Memory-Aware Mapping Strategies
for Heterogeneous MPSoC Systems

Dissertation
zur Erlangung des Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN

der Technischen Universitat Dortmund
an der Fakultat fiir Informatik
von

Olivera Holzkamp (geb. Jovanovic)

Dortmund
2017

Tag der miindlichen Priifung: 16.03.2017

Dekan / Dekanin: Prof. Dr. Gernot A. Fink

Gutachter / Gutachterinnen: ~ Prof. Dr. Peter Marwedel
Prof. Dr. Jens Teubner

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Prof.
Dr. Marwedel for the continuous support and guidance of my Ph.D study and for
his patience and immense knowledge. I would also like to thank him for giving me
the chance to work in his group and to realize this thesis. Next, I would like to
thank Prof. Dr. Teubner for his support and commitment to review this thesis.
Furthermore, many thanks to my committee members, Prof. Dr. Heinrich Miiller
and Prof. Dr. Peter Buchholz.

A lot of colleagues supported me throughout my thesis. Many thanks to Robert
Pyka, Markus Buschhoff, Helena Kotthaus, Michael Engel, Andreas Heinig and
Florian Schmoll. Robert, Helena and Markus helped me a lot through my thesis with
fruitful discussions, proof-reading and motivation. Robert Pyka deserves special
thanks for helping me through hard times and always keeping me motivated. In fact,
we accompanied each other through all highs and lows during our work. Andreas
Heinig, Florian Schmoll, Daniel Cordes and Robert Pyka helped me with technical
discussions and technical setup within the MNEMEE framework. I also wish to
acknowledge the contribution and cooperation that was provided by the student
Nils Kneuper.

Many people outside the department deserve my special thanks. Prof. Dr. Chris-
tiane Floyd provided advice and motivation which has been a great help during my
work. I would also like to extend my thanks to Iuliana Bacivarov and Sander Stujik
for their support and constructive feedback during the planning and development
of the tools in this work. Next to Prof. Dr. Marwedel, Prof. Dr. Petru Eles, Dr.
Alexandru Andrei and Prof. Dr. Jens Wagner contributed in awakening my interest
in research and PhD.

A part of this work was kindly supported by the SFB 876 research project of
the Deutsche Forschungsgemeinschaft (DFG). However, a great part was developed
within the MNEMEE project, i.e. EC Seventh Framework Program FP7 / IST-
216224. The members of these projects deserve special thanks for their kind coop-
eration, support and the fruitful discussions. Furthermore, the mentoring® program
initiated by Universitatsallianz Metropole Ruhr (UAMR) supported me with great
input, a great mentor and great PhD students. Many thanks to all these institutions
for their resources and their guidance.

Last but not least, [wish to thank my family and friends for their support and
encouragement throughout my study. Words cannot express how grateful 1 am to
my parents Elica and Stojan, who always believed in me and encouraged me to
keep going. My special thanks are extended to my beloved husband Stephan for
his support, motivation and all his patience during these years. My mother-in-law
Ingrid also deserves my very great appreciation for her support and motivation. I
thank all of them for keeping me free of other tasks, so that I was able to finish this
thesis.

Abstract

Embedded systems, such as mobile phones, integrate more and more features,
e.g. multiple cameras, GPS sensors and many other sensors and actuators. These
kind of embedded systems are dealing with increasing complexity due to demands
on performance and constraints in energy consumption. The performance on such
systems can be increased by executing application tasks in parallel. To achieve
this, multiprocessor systems-on-chip (MPSoC) devices were introduced. On the
other side, the energy consumption of these systems has to be decreased, especially
for battery-driven embedded systems. A reduction in energy consumption can be
achieved by efficiently utilizing the hardware resources on these devices. MPSoC
devices can be either homogeneous or heterogeneous. Homogeneous MPSoC devices
usually contain the same type of processors with the same speed, i.e. clock frequency,
and the same type and size of memories for each processor. In heterogeneous MPSoC
devices, the processor types and/or clock frequencies and memory types and/or sizes
may vary.

During the last decade, research has dealt with optimizations for the efficient
utilization of hardware resources on MPSoCs. Central issues are the extraction of
parallelism from sequential code and the efficient mapping of the parallelized applica-
tion tasks onto the processors of the system. A few frameworks have been developed
which distribute parallelized application tasks to available processors while optimiz-
ing for one or more objectives such as performance and energy consumption. They
usually integrate all required, foregoing steps such as the extraction of parallelized
tasks from sequential code and the extraction of a task graph as input for the map-
ping optimization. These steps are performed either manually or in an automated
way. These kind of frameworks help the embedded system designer to significantly
reduce design time. Unfortunately, the influence of memories or memory hierar-
chies is neglected in mapping optimizations, even though it is a well-known fact
that memories have a drastic impact on the runtime and energy consumption of the
system.

This dissertation investigates the effect of memory hierarchies in MPSoC map-
ping. Since a thread based application model is used, a thread graph extraction tool
is introduced. Furthermore, two approaches for memory-aware mapping optimiza-
tion for homogeneous and heterogeneous embedded MPSoC devices are presented.
The thread graph extraction tool extracts a flat thread graph with important an-
notations for software requirements, hardware performance and energy consump-
tion. This thread graph represents all required input information for the subsequent
memory-aware mapping optimizations. Dependent on the complexity of the appli-
cation, the designer can choose between a fine-grained and a coarse-grained thread
graph and thus influence the overall design time.

The first presented memory-aware mapping approach handles single objective
optimizations, which reduce either the runtime or the energy consumption of the

viii

system. The second presented memory-aware mapping approach handles a multi-
objective optimization, which reduces both, runtime and energy consumption. All
approaches additionally reduce the work of the embedded system designer and thus
the design time. They work in a fully automated way and are integrated within the
MACCv2/MNEMEE tool flow. The MNEMEE tool flow also provides all required
foregoing steps such as the parallelization of sequential application code. The pre-
sented evaluations show that considering memory mapping during MPSoC mapping
optimization significantly reduces the application runtime and energy consumption.
The single objective optimizations are able to achieve an average reduction in run-
time by about 21% and an average reduction in energy consumption by about 28%.
The multiobjective memory-aware mapping optimization achieves an average reduc-
tion in runtime by about 21% and an average reduction in energy consumption by
about 26%. Both presented optimization approaches were validated for homoge-
neous and heterogeneous MPSoC devices. The results clearly show that neglecting
the memory subsystem can lead to wasted optimization potential.

Contents

1 Introduction
1.1 Introduction
1.2 Embedded Systems Architecture

3

1.3 Design

of embedded systems L.

1.4 Mapping problem

141
1.4.2

Mapping of memory objects to memories
Mapping of application tasks to processors

1.5 Contributions
1.6 Outline
1.7 Authors Contribution to this dissertation

Models and Tools
2.1 MPSoCso
2.2 Application and architecture models

221
2.2.2
2.2.3

Memory Architecture Model
Model of Communication
Model of Computation

2.3 Mapping Problem description 0L

2.3.1
2.3.2
2.3.3

Architecture Model
Application Model 0oL
Mapping Complexity oL

2.4 Related Work

241
24.2
243
244
24.5
2.4.6

MNEMEE

Mapping of memory objects to memories
Single Core Systems L.
Multiprocessor Systems/MPSoCs
Mapping of tasks to processors
Design Frameworks Lo oL
Combined mapping to processors and memories

3.1 Introduction
3.2 The MNEMEE toolflow

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

3.2.7

The MACCv2 Framework
DDTR Tool (ICCS) .« o v oo
Parallelization Tool (ICD)
MPMH (IMEC) .« © o oo oo e
DMMR (ICCS) © .\ o ve e oo
Thread Model Extraction Tool (TUE / IMEC / ICD & TU
Dortmund)
Mapping Tools o

© OO W N e

11
12
15
17
20
20
23
23
24
26
27
28
28
31
36
36
41

Contents

3.2.8 RTLIB/RTEMS (IMEC/ICD) 53
3.2.9 Scratchpad Memory Allocation Tool (ICD) 53
3.3 Achieved Results 53
Thread Model Extraction 55
4.1 Introduction L L 25
4.2 Related Worko 56
4.3 Problem Description 60
4.4 Tool Overview e 62
4.5 Safe-Annotation and Simulation L. 62
4.6 Thread Model Extraction 64
4.6.1 Structure of the Thread Model 64
4.6.2 Model Extraction o000 66
4.6.3 Constraints L 69
4.7 Architecture Information 69
4.8 Evaluation Lo 70
4.8.1 Compact Model oo 71
4.8.2 Detailed Model L oL 72
4.8.3 Extracted Thread Models 74
Single Objective Mapping Optimization 79
5.1 Imntroduction L 79
5.2 Tool Overview e 81
5.3 1ILP Optimization 82
5.3.1 Optimization for Runtime 82
5.3.2 Optimization for Energy 89
5.3.3 Restrictions of the ILP model 91
54 Evaluationo 92
5.4.1 Simulation Environment o000, 92
5.4.2 Experimental Setup L L. 94
5.4.3 Experimental results oo 95
544 Conclusions L 101
Memory-Aware Multiobjective Mapping Optimization 105
6.1 Introduction 105
6.2 Tool Overview 107
6.2.1 Application specification 108
6.2.2 Architecture Specififcationo 109
6.2.3 Mapping Optimization 110
6.3 Optimization Objectives L. 110
6.4 Evolutionary Algorithm 115
6.5 Ewvaluation 118
6.5.1 Experimental Setup oL 118

6.5.2 Experimental results L0000 120

Contents xi

6.5.3 Conclusions o 124

7 Summary and Future Work 127
7.1 Summary and Conclusion, 127
7.2 Future Worko 130
7.2.1 Memory-Aware Mapping 130

7.2.2 Thread Graph Extraction 131

7.2.3 Design Frameworkso Lo 132
Bibliography 135
List of Figures 147

List of Tables 149

CHAPTER 1

Introduction

Contents

1.1 Inmtroduction it iiiweeeeene.. 1
1.2 Embedded Systems Architecture 2
1.3 Design of embedded systems v v v v v v v v v v 0. 3
1.4 Mapping problem ¢t i v v vt it e 4

1.4.1 Mapping of memory objects to memories 4

1.4.2 Mapping of application tasks to processors 6
1.5 Contributions00t e e e e 7
1.6 Outline. i i i i i ittt i et ettt e e e 9
1.7 Awuthors Contribution to this dissertation 9

1.1 Introduction

The process of miniaturization of electronic circuits began with the invention (1947)
and distribution of transistors, which replaced large vacuum tubes. The first inte-
grated circuit (IC) was realized 1958 at Texas Instruments where transistors, capac-
itors and resistors formed an electronic circuit on an area of only few square millime-
ters. The next important step towards miniaturization and computing power was
the introduction of the first, commercial microprocessor Intel 4004 with 2,300 tran-
sistors in 1971 [1]. In the following years, the computation power increased while
the size of the components and the manufacturing costs shrunk continuously. In
2012, Intel introduced the multicore Xeon Phi Coprocessor with about five billions
transistors and up to 62 cores [2].

This increase was consistent with Moore’s law, which states that the number
of transistors on integrated circuits doubles every two years [3]. In 2010, the In-
ternational Technology Roadmap for Semiconductors (ITRS) confirmed this trend
up to the end of the year 2013 [4]. In 2014, ITRS decided that Moore’s law would
no longer be followed. Instead, application requirements are the basis of the new
"application guided technology" roadmap. Seven focus teams are going to analyze
applications and identify new technology requirements. They include heterogeneous
components and heterogeneous integration as well as "continued shrinking of hori-
zontal and vertical physical feature sizes to reduce cost and improve performance"

[5].

2 Chapter 1. Introduction

However, the low manufacturing costs of electronic devices and the miniaturiza-
tion led to a proliferation of special-purpose systems. Contrary to general-purpose
systems as personal computers (PCs), special-purpose systems fulfil a specific, cus-
tomized task. Some examples are smart phones, digital cameras or tablets. These
special-purpose systems are defined as embedded systems or as cyber-physical sys-
tems.

Definition 1.1 (Embedded Systems) Embedded systems (ES) are information
processing systems embedded into a larger product - Peter Marwedel [6]

Definition 1.2 (Cyber-Physical Systems) Cyber-Physical Systems (CPS) are
integrations of computation with physical processes - Edward Lee [7]

Cyber-physical system can be also defined as embedded systems in a physical
environment [6]. These systems are characterized by their interaction with the
environment through information processing with the help of sensors and actuators.
Since they are usually also embedded in larger products, e.g. automotive, their
presence is less apparent. The main goal of these systems is to make our lives easier
or more comfortable. They are already an inherent part of our daily life. We are
surrounded by these systems everywhere:

e consumer electronics: television, cameras, tablets, mp3 player, media player,
video game consoles, etc.

e telecommunication: smart phone, telephone switches for network, modem /
router, USB Internet sticks, etc.

e transportation: automotive (e.g. ABS, airbag, navigation), aircraft (e.g. col-
lision detection), railway, etc.

e household appliance: refrigerator, vacuum robots, washing machine, microwave
oven, etc.

e home automation: security, control lights, climate, surveillance, etc.

e robotics, medical equipment, etc.

1.2 Embedded Systems Architecture

The progress in hardware development is making embedded systems more efficient,
powerful and faster. The hardware progress and the cumulative demands of applica-
tions of these systems are a reason for their increasing complexity. For example, the
first functions of a mobile phone were short message service (SMS) and telephone
service. Nowadays, a smart phone has an integrated camera, internet access, touch
screen, GPS, different applications, etc. With the increasing demands, the complex-
ity in the design of these systems has also increased. Furthermore, in the beginning

1.3. Design of embedded systems 3

of embedded systems, the hardware was plain, e.g. consisting of micro controller in-
cluding memory and input/output functions. Afterwards, systems-on-a-chip (SoC)
was introduced where all functions or components of an electronic system are in-
tegrated into one circuit, including processors that are more powerful. Nowadays,
different hardware architectures are available for embedded systems, from SoCS to
homogeneous and heterogeneous multiprocessor system on chips (MPSoCs). MP-
SoCs integrate multiple processors on a chip, where the processors can be identical
(homogenous) or of different types (heterogeneous). Depending on the application
area of the embedded system, the hardware has to be chosen properly by the em-
bedded system designer. Some designers work already on a given, fixed architecture,
other designers have to design an appropriate architecture.

Different terms occur considering concurrent execution: multiprocessor, multi-
core processor and MPSoCs. A multiprocessor is a hardware architecture containing
two or more processing units, which share (main memory and) peripherals. A mul-
ticore processor is a processor containing two or more cores or central processing
units (CPU), respectively. Both are processing blocks while MPSoCs integrate a
complete system solution, e.g. which can contain video and graphics solution [8].
Figure 2.1 on page 13 illustrates a MPSoC, i.e. a functional diagram of the OMAP
5912 from Texas Instruments.

To sum up: In embedded systems, concurrent execution is usually realized
through homogeneous or heterogeneous MPSoC systems, which are required in or-
der to satisfy the demands of high-performance computing applications. The de-
velopment of MPSoCs and state-of-the-art systems are described in more detail in
Section 2.1.

1.3 Design of embedded systems

For the design of embedded systems, different design steps have to be performed
including optimizations, e.g. for the reduction of runtime, energy consumption, code
size, bus traffic, etc. Next to these different optimizations, the designer has to face
various other challenges, e.g. managing concurrency and also meeting the main de-
mands such as security, robustness, safety, timing aspects, dependability, reliability,
availability, maintainability, decrease hardware and software costs of design, etc. In
a first step, the designer has to decide which application model, specification lan-
guage and hardware or hardware description are suitable for the characteristics of
the system that has to be designed. Afterwards, optimizations can be performed
for hardware (e.g. dynamic voltage scaling, utilize memories and buses, etc.) and
software (e.g. code optimizations). All these design steps confront the designer with
huge and complex tasks, which have to be accomplished as fast as possible due to
time-to-market constraints. Time-to-market constraints define the time of a product
from design until its availability for sale. With an earlier release of the new system,
the industry gains advantages in competition and market share. In the last decade,
MPSoCs and the resulting requirement to manage more and more concurrency as

4 Chapter 1. Introduction

well as the therefore resulting increasing performance and functionality demands on
these systems increased the complexity for embedded system design even more.

Different optimization tools are introduced in research for the different design
steps. However, these tools frequently cannot be connected to each other for many
reasons. For example, the tools work on different internal models for application and
architecture specification due to the manifold models that are existing for embedded
systems. Even if the tools work on the same models, it is not guaranteed that the
optimization tools can interconnect. Due to different interfaces, the output does not
fit to the input of other design optimization tools or the internal data structures
of one tool does not fit to other tools, respectively. Here, the designer has on the
one side help in form of an optimization tool, which speeds up the design time and
decreases the complexity. However, on the other side, now the designer has either
to take care of the interconnection of different tools or design an optimization tool
on his/her own, which can be connected to another optimization tool.

In both cases, this means again a huge delay in design time. Another problem,
which occurs during design time, is the proper analysis and validation of the opti-
mizations on the system. For this, cycle-accurate simulators are required in order to
obtain valid results. However, the setup of these simulators, including the setup of
the operating system and the interconnection with the underlying synchronization
and communication library (e.g. OpenMP, MPI) are a very time-consuming job,
which requires a lot of knowledge in these fields. Moreover, an energy and runtime
model has to be available for the chosen architecture. It is very difficult and time-
consuming to obtain all these energy and runtime values. These issues confront the
designer and the researchers with huge timing and management problems. For this
reason, research is also concentrating on the automated integration for the different
design optimization steps. Some frameworks, which integrate the most important
design steps, were introduced. An overview of these frameworks is given in Section
2.4.4. The development and updating of these frameworks is taking years, and their
scope can fill several PhD theses.

1.4 Mapping problem

In this section, two important design optimization steps are introduced. Both opti-
mizations solve an allocation problem where software (application threads or mem-
ory objects) has to be efficiently mapped onto the hardware (processing elements or
memories). These optimizations optimize for a single objective goal or for several
objective goals as the reduction of energy consumption or runtime.

1.4.1 Mapping of memory objects to memories

The mapping of memory objects to memories is an important optimization that is
often neglected during design. Memories or the memory subsystem have a drastic
influence on the system’s runtime and energy consumption due to the still existing
memory wall problem [9]. This problem describes the huge gap between the speed

1.4. Mapping problem 5

of processors and the speed of memories. The speed of processors grows much
faster than the speed of memories. Thus, the access time to memories limits the
performance and memories consume a lot of energy. In a SoC, the access to the
main memory can take up to 100 cycles. This problem is also valid for MPSoC
systems where the access time to off-chip DRAM also consumes a great amount of
time.

Memory hierarchies were introduced in order to cope with this significant prob-
lem by placing smaller, faster and more energy-efficient memories (i.e. on-chip
memories) close to the processor, building a memory hierarchy with one or more
levels. The idea is to place frequently used instruction or data memory objects onto
on-chip memories and thereby to reduce runtime and energy consumption. For ex-
ample, an on-chip memory on level-1 is located next to the processor and has ideally
only one cycle access time. On-chip memory on level-2 are also common. There is
a larger distance between the level-2 memory and the processor. Dependent on this
distance, the access time increases as well as the energy consumption compared to
the access and energy consumption to the level-1 memory.

On-chip memory hierarchies either consist of cache or scratchpad memories.
Especially in the design of real-time embedded systems, scratchpad memories are
extensively used [10]. The content of these memories is known in advance. They
are predictable with respect to runtime and energy consumption. These advantages
are achieved because they are explicitly allocated by the application designer or an
optimization software, respectively. Furthermore, they consume less energy and die
area than caches since no additional hardware in the form of control logic is required
for the management of their content. For these reasons, we explicitly consider only
scratchpad memories instead of caches.

Due to the drastic influence of the memories on runtime and energy, intelligent
algorithms or optimizations are required in order to map efficiently the most accessed
memory objects onto the memories. Important achievements in this research field is
described in Section 2.4.1. Next, some trends in the memory hierarchy of MPSoCs
are introduced, which will lead the research in a new direction with new challenges
in the memory mapping optimization.

The trends in MPSoC systems show that level-1 and level-2 caches are common.
One example is the Exynos Octa 5410 architecture, which contains two level-1 and
one level-2 cache for each processor. Another trend is the heterogeneity in the
memory hierarchy. For example, the OMAP architecture contains usually a GPU
and an ARM processor. In the OMAP 5912, the ARM926EJ processor has access
to a 16 KB instruction and to a 8 KB data cache. The TMS320C55x DSP core has
access to a 64 KB on-chip dual-access RAM, a 96 KB on-chip single-access RAM
and a 24 KB instruction cache [11].

The OMAP 5430 includes a dual-core with two ARM Cortex-A15, a DSP sub-
system with a TMS320DM64 DSP processor and an image-processing unit (IPU)
subsystem. Fach Cortex-A15 core contains a separate instruction and data cache of
32 KB and both cores have access to a level-2 cache of 2 MB. The DSP has access
to a level-1 32 KB cache and a 128 KB level-2 cache. The dual-core Cortex-M4 in

6 Chapter 1. Introduction

ARM® Cortex®-A57

| ARM Coresight™ Muiticore Debug and Trace

ARMVB-A rypio ex
32b/64b CPU ,,g Point

I-Cache | 32k D-Cache CGFE
with DED parity] w/ECC I

Ij m L2 Cache w/ECC {SIEI:B-'JJHB}
AMBAL CHI Coherent Bus Interface

Figure 1.1: ARM Cortex-A57*

the IPU subsystem has a shared access to level-1 32 KB cache and a shared level-2
64 KB cache and a 16 KB ROM. Also, a multicore GPU architecture is integrated
with two SGX544 cores containing a shared system-level cache of 128 KB [11].

The ARM Cortex-A57 processor can have a more heterogeneous memory hier-
archy containing a 48 KB instruction cache and a 32 KB data cache, as illustrated
in Figure 1.4.1. The level-2 caches can have a size from 512 KB to2 MB.

These real-world examples show the upcoming trend of heterogeneity in the
memory subsystems in MPSoC systems. A more detailed overview of MPSoCs is
given in Section 2.1. A classification of MPSoC systems concerning their memory
organization is described in Section 2.3.1.

1.4.2 Mapping of application tasks to processors

The design step of mapping of application tasks onto the processing elements of
the architecture has evolved from the development of parallel execution in hardware
architectures. The goal is to efficiently map parallel application tasks in order to
achieve an increase in performance or in order to decrease the energy consumption.

The preceding step is a parallelization, which is performed either manually by the
designer or automatically by special parallelization tools. After this step, the former
sequential application or parts of this application are split into several tasks, which
can be executed in parallel. These tasks can have the same workload, different

'Image reproduced with permission of the rights holder, ARM Ltd.

1.5. Contributions 7

workloads, or a mixture of both. This depends on the application, its types of
operations, access patterns, complexity, etc. Moreover, the type of parallelization
performed on the application influences the workload of each task (pipeline, loop-
level, etc.). After the parallelization, the mapping optimization has to distribute
these tasks efficiently. For this, the characteristics of the underlying architecture
have to be considered, as the number of processors and the characteristics of each
individual processor (e.g. clock rate, energy consumption). The complexity and
solution/design space for this optimization increases if two or more contradicting
objective goals are considered. In research, this design step was also immensely
explored. Related work of this topic is described in Section 2.4.4. As already stated
in the previous Section 1.2, the trends in MPSoC design go towards heterogeneity
and towards heterogeneous processors and thus to the mapping of tasks to these
Processors.

1.5 Contributions

Research tries to alleviate the burden of the designer by introducing different op-
timization techniques for the diverse, complex design steps. This thesis focuses
on memory optimizations in homogeneous and heterogeneous MPSoC systems. It
combines two separately considered optimizations into one optimization step since
state-of-the-art MPSoC architectures require this combined view in order to uti-
lize the full optimization potential. Usually, two optimization steps are performed.
One optimization step is the mapping of concurrent application threads among the
processors of a homogeneous/heterogeneous MPSoC. The other optimization step is
the mapping of memory objects to a local memory or to different memories in the
memory hierarchy. Both are common optimization steps in the design of embedded
systems, which try to efficiently utilize the resources of the system.

This thesis gives a more detailed view on the complexity of the combined map-
ping of the application threads together with their memory requirement onto the
architecture’s processors and their underlying memory hierarchy in 2.3.3. Since the
trend of MPSoC systems goes towards heterogeneous systems with heterogeneous
processors and a heterogeneous memory subsystem, this thesis focuses on this kind
of architecture. Heterogeneous MPSoC systems increase the complexity of this op-
timization.

In application to processor mapping, the focus lies only on the characteristics of
the processors (e.g. speed, energy consumption, type). Due to the drastic influence
of the memory wall problem on runtime and energy, it is crucial to consider the
underlying memory hierarchy. The architecture resources have to be matched to
the application’s requirements, or vice versa. This thesis focuses on this matching.
Focus is laid on both, the architecture and application characteristics with the goal
to efficiently utilize the system resources in order to achieve a high optimization
potential. The optimization goals are the reduction of energy consumption and/or
runtime.

8 Chapter 1. Introduction

The thesis concentrates on the extraction of a detailed analysis model for all
introduced optimization. On the architecture side, the processor’s energy consump-
tion for active and idle mode is included as well as the performance capability. Since
processors have access to their underlying memory hierarchy with different memories
on different levels, these are captured in detail as well. All memories have various
characteristics as size, type (instruction, data or unified). Furthermore, access speed
and energy consumption differ depending on the access type, i.e. read or write ac-
cess and access width (Byte, half-word, word). The characteristics of the underlying
buses, that are accessed, are also considered. On the application side, the charac-
teristics of the application threads have to be considered in detail, i.e. workload of
a thread and thus all requirements of the memory objects as size, type of memory
object (data or instruction), number of read and write accesses, etc. Furthermore,
communication between threads is considered as well, taking into account the data
send over a communication channel (i.e. data size, number of data send, etc.). All
this information is taken into account for the optimization and analysis model. It
is verified against cycle-accurate simulation.

For the separate consideration of either the reduction of runtime or energy con-
sumption, an integer linear programming (ILP) optimization is introduced. Fur-
thermore, a multiobjective optimization for the reduction of runtime and energy
consumption at the same time is also introduced. All optimizations are available as
separate tools, which can be used by designers, dependent on the designer’s system
requirements. Both optimizations use the detailed analysis model. An evolutionary
algorithm is used for the multiobjective memory-aware mapping optimization. It
generates a set of mapping solutions by crossover and mutation. These solutions
are evaluated and generated in a design space exploration loop. At the end, a set of
mapping solutions is provided as solution.

Another important design step is the extraction of an extended thread graph
from parallelized source code. This thread graph extraction gained also attention
in research and is handled by this dissertation. This step is performed before the
application-to-architecture mapping and is required in order to perform the map-
ping optimization properly. The challenge is an accurate extraction of a detailed
representation of the parallel threads, including dependences as control-flow and
data-flow. Furthermore, the mapping tools also require information on threads,
which include architectural characteristics, e.g. as the runtime of a thread on differ-
ent processors or the memory sizes of memory objects, which are dependent on the
architecture. All these manifold and additional information have to be extracted
and annotated to the thread graph. This extraction is handled by this thesis.

Except for the memory-aware mapping ILP optimization, these optimizations
were developed within the EU project MNEMEE with the goal to integrate memory-
awareness in the embedded system design and to alleviate the work of the designer
by providing an automated tool flow for the complex design optimization steps.

To the best of our knowledge, we are the first, which integrate a homogeneous and
a heterogeneous memory subsystem in the optimization step of mapping concurrent
threads onto processors.

1.6. Outline 9

1.6 Outline

The remainder of this book is organized as follows:

e Chapter 2 describes the common architecture and application models as well
as all underlying models of this work and a more detailed problem description.
Furthermore, an overview over the related work is given.

e Chapter 3 presents the EU project MNEMEE including the goals and the
description of the fully automated design framework.

e Chapter 4 presents the Thread Model Extraction Tool which extracts an
annotaded thread graph from parallelized C-Code.

e Chapter 5 describes the Memory-Aware Mapping Optimization Tool based
on integer linear programming (ILP) for the reduction of energy consumption
or for the reduction of runtime, respectively.

e Chapter 6 describes the Memory-Aware Mapping Optimization Tool based
on an evolutionary algorithm for the multiobjective optimization for energy
consumption and runtime.

e Chapter 7 presents the summary of this work and gives an overview over
future work.

1.7 Authors Contribution to this dissertation

In §10(2) of the “Promotionsordung der Fakultét fiir Informatik der Technischen Uni-
versitit Dortmund vom 29. August 20117, a dissertation has to provide a separate
list which presents the author’s contribution to research and results in cooperation
with other researchers.

Therefore, the following list provides an overview over the contribution of the
author on the presented results for each chapter:

e Chapter 2: This chapter describes related work and gives an overview over
application and architecture models. Thus, in this chapter the author of this
thesis presents research results by other authors.

e Chapter 3: The MNEMEE toolflow [12],[13] was created by almost all MNE-
MEE partners. However, the main part of the MACCv2 framework [14], which
is the basis of the toolflow, was developed by ICD in cooperation with TU
Dortmund. The author has also worked on this framework, especially by in-
tegrating the tools/optimizatons that are introduced in the next chapters. A
great part of the framework is used for analysis, optimization and evalua-
tion of this thesis. All tools within the MNEMEE toolflow are described in
publications [12],[13].

Chapter 1. Introduction

e Chapter 4: The Thread Model Extraction Tool was developed within the MNE-
MEE project [12], [13]. The pre-processing steps of the thread graph extraction
were developed in collaboration with IMEC, Sander Stuijk(TUE Eindhoven)
and the author. The thread graph extraction itself was entirely developed by
the author and is described in detail in Chapter 4.6. The author also inte-
grated the thread graph extraction and 70% of the pre-processing step into
the MACCv?2 framework.

e Chapter 5: The memory-aware ILP optimizations for the reduction of runtime
and energy were developed by the author in cooperation with her master’s stu-
dent Nils Kneuper, who realized the majority of the implementation. About
60% of the ILP formulations were contributed by the author. The resulting
publication [15] was written by the author. Guidance and inspiration was
provided by Prof. Peter Marwedel. The employed cycle-accurate CoMET
simulator was donated by Synopsys Inc. [16]. The implementation of the het-
erogeneous platform within CoOMET and the MACCv2 framework was entirely
performed by author.

e Chapter 6: The memory-aware multiobjective optimization was entirely de-
veloped by the author and published in [17]. Guidance, inspiration and moti-
vation were provided by Prof. Peter Marwedel and Prof. Lothar Thiele. The
initial problem definition was provided by Prof. Marwedel. Iuliana Bacivarov
helped with guidance and a lot of fine-tuning in the optimization and im-
plementation. The system-level framework called distributed operation layer
(DOL) [18] was used as a basis for the implementation of the optimization.
The optimization goals of DOL were exchanged by the author’s optimization
goals. Furthermore, the author implemented several extension and changes.
First, the process network model was exchanged by a thread-based model,
which includes parallel sections. The application model was extended to in-
clude memory objects and all required characteristics/information of mem-
ory objects (e.g. size, number of reads/write, instruction/data/shared, etc.).
The architecture model was extended to include more memory characteristics
(memory types, energy consumption/runtime for different type of accesses,
etc.). The author also performed the integration and interfacing of this tool
into the MNEMEE tool flow or MACCv2 framework, respectively. This op-
timization is also described in |12]| and [13]| as part of the MNEMEE tool
flow.

CHAPTER 2

Models and Tools

Contents
21 MPSOCS ¢ v v vt e e e e e e e e e e e e e e e e e e 12
2.2 Application and architecture models 15
2.2.1 Memory Architecture Model 17
2.2.2 Model of Communication 20
2.2.3 Model of Computation 20
2.3 Mapping Problem description, 23
2.3.1 Architecture Model oL 23
2.3.2 Application Model L. 24
2.3.3 Mapping Complexity 26
24 Related Work 0 v i i i i it e e e 27
2.4.1 Mapping of memory objects to memories 28
2.4.2 Single Core Systems 28
2.4.3 Multiprocessor Systems/MPSoCs 31
2.4.4 Mapping of tasks to processors 36
2.4.5 Design Frameworks 0oL 36
2.4.6 Combined mapping to processors and memories 41

The design of embedded systems is a challenging and quite complex task. Con-
sumer demand and improvements in hardware have even increased this complexity.
State-of-the-art embedded systems get more and more complex and have to ful-
fill many aspects such as efficiency (energy, runtime, code, costs), timing aspects
(hard/soft deadlines, real-time aspects, etc.), dependability (i.e. reliability, safety,
security), etc. [6]. All these aspects must be considered and have to be an integral
part in the design flow in order to guarantee the full functionality of the desired sys-
tem. It is impossible to develop a standard design flow for the abundance of different
embedded systems and all their resulting manifold characteristics (i.e. functional-
ity and requirements). Furthermore, the time and effort spent in the design of the
system also depends on the characteristics of the desired system. For example,
the design of a flight control system in an airplane is much more complex than an
electric-driven, classic DVD player. Some of these different systems need the same
optimization steps in the design flow. However, since these different systems have

12 Chapter 2. Models and Tools

different underlying software and hardware, it can happen that the same optimiza-
tion problem has to be implemented in a different way with a different approach for
different design flows.

Section 2.1 gives an overview over the development of MPSoCs and state-of-the-
art MPSoCs. Next, Section 2.2 introduces the common application and architecture
models in embedded system design. Afterwards, Section 2.3 gives an overview over
the considered models for the mapping optimization problem in this work. Related
work is presented in Section 2.4.

2.1 MPSoCs

MPSoCs arose from the requirement to perform parallel execution instead of se-
quential execution in order to achieve an increase in performance. The first area
of application was the fast solving of large and complex problems such as weather
modeling, simulation of the evolution of galaxies, data mining, etc. This includes
all scientific and engineering calculations. The first supercomputer CDC 6600 was
invented 1964 in order to solve large scientific problems and to use time sharing for
smaller problems. The supercomputer included 10 peripheral processors, each of
them containing a small memory for program and buffer area (4096 memory words
with 12 bit length). A central processor was also included. All processors had ac-
cess to a central memory. The first multiprocessor occurred in the 1970s. The Illiac
IV processor included four control units, which controlled 64 arithmetic logic units
(ALUs). With this multiprocessor, vector and array operations could be performed
in parallel. The C.mmp multiprocessor contained 16 processors which were con-
nected to a memory through a crossbar [19]. Also, the occurrence of superscalar, very
long instruction word (VLIW) and explicitly parallel instruction computing (EPIC)
processors have the common goal to improve performance by the parallel work of a
certain number of execution units.

MPSoCs have emerged in the past decade. The architecture design mainly de-
pends on the underlying embedded application. In this section, some representative
MPSoCs are introduced. One of the first MPSoC, Lucent Daytona was introduced
in the year 2000. It contained four CPUs, which were attached to a high-speed bus.
Each CPU has a 8 KB 16 banks local memory. Each bank can be configured as in-
struction/data cache or scratchpad memory. This MPSoC was designed for wireless
base stations where identical signal processing was performed on a number of data
channels [19].

Another well-known MPSoC for multimedia processing is the Philips Viper Nex-
peria which was designed for advanced TVs, set-tops and home media servers. It
consists of two CPUs: a MIPS and a Trimedia VLIW processor. Buses are integrated
for each CPU as well as for the external memory interface. The MIPS processor is
the master running the operating system, while the Trimedia is integrated as the
slave which executes the commands from MIPS. Hardware accelerators performed
computations such as color space conversion [19].

2.1. MPSoCs 13

e
| omapset2 e —— — | ‘
TMS320C55x DSP DSP Public DSP Private Peripherals DSP Public Peripherals |
‘ 32 (Instruction Cache, Peripheral Timers (3) |
| Endianism SARAM, DARAM, DMA, Bus Watchdog Timer | |
S HW Level 1/2 Interrupt
\ c T Hanclore |
|
\ | | |
—— mesi
| —il h“‘
‘ Mmu DSP Public (Shared) | l———————— |
| 16 Peripheral Bus. |
| 32 32 MPU MPU/DSP Shared Peripherals |
‘ _'I Interface Mailbox
. MPU/DSP Static Shared |
MPU Public
} “g':;‘ 32 I’ 32 Peripheral Bus 8x G:{,'IMERS |
— UARTA,2,3
Fash | |16 " 32 12c g
o et | MMC/SDIO2 |
T McBSP2
SRAM || £ Memory o MPU/DSP Dynamic Shared ‘
|S] Interface oripher GPIO1,2,3,4 |
| = e Traﬁlﬁ 9 32-kHz Synchro Counter |
‘ E| Controller
(TC) |
A 32 system |22} [| pe———————— A
@ [,', DMA [—{ MPU Public Peripherals | |
Controller
| L7 } USB Controllers H—»}
\ Mol | |
o||of|o
ocP
| cl|c||c |
| pl|P||P |
— 2|22 I l
|]| (T2 - | |
L MPU Private MICROWIRE I/F |
‘ i ¥ ¥ MPU Private Peripherals | PRJV‘; | ‘
| TFrame] — ¢ } 1 Peripheral Bus Timers (Ta_) | PWL | |
Buffer : T ymer Keyboard I/F
} [switeh] prengs 32 l Lovel 12 | DG Wire <_L>I
Switch ARMS26E).5 Handlers | S a1 |
(Instruction 32 ULPD Configuration | LPG1,2 I
| Cache, Data Registers
e L) Clock and Reset System DMA | FAC I
\ ache, Management as Timer |
| Lon 32-kHz | i |
Watchdog ‘
| [JTAGIEmulation F ETMS ¥ osc || os¢ LCD CONV !_ ________ i
I S O e Y o
I

12MHz 32 kHz
Clock

Reset

External Clock
Requests

Figure 2.1: TT Omap 5912 - Functional Diagram [11]

The Texas Instruments (TI) OMAP architecture is a well-known MPSoC which
was widely used for mobile phones. Many implementations exist for this architec-
ture. For example, the OMAP 5912 implementation has an ARM9 and a DSP
processor (TMS320C55x). A functional diagram of the OMAP 5912 is illustrated
in Figure 2.1.

Almost all implementations of OMAP contain a (dual-core) ARM processor to-
gether with a DSP or PowerVR graphics processing unit (GPU). Another famous
MPSoC is the CELL architecture. It contains one 64-bit power processor element
(PPE) and 8 specialized synergistic processor elements (SPEs) together with a high-
bandwidth bus and a high-speed memory controller. The SPEs consist of a syner-
gistic processor unit (SPU) which includes a 256 KB local memory. All processing
elements communicate over a high-speed bus. A direct transfer between the lo-
cal memories of different SPUs is possible through a DMA controller. The CELL
architecture was implemented in the Playstation 3 video-game console from Sony
and for some HDTVs from Toshiba. Other application areas such as visualization,
image and signal processing, and various scientific and technical workloads are also
suitable [19, 11].

The ARM11MPCore is a multiprocessor consisting of one to four (identical)

14 Chapter 2. Models and Tools

processors that are known for their low dynamic power consumption and which are
often used within MPSoC systems for smartphones. Each processor has a separate
instruction and data cache. The sizes for each cache can vary from 16 KB to 64 KB.
The Arm Cortex-A processors are the follow-on products of the Arm11MPCore.
They also contain separate instruction and data caches on level 1 with different
memory sizes from 8 to 64 kB and a shared L2 Cache with sizes from 128 kB to 2
MB. The ARM big.little architecture is actually one of the state-of-the-art MPSoCs.
The first-generation architecture consists of one to four ARM Cortex-A15 processors
together with one to four ARM Cortex-A7 processors. The second generation of this
architecture consists of ARM Cortex-A57 or Cortex-AT72 processors together with
ARM Cortex-Ab53 or Cortex-A35 processors. The big Cortex-A15 can be used for
heavy workloads while the little energy-efficient Cortex-A7 is used for smaller work-
loads that have to be accomplished all the time, e.g. operating system activities,
user interface, etc. Different variations in the clock rate and the number of coproces-
sors are available as a quad core with two copies of each processor or also a system
with four big and two little processors [20], [21]. This architecture can be used for
many computation intensive applications as well as for a mixture of network traffic
and computation (e.g. STB, WLAN), for OS GUI environments in netbooks, smart-
phones etc. Actually (in 2016/2017), this big.little architecture is implemented in
state-of-the-art smartphones such as Samsung Galazy S7 or Samsung Galaxy Note
devices within different available Samsung Exynos processor chips.

The Exynos 5 Octa chip (5410/5420) contains four Cortex-A15 cores and four
Cortex-AT7 cores. Compared to earlier Exynos processors, Samsung claims that it
reduces power consumption (by up to 70%) while maximizing performance. The
5410 chip contains a PowerVR SGX544 MP3 533 MHz GPU for console-like 3D
games and a 13 Mp 30 fps ISP (Image Signal Processor). The (local) memory sizes
are not published yet by Samsung [22], [23].

An existing Exynos Octa 5420 development board is based on Exynos 5 Octa
and integrates four Cortex-A1l5 processors with 32 KB of instruction and 32 KB of
data level-1 Cache and a 2 MB level-2 Cache. The four Cortex-A7 processors also
include a separate 32 KB instruction and 32 KB data level-1 cache and a 512 KB
level-2 cache. A 64 KB ROM for secure booting and 336 KB internal RAM for
security functions is included. Other features are a 3D graphic accelerator with
multi-core GPU, and a separate 2D graphic accelerator [24].

The Exynos 7 Octa chip (5433/7420) introduced the new ARM Cortex-57 and
53 cores and integrated four Cortex-A57 and four Cortex-A53 cores. In 2016, Sam-
sung maintained the big.little architecture and introduced the Exynos 8 Octa chip
containing a custom core CPU by Samsung (based on Armv8) and Cortex-A53 cores
[25].

Further processor chips are based on the big.little architecture such as Qualcomm
Snapdragon 808 MSM8992 and 810 MSM8994 (two to four ARM Cortex-57, four
Cortex A-53 cores in LG, HTC and Microsoft Lumia smartphones) [26], [27] and
Nvidia Tegra X1 (four ARM Cortex A57, four Cortex A-53, Nvidia Android TV)
[28].

2.2. Application and architecture models 15

Requiremt.
analysis | System
architecture [y System

design | Software
architecture |\

Software
design

Integration | 1 Unit tests
System |, testing
Acceptance || integration
& use

Figure 2.2: V-model (rotated standard view) [6]

To sum up: Different MPSoC alternatives exist which integrate homogeneous
or heterogeneous components such as processors and memory subsystems. The
modeling of these different systems is described in the next section.

2.2 Application and architecture models

Various specification languages, models and design flows exist. The designer is
confronted with a huge number of possibilities and has to decide which design flow,
specification language or model specifies the behavior and functionality of the desired
system properly. Unfortunately, no specification or design flow exists which covers
all requirements completely.

The embedded system design includes several steps, which can start from an
idea up to the prototype of a system. Typically, the design flow starts with a
specification of the system behavior, hardware and software with the aid of models
and specification languages. Here, the specification depends on the preliminary
infrastructure, i.e.: Is the hardware and/or software (partly) already fixed or is a
new hardware or software design required? Based on the infrastructure, the designer
has to decide which design flow to choose.

Many design flows exist. If the designer cannot find a proper design flow, he/she
can choose an individual design flow which reflects the desirable design steps in
the most suitable way. Here, three instances of design flows are introduced, which
represent the common steps in the design of embedded systems.

The V-model (version 97) with all required steps is shown in Figure 2.2. The first
axis represents the design and implementation phase while the other axis represents
the validation and test phase. It is widely used in the German government sector. A

16 Chapter 2. Models and Tools

Behavioural Domain Structural Domain
Systems g
/ PU, Memory
Algorithms \
2 / . 2r0Cessors
Register transfers \ \
/ / /’ ~ \LUs,\\RAM\, etc.

Gates, flip-flops, etc.
Tra né‘g‘istoré‘ \ \
/ |

| | | |
/ / / | |

e, /
~¢-Transistor layout |
/

\ \] / // y)
\ \ —aCell layout’
RN e/
. - o
\ \\ —aModule Iay/oﬁ /

N 4 Floorplans
©

Physi/éél/pa rtitions

Physical Domain

Figure 2.3: Gajski-Kuhn Y-chart

more recent model with better scalability is available with extended and modifiable
design steps [29].

Gajski’s Y-chart is another well-known flow for hardware design, which is illus-
trated in Figure 2.3 [30]. This design flow has three dimensions: the behavioral,
structural and geometrical dimension. The geometrical layout contains information
about chips and the structural layout contains information about hardware com-
ponents. The abstraction increases from the inner to the outer circle. Each circle
and axis defines a model. The high-level model describes the overall behavior while
the models on the lower-level describe the behavior of components. Different design
paths can be chosen. They are usually performed step by step and typically take
their path from a coarse behavioral level to a fine-grained geometrical level.

Another design flow, which includes essential design steps, is shown in Figure 2.4
and is taken from [6]. Boxes with rounded corners represent stored information
in a design repository. The rectangles represent transformations on data. After
the specification of the system behavior, the hardware components and the system
software, further design steps and optimizations are required. First, the application
tasks have to be mapped onto the execution platform. Different optimizations can
be performed during the mapping and afterwards, e.g. high-level transformations,
runtime and energy minimization strategies, etc., can be applied. At the end, an
evaluation step should be performed in order to evaluate the effect of the different
optimizations on the system (i.e. performance, energy consumption, etc.) and to
adjust some optimization if necessary. Furthermore, a validation step should check

2.2. Application and architecture models 17

—:-(specification)—) design repository)—)Cdesign)

)

! |

Implementation
mapping
optimization

validation & evaluation

‘"}(HW—components

application
knowledge

system software
=
(RTQOS, ..)

(

Figure 2.4: Design flow from Marwedel [6]

the correctness of the design.

However, next to the decision which design flow to choose, also a decision has to
be made concerning the hardware and concerning the software model or model of
computation, respectively. The model of computation is an abstraction for certain
functionality and represents design specifications. No model of computation can
meet all specification requirements. Linked to the decision of hardware and software
specification, the decision about the parallel programming model is also important.

The decision about the hardware platform depends on the characteristics of the
system that has to be designed. Often, the architecture is already fixed since it is
reused or only slightly changed from previous designs. In this case, the focus lies
more on software design. Even if the hardware is fixed, it is often desirable to model
the hardware at another abstraction level because at the validation step, it is less
time-consuming to simulate the system and perform optimizations.

Next, a short overview is given over the common hardware (memory / commu-
nication models) and models of computation for multiprocessor systems.

2.2.1 Memory Architecture Model

First, different memory architectures for multiprocessor systems exist:
e shared memory architecture (UMA and NUMA)
e distributed memory architecture
e hybrid distributed shared memory architecture

In the shared memory architecture, the processors can access all memory in the
global address space [31]. This means, that the memory and all changes made to
it are visible to all processors and all processors can change the memory content.
The shared memory architecture can be divided into two classes, which differ in
the memory access time: UMA (uniform memory access) and NUMA (non-uniform
memory access). Figure 2.5 illustrates the UMA shared memory architecture and

18 Chapter 2. Models and Tools

Figure 2.5: Shared Memory Architecture (UMA)

Figure 2.6 shows a NUMA shared memory architecture. The UMA shared memory
architecture usually contains identical processors which have equal access time to
the memory. The NUMA shared memory architecture often links two UMA archi-
tectures together as illustrated in Figure 2.6. The memories are accessible by both
sides through the link. Since the access across the link is slower, the memory access
times can vary. Contrary to the shared memory architecture, in the distributed
memory architecture, each processor has exclusive access to its own memory as
shown in Figure 2.7.

A communication network connects the memories of the different processors. If
data has to be shared among different processors, the programmer has to define
the communication and synchronization. Both memory architectures have their
advantages and disadvantages. In the shared memory architecture, there is usually
one bus for several processors. Several conflicts can occur on the bus when two or
more processors want to access the bus at the same time. This problem increases
when the number of processors increase. In the distributed memory architecture, the

Shared
Memory

Shared
Memory

Figure 2.6: Shared Memory Architecture (NUMA)

2.2. Application and architecture models 19

CPU,
Private Private
Memory Memory

Memory ey
CPU, CPU,

Figure 2.7: Distributed Memory Architecture

processors can access their memory rapidly without any conflicts. The disadvantage
here is that the programmer has to take care for the data communication between
the different processors. Also, mapping an existing data structure from a shared
memory architecture to a distributed memory architecture is extremely difficult.
The shared memory architecture is more user-friendly since the data sharing is fast
and in the most architectures uniform. However, the hybrid distributed shared
memory architecture combines both memory structures and also the advantages of
both. The processors can work on their own memory without any bus conflicts.
The access to a shared memory is only performed for access to shared data [31]. An

example is illustrated in Figure 2.8.
CPU,
Private
Memory
BU

—>
lemory
Memory Shared
Memory
CPU, CPU,

Figure 2.8: Hybrid Distributed Shared Memory Architecture

Private
Memory

20 Chapter 2. Models and Tools

2.2.2 Model of Communication

The selection of the hardware influences the model of communication and the selec-
tion of the proper model of computation and vice versa. The model of communica-
tion can be either shared memory or message passing. Shared memory communica-
tion is performed through a common memory which is accessible by all processors.
Message passing is performed by sending and receiving messages. It can be also
implemented when no common memory is available, but it is slower than shared
memory communication. Three different strategies can be implemented for message
passing: asynchronous, synchronous or remote invocation. For the asynchronous
message passing, the sender can send its messages and a channel buffer stores these
messages. The recipient does not need to confirm the received message. In the
synchronous message passing, it is contrary to the asynchronous process. Here, the
sender and the recipient have to be ready for the communication exchange. In the
remote invocation strategy, the sender can only send its message after it has received
a confirmation from the recipient [6]. The designer selects the model of computation
based on the underlying architecture and communication model.

2.2.3 Model of Computation

The requirements for any design-flow are adequately defined abstraction levels and
models. The hardware and software/specification models on any level trade off
accuracy for efficiency but alleviate the complexity of the system design specification.
On the other hand, models have to be defined with the right amount of detail that
will allow rapid and meaningful (design space) exploration, synthesis and validation.
These abstraction levels are also valid for the models of computation, which are
required for the description of system behavior. The system behavior is specified in
a first step. The models of computation impact the design of specification languages.

There are several requirements for specification models: timing behavior, concur-
rency, reliability, modularity, synchronization, communication, security, etc. Since
no model can meet all specification requirements, it is extremely important to choose
the appropriate model for a successful design of the system. Different types of models
exist: state based, thread based, actor based or data flow models. State based mod-
els are usually finite state machines (automata), state charts and timed automata.
They describe state-oriented behavior. Timed automata include timing information.
The state charts model includes several features such as the modeling of hierarchy
(super and sub-states), concurrency (and/or states), history mechanism, etc. An-
other state-based model is the specification and description language (SDL). The
basic elements are processes, which are modeled as finite state machines. Processes
also perform operations on data (declarations, assignments, decisions) and are in-
teracting with other processes. For this interaction, asynchronous message passing
is performed through FIFO queues where each process has one queue for signals.
SDL was standardized by the International Telecommunication Union (ITU). SDL
is suitable for distributed applications, and it also has been used for specifying

2.2. Application and architecture models 21

ISDN. However, it is not deterministic. For an implementation, the upper bounds
for the length of FIFOs have to be determined. It is not a suitable model for hard
deadlines [6].

Furthermore, task graphs or process networks can be used to represent depen-
dences between computations, i.e. control- and data-flow between different tasks
or processes. Even more detailed task graphs can be selected, which can represent
e.g. the amount of data consumed at each edge. Also, an organization as a hierar-
chical task graph is possible if required by the designer. Task graphs can be used
at different steps in the design, e.g. for mapping of tasks to processing units or for
aggregation or generation of tasks in the parallelization step.

Further models can be actor-based, such as communicating finite state machines
(cfsm) and data flow models such as synchronous data flow graphs (SDF) or Kahn
process networks (KPN). Kahn introduced the Kahn process networks (KPN) for
parallel /distributed execution [32]. The actors can be implemented as processes in
the programming language C. The communication is asynchronous and performed
via unbounded FIFO channels. The channels are point-to-point queues with one
producer and one consumer per channel. The synchronization is performed via
blocking read and non-blocking write. An advantage is that KPNs are deterministic.

A disadvantage is that KPNs are difficult to implement because the size of infinite
FIFOs has to be implemented on limited physical memory [33]. Furthermore, too
small buffers can lead to an artificial deadlock which has to be resolved at runtime
[34].

The synchronous data flow graph by Lee and Messerschmitt is also an actor-
based model where the actors are executed concurrently [35]. Each actor produces
and also consumes a fixed number of tokens per firing. Let us assume an actor A
which produces tokens is connected to an actor B which consumes the tokens of
actor A. In a SDF, a balance equation exists for each channel where the number
of firings fa of actor A multiplied by the number of tokens N produced by actor
A is equivalent to the number of firings fp of actor B multiplied by the number of
tokens M consumed by this actor: faN = fpM. The communication between the
actors is buffered. The data flow is synchronous since all tokens are consumed at
the same time. The message passing is asynchronous, i.e. the actors do not have
to wait until an output is accepted. SDF can be scheduled statically. The schedule
can be determined at compile-time. Furthermore, the buffer memory requirements
and deadlocks are decidable problems.

Carl Adam Petri introduced Petri nets in 1962 [36] They model casual depen-
dencies and are suited for message passing. The key elements are conditions, events
and flow relations. Conditions can be met or not, and events take place when certain
conditions are met. Flow relations relate conditions and events. Petri nets model
resources, mutual exclusion and synchronization. Three different kinds of Petri
nets exist: condition/event nets, predicate/transition nets and place/transition nets.
Condition/event nets are simple nets with only one token per condition. They are
a special case of bipartite graphs. With place/transition nets, more than one token
per condition is possible. Here, conditions are defined as places, and transitions

22 Chapter 2. Models and Tools

represent events. Predicate/transition nets are useful for large condition/events or
place/transition nets since they are able to reduce the size of these nets. A famous
example used for predicate/transition nets is the "dining philosopher’s problem".

Thread based execution is defined within the Von-Neumann model. The Von-
Neumann model is characterized by sequential execution. It is still vastly used in
many designs since languages as C, C++ and Java are widely spread and many
applications were already written in these languages. However, many languages
do not provide communication and synchronization mechanisms for the execution
on multiprocessor systems. As described in [6], the languages CSP and ADA have
already built-in communication. In the remaining languages, the communication is
provided by selecting different libraries. Java supports concurrency by using threads.
The communication type can be selected by choosing different libraries. In Kahn
process networks (KPN), the processes are also executed in a sequential manner.
However, the emphasis lies in the communication while the details of the execution
within the processes has less emphasis. In data flow languages, the movement of data
has the most priority while in von-Neumann-languages the control-flow has more
priority. The disadvantage of thread-based models is that they are not deterministic
and that through the use of mutexes, deadlocks can occur. Here, the programmer
has to take care of deadlocks properly.

Discrete event based languages are VHDL, Verilog and Sytem C. They are usu-
ally used in shared memory systems. In discrete event modeling, the events are
sorted in a timeline queue by the time at which they are processed. The event
is processed at its scheduled time, all corresponding actions are performed, and it
is then removed from the queue. Sometimes the event enters new events into the
timeline queue. A comparison over models of computations and languages is given
in [6].

In a design flow, there can often exist a mixture of different languages or models
of computation. An overview over the different models of computation and languages
and their references to the different communication models is given in Figure 2.9.

Communication libraries

MPI, POSIX threads and OpenMP are among the communication libraries that exist
for C/C++. As the name already indicates, the message passing interface (MPI) is
used for message-based communication between processors. It allows asynchronous
or synchronous message passing. POSIX threads is an application programming
interface (API) for threads at operating system level. It provides procedures for
thread management (create, join, etc.), synchronization between threads and also
for mutexes. POSIX threads are used for shared memory hardware. "OpenMP is
a specification for a set of compiler directives, library routines, and environment
variables that can be used to specify shared memory parallelism in Fortran and
C/C++ programs" [37]. Here, parallelism is expressed with pragmas and it takes
the least amount of effort for parallelization for the user. For more information on
the libraries, please refer to [6]. For all communication libraries, the programmer has

2.3. Mapping Problem description 23

Communication/ Shared memory Message passing
Organization of compo- synchronous asynchronous
nents

Undefined components Plain text, use cases

| (Message) sequence charts

Communicating finite StateCharts SDL

state machines

Data flow (not useful) Kahn networks
SDF

Petri nets | | C/E nets, P/T nets, ...

Discrete event (DE) VHDL, Verilog (Only experimental systems)

model SystemC Distributed DE in Ptolemy

Von Neumann- C, C++, Java C, C++, Java, ... with libraries

model CSP, ADA

Figure 2.9: Overview over MOCs and languages considered |[6]

to define parallel processes or threads and take care for the accurate communication
and synchronization.

2.3 Mapping Problem description

This section describes the considered underlying architecture and application models
of this work. Furthermore, the complexity of the integration of memory-awareness
into the application to architecture mapping optimization is described in more de-
tail. The underlying optimizations that are introduced in this work were mainly
developed within the EU-project MNEMEE which is introduced in Section 3. The
application and architecture model that is used in this work were specified in coop-
eration with all MNEMEE partners, based on their requirements and the tools that
were already partly provided by these partners.

2.3.1 Architecture Model

The considered architecture model is based on the hybrid shared distributed memory
model. Hence, a shared memory is available, which is accessible by all processors.
All shared communication is performed on this memory. Each processor has also
exclusive access to its own private memory where instructions and data can be allo-
cated. This prevents conflicts on the bus as in the shared memory architecture, and
it also prevents slow communication between the tasks as in the distributed mem-

24 Chapter 2. Models and Tools

CPUo
CPU1
—» L1 Instruction

| 1 Data —» L1 Instruction
—»| L1 Data

L2 Private
Memory ‘ L2 Private
Memory

E L2 Private
L2 Private Memory
Memory
Shared

Memory —» L1 Instruction
| L1 Instruction L 317 Data

—»| L1 Data ICPU3|
CPU2

Figure 2.10: Heterogeneous MPSoC architecture with multi-level memory hierarchy

ory architecture. The architecture is already given and fixed and thus it does not
have to be designed. The architecture has n processors, which can be homogeneous
or heterogeneous, i.e., differ in type and/or clock rate. Each processor can have a
distinct memory hierarchy, which can have different hierarchy levels and different
sizes on each level. The local memories can differ in memory type (instruction only
/ data only / unified). Each memory has different energy and runtime values, which
depend on type, level and size of the memory. Furthermore, the energy and runtime
for bus accesses which lead to the memory have to be considered.

Figure 2.10 illustrates an example architecture. In this architecture, four pro-
cessors C' PUy-C PUj are defined. Each processor has a separate local instruction
and data scratchpad memory on level 1 and a private main memory on level 2. The
processors have exclusive access to these memories. Furthermore, the architecture
has at least one shared memory, which is accessible by all processors and which is
used for inter-thread communication and synchronization. The shared memory can
be accessed through an on-chip network or bus. Section 2.1 shows that this model
is based on state-of-the-art MPSoC architectures.

2.3.2 Application Model

In the application model, it is assumed that an already parallelized application is
given. A representation of the application in the form of an acyclic task graph
is required for the mapping optimization. A thread-based application model as
depicted in Figure 2.11 is used. Here, a main thread accomplishes computation,

2.3. Mapping Problem description 25

Main
Thread 0

| I o
create create
create v * + \ rcreate
Parallel
[Thread 1] [Thread 2] [Thread 3] [Thread 4] Section
. join | | join join 1
join
Yy Yv ¥V _
Main
Thread 0
create create
wycreate
[Thread 5] [Thread 6] [Thread 7] Parallel
Section
- - - 2
join join join
Y VY]

Main
Thread 0

Figure 2.11: Thread-based application model

creates new threads and hereby initiates the parallel execution. The newly created
threads can run in parallel and communicate via FIFOs. After they accomplish their
computation, the main thread joins them and continues its execution. The section
where newly created threads run in parallel is called parallel section. An application
can have one or more parallel sections. An example is illustrated in Figure 2.11.
Here, the application has two parallel sections with four threads in parallel section
1 and three threads in parallel section 2. Each thread, including the main thread,
has to be mapped onto a processor of the underlying architecture platform. This
application model can be generated from existing sequential C-code applications by
using automated tools. More details on these tools are given in section 3.2.1.

Each thread consists of memory objects, which are either instruction code or
data. They are mainly characterized by their size and the frequency of read and write
accesses. The memory objects define the computation requirements of a thread.
Depending on the memories they are allocated to, they essentially influence the
performance and energy consumption of the system.

Based on the characteristics of the application, our model can also contain FIFO
(First-in First-out) queues for inter-thread communication as depicted in Figure
2.12. In this case, a thread can be composed of several thread nodes. The edges be-

26 Chapter 2. Models and Tools

Main
Thread 0

| [1
create‘ ’ create‘ ’ \ Vcreate
l Thread 1 I Thread 2 l Thread 3 I
" FIFO0
Y A
Thread 2
FFO1." |
Y k" Y Y
l Thread 1 l Thread 2 l Thread 3
join join join
vy lvy

Figure 2.12: Task graph including FIFO communication

tween the different thread nodes illustrate either FIFO (i.e., communication) edges
or control flow edges. As shown in Figure 2.12, the second node of thread 2 can-
not proceed its execution until thread 3 has written something into the FIFO. This
specification ensures a more precise determination of runtime since a thread node
cannot be executed until all predecessor nodes have finished their execution or com-
munication, respectively.

2.3.3 Mapping Complexity

State-of-the-art application to MPSoC mapping tools perform the mapping of threads
to available processors, while optimizing a single or several objectives. The mapping
optimization problem is known to be NP-hard even for homogeneous multiprocessor
systems [38]. Even when considering just the threads to processors mapping, the
number of options is significant. Considering in addition the memory hierarchy,
and therefore explicitly the mapping of memory objects onto memories, increases
additionally the options available and the problem complexity. Now, not only the
processors but also the memories are crucial for the mapping of a thread, and dif-
ferent combinations are possible. Mapping multiple threads to one processor comes
with additional constraints such as checking if enough memory capacity is avail-
able for all mapped threads. Furthermore, the memory objects of a thread can
drastically contribute to the overall performance and energy consumption, if the

2.4. Related Work 27

frequently accessed memory objects are mapped onto a fast and energy-efficient
memory. Thereby, not only the processor frequency but the combination of pro-
cessor frequency and the capacity and speed of the processors underlying memory
hierarchy has to be suitable for the mapped threads and their individual resource re-
quirements, i.e., memory objects. Obviously, a large number of design decisions has
to be taken during memory-aware mapping optimization, such as: on which mem-
ory should the memory objects of a thread be placed? Also, if several threads are
mapped onto a processor, the limited size of the underlying level-1 and level-2 mem-
ories has to be shared among several threads. Here, the question is: which thread
gains the most benefit in terms of runtime or energy and should be thereby placed
in the fastest memories? The mapping of all threads to the underlying resources
have to be optimized in order to get the desired results based on the optimization
goal. Briefly, which ‘processor/memory’ pair is most suitable for which combination
of possible ‘threads/memory objects’” mapping while optimizing the overall energy
consumption or system performance (or both)?

2.4 Related Work

The mapping of application tasks/threads onto available processors is a well-known
optimization step for multiprocessor systems in embedded system design. The in-
tegration of memory awareness into this step was not really well investigated up to
now. However, the step of mapping memory objects onto memories is also a very
well-known optimization with several approaches. The mapping of tasks/threads
to processors and the mapping of memory objects to memories are optimizations
that are usually performed separately. This is due to the fact that single processor
systems were state-of-the-art for a long time and these systems did not require a
mapping of concurrent tasks onto different processors. Nowadays, multiprocessor
systems are state-of-the-art, resulting in more complex embedded system design,
especially when considering heterogeneous multiprocessor systems. Usually, the
different design and optimization steps for embedded system design (i.e. paral-
lelization, mapping, etc.) were considered as standalone steps. Recently, (semi-)
automated frameworks were introduced, which provide all important design-flow
steps in order to help the designer to cope with the huge and time-consuming de-
sign complexity. These frameworks usually also integrate the optimization step
of mapping tasks/threads onto processors. However, not all frameworks consider
memory optimizations.

An overview of approaches which perform the mapping of memory objects to
memories is given in section 2.4.1. The optimization step of mapping concurrent
tasks onto processors and frameworks, which also integrate this step are introduced
in section 2.4.4. Finally, section 2.4.6 describes previous approaches, which intro-
duce a combined mapping of task/threads onto processors and memory objects to
memories.

28 Chapter 2. Models and Tools

2.4.1 Mapping of memory objects to memories

The mapping of memory objects to memories is a research topic that was vastly
explored in the last years. In the beginning, only instructions were mapped to small
scratchpad memories. Afterwards, more complex problems were solved including
data and stack memory objects, dynamic allocations, scratchpad sharing strategies
and also cache optimizations.

The first part of this section gives an overview over the research for single core
systems with an emphasis on scratchpad allocation strategies. The second part
presents the research for multicore systems.

2.4.2 Single Core Systems

For single core systems, several optimizations for different memory objects and dif-
ferent optimization goals exist, e.g. performance or energy minimization. Memory
objects can be categorized into instruction and data where data can be either global
(shared) or local data. Further memory objects which are important and more
challenging are stack and heap data, as well as large arrays. Scratchpad allocation
for stack and heap data are challenging because they grow during the execution
of the application and the determination of their size is a very difficult task, es-
pecially for scratchpad or cache memories where the memory size is constrained.
The constrained size is also a problem for the allocation of frequently accessed large
arrays.

The first memory mapping optimizations were static, i.e. the mapping is per-
formed before the execution of the application and is not changed during execution.
One of the first paper which introduced scratchpad memories was [39]. A knap-
sack algorithm was used for the assignment of code and data blocks to scratchpad
memory. The authors compared scratchpad memories against cache memories and
showed that the scratchpad memory occupied less die area and consumed less energy
than cache memories.

In [40], the authors performed an energy optimization for both instruction ba-
sic blocks and data (global scalar and non-scalar variables). Here, the energy per
instruction basic block and data was formulated as a knapsack problem where the
allocation of these memories objects to the scratchpad memory results in a gain
of energy consumption. With integer linear programming (ILP) an optimal solu-
tion was obtained where on average 22% of the energy consumption was minimized
compared to a system with a cache memory.

In [41], the work of [40] is extended by integrating the allocation of arrays next to
instruction and data memory objects. Here, large arrays are partitioned into smaller
segments whenever it is beneficial so that this part could fit into the scratchpad
memory. All arrays are considered step by step. The algorithm decides whether an
array should be partitioned or not in order to reduce the energy consumption. If so,
a splitting point is chosen, which leads to a maximum reduction of energy consump-
tion. The decisions if an array should be split and the choice of the splitting point

2.4. Related Work 29

of the array is solved by ILP. A reduction of 5.7 to 17.6 % in energy consumption
was achieved.

An architecture including separate instruction and data caches along with a
scratchpad memory is given in [42] and [43]|. Here, the scratchpad memory stores
instruction memory objects which are chosen by an allocation algorithm. The cache
behavior is represented as a conflict graph. A conflict edge is present when two
memory objects are mapped to the same cache line. The goal is to minimize the
number of conflict edges and thus the energy consumption. A combined effect of
scratchpad memories together with caches on the systems energy consumption is
considered in this work. For this problem, an ILP formulation [42] as well as a
greedy heuristic [43] are presented. In the evaluation, the results are compared
to loop-caches as counterparts of scratchpad memories. The presented approach
outperforms the loop-caches. The average reduction of energy consumption is given
by 20.7%.

Up to now, only allocation strategies were presented considering a system with
one single process application. In [44], the authors consider multiprocess applica-
tion where the scratchpad memory can be shared among several processes. Three
allocation strategies are proposed: non-saving, saving and hybrid. In the non-saving
strategy, the scratchpad memory size is divided among all processes, i.e the memory
consists of disjoints region and it is allocated only at the beginning of the program
execution, i.e static allocation. The saving strategy considers overlapping, where
the scratchpad memory content is changed for each process. The hybrid strategy is
a combination of the saving and non-saving strategy, where a part of the scratchpad
memory is used as an overlapping region and the other part is used with disjoint
region. The hybrid approach gives the maximum reductions in energy by 27% to
45% compared to a single process approach. On average a reduction of 9-20% is
achieved for all proposed strategies. The authors showed that the saving strategy
is better for small scratchpad memories while the non-saving strategy is better for
larger scratchpad memories.

The following approaches perform dynamic allocation.

In [45], only instruction memory objects are considered. The goal is the reduction
of the energy consumption for a single process application. This strategy uses ILP.
The energy consumption can be reduced by 30%. However, a reduction in runtime by
25.2% on average was also observed. Compared to a static approach an improvement
of 38% is given. In [46], the goal is to reduce the energy consumption with the
allocation of instruction memory objects onto scratchpad memories. The difference
to [45] is that this approach is based on a heuristic which is more appropriate for
large-size applications than an ILP. This strategy is compared to a system with an
instruction-cache and a 64% improvement in energy consumption was achieved.

An optimization for runtime is introduced in [47] for global data, stack and
heap memory objects. This strategy works for memories, which are available on
more than two levels in the memory hierarchy. The evaluation is performed for a
Motorola MCore which has three levels of memories. For large programs, the stack
is split into two separate memory units. Now, two stack pointers exist which have

30 Chapter 2. Models and Tools

to be incremented in both memories. On the other side, the heap is allocated for the
first malloc calls in the scratchpad memory and afterwards it is allocated in DRAM.
The threshold is determined by profiling. The heap size is estimated and multiplied
by a safety factor of 2. A dynamic allocation of the scratchpad memory is used, i.e.
the content of the scratchpad memory is changed during runtime. For this reason,
an overhead for the additional copying of memory objects to the scratchpad memory
is also considered in this approach. It is useful for large applications which contain
several hot spots which cannot all fit in the scratchpad memory. A 0/1 integer
linear program is used for this strategy and it is optimal for global and stack data.
A heuristic is used for the heap allocation. On average, the runtime is decreased by
39% for this strategy.

Another dynamic allocation approach for instruction memory objects for single
process applications was introduced in [48]. This approach introduces an ILP and
a heuristic approach for energy minimization. The average deviation between the
optimal and the heuristic solutions are less than 6% for processor cycles and energy.
For the ILP-based strategy, an average reduction of 23.4% in energy and 7% in
execution time was achieved. This strategy was also compared to a system with a
preloaded loop cache. Here, the energy was reduced by 29.4% and execution time
by 8.7%. Furthermore, an energy reduction of 40% and an on-chip area reduction of
75% was achieved compared to a system with the most energy-efficient instruction-
cache configuration.

In [49], the goal is a runtime reduction with the allocation of global data and
stack memory objects to a scratchpad memory. Here, an analysis is performed,
which indicates which program point is executed at which time. Then, a cost model
for the transfers during runtime is set up where a greedy compiler heuristic computes
the maximum overall runtime benefit. Compared to a static allocation, a reduction
in runtime by 31.2% is achieved. Another heuristic for runtime reduction for global
data, heap and stack is introduced in [50]. It is an extension of the strategy in [49]
and allocates the heap to scratchpad memory. Here, not all elements of the heap
are stored in the scratchpad memory, but only a subset with a fixed size. With
this method, the runtime is reduced by 34.6% and power by 39.9% compared to a
scenario where only global data and stack is placed to the scratchpad memory and
heap to DRAM only.

The authors in [51] integrate a scratchpad manager in the operating system
(RTEMS) which dynamically allocates data and instruction (i.e. functions) mem-
ory objects to the scratchpad memory. Their approach determines which memory
objects are most efficient for the allocation to the scratchpad memory. Several
heuristic methods are integrated and compared to each other. Also, an ILP based
approach was implemented for evaluation purposes. The set of memory objects can
change at each context switch. The methods were implemented for a multiprocess
application system with the goal to minimize the energy consumption. Depending
on the implemented methods, a 5 to 60% deviation to the optimal ILP solution was
observed. Comparing all strategies against a system without a scratchpad memory;,
the approaches reduce the energy consumption from 40 to 120%. Also, runtime

2.4. Related Work 31

reductions were achieved by 38 to 115%.

An overview of the presented publications for single-processor systems is illus-
trated in Table 2.1.

In [52], data assignment and scheduling is performed for multi-layer memory
architectures. The application is given as a task graph together with a description of
the memory structure with constraint programming. The memory structure is given
with two layers: one scratchpad memory on the first level and one dual SDRAM with
two banks and two pages on the second level. The approach consists of three steps,
which can be repeated iteratively. The first step produces a Pareto diagram for the
whole application based on scheduling estimates and incomplete constraints. This
is performed with a branch-and-bound heuristic. The second step performs a data
assignment to the underlying memories. The goal is to allow parallel access to the
memories for data, which has to be accessed at the same time while considering the
bandwidth of the memories. In the last step, a scheduling optimization is performed
for the tasks. The evaluation was performed for different feedback and iteration
strategies and shows the obtained Pareto points.

Next to the software or compiler-based allocation of memory objects to a scratch-
pad memory, a hardware-based technique is also possible. Here, several memory
ranges of the address space are mapped to the scratchpad memory. Additional logic
overhead is required for the address decoding. Furthermore, a partitioning of the
scratchpad memory into several physical banks is a step which saves power consump-
tion: while one bank is accessed the others can be turned off. But, additional banks
cause an overhead in die area, wiring and decoder complexity. Therefore, an optimal
partitioning has to be generated. In [53], such a scratchpad memory partitioning is
performed. The authors suggest a dynamic programming algorithm for either energy
reduction or speed improvement in a homogeneous multiprocessor platform. The
execution time is polynomial in the input size. For this, a trace based approach is
used, which obtains the number of accesses for each memory range. Code, heap and
stack memory objects are considered. As input, the scratchpad memory size, area
and an estimation of the hardware overhead for the partitioning of the scratchpad
memory is required.

2.4.3 Multiprocessor Systems/MPSoCs

Research was also performed for the mapping of memory objects to the memories
of multiprocessor systems. Here, different multiprocessor architectures have been
investigated including different memory characteristics. For example, the consid-
ered architectures can be shared or distributed memory architectures or Graphics
Processing Unit architectures (GPU), network-on-chip (NOC), CELL etc. For all
these architectures, the scratchpad allocation problem has to be examined in dif-
ferent ways since the interconnections to the scratchpad memories and therefore
the access possibilities are manifold. Even for one considered architecture model,
there can be different memory access specifications. For example, in some shared
memory architectures a scratchpad memory can only be accessed by one processor.

Chapter 2. Models and Tools

32

| [47] | [45] | [40] | [41] [[49] [[43] [[42] | [44] | [46] | [50] | [48] | [51] |
Memory objects
Instruction
Data (global) incl. arrays | (global) (global)
Stack
Heap

Static allocation

Dynamic allocation

Single process

Multiprocess
Optimal global, stack
Heuristic heap

Table 2.1: Overview of scratchpad memory allocation publications

2.4. Related Work 33

In other shared memory architectures the scratchpad memory can be also accessed
by several other processors. For multiprocessor systems, different and more com-
plex strategies are required than for single-core systems. Tasks, threads or memory
objects have to be distributed efficiently over the processing units and memories in
the system. Also, optimizations for heterogeneous multiprocessor systems increase
the complexity drastically since the processing units and memories have different
characteristics.

All these architecture configurations result in many different scratchpad memory
strategies for many different architectures (or memory configurations). Here, a few
approaches will be introduced in order to show the manifold possibilities for different
architectures.

The authors of [54] suggest an integration of the scratchpad memory allocation
into OpenMP. The designer has to mark arrays, which are frequently used and are
therefore good candidates for the allocation to a scratchpad memory. The profiling,
allocation and implementation are integrated into OpenMP. The approach can also
split arrays if required. The authors consider a shared memory architecture where
processors have also access to the scratchpad memories of the other processors. [55]
is an extension of [54] where data allocation is automatically performed.

In [56], the allocation to scratchpad memories for message passing in distributed
shared memory architecture was implemented. Here, the communication between
processors is performed on scratchpad memories instead of shared memories, which
results in a speed-up of the system. They also provide hardware support for the
direct communication of the scratchpad memories between each other. Due to the
limited size of scratchpad memories, only small messages can be sent. For this
reason, the processor has to communicate more often. However, the authors show
that it is still more beneficial than shared memory communication. This hard-
ware/software approach provides different communication modes, from single word
access to burst access. If the size of the scratchpad memory is too small for the
message, it is copied to private memory, which is still faster than shared memory.
Integer semaphores are used for synchronization. They represent the number of
free messages in the queue. The semaphores are distributed among the processing
elements in order to reduce communication traffic.

The authors of [57] introduce an integer linear programming (ILP) and heuris-
tic approach, which maximizes the throughput of stream programs. For this, the
scratchpad is used for code and communication data. Both techniques integrate the
overhead for code overlay and communication. The application is given as a syn-
chronous data flow graph (SDF). The considered architecture is the IBM Cell Broad-
band engine [58] where the considered processing units have a scratchpad memory
with a size of 256 kB (16 kB in experimental results). Both techniques are compared
against an ILP approach (called SGMS) which does not include the overhead costs
for code overlay and communication. The proposed ILP and heuristic technique
outperformed SGMS. For smaller scratchpad memory sizes of 16 kB, SGSM could
not find solution for four benchmarks because the scratchpad constraints for the
communication buffer was violated.

34 Chapter 2. Models and Tools

In [59], the architecture model is a homogeneous multiprocessor system with
off-chip DRAM and several processors which have access to their own scratchpads
as well as to the scratchpads of other processors (remote scratchpad) by fast on-
chip communication links. The access to remote scratchpad memories takes more
cycles than to local scratchpad memories, but is still less time consuming than an
access to off-chip memory. The input is a loop-level parallelized application. The
approach performs a compiler-based optimization for interprocess communication.
In a first step, the sizes of the data tiles have to be determined. Afterwards, the
access pattern matrix of the data tiles are determined for scheduling as well as for
the elimination of extra off-chip memory access. The authors achieved an energy
reduction of 1.4 to 22.4%.

The authors of [60] introduce virtual scratchpad memories (vSPMs). Here, the
scratchpad memory space is virtualized for security reasons. In Android systems this
strategy can avoid malware to access sensible data by exploiting software, e.g. with
buffer overflow etc. The applications are not known in advance as in other strategies.
It is a multi-tasking environment. The virtualization is realized by a hardware IP
block which is similar to an arbiter (called HardSPMVisor). The authors provide
an API for the utilization of the vSPM. Only data is assigned. The architecture
consists of a set of RISC processors and distributed scratchpad memories and an
AMBA AHB on-chip bus with secure DMA.

[61] is an extension of [60] which also reduces execution time. Here, also non-
volatile memories are considered as on-chip memories because they also reduce leak-
age power. But their drawback is the high cost for write operations. Therefore, hy-
brid on-chip memories were proposed [62] which show up to 37 % [63] reduction in
leakage power. A minimalistic API is also provided for the programmers for the al-
location of instruction and data. They present a compiler-driven allocation strategy
where the designer can annotate the placement for data in scratchpad memories and
also preferably instructions into non-volatile memories. This allocation of memory
objects can also be additionally performed by a static analysis which is performed
in the second step. Afterwards, the compiler generates allocation policies. Based
on these policies, a dynamic algorithm decides for the best memory utilization.
The hardware and architecture are the same as presented in [60], but include also
non-volatile memories.

The authors of [64] proposed a heuristic for variable partitioning (allocation of
data to scratchpad memory) and scheduling for virtually shared scratchpad archi-
tectures. Here, the processors have their private scratchpad memories but are also
allowed to access the scratchpad memories of other processors. The goal is to mini-
mize the runtime. Two variable partitioning heuristic strategies are proposed: High
Access Frequency First (HAFF) and Global view prediction (GVP). Also a loop
pipeline scheduling algorithm for the (already) parallelized tasks is presented. Note,
that the allocation of certain data (variables) can reduce the execution time of a
task and thus influences the schedule solution drastically. Therefore, a loop opti-
mization is performed where two phases are alternating: scheduling and allocation
(remapping) are performed until all variables are assigned or until the number of

2.4. Related Work 35

unassigned variables is greater than the space left in the scratchpad memories.

The approach presented in [65] generates several different allocation solutions for
data including arrays, local variables and stacks. The architecture consists of sev-
eral homogeneous processors with private and shared scratchpad memories. Shared
scratchpad memories are used for data that has to be accessible by two or more
processors. The authors assume that the application is already parallelized. An
algorithm partitions the problem into an uniprocessor allocation problem and after-
wards merges the solution (set of buffers) into a hierarchical set of buffers. Each
buffer can be mapped to a scratchpad memory. The solution shows possible synchro-
nization choices. Local variables and stacks are always mapped to level-1. Buffers
are calculated by the analysis of loops and accesses to arrays. The smallest buffer is
mapped to level-1 if it fits, the rest is mapped to private or main or shared level-2
memory. The results are Pareto optimal points (energy vs. buffer size). For each
point, the total memory subsystem energy consumption is calculated.

The authors of [66] suggest a scratchpad allocation for the optimization of the
worst-case response time (WCRT). The allocation is dynamic, i.e. different over-
lays are generated for tasks with disjoint lifetimes. Here, the processors have only
access to their own local scratchpad memories and one off-chip shared memory is
given in the system. Code is allocated to the scratchpad memories as well as data
memory objects, which have a static number of accesses. The architecture can con-
sist of one to four identical processing elements. Each processing element has one
scratchpad memory. The sizes of scratchpad memories are equal for all processing
elements. The input is an application modeled as message sequence chart (MSC).
A preemptive multitasking environment is assumed. Processes can consist of sev-
eral tasks, which are mapped to a processing element. The authors suggest and
investigate four different schemes, which are performed after a worst-case response
time analysis. Schema 1 is a profile-based knapsack problem formulation, schema
2 is an interference clustering, schema 3 a graph coloring problem formulation and
schema 4 a critical path interference reduction. After the execution of a scheme, a
post-allocation worst case response time analysis is performed in order to update
task lifetimes since through allocation and optimization the start and endtime of
tasks can be different as well as their interferences with other tasks. All schemes
were able to achieve gains from 20.6% (schema 1), 24.9% (schema 2), 45.3% (schema
3) to 52.3% (schema 4). The runtime of all schemes varied from 10 seconds to less
than a minute.

Finally, the authors of [67] perform a static data allocation for logical buffers.
A fixed task-to-processor mapping is already given as a basis. The mapping is per-
formed on a complex multicore platform containing 80 processing elements. About
1000 buffers are mapped onto this platform with a mixed-integer linear programming
(MILP) approach.

To sum up, all introduced publications investigated different scratchpad allo-
cation strategies where the focus lies on different architectures or optimizations
(e.g. worst case). None of these publications have investigated a combined view of
task/thread mapping and multi-level memory mapping.

36 Chapter 2. Models and Tools

2.4.4 Mapping of tasks to processors

Mapping tasks onto processors in MPSoCs is a topic vastly explored in recent years,
and various approaches for different architectures targeting different objectives were
proposed. The mapping of tasks onto homogeneous processors is usually performed
through different scheduling strategies. However, when the processors differ in some
smaller characteristics, other optimization strategies have to be considered, e.g. for
processors with dynamic voltage scaling (DVS). This is especially valid for a mapping
onto heterogeneous processors, where the processor’s clock rate and type (e.g. DSP)
are important factors in the optimization.

Previous work considered homogeneous platforms with different configurations
for power management like dynamic voltage scaling (DVS) [68], real-time require-
ments [69], dynamic scheduling / mapping [70]| (i.e. mapping decision during run-
time), as well as a combination of those [71]. Heuristics, stochastic methods, or
evolutionary algorithms are handling these complex system optimizations. Among
others, heterogeneous systems were investigated in [72, 73, 74]. In [72] a multi-
heuristic evolutionary algorithm is provided for a dynamic task mapping. The au-
thors in [73]| propose a multilevel graph partitioning and mapping approach for the
minimization of the systems runtime. Population-based metaheuristics with greedy
and random strategies for dynamic task allocation is presented in [74]. All of them
are considering distributed heterogeneous systems.

However, none of these approaches considers memory mapping nor integrates
the influence of memories on investigated objectives. Generally, it is assumed that
either the system has enough memory to cover all application requirements or the
influence of memories on system execution time, and energy consumption is usually
abstracted in order to reduce the complexity of the optimizations.

2.4.5 Design Frameworks

Recently, many frameworks for hardware and software synthesis were introduced,
which integrate all important design steps and thereby help the designer to reduce
the complexity. They also include the step of mapping tasks onto processors. In the
following, an overview of well-known design frameworks is given.

HOPES is a programming environment for the design of embedded systems
with focus on software for MPSoC systems [75]. The software development frame-
work performs four important steps. In step one, the system behavior is specified
with model-based programming. Here, three different models of computation are
used. A task model defines the execution condition and communication require-
ment of the given tasks. The tasks are specified in more detail with an extended
synchronous data flow graph (SDF), called SPDF, for signal processing and compu-
tation tasks. If control tasks exist, they are modeled with a hierarchical, concurrent
FSM model. Two task communication methods are supported: shared memory and
message queue. A mapping of the task models to processors has to be performed
manually by the designer and in HOPES it is assumed to be given. Based on these

2.4. Related Work 37

mapping results and the initial specification model, a common intermediate code
(CIC) is generated. CIC uses generic API functions in order to express 1/O oper-
ations from tasks. Furthermore, Open-MP specifications are used to express data
parallelism in tasks. The goal is to have an independent software platform and
communication architecture with CIC. This model can then be ported to different
architectures if required. The memories in this model are specified with size and
address range. Also, it is specified which process has access to a shared memory.
Now, an optimized code generation for each processor is performed. The generic
APIs can be translated into OS APIs of the processors or into communication APIs
if no OS is specified. The data parallelism expressed by Open-MP is translated into
MPT (Message Passing Interface). Afterwards, a task scheduling code generation is
performed. These steps are performed in an automated way. In the last step, veri-
fication is performed including static C code analysis and a performance and power
estimation. The static code analysis is detecting error locations as for example
memory access errors (buffer overrun, memory leak, etc.). Furthermore, run-time
errors are detected by running the program on a virtual prototyping system.

Daedalus is an automated framework for MPSoC platforms at system-level which
is depicted in Figure 2.13 [76, 77]. In this framework, the designer begins with a
sequential application and at the end a MPSoC implementation on an FPGA is
generated. In the first step, the sequential application is translated into a concur-
rent Kahn Process Network (KPN) by the tool KPNgen. For this, the application
has to be given as a "static affine nested loop program" which contains a set of
statements that can be enclosed in loops and/or by conditions (also called polytope
model) [78]. KPNgen is able to generate different input-output KPNs, e.g. with a
variable amount of parallelization. This parallelization can be exploited by design
space exploration (DSE). Furthermore, the platforms are specified with a library
of pre-defined IP components, which include programmable processors, hardwired
IP cores, memories and interconnections. The platform is produced as synthesiz-
able VHDL. Data is communicated through distributed memories and each memory
unit can be organized as one or several FIFOs Daedalus uses a lightweighted multi-
threading operating system (MTOS) for runtime scheduling of processes that are
executed on a processor if a compile-time scheduling is not possible The system-
level DSE is performed within the Sesame modeling and simulation environment
[79]. Three optimizations are performed within the design space exploration in-
cluding synthesis: 1. computing the allocation of resources for the architecture,
2. mapping processes to these resources, also called binding, 3. temporal schedul-
ing of processes/communication on the resources. These are the usual steps for
frameworks, which include architecture design or synthesis, respectively.

The objectives are: 1. minimize the maximum processing time including the
time spent on memories as well as the time spent on communication, 2. minimize
the power consumption of the whole system (memory included), 3. minimize the
total cost of the architecture model. A quick evaluation for these steps is performed
through fast high-level simulations. Next to the design space exploration through
high-level simulation, Sesame also supports heuristic search, i.e. genetic algorithms

38 Chapter 2. Models and Tools

Application
(C/C++)

L System—level architectural exploration l

: }
' e Parallelization
\ (KPNgen)

High-level
models

ot Platform spec. Mapping spec. Kahn Process
Library of IP in XML in XML Network in XML System—level
components specification
Y
models Automated system—level synthesis
(ESPAM)

: RTL

specification

l

C/C++
code for
processors

IP cores
in VHDL

Platform

Auxiliary

netlist files

RTL synthesis
(commercial tool, e.g. Xilinx Platform Studio)

:
'

'

:

'

:

:

c
¥
S
5
o
o
=
U
S~
o
o
S
B
=l
r_°\
>
:

;

””””””””””” e

DDDDDD specification

,,,,,,,,,,,,,, Xbar I::> i
MP—SoC

Figure 2.13: The Daedalus Design Framework [80]

for larger design spaces. In an additional step, the design space is trimmed based
on analytical models (design space pruning). Design space pruning is performed by
collecting knowledge on the platform architectures. This information can be used
to guide the designer to select a platform, i.e. select an initial well-known platform
or by neglecting platforms, which do not fulfill the requirements. The result of the
DSE step are a set of candidate system designs including the process binding that
are described in XML. These XML descriptions and the KPN description are re-
quired as input for the ESPAM tool. This tool generates synthesizable VHDL which
implements a MPSoC platform. Furthermore, C code is generated from the KPN
processes which are mapped to the programmable cores. Finally, this implementa-
tion can be realized on a FPGA for prototyping.

SystemCoDesigner is another design framework including an automated map-
ping of System C applications onto a heterogeneous MPSoC platform [76, 81|. The
application has to be written in SystemC and represents an actor-oriented appli-
cation model. Communication is performed through SystemC FIFO channels im-
plemented in one thread. This kind of input can be transformed into a subset of
SystemC (called SysteMoc), which is able to represent non-deterministic data flow
models (DDF). Here, each actor is defined by a finite state machine and communi-
cates with queues in FIFO semantics. Afterwards, these actors can be transformed

2.4. Related Work 39

)
s P ~
QHF model . System(C Forte Cynthesizer
| | model behavioral synthesis
"
_J

L.
select CPUs, busses |

: ; component
hw accelerators,

efc. from the exploration _]thra:jr;,-
component library model melu {‘S. .
= CPUs, busses,

specify mapping hardware accelerators etc.

design space
exploration
l optimized _—
... solutions rapc
implementation __ prototyping

Figure 2.14: SystemCoDesigner Design Flow

into hardware and software modules. The software modules are generated by code
transformations while the hardware modules are built with the tool Forte Cynthe-
sizer [82|. The hardware accelerators are automatically generated and stored in a
component library. This component library also contains IP cores, i.e. processors,
memories, buses, etc. Now, the designer has to specify a heterogeneous MPSoC
architecture by connecting cores from the library. Additionally, the designer also
has to define mapping constraints for each actor. In the next step, design space
exploration is performed. Here, the implementation of the application is optimized
while considering several objectives (e.g. throughput, latency, area and power con-
sumption). The simulation is based on the fast "task accurate performance model"
as in Daedalus (i.e. high-level simulation). The output of the design space ex-
ploration is a set of optimized solutions where the designer can choose a solution.
Afterwards, a rapid prototyping of the FPGA implementation can be performed.
Here, the designer performs many steps manually. Only some steps, e.g. design
space exploration, are performed automatically. The SystemCoDesigner design flow
is illustrated in Figure 2.14

The distributed operation layer (DOL) [18] is an automated system-level frame-
work with the goal to efficiently map parallelized application tasks onto hetero-
geneous MPSoC systems. DOL was mainly developed in two projects. The first
development started in the Scalable Hardware/Software Architecture Platform for
Embedded Systems (SHAPES) project. Here, this version will be called basic DOL.
DOL was extended in in the European Reference Tiled Architecture Experiment

40 Chapter 2. Models and Tools

(EURETILE) project. This framework provides design space exploration with evo-
lutionary algorithms for multiobjective optimization.

2.4.5.1 DOL (SHAPES)

The input of the DOL framework is an application and an architecture specifica-
tion. The application specification is specified as an already parallelized application
given as a process network model. Each process has to be additionally provided in
C/C-++. Furthermore, a description for the processes and all FIFOs for the commu-
nication (i.e. software-channels) are defined in the application specification which is
defined in XML. All processes and software channels have input and output ports
for the interconnection. Furthermore, the communication is defined via blocking
read /write. The architecture specification is also given in XML. Here, all proces-
sors, memories and their interconnections are defined. Performance data is added
for the bus throughput and also delays on communication paths as well as processor
and bus clock frequencies. A sharing method for the resources (i.e. scheduling) can
also be added if required. Furthermore, profiling information has to be added to the
application specification, as the number of process invocations, the runtime on the
different target processors, etc. For this, a simulation or other ways of profiling can
be performed and added to the application specification file.

The design space exploration is performed with a loop with two main phases: the
mapping optimization and the performance evaluation. The mapping optimization
is performed with multiobjective optimization. The designer has to specify the
objectives and integrate them within DOL, e.g. minimizing energy consumption,
balance runtime, reduce bus traffic. The mapping optimization creates a population
of individuals (chromosomes). These individuals represent a mapping solution and
are evaluated based on the objectives. New individuals are generated by crossover
and mutation. The optimization is based on the evolutionary algorithm SPEA2 [83]
and the PISA interface [84]. The evaluation is performed with the EXPO framework
[85]. Tt evaluates all crucial information as performance and energy. All these values
are passed to SPEA2 which selects good individual candidates and communicates
this back to EXPO. This is performed in a design space exploration loop until a
stop criterion is reached (i.e. maximum number of generations). The output of
the optimization is a set of Pareto optimal solutions. These solutions are described
in a mapping specification where they define the binding of the processes to the
processors and the binding of software channels to the communication paths. A
scheduling policy is also defined, but not included in the optimization.

The evaluation of the individuals is usually performed by analytic performance
analysis. It is also possible to integrate a cycle-accurate simulation or static or
dynamic models as the modular performance analysis (MPA) for real-time anal-
ysis. For this, the DOL specifications can be converted into models for modular
performance analysis (MPA) The advantage of the analytic or high-level functional
simulation is the fast simulation which is usually used in this class of frameworks
(e.g. also in Daedalus). A fast evaluation is required because of the huge design

2.4. Related Work 41

space and because a quick evaluation has to be performed for the numerous mapping
solutions which are generated in several loop iterations. Cycle-accurate simulations
are very time-consuming and extend the evaluation and design time drastically.

2.4.5.2 DOL (Extended)

DOL was extended by design architectures during the mapping optimization. For
this, computation templates are provided which include different processors (DSP,
micro controller; etc.) and FPGAs, etc. Furthermore, an automatic selection of
the computation templates as well as of communication techniques (different buses,
rings) and scheduling (TDMA, EDF, etc.) is provided. The input is given by a set
of task graphs and use-cases. Also, executive platforms are specified as architec-
ture graphs. The output also provides the description of the execution platform [6].
The mapping optimization, including evolutionary algorithms, is based on the same
strategy as in the previous version of DOL.

To sum up, several frameworks for MPSoC design space exploration with multi-
ple objectives exist, like for instance Daedalus [77], SystemCoDesigner [86], HOPES [75],
or DOL [18]. They are based on different applications, architectures, mapping mod-
els, different evaluation environments, different strategies to search in the design
space, different optimization criteria, design constraints, or abstraction levels. All
frameworks have their own characteristics and cannot be compared to each other.

2.4.6 Combined mapping to processors and memories

The integration of memories in the task mapping optimization is a new investiga-
tion field which started to gain attention in the last years. Ounly few research was
investigated in this new field.

The authors of [87] perform an allocation of data (also arrays) to scratchpad
memories with the polyhedral model Thus, through the polyhedral model also a
parallelization is performed which maps computation to processing units. A GPU
architecture with multilevel parallel processing units is considered in this work.
The scratchpad memories are shared among several processors in the architecture.
Multi-level tiling is performed where computation is distributed on multiple levels of
parallel units. Data is allocated block-wise to scratchpad memory. In a first step, the
approach calculates which data space (array references) is beneficial for allocation.
In a second step, the data space is partitioned into disjoint, non-overlapping sets.
Here, the bounds are determined and set in a way, which does not exceed the capacity
of the local memories. This means, the parallelization is adapted to the sizes of the
scratchpad memories in this case. The sizes of the scratchpad memories of each
processor are always equal. For the scratchpad memory utilization, a speed-up of
8x for MPEG4 and 10x for Jacobi kernel was achieved compared to a system which
only uses GPU DRAM.

The approach in [88] proposes a heuristic which performs task assignment, static

42 Chapter 2. Models and Tools

scheduling and allocation of code and data to local memories. Additionally, a fi-
nal system architecture is generated with the primary goal to minimize the data
utilization on the memories. The second goal is to decrease the schedule length
by scheduling tasks from the critical path. These are conflicting goals because the
memory requirements are usually increased by the tasks which lie on the critical
path. In a first step, an estimation on the data memory usage is performed. For
this, the task’s requirements as the task’s start time, task duration and amount of
code, data and communication required are considered. Also, the tightest possible
schedule which has a higher data memory requirement is integrated in this esti-
mation. In a second step, a cost function is set up which represents the cost of
implementing a task ¢; on processor F; where also measurements on the amount of
code required, and the time needed to execute a task on processor are integrated. A
task is assigned to a processor according to the cost function. As input, an acyclic
task graph is required, which is annotated with the estimated execution times of
the nodes and the memory requirements of the tasks. The arcs in the task graph
represent data transfers. These communication arcs have also to be scheduled and
assigned to memory. Preemptions of tasks are not allowed. Data memory has also to
be reserved for task communication. Here, more overhead can be caused when tasks
are assigned to different processors. In this case, the communication is also sched-
uled and assigned to communication devices. The architecture can contain ASICS,
processors, buses and links. Processors have a separate local data and code mem-
ory, and ASICs have one data local memory. The system architecture is modeled
by constraint logic programming and is fixed.

In [89], a constructive algorithm is proposed. In a first step, the algorithm
chooses a task from the critical path in each iteration. Only tasks can be chosen,
where all predecessors were already scheduled. The costs are determined for imple-
menting the task on each processor. This cost mainly depends on the data usage,
the communication cost for interprocessor communication and the execution time
together with the code memory utilization and the processor’s time slots utilization.
The task is assigned to the processor with the minimal cost. Also, the communi-
cation is scheduled with the minimal communication cost. Furthermore, the data
memory is assigned for the data of the task if the memory has enough capacity. If
there is not enough capacity in the memory, the mapping decision is reverted and
another task is chosen in step one. Their approach is compared to a greedy non-
memory-aware scheduling algorithm which also chooses the tasks from the critical
path. The memory-aware approach always outperformed the greedy algorithm in
terms of runtime and memory utilization. Also, the greedy algorithm was often not
able to find schedules when the memory size was decreased. The solution can be
used by designers for synthesis. The architecture is identical to the architecture in
[88].

The authors in [90] present a partial task assignment (PAT') technique, which is a
heuristic. New constraints are added, which limit the possible mapping of tasks. All
tasks within one group have to be mapped to the same processor. The goal of this
method is to reduce the complexity of the task mapping and scheduling. The sys-

2.4. Related Work 43

tem architecture, the application and synthesis problem is modeled with constraint
logic programming as in [88],[89]. The input is an acyclic task graph with estimates
of the task’s execution time and code and data requirements. The PAT algorithm
assigns the tasks to processor time slots and communication tasks to bus time slots.
It tries to utilize the resources as time and memory evenly. The decisions are made
based on an estimate of the future usage of resources. The next task that has to be
scheduled either increases the critical path length or the data memory usage. The
experimental results compare PAT to a simple MATAS algorithm. MATAS has no
partial assignment constraints as the PAT algorithm. Therefore, there is no com-
plexity reduction and the full optimization potential cannot be utilized compared to
a clustering algorithm as PAT. But, the same metrics as in PAT are used for making
clustering decisions. The PAT algorithm always gave better results than MATAS.

[91] use integer linear programming (ILP) to find task mapping, pipelined schedul-
ing, and scratchpad memory partitioning for MPSoC. Here, each processor has its
own local scratchpad memory but also has access to other scratchpad memories
(remote scratchpads). In this case, partitioning defines the allocation of memory
objects to the local and the remote scratchpad memories. During the scratchpad
partitioning, memory requirements for each task are calculated. If a task requires
more local memory, the scratchpad memories of other processors are partitioned and
used. Here, only static data allocation is performed. The multiprocessor system is
homogeneous where all memory sizes of the local scratchpad memories are equal.
The integration of memory optimization within the task mapping and scheduling
was able to improve the performance by 2% up to 80% dependent on the benchmark.

[92] present a memory-aware application mapping for coarse-grained reconfig-
urable array (CGRA) architectures. CGRAs consist of an array of processing el-
ements (PEs). The goal is the mapping of operations (i.e. loop kernels) to the
processing elements and of array data to local memory. A heuristic considers sev-
eral memory characteristics as number of banks, local memory size and communica-
tion bandwidth between local and system memories. Arrays can be shared between
processing elements and also be duplicated in different banks of a memory.

Contrary to [88],[89],[90], [92] and [91], this thesis does not perform system
synthesis nor scratchpad partitioning. Compared to these approaches, this the-
sis considers the entire memory hierarchy with several levels and different memory
types and sizes. Furthermore, automatic design space exploration and multiobjec-
tive memory-aware optimization are also an integral part of our work.

CHAPTER 3

MNEMEE

Contents

3.1 Introduction @ittt 45
3.2 The MNEMEE toolflow0uuee.. 47
3.2.1 The MACCv2 Framework 47
32.2 DDTR Tool (ICCS) 48
3.2.3 Parallelization Tool (ICD) 49
324 MPMH (IMEC) 49
325 DMMR (ICCS) . . o o oo 50

3.2.6 Thread Model Extraction Tool (TUE / IMEC / ICD & TU
Dortmund) 51
3.2.7 Mapping Tools 51
3.2.8 RTLIB/RTEMS (IMEC/ICD) 53
3.2.9 Scratchpad Memory Allocation Tool (ICD) 53
3.3 Achieved Results 53

3.1 Introduction

Modern embedded systems have to fulfill more and more requirements. Generally,
their focus lies on multimedia and communication applications (e.g. WiFi, HD-
Video, coding, etc.). These kind of applications perform a huge amount of compu-
tation and data transfers, and they usually also have to meet real time constraints.
Nowadays, MPSoCs are the most suitable platforms for these kind of applications
because they provide fast computation and a complex memory hierarchy for the
data transfers and communication. The designers have to find an efficient mapping
of the application onto the limited resources of the system, i.e. processors and mem-
ories. For this task, several steps have to be performed by the designer. First, the
sequential application has to be parallelized into several tasks that can be mapped to
the different processors. Furthermore, the static and dynamic data memory objects
have to be efficiently allocated to the memory hierarchy. The huge design space
has to be explored in order to obtain a design that fulfils all demands for energy
consumption, runtime and memory footprint. Due to the short time-to-market, the
designer requires an automated tool flow, which helps the designer to optimize the
source code and explore the design space efficiently.

46 Chapter 3. MNEMEE

(Sequential application source code)

(" MACC Framework Il 1)

(1) DDTR (ICCS)

v

(2) Parallelizer (ICD)

v

(3) MPA/MPMH (IMEC)

v
(4) DMMR (ICCS)
(5) Scenario (5) Memory
Based Mapping Aware Mapping
(TUE) (IcD)

N 7

(6) SPM optimization (ICD)

Platform
DB

_ <}:| oo MO)Jjool IJNININ

-

Optimized Source Code

Figure 3.1: The MNEMEE Toolflow

The MNEMEE project [12, 13] addresses all these challenges and introduces
an automated tool flow which performs source-to-source optimization with all re-
quired steps from parallelization, synchronization, design space exploration up to
the mapping of the code and data to the MPSoC platform including state-of-the-art
optimization methodologies. The focus lies on the efficient utilization of data mem-
ory objects to the available memories in the memory hierarchy since the memory
subsystem is usually neglected in the design flow. However, the efficient utilization of
the memory hierarchy is directly linked to the performance and energy consumption
of the system and has to be optimally exploited. The objective of the MNEMEE
project is to achieve a considerable reduction of the energy consumption and the
design time of the system. Depending on the designer’s underlying system and its
requirements, the designer has the possibility to use either the complete MNEMEE
tool flow or a part of it.

The MNEMEE project started January 2008 with a duration of 36 months and
was funded by the European community The partners included in this project have

3.2. The MNEMEE toolflow 47

all different areas of expertise, which contributed perfectly to the MNEMEE tool
flow. Except for the industrial partners, all partners have developed stand-alone
tools for individual use, which were extended and integrated into the automated
MNEMEE tool flow.

The partners involved in the MNEMEE project are:

e Interuniversity Micro-Electronics Center (IMEC, Leuven, Belgium) - Research
Center

Institute of Communication and Computer Systems (ICCS, Athens, Greece)

Informatik Centrum Dortmund e.V. (ICD, Dortmund, Germany)

Universiteit Eindhoven (TUE, Eindhoven, Netherlands)

Intracom S.A. Telecom Solutions (ICOM, Peania, Greece)

Thales Communications (TCF, Colombes, France)

3.2 The MNEMEE toolflow

This section describes the complete MNEMEE tool flow and all tools that are inte-
grated in this tool flow. An overview over the complete MNEMEE tool flow is given
in Figure 3.1. The underlying architecture and application model is described in
Section 2.2. The input of the tool flow is sequential source code in C. The output is
parallelized and optimized source code for the target MPSoC architecture. The op-
timizations are mainly focused on the memory subsystem. All tools automatically
generate all required optimizations. The designer has the option to set different
settings for the individual tools if required.

3.2.1 The MACCv2 Framework

The MACCv2 framework is a system modeling approach for source-level and memory-
aware optimization development for multiprocessor systems [14]. In the MNEMEE
tool flow it integrates all tools into one single tool flow. The designer can use a
template for optimization and analysis tool development and an interface for the
connection to the other tools in the tool flow. Through this interface, it is possi-
ble that one tool is providing an optimization decision and another tool is imple-
menting it. Within MACCv2, an ordered execution of the optimization/analysis
steps can be specified. All tools can be configured and controlled by tool settings.
Furthermore, a common platform model is provided which also models the mem-
ory hierarchy in structurally and semantically accessible way. Here, optimization
designer are equipped with a database-like interface to the system model. In addi-
tion, all required architecture information can be obtained from the system model.

48 Chapter 3. MNEMEE

Energy = ?

g
ASPC-1

- IFETCH
-DRD
-DWR -
MAINAS

/ +1 - Energy / / +1 = Energy / / +10 = Energy /
/ +0 > Cycles / / +2 = Cycles / / +5 = Cycles /

Figure 3.2: The Routing Model within MACCv2 [14]

The architecture description model is a scalable and structural Processor-Memory-
Switch-level (PMS) system model. Furthermore, interfaces to backend tools can be
provided to the designer (i.e. compilers, linkers, simulators). MACCv2 also has
a uniform application representation. The code is represented as an ICD-C based
abstract syntax tree. With the ICD-C code representation, the program code can be
attached to processing units. In this way, the application code is integrated into the
system model. The designer can also use an Eclipse based graphical user interface
for system modeling.

The primary goal of MACCv2 is to enable rapid development of source-level ar-
chitecture independent optimizations. However, the given architectural properties
can be still utilized in order to achieve higher optimization gains. Another advan-
tage is the knowledge about the properties of the memory subsystem. Through the
query-based interface of the system model, MACCv2 is able to provide immediate
results without the requirement of a time-consuming simulation (Figure 3.2). It has
been shown that the provided method for accessing the system and the memory hi-

erarchy provides the same quality results as a simulation based approach in modeled
MPARM SoC [14].

3.2.2 DDTR Tool (ICCS)

The Dynamic Data Type Refinement Tool (DDTR) optimizes dynamic data struc-
tures in the source code [93]. Dynamic data structures include dynamic arrays,
linked lists and trees. For this, all dynamic data types (DDTs) are profiled in order
to obtain their access patterns and their allocation behavior. Based on this access
pattern, the implementation of the dynamic data structures are changed with the
help of components from the DDTs library. The objective is to increase the perfor-

3.2. The MNEMEE toolflow 49

mance and limit the memory consumption. As an example for the restructuring and
its effect on performance, let us have a look at a linked list, which accesses items
sequentially. Let us assume that the last items of this list are accessed frequently. A
restructuring of this data structure can add an extra pointer to the end of list and
thereby increase the performance. The restructuring of the data structures can have
effects on the extraction of the parallelization. Thus, this tool is executed before
the parallelization tool.

3.2.3 Parallelization Tool (ICD)

The Parallelization Tool [94] was developed by ICD within the MNEMEE project
and is illustrated in Figure 3.3 The input of this tool is the modified source code that
is passed from the DDTR tool. For the automatic extraction of the parallelization,
the application is remodeled as a hierarchical task graph. On every level of the
task graph, an ILP approach searches for possible parallelism and decides if new
tasks are extracted on this level or if earlier extracted tasks on another level in the
hierarchy should be maintained. In this way, the whole task graph is processed by a
bottom-up search. The goal is to obtain a balanced runtime by executing concurrent
tasks on several processors of the system and thereby speed up the execution of the
application. The parallelization tool can extract functional parallelism as well as
data parallelism or a combination of both. The tool can also limit the number of
extracted parallel tasks to the number of available processors in the system. It is
also able to extract several parallel sections, i.e. the parallel sections can be executed
at different points in the application and in each parallel section, several tasks can
be executed concurrently. The results are annotated in the source code, and a
parallelization specification is generated. This specification is an interface between
the parallelization tool and the subsequent MPMH tool. It specifies all parallel
sections, the number of tasks in each parallel section and the type of parallelism for
the chosen code segments.

3.2.4 MPMH (IMEC)

The MPMH tool by IMEC performs two different steps in the tool flow [95]. The
first step is the implementation of the extracted parallelism by transforming the
source code. The second step is the optimization of static array data by generating
smaller blocks of these arrays, which can then be mapped to the size constrained
memories in the memory hierarchy of the system. This tool only allows C-Code
with single-assignment pointers. As input, the parallelization directives, which were
specified by the parallelization tool, are required. Otherwise, if the designer wishes
to extract the parallelism manually, a parallelization specification has to be provided
as well. Based on this specification, MPMH automatically extracts parallel source
code by adding synchronization mechanisms and FIFO queues, if required. The
tool generates correct-by-construction parallel code. In the next step, the MPMH
Tool optimizes the access to static arrays. An analysis is performed on array data

50 Chapter 3. MNEMEE

Sequential Platform
ANSI-C code description
(ICD-C IR) — T

Parallelization
Code

NP Tool
optimization

v v
Dependency Exec-time
analysis estimation

Hierarchical

task graph
extraction

ILP-based

parallelization

| Augmented | Parallel
ANSI-C code specification
— L

ATOMIUM
tools

Figure 3.3: The Parallelization Tool [94]

at compile time, and profiling is used. With this information, the tool decides if
array data copies should be extracted and mapped to certain levels in the memory
hierarchy. The goal is to minimize the energy consumption and runtime. The
output of the tool is the parallelized and synchronized source code added with the
data copies of the arrays. The source code also contains all required block transfers
that need to be performed to the different memories. In the MNEMEE tool flow the
data copies are extracted by the MPMH tool, but the mapping to the memories is
performed by the Scratchpad Memory Allocation Tool which obtains hints from the
MPMH Tool for the memory mapping. The Scratchpad Memory Allocation Tool is
described later in this section.

3.2.5 DMMR (ICCS)

After the extraction and implementation of the parallelization, the DMMR Tool
by ICCS extracts a mapping of dynamic data structures to the different memory
layers in the memory hierarchy. For this, a profiling based analysis is performed.
The allocation and deallocation timeline for all dynamic objects is extracted. This
timeline is analyzed, and the most frequently accessed dynamic objects are identified.

3.2. The MNEMEE toolflow 51

Based on this access information, the tool decides which dynamic objects should
be placed at a higher level in the memory hierarchy and which at a lower level.
These decisions are passed as hints to the Scratchpad Memory Allocation Tool, which
finalizes the mapping of data memory objects to the memories.

3.2.6 Thread Model Extraction Tool (TUE / IMEC / ICD & TU
Dortmund)

The Thread Model Extraction Tool was designed and implemented with the help
of several MNEMEE partners, i.e. TUE, IMEC and ICD in cooperation with TU
Dortmund. It is an important interface between the parallelization tools and sub-
sequent the mapping tools in the MNEMEE tool flow. Both class of tools work on
different internal models and different information. For example, the paralleliza-
tion tool works on hierarchical thread graphs while the mapping tools require a flat
thread graph annotated with certain information for their optimizations. For this
reason, the Thread Model Extraction Tool automatically extracts a flat thread graph
with all dependencies and all required information from the parallelized application
source code. This alleviates the work of the designer, since the complex and time-
consuming manual extraction is avoided. In a first step, the tool annotates markers
to each basic block and extracts a profiling file, which includes the order of executed
basic blocks, thread creations and joins, as well as FIFO reads and writes. Based on
this information, a flat thread graph is extracted, which includes all dependencies
and parallel sections. In a second step, the number of cycles for each basic block as
well as all information on memory objects (i.e. number of reads/writes, size, number
of executions, etc.) for each thread is extracted and annotated to the thread graph.
This thread graph is passed to the mapping tools, which are executed, in the next
step of the MNEMEE tool flow. The thread graph is generated in a way which
satisfies the input requirements of the Scenario-Aware and Memory-aware mapping
tools. In addition, no further profiling has to be performed by the mapping tools,
i.e. the requirements for the scenario-aware graph can also be extracted as well as
all memory object information for the memory-aware mapping tool. This prevents
double profiling work for the same required information. More detailed information
on the Thread Model Extraction Tool is given in Section 4. Please note that the tool
is not illustrated in the MNEMEE tool flow in Figure 3.1. Within the MACCv2
framework, it is configured as a mandatory precedent step, which has to be executed
before the mapping tools.

3.2.7 Mapping Tools

The mapping tools are mapping parallelized threads onto the available processors in
the MPSoC system. The designer has the choice between two alternative techniques
in the MNEMEE tool flow, which are described next. The Scenario-Aware-Mapping
Tool has a focus on the dynamic behavior of the application and tries to save re-
sources. On the other side, the Memory-Aware Mapping Tool has the focus on the

52 Chapter 3. MNEMEE

memory subsystem with the goal to find an optimal mapping of threads to pro-
cessors while matching the memory requirements of the threads to the speed and
energy consumption of the available memories in the memory subsystem.

3.2.7.1 Scenario-Aware-Mapping Tool (TUE)

The Scenario-Aware-Mapping Tool was developed by TUE [96]. It was extended in
the MNEMEE project. This mapping tool considers the dynamic behavior of the
application that can occur at different points in the application. These different dy-
namic points are called scenarios. A scenario is static, i.e. predictable in performance
and resource requirements. For the input of the tool, a set of synchronous data flow
graphs is required, which can be obtained from the already parallelized source code.
In the MNEMEE tool flow, synchronous data flow graphs can be easily generated
from the information of the thread graph that was generated by the Thread Model
Extraction Tool for this purpose. Here, each graph represents a scenario. The goal
is to find an efficient resource allocation for each scenario while maintaining timing
guarantees when switching between scenarios. The resource allocation includes the
allocation of processing (i.e. threads), memories and communication resources. The
output of the tool are several trade-offs for the amount of resources for processing,
memories and communication. In the MNEMEE tool flow, the mapping, which
minimizes the memory usage, is selected and passed to the subsequent tools that
implement this mapping. As a standalone tool, it can use a run-time mechanism
in order to adapt the mapping of the application during runtime for different use-
cases. However, an implementation of a run-time library for this purpose was not
implemented since it was not a goal in the MNEMEE project.

3.2.7.2 Memory-Aware Mapping Optimization Tool (ICD / TU Dort-
mund)

The Memory-Aware Mapping Optimization Tool provides a mapping, which mini-
mizes energy consumption and runtime while including the memory subsystem in
the optimization process. As input, a flat task graph extracted from parallelized
code is required and detailed information on hardware (e.g. memory speed) and
application software (e.g. thread execution time and information on memory re-
quirements of threads). All this information is provided by the task graph of the
Thread Model Extraction Tool. An evolutionary algorithm with the multiobjective
goal to minimize the energy consumption and runtime is used for the mapping op-
timization. An allocation of code and data memory objects to the memories in
the memory hierarchy is also performed in this optimization. The tool analyses the
task’s memory requirements and matches them to the available memory resources in
the system while considering the characteristics of the processors (i.e. speed) as well
as the characteristics of the memories (i.e. speed and level). This kind of optimiza-
tion can be very efficient for heterogeneous MPSoC system with different processors
and a heterogeneous memory subsystem. However, in the MNEMEE tool flow the

3.3. Achieved Results 53

tool passes the mapping of threads to the processors to the remainder of the tool
flow. The final implementation of the memory objects to the memories is finalized
by the Scratchpad-Memory Allocation Tool. As a standalone tool, it is also able to
provide the mapping of memory objects to the different memories in the memory
hierarchy. More detailed information on the Memory-Aware-Mapping-Optimization
Tool is given in Section 6.

3.2.8 RTLIB/RTEMS (IMEC/ICD)

A Run-Time Library (RTLIB) API is provided by IMEC in order to specify the
platform-dependent part of the application, e.g. thread creation, communication
and synchronization. Furthermore, for the execution on a platform an embedded op-
erating system is required. In the MNEMEE/MACCv2 tool flow, RTEMS is imple-
mented as operating system and connected together with RTLIB. The thread map-
ping decision of the mapping tools is finalized in the source code by this RTLIB/RTEMS
step.

3.2.9 Scratchpad Memory Allocation Tool (ICD)

After the mapping of threads to the processors, the Scratchpad Memory Allocation
Tool decides about the allocation of data to the scratchpad memories of the different
processors. The goal is to allocate frequently accessed data objects to the fast
scratchpad memories and to thereby reduce the energy consumption and runtime of
the system. The optimization is performed with a knapsack-based approach that is
implemented as an [LP. As a result, a non-overlaying allocation is presented, which
is implemented by source-to-source transformations. Earlier tools have provided
hints on the mapping of data structures on memories. This tool decides on the final
allocation for data objects.

3.3 Achieved Results

The industrial partners applied the MNEMEE tool flow to their chosen application
and implemented their own architecture in the MACCv2 framework database. The
target platform for Thales is a OMAP L137 architecture by Texas Instruments which
includes an ARM and a DSP processor [97]. The application is based on NATO
standard STANAG 4591 implementing enhanced Mixed Excitation Linear Predictive
(MELP) algorithm/vocoder at 2400, 1200 and 600 bit/sec, i.e. a speech signal.
Intracom Telecom implemented the MSC8144 processor as target platform [98]. It
includes high-performance multicore DSP from Freescale for wireline and wireless
(infrastructure) applications. Each core has a speed clock of 1GHz. This architecture
is optimized for voice, fax, video and data compression processing. An internal
QUICC Engine dual-RISC packet processor supports multiple networking protocols.
Their application is the Mobile WiMAX IEEE 802.16¢, which is a broadband wireless
solution. The MNEMEE project showed that the tool flow can also be used in

54 Chapter 3. MNEMEE

industrial design tool flows. The industrial partners were able to achieve a reduction
in design time by up to 76% and a reduction in energy consumption by up to 52%
[12, 13]. The industrial partner Thales (T'CF) achieved a reduction in memory
footprint by 30% and Intracom (ICOM) was able to achieve a reduction in memory
bandwidth by 17%.

CHAPTER 4

Thread Model Extraction

Contents
4.1 Imtroductionttt 55
42 Related Work ittt 56
4.3 Problem Description00, 60
4.4 Tool Overview ¢ v i i vt v it vt 62
4.5 Safe-Annotation and Simulation 62
4.6 Thread Model Extraction 64
4.6.1 Structure of the Thread Model 64
4.6.2 Model Extraction 0oL 66
4.6.3 Constraints Lo 69
4.7 Architecture Information 0., 69
4.8 Evaluation.ttt 70
481 Compact Model oL 71
4.8.2 Detailed Model Lo 72
4.8.3 Extracted Thread Models 74

4.1 Introduction

The complexity of embedded systems has increased in the past years due to sig-
nificant improvements in hardware and the corresponding consumer demand. As a
consequence, designers are confronted with time-to-market constraints and depend
on effective design tools, which take the burden from the designer to perform the
complex design steps manually. However, these design tools work at different levels
of abstraction. For example, mapping tools, which map application tasks to the dif-
ferent processing elements of the system, work at a high level of abstraction. They
require an architecture and application specification as input. At a high level of ab-
straction, application specifications are often described as task graphs. Task graphs
represent the execution of the application. They are generally used for the optimiza-
tion of complex problems, which can be solved more efficiently at this higher level
of abstraction (e.g. mapping and scheduling of parallel tasks). Unfortunately, the
application is usually not given in the form of a task graph but in a high program-
ming language, i.e. as C code. On the other side, the majority of optimization tools

56 Chapter 4. Thread Model Extraction

expect a task graph as input. Designers usually have to manually transform C code
into a task graph, which is a time-consuming, complex and error-prone job. De-
pending on the complexity of the application code, this job can take hours or even
days. This section focuses on automating the translation from C code to a task
graph in order to overcome all these obstacles and reduce the amount of developing
time.

In the overall tool flow of the MNEMEE project, described in Section 3, several
design steps are performed. The overall goal is to provide an automated tool flow,
which helps the designer to perform all these single steps automatically. Here, each
tool works internally with its own application models. Moreover, the tools require
a particular input format, which specifies the information that is needed in order
to perform the tools optimization, process properly. However, combining different
design tools lead to the problem that the output of the first tool does not usually
match the information that is required for the successive tool. Furthermore, the
level of abstraction for the various tools differs.

The Thread Model Extraction Tool was set up within the MNEMEE project. It
is a chain between the parallelization tools and the mapping tools. The output of
the parallelization tools is parallelized code, where the parallelization and synchro-
nization are specified through functions and annotations that are defined within the
source code. On the other side, the required input of the mapping tools is a flat task
graph, which describes the dependencies between threads given by the control flow
and FIFO communication (i.e. data dependencies or synchronization). Internally,
the parallelization tools work also with information about control flow dependen-
cies and other profiling information. However, it was not planned to export this
information as an output for other tools. Moreover, the different tools do not work
on the same models, information and level of abstraction. For example, while the
parallelization tools work internally on hierarchical task graphs, the mapping tools
work with flat task graphs. A translation from a hierarchical task graph to a flat
task graph is a very complex and time-consuming step, which would also involve
a deeper modification of the parallelization tools. Furthermore, the parallelization
tools work on certain information extracted by analysis and profiling. After the ex-
traction and implementation of parallelism, a different set of application information
is required for the mapping tools compared to the parallelization tools. For example,
the extraction of memory object information is required. Therefore, a separate tool
had to be developed, which extracts all required information in an automated way.

4.2 Related Work

First research on the extraction on task graphs was performed by the parallel com-
puting community for massively parallel machines as in [99, 100, 101]. The authors
of [102] proposed an approach for embedded system synthesis tools and the authors
of [103] an approach for matlab code.

In [99], the authors developed a tool called FAST (Functional Algorithm Simu-

4.2. Related Work 57

lation Testbed). The goal of the tool is the simulation of large parallel systems with
large problem sizes and a focus on computationally hard scientific applications. The
applications are implemented on message passing multiprocessors. The input is a
sequential, user-annotated parallel program where the user annotates the parallel ex-
ecution and communication. In the front-end, the tool generates a static task graph
including operations and data transfers. The computation is transformed to an in-
termediate language format with IR-operations and send/receive primitives. The
IR-operations are the basic computational blocks while the send/receive primitives
represent the data-dependencies between the IR-operations. For each IR-operation,
the execution time is obtained by manually counting the corresponding machine in-
structions. Afterwards, a parser transforms the intermediate format into a weighted
task graph in a data-flow manner. Edges represent receive and send data primi-
tives annotated with the size of the communicated data. The back-end maps the
task graph onto the parallel architecture. First, the task graph is mapped to an
idealized architecture where the number of processors corresponds to the number
of tasks. In the next step, a clustering is performed by a heuristic where the com-
munication overhead is minimized without sacrificing the parallelism. In the last
step, the clustered parallel task graph is mapped to the architecture with the help of
heuristics that use different modifications of priority list scheduling. Furthermore, a
load-balancing approach is implemented which sorts the clusters by their load and
assigns the cluster with the highest load or processing time to different processors.

In [100], the authors suggest a task graph generator for parameterized task
graphs. Parameterized task graphs represent very large task graphs in a compact
way and are well suited for coarse-grain parallelism. The parameterized task graph
contains a set of symbolic tasks, which are represented by a name and an iteration
vector. It also contains a set of communication rules that describe the data that is
transferred among tasks. The communication rules model how tasks send or receive
data and the dependencies between tasks occurring by this communication. The
input is an annotated, sequential program where the designer has annotated task
definition directives. The tool extracts source code and computational load of tasks
as well as dependencies and communication load between tasks. Dependence anal-
ysis is used in order to detect the dependencies between tasks. The authors assume
that the dependence analysis is performed by the designer by using an appropriate
tool. Afterwards, the communication and synchronization rules are derived from
these dependencies. The computation load and communication volume are repre-
sented in a problem size independent way. The computational load is computed
by the compiler, which sums up the estimated elemental arithmetic costs for each
statement. The communication volume for an edge is symbolically computed by the
sums of polynomials.

The authors of [101] extract task graphs for large-scale parallel applications on
large parallel systems. They are using a combination of analytical, simulation and
hybrid model. The considered applications are including MPT directives, which are
given from a High Performance Fortran program. The goal is to generate a static,
symbolic task graph. Additionally, the authors also propose an approach that derives

58 Chapter 4. Thread Model Extraction

a dynamic task graph from a static task graph, based on the use of code generation
from symbolic integer sets. For the generation of the static task graph, four steps are
required where compiler techniques are used. In the first step, the computation and
control-flow nodes are generated. A new task node is generated for each IF/THEN,
PROGRAM/FUNCTION/SUBROUTINE,STOP/RETURN, all other subsequent
statements are comprised to one node. In the second step, communication tasks
are generated for each logical communication event. The MPI communication di-
rectives (i.e. wait-recv, wait-send, isend, irecv) are determined and the task can
only continue its execution, after it has received its data. The task synchronization
between is also captured in this step. The third step generates symbolic sets and
symbolic mappings, where the compiler constructs symbolic scaling functions for
each task and communication event. The scaling function of the task is given by the
workload of the task, while the scaling function of a communication event is given
by the message size. For loops (i.e. DO-nodes), the scaling function describes the
number of iterations executed by the processor. The scaling function for functions
represents the processor id variables and other symbolic program variables. The last
step eliminates excess control flow edges between tasks.

If a less detailed task graph is sufficient for a given model, the compiler can
merge adjacent nodes, which are connected by a control flow edge and which do not
contain any communication. The scaling functions of the tasks are also considered
and treated appropriately by differentiating different cases of these functions. This
step generates a more coarse-grain model. The authors also propose a technique for
the generation of a dynamic task graph from the static task graph, if required. The
static task graph represents a single execution for a particular input. The dynamic
task graph has no control flow edges, is acyclic and only regular, non-adaptive code
is considered where the task graph does not depend on intermediate computational
results. For the generation of the dynamic task graph all Do-nodes are unrolled and
the dynamic instances of the branch nodes are resolved.

Contrary to [99, 100], the annotation of the designer for the specification of the
parallelism and the communication are not necessary in this work as the paralleliza-
tion and synchronization are already performed by other tools in the MNEMEE tool
flow. Furthermore, this work does not target massive parallel systems and thereby
different kind of applications (e.g. streaming applications) is considered. The tar-
get of the presented task graph tool is C code for homogeneous or heterogeneous
MPSoC systems in the embedded system design field. All steps within this tool are
performed in a fully automated way and without any user intervention. Furthermore,
we additionally extract detailed information about instruction and data memory ob-
jects and a separate architecture specification, which contains information on access
times and energy consumption for different memories. Combining both information,
the subsequent mapping tools are able to provide a more precise analysis on timing
and energy consumption since delays due to memory accesses are integrated in this
model. Our tool is also able to extract a compact task/thread graph, which reflects
the average timing for large applications, or a detailed task/thread graph, which
represents a more precise timing since all loops, and FIFO communications within

4.2. Related Work 59

loops are unrolled.

In [102], the authors perform a task graph extraction for embedded system syn-
thesis tools. These tools usually require a system specification input that is given in
the form of a task graph. In the first step, their task graph extraction tool generates
an abstract search tree (AST). The AST is traversed and searched for keywords.
These keywords represent variable dependence relationships, program flow and con-
trol flow. Program flow keywords track the end of statements and function calls.
Control flow keywords mark boundaries of loops or conditional statements. Then,
the tool generates an ordered list of events with a combination of keywords and
identifiers (functions/variables). In the next step, dependence graphs are deter-
mined based on this ordered list of events. Task graphs or dependence graphs are
directed acyclic graphs. Therefore, loop and conditionals are turned into a single
node where a loop or conditional start and end is captured by the corresponding key-
words. Moreover, the tool detects assignment events and variable use and thereby
determines dependence relationship between nodes. Furthermore, it generates new
nodes for functions, which are not included in loops or conditional statements. For
each function, the tool generates a separate dependence graph. The designer can
replace the function call nodes with the appropriate task graphs. Some profiling
data is required in order to complete the task graph. For this, the source code is
annotated, compiled and executed. The annotations capture information about the
size of data types and the execution time of each statement and function call. The
size of the data types is required to obtain edge weights. Here, pointer variables get
user defined size, since it is not possible to get the proper memory size. The exe-
cution time is obtained by the system call gettimeofday() This system call involves
a small amount of error, but the authors claim that this is an insignificant amount
of time (25us). Most designers work on worst-case execution times and the authors
suggest adding a safety margin of 20% on the extracted execution time (which they
claim should be the common practice for system designers). Finally, combining the
dependence graph and the edge weights leads to the final task graph. In the last
step, the tool generates a function call graph for interprocedural analysis, which is
used to determine dependencies among nodes containing functions.

The authors of [103] propose an automated task graph generation for matlab
code of parallel applications. The task graph generation consists of four steps. Step
one performs instruction analysis by splitting the instruction into tokens (primary
expressions). Afterwards, the execution time of each instruction is calculated with
the help of a prepared table, which contains the estimated execution time for matlab
code. Step two assigns each instruction to a task. A task is one of the following
items:

e 3 single instruction
e 3 function body
e omne iteration of a single for-loop

e 3 condition body

60 Chapter 4. Thread Model Extraction

For a nested for-loop the number of tasks is 2*N*M, where N is the number of
iterations for-loop 1 and M is the number of iterations for the nested loop 2. The
number of loop iterations has to be given in the code since no profiling is performed.
The third step of this task graph generation is the dependency analysis of the tasks
where edges are added for control flow and synchronization. In the fourth step,
nodes are combined with their predecessor when certain dependencies are given in
order to save communication costs between processors. The output of this tool is
annotations that specify tasks and a list of tasks with their edges. This strategy is
extracting the parallelism on its own.

Comparing [102, 103] to the Thread Model Extraction Tool presented in this
chapter, the Thread Model Extraction Tool is working on sequential C code. Further-
more, it works on a thread-based application including already parallelized and syn-
chronized C code, which is a different starting base. A different type of task/thread
graph is extracted, which includes also FIFO communications and more detailed
profiling information, e.g. memory objects (size, number of read/write accesses,
etc.). The dependence analysis is performed by the ICD-Compiler. Contrary to
[103], the Thread Model Eztraction Tool does not consider single instructions as
tasks but threads, which are defined as functions.

Two further interesting publications exist, which target task graph extraction
but in different research fields and with different goals. The authors of [104] ex-
tract a control and data flow graph for VHDL in VLSI design while the authors of
[105] extract a task graph during run time with the help of additional hardware for
dynamic task scheduling.

4.3 Problem Description

An example graph of a thread based parallelization is shown in Figure 4.1. Since
the underlying application model is a thread based model, the graph will be called
thread graph. The challenge is to generate a flat thread graph in an automated
way that is based on the given C-Code. Furthermore, various thread information
(e.g. execution costs) has to be extracted and annotated to the proper thread nodes.
Next to an application specification, the Thread Model FExtraction Tool has also to
extract the proper architecture specification which will be described in section 4.7.

The requirements for the input of the mapping tools for the application specifi-
cation are given as follows:

e 3 flat thread graph including control flow edges

e data dependence edges (FIFO) between threads and information about the
number of execution of each FIFO and the transferred data per execution

e profiling information about threads (e.g. execution costs and energy consump-
tion for the different processors in the system, number of execution of each
thread)

4.3. Problem Description 61

Main
Thread 0

create, createv lcreate
Main Thread 1 [Thread 2] [Thread 3]
Thread 0 {

‘,"'F]Foo
createl create v lcreate Thread 2
[Thread 1] [Thread 2] [Thread 3] FIFO1,.-"
L v k'/ v v
% i FIFO0 @@ [Thread 2] [Thread 3]
Thread 2 -
FIFO1,.-" A’/FIFOO
v g v v Thread 2
[Thread 1] [Thread 2] [Thread 3] FIFO1."
A4 i v v

join join join
Thread 1 [Thread 2] [Thread 3]

Main
Thread 0

join join join

Thread 0

Figure 4.1: Compact and detailed version of a thread model

e extraction of all memory objects including information about the name, num-
ber of read and writes accesses, size, etc.

The mapping tools can only perform a proper analysis, optimization and assignment
of the threads when all these demands are represented adequately in the thread
graph.

The thread graph is static and a directed, acyclic graph. Nodes represent an
operation that can be assigned to a processor and edges represent either commu-
nication between these operations or the control flow of these operations. Further-
more, the exact timing of FIFO operations must be represented adequately in the
thread graph. For example, a thread can execute a part of its code and then wait
for data that has to be communicated via a FIFO by another thread. The thread
that receives the data can only proceed its execution after the sender thread has
produced and send the data. This has to be captured in the thread graph in order
to guarantee a proper analysis of the execution and waiting time of a thread, which
is crucial for an appropriate mapping optimization.

The starting point for the thread graph extraction is the output of the paral-
lelization tools. The MPMH tool [106] from IMEC implements the parallelization
and synchronization with their Run Time Library (RTLIB). RTLIB functions ini-

62 Chapter 4. Thread Model Extraction

tiate parallel sections and the creation and join of threads. Furthermore, the syn-
chronization and data communication between threads is provided through FIFO
communication.

4.4 Tool Overview

The designer can decide if a compact thread graph or a more detailed version is ex-
tracted. A part of the extraction of the thread model is based on profiling. Profiling
is an important step in order to obtain essential execution and memory informa-
tion. The Thread Model Eztraction Tool consists of three steps. An overview of
these steps is given in Figure 4.2.

The first step is a pre-processing step, which extracts timing information for
each basic block in the code. It prepares the profiling analysis by adding profiling
statements for each basic block. In the second step, the code is executed while
all profiling statements are tracked. If FIFO communication is defined within the
source code, it is tracked and written out in a separate profiling file. In the last step,
a flat thread graph is generated based on the information given in the profiling file
and additionally by compiler analysis. Furthermore, the thread graph is annotated
with all required information, i.e. number of execution of threads/memory objects,
run-time/energy requirement for thread execution, etc. In a separate step, the
Thread Model Extraction Tool also processes all architecture information given in
the MACCv2 database for the underlying platform and generates a proper output
file which is also used as input for the mapping tools.

The Safe-Annotation Tool was developed internally by TU Eindhoven and per-
forms the (first) pre-processing step. The High-Level time-annotated Simulator
(HLSim), which was developed by IMEC, performs the (second) simulation step.
HLSim performs a fast simulation for parallel applications at source code level and
is also used in the MPMH tool described in section 3.2. It provides information
about FIFO communication and thread spawning and joining. For the integration
in the Thread Model Extraction Tool it was adapted in order to provide informa-
tion about the execution of basic blocks by tracking the execution of the profiling
statements that were included by the Safe-Annotation Tool. The last step extracts
a thread graph from the profiling information that is provided by the previous steps.
It additionally extracts further information on threads and memory objects. A more
detailed description of all steps is given in the next subsections.

4.5 Safe-Annotation and Simulation

In a first step, the Safe-Annotation Tool annotates each basic block in the C source
code with an estimate on the time needed to execute this basic block on the target
processor. It does this by analyzing the assembler statements that need to be
executed for all C statements inside the basic block. This whole process involves
a few steps. First, safe-annotate compiles the application source code to assembler

4.5. Safe-Annotation and Simulation 63

/1. Safe Annotation Step

e Extraction of assembler counts per basic
block

e Adding profiling statements to each basic
block

€ J

/2. Code Execution

t Generation of profiling and FIFO file

3. Task Graph Extraction

e Extraction of basic task graph
e Annotation of profiling information to the
nodes of the taskgraph
J

Figure 4.2: Tool flow overview for thread graph extraction

code by using a cross-compiler. Next, the tool analyzes the assembler code and it
relates the assembler statements to the C statements by using debug information.
In a third step, each assembler statement is analyzed and through a look-up table,
its worst-case execution time is determined.

Afterwards, the code is annotated with profiling statements for each basic block
including a basic block id for each basic block and its estimated worst-case execution
time. Furthermore, the functions for starting and joining of threads as well as every
FIFO read and write operations are also marked. With this information, it is possible
to track which basic block or which thread/FIFO operation is executed at which
time step.

In the second step, the HLSim Simulator by IMEC executes the code and gen-
erates two information files. One file contains general information about all existing
FIFOs, which contain the FIFO id, its source and destination thread id, the size
of one token (element) which is communicated, and the buffer size required for the

64 Chapter 4. Thread Model Extraction

communication. The other file contains information about the timing order of each
thread creation and join and the FIFO communication between all threads including
the communicated data (i.e. number of elements). This profiling file reflects the ex-
ecution order of the parallelized application code and is the basis for the extraction
of the control and data flow for the thread graph.

4.6 Thread Model Extraction

4.6.1 Structure of the Thread Model

Before describing the different steps in the thread graph extraction, the overall
thread graph structure has to be defined. The thread model exists of one or more
threads and defines one start node and one end node. In our application model
these nodes always belong to the main thread with the id 0. As explained in the
last section, a thread graph can consist of several parallel sections. A parallel section
starts with the creation of several threads. After the concurrent execution of these
threads, they are joined. Afterwards, a new parallel section could be started by
the main thread. An example of an application with two parallel sections is shown
in Figure 2.11 and Figure 4.5, respectively. A thread has to be mapped to one
processor statically and does not migrate to another processor during its execution.
For each thread, we define:

e itsid

the id of the parallel section it belongs to

a list of nodes that belong to the thread
e the number of executions

e list of memory objects of the thread.

The thread model also defines different types of edges: CFG, CREATE, JOIN
and FIFO A CFG edge represents a control flow edge. A FIFO edge is a special
edge type which contains additional information as the token size, maximum number
of tokens communicated in one iteration and the buffer size. Furthermore, the id
of the FIFO is also given. A CREATE edge is always set up between the main
thread and its newly created child thread. The JOIN edge is set up between the
last child thread node and the main thread node after a join. Both edges occur at
the beginning and end of a parallel section. An overview over the different edges
in a thread graph is also illustrated in Figure 4.1. For each edge, the number of
accesses and the source and target node is specified.

FIFO edges are special and influence the setup of the thread graph. As already
stated before, in a thread graph it is mandatory to illustrate the accurate point of
time of FIFO operations. When a thread is reading from a FIFO at a certain time, it
can only accomplish a FIFO read after something was written in the FIFO from the

4.6. Thread Model Extraction 65

source node. Only then, the thread can proceed with the execution of the subsequent
basic blocks. This influences the run-time of a thread and has to be captured very
carefully in the thread model. Thus, the thread has to be split into several nodes
for an accurate control-flow illustration and timing analysis. Following rules are
defined for the proper specification of FIFO operations: If a FIFO communication
is performed, a thread consists of several nodes, which define the exact point of
time of a FIFO operation as defined in the following. All nodes are executed in a
non-blocking way. A FIFO write always occurs at the end of a node and specifies
the last operation of this node. A FIFO read can only be specified at the beginning
of a node. Only when the FIFO read is executed, the node can proceed with its
execution. A FIFO edge has to be set up between the communicating thread nodes.
Figure 4.1 illustrates FIFO communication and the proper interconnection between
the communicating threads. This interconnection shows that node 2 of thread 2 can
only proceed its execution after node 1 of thread 3 has executed the FIFO write
operation. If several nodes exist, the nodes within a thread are marked with a node
type. The first node of a thread is marked as a start node while the last node of
a thread is marked as the join node. Otherwise, the node is marked as a standard
node.
For each node, we specify:

e node id

e id of the thread this child node belongs to

e list of memory objects that are accessed within the node
e list of basic blocks that are accessed within the node

® access count

e overall execution costs (assembler counts)

e lists for incoming and outgoing edges

e list of FIFOs and the performed access mode of the FIFOs (read/write)

For each basic block, we define
e 3 specification of its id
e the numbers of accesses
e the number of assembler counts for one execution

e the number of assembler counts for the overall execution within its node

All memory objects have certain characteristics, which are defined as following:

66 Chapter 4. Thread Model Extraction

e name and id

e type (instruction, data or shared)
e size and optionally basic size

e number of read and write calls

e access size (byte, halfword, word)
e mapping

If a memory object is an array, we also need to specify the basic size, which rep-
resents the size of one element in the array. This is important in order to determine
the proper access time or energy consumption for the access to this memory object.
Furthermore, the designer has the possibility to specify if a certain mapping should
be performed for a memory object. For example, the designer could specify to map
certain interrupt routines to a local scratchpad memory.

Dependent on the type of analysis required or the application complexity, the
designer can choose if the thread graph should be extracted as a compact model or as
a detailed model. An example of a compact and a detailed thread graph is shown in
Figure 4.1. For example, let us assume that a parallel section containing four threads
is executed within a loop. Then, for each loop iteration, the four threads are created,
executed and joined. The compact thread graph model generates the thread nodes
for one iteration and then just counts the number of thread executions. This means,
all instances of a thread are represented as one thread instance. This thread instance
comprises and counts all executed basic blocks containing conditionals (if/else) and
loops, which were executed in each iteration of a thread. The advantage of a compact
thread graph model is that it can be analyzed more quickly by the mapping tools.
It is useful for complex applications. For a detailed thread graph, the thread nodes
are unrolled, i.e. for each loop iteration containing a thread creation, a new thread
node is created in the thread graph. In addition, if FIFO communications are
repeated within a loop in one thread instance, their repetition is detected precisely
in the thread graph. As stated before, after each FIFO write a new thread node
is created, and each FIFO read is captured at the beginning of a new thread node.
This procedure allows a more precise timing and energy analysis, but it also requires
more optimization/analysis time within the mapping tools.

4.6.2 Model Extraction

Before extracting the thread model, some pre-processing analysis steps have to be
performed by the ICD-Compiler. First, the tool detects the total number of threads
existing for the application. Furthermore, it extracts the name of the thread func-
tions and the thread ids. In the next step, a call list is determined for each function,
i.e. it can be analyzed which function is called by other functions or by thread
functions. This information is important in combination with the analysis of the

4.6. Thread Model Extraction 67

profiling file, which was created through simulation. The profiling file reflects the ex-
ecution order of the parallelized application code. It shows the order of the executed
basic block as well as thread creation, thread joins and all FIFO operations.

However, context switches can occur on FIFO reads and writes as well as during
the creation and join of a thread. These context switches have the goal to avoid
deadlocks. The challenge of the extraction tool is to determine which executed basic
block belongs to which thread and thereby to provide the assignment of basic block
ids to the proper thread node. With the function call list, it can be determined which
functions (i.e. basic blocks) are called by which threads. Additionally, it is detected
which functions are never called and which functions are called by more than one
thread. In the latter case, shared functions are called by several threads. This means
that the executed basic blocks in the profiling file cannot be properly related to a
thread and therefore the assumptions about timing and energy consumption of a
thread would get imprecise. However, in one of the last steps in the MNEMEE tool
flow, the source code is optimized and prepared for the execution of the threads on
the different processors. In addition, the proper implementation with the RTLIB of
the MPMH tool is finalized. Based on the solution of the mapping tools, this RTLIB
step performs a copy of shared functions and assigns these copied functions to each
single thread, i.e. each thread owns its own functions and no more shared code exists
between threads. This is not valid for shared data. In order to maintain consistency
with the optimized source code at the end of the MNEMEE tool flow and for a more
precise timing analysis in the thread graph, a copy of the shared functions is also
internally generated within this part of the Thread Model Extraction Tool. This is
conducted with the help of the ICD-C compiler. One further pre-processing step
includes the detection of the start and end of loops, i.e. the extraction of basic block
ids, which represent the start and end point of loops. This information is required
in order to extract a proper compact thread model, where loops are not unrolled.
Additionally, all memory objects, including all information as size, accesses, etc.,
are extracted for the threads and all functions that are called by each thread. The
memory object information is extracted with the help of the internal MACCv2
tool Memory-Allocator which mainly uses ICD-Compiler analysis and architecture
information for this extraction.

The thread graph construction begins with the parsing of the profiling file line
by line. The profiling file contains keywords that represent start and join of threads,
FIFO operations and basic block executions. Each line is processed and interpreted.
The start node of the main thread is constructed first. In addition, all basic block
executions are indexed and assigned to this thread node. When the main thread
creates new child threads, a new thread node for each child thread is created. A
CREATE edge connects the main thread with its child thread. The tool also per-
forms all connections for the join of threads. According to the rules defined before,
FIFO operations are captured and new thread nodes are created after FIFO writes
and for FIFO reads. The FIFO edges are also set up between the nodes.

As already mentioned before, context switches occur after a start and join of a
thread or after FIFO operations. After each context switch, the tool has to store

68 Chapter 4. Thread Model Extraction

the last executed basic block of a thread or the last executed FIFO operation.
Afterwards, it has to determine which thread is executed next and continue the
construction of the thread graph. Throughout the construction of the thread graph,
all information that was extracted by the pre-processing step is used. For example,
the function call list is used in order to detect to which function, i.e. thread, an
executed basic block belongs to. The tool has to identify which thread continues it
execution after a context switch. Furthermore, all memory objects are assigned to
the proper threads in the thread model. The tool also detects the number of parallel
sections as well as all access counts on edges and the maximum number of elements
communicated in FIFO operations.

For the construction of a compact thread graph, the tool has to detect loops.
Thus, it has to detect if certain thread nodes were already created, if FIFO op-
erations/edges already exist and are repeated or if they occur for the first time.
Based on this information, new nodes have to be created or they are just repeated,
i.e. the number of executions is increased. Every execution of single basic blocks,
threads and FIFO communication is stored. The total execution costs of one node
iteration are dependent on the designers choice. The designer chooses if the average
case or worst-case execution costs, i.e. assembler counts, should be stored in the
model. The worst-case assembler counts are based on profiling information and not
on static analysis. The tool stores the total assembler count for each node itera-
tion. The worst-case execution costs per node iteration are set to the maximum
execution costs detected over-all node iterations. The average execution costs are
given by determining the average costs over all node iterations. A detailed thread
graph contains the proper execution’s costs per node, since all loops are unrolled.
Thus, it includes the exact execution cost for each node iteration or FIFO edge. For
all FIFO edges, the maximum number of elements that were communicated in one
iteration is determined. If the designer chose the worst-case execution costs, this
value is stored as worst case over all iterations and multiplied with the token size
for each iteration. The average case execution costs are extracted by the average
elements per iteration multiplied with the token size.

Furthermore, all edges get initial tokens, which is an important requirement, for
the scenario based mapping tool described in Section 3.2.7.1. The buffer size for the
FIFO communication is always set to the worst case, i.e. the maximum number of
elements is assumed for each iteration. This number is multiplied with the token
size and the access count. This is crucial in order to allocate enough memory space.
The buffer size is generated for each FIFO operation and can be stored as a memory
object.

Based on the assembler counts and the information from the architecture speci-
fication, i.e. processor frequency and energy consumption in active or idle cycle, the
run-time and energy consumption of each thread node can be calculated. However,
this step will be performed in the mapping tools. It is also possible to generate a
graphic illustration of the thread model by using the graphic editor tool YED [107].
YED requires a graphml file for the illustration of nodes and edges. This file is
generated in the last step of the Thread Model Extraction Tool.

4.7. Architecture Information 69

4.6.3 Constraints

The Thread Model Extraction Tool extracts a static thread graph, which models
execution for specific input. Potential data dependencies that do not occur at run-
time are not covered.

Furthermore, this tool is tailored towards the MNEMEE tool flow and can be
used only inside this tool flow. A tool of this class always has to be tailored towards
some APT for parallelization and synchronization (e.g. Open-MP, MPI, MPMH). In
this case, it is tailored towards the API of the MPMH tool and its RTLIB library.

The parallelization tool in the MNEMEE tool flow, presented in Section 3.2,
is always generating a maximum number of threads, which are smaller or equal
to the number of available processors in the architecture. The goal is to have a
balanced load on all processors. Therefore, certain scenarios will not occur in the
thread graph, i.e. a child thread will not create another child thread. Only the main
thread can create child threads and the creation of child threads will not depend
on if/else conditions. If this case would not be given, the Thread Model Extraction
Tool would have to manage also thread creations within if/else clauses and thread
creations by child threads. The tool should be able to handle these scenarios, but the
timing model would not be that precise anymore for the compact thread graph. For
example, for the case where the creation of a new child thread would be executed in
the ¢f clause. Let us assume that during the program execution one iteration would
execute the if clause and the next iteration executes the else clause. For the worst-
case execution costs, the tool would assume that both clauses are executed in each
iteration for the compact model. This could maybe lead to an over-estimation for
the timing model and for the resources in the architecture. Nevertheless, it would
still represent a model that can be extracted as a thread graph.

For the communication of the FIFO operations, memory buffer is required. This
buffer has to be available on a memory for the sender and receiver of the FIFO
operation and the buffer size has to be known in advance. In the MNEMEE tool
flow, these buffers are mapped to the shared memory of the architecture. The
maximum memory requirement is determined by the tool. But, this buffer size does
not guarantee that the execution will be deadlock free. For this, further analysis of
the application would be required by the designer.

4.7 Architecture Information

Next to an application specification, also an architecture specification is required
by the mapping tools in order to match the application’s requirements with the
architecture capabilities or resources, respectively. In Section 5 and 6, two map-
ping optimization strategies are described, which perform memory-aware mapping
optimization. Both strategies perform a combined optimization for the mapping of
threads to processors and memory objects to memories. Therefore, the architecture
specification has to contain information about the resources of the architecture, i.e.
processors, memories and their contribution to energy consumption and run-time.

70 Chapter 4. Thread Model Extraction

The processor has to be specified by an id and the frequency A detailed memory
specification which models a multilevel memory hierarchy and which also contains
interconnect characteristics such as the access time or energy consumption for one
access with different bandwidth is also required.

Each memory is defined by id, size, type, and access type. The type, for instance,
describes if the memory is a scratchpad memory, shared memory, or private memory.
Access type defines the type of access, which is possible on the memory, i.e. data
only, instruction only or unified access.

The interconnections between processors and memories have to be specified,
too. They specify which processor has access to which memory and the cost for an
access to a specific memory in terms of run-time and energy. These performance
characteristics differ for each processor and memory type. They are important in
order to determine the overall run-time and energy costs.

This specification is set up for each processor that has access to a specific mem-
ory. Here, first CPU id is specified together with access run-times and energy
information. A distinction is made between read and write accesses, and between
different access width such as byte, half-word, and word, because run-time and energy
can vary for different access bandwidth.

All architecture information is extracted from the architecture database within
the MACCv2 [14] framework described in Section 3.2.1. In this framework, the
designer can specify and choose among different architectures. The Thread Model
Extraction Tool acts as an interface to this database, processing all required informa-
tion and automatically generating the architecture specification file for the mapping
tools.

4.8 Evaluation

This section shows the extracted thread graphs for different benchmarks for the
detailed and compact thread graph models.

The most benchmarks used in this evaluation are taken from the UTDSP suite
[108]. Also real-life benchmarks are used for the evaluations in this thesis: MPEG/,
JPEG2000, H26/ and Boundary Value Problem. The UTDSP suite consists of two
classes of benchmarks: kernels and applications. Kernels are important calculations
in DSP applications as filters, fast Fourier transformation and matrix multiply. Here,
FIR, IIR, LATNRM and MULT represent kernels. DSP applications are programs,
which are usually larger than kernels. The applications from the UTDSP benchmark
suite are ADPCM, Compress, Edge Detect and Spectral. Table 4.1 illustrates and
describes all benchmarks used for the evaluations of this thesis [109].

The code size of the benchmarks ranges from 6.5 kB up to 3 MB with an av-
erage code size of 50 kB per benchmark. In a first step, the parallelization tools
(described in Section 3.2.1) of the MNEMEE tool flow are applied in order to obtain
a parallelized and synchronized application code. Different numbers of threads are
extracted for each benchmark, which are shown in Table 4.2. Here, compact and

4.8. Evaluation 71

Benchmark Description

ADPCM Adaptive differential pulse-coded modulation speech encoder
Boundary Value | Differential Equations

Compress Image compression with discrete cosine transforms

Edge Detect Edge Detection with 2D convolution and sobel operators
FIR Finite Impulse Respounse filter

1264 Lblock 1264 decoder
1264 Mblock H264 decoder with macroblock coding

IIR Infinite Response Filter

Jpeg2000 JPEG encoder

LATNRM Normalized Lattice Filter

Mpegd MPEG4 encoder

Mult Matrix Multiplication

Spectral Spectral analysis with period gram averaging

Table 4.1: Benchmarks and their description

detailed thread graph models are extracted.

Usually, the number of threads for a parallel section is automatically set to the
number of processors by the parallelization tools. This can result in homogeneous
threads. For a better evaluation of the mapping tools described in the next chapters,
the parallelism of some of the benchmarks were manually extended in order to create
more threads than available processors in the architecture. By this, an increase in
complexity is achieved. Furthermore, it creates more heterogeneity between the
individual threads. For the benchmarks Fdge Detect and Jpeg2000, parallel versions
containing 6 (i.e. labeled as T6) up to 16 threads (i.e. labeled as T16) per parallel
section are added.

In the following subsections, the evaluation results are shown for the compact
model and for the detailed model. The number of threads for the benchmarks
consists of the main thread and the number of threads in each parallel section.

4.8.1 Compact Model

As already described before, the compact model is suitable for complex benchmarks,
which contain many repetitions (i.e. thread creation or FIFOs within loops). The
execution costs per node and the FIFO operations are summarized. Based on the
choice of the designer, it can represent the average or worst-case costs. These costs
do not influence the extraction of the number of threads or parallel sections. The
compact model can reduce the complexity of the thread graph and thus the design
time, which is mainly spent in the optimization step of the mapping tool.

The results for the number of threads and parallel sections of the extracted
thread graph are shown in Table 4.2. Figure 4.4 shows the extracted thread graph
for the Edge Detect T8 benchmark, illustrated with the graphic editor tool YED

72 Chapter 4. Thread Model Extraction

Benchmark Nr. of Threads | Nr. of Parallel Sections

ADPCM 4
Boundary Value

—

Compress
Edge Detect
Edge Detect
Edge Detect
Edge Detect
Edge Detect
FIR

H264 Lblock
H264 Mblock
IR
Jpeg2000
Jpeg2000 (T6)
Jpeg2000 (T8)
Jpeg2000 (T10) 1
LATNRM
Mpeg4
Mult
Spectral

T6)
T8)
T12) 13
T16)

O ~I| O] O] Ot

|||
—_
~1

O =IOt O ©| 00| O

—_

Gl g e e e e I e I B N B I N ey e e e e A e S

OO =~ W

Table 4.2: Parallelization of Benchmarks for the compact model

[107]. The extracted number of threads and parallel sections on the thread graphs
match the number of threads and parallel sections in the source code, which were
extracted by the parallelization tools in the MNEMEE tool flow. In addition, all
FIFO operations are captured properly at the right point of time. The tool extracted
additional thread nodes for the precise representation of the point of time where
FIFO write and read operations are performed.

The analysis of the benchmarks show that the Spectral benchmark has the most
number of threads (25) in this setup with six parallel sections. Although other bench-
marks have only one parallel section, most of them still contain complex threads in
terms of computation workload, i.e. Mpeg4. The complexity of some benchmarks
can be seen in the thread graphs of the detailed model. Furthermore, the required
time for the thread graph extraction for each benchmark is illustrated in the next
Section in Figure 4.3.

4.8.2 Detailed Model

The detailed model is suitable for less complex benchmarks or for a more detailed
representation of the workload of the thread graph. Here, all loops are unrolled.
This can lead to a repetition of the creation of threads and FIFO operations within

4.8. Evaluation 73

Benchmark Nr. of Threads | Nr. Parallel Sections | Total Nr. Nodes
ADPCM 4 1 5
Boundary Value 5) 1 6
Compress 5) 1 6
Edge Detect) 3 16
Edge Detect (T6) 7 3 22
Edge Detect (T8) 9 3 28
Edge Detect (T12) 13 3 40
Edge Detect (T16) 17 3 52
FIR 5 1 6
H264 Lblock 8 2 15
H264 Mblock 9 2 29
IR 5 128 641
Jpeg2000 5 1 609
Jpeg2000 (T6) 7 1 613
Jpeg2000 (T8) 9 1 617
Jpeg2000 (T10) 11 1 623
LAT 3 1 4
Mpeg4d 4 20 1577
Mult 5 20 401
Spectral 9 2 71

Table 4.3: Parallelization of Benchmarks for the detailed model

threads. The thread graph can grow and get very complex. On the other side,
all nodes and FIFO edges contain their individual execution costs. This means
that e.g. different execution paths, which can occur due to conditions (if/else-
clauses) are captured properly in the execution costs. This can lead to a more precise
optimization and resource allocation in the subsequent mapping tools. On the other
side, it can increase design time and complexity for more complex benchmarks.

While Table 4.2 showed the total number of threads in the thread graph, Ta-
ble 4.3 shows additionally the total number of nodes in the thread graph. For
example, the benchmark FEdge Detect has five threads: one main thread and four
threads which are executed in parallel. In the detailed mode, the thread creation
is enclosed by a loop, which is executed three times. The threads that are created
have the same ID and code, but the execution costs can differ for each iteration.

The JPEG2000 benchmarks have one parallel section, but over 600 nodes. Here,
several FIFO operations are performed within loops, which increase the complexity
of the thread graphs. The MPEG/ benchmark contains loops, which repeat the
thread creation as well as the FIFO operations. This leads to 1577 nodes. The
Spectral benchmark contains FIFO operations in loops, which increase the number
of nodes. A compact thread graph can reduce the optimization complexity for such

74 Chapter 4. Thread Model Extraction

1.000
B Compact
Detailed
100 -+
) ;
©
c
[=]
o
a
£
[}
£
[=
10 +
1A
¢ & & P AT LT ITELES NS S T O A S L
FTESEEFEFTEST ST ELESSETEELEE ¢
Q &~ NN N Q O & & NN o @
PRIFIITETE &8 88T S g5 &d
T C %L ELEE (- S« YNV é@@@
ks b°°0w0 WA Q L N
§ « e 89 T g&e&
§ £ R
FEES
Figure 4.3: Required time for the thread graph extraction
benchmarks.

Some benchmarks have no difference to the compact model. Still, these bench-
marks can contain loops in their threads and also complex operations, but no FIFO
operations or thread creations in loops. In general, the number of threads and all
FIFO operations also match the extracted number of threads and parallel sections
of the parallelization tools in the MNEMEE tool flow. By the extraction of the
compact and detailed model, the designer can have an overview over the complex-
ity of the thread graphs and choose which model suits better for the demands of
the system. Figure 4.5, 4.7 and 4.6 show extracted thread graphs for compact and
detailed versions.

Figure 4.3 illustrates the required time for the thread graph extraction for each
benchmark for the compact and for the detailed model. The times do not differ
very much for both models. The Thread Model Extraction Tool traverses the same
profiling file for both models. It decides during this traversation if a node has to
be created or not dependent if the model is compact or detailed. The time for the
traversation of the profiling file seems to be constant for both models.

4.8.3 Extracted Thread Models

This section illustrates extracted thread graphs for different benchmarks.

4.8. Evaluation 75

Create
Create

Create

Create Create

Join

Join

Figure 4.4: Thread Graph for the Edge Detect T8 benchmark with 8 threads in a
parallel section (compact)

Figure 4.5: Thread Graph for the H264 Lblock benchmark containing FIFOs (com-
pact and detailed version)

76 Chapter 4. Thread Model Extraction

Figure 4.6: Thread Graph for the Spectral benchmark containing FIFOs (detailed
version)

4.8. Evaluation 77

Figure 4.7: Thread Graph for the H264 Mblock benchmark containing FIFOs (com-
pact and detailed version)

CHAPTER 5
Memory-Aware Single Objective
Mapping Optimization

Contents
5.1 Introduction0000iiiie... 79
5.2 Tool Overview i i i i i ittt ueeeeeenen 81
5.3 ILP Optimizationt nnee.n 82
5.3.1 Optimization for Runtime 82
5.3.2 Optimization for Energy 89
5.3.3 Restrictions of the ILP model 91
54 Evaluationttt eeeenn. 92
5.4.1 Simulation Environment L. 92
5.4.2 Experimental Setup oL 94
5.4.3 Experimental results o oo 95
5.4.4 Conclusions L o 101

5.1 Introduction

Depending on the domain of the embedded system, a single optimization objective
or several optimization objectives can be required for the underlying system. For ex-
ample, let us assume a mobile and battery-driven embedded system, which contains
a sensor and a transmitter that is sending the sensor values at certain time periods to
a main station. Such mobile systems are usually optimized to save energy. However,
an electricity-powered high-end high-definition (HD) Blu-ray DVD-Player is usually
optimized for higher performance and has no need for the optimization of energy
consumption. Some embedded systems require only a single optimization objective
while others require more than one optimization objective. However, these opti-
mizations have to be performed for state-of-the-art embedded system architectures,
which are usually given as homogeneous or heterogeneous multiprocessor systems.
All constraint system resources should be optimally utilized in order to obtain the
best possible optimization solution for the underlying system.

In the MNEMEE tool flow, two tools are available for memory-aware mapping
optimizations. One tool optimizes for a single objective. The second tool performs

80 Chapter 5. Single Objective Mapping Optimization

multiobjective optimization and is described in Chapter 6. The embedded system
designer is able to choose between these two optimization tools dependent on the
domain of the underlying embedded system. In this chapter, the focus lies on em-
bedded systems optimizations for a single objective, energy or runtime optimization
respectively. The optimizations are based on ILP (Integer Linear Programming)
which can provide optimal solutions for the underlying optimization problem. Inte-
ger Programming is known to be NP-hard.

The underlying optimization problem is the memory-aware mapping of paral-
lelized threads to the different processors in the system combined with the mapping
of memory objects of the threads to the available memories in the memory hier-
archy. The reduction of energy consumption or runtime is gained by the proper
utilization of the systems resources, i.e. a suitable mapping to the processors and
memories. Many parameters have to be considered for this optimization. On the
application and architecture side, it is important to manage all requirements as
threads and their runtime on the different system processors as well as their energy
consumption for idle and active cycles. Furthermore, all memory objects have to
be known including characteristic information as their access runtime and energy
consumption to the different memories in the system. In addition, it is important to
detect if a memory object is a data or instruction object, how many read and write
accesses are performed on the memory object and the size of the memory object.
This information is required in order to determine the proper runtime and energy
consumption for the access to the memory object on the different memories. In or-
der to determine the proper energy consumption and runtime for FIFO operations,
all information about the communicated data (size, number of accesses, bus access)
have to be known. All these information contribute to a detailed representation of
the system architecture and an accurate mapping optimization.

A more detailed description of the complexity was already given in Section 2.3.

Related Work

A detailed overview of all related work is given in Section 2.4.6. To sum up, the ap-
proach presented by Suhendra et. al. [91] is most similar to the presented approach
in this section. Suhendra suggested an ILP approach for t mapping, pipelined
scheduling and scratchpad memory partitioning for homogeneous MPSoC systems.
Scratchpad memory partitioning is an approach where scratchpad memories are
shared between all processors. Contrary to Suhendra’s approach, the architecture
considered in this thesis is structured in a different way. Here, homogeneous and
heterogeneous architectures can be considered containing memory hierarchies with
memories of different sizes, types and with different energy and runtime charac-
teristics at different levels. The processors have exclusive access to their private
memories, i.e. the scratchpad memories are not shared among the processors. In
addition, pipelined scheduling is not considered in this approach. However, Suhen-
dra’s approach considers only data allocation while the presented memory-aware
ILP approach considers instruction and data memory objects.

5.2. Tool Overview 81

5.2 Tool Overview

In the MNEMEE tool flow, the designer chooses between the scenario-aware map-
ping and memory-aware mapping. The ILP Memory-Aware Mapping Tool is one of
the memory-aware mapping tools. The precedent tools are the parallelization and
synchronization tools and the Thread Model Eztraction Tool. As described in Chap-
ter 4, the Thread Model Extraction Tool provides an annotated flat thread graph
as input for the mapping tools. At the beginning, the flat thread graph and all its
annotations are processed. The underlying application and architecture models are
described in Section 2.3. The ILP equations are set up based on this information
(architecture and application model). The ILP Memory-Aware Mapping Tool uses
an ILP-solver in order to find an optimal solution for the given ILP equations. If a
solution is not possible due to restricted resources, e.g. the capacity of the memories
cannot hold all memory objects of the application, the tool stops with an error mes-
sage. The output of the tool is a mapping of threads to processors and the mapping
of memory objects to memories. This information is stored within the MACCv2
framework and provided to the subsequent tools, which implement and prepare this
mapping for the underlying system. If the DMMR Tool (described in Section 3.2.5)
is enabled, the allocation of dynamic memory objects to the scratchpad memories
are also provided to the mapping tools. This resulting memory mapping can be
considered and added to the mapping solution of the successive mapping tools. The
ILP Memory-Aware Mapping Tool can be adapted with some further options. It
is possible to set a number of threads for the ILP solver when calculating the ILP
based mapping. Please note that these threads are not referring to the thread graph,
but to the ILP optimization calculation. For example, by setting the value '0’, the
number of threads is set to the number of available CPUs. This can speed up the
calculations of the ILP-solver. Furthermore, the ILP Memory-Aware Mapping Tool
can be adapted to disable the consideration of all memories, or disable the consider-
ation of scratchpad memories only. It is also possible to consider all memories and
memory mapping during the mapping optimization, but not provide the memory
mapping solution as output. Only the thread to processor mapping will be provided
in this case. These options can be used for different scenarios:

e for the comparison of different optimization possibilities with or without mem-
ories

e if certain memories are already reserved by the designer for other purposes
(for example, the scratchpad memories)

e if the designer chooses a memory mapping of data only by the Scratchpad
Memory Optimization Tool in the MNEMEE tool flow

For the last point, the ILP Memory-Aware Mapping Tool can consider the mem-
ories during its optimizations, but it does not perform a memory mapping, only a
thread to processor mapping. However, the threads are mapped to those processors,

82 Chapter 5. Single Objective Mapping Optimization

which provide the most optimal utilization possibilities for the memory objects of
the threads. For example, if a thread has large and data-intensive memory objects,
a processor could be chosen, which has access to larger data memories or to those
memories which suit the demands of the memory objects of the thread as well as
possible.

5.3 1ILP Optimization

This section presents the integer linear programming (ILP) equations for the ap-
plication to architecture mapping with integrated memory-awareness. Depending
on the requirements of the embedded system, the designer chooses the proper ILP
either for the minimization of runtime or energy consumption.

5.3.1 Optimization for Runtime

This section presents the ILP formulation for the optimization of the overall runtime.

First, the runtime of all threads has to be considered and evaluated. The appli-
cation starts with the first node of the main thread. The main thread is composed
of a start node, optionally one or several intermediate nodes and one exit node (as
depicted in Figure 2.11). Between the nodes of the main thread, the child threads
are executed in parallel. However, the nodes of the main thread will be mapped
to one processor since they belong to one thread. Otherwise, i.e. when mapping
the nodes to different processors, additional execution and memory copy cost occur.
Depending on the application, some threads also consist of more than one node if
communication via FIFOs is specified (as illustrated in Figure 2.12). An application
has k threads (T'hread; to Thready). Each thread consists of j nodes, where j has
a value of 1 if no FIFO communication is performed.

Following notations are used for the definition of the equations concerning the
threads:

e Thread; represents a thread with index i, where ¢ =1, .., k,

Thread; ; defines a node of thread Thread;, where j =1,..,n,

StartThrNode; ; represents the start time of thread node T'hread; j,

EndT'hrNode; ; defines the completion time of thread node T'hread; ;,

o ExecT'imeNode; j specifies the execution time of thread node T'hread; ;.

The objective function minimizes the completion time of the last thread, which
is the exit node of the application:

min (EndThrNodegit) (5.1)

The completion time EndT'hrNode; ; of thread ¢ and its node j is given by its start

5.3. ILP Optimization 83

time StartThrNode; ;, added to its overall execution time ExecT'imeN ode; ;:

EndThrNode; ; > StartThrNode; j + ExecTime; (5.2)

The value of StartThrNode; ; is dependent on the predecessors of the thread node
Thread; ; and will be explained later in this section.
In the following, additional constraints for the ILP are defined.

5.3.1.1 Overall runtime of a thread node

The runtime of a thread and its thread nodes consist of several parameters. One
parameter is the runtime on the processor, another parameter is the runtime for
memory access. For the determination of the runtime for memory access, more pa-
rameters have to be known: It should be distinguished if a read or write access is
performed as well as the access width. Furthermore, the access times for the under-
lying buses that are accessed are also important for the proper runtime calculation-
All parameters are given as input through the Thread Model Extraction Tool. The
following equations describe the calculation of the runtime for all thread nodes.
Following notations are used for the definition of the equations in this section:

e the set of threads is defined by T'=1, ..., k,

e the set of processors is defined by P =1,..,p,
e the set of memories with M =1,....m

e MOQO; is the set of memory objects for thread i,

e MO, ; is a subset of MO; and contains all memory objects that are accessed
by thread node T'hread; ;,

e mObj; ; is a memory object of thread node T'hread; ; and an element of the
set MO;; and MO;, respectively,

e Procl'ime; ; represents the execution time of thread node Thread; ; on the
processor it is mapped to and primarily used as a supporting variable,

o Execl'imeProc; jproc specifies the runtime of thread node 7,j on a specific
Processor proc,

o AccTime_memories; ; defines the required access time to the memories which
is dependent on the memory mapping of the memory objects of thread node
Thread; ;; it includes the access time to the underlying buses,

® X proc 1s a binary decision variable and has the value 1 if thread 7 is mapped
to processor proc, otherwise it has value 0

84 Chapter 5. Single Objective Mapping Optimization

o ProcVarMemprocmem,mObj; ; 18 & binary decision variable which has the value
1 if the memory object mObj; ; is mapped to memory mem which is accessible
by processor proc, otherwise its value is 0,

o NrReadAccyop;; ; defines the number of read accesses to the memory object
mObj; ; within thread node T'hread; ;,

o NrWriteAccyobj; ; defines the number of write accesses to the memory object
mOby; ; within thread node Thread, ;,

o Accl'imeReady,,ocmem,mObj; ; represents the time required for a read access to
memory object mObj; ; on a memory mem which is accessible by processor
proc,

o AccTimeWriteproc,mem,mobj; ; represents the time required for a write access
to memory object mObj; ; on memory mem which is accessible by processor
proc.

The overall runtime of a thread node is composed by the execution time of the
thread node on a processor and the time required for memory accesses.

EzxecTime; ; = ProcTime; j + Accl'ime_memories; (5.3)

The execution time on a processor Proclime;; as well as the access time
AccT'ime_memories; j to the memories depend on the mapping decision of this
optimization. Their definition will be presented next.

The runtime of thread node (4, j) on a processor in the system is defined by:

P
ProcTime; ; = Z (Xi proc * ExecTimeProc; j proc) (5.4)

proc=1

This equation adds the proper execution time of thread ¢ on processor proc. The
binary decision variable X; ,.,. indicates if thread 7 is mapped onto processor proc.

It also has to be specified that a thread ¢ and all its nodes can be mapped only
to one processor in the architecture. Therefore, following constraint is defined for
each thread Thread;:

P
Z Xi,proc =1 (55)

proc=1

Next, the overall access time to memories AccT'ime_memories; ; caused by a thread
node Thread; ; is composed of read and write accesses of the memory object onto

5.3. ILP Optimization 85

the mapped memory. It is defined by:

AccT'ime_memories; j =
MO,'A’J' M
E (E ProcVar Memyrocmem,mObj;
mObj; ;=1 mem=1

* (NrReadAccymouj; ; * AccTime Readproc mem,mObj; ;
+ NrWrite Accpmoy;, ; * AccTimeW riteproc mem,mobj; ;) (5.6)

This equation iterates over all memory objects mOby; ; of thread T'hread; and
sums up the time that is required for the access to each memory object. The
access time depends on the memory to which mOby; ; is mapped, which is indicated
by the binary decision variable ProcVarMemp;oc mem,monj; ;- The overall access
time spent on a memory mem is composed of read and write accesses of memory
object mOby; j to this memory. The number of read accesses NrReadAccmonj, ; 18
multiplied with the access time AccT imeReadme,mem’mObm required for one read
access. The same is defined for the write accesses NrWrite Accinopy; ; to the memory
object mOby; ; on memory mem. As mentioned before, read and write accesses can
cause different access times, which also depends on size and access width of the
memory object. The ILP optimization generates the proper read and write access
values for the variables AccTimeW rite and Accl'imeRead dependent on the access
width and size of the memory objects. Furthermore, only valid combinations of
ProcV ar Mempoc,mem,mobj; ; are generated within the ILP optimization (i.e. up to
M x O x MO; variables). This means, only combinations can occur, which represent
the valid access possibilities of the underlying architecture: i.e. only memories mem
which are accessible by a certain processor proc and which are capable of holding
the appropriate memory objects (e.g. a data memory object cannot be mapped to
an instruction memory). Please note that this access time also includes the time for
the access to the underlying buses. As mentioned in Section 4.7, this information
is provided by the architecture database within the MACCv2 framework (described
in Section 3.2.1).

5.3.1.2 Memory constraints

The next constraint ensures that the sizes of memories are not exceeded by the
memory objects that are mapped to the memories.
Following notations are used:

® sizemOj;; represents the size of a memory object mOby; ;,
® Sizemem specifies the capacity of a memory mem.
The next equation is defined for each memory mem:

T MO
Sizemem > E Z (ProcV ar Mempyroc mem,moObj; ; * S12€mobj; ;) (5.7)
i=1 mObj; j=1

86 Chapter 5. Single Objective Mapping Optimization

The right hand side of this equation iterates over all threads Thread; and all their
memory objects mObyj; ; and sums up the size of all memory objects mapped to
memory mem. This equation guarantees that the size of all memory objects does
not exceed the size of the memory.

In a memory hierarchy, processors have exclusive access to specific memories
(i.e. on-chip and private main memories). Therefore, constraints have to ensure
that when a thread Thread; is mapped to a processor proc, the memory objects
mOby; ; of thread Thread; can be only mapped to a memory mem that can be
accessed by processor proc.

This is defined in the next equation:

M
Xi,prac = Z ProcvarMemproc,mem,mObjiyj (58)

mem=1

This equation also ensures that a memory object mOby; ; can be mapped only to
one memory mem in the system. In detail, if thread T'hread; is mapped to processor
proc (i.e. X proc has value 1), the memory object mOby; ; can only be mapped to
one memory mem that is accessible by processor proc (i.e. through the decision
variable ProcV arMempoc mem,mObj; ;)-

5.3.1.3 Dependencies in the thread graph

Here, the control flow and FIFO related dependencies between thread nodes are de-
fined. These equations are mandatory in order to guarantee an accurate calculation
of the starting and end time of thread nodes.

Following notations are used:

e pred; ; defines a predecessor node of thread node T'hread; ;,

o FIFO; specfies the required time for a FIFO communication between the
thread nodes T'hread; ; and Thready,.

Dependencies in the thread graph define at which point of time the execution of
a thread node can be started on a processor. A thread node can start its execution
when all predecessors have finished their execution. This is defined by following
equation:

Vpred; j :
if(i=nh):
StartThrNode; ; > EndThrNodep; + 1
if(i#h):
StartThrNode;; > EndThrNodep; + 1+ FIFO;, (5.9)

5.3. ILP Optimization 87

For all predecessors pred; ; of thread node T'hread; ; the following is defined:
the start time StartThrNode; ; is greater than the finishing time of the predecessor
node EndI'hrNodey,; of its predecessor node [. Here, the predecessor node belongs
to the same thread as the successor node and represents a control flow edge, i.e. for
the case if ¢ = h. For the case ¢ # h, i.e. the predecessor belongs to a different
thread node, the time required for communication over FIFOs between both threads
nodes is added. Here, the number 1 represents one time unit. FIFO communication
is optional, i.e. the equations are only set if FIFO communication is defined within
the application. Please note, that this equation is not valid for child thread nodes,
which are joined to the main thread.

5.3.1.4 Time for FIFO Communication

The time for FIFO communication depends on many parameters, as access and size
of a data element that is communicated over FIFO. Furthermore, the bus access
time has to be considered as well.

Thus, following notations are used in this subsection:

o NrElements;) represents the number of data elements communicated within
the FIFO FIFO; ,

o SizeElement;) specifies the size of a data element that is communicated
within the FIFO FIFO;y,

o NrAccesses;), defines the number of accesses to the data element communi-
cated within the FIFO FIFO;,

e BusSpeed represents the speed of the underlying bus that is used for the FIFO
communication of FIFO;

Please note that one FIFO is defined for the communication of a token (i.e. all
variables that needs to be communicated are combined into a token). As already
described, if FIFO communication is defined for a certain application thread graph,
a thread consists of more than one node. One of these nodes can have an incoming
FIFO edge (FIFO read). The predecessor node, belonging to the incoming FIFO
edge, must first complete its execution before the target node can proceed with its
execution. This was already defined in Equation 5.9.

The following equation defines the time required for a FIFO communication
FIFO;, between the thread nodes Thread; ; and Thready,:

FIFO;, =
NrElements; j, x SizeElement; ;, x Nr Accesses; ,
BusSpeed

(5.10)

The term FIFO;) is specified by the data elements that are communicated via
FIFO. Here, the number of data elements NrElements is multiplied by the size
SizeElement; ;, and the number of accesses NrAccesses;y to the elements and
divided by the speed of the underlying bus.

88 Chapter 5. Single Objective Mapping Optimization

5.3.1.5 Processor assignment

The next equations ensure that a processor is executing only one thread at a time.
First, it has to be determined if two threads are mapped onto the same processor.
Following notations are used in this section:

e L, represents a decision variable which has value 0 when thread T'hread; and
thread T'hready, are mapped onto the same processor, and else value 1, if they
are mapped onto different processors,

e B, specifies a decision variable that is set to 1 if thread node Thread; ;
and thread node T'hready; are mapped onto the same processor and thread
Thready, is executed after thread Thread;, else it is set to 0.

The next equation is taken from [91] and was adapted to our thread model.
Here, only different threads are considered, i.e. h # i.

Vprocy : 1..P, Lip <2 — Xiproc, — Xnproc, (5:11)
Vprocy : 1...P,Vprocy : 1...P,proc, # procy, Lin > Xiproc, + Xnproc, — 1 (5.12)

Both equations represent the correct value for L;; when Thread; and Thready,
are mapped onto the same or on different processors. The decision variable L;
is set to 0 or 1 by the values of the decision variables Xp, proc, and X proc, or
Xiprocy> T€spectively. Equation 5.11 constrains L;j to the value 0 when Thread;
and T'hread), are mapped to the same processor proc,. Additionally, equation 5.12
constrains L; j, to the value 1 when Thread; and Thread), are mapped to different
processor proc, and procg. The variables L;) are required for all combinations of
threads in the parallel section.

While the latter equations work on thread level basis, the next equation adds a
constraint at the level of thread nodes. It adds the constraint that two thread nodes
are not executed at the same time on one processor. Again, only different threads
are congidered, i.e. ¢ # h which belong to the same parallel section. Thread node
Thread; ; belongs to thread T'hread; and thread node Thready,; belongs to thread
Thready,.

Bin+ Bhi =1
Bip+ Bhri—Lip =1
StartThrNodey; > EndThrNode; j — oo * By ; + 1
StartThrNode; ; > EndThrNodep; — oo * B;p + 1

Equation 5.13 allows only one variable B;;, or By, ; to have value 1. If both threads
Thread; and Thread), are mapped to the same processor, either Thread; is executed
before Thready, (i.e. B;j, has value 1), or otherwise. Equation 5.14 allows only valid

5.3. ILP Optimization 89

combinations of B;j or By ; with L;; (in combination with Equation 5.13). For
example, variable B;, is not allowed to have value 1 (i.e. Thread; and Thready,
are mapped to the same processor) when L;j has also value 1 (i.e. Thread; and
Thready, are mapped to different processors). The last two equations 5.15 and 5.16,
set the proper start and end time of the thread nodes dependent on the previous
value settings of B; j, or By, ;. These equations guarantee that precedence constraints
are preserved and that threads are not executed at the same time.

Please note, that thread nodes which belong to the same thread are not consid-
ered here, since their sequence order is already set in the dependencies constraint in
Equation 5.9.

5.3.2 Optimization for Energy

In this section, the ILP formulation for the optimization of the overall energy con-
sumption is presented. All equations that are required for the minimization of
runtime are also required in the minimization of the energy consumption, except for
the objective function. They are required for the proper calculation of the processor
energy where the exact idle and run cycles have to be known. This results in a
higher complexity for this ILP optimization.

Following notations are used in this section:

e CPUFEnergy represents the energy consumption for all processors of the sys-
tem,

e MemFEnergy defines the energy consumption for all memories in the system,

o IdleEnergyproc specifies the energy consumption in the idle mode of processor
proc for one cycle,

o ActiveEnergypro. represents the energy consumption in the active mode of
processor proc for one cycle,

o CPUEnergy; proc 1s the energy consumption that is specified by the difference
between the active mode and idle mode energy for a thread Thread; that is
mapped to processor proc,

o Cycles; proc defines the overall execution cycles of thread T'hread; on processor
proc,

° AccEnergyReadme,mem,mObjiJ. specifies the energy consumption for a read
access to memory object mObyj; ; on memory mem and it includes the energy
consumption for the accesses to the underlying buses,

° AccEnergyWm'tepmc’mem,m()bjm represents the energy consumption for a write
access to memory object mObj; ; on memory mem and it includes the energy
consumption for the accesses to the underlying buses,

90 Chapter 5. Single Objective Mapping Optimization

e FIFOFEnergy defines the energy consumption for FIFO operations,

e 'IF O pmm represents the set of all available FIFO operations between thread
nodes Thread; and Thready,,

e BusEnergyCycle specifies the energy of the underlying bus for one access to
this bus.

For the minimization of the overall energy consumption of the system, the ob-
jective function is defined in the following equation:

min (CPUEnergy + MemEnergy + FIFOEnergy) (5.17)

The goal is to minimize the total energy consumption which consists of the
energy consumed by all processors, all memory accesses and optionally for the energy
consumption of FIFO operations.

5.3.2.1 Energy consumption of processors

In this model, a processor can be in two different modes. When the processor
performs computation, it is in the active mode. Otherwise, it is in the idle mode.
The energy consumption for all processors is defined in equation 5.18:

P
CPUEnergy = (Z Idle Energyproc * EndThrNodegyit)
proc=1
T P
+ (Z Z CPUEnergy; proc * Xiproc) (5.18)
i=1 proc=1

In the first term, the equation sums up the idle energy IdleEnergyproc for each
processor proc for the overall runtime of the application. The overall runtime is
defined by the last node of the thread graph EndT'hrNodeg.;. The second term
represents the additional energy C'PU Energy; proc that is consumed for each thread
Thread; that is mapped to processor proc.

CPUEnergy; proc is defined by the energy difference between the active mode
and idle mode:

CPUEnergyi proc = Cycles; proc * (ActiveEnergyproc — Idle Energyproc) (5.19)

Only the execution cycles that are required for the computation in active mode of
thread T'hread; are multiplied by the difference between the active energy Active Energyproc
and idle energy IdleEnergyproc.

5.3. ILP Optimization 91

5.3.2.2 Energy consumption for memory accesses

Here, the energy consumption for all memory accesses is defined:

MemEnergy =

T M MO
Z Z Z ProcVarMeumc,mem’mObji’].

i=1 mem=1mObj; ;=1
* (NrReadAccrmoy;; ; ¥ AccEnergyReadyrocmem,mObj;
+ NrWrite Accmoy;, ; * AccEnergyWriteproe mem,mobj;. ;) (5.20)

This equation iterates over all threads Thread;, over all memories mem and over
all memory objects mOby; ; of Thread; in the system. If a memory object mOby; ;
is mapped to a memory mem (i.e. ProcVarMemme’mem,mObjiY], is true), the en-
ergy for all read and write accesses is added to the overall memory energy con-
sumption MemEnergy. In detail, the number of read accesses NrReadAccyopj; ;
for the memory object mObj;; of thread Thread; is multiplied by the energy
AccEnergyReadpmc,mem,mObjm that is required for one read access. The energy
consumption for the write accesses AccEnergyWritepmcymem,mObji’j to mOby; ; is
defined in the same way. The optimization generates the proper read and write
energy values for AccEnergyRead and AccEnergyWrite based on the access width
and size of the underlying memory objects.

5.3.2.3 Energy consumption for FIFO operations

The following equation defines the energy required for a FIFO communication
FIFOEnergy; , between the thread nodes T'hread; ; and Thready,:

FIFOcomm,
FIFOFEnergy = Z NrElements; p,

x SizeElement; j, x NrAccesses;, * BusEnergyAccess (5.21)

FIFOFEnergy is defined by the iteration over all existing FIFO communications
FIFOcpmm- For each communication the size SizeElement and the number of
data elements NrElements that are communicated via the FIFO are multiplied by
the number of accesses NrAccesses to these elements and the energy consumption
BusEnergyAccess for an access to the underlying bus.

5.3.3 Restrictions of the ILP model

Here, the restrictions of this ILP model are described. First, the accesses to mem-
ories cannot always be modeled as precisely as in real memories. For example, due
to the abstraction level of this model, fast accesses that are performed in blocks are
not covered. In addition, due to the processor pipeline, access time to memories can
be decreased. Furthermore, the bus is not modeled as restricted resource, i.e. bus
conflicts and the resulting wait cycles cannot be covered with the proposed model

92 Chapter 5. Single Objective Mapping Optimization

CPUo 500 MHz CPU1 500 MHz

F»{ L1 Instruction 16 KB
—»{ L1 Data 16 KB L 311 Data 16 KB

Private Private
Memory 16 MB Memory 16 MB

Private Private
Memory 16 MB : Shared : Memory 16 MB

Memory
512 MB

—»{ L1 Instruction 16 KB

Private
BUSo
Private
BUSH1

> L1 Instruction 16 KB F» L1 Instruction 16 KB
F»{ L1 Data 16 KB —» L1 Data 16 KB

CPU2 500 MHz CPU3 500 MHz

Figure 5.1: Homogeneous MPSoC Architecture for Evaluation

in this work. A precise model for these resources also leads to a more complex ILP
formulation or optimization and is not included here.

Furthermore, an ILP solution is not possible if the thread graph includes cycles.
With proper analysis as breadth-first search, cycles can be found and deleted. The
thread graph should also have one explicit start node and sink. The Thread Model
Extraction Tool, described in Chapter 4, ensures that the thread graph is following
these requirements.

ILP optimizations are known to work fast for smaller inputs, i.e. smaller or
compact thread graphs. For more complex thread graphs, the optimization time
can increage drastically. The ILP optimization could be stopped after a certain
amount of time. In this case, the quality of the solution cannot be clearly validated.

5.4 FEvaluation

5.4.1 Simulation Environment

This section describes the simulation environment of the ILP-based memory-aware
mapping tool. Section 2.3.1 describes the underlying architecture model including
a basic architecture which is illustrated in Figure 2.10.

Evaluation was performed for a homogeneous and a heterogeneous architecture.
The homogeneous architecture is illustrated in Figure 5.1. The architecture consists
of four ARM11 processors with a clock frequency of 500 MHz. Each processor has
exclusive access to its own memories, i.e. one private main memory with 16 MB

5.4. Evaluation 93

CPUo 500 MHz CPU1 400 MHz

F»{ L1 Instruction 16 KB
—»{ L1 Data 16 KB | 311 Data 64 KB

Private Private
Memory 16 MB Memory 8 MB

Private Private
Memory 16 MB : Shared : Memory 8 MB

Memory
512 MB

—»{ L1 Instruction 32 KB

Private
BUSo
Private
BUSH1

—>»| L1 Instruction 8 KB F» L1 Instruction 32 KB
F»{ L1 Data 8 KB —» L1 Data 8 KB

CPU2 500 MHz CPU3 400 MHz

Figure 5.2: Heterogeneous MPSoC Architecture for Evaluation

size and an instruction and data scratchpad memory with 16 KB size. These mem-
ories can be reached by private buses. Furthermore, a shared DRAM memory with
512 MB size can be reached by each processor. This memory is accessed through an
AMBA bus. This homogeneous architecture was implemented within the MACCv2
framework (described in Section 3.2.1).

The core characteristics of the heterogeneous architecture considered in this eval-
uation is comparable to the single-ISA heterogeneous multi-core architecture sug-
gested in [110, 111]|. Here, the authors propose a heterogeneous system with cores
from the same architectural family that execute the same instruction set, but differ
in power and performance values, cache sizes, raw execution bandwidth, or other
characteristics. In [110], the authors compared their architecture against a homo-
geneous architecture, and the single-ISA heterogeneous architecture outperformed
the homogeneous architecture by 63%. Based on this conclusion, our architecture
contains processors from the same architectural family, but with different clock fre-
quencies and thus different runtime and energy values that depend on the frequency
of the processor. Furthermore, this architecture setup is also comparable to the
state-of-the-art ARM big.little architecture ([20], [21]) which is also described in
Section 1.2. In this architecture, big processors for heavy workloads are combined
with little energy-efficient processors. They are also available as quad core with two
of each processors. The processors used in this evaluation have nearly the same
memory hierarchy as an ARM Cortex-A57 processor (illustrated in Figure 1.4.1).
This processor is also used in the ARM big little architecture.

Based on these assumptions, the heterogeneous architecture illustrated in Fig-

94 Chapter 5. Single Objective Mapping Optimization

ure 5.2 was implemented within the MACCv2 framework (described in Section 3.2.1)
The proposed architecture consists of four ARM11 processors with clock frequencies
of 400 or 500 MHz. The memory subsystem is fully heterogeneous with different
memory sizes on each level and different memory types on level one for the scratch-
pad memories. Processor C'PUj has a clock frequency of 500 MHz and contains two
level one memories, one instruction and one data scratchpad memory with a size
of 16 KB, and one private memory with a size of 16 MB. Processor C PU; has a
clock frequency of 400 MHZ and a 32 KB instruction and a 64 KB data scratchpad
memory. Furthermore, it has a private main memory with 8 MB size. C'PUs has a
clock frequency of 500 MHz, an instruction and data scratchpad memory of 8 KB
size as well as a private memory of 16 MB size. C'PUs has a clock frequency of
400 MHz and access to an instruction scratchpad memory of 32 KB and a data
scratchpad memory of 8 KB. The private memory of C'PUs has a size of 8 MB. The
system also contains one shared DRAM memory with 512 MB for shared data and
instructions.

Both architectures were implemented for the underlying cycle-accurate COMET
simulator (described in next Section 5.4.2), which is used for the validation of the
evaluation.

5.4.2 Experimental Setup

In a first step, the parallelization tools [106, 94| are applied in order to obtain
a parallelized and synchronized application code. Afterwards, the Thread Model
Extraction Tool extracts the thread graphs and the architecture specification for the
memory-aware mapping tool. The benchmarks, including the number of extracted
threads and parallel sections, are described in Section 4.8.

The Spectral, all Edge Detect parallelization and Mpeg4 benchmarks are the most
complex benchmarks in this setup. The Spectral benchmark has 6 parallel sections
and 25 threads. The Mpeg/ benchmark is complex due to the large code size (3 MB)
and large number of memory objects that can be potentially mapped to on-chip
memories. All Edge Detect parallelization, with up to 16 threads per parallel section,
represent more complex and heterogeneous threads. However, all benchmarks should
represent a good average over mapping complexity and computational workload.

The commercial ILP solver CPLEX [112] is used for the minimization of the
objective functions in this ILP formulation. Energy values are computed according
to the model defined by Steinke et. al. [40] while the memory models are provided
by CACTTI [113]. CACTTI is a tool for modeling energy consumption and access time
for caches and other memories. For the validation of the solutions generated by the
ILP-optimization, the cycle-accurate instruction set simulator CoOMET [16] is used.

5.4. Evaluation 95

Runtime W Energy

Reduction in %
N N W W sSs B U
U O U1 O U O Ul O

—
Ul O

AT TR D & O XA &
QQ& @\0 & ’@ &<\b &&% /\0 \/(o & 0\0 \\Q\ 0000 Q& Q/\% Q@ ’\QF\@QQ'% VN} e&?’ be
(ol 7
Yo & & & @é &é > »F\ § w@ @Q QQQ K Q v&
& & SR VA0 %
$ © & & AU N & ¢ &
& Q& QW R

Figure 5.3: Reduction in runtime and energy achieved by Runtime-ILP for a homo-
geneous platform

5.4.3 Experimental results
5.4.3.1 Comparison against state-of-the-art mapping

In this section, the ILP optimization is validated by comparing the memory-aware
mapping optimization against state-of-the-art mapping optimization. An ILP op-
timization was established, which represents a common state-of-the-art mapping
optimization with the same underlying architecture and application model. The
ILP optimization includes neither memory-awareness nor mapping of memory ob-
jects to on-chip memories. In this way, a comparable reference to the common
state-of-the-art mapping optimizations is created. Furthermore, two different state-
of-the-art ILP optimizations were established, one with the objective to minimize
runtime and one with the objective to minimize the overall energy consumption. For
the evaluation, all obtained solutions of both ILP-based mapping optimization tools
(for energy and runtime) were simulated on the cycle-accurate CoMET simulator.

In the next subsections, the x-axis describes the different benchmarks, while the
y-axis describes the reduction achieved by the memory-aware mapping optimization
tool compared to the state-of-the-art mapping optimization tool. Although the goal
of the ILP is to minimize the runtime, the resulting system’s energy consumption is
also illustrated and vice versa.

Homogeneous Architecture
The first set of experiments was performed for a homogeneous architecture which
was described in Figure 5.1.

96 Chapter 5. Single Objective Mapping Optimization

Energy M Runtime

Reduction in %
N N W w B B U
Ul O U1 O Ul O Ul O

—
o

Q& @\Q & ,@ <\Q)\ &‘b\ /\@ ,\/(O\ Q\Q" \0 \\Q\ 00 <\Q‘)\ /\‘b\ (\@\ Q~® Q,%?(®\)\& & V‘
& S PSS T
/2} (/0 < X X Q (o‘)‘ X Q Q Q O\ 9

@ ¥ & K K 0 NSNS
o(\b L g R Q@% Q@% o
& FF L YR

Figure 5.4: Reduction in runtime and energy achieved by Energy-ILP for a homo-
geneous platform

Figure 5.3 presents the ILP runtime optimization for a homogeneous platform.
The best results were obtained for H264-MBlock, and MPEG4 benchmarks with
a reduction of runtime by about 38%. This large benefit is due to the fact that
almost all memory objects of some benchmarks are mapped to faster and more
energy-efficient scratchpad memories, i.e., except of those who are marked as pri-
vate or shared. The different parallelization of Edge Detect and the IIR benchmark
achieved also remarkable reductions by 28 to 31%. JPEG2000 and Spectral bench-
mark reached only a reduction by 1 to 4.5% These benchmarks work primarily with
shared data memory objects, which are not allowed to be mapped to a higher mem-
ory level. Nevertheless, the instruction code of their threads could be mapped to
local scratchpad memories and gain some benefit. The average gain in the reduc-
tion of runtime is 21%. Next to the reduction of runtime, a reduction of energy
consumption can be observed compared to the energy consumption of a state-of-
the-art optimization. The reason for this could be the allocation of memory objects
to the local scratchpad memories, which consume less energy per access.

The evaluation results for the energy based ILP memory-aware mapping opti-
mization are shown in Figure 5.4. Please note that the base line here is not the same
as in Figure 5.3. The underlying baseline of Figure 5.3 is a state-of-the-art ILP-based
runtime optimization. In Figure 5.4, the baseline is a state-of-the-art ILP-based en-
ergy optimization. This means, the resulting values for energy consumption and
runtime differ for both baselines. The most reduction in energy consumption was
achieved by the Edge Detect benchmarks, H264-MBlock, IIR and MPEG/ bench-
marks. The energy was reduced by 38 to 44.5% compared to state-of-the-art map-

5.4. Evaluation 97

Runtime W Energy

50
45
40
X 35
=
830
£
320
915
o
10
5
N ORIV SONIPAS & O o O N
\ ¢ K < A\ NS &
&9 Q& &S & @0 o P /§ @Qz $ & %@
KRN S P A N AN N CRN
RO P o K DAY v v
0(\ % Q,Q Q/Q QQ/ Qﬁ' \2\ \Q@Qo \QQ/% &
¥ & & *

Figure 5.5: Reduction in runtime and energy achieved by Runtime-ILP for a het-
erogeneous platform

ping. However, Compress, Spectral and JPEG2000 achieved a reduction in energy
consumption by 2.6 to 5%. On average, the energy consumption was reduced by
28%. The resulting reduction in runtime is also illustrated in this figure. Compared
to state-of-the-art mapping, an average reduction in runtime was achieved by 21.8%.

Heterogeneous Architecture
The second set of experiments was performed for a heterogeneous architecture which
is described in Figure 5.2.

The results for the ILP-based optimization with the goal to minimize runtime
for a heterogeneous platform are shown in Figure 5.5. As for the homogeneous plat-
form, the benchmarks MPEGY4, H264-MBlock and IIR showed the most reduction
in runtime, from 30% to 37%. In the MPEG/ benchmark, about 300 kB of code
and data memory objects are allowed to be mapped onto the on-chip memories in
the system. However, Compress and JPEG2000 reached a reduction of 1.3% and
1.7%. The average reduction for runtime is about 21%. Concerning the resulting
overall energy consumption of the system, over all benchmarks the energy was also
reduced by a remarkable amount of 27%.

The evaluation results for the energy based ILP memory-aware mapping opti-
mization for a heterogeneous platform are shown in Figure 5.6. As described in
the evaluation of the homogenous platform, the base line for energy and runtime
differs from the base line of Figure 5.5. In this setup, the benchmarks MPEG/ and
Edge Detect reached the most reduction of energy consumption by 55% and 60%,
respectively. Compress and Spectral reached a reduction of about 5.2% and 4.4%.

98 Chapter 5. Single Objective Mapping Optimization

Energy M Runtime

(O]
o

Reduction in %
=~
o

N W
o o o o
]
|
|
|
I
|
|
|
I
/_
/_

PO BRI N\ o & 9 N X
Q@\ @° Q@" g &L A @o § ¢ N %@Q QQ\‘ QQ\‘ Q@ &@“@Qe » & &vo
o
v {\t}/bd (/0 Q{% Q‘,@ Qé’@ qu}'ec Q\’{o‘)‘ %v \QQ‘ 0029 %@9 QQ \y' (’)Q @
N 9 Q KR &
o %5% %&o & RN

Figure 5.6: Reduction in energy and runtime achieved by Energy-ILP for a hetero-
geneous platform

The average energy reduction is about 31%. Compared to the overall runtime of
the state-of-the-art mapping, a reduction of about 21% on average is achieved.

Comparing the resulting overall runtime of the energy based against the runtime
based memory-aware ILP optimization, the overall runtime is increased by 31% by
the energy based ILP optimization. On the other side, comparing the overall energy
consumption of both optimizations, the energy is increased by 35% by the runtime
based ILP optimization. This shows, that there is a trade-off between energy and
runtime when optimizing for one of both optimization goals.

5.4.3.2 Runtime of the ILP optimization

This section presents the time that was required for the execution of the memory-
aware ILP-based mapping optimization based on compact and detailed thread graphs,
which contain either the average case or the worst-case execution time for the bench-
marks. The runtime is illustrated in seconds for an AMD Opteron 2.46 GHz on the
x-axis. The benchmarks and the average over all benchmarks are described on the
y-axis. WC Detail and AC Detail represent the runtime for a detailed thread graph
containing the worst case (WC) or average case execution cycles of the underlying
application benchmark. On the other side, WC' Compact and AC Compact represent
a compact thread graph which contains the worst and average-case, respectively.
Figure 5.7 illustrates the runtime for the ILP optimization which optimizes the
overall runtime for the homogeneous architecture. The average runtime for the
compact thread graphs lies between 66 to 71 seconds while the average runtime for

5.4. Evaluation 99

B WC Detail mACDetail mWCCompact ®AC Compact

AVERAGE

Spectral

Mult

Mpeg4

LATNRM
Jpeg2000 (T10)
Jpeg2000 (T8)
Jpeg2000 (T6)
Jpeg2000

IIR

H264 Mblock
H264 Lblock

FIR

Edge Detect (T16)
Edge Detect (T12)
Edge Detect (T8)
Edge Detect (T6)
Edge Detect
Compress
Boundary Value

ADPCM

"ﬂl“l“llllmlr‘“

-

10 100 1000 10000 100000
Time in Seconds

Figure 5.7: Runtime of ILP-optimization for runtime optimization, homogeneous
architecture

detailed thread graphs lies between 89 and 142 seconds. The most time consuming
benchmarks are IIR and MPEG/ with 600 to 1324 seconds. The optimization for
the detailed thread graphs of Edge Detect with 12 and 16 threads per parallel section
were canceled after three days. Overall, a significant increase in runtime is shown
for the more complex benchmarks.

Figure 5.8 illustrates the runtime for the ILP optimization which reduces the
overall energy consumption for the homogeneous architecture. Since the optimiza-
tion for energy is a little bit more complex, an increase in runtime can be observed
for each benchmark, especially for the more complex benchmarks ITR, MPEG/ and
Edge Detect (T12) and (T16) The optimization of Edge Detect (T12) and (T16)
was canceled after 3 days. For the compact thread graph of Edge Detect (T16), it
was possible to obtain a solution after 9.6 (AC) or 10 (WC) hours, respectively. The
average runtime lies between 167 and 265 seconds for detailed thread graphs (not
including the runtime for Fdge Detect (1'12) and (116)) For compact thread graphs,
the average time lies between 1.764 and 1.868 seconds (including Edge Detect (T16))

100 Chapter 5. Single Objective Mapping Optimization

B WC Detail mACDetail mWC Compact ®AC Compact

AVERAGE
Spectral

Mult

Mpeg4

LATNRM
Jpeg2000 (T10)
Jpeg2000 (T8)
Jpeg2000 (T6)
Jpeg2000

Il

H264 Mblock
H264 Lblock

FIR

Edge Detect (T16)
Edge Detect (T12)
Edge Detect (T8)
Edge Detect (T6)
Edge Detect
Compress

Boundary Value

"|||»"WW|'|H|

ADPCM

=
=
o

100 1000 10000 100000
Time in seconds

Figure 5.8: Runtime of ILP-optimization for energy optimization, homogeneous
architecture

and between 26 and 31 seconds (without Edge Detect (T16)). These results shows:
It is rather possible to obtain a solution for compact complex benchmarks than for
detailed complex benchmarks.

Figure 5.9 illustrates the runtime for the ILP optimization which reduces the
overall runtime for the heterogeneous architecture. Compared to the homogeneous
architecture, an increase for all JPEG2000 benchmarks as well as for the MPEG/
and Edge Detect (T8) benchmarks can be observed. Contrary to the homogeneous
architecture, it was not possible to obtain a solution for Edge Detect (T12) and (T16)
for the detailed thread graph. However, it was also impossible to obtain a solution
for IIR benchmark and for Mult for detailed thread graphs. The average runtime for
compact thread graphs is about 184 seconds while the runtime for detailed thread
graphs lies between 243 to 254 seconds.

Figure 5.10 illustrates the runtime for the ILP optimization which reduces the
overall energy consumption for the heterogeneous architecture. Here, it is still im-
possible to obtain a solution for IIR and Mult benchmark. The runtime for Edge

5.4. Evaluation 101

B WC Detail mACDetail ®WC Compact M AC Compact

AVERAGE
Spectral

Mult

Mpegd

LATNRM
Jpeg2000 (T10)
Jpeg2000 (T8)
Jpeg2000 (T6)
Jpeg2000

IIR

H264 Mblock
H264 Lblock

FIR

Edge Detect (T16)
Edge Detect (T12)
Edge Detect (T8)
Edge Detect (T6)
Edge Detect
Compress

Boundary Value

1

ADPCM

=
=
o

100 1000 10000 100000
Time in seconds

Figure 5.9: Runtime of ILP-optimization for runtime optimization, heterogeneous
architecture

Detect (T8) increases to 6 hours or 14 hours, respectively. This shows that a het-
erogeneous architecture for detailed thread graphs and the optimization for energy
is more complex. The average runtime lies about 495 seconds for compact thread
graphs and about 3314 seconds (55 min) to 1416 seconds (23 min) for detailed thread
graphs.

5.4.4 Conclusions

This section presented an ILP-based memory-aware mapping optimization for ho-
mogeneous and heterogeneous MPSoC systems with memory hierarchies. Next to
the mapping of application threads to processors, the optimization also allocates
frequently used instruction and data memory objects to the different memories in
the hierarchy. In this way, the underlying architecture capabilities are exploited and
efficiently matched to the application’s requirements.

The memory-aware mapping optimization is evaluated by comparing the pro-

102 Chapter 5. Single Objective Mapping Optimization

B WC Detail mACDetail ®WC Compact ™ AC Compact

AVERAGE
Spectral

Mult

Mpeg4

LATNRM
Jpeg2000 (T10)
Jpeg2000 (T8)
Jpeg2000 (T6)
Jpeg2000

IIR

H264 Mblock
H264 Lblock

FIR

Edge Detect (T16)
Edge Detect (T12)
Edge Detect (T8)
Edge Detect (T6)
Edge Detect

Compress

L
I

Boundary Value
ADPCM ==

HI

10 100 1000 10000 100000
Time in seconds

Figure 5.10: Runtime of ILP-optimization for energy optimization, heterogeneous
architecture

posed ILP approach to a state-of-the-art mapping optimization, which maps threads
to processors, and includes neither the consideration of the memory hierarchy nor
the mapping of instruction and data memory objects to memories. For the runtime
optimizations of homogeneous and heterogeneous systems, an average reduction of
about 21% was reached. For the optimization of energy consumption, a reduction
of 28 to 31% was gained.

The most reduction in energy consumption and runtime was observed for bench-
marks, which contain many allocatable instructions and data that can be mapped to
the faster and more energy-efficient local memory. On the other side, some bench-
marks spent the most time accessing shared memory objects. Therefore, only little
speed-up or energy reduction can be reached for those benchmarks.

The runtime for an ILP optimization depends on many factors, as the opti-
mization itself (energy or runtime optimization). Furthermore, it depends on the
complexity of the benchmarks, the complexity of the thread graph (compact vs.
detailed) and on the architecture. While it was possible to obtain a solution for

5.4. Evaluation 103

Edge Detect (T16) in the energy-based ILP optimization for homogeneous architec-
ture for a compact thread graph, it is not possible anymore in the heterogeneous
architecture. Furthermore, for some benchmarks it was even not possible to obtain
a solution for detailed thread graphs for the heterogeneous architecture. However,
it is possible to obtain a solution for compact complex benchmarks rather than for
detailed complex benchmarks. Benchmarks that are more complex require more
runtime for their optimization.

The ILP-based memory-aware mapping optimization tool is integrated in the
automatic MNEMEE tool-flow, where all steps such as application partitioning,
parallelization, and memory-aware mapping optimization can be combined in order
to help designers in their decision.

CHAPTER 6
Memory-Aware Multiobjective
Mapping Optimization

Contents
6.1 Introductiont 105
6.2 Tool OVErview . . ¢ ¢ v v v v o vt o o v o o o o o o o o o o oo 107
6.2.1 Application specification 108
6.2.2 Architecture Specififcation 109
6.2.3 Mapping Optimization 110
6.3 Optimization Objectives 110
6.4 Evolutionary Algorithm00 0. 115
6.5 Evaluationt iiieeeeneeeeenn 118
6.5.1 Experimental Setup 118
6.5.2 Experimental results oL 120
6.5.3 Conclusions L 124

6.1 Introduction

Several embedded systems have to fulfill many requirements as providing high per-
formance, low energy consumption, managing concurrency on the system or meeting
important deadlines. Some optimization goals that have to be performed for such
systems can stand in conflict to each other, e.g. reducing the energy consump-
tion and increasing performance. For example, a high-performance system could
increase the processor activity and try to utilize as much performance as possible.
Thus, more energy is consumed through higher processor activity. On the other side,
a system which has to reduce energy consumption tries to run the processor in an
energy mode which reduces power but increases the runtime, e.g. as it is performed
in dynamic voltage scaling (DVS) processors. Another strategy switches off some of
the processors or processor cores in order to save energy consumption.

Embedded mobile systems as tablets, mobile phones or mobile DVD player usu-
ally have to provide high performance and low energy consumption. For such mul-
tiobjective optimizations, there are usually many (Pareto optimal) solutions in the
huge design and solution space. These systems provide many resources, which influ-
ence the optimization goals directly and indirectly. Processors, buses and memories

106 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

directly influence performance and energy consumption. The structure of each com-
ponent can be complex. A good example is the structure and characteristic of
a processor or a memory. A processor can have different strategies for reducing
energy consumption or boosting the performance: Dynamic voltage or frequency
scaling, turning off processor cores or other power management strategies.

However, the memory subsystem also contributes significantly to the energy
consumption. In homogeneous and heterogeneous systems, the processors can have
access to different memories on different levels, which all have different character-
istics and thus influence the energy consumption and performance. More levels of
memory results in higher optimization complexity. All this complexity influences
the optimization objectives and increases the solution space. Finding an optimal
solution is a challenging task in this case. The embedded system designer has to
find a solution that satisfies all optimization demands. Heterogeneous Systems pro-
vide more manifold resource characteristics, which additionally increase optimiza-
tion complexity and the solution space. All resources are constrained and have to
be efficiently utilized in order to satisfy the multiobjective optimization goals.

One effective and well-known optimization strategy for multiobjective goals is
the usage of evolutionary algorithms that can explore the solution space effectively.
In this section, a multiobjective optimization tool based on evolutionary algorithms
is presented. This tool is integrated in the MNEMEE tool flow and has two optimiza-
tion goals: the reduction of runtime (increase of performance) and the reduction of
the energy consumption. These goals are integrated in the memory-aware mapping
optimization process, which has to find an efficient thread to processor mapping.
This thread to processor mapping is combined with the efficient mapping of the
memory objects of the threads to the available memories in the memory hierarchy.
In this way, the requirements of the application are matched to the available re-
sources of the system in order to obtain an effective utilization even for complex
homogeneous and heterogeneous architectures.

Related Work

There are several frameworks for design space exploration for multiprocessor systems
with multiobjective goals, as Daedalus [77|, SystemCoDesigner [86], HOPES |75],
or DOL [18]. All these frameworks use different evaluation environments, different
strategies to search in the design space, different optimization criteria, design con-
straints, applications, architectures, mapping models, or abstraction levels. These
individual characteristics do not allow a comparison between all these frameworks.

The proposed technique in this chapter is constructed on top of the basic opti-
mization in DOL (SHAPES). In particular, the DOL framework was chosen because
of the modular structure and flexible models for performance analysis and search in
the design space [114, 84]. As DOL provides the basic mapping optimization frame-
work, it allows to investigate and develop the proposed novel memory mapping on
top of it, while considering a multilevel on-chip memory hierarchy. To achieve this,
several refinements were necessary within DOL, such as adaption to thread mapping

6.2. Tool Overview 107

Application Architecture
Specification Specification

Memory-Aware Mapping Optimization Tool

(N
Mapping Performance & Energy
Optimization Evaluation
([Generations of new
L mapping solutions) \
1 [Evaluation of]
Selection of promising mapplnglsolutlons
mapping solutions based [«

L on evaluation)

. AN J

v
[Set of Pareto-Optimal J

Solutions

Figure 6.1: Overview over the Memory-Aware Multiobjective Mapping Optimization
Tool

(instead of Kahn process-based mapping) and different performance analysis models
for the runtime of threads. Furthermore, an energy model for the analysis and spec-
ification of the systems energy consumption was completely integrated, as well as
the entire explicit memory modeling and memory optimization within specification,
search, and analysis.

A more detailed overview of all related work is presented in Section 2.4.6.

6.2 Tool Overview

The Memory-Aware Multiobjective Mapping Optimization Tool (shortly: MAM-
MOT) is integrated as a MACCv2 tool in the MNEMEE tool flow. Figure 6.1
illustrates the structure as well as the input and output of this tool. The input for
the tool is generated by the foregoing tools in the MNEMEE tool flow, i.e. the par-
allelization and synchronization tools and the Thread Model Ezxtraction Tool. These
tools provide the parallelized and synchronized source code and a flat thread graph
as input for the mapping tool. The architecture database in MACCv2/MNEMEE
provides all architecture relevant information. A detailed description of the under-
lying models is given in Section 2.3. The DOL tool is based on Java while all tools
in the MNEMEE framework are based on C and C++. The DOL framework was
fully integrated in the Memory-Aware Multiobjective Mapping Optimization Tool. Tt

108 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

ID [Parallel Section ID]
—
—
{Memory Objects](——+1 Thread
;I__I_/
v \ v
(Runtime J (# Calls (Energy J

J

v v v v v v
(cpuy) (-] [cpun] [cpuy (-][cpu,]

Figure 6.2: Thread specification

generates the input for the DOL framework and calls this framework, providing all
files and parameters, within the MNEMEE tool flow.

6.2.1 Application specification

The application specification is described in XML. As a preprocessing step, the
Memory-Aware Multiobjective Mapping Optimization Tool reads the flat thread
graph which was generated by the Thread Model Extraction Tool. Afterwards, it
generates an application specification file, which integrates all information of the
flat thread graph. The application specification lists all threads. FEach thread is
specified by its thread id and all parallel sections in which the thread is executed.
The parallel sections are also defined as ids. Additionally, the numbers of accesses to
the thread are listed. Since the execution time and energy consumption of a thread
on a processor can differ for the individual processors, all these runtime and energy
values are specified for each processor. These values represent the energy consump-
tion and runtime for one thread call. They do not include the energy consumption
and runtime for the accesses to the bus and memories. An overview of the thread
specification is given in Figure 6.2.

Each thread specifies all memory objects that are accessed. Fach memory object
is defined by its id. Furthermore, it contains information about the number of read
and write accesses, its size, its basic size (in case of an array), its access width and
access type (i.e. instruction or data). The mapping of the memory object can also
be given, i.e. shared memory objects and memory objects that have to be mapped

to private memory are marked as "‘shared" or "’ "

private"* respectively. A mapping
of 0" specifies that the memory object can be mapped to any accessible memory
by the optimization tool. The key word ""local"‘ can be used to map certain memory
objects to the local memories, if required by the designer. All shared memory objects

are listed under the main thread which has the id 0. An overview of the memory

6.2. Tool Overview 109

[D)[Size)[Basic Size)[Mapping)

1 0 | 1 0

(Memory Object J

I
v v v v

(Access Width) (# Write Access) (# Read Access) (Access Type J

Figure 6.3: Memory object specification

object specification is given in Figure 6.3.

Additionally, the application specification lists all FIFO channels with source
and target thread node, including the number of reads, writes and the data size in
bytes. However, sometimes the designer would like to allocate threads to a specific
processor like for instance special signal processing tasks on a DSP or critical code
such as interrupt routines to a fast memory. In the application specification, it is
possible for designers to manually enforce mappings of threads to specific processors
by listing only one processor in the thread specification. By this, only this one
processor will be considered in the thread to processor mapping step.

6.2.2 Architecture Specififcation

The architecture specification is also described in XML. The MACCv2 architecture
database is read and the architecture specification XML file is generated. It lists
all processors including their ids and their idle energy. Furthermore, all buses are
specified including their frequency and bytes per cycle. All memories are listed
including their ids, the type of the memory (scratchpad, private or shared), the
size and the access type (i.e. instruction, data or unified). The overview of the
memory specification is given in Figure 6.4. Additionally, each memory contains
information about CPU access, i.e. the runtime and energy required for a CPU to

[Memory J

(ID J (Size J : (Type J (AccessTypeJ

Figure 6.4: Memory specification

110 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

[CPU Access }

|
¥ v) ¥ v)
[Half-Word] (Word J [Byte J (Half-Word J [Word] [Byte]
Ty ' Ty

[Energy}(Time }[En:rgy}[Ti;e }[En:rgyJ[Ti%e J [En;gy}[Ti:we)[En:rgy)[Ti:we }(Energy}[Time)

Figure 6.5: CPU specification

access this memory. Here, only CPUs are listed that have access to this memory.
For each processor that has access to this memory, a distinction between read and
write access is made. For each read and write access, the access time and energy
consumption is specified for each access width (i.e. word, byte and half-word).
Furthermore, for all connection between processor and memory, it is specified if it is
a read or write path, including the number of cycles that is required for this access.
Figure 6.5 gives an overview for the CPU accesses within the memory specification.

6.2.3 Mapping Optimization

The core part of the memory-aware mapping tool is an evolutionary algorithm (EA)
which generates memory-aware mapping solutions. The application and architec-
ture specification provide all information and constraints that is required in order
to generate valid mapping solutions. Each mapping solution is evaluated for per-
formance and energy consumption. For this, an analytical model is included in the
tool. Based on this analysis, promising mapping solutions are selected and archived.
Based on these solutions, new mappings are generated. The generation and evalua-
tion of the mapping solutions are repeated in a design space exploration loop until
an end criterion (i.e. maximum number of iterations) is reached. Since the mapping
problem is multiobjective, there is no single optimal solution but a set of Pareto
optimal solutions. The designer can decide which solution is most suitable for the
design requirements of the underlying system. In some cases, it could happen that
the optimization problem cannot be solved. For example, if the application memory
requirements do not match the available memory capacity of the system. Then, the
tool would stop with an appropriate message. A more detailed description of the
evolutionary algorithm is presented in Section 6.4.

6.3 Optimization Objectives

This section provides a formal description of the optimization objective functions
used in the Memory-Aware Multiobjective Mapping Optimization Tool for evaluating

6.3.

Optimization Objectives 111

the mapping solutions within the evolutionary algorithm. All values required in
these objective functions are extracted from the input specification files.
Basically, two functions are considered to be optimized, i.e., system runtime and

energy consumption.
Following notations are used for the definition of the equations in this section:

the set of threads is defined by T' =1, ..., k, with thread ¢t € T' and
the main thread tg € T
the set of processors is defined by P =1, .., p, with processor proc € P

the set of parallel sections is defined as S = 1,...,s, with a parallel section
ps €S8

the number of calls of a thread is specified with nrCalls(t)
the set of memories with M =1, ..., m, with memory mem € M

the set M (proc) contains all memories mem that are accessible by processor
proc

MO is the set of memory objects, with memory object mObj € MO

r(t, proc) represents the runtime of thread ¢ on processor proc, without con-
sidering memory accesses

r(t,mem) indicates the time of memory accesses caused by the memory objects
of thread t for access on memory mem, including the runtime to access buses

nrReadAcc(mObj) defines the number of read accesses to the memory object
mQObj

nrWriteAcc(mObj) defines the number of write accesses to the memory object
mQObj

accWidth(mObj) decribes the access width (i.e. Byte, half-word and word)
of memory object mObj

accTimeRead(accWidth(mObj)) represents the time required for a read ac-
cess to memory object mObj with access width accWidth(mObj)

accTimeWrite(accWidth(mObj)) represents the time required for a write ac-
cess to memory object mObj with access width accWidth(mObj)

nrLoadAcc(accWidth(mObj)) describes additional accesses to the memory
object mObj which are optionally required in order to obtain the full memory
object size

e(t,proc) defines the energy that is consumed by thread ¢ processor prc

112 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

e ¢(t,mem) defines the energy consumed by thread t for accesses to memory
mem

o ActiveCycles(t) describe the number of cycles required for the execution of
thread ¢

o ActiveEnergyPerCycle(proc) describes the energy consumption for one cycle
On Processor proc

e [dleEnergyPerCycle(proc) describes the energy consumption in idle mode
for one cycle on processor proc

e maxCycles,s(t) represents the maximum number of cycles spend in the par-
allel section that thread t belongs to

o energyRead(accWidth(mObj)) represents the energy consumption required
for a read access to memory object mObj with access width accWidth(mOby)

o energyWrite(accWidth(mObj))represents the energy consumption required
for a write access to memory object mObj with access width accWidth(mOby)

o MemAccessCycles(t) defines the number of cycles that are required for mem-
ory access for thread ¢

The total runtime for a thread is computed by the runtime of the thread on
the processor it is mapped to, added to the total runtime for the bus and memory
accesses that are performed to the appropriate memory object. The obtained value
represents the runtime for one thread call and therefore has to be multiplied by the
total number of thread calls. The overall runtime of the system includes the runtime
of the main thread added to the runtime spend in the parallel sections. The runtime
in a parallel section is specified by the threads that run in parallel in this section.
The execution time of the parallel section is defined by the execution time of the
thread with the maximum runtime in this parallel section.

The system runtime objective is given in Equation 6.1:

obj1 = (nrCalls(ty) * (r(to, proc) + Z r(to, mem)))

memé&M (proc)
+ Z (Eré%({nr(?alls(t) x (r(t, proc) + Z r(t,mem))}) (6.1)
ps€ S memé&M (proc)

The first line of Equation 6.1 represents the total execution time of the main
thread tg. Here, the number of calls to the main thread is multiplied by its runtime
for one call. The runtime r includes the execution time on the mapped processor
r(to, proc) and the runtime for memory accesses r(to, mem). The runtime for mem-
ory accesses is described in more detail in the next equation. However, the second

6.3. Optimization Objectives 113

part iterates over all parallel sections ps € S. The overall runtime of a parallel
section is given by the most time consuming thread in this section. The memory
access runtime of this thread is added to the overall runtime. For this, an iteration
over the runtime of all memories mem that are accessible by the processor proc is
performed.

More precisely, the memory access time caused by thread ¢ is described with the
following equation:

r(t,mem) = Z (nrReadAcc(mOby)
¥V mObj—mem

x accTimeRead(accWidth(mObj)
« nrLoadAcc(accWidth(mObj)

+ nrWrite Acc(mObj

x accTimeWrite(accWidth(mOby)
« nrLoad Acc(accWidth(mOby))

)
)
)
)

Here, the equation iterates over all memory objects mObj that are mapped to
(—) memory mem. The total access time is obtained by the number of read and
write accesses nrReadAcc/nrWrite Acc to the memory object mObj multiplied by
the time required for each access (accT'imeRead/accTimeWrite). The different ac-
cesses cause distinctive energy and runtime values which also depend on the access
width accWidth(mObj) of the memory object mObj. Sometimes, additional ac-
cesses (nrLoadAcc) have to be performed in order to obtain the full memory object
size.

The second objective function in the memory-aware mapping optimization rep-
resents the energy consumption of the system. For this, the energy, that is spend
by each thread on the processor it is mapped to, is added to the energy that is
consumed for the accesses to the memories and their underlying buses. The energy
consumption for the memories is dependent on the memory objects of the threads
and their mapping to the different memories in the memory hierarchy.

The second objective, which is representing the systems energy consumption, is
defined as follows:

objo = Z { Z nrCalls(t) = (e(t, proc) + Z e(t,mem)) } (6.2)

proceP YV t—proc Y mem acc.
by proc

This equation iterates over all processors proc € P. Here, for each thread t¢
mapped (—) to processor proc, the energy consumption has to be calculated. In
detail, the number of calls nrCalls(t) of thread ¢ is multiplied by the energy e(t, proc)
consumed by thread ¢ on processor proc added to the energy e(t, mem) consumed
by accesses to the memories mem.

The equation for the energy consumption of thread ¢, which is represented by
e(t, proc), is specified as follows:

e(t,proc) = (ActiveCycles(t) * Active EnergyPerCycle(proc))
+((maxCyclesps(t) — ActiveCycles(t)) * IdleEnergyPerCycle(proc))rdb

114 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

The number of cycles for a thread t, i.e. ActiveCycles(t), is multiplied by the
energy per cycle consumed by the specific processor Active EnergyPerCycle(proc).
Thus, the first part of the equation represents the energy consumed in the active
mode of the processor. The second part represents the energy consumed in the
processor’s idle mode. For this, the maximum cycles maxCyclesys(t) spend in the
parallel section ps, that thread ¢ belongs to, has to be considered.

In detail, the parallel section consists of several threads that run in parallel. The
maximum cycles spend in a parallel section is given by the thread which consumes
the most cycles for its execution. These cycles include the active cycles for the exe-
cution of the thread and the cycles that are required for the access to the memories.
For the other processors, where a mapped thread t requires less cycles, the rest of
the cycles (until the parallel section ends) is spent in idle mode. The energy for the
idle mode has also to be considered in the overall energy consumption.

If a thread ¢, that is mapped to processor proc, requires less cycles than the
maximum cycles of a parallel section, the processor spends the rest of the time
(cycles) in idle mode. The energy consumption in idle mode is given by the idle time.
The idle time is given in cycles and multiplied with the idle energy consumption for
one cycle IdleEnergyPerCycle(proc) on processor proc.

The main thread ¢ty does not belong to a parallel section. Thus, this thread is
executed in active mode on the processors proc it is mapped to. Additionally, the
energy for idle mode has to be considered when memory access is performed. This is
represented by the value MemAccessCycles(tp) The energy equation is represented
by:

e(to, proc) = (ActiveCycles(ty) * ActiveEnergyPerCycle(proc))
+(MemAccessCycles(ty) x Idle EnergyPerCycle(proc))

The equation for the energy consumption of memory accesses e(t,mem) is de-
fined as follows:

e(t,mem) = Z (nrReadAcc(mObj)
vV mObj—mem

x energyRead(accWidth(mObj
« nrLoad Acc(accWidth(mObj
+ nrWrite Acc(mObj)

« energyWrite(accWidth(mObj))
x nrLoadAcc(accWidth(mObj)))

)
)

This equation represents the energy consumption for memory accesses to an in-
dividual memory mem accessed by thread ¢t. An iteration over all memory objects
mQObj that are mapped to memory mem is performed. Here, the number of ac-
cesses nrReadAcc | nrWriteAcc has to be multiplied by the energy consumed for
a single access to memory mem. Again, a distinction is made between read and
write accesses and the access width accWidth(mObj) for both. These are given by

6.4. Evolutionary Algorithm 115

@ CPU, CPU, .o | cru,

Thread, | Thread,

Threadg
@ Memory Memory
Instruction Scratchpad Private Memory Tt -+ | Shared Memoryo
CPUq CPUq
Memory Object,; | Memory Object ;4 Memory Object y
IFETCH DATA SHARED
> Thread, > Threadg

Figure 6.6: Individual representing a mapping solution candidate.

the values energyRead (accWidth(mObyj)) and energyWrite (accWidth(mOby)).
Finally, the number of additional accesses nrLoadAcc (accWidth(mObj)), which
is caused by the access width of the memory object, is multiplied by the overall
read and write accesses, respectively. Please note that the energy consumed by bus
accesses to memory, are already included in the energyRead(accWidth(mObj) and
energyWrite(accWidth(mObj) values.

6.4 Evolutionary Algorithm

The evolutionary algorithm is used as a black-box optimization for solving the
memory-aware mapping problem. In the first step, the evolutionary algorithm (EA)
generates a population with several individuals. Each individual represents a map-
ping solution candidate. An example of an individual is illustrated in Figure 6.6.
An individual is given by a complete thread to processor mapping and a complete
mapping of the memory objects to the available memories. A fitness value is eval-
uated for each individual in the optimization loop of the evolutionary algorithm.
This value represents the quality of an individual.

The mapping decisions are inspected randomly, and are generated in the follow-
ing way: A thread and the corresponding memory objects are mapped randomly
to accessible processors and their memories. Figure 6.6 (part 1) shows a possible
distribution of threads to different CPUs.

After a processor is chosen, the memory objects of the threads are mapped to
accessible memories. This is illustrated in Figure 6.6 (part 2). First, all prede-
fined memory object mappings are performed, i.e., those memory objects which are
marked as shared, local or private are mapped to the respective memory. Afterwards,
the remaining memory objects of the threads are randomly mapped to the available

116 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

{ cPuo | | cpur ! | cpuz |

Original Thread 2 Thread 1 Thread 3
H 1 H ! H |

(. Thread 1
| Mutation Thread 2 Thread 3 |
1 | 1 1 1 1

Repair Thread 2 Thread 3 Thread 1

Figure 6.7: Mutation of genes

memories. This step is performed for all threads of the application. The algorithm
takes care that only valid mappings are generated, i.e. the memory objects are
mapped to memories that are accessible by the processor to which the thread was
mapped. Furthermore, if the memory is specified as instruction or data only mem-
ory, only instructions or data memory objects are mapped to these memories. The
evolutionary algorithm also verifies that the memory sizes are not exceeded during
mapping. If it is not possible to extract valid mappings, because the memories are
too small for all application code and data, the evolutionary algorithm stops with
a corresponding message. If a memory at a lower level has no capacity anymore,
the remaining memory objects will be mapped to a memory at a higher level in the
memory hierarchy. If all memories are occupied, the remaining memory objects will
be mapped to a larger, shared or a common main memory.

In the next step of the evolutionary algorithm, the generated individuals are
evaluated. Here, a fast performance and energy evaluation is performed for each
individual based on the objective functions defined in Section 6.3. After evaluation,
the best individuals are saved in an archive. Based on the previous solutions, new
individuals are generated. This is performed by random mutation or crossover on
the solutions.

In the mutation step, a thread and its corresponding memory objects are switched
to another processor, an example is shown in Figure 6.7. In this example, the
mutation step decides that Threadl, which was originally mapped to C PUy, is now
mapped to CPU,. After mutation, it is possible that two threads within a parallel
section are mapped to one processor. For the case that the number of threads is
smaller or equal to the number of CPUs, this could result in a suboptimal solution
since the threads are supposed to run in parallel. This issue should be avoided since
by maintaining these suboptimal solutions, the evolutionary algorithm requires more
generations to find better solutions. Therefore, a so-called ‘repair’ step is required
for this case, which checks for double assignment on the processors and remaps one
thread to a free processor if available. Thus, in the example of Figure 6.7, repair
remaps T'hread3 and its corresponding memory objects to C'PU;. However, in some
cases more than one thread could be mapped to a processor when the number of

6.4. Evolutionary Algorithm 117

—_———————— —_———————— _—————————

{ CPUO | | CPUT I | CPU2 !
1 1 | 1 ! 1
Original (genel Thread 3 Thread 2 Thread 1
rigina L gene2 Thread 2 Thread 1 Thread 3
- 1 1 1 1 1 |
genel (Thread 3) Thread 3 Thread 1
Crossover L gene2 (Thread 2) Thread 1 Thread 2
Repair (genel " Thread 2 Thread 3 Thread 1
epa L gene2 Thread 3 Thread 1 Thread 2

Figure 6.8: Crossover of genes

threads is larger than the number of processors. In this case, the algorithin calculates
the maximum number of threads that are allowed to be mapped on a processor. For
this, the number of threads is divided by the number of CPUs. This indicates the
maximum number of threads on a CPU. If this division results with a rest, the
maximum number of threads is increased by one. This solution is possible since the
foregoing parallelization tool extracts threads with equal loads.

In addition to mutation, a crossover process can be performed. Here, two dif-
ferent mapping solutions (individuals) are considered, that are coded into so-called
‘genes’ During crossover, for each gene, a single random thread to processor mapping
is chosen to be exchanged between individuals, as exemplified in Figure 6.8. Origi-
nally, in genel, Thread2 was mapped to CPU; and in gene2, Thread3 was mapped
to CPU,y. In the crossover process, a remap of Thread3 to CPU; in genel and in
gene2 a remap of Thread2 to CPUs is performed. Now, a repair operation has to
be performed again, because this mapping causes invalid mapping solutions, since
Thread2 in gene2 and Thread3 in genel are mapped twice (shown in brackets).
In the example, a remap of Thread2 to the processor, where Thread3 was origi-
nally mapped to, is performed. Again, remapping repair is performed (for genel
and gene2). At the end, also all affected memory objects are remapped in order to
obtain a valid solution or individual, respectively.

The mutation and crossover functions, typically, generate new individuals, which
by design cover well the entire solution space. These new generated individuals are
passed to the fitness evaluation again. The design space exploration, including op-
timization and performance / energy estimation in a loop, is running until solutions
with a good fitness level have been found or until a maximum number of generations
is reached. The maximum number of generations can be specified by the designer
and should be dependent on the complexity of the application and the underlying
considered architecture. The designer can choose the best trade-off for the design
requirements within the generated solutions. An example for a set of generated
mapping solutions is shown in Figure 6.9 for the Fdge Detect 8§ benchmark. These
solutions were extracted by the Memory-Aware Multiobjective Mapping Optimiza-
tion Tool after 100 generations.

118 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

8,5

7,5

6,5

Runtime in ms

5,5

1150 1200 1250 1300 1350 1400 1450 1500
Energy in W

Figure 6.9: Generated solutions for the Edge Detect § benchmark

The evolutionary algorithm was implemented in PISA [84] and as underlying
multiobjective search algorithm, Strength Pareto Evolutionary Algorithm (SPEA2)
[115] is used.

In particular, EXPO is the central module of the evolutionary algorithm frame-
work, where individuals and their mutation /crossover process can be defined. As un-
derlying multiobjective search algorithm, Strength Pareto Evolutionary Algorithm
(SPEA2) [115] is used which communicates with EXPO via the PISA interface.

6.5 Evaluation

The experimental setup and evaluation environment is the same as for the ILP-
based memory-aware approach in Section 5.4.1. It is based on the same heteroge-
neous architecture illustrated in Figure 5.2, which is implemented in the MACCv2
Framework and also implemented for the cycle-accurate instruction set simulator
CoMET [16]. The parallelized benchmarks are described in Section 4.8,

6.5.1 Experimental Setup

For this evaluation, the parallelization tools and the Thread Model Eztraction Tool
were applied before the execution of the Memory-Aware Multiobjective Mapping
Optimization Tool. They provide the parallelized and synchronized source code as
well as the input for the Memory-Aware Multiobjective Mapping Optimization Tool,
i.e. application and architecture specification.

In order to show the improvements of the EA-based memory-aware mapping tool,

6.5. Evaluation 119

® State-of-the-art Pareto Frontier @ MAMMOT Pareto Frontier State-of-the-art Solutions ® MAMMOT Solutions

3.650

3.600

3.550 ® *
L]
3.500
I
3
£ °
[}
£ 3.450
p =)
[
>
o
3.400
3.350
g o o> ° o o o . °
° e o0 ° °) L4
° o '..0 °® ° g ooq, 8
3.300 o o o o ® 0 3o 00) o
L] ° [] ° L] Py []
o ©o® o %0 hd e ©
3.250
0 2.000 4.000 6.000 8.000 10.000
Energy in nJ

Figure 6.10: Generated solutions for the Spectral benchmark

we need an adequate comparison to other existing tools. However, a comparison to
tools mentioned in Section 2.4.3 is infeasible due to the different underlying appli-
cation models (e.g. process networks, data flow graphs), architecture specifications
(i.e., no memory hierarchy) and different benchmarks with unequal parallelization
of the benchmarks. To create a comparable reference, the EA-based memory-aware
mapping tool is compared to a DOL mapping optimization, which performs map-
ping of threads to processors without considering memories. Here, DOL was adapted
to have the same construction as the EA-based memory-aware mapping tool, i.e.
the same underlying evolutionary algorithm performing a multiobjective-aware opti-
mization for performance and energy and the same thread-based application model.
Like other mapping tools, DOL does not consider nor exploit the underlying mem-
ory hierarchy in its optimization models and objective functions. This is usually
the current practice in all mapping optimization tools from this class. In DOL, all
memory objects are mapped to the private memory of a processor (except for shared
memory objects). The output of the memory-aware and state-of-the-art optimiza-
tion tools is a set of mapping solutions. However, evolutionary algorithms generate
solutions randomly. Thus, the generated solutions are not deterministic. Executing
the evolutionary algorithm multiple times with the same parameters (number of
genes, generations, etc.), could produce different solutions. In order to compare the
two mapping optimizations, each evolutionary algorithm was executed with 100 gen-
erations starting with a population of 100 genes. Next, the two extreme points from
each Pareto frontier were selected and simulated with the cycle-accurate CoMET
simulator. These two (extreme) points represent the best solutions for each opti-
mization goal, i.e. one point contains the minimum energy consumption and the

120 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

Comparison Extreme Points
State-of-the-art @ MAMMOT State-of-the-art @ MAMMOT
1190 1.165
1185
1180 1160
1175
9 1170 9
3 3 1155
£ =
2 1165 :
£ 1160 E
5 S 1150
& 1155 &
1150
L1145 1.145
1.140
1135 1.140
2,00 2300 2400 2500 2600 27,00 28,00 2300 2350 2400 2450 2500 2550 26,00
Energy in Energy in W

Figure 6.11: Generated solutions for the H264-LBlock benchmark

other point the minimum runtime. Since these optimization goals stand in conflict
to each other, these two points differ. More clearly, a mapping solution is repre-
sented by a 2-tuple (x;,y;) with ¢ = 1,...,n and n solutions. The value z represents
the energy consumption and the value y represents the runtime. The best solution
concerning the systems energy consumption is represented by (Zin,y;). Further-
more, the solution representing the best solution concerning the systems runtime is
given by (2;,ymin). These two solutions are part of the Pareto frontier. If additional
Pareto optimal solutions exist (i.e. additional points within the Pareto frontier)
they usually range between these two extreme points. The selection of these two
extreme points and the corresponding simulation step were performed 25 times in
order to obtain convincing average values.

Figures 6.10 and 6.11 show the extracted solutions from the Memory-Aware
Multiobjective Mapping Optimization Tool for the benchmarks Spectral and H26/-
LBlock, respectively. Both figures illustrate all obtained solutions as well as the
extreme points for the state-of-the-art mapping and memory-aware mapping opti-
mization. These figures show that the Memory-Aware Multiobjective Mapping Opti-
mization Tool (MAMMOT) extracts more efficient points than the state-of-the-art

mapping.

6.5.2 Experimental results

This section compares the EA-based memory-aware mapping optimization with a
state-of-the-art mapping optimization, which does not consider the memory sub-
system. The following Figures represent the reduction that was obtained by the

6.5. Evaluation 121

Runtime W Energy

50
45
40
X 35
£
g30
525
520
815
3
10
5 I
0
Q DR
Q& N & & <\® & &0\ /\@ & \0 A QQ)\ (8’\ ’\”@ & & v“& & v
oY N RN RN \\9\0 %QQ\/\$\Q v &
Py S N @ & H Y g §
N R S S\ 22 X DV A Y v
& OO I & &
¥ &F & R

Figure 6.12: Optimization reduction achieved by the Memory-Aware Multiobjective
Mapping Optimization Tool for a homogeneous architecture

Memory-Aware Multiobjective Mapping Optimization Tool compared to state-of-the-
art mapping. The reduction is obtained by the extraction of the difference between
the two extreme points of state-of-the-art mapping and the memory-aware mapping.

Figure 6.12 shows this comparison for a homogeneous platform. The highest
reductions for energy consumption were obtained for the multiple parallelization of
the Fdge Detect benchmarks, i.e. Edge Detect (1T6) - T(16). Here, a reduction of
energy was obtained by up to 43%. The benchmarks ITR and H264-MBlock showed
also remarkable reduction in energy consumption by 38 to 41%. The best runtime
reduction was achieved for the H264-MBlock with 39% and IIR with 34%. Overall,
the system runtime was reduced by about 22% and the energy consumption was
reduced by about 27%.

Figure 6.13 presents the results for a heterogeneous architecture. Asin the homo-
geneous architecture, the largest benefit is obtained for the different parallelizations
of the Fdge Detect benchmarks as well as for ITR and H264-MBlock. The runtime
was optimized by up to 39% and the energy consumption by to 44%. As mentioned
in the last section, this large benefit is due to the fact that almost all memory ob-
jects of some benchmarks could be mapped to the faster and more energy-efficient
local scratchpad memories. JPEG2000 and Spectral gained benefits of 3% to 4.5%.
These benchmarks work primarily with shared data memory objects, which are not
allowed to be mapped to a higher memory level. However, the instruction code of
the threads could be mapped to scratchpad memories and gains some benefit. On
average, the Memory-Aware Multiobjective Mapping Optimization Tool optimized
the runtime by about 21% and the energy consumption by about 26%.

122 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

Runtime W Energy

%
N

Reduction in %
_ N N W W B BB U
U O U1 O U O Ul O

—
Ul O

S ¥ & & \@ @ &0\ O & FF S \&Q’\ \&q’\ /\@\ S &
NUEER(N N K o EEORIANEPARY Y 9 Qy
v A WV“ N FONN A N
$ C &L o & N Y ¥
§ $ & I NRY & H
o %b% %&o 8’3 &g RS

Figure 6.13: Optimization reduction achieved by the Memory-Aware Multiobjective
Mapping Optimization Tool for a heterogeneous architecture

6.5.2.1 Comparison against cache-based systems

This section presents a comparison between cache based and a scratchpad based
memory subsystem for the heterogeneous architecture that is described in Figure 5.2.
Thus, the level-1 memories are either caches or scratchpad memories. Contrary to
caches, the allocation of scratchpad memories has to be performed explicitly by
the designer. This step is already included in the Memory-Aware Multiobjective
Mapping Optimization Tool. The content of caches is loaded automatically. For this
reason, caches occupy more die and consume more energy compared to a scratchpad.
Please note, that the content of the caches can be exchanged dynamically during
runtime, while the content of the scratchpads is static in this comparison. The
loading of new content to memory usually results in an increase in runtime and
energy consumption.

Figure 6.14 illustrates the energy consumption and runtime for cache and scratch-
pad based systems. The base line is a state-of-the-art thread to processor mapping
without consideration of the memory subsystem. The memory-aware scratchpad
allocation is presented by the Memory-Aware Multiobjective Mapping Optimization
Tool, i.e. the evolutionary based optimization presented in this section. For most
benchmarks, the Memory-Aware Multiobjective Mapping Optimization Tool outper-
forms the cache-based systems. As mentioned, this can result from the higher energy
consumption of caches and from dynamic content exchange of memory objects dur-
ing runtime. For Edge Detect and partly for MPEGY, the cache based system gains
better results than the Memory-Aware Multiobjective Mapping Optimization Tool.

6.5. Evaluation 123

Runtime MAMMOT m Energy MAMMOT Runtime Cache W Energy Cache

2
0 |

N
o

Reduction in %
—
(O]

=
o

< o Q
S & § & & g
) NG ‘ & 9 \ S S ¢ V
Q L Q 45 § Q Q ¢ &
¥ QA N o ¢ S ¥ R 8
g ¢ R v
Q)OQ R

Figure 6.14: Comparison between Cache and the Memory-Aware Multiobjective
Mapping Optimization Tool optimization for a heterogeneous architecture

Here, the benchmark can have several hot spots. In this case, it could be more
efficient to dynamically change the memory content in order to consume less energy
or to speed-up the runtime, reespectively.

6.5.2.2 Runtime of the memory-aware optimization

This section presents the time that was required for the execution of the memory-
aware mapping optimization. Figure 6.15 illustrates the required time for the
memory-aware mapping algorithm for homogeneous systems. The average runtime
for compact thread graphs takes about 508 seconds up to 544 seconds. The average
runtime for detailed thread graphs is increased due to more complex thread graphs
for IIR and MPEG/. On the x-axis, the runtime is illustrated in seconds for an
AMD Opteron 2.46 GHz. On the y-axis, all benchmarks and the average over all
benchmarks is presented. WC Detail and AC Detail represent the runtime for a
detailed thread graph containing the worst-case (WC) or average-case (execution
time) of the underlying application benchmark. Thus, WC Compact and AC Com-
pact represent a compact thread graph which contains the worst and average-case,
respectively. The runtime represents the execution for the evolutionary algorithm
for 100 generations.

The required runtime for the memory-aware optimization for heterogeneous sys-
tems is presented in Figure 6.16 The more complex benchmarks are also time-
consuming for these platforms. Comparing the runtime for homogeneous and het-
erogeneous platforms, the runtime does not significantly differ for compact thread

124 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

B WC Detail mACDetail ®WC Compact B AC Compact

AVERAGE
Spectral

Mult

Mpeg4
LATNRM
Jpeg2000 (T10)
Jpeg2000 (T8)

Jpeg2000 (T6)

Jpeg2000

IIR

H264 Mblock
H264 Lblock

FIR

Edge Detect (T16)
Edge Detect (T12)
Edge Detect (T8)
Edge Detect (T6)
Edge Detect
Compress

Boundary Value

WIIIHN“MT["“»I“

ADPCM

[
=
o

100 1000 10000 100000 1000000 10000000
Time in Seconds

Figure 6.15: Runtime required for the memory-aware EA optimization - homoge-
neous architecture

graphs. For detailed thread graphs, it significantly differs for IR, Mult and MPEG/,
benchmarks. This is due to the fact that these benchmarks are more complex and
that their detailed thread graphs are also more complex since they contain more
thread nodes and parallel sections than their compact counterpart. This shows
that the memory-aware mapping optimization of these complex benchmarks is a
time-consuming task due to the huge solution space.

6.5.3 Conclusions

This section introduced a memory-aware multiobjective mapping optimization, which
considers MPSoC platforms with homogeneous and heterogeneous memory hierar-
chies. Since each application has different performance requirements, the optimiza-
tion exploits the underlying memory hierarchy in order to efficiently match appli-
cations requirements with architecture capabilities. To evaluate the memory-aware
mapping optimization, this approach is compared to a state-of-the-art mapping tool
that does not consider the memory hierarchy. The effectiveness of the memory-
aware mapping approach is presented for various benchmarks and we show that

6.5. Evaluation 125

B WC Detail mACDetail ®mWC Compact ™ AC Compact

Spectral

Mult

Mpeg4

LATNRM
Jpeg2000 (T10)
Jpeg2000 (T8)
Jpeg2000 (T6)
Jpeg2000

IR

H264 Mblock
H264 Lblock

FIR

Edge Detect (T16)
Edge Detect (T12)
Edge Detect (T8)
Edge Detect (T6)
Edge Detect
Compress

Boundary Value

W““"N““I]Illﬂ“”“

ADPCM

[
=
(=]
-
o
o

1000 10000 100000 1000000 10000000
Time in seconds

Figure 6.16: Runtime required for the memory-aware EA optimization - heteroge-
neous architecture

this tool outperforms state-of-the-art mapping. The evaluation was performed for a
homogeneous and a heterogeneous MPSoC platform. On a homogeneous platform,
the system runtime was reduced by about 22% and the energy consumption was
reduced by about 27%. On a heterogeneous platform, the system performance was
optimized by up to 21% and energy consumption by up to 26%. More reduction was
gained for benchmarks which contain many memory objects that can be mapped to
faster local memories.

The runtime of the memory-aware mapping tool lies by about 500 seconds. It
increases for complex benchmarks. Furthermore, the designer can choose to increase
the number of generations for individuals, i.e. searching for mapping solutions in
the design space. This should also result in a higher runtime for this optimization.

Furthermore, a comparison of a cache based heterogeneous system to our memory-
aware scratchpad based systems was performed for some benchmarks. The results
show that the scratchpad-based systems usually outperform the cache-based sys-
tems. This could result from the higher energy consumption and runtime due to
the additional die area of caches and dynamic loading of memory objects. Auto-
matically performing all design steps, the memory-aware mapping optimization tool

126 Chapter 6. Memory-Aware Multiobjective Mapping Optimization

flow can be used by designers to guide design decisions and to optimize energy and
performance early in the design of MPSoC systems.

CHAPTER 7

Summary and Future Work

Contents
7.1 Summary and Conclusion 127
7.2 Future Worko i 130
7.2.1 Memory-Aware Mapping 130
7.2.2 Thread Graph Extraction 131
7.2.3 Design Frameworks L. 132

7.1 Summary and Conclusion

This thesis presented a Thread Model Extraction Tool and two approaches for
memory-aware mapping optimization for homogeneous and heterogeneous embedded
multi-core systems. One approach handles single objective optimizations and the
second handles a multiobjective optimization. Both approaches reduce the systems
runtime and energy consumption remarkably. All approaches work in an automated
way and can be used within the MACCv2/MNEMEE tool flow. This alleviates the
work of the designer and reduces design time significantly.

Chapter 2 gives an overview over the different embedded application and archi-
tecture models in embedded design. We also describe the mapping problem and its
complexity. This includes the architecture and application model that is used in
this thesis. All related work is described at the end of Chapter 2. This includes
the mapping of memory objects to single core systems and multiprocessors system.
The mapping of threads to processors showed that many different approaches ex-
ist. Some of them were already implemented in well-known design frameworks. All
frameworks use different application and architecture models. A combined mapping
of threads to processors and memory objects to memories in multicore systems is a
new research field, which started to gain more attention in the last years.

The MNEMEE project is presented in Chapter 3. In this project, the MNEMEE
partners developed a framework for embedded system design with focus on mem-
ory optimization. All tools of this framework are described in this Chapter. The
framework starts with sequential C-code as input and performs parallelization, syn-
chronization and optimizations for mapping of threads to processors and memory
objects to memories. It is used as underlying infrastructure for implementing the
memory-aware mapping optimizations.

128 Chapter 7. Summary and Future Work

The Thread Model Extraction Tool extracts a flat thread graph from parallelized
and synchronized source code. Extracting thread graphs from source code was
already handled in other publications, but these approaches considered other un-
derlying systems and models. Thus, a problem description introduces the challenge
of thread graph extraction for our underlying thread and communication model. A
tool overview describes the single steps of the thread graph extraction approach.
All pre-processing steps of this tool were implemented by other MNEMEE partners.
Chapter 4.6. explains the actual thread graph extraction that is a part of this thesis.
All steps and information handling of the model extraction as well as the constraints
of this approach are discussed here. In addition, the extraction of architecture in-
formation is described. This is provided to the subsequent memory-aware mapping
approach. Evaluation shows that the thread graphs (or models) were properly ex-
tracted from the source code. It provides the extracted number of threads, thread
nodes, FIFO communication and parallel sections. Additionally, the designer is able
to choose between detailed and compact thread graph model. In a detailed thread
graph, all thread nodes and FIFO communications are unrolled when executed in
a loop. By this, the exact timing is represented in the thread graph. In a compact
model, the thread nodes and FIFO communications are not unrolled. Here, the
designer can choose if the execution costs should represent the average case costs
or (estimated) worst-case costs. The compact model suits better for the evaluation
of complex thread graphs and can thus reduce the design time for this particular
step. Furthermore, all benchmarks, which are also used in the next Chapters, are
described here.

The memory aware mapping optimization for single objectives is discussed in
Chapter 5. An ILP optimization for runtime and energy is presented which com-
bines the mapping of threads to processors and memory objects to memories. The
underlying model for runtime and energy estimation was chosen to be as precisely
as possible. The runtime consists of the execution time for all threads on the pro-
cessors and the access time for memory accesses. The access time for memories is
also modeled in detail including bus access time and differentiation between read
or write accesses and access width (byte, half-word, word). Additionally, the run-
time for FIFO communication is included. The optimization is also aware of the
memory type (i.e. instruction or data only memories) and maps only appropriate
memory objects to these memories. For the optimization of energy consumption,
the runtime model is included in order to obtain the proper cycles for idle and ac-
tive cycles of the processors. The energy consumption is also considered as detailed
as in the runtime optimization, i.e. energy consumption for bus accesses and read
or write accesses for different access width. In addition, the energy consumed for
FIFO communications is considered, as well as the idle energy of processors during
memory access. The experimental setup uses a heterogeneous MPSOc architecture,
which is related to an ARM big.little architecture and is thus very representative
for state-of-the-art architectures. The evaluation is validated by the cycle-accurate
COMET simulator. For the minimization of runtime, the experimental results show
a reduction of 1% to 38.5% in runtime compared to an optimization which maps

7.1. Summary and Conclusion 129

only thread to processors without considering memory mapping. The average re-
duction over all benchmarks is given by 21%. Next to the reduction in runtime,
it was observed that also the energy was reduced on average by 27% compared to
a non-memory-aware approach. The experimental results for the optimization of
energy consumption showed a reduction by 2.6% to 60% and an average reduction
of 28%. Compared to the non-memory-aware mapping optimization an additional
average reduction of 28% (homogeneous system) to 31% (heterogeneous system) was
observed in runtime. It is shown that the reduction is dependent on the benchmark
and the possibility of the utilization of its memory objects, i.e. how many memory
objects are available to be moved on a faster memory. Another factor is the number
of accesses to such memory objects and to shared memory objects. Accesses to
shared memory consume a lot of time and energy and cannot be optimized in this
case. However, a trade-off between energy and runtime is observed when optimiz-
ing for one of both optimization goals. The minimization of energy consumption
increases the overall runtime by 31% compared to the runtime based memory-aware
ILP optimization. Contrary, the energy is increased by 35% by the runtime based
ILP optimization compared to the energy based ILP optimization.

A multiobjective memory-aware mapping optimization is discussed in Chapter
6. An evolutionary algorithm reduces runtime and energy consumption, which are
conflictive objectives. The DOL framework is used as a basis framework for this
optimization. An application model that is based on threads and their memory
objects as well as an application model, which handles memories in more detail,
were integrated in this framework for this thesis. Additionally, the objectives for
the reduction for runtime and energy were implemented in DOL. The tool produces
genes (i.e. mapping solutions) which are evaluated and generated in a design space
exploration loop. This step evaluates the performance and energy consumption
with an analytical model. The evolutionary algorithm works as a black box opti-
mization, which generates new mapping solutions by crossover and mutation. As
in the ILP-optimization, the runtime and energy model in the evolutionary algo-
rithm is specified as detailed as possible including the differentiation of memory ac-
cesses (read/write), bus and FIFO communication accesses, etc. Since the mapping
problem is multiobjective, a set of mapping solutions is provided to the designer.
Furthermore, the designer can specify certain mappings (for threads to processors
and/or memory objects to memories). The solution is validated for a homogeneous
and heterogeneous platform in the cycle-accurate COMET simulator. Our approach
was compared to a state-of-the-art mapping tool that maps only threads to pro-
cessors without considering memory mapping. The experimental results showed a
reduction in runtime from about 3% to about 40%, with an average reduction of
21 to 22%. The energy consumption was reduced from about 4.5% up to about
44% with an average of 26 to 27%. Here, the reduction is also dependent on the
benchmark and the possibility to allocate its memory objects to faster and more
energy-efficient memories.

All presented optimization approaches can be used for homogeneous or hetero-
geneous platforms. Furthermore, a various set of multiple benchmarks, which rep-

130 Chapter 7. Summary and Future Work

resent a good average over complexity and utilization, are provided for input. Both,
homogeneous and heterogeneous parallelization (i.e. number of threads equal or
unequal to number of available processors in the system) is provided for evaluation.
These different benchmarks showed that the utilization can be highly dependent on
the individual benchmark. The most reduction in energy consumption and runtime
was observed for benchmarks, which contain many allocatable instructions and data
that can be mapped to the faster and more energy-efficient local memory. On the
other side, some benchmarks spent the most time accessing shared memory objects.
Therefore, little speed-up or energy reduction can be reached in these benchmarks.

Overall, the designer can choose an optimization according to the systems re-
quirements. Furthermore, the designer can perform required adaptions (predefined
mappings, detailed or compact thread graphs, etc.). The huge advantage is that
the framework is working in a fully automated way, providing all optimizations and
cycle-accurate validation to the designer. These optimizations can be used by de-
signers to guide design decisions and to optimize energy and performance early in the
design of MPSoC systems. Within the MNEMEE project, the industrial partners
were able to achieve a reduction in design time by up to 76% by using the overall
MNEMEE tool flow. This illustrates the effectiveness of automated optimization
tools within embedded system design.

7.2 Future Work

7.2.1 Memory-Aware Mapping

Several improvements or extensions are possible for the memory-aware mapping
tool.

For the memory-aware ILP optimization, a heuristic is required when more com-
plex benchmarks are considered or when multiple applications have to be run on a
homogeneous or heterogeneous architecture.

The ILP-based memory-aware mapping optimization for the reduction of energy
consumption could be improved by switching off processors in order to save energy.
A more detailed analysis should determine at which point of time it could be efficient
to switch off the processors. The analysis should also include the time and energy
consumption for the wake-up of the processors. Adding this requirement to the
optimization would increase the complexity. Nevertheless, it should be feasible to
integrate this constraint into a static memory-aware mapping optimization.

Another step for an extension of memory-aware mapping optimization would
be the integration of stack or heap data or large arrays into the memory mapping
of the memory-aware mapping optimization These kind of optimizations were al-
ready evaluated for scratchpad allocation in single-processor systems (as discussed
in Chapter 2.4.2). The integration of stack, heap and large arrays require a more
complex analysis of the applications memory requirements. In addition, it results
in a more complex optimization since e.g. for large arrays a proper splitting point
could be necessary. A splitting point (e.g. pointer) could also be required for stack

7.2. Future Work 131

or heap allocation.

Another challenge is the consideration of dynamic overlays for the allocation of
level-1 memories in the memory-aware mapping optimization. Target applications
should be complex benchmarks, which have a large portion of memory objects that
could be allocated to level-1 and/or level-2 memories. These applications usually
have several memory hotspots during their execution, which could be dynamically
allocated to a level-1 memory. For this optimization, a lifetime analysis of variables
is required, as well as the consideration of runtime overhead for the copy function
which exchanges the memory content during runtime.

The next challenge would be an integration of a dynamic thread and memory
mapping, i.e. the thread is mapped to another processor during runtime including
the mapping of all its non-shared memory objects to other memories. For this, a
lot of pre-processing could be required, which can be performed offline in order to
manage fast decisions during runtime. This could be an interesting scenario for
the concurrent execution of multiple benchmarks. State-of-the-art task to processor
mapping optimization already evaluate this kind of optimization. The key would be
the integration of memory mapping into this optimization.

The parallelization of sequential code could be combined with the mapping pro-
cess. Dependent on the number of processors and the type of processors, the paral-
lelization tool decides about the generations of threads (i.e. number and workload).
This is already performed for homogeneous architecture, as the parallelization opti-
mization in the MNEMEE toolflow [94]. If the parallelization analysis is extended
to include the memory hierarchy in the optimization, it could eventually generate
threads, which fit to the processor and memory resources in the architecture. A
starting point could be to parallelize for a given homogeneous platform with homo-
geneous processors and heterogeneous memories (per processor). This optimization
could be extended to a heterogeneous architecture with different processors and
memory sizes on different levels. This optimization could be provided for complex
benchmarks or for systems, which execute multiple benchmarks. For this, the par-
allelization optimization should be able to extract heterogeneous threads. However,
extengive analysis would be required in order to decide if this kind of optimization
is feasible and efficient.

Another problem, which showed up in all optimizations, are benchmarks that
spent the most time accessing shared memory objects. Only little speed-up or
energy reduction can be reached for these benchmarks. An idea could be to combine
parallelization with a memory optimization, which splits up data that is not accessed
at the same time. This combination could be used with a memory-aware mapping.

7.2.2 Thread Graph Extraction

This tool is tailored towards the MNEMEE tool flow and can be used only inside
this tool flow. A tool of this class always has to be tailored towards some API
for parallelization and synchronization (e.g. Open-MP, MPI, MPMH). It could be
improved by handling more parallelization and synchronization APIs. It has to be

132 Chapter 7. Summary and Future Work

extended to handle more profiling and analysis. By this, the thread graph extraction
would have to be improved to handle a more common kind of thread graph. By
this, it could be used as a common tool for other optimizations.

7.2.3 Design Frameworks

Finally, the author would like to discuss the usage of design frameworks in research.
Nowadays in research, many basis tools are required in order to have the possibility
to concentrate on research challenges and new optimizations. A lot of work is re-
quired for pre-processing or post-processing steps (e.g. setting up a good simulation
environment for a meaningful evaluation of an optimization). Thus, the portion or
percentage of work that has been investigated for research has been shifted. De-
pending on the optimization, more and more work is required for the optimization
environment. Furthermore, a researcher has to face and choose between many stan-
dards, as for example communication protocols (openMP, MPI, etc.), application
models (process networks, thread model, etc.) or architecture models (homogeneous
or heterogeneous systems, network on chips, massive parallel, etc.). It is not always
easy to choose between the models. In addition, the evaluation of several models
for an optimization seems an unreachable request.

Recent research started to focus on building up design frameworks for embedded
system design as described in Chapter 2.4.5 and as developed in the MNEMEE
project. These frameworks are urgently required for the development of new and
complex optimizations in research. In many cases, they build up the basis for them.
A researcher who would like to develop an optimization, which requires many pre-
processing steps, could end up in the development of months to years in order to
obtain the desired pre-processing. Usually, this pre-work will not be honored in
his/her thesis or is not utilizable for research respectively. As an example: The
author of this thesis would had to implement parallelization, synchronization and
post-processing steps (setup of cycle-accurate simulation environment including OS)
in order to have the possibility to develop a memory-aware mapping optimization.
In the MNEMEE project, several persons were required for this setup. They worked
for about 2 years on this framework.

Therefore, design frameworks are very welcome. Nevertheless, it is still a difficult
situation for new researchers. Since several application and architecture models
exist, it is not always possible to find a proper underlying framework. Research
started to go into the right direction by developing these kind of frameworks, but
there is still a lot of work. One problem is that optimizations cannot be compared to
each other due to different underlying application, architecture models and different
benchmarks.

Ideally, a design framework should offer the possibility to

e provide several application and communication models

e dependent on the underlying models, parallelization and synchronization is
provided

7.2. Future Work 133

e provide interfaces and tool templates for the integration of new optimization
into the tool flow

e provide profiling and analysis for a broad mass of architecture and application
information extraction

e provide the possibility to choose between fine-grained and coarse-grained de-
sign space exploration (e.g. cycle-accurate or high-level) or analysis model
(e.g. worst case model or average case model)

e provide the possibility to choose an architecture or build up an own architec-
ture where all elements as processors memories, buses etc. can be build up
easily

e provide the possibility to choose hardware partitioning

e benchmarks and a simulation environment for systems, which execute more
than one benchmark at a time

Of course, it should be discussed if it is even feasible to develop such an ideal
framework. However, some skeleton has to be provided where the integration of
optimization is easier to manage in order to give researcher a better chance for
developing optimizations that are more complex. A good starting point for this is
the MACCv2 [14] framework. Nowadays, different design frameworks with different
application model exist. There should be a possibility to compare the results of
different frameworks by setting up some basis (e.g. the same benchmarks). This kind
of discussion already started in some research community (MAP2MPSOC workshop
2011/2012 - internal discussion [116]).

1]

[6]

7]

18]

9]

[10]

[11]

[12]

Bibliography

H. E. Schaefer, Nanoscience: The Science of the Small in Physics, Engineer-
ing, Chemistry, Biology and Medicine (Google eBook). Springer, 2010. (Cited
on page 1.)

Intel, “The Intel Xeon-Phi Coprocessor,” March 2016. (Cited on page 1.)

G. Moore, “Cramming More Components Onto Integrated Circuits,” Proceed-
ings of the IEEFE, vol. 86, no. 1, pp. 82-85, 1998. (Cited on page 1.)

International Technology Roadmap for Semiconductors - ITRS, July 2013.
(Cited on page 1.)

International Technology Roadmap for Semiconductors - ITRS, “More Moore
Roadmap - ITRS 2.0 White Paper,” March 2016. (Cited on page 1.)

P. Marwedel, Embedded Systems Design - Embedded Systems Foundations of
Cyber-Physical Systems. Springer, 2011. (Cited on pages 2, 11, 15, 16, 17,
20, 21, 22, 23, 41 and 147.)

E. A. Lee, “Cyber Physical Systems: Design Challenges,” in International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), May 2008, invited Paper. [Ounline|. Available:
http://chess.eecs.berkeley.edu/pubs/427.html (Cited on page 2.)

K. Hoi-Jun Yoo and J. K. K. Lee, Low-Power NoC for High-Performance SoC
Design. CRC PR INC, 2008. (Cited on page 3.)

P. Machanick, “Approaches to Addressing the Memory Wall,” School of IT
and Electrical Engineering, Tech. Rep., 2002. (Cited on page 4.)

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory: Design Alternative for Cache On-Chip Memory in
Embedded Systems,” in Proceedings of the tenth international symposium on
Hardware/software codesign, 2002. (Cited on page 5.)

Texas Instruments, “Omap 5912”7 March 2016. (Cited on pages 5, 6, 13
and 147.)

A. Mallik, S. Mamagkakis, C. Baloukas, L. Papadopoulos, D. Soudris, S. Stu-
ijk, O. Jovanovic, F. Schmoll, D. Cordes, R. Pyka, P. Marwedel, F. Capman,
S. Collet, N. Mitas, and D. Kritharidis, “MNEMEE - An Automated Toolflow
for Parallelization and Memory Management in MPSoC Platforms,” 48th De-
sign Automation Conference (DAC), San Diego, California, USA, June 2011.
(Cited on pages 9, 10, 46 and 54.)

http://chess.eecs.berkeley.edu/pubs/427.html

136

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]
23]
[24]
[25]

[26]

C. Baloukas, L. Papadopoulos, D. Soudris, S. Stuijk, O. Jovanovic, F. Schmoll,
D. Cordes, R. Pyka, A. Mallik, S. Mamagkakis, F. Capman, S. Collet, N. Mi-
tas, and D. Kritharidis, “Mapping Embedded Applications on MPSoCs: The
MNEMEE Approach,” in Proceedings of the 2010 IEEE Annual Symposium
on VLSI, July 2010, pp. 512-517. (Cited on pages 9, 10, 46 and 54.)

R. Pyka, F. Klein, P. Marwedel, and S. Mamagkakis, “Versatile System-Level
Memory-Aware Platform Description Approach for Embedded MPSoCs,” in
Proceedings of the ACM SIGPLAN/SIGBED 2010 Conference on Languages,
Compilers, and Tools for Embedded Systems, 2010. (Cited on pages 9, 47, 48,
70, 133 and 147.)

0. Jovanovic, N. Kneuper, P. Marwedel, and M. Engel, “ILP-based Memory-
Aware Mapping Optimization for MPSoCs,” in The 10th IEEE/IFIP Interna-

tional Conference on Embedded and Ubiquitous Computing, Paphos, Cyprus,
December 2012. (Cited on page 10.)

CoMET, “Synopsys, Inc.” May 2016. (Cited on pages 10, 94 and 118.)

0. Jovanovic, P. Marwedel, 1. Bacivarov, and L. Thiele, “MAMOT: Memory-
Aware Mapping Optimization Tool for MPSoC,” in 15th Furomicro Conference
on Digital System Design (DSD 2012), September 2012. (Cited on page 10.)

L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping Applications to
Tiled Multiprocessor Embedded Systems,” in Proceedings of the 7th Inter-
national Conference on Application of Concurrency to System Design, 2007.
(Cited on pages 10, 39, 41 and 106.)

W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip (MP-
SoC) Technology,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 27, pp. 1701-1713, 2008. (Cited on pages 12
and 13.)

Samsung, “big. LITTLE Technology,” March 2016. (Cited on pages 14 and 93.)

Samsung, “big.LITTLE Technology: The Future of Mobile,” March 2016.
(Cited on pages 14 and 93.)

Samsung, “Exynos 5 Octa,” March 2016. (Cited on page 14.)

Samsung, “Exynos 5420,” March 2016. (Cited on page 14.)

Samsung, “Exynos 5410 Development Board,” March 2016. (Cited on page 14.)
Samsung, “Exynos 8 Octa,” March 2016. (Cited on page 14.)

Qualcomm Technologies, Inc., “Snapdragon 808 Processor,” March 2016.
(Cited on page 14.)

Bibliography 137

[27]

28]

[29]

[30]

31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Qualcomm Technologies, Inc., “Snapdragon 810 Processor,” March 2016.
(Cited on page 14.)

NVIDIA Corporation, “NVIDIA TEGRA X1,” March 2016. (Cited on
page 14.)

V-Model XT Authors, December 2012. (Cited on page 16.)

D. D. Gajski and R. Kuhn, “Guest Editor’s Introduction: New VLSI Tools,”
IEEE Computer, December 1983. (Cited on page 16.)

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufmann, 1990. (Cited on pages 17
and 19.)

G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” in
Information processing, Stockholm, Sweden, August 1974, pp. 471-475. (Cited
on page 21.)

E. A. Lee and T. M. Parks, “Dataflow Process Networks,” in Proceedings of
the IEEE. Kluwer Academic Publishers, 1995, vol. 83, pp. 773-799. (Cited
on page 21.)

M. Geilen and T. Basten, “Requirements on the Execution of Kahn Process
Networks,” in Proceedings of the 12th European conference on Programming,
2003, pp. 319-334. (Cited on page 21.)

E. Lee and D. Messerschmitt, “Synchronous Data Flow,” Proceedings of the
IEEE, vol. 75, no. 9, pp. 1235 — 1245, September 1987. (Cited on page 21.)

C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, Darmstadt
University of Technology, Germany, 1962. (Cited on page 21.)

OpenMP, “The OpenMP ARB,” May 2016. (Cited on page 22.)

H. Yang and S. Ha, “Pipelined Data Parallel Task Mapping/Scheduling Tech-
nique for MPSoC,” in Proceedings of the Conference on Design, Automation
and Test in Europe, 2009, pp. 69-74. (Cited on page 26.)

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory: Design Alternative for Cache On-Chip Memory in
Embedded Systems,” in Proceedings of the tenth international symposium on
Hardware/software codesign, 2002, pp. 73-78. (Cited on page 28.)

S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning Program and
Data Objects to Scratchpad for Energy Reduction,” in Proceedings of the con-
ference on Design, automation and test in Europe, 2002. (Cited on pages 28,
32 and 94.)

138

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

M. Verma, S. Steinke, and P. Marwedel, “Data Partitioning for Maximal
Scratchpad Usage,” in ASPDAC 2003, January 2003. (Cited on pages 28
and 32.)

M. Verma, L. Wehmeyer, and P. Marwedel, “Dynamic Overlay of
Scratchpad Memory for Energy Minimization,” in Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, 2004, pp. 104-109. (Cited on pages 29 and 32.)

M. Verma, L. Wehmeyer, and P. Marwedel, “Efficient scratchpad allocation
algorithms for energy constrained embedded systems,” in Proceedings of the
Third international conference on Power - Aware Computer Systems, 2003,
pp. 41-56. (Cited on pages 29 and 32.)

M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and P. Marwedel, “Scratchpad
Sharing Strategies for Multiprocess Embedded Systems: A First Approach,”
in IEEE 8rd Workshop on Embedded System for Real-Time Multimedia (ES-
TIMedia), 2005, pp. 115-120. (Cited on pages 29 and 32.)

S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and
P. Marwedel, “Reducing Energy Consumption by Dynamic Copying of Instruc-
tions onto Onchip Memory,” in Proceedings of the 15th international sympo-
sium on System Synthesis, 2002, pp. 213-218. (Cited on pages 29 and 32.)

”

R. A. Ravindran, P. D. Nagarkar, G. S. Dasika, E. D. Marsman, R. M. Senger,
S. A. Mahlke, and R. B. Brown, “Compiler Managed Dynamic Instruction
Placement in a Low-Power Code Cache,” in Proceedings of the international
symposium on Code generation and optimization, 2005, pp. 179-190. (Cited
on pages 29 and 32.)

O. Avissar, R. Barua, and D. Stewart, “Heterogeneous Memory Management
for Embedded Systems,” in Proceedings of the 2001 international conference on
Compilers, architecture, and synthesis for embedded systems, 2001, pp. 34-43.
(Cited on pages 29 and 32.)

M. Verma, L. Wehmeyer, and P. Marwedel, “Cache-Aware Scratchpad-
Allocation Algorithms for Energy-Constrained Embedded Systems,” IEFE
Trans. on CAD of Integrated Circuits and System (TCAD), vol. 25, no. 10,
pp. 20352051, 2006. (Cited on pages 30 and 32.)

S. Udayakumaran and R. Barua, “Compiler-Decided Dynamic Memory Allo-
cation for Scratch-Pad Based Embedded Systems,” in Proceedings of the 2003
international conference on Compilers, architecture and synthesis for embed-
ded systems, 2003, pp. 276-286. (Cited on pages 30 and 32.)

A. Dominguez, S. Udayakumaran, and R. Barua, “Heap Data Allocation to
Scratch-Pad Memory in Embedded Systems,” J. Embedded Comput., vol. 1,
no. 4, pp. 521-540, 2005. (Cited on pages 30 and 32.)

Bibliography 139

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

R. Pyka, C. Fassbach, M. Verma, H. Falk, and P. Marwedel, “Operating Sys-
tem Integrated Energy Aware Scratchpad Allocation Strategies for Multipro-
cess Applications,” in 10th International Workshop on Software & Compil-
ers for Embedded Systems (SCOPES), 2007, pp. 41-50. (Cited on pages 30
and 32.)

R. Szymanek, F. Catthoor, and K. Kuchcinski, “Data Assignment and Ac-
cess Scheduling Exploration for Multi-Layer Memory Architectures,” in IEFE
Symposium on Embedded Systems for Real-Time Multimedia, 2004. (Cited on
page 31.)

F. Angiolini, L. Benini, and A. Caprara, “An Efficient Profile-Based Algorithm
for Scratchpad Memory Partitioning,” Trans. Comp.-Aided Des. Integ. Cir.
Sys., vol. 24, no. 11, pp. 1660-1676, 2006. (Cited on page 31.)

A. Marongiu and L. Benini, “Efficient OpenMP Support and Extensions for
MPSoCs with Explicitly Managed Memory Hierarchy,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 2009, pp. 809-814.
(Cited on page 33.)

A. Marongiu and L. Benini, “An OpenMP Compiler for Efficient Use of Dis-
tributed Scratchpad Memory in MPSoCs,” IEEE Trans. Comput., vol. 61,
no. 2, pp. 222-236, 2012. (Cited on page 33.)

P. Francesco, P. Antonio, and P. Marchal, “Flexible Hardware/Software Sup-
port for Message Passing on a Distributed Shared Memory Architecture,” in
Proceedings of the conference on Design, Automation and Test in Furope -
Volume 2, 2005, pp. 736-741. (Cited on page 33.)

W. Che, A. Panda, and K. S. Chatha, “Compilation of Stream Programs for
Multicore Processors that Incorporate Scratchpad Memories,” in Proceedings

of the Conference on Design, Automation and Test in Furope, 2010, pp. 1118-
1123. (Cited on page 33.)

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy, “Introduction to the Cell Multiprocessor,” IBM Journal of Research
and Development, vol. 49, no. 4/5, pp. 589-604, 2005. (Cited on page 33.)

M. Kandemir, I. Kadayif, A. Choudhary, J. Ramanujam, and I. Kolcu,
“Compiler-Directed Scratch Pad Memory Optimization for Embedded Mul-

tiprocessors,” IEFEE Trans. Very Large Scale Integr. Syst., vol. 12, no. 3, pp.
281-287, 2004. (Cited on page 34.)

L. A. D. Bathen, N. D. Dutt, D. Shin, and S.-S. Lim, “SPMVisor: Dy-
namic Scratchpad Memory Virtualization for Secure, Low Power, and High
Performance Distributed On-Chip Memories,” in Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, 2011, pp. 79-88. (Cited on page 34.)

140

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

L. A. Bathen and N. Dutt, “HaVOC: A Hybrid Memory-Aware Virtualization
Layer for On-Chip Distributed ScratchPad and Non-Volatile Memories,” in
Proceedings of the 49th Annual Design Automation Conference, 2012, pp. 447—
452. (Cited on page 34.)

G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architecture of the 3D
Stacked MRAM L2 Cache for CMPs,” in HPCA, 2009, pp. 239-249. (Cited
on page 34.)

J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Towards Energy
Efficient Hybrid On-Chip Scratch Pad Memory with Non-Volatile Memory,”
in Proceedings of the conference on Design, Automation and Test in Europe,
2011, pp. 746-751. (Cited on page 34.)

L. Zhang, M. Qiu, W.-C. Tseng, and E. H.-M. Sha, “Variable Partitioning and
Scheduling for MPSoC with Virtually Shared Scratch Pad Memory,” J. Signal
Process. Syst., vol. 58, no. 2, pp. 247-265, 2010. (Cited on page 34.)

I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt, “Multiprocessor System-
on-Chip Data Reuse Analysis for Exploring Customized Memory Hierarchies,”
in Proceedings of the 43rd annual Design Automation Conference, 2006, pp.
49-52. (Cited on page 35.)

V. Suhendra, A. Roychoudhury, and T. Mitra, “Scratchpad Allocation for Con-
current Embedded Software,” ACM Transactions on Programming Languages
and Systems, vol. 32, no. 4, pp. 13:1-13:47, 2010. (Cited on page 35.)

A. Goens, J. Castrillon, M. Odendahl, and R. Leupers, “An Optimal Alloca-
tion of Memory Buffers for Complex Multicore Platforms,” Journal of Systems
Architecture, vol. 66-67, pp. 69-83, May 2016. (Cited on page 35.)

D. Wu, B. M. Al-Hashimi, and P. Eles, “Scheduling and Mapping of Con-
ditional Task Graphs for the Synthesis of Low Power Embedded Systems,”
in Proceedings of the conference on Design, Automation and Test in Europe,

2003. (Cited on page 36.)

S. Manolache, P. Eles, and Z. Peng, “Task Mapping and Priority Assign-
ment for Soft Real-Time Applications under Deadline Miss Ratio Constraints,”
ACM Transactions on Embedded Computing Systems, vol. 7, pp. 19:1-19:35,
January 2008. (Cited on page 36.)

E. W. Briao, D. Barcelos, and F. R. Wagner, “Dynamic Task Allocation Strate-
gies in MPSoC for Soft Real-Time Applications,” in Proceedings of the confer-
ence on Design, Automation and Test in Europe, 2008. (Cited on page 36.)

M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-Efficient Mapping and
Scheduling for DVS Enabled Distributed Embedded Systems,” in Proceedings

Bibliography 141

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

of the conference on Design, Automation and Test in Europe, 2002. (Cited on
page 36.)

A. J. Page, T. M. Keane, and T. J. Naughton, “Multi-Heuristic Dynamic Task
Allocation using Genetic Algorithms in a Heterogeneous Distributed Systems,”
J. Parallel Distrib. Comput., vol. 70, no. 7, pp. 758-766, 2010. (Cited on
page 36.)

B. Arafeh, K. Day, and A. Touzene, “A Multilevel Partitioning Approach for
Efficient Tasks Allocation in Heterogeneous Distributed Systems,” J. Syst.
Archit., vol. 54, no. 5, pp. 530-548, 2008. (Cited on page 36.)

F. Zamfirache, M. Frincu, and D. Zaharie, “Population-Based Metaheuristics
for Tasks Scheduling in Heterogeneous Distributed Systems,” in Proceedings
of the Tth international conference on Numerical methods and applications,
2011, pp. 321-328. (Cited on page 36.)

S. Ha, “Model-Based Programming Environment of Embedded Software for
MPSoC,” in Proceedings of the 2007 Asia and South Pacific Design Automa-
tion Conference. TEEE, 2007, pp. 330-335. (Cited on pages 36, 41 and 106.)

A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and
J. Teich, “Flectronic System-level Synthesis Methodologies,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1517-1530, October 2009. (Cited on pages 37 and 38.)

H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. F. Deprettere, “Daedalus: Toward Composable Multi-

media MPSoC Design,” in Proceedings of the 45th Annual Design Automation
Conference, 2008, pp. 574-579. (Cited on pages 37, 41 and 106.)

S. Verdoolaege, H. Nikolov, and T. Stefanov, “PN: A Tool for Improved Deriva-
tion of Process Networks,” EURASIP J. Embedded Syst., vol. 2007, no. 1, pp.
19-19, January 2007. (Cited on page 37.)

C. Erbas, S. Cerav-erbas, and A. D. Pimentel, “Multiobjective Optimization
and Evolutionary Algorithms for the Application Mapping Problem in Multi-
processor System-on-Chip Design,” IEEE Transactions on Fvolutionary Com-
putation, pp. 358-374, 2006. (Cited on page 37.)

M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Polstra,
and E. F. Deprettere, “A Framework for Rapid System-Level Exploration,
Synthesis, and Programming of Multimedia MP-SoCs,” in Proceedings of the
5th IEEE/ACM international conference on Hardware/software codesign and

system synthesis, 2007, pp. 9-14. (Cited on pages 38 and 147.)

J. Keinert, M. Streubner, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “SystemCoDesigner, an automatic ESL synthesis

142

Bibliography

[82]

[33]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

approach by design space exploration and behavioral synthesis for streaming
applications,” ACM Transactions on Design Automation of Electronic Sys-
tems, vol. 14, no. 1, pp. 1-23, January 2009. (Cited on page 38.)

Forte Cynthesizer, “Forte Design Systems,” February 2013. (Cited on page 39.)

E. Zitzler and L. Thiele, “Multiobjective Evolutionary lgorithms: A Compar-
ative Case Study and the Strength Pareto Approach,” IEEE Transactions on
Evolutionary Computation, vol. 3, no. 4, November 1999. (Cited on page 40.)

S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA: a Platform and
Programming Language Independent Interface for Search Algorithms,” in Pro-
ceedings of the 2nd international conference on Evolutionary multi-criterion
optimization, 2003. (Cited on pages 40, 106 and 118.)

L. Thiele, S. Chakraborty, M. Gries, and S. Kuenzli, “Design Space Explo-

?

ration of Network Processor Architectures,” in In Network Processor Design:
Issues and Practices, Volume 1. Morgan Kaufmann Publishers, 2002, pp.

30-41. (Cited on page 40.)

C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith, “SystemCoDesigner:
Automatic Design Space Exploration and Rapid Prototyping from Behavioral
Models,” in ACM Transactions on Design Automation of Electronic Systems,
2008. (Cited on pages 41 and 106.)

M. M. Bagkaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic Data Movement and Compu-
tation Mapping for Multi-Level Parallel Architectures with Explicitly Man-
aged Memories,” in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, 2008, pp. 1-10. (Cited on
page 41.)

R. Szymanek and K. Kuchcinski, “Task Assignment and Scheduling under
Memory Constraints,” in FUROMICRO Conference on Software Engineering
and Advanced Applications, 2000. (Cited on pages 41, 42 and 43.)

R. Szymanek and K. Kuchcinski, “A Constructive Algorithm for Memory-
Aware Task Assignment and Scheduling,” in Proceedings of the 9th interna-
tional symposium on Hardware/software codesign, 2001. (Cited on pages 42
and 43.)

R. Szymanek and K. Krzysztof, “Partial Task Assignment of Task Graphs
under Heterogeneous Resource Constraints,” in Proceedings of the 40th annual
Design Automation Conference, 2003. (Cited on pages 42 and 43.)

V. Suhendra, C. Raghavan, and T. Mitra, “Integrated Scratchpad Memory
Optimization and Task Scheduling for MPSoC Architectures,” in Proceedings

Bibliography 143

[92]

(93]

[94]

[95]

[96]

[97]
98]

[99]

[100]

[101]

of the 2006 international conference on Compilers, architecture and synthesis

for embedded systems, 2006. (Cited on pages 43, 80 and 88.)

Y. Kim, J. Lee, A. Shrivastava, J. Yoon, and Y. Paek, “Memory-Aware Ap-
plication Mapping on Coarse-grained Reconfigurable Arrays,” in Proceedings
of the 5th International Conference on High Performance Embedded Architec-
tures and Compilers, 2010, pp. 171-185. (Cited on page 43.)

C. Baloukas, J. L. Risco-Martin, D. Atienza, C. Poucet, L. Papadopoulos,
S. Mamagkakis, D. Soudris, J. Ignacio Hidalgo, F. Catthoor, and J. Lan-
chares, “Optimization Methodology of Dynamic Data Structures Based on
Genetic Algorithms for Multimedia Embedded Systems,” Journal of Systems
and Software, vol. 82, no. 4, pp. 590-602, April 2009. (Cited on page 48.)

D. Cordes, P. Marwedel, and A. Mallik, “ Automatic Parallelization of Embed-
ded Software Using Hierarchical Task Graphs and Integer Linear Program-
ming,” in Proceedings of the 8th IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 2010, pp. 267-276. (Cited
on pages 49, 50, 94, 131 and 147.)

Y. Tosifidis, A. Mallik, S. Mamagkakis, E. De Greef, A. Bartzas, D. Soudris,
and F. Catthoor, “A Framework for Automatic Parallelization, Static and
Dynamic Memory Optimization in MPSoC platforms,” in Proceedings of the
47th Design Automation Conference, 2010, pp. 549-554. (Cited on page 49.)

S. Stuijk, M. Geilen, and T. Basten, “A Predictable Multiprocessor Design
Flow for Streaming Applications with Dynamic Behaviour,” in Digital Sys-
tem Design: Architectures, Methods and Tools (DSD), 2010 18th Euromicro
Conference on, 2010, pp. 548-555. (Cited on page 52.)

“OMAP-L137 Reference Manual,” April 2013. (Cited on page 53.)
“MSC8144 Reference Manual,” April 2013. (Cited on page 53.)

M. D. Dikaiakos, A. Rogers, and K. Steiglitz, “FAST: A Functional Algorithm
Simulation Testbed,” in In International Workshop on Modelling, Analysis and

Stmulation of Computer and Telecommunication Systems, 1994, pp. 142-146.
(Cited on pages 56 and 58.)

M. Cosnard and M. Loi, “Automatic Task Graph Generation Techniques,” in
Proceedings of the 28th Hawaii International Conference on System Sciences,
1995, pp. 113-. (Cited on pages 56, 57 and 58.)

V. S. Adve and R. Sakellariou, “Compiler Synthesis of Task Graphs for Paral-
lel Program Performance Prediction,” in Proceedings of the 13th International

Workshop on Languages and Compilers for Parallel Computing-Revised Pa-
pers, 2001, pp. 208-226. (Cited on pages 56 and 57.)

144

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]
[108]
[109]

[110]

[111]

[112]
[113]

[114]

K. S. Vallerio and N. K. Jha, “Task Graph Extraction for Embedded Sys-
tem Synthesis,” in Proceedings of the 16th International Conference on VLSI
Design, 2003. (Cited on pages 56, 59 and 60.)

E. Saad, M. El Adawy, H. A. Keshk, and S. Habashy, “Task Graph Genera-
tion,” in Radio Science Conference, Proceedings of the Twenty Third National,
vol. 0, 2006, pp. 1-9. (Cited on pages 56, 59 and 60.)

R. Namballa and N. R. A. Ejnioui, “Control and Data Flow Graph Extraction
for High-Level Synthesis,” in VLSI, 2004. Proceedings. IEEE Computer society
Annual Symposium on, 2004, pp. 187-192. (Cited on page 60.)

K. Ganeshpure and S. Kundu, “On Run Time Task Graph Extraction of SoC,”
in SoC Design Conference (ISOCC), 2010 International, 2010, pp. 380-383.
(Cited on page 60.)

R. Baert, E. Brockmeyer, S. Wuytack, and T. J. Ashby, “Exploring Paral-
lelizations of Applications for MPSoC Platforms using MPA.” in Proceedings
of the conference on Design, Automation and Test in Europe, 2009. (Cited on
pages 61 and 94.)

yWorks, “yEd Graph Editor,” May 2016. (Cited on pages 68 and 72.)
C. G. Lee, “UTDSP Benchmark Suite,” February 2013. (Cited on page 70.)

S. H.-e. Peng, “UTDSP, a VLIW Programmable DSP Processor,” Master’s
thesis, University of Toronto, Canada, 2000. (Cited on page 70.)

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Work-
load Performance,” in Proceedings of the 31st annual international symposium
on Computer architecture. TEEE Computer Society, 2004, pp. 64-75. (Cited
on page 93.)

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Pro-
cessor Power Reduction,” in Proceedings of the 36th annual IEEE/ACM In-
ternational Symposium on Microarchitecture. TEEE Computer Society, 2003,
p. 81. (Cited on page 93.)

CPLEX Optimizer, “IBM Corporation,” May 2016. (Cited on page 94.)

J. H. A.S. Thoziyoor, N. Muralimanohar and N. P. Jouppi, “Technical Report
HPL-2008-20, CACTI 5.1, HP Laboratories, 2008,” May 2016. (Cited on
page 94.)

W. Haid, M. Keller, K. Huang, [. Bacivarov, and L. Thiele, “Generation
and Calibration of Compositional Performance Analysis Models for Multi-
Processor Systems,” in Proceedings of the 9th international conference on Sys-
tems, architectures, modeling and simulation, 2009. (Cited on page 106.)

Bibliography 145

[115] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength

7 in Evolution-

pareto evolutionary algorithm for multiobjective optimization,
ary Methods for Design Optimization and Control with Applications to Indus-

trial Problems, 2001. (Cited on page 118.)

[116] Workshop on Mapping of Applications to MPSoCs, June 2012. (Cited on
page 133.)

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1
5.2
9.3
5.4

2.9

List of Figures

ARM Cortex-AB7 6
TI Omap 5912 - Functional Diagram [11]. 13
V-model (rotated standard view) [6] 15
Gajski-Kuhn Y-charto o 16
Design flow from Marwedel [6] 17
Shared Memory Architecture (UMA) 18
Shared Memory Architecture (NUMA) 18
Distributed Memory Architecture 19
Hybrid Distributed Shared Memory Architecture 19
Overview over MOCs and languages considered [6] 23
Heterogeneous MPSoC architecture with multi-level memory hierarchy 24
Thread-based application model 25
Task graph including FIFO communication 26
The Daedalus Design Framework [80] 38
SystemCoDesigner Design Flow 39
The MNEMEE Toolflow 46
The Routing Model within MACCv2 [14] 48
The Parallelization Tool [94] 50
Compact and detailed version of a thread model 61
Tool flow overview for thread graph extraction 63
Required time for the thread graph extraction 74
Thread Graph for the Edge Detect T8 benchmark with 8 threads in

a parallel section (compact) L., 75
Thread Graph for the 11264 Lblock benchmark containing FIFOs

(compact and detailed version) oL 75
Thread Graph for the Spectral benchmark containing FIFOs (detailed

VETSIOI) . . . o e 76
Thread Graph for the H264 Mblock benchmark containing FIFOs

(compact and detailed version) L. 77
Homogeneous MPSoC Architecture for Evaluation 92
Heterogeneous MPSoC Architecture for Evaluation 93
Reduction in runtime and energy achieved by Runtime-ILP for a ho-

mogeneous platformo 95
Reduction in runtime and energy achieved by Energy-ILP for a ho-
mogeneous platformo 96
Reduction in runtime and energy achieved by Runtime-1LP for a het-
erogeneous platformo Lo 97

148 List of Figures

5.6 Reduction in energy and runtime achieved by Energy-ILP for a het-
erogeneous platformo Lo 98

5.7 Runtime of ILP-optimization for runtime optimization, homogeneous
architecture 99

5.8 Runtime of ILP-optimization for energy optimization, homogeneous
architecture 100

5.9 Runtime of ILP-optimization for runtime optimization, heterogeneous
architecture Lo 101

5.10 Runtime of ILP-optimization for energy optimization, heterogeneous
architecture L 102

6.1 Overview over the Memory-Aware Multiobjective Mapping Optimiza-
tion Tool 107
6.2 Thread specification 108
6.3 Memory object specification oL 109
6.4 Memory specification Lo 109
6.5 CPU specification 110
6.6 Individual representing a mapping solution candidate. 115
6.7 Mutation of genes Lo 116
6.8 Crossoverof genes 117
6.9 Generated solutions for the Edge Detect 8§ benchmark 118
6.10 Generated solutions for the Spectral benchmark 119
6.11 Generated solutions for the H264-LBlock benchmark 120

6.12 Optimization reduction achieved by the Memory-Aware Multiobjec-
tive Mapping Optimization Tool for a homogeneous architecture . . . 121

6.13 Optimization reduction achieved by the Memory-Aware Multiobjec-
tive Mapping Optimization Tool for a heterogeneous architecture . . 122

6.14 Comparison between Cache and the Memory-Aware Multiobjective

Mapping Optimization Tool optimization for a heterogeneous archi-
tectureo 123

6.15 Runtime required for the memory-aware EA optimization - homoge-
neous architectureo 124

6.16 Runtime required for the memory-aware EA optimization - heteroge-

neous architecture L. 125

2.1

4.1
4.2
4.3

List of Tables

Overview of scratchpad memory allocation publications 32
Benchmarks and their descriptiono 71
Parallelization of Benchmarks for the compact model 72

Parallelization of Benchmarks for the detailed model 73

	Introduction
	Introduction
	Embedded Systems Architecture
	Design of embedded systems
	Mapping problem
	Mapping of memory objects to memories
	Mapping of application tasks to processors

	Contributions
	Outline
	Authors Contribution to this dissertation

	Models and Tools
	MPSoCs
	Application and architecture models
	Memory Architecture Model
	Model of Communication
	Model of Computation

	Mapping Problem description
	Architecture Model
	Application Model
	Mapping Complexity

	Related Work
	Mapping of memory objects to memories
	Single Core Systems
	Multiprocessor Systems/MPSoCs
	Mapping of tasks to processors
	Design Frameworks
	Combined mapping to processors and memories

	MNEMEE
	Introduction
	The MNEMEE toolflow
	The MACCv2 Framework
	DDTR Tool (ICCS)
	Parallelization Tool (ICD)
	MPMH (IMEC)
	DMMR (ICCS)
	Thread Model Extraction Tool (TUE / IMEC / ICD & TU Dortmund)
	Mapping Tools
	RTLIB/RTEMS (IMEC/ICD)
	Scratchpad Memory Allocation Tool (ICD)

	Achieved Results

	Thread Model Extraction
	Introduction
	Related Work
	Problem Description
	Tool Overview
	Safe-Annotation and Simulation
	Thread Model Extraction
	Structure of the Thread Model
	Model Extraction
	Constraints

	Architecture Information
	Evaluation
	Compact Model
	Detailed Model
	Extracted Thread Models

	Single Objective Mapping Optimization
	Introduction
	Tool Overview
	ILP Optimization
	Optimization for Runtime
	Optimization for Energy
	Restrictions of the ILP model

	Evaluation
	Simulation Environment
	Experimental Setup
	Experimental results
	Conclusions

	Memory-Aware Multiobjective Mapping Optimization
	Introduction
	Tool Overview
	Application specification
	Architecture Specififcation
	Mapping Optimization

	Optimization Objectives
	Evolutionary Algorithm
	Evaluation
	Experimental Setup
	Experimental results
	Conclusions

	Summary and Future Work
	Summary and Conclusion
	Future Work
	Memory-Aware Mapping
	Thread Graph Extraction
	Design Frameworks

	Bibliography
	List of Figures
	List of Tables

