Automated Model-Based Spreadsheet Debugging

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Technischen Universitat Dortmund
an der Fakultat fOr Informatik

von

Thomas Schmitz

Dortmund

2017

Tag der miindlichen Priifung: 24.08.2017

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Dietmar Jannach

Prof. Dr. Franz Wotawa

Abstract

Spreadsheets are interactive data organization and calculation programs that are
developed in spreadsheet environments like Microsoft Excel or LibreOffice Calc.
They are probably the most successful example of end-user developed software
and are utilized in almost all branches and at all levels of companies. Although
spreadsheets often support important decision making processes, they are, like all
software, prone to error. In several cases, faults in spreadsheets have caused severe
losses of money.

Spreadsheet developers are usually not educated in the practices of software devel-
opment. As they are thus not familiar with quality control methods like systematic
testing or debugging, they have to be supported by the spreadsheet environment
itself to search for faults in their calculations in order to ensure the correctness and
a better overall quality of the developed spreadsheets.

This thesis by publication introduces several approaches to locate faults in spread-
sheets. The presented approaches are based on the principles of Model-Based
Diagnosis (MBD), which is a technique to find the possible reasons why a system
does not behave as expected. Several new algorithmic enhancements of the general
MBD approach are combined in this thesis to allow spreadsheet users to debug their
spreadsheets and to efficiently find the reason of the observed unexpected output
values. In order to assure a seamless integration into the environment that is well-
known to the spreadsheet developers, the presented approaches are implemented as
an extension for Microsoft Excel.

The first part of the thesis outlines the different algorithmic approaches that are
introduced in this thesis and summarizes the improvements that were achieved over
the general MBD approach. In the second part, the appendix, a selection of the
author’s publications are presented. These publications comprise (a) a survey of
the research in the area of spreadsheet quality assurance, (b) a work describing

iv

how to adapt the general MBD approach to spreadsheets, (¢) two new algorithmic
improvements of the general technique to speed up the calculation of the possible
reasons of an observed fault, (d) a new concept and algorithm to efficiently determine
questions that a user can be asked during debugging in order to reduce the number
of possible reasons for the observed unexpected output values, and (e) a new method
to find faults in a set of spreadsheets and a new corpus of real-world spreadsheets
containing faults that can be used to evaluate the proposed debugging approaches.

Contents

1 Introduction

1.1 Faultsin Spreadsheets
1.2 Spreadsheet Quality Assurance
1.3 Overviewof thisThesis
1.4 Publications
1.4.1 Avoiding, Finding and Fixing Spreadsheet Errors — A Survey
of Automated Approaches for Spreadsheet QA
1.4.2 Model-Based Diagnosis of Spreadsheet Programs
1.4.3 MERGEXPLAIN: Fast Computation of Multiple Conflicts for
Diagnosis e

1.4.4 Parallel Model-Based Diagnosis on Multi-Core Computers
1.4.5 Efficient Sequential Model-Based Fault-Localization with Par-
tial Diagnoses e e e
1.4.6 Finding Errors in the Enron Spreadsheet Corpus

2 Model-Based Diagnosis for Spreadsheets
2.1 Introductory Example
2.2 Computation of the Diagnoses
2.3 An Interactive Tool for Model-Based Spreadsheet Debugging

3 New Algorithmic Approaches for Faster Calculation of Diagnoses
3.1 Faster Conflict Detection,
3.2 Parallelizing the Calculation of Diagnoses

4 Sequential Diagnosis
4.1 The General Sequential Diagnosis Approach
4.2 Speeding Up the Query Calculation

5 Creating a Corpus of Faulty Spreadsheets
5.1 Types of Spreadsheets UsedinResearch
5.2 Publicly Available Spreadsheet Corpora
5.3 Building a Real-World Spreadsheet Corpus with Fault Information . .
5.3.1 Fault Detection Methods
5.3.2 The Enron Error Corpus

Vi

6 Conclusion 33
Bibliography 35
List of Figures 39
List of Tables 41
Publications 43
Avoiding, Finding and Fixing Spreadsheet Errors - A Survey of Automated
Approaches for Spreadsheet QA L. 47
Model-Based Diagnosis of Spreadsheet Programs 117
MERGEXPLAIN: Fast Computation of Multiple Conflicts for Diagnosis . . . 119
Parallel Model-Based Diagnosis on Multi-Core Computers 121
Efficient Sequential Model-Based Fault-Localization with Partial Diagnoses 175
Finding Errors in the Enron Spreadsheet Corpus 177

1.1

Introduction

Spreadsheets are interactive data organization and calculation programs that are
developed in spreadsheet environments like Microsoft Excel or LibreOffice Calc. They
are widely used in business as well as for private calculation tasks and are therefore
the most wide-spread type of end-user developed software [Sca+05]. The success
of spreadsheets has several reasons. First, as spreadsheets are designed in a visual
environment, they are easy to develop also for users without a background in soft-
ware development and they are more flexible than traditional software [Hun+05].
Yet, they are powerful enough for many daily calculation tasks like budget planning
or tax computations. In addition, spreadsheets can be useful even at the beginning
of their development as they can start as a simple data storage and then evolve to a
complex calculation tool. For example, a list of expenses can evolve to a complete
budget calculation. Therefore, spreadsheets can cover a wider range of tasks over
time as their development progresses.

Especially in the industry, spreadsheets are a common tool for calculations in daily
business as well as in preparation for business decisions [Pan+12]. In most com-
panies a wide range of spreadsheets is created and maintained. For example, in
the Enron Corporation, formerly one of the biggest energy companies in the US,
16,189 unique spreadsheets were sent by email during a time frame of two years
[Her+15].

Faults in Spreadsheets

Although the creation of spreadsheets is often not perceived as software development,
a spreadsheet that contains formulas in fact is a software that calculates the values
of the output cells given the input values. These spreadsheets, as all other software,
are prone to error [Pan98].

When speaking about errors, several definitions for the words “fault”, “error”, and
“failure” exist in the research literature [Jan+14a]. According to the IEEE Standard
Classification for Software Anomalies [IEE10] an “error” is a misapprehension on

2

side of the one developing a software caused by a mistake or misconception occurring
in the human thought process. A “fault” is the manifestation of an “error” within
a software which may be causing a “failure”. A “failure” is the deviation of the
observed behavior of the software from the expectations. However, in the research
literature the terms “fault” and “error” are often used interchangeably. In order to
comply with the IEEE standard, in this thesis the terms “fault” and “error” are used

according to the given definitions.

Faults in spreadsheets have already caused severe financial losses in the past. The
consulting company F1F9 lists twelve famous cases of faulty spreadsheets, many of
which had severe impacts [F1F]. One well-known example is the economic study
of Reinhart and Rogoff, which states a strong negative relation between the debt of
a country and its economic growth [Rei+10]. Politicians used this study to argue
against new debts and changed their strategies accordingly. Later, Herndon et al.
showed that faults in a spreadsheet led to miscalculations in the study and that the
discovered relation was much weaker than originally stated [Her+13]. As another
example, in 2014 the Wall Street Journal informed about a fault in a spreadsheet
that caused an overestimation of the equity value of the software company Tibco by
$100 million [Tan14].

When analyzing a spreadsheet for such important faults, different approaches are
required to locate the various types of faults that can be made when designing
a spreadsheet. In the literature, several taxonomies were proposed to classify
spreadsheet errors [Pan98; Pur+06; Pow+08; Pan+10]. In this thesis, a combined
taxonomy is used to structure the possible errors in a systematic way. The error
taxonomy is shown in Figure 1.1 and can be summarized as follows.

Errors
Application-Identified Errors User-Identified Errors
Syntax Errors Formula Errors Qualitative Errors Quantitative Errors

Structural Errors ~ Temporal Errors Mechanical Errors Logic Errors Omission Errors

Figure 1.1: Taxonomy of spreadsheet errors, adapted from [Abel5].

Errors in a spreadsheet can be classified into two main categories. Application-
Identified Errors can be automatically detected with certainty by the spreadsheet
environment. Microsoft Excel, for example, automatically detects Syntax Errors and
a user is not able to put a syntactically faulty formula in a cell as the spreadsheet

Chapter 1 Introduction

1.2

environment will inform the user that the written formula is faulty. Formula Errors
are detected by Excel and similar environments when they evaluate the value of a
formula, for example, when dividing by zero.

In contrast to Application-Identified Errors, User-Identified Errors cannot be detected
by the spreadsheet environment but have to be detected by the user or otherwise
remain unknown. These errors can be split into two more sub-categories. Qualitative
Errors do not result in a wrong calculation outcome in the current version of the
spreadsheet but could result in a faulty value when the spreadsheet is changed later.
They comprise Structural Errors and Temporal Errors. Structural Errors describe
errors in the design of a spreadsheet, for example, hard-coded values in a formula
that should be inputs. Temporal Errors summarize those values or formulas that are
only correct for a specific time period and can be wrong at a later date, for example,
a value that is only correct for a specific day of the year but is not labeled as such.

The group of errors which immediately result in faulty values in the current version
of the spreadsheet is called Quantitative Errors. These errors can be split into
Mechanical Errors, which describe errors by a user in the process of typing a formula,
Logic Errors, that occur when a wrong function or algorithm is used, and Omission
Errors, that occur if the user does not incorporate some aspect of the task he or
she tries to solve. The main focus of this thesis lies on these Quantitative Errors, as
these errors have a direct impact on the result of the spreadsheet and are therefore
probably the most important ones to fix.

Spreadsheet Quality Assurance

To find possible faults when developing spreadsheets and to use the spreadsheets for
important tasks without any risks, the quality of the spreadsheets has to be assured.
This is potentially even more important for spreadsheets than for traditional software,
as spreadsheet users who do not have a software development background might not
be aware of the high risks. However, approaches for spreadsheet quality assurance
(QA) have to be well integrated into the spreadsheet environment and easy to
use even for users without any knowledge in software development. Since one
important factor of the success of spreadsheets is their high flexibility compared to
other software, this advantage should not be removed by the QA approaches.

Over the years, several techniques for spreadsheet quality assurance have been
proposed in the research literature. In [Jan+14a], which is included in this thesis, a
survey is presented that classifies the existing approaches for spreadsheet QA in two
dimensions. The first dimension is used to distinguish between approaches that are

1.2 Spreadsheet Quality Assurance

4

made for locating faults in a spreadsheet and approaches that should help to avoid
making errors in the first place. The second dimension was made to differentiate
between the approaches based on how they fulfill their tasks. Table 1.1 shows for
which tasks the different types of techniques can be used.

Table 1.1: Overview of main categories of automated spreadsheet QA [Jan+14a].

Finding faults Avoiding errors

Visualization-based approaches v v
Static code analysis & reports v v
Testing-based techniques v
Automated fault localization & repair v
Model-driven development approaches v
Design and maintenance support v

The different groups of techniques can be summarized as follows [Jan+14a].

Visualization-based approaches: Approaches of this group help the user by pro-
viding visualizations of the spreadsheet. Most of the proposed representations are
utilized to explain the dependencies between the cells, groups of cells, or even the
different worksheets of a spreadsheet. Such visualizations can help the user in the
tasks of both categories finding faults as well as avoiding errors, because the user
can detect anomalies in the existing dependencies or use them to improve the design
of the spreadsheet to avoid making errors in the future.

Static code analysis & reports: Methods of this category perform static analyses of
the formulas and data of a spreadsheet. They can be used to find irregularities and to
point out problematic areas that are prone to be faulty or that can often lead to faults
in subsequent versions of the spreadsheet. Therefore, these approaches can also be
used to find faults or to avoid errors. They include techniques like “code smells”,
detecting duplicates of data, or other approaches typically found in commercial tools
that detect suspicious cells.

Testing-based techniques: Techniques in this category are based on the general
approach of systematic testing. The approaches support the user in creating and
organizing test cases that specify the input values of the spreadsheet and the expected
output values of some formulas given the input values. As these techniques do not
change the way a spreadsheet itself is built, they only support the user to find faults
but not to avoid making errors. However, they can also be used to find faults during
the construction of the spreadsheet and thus help to improve the quality of the
built spreadsheet. The methods of this category include techniques like test case
management, automated test case generation, or the analysis of the test coverage.

Chapter 1 Introduction

1.3

Automated fault localization & repair: The approaches presented in this thesis
mostly fall into the category of automated fault localization & repair, which contains
the techniques that computationally determine the possible reasons of a fault or an
unexpected calculation outcome. To perform these calculations they typically require
additional information provided by the user about unexpected output values. In
addition to calculating the possibly faulty formulas, some approaches in this category
provide suggestions of how these formulas could be “repaired”.

Model-driven development approaches: In contrast to the previous categories,
model-driven development approaches do not aim to find faults in an existing
spreadsheet but propose a method to systematically develop a spreadsheet. This
way these approaches try to support the user in developing spreadsheets that do not
contain any faults. The main idea of these approaches is to use (object-oriented) con-
ceptual models or model-driven software development techniques. These concepts
have the advantage of adding an additional layer of abstraction and thus eliminate
some types of possible faults like copy-and-paste errors or mechanical errors.

Design and maintenance support: Methods of this category help the spreadsheet
developer when designing or maintaining a spreadsheet by automating common
tasks or providing new methods to design spreadsheets in order to avoid com-
mon faults like range or reference errors. These techniques include, for example,
refactoring tools, methods to avoid wrong cell references, and exception handling.

Overview of this Thesis

This thesis by publication combines several approaches to automatically locate faults
in a spreadsheet. Most of these approaches are based upon and extend the approach
of using Model-Based Diagnosis (MBD) for spreadsheets.

MBD is a systematic approach to find the possible reasons why a system under
observation does not behave as expected. As it is shown in the structural overview of
this thesis in Figure 1.2, Chapter 2 introduces the general idea of MBD in more detail
and describes how it can be adapted to efficiently search for possibly faulty formulas
in spreadsheets based on test cases that specify input values and corresponding
expected output values for a spreadsheet [Jan+16a]. The general MBD approach,
however, has two limitations depending on the structure and size of the analyzed
spreadsheet. In the other chapters of this thesis by publication these limitations
of the general MBD approach are addressed and improvements are introduced to
mitigate them.

1.3 Overview of this Thesis

6

Model-Based Diagnosis (Chapter 2)

Introductory Example

Computation of Diagnoses

ExquisiTeE Debugging Tool

New Algorithmic Approaches (Chapter 3)

Faster Conflict Detection

Parallelizing the Calculations

Sequential Diagnosis (Chapter 4)

General Sequential Diagnosis Approach

Speeding Up the Query Calculations

A Corpus of Faulty Spreadsheets (Chapter 5)

Types of Spreadsheets

Publicly Available Spreadsheet Corpora

The Enron Error Corpus

Figure 1.2: Structural overview of this thesis.

One limitation of the general approach is that for large or complex spreadsheets, the
time required to calculate the possible reasons of a fault can exceed the time that is
acceptable in an interactive setting. Therefore, two new algorithmic enhancements
are proposed to speed up the computation (Chapter 3). First, in Section 3.1 a new
approach is presented to efficiently search for so-called conflicts, which are sets of
formulas in a spreadsheet that cannot all be correct at the same time [Shc+15b].
Second, the general MBD algorithm is parallelized to utilize the full computational
capabilities of modern computer hardware (Section 3.2) [Jan+16b].

The other limitation of the general MBD approach is addressed in Chapter 4. De-
pending on the provided test cases too many possible reasons for a fault can be
returned by the diagnosis algorithm so that a user cannot inspect all of them in
reasonable time. Therefore, in [Shc+16b] a new algorithm is presented to efficiently
determine questions that can be asked to the user interactively in order to reduce
the number of possible reasons and to finally find the true reason of the observed
unexpected output.

Chapter 1 Introduction

1.4

1.4.1

1.4.2

One open challenge that all research about spreadsheet QA faces is how to evaluate
new approaches in a way that allows to draw conclusions about the effectiveness
of the approach in real-world settings. Currently most approaches for spreadsheet
debugging are evaluated on real-world spreadsheets which are altered by the re-
searchers so that they contain faults. However, whether or not these artificially
injected faults are representative for faults encountered in the real world remains
unknown. Therefore, in Chapter 5 a work is presented in which the publicly available
spreadsheets and emails of the Enron company are used to search for real faults and
to build a corpus of these real-life faulty spreadsheets [Sch+16a].

Publications

This thesis by publication includes six of the author’s publications. In this section, the
individual contributions of the author are stated for each publication. The complete
list of the author’s publications can be found in the appendix.

Avoiding, Finding and Fixing Spreadsheet Errors — A Survey
of Automated Approaches for Spreadsheet QA

Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz Wotawa. “Avoiding,
Finding and Fixing Spreadsheet Errors - A Survey of Automated Approaches for
Spreadsheet QA”. in: Journal of Systems and Software 94 (2014), pp. 129-150

This survey was a joint effort with Dietmar Jannach, Birgit Hofer, and Franz Wotawa.
The author of this thesis searched for most of the relevant works, categorized all of
them, and wrote parts of the text.

Model-Based Diagnosis of Spreadsheet Programs

Dietmar Jannach and Thomas Schmitz. “Model-Based Diagnosis of Spreadsheet
Programs: A Constraint-based Debugging Approach”. In: Automated Software
Engineering 23.1 (2016), pp. 105-144

This work was written together with Dietmar Jannach. The approach presented in
this paper is based on a preliminary work by Dietmar Jannach, Arash Baharloo, and
David Williamson [Jan+13]. The author of this thesis designed the parallelization
techniques in collaboration with Dietmar Jannach, did the implementations that were
required in addition to the previous work, designed and performed the evaluations
as well as the user study, and wrote the corresponding parts of the text.

1.4 Publications

1.4.3

MeRGEXPLAIN: Fast Computation of Multiple Conflicts for
Diagnosis

Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. “MergeXplain:
Fast Computation of Multiple Conflicts for Diagnosis”. In: Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI 2015). 2015, pp. 3221-
3228

The research of this work was a joint effort with Kostyantyn Shchekotykhin and
Dietmar Jannach. The proposed MERGEXPLAIN algorithm was designed in a collabo-
ration between Kostyantyn Shchekotykhin and the author of this thesis, who also

implemented and evaluated it.

1.4.4 Parallel Model-Based Diagnosis on Multi-Core Computers

1.4.5

8

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Parallel
Model-Based Diagnosis On Multi-Core Computers”. In: Journal of Artificial Intelli-
gence Research 55 (2016), pp. 835-887

The paper is the result of a joint work with Dietmar Jannach and Kostyantyn
Shchekotykhin. The author of this thesis designed the parallelization approaches

together with Dietmar Jannach, implemented and evaluated them, and wrote parts
of the text.

Efficient Sequential Model-Based Fault-Localization with
Partial Diagnoses

Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Efficient
Sequential Model-Based Fault-Localization with Partial Diagnoses”. In: Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI 2016). 2016,
pp. 1251-1257

The work was a joint effort with Kostyantyn Shchekotykhin and Dietmar Jannach.
Most parts of the text were written by the author of this thesis who also contributed
to the design of the new approach, implemented, and evaluated it.

Chapter 1 Introduction

1.4.6 Finding Errors in the Enron Spreadsheet Corpus

Thomas Schmitz and Dietmar Jannach. “Finding Errors in the Enron Spreadsheet

Corpus”. In: Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2016). 2016, pp. 157-161

This paper was written together with Dietmar Jannach. The author of this the-

sis designed the different approaches to search for faults in the spreadsheets in
collaboration with Dietmar Jannach and wrote the text of the paper.

1.4 Publications 9

Model-Based Diagnosis for
Spreadsheets

One of the possible ways presented in Section 1.2 to assure the quality of a spread-
sheet is to do systematic testing. In order to systematically test a spreadsheet a user
has to write so-called test cases by specifying the input values of the spreadsheet
and expected values for some of its formula cells. If these expected values differ
from what the spreadsheet environment actually computes given the input values,
there has to be a fault somewhere in the formulas of the spreadsheet. In this case
the task of spreadsheet debugging is to locate the fault, for example, by utilizing
a debugging approach like Model-Based Diagnosis (MBD), which can be used to
find the possible reasons of the unexpected calculation outcomes. How MBD can be
applied to spreadsheets is described formally in [Jan+16a] and summarized in this
chapter.

The principles of the general MBD technique were proposed in the 1980s [Kle+87;
Rei87]. In these early works, MBD was used to search for faults in digital circuits. It
can, however, be used to debug any kind of observable system for which the func-
tionality can be simulated in a deterministic way. The system requires information
about the expected behavior of the individual components of the system and how
these components are connected. If there is a discrepancy between the simulated
expected behavior of the system and an observation of its real behavior, the task
of the MBD approach is to determine the sets of components that could possibly
be the reason of this discrepancy. These candidates that, if assumed to behave in a
faulty way, explain the faulty behavior of the system are called diagnoses. Formal
definitions of diagnoses and other terms relevant in the MBD setting are given in
[Jan+16a], which is included in this thesis by publication.

In the context of spreadsheets, the system is described as a set of formulas that
represent the diagnosable components of the system. The observations are given as a
test case that specifies the input values of the spreadsheet and some expected output
values of the formulas. If there is a discrepancy between the specified test case and
the calculated outcomes of the formulas given the same inputs, MBD can be used to
find the sets of formulas that can be the reason for the observed discrepancy.

11

2.1

12

Introductory Example

In this thesis, a small example spreadsheet is used to explain how the MBD technique
can help to determine the possibly faulty formulas in that spreadsheet. The formulas
of the example spreadsheet are shown in Figure 2.1. Assume that the spreadsheet
developer forgot to add the value of Al in the formula of cell C1.

A ° - Should b
1 2 |=A1r3 =B1*B2—— > 0. °°°
=B1*B2+Al
2 2 |=m2s

Figure 2.1: A faulty spreadsheet.

If the user enters some values for the input cells in column A, as shown in Figure
2.2, he or she could realize that the result in cell C1 is wrong, because it should
be 305 for the given input values. The values for the two input cells together with
the expected output value therefore form a test case that describes a discrepancy
between the expected and the observed behavior of the spreadsheet.

B
1 5 15 300 ggguld be
2 4 20

Figure 2.2: A test case for the faulty spreadsheet.

Once the user has detected the discrepancy, he or she can use the MBD approach to
locate the possible reasons that can explain it. With the test case shown in Figure
2.2, the MBD approach would return two diagnoses as the possible reasons for the
observed discrepancy: {C1} and {B1,B2}. This means that either the formula in cell
C1 is faulty or that the two formulas in the cells B1 and B2 both have to be faulty.
In this example, {C1} is the true diagnosis as the formula of cell C1 is in fact faulty.
The diagnosis {B1,B2} is therefore not true. In general, it is more unlikely that
diagnoses containing multiple cells are true, because it would require the developer
to have made multiple errors instead of just one.

The rationale behind the diagnoses is the following. The formula in C1 can be
changed in a way that the result of the calculation would be 305, for example, by
changing the formula to “=B1*B2+A1”, “=B1*B2+5”, or “=305". Therefore {C1}
is a diagnosis. {B1}, however, cannot be a diagnosis because changing the formula
in B1 alone cannot result in the expected value in C1, assuming that only integer
values are used as in the given test case. The same is true for cell B2. Both cells B1
and B2 have to be changed in order to achieve the expected result of 305 in C1 and
therefore {B1,B2} is another diagnosis.

Chapter 2 Model-Based Diagnosis for Spreadsheets

2.2 Computation of the Diagnoses

In [Rei87] Reiter proposes an algorithm to build a Hitting Set Tree (HS-Tree) in order
to determine the diagnoses of a faulty system under observation. The algorithm
uses the concept of conflicts, which are sets of components of the system that cannot
all be correct at the same time given the observations. In the example spreadsheet
of Section 2.1 there are two of these conflicts, namely {{B1,C1}, {C1,B2}}. This
means that the formulas of B1 and C1 cannot be both correct as well as the formulas
of C1 and B2. The reason is that if, for example, both B1 and C1 would be assumed
to be correct, the calculation could not result in the expected value. The same is true
for the two formulas C1 and B2.

The idea of the HS-Tree algorithm is to systematically test different hypotheses about
the health state of the components. As the algorithm progresses, it tests hypotheses
involving more and more components that are assumed to be faulty. In the beginning
it therefore assumes that everything is working correctly. If this assumption does
not hold because the expected behavior conflicts with the observed behavior, the
algorithm systematically tries to resolve all conflicts by assuming that at least one
component of each conflict is faulty. To achieve this, the algorithm builds a tree
in breadth-first manner to search for the hitting sets of the conflicts, i.e., sets that
“hit” every conflict of the system. In his work Reiter showed that these hitting sets
correspond to the diagnoses. To find the hitting sets efficiently, the algorithm utilizes
a set of tree pruning rules to cut subtrees that cannot lead to further diagnoses. The
resulting HS-Tree for the example spreadsheet is shown in Figure 2.3 and explained
in the following.

®

{B1, C1}
BA&
@ ®
{c1, B2} ‘/

C1 B2

@ ®
X v

Figure 2.3: The resulting HS-Tree for the example spreadsheet.
At node (1), the algorithm searches for a conflict when all components (formulas)

are assumed to be correct. To determine the conflicts, some kind of conflict detection
technique is required that can calculate a conflict for the given system. For the

2.2 Computation of the Diagnoses

2.3

14

example spreadsheet, assume that such a conflict detection technique would return
one of the existing conflicts, for example, {B1,C1}. Node (D) is then labeled with
the found conflict and the algorithm will expand the search tree for each component
inside this conflict.

For node (2), the algorithm assumes the formula of B1 to be faulty and therefore
checks if the spreadsheet still has a conflict when the formula of B1 is ignored.
Since the spreadsheet has another conflict {B2, C1}, this conflict will be found this
time and node (2) will be labeled with the newly found conflict. At node (3), C1 is
assumed to be faulty, as shown in Figure 2.3. Because no other conflict remains
when the formula of C1 is ignored, the algorithm has found the diagnosis {C1} and
the node is labeled with a check mark.

On the next level, the HS-Tree algorithm expands node (2) by creating two new nodes
for the components of the conflict found for this node. Node @, however, does not
have to be further inspected and is closed, since for this node the resulting diagnosis
{B1,C1} would be a superset of the already found diagnosis {C1} and is thus not
relevant. Last, at node (5) the formulas of both cells B1 and B2 are considered to be
faulty and the diagnosis {B1,B2} is found, as no other conflict remains. Since all
leaf nodes now either result in a diagnosis or are closed, the algorithm is finished
and has found the two diagnoses {C1} and {B1, B2}.

To compute the conflicts, different conflict detection techniques can be used. How-
ever, in order for the original HS-Tree algorithm of Reiter to work correctly, the mini-
mality of the returned conflicts has to be ensured, because the algorithm was faulty
regarding the use of non-minimal conflicts. In [Gre+89] Greiner et al. proposed
an extension to the original algorithm to correct it in cases in which non-minimal
conflicts are returned by the used conflict detection technique. In the implementa-
tions discussed in this thesis, however, QUICKXPLAIN [Jun04] and MERGEXPLAIN
[Shc+15b] are used to compute the conflicts. Since both of these techniques are
guaranteed to only return minimal conflicts, the correction by Greiner et al. is not
required.

An Interactive Tool for Model-Based Spreadsheet
Debugging

In order to test and evaluate the proposed approaches with users on real-world
spreadsheets, the Model-Based Diagnosis approach for spreadsheets was imple-

mented as an extension to Microsoft Excel, called EXQUISITE. An overview of the
tool is shown in Figure 2.4.

Chapter 2 Model-Based Diagnosis for Spreadsheets

Test case

management
=] s ExquisiteSheet_Debugadsx - Excel 7 B - O %X
HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW EXQUISITE Team Sign inf
w (Sf New Test cases: 051020121138 ~ AR 23 5 EeTrace Precedents 5] Show Formulas
Hsave T Delete e AN 2 Trace Dependents () Evaluate Formula
Exit Start op Inspect .
Exquisite | b Saveas Candidates % Remove Arrows (] Convert Files
Debug Session Test Case Utilities ~
19 - fr | =59+510+511+512+613+514+51 q N
i ; . Debugging &
. A A A Exquisite Test Case Modeling ™ *
| PACME Company calculation sheet| diagnosis functions . " o0
4 ST p— ; ! P17 test case Data
Z Ranges Fauts Cormect Values
7 |Production costs Sales numbers Totals per product and year T
8 Product Prod.cost/pc Cost Jan Feb Oct Nov Dec Total Sales Revenue Prod. cost Profit!S12
] A 2 4 1 3 6 1 1 o 36 ProfaT20
10 B 1 4 2 4 5 4 9 2 65
11 c 2 4 4 0 4 W 6 0 36|
12 D 1 5 o 8 3 o 3 4 33
ol e ; s 2 71z 1 2 o = Cell & formula
14 F 2 4 3 s 1 2 4 4 23 . N
5 e > ; s 1 s s s s 14 information
16 H 4 2 7 6 8 s 0 1 172
17
1 . . .
= Visual indicators Revenue
2 Prod. costs
2 Profit =
—— + \ .
Profit]
Lot | @ 3 Annotating
Exquisite debug - %
C —
Summary Technical Log Problems (2) Diagnesis Results (27) va I ues
Rank Candidates
1 Profit T19
2 Profit!S15, Profit T15
3 Prefit!S15, Profit T14
4 Profit'S15. ProfitT13
5 Profit!S15, Profit!T12
6 Prefit!S15, Profit! T11
7 Profit'S15. Profit T10
8 Profit!S15. Profit' TS
9 Profit!S15, Profit' T20
10 ProfitlS14, ProfitT14 Open issues &
i) M -———+ 100%
results L e ——

Figure 2.4: EXQUISITE, a Model-Based spreadsheet debugging tool [Jan+16a].

ExauisiTe: In the following an exemplary usage of EXQUISITE is described. When
the debugging mode is started the tool automatically colors the cells according
to their role in the spreadsheet. Input cells are colored in green, intermediate
calculations in yellow, and output cells in orange. This colorization alone can help
the user to spot some kinds of faults, for example, range errors or unused inputs,
which are not highlighted. The user can then enter values for the input cells without
overriding the values of the original spreadsheet and state expected values for the
interim and output cells. The annotated values are shown as a list next to the
spreadsheet and are also highlighted in the spreadsheet with a check mark for
correct values and a cross for faulty values. The specified test cases can be saved
and loaded at later times to support the test case specification over multiple sessions.
Once a user detects a discrepancy between the expected and the observed behavior
of the spreadsheet, he or she can start the debugging functionality. The system
will then determine the diagnoses and present them as a list in the results section,
which the user can inspect. By clicking on an item of the list, the cells containing the
possibly faulty formulas are highlighted in the spreadsheet and arrows point to their
precedents as well as dependents.

2.3 An Interactive Tool for Model-Based Spreadsheet Debugging

16

A preliminary version of the tool was already presented in [Jan+13]. In [Jan+16a]
improvements to the tool as well as the algorithms behind it are presented and the
performance of these new algorithmic approaches is evaluated (see Chapter 3).

User study: To evaluate if the MBD approach is advantageous for the users to
debug a faulty spreadsheet, also a user study was performed. In this study, 24
participants had to locate a fault in a profit calculation spreadsheet. The participants
were randomly split into two groups and were given a description about how the
spreadsheet should work and an example with values that the spreadsheet should
calculate. The first group had to locate the fault without using EXQUISITE, while
the second group was introduced to the functionality of the add-in and used it to
calculate a set of formulas that could be the reason of the fault. In both cases the
users had to inspect the formulas which they thought to be faulty in order to find
out what the real fault was.

The results of the study show that EXQUISITE can indeed help to locate faults in
a spreadsheet. The participants using the tool found the injected fault faster on
average than the participants not using it (less than 3 minutes compared to more
than 9 minutes). In addition, of the participants not using the tool, 33% were not
able to locate the fault at all in the given time frame of 30 minutes.

Chapter 2 Model-Based Diagnosis for Spreadsheets

3.1

New Algorithmic Approaches for
Faster Calculation of Diagnoses

The general MBD approach proved to be promising for spreadsheet debugging.
However, for complex or large spreadsheets the time required to calculate the
diagnoses can exceed the time that is acceptable in an interactive setting, in which a
user expects a result almost instantly or at most after a few seconds. Therefore, in
the next two sections two new algorithmic approaches to speed up the calculation
of diagnoses are summarized. The full papers can be found in the appendix of this
thesis by publication.

Faster Conflict Detection

As discussed in Section 2.2, the HS-Tree algorithm relies on some conflict detection
technique that calculates the conflicts. The HS-Tree algorithm then uses these
conflicts to determine the diagnoses. QUICKXPLAIN [Jun04] is an efficient divide-
and-conquer technique proposed by Junker to determine such conflicts. For large
or complex spreadsheets, however, many conflicts can exist. In these cases the
HS-Tree algorithm will call QUICKXPLAIN each time a new conflict is required, i.e.,
when all known conflicts are already solved at the current node of the tree. Since
QUICKXPLAIN only returns a single conflict for each call, the search for conflicts has
to be “restarted” each time.

MerGeXpPLAIN: To speed up the overall calculation of diagnoses and to solve the
problem of the slow “restart” of the conflict search, in [Shc+15b] a new approach,
called MERGEXPLAIN, is proposed that can calculate multiple conflicts in a single call.
The rationale of this technique is that more time is spent to efficiently search for
conflicts at the beginning of the calculation of diagnoses and in return the search for
conflicts does not have to be restarted so often when the HS-Tree is built, because in
most cases one of the previously found conflicts can be reused.

An example of how MERGEXPLAIN searches for conflicts is shown in Figure 3.1 and
explained in the following. In the example the faulty system has 8 components or

17

18

Al l 2 3 4 5 6 7 8
(. O\l /L /L J L O\l /L /L J
B 1 2 3 4 5 6 7 8
\\ J L)\I)\I))\)\I)\I)\I)
e ()]0)]0)
S e A
o)2)5)« (5
N\ . . .
p - - = ==-=-=-=-"-" : _______________ |
E 1 2 4 5 7 8
—_ - -
(fﬁf_lﬁ N7 f_lﬁfﬁ
F 1 2 4 5 7 8]
\;/;/ | S |

Figure 3.1: Example of MERGEXPLAIN searching for three conflicts shown as red lines
between the components 1 to 8.

formulas. The system has 3 conflicts and the goal of MERGEXPLAIN is to find at
least one of them or more, if possible. The conflicts, shown as red lines in Figure
3.1, are {2, 7}, {3,4}, and {6, 7, 8}. First, MERGEXPLAIN recursively splits the sets of
components into two separate sets, as long as the components of the set still contain
at least one conflict. Because of this step, subsets of the components that do not
contain any conflicts can be quickly excluded from further examinations.

Since the 8 components of the system contain a conflict (step A), they are split into
two sets (step B). In step C, both sets are split again, because they both still contain
a conflict. This time, however, on the right-hand side the last conflict, shown as a
dotted line in Figure 3.1, was split and thus the two sets {5,6} and {6, 7} both do
not contain a conflict anymore. Therefore, the algorithm re-combines them and uses
Junker’s QUICKXPLAIN to locate a conflict in this set of components. As this set of
components would not have been split if it did not contain any conflict, it is known
to contain one conflict at least. In addition, because this set of components resulted
from repetitive splitting of the original components and thus it is comparatively
small, QUickXPLAIN will find the conflict {6, 7,8} rather quickly. After this conflict
has been found, one of the conflict’s components, for example, component 6, is
removed from further investigations to resolve the current conflict and QUICKXPLAIN

Chapter 3 New Algorithmic Approaches for Faster Calculation of Diagnoses

is iteratively called again in order to find another conflict, if one exists (step D).
In step E, the same was done for the left-hand side of the components and here
the conflict {3,4} was found. Since no more conflicts remain in both halves of the
components, the algorithm continues to merge the two sets of components again
and searches for the last remaining conflict (step F).

A detailed description of the MERGEXPLAIN algorithm can be found in [Shc+15b],
which is included in this thesis by publication. In this paper, it is proven that MERGE-
XPLAIN will only return minimal conflicts because it internally uses QUICKXPLAIN,
which also only returns minimal conflicts. MERGEXPLAIN is also proven to always
return at least one conflict or more. However, because it is not guaranteed to return
all existing conflicts of a diagnosable system, MERGEXPLAIN still has to be called
multiple times when used to determine the conflicts that are required to calculate
the diagnoses.

Evaluation: To evaluate the proposed approach it was compared to QUICKXPLAIN
when used by the HS-Tree algorithm to calculate a small subset of the diagnoses
[Shc+15b]. The different tested systems contained digital circuits, Constraint
Satisfaction Problems (CSPs), spreadsheets, as well as artificial systems to simulate
different problem characteristics. The average reductions of the calculation times
are summarized in Table 3.1.

Table 3.1: Average reductions of computation times when using MERGEXPLAIN compared to
QUICKXPLAIN to search for five diagnoses with the HS-Tree algorithm [Shc+15b].

System type Avg. reduction
Digital circuits 27%
Constraint Satisfactions Problems 22%
Spreadsheets 15%
Simulation experiments 42%

The efficiency of the approach very much depends on the structure of the problem
and thus the improvements vary for the individual problems. Although for some
problem instances no speedups could be achieved, for others the time required
to calculate the diagnoses could be reduced by up to 54%. Therefore, additional
simulation experiments were performed, in which artificial problems with different
characteristics were tested. The goal of this evaluation was to find out which problem
characteristics lead to the highest performance improvements. Among others, one
result is that depending on the characteristics of the conflicts MERGEXPLAIN can
achieve improvements of up to 76% over QUICKXPLAIN while for other characteristics
it results in the same performance. Details of the evaluation can be found in
[Shc+15b].

3.1 Faster Conflict Detection

19

3.2

20

Parallelizing the Calculation of Diagnoses

In addition to improving the calculation of conflicts, the overall search for diagnoses
can be enhanced as well. The HS-Tree algorithm only expands one node of the
search tree at a time and only a single thread is used for the calculation. As modern
computers, laptops, and even smartphones have multiple computation cores, the
tree construction process can be parallelized by expanding multiple nodes of the
search tree at the same time. Thereby, the full potential available in today’s hardware
architectures is utilized. In [Jan+16a; Jan+16b] different approaches to parallelize
the HS-Tree algorithm were proposed. In this section two of these approaches are
presented: Level-Wise Parallelization and Full Parallelization.

Level-Wise Parallelization: The original HS-Tree algorithm proposed in [Rei87]
uses several tree pruning rules to reduce the search space (see Section 2.2 for an
example). As these pruning rules require that the nodes of the search tree are
expanded in the correct order, the parallelization of the HS-Tree algorithm is not
trivial.

Therefore, the main idea of the first parallelization approach presented in this thesis,
called Level-Wise Parallelization (LWP), is to mostly keep the order in which the
nodes are expanded intact. To achieve this goal, all nodes on the same level are
expanded in parallel and the algorithm continues with the next level once all nodes
of the previous level are finished. An example of how LWP works is shown in Figure
3.2 and explained in the following.

e N
A

G /()\ _J

— T~

e a
B

. J

Z N\ Z N\

C

(G _J

Figure 3.2: Exemplary schedule of the Level-Wise Parallelization technique with three
scheduling steps A to C.

In the first step (A), only node (1) can be processed, as no other nodes exist yet.
When the first node is created, nodes (2) and (3) are expanded in parallel (B) and
the algorithm waits until the expansions of both nodes are finished. After both
nodes are created, the algorithm continues with the third level (C) and processes
all nodes of this level in parallel. As all nodes of the previous level were finished

Chapter 3 New Algorithmic Approaches for Faster Calculation of Diagnoses

before the expansion of the new level began, all pruning rules of Reiter’s HS-Tree
algorithm [Rei87] can be applied. In addition, synchronization between threads is
only required to ensure that no thread explores a path that is already being explored
by another thread. The soundness and completeness of LWP is proven in [Jan+16b],
which can be found in the appendix of this thesis.

The main advantage of the LWP approach is that it provides a way to parallelize the
construction of nodes in the search tree while requiring only little synchronization
to ensure the correctness of the tree pruning rules. However, if some node of a level
needs more time to expand than the other nodes of the same level, it can happen
that the algorithm has to wait for this single node before the expansion of the next
level can start.

Full Parallelization: The main idea of the Full Parallelization (FP) approach is not
to wait at the end of a level but to continue with the expansion of the nodes of the
next level, even though the previous level has not been finished. An example of the
parallel expansion progress is shown in Figure 3.3.

-

-

Figure 3.3: Exemplary schedule of the Full Parallelization technique with four scheduling
steps A to D.

D

The FP algorithm always schedules all available nodes for parallel expansion and
thus does not use discrete scheduling steps anymore that correspond to the levels of
the search tree. In the example the algorithm expands nodes (2) and (3) in parallel
(B), after node (1) is finished, as LWP does. After one of these nodes is finished, for
example node (2), the algorithm immediately continues to expand the child nodes (4)
and (5) of the finished parent (C) and does not wait at the end of the level like LWP.
After node (3) is finished the algorithm can queue nodes (6) and (7) for expansion in
addition to the nodes that are still being expanded (D).

It can happen that nodes of a previous level are still expanding when nodes on the

next level are already finished. In some of these cases an already expanded node
should be pruned according to the tree pruning rules. Therefore, after the expansion

3.2 Parallelizing the Calculation of Diagnoses

21

22

of every node the algorithm has to check if some of the other already created nodes
should be removed again because of the newly obtained information. In [Jan+16b]
the details of FP as well as a proof of its correctness are given.

In comparison to LWP, FP has the advantage that it does not have to wait for single
nodes at the end of a level. However, FP has to perform some additional checks and
an additional synchronization between the threads to ensure the correctness of the
approach. In cases in which the last nodes of each level finish at the same time, LWP
could therefore be faster than FP, because it has less overhead.

Evaluation: In [Jan+16b] LWP and FP were evaluated on different system types in
comparison to the sequential HS-Tree algorithm. Table 3.2 summarizes the average
reductions of the computation times that could be achieved when 4 threads were
used for the parallelized algorithms.

Table 3.2: Average reductions of the computation times of IWP and FP using 4 threads
compared to the sequential HS-Tree algorithm [Jan+16b].

System type LWP FP
Digital circuits 45% 65%
Constraint Satisfactions Problems 39% 40%
Spreadsheets 48% 50%
Ontologies 38% 36%
Simulation experiments 69% 70%

For the tested spreadsheets the required calculation times could be reduced by about
48% for LWP and 50% for FP on average. This means that the required calculation
time was halved using the proposed parallelization techniques. Although these
reductions are below the theoretical optimum of 75% when using 4 threads on
a computer with 4 computation cores, the results are still encouraging as good
speedups could be achieved by the proposed approaches, which utilize the full
potential of the available hardware.

Chapter 3 New Algorithmic Approaches for Faster Calculation of Diagnoses

4.1

Sequential Diagnosis

Model-Based Diagnosis approaches determine all possible reasons of a discrepancy
between the expected and the observed calculation outcomes of a spreadsheet. For
large or complex spreadsheets and depending on the provided test cases, however, it
can happen that too many diagnoses are returned by these techniques so that a user
cannot inspect all of them manually.

To find the true reason of the discrepancy, called preferred diagnosis, one possible
approach is to reduce the number of diagnoses by iteratively asking the user for
new information. This technique is called sequential diagnosis and is depicted in
Figure 4.1. The new information obtained through the queries can include new
observations about correct or faulty values or state the correctness of some formulas.
The statements are then added to the knowledge about the spreadsheet and with
their information new diagnoses can be determined that are more precise than the

| diags|=1
Diagnosis Calculate Preferred
problem diagnoses diagnosis

else

Update Calculate
knowledge query

previous ones.

Ask query
to the user

Figure 4.1: The sequential diagnosis approach [Shc+16c].

The General Sequential Diagnosis Approach

The general idea of using additional measurements to reduce the number of diag-
noses was already proposed in the early works of MBD [Rei87; Kle+87]. De Kleer et
al. additionally presented a method to determine the next best query to ask to the
user [Kle+87]. In several later works including [Fel+10; Shc+12; Shc+16b] this

23

4.2

24

method was used and improved. In this thesis, the sequential diagnosis approach
is summarized based on the description in [Shc+16b], which can be found in the
appendix. Although in this paper sequential diagnosis is not used for the spreadsheet
setting, it can be easily applied to spreadsheets as shown in this section.

The goal of most sequential diagnosis approaches is to find the true reason of an
observed fault with as few queries as possible. Since the system cannot predict
how the user will answer a query, it tries to choose a query that will eliminate as
many diagnoses as possible regardless of the user’s answer. To do so, first, the
system calculates a set of diagnoses with the currently available knowledge. Next,
it splits the set of diagnoses into two sets that have the same value based on some
criteria. The value of a set of diagnoses can, for example, be determined by using
the number of formulas contained in these diagnoses or by using the probabilities
of the individual formulas being faulty, if this information is available. Once such a
partition is found, the system tries to find a query to discriminate between these two
sets, i.e., a query for which one set of the diagnoses remains if the user answers “yes”
and the other set remains if the user answers “no”. If no such query can be found,
the system tries the next best possible partition and continues until a partition is
found for which a query exists.

The calculated query is then presented to the user who has to evaluate and answer
it. The information gained from the user’s answer is added to the knowledge about
the spreadsheet and the process is repeated until only a single diagnosis remains
that is then known to be the true reason of the observed fault.

Speeding Up the Query Calculation

For large systems determining the next query can take too long in the interactive
sequential diagnosis process. The reason is that a set of diagnoses is required
to determine the next query. Although it was shown that a set of 9 diagnoses is
sufficient to determine a good query [Shc+12], for larger systems calculating these
9 diagnoses can already exceed acceptable times.

Algorithmic approach: In [Shc+16b] a new algorithmic approach was presented
to speed up the calculation of the diagnoses required to determine the next query.
The approach builds upon the new concept of so-called partial diagnoses. These
partial diagnoses are, as the name suggests, subsets of real diagnoses. The idea
of using partial diagnoses is to search for conflicts only once during the HS-Tree
construction, for example using MERGEXPLAIN (see Section 3.1), and to use the
found conflicts to determine partial diagnoses without checking if they fully explain

Chapter 4 Sequential Diagnosis

the observed fault. Since the found conflicts are a subset of all conflicts of the system,
the partial diagnoses determined because of these conflicts will also be subsets of
the (complete) diagnoses of the system. Therefore, queries that help to discriminate
between the calculated partial diagnoses will also help to reduce the number of
(complete) diagnoses.

If we would have, for example, a system with components 1 to 8 and conflicts
{{2,7},{3,4},{6,7,8}}, as used in the example of Section 3.1, the (complete) di-
agnoses for this system would be {{3,7},{4,7},{2,3,6},{2,3,8},{2,4,6},{2,4,8}}.
If we now assume that we only computed 2 of these 3 conflicts, for example, {{2, 7},
{3,4}}, we could determine the partial diagnoses {{2,3}, {2,4}, {3,7}, {4,7}}.
These partial diagnoses are all subsets of complete diagnoses. In fact, 2 of these
partial diagnoses are even complete although only 2 of the 3 conflicts of the system
were used to calculate them.

Determine some conflicts: 2 [7] 3 [4]

4

catue et sonoses: (2)3) (2)(=) (2)(7) (4] (7)

Find preferred partial diagnosis:

Determine more conflicts:

L
catae e doross: (2) +)(0) (2)(+)()

A 4

Find preferred partial diagnosis: [[2][4][6]]

Figure 4.2: Example of the sequential diagnosis process using partial diagnoses.

The concept of partial diagnoses can be utilized in the sequential diagnosis process
using the following technique [Shc+16b]. An example of the process is shown in
Figure 4.2. First, the algorithm searches for a set of conflicts in the given faulty
system using MERGEXPLAIN or some other conflict detection technique that is in the
best case able to efficiently determine multiple conflicts and will find, for example,
the conflicts {2,7} and {3,4}. The found conflicts are then used to determine a
limited number, for example, 9, of partial diagnoses. In the example of Figure 4.2,
however, only 4 partial diagnoses can be calculated because of the found conflicts.
The system uses these partial diagnoses to determine queries to ask to the user in

4.2 Speeding Up the Query Calculation

25

26

the same way as the general sequential diagnosis approach does (see Section 4.1).
The process of calculating the partial diagnoses, determining a query, and asking it
to the user is repeated until only a single partial diagnosis can be found, for example,
{2,4}. This partial diagnosis is then called the preferred partial diagnosis and is
known to be a subset of the true reason of the observed fault. The algorithm then
continues to search for an additional set of conflicts with MERGEXPLAIN and repeats
the process for these new conflicts. In the example, the new conflict {6, 7, 8} is found.
The component 7, however, was already excluded because of the previously asked
questions and is thus ignored. Therefore, only 2 partial diagnoses can be calculated
with the new conflict and the system asks another query to find the preferred partial
diagnosis among them. Since no more conflicts can be found in the next step, the
preferred partial diagnosis determined this way is known to be a complete diagnosis
and the true reason of the fault. In [Shc+16b], which is included in this thesis, the
details of this technique are described and its correctness is proven.

Evaluation: To evaluate the new approach it was compared to another technique
that calculates diagnoses directly without using the concept of conflicts and was
shown to be efficient in [Shc+12]. The average reductions in computation time,
number of queries, and number of queried statements, which were asked in the
queries, are shown in Table 4.1 for the two tested types of systems.

Table 4.1: Average reductions of the computation time, number of queries, and number of
queried statements of the new approach presented in [Shc+16b] compared to
the technique presented in [Shc+12]. Values in parentheses show the reductions
for systems that require more than a second to compute.

System type Time #Queries #Statements
Digital circuits 61% (81%) 30% 1%
Ontologies 83% (88%) 4% 5%

The results show that using partial diagnoses significantly reduces the time required
to calculate the queries. This reduction in time is even bigger for those systems that
require more than a second to compute (shown in parentheses in Table 4.1). For the
most complex digital circuit, the technique proposed in [Shc+12] was not able to
find the true reason of the fault after 24 hours while the new approach needed about
40 minutes. Regarding the number of required queries and queried statements in
order to find the true reason of the fault, using partial diagnoses resulted in about
the same numbers as the compared approach except for the number of queries for
the digital circuits. For these systems the new approach was able to reduce the
number of required queries by 30%. This means that using partial diagnoses does
not lead to an increased amount of effort required by the user.

Chapter 4 Sequential Diagnosis

5.1

Creating a Corpus of Faulty
Spreadsheets

Most of the approaches for fault detection in spreadsheets are evaluated on real-
world spreadsheets in which the researchers inserted faults manually or based on
randomly mutating the formulas [Jan+14a]. Although these evaluations are a good
indicator to show that the tested approaches could theoretically help to locate faults
in the spreadsheets, whether these approaches would work for spreadsheets with
real faults cannot be evaluated with certainty based on these artificial faults.

To assess the quality of new approaches for fault detection in practice, spreadsheets
are required that contain formula faults made by real users. An additional challenge
is that although many real-world spreadsheets probably contain faults, it has to be
known where these faults are in order to evaluate if the techniques for spreadsheet
debugging are able to detect them. Therefore, we need to know which formulas are
faulty and how they should be corrected.

Types of Spreadsheets Used in Research

In the research literature about fault detection in spreadsheets, three different
types of spreadsheets with fault information are used to evaluate the efficiency
or effectiveness of the approaches. Examples of these evaluations are given in
[Jan+14a]. The different types of spreadsheets used in existing evaluations can be
summarized as follows:

* Artificial spreadsheets with artificial faults: These spreadsheets were de-
signed by the researchers in order to evaluate their new approach. Often, such
spreadsheets are inspired by real-world spreadsheets, but are much simpler
and did not evolve over time. In addition, as the faults were artificially inserted
by the researchers, evaluations solely based on these spreadsheets can only
serve as a first indicator for the quality of the approach.

* Artificial spreadsheets with real faults: Spreadsheets of this category are
created in spreadsheet development experiments, see [Pan00] for examples.

27

In these experiments the participants have to develop a spreadsheet to fulfill
a given task. After the experiment, the experimenters can then check the
created spreadsheets for faults as the expected behavior of the spreadsheets
is well defined. Although the faults found this way are real, the spreadsheets
themselves are artificial because they were only created for the experiment
and it is not known how well the specified task fits to the tasks encountered in
practice.

Real-world spreadsheets with artificial faults: Most of the approaches for
fault detection in spreadsheets are evaluated on spreadsheets of this category.
These spreadsheets were used in the industry to solve real tasks and are thus
a good example of what kind of spreadsheets can be found in the real world.
Although many of these spreadsheets probably contain faults, no information
about the contained faults is available, as the semantics of a spreadsheet cannot
be reconstructed with certainty. Therefore, researchers insert artificial faults in
these spreadsheets in order to use them for their evaluations.

As all of these spreadsheet types are not sufficient to fully evaluate the functionality
of new approaches in the real world, spreadsheets of the fourth possible type are
desirable.

* Real-world spreadsheets with real faults: The ideal spreadsheets to be used

in an evaluation of a new fault detection approach are real-world spreadsheets
for which the information about the contained real faults is available, i.e., the
spreadsheets have faults made by real users and it is known which formulas
are faulty and what the correct formulas should be. Since the spreadsheets of
this category have been used to solve real tasks and their faults were made by
real users, they represent good examples of faults that should be detected by
all testing and fault localization techniques.

5.2 Publicly Available Spreadsheet Corpora

28

Because companies usually do not publish their internal spreadsheets as they possibly
contain confidential information, researchers have to use corpora of spreadsheets
that are publicly available in order to evaluate new approaches. In this section, a list
of publicly available spreadsheet corpora is given.

EUSES corpus: The most widely used corpus in fault detection research for spread-
sheets is the EUSES corpus [Fis+05]. It was created to assist researchers in evaluat-
ing new spreadsheet QA approaches and contains 4,498 spreadsheets obtained by a

Chapter 5 Creating a Corpus of Faulty Spreadsheets

Google web search with different search terms related to business and education.
The spreadsheets can be considered to be authentic although some of them might
have been created for showcase purposes. The drawback of this corpus is that no
information about the contained faults is available so that in order to use it for
evaluations of fault detection techniques artificial faults have to be inserted.

Fuse corpus: Similar to the EUSES corpus, the Fuse corpus contains spreadsheets
found through a web search. In their work [Bar+15], Barik et al. give an ex-
act description of how the corpus can be obtained to ensure reproducibility and
extensibility. The extensive web search led to a corpus of 249,376 spreadsheets.

Info1 corpus: The Infol corpus was created during a spreadsheet development
exercise and contains 119 faulty versions of 2 different spreadsheets. Since the in-
tended semantics of the spreadsheets are known, the faults made by the participants
could be identified and the information about the contained faults is included in the
corpus. However, the spreadsheets of this corpus cannot be considered to reflect
spreadsheets from the industry, because they were developed in an exercise. The
corpus is described in [Get15] and can be obtained from [Inf].

Payroll/Gradebook corpus: This corpus originally consisted of spreadsheets devel-
oped in the academic Forms/3 spreadsheet environment. These artificial spread-
sheets with injected faults were used in a user study in which 20 participants had to
debug and test two different spreadsheets [Rut+06]. In addition to the information
about the faults, the (possibly faulty) test cases created by the users are available.
An MS Excel version of this corpus can be obtained from [Pgc].

Enron corpus: The Enron Corporation was one of the biggest companies in the US
and one of the world’s major electricity and gas companies. When it went bankrupt
in 2001, a big accounting fraud was revealed, which is known as the Enron scandal.
In the process of the investigations, all emails sent from or to Enron between 2000
and 2002 were published in 2003. In [Her+15] Hermans and Murphy-Hill extracted
15,770 spreadsheets contained in these emails and published them as the Enron
corpus. Since all of these spreadsheets were sent in emails related to the business of
Enron, they can be considered real-world spreadsheets. Again, no information about
the contained faults is available.

Of all publicly available spreadsheet corpora, none contains both real-world spread-
sheets and information about real faults.

5.2 Publicly Available Spreadsheet Corpora

29

5.3 Building a Real-World Spreadsheet Corpus with
Fault Information

Although multiple spreadsheet corpora are available to evaluate new approaches
in spreadsheet QA, there is still a need for a corpus that consists of real-world
spreadsheets combined with information about the real faults that are contained in
these spreadsheets.

In this thesis, a new method is presented to build such a corpus based on the available
spreadsheets and emails of Enron. The spreadsheets of the Enron corpus were used
in practice and as spreadsheets are error-prone, at least some of them will contain
faults made by the users. Because the spreadsheets were sent as email attachments,
the information of the spreadsheets can be combined with the information given in
the emails. The following aspects can be used to detect real faults in the spreadsheets
of the Enron corpus:

* In the emails to which the spreadsheets are attached, the text message can
include some descriptions about the spreadsheets. In these descriptions faults
in the spreadsheets can be mentioned that, for example, were detected or
fixed.

* In many cases, multiple versions of the same spreadsheet were sent over time
that only differ in a few cells. If from one version to another only a single or
a few formulas have been changed and the rest of the spreadsheet was kept
unchanged, these changes could be the result of a fault correction by the user.

5.3.1 Fault Detection Methods

In [Sch+16a], two techniques are presented to help a researcher detect faults in the
spreadsheets of the Enron corpus. The techniques were designed to combine the
information given in the emails and in the spreadsheets themselves. However, the
approach is not limited to the emails of the Enron corpus and can be applied to any
corpus of emails containing spreadsheets, because no domain-specific knowledge is

required.

Reconstruction of email conversations: A description of a fault that is found in a
spreadsheet could possibly be included in the answer to the email that the spread-
sheet was attached to. To utilize this information, a tool was developed that auto-
matically reconstructs the email conversations, as shown in Figure 5.1.

30 Chapter 5 Creating a Corpus of Faulty Spreadsheets

< Enron Mail Networks - B “

Zoom Mail Subject Filter Mail Content Filter Spreadsheet Name Filter

| 100% W | by subject I” UseRegExp | | | [fauit [~ Use RegExp
Apply all filters
Spreadsheet Version Filter Spreadsheets in Network Filter
Version Finder Config [by number of similar spreadsheets ‘ by number o spreadsheet. bW
k DR floating posiion ID: 612614 B
=
[DAR floating postion D: 568933} »Re_DAR floating position ID: 608622]. »RE_ DR floating postion ID: 605618
= J —
E’ »E_DWR floating posfion ID: 612634]
'L [FW_Ohio Label D: 172051 | »[RE_Chio Label D: 172073}
Ohio Label ID: 17:003) = ,.{RE, Ohio Label D 17:0:5] nRE_ Ohio Label ID: 171702)
r] y-{RE_ Ohio Label ID: 171701} x|
J ,.(RE_ohm Label ID: 173075‘ »[RE_ Ohio Label ID: 17:030’ J
d | ;l_l

517, 1991

Figure 5.1: Example of reconstructed email conversations [Sch+16a]. The spreadsheet
icons denote that spreadsheets are attached to the emails.

The conversations can be searched for keywords related to errors. The researcher can
then read these conversations in the order in which they were sent. If the message
text in an email mentions a corrected or a found fault in some spreadsheet, the
researcher can explicitly search for this fault in the attached spreadsheet. To inspect
a suspicious spreadsheet attached to an email he or she can click on the spreadsheet
icon to open it. The visualization of the conversations helps the researcher to quickly
get an overview of the different conversations and to understand the relationships
between the emails.

To reconstruct the email conversations, for each email of the corpus the previous
and following messages of the same conversation have to be found. However, the
Enron corpus does not contain any explicit information for the emails that allows
a precise reconstruction of these conversations. Therefore, the system uses a set
of heuristics based on the subject, sender, recipients, time stamp, and the message
text of the emails to do an approximate reconstruction. A detailed description of
the used heuristics can be found in [Sch+16a], which is included in this thesis by
publication.

Analyzing the differences in spreadsheets: If only a single or a few formula cells
in a spreadsheet were changed, these changes could possibly represent a correction
of a fault. Whether such a difference really represents a correction of a fault or a
change of the modeled business logic can only be decided by a spreadsheet expert
who manually inspects the changes. A tool can, however, support the expert in his
or her task by listing a set of candidate spreadsheets of which only a few formulas
were changed and by visualizing these changes.

In [Sch+16a], a systematic approach is presented to detect the changes made from
one spreadsheet version to another. Searching for the differences between two

5.3 Building a Real-World Spreadsheet Corpus with Fault Information

31

5.3.2

32

spreadsheets in a meaningful way is not trivial. The system has to detect inserted or
deleted rows and columns because otherwise every single cell after such a row or
column would be perceived as a difference. It also has to report the same change to
multiple equivalent formulas as only a single difference because otherwise such a
change would result in multiple differences. This has to be avoided since spreadsheet
versions that contain too many differences are not considered to contain a correction
of a fault. Details of this approach are given in [Sch+16a].

The Enron Error Corpus

With the help of the presented approaches a first initial inspection of the email
conversations and the fault correction candidates was done, which led to a corpus
of 30 spreadsheets containing 36 real faults. For most of the faults the corpus
contains a faulty and a corrected version of the spreadsheet. This can be useful to
evaluate approaches that propose to make suggestions how faulty formulas should
be repaired. The Enron Error Corpus can be found at [Sch+16c].

Table 5.1: Overview of the Enron Error Corpus [Sch+16c].

Error type Nb of errors
Qualitative 8
Quantitative 28
Mechanical 14
Logic
Omission
Total 36

An overview of the detected faults is given in Table 5.1. The corpus contains 8
qualitative faults, which did not result in a faulty value of the current spreadsheet
but could do so in a later version of the spreadsheet. Since the main goal was to
search for faults that result in wrong output values the majority of the found faults
are quantitative.

The corpus was published in order to support researchers in evaluating their ap-
proaches on real-world spreadsheets with real faults and we plan to use it for
our future evaluations as well. In addition, the tool was published to allow other
researchers to search for faults in the Enron spreadsheets.

Chapter 5 Creating a Corpus of Faulty Spreadsheets

Conclusion

Spreadsheets are widely used in the industry for day-to-day business activities and
to support strategic business decisions. Since spreadsheets, like any other software,
can be faulty and since these faults often remain undetected, they have led to severe
consequences, for example, loosing money or worse. Therefore, better tool support
is required to support the users in detecting and correcting these faults.

In this thesis by publication an overview of the different domains in automated
spreadsheet quality assurance was given and different new algorithmic approaches
were presented that help users to detect faults in spreadsheet formulas. In the
evaluations it was shown that all of these approaches are beneficial in comparison to
previous state-of-the-art techniques. Since the presented approaches can be used in
combination with each other, they can be utilized to efficiently find the true reason
of a detected miscalculation.

In addition to the various algorithmic enhancements mentioned in the appended
papers, one open question in the research field is whether extensive tool support
for spreadsheet quality assurance will be accepted by the spreadsheet users in the
industry. As some of the biggest benefits of the spreadsheets are their flexibility and
the fast development times, it is important that approaches for spreadsheet QA do
not reduce these benefits.

Therefore, one important future topic of investigation should be to check if real users
in the industry accept the proposed quality assurance techniques. To evaluate this

aspect, field studies with real users who test the different approaches are required.

The studies should show (a) if users are willing to use the tools in their daily business
and (b) if the approaches can help to enhance the quality of the spreadsheets.

Another mostly open question is how the awareness of spreadsheet users for the risks
caused by faulty spreadsheets can be raised. Since a common mistake in the industry
is to underestimate these high risks [Pan98; Pan+12], raising the risk awareness
would help to motivate users to test their spreadsheets and the detected faults could
then, for example, be located by the approaches presented in this thesis.

33

Bibliography

[Abel5]

[Bar+15]

[Fel+10]

[Fis+05]

[Get15]

[Gre+89]

[Her+13]

[Her+15]

[Hof+14]

Stephan Abel. “Automatische Erkennung von Spreadsheetversionen”. Bachelor’s
thesis. TU Dortmund, 2015 (cit. on p. 2).

Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-
Hill. “Fuse: A Reproducible, Extendable, Internet-Scale Corpus of Spreadsheets”.
In: Proceedings of the IEEE/ACM 12th Working Conference on Mining Software
Repositories. 2015, pp. 486-489 (cit. on p. 29).

Alexander Feldman, Gregory Provan, and Arjan Van Gemund. “A Model-Based
Active Testing Approach to Sequential Diagnosis”. In: Journal of Artificial Intelli-
gence Research 39 (2010), p. 301 (cit. on p. 23).

Marc Fisher and Gregg Rothermel. “The EUSES Spreadsheet Corpus: A shared
resource for supporting experimentation with spreadsheet dependability mecha-
nisms”. In: SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1-5 (cit. on
p- 28).

Elisabeth Getzner. “Improvements for Spectrum-based Fault Localization in
Spreadsheets”. Master’s thesis. Graz University of Technology, May 2015 (cit. on
p- 29).

Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. “A Correction to the
Algorithm in Reiter’s Theory of Diagnosis”. In: Artificial Intelligence 41.1 (1989),
pp. 79-88 (cit. on p. 14).

Thomas Herndon, Michael Ash, and Robert Pollin. Does High Public Debt Consis-
tently Stifle Economic Growth? A Critique of Reinhart and Rogoff. Working Paper
322, Political Economy Research Institute, University of Massachusetts, Amherst.
2013 (cit. on p. 2).

Felienne Hermans and Emerson Murphy-Hill. “Enron’s Spreadsheets and Re-
lated Emails: A Dataset and Analysis”. In: Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015). 2015, pp. 7-16 (cit. on pp. 1,
29).

Birgit Hofer, Dietmar Jannach, Thomas Schmitz, Kostyantyn Shchekotykhin, and
Franz Wotawa. “Tool-supported fault localization in spreadsheets: Limitations of
current research practice”. In: Proceedings of the 1st International Workshop on
Software Engineering Methods in Spreadsheets (SEMS 2014). 2014 (cit. on p. 44).

35

36

[Hun+05]

[Jan+13]

[Jan+14a]

[Jan+14b]

[Jan+14c]

[Jan+15a]

[Jan+15b]

[Jan+16a]

[Jan+16b]

[Jun04]

[Kle+87]

[Pan+10]

Christopher D. Hundhausen and Jonathan Lee Brown. “What you see is what
you code: a radically dynamic algorithm visualization development model for
novice learners”. In: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2005). 2005, pp. 163-170 (cit. on p. 1).

Dietmar Jannach, Arash Baharloo, and David Williamson. “Toward an integrated
framework for declarative and interactive spreadsheet debugging”. In: Proceed-
ings of the 8th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2013). 2013, pp. 117-124 (cit. on pp. 7, 16).

Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz Wotawa. “Avoiding,
Finding and Fixing Spreadsheet Errors - A Survey of Automated Approaches for
Spreadsheet QA”. In: Journal of Systems and Software 94 (2014), pp. 129-150
(cit.onpp. 1, 3,4, 7,27, 43).

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Parallelized
Hitting Set Computation for Model-Based Diagnosis”. In: Proceedings of the 25th
Workshop on Principles of Diagnosis (DX 2014). 2014 (cit. on p. 44).

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Toward
Interactive Spreadsheet Debugging”. In: Proceedings of the 1st International
Workshop on Software Engineering methods in Spreadsheets (SEMS 2014). 2014
(cit. on p. 44).

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Parallelized
Hitting Set Computation for Model-Based Diagnosis”. In: Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI 2015). 2015, pp. 1503-1510
(cit. on p. 44).

Dietmar Jannach and Thomas Schmitz. “Using Calculation Fragments for Spread-
sheet Testing and Debugging”. In: Proceedings of the 2nd International Workshop
on Software Engineering Methods in Spreadsheets at ICSE 2015 (SEMS 2015).
2015 (cit. on p. 44).

Dietmar Jannach and Thomas Schmitz. “Model-Based Diagnosis of Spreadsheet
Programs: A Constraint-based Debugging Approach”. In: Automated Software
Engineering 23.1 (2016), pp. 105-144 (cit. on pp. 5, 7, 11, 15, 16, 20, 43).

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Parallel
Model-Based Diagnosis On Multi-Core Computers”. In: Journal of Artificial
Intelligence Research 55 (2016), pp. 835-887 (cit. on pp. 6, 8, 20-22, 43).

Ulrich Junker. “QUICKXPLAIN: Preferred Explanations and Relaxations for
Over-Constrained Problems”. In: Proceedings of the 19th National Conference on
Artificial Intelligence (AAAI 2004). 2004, pp. 167-172 (cit. on pp. 14, 17).

Johan de Kleer and Brian C. Williams. “Diagnosing Multiple Faults”. In: Artificial
Intelligence 32.1 (1987), pp. 97-130 (cit. on pp. 11, 23).

Raymond R. Panko and Salvatore Aurigemma. “Revising the Panko-Halverson
taxonomy of spreadsheet errors”. In: Decision Support Systems 49.2 (2010),
pp- 235-244 (cit. on p. 2).

Bibliography

[Pan+12]

[Pan00]

[Pan98]

[Pow+08]

[Pur+06]

[Rei+10]

[Rei87]

[Rut+06]

[Sca+05]

[Sch+16a]

[Sch+16b]

[Shc+12]

[Shc+15a]

Raymond R. Panko and Daniel N. Port. “End User Computing: The Dark Matter
(and Dark Energy) of Corporate IT”. In: Proceedings of the 45th Hawaii Inter-
national Conference on System Sciences (HICSS 2012). 2012, pp. 4603-4612
(cit. on pp. 1, 33).

Raymond R. Panko. “Spreadsheet Errors: What We Know. What We Think We
Can Do.” In: Proceedings of the European Spreadsheet Risks Interest Group 1st
Annual Conference (EuSpRIG 2000). 2000 (cit. on p. 27).

Raymond R. Panko. “What We Know About Spreadsheet Errors”. In: Journal of
End User Computing 10.2 (1998), pp. 15-21 (cit. on pp. 1, 2, 33).

Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. “A critical review of
the literature on spreadsheet errors”. In: Decision Support Systems 46.1 (2008),
pp. 128-138 (cit. on p. 2).

Michael Purser and David Chadwick. “Does an awareness of differing types of
spreadsheet errors aid end-users in identifying spreadsheets errors?” In: Pro-
ceedings of the European Spreadsheet Risks Interest Group 7th Annual Conference
(EuSpRIG 2006). 2006, pp. 185-204 (cit. on p. 2).

Carmen M. Reinhart and Kenneth S. Rogoff. “Growth in a Time of Debt”. In:
American Economic Review 100.2 (2010), pp. 573-578 (cit. on p. 2).

Raymond Reiter. “A Theory of Diagnosis from First Principles”. In: Artificial
Intelligence 32.1 (1987), pp. 57-95 (cit. on pp. 11, 13, 20, 21, 23).

Joseph R. Ruthruff, Margaret Burnett, and Gregg Rothermel. “Interactive Fault
Localization Techniques in a Spreadsheet Environment”. In: IEEE Transactions
on Software Engineering 32.4 (2006), pp. 213-239 (cit. on p. 29).

Christopher Scaffidi, Mary Shaw, and Brad Myers. “Estimating the Numbers of
End Users and End User Programmers”. In: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2005). 2005, pp. 207-
214 (cit. on p. 1).

Thomas Schmitz and Dietmar Jannach. “Finding Errors in the Enron Spreadsheet
Corpus”. In: Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2016). 2016, pp. 157-161 (cit. on pp. 7, 9, 30-32,
44).

Thomas Schmitz, Birgit Hofer, Dietmar Jannach, and Franz Wotawa. “Fragment-
Based Diagnosis of Spreadsheets”. In: Proceedings of the 3rd International Work-
shop on Software Engineering Methods in Spreadsheets (SEMS 2016). 2016 (cit.
on p. 44).

Kostyantyn Shchekotykhin, Gerhard Friedrich, Philipp Fleiss, and Patrick Rodler.
“Interactive ontology debugging: Two query strategies for efficient fault localiza-
tion”. In: Journal of Web Semantics 12-13 (2012), pp. 788-103 (cit. on pp. 23,
24, 26).

Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. “A Divide-
And-Conquer Method for Computing Multiple Conflicts for Diagnosis”. In: Pro-
ceedings of the 26th Workshop on Principles of Diagnosis (DX 2015). 2015 (cit. on
p. 44).

Bibliography

37

[Shc+15b] Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. “MergeX-
plain: Fast Computation of Multiple Conflicts for Diagnosis”. In: Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI 2015). 2015,
pp. 3221-3228 (cit. on pp. 6, 8, 14, 17, 19, 43).

[Shc+16a] Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Efficient
Determination of Measurement Points for Sequential Diagnosis”. In: Proceedings
of the Joint German/Austrian Conference on Artificial Intelligence (KI 2016). 2016
(cit. on p. 44).

[Shc+16b] Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Efficient
Sequential Model-Based Fault-Localization with Partial Diagnoses”. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI 2016).
2016, pp. 1251-1257 (cit. on pp. 6, 8, 23-26, 43).

[Shc+16c] Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Using
Partial Diagnoses for Sequential Model-Based Fault Localization”. In: Proceedings
of the 27th International Workshop on Principles of Diagnosis (DX 2016). 2016
(cit. on pp. 23, 45).

[IEE10] IEEE Computer Society. “IEEE Standard Classification for Software Anomalies”.
In: IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993) (2010), pp. 1-23
(cit. on p. 1).

Web pages

[F1F] F1F9. The Dirty Dozen. URL: http://blogs.mazars.com/the-model-auditor/
files/2014/01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-
Mazars-UK.pdf (visited on Apr. 3, 2017) (cit. on p. 2).

[Inf] Infol corpus. May 2015. URL: http://spreadsheets.ist.tugraz.at/index.
php/corpora-for-benchmarking/infol/ (visited on Apr. 3, 2017) (cit. on
p. 29).

[Pgc] Payroll/Gradebook corpus. 2006. URL: http://spreadsheets.ist.tugraz.at/

index.php/corpora-for-benchmarking/payrollgradebook-2/ (visited on
Apr. 3, 2017) (cit. on p. 29).

[Sch+16c] Thomas Schmitz and Dietmar Jannach. The Enron Error Corpus. 2016. URL:
http://1s13-www.cs.tu-dortmund . de/homepage/spreadsheets/enron-
errors.htm (visited on Apr. 3, 2017) (cit. on p. 32).

[Tan14] Gillian Tan. Spreadsheet Mistake Costs Tibco Shareholders $100 Million. 2014.
URL: http://on.wsj.com/1vjYdWE (visited on Apr. 3, 2017) (cit. on p. 2).

38 Bibliography

http://blogs.mazars.com/the-model-auditor/files/2014/01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-Mazars-UK.pdf
http://blogs.mazars.com/the-model-auditor/files/2014/01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-Mazars-UK.pdf
http://blogs.mazars.com/the-model-auditor/files/2014/01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-Mazars-UK.pdf
http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/info1/
http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/info1/
http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/payrollgradebook-2/
http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/payrollgradebook-2/
http://ls13-www.cs.tu-dortmund.de/homepage/spreadsheets/enron-errors.htm
http://ls13-www.cs.tu-dortmund.de/homepage/spreadsheets/enron-errors.htm
http://on.wsj.com/1vjYdWE

List of Figures

1.1
1.2
2.1
2.2
2.3
2.4
3.1

3.2

3.3

4.1

4.2
5.1

Taxonomy of spreadsheet errors, adapted from [Abel5].
Structural overview of this thesis.
Afaulty spreadsheet.,
A test case for the faulty spreadsheet.
The resulting HS-Tree for the example spreadsheet.
EXQUISITE, a Model-Based spreadsheet debugging tool [Jan+16a].
Example of MERGEXPLAIN searching for three conflicts shown as red
lines between the components 1to 8.
Exemplary schedule of the Level-Wise Parallelization technique with
three scheduling steps AtoC.
Exemplary schedule of the Full Parallelization technique with four
scheduling steps AtoD. e
The sequential diagnosis approach [Shc+16¢].
Example of the sequential diagnosis process using partial diagnoses. . .
Example of reconstructed email conversations [Sch+16a]. The spread-
sheet icons denote that spreadsheets are attached to the emails.

20

31

39

List of Tables

1.1
3.1

3.2

4.1

5.1

Overview of main categories of automated spreadsheet QA [Jan+14a]. 4
Average reductions of computation times when using MERGEXPLAIN
compared to QUICKXPLAIN to search for five diagnoses with the HS-Tree

algorithm [Shc+15b]. 19
Average reductions of the computation times of IWP and FP using 4
threads compared to the sequential HS-Tree algorithm [Jan+16b]. . . 22

Average reductions of the computation time, number of queries, and
number of queried statements of the new approach presented in [Shc+16b]
compared to the technique presented in [Shc+12]. Values in parenthe-

ses show the reductions for systems that require more than a second to
COMPULE. . . . v vttt et et et e e e e e e e e e 26
Overview of the Enron Error Corpus [Sch+16¢].. 32

41

Publications

In this thesis by publication the following six works of the author are included. These
publications are closely related to Model-Based Debugging of spreadsheets. The full
texts of these works can be found after this list.

* Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz Wotawa. “Avoiding,
Finding and Fixing Spreadsheet Errors - A Survey of Automated Approaches for
Spreadsheet QA”. in: Journal of Systems and Software 94 (2014), pp. 129-150

* Dietmar Jannach and Thomas Schmitz. “Model-Based Diagnosis of Spreadsheet
Programs: A Constraint-based Debugging Approach”. In: Automated Software
Engineering 23.1 (2016), pp. 105-144

* Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. “MergeX-
plain: Fast Computation of Multiple Conflicts for Diagnosis”. In: Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI 2015). 2015,
pp. 3221-3228

* Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Parallel
Model-Based Diagnosis On Multi-Core Computers”. In: Journal of Artificial
Intelligence Research 55 (2016), pp. 835-887

* Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Efficient
Sequential Model-Based Fault-Localization with Partial Diagnoses”. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2016). 2016, pp. 1251-1257

43

44

* Thomas Schmitz and Dietmar Jannach. “Finding Errors in the Enron Spread-

sheet Corpus”. In: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2016). 2016, pp. 157-161

In addition to these six main publications, the author of this thesis worked on the
following other publications related to spreadsheet debugging that are not part of
this thesis.

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Toward
Interactive Spreadsheet Debugging”. In: Proceedings of the 1st International
Workshop on Software Engineering methods in Spreadsheets (SEMS 2014). 2014

Birgit Hofer, Dietmar Jannach, Thomas Schmitz, Kostyantyn Shchekotykhin,
and Franz Wotawa. “Tool-supported fault localization in spreadsheets: Limi-
tations of current research practice”. In: Proceedings of the 1st International
Workshop on Software Engineering Methods in Spreadsheets (SEMS 2014). 2014

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Paral-
lelized Hitting Set Computation for Model-Based Diagnosis”. In: Proceedings of
the 25th Workshop on Principles of Diagnosis (DX 2014). 2014

Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. “Paral-
lelized Hitting Set Computation for Model-Based Diagnosis”. In: Proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI 2015). 2015, pp. 1503—
1510

Dietmar Jannach and Thomas Schmitz. “Using Calculation Fragments for
Spreadsheet Testing and Debugging”. In: Proceedings of the 2nd International
Workshop on Software Engineering Methods in Spreadsheets at ICSE 2015 (SEMS
2015). 2015

Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. “A Divide-
And-Conquer Method for Computing Multiple Conflicts for Diagnosis”. In:
Proceedings of the 26th Workshop on Principles of Diagnosis (DX 2015). 2015

Thomas Schmitz, Birgit Hofer, Dietmar Jannach, and Franz Wotawa. “Fragment-
Based Diagnosis of Spreadsheets”. In: Proceedings of the 3rd International
Workshop on Software Engineering Methods in Spreadsheets (SEMS 2016). 2016

Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Efficient
Determination of Measurement Points for Sequential Diagnosis”. In: Proceed-

Publications

ings of the Joint German/Austrian Conference on Artificial Intelligence (KI 2016).
2016

* Kostyantyn Shchekotykhin, Thomas Schmitz, and Dietmar Jannach. “Using
Partial Diagnoses for Sequential Model-Based Fault Localization”. In: Proceed-
ings of the 27th International Workshop on Principles of Diagnosis (DX 2016).
2016

Publications

45

Avoiding, Finding and Fixing Spreadsheet Errors -
A Survey of Automated Approaches for Spreadsheet QA

Dietmar Jannach'®, Thomas Schmitz?, Birgit Hofer?, Franz WotawaP”

*TU Dortmund, Germany
YTU Graz, Austria

Abstract

Spreadsheet programs can be found everywhere in organizations and they are
used for a variety of purposes, including financial calculations, planning, data
aggregation and decision making tasks. A number of research surveys have
however shown that such programs are particularly prone to errors. Some
reasons for the error-proneness of spreadsheets are that spreadsheets are de-
veloped by end users and that standard software quality assurance processes
are mostly not applied. Correspondingly, during the last two decades, re-
searchers have proposed a number of techniques and automated tools aimed
at supporting the end user in the development of error-free spreadsheets.
In this paper, we provide a review of the research literature and develop a
classification of automated spreadsheet quality assurance (QA) approaches,
which range from spreadsheet visualization, static analysis and quality re-
ports, over testing and support to model-based spreadsheet development.
Based on this review, we outline possible opportunities for future work in
the area of automated spreadsheet QA.

Keywords: Spreadsheet, Quality Assurance, Testing, Debugging

1. Introduction

Spreadsheet applications, based, e.g., on the widespread Microsoft Excel
software tool, can nowadays be found almost everywhere and at all levels of

!Corresponding author: D. Jannach (dietmar.jannach@tu-dortmund.de), Postal ad-
dress: TU Dortmund, 44221 Dortmund, Germany, T: +49 231 755 7272

Preprint submitted to Journal of Systems and Software March 27, 2014

organizations [1]. These interactive computer applications are often devel-
oped by non-programmers — that is, domain or subject matter experts — for
a number of different purposes including financial calculations, planning and
forecasting, or various other data aggregation and decision making tasks.

Spreadsheet systems became popular during the 1980s and represent the
most successful example of the End-User Programming paradigm. Their
main advantage can be seen in the fact that they allow domain experts to
build their own supporting software tools, which directly encode their do-
main expertise. Such tools are usually faster available than other business
applications, which have to be developed or obtained via corporate IT de-
partments and are subject to a company’s standard quality assurance (QA)
processes.

Very soon, however, it became obvious that spreadsheets — like any other
type of software — are prone to errors, see, e.g., the early paper by Creeth
2] or the report by Ditlea [3], which were published in 1985 and 1987, re-
spectively. More recent surveys on error rates report that in many studies
on spreadsheet errors at least one fault was found in every single spreadsheet
that was analyzed [4]. Since in reality even high-impact business decisions
are made, which are at least partially based on faulty spreadsheets, such
errors can represent a considerable risk to an organization?.

Overall, empowering end users to build their own tools has some advan-
tages, e.g., with respect to flexibility, but also introduces additional risks,
which is why Panko and Port call them both “dark matter (and energy) of
corporate IT” [1]. In order to minimize these risks, researchers in differ-
ent disciplines have proposed a number of approaches to avoid, detect or fix
errors in spreadsheet applications. In principle, several approaches are possi-
ble to achieve this goal, beginning with better education and training of the
users, over organizational and process-related measures such as mandatory
reviews and audits, to better tool support for the user during the spreadsheet
development process. In this paper, we focus on this last type of approaches,
in which the spreadsheet developer is provided with additional software tools
and mechanisms during the development process. Such tools can for exam-
ple help the developer locate potential faults more effectively, organize the

2See http://www.eusprig.org/horror-stories.htm for a list of real-world stories or
the recent article by Herndorn et al. [5] who found critical spreadsheet formula errors in
the often-cited economic analysis of Reinhart and Rogoff [6].

test process in a better structured way, or guide the developer to better
spreadsheet designs in order to avoid faults in the first place. The goals and
contributions of this work are (A) an in-depth review of existing works and
the state-of-the-art in the field, (B) a classification framework for approaches
to what we term “automated spreadsheet QA”, and (C) a corresponding dis-
cussion of the limitations of existing works and an outline of perspectives for
future work in this area.

This paper is organized as follows. In Section 2, we will define the scope of
our research, introduce the relevant terminology and discuss the specifics of
typical spreadsheet development processes. Section 3 contains our classifica-
tion scheme for approaches to automated spreadsheet QA. In the Sections 4
to 9, we will discuss the main ideas of typical works in each category and
we will report how the individual proposals were evaluated. Section 10 re-
views the current research practices with respect to evaluation aspects. In
Section 11, we point out perspectives for future works and Section 12 sum-
marizes this paper.

2. Preliminaries

Before discussing the proposed classification scheme in detail, we will
first define the scope of our analysis and sketch our research method. In
addition, we will briefly discuss differences and challenges of spreadsheet QA
approaches in comparison with tool-supported QA approaches for traditional
imperative programs.

2.1. Scope of the analysis, research method, terminology

Spreadsheets are a subject of research in different disciplines including
the fields of Information Systems (IS) and Computer Science (CS) but also
fields such as Management Accounting or Risk Management, e.g., [2] or [7].

Scope. In our work, we adopt a Computer Science and Software Engineering
perspective, focus on tool support for the spreadsheet development process
and develop a classification of automated spreadsheet QA approaches. Ex-
amples for such tools could be those that help the user locate faults, e.g.,
based on visualization techniques or by directly pointing them to faulty cells,
or tools that help the user avoid making faults in the first place, e.g., by sup-
porting complex refactoring work. Spreadsheet error reduction techniques
from the IS field, see, e.g., [8], and approaches that are mainly based on

“manual” tasks like auditing or code inspection will thus not be in the focus
of our work.

Research on spreadsheets for example in the field of Information Systems
often covers additional, more user-related, or fundamental aspects such as er-
ror types, error rates and human error research in general, the user interface,
cognitive effort and acceptance issues of tools, user over-confidence, as well as
methodological questions regarding the empirical evaluation of systems, see,
e.g., [9, 10, 11, 12, 13, 4]. Obviously, these aspects and considerations should
be the basis when designing an automated spreadsheet QA tool that should
be usable and acceptable by end users. In our work and classification, we
however concentrate more on the provided functionality and the algorithmic
approaches behind the various tools. We will therefore discuss the underly-
ing assumptions for each approach, e.g., with respect to user acceptance or
evaluation, only as they are reported in the original papers. Still, in order to
assess the overall level of research rigor in the field, we will report for each
class of approaches how the individual proposals were evaluated or validated.

These insights will be summarized and reviewed in Section 10. In this
section, we will also look at the difficulties of empirically evaluating the true
value of spreadsheet error reduction techniques according to the literature
from the IS field.

Regarding tool support in commercial spreadsheet environments, we will
briefly discuss the existing functionality of MS Excel and comparable systems
in the different sections. Specialized commercial auditing add-ons to MS
Excel usually include a number of QA tools. As our work focuses more
on advanced algorithmic approaches to spreadsheet QA, we see the detailed
analysis of current commercial tools to be beyond the scope of this paper.
Finally, we will also not cover fault localization or avoidance techniques for
the imperative programming extensions that are typically part of modern
spreadsheet environments.

Research method. For creating our survey, we conducted an extensive litera-
ture research. Papers about spreadsheets are published in a variety of jour-
nals and conference proceedings. However, there exists no publication outlet
which is only concerned with spreadsheets, except maybe for the application-
oriented EuSpRIG conference series®. In our research, we therefore followed
an approach which consists both of a manual inspection of relevant journals

Shttp://www.eusprig.org

and conference proceedings as well as searches in the digital libraries of ACM
and IEEE. Typical outlets for papers on spreadsheets which were inspected
manually included both broad Software Engineering conferences and journals
such as ICSE, ACM TOSEM, or IEEE TSE. At the same time, we reviewed
publications at more focused events such as ICSM or the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). In addi-
tion, major IS journals and events such as Information Systems Research,
ACM TOIS or ICIS were considered in our research.

When searching the digital libraries, we started by looking for papers
containing the term “spreadsheet” in the title or abstract. From the 400
to 500 results returned by the search engines of the libraries, we manually
inspected the abstracts. Provided their scope was relevant for our research,
we categorized them according to the categorization framework described in
Section 3, and followed the relevant references mentioned in the articles.

Terminology. Regarding the terminology used in the paper, we will use the
terms “spreadsheet”, “spreadsheet application”, or “spreadsheet program”
more or less interchangeably as often done in the literature. When we refer to
the underlying software system to create spreadsheets (e.g., Microsoft Excel),
we will use the term “spreadsheet environment” or “spreadsheet tool”. In
some papers, the term “form-based visual languages” is used [14] to describe
the more general family of such systems. In our work, we will however rely
on the more widespread term “spreadsheet”.

There are a number of definitions of the terms “error”, “fault”, and “fail-
ure” in the literature. According to IEEE standards for Software Engineering
an “error” is a misapprehension on side of the one developing a spreadsheet
caused by a mistake or misconception occurring in the human thought pro-
cess. A “fault” is the manifestation of an “error” within a spreadsheet which
may be causing a “failure”. A “failure” is the deviation of the observed be-
havior of the spreadsheet from the expectations. In the literature on spread-
sheets, in particular the terms “fault” and “error” are often used in an in-
terchangeable manner. Surveys and taxonomies of spreadsheet problems like
[15], [16], or [17], for example, more or less only use the term “error”. In
our review, we will — in order to be in line with general Software Engineering
research — use the term “fault” instead of “error” whenever appropriate.

2.2. Specifics of spreadsheets and their QA tools

The requirements for automated approaches for spreadsheet QA can be
quite different from those of tools that are used with typical imperative lan-
guages. In [14], Rothermel et al. illustrated some of the major differences in
the context of spreadsheet testing. Many of the aspects mentioned in their
work however do not only hold for the testing domain, but should in gen-
eral be taken into account when developing tools supporting the spreadsheet
developer.

First, the way in which users interact with a spreadsheet environment is
largely different from how programs in imperative languages are developed.
In spreadsheets, for example, the user is often constructing a spreadsheet
in an unstructured incremental process using some test data. For the given
test data, the user continuously receives visual and immediate feedback. To
increase the chances of being accepted by developers, any supporting tool
should therefore be designed in a way that it supports such an incremental
development process. In that context, trying to de-couple the actual imple-
mentation tasks from other tasks like testing or design could be problematic.
At the same time, being able to provide immediate feedback in the incre-
mental process appears to be crucial.

Second, the computation paradigm of spreadsheets is quite different from
imperative programs. The basic nature of spreadsheets is that their compu-
tations — the “evaluation” of the program — are driven by data dependencies
between cells and explicit control flow statements are only contained in for-
mulas in the cells. When designing supporting QA mechanisms and tools,
this aspect should be kept in mind. For example, when adapting exist-
ing QA approaches from imperative programs to spreadsheet development,
there might be different characteristics and quality measures that have to be
considered. Data dependencies can, for example, be more relevant than the
control flow. At the same time, the conceptual model of the users might be
rather based on the data and formula dependencies than on execution orders.

Third, spreadsheet programs are not only based on a simpler computa-
tional model than imperative programs, their “physical” layout — i.e., the
spatial arrangement of the labels and formulas — is typically strongly de-
termined by the intended computation semantics. This spatial information
can be used by automatic QA tools, e.g., to detect inconsistencies between
neighboring cells and to assess the probability of a formula being seman-
tically correct, to automatically infer label information, or to rank change
suggestions in goal-directed debugging approaches [18].

6

Finally, developers of spreadsheets are mostly non-professional program-
mers. Developers of imperative programs often have a formal training or ed-
ucation in software development and are generally aware of the importance
of systematic QA processes. People developing spreadsheets are mostly non-
programmers and may have limited interest and awareness when it comes
to investing additional efforts in QA activities like testing or refactoring.
Therefore, any QA methodology and the corresponding tool support should
make it easy for a non-programmer to understand the value of investing the
additional efforts. To cope with this, approaches for spreadsheet QA should
not require special training or an understanding of the theory behind the
approach. The used language should avoid special terminology from the un-
derlying theory or technique. When discussing the different approaches in
the next sections, we will therefore briefly discuss the approaches from the
perspective of usability and what is expected from the end user.

3. A classification of automated approaches to spreadsheet QA

Generally, we classify the various spreadsheet QA approaches into two
main categories depending on their role and use in the development lifecycle.

e “Finding and fixing errors” is about techniques and tools that are
mainly designed to help the user detect errors and understand the
reasons for the errors. These tools are typically used by the devel-
oper or another person, e.g., an auditor or reviewer, during or after the
construction of the spreadsheet.

e “Avoiding errors” is about techniques and tools that should help the
developer create spreadsheets that do not have errors in the first place.
These approaches support the creation process of spreadsheets.

In our work, we however aim to develop a finer-grained categorization
scheme to classify the existing approaches to automated spreadsheet QA.
The main categories of our proposed scheme are shown in Table 1.

The categories (1) and (2) can serve both the purpose of finding and
avoiding errors. A good visualization, for example, of cell dependencies, helps
the user to spot a problem. At the same time, a visualization can be used to
highlight cells or areas for which there is a high probability that an error will
be made in the future, for example, when there are repetitive structures in the
spreadsheet. Static analyses can both identify already existing problems such

Finding errors | Avoiding errors
(1) Visualization-based approaches X X
(2) Static code analysis & reports X X
(3) Testing approaches X
(4) Automated fault localization & repair X
(5) Model-driven development approaches X
(6) Design and maintenance support X

Table 1: Overview of main categories of automated spreadsheet QA.

as references to empty cells and serve as indicators for potential problems,
e.g., by listing formulas which are too complex. The techniques falling into
the categories (3) and (4) mainly contribute to the problem of “Finding
and fixing errors” as they either help the user to identify the existence of a
problem or to localize the error causes. The methods in the categories (5) and
(6) often provide means to avoid errors, e.g., by supporting the refactoring
process or adding an additional layer of abstraction. In general, the schema
shown in Table 1 serves as a rough guideline for the categorization. There
might be individual techniques within certain subcategories, which can serve
both the purposes of finding and avoiding errors.

We summarize the main idea of the individual families of approaches as
follows.

e Visualization-based approaches: These approaches provide the user
with a visually enhanced representation of some aspects of the spread-
sheet to help him or her understand the interrelationships and depen-
dencies between cells or larger blocks of the spreadsheet. These visual-
izations help the user to quickly detect anomalies and irregularities in
the spreadsheet.

e Static analysis & reports: These approaches are based on static code
analysis and aim to point the developer to potentially problematic areas
of the spreadsheet. Examples of techniques include “code smells” or
the detection of data clones but also the typical family of techniques

4.

found in commercial tools capable of detecting circular dependencies
or reporting summaries about unreferenced cells.

Testing-based techniques: The methods in this category aim to stimu-
late and support the developer to systematically test the spreadsheet
application during or after construction. The supporting tools for ex-
ample include mechanisms for test case management, the automated
generation of test cases or analysis of the test coverage.

Automated fault localization & repair: The approaches in this cate-
gory rely on a computational analysis of possible causes of an error
or unexpected behavior (algorithmic debugging). They rely on addi-
tional input by the developer such as test cases or statements about
the correctness of individual cells. Some approaches are also capable
of providing “repair” suggestions.

Model-driven development approaches: Methods in this category mainly
adopt the idea of using (object-oriented) conceptual models as well
as model-driven software development techniques, which are nowadays
quite common in the software industry. The typical advantages of such
approaches include the introduction of additional layers of abstraction
or the use of code-generation mechanisms.

Design and maintenance support: The approaches in this category ei-
ther help the spreadsheet developer to end up with better error-free
designs or support him or her during spreadsheet construction. The
mechanisms proposed in that context for example include automated
refactoring tools, methods to avoid wrong cell references, and exception
handling.

Table 2 outlines the structure of the main sections of the paper.

Visualization-based approaches

Visualization-based approaches are helpful in different ways. They can,

for example, help a developer or reviewer understand a given spreadsheet
and its formulas, so that he or she can check it more easily for potential
errors or bad design. In addition, visualizations are a good starting point for
a reviewer other than the original author of the spreadsheet to understand

4. Visualization-based | 4.1. Dataflow and dependency visualization
approaches 4.2. Visualization of related areas
4.3. Semantic-based visualizations
4.4. Information Visualization approaches
5. Static code analysis | 5.1. Unit and type inference
& reports 5.2. Spreadsheet smells
5.3. Static analysis in commercial tools
6. Testing approaches 6.1. Test adequacy and test case management
6.2. Automated test case generation
6.3. Assertion-based testing
6.4. Test-driven spreadsheet development
7. Automated fault lo- | 7.1. Trace-based candidate ranking
calization & repair 7.2. Constraint-based fault localization
7.3. Repair approaches
8. Model-driven devel- | 8.1. Declarative spreadsheet models
opment approaches 8.2. Spreadsheet templates
8.3. Object-oriented visual models
8.4. Relational spreadsheet models
9. Design and mainte- | 9.1. Reference management
nance support 9.2. Exception handling
9.3. Changes and spreadsheet evolution
9.4. Refactoring
9.5. Reuse

Table 2: Outline of the main parts of the paper.

A number of approaches visualize the dataflow in the spreadsheet and the
corresponding dependencies of the formula cells, see, e.g., [21, 22, 23, 24, 25,

its basic structure and the dependencies between the formulas. A typical
application scenario is thus the use of visualizations in the auditing process,
see, e.g., [19] or [20]. We categorize the different approaches for spreadsheet
visualization from the literature as follows.

4.1. Dataflow and dependency visualization

10

26, 27, 28] and [29]. In many cases, arrows are used to represent the usage
of a cell in a formula, which is a standard feature of commercial spreadsheet
environments like MS Excel as shown in Figure 1.

A B C
1 20 10
2 ‘30 ‘52
3 45 33
4 | Sum 5 95
5
5} Total 90

Figure 1: Simple dependency visualization in MS Excel.

One of the earlier works going beyond simple dependency visualizations
was presented by Davis in [19]. In addition to the use of arrows within the
spreadsheet to visualize dependencies between cells, spreadsheets are visual-
ized as graphs. The graph visualization is based on a spreadsheet description
language proposed by Ronen et al. earlier in [30] to model the functionality
of a spreadsheet. In these graphs, the cells correspond to the nodes and edges
represent dependencies between cells. Two experiments with users were per-
formed in which the new techniques — arrows and graphs — were compared
with the existing features of MS Excel 3.0. At that time, MS Excel could
only provide a listing of cell dependencies but had no graphical visualization.
In the first experiment, 27 students had to find all dependent cells of a given
cell. In the second experiment involving 22 students, the task was to correct
an observed fault in a given cell. Overall, both new approaches were found
to be more helpful for the given tasks than the standard functionality of MS
Excel. Interestingly, the simple arrow-based approach was outperforming the
more complex dependency graph approach.

Another more advanced method for dependency visualization was pre-
sented by Igarashi et al. in [21]. In their work, the authors rely on an
animated and interactive visualization approach and “fluid interfaces” to
give the user a better understanding of the data flow in the spreadsheet.
Advanced animations are used to visualize which cells are input to other
calculations. These animations made it possible to represent comparably
complex dependencies in a visual form. In addition, users could interact
with the visualizations and thereby manipulate the references through drag
and drop operations, e.g., to move references, scale referenced arrays or in-

11

teractively fill areas with formulas. To evaluate their approach, a prototype
system was built, tested with comparably small spreadsheets and informally
discussed in their paper. A study with real users and with large spreadsheets
was however not done.

A different approach to visualize complex dependencies in spreadsheets
is to represent parts of the spreadsheet in three-dimensional space as done,
e.g., in [22] or [25]. In the approach proposed by Shiozawa et al. [22], for
example, the spreadsheet is rendered in 3D and the user can interactively
manipulate the visualization and lift cells or groups of cells. The connected
cells are lifted to some extent based on a distance metric, allowing the user
to better distinguish between cell dependencies, which are drawn as arrows
in the 3D space. Similar to the work of Igarashi et al. mentioned above,
the evaluation of the approach was limited to an informal discussion of a
prototype system.

In [23], Chen and Chan proposed additional techniques for cell depen-
dency visualization in spreadsheets. One of the main ideas is to visualize the
dependencies between larger blocks of formulas in neighboring cells instead
of displaying arrows between individual cells as done, e.g., in MS Excel. An
alternative visualization of dependencies between larger blocks of the spread-
sheet is proposed by Kankuzi and Ayalew in [26] and [27]. In their approach,
the cells are first clustered and the resulting dependencies are then displayed
as a tree map in an external window.

A more recent proposal to spreadsheet visualization was made by Her-
mans et al. in [28] and [29]. In their approach, the user can inspect the
data flows within the spreadsheet on different levels of detail. On the global
view, only the different worksheets of the spreadsheet and their dependen-
cies are shown; on the lowest level, dependencies between individual cells
are displayed. On an intermediate level, the spreadsheet is sliced down to
smaller areas of geometrically adjacent cells. Beside the arrows that are used
to indicate dependencies, their visualization method also displays the math-
ematical functions used in the calculations. In [28], Hermans et al. evaluate
their dataflow visualization in two steps. In the first round, an interview
involving 27 subjects about the general usefulness of such diagrams was con-
ducted; the second part consisted of 9 observational case studies in which the
task for the participants consisted in transferring or explaining their complex
real-world spreadsheets to another person. The observations during the study
and the qualitative feedback obtained in the post-experiment interviews indi-
cated that the proposed techniques are well suited for the task of spreadsheet

12

comprehension and helpful for auditing and validation purposes.

4.2. Visualization of related areas

Different methods and tools for identifying and visualizing semantically
related or structurally similar blocks of cells were proposed in [31, 32, 33, 34].
These blocks can be highlighted using different colors to make it easier for
the user to understand the logical structure of the spreadsheet or to identify
irregularities as done in [35].

In the work of Mittermeir and Clermont [31], the concept of “logical
areas” is introduced as a first step in their approach. Such areas can be
automatically identified by looking for structurally similar (equivalent) for-
mulas in different areas of the spreadsheet. Such areas are for example the
result of a formula copy operation by the user during the construction pro-
cess. Since a preliminary study with a prototype tool on 78 large real-world
spreadsheets revealed that relying on logical areas alone reaches its limits
for larger spreadsheets, the concept of “semantic classes” was introduced. In
this semi-automated approach, the user manually specifies related areas in
the spreadsheet. Based on this user-provided input and information about
the spatial arrangement of potentially related cells, further reasoning about
areas with high similarity in the spreadsheet can be performed. The work
was later on improved in [32], where semantic classes were identified based on
the information contained in label cells and a set of heuristics. An alternative
method for decomposing a given spreadsheet for the purpose of visualization
was presented in [33, 34]. In that work, the identification of areas is based
on properties of the data flow in the spreadsheet.

Both the approaches proposed in [31] and [33, 34] were discussed in the
corresponding papers using one artificial spreadsheet with a few dozen for-
mulas as an example. In [36], Clermont et al. report that the approach from
[31] was used to audit real-world spreadsheets, leading to detected error rates
in spreadsheets that are in line with those reported in the literature*. An
evaluation regarding the question to which extent the additional tool sup-
port increases the error detection rate or speeds up the inspection process
was however not conducted.

In [20], Sajaniemi proposes two further visualization approaches called
S2 and S3. The basic idea is to detect equivalent formulas in blocks of

4See, e.g., [4], for a discussion of error rates.

13

cells and visualize the dependencies between individual blocks. A theoretical
comparison with the visualization techniques proposed in [19, 21, 30, 37,
38, 39] and the auditing functionality of MS Excel 7.0 was done, showing
different advantages of their approaches. Beside the visualization approaches,
Sajaniemi’s work represents an interesting methodological contribution, as he
proposes a systematic way of theoretically analyzing and comparing different
visualization techniques.

4.83. Semantic-based visualizations

The missing semantics for the formulas of a spreadsheet, which is caused
by the use of numbered cell references instead of information-carrying names,
is a well-known problem in spreadsheet research. This was already discussed
in an early work by Hendry et al. [37], where they proposed a system for
annotating cells in order to describe their semantics.

The work by Chadwick et al. presented in [40] is based on the observa-
tion of two typical types of errors that are made by many spreadsheet users
when creating formulas: (1) formulas sometimes reference the wrong cells as
inputs; (2) formulas are sometimes copied incorrectly. To deal with the first
problem, the authors propose different techniques to make the formulas more
intuitively readable. One of the techniques is for example to transform a for-
mula like =SUM(F6:F9) into =SUM(Night Wages_Gradel:Night Wages_Grade4)
based on cell labels within the spreadsheet. Another idea is to represent
complex formulas in a visual form. For this purpose, the formulas are de-
composed, cell references are replaced with readable names and operators are
translated into natural language such that the logic of the formula can be un-
derstood more easily. As a solution to problems arising from wrongly copied
formulas, Chadwick et al. propose to use visual indicators and mark copied
cells and their origin with the same color and add an additional comment to
the original cell.

The different methods of the formula visualization were evaluated through
a survey involving 63 students. The students had to rank the methods with
respect to clarity and ease of understanding. The most visual method was
ranked first in that survey; interestingly, however, the usual notation of Excel
with cell references was ranked second and was better accepted than the
above-described approach in which cell references were replaced with labels.
The visualization that was used to highlight copied formulas was evaluated
through a small user study with 5 students. The participants had to construct
a spreadsheet and were provided with the additional visualization in that

14

process. The results indicated that the participants liked the approach as
they confirmed its usefulness to check a spreadsheet for correctness.

Nardi and Serrecchia [41] propose a more complex approach to recon-
struct the underlying model of the spreadsheet, where a knowledge base is
constructed and reasoning mechanisms are developed to describe calculation
paths of individual cells with descriptive names. Although the approach was
implemented prototypically, a systematic evaluation was not done.

4.4. Information Visualization approaches

In [42], Brath and Peters apply techniques from the field of Information
Visualization to spreadsheet analysis. These visualizations support the de-
veloper in the process of detecting anomalies in the spreadsheet. In contrast
to some of the approaches described so far, the aim is thus not to visualize
the data flow or the structures of the spreadsheet but the data itself. To that
purpose, a 3D representation is proposed, where the cell values are for exam-
ple shown as bars instead of numbers. Higher numbers result in higher bars.
Using the corresponding tool, the user can navigate through the 3D space,
detect outliers or unexpected patterns in the data. The general feasibility of
the method is informally discussed in the paper based on two case studies®.

In general, a number of techniques from the field of Information Visual-
ization, e.g., the “fisheye”-based approach described in [43], can in principle
be applied to visualize large tabular data in spreadsheets for inspection pur-
poses. The work of Ballinger et al. [24] is an example for such a work that
relies, among others, on 3D diagrams and a fisheye view to visualize data
dependencies. Overall, however, the number of similar works that rely on
Information Visualization techniques appears to be limited.

4.5. Discussion

Quite a number of proposals have been made in the literature that aim
to represent certain aspects of a spreadsheet in visual form. The purposes
of the visualization include in particular spreadsheet comprehension, e.g., in
an auditing context, and in particular anomaly and error detection.

Regarding the research methodology, only in very few and more recent
papers a systematic and rigorous experimental evaluation of the proposed

>The general idea presented in [42] was later on implemented in a commercial tool by
Oculusinfo Inc. http://www.oculusinfo.com.

15

methods has been done. In most cases, the validation is limited to qualita-
tive interviews or surveys involving a comparably small set of participants or
the informal discussion of prototype systems and individual use cases. The
true applicability and usability for end users of many approaches is often
unclear. Many works in that field would thus benefit if more systematic
evaluations and user studies were performed as it is done for example in the
fields of Human Computer Interaction and Information Systems. Possible
evaluation approaches for visualization techniques include spreadsheet con-
struction, inspection, or understanding exercises as done in IS spreadsheet
research, e.g., in [9, 10, 44] or [45], but also observational approaches based,
e.g., on think-aloud protocols or usage logs.

Regarding practical tools, the market-leading tool MS Excel incorporates
only a small set of quite simple visualization features for spreadsheet analysis
or debugging. Cell dependencies can be visualized as shown in Figure 1 or as
colored rectangles highlighting the referenced cells of a formula. In addition,
a small visual clue — a green triangle at the cell border — is displayed when
some of the built-in error checking rules are violated. With respect to the
idea of using “semantic” variable names instead of cell references, spreadsheet
systems like MS Excel allow the developer to manually assign names to cells
or areas to make the spreadsheets more comprehensible.

5. Static Analysis and Reports

Static code analysis or reporting-based approaches analyze the formulas
of the spreadsheets and show possible faults or bad spreadsheet design that
can lead to faults in the future. In contrast to automated fault localization
approaches described in Section 7, the approaches in this category do not
use the values in cells or information from test cases to find errors. Instead,
they rather analyze the formulas themselves and the dependencies between
them, look at static labels, and determine other structural characteristics of
the spreadsheets.

5.1. Unit and type Inference

A major research topic in the last decade was related to “unit and type
inference” [46, 47, 48, 49, 50, 51, 52, 53, 54]. The main idea of these ap-
proaches is to derive information about the units of the input cells and use
this information to assess if the calculations in the formulas can be plausible
with respect to the units of the involved cells. To obtain information about

16

a cell’s unit, its headers can be used. Figure 2 shows an example illustrating
the idea [46]. The formulas in cell D3 and D4 can be considered legal. They
combine apples with oranges, which are both of type fruit. In contrast, C4
could be considered illegal, as cells with incompatible units are combined,
i.e., apples from May with oranges from June. With the help of such a unit
inference mechanism, the semantics of a calculation can be checked for er-
rors. The process of deriving the unit information from header cells is called
header inference.

A B C D
1 Fruit
2 Apple |Orange |Total
3 May g 11 =B3+C3
4 June 20 30 =BA+CA
5 =B3+C4

Figure 2: Unit inference example; adapted from [46].

The idea to use a unit inference system to identify certain kinds of poten-
tial errors was introduced by Erwig and Burnett in 2002 [46]. In their initial
approach, a cell could have more than one unit. However, this first work
provided no explicit procedures of how the header inference should be done.
In addition, there were some limitations regarding certain operators. Later
on, a header inference approach was proposed in [49], so that the system
could work without or with limited user interaction. Other improvements to
the basic approach including various forms of more sophisticated reasoning
were put forward in [47, 49, 51, 52, 53, 54]. In [53] and [54], for example,
the idea is to do a semantic analysis of the labels in order to map the labels
to known units of measurements. Based on this information, more precise
forms of reasoning about the correctness of the calculations become possible.
In contrast to the latter approaches based on semantic analysis of labels, in
the work described in [55] the assumption is that the user manually enters
the units and labels for the input cells and the system is then able to make
the appropriate inferences for the output cells.

The idea of considering relationships between headers (“is-a”, “has-a”),
a different reasoning strategy and a corresponding tool capable of process-
ing Excel documents were presented in [48] and [50]. The first work for this
approach [46] included no evaluation. A first small evaluation with 28 spread-
sheets was done in [49] to test the header inference and the error detection
mechanism. For both sets of spreadsheets the numbers of detected errors

17

and incorrect header and unit inferences were counted. The header and unit
inferences were checked by hand and the system showed good accuracy. Re-
garding error detection, the system was capable of finding errors in 7 student
spreadsheets. Since the total number of errors is not reported, no informa-
tion about the error detection rate is available. In later papers on the topic
including [53, 54, 56, 57], the systems were evaluated by comparing them
with previous approaches using the EUSES spreadsheet corpus [58]. Again,
the evaluation was done by counting and comparing the detected errors using
different approaches.

5.2. Spreadsheet smells

The term “spreadsheet smells” was derived from code smells in software
maintenance [59], where it is used for referring to bad code design. These
designs are not necessarily faults themselves, but can lead to faults during the
future development of the software, for example, when the software is to be
refactored or expanded. A typical example for a code smell is the duplication
of code fragments. If the same part of code is contained several times in
a program, it is usually better to place it into a function so that eventual
changes to the code fragment have only to be done once. Duplicated code in
addition makes the code harder to read.

Spreadsheet smells are a comparably recent topic in spreadsheet research.
Hermans and colleagues were among the first to adapt the concept of code
smells to the spreadsheet domain, see, e.g., [60, 61, 62]. Similar ideas have
already been proposed earlier in the context of spreadsheet visualization,
where heuristics were used to identify irregularities in spreadsheets [35, 42].

In general, spreadsheet smells are heuristics which describe bad designs
that can lead to errors when the spreadsheet is changed or when a new in-
stance of it is created with new input data. In [60], Hermans et al. propose
so-called “inter-worksheet smells”. These smells indicate bad spreadsheet
design based on the analysis of dependencies between different worksheets.
If, for example, a formula has too many references to another worksheet,
it probably should be moved to that worksheet. In addition to adapting
the code smells to the spreadsheet domain, Hermans et al. also introduced
metrics to discover these smells and a means to visualize them in their own
worksheet dependency visualization approach [29] (see Section 4.1). “For-
mula smells” were discussed in [61]. These smells represent bad designs of
individual formulas, e.g., when a formula is too complex. Later on, Hermans
et al. propose a method for finding data clones in a spreadsheet [62]. To

18

evaluate their spreadsheet smell approach, Hermans et al. performed both a
quantitative and a qualitative evaluation in [60]. For the quantitative evalu-
ation, the EUSES spreadsheet corpus was searched for the different types of
inter-worksheet spreadsheet smells to understand how frequent these smells
occur. In the qualitative evaluation, they identified smells in the spreadsheets
of 10 professional spreadsheet developers and discussed the smells with the
developers. The evaluation proved that the detected smells point to poten-
tial weaknesses in the spreadsheet designs. The same type of evaluation was
done for the formula smells in [61].

The work of Cunha et al. in [63] is also based on the idea of spreadsheet
smells. In contrast to the works by Hermans et al., they did not aim at
adapting known code smells but rather tried to identify spreadsheet-specific
smells by analyzing a larger corpus of spreadsheets.

5.3. Static analysis in commercial tools

Static analysis techniques are often part of commercial spreadsheet en-
vironments and spreadsheet auditing tools. As mentioned in Section 4.5,
MS Excel, for example, is capable of visualizing “suspicious” formulas. A
pre-defined set of rules is checked to determine if a formula is suspicious,
e.g., when it refers to an empty cell or when a formula omits cells in a re-
gion. Typical spreadsheet auditing tools such as the “Spreadsheet Detective”
[64]% also strongly rely on the identification of such suspicious formulas using
static analyses and produce corresponding reports. To identify these formu-
las, different heuristics are used, which can take the formula complexity into
account, e.g., by checking if there are multiple IF-statements. Other indi-
cators include duplicated named ranges or numbers quoted as text. Some
audit tools also comprise mechanisms to support spreadsheet evolution and
versioning, e.g., by listing the differences between two variants of the same
spreadsheet [65]. An in-depth analysis of these tools is however beyond the
scope of our work.

5.4. Discussion

The goal of static analysis techniques usually is to identify formulas or
structural characteristics of spreadsheets which are considered to be indi-
cators for potential problems. The accuracy of these methods depends on

Shttp:/ /www.spreadsheetdetective.com

19

the quality of the error detection heuristics or metrics that are used to de-
fine a smell. Generally, such static analysis tools represent a family of error
detection methods which can be found in commercial tools.

Type and unit systems go beyond pure analysis approaches and try to
apply additional inferencing to detect additional types of potential problems
and can be considered a lightweight semantic approach. While such infer-
encing techniques have the potential of identifying a different class of errors,
there is also some danger that they detect too many “false positives”.

From the perspective of the research methodology, both quantitative and
qualitative methods are applied in particular in the more recent works. Eval-
uations are done using existing document corpora and spreadsheets created
by students or professionals. However, a potential limitation when using the
EUSES corpus in that context is that the intended semantics of the formulas
which are considered faulty by a certain technique are for most formulas not
known. Thus, we cannot determine with certainty if the formula is actu-
ally wrong and the technique was successful. From the end-user perspective,
many results of a static analysis, e.g., code smells, can be quite easily com-
municated and explained to the user.

With respect to “smell” detection based on complex unit inference, Abra-
ham et al. [66] conducted a think-aloud study involving 5 subjects. One goal
of the study was to evaluate if the users would understand the underlying
concepts well enough to correct the errors reported by their tool. Their ob-
servations indicate that the subjects, who were trained on the topic before
the experiment, did understand how to interpret the feedback by the tool
and correct the unit errors without the need to understand the underlying
reasoning process.

6. Testing approaches

In professional software development processes, systematic testing is cru-
cial for ensuring a high quality level of the created software artifacts. Typ-
ically, testing activities are performed by different groups of people in the
various phases of the process; both manual as well as automated test proce-
dures are common. As non-professional spreadsheet developers mostly have
no proper education in Software Engineering, the testing process is assumed
to be much less structured and systematic. In addition, the developer in
many cases might be the only person that performs any tests.

20

Given the immediate-feedback nature of spreadsheets, testing can be done
by simply typing in some inputs and checking if the intermediate cells and
output cells contain the expected values. Commercial spreadsheet tools such
as MS Excel do not provide any specific mechanisms to the user for storing
such test cases or running regression tests. Furthermore, these tools do not
help the developer assess if a sufficient number of tests has been made. In
the following, we review approaches that aim at transferring and adapting
ideas, concepts, tools and best-practice approaches from standard software
testing to the specifics of spreadsheet development.

6.1. Test adequacy and test case management

A number of pioneering works in this area have been done by the re-
search group of Burnett, Rothermel and colleagues at Oregon State Univer-
sity. Already in 1997, they discussed test strategies and test-adequacy cri-
teria for form-based systems and later on proposed a visual and incremental
spreadsheet testing methodology called “What You See Is What You Test”
(WYSIWYT) [67, 14, 68]. During the construction of the spreadsheet, the
user can interactively mark the values of some derived cells to be correct for
the currently given inputs. Based on these tests, the system determines the
“testedness” of the spreadsheet. This is accomplished through an automatic
evaluation of a test adequacy criterion which is based on an abstract model of
the spreadsheet, spreadsheet-specific “definition-use” (du) associations and
dynamic execution traces. Later on, several improvements to this approach
were proposed, such as scaling it up to large homogeneous spreadsheets that
are often found in practice, adding support for recursion, or dealing with
questions of test case reuse [69, 70, 71, 72]. The approach was ported from
Forms/3 to Microsoft Excel with additional support of special features such
as higher-order-functions and user defined functions [73]. In [74], Randolph
et al. presented an alternative implementation of the WYSIWYT approach,
which was designed in a way that it can be used in combination with different
spreadsheet environments.

In [68], the results of a detailed experimental evaluation of the basic ap-
proach are reported whose aim was to assess the efficacy of the approach and
how “du-adequate” test suites compare to randomly created tests. In their
evaluations, they used 8 comparably small spreadsheets, in which experi-
enced users manually injected a single fault. Then, a number of du-adequate
and random pools of test cases were created. The analysis of applying these
tests among other things revealed that the du-adequate pools outperformed

21

random pools of the same size in all cases with respect to their ability of
detecting the errors. A further study involving 78 subjects in which the
efficiency and effectiveness of the approach was tested is described in [75].

6.2. Automated test case generation

When using the WYSIWY'T approach, the spreadsheet developer receives
feedback about how well his or her spreadsheet is tested. Still, the developer
has to specify the test cases manually. To support the user in this process,
Fisher et al. proposed techniques for the automated generation of test cases
(76, 77].

In these works, two methods for generating values for a test case were
evaluated. The “Random” method randomly generates values and checks
if their execution uses a path of a so far unvalidated definition-use pair.
The second, goal-oriented method called “Chaining” iterates through the
unvalidated definition-use pairs and tries to modify the input values in a way
that both the definition and the use are executed. If the generation of input
values for a new test case is successful, the user only has to validate the output
value to obtain a complete test case. To assess the effectiveness and efficiency
of their approach an offline simulation-based study without real users based
on 10 comparably small spreadsheets containing only integer type cells was
performed [77]. The results clearly showed that the “Chaining” method was
more effective than the “Random” method.

In [78], the AutoTest tool was presented, which implements a different
strategy for automatic test case generation and uses constraint solving to
search for values that lead to the execution of the desired definition-use pairs.
This method is guaranteed to generate test cases for all feasible definition-
use pairs. The method was compared with the previously described method
from [77] using the same experimental setup and showed that AutoTest was
both more effective and could generate the test cases faster.

6.3. Assertion-based testing

A very different approach for users to test and ensure the validity of their
spreadsheets was presented by Burnett et al. in [79]. In this work, the concept
of assertions, which can be found in some imperative languages, was trans-
ferred to spreadsheets. Assertions in the spreadsheet domain (called “guards”
here) correspond to statements about pre- and post-conditions about allowed
cell values in the form of Boolean expressions. The assertions are provided by
the end user through a corresponding user-oriented tool and automatically

22

checked and partially propagated through the spreadsheet in the direction
of the dataflow. Whenever a conflict between an assertion and a cell value
or between a user given and a propagated assertion is detected, the user is
pointed to this problem through visual feedback.

In [79] and [80] different controlled experiments were performed to evalu-
ate the approach. The experimental setup in [79] consisted of a spreadsheet
testing and debugging exercise in which 59 subjects participated. About half
of the subjects were using an “assertion-enabled” development environment,
whereas the other group used the same system without this functionality.
The analysis revealed that assertions helped users to find errors both more
effectively and efficiently across a range of different error types. A post-
experiment questionnaire furthermore showed that the users not only under-
stood and liked using the assertions but that assertions are also helpful to
reduce the users’ typical over-confidence about the correctness of their pro-
gram. Ways of how to extend the concept of guards to multiple cells were
discussed in [81]; a small think-aloud study indicated that such mechanisms
must be carefully designed as the expectations around the reasoning behind
such complex guards was not consistent across users.

6.4. Test-driven spreadsheet development

Going beyond individual techniques for test case management and test
case generation, McDaid et al. in [82] address the question if the principle
of test-driven development (TDD), which received increased attention in the
Software Engineering community, is applicable in spreadsheet development
processes. Following this principle, the user iteratively creates test cases first
that define the intended spreadsheets functionality and writes or changes
formulas afterwards to fulfill the test. This continuing and systematic form
of testing shall help to minimize the number of faults that remain in the final
spreadsheet.

In their work, the authors argue that spreadsheets are well suited for
the TDD principle and present a prototype tool. To evaluate the approach,
4 users with different background in spreadsheet expertise and TDD were
asked to develop different spreadsheets and corresponding test cases. From
the subsequent interviews, the authors concluded that the approach is easy
to use and most of the participants stated that the approach is beneficial,
even if the required time for the initial development increased measurably.

23

6.5. Discussion

One of the major problems of end-user programs is that they are usually
not rigorously tested. As demonstrated through various experimental studies,
better tool support during the development process helps users to develop
spreadsheets with fewer errors. However, commercial spreadsheet systems
contain limited functionality in that direction. MS Excel only provides a
very basic data validation tool for describing allowed types and values for
individual cells, which can be seen as a form of assertions.

One problem in that context lies in the design of user interfaces for test
tools that are suitable for end users. While in-depth evaluations of the ef-
fectiveness of the test case generation or test adequacy were performed as
described above, the number of experiments regarding usability aspects with
real users is still somewhat limited. Another main issue is the limited aware-
ness of end users regarding the importance and value of thorough testing and
their overconfidence in the correctness of the programs. More research about
how to stimulate users to provide more information to the QA process in the
sense of [80] is therefore required.

In that context, a better understanding is required in which ways spread-
sheet developers actually test their spreadsheets or would be willing to at
least partially adopt a test-driven development principle. In [83], Hermans
made an analysis based on the EUSES corpus which revealed that there are a
number of users who add additional assertions in the form of regular formulas
to their spreadsheets. These assertions or tests are however often incomplete
and have a low coverage, which led the author to the development of an
add-on tool that automatically points the user to possible improvements for
such user-specified assertions.

The application of mutation testing techniques to spreadsheet programs
was discussed in [84]. Mutation testing consists of introducing small changes
to a given program and checking how many of these mutants can be elim-
inated by a given set of tests. In their work, Abraham and Erwig propose
a set of mutation operators for spreadsheets where some of them are based
on operators that are used for mutating general-purpose languages and some
of them are spreadsheet-specific. Generally, mutations can be used to test
the coverage or adequacy of manually or automatically created test suites.
In the broader context of fault detection and removal, they can however also
be used to evaluate debugging approaches as was done in the spreadsheet
literature, e.g., in [85, 86, 87] or [88].

24

7. Automated Fault Localization & Repair

The approaches in this category address scenarios in the development
process, in which the spreadsheet developer enters some test data in the
spreadsheet and observes unexpected calculation results in one or more cells.
Such situations arise either during the initial development or when one of the
above-mentioned test methodologies is applied. Already for medium-sized
spreadsheets, the set of possible “candidates” that could be the root cause
of the unexpected behavior can be large, in particular when the spreadsheet
consists of longer chains of calculations that involve many of the spreadsheet’s
cells. Without tool support, the user would have to inspect all formulas on
which the cell with the erroneous value depends and check them for correct-
ness. The goal of most of the approaches in this category therefore is to assist
the user in locating the true cause of the problem more efficiently, in many
cases by ranking the possible error sources (candidates). Some of the ap-
proaches even go beyond that and try to compute a set of possible “repairs”,
i.e., changes to some of the formulas to achieve the desired outcomes. In
contrast to static code analysis and inspection approaches, the basis for the
required calculations usually comprises a specification of input values and
expected output values or test cases.

7.1. Trace-based candidate ranking

An early method for candidate ranking which has some similarities to
spectrum-based fault localization methods for imperative programs was pre-
sented by Reichwein et al. in [89] and [90]. In their method, they first
propose to transfer the concept of program slicing to spreadsheets in order
to eliminate impossible candidates in an initial step. Their technique uses
user-specified information about correct and incorrect cell values and consid-
ers those cells that theoretically contribute to an erroneous cell value to be
possibly faulty. A cell’s formula is more likely to be faulty, if it contributes
to more values that are marked as erroneous. Similarly, a formula is more
likely to be correct if it contributes to more correct cell values. If a cell
contributes to an incorrect cell value but the path to it is “blocked” by a
cell with a correct value, its fault likelihood is assumed to be somewhere
in between. In later works [91, 92], in which besides two further heuristics
for fault localization a deeper analysis of the method’s effectiveness factors
were discussed, this technique is called “Blocking Technique”. The “Block-
ing Technique” was evaluated in a user study involving 20 subjects in [90].

25

The task of the participants, which were split into two groups of equal size,
was to test a given spreadsheet. Both groups were using a tool that imple-
mented the WYSIWYT approach. One group additionally had the described
fault localization extension activated. An interview after the experiment and
the analysis of the experiment data showed — among other aspects — that
most users appreciated the possibility to use the fault localization and they
considered it to be particularly useful to locate the “harder” faults.

A similar technique was proposed by Ayalew and Mittermeir in [93], where
for a faulty cell value the cells are highlighted that have the most influence on
it. Later on, Hofer et al. in [87] explicitly proposed to adapt spectrum-based
fault-localization from the traditional programming domain to spreadsheets.
In contrast to previous works, they use a more formal approach with simi-
larity coefficients to calculate the fault probabilities of the spreadsheet cells.
They evaluated their version of spectrum-based fault localization for spread-
sheets on a subset of the EUSES spreadsheet corpus and compared the fault
localization capabilities of spectrum-based fault localization to those of two
model-based debugging approaches (see Section 7.2).

7.2. Constraint-based fault localization

The following approaches translate a spreadsheet into a constraint-based
representation, such that additional inferences about possible reasons for an
unexpected value in some of the cells can be made.

In [94], Jannach and Engler presented an approach in which they first
translated the spreadsheet into a Constraint Satisfaction Problem (CSP)[95].
Then, based on user-specified test cases and information about unexpected
values in some of the cells, they used the principle of Model-Based Diagno-
sis (MBD) to determine which cells can theoretically be the true cause for
the observed and unexpected calculation outcomes. With their work, they
continue a line of research in which the MBD-principle, which was originally
designed to find problems in hardware artifacts, is adapted for software de-
bugging, see, e.g., [96] or [97]. Technically, an approach similar to [97] was
adopted, which is capable of dealing with multiple “positive” and “negative”
test cases and at the same time supports the idea of user-provided assertions.

In a first evaluation with relatively small artificial spreadsheets contain-
ing a few dozen formulas, it was shown that the approach is — depending
on the provided test cases — able to significantly reduce the number of fault
candidates. Later on, the method was further improved and optimized and

26

embedded in the EXQUISITE debugging tool for MS Excel [98]. An evalua-
tion of the enhanced version on similar examples showed significant enhance-
ments with respect to the required calculation time. Mid-sized spreadsheets
containing about 150 formulas and one injected fault could for example be
diagnosed within 2 seconds on a standard laptop computer.

In a later work [88], different algorithmic improvements were proposed
which helped to increase the scalability of the approach. The method was
evaluated using a number of real-world spreadsheets in which faults where
artificially injected. Furthermore, a small user study in the form of a debug-
ging exercise was conducted, which indicated that the users working with the
EXQUISITE tool were both more efficient and effective than the group that
did a manual inspection. The size of the study was however quite small and
involved only 24 participants.

A similar approach for finding an explanation for unexpected values using
a CSP representation and the MBD-principle has been proposed by Abreu
et al. in [99] and [100]. While the general idea is similar to the approach
of Jannach and Engler, the technical realization is slightly different. Instead
of using the Hitting-Set Algorithm [101], they encode the reasoning about
the correctness of individual formulas directly into the constraint representa-
tion. Therefore, they make use of an auxiliary boolean variable for each cell
representing the correctness of the cell’s formula. Another difference of this
approach compared to the work of Jannach and Engler is that Abreu et al.
rely on a single test case only. The method was evaluated using four compa-
rably small and artificial spreadsheets for which the algorithm could find a
manually injected fault very quickly (taking at most 0.17 seconds). In [102],
AufBerlechner et al. evaluated this constraint-based approach using different
SMT7 and constraint solvers. For their evaluation, they created a special
document corpus which both comprised spreadsheets that contain only inte-
ger calculations as well as a subset of the EUSES corpus with real number
calculations. Their evaluation showed that the debugging approach of Abreu
et al. can be used to find faults in medium-sized spreadsheets in real-time
and that the approach is capable of debugging spreadsheets containing real
numbers.

In [87], Hofer et al. propose to combine their spectrum-based fault local-
ization approach with a light-weight Model-Based Software Debugging tech-

"Satisfiability Modulo Theories

27

nique. In particular, Hofer et al. suggest to use the coefficients obtained from
the SFL technique as initial probabilities for the model-based debugging pro-
cedure. To evaluate the effectiveness of their hybrid method, they compared
their approach to a pure spectrum-based approach and a constraint-based
diagnosis approach. In their experiments, spreadsheets from the EUSES
spreadsheet corpus were mutated using a subset of the mutation operators
proposed in [84]. Overall, 227 mutated spreadsheets containing from 6 to
over 4,000 formulas were used in the comparison. The results showed that
the combined approach led to a better ranking of the potentially faulty cells,
but was slightly slower than the pure SFL method.

7.3. Repair approaches

Repair-based approaches do not only point the users to potentially prob-
lematic formulas, but also aim to additionally propose possible corrections to
the given formulas in a way that unexpected values in cells can be changed
to the expected ones.

A first method for automatically determining such change suggestions
(“goal-directed debugging”) was presented by Abraham and Erwig in [85]. In
their approach, the user states the expected value for an erroneous cell and
the method computes suitable change suggestions by recursively changing
individual formulas and propagating the change back to preceding formulas
using spreadsheet-specific change inference rules. The possible changes that
yield the desired results are then ranked based on heuristics. A revised
and improved version of the method (“GoalDebug”) that is better suited
to address different (artificial) spreadsheet fault types discussed in [84], was
presented in [103]. Later on, GoalDebug was combined with the AutoTest
approach (see Section 6) to further improve the debugging results with the
help of more test cases and other testing-related information [104].

To test the usefulness of their initial proposal [85], a user study with
51 subjects inspecting 2 spreadsheets with seeded faults was conducted. Dur-
ing the study, the subjects had to locate the faults using the WYSIWY'T
approach (see Section 6.1) but without the goal-directed method. The exper-
iment revealed that the users made many mistakes when testing the spread-
sheets and that the proposed approach could have prevented these mistakes.
Furthermore, all the seeded faults were located with their approach.

GoalDebug was evaluated later on using an offline experiment where faults
were injected into spreadsheets using a set of defined mutation operators.
For the experiment, 7500 variants of 15 different spreadsheets with up to 54

28

formulas and 100 cells [84] were created and analyzed. The baseline for their
evaluation was their own previous version of the method. The evaluation
showed that GoalDebug was able to deal with all 9 defined mutation types
and had a “success rate” of finding a correct repair of above 90 %, which was
much better than the original version of the method.

7.4. Discussion

The effectiveness of the debugging techniques reviewed in this section was
mostly assessed using evaluation protocols in which certain types of faults
were artificially seeded into given spreadsheets. The evaluations showed that
the proposed techniques either lead to good rankings (of candidates or repair
suggestions) or are able to compute a set of possible explanations. However,
the spreadsheets used in the experiments often were small and the scalabil-
ity of many approaches remains unclear. Besides, most of the approaches
were evaluated with a non-public set of spreadsheets. Therefore, a direct
comparison of the approaches is difficult. In addition, the constraint-based
approaches are often limited to small spreadsheets and integer calculations.

Unfortunately, “oracle faults” are usually not discussed in the described
approaches: For all approaches, the spreadsheet developer has to provide
some information, e.g., the expected outcomes or which cells produce a
correct output and which cells are erroneous. Most of the approaches are
evaluated assuming a perfect user knowing every expected value. However,
the spreadsheet developer often does not know all the required information
or might accidentally provide wrong values. Further empirical evaluations
should therefore consider vague or partly wrong user input.

For some of the proposed techniques, plug-in components for MS Excel
have been developed, including [103] and [98], see Figure 3. Usability aspects
of such tools have however not been systematically explored so far and it is
unclear if they are suitable for an average or at least ambitious spreadsheet
developer. More research in the sense of [105], where Parnin and Orso eval-
uated how and to which extent developers actually use debugging tools for
imperative languages, is thus required in the spreadsheet domain.

Debugging support in commercial spreadsheet systems is very limited.
Within MS Excel, one of the few features that support the user in the de-
bugging process is the “Watch Window” as shown in Figure 4. Similar to
debuggers for imperative programs, the spreadsheet developer can define
watchpoints — in this case by selecting certain cells — and the current values
of the cells are constantly updated and displayed in a compact form.

29

|| Debug session Test case

Diagnosis

Test case Debugging &
management diagnosis functions ——
@1 d9-c-= srosoft Ex -;
“ Home Insert Page Lyfout Formulas Data Review View Exquisite LogaTest Team c@o @R
- (S Mew Test cases: testl ~ Currenttest case: testl |2 Export ,’gr; T, X settings i Trace Precedents B Show Formulas @
Esave [Fopen # Import N | M Export XML | &2 Trace Dependents (&) Evaluate Formula
Exit Testcase Start Stop Watch
Exquisite Model | b Save as [Delete &. Remove Amows button1 Window

Exquisite Utilities

‘l T18 hd -

£ | =59+510+5114512+51345144515

B c D E. F 6 _ H | Pl a &r s T U | Exquisite Test Case Modeling Pane v X
: Test Case D, Global D:
3 Company calculation sheet 2012 et
a Global Ranges | Faults | Comect Fommulas
)
6 @ New | X
" Tabele1!C3:D16
7 |Production costs Sales numbers Totals per product and year| || Tabete1#5a15
8 | Product Prod.cost/pc Cost Jan__ Feb Nov Dec Total Sales Prod. cost {ﬁl:?gﬂg
9 A 86| ;MW:US:UIS
ol C Rl
L5 86
16 H 172|
17
18
19
% Cell & formula
z| Visual indicators information
2] } I
KR | [e |] > Em
Exquisite debug v x
()
| Summary | Technical Log | Problems (2) | Diagnosis Resus|
State Description Type Test case
& The cell has no value bounds. Global data Problem
A& The cell has no value bounds. Global data Problem
< \ i »
\
"

Reay | . Openissues & | '

results

Completeness
indicator

Figure 3: Debugging workbench of the EXQUISITE system [98]

8. Model-driven development approaches

In contrast to the approaches described in previous chapters, model-
driven development approaches were not primarily designed to support the
user in finding potential errors, but rather to improve the quality and struc-
ture of the spreadsheets and to prevent errors in the first place. Similar to
model-driven approaches in the area of general software development, the
main idea of these approaches is to introduce another layer of abstraction in
the development process. Typically, the spreadsheet models in this interme-
diate layer introduce more abstract conceptualizations of the problem and
thus serve as a bridge between the implicit idea, which the developer had of

30

1 10 10 20

2 30 a2 104

3 45 33 33

4 Sum 85 as

E Watch Window v X
3 Add Watch... % Delete Watch

6 Total 180

7 Book Sheet Mame Cell value Formula

8 Figures.xlsx Example ColumnC C4 95 =sUM{C1:C3)

9 Figures.xlsx Example ColumnB B4 85 =SUM{B1:B3)

10

11

12

Figure 4: MS Excel’s watch window for cell value inspection

the spreadsheet, and the actual implementation. This way, the semantic gap
between the intended idea and the spreadsheet implementation, which can
become large in today’s business spreadsheets [106], can be narrowed.

The abstract spreadsheet models proposed recently in the literature are
used in two different phases in the development process. First, they are used
as a form of “code-generators”. In this scenario, parts of the spreadsheets
are automatically generated from the models, thus reducing the risk of me-
chanical errors. Second, they are used to recover the underlying conceptual
structures from an existing spreadsheet, which is similar to existing reverse
engineering approaches in general software development. Following our clas-
sification scheme from Section 3, model-driven development approaches are
therefore usually related to design and maintenance approaches, which we
will discuss later on.

8.1. Declarative and object-oriented spreadsheet models

Isakowitz et al. were among the first to look at spreadsheet programs
from a modeling perspective [38]. In their work, their main premise is that
spreadsheet programs can be viewed at from a physical and a logical view-
point, the physical being the cell’s formulas and values and the logical be-
ing a set of functional relations describing the spreadsheets functionality.
In their approach, spreadsheets consist of four principal components, among
them the “schema” which captures the program’s logic and the “data” which
holds the values of the input cells. With the help of tools, this logic can
be automatically extracted from a given spreadsheet and represented in a

31

tool-independent language. In addition, the proposed system is capable of
synthesizing spreadsheets from such specifications.

A similar object-oriented conceptualization of spreadsheet programs was
presented later on by Paine in [107] and [108]. In the Model Master approach,
spreadsheets are specified in a declarative way as text programs. These
programs can then be passed to a compiler, which generates spreadsheets
from these specifications. The logic of a spreadsheet is organized in the
sense of object-oriented programming in the form of classes which encapsulate
attributes and the calculation logic, see Figure 5. The comparably simple
modeling language comprises a number of features including inheritance or
multi-dimensional arrays to support tabular calculations.

company = attributes <
incomings [1995:2004]
outgoings [1995:2004]
profit [1995:2004]
>

where
profit[all t] = incomings[t] - outgoings[t]

Figure 5: A class specification in Model Master [107].

Beside the automatic generation of spreadsheets from these models, the
system also supports the extraction (reconstruction) of models from spread-
sheets, which however requires the user to provide additional hints. The
extracted models can be checked for errors or used as a standard for spread-
sheet interchange. Particular aspects of structure discovery are discussed in
[109]8.

To validate the general feasibility of the approach, different experiments
were made in which small-sized spreadsheets were generated. The test cases
used for model reconstruction were even smaller. Unfortunately and similar
to the earlier work of Isakowitz et al. [38], no studies with real users were
performed so far to assess the general usability of the approach at least for

8The work of Lentini et al. [39] is also based on the automatic extraction of the
mathematical model of a given spreadsheet and a Prolog-based representation. However,
their work rather focuses at the generation of a tutoring facility for a given spreadsheet
and is thus only marginally relevant for our review.

32

advanced spreadsheet developers.

Paine described a different approach for a declarative modeling language
in [110]. Euxcelsior is a spreadsheet development system which comprises a
programming language built on Prolog and which is designed for the modular
and re-usable specification of Excel spreadsheets. In addition to the stan-
dard functionality of Prolog, the programming language comprises specific
constructs and operators to model the logic of a spreadsheet in a modular
form. An example for such a specification is given in Figure 6. Based on
such a design, the layout of the spreadsheet can be separated from its func-
tionality and a compiler can be used to automatically generate a spreadsheet
instance from these specifications.

Year[2000] = 2000

Year[2001] = 2001

Sales[2000] = 971

Sales[2001] = 1803

Expenses[2000] = 1492

Expenses[2001] = 1560

Profit[2000] = Sales[2000] - Expenses[2000]
Profit[2001] = Sales[2001] - Expenses[2001]
Layout Year[2000:] as A2 downwards

Layout Expenses[2000:] as B2 downwards
Layout Sales[2000:] as C2 downwards

Layout Profit[2000:] as D2 downwards

Figure 6: A spreadsheet specification in Fzcelsior [110].

In [111], the functionality of the Excelsior system was tested on a larger
spreadsheet. The task was to extract a model, i.e., the logical structure, of a
spreadsheet with 10,000 cells and then apply several changes to it with the
help of Fxcelsior. After model extraction, refactoring was found to be very
easy in Fxcelsior, as only parameters had to be changed to generate a refac-
tored and adapted spreadsheet. However, the extraction of the model was
only semi-automatic and according to the authors took 2 days to complete.
Moreover, no systematic evaluation to test the usability of this approach for
average spreadsheet users was done.

33

8.2. Spreadsheet templates

In contrast to the works of Paine and colleagues, Erwig et al. proposed
to rely on a wvisual and template-based method to capture certain aspects
of the underlying model of a spreadsheet [112, 113, 114]. A “template” in
their Gencel approach can in particular be used to specify repetitive areas
in a spreadsheet. Figure 7 shows an example of a template specification.
The design of the template can be done using a visualization that is similar
to the typical UI paradigm of spreadsheet systems like MS Excel. In the
example, the contents below the column headers B,C, and D are marked
as being repetitive. In the model, this is indicated by the missing vertical
separator lines between the column headers and the “...”-symbols between
column and row headers.

A | B C D || E | F
1 2013 Total
2 |Product Price Sales Revenue Sales Revenue
3 |A 0 0 =B3*C3 =Sum(C3) =Sum({D3)
4 |Total =Sum(C3} =Sum(D3) =Sum({E3) =Sum(F3)

Figure 7: Spreadsheet template example; adapted from [114].

Similar to Paine’s work, spreadsheet instances can be automatically gen-
erated from models. The generated spreadsheets can furthermore be altered
later on in predefined ways. The supported operations include the addi-
tion or removal of groups of repetitive areas and value updates. Another
feature of their approach is the use of a type system. The template-based
approach also supports a reverse engineering process and the automatic re-
construction of templates from a given spreadsheet using certain heuristics
[115]. To evaluate their approach, the authors discussed it in terms of the
“Cognitive Dimensions of Notations” framework [116, 117] and conducted
a small think-aloud study with 4 subjects [112]. Unfortunately, two of the
subjects could not complete the spreadsheet development exercise because of
technical difficulties; the spreadsheet created by the other participants were
however error-free.

The template extraction method was evaluated in [115] with the help of
a user study and a sample of 29 randomly selected spreadsheets of the EU-
SES spreadsheet corpus. The 23 participating users — 19 novice and 4 expert

34

users — were asked to manually create templates for the selected spreadsheets.
These manually created templates were then compared with the automati-
cally extracted ones with respect to their correctness. The analysis revealed
that the automatically generated templates were of significantly higher qual-
ity than the manually created ones and that even expert users had problems
to correctly identify the underlying patterns of the spreadsheets.

8.3. Object-oriented visual models

As a continuation and extension to the template-based approach and in
order to address a wider range of error types, Engels and Erwig later on
proposed the concept of “ClassSheets” [118], which is similar to the work
of Paine [107] mentioned above in the sense that the paradigm of object-
orientation is applied to the spreadsheet domain.

Figure 8 shows an example of a ClassSheet specification, which uses a
visualization similar to MS Excel. The different classes are visually sep-
arated by colored rectangles and represent semantically related cells. In
contrast to the pure templates, the classes are not only syntactic structures
but rather represent real-world objects or business objects in the sense of
object-oriented software development. Beside the visual notation, the mod-
eling approach comprises mechanisms to address the modeled objects rather
through symbolic class names than through direct cell references.

Similar to the template-based approach described above, prototype tools
were developed that support both the automated generation of spreadsheets
from the models and the extraction of ClassSheet models from existing
spreadsheets [119].

A B | € D E | ==] F G
1 Jincome Year Total
T2 | year =2013
3 |Product Name Price Sales Revenue Sales Revenue
z name ="A" |price =0 sales=0 revenue = price * sales sales = SUM(sales) revenue = SUM(revenue)
5 |rotal sales = SUM(sales) revenue =SUM(revenue) sales =SUM(Product.total) revenue = SUM(Product.revenue)

Figure 8: ClassSheet example; adapted from [118].

In the original paper in which ClassSheets were proposed and formalized
[118], no detailed evaluation of the approach was performed. The automated
extraction approach proposed in [119] was evaluated using a set of 27 spread-
sheets, which contained 121 worksheets and 176 manually identified tables.
According to their analysis, their tool was able to extract models from all but

35

13 tables. The 163 extracted models were then manually inspected. Only 12
of the models were categorized as being “bad*” and 27 as being “acceptable”.
The remaining 124 models were found to be “good”.

A number of extensions to the basic ClassSheet approach were later on
proposed in the literature. In [106], Luckey et al. addressed the problem
of model evolution and how such updates can be automatically transferred
to already generated spreadsheets to better support a round-trip engineer-
ing process. The same problem of model evolution and the co-evolution of
the model and the spreadsheet instances was addressed by Cunha et al. in
(120, 121]. In [122], Cunha et al. proposed an approach to support the other
update direction — the automatic transfer of changes made in the spread-
sheet instances back to the spreadsheet model. Further extensions to the
ClassSheet approach comprise the support of primary and foreign keys as
used in relational designs, the generation of UML diagrams from ClassSheet
models to support model validation or mechanisms to express constraints on
allowed values for individual cells [123, 124]. For most of these extensions,
no systematic evaluation has been done so far.

A different, in some sense visual approach to re-construct the underly-
ing (object-oriented) model was proposed by Hermans et al. in [125]. Their
approach is based on a library of typical patterns, which they try to lo-
cate in spreadsheets with the help of a two-dimensional parsing and pattern
matching algorithm. The resulting patterns are then transformed into UML
class diagrams, which can be used to better understand or improve a given
spreadsheet. For the evaluation of their prototype tool, they first checked the
plausibility of their patterns by measuring how often they appear in the EU-
SES corpus. Then, for a sample of 50 random spreadsheets, they compared
the quality of generated class models with manually created ones, which led
to promising results.

8.4. Relational spreadsheet models

One of the main principles of most spreadsheets is that the data is orga-
nized in tabular form. An obvious form of trying to obtain a more abstract
model of the structure of a spreadsheet is to rely on approaches and princi-
ples from the design of relational databases. With the goal of ending up in
higher-quality and error-free spreadsheets, Cunha et al. in [126] proposed to
extract a relational database schema from the spreadsheet, which shall help
the user to better understand the spreadsheet and which can consequently
be used to improve the design of the spreadsheet. The main outcome of such

36

a refactoring process should be a spreadsheet design which is more modu-
lar, has no data redundancies and provides suitable means to prevent wrong
data inputs. With respect to the last aspect, Cunha et al. in [127, 128]
proposed to use the underlying (extracted) relational schema to provide the
user with advanced editing features including the auto-completion of values,
non-editable cells and the safe deletion of rows.

In the original proposal of Cunha et al. [126], no formal evaluation of
the approach was performed. An evaluation of the model-based approaches
proposed in [127] and [126] was however done later on in [129]. In this
user study, the goal was to assess if relying on the proposed methods can
actually help to increase the effectiveness and efficiency of the spreadsheet
development process. The participants of the study had to complete different
development tasks and these tasks had to be done either on the original
spreadsheet designs or on one of the assumedly improved ones. The results of
the experiment unfortunately remained partially inconclusive and the results
were not consistently better when relying on the model-based approaches.

To evaluate the advanced editing features mentioned in [128], a prelimi-
nary experiment using a subset of the EUSES spreadsheet corpus was done in
that work. The initial results indicate that the tool is suited to provide help-
ful editing assistance for a number of spreadsheets; a more detailed study
about potential productivity improvements and error rates has so far not
been done.

8.5. Discussion

The model-driven development approaches discussed in this section aim to
introduce additional syntactic or semantic abstraction layers into the spread-
sheet development process. Overall, these additional mechanisms and con-
ceptualizations shall help to close the semantic gap between the final spread-
sheet and the actual problem in the real world, lead to higher quality levels
in terms of better designs and fewer errors, and allow easier maintenance.
Going beyond many model-driven approaches for standard software artifacts,
automated “code” generation and support for round-trip engineering are par-
ticularly in the focus of spreadsheet researchers.

However, following a model-based approach comes with a number of chal-
lenges, which can also be found in standard software development processes.
These challenges for example include the problem of the co-evolution of mod-
els and programs. Furthermore, the design of the modeling language plays an

37

important role and often a compromise between expressivity and comprehen-
sibility has to be made. A particular problem in that context certainly lies in
the fact that the spreadsheet designers usually have no formal I'T education
and might have problems understanding the tools or the long-term advan-
tages of better abstractions and structures. Furthermore, one of the main
reasons of the popularity of spreadsheets lies in the fact that no structured
or formal development process is required and people are used to develop
spreadsheets in an ad-hoc, interactive and incremental prototyping process.

From a research perspective, many of the discussed papers only contain
a preliminary evaluation or no evaluation at all. Thus, a more systematic
evaluation and more user studies are required to obtain a better understand-
ing if the proposed models are suited for typical spreadsheet developers and
if they actually help them to develop spreadsheets of higher quality.

In current spreadsheet environments like MS Excel, only very limited
support is provided to visually or semantically enrich the data or the calcu-
lations. One of the few features of adding semantics in a light-weight form is
the assignment of symbolic names to individual cells or areas, which increases
the readability of formulas. In addition, MS Excel provides some features
for data organization including the option to group data cells and hide and
display them as a block.

9. Design and maintenance support

The following approaches support the user in the development and main-
tenance processes. These approaches range from tools whose goal is to avoid
wrong references over the handling of exceptional behavior to tools support-
ing the long-term use of spreadsheets (e.g., change-monitoring tools, add-ins
for automatic refactoring and approaches that handle the reuse of formu-
las). All these tools play an important role in spreadsheet quality assurance
as their goal is to avoid faults either by means of a clear and simple rep-
resentation, by automation or by dealing with certain types of exceptional
behavior.

9.1. Reference management

A major drawback of common commercial spreadsheet tools is that they
provide limited support to ensure the correctness of cell references across the
spreadsheet, e.g., because names of referenced cells do not carry semantic
information about the content. Users often reference the wrong cells because

38

they make off-by-one mistakes when selecting the referenced cell or acciden-
tally use relative references instead of absolute references. Identifying such
wrong references can be a demanding task. Even though systems like MS
Excel support named cells and areas, most spreadsheet developers use the
numbered and thus abstract cell names consisting of the row and column
index.

Early approaches to address this problem — including NOPumpG [130,
131] and Action Graphics [132] — propose to give up the grid-based paradigm
of spreadsheets and force the user to assign explicit names to the “cells”.
WYSIWYC (“What you see is what you compute”) [133] is an alternative
approach which retains the grid-based paradigm and proposes a new visual
language for spreadsheets. The approach shall help to make the spreadsheet
structures, calculations and references better visible and thus lead to a better
correspondence of a spreadsheet’s visual and logical structure. This should
help to avoid errors caused by wrong cell references.

Unfortunately, while prototype systems have been developed, none of
the above mentioned techniques have been systematically evaluated, e.g.,
through user studies. Therefore, it remains unclear if end users would be
able to deal with such alternative development approaches and to which
extent the problem of wrong cell references would actually be solved.

Finally, note that some problems of wrong cell references can be guar-
anteed to be avoided when (parts of) the spreadsheets are automatically
generated from templates or visual models as done in the Gencel [112] and
ClassSheet [118] approaches, see Section 8.2 and 8.3. In these systems, cer-
tain types of errors including reference errors can be avoided as only defined
and correct update operations are allowed.

9.2. FException Handling

The term exception handling refers to a collection of mechanisms support-
ing the detection, signaling and after-the-fact handling of exceptions [134].
Exceptions are defined as any unusual event that may require special process-
ing [135]. Being aware of possible exceptional situations and handling them
accordingly is an important factor to improve the quality of spreadsheets and
making them more robust.

In [134], Burnett et al. propose such an approach to exception handling
for spreadsheets. In their paper, they show that the error value model can
be used for easy and adequate exception handling in spreadsheets. In the
error value model, error messages (like #DIV/0 in MS Excel) are returned

39

instead of the expected values. The advantage of the approach using error
values is that no changes to the general evaluation model in the spread-
sheet paradigm are necessary. Exception handling approaches for imperative
paradigms, in contrast, usually alter the execution sequence, which is not
the case for spreadsheets with their static evaluation order. In addition, no
special skills are required by the spreadsheet developers for exception preven-
tion and exception handling as they can use the standard language operators
(e.g., the if-then-else construct). What makes the approach of Burnett et
al. different from the typical error value model in systems like MS Excel is
that it supports customizable error types the end user can define to handle
application-specific errors. Burnett et al. implemented their exception han-
dling approach in the research system Forms/3. However, no evaluation with
real users was done.

9.3. Changes and spreadsheet evolution

Spreadsheets often undergo changes and, unfortunately, changes often
come with new errors that are introduced. FormulaDataSleuth [136] is a
tool aimed to help the spreadsheet developer to immediately detect such
errors when the spreadsheet is changed. Once the developer has specified
which data areas and cells should be monitored by the tool, the system
will automatically detect a number of potential problems. For the defined
data areas, the tool can for example detect empty cells or input values that
have a wrong data type or exceed the predefined range of allowed values.
For monitored formula cells, accidentally overwritten formulas as well as
range changes leading to wrong references can be identified. The authors
demonstrate the usefulness of their approach by means of a running example.
A deeper experimental investigation is however missing.

Understanding how a given spreadsheet evolved over time and seeing
the difference between versions of a spreadsheet is often important when a
spreadsheet is reused in a different project. In [137], Chambers et al. propose
the SheetDiff algorithm, which is capable of detecting and visualizing certain
types of non-trivial differences between two versions of a spreadsheet. To
evaluate the approach, a number of spreadsheets from the EUSES corpus
were selected. Some of them were considered to be modified versions of
each other. For a number of additional spreadsheets, pre-defined change
types (e.g., row insertion) were applied. The proposed algorithm was then
compared with two commercial products. As measures, the correct change
detection rate and the compactness of the result presentation were used. The

40

results indicate that the new method is advantageous when compared with
existing tools.

Later on, Harutyunyan et al. in [138] proposed a dynamic-programming
based algorithm for difference detection called RowColAlign, which addressed
existing problems of the greedy SheetDiff procedure described above. Instead
of relying on manually selected or modified spreadsheets, a parameterizable
test case generation technique was chosen, which allowed the authors to
evaluate their method in a more systematic way.

9.4. Refactoring

Refactoring is defined as the process of changing the internal structure of
a program without changing the functionality [139]. Refactoring contributes
to the quality of spreadsheets in different ways, for example, by simplify-
ing formulas and thus making them easier to understand, and by removing
duplicate code thereby supporting easier and less error-prone maintenance.
Refactoring in the context of spreadsheets is often concerned with the rear-
rangement of the columns and rows, i.e., the transformation of the design
of the spreadsheet. Doing this transformation manually can be both time-
intensive and prone to errors. Accordingly, different proposals have been
made in the literature to automate this quality-improving maintenance task
and to thereby prevent the introduction of new errors.

Badame and Dig [140] identify seven refactoring measures for spread-
sheets and provide a corresponding plug-in for Microsoft Excel called REF-
Book. The plugin automatically detects the locations for which refactoring
is required and supports the user in the refactoring process. Examples for
possible refactoring steps include “Make Cell Constant”, “Guard Cell”, or
“Replace Awkward Formula”. Badame and Dig evaluated their approach
in different ways. In a survey involving 28 Excel users, the users preferred
the refactored formula versions. In addition, a controlled lab experiment
showed that people introduce faults during manual refactoring which could
be avoided through automation. A retrospective analysis of spreadsheets
from the EUSES corpus was finally done to validate the applicability of
refactoring operators for real-world spreadsheets.

Harris and Gulwani [141] present an approach that supports complicated
table transformations using user-specified examples. Their approach is based
on a language for describing table transformations, called TableProg, and the
algorithm ProgFromFEz that takes as input a small example of the current

41

spreadsheet and desired output spreadsheet. ProgFromFx automatically in-
fers a program that implements the desired transformation. In an empirical
evaluation, Harris and Gulwani applied their algorithm to 51 pairs of spread-
sheet examples taken from online help forums for spreadsheets. This empir-
ical evaluation proved that the required transformation programs could be
generated for all example spreadsheets. However, sometimes a more detailed
example spreadsheet than the one provided by the users was necessary.

In principle, the Ezcelsior tool mentioned in Section 8 is also suited to
support spreadsheet restructuring tasks [111]. Excelsior supports flip and
resize operations for tables. In addition, users can create several variants
of a given spreadsheet. In [111], a case study was performed using one
spreadsheet with several thousand cells to show the general feasibility of
the approach. The depth of the evaluation thus considerably differs from the
other refactoring approaches discussed in this section, which rely both on
user studies and analyses based on real-world spreadsheets.

9.5. Reuse

In general, reusing existing and already validated software artefacts saves
time, avoids the risk of making faults and supports maintainability [142].
This obviously also applies for spreadsheet development projects. Individual
spreadsheets or parts of them are often reused in other projects. At a micro-
level, even individual formulas are often used several times within a single
spreadsheet. The standard solution for the reuse of formulas is to simply
copy and paste the formulas. However, changing the original formula does
not change its copies and forgotten updates of copied formulas thus can easily
lead to faults.

The problem of reuse within spreadsheet programs was addressed by
Djang and Burnett [143] and by Montigel [144]. In the approach of Djang
and Burnett [143], reuse is mainly achieved through the concept of inher-
itance, a reuse approach that is common in object-oriented programming.
Their “similarity inheritance” approach is however specifically designed to
match the spreadsheet paradigm. In principle, it allows the developer to
specify dependencies between (copied) spreadsheet cells in the form of mul-
tiple and mutual inheritance both on the level of individual cells and on a
more coarse-grained level. The approach is illustrated based on a number of
examples; an empirical evaluation is mentioned as an important next step.

Montigel [144] proposes the spreadsheet language Wizcell. In particular,
Wizcell aims at facilitating reuse by making the possible semantics of copy

42

& paste and drag & drop actions more explicit. In particular, he sees four
possible outcomes of such actions: (1) Either the copied formula is duplicated
or there is a reference to the original formula. (2) Either the formulas in the
copied cells refer to the cells mentioned in the original cells, or the references
are changed according to the relative distance of the copy and the origi-
nal. The proposed Wizcell language correspondingly allows the developer to
specify the intended semantics, thus reducing the probability of introducing
a fault. Similar to the reuse approach presented in [143], no report on an
empirical evaluation is provided in [144].

9.6. Discussion

Many of the techniques and approaches presented in this section adapt
existing techniques from traditional Software Engineering to the spreadsheet
domain. In some cases, the authors explicitly address the problem that the
basic spreadsheet development paradigm should not be changed too much
and that the comprehensibility for the end user has to be maintained. How-
ever, some approaches require that the developer has a certain understand-
ing of non-trivial programming concepts. As end users are usually non-
professional programmers, the question of the applicability in practice arises.

Excelsior [111], for example, requires the user to understand concepts
from logic programming. Djang and Burnett [143] build their work upon
the concept of inheritance. While this term might not be used in the tool
and these details are hidden from the UI through a visual representation,
understanding the underlying semantics might be important for the developer
to use the tools properly. NOPumpG [130, 131] and Action Graphics [132]
use the concept of variables, which might not be known to a spreadsheet
user. It therefore remains partially open whether all of these approaches
are suited for end users without programming experience even if comparably
simple visual representations are used.

The exception handling approach of Burnett et al. [134] requires no
extended programming skills (except for example simple if-then-else con-
structs). Also Harris and Gulwani [141] consider the often limited capabili-
ties of spreadsheet developers in their method and propose an example-based
approach. Badame and Dig [140] rely on a semi-automatic approach and a
plug-in to a wide-spread tool like MS Excel.

43

10. Discussion of current research practice

Our review showed that the way the different approaches from the litera-
ture are evaluated varies strongly. This can be partially attributed to the fact
that research is carried out in different sub-fields of Computer Science as well
as in Information Systems, each having their own standards and protocols.

The following major types of evaluation approaches can be found in the
literature.

1. User studies: The proposed techniques and tools were evaluated in
laboratory or field studies.

2. Empirical studies without users: The approaches were empirically eval-
uated, e.g., by applying them on operational spreadsheets or spread-
sheets containing artificially injected errors. Such forms of evaluation
can for example show that certain types of faults will be found when
applying a given method, e.g., [88].

3. Theoretical analyses: Some researchers show by means of theoretical
analyses that their approaches prevent certain types of errors, e.g.,
reference errors [114, 118].

4. No systematic evaluation: In some sub-areas and in particular for some
older proposals, the evaluation was limited to an informal discussion
based on example problems, based on unstructured feedback from a
small group of users, or there was no real evaluation done at all.

Traditionally, research in various sub-fields of Computer Science is often
based on offline experimental designs and simulations, whereas user studies
are more common in Information Systems research, see, e.g., [145] for a
review of evaluation approaches in the area of recommendation systems. In
more recent proposals in particular from the Computer Science field, which
is the focus of this work, theoretical or simulation-based analyses are now
more often complemented with laboratory studies, e.g., in [60] or [88].

Generally, while we observe improvements with respect to research rigor
and more systematic evaluations over the last years, in our view the research
practice in the field can be further improved in different aspects.

10.1. Challenges of empirical evaluation approaches without users

The sample data sets used in offline experimental designs are often said to
be (randomly) taken from the huge and very diverse EUSES corpus. Which
documents were actually chosen and which additional criteria were applied

44

is often not well justified. The choice can be influenced for example by the
scalability of the proposed method or simply by the capabilities of some
parser. Other factors that may influence the observed “success” of a new
method can be the types or positions of the injected errors. These aspects
are often not well documented and even when the benchmark problems are
made publicly available as in [87], they may have special characteristics that
are required or advantageous for a given method and, e.g., contain only one
single fault or use only a restricted set of functions or cell data types.

We therefore argue that researchers should report in more detail about the
basis of their evaluations. Otherwise, comparative evaluations are not easily
possible in the field, in particular as source codes or the developed Excel
plug-ins are usually not shared in the community. Even though different
types of spreadsheets might be required for the different research proposals,
one future goal could therefore be to develop a set of defined benchmark
spreadsheets. These can be used and adapted by the research community
and serve as a basis for comparative evaluations, which are barely found in
current spreadsheet literature.

10.2. Challenges of doing user studies

The more recent works in the field often include reports on different types
of laboratory studies to assess, for example, if users are actually capable of
using a new tool or, more importantly, if the tool actually helps the users
in the fault identification or removal process. Such studies can be consid-
ered to be the main evaluation instrument in IS research and the typical
experimental designs of such studies include tasks like code inspection and
fault localization, error detection and removal, and formula or spreadsheet
construction.

Conducting reliable user studies, which are done usually in laboratory set-
tings, is in general a challenging task even though various standard designs,
procedures, and statistical analysis methods exist that are also common, e.g.,
in sociobehavioral sciences [146]. A discussion of general properties of valid
experimental designs is beyond the scope of this work. However, in our review
we observed some typical limitations in the context of spreadsheet research.

First, the number of participants in each “treatment group” — e.g., one
group with and another group without tool assistance — is often quite small.
Various ways including statistical power analysis exist to determine the min-
imum number of participants, which can however depend on the goal and
type of the study, the statistical significance criterion used, or the desired

45

confidence level and interval. Typical sample sizes in the literature are for
example 61 participants assigned in two groups [147] or 90 participants that
were distributed to two groups of different sizes [148].

Additional questions in that context are whether the study participants
are representative for a larger population of spreadsheet users — in [149],
students are considered as good surrogates — and how it can be made sure that
the participants are correctly assigned to the different groups, e.g., based on
their experience or a random procedure. Finally, the question arises if doing
the experiment in a laboratory setting is not introducing a bias making the
evaluation unrealistic. As for the latter aspect, also studies exist in which the
participants accomplish the tasks at home [150]. In these cases, it is however
easier for the participants to cheat. In particular for spreadsheet construction
exercises, it has to be considered that the developed spreadsheets can be
quite different from real operational spreadsheets, e.g., with respect to their
complexity [11].

10.5. General remarks

In general, both for user studies and offline experiments in which we use
artificially injected errors, the problem exists that we cannot be sure that
the introduced types of faults are always representative or realistic. While
a number of studies on error rates exist, Powell et al. [11] argue that it is
often unclear which fault categorization scheme was used or how faults were
counted that were corrected during the construction of the spreadsheet. It
can thus be dangerous to make inferences about the general efficacy of a
method if it was only evaluated on certain types of faults.

Field studies based on operational spreadsheets and real spreadsheet de-
velopers would obviously represent a valuable means to assess the true effi-
cacy, e.g., of a certain fault reduction approach. Such reports are however
rare as they are costly to conduct. The work presented in [148] is an exam-
ple of such a study, in which experienced business managers participated and
accomplished a spreadsheet construction exercise. In such settings, however,
additional problems arise, e.g., that the participants could not be assigned
to different treatment groups randomly as their geographical location had to
be taken into account.

Finally, as in many other research fields, experimental studies are barely
reproduced by other research groups to validate the findings. In addition,
the reliability of the reported results can be low, e.g., because of biases by

46

the researchers, weak experimental designs, or questions of the interpretation
of the outcomes of statistical tests [151, 152].

Overall, the evaluation of tools and techniques to localize and remove
faults in spreadsheets remains a challenging task as it not only involves algo-
rithmic questions but at the same time has to be usable by people with a lim-
ited background in IT. In many cases, a comprehensive evaluation approach
is therefore required which combines the necessary theoretical analysis with
user studies whose design should incorporate the insights from the existing
works, e.g., in the area of IS research or Human Computer Interaction.

11. Perspectives for future works

The literature review has pointed out some interesting new fields of re-
search for spreadsheet quality assurance. In the following, we will sketch a
subjective selection of possible directions to future works. In the discussion,
we will limit ourselves to broader topics and not focus on specific research
opportunities within the different sub-areas.

11.1. Life cycle coverage

Our review shows that a number of proposals have been made to sup-
port the developer in various stages of the spreadsheet life cycle including
application design and development, testing, debugging, maintenance, com-
prehension and reuse. For the early development phases — like domain anal-
ysis, requirements specification and the initial design — we have however not
found any proposals for automated tool support. Ko et al. in [153] argue
that these early phases and tasks are mostly not explicitly executed in typi-
cal spreadsheet development activities, or more generally, end user program-
ming scenarios. In their work, a detailed discussion and analysis of general
differences between professional software engineering processes and end user
software engineering can be found. Regarding requirements specification, Ko
et al. for example mention that in contrast to professional software develop-
ment, the source of the requirements is the same person as the programmer,
e.g., because people often develop spreadsheets for themselves. With respect
to design processes, one assumption is that end user programmers might not
see the benefits of making the design an explicit step when translating the
requirements into a program.

How to provide better tool support for the very early phases — which
should ultimately lead to higher-quality spreadsheets in the end — is in our

47

view largely open. Such approaches probably have to be accompanied with
organizational measures and additional training for the end user programmer
to raise the awareness of the advantages of a more structured development
process, even if this process is exploratory and prototyping-based in nature.
Alternative development approaches such as Example-Driven Modeling [154]
or programming by example could be explored as well.

Beside tool support for the early development phases, we see a number of
other areas where existing quality-ensuring or quality-improving techniques
can be applied or further adapted to the spreadsheet domain. This includes
better quality metrics, formal analysis methods, or techniques for spreadsheet
evolution, versioning and “product lines”, which in our view have not been
explored deeply enough so far.

11.2. Combination of methods

We see a lot of potential for further research in the area of combining dif-
ferent specific techniques in hybrid systems. In [86], for example, the authors
propose methods to combine the feedback of the UCheck type checking sys-
tem with the results from the WYSIWY'T fault localization technique based
on heuristics. An evaluation using various mutations of a spreadsheet showed
that the combination is advantageous, e.g., because different types of faults
can be detected by the two techniques. Other works that integrate different
types of information or reasoning strategies include [57, 54, 104] and more
recently [87], who combine declarative debugging with trace-based candidate
ranking.

Beside the integration of methods to fulfill one particular task, one possi-
ble direction of future research is to explore alternative hybridization designs,
e.g., to combine methods in a sequential or parallel manner. In such a sce-
nario, one computationally cheap method could be used to identify larger
regions in the spreadsheet which most probably contain an error. More so-
phisticated and computationally demanding techniques could afterwards be
applied within this local area to determine the exact location of the prob-
lem. Alternatively, there might be situations in which multiple techniques
are available for a certain task, e.g., to rank the error candidates. Whether or
not a specific technique works well for a given problem setting depends on a
number of factors including the structure and the size of the spreadsheets or
the types of the formulas. A possible future research direction could therefore
lie in the development of algorithms which — based on heuristics, past obser-
vations, and a concise characterization of the capabilities and requirements

48

of the different techniques — can automatically assess which of the available
techniques will be the most promising given a specific spreadsheet and task.

11.83. Toward integrated user-friendly tools

Individual research efforts often aim at one particular problem, for exam-
ple test support and test case management, propose one particular technique
and focus on one single optimization criterion such as maximizing the test
coverage. While keeping the work focused is appropriate in the context of
individual scientific contributions, in reality, the different QA tasks are often
related: a debugging activity, for example, can be initiated by a test activity
or a maintenance task. Therefore, to be applicable in practice, one of the
goals of future research is to better understand how integrated tools should
be designed that support the developer in the best possible way. Such a
research could for example include the discussion of suitable user interface
(UT) designs, the choice of comprehensible terminology and metaphors, the
question of the appropriate level of user guidance, the choice of adequate
supporting visualizations, or even questions of how to integrate the tools
smoothly into existing spreadsheet environments.

An example for such an end-user oriented interaction pattern for spread-
sheets can be found in [80]. Using a so-called “surprise-explain-reward strat-
egy”, the goal of the work is to entice the user to make increased use of
the assertion feature of the spreadsheet environment without requiring the
user to change his or her usual work process. This is accomplished by au-
tomatically generating assertions about cell contents, presenting violations
in the form of passive feedback, and then relying on the user’s curiosity to
explore the potential problems. Beckwith et al. later on continued this work
in [155] and investigated gender-specific differences in the adoption of such
new tool features and proposed different variations of the UI for risk-averse
or low confidence users. Finally, another work that builds on psychological
phenomena to increase tool adoption (and effectiveness) is presented in [156].
In this work, the authors focus on the role of the perceivable rewards and ex-
periment with Ul variants in which the tool’s functionality is identical but
the visual feedback, e.g., in terms of cell coloring is varied.

11.4. Toward a formal spreadsheet language

In the literature, a number of different intermediate representations are
used to formally and precisely describe the logic of a given spreadsheet ap-
plication. Some of these are based on standard formalisms with defined se-

49

mantics including logic- and constraint-based approaches [110, 88, 99]; other
papers introduce their own formalisms supporting a specific methodology or
various forms of reasoning on it [85].

In particular in the latter cases, a precise definition of what can be ex-
pressed in these intermediate representations is sometimes missing, for ex-
ample, if it is possible to reason about real-valued calculations or which of
the more complex functions of systems like MS Excel can be expressed when
using a certain intermediate representation.

In order to be able to better compare and combine different spreadsheet
QA techniques in hybrid approaches as discussed above, a unified formal
spreadsheet representation, problem definition language, or even a “theory
of spreadsheets” could be useful. It would furthermore help making research
efforts independent of specific environments or tool versions and at the same
time allow for formal reasoning, e.g., about the soundness and completeness
of individual fault localization techniques. Such problem definition languages
are for example common in other domains such as Artificial Intelligence based
planning or Constraint Satisfaction.

11.5. Provision of better abstraction mechanisms

In [157], Peyton Jones et al. argue that spreadsheets in their basic form
can be considered as functional programs that only consist of statements
comprising built-in functions. Thus, spreadsheet developers have no means
to define reusable abstractions in the form of parameterizable functions. To
implement the desired functionality, users therefore have to copy the formu-
las multiple times, which however leads to poor maintainability and lower
spreadsheet quality. As a potential solution, the authors propose a user-
oriented approach to design user-defined functions. A main goal of the design
is to stay within the spreadsheet paradigm, which for example means that
the function implementations should be specified as spreadsheets (“function
sheets”) and not in the form of imperative programs as done in MS Excel.
The work presented in [157] was mostly based on theoretical considerations.
In their evaluation, the authors mainly focus on the expressiveness of the lan-
guage and performance aspects. So far, no evaluation investigating if users
are able to understand the concepts of how to define function sheets or to
interpret error messages has been done.

Later on, Sestoft [158] presented a practical realization of the approach
that includes recursion and higher-order functions. To design and use new

50

function sheets in their prototype system called “Funcalc”, the spreadsheet
developer has to learn only three new built-in functions.

Both function sheets and the more recent ClassSheets as described in
Section 8.3 represent approaches to empower spreadsheet developers with
better abstraction mechanisms within the spreadsheet paradigm. As a result,
these approaches should help users avoid making different types of faults and
increase the general quality of the spreadsheets. Overall, we see the provision
of such advanced concepts for spreadsheet design and implementation as
a promising area for future research, where in particular the questions of
understandability for the end user should be further investigated.

12. Summary

Errors in spreadsheet programs can have a huge impact on organizations.
Unfortunately, current spreadsheet environments like MS Excel only include
limited functionality to help developers create error-free spreadsheets or sup-
port them in the error detection and localization process. Over the last
decades, researches in different subfields of Computer Science and Informa-
tion Systems have therefore made a substantial number of proposals aimed
at better tool support for spreadsheet developers during the development
lifecycle.

With our literature review and the presented classification scheme we
aimed to provide a basis to structure and relate the different strands of re-
search in this area and critically reflected on current research practices. At
the same time, the review and classification scheme should help to identify
potential directions for future research and opportunities for combining dif-
ferent proposals, thereby helping to move from individual techniques and
tools to integrated spreadsheet QA environments.

Acknowledgements

This work was partially supported by the European Union through the
programme “Europaischer Fonds fiir regionale Entwicklung - Investition in
unsere Zukunft” under contract number 300251802.

References

[1] R. R. Panko, D. N. Port, End User Computing: The Dark Matter (and
Dark Energy) of Corporate IT, in: Proceedings of the 45th Hawaii

51

[10]

[11]

International Conference on System Sciences (HICSS 2012), Wailea,
HI, USA, 2012, pp. 4603-4612.

R. Creeth, Micro-Computer Spreadsheets: Their Uses and Abuses,
Journal of Accountancy 159 (6) (1985) 90-93.

S. Ditlea, Spreadsheets can be hazardous to your health, Personal Com-
puting 11 (1) (1987) 60-69.

R. R. Panko, What We Know About Spreadsheet Errors, Journal of
End User Computing 10 (2) (1998) 15-21.

T. Herndon, M. Ash, R. Pollin, Does High Public Debt Consistently
Stifle Economic Growth? A Critique of Reinhart and Rogoff, Working
Paper 322, Political Economy Research Institute, University of Mas-
sachusetts, Amherst (April 2013).

C. M. Reinhart, K. S. Rogoff, Growth in a Time of Debt, American
Economic Review 100 (2) (2010) 573-578.

D. F. Galletta, D. Abraham, M. E. Louadi, W. Lekse, Y. A. Pollalis,
J. L. Sampler, An empirical study of spreadsheet error-finding perfor-
mance, Accounting, Management and Information Technologies 3 (2)
(1993) 79-95.

S. Thorne, A review of spreadsheet error reduction techniques, Com-
munications of the Association for Information Systems 25, Article 24.

T. Reinhardt, N. Pillay, Analysis of Spreadsheet Errors Made by Com-
puter Literacy Students, in: Proceedings of the IEEE International
Conference on Advanced Learning Technologies (ICALT 2004), Joen-
suu, Finland, 2004, pp. 852-853.

D. F. Galletta, K. S. Hartzel, S. E. Johnson, J. L. Joseph, S. Rustagi,
Spreadsheet Presentation and FError Detection: An Experimental
Study, Journal of Management Information Systems 13 (3) (1996) 45—
63.

S. G. Powell, K. R. Baker, B. Lawson, A critical review of the literature
on spreadsheet errors, Decision Support Systems 46 (1) (2008) 128-138.

52

[12]

[13]

[14]

[15]

H. Howe, M. G. Simkin, Factors Affecting the Ability to Detect Spread-
sheet Errors, Decision Sciences Journal of Innovative Education 4 (1)
(2006) 101-122.

J. R. Olson, E. Nilsen, Analysis of the Cognition Involved in Spread-
sheet Software Interaction, Human-Computer Interaction 3 (4) (1987)
309-349.

G. Rothermel, L. Li, C. Dupuis, M. Burnett, What You See Is What
You Test: A Methodology for Testing Form-Based Visual programs,
in: Proceedings of the 20th International Conference on Software En-
gineering (ICSE 1998), Kyoto, Japan, 1998, pp. 198-207.

R. R. Panko, R. P. Halverson, Spreadsheets on Trial: A Survey of
Research on Spreadsheet Risks, in: Proceedings of the 29th Hawaii
International Conference on System Sciences (HICSS 1996), Wailea,
HI, USA, 1996, pp. 326-335.

K. Rajalingham, D. R. Chadwick, B. Knight, Classification of Spread-
sheet Errors, in: Proceedings of the European Spreadsheet Risks In-
terest Group 2nd Annual Conference (EuSpRIG 2001), Amsterdam,
Netherlands, 2001.

R. R. Panko, S. Aurigemma, Revising the Panko-Halverson taxonomy
of spreadsheet errors, Decision Support Systems 49 (2) (2010) 235-244.

M. Erwig, Software engineering for spreadsheets, IEEE Software 26 (5)
(2009) 25-30.

J. Davis, Tools for spreadsheet auditing, International Journal of
Human-Computer Studies 45 (4) (1996) 429-442.

J. Sajaniemi, Modeling Spreadsheet Audit: A Rigorous Approach to
Automatic Visualization, Journal of Visual Languages & Computing
11 (1) (2000) 49-82.

T. Igarashi, J. Mackinlay, B.-W. Chang, P. Zellweger, Fluid Visualiza-
tion of Spreadsheet Structures, in: Proceedings of the IEEE Sympo-
sium on Visual Languages (VL 1998), Halifax, NS, Canada, 1998, pp.
118-125.

53

[22]

[23]

[24]

[27]

28]

[29]

[30]

H. Shiozawa, K. Okada, Y. Matsushita, 3D Interactive Visualization
for Inter-Cell Dependencies of Spreadsheets, in: Proceedings of the
IEEE Symposium on Information Visualization (Info Vis 1999), San
Francisco, CA, USA, 1999, pp. 79-82, 148.

Y. Chen, H. C. Chan, Visual Checking of Spreadsheets, in: Proceed-
ings of the European Spreadsheet Risks Interest Group 1st Annual
Conference (EuSpRIG 2000), London, United Kingdom, 2000.

D. Ballinger, R. Biddle, J. Noble, Spreadsheet visualisation to improve
end-user understanding, in: Proceedings of the Asia-Pacific Symposium
on Information Visualisation - Volume 24 (APVIS 2003), Adelaide,
Australia, 2003, pp. 99-109.

K. Hodnigg, R. T. Mittermeir, Metrics-Based Spreadsheet Visualiza-
tion: Support for Focused Maintenance, in: Proceedings of the Euro-

pean Spreadsheet Risks Interest Group 9th Annual Conference (Eu-
SpRIG 2008), London, United Kingdom, 2008, pp. 79-94.

B. Kankuzi, Y. Ayalew, An End-User Oriented Graph-Based Visu-
alization for Spreadsheets, in: Proceedings of the 4th International
Workshop on End-User Software Engineering (WEUSE 2008), Leipzig,
Germany, 2008, pp. 86-90.

Y. Ayalew, A Visualization-based Approach for Improving Spreadsheet
Quality, in: Proceedings of the Warm Up Workshop for ACM/IEEE
ICSE 2010 (WUP 2009), Cape Town, South Africa, 2009, pp. 13-16.

F. Hermans, M. Pinzger, A. van Deursen, Supporting Professional
Spreadsheet Users by Generating Leveled Dataflow Diagrams, in: Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE 2011), Waikiki, Honolulu, HI, USA, 2011, pp. 451-460.

F. Hermans, M. Pinzger, A. van Deursen, Breviz: Visualizing Spread-
sheets using Dataflow Diagrams, in: Proceedings of the European
Spreadsheet Risks Interest Group 12th Annual Conference (EuSpRIG
2011), London, United Kingdom, 2011.

B. Ronen, M. A. Palley, H. C. Lucas, Jr., Spreadsheet Analysis and
Design, Communications of the ACM 32 (1) (1989) 84-93.

o4

[31]

[32]

[33]

[34]

[35]

R. Mittermeir, M. Clermont, Finding High-Level Structures in Spread-
sheet Programs, in: Proceedings of the 9th Working Conference on
Reverse Engineering (WCRE 2002), Richmond, VA, USA, 2002, pp.
221-232.

S. Hipfl, Using Layout Information for Spreadsheet Visualization, in:
Proceedings of the European Spreadsheet Risks Interest Group 5th
Annual Conference (EuSpRIG 2004), Klagenfurt, Austria, 2004.

M. Clermont, Analyzing Large Spreadsheet Programs, in: Proceedings
of the 10th Working Conference on Reverse Engineering (WCRE 2003),
Victoria, BC, Canada, 2003, pp. 306-315.

M. Clermont, A Toolkit for Scalable Spreadsheet Visualization, in: Pro-
ceedings of the European Spreadsheet Risks Interest Group 5th Annual
Conference (EuSpRIG 2004), Klagenfurt, Austria, 2008.

M. Clermont, Heuristics for the Automatic Identification of Irregulari-
ties in Spreadsheets, in: Proceedings of the 1st Workshop on End-User
Software Engineering (WEUSE 2005), St. Louis, MO, USA, 2005, pp.
1-6.

M. Clermont, C. Hanin, R. T. Mittermeir, A Spreadsheet Auditing Tool
Evaluated in an Industrial Context, in: Proceedings of the European
Spreadsheet Risks Interest Group 3rd Annual Conference (EuSpRIG
2002), Cardiff, United Kingdom, 2002.

D. Hendry, T. Green, CogMap: a Visual Description Language for
Spreadsheets, Journal of Visual Languages & Computing 4 (1) (1993)
35-54.

T. Isakowitz, S. Schocken, H. C. Lucas, Jr., Toward a Logical / Physical
Theory of Spreadsheet Modeling, Transactions on Information Systems
13 (1) (1995) 1-37.

M. Lentini, D. Nardi, A. Simonetta, Self-instructive spreadsheets: an
environment for automatic knowledge acquisition and tutor generation,
International Journal of Human-Computer Studies 52 (5) (2000) 775—
803.

95

[40]

[41]

[42]

[46]

[47]

D. Chadwick, B. Knight, K. Rajalingham, Quality Control in Spread-
sheets: A Visual Approach using Color Codings to Reduce Errors in
Formulae, Software Quality Control 9 (2) (2001) 133-143.

D. Nardi, G. Serrecchia, Automatic Generation of Explanations for
Spreadsheet Applications, in: Proceedings of the 10th Conference on
Artificial Intelligence for Applications (CAIA 1994), San Antonio, TX,
USA, 1994, pp. 268-274.

R. Brath, M. Peters, Excel Visualizer: One Click WYSIWYG Spread-
sheet Visualization, in: Proceedings of the 10th International Confer-
ence on Information Visualisation (IV 2006), London, United Kingdom,
2006, pp. 68-73.

R. Rao, S. K. Card, The Table Lens: Merging Graphical and Sym-
bolic Representations in an Interactive Focus+Context Visualization
for Tabular Information, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI 1994), Boston, MA, USA,
1994, pp. 318-322.

P. S. Brown, J. D. Gould, An Experimental Study of People Creating
Spreadsheets, ACM Transactions on Information Systems 5 (3) (1987)
258-272.

S. Aurigemma, R. R. Panko, The Detection of Human Spreadsheet
Errors by Humans versus Inspection (Auditing) Software, in: Proceed-
ings of the European Spreadsheet Risks Interest Group 11th Annual
Conference (EuSpRIG 2010), London, United Kingdom, 2010.

M. Erwig, M. M. Burnett, Adding Apples and Oranges, in: Proceedings
of the 4th International Symposium on Practical Aspects of Declarative
Languages (PADL 2002), Portland, OR, USA, 2002, pp. 173-191.

M. Burnett, M. Erwig, Visually Customizing Inference Rules About
Apples and Oranges, in: Proceedings of the IEEE Symposia on Hu-
man Centric Computing Languages and Environments (HCC 2002),
Arlington, VA, USA, 2002, pp. 140-148.

Y. Ahmad, T. Antoniu, S. Goldwater, S. Krishnamurthi, A Type Sys-
tem for Statically Detecting Spreadsheet Errors, in: Proceedings of the

56

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

18th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2003), Montreal, Canada, 2003, pp. 174-183.

R. Abraham, M. Erwig, Header and Unit Inference for Spreadsheets
Through Spatial Analyses, in: Proceedings of the IEEE Symposium
on Visual Languages and Human Centric Computing (VL/HCC 2004),
Rome, Italy, 2004, pp. 165-172.

T. Antoniu, P. Steckler, S. Krishnamurthi, E. Neuwirth, M. Felleisen,
Validating the Unit Correctness of Spreadsheet Programs, in: Pro-

ceedings of the 26th International Conference on Software Engineering
(ICSE 2004), Edinburgh, United Kingdom, 2004, pp. 439-448.

R. Abraham, M. Erwig, Type Inference for Spreadsheets, in: Proceed-
ings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP 2006), Venice, Italy,
2006, pp. 73-84.

R. Abraham, M. Erwig, UCheck: A Spreadsheet Type Checker for End
Users, Journal of Visual Languages & Computing 18 (1) (2007) 71-95.

C. Chambers, M. Erwig, Automatic Detection of Dimension Errors in
Spreadsheets, Journal of Visual Languages & Computing 20 (4) (2009)
269-283.

C. Chambers, M. Erwig, Reasoning About Spreadsheets with Labels
and Dimensions, Journal of Visual Languages & Computing 21 (5)
(2010) 249-262.

M. J. Coblenz, A. J. Ko, B. A. Myers, Using objects of measurement
to detect spreadsheet errors, in: Proceedings of the IEEE Symposium
on Visual Languages and Human Centric Computing (VL/HCC 2005),
2005, pp. 314-316.

C. Chambers, M. Erwig, Dimension Inference in Spreadsheets, in: Pro-
ceedings of the IEEE Symposium on Visual Languages and Human
Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Ger-
many, 2008, pp. 123-130.

C. Chambers, M. Erwig, Combining Spatial and Semantic Label Anal-
ysis, in: Proceedings of the IEEE Symposium on Visual Languages

o7

[58]

[59]

[60]

[61]

and Human Centric Computing (VL/HCC 2009), Corvallis, OR, USA,
2009, pp. 225 232.

M. Fisher, G. Rothermel, The EUSES Spreadsheet Corpus: A shared
resource for supporting experimentation with spreadsheet dependabil-
ity mechanisms, SIGSOFT Software Engineering Notes 30 (4) (2005)
1-5.

M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 1999.

F. Hermans, M. Pinzger, A. van Deursen, Detecting and Visualizing
Inter-Worksheet Smells in Spreadsheets, in: Proceedings of the 34th
International Conference on Software Engineering (ICSE 2012), Zurich,
Switzerland, 2012, pp. 441-451.

F. Hermans, M. Pinzger, A. van Deursen, Detecting Code Smells in
Spreadsheet Formulas, in: Proceedings of the 28th IEEE International
Conference on Software Maintenance (ICSM 2012), Riva del Garda,
Trento, Italy, 2012, pp. 409-418.

F. Hermans, B. Sedee, M. Pinzger, A. v. Deursen, Data Clone Detec-
tion and Visualization in Spreadsheets, in: Proceedings of the 35th
International Conference on Software Engineering (ICSE 2013), San
Francisco, CA, USA, 2013, pp. 292-301.

J. Cunha, J. a. P. Fernandes, H. Ribeiro, J. a. Saraiva, Towards a Cat-
alog of Spreadsheet Smells, in: Proceedings of the 12th International

Conference on Computational Science and Its Applications (ICCSA
2012), Salvador de Bahia, Brazil, 2012, pp. 202-216.

D. Nixon, M. O’Hara, Spreadsheet Auditing Software, in: Proceed-
ings of the European Spreadsheet Risks Interest Group 2nd Annual
Conference (EuSpRIG 2001), Amsterdam, Netherlands, 2001.

J. Hunt, An approach for the automated risk assessment of structural
differences between spreadsheets (diffxl), in: Proceedings of the Euro-
pean Spreadsheet Risks Interest Group 10th Annual Conference (Eu-
SpRIG 2009), Paris, France, 2009.

58

[66]

[67]

[71]

[72]

R. Abraham, M. Erwig, S. Andrew, A type system based on end-
user vocabulary, in: Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2007), Coeur
d’Alene, Idaho, USA, 2007, pp. 215-222.

G. Rothermel, L. Li, M. Burnett, Testing Strategies for Form-Based
Visual Programs, in: Proceedings of the 8th International Symposium
on Software Reliability Engineering (ISSRE 1997), Albuquerque, NM,
USA, 1997, pp. 96-107.

G. Rothermel, M. Burnett, L. Li, C. Dupuis, A. Sheretov, A Method-
ology for Testing Spreadsheets, ACM Transactions on Software Engi-
neering and Methodology 10 (1) (2001) 110-147.

M. Burnett, A. Sheretov, G. Rothermel, Scaling Up a” What You See Is
What You Test” Methodology to Spreadsheet Grids, in: Proceedings of
the IEEE Symposium on Visual Languages (VL 1999), Tokyo, Japan,
1999, pp. 30-37.

M. Burnett, A. Sheretov, B. Ren, G. Rothermel, Testing Homogeneous
Spreadsheet Grids with the ”What You See Is What You Test” Method-
ology, IEEE Transactions on Software Engineering 28 (6) (2002) 576
594.

M. Burnett, B. Ren, A. Ko, C. Cook, G. Rothermel, Visually Testing
Recursive Programs in Spreadsheet Languages, in: Proceedings of the
IEEE Symposia on Human-Centric Computing Languages and Envi-
ronments (HCC 2001), Stresa, Italy, 2001, pp. 288-295.

M. Fisher, II, D. Jin, G. Rothermel, M. Burnett, Test Reuse in the
Spreadsheet paradigm, in: Proceedings of the 14th International Sym-
posium on Software Reliability Engineering (ISSRE 2003), Denver, CO,
USA, 2002, pp. 257-268.

M. Fisher, G. Rothermel, T. Creelan, M. Burnett, Scaling a Dataflow
Testing Methodology to the Multiparadigm World of Commercial
Spreadsheets, in: Proceedings of the 17th International Symposium
on Software Reliability Engineering (ISSRE 2006), Raleigh, NC, USA,
2006, pp. 13-22.

59

[74]

[75]

[76]

[30]

[81]

N. Randolph, J. Morris, G. Lee, A Generalised Spreadsheet Verification
Methodology, in: Proceedings of the 25th Australasian Conference on
Computer Science (ACSC 2002), 2002, pp. 215-222.

K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. R. G. Green,
G. Rothermel, WYSIWYT Testing in the Spreadsheet Paradigm: An
Empirical Evaluation, in: Proceedings of the 22nd International Con-
ference on Software Engineering (ICSE 2000), Limerick, Ireland, 2000,
pp- 230-239.

M. Fisher, IT, M. Cao, G. Rothermel, C. Cook, M. Burnett, Automated
Test Case Generation for Spreadsheets, in: Proceedings of the 24th In-
ternational Conference on Software Engineering (ICSE 2002), Orlando,
FL, USA, 2002, pp. 141-151.

M. Fisher, II, G. Rothermel, D. Brown, M. Cao, C. Cook, M. Burnett,
Integrating Automated Test Generation into the WYSIWYT Spread-
sheet Testing Methodology, ACM Transactions on Software Engineer-
ing and Methodology 15 (2) (2006) 150-194.

R. Abraham, M. Erwig, AutoTest: A Tool for Automatic Test Case
Generation in Spreadsheets, in: Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2006),
Brighton, United Kingdom, 2006, pp. 43-50.

M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, C. Wal-
lace, End-User Software Engineering with Assertions in the Spread-
sheet Paradigm, in: Proceedings of the 25th International Conference
on Software Engineering (ICSE 2003), Portland, Oregon, 2003, pp. 93—
103.

A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook,
M. Durham, G. Rothermel, Harnessing Curiosity to Increase Correct-
ness in End-User Programming, in: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI 2003), 2003,

pp- 305-312.

L. Beckwith, M. Burnett, C. Cook, Reasoning about Many-to-Many
Requirement Relationships in Spreadsheets, in: Proceedings of the

60

[32]

[83]

[84]

[85]

[EEE Symposia on Human Centric Computing Languages and Envi-
ronments (HCC 2002), Arlington, VA, USA, 2002, pp. 149-157.

K. McDaid, A. Rust, B. Bishop, Test-Driven Development: Can it
Work for Spreadsheets?, in: Proceedings of the 4th International Work-
shop on End-User Software Engineering (WEUSE 2008), Leipzig, Ger-
many, 2008, pp. 25-29.

F. Hermans, Improving Spreadsheet Test Practices, in: Proceedings of
the 23rd Annual International Conference on Computer Science and
Software Engineering (CASCON 2013), Markham, Ontario, Canada,
2013, pp. 56—69.

R. Abraham, M. Erwig, Mutation Operators for Spreadsheets, IEEE
Transactions on Software Engineering 35 (1) (2009) 94-108.

R. Abraham, M. Erwig, Goal-Directed Debugging of Spreadsheets, in:
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2005), Dallas, TX, USA, 2005, pp. 37—
44.

R. A. Joseph Lawrance, Margaret Burnett, M. Erwig, Sharing reason-
ing about faults in spreadsheets: An empirical study, in: Proceedings of

the IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC 2006), 2006, pp. 35-42.

B. Hofer, A. Riboira, F. Wotawa, R. Abreu, E. Getzner, On the Em-
pirical Evaluation of Fault Localization Techniques for Spreadsheets,
in: Proceedings of the 16th International Conference on Fundamental
Approaches to Software Engineering (FASE 2013), Rome, Italy, 2013,
pp- 68-82.

D. Jannach, T. Schmitz, Model-based diagnosis of spreadsheet pro-
grams - A constraint-based debugging approach, Automated Software
Engineering to appear.

J. Reichwein, G. Rothermel, M. Burnett, Slicing Spreadsheets: An
Integrated Methodology for Spreadsheet Testing and Debugging, in:

Proceedings of the 2nd Conference on Domain-Specific Languages (DSL
1999), Austin, Texas, 1999, pp. 25-38.

61

[90]

[91]

J. R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E. Creswick,
M. Burnett, Interactive, Visual Fault Localization Support for End-
User Programmers, Journal of Visual Languages & Computing 16 (1-2)
(2005) 3-40.

J. R. Ruthruff, M. Burnett, G. Rothermel, An Empirical Study of
Fault Localization for End-User Programmers, in: Proceedings of the
27th International Conference on Software Engineering (ICSE 2005),
St. Louis, MO, USA, 2005, pp. 352-361.

J. R. Ruthruff, M. Burnett, G. Rothermel, Interactive Fault Localiza-
tion Techniques in a Spreadsheet Environment, IEEE Transactions on
Software Engineering 32 (4) (2006) 213-239.

Y. Ayalew, R. Mittermeir, Spreadsheet Debugging, in: Proceedings of
the European Spreadsheet Risks Interest Group 4th Annual Conference
(EuSpRIG 2003), Dublin, Ireland, 2003.

D. Jannach, U. Engler, Toward model-based debugging of spreadsheet
programs, in: Proceedings of the 9th Joint Conference on Knowledge-
Based Software Engineering (JCKBSE 2010), Kaunas, Lithuania, 2010,
pp. 252-264.

E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1993.

C. Mateis, M. Stumptner, D. Wieland, F. Wotawa, Model-Based De-
bugging of Java Programs, in: Proceedings of the Fourth International
Workshop on Automated Debugging (AADEBUG 2000), Munich, Ger-
many, 2000.

A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, Consistency-
based diagnosis of configuration knowledge bases, Artificial Intelligence
152 (2) (2004) 213-234.

D. Jannach, A. Baharloo, D. Williamson, Toward an integrated frame-
work for declarative and interactive spreadsheet debugging, in: Pro-
cedings of the 8th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2013), Angers, France,
2013, pp. 117-124.

62

[99]

[100]

[101]

102]

[103]

104]

[105]

[106]

[107]

R. Abreu, A. Riboira, F. Wotawa, Constraint-based Debugging of
Spreadsheets, in: Proceedings of the 15th Ibero-American Conference
on Software Engineering (CIbSE 2012), Buenos Aires, Argentina, 2012,
pp. 1-14.

R. Abreu, A. Riboira, F. Wotawa, Debugging Spreadsheets: A CSP-
based Approach, in: Proceedings of the 23rd IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW
2012), Dallas, TX, USA, 2012, pp. 159-164.

R. Reiter, A Theory of Diagnosis from First Principles, Artificial In-
telligence 32 (1) (1987) 57-95.

S. Auflerlechner, S. Fruhmann, W. Wieser, B. Hofer, R. Spork,
C. Miihlbacher, F. Wotawa, The Right Choice Matters! SMT Solv-
ing Substantially Improves Model-Based Debugging of Spreadsheets,
in: Proceedings of the 13th International Conference on Quality Soft-

ware (QSIC 2013), Nanjing, China, 2013, pp. 139-148.

R. Abraham, M. Erwig, GoalDebug: A Spreadsheet Debugger for End
Users, in: Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA, 2007, pp. 251-260.

R. Abraham, M. Erwig, Test-driven goal-directed debugging in spread-
sheets, in: Proceedings of the IEEE Symposium on Visual Languages
and Human Centric Computing (VL/HCC 2008), Herrsching am Am-
mersee, Germany, 2008, pp. 131-138.

C. Parnin, A. Orso, Are Automated Debugging Techniques Actually
Helping Programmers?, in: Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis (ISSTA 2011), Toronto,
Canada, 2011, pp. 199-209.

M. Luckey, M. Erwig, G. Engels, Systematic Evolution of Model-Based
Spreadsheet Applications, Journal of Visual Languages & Computing
23 (5) (2012) 267-2836.

J. Paine, Model Master: an object-oriented spreadsheet front-end, in:
Proceedings of the CALECO Conference on Using Computer Tech-
nology in Economics and Business (CALECO 1997), Bristol, United
Kingdom, 1997, pp. 84-92.

63

108

109]

[110]

[111]

[112]

[113]

[114]

[115]

116)

J. Paine, Ensuring Spreadsheet Integrity with Model Master, in: Pro-
ceedings of the European Spreadsheet Risks Interest Group 2nd Annual
Conference (EuSpRIG 2001), Amsterdam, Netherlands, 2001.

J. Paine, Spreadsheet Structure Discovery with Logic Programming,
in: Proceedings of the European Spreadsheet Risks Interest Group 5th
Annual Conference (EuSpRIG 2004), Klagenfurt, Austria, 2004.

J. Paine, Excelsior: Bringing the Benefits of Modularisation to Excel,
in: Proceedings of the European Spreadsheet Risks Interest Group 6th
Annual Conference (EuSpRIG 2005), London, United Kingdom, 2005.

J. Paine, E. Tek, D. Williamson, Rapid Spreadsheet Reshaping with
Excelsior: multiple drastic changes to content and layout are easy
when you represent enough structure, in: Proceedings of the European
Spreadsheet Risks Interest Group 7th Annual Conference (EuSpRIG
2006), Cambridge, United Kingdom, 2006.

M. Erwig, R. Abraham, I. Cooperstein, S. Kollmansberger, Automatic
Generation and Maintenance of Correct Spreadsheets, in: Proceedings
of the 27th International Conference on Software Engineering (ICSE
2005), St. Louis, MO, USA, 2005, pp. 136-145.

R. Abraham, M. Erwig, S. Kollmansberger, E. Seifert, Visual Specifica-
tions of Correct Spreadsheets, in: Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2005),
Dallas, TX, USA, 2005, pp. 189-196.

M. Erwig, R. Abraham, S. Kollmansberger, I. Cooperstein, Gencel:
A Program Generator for Correct Spreadsheets, Journal of Functional
Programming 16 (3) (2006) 293-325.

R. Abraham, M. Erwig, Inferring Templates from Spreadsheets, in:
Proceedings of the 28th International Conference on Software Engi-
neering (ICSE 2006), Shanghai, China, 2006, pp. 182—-191.

T. R. G. Green, M. Petre, Usability Analysis of Visual Programming
Environments: a ‘cognitive dimensions’ framework, Journal of Visual
Languages & Computing 7 (2) (1996) 131-174.

64

[117)

[118]

119]

[120]

[121]

[129]

[123]

[124]

A. Blackwell, T. R. G. Green, Notational Systems — the Cognitive Di-
mensions of Notations Framework, HCI Models, Theories, and Frame-
works: Toward a Multidisciplinary Science (2003) 103-134.

G. Engels, M. Erwig, ClassSheets: Automatic Generation of Spread-
sheet Applications from Object-Oriented Specifications, in: Proceed-
ings of the 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2005), Long Beach, CA, USA, 2005, pp.
124-133.

J. Cunha, M. Erwig, J. Saraiva, Automatically Inferring ClassSheet
Models from Spreadsheets, in: Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2010),
Madrid, Spain, 2010, pp. 93-100.

J. Cunha, J. Visser, T. Alves, J. a. Saraiva, Type-Safe Evolution of
Spreadsheets, in: Proceedings of the 14th International Conference
on Fundamental Approaches to Software Engineering: Part of the
Joint European Conferences on Theory and Practice of Software (FASE
2011/ETAPS 2011), Saarbriicken, Germany, 2011, pp. 186-201.

J. Cunha, J. Mendes, J. Saraiva, J. Fernandes, Embedding and Evolu-
tion of Spreadsheet Models in Spreadsheet Systems, in: Proceedings of

the IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC 2011), Pittsburgh, PA, USA, 2011, pp. 179-186.

J. Cunha, J. Fernandes, J. Mendes, H. Pacheco, J. Saraiva, Bidirec-
tional Transformation of Model-Driven Spreadsheets, in: Proceedings
of the 5th International Conference on Theory and Practice of Model
Transformations (ICMT 2012), Springer Lecture Notes in Computer
Science, Prague, Czech Republic, 2012, pp. 105-120.

J. Cunha, J. Fernandes, J. Mendes, J. Saraiva, Extension and Imple-
mentation of ClassSheet Models, in: Proceedings of the IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC
2012), Innsbruck, Austria, 2012, pp. 19-22.

J. Cunha, J. a. P. Fernandes, J. a. Saraiva, From Relational ClassSheets
to UML+OCL, in: Proceedings of the 27th Annual ACM Symposium
on Applied Computing (SAC 2012), Trento, Italy, 2012, pp. 1151-1158.

65

[125] F. Hermans, M. Pinzger, A. van Deursen, Automatically Extracting
Class Diagrams from Spreadsheets, in: Proceedings of the 24th Eu-
ropean Conference on Object-Oriented Programming (ECOOP 2010),
Maribor, Slovenia, 2010, pp. 52-75.

[126] J. Cunha, J. a. Saraiva, J. Visser, From Spreadsheets to Relational
Databases and Back, in: Proceedings of the 2009 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM
2009), Savannah, GA, USA, 2009, pp. 179-188.

[127] J. Cunha, J. Saraiva, J. Visser, Discovery-Based Edit Assistance for
Spreadsheets, in: Proceedings of the IEEE Symposium on Visual Lan-
guages and Human Centric Computing (VL/HCC 2009), Corvallis, OR,
USA, 2009, pp. 233-237.

[128] J. Cunha, J. a. Saraiva, J. Visser, Model-Based Programming Envi-
ronments for Spreadsheets, in: Proceedings of the 16th Brazilian Con-
ference on Programming Languages (SBLP 2012), Natal, Brazil, 2012,
pp. 117-133.

[129] L. Beckwith, J. Cunha, J. Fernandes, J. Saraiva, End-Users Produc-
tivity in Model-Based Spreadsheets: An Empirical Study, in: Proceed-
ings of the 3rd International Symposium on End-User Development
(IS-EUD 2011), Springer Lecture Notes in Computer Science, Torre
Canne, Italy, 2011, pp. 282-288.

[130] N. Wilde, C. Lewis, Spreadsheet-based interactive graphics: from pro-
totype to tool, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 1990), Seattle, WA, USA, 1990,
pp- 153-160.

[131] C. Lewis, NoPumpG: Creating Interactive Graphics with Spreadsheet
Machinery, Visual Programming Environments: Paradigms and Sys-
tems (1990) 526-546.

[132] C. Hughes, J. Moshell, Action Graphics: A Spreadsheet-based Lan-
guage for Animated Simulation, Visual Languages and Applications
(1990) 203-235.

66

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

N. P. Wilde, A WYSIWYC (What You See Is What You Compute)
Spreadsheet, in: Proceedings of the IEEE Symposium on Visual Lan-
guages (VL 1993), Bergen, Norway, 1993, pp. 72-76.

M. M. Burnett, A. Agrawal, P. van Zee, Exception Handling in the
Spreadsheet Paradigm, IEEE Transactions on Software Engineering
26 (10) (2000) 923-942.

R. W. Sebesta, Concepts of Programming Languages (4th ed.),
Addison-Wesley-Longman, 1999.

B. Bekenn, R. Hooper, Reducing Spreadsheet Risk with Formula-
DataSleuth, in: Proceedings of the European Spreadsheet Risks Inter-
est Group 9th Annual Conference (EuSpRIG 2008), London, United
Kingdom, 2008.

C. Chambers, M. Erwig, M. Luckey, SheetDiff: A Tool for Identifying
Changes in Spreadsheets, in: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2010),
Madrid, Spain, 2010, pp. 85-92.

A. Harutyunyan, G. Borradaile, C. Chambers, C. Scaffidi, Planted-
model evaluation of algorithms for identifying differences between
spreadsheets, in: Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC 2012), Innsbruck,
Austria, 2012, pp. 7-14.

P. O’Beirne, Spreadsheet Refactoring, in: Proceedings of the European
Spreadsheet Risks Interest Group 11th Annual Conference (EuSpRIG
2010), London, United Kingdom, 2010.

S. Badame, D. Dig, Refactoring meets Spreadsheet Formulas, in: Pro-
ceedings of the 28th IEEE International Conference on Software Main-
tenance (ICSM 2012), Riva del Garda, Trento, Italy, 2012, pp. 399—-409.

W. R. Harris, S. Gulwani, Spreadsheet Table Transformations from
Examples, in: Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation (PLDI 2011), San
Jose, CA, USA, 2011, pp. 317-328.

67

[142]

[143]

[144]

[145]

146

147]

148]

[149]

[150]

[151]

152]

Y. Ye, G. Fischer, Reuse-Conducive Development Environments, Au-
tomated Software Engineering 12 (2) (2005) 199-235.

R. W. Djang, M. M. Burnett, Similarity Inheritance: A New Model of
Inheritance for Spreadsheet VPLs, in: Proceedings of the IEEE Sym-
posium on Visual Languages (VL 1998), Halifax, NS, Canada, 1998,
pp. 134-141.

M. Montigel, Portability and Reuse of Components for Spreadsheet
Languages, in: Proceedings of the IEEE CS International Symposium
on Human-Centric Computing Languages and Environments (HCC
2002), Arlington, VA, USA, 2002, pp. 77-79.

D. Jannach, M. Zanker, M. Ge, M. Groning, Recommender systems in
computer science and information systems - a landscape of research,

in: Proceedings of the 13th International Conference on E-Commerce
and Web Technologies (EC-WEB 2012), Vienna, 2012, pp. 76-87.

L. P. S. Elazar J. Pedhazur, Measurement Design and Analysis: An
Integrated Approach, Lawrence Erlbaum Assoc Inc, 1991.

Using a structured design approach to reduce risks in end user spread-
sheet development, Information and Management 37 (1) (2000) 1-12.

F. Karlsson, Using two heads in practice, in: Proceedings of the 4th
International Workshop on End-user Software Engineering (WEUSE
2008), Leipzig, Germany, 2008, pp. 43-47.

R. R. Panko, Applying Code Inspection to Spreadsheet Testing, Jour-
nal of Management Information Systems 16 (2) (1999) 159-176.

R. R. Panko, R. H. S. Jr., Hitting the wall: errors in developing and
code inspecting a ‘simple’ spreadsheet model, Decision Support Sys-
tems 22 (4) (1998) 337-353.

J. P. A. Toannidis, Why most published research findings are false,
PLoS Medizine 2 (8).

R. Nuzzo, Scientific method: Statistical errors, Nature 506 (2014) 150—
152.

68

[153]

[154]

(155

[156]

[157]

158

A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Er-
wig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, S. Wiedenbeck, The State of the Art in End-
User Software Engineering, ACM Computing Surveys 43 (3) (2011)
21:1-21:44.

S. R. Thorne, D. Ball, Z. Lawson, A Novel Approach to Formulae Pro-
duction and Overconfidence Measurement to Reduce Risk in Spread-
sheet Modelling, in: Proceedings of the European Spreadsheet Risks
Interest Group 5th Annual Conference (EuSpRIG 2004), Klagenfurt,
Austria, 2004.

L. Beckwith, S. Sorte, M. Burnett, S. Wiedenbeck, T. Chintakovid,
C. Cook, Designing features for both genders in end-user programming
environments, in: Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC 2005), Dallas, TX,
2005, pp. 153-160.

J. R. Ruthruft, A. Phalgune, L. Beckwith, M. M. Burnett, C. R. Cook,
Rewarding “good” behavior: End-user debugging and rewards, in: Pro-

ceedings of the IEEE Symposium on Visual Languages and Human
Centric Computing (VL/HCC 2004), 2004, pp. 115-122.

S. P. Jones, A. Blackwell, M. Burnett, A user-centred approach to
functions in excel, in: Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP 2003), Uppsala,
Sweden, 2003, pp. 165-176.

P. Sestoft, J. Z. Se¢rensen, Sheet-defined functions: Implementation
and initial evaluation, in: End-User Development, Vol. 7897 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 88—
103.

69

Model-based diagnosis of spreadsheet programs:
A constraint-based debugging approach

[Placeholder]

Dietmar Jannach Thomas Schmitz
TU Dortmund, Germany TU Dortmund, Germany
dietmar.jannach@tu-dortmund.de thomas.schmitz@tu-dortmund.de

This document cannot be published on an open access
(OA) repository. To access the document, please follow the
DOI: https://doi.org/10.1007/s10515-014-0141-7.

Automated Software Engineering, 23.1, March 2016
DOI: https://doi.org/10.1007/s10515-014-0141-7

MergeXplain: Fast Computation of
Multiple Conflicts for Diagnosis

[Placeholder]

Kostyantyn Shchekotykhin Dietmar Jannach
Alpen-Adria University Klagenfurt, Austria TU Dortmund, Germany
kostyantyn.shchekotykhin@aau.at dietmar.jannach@tu-dortmund.de

Thomas Schmitz
TU Dortmund, Germany
thomas.schmitz@tu-dortmund.de

This document cannot be published on an open access
(OA) repository. To access the document, please follow
the link https://www.ijcai.org/Abstract/15/454 or refer to
the Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence ISBN 978-1-57735-738-
4 pages 3221-3228.

IJCAI 15, July 25-31, 2015, Buenos Aires, Argentina
ISBN: 978-1-57735-738-4

Journal of Artificial Intelligence Research 55 (2016) 835-887 Submitted 10/2015; published 04/2016

Parallel Model-Based Diagnosis on Multi-Core Computers

Dietmar Jannach DIETMAR.JANNACHQTU-DORTMUND.DE
Thomas Schmitz THOMAS.SCHMITZQTU-DORTMUND.DE
TU Dortmund, Germany

Kostyantyn Shchekotykhin KOSTYANTYN.SHCHEKOTYKHIN@AAU.AT
Alpen-Adria University Klagenfurt, Austria

Abstract

Model-Based Diagnosis (MBD) is a principled and domain-independent way of ana-
lyzing why a system under examination is not behaving as expected. Given an abstract
description (model) of the system’s components and their behavior when functioning nor-
mally, MBD techniques rely on observations about the actual system behavior to reason
about possible causes when there are discrepancies between the expected and observed be-
havior. Due to its generality, MBD has been successfully applied in a variety of application
domains over the last decades.

In many application domains of MBD, testing different hypotheses about the reasons
for a failure can be computationally costly, e.g., because complex simulations of the sys-
tem behavior have to be performed. In this work, we therefore propose different schemes
of parallelizing the diagnostic reasoning process in order to better exploit the capabilities
of modern multi-core computers. We propose and systematically evaluate parallelization
schemes for Reiter’s hitting set algorithm for finding all or a few leading minimal diag-
noses using two different conflict detection techniques. Furthermore, we perform initial
experiments for a basic depth-first search strategy to assess the potential of parallelization
when searching for one single diagnosis. Finally, we test the effects of parallelizing “direct
encodings” of the diagnosis problem in a constraint solver.

1. Introduction

Model-Based Diagnosis (MBD) is a subfield of Artificial Intelligence that is concerned with
the automated determination of possible causes when a system is not behaving as expected.
In the early days of MBD, the diagnosed “systems” were typically hardware artifacts like
electronic circuits. In contrast to earlier heuristic diagnosis approaches which connected
symptoms with possible causes, e.g., through expert rules (Buchanan & Shortliffe, 1984),
MBD techniques rely on an abstract and explicit representation (model) of the examined
system. Such models contain both information about the system’s structure, i.e., the list of
components and how they are connected, as well as information about the behavior of the
components when functioning correctly. When such a model is available, the expected be-
havior (outputs) of a system given some inputs can thus be calculated. A diagnosis problem
arises whenever the expected behavior conflicts with the observed system behavior. MBD
techniques at their core construct and test hypotheses about the faultiness of individual
components of the system. Finally, a diagnosis is considered as a subset of the components
that, if assumed to be faulty, can explain the observed behavior of the system.

Reiter (1987) suggests a formal logical characterization of the diagnosis problem “from
first principles” and proposed a breadth-first tree construction algorithm to determine all

(©2016 AI Access Foundation. All rights reserved.

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

diagnoses for a given problem. Due to the generality of the used knowledge-representation
language and the suggested algorithms for the computation of diagnoses, MBD has been
later on applied to a variety of application problems other than hardware. The application
fields of MBD, for example, include the diagnosis of knowledge bases and ontologies, process
specifications, feature models, user interface specifications and user preference statements,
and various types of software artifacts including functional and logic programs as well as
VHDL, Java or spreadsheet programs (Felfernig, Friedrich, Jannach, & Stumptner, 2004;
Mateis, Stumptner, Wieland, & Wotawa, 2000; Jannach & Schmitz, 2014; Wotawa, 2001b;
Felfernig, Friedrich, Isak, Shchekotykhin, Teppan, & Jannach, 2009; Console, Friedrich,
& Dupré, 1993; Friedrich & Shchekotykhin, 2005; Stumptner & Wotawa, 1999; Friedrich,
Stumptner, & Wotawa, 1999; White, Benavides, Schmidt, Trinidad, Dougherty, & Cortés,
2010; Friedrich, Fugini, Mussi, Pernici, & Tagni, 2010).

In several of these application fields, the search for diagnoses requires repeated compu-
tations based on modified versions of the original model to test the different hypotheses
about the faultiness of individual components. In several works the original problem is
converted into a Constraint Satisfaction Problem (CSP) and a number of relaxed versions
of the original CSP have to be solved to construct a new node in the search tree (Felfernig
et al., 2004; Jannach & Schmitz, 2014; White et al., 2010). Depending on the applica-
tion domain, the computation of CSP solutions or the check for consistency can, however,
be computationally intensive and actually represents the most costly operation during the
construction of the search tree. Similar problems arise when other underlying reasoning
techniques, e.g., for ontology debugging (Friedrich & Shchekotykhin, 2005), are used.

Current MBD algorithms are sequential in nature and generate one node at a time.
Therefore, they do not exploit the capabilities of today’s multi-core computer processors,
which can nowadays be found even in mobile devices. In this paper, we propose new schemes
to parallelize the diagnostic reasoning process to better exploit the available computing
resources of modern computer hardware. In particular, this work comprises the following
algorithmic contributions and insights based on experimental evaluations:

e We propose two parallel versions of Reiter’s (1987) sound and complete Hitting Set
(HS) algorithm to speed up the process of finding all diagnoses, which is a common
problem setting in the above-described MBD applications. Both approaches can be
considered as “window-based” parallelization schemes, which means that only a lim-
ited number of search nodes is processed in parallel at each point in time.

e We evaluate two different conflict detection techniques in a multi-core setting, where
the goal is to find a few “leading” diagnoses. In this set of experiments, multi-
ple conflicts can be computed at the construction of each tree node using the novel
MERGEXPLAIN method (MXP) (Shchekotykhin, Jannach, & Schmitz, 2015) and more
processing time is therefore implicitly allocated for conflict generation.

o We demonstrate that speedups can also be achieved through parallelization for sce-
narios in which we search for one single diagnosis, e.g., when using a basic parallel
depth-first strategy.

e We measure the improvements that can be achieved through parallel constraint solving
when using a “direct” CSP-based encoding of the diagnosis problem. This experiment

836

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

illustrates that parallelization in the underlying solvers, in particular when using a
direct encoding, can be advantageous.

We evaluate the proposed parallelization schemes through an extensive set of experi-
ments. The following problem settings are analyzed.

(i) Standard benchmark problems from the diagnosis research community;

(ii) Mutated CSPs from a Constraint Programming competition and from the domain of
CSP-based spreadsheet debugging (Jannach & Schmitz, 2014);

(iii) Faulty OWL ontologies as used for the evaluation of MBD-based debugging techniques
of very expressive ontologies (Shchekotykhin, Friedrich, Fleiss, & Rodler, 2012);

(iv) Synthetically generated problems which allow us to vary the characteristics of the
underlying diagnosis problem.

The results show that using parallelization techniques can help to achieve substantial
speedups for the diagnosis process (a) across a variety of application scenarios, (b) without
exploiting any specific knowledge about the structure of the underlying diagnosis problem,
(c) across different problem encodings, and (d) also for application problems like ontology
debugging which cannot be efficiently encoded as SAT problems.

The outline of the paper is as follows. In the next section, we define the main concepts of
MBD and introduce the algorithm used to compute diagnoses. In Section 3, we present and
systematically evaluate the parallelization schemes for Reiter’s HS-tree method when the
goal is to find all minimal diagnoses. In Section 4, we report the results of the evaluations
when we implicitly allocate more processing time for conflict generation using MXP for
conflict detection. In Section 5 we assess the potential gains for a comparably simple
randomized depth-first strategy and a hybrid technique for the problem of finding one
single diagnosis. The results of the experiments for the direct CSP encoding are reported
in Section 6. In Section 7 we discuss previous works. The paper ends with a summary and
an outlook in Section 8.

2. Reiter’s Diagnosis Framework
This section summarizes Reiter’s (1987) diagnosis framework which we use as a basis for

our work.

2.1 Definitions

Reiter (1987) formally characterized Model-Based Diagnosis using first-order logic. The
main definitions can be summarized as follows.

Definition 2.1. (Diagnosable System) A diagnosable system is described as a pair (SD,
Cowmps) where SD is a system description (a set of logical sentences) and ComPs represents
the system’s components (a finite set of constants).

The connections between the components and the normal behavior of the components
are described in terms of logical sentences. The normal behavior of the system components

837

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

is usually described in SD with the help of a distinguished negated unary predicate —aB(.),
meaning “not abnormal”.

A diagnosis problem arises when some observation o € OBs of the system’s input-output
behavior (again expressed as first-order sentences) deviates from the expected system be-
havior. A diagnosis then corresponds to a subset of the system’s components which we
assume to behave abnormally (be faulty) and where these assumptions must be consistent
with the observations. In other words, the malfunctioning of these components can be a
possible reason for the observations.

Definition 2.2. (Diagnosis) Given a diagnosis problem (SD, Comps, OBS), a diagnosis is
a subset minimal set A < Comps such that SD U OBs U {aB(c¢)lc € A} U {—aB(c)|c €
Comps\A} is consistent.

According to Definition 2.2, we are only interested in minimal diagnoses, i.e., diagnoses
which contain no superfluous elements and are thus not supersets of other diagnoses. When-
ever we use the term diagnosis in the remainder of the paper, we therefore mean minimal
diagnosis. Whenever we refer to non-minimal diagnoses, we will explicitly mention this fact.

Finding all diagnoses can in theory be done by simply trying out all possible subsets
of Comps and checking their consistency with the observations. Reiter (1987), however,
proposes a more efficient procedure based on the concept of conflicts.

Definition 2.3. (Conflict) A conflict for (SD, Comps, OBS) is a set {ci1,...,cp} S COMPS
such that SD U OBs U {—aB(¢1), ..., —AB(ck)} is inconsistent.

A conflict corresponds to a subset of components which, if assumed to behave normally,
are not consistent with the observations. A conflict ¢ is considered to be minimal, if no
proper subset of ¢ exists which is also a conflict.

2.2 Hitting Set Algorithm

Reiter (1987) then discusses the relationship between conflicts and diagnoses and claims
in his Theorem 4.4 that the set of diagnoses for a collection of (minimal) conflicts F' is
equivalent to the set H of minimal hitting sets® of F.

To determine the minimal hitting sets and therefore the diagnoses, Reiter proposes a
breadth-first search procedure and the construction of a hitting set tree (HS-tree), whose
construction is guided by conflicts. In the logic-based definition of the MBD problem
(Reiter, 1987), the conflicts are computed by calls to a Theorem Prover (TP). The TP
component itself is considered as a “black box” and no assumptions are made about how
the conflicts are determined. Depending on the application scenario and problem encoding,
one can, however, also use specific algorithms like QUICKXPLAIN (Junker, 2004), Progres-
sion (Marques-Silva, Janota, & Belov, 2013) or MERGEXPLAIN (Shchekotykhin et al., 2015),
which guarantee that the computed conflict sets are minimal.

The main principle of the HS-tree algorithm is to create a search tree where each node
is either labeled with a conflict or represents a diagnosis. In the latter case the node is
not further expanded. Otherwise, a child node is generated for each element of the node’s

1. Given a collection C' of subsets of a finite set S, a hitting set for C' is a subset of S which contains at
least one element from each subset in C. This corresponds to the set cover problem.

838

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

conflict and each outgoing edge is labeled with one component of the node’s conflict. In the
subsequent expansions of each node the components that were used to label the edges on
the path from the root of the tree to the current node are assumed to be faulty. Each newly
generated child node is again either a diagnosis or will be labeled with a conflict that does
not contain any component that is already assumed to be faulty at this stage. If no conflict
can be found for a node, the path labels represent a diagnosis in the sense of Definition 2.2.

2.2.1 EXAMPLE

In the following example we will show how the HS-tree algorithm and the QUICKXPLAIN

(QXP) conflict detection technique can be combined to locate a fault in a specification
of a CSP. A CSP instance I is defined as a tuple (V,D,C), where V = {v1,...,v,} is a

set of variables, D = {D1,...,D,} is a set of domains for each of the variables in V, and
C = {Cy,...,Cy} is a set of constraints. An assignment to any subset X < V is a set of
pairs A = {(v1,d1),...,{vk,dm)} where v; € X is a variable and d; € D; is a value from the

domain of this variable. An assignment comprises exactly one variable-value pair for each
variable in X. Each constraint C; € C is defined over a list of variables S, called scope,
and forbids or allows certain simultaneous assignments to the variables in its scope. An
assignment A to S satisfies a constraint C; if A comprises an assignment allowed by C;. An
assignment A is a solution to I if it satisfies all constraints C.

Consider a CSP instance I with variables V' = {a,b,c} where each variable has the
domain {1,2,3} and the following set of constraints are defined:

Cl:a>b, C2:b>¢, C3:c=a, Cd:b<c

Obviously, no solution for I exists and our diagnosis problem consists in finding subsets of
the constraints whose definition is faulty. The engineer who has modeled the CSP could,
for example, have made a mistake when writing down C2, which should have been b < c.
Eventually, C4 was added later on to correct the problem, but the engineer forgot to remove
C2. Given the faulty definition of I, two minimal conflicts exist, namely {{C1,C2,C3},
{C2,C4}}, which can be determined with the help of QXP. Given these two conflicts,
the HS-tree algorithm will finally determine three minimal hitting sets {{C2},{C1, C4},
{C3,C4}}, which are diagnoses for the problem instance. The set of diagnoses also contains
the true cause of the error, the definition of C2.

Let us now review in more detail how the HS-tree/QXP combination works for the ex-
ample problem. We illustrate the tree construction in Figure 1. In the logic-based definition
of Reiter, the HS-tree algorithm starts with a check if the observations OBs are consistent
with the system description SD and the components Comps. In our application setting this
corresponds to a check if there exists any solution for the CSP instance.? Since this is not
the case, a QXP-call is made, which returns the conflict {C1,C2,C3}, which is used as a
label for the root node (1) of the tree. For each element of the conflict, a child node is
created and the conflict element is used as a path label. At each tree node, again the con-
sistency of SD, OBs, and CowmPs is tested; this time, however, all the elements that appear

2. Cowmps are the constraints {C1...C4} and SD corresponds to the semantics/logic of the constraints when
working correctly, e.g., AB(C1) v (a > b). OBs is empty in this example but could be a partial value
assignment (test case) in another scenario.

839

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

{C1,C2, C3}

©),
v
& c4
v X @ \/
Figure 1: Example for HS-tree construction.

as labels on the path from the root node to the current node are considered to be abnormal.
In the CSP diagnosis setting, this means that we check if there is any solution to a modified
version of our original CSP from which we remove the constraints that appear as labels on
the path from the root to the current node.

At node 2), C1 is correspondingly considered to be abnormal. As removing C'1 from the
CSP is, however, not sufficient and no solution exists for the relaxed problem, another call
to QXP is made, which returns the conflict {C2,C4}. {C1} is therefore not a diagnosis and
the new conflict is used as a label for node (2). The algorithm then proceeds in breadth-first
style and tests if assuming {C2} or {C3} to be individually faulty is “consistent with the
observations”, which in our case means that a solution to the relaxed CSP exists. Since {C2}
is a diagnosis — at least one solution exists if C'2 is removed from the CSP definition — the
node is marked with v and not further expanded. At node (3), which does not correspond
to a diagnosis, the already known conflict {C2, C'4} can be reused as it has no overlap with
the node’s path label and no call to TP (QXP) is required. At the last tree level, the
nodes (4) and (5) are not further expanded (“closed” and marked with X) because {C2} has
already been identified as a diagnosis at the previous level and the resulting diagnoses would
be supersets of {C2}. Finally, the sets {C1,C4} and {C3,C4} are identified as additional
diagnoses.

2.2.2 DISCUSSION

Soundness and Completeness According to Reiter (1987), the breadth-first construc-
tion scheme and the node closing rule ensure that only minimal diagnoses are computed.
At the end of the HS-tree construction process, each set of edge labels on the path from the
root of the tree to a node marked with v corresponds to a diagnosis.?

Greiner, Smith, and Wilkerson (1989), later on, identified a potential problem in Reiter’s
algorithm for cases in which the conflicts returned by T'P are not guaranteed to be minimal.
An extension of the algorithm based on an HS-DAG (directed acyclic graph) structure was
proposed to solve the problem.

In the context of our work, we only use methods that return conflicts which are guar-
anteed to be minimal. For example, according to Theorem 1 in the work of Junker (2004),
given a set of formulas and a sound and complete consistency checker, QXP always returns

3. Reiter (1987) states in Theorem 4.8 that given a set of conflict sets F', the HS-tree algorithm outputs a
pruned tree T such that the set {H(n)|n is a node of T' labeled with v} corresponds to the set H of all
minimal hitting sets of F where H(n) is a set of arc labels on the path from the node n to the root.

840

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

either a minimal conflict or ‘no conflict’. This minimality guarantee in turn means that the
combination of the HS-tree algorithm and QXP is sound and complete, i.e., all returned
solutions are actually (minimal) diagnoses and no diagnosis for the given set of conflicts
will be missed. The same holds when computing multiple conflicts at a time with MXP
(Shchekotykhin et al., 2015).

To simplify the presentation of our parallelization approaches, we will therefore rely
on Reiter’s original HS-tree formulation; an extension to deal with the HS-DAG structure
(Greiner et al., 1989) is possible.

On-Demand Conflict Generation and Complexity In many of the above-mentioned
applications of MBD to practical problems, the conflicts have to be computed “on-demand”,
i.e., during tree construction, because we cannot generally assume that the set of minimal
conflicts is given in advance. Depending on the problem setting, finding these conflicts can
therefore be the computationally most intensive part of the diagnosis process.

Generally, finding hitting sets for a collection of sets is known to be an NP-hard problem
(Garey & Johnson, 1979). Moreover, deciding if an additional diagnosis exists when conflicts
are computed on demand is NP-complete even for propositional Horn theories (Eiter &
Gottlob, 1995). Therefore, a number of heuristics-based, approximate and thus incomplete,
as well as problem-specific diagnosis algorithms have been proposed over the years. We
will discuss such approaches in later sections. In the next section, we, however, focus on
(worst-case) application scenarios where the goal is to find all minimal diagnoses for a given
problem, i.e., we focus on complete algorithms.

Consider, for example, the problem of debugging program specifications (e.g., constraint
programs, knowledge bases, ontologies, or spreadsheets) with MBD techniques as mentioned
above. In these application domains, it is typically not sufficient to find one minimal diag-
nosis. In the work of Jannach and Schmitz (2014), for example, the spreadsheet developer
is presented with a ranked list of all sets of formulas (diagnoses) that represent possible
reasons why a certain test case has failed. The developer can then either inspect each of
them individually or provide additional information (e.g., test cases) to narrow down the set
of candidates. If only one diagnosis was computed and presented, the developer would have
no guarantee that it is the true cause of the problem, which can lead to limited acceptance
of the diagnosis tool.

3. Parallel HS-Tree Construction

In this section we present two sound and complete parallelization strategies for Reiter’s
HS-tree method to determine all minimal diagnoses.

3.1 A Non-recursive HS-Tree Algorithm

We use a non-recursive version of Reiter’s sequential HS-tree algorithm as a basis for the
implementation of the two parallelization strategies. Algorithm 1 shows the main loop of a
breadth-first procedure, which uses a list of open nodes to be expanded as a central data
structure.

The algorithm takes a diagnosis problem (DP) instance as input and returns the set
A of diagnoses. The DP is given as a tuple (SD, Comps, OBs), where SD is the system

841

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Algorithm 1: DIAGNOSE: Main algorithm loop.
Input: A diagnosis problem (SD, Comps, OBS)
Result: The set A of diagnoses

A = ¢J; paths = ¢; conflicts = (J;
nodesToExpand = (GENERATEROOTNODE(SD, ComPps, OBS));
while nodesToEzxpand # {) do
newNodes = ();
node = head(nodesToExpand) ;
foreach c € node.conflict do
L GENERATENODE(node, ¢, A, paths, conflicts, newNodes);

N O O e W N =

oo

nodesToExpand = tail(nodesToExpand) @ newNodes;

9 return A;

Algorithm 2: GENERATENODE: Node generation logic.
Input: An existingNode to expand, a conflict element ¢ € Comps,
the sets A, paths, conflicts, newNodes

1 newPathLabel = existingNode.pathLabel u {c};

2 if (A 1€ A : 1< newPathLabel) A cHECKANDADDPATH(paths, newPathLabel) then
3 node = new Node(newPathLabel);

4 if 3 S € conflicts : S n newPathLabel = ¢ then

5 ‘ node.conflict = S;

6 else

7 newConflicts = cHEcKCoNsISTENCY(SD, Comps, OBs, node.pathLabel);

8 L node.conflict = head(newConflicts);

9 if node.conflict # (J then

10 newNodes = newNodes @ (node);
11 conflicts = conflicts U newConflicts;
12 else

13 L A = A U {node.pathLabel};

description, Comps the set of components that can potentially be faulty and OBs a set of
observations. The method GENERATEROOTNODE creates the initial node, which is labeled
with a conflict and an empty path label. Within the while loop, the first element of a “first-
in-first-out” (FIFO) list of open nodes NODESTOEXPAND is taken as the current element.
The function GENERATENODE (Algorithm 2) is called for each element of the node’s conflict
and adds new leaf nodes, which still have to be explored, to a global list. These new
nodes are then appended (@) to the remaining list of open nodes in the main loop, which

842

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

continues until no more elements remain for expansion.* Algorithm 2 (GENERATENODE)
implements the node generation logic, which includes Reiter’s proposals for conflict re-use,
tree pruning, and the management of the lists of known conflicts, paths and diagnoses. The
method determines the path label for the new node and checks if the new path label is not
a superset of an already found diagnosis.

Algorithm 3: CHECKANDADDPATH: Adding a new path label with a redundancy
check.

Input: The previously explored paths, the newPathLabel to be explored

Result: Boolean stating if newPathLabel was added to paths

—_

if 3 1 € paths : | = newPathLabel then
paths = paths u newPathLabel;
return true;

w N

4 return false;

The function cHECKANDADDPATH (Algorithm 3) is then used to check if the node was
not already explored elsewhere in the tree. The function returns true if the new path label
was successfully inserted into the list of known paths. Otherwise, the list of known paths
remains unchanged and the node is “closed”.

For new nodes, either an existing conflict is reused or a new one is created with a call
to the consistency checker (Theorem Prover), which tests if the new node is a diagnosis
or returns a set of minimal conflicts otherwise. Depending on the outcome, a new node is
added to the list nodesToFEzpand or a diagnosis is stored. Note that Algorithm 2 has no
return value but instead modifies the sets A, paths, conflicts, and newNodes, which were
passed as parameters.

3.2 Level-Wise Parallelization

Our first parallelization scheme examines all nodes of one tree level in parallel and proceeds
with the next level once all elements of the level have been processed. In the example shown
in Figure 1, this would mean that the computations (consistency checks and theorem prover
calls) required for the three first-level nodes labeled with {C1}, {C2}, and {C'3} can be done
in three parallel threads. The nodes of the next level are explored when all threads of the
previous level are finished.

Using this Level-Wise Parallelization (LWP) scheme, the breadth-first character is main-
tained. The parallelization of the computations is generally feasible because the consistency
checks for each node can be done independently from those done for the other nodes on the
same level. Synchronization is only required to make sure that no thread starts exploring a
path which is already under examination by another thread.

Algorithm 4 shows how the sequential Algorithm 1 can be adapted to support this
parallelization approach. Again, we maintain a list of open nodes to be expanded. The
difference is that we run the expansion of all these nodes in parallel and collect all the

4. A limitation regarding the search depth or the number of diagnoses to find can be easily integrated into
this scheme.

843

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Algorithm 4: DIAGNOSELW: Level-Wise Parallelization.
Input: A diagnosis problem (SD, Comps, OBS)
Result: The set A of diagnoses

A = J; conflicts = (; paths = J;
nodesToExpand = (GENERATEROOTNODE(SD, Cowmps, OBS));
while nodesToEzxpand # {) do
newNodes = ();
foreach node € nodesToExpand do
foreach c € node.conflict do // Do computations in parallel
L L threads.execute(GENERATENODE(node, ¢, A, paths, conflicts, newNodes));

N O O e W N =

oo

threads.await(); // Wait for current level to complete
9 nodesToExpand = newNodes; // Prepare next level

10 return A;

nodes of the next level in the variable newNodes. Once the current level is finished, we
overwrite the list nodesToFxpand with the list containing the nodes of the next level.

The Java-like API calls used in the pseudo-code in Algorithm 4 have to be interpreted
as follows. The statement threads.ezecute() takes a function as a parameter and schedules
it for execution in a pool of threads of a given size. With a thread pool of, e.g., size 2,
the generation of the first two nodes would be done in parallel and the next ones would
be queued until one of the threads has finished. With this mechanism, we can ensure that
the number of threads executed in parallel is less than or equal to the number of hardware
threads or CPUs.

The statement threads.await() is used for synchronization and blocks the execution of
the subsequent code until all scheduled threads are finished. To guarantee that the same
path is not explored twice, we make sure that no two threads in parallel add a node with
the same path label to the list of known paths. This can be achieved by declaring the
function cHECKANDADDPATH as a “critical section” (Dijkstra, 1968), which means that no
two threads can execute the function in parallel. Furthermore, we have to make the access
to the global data structures (e.g., the already known conflicts or diagnoses) thread-safe,
i.e., ensure that no two threads can simultanuously manipulate them.?

3.3 Full Parallelization

In LWP, there can be situations where the computation of a conflict for a specific node
takes particularly long. This, however, means that even if all other nodes of the current
level are finished and many threads are idle, the expansion of the HS-tree cannot proceed
before the level is completed. Algorithm 5 shows our proposed Full Parallelization (FP)
algorithm variant, which immediately schedules every expandable node for execution and
thereby avoids such potential CPU idle times at the end of each level.

5. Controlling such concurrency aspects is comparably simple in modern programming languages like Java,
e.g., by using the synchronized keyword.

844

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Algorithm 5: DIAGNOSEFP: Full Parallelization.

Input: A diagnosis problem (SD, Comps, OBS)
Result: The set A of diagnoses

A = ¢J; paths = ¢; conflicts = (J;

nodesToExpand = (GENERATEROOTNODE(SD, ComPps, OBS));

size = 1; lastSize = 0;

while (size#lastSize) v (threads.activeThreads# 0) do

for + = 1 to size — lastSize do
node = nodesToExpand.get[lastSize + iJ;
foreach c € node.conflict do

threads.execute(GENERATENODEFP (node, ¢, A, paths, conflicts,

L nodesToExpand));

0 N O Ut s W N =

9 lastSize = size;
10 wait();
11 size = nodesToExpand.length();

12 return A;

The main loop of the algorithm is slightly different and basically monitors the list of
nodes to expand. Whenever new entries in the list are observed, i.e., when the last observed
list size is different from the current one, it retrieves the recently added elements and adds
them to the thread queue for execution. The algorithm returns the diagnoses when no new
elements are added since the last check and no more threads are active.®

With FP, the search does not necessarily follow the breadth-first strategy anymore and
non-minimal diagnoses are found during the process. Therefore, whenever we find a new
diagnosis d, we have to check if the set of known diagnoses A contains supersets of d and
remove them from A.

The updated cENERATENODE method is listed in Algorithm 6. When updating the shared
data structures (nodesToEzpand, conflicts, and A), we again make sure that the threads do
not interfere with each other. The mutual exclusive section is marked with the synchronized
keyword.

When compared to LWP, FP does not have to wait at the end of each level if a specific
node takes particularly long to generate. On the other hand, FP needs more synchronization
between threads, so that in cases where the last nodes of a level are finished at the same
time, LWP could also be advantageous. We will evaluate this aspect in Section 3.5.

3.4 Properties of the Algorithms

Algorithm 1 together with Algorithms 2 and 3 corresponds to an implementation of the
HS-tree algorithm (Reiter, 1987). Algorithm 1 implements the breadth-first search strategy
— point (1) in Reiter’s HS-tree algorithm — since the nodes stored in the list nodesToExpand

6. The functions wait () and notify () implement the semantics of pausing a thread and awaking a paused
thread in the Java programming language and are used to avoid active waiting loops.

845

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Algorithm 6: GENERATENODEFP: Extended node generation logic.
Input: An ezistingNode to expand, ¢ € CoMPs,
sets A, paths, conflicts, nodesToFxpand

1 newPathLabel = existingNode.pathLabel U {c};

2 if (1€ A:1C newPathLabel) A cHECKANDADDPATH(paths, newPathLabel) then
3 node = new Node(newPathLabel);

4 if 3 S € conflicts : S n newPathLabel = ¢ then

5 ‘ node.conflict = S;

6 else

7 newConflicts = cHECKCONSISTENCY(SD, Comps, OBs, node.pathLabel);
8 node.conflict = head(newConflicts);

9 synchronized

10 if node.conflict # ¢ then

11 nodesToExpand = nodesToExpand @ (node);

12 conflicts = conflicts U newConflicts;

13 else if # d e A : d € newPathLabel then

14 A = A U {node.pathLabel};

15 for de A : d 2 newPathLabel do

16 L A=A\d,

17 n;tify();

are processed iteratively in a first-in-first-out order (see lines 5 and 8). Algorithm 2 first
checks if the pruning rules (i) and (ii) of Reiter can be applied in line 2. These rules state
that a node can be pruned if (i) there exists a diagnosis or (ii) there is a set of labels
corresponding to some path in the tree such that it is a subset of the set of labels on the
path to the node. Pruning rule (ii) is implemented through Algorithm 3. Pruning rule (iii)
of Reiter’s algorithm is not necessary since in our settings a T'P-call guarantees to return
minimal conflicts.

Finally, point (2) of Reiter’s HS-tree algorithm description is implemented in the lines
4-8 of Algorithm 2. Here, the algorithm checks if there is a conflict that can be reused as a
node label. In case no reuse is possible, the algorithm calls the theorem prover TP to find
another minimal conflict. If a conflict is found, the node is added to the list of open nodes
nodesToEzpand. Otherwise, the set of node path labels is added to the set of diagnoses.
This corresponds to the situation in Reiter’s algorithm where we would mark a node in the
HS-tree with the v symbol. Note that we do not label any nodes with X as done in Reiter’s
algorithms since we simply do not store such nodes in the expansion list.

Overall, we can conclude that our HS-tree algorithm implementation (Algorithm 1 to
3) has the same properties as Reiter’s original HS-tree algorithm. Namely, each hitting set
returned by the algorithm is minimal (soundness) and all existing minimal hitting sets are
found (completeness).

846

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

3.4.1 LEVEL-WISE PARALLELIZATION (LWP)
Theorem 3.1. Level-Wise Parallelization is sound and complete.

Proof. The proof is based on the fact that LWP uses the same expansion and pruning
techniques as the sequential algorithm (Algorithms 2 and 3). The main loop in line 3 applies
the same procedure as the original algorithm with the only difference that the executions
of Algorithm 2 are done in parallel for each level of the tree. Therefore, the only difference
between the sequential algorithm and LWP lies in the order in which the nodes of one level
are labeled and generated.

Let us assume that there are two nodes n1 and no in the tree and that the sequential
HS-tree algorithm will process n1 before ny. Assuming that neither n; nor ny correspond
to diagnoses, the sequential Algorithm 1 would correspondingly first add the child nodes of
n1 to the queue of open nodes and later on append the child nodes of ns.

If we parallelize the computations needed for the generation of n; and no in LWP, it
can happen that the computations for n; need longer than those for no. In this case the
child nodes of ny will be placed in the queue first. The order of how these nodes are
subsequently processed is, however, irrelevant for the computation of the minimal hitting
sets, since neither the labeling nor the pruning rules are influenced by it. In fact, the
labeling of any node n only depends on whether or not a minimal conflict set f exists such
that H(n) n f = ¢, but not on the other nodes on the same level. The pruning rules
state that any node n can be pruned if there exists a node n’ labeled with v* such that
H(n') € H(n), i.e., supersets of already found diagnoses can be pruned. If n and n’ are
on the same level, then |H(n)| = |H(n')|. Consequently, the pruning rule is applied only if
H(n) = H(n'). Therefore, the order of nodes, i.e., which of the nodes is pruned, is irrelevant
and no minimal hitting set is lost. Consequently, LWP is complete.

Soundness of the algorithm follows from the fact that LWP constructs the hitting sets
always in the order of increasing cardinality. Therefore, LWP will always return only min-
imal hitting sets even in scenarios in which we should stop after k diagnoses are found,
where 1 > k < N is a predefined constant and N is the total number of diagnoses of a
problem. O

3.4.2 FuLL PARALLELIZATION (FP)

The minimality of the hitting sets encountered during the search is not guaranteed by FP,
since the algorithm schedules a node for processing immediately after its generation (line 8
of Algorithm 5). The special treatment in the GENERATENODEFP function ensures that no
supersets of already found hitting sets are added to A and that supersets of a newly found
hitting set will be removed in a thread-safe manner (lines 13 — 16 of Algorithm 6). Due
to this change in GENERATENODEFP, the analysis of soundness and completeness has to be
done for two distinct cases.

Theorem 3.2. Full Parallelization is sound and complete, if applied to find all diagnoses
up to some cardinality.

Proof. FP stops if either (i) no further hitting set exists, i.e., all leaf nodes of a tree are
labeled either with v or with X, or (ii) the predefined cardinality (tree-depth) is reached. In
this latter case, every leaf node of the tree is labeled either with v/, X, or a minimal conflict

847

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

set. Case (ii) can be reduced to (i) by removing all branches from the tree that are labeled
with a minimal conflict. These branches are irrelevant since they can only contribute to
minimal hitting sets of higher cardinality. Therefore, without loss of generality, we can limit
our discussion to case (i).

According to the definition of GENERATENODEFP, the tree is built using the same pruning
rule as done in the sequential HS-tree algorithm. As a consequence, the tree generated by
FP must comprise at least all nodes of the tree that is generated by the sequential HS-
tree procedure. Therefore, according to Theorem 4.8 in the work of Reiter (1987) the
tree T' generated by FP must comprise a set of leaf nodes labeled with v such that the
set {H(n)|n is a node of T labeled by v/} corresponds to the set H of all minimal hitting
sets. Moreover, the result returned by FP comprises only minimal hitting sets, because
GENERATENODEFP removes all hitting sets from H which are supersets of other hitting sets.
Consequently, FP is sound and complete, when applied to find all diagnoses.]

Theorem 3.3. Full Parallelization cannot guarantee completeness and soundness when
applied to find the first k diagnoses, i.e. 1 = k < N, where N is the total number of
diagnoses of a problem.

Proof. The proof can be done by constructing an example for which FP returns at least
one non-minimal hitting set in the set A, thus violating Definition 2.2. For instance, this
situation might occur if FP is applied to find one single diagnosis for the example problem
presented in Section 2.2.1. Let us assume that the generation of the node corresponding
to the path C2 is delayed, e.g., because the operating system scheduled another thread for
execution first, and node 4 is correspondingly generated first. In this case, the algorithm
would return the non-minimal hitting set {C1, C2} which is not a diagnosis. O

Note that the elements of the set A returned by FP in this case can be turned to
diagnoses by applying a minimization algorithm like INv-QuickXPLAIN (Shchekotykhin,
Friedrich, Rodler, & Fleiss, 2014), an algorithm that adopts the principles of QUICKXPLAIN
and applies a divide-and-conquer strategy to find one minimal diagnosis for a given set of
inconsistent constraints.

Given a hitting set H and a diagnosis problem, the algorithm is capable of computing a
minimal hitting set H' € H requiring only O(|H'|+|H'|log(|H|/|H'|))) calls to the theorem
prover TP. The first part, |[H'|, reflects the computational costs of determining whether or
not H' is minimal. The second part represents the number of subproblems that must be
considered by the divide-and-conquer algorithm in order to find the minimal hitting set H’'.

3.5 Evaluation

To determine which performance improvements can be achieved through the various forms
of parallelization proposed in this paper, we conducted a series of experiments with diagnosis
problems from a number of different application domains. Specifically, we used electronic
circuit benchmarks from the DX Competition 2011 Synthetic Track, faulty descriptions of
Constraint Satisfaction Problems (CSPs), as well as problems from the domain of ontology
debugging. In addition, we ran experiments with synthetically created diagnosis problems
to analyze the impact of varying different problem characteristics. All diagnosis algorithms

848

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

evaluated in this paper were implemented in Java unless noted otherwise. Generally, we
use wall clock times as our performance measure.

In the main part of the paper, we will focus on the results for the DX Competition
problems as this is the most widely used benchmark. The results for the other problem
setups will be presented and discussed in the appendix of the paper. In most cases, the
results for the DX Competition problems follow a similar trend as those that are achieved
with the other experiments.

In this section we will compare the HS-tree parallelization schemes LWP and FP with
the sequential version of the algorithm, when the goal is to find all diagnoses.

3.5.1 DATASET AND PROCEDURE

For this set of experiments, we selected the first five systems of the DX Competition 2011
Synthetic Track (see Table 1) (Kurtoglu & Feldman, 2011). For each system, the compe-
tition specifies 20 scenarios with injected faults resulting in different faulty output values.
We used the system description and the given input and output values for the diagnosis
process. The additional information about the injected faults was of course ignored. The
problems were converted into Constraint Satisfaction Problems. In the experiments we used
Choco (Prud’homme, Fages, & Lorca, 2015) as a constraint solver and QXP for conflict
detection, which returns one minimal conflict when called during node construction.

As the computation times required for conflict identification strongly depend on the
order of the possibly faulty constraints, we shuffled the constraints for each test and repeated
all tests 100 times. We report the wall clock times for the actual diagnosis task; the times
required for input and output are independent from the HS-tree construction scheme and
not relevant for our benchmarks. For the parallel approaches, we used a thread pool of size
four.”

Table 1 shows the characteristics of the systems in terms of the number of constraints
(#C) and the problem variables (#V).® The numbers of the injected faults (#F) and the
numbers of the calculated diagnoses (#D) vary strongly because of the different scenarios
for each system. For both columns we show the ranges of values over all scenarios. The
columns #D and ﬁ indicate the average number of diagnoses and their average cardinality.
As can be seen, the search tree for the diagnosis can become extremely broad with up to
6,944 diagnoses with an average diagnosis size of only 3.38 for the system c432.

3.5.2 RESULTS

Table 2 shows the averaged results when searching for all minimal diagnoses. We first list the
running times in milliseconds for the sequential version (Seq.) and then the improvements
of LWP or FP in terms of speedup and efficiency with respect to the sequential version.
Speedup S, is computed as S, = T /T, where T} is the wall time when using 1 thread (the
sequential algorithm) and T, the wall time when p parallel threads are used. A speedup of

7. Having four hardware threads is a reasonable assumption on standard desktop computers and also mobile
devices. The hardware we used for the evaluation in this chapter — a laptop with an Intel i7-3632QM
CPU, 16GB RAM, running Windows 8 — also had four cores with hyperthreading. The results of an
evaluation on server hardware with 12 cores are reported later in this Section.

8. For systems marked with * the search depth was limited to their actual number of faults to ensure that
the sequential algorithm terminates within a reasonable time frame.

849

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

System | #C | #V | #F #D #D | |D|
74182 21 | 28 [4- 30 - 300 139.0 | 4.66
74185 35 | 44 | 1- 1-215 66.4 | 3.13

74283* 38 | 45
74181* 67 | 79
c432* 162 | 196

180 - 4,991 | 1,232.7 | 4.42
10- 3,828 | 877.8 | 4.53
1-6,944 | 1,069.3 | 3.38

N W N~
1
UL O = W Ut

Table 1: Characteristics of the selected DXC benchmarks.

2 would therefore mean that the needed computation times were halved; a speedup of 4,
which is the theoretical optimum when using 4 threads, means that the time was reduced
to one quarter. The efficiency E, is defined as S,/p and compares the speedup with the
theoretical optimum. The fastest algorithm for each system is highlighted in bold.

System | Seq.(QXP) | LWP(QXP) | FP(QXP)
[ms] S4 E4 S4 E4
74182 65 | 2.23| 0.56 |2.28 | 0.57
74L85 209 | 255 | 0.64 | 2.77 | 0.69
74283* 371 (253 | 0.63 |2.66 | 0.67
74181* 21,695 | 1.22 0.31 3.19 | 0.80
c432* 85,024 | 1.47 | 0.37 | 3.75 | 0.94

Table 2: Observed performance gains for the DXC benchmarks when searching for all di-
agnoses.

In all tests, both parallelization approaches outperform the sequential algorithm. Fur-
thermore, the differences between the sequential algorithm and one of the parallel ap-
proaches were statistically significant (p < 0.05) in 95 of the 100 tested scenarios. For
all systems, FP was more efficient than LWP and the speedups range from 2.28 to 3.75
(i.e., up to a reduction of running times of more than 70%). In 59 of the 100 scenarios
the differences between LWP and FP were statistically significant. A trend that can be
observed is that the efficiency of FP is higher for the more complex problems. The reason is
that for these problems the time needed for the node generation is much larger in absolute
numbers than the additional overhead times that are required for thread synchronization.

3.5.3 ADDING MORE THREADS

In some use cases the diagnosis process can be done on powerful server architectures that
often have even more CPU cores than modern desktop computers. In order to assess to
which extent more than 4 threads can help to speed up the diagnosis process, we tested the
different benchmarks on a server machine with 12 CPU cores. For this test we compared
FP with 4, 8, 10, and 12 threads to the sequential algorithm.

The results of the DXC benchmark problems are shown in Table 3. For all tested systems
the diagnosis process was faster using 8 instead of 4 threads and substantial speedups up
to 5.20 could be achieved compared to the sequential diagnosis, which corresponds to a

850

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

runtime reduction of 81%. For all but one system, the utilization of 10 threads led to
additional speedups. Using 12 threads was the fastest for 3 of the 5 tested systems. The
efficiency, however, degrades as more threads are used, because more time is needed for the
synchronization between threads. Using more threads than the hardware actually has cores
did not result in additional speedups for any of the tested systems. The reason is that for
most of the time all threads are busy with conflict detection, e.g., finding solutions to CSPs,
and use almost 100% of the processing power assigned to them.

System | Seq.(QXP) FP(QXP)

ms] | Sy | Ey4 Ss Es | Sio | Eio | S12 | Epo
74182 58 1 2.09 | 0.52 | 243 | 0.30 | 2.52 | 0.25 | 2.54 | 0.21
741.85 184 | 253 [0.63 | 3.29 | 0.41 | 3.35 | 0.34 | 3.38 | 0.28
74283 51,314 | 3.04 | 0.76 | 4.38 | 0.55 | 4.42 | 0.44 | 4.50 | 0.37
74181%* 13,847 | 3.45 | 0.86 | 5.20 | 0.65 | 5.11 | 0.51 | 5.19 | 0.43
c432* 43,916 | 3.43 | 0.86 | 4.77 | 0.60 | 5.00 | 0.50 | 4.74 | 0.39

Table 3: Observed performance gains for the DXC benchmarks on a server with 12 hardware
threads.

3.5.4 ADDITIONAL EXPERIMENTS

The details of additional experiments that were conducted to compare the proposed paral-
lelization schemes with the sequential HS-Tree algorithm are presented in Section A.1 in the
appendix. The results show that significant speedups can also be achieved for other Con-
straint Satisfaction Problems (Section A.1.1) and ontologies (Section A.1.2). The appendix
furthermore contains an analysis of effects when adding more threads to the benchmarks of
the CSPs and ontologies (Section A.1.3) and presents the results of a simulation experiment
in which we systematically varied different problem characteristics (Section A.1.4).

3.5.5 DISCUSSION

Overall, the results of the evaluations show that both parallelization approaches help to im-
prove the performance of the diagnosis process, as for all tested scenarios both approaches
achieved speedups. In most cases FP is faster than LWP. However, depending on the
specifics of the given problem setting, using LWP can be advantageous in some situations,
e.g., when the time needed to generate each node is very small or when the conflict gener-
ation time does not vary strongly. In these cases the synchronization overhead needed for
FP is higher than the cost of waiting for all threads to finish. For the tested ontologies in
Section A.1.2, this was the case in four of the tested scenarios.

Although FP is on average faster than LWP and significantly better than the sequential
HS-tree construction approach, for some of the tested scenarios its efficiency is still far
from the optimum of 1. This can be explained by different effects. For example, the effect
of false sharing can happen if the memory of two threads is allocated to the same block
(Bolosky & Scott, 1993). Then every access to this memory block is synchronized although
the two threads do not really share the same memory. Another possible effect is called cache

851

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

contention (Chandra, Guo, Kim, & Solihin, 2005). If threads work on different computing
cores but share the same memory, cache misses can occur more often depending on the
problem characteristics and thus the theoretical optimum cannot be reached in these cases.

4. Parallel HS-Tree Construction with Multiple Conflicts Per Node

Both in the sequential and the parallel version of the HS-tree algorithm, the Theorem
Prover TP call corresponds to an invocation of QXP. Whenever a new node of the HS-tree
is created, QXP searches for exactly one new conflict in case none of the already known
conflicts can be reused. This strategy has the advantage that the call to TP immediately
returns after one conflict has been determined. This in turn means that the other parallel
execution threads immediately “see” this new conflict in the shared data structures and
can, in the best case, reuse it when constructing new nodes.

A disadvantage of computing only one conflict at a time with QXP is that the search
for conflicts is restarted on each invocation. We recently proposed a new conflict detection
technique called MERGEXPLAIN (MXP) (Shchekotykhin et al., 2015), which is capable of
computing multiple conflicts in one call. The general idea of MXP is to continue the search
after the identification of the first conflict and look for additional conflicts in the remaining
constraints (or logical sentences) in a divide-and-conquer approach.

When combined with a sequential HS-tree algorithm, the effect is that during tree con-
struction more time is initially spent for conflict detection before the construction continues
with the next node. In exchange, the chances of having a conflict available for reuse increase
for the next nodes. At the same time, the identification of some of the conflicts is less time-
intensive as smaller sets of constraints have to be investigated due to the divide-and-conquer
approach of MXP. An experimental evaluation on various benchmark problems shows that
substantial performance improvements are possible in a sequential HS-tree scenario when
the goal is to find a few leading diagnoses (Shchekotykhin et al., 2015).

In this section, we explore the benefits of using MXP with the parallel HS-tree con-
struction schemes proposed in the previous section. When using MXP in combination with
multiple threads, the implicit effect is that more CPU processing power is devoted to con-
flict generation as the individual threads need more time to complete the construction of a
new node. In contrast to the sequential version, the other threads can continue with their
work in parallel.

In the next section, we will briefly review the MXP algorithm before we report the
results of the empirical evaluation on our benchmark datasets (Section 4.2).

4.1 Background — QuickXplain and MergeXplain

Algorithm 7 shows the QXP conflict detection technique of Junker (2004) applied to the
problem of finding a conflict for a diagnosis problem during HS-tree construction.

QXP operates on two sets of constraints? which are modified through recursive calls.
The “background theory” B comprises the constraints that will not be considered anymore
to be part of a conflict at the current stage. At the beginning, this set contains SD, OBs,

9. We use the term constraints here as in the original formulation. As QXP is independent from the
underlying reasoning technique, the elements of the sets could be general logical sentences as well.

852

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Algorithm 7: QUICKXPLAIN (QXP)
Input: A diagnosis problem (SD, Comps, OBs), a set visitedNodes of elements
Output: A set containing one minimal conflict CS < C
1 B=SD u OBs u {aB(c)|c € visitedNodes}; C = {—aB(c)|c € Comps\visitedNodes};
2 if isConsistent(B U C) then return ‘no conflict’;
3 else if C = ¢ then return ¢J;
4 return {c|—aB(c) € GETCONFLICT(B, B,(C)};

function ceTCoONFLICT (B, D, C)

5 if D # & A — isConsistent(B) then return ¢J;
6 if |C| = 1 then return C;

7 Split C into disjoint, non-empty sets C; and Cs

8 Dy «— GETCONFLICT (B u Cy, Cyq, Co)

9 Dy < GETCONFLICT (B U Da, Do, Cy)

10 return D, u Do;

and the set of nodes on the path to the current node of the HS-tree (visited nodes). The
set C represents the set of constraints in which we search for a conflict.

If there is no conflict or C is empty, the algorithm immediately returns. Otherwise GET-
CONFLICT is called, which corresponds to Junker’s QXP method with the minor difference
that GETCONFLICT does not require a strict partial order for the set of constraints C. We
introduce this variant of QXP since we cannot always assume that prior fault information
is available that would allow us to generate this order.

The rough idea of QXP is to relax the input set of faulty constraints C by partitioning
it into two sets C; and Cs. If C; is a conflict, the algorithm continues partitioning C; in
the next recursive call. Otherwise, i.e., if the last partitioning has split all conflicts of C so
that there are no conflicts left in C1, the algorithm extracts a conflict from the sets C; and
Cy. This way, QXP finally identifies individual constraints which are inconsistent with the
remaining consistent set of constraints and the background theory.

MXP builds on the ideas of QXP but computes multiple conflicts in one call (if they
exist). The general procedure is shown in Algorithm 8. After the initial consistency checks,
the method riNDCoNFLICTS is called, which returns a tuple (C’',T"), where C’ is a set of
remaining consistent constraints and I is a set of found conflicts. The function recursively
splits the set C of constraints in two halves. These parts are individually checked for
consistency, which allows us to exclude larger consistent subsets of C from the search process.
Besides the potentially identified conflicts, the calls to FINDCONFLICTS also return two sets of
constraints which are consistent (C{ and Cj). If the union of these two sets is not consistent,
we look for a conflict within C] U C] (and the background theory) in the style of QXP.

More details can be found in our earlier work, where also the results of an in-depth
experimental analysis are reported (Shchekotykhin et al., 2015).

853

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Algorithm 8: MERGEXPLAIN (MXP)
Input: A diagnosis problem (SD, Comps, OBs), a set visitedNodes of elements
Output: I', a set of minimal conflicts
1 B=SD u OBs U {aB(c)|c € visitedNodes}; C = {—aB(c)|c € Comps\A};
2 if —isConsistent(B) then return ‘no solution’;
3 if isConsistent(B U C) then return ¢;
4
5

{.,T) < FINDCONFLICTS(B,C)
return {c|—aB(c) e I'};

function FINDCONFLICTS (B,C) returns tuple (C',T")
if isConsistent(B U C) then return {C, &);

if |C| = 1 then return (7, {C});

Split C into disjoint, non-empty sets C; and Co
{€{,T1) < FINDCONFLICTS(B, C1)

10 (C},Ty) < FINDCONFLICTS(B, C2)

11 I' Fl U FQ;

12 while —isConsistent(C] L Cy L B) do

13 X « GeTCONFLICT(B U C5,C),C))

14 CS «— X u GeTCONFLICT(B U X, X,())
15 Ci < Ci\{a} where a e X

16 I' =T u{CS}

17 | return (C] u C,,T);

4.2 Evaluation

In this section we evaluate the effects of parallelizing the diagnosis process when we use
MXP instead of QXP to calculate the conflicts. As in (Shchekotykhin et al., 2015) we
focus on finding a limited set of (five) minimal diagnoses.

4.2.1 IMPLEMENTATION VARIANTS

Using MXP during parallel tree construction implicitly means that more time is allocated
for conflict generation than when using QXP before proceeding to the next node. To
analyze to which extent the use of MXP is beneficial we tested three different strategies of
using MXP within the full parallelization method FP.

Strategy (1): In this configuration we simply called MXP instead of QXP during node
generation. Whenever MXP finds a conflict, it is added to the global list of known conflicts
and can be (re-)used by other parallel threads. The thread that executes MXP during node
generation continues with the next node when MXP returns.

Strategy (2): This strategy implements a variant of MXP which is slightly more complex.
Once MXP finds the first conflict, the method immediately returns this conflict such that
the calling thread can continue exploring additional nodes. At the same time, a new back-
ground thread is started which continues the search for additional conflicts, i.e., it completes
the work of the MXP call. In addition, whenever MXP finds a new conflict it checks if
any other already running node generation thread could have reused the conflict if it had

854

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

been available beforehand. If this is the case, the search for conflicts of this other thread
is stopped as no new conflict is needed anymore. Strategy (2) could in theory result in
better CPU utilization, as we do not have to wait for a MXP call to finish before we can
continue building the HS-tree. However, the strategy also leads to higher synchronization
costs between the threads, e.g., to notify working threads about newly identified conflicts.

Strategy (3): Finally, we parallelized the conflict detection procedure itself. Whenever
the set C of constraints is split into two parts, the first recursive call of FINDCONFLICTS is
queued for execution in a thread pool and the second call is executed in the current thread.
When both calls are finished, the algorithm continues.

We experimentally evaluated all three configurations on our benchmark datasets. Our
results showed that Strategy (2) did not lead to measurable performance improvements
when compared to Strategy (1). The additional communication costs seem to be higher
than what can be saved by executing the conflict detection process in the background in its
own thread. Strategy (3) can be applied in combination with the other strategies, but similar
to the experiments reported for the sequential HS-tree construction (Shchekotykhin et al.,
2015), no additional performance gains could be observed due to the higher synchronization
costs. The limited effectiveness of Strategies (2) and (3) can in principle be caused by the
nature of our benchmark problems and these strategies might be more advantageous in
different problem settings. In the following, we will therefore only report the results of

applying Strategy (1).

4.2.2 RESULTS FOR THE DXC BENCHMARK PROBLEMS

The results for the DXC benchmarks are shown in Table 4. The left side of the table shows
the results when using QXP and the right hand side shows the results for MXP. The
speedups shown in the FP columns refer to the respective sequential algorithms using the
same conflict detection technique.

Using MXP instead of QXP is favorable when using a sequential HS-tree algorithm
as also reported in the work about MXP (Shchekotykhin et al., 2015). The reduction of
running times ranges from 17% to 44%. The speedups obtained through FP when using
MXP are comparable to FP using QXP and range from 1.33 to 2.10, i.e., they lead to a
reduction of the running times of up to 52%. These speedups were achieved in addition to
the speedups that the sequential algorithm using MXP could already achieve over QXP.

The best results are printed in bold face in Table 4 and using MXP in combination
with FP consistently performs best. Overall, using FP in combination with MXP was
38% to 76% faster than the sequential algorithm using QXP. These tests indicate that
our parallelization method works well also for conflict detection techniques that are more
complex than QXP and, as in this case, return more than one conflict for each call. In
addition, investing more time for conflict detection in situations where the goal is to find a
few leading diagnoses proves to be a promising strategy.

4.2.3 ADDITIONAL EXPERIMENTS AND DISCUSSION

Again we ran additional experiments on constraint problems and ontology debugging prob-
lems. The detailed results are provided in Section A.2.

855

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

System | Seq.(QXP) | FP(QXP) || Seq.(MXP) | FP(MXP)
[ms] | Sy | E4 [ms] | Sy E,
74182 12 | 1.26 | 0.32 10 | 1.52 | 0.38
74L85 15| 1.36 | 0.34 12 1 1.33 | 0.33
74283 49 | 1.58 | 0.39 35 | 1.48 | 0.37
74181 699 | 1.99 | 0.55 394 | 2.10 | 0.53
c432 3,714 | 1.v7 | 0.44 2,888 | 1.72 | 0.43

Table 4: Observed performance gains for the DXC benchmarks (QXP vs MXP).

Overall, the results obtained when embedding MXP in the sequential algorithm confirm
the results by Shchekotykhin et al. (2015) that using MXP is favorable over QXP for all
but a few very small problem instances. However, we can also observe that allocating more
time for conflict detection with MXP in a parallel processing setup can help to further
speedup the diagnosis process when we search for a number of leading diagnoses. The best-
performing configuration across all experiments is using the Full Parallelization method in
combination with MXP as this setup led to the shortest computation times in 20 out of
the 25 tested scenarios (DX benchmarks, CSPs, ontologies).

5. Parallelized Depth-First and Hybrid Search

In some application domains of MBD, finding all minimal diagnoses is either not required
or simply not possible because of the computational complexity or application-specific con-
straints on the allowed response times. For such settings, a number of algorithms have been
proposed over the years, which for example try to find one or a few minimal diagnoses very
quickly or find all diagnoses of a certain cardinality (Metodi, Stern, Kalech, & Codish, 2014;
Feldman, Provan, & van Gemund, 2010b; de Kleer, 2011). In some cases, the algorithms
can in principle be extended or used to find all diagnoses. They are, however, not optimized
for this task.

Instead of analyzing the various heuristic, stochastic or approximative algorithms pro-
posed in the literature individually with respect to their potential for parallelization, we will
analyze in the next section if parallelization can be helpful already for the simple class of
depth-first algorithms. In that context, we will also investigate if measurable improvements
can be achieved without using any (domain-specific) heuristic. Finally, we will propose a
hybrid strategy which combines depth-first and full-parallel HS-tree construction and will
conduct additional experiments to assess if this strategy can be advantageous for the task
of quickly finding one minimal diagnosis.

5.1 Parallel Random Depth-First Search
The section introduces a parallelized depth-first search algorithm to quickly find one single

diagnosis. As the different threads explore the tree in a partially randomized form, we call
the scheme Parallel Random Depth-First Search (PRDFS).

856

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

5.1.1 ALGORITHM DESCRIPTION

Algorithm 9 shows the main program of a recursive implementation of PRDFS. Similar to
the HS-tree algorithm, the search for diagnoses is guided by conflicts. This time, however,
the algorithm greedily searches in a depth-first manner. Once a diagnosis is found, it
has to be checked for minimality because the diagnosis can contain redundant elements.
The “minimization” of a non-minimal diagnosis can be achieved by calling a method like
Inv-Quick XPLAIN (Shchekotykhin et al., 2014) or by simply trying to remove one element
of the diagnosis after the other and checking if the resulting set is still a diagnosis.

Algorithm 9: DIAGNOSEPRDFS: Parallelized random depth-first search.
Input: A diagnosis problem (SD, Cowmps, OBS),
the number minDiags of diagnoses to find
Result: The set A of diagnoses

A = ¢J; conflicts = ¢;
rootNode = GETROOTNODE(SD, Comps, OBs);
for i = 1 to nbThreads do
L threads.execute(ExPANDPRDFS(rootNode, minDiags, A, conflicts));

[R

ot

while |A| < minDiags do
6 Lwait();

7 threads.shutdownNow/();

8 return A;

The idea of the parallelization approach in the algorithm is to start multiple threads
from the root node. All of these threads perform the depth-first search in parallel, but pick
the next conflict element to explore in a randomized manner.

The logic for expanding a node is shown in Algorithm 10. First, the conflict of the
given node is copied, so that changes to this set of constraints will not affect the other
threads. Then, as long as not enough diagnoses were found, a randomly chosen constraint
from the current node’s conflict is used to generate a new node. The expansion function is
then immediately called recursively for the new node, thereby implementing the depth-first
strategy. Any identified diagnosis is minimized before being added to the list of known
diagnoses. Similar to the previous parallelization schemes, the access to the global lists of
known conflicts has to be made thread-safe. When the specified number of diagnoses is
found or all threads are finished, the statement threads.shutdownNow() immediately stops
the execution of all threads that are still running and the results are returned. The semantics
of threads.execute(), wait(), and notify() are the same as in Section 3.

5.1.2 EXAMPLE

Let us apply the depth-first method to the example from Section 2.2.1. Remember that the
two conflicts for this problem were {{C1,C2,C3}, {C2,C4}}. A partially expanded tree for
this problem can be seen in Figure 2.

857

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Algorithm 10: EXPANDPRDF'S: Parallel random depth-first node expansion.

Input: An ezistingNode to expand, the number minDiags of diagnoses to find,
the sets A and conflicts

1 C = existingNode.conflict.clone(); // Copy existingNode’s conflict
2 while |A| < minDiags A|C| > 0 do
3 Randomly pick a constraint ¢ from C
4 | C=0C\{c}k
5 newPathLabel = existingNode.pathLabel U {c};
6 node = new Node(newPathlabel);
7 if 3 S € conflicts : S N newPathLabel = ¢ then
8 ‘ node.conflict = S;
9 else
10 L node.conflict = cHECKCONSISTENCY (SD, Comps, OBs, node.pathLabel);
11 if node.conflict # ¢ then // New conflict found
12 conflicts = conflicts U node.conflict;
// Recursive call implements the depth-first search strategy
13 ExPANDPRDFS(node, minDiags, A, conflicts);
14 else // Diagnosis found
15 diagnosis = MiNiMizE(node.pathLabel);
16 A = A v {diagnosis};
17 if |A| > minDiags then
18 L notify();

In the example, first the root node (1) is created and again the conflict {C1,C2,C3}
is found. Next, the random expansion would, for example, pick the conflict element C'1
and generate node (2). For this node, the conflict {C2,C4} will be computed because {C'1}
alone is not a diagnosis. Since the algorithm continues in a depth-first manner, it will
then pick one of the label elements of node (2), e.g., C2 and generate node (3). For this
node, the consistency check succeeds, no further conflict is computed and the algorithm has
found a diagnosis. The found diagnosis {C1,C2} is, however, not minimal as it contains
the redundant element C'1. The function MiNmmizE, which is called at the end of Algorithm
10, will therefore remove the redundant element to obtain the correct diagnosis {C2}.

If we had used more than one thread in this example, one of the parallel threads would
have probably started expanding the root node using the conflict element C2 (node (4)). In
that case, the single element diagnosis {C2} would have been identified already at the first
level. Adding more parallel threads can therefore help to increase the chances to find one
hitting set faster as different parts of the HS-tree are explored in parallel.

Instead of the random selection strategy, more elaborate schemes to pick the next nodes
are possible, e.g., based on application-specific heuristics or fault probabilities. One could
also better synchronize the search efforts of the different threads to avoid duplicate cal-
culations. We conducted experiments with an algorithm variant that used a shared and

858

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

@

T C4

Figure 2: Example for HS-tree construction with PRDFS.

synchronized list of open nodes to avoid that two threads generate an identical sub-tree in
parallel. We did, however, not observe significantly better results than with the method
shown in Algorithm 9 probably due to the synchronization overhead.

5.1.3 DISCUSSION OF SOUNDNESS AND COMPLETENESS

Every single thread in the depth-first algorithm systematically explores the full search space
based on the conflicts returned by the Theorem Prover. Therefore, all existing diagnoses
will be found when the parameter minDiags is equal or higher than the number of actually
existing diagnoses.

Whenever a (potentially non-minimal) diagnosis is encountered, the minimization pro-
cess ensures that only minimal diagnoses are stored in the list of diagnoses. The duplicate
addition of the same diagnosis by one or more threads in the last lines of the algorithm is
prevented because we consider diagnoses to be equal if they contain the same set of elements
and A as a set by definition cannot contain the same element twice.

Overall, the algorithm is designed to find one or a few diagnoses quickly. The computa-
tion of all minimal diagnoses is possible with the algorithm but highly inefficient, e.g., due
to the computational costs of minimizing the diagnoses.

5.2 A Hybrid Strategy

Let us again consider the problem of finding one minimal diagnosis. One can easily imagine
that the choice of the best parallelization strategy, i.e., breadth-first or depth-first, can
depend on the specifics of the given problem setting and the actual size of the existing
diagnoses. If a single-element diagnosis exists, exploring the first level of the HS-tree in a
breadth-first approach might be the best choice (see Figure 3(a)). A depth-first strategy
might eventually include this element in a non-minimal diagnosis, but would then have to
do a number of additional calculations to ensure the minimality of the diagnosis.

If, in contrast, the smallest actually existing diagnosis has a cardinality of, e.g., five,
the breadth-first scheme would have to fully explore the first four HS-tree levels before
finding the five-element diagnosis. The depth-first scheme, in contrast, might quickly find

859

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

a superset of the five-element diagnosis, e.g., with six elements, and then only needs six
additional consistency checks to remove the redundant element from the diagnosis (Figure

3(b)).

Diagnosis detected
o V4

N

Diagnosis detected

(a) Breadth-first strategy is advantageous. (b) Depth-first strategy is advantageous.

Figure 3: Two problem configurations for which different search strategies are favorable.

Since we cannot know the cardinality of the diagnoses in advance, we propose a hybrid
strategy, in which half of the threads adopt a depth-first strategy and the other half uses
the fully parallelized breadth-first regime. To implement this strategy, the Algorithms 5
(FP) and 9 (PRDFS) can be started in parallel and each algorithm is allowed to use one
half or some other defined share of the available threads. The coordination between the
two algorithms can be done with the help of shared data structures that contain the known
conflicts and diagnoses. When enough diagnoses (e.g. one) are found, all running threads
can be terminated and the results are returned.

5.3 Evaluation

We evaluated the different strategies for efficiently finding one minimal diagnosis on the
same set of benchmark problems that were used in the previous sections. The experiment
setup was identical except that the goal was to find one arbitrary diagnosis and that we
included the additional depth-first algorithms. In order to measure the potential benefits of
parallelizing the depth-first search, we ran the benchmarks for PRDFS both with 4 threads
and with 1 thread, where the latter setup corresponds to a Random Depth First Search
(RDFS) without parallelization.

5.3.1 RESULTS FOR THE DXC BENCHMARK PROBLEMS

The results for the DXC benchmark problems are shown in Table 5. Overall, for all tested
systems, each of the approaches proposed in this paper can help to speed up the process
of finding one single diagnosis. In 88 of the 100 evaluated scenarios at least one of the
tested approaches was statistically significantly faster than the sequential algorithm. For
the other 12 scenarios, finding one single diagnosis was too simple so that only modest but
no significant speedups compared to the sequential algorithm were obtained.

When comparing the individual parallel algorithms, the following observations can be
made:

860

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

e For most of the examples, the PRDFS method is faster than the breadth-first search
implemented in the FP technique. For one benchmark system, the PRDFS approach
can even achieve a speedup of 11 compared to the sequential algorithm, which corre-
sponds to a runtime reduction of 91%.

e When compared with the non-parallel RDFS, PRDFS could achieve higher speedups
for all tested systems except the most simple one, which only took 16 ms even for the
sequential algorithm. Owverall, parallelization can therefore be advantageous also for
depth-first strategies.

e The performance of the HYBRID strategy lies in between the performances of its com-
ponents PRDFS and FP for 4 of the 5 tested systems. For these systems, it is closer to
the faster one of the two. Adopting the hybrid strategy can therefore represent a good
choice when the structure of the problem is not known in advance, as it combines both
ideas of breadth-first and depth-first search and is able to quickly find a diagnosis for
problem settings with unknown characteristics.

System | Seq. FP RDFS PRDFS Hybrid
[ms] S4 E4 [ms] S4 E4 S4 E4
74182 16 | 1.37 | 0.34 9| 084 | 0.21 | 0.84 | 0.21
741,85 13] 1.34 | 0.33 11] 1.06 | 0.27 | 1.05 | 0.26
74283 54 | 1.67 | 0.42 25| 1.22 | 0.31 | 1.06 | 0.26
74181 691 | 2.08 | 0.52 74 11.23 | 0.31 | 1.04 | 0.26
c432 2,789 | 1.89 | 0.47 1,435 | 2.96 | 0.74 | 1.81 | 0.45

Table 5: Observed performance gains for DXC benchmarks for finding one diagnosis.

5.3.2 ADDITIONAL EXPERIMENTS

The detailed results obtained through additional experiments are again provided in the
appendix. The measurements include the results for CSPs (Section A.3.1) and ontologies
(Section A.3.2), as well as results that were obtained by systematically varying the charac-
teristics of synthetic diagnosis problems (Section A.3.3). The results indicate that applying
a depth-first parallelization strategy in many cases is advantageous for the CSP problems.
The tests on the ontology problems and the simulation results however reveal that depend-
ing on the problem structure there are cases in which a breadth-first strategy can be more
beneficial.

5.3.3 DISCUSSION

The experiments show that the parallelization of the depth-first search strategy (PRDFS)
can help to further reduce the computation times when we search for one single diagnosis.

In most evaluated cases, PRDFS was faster than its sequential counterpart. In some
cases, however, the obtained improvements were quite small or virtually non-existent, which
can be explained as follows.

861

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

e For the very small scenarios, the parallel depth-first search cannot be significantly
faster than the non-parallel variant because the creation of the first node is not paral-
lelized. Therefore a major fraction of the tree construction process is not parallelized
at all.

e There are problem settings in which all existing diagnoses have the same size. All
parallel depth-first searching threads therefore have to explore the tree to a certain
depth and none of the threads can immediately return a diagnosis that is much smaller
than one determined by another thread. E.g., given a diagnosis problem, where all
diagnoses have size 5, all threads have to explore the tree to at least level 5 to find a
diagnosis and are also very likely to find a diagnosis on that level. Therefore, in this
setting no thread can be much faster than the others.

e Finally, we again suspect problems of cache contention and a correspondingly in-
creased number of cache misses, which leads to a general performance deterioration
and overhead caused by the multiple threads.

Overall, the obtained speedups again depend on the problem structure. The hybrid
technique represents a good compromise for most cases as it is faster than the sequential
breadth first search approach for most of the tested scenarios (including the CSPs, on-
tologies, and synthetically created diagnosis problems presented in Section A.3). Also, it
is more efficient than PRDFS in some cases for which breadth first search is better than
depth first search.

6. Parallel Direct CSP Encodings

As an alternative to conflict-guided diagnosis approaches like Reiter’s hitting set technique,
so-called “direct encodings” have become more popular in the research community in recent
years (Feldman, Provan, de Kleer, Robert, & van Gemund, 2010a; Stern, Kalech, Feldman,
& Provan, 2012; Metodi et al., 2014; Mencia & Marques-Silva, 2014; Mencia, Previti, &
Marques-Silva, 2015; Marques-Silva, Janota, Ignatiev, & Morgado, 2015).1°

The general idea of direct encodings is to generate a specific representation of a diagnosis
problem instance with some knowledge representation language and then use the theorem
prover (e.g., a SAT solver or constraint engine) to compute the diagnoses directly. These
methods support the generation of one or multiple diagnoses by calling a theorem prover
only once. Nica, Pill, Quaritsch, and Wotawa (2013) made a number of experiments in
which they compared conflict-directed search with such direct encodings and showed that
for several problem settings, using the direct encoding was advantageous.

In this part of the paper, our goal is to evaluate whether the parallelization of the search
process — in that case inside the constraint engine — can help to improve the efficiency of
the diagnostic reasoning process. The goal of this chapter is therefore rather to quantify
to which extent the internal parallelization of a solver is useful than to present a new
algorithmic contribution.

10. Such direct encodings may not always be possible in MBD settings as discussed above.

862

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

6.1 Using Gecode as a Solver for Direct Encodings

For our evaluation we use the Gecode constraint solver (Schulte, Lagerkvist, & Tack, 2016).
In particular, we use the parallelization option of Gecode to test its effects on the diagnosis
running times.!! The chosen problem encoding is similar to the one used by Nica and
Wotawa (2012). This allows us to make our results comparable with those obtained in
previous works. In addition, the provided encoding is represented in a language which is
supported by multiple solvers.

6.1.1 EXAMPLE

Let us first show the general idea on a small example. Consider the following CSP!?
consisting of the integer variables al, a2, bl, b2, ¢l and the constraints Xi, X2, and X3
which are defined as:

Xi:b0l=alx2,Xo: b2=0a2x3,X3: cl =>bl xb2.

Let us assume that the programmer made a mistake and X3 should actually be c1 =
bl + b2. Given a set of expected observations (a test case) al = 1,a2 = 6,dl = 20, MBD
can be applied by considering the constraints as the possibly faulty components.

In a direct encoding the given CSP is extended with a definition of an array AB =
[ab1, aby, abs] of boolean (0/1) variables which encode whether a corresponding constraint
is considered as faulty or not. The constraints are rewritten as follows:

Xi:abyv (bl =al x2), X5: abyv (b2=a2x3), Xj: absv (cl =bl x b2).

The observations can be encoded through equality constraints which bind the values of
the observed variables. In our example, these constraints would be:

0120,1:1, 02:(12:6, 03:d1=20
In order to find a diagnosis of cardinality 1, we additionally add the constraint
aby + abs + abg =1

and let the solver search for a solution. In this case, X3 would be identified as the only
possible diagnosis, i.e., abs would be set to “1” by the solver.

6.1.2 PARALLELIZATION APPROACH OF GECODE

When using such a direct encoding, a parallelization of the diagnosis process, as shown
for Reiter’s approach, cannot be done because it is embedded in the underlying search
procedure. However, modern constraint solvers, such as Gecode, or-tools and many other
solvers of those that participated in the MINIZINC Challenge (Stuckey, Feydy, Schutt, Tack,
& Fischer, 2014), internally implement parallelization strategies to better utilize today’s
multi-core computer architectures (Michel, See, & Van Hentenryck, 2007; Chu, Schulte, &

11. A state-of-the-art SAT solver capable of parallelization could have been used for this analysis as well.
12. Adapted from an earlier work (Jannach & Schmitz, 2014).

863

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Stuckey, 2009). In the following, we will therefore evaluate through a set of experiments, if
these solver-internal parallelization techniques can help to speed up the diagnosis process
when a direct encoding is used.!?

Gecode implements an adaptive work stealing strategy (Chu et al., 2009) for its par-
allelization. The general idea can be summarized as follows. As soon as a thread finishes
processing its nodes of the search tree, it “steals” some of the nodes from non-idle threads.
In order to decide from which thread the work should be stolen, an adaptive strategy uses
balancing heuristics that estimate the density of the solutions in a particular part of the
search tree. The higher the likelihood of containing a solution for a given branch, the more
work is stolen from this branch.

6.2 Problem Encoding

In our evaluation we use MINIZINC as a constraint modeling language. This language can
be processed by different solvers and allows us to model diagnosis problems as CSPs as
shown above.

6.2.1 FINDING ONE DIAGNOSIS

To find a single diagnosis for a given diagnosis problem (SD, Comps, OBs), we generate a
direct encoding in MINIZINC as follows.

(1) For the set of components COMPS we generate an array ab = [aby,...,ab,] of
boolean variables.

(2) For each formula sd; € SD we add a constraint of the form
constraint ab[i] v (sd;);
and for each observation o; € OBS the model is extended with a constraint
constraint oj;

(3) Finally, we add the search goal and an output statement:
solve minimize sum(i in 1..n)(bool2int(abi]));
output [show(ab)];

The first statement of the last part (solve minimize), instructs the solver to search for
a (single) solution with a minimal number of abnormal components, i.e., a diagnosis with
minimum cardinality. The second statement (output) projects all assignments to the set
of abnormal variables, because we are only interested in knowing which components are
faulty. The assignments of the other problem variables are irrelevant.

6.2.2 FINDING ALL DIAGNOSES

The problem encoding shown above can be used to quickly find one/all diagnoses of min-
imum cardinality. It is, however, not sufficient for scenarios where the goal is to find all
diagnoses of a problem. We therefore propose the following sound and complete algorithm
which repeatedly modifies the constraint problem to systematically identify all diagnoses.

13. In contrast to the parallelization approaches presented in the previous sections, we do not propose any
new parallelization schemes here but rather rely on the existing ones implemented in the solver.

864

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Technically, the algorithm first searches for all diagnoses of size 1 and then increases the
desired cardinality of the diagnoses step by step.

Algorithm 11: DIRECTDIAG: Computation of all diagnoses using a direct encoding.

Input: A diagnosis problem (SD, Comps, OBs), maximum cardinality k
Result: The set A of diagnoses

A=g;C=J; card = 1;
if £ > |Comps| then k = |[CoMPS|;
M = GENERATEMODEL (SD, Comps, OBS);
while card < k do
M = UPDATEMODEL (M, card, C);
A’ = cOMPUTEDIAGNOSES(M);
C = C U GENERATECONSTRAINTS(A');
A=AuUA
card = card + 1;

© 00 N O Ut ks W N =

10 return A;

Procedure Algorithm 10 shows the main components of the direct diagnosis method used
in connection with a parallel constraint solver to find all diagnoses. The algorithm starts
with the generation of a MINIZINC model (GENERATEMODEL) as described above. The
only difference is that we will now search for all solutions of a given cardinality; further
details about the encoding of the search goals are given below.

In each iteration, the algorithm modifies the model by updating the cardinality of the
searched diagnoses and furthermore adds new constraints corresponding to the already
found diagnoses (UPDATEMODEL). This updated model is then provided to a MINIZINC
interpreter (constraint solver), which returns a set of solutions A’. Each element §; € A’
corresponds to a diagnosis of the cardinality card.

In order to exclude supersets of the already found diagnoses A’ in future iterations, we
generate a constraint for each §; € A’ with the formulas j to | (GENERATECONSTRAINTS):

constraint ab[j] = false v --- v ab[l] = false;

These constraints ensure that an already found diagnosis or supersets of it cannot be found
again. They are added to the model M in the next iteration of the main loop. The algorithm
continues until all diagnoses with cardinalities up to k£ are computed.

Changes in Encoding To calculate all diagnoses of a given size, we first instruct the
solver to search for all possible solutions when provided with a constraint problem.'* In
addition, while keeping steps (1) and (2) from Section 6.2.1 we replace the lines of step (3)

14. This is achieved by calling MiniZinc with the --all-solutions flag.

865

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

by the following statements:

constraint sum(i in 1..n)(bool2int(ab[i])) = card;
solve satisfy;

output [show(ab)];

The first statement constrains the number of abnormal variables that can be true to a
certain value, i.e., the given cardinality card. The second statement tells the solver to find
all variable assignments that satisfy the constraints. The last statement again guarantees
that the solver only considers the solutions to be different when they are different with
respect to the assignments of the abnormal variables.

Soundness and Completeness Algorithm 10 implements an iterative deepening ap-
proach which guarantees the minimality of the diagnoses in A. Specifically, the algorithm
constructs diagnoses in the order of increasing cardinality by limiting the number of ab
variables that can be set to true in a model. The computation starts with card = 1, which
means that only one ab variable can be true. Therefore, only diagnoses of cardinality 1,
i.e., comprising only one abnormal variable, can be returned by the solver. For each found
diagnosis we then add a constraint that requires at least one of the abnormal variables of
this diagnosis to be false. Therefore, neither this diagnosis nor its supersets can be found
in the subsequent iterations. These constraints implement the pruning rule of the HS-tree
algorithm. Finally, Algorithm 10 repeatedly increases the cardinality parameter card by
one and continues with the next iteration. The algorithm continues to increment the car-
dinality until card becomes greater than the number of components, which corresponds to
the largest possible cardinality of a diagnosis. Consequently, given a diagnosis problem as
well as a sound and complete constraint solver, Algorithm 10 returns all diagnoses of the
problem.

6.3 Evaluation

To evaluate if speedups can be achieved through parallelization also for a direct encoding,
we again used the first five systems of the DXC Synthetic Track and tested all scenarios
using the Gecode solver without parallelization and with 2 and 4 parallel threads.

6.3.1 RESULTS

We evaluated two different configurations. In setup (A), the task was to find one single
diagnosis of minimum cardinality. In setup (B), the iterative deepening procedure from
Section 6.2.2 was used to find all diagnoses up to the size of the actual error.

The results for setup (A) are shown in Table 6. We can observe that using the parallel
constraint solver pays off except for the tiny problems for which the overall search time is
less than 200 ms. Furthermore, adding more worker threads is also beneficial for the larger
problem sizes and a speedup of up to 1.25 was achieved for the most complex test case
which took about 1.5 seconds to solve.

The same pattern can be observed for setup (B). The detailed results are listed in Table
7. For the tiny problems, the internal parallelization of the Gecode solver does not lead
to performance improvements but slightly slows down the whole process. As soon as the

866

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

problems become more complex, parallelization pays off and we can observe a speedup of
1.55 for the most complex of the tested cases, which corresponds to a runtime reduction of
35%.

System Direct Encoding

Abs. [IIIS] SQ E2 S4 E4
74182 271 0.85 | 0.42 | 0.79 | 0.20
74L85 30| 0.89 | 0.44 | 0.79 | 0.20
74283 32| 0.85|0.43 | 0.79 | 0.20
74181 200 | 1.04 | 0.52 | 1.15 | 0.29
c432 1,399 | 1.17 | 0.58 | 1.25 | 0.31

Table 6: Observed performance gains for DXC benchmarks for finding one diagnosis with
a direct encoding using one (column Abs.), two, and four threads.

System Direct Encoding

Abs. [ms] 82 EQ S4 E4
74182 136 | 0.84 | 0.42 | 0.80 | 0.20
74185 60 | 0.83 | 0.41 | 0.77 | 0.19
74283 158 | 0.93 | 0.47 | 0.92 | 0.23
74181 1,670 | 1.19 | 0.59 | 1.33 | 0.33
c432 229,869 | 1.22 | 0.61 | 1.55 | 0.39

Table 7: Observed performance gains for DXC benchmarks for finding all diagnoses with a
direct encoding using one (column Abs.), two, and four threads.

6.3.2 SUMMARY AND REMARKS

Overall, our experiments show that parallelization can be beneficial when a direct encoding
of the diagnosis problem is employed, in particular when the problems are non-trivial.

Comparing the absolute running times of our Java implementation using the open source
solver Choco with the optimized C++ implementation of Gecode is generally not appro-
priate and for most of the benchmark problems, Gecode works faster on an absolute scale.
Note, however, that this is not true in all cases. In particular when searching for all di-
agnoses up to the size of the actual error for the most complex system c432, even Reiter’s
non-parallelized Hitting Set algorithm was much faster (85 seconds) than using the direct
encoding based on iterative deepening (230 seconds). This is in line with the observation
of Nica et al. (2013) that direct encodings are not always the best choice when searching
for all diagnoses.

A first analysis of the run-time behavior of Gecode shows that the larger the problem is,
the more time is spent by the solver in each iteration to reconstruct its internal structures,
which can lead to a measurable performance degradation. Note that in our work we relied
on a MINIZINC encoding of the diagnosis problem to be independent of the specifics of the

867

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

underlying constraint engine. An implementation that relies on the direct use of the API of
a specific CSP solver might help to address certain performance issues. Nevertheless, such
an implementation must be solver-specific and will not allow us to switch solvers easily as
it is now possible with MINIZINC..

7. Relation to Previous Works

In this section we explore works that are related to our approach. First we examine different
approaches for the computation of diagnoses. Then we will focus on general methods for
parallelizing search algorithms.

7.1 Computation of Diagnoses

Computing minimal hitting sets for a given set of conflicts is a computationally hard problem
as already discussed in Section 2.2.2 and several approaches were proposed over the years to
deal with the issue. These approaches can be divided into exhaustive and approximate ones.
The former perform a sound and complete search for all minimal diagnoses, whereas the
latter improve the computational efficiency in exchange for completeness, e.g., they search
for only one or a small set of diagnoses.

Approximate approaches can for example be based on stochastic search techniques like
genetic algorithms (Li & Yunfei, 2002) or greedy stochastic search (Feldman et al., 2010b).
The greedy method proposed by Feldman et al. (2010b), for example, uses a two-step
approach. In the first phase, a random and possibly non-minimal diagnosis is determined
by a modified DPLL'® algorithm. The algorithm always finds one random diagnosis at each
invocation due to the random selection of propositional variables and their assignments. In
the second step, the algorithm minimizes the diagnosis returned by the DPLL technique by
repeatedly applying random modifications. It randomly chooses a negative literal which
denotes that a corresponding component is faulty and flips its value to positive. The
obtained candidate as well as the diagnosis problem are provided to the DPLL algorithm
to check whether the candidate is a diagnosis or not. In case of success the obtained
diagnosis is kept and another random flip is done. Otherwise, the negative literal is labeled
with “failure” and another negative literal is randomly selected. The algorithm stops if the
number of “failures” is greater than some predefined constant and returns the best diagnosis
found so far.

In the approach of Li and Yunfei (2002) a genetic algorithm takes a number of conflict
sets as input and generates a set of bit-vectors (chromosomes), where every bit encodes a
truth value of an atom over the aB(.) predicate. In each iteration the algorithm applies
genetic operations, such as mutation, crossover, etc., to obtain new chromosomes. Sub-
sequently, all obtained bit-vectors are evaluated by a “hitting set” fitting function which
eliminates bad candidates. The algorithm stops after a predefined number of iterations and
returns the best diagnosis.

In general, such approximate approaches are not directly comparable with our LWP and
FP techniques, since they are incomplete and do not guarantee the minimality of returned

15. Davis-Putnam-Logemann-Loveland.

868

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

hitting sets. Our goal in contrast is to improve the performance while at the same time
maintaining both the completeness and the soundness property.

Another way of finding approximate solutions is to use heuristic search approaches. For
example, Abreu and van Gemund (2009) proposed the STACCATO algorithm which applies
a number of heuristics for pruning the search space. More “aggressive” pruning techniques
result in better performance of the search algorithms. However, they also increase the prob-
ability that some of the diagnoses will not be found. In this approach the “aggressiveness”
of the heuristics can be varied by input parameters depending on the application goals.

More recently, Cardoso and Abreu (2013) suggested a distributed version of the STAC-
CATO algorithm, which is based on the Map-Reduce scheme (Dean & Ghemawat, 2008) and
can therefore be executed on a cluster of servers. Other more recent algorithms focus on
the efficient computation of one or more minimum cardinality (minc) diagnoses (de Kleer,
2011). Both in the distributed approach and in the minimum cardinality scenario, the as-
sumption is that the (possibly incomplete) set of conflicts is already available as an input
at the beginning of the hitting-set construction process. In the application scenarios that
we address with our work, finding the conflicts is considered to be the computationally
expensive part and we do not assume to know the minimal conflicts in advance but have
to compute them “on-demand” as also done in other works (Felfernig, Friedrich, Jannach,
Stumptner, et al., 2000; Friedrich & Shchekotykhin, 2005; Williams & Ragno, 2007); see also
the work by Pill, Quaritsch, and Wotawa (2011) for a comparison of conflict computation
approaches.

Exhaustive approaches are often based on HS-trees like the work of Wotawa (2001a) —
a tree construction algorithm that reduces the number of pruning steps in presence of non-
minimal conflicts. Alternatively, one can use methods that compute diagnoses without the
explicit computation of conflict sets, i.e., by solving a problem dual to minimal hitting sets
(Satoh & Uno, 2005). Stern et al. (2012), for example, suggest a method that explores the
duality between conflicts and diagnoses and uses this symmetry to guide the search. Other
approaches exploit the structure of the underlying problem, which can be hierarchical (Autio
& Reiter, 1998), tree-structured (Stumptner & Wotawa, 2001), or distributed (Wotawa &
Pill, 2013). These algorithms are very similar to the HS-tree algorithm and, consequently,
can be parallelized in a similar way. As an example, consider the Set-Enumeration Tree
(SE-tree) algorithm (Rymon, 1994). This algorithm, similarly to Reiter’s HS-tree approach,
uses breadth-first search with a specific expansion procedure that implements the pruning
and node selection strategies. Both the LWP and and the FP parallelization variant can be
used with the SE-tree algorithm and comparable speedups are expected.

7.2 Parallelization of Search Algorithms

Historically, the parallelization of search algorithms was approached in three different ways
(Burns, Lemons, Ruml, & Zhou, 2010):

(i) Parallelization of node processing: When applying this type of parallelization, the tree
is expanded by one single process, but the computation of labels or the evaluation of
heuristics is done in parallel.

869

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

(ii) Window-based processing: In this approach, sets of nodes, called “windows”, are pro-
cessed by different threads in parallel. The windows are formed by the search algorithm
according to some predefined criteria.

(iii) Tree decomposition approaches: Here, different sub-trees of the search tree are as-
signed to different processes (Ferguson & Korf, 1988; Briingger, Marzetta, Fukuda, &
Nievergelt, 1999).

In principle, all three types of parallelization can be applied in some form to the HS-tree
generation problem.

Applying strategy (i) in the MBD problem setting would mean to parallelize the process
of conflict computation, e.g., through a parallel variant of QXP or MXP. We have tested
a partially parallelized version of MXP, which however did not lead to further performance
improvements when compared to a single-threaded approach on the evaluated benchmark
problems (Shchekotykhin et al., 2015). The experiments in Section 4 however show that
using MXP in combination with LWP or FP — thereby implicitly allocating more CPU time
for the computation of multiple conflicts during the construction of a single node — can be ad-
vantageous. Other well-known conflict or prime implicate computation algorithms (Junker,
2004; Marques-Silva et al., 2013; Previti, Ignatiev, Morgado, & Marques-Silva, 2015) in
contrast were not designed for parallel execution or the computation of multiple conflicts.

Strategy (ii) — computing sets of nodes (windows) in parallel — was for example applied by
Powley and Korf (1991). In their work the windows are determined by different thresholds
of a heuristic function of Iterative Deepening A*. Applying the strategy to an HS-tree
construction problem would mean to categorize the nodes to be expanded according to
some criterion, e.g., the probability of finding a diagnosis, and to allocate the different
groups to individual threads. In the absence of such window criteria, LWP and FP could be
seen as extreme cases with window size one, where each open node is allocated to one thread
on a processor. The experiments done throughout the paper suggest that independent of the
parallelization strategy (LWP or FP) the number of parallel threads (windows) should not
exceed the number of physically available computing threads to obtain the best performance.

Finally (iii), the strategy exploring different sub-trees during the search with different
processes can, for example, be applied in the context of MBD techniques when using Binary
HS-Tree (BHS) algorithms (Pill & Quaritsch, 2012). Given a set of conflict sets, the BHS
method generates a root node and labels it with the input set of conflicts. Then, it selects
one of the components occurring in the conflicts and generates two child nodes, such that
the left node is labeled with all conflicts comprising the selected component and the right
node with the remaining ones. Consequently, the diagnosis tree is decomposed into two sub-
trees and can be processed in parallel. The main problem for this kind of parallelization is
that the conflicts are often not known in advance and have to be computed during search.

Anglano and Portinale (1996) suggested another approach in which they ultimately
parallelized the diagnosis problem based on structural problem characteristics. In their
work, they first map a given diagnosis problem to a Behavioral Petri Net (BPN). Then,
the obtained BPN is manually partitioned into subnets and every subnet is provided to a
different Parallel Virtual Machine (PVM) for parallel processing. The relationship of their
work to our LWP and FP parallelization schemes is limited and our approaches also do not
require a manual problem decomposition step.

870

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

In general, parallelized versions of domain-independent search algorithms like A* can
be applied to MBD settings. However, the MBD problem has some specifics that make the
application of some of these algorithms difficult. For instance, the PRA* method and its
variant HDA* discussed in the work of Burns et al. (2010) use a mechanism to minimize the
memory requirements by retracting parts of the search tree. These “forgotten” parts are
later on re-generated when required. In our MBD setting, the generation of nodes is however
the most costly part, which is why the applicability of HDA* seems limited. Similarly,
duplicate detection algorithms like PBNF (Burns et al., 2010) require the existence of an
abstraction function that partitions the original search space into blocks. In general MBD
settings, we however cannot assume that such a function is given.

In order to improve the performance we have therefore to avoid the parallel generation
of duplicate nodes by different threads, which we plan to investigate in our future work.
A promising starting point for this research could be the work by Phillips, Likhachev,
and Koenig (2014). The authors suggest a variant of the A* algorithm that generates only
independent nodes in order to reduce the costs of node generation. Two nodes are considered
as independent if the generation of one node does not lead to a change of the heuristic
function of the other node. The generation of independent nodes can be done in parallel
without the risk of the repeated generation of an already known state. The main difficulty
when adopting this algorithm for MBD is the formulation of an admissible heuristic required
to evaluate the independence of the nodes for arbitrary diagnosis problems. However, for
specific problems that can be encoded as CSPs, Williams and Ragno (2007) present a
heuristic that depends on the number of unassigned variables at a particular search node.

Finally, parallelization was also used in the literature to speed up the processing of very
large search trees that do not fit in memory. Korf and Schultze (2005), for instance, suggest
an extension of a hash-based delayed duplicate detection algorithm that allows a search
algorithm to continue search while other parts of the search tree are written to or read from
the hard drive. Such methods can in theory be used in combination with our LWP or FP
parallelization schemes in case of complex diagnosis problems. We plan to explore the use
of (externally) saved search states in the context of MBD as part of our future works.

8. Summary

In this work, we propose and systematically evaluate various parallelization strategies for
Model-Based Diagnosis to better exploit the capabilities of multi-core computers. We show
that parallelization can be advantageous in various problem settings and diagnosis ap-
proaches. These approaches include the conflict-driven search for all or a few minimal
diagnoses with different conflict detection techniques and the (heuristic) depth-first search
in order to quickly determine a single diagnosis. The main benefits of our parallelization
approaches are that they can be applied independent of the underlying reasoning engine and
for a variety of diagnostic problems which cannot be efficiently represented as SAT or CSP
problems. In addition to our HS-tree based parallelization approaches, we also show that
parallelization can be beneficial for settings in which a direct problem encoding is possible
and modern parallel solver engines are available.

Our evaluations have furthermore shown that the speedups of the proposed paralleliza-
tion methods can vary according to the characteristics of the underlying diagnosis problem.

871

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

In our future work, we plan to explore techniques that analyze these characteristics in order
to predict in advance which parallelization method is best suited to find one single or all
diagnoses for the given problem.

Regarding algorithmic enhancements, we furthermore plan to investigate how informa-
tion about the underlying problem structure can be exploited to achieve a better distri-
bution of the work on the parallel threads and to thereby avoid duplicate computations.
Furthermore, we plan to explore the usage of parallel solving schemes for the dual algo-
rithms, i.e., algorithms that compute diagnoses directly without the computation of min-
imal conflicts (Satoh & Uno, 2005; Felfernig, Schubert, & Zehentner, 2012; Stern et al.,
2012; Shchekotykhin et al., 2014).

The presented algorithms were designed for the use on modern multi-core computers
which today usually have less than a dozen cores. Our results show that the additional per-
formance improvements that we obtain with the proposed techniques become smaller when
adding more and more CPUs. As part of our future works we therefore plan to develop
algorithms that can utilize specialized environments that support massive parallelization.
In that context, a future topic of research could be the adaption of the parallel HS-tree
construction to GPU architectures. GPUs, which can have thousands of computing cores,
have proved to be superior for tasks which can be parallelized in a suitable way. Campeotto,
Palti, Dovier, Fioretto, and Pontelli (2014) for example used a GPU to parallelize a con-
straint solver. However, it is not yet fully clear whether tree construction techniques can
be efficiently parallelized on a GPU, as many data structures have to be shared across all
nodes and access to them has to be synchronized.

Acknowledgements

This paper significantly extends and combines our previous work (Jannach, Schmitz, &
Shchekotykhin, 2015; Shchekotykhin et al., 2015).

We would like to thank Hakan Kjellerstrand and the Gecode team for their support. We
are also thankful for the various helpful comments and suggestions made by the anonymous
reviewers of JAIR, DX’14, DX’15, AAAT’15, and IJCAT’15.

This work was supported by the Carinthian Science Fund (KWF) contract KWEF-
3520/26767/38701, the Austrian Science Fund (FWF) and the German Research Foun-
dation (DFG) under contract numbers I 2144 N-15 and JA 2095/4-1 (Project “Debugging
of Spreadsheet Programs”).

Appendix A.

In this appendix we report the results of additional experiments that were made on different
benchmark problems as well as results of simulation experiments on artificially created
problem instances.

e Section A.1 contains the results for the LWP and FP parallelization schemes proposed
in Section 3.

e Section A.2 reports additional measurements regarding the use of MERGEXPLAIN
within the parallel diagnosis process, see Section 4.

872

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

e Section A.3 finally provides additional results of the parallelization of the depth-first
strategies discussed in Section 5.

A.1 Additional Experiments for the LWP and FP Parallelization Strategies

In addition to the experiments with the DXC benchmark systems reported in Section 3.5,
we made additional experiments with Constraint Satisfaction Problems, ontologies, and
artificial Hitting Set construction problems. Furthermore, we examined the effects of further
increasing the number of available threads for the benchmarks of the CSPs and ontologies.

A.1.1 DIAGNOSING CONSTRAINT SATISFACTION PROBLEMS

Data Sets and Procedure In this set of experiments we used a number of CSP instances
from the 2008 CP solver competition (Lecoutre, Roussel, & van Dongen, 2008) in which
we injected faults.'® The diagnosis problems were created as follows. We first generated
a random solution using the original CSP formulations. From each solution, we randomly
picked about 10% of the variables and stored their value assignments, which then served
as test cases. These stored variable assignments correspond to the expected outcomes when
all constraints are formulated correctly. Next, we manually inserted errors (mutations) in
the constraint problem formulations'?, e.g., by changing a “less than” operator to a “more
than” operator, which corresponds to a mutation-based approach in software testing. The
diagnosis task then consists of identifying the possibly faulty constraints using the partial
test cases. In addition to the benchmark CSPs we converted a number of spreadsheet
diagnosis problems (Jannach & Schmitz, 2014) to CSPs to test the performance gains on
realistic application settings.

Table 8 shows the problem characteristics including the number of injected faults (#F),
the number of diagnoses (#D), and the average diagnosis size (|D|). In general, we selected
CSPs which are quite diverse with respect to their size.

Results The measurement results using 4 threads and searching for all diagnoses are given
in Table 9. Improvements could be achieved for all problem instances. With the exception
of the smallest problem mknap-1-5 all speedups achieved by LWP and FP are statistically
significant. For some problems, the improvements are very strong (with a running time
reduction of over 50%), whereas for others the improvements are modest. On average, FP
is also faster than LWP. However, FP is not consistently better than LWP and often the
differences are small.

The observed results indicate that the performance gains depend on a number of factors
including the size of the conflicts, the computation times for conflict detection, and the
problem structure itself. While on average FP is faster than LWP, the characteristics of the
problem settings seem to have a considerable impact on the speedups that can be obtained
by the different parallelization strategies.

16. To be able to do a sufficient number of repetitions, we picked instances with comparably small running
times.

17. The mutated CSPs can be downloaded at http://1s13-www.cs.tu-dortmund.de/homepage/hp_
downloads/jair/csps.zip.

873

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Scenario #C | #V | #F | #D | |D|
c8 523 |1 239 | 8 4 6.25
costasArray-13 87 | 88 2 2 2.5
domino-100-100 100 | 100 | 3 81 2
graceful-K3-P2 60 | 15 4 117 | 2.94
mknap-1-5 7 39 1 2 1
queens-8 28 8 15 9 10.9
hospital payment 38 | 75 4 120 | 3.8
profit calculation 28 | 140 | 5 42 | 4.24
course planning 457 | 583 | 2 | 3024 | 2
preservation model | 701 | 803 | 1 22 1
revenue calculation | 93 | 154 | 4 | 1452 3

Table 8: Characteristics of selected problem settings.

Scenario Seq.(QXP) | LWP(QXP) | FP(QXP)
[ms] S4 E4 S4 E4
c8 559 | 1.10 | 0.27 | 1.07 | 0.27
costasArray-13 4,013 | 2.16 0.54 | 2.58 | 0.65
domino-100-100 1,386 | 3.08 | 0.77 | 3.05 | 0.76
graceful-K3-P2 1,965 | 2.75 0.69 | 2.99 | 0.75
mknap-1-5 314 | 1.03 | 0.26 | 1.02 | 0.25
queens-8 141 | 1.57 0.39 | 1.65 | 041
hospital payment 12,660 | 1.64 041 | 1.73 | 0.43
profit calculation 197 | 1.71 0.43 | 2.00 | 0.50
course planning 22,130 | 2.58 0.65 | 2.61 | 0.65
preservation model 167 | 1.46 0.37 | 1.48 | 0.37
revenue calculation 778 1 2.81 | 0.70 | 2.58 | 0.64

Table 9: Results for CSP benchmarks and spreadsheets when searching for all diagnoses.

A.1.2 DIAGNOSING ONTOLOGIES

Data Sets and Procedure In recent works, MBD techniques are used to locate faults in
description logic ontologies (Friedrich & Shchekotykhin, 2005; Shchekotykhin et al., 2012;
Shchekotykhin & Friedrich, 2010), which are represented in the Web Ontology Language
(OWL) (Grau, Horrocks, Motik, Parsia, Patel-Schneider, & Sattler, 2008). When testing
such an ontology, the developer can — similarly to an earlier approach (Felfernig, Friedrich,
Jannach, Stumptner, & Zanker, 2001) — specify a set of “positive” and “negative” test cases.
The test cases are sets of logical sentences which must be entailed by the ontology (positive)
or not entailed by the ontology (negative). In addition, the ontology itself, which is a set
of logical sentences, has to be consistent and coherent (Baader, Calvanese, McGuinness,
Nardi, & Patel-Schneider, 2010). A diagnosis (debugging) problem in this context arises, if
one of these requirements is not fulfilled.

In the work by Shchekotykhin et al. (2012), two interactive debugging approaches were
tested on a set of faulty real-world ontologies (Kalyanpur, Parsia, Horridge, & Sirin, 2007)

874

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

and two randomly modified large real-world ontologies. We use the same dataset to evaluate
the performance gains when applying our parallelization schemes to the ontology debug-
ging problem. The details of the different tested ontologies are given in Table 10. The
characteristics of the problems are described in terms of the description logic (DL) used to
formulate the ontology, the number of axioms (#A), concepts (#C), properties (#P), and
individuals (#I). In terms of the first-order logic, concepts and properties correspond to
unary and binary predicates, whereas individuals correspond to constants. Every letter of
a DL name, such as ALCHFP), corresponds to a syntactic feature of the language. E.g.,
ALCHFP) is an Attributive concept Language with Complement, properties Hierarchy,
Functional properties and Datatypes. As an underlying description logic reasoner, we used
Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007). The manipulation of the knowl-
edge bases during the diagnosis process was accomplished with the OWL-API (Horridge &
Bechhofer, 2011).

Note that the considered ontology debugging problem is different from the other diag-
nosis settings discussed so far as it cannot be efficiently encoded as a CSP or SAT problem.
The reason is that the decision problems, such as the checking of consistency and concept
satisfiability, for the ontologies given in Table 10 are ExpTIME-complete (Baader et al.,
2010). This set of experiments therefore helps us to explore the benefits of parallelization
for problem settings in which the computation of conflict sets is very hard. Furthermore,
the application of the parallelization approaches on the ontology debugging problem demon-
strates the generality of our methods, i.e., we show that our methods are applicable to a
wide range of diagnosis problems and only require the existence of a sound and complete
consistency checking procedure.

Due to the generality of Reiter’s general approach and, correspondingly, our implemen-
tation of the diagnosis procedures, the technical integration of the OWL-DL reasoner into
our software framework is relatively simple. The only difference to the CSP-based problems
is that instead of calling Choco’s solve() method inside the Theorem Prover, we make a call
to the Pellet reasoner via the OWL-API to check the consistency of an ontology.

Ontology DL #A | #C/#P/#1 | #D | |D|
Chemical ALCHFD) | 144 48/20/0 6 |1.67
Koala ALCONP) 44 21/5/6 10 | 2.3
Sweet-JPL ALCHOFP) | 2579 | 1,537/121/50 | 13 1
miniTambis ALCN 173 183/44/0 48 3
University SOINP) 49 30/12/4 90 | 3.67
Economy ALCHDP) 1,781 | 339/53/482 | 864 | 7.17
Transportation ALCHP) | 1,300 | 445/93/183 | 1,782 | 8
Cton SHF 33,203 | 17,033/43/0 | 15 4
Opengalen-no-propchains | ACCHZFP) | 9,664 4,713/924/0 110 | 4.13

Table 10: Characteristics of the tested ontologies.

Results The obtained results — again using a thread pool of size four — are shown in Table
11. Again, in every case parallelization is advantageous when compared to the sequential
version and in some cases the obtained speedups are substantial. Regarding the comparison

875

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

of the LWP and FP variants, there is no clear winner across all test cases. LWP seems to
be advantageous for most of the problems that are more complex with respect to their
computation times. For the problems that can be easily solved, FP is sometimes slightly
better. A clear correlation between other problem characteristics like the complexity of the
knowledge base in terms of its size could not be identified within this set of benchmark
problems.

Ontology Seq.(QXP) | LWP(QXP) | FP(QXP)
[ms] S4 E4 S4 E4
Chemical 2371 1.44 | 0.36 | 1.33 | 0.33
Koala 16 | 1.42 | 0.36 | 1.27 | 0.32
Sweet-JPL 71147 | 037 | 1.55| 0.39
miniTambis 135 | 1.43 0.36 | 1.46 | 0.37
University 85 | 1.66 0.41 | 1.68 | 0.42
Economy 355 | 2.20| 0.55 | 1.90 | 0.48
Transportation 1,696 | 2.72 | 0.68 | 2.33 | 0.58
Cton 203 | 1.27 | 0.32 | 1.22 | 0.30
Opengalen-no-propchains 11,044 | 1.59 0.40 | 1.86 | 0.47

Table 11: Results for ontologies when searching for all diagnoses.

A.1.3 ADDING MORE THREADS

Constraint Satisfaction Problems Table 12 shows the results of the CSP benchmarks
and spreadsheets when using up to 12 threads. In this test utilizing more than 4 threads
was advantageous in all but one small scenario. However, for 7 of the 11 tested scenarios
doing the computations with more than 8 threads did not pay off. This indicates that
choosing the right degree of parallelization can depend on the characteristics of a diagnosis
problem. The diagnosis of the mknap-1-5 problem, for example, cannot be sped up with
parallelization as it only contains one single conflict that is found at the root node. In
contrast, the graceful-K3-P2 problem benefits from the use of up to 12 threads and we

could achieve a speedup of 4.21 for this scenario, which corresponds to a runtime reduction
of 76%.

Ontologies The results of diagnosing the ontologies with up to 12 threads are shown in
Table 13. For the tested ontologies, which are comparably simple debugging cases, using
more than 4 threads payed off in only 3 of 7 cases. The best results when diagnosing these
3 ontologies were obtained when 8 threads were used. For one ontology using more than
4 threads was even slower than the sequential algorithm. This again indicates that the
effectiveness of parallelization depends on the characteristics of the diagnosis problem and
adding more threads can be even slightly counterproductive.

A.1.4 SYSTEMATIC VARIATION OF PROBLEM CHARACTERISTICS

Procedure To better understand in which way the problem characteristics influence the
performance gains, we used a suite of artificially created hitting set construction problems

876

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Scenario Seq.(QXP) FP(QXP)

ms] | Sy | Ey Ss Es | Sio | Eio | Si2 | E12
c8 444 | 1.05 | 0.26 | 1.07 | 0.13 | 1.08 | 0.11 | 1.07 | 0.09
costasArray-13 3,854 | 2.69 | 0.67 | 2.88 | 0.36 | 2.84 | 0.28 | 2.80 | 0.23
domino-100-100 213 | 2.04 | 0.51 | 2.30 | 0.29 | 2.22 | 0.22 | 2.00 | 0.17
graceful-K3-P2 1,743 | 3.03 | 0.76 | 4.12 | 0.51 | 4.18 | 0.42 | 4.21 | 0.35
mknap-1-5 4,141 | 1.00 | 0.25 | 1.00 | 0.13 | 1.00 | 0.10 | 1.00 | 0.08
queens-8 86 | 1.18 | 0.30 | 1.30 | 0.16 | 1.24 | 0.12 | 1.19 | 0.10
hospital payment 11,728 | 1.60 | 0.40 | 1.70 | 0.21 | 1.51 | 0.15 | 1.36 | 0.11
profit calculation 81153 | 0.38 |1.59|0.20| 1.51 | 0.15 | 1.44 | 0.12
course planning 15,323 | 2.31 | 0.58 | 2.85|0.36 | 2.84 | 0.28 | 2.73 | 0.23
preservation model 1271134 | 0.34 | 1.41 | 0.18 | 1.41 | 0.14 | 1.43 | 0.12
revenue calculation 460 | 2.39 | 0.60 | 2.17 | 0.27 | 1.96 | 0.20 | 1.85 | 0.15

Table 12: Observed performance gains for the CSP benchmarks and spreadsheets on a
server with 12 hardware threads.

Ontology Seq.(QXP) FP(QXP)

[ms] | Sy Ey Sg Es | Sio | Eio | S12 | Eq2
Chemical 246 | 1.37 | 0.34 | 1.29 | 0.16 | 1.30 | 0.13 | 1.32 | 0.11
Koala 21 11.07 | 0.27 | 1.02 | 0.13 | 1.03 | 0.10 | 0.99 | 0.08
Sweet-JPL 6| 1.09 | 0.27 | 1.13 | 0.14 | 1.08 | 0.11 | 1.02 | 0.09
miniTambis 134 | 1.47 | 0.37 | 1.49 | 0.19 | 1.47 | 0.15 | 1.45 | 0.12
University 88] 1.53 | 0.38 | 1.64 | 0.21 | 1.56 | 0.16 | 1.56 | 0.13
Economy 352 | 1.48 | 0.37 | 0.90 | 0.11 | 0.76 | 0.08 | 0.71 | 0.06
Transportation 1,448 | 1.74 | 0.43 | 1.23 | 0.15 | 1.07 | 0.11 | 1.09 | 0.09

Table 13: Observed performance a server with 12 hardware

threads.

gains for the ontologies on

with the following varying parameters: number of components (#Cp), number of conflicts
(#Cf), average size of conflicts (|Cf]). Given these parameters, we used a problem generator
which produces a set of minimal conflicts with the desired characteristics. The generator
first creates the given number of components and then uses these components to generate
the requested number of conflicts.

To obtain more realistic settings, not all generated conflicts were of equal size but rather
varied according to a Gaussian distribution with the desired size as a mean. Similarly, not
all components should be equally likely to be part of a conflict and we again used a Gaussian
distribution to assign component failure probabilities. Other probability distributions could
be used in the generation process as well, e.g., to reflect specifics of a certain application
domain.

Since for this experiment all conflicts are known in advance, the conflict detection al-
gorithm within the consistency check only has to return one suitable conflict upon request.
Because zero computation times are unrealistic and our assumption is that the conflict

877

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

detection is actually the most costly part of the diagnosis process, we varied the assumed
conflict computation times to analyze their effect on the relative performance gains. These
computation times were simulated by adding artificial active waiting times (Wt) inside the
consistency check (shown in ms in Table 14). Note that the consistency check is only called
if no conflict can be reused for the current node; the artificial waiting time only applies to
cases in which a new conflict has to be determined.

Each experiment was repeated 100 times on different variations of each problem setting
to factor out random effects. The number of diagnoses #D is thus an average as well. All
algorithms had, however, to solve identical sets of problems and thus returned identical
sets of diagnoses. We limited the search depth to 4 for all experiments to speed up the
benchmark process. The average running times are reported in Table 14.

Results — Varying Computation Times First, we varied the assumed conflict com-
putation times for a quite small diagnosis problem using 4 parallel threads (Table 14). The
first row with assumed zero computation times shows how long the HS-tree construction
alone needs. The improvements of the parallelization are smaller for this case because of the
overhead of thread creation and synchronization. However, as soon as we add an average
running time of 10ms for the consistency check, both parallelization approaches result in a
speedup of about 3, which corresponds to a runtime reduction of 67%. Further increasing
the assumed computation time does not lead to better relative improvements using the pool
of 4 threads.

Results — Varying Conflict Sizes The average conflict size impacts the breadth of the
HS-tree. Next, we therefore varied the average conflict size. Our hypothesis was that larger
conflicts and correspondingly broader HS-trees are better suited for parallel processing.
The results shown in Table 14 confirm this assumption. FP is always slightly more efficient
than LWP. Average conflict sizes larger than 9 did, however, not lead to strong additional
improvements when using 4 threads.

Results — Adding More Threads For larger conflicts, adding additional threads leads
to further improvements. Using 8 threads results in improvements of up to 7.27 (corre-
sponding to a running time reduction of over 85%) for these larger conflict sizes because in
these cases even higher levels of parallelization can be achieved.

Results — Adding More Components Finally, we varied the problem complexity by
adding more components that can potentially be faulty. Since we left the number and
size of the conflicts unchanged, adding more components led to diagnoses that included
more different components. As we limited the search depth to 4 for this experiment, fewer
diagnoses were found up to this level and the search trees were narrower. As a result, the
relative performance gains were lower than when there are fewer components (constraints).

Discussion The simulation experiments demonstrate the advantages of parallelization.
For all tests, the speedups of LWP and FP are statistically significant. The results also
confirm that the performance gains depend on different characteristics of the underlying
problem. The additional gains of not waiting at the end of each search level for all worker
threads to be finished typically led to small further improvements.

Redundant calculations can, however, still occur, in particular when the conflicts for
new nodes are determined in parallel and two worker threads return the same conflict.

878

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

#Cp, #Cf, | #D | Wt | Seq. Lwp FP
| Cf| [HlS] [HlS] S4 E4 S4 E4
Varying computation times Wt
50, 5, 4 25 0 23 2.26 | 0.56 | 2.58 | 0.64
50, 5, 4 25 10 483 | 2.98 | 0.75 | 3.10 | 0.77
50, 5, 4 25 | 100 | 3,223 | 2.83 | 0.71 | 2.83 | 0.71

Varying conflict sizes
50, 5, 6 99 | 10 | 1,672 | 3.62 | 0.91 | 3.68 | 0.92
50, 5, 9 214 | 10 | 3,531 | 3.80 | 0.95 | 3.83 | 0.96
50, 5,12 | 278 | 10 | 4,605 | 3.83 | 0.96 | 3.88 | 0.97

Varying numbers of components
50,10,9 | 201 | 10 | 3,516 | 3.79 | 0.95 | 3.77 | 0.94
75,10,9 | 105 | 10 | 2,223 | 3.52 | 0.88 | 3.29 | 0.82
100, 10,9 | 97 10 | 2,419 | 3.13 | 0.78 | 3.45 | 0.86

#Cp, #Cf, | #D | Wt | Seq. LWP FP

%) | Cf’ [ms] [ms] Sg ‘ Eg Sg Eg

Adding more threads (8 instead of 4)

50, 5, 6 99 10 | 1,672 | 6.40 | 0.80 | 6.50 | 0.81
50, 5, 9 214 | 10 | 3,531 | 7.10 | 0.89 | 7.15 | 0.89
50, 5,12 | 278 | 10 | 4,605 | 7.25 | 0.91 | 7.27 | 0.91

Table 14: Simulation results.

Although without parallelization the computing resources would have been left unused
anyway, redundant calculations can lead to overall longer computation times for very small
problems because of the thread synchronization overheads.

A.2 Additional Experiments Using MXP for Conflict Detection

In this section we report the additional results that were obtained when using MERGEXPLAIN
instead of QUICKXPLAIN as a conflict detection strategy as described in Section 4.2. The
different experiments were again made using a set of CSPs and ontology debugging prob-
lems. Remember that in this set of experiments our goal is to identify a set of leading
diagnoses.

A.2.1 DIAGNOSING CONSTRAINT SATISFACTION PROBLEMS

Table 15 shows the results when searching for five diagnoses using the CSP and spreadsheet
benchmarks. MXP could again help to reduce the running times for most of the tested
scenarios except for some of the smaller ones. For the tiny scenario mknap-1-5, the simple
sequential algorithm using QXP is the fastest alternative. For most of the other scenarios,
however, parallelization pays off and is faster than when sequentially expanding the search
tree. The best result could be achieved for the scenario costasArray-13, where FP using
MXP reduced the running times by 83% compared to the sequential algorithm using QXP,

879

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

which corresponds to a speedup of 6. The results again indicate that FP works well for
both QXP and MXP.

Scenario Seq.(QXP) | FP(QXP) || Seq.(MXP) | FP(MXP)
[ms] S4 E4 [ms] S4 E4
c8 455 | 1.03 | 0.26 251 | 1.06 | 0.26
costasArray-13 2,601 | 3.66 | 0.91 2,128 | 4.92 | 1.23
domino-100-100 53 | 1.26 | 0.32 50 | 1.43 | 0.36
graceful-K3-P2 528 | 2.67 | 0.67 419 | 2.48 | 0.62
mknap-1-5 19 | 0.99 | 0.25 21 | 1.01 | 0.25
queens-8 75 | 1.55 | 0.39 63 | 1.67 | 0.42
hospital payment 1,885 | 1.17 | 0.29 1,426 | 1.28 | 0.32
profit calculation 33 | 1.92 | 0.48 40 | 1.86 | 0.46
course planning 1,522 | 0.99 | 0.25 1,188 | 1.42 | 0.35
preservation model 411 | 1.50 | 0.37 430 | 1.50 | 0.37
revenue calculation 48 | 1.21 | 0.30 42 | 1.48 | 0.37

Table 15: Results for CSP benchmarks and spreadsheets (QXP vs MXP).

Note that in one case (costasArray-13) we see an efficiency value larger than one, which
means that the obtained speedup is super-linear. This can happen in special situations
in which we search for a limited number of diagnoses and use the FP method (see also
Section A.3.1). Assume that generating one specific node takes particularly long, i.e., the
computation of a conflict set requires a considerable amount of time. In that case, a
sequential algorithm will be “stuck” at this node for some time, while the FP method will
continue generating other nodes. If these other nodes are then sufficient to find the (limited)
required number of diagnoses, this can lead to an efficiency value that is greater than the
theoretical optimum.

A.2.2 DIAGNOSING ONTOLOGIES
The results are shown in Table 16. Similar to the previous experiment, using MXP in
combination with FP pays off in all cases except for the very simple benchmark problems.

A.3 Additional Experiments — Parallel Depth-First Search

In this section, we report the results of additional experiments that were made to assess the
effects of parallelizing a depth-first search strategy as described in Section 5.3. In this set of
experiments the goal was to find one single minimal diagnosis. We again report the results
obtained for the constraint problems and the ontology debugging problems and discuss
the findings of a simulation experiment in which we systematically varied the problem
characteristics.

A.3.1 DIAGNOSING CONSTRAINT SATISFACTION PROBLEMS

The results of searching for a single diagnosis for the CSPs and spreadsheets are shown
in Table 17. Again, parallelization generally shows to be a good strategy to speed up the

880

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Ontology Seq.(QXP) | FP(QXP) | Seq.(MXP) | FP(MXP)
[ms] S4 E4 [ms] S4 E4
Chemical 187 | 2.10 | 0.53 144 | 1.94 | 0.48
Koala 15 | 1.49 | 0.37 13 | 1.27 | 0.32
Sweet-JPL 5| 1.27 | 0.32 4| 1.05 | 0.26
miniTambis 68 | 1.04 | 0.26 56 | 1.08 | 0.27
University 33| 1.05 | 0.26 26 | 1.02 | 0.26
Economy 19 | 1.10 | 0.27 14 | 1.00 | 0.25
Transportation 711 1.08 | 0.27 53 | 1.10 | 0.27
Cton 174 | 1.36 | 0.34 154 | 1.33 | 0.33
Opengalen-no-propchains 2,145 | 1.22 | 0.30 1,748 | 1.35 | 0.34

Table 16: Results for Ontologies (QXP vs MXP).

diagnosis process. All measured speedups except the speedup of RDFS for the first scenario
c8 are statistically significant. In this specific problem setting, only the FP strategy had
a measurable effect and for some strategies even a modest performance deterioration was
observed when compared to Reiter’s sequential algorithm. The reason lies in the resulting
structure of the HS-tree which is very narrow as most conflicts are of size one.

The following detailed observations can be made when comparing the algorithms.

o In most of the tested CSPs, FP is advantageous when compared to RDFS and PRDFS.

e For the spreadsheets, in contrast, RDFS or PRDFS were better than the breadth-first
approach of FP in three of five cases.

e When comparing RDFS and PRDFS, we can again observe that parallelization can
be advantageous also for these depth-first strategies.

e Again, however, the improvements seem to depend on the underlying problem struc-
ture. In the case of the hospital payment scenario, the speedup of PRDFS is as high as
3.1 compared to the sequential algorithm, which corresponds to a runtime reduction
of more than 67%. The parallel strategy is, however, not consistently better for all
test cases.

e The performance of the HyBrID method again lies in between the performances of its
two components for many, but not all, of the tested scenarios.

A.3.2 DIAGNOSING ONTOLOGIES

Next, we evaluated the search for one diagnosis on the real-world ontologies (Table 18). In
the tested scenarios, applying the depth-first strategy did often not pay off when compared
to the breadth-first methods. The reason is that in the tested examples from the ontol-
ogy debugging domain in many cases single-element diagnoses exist, which can be quickly
detected by a breadth-first strategy. Furthermore the absolute running times are often com-
parably small. Parallelizing the depth-first strategy leads to significant speedups in some
but not all cases.

881

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Scenario Seq. FP RDFS PRDFS Hybrid
[ms] S4 E4 [ms] S4 E4 S4 E4
c8 462 | 1.09 | 0.27 454 | 0.89 | 0.22 | 0.92 | 0.23
costasArray-13 1,996 | 4.78 | 1.19 3,729 | 3.42 | 0.85 | 5.90 | 1.47
domino-100-100 57 | 1.22 | 0.30 45 | 1.17 | 0.29 | 1.05 | 0.26
graceful-K3-P2 372 | 2.86 | 0.71 305 | 2.01 | 0.50 | 1.89 | 0.47
mknap-1-5 166 | 2.18 | 0.55 114 | 1.02 | 0.26 | 1.35 | 0.33
queens-8 72 1 1.38 | 0.34 55 | 1.02 | 0.26 | 0.95 | 0.24
hospital payment 263 | 1.83 | 0.46 182 | 2.14 | 0.54 | 1.72 | 0.43
profit calculation 99 | 1.67 | 0.42 70 | 1.15 | 0.29 | 1.10 | 0.28
course planning 3,072 | 1.11 | 0.28 2,496 | 0.90 | 0.23 | 0.87 | 0.22
preservation model 182 | 1.78 | 0.44 104 | 0.99 | 0.25 | 0.95 | 0.24
revenue calculation 152 | 1.11 | 0.28 121 | 0.92 | 0.23 | 0.90 | 0.22

Table 17: Results for CSP benchmarks and spreadsheets for finding one diagnosis.

Ontology Seq. FP RDFS PRDFS Hybrid
[ms] S4 E4 [ms] S4 E4 S4 E4
Chemical 73 | 2.18 | 0.54 57 | 1.62 | 0.41 | 1.47 | 0.37
Koala 10 | 2.20 | 0.55 91193 | 048 | 1.39 | 0.35
Sweet-JPL 3| 092 0.23 41097 | 024 | 092 0.23
miniTambis 58 | 0.95 | 0.24 62 | 092 | 0.23 | 0.93 | 0.23
University 29 | 1.06 | 0.27 30 | 1.03 | 0.26 | 1.03 | 0.26
Economy 17 1 1.10 | 0.27 18| 1.16 | 0.29 | 1.10 | 0.27
Transportation 65 | 1.03 | 0.26 61 | 1.03 | 0.26 | 0.98 | 0.24

Table 18: Observed performance gains for ontologies for finding one diagnosis.

A.3.3 SYSTEMATIC VARIATION OF PROBLEM CHARACTERISTICS

Table 19 finally shows the simulation results when searching for one single diagnosis. In
the experiment we used a uniform probability distribution when selecting the components
of the conflicts to obtain more complex diagnosis problems. The results can be summarized
as follows.

e FP is as expected better than the sequential version of the HS-tree algorithm for all
tested configurations.

e For the very small problems that contain only a few and comparably small conflicts,
the depth-first strategy does not work well. Both the parallel and sequential versions
are even slower than Reiter’s original proposal, except for cases where zero conflict
computation times are assumed. This indicates that the costs for hitting set mini-
mization are too high.

e For the larger problem instances, relying on a depth-first strategy to find one single
diagnosis is advantageous and also better than FP. An additional test with an even

882

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

#Cp, #Cf, | @|D| | Wt Seq. FP RDFS | PRDFS Hybrid
| Cf] [ms] [ms] | Sy E,4 [ms] | Sy E, Sy E,4
Varying computation times Wt
50, 5, 4 3.40 0 11] 2.61 | 0.65 211.01|0.25| 0.85 | 0.21
50, 5, 4 3.40 | 10 89 | 1.50 | 0.37 155 | 1.28 | 0.32 | 2.24 | 0.56
50, 5, 4 3.40 | 100 572 | 1.50 | 0.37 1,052 | 1.30 | 0.33 | 2.26 | 0.56
Varying conflict sizes
50, 5, 6 2.86 | 10 90 | 1.57 | 0.39 143 | 1.26 | 0.31 | 2.12 | 0.53
50, 5, 9 2.36 | 10 86 | 1.55 | 0.39 138 | 1.34 | 0.33 | 2.04 | 0.51
50, 5, 12 2.11 10 83 | 1.61 | 0.40 124 | 1.23 | 0.31 | 1.95 | 0.49
Varying numbers of components
50,10,9 | 3.47 | 10 229 | 2.36 | 0.59 202 | 1.35 | 0.34 | 1.65 | 0.41
75,10,9 | 3.97 | 10 570 | 3.09 | 0.77 228 | 1.37 | 0.34 | 1.42 | 0.36
100, 10,9 | 4.34 | 10 1,467 | 2.37 | 0.59 240 1 1.34 | 0.33 | 1.26 | 0.31
More conflicts
100,12,9 | 5.00 | 10 [26,870 | 1.28 | 0.32 | 280 | 1.39 | 0.35 [1.24 | 0.31

Table 19: Simulation results for finding one diagnosis.

larger problem shown in the last line of Table 19 reveals the potential of a depth-first
search approach.

e When the problems are larger, PRDFS can again help to obtain further runtime
improvements compared to RDFS.

e The HyBrID method works well for all but the single case with zero computation times.
Again, it represents a good choice when the problem structure is not known.

Overall, the simulation experiments show that the speedups that can be achieved with
the different methods depend on the underlying problem structure also when we search for
one single diagnosis.

References
Abreu, R., & van Gemund, A. J. C. (2009). A Low-Cost Approximate Minimal Hitting Set
Algorithm and its Application to Model-Based Diagnosis. In SARA 09, pp. 2-9.

Anglano, C., & Portinale, L. (1996). Parallel model-based diagnosis using PVM. In Eu-
roPVM’96, pp. 331-334.

Autio, K., & Reiter, R. (1998). Structural Abstraction in Model-Based Diagnosis. In
ECAI’98, pp. 269-273.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (2010). The
Description Logic Handbook: Theory, Implementation and Applications, Vol. 32.

Bolosky, W. J., & Scott, M. L. (1993). False Sharing and Its Effect on Shared Memory
Performance. In SEDMS’93, pp. 57-71.

883

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Briingger, A., Marzetta, A., Fukuda, K., & Nievergelt, J. (1999). The parallel search bench
ZRAM and its applications. Annals of Operations Research, 90(0), 45-63.

Buchanan, B., & Shortliffe, E. (Eds.). (1984). Rule-based Expert Systems: The MYCIN Ezx-
periments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading,
MA.

Burns, E., Lemons, S., Ruml, W., & Zhou, R. (2010). Best-First Heuristic Search for
Multicore Machines. Journal of Artificial Intelligence Research, 39, 689-743.

Campeotto, F., Palu, A. D., Dovier, A., Fioretto, F., & Pontelli, E. (2014). Exploring the
Use of GPUs in Constraint Solving. In PADL’1}, pp. 152-167.

Cardoso, N., & Abreu, R. (2013). A Distributed Approach to Diagnosis Candidate Gener-
ation. In FPIA’13, pp. 175-186.

Chandra, D., Guo, F., Kim, S., & Solihin, Y. (2005). Predicting Inter-Thread Cache Con-
tention on a Chip Multi-Processor Architecture. In HPCA’11, pp. 340-351.

Chu, G., Schulte, C., & Stuckey, P. J. (2009). Confidence-Based Work Stealing in Parallel
Constraint Programming. In CP’09, pp. 226-241.

Console, L., Friedrich, G., & Dupré, D. T. (1993). Model-Based Diagnosis Meets Error
Diagnosis in Logic Programs. In IJCAI’93, pp. 1494-1501.

de Kleer, J. (2011). Hitting set algorithms for model-based diagnosis. In DX’11, pp. 100-105.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM, 51(1), 107-113.

Dijkstra, E. W. (1968). The Structure of the “THE”-Multiprogramming System. Commu-
nications of the ACM, 11(5), 341-346.

Eiter, T., & Gottlob, G. (1995). The Complexity of Logic-Based Abduction. Journal of the
ACM, 42(1), 3-42.

Feldman, A., Provan, G., de Kleer, J., Robert, S., & van Gemund, A. (2010a). Solving
model-based diagnosis problems with max-sat solvers and vice versa. In DX’10, pp.
185-192.

Feldman, A., Provan, G., & van Gemund, A. (2010b). Approximate Model-Based Diagnosis
Using Greedy Stochastic Search. Journal of Artifcial Intelligence Research, 38, 371—
413.

Felfernig, A., Friedrich, G., Isak, K., Shchekotykhin, K. M., Teppan, E., & Jannach, D.
(2009). Automated debugging of recommender user interface descriptions. Applied
Intelligence, 31(1), 1-14.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consistency-based diag-
nosis of configuration knowledge bases. Artificial Intelligence, 152(2), 213-234.

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., & Zanker, M. (2001). Hierarchical
diagnosis of large configurator knowledge bases. In KI’01, pp. 185-197.

Felfernig, A., Schubert, M., & Zehentner, C. (2012). An efficient diagnosis algorithm for
inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 26(1), 53—62.

884

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., et al. (2000). Consistency-based
diagnosis of configuration knowledge bases. In FCAI’00, pp. 146-150.

Ferguson, C., & Korf, R. E. (1988). Distributed tree search and its application to alpha-beta
pruning. In AAAI’8S, pp. 128-132.

Friedrich, G., & Shchekotykhin, K. M. (2005). A General Diagnosis Method for Ontologies.
In ISWC’05, pp. 232-246.

Friedrich, G., Stumptner, M., & Wotawa, F. (1999). Model-Based Diagnosis of Hardware
Designs. Artificial Intelligence, 111(1-2), 3-39.

Friedrich, G., Fugini, M., Mussi, E., Pernici, B., & Tagni, G. (2010). Exception handling for
repair in service-based processes. IEEE Transactions on Software Engineering, 36(2),
198-215.

Friedrich, G., & Shchekotykhin, K. (2005). A General Diagnosis Method for Ontologies. In
ISWC 05, pp. 232-246.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co.

Grau, B. C., Horrocks, 1., Motik, B., Parsia, B., Patel-Schneider, P., & Sattler, U. (2008).
OWL 2: The next step for OWL. Web Semantics: Science, Services and Agents on
the World Wide Web, 6(4), 309-322.

Greiner, R., Smith, B. A., & Wilkerson, R. W. (1989). A Correction to the Algorithm in
Reiter’s Theory of Diagnosis. Artificial Intelligence, 41(1), 79-88.

Horridge, M., & Bechhofer, S. (2011). The OWL API: A Java API for OWL Ontologies.
Semantic Web Journal, 2(1), 11-21.

Jannach, D., & Schmitz, T. (2014). Model-based diagnosis of spreadsheet programs: a
constraint-based debugging approach. Automated Software Engineering, February
2014 (published online).

Jannach, D., Schmitz, T., & Shchekotykhin, K. (2015). Parallelized Hitting Set Computation
for Model-Based Diagnosis. In AAAI’15, pp. 1503-1510.

Junker, U. (2004). QUICKXPLAIN: Preferred Explanations and Relaxations for Over-
Constrained Problems. In AAAI’04, pp. 167-172.

Kalyanpur, A., Parsia, B., Horridge, M., & Sirin, E. (2007). Finding all justifications of
owl dl entailments. In The Semantic Web, Vol. 4825 of Lecture Notes in Computer
Science, pp. 267-280.

Korf, R. E., & Schultze, P. (2005). Large-scale parallel breadth-first search. In AAAI’05,
pp. 1380-1385.

Kurtoglu, T., & Feldman, A. (2011). Third International Diagnostic Competition (DXC
11). https://sites.google.com/site/dxcompetition2011. Accessed: 2016-03-15.

Lecoutre, C., Roussel, O., & van Dongen, M. R. C. (2008). CPAIO8 competition. http:
//www.cril.univ-artois.fr/CPAIO8/. Accessed: 2016-03-15.

Li, L., & Yunfei, J. (2002). Computing Minimal Hitting Sets with Genetic Algorithm. In
DX’02, pp. 1-4.

885

JANNACH, SCHMITZ, & SHCHEKOTYKHIN

Marques-Silva, J., Janota, M., Ignatiev, A., & Morgado, A. (2015). Efficient Model Based
Diagnosis with Maximum Satisfiability. In IJCAI’15, pp. 1966-1972.

Marques-Silva, J., Janota, M., & Belov, A. (2013). Minimal Sets over Monotone Predicates
in Boolean Formulae. In Computer Aided Verification, pp. 592—-607.

Mateis, C., Stumptner, M., Wieland, D., & Wotawa, F. (2000). Model-Based Debugging of
Java Programs. In AADEBUG’00.

Mencia, C., & Marques-Silva, J. (2014). Efficient Relaxations of Over-constrained CSPs. In
ICTAI'1}, pp. 725-732.

Mencia, C., Previti, A., & Marques-Silva, J. (2015). Literal-based MCS extraction. In
IJCAI’15, pp. 1973-1979.

Metodi, A., Stern, R., Kalech, M., & Codish, M. (2014). A novel sat-based approach to
model based diagnosis. Journal of Artificial Intelligence Research, 51, 377-411.

Michel, L., See, A., & Van Hentenryck, P. (2007). Parallelizing constraint programs trans-
parently. In CP’07, pp. 514-528.

Nica, I., Pill, I., Quaritsch, T., & Wotawa, F. (2013). The route to success: a performance
comparison of diagnosis algorithms. In IJCAI’13, pp. 1039-1045.

Nica, 1., & Wotawa, F. (2012). ConDiag - computing minimal diagnoses using a constraint
solver. In DX’12, pp. 185-191.

Phillips, M., Likhachev, M., & Koenig, S. (2014). PA*SE: Parallel A* for Slow Expansions.
In ICAPS’1}.

Pill, 1., Quaritsch, T., & Wotawa, F. (2011). From conflicts to diagnoses: An empirical
evaluation of minimal hitting set algorithms. In DX’11, pp. 203-211.

Pill, I., & Quaritsch, T. (2012). Optimizations for the Boolean Approach to Computing
Minimal Hitting Sets. In FCAI’12, pp. 648-653.

Powley, C., & Korf, R. E. (1991). Single-agent parallel window search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(5), 466-477.

Previti, A., Ignatiev, A., Morgado, A., & Marques-Silva, J. (2015). Prime Compilation of
Non-Clausal Formulae. In IJCAI’15, pp. 1980-1987.

Prud’homme, C., Fages, J.-G., & Lorca, X. (2015). Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. http://www.choco-solver.org.

Reiter, R. (1987). A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1),
57-95.

Rymon, R. (1994). An SE-tree-based prime implicant generation algorithm. Annals of
Mathematics and Artificial Intelligence, 11(1-4), 351-365.

Satoh, K., & Uno, T. (2005). Enumerating Minimally Revised Specifications Using Dual-
ization. In JSAI’05, pp. 182—189.

Schulte, C., Lagerkvist, M., & Tack, G. (2016). GECODE - An open, free, efficient constraint
solving toolkit. http://www.gecode.org. Accessed: 2016-03-15.

886

PARALLEL MODEL-BASED DIAGNOSIS ON MULTI-CORE COMPUTERS

Shchekotykhin, K., Friedrich, G., Fleiss, P., & Rodler, P. (2012). Interactive ontology debug-
ging: Two query strategies for efficient fault localization. Journal of Web Semantics,
1213, 88-103.

Shchekotykhin, K. M., & Friedrich, G. (2010). Query strategy for sequential ontology
debugging. In ISW(C’10, pp. 696-712.

Shchekotykhin, K., Jannach, D., & Schmitz, T. (2015). MergeXplain: Fast Computation of
Multiple Conflicts for Diagnosis. In IJCAI’15, pp. 3221-3228.

Shchekotykhin, K. M., Friedrich, G., Rodler, P., & Fleiss, P. (2014). Sequential diagnosis of
high cardinality faults in knowledge-bases by direct diagnosis generation. In EFCAI’14,
pp. 813-818.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A Practical
OWL-DL Reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2), 51 — 53.

Stern, R., Kalech, M., Feldman, A., & Provan, G. (2012). Exploring the Duality in Conflict-
Directed Model-Based Diagnosis. In AAAI’12, pp. 828-834.

Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The MiniZinc Challenge
2008-2013. AI Magazine, 35(2), 55-60.

Stumptner, M., & Wotawa, F. (1999). Debugging functional programs. In IJCAI’99, pp.
1074-1079.

Stumptner, M., & Wotawa, F. (2001). Diagnosing Tree-Structured Systems. Artificial
Intelligence, 127(1), 1-29.

White, J., Benavides, D., Schmidt, D. C., Trinidad, P., Dougherty, B., & Cortés, A. R.
(2010). Automated diagnosis of feature model configurations. Journal of Systems and
Software, 83(7), 1094-1107.

Williams, B. C., & Ragno, R. J. (2007). Conflict-directed A* and its role in model-based
embedded systems. Discrete Applied Mathematics, 155(12), 1562-1595.

Wotawa, F. (2001a). A variant of Reiter’s hitting-set algorithm. Information Processing
Letters, 79(1), 45-51.

Wotawa, F. (2001b). Debugging Hardware Designs Using a Value-Based Model. Applied
Intelligence, 16(1), 71-92.

Wotawa, F., & Pill, I. (2013). On classification and modeling issues in distributed model-
based diagnosis. AI Communications, 26 (1), 133-143.

887

Efficient Sequential Model-Based
Fault-Localization with Partial Diagnhoses

[Placeholder]

Kostyantyn Shchekotykhin Thomas Schmitz
Alpen-Adria University Klagenfurt, Austria TU Dortmund, Germany
kostyantyn.shchekotykhin@aau.at thomas.schmitz@tu-dortmund.de

Dietmar Jannach
TU Dortmund, Germany

dietmar.jannach@tu-dortmund.de

This document cannot be published on an open access
(OA) repository. To access the document, please follow the
link https://www.ijcai.org/Abstract/16/181 or refer to the
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence ISBN 978-1-57735-770-4 pages
1251-1257.

IJCAI ’16, July 9-15, 2016, New York, NY, USA
ISBN: 978-1-57735-770-4

Finding Errors in the Enron Spreadsheet Corpus

Thomas Schmitz
TU Dortmund
44221 Dortmund, Germany
thomas.schmitz@udo.edu

Abstract—Spreadsheet environments like MS Excel are the
most widespread type of end-user software development tools and
spreadsheet-based applications can be found almost everywhere
in organizations. Since spreadsheets are prone to error, several
approaches were proposed in the research literature to help users
locate formula errors. However, the proposed methods were often
designed based on assumptions about the nature of errors and
were evaluated with mutations of correct spreadsheets.

In this work we propose a method and tool to identify real-
world formula errors within the Enron spreadsheet corpus.
Our approach is based on heuristics that help us identify
versions of the same spreadsheet and our software helps the
user identify spreadsheets of which we assume that they contain
error corrections. An initial manual inspection of a subset of
such candidates led to the identification of more than two dozen
formula errors. We publicly share the new collection of real-world
spreadsheet errors.

1. INTRODUCTION

Spreadsheets are used almost everywhere and at all levels
of organizations [1]. They are often used for financial calcula-
tions and planning purposes so that errors in the calculations
can have severe impacts for organizations [2]. Errors in
spreadsheets are unfortunately not uncommon, in particular
because spreadsheets are often developed by end-users with no
education in software development. Already in the late 1990s
a survey showed that in many studies on spreadsheet errors at
least one fault' was found in every analyzed spreadsheet [4].

Different approaches to avoid spreadsheet errors are pos-
sible, starting with better training for end-users or defined
quality procedures for spreadsheets. Over the years, also a
variety of proposals for better rool support were made in the
literature [3], ranging from visualization approaches [5], over
environments that support systematic tests [6], to interactive
debugging aids [7]. Many of the proposed error detection and
correction tools focus on errors in individual formulas.

A common challenge when designing and evaluating such
approaches is that not many real-world spreadsheets with
known formula errors are available. Although larger collec-
tions of real-world spreadsheets exist, usually no information
about the contained errors is given [8], [9]. To evaluate novel
test and debugging techniques researchers therefore often
inject errors into real-world or artificial spreadsheets using,
e.g., the set of mutation operators for spreadsheets proposed

UIn this paper we use the terms error and fault in an interchangeable manner.
A discussion of the usage of the different terms can be found in [3].

978-1-5090-0252-8/16/$31.00 ©2016 IEEE

Dietmar Jannach
TU Dortmund
44221 Dortmund, Germany
dietmar.jannach@udo.edu

in [10]. Such mutations can represent a useful approximation
of the true errors that are made by users. Nonetheless, these
mutation-based evaluations are based on certain assumptions
about the types and frequency of different types of errors.

In 2015, Hermans and Murphy-Hill [11] published a new
corpus of spreadsheets extracted from the publicly available
emails of Enron, a huge US-company that went bankrupt in
2001 (“Enron scandal”). The new corpus comprises 15,770
spreadsheets that were created for productive use and of which
9,120 contain formulas. Again, however, no information is
available about the errors that these spreadsheets contain.

In this paper, we therefore propose a method and publish
a tool [12] to locate formula errors in spreadsheets of the
Enron corpus. To find such errors, we first try to identify
different versions of the same spreadsheet in the corpus,
where one version contains a fix to a bug that existed in the
previous version. We use different heuristics to detect such
spreadsheet versions. In one strategy we reconstruct parts of
the email conversations in which spreadsheets were exchanged
and look for indicators in the email texts which suggest that
the enclosed spreadsheet contains a bug fix. All spreadsheets
that are attached in this conversation are then automatically
checked for differences. In another approach we look for
spreadsheets whose names are similar or slightly different and,
e.g., contain a suffix like “_v2” or “_fixed”. We then again
compute the differences between these files. If only one or
a few formulas were changed, these files represent candidate
spreadsheets, which can then be manually inspected for errors.

Determining if a change of a formula represents a bug fix
or rather implements an updated business logic is hard to
automate as one has to understand the intended semantics of
each formula. We therefore implemented a visual tool that
automatically retrieves the different versions of a spreadsheet
and supports the user in inspecting them. With the help of this
tool we identified several spreadsheet errors of different types
using only a limited set of heuristics. We publicly share our
collection of errors to foster future research in the field [13].

II. TECHNICAL APPROACH
In this section we present how we reconstruct the email
conversations and how we analyze differences in spreadsheets.
A. Reconstruction of Email Conversations

To identify emails that discuss errors in the attached spread-
sheets, we propose to reconstruct the email conversations.

(£ Enron Mail Networks

Zoom Mail Subject Filter Mail Content Filter

- o N

Spreadsheet Name Filter

Filt.

I 100% W

[~ Use RegExp fault

Spreadsheet Version Filter

Spreadsheets in Network Filter

|~ Use RegExp Filter by

Apply all filters

Version Finder Config il =

: f}{va floating position ID: 612814 Ll

DWR floating position ID: 588933| ,Fe_ DWR floating position ID: 608822[

}FE_D\NR floating position ID: 605618‘

q.*?E_DWR floating posttion ID: 61 2534‘

,,.{ FW_ Ohio Label ID: 172051

—»RE_ Ohio Label ID: 172078

Ohio Label ID: 172008

4

—»RE_ Ohio Label ID: 171701

~»RE_ Ohio Label ID: 172079

—»RE_ Ohio Label ID: 172028 ~RE_ Ohio Label ID: 171702
—»RE_ Ohio Label ID: 172080 :ﬂ _,
| 2

517, 1991

Fig. 1. A screenshot of our interactive tool for finding errors in the Enron corpus.

1) General Idea: Figure 1 shows the interactive visualiza-
tion of such a conversation in our tool. Nodes in the graph
correspond to emails and the edges represent that, for example,
one email was sent in reply to another.

Our tool reconstructs such conversations using different
heuristics. With the implemented heuristics we created 13,440
conversation graphs that had at least one spreadsheet attached.
1,100 of them consisted of two or more nodes. In our tool,
individual keywords like “fix” or “error” as well as complex
regular expressions can be used to filter those conversations
that contain these keywords in the subject line, email text, or
as part of a spreadsheet name.

The conversation and the attached spreadsheets can then
be manually inspected one by one. To support the user in
this manual process, the tool automatically determines and
displays the exact differences between each spreadsheet of the
conversation. If the number of differences between two files
is very small and, e.g., only one single formula was changed,
this might be an indicator of a possible bug fix.

Our approach of searching for certain terms in email conver-
sations is inspired by [11], who found over 4,000 emails in the
Enron corpus which had a spreadsheet attached and contained
one of several keywords like error or mistake. Retrieving
emails with certain keywords is however not sufficient for
our purpose, as our goal is to find different versions of one
spreadsheet to be able to identify possible errors.

2) Reconstruction Heuristics: Reconstructing the email
conversations is not a straightforward process with the given
data. The emails of the corpus unfortunately do not contain
the two header fields called references and in-reply-to of
the Internet Message Standard, which should contain unique
message identifiers of previous messages.

Therefore, we used the email header information about the
subject, sender, recipients and the timestamp of the message,
as well as the message text itself to approximately reconstruct

the conversations. Specifically, we inserted a link in a conver-
sation graph — indicating that a message a is followed by a
message b — whenever the following conditions were fulfilled.

(1) One of the recipients of a is the sender of b, i.e., the
sender of b replied to a or forwarded a.

(i) The subject lines of message a and b match (after
removing prefixes like “Re:”) or the message text of b
contains the entire text of a.

(iii) The timestamp of b is later than the one of a and there
is no other email ¢ with a timestamp that lies between a
and b and for which conditions 1 and 2 are fulfilled.

Checking these conditions again requires some heuristics-
based approximations due to the noisiness of the data. The
sender and recipient names, for example, are often set by
the email client based on an integrated address book and do
not contain email addresses but real names with no consistent
ordering of first and last names. Therefore, we implemented a
name matching technique that tries different orderings and uses
the Jaro-Winkler distance to assess the similarity of different
entries. We assumed the names to be identical if a certain
threshold was surpassed.

B. Analyzing the Differences in Spreadsheets

Once we have determined a subset of spreadsheets that
are presumably related, e.g., because they are in the same
conversation graph or because they have similar names, our
tool supports the user with an automated analysis of the
differences between the files.

1) Detecting Modifications: Our analysis of differences
focuses on changes in formulas. Changes only in number and
text constants between two versions are not considered. We
consider formula updates, insertions and deletions as changes
between spreadsheet versions.

As mentioned above, spreadsheet versions that only have a
limited number of differences are particularly relevant for us as

s, S, s, S,

a > c a = ‘

a c b a

b b c \ b

b b d G
d

(a) Formulas were changed. (b) Formulas were moved.

Fig. 2. Analyzing differences of a spreadsheet.

it makes it easier to understand the modifications. A commonly
used functionality in spreadsheet systems is to copy formulas
to apply the same calculations on different rows or columns.
In the Enron corpus a spreadsheet with formulas on average
contains 2,223 formulas of which only 100 are unique [11]. If
a bug fix concerns such a copied formula, we would therefore
detect multiple formula changes.

In our calculation scheme for differences we account for
such situations where so-called “copy-equivalent” formulas are
changed. We achieve this through the use of the R1C1 notation
in which copy-equivalent formulas have the same cell content.
Figure 2a shows an example where in two copy-equivalent
cells the formula was changed from a to c. According to our
heuristic, this would only count as one difference.

2) Detecting Moved Cells: Another situation in which a
naive approach to spot differences would lead to too many
suspected changes is when new rows or columns are inserted
as part of a change. Figure 2b shows such a situation where
an empty row was inserted. The goal of the subsequently
described heuristic is to detect when (blocks of) cells are
moved. In the example in Figure 2b, our method should
therefore report “no change” instead of a formula deletion in
the topmost cell and a formula addition at the bottom.

To detect such movements we use heuristics regarding the
surrounding of the changed cells. If we find the formula of the
changed cell and an identical surrounding area of a specified
size at a different location in the changed spreadsheet, we
assume that the whole area was moved to this location.

Algorithm 1 sketches the idea of our corresponding spread-
sheet difference analysis. The algorithm takes two spreadsheets
S; and Sy to be compared as input and maintains a list
called diffs in which the found differences are stored. The
main function examines all cells which contain a formula in
at least one of the spreadsheets. For these cells, the function
ISDIFFERENT is called, which checks if the content of the cell
differs in the two spreadsheets. Internally, this method also
checks if the same difference was already observed before
for a copy-equivalent cell as we only want to count each
difference once. In case a difference was found, i.e., one of the
cells contains no formula or the formulas differ, the function
WASMOVED is called, which returns true if we assume that
a formula and its surroundings were moved. If the observed
difference is not the result of a move, the cell ¢ is stored as a
difference in the set diffs.

The function WASMOVED checks if the formula in the given

Algorithm 1: FINDDIFFERENCES
Input: Two spreadsheets S;, S2; A minimum area size
minSize to recognize moved areas
Output: A set of cell positions diffs for which
differences were found between S; and Sy

1 foreach ¢ € FORMULACELLS(S;)
U FORMULACELLS(S») do
2 if ISDIFFERENT(c, S;, Sq, diffs) A
—“WASMOVED(c, S;, Sz, minSize) then

| diffs + diffs U {c};

4 return diffs;

w

function WASMOVED(¢, S;, S2, minSize)
candidates < FINDSAMEFORMULAS(¢, S;, S9);
foreach candidate € candidates do
areas < areas U {FINDEQUIVALENTAREA(c,
L S1, candidate, Sg)};

8 return minSize < MAXSIZE(areas);

N A »n

cell with the same surrounding area can be found elsewhere
in the spreadsheet. The function first searches for all cells in
S5 that have the same formula as cell ¢ in S;. Then it iterates
over all elements of this list called candidates and calculates
the size of the area in S, that is equal to the area surrounding
c in S;. If a sufficiently large identical block — as specified
by the minSize parameter — is found for at least one of the
candidates, the algorithm assumes that the corresponding area
was moved.

More complex heuristics or even exact pattern matching
methods could of course be used but can come at the cost of
higher computational complexity. We chose a simple heuristic
as our goal is to support the parameterizable “on-demand”
calculation of differences, e.g., in the context of email conver-
sation graphs.

III. VALIDATION — DETECTING ERRORS IN THE CORPUS

To validate our general approach and the designed heuris-
tics, we used the developed software tool to locate an initial
set of real-world errors in the Enron corpus.

Our method supports two modes of operation to find
spreadsheet versions: (a) based on the inspection of email
conversations, (b) based on the similarity of file names.

A. Classifying Changes as Error Corrections

Determining whether a change from one spreadsheet version
to another led to the correction or introduction of an error can
in most cases only be done through a manual process”. Each
identified error that we report here was therefore classified
as such by at least two independent spreadsheet experts in
a manual process. We adopted a conservative strategy and
classified changes only as errors if the intended semantics of

2In our view, only very simple cases like the removal of a #DIV/0 error
can probably be automatically detected with some confidence.

the calculations in the spreadsheet were understandable and
the bug was obvious or even mentioned in the email text.

1) Example 1: We searched for email conversations that
contained the words “error” and “spreadsheet” in the message
text.> One filtered email contained the text “Ron pointed out an
error to me in my spreadsheet. The revised one is attached”.
The sender pointed out that one calculation outcome was “foo
low”. An automated comparison of the attached spreadsheet
with other versions of it quickly led us to the change. In cell
D6, the formula “=D4*1500” was changed by the sender of the
email to “=D10*15007”, i.e., a cell reference error was made
in the original file, which led to the faulty (too low) outcome.

In that particular case the file names of the different versions
of the spreadsheet attached to the emails were identical. This
file and its different versions would therefore also be found
by our tool when we only look for file versions without
reconstructing the email conversations. The text of the email
message however assures us that the change was actually an
error and not a change of the business rules.

2) Example 2: When searching for files with similar
names, our tool returned two versions of a multi-worksheet
spreadsheet named CrackSpreadOptions.xls. The files con-
tained six formula differences, which were however detected
as changes to copy-equivalent formulas and counted as one.
Specifically, the formulas in column M were changed from
“=HEAT($B9;....M$7)” to “=C9*HEAT($B9;...,M$7)” etc.,
i.e., the computation was extended with a multiplication factor
that was forgotten in the previous version.* We were confident
that this was truly a hard-to-detect omission error [14] because
the updated spreadsheet also contained the comment “Had to
scale column M by the gas price!!!”.

B. An Initial Corpus of Errors in the Enron Corpus

So far, we have only conducted a few first sessions to build
a corpus of spreadsheet errors with the help of our tool. We
have inspected a few dozen of the email conversations with the
above mentioned keywords manually to locate obvious errors
as those reported above. Furthermore, we made a search based
on identical filenames and limited the search to files which
differed from each other in at most three formulas. From the
returned spreadsheets we inspected about 200 files manually.

Overall, already through our initial search we could identify
28 occurrences which we classified as quantitative errors with
high confidence. According to the classification of [15], we
found 14 mechanical errors, 9 logical errors, and 5 omission
errors. In addition to these errors, we found 8 qualitative
errors [15], i.e., errors which do not directly lead to immediate
failures but degrade the quality of the spreadsheet. Such qual-
itative errors for example include wrong labels for formulas.
We are continuing to extend the corpus and provide all details
on a public web site [13]. Our results so far confirm that all
error types mentioned in the literature actually appear in real-
world spreadsheets.

3The search with the two terms returned quite a number of irrelevant
conversations as the word “error” was often part of email disclaimers.
4The function HEAT is part of an external library.

In the current corpus the majority of the problems was
identified based on matching file names as this was the first
technique that we explored. More than half of the errors could
however have been found using either of our identification
techniques (name-based or conversation-based). Specifically,
for 19 of the 36 errors the email conversations included
information about a corrected error or even its exact location.

IV. RELATED WORK

Besides the Enron document corpus [11] used in this work,
other collections of spreadsheets were published over the years
to support error research for spreadsheets. Both the often-used
EUSES corpus [8] (4,498 documents) and the more recent
FUSE corpus [9] (249,376 documents) contain spreadsheets
that were retrieved with the help of search engines. Many of
the documents, however, contain no formulas at all. Further-
more, no additional information is available about potential
errors in the spreadsheets or if they were in practical use.

Other spreadsheet collections were designed to include
information about errors. The Hawaii Kooker Corpus for
example comprises 75 spreadsheets (with 97 faults) that were
created by undergraduate students [16]. A comparable corpus
of spreadsheet documents created by students was presented
in [17]. While these corpora obviously contain real errors
made by humans, it is not fully clear if the spreadsheets
and example calculations are representative for spreadsheets
that are found in industry. Furthermore, spreadsheets that are
created in exercises can be structurally quite diverse, hard to
comprehend, or incomplete. Comparing a submitted solution
with a reference solution can therefore be tedious.

Using email conversations as an additional source to detect
errors in real-world spreadsheets has to our knowledge not
been done before. Some works, however, exist that aim at
automatically detecting differences in spreadsheets. SheetDiff
[18], for example, uses a greedy technique to search for several
types of differences which are then visually presented to the
user. Later on, an approach called RowColAlign was proposed
that uses a dynamic programming technique to address some
shortcomings of SheetDiff [19]. In the current version of
our tool the differences between spreadsheets are presented
in a structured and compact text-based form. We see the
integration of the ideas proposed in [18] or [19] to visualize
the differences as a promising direction for our future work.

V. CONCLUSION

Research on error detection techniques for spreadsheets
requires a solid understanding of the types of errors that
users make when creating spreadsheets. In this work we have
presented a method and tool to locate errors in the Enron
spreadsheet corpus based on the identification of versions of
the same spreadsheet. One particular novelty of our approach
lies in the utilization of information from the email conversa-
tions in the company. Through a first manual inspection of a
number of version candidates with our tool, we could develop
an initial set of real-world spreadsheet errors which we plan
to continuously extend in the future.

ACKNOWLEDGMENT

The work was funded by the Austrian Science Fund (FWF,
contract 12144) and the German Research Foundation (DFG,
contract JA 2095/4-1). Thanks to Tom-Philipp Seifert for
implementation works.

(1]

(2]
(3]

[4]
(3]

[6]

(7]

(8l

REFERENCES

R. R. Panko and D. N. Port, “End User Computing: The Dark Matter
(and Dark Energy) of Corporate IT,” in Proceedings of the 45th Hawaii
International Conference on System Sciences (HICSS 2012), Wailea, HI,
USA, 2012, pp. 4603-4612.

EuSpRIG, “Spreadsheet horror stories,” Published online at http://www.
eusprig.org/horror-stories.htm, Last accessed 2016.

D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa, “Avoiding, finding
and fixing spreadsheet errors - a survey of automated approaches for
spreadsheet QA,” Journal of Systems and Software, vol. 94, pp. 129—
150, 2014.

R. R. Panko, “What We Know About Spreadsheet Errors,” Journal of
End User Computing, vol. 10, no. 2, pp. 15-21, 1998.

F. Hermans, M. Pinzger, and A. van Deursen, “Supporting Professional
Spreadsheet Users by Generating Leveled Dataflow Diagrams,” in Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE ’11), 2011, pp. 451-460.

R. Abraham and M. Erwig, “AutoTest: A Tool for Automatic Test Case
Generation in Spreadsheets,” in Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2006),
2006, pp. 43-50.

D. Jannach and T. Schmitz, “Model-based diagnosis of spreadsheet
programs: a constraint-based debugging approach,” Automated Software
Engineering, vol. 23, no. 1, pp. 105-144, 2016.

M. Fisher and G. Rothermel, “The EUSES Spreadsheet Corpus: A
shared resource for supporting experimentation with spreadsheet depend-
ability mechanisms,” SIGSOFT Software Engineering Notes, vol. 30,
no. 4, pp. 1-5, 2005.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-Hill, “FUSE:
A Reproducible, Extendable, Internet-scale Corpus of Spreadsheets,”
in Proceedings of the 12th Working Conference on Mining Software
Repositories, Data Challenge, 2015.

R. Abraham and M. Erwig, “Mutation Operators for Spreadsheets,”
IEEE Transactions on Software Engineering, vol. 35, no. 1, pp. 94-108,
2009.

F. Hermans and E. R. Murphy-Hill, “Enron’s Spreadsheets and Related
Emails: A Dataset and Analysis,” in Proceedings of the 37th Interna-
tional Conference on Software Engineering (ICSE 2015), Florence, Italy,
2015, pp. 7-16.

T. Schmitz and D. Jannach, “Enron Spreadsheet Error Finder,” Published
online at http://Is13-www.cs.tu-dortmund.de/homepage/spreadsheets/
enron-spreadsheet-tool.shtml, last accessed 2016.

, “The Enron Errors Corpus,” Published online at http://1s13-www.
cs.tu-dortmund.de/homepage/spreadsheets/enron-errors.htm, last
accessed 2016.

R. R. Panko and R. P. Halverson, “Are two heads better than one? (at
reducing spreadsheet errors in spreadsheet modeling?),” Office Systems
Research Journal, vol. 15, no. 1, pp. 21-32, 1997.

, “Spreadsheets on Trial: A Survey of Research on Spreadsheet
Risks,” in Proceedings of the 29th Hawaii International Conference on
System Sciences (HICSS 1996), Wailea, HI, USA, 1996, pp. 326-335.

S. Aurigemma and R. R. Panko, “The Detection of Human Spreadsheet
Errors by Humans versus Inspection (Auditing) Software,” in Proceed-
ings of EuSpRIG 2010 Conference, London, United Kingdom, 2010.

E. Getzner, “Improvements for Spectrum-based Fault Localization
in Spreadsheets,” Master’s thesis, Graz University of
Technology, http://spreadsheets.ist.tugraz.at/index.php/corpora-for-

benchmarking/infol/, 2015.

C. Chambers, M. Erwig, and M. Luckey, “SheetDiff: A Tool for Identi-
fying Changes in Spreadsheets,” in Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2010),
Madrid, Spain, 2010, pp. 85-92.

A. Harutyunyan, G. Borradaile, C. Chambers, and C. Scaffidi, “Planted-
model evaluation of algorithms for identifying differences between
spreadsheets,” in Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC 2012), Innsbruck,
Austria, 2012, pp. 7-14.

	Titlepage
	Abstract
	1 Introduction
	1.1 Faults in Spreadsheets
	1.2 Spreadsheet Quality Assurance
	1.3 Overview of this Thesis
	1.4 Publications
	1.4.1 Avoiding, Finding and Fixing Spreadsheet Errors – A Survey of Automated Approaches for Spreadsheet QA
	1.4.2 Model-Based Diagnosis of Spreadsheet Programs
	1.4.3 MergeXplain: Fast Computation of Multiple Conflicts for Diagnosis
	1.4.4 Parallel Model-Based Diagnosis on Multi-Core Computers
	1.4.5 Efficient Sequential Model-Based Fault-Localization with Partial Diagnoses
	1.4.6 Finding Errors in the Enron Spreadsheet Corpus

	2 Model-Based Diagnosis for Spreadsheets
	2.1 Introductory Example
	2.2 Computation of the Diagnoses
	2.3 An Interactive Tool for Model-Based Spreadsheet Debugging

	3 New Algorithmic Approaches for Faster Calculation of Diagnoses
	3.1 Faster Conflict Detection
	3.2 Parallelizing the Calculation of Diagnoses

	4 Sequential Diagnosis
	4.1 The General Sequential Diagnosis Approach
	4.2 Speeding Up the Query Calculation

	5 Creating a Corpus of Faulty Spreadsheets
	5.1 Types of Spreadsheets Used in Research
	5.2 Publicly Available Spreadsheet Corpora
	5.3 Building a Real-World Spreadsheet Corpus with Fault Information
	5.3.1 Fault Detection Methods
	5.3.2 The Enron Error Corpus

	6 Conclusion
	Bibliography
	List of Figures
	List of Tables
	Publications
	Avoiding, Finding and Fixing Spreadsheet Errors - A Survey of Automated Approaches for Spreadsheet QA
	Model-Based Diagnosis of Spreadsheet Programs
	MergeXplain: Fast Computation of Multiple Conflicts for Diagnosis
	Parallel Model-Based Diagnosis on Multi-Core Computers
	Efficient Sequential Model-Based Fault-Localization with Partial Diagnoses
	Finding Errors in the Enron Spreadsheet Corpus

