A coordinate ascent method for solving
semidefinite relaxations of non-convex quadratic
integer programs

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

Der Fakultat fur Mathematik
der Technischen Universitat Dortmund
vorgelegt von

Jessica Maribel Montenegro Chingal

aus Tulcan

im April 2017

Dissertation

A coordinate ascent method for solving semidefinite relaxations of non-
convex quadratic integer programs

Fakultat fur Mathematik
Technische Universitat Dortmund

Erstgutachter: Prof. Dr. Christoph Buchheim

Zweitgutachterin: Assoc. Prof. Dr. Angelika Wiegele

Tag der miindlichen Priifung: 17. Mai 2017

Abstract

In this thesis we propose a coordinate ascent method for a class of semidefinite pro-
gramming problems arising in the reformulation of non-convex quadratic optimization
problems where the variables are restricted to subsets of the integer numbers.

It is known that non-convex quadratic integer problems are NP-hard for two rea-
sons: the non-convexity of the objective function and the restrictions of integrality
on the variables. Therefore no polynomial time algorithm is known for solving this
class of optimization problems. Standard techniques for addressing these problems are
reformulations through linearization or semidefinite programming (SDP), aiming at
producing tight convex relaxations of the problem that are then embedded into branch-
and-bound schemes. Semidefinite programming has been proved to be a powerful tool
for constructing strong convex relaxations for several combinatorial optimization prob-
lems, however at increased computational cost. Interior-point based algorithms are the
classical solution approaches for semidefinite programming problems, although it turns
out that large scale instances are beyond the scope of these algorithms.

Buchheim and Wiegele have devised an SDP-based branch-and-bound algorithm
(Q-MIST) for a class of mixed-integer quadratic programming problems, that contains
the quadratic problems we are considering here. The semidefinite relaxations are solved
using the SDP solver CSDP, which based on interior point methods. It has been
proved experimentally that this approach outperforms the state-of-the-art non convex
mixed-integer programming software COUENNE. Recently, Dong has studied the same
class of quadratic problems, and has proposed a semi-infinite convex relaxation. The
resulting separation problem is solved by a primal-barrier coordinate minimization
algorithm.

In this thesis, we have developed an algorithm that on the one hand exploits the
structure of the semidefinite relaxations proposed by Buchheim and Wiegele, namely a
small total number of active constraints and constraint matrices characterized by a low
rank. On the other hand, our algorithm exploits this special structure by solving the
dual problem of the semidefinite relaxation, using a barrier method in combination with
a coordinate-wise exact line search, motivated by the algorithm presented by Dong. The
main ingredient of our algorithm is the computationally cheap update at each iteration
and an easy computation of the exact step size. Compared to interior point methods,
our approach is much faster in obtaining strong dual bounds. Moreover, no explicit
separation and re-optimization is necessary even if the set of primal constraints is large,
since in our dual approach this is covered by implicitly considering all primal constraints
when selecting the next coordinate. Even more, the structure of the problem allows us
to perform a plane search instead of a single line search, this speeds up the convergence
of the algorithm. Finally, linear constraints are easily integrated into the algorithmic
framework.

We have performed experimental comparisons on randomly generated instances,
showing that our approach significantly improves the performance of Q-MIST when
compared with CSDP and outperforms other specialized global optimization software,

such as BARON.

Partial Publications and Collaboration Partners

Part of the results of Chapter 5 have been published in [15], and were obtained to-
gether with Prof. Buchheim from the University of Dortmund and Prof. Wiegele from
University of Klagenfurt.

Acknowledgements

This work would have never been possible without the help and support of many people
to whom I am greatly thankful.
I am grateful to my supervisor Prof. Buchheim, who has leading my research through
all these years. From him I have not only learned scientific knowledge but also impor-
tant lessons of life. I am also grateful to Prof. Wiegele for her collaboration with this
research and for taking care of me during the time I spent in Klagenfurt.
[appreciate having had the opportunity to work in the LS-V of the University of
Dortmund. Thanks to all my colleagues I have had the pleasure of meeting, we have
shared good moments not only at working hours but also in the free time. Epecially I
would like to thank to the honorable members of the Princess’s room, Marianna and
Long, it was great to share the office with you. Thanks also for having read my thesis,
and for your good comments and observations.
The first three years of my PhD, I was supported by the Marie Curie Initial Train-
ing Network MINO (Mixed-Integer Nonlinear Optimization) funded by the European
Union. The last year was funded by the DFG under grant BU 2313/4-2. I thank the
chance I had to participate in these projects.
During these four years I have got to know people which had enriched my stay in
Germany and make it unique. Eunice, Gaby, Jasmin, Laura, Malwina and Paula,
thanks girls for making my time here much better.
A very special gratitude goes my family: estoy muy agradecida con mi familia, primer-
amente por alentarme a tomar el reto de hacer un doctorado y segundo por darme su
inestimable apoyo en todo el camino. A pesar de la distancia nunca los senti lejos y
estuvieron siempre para mi cuando los necesite. Finalmente agradezco a mi esposo,
definitivamente esta es una meta que hemos logrado cumplir juntos, sin su apoyo esto
no hubiese sido posible. Hacemos un gran equipo!

Dortmund, May 2017

Contents

1 Introduction

I Preliminaries

2 Basics of semidefinite programming

2.1
2.2
2.3
24
2.5
2.6

Symmetric and positive semidefinite matrices L.
Semidefinite programming
Duality theory o
The positive semidefinite cone
Interior point methods for SDP 0.
SDP for binary quadratic programming

II Main ingredients

3 Q-MIST

3.1
3.2
3.3
3.4
3.5

Semidefinite relaxation
Branch-and-bound algorithm
Matrix formulation oL
Dual problem
Primal and dual strict feasibility

4 Coordinate-wise optimization

4.1
4.2
4.3

Introduction to coordinate descent methods
The Woodbury formula 0
A barrier coordinate minimization approach
4.3.1 Cutting surfaces from diagonal perturbations
4.3.2 A barrier coordinate descent algorithm

IIT The new approach

5 A coordinate ascent method

5.1
5.2
5.3
0.4

Choice of an ascent direction L.
Computation of the step size
Algorithm overview
Two dimensional approach

~J

13
16
18
19

23

25
25
28
30
32
33

35
35
37
38
38
42

il

5.5 Primal solutions

6 Adding linear constraints

6.1 Algorithm CD including linear constraints
6.2 Algorithm CD2D including linear constraints

7 Experiments
7.1 General setup
7.2 Root node behavior
7.3 Primal solution
7.4 Stopping criterion
7.5 'Total running time
7.6 Behavior with linear constraints

Summary and outlook

References

63
65
67

71
71
72
72
75
75
80

83

85

Chapter 1

Introduction

Quadratic programming (QP) problems require the minimization (or maximization) of
a quadratic objective function subject to a set of linear equality or inequality constraints
on the variables. QP constitutes an important class of problems in mathematical pro-
gramming, its importance is twofold. On the one hand, QP with linear constraints can
be seen as the most natural generalization of linear programming problems, where the
linear objective function is replaced by a quadratic function. Moreover, the algorithmic
importance of quadratic programming lies on the fact that it forms a principal compu-
tational component of several non-linear programming algorithms such as sequential
quadratic programming (see, e.g.,[32]). On the other hand, there are several classes of
problems that are naturally expressed as quadratic problems, the most classical ones
include portfolio optimization, support vector machines, facility allocation, quadratic
assignment problems. It is thus clear that QP is relevant from both the theoretical and
practical point of view.
A general quadratic program has the following form

min x' Qr +1'x +c
s.t. re X, (QP)

where () € R™ "™ is an n X n symmetric matrix, [is a vector in R”, and c¢ is a real
number. The feasible region X is specified by constraints on the variable domains and
by equality or inequality constraints.

In terms of complexity, solving (QP) is hard in general, except for a few cases
that are known to be solvable in polynomial time. If the matrix) is positive definite
and X is convex, then (QP) becomes a convex programming problem and thus it can
be solved in polynomial time [56]. There exist many efficient algorithms that can be
applied to solve these problems (see, e.g., [29] and the references therein). In particular,
it has been shown that when the input data of the problem is rational the ellipsoid
method can be applied to solve convex quadratic programming problems in polynomial
time [24]. Other polynomial time algorithms such as interior point methods have been
proposed to solve convex quadratic problems, for some references see, e.g., [67].

Problem (QP) becomes NP-hard by imposing integrality on the variables even in
the unbounded convex case. It is well-known that conver quadratic optimization with
unbounded integer variables is equivalent to the closest vector problem, which has been
proved to be NP-hard (see, e.g.,[30]). One of the classical algorithms to solve these
problems was proposed by Fincke and Pohst [28]. More recently, a branch-and-bound
approach was presented by Buchheim et al. in [13], and later improved in [14]. Other

1

2 CHAPTER 1. INTRODUCTION

methods for solving this kind of problems are reformulations through linearization (see,
e.g., [58]) or semidefinite programming [21, 17].

Now, when @) is not positive semidefinite, (QP) is a non-convex problem. Non-
convex quadratic programming has been also proved to be NP-hard. The first result
reported in this direction was presented by Sahni [81]. The author proved that for
a negative definite matrix @), Problem (QP) is NP-hard. A similar result was also
proved by Vavasis [90, 91| and Pardalos [71]. Non-conver quadratic programming with
box constraints, i.e., constraints given by lower and upper bounds on the variables, is
a fundamental NP-hard problem in global optimization. It is common to assume that
the box constraints have the form = € [0,1]". This problem is also called BozQP. If
@ is negative definite, i.e., the problem is concave, thus BoxQP has a global optimum
which is found in one of the extreme points of the box constraints. In the indefinite
case, although BoxQP is a continuous optimization problem, it is well-known to be
NP-hard. BoxQPs are typically solved by branch-and-bound methods based on con-
vex relaxations, among the most notable relaxations are linear relaxations obtained
by applying the reformulation-linearization technique [62, 84], and semidefinite relax-
ations, see, e.g., [18]. Stronger relaxations have been proposed by a combination of
both techniques, see, e.g., [22].

Probably one of the most relevant cases in QP, in the discrete case, is the uncon-
strained binary quadratic programming problem (UBQP), here X = {0,1}". When
linear constraints are added, this simple model embraces a wide range of applications
in combinatorial optimization, including optimization problems on graphs, facility lo-
cations problems, 0-1 quadratic knapsack problems, among others. For a detailed
description of applications see, e.g., the survey paper by Kochenberger et al. [54]. In
this case, convexity of the objective function of Problem (QP) can be assumed with-
out loss of generality, since non-convex quadratic functions in binary variables can be
easily turned into convex ones [41]. In fact, this is done by adding a penalty term
Yo" (@7 — ;) to the objective function, and determining a value of v > 0 that makes
the matrix @ + I positive semidefinite. It has been proved (see, e.g., [70, 5, 85]) that
UBQP is equivalent to the mazimum cut (max-cut) problem, which is known to be
NP-hard [52, 31]. Many different approaches have been presented to solve UBQP, these
include linearization techniques, branch-and-bound algorithms, cutting plane methods,
use of polyhedral theory and reformulation through semidefinite programming. See,
e.g., [19, 54] for a summary of solution approaches for UBQP.

As it can be seen, semidefinite programming (SDP) is a common technique to
address different types of quadratic problems. In this thesis, we will focus on solv-
ing the semidefinite programming problems arising in the reformulation of non-convex
quadratic integer programs, where the only constraints are on variable domains, namely:

min 2 'Qr+1"x+c
st. x €Dy XX Dy, (1.1)

where D; C Z. This thesis follows the line of research of the work of Buchheim and
Wiegele [17], the authors proposed the use of semidefinite relaxations and a special-
ized branching scheme for solving unconstrained non-convex quadratic minimization
problems where the variable domains are arbitrary closed subsets of R. Their work is
a generalization of the semidefinite programming approach to the max-cut problem or,
equivalently, to the UBQP problem [59, 35]. The main idea behind it is the reformula-

tion of Problem (1.1) as a semidefinite problem, and the solution of a relaxation of the
transformed problem within a branch-and-bound framework called Q-MIST. At each
node of the branch-and-bound tree, Q-MIST calls an interior point method to solve
a semidefinite relaxation obtained from Problem (1.1). It is well-known that interior
point algorithms are theoretically efficient to solve semidefinite programs, they are able
to solve medium to small size problems with high accuracy, but they are memory and
time consuming, becoming less useful for large scale instances. For a survey on interior
point methods for SDP see, e.g., [93].

Several researchers have proposed other approaches for solving SDPs that all at-
tempt to overcome the practical difficulties of interior point methods. The most com-
mon ones include bundle methods [44] and (low rank) reformulation of the SDP as
an unconstrained non-convex optimization problem together with the use of non-linear
methods to solve the resulting problem [47, 20, 37]. Recently, another algorithm has
been proposed by Dong [26] for solving a class of semidefinite programs. The au-
thor reformulates Problem (1.1) as a convex quadratically constrained problem, then
convex relaxations are produced via a cutting surface procedure based on diagonal
perturbations. The separation problem turns out to be a semidefinite problem with
convex non-smooth objective function, and it is solved by a primal barrier coordinate
minimization algorithm with exact line search.

Our main research focuses on improving Q-MIST by using an alternative method for
solving the SDP relaxation of Problem (1.1). Our approach tries to exploit the specific
problem structure of Problem (1.1), namely a small total number of (active) constraints
and low rank constraint matrices that appear in the semidefinite relaxation. We exploit
this special structure by solving the dual problem of the semidefinite relaxation of
Problem (1.1), by means of a coordinate ascent algorithm that adapts and generalizes
the algorithm proposed in [26].

Outline

This thesis is organized as follows. In Part I, we review all the necessary background on
semidefinite programming. The second part contains, what we have called, the main
ingredients for the approach presented in Part III.

Part II starts with Chapter 3, where we recall the branch-and-bound algorithm Q-
MIST, rewrite the semidefinite relaxation of Problem (1.1) in a matrix form, compute
its dual and point out the properties of this problem that will be used later.

Chapter 4 contains a general introduction to coordinate-wise optimization, and
a short section about the Woodbury formula, which will be used in the consecutive
section and later. The last section of this chapter has a complete description of the
barrier coordinate descent method introduced by Dong [26].

In Part III, Chapters 5 and 6 contain our main contribution. First of all we adapt
and extend the coordinate descent algorithm presented in [26]. Then, we improved the
first approach by exploiting the special structure of the constraint matrices. We will
see that this approach can be easily adapted to more general quadratic problems that
include linear constraints.

Finally, in Chapter 7 we evaluate this approach within the branch-and bound frame-
work of Q-MIST. The experiments show that our approach produces lower bounds as
strong as the ones provided by Q-MIST and that it runs much faster for instances of
large size.

CHAPTER 1. INTRODUCTION

Part 1

Preliminaries

Chapter 2

Basics of semidefinite programming

Semidefinite programming (SDP) can be seen as an extension of linear programming
(LP), namely, it is the optimization of a linear function over the positive semidefinite
cone. As it was pointed out by Helmberg in [42], the development of interior point
methods for semidefinite programming made it possible to optimize over this set effi-
ciently. However, solving large scale problems as in linear programming is still out of
reach in practice. Semidefinite programs arise in a natural way from problems whose
data is given by matrices, in particular quadratic problems. SDP has a wide range of
applications in both continuous and combinatorial optimization, see [33] and [89] for
some applications of semidefinite programming.

This chapter is organized as follows. We begin by introducing some basic notation
and definitions about positive semidefinite matrices. Semidefinite programs and their
duals are introduced in the consecutive two sections. Section 2.4 contains a brief
description of the geometric properties of the semidefinite programs. An introduction
to interior point methods for semidefinite programming is reviewed in Section 2.5.
We conclude the chapter describing the reformulation of binary quadratic problems as
semidefinite problems.

2.1 Symmetric and positive semidefinite matrices

In this section, we report the notation and some preliminary results on positive semidef-
inite matrices that will be used throughout the thesis.

Let M,,,, denote the set of m x n real matrices, and M,, := M, ,, the set of square
matrices of order n. We will mainly work with the set of symmetric matrices of order
n, which we denote by S,,. The dimension of this vector space is ("H) The standard
inner product between two matrices A, B in M,, ,, is:

(A, B) = trace(BT A) = ZZCLU i

=1 j=1

From the definition of the inner product the following property is derived: For matrices
A, B, C with adequate dimensions, it holds that

(AB,C) = (A,CB").
Notice that if A, B € S,,,
(A, B) = trace(B' A) = trace(BA) = trace(AB).

7

8 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

The spectral decomposition theorem is probably one of the the most important theo-
rems about real symmetric matrices. We need the following definition.

Definition 2.1. A scalar A € R is called eigenvalue of A € S, if
Av = D,
for some v € R™ with v # 0. The vector v is called eigenvector of A associated with A.

Theorem 2.1 (Spectral decomposition theorem [48]). Any matriz A € S,, can be

decomposed as
n
-
A= E)\Z"Uﬂ)i s
i=1

where Ay, ..., A\, € R are the eigenvalues of A, and vy, ..., v, are corresponding eigen-
vectors which form an orthonormal basis of R™. In other words, the matriz A admits
a factorization of the form A = PAPT, where P is the orthonormal matriz whose
columns are the vectors v;, and A is the diagonal matriz with the eigenvalues of A in
its main diagonal. This factorization of A is also known as eigenvalue decomposition

of A.
We have the following definition of positive semidefiniteness.

Definition 2.2.

A matrix A € S, is positive semidefinite (A = 0) if 27 Az > 0 for all x € R™. The set
of positive semidefinite matrices of order n is denoted by S;.

A matrix A € S, is positive definite (A = 0) if 27 Az > 0 for all z € R™\ {0}. The set
of positive definite matrices of order n is denoted by S; .

From the definition above some properties of positive semidefinite matrices can be
formulated, we state them in the following proposition.

Proposition 2.2.

(i) Each principal sub-matriz of a positive (semi)definite matriz is again positive
(semi)definite.

(i) All diagonal elements of a positive definite matriz are positive, and all diagonal
elements of a positive semidefinite matriz are non-negative.

(iii) Let A; € Sy, fori=1,... k. The symmetric matric

A 0 0
0 A, 0
A=))
0 0 . Ag

is positive (semi)definite if and only if all A; are positive (semi)definite.
(iv) Let B € M, be a non-singular matriz. Then

AeSH < B'ABc S,
Ae ST < BTABe S,

2.1. SYMMETRIC AND POSITIVE SEMIDEFINITE MATRICES 9

Proof. We prove the proposition for positive semidefinite matrices, it extends easily
to positive definite matrices.

(i) This follows by considering the quadratic form " Az of a positive semidefinite
matrix A € S,,. Let I C {1,...,n} be the set of indices of the rows and columns
of any principal sub-matrix of A. Let x € R™ such that x; = 0 for k ¢ I. Then

n n
0 S SL’TASL’ = E E Qi TiT5 = E E Qi TiTj.
i=1 j=1 iel jel
Hence A;; > 0.

(ii) Every diagonal entry of A is a principal sub-matrix itself and thus is positive
semidefinite, i.e., a;z? > 0 must hold for all z € R. Hence a;; is non-negative.

(iii) Let A > 0, in particular, the principal sub-matrices A; are so. For the other
direction, let = (z1,...,2;)" € R® where z; € R™ and n = Ele n;, then

x Ax = :ElTAlxl + e+ :L‘;—Akl‘k >0,
since each x; A;x; > 0.
(iv) Let A= 0, 2" Az > 0 for all z € R™. Take x = By, for any y € R", we have
0<az'Ar =y B'ABy.

Hence B"AB = 0. To prove the other direction, take y = B~ 'z for any x € R",
we have that

0< yTBTABy =2' B "'B"ABB 'z = 2" Ax.
Then A > 0.
O

This proposition contains only some of the many properties of positive (semi)definite
matrices. See, e.g., [48] for more properties of positive semidefinite matrices. We
have the following characterization of positive (semi)definite matrices in terms of its
eigenvalues.

Theorem 2.3. For A € S,,, A is positive semidefinite if and only if all its eigenvalues
are non-negative. It is positive definite if and only if all its eigenvalues are positive.

Proof. From Theorem 2.1, we have that A = PAP', P contains the orthonormal
eigenvectors of A and A = diag(\) its eigenvalues. Using Proposition 2.2 (iv) with
B := P, we have that the matrix A is positive (semi)definite if and only if PTAP = A
is positive (semi)definite. From the same proposition, (ii), we have that A is positive
(semi)definite if and only if all its diagonal elements are non-negative (resp. positive).

0

10 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

An important property that can be derived immediately from this theorem is that
the determinant of a positive semidefinite matrix is non-negative. In fact, the deter-
minant of a matrix is known to be the product of its eigenvalues, being non-negative
when all its eigenvalues are non-negative, i.e., when the matrix is positive semidefinite.
By the same reasoning, the determinant of a positive definite matrix is positive. This
property of the positive semidefinite matrices has been exploited to define logarithmic
barrier functions, as we will be shown later.

The following proposition can be proved using the last theorem.

Proposition 2.4. If A € S} and a; = 0 for some i € {1,...,n}, then a;; = 0 for all
je{l,....n}.

Proof. Assume that a;; # 0 for some k € {1,...,n}, without loss of generality we can
also assume that i < k. Consider the principal sub-matrix of A defined by the rows

and columns k£ and i, i.e.,
Qi Qg
Qi Ak

The determinant of the matrix above is —a?.. From Proposition 2.2 (i) we know that
every principal sub-matrix of a positive semidefinite matrix is positive semidefinite and
from Theorem 2.3 that its determinant should be non-negative. We conclude that
a;; =0forall j € {1,...,n}. O

The following theorem states that the inner product of two positive semidefinite
matrices is non-negative. In particular, this property is important to prove an essential
property of the cone of semidefinite matrices, namely, its self-duality, see Section 2.4.

Theorem 2.5. Let A, B € S;". Then (A, B) >0 and (A, B) = 0 if and only if AB = 0.

Proof. Let B = PAPT be the eigenvalue decomposition of B, A is the diagonal matrix
with the eigenvalues of B, \; > 0, in its main diagonal.

Define C' := PTAP. We have that C = 0 and therefore ¢; > 0 by Proposi-
tion 2.2 (ii). Therefore

(A,B) = (A,PTAP) = (PTAP,A) = (C,A) = zn:c)\

The last sum is non-negative since each term c;\; > 0.

Notice that [(A, B) =0 <= AB = 0] is equivalent to [(C,A) =0 <= CA =0].
Now, if (A, B) = 0, then (C,A) = 0 and therefore > " | ¢;\; = 0. Since all the terms
in this sum are non-negative, it follows that c¢;;A\; = 0 for all . Thus, if \; > 0, ¢;; =0
and since C' = 0, the i-th row/column of C' must be zero. If instead, ¢; > 0, then
Ai = 0. It remains to prove that (CA);; = 0 for all j. Suppose that there exist 7, j such
that (CA);; # 0. Then ¢;;\; # 0, but if A; > 0 then c¢;j; must be zero and therefore the
complete row 7, which is a contradiction. O

We conclude this section with a theorem that gives a characterization of positive
semidefinite matrices using the so-called Schur complement. If A is a non-singular
principal sub-matrix of the 2 x 2-block matrix

A B
v=(e b)

2.2. SEMIDEFINITE PROGRAMMING 11

then D — CA~'B is known as Schur complement of A in M, named after a seminal
lemma by the mathematician Issai Schur [77].

Matrices of the form D — CA™!B are very common in linear algebra, probably one
of the most common uses is Gaussian elimination. See, e.g., [25] for more applications
of the Schur complement. We are interested in the use of the Schur complement for
testing positive (semi)definiteness of a matrix. The following theorem gives a criterion
to decide whether a 2 x 2-block symmetric matrix is positive (semi)definite.

Theorem 2.6 (Schur complement). Let A€ S+, C €S, and B € M,,,,. Then
A B T -1
(BT C) -0 <= C—-B A"B>0

and

BT C

A1
we= (G 77)
is a non-singular matrix. From the Proposition 2.2 (iv) it follows that
(5 o)
BT C
is positive (semi)definite if and only if the matrix

(A B, (A 0
M (BTC M={o c-BTa's

is positive (semi)definite. From same proposition, (iii), the last matrix is positive
(semi)definite if and only if C — BT A7!B is positive (semi)definite. O

(A B)to «— C—-B'A'B>0.

Proof. We have that

In the next chapter we will see that the Schur complement appears also in the so-
called Woodbury formula, which plays an important role in the algorithm proposed in
Part III.

After having described some basic properties of positive semidefinite matrices, we
can introduce the concept of semidefinite programming.

2.2 Semidefinite programming

Consider the following optimization problem, which is known as the semidefinite pro-
gram in standard form:

min (Q, X)
X =0,
where the matrices @, A;, i = 1,...,m are assumed to be symmetric matrices in M,

and b € R™. There is no loss of generality in the assumption of symmetry of the

12 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

matrices @ and A;. Since (@, X) = (Q", X), if @ is not symmetric, one can replace it
by %(Q + QT). The same is true for the constraint matrices A;.
To simplify notation, define the linear operator A: S, — R™ as

<A17X>
A(X) == : :
(Am, X)

the above problem is then rewritten in the following form:

min (@, X)
st. A(X) =0 (2.2)
X = 0.

The linear operator A has associated an adjoint operator, denoted by A", which by
definition is the linear operator A" : R™ — S, satisfying the relation

(AX),y) = (X, ATy), VX €S, yeR™

It follows that
(AX),y) = Z?/z trace(A; X) = trace(XZyiAi) = <X7 Z%Az> :
=1 =1 i=1

from which we obtain the explicit description
-ATZJ = Z yiAi.
i=1

The dual problem of (2.2) is computed as follows: Let y € R™ be the dual multi-
pliers associated with the constraints (A;, X) = b;. The primal constraints are lifted
into the objective function:

min max (Q, X) + yT(b - A(X)),

X =0 yeRm

then, exchanging the min with max yields

max min (b, y) + <Q — Ay, X> .

yER™ X =0

The inner minimization over X > 0 is bounded from below only if Q — ATy = 0.
Finally, the dual semidefinite problem in standard form associated to Problem (2.1)
can be rewritten as

max (b, y)

st. Aly+Z=Q (2.3)
Z =0
y € R™.

2.3. DUALITY THEORY 13

Later we will deal with semidefinite programs that are usually not in the standard
form. Therefore it is important to notice what happens when Problem (2.1) contains
equality and inequality constraints, i.e., if we have a primal SDP problem of the form

min (@, X)
st. A(X) =b
A2 (X) < by
X =0,

where A;: S, — R™, A,: S, — R™2 are two linear operators, by € R™ and
by € R™2, In this case, the dual problem will have additional dual variables t € R™*:

max (bi,y) + (ba, 1)

st. Ay +AH+2=Q
Z =0
y e R™
t e R™.

Observe that similar to linear programming, the set of constraints As(X) < by could
be transformed into equality constraints by introducing non-negative slack variables

X1, ..., Tm,, and then replacing X by a new matrix X’ of the form
X 0 0 ... O
X' = 0 0 zy ... 0 ,
0 0 0 ... 2y,

which is positive semidefinite if and only if X > 0 and zq,...,2,, > 0. This will
increase however the dimension of the problem.

In the special case when @ and A; are diagonal matrices, Problem (2.1) reduces
to a linear program. Indeed, let ¢ and a; denote the diagonal vectors of () and A;
respectively, and = the diagonal entries of the matrix X. It holds that x > 0 if and
only if X = 0. We obtain that Problem (2.1) is in fact the linear problem:

min qT:c
st. a,x=b i=1,...,m
x> 0.

Note that {q,z) = ¢'z and (a;,7) = a, z.

2.3 Duality theory

The property that the objective value of any primal feasible solution is greater or equal
to the objective value of any dual feasible solution is called weak duality. We have the
following

14 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING
Lemma 2.7. Let X be a primal feasible solution of Problem (2.2) and (y,Z) any dual
feasible solution of Problem (2.3). Then (Q, X) > (b,y).

Proof. We have that:

<Q7X> - <b7y> = <ATy+27X> - <A<X>7y>

The last inequality is true, because the inner product of two positive semidefinite
matrices is non-negative, see Theorem 2.5. U

The quantity (Z, X) is known as duality gap. If the duality gap is zero, it is said
that strong duality holds, then X and (y, Z) are primal dual optimal. In semidefinite
programming, different from linear programming, it can happen that the duality gap
is not zero for a primal-dual optimal pair or that the optimal value is not attained. We
illustrate these facts by the following examples taken from [93].

Example 2.1. Consider

min azxi
s.t. r11 + 25[]23 =1 (P)
Tog = 0
X e ST,
or, equivalently,
a 0 0
min < 0 00 ,X>
000
100
s.t < 0 01 ,X> =1
010
000
< 010 ,X> =0
000
X = 0.

Any feasible solution of (P) must satisfy x93 = 0, since z99 = 0, see Proposition 2.4.
Therefore, (P) has optimal value a. Now, let us compute the dual problem:

100 000 a 00
st [0 0 1] +y|0 1 0]+2={00 0 (D)
010 000 000

2.3. DUALITY THEORY 15

ie.,

max ¥

a—y1 O 0
s.t. 0 —Y2 —UY1 t 0.
0 —U1 0

For each feasible solution of (D) it holds that y; = 0. Hence, its optimal objective
value is 0. The optimal objective values of (P) and (D) are different, their gap is a.

Now, consider the following example, where the duality gap is zero, but the optimal
value is not attained.

Example 2.2. Consider the following primal-dual pair of semidefinite problems

p* =min 1z
s.t. (:pn _1) =0
—1 T2

d* =max —2y,

1 —
t. = 0.
’ <—y1 0) =

Observe that both optimal objective values are zero. However, the infimum is not
attained, since it is reached only in the limit when x; = x—; and 9y — 00.

and

The gap between primal and dual optimal objective values is guaranteed to be zero
if at least one of both primal or dual problems has a strictly feasible point.

Definition 2.3. A matrix X is said to be strictly feasible for Problem (2.2) if it
satisfies A(X) = b and X = 0. A pair (y,Z) is said to be strictly feasible for
Problem (2.3) if it satisfies ATy + Z = Q and Z = 0.

It is said that the Slater condition holds for the primal problem, if there exists a
strictly feasible matrix X for the primal problem (2.2), i.e., the intersection of A(X) = b

and int(S;") is non-empty, the same holds for the dual problem (2.3). Later we will see
that int(S;7) = S .

Theorem 2.8. If both problems, namely Problem (2.2) and Problem (2.3), are strictly
feasible, then the duality gap is zero and both problems admit an optimal solution.

For a proof of this theorem, see e.g., [92], as a special case of duality of linear
programs on cones, or [83], for duality of general SDP.

It is possible to derive a version of the complementary slackness for SDP similar to
linear programming. The proof follows immediately from Theorem 2.5.

Theorem 2.9. Let X* be a feasible primal solution of Problem (2.2) and (y*,Z*) a
feasible dual solution of Problem (2.3). Then X* and (y*, Z*) are primal dual optimal,
respectively, if and only if

X 7" =0.

16 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

From the last theorem, it follows that if the Slater condition holds for both sides,
a pair X and (y, Z) is primal-dual optimal if and only if

AX =b, X =0,

Aly+2Z2=0Q, Z=0, (2.4)
XZ =0.

These conditions are referred to as KK'T' conditions for semidefinite programs.

2.4 The positive semidefinite cone

In this section we discuss some important geometric properties of the set of positive
semidefinite matrices. It follows immediately from Definition 2.2 that for A, B € S,
AA + (1 — M\)B is positive semidefinite, for all 0 < A < 1. The same is true for S},
thus both sets are convex.

A subset K C S, is called a cone if and only if A € K and o > 0 implies aA € K.
A cone is pointed if K U (—K) = {0}, and full-dimensional if its interior is nonempty.
The interior of K, denoted by int(K) is the largest open subset contained in K.

Proposition 2.10. The set of positive semidefinite matrices, S;", is a proper cone,
i.€., it is a convex, pointed, closed and full-dimensional cone.

Proof. For A € S, and aA € S;F, it follows directly from the positive semidefiniteness
of A that " (aA)x = ax” Ax > 0 for all z € R™. Therefore S is a cone.

To prove that it is pointed, let A € S;FU(=S;), then A € S;F and —A € S;F. Now,
for any x € R", both 2" Az > 0 and 2" (—A)x > 0 holds. Therefore A must be the
zero matrix.

Define the following function

AS, — R
Ai(A)
A r— : ,
An(A)

where A\(A) > -+ > A\, (A) are the eigenvalues of A. Notice that A is a continuous
function. Therefore, the inverse image of the closed set [0, 00)™, A71([0, 00)™), is closed
in S,,. From Theorem 2.3 we derive S;- = A71([0, 00)").

We can see that S;7 is full-dimensional since A~!((0,1)") is open in S, and contains
the matrix 17, thus the interior of S;f" is not empty. O

Notice that S;'* is not a cone, since the null matrix does not belong to it. One can
prove that S} is in fact the interior of S;F.

Proposition 2.11. int(S;") = S .

Proof. Let X be defined as in the last proof. Let A € int(S;"), then there exists € > 0
such that A — el € S;7. We have that A(A —el) = M(A) — eA(I) = AM(A) — € > 0 (see
Theorem 2.3). Then A(A) > 0 and therefore A € S;F.

Conversely, let A € St it follows that A(A) > 0, from Theorem 2.3. Then
AA) € (0,2X\(A)), which implies that A € A71((0,2X\(A))) C S, i.e., A is in the

interior of S;. O

2.4. THE POSITIVE SEMIDEFINITE CONE 17

This property of S is particularly important in barrier methods as the interior
point methods described in the following section and in Part III.
For a proper cone K, its dual cone K* is defined as

K :={AeS,|(A,B)>0 VBe K},

and it is said that K is self-dual if K = K*.
The semidefinite cone is self-dual, i.e.,

St=(SH"={Yy:(X,)Y)>0 VX €S}
The proof follows from the following

Proposition 2.12. A matriz A € S, is positive semidefinite if and only if (A, B) >0
for all B € ST,

Proof. Suppose that A, B = 0. From Theorem 2.5 it follows that (4, B) > 0. Con-
versely, if (A,B) > 0 for all B € S, let + € R" and take B = xx'. Then
(A,B) = (A,z2") = 2T Az > 0. O

We review now some properties of the facial structure of the cone of positive semidef-
inite matrices, first we recall the definition of a face of a cone. If K is a closed cone,
F C K is said to be a face of K if it is a sub-cone, and if for any pair of elements
X,Y € K such that X +Y € F'| it holds that X, Y € F.

The next theorem gives a characterization of the faces of the cone of positive
semidefinite matrices.

Theorem 2.13. Any face F' of the semidefinite cone falls in one of the following cases
(Z) F= @,

(i) F = {0},

(iii) F = {X € S, : X = PSP",S € S} with P € M, and rank(P) = k, for
ke{l,....n}.

For a proof of this theorem see [43] and the references therein. The feasible set of
any semidefinite program is the intersection of an affine sub-space defined by the linear
constraints with the semidefinite cone. In case of the primal problem (2.2), we denote
the feasible set by

P={XeS,: AX)=>bX >0}

For the dual problem (2.3), the feasible set is
D:={(y,Z) e R" xS, : Z = 0}.

The semidefinite cone is not a polyhedral cone, therefore in general the feasible sets P
and D are not polyhedral.

It is well known that the faces of the intersection of convex sets are the intersections
of the faces of the sets. The faces of P and D can be directly derived from Theorem 2.13.

18 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

Corollary 2.14. Any face of P is a set of the following form
{XeP:X=PSP" ScS}}

for a certain matriz P € M, j, with k = rank(P). Any face of D is a set of the following
form

{(v,2)eD:Z=QDQ",D e S},
for a certain matriz Q) € M, ,, with r = rank(Q).

Optimal solutions of problems (2.2) and (2.3) are expected to have small rank [73].
The next property is related with upper bounds for the rank of a matrix contained in
a face of P or D.

Theorem 2.15. [73] Let F be a face of dimension d of the feasible set of (2.2). For
X € F the rank r = rank(X) is bounded by

1
(T—;)§m+d.

Let F be a face of dimensiond of {Z =0:3yeR":Q— A"y =Z}. For (y,Z) € F,
the rank r = rank(Z) is bounded by

r+1 n—+1
< 9) < (5) —m+ k.
2.5 Interior point methods for SDP

Semidefinite programs are in particular convex optimization problems. It is proved in
the work of Grotschel, Lovévasz and Schrijver [38] that they can be solved in polyno-
mial time to any desired precision using for instance the Ellipsoid method (see e.g. [39]).
From a practical point of view, Ellipsoid methods are not efficient for most applica-
tions, including SDP. The main approaches for solving SDP problems are interior point
methods and first order non-linear methods. Interior point methods provide the possi-
bility of obtaining polynomial time algorithms for semidefinite programs, they are able
to solve small to medium size problems with high accuracy, but they are memory and
time consuming so that they become less useful when solving large scale instances.

Interior point methods are a very large class of methods, developed with several
variants. Refer for instance to the book [53] for a complete treatment. We describe
here a primal-dual interior point method that solves (2.2) and (2.3) simultaneously,
with the intention of getting an idea of how they work and understand its limitations
with large size instances.

A valid interior point algorithm requires to assume that Slater’s condition is satisfied
for both primal and dual problems. For p > 0, consider the following perturbed system
of the KKT conditions (2.4):

AX =0b, X =0,
ATly+2=0Q, 70, (2.5)
X7 = ul.

2.6. SDP FOR BINARY QUADRATIC PROGRAMMING 19

The latter system can also be obtained as the KKT conditions of the barrier problem
for (2.3)

min (b,y) — plogdet Z
st. Aly+7Z2=Q
y € R™,

where p is the penalty parameter. The barrier term —plogdet Z will avoid that Z
leaves the interior of the positive semidefinite cone. Indeed, det Z — 0 when Z ap-
proaches the boundary of the semidefinite cone, and thus the barrier term will grow
to infinity. From Proposition 2.11 we know that Z will remain positive definite during
the course of the iterations.

The set of solutions (X, y,, Z,) of system (2.5) for u > 0, is the so-called central
path. Tt was shown that the central path is a smooth curve [55]. Additionally, it can
be proved that if ;1 — 0 the central path converges to a point (X* y*, Z*) such that
X* is an optimal solution of the primal problem and (y*, Z*) is an optimal solution
of the dual problem (see, e.g, [43]). Therefore, the idea of interior point methods is
to compute an approximate solution of (2.4) by solving (2.5). To simplify notation,

define

AX —b,
FM(Xayaz) = ATy+Z_Q)
XZ — ul

and system (2.5) corresponds to
FuX,y.Z)=0, X,Z>0.

Newton’s method is applied to find a direction (AX, Ay, AZ) towards the optimal
point (X*,y*, Z*), which must satisfy

F,+VEF, - (AX,Ay,AZ)=0.
Therefore the direction (AX, Ay, AZ) is the solution of the linearized system

AAX = —(AX —),
ATAy +AZ = —~(ATy +Z - Q), (2.6)
AXZ + XAZ =pul — XZ.

In general, X7 is not symmetric and the direct application of Newton’s method will
produce non-symmetric matrices AX and AZ. Several approaches have been proposed
to deal with this problem. We do not go into details, but refer to the survey [87] for a
complete description about search directions for interior point methods in semidefinite
programming. In Algorithm 1, we summarize a general framework for interior point
methods for SDP.

2.6 SDP for binary quadratic programming

SDP has wide applicability in combinatorial optimization. Semidefinite programs pro-
vide a powerful tool for constructing strong convex relaxations for several NP-hard com-
binatorial optimization problems. We illustrate the main idea on the unconstrained

20 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

Algorithm 1: Primal-dual interior point method
Input: A(-),b € R",Q € M,, starting point (X%, 4% Z°) X =0, Z = 0, u
1 update p > 0 compute (AX, Ay, AZ) by solving (2.6);
2 choose a € (0,1) such that X + aAX, y+ aAy and Z + aAZ remain feasible;
3 if |[AX —b| and || ATy + Z — Q||r and (X, Z) are small enough then stop, else
goto 1.

quadratic binary optimization problem. In the next chapter, we will see that this
semidefinite relaxation can be extended to more general quadratic problems.

For many problems in combinatorial optimization the integer program and its linear
relaxation optima may be quite different. This is particularly the case for the max-cut
problem [34]. Ome approach to deal with this large discrepancy between the optima
of the original problem and its linear relaxation is to consider relaxations tighter than
linear programming relaxations. It has been shown that using semidefinite program-
ming to approximate max-cut produces tighter relaxations than the linear relaxation,
the first work in this direction was presented by Goemans and Williamson [35]. This
approach and their result had an important impact on the area of combinatorial op-
timization, leading to a lot of research activity for getting tight approximations for
various problems.

Consider the unconstrained binary quadratic optimization problem

:
. 2.7
B @

In order to reformulate this problem, we introduce the following change of variable
X = x2", with z € {0,1}". Observe that, by making use of the inner product of
matrices, the objective function of the above problem can be equivalently rewritten as

' Qr = (Qz,x) = <Q,ch>.

Also, observe that X is a rank-one positive semidefinite matrix, and its diagonal ele-
ments are all equal to 0 or 1. This leads to a non-convex formulation of Problem (2.7),

max (Q,X)

s.t. rank(X) =1 (2.8)
z; € {0,1}
X = 0.

Removing the rank-one constraint and relaxing the constraint z;; € {0,1} by 0 < z;; < 1
give a semidefinite relaxation of Problem (2.7):

max (Q, X)
X = 0.

However, as mentioned in [46], this relaxation turns out to be of poor quality and
one can get tighter relaxations. In fact, the non-convex constraint X — xz" = 0
can be relaxed to the convex constraint X — zax" = 0. Also, exploiting the fact

2.6. SDP FOR BINARY QUADRATIC PROGRAMMING 21

that diag(zx") = x, we obtain the following semidefinite relaxation for 0-1 quadratic
programming

max (Q,X)
st. X — diag(X)diag(X)" > 0.
Using the Schur complement, Theorem 2.6, the semidefinite constraint
X — diag(X)diag(X)" =0
is equivalent to

X = (diagl(X) diag)g()T) = 0.

We have the following

Lemma 2.16. Problem (2.7) is equivalent to

max (Q,X
s.t. rank(

~

(2.9)

by 25
1Y |l

1
0.
Proof. Let x € R" be a feasible solution of (2.7), and define X = xz". We have that

> 1 '

X = <x X)
is a feasible solution of (2.9): T = x7 € {0,1} for alli € {1,...,n}, i.e., v = diag(X).
It is clear that the rank of X is 1. Moreover, since v' Xv = vjx:pTv = (v'x)? >0, for
all v € R, X is positive semidefinite and by Theorem 2.6, X is positive semidefinite
as well.

Now, choose a feasible solution X of (2.9). We have that

%= gy) =0

which by Theorem 2.6 implies that X = 0. Now, from rank(X) = 1, it follows that
X = diag(X)diag(X)" and z; = 22 € {0,1}. Take x := diag(X), thus x; € {0,1} for
alli € {1,...,n}, i.e., x is a feasible solution of (2.7). O

Problem (2.7) is known to be equivalent to the well-known max-cut problem which is
modeled on {—1, 1}" variables, see for instance [5]. The latter results can be extended to
more general quadratic optimization problems with linear and/or quadratic constraints.
Consider the following 0-1 quadratic program with one inequality constraint

max ' Qx
st. a'xz<b,
xz € {0,1},

with @ € S,,, a € N* and b € N. This problem can be interpreted as the quadratic knap-
sack problem [74]. We are given a knapsack with capacity b and a set of items {1, ..., n},

22 CHAPTER 2. BASICS OF SEMIDEFINITE PROGRAMMING

each one characterized by a positive weight a;, and the profit ¢;; obtained if the item ¢
is selected. In addition, g¢;; is the profit generated if both items ¢ and j are selected.
The quadratic knapsack problem asks for a selection of a subset of items that does not
exceed the capacity of the knapsack and gives maximum profit.

Following the linearization described above, the knapsack constraint a'z < b can
be modeled by restricting the diagonal elements of X

(Diag(a), X) <0,
yielding a semidefinite relaxation of the 0-1 quadratic knapsack problem

max (@, X)

s.t. (Diag(a), X) <b

X =0.

The inequality a'z < b can be represented in other ways, aiming at producing tighter
relaxations, see, e.g., [46] for literature on how to model the knapsack constraint. On
the other hand, it is clear that this approach can be easily generalized to model more
than one linear constraint.

Part 11

Main ingredients

23

Chapter 3

Q-MIST

In this chapter, we focus on quadratic problems with non-convex objective function
in which the only constraints are the ones that enforce each variable to belong to a
specific finite sub-set of Z. A study of slightly more general version of these problems
was done by Buchheim and Wiegele [17], they considered arbitrary closed sub-sets of R
and proposed to solve a semidefinite relaxation of such problems within a branch-and-
bound framework called Q-MIST: Quadratic Mixed-Integer Semidefinite Programming
Technique. This chapter will be dedicated to recall some of the main results of the
work of Buchheim and Wiegele [17], and present some preliminary results that are the
basis for our contribution in Part III.

We thus consider non-convex quadratic mixed-integer optimization problems of the
form

min f(z) =2 Qr 41"z +¢
st. x €Dy XX Dy, (3.1)

where Q € S, is not necessarily positive semidefinite, [eR" ¢€R, and D; C R for
alli=1,...,n.

This problem formulation encloses a wide range of quadratic problems, depending
on the definition of D;. All the domains D; might be taken equal, for example D; = R
or D; = Z in which case (3.1) reduces to optimizing a quadratic function over R",
or Z". By setting D; = {0, 1} we have the unconstrained binary quadratic problem (see
Section 2.6), and the mixed-integer formulation of (3.1) is obtained by taking different
sets D;. In this thesis we consider finite sets D; of the form {l;,...,w;} with l;,u; € Z.

We begin by describing how to obtain a semidefinite relaxation of Problem (3.1),
then we introduce Algorithm Q-MIST. In the successive two sections we formulate
the semidefinite relaxation of Problem (3.1) in a matrix form and compute the dual
problem, respectively. In the last section we prove strict feasibility of the semidefinite
relaxation and its dual.

3.1 Semidefinite relaxation
Semidefinite relaxations for quadratic problems can already be found in an early paper

of Lovédsz in 1979 [59], but it was not until the work of Goemans and Williamson
in 1995 [35] that they started to catch a wider interest. For such problems, the basic idea

25

26 CHAPTER 3. Q-MIST

of a semidefinite relaxation is as follows: given any vector z € R", the matrix zz" € S,
is rank-one, symmetric and positive semidefinite. In particular, also the augmented

matrix .
1\ /1 1 T

is positive semidefinite. This simple and well-known fact has been used to produce
semidefinite reformulations of various quadratic problems. Essentially, the objective
function of Problem (3.1) is linearized by adding one new variable z;; for each product
of variables x;x;. With this aim, define the function

g: R" — Sn+1

ri= () ()

c 4T
QZ@Z%)'

The objective function of Problem (3.1) can be written as the inner matrix product

and the matrix @) € 5,41 as

2 Qu+1Tr+¢e=(Q (),

obtaining a linear function with respect to ¢(z). Now, in order to solve Problem (3.1),
it is needed to investigate the image of the feasible set Dy x --- x D,, under ¢

1 '
Dy x---xD,) = t):xe€D x---xD,¢.

r zx
In fact, Problem (3.1) can be written in an equivalent way as

min (@, X)
st. X econvl(Dy x---x D).

With this transformation the complexity of the problem has moved from the objec-
tive function to the feasible region. The following theorem, taken from [17], yields a
characterization of /(D x --- x D,,).

Theorem 3.1. [17] Let X € S,,.1. Then X € {(Dy X --- x D,,) if and only if
(a) (xoi, i) € P(D;) := conv{(u,u?) |u e D;} foralli=1,...,n,
(b) w0 =1,
(¢c) rank(X) =1, and
(d) X =0.

Proof. The first implication is easy to see, {(x) satisfies (a)-(d) for any © € Dy x---x D,

since -
1 =z
=, 4.

3.1. SEMIDEFINITE RELAXATION 27

/o A/

T Tog ‘ Zo;

(a) D; = {0,1} (b) D; = {~1,0,1}

Figure 3.1: The set P(D;), and its polyhedral description

which is a rank-one positive semidefinite matrix with the first entry equal to one
and (wg;, 1) = (14, 22) € P(D;) foralli =1,...,n.

For the other direction, let X be such that (a)-(d) are satisfied. We have to prove
that there exists x € Dy x -+ x D,, for which X = ¢(z). Since X » 0, rank(X) =1
and xgp = 1, we know that there exists € R" that satisfies X = ¢(z) and z;; = 3,.
Furthermore, from (zg;, ;) € P(D;) and the strict convexity of zo; + 3, we get
that xo; € D; and thus © = (zg1,...,Ton) € D1 X -+ X D,,. d

To have a better understanding of ¢(D; x --- x D,), let us have a closer look
at P(D;). By our assumption, the set D; is a finite sub-set of Z. In this case, P(D;)
is a polytope in R? with |D;| many extreme points. It has therefore a representation
as the set of solutions of a system of |D;| linear inequalities. Figure 3.1 shows two
examples where the set P(D;) is illustrated for D; = {0,1} and D; = {—1,0,1}. In the
first case, the set P(D;) is nothing but the straight line joining the two points (0, 0)
and (1,1). In the second example, P(D;) = conv{(—1,1),(0,0),(1,1)} or equivalently
the solution set of the following inequality system:

z; <1
— & + T < 0

—xy — xo; <0
This intuitive idea is generalized in the following

Lemma 3.2. Let D; = {l;,...,u;} with l;,u; € Z and n; := |D;| = u; — l; + 1.
Then P(D;) is completely described by n; — 1 lower bounding facets

and one upper bounding facet
T — (I + wi)wos < —lyu;.

Proof. The lower bounding facets are those linking points (7, j%) and (j + 1, (j + 1)?)
for j =1;,l;+1,...,u;—1, while the upper bounding facet links (I;,(?) and (u;,u?). O

28 CHAPTER 3. Q-MIST

Zoi

Figure 3.2: For D; = {—1,1}, the set P(D;) is the line linking
the points (—1,1) and (1,1).

Notice that in case |D;| = 2, meaning that the variable is binary, there is only one
lower bounding facet that together with the upper bounding facet results in a single
equation. However, we will not make a case distinction.

In the general case, when D; C R, an infinite number of inequalities may be needed
to model the constraint (xo;, ;) € P(D;). However, in [17] an exact separation al-
gorithm has been devised for P(D;). Since this thesis is focused on integer sets, this
algorithm is not described here.

Notice that the characterization of ¢(D; x --- x D,) contains a non-convex con-
straint: rank(X) = 1, whereas the remainder of the problem is convex. This means
that a convex relaxation of (3.1) is obtained by dropping the rank-one constraint:

min (Q, X)

st. (woi, i) € P(D;) Vi=1,...n (3.2)
ZToo = 1
X = 0.

The latter problem is a semidefinite program, since the constraints (xo;, ;) € P(D;)
can be replaced by the set of linear constraints of Lemma 3.2, it is in fact a gen-
eralization of the well-known semidefinite relaxation for the max-cut problem [34],
where D; = {—1,1}, and P(D;) is simply given by the equation x;; = 1, see Figure 3.2.
Notice that the set {—1,1} does not fit formally into the type of sets D; we are con-
sidering, however, it is well known that the max-cut problem can be reformulated
equivalently with {0, 1}-variables, see e.g., [5].

3.2 Branch-and-bound algorithm

In this section we describe the Algorithm Q-MIST proposed by Buchheim and Wiegele
in [17], it is an SDP-based branch-and-bound algorithm to solve Problem (3.1). It was
designed to deal with general closed sub-sets D; of R, and was implemented to use the
SDP solver CSDP [11]. At each node of the branch-and-bound-tree, Q-MIST solves a
relaxation of type (3.2), then calls an exact separation algorithm to produce additional
cutting planes and solves a new SDP problem whenever new cutting plans have been
added.
The choice of the branching variable is motivated by the following

3.2. BRANCH-AND-BOUND ALGORITHM

29

Algorithm Q-MIST: Branch-and-bound algorithm for Problem (3.1)

© W N O oA W N o+

-
=]

_
W N

14
15
16

17
18
19
20
21

Input: Q€ S, e R ¢eR,D;i=1,...,n,e>0
Output: z* € R" s.t. f(z*) differs at most ¢ from optimal value of (3.1)
set U = oo;
let P be (3.2);
set S = {P};
while S # () do
choose P € S;
let S =8\P;
repeat
solve P to obtain X;
fori=1ton do
if possible, separate (xg;, z;;) from P(D;);
L add generated cutting planes to P;

until no cutting plane has been generated;

round the fractional point & := (x¢1, ..., Zo,) to obtain a feasible
solution ¢(z) of P;

if f(#) < U then

let U = f(2);

let z* = 7;

if (Q, X) <U — ¢ then
find ¢ maximizing x;; — x3, ;
obtain P; from P by replacing D; by D; N (—o0, zg;];
obtain Py from P by replacing D; by D; N [zg;, 00);
B let SU {Pl,PQ};

[

30 CHAPTER 3. Q-MIST

Corollary 3.3. [17] Let X € S}, be such that oo = 1 and z; = xf;. Then,
(To1, --.,Ton) 1S a feasible solution of Problem (3.1), for the appropriate sets D;.

Proof. 1t is known that since X € S, the determinant of any principal sub-matrix
of X is non-negative (see Proposition 2.2 and Theorem 2.3). Now, consider the de-
terminant of the sub-matrix of X given by the rows and columns 0, ¢ and j: we have
that —(z;; — Toize;)? > 0, it follows that x;; = z¢;xo;. Since, in addition, z; = x3; for
alli=1,...,n, then X = {(x), where x = (zg1, ..., Ton)- O

From the last corollary it follows that feasibility is guaranteed once x; = z2; for
alli =1,...,n. Based on this fact, in Step 18 of Algorithm Q-MIST (see page 29), the
variable i where z;; = x2, is most violated is chosen as branching variable. In practice,
when we are dealing with continuous variables, this condition will never be reached.
The following lemma has been proved.

Lemma 3.4. [17] Let D; C [0,1] for alli = 1,...,n and x* be an optimal solution
of Problem (3.1). Then there exists § > 0 such that for every optimal solution X of
Problem (3.2) with x;; — 2%, < & it follows that f(xz*) —(Q, X) <e.

Moreover, it has been proved that Q-MIST terminates after a finite number of
iterations if all D, are bounded.

Theorem 3.5. [17] Let D; be bounded. Then for any ¢ > 0, Algorithm Q-MIST
terminates in finite time with a feasible solution x that satisfies f(z) < f*+ ¢,
where f* is the optimal value of Problem (3.1).

3.3 Matrix formulation

In this section we introduce some notation to express the constraints of Problem (3.2)
using matrices and present some properties of Problem (3.1) that will be needed later
in Part III.

The relaxation (3.2) contains the constraint zoo = 1, this fact is exploited to rewrite
the polyhedral description of P(D;) presented in Lemma 3.2 as

Bij =i+ 1))z —zu +(G+G+1)re < By, j=UL+1,...,u—1
(Biw, + Liwi) oo + i — (L + wi)voi < Biwg

for an arbitrary vector f € R™, with m = >""" n;. The introduction of § does not
change the primal problem (3.2), but it has a strong impact on the dual problem: the
dual feasible set and objective function are both affected by 3, as shown below.

The resulting inequalities are written in matrix form in the following way:

(Aij, X) < Bij -

To keep analogy with the facets, for each variable i € {1,...,n}, the index ij represents
the inequalities corresponding to lower bounding facets j = I;, l;+1, ..., u;—1 and j = u;
corresponds to the upper bounding facet; see Figure 3.3 for an illustration.

It is clear that, since each constraint links only the variables zoy, z¢; and x;;, the
constraint matrices A;; € S,41 are very sparse. Indeed, they are zero everywhere

3.3. MATRIX FORMULATION 31

\ /

i i i i ZTo;
-2 —1 1 2

Figure 3.3: The polytope P({-2,—1,0,1,2}). Lower facets are
indexed, from left to right, by j = —2,—1,0,1, the upper facet
by 2.

except in the entries 00, 70, 0z and 7. More precisely, in the case of an upper bound
constraint we have

(Aij)oo = Biu; + liwi,
(Aij)oi = (Aij)io = _%(li +),
(Aij)i = 1,

while in the case of a lower bound constraint we have

(Aij)oo = Bij — (G + 1),
(Aij)oi = (Aij)io =17+ %7
(Aij)ie = —1.

To be consistent, the constraint xgyp = 1 is also written in matrix form as (A, X) = 1,
where Ay = eoeoT € Spy1. In summary, Problem (3.2) can now be written as

min (@, X)
st (Ag, X) =1 (3.3)
(Aij, X) < Bij Yi=1l,....,u;, Vi=1,....n
X > 0.

The following simple observation is crucial for the algorithm presented in Part III
of this thesis.

Lemma 3.6. All constraint matrices A;; have rank one or two. The rank of A;; is one

if and only if
(a) the facet is upper bounding, i.e., j = w;, and B, = i(li —u;)?, or
(b) the facet is lower bounding, i.e., j < w;, and [3;; = —i.

This property of the constraint matrices will be exploited later when solving the
dual problem of (3.3) using a coordinate-wise approach, leading to a computationally
cheap update at each iteration and an easy computation of the exact step size.

32 CHAPTER 3. Q-MIST

3.4 Dual problem

In order to derive the dual of Problem (3.3), the linear operator A: S, 1 — R™"! is

introduced: A o (Ag, X)
(X) = <<AijaX> n}) '

je{li ui},ie{l
Moreover, a dual variable yp € R is associated with the constraint (Ay, X) = 1 and
a dual variable y;; < 0 with the constraint (A4;;, X) < f;;, for all j € {l;,...,u;}
and i € {1,...,n}, and y € R™"! is defined as

y = (Yo)
(yij)je{li u; },i€{1,...,n}

The adjoint operator to A is obtained as
no u

-ATZJ = 1yoAo + Z Z Vi Aij,

=1 j=l;
and the dual semidefinite program of Problem (3.3) is

max (b, y)

st. Q—ATy>=0 (3.4)
Yo €R
vi; <0 Vi=1,...,u;,Vi=1,...,n,

the vector b € R™*! being defined as by = 1 and by; = By fori =1,...,n, 5 =1, ..., u;.
We conclude this section by emphasizing some characteristics of any feasible solution

of Problem (3.3).

Lemma 3.7. Let X* be a feasible solution of Problem (3.3). Fori € {1,...,n},
consider the active set

i ={j € {li,.. ., ui} | (Aij, X7) = Bis}
corresponding to variable i. Then
(i) for alli e {1,...,n}, || <2, and
(ii) if || = 2, then zf; = (x3;)* and x}, € D;.

Proof. The polytope P(D;) is two-dimensional with non-degenerate vertices. Due to
the way the inequalities (4;;, X) < f3;; are defined it is impossible to have more than two
inequalities intersecting at one point; see for example Figures 3.1 and 3.3. Therefore,
a given point (xf;, x3;) € P(D;) satisfies zero, one, or two inequalities with equality. In
the last case, we have z}; = (z,)? by construction, which implies z};, € D;. O
For the dual problem (3.4), Lemma 3.7 (i) means that at most 2n + 1 out of the m + 1
variables can be non-zero in an optimal solution. Such a small number of non-zero
variables motivates to consider a coordinate-wise optimization method to solve the
dual problem (3.4). Moreover, by Lemma 3.7 (ii), if two dual variables corresponding
to the same primal variable are non-zero in an optimal dual solution, then this primal
variable will obtain an integer feasible value in the optimal primal solution.

3.5. PRIMAL AND DUAL STRICT FEASIBILITY 33

Lij

% % % % % % Zoj
-3 -2 -1 1 2 3
Figure 3.4: The polytope P({0,1,2,3}). By definition we have
T, = %(lZ + u;) = 1.5. Thus l;(x;) = 3x; — 2, defined over the
domain [1,2], and u;(z;) = 3z;, over [0,3]. From the definition of
X0, we have that), = 1.5 and 2% = 1(1;(1.5) + u;(1.5)) = 3.5.
The strictly feasible point (1.5,3.5) is represented by a black dot.

3.5 Primal and dual strict feasibility

We prove here that Problem (3.2) and its dual, Problem (3.4), are strictly feasible.
From Theorem 2.8 we can thus conclude that strong duality holds and thus both
problems attain their optimal solutions.

We need the definitions of the functions bounding z;; in terms of zq;, which are
given by the upper and the lower bounding facets described in Lemma 3.2:

vegi+r—li(x) =2+ Da;—jG+1) j=1l...,u;—1

and

Notice that in case of binary variables, ;(z;) = u;(x;).

Theorem 3.8. Assume in the following that binary variables are modeled by one equa-
tion (instead of two inequalities). Problem (3.2) is strictly feasible.

Proof. Define xy := 1 and x; := %(lz + u;) and let

Y $(Li(x;) + ui(z;)) otherwise.

By the Schur complement, Theorem 2.6, X° = 0 if and only if

The latter matrix is a diagonal matrix with entries 3(;(x;) + u;(2;)) — 7 > 0. By
construction, it is clear that X satisfies all equations (concerning gy and resulting
from binary variables) and that it strictly satisfies all inequalities (see Figure 3.4). O

Theorem 3.9. Problem (3.4) is strictly feasible.

34 CHAPTER 3. Q-MIST

Proof. 1f Q = 0, we have that y° = 0 is a feasible solution of Problem (3.4). Otherwise,
define a € R™ by a; = (A,)oi for i = 1,...,n. Moreover, define

7 = min{ Anin (Q) — 1,0},

n

Yo = ¢E=§) (Ao — 1= (31— §a) (31 — ja),

i=1

and 3° € R™! as

yo.:< Yo) g 7 d=uwi=t1in
. (yij)je{h u; 1,i€{1,...,n} ’ K O7 otherwise.

We have y% < 0 by construction, so it remains to show that @ — A"y = 0. To this
end, first note that

Ei=c—yo— 7Y (Ao =1+ —ga)" (A —ga) > 0. (3.5)
=1
By definition,
Q—AT 0= —yvo—ﬂiAmi
=1
=Q —yodo— 7 (Z%({;‘lwi)oo f}:)

_ (.t —@a)T)
1 ~ ~)
§l —Yya Q - y[n

which by Schur complement and (3.5) is positive definite if
(Q = §l) = (51 = Ga) (51 — Ga) " = 0.

Denoting B := (%Z— gja)(%i— ga)", we have

and thus

a)\max(B)
Y T Aaa(B)

by definition of §j. We have found 3° such that 4° < 0 and Q —.A"Ty° = 0, we know

that there exists ¢ > 0 small enough such that y° — el is strictly feasible, i.e., such
that 4 —ell < 0 and Q — AT (y° —€l) = 0

>0

O

We can thus formulate the following corollary, which is a direct consequence of
Theorem 2.8.

Corollary 3.10. Problem (3.2) and its dual, Problem (3.4), both admit optimal solu-
tions and there is no duality gap.

Chapter 4

Coordinate-wise optimization

This chapter is divided into three sections, it begins with a review of the general idea of
coordinate descent methods, then we recall the Woodbury formula that is needed in the
consecutive section and also later in Part I1I. The last section describes a specialized
primal-barrier coordinate descent algorithm, proposed by Dong [26], designed to solve
a semidefinite problem that has a similar structure to Problem (3.4).

4.1 Introduction to coordinate descent methods

Coordinate descent methods are iterative algorithms in which at each iteration one
of the coordinates is adjusted in order to optimize the objective function, while the
other components are fixed at their values from the current iteration. These simple
steps lead to lower-dimensional sub-problems that are thus easier to solve than the full
dimensional problem. This method has been used for years in many applications such
as image reconstruction [12; 27, 95|, machine learning [23, 88, 49, 9], data analysis [4],
among others. In general, it is applied to a variety of problems where large or high-
dimensional data sets are involved, due to its cheap cost per iteration. In this section
we give an overview of the main idea of the algorithm.
We consider the following unconstrained minimization problem

Irgn f(x) = flxr,. .., xn), (4.1)

where the function f: R"™ — R is continuous. Further assumptions on the struc-
ture of f may be made, leading to different variants of the method and convergence
properties. The basic coordinate descent framework for the problem above is shown
in Algorithm 2. At each iteration a coordinate of x is adjusted by a certain updated
scheme while the other coordinates are held fixed.

The coordinates can be selected in a cyclical manner, namely, ig = 1, i, = [ig_1
mod n| +1, k € N. One could also select the next iterate randomly. If the gradient of f
is known, then it is possible to choose the coordinates looking at the gradient, choosing
the coordinate corresponding to the component of the gradient with the largest absolute
value, this is known as Gauss-Southwell rule.

In relation to the update scheme, one possible approach is to compute :Ez(f) by
minimizing the objective function with respect to x;, while the remaining components

35

36 CHAPTER 4. COORDINATE-WISE OPTIMIZATION

Algorithm 2: Coordinate descent algorithm for Problem (4.1)
1 Set k = 0 and initialize (¥ € R";

2 repeat
3 choose i, € {1,...,n};
4 update ngfl) to xz(f) by certain scheme;

5 set xz(k) :xz(k_l) fori e {1,...,n}\ ix;
6 k<+ k+1,;
7 until termination condition is satisfied;

are held fixed:

k : k—1 k—1 k—1 -
:Ez(k) = argmlnf(xg). 7$§k—1)7 xik,xl(ﬁl), xRy,

Tiy,
In general, the update schemes are determined according to the structure of the problem
to be solved. If, in particular, the objective function f is differentiable, a coordinate-
gradient descent scheme can be applied, namely, by adjusting the coordinate i, as
follows

x(k) = x(‘kil) - O‘kvikf(x(kil)%

ik ik
where «, is the step size which can be computed by line search. This is motivated by
the fact that —V f(z®)) is a descent direction.

If oy, is such that the objective function is minimized on the direction e;,, i.e,

F@® 4 opey,) = miglf(:c(k) + ae;,),
o>

then such a line search is known as ezxact line search, and «y, is called optimal step size.
Notice that once an exact coordinate optimization is performed on the direction 7, we
are guaranteed that in the next iteration V; _ f(z*)) = 0. If in addition, the next
coordinate is chosen using the Gauss-Southwell rule, we cannot have i, = ;1.

The different coordinate selection rules and step size computation affect the conver-
gence behavior of the coordinate descent algorithm, depending on the type of problem,
and they may exploit the specific problem structure. Standard references for litera-
ture about convergence properties of these methods are, e.g., [75, 82, 60, 8]. In the
approach presented in Part III, we will apply a coordinate-wise optimization method
using the Gauss-Southwell rule and exact line search, where the objective function is
continuously differentiable, strictly convex and has bounded level sets. Unfortunately
we have not found in the literature convergence results of the iterates generated by this
rule.

We present here a theorem taken from [69], for cyclical rule, that ensures conver-
gence of Algorithm 2 assuming that the objective function f is continuously differen-
tiable, strictly quasi-convex and has bounded level sets. Recall that if f: R® — R,
any non-empty set of the form

LAf) = {z eR"| f(x) < 2},

for z € R, is a (lower) level set of f associated with z. If f is a convex function, then
all its level sets are convex (see, e.g., [8]).

4.2. THE WOODBURY FORMULA 37

Theorem 4.1. [69] Assume that f: R" — R is continuously differentiable, strictly
quasi-convexr and has bounded level sets. Then for any x° € R" the sequence x*)
generated by Algorithm 2 using the cyclical rule and exact line search is well defined
and converges to the unique minimizer of f.

4.2 The Woodbury formula

This section is dedicated to review the Woodbury formula which will be needed later
in this chapter and in Part III.
Consider the following linear system of equations

(A+UV)x =1,

where A € M,, is non-singular, U € M,,, and V € M, ,. In order to solve this system,
we introduce the variable y = V2 and obtain the following system

Az +Uy =0>
Vae—1Iy=0,

which written in matrix form is
A U x\ (b
vV —-I1)\y) \0)°
Notice that A 4+ UV becomes the Schur complement of —/ in the matrix
A U
Vo I

(see Section 2.1). We have that z = A7'(b — Uy), and substituting this into the
equation y = Vx, we obtain

y=I+VAU)WA D
Using this in 2 = A7Y(b — Uy), we get
r=(A"1 - AU +VATTU)WA .
Since b was chosen arbitrarily, we can conclude that
(A+UV) P =A" - Al UT+vA U 'vAT,
we thus have proved the following theorem.

Theorem 4.2 (Woodbury formula). Let A € M,,,, be a non-singular matriz, U € M,,
and 'V € M, . Then the inverse of the matric A+ UV, if it exists, is

(A+UV) ' = A" — AU+ VAU VA (4.2)

In the special case where p = 1, i.e., U is a column vector and V' is a row vector,
we have the following corollary.

38 CHAPTER 4. COORDINATE-WISE OPTIMIZATION

Corollary 4.3 (Sherman-Morrison-Woodbury formula). Let A € M,,,, and u,v € R™.
Then

Aty T A1
1+ovT Ay

Equation (4.2) is known as Woodbury formula [40], while (4.3) as Sherman-Morrison-
Woodbury formula. The Woodbury formula shows how to update the inverse of a ma-
trix altered by the addition of a matrix of small rank. Given a non-singular matrix A,
let B:= A+ uv', where u,v € R”. The product uv' is a matrix of rank one. If the
inverse of A is already known, the Woodbury formula is a shortcut to compute the
inverse of B. Then, a rank-one change in the matrix A results in a rank-one change
in its inverse. In terms of the number of operations needed to compute the inverse of
B, it means that it can be computed in O(n?) operations instead of O(n?), when it is
computed from scratch.

The Woodbury formula can be seen as the generalization to a rank p perturbation
of A. In the following we will refer to both formulae as Woodbury formula, and always
mention the rank of the perturbation. The complexity of computing the inverse using
the general Woodbury formula is O(pn?) and O(p*) operations are needed to compute
the inverse of (I + VA™'U). The latter is constant for fixed value of p.

(A+uw)t =A4"— (4.3)

4.3 A barrier coordinate minimization approach

In this section we review the main results of a recent paper of Dong [26], which is
focused on the generation of convex quadratic relaxations for the same class of problems
discussed in Chapter 3:

min ' 'Qr+q 'z
st. x€ Dy x---Xx Dy, (4.4)

also here each set D; is assumed to be a closed and bounded subset of R. Problem (4.4)
can be reformulated as the linear program
min v+ qTaz

st. (v,z) €H, (4.5)

over the set H := conv{(v,z) | v > 2" Qu,z € Dy x---x D, }. We begin by studying the
convex quadratic valid constraints for H introduced by Dong in [26], they are basically
produced by perturbing the quadratic form z'Qx with separable terms. We will see
that by adding all possible cutting surfaces of this type, we get a convex relaxation
of Problem (4.4) that is equivalent to the semidefinite relaxation of Problem (3.2),
described in the previous chapter. Finally, at the end of this section, we concentrate
on the method designed to solve the resulting separation problem.

4.3.1 Cutting surfaces from diagonal perturbations

Let us begin by introducing some required notation. We changed a little bit the nota-
tion in [26] to keep consistence with the notation introduced of the previous chapter.
For each variable i, consider the following set

S; = {(z,2%) |z € D;}.

4.3. A BARRIER COORDINATE MINIMIZATION APPROACH 39

Since D; is assumed to be closed and bounded, we can define L; := min{z | = € D;}
and R; := max{z | x € D;}. Additionally, for every set S;, denote by ¢;(-) its lower
convex envelop, i.e., ¢; is the largest convex function defined on the interval [L;, R;], such
that £;(x) < 22 for every x € D;, and by u;(-) its upper convex envelop, i.e., the smallest
concave function on [L;, R;], such that u;(x) > x? for every x € D;. Observe that in the
case of finite sets D; considered in the last chapter, [;(-) and u,(-) are defined exactly
as in Section 3.5. In the general case, D; C R, as it was mentioned in [17], under some
mild conditions, it is possible to fully characterize [;(-) and w;(-). See also Algorithm
SepP in [17]. In the notation of the last chapter, we have that P(D;) = conv(S;).
Even more, the following proposition holds, its proof is clear for finite integer sets, see
Figure 3.4.

Proposition 4.4. [26] Let D;, S;, L;, R;, {;(-) and u;(-) be defined as before, then
(1) P(D;) = conv(S;) = {(x,vi) | li(:) < yi < wali)},
(11) x? < li(z;) < ui(z;) for every x; € Ly, Ry

We can now formulate the following lemma, that defines a set of convex valid
constraints for H.

Lemma 4.5. Let d € R" be such that Q+diag(d) > 0, and x; — y;(z;) some uni-variate
function, such that if d; > 0, y;(x;) is concave and y;(x;) > x?; and if d; < 0, y;(x;) is
convex and y;(z;) < x2, for all i ={1,...,n}. Then

v>2 Qr+ Z di(x? — yi(z:)) (4.6)
i=1
1s a valid convex inequality for H.

Proof. From the way d and y; are defined, we have that d;(z? — y;(z;)) < 0 for all 4,
and therefore that (4.6) is a valid inequality. To prove the convexity, observe that

xQerZd () =z Qx+Zdw —Zdlylxl

= ' Qr + x ' diag(d)z — Z diyi(s)

i=1
=1 (Q + diag(d))r — Z diyi(x;).
i=1
Since @ + diag(d) = 0, the quadratic form z'(Q + diag(d))z is convex (see, e.g., [8]),
the convexity of —d,;y;(z;) follows by construction. O
Notice that since it is desirable to have a perturbation as large as possible, the best
choices for y;(x;) are
li(x;), d; <0,
UZ(ZL‘Z), d; > 0,

obtaining in this way d;(z7 — y;(x;)) as close to zero as possible (without violating
convexity). The following inequality is thus a convex valid constraint for H

40 CHAPTER 4. COORDINATE-WISE OPTIMIZATION

v>a QY di(a} — () +) dila] — wi(x), (4.7)

i:d; <0 i:d; >0
for any vector d that satisfies QQ+diag(d) > 0. Denote by D the set of all vectors d € R"

such that @ + diag(d) = 0. A vector d will be called admissible if d € D. With all the
admissible vectors, we obtain a convex relaxation of Problem (4.4)

min v+ qTaz
x,v

st v>a Qu+ Z di(z? — 0i(x)) + Z di(z? — us(x;)) Vd €D (4.8)
i:d; <0 i:d; >0

Notice that since there is an infinite number of admissible vectors d, the relaxation
above is a semi-infinite convex program.

Dong has presented an algorithm to solve Problem (4.8) in an iterative manner,
starting with some initial set D and updating it by adding new violated constraints
of type (4.7). We will not explain here the algorithm, instead we will concentrate
on the algorithm devised to generate such constraints. But before, we show that
Problem (4.8) is in fact equivalent to the semidefinite relaxation of Problem (3.1)
described in Chapter 3.

Recall that in [26] the constant part of Problem (3.1) is assumed to be 0. We have
that Problem (3.2) can be written as

min z' Qr+gq'z

1 "
(:c X) = 0.

Proposition 4.4 (i), implies that the set of constraints (x;, ;) € P(D;) is equivalent to
therefore, Problem (4.9) is equivalent to

min z' Qr+q'z

1 x'
()=

Theorem 4.6. [26] Let ji5qp and pisicp denote the optimal values for the semidefinite
relazation (4.9), and the semi-infinite convex problem (4.8), respectively. We have

Msdp = Msicp-

Proof. From Proposition 4.4 (ii), we know that ¢;(z;) < u;(x;) implies L; < x; < R;,
and from the Schur complement, Theorem 2.6,

-
(1 x)50<:>X§:ch,
z X

4.3. A BARRIER COORDINATE MINIMIZATION APPROACH 41

we have thus that Problem (4.9) is equivalent to
min v+ qTx
v= ng}n{(@,)@ | X = wat () < i < wi)}

To prove fisap > fsicp, We only need to prove that for any (z, X) in the feasible region
of Problem (4.9), and any d € D, we have

(Q.X) > 2" Qu+ Y dia] — lix) + > di(a] — wizy)).

1:d;<0 i:d; >0

The last inequality is equivalent to

(Q+diag(d), X —ax") > 2" Qu+ Y di(wi — i) + Y dilwis — ui(x;)) = 0,

i:d; <0 i:d; >0

which is valid since zy; = 22, z;; — li(x;) > 0, and x;; — u;(z;) > 0 holds for every 4,
and @ + diag(d) = 0 implies <Q + diag(d), X — x:pT> > 0.

To prove the other direction we need to compute the dual of Problem (4.10).
Let dj > 0 be the Lagrange multipliers associated with the constraints x; — ¢;(x;) > 0
and d; > 0 be the ones corresponding to u;(z;) — z; > 0. The dual problem is

{min (Q,X)+qTx =3, dy (a3 — L)) — 30, diF (uals) — 24) }

max z,X

dt,d=€R?

Notice that, unless ¢;(-) and w;(-) are linear functions (which would imply P(D;) has
empty interior), one can always find a strictly primal feasible point (z, X) of the last
problem. As pointed out in the previous chapter, in the case of binary variables for
having strict feasibility, some of the inequality constraints have to be modeled as one
equation. Therefore, strong duality holds and the dual optimal value is attained. From
Proposition 4.4 (ii), we have that u;(x;) > ¢;(x;) for all z; € [L;, R;]. Without loss of
generality, assume d; = 0 or d; = 0 but not both, define d := dj — d;. Moreover,
assume that Q+diag(d) = 0, otherwise the inner minimization over (x, X) is unbounded
from below. Furthermore, assume X — zz' = 0. With all these assumptions, the dual
problem is simplified as

min z'(Q + diag(d))r +q"z — Z dili(x;) — Z diu;(z;)
Psdp = Max ; i:d; <0 i:d; >0
FQrdingld=0 st. Li<xm <R Va

Since the dual optimal value is attained, there exists d* such that @ + diag(d*) = 0
and

psgp = min o' (Q + diag(d))a + "z — Y diti(w) — Y diuwil,)
’ i:d; <0 i:d; >0

The optimal value of the last problem bounds the value of Problem (4.8) from below,
therefore fisqp = fsicp- O

42 CHAPTER 4. COORDINATE-WISE OPTIMIZATION

Let (z,v) be a point in the feasible region of Problem (4.5). Then the separation
problem can be formulated as the following convex program

s.t. @+ diag(d) =0 (4.11)
d e R",

where the function g; is defined as follows

Oél'di, d; < 0,
9i(d;) =
Yidi, d;y >0,

It is easy to see that g;(d;) is a convex function, from Proposition 4.4 we have that
72 < 4i(7;) < (), therefore 0 < 4;(7;) — 7% < wi(7;) — 72, ie., 0 < oy < ;. Observe
that Problem (4.11) has a similar structure to Problem (3.4). In the latter problem we
are optimizing a linear function subject to a semidefinite constraint Q — ATy >= 0 that
contains matrices of rank two and the dual variables are restricted to be non-positive.
We are interested in the algorithm proposed in [26] to solve Problem (4.11), which will
be described in the following section. We will see that the main ideas of this algorithm
can be extended to solve Problem (3.4).

4.3.2 A barrier coordinate descent algorithm to solve the sep-
aration problem

In this section we describe the algorithm presented by Dong [26] to solve Problem (4.11).
The author proposed a primal-barrier coordinate minimization algorithm with exact
line search. It solves the log-det form of Problem (4.11):

min f(d;0) := Z 9i(d;) — olog det(Q + diag(d))
st. @+ diag(d) > 0,

where the penalty parameter o > 0 is updated iteratively. The optimality condition
for this non-differentiable convex problem is

0 € 0f(d), Q + diag(d) = 0.

The constraint) + diag(d) = 0 cannot be active, since {d € R" | @ + diag(d) > 0} is
an open set. The sub-differential of f(d;o) is

Of (d; o) = —Diag((Q + diag(d))™") + @dg:(d;),

where
o, d; <0,

9gi(d;) = { v,), di =0,

4.3. A BARRIER COORDINATE MINIMIZATION APPROACH 43

Let d be a feasible vector. At each iteration of the algorithm, one coordinate of the
vector d will be updated and the inverse matrix V := (Q + diag(d))™' has to be
computed. An important ingredient of the algorithm is the quick update of V', this is
done using the Woodbury formula rank one update, see Section 4.2.

The coordinate direction is chosen using the following criterion:

i€ argmax{|s(J)|j} (4.12)

J

where B B
s(d) := min{||u|lz | v € Of(d;0)}.
Then an exact line search is performed along the chosen coordinate, i.e., the step
size Ad; along coordinate 7 satisfies
Ad; € argmin{ f(d + Adie;; o) | Q + diag(d + Ad;e;) = 0}. (4.13)

One can derive an explicit formula for Ad}, by solving this problem. The following
lemma gives a lower bound on the step size Ad;. The proof is rather technical, see [26]
for complete details.

Lemma 4.7. [26] Let d be a vector such that Q + diag(d) = 0 and define the matriz
= (Q+diag(d))~t. Then for each i, Q+diag(d+ Ad;e;) = 0 if and only if Ad; > Ui”

In order to solve (4.13), we need to compute the sub-differential of the function
f(d+ Ad;e;; 0) at each coordinate i. We obtain

where _
ay, Ad d
0;9i(d; + Ad;) = < [, v], Ad; = —d;, (4.14)

The inverse of the matrix (Q + diag(d) + Ad;ee,) is computed with the Woodbury
formula (4.3):

. _ _ B Ad;(Ve))(Vey) T Ad.v2
diag(d)+Ad;eie]) ' = (V I+ Adee]) 1 =V —— e =V —
<Q+ lag()_'_ €i€;) (+ €i€;) 1+ AdlelTVel 1+ Adﬂ)m
Therefore, we have that
. _ Adzvi
o ((Q + diag(d) + Adieie])) = 0 (V - HT) ;W

Finally, the solution of (4.13) is obtained by intersecting the non—linear curve (4.15)
and the piecewise linear curve (4.14) with the constraint Ad; > —-- from Lemma 4.7.

Once the step size is computed, at each iteration the followmg updates are per-
formed:

44 CHAPTER 4. COORDINATE-WISE OPTIMIZATION

Algorithm 3: Barrier coordinate descent algorithm for Problem (4.11)
Input: Q € S,, 0 >0,d € R"s.t. Q + diag(d) = 0

Output: A feasible d solving approximately Problem (4.11)
Compute VO « (Q + diag(d))™!;

for k + 0 until maz-iterations do

Choose a coordinate direction e; according to (4.12);

Update d; < d; + Ad}, where Ad; solves (4.13);

Update V' using the Woodbury formula;

Update o using some update rule;

Terminate if some stopping criterion is met;

b =R B VU VI

% T
Ad v,

Vi Vo i

where v; is the 7th column of the previous matrix V. The algorithm proposed by Dong
to solve Problem (4.11) is summarized in Algorithm 3. At each step of Algorithm 3,
as explained in Section 4.2, the most expensive task is the update of matrix V', which
is done in O(n?).

Part 111

The new approach

45

Chapter 5

A coordinate ascent method

The following chapters contain the main contribution of our research. We will use the
elements described in Part II as follows: we propose to solve Problem (3.1) based on
the branch-and-bound framework Q-MIST described in Chapter 3 and an extension of
the coordinate-wise algorithm of Section 4.3.2.

Our approach tries to exploit the specific structure of Problem (3.1), namely a
small total number of (active) constraints and low rank constraint matrices that ap-
pear in the semidefinite relaxation. We exploit this special structure by solving the dual
problem (3.4) by coordinate-wise optimization methods, in order to obtain fast lower
bounds to be used inside the branch-and-bound framework Q-MIST. Our approach is
motivated by Algorithm 3 proposed by Dong [26], which was recalled in Section 4.3.
As it was already mentioned, Problem (3.1) is reformulated as a convex quadratically
constrained problem, then convex relaxations are produced via a cutting surface pro-
cedure based on diagonal perturbations. The separation problem turns out to be a
semidefinite problem with convex non-smooth objective function, and it is solved by a
primal barrier coordinate minimization algorithm with exact line search.

As can be seen, the dual problem (3.4) has a similar structure to the semidefinite
problem (4.11), therefore similar ideas can be applied to solve it. Observe that however
Problem (3.4) is more general, it contains more general constraints with matrices of
rank two (instead of one) and most of our variables are constrained to be non-positive.
Another difference is that we deal with an exponentially large number of constraints,
out of which only a few are non-zero however. On the other hand, our objective function
is linear, instead of scalar which is the case for Problem (4.11).

As a first step, we introduce a penalty term in the objective function of Prob-
lem (3.4) to model the semidefinite constraint @Q — A"y = 0. We obtain

max f(y;0) := (b,y) + ologdet(Q — A'y)

st. Q—ATy>=0 (5.1)
Yo € R
vi; <0 Vi=1l,...,u,Vi=1,...,n

for ¢ > 0. The penalty term will tend to minus infinity if an eigenvalue of (Q — A"y)
tends to zero, in other words, if (Q —.A"y) approaches the boundary of the semidefinite
cone (see Section 2.4). Therefore the role of the penalty term is to prevent that dual
variables will leave the set {y € R™! | Q — ATy = 0}. We do not introduce a

47

48 CHAPTER 5. A COORDINATE ASCENT METHOD

penalization to model the non-negativity constraints y;; < 0. We will see later that we
can handle these constraints separately in an efficient way.

Observe that f is strictly concave, indeed it is a sum of a linear function and
the log det function, which is a strictly concave function on the positive definite cone
(see e.g., [43]). In the next theorem we will prove that the level sets of f are bounded.
We recall the definition of upper level sets, in this case for the maximization prob-
lem (5.1):

Li(z) ={yp €Ry; <0[Q—ATy >0, f(y;0) > z}.

Theorem 5.1. For all 0 > 0, all level sets of the objective function of Problem (5.1)
are bounded.

Proof. We will need to prove some intermediate steps. We define the following set
N :={y eR™ | y;; < 0}.

We first prove that for all y € A"\ {0} such that ATy = 0, it holds that (b,y) # 0. For
this, assume that there exists y € N such that ATy = 0 and (b,y) = 0. We have thus
that there exist ¢/ € {1,...,n} and j" € {ly,...,uy} such that

Ai’j’ = 50A0 + Z 5iinj and bi’j’ = 50()0 + Z 5ijbij

il il

with o € R and 4;; < 0.
By Theorem 3.8, we know that there exists a strictly feasible solution X° = 0 of
Problem (3.3), for which

<A0,XO> = by and <AZ']',X0> < bl'j Vij.
Thus
bi/j/ > <Ai/j/7X0> = 50 <A0, XO> + Z 5@']’ <Aij,X0> Z 50()0 + Z 5Z-jbl-j = bi’j’;
ij#i' ij#i'

but this is a contradiction.
Secondly, observe that for all y € N, it holds that

(Q, X — (y,b) > (Q, X") — (y, A(X?))
=(Q, X") — (A'y, X°)
=(Q— A"y, X°)
> Amax(Q — ATY) Ain (X°).

The last inequality follows by Lemma 1.2.4 in [43]. We have that App,(X°) > 0
since X° > 0. Thus

1

.
Amax(@ — A'y) < Mo (X0

Since the level sets L;(z) are convex and closed, in order to prove that they are
bounded, it is enough to prove that they do not contain an unbounded ray. We will

49

prove thus that for all feasible solutions 3 of Problem (5.1), and all y € A"\ {0} there
exists s such that f(y + sy;0) < z for all z € R.
First, consider the case when A"y = 0, then

f(§+sy;0) = (b,y) + s(b,y) + o logdet(Q)

and (b,y) # 0 as argued above. Now, take the limit when s — oo of f(y + sy;o0):
if (b,y) > 0, then f(y + sy;0) — oo, but this contradicts primal feasibility. If, in-
stead (b,y) < 0, then f(y + sy;0) — —oc.

On the other hand, if ATy # 0, we have that either A\, (Q — ATy — s*ATy) = 0
for some s* > 0, and hence

lim logdet(Q — A"y — sATy) = —c0,
s—8*
or
lim Apax (@ — ATg — sA"y) = o0,
Eadee]

and from (5.2) it follows that (b,y + sy) must tend to —oo when s — oo. In the
second case, observe that p(s) := det(Q — A"y — sA"y) is a polynomial in s, and
denote h(s) := (b,y + sy) = (b,y) + (b,y) s. We have that

'(s)
logp(s) . 5 : P'(s)
lim ———~% = lim = lim ———~——— =
S$—$00 h(s) S$—$00 <b7 y> S5—$00 (b7 y) p(s)

This means that h(s) dominates log p(s) when s — oo. Thus f(y + sy) — —oc. O

Recall that from Theorem 4.1 the boundedness of the lower level sets and the strict
convexity of the function guarantee the convergence of a coordinate descent method,
when using the cyclical rule to select the coordinate direction and exact line search
to compute the step length. Therefore in the case of maximizing a strictly concave
function with bounded upper level sets a coordinate ascent algorithm with cyclical rule
and exact line search will converge to its unique maximizer. Due to the structure of our
problem, we consider that applying the Gauss-Southwell rule to choose the coordinate
direction, will most likely converge as well. Below we describe a general algorithm to
solve Problem (5.1) in a coordinate-wise maximization manner.

Outline of a barrier coordinate ascent algorithm for Problem (3.4)

Starting point: choose ¢ > 0 and any feasible solution y of (3.4).
Direction: choose a coordinate direction e;;.

Step size: using exact line search, determine the step length s.
Move along chosen coordinate: y < y + se;;.

Decrease the penalty parameter o.

Go to (2), unless some stopping criterion is satisfied.

In the following sections, we will explain each step of this algorithm in detail. We
propose to choose the ascent direction based on a coordinate-gradient scheme, similar
to [26]. We thus need to compute the gradient of the objective function of Prob-
lem (5.1). See, e.g., [43] for more details on how to compute the gradient. We have
that

Vyf(y;0) =b—cA((Q—ATy)™).

20 CHAPTER 5. A COORDINATE ASCENT METHOD

For the following, we denote
W= (Q - ATy>717

so that

Vo f(yi0) = b= cAGV) . (5.3)

We will see that, due to the particular structure of the gradient of the objective
function, the search of the ascent direction reduces to considering only a few possible
candidates among the exponentially many directions. In the chosen direction, we
solve a one-dimensional minimization problem to determine the step size. It turns
out that this problem has a closed form solution. Each iteration of the algorithm
involves the update of the vector of dual variables and the computation of the inverse
of an (n+ 1) x (n+ 1)-matrix, which only changes by a factor of one constraint matrix
when changing the value of the dual variable. We will see later that, thanks to the
Woodbury formula and to the fact that our constraint matrices are rank-two matrices,
the inverse of the matrix W can be easily computed, the updates at each iteration of
the algorithm can be performed in O(n?) time, which is crucial for the performance
of the algorithm proposed. We will see that the special structure of Problem (3.1)
can be exploited even more, considering the fact that the constraint matrix associated
with the dual variable y, has rank-one, and that every linear combination with another
linear constraint matrix still has rank at most two. This suggests that we can perform
a plane-search rather than a line search, and simultaneously update two dual variables
and still recompute the inverse matrix in O(n?) time. Thus, the main ingredient
of our algorithm is the computationally cheap update at each iteration and an easy
computation of the optimal step size.

This chapter is organized as follows. We conclude this section, describing the choice
of a feasible starting point. In the next two sections, we describe in detail how to
choose the coordinate ascent direction and the computation of the step size. A general
overview of the coordinate ascent algorithm is given in Section 5.3. Later, in Section 5.4,
the general approach is extended by exploiting the fact that yy does not have a non-
positivity constraint and the properties of Ag. In the last section, we propose an
algorithm to compute the primal solution using the dual variables information.

In case of [26], the choice of the starting point was more intuitive. The simple form
of the semidefinite constraint allowed to easily decide how far from the boundary of the
positive semidefinite cone to start the iterative procedure. In our case, the situation
is more complex, so we propose the following choice for a feasible starting point, that
seems to perform well in practice.

If Q@ = 0, we can safely choose y® = 0 as starting point. Otherwise, y(*) can be
taken as y° defined as in the proof of Theorem 3.9. Recall that the computation of 3°
is based on the Schur complement and some properties of positive semidefinite matri-
ces (see Section 2.1). The idea is quite intuitive, it involves however the computation of
the smallest eigenvalue of Q We will see later that this, together with the computation
of the inverse of Q@ — ATy®, are the most expensive tasks in our algorithm, in fact it
requires O(n?) time.

5.1. CHOICE OF AN ASCENT DIRECTION 51

5.1 Choice of an ascent direction

We improve the objective function coordinate-wise: at each iteration k of the algorithm,
we choose an ascent direction e;;x) € R™ ! where ij*) is a coordinate of the gradient
with maximum absolute value

ij® e argmax|vyf(y; a)ij - (5.4)
ij

However, moving a coordinate ¢j to a positive direction is allowed only if y;; < 0, so
that the coordinate ij*) in (5.4) has to be chosen among those satisfying either

V,f(y;0);; >0 and y; <0

or
Vyf(y;0)i < 0.
The entries of the gradient depend on the type of inequality. By (5.3), we have

Vyf(y;0)i; = Bij — o (W, Ay)

_ Bij — o((Biy — 3(5 + 1)) woo + (27 + Dwos — wig) j =1liy ... us — 1,
Biwi — 0 ((Biw; + liwi)woo — (1i + wi)wo; + wy;)] = U;.

The number of lower bounding facets for a single primal variable ¢ is u; — [;, which is
not polynomial in the input size from a theoretical point of view. From a practical
point of view, a large domain D; may slow down the coordinate selection if all potential
coordinates have to be evaluated explicitly.

However, the regular structure of the gradient entries corresponding to lower bound-
ing facets for variable i allows to limit the search to at most three candidates per
variable. To this end, we define the function

J — Bij — o (B — 3(J + 1)woo + (25 + 1)wo; — wys) -

Our task is then to find a minimizer of |;| over {l;,...,u; — 1}. As ; is a uni-variate
quadratic function, we can restrict our search to at most three candidates, namely the
bounds /; and u;—1 and the rounded global minimizer of ¢;, if it belongs to [;, ..., u;—1;

the latter is
wo; 1
ErRil

In summary, taking into account also the upper bounding facets and the coordinate
zero, we need to test at most 1+ 4n candidates in order to solve (5.4), independent of
the sets D;.

5.2 Computation of the step size

We compute the step size s*) by exact line search in the chosen direction. For this we
need to solve the following one-dimensional maximization problem

s®) = arg max{ f(y* + s€;;;0) | Q — AT (y® 4 seim) = 0,8 < —yum}, (5.5)

52 CHAPTER 5. A COORDINATE ASCENT METHOD

unless the chosen coordinate is zero, in which case the upper bound on s is dropped.
Note that the function
S = f(y(k) + se0050)

is strictly concave on {s € R | Q — AT (y® + se;jm) = 0}. By the first order optimality

conditions, we thus need to find an s*) € R satisfying the semidefinite constraint
Q — AT(y® + s®e,) = 0 such that either

Vof (™ + S(k)eij(k)§ 0)=0 and y;m + s <0

or

st(y(k) + s(k)eij(k); o) >0 and sk — —yi(f()k).

In order to simplify the notation, we omit the index (k) in the following. From the
definition, we have

f(y+ sei;0) = (by) + s (b,eij) + ologdet(Q — ATy — sA'e;;)
= (b,y) + Bijs + o logdet(W ™" — sA;;).
Then, the gradient is
st(y + S5€i5, O') = Bij — 0 <Aij7 (W_l - SAZ']‘)_1> . (56)

The next lemma states that if the coordinate direction is chosen as explained in the
previous section, and the gradient (5.6) has at least one root in the right direction of
the line search, then there exists always a feasible step length.

Lemma 5.2.

(i) Let the coordinate ij be such that V,f(y;0)i; > 0 and y;; < 0. If there exists
s > 0 for which Vsf(y + se;j;0) = 0, then for the smallest positive s™ with
Vsf(y+stej;0) =0, one of the following holds:

(a) y+ sTei; is dual feasible
(b) st > —yij, y — yijeij is dual feasible, and V,f(y — y;jei;;0) > 0.

(11) Let the coordinate ij be such that ¥V, f(y;o);; < 0. If there exists s < 0 for which
Vf(y+ seij;0) =0, then for the biggest negative s~ with Vf(y+ s e;jj;0) =0
it holds that y + s~ e;; 1s dual feasible.

Proof. We prove (i), the proof of (ii) follows analogous ideas. Let y be a feasible point
of Problem (5.1) and ¢j such that V,f(y;0);; > 0 and y;; < 0. Choose the smallest
positive st with V,f(y + sTe;;;0) = 0 and assume that (a) is false, we then have to
show that (b) holds.

If (a) is false, then y+ sTe;; is not dual feasible, this means that either @ — A" (y+
sTe;;) is not positive definite or st > —y;;.

In the first case, there must exist some 0 < s < s* with f(s,0) — —oco for
s — s'. From the continuous differentiability of f(s, o) on the feasible region and since
V,f(y;0);; > 0, there exists 0 < s” < &' with V,f(y + s”e;;;0) = 0, in contradiction
to the minimality of s*.

In the second case, by the same reasoning, we may assume that y + se;; is dual
feasible for all 0 < s < sT. If there is no s’ € [0,sT] with Vs f(y + s'e;j;0) = 0, we
must have Vf(y + s'e;;;0) > 0 for all ' € [0, s7|, again by continuous differentiability
and V, f(y;0);; > 0. O

5.2. COMPUTATION OF THE STEP SIZE 23

Yij Yij +s Yij Yij + s

(a) sT <s (b) s* = —yy
Figure 5.1: Tllustration of the existence of an optimal step size s, Theorem 5.3 (i)

If in addition we exploit that the level sets of the function are bounded, as shown
by Theorem 5.1, then we can derive the following theorem:

Theorem 5.3.

(1) Let the coordinate ij be such that V,f(y;0);; > 0 and y;; < 0. Then the gra-
dient (5.6) has at least one positive root, and for the smallest positive root st,
either y + ste;; is dual feasible and Vsf(y + sTeij;0) = 0, or y;; +s7 > 0
and Vs f(y — yizeij; 0) > 0.

(11) Let the coordinate ij be such that V,f(y;0);; < 0. Then the gradient (5.6) has
at least one negative root, and for the biggest negative root s=, y + s~ e;; s dual
feasible and Vf(y+ s e;;;0) = 0.

Proof. We prove (i), the proof of (ii) follows analogous ideas. Let y a feasible point of
Problem (5.1) and 4j such that V, f(y;0);; > 0 and y;; < 0.

From Theorem 5.1, we know that £;(2), the level set of f at z := f(y), is bounded.
Thus, when moving in the positive direction of the gradient from y to y + se;;, at some
point either the value of the function f at y + se;; will be equal to f(y), or y;; +s > 0.

In the first case, from continuous differentiability of the function s — f(y+ se;j;0),
and using V,f(y;0);; > 0, we have that there exists s < —y,; such that V,f(y +
ste;jj;0) = 0. By Lemma 5.2, the smallest sT is feasible (which also directly follows
from y + ste;; € L4(2)).

Otherwise, if y;; +s > 0, choose st = —y;; and assume that V,f(y — y;je;;;0) < 0.
This means that there was a point where the gradient changed its direction and thus,
from the same arguments as before, there must be s* < s* such that V f(y+s*e;;;0) =
0, but this is a contradiction. Therefore the gradient of f at y 4+ sTe;; remains non-
negative. See Figure 5.1 for an illustration. O

Observe that the computation of the gradient requires to compute the inverse
of W=t —sA,;;, it is worth mentioning that this is the crucial task since it is a matrix of
order n+1. Notice however that W~ is changed by a rank-one or rank-two matrix sA;;;
see Lemma 3.6. Therefore, we will compute the inverse matrix (W~ — sA;;)~! using
the Woodbury formula for the rank-one or rank-two update, see Section 4.2.

54 CHAPTER 5. A COORDINATE ASCENT METHOD

More precisely, each constraint matrix A;; can be factored as follows:

Ay = By 1Cy;,

where E;; € M, 12 is defined by E;; := (eg €;), eg,e; € R"™™ Cij € M,y is de-
fined by C' := (A;j){0,i}.0,...n}, and I is the 2 x 2-identity matrix. By the Woodbury
formula (4.2),

(W —s4) ' = (W = sEGIC,) ' =W + WE; (2] — Cy;WE;) ' CyW . (5.7)

Notice that the matrix %I — C;;WE;; is a 2 x 2-matrix, so its inverse can be easily
computed even as a closed formula.

On the other hand, from Lemma 3.6, we know under which conditions a constraint
matrix A;; has rank-one. In that case, we obtain the following factorization:

Aij = (Aij)iﬂ)’UT, (58)

where v := (A;j)0i€0 + (Aij)ie;. The inverse of (W™ — sA;;) is then computed using
the Woodbury formula for rank-one update (4.3),

(Aij)us
1 — (Ajj)isv™Wo

(W_l — SAl'j)_l = (W_l — S(Am‘)n"UUT)_l =W + W’UUTW (59)

Now, we need to find the value of s that makes the gradient in (5.6) zero, this
requires to solve the following equation

6@‘ — 0 <Aij7 (W_l — SAij)_1> = O

In order to solve this equation, we distinguish two possible cases, depending on the
rank of the constraint matrix of the chosen coordinate. We use the factorizations of
the matrix A;; explained above.

Rank-two. By replacing the inverse matrix (5.7) in the gradient (5.6) and setting it
to zero, we obtain

6@ — 0 <Aij7 W> — 0 <Aij7 WEZ](%[—|— CijWEij)flCl-jW> = 0

Due to the sparsity of the constraint matrices A;;, the inner matrix product is simplified
a lot, in fact we have to compute only the entries 00, 07, 07 and i of the matrix product
WEij(§I+C,~jWE,~j)*1CZ’jW. We obtain a rational equation on s of degree two, namely

Bijonws® + (2001w — aaf;)s + Bij — oo

=0,

where

o1 = (Aij)OO(Aij)ii - (Aij)giv
Qo 1= (Aij)OOwOO + 2<Az‘j)0iw0i + (Aij)iiwii7

— 2
W = WooWi; — Wy -

5.2. COMPUTATION OF THE STEP SIZE 25

Theorem 5.3 shows that, since s — f(y + se;;; o) is continuously differentiable on the
level sets, the denominator of the latter equation can not become zero before finding
a point where the gradient is zero. Therefore, the step size s is obtained setting
the numerator to zero, and using the quadratic formula for the roots of the general
quadratic equation:

- —20’0(1’11] + Ozgﬁij + \/((20‘0&111} — Ozgﬂij)Q — 461']‘0(111}(6@']‘ — 0'0[2)
n QBijozlw ’

S

Then, according to Theorem 5.3 we will need to take the smallest/biggest s on the
right direction of the chosen coordinate.

Rank-one. In case the rank of A;; is one, the computations can be simplified. We
proceed as before, replacing (5.9) in the gradient (5.6) and setting it to zero:

(Aij)us
1-— (Aij)“‘S’UTW’U

Bij—o <(Az‘j)n'UUT, W+ WUUTW> =0.

Denote t := <va, W> =0 Wu = viweo + 2vev;woe; + viw;;, then <va, WU’UTW> =
(vTWw)? = t2. Replacing this in the last equation yields

(Aij)iis
6] (j) 1_<A2J>“t8 ()
The last expression turns out to be a rational equation linear in s, and the step size is
1 o

C (At By

Notice that s # ﬁ and hence the denominator in (5.10) is different from zero. We
17)it

have to point out that the zero coordinate can also be chosen as ascent direction, in
that case the gradient is

Vifly+sepo)=1—0c <A0, (e sAO)_1>)

As before, the inverse of W~! — sA; is computed using the Woodbury formula for
rank-one update

T (Wep)(Wep) .

W—l_A—lzw—l_ T—lIW
(sAp) (sepey) + T———

The computation of the step size becomes simpler, we just need to find a solution of
the linear equation

1—0 <A0, (W_l - SAQ)_1> =0.

Solving the last equation, the step size is

A similar formula for the step size is obtained for other cases when the constraint
matrix A;; has rank-one and corresponds to an upper facet such that [; = —u;. Since

26 CHAPTER 5. A COORDINATE ASCENT METHOD

in this case (Aij)OO = (AZ_]>OZ = 0 and (AU)m = 1, the factorization of Aij in (58)
reduces to

Aij = 61‘6;7
and t = w;;. Thus, the step is:
1 o
§=— — —.
Wi Bij

With the step size s*) determined, we use the following formulae for a fast update,
again making use of the Woodbury formula:

YD =) 4 B
WED = W L WO B, (5T — CiwWWEw) ™ CliooW®,
or
WD) M(qu}(k))w(k)v(k)ﬁ
(AZ] 223

5.3 Algorithm overview

Our approach to solve Problem (3.4) is summarized in Algorithm CD.

Algorithm CD: Barrier coordinate ascent algorithm for Problem (3.4)
Input: Q € 5,11

Output: A lower bound on the optimal value of Problem (3.3)

Use Lemma 3.9 to compute 4©) such that Q@ — ATy©® = 0

Compute W© «— (Q — ATy®)~1

for k=0,1,2,... do

Choose a coordinate direction e;jx as described in Section 5.1

Compute the step size s¥) as described in Section 5.2
Update y*) « y®) + s®e

Update W®) using the Woodbury formula

Update o

Terminate if some stopping criterion is met

© 00 N o oA W N o=

10 return (b, y™)

Before entering the main loop, the running time of Algorithm CD is dominated by
the computation of the minimum eigenvalue of Q needed to compute y@ and by the
computation of the inverse of the matrix Q —.A"y®. Both can be done in O(n?®) time.
Each iteration of the algorithm can be performed in O(n?). Indeed, as discussed in
Section 5.1, we need to consider O(n) candidates for the coordinate selection, so that
this task can be performed in O(n) time. For calculating the step size and updating
the matrix W®) we need O(n?) time using the Woodbury formula.

Notice that Algorithm CD produces a feasible solution y*) of Problem (3.4) at
every iteration and hence a valid lower bound <b, y(k)> for Problem (3.3). In particular,
when used within a branch-and-bound algorithm, this means that Algorithm CD can be
stopped as soon as <b, y(k)> exceeds a known upper bound for Problem (3.3). Otherwise,

5.4. TWO DIMENSIONAL APPROACH 27

the algorithm can be stopped after a fixed number of iterations or when other criteria
show that only a small further improvement of the bound can be expected.

The choice of an appropriate termination rule however is closely related to the
update of o performed in Step 8. The aim is to find a good balance between the
convergence for fixed o and the decrease of ¢. This is further discussed in Chapter 7.

5.4 Two dimensional approach

In Algorithm CD, we change only one coordinate in each iteration, as this allows to
update the matrix W% in O(n?) time using the Woodbury formula. This was due to
the fact that all constraint matrices in the primal SDP (3.3) have rank at most two.
However, taking into account the special structure of the constraint matrix Ay, one can
observe that every linear combination of any constraint matrix A;; with Ay still has
rank at most two. In other words, we can simultaneously update the dual variables yq
and y;; and still recompute W® in O(n?) time. Geometrically, we thus search along
the plane spanned by the coordinates (e, e; j<k>) rather than the line spanned by a single
coordinate e; ;. For sake of readability, we again omit the index (k) in the following.

Let ¢j be a given coordinate and denote by s the step size along coordinate e;; and
by so the step size along eq. At each iteration we then perform an update of the form

Y < Y + So€o + s€4j .
The value of the objective function in the new point is
fy + soeq + seij;) = (b,y) + so + sBi; + o logdet(W ™! — 5945 — sA,;) .

Our first aim is to obtain a closed formula for the optimal step length sy in terms of
a fixed step length s. For this, we exploit the fact that the update of coordinate eq is
rank-one, and that the zero coordinate does not have a sign restriction. Consider the
gradient of f(y + soeo + se;;; o) with respect to so:

Vo f (Y + s0e0 + se;5;0) =1—0o <A0, (W — 5040 — sAij)*1>) (5.11)

Defining W(s) := (W~ — sA;;)~* and using the Woodbury formula for rank-one up-
date, we obtain

s0(s)

(W_l—svo—SAij)_l — (W(S)_l—soAO)_l = W(S)JFT(S)MOO

(W (s)eo)(W(s)eo) "
Substituting the last expression in the gradient (5.11) and setting the latter to zero,

we get
(s :
So\S) ‘= Sg = — 0.
w(s)gg

It remains to compute w(s)y,, which can be done using the Woodbury formula for
rank-two updates. In summary, we have shown

Lemma 5.4. Let s be a given step size along coordinate direction e;;, then

—0 (5.12)

is the unique mazimizer of f(y+ So€o + Seij; 0), and hence the optimum step size along
coordinate eg.

o8 CHAPTER 5. A COORDINATE ASCENT METHOD

The next task is to compute a step length s such that (so(s), s) is an optimal two-
dimensional step in the coordinate plane spanned by (e, e;;). To this end, we consider
the function

9ij(8) == f(y + so0(s)eo + seij; 0)
over the set {s € R | Q — A" (y + so(s)eo + se;;) = 0} and solve the problem

max {g;;(s) | @ — AT(y® + so(s)eo + sejjo) = 0, < =y} . (5.13)

Since the latter problem is uni-variate and differentiable, we need to find s € R such
that

(g;_]<8) = 0 and S S _yz_]) or (g;.]<3) > 0 and S = _yz_]>
The derivative of g;;(s) is

9i(8) = s(s) + By — o (so(8) Ao + Aij, (W1 = so(s) Ao — sA4ij) ™), (5.14)

which is a quadratic rational function. The next lemma shows that at least one of
the two roots of g;;(s) leads to a feasible update if the direction ij is an ascent direc-
tion. Similar to Theorem 5.3 in the one dimensional approach, the proof is based on
Theorem 5.1.

Theorem 5.5.

(i) Let the coordinate ij be such that gi;(0) > 0 and y;; < 0. The expression (5.14)
has at least one positive root, and for the smallest positive root s*, either the
point y + so(sT)eg + stey; is dual feasible and g;;(s*) = 0, or yy + s > 0
and g;;(—yi;) > 0.

(ii) Let the coordinate ij be such that g;;(0) < 0. The expression (5.14) has at least
one negative root, and for the biggest negative s~, the point y+so(s~)eg+ S~ €;; is
dual feasible and g;;(s~) = 0.

This theorem guarantees that if there exists s in the feasible region with g;.(s) = 0,
then from continuous differentiability of the function on the level sets, the denominator
of gj;(s), which is (Aj;)iws — wg, can not be zero. Therefore the roots of g;(s) are
found by setting the numerator to zero,

(a = (Ai)hi(Ai)ii)w?s® + (2(Aij)iwoo — 2(Asij)iawee — ow)ws
+wooa+0(Aij)iwoow + 2(A;)oiwoowo; + (A@-j)iiwé =0,

we obtain the following formula for the step size
1
S = —5<U}O' —+ 204(Al-j)l-l-w00 — 2<Alj)glw00 + \/ﬁ),
where

2
W = WooWi; — Wy,

o = (Aij)OO - @'j,

5.5. PRIMAL SOLUTIONS 29

1
P = o’w (zg) i — da(4;) U}o@ - S(Aij)Oi(Aij)?i’wOi(@woo - §<Aij>0iw0i>
— 4(A5)5:(Aij)iwoo(awoo — 2(Asj)oiwos) + 4(Aij)owho

6 = 2(A;)ii(a(Aij)i — (Ai)g)w.

It remains to discuss the choice of the coordinate 75, which is similar to the one-
dimensional approach: we choose the coordinate direction e;; such that

ij := arg max|g;;(0)], (5.15)
)

where moving into the positive direction of a coordinate e;; is allowed only if y;; < 0,
thus the candidates are those coordinates satisfying

(gll-j(()) >0 and y;; <0) or gz{j(o) <0.

Note that

g” woo wo
Y liwg + 22 (1 4 wi) + (owoo — 1) 0; — OWj; J = U,

,()—{j(j+1)_2%]_woé (Uwoo—l) Oz+o-wu j:lia"'aui_la

therefore, as before, we do not need to search over all potential coordinates 7j, since
the regular structure of g;;(0) for the lower bounding facets j € {l;,...,u; — 1} for
each variable 7 allows us to restrict the search to at most three candidates per variable.
Thus only 4n potential coordinate directions must be considered.

Using these ideas, a slightly different version of Algorithm CD is obtained by chang-
ing Steps 4, 5 and 6 adequately, we call it Algorithm CD2D. In Chapter 7, we compare
Algorithm CD and its improved version, Algorithm CD2D, experimentally.

Algorithm CD2D: Two-coordinate maximization algorithm for Problem (3.4)
Input: Q € S, 11

Output: A lower bound on the optimal value of Problem (3.3)

Use Lemma 3.9 to compute y© such that Q — ATy = 0

Compute W© « (Q — ATy®)~1

for k=0,1,2,... do

Choose a coordinate direction e as (5.15)

Compute the step sizes s(()k) and s*) according to (5.13) and (5.12)
Update y*+D « ¢®) 4 sék)eo + s®e;sm

Update W®) using the Woodbury formula,

Update o

Terminate if some stopping criterion is met

[N N

© w0 N O

1o return (b,y™)

5.5 Primal solutions

This section contains an algorithm to compute an approximate solution of Prob-
lem (3.3) using the information given by the dual optimal solution of Problem (3.4).

60 CHAPTER 5. A COORDINATE ASCENT METHOD

We will prove that under some additional conditions the approximate primal solution
produced is actually the optimal solution.

Let y* be an optimal solution for the dual problem (3.4), the corresponding primal
optimal solution X* € SF 41 must satisfy the complementarity condition

(Q—-A'y)X* =0 (5.16)

and the primal feasibility conditions X* > 0 and

(Ag, X*) =1,
{<Aiij*> — B, Vi.je Ay, (5.17)

where o7 (y*) .= {i,75 | yi;; <0}.

Notice that in order to find a primal optimal solution X*, we need to solve a semidef-
inite program, and this is in general computationally too expensive. Since this has to
be done at every node of the branch-and-bound tree, we need to devise an alterna-
tive method to compute an approximate matrix X that will be used mainly for taking
a branching decision in Algorithm Q-MIST. The idea is to ignore the semidefinite
constraint X > 0. We thus proceed as follows. We consider the spectral decomposi-
tion Q—A"y* = Pdiag(\)P". Since Q—A'y* = 0, we have A > 0. Define Z := PTXP,
then X = PZP" and (5.16) is equivalent to

0 = (Pdiag(\)P")(PZP") = Pdiag(\)ZP".
Since P is a regular matrix, the last equation implies that
diag(\)Z =0,

which is at the same time equivalent to say that z;; = 0 whenever A\; > 0 or A\; > 0.
Replacing also X = PZP" in (5.17), we have

1= (Ao, X) = (A, PZP") = (PT AP, Z),
Bij = (A, X) = (Aij, PZP") = (P" AP, Z).

This suggests, instead of solving the system (5.17) and (5.16) in order to compute X,
to solve the above system and then compute X = PZPT. The system above can be
simplified, since Z has a zero row/column for each A; > 0. Thus it is possible to reduce
the dimension of the problem as follows: let A be the sub-matrix of A where all rows
and columns [with A; > 0 are removed; let r be the number of positive entries of .
Let Y € 5,11, we have that the system above is equivalent to

PTAOP,Y> —1
PTAZ‘jP,Y> - 6ij \V/Z,] € %(y*)

Then we can extend Y by zeros to obtain Z € S, 11, and finally compute X = PZP".
We formulate this procedure in Algorithm 4. In the implementation of the algorithm,
we will consider always the smallest eigenvalue of) — A"y as zero, this means that r
is at least 1, and there may be more zero eigenvalues considered as zero, depending on
the allowed tolerance.

Notice that we are not enforcing explicitly that Y > 0, but if Y turns out to be
positive semidefinite, then Z is positive semidefinite and therefore X as well. We have
the following theorem.

5.5. PRIMAL SOLUTIONS 61

Algorithm 4: Compute approximate solution of (3.3) using dual information

Input: y* € R™" optimal solution of Problem (3.4)
Output: X € 5,1

1 Compute P € M, orthogonal and A > 0 such that Q — ATy* = Pdiag(\)P"
2 Find a solution Y € S,, 41, of the system of equations (5.18)

3 Set Z € Sp41 as 25 =0, Vig, except for 4,7 =1,...,n+1—r, where z;; = y;;
4 Compute X = PZP"

5 return X

Theorem 5.6. Let y* be a feasible solution of the dual problem (3.4) and X* € S,44
the corresponding matriz produced by Algorithm 4. If X* = 0, then (X*,y*) are primal-
dual optimal solutions of Problems (3.3) and (3.4).

Proof. Let X* be produced by Algorithm 4 such that it is positive semidefinite. We
have that X* is a feasible solution of Problem (3.3), since it satisfies the set of active
constraints for the optimal dual solution y*:

(Ao, X) = (Ao, PZPT) = (PT AP, Z) = <PTA0P,Y> —1

and

(Aij, X) = (A, PZPT) = (PTAP, Z) = (PTAGP.Y) =

for all i € o/ (y*), this holds since Y € S, 11, is the solution of the system of equa-
tions (5.18). It also satisfies complementarity slackness:

(Q — ATy")X* = Pdiag(\)PTPZP" = Pdiag(\)ZP" =0,

where the last equation holds since Z is computed as in Step 3 of Algorithm 4. Namely,
if A; = 0, then the corresponding row ¢ of diag(\)Z is equal to zero. The other rows of

diag(\)Z are equal to zero from the definition of Z. O
Corollary 5.7. Let y* be a feasible solution of the dual problem (3.4). If the solution
of
(Q@—-ATy)X =0
(Ao, X) =1,

is unique, then Algorithm 4 produces that solution.

Proof. Let X* be computed by Algorithm 4. Since Y in step 3 of Algorithm 4 is the
solution of (5.18), then X* also solves (5.17), which will be unique if the system (5.17)
has a unique solution. O

In summary, we have proposed a faster approach than solving a semidefinite prob-
lem, but without any guarantee that the solution obtained will satisfy the positive
semidefiniteness constraint. However there are theoretical reasons to argue that this
approach will work in practice. In [2], it was proved that dual non-degeneracy in
semidefinite programming implies the existence of a unique optimal primal solution.

62 CHAPTER 5. A COORDINATE ASCENT METHOD

Additionally, it was also proved that dual non-degeneracy is a generic property. Putting
these two facts together, it means that for random generated instances the probability
of having a unique optimal primal solution is one. From the practical point of view,
we have implemented Algorithm 4 and run experiments to check the positive semidef-
initeness of the matrix X. We will see that for the random instances considered in
Chapter 7 this approach seems to work well in practice.

Chapter 6

Adding linear constraints

Several optimization problems like the quadratic knapsack problem [74, 46], among
others, can be modeled as a quadratic problem with linear constraints. Linear con-
straints can be easily included in the current setting of our problem, we will see that
doing some minor changes our approach can be extended to solve quadratic problems
with additional linear constraints.

Consider the following problem

min xTQx+ZTx+é
s.t. ajT:E <b;, Vj=1,...,p (6.1)
reD x---xD,.

Notice that the set of linear constraints a;rx < b; can be equivalently written as

() ()<

where
B; —b; Lo Yin-1
i % T 2
% 0o ... 0
A=1 .
o
—In-1 0o ... 0

2

Following a similar procedure as the described in Section 3.1, we can formulate a
semidefinite relaxation of Problem (6.1) as follows

min (Q, X)
st. (Ap, X) =1
(Aij, X) < Bij Yi=1l,...,ui=1,...,n (6.2)
(A, X) < B; Vi=1...,p
X =0.

The matrices @), Ay and A;; are defined as in Section 3.3. Observe that the new
constraint matrices A; have rank two. We will see that Algorithms CD and CD2D can
be extended to solve this more general class of quadratic problem.

63

64 CHAPTER 6. ADDING LINEAR CONSTRAINTS

We are interested in the dual of Problem (6.2), which can be calculated as
max (b, y)
st. Q—-A'y=0 (6.3)
Yo € R
vi; <0 Vi=1l,...,u,Vi=1,...,n
y; <0 Vji=1,....p.
Here, the adjoint operator A" is defined as
noou p
ATy =yodo+ D>y + > yid;,
i=1 j=l; j=1

where y € R™PH! is defined as

Yo
Y= (yij)je{li uibie{l,...n} | >
Yj)ie{1,...p}

the p additional dual variables are associated with the constraints (A;, X) < 3;,
for j € {1,...,p}. The vector b € R™*! is defined as before with p additional

.....

namely
b=\ (Bij)icfis,..ui}ic{l,..n}

Again, we want to solve the log-det form of Problem (6.3)
max f(y;0) = (b,y) + oclogdet(Q — A"y)
st. Q—A'y>=0
Yo €R
Yij SO VJ :li,...,ui,Vi: 1,...,77,
Yj <0 \V/jzl,,p
Notice that the over-all form of the dual problem to be solved has not changed. The
new dual variables y; corresponding to the additional linear constraints play a similar
role as the dual variables y;;, both must satisfy the negativity constraint. Even more,

the dual problem (6.3) remains strictly feasible, this fact can be derived directly from
Theorem 3.9:

Corollary 6.1. Problem (6.3) is strictly feasible.
Proof. Let y° € R™P*! be defined as

o Yo
Yy = (yij)je{li wihie{l,...,n} | >
Yj)je{1,....p}

where yy and y;; are defined as in the proof of Theorem 3.9 and y; is set to zero for
all j = 1,...,p. We have that 4° < 0 and Q — ATy° = 0. Using the same reasoning
as in the proof of Theorem 3.9, we know that there exists € > 0 such that 3° — el < 0
and @ — A" (y° — €ll) = 0. O

6.1. ALGORITHM CD INCLUDING LINEAR CONSTRAINTS 65

Due to the addition of linear constraints, primal strict feasibility might no longer be
satisfied. However, as it was shown the dual problem is strictly feasible, by Theorem 2.8
this means strong duality holds. Therefore, if the primal problem is not feasible we
know thus that the dual problem will be unbounded.

It is clear that the entire procedure described in Section 5.5 is still valid when there
are additional linear constraints. Therefore the computation of primal solutions is done
by properly adapting Algorithm 4. In the following sections, we detail the two main
points where Algorithms CD and CD2D are changed, namely, the choice of the ascent
direction and the closed-form formula for the step size.

6.1 Algorithm CD including linear constraints

The addition of p linear constraints in the primal problem implies that for the search
of a coordinate direction there are p additional potential directions. As before, the
entries of the gradient for the new coordinates can be explicitly computed as

Vyf(y;0);=B; —a (W, A;)

= B; — a((Aj)oowoo +2) _(A;)ortwor)-
k=1

We then choose the coordinate of the gradient with largest absolute value, considering
coordinates both corresponding to the lower bounding facets, the upper bounding facet
and the new linear constraints. In Section 5.2, we observed that at most 1 + 4n
candidates have to be considered to select the coordinate direction. Thus, in this case,
we will have at most 1 + 4n + p candidates.

The computation of the step size follows an analogous procedure as in Section 5.2.
This means, a problem similar to Problem (5.5) has to be solved. Therefore, if one of
the new possible candidates for coordinate direction e; € R™**! for j € {1,...,p}
has been chosen, we need to compute s such that either

Vif(y+sej;0)=0 and s< —y;

or
Vsf(y+sej;0) >0 and s=—y,.

We have that
Vaof(y+sej;0); =0 —o (A;, (W —s4;)7). (6.4)

The existence of an optimal step size now depends on primal feasibility. There is no
guarantee that the level sets of the function are bounded, or as we already mentioned,
if the primal problem is not feasible, the dual problem will be unbounded. Testing
primal feasibility is a difficult task, however, from Lemma 5.2 we know that if there
exists s in the correct direction of the line search that makes the gradient (6.4) zero,
then there exists also one on the feasible region. This implies the following result.

Theorem 6.2.

1) Let the coordinate j be such that V,f(y;0); > 0 and y; < 0. If the gradient (6.4
y j j
has a positive root, then for the smallest positive oot sT, either y + ste; is

66 CHAPTER 6. ADDING LINEAR CONSTRAINTS

dual feasible and V,f(y + ste;;0) = 0, or y; + s > 0, y — yje; is dual
feasible, and V,f(y — yje;;0) > 0. Otherwise, y + se;j is dual feasible with
Vsfly + sej; o) > 0 foralls € [0, —y;l.

(ii) Let the coordinate j be such that V,f(y;0); < 0. If the gradient (6.4) has a
negative root, then for the biggest negative root s=, the point y + s~ e; is dual
feasible and Vf(y + s7ej;0) = 0. Otherwise, y + se;; is dual feasible with
Vsf(y+sej;0) >0 forall s <0.

As before, in order to find the step size, it is necessary to compute the inverse
of W=t —sA;. As it was mentioned, the constraint matrices A; are rank-two matrices.
They admit the following factorization

where
5(A5)00 1
(Aj)o1 0 1 0 0
B - d ¢ =
¢ : o ’ <%<AJ)00 (A5)o1 (AJ)OH>
(A5)on O

With the Woodbury formula and the factorization above, we have that the inner prod-
uct of A; and (W~ — sA;)~! reduces to the inner product of two 2 x 2 matrices:

(A;, W™ —sA)™") = (B} IC;, W + WE;(XI — C;WE;)'\C;W)
= (ILE]WC] + E]WE;(XI - C;WE;)"'C;W ().

We obtain
T _ d f . T _ [Woo /
e - (0 1), cep= (1),
' o J woo T T_(f d
C]WE]—(d f)’ EJ-WC]» _<w00 f)’
where

4= B4 + (A 3w+ 3 D A A
-

f = 3wo0(Az)o0 + Zn: wo; (Aj)oi
= Wy (4))o.- -

Replacing the inner product in the gradient (6.4), we obtain a rational function of
degree two

ﬁj(d’woo — f2>82 + (QdO'U)OO — 2f20' + Q/BJf>S + 2f0' — /Bj
(d’woo — f2)82 + 2fS -1)

Vif(y+sej0); =

6.2. ALGORITHM CD2D INCLUDING LINEAR CONSTRAINTS 67

Finally the step size is obtained setting the numerator to zero, yielding

—dowgy + f20 — B f + \/d202w0 — 2df20%wy, + fio? + 52dw00
5] (dwoo - f2)

In the implementation of the algorithm, if no root of the gradient (6.4) is found in
the right direction, the step size has to be set to —y;; when the coordinate j is such
that V, f(y;0); > 0 and y; < 0, or s = M, where M < 0, when the coordinate j is
such that V, f(y;0); < 0.

It is clear that Algorithm CD can be easily extended to compute lower bounds for
the optimal value of Problem 6.2. In the next section, we describe the steps that have
to be changed in Algorithm CD2D. We will see that in this case, due to the structure of
the constraint matrices A;, Algorithm CD2D has some advantages over Algorithm CD.

S =

6.2 Algorithm CD2D including linear constraints

A two-dimensional update is also possible for solving the dual of Problem (6.2), again
in this case, any linear combination of a constraint matrix A; with Ay remains being a
rank-two matrix. The optimal two-dimensional step size (so(s), s) along the coordinate
plane spanned by (e, e;) can be computed following an analogous procedure to the one
explained in Section 5.4. It turns out, in this case, that the computation of the step size
is technically less complicated. Lemma 5.4 can be used to compute the step size so(s)
along the direction ey, in terms of a given step size s along coordinate direction e;.
Recall that W(s) = (W' — sA;)~!, and thus

1 1
— = ——((dwgy — s+ 2 1
w<8)00 g Woo ((Woo f)8 + fS + g Woo),

with f, d defined as in the last section. We can define then the function

g5(8) == f(y + so(s)eo + sej;0)

over the set {s € R | Q@ — A" (y + so(s)eg + se;) = 0}. We have to solve a similar
problem to (5.13), namely, we need to find s € R such that

So(s) =

(9j(s) =0and s < —y;) or (gj(s)>0and s = —y;).
We thus need to compute the derivative of g;(s)
g5(s) = sp(s) + B — o (s(s) Ao + Aj, (W1 — so(s)Ag — sA4;) 7). (6.5)

As we already pointed out, the existence of a step size is related with primal fea-
sibility. We have the following theorem that, analogous to Theorem 6.2, is a direct
consequence of Lemma 5.2.

Theorem 6.3.

(i) Let the coordinate j be such that g5(0) > 0 and y; < 0. If the derivative (6.5) has
a positive root, then for the smallest positive oot st, either y+so(sT)eg+sTe; is
dual feasible and g;(s*) =0, or y; +s* >0, y + so(—y;)e0 — y;e; is dual feasible
and g (—y;) > 0. Otherwise, y + so(s)eo + se; is dual feasible with gi(s) > 0 for
all s € [0, —y,;].

68 CHAPTER 6. ADDING LINEAR CONSTRAINTS

(ii) Let the coordinate j be such that g;(0) < 0. If the derivative (6.5) has a negative
root, then for the biggest negative s~, the point y+ so(s~)eg+ s~ e; is dual feasible
and g(s~) = 0. Otherwise, y + so(s)eo + se; is dual feasible with with g;(s) >0
for all s <0.

In order to compute the inner product in (6.5), we propose the following factoriza-
tions for the matrices A; := sf(s)Ay + A; and flj = s0(s)Ag + sA;:

where
%(36(2:)(&)00) é
_ j)o1 = 1 0 0
by = : - G= (%(56(3) + (45)00) (Aj)on (A]>0n) ’
(Aj)On 0
%(50(5)&{ 33(14]')00) é
5 S 4)01 = 1 0 0
ki = : - G= <%(So(3) + 8(Aj)o0) s(A4j)on S(AJ)0n>
S(Aj)On 0

In this way, the inner product of matrices in (6.5) can be rewritten as the inner product

of two 2 X 2 matrices:
<Aj, (Wt — Aj)—1> - <EjICy, W+ WE;(I — CyWEj)éjW>
= (1LEJWC] + E]WE,(I - C;W E)C WY),

where
wi = (TN awer = (Yo T
3 WEj = (f woo)’ GWe <f d1)7
- ~_fw00 2 7T—fa£
W J_(az JE)’ B WG _<w00 v
and
d= (W, (A0 (A)0),
d= <W7 (AJ)O-<Aj)g> ’
JE: WJ(AJ>O7
f:WJ(AJ)O"

By doing all calculations, one can verify that (A;, (W' —sA;)™!) is actually zero.
Replacing this into (6.5) we get g¢(s) = s;(s) + 3;, where
2
so(s) = ——((dwoo — f*)s + f),

Woo

6.2. ALGORITHM CD2D INCLUDING LINEAR CONSTRAINTS 69

and setting g;(s) to zero, we obtain a linear equation on the step size s, whose root is

_ 2f = Bjww
2(f2 — d’woo) '

Observe that the step size s is independent on the value of o, however the step sq is
still dependent. From Theorem 6.3 it follows that:

s (6.6)

(i) if the coordinate j is such that g7(0) > 0 and y; < 0, and if the derivative (6.5)
has a positive root, then the step size (6.6) must be positive. When there is no
positive root s can be set to —y;;.

(ii) if the coordinate j is such that g;(0) < 0, and if the derivative (6.5) has a negative
root, then the step size (6.6) must be negative. When there is no negative root
set s = M, with M < 0.

The coordinate selection will be done in a similar way as in Section 5.4, i.e., we
will choose the coordinate with the largest absolute value of ¢7(0). Recall that from
Section 5.4, we have 4n potential coordinates, after adding p linear constraints we will
have that 4n + p candidates to be considered.

70

CHAPTER 6. ADDING LINEAR CONSTRAINTS

Chapter 7

Experiments

In Chapter 5 we have presented a coordinate-wise optimization approach that aims
to improve the performance of Q-MIST, the branch-and-bound algorithm described in
Section 3.2 and presented in [17]. As it was already mentioned, Q-MIST was imple-
mented to use the CSDP library [11] for solving SDP-relaxations of type (3.2) at each
node of the branch-and-bound tree. On the one side, the main motivation to consider
a fast coordinate ascent method was to obtain quick and good lower bounds for the
objective value of the quadratic integer problem (3.1). On the other side, our motiva-
tion was also to find approaches that allow us to solve larger size instances, since this
is one of the main restrictions that SDP solvers, based on interior point methods, have.

We evaluate the performance of Algorithms CD and CD2D and compare their per-
formance to CSDP, and to other non-linear solvers as COUENNE [7] and BARON [86].
We divided the experiments into two parts. In the first part, we concentrate on random
instances of Problem (3.1). We are interested in understanding two main points: the
behavior of the lower bounds at the root node and the influence of the stopping criterion
on the branch-and-bound tree and running times. Finally, we evaluate the extension
of our approach when linear constraints are added to the original problem. First of all,
we begin by describing in the next section the general settings for all experiments.

7.1 General setup

Our experiments were carried out on Intel Xeon processors running at 2.60 GHz. For
all the algorithms, the optimality tolerance OPTEPS was set to 107%. We have used
as a base the code that already exists for Q-MIST. Algorithms CD and CD2D were
implemented in C++, using routines from the LAPACK package [3] only in the initial
phase for computing a starting point. Namely, to compute the smallest eigenvalue of Q
needed to determine 3, and the inverse matrix W©® = (Q — ATy©)~'. The updates
in each iteration can be realized by elementary calculation, as explained in Chapter 5.

Recall that in Section 3.3, the parameter §;; can be chosen arbitrarily. As it was
pointed out, this parameter does not change the feasible region of the primal prob-
lem (3.3), however it does have an influence on its dual problem. We have tested several
choices of 3;;, like setting it to zero for all the constraints, or according to Lemma 3.6,
so that all constraint matrices have rank one. We have found out experimentally that
when choosing the value of the parameter ;; in such way that the constraint matrices
A;; have their first entry equal to zero, our approach has faster convergence. Hence,

71

72 CHAPTER 7. EXPERIMENTS

we set [, = —lu; for the upper bounding facets and f;; = j(j+1) for lower bounding
facets, with j = [;, ..., u;, see Section 3.3.

For our experiments, we have generated random instances in the same way as
proposed in [17]: the objective matrix is Q = 3.1, yvw;, where the n numbers
p; are chosen as follows: for a given value of p € [0,100], the first »7/i00 p;’s are
generated uniformly from [—1,0] and the remaining ones from [0,1]. Additionally,
we generate n vectors of dimension n, with entries uniformly at random from [—1, 1],
and orthonormalize them to obtain the vectors v;. The parameter p represents the
percentage of negative eigenvalues, so that Q is positive semidefinite for p = 0, negative
semidefinite for p = 100 and indefinite for any other value p € (0,100). The entries of
the vector [are generated uniformly at random from [—1,1], and ¢ = 0.

In the following we will consider mainly two types of variable domains. Whenever
we refer to ternary instances, we have in mind sets D; of the form {—1,0, 1}, and with
integer instances we mean instances with D; = {—10,...,10}. In our implementation,
we use the following rule to update the penalty parameter: whenever the entry of the
gradient corresponding to the chosen coordinate has an absolute value below 0.1 in the
case of ternary instances or below 0.001 for integer instances, we multiply ¢ by 0.25.
As soon as o falls below 1078, we fix it to this value. The initial o is set to 1.

7.2 Root node behavior

We first evaluate the performance of both Algorithms CD and CD2D in the root node
of the branch-and-bound tree and compare them with CSDP, the SDP solver used
in [17]. We are interested in the improvement of the lower bound over time. In Fig-
ure 7.1 and 7.2 we plotted the lower bounds obtained by CSDP and the algorithms CD
and CD2D in the root node, for a random instance with all sets D; ternary and integer,
respectively. We have chosen a random instance of size n = 100 and two values of p: 0
and 100.

From Figure 7.1 and Figure 7.2, we see that both Algorithms CD and CD2D clearly
dominate CSDP. Observe that for CSDP, the computation of the root bound for p = 0
involves one and two re-optimizations due to separation (see pictures shown in (a)).
For this reason, the lower bound given by CSDP has to restart with a very weak value.
In this particular instance, for both values of p, Algorithm CD is stronger than CD2D
in case of ternary instances, see Figure 7.1. From the pictures in Figure 7.2, we can
see that CD2D dominates the bounds of CD. This is true in particular for p = 100.

7.3 Primal solution

At the root node, we have also performed the evaluation of Algorithm 4, designed
to compute an approximate primal solution of Problem (3.3) using the dual feasible
solution y* of Problem (3.4) (see the details in Section 5.5). Recall that we need to
compute the eigenvalue decomposition of the matrix Q — A"y*, and set a tolerance
to decide which other eigenvalues will be considered as zero. In the experiments we
have taken into account that Q — ATy* has always at least one zero eigenvalue, and
considered as zero all the eigenvalues smaller equal than 0.01. We have run experiments
to check the positive semidefiniteness of the matrix X* at the root node of the branch-

7.3. PRIMAL SOLUTION

Lower bound

Lower bound

-100

-200

-300

-400

-500

-600

-700

-150

-200

-250

-300

-350

-400

-450

-500

-550

-600

?nsm-:gpg PO T S P e e s
j ¥ ¥
M
= * .
* *
- * * -
*
% *
L « N i
xK
- *% ** -
CD +
CD2D
CSDP *
1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Running time (s)
(a) Ternary instance, p = 0
f#w—m—rrx H;ﬁw £ R Lk w AT w o PR o R
N
- + —
+ *
i
N
*
B CD + 7
CD2D
x X CSDP
1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12

Running time (s)

(b) Ternary instance, p = 100

Figure 7.1: Comparison of the lower bounds in the root node
obtained by Q-MIST with CD, CD2D and CSDP, for a random
ternary instance with two different values of p.

73

74

Lower bound

Lower bound

CHAPTER 7. EXPERIMENTS

i > ; —— S s b A VA %
: x
*
-20000 -
*
-40000 y -
*%
*
-60000 |- -
-80000 |- « .
-100000 X i
x X CD +
CD2D
CSDP x
_120000 1 1 1 1 1 1 1
0 0.05 01 0.15 0.2 0.25 03 035 04

Running time (s)

(a) Integer instance, p =0

-10000 F T T X e ; e } » ‘ s ’
++++++++++++++++++++++++++++++
¥
L+t N
-15000 . X+ |
P
-20000 |
-25000 |
-30000 |
-35000 |
-40000 * |
-45000 |
-50000 |
-55000 o) |
* ’ CD2D
CSDP x
-60000 1 !) | | I
0 0.02 0.04 0.06 0.08 0.1 0.12

Running time (s)

(b) Integer instance, p = 100

Figure 7.2: Comparison of the lower bounds in the root node
obtained by Q-MIST with CD, CD2D and CSDP, for a random
integer instance with two different values of p.

7.4. STOPPING CRITERION 75

and-bound tree, with the dual variables obtained from Algorithms CD and CD2D.
We did this test for all instances used in the experiments of the next sections. We
have observed that in all the cases the smallest eigenvalue of X is always greater than
—10714. Based on this fact we can conclude that the method works.

7.4 Stopping criterion

We next investigate the impact of our approach when used within the branch-and-
bound scheme Q-MIST. For this it is important to find a good stopping criterion
that either may allow an early pruning of the nodes or stops the algorithm when no
further improvement of lower bounds is expected. Our approach has the advantage
of producing feasible solutions of Problem (3.4) and thus a valid lower bound for
Problem (3.3), at every iteration. This means that we can stop the iteration process
and prune the node as soon as the current lower bound exceeds a known upper bound
for Problem (3.3).

We propose the following stopping criterion. Every n iterations, we compare the
gap at the current point (new-gap) with the previous one n iterations before (old-gap).
It

(1 — GAP) old-gap < new-gap

and the number of iterations is at least |D;|n, or
new-gap < OPTEPS

we stop the algorithm. The gap is defined as the difference of the best upper bound
known so far and the current lower bound. The value of GAP has to be taken in [0, 1].

In Figure 7.3 we illustrate the influence of the parameter GAP on the running
time and number of nodes needed in the entire branch-and-bound tree, for both Al-
gorithm CD and CD2D. We have chosen 110 random ternary instances of size 50, 10
instances for each p € {0,10,...,100}. The x-axis corresponds to different values of
GAP, while the y-axis to the average running time (Figure 7.3 (a)) and the average
number of nodes (Figure 7.3 (b)), taken over the 110 instances. If GAP=0, then the
algorithm will stop only when the new-gap reaches the absolute optimality tolerance.
As expected, strong bounds are obtained, and thus the number of nodes is reduced
and the time per node increases. When GAP = 1, the algorithm will stop immediately
after |D;|n iterations, the lower bound produced may be too weak and therefore the
number of nodes is large. A similar behavior of GAP is repeated for integer instances.
We conclude that taking GAP=0.1 produces in the algorithm a good balance between
the quality of the lower bounds and the number of nodes. We use the same stopping
rules for both Algorithm CD and CD2D.

7.5 Total running time

We generated random instances for two types of domains: ternary D; = {—1,0,1} and
integer D; = {—10,...,10}. The matrix @, and the vector [defining the objective
function f in Problem (3.1) are generated as explained above. Similar to [17], we
generated 10 random instances for each p € {0,10,...,100} and each size n, i.e., we

76 CHAPTER 7. EXPERIMENTS

250

150 1

Running time (s)

100 |\ R

50 -

0.0 0.1 0.2 0.3 0.4 0.5
Gap
cb2D —— CD -

a) Running time
g

140000

120000 B

100000 1

80000 - 1

60000 B

Number of nodes

40000 — 1

20000 — 1

0.0 0.1 0.2 0.3 0.4 0.5

(b) Number of nodes

Figure 7.3: Influence of the gap criterion on the number of
nodes and the running time for ternary instances, the behavior
for integer instances is similar.

7.5. TOTAL RUNNING TIME 7

generated 110 different instances for each n. On the one hand, we are interested in
evaluating the performance of the branch-and-bound framework Q-MIST using the
new Algorithms CD and CD2D, and compare them to CSDP. On the other hand,
we compare to other non-convex integer programming software: COUENNE [7] and
BARON [86].

In the following tables, n in the first column represents the number of variables. For
each approach, we report the the number of solved instances (#), the average number
of nodes explored in the branch-and-bound (nodes) and the average running time in
seconds (time). All lines report average results over 110 random instances. We have
set a time limit of one hour, and compute the averages considering only the instances
solved to proven optimality within this period of time.

In Table 7.1 we present the results for ternary instances. As it can be seen, Q-
MIST with all three approaches manages to solve all 110 instances for n < 50. Observe
however that both Algorithms CD and CD2D require less time than CSDP even if
the number of nodes enumerated is much larger. For n > 50, Q-MIST with the new
approach solves much more instances than CSDP. Note that BARON and COUENNE
solved all 110 instances only for n < 20 and n < 30, respectively.

Table 7.2 reports the results for integer instances, the results show that Algo-
rithm CD2D outperforms all the other approaches. In this case, the lower bounds
of Algorithm CD are too weak, leading to an excessive number of nodes and it is not
able to solve all instances even of size 10 within the time limit. On contrary, Algo-
rithm CD2D manages to solve much more instances than its competitors, also in this
case of integer instances.

From the experiments reported in [17], it was already known that CSDP outper-
forms a previous version of COUENNE. The comparison of Q-MIST with BARON is
new. We have used also ANTIGONE [65] for the comparison, but we do not report
the results observed since they are not better than those obtained with COUENNE.

Summarizing we can state that Algorithm CD2D yields a significant improvement
of the algorithm Q-MIST when compared with CSDP, and it is even capable to compete
with other commercial and free software as BARON and COUENNE.

It is important to point out that the performance of BARON is almost not changed
when considering ternary or integer variable domains, it solves more or less the same
number of instances in both cases. On contrary, it is clear that the change of the
domains affected the performance in our approach, specially in Algorithm CD. For the
experiments in the next section, we will consider only Algorithm CD2D.

To conclude this section, we present pictures to illustrate how the percentage of
negative eigenvalues influences the running time of Algorithm CD2D. Recall that,
from the way we are producing the random instances, with the parameter p we can
control the percentage of negative eigenvalues of the matrix Q in the ob jective function.
We plotted in Figure 7.4 the average running time for 10 random instances for each
value of p in {0,10,...,100}. We consider ternary and integer instances. Each line
represents a different number of variables. For this experiment we have set the time
limit to 5400s. We chose only the dimensions for which all 110 instances were solved
within the time limit. One can see that ternary instances of small size do not show any
clear behavior. However, in general, one can say that both algorithms CSDP and CD2D
keep the same tendency: instances with convex (p = 0) and concave (p = 100) objective
function require less running time, while instances with indefinite Q are harder to solve.

Table 7.1: Results for ternary instances, D; = {—1,0, 1}

Q-MIST COUENNE BARON

n CD CD2D CSDP

+# nodes time ‘ +# nodes time ‘ +# nodes time +# nodes time # mnodes time
10 | 110 49.31 0.03 | 110 28.05 0.02 | 110 10.11 0.07 || 110 11.91 0.10 | 110 1.42 0.07
20 | 110 250.31 0.16 | 110 174.24 0.06 | 110 67.95 0.32 || 110 2522.35 10.40 | 110 8.87 0.80
30 | 110 1531.29 1.25 | 110 668.47 0.65 | 110 247.24 2.17 | 85 150894.54 1225.72 | 110 8.67 27.59
40 | 110 3024.42 4.98 | 110 2342.75 3.47 | 110 1030.25 12.20 4 134864.75 2330.83 | 65 45.88 280.17
50 | 110 14847.49 46.61 | 110 10357.11 31.62 | 110 7284.09 136.81 0 - — | 21 29.14 22293
60 | 107 34353.45 197.60 | 110 33780.15 155.84 | 109 17210.14 526.96 0 - - 12 10.67 219.77
70 | 83 76774.30 51598 | 98 94294.82 656.58 | 71 17754.41 887.17 0 - - 3 233 257.51
80 | 63 98962.24 1151.22 | 65 126549.25 1150.02 | 34 19553.47 1542.38 0 - - 0 - -

Table 7.2: Results for integer instances, D; = {—10,...,10}
Q-MIST COUENNE BARON

n CD CD2D CSDP

nodes time ‘ # nodes time ‘ # nodes time # nodes time | # nodes time
10 | 107 1085009.52 105.54 | 110 70.58 0.07 | 109 26.29 0.16 || 110 5817.25 7.51 | 110 45.43 0.49
20 | 10 296203.60 154.30 | 110 969.11 0.99 | 110 324.71 2.85 || 98 91473.86 489.05 | 109 140.43 6.44
30 4 179909.00 336.25 | 110 5653.71 13.89 | 110 2196.87 34.49 0 - — | 104 13747 38.20
40 0 - 110 38458.96 187.76 | 108 13029.41 386.68 0 - — | 59 202.93 255.65
50 0 — 96 99205.07 944.79 | 67 24292.79 1247.10 0 - —| 15 17.87 279.82
60 0 - 53 84802.25 1329.92 | 26 30105.15 2088.00 0 - — 8 11.25 282.82
70 0 - 2 48648.00 1218.50 1 2011.00 254.00 0 — — 7 1243 45747

8L

SINHWNIHAIXH L HHLdVHO

7.5. TOTAL RUNNING TIME

CD2D
50 ——
20
-
1072 |
100 b \ g
1070 £ |
1071 L L L L
0 20 40 60 80 100
percentage of negative eigenvalues
(a) Ternary D; =
CD2D
1073 40 —— |
30
20 -
\\
N
1072 ~__ b
107 b
1070 q
1on L I I I I
0 20 40 60 80 100

percentage of negative eigenvalues

(b)

Figure 7.4:

on the average running time.

79

cspp
IR 50 ——
_ 40
- 30
N
1002 b ~ |
\\
~—
100 | 1
1000 1
10n1
0 20 40 60 80 100
percentage of negative eigenvalues
{7 1 ’ 05 1 }
cspp
1003 [— 40 ——]
~ 30
. 20
N
~
\\\,,
102 | —
100 1
1000 1
10n1
0 20 40 60 80 100

percentage of negative eigenvalues

Integer D; = {-10,...,10}

Influence of the percentage of negative eigenvalues

80 CHAPTER 7. EXPERIMENTS

7.6 Behavior with linear constraints

In Chapter 6 we have described how our approach can be extended when inequality
constraints are added to Problem (3.1). For the experiments in this section we will
consider ternary instances and two types of inequality constraints: » " z; < 0 and
a'xz < b, ie., we solve two quadratic problems:

min ' Qr+1'x+c

s.t. sz <0
i=1
x e {-1,0,1}",
and

min ' Qr+1'x+c
st. a'z<b
x e {-1,0,1}".

The vector a € R™ and the right hand side of a' 2 < b are generated as follows: each
entry a; is chosen randomly distributed in {1,2,...,5} and b is randomly distributed in
{1,....>°" , a;}. The objective function is generated as explained before. Tables 7.3
and 7.4 report the results of the performance of Algorithm Q-MIST with CD2D and
CSDP, and compare with BARON. The dimension n of the problem is chosen from
10 to 50 and p € {0, 10, ...,100}, as before each line in the tables corresponds to the
average computed over 110 instances solved within the time limit, 10 instances for each
combination of n and p.

Comparing the results reported in Table 7.1 with those of Tables 7.3 and 7.4, one
could say that the addition of a linear constraint does not change the over all behavior
of our approach. As it can be seen, Q-MIST (with both approaches CD2D and CSDP)
outperforms BARON. However Algorithm CD2D, as it was shown in Table 7.1, is much
faster even if the number of nodes explored is larger.

Table 7.3: Results for ternary instances plus >} z; <0

Q-MIST BARON
n CD2D CSDP

nodes time‘ # nodes time # nodes time

10 | 110 35.85 0.01 | 110 12.73 0.02 || 110 1.29 0.09
20 | 110 195.56 0.35 | 110 74.18 0.34 || 110 6.70 1.10
30 | 110 993.21 1.08 | 110 332.38 2.65 || 110 17.31 43.86
40 | 110 3160.16 4.85 | 110 1199.55 16.47 || 48 13.44 233.40
o0 | 110 13916.13 40.35 | 110 7235.00 159.66 || 20 61.20 174.96

7.6. BEHAVIOR WITH LINEAR CONSTRAINTS

Table 7.4: Results for ternary instances plus a'z < b
Q-MIST BARON

n CD2D CSDP

nodes time ‘ # nodes time # nodes time
10 | 110 29.36 0.01 | 110 11.15 0.05 || 110 1.41 0.08
20 | 110 185.78 0.24 | 110 70.75 0.29 || 110 9.15 1.04
30 | 110 685.64 0.74 | 110 247.80 2.16 || 110 16.04 38.17
40 | 110 2361.33 3.85 | 110 1035.29 14.95 56 37.23 289.56
50 | 110 9844.31 31.10 | 110 714091 165.15 21 6748 191.01

81

82

CHAPTER 7. EXPERIMENTS

Summary and outlook

In this thesis we have proposed a coordinate ascent algorithm to solve the dual problem
of the semidefinite relaxation of non-convex quadratic programming problems where
each variable is restricted to a finite sub-set of the integer numbers (Problem (3.1)).
Our approach is an extension of an algorithm devised by Dong [26] for a similar (but
simpler) class of semidefinite problems. We have embedded this approach into Q-MIST,
the branch-and-bound scheme proposed by Buchheim and Wiegele in [17], originally
designed for a larger class of quadratic problems and implemented to use interior point
methods for solving the semidefinite relaxations.

The motivation of this research was two-fold. First of all, it aimed at obtaining
quick and strong lower bounds for the objective function value of quadratic integer
problems (3.1), that can be used later as a bounding procedure inside Q-MIST. The
second motivation was the development of an algorithm that is capable to solve in-
stances of larger size than allowed by interior point methods.

In our approach we have cleverly exploited the structure of the problem. Due to
the finite variable domains, the semidefinite relaxation of Problem (3.1) could be com-
pletely described by a finite number of linear inequality constraints per variable plus the
semidefinite constraint X > 0 where each set of constraint involves only the variables
Zoo, To; and x;;. We reformulated the inequality constraints using matrix notation.
The matrices associated with the inequalities are characterized by sparsity and a low
rank. In fact, they are symmetric matrices with at most three entries different from
zero and have rank equal to one or two. In addition, we proved that for each variable
at most two constraints can be active. This means that, in an optimal solution, only a
few dual variables can be non-zero among the exponentially many. All these properties
together motivated the use of coordinate-wise optimization methods to solve the dual
problem (3.4). To be precise, we extended the ideas of a coordinate ascent method pro-
posed by Dong [26]. The author has studied the same class of quadratic problems as
in [17], and proposed a convex quadratically constrained reformulation for this class of
problems. Convex relaxations for the resulting problem are obtained via a semi-infinite
relaxation. In order to produce valid cutting surfaces, a semidefinite problem has to be
solved. We have observed that this problem has a similar structure to Problem (3.4).
The problems we are solving are however more general, the semidefinite constraint
includes matrices of rank one or two, instead of diagonal (rank-one) matrices. We deal
with an exponential number of dual of variables restricted to be non-positive. The ob-
jective function in our case is linear instead of scalar. The algorithm devised by Dong
for this class of semidefinite problems consists in the introduction of a barrier function
to model the semidefinite constraint, and the use of coordinate descent methods with
exact line search.

Summarizing, our approach consists in the following: similar as in [26], we have

83

84 SUMMARY AND OUTLOOK

lifted the semidefinite constraint into the objective function and introduce a penalty
parameter. We deal with the non-positivity constraint on the dual variables explicitly
in the line search. The choice of the ascent direction is performed using the Gauss-
Southwell rule. The regular structure of the problem leads to consider only a few
coordinates among the exponentially many potential candidates. In the chosen di-
rection, we performed an exact line search which turns out in a closed-form formula
for computing the step length. We have provided the theoretical requirements that
guarantee the existence of optimal step sizes. Each iteration of the algorithm requires
the computation of an inverse matrix of order n + 1, that is the perturbation of one
previously known matrix by a rank one or two constraint matrix. This computation
has been done efficiently using the Woodbury formula, in O(n?) time. Even more, we
have improved the convergence of our algorithm by taking into account the special
structure of one the constraint matrices, whose rank is one and has the property that
every linear combination with any other constraint matrix still has rank at most two.
In other words, to improve the original approach, we perform a plane-search rather
than a line search, and simultaneously update two dual variables and still recompute
the inverse matrix in O(n?) time.

We have implemented two algorithms: Algorithm CD and Algorithm CD2D, one-
dimension and two-dimension update, respectively. As a next step, we have integrated
both algorithms into the branch-and-bound framework Q-MIST. We have evaluated
the performance of both algorithms in the root node of the branch-and-bound tree and
compared them with CSDP, the SDP solver used in [17]. The experiments performed
show that the two main objectives of our research were successfully accomplished for
randomly generated instances. We also showed experimentally that Algorithm CD2D
significantly outperforms Algorithm CD, it produces lower bounds as strong as the ones
provided by CSDP and it runs much faster for instances of large size, with ternary and
integer domains. Additionally, Algorithm CD2D has been able to solve larger size
instances than other more general non-convex integer non-linear programing solvers
like BARON and COUENNE.

Nevertheless, we consider that there is an extensive path of research that could be
considered to improve our approach and extend its range of application. From the
theoretical point of view, one of the main open questions we were not able to precisely
answer is related to the influence of the parameter 3;; on the dual problem (3.4). There-
fore, having a better understanding of this parameter may lead to better convergence
results of the algorithm. Another possible extension, that goes in the same direction of
the application explained in Chapter 6, could be to consider tighter formulation of the
linear constraints that can be still formulated as low-rank matrices. Form the imple-
mentation side, further experiments could be performed to see the influence of other
parameters in the convergence of the algorithm, such as the update rule of the penalty
parameter o, the starting value of o, or the selection of a different starting point that
does not require the expensive computation of the smallest eigenvalue. Finally, it would
be interesting to evaluate the performance of our approach with instances that appear
in real-world applications.

References

1]

2]

F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization, 5:13-51, 1993.

F. Alizadeh, J.-P.A. Haeberly, and M.L. Overton. Complementarity and nondegen-
eracy in semidefinite programming. Mathematical Programming, 77(1):111-128,

1997.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

O. Banerjee, E. Ghaoui, and A. d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data. Journal
of Machine Learning Research, 9:485-516, June 2008.

F. Barahona, M. Jiinger, and G. Reinelt. Experiments in quadratic 0-1 program-
ming. Mathematical Programming, 44(1):127-137, 1989.

A.l. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete € Computational Geometry, 13:189-202, 1995.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wachter. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Software,
24(4-5):597-634, 2009.

D.P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont (Mass.), 1999.

L. Bo and C. Sminchisescu. Greedy block coordinate descent for large scale gaus-
sian process regression. CoRR, abs/1206.3238, 2012.

P. Van Emde Boas. Another NP-complete problem and the complexity of com-
puting short vectors in a lattice. Technical report, University of Amsterdam,
Department of Mathematics, Amsterdam, 1981.

B. Borchers. CSDP, a C library for semidefinite programming. Optimization
Methods and Software, 11(1-4):613-623, 1999.

C.A. Bouman and K. Sauer. A unified approach to statistical tomography using
coordinate descent optimization. Transactions on Image Processing, 5(3):480-492,
March 1996.

85

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound algorithm
for convex quadratic integer programming. Mathematical Programming, 135(1-
2):369-395, 2012.

C. Buchheim, R. Hiibner, and A. Schébel. Ellipsoid bounds for convex quadratic
integer programming. SIAM Journal on Optimization, 25(2):741-769, 2015.

C. Buchheim, M. Montenegro, and A. Wiegele. A coordinate ascent method
for solving semidefinite relaxations of non-convex quadratic integer programs.
In ISCO, volume 9849 of Lecture Notes in Computer Science, pages 110-122.
Springer, 2016.

C. Buchheim and E. Traversi. On the separation of split inequalities for non-convex
quadratic integer programming. Discrete Optimization, 15(C):1-14, 2015.

C. Buchheim and A. Wiegele. Semidefinite relaxations for non-convex quadratic
mixed-integer programming. Mathematical Programming, 141(1-2): 435-452,
2013.

S. Burer and A. Letchford. On nonconvex quadratic programming with box con-
straints. STAM Journal on Optimization, 20(2):1073-1089, 2009.

S. Burer and A. Letchford. Non-convex mixed-integer nonlinear programming: a
survey. Surveys in Operations Research and Management Science, 17(2):97-106,
2012.

S. Burer and R.D. Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming (se-
ries B), 95:2003, 2001.

S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for non-
cnovex quadratic programming via semidefinite relaxations. Mathematical Pro-
gramming, 113(2):259-282, 2008.

S. Burer and D. Vandenbussche. Globally solving box-constrained nonconvex
quadratic programs with semidefinite-based finite branch-and-bound. Computa-
tional Optimization and Applications, 43(2):181-195, 20009.

K.W. Chang, C.J. Hsieh, and C.J. Lin. Coordinate descent method for large-scale
12-loss linear support vector machines. Journal of Machine Learning Research,
9:1369-1398, June 2008.

S.J. Chung and K.G. Murty. Polynomially bounded ellipsoid algorithms for convex
quadratic programming. In Nonlinear Programming 4, pages 439 — 485. Academic
Press, 1981.

R.W. Cottle. Manifestations of the schur complement. Linear Algebra and its
Applications, 8(3):189 — 211, 1974.

H. Dong. Relaxing nonconvex quadratic functions by multiple adaptive diagonal
perturbations. SIAM Journal on Optimization, 26(3):1962-1985, 2016.

86

[27]

28]

J.A. Fessler. Grouped coordinate descent algorithms for robust edge-preserving
image restoration. volume 3170, pages 184-194, 1997.

U. Fincke and M. Pohst. Improved Methods for Calculating Vectors of Short
Length in a Lattice, Including a Complexity Analysis. Mathematics of Computa-
tion, 44(170):463-471, 1985.

C.A. Floudas and V. Visweswaran. Quadratic Optimization, pages 217-269.
Springer US, Boston, MA, 1995.

M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237 — 267, 1976.

P.E. Gill and E. Wong. Sequential quadratic programming methods. In Jon Lee
and Sven Leyffer, editors, Mized Integer Nonlinear Programming, volume 154 of
The IMA Volumes in Mathematics and its Applications, pages 147-224. Springer
New York, 2012.

M.X. Goemans. Semidefinite programming in combinatorial optimization. Math-
ematical Programming, 79:143-161, 1997.

M.X. Goemans and D.P. Williamson. 0.878-approximation algorithms for MAX
CUT and MAX 2SAT. In Proc. 26th STOC, pages 422-431, New York, 1994.
ACM Press.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal

of the ACM, 42(6):1115-1145, 1995,

L. Grippo, L. Palagi, M. Piacentini, V. Piccialli, and G. Rinaldi. Speedp: an
algorithm to compute SDP bounds for very large max-cut instances. Mathematical
Programming, 136(2):353-373, 2012.

L. Grippo, L. Palagi, and V. Piccialli. An unconstrained minimization method for
solving low-rank SDP relaxations of the maxcut problem. Mathematical Program-
ming, 126(1):119-146, 2011.

M. Grotschel, L. Lovész, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169-197, 1981.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and combinatorial
optimization. Algorithms and combinatorics. Springer-Verlag, Berlin, New York,

1988.
W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221-239, 1989.

P.L. Hammer and A.A. Rubin. Some remarks on quadratic programming with 0-1
variables. RAIRO - Operations Research - Recherche Opérationnelle, 4(V3):67-79,
1970.

87

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

C. Helmberg. Semidefinite programming. Technical Report SC-99-49, ZIB,
Takustr.7, 14195 Berlin, 1999.

C. Helmberg. Semidefinite Programming for Combinatorial Optimization. Profes-
sorial dissertation, Technische Univertitat Berlin, Berlin, 2000.

C. Helmberg and F. Rendl. A spectral bundle method for semidefinite program-
ming. SIAM Journal on Optimization, 10(3):673-696, 2000.

C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz. An interior—point
method for semidefinite programming. STAM Journal on Optimization, 1994.

C. Helmberg, F. Rendl, and R. Weismantel. A semidefinite programming ap-
proach to the quadratic knapsack problem. Journal of Combinatorial Optimiza-
tion, 4(2):197-215, 2000.

S. Homer and M. Peinado. Design and performance of parallel and distributed
approximation algorithms for maxcut. Journal of Parallel Distributed Computing,
46(1):48-61, 1997.

R.A. Horn and C.R. Johnson, editors. Matriz Analysis. Cambridge University
Press, New York, NY, USA, 1986.

F.L. Huang, C.J. Hsieh, K.W. Chan, and C.J. Lin. Iterative scaling and coordinate
descent methods for maximum entropy models. Journal of Machine Learning
Research, 11:815-848, March 2010.

M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the
cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327—
2351, 2010.

S. Kapoor and P.M. Vaidya. Fast algorithms for convex quadratic programming
and multicommodity flows. In Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, pages 147-159, 1986.

R.M. Karp. Reducibility among Combinatorial Problems, pages 85-103. Springer
US, Boston, MA, 1972.

E. de Klerk. Aspects of semidefinite programming: interior point algorithms and
selected applications. Applied optimization. Kluwer Academic Publishers, Dor-
drecht, Boston, London, 2002.

G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lii, H. Wang, and Y. Wang.
The unconstrained binary quadratic programming problem: a survey. Journal of
Combinatorial Optimization, 28(1):58-81, 2014.

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone
semidefinite linear complementarity problem in symmetric matrices. SIAM Jour-
nal on Optimization, 7(1):86-125, January 1997.

M.K. Kozlov, S.P. Tarasov, and L.G. Hacijan. The polynomial solvability of convex
quadratic programming. USSR Computational Mathematics and Mathematical
Physics, 20(5):223-228, 1980.

88

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

M. Laurent and S. Poljak. On the facial structure of the set of correlation matrices.
SIAM Journal on Matriz Analysis and Applications, 17(3):530-547, 1996.

J. W. Lawrence. Reduction of integer polynomial programming problems to zero-
one linear programming problems. Operations Research, 15(6):1171-1174, 1967.

L. Lovasz. On the Shannon capacity of a graph. IEEFE Transactions on Information
Theory, 25(1):1-7, 1979.

Z.-Q. Luo and P. Tseng. On the convergence of the coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory and Ap-
plications, 72(1):7-35, 1992.

7.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent
methods: a general approach. Annals of Operations Research, 46(1):157-178, 1993.

G.P. McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part I — Convex underestimating problems. Mathematical Programming,
10(1):147-175, 1976.

D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, 2002.

K.S. Miller. On the inverse of the sum of matrices. Mathematics Magazine,
54(2):67-72, 1981.

R. Misener and C. A. Floudas. ANTIGONE: Algorithms for coNTinuous / Integer
Global Optimization of Nonlinear Equations. Journal of Global Optimization,
2014. DOI: 10.1007/s10898-014-0166-2.

B. Mohar and S. Poljak. Figenvalues in Combinatorial Optimization, pages 107
151. Springer New York, New York, NY, 1993.

R.D. Monteiro and I. Adler. Interior path following primal-dual algorithms. part ii:
Convex quadratic programming. Mathematical Programming, 44(1):43-66, 1989.

R.D. Monteiro and M.J. Todd. Path-following methods for semidefinite program-
ming. In: Saigal, R. Vandenberghe, L. Wolkowicz, H. (eds) Handbook of Semidefi-
nite Programming. Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.

J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, 1970.

M. Padberg. The boolean quadric polytope: Some characteristics, facets and
relatives. Mathematical Programming, 45(1):139-172, 1989.

P.M. Pardalos. Global optimization algorithms for linearly constrained indefinite
quadratic problems. Computers & Mathematics with Applications, 21(6):87 — 97,
1991.

P.M. Pardalos and S.A. Vavasis. Quadratic programming with one negative eigen-
value is NP-hard. Journal of Global Optimization, 1:15-22, 1991.

89

73]

[76]

[77]

78]

[79]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

G. Pataki. On the rank of extreme matrices on semidefinite programs and the
multiplicity of optimal eigenvalues. Mathematical Methods of Operations Research,
23:339-358, 1998.

D. Pisinger. The quadratic knapsack problem a survey. Discrete Applied Mathe-
matics, 155(5):623 — 648, 2007.

E. Polak. Computational methods in optimization : a unified approach, volume 77
of Mathematics in science and engineering. Academic press, New York, London,
1971.

Svatopluk Poljak and Franz Rendl. Solving the max-cut problem using eigenvalues.
Discrete Applied Mathematics, 62(1):249 — 278, 1995.

S. Puntanen and G.P. Styan. Historical Introduction: Issai Schur and the Early
Development of the Schur Complement, pages 1-16. Springer US, 2005.

F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by in-
tersecting semidefinite and polyhedral relaxations. Mathematical Programming,
121(2):307-335, 2010.

[.G. Rosenberg. Breves communications. 0-1 optimization and non-linear program-
ming. RAIRO - Operations Research - Recherche Opérationnelle, 6(V2):95-97,
1972.

N. V. Sahinidis. BARON 16.3.4: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual, 2016.

S. Sahni. Computationally related problems. SIAM Journal on Computing,
3(4):262-279, 1974.

R.W.H. Sargent and D.J. Sebastian. On the convergence of sequential minimiza-
tion algorithms. Journal of Optimization Theory and Applications, 12(6):567-575,
1973.

A. Shapiro. Extremal problems on the set of nonnegative definite matrices. Linear
Algebra and its Applications, 67:7 — 18, 1985.

H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solv-
ing Discrete and Continuous Nonconvexr Problems. Springer, 1998.

C. De Simone. The cut polytope and the boolean quadric polytope. Discrete
Mathematics, 79(1):71 — 75, 1990.

M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to
global optimization. Mathematical Programming, 103:225-249, 2005.

M.J. Todd. A study of search directions in primal-dual interior-point methods for
semidefinite programming. Operations methods and Software, 11:1-46, 1999.

P. Tseng and S. Yun. A coordinate gradient descent method for linearly con-

strained smooth optimization and support vector machines training. Computa-
tional Optimization and Applications, 47(2):179-206, 2010.

90

[89]

[90]

[91]

[92]

[93]

[96]

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49-95, March 1996.

S.A. Vavasis. Quadratic programming is in np. Information Processing Letters,
36(2):73 — 77, 1990.

S.A. Vavasis. Nonlinear Optimization: Complezxity Issues. Oxford University
Press, Inc., New York, NY, USA, 1991.

H. Wolkowicz. Some applications of optimization in matrix theory. Linear Algebra
and its Applications, 40:101 — 118, 1981.

H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of semidefinite pro-
gramming: theory, algorithms, and applications. International series in operations
research & management science. Kluwer Academic, Boston, London, 2000.

S.J. Wright. Coordinate descent algorithms. Mathematical Programming,
151(1):3-34, June 2015.

J.C. Ye, K.J. Webb, C.A. Bouman, and R.P. Millane. Optical diffusion tomogra-
phy by iterative-coordinate-descent optimization in a bayesian framework. Journal
of the Optical Society of America A, 16(10):2400-2412, Oct 1999.

Y. Ye and E. Tse. An extension of Karmarkar’s projective algorithm for convex
quadratic programming. Mathematical Programming, 44:157-179, 1989.

91

