(k)+αd(k))< F(Φ).

2. Set Φk+1 = Φ(k)+αd(k).

3. Compute a new descent direction

d(k+1) =−B−1 F′(Φ(k))+β
(k)d(k)

Remark 4.9. Choosing β(k) There are many possible ways to set the search direction update
parameter β(k), which are all non-equivalent but reduce to the same update as in the linear case
if F is quadratic (and the nonlinear CG method reduces to the linear version). All variants have
some influence on the convergence behaviour.

i) The Hestenes-Stiefel update [HS52] sets

β
(k+1)
HS =

(
B−1F′(Φ(k+1)),F′(Φ(k+1))−F′(Φ(k))

)(
F′(Φ(k+1))−F′(Φ(k)),d(k)

) .

ii) The Fletcher-Reeves update [FR64] sets

β
(k+1)
FR =

(
B−1F′(Φ(k+1)),F′(Φ(k+1))

)
∥F′(Φ(k))∥

.

iii) The Polak-Ribière-Polyak update [PR69, Pol69] sets

β̃
(k+1)
PRP =

(
B−1F′(Φ(k+1)),F′(Φ(k+1))−F′(Φ(k))

)
∥F′(Φ(k))∥

.

As this update does not guarantee that d(k+1) is a descent direction, the modified version

β
(k+1)
PRP = max{0, β̃(k+1)

PRP }

is used most of the time.

iv) The Dai-Yuan update [DY99] sets

β
(k+1)
DY =

(
B−1F′(Φ(k+1)),F′(Φ(k))

)(
F′(Φ(k+1))−F′(Φ(k)),d(k)

) .
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v) The Dai-Yuan-Hestenes-Stiefel hybrid update sets

β
(k+1)
DY HS = max{0,min{β

(k+1)
DY ,β

(k+1)
HS }}.

vi) The Hager-Zhang update [HZ05] sets

β
(k+1)
HZ =(

B−1F′(Φ(k+1))(
F′(Φ(k+1))−F′(Φ(k)),d(k)

) ,F′(Φ(k+1))−F′(Φ(k))− 2∥F′(Φ(k+1))−F′(Φ(k))∥2(
F′(Φ(k+1))−F′(Φ(k)),d(k)

)d(k)

)
.

See the survey article [HZ06] for even more search direction updates.

Remark 4.10. The preconditioner B
In literature dealing with nonlinear optimisation, the notion of preconditioning NLCG rarely

appears (see [HZ06, Section 8] for one of the exceptions). This may be due to (algebraic) pre-
conditioners being available for NLSD that offer good convergence properties in practice (e.g.
lBFGS) and the fact that many nonlinear optimisation problems are discrete in nature anyway,
with no possibility of e.g. deriving a PDE-based preconditioner on the continuous level and then
discretising it.

Another point is that a preconditioner that changes from iteration (meaning B = B(k)) intro-
duces new difficulties in the computation of the search direction update parameter β(k) from Re-
mark 4.9 as it turns NLCG into a variable metric method and influences the notion of conjugacy.
Formulating NLCG with left and right preconditioning yields that e.g. the Polak-Ribière-Polyak
update should read

β̃
(k+1)
PRP =

((
B(k+1)

)− 1
2 F′(Φ(k+1)),

(
B(k+1)

)− 1
2 F′(Φ(k+1))−

(
B(k)
)− 1

2 F′(Φ(k))

)
∥F′(Φ(k))∥

,

which means that one needs to compute the square roots of the preconditioners, which might be
both difficult and costly. However, since the notion of conjugacy changes anyway, one might simply
approximate B(k) by B(k+1), which allows the use of the corresponding formula from Remark 4.9
iii for left-only preconditioning.

The remaining question is if this offers any benefit over e.g. simply preconditioning NLSD with
B(k). This is an open question, as there are examples where it is not the case, which is illustrated
briefly in Section 4.4.

Remark 4.11. Optimisation in Hilbert spaces
The presented methods can also be formulated directly in Hilbert spaces (see e.g. [Sac86]),

meaning they can even be applied to the continuous problem without first discretising the func-
tional by the finite element method. This is beyond the scope of this work, as mesh optimisation
is only relevant in the discrete case, but additional insight might be gained from considering the
problem in a more abstract setting.

4.3. Incorporating constraints

If we now want to align the mesh Th with a surface Γ, we effectively add a constraint to the
minimisation problem:

Find Φ
∗ = argminΦ∈Dφ0

F(Φ) satisfying ∀i ∈ E : ci(Φ
∗) = 0, (4.11)
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where E ⊂ N is a finite set defining the number of constraints. For such a constrained minimisa-
tion problem to be well-posed, the constraints ci will need to satisfy certain conditions. This is
usually called constraint qualification (see [NW06, Chapter 12]). One example is the the linear
independence constraint qualification (LICQ).

Remark 4.12. In this part, I only mention equality constraints, as this is the relevant case for the
class of problems we want to consider. Most of the theory mentioned in this section also takes
inequality constraints into account, which are much harder to treat.

Definition 4.4. The linear independence constraint qualification is said to hold at Φ iff

{∇ci(Φ) : i ∈ E} is linearly independent.

Together with the first order necessary conditions for an unconstrained minimum, a constraint
qualification forms the first order necessary conditions for the constrained minimisation problem
(4.11). One example are the Karush-Kuhn-Tucker (KKT) conditions, using the LICQ ([NW06,
Theorem 12.1]). There are many other constraint qualifications, which are usually related, can be
derived from or implicate each other, see [Pet73] for an extensive treatment. All of the constraint
qualifications from [Pet73] have in common that they require ∇c(Φ∗) ̸= 0 in one variant or the
other. I do not cover more details because we will see that the surface alignment constraint from
Section 3.5.8 does not have this property.

Recall (3.40):

H(Φ) = ∑
K∈Φ(Th)

 ∑
ai, j∈E0(K),i̸= j

r(sΓ(ai)sΓ(a j))

 ,

with

r : R→ R≥0, r ∈ C1(R) :

∀x ∈ R : r′(x)≥ 0, r(x)

{
> 0, x < 0
= 0, x ≥ 0

.

Because of the regularity assumption, we necessarily have r′(0) = 0 which already implies

H(Φ∗) = 0 ⇒ ∇H(Φ∗) = 0.

The condition ∀x ≥ 0 : r(x) = 0 is strictly necessary because away from Γ, the constraint should
not influence the solution.

This means that most methods for solving constrained minimisation problems are not applic-
able. One method that does not require any form of constraint qualification is the quadratic penalty
method ([NW06, Chapter 17.1]). For this, we define the quadratic penalty function

Q(Φ,µ) := F(Φ)+
µ
2 ∑

i∈E
c2

i (Φ) (4.12)

which in our case reduces to
Q(Φ,µ) = F(Φ)+

µ
2
H(Φ)2.

µ is the penalty parameter. The idea is now to solve a sequence of minimisation problems
(Q(F,µn))n∈N with

∀i > k : µi > µk,µk
k→∞−→+∞.

obtaining a sequence of minimisers Φ∗(n), so that limn→∞H(Φ∗(n)) = 0. Because of the regular-
ity of the penalty terms, we can use the described unconstrained minimisation techniques from
Section 4.2 to compute
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Φ
∗(n) = argminΦ∈Dφ0

Q(Φ,µn)

with the hope that Φ∗(n−1) proves a good initial guess so that the number of iterations for the
unconstrained minimisation is small.

In [Wei12, Section 6.1.3], two different functions r1,r2 are compared with

r1(x) =

{
x2, x < 0
0, x ≥ 0

, r2(x) =

{
2(cosh(x)−1), x < 0
0, x ≥ 0

.

Although they differ only by O(x4) for x → 0, the numerical results suggest that r2 is better
suited for our purposes, as the convergence of both the unconstrained minimisation algorithms and
the constraint H(Φ∗(n)) is faster.

Remark 4.13. The choice of the sequence (µn)n∈N is critical for the overall performance of the
quadratic penalty method. If µn is increased too slowly, many outer iterations may be neces-
sary to get a sufficient decrease in H(Φ∗(n)), which means we need to solve many unconstrained
minimisation problems. If µn is increased to quickly, Φ∗(n−1) is not a good initial guess for the
minimisation of Q(Φ,µn), so the unconstrained minimisation will require many iterations or even
fail to converge all together, as the penalisation leads to systematic ill-conditioning of the Hessian
Q′′(Φ,µ).

In practice, a strategy that works well is setting

µ1 = 1, µn+1 = c

(
µn

H(Φ∗(n)

H(Φ∗(n−1))

)2

(4.13)

where e.g. c = 5. See also [Wei12, Algorithm 6.1], [BW13, Algorithm 1].

4.4. Examples of nonlinear minimisation algorithms

There are some well-known test functions for nonlinear minimisation algorithms. As this is not
the main focus of this work, I will just use them for illustration purposes, to indicate some of the
problems or phenomena we need to expect to face when applying methods from Section 4.2.

The minimisation algorithms used were

i) Newton’s method,

ii) NLSD without preconditioning,

iii) NLSD using the Newton direction by preconditioning with B(k) = ( f ′′(x(k))),

iv) NLSD preconditioned with lBFGS, using an lBFGS dimension of 2,

v) NLCG without preconditioning and modified Polak-Ribière-Polyak update,

vi) NLCG using the Newton direction by right preconditioning with B(k) = ( f ′′(x(k))) and mod-
ified Polak-Ribière-Polyak update,

with the absolute tolerance εa = 1.4901e−8, relative tolerance εr = εa and step length tolerance
εs = 2.2204e−16 where applicable.

In all cases using a line search, the used algorithm was used an inexact line search with mixed
quadratic/cubic interpolation for determining the step sizes, with the constants c1 = 10−3 and
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c2 =
3

10 in the strong Wolfe conditions (see Definition 4.3). If the preconditioned search direction
is not a descent direction, all algorithms perform one step of unpreconditioned steepest descent,
as a line search will generally fail along such a direction.

Example 4.14. Rosenbrock’s Function
One well-known benchmark problem is finding the minimum x∗ = (1,1)T of the Rosenbrock

function (see [Ros60])
f (x1,x2) = 100(−x2

1 + x2)
2 +(1− x1)

2.

The function’s steep valley proves difficult for most minimisation algorithms, but the Hessian is
positive definite on the set M :=

{
(x1,x2) ∈ R2 : x2 < x2

1 +
1

200

}
. If all iterates remain in this set,

we can expect very good performance from Newton’s method. I shall use it as a small example for
illustration purposes. The starting point was x(0) = (−1.9,2)T ∈ M.

(i) Illustration of the steep valley with colour according to f (x)
from 0 (blue) to 2000 (red) in [−2,2]× [−0.72,3.68]⊂ Rd .

(ii) Isolines and the iterates of
Newton’s method (red),
NLCG-Newton (green) and
unpreconditioned NLCG (blue) in
[−3.28,2.22]× [−7.78,4.06]⊂ Rd .

Figure 4.1: Rosenbrock’s function with 51 isolines from 0 to 1000.

As we can see in Table 4.1, the quadratic convergence of Newton’s method wins in this case,
and it can be verified that all iterates lie in M. The unpreconditioned NLSD performs very poorly,
but preconditioning it using B(k) = ( f ′′(x(k))) gives good results. However, using lBFGS as a
preconditioner requires only slightly more evaluations of f and f ′, and no evaluations of f ′′, so
it might be more efficient overall. NLCG without preconditioning needs more evaluations than
NLSD-lBFGS, but also requires slightly less computational effort. Preconditioning NLCG using
B(k) = ( f ′′(x(k))) performs quite similar to NLSD-Newton. It requires less evaluations, but every
iteration is slightly more expensive than of NLSD-Newton.

The points I want to illustrate here are:

i) For this problem, Newton’s method is applicable and naturally offers the best convergence
behaviour, but we need to keep in mind that this will not be the case for nonconvex problems.
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Newton NLSD NLSD-Newton NLSD-lBFGS NLCG NLCG-Newton

# its 5 8853 19 33 32 22

# evals f 6 51206 66 70 84 52

# evals f ′ 6 51207 66 71 84 52

# evals f ′′ 5 0 19 0 0 22

Table 4.1: Statistics for several minimisation algorithms applied to Rosenbrock’s function.

Especially if the problem is of high dimension, computing (let alone solving a linear system
with) f ′′ will in general be prohibitively expensive.

ii) In Figure 4.1, we can see that the second iterate of Newton’s method has a higher function
value and is far away from the minimum along the search direction. This is due to not
performing a line search, but using a fixed step length of 1 - the search direction is indeed a
descent direction, just the step size is wrong. In this case, it causes the iteration to leave the
steep valley, re-entering in the following iteration.

iii) The quasi Newton method NLSD-lBFGS is applicable even to problems where Newton’s
method is not, although the constructed preconditioner might not be as effective. But even
in this example, the superlinear convergence only appears when the iterates x(k) are already
“close enough” to x∗, meaning near the end of the iteration.

iv) All methods using a line search must iterate through the Rosenbrock function’s steep valley,
which greatly limits the step sizes requires lots of iterations, most notably in the unprecon-
ditioned NLSD method.

Example 4.15. Himmelblau’s function
Another well-known test function for minimisation algorithms is Himmelblau’s function (see

[Him72]):
f (x) = (x2

1 + x2 −11)2 +(x2
2 + x1 −7)2

In contrast to Rosenbrock’s function, it does not have a particularly steep gradient, but it has
multiple local minima at

x∗1 ≈ (−3.77931−3.28319)T , x∗2 ≈ (−2.80512,3.13131)T ,

x∗3 = (3,2)T , x∗3 ≈ (3.58443,−1.84813)T

and a local maximum at xM ≈ (−0.270845,−0.923039)T . Here, we cannot expect the Newton
direction to always be a descent direction, and indeed the very first iterate is very far from the
starting point and any of the known local minima. In the following, Newton’s method converges
to the local minimum x∗1 and not to x∗3 like all other solvers. This is the reason why the iterates
of Newton’s method are absent from Figure 4.2 (ii) and the iterates of NLSD-Newton are given
instead.

The starting point of the minimisation is chosen as x(0) =
(3

2 ,4
)T

.
In this case, we can see that Newton’s method does not offer the fastest convergence, which

comes as no surprise since the prerequisites are not given. Equipping NLSD with the Newton
direction requires only half the iterations, which is very important as the most expensive part of
an iteration is the assembly of f ′′ and the solving with it to obtain the Newton direction. The most
efficient solver is NLCG-Newton, which needs the same number of outer iterations (and thus solves
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(i) Illustration of the multiple extrema with col-
our according to f (x) from 0 (blue) to 500 (red)
in [−4.5,4.5]2 ⊂ R2.

(ii) Isolines and the iterates of NLSD-Newton
method (red), NLCG-Newton (green) and un-
preconditioned NLCG (blue).

Figure 4.2: Himmelblau’s function.

Newton NLSD NLSD-Newton NLSD-lBFGS NLCG NLCG-Newton

# its 15 28 7 14 10 7

# evals f 16 152 30 20 21 16

# evals f ′ 16 152 30 21 21 16

# evals f ′′ 15 0 7 0 0 7

Table 4.2: Statistics for several minimisation algorithms applied to Himmelblau’s function.

with f ′′), but less evaluations of f and f ′. Interestingly, the quasi Newton method NLSD-lBFGS
outperforms Newton’s method, too.

Here, my point is that in the absence of strong convexity of the functional, we cannot expect
the Newton direction to have as great an impact as e.g. for the Rosenbrock function. The flexibility
offered by discarding non-descent directions in NLCG and NLSD is critical for the use of a line
search and greatly improves the stability of the minimisation process, at the cost of computing f ′′

and then not being able to use the Newton direction. The class of problems we are interested in
is nonconvex like this example, but additionally has (many) strong singularities, which is a strong
argument for using a line search based minimisation algorithm that takes this into account.

Remark 4.16. The given examples are to illustrate that for the minimisation of nonlinear func-
tionals, especially for nonconvex functionals, the choice of the most suitable algorithm is even
more problem dependent than for the solving of linear problems. There is no single algorithm
that performs “best” even just for a significant set of benchmark problems (see [JY13] for a large
catalogue).

The same applies to the search direction update (meaning the computation of β(k)) in the
NLCG method. See [HZ05] for a comparison of different NLCG and NLSD-lBFGS variants on a
total of 113 benchmark problems.
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5
Numerical results part I: Mesh

optimisation

In this chapter I will show some results of mesh optimisation based on the class of functionals
derived in Section 3.5 and compare them with the results from a method using the D(u) : D(v)
bilinear form from Section 3.4.2 where possible. This functional offers significantly better res-
ults than the cheaper (graph) Laplacian based functionals, while the computational effort is lower
than for more sophisticated functionals leading to linear systems of equations, like the biharmonic
equation (see e.g. [Wic11]) or linearised elasticity. Especially the biharmonic equation is challen-
ging to solve numerically ([Han93], [MS04]) if one tries to take advantage of imposing boundary
conditions for ∂νΦ, leading to boundary conditions of the third kind.

5.1. Software used

All computations in this chapter were done on compute servers at the Technische Universität
Dortmund using the software FEAT3, which is part of the FEAT and FEATFlow software family
([Tur99], [TGB+10], [KOS+12], [HKT14]). It is a new C++ code designed to be used by research-
ers as well as in industry applications and features a very flexible solver structure, a great variety of
finite elements including Argyris, Bogner-Fox-Schmit, conforming Lagrange, Crouzeix-Raviart,
Rannacher-Turek and Zienkiewicz elements. The code is MPI parallel and GPU acceleration is
available for a wide range of linear solvers, as well as a domain decomposition-based solver using
the ScaRC architecture ([KT98],[TBK06]).

The nonlinear solvers used in this section are not implemented for GPUs, as there is no matrix
that can be assembled in the main memory and then upload it to the GPU. Instead, an evaluation of
the functional’s gradient F′ requires one gather operation per cell, which is detrimental for GPU
performance. Although most solvers are also MPI parallel, some computations in this section
were done in serial to be able to compare the results with solvers from ALGLIB ([Boc]), for which
FEAT3 provides an interface.
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5.2. Some mesh quality heuristics

Since we want to compare the minimisers of different mesh quality functionals, we need another
notion of mesh quality that is independent of the quality functionals chosen.

For a cell K recall the definitions of the diameter h(K), the in-circle diameter ρ(K) and the
aspect ratio σ(K) = h(K)

ρ(K) from Definition 2.3. From the definitions of regular families of finite
elements (Definition 2.10) and meshes (Definition 2.7) we see that it is important to bound

σi = sup

{
σ(K) : K ∈

⋃
i∈N

Ti

}

from above for every Ti that is a member of a family (T) of meshes. With the definitions

hmin(K) = min{vol(e) : e ∈ E1(K)} (5.1)

of the minimum edge length and

γmax(K) := max
{

|(vi − v j,vk − v j)|
∥vi − v j∥2∥vk − v j∥2

: ∃ei j,ek j ∈ E1(K) : vi,v j ∈ ei j,vk,v j ∈ e jk

}
(5.2)

of the maximum of the cosine of angles between two edges of a cell K.
To measure this, we chose the following mesh shape quality heuristics:

Definition 5.1. Shape quality heuristics
For a domain Ωh ⊂ R2, a mesh Th in Ωh and a cell K ∈ E2(T) define

Q(K) :=

{
hmin(K)

h(K)

√
1− γmax, K is convex

0 else
(5.3)

if K is a 2-hypercube and

Q(K) =
1

h(K)
d

√
vol(K)

vol(Ŝn)
(5.4)

if K is a d-simplex (see also [CR72, Sections 5 and 6]), and define the shape quality heuristic

Q(Th) := min
K∈E2(Th)

Q(K). (5.5)

and the the average shape quality heuristic

Qa(Th) :=
1

card(E2(Th))
∑

K∈EdTh

Q(K). (5.6)

These heuristics are chosen so that Q(K) = 0 if K is deteriorated (e.g. vol(K) = 0 or if K
nonconvex or degenerated to a triangle in the case of hypercubes) and that Q(Ŝ) = Q(Q̂) = 1
(hence the additional scaling factor 1/ d

√
volSn in (5.4)). To the best of my knowledge, there is no

simple mesh quality heuristic based on geometric quantities for 3-hypercubes, as the faces will in
general not be planar. This means that for 3-hypercubes, one would need to compute |R−1|1,∞,K

(see Lemma 2.6) where R : Q̂ → K is the local reference mapping.
The hypercube quality heuristic (5.3) has the important property that it tends to zero if an

interior angle tends to zero or π, or if the length of an edge tends to zero. Note that γmin(K)→ 0
or hmin → 0 only imply ρ(K)→ 0 if K is an affine hypercube.

Because it is very visual, another quality heuristic frequently used in 2d is the minimum spatial
angle αmin between edges. For 2-simplices, this is equivalent to the measure in (5.4) in the sense
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that (αmin(Ti)→ 0)⇔ (Q(Ti)→ 0) and that its maximum is attained at αmin(K) = π

3 iff K is an
equilateral 2-simplex. For hypercubes, this is not a very useful quality heuristic for the reasons
stated above, and the maximum angle is equally important. But it is still useful to compute these
angles to recognise if the Q is low because of bad angles or because of strong anisotropies.

Remark 5.1. The use of the minimum angle to estimate the quality of simplices goes back to
results from [Syn57]. The proof for an interpolation error estimate similar to Lemma 2.3 for
m = 1 contained therein requires the solution u to be of class C2(Ω). This was generalised to
u ∈ H2(Ω) in [Jam76], resulting in an estimate that instead depends on the maximum angle. See
[AD00] for an error estimate for hypercubes in 2d using a maximum angle condition.

Definition 5.2. Worst angle
Define the minimum, maximum and worst angle αw of a mesh Th according to

αmin(Th) := min
K∈Th

{
(ai −a j,ak −a j)

∥ai −a j∥2 ∥ak −a j∥2
: ∃ei j ∈ E1(K) : ai,a j ∈ ei j,∃ek j ∈ E1(K) : ak,a j ∈ ek j

}
αmax(Th) := max

K∈Th

{
(ai −a j,ak −a j)

∥ai −a j∥2 ∥ak −a j∥2
: ∃ei j ∈ E1(K) : ai,a j ∈ ei j,∃ek j ∈ E1(K) : ak,a j ∈ ek j

}
αw(Th) := min{αmin(Th), |αmax(Th)−π|}

In addition to this scaling invariant shape quality heuristic, we need a somewhat shape inde-
pendent size quality heuristic. Assume that we have an optimal cell size distribution λ : Ed(Th)→
[0,1] with ∑K∈Ed(Th) λ(K) = 1 (see Section 3.5.4).

Definition 5.3. Size distribution defect
Define the size distribution defect of a mesh Th on a domain Ωh as

S(Th) = ∑
K∈E2(Th)

⏐⏐⏐⏐λ(K)− vol(K)

vol(Ωh)

⏐⏐⏐⏐ , (5.7)

which is just the norm ∥S∥1 of the corresponding vector of differences S. Sometimes the notation
Si := S(Ki) for some Ki ∈ Ed(Th) will be used.

5.3. Refinement of a unit circle mesh

In this case we consider the domain Ω = B1(0) ⊂ R2 with a polygonal approximation Ωh and a
mesh Th of simplices or hypercubes of dimension 2.

We obtain this by using
Ωh := {x ∈ R2 : ∥x∥1 ≤ 1},

with a mesh Th,0 which we then refined using regular refinement to obtain the mesh Th,l which
in turn defines the boundary ∂Ωh,l and thus Ωh,l . In the following, I omit the index l if this is
unambiguous.

We now want to use this family of meshes to approximate Ω by imposing an appropriate
displacement boundary condition through the mapping ϕ.

ϕ : R2 \{0}→ ∂Ω : ϕ(x) =
1
∥x∥

x

with which we can define the vertex mapping

ϕ̂ : E0(Th)→ R2, ϕ̂(v) =

{
trϕ(v), v ∈ ∂Th

v, v /∈ ∂Th(tk)
.

67



CHAPTER 5. Numerical results part I: Mesh optimisation

(i) Th,0.
(ii) Th,4. (iii) ϕ̂(Th,4).

Figure 5.1: Various meshes for the approximation of the unit circle, hypercubes.

The mapping ϕ̂ also defines a member of Dh(Th) as its values can be interpreted as the DoF of the
appropriate discrete space. This finite element function will again be denoted by ϕ̂ and used as the
initial guess for all solvers. It also can be used to visualise the domain and the mesh after applying
the boundary deformation.

(i) Th,0. (ii) Th,4. (iii) ϕ̂(Th,4).

Figure 5.2: Various domains for the approximation of the unit circle, simplices.

This can be interpreted as using the explicit knowledge of ∂Ω to adapt ∂Ωh,l such that

∀v ∈ E0(Th,l) : v ∈ ∂Ωh,l ⇒ v ∈ ∂Ω.

When the mesh Th,0 is refined l times, we only adapt ∂Th,l (meaning applying ϕ̂ after the lth
refinement). This leads to cells of very poor quality in ϕ̂(Th,l), so this methodology is not very
useful in situations where we could just perform this adaption in every step of refinement.

However, this is very useful for generating a sequence of initial guesses whose quality deteri-
orates with increasing l to investigate if a regular family of meshes can be recovered by a mesh
optimisation technique. More explicitly, we want to see if said technique can recover from an
initial mesh of poor quality, which could be the output of an external mesh generation tool. As
an additional requirement, we want to have a uniform cell size distribution which provides an ad-
ditional challenge as the starting solution’s distribution is quite nonuniform. This requirement is
given by choosing a uniform reference mesh for Gh and λ ≡ const for Fh, which will be defined
below.

Define the spaces

Vh :=
{

v ∈D(Th) : v|∂Ω̂h
= ϕ

}
, Wh :=

{
w ∈D(Th) : w|∂Ω̂h

= 0
}
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5.3. Refinement of a unit circle mesh

The discrete D(u) : D(v) functional is defined by

∀(u,v) ∈Vh ×Wh : ah(u,v) =
∫

Ω̂h

D(u) : D(v)dx

and then setting

Gh(u) :=
1
2

ah(u,u).

In this case, we will use the reference domain Ω̂h = Ωh and the reference mesh T̂h = Th.
So we are looking for

Ψ
∗
h = argminu∈Vh

Gh(u)⇔∀w ∈Wh :
∂Gh

∂w
(Ψ∗

h) = 0.

For the hyperelasticity based functional, recall (3.23):

Fh(Φ) =
∫

Ωh

c f (∥∇Φ∥2
F −d)2dx+(det(∇Φ))pd dx+

cd(
det(∇Φ)+

√
δ2

r +(det(∇Φ))2
)pd

dx.

We are then looking for a discrete optimal variation Φ∗
h in the sense of (3.24):

Φ
∗
h = argminΦ∈Vh

Fh(Φ).

In this example, the parameters are

c f = 1,δr = 1e−8, pd = 1,cd =
√

δ2
r +1+δ

2
r +1.

Remark 5.2. In this section, I give results obtained by using unpreconditioned solvers (CG for
Gh and NLCG for Fh). This is done for illustration purposes, to demonstrate the behaviour of the
functionals for h → 0 and to serve as motivation for Chapter 6.

In the corresponding tables, the computational time is given in seconds of wall clock time.
This is meant to give a rough idea about the relative computational effort of the different methods
and of different problem sizes and is by no means to be understood as benchmarking information.

Table 5.4 and Table 5.1 summarise the problem sizes and some properties of the initial guess
Th. Because we are using global, regular refinement (where a cell is split into four cells upon
refinement), the number of cells increases by a factor of four from level to level, but since the
coarse meshes consist of five cells (hypercube mesh) and four cells (simplex mesh), the numbers
are slightly different.

Remark 5.3. The settings for the solvers were:

i) Gh: Unpreconditioned CG with relative stopping criterion εr = 1e−8.

ii) Fh: Unpreconditioned NLCG with relative stopping criterion εr = 1e−8, function value
decrease tolerance ε f = 0 and step length criterion εs ≈ 2.2204e−16 (machine precision for
double precision). The linesearch used c1 = 1e−3,c2 = 0.3 for the strong Wolfe conditions
and a step length criterion of εs = 5e−14 and was allowed a maximum of 20 iterations.
The NLCG was allowed 10 subsequent iterations without the line search finding a point
satisfying the strong Wolfe conditions before aborting.
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CHAPTER 5. Numerical results part I: Mesh optimisation

In all tables, cases in which the solver stagnated have the letter s, while the cases in which
the nonlinear solver did stop early because of the step length or functional value criterion have
an asterisk in the first column. In all of these cases, the NLCG stopped because the step length
criterion was satisfied, which is an indicator for the problem being too badly conditioned for the
nonlinear solver to make any further progress. One could set εs = 0, but in most cases this would
just lead to more iterations where the output of the line search does not satisfy the strong Wolfe
conditions, leading to stagnation of the solver after 10 iterations.

It should be noted that in all tables, the number of CG or NLCG iterations are given. In the
case of NLCG, this is not a good metric, as the number of functional and gradient evaluations
can be very different from iteration to iteration due to the linesearch requiring different numbers
of iterations. The more relevant quantity is the number of functional evaluations, which is omitted
here since the iteration numbers are just stated for motivation purposes. The number of functional
evaluations will be given and discussed in Section 7.1.

(i) Ψ∗(Th,4). (ii) Φ∗(Th,4). (iii) Ψ∗(Th,4). (iv) Φ∗(Th,4).

Figure 5.3: Optimised meshes on refinement level four.

The solutions Ψ∗
h,Φ

∗
h for refinement level four are depicted in Figure 5.3, where some statistics

data about them is given in Table 5.5 and in Table 5.6 for the hypercube meshes, and in Table 5.2
and Table 5.3 for the simplex meshes.

Let us first visually examine the meshes Th,0,Th,l and the initial guess ϕ̂(Th,l) in Figure 5.1 and
Figure 5.2. It can be seen that the coarsest mesh does not capture the geometry very well and that
its boundary has singular points (in the sense of Section 3.1), which poses some problems as we
will see. The mesh Th,l on the computational domain on which the functional Gh is minimised is
just a refinement of the initial coarse mesh Th,0 and completely uniform in the simplex case, where
the low regularity of the boundary forces us to use a less uniform coarse mesh for the hypercube
case. This is due to the considerations from Section 3.5.8, also see Figure 3.19 and Figure 3.20.
Note that the mesh ϕ̂(Th) only visualises the starting point for the minimisation of Gh and Fh,
but that in the case of Gh no computations are carried out on these ill-shaped meshes. Note that
the particular choice of the initial guess is of no consequence if the solution to the minimisation
problem is unique (e.g. for Gh), but that this is not the case for the functionals of the family Fh.

Note that the starting meshes ϕ̂(Th,l) behave quite differently upon refinement. For the hyper-
cube mesh, the worst angle remains the same while the ratio hmin(K)

h(K) deteriorates for the cells K at
the boundary (see also Table 5.4). For the simplex mesh, angles of cells at the boundary tend to
zero with further refinement (see also Table 5.1). It should also be noted that, because the vertices
are projected to the boundary in the direction of the outer normal, the cells at the singular points
will always be of the lowest quality. Because of the ratio between cells in the interior and cells at
the boundary, Qa is not monotone with refinement.

First, let us examine the simplex case. The minimisers of the functional Gh do not satisfy
any useful lower bound on Q and are not able to recover meshes of good quality with the given
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5.3. Refinement of a unit circle mesh

l CELLS VERTICES DOF αw(ϕ̂(Th)) Q(ϕ̂(Th)) Qa(ϕ̂(Th))

3 256 145 290 26.1 7.13e−1 7.68e−1

4 1024 545 1090 14.94 5.46e−1 7.48e−1

5 4096 2113 4226 8.03 4.02e−1 7.45e−1

6 16384 8321 16642 4.16 2.90e−1 7.49e−1

7 65536 33025 66050 2.12 2.07e−1 7.53e−1

8 262144 131585 263170 1.07 1.47e−1 7.56e−1

9 1048576 525313 1050626 0.54 1.04e−1 7.57e−1

10 4194304 2099201 4198402 0.27 7.37e−2 7.59e−1

11 16777216 8392705 16785410 0.13 5.21e−2 7.59e−1

Table 5.1: Number of entities and properties of the initial guess Th for the unit circle simplex
meshes.

boundary conditions, even though the reference domain has a uniform discretisation and cells of
good shape. The minimal cell shape quality heuristic even decreases on refinement level three,
four and five (see Table 5.3), as does the worst angle αw. On all levels, the average cell quality Qa

slightly improves, which is confirmed visually in Figure 5.3, especially with regard to the uniform
cell size distribution of the reference domain. However, the low values for Q mean that the meshes
obtained by this method are less suitable for solving partial differential equations on this domain
with the finite element method.

In contrast to this, the functional Fh is independent of a reference domain, but has a set of (in-
dependent) reference cells and measures some energy of the deformation from a reference cell to
the corresponding cell in the mesh. The minimisers Φ∗ of the functional Fh show major improve-
ment of αw, Q and Qa over the initial guess mesh ϕ̂(Th) (see Table 5.3). However, the solver does
not converge with regard to the relative residual tolerance εr from level nine onwards and either
stops due to the step length criterion (level ten) or stagnates (levels nine and eleven). The effect
of the solver stopping early is very strong, but as long as the solver is able to reach the relative
tolerance, the angles and the quality indicator remain in regimes that are acceptable for using the
corresponding meshes for finite element discretisations. Also note that even without convergence
with regard to εr and stopping after very few iterations (most notably on refinement levels ten and
eleven), the minimiser Φ∗ produces a better mesh with regard to the shape quality heuristic Q than
the minimiser Ψ∗ of the functional Gh, in comparable run time.

The iteration numbers for the minimisation of Gh show the typical behaviour associated with
second order elliptic operators and an unpreconditioned CG solver, as the number increases roughly
by a factor of two for each level of refinement. The interesting observation here is that even though
the functional Fh is highly nonlinear and is minimised with a nonlinear solver, it shows the same
behaviour for the refinement levels three to eight. This will serve as a starting point for deriving a
preconditioner in Chapter 6.

Now consider the hypercube case. If we look at the shape quality heuristic Q in Table 5.5, we
note that the worst angle αw remains nearly the same over all levels of refinement, whereas the
shape quality indicator Q decreases by two orders of magnitude. Examining the solution on level
four given in Figure 5.3 we see strong anisotropies in the mesh, especially near the singular points
of boundary of the computational domain and mesh T̂h. As the functional measures the energy of
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l αw(Ψ
∗) Q(Ψ∗) Qa(Ψ

∗) # its ∥G′(Th)∥2
∥G′(Ψ∗)∥2

time

3 15.92 5.60e−1 8.01e−1 21 8.92e−9 5.87e−4

4 11.05 4.68e−1 8.01e−1 47 8.01e−9 2.08e−3

5 7.54 3.88e−1 8.02e−1 98 7.69e−9 7.47e−3

6 5.07 3.19e−1 8.02e−1 193 9.11e−9 5.02e−2

7 3.38 2.61e−1 8.02e−1 375 9.77e−9 3.83e−1

8 2.23 2.12e−1 8.02e−1 732 9.61e−9 3.59e+0

9 1.46 1.72e−1 8.02e−1 1423 1.00e−8 6.85e+1

10 0.96 1.39e−1 8.02e−1 2770 9.95e−9 6.91e+3

11 0.62 1.12e−1 8.02e−1 5346 9.94e−9 3.74e+4

Table 5.2: Statistics for the minimisers of Gh, simplices, unpreconditioned CG.

l αw(Φ
∗) Q(Φ∗) Qa(Φ

∗) # its ∥F′(Th)∥2
∥F′(Φ∗)∥2

time

3 29.25 7.21e−1 8.49e−1 44 8.71e−9 6.36e−3

4 27.27 6.94e−1 8.51e−1 103 9.42e−9 4.25e−2

5 25.77 6.76e−1 8.52e−1 208 9.02e−9 2.95e−1

6 24.64 6.63e−1 8.53e−1 400 9.76e−9 2.08e+0

7 23.56 6.53e−1 8.53e−1 1081 9.52e−9 2.92e+1

8 22.63 6.44e−1 8.53e−1 3908 9.86e−9 6.81e+2

9s 10.77 4.63e−1 7.77e−1 1156 6.36e−7 1.38e+3

10* 3.72 2.74e−1 7.13e−1 388 6.66e−7 1.06e+3

11s 5.09 3.40e−1 7.43e−1 359 6.38e−7 3.97e+3

Table 5.3: Statistics for the minimisers of Fh, simplices, unpreconditioned NLCG.

the deformation with regard to the computational domain and the computational domain contains
(slight) anisotropies, this seems unavoidable. Table 5.5 only shows the lowest value of Q(Ψ∗(T̂h)),
which is good for determining whether a mesh has become unsuitable for further computations,
but is misleading for judging the average quality of the mesh’s cells. As can be observed in Figure
5.3, the application of Ψ∗ improves the average quality Qa (see Table 5.6), especially when bearing
in mind that a uniform size distribution was one of the goals. Still, the low values for Q make the
meshes resulting from this method less desirable (as in the simplex case).

As the functional Fh is independent of a reference domain and isotropic reference cells were
chosen, the functional Fh tends to reduce anisotropies but cannot remove them entirely due to other
constraints as can be observed in Figure 5.3. The solver does not reach the required tolerance on
the relative residual from refinement level ten onwards. Instead, it stagnates or stops because of the
step size tolerance, which indicates that the problem is too badly conditioned for the linesearch
to make any further progress. The effect is noticeable in the quality heuristics Q and Qa of the
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5.3. Refinement of a unit circle mesh

solutions from refinement level ten on, although they are still higher than for the minimisers of the
functional Gh (compare Table 5.5 and Table 5.6).

l CELLS VERTICES DOF αw(Th) Q(Th) Qa(Th)

3 320 337 674 45 1.80e−1 4.24e−1

4 1280 1313 2626 45 1.86e−1 4.22e−1

5 5120 5285 10570 45 1.39e−1 4.26e−1

6 20480 20048 40096 45 7.18e−2 4.29e−1

7 82920 82177 164354 45 3.65e−2 4.32e−1

8 327680 328193 656386 45 1.84e−2 4.33e−1

9 1310720 1311745 2623490 45 9.23e−3 4.34e−1

10 5242880 5244929 10489858 45 4.62e−3 4.35e−1

11 20971520 20975617 41951234 45 2.31e−3 4.35e−1

Table 5.4: Number of entities and properties of the initial guess Th for the unit circle hypercube
meshes.

l αw(Ψ
∗) Q(Ψ∗) Qa(Ψ

∗) # its ∥G′(Th)∥2
∥G′(Ψ∗)∥2

time

3 52.66 9.81e−2 4.40e−1 45 8.50e−9 9.30e−4

4 52.93 6.78e−2 4.58e−1 102 9.15e−9 5.72e−3

5 53.04 4.61e−2 4.68e−1 215 9.68e−9 5.14e−1

6 53.09 3.10e−2 4.73e−1 435 9.83e−9 4.62e+0

7 53.11 2.06e−2 4.75e−1 860 9.88e−9 5.24e+1

8 53.12 1.36e−2 4.76e−1 1689 9.93e−9 7.15e+2

9 53.12 8.88e−3 4.77e−1 3315 9.72e−9 4.12e+3

10 53.12 5.77e−3 4.77e−1 6430 9.94e−9 5.60e+4

11 53.12 3.74e−3 4.78e−1 12356 9.98e−9 3.46e+5

Table 5.5: Statistics for the minimisers of Gh, hypercubes, unpreconditioned CG.

In this example, the nonlinear class Fh of mesh quality functionals is superior to the quadratic
functionals Gh, as it can recover meshes with good shape quality heuristics from badly shaped
initial guesses, which could be the input from external mesh generation tools, over a descent range
of refinement levels. Solving the nonlinear minimisation problem for Fh proves to be difficult,
as the nonlinear solver tends to stagnate without converging with regard to the relative residual
criterion. Even in the cases where this happens, the results are still better than the ones obtained
from minimising the quadratic functional Gh, although the nonuniqueness of the solution (see
Theorem 3.11) might prove to be problematic. Also, the problem is harder in the case of hypercube
meshes, likely due to the different nonuniform mesh and the fact that the transformation Φ is not
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l αw(Φ
∗) Q(Φ∗) Qa(Φ

∗) # its ∥F′(Th)∥2
∥F′(Φ∗)∥2

time

3 55.17 4.22e−1 5.70e−1 95 9.97e−9 2.78e+0

4 54.84 4.41e−1 5.97e−1 190 7.19e−9 1.81e+1

5 55.36 4.52e−1 6.12e−1 422 8.80e−9 1.48e+2

6 56.02 4.57e−1 6.20e−1 717 9.91e−9 9.86e+2

7 56.6 4.60e−1 6.24e−1 1209 9.53e−9 6.52e+3

8 57.07 4.61e−1 6.26e−1 1991 9.64e−9 4.02e+4

9 57.53 4.65e−1 6.36e−1 3256 9.69e−9 2.55e+5

10s 36.95 1.12e−1 4.52e−1 990 7.12e−7 −

11* 17.07 2.70e−2 4.36e−1 1357 1.14e−6 −

Table 5.6: Statistics for the minimisers of Fh, hypercubes, unpreconditioned NLCG.

linear, meaning that for a cell K ∈ Ed(Th) : ∇Φ|K ̸= const.
This example will be revisited in Section 7.1 to compare different nonlinear solvers, the solu-

tions obtained by them, and the aspect of the preconditioner that will be introduced in Chapter
6.

5.4. Computation of extension operators

In this section, I will show how the functionals Gh and Fh from Section 5.3 can be modified and
used to compute an extension of a boundary movement into the interior of the domain of interest
to adjust the mesh’s vertices there. This is of practical importance e.g. for fluid-structure interac-
tions, two-phase flow or even flows with free capillary surface and is a slightly more sophisticated
example of what was presented in Section 3.4.

5.4.1. Moving nonconvex shape

The domain of interest is Ω = Ω(0)⊂ R2 bounded by the composite cubic Bézier curve given by

γi :[0,1]→ R2,γi(t) := (1− t)3Pi1 +3(1− t)2tPi2 +3(1− t)t2Pi3 + t3Pmod4(i+1)1

with

P11 = (0,0)T ,P12 =

(
1
4
,−1

4

)T

,P13 =

(
3
4
,−1

4

)T

,

P21 = (1,0)T ,P22 =

(
3
4
,
1
4

)T

,P23 =

(
3
4
,
3
4

)T

,

P31 = (1,1)T ,P32 =

(
3
4
,
5
4

)T

,P33 =

(
1
4
,
5
4

)T

,

P41 = (0,1)T ,P42 =

(
1
4
,
3
4

)T

,P43 =

(
1
4
,
1
4

)T

,
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(i) Th,0. (ii) Th,1. (iii) Th,3.

Figure 5.4: The initial mesh Th,l for various refinement levels.

which can be seen as a unit square with deformed boundary. For the sake of brevity, I will only
consider simplex meshes in this section (see Figure 5.4) and will only discuss the shape quality
heuristic Q (see Section 5.2). The smallest angles are still plotted because they are used as criterion
for an early stop.

The boundary ∂Ω(0) is piecewise smooth, but is only Lipschitz continuous at the corner ver-
tices Pi1. As in Section 5.3, the analytic description of the boundary given by γi is used to adapt
the boundary of the polygonal approximation Ωh(0) and the initial mesh Th,l(0) upon initial re-
finement to level l (the index l will again be omitted where possible). Refer to Table 5.7 for the
resulting number of entities. Also note that the starting configuration is already nonconvex.

l Cells Vertices DoF

3 512 256 289

4 2048 1089 2178

5 8192 4225 8450

6 32768 16641 33282

7 131072 66049 132098

8 524288 263169 526338

9 2097152 1050625 2101250

Table 5.7: Numbers of entities for different levels of refinement.

After this, the boundary is deformed using the boundary deformation

trϕ : [0, t̄]×∂Ω(0)→ R2, trϕ(t,x) = x+ t

 x1 − z1 +(x2 − z2)
3

−(x1 − z1 +(x2 − z2)
3 − z1 +(x1 − z1)

3)

 .

For a partitioning 0 = t0 < · · ·< tN = t̄, we start with the mesh Th(0) on Ωh(0) and can define
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the mappings

ϕ̂0 : E0(Th(0))→ R2, ϕ̂0(v) = v,

∀l,k ∈ N, l < k : ϕ̂l,k : E0(Th(tl))→ R2, ϕ̂k(v) =

{
trϕ(tk,(trϕ)−1(tl,v)), v ∈ ∂Th(tl)
v, v /∈ ∂Th(tk)

,

which define members of P1(Th(tl)) (which again will be denoted by ϕ̂l,k) and can be used to
parametrise Th(tk) directly over Th(tl) instead of Th(0). Note that the boundary deformation is
not divergence free. In fact the volume of the domain grows over time, which together with the
varying deformation speed presents an additional difficulty.

Define the spaces

Vh,l,k =
{

v ∈Dh(Th(tl)) : v|∂Ωh(tl) = ϕ̂l,k
}
,Wh,l,k =

{
w ∈Dh(Th(tl)) : w|∂Ωh(tl) = 0

}
with which we can define the discrete D(u) : D(v) functional

∀(l,k,u) ∈ N×N×Vh,l,k : G(l,k,u) :=
1
2

∫
Ωh(tl)

D(u) : D(u)dx

So we are looking for

Ψ
∗
h,l,k = argminu∈Vh,l,k

G(l,k,u)⇔∀w ∈Wh,l,k :
∂Gh

∂w
(Ψ∗

h,l,k) = 0.

This might appear complicated, but for arbitrary but fixed k ∈ N, it contains the two most
important cases.

i) l = 0: The functional Gh is formulated with regard to the fixed reference domain Ωh(0)).
This requires the least computational effort, as the system matrix is assembled just once.

ii) l = k − 1: The functional Gh is formulated with regard to the moving reference domain
Ωh(t). Here, the system matrix has to be reassembled in every time step.

Note that the conditions Ψ∗
k,l,k ∈ Dh(Th(tl)) are not enforced directly in any way. Instead, the

more standard finite element spaces P1(Th(tl)) are used and the orientation preserving property is
checked a posteriori.

For the hyperelasticity based functional, recall (3.23):

Fh,k(Φ) =
∫

Ωh(tk)
c f (∥∇Φ∥2

F −d)2dx+(det(∇Φ))pd dx+
cd(

det(∇Φ)+

√
δ2

r +(det(∇Φ))2
)pd

dx.

We are then looking for a discrete optimal variation Φ∗
h,k in the sense of (3.24):

Φ
∗
h,k+1 = argminΦ∈Vh,k,k+1

Fh,k(Φ).

Since the functional Fh does not require a reference domain, the choice of l = k has no impact on
the computational cost. For all functionals, the initial guess is chosen as ϕ̂k,k+1.

After computing the appropriate minimiser, set Ωh(tk+1) = Ψ∗
h,l,k+1(Ωh(tl)) or Ωh(tk+1) =

Φ∗
h,k+1(Ωh(tk)) depending on the method used.

The parameters for Fh,Gh used here are the same as in Section 5.3. Additionally, we use

∆t = 5e−4, t̄ = 0.5,z = (0,0)T , ᾱ =
π

180
(5.8)
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(i) t = 0. (ii) t = 0.25. (iii) t = 0.49850.

Figure 5.5: The minimisers Ψ∗(Th(t)) of Gh,0,k for different time steps t, refinement level three.

and stop the computation as soon as αw < ᾱ. This value is chosen based on numerical experience.
The small time step size is chosen because we want to study the behaviour of both methods for
several levels of refinement in space and need to ensure that ϕ̂k+1(Th(tk)) ∈Dh(Th(tk), meaning
ϕ̂k+1 is still orientation preserving.

Let us first consider the functional Gh,0,k and visually examine the meshes in Figure 5.5. As
the functional Gh measures the energy of the deformation from T̂h(tk) to Ψ(Th(tk)), the quality
the reference mesh T̂h(0) plays a crucial role. It can be seen in Figure 5.4, the starting reference
meshes are nonuniform, limiting the quality that can be achieved by minimising Gh,0,k. Especially
in the regions where the boundary is convex at t = 0 and loses this property, strong compression
of cells and high degrees of anisotropy can be observed. Worse still, the output of one time step
is used as the reference domain for the next time step. On all refinement levels, the computation
breaks down well before t = t̄ because of the angle constraint, and this breakdown occurs sooner
on higher levels of refinement (see Figure 5.9 (i)). One explanation for this is that the boundary
deformation is more severe relatively to the cell sizes and edge lengths on the finer meshes. As
opposed to this, the evolution of the average mesh quality heuristic Qa is nearly the same on all
levels of refinement (see Figure 5.10 (i)) and within good bounds, which is of no consequence
because of the violation of the angle constraint in at least one cell. Also note how a kind of “mesh
convergence” can be observed in the plot of Q(Ψ∗

h,0,k) in Figure 5.9 (i). In summary, the results are
not satisfactory.

Similar to Section 3.4.2, we can expect to improve the method by using a moving reference
domain and mesh. Indeed, the functional Gh,k,k+1 offers much better results, as can be seen in
Figure 5.6. For the time step t = 0.25, there is still no visual difference, but this changes towards
the end of the time interval. The minimisers of Gh,k,k+1 do not show the compression of cells near
the lower boundary, and the angle constraint is far from being violated on all refinement levels
(see Figure 5.8 (ii)). Interestingly, the evolution of the average mesh quality heuristic is nearly
identical to the case with the fixed reference domain (compare Figure 5.10 (i) and Figure 5.10 (ii)).
The higher computational cost of reassembling the linear system in every time step clearly pays
off here, as the deformations in each time step are “small”.

Last, we consider the minimisers of Fh to see if this more expensive method offers significant
advantages. One advantage certainly is that we can prescribe a cell size distribution directly. In
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(i) t = 0. (ii) t = 0.25. (iii) t = 0.5.

Figure 5.6: Ψ∗(Th(t)) for different time steps t, refinement level three.

(i) t = 0 (ii) t = 0.25 (iii) t = 0.5

Figure 5.7: Moving mesh optimised using a hyperelasticity based functional, refinement level
three.

this case we prescribe a uniform distribution of the domain’s volume over all cells, which can be
seen in Figure 5.7. The meshes obtained by minimising the functional Fh show similar stability
as the meshes obtained by minimising Gh,k,k+1 and do not show any deterioration on finer meshes.
Again the independence on any reference domain appears to be an advantage. Even near the lower
boundary (which starts out convex but loses this property), only moderate cell compression can
be observed. This is due to the fact that the functional Fh offers direct control over det(∇Φ) and
1/det(∇Φ). The minimal angles stay bounded well above ᾱ (see Figure 5.8 (iii)), and in fact it is
possible to continue the computations up to t > 0.94 without the angle constraint being violated
due to the boundary deformation. The compression of the mesh in x2 direction accompanied by the
stretching in x1 direction appears to pose no difficulty. Apart from the expansion of the domain and
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the changes to cell sizes because of the boundary deformation, even the cell size equidistribution
remains intact. The average cell quality heuristic Qa is significantly higher than for the functionals
Gh,l,k+1 (compare Figure 5.10 (ii) and Figure 5.10 (iii)).
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(ii) Minimisers of Gh,k,k+1.
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(iii) Minimisers of Fh.

Figure 5.8: Worst angle αw over time.
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(ii) Minimisers of Gh,k,k+1.
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Figure 5.9: Minimal shape quality heuristic Q over time.
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(ii) Minimisers of Gh,k,k+1.
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Figure 5.10: Average shape quality heuristic Qa over time.

As opposed to the example in Section 3.4, the quadratic mesh quality functional Gh,k,k+1 is
sufficient for the case considered in this section. As before, the functional Gh,0,k is not. In a case
like this, using the far more costly functional Fh still provides some decisive advantages, as being
able to prescribe a cell size distribution and a significantly higher average mesh quality, although
these benefits might only warrant the cost for special applications.
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5.4.2. Rotating excentric screws

This example is inspired by the geometry of a micro gear pump. Two excentrically placed screws
with six (inner) and seven teeth (outer) rotate at different angular velocities, which is a geometric
requirement, as the screws must not touch. One of the reasons why mesh optimisation in 2d is
of practical importance are cases like this, where a 3d geometry can be expressed by an extruded
2d geometry. This is very easy to do for hypercube elements. In this section, the computations
for hypercubes were carried out on a suitable 2d part of the mesh and then extruded, whereas the
computations for simplex meshes were done on a 2d mesh.

Γ1

Γ2

Γ1

Γ2

Γ1

Γ2

(i) t = 0.

Γ1

Γ2

Γ1

Γ2

Γ1

Γ2
(ii) t = 0.065.

Denote by Γ1 the inner boundary (meaning the outer boundary of the inner screw) and by Γ2
the outer boundary (meaning the inner boundary of the outer screw). The domain of interest is the
part between Γ1 and Γ2. This means that the gap width

δg :Ω → R, δg(x) =
2

∑
i=1

min{∥x− xi∥2 : xi ∈ Γi}

greatly varies between

δmin = min{∥x2 − x1∥2 : x1 ∈ Γ1,x2 ∈ Γ2}= 0.02,

δmax = max
x∈Ωh

{min{∥x1 − x∥2 +∥x2 − x∥2 : x1 ∈ Γ1,x2 ∈ Γ2}}= 1.15

This strong anisotropy already implies low interior angles between edges in the case of simplex
meshes and makes the problem quite challenging. It also means that the optimal scale of a cell K
needs to be chosen according to its distance from Γ1,Γ2, a this changes according to the rotation
and cells get compressed and expanded.

The goal is to allow for a full rotation of the outer screw, but since the screws rotate at different
speeds, fixing the boundary vertices to their positions corresponding to the appropriate rigid body
rotation quickly leads to mesh deterioration, especially when using the functional Gh (see Figure
5.12 (i)).

Instead, a unilateral boundary condition of place (see Definition 3.1) needs to be used on one
or even both boundaries. This is somewhat similar to a slip boundary condition for the Stokes or
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(iii) Unilateral boundary condition of place on
Γ2, displacement boundary condition on Γ1.

(iv) Unilateral boundary condition of place on
Γ1 and Γ2.

Figure 5.11: Mesh at t = 4e−3 with different sets of boundary conditions.

Navier-Stokes equations, and can be implemented in a similar fashion. If this boundary condition
is enforced at both boundaries, it means the cells can move freely throughout the mesh, although it
might be advantageous to rule out rigid body rotations in the vertex movement (e.g. by enforcing a
displacement boundary condition for one vertex on the outer boundary). Using unilateral boundary
conditions of place on both boundaries helps to reduce the degree of anisotropy by allowing cells
to dramatically change their sizes, but it also means that the discretisation of the boundary loses
resolution, see Figure 5.11.

(i) Deteriorated mesh at
t = 0.0246 when using
displacement boundary
conditions only.

(ii) Unilateral boundary condition
of place, before deterioration due
to projection.

(iii) Unilateral boundary
condition of place, intersections
at the boundary due to projection.

Figure 5.12: Different types of mesh deterioration when using the functional Gh.

However, if the boundary is curved, the outer unit normal is not constant, which means that
even the functional Gh becomes nonlinear due to the boundary condition. As this is a loss of its
significant advantage, one could try to linearise the problem by not updating the outer unit normal
over the course of the solver iterations. As the curvature of the boundaries is quite strong, this
quickly lead to mesh deterioration by intersections at the boundary after projecting the solution
to the space satisfying the unilateral boundary condition of place (see Figure 5.12 (ii) and Figure
5.12 (iii)).

Using the parameters
ω = 2π, t̄ = 1,δt = 1e−4, (5.9)
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(i) Case 1: Unilateral boundary condition of place on
Γ2, displacement boundary condition on Γ1.

(ii) Case 2: Unilateral boundary condition of place
on Γ1 and Γ2.

Figure 5.13: 3d mesh for both cases at t = 0.5 with the same set of cells marked.

means that the outer screw performs one full rotation on the time interval [0, t̄], while the inner
screw rotates by 7

6 2π. For Fh, the parameters

c f = 0.01,δr = 1e−8, pd = 2,cd = 2δ
2
r +(δ2

r +2)
√

δ2
r +1+2

were used, with c f chosen small to allow for a greater change in edge lengths. In the following,
we will regard the following cases

1. Displacement boundary condition on Γ1 and unilateral boundary condition of place on Γ2.

2. Unilateral boundary condition of place on both Γ1 and Γ2.

As the domain forces a high degree of anisotropy for the mesh’s cells, we cannot expect any
significant improvement in the quality over the initial mesh. The realistic goal is to keep the quality
indicator Q(Th) (or the minimum angle in the case of simplex meshes) somehow bounded from
below and the mesh from totally distorting, e.g. by violating the orientation preserving constraint
det(∇Φ∗)> 0, which does not seem possible using the functional Gh.

Because of the large deformations and high ratio of compression and expansion of cells, this
test case is a good test for the robustness of the method. In Figure 5.18, some cells have been
marked to show they move freely in the domain due to unilateral boundary conditions of place on
both boundaries. It can be observed how the cells move from a region with small gap width to a
region of large gap width over time, partially “moved along” with the boundaries. This means that,
after a full rotation of the outer boundary, cells will in general not be located at the same points
where they were at t = 0. In Figure 5.13, the same set of cells was marked for the meshes resulting
from case 1 and case 2 for a comparison at t = 0.5. For case 2 it can be seen that the marked cells
moved freely through the mesh, so they occupy a different region in Φ∗(Th(0.5)) than in case 1.

Note that the placement of Γ1 and Γ2 relative to each other is somewhat periodic, as they
occupy the same region of space with a period of 1

7 , but with different parts. This means the
geometric situation is “similar” every 10000

7 ≈ 1429 time steps. However, the vertex distribution
on Γ1,2 is not completely uniform, causing the edges to have different lengths.
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Figure 5.14: Comparison of different quantities for different sets of boundary conditions, simpli-
ces, l = 0.

First, let us examine the plots in Figure 5.14, comparing the results of case 1 and 2 for a simplex
mesh on refinement level l = 0. The coarsest level is already sufficient to resolve the geometry, and
global regular refinement will not change the general difficulty of cell compression and expansion.
In the plots of αw and Q in Figure 5.14, we can observe the aforementioned periodicity for case 2
because of the unilateral boundary conditions of place on both Γ1 and Γ2. The vertices can move
freely on those boundaries so that the minimisers Φ∗ of F are able to create these “similar” states.
For case 1, we can still see the local extrema in both plots to correspond to these time steps, but
there is no periodic structure. Because the different edge lengths on Γ1,2 (as mentioned above)
remain the same on Γ2 for all t due to the displacement boundary condition, the states are not very
“similar” even if the geometric situation is.
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Figure 5.15: Comparison of different quantities for different levels of refinement, hypercubes,
case 2.

Nonetheless, the meshes Φ∗(Th(t)) do not deteriorate even in this situation of extreme com-
pression and expansion. The quality heuristic Q remains in an acceptable range for both cases and
we cannot expect more, based on the initial mesh.

For hypercube meshes, I will only discuss case 2. For this cell type, the degree of anisotropy
directly enters the shape quality heuristic Q and we already know the gap width varies between
0.02 and 1.15. For l = 1, the edges on Γ1,2 have lengths in the range of O(1e−2), while the
gap is split into four layers of elements. This already results in a ratio of hmin

hmax
≈ 1e−2

1
4 1.15

≈ 0.035,

so we cannot expect much more for Q, which is confirmed in Figure 5.15 (ii). The gap width
δg is depicted in Figure 5.17, while the resulting cell size can be found in Figure 5.16. The use
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of unilateral boundary conditions of place on Γ1,2 can reduce this ratio in some regions, but not
globally (see Figure 5.16 for case 1 and Figure 5.17 for case 2). But even with the freely moving
cells, the method can keep the angles from becoming too small.

This example was chosen to demonstrate the robustness of the method. Visual examination
of the resulting meshes shows that they remain intact and of acceptable quality, but that they may
be too coarse for practical flow simulations in the expanded regions. Here, some manual work,
or fine tuning of the mesh quality functional may be needed. Examining the resulting meshes
also inspires the idea of performing the mesh optimisation on the coarsest mesh that resolves the
geometric features and then refining and adapting the mesh as in Section 5.3 to obtain a finer mesh
that resolves the features of the original PDE.
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(i) t = 0.005

(ii) t = 0.03

(iii) t = 0.065

Figure 5.16: Case 1: The mesh with ∀K ∈ E2(Φ∗(Th)) : vol2(K) ∈ [5e−5,0.01] (left) and the
extruded mesh with some marked cells (right).
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(i) t = 0.005

(ii) t = 0.03

(iii) t = 0.065

Figure 5.17: Case 2: The mesh with δg ∈ [0.02,1.15] (left), and the extruded mesh with some
marked cells (right).
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(i) t = 0 (ii) t = 0.025

(iii) t = 0.05 (iv) t = 0.1

(v) t = 0.15 (vi) t = 0.2

Figure 5.18: Part of the domain with marked cells in case 2 at different time steps on refinement
level 2.
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5.5. r-adaptivity

In this section I will present results obtained by minimising functionals of the family from Section
3.5 when using a mesh concentration function to influence the cell size distribution.

The choice of the mesh concentration function (see Section 3.5.4) is crucial for concentrating
cells in the region of interest and is a concept similar to using monitor functions (see [HR11,
Chapter 5]), although setting an optimal scale is more direct and allows a quantitative measurement
of the cell size distribution defect S.

For simplicity, I will restrict myself to a very simple class of mesh concentration functions
defined by

c(K) = f (dist(sΦ∗(K),Γ)), f : R→ R+, f (t) = (c1 + |t|)c2 ,c1,2 > 0 (5.10)

for some surface Γ ⊂ Rd , possibly with Γ ̸⊂ Ωh.
The parameter c1 defines the relative minimum value of the function f and cannot be chosen

too small so that the prerequisites of Theorem 3.11 (most notably the coerciveness) still hold. c2
defines how quickly f changes away from Γ and the same constraints as for c1 apply. Note that the
relative optimal cell sizes λ and the optimal scales h are invariant to multiplying the concentration
function with a constant.

A feasible way to determine c1,2 for a specific situation is to first chose c2 according to the
characteristic we want the cell size distribution to have. For example, if the optimal cell size
should increase quickly away from Γ, chose some c2 < 1. If we want a whole region around Γ to
consist of smaller cells, chose some c2 > 1. After fixing c2, fix some desired ratio r between the
smallest and the largest cell size. After that, one can compute

c1 =
dmin +dmaxr1/c2

1− r1/c2
, dmin = inf

x∈Ωh
dist(x,Γ), dmax = sup

x∈Ωh

dist(x,Γ). (5.11)

In the following, denote

λmin(Φ
∗(T)) = min

K∈T
λ(K), λmax(Φ

∗(T)) = max
K∈T

λ(K),

volmin(Φ
∗(T)) = min

K∈T
vol(K), volmax(Φ

∗(T)) = max
K∈T

vol(K).

5.5.1. Moving circle

In this section, we consider the unit square Ω = Ωh = [0,1]2 ⊂ R2 with the surface

Γ = Γ(t) := ∂B 3
20
(xc(t)), xc(t) =

1
4

 2+ cos(t)

2+ sin(3t)

 .

and use
c f = 0.01,δr = 1e−8, pd = 2,cd = 2δ

2
r +(δ2

r +2)
√

δ2
r +1+2

as parameters for F. We will consider the time interval [0,1] and compute 100 time steps with
δt = 1e−2. On ∂Ωh we enforce a no displacement boundary condition. The setting is chosen
to be particularly simple: The distance function is smooth (except at the point xc(t)) and the set
inscribed by Γ is convex. Moreover, c f = 1e−2 is chosen so that differing edge lengths have less
influence on the functional value (this might be interpreted as the hyperelastic material used being
less “stiff” with regard to size changes of one dimensional entities), as we are less interested in
maximising Q in this setting, as long as it stays bounded from below.
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(i) c2 =
1
2 ,

S ∈ [1.54e−8,1.14e−4].
(ii) c2 = 1,
S ∈ [9.90e−8,1.81e−4].

(iii) c2 = 2,
S ∈ [5.7e−8,2.85e−4].

Figure 5.19: Φ∗(Th,0) for different values of c2 with Γ in red, colouring by |λ(K)−vol(K)| from
white to black.

The goal is to examine the influence of the choice of the concentration function first and then
see how the mesh quality heuristics behave over time as Γ moves. The solver will be a ALGLIB’s
lBFGS solver with absolute tolerance εa = 1e−8, step length tolerance εs ≈ 2.204e−16 and lBFGS
dimension 10. In this example, the solver almost always stopped due to the step length criterion
with a relative residual in the order of O(10−3) to O(10−6).

c1 7.5e−3 8.3e−2 3.5e−1

c2
1
2 1 2

λmin(Φ
∗(Th,0)) 2.01e−4 2.95e−4 3.73e−4

λmax(Φ
∗(Th,0)) 1.96e−3 2.78e−3 3.30e−3

volmin(Φ
∗(Th,0)) 1.98e−4 2.85e−4 3.60e−4

volmax(Φ
∗(Th,0)) 2.02e−3 2.75e−3 3.23e−3

Q(Th,0) 7.60e−1 7.60e−1 7.60e−1

Q(φ∗(Th,0)) 3.92e−1 6.02e−1 5.90e−1

S(Th,0) 2.98e−1 4.01e−1 4.57e−1

S(φ∗(Th,0)) 2.35e−2 2.33e−2 2.28e−2

Table 5.8: Different values for c2 and associated c1.

First, let us examine how the choice of concentration function influences Φ∗(Th,0). For visu-
alisation reasons, a refinement level of four was chosen, resulting in 1024 cells and 990 DoF. We
first fix a ratio r = 1

10 and compute different sets of parameters c1,2. Some data for c2 ∈
{1

2 ,1,2
}

including the resulting cell sizes vol can be found in Table 5.8 and visualisations of Φ∗(Th,0) in
Figure 5.19.

In Table 5.8, we can see the general behaviour that the application of Φ∗ reduces the cell size
distribution defect S roughly by one order of magnitude, at the cost of decreasing the shape quality
indicator Q. In the case c2 =

1
2 , the distance function varies somewhat sharply in the direct vicinity

of Γ, so the cells in that region are of lower shape quality. This is not the case for c2 ∈ {1,2}, and
Table 5.8 confirms the visual impression from Figure 5.19 (ii) and Figure 5.19 (iii) that Q does not
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decrease significantly with the application of Φ∗.

l # its # evals Q(Φ∗) αmin(Φ∗) S(Φ∗)

4 21 107 1.24e−1 28.44 4.72e−2

5 42 200 1.17e−1 27.49 4.47e−2

6 87 391 1.18e−1 27.61 4.40e−2

7 172 686 1.22e−1 28.12 4.37e−2

Table 5.9: Quantities for the moving circle on multiple levels, c2 = 2, hypercube case.

Figure 5.19 also shows that the higher values S(K) naturally occur near the boundary ∂Ωh
where a no displacement boundary condition is enforced. Enforcing a unilateral boundary condi-
tion of place instead could help to reduce these errors, but only in cases where the optimal scales
vary significantly for cells lying at the corresponding boundary. However, this is not the case in
the current setting.

For the sake of brevity, only the cases c2 ∈
{1

2 ,2
}

will be discussed for the whole time interval
and for multiple levels of refinement.

First, consider the hypercube case with c2 = 2. Table 5.9 shows the averages of the number of
solver iterations, functional evaluations and mesh quality heuristics over all time steps on multiple
levels of refinement. The averages of the numbers of iterations and evaluations show the same
qualitative behaviour as in the case of uniform size distributions, where these numbers double
with each level of refinement. All three mesh quality heuristics remain nearly constant over all
levels of refinement.
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Figure 5.20: c2 = 2, hypercube case.

The results for the case c2 = 1
2 are similar qualitatively, but they can be used to illustrate a

problem that occurs in practice. Since the minimiser Φ∗ is not unique and a local minimiser only,
the discrete solution obtained by the minimisation process might not be a very useful one, even in
this comparably simple setting. In such a case, usually the nonlinear solver stops due to the step
length criterion, which means the local information at the current state is insufficient to make any
further progress. This effect can be observed in Figure 5.23, where the minimisers Φ∗ are not very
useful up until t = 0.03. There, the solver converges to a better local minimum and continues to
do so for all subsequent time steps.

Behaviour like this can be observed when the situation is “badly conditioned”, meaning the
problem is very hard numerically. Here, we add up the difficulty of strongly varying optimal scales
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(i) Th,0, S ∈ [4.66e−6,1.55e−3]. (ii) t = 0.5,
S ∈ [2.00e−9,9.92e−4].

(iii) t = 1,
S ∈ [2.00e−9,9.92e−4].

Figure 5.21: Hypercube mesh at different time steps, c2 = 2.

l # its # evals Q(Φ∗) αmin(Φ∗) S(Φ∗)

4 23 138 1.91e−1 32.73 3.93e−2

5 50 220 2.98e−1 41.22 3.04e−2

6 56 251 2.93e−1 43.25 1.41e−1

7 279 885 3.14e−1 45.73 2.28e−2

Table 5.10: Quantities for the moving circle on multiple levels, c2 =
1
2 , hypercube case.

h while still using isotropic reference cell with the inherently higher polynomial degree of F in the
case of hypercubes.

Unfortunately, this behaviour occasionally makes the method unreliable depending on the situ-
ation and is likely inherent, since the solvers usually converge to “close” local minima. The beha-
viour persists on all levels of refinement, especially on refinement level six (see Figure 5.22) and
different solvers (e.g. NLCG and NLSD-lBFGS). It might be possible to recognise these situations
and to modify the starting point accordingly, but this is beyond the scope of this work.
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Figure 5.22: c = 1
2 , hypercube case.

In the case of simplices, the behaviour does not seem to appear very frequently, which might
be related to the problem being simpler in the sense that F′ is piecewise constant. The minimisers
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(i) t = 0.03, S ∈ [1e−6,1e−3]. (ii) t = 0.04, S ∈ [1e−6,1e−3]. (iii) t = 1, S ∈ [1e−6,1e−3].

Figure 5.23: Hypercube mesh at different time steps, c2 =
1
2 .

exhibit a qualitatively different behaviour as well, as can be seen in Table 5.11 and Figure 5.24.
The numbers of both iterations and evaluations increase by a factor of two per level of refinement
as well, but the cell size defect S decreases approximately by a factor of two as opposed to the
hypercube case, where it remained nearly constant.

l # its # evals Q(Φ∗) αmin(Φ∗) S(Φ∗)

3 85 349 4.76e−1 16.46 3.98e−2

4 190 574 5.46e−1 18.99 2.05e−2

5 520 1423 5.70e−1 20.21 1.09e−2

6 1275 3290 5.80e−1 20.93 5.85e−3

7 2710 7390 5.77e−1 21.39 3.24e−3

Table 5.11: Quantities for the moving circle on multiple levels, c2 =
1
2 , simplex case.

(i) Th,0, S ∈ [1.16e−6,8.10e−4]. (ii) t = 0.5,
S ∈ [1.54e−8,1.14e−4].

(iii) t = 1,
S ∈ [1.54e−8,1.14e−4].

Figure 5.24: Simplex mesh at different time steps, c2 =
1
2 .

This can be observed for the case c2 = 2 as well, so the corresponding results are not presented
in detail.
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Figure 5.25: c2 =
1
2 , simplex case.

5.5.2. Rotating shape

In this section, we consider the unit square Ω = [0,1]2 ⊂ R2 and a surface Γ ⊂ Ω. The surface is
given by the same composite cubic Bézier curve as the boundary of the domain in 5.4.1, scaled by
3
4 and displaced by

(1
4 ,

1
4

)T to fit into Ω. On the time interval [0,1], Γ is rotated with an angular
velocity of 2π so it performs one full rotation. We compute 100 time steps and use the parameters

δr = 1e−8, pd = 2,cd = 2δ
2
r +(δ2

r +2)
√

δ2
r +1+2

for the functional F. We enforce no displacement boundary conditions and use the coefficients

c1 = 0.1, c2 = 1

for the mesh concentration function, which result in a ratio λmin
λmax

≈ 1
4 . Because of dmax ≈ 0.35

this is moderate but still considerable. The goal is to see how the method behaves if the distance
function is not smooth and to try the values of c f = 0.01,0.1,1 to change how the functional
penalises changes in the edge lengths, (which also allow varying degrees of anisotropy in the case
of hypercubes). Additionally, the rotation of the shape means that the distance of point on Γ to the
domain boundary ∂Ωh varies.

The solver will be again ALGLIB’s lBFGS solver with relative tolerance εr = 1e−8, step
length tolerance εs = 2.204e−16 and lBFGS dimension 10.

As in Section 5.5.1, we can see in Figure 5.26 that the cell size distribution error S is high near
the boundary, as is expected due to the no displacement boundary conditions. Another observation
from Figure 5.26 (ii) and Figure 5.26 (iii) is that S is higher at the centre of Γ than near Γ itself,
where λ is smallest. Also note that cells near Γ or ∂Ωh are more anisotropic in the regions where
λ takes its extremal values to account for the extremal optimal scales.

In Figure 5.27, the evolution of Q,S and the number of functional evaluations per time step
are depicted over time. Q starts at what appears to be a local maximum at t = 0 and has its
first local minimum at approximately t = 0.13. From then on, this behaviour continues with
δt = 0.25 between two local maxima or minima. A similar evolution can be observed for S, which
is maximal at approximately the same time steps that Q is minimal and vice versa. This is simply
due to the fact at around t = 13, dist(Γ,∂Ω) is maximal because of the position of the concave
parts of Γ with regard to the corners of Ωh. At t = 0.13, we get r = λmin(Th,0.13)

λmax(Th,0.13)
≈ 0.18, which

means the mesh optimisation problem is more difficult. In Figure 5.26 we can see that both the
cell size distribution error and the degree of anisotropy are high near the boundary, especially near
the corner points of ∂Ω. All of this comes as no surprise.
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(i) Th,0, S ∈ [1e−5,1e−3]. (ii) Φ∗(Th,0.15),
S ∈ [1e−5,1e−4].

(iii) Φ∗(Th,0.35),
S ∈ [1e−5,1e−4].

Figure 5.26: The domain with the rotating object at different time steps, c f = 0.01, hypercube
case.
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Figure 5.27: Various quantities over time for the hypercube mesh.

More interesting is the comparison between the different values of c f . The value c f determines
how deviating of the reference cell’s edge lengths is penalised, which indirectly governs how
anisotropy is penalised. However, since the boundary restricts the vertex movement, some degree
of anisotropy will be required to reduce the cell size defect. In Figure 5.27 (i), we see that Q is
nearly the same for c f = 1 and c f = 0.1, but notably lower for c f = 0.01. In contrast to this, the
cell size defect S decreases approximately by a factor of 2 for every reduction of c f . The time
averages in Table 5.12 confirm this.

Another interesting observation is that the number of iterations per time step increases signific-
antly with decreasing c f , but the number of needed functional evaluations only to a lesser extent.
More precisely, the average number of functional evaluations per iteration decreases from ≈ 6 to
≈ 3. This means that the linesearch needs less iterations, which is an indicator for the problem
with higher c f being more difficult. There is not much information to be gained from the number
of evaluations per time step (see Figure 5.27 (iii)), as this number is strongly varying with time.
There are accumulations of high evaluation counts near time steps with local maximal in S, but
they are not outstanding.

For the simplex case, in Figure 5.28 S(Φ∗(Th,0.75)) is shown for different c f , with the same
colour scaling in each picture. We see that the magnitude is quite different, although the distribu-
tion is similar. Clearly we see that for c f = 1, the simplices tend to keep the equilateral shape of
their reference cell more often than for the smaller values. Especially for c f = 0.01 we see that
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c f # its # evals Q(Φ∗) αmin(Φ∗) S(Φ∗)

0.01 123 379 2.50e−1 41.31 1.56e−2

0.1 79 285 2.96e−1 45.2 3.76e−2

1 42 254 2.93e−1 44.67 7.79e−2

Table 5.12: Quantities for the rotating shape for various c f , hypercube mesh.

the near-symmetry to the x2-axis we see for c f = 1 is lost.

(i) c f = 1 (ii) c f =
1

10 (iii) c f =
1

100

Figure 5.28: The domain with the rotating object at t = 0.75 for different values of c f , S ∈
[0,5e−5].

c f # its # evals Q(Φ∗) αmin(Φ∗) S(Φ∗)

0.01 344 1064 6.33e−1 27.81 1.78e−2

0.1 204 1247 6.64e−1 29.8 2.60e−2

1 87 357 6.61e−1 29.44 6.87e−2

Table 5.13: Quantities for the rotating shape for various c f , simplex mesh.

The evolution of Q,S and the number of functional evaluations over time is similar to the
hypercube case, with some noteworthy differences. Q behaves similar when it comes to comparing
it over the different values of c f , but is not nearly monotone in between local extrema as in the
hypercube case. The local extrema still occur in the same time steps, but the evolution in between
is very different.

When comparing S, we again see the aforementioned reduction, although no longer a factor
of nearly two between c f = 1 and c f = 0.1. However, there are some peaks in S, for example
at t = 0.2,0.31,0.56 and others for c f = 0.1. Note that those coincide with some of the peaks
in the number of functional evaluations. In general, these are time steps where the solver either
stopped at a “bad” local minimum, or (where the number of functional evaluations is very high)
failed to converge with regard to εr,εa or εs. In those cases, we see the solver performing hundreds
of iterations with the linesearch returning very small steps (e.g. O(1e−12)) after performing the
maximum number of iterations without satisfying the strong Wolfe conditions. As the lBFGS
preconditioned steepest descent has no stagnation criterion like NLCG, it simply performs its
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maximum number of iterations (which was 500) without converging.

This is the same situation as was described in Section 5.5.1 and appears hard to avoid in
practise, as it is very much related to the initial guess the solver starts from. On the positive side
we see that the time steps with “bad” solutions appear isolated in this context and have no impact
on the subsequent time steps, although they do provide bad initial guesses for the solution process
in the next time step.
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Figure 5.29: Various quantities over time for the simplex mesh.

As we have seen in this section, a mesh quality functional of the type presented in Section 3.5
offers a great deal of flexibility when it comes to achieving different goals in r-adaptivity. The
weighting of the parts using the terms ∥∇Φ∥F ,det(∇Φ) and (in 3d) Cof(∇Φ) is crucial and also
balances the cell quality against the cell size distribution. However, care must be taken, as the
problem’s difficulty also depends on the choice of the mentioned parameters, and might lead to
prohibitive computation times and/or the occasional “bad” minimiser Φ∗.

5.6. Surface alignment

In this section, I want to present the results of various test cases concerning the alignment of the
mesh with some surfaces. In all cases, the surface displayed in the images is not Γ itself, but the
zero levelset of the finite element (meaning P1(Th) or Q1(Th)) interpolant of the distance function

Γ̃ = {x ∈ Rd : Πh(dist(x,Γ))(x) = 0}. (5.12)

5.6.1. Rotating ellipse

In this case we again consider Ω = Ωh = [0,1]2 ⊂R2 and a surface Γ embedded in Ω by composite
cubic Bézier curve given by

γi :[0,1]→ R2,γi(t) := (1− t)3Pi1 +3(1− t)2tPi2 +3(1− t)t2Pi3 + t3Pmod4(i+1)1
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which is an approximation of the boundary ∂E of the ellipse

E :=

x ∈ R2 :

(
x1 − xM

1
1
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)2

+

(
x1 − xM

1
3
4

)2
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 , xM =

(
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,
1
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)T

.

E is then rotated by 2π on the time interval [0,1] (see Figure 5.30). In this example, the parameters
are

δr = 1e−8, pd = 1,cd =
√

δ2
r +1+δ

2
r +1

and I will compare results for c f = 1 and c f = 0.01. As solvers, the quadratic penalty iteration
with absolute tolerance εa = 10−14 with NLCG with εr = 1e−8 and εs = 2.204e−16 were used.
Also, the quadratic penalty iteration aborts if µk ≥ 1e77.

This simple case is already an example where an interface tracking method that fixes the
vertices on Γ through a displacement boundary condition will invariably fail. If we are only
interested in the part of the domain that is on the outside of Γ (meaning Ω \E), we could just
mesh this domain of interest, rotate E and impose unilateral boundary condition of place on ∂E,
together with e.g. a no displacement boundary condition on ∂Ω. This would be a similar situation
as Section 5.4.2.

However, in many situations we need a mesh on the whole of Ω, e.g. in two phase flow
simulations like the rising droplet. This is a commonly used benchmark problem (see [HTK+09]),
where a sharp interface representation of the free surface is advantageous due to the better order of
convergence in space (see Section 3.2.3). A levelset-based surface alignment method for exactly
this case was presented in [BW13], while another method based on front-tracking with occasional
re-parametrisation with time-discontinuous ALE mappings can be found in [Bas16].

If Γ is interpreted as a phase boundary, the greatest benefit of aligning Th with Γ without
explicitly tracking the corresponding part of Th is that cells are allowed to change phase. This
allows for good mesh quality even in the face of large boundary deformations and changes of the
phases’ volume fraction. In Figure 5.30, cells of the set {K ∈ Φ∗Th(0) : K ⊂ E(0)} are coloured
blue to visualise how they change from the interior to the exterior of E over time.

Let us first consider the case of simplex meshes with c f = 0.01 to make the material less “stiff”
with regard to changes in edge lengths and examine the same mesh quality heuristics as before.
In addition to Q(Φ∗(Th)) and S(Φ∗(Th)) we now need to consider H(Φ∗(Th)), which is nothing
else than the residual of the quadratic penalty iteration. Here, Φ∗ is the solution of the quadratic
penalty iteration. We can expect the surface alignment constraint to have a negative impact on Q

and S, as can be expected from the concept of the quadratic penalty iteration with the constraint
becoming dominant.

Figure 5.31 shows that both Q and S stay with in very good bounds for the refinement levels l =
4,5,6, with the reduction of S with refinement we have already seen in the previous sections on r-
adaptivity. On level seven, the shape quality heuristic Q is markedly lower and varies greatly from
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(i) Φ∗(Th(0)). (ii) Φ∗(Th(0.13)). (iii) Φ∗(Th(0.25)).

Figure 5.30: Surface aligned mesh at different time steps with the cells initially comprising the
interior coloured blue.
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Figure 5.31: Various quantities over time for the simplex mesh using c f = 0.01.

time step to time step. Closer examination of the meshes Φ∗(Th,7(t)) for the corresponding time
steps shows situations like the one shown in Figure 5.32 (i). As the vertex marked blue was moved
to Γ(t), the surrounding cells were distorted. Recall that every mesh Th,l(t) ĥl

2 -resolves Γ, with
ĥl = maxe∈E0(Th,l(0)) vol1(e). As the surface alignment constraint H also depends on the distance
(see (3.40), the absolute value for every edge decreases as the mesh better resolves Γ. This means
that higher penalty parameters µk are required for the penalty term to have a significant influence
on Q. Depending on how µk is increased, this may only happen when H already dominates F

in the quadratic penalty function Q, resulting in badly shaped cells. Depending on where the
alignment constraint is violated in iteration i, even vertices that will not be aligned with Γ after
the final iteration will be moved towards it to reduce the constraint violation. In iteration i+1, if
the H dominates Q, these vertices will not be adjusted again because F has almost no influence
then. To retain a good shape quality, it seems advantageous if the alignment penalty term has its
influence earlier in the penalty iteration when F and H still balance out.

Now we can examine the number of iterations needed for solving the penalised unconstrained
minimisation problem in each iteration of the quadratic penalty iteration. These numbers are given
in table Table 5.14. The first iteration requires the minimisation of a nearly unpenalised problem
and requires many iterations as the initial guess is the aligned mesh of the previous time step,
which might be of poor quality due to the aforementioned effects. This first iteration is crucial,
though, as this is the point where cells may move freely so that the surface Γ might be resolved by
different edges.
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l i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

4 664 2 23 375 464 9 4

5 1438 2 2 291 642 10 5

6 2409 3 2 593 728 7 0

7 2784 3 2 2 677 29 7

Table 5.14: Averages of the number of iterations for the penalised unconstrained minimisation
problem in each penalty iteration i for c f = 0.01.

We can see that this is (in average) the iteration requiring the most inner solver iterations. The
outer iterations two and three require very few inner iterations, as the alignment penalty term is
still the minor factor in Q. The main work appears to occur in the penalty iterations four and five,
where usually µ4 = O(105),µ5 = O(1011),µ6 = O(1022) with the proposed strategy from (4.13).
The penalty iterations six and seven then align the vertices to Γ with F having very little influence.
Here we can also see that for level seven, very few inner iterations are performed in the outer
iteration four, as the penalty parameter is still too small due to effects described above.

l i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

4 201 3 3 73 172 9 5

5 354 6 3 23 190 19 13

6 575 3 3 23 221 9 4

7 750 3 2 2 209 30 11

Table 5.15: Averages of the number of iterations for the penalised unconstrained minimisation
problem in each penalty iteration i for c f = 1.

To further look into this, we now set c f = 1 to make the functional F penalise deviations in
edge lengths even more. This should cause the term H to have its influence even later in the
quadratic penalty iteration, which we can see in Table 5.14, as the number of inner iterations
required in the fourth outer iteration is now very small. However, we note that for the outer
iterations six and seven, the number of inner iterations required increased, most notably on levels
5 and 7.

Looking at the plots of Q and S in Figure 5.33 (i) and Figure 5.33 (ii), we see about the same
qualitative behaviour as in the case c f = 0.01 for the levels four, six and seven, and some time steps
with low Q on level five. With the idea that the low quality might be caused by vertices not being
aligned with Γ until µk is very large, we can look at Figure 5.32 (ii), where both the number of inner
iterations in the last penalty iteration and 1/Q are plotted and see their relation. Unfortunately, this
only helps to recognise the problem without giving any hints on how to solve it. All this indicates
that there is still room for improvement when choosing the strategy for increasing µk.

Another important observation is that the total number of iterations and functional evaluations
no longer follows the typical second order operator scheme as e.g. in Section 5.3, due to the
unpredictable number of iterations the quadratic penalty iteration needs.

For the hypercube case, as discussed in Section 3.5.8, aligning edges to Γ results in a conflict
if, for mesh topological reasons, three vertices of a cell K have to be aligned with a part of Γ with
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(i) Φ∗(Th,7(0.06)) for c f = 0.01.
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Figure 5.32: Distorted mesh due to interface alignment and the relation between Q and #its.
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Figure 5.33: Various quantities over time for the simplex mesh, c f = 1.

l # evals Q(Φ∗) αw(Φ∗) S(Φ∗)

4 2073 5.54e−1 25.04 2.51e−2

5 2885 5.22e−1 21.87 1.56e−2

6 4467 5.73e−1 24.63 9.02e−3

7 3927 4.02e−1 13.44 6.72e−3

(i) c f = 0.01.

l # evals Q(Φ∗) αw(Φ∗) S(Φ∗)

4 845 5.40e−1 23.73 6.26e−2

5 971 3.92e−1 13.03 5.38e−2

6 1240 5.25e−1 22.79 4.65e−2

7 1356 3.81e−1 13.15 4.59e−2

(ii) c f = 1.

Table 5.16: Quantities for the rotating ellipse for the simplex mesh on various levels of refinement.

low curvature, degenerating K to a triangle. Nevertheless, the stability property (3.32) of the local
functional’s integrand

lim
det(A)→0

L(·, ·,det(A)) = ∞,

(see Section 3.5.2) can ensure that we stay in the space of orientation preserving deformations.
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This is controlled by the regularisation parameter δr in the functional

F(Φ) =
∫

Ω̂h

c f (∥∇Φ∥2
F −d)2dx+(det(∇Φ))pd dx+

cd(
det(∇Φ)+

√
δ2

r +(det(∇Φ))2
)pd

dx,

but if δr > 0, we can still cause the mesh to deteriorate by sending the penalty parameter µk → ∞.
Increasing δr improves the degree of alignment in this case by allowing us to get “closer” to the
set of orientation preserving deformations that allow det(∇Φ) = 0, but of course this would be
detrimental to the overall mesh quality.

To demonstrate this, I chose a lower absolute tolerance εa = 1e−8 for the quadratic penalty
iteration, so it stops when the mesh is still not completely aligned with Γ and c f = 1. See Figure
5.34 for examples of edges that cannot be aligned for the given reasons. However, it can be
observed that, even if the alignment fails, Φ∗(Th) tends to be δ-aligned with Γ with a much smaller
δ than δ = ĥ

2 .

Figure 5.34: Hypercube cells remaining unaligned to Γ (red) in Φ∗(Th,5(0.22)).

The conflict between the goals of alignment and good cell shapes is of course detrimental for
the solver for the time-dependent problem, as the (partially) aligned mesh of tn with the afore-
mentioned nearly deteriorated cells is used as the initial guess for minimising the penalty function
Q(Φ,µk) for tn+1, starting with µ1 = 1. One could start with a higher µ1, but this might rule out
cells changing phase (meaning that the set of aligned edges changes), sacrificing the most import-
ant advantage of the method. If the domain Ωh is time independent, one might use Th(0) as initial
guess for all time steps, but this is not always the case.

The sum of all the mentioned problems means that in general, for hypercubes, we can only
get good alignment at the cost of mesh quality, which is not very useful since we want to use the
meshes Φ∗(Th) for the discretisation of other PDEs with finite elements. Moreover, the compu-
tational cost is even higher than one might have expected at first, as a solution from the previous
time step is usually a poor initial guess for the only mildly penalised first quadratic penalty itera-
tion. In view of this, only aligning vertices to Γ and then locally modifying the mesh (as discussed
in Section 3.5.8 and in the references given there) might prove to be better to take advantage of
this method. But since this is a step away from the variational approach with the desire to avoid
combinatorial testing, modifications of the finite element spaces or the introduction of new DoF,
it will not be covered in this work.
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5.6.2. Merging circles, topology changes

In this section, consider again Ω = Ωh = [0,1]2 ⊂ R2, this time with two moving surfaces

Γ1 = Γ1(t) = ∂B 3
20
(x1(t)),Γ2 = Γ2(t) = ∂B 3

20
(x2(t)),

on the time interval [0,1], where

x1(t) =
(

1
4
,
1
4

)T

+
t
2
(1,1)T , x2(t) =

(
3
4
,
3
4

)T

− t
2
(1,1)T .

This means that the two surfaces move through each other, creating a topology change in the set
Γ(t) =Γ1(t)∪Γ2(t). For the sake of brevity, I will only discuss the case of simplex meshes here, as
all drawbacks of using hypercube meshes in conjunction with surface alignment given in Section
5.6.1 still apply.

(i) Φ∗(Th(0)). (ii) Φ∗(Th(0.26)). (iii) Φ∗(Th(0.27)).

Figure 5.35: Surface aligned mesh at different time steps on refinement level five.

Here, we use

c f = 0.01,δr = 1e−8, pd = 2,cd = 2δ
2
r +δ

2
r

√
δ2

r +1+2+2
√

δ2
r +1

for the functional F. As solvers, the quadratic penalty iteration with absolute tolerance εa = 1e−14
with NLCG with εr = 1e−8 and εs = 2.204e−16 were used.

First, we again prescribe a uniform cell size distribution. The solution Φ∗(Th) is visualised in
Figure 5.35 for several time steps. One can easily compute that Γ1(t) and Γ2(t) touch (or separate)
if

∥x1(t)− x2(t)∥2 =
3

10
⇔ t1,2 =

1
2
∓
√

2
3

10
, t1 ≈ 0.2878, t2 ≈ 0.7121.

Because of the mesh resolution, Γ will in general not be h
2 resolved in a time interval (t1 −

δ1, t1+δ1)∋ tcon, at which the contact usually happens for the discrete mesh and the representation
of the distance function on that mesh. This can be seen in Figure 5.35, where tcon = t27 = 0.27 for
refinement level five.

Apart from the surface Γ not being sufficiently resolved by the mesh, the topology change does
not pose any additional problems to the method, although the outer quadratic penalty iteration
causes a great variance in the number of inner iterations and functional evaluations. It should be
noted that the inner solver usually stops because of the step length criterion.

The shape quality indicator Q stays in an acceptable range, even though some time steps with
low values of Q can be observed for the higher refinement levels (e.g. for level six and t = 0.4).
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5.6. Surface alignment
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Figure 5.36: Various quantities over time for the simplex mesh with uniform cell size distribution.

Closer examination reveals that this is again due to vertices and edges getting aligned with Γ,
which is depicted in Figure 5.37 for t = 0.40 on refinement level six. The vertex marked blue was
aligned with Γ, unilaterally expanding or compressing adjacent cells, leading a badly shaped cell,
where the lowest interior angle is α ≈ 5.5◦. Because of this, the corresponding correction can only
happen for a large penalty parameter µk, meaning ∇H is the dominating part of F′. The same
effect can be observed for other time steps and occurs more often on refinement level seven.

(i) Φ∗(Th(32)). (ii) Φ∗(Th(0.32)), focused on the cells
with low Q

Figure 5.37: Surface aligned mesh on refinement level six at t = 0.40 with focus on cells with bad
shape quality indicator.

The size quality defect S also remains in a satisfactory range, and we see some reduction with
further refinement as the cells near Γ (that get deformed in the alignment process) become smaller
so that the size deviation becomes smaller, too.

Now we want to combine the alignment to Γ with r-adaptivity to see if the scheme remains
stable and how the interaction between alignment and r-adaptivity influences the quality indicators
Q and S. The coefficients

c1 = 0.08, c2 = 1

are used for the simple mesh concentration as defined in (5.10). This results in a ratio λmin
λmax

≈ 1
7 .

The domain with a visualisation of S can be found in Figure 5.38.
In the plot in Figure 5.39 we can see, that the number of functional evaluations is even more
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(i) Φ∗(Th(0)). (ii) Φ∗(Th(0.26)). (iii) Φ∗(Th(0.27)).

Figure 5.38: S ∈ [0,5e−5] from white to black on the surface aligned mesh at different time steps
on refinement level five with r-adaptivity.

unpredictable than in the case without surface alignment. As the local cell sizes influence the
condition number of the problem to solve (see the discussion in Section 5.5.2), this was expected.
The shape quality indicator Q stays in the same range with similar peaks as in the uniform case.
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Figure 5.39: Various quantities over time for the simplex mesh with r-adaptivity.

A comparison of the number of needed functional evaluations, Q and S is given in Table 5.17.
The table confirms the assessment that the combination of r-adaptivity and interface alignment
makes the behaviour of the mentioned quantities unpredictable with regard to refinement.

uniform r-adaptivity

l # evals Q(Φ∗(Th)) S(Φ∗(Th)) # evals Q(Φ∗(Th)) S(Φ∗(Th))

4 2154 5.52e−1 1.84e−2 1418 4.58e−1 3.38e−2

5 3375 5.46e−1 1.12e−2 2061 4.74e−1 2.00e−2

6 4901 5.26e−1 6.34e−3 2358 4.52e−1 1.07e−2

7 4880 4.51e−1 4.28e−3 3649 3.56e−1 6.89e−3

Table 5.17: Quantities for the merging circles test, simplex meshes.
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6
Preconditioning of the nonlinear system

In this chapter, I want to present a preconditioner for the class of nonlinear problems that is the
focus of this work.

Recall that both Algorithm 4.1 and Algorithm 4.2 contained a descent direction d(k+1) which
was written as

d(k+1) =−B−1 F′(Φ(k))+β
(k)d(k)

for the NLCG algorithm, where setting β(k) = 0 recovers the NLSD method. The operator B−1 is
the preconditioner and needs to be symmetric and positive definite to guarantee that −B−1 F′(Φ(k))
is a descent direction. Choices for B were already discussed in Section 4.2 and included

i) B = F′′, which means using the Newton direction as a search direction,

ii) quasi Newton methods, which construct an approximation B−1 ≈ (F′′)−1.

Quasi Newton methods like lBFGS or DFP are algebraic in nature, as they use the discrete
representations F′(Φ(k)). I now want to introduce a simple preconditioner motivated by F on the
continuous level.

6.1. Preconditioning with a second order operator

Recall the functional (3.23):

F(Φ) =
∫

Ω̂h

c f (∥∇Φ∥2
F −d)2dx+(det(∇Φ))pd dx+

cd(
det(∇Φ))+

√
δ2

r +(det(∇Φ))2
)pd

dx.

As we have seen in e.g. in Section 5.3, even the iteration numbers of the nonlinear solvers
used exhibit the characteristic behaviour of a second order operator. Indeed, recall(

∥∇Φ∥2
F −d)2)′

η = 4
(
∥∇Φ∥2

F −d
)

∇Φ : ∇η

from Section 3.4.3. This indicates that it might be possible to construct a preconditioner based
on a second order operator for which efficient numerical methods are available. One obvious

105
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choice is the operator associated with the bilinear form

a : DΦ0 ×D0 → R, a(Φ,η) =
∫

Ω̂

D(Φ) : D(η)dx, (6.1)

where Ω̂ is some reference domain. The discrete form

ah : Dh,φ0 ×Dh,0 → R, ah(Φh,ηh) =
∫

Ω̂h

D(Φh) : D(ηh)dx, (6.2)

can be used to define the operator

Ah : Dh,φ0(T̂h)→Dh,0(T̂h)
′,(AhΦh,ηh) := ah(Φh,ηh),

which can be identified by a Rn×n matrix. From now on, I will just use this discrete form and
identify all quantities with their associated Rn coefficient vectors. This is the motivation for defin-
ing a class of preconditioners by

B−1 : Dh,0(T̂h)
′ →Dh,φ0(T̂h), B−1dh := Ã−1

h dh (6.3)

by some approximation Ã−1
h to the operator A−1

h . Since we do not need A−1
h explicitly, but rather

its application, we can just solve a linear system of equations. Usually the corresponding linear
system of equations

Ahy = dh

is solved only approximately e.g. using an iterative solver, hence the definition B−1dh := Ã−1
h dh.

This is a case where the preconditioner is motivated by the equations on the continuous level and
then discretised, as opposed to e.g. the BFGS preconditioner, which is derived directly from the
discrete nonlinear system.

Remark 6.1.

i) The choice of the bilinear form was motivated by the fact that the functional F couples the
components of a deformation Φ. Other choices are possible, as is adding a part coming
from a zero order operator.

ii) As it was mentioned in Remark 4.11, the solvers from Section 4.2 can also directly be for-
mulated in Hilbert spaces, including Newton’s method using the Hessian F′′. With this in
mind, the preconditioner presented here is nothing but a very simple approximation of the
Hessian.

iii) In the current form where

ah(Φh,ηh) =
∫

Ω̂h

D(Φh) : D(ηh)dx,

the preconditioner does not depend on the current iterate Φk
h and the current mesh Φ

(k)
h (Th)

since the integral is taken on Ωh. It is possible to obtain a variable metric method in the
sense of Remark 4.4 by using the bilinear form

a(k)h (Φh,ηh) =
∫

Φ(k)(Ωh)
D(Φh) : D(ηh)dx,

which sets Ω̂h =Φ(k)(Ωh). This requires the reassembly of the matrix A(k)
h in every nonlinear

solver iteration, which is undesirable.
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6.2. Expected limitations

iv) For local functionals of the form (3.23) (as repeated above), it is easy to bound

∀A ∈ SLd : c1∥A∥2
F ≤ F′(x,A).

Because of the arithmetic-geometric mean inequality, we also trivially get the estimate

∀A ∈ SLd : det(A)≤ 1
d
∥A∥2

F .

But because of the necessary regularity property

lim
det(A)→0

L(x,A) = ∞

of the local integrand, bounding

F′(x,A)≤ c∥A∥2
F

is not possible in general. This means that the preconditioner will fail to give good results
if the stability term of the functional F becomes dominant.

On the other hand, the numerical experience in these situations is that the mesh is already
nearly deteriorated if the stability term becomes dominant, which usually only happens if
e.g. the boundary deformation is about to produce self intersections at the boundary. This
indicates problems in whatever is governing the boundary deformation, so the arising ill-
conditioning of the mesh optimisation problem is usually the least of all worries.

6.2. Expected limitations

The way the preconditioner is constructed, derived from the functional F on the continuous level,
already gives some hints on the limitations to expect.

Constant coefficients

The preconditioner is constructed from a second order operator with constant coefficients. This
means that we cannot expect it to approximate the behaviour of F in the case of r-adaptivity, which
is akin to having an inhomogeneous material response function, or highly varying optimal scales
h. However, it is easy to incorporate non-constant coefficients β : Ωh →R,∀K ∈ Th : β|K = βk into
the bilinear form ah(·, ·), which should be chosen as some approximation βK =

(
∥∇RK(id)∥2

F −d
)
.

Only dependent on ∥∇Φ∥F

Since it the bilinear form ah(·, ·) only uses the term ∥∇Φ∥F , we cannot expect good results if
the parts of F depending on the other invariants of ∇Φ become dominant. The same is true if
a quadratic penalty iteration from Section 4.3 is used to enforce the surface alignment constraint
(3.40). It might be possible to incorporate other terms into the bilinear form ah(·, ·) to at least
account for the other invariants of ∇(Φ) account for this.

Boundary conditions

If unilateral boundary conditions are to be imposed on some parts of ∂Ωh, ah(·, ·) has to be defined
on the same spaces. But as mentioned in Section 5.4.2, imposing this boundary condition by the
use of “simple” projection operators is not very stable with regard to preserving the orientation.
More sophisticated projection operators are needed, which is beyond the scope of this work.
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CHAPTER 6. Preconditioning of the nonlinear system

Effective solver for Ah

For the preconditioner to be effective, a fast solver for

Ahy = dh

needs to be available. In this work, geometric multigrid based methods are used, which are very
efficient if T̂h is uniform, and become inefficient if T̂h has anisotropies or cells of very different
sizes. In these cases, other solvers need to be considered. Since this is just a preconditioner, it is
also worth exploring how “close” Ã−1

h needs to be to A−1
h for Ã−1

h to be an efficient preconditioner
to the nonlinear system.
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7
Numerical results part II: Performance

of the preconditioner

In this chapter, I will present results and discuss the behaviour of the class of preconditioners
introduced in Chapter 6. Sometimes, I will just refer to a functional F or G without any more
indices or details, which means the whole class of hyperelasticity-based functionals or the discrete
D(u) : D(v) functional (Section 5.4.1).

Recall that for an application of the preconditioner A−1
h , we need to solve the system

Ahy = d, (7.1)

which is in general done by an iterative method. One interesting question is now if it is sufficient
to solve the system (7.1) only approximately, obtaining only an approximation Ã−1

h to the real
preconditioner. In the case of a moving domain, I also want to investigate different reference
domains for assembling the operator Ah on (see Section 5.4.1).

For a moving domain Ω = Ω(t) and its polygonal approximation Ωh = Ωh(t) with meshes
Th = Th(t), define the spaces

Vh,l,k =
{

v ∈Dh(Th(tl)) : v|∂Ωh(tl) = ϕ̂tk
}
,Wh,l,k =

{
w ∈Dh(Th(tl)) : w|∂Ωh(tl) = 0

}
and the operator

Ah,l,k : Vh,l,k →W ′
h,l,k, (AhΦh,ηh) := ah(Φh,ηh),

as in Section 5.4.1. We can then identify the operator with its matrix representation also denoted
by Ah,l,k.

Remark 7.1. I want to define some configurations for obtaining an approximation Ã−1
h .

i)
(

Ãw,F
h

)−1
: Solve the linear system given by the operator Ah,0,k+1 approximately by applying

exactly one multigrid V-cycle (“weak” preconditioner on a fixed reference domain).

ii)
(

Ãs,F
h

)−1
: Solve the linear system given by the operator Ah,0,k+1 approximately by with

PCG-MGV (“strong” preconditioner on a fixed reference domain).
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iii)
(

Ãw,M
h

)−1
: Solve the linear system given by the operator Ah,k,k+1 approximately by applying

exactly one multigrid V-cycle (“weak” preconditioner on a moving reference domain).

iv)
(

Ãs,M
h

)−1
: Solve the linear system given by the operator Ah,k,k+1 approximately by with

PCG-MGV (see Section A, “strong” preconditioner on a moving reference domain).

If the problem is not time dependent, obviously the moving reference domain variants do not
apply.

Remark 7.2. Since the minimiser

Φ
∗ = argminΦF(Φ)

is not unique, preconditioning the solver might cause it to converge to a completely different
solution.

There are also the effects of the step length stopping criterion and the stagnation criterion,
which cause the solver to stop before the criteria on the absolute or relative residual norm are
met. These criteria are chosen based on numerical experience to stop the solver early when it is
highly unlikely or very costly for it to make any further progress. This also means that precondi-
tioning might cause the solver to make progress towards a different local minimiser which it might
not reach due to these criteria, or the preconditioned iteration makes further progress towards
a different solution instead of stopping early, requiring more iterations. The nonuniqueness of
the solution makes measuring the effect of using different solvers and preconditioners much more
difficult.

7.1. Refinement of a unit circle mesh

In this section, I want to revisit the example of Section 5.3. As mentioned in the preface of this
chapter, I want to investigate the qualitative behaviour of the (preconditioned) nonlinear system
arising from F as well as whether the use of a preconditioner allows the nonlinear solver to make
further progress than in the unpreconditioned case. For comparison, I also used the NLSD-lBFGS
solver from ALGLIB (see [Boc]). Because the academic edition only supports serial mode (meaning
no MPI parallelism), all computations in this sections were done in serial, with a few exceptions
that will be marked explicitly. The number of DoF increases from 256 (level three) to 16777216
(level eleven) for the simplex meshes (see Table 5.1) and from 320 (level three) to 20971520 (level
eleven) for the hypercube meshes (see Table 5.4).

The configurations of the nonlinear solvers can be found in Table 7.1. The settings for the line
search are the same as in Section 5.3, see Remark 5.3. Different preconditioners from Remark 7.1
will be used with the NLCG solver, their configurations can be found in Table 7.1.

Let us start by examining the results for simplex meshes. Again, levels for which a solver
stagnated are marked with the letter s and if the solver stopped early because of the step length
criterion or functional value criterion they are marked with an asterisk.

Simplex meshes

For all solvers for applying the preconditioners (Ã·,·
h )

−1, the solver configuration from Table 7.2 (i)
was used.

Table 7.3 contains data from the same computation as Table 5.3 in Section 5.3, but is used
to discuss solver aspects. We can see the number of iterations approximately doubling for every
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7.1. Refinement of a unit circle mesh

Solver NLSD-lBFGS

εr = 1e−8

ε f = 0

lBFGS_dim = 10

max_iter = 10000

(i) Configuration 1.

Solver NLCG

εr = 1e−8

εs = 2.204e−8

ε f = 0

stag_iter = 10

max_iter = 10000

Update Dai-Yuan-Hestenes-Stiefel

(ii) Configuration 2.

Table 7.1: Different nonlinear solver configurations.

Solver PCG-MGV

εr = 1e−8

max_iter = 1000

MGV coarsest level = 1

Smoother Richardson-Jacobi

Smoother iterations 4 pre, 4 post

Coarse grid solver PCG-Jacobi

Jacobi ω = 0.7

PCG-Jacobi εr = 1e−8

max_iter = 1000

(i) Configuration 1.

Solver PCG-MGV

εr = 1e−8

max_iter = 1000

MGV coarsest level = 1

Smoother CG

Smoother iterations 4 pre, 4 post

Coarse grid solver PCG-Jacobi

Jacobi ω = 0.5

PCG-Jacobi εr = 1e−8

max_iter = 1000

(ii) Configuration 2.

Table 7.2: Different solver configurations for applying (Ã·,F
h )−1.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 44 75 7.13e−1 7.21e−1 7.68e−1 8.49e−1 8.71e−9 6.36e−3

4 103 147 5.46e−1 6.94e−1 7.48e−1 8.51e−1 9.42e−9 4.25e−2

5 208 257 4.02e−1 6.76e−1 7.45e−1 8.52e−1 9.02e−9 2.95e−1

6 400 453 2.90e−1 6.63e−1 7.49e−1 8.53e−1 9.76e−9 2.08e+0

7 1081 1608 2.07e−1 6.53e−1 7.53e−1 8.53e−1 9.52e−9 2.92e+1

8 3908 9229 1.47e−1 6.44e−1 7.56e−1 8.53e−1 9.86e−9 6.81e+2

9s 1156 4602 1.04e−1 4.63e−1 7.57e−1 7.77e−1 6.36e−7 1.38e+3

10* 388 748 7.37e−2 2.74e−1 7.59e−1 7.13e−1 6.66e−7 1.06e+3

11s 359 797 5.21e−2 3.40e−1 7.59e−1 7.43e−1 6.38e−7 3.97e+3

Table 7.3: NLCG, simplex meshes.

111



CHAPTER 7. Numerical results part II: Performance of the preconditioner

level of refinement up to level seven. Level eight is the last level where the solver converges with
regard to εr, but the number of iterations and evaluations quadrupled compared to level seven.
As mentioned before, this indicates the ill-conditioning of the problem. Also, the ratio between
iterations and functional evaluations becomes worse, as the line search becomes more difficult
with further refinement.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 40 72 7.13e−1 7.21e−1 7.68e−1 8.49e−1 9.66e−9 6.23e−3

4 94 127 5.46e−1 6.94e−1 7.48e−1 8.51e−1 8.11e−9 3.86e−2

5 184 259 4.02e−1 6.76e−1 7.45e−1 8.52e−1 8.57e−9 3.11e−1

6 377 719 2.90e−1 6.63e−1 7.49e−1 8.53e−1 9.93e−9 3.40e+0

7 791 1613 2.07e−1 6.53e−1 7.53e−1 8.53e−1 1.00e−8 3.00e+1

8 1915 4546 1.47e−1 6.44e−1 7.56e−1 8.53e−1 9.94e−9 3.65e+2

9s 389 1924 1.04e−1 1.63e−1 7.57e−1 7.54e−1 2.85e−5 5.84e+2

10* 507 3102 7.37e−2 2.08e−1 7.59e−1 7.31e−1 9.78e−7 4.12e+3

11* 759 1331 5.21e−2 4.92e−1 7.59e−1 7.31e−1 3.20e−8 7.43e+3

Table 7.4: NLSD-lBFGS, simplex meshes.

The iteration and functional evaluation numbers when using NLSD-lBFGS (see Table 7.4) still
show the same doubling with each level of refinement up until level eight. From level nine on, the
solver stops early due to the functional value improvement criterion (recall that ε f = 0, meaning
subsequent iterates yielded the same functional value). On levels nine and ten, the stopping iterate
results in meshes with very poor shape quality heuristic Q, while on level eleven, the result is
significantly better. Note how the number of functional evaluations per iteration increases with
further refinement and drops again on level eleven. There is no real explanation for this except
for the unpredictability of solution process of the nonlinear problem. Also note that even though
BFGS is considered the most efficient quasi Newton method and offers superlinear convergence
rates for strongly convex functional under certain assumptions ([NW06, Chapter 6.4]), the limited
memory variant applied to this nonconvex functional actually behaves quite similar to unprecon-
ditioned NLCG (Table 7.3) up to level seven. This indicates that using the Newton direction (4.3)
(in the cases where it actually is a descent direction) e.g. by appropriately preconditioning NLSD
or NLCG will most likely not give decisively different convergence rates.

If we apply the preconditioner (Aw,F
h )−1 (the results can be found in Table 7.5), the number of

iterations only increases slightly with each level of refinement, up to level seven. Like in the un-
preconditioned case (see Table 7.3), the results are different from level eight on, where the number
of iterations increases sharply. On levels nine and ten, the solver stops due to the step length cri-
terion, and the shape quality indicator Q(Φ∗(Th)) is higher than in the case of no preconditioning.
On refinement level eleven, the solver stagnates without reaching a useful local minimum. Clearly,
Aw,F

h has stopped being a good preconditioner, either because the approximation (Aw,F
h )−1 obtained

by applying a single multigrid V-cycle is no longer good enough, or because the approximation
on the continuous level is not sufficient. We will see below that this is not the case, as using
the “stronger” preconditioner (As,F

h )−1 gives much better results. Note that the same increase in
functional evaluations per NLCG iteration as before occurs.

Applying the strong preconditioner Ãs,F
h yields iteration number that increase only slightly
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7.1. Refinement of a unit circle mesh

l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 26 71 7.13e−1 7.21e−1 7.68e−1 8.49e−1 5.69e−9 1.82e−2

4 33 61 5.46e−1 6.94e−1 7.48e−1 8.51e−1 5.72e−9 3.67e−2

5 41 72 4.02e−1 6.76e−1 7.45e−1 8.52e−1 8.02e−9 1.50e−1

6 47 76 2.90e−1 6.63e−1 7.49e−1 8.53e−1 9.97e−9 6.70e−1

7 48 123 2.07e−1 6.53e−1 7.53e−1 8.53e−1 6.96e−9 5.49e+0

8 255 2313 1.47e−1 6.45e−1 7.56e−1 8.53e−1 9.98e−9 2.29e+2

9* 333 4090 1.04e−1 5.98e−1 7.57e−1 8.52e−1 9.85e−8 2.36e+3

10* 503 6621 7.37e−2 6.43e−1 7.59e−1 8.48e−1 6.17e−8 8.55e+3

11s 125 2095 5.21e−2 1.42e−2 7.59e−1 8.00e−1 2.98e−1 1.02e+4

Table 7.5: NLCG-Ãw,F
h , simplex meshes.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 24 48 7.13e−1 7.21e−1 7.68e−1 8.49e−1 9.10e−9 2.38e−2

4 30 61 5.46e−1 6.94e−1 7.48e−1 8.51e−1 7.76e−9 7.87e−2

5 32 61 4.02e−1 6.76e−1 7.45e−1 8.52e−1 8.18e−9 3.45e−1

6 36 66 2.90e−1 6.63e−1 7.49e−1 8.53e−1 6.97e−9 1.41e+0

7 38 68 2.07e−1 6.53e−1 7.53e−1 8.53e−1 7.90e−9 1.35e+1

8 41 90 1.47e−1 6.45e−1 7.56e−1 8.53e−1 8.27e−9 4.99e+1

9 40 161 1.04e−1 6.30e−1 7.57e−1 8.53e−1 8.80e−9 2.73e+2

10 79 724 7.37e−2 6.17e−1 7.59e−1 8.48e−1 8.25e−9 4.93e+3

11 28 280 5.21e−2 5.24e−1 7.59e−1 8.41e−1 7.37e−9 2.45e+3

Table 7.6: NLCG-Ãs,F
h , simplex meshes.

with increasing refinement level (see Table 7.6). The solver converges with regard to the relative
residual criterion for all levels, which is a very important improvement over the other precondi-
tioners used so far. However, we see the number of functional evaluations increasing sharply from
level nine on, meaning the line search requires more iterations, increasing the ratio of evaluations
per iteration. This is another indicator for the systematic ill-conditioning of the system, where the
preconditioner improves the search directions, but cannot make the finding of a step satisfying the
strong Wolfe conditions any easier.

Notice how the resulting shape quality indicator Q(Φ∗(Th)) decreases with further refinement,
even though the solver converged with regard to the relative residual norm. Apparently, this stop-
ping criterion is not optimal achieving the best possible mesh quality. This also means that the
performance of a solver or preconditioner cannot be evaluated based on run time or iteration num-
bers alone, but the “quality” of the solutions found needs to be taken into account as well, both
due to the nonuniqueness and the described effect.
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Hypercube meshes

The hypercube case will be discussed in less detail, as the results are qualitatively similar. For all
solvers for applying the preconditioners (Ã·,·

h )
−1, the solver configuration from Table 7.2 (ii) was

used because the configuration from Table 7.2 (i) resulted in the multigrid V-cycle not reducing
the norm of the defect of the system it was applied to. The same effect was observed in other cases
and will be discussed in Section 7.2.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 95 145 1.80e−1 4.22e−1 4.24e−1 5.70e−1 9.97e−9 2.78e+0

4 190 239 1.86e−1 4.41e−1 4.22e−1 5.97e−1 7.19e−9 1.81e+1

5 422 482 1.39e−1 4.52e−1 4.26e−1 6.12e−1 8.80e−9 1.48e+2

6 717 781 7.18e−2 4.57e−1 4.29e−1 6.20e−1 9.91e−9 9.86e+2

7 1209 1324 3.65e−2 4.60e−1 4.32e−1 6.24e−1 9.53e−9 6.52e+3

8 1991 2109 1.84e−2 4.61e−1 4.33e−1 6.26e−1 9.64e−9 4.02e+4

9 3256 3481 9.23e−3 4.65e−1 4.34e−1 6.36e−1 9.69e−9 2.55e+5

10s 990 5559 4.62e−3 1.12e−1 4.35e−1 4.52e−1 7.12e−7 −

11* 1357 9936 2.31e−3 2.70e−2 4.35e−1 4.36e−1 1.14e−6 −

Table 7.7: NLCG, hypercube meshes.

Table 7.7 contains the results obtained by using the unpreconditioned NLCG solver. The main
difference to the simplex case is that the number of iterations slightly less than doubles with every
level of refinement only up to level nine, for up to which the solver converges with regard to the
relative residual norm. Note that due to the nonuniqueness of the solution and the resulting highly
unpredictable solver behaviour, this does not indicate any systematic advantages. Because of the
high computation times of the unpreconditioned solver, refinement levels ten and eleven were done
in parallel with 16 MPI processes, so no time is given. On level ten, the solver stagnates and on
level eleven it stops due to the step length criterion, with a high ratio of functional evaluations per
NLCG iteration, indicating the ill-conditioning of the problem.

Using NLSD preconditioned with lBFGS (Table 7.8) again gives qualitatively similar results
as in the simplex case, with less iterations and functional evaluations required than with unpre-
conditioned NLCG up to refinement level six, with the same dependence on the refinement level.
On level seven, more iterations compared to using NLCG are needed, and from level eight on the
solver stops early without converging with regard to the relative residual norm. Clearly, the min-
imisation problem is such that the theoretical advantages of this solver over the unpreconditioned
NLCG (see Section 4.2.1) do not come into play.

When using the “weaker” preconditioner Ãw,F
h (the results are in Table 7.9), the number of

iterations only slightly increases up to refinement level seven. Level eight appears to be the point
where the preconditioner no longer gives the radical improvement of the lower levels, and the
number of line search iterations needed in every NLCG iteration increases sharply. From level ten
on, the solver stagnates with ten subsequent steps of steepest descent.

As in the simplex case, using the “stronger” preconditioner Ãs,F
h results in the solver being

able to converge with regard to the relative residual norm for all levels of refinement (see Table
7.10). The number of iterations again only lightly depends on the refinement level. However,
the interesting effect of the iteration numbers decreasing with further refinement can be observed,
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l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 86 138 1.80e−1 4.22e−1 4.24e−1 5.70e−1 1.48e−8 2.43e+0

4 167 238 1.86e−1 4.41e−1 4.22e−1 5.97e−1 8.63e−9 1.66e+1

5 330 507 1.39e−1 4.52e−1 4.26e−1 6.12e−1 9.01e−9 1.43e+2

6 564 932 7.18e−2 4.57e−1 4.29e−1 6.20e−1 9.85e−9 1.06e+3

7 1337 3156 3.65e−2 4.60e−1 4.32e−1 6.24e−1 9.78e−9 1.55e+4

8* 385 884 1.84e−2 4.00e−2 4.33e−1 6.12e−1 2.84e−6 1.69e+4

9* 746 1225 9.23e−3 5.49e−2 4.34e−1 6.09e−1 3.00e−7 9.10e+4

10* 567 1924 4.62e−3 1.82e−1 4.35e−1 5.30e−1 1.38e−7 5.55e+5

11* 817 1457 2.31e−3 1.71e−1 4.35e−1 5.03e−1 5.59e−8 1.63e+6

Table 7.8: NLSD-lBFGS, hypercube meshes.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 59 136 1.80e−1 4.22e−1 4.24e−1 5.70e−1 1.30e−8 2.47e+0

4 82 126 1.86e−1 4.41e−1 4.22e−1 5.97e−1 7.90e−9 9.22e+0

5 102 150 1.39e−1 4.52e−1 4.26e−1 6.12e−1 7.97e−9 4.39e+1

6 117 164 7.18e−2 4.57e−1 4.29e−1 6.20e−1 8.35e−9 1.86e+2

7 105 154 3.65e−2 4.60e−1 4.32e−1 6.24e−1 9.96e−9 7.38e+2

8 191 1450 1.84e−2 4.61e−1 4.33e−1 6.26e−1 9.32e−9 2.80e+4

9 766 10050 9.23e−3 4.62e−1 4.34e−1 6.27e−1 9.36e−9 7.08e+5

10s 95 1329 4.62e−3 1.05e−2 4.35e−1 4.67e−1 5.13e−2 3.88e+5

11s 48 853 2.31e−3 3.01e−3 4.35e−1 4.47e−1 4.78e−1 9.78e+5

Table 7.9: NLCG-Ãw,F
h , hypercube meshes.

with only nine iterations for refinement level eleven. But the shape quality heuristic Q(Φ∗(Th))
shows that the resulting mesh contains cells of much lower quality. Like in the simplex case,
this indicates that stopping based on the relative residual with the same criterion on all levels is
not sufficient for ensuring good mesh quality, but the effect is much stronger. For comparison
purposes, the computation on level eleven was done with a lower stopping criterion of εr = 1e−12
and can be found in the last row of Table 7.10. With the lower stopping criterion, the shape quality
heuristic Q(Φ∗(Th)) is again in the same range as on the lower refinement levels, at the cost of
many more iterations performed. Because of the expected run time, this computation was done in
parallel, so no timing information is provided..

For the example of the refinement of the unit circle mesh, the effect of the preconditioners from
Chapter 6 is very strong, especially of the NLCG-Ãs,F

h variant. The use of these preconditioners
also allows working with much finer meshes than otherwise possible. Going to these extremely
fine meshes also revealed that the selection of the stopping criteria for the solver is more difficult
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l # its # evals Q(ϕ̂(Th)) Q(Φ∗) Qa(ϕ̂(Th)) Qa(Φ
∗) ∥F′(Th)∥2

∥F′(Φ∗)∥2
time

3 60 101 1.80e−1 4.22e−1 4.24e−1 5.70e−1 8.70e−9 2.14e+0

4 78 121 1.86e−1 4.41e−1 4.22e−1 5.97e−1 9.72e−9 1.02e+1

5 86 123 1.39e−1 4.52e−1 4.26e−1 6.12e−1 9.95e−9 4.26e+1

6 91 137 7.18e−2 4.57e−1 4.29e−1 6.20e−1 8.02e−9 1.85e+2

7 82 118 3.65e−2 4.60e−1 4.32e−1 6.24e−1 8.51e−9 6.63e+2

8 66 101 1.84e−2 4.61e−1 4.33e−1 6.26e−1 8.84e−9 2.38e+3

9 45 75 9.23e−3 4.61e−1 4.34e−1 6.27e−1 9.89e−9 6.82e+3

10 29 63 4.62e−3 4.63e−1 4.35e−1 6.30e−1 9.77e−9 2.31e+4

11 9 29 2.31e−3 9.69e−2 4.35e−1 5.54e−1 6.71e−9 3.68e+4

11 196 620 2.31e−3 4.62e−1 4.35e−1 6.27e−1 9.71e−13 −

Table 7.10: NLCG-Ãs,F
h , hypercube meshes.

than for linear problems, and that the relative residual norm might not be a good indicator for the
quality of the corresponding solution.

7.2. Moving nonconvex shape

In this section I want to discuss the use of the preconditioner from Chapter 6 in the example of the
moving nonconvex shape from Section 5.4.1. This example is useful for illustrating some charac-
teristics associated with the solvers and preconditioners on moving reference domains. Because
of the number of time steps that need to be computed, all computations in this section were done
in parallel with eight to 16 processes.

First, I want to discuss the minimisers

Ψ
∗
h,l,k = argminu∈Vh,l,k

G(l,k,u)

for two cases.

i) l = 0: Fixed reference domain. This type of functional will be denoted Gi
F .

ii) l = k−1: Moving reference domain. This type of functional will be denoted Gi
M.

Here, i is an index for the solver configuration used. Two different solver configurations will be
used, which are given in Table 7.11. The only difference is the smoother in the multigrid V-cycle.
The results of this part will also be relevant for preconditioning the minimisation process for the
hyperelasticity-based functional.

For this (and later, for the hyperelasticity-based mesh quality functional F), these are the
questions I want to investigate in this section:

i) In the case of a fixed reference domain, the linear system for GF is the same for all time
steps, so the solver should require the same number of iterations in each time step. Is this
still the case near the break down?
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Solver PCG-MGV

εr = 1e−8

max_iter = 1000

MGV coarsest level = 1

Smoother Richardson-Jacobi

Smoother iterations 4 pre, 4 post

Coarse grid solver PCG-Jacobi

Jacobi ω = 0.5

PCG-Jacobi εr = 1e−8

max_iter = 1000

(i) Configuration 1.

Solver PCG-MGV

εr = 1e−8

max_iter = 1000

MGV coarsest level = 1

Smoother CG

Smoother iterations 4 pre, 4 post

Coarse grid solver PCG-Jacobi

Jacobi ω = 0.5

PCG-Jacobi εr = 1e−8

max_iter = 1000

(ii) Configuration 2.

Table 7.11: Different solver configuration for GF ,GM.

ii) In the case of a moving reference domain, the mesh becomes nonuniform and distorted.
How does this influence the solvers for GM?

iii) Even though the functional GF cannot be used to compute meshes for the whole time inter-
val, is it still feasible to formulate a preconditioner on the fixed reference domain?

iv) The boundary deformation was chosen to greatly change the size of cells. This means
the terms based on det(∇Φ) in the hyperelasticity-based functional should become more
important as the domain evolves. Which impact on the preconditioner does this have?

The functional GF is of practical relevance because it is the computationally least expensive
method presented in this work. Even though the results in Section 5.4.1 for this functional were
not satisfactory, it is sufficient for cases with only small boundary deformations. In Table 7.12, we
can see that the number of iterations for the case G1

F is nearly mesh independent, as is expected
from preconditioning CG with MGV for this type of problem. However, the early breakdown
discussed in Section 5.4.1 (see also Figure 5.8 (i)) makes this method unsuitable for the example
at hand.

For the case G1
M, we see that the number of iterations is no longer (nearly) mesh independent.

Because the reference domain is moving, the linear system is reassembled in each time step on
the current reference domain. However, due to the boundary movement, the mesh hierarchy is
slightly disturbed (see Figure 7.2 (ii)), reducing the effectiveness of the MGV preconditioner in
solver configuration 1. It turns out that the smoother in the V-cycle is not strong enough to handle
this systematic error. With increasing refinement level, the time step from which on this systematic
error has an influence occurs earlier (see Figure 7.2 (i)), resulting in greatly increased computation
times. This can be avoided by using solver configuration 2, which uses CG as smoother in the
multigrid V-cycle. Table 7.12 shows that the average number of iterations per time step is nearly
independent of the refinement level. The average of the shape quality heuristic Q over time is
also given as a reminder the variant G2

M also gives the better meshes. The number of iterations
for very time step can be found in Figure 7.1 for different solver configurations, including an
unpreconditioned CG solver for GM with εr = 1e−8 and max_iter = 50000. This is given to
illustrate how effective the multigrid V-cycle is as a preconditioner, and because it can be seen that
the number of iterations required increases with time as the domain deforms. For refinement level
nine, the mesh deteriorates at time t = 0.276 (time step 552).
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G1
F G1

M G2
M

l # its Q(Ψ∗(Th)) # its Q(Ψ∗(Th)) # its Q(Ψ∗(Th))

3 11 5.00e−1 14 5.17e−1 6 5.17e−1

4 14 5.02e−1 42 5.12e−1 7 5.12e−1

5 17 5.01e−1 175 5.09e−1 7 5.09e−1

6 18 5.00e−1 318 5.07e−1 7 5.07e−1

7 18 4.99e−1 424 5.04e−1 7 5.06e−1

8 18 4.99e−1 476 4.99e−1 8 5.05e−1

9 18 4.98e−1 482 4.99e−1 8 5.05e−1

Table 7.12: Average number of iterations and functional evaluations for different refinement
levels.
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Figure 7.1: G, number of iterations in each time step for different solver configurations.

Now we want to examine the functional Fh,k from Section 5.4.1 and compare the results of
different solver configurations as well. Here, FF denotes any variant of the hyperelasticity-based
functional using a preconditioner (if any) that uses a fixed reference domain. FM is used analog-
ously for moving reference domains. Note that the reference domain only matters for the pre-
conditioner, so results for the unpreconditioned NLCG are given for comparison purposes where
applicable.

The solver configurations are given in Table 7.13, where the outer solver is NLCG (with the
same configuration as in Table 7.1 (ii) except for max_iter = 50000) and the preconditioner is
always a variant of Ãh. The preconditioners differ in their reference domain (fixed or moving)
and the solver used. For the preconditioners Ãw,M

h and Ãs,M
h using the moving reference domain,

the stronger multigrid V-cycles from Table 7.11 (ii) are used. Using the weaker multigrid V-cycle
from Table 7.11 (i) results in a nonconverging preconditioner from a certain time step on, so that
the resulting search direction is discarded and the NLCG degenerates into NLSD.

First, let us consider the unpreconditioned NLCG, for which the average number of iterations,
functional evaluations and the mesh quality heuristic Q can be found in Table 7.14. We again
see that the number of iterations more than doubles for each level of refinement, as does the
number of functional evaluations, just as in the stationary case of the refinement of the unit circle
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Figure 7.2: Iteration numbers and nonhierarchical meshes associated with the use of a moving
reference domain.

Solver NLCG-Ãw,F
h

εr = 1e−8

max_iter = 1000

Ãw,F
h Configuration 1 from Table 7.11 (i)

(i) Configuration 1.

Solver NLCG-Ãs,F
h

εr = 1e−8

max_iter = 1000

Ãs,F
h Configuration 1 from Table 7.11 (i)

(ii) Configuration 2.

Solver NLCG-Ãw,M
h

εr = 1e−8

max_iter = 1000

Ãw,M
h Configuration 2 from Table 7.11 (ii)

(iii) Configuration 3.

Solver NLCG-Ãs,M
h

εr = 1e−8

max_iter = 1000

Ãs,M
h Configuration 2 from Table 7.11 (ii)

(iv) Configuration 4.

Table 7.13: Different solver configuration for FF ,FM.

mesh (Section 7.5). The important observation comes from Figure 7.3 (i): These numbers do not
increase with time as the domain gets deformed. This indicates that the initial guess is not too far
from a local minimiser of F.

For the cases FF , the averages of the number of solver iterations, functional evaluations and
the quality heuristic Q are given in Table 7.14. There we can see that both variants of the pre-
conditioner drastically decrease the dependence of these numbers on the refinement level. For the
configuration NLCG-Ãw,F

h , we observe an increase by a factor of five over six levels of refinement,
for the configuration NLCG-Ãs,F

h it is just a factor of two. The latter configuration is significantly
more expensive than the previous, as every application of the preconditioner requires a signific-
ant number (10 to 30) multigrid V-cycles. Another thing to note is that the number of iterations
increases with time. I attribute this to the deformed domain, where the terms based on det(∇Φ)
become more important (without being dominant), which the preconditioner does not capture.

These results indicate that even in the face of large deformations, the preconditioner from
Chapter 6 is still a good choice, although its performance does indeed decrease as other parts of
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NLCG NLCG-Ãw,F
h NLCG-Ãs,F

h

l # its # evals Q(Φ∗(Th)) # its # evals Q(Φ∗(Th)) # its # evals Q(Φ∗(Th))

3 98 185 5.94e−1 57 141 5.94e−1 42 127 5.94e−1

4 197 288 5.90e−1 86 187 5.90e−1 52 142 5.90e−1

5 385 482 5.87e−1 114 234 5.87e−1 59 155 5.87e−1

6 821 952 5.83e−1 140 277 5.83e−1 65 169 5.83e−1

7 1955 2252 5.78e−1 162 316 5.78e−1 71 177 5.78e−1

8 5105 5960 5.71e−1 184 361 5.71e−1 79 192 5.71e−1

9 13889 16427 5.54e−1 219 476 5.54e−1 88 235 5.54e−1

Table 7.14: FF , average number of iterations and functional evaluations on different refinement
levels.

the functional become more relevant.
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h .

Figure 7.3: FF , number of functional evaluations needed in every time step.

The slight degradation in the performance of the preconditioners Ã·,F
h over time makes it worth

exploring the use of a time dependent reference domain leading to the preconditioners Ã·,M
h . Here,

only the multigrid V-cycle configuration from Table 7.11 (ii) will be discussed as the configuration
from Table 7.11 (i) causes the solver for the preconditioner to fail to converge as mentioned above.
This means that the system matrix for Ã·,M

h needs to be reassembled in each time step.
In Table 7.15, a similar behaviour as in the case of FF can be observed. The use of the pre-

conditioners Ã·,M
h greatly reduces the level dependence of the number of iterations and functional

evaluations. For the preconditioner Ãs,M
h , these numbers again increase approximately by a factor

of two over six levels of refinement, and by a factor of 2.5 for the preconditioner Ãw,M
h , which is

significantly less than the factor of five for the preconditioner Ãw,F
h above.

In Figure 7.4 (ii) and Figure 7.4 (iii), the number of functional evaluations in every time step
can be observed to not increase with time, which is an advantage over the preconditioners using
a fixed reference domain. Results obtained by using a fixed reference domain (see Table 7.11 (i))
together with the stronger multigrid V-cycle configuration 2 from Table 7.11 (ii) show the same
behaviour of increasing iteration number with time, which confirms that the above mentioned
effect is really due to the moving reference domain and not the stronger linear solver for the
application of the preconditioner.
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NLCG NLCG-Ãw,M
h NLCG-Ãs,M

h

l # its # evals Q(Φ∗(Th)) # its # evals Q(Φ∗(Th)) # its # evals Q(Φ∗(Th))

3 98 185 5.94e−1 45 128 5.94e−1 26 105 5.94e−1

4 197 288 5.90e−1 60 150 5.90e−1 29 114 5.90e−1

5 385 482 5.87e−1 75 173 5.87e−1 33 123 5.87e−1

6 821 952 5.83e−1 95 204 5.83e−1 36 128 5.83e−1

7 1955 2252 5.78e−1 115 240 5.78e−1 41 141 5.78e−1

8 5105 5960 5.71e−1 136 280 5.71e−1 49 152 5.71e−1

9 13889 16427 5.54e−1 159 370 5.54e−1 59 175 5.54e−1

Table 7.15: FM, average number of iterations and functional evaluations on different refinement
levels.
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Figure 7.4: FM, number of functional evaluations needed in every time step.

In this section we have seen that even for the class G of linear functionals, care has to be taken
when choosing a solver. Using a moving reference domain is the default in many applications,
and nonhierarchical meshes resulting from this can have a serious impact on the convergence of a
geometric multigrid method. The same is then true for solving PDE with the finite element method
on these meshes. A fixed reference domain still might be sufficient if the boundary deformations
are small. The mesh on the reference domain being (nearly) uniform has a positive influence on
the solver behaviour in the sense that the number of iterations stays the same for all time steps.

The same is also true for the preconditioners Ã·,·
h . Because the preconditioner is used for

solving a problem on the dual space, using a fixed reference domain has a less serious impact than
using the function GF , but it still shows some degrading in iteration numbers as the domain moves
and is deformed, because the preconditioner does not capture these effects. This can be remedied
by using a moving reference domain for the preconditioner, keeping the deformations “small” in
each time step.

Choosing the most efficient combination of preconditioner and solver tree appears to be highly
problem dependent. As we have seen, the functionals GF and GM might even be sufficient if the
mesh deformations are small and if we do not need to equidistribute the domain’s volume over
all cells. These functionals are computationally less demanding by several orders of magnitude.
However, in the context of large deformations (especially compressing the mesh like in Section
3.4), using a functional of the class F might become unavoidable. In these cases, a moving ref-
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erence domain for the preconditioner will be the better choice, as the assembly of the system
matrix for the preconditioner is about as expensive as one evaluation of F and F′. The results in
this section suggest that it might be sufficient to solve the linear system for the application of the
preconditioner with a high tolerance, or even perform a fixed number of iterations.
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8
Conclusion

In this work, various aspects of PDE-based mesh optimisation were treated. Assume that we have
a PDE we want to discretise with the finite element method and solve the discrete problem numer-
ically. In many interpolation error estimates from Chapter 2 (see also [CR72]), the determinant of
the local cell reference mapping’s gradient is a relevant quantity, so e.g. when moving meshes are
used, we first need to ensure that the cell reference mapping belongs to the space of orientation
preserving mappings (Definition 3.1). Furthermore, a mesh of good quality might be necessary
for discrete maximum principles. For this, mesh optimisation is an important tool.

Both PDE and non-PDE-based mesh optimisation have their own distinct set of advantages
and disadvantages, where I chose the former because there are theoretical results that guarantee
the existence of minimisers and to take advantage of existing tools for the numerical solution of
PDEs with the finite element method.

In Chapter 3, the somewhat diffuse term mesh quality was discussed at length, with various
examples illustrating different notions of mesh quality. The most important part is the orientation
preserving property of a mesh deformation, which is fundamental to avoid self intersections and
was directly incorporated into the definitions of the spaces of admissible deformations (Definition
3.1) and variations (Definition 3.2). The three important aspects of computing extension operators
for boundary movement, r-adaptivity and alignment of meshes to (implicit) surfaces were motiv-
ated and discussed in Section 3.2. Especially aligning the mesh to interior surfaces (e.g. to resolve
a phase boundary in two phase flow) can result in much better approximation properties for the
finite element spaces discretising the original PDE (see [LMWZ10]).

Examples for mesh quality in 1d and 2d were given in Section 3.3, including examples where
only the shape or the size of cells was used to define the quality of a mesh. In Section 3.4, three dif-
ferent PDE based methods were presented to compute an extension the movement of a boundary
part of the underlying mesh. The two quadratic functionals (leading to linear problems that need
to be solved) did not result in a stable mesh deformation method if a fixed reference domain was
used. With a moving reference domain, the solutions stayed in the space of orientation preserving
mappings (which cannot be enforced directly for quadratic functionals), but no useful lower bound
for the spatial angles could be observed. The third functional was based on a stored energy func-
tional for hyperelastic materials, directly incorporating the orientation preserving property and
gave quite good results.

This was the motivation for revisiting an idea from [Rum96] to model a mesh as a hyperelastic
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material, where a local optimal reference cell defines the material response function (Section 3.5).
For a mapping Φ, the quantities ∥∇Φ∥2

F , Cof(∇Φ) and det(∇Φ) describe the change in the 1, 2
and 3-dimensional volume of entities of the corresponding dimension, so it appears quite natural
to use the quantities for the definition of mesh quality and mesh quality functionals. Many mesh
quality functionals (see e.g. [HR11], [FK02]) can be traced back to explicitly or implicitly being
defined in terms of these quantities. This allows for a fine-grained control of various quantities
related to the shape, size and size distribution of cells (Section 3.5.3, Section 3.5.4 and Section
3.7) and makes the whole method robust enough that a condition for aligning the mesh to (impli-
cit) surfaces can be incorporated directly into the mesh quality functional (Section 3.5.8, see also
[BW13]). Unfortunately, the mesh topology when using hypercubes does not allow a mesh to be
aligned to an arbitrary surface, as discussed in Section 3.5.8, which might be solved by special
local refinement or splitting said cells into simplices. As this (locally) modifies the finite element
spaces, this was not discussed further. Because of the relation to hyperelastic materials and poly-
convex stored-energy functions, theoretical results from [Bal76] (see also [Cia88]) establish the
existence and nonuniqueness of minimisers for this class of functionals (Section 3.5.6). The nonu-
niqueness of the solutions to elasticity problems is well-known ([Gur78], [Nol78]). Moreover, the
notion that volumes can only be annihilated by infinite force which is critical for the orientation
preserving property of deformations already rules out convex functionals (see Section 3.5.5 and
[Cia88, Theorem 4.8-1], so this property cannot be directly incorporated in quadratic functionals
as mentioned above.

In Chapter 4, some numerical methods for solving the discrete minimisation problems arising
from the class of functionals from Section 3.5 were presented. As the theory from Section 3.5.6
is quite general, it covers the discrete case of solving the minimisation problem on finite element
spaces (Section 4.1) as well. For the minimisation of the discrete mesh quality functional, methods
from the field of unconstrained, nonconvex optimisation were introduced (Section 4.2), with the
main focus on line search based methods. As the functionals are nonconvex and the initial guess
for the iterative solver might be far away from a local minimum, Newton’s method was not used
(Remark 4.3, see also the examples in Section 4.4), but Quasi-Newton methods derived from
the Broyden class were considered as preconditioners for line search methods. However, the
focus here and in the subsequent Chapter 6 is on other preconditioners that are motivated by
the continuous version of the PDE defining the mesh quality functional, rather than being more
algebraic in nature like the Broyden class. The surface alignment condition from Section 3.5.8
represents a set of constraints, but no form of constraint qualification can be applied to it (Section
4.3), so most sophisticated method for the solution of the constrained minimisation problem seems
to be a quadratic penalty iteration.

The numerical results with regard to the hyperelasticity-based mesh quality functionals were
presented in Chapter 5. Here, the focus was on the results of the method itself, with no discussion
of solver aspects, which are treated in Chapter 7. Quality heuristics for cell shapes and the cell
size distribution were introduced and discussed in Section 5.2. Where possible (meaning for the
computation of extension operators for boundary deformations in the sense of Section 3.2.1), the
results were compared with the results obtained by using a quadratic mesh quality functional
based on the D(u) : D(v) bilinear form (see Section 3.4.2), e.g. in Section 5.3 and Section 5.4.
This quadratic functional gave significantly better results than simpler, (graph-) Laplacian-based
quadratic functionals (Section 3.4) and still results in a linear, symmetric, positive definite system
matrix for which efficient solvers are available. Other functionals still giving rise to linear systems
of equations (like functionals based on the biharmonic equation) were not discussed, as very often
they introduce new mathematical and numerical difficulties that increase the numerical effort,
which means losing one decisive advantage of using linear systems. It should be noted that this
type of functional needs a reference domain, which can be a disadvantage.
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In Section 5.3, the refinement of a crude approximation of the unit circle was used to study the
behaviour of the quadratic and hyperelasticity-based functional with regard to recovering from a
bad initial mesh. The quadratic mesh quality functional failed to do so, even though a uniform ref-
erence domain was available, as the boundary deformation was very strong. The hyperelasticity-
based functional gave much better results up to a certain level of refinement, but the minimisation
algorithm failed to converge with regard to the relative gradient norm criterion. Even in these
cases, the quality of the resulting meshes was superior to the ones resulting from the quadratic
functional. One important observation was that the iteration numbers in the nonlinear case exhib-
ited a behaviour typical for linear systems arising from the discretisation of second order systems.
This serves as a motivation for the class of preconditioners introduced in Chapter 6.

Two more cases of computing extension operators were discussed in Section 5.4.1 and Section
5.4.2. In the case of the moving nonconvex shape (Section 5.4.1), the quadratic mesh quality
functional gave satisfactory results when a moving reference domain was used and failed to keep
the mesh from deteriorating in the case of a fixed reference domain. The hyperelasticity-based
functional gave better results still, but at higher numerical effort. For the geometry inspired by a
micro gear pump in Section 5.4.2, the quadratic mesh quality functional could not be used as this
geometry requires the use of unilateral boundary conditions of place (Definition 3.1), which are not
easily enforced by linear projection operators. However, the results of the hyperelasticity-based
functional were very good within the expected frame.

Various aspects of r-adaptivity were discussed in Section 5.5. In Section 5.5.1, the mesh con-
centration function was based on the distance to a moving circle and different choices of this
concentration function were presented. While the results for simplex meshes showed no surprises,
the case of hypercubes exposed some practical problems related to the convergence of the minim-
isation algorithm. It turned out that, depending on the initial guess, line search based solvers may
fail to converge to useful local minima of the mesh quality functional, which is connected to the
conditioning of the minimisation problem. Especially when r-adaptivity is used, this conditioning
gets worse as the local optimal scales might differ greatly. The same could be observed in Section
5.5.2, where the the distance from a nonconvex shape like in Section 5.4.1 was used in the mesh
concentration function and the scaling of the different terms in the mesh quality functional was ex-
amined. Even when using r-adaptivity, the hyperelasticity-based functional still allows some fine
grained control over the weighting of cell shape and size distribution. However, strongly varying
cell sizes can lead to the solver stopping at local minima resulting in poor meshes, which again
indicates that care has to be taken when setting the goals for r-adaptivity.

The numerical results with regard to surface alignment were presented in Section 5.6. In
Section 5.6.1, a bounding box mesh was aligned with a rotating ellipse and the behaviour of the
quadratic penalty iteration from Section 4.3 is examined. It turns out the choice of the sequence
of penalty parameters is crucial for the shape quality of the resulting surface aligned mesh. If
the penalty parameter is increased too slow, many unconstrained minimisation problems need to
be solved, but if it is increased too quickly, the solver may fail because the iterate from the last
penalty iteration is a poor starting point for the current iteration. Moreover, cell shape and surface
alignment are essentially conflicting goals. The alignment penalty term becomes dominant at
some point of the iteration, so if a large deformation is needed to satisfy the constraint, cells of
poor quality will occur. Perhaps the greatest advantage of using this method for aligning the mesh
to surfaces is that the surface is not tracked explicitly. Instead, geometric entities (vertices, edges,
faces) of an arbitrary mesh are aligned with the surface, which allows the set of aligned entities to
vary (e.g. in each time step of an instationary process) and also allows for topology changes. This
was demonstrated in Section 5.6.2, where the alignment was also combined with r-adaptivity. The
topology changes are represented well but still demonstrate that the mesh must accurately resolve
the surface.
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Motivated by the second order operator behaviour of the iteration number in Section 5.3, a
preconditioner for the solution of the nonlinear minimisation problem is introduced in Chapter 6.
The system given by the matrix arising from a finite element discretisation of the operator defined
by the discrete D(u) : D(v) bilinear form is solved as a preconditioner, as the Frobenius norm term
of the hyperelasticity-based mesh quality functional is very similar. This approach will only give
good results as long as the terms based on ∥Cof(∇Φ)∥F and det(∇Φ) do not become dominant
and needs further modification if the optimal scale distribution is nonuniform (e.g. if r-adaptivity
is used).

The performance of the preconditioner from Chapter 6 is studied in Chapter 7, including the
effect of approximately solving the preconditioner system with a low tolerance, or only applying
one V-cycle of geometric multigrid and using this as an approximate inverse. For the refinement
of a unit circle mesh (see Section 5.3), the iteration numbers only depend very slightly on the level
of refinement for the strong preconditioner, but are notably higher if the weaker preconditioner
is used. Also, the case of hypercubes appears to be more difficult. In Section 7.2, the moving
nonconvex shape from Section 5.4.1 was used to examine the influence of a strongly distorting
mesh on the preconditioner. It turned out that the choice of the reference domain for the quadratic
functional used for the preconditioner is important in this case. If a fixed reference domain is
chosen, the iteration numbers increase with time, as the preconditioner fails to represent the current
state. If a moving reference domain is chosen, the PCG-MGV solver for the preconditioner system
may stagnate or even diverge if the multigrid V-cycle is not “strong” enough. If the solver for the
preconditioner is suitably chosen, we again obtain iteration number that only increase slightly with
every level of refinement.

The present work shows that approaching mesh optimisation from the field of mathematical
elasticity is very powerful, as it offers fine grained control over the notion of mesh quality, which
might be different for different physical settings. It also allows to incorporate r-adaptivity and
alignment of the mesh to (implicit) surfaces, which are very important tools for representing geo-
metric or physical features in the discretisation of a PDE. But the computational effort is very
high compared to other PDE-based mesh optimisation techniques, which might be sufficient in
many situations (see Section 5.4.1 and Section 7.2), but are limited with regard to the boundary
conditions that can be enforced (Section 5.4.2) and may fail altogether due to large boundary de-
formations (Section 3.4). Like many mesh optimisation techniques not based on PDEs, they can
be improved to incorporate r-adaptivity, but this is not a strong direct control like prescribing an
optimal cell size distribution as in the methods presented (Section 3.5.7). Moreover, since they
cannot enforce the orientation preserving property directly (see Section 3.5.5), stability in the con-
text of large deformations cannot be guaranteed. This means that in situations requiring adapted or
aligned meshes, or with large deformations of the computational domain, a hyperelasticity-based
mesh quality functional can be used to obtain the meshes to solve PDEs that cannot be handled by
simpler methods, or dramatically increase the accuracy of the solutions (see [LMWZ10], [BP13]).
The high computational effort can be remedied in some situations by using a preconditioner as
introduced in Chapter 6.

Future work

It is unknown if the material response function for the family of mesh quality functionals based on
the shape of reference cells (Section 3.5.3) converges to some well-defined material behaviour. In
this case, there would be a continuous problem, of which the mesh optimisation is a discretisation.
In this case, formulating the minimisation of the continuous functional directly in Hilbert spaces
(see Remark 4.11) could be beneficial.

On the analytical side, no condition number estimates for the preconditioner from Chapter 6
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were provided. Even in the case of affine transformations, this would require estimates of the form

F′(x,A)≤ c∥A∥2
F ,

which seems impossible when taking the regularity property

lim
det(A)→0

F(x,A) = ∞

into account (see Remark 6.1). As the application of a preconditioner needs to have a low com-
putational effort, but incorporating terms based on det(A) would make even the preconditioner
nonlinear. As linearisations cannot capture this feature, this limitation seems hard to overcome.
As mentioned in Remark 6.1, the preconditioner is just a simple approximation of the true Hessian
F′′, so other approximations are possible and might yield even better properties.

In this work, hyperelasticity-based mesh optimisation was only applied in two dimensional
settings. The theory from Section 3.5.6 is 3d and the method generalises trivially to 3d, but some
problems should be expected to arise in the implementation or the choice of the local stored energy
functional. Examples of this method in 3d can e.g. be found in [Rum96] and [Hol15].

The minimisation process needs to start from an admissible state, which might not be available
(e.g. the starting mesh) already contains intersecting cells). From this state, a mesh without
intersecting cells can be generated, which is sometimes called mesh untangling in the literature
([HR11], [FK02]). With the hyperelasticity-based mesh quality functionals this appears easy to do
by weakening the stability property of the local functional to

lim
det(A)→0

L(x,A) = Mk < ∞

for an increasing sequence (Mk)k∈N, e.g. by starting with a relatively large regularisation parameter
δr (see Section 3.5 and (3.23)) and then decreasing it. This was not explored due to not being
necessary for the examples in this work.

The computational complexity of minimising a hyperelasticity-based functional is very high
but could be reduced by some simple techniques.

i) Only optimise the mesh on the coarsest level necessary to accurately represent the geometry
and refine the result to obtain the meshes on the finer levels.

ii) In time dependent settings (e.g. with boundary deformations), use a mesh quality func-
tional with low computational complexity whenever possible and optimise the mesh with
the hyperelasticity-based functional only when certain quality criteria are violated.

iii) The same can be done when aligning the mesh to a moving (implicit) surface in the sense
that the surface can be tracked and the mesh is only realigned with it when certain quality
criteria are violated. This has been studied in [Bas16] together with discontinuous Galerkin
time discretisations.

iv) Because it is based on the operator resulting from the finite element discretisation of the
uniform D(u) : D(v) bilinear form, the preconditioner from Chapter 6 cannot give good
results for varying optimal scales. This can likely be remedied by using variable coefficients
in the bilinear form for the preconditioner, but the exact choice might be delicate.

v) For the surface alignment, the quadratic penalty iteration can likely be made more efficient
by applying a more sophisticated strategy for choosing the sequence µn → ∞ of penalty
parameters, especially by coupling it with the different terms from the local mesh quality
functional.
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A
Appendix: Linear solvers

In this section I want to briefly give references for the linear solvers used in this work. If a solver
is used with a preconditioner, I will write it as <SOLVER>-<PRECONDITIONER> (e.g. PCG-
Jacobi) where possible.

Assume we have a linear system of equations of the form

A ∈ Rn×n,b ∈ Rn,solve Ax = b. (A.1)

Assume we want to solve this linear system with an iterative solver and are given an initial guess
x(0).

The first solver to mention is Richardson’s iteration

x(k+1) = x(k)+ω(b−Ax(k)), (A.2)

with a parameter ω ∈
(

0, 1
spr(A)

)
[Saa03, Section 13.2.1].

This can be preconditioned with a preconditioner matrix M−1 ∈ Rn×n to obtain the iteration

x(k+1) = x(k)+ωM−1(b−Ax(k)). (A.3)

With the decomposition A = (D−E −F), with the diagonal, lower triangular and upper tri-
angular parts D,−E,−F of A, choosing M = D results in the Jacobi-preconditioned Richardson
iteration (also called damped Jacobi iteration)

x(k+1) = x(k)+ωD−1(b−Ax(k)), (A.4)

and is simply called Richardson-Jacobi in this work. This is mainly used as a smoother in the
geometric multigrid solver given below.

Another important solver is the Preconditioned Conjugate Gradient method ([HS52]), which
is a special case of the nonlinear Conjugate Gradient method from Section 4.2.2. This will be
denoted by CG (is used unpreconditioned) or PCG-<PRECONDITIONER>.

The last part is the family of geometric multigrid methods (see e.g. [Hac85], [Saa03, Chapter
13]), with some well-known cycles, like the V-cycle, W-cycle or F-cycle. In this work, I only use
the V-cycle, which I denote with MGV. For a complete solver configuration, one needs to specify
the smoothers and the coarse grid solver.
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