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Abstract

Robust statistics and the use of robust estimators have come more and more into focus during
the last couple of years. In the context of flood statistics, robust estimation methods are used to
obtain stable estimations of e.g. design floods. These are estimations that do not change from
one year to another just because one large flood occurred.

A problem which is often ignored in flood statistics is the underlying dependence structure
of the data. When considering discharge data with high time-resolution, short range dependent
behaviour can be detected within the time series. To take this into account, in this thesis a
limit theorem for the class of G L-statistics is developed under the very general assumption of
near epoch dependent processes on absolutely regular random variables, which is a well known
concept of short range dependence. G L-statistics form a very general class of statistics and can
be used to represent many robust and non-robust estimators, such as Gini’s mean difference,
the Qn-estimator or the generalized Hodges-Lehmann estimator. In a direct application the
limit distribution of L-moments and their robust extension, the trimmed L-moments, is derived.
Moreover, a long-run variance estimator is developed. For all these results, the use of U-statistics
and U-processes proves to be the key tool, such that a Central Limit Theorem for multivariate U-
statistics as well as an invariance principle for U-processes and the convergence of the remaining
term of the Bahadur-representation for U-quantiles is shown. A challenge for proving these
results pose the multivariate kernels that are considered to be able to represent very general
estimators and statistics.

A concrete application in the context of flood statistics, in particular in the estimation of design
floods, the classification of homogeneous groups and the modelling of short range dependent
discharge series, is given. Here, well known models (peak-over-thresholds) as well as newly
developed ones, for example mixing models using the distinction of floods according to their
timescales, are combined with robust estimators and the advantages and disadvantages under
consideration of stability and efficiency are investigated. The results show that the use of the
new models, that take more information into account by enlarging the data basis, in combination
with robust estimators leads to a very stable estimation of design floods, even in high quantiles.
Whereas a lot of the classical estimators, like Maximum-Likelihood estimators or L-moments,
are affected by single extraordinary extreme events and need a long time to stabilise, the robust
methods approach the same level of stabilisation rather fast. Moreover, the newly developed
mixing model cannot only be used for flood estimation but also for regionalisation, that is the
modelling of ungauged basins. Here, especially when needing a classification of flood events and
homogeneous groups of gauges, the use of robust estimators proves to result in stable estimations,
too.

Title: flood in Dresden, 2002; source: http://uww.tiesel.de/schuerel20katastrophen’20.html, last visited:
22.03.2017
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1. Introduction

A flood is defined as time-limited exceedance of discharge-thresholds in a cross-section of a river
with a related drainage area caused by meteorological events (DIN 4049-1). This threshold is not
defined precisely and depends on the local circumstances. For example, a flood can be defined
as a discharge event that covers land that is typically not covered by water. In general, it is
assumed that under humid conditions at least one flood occurs in a year (DWA| (2012)).

Besides deterministic models (e.g. rainfall-runoff models) statistical models and statistical evalu-
ation are the most commonly used methods to describe the coherences of climatic, meteorological
and discharge phenomena and to obtain predictions, for example for design events for flood pro-
tection systems.

Since the processes leading to discharges can be explained by physical phenomena, it might seem
somewhat artificial to use stochastic models instead of deterministic ones. In fact, this is an often
discussed and misunderstood point. The most important difference between deterministic and
stochastic models is the handling of errors (see e.g. Bierkens and van Geer| (2008)). Stochastic
models are developed to predict values at unknown time or at unknown location, where at the
same time an assumption on the error can be made. That is, stochastic models give us the
information how uncertain the estimation is. Errors in hydrological models can have many
sources. First of all, not the real discharge is measured. Instead, often the water level at the
gauge is measured and used to calculate the discharge by taking into account the flow velocity,
that is a quantity based on empirical experiences. This of course causes uncertainty. Often even
the assumptions on the stage-discharge relation change during the years and the discharge series
of a gauge have to be calculated anew. Additionally, many of the main hydrological processes
of runoff formation leading to discharge cannot be observed since they proceed under the land
surface. Groundwater or the permeability of the soil can just approximately be estimated based
on information about the time of infiltration or the soil conditions of the point scale. Most
importantly, all models can only be seen as an approximation of the complex processes that
lead to discharge. Even in deterministic hydrology these errors are taken into account. During
the calibration the difference to the residuals is minimized and the parameters are calculated.
After this step, though, the errors are no longer taken into account and, therefore, do not appear
in the outcomes. In stochastic hydrology, the errors of the outcomes are handled as well. The
treatment of discharge as random variable handles these errors indirectly. To make the difference
between the two approaches clearer we want to give an example following [Bierkens and van Geer
(2008). Consider the discharge x. Using a deterministic model this value is represented by the
model outcome z’. The made error can then be denoted by € = 2’ — x, the so called residuum. In
stochastic hydrology we now have additional information on the unknown error by considering
it as random variable with known probability distribution. Often, not the error is treated as
random variable but we assume the whole measurement x to be a random variable, the exact
value of which we do not know, such that the error is treated indirectly.

Especially when considering extreme events, the use of stochastic models is advantageous com-
pared to deterministic models, which typically underestimate extreme values. The first explicit
connections between statistical methods and hydrological data have been made in the 1940s
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(Gumbel| (1958)) when among others the mathematician Emil Julius Gumbel has investigated
return periods of floods (Gumbel| (1941)). Nevertheless, only descriptive statistic has been applied
and no stochastic models have been widely used in hydrology until the 1970s, when the books
of Vujica Yevjevich have been published (Yevjevich (1972a), Yevjevich (1972b))). Here, Yevje-
vich tries to make the advantages of stochastic models and the complex information represented
by them easier understandable and therefore better applicable by hydrologists by reducing the
complexity to the cases relevant for hydrology and avoiding proofs. He explains the meaning of
confidence ranges and the importance of statistical tests and estimators besides multivariate con-
sideration of hydrological data. Moreover, he is one of the first hydrologists considering discharge
series as time-variant process of stochastic nature, that can be autocorrelated or non-stationary.
This topic has been extended by Salas et al. (1980), where different kinds of dependence have
been taken into account. This has then been the starting point of a wide use of stochastic mod-
els and methods in hydrology and still today many newly developed concepts in statistics are
applied in the hydrological context shortly after publication. A good example here are copulas.
Nevertheless, hydrological data also exhibit aspects that make statistical procedures more difficult
to apply. The main problem when considering discharge series, especially maxima, is the limited
period of observation. The construction of gauges and therefore the systematic conception of
discharge data is in general not older than 100 years. Many gauges in Germany are in fact not
observed for more than 30 years. Since the mostly considered flood series are annual maximum
series, this results in sample lengths of about n = 30. Many statistical procedures based on
asymptotic results fail here and many results are not valid for such small samples.
Additionally, we can find many different types of dependence in the data series. Depending on
the time-resolution, discharge series can exhibit long-range dependence (e.g. some daily discharge
series), short-range dependence (e.g. daily and monthly discharge series) as well as independence
(annual maximum series). Moreover, in many discharge series extraordinarily large events occur
that have a large influence on the estimation, especially in small samples. Also the different
nature of the discharge series has to be taken into account. Whereas the annual as well as the
monthly maximum series consist of flood peak measurements with the highest possible resolution,
daily discharge series mostly consist of discharge means of a day. Additionally, anthropological
and climatic changes (building of dams, heat periods) can lead to non-stationary behaviour, e.g.
heteroscedasticity. All these aspects have to be taken into account when using flood statistics.

In this thesis we place our focus on robust estimation methods in the context of flood statistics.
Robust estimation is expected to lead to more stable results that do not vary much over time.
That is, single extraordinary discharge events shall not have much influence on the single esti-
mations. Otherwise, the influence of these events in short time series would be much too large.
Whereas the asymptotic distribution of robust estimators under independence is well known, few
results exist under short-range dependence.

The first part of this thesis therefore develops asymptotic normality as well as a long-run variance
estimator under a form of short-range dependence for the class of G'L-statistics. These statistics
cover many robust estimators, especially the linear as well as the trimmed linear moments, which
are among the most commonly used estimators in hydrology. Hence, a concrete form of the limit
distributions for these estimators is given. Since the theory is mainly based on the concept of
U-statistics and U-processes, very general and in a broad statistical context applicable results
are obtained. To take into account the heteroscedasticity of discharge data, we prove that the
heteroscedastic model EGARCH exhibits the assumed concept of short-range dependence.

The results concerning robust estimation are then applied in the context of hydrology. Here,
different concepts to estimate design floods are developed and their applicability is validated.



Concrete advantages of robust estimators in the hydrological context are shown and the combi-
nation of the new models with robust estimators is compared to classical hydrological models.
Moreover, a method to detect coherences between gauges in a river basin based on the classifi-
cation into alert steps is developed and applied to regionalisation where again the robustness of
the estimators plays a crucial role.






2. Robust Estimation

The concept of robustness is used in many (statistical) disciplines, often with very different,
sometimes even inconsistent, meaning. In general, there is no one-and-only valid definition
for robustness and the use of this term often depends on the field of application or even the
author. Even in this work robustness has a mathematical as well as an application-oriented
meaning. Whereas in statistics robustness can be clearly measured in certain ways, in hydrology
(respectively almost all engineering disciplines) robustness is understood as a kind of stability,
which is a very vague explanation. Of course, also statisticians want to obtain stability by using
robust methods, nevertheless, the terms are defined much more specific. In the following, we will
show that still both definitions are compatible and that statistically robust estimators lead to
more stable estimations in the hydrological context. Some of the considerations made here can
also be found in |Fischer et al.| (2015) and |Fischer and Schumann| (2016]).

2.1. Definition

Following [Huber| (1981]) we define robustness as "insensitivity to small deviations from the as-
sumptions". These deviations can be model misspecification or the wrong assumption on the
convergence rate. In our context of hydrology and in general the most widely considered devia-
tion is that of the shape of the underlying distribution respectively sample. Huber| (1981) calls
this "distributional robustness". Of course one could argue that this problem can be solved by
simply removing outliers from the data, but in practice it becomes evident that it is not always
clear, how to detect such outliers. Or it is not sensible to remove extreme values since they really
occurred and are not erroneous data. This means they belong to the right tail of the underlying
distribution but get too much weight in the estimation. Therefore, robustness is an important
aspect when comparing estimators.

Now, even after giving the definition of robustness, there still exist many different aspects. For
example Huber| (1981) distinguishes between quantitative, qualitative or optimal robustness.
For more details on this topic and a more explicit description we refer to [Huber| (1981). The
robustness measures described later on in this chapter focus on different aspects of robustness
respectively.

2.2. Robustness in Hydrology

The estimation of flood quantiles with very low exceedance probabilities is a key problem of
engineering hydrology. Since the number of recorded series of floods is very limited and seldom
longer than 100 years, the needed probabilities of extreme flood events are derived from a fitting
of a suitable distribution function and its extrapolation into the realm of very low exceedance
probabilities. The selection of the underlying statistical model is crucial in this context. There-
fore, robustness is an important practical goal in flood statistics. It becomes evident when an
extreme event with an exceedance probability significantly smaller than 1/n occurs within a time
series of n years. Robustness in this context not only means robustness against extraordinary
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extreme events but also against model misspecification or errors in the data. Whereas extraordi-
nary extreme events are an important part of the flood series and contain important information
this is not the case for data errors. This difference has to be considered. Robust estimators
therefore shall not be used to cut off these extreme events, but they shall be used to reduce the
influence of them especially in the presence of small sample lengths to gain stable estimates and
to estimate the influence of single extraordinary extreme events.

One problem consists of the temporal variability of statistical characteristics of these series, which
results from exceptional extreme events happening occasionally. Those events have a large in-
fluence on the estimation of the parameters of the distribution functions and their quantiles
temporarily. The impact of this temporal variability is aggravated if the demand for design
floods is increasing after disastrous flood events, which often results in step changes of the es-
timated parameters of distribution functions and of quantiles used as design criteria. In many
cases, such changes are smoothed again by subsequent periods of “normal” floods. Figure [2.1
shows an example of step-wise changes of the 99 percent quantile derived from the general-
ized extreme value (GEV) distribution with probability-weighted moments and a year-by-year
extended flood series. If these quantiles are applied for the design of long-lasting hydraulic struc-
tures, their temporal variability becomes a problem. There exist several approaches to handle
such extraordinary events, causing step changes in hydrological parameters and quantiles. Often,
these extraordinary events are treated as outliers and several statistical tests exist to detect such
data points that deviate markedly from the remaining data points. By this, those values are
treated like they are not drawn from the same population as the remainder data. For example,
the Bulletin 17B, which is a benchmark in US-American hydrology, recommends such tests in
a case of a skew larger than 0.4 (or smaller than —0.4 if we expect extraordinary low values)
(Subcommittee| (1981)). A very simple tool to define outliers is the 3-o-rule, which defines out-
liers on the basis of the standard deviation (Jeong et al.| (2017)). A well known test for these
outliers is the maximum-value test of Grubbs (Grubbs|(1969)). Here, it is assumed that the data
follow approximately a normal distribution, but tests for the detection of outliers in data with
other underlying distributions also exist (e.g. Spencer and McCuen| (1996)). Also the tests by
Dixon-Thompson, Rosner and Chauvenet are often recommended in the context of hydrology
(see e.g. McCuen| (2003)).

If an outlier is detected, still the question arises how to handle it. The outlier could be an
erroneous value, which should be corrected or removed. Outliers in flood statistics may be the
result of a mixed population occurrence (Klemes (1986)). If we exclude these two possibilities,
we can conclude that it is just an event from the tail of the distribution. Here we have two
options: It could be censored to avoid distorting the analyses, or it could be weighted to reduce
the resulting distortion.

The removal of conspicuous events has been the general handling of these values for a long time
period (McCuen| (2003))). Nevertheless, Gumbel already has remarked that "the rejection of
outliers on a purely statistical basis is and remains a dangerous procedure. Its very existence
may be a proof that the underlying population is, in reality, not what it was assumed to be"
(Kruskal et al| (1960)). During the last 30 years a change of the handling of extraordinary
events has begun and several authors and even pamphlets of the federate states in Germany now
recommend the consideration of these in the statistics (e.g. |Ashkar| (1993 and [ DWA|(2012)). The
option of weighting of such events became very popular by using L-moments, which are rather
robust to the effects of outliers (Hosking (1990)), or LH-moments (Wang (1997)), a generalization
of L-moments, for characterizing the upper part of distributions and larger events in data.

There are other hydrological problems where a demand for robustness also exists, e.g. parameter
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Figure 2.1.: Annual maximum discharges (HQ) for the Wechselburg/Zwickauer Mulde gauge in
Saxony (1910-2013) and the estimated 99%-quantile for increasing sample length. A
jump in the estimated high quantile can be seen every time an extraordinary large
event occurs, leading to an unstable estimation over the years.
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calibration procedures for deterministic hydrological models (Guerrero et al. (2013)). Bardossy
and Singh (2008 have specified four criteria for an estimation of parameter vectors of such models
in the framework of a “data depth” of observation periods. The parameter vectors should:

e lead to good model performance over the selected time period
e lead to a hydrologically reasonable representation

e not be sensitive against the choice of the calibration period

e be transferable to other time periods.

The third and fourth criteria are especially suitable for the interpretation of robustness used in
this research. Since the estimated quantiles for certain annual return periods like T' = 1000 are
used for the design of long-lasting hydraulic structures, it is not desirable that these parameters
change much with any extension of the observed time series. From the hydrological point of
view a robust estimation is preferable that can mirror the asymptotic behaviour (limit) of the
estimated quantile of the AMS to an early point of observation without having these step-changes.
In this context we want to focus on the interpretation of robustness as stability. That is, the
estimation of extreme quantiles should not change significantly when adding or removing only
a few values. This intention shall be emphasised by an introducing example. The estimation
methods presented here are not of interest in the moment and will be explained later on. Instead,
we want to give an outline of the idea of robustness needed in hydrology. As shown in Figure
where the 99%-quantile for a year-by-year prolonged series of maximum discharges at the
Wechselburg gauge is estimated, the influence of single values on the estimation of high quantiles
can be very large, especially when extraordinary large floods occur in very short time series. This
instability leads to large problems if these quantiles are used as design floods. To emphasize the
vulnerability of estimates of extreme quantiles in the presence of only a short period of observation
we use a form of sensitivity curve to outline the influence of single (extraordinary) floods.

For this we take the whole series of annual maxima (AMS) at the Wechselburg gauge (X1, ..., X,),
remove the respective annual maximum for every time step and replace it by the median of the
whole sample to gain a new sample X! = (Xy,..., X;_1,med(Xq,...,Xy), Xit1,...,Xy) for
i =1,...,n. For these new samples a GEV or the Peak-over-threshold approach (POT) is fitted
using linear moments (L-moments) or trimmed L-moments (T L-moments) and the quantiles for
the annualities T" = 200, 500, 1000 are calculated:

qT;’L - G)_(% (T)7

where G)_(} is the quantile function of the GEV fitted to the sample X,. More details on the
Peak-over-threshold approach as well as L-moments and T L-moments can be found later on in
Sections and In this context they should only serve as examples of robust methods.
We finally take the difference of ¢r; and g7 (the quantile based on the whole original sample)
and multiply it with n + 1. This is analogous to the classical sensitivity curve introduced in the
next section, where instead of replacing one value by the median it is replaced by "one-wild"
(Tukey| (1960)) to test the sensitivity of an estimator. Here, the "one-wild" observation is a real
observation, whereas in statistical simulations often a function of a real-valued variable is used
and the deviation for increasing values of this variable is measured. The use of the observations
here should emphasise the problem of estimating a design flood, instead.

The results can be found in Figure [2.2] where the year displayed on the x-axis marks the year of
the replaced observation.
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Figure 2.2.: Influence of single annual maxima on the estimation of the quantile with annuality
T for different estimators and models by calculating the difference to the quantiles
based on the series without this annual maximum (sensitivity). For the non-robust
estimators in AMS and POT-model the estimation is influenced a lot by single events.
When using robust estimators like the T'L-moments the influence of this single events
is reduced to almost zero leading to a stable estimation.
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It becomes obvious that the extraordinary floods in the years 1954, 2002, and 2013 have a
very high influence on the estimation of the quantiles when using classical estimators like the
L-moments. This influence increases with increasing annuality. Therefore, the use of such
quantile estimators in the design of dams can lead to serious problems since it is highly unstable.
Robust estimation approaches like the robust POT reduce this instability and are a noteworthy
alternative. Additionally, they can be used to estimate the influence of single events.

Although especially extreme events are of interest in hydrology, since they are the ones causing
highest damage, the considerations made above show that also the use of robust estimators in
hydrology is of considerable interest.

Additionally, it is not always clear, which kind of distribution function one should use, two- or
three-parametric. Whereas the three-parametric distribution function allows a greater flexibility
in modelling the tails it is also more uncertain, especially when estimating the shape parameter.
Recommendations are for example given by the DWA (DWA| (2012)), recommending a two-
parametric distribution function for samples with less than 30 years and a three-parametric one
for samples with more than 50 years. A distinct recommendation for samples of 30-50 years is not
given. A robust estimator used in the hydrological context should therefore be also insensitive
against small deviations from the model. Moreover, besides the GEV distribution there exist a lot
of other distributions used in hydrology to model floods, for example the PearsonlIl-distribution
or the Gamma-distribution. Nevertheless, in the context of our considered data samples the
GEV distribution is the most commonly used. More details on this context can be found in
Section

All these aspects play a crucial role in flood statistics and should have influence on the used
methods and estimators. Robustness could lead to an improvement of the consideration of
uncertainty in this point.

2.3. Measures of Robustness

There exist several possibilities to measure robustness. All of them focus on different aspects of
the definition made above. Additionally, some of the measures have been developed because of
the special challenges in their field of application. We want to define two of the most common
statistical measures of robustness as well as one measure that has its origin in hydrology, focussing
especially on the right tail. All of them will be used later on to emphasise the robustness of certain
models or estimators.

2.3.1. Influence Curve

As mentioned above, one important aspect of robustness is the insensitivity of the estimation
against single (extreme) values. This aspect somehow coincides with the hydrological point of
view concerning stability: we do not want to obtain large deviations in the estimation if one
extraordinary event occurs. The limit of the influence of a single observation  on an estimate
T(F,) of F (just think about random variable X with distribution function F' and a sample
x1,..., T, with empirical distribution function F},) can be expressed by (see [Hampel| (1971)))

1C(@; F.T) = Iim T((1 = \)F + o) — T(F)
A—0 A

il

where é, denotes the point mass 1 at . This is the so called influence curve, which can be
shown to have several interesting properties (see Section . In fact it is the first derivative of

10
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the estimator T evaluated at the perturbation of F' by d,. For a robust estimator we of course
want to have a bounded influence curve indicating that also the influence of single observations
on the estimate is bounded.

Example 2.1. Assume we have i.i.d random variables X1, ..., X,,. The sample mean

. 00 1 <
X =u(F,) = /OO wdFy () = — Z;X
is an estimator for the expected value p(f) = ffooo xdF (x). It has influence function

1C(: F. p) = lim M0 Z D+ M%) = )

A—0 A
d [ d
= = N A8 = £ (1= A +X0) g

which increases unboundedly with increasing x. Thus, the sample mean is not robust.

There also exist several sample versions of the influence curve, where we want to focus on the
one proposed by [Tukey| (1960)), the so-called sensitivity curve

T(2=tp, 1+ 15,) — T(F,_
SCn-1(a) = Lm Tnot ¥ 0e) = Tum)

1
n

where we simply replaced F' by F,,_1 and A by %

2.3.2. Breakdown Point

Often, not only one extreme value occurs and in this case the knowledge of the influence of a
single value is not helpful. Here, we are interested in the behaviour of the estimate under the
occurrence of many extreme values. The asymptotic breakdown point €* of an estimator 7'(F},)
of the functional T'(F') is defined as

e(T,F,d) =sup{e: sup |T(F)—T(Fy)| < oco}.
e<1 F:d(F,Fp)<e

It characterises the maximum deviation from the true Fy for a chosen metric d. For a finite
sample 2 = X1,..., X, the sample breakdown point is then defined as

1
(7) = & max {m s sup [ T2 < |

m

where {2, is a sample derived from 2 by replacing any m values of (2 with arbitrary ones;

It gives us information on how many outliers can occur until the estimator collapses. A breakdown
point of 0 indicates a totally non-robust estimator, whereas equivariant robust estimators can
reach a breakdown point of 50%. For example, the sample mean has breakdown point 0, whereas
the median has breakdown point 0.5.

11



2. Robust Estimation

2.3.3. Stability Index

The breakdown point or the influence or sensitivity curve are the most frequently used measures
for robustness. However, these measures do not consider the special properties of hydrological
data. When using flood series, the quantity of available data is very limited, and the asymptotic
behaviour of the mathematical procedures are not effective. The special form of the applied mod-
els, in which the estimated parameters have an exponential influence on the resulting quantile,
leads to large deviations in the results, even if the differences between parameter estimations are
small. Therefore, it is not sufficient to check only the parameter estimators for their robustness,
but the applied statistical model as a whole plays a crucial role. Hence, we use hydrologi-
cal measures of stability of quantiles. Typical of most hydrological assessments of stability is
the comparison of different calibration (in our case: modelling) and validation subperiods (cf.
Brigode et al.| (2013)). For stability of quantiles, the criterion SPANp measuring the variability
(span) of the estimation is used, which has been proposed by (Garavaglia et al.|(2011]) and applied
to compare the robustness of fitting methods (Kochanek et al.| (2014), Renard et al.| (2013)).
The value of SPAN7 for a quantile of the annual return period T at a given site [ is calculated
by
max {gr;(s)} — min {Gr;(s)}

SPANy (1) = 1<s<b 1<s<b 7

3 2 qruls)
s=1

o

where ¢7,(s) is the estimated quantile related to the return period 7" for one of b non-overlapping
subperiods s = 1,...,b at the gauge [. The optimal value of SPANp, indicating a robust,
stationary behaviour of the statistical model, is 0. To compare the SPAN7 for several gauges
at the same time, the empirical distribution can be considered for all [. Since in our case the
sample length is very limited and the robust estimators need a certain quantity of data, we
have to reduce the quantity of subperiods to two, choosing one with a length of 50 years. The
SPAN7 criterion can also be applied to compare quantiles of two parts of a time series s; and
so as follows (Renard et al. (2013))

4T, (s1) — Gra(s2)|

SPANT(l) = 7
0 3 (Gra(s1) + ary(sz))

where ¢r(s;), i = 1,2, is the estimated quantiles related to the annual return period T for
subperiods s; and sg respectively at the gauge [.

In contrast to the two above-mentioned measures, which are well-known in statistical theory, the
SPAN-criterion is mainly used in the hydrological context. This is not only due to the fact that
it measures the stability instead of the influence of one value, but also because we can lay the
focus on high quantiles by choosing appropriate T'. Because of the comparison of two subsamples
it is also possible to compare the influence of two or more values on the estimation. Having in
mind the often frequent appearing extraordinary events in hydrology, this is a desirable property.
By using the representation by the distribution of SPAN of several gauges it is also possible to
detect salience of single gauges. Hence, this measure will be used here especially in the context of
hydrological flood series to take into account their special nature. Nevertheless, it is comparable
to other statistical measures for robustness.

12



3. Concepts of Short-Range Dependence

For several years, the concept of independent and identically distributed data has been the
common assumption in hydrological statistics. And not only in hydrology, but also in many
other applications independence has been assumed. Nevertheless, it is questionable whether
discharge series, especially of high time-resolution, are really independent. As an example we
take the monthly maximum discharges at the Wechselburg gauge in Germany, see Figure

The Wechselburg gauge at the river Zwickauer Mulde belongs to the Mulde river basin located in
Saxony in South-East Germany. The time series may look independent, but the autocorrelation
function shows a different picture (Figure . We can see a significant deviation from the
confidence bands based on White Noise and therefore from independence. Thus, one can assume
a certain dependence in the data. Please note that both discharge series are not related directly,
since the maximum values are peak measurements.

If one accepts the presence of dependence in the data, the question arises, which kind of depen-
dence is present.

On the left hand side of Figure one can see a fast decay of the autocorrelation function,
whereas on the right hand side there is only a slow decay. Nevertheless, the same gauge is
considered, only the type of discharges (monthly maxima and daily means) is different.

In general, most of the considered flood series in hydrology can be assumed to be independent
or short-range dependent. Moreover, to detect long-range dependent behaviour, the time series
considered here are not long enough. In the following we will therefore concentrate on the concept
of short-range dependence.

There exist several definitions of different forms of short-range dependence. One of the most
common ways to define short-range dependence is by mixing processes.

Bradley| (2007) gives an overview over the different forms of mixing. We will consider the case
of absolutely regular sequences of random variables.

Definition 3.1. Let A,B C F be two o-fields on the probability space (0, F,P). The absolute
reqularity coefficient of A and B is given by

B(A,B) = E sup [P(A[B) — P(4)].
AeA

If (Xy)nen is a stationary process, then the absolute reqularity coefficients of (X, )nen are given
by

ﬁ(l) = Supﬁ(./_"{l, 7?3—[)

neN
(Xn)nen s called absolutely regular, if 5(1) — 0 as | — co.

Absolutely regular random variables are sometimes also called 8-mixing and have been introduced
by |Volkonskii and Rozanov|(1959)). S-mixing is a stronger assumption than for example a-mixing,
since for the a-mixing coefficients « given by

a(l) = Slégsup {|[P(ANB) —P(A)P(B)|: A€ F{', B € F;%},

13
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Figure 3.1.: Monthly maximum discharges (top) and daily means (bottom) of the Wechsel-
burg/Zwickauer Mulde gauge. The difference between the peak values and means
becomes evident.

14



ACF

06 08 10
| |

ACF
0.4

0.0

Lag

ACF

02 04 06 08 1.0

0.0

ACF

Lag

Figure 3.2.: Autocorrelations of the monthly maximum discharges (left) and daily discharges
(right) of the Wechselburg/Zwickauer Mulde gauge. The daily discharges with the
higher time-resolution show a much stronger dependence.
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it holds that a(l) < £5(1), so that every absolutely regular process is likewise strong mixing.
Though, S-mixing is weaker than W- or ®-mixing.

Typical examples for such absolutely regular processes are certain Markov chains or certain AR-
processes. Nevertheless, more complex models like dynamical systems cannot be modelled by this
concept of short-range dependence. For example |Andrews| (1984)) has shown that even an AR(1)
process of independent Bernoulli innovations is no longer a-mixing since one can construct sets
that are determined by the future process, no matter how far away. Gorodetskii (1978) even has
been able to show that there exist linear processes with normal distributed innovations, whose
coefficients decline too slowly, such that they are no longer mixing.

To cover all these processes, the so called near epoch dependence has been developed. It is based
on the idea that although a random variable X; = f(..., Z;_1, Zt, Z+1, - . .), which is a functional
of a mixing sequence, is not necessarily mixing it depends on the near epoch of Z;. Therefore,
some properties can be concluded, especially the validity of limit theorems.

Definition 3.2 (Near Epoch Dependence (NED)).
Let (Xn, Zn))nez be a stationary process. (X, )nen s called Ly near epoch dependent (NED) on
the process (Zn)nez with approximation constants (a;)ien, if

E‘Xl —E(X1|gl_l)) <aq 1=0,1,2,...,
where llim a; =0 and Ql_l 15 the o-field generated by Z_y, ..., 7).
—00

Near epoch dependent processes are sometimes described with the term approzimating function-
als. One of the first applications of such kind of short-range dependent processes can be found
in Ibragimov| (1962)). In the literature one often also finds Ly or in general L, near epoch de-
pendence, where the L; norm is simply changed to the L, norm, or the weaker form of P-NED
(Dehling et al.| (2016)); [Vogel and Wendler| (2015))), which allows to consider processes with exist-
ing moments of lower order. The main difference between the different definitions of near epoch
dependence are their assumptions on the existing moments.

The concept of near epoch dependence is especially useful in the case of an underlying mixing
sequence, since in this case very helpful properties are inherited. More details on this and a
detailed introduction to near epoch dependence can be found in |Davidson| (2002).

For the two examples given above and also given in |Andrews| (1984) and (Gorodetskii (1978])
Jenish and Pruchal (2012) show that they are near epoch dependent.

3.1. Examples

A typical example of a model for short-range dependent data is a special case of the ARIMA (p,d,q)-
model, which is an abbreviation for Auto-Regressive Integrated Moving Average. As indicated
by the name it consists of an AR-part of order p as well as an MA-part of order gq.

Definition 3.3. A process (X¢)iez is called ARIMA (p,d,q)-process if
Xy =¢"'(B)(B)(1 - B) "%,
where (Zt)iey 18 a White Noise series and d is an integer. The polynomials

d(z)=1—1z—...— pp2?
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0(z) =1+6012+4 ...+ 6427

have no common zeros and ¢ has no roots on the unit circle. The operator B is the so-called
Backshift Operator defined by BZy = Z;_1.

The parameter d is the integration parameter. It gives the times of differentiation needed to
obtain a stationary time series.
A stationary ARIMA-series, that is d = 0, is strongly mixing.

Some of the widely used models when considering near epoch dependent processes are GARCH-
processes (Generalized Autoregressive Conditional Heteroscedasticity) (Bollerslev (1986)), a gen-
eralisation of ARCH-processes. They are a common model for volatility clustering in financial
data and are also used for example in hydrology (Wang et al. (2012)).

Definition 3.4. A process (X¢)iez is called GARCH(p,q)-process, if
Xy = 012,
where o? is the positive conditional variance given by
o =aptonZi ..+l + B+t Beoi g

where o, ..., 0p, B1, ..., Bq € R are non-negative with oy, # 0 and By # 0 and (Zi)icz is an i.i.d.
sequence with mean zero and variance equal to one.

Hansen| (1991) relaxes the assumptions on (Z;):cz, such that (Z;)tcz can be assumed to be a-
1/5
mixing. He showed then that if (E[(ﬁl + al(f—f)Q)T\Ft_lD <c¢<1as. forall t,a GARCH(1,1)-

process X is L,-NED on the a-mixing process Z; with approximation constants a; = ¢'20c/(1—
c)and Fr =o(...,Z).

An extension of the GARCH-model is the exponential GARCH (EGARCH) model proposed by
Nelson| (1991)).

Definition 3.5. The process (Xi)iecyz is called EGARCH (p,q)-process on the sequence (Zi)iecz, if
Xt = o124,
where o? is the positive conditional variance given by

log(otz) =ap+ o f(Zi1)+ ... +apf(Zi—p) + 1 log(a?,l) +...+ 5, log(at{q),

where g, ..., 0, B1,...,Bq € R with o, # 0 and By # 0 and f is a measurable function which
1s linear in Z and given by

f(Ze) = 02 + M| Ze| — E|Z4])
with parameters 0, \ € R.

The term \(|Z;| — E|Z;|) determines the size effect whereas 0Z; determines the sign effect of the
shocks on volatility. It can be seen that E(f(Z;)) = 0.
One of the advantages of EGARCH-processes is that they do not have the non-negativity re-
striction of the GARCH-processes. We show that under similar assumptions as for the GARCH-
process an EGARCH-process is near epoch dependent.
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3. Concepts of Short-Range Dependence

Theorem 3.1. Let o1 be bounded and Y 1_, |3i| < 1. Moreover, assume that

supE|Z;| < oc. (3.1)
teZ

Then the EGARCH(p,q)-process on the sequence (Zi)icz given by X, = ouZ; is near epoch
dependent.

Remark 3.1. 1. The assumption (3.1)) in Theorem is an analogue to the condition of
Hansen| (1991) for GARCH-processes to the EGARCH-case with arbitrary values p and q.

Whether this condition is fulfilled depends on the existing moments of Z;. For example, if
(Zt)iez is a White Noise process with variance o (that is E|Z;| < o0 = 1), the condition is
fulfilled.

2. The boundedness of the conditional variance o1 is a common assumption for GARCH-
processes (see Hansen| (1991), Lee and Hansen| (1994)). It results from the moment con-
dition on o, E|oy|'*® < oo, which is needed in the following proof, and the Lipschitz-
condition.

Proof. (Theorem [3.1)
Using an iterative expression of the term log(o?) we obtain

n - p
log(of) = Z Z <klj 1kq> fl coe 5‘1 <a0 + Z arf (Zt—k—(zg_liki))>
e k=1

O (s (0 )

We want to show that the first term of the sum converges a.s. This is gained by the assumptions
supE|Z;| < co and |> 7, Bi| < 1 and the linearity of the function f. With the Multinomial
t

Theorem and the convergence of the geometric series we can apply the monotone convergence
theorem to obtain the convergence of the series (see for example Proposition 3.1.1 of [Brockwell
and Davis| (2006])).

For the second term we show that it converges to zero a.s., that is

. n k k 2 —
nh_)rr;o Z <k1, L kq> e Byt log (Gt—(zgzliki)) =0 forallt€Z as.
k17---7kq€N0,

k1+...+kq:n
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3.2. Short-Range Dependence in Hydrology

By using the Multinomial Theorem we have

1 n kl. . kq 2
EID S R L R A

kl,...,quNo,
ki+...+kg=n
n
< sup log (027 P ) lim Z < >|5l‘k1.“..‘5q’kq
ki, kg t (Zi:l lkz) n—00 ot Tra€No, kl, ... ,kq
k1+...+kq:n

= ksupk log (Uf—(Z?:ﬂ’fi)) nh_{go(‘ﬁl\ + ot [Bgl)”
1’...7 q

and therefore the term converges a.s. to zero if

q
Z ’,31| < 1.
=1

Hence, we can write

log(o?) = i Z (kj _,1k:q> fl e (I;q (ao +éakf (Ztk(zgliki))> :

J=1 kiykgeNy, N1
k:1+...+k:q:j—1

This is a linear solution and for this reason the process (log(c?))sez is near epoch dependent.
Moreover,

oy = \/exp(log(a?)) = g(log(a7))

with g(z) = /exp(x). This function g fulfils the Lipschitz-condition for all x € (—o0,a], a €
R. We can now apply Proposition 2.11 of Borovkova et al.| (2001), where we need that o is
bounded. Therefore, the process o, and hence X; = 0;7; is near epoch dependent on the process

(Zt)tez- O

3.2. Short-Range Dependence in Hydrology

Many time series in hydrology show a heteroscedastic behaviour. This can be caused by changing
climate conditions but also by anthropogenic changes or other effects. More generally, almost
all hydrological runoff-models assume the residuals to be heteroscedastic. More precisely it is
assumed that for small discharges only small deviations in the simulation can occur, whereas
for large discharges also large deviations can occur. Therefore, this behaviour can not fully be
modelled by classical ARIMA-models. For example, Modarres and Ouarda/ (2013a)) show that
when using only an ARIMA-model for heteroscedastic data the residuals remain heteroscedastic.
Now there are two possible solutions for this problem. The first one is the use of a Box-Cox or
similar transformation before applying the ARIMA-model. On the other hand one can also apply
a heteroscedastic model to the residuals and obtain for example an ARIMA-GARCH model. In
hydrological time series it is often not sufficient to use a Box-Cox transformation only (Modarres
and Ouarda (2013b)). Additionally, often the use of a model to describe the behaviour of the
residuals is preferable because of the possible use of additional information (Evin et al.| (2013)).
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Figure 3.3.: Daily discharges [m®/s] (left) and location of the considered gauge of the Matapedia
river near Quebec, Canada (right).

Hence, a model is needed which takes into account this heteroscedasticity. In the considered
case, the EGARCH-model proved to be superior to the other models (Modarres and Ouarda
(2013a))).

We want to seize the data example of Modarres and Ouardal (2013a) and use it to apply the
developed theory under short-range dependence later on. The observed data are daily discharges
from a gauge of the Matapedia river near the basin Amqui in South-Eastern Canada with a
catchment area of 558 km? (Figure .

The autocorrelation of this series shows significant dependence within the data (Figure [3.4)).

To the logarithmised data an ARIMA(13,1,4)-model is fitted. The same order has also been
chosen by [Modarres and Ouardal (2013a) and to make the results comparable we adopt this
parametrisation. The logarithmisation as well as the differentiation with d = 1 has been chosen
to reduce the high persistence of the data.

When we have a look at the residuals of this model applied to the data we see a heteroscedastic
behaviour (Figure . Therefore, Modarres and Ouarda| (2013al) apply the Engle-test to test on
autoregressive heteroscedastic behaviour (Engle (1982)). For all lags the p-value is almost zero
and therefore a significant heteroscedastic behaviour is found (Figure [3.5)).

The results stay the same when a Box-Cox-transformation is applied to the data (logarithmic
or original) before fitting the ARIMA-model. Hence, a model is needed that can cope with this
kind of behaviour. Modarres and Ouardal (2013a)) try different kinds of heteroscedastic models
(GARCH, Power Garch) but the EGARCH model covers the behaviour best. The parameters
are chosen as p = 3 and ¢ = 1 for the EGARCH-model. If we compare the observed residuals
and the ones modelled by the EGARCH(3,1)-model in a QQ-plot we observe a very good fit
(Figure and also the results of the applied Goodness of Fit test (Vlaar and Palm| (1993)
confirm this.

This data example emphagsizes the necessity of complex dependence models like the EGARCH
model which are not covered by the classical theory of dependent random variables using mixing
assumptions.
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Figure 3.4.: Autocorrelationfunction (ACF) of the daily discharges [m?/s] of the considered gauge
of the Matapedia river near Quebec. A strong dependence of the data can be seen.
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Figure 3.5.: Residuals resulting from the fitted ARIMA(13,1,4)-model (left) and p-values of the
Engle-test (right) of the considered gauge of the Matapedia river near Quebec. This
indicates a GARCH-behaviour remaining in the residuals.
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Figure 3.6.: QQ-plot of the observed residuals from the ARIMA(13,1,4)-model and theoretical
residuals modelled with the EGARCH(3,1)-model of the considered gauge of the
Matapedia river near Quebec. The model fits well to the data.
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4. U-statistics, U-processes and U-quantiles

A central tool to cope with GL-statistics T, which are of particular interest in this thesis,
are U-statistics and U-processes, since a representation of the error term +/n(T,(x) — T'(x))
can be represented (under some conditions) via the first-order Gateaux-differential, which is
in fact a U-statistic. Besides, U-statistics are a common tool to prove asymptotic results of
test-statistics as well as estimators since they are able to represent most of them. The simple
form of expression together with some well known decomposition results make U-statistics and
U-processes applicable in many situations. U-quantiles are also an often used class to represent
quantile-based estimators.

We want to show three fundamental results:

1. a Central Limit Theorem for multivariate U-statistics
2. an invariance principle for multivariate U-processes
3. the convergence rate of the remaining term of the generalized Bahadur representation.

Let us first state some basic assumptions.

Let Xq,...,X, be a sequence of random variables with distribution function F. As mentioned
above, here we will assume the random variables to be short-range dependent. Moreover, let F,
be the empirical distribution function of X1, ..., X,, that is

1 n
=1

U-statistics include a kernel h(zy,..., 2, ), that is a measurable, symmetric and real-valued
function. Symmetry in this case means invariance against permutation: h(zs,,...,%s,) =
h(z1,...,xm) for every permutation o. The dimension of the kernel is m. In literature, mostly
bivariate kernels are studied (cf. Borovkova et al. (2001)), [Wendler| (2011b)), [Levy-Leduc et al.
(2011)). This limits the number of possible estimators in this class very much, such that Fischer
et al. (2016a)) showed the Central Limit Theorem for multivariate (m > 2) kernels.

Analogously to the empirical distribution function of random variables an empirical distribution
function H,, of the evaluations h (X;,,...,X;, ) is given by

1
Hn<x) = (T Z ]l[h(Xil,.--,Xim)Sw]’ —00 < x < 00.
m) 1<iy<...<im<n

~—

Sometimes H, is also defined as

1

H = 1

n() nn—1)-...-(n—m+1) Z [ (Xiy s X ) <]

where the sum is taken over all n(n—1)-...-(n—m+1) m-tuples (i1, ..., y,) of distinct elements
from {1,...,n}, but because of the symmetry of h this does not make any difference.
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4. U-statistics, U-processes and U-quantiles

Hp is defined as the distribution function of the kernel h with

Hr(y) = Pp(h(Y1,...,Yy) < y) for independent copies Yi,...,Y,, of X; and 0 < hp < oo is
the related density. Please note that this implies that Hr is continuous. The index F' refers to
the fact that the distribution function of the original data X;i,..., X, is F.

We define hF;Xi27...’X% as the density of h(Yi,, Xoy, ..., X4y, Vi s, Y5,) for 2 <k < m and
11 <2< ... <1ln.

With these assumptions, the definition of U-statistics is now possible.

4.1. U-statistics

U-statistics form a class of statistics originally developed by Paul R. Halmos and Wassily Ho-
effding (Halmos| (1946); Hoeffding (1948))). The "U” stands for unbiased, since a U-statistic is an
unbiased estimator. It is a very important class of statistics because of the relative simple form
and also because many common estimators can be expressed as such a U-statistic. For more
details we refer at this point to [Serfling (1980) and Lee, (1990).

Definition 4.1. Let h : R™ — R be a measurable function. A U-statistic with kernel h is defined
as

U, = > (X, X))

(:1) 1< <...<tm<n

While examining U-statistics often the decomposing technique by Hoeffding is used (Hoeffding
(1948))), which makes a separate consideration of the single terms possible.

Definition 4.2. (Hoeffding decomposition)
Let Uy, be a U-statistic with kernel h = h(x1,...,zy). Then one can write Uy, as

-0+ 5 (g

where
0 =E(h(Y1,...,Yn))
Sjn Z hj(Xiu---aXij)

1<i1<...<45;<n

hl(:tl) hl(l'l)

h2($1,$2) = h (xl,xg) — hl(wl) — hl(xg)

hs(x1, x2,23) = hg(z1, 22, x3) E ha(z;) E ho (x4, ;)

1<i<5<3
5 m
hn(T1, -y ) = (21, ) = Y ha(@) = Y ha(wiy, i)
i=1 1<ii<ig<m

e — Z hm—l(xh)""mim—l)

1<i1<.<tm—1<m
hj(x1, ... x5) = E(h(z1,. .. 25, YVigt,- o Yin)) — 0

for independent copies Y1,...,Ym of X1.
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4.1. U-statistics

We call 357" | hi(X;) linear part, the remaining parts are degenerated.

For most of the results in this section we need a regularity condition for the kernel h. It is very
similar to the Lipschitz-continuity and basically has been developed by Denker and Keller| (1986).
The same variation condition is also used in |[Fischer| (2013) and the related paper |Fischer et al.
(20164l).

Definition 4.3. A kernel h satisfies the variation condition, if there exists a constant L and an
€0 > 0, such that for all € € (0, )

IE( sup ‘h(xl,...,xm)—h(X{,...,X%)‘) < Le,
(@1sees@m) = (X, X7, ) [ <€

where X are independent with the same distribution as X; and ||| is the Euklidean norm. A
kernel h satisfies the extended variation condition, if there exists additionally a constant L' and
a 8o > 0, such that for all 6 € (0,60) and all2 <k <m

E( sup ’h(:’Uh)Xizv"'7Xik7Y;k+1v"'7Y'im)h(Y:ipXin'"7Xik7}/;k+1v"'71/;771)’)
|24, =Yz, [<0
< L',

for independent copies (Yn)nen of (Xn)nen and all iy < ig < ... <'ip. If the kernel has dimen-
sion one, we note, that it satisfies the extended variation condition, if it satisfies the variation
condition.

Remark 4.1. A Lipschitz-continuous kernel satisfies the variation condition.
Sometimes also a condition is needed which demands regularity in the Lo-space.

Definition 4.4. A kernel h satisfies the Lo variation condition, if there exists a constant L and
an €y > 0, such that for all € € (0, €p)

2
E( sup ‘h(wl,...,xm)—h(X{,...,X%)}) < Le,
||($17"'7I7n)_(X,7"'7X;n)|lge

where X! are independent with same distribution as X; and ||-|| is the Euklidean norm.

Remark 4.2. For bounded kernels the Lo variation condition follows directly from the simple
variation condition, since (a — b)? < |a —b| - (Ja| + |b]).

Since a decomposition of U-statistics into the single kernels of the Hoeffding decomposition hg,
k=1,...,m, is used as a key tool in many proofs it is important to know, which properties of
the kernel h can be assigned to the Hoeffding-kernels. [Fischer| (2013) respectively [Fischer et al.
(2016a)) show that for example the extended variation condition is such a property.

Lemma 4.1. (Fischer et al. (2016a))
If the kernel h satisfies the extended variation condition, then the kernels hy in Definition [{.3,
1 < k < m, satisfy it as well.
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4. U-statistics, U-processes and U-quantiles

Of course, also the boundedness of h is assigned, since h can only be bounded if every single part
of its decomposition is bounded.

Now we state one of the main results: asymptotic normality of U-statistics under NED. We know
this result from Wendler| (2011a)) for bivariate U-statistics, but our theorem admits arbitrary
dimension m. Under independence one can find a Central Limit Theorem for U-Statistics for
example in [Serfling (1980)), whereas Wendler| (2011al) and |[Fischer| (2013) respectively the related
article Fischer et al.| (2016a) show the same result for strongly mixing random variables. The
proofs of the following theorems are given later on in this section.

Theorem 4.1. Let h : R™ — R be a bounded kernel satisfying the extended variation condition.
Moreover, let (X,,)nen be L1 NED with approzimation constants (a;)ieny on an absolutely reqular
process (Zn)nez with mizing coefficients (B(1))ien. Let also a § > 1 exist, such that B(1) = O (17°)
and a; = O (1—6—2). Then we have

(U, — 0) 25 N(0,m20?)

with 0? = Var(h1(X1)) + 2 2521 Cov(ha(X1), hi(X145))-
If 0 =0, then the statement is meant as convergence to 0.

Although our focus in this thesis is on a bounded kernel h of the U-statistic, we also want to state
the Central Limit Theorem for U-statistics with unbounded kernel. Again, we find an analogous
result for kernels of dimension 2 in [Wendler (2011a). The proof of this theorem then follows in
the same way as for bounded kernels, simply interchanging the applied lemmata.

Theorem 4.2. Let h: R™ — R be a kernel with uniform (24 ~)-moments, v > 0, satisfying the
extended variation condition. Moreover, let (X,,)nen be L1 NED with approzimation constants

(ar1)ien on an absolutely reqular process (Zy)nez with mizing coefficients (5(1))ien. Let also a
o> QJFTW exist, such that B(1) = O (17%) and a; = O (I7%~). Then we have

VU, — 0) 25 N(0,m%0?)

with 0® = Var(h1(X1)) + 2 > 52y Cov(hi(X1), hi(X145))-

If 0 =0, then the statement is meant as convergence to 0.

In general, if the distribution of the (X,,)nen is not specified, the long-run variance ¢ in Theorem
is unknown. Therefore, for applications an estimator of o2 is needed. For bivariate U-statistics
or U-processes |Vogel and Wendler| (2015) and |Dehling et al.| (2016) give consistent estimators by
using an empirical version of the first Hoeffding kernel and a weight function. Nevertheless, for
the multivariate case such a result is not known. The multivariate extension to this estimator is

n—1

2= % w() o,

r=—(n—1)
where £ is the weight function and b, is the bandwidth.

n—r

p(r) = % D in(Xi)hi (Xir)
=1
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4.1. U-statistics

is the empirical covariance for lag r, using the empirical version of the first Hoeffding kernel

. 1 1
hl(:L'): 1 Z h(vaila"‘inmfl)_nim E h(Xil,...,Xim).

1<ii<..<ipm—1<n 1<i1<...<im<n

As Dehling et al. (2016) have already shown we need some regularity conditions for x and
b, to achieve consistency of the estimator. These conditions are similar to the assumption
made in de Jong and Davidson| (2000) and are fulfilled, for example, by the Bartlett kernel

Kk(t) = (1 — |t|)1[\t|§1]-

Assumption 4.1. The function k : [0,00) — [0,1) is continuous at 0 and all but a finite number
of points. Moreover, || is dominated by a non-increasing, integrable function and

/OOO ‘ /OOO K(t) cos(wt)dt|dx < oco.

The bandwidth b, satisfies b, — 0o as n — oo and b, /v/n — 0.

With these considerations we are able to show that 62 is a consistent estimator for the long-run
variance.

Theorem 4.3. Let h : R™ — R be a bounded kernel satisfying the extended variation condition.
Moreover, let (X,)neny be NED with approzimation constants (a;)ieny on an absolutely reqular
process (Zn)nez with mizing coefficients (B(1))ien and let a 6 > 11 ewist, such that

S 1B (1) < 00 and a; = O (17°73). The weight function k and the bandwidth b, shall

Julfil Assumption[{.1 Then
62 L 52 for n — oo,
where o = Var(hi(X1)) + 23272 Cov(hi(X1), h1(X1+5))-

Some results needed for the proofs are stated in the following section.

Preliminary results

For the proofs of the main theorems some lemmata are needed. The following results are similar
to the case of strong mixing (Fischer| (2013)) and [Fischer et al.|(2016a)) but since the proofs need
different arguments in some cases we state the proofs for the sake of completeness.

The first lemma is analogous to Lemma 4.2 in |Fischer et al. (2016a)) and an extension of Lemma
3.2.4 in Wendler| (2011al).

Lemma 4.2. Let (X,)nen be NED with approzimation constants (a;)ien on an absolutely reqular

process (Zp)nez with mizing coefficients (B(1))nen. Moreover, let be Ap = /2> 72, a; and let
the kernel h be bounded and satisfy the extended variation condition. Then there exists for all
2 <k <m a constant C, such that for r = max {i(g) = i(1), b(2k) — i(%,l)} with iy < ... <igp)
follows

B (hi(Xirs - Xo ) ha(Xip s Xin))| < C (5 ([gD +A[§]) .

Proof.

Like |Fischer et al.| (2016a)) for simplicity we only consider the case i1 < ... < igx and r = ig—i3 >
iok — i9x—1. Using Corollary 2.17 of Borovkova et al.| (2001) there exist sequences (X, )nen and
(X)) nen with the properties
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4. U-statistics, U-processes and U-quantiles

[a—

- (X)) nens (X!)nen have the same distribution as (X, )nen

2. (X! nen is independent of (X,,)nen

P (S, 1= X > Apy) < A+ 6 ([5])

@

e

B (S XL - X1 > Ap) < Ap),

Because hy, is degenerated it follows that E(hy (X}, Xiy, ..., X )ha(Xiy s -+, Xip,)) = 0 and
additionally

E(h (X, Xig,s oo, Xig )he(Xipyrs -5 Xiyy,)) = E(hp (X! iy )hk( [ Xl'%))
So we get, by the triangular inequality

‘]E h’k‘ XilaXi27' . 'aXi )hk‘( Tht17 " * ’X’Lgk))‘
= E(hk( TERRE )hk( TR ng)) E(hk(leia 127'"’Xik)hk(XikJ,-l""’Xi2k)))

< E(hk(XZ’;,XZ-Z,... X (Xl ey XU) — hk(X;;,XiQ,...,Xik)hk(Xik+l,...,Xm))‘
(4.1)
+ (hk( 410" )hk'( Zk+17 ° ng) hk(X’Llll’XZ27 ce Zk>hk( Zk+17 o Xllgk))’ ‘ (42)

Because h is bounded and satisfies the extended variation condition this also holds for hy with
boundedness constant M and variation constant L, what we will utilize in the following, where,
in contrast to [Fischer| (2013), an inequality for both the NED and the mixing coefficients is
needed.

(D) = [BU(XE -, X)) = e(XE Xy, X)) (X, o0 X))

<M

<M ‘E ((hk(XZ’;,X,-Q,...,XZ-k)—hk(Xgl,...,X{k))]l[X,,_X, _, ])‘
i iy | SR 5

+ ‘E((hk X! Xy, X)) —hk(Xgl,...,ng))n[X,_X, _ ]c))]

f X <A
<oM
I !/
< MIVEA[) + M2MP (\X = ]>A%]) o+ M2MP (| X, - X, | > Ap))
< MLVEA[) + 2kM? Ay +2 B)

B (
|+ MW
]+5([§])),

where we used properties 3. and 4. from above and 5(l) > 0.

< ML\/%A[ o+ 2]<;M2A[
< <2kM2 +ML\/E) ( (

[5]) + 2078 ([5]) + MLVES ([5])

w3

3
For the second term (4.1) we use similar arguments for getting the same result.

" < ‘E«gk(Xz{k.Jrlv e legk) gk<Xik+1’ s 7Xi2k>) (X1,17X : 7X2k))
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4.1. U-statistics

<M

E((gk( ’L{k+1’ s 7Xz{2k) - gk(XikJrl’ s 7Xi2k))
.1 ,
[ Xizk—Xm\“[gﬂ) ‘

E <(gk(Xz{k+1’ SRR X’ngk) - gk(Xik+1> s 7Xi2k))

Xy —Xia, ‘SA[%]] c) “

/ .

+

-----

IL[X

< MLVkA[) + M2MEk (A[ +8(1 ]))

r r
3 3

1 +8([5)-

I,
i1 ikl

< <2kM2 n ML\/E) (A[

r
3

() + (3 < (4 +5(15D)-

The following Lemma generalises a result from |Fischer| (2013) (see also [Fischer et al. (2016a))

to near epoch dependent processes as well as arbitrary constants (¢; ;)i jen. This extension is

needed later on to show the consistency of the estimator 62.

According to that, it is

O

Lemma 4.3. Let the kernel h be bounded and satisfy the extended variation condition. More-
over, let (X, )nen be NED with approzimation constants (a;)ieny on an absolutely reqular process
(Zn)nez with mizing coefficients (B(1))ien and Yo 1 (B(1) + A;) = O (n") with Ay = /2.2, a;

for a v < 1. Then for all 2 < k <m and any constants (¢; ;)i jeN

n
Z ‘E(hk(Xiu e 7Xik)hk(Xik+17 e 7Xi2k))ci17ik+1 ‘
1150002 =1
= ma, Cir ir i |02,
il,ik+1€{)1(,...,n} ‘ 1171k+1‘ ( )

This Lemma is analogous to Lemma 4.3 in [Fischer et al.| (2016al) and can be proved similarly.

Proof.
Again set {i1,...,dox} = {i(1),--- %2k} With i) < ... <. We can rewrite the above sum
as
n
Z ‘E(hk‘(Xil? s 7Xik)hk(Xik+1v cee ’Xi2k)>ci1,ik+1‘
i1yeeinh=1

n

< max ) |Ci17ik+1| Z |E(hk’(Xi1v' : "X’ik)h’k(Xik+17‘ : "Xi%))‘

i1,5k+1€{1,...,n

Ulyensiop=1
— a o
ilyik+11ré{}1<7“'7n} ’6117’Lk+1 |
n n
> > |E(hi( Xy, - o, X ) hie (X yrs -5 Xigy)|
=0 i1,.0igp=1

masx{i(2)=i(1) i(ar) ~ian-1) } =1
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4. U-statistics, U-processes and U-quantiles

C }rchmlc; 5 <B<[;D+A[§]>,

ilyik+le{17"'7n . .
iq,eenin

max{4(g)—9(1),i(2k) ~t(2k—1) } =1

by application of Lemma 4.2

Now we want to simplify the expression by calculating the quantity of (i1, . . ., iox) where max{i)—
i(1),i(2k) — i(2k—1)} = . Using combinatorial arguments we can see that there exist (2k)! possi-

bilities to obtain the same sequence i(q), ..., %(2r). We now fix i(1) and 7o), having n? possibil-

ities for this. Having in mind that max{ig) — (1), (2k) — i(2k—1)} = [ and suppose i() — i(1) =

max{i)—i(1), i(2k) —i(26—1)} = [ then i(y) is automatically determined by the choice of ;). Then,

i(2x—1) can only take [ distinct values. Supposing i(ag)—i(2x—1) = max{i(2)—i(1), i(2k) ~i(2k—1)} = !

the same is valid. All remaining values of the k-tuple are arbitrary. Therefore, the quantity of

the terms equals (2k)! - n?In? =% = 1. (2k)! - n?*~2 and

n

Z ‘E(hk(Xh? e >Xik)hk(Xik+17 s 7Xi2k))ci17ik+1 ‘

115002 =1

< max ) ‘Cilvik—kl ‘Cln2k72 Zl (ﬁ ( [:ﬂ ) - A[é])
=0

il,ik+1€{1,...,n

- max |Cir i \O(an_Q'W).

i1,ip1€4{1,...,n}

These results serve as basis for proving the main theorems.

Proofs of the main results

In this segment we will assemble the results so far to the main proofs.

Proof of Theorem [{.1]
The proof makes use of the Hoeffding decomposition (Def.

o /m\ 1
ViU, = 0) = V) ( .>(715jn-
j=1 J j)
We show that the linear part % >y hi(X;) is asymptotically normal and that the remaining

terms converge to 0 in probability.

We know that h; is bounded because h is bounded. Using Lemma 2.1.7 of Wendler| (2011a) we

1
also know that h; is NED with approximation constants a; = Cal5 . In the near epoch dependent
case we have to prove assumptions for the mixing coefficients as well as the approximating
functions of the NED process. This is done in the following.
Together with the above assumptions it is

Zﬁ(l)<oo, Za§<oo
=1 =1
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4.1. U-statistics

and a; < lé/§+1 < llocgl'
We have made these considerations to finally apply Theorem 2.3 of [Ibragimov]| (1962) getting

% 3 hi(X1) 25 N(0,m?0?)
=1

with 02 = Var(hl(Xl)) + 2 Z(])il COV(hl(Xl), hl(X1+j)) < 00.

For the remaining terms we want to use Lemmawith constants ¢, 4, ,, = Lforall 2 <k <m,
needing > ' o 1(B(1) + A;) = O(n") for a vy < 1.

Using

1 1
A = <22a¢> 2 < (2(12@'52) 2 -0 (n*%l)
=l i=l

we get

n

Zl(ﬁ(l)-i-/ll) <C Y l(lié—I—n*MTl) < Czn:l*‘”l_ycn*%znzl
=1 =1

=0 =1
= 0(n") +0 (n%%) — O(n")

and so Lemma [4.3]is applicable.
Soitisforall2<k<m

Var \/ﬁ@)(?]z)_l Y (X, X))

1<i1<...<ip<n

2k %
m"k2
< n2k—1 Z Z ’E (hk(Xil" "’Xik)hk(Xik+1" ’X'l2k))|
1< <. <ip<n 1§ik+1<...<i2k§n
kak% n
<t S E MKy X)X X))
U15eenyigp=1

= O(n¥=27=2k=1)y — O(p~147).
And so
m\ /n\ ! N
Var ﬁ(k)(k:) | Z hi(Xip, ..., X5,) ] — 0
1<ii<..<ip<n

and with the Chebychev inequality we have

\/ﬁ(m><”>_l S (X X)) 50 forn - oo

k k 4 .
1< <..<ix<n

The Theorem of Slutsky completes the proof.
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4. U-statistics, U-processes and U-quantiles

The proof of the consistency of the estimator is based on the proof of [Dehling et al.| (2016) but
has to be generalised to the more complicated case of arbitrary dimension. In this case much
more terms have to be considered and their asymptotic behaviour has to be investigated.

Proof of Theorem [{.3

By decomposing the estimator into two parts

= n—lr]
&2 :,«:_Z(n:_nﬁ <|z;|> % ; (ﬁl(Xi)ﬁl(Xim)
~ (X (Xigp) + hl(Xz')hl(Xz‘Hrl))
= Ll
_r:—z(r;—n (‘bn|> n ; (X (Xir)
= PR
’ T’—%—l) <‘b”’> n ; (hl(Xi)hl(Xi—Hrl) - hl(Xi)hl(Xi+|r|))

we can apply the results of [de Jong and Davidson| (2000).

For the first term de Jong and Davidson| (2000) have shown in their Theorem 2.1 that it converges
to 02, where the assumptions of the theorem are fulfilled due to Assumption and the NED-
assumption. Therefore, it remains to show

n—1 n—|r|
|

Bl X w(5) s 3 (MO0 Xap) ~ (KXo | 0.

r=—(n—1) " j=1

Let us first expand hy(x) — hy(z) into single terms:

1
:hl (IL') - =1 Z h(l‘, Xil? ce 7Xim71)

1<i1<...<im_1<n

1
+7’L7m Z h(Xil,...,Xim)
1<i1<..<im<n

m—1

1
=hi(@) = —— 3 (hm(x,Xil, e X))+ Y hi(X)
1<iy<...<im_1<n j=1
+ ...+ Z hm_l(x7Xijl7"'7Xijm72)

1< <. <jm—2<m—1

+ Z hm—l(Xijl PR Xijm—l ))

1< <.<jm-1<m—1

+nim > (hm<Xz‘u-~-7Xz'm)+Zh1(Xij)+...
Jj=1

1<i1<...<im<n
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+ Z hm—l(Xijl yeoe 7X7;jm71 )>

1<1< . <jm—-1<m
1 1 —
= — > hm(x,Xl-l,...,XZ-mfl)—(m—l)gZhl(Xi)

1<i1<...<ipp_1<n. i=1

1
—...—2nm_2 Z hm—l(x7Xi17"'7Xim—2)

1<i1<..<im_2<n

1
nm—1 Z hm—l(Xilv e 7Xim,1)

1<i1 <. .. <im<n

1 1<
tom Z hm(Xz‘u-~-7Xz‘m)+mgzh1(Xz‘)
1< <...<tm<n =1
1
+---+2nm_1 Z hmfl(Xin---inmfl)

1<n<.<im-1<n

:%Zhl(Xi) ZhQ (2, X;) — > ha(Xi, X;)
1=1

1<7,<]<n
1
—...—2 m—2 Z hmfl(i‘,Xil,...,Xim72)
n 1<i1 <. <im—2<n
1
+ 2 > Pon—1(Xiys ooy X))
1<i1< o <im_1<n
1 1
- > o (2, Xy oy X )+ — Y (X, X))
1<i1< . <im_1<n 1<i1 <. <im<n
1 n
= 2 (X
n =1
m
m—k 1
— (nkl ) Z hk(anilw-'aXik_l)"‘* Z hk(Xilv"‘7Xik)
k=2 1<i1 <. <ig—1<n 1< <..<ip<n

Using this representation we can split the expected value and handle the single terms separately.

n- n—r
E)TZE(;UK <‘b:’> % < (hl(XJ)hl(erD B (X;)ha( Hm)) ‘
n- n—ri
<t i (H) % 4 (((X5) = I (X)) (X)) |
r==(n-1) j=1
o n—r|
+E‘T__(n1_l),€ (’ij) % 2 ((hl(X]+|r|) hi( J+|7”\))i1 (X])) ‘
= nelrl , n
< E‘ ) ! - (L;‘) % ) iZhl(X V(X4 r)
r=—(n-1) j=1 =1
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4. U-statistics, U-processes and U-quantiles

n—1 n—|r| n
I\ 1 1
25 X e () 0 X e 2)n Y e X ()
r=—(n—1) " j=1 i=1
el i\ 17 1
+E’ > ok o) > (m—2)— > ha(Xiy, Xip) (X))
r=—(n-1) n j=1 1<i1<ia<n
+ ...
= 1 1
+E| > & ) > T > P (X, Xy ooy X )P (X))
r=—(n—1) " j=1 1<i1 <ooo<im—1<n
el i\ 1l 1
+E Z A o Z P (Xiys -5 X )P (X))
r=—(n—1) " j=1 1<i1 <...<im<n
n—1 |7”| 1 n7|r| 1 n . B
+E f( )5 2 5D mXh(x;)]
r=—(n—1) j=1 1=1
+ ..
> IS B (X X, ) (X
+ ’ Z K E g . nim . Z m( i1y im) 1( j)'
r=—(n—1) j=1 1<i1<...<im<n

We denote the 4(m — 1) + 2 terms with I;, i =1,...,4(m — 1) 4+ 2.

The first term I containing the first term of the Hoeffding decomposition can be handled anal-
ogously to Dehling et al. (2016), using their Lemma D.9 (in the supplementary materials). The
conditions of the lemma are fulfilled, since the boundedness of the kernel h replaces the Assump-
tion 2.3. Note that the Ly variation condition is fulfilled since the kernel is bounded. It remains
to show that our definition of NED implies the required assumptions on the P-NED process.
Therefore, we want to use Lemma A.1 of Dehling et al.| (2016) saying that an L;-near epoch de-
pendent process on (Z,)nez with approximating constants (a;);en is P-NED on the same process

(Zp)nez- If we then choose s = CE0+%5) and P(z) = 27! we get
O(e)s, = e LOk—60+5) D

and hence we know that (X,,)nen is P-NED with approximating constants (si)ren and function @
on an absolutely regular process (Z,)nez with mixing coefficients (3(1));en. For these coefficients
it holds s,®(k~%) = O(k~+9/%) and 372°, kﬁg/(wa) < oo and so all assumptions needed for
Lemma D.9 are fulfilled.

Let us now consider all the terms, which contain hy and hgy(Xj,...), k = 1,...,m. These are
the terms Iop, k=1,...,m — 1.

n—1 n—|r|
Ir|\ 1 1
. n j=1

n . .
1< <. <ig<n

m — k—i-l i1—j1
# Z hk+1(Xi17 N ,XikJrl)hl(le)lﬂi <H> ’

: . . br,
J1=1 1< <. <igpp1<n
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4.1. U-statistics

(=
J1i=1

. . 2 %

Z hk-s-l(Xil,...,Xikﬂ)K<‘Z1I;]1\>> ) )

1§i1<...<ik+1§n

E( Zhl i)

]11

N[

[\
N

k+1) i1 —J1
(k Z hk—‘l_l(Xil""?XikJrl)I{(’ b ’> >

1 1<) <. <ipy1<n

1
2 2

I~ [m—(k+1) i — 1
El = Z T Z hk-‘rl(Xilv v 7Xik+1)K’ < b ’

J1=1 1< < . <ip1<n

where we used the Cauchy-Schwarz inequality and in the last step the Hélder-inequality. Due
to the boundedness of h and therefore also of hy the first term can simply be estimated by a

constant C.
1
1 & ’
I, < it )2
w2y mex,
Jji=1
(m— (k+ 1)) ¢ TN
m—(k+1 11— J1
E| e 2 > hk+1(Xiu~-ink+1)f€( b >
Ji=1 1< < <ipp1<n
n <
m—(k+1 in— 7
<C ,E+; ) E Z Z Pp1(Xiys oo Xy )R <| 1b ]1|>
neee j1=1 \1<i1<...<ip1<n n
1 n
< C’ k+% (E( Z hk‘-i—l(Xila ce 7Xik+1)hk+1(Xz'k+2> . 7Xi2(k+1)) (43)
n i1, lg(k41)=1

3 H<!z’1l;j1!> “(‘ikin_jl') ))

Jj1=1
To show the convergence of Iy to zero we finally want to apply Lemma [£.3] For this we have to

show that

Zz 1)+ A) = 0(n")
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4. U-statistics, U-processes and U-quantiles

with A; = /2322, a;. From the assumption Y7°, 13%/?+9)(1) < oo, which implies [3%/ (2+9)(1) —
0 for [ — oo, and the fact that the mixing coefﬁments (B(1))1en are non-negative and monotone
)

we know that 187/ * ;

decreasing (therefore 3%/(2+9)(1) is also monotone decreasing is monotone

decreasing and positive. Hence,
1,85/(2+6)(l) -0 (lfl)

and so B(l) = O(I7") for a n > 2. Analogously to the proof of Theorem , but now for
ap=0 (l_‘s_?’), we then can show

SUBW) +A) <Y 1T 4 O,
=0

=1

0+2 1

where 2 — == < 3 since 6 > 11. Let us now have a closer look at the first term. We want to
show that C' Y ) 177t = O(n?) for a 0 <y < 1/2. It is
Doy

. . 1 —14+n+y
i gl =1 =Y —
o <k Zz <Zl I Z(z) .

=1

This is the Dirichlet series and it converges for —1+n+~ > 1. Sincen > 2 and 0 <y < 1/2 we
have Y, I7" = O(n?) and therefore

fora0<~vy<1/2
Now we can apply Lemma with

n

liv — Jji] lik+2 — J1
Cil,ik+2 = Z K ( b K +b = O(bn)

Jji1=1

to (4.3) and obtain

I, <C
nkt+s

1
2% 3
(nz(kﬂ)fzﬂb ) <C (n +7b )2

2k+1
NE (b2
:o(mz)2<\/’%> — 0,

because of Assumption and 0 <y < 1/2.
Therefore, Iy converges to zero for all k=1,...,m — 1.

It remains to show the convergence of the remaining terms. The terms containing hq(-) and
hi(Xiy, ..., Xi,), k=2,...,m, are denoted with Ipp4q, k=1,...,m— 1.

Iy 1 =E

n—1 —
1 —(k+1)
S a()ET I S e X )

j=1 1<i1<...<igy1<n
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4.2. U-processes

m— (k+1)
T > P (Xiys - Xig )

1§i1<...<ik+1§n

n—|r| n

23 e 3w (1)
j=1

J1=1 9

where we used the Holder inequality, the boundedness of hy,1, Lemma and Assumption
as before.

The convergence of the remaining terms Iop,, Iog and Iogiq for k. =m +1,...,2m — 1 can be
shown analogously and is therefore omitted. O

A generalisation of U-statistics are U-processes. They are introduced in the following section.

4.2. U-processes

If the kernel h of a U-statistic should no longer be a fixed function but should have variable
arguments, the extension from U-statistics to U-processes is necessary.

Definition 4.5. Let h : R™t! — R be a measurable and bounded function, symmetric in the

first m arguments and non-decreasing in the last one. Suppose that for all x1,...,z,, € R
we have tlim h(z1,...,xm,t) = 1, tlim hz1,. .., &m,t) = 0. We call the process (Up(t))icr,
—00 ——00

which is simply a U-statistic with an additional, varying argument in the kernel, empirical U-
distribution function. As U-distribution function we define U(t) := E (h(Y1,...,Ym,t)) for inde-
pendent copies Y1,..., Y of X1. Then the empirical process is defined as

(Vn(Un(t) = U(1)))ser-

Remark 4.3. Without restriction we can choose the space of the parameter ¢ as the compact
interval [0, 1], since a transformation for example via the distribution function does not influence
the dependence structure as it is Lipschitz, monotone etc.

We will mainly consider the function H,, of the empirical U-process in the following, where U, (t)
has 