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Abstract

Robust statistics and the use of robust estimators have come more and more into focus during
the last couple of years. In the context of �ood statistics, robust estimation methods are used to
obtain stable estimations of e.g. design �oods. These are estimations that do not change from
one year to another just because one large �ood occurred.
A problem which is often ignored in �ood statistics is the underlying dependence structure

of the data. When considering discharge data with high time-resolution, short range dependent
behaviour can be detected within the time series. To take this into account, in this thesis a
limit theorem for the class of GL-statistics is developed under the very general assumption of
near epoch dependent processes on absolutely regular random variables, which is a well known
concept of short range dependence. GL-statistics form a very general class of statistics and can
be used to represent many robust and non-robust estimators, such as Gini's mean di�erence,
the Qn-estimator or the generalized Hodges-Lehmann estimator. In a direct application the
limit distribution of L-moments and their robust extension, the trimmed L-moments, is derived.
Moreover, a long-run variance estimator is developed. For all these results, the use of U -statistics
and U -processes proves to be the key tool, such that a Central Limit Theorem for multivariate U -
statistics as well as an invariance principle for U -processes and the convergence of the remaining
term of the Bahadur-representation for U -quantiles is shown. A challenge for proving these
results pose the multivariate kernels that are considered to be able to represent very general
estimators and statistics.
A concrete application in the context of �ood statistics, in particular in the estimation of design

�oods, the classi�cation of homogeneous groups and the modelling of short range dependent
discharge series, is given. Here, well known models (peak-over-thresholds) as well as newly
developed ones, for example mixing models using the distinction of �oods according to their
timescales, are combined with robust estimators and the advantages and disadvantages under
consideration of stability and e�ciency are investigated. The results show that the use of the
new models, that take more information into account by enlarging the data basis, in combination
with robust estimators leads to a very stable estimation of design �oods, even in high quantiles.
Whereas a lot of the classical estimators, like Maximum-Likelihood estimators or L-moments,
are a�ected by single extraordinary extreme events and need a long time to stabilise, the robust
methods approach the same level of stabilisation rather fast. Moreover, the newly developed
mixing model cannot only be used for �ood estimation but also for regionalisation, that is the
modelling of ungauged basins. Here, especially when needing a classi�cation of �ood events and
homogeneous groups of gauges, the use of robust estimators proves to result in stable estimations,
too.

0Title: �ood in Dresden, 2002; source: http://www.tiesel.de/schwere%20katastrophen%20.html, last visited:
22.03.2017
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1. Introduction

A �ood is de�ned as time-limited exceedance of discharge-thresholds in a cross-section of a river
with a related drainage area caused by meteorological events (DIN 4049-1). This threshold is not
de�ned precisely and depends on the local circumstances. For example, a �ood can be de�ned
as a discharge event that covers land that is typically not covered by water. In general, it is
assumed that under humid conditions at least one �ood occurs in a year (DWA (2012)).

Besides deterministic models (e.g. rainfall-runo� models) statistical models and statistical evalu-
ation are the most commonly used methods to describe the coherences of climatic, meteorological
and discharge phenomena and to obtain predictions, for example for design events for �ood pro-
tection systems.
Since the processes leading to discharges can be explained by physical phenomena, it might seem
somewhat arti�cial to use stochastic models instead of deterministic ones. In fact, this is an often
discussed and misunderstood point. The most important di�erence between deterministic and
stochastic models is the handling of errors (see e.g. Bierkens and van Geer (2008)). Stochastic
models are developed to predict values at unknown time or at unknown location, where at the
same time an assumption on the error can be made. That is, stochastic models give us the
information how uncertain the estimation is. Errors in hydrological models can have many
sources. First of all, not the real discharge is measured. Instead, often the water level at the
gauge is measured and used to calculate the discharge by taking into account the �ow velocity,
that is a quantity based on empirical experiences. This of course causes uncertainty. Often even
the assumptions on the stage-discharge relation change during the years and the discharge series
of a gauge have to be calculated anew. Additionally, many of the main hydrological processes
of runo� formation leading to discharge cannot be observed since they proceed under the land
surface. Groundwater or the permeability of the soil can just approximately be estimated based
on information about the time of in�ltration or the soil conditions of the point scale. Most
importantly, all models can only be seen as an approximation of the complex processes that
lead to discharge. Even in deterministic hydrology these errors are taken into account. During
the calibration the di�erence to the residuals is minimized and the parameters are calculated.
After this step, though, the errors are no longer taken into account and, therefore, do not appear
in the outcomes. In stochastic hydrology, the errors of the outcomes are handled as well. The
treatment of discharge as random variable handles these errors indirectly. To make the di�erence
between the two approaches clearer we want to give an example following Bierkens and van Geer
(2008). Consider the discharge x. Using a deterministic model this value is represented by the
model outcome x′. The made error can then be denoted by ϵ = x′−x, the so called residuum. In
stochastic hydrology we now have additional information on the unknown error by considering
it as random variable with known probability distribution. Often, not the error is treated as
random variable but we assume the whole measurement x to be a random variable, the exact
value of which we do not know, such that the error is treated indirectly.
Especially when considering extreme events, the use of stochastic models is advantageous com-
pared to deterministic models, which typically underestimate extreme values. The �rst explicit
connections between statistical methods and hydrological data have been made in the 1940s

1



1. Introduction

(Gumbel (1958)) when among others the mathematician Emil Julius Gumbel has investigated
return periods of �oods (Gumbel (1941)). Nevertheless, only descriptive statistic has been applied
and no stochastic models have been widely used in hydrology until the 1970s, when the books
of Vujica Yevjevich have been published (Yevjevich (1972a), Yevjevich (1972b)). Here, Yevje-
vich tries to make the advantages of stochastic models and the complex information represented
by them easier understandable and therefore better applicable by hydrologists by reducing the
complexity to the cases relevant for hydrology and avoiding proofs. He explains the meaning of
con�dence ranges and the importance of statistical tests and estimators besides multivariate con-
sideration of hydrological data. Moreover, he is one of the �rst hydrologists considering discharge
series as time-variant process of stochastic nature, that can be autocorrelated or non-stationary.
This topic has been extended by Salas et al. (1980), where di�erent kinds of dependence have
been taken into account. This has then been the starting point of a wide use of stochastic mod-
els and methods in hydrology and still today many newly developed concepts in statistics are
applied in the hydrological context shortly after publication. A good example here are copulas.
Nevertheless, hydrological data also exhibit aspects that make statistical procedures more di�cult
to apply. The main problem when considering discharge series, especially maxima, is the limited
period of observation. The construction of gauges and therefore the systematic conception of
discharge data is in general not older than 100 years. Many gauges in Germany are in fact not
observed for more than 30 years. Since the mostly considered �ood series are annual maximum
series, this results in sample lengths of about n = 30. Many statistical procedures based on
asymptotic results fail here and many results are not valid for such small samples.
Additionally, we can �nd many di�erent types of dependence in the data series. Depending on
the time-resolution, discharge series can exhibit long-range dependence (e.g. some daily discharge
series), short-range dependence (e.g. daily and monthly discharge series) as well as independence
(annual maximum series). Moreover, in many discharge series extraordinarily large events occur
that have a large in�uence on the estimation, especially in small samples. Also the di�erent
nature of the discharge series has to be taken into account. Whereas the annual as well as the
monthly maximum series consist of �ood peak measurements with the highest possible resolution,
daily discharge series mostly consist of discharge means of a day. Additionally, anthropological
and climatic changes (building of dams, heat periods) can lead to non-stationary behaviour, e.g.
heteroscedasticity. All these aspects have to be taken into account when using �ood statistics.

In this thesis we place our focus on robust estimation methods in the context of �ood statistics.
Robust estimation is expected to lead to more stable results that do not vary much over time.
That is, single extraordinary discharge events shall not have much in�uence on the single esti-
mations. Otherwise, the in�uence of these events in short time series would be much too large.
Whereas the asymptotic distribution of robust estimators under independence is well known, few
results exist under short-range dependence.
The �rst part of this thesis therefore develops asymptotic normality as well as a long-run variance
estimator under a form of short-range dependence for the class of GL-statistics. These statistics
cover many robust estimators, especially the linear as well as the trimmed linear moments, which
are among the most commonly used estimators in hydrology. Hence, a concrete form of the limit
distributions for these estimators is given. Since the theory is mainly based on the concept of
U -statistics and U -processes, very general and in a broad statistical context applicable results
are obtained. To take into account the heteroscedasticity of discharge data, we prove that the
heteroscedastic model EGARCH exhibits the assumed concept of short-range dependence.
The results concerning robust estimation are then applied in the context of hydrology. Here,
di�erent concepts to estimate design �oods are developed and their applicability is validated.
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Concrete advantages of robust estimators in the hydrological context are shown and the combi-
nation of the new models with robust estimators is compared to classical hydrological models.
Moreover, a method to detect coherences between gauges in a river basin based on the classi�-
cation into alert steps is developed and applied to regionalisation where again the robustness of
the estimators plays a crucial role.
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2. Robust Estimation

The concept of robustness is used in many (statistical) disciplines, often with very di�erent,
sometimes even inconsistent, meaning. In general, there is no one-and-only valid de�nition
for robustness and the use of this term often depends on the �eld of application or even the
author. Even in this work robustness has a mathematical as well as an application-oriented
meaning. Whereas in statistics robustness can be clearly measured in certain ways, in hydrology
(respectively almost all engineering disciplines) robustness is understood as a kind of stability,
which is a very vague explanation. Of course, also statisticians want to obtain stability by using
robust methods, nevertheless, the terms are de�ned much more speci�c. In the following, we will
show that still both de�nitions are compatible and that statistically robust estimators lead to
more stable estimations in the hydrological context. Some of the considerations made here can
also be found in Fischer et al. (2015) and Fischer and Schumann (2016).

2.1. De�nition

Following Huber (1981) we de�ne robustness as "insensitivity to small deviations from the as-
sumptions". These deviations can be model misspeci�cation or the wrong assumption on the
convergence rate. In our context of hydrology and in general the most widely considered devia-
tion is that of the shape of the underlying distribution respectively sample. Huber (1981) calls
this "distributional robustness". Of course one could argue that this problem can be solved by
simply removing outliers from the data, but in practice it becomes evident that it is not always
clear, how to detect such outliers. Or it is not sensible to remove extreme values since they really
occurred and are not erroneous data. This means they belong to the right tail of the underlying
distribution but get too much weight in the estimation. Therefore, robustness is an important
aspect when comparing estimators.
Now, even after giving the de�nition of robustness, there still exist many di�erent aspects. For
example Huber (1981) distinguishes between quantitative, qualitative or optimal robustness.
For more details on this topic and a more explicit description we refer to Huber (1981). The
robustness measures described later on in this chapter focus on di�erent aspects of robustness
respectively.

2.2. Robustness in Hydrology

The estimation of �ood quantiles with very low exceedance probabilities is a key problem of
engineering hydrology. Since the number of recorded series of �oods is very limited and seldom
longer than 100 years, the needed probabilities of extreme �ood events are derived from a �tting
of a suitable distribution function and its extrapolation into the realm of very low exceedance
probabilities. The selection of the underlying statistical model is crucial in this context. There-
fore, robustness is an important practical goal in �ood statistics. It becomes evident when an
extreme event with an exceedance probability signi�cantly smaller than 1/n occurs within a time
series of n years. Robustness in this context not only means robustness against extraordinary
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2. Robust Estimation

extreme events but also against model misspeci�cation or errors in the data. Whereas extraordi-
nary extreme events are an important part of the �ood series and contain important information
this is not the case for data errors. This di�erence has to be considered. Robust estimators
therefore shall not be used to cut o� these extreme events, but they shall be used to reduce the
in�uence of them especially in the presence of small sample lengths to gain stable estimates and
to estimate the in�uence of single extraordinary extreme events.

One problem consists of the temporal variability of statistical characteristics of these series, which
results from exceptional extreme events happening occasionally. Those events have a large in-
�uence on the estimation of the parameters of the distribution functions and their quantiles
temporarily. The impact of this temporal variability is aggravated if the demand for design
�oods is increasing after disastrous �ood events, which often results in step changes of the es-
timated parameters of distribution functions and of quantiles used as design criteria. In many
cases, such changes are smoothed again by subsequent periods of �normal� �oods. Figure 2.1
shows an example of step-wise changes of the 99 percent quantile derived from the general-
ized extreme value (GEV) distribution with probability-weighted moments and a year-by-year
extended �ood series. If these quantiles are applied for the design of long-lasting hydraulic struc-
tures, their temporal variability becomes a problem. There exist several approaches to handle
such extraordinary events, causing step changes in hydrological parameters and quantiles. Often,
these extraordinary events are treated as outliers and several statistical tests exist to detect such
data points that deviate markedly from the remaining data points. By this, those values are
treated like they are not drawn from the same population as the remainder data. For example,
the Bulletin 17B, which is a benchmark in US-American hydrology, recommends such tests in
a case of a skew larger than 0.4 (or smaller than −0.4 if we expect extraordinary low values)
(Subcommittee (1981)). A very simple tool to de�ne outliers is the 3-σ-rule, which de�nes out-
liers on the basis of the standard deviation (Jeong et al. (2017)). A well known test for these
outliers is the maximum-value test of Grubbs (Grubbs (1969)). Here, it is assumed that the data
follow approximately a normal distribution, but tests for the detection of outliers in data with
other underlying distributions also exist (e.g. Spencer and McCuen (1996)). Also the tests by
Dixon-Thompson, Rosner and Chauvenet are often recommended in the context of hydrology
(see e.g. McCuen (2003)).

If an outlier is detected, still the question arises how to handle it. The outlier could be an
erroneous value, which should be corrected or removed. Outliers in �ood statistics may be the
result of a mixed population occurrence (Kleme² (1986)). If we exclude these two possibilities,
we can conclude that it is just an event from the tail of the distribution. Here we have two
options: It could be censored to avoid distorting the analyses, or it could be weighted to reduce
the resulting distortion.

The removal of conspicuous events has been the general handling of these values for a long time
period (McCuen (2003)). Nevertheless, Gumbel already has remarked that "the rejection of
outliers on a purely statistical basis is and remains a dangerous procedure. Its very existence
may be a proof that the underlying population is, in reality, not what it was assumed to be"
(Kruskal et al. (1960)). During the last 30 years a change of the handling of extraordinary
events has begun and several authors and even pamphlets of the federate states in Germany now
recommend the consideration of these in the statistics (e.g. Ashkar (1993) and DWA (2012)). The
option of weighting of such events became very popular by using L-moments, which are rather
robust to the e�ects of outliers (Hosking (1990)), or LH-moments (Wang (1997)), a generalization
of L-moments, for characterizing the upper part of distributions and larger events in data.

There are other hydrological problems where a demand for robustness also exists, e.g. parameter
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2.2. Robustness in Hydrology

Figure 2.1.: Annual maximum discharges (HQ) for the Wechselburg/Zwickauer Mulde gauge in
Saxony (1910-2013) and the estimated 99%-quantile for increasing sample length. A
jump in the estimated high quantile can be seen every time an extraordinary large
event occurs, leading to an unstable estimation over the years.
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2. Robust Estimation

calibration procedures for deterministic hydrological models (Guerrero et al. (2013)). Bárdossy
and Singh (2008) have speci�ed four criteria for an estimation of parameter vectors of such models
in the framework of a �data depth� of observation periods. The parameter vectors should:

• lead to good model performance over the selected time period

• lead to a hydrologically reasonable representation

• not be sensitive against the choice of the calibration period

• be transferable to other time periods.

The third and fourth criteria are especially suitable for the interpretation of robustness used in
this research. Since the estimated quantiles for certain annual return periods like T = 1000 are
used for the design of long-lasting hydraulic structures, it is not desirable that these parameters
change much with any extension of the observed time series. From the hydrological point of
view a robust estimation is preferable that can mirror the asymptotic behaviour (limit) of the
estimated quantile of the AMS to an early point of observation without having these step-changes.
In this context we want to focus on the interpretation of robustness as stability. That is, the
estimation of extreme quantiles should not change signi�cantly when adding or removing only
a few values. This intention shall be emphasised by an introducing example. The estimation
methods presented here are not of interest in the moment and will be explained later on. Instead,
we want to give an outline of the idea of robustness needed in hydrology. As shown in Figure
2.1, where the 99%-quantile for a year-by-year prolonged series of maximum discharges at the
Wechselburg gauge is estimated, the in�uence of single values on the estimation of high quantiles
can be very large, especially when extraordinary large �oods occur in very short time series. This
instability leads to large problems if these quantiles are used as design �oods. To emphasize the
vulnerability of estimates of extreme quantiles in the presence of only a short period of observation
we use a form of sensitivity curve to outline the in�uence of single (extraordinary) �oods.
For this we take the whole series of annual maxima (AMS) at theWechselburg gauge (X1, . . . , Xn),
remove the respective annual maximum for every time step and replace it by the median of the
whole sample to gain a new sample X′

i = (X1, . . . , Xi−1,med(X1, . . . , Xn), Xi+1, . . . , Xn) for
i = 1, . . . , n. For these new samples a GEV or the Peak-over-threshold approach (POT) is �tted
using linear moments (L-moments) or trimmed L-moments (TL-moments) and the quantiles for
the annualities T = 200, 500, 1000 are calculated:

qT ;i = G−1
X′

i
(T ),

where G−1
X′

i
is the quantile function of the GEV �tted to the sample X′

i. More details on the

Peak-over-threshold approach as well as L-moments and TL-moments can be found later on in
Sections 6.1.2 and 7.2.1. In this context they should only serve as examples of robust methods.
We �nally take the di�erence of qT ;i and qT (the quantile based on the whole original sample)
and multiply it with n+ 1. This is analogous to the classical sensitivity curve introduced in the
next section, where instead of replacing one value by the median it is replaced by "one-wild"
(Tukey (1960)) to test the sensitivity of an estimator. Here, the "one-wild" observation is a real
observation, whereas in statistical simulations often a function of a real-valued variable is used
and the deviation for increasing values of this variable is measured. The use of the observations
here should emphasise the problem of estimating a design �ood, instead.
The results can be found in Figure 2.2, where the year displayed on the x-axis marks the year of
the replaced observation.
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2.2. Robustness in Hydrology

Figure 2.2.: In�uence of single annual maxima on the estimation of the quantile with annuality
T for di�erent estimators and models by calculating the di�erence to the quantiles
based on the series without this annual maximum (sensitivity). For the non-robust
estimators in AMS and POT-model the estimation is in�uenced a lot by single events.
When using robust estimators like the TL-moments the in�uence of this single events
is reduced to almost zero leading to a stable estimation.
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2. Robust Estimation

It becomes obvious that the extraordinary �oods in the years 1954, 2002, and 2013 have a
very high in�uence on the estimation of the quantiles when using classical estimators like the
L-moments. This in�uence increases with increasing annuality. Therefore, the use of such
quantile estimators in the design of dams can lead to serious problems since it is highly unstable.
Robust estimation approaches like the robust POT reduce this instability and are a noteworthy
alternative. Additionally, they can be used to estimate the in�uence of single events.
Although especially extreme events are of interest in hydrology, since they are the ones causing
highest damage, the considerations made above show that also the use of robust estimators in
hydrology is of considerable interest.
Additionally, it is not always clear, which kind of distribution function one should use, two- or
three-parametric. Whereas the three-parametric distribution function allows a greater �exibility
in modelling the tails it is also more uncertain, especially when estimating the shape parameter.
Recommendations are for example given by the DWA (DWA (2012)), recommending a two-
parametric distribution function for samples with less than 30 years and a three-parametric one
for samples with more than 50 years. A distinct recommendation for samples of 30-50 years is not
given. A robust estimator used in the hydrological context should therefore be also insensitive
against small deviations from the model. Moreover, besides the GEV distribution there exist a lot
of other distributions used in hydrology to model �oods, for example the PearsonIII-distribution
or the Gamma-distribution. Nevertheless, in the context of our considered data samples the
GEV distribution is the most commonly used. More details on this context can be found in
Section 7.2.1.
All these aspects play a crucial role in �ood statistics and should have in�uence on the used
methods and estimators. Robustness could lead to an improvement of the consideration of
uncertainty in this point.

2.3. Measures of Robustness

There exist several possibilities to measure robustness. All of them focus on di�erent aspects of
the de�nition made above. Additionally, some of the measures have been developed because of
the special challenges in their �eld of application. We want to de�ne two of the most common
statistical measures of robustness as well as one measure that has its origin in hydrology, focussing
especially on the right tail. All of them will be used later on to emphasise the robustness of certain
models or estimators.

2.3.1. In�uence Curve

As mentioned above, one important aspect of robustness is the insensitivity of the estimation
against single (extreme) values. This aspect somehow coincides with the hydrological point of
view concerning stability: we do not want to obtain large deviations in the estimation if one
extraordinary event occurs. The limit of the in�uence of a single observation x on an estimate
T (Fn) of F (just think about random variable X with distribution function F and a sample
x1, . . . , xn with empirical distribution function Fn) can be expressed by (see Hampel (1971))

IC(x;F, T ) = lim
λ→0

T ((1− λ)F + λδx)− T (F )

λ
,

where δx denotes the point mass 1 at x. This is the so called in�uence curve, which can be
shown to have several interesting properties (see Section 5). In fact it is the �rst derivative of
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2.3. Measures of Robustness

the estimator T evaluated at the perturbation of F by δx. For a robust estimator we of course
want to have a bounded in�uence curve indicating that also the in�uence of single observations
on the estimate is bounded.

Example 2.1. Assume we have i.i.d random variables X1, . . . , Xn. The sample mean

X̂ = µ(Fn) =

∫ ∞

−∞
xdFn(x) =

1

n

n∑
i=1

Xi

is an estimator for the expected value µ(f) =
∫∞
−∞ xdF (x). It has in�uence function

IC(x;F, µ) = lim
λ→0

µ((1− λ)F + λδx)− µ(F )

λ

=
d

dλ

∫ ∞

−∞
zd[(1− λ)F + λδx]|λ=0 =

d

dλ
((1− λ)µ(F ) + λx) |λ=0

= x− µ(F ),

which increases unboundedly with increasing x. Thus, the sample mean is not robust.

There also exist several sample versions of the in�uence curve, where we want to focus on the
one proposed by Tukey (1960), the so-called sensitivity curve

SCn−1(x) =
T (n−1

n Fn−1 +
1
nδx)− T (Fn−1)
1
n

,

where we simply replaced F by Fn−1 and λ by 1
n .

2.3.2. Breakdown Point

Often, not only one extreme value occurs and in this case the knowledge of the in�uence of a
single value is not helpful. Here, we are interested in the behaviour of the estimate under the
occurrence of many extreme values. The asymptotic breakdown point ϵ∗ of an estimator T (Fn)
of the functional T (F ) is de�ned as

ϵ∗(T, F, d) = sup
ϵ<1

{ϵ : sup
F :d(F,F0)<ϵ

|T (F )− T (F0)| < ∞}.

It characterises the maximum deviation from the true F0 for a chosen metric d. For a �nite
sample Ω = X1, . . . , Xn the sample breakdown point is then de�ned as

ϵ∗n(T ) =
1

n
max

{
m : sup

Ωm

∥T (Ωm)∥ < ∞
}
,

where Ωm is a sample derived from Ω by replacing any m values of Ω with arbitrary ones;
It gives us information on how many outliers can occur until the estimator collapses. A breakdown
point of 0 indicates a totally non-robust estimator, whereas equivariant robust estimators can
reach a breakdown point of 50%. For example, the sample mean has breakdown point 0, whereas
the median has breakdown point 0.5.
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2.3.3. Stability Index

The breakdown point or the in�uence or sensitivity curve are the most frequently used measures
for robustness. However, these measures do not consider the special properties of hydrological
data. When using �ood series, the quantity of available data is very limited, and the asymptotic
behaviour of the mathematical procedures are not e�ective. The special form of the applied mod-
els, in which the estimated parameters have an exponential in�uence on the resulting quantile,
leads to large deviations in the results, even if the di�erences between parameter estimations are
small. Therefore, it is not su�cient to check only the parameter estimators for their robustness,
but the applied statistical model as a whole plays a crucial role. Hence, we use hydrologi-
cal measures of stability of quantiles. Typical of most hydrological assessments of stability is
the comparison of di�erent calibration (in our case: modelling) and validation subperiods (cf.
Brigode et al. (2013)). For stability of quantiles, the criterion SPANT measuring the variability
(span) of the estimation is used, which has been proposed by Garavaglia et al. (2011) and applied
to compare the robustness of �tting methods (Kochanek et al. (2014), Renard et al. (2013)).
The value of SPANT for a quantile of the annual return period T at a given site l is calculated
by

SPANT (l) =

max
1≤s≤b

{q̂T ;l(s)} − min
1≤s≤b

{q̂T ;l(s)}

1
b

b∑
s=1

q̂T ;l(s)

,

where q̂T ;l(s) is the estimated quantile related to the return period T for one of b non-overlapping
subperiods s = 1, . . . , b at the gauge l. The optimal value of SPANT , indicating a robust,
stationary behaviour of the statistical model, is 0. To compare the SPANT for several gauges
at the same time, the empirical distribution can be considered for all l. Since in our case the
sample length is very limited and the robust estimators need a certain quantity of data, we
have to reduce the quantity of subperiods to two, choosing one with a length of 50 years. The
SPANT criterion can also be applied to compare quantiles of two parts of a time series s1 and
s2 as follows (Renard et al. (2013))

SPANT (l) =
|q̂T ;l(s1)− q̂T ;l(s2)|

1
2 (q̂T ;l(s1) + q̂T ;l(s2))

,

where q̂T (si), i = 1, 2, is the estimated quantiles related to the annual return period T for
subperiods s1 and s2 respectively at the gauge l.

In contrast to the two above-mentioned measures, which are well-known in statistical theory, the
SPAN -criterion is mainly used in the hydrological context. This is not only due to the fact that
it measures the stability instead of the in�uence of one value, but also because we can lay the
focus on high quantiles by choosing appropriate T . Because of the comparison of two subsamples
it is also possible to compare the in�uence of two or more values on the estimation. Having in
mind the often frequent appearing extraordinary events in hydrology, this is a desirable property.
By using the representation by the distribution of SPAN of several gauges it is also possible to
detect salience of single gauges. Hence, this measure will be used here especially in the context of
hydrological �ood series to take into account their special nature. Nevertheless, it is comparable
to other statistical measures for robustness.
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3. Concepts of Short-Range Dependence

For several years, the concept of independent and identically distributed data has been the
common assumption in hydrological statistics. And not only in hydrology, but also in many
other applications independence has been assumed. Nevertheless, it is questionable whether
discharge series, especially of high time-resolution, are really independent. As an example we
take the monthly maximum discharges at the Wechselburg gauge in Germany, see Figure 3.1.

The Wechselburg gauge at the river Zwickauer Mulde belongs to the Mulde river basin located in
Saxony in South-East Germany. The time series may look independent, but the autocorrelation
function shows a di�erent picture (Figure 3.2). We can see a signi�cant deviation from the
con�dence bands based on White Noise and therefore from independence. Thus, one can assume
a certain dependence in the data. Please note that both discharge series are not related directly,
since the maximum values are peak measurements.
If one accepts the presence of dependence in the data, the question arises, which kind of depen-
dence is present.
On the left hand side of Figure 3.2 one can see a fast decay of the autocorrelation function,
whereas on the right hand side there is only a slow decay. Nevertheless, the same gauge is
considered, only the type of discharges (monthly maxima and daily means) is di�erent.

In general, most of the considered �ood series in hydrology can be assumed to be independent
or short-range dependent. Moreover, to detect long-range dependent behaviour, the time series
considered here are not long enough. In the following we will therefore concentrate on the concept
of short-range dependence.
There exist several de�nitions of di�erent forms of short-range dependence. One of the most
common ways to de�ne short-range dependence is by mixing processes.
Bradley (2007) gives an overview over the di�erent forms of mixing. We will consider the case
of absolutely regular sequences of random variables.

De�nition 3.1. Let A,B ⊂ F be two σ-�elds on the probability space (Ω,F ,P). The absolute

regularity coe�cient of A and B is given by

β(A,B) = E sup
A∈A

|P(A|B)− P(A)| .

If (Xn)n∈N is a stationary process, then the absolute regularity coe�cients of (Xn)n∈N are given

by

β(l) = sup
n∈N

β(Fn
1 ,F∞

n+l).

(Xn)n∈N is called absolutely regular, if β(l) → 0 as l → ∞.

Absolutely regular random variables are sometimes also called β-mixing and have been introduced
by Volkonskii and Rozanov (1959). β-mixing is a stronger assumption than for example α-mixing,
since for the α-mixing coe�cients α given by

α(l) = sup
n∈N

sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ Fn

1 , B ∈ F∞
n+l

}
,
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3. Concepts of Short-Range Dependence

Figure 3.1.: Monthly maximum discharges (top) and daily means (bottom) of the Wechsel-
burg/Zwickauer Mulde gauge. The di�erence between the peak values and means
becomes evident.
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Figure 3.2.: Autocorrelations of the monthly maximum discharges (left) and daily discharges
(right) of the Wechselburg/Zwickauer Mulde gauge. The daily discharges with the
higher time-resolution show a much stronger dependence.
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it holds that α(l) ≤ 1
2β(l), so that every absolutely regular process is likewise strong mixing.

Though, β-mixing is weaker than Ψ- or Φ-mixing.

Typical examples for such absolutely regular processes are certain Markov chains or certain AR-
processes. Nevertheless, more complex models like dynamical systems cannot be modelled by this
concept of short-range dependence. For example Andrews (1984) has shown that even an AR(1)
process of independent Bernoulli innovations is no longer α-mixing since one can construct sets
that are determined by the future process, no matter how far away. Gorodetskii (1978) even has
been able to show that there exist linear processes with normal distributed innovations, whose
coe�cients decline too slowly, such that they are no longer mixing.
To cover all these processes, the so called near epoch dependence has been developed. It is based
on the idea that although a random variable Xt = f(. . . , Zt−1, Zt, Zt+1, . . .), which is a functional
of a mixing sequence, is not necessarily mixing it depends on the near epoch of Zt. Therefore,
some properties can be concluded, especially the validity of limit theorems.

De�nition 3.2 (Near Epoch Dependence (NED)).
Let ((Xn, Zn))n∈Z be a stationary process. (Xn)n∈N is called L1 near epoch dependent (NED) on

the process (Zn)n∈Z with approximation constants (al)l∈N, if

E
⏐⏐⏐X1 − E

(
X1|Gl

−l

)⏐⏐⏐ ≤ al l = 0, 1, 2, . . . ,

where lim
l→∞

al = 0 and Gl
−l is the σ-�eld generated by Z−l, . . . , Zl.

Near epoch dependent processes are sometimes described with the term approximating function-

als. One of the �rst applications of such kind of short-range dependent processes can be found
in Ibragimov (1962). In the literature one often also �nds L2 or in general Lp near epoch de-
pendence, where the L1 norm is simply changed to the Lp norm, or the weaker form of P -NED
(Dehling et al. (2016); Vogel and Wendler (2015)), which allows to consider processes with exist-
ing moments of lower order. The main di�erence between the di�erent de�nitions of near epoch
dependence are their assumptions on the existing moments.
The concept of near epoch dependence is especially useful in the case of an underlying mixing
sequence, since in this case very helpful properties are inherited. More details on this and a
detailed introduction to near epoch dependence can be found in Davidson (2002).
For the two examples given above and also given in Andrews (1984) and Gorodetskii (1978)
Jenish and Prucha (2012) show that they are near epoch dependent.

3.1. Examples

A typical example of a model for short-range dependent data is a special case of the ARIMA(p,d,q)-
model, which is an abbreviation for Auto-Regressive Integrated Moving Average. As indicated
by the name it consists of an AR-part of order p as well as an MA-part of order q.

De�nition 3.3. A process (Xt)t∈Z is called ARIMA(p,d,q)-process if

Xt = φ−1(B)θ(B)(1−B)−dZt,

where (Zt)t∈Z is a White Noise series and d is an integer. The polynomials

φ(z) = 1− φ1z − . . .− φpz
p
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θ(z) = 1 + θ1z + . . .+ θqz
q

have no common zeros and φ has no roots on the unit circle. The operator B is the so-called

Backshift Operator de�ned by BZt = Zt−1.

The parameter d is the integration parameter. It gives the times of di�erentiation needed to
obtain a stationary time series.
A stationary ARIMA-series, that is d = 0, is strongly mixing.

Some of the widely used models when considering near epoch dependent processes are GARCH-
processes (Generalized Autoregressive Conditional Heteroscedasticity) (Bollerslev (1986)), a gen-
eralisation of ARCH-processes. They are a common model for volatility clustering in �nancial
data and are also used for example in hydrology (Wang et al. (2012)).

De�nition 3.4. A process (Xt)t∈Z is called GARCH(p,q)-process, if

Xt = σtZt,

where σ2
t is the positive conditional variance given by

σ2
t = α0 + α1Z

2
t−1 + . . .+ αpZ

2
t−p + β1σ

2
t−1 + . . .+ βqσ

2
t−q,

where α0, . . . , αp, β1, . . . , βq ∈ R are non-negative with αp ̸= 0 and βq ̸= 0 and (Zt)t∈Z is an i.i.d.

sequence with mean zero and variance equal to one.

Hansen (1991) relaxes the assumptions on (Zt)t∈Z, such that (Zt)t∈Z can be assumed to be α-

mixing. He showed then that if
(
E[(β1 + α1(

Xt
σt
)2)r|Ft−1]

)1/5
≤ c < 1 a.s. for all t, a GARCH(1,1)-

process Xt is Lr-NED on the α-mixing process Zt with approximation constants al = cl2α0c/(1−
c) and Ft = σ(. . . , Zt).
An extension of the GARCH-model is the exponential GARCH (EGARCH) model proposed by
Nelson (1991).

De�nition 3.5. The process (Xt)t∈Z is called EGARCH(p,q)-process on the sequence (Zt)t∈Z, if

Xt = σtZt,

where σ2
t is the positive conditional variance given by

log(σ2
t ) = α0 + α1f(Zt−1) + . . .+ αpf(Zt−p) + β1 log(σ

2
t−1) + . . .+ βq log(σ

2
t−q),

where α0, . . . , αp, β1, . . . , βq ∈ R with αp ̸= 0 and βq ̸= 0 and f is a measurable function which

is linear in Z and given by

f(Zt) = θZt + λ(|Zt| − E|Zt|)

with parameters θ, λ ∈ R.

The term λ(|Zt| −E|Zt|) determines the size e�ect whereas θZt determines the sign e�ect of the
shocks on volatility. It can be seen that E(f(Zt)) = 0.
One of the advantages of EGARCH-processes is that they do not have the non-negativity re-
striction of the GARCH-processes. We show that under similar assumptions as for the GARCH-
process an EGARCH-process is near epoch dependent.
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3. Concepts of Short-Range Dependence

Theorem 3.1. Let σ1 be bounded and
∑q

i=1 |βi| < 1. Moreover, assume that

sup
t∈Z

E|Zt| < ∞. (3.1)

Then the EGARCH(p,q)-process on the sequence (Zt)t∈Z given by Xt = σtZt is near epoch

dependent.

Remark 3.1. 1. The assumption (3.1) in Theorem 3.1 is an analogue to the condition of
Hansen (1991) for GARCH-processes to the EGARCH-case with arbitrary values p and q.

Whether this condition is ful�lled depends on the existing moments of Zi. For example, if
(Zt)t∈Z is a White Noise process with variance σ (that is E|Zt| ≤ σ = 1), the condition is
ful�lled.

2. The boundedness of the conditional variance σ1 is a common assumption for GARCH-
processes (see Hansen (1991), Lee and Hansen (1994)). It results from the moment con-
dition on σ, E|σ1|1+δ < ∞, which is needed in the following proof, and the Lipschitz-
condition.

Proof. (Theorem 3.1)
Using an iterative expression of the term log(σ2

t ) we obtain

log(σ2
t ) =

n∑
j=1

∑
k1,...,kq∈N0,

k1+...+kq=j−1

(
j − 1

k1, . . . , kq

)
βk1
1 · . . . · βkq

q

(
α0 +

p∑
k=1

αkf
(
Zt−k−(

∑q
i=1 iki)

))

+
∑

k1,...,kq∈N0,
k1+...+kq=n

(
n

k1, . . . , kq

)
βk1
1 · . . . · βkq

q log
(
σ2
t−(

∑q
i=1 iki)

)
.

Now, considering the limit for n → ∞, it is

log(σ2
t )

= lim
n→∞

n∑
j=1

∑
k1,...,kq∈N0,

k1+...+kq=j−1

(
j − 1

k1, . . . , kq

)
βk1
1 · . . . · βkq

q

(
α0 +

p∑
k=1

αkf
(
Zt−k−(

∑q
i=1 iki)

))

+ lim
n→∞

∑
k1,...,kq∈N0,
k1+...+kq=n

(
n

k1, ..., kq

)
βk1
1 · . . . · βkq

q log
(
σ2
t−(

∑q
i=1 iki)

)
.

We want to show that the �rst term of the sum converges a.s. This is gained by the assumptions
sup
t

E|Zt| < ∞ and |
∑q

i=1 βi| < 1 and the linearity of the function f . With the Multinomial

Theorem and the convergence of the geometric series we can apply the monotone convergence
theorem to obtain the convergence of the series (see for example Proposition 3.1.1 of Brockwell
and Davis (2006)).
For the second term we show that it converges to zero a.s., that is

lim
n→∞

∑
k1,...,kq∈N0,
k1+...+kq=n

(
n

k1, . . . , kq

)
βk1
1 · . . . · βkq

q log
(
σ2
t−(

∑q
i=1 iki)

)
= 0 for all t ∈ Z a.s.
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3.2. Short-Range Dependence in Hydrology

By using the Multinomial Theorem we have

lim
n→∞

∑
k1,...,kq∈N0,
k1+...+kq=n

(
n

k1, . . . , kq

)
βk1
1 · . . . · βkq

q log
(
σ2
t−(

∑q
i=1 iki)

)

≤ sup
k1,...,kq

log
(
σ2
t−(

∑q
i=1 iki)

)
lim
n→∞

∑
k1,...,kq∈N0,
k1+...+kq=n

(
n

k1, . . . , kq

)
|β1|k1 · . . . · |βq|kq

= sup
k1,...,kq

log
(
σ2
t−(

∑q
i=1 iki)

)
lim
n→∞

(|β1|+ ...+ |βq|)n

and therefore the term converges a.s. to zero if

q∑
i=1

|βi| < 1.

Hence, we can write

log(σ2
t ) =

∞∑
j=1

∑
k1,...,kq∈N0,

k1+...+kq=j−1

(
j − 1

k1, ..., kq

)
βk1
1 · ... · βkq

q

(
α0 +

p∑
k=1

αkf
(
Zt−k−(

∑q
i=1 iki)

))
.

This is a linear solution and for this reason the process (log(σ2
t ))t∈Z is near epoch dependent.

Moreover,

σt =
√
exp(log(σ2

t )) = g(log(σ2
t ))

with g(x) =
√
exp(x). This function g ful�ls the Lipschitz-condition for all x ∈ (−∞, a], a ∈

R. We can now apply Proposition 2.11 of Borovkova et al. (2001), where we need that σ1 is
bounded. Therefore, the process σt and hence Xt = σtZt is near epoch dependent on the process
(Zt)t∈Z.

3.2. Short-Range Dependence in Hydrology

Many time series in hydrology show a heteroscedastic behaviour. This can be caused by changing
climate conditions but also by anthropogenic changes or other e�ects. More generally, almost
all hydrological runo�-models assume the residuals to be heteroscedastic. More precisely it is
assumed that for small discharges only small deviations in the simulation can occur, whereas
for large discharges also large deviations can occur. Therefore, this behaviour can not fully be
modelled by classical ARIMA-models. For example, Modarres and Ouarda (2013a) show that
when using only an ARIMA-model for heteroscedastic data the residuals remain heteroscedastic.
Now there are two possible solutions for this problem. The �rst one is the use of a Box-Cox or
similar transformation before applying the ARIMA-model. On the other hand one can also apply
a heteroscedastic model to the residuals and obtain for example an ARIMA-GARCH model. In
hydrological time series it is often not su�cient to use a Box-Cox transformation only (Modarres
and Ouarda (2013b)). Additionally, often the use of a model to describe the behaviour of the
residuals is preferable because of the possible use of additional information (Evin et al. (2013)).
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3. Concepts of Short-Range Dependence

Figure 3.3.: Daily discharges [m3/s] (left) and location of the considered gauge of the Matapedia
river near Quebec, Canada (right).

Hence, a model is needed which takes into account this heteroscedasticity. In the considered
case, the EGARCH-model proved to be superior to the other models (Modarres and Ouarda
(2013a)).
We want to seize the data example of Modarres and Ouarda (2013a) and use it to apply the
developed theory under short-range dependence later on. The observed data are daily discharges
from a gauge of the Matapedia river near the basin Amqui in South-Eastern Canada with a
catchment area of 558 km2 (Figure 3.3).
The autocorrelation of this series shows signi�cant dependence within the data (Figure 3.4).
To the logarithmised data an ARIMA(13,1,4)-model is �tted. The same order has also been
chosen by Modarres and Ouarda (2013a) and to make the results comparable we adopt this
parametrisation. The logarithmisation as well as the di�erentiation with d = 1 has been chosen
to reduce the high persistence of the data.
When we have a look at the residuals of this model applied to the data we see a heteroscedastic
behaviour (Figure 3.5). Therefore, Modarres and Ouarda (2013a) apply the Engle-test to test on
autoregressive heteroscedastic behaviour (Engle (1982)). For all lags the p-value is almost zero
and therefore a signi�cant heteroscedastic behaviour is found (Figure 3.5).
The results stay the same when a Box-Cox-transformation is applied to the data (logarithmic
or original) before �tting the ARIMA-model. Hence, a model is needed that can cope with this
kind of behaviour. Modarres and Ouarda (2013a) try di�erent kinds of heteroscedastic models
(GARCH, Power Garch) but the EGARCH model covers the behaviour best. The parameters
are chosen as p = 3 and q = 1 for the EGARCH-model. If we compare the observed residuals
and the ones modelled by the EGARCH(3,1)-model in a QQ-plot we observe a very good �t
(Figure 3.6) and also the results of the applied Goodness of Fit test (Vlaar and Palm (1993))
con�rm this.
This data example emphasizes the necessity of complex dependence models like the EGARCH
model which are not covered by the classical theory of dependent random variables using mixing
assumptions.
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3.2. Short-Range Dependence in Hydrology

Figure 3.4.: Autocorrelationfunction (ACF) of the daily discharges [m3/s] of the considered gauge
of the Matapedia river near Quebec. A strong dependence of the data can be seen.

Figure 3.5.: Residuals resulting from the �tted ARIMA(13,1,4)-model (left) and p-values of the
Engle-test (right) of the considered gauge of the Matapedia river near Quebec. This
indicates a GARCH-behaviour remaining in the residuals.
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3. Concepts of Short-Range Dependence

Figure 3.6.: QQ-plot of the observed residuals from the ARIMA(13,1,4)-model and theoretical
residuals modelled with the EGARCH(3,1)-model of the considered gauge of the
Matapedia river near Quebec. The model �ts well to the data.
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4. U-statistics, U-processes and U-quantiles

A central tool to cope with GL-statistics Tn, which are of particular interest in this thesis,
are U -statistics and U -processes, since a representation of the error term

√
n(Tn(x) − T (x))

can be represented (under some conditions) via the �rst-order Gâteaux-di�erential, which is
in fact a U -statistic. Besides, U -statistics are a common tool to prove asymptotic results of
test-statistics as well as estimators since they are able to represent most of them. The simple
form of expression together with some well known decomposition results make U -statistics and
U -processes applicable in many situations. U -quantiles are also an often used class to represent
quantile-based estimators.
We want to show three fundamental results:

1. a Central Limit Theorem for multivariate U -statistics

2. an invariance principle for multivariate U -processes

3. the convergence rate of the remaining term of the generalized Bahadur representation.

Let us �rst state some basic assumptions.
Let X1, . . . , Xn be a sequence of random variables with distribution function F . As mentioned
above, here we will assume the random variables to be short-range dependent. Moreover, let Fn

be the empirical distribution function of X1, . . . , Xn, that is

Fn(x) =
1

n

n∑
i=1

1[Xi≤x], −∞ < x < ∞.

U -statistics include a kernel h(x1, . . . , xm), that is a measurable, symmetric and real-valued
function. Symmetry in this case means invariance against permutation: h(xσ1 , . . . , xσm) =
h(x1, . . . , xm) for every permutation σ. The dimension of the kernel is m. In literature, mostly
bivariate kernels are studied (cf. Borovkova et al. (2001), Wendler (2011b), Levy-Leduc et al.
(2011)). This limits the number of possible estimators in this class very much, such that Fischer
et al. (2016a) showed the Central Limit Theorem for multivariate (m ≥ 2) kernels.
Analogously to the empirical distribution function of random variables an empirical distribution
function Hn of the evaluations h (Xi1 , . . . , Xim) is given by

Hn(x) =
1(
n
m

) ∑
1≤i1<...<im≤n

1[h(Xi1
,...,Xim)≤x], −∞ < x < ∞.

Sometimes Hn is also de�ned as

Hn(x) =
1

n(n− 1) · . . . · (n−m+ 1)

∑
1[h(Xi1

,...,Xim)≤x],

where the sum is taken over all n(n−1) · . . . ·(n−m+1) m-tuples (i1, . . . , im) of distinct elements
from {1, . . . , n}, but because of the symmetry of h this does not make any di�erence.

23



4. U -statistics, U -processes and U -quantiles

HF is de�ned as the distribution function of the kernel h with
HF (y) = PF (h(Y1, . . . , Ym) ≤ y) for independent copies Y1, . . . , Ym of X1 and 0 < hF < ∞ is
the related density. Please note that this implies that HF is continuous. The index F refers to
the fact that the distribution function of the original data X1, . . . , Xn is F .
We de�ne hF ;Xi2

,...,Xik
as the density of h(Yi1 , Xi2 , . . . , Xik , Yik+1

, . . . , Yim) for 2 ≤ k ≤ m and
i1 < i2 < . . . < im.

With these assumptions, the de�nition of U -statistics is now possible.

4.1. U-statistics

U -statistics form a class of statistics originally developed by Paul R. Halmos and Wassily Ho-
e�ding (Halmos (1946); Hoe�ding (1948)). The �U� stands for unbiased, since a U -statistic is an
unbiased estimator. It is a very important class of statistics because of the relative simple form
and also because many common estimators can be expressed as such a U -statistic. For more
details we refer at this point to Ser�ing (1980) and Lee (1990).

De�nition 4.1. Let h : Rm → R be a measurable function. A U -statistic with kernel h is de�ned

as

Un =
1(
n
m

) ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim).

While examining U -statistics often the decomposing technique by Hoe�ding is used (Hoe�ding
(1948)), which makes a separate consideration of the single terms possible.

De�nition 4.2. (Hoe�ding decomposition)

Let Un be a U -statistic with kernel h = h(x1, . . . , xm). Then one can write Un as

Un = θ +
m∑
j=1

(
m

j

)
1(
n
j

)Sjn,

where

θ = E(h(Y1, . . . , Ym))

Sjn =
∑

1≤i1<...<ij≤n

hj(Xi1 , . . . , Xij )

h1(x1) = h̃1(x1)

h2(x1, x2) = h̃2(x1, x2)− h1(x1)− h1(x2)

h3(x1, x2, x3) = h̃3(x1, x2, x3)−
3∑

i=1

h1(xi)−
∑

1≤i<j≤3

h2(xi, xj)

. . .

hm(x1, . . . , xm) = h̃m(x1, . . . , xm)−
m∑
i=1

h1(xi)−
∑

1≤i1<i2≤m

h2(xi1 , xi2)

− · · · −
∑

1≤i1<...<im−1≤m

hm−1(xi1 , . . . , xim−1)

h̃j(x1, . . . , xj) = E(h(x1, . . . , xj , Yj+1, . . . , Ym))− θ

for independent copies Y1, . . . , Ym of X1.
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4.1. U -statistics

We call m
n

∑n
i=1 h1(Xi) linear part, the remaining parts are degenerated.

For most of the results in this section we need a regularity condition for the kernel h. It is very
similar to the Lipschitz-continuity and basically has been developed by Denker and Keller (1986).
The same variation condition is also used in Fischer (2013) and the related paper Fischer et al.
(2016a).

De�nition 4.3. A kernel h satis�es the variation condition, if there exists a constant L and an

ϵ0 > 0, such that for all ϵ ∈ (0, ϵ0)

E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

⏐⏐h(x1, . . . , xm)− h(X ′
1, . . . , X

′
m)
⏐⏐) ≤ Lϵ,

where X ′
i are independent with the same distribution as Xi and ∥·∥ is the Euklidean norm. A

kernel h satis�es the extended variation condition, if there exists additionally a constant L′ and
a δ0 > 0, such that for all δ ∈ (0, δ0) and all 2 ≤ k ≤ m

E

(
sup

|xi1
−Yi1

|≤δ

⏐⏐h(xi1 , Xi2 , . . . , Xik , Yik+1
, . . . , Yim)− h(Yi1 , Xi2 , . . . , Xik , Yik+1

, . . . , Yim)
⏐⏐)

≤ L′δ,

for independent copies (Yn)n∈N of (Xn)n∈N and all i1 < i2 < . . . < im. If the kernel has dimen-
sion one, we note, that it satis�es the extended variation condition, if it satis�es the variation

condition.

Remark 4.1. A Lipschitz-continuous kernel satis�es the variation condition.

Sometimes also a condition is needed which demands regularity in the L2-space.

De�nition 4.4. A kernel h satis�es the L2 variation condition, if there exists a constant L and

an ϵ0 > 0, such that for all ϵ ∈ (0, ϵ0)

E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

⏐⏐h(x1, . . . , xm)− h(X ′
1, . . . , X

′
m)
⏐⏐)2

≤ Lϵ,

where X ′
i are independent with same distribution as Xi and ∥·∥ is the Euklidean norm.

Remark 4.2. For bounded kernels the L2 variation condition follows directly from the simple
variation condition, since (a− b)2 ≤ |a− b| · (|a|+ |b|).

Since a decomposition of U -statistics into the single kernels of the Hoe�ding decomposition hk,
k = 1, . . . ,m, is used as a key tool in many proofs it is important to know, which properties of
the kernel h can be assigned to the Hoe�ding-kernels. Fischer (2013) respectively Fischer et al.
(2016a) show that for example the extended variation condition is such a property.

Lemma 4.1. (Fischer et al. (2016a))

If the kernel h satis�es the extended variation condition, then the kernels hk in De�nition 4.2,

1 ≤ k ≤ m, satisfy it as well.
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4. U -statistics, U -processes and U -quantiles

Of course, also the boundedness of h is assigned, since h can only be bounded if every single part
of its decomposition is bounded.

Now we state one of the main results: asymptotic normality of U -statistics under NED. We know
this result from Wendler (2011a) for bivariate U -statistics, but our theorem admits arbitrary
dimension m. Under independence one can �nd a Central Limit Theorem for U -Statistics for
example in Ser�ing (1980), whereas Wendler (2011a) and Fischer (2013) respectively the related
article Fischer et al. (2016a) show the same result for strongly mixing random variables. The
proofs of the following theorems are given later on in this section.

Theorem 4.1. Let h : Rm → R be a bounded kernel satisfying the extended variation condition.

Moreover, let (Xn)n∈N be L1 NED with approximation constants (al)l∈N on an absolutely regular

process (Zn)n∈Z with mixing coe�cients (β(l))l∈N. Let also a δ > 1 exist, such that β(l) = O
(
l−δ
)

and al = O
(
l−δ−2

)
. Then we have

√
n(Un − θ)

D−→ N(0,m2σ2)

with σ2 = Var(h1(X1)) + 2
∑∞

j=1Cov(h1(X1), h1(X1+j)).

If σ = 0, then the statement is meant as convergence to 0.

Although our focus in this thesis is on a bounded kernel h of the U -statistic, we also want to state
the Central Limit Theorem for U -statistics with unbounded kernel. Again, we �nd an analogous
result for kernels of dimension 2 in Wendler (2011a). The proof of this theorem then follows in
the same way as for bounded kernels, simply interchanging the applied lemmata.

Theorem 4.2. Let h : Rm → R be a kernel with uniform (2+ γ)-moments, γ > 0, satisfying the
extended variation condition. Moreover, let (Xn)n∈N be L1 NED with approximation constants

(al)l∈N on an absolutely regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N. Let also a

δ > 2+γ
γ exist, such that β(l) = O

(
l−δ
)
and al = O

(
l−2δ−1

)
. Then we have

√
n(Un − θ)

D−→ N(0,m2σ2)

with σ2 = Var(h1(X1)) + 2
∑∞

j=1Cov(h1(X1), h1(X1+j)).

If σ = 0, then the statement is meant as convergence to 0.

In general, if the distribution of the (Xn)n∈N is not speci�ed, the long-run variance σ2 in Theorem
4.1 is unknown. Therefore, for applications an estimator of σ2 is needed. For bivariate U -statistics
or U -processes Vogel and Wendler (2015) and Dehling et al. (2016) give consistent estimators by
using an empirical version of the �rst Hoe�ding kernel and a weight function. Nevertheless, for
the multivariate case such a result is not known. The multivariate extension to this estimator is

σ̂2 =

n−1∑
r=−(n−1)

κ

(
|r|
bn

)
ρ̂(|r|),

where κ is the weight function and bn is the bandwidth.

ρ̂(r) =
1

n

n−r∑
i=1

ĥ1(Xi)ĥ1(Xi+r)
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4.1. U -statistics

is the empirical covariance for lag r, using the empirical version of the �rst Hoe�ding kernel

ĥ1(x) =
1

nm−1

∑
1≤i1<...<im−1≤n

h(x,Xi1 , . . . , Xim−1)−
1

nm

∑
1≤i1<...<im<n

h(Xi1 , . . . , Xim).

As Dehling et al. (2016) have already shown we need some regularity conditions for κ and
bn to achieve consistency of the estimator. These conditions are similar to the assumption
made in de Jong and Davidson (2000) and are ful�lled, for example, by the Bartlett kernel
κ(t) = (1− |t|)1[|t|≤1].

Assumption 4.1. The function κ : [0,∞) → [0, 1) is continuous at 0 and all but a �nite number
of points. Moreover, |κ| is dominated by a non-increasing, integrable function and∫ ∞

0

⏐⏐⏐ ∫ ∞

0
κ(t) cos(xt)dt

⏐⏐⏐dx < ∞.

The bandwidth bn satis�es bn → ∞ as n → ∞ and bn/
√
n → 0.

With these considerations we are able to show that σ̂2 is a consistent estimator for the long-run
variance.

Theorem 4.3. Let h : Rm → R be a bounded kernel satisfying the extended variation condition.

Moreover, let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely regular

process (Zn)n∈Z with mixing coe�cients (β(l))l∈N and let a δ > 11 exist, such that∑∞
l=1 lβ

2/(2+δ)(l) < ∞ and al = O
(
l−δ−3

)
. The weight function κ and the bandwidth bn shall

ful�l Assumption 4.1. Then

σ̂2 p→ σ2 for n → ∞,

where σ2 = Var(h1(X1)) + 2
∑∞

j=1Cov(h1(X1), h1(X1+j)).

Some results needed for the proofs are stated in the following section.

Preliminary results

For the proofs of the main theorems some lemmata are needed. The following results are similar
to the case of strong mixing (Fischer (2013) and Fischer et al. (2016a)) but since the proofs need
di�erent arguments in some cases we state the proofs for the sake of completeness.

The �rst lemma is analogous to Lemma 4.2 in Fischer et al. (2016a) and an extension of Lemma
3.2.4 in Wendler (2011a).

Lemma 4.2. Let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely regular

process (Zn)n∈Z with mixing coe�cients (β(l))n∈N. Moreover, let be AL =
√

2
∑∞

i=L ai and let

the kernel h be bounded and satisfy the extended variation condition. Then there exists for all

2 ≤ k ≤ m a constant C, such that for r = max
{
i(2) − i(1), i(2k) − i(2k−1)

}
with i(1) ≤ . . . ≤ i(2k)

follows ⏐⏐E (hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k)

)⏐⏐ ≤ C
(
β
([r

3

])
+A[ r3 ]

)
.

Proof.

Like Fischer et al. (2016a) for simplicity we only consider the case i1 < . . . < i2k and r = i2−i1 ≥
i2k − i2k−1. Using Corollary 2.17 of Borovkova et al. (2001) there exist sequences (X ′

n)n∈N and
(X ′′

n)n∈N with the properties
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1. (X ′
n)n∈N, (X

′′
n)n∈N have the same distribution as (Xn)n∈N

2. (X ′′
n)n∈N is independent of (Xn)n∈N

3. P
(∑∞

i=r |Xi −X ′
i| > A[ r3 ]

)
≤ A[ r3 ]

+ β
([

r
3

])
4. P

(∑∞
i=0

⏐⏐X ′
−i −X ′′

−i

⏐⏐ > A[ r3 ]

)
≤ A[ r3 ]

.

Because hk is degenerated it follows that E(hk(X ′′
i1
, Xi2 , . . . , Xik)hk(Xik+1

, . . . , Xi2k)) = 0 and
additionally

E(hk(Xi1 , Xi2 , . . . , Xik)hk(Xik+1
, . . . , Xi2k)) = E(hk(X ′

i1 , . . . , X
′
ik
)hk(X

′
ik+1

, . . . , X ′
i2k

)).

So we get by the triangular inequality⏐⏐E(hk(Xi1 , Xi2 , . . . , Xik)hk(Xik+1
, . . . , Xi2k))

⏐⏐
=
⏐⏐⏐E(hk(X ′

i1 , . . . , X
′
ik
)hk(X

′
ik+1

, . . . , X ′
i2k

))− E(hk(X ′′
i1 , Xi2 , . . . , Xik)hk(Xik+1

, . . . , Xi2k))
⏐⏐⏐

≤
⏐⏐⏐E(hk(X ′′

i1 , Xi2 , . . . , Xik)hk(X
′
ik+1

, . . . , X ′
i2k

)− hk(X
′′
i1 , Xi2 , . . . , Xik)hk(Xik+1

, . . . , Xi2k))
⏐⏐⏐
(4.1)

+
⏐⏐⏐E(hk(X ′

i1 , . . . , X
′
ik
)hk(X

′
ik+1

, . . . , X ′
i2k

)− hk(X
′′
i1 , Xi2 , . . . , Xik)hk(X

′
ik+1

, . . . , X ′
i2k

))
⏐⏐⏐ . (4.2)

Because h is bounded and satis�es the extended variation condition this also holds for hk with
boundedness constant M and variation constant L, what we will utilize in the following, where,
in contrast to Fischer (2013), an inequality for both the NED and the mixing coe�cients is
needed.

(4.2) =
⏐⏐⏐E((hk(X ′

i1 , . . . , X
′
ik
)− hk(X

′′
i1 , Xi2 , . . . , Xik))hk(X

′
ik+1

, . . . , X ′
i2k

)  
≤M

)
⏐⏐⏐

≤ M

[ ⏐⏐⏐⏐E((hk(X ′′
i1 , Xi2 , . . . , Xik)− hk(X

′
i1 , . . . , X

′
ik
))1[⏐⏐⏐X′′

i1
−X′

i1

⏐⏐⏐≤A[ r3 ]
,...,
⏐⏐⏐Xik

−X′
ik

⏐⏐⏐≤A[ r3 ]

])⏐⏐⏐⏐
+
⏐⏐⏐E( (hk(X ′′

i1 , Xi2 , . . . , Xik)− hk(X
′
i1 , . . . , X

′
ik
))  

≤2M

1[⏐⏐⏐X′′
i1
−X′

i1

⏐⏐⏐≤A[ r3 ]
,...,
⏐⏐⏐Xik

−X′
ik

⏐⏐⏐≤A[ r3 ]

]C)⏐⏐⏐]

≤ ML
√
kA[ r3 ]

+M2MP
(⏐⏐X ′′

i1 −X ′
i1

⏐⏐ > A[ r3 ]

)
+ . . .+M2MP

(⏐⏐Xik −X ′
ik

⏐⏐ > A[ r3 ]

)
≤ ML

√
kA[ r3 ]

+ 2kM2A[ r3 ]
+ 2(k − 1)M2β

([
r
3

])
≤ ML

√
kA[ r3 ]

+ 2kM2A[ r3 ]
+ 2(k − 1)M2β

([
r
3

])
+ 2M2β

([
r
3

])
+ML

√
kβ
([

r
3

])
≤
(
2kM2 +ML

√
k
)(

A[ r3 ]
+ β

([
r
3

]))
,

where we used properties 3. and 4. from above and β(l) ≥ 0.

For the second term (4.1) we use similar arguments for getting the same result.

(4.1) ≤
⏐⏐⏐E((gk(X ′

ik+1
, . . . , X ′

i2k
)− gk(Xik+1

, . . . , Xi2k))gk(X
′′
i1 , Xi2 . . . , Xik))

⏐⏐⏐
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≤ M

[⏐⏐⏐⏐⏐E
(
(gk(X

′
ik+1

, . . . , X ′
i2k

)− gk(Xik+1
, . . . , Xi2k))

· 1[⏐⏐⏐X′
ik+1

−Xik+1

⏐⏐⏐≤A[ r3 ]
,...,
⏐⏐⏐X′

i2k
−Xi2k

⏐⏐⏐≤A[ r3 ]

]
)⏐⏐⏐⏐⏐

+

⏐⏐⏐⏐⏐E
(
(gk(X

′
ik+1

, . . . , X ′
i2k

)− gk(Xik+1
, . . . , Xi2k))

· 1[⏐⏐⏐X′
ik+1

−Xik+1

⏐⏐⏐≤A[ r3 ]
,...,
⏐⏐⏐X′

i2k
−Xi2k

⏐⏐⏐≤A[ r3 ]

]C
)⏐⏐⏐⏐⏐
]

≤ ML
√
kA[ r3 ]

+M2Mk
(
A[ r3 ]

+ β
([

r
3

]))
≤
(
2kM2 +ML

√
k
)(

A[ r3 ]
+ β

([
r
3

]))
.

According to that, it is

(4.1) + (4.2) ≤ C
(
A[ r3 ]

+ β
([

r
3

]))
.

The following Lemma generalises a result from Fischer (2013) (see also Fischer et al. (2016a))
to near epoch dependent processes as well as arbitrary constants (ci,j)i,j∈N. This extension is
needed later on to show the consistency of the estimator σ̂2.

Lemma 4.3. Let the kernel h be bounded and satisfy the extended variation condition. More-

over, let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely regular process

(Zn)n∈Z with mixing coe�cients (β(l))l∈N and
∑n

l=0 l (β(l) +Al) = O (nγ) with Al =
√
2
∑∞

i=l ai
for a γ < 1. Then for all 2 ≤ k ≤ m and any constants (ci,j)i,j∈N

n∑
i1,...,i2k=1

⏐⏐E(hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k))ci1,ik+1

⏐⏐
= max

i1,ik+1∈{1,...,n}
|ci1,ik+1

|O(n2k−2+γ).

This Lemma is analogous to Lemma 4.3 in Fischer et al. (2016a) and can be proved similarly.

Proof.

Again set {i1, . . . , i2k} = {i(1), . . . , i(2k)} with i(1) ≤ . . . ≤ i(2k). We can rewrite the above sum
as

n∑
i1,...,i2k=1

⏐⏐E(hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k))ci1,ik+1

⏐⏐
≤ max

i1,ik+1∈{1,...,n}
|ci1,ik+1

|
n∑

i1,...,i2k=1

⏐⏐E(hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k))

⏐⏐
= max

i1,ik+1∈{1,...,n}
|ci1,ik+1

|

·
n∑

l=0

n∑
i1,...,i2k=1

max{i(2)−i(1),i(2k)−i(2k−1)}=l

⏐⏐E(hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k))

⏐⏐
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≤ max
i1,ik+1∈{1,...,n}

|ci1,ik+1
|C

n∑
l=0

∑
i1,...,i2k

max{i(2)−i(1),i(2k)−i(2k−1)}=l

(
β

([
l

3

])
+A[ l3 ]

)
,

by application of Lemma 4.2.
Now we want to simplify the expression by calculating the quantity of (i1, . . . , i2k) wheremax{i(2)−
i(1), i(2k) − i(2k−1)} = l. Using combinatorial arguments we can see that there exist (2k)! possi-
bilities to obtain the same sequence i(1), . . . , i(2k). We now �x i(1) and i(2k), having n2 possibil-
ities for this. Having in mind that max{i(2) − i(1), i(2k) − i(2k−1)} = l and suppose i(2) − i(1) =
max{i(2)−i(1), i(2k)−i(2k−1)} = l then i(2) is automatically determined by the choice of i(1). Then,
i(2k−1) can only take l distinct values. Supposing i(2k)−i(2k−1) = max{i(2)−i(1), i(2k)−i(2k−1)} = l
the same is valid. All remaining values of the k-tuple are arbitrary. Therefore, the quantity of
the terms equals (2k)! · n2ln2k−4 = l · (2k)! · n2k−2 and

n∑
i1,...,i2k=1

⏐⏐E(hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k))ci1,ik+1

⏐⏐
≤ max

i1,ik+1∈{1,...,n}
|ci1,ik+1

|C ′n2k−2
n∑

l=0

l

(
β

([
l

3

])
+A[ l3 ]

)
= max

i1,ik+1∈{1,...,n}
|ci1,ik+1

|O(n2k−2+γ).

These results serve as basis for proving the main theorems.

Proofs of the main results

In this segment we will assemble the results so far to the main proofs.

Proof of Theorem 4.1.

The proof makes use of the Hoe�ding decomposition (Def. 4.2)

√
n(Un − θ) =

√
n

m∑
j=1

(
m

j

)
1(
n
j

)Sjn.

We show that the linear part m√
n

∑n
i=1 h1(Xi) is asymptotically normal and that the remaining

terms converge to 0 in probability.

We know that h1 is bounded because h is bounded. Using Lemma 2.1.7 of Wendler (2011a) we

also know that h1 is NED with approximation constants a′l = Ca
1
2
l . In the near epoch dependent

case we have to prove assumptions for the mixing coe�cients as well as the approximating
functions of the NED process. This is done in the following.
Together with the above assumptions it is

∞∑
l=1

β(l) < ∞,

∞∑
l=1

a′l < ∞
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and a′l ≤
C

lδ/2+1 ≤ C
l log l .

We have made these considerations to �nally apply Theorem 2.3 of Ibragimov (1962) getting

m√
n

n∑
i=1

h1(X1)
D−→ N(0,m2σ2)

with σ2 = Var(h1(X1)) + 2
∑∞

j=1Cov(h1(X1), h1(X1+j)) < ∞.
For the remaining terms we want to use Lemma 4.3 with constants ci1,ik+1

= 1 for all 2 ≤ k ≤ m,
needing

∑n
l=0 l (β(l) +Al) = O(nγ) for a γ < 1.

Using

Al =

(
2

∞∑
i=l

ai

) 1
2

≤

(
2C

∞∑
i=l

i−δ−2

) 1
2

= O
(
n− δ+1

2

)
we get

n∑
l=0

l (β(l) +Al) ≤ C

n∑
l=1

l
(
l−δ + n− δ+1

2

)
≤ C

n∑
l=1

l−δ+1 + Cn− δ+1
2

n∑
l=1

l

= O(nγ) +O
(
n2− δ+1

2

)
= O(nγ)

and so Lemma 4.3 is applicable.
So it is for all 2 ≤ k ≤ m

Var

⎛⎝√
n

(
m

k

)(
n

k

)−1 ∑
1≤i1<...<ik≤n

hk(Xi1 , . . . , Xik)

⎞⎠
≤ m2kk

k
2

n2k−1

∑
1≤i1<...<ik≤n

∑
1≤ik+1<...<i2k≤n

⏐⏐E (hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k)

)⏐⏐
≤ m2kk

k
2

n2k−1

n∑
i1,...,i2k=1

⏐⏐E (hk(Xi1 , . . . , Xik)hk(Xik+1
, . . . , Xi2k)

)⏐⏐
= O(n2k−2+γ−(2k−1)) = O(n−1+γ).

And so

Var

⎛⎝√
n

(
m

k

)(
n

k

)−1 ∑
1≤i1<...<ik≤n

hk(Xi1 , . . . , Xik)

⎞⎠ n→∞−→ 0

and with the Chebychev inequality we have

√
n

(
m

k

)(
n

k

)−1 ∑
1≤i1<...<ik≤n

hk(Xi1 , . . . , Xik)
P−→ 0 for n → ∞.

The Theorem of Slutsky completes the proof.
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The proof of the consistency of the estimator is based on the proof of Dehling et al. (2016) but
has to be generalised to the more complicated case of arbitrary dimension. In this case much
more terms have to be considered and their asymptotic behaviour has to be investigated.

Proof of Theorem 4.3.

By decomposing the estimator into two parts

σ̂2 =

n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(
ĥ1(Xi)ĥ1(Xi+|r|)

− h1(Xi)h1(Xi+|r|) + h1(Xi)h1(Xi+|r|)
)

=

n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

h1(Xi)h1(Xi+|r|)

+

n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(
ĥ1(Xi)ĥ1(Xi+|r|)− h1(Xi)h1(Xi+|r|)

)
we can apply the results of de Jong and Davidson (2000).
For the �rst term de Jong and Davidson (2000) have shown in their Theorem 2.1 that it converges
to σ2, where the assumptions of the theorem are ful�lled due to Assumption 4.1 and the NED-
assumption. Therefore, it remains to show

E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(
ĥ1(Xi)ĥ1(Xi+|r|)− h1(Xi)h1(Xi+|r|)

) ⏐⏐⏐ −→ 0.

Let us �rst expand h1(x)− ĥ1(x) into single terms:

h1(x)− ĥ1(x)

=h1(x)−
1

nm−1

∑
1≤i1<...<im−1≤n

h(x,Xi1 , . . . , Xim−1)

+
1

nm

∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim)

=h1(x)−
1

nm−1

∑
1≤i1<...<im−1≤n

(
hm(x,Xi1 , . . . , Xim−1) + h1(x) +

m−1∑
j=1

h1(Xij )

+ . . .+
∑

1≤j1<...<jm−2≤m−1

hm−1(x,Xij1
, . . . , Xijm−2

)

+
∑

1≤j1<...<jm−1≤m−1

hm−1(Xij1
, . . . , Xijm−1

)
)

+
1

nm

∑
1≤i1<...<im≤n

(
hm(Xi1 , . . . , Xim) +

m∑
j=1

h1(Xij ) + . . .
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+
∑

1≤j1<...<jm−1≤m

hm−1(Xij1
, . . . , Xijm−1

)
)

=− 1

nm−1

∑
1≤i1<...<im−1≤n

hm(x,Xi1 , . . . , Xim−1)− (m− 1)
1

n

n∑
i=1

h1(Xi)

− . . .− 2
1

nm−2

∑
1≤i1<...<im−2≤n

hm−1(x,Xi1 , . . . , Xim−2)

− 1

nm−1

∑
1≤i1<...<im≤n

hm−1(Xi1 , . . . , Xim−1)

+
1

nm

∑
1≤i1<...<im≤n

hm(Xi1 , . . . , Xim) +m
1

n

n∑
i=1

h1(Xi)

+ . . .+ 2
1

nm−1

∑
1≤i1<...<im−1≤n

hm−1(Xi1 , . . . , Xim−1)

=
1

n

n∑
i=1

h1(Xi)− (m− 2)
1

n

n∑
i=1

h2(x,Xi) + (m− 2)
1

n2

∑
1≤i<j≤n

h2(Xi, Xj)

− . . .− 2
1

nm−2

∑
1≤i1<...<im−2≤n

hm−1(x,Xi1 , . . . , Xim−2)

+ 2
1

nm−1

∑
1≤i1<...<im−1≤n

hm−1(Xi1 , . . . , Xim−1)

− 1

nm−1

∑
1≤i1<...<im−1≤n

hm(x,Xi1 , . . . , Xim−1) +
1

nm

∑
1≤i1<...<im≤n

hm−1(Xi1 , . . . , Xim)

=
1

n

n∑
i=1

h1(Xi)

−
m∑
k=2

(m− k)

nk−1

⎛⎝ ∑
1≤i1<...<ik−1≤n

hk(x,Xi1 , . . . , Xik−1
) +

1

n

∑
1≤i1<...<ik≤n

hk(Xi1 , . . . , Xik)

⎞⎠ .

Using this representation we can split the expected value and handle the single terms separately.

E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(
h1(Xj)h1(Xj+|r|)− ĥ1(Xj)ĥ1(Xj+|r|)

) ⏐⏐⏐
≤ E

⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(
(h1(Xj)− ĥ1(Xj))h1(Xj+|r|)

) ⏐⏐⏐
+ E

⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(
(h1(Xj+|r|)− ĥ1(Xj+|r|))ĥ1(Xj)

) ⏐⏐⏐
≤ E

⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

1

n

n∑
i=1

h1(Xi)h1(Xj+|r|)
⏐⏐⏐
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+ E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(m− 2)
1

n

n∑
i=1

h2(Xi, Xj)h1(Xj+|r|)
⏐⏐⏐

+ E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(m− 2)
1

n2

∑
1≤i1<i2≤n

h2(Xi1 , Xi2)h1(Xj+|r|)
⏐⏐⏐

+ . . .

+ E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

1

nm−1

∑
1≤i1<...<im−1≤n

hm(Xj , Xi1 , . . . , Xim−1)h1(Xj+|r|)
⏐⏐⏐

+ E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

1

nm

∑
1≤i1<...<im≤n

hm(Xi1 , . . . , Xim)h1(Xj+|r|)
⏐⏐⏐

+ E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

1

n

n∑
i=1

h1(Xi)ĥ1(Xj)
⏐⏐⏐

+ . . .

+ E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

1

nm

∑
1≤i1<...<im≤n

hm(Xi1 , . . . , Xim)ĥ1(Xj)
⏐⏐⏐.

We denote the 4(m− 1) + 2 terms with Ii, i = 1, . . . , 4(m− 1) + 2.
The �rst term I1 containing the �rst term of the Hoe�ding decomposition can be handled anal-
ogously to Dehling et al. (2016), using their Lemma D.9 (in the supplementary materials). The
conditions of the lemma are ful�lled, since the boundedness of the kernel h replaces the Assump-
tion 2.3. Note that the L2 variation condition is ful�lled since the kernel is bounded. It remains
to show that our de�nition of NED implies the required assumptions on the P-NED process.
Therefore, we want to use Lemma A.1 of Dehling et al. (2016) saying that an L1-near epoch de-
pendent process on (Zn)n∈Z with approximating constants (al)l∈N is P-NED on the same process

(Zn)n∈Z. If we then choose sk = Ck−6(1+ 2+δ
δ

) and Φ(x) = x−1 we get

Φ(ϵ)sk = ϵ−1Ck−6(1+ 2+δ
δ

) ≥ k−(δ+3)ϵ−1 = akϵ
−1

and hence we know that (Xn)n∈N is P-NED with approximating constants (sk)k∈N and function Φ
on an absolutely regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N. For these coe�cients

it holds skΦ(k−6) = O(k−6(2+δ)/δ) and
∑∞

k=1 kβ
δ/(2+δ)
k < ∞ and so all assumptions needed for

Lemma D.9 are ful�lled.
Let us now consider all the terms, which contain h1 and hk(Xj , . . .), k = 1, . . . ,m. These are
the terms I2k, k = 1, . . . ,m− 1.

I2k = E
⏐⏐⏐ n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

(m− (k + 1))
1

nk

∑
1≤i1<...<ik≤n

hk+1(Xj , Xi1 , . . . , Xik)h1(Xj+|r|)
⏐⏐⏐

= E
⏐⏐⏐ 1
n

n∑
j1=1

m− (k + 1)

nk

∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)h1(Xj1)κ

(
|i1 − j1|

bn

) ⏐⏐⏐
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≤ E

(((
1

n

n∑
j1=1

h1(Xj1)
m− (k + 1)

nk

∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)κ

(
|i1 − j1|

bn

))2) 1
2
)

≤ E

(⎛⎝ 1

n

n∑
j1=1

h1(Xj1)
2

⎞⎠ 1
2

⎛⎝ 1

n

n∑
j1=1

⎛⎝m− (k + 1)

nk

∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)κ

(
|i1 − j1|

bn

)⎞⎠2⎞⎠
1
2 )

≤

⎛⎝E

⎛⎝ 1

n

n∑
j1=1

h1(Xj1)
2

⎞⎠⎞⎠ 1
2

⎛⎝E

⎛⎝ 1

n

n∑
j1=1

⎛⎝m− (k + 1)

nk

∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)κ

(
|i1 − j1|

bn

)⎞⎠2⎞⎠⎞⎠
1
2

,

where we used the Cauchy-Schwarz inequality and in the last step the Hölder-inequality. Due
to the boundedness of h and therefore also of h1 the �rst term can simply be estimated by a
constant C.

I2k ≤

⎛⎝E

⎛⎝ 1

n

n∑
j1=1

h1(Xj1)
2

⎞⎠⎞⎠ 1
2

⎛⎝E

⎛⎝(m− (k + 1))2

n2k+1

n∑
j1=1

⎛⎝ ∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)κ

(
|i1 − j1|

bn

)⎞⎠2⎞⎠⎞⎠
1
2

≤ C
m− (k + 1)

nk+ 1
2

⎛⎝E

⎛⎝ n∑
j1=1

⎛⎝ ∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)κ

(
|i1 − j1|

bn

)⎞⎠2⎞⎠⎞⎠
1
2

≤ C ′ 1

nk+ 1
2

(
E

(
n∑

i1,...,i2(k+1)=1

hk+1(Xi1 , . . . , Xik+1
)hk+1(Xik+2

, . . . , Xi2(k+1)
) (4.3)

n∑
j1=1

κ

(
|i1 − j1|

bn

)
κ

(
|ik+2 − j1|

bn

))) 1
2

.

To show the convergence of I2k to zero we �nally want to apply Lemma 4.3. For this we have to
show that

n∑
l=0

l(β(l) +Al) = O(nγ)
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withAl =
√

2
∑∞

i=l ai. From the assumption
∑∞

l=1 lβ
δ/(2+δ)(l) < ∞, which implies lβδ/(2+δ)(l) →

0 for l → ∞, and the fact that the mixing coe�cients (β(l))l∈N are non-negative and monotone

decreasing (therefore βδ/(2+δ)(l) is also monotone decreasing) we know that lβδ/(2+δ)
l is monotone

decreasing and positive. Hence,

lβδ/(2+δ)(l) = O
(
l−1
)

and so β(l) = O (l−η) for a η > 2. Analogously to the proof of Theorem 4.1, but now for
al = O

(
l−δ−3

)
, we then can show

n∑
l=0

l(β(l) +Al) ≤ C
n∑

l=1

l−η+1 +O(n2− δ+2
2 ),

where 2 − δ+2
2 < 1

2 since δ > 11. Let us now have a closer look at the �rst term. We want to
show that C

∑n
l=1 l

−η+1 = O(nγ) for a 0 < γ < 1/2. It is∑n
l=1 l

−η+1

nγ
≤ inf

1≤t≤n
t−γ

n∑
l=1

l1−η ≤
n∑

l=1

l−1−ηl−γ =
n∑

l=1

(
1

l

)−1+η+γ

.

This is the Dirichlet series and it converges for −1+ η+ γ > 1. Since η > 2 and 0 < γ < 1/2 we
have

∑n
l=1 l

−η+1 = O(nγ) and therefore

n∑
l=0

l(β(l) +Al) = O(nγ)

for a 0 < γ < 1/2.
Now we can apply Lemma 4.3 with

ci1,ik+2
=

n∑
j1=1

κ

(
|i1 − j1|

bn

)
κ

(
|ik+2 − j1|

bn

)
= O(bn)

to (4.3) and obtain

I2k ≤ C
1

nk+ 1
2

(
n2(k+1)−2+γbn

) 1
2 ≤ C

(
n2k+γ

n2k+1
bn

) 1
2

= C
(
nγ− 1

2

) 1
2

(
bn√
n

) 1
2

−→ 0,

because of Assumption 4.1 and 0 < γ < 1/2.
Therefore, I2k converges to zero for all k = 1, . . . ,m− 1.

It remains to show the convergence of the remaining terms. The terms containing h1(·) and
hk(Xi1 , . . . , Xik), k = 2, . . . ,m, are denoted with I2k+1, k = 1, . . . ,m− 1.

I2k+1 = E

⏐⏐⏐⏐⏐
n−1∑

r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
j=1

m− (k + 1)

nk+1

∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)h1(Xj+|r|)

⏐⏐⏐⏐⏐
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≤

m− (k + 1)

nk+1

∑
1≤i1<...<ik+1≤n

hk+1(Xi1 , . . . , Xik+1
)


2 1n

n−|r|∑
j=1

h1(Xj+|r|)
n∑

j1=1

κ

(
|j − j1|

bn

)
2

≤ C
1

nk+1

(
n2(k+1)−γ

) 1
2 bn√

n

= C
nk+γ/2

nk+1
o(1) −→ 0,

where we used the Hölder inequality, the boundedness of hk+1, Lemma 4.3 and Assumption 4.1
as before.
The convergence of the remaining terms I2m, I2k and I2k+1 for k = m + 1, . . . , 2m − 1 can be
shown analogously and is therefore omitted.

A generalisation of U -statistics are U -processes. They are introduced in the following section.

4.2. U-processes

If the kernel h of a U -statistic should no longer be a �xed function but should have variable
arguments, the extension from U -statistics to U -processes is necessary.

De�nition 4.5. Let h : Rm+1 → R be a measurable and bounded function, symmetric in the

�rst m arguments and non-decreasing in the last one. Suppose that for all x1, . . . , xm ∈ R
we have lim

t→∞
h(x1, . . . , xm, t) = 1, lim

t→−∞
h(x1, . . . , xm, t) = 0. We call the process (Un(t))t∈R,

which is simply a U -statistic with an additional, varying argument in the kernel, empirical U -
distribution function. As U -distribution function we de�ne U(t) := E (h(Y1, . . . , Ym, t)) for inde-
pendent copies Y1, . . . , Ym of X1. Then the empirical process is de�ned as

(
√
n(Un(t)− U(t)))t∈R.

Remark 4.3. Without restriction we can choose the space of the parameter t as the compact
interval [0, 1], since a transformation for example via the distribution function does not in�uence
the dependence structure as it is Lipschitz, monotone etc.

We will mainly consider the function Hn of the empirical U -process in the following, where Un(t)
has the kernel
g(x1, . . . , xm, t) = 1[h(x1,...,xm)≤t]. Therefore,

U(t) = E
(
1[h(Y1,...,Ym)≤t]

)
= P(h(Y1, . . . , Ym) ≤ t) = HF (t)

and since HF has density hF < ∞ we have that HF is Lipschitz-continuous.
For U -processes the Hoe�ding decomposition is needed, too. In this case, additionally the pa-
rameter t has to be considered though the de�nition is very similar to the one in the case of
U -statistics.
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4. U -statistics, U -processes and U -quantiles

De�nition 4.6. (Hoe�ding decomposition for U -processes)
Let Un be a U -process with kernel h = h(x1, . . . , xm, t). Then one can write Un(t) as

Un(t) = U(t) +

m∑
j=1

(
m

j

)
1(
n
j

)Sjn,

where

U(t) = E(h(Y1, . . . , Ym, t))

Sjn =
∑

1≤i1<...<ij≤n

hj(Xi1 , . . . , Xij , t)

h1(x1, t) = h̃1(x1, t)

h2(x1, x2, t) = h̃2(x1, x2, t)− h1(x1, t)− h1(x2, t)

h3(x1, x2, x3, t) = h̃3(x1, x2, x3, t)−
3∑

i=1

h1(xi, t)−
∑

1≤i<j≤3

h2(xi, xj , t)

. . .

hm(x1, . . . , xm, t) = h̃m(x1, . . . , xm, t)−
m∑
i=1

h1(xi, t)−
∑

1≤i1<i2≤m

h2(xi1 , xi2 , t)

− . . .−
∑

1≤i1<...<im−1≤m

hm−1(xi1 , . . . , xim−1 , t)

h̃j(x1, . . . , xj , t) = E(h(x1, . . . , xj , Yj+1, . . . , Ym, t))− U(t).

for independent copies Y1, . . . , Ym of X1.

The following proposition summarises two important properties of the kernel of a U -process that
are very helpful for proving the NED case of the invariance principle.

Proposition 4.1. Let h : Rm+1 −→ R be the kernel of a U -process. Then the following holds:

(i) If for any random vector (Z1, . . . , Zm)

E|h(Z1, . . . , Zm, t)− h(Z1, . . . , Zm, s)| ≤ C|t− s|

for an arbitrary constant C > 0, then U(t) and hk(·, . . . , ·, t) are Lipschitz continuous in t
for every 1 ≤ k ≤ m.

(ii) If for any random vector (Z1, . . . , Zm), any constants ui ∈ R, i = 1, . . . ,m, and any t ∈ R
it holds that

E |h(Z1, . . . , Zm, t)− h(Z1 + ui, . . . , Zm + um, t)| ≤ C

m∑
i=1

|ui|,

then for every 1 ≤ k ≤ m it holds that

E |hk(Z1, . . . , Zk, t)− hk(Z1 + ui, . . . , Zk + uk, t)| ≤ C

k∑
i=1

|ui|.
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Proof. (i)

Remember the de�nition U(t) = E (h(Y1, . . . , Ym, t)). Therefore, for any s, t ∈ R

|U(t)− U(s)| = |E (h(Y1, . . . , Ym, t)− h(Y1, . . . , Ym, s)) | ≤ C|t− s|.

The remaining proof is given with the induction principle. First, let be k = 1.

|h1(x, t)− h1(x, s)| = |E (h(x, Y2, . . . , Ym, t))− U(t)− E(h(x, Y2, . . . , Ym, s)) + U(s)|
≤ |E(h(x, Y2, . . . , Ym, t)− h(x, Y2, . . . , Ym, s))|+ C|t− s|
≤ C ′|t− s|,

where we used the Lipschitz-continuity of U .
Now we choose k arbitrary and assume that the results hold for (k − 1).

|hk(x1, . . . , xk, t)− hk(x1, . . . , xk, s)|

=
⏐⏐⏐E (h(x1 . . . , xk, Yk+1, . . . , Ym, t)− h(x1 . . . , xk, Yk+1, . . . , Ym, s))

−
k∑

i=1

(h1(xi, t)− h1(xi, s))− . . .−
∑

1≤i1...,ik≤k

(hk−1(x1, . . . , xk−1, t)− hk−1(x1, . . . , xk−1, s))

− U(t) + U(s)
⏐⏐⏐

≤ C|t− s|+ C1

k∑
i=1

|t− s|+ . . .+ Ck−1

∑
1≤i1,...,ik−1≤k

|t− s|+ C ′|t− s|

≤ C ′′|t− s|,

where we used the assumed Lipschitz-continuity of hi, i = 1, . . . , k − 1, and the same argument
as in the case k = 1.

(ii)

Using the same principle as in (i) we �rst show the results for k = 1.

E |h1(Z1, t)− h1(Z1 + u, t)|

= E
⏐⏐⏐E (h(Z1, Y2, . . . , Ym, t))− U(t)− E(h(Z1 + u, Y2, . . . , Ym, t)) + U(t)|

≤ E|E (h(Z1, Y2, . . . , Ym, t))− E(h(Z1 + u, Y2, . . . , Ym, t))
⏐⏐⏐

≤ E (E|h(Z1, Y2, . . . , Ym, t)− h(Z1 + u, Y2, . . . , Ym, t)|)
≤ E(C|u|) = C|u|.

For arbitrary k and assuming that the result is valid for (k − 1) we have

E|hk(Z1, . . . , Zk, t)− hk(Z1 + u1, . . . , Zk + uk, t)|

= E
⏐⏐⏐E (h(Z1, . . . , Zk, Yk+1, . . . , Ym, t)− h(Z1 − u1, . . . , Zk − uk, Yk+1, . . . , Ym, t))

−
k∑

i=1

(h1(Xi, t)− h1(Xi, t))

− . . .
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−
∑

1≤i1...,ik≤k

(hk−1(Zi1 , . . . , Zik−1
, t)− hk−1(Zi1 − ui1 , . . . , Zik−1

− uik , t))− U(t) + U(t)
⏐⏐⏐

≤ C

k∑
i=1

|ui|+
k∑

i=1

C|ui|+ . . .+
∑

1≤i1<...<ik−1≤k

C

k−1∑
j=1

C|uij |

≤ C
k∑

i=1

|ui|

Remark 4.4. Note that if the kernel h is of the form h(x1, . . . , xm, t) = 1[h′(x1,...,xm)≤t] and
h′ has density hF , it follows automatically from the condition in Proposition 4.1 (i) that hF is
bounded since

E|h(Y1, . . . , Ym, t)− h(Y1, . . . , Ym, s)| = P
(
t ≤ h′(Y1, . . . , Ym) ≤ s

)
= |t− s| sup

x∈R
hF (x).

Therefore, a special case of this Proposition is:
Let h be of the special form h(x1 . . . , xm, t) = 1[h′(x1,...,xm)≤t] and let HF be the distribution
function of the kernel h′ with density hF . If hF ;X1,...,Xk

and hF are bounded, then hk(·, . . . , ·, t)
is Lipschitz continuous in t for every 1 ≤ k ≤ m.

Additionally, the extended variation condition has to be transformed. Fischer et al. (2016a)
used the extended uniform variation condition, which has the same properties as the extended
variation condition.

De�nition 4.7. We say h satis�es the extended uniform variation condition, if the extended

variation condition holds for h(x1, . . . , xm, t) with a constant not depending on t.

Please note, that many results given for the Hoe�ding-kernels of U -statistics, e.g. Lemma 4.3,
remain valid for the kernels of a U -process.

Now we want to establish an invariance principle for the U -process. For near epoch dependent
sequences on absolutely regular processes it has already been shown by Borovkova et al. (2001)
and Dehling and Philipp (2002), a result for strong mixing can be found in Wendler (2011b).
Under independence one can �nd a strong invariance principle in Dehling et al. (1987). However,
these results only consider the case of a bivariate kernel and therefore exclude such examples as
are given in Section 1. The result given in the next theorem closes this gap.

From now on only consider the case where Hn is our empirical U -process, that is Un(t) has the
kernel g(x1, . . . , xm, t) = 1[h(x1,...,xm)≤t].

Theorem 4.4. Let h be a kernel with distribution function HF and related density hF < ∞.

Moreover, let g1 be the �rst term of the Hoe�ding decomposition of Hn. Let (Xn)n∈N be NED with

approximation constants (al)l∈N on an absolutely regular process (Zn)n∈Z with mixing coe�cients

(β(l))l∈N with
∑∞

l=1 l
2β

δ
2+δ (l) < ∞ for a 0 < δ < 1. Moreover, let

∑∞
l=1 l

2a
δ

2+2δ

l < ∞. Then(
m√
n

n∑
i=1

g1(Xi, t)

)
t∈R

D−→ (W (t))t∈R ,

where W is a Gaussian process having continuous sample paths with probability 1.
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Remark 4.5. Note that the condition
∑∞

l=1 l
2
(
L
√
2Al

) δ
1+δ < ∞ of Dehling and Philipp (2002),

where L is the variation constant of the kernel g(x1, . . . , xm, t) = 1[h(x1,...,xm)≤t] and

Al =
√

2
∑∞

i=l ai, follows directly from
∑∞

l=1 l
2a

δ
2+2δ

l < ∞, since

∞∑
l=1

l2
(
L
√

2Al

) δ
1+δ

=

∞∑
l=1

l2

⎛⎜⎝L

√2

√2

∞∑
i=l

ai

⎞⎟⎠
δ

1+δ

≤
∞∑
l=1

l2C

( ∞∑
i=l

ai

) δ
2(1+δ)

≤
∞∑
l=1

Cl2
∞∑
i=l

a
δ

2(1+δ)

i

≤
∞∑
l=1

Cl2
∞∑
i=l

1

i2
i2a

δ
2(1+δ)

i ≤
∞∑
l=1

Cl2
1

l2

∞∑
i=l

i2a
δ

2(1+δ)

i

≤ C
∞∑
l=1

l2a
δ

2+2δ

l < ∞.

Thus, in the NED case we can reduce the assumptions needed for the proof compared to the
strong mixing case in Fischer et al. (2016a).

Theorem 4.4 can be proved in the same way as Theorem 4.8 of Dehling and Philipp (2002) by
choosing gt(x) = g1(x, t) and G(t) = HF (t) (preserving the properties of the single functions)
and is therefore omitted.

Corollary 4.1. Let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely

regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N with
∑∞

l=1 l
2β

γ
2+γ (l) < ∞, 0 < γ < 1.

Additionally, let be
∑∞

l=1 l
2a

γ
2+2γ

l < ∞. Moreover, let h be a Lipschitz-continuous kernel with

distribution function HF and related density hF < ∞ and for all 2 ≤ k ≤ m let hF ;X2,...,Xk
be

bounded. Then

sup
t∈R

⏐⏐√n (Hn(t)−HF (t))
⏐⏐ = Op(1).

This Corollary is a straightforward consequence from Theorem 4.4 using Lemma 4.4 given at the
end of this section. The assumptions on the coe�cients al and βl of Lemma 4.4 are automatically
ful�lled by the assumptions of Theorem 4.4.

Proof.

Again, we use the Hoe�ding decomposition getting

sup
t∈R

⏐⏐√n (Hn(t)−HF (t))
⏐⏐

= sup
t∈R

⏐⏐⏐⏐⏐⏐√n

⎛⎝HF (t) +
m∑
j=1

(
m

j

)
1(
n
j

)Sjn,t −HF (t)

⎞⎠⏐⏐⏐⏐⏐⏐
= sup

t∈R

⏐⏐⏐⏐⏐ m√n

n∑
i=1

g1(Xi, t) +
√
n

(
m
2

)(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj , t)

+ . . .+
√
n

1(
n
m

) ∑
1≤i1<...<im≤n

gm(Xi1 , . . . , Xim , t)

⏐⏐⏐⏐⏐
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≤ sup
t∈R

⏐⏐⏐⏐⏐ m√n

n∑
i=1

g1(Xi, t)

⏐⏐⏐⏐⏐+ sup
t∈R

⏐⏐⏐⏐⏐⏐√n

(
m
2

)(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj , t)

⏐⏐⏐⏐⏐⏐
+ . . .+ sup

t∈R

⏐⏐⏐⏐⏐⏐√n
1(
n
m

) ∑
1≤i1<...<im≤n

gm(Xi1 , . . . , Xim , t)

⏐⏐⏐⏐⏐⏐ .
For the �rst term of the sum above we get, using Theorem 4.4 and the continuous mapping
theorem,

sup
t∈R

⏐⏐⏐⏐⏐ m√n

n∑
i=1

g1(Xi, t)

⏐⏐⏐⏐⏐→ ∥W∥∞.

Thus, we have ∥W∥∞ = Op(1).

For the remaining terms we want to apply Lemma 4.4. Therefore, the kernel of the U -process
g(x1, . . . , xm, t) = 1[h(x1,...,xm)≤t] has to satisfy the extended uniform variation condition. We use
the Lipschitz continuity of h for this.

sup
∥(x1,...,xm)−(X′

1,...,X′
m)∥≤ϵ

⏐⏐1[h(X′
1,...,X′

m)≤t] − 1[h(x1,...,xm)≤t]

⏐⏐
=

{
1 , if h(X ′

1, . . . , X
′
m) ∈ (t− Lϵ, t+ Lϵ)

0 , else

and so

E

(
sup

∥(x1,...,xm)−(X′
1,...,X′

m)∥≤ϵ

⏐⏐1[h(X′
1,...,X′

m)≤t] − 1[h(x1,...,xm)≤t]

⏐⏐)
≤ sup

t∈R

⏐⏐E (1[h(X′
1,...,X′

m)∈(t−Lϵ,t+Lϵ)]

)⏐⏐
≤ sup

t∈R

⏐⏐⏐⏐∫ t+Lϵ

t−Lϵ
hF (x)dx

⏐⏐⏐⏐ ≤ 2Lϵ(sup
x∈R

hF (x)) ≤ L′ϵ,

since hF is bounded and therefore g ful�ls the uniform variation condition.
Using the same arguments we can also show that g satis�es the extended uniform variation
condition. For arbitrary 2 ≤ k ≤ m and i1 < i2 < . . . < im it is

E

(
sup

|x1−Yi1
|≤ϵ

⏐⏐⏐1[h(Yi1
,Xi2

,...,Xik
,Yik+1

,...,Yim )≤t] − 1[h(x1,Xi2
,...,Xik

,Yik+1
,...,Yim )≤t]

⏐⏐⏐)

≤ sup
t∈R

⏐⏐⏐⏐∫ t+Lϵ

t−Lϵ
hF ;Xi2

,...,Xik
(x)dx

⏐⏐⏐⏐ ≤ Lϵ.

Applying Lemma 4.4 we get for 2 ≤ k ≤ n

sup
t∈R

⏐⏐⏐⏐⏐⏐√n

(
m
k

)(
n
k

) ∑
1≤i1,...,ik≤n

gk(Xi1 , . . . , Xik , t)

⏐⏐⏐⏐⏐⏐ ≤ √
nn−kop(n

k− 1
2
− 1

8
η−3
η+1 ) = op(n

− 1
8

η−3
η+1 ).

With Slutsky's Theorem the proof is then completed.

The used Lemma 4.4 is stated in the following section.
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4.2. U -processes

Preliminary results

The following lemma has already been proven by Wendler (2011a) in the case m = 2. We will
modify the main idea of the proof to obtain a similar result for the degenerated terms of higher
dimensional U -processes.

Lemma 4.4. Let h be a kernel satisfying the extended uniform variation condition, such that

the U -distribution function U is Lipschitz continuous. Moreover, let (Xn)n∈N be NED with

approximation constants al = O (l−c), where c = max {η + 3, 12}, on an absolutely regular process
(Zn)n∈Z with mixing coe�cients β(l) = O (l−η) for an η ≥ 8. Then, for all 2 ≤ k ≤ m and

τ = η−3
η+1 , we have

sup
t∈R

⏐⏐⏐⏐ ∑
1≤i1,...,ik≤n

gk(Xi1 , . . . , Xik , t)

⏐⏐⏐⏐ = op(n
k− 1

2
− τ

8 ) a.s..

The lemma can be proved analogously to Fischer (2013) respectively Fischer et al. (2016a) but
due to completeness and to show where the newly established results are needed we state the
proof here.

Proof.

We de�ne Qk
n(t) :=

∑
1≤i1,...,ik≤n gk(Xi1 , . . . , Xik , t).

For l ∈ N choose t1,l, . . . , ts−1,l with s = sl = O(2
5
8
l), such that

−∞ = t0,l < t1,l < . . . < ts−1,l < ts,l = ∞

and 2−
5
8
l ≤ |U(tr,l) − U(tr−1,l)| ≤ 2 · 2−

5
8
l for all r = 1, . . . , s. Since we required Lipschitz-

continuity of U it follows that 2−
5
8
l ≤ C|tr,l − tr−1,l|. Moreover,

E (h(Y1, . . . , Yk, Yk+1, . . . Ym, t)|Y1 = Xi1 , . . . , Yk = Xik) is non-decreasing in t for all 2 ≤ k ≤ m,
because h is non-decreasing in t.

The case k = 2 has been treated by Wendler (2011a) and is therefore omitted here.

From now on suppose that the statement of the lemma is valid for k − 1.
Together with the above consideration we have for every t ∈ [tr−1,l, tr,l] and 2l ≤ n < 2l+1

|Qk
n(t)|

=

⏐⏐⏐⏐⏐ ∑
1≤i1<...<ik≤n

(
E(h(Y1, . . . Yk, Yk+1, . . . , Ym, t)|Y1 = Xi1 , . . . , Yk = Xik)

− g1(Xi1 , t)− · · · − g1(Xik , t)− g2(Xi1 , Xi2 , t)

− · · · − g2(Xik−1
, Xik , t)− · · · − U(t)

)⏐⏐⏐⏐⏐
≤max

{⏐⏐⏐⏐ ∑
1≤i1<...<ik≤n

(
E(h(Xi1 , . . . , Xik , Yik+1

, . . . , Ym, tr,l)

− g1(Xi1 , tr,l)− . . .− g1(Xik , tr,l)− g2(Xi1 , Xi2 , tr,l)− · · · − g2(Xik−1
, Xik , tr,l)

− · · · − U(tr,l))
)⏐⏐⏐⏐,
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4. U -statistics, U -processes and U -quantiles⏐⏐⏐⏐ ∑
1≤i1<...<ik≤n

(
E(h(Xi1 , . . . , Xik , Yik+1

, . . . , Ym, tr−1,l))

− g1(Xi1 , tr−1,l)− . . .− g1(Xik , tr−1,l)− g2(Xi1 , Xi2 , tr−1,l)− · · · − g2(Xik−1
, Xik , tr−1,l)

− · · · − U(tr−1,l)
)⏐⏐⏐⏐}

+

(
n− 1

k − 1

)
max

{⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, t))

⏐⏐⏐⏐⏐ ,
⏐⏐⏐⏐⏐

n∑
i=1

(g1(Xi, t)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐
}

+

(
n− 2

k − 2

)
max

{⏐⏐⏐⏐⏐
n∑

i=1

(g2(Xi1 , Xi2 , tr,l)− g2(Xi1 , Xi2 , t))

⏐⏐⏐⏐⏐ ,⏐⏐⏐⏐⏐
n∑

i=1

(g2(Xi1 , Xi2 , t)− g2(Xi1 , Xi2 , tr−1,l))

⏐⏐⏐⏐⏐
}

+ · · ·

+

(
n

k

)
|U(tr,l)− U(tr−1,l)|

≤max{|Qk
n(tr,l)|, |Qk

n(tr−1,l)|}

+

(
n− 1

k − 1

) ⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐
+

(
n− 2

k − 2

) ⏐⏐⏐⏐⏐⏐
∑

1≤i1<i2≤n

(g2(Xi1 , Xi2 , tr,l)− g2(Xi1 , Xi2 , tr−1,l))

⏐⏐⏐⏐⏐⏐
+ · · ·

+

(
n− (k − 1)

k − (k − 1)

) ⏐⏐⏐⏐⏐⏐
∑

1≤i1<...<ik−1≤n

(
gk−1(Xi1 , . . . , Xik−1

, tr,l)− gk−1(Xi1 , . . . , Xik−1
, tr−1,l)

)⏐⏐⏐⏐⏐⏐
+

(
n

k

)
|U(tr,l)− U(tr−1,l)|.

Again we will treat the �rst, second and last of the terms separately.
For treating the �rst term we use that

E
(

max
n=2l,...,2l+1−1

max
r=0,...,s

|Qk
n(tr,l)|2

)

≤
s∑

r=0

E

⎛⎝( l∑
d=0

max
i=1,...,2l−d

|Qk
2l+i2d(tr,l)−Qk

2l+(i−1)2d(tr,l)|

)2
⎞⎠

≤
s∑

r=0

l
l∑

d=0

2l−d∑
i=1

E
((

Qk
2l+i2d(tr,l)−Qk

2l+(i−1)2d(tr,l)
)2)

≤
s∑

r=0

l

l∑
d=0

2l+1∑
i1,...,i2k=1

|E
(
gk(Xi1 , . . . , Xik , t)gk(Xik+1

, . . . , Xi2k , t)
)
|  

=O((2l+1)2k−2+γ), with Lemma 4.3
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4.2. U -processes

≤ sl2C2(2k−2)(l+1) ≤ C ′l22(2k−2+ 5
8
)l.

For the �rst inequality we used the so called chaining technique: via the triangular inequality
we split the term Qn into two di�erences Q2l+i2d −Q2l+(i−1)2d .
Now we apply the Chebychev inequality getting for every ϵ > 0

∞∑
l=1

P
(

max
n=2l,...,2l+1−1

max
r=0,...,s

|Qk
n(tr,l)| > ϵ2l(k−

1
2
− τ

8
)

)

≤
∞∑
l=1

1

ϵ22l(2k−1− τ
4
)
E
(

max
n=2l,...,2l+1−1

max
r=0,...,s

|Qk
n(tr,l)|2

)

≤
∞∑
l=1

1

ϵ22l(2k−1− τ
4
)
C ′l22(2k−2+ 5

8
)l ≤

∞∑
l=1

C ′ l
2

ϵ2
2

−3+2τ
8

l < ∞.

Then, with the Borel-Cantelli Lemma

P
(

max
n=2l,...,2l+1−1

max
r=0,...,s

|Q2
n(tr,l)| > ϵ2l(k−

1
2
− τ

8
) in�nitely often

)
= 0.

That is, max
r=0,...,s

|Qk
n(tr,l)| = op(n

k− 1
2
− τ

8 ).

Now we will treat the second term for which we want to apply Lemma 4.2.2 of Wendler (2011a).
For 2l ≤ n < 2l+1 it follows that

E

(
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

)4

≤ Cn2(log n)2max
{
E|g1(Xi, tr,l)− g1(Xi, tr−1,l)|, Cn− 3

4

}1+τ

≤ Cn2(log n)2(Cn− 3
4 )1+τ .

By use of the assumption |U(tr,l)− U(tr−1,l)| ≥ 2−
5
8
l ≥ C2−

3
4
l ≥ Cn− 3

4 , the last term simpli�es
to

Cn2(log n)2|U(tr,l)− U(tr−1,l)|1+τ .

All in all we get

E

(
max

n=2l,...,2l+1−1
max

r=1,...,s

(
n− 1

k − 1

) ⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐
)4

≤
s∑

r=1

E

(
max

n=2l,...,2l+1−1
n4(k−1)

⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐
)4

≤
s∑

r=1

max
n=2l,...,2l+1−1

n4(k−1)Cn2(log n)2|U(tr,l)− U(tr−1,l)|1+τ

≤ 24(k−1)(l+1)C(2l+1)2(log 2l+1)2s

(
max

r=1,...,s
|U(tr,l)− U(tr−1,l)|

)1+τ

≤ C ′24l(k−1)22l(log 2l+1)2s
(
2−

5
8
l
)1+τ
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4. U -statistics, U -processes and U -quantiles

≤ C ′′(l + 1)22(4k−2− 5
8
τ)l.

Thereby we used Corollary 1 of Moricz (1983) and the assumption s = O(2
5
8
l). With the

generalized Chebychev inequality it is

∞∑
l=0

P

(
max

n=2l,...,2l+1−1
max

r=1,...,s

(
n− 1

k − 1

) ⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐ > ϵ2(k−
1
2
− 1

8
τ)l

)

≤
∞∑
l=0

1

ϵ42l(4k−2− 1
2
τ)
E

(
max

r=1,...,s

(
n− 1

k − 1

) ⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐
)4

≤
∞∑
l=0

1

ϵ42l(4k−2− 1
2
τ)
C(l + 1)22(4k−2− 5

8
τ)l =

∞∑
l=0

Cl2

ϵ42
1
8
τ
< ∞.

Analogously to the above calculation we apply the Borel-Cantelli Lemma again getting

(
n− 1

k − 1

) ⏐⏐⏐⏐⏐
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

⏐⏐⏐⏐⏐ = op(n
k− 1

2
− 1

8
τ ).

For the last term, using the assumptions and the fact that τ < 1, we have

max
r=0,...,s

(
n

k

)
|U(tr,l)− U(tr−1,l)| ≤ Cnk2−

5
8
l ≤ Cnk− 5

8 < Cnk− 4
8
− 1

8
τ = op(n

k− 4
8
− 1

8
τ ).

Now the terms including g2, . . . , gk−1 remain. For these we assumed for 2 ≤ j ≤ k − 1

sup
t∈R

⏐⏐⏐⏐ ∑
1≤i1,...,ij≤n

gj(Xi1 , . . . , Xij , t)

⏐⏐⏐⏐ = op(n
j− 1

2
− τ

8 )

and consequently(
n− j

k − j

)
max

r=1,...,s
|

∑
1≤i1<...<ij≤n

(
gj(Xi1 , . . . , Xij , tr,l)− gj(Xi1 , . . . , Xij , tr−1,l)

)
|

≤ nk−j

⎛⎝ max
r=1,...,s

|
∑

1≤i1<...<ij≤n

gj(Xi1 , . . . , Xij , tr,l)|+ max
r=1,...,s

|
∑

1≤i1<...<ij≤n

gj(Xi1 , . . . , Xij , tr−1,l)|

⎞⎠
≤ nk−jop(n

j− 1
2
− 1

8
τ ) = op(n

k− 1
2
− 1

8
τ ).

So we could show for arbitrary k for all terms that they are of order op(n
k− 1

2
− 1

8
τ ). Using

mathematical induction the proof is completed.

4.3. U-quantiles

U -quantiles ξp with a given kernel h are de�ned as quantiles of the sample (h(Xi, Xj))1≤i,j≤n,
that is ξp = inf{t|HF (t) ≥ p}. The empirical or sample version of this is then given by
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4.3. U -quantiles

ξ̂p = inf{t|Hn(t) ≥ p}. They are useful for expressing certain robust estimators based on quan-
tiles of functions such as the well-known Hodges-Lehmann estimator. Among others, Ser�ing
(1984), Choudhury and Ser�ing (1988) or Arcones (1996) study U -quantiles and their asymptotic
properties. For strong mixing data Wendler (2011a) gives results about asymptotic normality
and the Law of the Iterated Logarithm for bivariate kernels. For multivariate kernels and strong
mixing data Fischer (2013) respectively Fischer et al. (2016a) study U -quantiles.

An often used technique to handle U -quantiles and their asymptotic is the Bahadur-representation
established �rst by Bahadur (1966) for standard distribution functions. A generalisation to ker-
nels is given by

ξ̂p = ξp +
HF (ξp)−Hn(ξp)

hF (ξp)
+Rn.

What remains unknown and is the point of interest in many studies is the behaviour of the
remaining term Rn. For independent random variables Ghosh (1971) proves the rate of conver-
gence. For strong mixing sequences and bivariate kernels Wendler (2011b) gives the asymptotic
behaviour and for short-range dependent linear processes Wu (2005) states results. For strong
mixing sequences of multivariate kernels Fischer (2013) respectively Fischer et al. (2016a) prove
the rate of convergence.
In the case of near epoch dependence the following lemma is needed for the �nal proof of the
convergence of the remaining term of the Bahadur-representation. It is a variance inequality
which gives us the order of boundedness. Whereas for the strong mixing case the following result
follows directly from a result in Doukhan et al. (2010) we need to prove it for the NED case.

Lemma 4.5. Let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely reg-

ular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N. Moreover, let be
∑n

l=1 al < ∞ and∑n
l=1 β(l) < ∞. If X1 is bounded and EXi = 0, then for a constant C it holds that

E

(
n∑

i=1

Xi

)2

≤ C · n.

Proof.

Because of the stationarity of the Xi we can write

E

(
n∑

i=1

Xi

)2

≤
∑

1≤i,k≤n

i+k≤n

|E (XiXi+k)| (4.4)

≤
n∑

i=1

n−i∑
k=i+1

(
4 ∥X1∥∞ a[ k3 ]

+ 2 ∥X1∥2∞ β

([
k

3

]))

≤ n

n∑
k=1

(
4 ∥X1∥∞ a[ k3 ]

+ 2 ∥X1∥2∞ β

([
k

3

]))
≤ C · n,

where we used Lemma 2.18 of Borovkova et al. (2001) in line (4.4).

Using this we can proof the following result for near epoch dependent processes and multivariate
kernels of arbitrary dimension.
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4. U -statistics, U -processes and U -quantiles

Theorem 4.5. Let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely

regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N for which holds that β(l) = O
(
l−δ
)

and al = O
(
l−δ−2

)
for a δ > 1. Moreover, let h(x1, . . . , xm) be a Lipschitz-continuous kernel

with distribution function HF and related density 0 < hF < ∞ and for all 2 ≤ k ≤ m let

hF ;X2,...,Xk
be bounded. Then we have for the Bahadur representation with ξ̂p = H−1

n (p)

ξ̂p = ξp +
HF (ξp)−Hn(ξp)

hF (ξp)
+ op

(
1√
n

)
.

Proof.

For t ∈ R, let us de�ne ξnt = ξp + tn− 1
2 , Zn(t) =

√
nHF (ξnt)−Hn(ξnt)

hF (ξp)
and

Vn(t) =
√
n
HF (ξnt)−Hn(ξ̂p)

hF (ξp)
.

We want to use that |p−Hn(ξ̂p)| ≤ 1
n to obtain

Vn(t) =
√
n
HF (ξnt)− p+ p−Hn(ξ̂p)

hF (ξp)

=
√
n
HF (ξp + tn− 1

2 )− p

hF (ξp)  
=:V ′

n(t)

+
√
n

=O(n−1)  
p−Hn(ξ̂p)

hF (ξp)  
=O(n− 1

2 )

−→ t.

The next step is to show that Zn(t)− Zn(0)
P−→ 0.

It is

Var(Zn(t)− Zn(0))

=
n

h2F (ξp)
Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

1[
h(Xi1

,...,Xim )≤ξp+tn− 1
2

] − 1[h(Xi1
,...,Xim )≤ξp]

⎞⎠ .

To �nd bounds for the right hand side, we de�ne Un and U ′
n by

Un =
1(
n
m

) ∑
1≤i1<...<im≤n

1[
h(Xi1

,...,Xim )≤ξp+tn− 1
2

]

= θ +
m∑
j=1

(
m

j

)
1(
n
j

) ∑
1≤i1<...<ij≤n

gj(Xi1 , . . . , Xik , ξp + tn− 1
2 )

U ′
n =

1(
n
m

) ∑
1≤i1<...<im≤n

1[h(Xi1
,...,Xim )≤ξp]

= θ′ +
m∑
j=1

(
m

j

)
1(
n
j

) ∑
1≤i1<...<ij≤n

gj(Xi1 , . . . , Xik , ξp).
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4.3. U -quantiles

Therefore,√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

1[
ξp<h(Xi1

,...,Xim )≤ξp+tn− 1
2

]
⎞⎠

≤
√
Var(θ)  

=0

+
√
Var(θ′)  

=0

+

√Var

(
m

n

n∑
i=1

(g1(Xi, ξp + tn− 1
2 )− g1(Xi, ξp))

)

+

√Var

⎛⎝(m2 )(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj , ξp + tn− 1
2 )

⎞⎠+

√Var

⎛⎝(m2 )(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj , ξp)

⎞⎠

+ . . .+

√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

gm(Xi1 , . . . , Xim , ξp + tn− 1
2 )

⎞⎠

+

√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

gm(Xi1 , . . . , Xim , ξp)

⎞⎠.

We have already shown in Theorem 4.1, for all 2 ≤ k ≤ m, that

Var

⎛⎝(mk )(
n
k

) ∑
1≤i1<...<ik≤n

gk(Xi1 , . . . , Xik , ξp + tn− 1
2 )

⎞⎠ = O(n−2+γ)

holds for a γ < 1, if the kernel is bounded and satis�es the extended variation condition. This
can be shown for the U -process kernels, too. Analogous to the proof of Corollary 4.1 we can use
that g(x1, . . . , xm, ξp + tn− 1

2 ) = 1[
h(xi1

,...,xim )≤ξp+tn− 1
2

] and g(x1, . . . , xm, ξp) = 1[h(xi1
,...,xim )≤ξp]

satisfy the extended variation condition.
To replace the Lemma of Doukhan et al. (2010) in the strong mixing case we apply for the NED
case Lemma 4.5 on g1(Xi, ξp + tn− 1

2 )− g1(Xi, ξp) and have

E
⏐⏐⏐ n∑
i=1

(g1(Xi, ξp + tn− 1
2 )− g1(Xi, ξp))

⏐⏐⏐2 ≤ Cn.

This is possible since g1 and f(x, y) = x − y ful�l the variation condition and are bounded (f
when using bounded arguments). Additionally,

∑∞
l=1 β(l) < ∞ and

∑∞
l=1 a

′
l < ∞ because of the

assumptions.
This helps us to obtain√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

1[
ξp<h(Xi1

,...,Xim )≤ξp+tn− 1
2

]
⎞⎠

≤
√

m2

n2
Cn+ 2(m− 1)

√
O(n−2+γ) ≤ Cm2

√
n

+ 2(m− 1)O(n−1+γ/2),
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where the constant C only depends on
g1(Xi, ξp + tn− 1

2 )− g1(Xi, ξp)

3
.

Then,

Var(Zn(t)− Zn(0)) ≤
n

h2F (ξp)

(
Cm2

√
n

+ 2(m− 1)O(n−1+γ/2)

)2

≤ m2

h2F (ξp)
C2 +

4m2(m− 1)

h2F (ξp)
C
√
nO(n−1+γ/2) + 4(m− 1)2O(n−2+γ)

n

h2F (ξp)

≤ m4

h2F (ξp)
C2 +

4m2(m− 1)

h2F (ξp)
CO(n− 1

2
+γ/2) +

4(m− 1)2

h2F (ξp)
O(n−1+γ).

Since |g1(Xi, ξp + tn− 1
2 )− g1(Xi, ξp)| ≤ 1 for all Xi and

|g1(Xi)− g′1(Xi)|
P−→ 0,

the constant C converges to zero in probability and since γ < 1 we have that

Var(Zn(t)− Zn(0))
P−→ 0.

Applying the Chebychev inequality we then get Zn(t)− Zn(0)
P−→ 0 .

Altogether we have for t ∈ R and every ϵ > 0

P(
√
n(ξ̂p − ξp) ≤ t, Zn(0) ≥ t+ ϵ) = P(Zn(t) ≤ Vn(t), Zn(0) ≥ t+ ϵ)

≤ P
(
|Zn(t)− Zn(0)| ≥

ϵ

2

)
+ P

(
|Vn(t)− t| ≥ ϵ

2

)
−→ 0

and analogously

P(
√
n(ξ̂p − ξp) ≥ t, Zn(0) ≤ t) −→ 0.

Using Lemma 1 of Ghosh (1971) the proof is completed.
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Generalized L-statistics (GL-statistics) form a class of statistics that uni�es a lot of commonly
used other statistics, for example U -statistics, L-statistics and even statistics that cannot be
classi�ed in a certain class of statistics, for example the Hodges-Lehmann estimator. They have
�rst been proposed by Ser�ing (1984), who proved a Central Limit Theorem under independence.
Additionally, Fischer et al. (2016a) have shown an analogous result under strong mixing. In our
context they are useful since a lot of robust estimator can be expressed as GL-statistic, detailed
examples are given later on.
Like U -statistics every GL-statistic includes a kernel h(x1, . . . , xm), that is a measurable, sym-
metric and real-valued function.
Using the same notation as before we now can de�ne aGL-statistic as a functional of the empirical
distribution function of the kernel.

De�nition 5.1. A generalized L-statistic with kernel h is given by

T (Hn) =

∫ 1

0
H−1

n (t)J(t)dt+
d∑

i=1

aiH
−1
n (pi)

=

n(m)∑
i=1

⎡⎣∫ i
n(m)

(i−1)
n(m)

J(t)dt

⎤⎦H−1
n

(
i

n(m)

)
+

d∑
i=1

aiH
−1
n (pi),

with a function J(·) and weights pi and ai,i = 1, . . . , d, where n(m) = n(n− 1) · . . . · (n−m+ 1)
and

Hn(x) =
1(
n
m

) ∑
1≤i1<...<im≤n

1[h(Xi1
,...,Xim)≤x]

as before. It is an estimator for T (HF ).

A GL-statistics is determined by the choice of the function J(·) and the weights pi and ai with
i = 1, . . . , d. J represents a smooth or continuous weighting in the �rst part in the de�nition
above, whereas the coe�cients ai determine a discrete weighting. According to which kind of
statistic or estimator should be expressed as a GL-statistic, a continuous or a discrete or even
both weightings are used.
Compared to the representation of an L-statistic

T (Fn) =

∫ 1

0
F−1
n (t)J(t)dt+

d∑
i=1

aiF
−1
n (pi) (5.1)

we can see that the generalisation results from the changing of the empirical distribution function
Fn to the empirical kernel distribution function Hn. This is due to the fact that we consider now
h(X1, . . . , Xm) instead of X1, . . . , Xm.
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Remark 5.1. The general de�nition of an L-statistic is given by

T =
n∑

i=1

ci,nF
−1
n (i/n)

with ci,n ∈ R but among many others Ser�ing (1984) pointed out that nearly all relevant L-
statistics can be expressed by eq. (5.1).

Let us now give some examples of well known estimators that can be expressed as GL-statistic.

5.1. Examples

In this section we want to show that some well known estimators can be expressed as GL-statistic.
Here, the focus is laid on robust estimators, mainly with multivariate kernels.

Example 5.1. A U -statistic can be written as a GL-statistic by setting d = 0 and J = 1. Of
course, not every U -statistic is robust but many robust estimators are included in this class.

Example 5.2. A well known L-statistic is the α-trimmed mean

X̄(α) =
1

n− 2 [nα]

n−[nα]∑
i=[nα]+1

X(i),

where X(i) is the i-th value of the order statistic X(1) ≤ X(2) ≤ . . . ≤ X(n). To rewrite it as a
GL-statistic we choose J(t) = 1

1−2α1[α<t<1−α]. As kernel we set h(x) = x and let the sum vanish
by the choice d = 0.

Example 5.3. The generalized Hodges-Lehmann estimator

median

(
1

m
(Xi1 + . . .+Xim) , 1 ≤ i1, . . . , im ≤ n

)
is neither a U -statistic nor an L-statistic, but it is possible to formulate it as a GL-statistic
choosing the kernel h(xi1 , . . . , xim) =

1
m(xi1 + . . . + xim) and setting J = 0, d = 1, and a1 = 1.

We get the median of the kernel by using the representation via the quantile function H−1
n (12).

Consequently, p1 = 1
2 . The generalized Hodges-Lehmann estimator then is the GL-statistic

T (Hn) = H−1
n

(
1

2

)
.

Example 5.4. A robust measure for the variability is Gini's Mean Di�erence. In contrast to
the mean deviation this estimator is not only robust but also almost as e�cient as the classical
measure for variability, the standard deviation (Gerstenberger and Vogel (2015)). It is given by

Gn =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |
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and can be written as a GL-statistic by choosing the kernel h(xi, xj) = |xi − xj | (the kernel
dimension is then of course m = 2) and a constant continuous function J(t) = 1. The discrete
part of the GL-statistic vanishes since d = 0. When considering the expression Gini's Mean
Di�erence using order statistics (see cf. Nair (1936)), that is

Gn =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj | =
2

n(n− 1)

∑
1≤i<j≤n

(
X(j) −X(i)

)
=

2

n(n− 1)

(
2

n∑
i=1

iX(i) − (n+ 1)
n∑

i=1

X(i)

)
=

2

n(n− 1)

n∑
i=1

(2i− n− 1)X(i)

with X(i) being the i-th order statistic of the sample X1, . . . , Xn, the kernel is chosen as identity
function and J(t) = 4n

n−1 t−
2n
n−1 .

The following two examples of scale estimators can be found in Rousseeuw and Croux (1992)
and can all be expressed as a GL-statistic.

Example 5.5. An estimator for the scale which is robust with an asymptotic breakdown point
of 50% is given by

Q = medi<j<k{min(|Xi −Xj |, |Xi −Xk|, |Xj −Xk|)}.

It can be expressed as a GL-statistic by taking the three-dimensional kernel
h(x1, x2, x3) = min(|x1 − x2|, |x1 − x3|, |x2 − x3|) and the parameters J = 0, d = 1, a1 = 1 and
p1 = 1/2. If this estimator is generalised to subsamples of order greater than three and other
quantiles

Qn = {min(|Xil −Xik |, 1 ≤ l < k ≤ m), 1 ≤ i1 < . . . < im ≤ n}([α(n
m)])

,

where ([α
(
n
m

)
]) denotes the empirical α-quantile (α ∈ (0, 1)), we can choose for arbitrary size m

of the subsample h(x1, . . . , xm) = min(|xj − xi|, 1 ≤ i < j ≤ m) with J, d and a1 as before but

p1 =
[α(n

m)]
(n
m)

.

Example 5.6. Another location-free scale estimator is given by

Cα
n = cα|X(i+[αn]+1) −X(i)|([n/2]−[αn]),

α ∈ (0, 0.5), which takes the [n/2] − [αn] order statistic of the di�erence of the �rst and last
order statistic of all (sorted) subsamples of length [αn]+2. The constant cα makes the estimator
Fisher-consistent under normality. By the choice of a kernel h of dimension m = [αn] + 2 with
h(x1, . . . , xm) = max(x1, . . . , xm)−min(x1, . . . , xm) and J = 0, d = 1, a1 = cα and p1 =

1

(n
m)

the

representation by a GL-statistic can be obtained. A well-known special case of this estimator is
the Least Median of Squares scale estimator

LMSn = 0.7413min
i

|X(i+[n/2]) −X(i)|,

with [αn] = [n/2]− 1 and cα = 1
2Φ−1(0.75)

= 0.7413.

We want to emphasize that both estimators of Rousseeuw and Croux (1992) use multivariate
kernels, that are kernels with dimension larger than 2. In these cases results for bivariate GL-
statistics would not be su�cient.
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5. GL-statistics

5.2. A General Central Limit Theorem

A main interest when considering GL-statistics or in general classes of statistics is their asymp-
totic behaviour. We have to know the limit distribution to establish con�dence intervals or, when
considering test statistics, the case of rejection of the hypothesis.
Ser�ing (1984) already has shown one of the key tools for proving a Central Limit Theorem for
GL-statistics. The error term T (Hn)− T (HF ) normalized with

√
n can be approximated by the

so called �rst-order Gâteaux-di�erential (cf. Ser�ing (1980))

d1T (HF ;Hn −HF ) = −
∫ ∞

−∞
(Hn(y)−HF (y)) J(HF (y))dy +

d∑
i=1

ai
pi −Hn(H

−1
F (pi))

hF (H
−1
F (pi))

.

In general the Gâteaux-di�erential of order k is de�ned as

dkT (F ;G− F ) =
dk

dλk
T (F + λ(G− F ))

⏐⏐⏐⏐
λ=0

and is a generalisation of the classical di�erential to in�nite dimensional spaces.

Remark 5.2. Closely related to the Gâteaux-di�erential is the in�uence curve. Remember that
the in�uence curve is de�ned as

IC(x;F, T ) =
d

dλ
T (F + λ(δx − F ))

⏐⏐⏐⏐
λ=0

,

where δx is the distribution function corresponding to a unit point mass at x (see Section 2).
That is, we simply replace G by δx in the de�nition of the Gâteaux-di�erential. For functionals
of the form

T (F ) =

∫ 1

0
F−1(t)J(t)dt

Ser�ing (1984) has shown that the in�uence curve simpli�es to

IC(x;F, T ) = −
∫ ∞

−∞

(
1[x≤y] − F (y)

)
J(F (y))dy.

We will see later on that also the asymptotic variance of GL-statistics can be expressed in terms
of the in�uence curve.

To show that the approximation above is valid, Ser�ing (1984) used two main results. These are
important, as they make the proof of the Central Limit Theorem possible. Therefore, we want
to show in short steps how the approximation of Ser�ing (1984) works.
First, split the term T (HF ) into its continuous and its discrete part,

T (HF ) =

∫ 1

0
H−1

F (t)J(t)dt+
d∑

i=1

aiH
−1
F (pi) = T1(HF ) + T2(HF )

and analogously for T (Hn) = T1(Hn) + T2(Hn). Moreover, we de�ne ∆i,n = Ti(Hn)− Ti(HF )−
d1Ti(HF ;Hn −HF ) with i = 1, 2 and K(t) =

∫ t
0 J(y)dy.
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Then

∆1,n = T1(Hn)− T1(HF )− d1T1(HF ;Hn −HF )

= −
∫ ∞

−∞

(∫ Hn(y)
0 J(t)dt−

∫ HF (y)
0 J(t)dt

Hn(y)−HF (y)
− J(HF (y))

)
  

=:WHn,HF
(y)

(Hn(y)−HF (y)) dy

=

{
−
∫∞
−∞WHn,HF

(y) (Hn(y)−HF (y)) dy , falls Hn ̸= HF

0 , falls Hn = HF ,

using Lemma 12 of Boos (1979). Now there are two possible ways of assessing ∆1,n, leading to
two di�erent assumptions in the Central Limit Theorem. Due to completeness we want to show
both possibilities though only the �rst one is used in the proof.
Proving either

|∆1,n| ≤ ∥WHn,HF
∥L1 · ∥Hn −HF ∥∞

or

|∆1,n| ≤ ∥WHn,HF
∥∞ · ∥Hn −HF ∥L1 .

and

(i) for WHn,HF
(y) =

(∫Hn(y)
0 J(t)dt−

∫HF (y)
0 J(t)dt

Hn(y)−HF (y) − J(HF (y))

)
it holds that

∥WHn,HF
∥L1 = op(1) and additionally ∥Hn −HF ∥∞ = Op(n

− 1
2 )

or

(i)' ∥WHn,HF
∥∞ = op(1) and ∥Hn −HF ∥L1 = Op(n

− 1
2 ),

respectively, we obtain

√
n∆1,n

P→ 0.

For the second term ∆2,n we can use the assessment

∆2,n = T2(Hn)− T2(HF )− d1T2(HF ;Hn −HF )

=

d∑
i=1

ai

(
ξ̂pi,n − ξpi −

pi −Hn(ξpi)

hF (ξpi)

)
,

where ξpi is the generalized pi-quantile and ξ̂pi,n is the empirical pi-quantile.
Ser�ing (1984) now uses the remaining term Rpi,n of the Bahadur-representation of a quantile
ξ̂pi,n (Bahadur (1966))

ξ̂pi,n = ξpi +
pi −Hn(ξpi)

hf (ξpi)
+Rpi,n,

if F ′(ξpi) = f(ξpi) > 0, with Rpi,n = ξ̂pi,n − ξpi +
pi−Hn(ξpi )

hf (ξpi )
to show the convergence of ∆2,n. If

we can assume that

(ii)
√
nRpi,n

P→ 0 for all i = 1, . . . , d
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and using the continuous mapping theorem we get

√
n∆2,n

P→ 0.

Therefore,

√
n(T (Hn)− T (HF )− d1T1(HF ;Hn −HF ))

P−→ 0,

if (ii) and (i) or (i)' are valid.

Now the reason for this approximation has been that the Gâteaux-di�erential d1T (HF ;Hn−HF )
has some desirable properties. It can be written as U -statistic with kernel

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

+

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

.

Hence, if we can establish a Central Limit Theorem for U -statistics, we automatically have the
convergence of d1T (HF ;Hn −HF ).

All these considerations made for (T (Hn) − T (HF )) can be summarized in the Central Limit
Theorem. We want to emphasize that up to now no assumptions on the dependence structure
have been made. The approximations and convergences above can be proved without such
assumptions and only in the proof of (i), (ii) or the Central Limit Theorem for U -statistics
dependency will play a crucial role. This makes the following formulation of a general Central
Limit Theorem possible.

Theorem 5.1. Let X1, . . . , Xn be random variables with distribution function F and let

h(x1, . . . , xm) be a kernel with distribution function HF and related density hF > 0. Moreover, let

Hn be the empirical distribution function of h and T (Hn) a GL-Statistik with kernel h, bounded
function J and weights pi, ai, i = 1, . . . , d.
If the following assumptions (i) or (i)', (ii) and (iii) are valid with

(i) For WHn,HF
(y) =

(∫Hn(y)
0 J(t)dt−

∫HF (y)
0 J(t)dt

Hn(y)−HF (y) − J(HF (y))

)
it holds that

∥WHn,HF
∥L1 = op(1) and ∥Hn −HF ∥∞ = Op(n

− 1
2 ).

or

(i)' It is ∥WHn,HF
∥∞ = op(1) and ∥Hn −HF ∥L1 = Op(n

− 1
2 ).

(ii) For the remaining term of the generalized Bahadur-representation of an empirical quantile

Rpi,n = ξ̂pi,n − ξpi +
pi−Hn(ξpi )

hf (ξpi )
it holds that

Rpi,n = op(n
− 1

2 ).

(iii) For a U -statistic with kernel

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy
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+

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

it holds that

√
n(Un(A)− θ)

D→ N(0, σ2),

where θ is as in De�nition 4.2, then we have that

√
n (T (Hn)− T (HF ))

D→ N(0, σ2).

Remark 5.3. Please notice that we do not specify the structure of the asymptotic variance σ.
It depends much on the dependence structure of the random variables and is determined by the
Central Limit Theorem of U -statistics. A speci�c notation can be found in the Central Limit
Theorems in Section 5.3.

Now we concrete our assumptions on the dependence structure of the random variables.

5.3. Limit Theorems for GL-Statistics under Dependence

5.3.1. Properties of the Kernel A

The following lemma states three of the most fundamental properties of the kernel A in Theorem
5.1, which determines the asymptotic behaviour of a GL-statistic. The �rst two properties have
already been shown by Fischer (2013) respectively Fischer et al. (2016a) and are only mentioned
due to completeness.

Lemma 5.1. Let X1, . . . , Xn be a sequence of random variables with distribution function F
and let h(x1, . . . , xm) be a Lipschitz-continuous kernel with distribution function HF and related

density 0 < hF < ∞ and for all 2 ≤ k ≤ m and all i1 < i2 < . . . < im let hF ;Xi2
,...,Xik

be

bounded. Moreover, let J be a function with J(t) = 0 for t /∈ [α, β] , 0 < α < β < 1, and in

[α, β] let J be bounded and a.e. continuous concerning the Lebesgue-measure and a.e. continuous

concerning H−1
F . Then the kernel A related to the GL-statistic T (Hn) with

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

+
d∑

i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

has the following three properties

(i) A is bounded

(ii) A ful�ls the extended variation condition

(iii) A ful�ls the L2-variation condition.

Proof.

As mentioned above the �rst two properties have been shown by Fischer et al. (2016a) and are
therefore omitted.
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For property (iii) we use that√E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

|A(x1, . . . , xm)−A(X ′
1, . . . , X

′
m)|

)2

=

(
E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)|≤ϵ

⏐⏐⏐⏐⏐−
∫ ∞

−∞
(1[h(x1,...,xm)≤y] −HF (y))J(HF (y))dy

+

∫ ∞

−∞
(1[h(X′

1,...,X
′
m)≤y] −HF (y))J(HF (y))dy

+
d∑

i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

−
d∑

i=1

ai
pi − 1[h(X′

1,...,X
′
m)≤H−1

F (pi)]

hF (H
−1
F (pi))

⏐⏐⏐⏐⏐
)2) 1

2

≤

√E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

⏐⏐⏐⏐⏐
∫ ∞

−∞
(1[h(x1,...,xm)≤y] − 1[h(X′

1,...,X
′
m)≤y])J(HF (y))dy

⏐⏐⏐⏐⏐
)2

+

√E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

⏐⏐⏐⏐⏐
d∑

i=1

ai
1[h(x1,...,xm)≤H−1

F (pi)]
− 1[h(X′

1,...,X
′
m)≤H−1

F (pi)]

hF (H
−1
F (pi))

⏐⏐⏐⏐⏐
)2

.

These terms can now be treated separately and analogous to the proof of the extended variation
condition in Fischer et al. (2016a). For the �rst term we obtain

E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

⏐⏐⏐⏐⏐
∫ ∞

−∞
(1[h(x1,...,xm)≤y] − 1[h(X′

1,...,X
′
m)≤y])J(HF (y))dy

⏐⏐⏐⏐⏐
)2

≤ E

(
sup
t∈R

⏐⏐⏐1[h(X′
1,...,X

′
m)∈(t−L̃ϵ,t+L̃ϵ)]

⏐⏐⏐ ⏐⏐⏐⏐⏐
∫ ∞

−∞
J(HF (y))dy

⏐⏐⏐⏐⏐
)2

≤ E
(
sup
t∈R

⏐⏐⏐1[h(X′
1,...,X

′
m)∈(t−L̃ϵ,t+L̃ϵ)]

⏐⏐⏐C)2

≤ C sup
t∈R

⏐⏐⏐E(1[h(X′
1,...,X

′
m)∈(t−L̃ϵ,t+L̃ϵ)])

2
⏐⏐⏐

≤ C sup
t∈R

|P(h(X ′
1, . . . , X

′
m) ∈ (t− L̃ϵ, t+ L̃ϵ))|

≤ C

(
sup
x∈R

hF (x)

)
2L̃ϵ ≤ Lϵ

using the boundedness of |
∫∞
−∞ J(HF (y))dy| and hF . The second term is treated analogously

and omitted here.
Therefore,√E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

|A(x1, . . . , xm)−A(X ′
1, . . . , X

′
m)|

)2

≤ 2
√
Lϵ

and

E

(
sup

∥(x1,...,xm)−(X′
1,...,X

′
m)∥≤ϵ

|A(x1, . . . , xm)−A(X ′
1, . . . , X

′
m)|

)2

≤ L′ϵ

58



5.3. Limit Theorems for GL-Statistics under Dependence

Now we are able to formulate the Central Limit Theorem.

5.3.2. Central Limit Theorem

Let us now specify the result of Theorem 5.1 for near epoch dependent random variables on
absolutely regular processes. Under independence this result has been proved by Ser�ing (1984),
some of the lemmata can also be found in Choudhury and Ser�ing (1988). Under strong mixing
an analogous result can be found in Fischer et al. (2016a). We want to emphasize that the result
is explicitly stated for multivariate kernels. Results for bivariate GL-statistics under strong
mixing and near epoch dependence can also be found in Wendler (2012).

Theorem 5.2. Let h(x1, . . . , xm) be a Lipschitz-continuous kernel with distribution function HF

and related density 0 < hF < ∞ and for all 2 ≤ k ≤ m and all i1 < i2 < . . . < im let hF ;Xi2
,...,Xik

be bounded. Moreover, let J be a function with J(t) = 0 for t /∈ [α, β] , 0 < α < β < 1, and in

[α, β] let J be bounded and a.e. continuous concerning the Lebesgue-measure and a.e. continuous

concerning H−1
F . Additionally, let X1, . . . , Xn be NED with approximation constants (al)l∈N on

an absolutely regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N with
∑∞

l=1 l
2β(l)

γ
2+γ < ∞

for a 0 < γ < 1. Moreover, let be
∑∞

l=1 l
2a

γ
2+2γ

l < ∞. Then for GL-statistics T (Hn) it holds that

√
n (T (Hn)− T (HF ))

D−→ N(0, σ2
GL),

where

σ2
GL =m2

(
Var (E (A(Y1, . . . , Ym)|Y1 = X1))

+ 2

∞∑
j=1

Cov (E (A(Y1, . . . , Ym)|Y1 = X1) ,E (A(Y1, . . . , Ym)|Y1 = Xj+1))
)

with independent copies Y1, . . . , Ym of X1 and

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

+

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

.

Remark 5.4. A key assumption to prove this theorem is the boundedness of J on [α, β] and
that the function vanishes outside of the interval. This makes it possible to prove assumption
(i) given in Section 5.2. In this work we will limit the proofs to this case, since it is the relevant
one in robust statistics, as we will prove in Section 5.4. Nevertheless, proving assumption (i)'
instead of (i) and using the respective Central Limit Theorem for U -statistics with unbounded
kernel (Theorem 4.2) makes it possible to extend the valid functions of J to unlimited functions
continuous on [0, 1] (see Ser�ing (1984)).

As in the case of U -statistics, to use this theorem for example for con�dence intervals in applica-
tions like hydrology, the problem arises how to handle the asymptotic variance σ2

GL. Normally,
it is unknown due to the unknown conditional expected values and the unknown distribution.
Therefore, it is necessary to �nd an estimator for σ2

GL. The following corollary closes this gap.
It is stated for NED but it is also possible to show an analogous result under strong mixing such
that it is applicable for the theorem of Fischer et al. (2016a).
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5. GL-statistics

Corollary 5.1. Let h : Rm → R be a Lipschitz-continuous kernel.

Moreover, let (Xn)n∈N be NED with approximation constants (al)l∈N on an absolutely regular

process (Zn)n∈Z with mixing coe�cients (β(l))l∈N and let a δ > 11 exist, such that∑∞
l=1 lβ

2/(2+δ)(l) < ∞ and al = O
(
l−δ−3

)
. The weight function κ and the bandwidth bn should

ful�l Assumption 4.1. Then it holds for the long-run variance estimator σ̂2
GL that

σ̂2
GL

P−→ σ2
GL for n → ∞

where

σ̂2
GL =

n−1∑
r=−(n−1)

κ

(
|r|
bn

)
1

n

n−|r|∑
i=1

Â1(Xi)Â1(Xi+|r|),

with

Â1(x) =
1

nm−1

∑
1≤i1<...<im−1≤n

A(x,Xi1 , . . . , Xim−1)−
1

nm

∑
1≤i1<...<im≤n

A(Xi1 , . . . , Xim)

being the estimator for the �rst term of the Hoe�ding-decomposition of A.

The proofs are given in the following section.

5.3.3. Proofs

Proof of Theorem 5.2.

Because of the considerations in Section 5.2 and the resulting general limit theorem for GL-
Statistics (Theorem 5.1) it remains to show the three conditions in the special case of near epoch
dependent data. That is:

(i) For WHn,HF
(y) =

(∫Hn(y)
0 J(t)dt−

∫HF (y)
0 J(t)dt

Hn(y)−HF (y) − J(HF (y))

)
holds

∥WHn,HF
∥L1 = op(1) and it is ∥Hn −HF ∥∞ = Op(n

− 1
2 ).

(ii) For the remainder term Rpi,n = ξ̂pi,n− ξpi +
pi−Hn(ξpi )

hf (ξpi )
of the Bahadur representation of an

empirical quantile it holds that

Rpi,n = op(n
− 1

2 ).

(iii) For a U -statistic with kernel

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

+
d∑

i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

we have

√
n(Un(A)− θ)

D−→ N(0, σ2).
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5.4. Robustness of GL-statistics

As in the case of strong mixing condition (i) is ful�lled using Lemma 8.2.4.A of Ser�ing (1980)
and Corollary 4.1. Condition (ii) can be proved by Theorem 4.5.

It remains to show that condition (iii) is satis�ed. For this we apply Theorem 4.1. Again, the
conditions on the coe�cients al and β(l) are ful�lled by the assumptions, similar to Corollary
4.1. The assumptions on the kernel are ful�lled because of Lemma 5.1.

Proof of Corollary 5.1.

As we have mentioned before, the error term T (Hn)−T (HF ) can be approximated by a U -statistic
with kernel A. This leads to the special structure of σ2

GL, being similar to that of a long-run
variance of U -statistics. Therefore, we want to apply Theorem 4.3 to prove this Corollary. It
only remains to show the assumptions on the kernel A. These are ful�lled because of Lemma
5.1.

5.4. Robustness of GL-statistics

In this section we want to show under which assumptions a GL-statistic is robust according to
the in�uence function and the breakdown point.
We have already seen that the in�uence function can be obtained by replacing Hn with the
pointmass in the Gâteaux di�erential. That is, the in�uence function of a GL-statistic is given
by

IC(x1, . . . , xm;Hn, T )

=
d

dλ
T (Hn + λ(δx −Hn))

⏐⏐⏐⏐
λ=0+

= −
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy +

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

= A(x1, . . . , xm).

This is bounded under the conditions of the Central Limit Theorem 5.2 and therefore GL-
statistics with bounded smooth weighting function J vanishing outside (0, 1) are robust.
The breakdown point of a GL-statistic depends much on the chosen coe�cients. For example,
for L-statistics it is known that they have a breakdown point equal to the order statistic closest
to the minimum or maximum. Hence, the median has breakdown point 0 and the α-trimmed
mean has a breakdown point of α (see e.g. Huber (1981)). Special forms of GL-statistics with
kernels h(x1, x2) = |x1 − x2| or h(x1, x2) = (x1 − x2)

2 corresponding to scale estimators have a
breakdown point depending on the coe�cients ai. Rousseeuw and Croux (1992) show that in
this case the highest breakdown points are obtained for coe�cients ai = 0, if i >

(
[n/2]+1

2

)
, and

if
(
[n/2]
2

)
≤ i ≤

(
[n/2]+1

2

)
coe�cients with ai > 0.

61





6. Asymptotics of Robust Estimators under

Short-Range Dependence

After developing the theoretical background for a general class of statistics we want to give
several certain applications. On the one hand, a concrete limit theorem for Linear-moments and
trimmed Linear-moments is given, which allows us to calculate con�dence intervals for parametric
estimators used in hydrology. On the other hand, we want to show via statistical simulations
the validity of the Central Limit Theorem for the robust estimators proposed in Section 5.

6.1. L-Moments and TL-Moments

Linear-moment based estimators are widely used in hydrology for the estimation of distribution
parameters. A robust extension of this concept are the trimmed linear-moments. For both
approaches limit theorems will be developed in the following.

6.1.1. L-Moments

The probability weighted moments (PWM) have been developed by Greenwood et al. (1979)
to express parameters of easily invertible distributions by moments. As an advancement of the
standard and the probability weighted moments Hosking (1990) suggested the so called Linear-
moments (L-moments), which are estimated by a linear combination of order statistics (that is
L-statistics). Used as an estimator they have the advantage of being similar to and for small
samples sometimes even more e�cient than the Maximum-Likelihood estimator and also more
robust than the Moment estimators (Hosking (1990)), in the sense that they are less e�ected
by single extreme large or small values. They exist in situations, where the classical moments
do not exist and represent in contrast to the PWM the characteristic values of a sample such
as mean or standard deviation straightforwardly. Therefore, they are used more frequently than
the PWM but deliver the same results.
L-moments are among the most frequently used estimators in hydrology, since they serve the
desire of having e�cient estimators for small sample sizes as well as easy understandable and
computationally fast expressions. Hence, in our context they are of special interest.
Let X be a real-valued random variable with cumulative distribution function F and quantile
function x(F ). The r-th L-moment is de�ned as

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
EX(r−k:r), (6.1)

where X(i:n) is the i-th value of the order statistics of a sample X1, . . . , Xn drawn from F and
r = 1, 2, . . .. For example, the �rst two L-moments are given by

λ1 = EX =

∫ 1

0
x(F )dF,
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6. Asymptotics of Robust Estimators under Short-Range Dependence

λ2 =
1

2
E
(
X(2:2) −X(1:2)

)
=

∫ 1

0
x(F )(2F − 1)dF.

Hosking (1986) has shown that λr exists for r = 1, 2, . . . if and only if E|X| exists.

For the L-moments two di�erent estimators have been proposed by Hosking (1990). The �rst
one is the so-called sample L-moment de�ned by

lr =
1(
n
r

) ∑
1≤i1<...<ir≤n

r−1
r−1∑
k=0

(−1)k
(
r − 1

k

)
x(ir−k:n)

=

r−1∑
k=0

(−1)r−1−k

(
r − 1

k

)(
r − 1 + k

k

)
1

n

1(
n−1
k

) n∑
j=k+1

(
j − 1

k

)
x(j:n)

=:
r−1∑
k=0

p⋆r−1,k

1

n

1(
n−1
k

) n∑
j=k+1

(
j − 1

k

)
x(j:n).

Analogously, we denote bk = 1
n

1

(n−1
k )

∑n
j=k+1

(
j−1
k

)
x(j:n) as the sample estimator for the r-th

PWM βr (Greenwood et al. (1979)) with

βr = E (X(F (X)r) .

It is easy to see that lr is a U -statistic and therefore asymptotically normal under independence
and short-range dependence. Additionally, lr is of course an unbiased estimator for λr.
Another estimator is given by the use of the so-called plotting positions. Plotting positions pi:n,
i = 1, . . . , n, are distribution-free estimators of F (x(i:n)). The general formula is given by

pi:n =
i+ γ

n+ δ
, i = 1, . . . , n,

where δ > γ > −1. There are a lot of di�erent choices used for δ and γ. The classical one, also
called Weibull-formula, is pi:n = i/(n+ 1). Hosking (1990) also proposes pi:n = (i− 0.35)/n.
These plotting positions are then used in the plotting-position estimator as follows.

λ̃r =
1

n

n∑
i=1

P ⋆
r−1(pi:n)x(i:n),

with P ⋆
r (x) =

∑r
k=0(−1)r−k

(
r
k

)(
r+k
k

)
xk =

∑r
k=0 p

⋆
r,kx

k being the r-th shifted Legendre-polynomial.
This estimator is an L-statistic with ci,n = P ⋆

r−1(pi:n).
Again, we can also use an expression by the plotting position estimators for the PWM, β̃r =
1
n

∑n
i=1

(
i+γ
n+δ

)r
x(i:n) =

1
n

∑n
i=1

∑r
k=0 grk(γ)(i−1)(i−2)·...·(i−r+k)

(n+δ)r x(i:n),k = 1, . . . , r − 1,

λ̃r =
r−1∑
k=0

p⋆r−1,kβ̃k.

Both estimators are closely related. In fact, lr − λ̃r = Op(1/n) if EXi < ∞ as pointed out by
Hosking (1986). We want to give a short sketch of the proof of Hosking (1986) for this identity
to show that it does not depend on the dependence structure of the Xi.
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6.1. L-Moments and TL-Moments

As we can see by the expressions of the L-moment estimators by the PWM-estimators it is
su�cient to show that

br − β̃r = Op

(
1

n

)
.

For this we want to express β̃r by a sum of bs, s = 1, . . . , r.
It is helpful to express the denominator of the plotting position as the sum over factorials

(i+ γ)r =

r∑
k=0

grk(γ)(i− 1)(i− 2) · . . . · (i− r + k),

where grk is a function only depending on r and k, for that Hosking (1986) has shown that

gr0(γ) = 1, gr1(γ) =
1

2
r(r + 1) + rγ.

This can be used as follows

β̃r =
1

n

n∑
i=1

(
i+ γ

n+ δ

)r

x(i:n) =
1

n

n∑
i=1

∑r
k=0 grk(γ)(i− 1)(i− 2) · . . . · (i− r + k)

(n+ δ)r
x(i:n)

=
1

(n+ δ)r

r∑
k=0

grk(γ)
1

n

n∑
i=1

(n− 1)(n− 2) · . . . · (n− r + k)

(
i−1
r−k

)(
n−1
r−k

)x(i:n)
=

1

(n+ δ)r

r∑
k=0

grk(γ)(n− 1)(n− 2) · . . . · (n− r + k)br−k.

The term Nk := (n−1)(n−2)·...·(n−r+k)
(n+δ)r has the following asymptotic order

Nk =

⎧⎪⎨⎪⎩
1− (1/2r(r + 1) + rδ)n−1 +O(n−2) , if k = 0

n−1 +O(n−2) , if k = 1

O(n−k) , if k ≥ 2

.

Hence, since E(br) = βr,

br − β̃r = br −
r∑

k=0

grk(γ)Nkbr−k

= (1− gr0(γ)N0)br −
r∑

k=1

grk(γ)Nkbr−k

= (1− (1− (1/2r(r + 1) + rδ)n−1 +O(n−2)))br −
r∑

k=1

grk(γ)Nkbr−k.

Note that all terms of order k ≥ 2 are asymptotically negligible since their asymptotical order is
smaller than that of the �rst two terms.
Finally,

E
(
br − β̃r

)
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6. Asymptotics of Robust Estimators under Short-Range Dependence

=
(
(1/2r(r + 1) + rδ)n−1 +O(n−2)

)
βr −

(
(1/2r(r + 1) + rδ)n−1 +O(n−2)

)
βr−1 + . . .

≤ C
1

n
βr ≤ C ′ 1

n
,

since βr < ∞.

A disadvantage of λ̃r is that it is not an unbiased estimator but it is consistent (Hosking (1986)).
The plotting-position estimator is also useful when proving the asymptotic normality of a vector
of the ls, s = 1, . . . , r. Under independence this has already been done by Hosking (1990) and
we want to establish an analogous result for NED sequences on absolute regular processes.

Theorem 6.1. Let X1, . . . , Xn be NED with approximation constants (al)l∈N on an absolutely

regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N with
∑∞

l=1 l
2β

γ
2+γ (l) < ∞ for a 0 <

γ < 1. Moreover, let be
∑∞

l=1 l
2a

γ
2+2γ

l < ∞. Then,

√
n ((l1 − λ1), . . . , (lr − λr))

D−→ N (0,Σ)

with Σ = (ρi,j)1≤i,j≤r and

ρi,j = Cov(li, lj)

=
1

2

(∫ ∞

−∞

∫ ∞

−∞

(
P ⋆
i−1(F (x))P ⋆

j−1(F (y))
)
+
(
P ⋆
i−1(F (y))P ⋆

j−1(F (x))
)

·
(
F (x)(1− F (y)) + 2

∞∑
j=1

(P (X1 ≤ F (x), Xj+1 ≤ F (y)− F (x)F (y)))

)
dxdy

)
.

Proof.

As mentioned above λ̃r can be expressed as an L-statistic and hence is asymptotically normal
by Theorem 5.2. The assumptions of the theorem for the kernel h and the weighting function
J are ful�lled since due to the expression as L-statistic h(x) = x is the identity function and
therefore Lipschitz continuous and HF reduces to F , which is also continuous. The function J
is chosen as J = P ⋆

r−1 and hence is bounded on (0, 1) as well as continuous a.e. concerning the
Lebesgue-measure and F−1 and can be de�ned as equal to 0 for all values not in (0, 1). Moreover,
also the linear combination of the �rst r plotting-position estimators is an L-statistic

r∑
i=1

aiλ̃r =
r∑

i=1

aiP
⋆
i−1(pj:n)x(j:n) =:

r∑
i=1

P ⋆(pj:n)x(j:n)

and hence also converges to a normal distribution according to Theorem 5.2. Using the Cramer-
Wold-device we then know that

√
n
(
(λ̃1 − λ1), . . . , (λ̃r − λr)

)
−→ N (0,Σ).

The entries of the covariance matrix Σ can be calculated by using the identity

Cov(λ̃r, λ̃s) =
1

2

(
Var(λ̃r + λ̃s)−Var(λ̃r)−Var(λ̃s)

)
. (6.2)

For this we �rst need the asymptotic variance of L-statistics. Using the formula for the variance
of Theorem 5.2 and the special form of it for L-statistics, we obtain
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6.1. L-Moments and TL-Moments

σ2
L =E

((
E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy|Y1 = X1

))2
)

+ 2

∞∑
j=1

Cov

(
E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy|Y1 = X1

)
,

E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy|Y1 = Xj+1

))
. (6.3)

The �rst term of eq. (6.3) can be simpli�ed analogously to the independent case (see e.g. Lee
(1990)) by

E

((
E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy

⏐⏐⏐Y1 = X1

))2
)

= E

((
E
(
−
∫ ∞

−∞
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

)
+

∫ ∞

−∞
F (y)J(F (y))dy

)2
)

= E

[(
E
(
−
∫ ∞

−∞
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

))2

+ 2E
(
−
∫ ∞

−∞
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

)∫ ∞

−∞
F (y)J(F (y))dy

+

(∫ ∞

−∞
F (y)J(F (y))dy

)2
]

= E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]

)
J(F (y))dy

⏐⏐⏐Y1 = X1

))2

− 2

∫ ∞

−∞
F (y)J(F (y))dy

∫ ∞

−∞
E
(
E
(
1[Y1≤y]

⏐⏐⏐Y1 = X1

))
J(F (y))dy

+

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

= E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]

)
J(F (y))dy

⏐⏐⏐Y1 = X1

))2

− 2

∫ ∞

−∞
F (y)J(F (y))dy

∫ ∞

−∞
E
(
1[Y1≤y]

)
J(F (y))dy

+

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

= E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]

)
J(F (y))dy

⏐⏐⏐Y1 = X1

))2

− 2

∫ ∞

−∞
F (y)J(F (y))dy

∫ ∞

−∞
F (y)J(F (y))dy

+

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

=

∫ ∞

−∞

∫ ∞

−∞
F (y)J(F (x))J(F (y))dxdy
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6. Asymptotics of Robust Estimators under Short-Range Dependence

−
∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

=

∫ ∞

−∞

∫ ∞

−∞
F (x)(1− F (y))J(F (x))J(F (y))dxdy.

Also the second term of eq. (6.3) can be simpli�ed by

2

∞∑
j=1

Cov

(
E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy

⏐⏐⏐Y1 = X1

)
,

E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy

⏐⏐⏐Y1 = Xj+1

))

=2

∞∑
j=1

E

[
E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy

⏐⏐⏐Y1 = X1

)

· E
(
−
∫ ∞

−∞

(
1[Y1≤y] − F (y)

)
J(F (y))dy

⏐⏐⏐Y1 = Xj+1

)]

=2

∞∑
j=1

E

[(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy|Y1 = X1

))
+

∫ ∞

−∞
(F (y)J(F (y))) dy

)

·
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = Xj+1

))
+

∫ ∞

−∞
(F (y)J(F (y))) dy

)]

=2
∞∑
j=1

[
E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

))
· E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = Xj+1

)))

+ E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

))
·
∫ ∞

−∞
(F (y)J(F (y))) dy

)
+ E

(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = Xj+1

))
·
∫ ∞

−∞
(F (y)J(F (y))) dy

)
+ E

(∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

)]

=2

∞∑
j=1

[
E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy|Y1 = X1

))
· E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy|Y1 = Xj+1

)))

+ E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

)))∫ ∞

−∞
(F (y)J(F (y))) dy

+ E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = Xj+1

)))∫ ∞

−∞
(F (y)J(F (y))) dy

+

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

]

=2

∞∑
j=1

[
E
(
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

))
· E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = Xj+1

)))
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− E
(∫ ∞

−∞
1[Y1≤y]J(F (y))dy

)∫ ∞

−∞
(F (y)J(F (y))) dy

− E
(∫ ∞

−∞
1[Y1≤y]J(F (y))dy

)∫ ∞

−∞
(F (y)J(F (y))) dy

+

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

]

=2
∞∑
j=1

E

[
E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = X1

))

· E
(
−
∫ ∞

−∞

(
1[Y1≤y]J(F (y))dy

⏐⏐⏐Y1 = Xj+1

))
− 2

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

+

∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

]

=2
∞∑
j=1

[∫ ∞

−∞
(P (X1 ≤ F (x), Xj+1 ≤ F (y))) J(F (x))J(F (y))dxdy

−
∫ ∞

−∞

∫ ∞

−∞
F (x)F (y)J(F (x))J(F (y))dxdy

]

=2

∞∑
j=1

(∫ ∞

−∞

∫ ∞

−∞
(P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y)) J(F (x))J(F (y))dxdy

)
.

Combining these two results we obtain for the asymptotic variance of an L-statistic under near
epoch dependence

σ2
L =

∫ ∞

−∞

∫ ∞

−∞

⎛⎝F (x)(1− F (y)) + 2

∞∑
j=1

(P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y))

⎞⎠
· J(F (x))J(F (y))dxdy,

which is consistent with the result of Puri and Tran (1980) for L-Statistics for strong mixing
data.
Now we can use (6.2) and the fact that the sum of two plotting-position estimators is again an
L-statistic to calculate the covariance of the plotting-position estimators. Remember that we
have chosen J(t) = P ⋆

i−1(t) for λ̃i.

Cov(λ̃r, λ̃s)

=
1

2

[∫ ∞

−∞

∫ ∞

−∞

(
P ⋆
r−1(F (x)) + P ⋆

s−1(F (x))
)
·
(
P ⋆
r−1(F (y)) + P ⋆

s−1(F (y))
)
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·

⎛⎝F (x)(1− F (y)) + 2
∞∑
j=1

(P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y))

⎞⎠ dxdy

−
∫ ∞

−∞

∫ ∞

−∞
P ⋆
r−1(F (x))P ⋆

r−1(F (y))⎛⎝F (x)(1− F (y)) + 2
∞∑
j=1

(P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y))

⎞⎠ dxdy

−
∫ ∞

−∞

∫ ∞

−∞
P ⋆
s−1(F (x))P ⋆

s−1(F (y))⎛⎝F (x)(1− F (y)) + 2
∞∑
j=1

(P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y))

⎞⎠ dxdy

]

=
1

2

[∫ ∞

−∞

∫ ∞

−∞

(
P ⋆
r−1(F (x)) + P ⋆

s−1(F (x))
)
·
(
P ⋆
r−1(F (y)) + P ⋆

s−1(F (y))
)

⎛⎝F (x)(1− F (y)) + 2

∞∑
j=1

(P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y))

⎞⎠ dxdy

]
.

Using again lr − λ̃r = Op(1/n) the vector of the sample estimators has the same distribution as
the plotting-position estimator, that is a straightforward extension of the independent case.

Using the Delta-Method it is now easy to calculate the asymptotic distribution of many parameter-
estimators based on L-moments.

6.1.2. Trimmed L-Moments

Trimmed Linear-moments (TL-moments) are a robust modi�cation of L-moments. They have
been introduced by Elamir and Seheult (2003) and, due to their easy computation, are frequently
used and developed for many di�erent distributions (cf. Hosking (2007), Abdul-Moniem and
Selim (2009), Ahmad et al. (2011)).
Let X be a real-valued random variable with cumulative distribution function F . The r-th
TL-moment with trimming (t1, t2) is given by

λ(t1,t2)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E
(
X(r+t1−k:r+t1+t2)

)
,

where we can use the representation

E
(
X(i:r)

)
=

r!

(i− 1)!(r − i)!

∫ 1

0
x(F )F i−1(1− F )r−idF

of the expected value of the i-th order-statistic of a sample with length r drawn from the distri-
bution of X. x(F ) is the quantile function of the distribution F .

An unbiased estimate of λ(t1,t2)
r is

l(t1,t2)r =
1

r

n−t2∑
i=t1+1

∑r−1
k=0(−1)k

(
r−1
k

)(
i−1

r+t1−k−1

)(
n−i
t2+k

)(
n

r+t1+t2

) x(i:n). (6.4)
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6.1. L-Moments and TL-Moments

The main idea of this kind of estimator to gain robustness is trimming by giving zero weight to
the t1 smallest and t2 largest values.

Again, similar to L-moments, the plotting position estimator proves to be a useful tool for
obtaining asymptotic results. It is de�ned as

λ̃(t1,t2)
r =

1

n

n∑
i=1

J (t1,t2)
r x(i:n)

with

J (t1,t2)
r (x) =

(r − 1)!(r + t1 + t2)!

r(r + t1 − 1)!(r + t2 − 1)!
xt1(1− x)t2P

⋆(t2,t1)
r−1 (x)

and

P ⋆(t2,t1)
r (x) =

r∑
j=0

(−1)r−j

(
r + t2

j

)(
r + t1
r − j

)
xj(1− x)r−j ,

the shifted Jacobi polynomial. The Legendre polynomials are a special case of the Jacobi poly-
nomials that are needed in this more general context.

Analogously to L-moments, which are in fact a special case of TL-moments with t1 = t2 = 0,
we can state a result about asymptotic normality. The proof of it is analogous to the one for
L-moments (see e.g. Hosking (2007) for the independent case) and therefore omitted here. Note
that we limit the possible trimming to be smaller or equal to 2 to simplify the results. In practice,
as we will see later on, all relevant cases are covered by this. For an idea of how the covariance
looks like for values of trimming larger than 2 we refer to Hosking (2007).

Theorem 6.2. Let X1, . . . , Xn be NED with approximation constants (al)l∈N on an absolutely

regular process (Zn)n∈Z with mixing coe�cients (β(l))l∈N with
∑∞

l=1 l
2β

γ
2+γ (l) < ∞ for a 0 <

γ < 1. Moreover, let be
∑∞

l=1 l
2a

γ
2+2γ

l < ∞. Then for all 0 ≤ t1, t2 ≤ 2

√
n
(
(λ̂

(t1,t2)
1 − λ

(t1,t2)
1 ), . . . , (λ̂(t1,t2)

r − λ(t1,t2)
r )

)
−→ N (0,Σ)

with Σ = (ρi,j)1≤i,j≤r and

ρi,j = Cov(λ̂
(t1,t2)
i , λ̂

(t1,t2)
j )

=
1

2

[∫ ∞

−∞

∫ ∞

−∞

(
J
(t1,t2)
i (F (x)) + J

(t1,t2)
j (F (x))

)
·
(
J
(t1,t2)
i (F (y)) + J

(t1,t2)
j (F (y))

)
⎛⎝F (x)(1− F (y)) + 2

∞∑
j=1

P (X1 ≤ F (x), Xj+1 ≤ F (y))− F (x)F (y)

⎞⎠ dxdy

]
.

In the following we present some speci�c estimators based on TL-moments for distributions that
are important in our context.
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6. Asymptotics of Robust Estimators under Short-Range Dependence

Generalized Pareto Distribution (GPD)

For the Generalized Pareto Distribution the distribution function is given by

F (x) = 1−
(
1 + κ

x− µ

β

)− 1
κ

,

for x > µ if the shape parameter is κ ≥ 0, and µ ≤ x ≤ µ− β/κ otherwise, the scale parameter
β > 0 and the threshold-parameter µ, often also notated as x0. A special case of this distribution
is the exponential distribution.
Therefore, the corresponding quantile is given by

x(F ) = µ− β

κ

(
1− (1− F )−κ

)
.

Often, we want to have robustness against single large events for an estimator of the parameter
of the GPD. The lower part of the sample is already censored by choosing a threshold x0 and
only considering values above this threshold. Since the GPD is bounded to the left, it seems
sensible to only consider trimming to the right. Therefore, we chose t1 = 0 and t2 = 1. For
the cases t1 = t2 = 1 and t1 = 1, t2 = 0 estimators for the GPD have already been developed
(Abdul-Moniem and Selim (2009), Ahmad et al. (2011)), and Hosking (2007) developed TL(0,1)-
estimators for the two parameter GPD. We want to consider the three-parameter GPD as well,
which is why we present the explanation to the calculations below. Explicit representations of
the �rst three TL(0,1)-moments are

λ
(0,1)
1 = E

(
X(1:2)

)
λ
(0,1)
2 = 1

2

(
E
(
X(2:3)

)
− E

(
X(1:3)

))
λ
(0,1)
3 = 1

3

(
E
(
X(3:4)

)
− 2E

(
X(2:4)

)
+ E

(
X(1:4)

))
.

We can see that indeed the highest value of the order statistics is left out in the calculation.
With the equations above, the �rst three TL(0,1)-moments can be written as

λ
(0,1)
1 =

∫ 1
0 x(F )(1− F )2dF

λ
(0,1)
2 = 1

2

∫ 1
0 x(F )(1− F )(6F − 3(1− F ))dF

λ
(0,1)
3 = 1

3

∫ 1
0 x(F )(1− F )(12F 2 − 24F (1− F ) + 4(1− F )2)dF

and the ratio as

τ
(0,1)
3 =

λ
(0,1)
3

λ
(0,1)
2

.

By calculating the integrals above and using substitution we obtain the following estimators,
where the TL(0,1)-moments are estimated via (6.4) and t

(0,1)
3 = l

(0,1)
3 /l

(0,1)
2 ,

κ̂ =
36t

(0,1)
3 −8

9t
(0,1)
3 +8

β̂ = 2
3 l

(0,1)
2 (κ̂− 2)(κ̂− 3)

µ̂ = l
(0,1)
1 + β̂

(κ̂−2) .

If µ is known, we get (analogously to Hosking (2007))

κ̂ = −3
2
l
(0,1)
1 −µ

l
(0,1)
2

+ 3

β̂ = −
(
l
(0,1)
1 − µ

)
(κ̂− 2).
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Since the choice of the trimming factors is crucial, especially in our context with several extreme
values, it is necessary to consider not only TL(0,1)-moments but also other choices for the
trimming factors. As mentioned above, a trimming in the lower part of the sample is not
meaningful. However, we consider a higher trimming in the upper part of the sample, that is the
TL(0,2)-moments. Analogously to the TL(0,1)-moments we can calculate

λ
(0,2)
1 = 3

∫ 1
0 x(F )(1− F )2dF

λ
(0,2)
2 = 1

2

∫ 1
0 x(F )(1− F )2(12F − 4(1− F ))dF

λ
(0,2)
3 = 1

3

∫ 1
0 x(F )(1− F )2(30F 2 − 40F (1− F ) + 5(1− F )2)dF

and

κ̂ =
30t

(0,2)
3 −5

6t
(0,2)
3 +5

β̂ = 1
2 l

(0,2)
2 (κ̂− 3)(κ̂− 4)

µ̂ = l
(0,2)
1 + β̂

(κ̂−3) .

Or, if µ is known,

κ̂ = −1
2
l
(0,2)
1 −µ

l
(0,2)
2

+ 4

β̂ = −
(
l
(0,2)
1 − µ

)
(κ̂− 3).

Generalized Extreme Value Distribution (GEV)

The distribution function of the GEV is given by

G(x) = exp

(
−
(
1 + ξ

x− µ

σ

)− 1
ξ

)
for 1 + ξ(x − µ)/σ > 0, where ξ ∈ R is the shape parameter, σ > 0 the scale parameter and
µ ∈ R the location parameter. The special case ξ = 0 is called the Gumbel distribution and is
given by

G(x) = exp

(
− exp

(
−x− µ

σ

))
.

The GEV distribution plays a crucial role in extreme value theory and therefore is one of the most
commonly used distribution functions in hydrology. Because of the Fisher-Tippett-Gnedenko-
Theorem (Fisher and Tippett (1928)) the GEV has theoretical validity whenever using block
maxima and under certain assumptions. We want to describe this in detail.

Theorem 6.3 (Fisher-Tippett-Gnedenko). Let X1, . . . , Xn be independent and identically dis-

tributed random variables. Suppose there exists a sequence of constants an > 0 and bn ∈ R such

that

max(X1, . . . , Xn)− bn
an

has a nondegenerate limit distribution for n → ∞. Then this limit distribution is the extreme

value distribution Gξ(ax+ b) with a > 0 and b ∈ R given by

Gξ(x) = exp
(
−(1 + ξx)

− 1
ξ

)
,

for 1 + ξx > 0 with ξ ∈ R. If ξ = 0, the right-hand side can be interpreted as exp(− exp−x).
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6. Asymptotics of Robust Estimators under Short-Range Dependence

It can be seen that the distribution given in this theorem is exactly the GEV distribution. The
parameter ξ is called the extreme value index and de�nes the distribution type as well as the
tail-behaviour. The most important case in �ood statistics is ξ > 0, leading to an unbounded
right part of the distribution and a heavy right tail.
For the Gumbel- and GEV distribution one can �nd approximative expressions of the parameter
estimations, see Elamir and Seheult (2003) and Lilienthal (2013).
For the parameters of the GEV distribution the TL(0,1)-moment estimators are

z =
10

9

(
1

2 + l
(0,1)
3 /l

(0,1)
2

)
− 2 log(2)− log(3)

3 log(3)− 2 log(4)

ξ̂TL(0,1) = 8.567394 · z − 0.675969 · z2

σ̂TL(0,1) =
2

3
l
(0,1)
2

1

Γ(ξ̂TL(0,1))

((
1

3

)ξ̂TL(0,1)

− 2

(
1

2

)ξ̂TL(0,1)

+ 1

)−1

µ̂TL(0,1) = l
(0,1)
1 −

σ̂TL(0,1)

ξ̂TL(0,1)

− σ̂TL(0,1)Γ(ξ̂TL(0,1))

((
1

2

)ξ̂TL(0,1)

− 2

)
,

where Γ is the Gamma-function, and for the Gumbel distribution

σ̂TL(0,1) =
l
(0,1)
2

0.431

µ̂TL(0,1) = l
(0,1)
1 + 0.116σ̂TL(0,1).

For symmetric trimming, that can be sensible because of a possibly unbounded left tail or
extremely small values, the TL(1,1)-moment estimators are

z =
9

20

(
l
(1,1)
3

l
(1,1)
2

)
+

log(3)− 2 log(4) + log(5)

log(2)− 2 log(3) + log(4)

ξ̂TL(1,1) = 25.31711 · z − 91.5507 · z2 + 110.0626 · z3 − 46.5518 · z4

σ̂TL(1,1) = l
(1,1)
2

1

Γ(ξ̂TL(1,1))

1

3
(
1
2

)ξ̂TL(1,1) − 6
(
1
3

)ξ̂TL(1,1) + 3
(
1
4

)ξ̂TL(1,1)
µ̂TL(1,1) = l

(1,1)
1 −

σ̂TL(1,1)

ξ̂TL(1,1)
− σ̂TL(1,1)Γ(ξ̂TL(1,1))

(
−3

(
1

2

)ξ̂TL(1,1)

+ 2

(
1

3

)ξ̂TL(1,1)
)

for the GEV distribution and

σ̂TL(1,1) =
l
(1,1)
2

0.353

µ̂TL(1,1) = l
(1,1)
1 − 0.459σ̂TL(1,1)

for the Gumbel distribution.
These parametric estimators based on L- and TL-moments will �nd application in the �ood
statistic later on.
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6.2. Simulations for Scale Estimators

In a simulation study we want to con�rm the asymptotic normality of some of the estimators
proposed in Section 5 under near epoch dependence.
For the following simulations we choose an EGARCH(1,1)-process with parameters α = 0.2 and
β = 0.05. The coe�cients of the function f are chosen as θ = 0.9 and λ = 0.1. These are common
choices when simulating from an EGARCH-process. The value α describes the dependence of the
variance on the former observation, whereas β describes the dependence on the former variance.
Both values are relatively small indicating only a weak dependence on the former time step.
What is special and corresponds to the case of a NED-process on an underlying absolutely
regular process is the choice of Zt as AR(1)-process with correlation coe�cient ρ = 0.8, which
means a rather high correlation at short time lags. Note that the assumptions of Theorem 3.1
are therefore ful�lled. We compare the three scale estimators of Section 5 with di�erent sample
lengths concerning their asymptotic normality using QQ-plots. For the estimators in Example
5.5 and 5.6 we use the special cases Q and LMSn of the estimators. The results can be found
in Figures 6.1-6.3.
For all estimators the asymptotic normality of these estimators is con�rmed by the simulations,
although a sample length of about n = 1000 is needed. The Gini's mean di�erence estimator
proves to need the largest sample (n = 2000) of the three estimators to be approximated well by
a normal distribution.

In a second scenario we want to increase the dependence in the EGARCH-process such that
the AR(1) process as well as the EGARCH-process model very high correlation. For this we
choose α = 0.8 and β = 0.1. The results can be found in Figures 6.4-6.6. Because of the
increased dependency within the EGARCH-process a larger sample size is needed to obtain
a good approximation by the normal distribution. Similar to the �rst scenario, Gini's mean
di�erence needs the largest sample sizes (n = 5000) for a good approximation, whereas the
Q-estimator does not need many more data in the presence of strong dependence. The LMSn

estimator shows a good approximation already for n = 500, but surprisingly it gets worse for
n = 1000. We do not have an explanation for this phenomenon but it remains for repeated
simulations.
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6. Asymptotics of Robust Estimators under Short-Range Dependence

Figure 6.1.: Normal QQ-plot for Gini's Mean di�erence for n = 100 (top left), n = 500 (top
right), n = 1000 (bottom left) and n = 2000 (bottom right) for strong dependence
in the AR(1) process and moderate dependence in the EGARCH-process. From a
sample size of n = 2000 a relatively good approximation by the normal distribution
can be seen, although the upper tail is still not �tted well.
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Figure 6.2.: Normal QQ-Plot for the LMSn-estimator for n = 100 (top left), n = 500 (top
right) and n = 1000 (bottom) for strong dependence in the AR(1) process and
moderate dependence in the EGARCH-process. From a sample size of n = 500 a
good approximation by the normal distribution can be seen as even the tails are
�tted well.
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6. Asymptotics of Robust Estimators under Short-Range Dependence

Figure 6.3.: Normal QQ-Plot for the Q-estimator for n = 100 (top left), n = 500 (top right) and
n = 1000 (bottom) for strong dependence in the AR(1) process and moderate depen-
dence in the EGARCH-process. For a sample size of n = 1000 a good approximation
by the normal distribution can be seen as even the tails are �tted well.
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6.2. Simulations for Scale Estimators

Figure 6.4.: Normal QQ-Plot for Gini's Mean di�erence for n = 100 (top left), n = 1000 (top
right) and n = 2000 (bottom left) and n = 5000 (bottom right) for strong dependence
in the AR(1) process as well as in the EGARCH-process. For a sample size of
n = 5000 a good approximation by the normal distribution can be seen.
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6. Asymptotics of Robust Estimators under Short-Range Dependence

Figure 6.5.: Normal QQ-Plot for the LMSn-estimator for n = 100 (top left), n = 500 (top right)
and n = 1000 (bottom left) and n = 2000 (bottom right) for strong dependence in
the AR(1) process as well as in the EGARCH-process. For a sample size of n = 2000
a good approximation by the normal distribution can be seen and even the tails are
�tted well.
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6.2. Simulations for Scale Estimators

Figure 6.6.: Normal QQ-Plot for the Q-estimator for n = 100 (top left), n = 500 (top right),
n = 1000 (bottom left) and n = 2000 (bottom right) for strong dependence in
the AR(1) process as well as in the EGARCH-process. In case of a sample size of
n = 2000 a good approximation by the normal distribution can be seen as even the
tails are �tted well.
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7. Robust Estimation in Flood Statistics

Flood statistic encompasses three essential aspects. On the one hand, design �oods are needed
for �ood protection. When constructing a new �ood protection system, e.g. a dam, a dyke or
polder, the hydrological load has to be speci�ed under the assumption that discharges exceeding
this load result in critical situations or even failures. These facilities shall be secure up to certain
discharges, for example �oods with a return period of 1000 years. To obtain these �oods from
samples of not more than 100 years, statistical methods are used for extrapolation.

On the other hand, not only point-estimation (estimation at only one location) is of interest, but
also the coherences between di�erent gauges in a river basin. For example, the concurrence of
two large �ood events in two di�erent tributaries downstream can lead to much higher damages
downstream.

Additionally, the consideration of hydrologically similar gauged (homogeneous) catchments can
enlarge the information spectrum and reduce the uncertainty in estimation due to the more
detailed information on occurrence and magnitude or can be used for an estimation of �ood
statistics for ungauged catchments, that is a catchment where no discharge data are available.
This transfer of information from homogeneous catchments to catchments where �ood statistics
need to be developed is called regionalisation.

The third main aspect is the modelling of discharge time series. This can be a time-dependent
model as well as a model that takes into account climatic circumstances. These models then can
be used to obtain information on long-term variabilities and behaviour of discharge series.

Before starting to introduce the basic statistics needed in �ood statistic, we want to present the
river basins studied here. In the second part of this chapter then general hydrological concepts
in �ood statistics are explained, that form a basis of the developed robust estimation methods,
that are presented. In the third section we introduce a new classi�cation method for �ood events
which is then used for regionalisation. Finally, an application of the developed Central Limit
Theorem is given for an EGARCH-model used to model a daily discharge series. Parts of the
results are published in Fischer et al. (2015), Fischer and Schumann (2016) and Fischer et al.
(2016b).

7.1. Study Area

To apply our results concerning robust estimation in the hydrological context we consider gauges
in two di�erent regions in Germany. The Mulde river basin in the Eastern part of Germany
is one of the fastest reacting river systems in Germany. The Harz region is dominated by the
Brocken mountain and the rain shadow caused by it. Compared to many other river basins and
regions in Germany, for these regions very detailed discharge data and information concerning
land use and soil are available. Moreover, the Mulde river basin consists of many gauges with
long periods of observation compared to other basins, such that the data are suitable for our
purposes.
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7. Robust Estimation in Flood Statistics

7.1.1. Mulde River Basin

We use runo� time series from 19 gauges in the Mulde river basin in the South-Eastern part of
Germany. This basin almost completely drains the north side of a low mountain range, the Ore
Mountains, and is part of the Elbe river basin which has been struggled by two extreme �oods in
the last twenty years. The Mulde basin consists of the watersheds of three main tributaries, the
rivers Zwickauer Mulde, Zschopau and Freiberger Mulde, and the catchment of the Vereinigte
(united) Mulde river downstream. An overview of the basin, the river network and runo� gauges
is given in Figure 7.1. The catchment covers an area of approximately 7,400 km2. The three
main tributaries rise close to the mountain ridge in elevations between 760 and 1,125 m above
sea level. The outlet (Bad Dueben gauge) is located at an elevation of 81 m a.s.l. The average
elevation of the total catchment up to the Bad Dueben gauge is 436 m a.s.l. For each gauge
catchment size and mean elevation of the catchment area are listed in Table 7.1 together with the
mean annual runo� and the mean, standard variation and skewness of the annual �ood series,
that is the series of annual maximum �ood events. All �ood series have at least a length of 48
years, but most of them have been observed for more than 75 years. Like almost all parts of
Eastern Germany, the Mulde river basin and its main tributary the Elbe river has been hit hard
by the 2002 �ood event, which has been the largest �ood of the last 100 years (cover picture,
DWA (2012)).
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7.1. Study Area

Figure 7.1.: Drainage basin of the Mulde river in the East of Saxony, Germany. In the Southern
part the Ore Mountains are located.
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Table 7.1.: Characteristic values and catchment area (AE) and statistical parameters for the annual maximum series (AMS) of the single
gauges in the river basin Mulde.

Gauge River time series AE [km2]
mean elev.
[m a.s.l.]

mean ann.
runo� [m3/s]

AMS
Mean Std. dev. Skewness

Aue 1 Schwarzwasser 1928-2013 362 737.6 6.32 69.2 51.88 2.38
Niederschlema Zwickauer Mulde 1928-2013 759 697.4 12.64 114.0 90.91 2.80

Zwickau- Poelbitz Zwickauer Mulde 1928-2013 1030 617.0 14.43 134.2 109.80 2.71
Harthau Würschnitz 1965-2013 1367 438.1 1.51 32.5 24.11 2.22

Goeritzhain Chemnitz 1910-2013 532 409.4 6.37 74.1 43.93 2.01
Wechselburg Zwickauer Mulde 1910-2013 2107 489.1 26.31 225.5 168.56 2.79
Tannenberg Zschopau 1960-2013 91 646.6 1.54 15.8 11.80 4.11
Streckewalde Preÿnitz 1921-2013 206 743.0 2.93 29.8 20.06 2.84
Hopfgarten Zschopau 1911-2013 529 696.8 8.04 83.6 57.61 2.94
Rothenthal Natzschung 1929-2013 75 752.2 1.37 15.3 11.18 3.66
Zoeblitz Schwarze Pockau 1937-2013 129 698.7 2.28 23.6 19.60 4.99
Pockau Flöha 1921-2013 385 679.5 5.86 68.3 43.66 2.34

Borstendorf Flöha 1929-2013 644 653.6 9.20 95.4 69.53 3.54
Lichtenwalde Zschopau 1910-2013 1575 612.2 21.77 227.1 164.24 3.15
Niederstriegis Striegis 1926-2013 283 372.2 2.68 27.9 12.64 0.98
Berthelsdorf Freiberger Mulde 1936-2013 244 594.1 3.56 36.9 43.60 5.65

Nossen Freiberger Mulde 1926-2013 585 483.0 6.93 72.8 78.89 6.02
Erlln Freiberger Mulde 1961-2013 2983 500.4 33.72 334.1 228.06 3.93

Golzern Vereinigte Mulde 1911-2013 5442 477.3 62.30 520.7 335.15 3.07
Bad Dueben Vereinigte Mulde 1961-2013 6171 436.4 64.80 513.2 394.06 2.46
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7.2. Annualities and Design Floods

7.1.2. Harz Region

The considered region of the Harz (2632 km2) is located mainly in the German state Saxony-
Anhalt and consists therefore mainly of the Eastern part of the Harz as well as a part of the Harz
foreland. The Brocken mountain is the highest location in the region with 1141 m a.s.l. In the
South-Western part we �nd foothills of the Central German Uphills, whereas the Northern and
Western parts are more plain. The main rivers in this region are the Ilse, Bode, Holtemme, Selke
and Wipper rivers. The Ilse river rises in the South-Eastern part of the Brocken mountain and
runs to the North, whereas the Holtemme also rises in the South-Eastern part of the Brocken
but runs to the North-East. The Selke river basin rises in the Brocken foreland and �ows, like
the Holtemme river, into the Bode river.
Caused by the altering water levels of the rivers, that are caused by the geographical as well as
the climatic circumstances, 16 dams have been built in this region for water supply and �ood
protection, the largest one being the Rappbode-dam with 109.8 Mio. m3 volume, lying next
to the Trautenstein gauge. The foreland is dominated by agricultural use, whereas the higher
parts are dominated by forests. Up to 700 m a.s.l. urbanised parts can be found mainly in the
foreland.
Besides the rain shadow caused by the Brocken mountain, where only small amounts of precipi-
tation are measured, the Harz region is known as one of the regions with highest precipitation in
Germany. Quantities of more than 1400 mm can be measured in the mountainous parts, caused
by high wind speeds and accumulation of rain.
Like the Mulde river basin the Harz region has been a�ected by the 2002 �ood event, although
the largest �ood measured occurred for almost all catchments in 1994.

7.2. Annualities and Design Floods

Before developing robust estimation methods in context of �ood statistics, we want to introduce
some basic concepts of hydrology, �rst.
As mentioned before, in �ood statistics annualities T are used to describe the return period of
�oods. This is the average time period in which a �ood events exceeds or reaches the respective
value. Therefore, for the annual maximum series it is simply a function of the non-exceedance
probability PU :

T =
1

1− PU
.

If we want to estimate a �ood for a given annuality T , this is then simply the quantile for the
respective probability PU .
Flood protection systems and other water engineering buildings are constructed to be secure
for �ood events of a certain annuality. For example, dams are designed with �oods having an
annuality of T = 1000 or T = 10, 000 years.
The use of robust estimators in this context is expected to lead to a more stable estimation (see
Section 2) of events for a given annuality. This is important, since the construction of a dam shall
not depend on statistics and quantiles, whose calculation changes with every year. Moreover,
neither a too large underestimation (damages) or overestimation (costs) is required. After a
short introduction to the di�erent possible models that can be used for estimating �ood events,
the application of robust estimators in the context of annualities and the related advantages and
disadvantages are shown.
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7. Robust Estimation in Flood Statistics

Figure 7.2.: The Harz region in the middle of Germany with the mountain Brocken located in
the Eastern part.
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7.2. Annualities and Design Floods

7.2.1. How to estimate annualities

When estimating annualities the classical and probably easiest way to do this is the consideration
of annual maximum discharges and the �t of a distribution to these. Nevertheless, this also limits
the available information, since only one event per year can be used. Therefore, several models
have been developed that enlarge the spectrum of information. Here, we want to focus on two
speci�c models. First, the Peak-over-Threshold model that uses all discharge peaks above a
given �ood threshold. Second, we divide the annual series into seasons and �ood types to obtain
subclasses of homogeneous �ood events. These models are introduced in the following, starting
with the annual maximum series.

Annual maximum series

Flood statistics are often based on annual maximum series (AMS), where only the largest event in
one year is taken. This series is assumed to be independent, since one cannot assume that a �ood
event has any in�uence on the �ood in the following year. The estimation of distribution func-
tions can be done with the method of moments, the maximum likelihood method or probability
weighted moments (Hosking et al. (1985a)). Here, we apply these methods to adapt the GEV to
�ood series. In a number of European countries, the GEV is among the recommended choices of
distribution functions (Salinas et al. (2014)). It is also the preferred distribution in our region of
interest, Germany. Moreover, the GEV has been selected here, as the Fisher-Tippett-Gnedenko
Theorem (Theorem 6.3) gives us theoretical validity for su�ciently large n. In hydrology, this
limit distribution is widely applied (cf. N.E.R.C. (1975), Hosking et al. (1985a)) because of the
�exibility of the distribution function with three parameters:

G(x) = exp

(
−
(
1 + ξ

x− µ

σ

)− 1
ξ

)

for 1+ξ(x−µ)/σ > 0, where ξ ∈ R is the shape parameter, σ > 0 the scale parameter and µ ∈ R
the location parameter (cf. Section 6.1). Most commonly, we have a positive shape parameter
indicating a heavy right tail. Also the location parameter often is much larger than the scale
parameter as we will see later on. To verify the Goodness of Fit of the GEV to the annual
maximum series AMS we used the Anderson-Darling Test and the Akaike Information Criterion
(AIC). The Anderson-Darling test (Anderson and Darling (1952)) has, in contrast to e.g. the
Kolmogorov-Smirnov test, high power even when the parameters of the tested distribution are
estimated from the sample and is therefore our choice in this case. The p-values of it as well as
the values of the AIC applied to all considered gauges in the Mulde river basin for the GEV, the
GPD (with threshold equal to the minimum annual maximum), the Gumbel (EVI) distribution
and the PearsonIII distribution, which is an often used distribution function in �ood statistics,
are given in Table A1 in the appendix.
The distribution function of the PearsonIII distribution, which is a shifted Gamma-distribution,
is given by

F (x) =

⎧⎨⎩ 1
Γ(ξ)

∫ x−µ
σ

0 tξ−1e−tdt, for σ > 0

1− 1
Γ(ξ)

∫ x−µ
σ

0 tξ−1e−tdt, for σ < 0

with parameters µ ∈ R, σ ̸= 0, ξ > 0.
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7. Robust Estimation in Flood Statistics

It can be seen that for the AMS the GEV is the distribution with the highest AIC values and the
hypothesis of GEV-distributed data cannot be rejected. In fact, the p-values are very close to 1
for most gauges. It is not necessary to normalize the given data since asymptotic convergence
to a non-degenerate random variable can be assumed. The GEV with several parameter esti-
mation methods forms the benchmark to specify more robust estimations of �ood quantiles. To
di�erentiate from the POT approach that we apply, we use the abbreviation AMS when we �t a
GEV to the annual maxima series and refer to the used estimation method when it is necessary.

Peak-over-Threshold (POT) models

In comparison to AMS, the POT method enlarges the information used for the �tting by con-
sidering not only the annual maxima but every (in our case monthly) maximum of discharge
above a threshold, specifying a �ood. For most gauges (including nearly all gauges in Germany)
monthly maxima are the peak values observed with the smallest time-resolution. Daily maxi-
mum discharges are hardly available and would be useless in this case because of the hydrograph
dynamics in a catchment.
Let us consider a data set (X1, . . . , Xn) with Xi = (X

(1)
i , . . . , X

(d)
i ), that is, for example, a

n = 100 year series of d = 12 monthly maximum discharges in a year. Of course, this model
could also be applied with other numbers of realisations d per year. It is important to consider
that not every monthly maximum corresponds to a �ood peak, which has to be speci�ed by a
threshold. Since we are interested in �ood statistics, we have to exclude such monthly maxima,
which are not related to �oods, to avoid average or low discharges in�uencing the �ood statistics.
For the threshold x0 we use the minimum of the series of annual maxima

x0 = min
1≤i≤n

(
max
1≤k≤d

(X
(k)
i )

)
to obtain a partial duration series. Also, the independence between the single �ood events has to
be ensured. Here we applied an approach, suggested by Malamud and Turcotte (2006), where a
minimum time between two �ood peaks is required to specify two independent �ood events. For
the watersheds in our data application with areas of several hundreds of km2, we use a time span
of at least seven days. For the application of POT we use a theorem from extreme value theory
to �nd a suitable distribution, the Balkema-de Haan-Pickands Theorem (Balkema and de Haan
(1974), Pickands (1975)). It says that the conditional excess distribution of Y1, . . . , Yn above
a certain threshold x0 converges to a generalized Pareto distribution (GPD) with distribution
function

F (x) = 1−
(
1 + κ

x− x0
β

)− 1
κ

for x > x0 if for the shape parameter κ ≥ 0, and x0 ≤ x ≤ x0 − β/κ otherwise, and the scale
parameter β > 0 (see also Section 6.1).
For the conditional excess distribution, many other distribution functions can be used, especially
the special case κ = 0 of the GPD, which is called the shifted exponential distribution

F (x) = 1− exp

(
−x− x0

β

)
,

for x > x0. Rosbjerg et al. (1992) have shown that this distribution is preferable for modelling
the exceedances in the case where κ < 0.1, as it gives a better approximation to the data. The
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application of the statistical test to test the hypothesis of κ = 0 proposed by Hosking et al.
(1985a) as well as calculation of the MSE show that for κ < 0.1 the exponential distribution is
preferable to the correct GPD. Nevertheless, to ensure a high degree of �exibility and since most
of the gauges have a parameter κ > 0.1, we use the GPD, which can be reduced to the special
case of the exponential distribution.

Here, the threshold parameter x0 is given by de�nition and does not need to be estimated.
However, it is important to mention that the choice of it plays a crucial role in the behaviour
of the estimates (cf. Begueria (2005)). As we are interested in annual return periods, one
problem remains. We have to transform the results we get from the GPD, the distribution of
the magnitude of excesses, into annual return periods. The relationship between annual maxima
and the partial duration series can be speci�ed as follows, where we denote the annual number
of exceedances of x0 by the monthly maxima with l. Using the total probability theorem, we
obtain for the distribution function of the annual maxima Fa (cf. Shane and Lynn (1964))

Fa(x) =

∞∑
k=0

P(l = k) (F (x))k ,

where P(l = k) is the probability that the annual number of exceedances of x0 equals k. The
most popular discrete distribution for describing the occurrence of rare events is the Poisson
distribution with

PP (l = k) =
λk

k!
e−λ (7.1)

based on the assumption that the underlying process is a Poisson process. It seems, therefore,
natural to use this distribution also in the case of the annual number of exceedances, and actually
this is done in most cases (e.g. Cunnane (1973), Rosbjerg (1985), Stedinger et al. (1993)). The
parameter λ represents both the mean and the variance of the distribution and is estimated by
the mean of the annual number of exceedances

λ̂ =
1

n

n∑
i=1

d∑
j=1

1
[X

(j)
i >x0]

.

Nevertheless, the application of the Poisson distribution also has some disadvantages in the case
of partial duration series. One important point is that equation (7.1) speci�es probability mass for
every k = 0, 1, . . . , even for k > d. Having in mind the example of d = 12 monthly maxima every
year it is not possible that x0 would be exceeded more than 12 times per year. Another problem,
which has been discussed in the literature, is the assumption of equal mean and variance, which is
the case for the Poisson distribution, but does not always hold (Taesombut and Yevjevich (1978),
Cunnane (1979), Önöz and Bayazit (2001)). For this reason we consider di�erent distributions
and compare the results. Mathematically, the binomial distribution is applicable since it is a
typical distribution for describing the number of exceedances of a threshold in a sample (Önöz
and Bayazit (2001)). Its probability mass function is given by

PB(l = k) =

(
r

k

)
pk(1− p)r−k,

where p is the probability of an exceedance of the threshold and is estimated as

p̂ =
1

nd

n∑
i=1

d∑
j=1

1
[X

(d)
i >x0]

.
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By choosing r = d we avoid the problem of having probability mass for k > d since then the
Binomial distribution function equals 0. Note that the Binomial distribution converges to the
Poisson distribution for r → ∞ and p → 0 with rp → λ.
As the third and last distribution, we use a distribution proposed by Gumbel and Schelling
(1950)

PG(l = k) =

(
nd
m

)
m
(
d
k

)
d(1 + n)

(d(n+1)−1
m+k−1

) ,
where m is the rank of x0 in the sample (X1, . . . , Xn) (all monthly maximum values of all years)
in decreasing order. If n, d → ∞, the ratio m/n remains constant (m being approximately
the median of the sample) and n/d → 1, Gumbel and Schelling (1950) have shown that this
distribution converges asymptotically to a normal distribution, which is a case of the central
limit theorem. Otherwise, if n, d → ∞ and m and k remain small, it converges to the Poisson
distribution. This distribution has the advantage that we do not have to estimate any parameters
and therefore have no uncertainties at this point. The only assumption needed is continuity
of the data. The di�erences among these three distributions are shown by the example of a
German �ood series (Figure 7.3). The Poisson distribution has a broader but �atter behaviour,
with probability mass even for k > 12, that is, an exceedance of monthly maximum discharges
of a threshold more than 12 times a year. The Binomial and Gumbel-Schelling distributions
have a similar behaviour, although the Gumbel-Schelling distribution has a larger skewness. The
in�uence of the di�erent shapes has been examined by comparing the three di�erent POT models
(Poisson, Binomial and Gumbel-Schelling) via their quantiles. The results are similar to those
of Önöz and Bayazit (2001). The in�uence of the chosen weighting distribution is negligible,
regardless of the estimated quantile. A possible reason for the similarity of all results could be
that the Poisson distribution is the limit distribution of both the Binomial and the Gumbel-
Schelling distributions. Thus, in the following we will use the Poisson distribution since the
model is much easier to apply than the others. Combining the Poisson distribution with the
GPD, we obtain the following distribution function of annual maxima

Fa,P (x) =
∞∑
k=0

λk

k! e
−λ

(
1−

(
1 + κx−x0

β

)− 1
κ

)k

= e−λ exp

(
λ

(
1−

(
1 + κx−x0

β

)− 1
κ

))
= exp

(
−λ
(
1 + κx−x0

β

)− 1
κ

)
.

This is the GEV distribution with parameters ξ = κ, σ = βλκ and µ = x0 − β(1− λκ)/κ.

Saesonal Di�erentiation

A precondition of extreme value statistics is the assumption that the observations are homoge-
neous, i.e. subject to a common set of forces (Gumbel (1941)). The assumption of an �inde-
pendent identically distributed random variable� has been critically discussed by several authors
(e.g. Kleme² (2000)). One argument against this assumption are the di�erent origins of �oods.
A �ood peak with a certain size can result from several meteorological conditions and di�erent
combinations of hydrological processes. Often di�erent �ood types (e.g. long-rain �oods, short-
rain �oods, �ash �oods, rain-on-snow �oods and snowmelt �oods) are mixed within a single
series of annual maxima. In many cases individual types dominate the regional �ood conditions
(Merz and Blöschl (2003)), but the question remains open if rare and extraordinary extreme
events belong into the same category as the majority of small and average �oods. An attempt
to consider this heterogeneity of �ood types is seasonal statistics. As some �ood types occur
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Figure 7.3.: Di�erences between the discrete distribution functions of the number of ex-
ceedances k of the threshold (minimum annual maximum) in a year for the Goer-
itzhain/Chemnitz gauge. The Binomial and Gumbel-Schelling distributions �t much
better to the peak of the observed probabilities and also have zero probability for
k-values larger than 12.
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Figure 7.4.: Monthly means of discharge averages (MQ) and maxima (MHQ), derived from long
series (years 1911 to 2010) for two gauges in the Mulde basin. A seasonality can be
found with the values belonging to the months March and April, indicating a strong
in�uence of snow melt caused by the close location to the Ore mountains.

only in a speci�c season of the year (e.g. snowmelt induced �oods in winter but short-rain �oods
mainly in summer) seasonal �ood statistics are an option to increase the homogeneity within
the split samples. A subdivision of the year into two periods (winter and summer) has been
proposed e.g. by Waylen and Woo (1982). The two �tted distribution functions (one for rainfall
generated �oods and the other for snowmelt �oods) have been compounded. The basic idea of
such an approach is based on the assumption that �oods appearing in one season are identically
distributed, which is essential in standard statistical inference (Allamano et al. (2011)). Several
methods for depicting the �ood seasonality have been developed. By means of directional statis-
tics, Bayliss and Jones (1993) speci�ed the annual mean day of �ood (directional mean) and a
�ood variability measure. The last one is a measure of seasonality, describing how much annual
maxima are concentrated within a period of the year. There are several options to subdivide a
year into seasons. In some cases, e.g. in reservoir management, practical needs determine arbi-
trary selections, e.g. to specify a varying �ood storage capacity within a year. Statistic based
subdivisions have been proposed using directional mean and variance measures (Burn (1997))
of annual �oods or relative frequencies of �ood occurrences in months (Cunderlik et al. (2004)).
Here, we want to introduce a seasonal model �rst, where the seasons are simply determined by
the occurrence in the year. Nevertheless, it is applicable also for other distinction of subsets. The
results presented here and in the following two sections are published in Fischer et al. (2016b).

The climatic seasonality of the runo� and �ood regimes is shown in Figure 7.4 for two catchments.
By the long-term averages of monthly maxima it becomes evident how the seasonal distribution
of �oods di�ers from the general seasonal runo� regime. The seasonal distribution of runo� has
its maximum in late spring and its minimum in autumn. The �ood peak averages are also high
in spring (resulting from snowmelt and wet soil conditions) but there is often a maximum also
in summer (July/August). All annual �ood series contain winter and summer �oods.

If we accept that �ood series are heterogeneous and several distributions need to be combined,
the question is how the yearly probabilities of a �ood peak can be estimated. In the �eld
of mathematical statistics a mixing distribution is de�ned as the probability distribution of a
random variable gained by a combination of other random variables. In this case the cumulative
distribution function of a �nite mixture model can be calculated by a convex combination of the
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distribution functions of these random variables

F (x) =

k∑
i=1

ωiFi(x), (7.2)

where ωi > 0 are the mixture weights with
∑k

i=1 ωi = 1, Fi are the mixture distributions and k
is the number of mixture components. In the seasonal hydrological setting this means that we
have for every season i = 1, . . . , k one distribution function Fi that has a certain in�uence ωi on
the series of annual maxima. Typically, the weights ωi would be chosen as the probability that
an annual maximum origins from season i.
It is not necessary that the Fi belong to the same distribution family or have the same number
of parameters. If they are continuous, the mixing distribution is also continuous and the mixing
density exists. A detailed introduction to �nite mixing distributions can be found for example
in McLachlan and Peel (2004). Rossi et al. (1984) have proposed a two component mixing
distribution based on two di�erent Gumbel distributions, which combines the di�erent �ood
causes additively. For this model �ve parameters have to be assessed. If the distribution of
the components is not known, it is rather di�cult to estimate the mixture model. At least the
number of mixing components should be known, otherwise an overestimation is possible (Boes
(1966); Leroux (1992)).

If we consider seasonal components we can use more information about the data than the fact
that they can be modelled stochastically. We can assume that summer and winter �oods and
therefore the random variables XS and XW are independent. Additionally, the annual maximum
is in any case the maximum of the summer and the winter annual maximum. Vice versa, if the
annual maximum XA does not exceed some value x, then also the summer as well as the winter
annual maximum must not exceed this value. Thus, the annual non-exceedance probability can
be estimated multiplicatively (Todorovic and Rouselle (1971)):

P(XA ≤ x) = P(max(XS , XW ) ≤ x) = P(XS ≤ x,XW ≤ x) = P(XS ≤ x)P(XW ≤ x). (7.3)

This approach has the advantage that one does not have to estimate a weighting factor (Waylen
and Woo (1982)).
We applied both approaches, the statistical mixing (eq. (7.2)) and the maximum mixing (eq.
(7.3)) approach, to �ood data from the 19 gauges in the Mulde river basin. In the mixing
approach, the seasonality of �ood events has been handled in a similar model as proposed by
Rossi et al. (1984). As above, the annual block maxima are modelled by a GEV distribution.
Additionally, we tested the applicability of the GEV distribution to summer annual maxima,
winter annual maxima and the annual maximum series using the AIC (compared to three other
common distributions) and the Anderson-Darling test (Table A1 in the appendix). Although
the PearsonIII distribution has lower AIC values, the p-values of the Anderson-Darling test are
much higher for the GEV. For the PearsonIII distribution the p-values of the Anderson-Darling
test sometimes even lead to rejection of the hypothesis (p = 0.032 for Zoeblitz). Additionally,
the values for the AIC for GEV and PearsonIII do not di�er much. Hence, for both models the
marginal distributions of the summer and winter events are assumed to be GEV distributed.
Therefore, three parameters have to be estimated for each season:

Fi(x) = P(Xi ≤ x) = exp

(
−
(
1 + ξi

x− µi

σi

)− 1
ξi

)
,

95



7. Robust Estimation in Flood Statistics

for 1 + ξi(x − µi)/σi > 0 with shape parameter ξi ∈ R , scale parameter σi > 0 and location
parameter µi ∈ R and i = W,S.
For parameter estimation the L-moments are used in every case. If we consider that �oods do not
occur in every season in every year, we have to apply censored series, where an extra parameter
describes the probability that the seasonal maximum stays below a threshold x0, which we use
to censor the data. Here we replace the non-exceedance probability of the summer respectively
winter events by

P0,i + (1− P0,i)P(Xi ≤ x)

with P0,i being the probability that the event Xi is smaller than the threshold x0 and i = W,S
indicating the summer or winter event. The question arises if this shortening of the data should
be considered in the parameter estimation. Therefore, we verify in a simulation study that the
shortening in the left tail has no signi�cant in�uence on our studies. Since we are interested in
high quantiles (90% and higher) we investigated the in�uence of the shortening on the estimation
of these. To compare the typical hydrological setting with a more asymptotic one, samples of
length n = 100 and n = 1000 are generated. The parameter vary between ξ = {0.1, 0.3, 0.6},
σ = {2, 8, 12, 20} and µ = {10, 30, 50, 100}, which represent most of the parameter sets of the
considered gauges. We then calculate the quantile of the whole series and the standard error for
a given annuality T

s2T =

(
∂xT
∂σ

)2

Var (σ) +

(
∂xT
∂ξ

)2

Var (ξ) +

(
∂xT
∂µ

)2

Var (µ) + 2

(
∂xT
∂σ

)(
∂xT
∂ξ

)
Cov (σ, ξ)

+ 2

(
∂xT
∂σ

)(
∂xT
∂µ

)
Cov (σ, µ) + 2

(
∂xT
∂ξ

)(
∂xT
∂µ

)
Cov (ξ, µ)

with

∂xT
∂ξ

= − σ

ξ2

[
1−

{
−ln

(
1− 1

T

)}−ξ
]
+

σ

ξ

[{
−ln

(
1− 1

T

)}−ξ

ln

{
−ln

(
1− 1

T

)}]
∂xT
∂σ

= −1

ξ

[
1− {−ln (1− 1/T )}−ξ

]
∂xT
∂µ

= 1

and ⎛⎝ Var (µ) Cov (µ, σ) Cov (µ, ξ)
Cov (σ, µ) Var (σ) Cov (σ, ξ)
Cov (µ, ξ) Cov (σ, ξ) Var (ξ)

⎞⎠ =
1

n

⎛⎝σ2w11 σ2w12 σw13

σ2w12 σ2w22 σw23

σw13 σw23 σw33

⎞⎠
for the L-moment estimators of the GEV (see Heo et al. (2001)), where the weights wij depend
on ξ and are listed in Hosking et al. (1985a). The series is then shortened by the smallest p%
values as long as the estimated quantile of the shortened series lies in the con�dence interval
of the quantile of the whole series. The results of the needed share of shortening to exceed
the limits of the con�dence interval are given in Table A2 in the appendix. As expected the
removed share increases with increasing quantile and decreases with increasing sample length
caused by the formula for the con�dence interval that behaves alike. We can see that at least a
shortening of 15% is needed to show a signi�cant di�erence. For small samples like those used in
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Table 7.2.: Annualities of the six largest annual maxima at the gauge Berthelsdorf/Freiberger
Mulde, estimated with both mixing approaches. The extreme character of the 2002
event becomes evident as well as the di�erences of the tail behaviour of the approaches.

Flood peak
HQ [m3/s]

Year Month AMS
Statistics of
summer
events

Statistics of
winter
events

Statistical
mixing ap-
proach

Maximum
mixing ap-
proach

63.9 2006 March 10 13 40 24 13
68.2 1954 July 11 14 51 28 15
120 1958 July 39 35 597 97 47
122 1992 July 41 36 646 100 49
140 2013 July 55 44 1251 128 62
360 2002 August 476 187 185023 583 275

�ood statistics we can remove 40% of the smallest data without a signi�cant change. For higher
quantiles this number increases. Since we never cut o� more than 25% of the smallest data and
have sample sizes smaller or equal to n = 100 the consideration of annual maxima above the
�ood threshold does not have a high in�uence on the estimation and the estimators do not have
to be adjusted.

For the mixing model the distribution function of the annual maxima XA is then as follows

P(XA ≤ x) =P(XA = XS)(P0,S + (1− P0,S)P(XS ≤ x))

+ P(XA = XW )(P0,W + (1− P0,W )P(XW ≤ x)). (7.4)

Since we assume P(X ∈ F2) = 1 − P(X ∈ F1), the conditions on the weights are ful�lled. For
the maximum mixing model we obtain

P(XA ≤ x) = (P0,S + (1− P0,S)P(XS ≤ x)) · (P0,W + (1− P0,W )P(XW ≤ x)). (7.5)

The results of both models di�er signi�cantly. To give an example, the estimated annualities for
the six largest annual maxima of the series 1936 to 2013 at the Berthelsdorf/Freiberger Mulde
gauge are calculated with the two di�erent approaches using only the winter and only summer
series and compared with the GEV derived from the annual maximum series (Table 7.2). The
parameters of the GEV are estimated with the L-moment method. Comparing the results of the
mixing distributions to the estimated annualities of the series consisting only of the summer or
only of the winter maxima gives an impression of how probable an event is to occur in summer
or in winter. This has large in�uence on the mixing distribution.
Table 7.2 emphasises clear di�erences between summer and winter series. The observed extraor-
dinary �ood peaks in the �rst row occur seldom in winter time. Only one of these events with a
peak of 63.9 m3/s occurred in winter. It has a return period of 40 years in winter, but 13 years
in summer. The highest �ood peak (August 2002) has an extremely low exceedance probability
in winter. In summer such a �ood peak is much more probable. In this basin, the majority of
all annual �oods occurs in winter. As a result, the high return periods of large �oods in the
winter season a�ect the common distribution function (eq. (7.4) respectively (7.5)) strongly.
The return periods of large �oods are therefore higher in this example if we apply the statistical
mixing approach (eq. (7.4)) as the low exceedance probabilities in winter have a higher impact
on the results as in the maximum mixing approach (eq. (7.5)). These results make us assume
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that the additional information, which has some in�uence on the maximum approach, captures
the features of the annual maxima in a better way. Schumann (2005) already has shown that
the maximum mixing approach delivers plausible exceedance probabilities even for extraordinary
�oods in our study region. In the following, we therefore will con�ne ourselves to the maximum
mixing approach.

Di�erentiation of �ood types according to timescales

A seasonal subdivision of �ood series can improve the homogeneity of the resulting subsamples.
However, several �ood types possibly occur within these seasons. If we have in mind the large
number of mid-size watersheds where rain �oods can be caused by convective rain with short
duration and high intensities as well as by synoptic rain with long duration, a subdivision of �oods
between winter and summer events does not seem to be su�cient. Therefore, a subdivision of
di�erent event types shall help to improve �ood statistics by obtaining more homogeneous groups.
The groups then can be combined in a new mixture model.
A new-developed concept of di�erentiating �ood types is introduced in the following. It can
also be found in Fischer et al. (2016b). For this the peak-volume relationship is used to classify
the events. Then we analyse the coherences and di�erences of the event types and within the
catchment.

A speci�cation of �ood types can be done by a number of process indicators, including the
timing of the �oods, storm duration, rainfall depths, snowmelt, catchment state, runo� response
dynamics and spatial coherence (Merz and Blöschl (2003)). One problem of this approach consists
in the availability of data and information that are needed to specify these indicators. In our case
study, no information about the snow cover (height, snow density, areal extent) are available to
specify the ablation process during winter �oods. Only for two climate stations daily precipitation
and temperature data are available. The series of these observations begin in the year 1951.
The two stations are located at di�erent elevations (1218 and 418 m a.s.l.). We have some
information about the probable snow accumulation and snowmelt conditions from applications
of the well-known degree-day method (Rango and Marinec (1995)), but a transfer of these results
to catchments, which di�er in their hypsometric conditions, would be rather uncertain. Especially
the gradient of temperature with elevation remains unknown as well as the temporal changes of
the degree-day ratio during a snowmelt period.

For this purpose, the event characteristic ��ood timescale� (Gaál et al. (2012)) is applied to
di�erentiate between �oods of long and short duration. The �ood timescale TQ (in hours) is
de�ned as the ratio between the �ood volume V (in mm) and the �ood peak QP (in mm · h−1)
of one event

TQ[h] =
V

QP
. (7.6)

This ratio has almost a 1:1 relationship to the square root of the variance of the timing of runo�
(i.e. the temporal dispersion of the runo� hydrograph) which has been discussed by Viglione
et al. (2010a). Gaál et al. (2012) have used the timescales to specify the interplay of climatic and
watersheds characteristics for �ood generation in a wide range of nearly 400 watersheds that di�er
in size between 5 and 10, 000 km2. The causal factors, controlling the relationship between �ood
peaks and volumes in a regional context, are discussed in greater detail by Gaál et al. (2015).
The authors explain a weak dependence between peaks and volumes as a strong indicator for
di�erent �ood types within a sample and propose a characterization of the heterogeneity of �ood
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generating processes by Spearman's correlation coe�cient between �ood peaks and volumes. A
low coe�cient of correlation is seen as an indicator for a large variety of �ood generating processes.
Here we used this assumption in the converse sense to specify �ood types by estimation of linear
regressions between �ood peaks and volumes. However, �ood timescales vary also between events
of the same type of hydro-meteorological forcing. The duration of a �ood is related to the duration
of the meteorological input (rainfall, snowmelt) but depends also on hydrological processes within
watersheds (�ow-path lengths at hillslopes and in the river network). Temporal shifts between
input (areal precipitation) and response (discharge at the outlet of a basin) depend on the area of
the watershed (the length of �ow paths) and such characteristics as hillslopes, drainage density,
roughness, in�ltration, soil storage and others (Viglione et al. (2010b)). Thus, �ood timescales
result from two groups of controls: from the type of precipitation (storm duration and spatial
extent) and controls related to catchment processes (Gaál et al. (2012)). There are several
empirical approaches to specify the lag times or the time of concentrations from watershed
characteristics, considering mainly hydraulic relationships (e.g. Fang et al. (2008)). Besides
their regional validity, the temporal characteristics of �oods are also a�ected by the variability of
hillslope processes (e.g. Robinson and Sivapalan (1997), Tucker and Bras (1998)) between �ood
events. Contributions of sub-surface and surface �ow components may change between events
according to the rainfall intensity and the initial moisture state of the watershed. The catchment
speci�c controls disturb the relationship between hydro-meteorological drivers, �ood type and
timescales. E.g. the timescales of short-rain �oods scatter, depending on the location of the rain
cell and the remaining length of �ow paths to the basin outlet. Nevertheless, the relationship
between peak and volume has an explanatory power to di�erentiate �ood events into groups.
As described above, two �ood characteristics are combined in the timescale:

• the �ood peak denoted by xi

• the corresponding volume denoted by yi.

According to eq. (7.6) the timescale TQ is the quotient of both: TQi = yi/xi. From a �ood
series consisting of n samples, (xi, yi), 1 ≤ i ≤ n, we obtain a sample of n TQ-values. Consider
that not every summer maximum of discharge values exceeds the threshold x0 (see Section 7.2.1).
Events, where the peak stays beneath this threshold, are removed from the sample.
Although timescales can be used to di�erentiate between events of di�erent duration, the former
distinction into seasons is crucial, since the timescales also underlie di�erent season-depending
processes. The di�erences in meteorological forcing and hydrological processes result in di�erent
hydrographs for summer and winter events. Snowmelt induced �oods e.g. have in general larger
timescales than rain �oods. The seasonal variation of TQ-values becomes evident if we compare
TQ-values of summer and winter maxima by directional statistics in a Burn-diagram (Burn
(1997)). The day of the �ood peak within the hydrological year (1 to 365.25) is transferred into
the radian, the size of TQ-values is considered by the distance from the origin.
For this purpose all timescales TQi are normalized by the following equation

TQ′
i =

TQi −min
i

(TQi)

max
i

(TQi)−min
i

(TQi)
.

In Figure 7.5 seasonal distributions of timescales are shown for two catchments, the mid-size
catchment of the Hopfgarten gauge at the Zschopau river with a watershed area of 529 km2 and
the large-size catchment of the Wechselburg gauge at the Zwickauer Mulde river, which has a
watershed of 2107 km2. For both catchments, the highest TQ-values are concentrated in the
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7. Robust Estimation in Flood Statistics

Figure 7.5.: Burn-diagram of TQ-values for two gauges within the Mulde basin, where 1/11
denotes the �rst of November, 1/2 the �rst of February and so on. A seasonal
dependence of the size of the TQ-values can be seen where the largest TQ-values
occur in spring.

winter half-year (�oods between November and April). Also the spread of the timescales (spread
of the distances from the origin) is much higher in winter, which is an indicator for a higher
variety of �ood processes. TQ-values in summer are much smaller, indicating that the summer
�oods are relatively short compared to the winter events.
In Table 7.3 the statistical values (mean, standard deviation and skewness) of timescales for
winter and summer periods of all gauges are listed. It becomes evident that the means of
timescales are higher in winter than in summer. However, the coe�cients of variation are smaller
in winter than in summer for 8 of the 14 watersheds with an area smaller than 800 km2, while
this occurs only for one catchment with an area larger than 1000 km2.
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Table 7.3.: Mean, Standard Deviation, Coe�cient of Variation (CV) and Skewness of the summer and winter TQ-values

Gauge AE [km2] EL [m a.s.l.]
TQ winter TQ summer

Mean Std. dev. CV Skewness Mean Std. dev. CV Skewness

Aue 1 362 737.6 61.3 44.52 0.73 4.79 38.3 23.83 0.62 3.86
Niederschlema 759 697.4 62.4 24.26 0.39 0.88 43.9 16.00 0.36 0.61

Zwickau-Poelbitz 1030 617.0 74.0 35.11 0.47 1.30 48.4 16.92 0.35 0.75
Harthau 135.7 438.1 44.4 20.04 0.45 0.49 23.6 10.56 0.45 0.50

Goeritzhain 532 409.5 52.5 18.12 0.34 0.40 27.7 15.07 0.54 0.89
Wechselburg 2107 489.1 74.8 32.23 0.43 0.71 52.8 22.02 0.42 0.68
Tannenberg 90.6 646.6 45.8 20.13 0.44 0.93 30.9 12.53 0.41 0.83
Streckewalde 206 743.0 65.3 42.50 0.65 2.09 32.1 18.50 0.58 1.68
Hopfgarten 529 696.8 60.3 26.19 0.43 0.45 38.8 22.12 0.57 1.61
Rothenthal 75 752.2 45.4 19.94 0.44 0.91 29.6 15.50 0.52 1.26
Zoeblitz 129 698.7 59.0 24.32 0.41 0.59 35.9 19.27 0.54 1.06
Pockau 385 679.5 55.4 25.79 0.47 1.61 36.6 22.29 0.61 2.96

Borstendorf 644 653.6 63.6 27.31 0.43 1.07 39.4 18.57 0.47 1.47
Lichtenwalde 1575 612.2 82.9 38.72 0.47 0.87 54.3 27.30 0.50 1.04
Niederstriegis 283 372.2 51.9 19.70 0.38 1.34 33.3 14.32 0.43 0.69
Berthelsdorf 244 594.1 69.0 34.69 0.50 1.39 51.7 32.65 0.63 1.38

Nossen 585 483.0 62.2 29.48 0.47 1.57 43.4 18.39 0.42 1.05
Erlln 2983 500.4 104.9 59.28 0.57 2.91 64.4 25.44 0.40 0.82

Golzern 5442 477.3 86.7 37.21 0.43 0.65 63.9 23.97 0.38 0.79
Bad Dueben 6170.8 436.4 140.6 75.18 0.53 1.27 83.4 32.98 0.40 0.65
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In the next step the �ood events for each catchment are grouped into di�erent classes according
to their timescales. For this purpose a statistical procedure, described below, is developed. To
specify �ood events by their timescales into two groups of long and short events, a threshold of
the timescale TQ0 is needed. If the value TQi is greater or equal than TQ0, the corresponding
event i, represented by the tuple of peak and volume (xi, yi), belongs to a long event, otherwise
it is a short one. To �nd an appropriate threshold TQ0 we use the information contained in
the sample of TQ-values. We start with the order statistic of the triple (xi, yi, TQi) based on
the TQ value. After sorting the events accordingly to TQ(1) ≤ . . . ≤ TQ(n) we denote the peak
corresponding to the i-th order statistic of the TQ as x|TQ(i)

and the volume y|TQ(i)
likewise. It

can be assumed that the relationship between peak and volume of rain-�oods is linear (cf. Gaál
et al. (2015)). A well-known measure for the Goodness of Fit of a linear regression y = βx to a
sample (x, y) is the coe�cient of determination R2, which is de�ned as

R2 =

∑
i=1

(ŷi)
2

∑
i=1

(yi)
2 ,

ŷi being the regression estimate of yi. We assume the intercept in the linear regression to be
zero since a peak of zero determines automatically a volume of zero. Therefore, the coe�cient
of determination does not include the mean of the yi (cf. Eisenhauer (2003)).
To specify the threshold TQ0, the following formula is used

TQ0 = TQ(τ)

with
τ = argmax(R2(1, k) +R2(k + 1, n); [nε] ≤ k ≤ n− [nε] + 1).

Here, R2(i, j) is the coe�cient of determination of the linear regression of the sample
(x|TQ(i)

, y|TQ(i)
), . . . , (x|TQ(j)

, y|TQ(j)
). The parameter ε ∈ (0, 1) determines the minimum quota

of data in one subsample. If the length of one subsample would be too small, the coe�cient of
determination falsi�es the results. To ensure that the use of the coe�cient of determination makes
sense even for the smallest possible sample size n, ϵ = 0.25 (a subsample should contain not less
than 25 percent of the data) is chosen. We are aware that this coe�cient of determination can be
strongly in�uenced by single data points (outliers) which are located far away from the centre of
the remaining data (concerning the value of x and y). In cases when such single events occurred
in a sample, we also calculated the coe�cient of determination after removing these data points.
We rarely found a di�erence in the speci�cation of TQ0. Of course, it is also possible to use a
robust coe�cient of determination based on M -estimators proposed for example by Renaud and
Victoria-Feser (2010). The developed procedure can also easily be generalized to a distinction
into an arbitrary number of groups by simply choosing more thresholds and optimize R2 for
these groups. Nevertheless, the number of groups depends on the given sample size and must be
known before the distinction. In our case, the sample size allows no distinction into more than
three groups. Otherwise, the number of observations in one group is too small resulting in too
high uncertainty. For illustration, Figure 7.6 depicts the distinction into long- and short-rain
events for �oods in winter and summer for the Hopfgarten/Zschopau gauge.

The thresholds of timescales can be estimated from the slopes of the regression lines and vice
versa. For all gauges it becomes evident that the coe�cients of determination of the linear
regressions in winter are smaller than in summer. This is an indicator for a larger variety of
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Figure 7.6.: Relationship between peak and volume and division into long and short events for
winter and summer �oods using linear regression for the Hopfgarten/Zschopau gauge;
the upper line speci�es �oods with long, the lower one with short timescales.

Figure 7.7.: Relationship between peak and volume and division into three groups of events for
winter �oods using for the gauges Hopfgarten/Zschopau and Goeritzhain/Chemnitz;
the upper line speci�es �oods with very long, the mid line with long and the lower
one with short timescales.

hydro-meteorological conditions of �ood formation and process controls in winter, when the
hydro-meteorological drivers of �oods are rainfall and snowmelt. Also the hydrological processes
di�er more between events. The amount of runo� from melting snow e.g. depends on the
previous accumulation of snow, the warming, the state of soil and the input of energy by parallel
rainfall. The highest volumes of winter �oods are estimated for rain-on-snow events in late
March and April after a period of snow accumulation and (presumed) frozen soil. To consider
this high variety of �ood generating processes, the procedure of subdivision has been repeated for
a division of winter events into three groups. In Figure 7.7 an example of the results is given for
the gauges Hopfgarten (area 529 km2, average elevation 697 m a.s.l.) and Goeritzhain/Chemnitz
river (area 532 km2, average elevation 409 m a.s.l). Both catchments have nearly the same size
but di�er in their elevations. Comparing the slopes of the two regression lines for large timescales
in winter, the �oods, originating in the catchment with the higher mean elevation (Hopfgarten),
have on average 25% higher �ood volumes than �oods with the same peak, that originate from
the lower catchment. The di�erences in the volumes of long and short �ood events between both
catchments are smaller (7% higher volume for long �oods, but 12% less volume for short �oods
in Hopfgarten). The last e�ect can be explained by a higher degree of urbanization (24% in the
catchment of the Goeritzhain gauge, but only 6% in Hopfgarten).
Now, the results of the subdivision are compared in more details. After subdivision of winter
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Figure 7.8.: Box-Whisker plots of the mean TQs of all 20 catchments in the Mulde basin for
di�erent �ood types. A similar behaviour of short winter and short summer �oods
as well as long winter and long summer �oods can be detected.

�oods into three and of summer �oods into two groups, the seasonal di�erences of the rela-
tionships between �ood peaks and volumes are compared. In Figure 7.8 Box-Whisker-Plots of
the slopes of the regressions (the mean TQ values) are shown. The large variety of slopes of
events with extra-long timescales in winter (called further on as XL-events) becomes evident. It
can be seen that short events in summer have a smaller slope (this means on average a smaller
�ood volume) than short events in winter. This can be explained by higher rainfall intensities
in summer, which increase the peak and lower initial soil moisture, which reduces the volumes.
The slopes of long �oods in summer and winter are comparable. The application of Fisher's
least signi�cant di�erence (LSD) procedure (Fisher (1935)) has shown no signi�cant di�erences
between the means of slope of short �oods in winter and summer at the 95% con�dence level.
Also the volume-peak-relationships for long �oods do not show any signi�cant di�erences in their
means between winter and summer.

In Table 7.4 the coe�cients of correlation between the means of TQs of all event groups are
shown, derived from the sample of 13 catchments which are smaller than 800 km2. This selection
of smaller catchments is necessary to avoid the dominating impact of large catchments. The
second value in each location of the table is a p-value derived from Steiger's Z-Test which tests
the statistical signi�cance of the estimated correlations (Steiger (1980)). p-values below 0.05
indicate statistical signi�cant non-zero correlations at the 95% con�dence level. All correlations
among slopes in winter are statistical signi�cant. Also the slopes of long �oods in summer
are statistically signi�cantly correlated with the slopes of short, long and extra-long events in
winter. In di�erence, short events in summer show no statistically signi�cant correlation of their
peak-volume relationships to any other group.
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Table 7.4.: Correlation coe�cients between the mean TQs for catchments with areas smaller than
800 km2; the colour indicates the signi�cance of the correlation with red being highly
signi�cant and white being not signi�cant

Mean TQ short
events winter

Mean TQ long
events winter

Mean TQ XL
events winter

Mean TQ short
events summer

Mean TQ long
events summer

Mean TQ long
events summer

0.6464 (0.0125) 0.6573 (0.0106) 0.6451(0.0127) 0.3607 (0.2052) -

Mean TQ short
events summer

0.1746 (0.5505) -0.0025 (0.9932) 0.0620 (0.8332) - 0.3607(0.2052)

Mean TQ XL
events winter

0.7592 (0.0016) 0.8537 (0.0001) - 0.0620 (0.8332) 0.6451(0.0127)

Mean TQ long
events winter

0.9132 (0.000) - 0.8537 (0.0001) -0.0025 (0.9932) 0.6573(0.0106)

Mean TQ short
events winter

- 0.9132 (0.000) 0.7592 (0.0016) 0.1746 (0.5505) 0.6464 (0.0125)

In contrast, for the six large catchments (areas above 800 km2), the slopes of peak-volume
relationships of short and long events in summer are correlated (correlation coe�cient is 0.875;
p = 0.026). This di�erence between large and small catchments is interesting. In general the
di�erences of timescales between long and short events in summer decline with the increase
of the drainage areas. To investigate the coherence of the peak-volume-relationships and the
catchment size, a measure for the di�erence between long and short �oods has to be de�ned.
For this purpose we calculate the average distance of the long-event volumes to the peak-volume
regression line of the short events. To obtain a scale-independent measure, we additionally divide
it by the average volume (estimated by the median) of long events at the gauge. This yields the
following formula

D =

1
n−r0

n∑
j=r0

(
y|TQ(j)

− βs · x|TQ(j)

)
med(y|TQ(j)

|r0 ≤ j ≤ n)
,

where r0 is the rank of TQ0 and βS is the regression coe�cient of the linear regression of the
sample of short events (x|TQ(j)

, y|TQ(j)
), 1 ≤ j < r0. Taking the whole series, that is r0 = 1, and

choosing βS as the slope of the regression of the whole series we obtain for D the normalised
standard error of the regression. So D is the normalised standard error of the long events if
they are modelled by a regression of the short events. The normalisation is necessary to make
a comparison between di�erent gauges (and therefore di�erent scales of �oods) possible. To
extent this measure to more than two groups one could simply calculate D pairwise for two
groups concerning the size of the threshold of consecutive groups. To take the Goodness of Fit
of the regression into account, we multiply D with the factor 1−R2(1, r0) and denote it by Dn.
A test on correlation shows that the hypothesis of independence between D and 1 − R2(1, r0)
cannot be rejected and an arti�cial coherence based on this factor is excluded. The relationship
between Dn for summer �oods and the catchment size is shown in Figure 7.9 for the 20 gauges.
It becomes evident how the di�erence measure declines with the catchment size. There are
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Figure 7.9.: Dn in relation to the catchment size of 20 gauges in the river basin Mulde. The
di�erence of long and short events clearly depends on the catchment size. For large
catchment areas no extreme short events with high peaks occur because these events
are attenuated by the large catchment.

several hydrological explanations for this result. The impact of convective storm cells that are
limited in their areal extent but result in �oods with high peaks and small volumes is smaller
for large watersheds, where only a part of the catchment is a�ected. Also the e�ects of runo�
concentration may compensate di�erences of the rain durations up to a certain degree if runo�
is formed only at the upper part of the catchment and the peak is alleviated by the �ood wave
propagation downstream. Otherwise, small watersheds react faster and high rainfall intensities
result in steep hydrographs with high peaks. Hence, it takes a larger volume of direct runo� to
reproduce a comparable high peak during a long rain event. The spread of the di�erences for
small and medium sized watersheds is an indicator for the variability of hydrological processes
among �ood events, caused by di�erent durations of rainfall.

Furthermore, the existence of a third group of events with extra-long timescales in winter has to
be discussed. On average 25% of all winter �oods belong into this category. Nearly 60% of all
extra-long events happen in March and April, but less than 15% in November and December.
The volumes of such extra-long �oods are on average 60% higher than the volumes of �oods
with the same peak belonging into the category of long events. By detailed analyses of events
with very high timescales using the day-degree snowmelt assessment, speci�c conditions of �ood
formation become evident. Such events result mainly from rain on snow under the following
conditions: a long period of snow accumulation and frozen soils in combination with a warm
front, accompanied by a rain period of several days. Such conditions occur in the Mulde basin
mostly in late March or April. In contrast, long winter �oods are typical snowmelt events that
occur mostly in early spring (March). Here the �ood volumes are smaller. This can be caused
by unfrozen soils and less rainfall. The monthly frequencies of �ood types of all analysed winter
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Figure 7.10.: Distribution of �ood types over the months in the winter half-year of all considered
winter events. The snowmelt induced extra long events mainly occur in spring
whereas the short events occur during the whole winter.

�oods is shown in Figure 7.10. It can be seen that short events are more equally distributed
among the months in winter than long or extra-long events.

In Table 7.5 the results of analyses of timescales are summarized. The two groups of watersheds
consists of 13 catchments with an area between 75 and 759 km2 (small basins) and 6 catchments
with areas from 1030 up to 6171 km2 (large basins). The timescales of the small basins show in
relation to the timescales of the large catchments a smaller dispersion. On average, long summer
events have twice the volume of short events that have the same peak. For smaller basins, this
relationship is a bit higher (2.24) than for large basins (2.03). In winter such di�erences between
small and large basins practically do not exist. The relationship of the volumes of long and
short events is 1.69 (small basins) or 1.7. Between long and extra-long events this relationship is
1.53 respectively 1.59. The shares of long and short events di�er in summer between small and
large basins more than in winter. This can be explained by higher rainfall intensities in summer,
falling on a smaller area.

As a result of this event analyses, we decide to di�erentiate between event types only in the
summer �ood statistics. The existence of at least three di�erent �ood types in winter allows no
su�cient speci�cation of probability distribution functions of �ood peaks separated into these
types at least for our region of interest. Especially the extraordinary character of the relative
small part of XL-�oods (extreme long timescales) cannot be considered in a statistical mixing
model (see e.g. Section 7.2.1) su�ciently. Nevertheless, if the observed runo� series is longer,
also a mixing model with three groups is possible.

The results of the analyses of �ood timescales for winter and summer half-years can be sum-
marised as follows:
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Table 7.5.: Means and coe�cients of variation (CV) of �ood timescales in hours for winter and
summer �oods, di�erentiated by event groups and small and large basins

Summer short events long events

share mean CV share mean CV
small basins 0.681 26.1 0.172 0.319 58.5 0.119
large basins 0.542 33.9 0.464 0.458 68.7 0.417
Winter short events long events extra-long events

share mean CV share mean CV share mean CV
small basins 0.443 36.0 0.173 0.314 60.9 0.200 0.243 93.5 0.224
large basins 0.502 44.2 0.466 0.280 75.0 0.461 0.218 119.0 0.525

• Flood timescales can be applied to di�erentiate �oods into event types. In summer we
found two groups of events, which di�er signi�cantly in their peak-volume-relationships.
In winter the grouping is more di�cult. In our study region we have to di�erentiate at
least between three di�erent groups of winter �oods.

• Short and long �oods in winter and summer are relatively similar in their timescales. One
group of events exists only in the winter half-year. These extra-long events result from
speci�c rain on snow cases.

• For large basins, the relationships between �ood volumes and peaks in summer are corre-
lated. This is an indicator for similar underlying climate processes. This is not the case for
catchments with an area size smaller than 800 km2. Here, the slopes of the relationships
are not correlated. This indicates a �ood control by di�erent types of rainfall events.

This new information on the heterogeneity of �oods will be used in a new mixture model. For
this, the obtained information on the di�erent event types has to be combined in a statistical
model for the distribution function. The development of such a model is given in the following
section.

Considering seasonal aspects and �ood types with the maximum mixing approach

In the considerations above it becomes obvious that besides the distinction between summer and
winter also a distinction between long and short summer events is necessary. We have shown
that the summer runo� series consists of two di�erent types of events: short and long �oods.
These can be separated as described above by using the TQ-threshold TQ0. We therefore want
to extend the seasonal mixing model from Section 7.2.1 to a model which considers the di�erent
distributions of winter and summer �oods as well as the di�erences between short and long
summer events. Since we want to consider several �ood types (long and short �oods) in summer,
we need a statistical mixing model to specify the resulting �ood probabilities in summer. We
are also interested in the annual �ood probabilities, so we have to compound the probabilities
of summer �oods with the probabilities of �oods in winter. Using the maximum model for both
steps, eq. (7.5) has to be extended to a nested maximum approach. It would of course be possible
to apply a statistical mixing distribution similar to the approach of Rossi et al. (1984) as well,
but the results above make the maximum model more recommendable. For summer we have
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two mixing components (�oods with long or short timescales). The weights in the statistical
mixing model could be chosen as the probability that the random variable belongs to the �rst or
the second distribution, respectively. These weights are unknown. The maximum mixing model
bene�ts from the fact that the non-exceedance of a summer �ood peak X demands that it is not
exceeded by any short or long �ood event in this half-year. So the multiplicative approach of
Todorovic and Rouselle (1971) can be applied and we have

P(XA ≤ x) = (P(XSS
≤ x)P(XSL

≤ x))P(XW ≤ x),

where XSL
are the maxima of the long summer runo�s and XSS

are maxima of the short summer
runo�s.
If a �ood event does not happen every year in summer, we have to incorporate also correction
factors due to the censoring of the data. Here it is advisable to correct the summer events jointly.
If a summer event lies beneath the threshold, also the respective short and long summer event
has to lie beneath the threshold. This modi�es the model into the following representation of
the distribution of the annual maximum discharges

P(XA ≤ x) = (P0,S + (1− P0,S) (P(XSS
≤ x)P(XSL

≤ x))) (P0,W + (1− P0,W )P(XW ≤ x)) .

Still, one problem remains. Unlike the distinction between summer and winter annual maxima, a
distinction between short and long summer �oods does not result in representative series of both
groups of events. As only a member from one of both groups is the maximum of the summer
half-year, we only know the highest summer �ood per year which can be characterized by a long
or by a short timescale. Smaller values are overlaid. A reconstruction of these observations is
not possible since, as mentioned above, monthly maximum values are the highest time-resolution
for peaks. In the observed subsamples only large values of the �ood types are included since all
small events are overlaid by higher events belonging to the other �ood type. If we now want to
�t a distribution to these subsamples, we do not have the full information included in the series
but only the information belonging to the right tail. Nothing is known about the small events, in
fact, simply �tting a distribution to these subsamples would totally ignore the presence of small
events. This leads to a distortion of parameters, especially of location and skewness. To estimate
the distributions of long and short �ood events, we have to correct the statistical parameters
of both samples. This is a problem already recognized by McCuen and Beighley (2003), who
propose a Maximum-Likelihood based approach to estimate the parameters. Since this approach
is only valid for a normal distribution and we can certainly not assume normality of the data,
it is not applicable in this case. We therefore had to develop a new approach for reconstruction
of the overlaid information. In the following we propose two approaches, one based on censored
survival statistics and the other one being a heuristic approach. Both approaches are presented
�rst and compared later on in this section.

We want to present the methods by using the example of summer annual maxima.
Suppose, we have a series over n years of summer annual maximum discharges (XS1, . . . , XSn).
It is known that this time series contains short as well as long events. Each XSi is therefore the
maximum of both types of events in one year, such that the maximum event of the other type
is overlaid as its peak is smaller. We have no possibility to obtain the overlaid events since the
data basis does not contain these. By using the TQ-values we can, however, determine which
of the XSi belongs to which type of event. This leads to two subsamples (XSL1, . . . , XSLn1)
and (XSS1, . . . , XSSn2) consisting of di�erent quantities of long, respectively short events, where
n1 + n2 = n . The unknown full series of long and short summer series are analogously denoted
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with (XSL1, . . . , XSLn) and (XSS1, . . . , XSSn). The two di�erent approaches to reconstruct the
overlaid information are presented in the following and are compared later on.

Censored Survival Statistic

Survival data, that are data measuring the time to an event, are used in several disciplines,
especially in medicine and in biology, where case studies with probates (humans or animals) are
used to analyse the e�ect of certain diseases, medicine etc. In this context often the problem of
censored series occurs, for example when a probate already died before a study started and the
exact date is unknown (left-censoring) or if the time of the study expires although the desired
e�ect did not occur (right-censoring). For more details on this topic we want to refer to Klein
and Moeschberger (2003).
Since this scenario of right-censored series is very similar to our case of overlaid series of �ood
types it seems natural to use methods of survival analysis to estimate the parameters of the
censored series. We therefore want to describe the scenario in more detail.
With the notation used above we have XSi = max(XSSi, XSLi), i = 1, . . . , n, and de�ne the
function δi = 1[XSSi≤XSLi] to indicate whether the i-th summer annual maximum is a short or a
long event. Let us denote with hθ the probability density of (XS , δ) with unknown parameters
θ. To construct estimators for the parameters of the distribution function of the XSS

(and also
XSL

) we want to use a Maximum-Likelihood approach. For this we can use a result given by
Kremer et al. (2014) for the log-Likelihood function

logLn(θ,XS , δ) =

n∑
i=1

log hθ(XSi, δi)

=

n∑
i=1

(δi log f(XSi) + (1− δi) logF (XSi) + δi logG(XSi) + (1− δi) log g(XSi)) , (7.7)

where F is the distribution function of XSS
with related density f and G is the distribution

function of XSL
with density g. Of course, the δi are not known but based on the distinction of

the events described above. That means, actually the uncertainty of this distinction has to be
taken into account. Nevertheless, we want to assume the δi to be known, since we can proceed
on the assumption that the distinction is correct. The uncertainty in that point is therefore
negligible.
We want to concentrate on estimating the distribution function of the short summer events, since
the estimation of the long summer events is totally analogous and does not have to be shown
in detail. Therefore, for the Maximum-Likelihood estimation only the �rst term of eq. (7.7) is
needed. For the distribution function of the short (as well as the long) summer events we choose,
motivated by the Goodness of Fit tests above, the GEV with parameters µ, σ and ξ.
Therefore, the Likelihood function can be reduced to

logL⋆
n =

n∑
i=1

[
δi log

(
1

σ

(
1 + ξ

(
XSi − µ

σ

))(− 1
ξ
−1)

exp

(
−
(
1 + ξ

(
XSi − µ

σ

))− 1
ξ

))

+ (1− δi) log

(
exp

(
−
(
1 + ξ

(
XSi − µ

σ

))− 1
ξ

))]

=

n∑
i=1

(
−δi log σ + δi(−

1

ξ
− 1) log

(
1 + ξ

(
XSi − µ

σ

))
−
(
1 + ξ

(
XSi − µ

σ

))− 1
ξ

)
.
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Table 7.6.: RMSEs of the estimates of the parameters using Survival Analysis for sample sizes
n = 100 and n = 1000. High values for the RMSE for small sample sizes indicate a
lack of e�ciency of the ML-estimator.

Number Scenario
RMSE for

n = 100 n = 1000
µSS σSS ξSS µSS σSS ξSS

3

µSS = 20, σSS = 5,
ξSS = 0.4
µSL = 40,σSL = 2,
ξSL = 0.1

20.517 13.317 0.449 8.061 3.787 0.158

4

µSS = 20, σSS = 2,
ξSS = 0.6
µSL = 20,σSL = 2,
ξSL = 0.1

1.132 0.379 0.160 0.0896 0.0988 0.0414

Number Scenario
RMSE for

n = 100 n = 1000
µSL σSL ξSL µSL σSL ξSL

3

µSS = 20, σSS = 5,
ξSS = 0.4
µSL = 40,σSL = 2,
ξSL = 0.1

0.237 0.178 0.0984 0.101 0.121 0.0104

4

µSS = 20, σSS = 2,
ξSS = 0.6
µSL = 20,σSL = 2,
ξSL = 0.1

0.3242 0.335 0.114 0.0876 0.104 0.0348

This function is then optimised to �nd the parameters.

We want to test the validity of this approach by a simulation study.

Therefore, two samples of length n = 1000 of long and short summer �oods with parameters of
the GEV-distribution µSS

, σSS
, ξSS

and µSL
, σSL

, ξSL
, respectively, are chosen. For these two

samples the maximum of each data pair is used to obtain the annual summer maximum series.
Applying the ML-estimation proposed above we then calculated the RMSE of the estimates of
the single parameters. This has been repeated 1000 times per scenario. Two scenarios given in
Table 7.6 are taken into account that mirror parameter sets assumed to be typical for this kind
of hydrological time series.

Since in hydrology we have very limited sample sizes with seldom more than 100 years of ob-
servation we also want to test the applicability of the ML-estimation to small samples of size
n = 100. Although we use a parametric estimation the problem of censoring could lead to a
high uncertainty for small sample sizes, especially if one event dominates and therefore the other
event type only has a small share on the summer annual maxima. Hence, the simulation done
above is repeated with a sample size n = 100. The results can be found in Table 7.6.

Whereas the results for large samples (n = 1000) lead to a rather small RMSE, the RMSEs for
n = 100 are rather high for the parameters of the short events. For the second scenario they may
be tolerable in both cases and both event types. This is the scenario where both samples only
di�er in their shape parameter and thus have nearly equal share on the summer maxima. That
is, even for a sample size of n = 100 we can expect about n1 ≈ n2 ≈ 50 observations. The real
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disadvantage of the ML-estimation approach can be seen for the �rst scenario. Here, because
of the choice of the parameters, we can expect a much higher share of the long summer events
on the summer maxima. When we estimate the parameters for the short summer events, the
observed number of short events is very small. In this case, the ML-estimation approach has
large disadvantages, especially when considering that the �rst scenario is the most probable in
hydrology. As for the most cases in Germany, and nearly for all of our gauges in the Mulde basin,
the scale and/or shape for the short summer events is much higher than for the long summer
events, whereas these have the larger or equal location parameter. This is due to the fact that the
short summer �oods are often very small but also consist of some single very large �ood events.
The long summer events are on average higher but without having these single extreme �oods,
see also the discussions in Section 7.2.1. Hence, this approach does not seem to be applicable in
our context. This has been the reason for us to develop a new approach to �ll up the overlaid
information, which is presented in the following paragraph. It ensures a su�cient sample size
for both subsamples and makes an estimation less uncertain. Nevertheless, if the sample size is
su�cient large for both subsamples, the ML-approach is de�nitely worth to consider.

Heuristic approach: "The Filling method"

Analogously to the censored series used above, in this approach we use the information that the
missing events are de�nitely smaller than the overlaying events, otherwise they would not have
been overlaid. In contrast to the ML-approach now the gaps in the subsamples are �lled using
this information.
Let us �rst have a look at the mode of the GEV distribution, that is the value, where the
density and therefore the probability mass function takes the highest value. For a GEV(µ, σ, ξ)
distribution with ξ > 0 (as is typical for discharge series, corresponding to a bounded left tail
and therefore only positive discharges and a heavy right tail) the mode is given by

mGEV = µ+ σ
(1 + ξ)−ξ − 1

ξ
.

The second part (1+ξ)−ξ−1
ξ only containing the parameter ξ decreases with increasing ξ, converg-

ing to zero for ξ −→ 0 and being equal to −1/2 for ξ = 1 (see Figure 7.11). Since for our �ood
series the location parameter µ is mostly much larger than the scale parameter σ (see Figure
7.12), the second term in the mode is very small and only has small in�uence on the mode.
Coming back to the question of dominance of one sample it is obvious that the dominance is
closely related to the di�erence of the modes. The higher the di�erence of the modes, the more
dominant is the sample with the distribution of higher mode since for these (much) higher values
are more probable. The most critical case is the one, where we have one sample with only slightly
smaller scale but much heavier tail. In this case, it is not clear, which sample dominates in a
maximum series. Nevertheless, since both modes are close together the samples are treated as
more or less equal in share. Summarising these considerations we can conclude that the dom-
inance of samples in a maximum series mainly corresponds to the di�erence of location, since
this is the dominating term in the mode.

Remark 7.1. It is also possible to estimate the probability of overlay by calculating the inter-
section of both densities of the subsamples. For this the intersections of both functions have to
be calculated. In practice this is of course not possible since the true parameters are not known
and cannot be estimated. Therefore, this consideration is left out here.

Statistical simulations reported below con�rm the theoretical assumptions concerning the loca-
tion and show that maxima series resulting from two di�erent distributions are always dominated
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Figure 7.11.: The function f(ξ) = (1+ξ)−ξ−1
ξ representing the second term of the mode of the

GEV distribution related to the shape parameter ξ. A convergence to zero for
ξ −→ 0 becomes evident.

Figure 7.12.: Relation of location and scale parameter of the GEV for all considered gauges in
the Mulde and Harz region. One can see that for the Mulde gauges (index 1-20)
the relation of location and scale is always larger than 1.8. For the Harz region
(21-38) it is always larger than 1.5.

113



7. Robust Estimation in Flood Statistics

by the distribution, which has the larger location parameter.
For these simulations we want to compare two samples of GEV-distributed data samples
(X1, . . . , Xn) and (Y1, . . . , Yn) of size n = 1000. For both samples the pairwise maximum Zi =
max(Xi, Yi), i = 1, . . . , n, is taken and then the share of all Xi on Zi is calculated. This is
repeated 1000 times. We take all combinations of parameter values of the following sets into
account

• the location parameter µ ∈ {10, 30, 50, 100}

• the scale parameter σ ∈ {2, 8, 12, 20}

• the shape parameter ξ ∈ {0.1, 0.3, 0.6},

obtaining 4 · 4 · 3 · 4 · 4 · 3 = 2304 di�erent combinations of parameters. The chosen parameter
spaces represent the considered parameter space of the Mulde river basin well.
Since the results are too comprehensive to display here we show the results in a 3D-plot (Figure
7.13). On the axes the di�erence of the parameters of the two distributions is given, where large
(positive) di�erences indicate a much higher parameter for the �rst sample. The colour of the
single dots represents the share of the �rst sample on the maxima.
If all other parameters (scale and shape) are equal, shares of this dominating series of about 97%
can be gained. If the other series has a larger scale, this relation is diminished but still the series
with the larger location parameter dominates the maxima series (about 70 − 80%). The shape
parameter only has a small in�uence on the shares of the two distribution functions in this series.

For the same simulation setting we also check if there is a certain pattern in the non-overlaid part
by considering the ranks of the non-overlaid part of the samples related to the whole sample.
One could suppose that a certain part of the upper tail is the part which is non-overlaid. That
would give us additional information on the overlaid part and would help us to reconstruct it.
Nevertheless, in the simulations no certain pattern is detectable. Of course, the rank of the
non-overlaid part of the series depends much on the parameters, since we have shown in Figure
7.13 that often one sample dominates the maximum series. A similarity in the non-overlaid parts
is that always the highest or at least the second-highest value of a sample is also contained in the
maximum series. This is not surprising. What is somehow surprising is the rank of the smallest
value contained in the maximum series. It varies from 1 (the smallest value in the single sample)
up to the second largest rank. And also in the ranks of the non-overlaid part of the sample there
is no certain pattern, that is they are not in consecutive order. Therefore, we can obtain no
additional information by using the ranks of the non-overlaid part of the sample.

The knowledge about the in�uence of the parameters on the share leads to the following procedure
to adjust the statistical parameters of the subsamples. The shares are estimated by counting
the number of events belonging to the one or the other distribution, which occur in the maxima
series, respectively. First, one estimates the location parameter µS of the whole summer annual
maxima series. We assume that the event type with higher share in this sample determines this
parameter. We therefore need the relation between the relative shares of the subsamples of both
types in the whole series:

α =
#(XSS

|XSS
∈ XS)

#(XSL
|XSL

∈ XS)
=

aSS

aSL

.

If α > 1, then the share aSS
of the short events is larger and µS is mainly determined by these.

If α < 1, the same is valid for the long events, whereas, if α ≈ 1, the share of both types of
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Figure 7.13.: Share of the �rst sample on the maximum series of two GEV-distributed samples as
a function of the di�erence between the parameters of the distributions. It can be
seen that mainly the location parameter has in�uence on the share, where a larger
location parameter leads to a larger share.
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events is nearly the same and we can assume that both have nearly the same location parameter
µS . For the subsample with a smaller share we use the information that its location parameter is
smaller than that of the dominating series, otherwise this series would be dominated in another
way as we have stated above. Therefore, the location parameter of the smaller subsample has to
be reduced.
To adjust the location parameters we introduce two parameters ρSS

and ρSL
. Depending on the

relationships of shares α, these parameters, which are used for a multiplicative correction of the
location parameters µSS

and µSL
, are speci�ed as follows:

ρSS
= aSS

+ 1
2 , ρSL

= 1 , α < 1
ρSS

= 1, ρSL
= 1 , α = 1

ρSL
= aSL

+ 1
2 , ρSS

= 1 , α > 1
.

The more equal the shares of both event types within the summer series, the more equal both
location parameters are to the location parameter of the summer series. The smaller the share of
one type, the more deviates its location parameter from the summer series, since the distribution
with higher location parameter dominates the summer events. At the same time, samples with
the same location parameter will lead to more or less equal share (see the simulation above) and
therefore the location parameter is not corrected much for both samples. The de�nition of the
correction factors ρi guarantees that the location parameter is not reduced by more than 50%.
This is needed since we do not want to obtain a support which is negative and far away from 0.
To replace the missing values we can use the fact that for the subseries, which dominates the
summer annual maxima, the missing values scatter around the parameter µS , since all overlaid
events do not belong to the sample of large events we observe. Probably, no events from the
right tail occur in the series of missing values (these are already included in the non-overlaid
series) and so we can assume that these are distributed symmetrically. There is no option to
estimate the variance of this subsample directly. Relatively large events are possibly overlaid by
large events, belonging to the other subsample. That is why we consider here a spectrum around
the location parameter to introduce an arti�cial variance. We assume that this spectrum lies
symmetrically in distance of the assumed variance of the respective event type around µS , so
that we include larger as well as smaller events in keeping the mean µS . Under the consideration
that we only know a subsample, we use the robust estimator MAD (median absolute deviation)
for estimation of this variability from the known part of this series

MAD(X1, . . . , Xm) = C ·med(|Xi −med(X1, . . . , Xm)|, i = 1, . . . ,m),

where C = 1
Φ−1(3/4)

≈ 1.4826 ensures the consistency under normality (cf. Huber (1981)). Since
we only use a part of the series, we can assume that large deviation from normality will not occur.
As example we show a QQ-plot of the non-overlaid part of a simulated series of n = 1000 data
points (∼ GEV (20, 5, 0.4)) compared with a normal distribution (Figure 7.14), where we only
see a small deviation from normality on the lower tail and for the largest value. Here, again we
want to use the property of stability in estimation of robust estimators, even for small samples.
Of course, also other normalisation factors have been used. Nevertheless, smaller choices showed
a strong underestimation of the left tail, whereas larger values of the normalisation constant led
to a larger overestimation of the right tail.
Please note that the MAD estimator can also be expressed as a GL-statistic. It has been
constructed by Huber (1981) especially for symmetric distributions, which has been the reason
for Rousseeuw and Croux (1992) to develop more general estimators, also e�cient for asymmetric
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Figure 7.14.: QQ-plot of the non-overlaid part of a sample of n = 1000 GEV (20, 5, 0.4)-
distributed data compared with the normal distribution. The maximum series
consisting of the non-overlaid parts is constructed with a second series of n = 1000
GEV (40, 2, 0.1)-distributed data. A small deviation from normality can be found
in the left tail.
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7. Robust Estimation in Flood Statistics

distributions. But we have seen that symmetry can be assumed here, so the MAD estimator is
su�cient.
The robustness of MAD has the e�ect that for a large scale parameter of the annual summer
maxima series (that means many large events in the sample) the assessment of the variance will
result in a large value, too. This is important, since one can assume that for a large scale also
the overlaid events scatter much. However, if the shape parameter is large, single extremely
large events will occur in the mixed series of summer annual maxima. Since one can assume here
that the overlaid events only represent the left tail of the distribution, the large shape parameter
should have no in�uence on the spectrum of the ��lling� data. By using the robust estimator
this requirement is ful�lled.
After estimating the location as well as the variance of the overlaid sample it remains to simulate
the missing values. For this, a distribution has to be chosen. Since the right tail is already
represented by the non-overlaid part of the subsample, a symmetric distribution seems to be
favourable. As mentioned before the left tail should be bounded and close to the theoretical left
bound of the support, µ− σ/ξ.
To generate the missing values in the two subsamples we therefore choose the uniform distri-
bution, for which the bounds are known. Of course, also other symmetric distributions like the
normal distribution would be possible, but this has unbounded support. As mentioned above,
the skewness has no in�uence on the overlaid data and the use for the calculation of the left
bound would instead only increase the uncertainty due to the uncertain estimation. In fact,
these parts of the subsamples will mainly determine the location of the whole sample, such that
a uniform distribution over an interval +/- the distance of the variance to the adjusted location
is sensible. Moreover, this is approximately symmetric around the mode.
Therefore, the missing values in both samples are simulated from the following two distributions:

XSS
∼ U [ρSS

µS −MADSS
, ρSS

µS +MADSS
]

XSL
∼ U [ρSL

µS −MADSL
, ρSL

µS +MADSL
],

with MADi denoting the estimated standard deviation of the known part of the series i.
As an alternative one could also use the kMAD, the MAD for asymmetric distributions given
by

kMAD(F, k) = inf{t > 0|F (m+ kt)− F (m− t) ≥ 1/2},

where F is the cumulative distribution function and m the median of F (see e.g. Ruckdeschel
and Horbenko (2010)). Nevertheless, in this case we would have to choose a tuning parameter
k leading to a similar problem as for the classical MAD. Hence, as mentioned above, we can
assume symmetric data such an extension is not necessary in this case.

To explain this procedure in greater detail, we present the following example. Let (Y1, . . . , Yn)
with n = 100 be a GEV distributed time series with the parameters µ1 = 20 (location), σ1 = 5
(scale) and ξ1 = 0.4 (shape). Moreover, let (Z1, . . . , Zn) be GEV distributed with µ2 = 30,
σ2 = 3 and ξ2 = 0.2. The overall series of maxima is then
(X1, . . . , Xn) = (max(Y1, Z1), . . . ,max(Yn, Zn)). The estimated parameters (using L-moments)
of this series are µ̂ = 31.53, σ̂ = 4.137 and ξ̂ = 0.168.
The share of the Yi in the sample Xi is 21%, the share of the Zi therefore 79%. The relationship
between the numbers of the members of Yi and of Zi in Xi is α = 0.266.
We now use the samples Y ′

i and Z ′
i, consisting only of data that are part of the series Xi, to

construct new time series Yi and Zi. To �ll in the missing values, we simulate values from a
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Figure 7.15.: Boxplots for the RMSEs of the estimated parameters for long and short summer
series using the ��lling method� under the simulation scenario. The location is
estimated well for all samples, whereas the scale has some variance in the estimation
for the sample of short �oods. Estimating the shape parameter of the GEV always
leads to a high RMSE such that this is not surprising.

uniform distribution. For the Yi, that have the smaller share, the interval used for the uniform
distribution is [ρ1µ̂−MAD(Y ′), ρ1µ̂+MAD(Y ′)] with MAD(Y ′) = 6.510, µ̂ = 31.53 and ρ1 =
0.21 + 0.5 = 0.71. The series of the Z ′

i is �lled analogously, though we multiply µ̂ with ρ2 = 1.
The parameters of the GEV are then estimated as µ̂1 = 22.181, σ̂1 = 4.739 and ξ̂1 = 0.366 as
well as µ̂2 = 30.330, σ̂2 = 2.577 and ξ̂2 = 0.119. If one would estimate these parameters only
based on the events occurring in the total series of the Xi one would get µ̃1 = 40.313, σ̃1 = 6.745
and ξ̃1 = −0.212 as well as µ̃2 = 30.582, σ̃2 = 2.845 and ξ̃2 = 0.102. The less represented
subsample (Yi) is estimated markedly skewed to the left and has a larger location parameter,
since small events are overlaid and not considered in this case. An assessment of the statistical
characteristics of both subsamples based on the results within the total series gets better if the
shares of the two event types are more similar. In such cases, also the location parameters are
more similar. To show that this �lling method can be applied, several simulation studies have
been done. We choose two samples of length n = 1000 of long and short summer �oods with
parameters of the GEV-distribution µSS

, σSS
, ξSS

and µSL
, σSL

, ξSL
, respectively. For these

two samples the maximum of each data pair is used to obtain the annual summer maximum
series. Applying the ��lling method� to the summer maxima we then calculated the RMSE of
the estimates of the single parameters.

This has been done 1000 times for each choice of parameters for the simulation scenario already
stated above. We want to show the results of the RMSE in a boxplot (Figure 7.15).

The results show in general a good estimation of the parameters by having small RMSE. For the
estimation of the location we see a median RMSE of 4 and only a few very large values. Since
we vary the location parameter between 10 and 100, the very small box in the boxplot indicates

119



7. Robust Estimation in Flood Statistics

Figure 7.16.: Boxplots for the RMSEs of the estimated parameters for long and short summer
series using the ��lling method� under the simulation scenario (7.2.1), where the
share of the short respectively long series on the maximum is at least 25%. The
RMSE for both, the scale and the location, is relatively small indicating a good
estimation. Estimating the shape parameter of the GEV always leads to a high
RMSE such that this is not surprising.

really good estimation. The estimation of the shape parameter though has a very high RMSE
compared to the assumed values, but this can be expected since the estimation of the shape
parameter is always a source of high uncertainty. What is striking is the very high variability in
the estimation of the scale parameter. Although the main part of the RMSEs of the estimation
lies in a small range around 2, with median 1.6, for single samples it reaches values of more than
400. Now we have to take into account that the choices of the parameters made in the simulation
can lead to shares of short or long samples of less than 1%. This is a result that is excluded in
real practice by our method of dividing the groups, which demands a minimum share of ϵ, mostly
chosen as ϵ = 0.25. This would avoid samples, where the information of one subsample is so
small such that the information obtained from it is more or less not existing. In this case almost
all information is obtained by the Filling method and therefore the uncertainty in the estimation
can be extremely high in some samples. To give a fair comparison we thus also want to present
the RMSEs of all samples, where the share of the short respectively the long subsample is at
least 25%. This can be found in Figure 7.16. Here, we see that when having a minimum amount
of data in each subsample the Filling method delivers good estimates of all the parameters.

For a few of the scenarios that are assumed to be most relevant in practice we want to give
a detailed analysis, including both scenarios already used for the ML-estimation above (now
Scenario 3 and 4). The results can be found in Table 7.7.

As a comparison we also calculated the RMSE when estimating the parameters of a GEV-
distributed sample of length n = 1000 with parameters µ = 20, σ = 6, ξ = 0.4 using L-moments
and 1000 runs. The results can be found in Table 7.8.
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Table 7.7.: RMSEs of the estimates of the parameters using the ��lling method� for sample size
n = 1000

Number Scenario
RMSE for

µSS µSL σSS σSL ξSS ξSL

1

µSS = 20, σSS = 6,
ξSS = 0.4
µSL = 20,σSL = 6,
ξSL = 0.4

1.44 1.46 0.255 0.255 0.0456 0.0455

2

µSS = 20, σSS = 3,
ξSS = 0.2
µSL = 20,σSL = 3,
ξSL = 0.2

2.94 2.95 0.640 0.654 0.1197 0.1171

3

µSS = 20, σSS = 5,
ξSS = 0.4
µSL = 40,σSL = 2,
ξSL = 0.1

0.72 0.098 3.130 0.079 0.2126 0.0259

4

µSS = 20, σSS = 2,
ξSS = 0.6
µSL = 20,σSL = 2,
ξSL = 0.1

0.91 0.50 0.766 0.312 0.2330 0.0319

5

µSS = 5, σSS = 6,
ξSS = 0.1
µSL = 20,σSL = 2,
ξSL = 0.1

5.45 0.077 2.077 0.076 0.0745 0.0246

6

µSS = 60, σSS = 8,
ξSS = 0.1
µSL = 40,σSL = 8,
ξSL = 0.2

0.45 5.57 0.319 1.285 0.0249 0.0436

Table 7.8.: RMSEs for the estimates of the parameters of n = 1000 simulated GEV(20,6,0.4)-
distributed random variables

RMSE for
µ σ ξ

0.233 0.241 0.0459
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The Scenarios 1 and 2 are examples where both distributions, short and long summer, are equal.
In this case, also the RMSEs are equal. For the second scenario, where scale and shape have
higher values, the RMSEs also increase. This is a typical behaviour of estimators when estimating
the GEV-parameters. Nevertheless, for both scenarios all RMSE values are very small and not
much larger as if we would have estimated the parameters directly from the whole sample. The
Scenarios 3 and 4 are again simulated as probable �ood scenarios. For these two scenarios we
can observe a much higher share of the long summer events than of the short summer events.
This is also mirrored in the RMSEs. We can see that the estimation of the shape parameter of
the short events has a higher RMSE than before and also the RMSE of the scale parameter for
Scenario 3 is higher. Remember that the shape parameter used is chosen on basis of the actual
observed values of short respectively long summer events and only changed due to the additional
values from the uniform distribution. Nevertheless, all RMSEs are still relatively small compared
to the RMSEs when we have a full sample without overlaid data (Table 7.8) and even the RMSE
of the shape parameter is not atypical when estimating this parameter. In fact, the estimation
of the shape parameter is always the source of high uncertainty as can be seen in Table 7.8.
The Scenarios 5 and 6 are unlikely to really occur in the gauges we considered. However, due
to completeness we also want to show the results for these scenarios. With decreasing share of
the �ood type on the whole annual summer maximum sample the RMSE increases. Especially
in Scenario 5 the RMSE of the estimated location parameter for short events is very high. This
is a scenario where the long summer events have a share of about 80%. Therefore, nearly no
information of the short �ood series can be found in the annual summer maximum series and
the estimation is very uncertain. A comparison with an estimation only based on the values
occurring in the annual summer maximum series though showed that the results are still much
better.
Since the �rst approach using censored statistics mainly showed high RMSE values for small
sample sizes we want to give a fair comparison by repeating the simulations above with n = 100
(Table 7.9). To make a comparison easier the critical results of the ML-estimation method of
the Survival Analysis are repeated here (Table 7.10).
Although the RMSEs increase with decreasing sample size, in no scenario they are as high as for
the ML-estimation in Scenario 3. Thus, the �lling of the overlaid series makes a good estimation
(concerning RMSE) possible even for small sample sizes and possible extreme shares. Even for
Scenario 4, where the ML-estimator gave good results for both sample sizes, our �lling approach
is comparable concerning the RMSE. Since these are the scenarios that are most interesting
for us in this context and since no extremely high RMSE occurred during simulation for any
considered scenario we decide to use the �lling approach from now on.

For the scenarios 3 and 4, which are the most important for the considered Mulde river basin,
we also want to show the results for the Bias, using boxplots in Figures 7.17 and 7.18.
The boxplots show that the RMSEs result mainly from the bias in the estimation. We also tested
the in�uence of the adjusting factor in the calculation of the ρi. Therefore, we used the factor
0.25 and 0.6 instead of 1/2. For both choices RMSE and bias of the estimates got worse leading
to the conclusion that 1/2 is a good choice.
Additionally, for Scenario 3 we compare the overlaid part of the short and long summer samples
with the simulated series used to �ll the overlaid part. The results are given in a QQ-plot
(Figure 7.19). We can see that the main part of the data is reconstructed well, only the right
tail is overestimated. Nevertheless, this is not a problem for the �lled series, since the right tail
of the simulated series forms only a small part of the �lled series and consists of values lying in
the mean of the whole �lled short or long summer sample. Note, that the di�erent sample sizes
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Table 7.9.: RMSEs of the estimates of the parameters using the ��lling method� for sample size
n = 100

Number Scenario
RMSE for

µSS µSL σSS σSL ξSS ξSL

1

µSS = 20, σSS = 6,
ξSS = 0.4
µSL = 20,σSL = 6,
ξSL = 0.4

1.404 1.471 0.462 0.482 0.0996 0.0997

2

µSS = 20, σSS = 3,
ξSS = 0.2
µSL = 20,σSL = 3,
ξSL = 0.2

3.159 3.155 1.328 1.435 0.162 0.162

3

µSS = 20, σSS = 5,
ξSS = 0.4
µSL = 40,σSL = 2,
ξSL = 0.1

2.424 0.262 5.019 0.200 0.222 0.0827

4

µSS = 20, σSS = 2,
ξSS = 0.6
µSL = 20,σSL = 2,
ξSL = 0.1

0.985 0.829 0.947 0.410 0.259 0.0899

5

µSS = 5, σSS = 6,
ξSS = 0.1
µSL = 20,σSL = 2,
ξSL = 0.1

5.690 0.251 2.908 0.197 0.183 0.0825

6

µSS = 60, σSS = 8,
ξSS = 0.1
µSL = 40,σSL = 8,
ξSL = 0.2

1.061 6.140 0.781 3.606 0.0818 0.149

Table 7.10.: RMSEs of the estimates of the parameters using Survival Analysis for sample sizes
n = 100. High values for the RMSE for small sample sizes indicate a lack of e�ciency
of the ML-estimator.

Number Scenario
RMSE for n = 100

n = 100 n = 1000
µSS µSL σSS σSL ξSS ξSL

3

µSS = 20, σSS = 5,
ξSS = 0.4
µSL = 40,σSL = 2,
ξSL = 0.1

20.517 0.237 13.317 0.178 0.449 0.0984

4

µSS = 20, σSS = 2,
ξSS = 0.6
µSL = 20,σSL = 2,
ξSL = 0.1

1.132 0.324 0.379 0.335 0.160 0.114
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Figure 7.17.: Boxplots for the estimates of the parameters for long and short summer series
using the ��lling method� under Scenario 3 with the blue lines denoting the true
parameter. The location is estimated well for both samples, whereas the scale has
some variance in the estimation for the sample of short �oods. Estimating the
shape parameter of the GEV always leads to a high RMSE such that this is not
surprising.

124



7.2. Annualities and Design Floods

Figure 7.18.: Boxplots for the estimates of the parameters for long and short summer series
using the ��lling method� under Scenario 4 with the blue lines denoting the true
parameter. For this scenario a smaller RMSE occurs for all estimates, although the
shape parameter for the short events is underestimated.

result because of the di�erent share of the short and long samples on the summer sample due to
the chosen parameters.

The need for this data correction is shown here for the Berthelsdorf gauge considered above (in
Table 7.5). As a threshold to distinguish between short and long summer events a TQ-value of 36
hours is estimated. The share of short events is αSS

= 0.415 and hence long events have a share
of αSL

= 0.585. The quotient of both is α = 0.709. We apply the method to �ll up the series.
The di�erences between the GEV parameters are estimated compared to an estimation based on
the non-overlaid part of the series only (Table 7.11). How this �lling procedure in�uences the
distribution functions and the calculated annualities of long and short summer events is shown
in Figure 7.20 and Table 7.12. As expected, the �lling of data series of subsamples reduces the
exceedance probabilities and increases the return periods.

Table 7.11.: Estimated parameters for the Berthelsdorf gauge with and without the method of
the �lled series. The adjustment of the location parameter µ and the scale parameter
σ becomes evident, whereas the shape parameter ξ remains the nearly same.

short events in summer long events in summer
half-years maxima only �lled series half-years maxima only �lled series

µ 14.664 13.846 17.119 13.910
σ 6.808 4.302 7.736 4.116
ξ 0.755 0.718 0.494 0.336
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Figure 7.19.: QQ-plot of the overlaid part of the short (left) and long (right) summer series and
the reconstructed part using the �lling method. The underlying parameters are
chosen as Scenario 3. A good accordance for the main part of the samples can be
found, only the right tail is overestimated.

Table 7.12.: Estimated quantiles for the �lled series and the maxima only.

annuality T
short events in summer long events in summer

half-years maxima only �lled series half-years maxima only �lled series
100 296.33 170.78 153.41 59.13
200 497.15 276.33 215.73 74.26
500 988.45 526.77 338.64 100.48
1000 1664.88 861.72 476.45 126.42
2000 2806.36 1412.63 670.49 159.15
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Figure 7.20.: Quantiles of the series of short and long summer annual maxima under use of the
�lling method or the non-overlaid subsamples for the Berthelsdorf/Freiberger Mulde
gauge. The lesser slope of the "�lled" series becomes obvious caused by taking into
account the overlaid small values.

Summarizing the results so far we are now able to distinguish between di�erent event types and
reconstruct the missing information of the event types caused by the data situation. This forms
the basis for the now developed new mixture models that takes into account the di�erent event
types.

We can see that by using the mixture distribution of short and long summer events the lower
tail of the summer �oods is represented mainly by the long summer events whereas the right
tail, that is the extreme events, mostly consists of short events (Figure 7.21). This implies that
the �oods with high peaks are mainly caused by short but intensive (convective) rain events. A
distinction into these groups of di�erent duration is therefore necessary.
A seasonal model, which only di�ers between summer and winter (in the following speci�ed as the
WS (winter-summer) maximum approach) can use the series of summer maxima directly. If we
distinguish additionally between long and short events within the series of summer events (WST
(winter-summer-types) maximum approach) we have to apply a method of ��lling� the data series
of the two additional subsamples. The proposed �lling procedure causes an additional uncertainty
in estimation of �ood probabilities. To evaluate this, we compare both models with regard to
the di�erences in their estimations of annualities for the gauges of the Mulde river basin. For the
Berthelsdorf gauge we have already compared summer and winter annual maximum discharges.
As a threshold specifying a �ood event among the series of half-year maxima, we choose the
minimum annual maximum discharge (9.27 m3/s). The series of summer events is subdivided
into short and long �oods by the threshold of the timescale of 36 h. The calculated return periods
of the six largest �oods at this gauge in the discharge series from 1936 to 2013 are listed in Table
7.13. Here we compare the classical annual maxima series (AMS) using the GEV distribution
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Figure 7.21.: Short and long summer events with their estimated annuality and the �tted mixing
distributions. It can be seen that the right tail of the mixing distributions is mainly
in�uenced by the short summer events.

Table 7.13.: Annualities at the Berthelsdorf/Freiberger Mulde gauge for the six largest �oods
using three di�erent models

HQ[m3/s] AMS (GEV) Maximum approach WS Maximum approach WST

63.9 10 13 13
68.2 11 15 15
120 35 47 53
122 41 49 54
140 55 62 71
360 476 275 342

with results of the two maximum mixing approaches WS and WST. A graphical representation
of the results can be found in Figure 7.22.
The Berthelsdorf gauge has a relative small catchment area of 244 km2. As discussed above,
this leads to a large di�erence between short and long events. Whereas the short events are
characterised by a large peak with relative small volume, the long events have relative small
peaks even if they have high volumes.
As shown above, in large catchments this distinction is less clear. The Wechselburg/Zwickauer
Mulde gauge has a large catchment area of 2107 km2 and only small di�erences between short
and long summer annual maxima (Figure 7.23). Here the TQ-threshold TQ0 is calculated as 55
h. The threshold of �ood peaks is 59 m3/s and α = 1.421.
An overview of the estimated parameters is given in Table 7.14.
It is obvious that the value of skewness in the series of the half-year annual maxima is much
lower than in the previous example. In addition, the di�erence between the distributions of long
and short summer �oods is much smaller.
As in the example of the Berthelsdorf gauge before we estimated the distribution functions and
the return periods with the di�erent approaches (Figure 7.24 and Table 7.15).
The di�erences in return periods of the highest observed �ood at this gauge between the seasonal
maximum approach (WS) and the utilization of AMS are not as high as before. This results from
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Figure 7.22.: Quantiles calculated for the Berthelsdorf/Freiberger Mulde gauge using di�erent
statistical approaches. The WST model lies between the classical WS model and
the AMS-�tted GEV since it is not in�uenced by single extraordinary large summer
events like the WS model but takes into account the di�erent distributions of the
seasons.

Figure 7.23.: Distribution functions of the series of short and long summer annual maxima at
the Wechselburg/Zwickauer Mulde gauge under use of the �lling method or the
subsamples. The lesser slope of the "�lled" series becomes obvious caused by taking
into account the overlaid small values.
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Table 7.14.: Estimated parameters of the GEV for the Wechselburg/Zwickauer Mulde gauge.
ξ µ σ

AMS 0.305 152.56 77.54
Winter 0.216 115.07 53.83
Summer 0.433 110.48 58.27

Summer (short) 0.503 94.94 43.50
Summer (long) 0.41 136.16 68.50

Summer (short/�lled) 0.486 92.56 32.04
Summer (long/�lled) 0.281 95.29 59.62

Figure 7.24.: Distribution functions calculated for the Wechselburg/Zwickauer Mulde gauge us-
ing di�erent statistical approaches. The WST model lies between the classical WS
model and the AMS-�tted GEV since it is not in�uenced by single extraordinary
large summer events like the WS model but takes into account the di�erent distri-
butions of the seasons.

Table 7.15.: Annualities of the highest observed �ood peaks at the Wechselburg/Zwickauer Mulde
gauge calculated with di�erent statistical approaches.

HQ[m3/s] AMS (GEV) Maximum approach WS Maximum approach WST

544 22 25 27
587 27 30 34
633 33 36 42
915 95 90 117
991 120 109 145
1000 123 111 149
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the smaller di�erence between short and long summer events in large catchments as mentioned
above. Only for very high annualities or large �oods a more distinct di�erence can be seen.
Additionally to this detailed presentation we estimated annualities of the 2002 and 2013 event
for all gauges with the di�erent approaches. The results can be found in Table 7.16. The 2002
event can be classi�ed as a short summer event, the 2013 event is a long summer event. Both
events are the largest �ood events since the beginning of the discharge measurements for nearly
all gauges . Together with the return periods, estimated from AMS, the seasonal approach WS
and the WST approach, the annualities of both events, derived from the statistics of summer
events in three versions are shown. The GEV is used as the distribution of all summer events
(column �Summer�). And also the WST maximum mixing model is used to combine short and
long summer events (column �Summer WST�). The return periods of both events, estimated
from the samples of long and short summer events and the �lling approach described above are
shown in the columns �Summer short� and �Summer long�. A comparison of the return periods of
long and short summer events shows that the short event 2002 would be an extraordinary event
if the same peak would occur with a long summer �ood. The �ood 2013 has a smaller probability
if we consider that it is a long �ood. This extraordinary character becomes not evident if we
estimate the return periods from the AMS, WS or WST models. Comparing the return periods
of WS and WST, the WST approach results in annualities which are higher than in the case
where the WS model is used. This results from the di�erentiation between long and short �oods,
reducing the exceedance probability of a �ood peak belonging to one of both categories only.
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Table 7.16.: Estimated annualities of the 2002 and 2013 events of the gauges in the Mulde basin using AMS, WS and WST approach,
respectively. ��� indicates that no data are available for this event, ∞ is a number greater than 1 Million and too large to
display

Gauge
2002-event (short) 2013-event (long)

AMS WS WST Summer
Summer
WST

Summer
short

Summer
long

AMS WS WST Summer
Summer
WST

Summer
short

Summer
long

Aue 1 111 104 148 136 207 223 1749 39 40 50 54 71 85 319
Niederschlema 52 54 57 74 86 180 140 22 24 25 34 36 74 60

Zwickau- Poelbitz 43 56 62 69 79 84 601 41 53 58 65 74 79 555
Harthau 64 56 66 62 82 81 2168 18 20 21 25 31 35 175

Goeritzhain 153 96 170 103 201 265 790 174 104 190 111 222 288 915
Wechselburg 123 112 157 124 156 274 312 120 110 153 121 152 269 304
Tannenberg 292 210 245 219 244 238 1940 22 28 30 43 45 50 172
Streckewalde 262 196 304 199 322 319 9752 56 59 83 63 89 100 536
Hopfgarten 202 184 259 223 295 364 1039 50 55 65 79 92 119 281
Rothenthal 547 269 271 308 305 299 ∞ 9 10 10 15 16 16 1621
Zoeblitz 1232 298 387 299 340 316 ∞ 27 26 27 28 34 34 401
Pockau 196 180 236 235 315 306 ∞ 22 25 29 41 60 61 1087

Borstendorf 396 259 426 314 657 612 701963 34 34 43 49 71 77 389
Lichtenwalde 220 217 260 270 409 1059 507 56 64 70 91 115 275 147
Niederstriegis � � � � � � � � � � � � � �
Berthelsdorf 1218 512 669 276 360 315 3989 220 165 220 65 82 85 302

Nossen 726 303 398 303 390 539 859 92 79 97 79 97 172 164
Erlln 300 194 216 196 199 155 3421 � � � � � � �

Golzern 480 236 289 242 255 389 543 180 124 138 133 132 222 248
Bad Dueben 64 87 96 106 121 133 347 39 54 57 70 76 84 214
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For all gauges the maximum approach WST results in a smaller slope of the distribution function
than that of the distribution derived from the WS approach. In the maximum approach WS,
the short summer events dominate the estimated skew of the whole summer annual maximum
series and lead to a higher skewness of the whole distribution. By separating the summer events
due to their timescales the high in�uence of the short summer events with large skewness is
reduced. In comparison with the AMS based estimations, we see that both seasonal approaches
are in�uenced in the lower quantile range by the winter series, but the higher quantile range is
determined by summer events. An AMS based estimation seeks a compensation between both
series. In some regions in Germany the most severe �oods are rare summer events. Often this
�ood type is under-represented in an AMS. As a result, the estimation of their probabilities is
strongly a�ected by distributions of winter events. The maximum approach WS is in this case a
useful model to consider the di�erences between winter and summer �oods explicitly. However,
summer �oods do neither constitute a homogeneous sample. The series of short events has in
many cases a higher skewness than the series of long events. However, the number of short �ood
events and the distribution of their peaks is a catchment characteristic. Depending on the size
of the watershed, high summer �ood peaks can be caused by short events. As a result, the
statistics of summer �oods can be strongly a�ected in the upper quantile range by short events.
The proposed WST approach considers this complexity and reduces the impact of single �ood
types by considering the probabilities of their occurrence.
We also want to present the results of a Goodness of Fit test of the statistical models. For
this we compare the annual maximum discharges with the theoretical models. Again, we use
the Anderson-Darling test and additionally show the results in QQ-plots. The p-values of the
Anderson-Darling test are given in Table 7.17 for each gauge and all three approaches. It can
be seen that the hypothesis of a �tting distribution cannot be rejected for either of the three
approaches. Nevertheless, the GEV gives the highest p-values closely followed by the WST
approach, whereas the classical mixing model WS seems to have problems in representing the
data. A possible reason can be seen in the QQ-plots (Figs. 7.25 and 7.26).
We see that the largest event is overestimated in the AMS model, where it is mostly underesti-
mated in the WS model. The WST model seems to �nd a balance here and also the quantiles
in the area of 80-90% are estimated well, that is not the case for the WS model. For the Streck-
ewalde gauge, where the p-value of the Anderson-Darling has the smallest overall value for the
WST-model (p = 0.166) we can see in Figure 7.27 that this is mainly because of the underesti-
mation of the right tail. In this case the WST-model seems to reduce the in�uence of the right
tail too much.

7.2.2. Comparing robust estimators to non-robust ones in the hydrological
context

We have already stated in Section 2 that the model uncertainty in �ood statistics and the oc-
currence of extraordinary large events demands special needs of the robust estimators. Classical
studies comparing robust estimators with non-robust ones may not be su�cient in this context,
since they do not consider the above-mentioned features. A �rst step when using robust estima-
tors in hydrology is therefore a simulation study with hydrologically �tting assumptions on the
data to compare these estimators with common ones concerning robustness and e�ciency. We
choose the data basis to represent an annual maximum series, which is the most frequently used
�ood series. The results presented here are published in Fischer et al. (2015).
For the simulations we �rst analyse Gumbel-distributed data with location parameter µ = 100
and scale parameter σ = 10, and in a second step GEV-distributed data with the same location
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Table 7.17.: p-values of the Anderson-Darling test for a Goodness of Fit of the three models
GEV, WS and WST to the annual maximum discharges for all considered gauges in
the Mulde basin. The GEV gives the highest p-values closely followed by the WST
model.

Gauge GEV WS model WST model

Aue 0.976 0.565 0.941
Niederschlema 0.950 0.876 0.874

ZwickauPoelbitz 0.933 0.807 0.421
Harthau 0.994 0.944 0.983

Goeritzhain 0.974 0.654 0.312
Wechselburg 0.923 0.515 0.496
Tannenberg 0.853 0.892 0.833
Streckewalde 0.996 0.819 0.166
Hopfgarten 0.991 0.792 0.889
Rothenthal 0.993 0.558 0.286

Zoeblitz 0.492 0.649 0.649
Pockau 0.692 0.309 0.191

Borstendorf 0.949 0.522 0.639
Lichtenwalde 0.685 0.263 0.365
Niederstriegis 0.827 0.619 0.544
Berthelsdorf 0.799 0.886 0.787

Nossen 0.585 0.426 0.405
Erlln 0.841 0.533 0.705

Golzern 0.919 0.650 0.482
Bad Dueben 0.998 0.911 0.831
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Figure 7.25.: QQ-Plot of the annual maxima of the Berthelsdorf/Freiberger Mulde gauge com-
pared to the AMS, WS and WST model. The WST model shows the best �t,
especially in the right tail.
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Figure 7.26.: QQ-Plot of the annual maxima of the Wechselburg/Zwickauer Mulde gauge com-
pared to the AMS, WS and WST model. The WST model has the overall best �t,
although also the AMS-�tted GEV and the WS model show good �ts except of the
one extraordinary extreme event.
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Figure 7.27.: QQ-Plot of the annual maxima of the Streckewalde/Preÿnitz gauge compared to
the AMS, WS and WST model. Here, the WST shows a strong underestimation of
the right tail.

and scale parameter and shape ξ1 = 0.1 (GEV1). These are representative choices �tting such
distributions to maximum discharges (cf. Madsen et al., 1997). For comparison we also consider
a larger shape parameter ξ2 = 0.2 in the model, to which we refer as GEV2. This should mirror
the possibility of extraordinary events. We seen in the section before that for distinct seasons
even higher parameters can be sensible. To model the AMS this choice nevertheless should be
su�cient.
As a justi�cation for the choice of these parameters we �tted the GEV distribution via L-moments
(described later on) to 33 series of annual maximum discharges of gauges in di�erent river basins
in Saxony in Germany. The histogram of estimated shape parameters of the GEV (rounded to
one decimal �gure) can be found in Figure 7.28. We can see some very large values for ξ, which
indicate a signi�cant deviation from the Gumbel distribution. To consider also the robustness
against model-misspeci�cation (see Section 2.2) we choose the three- as well as two-parametric
distribution and �t the "wrong" model to the data.
In the simulations for each of the three distribution functions mentioned above two scenarios are
considered. The independent, identically Gumbel respectively GEV distributed random variables
are modi�ed in one of the following ways:

1. No modi�cation: independent identically distributed random variables.

2. We include extraordinary extreme values in these time series, which equal the 99.9%-
quantile of the underlying distribution. For this, randomly chosen 2% of the data (rounded
up) are replaced by the value of the 99.9%-quantile.

First of all, we �t both the Gumbel and the GEV distribution, respectively, to compare �ts by
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Figure 7.28.: Histogram of the estimated shape parameter for annual maxima of three river
basins. The typical range of the shape parameter for the considered basins is
between 0 and 0.3.

two and three parametric distributions. This is done by calculating the 99%- and the 99.9%-
quantiles of the �tted distributions and considering the bias and the RMSE for the corresponding
quantiles of the assumed true distribution. In both scenarios this true distribution is the one
without modi�cation, which has the following quantiles:

Q0.99;Gumb = 146.0, Q0.999;Gumb = 169.1

Q0.99;GEV1 = 158.4, Q0.999;GEV1 = 199.5

Q0.99;GEV2 = 175.5, Q0.999;GEV2 = 249.0.

In the simulation we consider 1000 repetitions for each of the di�erent sample lengths equal to
n = 30, 50, 100, 200. Annual series with a length of more than 100 years are very rare in hydrology
and therefore an upper length of 200 seems to be su�cient.
We compare the following �ve di�erent estimators.

• Maximum-Likelihood-Estimation

• L-moments

• Trimmed L-moments with asymmetric trimming (0,1)

• Trimmed L-moments with symmetric trimming (1,1)

• Minimum Distance estimator

The Minimum Distance estimator for the parameter vector θ using the Cramer-von-Mises
distance is given by

θ̂ = argmin
θ

∫ ∞

−∞
(Fn(x)−Gθ(x))

2 dx,
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see Dietrich and Hüsler (1996). Here, Fn is the empirical distribution function of the sample
and Gθ the distribution function with parameter(vector) θ to be �tted. In our case we need
to minimize (for the GEV distribution)

∫ ∞

−∞

(
Fn(x)− exp

(
−
(
1 + ξ

(
x− µ

σ

))− 1
ξ

))2

dx (7.8)

or (for the Gumbel distribution)∫ ∞

−∞

(
Fn(x)− exp

(
− exp

(
−x− µ

σ

)))2

dx, (7.9)

which is done numerically.

Of course it is also possible to use other distance measures, for example the Hellinger-
distance. Nevertheless, the results do not di�er much so that we decide to use the easier
to handle Cramer-von-Mises distance.

Remark 7.2. The third classical non-robust estimator, the standard sample moments, is ex-
cluded here, since the moment estimators do not exist for a shape parameter ξ > 1/3, and
therefore do not seem to be suitable in this hydrological context, since there can be samples with
a larger shape parameter as con�rmed by Figure 7.28.

The choice of estimation methods includes classical non-robust estimators used in hydrology
(ML-estimation and L-moments) as well as less known robust estimators. The bias and RMSEs
for the estimated quantiles for all estimators and sample lengths are discussed in the following.

Evaluation for data without disturbances

In Tables A3, A5 and A7 in the appendix we can �nd the results for bias and RMSE of the esti-
mated quantiles for the �tting to independent, identically distributed random variables, following
a Gumbel, GEV1- or GEV2-distribution.
For i.i.d. Gumbel data (Table A3) we see that a Gumbel-�tting with Maximum Likelihood leads
to the lowest RMSE for all sample sizes n and both quantiles considered here. Concerning the
RMSE, TL(0,1) estimation is second best, followed by TL(1,1) and L-moments, which do not
di�er much. The Minimum Distance estimator performs worst, only in the case of n = 100
it is better than classical L-moments. The bias of all Gumbel-based �ttings is very small,
even for small sample sizes. Fitting a GEV-distribution to Gumbel-distributed data with non-
robust estimators (ML and L-moments) roughly doubles the RMSE. Robust estimation (TL(0,1),
TL(1,1), and MD) worsens the results even more as both the RMSE and the bias become larger
for all n and both quantiles. Robust estimators aim at reducing biases which are due to using
only approximately valid models, but it seems that in this case estimation error increases when
�tting an unnecessary third parameter by one of these robust estimators.
In case of i.i.d. GEV1-distributed data with a shape parameter of ξ = 0.1 (Table A5), �tting a
Gumbel distribution causes a substantial negative bias, which dominates the RMSE. Again, the
L-moments give the best results, but the di�erences are not large, neither to the robust TL(1,1)-
moments. It is striking that the RMSE is nevertheless much smaller for a Gumbel-�tting than for
a GEV-�tting if the sample size is small, and about equal for large sample sizes. This is due to
the much smaller variability of the two-parametric �ts. A non-robust GEV-�tting causes a large
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positive bias only for the 99.9%-quantile, but nevertheless the RMSE is large for both quantiles
and all sample sizes due to the large variability. The results for the ML and the L-moments
are very similar for large sample sizes (n = 200), though the L-moments deliver results with
less deviation from the assumption in small samples. A robust �tting of a GEV-distribution
leads, in comparison to the same estimators with a Gumbel-�tting, to a positive bias and higher
variability and therefore to larger RMSEs for all sample sizes and both quantiles.
When the shape parameter is further increased to ξ = 0.2 (GEV2; Table A7) the previous remarks
remain qualitatively valid. Fitting a Gumbel distribution to such data both bias and RMSE is
nearly twice (2.5 times for the 99.9%-quantile) the one as before. Very striking are the results of
the L-moment estimates for small sample sizes. They produce a large positive bias resulting in
a large RMSE, which do not �t to the results for the other sample sizes. In case of at most 50
observations, �tting a Gumbel distribution with TL(1,1)-moments seems best, closely followed
by ML, MD and TL(0,1). In case of at least 100 observations, GEV �tting becomes worthwhile
with L-moments and ML performing best, followed by TL(1,1)- and TL(0,1)-moments.

Evaluation in the presence of extraordinary extreme events

In Tables A4, A6 and A8 in the appendix data from scenario 2 containing extraordinary extreme
events are considered.
For Gumbel-distributed data and a Gumbel-�tting we see that the smallest values for the RMSE
are given for the TL(0,1)-moments followed by the MD-estimator, which even has a smaller bias.
For both estimators the RMSE is not much higher than in the case of data without disturbances.
The non-robust estimators are substantially more biased, with the L-moments behaving worst.
The RMSE of the ML-estimator is comparable to that of the TL(1,1)-moments, though ML has
larger bias. If a GEV-�tting is used, the bias increases rapidly and therefore also the RMSE is
large.
Somewhat surprisingly, the results are similar to this when the data follow a GEV-distribution
with ξ = 0.1. The occurrence of extraordinary extreme events apparently reduces the negative
bias and the RMSE of the estimations based on a Gumbel �t in this situation. Fitting a Gumbel
distribution by L-moments works best for all sample sizes, followed by ML, TL(1,1)- and TL(0,1)-
moments. For the 99.9%-quantile the di�erence becomes even larger. So the robust estimators
have a higher RMSE and are no longer better than the non-robust ones, where the ML-estimator
behaves best overall. Note that the results for a GEV-�tting are much worse. If the value of the
shape parameter is increased, the RMSE and bias results increase by the factor 2.

Since it seems that the value of the shape parameter has a large in�uence on the estimation, we
want to investigate this further. Therefore, we �t a Gumbel and a GEV-distribution to GEV-
distributed data with increasing shape parameter and location and scale parameter as before.
In the simulations above the L-moments proved to be the estimator with the smallest RMSE
for the GEV-�tting for almost all sample sizes and are also not too bad for the Gumbel-�tting.
That is why we choose this estimator for the calculations. The results can be found in Figure
7.29. We can see that for a shape parameter near zero the Gumbel-�tting has smaller RMSE
for all sample sizes. For the hydrological relevant case of a positive shape parameter (we can
seldom �nd negative shape parameter in maxima series) the Gumbel-�tting is even better for
all values of ξ and sample sizes up to n = 100. Only for a sample size of n = 200 and ξ ≥ 0.2
the GEV-�tting is preferable concerning the RMSE. We now want to have a closer look at the
range, where the Gumbel-�tting is much better than the GEV-�tting, and also have a look at
the bias there (Figure 7.30). It can be seen that the bias in the Gumbel-�tting increases with
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increasing shape parameter, causing also an increase of the RMSE. The bias of the GEV-�tting
remains stable near zero, though the RMSE increases. For increasing sample sizes both �tting
approaches have more and more similar RMSE.

The simulation results show that the choice of the number of �tted parameters is in fact a
crucial question. Surprisingly, we get better results for most cases, except the i.i.d. GEV case
with ξ = 0.2 and n ≥ 100, when �tting only a two-parametric distribution, regardless of whether
there are rare events or not. This is con�rmed by Figure 7.29, where we also see that for increasing
shape parameter and increasing sample size the GEV-Fitting is better and should be preferred
for a sample size of at least n = 100 and ξ ≥ 0.2. Remembering the recommendations given by
the DWA (DWA (2012)) (see Section 2), recommending a two-parametric distribution function
for samples with less than 30 years and a three-parametric one for samples with more than 50
years, the results con�rm the recommendation and we can add that for estimated values for the
shape parameter smaller than 0.2 and large sample sizes also a two-parametric �tting should be
preferred and also the range of the sample size for a two-parametric �tting could be increased
to n = 50. Of course, it has to be considered that the parameter value is estimated and not
the theoretical value. Thus, these limit cases should be investigated further. Concerning the
non-robust estimators the results of Hosking et al. (1985a) are con�rmed. For small sample sizes
the L-moments in the GEV-�tting have smaller RMSE than the ML-estimator. Nevertheless, it
becomes obvious that the size of the shape parameter plays a crucial role. The larger the shape
parameter the more di�er the RMSEs of these two estimators. Fewer observations are needed to
make the ML superior to L-moments when just two parameters need to be estimated as in the
case of a Gumbel distribution.

When extraordinary or rare extreme events occur in our data, the robust Minimum Distance
estimator or the Trimmed L-moments o�er a smaller bias and RMSE for the higher quantile,
but they have the disadvantage of having larger RMSE compared to the classical estimators
ML and L-moments, when no such extraordinary extreme events occur. This is the common
lack of e�ciency of many robust estimators, particularly in small samples. Among the robust
estimators considered here, the TL-moments are preferable, since they have the smallest RMSE
when extraordinary extreme events occur and not too large RMSE when there are no such events
- especially for estimation of the higher quantile. Of course also other trimming is possible and
could be investigated further, but we will see later on that a trimming of 1 (symmetric or not)
is su�cient in our case of application.

Based on the results given, a two-parametric �tting with the Maximum-Likelihood estimator is
recommended for a sample size smaller than n = 100 whereas a three-parametric �tting using
L-moments seems to be preferable otherwise. The Trimmed L-moments seem to be a recom-
mendable choice when extraordinary events occur in the sample. They do not have a tendency
of overestimating the quantile, even if the return period of the event is much larger than the
sample length. Additionally, they seem to be rather e�cient, which is inherited from the ordinary
L-moments. The Minimum Distance estimator considered here is apparently not e�cient enough
for the small sample sizes given in hydrology. If there are no obvious extraordinary events in
the sample, L-moments are recommended having the largest e�ciency for the small sample sizes
occurring in hydrology.

Moreover, further hydrological phenomena can occur. Therefore, we also investigated another
scenario, representing an uncertainty in the measurement of the data. We wanted to model
the situation, when a rating curve does not consider the over�owing of river beds (too small
discharge values are assumed) or backwater in river increases the water level (too high discharges
are assumed). This is done by cutting o� the 20% highest data of the simulated distribution and
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Figure 7.29.: Fitting of the GEV (black) and Gumbel (grey) distribution to a GEV distribution
with increasing shape parameter via L-moments for di�erent sample lengths (n = 20
(a), 30 (b), 50 (c), 100 (d)). For values of the shape parameter smaller than -0.1
the RMSE of the GEV �tting is much smaller. For small sample sizes this changes
at that point such that the Gumbel-�tting has much lesser RMSE whereas for large
sample sizes (n > 30) Gumbel- and GEV-�tting are nearly the same concerning
the RMSE.
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Figure 7.30.: Bias and RMSE of the Gumbel and GEV �tting to i.i.d. GEV-distributed random
variables with varying shape parameter and di�erent sample lengths. For all cases
the Gumbel-�tting has the smaller RMSE but the higher Bias.
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replacing them by data representing an error between 0 and 30%. For this scenario all estimators
failed and are not able to cope with the misspeci�cation of the model. Therefore, detailed results
are omitted. Also the case of a mixing distribution is considered (see eq. 7.3) here. If in this
case a simple GEV or Gumbel distribution is �tted, all estimation methods fail. Therefore, it
does seem to be possible to estimate the underlying model with these classical methods.
In the recommendations made above the question arises, how to detect extraordinary events.
A possibility to make this choice could be the sensitivity curve. For non-robust estimators one
could use this tool to examine the in�uence of a single event to the estimation and therefore
decide, whether to use a robust estimator or not. We have already seen in Section 2, how this
could be done.
Additionally, the results give the impression that the choice of the number of parameters is
crucial and should depend on the sample size and on the value of the shape parameter. The
recommendations of the DWA (2012) are con�rmed for the scenarios considered here but we
have by far not covered all relevant cases where a two-parametric distribution function might be
preferred.

7.2.3. Application of robust estimators on the estimation of annualities

After showing the potential of the use of robust estimators in the context of �ood analysis we
want to apply robust estimators to the hydrological models introduced in Section 7.2.1.

Robust POT with TL-moments

By the application of a robust estimator for parameter estimation of the GPD in the POT model,
the in�uence of extreme events is reduced in two ways: by using more information (more data)
resulting in a downweighting of the in�uence of extremes, and by a robust estimation of the
parameters themselves. As a robust estimator we choose based on the results of Section 7.2.2 the
trimmed L-moments (TL-moments), the robust extension of the classical L-moments (Elamir
and Seheult (2003)). Here we apply a trimming of the upper part of the sample only by giving
zero weight to the most extreme value, in our case the highest value (TL(0,1)-moments), since
the distribution is bounded in the lower tail by a threshold. Because of the small degree of
trimming, we do not loose much information about the extremes. For details and a concrete
derivation of the TL(0,1)-moments for the GPD, see Section 6.1. TL-moments have not been
commonly used for the analysis of �ood data, but in the few cases where the approach has been
applied (cf. Asquith (2007)) and in the studies above, it has been found to be promising. We
will refer to the combination of POT with TL-moments in the following as the robust POT with
TL-moments (robust POT) approach. Most of the results presented here are published in Fischer
and Schumann (2016) and are supplemented by new results concerning a robust estimation of
the AMS.
The choice of trimming is a crucial question, especially in the presence of several extraordinary
events. Therefore, we not only considered TL(0,1)-moments but also a higher trimming in the
upper part of the sample using TL(0,2)-moments (for details see section 6.1). The results for
TL(0,2)-moments showed that a higher trimming does not result in higher stability and therefore
no more robust quantile estimates. However, the trimming TL(0,2) resulted in a prolongation of
the period of stabilization for the estimated quantiles, indicating a lower e�ciency. Considering
these results, then, we applied a trimming degree of (0,1).
To obtain a fair comparison we also want to compare the robust POT with TL-moments approach
with the classical AMS approach based on �tting a GEV distribution to the data, where we use
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robust estimation of the parameters with the TL(0,1)-moments, too (see Section 6.1.2). By this
we can compare the advantage (or disadvantage) of robustness, of POT and a combination of
both.
To compare the di�erent approaches AMS, AMS (robust), POT and robust POT with TL-
moments, we analyse �ood series from 15 gauges in Germany, located in the Mulde river basin
in Saxony (Figure 7.1) with an observation period length of at least 75 years and �oods recorded
up to the year 2013. The catchment size varies between 75 and 5433 km2. All data series contain
several extraordinary extreme events. One of these events occurred in August 2002.
We are aware that there could be some dependence in the time series when considering monthly
maximum discharges. Nevertheless, we recognized in our calculations that the estimators used
are able to cope with slight dependencies of monthly maxima. For the considered monthly
maximum discharges it is also ensured that they do not result from the same �ood event. That
is, if the maximum occurs at the beginning of a month and the month before the maximum is
at the end, it is ensured that these peaks do not belong to the same �ood event. In this case for
the second month we chose the maximum of a second event.
Additionally, the choice of a discharge threshold specifying monthly maxima as �ood peaks
reduces these dependencies to a negligible amount. As a threshold to specify �oods among the
monthly maxima, we choose the minimum value of annual �ood peaks of each series. For all
gauges we compare POT and robust POT with the classical AMS concerning robustness and
Goodness of Fit. For this purpose, we �t a GEV distribution to the AMS sample(

max
1≤k≤d

(X
(k)
1 ), . . . , max

1≤k≤d
(X(k)

n )

)
with L-moments and TL(0,1)-moments and the POT model to the whole sample (X1, . . . , Xn)
using the L-moment estimation and the TL(0,1)-moments.

To characterize the overall agreement between the estimated distribution F̂l at site l with sample
length nl and observations Xi(l), i = 1, . . . , nl, the index pval (Renard et al. (2013)) is used.
This reliability index is calculated as:

pvali(l) = F̂l

(
max
1≤k≤d

(X
(k)
i (l))

)
.

Under the hypothesis of a reliable estimation (F̂l = Fl) the vector (pvali(l))i=1,...,nl
is uniformly

distributed on the interval [0, 1] for every gauge l. We estimate the annual distribution function
F̂l via the di�erent approaches (AMS, POT and robust POT with TL-moments) for a sample of a
length of 50 years and apply it on the annual maxima at the gauge. By application of the inverse
distribution function, a QQ-plot can be used as a graphical tool to demonstrate the Goodness
of Fit of pval for each �tting approach (Figure 7.31). Often also a probability-probability-plot
is applied, but since a QQ-plot illustrates the extreme domains in a better way, we choose this
presentation.

We can see that all three approaches give a good estimation of the distribution of the whole
sample. In the area of the upper quantiles, POT seems to give the best Goodness of Fit, and all in
all it does not di�er much from the AMS statistic. For both robust approaches, robust AMS and
robust POT (both using TL-moments), a larger deviation exists for some gauges. Nevertheless,
the deviation of all four approaches does not seem so large that we have to reject any of them.
We are aware that the criterion pval could be a�ected by single extreme observations, which are
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Figure 7.31.: QQ-plot of pval for AMS (top left), AMS (robust with TL-moments) (top right),
POT (bottom left) and robust POT with TL-moments (bottom right) approaches
for gauges l = 1, . . . , 15. All four approaches show a good �tting to the data with
the robust POT with TL-moments being the one with the largest di�erences in the
�t.
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most relevant for the �t of F̂l, but in the same way for the evaluation of this �t. To consider this
we also applied cross-validation, that is

pval'i(l) = F̂l;(i)

(
max
1≤k≤d

(X
(k)
i (l))

)
,

where F̂l;(i) is the �tted distribution function for gauge l based on all data except max
1≤k≤d

(X
(k)
i (l)).

The results we obtained from this approach are very similar to those of the original pval, so
we can expect that the above-mentioned problem did not in�uence our results substantially. To
investigate the �tting in the higher quantiles, where a di�erence in the �tting seems to be largest,
we look closely at the QQ-plot (Figure 7.32) for the Nossen gauge. Here, it becomes evident
how much the classical AMS model is in�uenced by the single extreme event, leading to a worse
�tting to the higher quantiles. The POT model uses additional data values, which are mostly
located in the lower domain. That is why it has a better �tting in the central quantiles. Thus,
the larger information spectrum leads to a more stable �tting. When using robust estimators
for the AMS approach the in�uence of the extreme large values is reduced and a better �t is
obtained for most of the observed data except that of the right tail. If we combine the POT
approach with the application of the TL(0,1)-moment estimator, we can see a good �tting of all
quantiles except of the single extreme event.
In the next step, the criterion SPANT (see Section 2.3.3) is calculated for all 15 gauges for
quantiles with annual return periods of 100, 200 and 1000 years. In Figure 7.33 the empirical
distributions of these vectors are plotted. The GEV approach with L-moment estimators is
most sensitive to changes in the data, having clearly higher SPANT scores for each of the three
annual return periods. In general, the maximum value of SPANT increases with increasing T ,
indicating that the estimates become more sensitive for higher quantiles. This makes sense due
to the small quantity of data in these high domains. The robust POT seems to be advantageous
in the lower quantile areas, being much smaller than the other two approaches. In general, the
main part of the calculated SPANT values for the robust POT with TL-moments approach are
smaller, and therefore it is the most robust approach in this sense.
To have a closer look at these results, we analysed for one gauge (Nossen) values of SPANT

that are derived from Monte Carlo simulations. We drew 1000 random samples of n = 50 years
(for the POT approach this means 50 times 12 values per year) from the observed series. The
99.9%-quantile, derived from the di�erent models, is compared via SPANT with the quantile of
the remaining 37 years of this series. It becomes evident that the robust POT approach with
TL-moments is most robust, whereas the classical GEV model with L-moments estimates is
worst. We considered also the GEV model with Maximum Likelihood (ML) estimates, which
is surprisingly more robust than the GEV-L-moment model. Nevertheless, for single gauges it
resulted in the highest values of SPANT (≈ 2), indicating that for distinct random samples where
high �ood peaks are concentrated in one subperiod, the estimated quantiles di�er signi�cantly
from estimates from the other subsample. For samples in which the values within the two
subperiods are similarly distributed, the high e�ciency of the ML-estimator leads to small values
of SPANT . Overall, this leads to smaller SPANT values than for the GEV-L-moment approach.
In total, the robustness of the POT and robust POT approaches is less a�ected by the order of
occurrence of the events in a data series.

Remark 7.3. A comparison with the third classical estimation method, the method of moments,
is not possible since the random samples can lead to a shape parameter γ > 1/3, where the third
moment and therefore the moment estimators no longer exist.
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Figure 7.32.: QQ-plots for the annual maximum discharges of the Nossen gauge and the estimates
using AMS (top left), robust AMS with TL-moments (top right), POT (bottom
left) and robust POT with TL-moments (bottom right). The robust POT with TL-
moments approach �ts best to the main part of the data since it is not in�uenced
by the extraordinary extreme event.
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Figure 7.33.: Empirical distribution of SPANT for annual return periods of T = 100 (top left),
T = 200 (top right) and T = 1000 (bottom) years and all gauges. If the estimation
is stable, the relative distance of the quantiles has to be close to zero and therefore
also SPANT , consisting of the values of all single gauges, should be close to zero.
The smallest values are obtained for the robust POT with TL-moments approach.
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Since we are interested in the robustness of quantile estimations in prolonged series, the third
criterion we used compares the annual return periods of yearly values, which are added step-by-
step to the analysed data series. Here we estimate the absolute deviation between the return
period of an event, which is estimated on the basis of a series ending one year before it, and
the return period of the same event after integrating it into the analysed series of observations.
The �rst value, using all previous events, is the "predicted return period�; it is compared with
the return period using the prolonged series, which we name as the �observed return period�.
This approach is applied for an increasing sample length, starting with a minimum of ten years.
The di�erences between predicted and observed return periods depend on the length of previous
observations, the statistical characteristics of the time series and the size of the added value.
Thus, it is not comparable between gauges but is a means to compare the robustness of quantile
estimators. The evolution of quantiles can be compared with the annual return period of the
most extreme �oods estimated from the whole sample by the AMS approach.

We analyse the robustness of quantiles of year-by-year increased time series for two gauges
(Nossen and Wechselburg) and estimate the absolute deviation between the predicted return
period and the observed return period (Tables 7.18 and 7.19). It becomes evident that after a
certain time of stabilisation, which is needed for an adequate modelling, the POT and especially
the robust POT approach with TL-moments provide much more stable estimates of the annual
return period than the classical annual maxima approach AMS. Whereas the AMS approach is
highly in�uenced by the occurrence of extreme events, the two POT models are less responsive.
Additionally, the use of robust estimators in the AMS approach also leads to more stable esti-
mation, but it is not as stable as the combination of the POT model with the TL(0,1)-moments.

At Nossen gauge the �ood in the years 2002 has been so extreme that all methods estimate
return periods much higher than 10,000 years. An interesting property of both robust methods
also becomes evident. In the year 2013 another extreme event occurred. Because of the very
short time span since the previous extreme event in the year 2002, the non-robust AMS approach
estimates a higher quantile (already estimating a very high quantile in the step before), �tting
well in this case. The robust AMS as well as robust POT handled the former extreme event as
a type of outlier. When such an extreme event occurs a second time, however, some probability
mass is given to this large �ood. Robust AMS, POT and robust POT result in a larger di�erence
now. Comparing the evolving 99%-quantiles from a series with an increasing length (Tables
7.20 and 7.21) with estimations based on the total series the deviations from the quantiles of
the total series are smaller for the robust approaches and for the POT approaches. In most of
the cases, the estimated return periods are reduced when the total series is used and are often
close to the robust estimations. This shows the di�culties when estimating high quantiles from
short data series with extreme events. When the series length increases, the estimation changes
considerably. The use of robust estimators as done in the robust AMS model leads to a higher
stability of the estimations in this case. The increase of data by using for example the POT
increases this behaviour.

The behaviour discussed above leads to the assumption that the robust POT with TL-moments
results in an estimation of high quantiles that is stable over time and is less in�uenced by single
extreme �oods. Nevertheless, very extreme �oods are still identi�ed as extremely rare events. To
demonstrate this, we compare the 99%-quantiles of �ood series with increasing sample lengths.
As before, we started with the �rst 10 years of observations and estimated the 99%-quantile from
this sample. Then the sample length is increased step by step by one year and the 99%-quantile
is estimated. This is done up to the point where all recorded �oods are included, in our case the
year 2013. Plotting these results, the typical shape of the time series of quantiles is a sawtooth
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Table 7.18.: Absolute di�erences between predicted and observed return period of extraordinary
extreme �oods (Gauge Wechselburg/Zwickauer Mulde, records beginning in the year
1910) with the four di�erent �tting approaches. The return period of the observed
�ood is estimated with the time series ending in the years before the occurrence of
this event. Only di�erences of more than 5 years are shown. The character∞ stands
for cases where it is not possible to �t a suitable distribution to the given data

Series used for prediction Year of the event AMS robust AMS POT robust POT

1910-1922 1923 3 7 34 ∞
1910-1923 1924 66 18 57925 ∞
1910-1925 1926 10 10 68 ∞
1910-1931 1932 91 8 75 45
1910-1953 1954 354 33 444 88
1910-1974 1975 19 15 16 3
1910-2001 2002 172 99 124 38
1910-2012 2013 71 78 70 49

Table 7.19.: Absolute di�erences between predicted and observed return period of extraordinary
extreme �oods (Gauge Nossen/Freiberger Mulde, records beginning in the year 1926)
with the four di�erent �tting approaches. The return period of the observed �ood
is estimated with the time series ending in the years before the occurrence of this
event. Only di�erences of more than 5 years are shown. The character ∞ stands for
cases where the model is not able to �t a suitable distribution to the given data

Series used for prediction Year of event AMS robust AMS POT robust POT

1926-1930 1931 30 0 1 ∞
1926-1953 1954 18 4 6 4
1926-1957 1958 750 92 65 29
1926-2001 2002 19.5 Mio 10247 2.7 Mio 29608
1926-2012 2013 31 202 127 353

Table 7.20.: Flood peaks (in m3/s) with a return period of 100 years at Wechselburg/Zwickauer
Mulde gauge, derived from a series with a growing length, and mean absolute devi-
ation (MAD) from the results of the total series with �ve di�erent approaches.

Series AMS (ML) AMS (L-moments) robust AMS POT robust POT

1910-1940 1516 687 1013 690 824
1910-1950 649 613 874 619 728
1910-1960 814 792 826 717 716
1910-1970 755 714 711 684 702
1910-1980 829 766 823 725 729
1910-1990 753 713 718 717 733
1910-2000 757 720 732 709 726
1910-2010 822 800 785 754 726

1910-2013 (all) 953 919 868 791 708
MAD 231.9 193.4 95.4 89.1 34.5

MAD (%) 24.3 21.0 11.0 11.3 4.9
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Table 7.21.: Flood peaks (in m3/s) with a return period of 100 years at Nossen/Freiberger Mulde
gauge, derived from a series with a growing length, and mean absolute deviation
(MAD) from the results of the total series with four di�erent approaches.

Series AMS (ML) AMS (L-moments) robust AMS POT robust POT

1926-1956 170 165 193 192 206
1926-1966 241 206 259 225 239
1926-1977 242 195 241 203 211
1926-1986 210 180 226 188 190
1926-1996 193 173 212 171 196
1926-2006 280 305 211 232 190

1926-2013 (all) 316 337 234 251 225
MAD 93.3 133 21 49.2 14.3

MAD (%) 29.5 39.5 8.97 19.6 7.4

curve as shown in Figure 2.1. Every large event causes a jump in the quantile in the year of its
occurrence. Afterwards, during periods with �normal� �oods, these di�erences decrease slowly
until the next large event occurs. Overall, we normally have a slight increase of the values of
quantiles with growing sample length as more extreme events become more probable with the
increase of the length of observations. An example of such a moving quantile estimation is
shown in Figure 7.34 for the Wechselburg and Nossen gauges. For the classical AMS approach
(GEV), we see the typical �sawtooth� curve as mentioned above. Every large event leads to an
abrupt increase of quantiles. The jumps are reduced much when using the robust TL-moments,
although still the in�uence of single events can be detected. The jumps are reduced to a similar
height, however, when POT is used. Although there are still jumps in the estimated values, their
magnitude is much smaller, and all in all we have a smaller variability of the quantiles and a
smoother increase. For robust POT, when a robust parameter estimation with TL-moments is
additionally used, we can see that the estimation is no longer a�ected by any jumps. However,
at the beginning of the time series, the variability of quantiles estimated from the robust POT
approach is high, an e�ect caused by the low e�ciency of the TL(0,1) estimator for small samples,
which is a typical characteristic of robust estimators.

One can also see that all four approaches need a sample length of at least 30 years to deliver
stable results, the robust AMS even longer since it has much less data available than the POT
approach.

Additionally, we analysed the �ood series for the other 13 gauges and calculated the coe�cient
of variation of the series of quantile estimations for the increasing sample lengths starting with
40 years (Figure 7.35). As expected, the coe�cient of variation for the POT is generally smaller
than if we apply the classical AMS approach. The coe�cient of variation for robust POT with
TL-moments is a bit higher than the others. This results from the needed time for stabilisation
of the estimations. When a certain minimum length of the given series is ensured, the variation
of results for robust POT decreases on average faster than that of the other approaches. Small
quantiles are less a�ected by extremes than high quantiles. This is shown in Figure 7.36 with
the examples of the 80% and 99.5%-quantiles of the whole samples. Since not the distinct gauge
but the overall behaviour is of interest here, we spare the names of the gauges and use numbers
instead. To compare the results, the ratios of the estimated �oods between the AMS and the
robust AMS with TL-moments, the POT and robust POT with TL-moments are used. One
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Figure 7.34.: Estimation of the 99%-quantile of the Wechselburg (left) and Nossen (right) gauges
for growing sample length with four di�erent approaches. The black dots are the
annual maxima of the single years. After a time of stabilisation the robust POT with
TL-moments approach is the most stable one and does not change much when an
extraordinary extreme event occurs, whereas the non-robust GEV approach shows
large jumps in these cases.

can see that the results of AMS estimations for a return period of T = 200 years are in general
higher than the POT results (ratios larger than 1). Averaging all 15 gauges, this ratio is about
1.3. This means that on average, the quantiles derived from AMS are 30 percent higher than
using POT. When using the robust TL-moment estimators (robust AMS) the estimated 80%-
quantile di�er a lot from the ones estimated with the classical AMS approach, but they show
no distinct direction of deviation. For some gauges, the AMS quantiles are higher, for others
this is not the case. Using robust POT, these di�erences to the AMS have a clear direction.
Here the �ood quantiles are on average 50% smaller than those of AMS. The di�erences among
quantiles with lower return periods, e.g. T = 5, are much smaller, regardless of the estimation
approach. So, using robust estimators as well as an enlargement of the data basis only a�ects
the higher quantiles by giving less weight to the in�uence of extreme events. This supports the
results concerning the reliability of POT or robust POT with TL-moments.

As has been shown in Figure 2.1 and 7.34, �ood quantiles change with the length of the �ood
series and the occurrence of extreme �oods. The robust POT approach (after a certain period
needed for its stabilisation) results in a low variability of extreme quantiles. Compared to the
AMS-estimated quantiles derived from the total series of observations, these ��nal� quantiles are
much smaller, since the extreme �ood in the year 2013 has less impact (Figure 7.36). However,
the robust POT quantiles for the series up to the year 2013 are similar to the estimated quantiles
of all shorter recorded series (Figure 7.34). This is not the case for the AMS approach. To show
the di�erences in the results between the two approaches, we calculated the frequencies of the
99% �ood quantiles for year-by-year increasing series of observations starting with a series of at
least 40 years of observation and ending in the year 2013 (Figure 7.37).

The results are shown by boxplots of both methods for two gauges. The �ood range where the
highest frequencies are concentrated is quite similar for both methodologies, but robust POT
avoids very high estimations of these quantiles. For robust POT, all estimated quantiles are
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Figure 7.35.: Coe�cient of variation of the 99%-quantile estimation for increasing sample length
with four di�erent approaches for 15 gauges of the Mulde basin. Overall the robust
POT approach has the smallest variation.
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Figure 7.36.: Comparison of the AMS and the robust AMS (green), the POT (blue) and the
robust POT with TL-moments (red) by the ratio between the �ood quantiles 0.8
(�lled) and 0.995 (blank). It can be seen that for small return periods all models do
not di�er much in their estimation. Nevertheless, for extreme quantiles the classical
AMS estimation is up to twice as high as the robust estimation.
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Figure 7.37.: Boxplots of all estimated 99%-quantiles with the AMS or robust POT with TL-
moments approaches for year-by-year increasing sample length starting with a
length of 40 for the (a) Wechselburg and (b) Nossen gauges. The estimated 99%-
quantiles for the fully recorded series for AMS and robust POT are also shown
(grey line). The robust POT with TL-moments approach has only small variation
and estimates the quantile well.
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grouped close together, having small deviations. The quantile for the total series up to 2013
is located close to the centre of the boxplot, that is the median of all estimated quantiles. In
contrast, the range of the boxplot for AMS-based quantiles is broader, and the quantile calculated
from the total series is located far from the centre of the boxplot. For the Nossen gauge it is
even in the range of the most extreme values. Comparing the mean and median of the estimated
quantiles, they do not di�er much for both approaches (about 5 − 10%), therefore one can say
that over time, both approaches in general come to the same results, although the robust POT
with TL-moments leads to less variation.

From the results given in this chapter we can conclude that the use of robust estimators in the
context of �ood statistic stabilises the estimated extreme quantiles, that are needed for design
�oods. While the small quantiles do not change compared to the classical AMS approach, where
a GEV distribution is �tted to the annual maxima using L-moments, the extreme quantiles (90%
and higher) are less a�ected by extraordinary large events. If additionally the data basis and
therefore the used information is extended by a POT approach, this behaviour increases. The
in�uence of extraordinary extreme events in short time series, that could lead to an overestima-
tion, is reduced in this case on the one hand by enlarging the time series and on the other hand
by down-weighting the tail events.

A natural question arising with the results of the robust POT approach is the probable under-
estimation. Having a look at the results so far one cannot conclude, if the robust POT with
TL-moments approach maybe simply has a too large bias, whereas the classical approaches re-
sult in high quantiles that are nevertheless correct. Therefore, we want to prove in the following
that after a long period of observation the estimated quantile of the AMS series converges to
that of the POT series. That is, the large values estimated by the AMS approach are caused by
extraordinary large events right at the beginning of the series, that have a large in�uence on the
estimation. Hence, the estimation is falsi�ed. The robust POT approach can cope with this.

Of course, the recorded discharge series are not long enough to validate this assumption. Instead,
we simulate a series of 12000 GEV-distributed data. These should be the monthly maximum
discharges of 1000 years. The location parameter is chosen as µ = 50, scale as σ = 5 and shape
as ξ = 0.6. To guarantee extraordinary extreme events at the beginning of the series, the largest
two values are set on the position 50 and 500. Again, the 99%-quantile of the prolonged series
is calculated (see Figure 7.38).

As assumed the convergence of the estimated quantile of AMS as well as the POT approach to
the quantile estimated by the robust POT approach can be con�rmed by the simulation. We can
conclude that the estimation using the AMS approach is strongly in�uenced by the extraordinary
extreme events at the beginning of the series whereas this in�uence is reduced the longer the
sample is. The robust POT with TL-moments is not in�uenced so much by the single events
and therefore is able to estimate the limit quantile from the beginning on.

To validate the results we repeated the estimation given in Figure 7.38 1000 times and calculated
the mean deviation between the AMS and the robust POT 99%-quantile for the last 100 estimates
of length n = 901, . . . , 1000 years. A boxplot of the results is given in Figure 7.39. The main
part of the estimated deviation lies in the range of 50 and 250 m3/s. The large deviation can
be explained by having in mind that the mean of the last 100 years is considered. Therefore,
the convergence might not have reached the limit during the whole time span and higher values
have in�uence on the mean. All in all, we can conclude that the robust POT with TL-moments
and the AMS approach both lead to the same estimation of the quantiles after a su�cient time
period.
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Figure 7.38.: Comparison of the AMS (black), the POT (blue) and the robust POT with TL-
moments (green) approach by the estimated 99%-quantile for a year-by-year pro-
longed series. It can be seen that all approaches converge to the same value for a
su�cient large sample length.

Robust �ood-type mixing approach

Since the application of robust estimators in hydrological models seems to be very promising
according to the results in Section 7.2.3 we also want to extend the seasonal model of section
7.2.1 to robust estimators. Based on the results before, again the robust TL-moments shall be
used and replace the L-moments. Since the model is based on the GEV distribution, no new
estimators have to be introduced.
In the following we compare the robust AMS, robust WS and robust WST (all with TL-moments)
with the initial AMS model based on L-moments. First, we want to get an idea of how much
the use of robust estimators changes the quantiles. Therefore, for the Wechselburg gauge we
calculated the 90, 99, 99.5 and 99.9%-quantile with all four approaches. The results can be
found in Table 7.22. Additionally, the detailed shape of the distribution function can be found
in Figure 7.40. As expected, the robust approach reduces the in�uence of the extreme events
in the years 1954, 2002 and 2013 such that the robust AMS as well as the robust WST lead to
smaller estimates than the non-robust AMS. Compared to the progression of the distribution
with non-robust estimators (Figure 7.40), here it seems to be subdued and the WST approach
only results in larger quantiles for much larger values of p. Surprisingly, this is not the case for
the robust WS approach. When we estimate the robust approach with TL-moments, this leads
to even higher quantiles than the non-robust WS model for almost all annualities which is not
the case for any of the other models (see Figure 7.24). On the �rst glance it seems that the WS
model is not suitable for the use of robust estimators. We want to investigate this further.
First, let us have a look at the in�uence of single annual observations on the estimation. As
before, the year-by-year prolonged series of the Wechselburg gauge is considered and the di�erent
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Figure 7.39.: Boxplot of the mean di�erence of the last 100 estimates of a year-by-year prolonged
series calculated with the AMS and the robust POT with TL-moments and repeated
1000 times. A mean deviation of about 160 m3/s can be seen with some extremes
in the right tails.

Table 7.22.: Estimated quantiles (in m3/s) for the Wechselburg/Zwickauer Mulde gauge with
the di�erent models. The robust WST with TL-moments results in the smallest
estimated quantiles (for quantiles larger than 99%), whereas the robust WS model
with TL-moments results in very high quantiles.

Quantile AMS (L-moments) AMS (robust) robust WS robust WST

90% 403 249 403 336
99% 919 868 1191 774
99.5% 1176 1015 1671 988
99.9% 1986 1819 3754 1783
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Figure 7.40.: Distribution functions calculated for the Wechselburg/Zwickauer Mulde gauge using
di�erent robust statistical approaches. The robust AMS as well as the robust WST
approaches behave alike and only for very high quantiles T ≈ 2000 the robust WST
approach (all three with TL-moments) results in higher quantiles. The robust WS
model estimates much higher quantiles.
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Figure 7.41.: Estimation of the 99%-quantile of the Wechselburg gauge for growing sample length
with four di�erent approaches. A high �uctuation for the robust WST model can
be seen, although both the AMS models and the robust WST model converge to
same value.

approaches are used to estimate the 99%-quantile (Figure 7.41).

We can see a high in�uence of the single extraordinary extreme events on both, AMS and robust
AMS series. Additionally, the WS model proves to be not compatible with the robust estimators
again. The deviation from the original estimation is much too high and cannot be explained.
What is very striking is the high variance in the estimation by the robust WST model. The
�uctuation in every time step is much higher than for the AMS. Only for a sample length of 90
years the estimation becomes more stable. This �uctuation can be explained by the estimation
technique. By using the �lling method, at every time step small deviations in the estimation of
the parameters occur. In very high quantiles these deviations have large in�uence. Moreover,
robust estimation is known to be less e�cient for small samples as we have seen above. The
multiple use of robust estimators (for winter as well as short and long summer) increases the
uncertainty and leads to such deviations. Nevertheless, the QQ-plots still show the best �t of the
robust WST model with TL-moments (Figure 7.42). To obtain a better idea of how much the
use of robust estimators in�uences the estimation, we want to simulate a very long time series
to evaluate.

Hence, we simulated three series of n = 1000 GEV-distributed random variables. The parameters
are chosen according to the example of the Wechselburg gauge, that is for the short summer series
we have µSS

= 92, σSS
= 32, ξSS

= 0.5, for the long summer series µSL
= 95, σSL

= 60, ξSL
= 0.3

and for the winter series µW = 115, σW = 54, ξW = 0.2. The summer series as well as the AMS
are then calculated with the pairwise maximum. To obtain an extraordinary large value right at
the beginning of the series we interchange the value in the short summer series at time i = 100
with the maximum of the series. The results of the 99.9%-quantile for the AMS, the robust
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Figure 7.42.: QQ-plot of the annual maximum series of the Wechselburg gauge compared with
the robust AMS, the robust WS and the robust WST model. All models except
the robust WST model overestimate the highest �ood in the series.

AMS, the robust WS and the robust WST model with growing sample size can be found in
Figure 7.43. We can see that again the AMS/robust AMS model (which result in almost the
same estimates) with TL-moments converges to the value of the robust WST approach with
TL-moments, although the AMS method is much in�uenced by the extraordinary extreme value
at the beginning of the sample. For the robust WST this is not the case. Also, the �uctuation of
the WST estimate is much reduced with increasing sample length. The WS model again proves
to be not compatible with robust estimators.
The results show that the use of robust estimators in hydrological models proves to be a valuable
tool when needing to obtain stable estimation. The occurrence of extraordinary extreme events
at the beginning of a time series leads in the non-robust case to a large overestimation which
reduces only slowly in time. But the simple use of robust estimators in annual maximum series is
often not su�cient. Instead, the enlargement of the information spectrum helps much to obtain
stable estimation. Additionally, not all hydrological models are suitable for the use of robust
estimators as can be seen for the WS model. Therefore, before applying robust estimators a
careful investigation should be done.

7.3. Homogeneous Groups and Regionalisation

The number of gauges measuring discharges is very limited. For example, in the Mulde river
basin there exist 59 active gauges in a catchment area of more than 6200 km2. Moreover, many of
these gauges have been installed not long ago and therefore long series discharges are even more
rare. Therefore, the information given by only a few gauges has to be transferred to unobserved
locations to obtain information on these. This is called regionalisation. Of course, not the infor-
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Figure 7.43.: Estimation of the 99%-quantile of the simulated series for growing sample length
with four di�erent approaches. The green line indicates the theoretical value of the
WST model with the given parameters.

mation of any gauge can be transferred to any ungauged position since discharge and especially
�ood behaviour depends much on the topographical as well as climatological circumstances.
Gauges that can be assumed to behave alike are called homogeneous. One of the main aspects
in regionalisation is the classi�cation of homogeneous groups. Besides classical approaches like
the Index-Flood approach (Hosking and Wallis (1997)) also geostatistical approaches (Merz and
Blöschl (2005)) or topological Kriging (Skøien et al. (2006)) can be used.
We want to show that also the classi�cation into alert steps can result into homogeneous groups
since for such a group the alert steps are the same. The origin of this work has been the desire
of municipal organisations of water management to obtain easy understandable alert steps that
can be explained to publicness. Therefore, to make a broad applicability possible, very basic
statistical methods shall be used.

Classi�cation of �oods into alert steps

In the last two decades the once-in-a-century-�oods accumulated.1

This has been the statement of the (German) Federal Agency for Civic Education (Bundeszen-
trale für politische Bildung) after the large �oods in June 2013 a�ected many parts of Germany.
This quotation clari�es the problems of comparing �ood events with the help of statistical return
periods or annualities. Only experts know that annualities (or the related return periods) are re-
ciprocals of exceedance-probabilities of the peak discharge. Many laymen do not know what the
word "statistical" does mean in connection with (statistical) return periods and ask themselves
why there occur two �oods with return periods of more than 100 years in a period of only 11

1�In den vergangenen zwei Jahrzehnten haben sich die �Jahrhunderthochwasser� gehäuft.� Bundeszentrale für
politische Bildung (2013)
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years (2002 and 2013). Practical experience shows that a distinction of probability-based design
�oods and a �ood scale usable for public is needed.

For other natural dangers such as earth quakes and storms such di�erent scales exist for a
long time. For earth quakes in media often the Richter scale is used, having its origin in the
thirties of the last century. The Richter scale is a logarithmic magnitude scale that characterises
the energy release of earth quakes by the amplitude of a seismographic record. It is easily
understandable that an earth quake of 5 on the Richter scale is smaller than one of 7 and much
smaller than one of 9. But for constructional earth quake assessment for skyscrapers and other
high buildings a reference value of the soil acceleration for speci�c earth quake zones is used that
corresponds to an exceedance probability of 0.1 within a time span of 50 years. This probability
would correspond to an annuality of 475 years. Likewise the wind speed is described by the
Beaufort scale, distinguishing between calm and hurricane force in 13 steps. In construction
wind loads are speci�ed by a wind speed pressure (mean wind speed) and squall speeds. These
two examples show that a distinction between ordinal and constructional (mostly probabilistic)
scales is common use. Nevertheless, for the characterisation of �oods probabilities are used for
design �oods as well as for public event classi�cation.
The use of the return period, that is the annuality, for the characterisation of the �oods has been
proposed by Gumbel (1941) in the context of extreme value theory. For the design of dams and
other buildings this probabilistic approach then has been borrowed. Concerning the duration of
use and the permissible risk of exceedance the used design events are based on more and more
high annualities. For example, the DIN 19700-11 sets the annualities used for design events at
1000 up to 10,000.
In the following we propose a method for the classi�cation of �oods based on alert steps.

How to choose an ordinal scale for �ood classi�cation

To assess a �ood event under the use of an ordinal scale, hydrological assumptions on an area
should be summarised and the application of probabilities should be avoided to prevent from
misinterpretation.
One possibility is a classi�cation according to �ood damages. In general, public is less interested
in the hydrological characteristics of a �ood event but in the consequences and the frequency of
damages. This could be for example �ooded areas, a�ected inhabitants or pecuniary damages.
However, such criteria are not appropriate to classify the magnitude of a �ood. Although the
damages increase with increasing magnitude of a �ood, there is still a large variability caused
by locally di�erent �ood protection and random e�ects. These problems can be summarised in
three counterarguments:

• Flood damages are in general distributed di�erently in space according to the distinct event.
For example, a crevasse causes local damages that can vary according to the location of
appearance. It is di�cult to aggregate several of such local damages in a river basin or an
administration authority since di�erent criteria have to be considered.

• Flood damages occur when the hydrological burden (discharge) exceeds the resilience of
the respective system (dike, water pro�le etc.). However, the resilience varies in time due
to driftwood jam or moisture penetration. From the fail of �ood protection systems caused
by constructional failure of single parts due to ageing or human failure one cannot conclude
the magnitude of the hydrological burden.
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Table 7.23.: Possible classi�cation of �ood events with annualities.
�ood class qualitative property annuality T of the peak discharge

1 Small �ood >2a
2 Medium �ood >5a
3 Large �ood >15a
4 Very large �ood >30a

• In contrast to storms and earth quakes �oods have a much more local connection. The
possibility of designation of �ood areas analogous to earth quake areas or wind zones is not
given in this context. Additionally, �oods cannot be characterised by single impacts for
large areas. Flood damages result from the water level or �ow velocity, that are hydrostatic,
hydrodynamical and buoyant forces. Besides, also �otsam and erosion can be decisive. All
these in�uences depend much on the local circumstances.

In contrast to natural phenomena like earth quakes or storms having impact on whole areas a
�ood event cannot be classi�ed according to the strongly varying local damages. In the following
we therefore propose a classi�cation based on the frequency (rarity) of events and on probabilities
without using them explicitly. It is a connection between the real occurring and by public received
�oods and the, demanded by the EU-HWRM-RL (European Parliament and the Council (2007)),
description of dangers according to annualities and therefore unreal �oods.
Often large �oods occur at several gauges at the same time. Depending on the type of precipi-
tation (convective or stratiform) large or small areas of a catchment area are a�ected. Also the
reaction of the area plays a crucial role. The classi�cation of �oods can therefore also help to
detect homogeneous groups of gauges within a catchment area by comparing the single �ood
events according to their classi�cation.

Classi�cation

Starting point for the development of a classi�cation for �oods is the assumption that the e�ects of
�ood events are larger the more seldom they occur. More seldom events result in larger �ooded
areas and the consequences are more serious. To avoid declarations concerning probabilities,
annualities of �ood peaks have to be translated into qualitative �ood classes. An example is
given in Table 7.23. Extreme �oods therefore occur in mean every 30 years, large �oods in mean
every 10 years and so on.
The classi�cation into four �ood classes is based on the common four �ood alert steps in Germany.
In contrast to the proposed classes the alert steps are �tted to locally needed �ood protection
systems and not connected directly to the annualities of discharges. They often vary strongly
within a river basin. Therefore, it can be useful to vary the proposed thresholds for the �ood
classes according to the catchment areas and consider the alert steps 3 and 4 in this case.

To obtain the threshold of the �ood classes based on the annualities given in Table 7.23 the use
of the common �ood statistic is not advisable. The �ood-statistical evaluation of past extreme
�ood events is problematic since these events change the statistical parameters and therefore the
distribution function. Hence, large di�erences between estimates before and after the occurrence
of such an extreme event could be obtained (see Section 7.2.3). Additionally, one should avoid
that for di�erent gauges of the same river basin for every event a �ood-statistical analysis has to
be done, whose results can di�er much between the gauges depending on the used distribution

165



7. Robust Estimation in Flood Statistics

and the sample length. This is the reason why we propose a much simpler approach based on
the Chebychev-inequality.

Mathematically, for a given sample X1, . . . , Xn we need a value k, such that P(X ≥ k) ≤ β,
where β is the threshold to be determined. Since this β is mostly based on a chosen annuality
T , we denote the k calculated with the given T as kT .
There exist several possibilities to calculate this kT . First of all, one could �t a distribution
function and estimate the corresponding quantiles. But, as mentioned above, this leads to a
large uncertainty concerning the choice of the distribution and the e�ciency of the estimator,
especially for small samples. An empirical estimation of the quantiles is limited to the largest
observation of the sample as largest quantile and therefore for small samples this is also not
suitable.
This is the reason why we want to estimate kT based on statistical characteristics such as mean,
standard deviation and skewness.
The commonly known inequality for the problem above is the Chebychev-inequality. This in-
equality can be sharpened by further assumptions on the random variables that are made because
of the hydrological nature of the data. We can assume that the random variables are unimodal.
That means that there exists exactly one m such that the distribution function F (x) is convex
for x < m and concave for x > m. If the mode is arbitrary, Dharmadhikari and Joag-Dev (1986)
generalise a result of Vysochanskij and Petunin (1980) to arbitrary r-th moments, r > 0:

P(|X| ≥ kT ) ≤ max

{(
r

(r + 1)kT

)r

E|X|r, s

(s− 1)krT
E|X|r − 1

s− 1

}
,

where s is a constant with s > r + 1 and s(s − r − 1)3 = rr. For further details on inequalities
of this type we refer to Savage (1961) and Sellke (1996).

In the case considered here we can restrict ourselves to the �rst component of the maximum.
Due to the calculation of kT for T ≥ 2 it can be shown that for large T (T > 5) the maximum
takes exactly this value and also for smaller annualities no signi�cant di�erence occurs for this
restriction, but the calculation becomes much easier. This leads us to the case of the so called
generalised Gauss- or Camp-Meidell inequality but without the assumed symmetry of the data,
which cannot be assumed for �ood peaks.
Since we only have one data sample with unknown moments, these have to be estimated. We are
aware that the use of estimates instead of the theoretical moments causes an uncertainty that can
change the threshold (see Kabán (1996)). But these di�erences are negligible for su�ciently large
sample sizes (n ≥ 40). To obtain a su�cient exactness and to take into account the properties
of the data such as skewness, we calculate the Camp-Meidell bound with the third moments.
We obtain

P(|X| ≥ kT ) ≤
(
3

4

)3 1

k3T
E|X|3

and, since the considered data are discharges and hence positive, the absolute value vanishes. As
mentioned above the right hand side of the inequality should equal 1

T . By transformation to kT
we have

kT =
3

4

(
E(X)3

1/T

) 1
3

.

Now the non-centred third moment has to be estimated on the basis of the sample x1, . . . , xn
with the related order statistic x(i), i = 1, . . . , n. Commonly, the third moment is estimated by
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the mean

µ̂3 =
1

n

n∑
i=1

x3i .

But this estimator is not robust and therefore not stable over time, see Section 2.2. Hence, we
again want to use a robust estimator to obtain a time-stable estimation even for small sample
sizes. Therefore, the mean is replaced by the trimmed mean (see Example 5.2) applied to the
third power. In detail, 10% of the data (rounded down), that is 5% symmetrical in the upper
and lower tail respectively, are trimmed. Thus, the calculated thresholds are stable even in the
presence of new occurring extraordinary large or small events. The kT -values are then estimated
as follows from the AMS:

kT =
3

4

⎛⎜⎜⎜⎜⎝
1

n−2[n·α]

n−[n·α]∑
i=1+[n·α]

x3(i)

1
T

⎞⎟⎟⎟⎟⎠
1
3

.

Here, α is the degree of the one-sided trimming, that is α = 0.05.

A "very large �ood" therefore has for the main part of gauges in a region a peak discharge
that is greater or at least equal to the speci�c k30-threshold. The annuality-thresholds chosen
in Table 7.23 can be increased or decreased depending on local �ood conditions. The number
of exceedances is in that case a very important property for the distinction of the choice of the
thresholds within catchment areas.

To make an objective choice of the annuality-thresholds possible we propose an optimisation
approach. For this two basic assumptions are made:

• Within a (regional) group of gauges the same event should be classi�ed to the same class.

• The empirical return period should be equal to the theoretical return period.

Under these assumptions we develop the following optimisation criterion:

Suppose, we want to determine annuality-thresholds T1, . . . , Tm form �ood classes. If we consider
a gauge i, i = 1, . . . , k, with sample length ni within a group of gauges, de�ne ni;Tj as the number
of annual maximum discharges of this gauge, whose annuality is larger than the threshold Tj

and smaller than Tj+1 (that is they are larger than kT and smaller than kT+1). This threshold
should be chosen such that approximately the number of these events in the series of ni years
equals the expected value of the number of events within the class (ni/Tj −ni/Tj+1), that is the
di�erence (in absolute value) of the both quotients ni/ni;Tj and ni/Tj − ni/Tj+1 (respectively
between ni/ni;Tm and ni/Tm for the largest class) should be minimal. Hence, the optimisation
criterion is given by the minimum sum of the absolute variation coe�cients of the single classes

min
(T1,...,Tm|T1<...<Tm)∈N

m∑
j=1

|V arCTj |,
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where

V arCTj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
Var

(
ni

ni;Tj
−
(

ni
Tj

− ni
Tj+1

))
(

1
k

k∑
i=1

(
ni

ni;Tj
−
(

ni
Tj

− ni
Tj+1

))) for j < m

√
Var

(
ni

ni;Tm
− ni

Tm

)
(

1
k

k∑
i=1

(
ni

ni;Tm
− ni

Tm

)) for j = m

.

Here, the threshold values de�ned in Table 7.23 are used as starting values.

To con�rm the applicability of this approach we show the frequency of the �oods for di�erent
classes and gauges sorted by river basins in the appendix. Additionally, we give the results of
the classi�cation highlighted by di�erent colours (Tables A9-A11). It is clear to see that very
large and large �oods are classi�ed the same for several gauges. With this classi�cation regional
groups can be identi�ed.
Please note that an objective distinction into homogeneous groups is only possible if the op-
timisation is made for the whole basin. Otherwise, the choice of groups would in�uence the
results. Nevertheless, for small basins like the Mulde or Harz this is possible and therefore also
a distinction into homogeneous groups is possible.
For the classi�cation of the gauges in the Mulde river basin a clear coherence can be detected
for the years 2002 and 2013, where for all gauges at least a very large event is classi�ed (2002)
respectively for all gauges of the subcatchment Zwickauer Mulde and all but two gauges in the
subcatchment Freiberger Mulde (2013). These two years are in fact the years, where the two
extraordinary �ood events occurred that caused incredible damages. Moreover, also for the year
1954 in the subcatchment Zwickauer Mulde as well as for the year 1958 in the Freiberger Mulde
events are classi�ed as very large and large. This corresponds to the �ood behaviour for these
years. In 1954 extraordinary long and heavy rainfall especially in the area of the Ore mountains
e�ected mainly the subcatchment Zwickauer Mulde and led to large �oods, for example in the
area of Zwickau. In the year 1958 the centroid of the heavy rainfalls has been located near
Dresden and therefore the Eastern part of the Mulde, and so the subcatchment Freiberger Mulde
has been much more a�ected. Additionally to these special events, also small cluster of gauges
behaving alike can be detected. For example in the subcatchment Freiberger Mulde the gauges
Streckewalde and Hopfgarten as well as Berthelsdorf, Nossen and Niederstriegis show very similar
behaviour for several years. These gauges are located very close together respectively and would
probable be assumed to behave alike because of the topographical similarity.
In the Harz region the 2002 event has been one of the largest �ood events in this area, too. It
has only been exceeded by the event in 1994. In this year, the Vb weather, which is very unusual
in this region, led to heavy and long rainfall in an area that normally is located at the lee side of
the Brocken mountain. Both events are classi�ed here as extreme large events for many gauges.
Since the Harz basin consists of many di�erent river systems that do not enter each other, it
cannot be expected that for all gauges these events are classi�ed the same.
We can see that with this classi�cation method we can detect, which gauges behave alike, and
therefore homogeneous groups can be found.

Moreover, we are able to detect groups of events of two or more gauges that belong to the same
class. This makes a distinction into local and catchment-wide events possible. As an example
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we want to use the two gauges Hopfgarten and Lichtenwalde, both belonging to the same sub-
catchment Zschopau. Since Hopfgarten is located upstream to Lichtenwalde, we can expect
similar events for both gauges. Nevertheless, also the in�uence of the discharging distributary
Flöha has to be taken into account. For both gauges we have an annual maximum series of the
length n = 102 years (in Hopfgarten the observation of one year is missing and cannot be used
for comparison). For these, 65 pairs of events (one pair each year) belong to the same class
and thus are assumed to belong to a homogeneous group. Likewise, 37 events are assumed to
be inhomogeneous. In both groups we can �nd extraordinary extreme events, for example the
events of 1954 and 1958 in the inhomogeneous groups whereas the events of 2002 and 2013 are
classi�ed the same.
In common regionalisation methods these homogeneous groups are then used to derive regional
distribution functions or quantiles. One of the most common methods is the so called index
�ood approach. Here, it is assumed that there exists a regional valid distribution function that
is approximately the same for all gauges belonging to the homogeneous group and only di�ers in
one parameter, the index �ood parameter (Dalrymple (1960)). As index �ood parameter often
the mean annual maximum or the �rst PWM/L-moment is used, depending on the parameter
estimation. A special case of this model is the regional GEV-model, where a constant shape
parameter ξ is assumed for all gauges and the index �ood parameter is chosen as ratio of location
and scale for each gauge respectively. If we want to model �oods for ungauged catchments,
the index �ood parameter can be estimated by taking into account the speci�c values of the
catchments for example in a (non-)linear regression.

In the following we want to show how the classi�cation into alert steps can help to �nd homo-
geneous groups. If we estimate the parameters of a GEV distribution for both gauges using
TL(0,1)-moments (the advantages of these estimators in this context were shown by Lilienthal
et al. (2016)), we obtain as shape parameter ξ1 = 0.350 for the Hopfgarten gauge and ξ2 = 0.209
for the Lichtenwalde gauge. These parameters di�er signi�cantly and therefore both gauges would
not be assumed to belong to a homogeneous group. But if we use the classi�cation method pro-
posed above, we can estimate the parameters for the group of events that are classi�ed alike and
obtain ξ1;h = 0.387 and ξ2;h = 0.396. Here, the assumption of a constant shape parameter is
not violated and a regionalisation model could be used. For the part of events not belonging to
the same class still di�erent shape parameters are estimated with ξ1;i = 0.410 and ξ2;i = 0.354.
This is also emphasized by the Figures 7.44 and 7.45, where we can see the high correlation of
the homogeneously classi�ed events. The inhomogeneously classi�ed events do not show such a
strong coherence. The potential use of such a classi�cation is shown in the following section.

7.3.1. A Regional Mixture Model

The classi�cation of events of gauges belonging to the same catchment gives us several additional
information that can be used in �ood statistics. We have seen that events at one gauge are often
coherent to events of an upstream gauge. But also in�ows of subcatchments or local circumstances
can have in�uence on the �ood events of one gauge. Using the classi�cation method stated above
we now want to determine which annual maximum discharges of the Lichtenwalde gauge are
similar to events of the both upstream gauges Hopfgarten and Borstendorf (each belonging to a
di�erent subcatchment) and which are caused by local circumstances. These information then
shall be used in a mixture model of regional estimation to obtain quantiles for the Lichtenwalde
gauge.
These three gauges have a common length of observation of n = 84 years. Now, nh = 53
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Figure 7.44.: Annual maximum series (top) and events classi�ed alike (middle) and di�erent
(bottom) of the Hopfgarten and Lichtenwalde gauges. The similar behaviour of
events of the same class becomes obvious whereas the events of di�erent classes
show a di�erent behaviour that distorts the homogeneity of the annual maximums
series.
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Figure 7.45.: Homogeneous and imhomogeneous classes of the annual maximum series for the
Hopfgarten and Lichtenwalde gauges. Whereas the homogeneously classi�ed events
show a strong correlation, the inhomogeneously classi�ed events scatter much more.
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events of these are classi�ed the same for all three gauges. For these, the values of the shape
parameter of the GEV lie within the range of the standard errors. We call these homogeneous
events. nh1 = 5 events are classi�ed the same for the Hopfgarten and Lichtenwalde gauges,
whereas nh2 = 17 events are classi�ed alike for the Lichtenwalde and Borstendorf gauges. Thus,
ni = 9 events at the Lichtenwalde gauge are not classi�ed the same as for any of the two gauges.
These events are called local since they are assumed to only depend on local circumstances. For
these four components we now want to apply a mixture model. In contrast to Section 7.2.1,
here, a multiplicative mixture model is not sensible since we do not have the information that
at least one event-type (homogeneous or local) has to occur in a year. Therefore, the additive
mixture model in eq. (7.2) is used. As mentioned before we have four di�erent components:
the homogeneous group consisting of events of two di�erent gauges that are homogeneous to
the events of the Lichtenwalde gauge, the simple-homogeneous groups with Hopfgarten and
Borstendorf consisting only of events of one gauge that are homogeneous to the events of the
Lichtenwalde gauge and the local group consisting of local events of the Lichtenwalde gauge. As
before we use the GEV distribution to model the annual maximum series. Due to the very small
sample sizes, a robust estimation by e.g. the trimmed L-moments is not sensible. The results of
Section 7.2.2 imply the use of the probability weighted moments (PWM) or L-moments here.
For the �rst group a regionalisation approach is needed to obtain quantiles for the Lichtenwalde
gauge. We want to apply the index �ood approach and estimate the parameters for the distribu-
tion function of the �ood series of the Lichtenwalde gauge by the moments of the homogeneous
part of the AMS of the Hopfgarten and Borstendorf gauges. For this, the algorithm proposed by
Hosking et al. (1985b) is used. For each gauge i = 1, 2 the PWMs βr;i are estimated and scaled
by

β̂′
0;i = β̂0;i/β̂0;i = 1

β̂′
1;i = β̂1;i/β̂0;i

β̂′
2;i = β̂2;i/β̂0;i.

The regional moments are then the weighted means of these

β̂⋆
0;i = 1

β̂⋆
1;i =

∑2
i=1 nβ̂

′
1;i

2n

β̂⋆
2;i =

∑2
i=1 nβ̂

′
2;i

2n
.

To estimate the parameters the approximation of Hosking et al. (1985a) is used. With these a
regional quantile q̂T for the annuality T can be estimated which has to be multiplied with the
index �ood β̂0, the �rst PWM estimated for the AMS of the Lichtenwalde gauge.
For the simple-homogeneous groups, that are the events of the Lichtenwalde gauge that only
coincide with one of the other gauges concerning the event class, the same approach as before
is used, although we do not have to use weighted means of the moments, since we only have
one gauge per group. What remains to estimate are the local e�ects, that are events of the
AMS of the Lichtenwalde gauge not coinciding with any of the other gauges concerning their
class. Of course, for ungauged basins these local e�ects would be unknown and have to be
estimated for example by precipitation-runo�-models. Nevertheless, we want to use them in this
model to investigate their in�uence on the estimated quantiles. The resulting mixed probability
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Figure 7.46.: Regional mixture model for the Lichtenwalde gauge compared to the AMS model.
A deviation of both models for high quantiles can be seen.

distribution is then as follows

FLW (x) =
53

84
Freg (x) +

17

84
Fhom;B (x) +

5

84
Fhom;H (x) +

9

84
Floc (x) ,

with Freg being the regional distribution function of the homogeneous group, Fhom;B being the
distribution function of the single-homogeneous group of the Borstendorf gauge (Fhom;H likewise
for the Hopfgarten gauge) and Floc being the distribution function of the local events. Please note
that the index �ood is taken implicitly into account in the homogeneous samples as a normalising
constant.
The resulting quantiles of this mixture model are shown in Figure 7.46. We can see an almost
perfect accordance with the AMS model in the lower quantiles, whereas we have a deviation
of both models for the high quantiles (annualities larger than 50a). If we compare the single
components of the model (Figure 7.47) we can see that the local e�ects only have a high in�uence
for the small quantiles. Also the homogeneously classi�ed events for the Borstendorf gauge do
not in�uence the right tail of the mixture model much. The components having the largest
in�uence on this tail are the overall homogeneously classi�ed events as well as the Hopfgarten-
homogeneous events. These e�ects are not modelled by the AMS model. We have already seen
in Section 7.2.1 that the AMS model seeks a compensation of all mixture components. The
same holds true here, where the regional mixture model follows mainly the components with the
largest quantile values.

The classi�cation of the annual maximum series in combination with a regional mixture model
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Figure 7.47.: Single components of the regional mixture model for the Lichtenwalde gauge. Only
small in�uence of the local e�ects and the Borstendorf-homogeneous events for the
high quantiles can be seen.
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makes a di�erentiated analysis of the single �ood-generating components at a gauge possible. The
in�uence of single subcatchments as well as local circumstances can be extracted and evaluated.
It also o�ers a possibility to estimate design �oods for ungauged basins when the local e�ects can
be assumed to have no in�uence on the high quantiles, as we have seen in the example above, or
can be estimated by catchment characteristics. It also can be used as a starting point to develop
a conditional model, where the annualities of events of a upstream gauge can be estimated on
the basis of the events of the upstream gauge. But this is not the aim of this work and can only
be given as an outlook to future work.

7.4. Modelling Time Series

There exist several di�erent possibilities to model discharge series statistically. Often, ARIMA or
special cases of ARIMA models are used to describe the dependence structure within a discharge
series. GARCH processes or models based on Markov chains are used also.
We have already introduced the example of daily discharges at the gauge in Quebec (Section
3.2), that can be modelled by a combination of an ARMA and EGARCH model. The EGARCH
model has been used to describe the heteroscedastic behaviour of the residuals. For these, we
now want to apply the robust scale estimators shown before. In detail, we want to use Gini's
mean di�erence Gn (Example 5.4) to estimate the scale and calculate asymptotic con�dence
intervals with the variance estimator (Theorem 4.3).
The sample size is su�cient such that the asymptotic normality is valid according to the sim-
ulations in Section 6.2. Gini's mean di�erence of the residuals of the ARIMA model applied
to the Matapedia discharge series is estimated as Ĝ2

n = 0.0728. Now we know according to
Theorem 5.2 that Gini's mean di�erence applied to NED data converges in distribution to a
normal distribution with mean θ = E|X − Y | and variance 4σ/n, with σ2 being the variance of
the GL-statistics with kernel h(x1, x2) = |x1 − x2|.
We obtain for the estimator of σ that σ̂ = 0.0196 and hence as con�dence interval for Gini's
mean di�erence with con�dence level α = 0.05

Gn ∈ [Ĝn − z1−α/22σ̂
2/
√
n, Ĝn + z1−α/22σ̂

2/
√
n] = [0.0723, 0.0733],

where zα is the α quantile of the standard normal distribution.
Of course, one could also use special estimators for the parameters of the margins, e.g. of a GEV
distribution. In this case the asymptotic theory for L- respectively TL-moments can be used to
obtain con�dence intervals.
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In this thesis asymptotic results for classes of robust estimators under dependence are developed.
The class of GL-statistics proves to be a very general class, including many of the well known
robust estimators, such as Gini's mean di�erence or the Qn-estimator of Rousseeuw and Croux
(1992). Asymptotic results concerning the asymptotic normality or the consistency of a long-run
variance estimator can be achieved by using an approximation by U -statistics. A challenge lies in
the use of multivariate kernels, which is necessary for the given robust estimators. Therefore, new
limit theorems and invariance principles have to be developed for U -statistics and U -processes for
these multivariate kernels. The dependence model is chosen as near epoch dependent process on
absolutely regular random variables. This is a very general concept and it has been shown that,
besides others, also the well known EGARCH-processes can be represented by such a process.
With these results, concrete limit distributions for L-moments as well as trimmed L-moments
could be calculated. L-moments form a basis of many parametric estimators, mainly used in
hydrological applications. Trimmed L-moments are the robust extension of these estimators and
use a trimming of the data to deliver stable estimations.

All these theoretical results form a basis for the application of robust estimators in �ood statistics.
The aim of �ood statistics is the estimation of design �oods for given annualities. For this, many
di�erent models were developed, all focussing on di�erent aspects of �oods. For example, the
peak-over-threshold (POT) approach does not only take annual maxima into account but uses
all �ood peaks above a certain threshold. In this thesis a new model is developed that combines
�oods of di�erent genesis in a mixture model. For the distinction of these �oods the �ood
timescale is used. Also, a method to reconstruct overlaid events had to be developed, since only
one maximum event is observed in a season.
Challenges that have to be faced in �ood statistics are the very limited number of observed events
as well as the in�uence of single extraordinary large events in these short time series. Here,
robust estimators were applied to obtain estimates stable in time. Stabilisation of estimates is a
necessary property of models in �ood statistic since the design �ood used e.g. for the building
of a dam shall not change with every new event. After a simulation study, which takes into
account these challenges in hydrology, the TL-moments were found to be the most suitable
robust estimators. Moreover, the combination of the POT model with these robust estimators
then delivered the desired stable results. Additionally, the convergence of the estimated quantiles
of the annual maximum series (the classical method) to the POT-results has been shown for
increasing sample length. Hence, one can see that the classical approach is very sensible to
extraordinary large �oods at the beginning of the observation periods, respectively in short time
series. Similar results were shown for the new developed mixing model. But robust estimators
were not only used directly in the calculation of design �oods, they also proved to be a valuable
tool when de�ning classes of �oods, e.g. alert steps. These alert steps then were used to develop
a regional mixture model.
The necessity of a consideration of short range dependence becomes apparent when having dis-
charge data of higher time-resolution than monthly maxima. In this case, the developed results
for GL-statistics could be used to calculate con�dence intervals of the variance of an EGARCH-
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process, that has been used to model the residuals of an ARMA model of daily discharges.

Here, also some potential future research becomes evident. Daily discharges are not always short-
range dependent. As we have stated in this thesis, also long-range dependence could appear in
the data. For this case, no theoretical results for GL-statistics exist so far. Nevertheless, Levy-
Leduc et al. (2011) show the invariance principle of U -processes under long-range dependence.
Theses results can be extended to multivariate kernels and also used to achieve a Central Limit
Theorem for U -statistics. This could be a starting point for the development of a Central Limit
Theorem for GL-statistics under long-range dependence and hence for all the estimators used in
this thesis.
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A. Appendix

Here, complementary tables to the results stated in the sections are given.
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Table A1.: Goodness of Fit of the GEV, GPD, Gumbel (EVI) and Pearson III distribution to the short and long summer maxima, the whole summer maxima
and the winter and annual maxima with the Anderson-Darling test and the AIC. Only values above the �ood-threshold are considered, which is
taken as threshold parameter for the GPD. The Pearson III distribution has the lowest AIC values for nearly all short and long summer maxima
and summer maxima, although in general the AIC does not show great di�erences between the GEV and Pearson III for all gauges. For all samples
the GEV hast the highest p-value for the Anderson-Darling test. The Gumbel distribution is not �tting.

summer short summer long summer winter AMS
GEV GPD EVI PIII GEV GPD EVI PIII GEV GPD EVI PIII GEV GPD EVI PIII GEV GPD EVI PIII

Aue
AD 0.946 0 0.002 0.565 0.959 0.94 0.044 0.265 0.921 0 0 0.453 1 0 0 0.484 0.976 0 0 0.33
AIC 489 482 511 465 238 234 246 209 722 712 753 706 717 727 738 723 843 859 861 851

Niederschlema
AD 0.825 0.736 0.003 0.302 0.998 0.97 0.031 0.193 0.872 0.738 0 0.369 0.899 0 0 0.281 0.95 0 0 0.241
AIC 470 464 485 460 300 298 311 286 765 761 795 754 789 803 811 800 917 932 938 927

Zwickau-Poelbitz
AD 0.903 0.973 0.002 0.37 0.99 0.738 0.08 0.078 0.934 0.85 0 0.31 0.995 0.345 0 0.705 0.933 0 0 0.501
AIC 568 563 594 552 178 178 184 158 742 738 775 726 801 801 820 801 936 943 961 942

Harthau
AD 0.981 0.988 0.024 0.254 0.954 0.975 0.349 0.039 0.906 0.984 0.01 0.409 0.998 0 0.003 1 0.994 0 0.003 0.608
AIC 209 206 229 186 97 94 98 49 300 295 323 276 321 318 323 318 368 375 374 371

Goeritzhain
AD 0.633 0 0 0.237 0.966 0.136 0.034 0.12 0.756 0 0 0.14 0.983 0 0 0.974 0.974 0 0 0.602
AIC 709 723 718 715 249 249 253 245 958 977 977 968 945 957 945 944 1029 1062 1031 1034

Wechselburg
AD 0.905 0.766 0 0.001 0.95 0.522 0.003 0.087 0.966 0.877 0 0.003 0.945 0 0 0.927 0.923 0 0 0.431
AIC 613 606 650 545 467 468 479 454 1085 1075 1132 1025 1138 1147 1150 1139 1275 1282 1294 1279

Tannenberg
AD 0.545 0.413 0.004 0.012 0.976 0.784 0.212 0.049 0.745 0.287 0.001 0.019 0.985 0.629 0 0.008 0.853 0 0 0.425
AIC 158 157 180 127 51 49 55 23 205 204 232 181 301 295 303 280 348 349 360 350

Streckewalde
AD 0.964 0.753 0 0.015 0.993 0.877 0.067 0.14 0.937 0.609 0 0.033 0.991 0 0 1 0.998 0 0 0.762
AIC 446 441 468 428 170 167 173 154 613 607 640 598 639 639 640 636 741 757 752 746

Hopfgarten
AD 0.999 0 0 0.123 0.977 0.691 0.028 0.138 1 0 0 0.176 0.998 0 0 0.677 0.991 0 0 0.366
AIC 566 563 597 547 216 216 228 206 778 777 822 774 926 934 936 928 1018 1040 1039 1028

Rothenthal
AD 0.902 0.599 0.001 0.308 0.999 0 0.05 0.097 0.928 0.366 0 0.375 0.969 0 0 0.474 0.993 0 0 0.832
AIC 393 390 413 380 115 113 115 107 504 502 530 501 497 514 504 502 574 592 583 580

Zöblitz
AD 0.818 0.27 0.001 0.11 0.785 0.92 0.134 0.032 0.88 0 0 0.097 0.984 0 0 0.975 0.492 0 0 0.184
AIC 317 319 345 311 127 122 127 116 448 450 476 442 501 506 502 500 565 586 581 578

Pockau
AD 0.95 0 0 0.295 0.958 0 0.1 0.072 0.825 0 0 0.089 0.837 0 0 0.782 0.692 0 0 0.858
AIC 577 573 603 559 201 198 202 182 784 774 813 740 841 843 852 839 903 911 909 902

Borstendorf
AD 0.519 0.449 0.001 0.219 0.949 0.994 0.164 0.019 0.546 0.743 0 0.3 0.936 0.474 0 0.975 0.949 0 0 0.811
AIC 470 466 491 458 177 174 178 143 674 666 698 652 799 796 812 795 877 883 886 878

Lichtenwalde
AD 0.851 0.644 0.01 0.118 0.584 0 0.003 0.349 0.852 0 0 0.232 0.644 0 0 0.927 0.685 0 0 0.606
AIC 283 283 299 268 570 562 589 550 847 840 884 822 1143 1137 1162 1136 1261 1262 1277 1260

Niederstriegis
AD 0.257 0 0.001 0.316 0.976 0.994 0.128 0.001 0.175 0 0 0.392 0.843 0 0 0.975 0.827 0 0 0.964
AIC 322 318 351 296 118 114 116 83 441 433 467 415 591 583 591 585 667 663 666 662

Berthelsdorf
AD 0.981 0.955 0.011 0.006 0.79 0 0.002 0.272 0.952 0 0 0.159 0.436 0 0 0.75 0.585 0 0 0.195
AIC 153 152 197 134 460 460 483 451 614 614 682 606 756 749 756 750 851 865 885 867

Nossen
AD 0.978 0 0.082 0.896 0.822 0.951 0.131 0.068 0.93 0 0.013 0.314 0.835 0 0 0.993 0.841 0 0 0.811
AIC 213 211 222 212 163 160 164 146 372 367 386 351 612 605 613 607 658 660 664 658

Erlln
AD 0.984 0.962 0.003 0.337 0.876 0.943 0.006 0.323 0.743 0.884 0 0.416 0.762 0 0 0.986 0.919 0 0 0.842
AIC 532 529 557 512 567 560 582 544 1072 1066 1108 1057 1333 1331 1335 1327 1385 1404 1392 1389

Golzern
AD 0.749 0.809 0.105 0.216 0.989 0.958 0.055 0.876 0.846 0.987 0.009 0.7 0.992 0 0 0.921 0.998 0 0.001 0.838
AIC 255 252 265 225 208 204 222 207 459 455 486 459 659 663 665 659 726 728 739 727

Bad Dueben
AD 0.749 0.809 0.105 0.216 0.989 0.958 0.055 0.876 0.846 0.987 0.009 0.7 0.992 0 0 0.921 0.998 0 0.001 0.838
AIC 255 251 265 225 207 204 222 207 458 455 486 459 658 663 665 659 726 727 738 727
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Table A2.: Share (in pct.) of the smallest values of a GEV(µ, σ, ξ) distributed sample that can be
removed without a signi�cant change of the estimated quantile for di�erent parameter
choices and sample lengths and the 90%- and 99%-quantiles. For all samples we
can remove at least 40% of the smallest data until a signi�cant deviation from the
estimated quantile occurs.

GEV parameters n = 100 n = 1000
µ σ ξ 90% 99% 90% 99%

100 20 0.6 43.255 74.977 17.181 40.852
100 20 0.3 50.493 77.962 21.9 41.032
100 20 0.1 56.238 82.963 26.411 42.397
100 12 0.6 42.709 75.529 17.307 41.463
100 12 0.3 50.246 76.637 22.611 42.118
100 12 0.1 57.522 82.371 26.717 42.266
100 8 0.6 43.602 76.785 17.445 40.938
100 8 0.3 50.249 77.463 22.075 41.541
100 8 0.1 57.653 82.095 26.793 42.165
100 2 0.6 43.273 74.884 17.325 41.112
100 2 0.3 50.247 78.835 22.273 42.239
100 2 0.1 57.625 81.527 26.3 42.059
50 20 0.6 42.722 76.016 17.052 41.986
50 20 0.3 50.374 78.576 22.183 41.471
50 20 0.1 57.441 81.981 26.922 42.081
50 12 0.6 43.99 77.433 16.954 41.819
50 12 0.3 50.673 78.197 22.416 41.252
50 12 0.1 56.882 82.366 26.467 41.91
50 8 0.6 42.511 76.018 17.32 41.11
50 8 0.3 50.472 78.601 22.534 42.55
50 8 0.1 56.884 81.587 26.51 42.355
50 2 0.6 43.16 75.973 17.166 41.599
50 2 0.3 50.417 78.32 22.112 42.479
50 2 0.1 56.909 82.199 26.76 42.31
30 20 0.6 42.293 76.539 17.541 40.81
30 20 0.3 50.358 77.821 22.065 42.122
30 20 0.1 58.839 81.66 26.558 41.556
30 12 0.6 43.104 77.054 16.485 40.684
30 12 0.3 51.273 78.19 22.137 42.206
30 12 0.1 57.212 81.988 26.864 42.733
30 8 0.6 42.434 77.124 16.931 39.987
30 8 0.3 50.902 77.38 22.031 42.361
30 8 0.1 57.057 81.538 26.409 42.558
30 2 0.6 42.775 76.656 17.128 40.767
30 2 0.3 50.986 77.851 22.296 42.48
30 2 0.1 56.821 80.678 27.022 42.201
10 20 0.6 42.906 76.226 16.713 41.267
10 20 0.3 50.772 78.376 22.115 41.534
10 20 0.1 58.641 81.878 26.541 42.11
10 12 0.6 42.803 77.119 17.412 41.114
10 12 0.3 50.938 77.43 22.363 41.145
10 12 0.1 57.427 81.835 26.403 42.556
10 8 0.6 42.736 75.944 16.808 40.671
10 8 0.3 50.792 80.237 22.063 42.088
10 8 0.1 57.454 82.087 26.408 42.727
10 2 0.6 43.761 76.209 17.145 40.819
10 2 0.3 50.543 78.02 22.28 42.195
10 2 0.1 56.815 82.507 26.861 41.902
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Table A3.: Estimation of the 99%- and the 99.9%-quantile for independent, identically Gumbel
(100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting

n=30
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -1.14 7.39 -1.78 10.7 0.797 18.4 9.62 77.3

L-moments -0.398 8.08 -0.609 11.7 0.136 14.0 4.58 35.5
TL(1,1)-moments -0.114 8.27 -0.139 12.1 4.14 22.3 21.2 74.8
TL(0,1)-moments 0.418 7.77 0.626 11.2 9.86 36.9 37.7 124

MD -0.816 8.67 -1.28 12.7 6.47 32.7 36.4 168

Gumbel-Fitting GEV-Fititng

n=50
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -0.295 5.61 -0.52 8.07 -0.9 11.1 1.00 26.8

L-moments 0.078 6.45 0.108 9.37 0.593 10.6 3.27 25.0
TL(1,1)-moments -0.176 6.47 0.283 9.54 3.08 16.4 13.3 48.2
TL(0,1)-moments 0.155 5.99 0.243 8.66 3.46 21.4 13.4 57.1

MD -0.362 6.60 -0.58 9.67 3.54 20.8 17.7 75.5

Gumbel-Fitting GEV-Fitting

n=100
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -0.24 4.01 -0.39 5.76 0.355 8.11 2.39 19.2

L-moments 0.101 4.71 0.103 6.86 0.23 7.78 1.83 18.3
TL(1,1)-moments 0.256 4.71 0.38 6.97 0.755 10.2 4.19 26.8
TL(0,1)-moments 0.117 4.32 0.159 6.22 1.206 14.1 5.14 33.8

MD -0.01 4.48 -0.03 6.55 1.37 12.7 6.59 34.6

Gumbel-Fitting GEV-Fitting

n=200
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -0.192 2.95 -0.31 4.24 -0.07 5.24 0.373 11.7

L-moments -0.061 3.24 -0.09 4.72 -0.08 5.16 0.476 11.8
TL(1,1)-moments 0.029 3.32 0.022 4.86 0.747 7.42 2.95 18.3
TL(0,1)-moments 0.042 3.03 0.044 4.38 1.49 9.73 4.51 21.8

MD -0.035 3.29 -0.06 4.81 0.565 8.57 2.3 21.5
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Table A4.: Estimation of the 99%- and the 99.9%-quantile for independent, identically Gumbel
(100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and
simulated extreme events.

Gumbel-Fitting GEV-Fitting

n=30
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML 6.29 9.79 8.90 14.0 27.7 34.8 81.7 123

L-moments 11.8 14.2 17.2 20.7 26.7 29.3 74.1 84.6
TL(1,1)-moments 4.67 10.7 6.84 15.7 18.9 34.9 66.4 135
TL(0,1)-moments 3.04 8.83 4.32 12.7 15.4 31.1 47.8 99.1

MD 2.80 9.75 3.96 14.3 25.1 53.2 103 315

Gumbel-Fitting GEV-Fitting

n=50
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML 3.81 6.89 5.37 9.84 16.2 19.9 42.7 57.0

L-moments 6.81 8.90 10.1 13.0 15.7 18.6 41.1 50.5
TL(1,1)-moments 3.06 7.73 4.46 11.3 10.2 22.2 31.7 70.0
TL(0,1)-moments 2.35 6.85 3.34 9.84 8.60 20.5 25.0 58.4

MD 1.70 7.32 2.39 10.7 12.3 29.9 43.9 117

Gumbel-Fitting GEV-Fitting

n=100
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML 3.87 5.60 5.50 8.01 14.2 16.0 35.0 40.7

L-moments 6.85 8.01 10.1 11.8 15.2 16.7 38.1 42.9
TL(1,1)-moments 3.25 6.09 4.78 8.95 12.0 17.8 32.5 50.8
TL(0,1)-moments 2.30 4.92 3.26 7.10 8.50 15.3 21.7 40.4

MD 2.14 5.33 3.05 7.75 9.54 18.3 26.6 52.5

Gumbel-Fitting GEV-Fitting

n=200
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML 4.04 4.96 5.78 7.09 13.9 14.8 33.0 35.7

L-moments 6.92 7.60 10.2 11.1 14.9 15.6 36.7 39.1
TL(1,1)-moments 3.37 4.81 4.95 7.10 11.5 14.5 29.0 38.3
TL(0,1)-moments 2.23 3.87 3.14 5.55 8.73 12.5 20.8 31.3

MD 2.12 4.01 3.04 5.82 7.63 12.8 18.7 32.9
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Table A5.: Estimation of the 99%- and the 99.9%-quantile for independent, identically GEV (0.1,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting

n=30
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -10.6 13.8 -28.1 29.2 2.68 27.3 21.9 103

L-moments -7.08 13.3 -22.7 28.1 0.292 21.3 8.34 65.9
TL(1,1)-moments -8.74 13.3 -25.0 29.0 5.63 33.3 37.2 138
TL(0,1)-moments -11.0 14.0 -28.6 31.1 7.11 34.5 36.9 133

MD -11.2 14.9 -28.7 32.1 11.6 58.3 86.5 550

Gumbel-Fitting GEV-Fitting

n=50
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -10.7 12.6 -28.1 29.7 0.939 18.2 8.94 56.0

L-moments -6.64 11.0 -22.0 25.5 -0.05 17.5 4.75 51.6
TL(1,1)-moments -9.37 12.3 -26.0 28.4 3.92 23.3 20.9 83.6
TL(0,1)-moments -10.9 12.9 -28.5 30.1 2.97 23.1 16.1 79.2

MD -11.0 12.1 -28.4 29.3 6.93 34.1 39.8 167

Gumbel-Fitting GEV-Fitting

n=100
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -9.98 10.5 -27.1 27.5 0.718 12.1 4.67 33.9

L-moments -6.95 8.14 -22.5 23.3 -0.17 11.8 2.13 32.8
TL(1,1)-moments -9.19 9.93 -25.7 26.3 2.01 15.6 10.2 47.2
TL(0,1)-moments -10.9 11.9 -28.4 29.2 2.17 15.1 9.41 44.2

MD -11.0 12.1 -28.4 29.3 1.84 17.9 11.1 56.7

Gumbel-Fitting GEV-Fitting

n=200
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -9.98 10.5 -27.1 27.5 0.167 8.23 1.77 21.9

L-moments -6.95 8.14 -22.5 23.3 0.301 8.36 1.90 22.4
TL(1,1)-moments -9.19 9.93 -25.7 26.3 1.06 10.3 4.83 29.9
TL(0,1)-moments 10.2 11.6 -28.8 29.1 1.19 10.6 4.89 30.2

MD -10.7 11.3 -28.0 28.5 2.07 12.3 8.33 36.3
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Table A6.: Estimation of the 99%- and the 99.9%-quantile for independent, identically GEV
(0.1, 100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and
simulated extreme events.

Gumbel-Fitting GEV-Fitting

n=30
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -0.363 8.75 -13.3 18.2 46.5 60.4 172 283

L-moments 11.0 14.9 4.02 15.1 43.8 47.4 150 168
TL(1,1)-moments -3.08 12.0 -16.7 23.8 31.7 56.5 135 284
TL(0,1)-moments -7.09 11.5 -22.9 26.3 27.0 51.6 105 221

MD -6.92 13.1 -22.6 27.8 38.4 95.3 216 917

Gumbel-Fitting GEV-Fitting

n=50
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -4.12 8.19 -18.7 21.3 25.1 31.7 79.4 110

L-moments 3.85 9.03 -6.57 13.6 27.1 30.4 85.6 98.5
TL(1,1)-moments -5.33 10.1 -20.0 23.6 17.3 32.6 61.9 123
TL(0,1)-moments -8.75 11.3 -25.3 27.3 15.3 33.0 53.2 117

MD -8.68 11.7 -25.1 27.5 18.7 41.8 75.9 186

Gumbel-Fitting GEV-Fitting

n=100
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -3.98 6.28 -18.4 19.7 23.3 26.3 68.8 80.4

L-moments 3.69 6.95 -6.80 10.9 26.2 28.4 81.3 90.1
TL(1,1)-moments -4.79 7.53 -19.2 21.0 18.2 26.8 59.1 92.2
TL(0,1)-moments -8.73 9.97 -25.3 26.2 14.7 23.6 44.3 74.0

MD -8.46 10.2 -24.7 26.0 13.8 27.3 47.0 96.3

Gumbel-Fitting GEV-Fitting

n=200
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -3.71 5.10 -18.0 18.7 21.6 23.1 60.9 66.2

L-moments 3.84 5.63 -6.59 8.92 25.1 26.2 75.6 79.6
TL(1,1)-moments -5.08 6.49 -19.6 20.5 18.8 23.2 58.0 74.1
TL(0,1)-moments -8.18 8.93 -24.5 25.0 14.5 19.7 41.4 58.2

MD -8.37 9.29 -24.6 25.3 11.8 19.2 35.3 60.3
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Table A7.: Estimation of the 99%- and the 99.9%-quantile for independent, identically GEV (0.2,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting

n=30
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -23.6 26.4 -71.8 73.8 10.5 68.1 101 1233

L-moments 73.0 78.0 314 343 0.435 33.7 18.8 145
TL(1,1)-moments -21.7 25.2 -68.5 70.9 5.94 45.7 53.5 226
TL(0,1)-moments -26.9 28.7 -76.5 77.8 7.56 44.7 51.6 205

MD -25.7 27.9 -74.7 76.4 23.7 82.8 172 607

Gumbel-Fitting GEV-Fitting

n=50
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -23.7 25.3 -72.0 73.1 2.50 28.3 22.0 111

L-moments 43.5 49.0 173 178 0.009 24.5 9.69 93.5
TL(1,1)-moments -21.8 23.9 -68.7 70.0 5.03 32.7 33.9 132
TL(0,1)-moments -26.6 27.7 -76.0 76.8 5.69 34.7 34.74 141

MD -26.2 27.5 -75.3 76.2 11.0 48.2 69.3 248

Gumbel-Fitting GEV-Fitting

n=100
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -23.3 24.1 -71.3 71.8 1.98 19.2 11.2 63.8

L-moments -17.2 18.9 -62.0 63.1 -0.65 17.9 2.84 60.5
TL(1,1)-moments -22.2 23.1 -69.1 69.8 2.74 21.8 16.5 78.5
TL(0,1)-moments -26.6 27.2 -76.1 76.5 2.23 22.9 14.5 79.8

MD -25.6 26.3 -74.3 74.8 5.27 28.8 29.2 115

Gumbel-Fitting GEV-Fitting

n=200
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -23.2 23.6 -71.1 71.5 0.874 12.8 5.67 41.9

L-moments -17.1 18.1 -61.9 62.6 0.11 13.3 2.98 44.1
TL(1,1)-moments -22.3 22.7 -69.3 69.7 1.92 16.1 11.1 57.6
TL(0,1)-moments -26.6 26.9 -76.0 76.2 1.69 15.2 8.49 50.8

MD -25.8 26.2 -74.7 74.9 2.05 18.5 11.4 65.8
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Table A8.: Estimation of the 99%- and the 99.9%-quantile for independent, identically GEV
(0.2, 100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and
simulated extreme events.

Gumbel-Fitting GEV-Fitting

n=30
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -7.16 13.6 -47.9 50.7 84.6 122 436 1254

L-moments 11.4 17.6 -19.8 27.9 73.0 78.0 314 343
TL(1,1)-moments -14.8 20.1 -58.2 61.6 51.9 95.3 292 646
TL(0,1)-moments -21.6 24.3 -68.9 70.7 43.4 79.5 201 419

MD -22.0 25.1 -69.1 71.4 63.3 146 439 1504

Gumbel-Fitting GEV-Fitting

n=50
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -13.6 16.3 -57.2 58.6 40.6 53.8 160 239

L-moments 0.530 11.5 -35.9 39.5 43.5 49.0 173 201
TL(1,1)-moments -17.5 20.2 -62.3 64.0 28.5 53.6 131 257
TL(0,1)-moments -23.8 25.1 -72.0 72.9 22.6 47.4 95.1 206

MD -23.4 24.9 -71.1 72.3 28.9 65.1 145 347

Gumbel-Fitting GEV-Fitting

n=100
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -13.7 15.2 -57.3 58.1 36.1 42.1 131 160

L-moments 0.290 7.97 -36.2 38.0 42.6 45.6 162 176
TL(1,1)-moments -16.9 18.3 -61.3 62.1 32.6 45.6 132.2 197
TL(0,1)-moments -22.9 23.6 -70.7 71.2 24.4 37.7 91.3 149

MD -23.8 24.6 -71.8 72.4 20.8 39.3 84.2 165

Gumbel-Fitting GEV-Fitting

n=200
99%-

quantile
99.9%-
quantile

99%-
quantile

99.9%-
quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ML -13.6 14.3 -57.2 57.5 34.4 37.5 119 133

L-moments
-

0.489 5.93 -37.3 38.3 41.9 43.4 157 164
TL(1,1)-moments -16.2 17.0 -60.3 60.7 31.8 38.1 120 151
TL(0,1)-moments -23.0 23.3 -70.8 71.1 23.4 30.3 81.0 109

MD -23.6 24.1 -71.5 71.8 16.9 28.1 61.0 105
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Table A9.: Classi�cation of the gauges in the subcatchment Zwickauer Mulde/Chemnitz of the Mulde river basin according the method proposed in Section 7.3. It can be seen that large and
extreme large events (magenta and red) are detected simultaneously for nearly all gauges.

Gauge-ID 563290 562012 563880 563790 562031 562040 564160 562070 564201 564300 564530 564620 564400 564410 562115
Name of gauge Sachsen-

grund
Schön-
heide

3

Markers-
bach

1

Aue 1 Aue 3 Nieder-
schlema

Wolfers-
grün

Zwickau-
Pölbitz

Nieder-
mülsen

1

Nieder-
lungwitz

Altchem-
nitz

1

Har-
thau

Chem-
nitz

1

Goeritz-
hain

Wechsel-
burg

1

Begin 1971 1983 1974 1928 1986 1928 1965 1928 1966 1965 1985 1965 1918 1910 1910
End 2013 2013 2013 2013 2013 2013 2013 2013 2013 2012 2013 2013 2013 2013 2013

Length [a] 43 31 40 86 28 86 49 86 48 48 29 49 96 104 104
Length net. [a] 40 31 40 86 28 85 49 85 45 46 25 44 86 104 104
Median [m3/s] 2.0 29.7 3.7 50.7 77.5 79.5 2.1 101.0 6.4 19.8 20.4 26.3 49.0 63.3 180.5

Variance
[m3/s]

2.0 25.6 4.8 47.9 67.4 80.7 1.7 98.6 6.9 17.5 23.3 22.6 37.9 43.7 152.4

3. moment 34.37 100381.37 362.41 528819.53 1909110.40 1880403.66 33.28 3080433.26 1202.40 26845.12 64835.11 50071.57 253285.02 516803.58 14506055.85
k(T=2) 3.07 43.74 6.72 76.06 116.63 116.05 3.04 136.78 10.02 28.19 37.81 34.70 59.53 75.48 229.14
k(T=5) 4.16 59.34 9.12 103.20 158.25 157.45 4.12 185.58 13.60 38.25 51.30 47.07 80.76 102.41 310.90
k(T=15) 6.00 85.54 13.15 148.76 228.11 226.96 5.94 267.51 19.60 55.14 73.95 67.86 116.42 147.63 448.15
k(T=30) 7.56 107.80 16.57 187.48 287.48 286.03 7.48 337.13 24.70 69.49 93.20 85.52 146.72 186.05 564.79

number T>2 12 5 7 23 8 25 12 28 13 13 6 13 27 41 37
number T>5 5 3 6 13 4 17 8 15 10 6 3 7 12 21 17
number T>15 4 2 5 6 2 5 4 5 3 3 2 4 6 4 7
number T>15

and T<30
2 0 3 0 1 1 4 1 1 2 0 2 3 1 2

number T>30 2 2 2 6 1 4 0 4 2 1 2 2 3 3 5

Medium [%] 0.18 0.06 0.03 0.12 0.14 0.09 0.08 0.15 0.07 0.15 0.12 0.14 0.17 0.19 0.19
Large [%] 0.03 0.03 0.03 0.08 0.07 0.14 0.08 0.12 0.16 0.07 0.04 0.07 0.07 0.16 0.10

Very large [%] 0.05 0.00 0.08 0.00 0.04 0.01 0.08 0.01 0.02 0.04 0.00 0.05 0.03 0.01 0.02
Extreme [%] 0.05 0.06 0.05 0.07 0.04 0.05 0.00 0.05 0.04 0.02 0.08 0.05 0.03 0.03 0.05

AMS [m3/s]
1910 37.7 139
1911 43 99.3
1912 51.4 157
1913 66 226
1914 57.4 153
1915 100 278
1916 60.5 167
1917 71.3 230
1918 23.1 47.2 93.4
1919 13.8 19.5 109
1920 38.1 45.9 138
1921 41 48.3 137
1922 36.2 63.1 168
1923 73.5 90.1 254
1924 51.4 93.4 363
1925 13.6 33.9 136
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1926 78.7 104 363
1927 46.5 63.1 289
1928 39 54.8 76.2 22.5 33.9 95.1
1929 27 42.9 55 17.6 20.8 109
1930 36.8 52.4 82.6 30.2 31.5 126
1931 200 189 122 24.5 41.5 102
1932 205 388 126 138 587
1933 51.2 84 89.6 26.9 44.3 107
1934 32.5 82.2 86.5 21.8 35.2 107
1935 62.3 99.4 105 45.5 81.9 165
1936 27.3 51 62 12.1 42.1 103
1937 105 157 158 47.1 78.9 212
1938 34.2 67.1 87.1 52.5 79.9 197
1939 41.8 64 70.7 34.6 77 121
1940 58.1 111 142 37.4 63.2 215
1941 76.1 179 230 56.5 122 303
1942 28.2 93.4 70.3 46.5 29.2 241
1943 13.6 27.4 44.5 11 9.24 59.1
1944 87.3 172 205 79.4 71.9 348
1945 54.7 73 107 48.7 148
1946 73.6 156 165 127 322
1947 34.8 63.7 71.7 41.4 152
1948 68.2 133 157 71.9 237
1949 32.8 67.9 58.1 42.8 117
1950 17.9 43.6 52.9 29.4 34 87.9
1951 25.7 48.7 45.8 29.4 34.6 65.1
1952 41.5 70.5 69.7 21.4 109 102
1953 31.8 73 53.6 30.4 52.2 113
1954 224 585 683 140 241 915
1955 94.3 102 148 75.1 117 223
1956 38.2 64.2 60.3 61.1 81.8 206
1957 107 174 175 44.8 42.1 206
1958 96.2 173 216 75.6 82.8 338
1959 33 56.1 65.3 53.6 56.2 166
1960 60.3 128 136 68.7 87.8 241
1961 47.4 111 192 48.9 64.7 303
1962 41.7 61.6 57.2 20.1 19.6 74.8
1963 35.2 76.3 46.8 96.8 30.9 68.9
1964 23.2 22.7 29.9 24.7 20.1 61.5
1965 82.4 107 2.08 167 22.2 35.2 56.2 71 190
1966 85.7 198 2.56 237 4.36 19.8 26.2 55.3 57 284
1967 41.7 77.5 1.08 98.2 4 10.8 17.8 51.6 53.8 138
1968 61.7 112 1.87 147 4.6 11.2 36.4 70.5 80.7 255
1969 54.7 84.9 3.72 101 22 22.2 18.9 47 51.4 153
1970 73.6 118 5.31 157 13.2 15.3 19.8 52.6 54.6 244
1971 1.67 27.7 48.6 1.43 50.4 3.04 10.8 11.1 45.6 42.5 103
1972 2.76 36.4 73.8 1.31 73.7 2.83 17.6 12.8 45.2 51.4 99.8

201



A
.
A
p
p
en
d
ix

1973 1.88 46.4 65.4 3.42 102 3.67 12.5 16.3 31.6 51.8 147
1974 3.81 4.98 44.5 88.5 6.74 133 9.59 25.7 31.1 64.5 78.6 239
1975 6.69 13.2 194 402 2.35 465 14.1 37.6 69.9 121 138 633
1976 1.77 5.9 74.3 136 1.6 177 3.93 18.4 24.3 51.3 60.8 249
1977 1.28 3.67 31.5 71.2 1.48 81.9 3.53 23.4 32.1 70.1 78.6 183
1978 10.7 6.09 71.9 162 5.17 249 13.6 38 59.1 100 127 442
1979 1.77 3.67 34.6 59.5 2.49 74.4 6.87 13.1 22.4 37.7 47.2 113
1980 3.65 4.98 97.5 185 2.42 218 5.75 27 129 324
1981 2.9 8.41 125 172 4.39 222 3.41 14.7 112 320
1982 1.26 19.1 57.7 72.8 1.48 76.9 2.82 12.3 64.2 189
1983 1.95 22.3 2.77 45.9 77.8 1.44 95.6 8.33 125 246
1984 1.34 35.3 3.57 59.3 78.7 7.09 103 6.44 109 180
1985 0.91 26.7 1.98 29.7 35.5 0.771 34.3 1.48 7.68 5.46 10.1 14.8 33.7 66.4
1986 1.19 14 2.52 32.4 60.5 59.5 1.62 61.2 2.48 10.8 11.6 26.2 47.2 59.1 141
1987 2.49 51.2 12 118 158 1.81 230 2.31 19.7 38.8 46.5 78.6 102 281
1988 1.58 27 3.87 55.5 77.5 79.5 2.42 81 2.38 9.61 30.9 30.8 52.3 65.9 175
1989 1.42 20.7 2.77 50.1 59.2 73.6 0.926 80.3 1.68 13.2 18.2 19.5 46.8 76.7 170
1990 1.34 16.9 2.19 31.2 77.5 68.7 0.926 73.6 1.91 10.2 15.1 13.1 27.4 44.2 141
1991 0.91 20.7 3.02 81.7 56.6 41.7 0.721 64.5 1.27 9.04 15.4 11.6 32.4 40.5 114
1992 1.26 16.5 4.18 48.4 56.6 50.9 0.721 52.5 14.5 13.7 21 55.1 55 98.6
1993 0.843 12.9 1.88 44.2 68.7 43.6 0.683 45.2 9.61 12.8 5.62 26 35 93.7
1994 1.26 15.4 1.79 31.2 49.3 42.4 1.6 51.4 26.1 13.7 21 67 86.3 195
1995 84.8 5.77 144 206 226 4.52 296 17.3 37.9 60.1 53.7 103 129 544
1996 1.95 31.1 13.9 64.9 82.6 114 4.05 152 6.57 16.9 22.7 30.7 53.2 100 233
1997 3.1 18.2 2.08 38.1 34 44.5 1.73 54.4 6.05 26.3 11.3 19.3 21.8 57.5 157
1998 3.96 41.2 3.02 61.9 87.5 91.3 1.73 106 4.96 17.3 18 15.4 36.8 54.9 181
1999 3.96 31.6 2.89 72.7 80.4 93.1 1.93 110 4.13 21.1 28.8 26.3 55.9 80.7 226
2000 3.66 29.7 3.43 70.3 91.1 101 2.72 131 11.2 36.1 35.8 37.4 75.4 63.3 321
2001 1.76 30.2 1.79 37 50.3 49.4 1.5 60.4 8.07 15.9 15.8 34.2 46.9 127
2002 6.9 152 29 315 370 400 6.27 500 26.5 98.5 110 115 233 250 1000
2003 2.26 24.4 2.49 45.7 69.9 77.3 3.39 110 7.32 34.2 15.7 26.4 58 79.1 222
2004 1.5 19.3 4.62 41.1 58.7 57.7 2.1 79.8 12.7 52 19.7 30.3 95.9 77.2 175
2005 2.49 38 6.47 111 145 158 2.72 181 16.6 53.8 38.5 53 112 125 341
2006 2.37 38 4.29 83.7 117 124 2.65 128 9.96 36.3 47.6 42.1 91.7 103 253
2007 4.43 40.6 2.26 43.6 75.9 84.1 2.5 109 9.17 25.9 25.5 25.7 49.1 63.7 223
2008 3.1 48 3.25 55 84.5 91.1 2.18 127 16.1 60.7 22.4 27.6 64.3 108 300
2009 21 3.75 47.7 66.7 70.2 1.57 79.3 6.8 32.5 20.4 27.6 52.6 66.3 155
2010 2.26 42.2 5.38 114 164 195 2.57 265 16.3 64.8 120 187 179 521
2011 1.67 35.9 5.17 82.9 127 138 2.69 164 14.1 40.9 38.1 65.4 111 301
2012 15.7 2.32 30.3 49.7 53.5 1.27 60.5 2.92 18.2 17.7 45 61.1 134
2013 9.49 112 15.2 213 267 285 7.15 487 27.1 95.2 73.2 203 257 1010
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Table A10.: Classi�cation of the gauges in the subcatchment Freiberger Mulde/Flöha of the Mulde river basin according the method proposed in Section 7.3. It can be seen that large and
extreme large events (magenta and red) are detected simultaneously for nearly all gauges.

Gauge-ID 567400 567700 567850 567420 568350 568400 568160 567451 567470 567000 566010 566040 567320 566100
Name of
Gauge

Tannen-
berg

Wiesa Strecke-
walde

Hopf-
garten

Rothen-
thal

Zöblitz Borsten-
dorf

Lichten-
walde

1

Krieb-
stein
UP

Wolfs-
grund

Berthels-
dorf

Nossen
1

Nieder-
striegis

1

Erlln

Begin 1960 1961 1921 1911 1929 1937 1929 1910 1933 1921 1936 1926 1926 1961
End 2013 2013 2013 2013 2013 2013 2013 2013 2013 2012 2013 2013 2012 2012

Length [a] 54 53 93 103 85 77 85 104 81 92 78 88 87 52
Length net. [a] 54 53 93 102 85 76 85 104 81 92 78 88 86 52
Median [m3/s] 13.2 12.0 25.6 68.1 13.0 20.3 80.8 192.0 209.0 5.8 25.3 59.7 25.1 297.5

Variance
[m3/s]

9.4 9.0 18.6 52.2 9.9 14.7 61.8 149.9 152.0 3.8 26.9 52.9 17.4 193.7

3. moment 4767 4378 33905 705661 4562 143010 1094635 14595844 16889563 374 44776 384225 32066 43321064
k(T=2) 15.86 15.41 30.47 83.73 15.62 22.86 96.91 229.61 241.05 6.80 33.43 68.39 29.91 329.86
k(T=5) 21.51 20.91 41.34 113.61 21.20 31.02 131.49 311.53 327.05 9.22 45.35 92.79 40.58 447.55
k(T=15) 31.01 30.14 59.59 163.76 30.56 44.71 189.54 449.07 471.44 13.29 65.38 133.75 58.50 645.13
k(T=30) 39.08 37.99 75.10 206.38 38.51 56.35 238.87 565.95 594.13 16.75 82.39 168.56 73.72 813.03

number T>2 16 17 33 36 29 31 30 35 30 35 26 36 35 21
number T>5 8 9 14 18 17 13 15 15 16 12 12 13 14 10
number T>15 3 2 6 7 3 3 6 6 3 5 4 5 4 1
number T>15

and T<30
2 1 2 2 1 1 4 2 0 3 1 2 3 0

number T>30 1 1 4 5 2 2 2 4 3 2 3 3 1 1

Medium 0.15 0.15 0.20 0.18 0.14 0.24 0.18 0.19 0.17 0.25 0.18 0.26 0.24 0.21
Large 0.09 0.13 0.09 0.11 0.16 0.13 0.11 0.09 0.16 0.08 0.10 0.09 0.12 0.17

Very large 0.04 0.02 0.02 0.02 0.01 0.01 0.05 0.02 0.00 0.03 0.01 0.02 0.03 0.00
Extreme 0.02 0.02 0.04 0.05 0.02 0.03 0.02 0.04 0.04 0.02 0.04 0.03 0.01 0.02

AMS [m3/s]
1910 83.5
1911 45.7 114
1912 134 270
1913 49.1 192
1914 78 192
1915 112 296
1916 66 198
1917 119 278
1918 51.8 218
1919 65 143
1920 71.5 177
1921 32.9 75.9 143 4.5
1922 32.9 122 253 15
1923 35.4 137 309 11
1924 25.1 87.2 157 11.5
1925 22.2 40.1 118 2.42
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1926 36.4 116 300 8.35 92.4 50.9
1927 26.7 95.4 250 8.84 61.7 34.9
1928 25.8 89.4 191 11.9 40.2 18.1
1929 15.4 5.8 35 90 2.7 29.9 20.7
1930 19.8 50 8.6 39.1 125 2.62 40.1 25.8
1931 13.1 40 8.98 36.6 91.1 4.7 38.3 26.5
1932 64 260 28.8 235 687 8.33 87.7 34.1
1933 23 59.2 13 77.3 178 201 10.1 35.5 24.8
1934 21.4 49.1 8.84 44.6 113 125 6.92 77.9 19.1
1935 30.4 68.6 14.4 81.2 195 173 5.54 82.9 46.2
1936 11.8 29.5 9.94 52.9 86.2 83.3 1.89 12.9 28.8 16.6
1937 32.6 108 19.3 37.7 192 395 352 8.83 36.2 84.3 52
1938 21.4 49.2 7.57 14.5 62 194 209 5.79 25.5 81.6 46.8
1939 27.2 61.2 16.5 23.4 99.8 196 185 3.28 23.6 42.8 16.6
1940 31.7 68.2 15.4 23 106 204 217 7.67 28 83.6 28.9
1941 25.3 88.9 10.9 24.9 92.8 208 263 4.64 34 137
1942 23.7 69.5 6.06 17.8 79.9 232 119 4.67 23.7 54.4 23.4
1943 10.4 22.1 2.79 6.06 24.4 45.7 54.6 2.25 9.55 19.2 6.9
1944 37.3 84.3 11.8 23.9 122 234 241 7.58 39.8 71.5 36.2
1945 49 110 5.87 21.4 74.3 147 178 2.95 15.3 25.6 16.7
1946 38.6 92.6 12.3 22.5 137 334 328 7.5 42.5 97.2 44.6
1947 37.3 60.2 5.68 17.5 93.9 383 341 9.85 51.4 117 37.2
1948 39.3 91.4 16.3 26.3 112 298 303 8.59 35.4 68.6 23.7
1949 24.6 56.5 13.3 19.9 89.2 215 246 6.75 25.3 61.1 14.4
1950 14.2 37.2 8.73 13.5 33 81.4 88.2 3.73 10.6 50.4 17
1951 16.8 37.2 5.87 10.8 28.4 75.4 80.3 3.57 12.1 24.8 12.6
1952 20.3 41.3 8.29 14.4 50 97.6 90.6 2.67 13.2 32.1 11.8
1953 19.9 56.5 19.7 17.9 89.2 125 151 4.13 18.2 55.5 22.1
1954 81.1 232 14 37.4 147 511 449 8.42 68.2 136 61.8
1955 62.5 122 12.1 28.5 104 213 237 7.41 28.7 57.6 16.8
1956 18.7 53.7 5.54 11.6 54.4 224 248 6.42 25.3 68.6 34
1957 46.5 91.4 25.3 34 158 287 269 6.58 30.4 57.6 16.4
1958 81.1 229 17.3 34 208 532 428 8.59 120 205 69.1
1959 18.9 51.7 5.67 11.6 46.5 116 137 3.81 13.5 29.1 20
1960 12.4 25.6 64.4 9.13 20.7 80.9 196 222 4.93 28.2 55.5 39.2
1961 12.7 6.96 18.4 48.2 6.21 13.1 50 130 163 4.01 18.9 37 20.2 214
1962 9.97 9.51 25.6 55.6 10.8 12.6 39.7 93.5 105 4.89 19.9 25.1 10.7 128
1963 6.14 6.64 11.8 94 3.85 8.43 22.8 135 54.6 4.19 14.2 38.1 15 168
1964 9.51 7.44 12.8 42.7 6.03 10.3 32.5 63.4 69.4 4.71 23.2 22.6 14.8 188
1965 15 11.8 33 79.3 15.4 26.3 143 388 367 9.05 61 98.6 37.4 542
1966 13.5 14.1 28 79.3 13.5 18.3 75 168 214 5.12 17 30 21.9 232
1967 16.2 13.5 28.5 73.7 22.2 19 80.9 189 221 6.41 31.2 43 19.5 242
1968 17.9 15.5 43.8 105 19.4 23.8 100 273 307 6.68 41.3 78.8 35.2 383
1969 8.04 12.1 31 70.4 13.9 19.3 72.6 175 184 8.7 22.2 38.1 21.3 226
1970 14 16.6 36 91.3 15.7 23.4 92.7 222 233 8.1 40.8 51.9 24.9 304
1971 5.8 6.74 12 37 6.85 9.55 41.3 84.6 103 3.94 19.5 29.2 14.2 135
1972 8.68 12.1 13.6 37.6 10.3 15.8 39.5 89.9 106 3.1 15.2 23.9 10 144
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1973 10.6 12.8 16 44 8.04 13.7 36.7 97.2 103 7.29 20.2 34.7 14.6 168
1974 16.3 18.8 29.1 84.8 15.6 23 81.9 196 206 5.77 32.8 67 32.7 320
1975 29.7 28.3 54.6 198 44 40.2 233 623 595 8.83 54.7 87.8 30.5 610
1976 17.1 15.8 29.7 78.9 17.4 18.9 100 228 242 5.77 39.1 75.2 29.9 360
1977 8.06 7.51 17.3 37.4 24.8 23 113 205 257 6.87 31.2 77.7 36.6 387
1978 16.1 9.69 27.3 63.7 24 25.5 100 249 262 5.87 21.1 59.1 32.7 404
1979 9.54 15.6 13.9 38.2 10.6 12.5 42.7 95.6 127 2.4 23.8 44.3 28.7 215
1980 19.9 12.8 32.1 98.5 21.3 37.1 127 285 355 5.63 44.6 111 38.8 481
1981 15.6 27.6 45.8 136 23.6 27.8 134 414 371 6.02 42.1 81.4 33.7 471
1982 15.8 12.1 27.3 72.2 9.13 20.6 78.5 230 226 7.15 40.9 61.3 20.8 366
1983 13.2 8.27 37.3 67.9 26.4 29.1 127 409 426 7.76 37.9 87.8 59.7 569
1984 10.6 8.27 20.5 44.8 11.3 20 69.5 80.6 157 4.85 12.7 24.4 21.3 251
1985 10.2 5.92 9.65 39.8 4.59 9.38 41.8 87.5 157 2.78 16.2 32.6 22.3 210
1986 8.06 8.47 18.6 44 24 9.13 59 111 122 4.45 22.9 40 24.3 210
1987 25.6 30 49.7 170 37.8 35.6 156 300 436 5.24 33.4 80.2 47.3 488
1988 9.97 13.3 37.3 70.1 13.8 23.8 72.8 191 200 5.44 32.3 60.2 25.3 292
1989 13.5 9.27 24 65.8 17 20.9 80.8 205 231 5.44 23.8 46.7 28.1 303
1990 8.69 9.93 13.1 39 7.75 13.8 42.7 85.5 91 2.63 11.4 28.9 14.9 153
1991 8.69 6.93 16.8 38.2 11.3 20.9 59 111 100 2.19 9.27 17.4 19 111
1992 12.2 20.5 18.1 47.5 28.5 20.9 109 230 244 18 122 109 15.2 292
1993 13.2 10.2 17.3 60.7 12.4 19.9 59 134 136 5.06 22.4 39.9 13.5 199
1994 6.86 6.29 13.9 32.1 6.32 7.94 44.5 115 145 3.76 21.5 76.4 36.9 396
1995 26.4 12.9 35.9 120 17.4 23.4 108 298 298 5.19 23.8 78.4 35.8 453
1996 14.2 9.93 27.9 76.7 10.1 16.8 62.1 172 206 7.43 15.1 38.8 20.8 241
1997 6.27 6.49 8.86 43.1 9.4 15.8 52 87.5 103 6.21 15.8 33.5 15.2 141
1998 12.7 8.09 16.3 53.9 12.1 17.8 77.3 188 204 4.45 24.7 62.6 23.9 305
1999 17.5 17.4 55.7 93.3 13.5 84.6 116 294 315 8.07 41.7 72.4 30.5 400
2000 15.1 19.4 30.3 86 22.6 118 277 281 7.62 47.5 90.7 32.4 417
2001 6.38 5.94 6.91 29.3 6.89 9.91 33.1 66.3 86.7 2.91 15.5 31.2 14.8 162
2002 85 65 145 420 88 160 540 1250 1246 29.9 360 690 173 1659
2003 18.7 12 19.2 72.8 14.4 19.8 95.1 184 230 14.4 46.9 68.2 31.4 330
2004 15 9.79 19.5 64.6 12.3 14.5 81 123 190 4.32 21.9 47.2 36.9 234
2005 31.3 29.7 37.4 155 29.4 38.4 156 405 399 12.2 58 79.9 47.8 476
2006 24.5 24.5 46.1 137 27.4 40.7 160 361 356 15.2 63.9 101 47.4 444
2007 10.6 21.6 21.3 49.7 19.3 23.1 68.7 130 140 3.83 25 40.5 14.5 162
2008 10.3 11.6 20.7 55 13.1 17.3 70 152 192 3.52 24.5 76.5 31.9 328
2009 13.5 8.12 11.4 47.1 9.19 15.4 70 147 161 5.88 22.8 66.6 27.8 201
2010 13.2 9.01 12.9 46.3 13.1 15.4 89.3 192 243 4.03 34.9 119 52.6 412
2011 30.3 22.6 35 122 20.8 36.5 159 423 435 12.3 60.2 132 49.9 537
2012 10.3 8.12 11.9 38.5 10.1 24 73.7 132 140 6.03 25.7 46.7 23.7 190
2013 34.9 33.6 91.8 259 26.3 54.3 257 774 746 25.7 312
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Table A11.: Classi�cation of the gauges in the Harz region according the method proposed in Section 7.3. It can be seen that large and extreme large events (magenta and red) are detected
simultaneously for nearly all gauges.

Name of gauge Ilsen-
burg

Hoppen-
stedt

Stol-
berg

WippraMans-
feld-
Leim-
bach

Tanne Königs-
hütte

Elend Trau-
ten-
stein

Silber-
hütte

Meis-
dorf

Haus-
nein-
dorf

Hann-
ecken-
bruch

Stei-
nerne
Renne

Mahn-
dorf

Nien-
hagen

Mins-
leben

Benzi-
gerode

Deren-
burg

Begin 1954 1930 1954 1937 1960 1961 1951 1951 1951 1949 1921 1981 1962 1971 1972 1983 1970 1976 1969
End 2014 2014 2014 2013 2013 2013 2013 2013 2013 2014 2014 2014 2013 2014 2014 2014 2013 2013 2013

Length brutto
[a]

61 85 61 77 54 53 63 63 63 66 94 34 52 44 43 32 44 38 45

Length netto
[a]

60 82 58 75 54 53 61 63 59 66 85 34 52 43 43 31 44 38 45

Median [m3/s] 6.11 11.95 4.14 11.2 11.7 20.8 23.7 12.1 9.9 9.0 11.8 12.0 5.1 6.6 11.3 13.7 0.7 0.2 0.6
Variance

[m3/s]
5.7 9.9 3.8 10.3 10.1 20.5 22.5 12.4 6.3 8.6 11.7 12.2 5.5 4.6 9.9 8.4 1.0 0.2 0.9

3. moment 700.47 5303.15 273.86 3756.73 3956.89 39189.2943151.686336.72 1956.24 1958.54 5646.95 9109.17 387.84 464.14 4547.04 6128.94 1.86 0.03 1.97

2 8.37 16.42 6.12 14.64 14.90 31.97 33.01 17.43 11.79 11.79 16.77 19.67 6.88 7.30 15.61 17.24 1.16 0.30 1.18
8 13.28 26.06 9.71 23.23 23.64 50.73 52.39 27.66 18.70 18.71 26.62 31.21 10.91 11.58 24.76 27.35 1.84 0.47 1.88
14 16.00 31.40 11.70 27.99 28.48 61.12 63.12 33.32 22.53 22.54 32.07 37.60 13.14 13.95 29.84 32.96 2.22 0.57 2.27
37 22.12 43.40 16.17 38.69 39.37 84.48 87.24 46.06 31.14 31.15 44.32 51.97 18.17 19.29 41.24 45.55 3.07 0.79 3.13

number T> 2 17 30 19 23 18 17 20 16 21 22 29 11 17 14 15 10 10 11 11
number T>8 9 10 9 8 5 7 9 8 5 10 9 4 5 5 5 4 5 4 6
number T>14 4 3 3 5 4 4 4 5 2 4 6 2 3 3 4 2 4 3 4
number T>14

and T<37
2 2 2 3 3 3 2 3 1 2 3 1 1 1 2 2 2 3 2

number T>37 2 1 1 2 1 1 2 2 1 2 3 1 2 2 2 0 2 0 2

Medium 0.13 0.24 0.17 0.2 0.24 0.18 0.18 0.13 0.27 0.18 0.24 0.21 0.23 0.21 0.23 0.19 0.11 0.18 0.11
Large 0.08 0.08 0.10 0.04 0.02 0.06 0.08 0.05 0.05 0.09 0.04 0.06 0.04 0.05 0.02 0.06 0.02 0.03 0.04

Very large 0.03 0.02 0.03 0.04 0.05 0.06 0.03 0.05 0.02 0.03 0.04 0.03 0.02 0.02 0.05 0.06 0.05 0.08 0.04
Extreme 0.03 0.01 0.01 0.023 0.02 0.02 0.03 0.03 0.02 0.03 0.04 0.03 0.04 0.05 0.05 0.00 0.05 0.00 0.04

JahresHQ
[m3/s]
1921 9.84
1922
1923
1924
1925
1926
1927 22.3
1928 17
1929 12.4
1930 6.84 8.57
1931 13.6 11.2
1932 21.8 7.4
1933 6.16
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1934 6.16 4.99
1935 17.7
1936 5.45 12.5
1937 12.1 13.8 9.48
1938 23.6 23 23.2
1939 8.26 13.2 14.7
1940 29.6 24.4
1941 29.4 15.4 15.7
1942 28.4 29.1 19.9
1943 3.2 2.85 4.14
1944 8.39 10.7 16.3
1945
1946 24.9 13.5 39.6
1947 20.6
1948 18.1 55 65.7
1949 8.26 5.42 4.97 6.83
1950 9.03 14.5 5.61 10.9
1951 3.97 13 15.2 10.5 4.31 6.85 9.93
1952 5.25 10.3 13.3 9.61 3.07 4.37 10.7
1953 4.44 12.1 13 4.09 7.39 14.6 23.1
1954 3.4 6.36 0.99 3.71 15.6 31 7.11 6.85 5.65
1955 15.2 22.2 19.6 14.8 40.5 27.1 18.6 21 29.4
1956 4.29 13 5.66 16.1 23 5.17 12.5 54.3
1957 6.51 13.7 1.76 3.5 22.4 16.2 5.74 11.3
1958 32 31 3.14 12.7 23.7 39.9 12.5 9.32 20.4
1959 3.61 1.91 1.04 2.33 7.06 4.88 7.97 4.02 7.65
1960 6.51 7.7 1.55 4.62 3.3 22.8 18.9 16.5 12.1 19.5
1961 20.8 16.3 6.53 14.7 13.8 15.3 34.7 83.3 25.7 16 22.3
1962 11.5 9.03 3.54 13.4 13.8 12.9 19.8 16.2 8.2 11.8 5.23
1963 2.48 5.57 1.96 3.86 3.3 11 19.8 2.17 4.49 6.01 0.68
1964 6.62 4.15 1.89 6.36 7.8 10.3 16.1 10.5 7.97 5.22 10.4 2.26
1965 3.71 6.71 1.68 11.2 13.9 13.7 22.5 7.16 7.61 10.5 16.2 1.58
1966 13.6 14.2 11.2 38 21.4 54.5 37.6 24.4 14.5 47 30.2 5.93
1967 7 12.5 2.4 15.1 12.9 18.1 17.4 8.74 6.62 8.85 11.3 2.35
1968 4.28 18.1 5.02 6.48 10.9 20.8 26.3 8.74 11.5 4.87 17.4 2.99
1969 5.21 11.7 2.56 35.8 18.2 18 24.3 14.3 10.7 12.2 11.5 3.67 3.5
1970 4.91 11.5 7.52 22.9 20.3 29 26.8 14.9 9.9 12.8 16.5 4.67 1.01 0.73
1971 3.82 5.36 7.64 8.83 10.2 23.8 20.7 9.17 8.46 20.3 12.6 3.87 4.72 0.23 1.36
1972 3.82 6.95 1.9 5.96 6.23 14.9 11.2 5.48 21.7 3.09 5.05 3.5 3.8 8.9 0.71 1.82
1973 2.91 3.35 2 3.83 5.33 8.6 7.59 3.85 5.54 4.65 4.9 1.73 2.16 7.42 0.76 0.66
1974 3.34 10.8 4.09 10.9 7.99 16.4 19 9.17 9.9 7.3 8.85 6.68 6.9 8.46 0.33 0.69
1975 10.3 11.1 6.28 10.9 21.6 40.1 29.3 33.1 15.7 9.15 13.8 11.5 13 17.3 1.88 0.7
1976 8.12 10.5 3.4 9.3 10.5 21.4 25.3 12.1 10.7 9.45 11.8 5.45 5.48 12.7 0.8 0.103 0.3
1977 5.84 6.01 1.65 12.6 15.5 10.7 6.46 17.1 5.85 7.85 3.62 4.72 9.34 0.92 0.141 0.77
1978 6.48 2.2 7.56 5.99 46.2 8.79 4.6 9.16 7.15 6.73 4.26 4.48 7.04 0.67 0.114 0.48
1979 3.86 6.95 2.8 7.12 9.7 28.9 5.43 3.4 8.24 9.45 8.45 4.4 3.42 5.9 0.67 0.183 0.38
1980 10.7 25.8 2.4 8.32 7.16 47.2 26.5 13.1 46.8 3.88 5.2 7.96 6.04 18.8 1.6 0.074 4.22
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1981 11.5 26.3 7.25 11.1 21.4 64.1 37.8 22.2 17.5 11.6 11.8 13 9.31 8.1 31.4 2.75 0.256 1.55
1982 7.5 10.1 11.7 18.5 18.5 16.4 8.66 8.24 26.9 17.7 16.8 8.4 7.5 15.2 1.01 0.13 0.57
1983 14 8.72 5.3 4.26 5.15 17.4 23.7 17.4 8.69 5.25 9.45 7.15 11.3 8.44 25.8 24.7 1.48 0.399 0.55
1984 5.51 19.4 2.55 7.24 9.56 16.9 15.3 8.46 6.7 8.65 8.6 9.79 8.1 18.2 13.7 0.88 0.222 1.32
1985 7.3 18.8 4.28 7.12 11 15.9 22.9 8.09 10.7 7.86 7.45 8.55 7.54 6.56 11.4 13.9 0.57 0.242 0.59
1986 9.85 21.2 6.84 12.6 14 34.6 36.9 11.3 8.52 13.8 21.3 17.3 10.3 8.48 16.1 15.5 1.1 0.171 0.57
1987 6.38 22.4 12.2 17.7 18.8 33.8 51.4 11.3 13.9 13.8 21.3 19.8 8.4 9.56 18.7 18.1 5.51 0.306 1.1
1988 2.69 17.3 5.94 11.9 16.7 9.25 16.3 6.05 6.66 11.7 17.4 17.6 2.2 2.1 9.3 1.1 0.415 0.75
1989 4.91 18.3 3.03 5.84 5.4 18 27.9 9.07 7.58 5.82 5.85 6.35 6.73 5.89 11.3 12.1 0.714 0.079 0.115
1990 5.59 6.44 4.92 16.2 14.3 14 23.5 12.1 8 7.01 8.71 10.1 3.28 3.98 6.16 6.45 0.598 0.25 0.272
1991 11.8 16.9 12.9 10.1 20.9 33.4 19.6 9.66 9.76 14.5 12.3 3.28 6.74 11.3 8.25 0.582 0.173 0.115
1992 5.41 10.4 7.13 5.19 26.2 27.2 7.91 6.77 7.01 7.11 5.68 5 5.63 10 9.98 0.442 0.055 0.059
1993 5.07 8.6 3.67 9.62 7.43 26.9 37.8 12.5 10.1 6.6 7.11 7.75 7.83 4.88 8.87 11 0.234 0.048 0.15
1994 17.3 34 11.4 79.8 83.3 66.2 69.1 44.6 13.9 74 85.7 60.3 27.4 37.2 49.5 34 6.21 0.618 2.58
1995 8.21 14.6 6.17 17.8 19.9 52 57.8 15.1 9.94 17.1 18.1 21 6.92 8.34 15.3 15.8 0.596 0.132 0.294
1996 4.43 11.8 1.05 5.17 7.12 7.96 10.4 7.36 4.96 5.43 6.68 6.96 6.64 3.78 7.56 12 0.947 0.588 2.82
1997 14.2 28.5 3.03 10.3 12.4 18 19.3 30.9 6.6 9.26 12.2 15.8 15.9 15.6 16.7 18.5 0.392 0.106 0.331
1998 13.9 30.2 6.77 14.5 13.8 137 163 56 18.5 23.5 22.8 24 8.17 19.5 31 28.1 1.17 0.279 0.781
1999 6.52 23 10.7 23.6 30.8 33 57.9 11.3 15.2 20.6 20.8 23.6 4 7.29 19.9 20.6 0.678 0.211 0.313
2000 7.33 16 4.3 7.4 8.18 52 57.9 23.1 11.3 6.93 8 8.06 6.82 8.96 14.8 14 0.599 0.18 0.295
2001 5.53 9.24 2.13 5.07 7.27 26.2 34.8 16.6 9.38 5.91 6.9 8.43 4.4 6.98 8.49 11.4 0.392 0.139 0.175
2002 36.6 50.1 11.8 20.1 20.1 70.1 106 37 19.1 20 21 23 45.8 56 34.9 2.75 0.578 1.97
2003 4.74 21.5 9.12 23.1 29.1 33.8 45.3 11 15.7 18.9 24.5 37.4 4.54 6.69 19 22.9 1.25 0.384 2.03
2004 4.89 8.88 3.43 4.55 5.95 19.7 21.8 13.8 10.2 6.76 6.48 7.35 9.46 6.38 6.68 8.22 0.278 0.075 0.202
2005 5.05 8.88 4.19 6.32 10.4 19.5 24.9 12.1 12.4 8.79 12.2 10.4 6.11 5.8 8.87 8.9 0.479 0.562 0.453
2006 3.71 8.52 6.23 10.9 13.8 27.9 50.7 12.1 12.6 12.3 15.7 11.6 4.98 7.31 8.11 9.97 0.244 0.183 0.343
2007 8.17 31.7 11.1 26.9 35.5 38.9 56.4 19.8 16 20 35.2 38 10.2 12.4 23.8 29 1.13 0.376 1.4
2008 5.43 13.3 10.3 6.83 7.66 47.4 57.9 17.6 14.2 9.29 10.9 9.87 6.11 7.2 11.2 11.7 0.761 0.168 0.407
2009 2.94 4.79 1.68 5.3 6.56 7.48 9.68 4.99 2.34 4.36 4.44 3.6 2.33 2.11 4.82 4.45 0.278 0.058 0.197
2010 4.54 13.5 5.91 15.3 19 15 16.4 7.32 8.25 10.9 26.5 25.1 1.45 4.23 8.43 9.77 0.574 0.286 0.818
2011 7.49 20.2 19.1 24.4 41.6 65.9 12.8 19 17.6 37.3 37.6 0.771 5.78 12.8 15.4 0.725 0.338 0.791
2012 3.08 4.7 3.15 4.93 5.55 17.4 22.2 5.67 6.02 7.86 9.29 9.75 3.45 3.71 6.39 8.14 0.303 0.115 0.319
2013 10.6 25.5 4.75 15.8 16.2 17.1 20.5 12.5 5.72 14.9 30.7 29.4 4.27 6.88 20.1 21.3 1.17 0.449 1.17
2014 11.5 25 3.75 3.85 7 7.37 4.91 8.16 11
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