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A K R O N Y M S

ANC adaptive noise canceler

ASA auditory scene analysis

ASN acoustic sensor network

ATF acoustic transfer function

BM blocking matrix

BoF bag-of-features

BSS blind source separation

C-SRP cumulative steered response power

CASA computational auditory scene anal-

ysis

CGM corpus geniculatum medium

CN cochlear nucleus

CNN convolutional neural network

DCT discrete cosine transform

DNN deep neural network

DoA direction of arrival

DRR direct-to-reverberation ratio

EM expectation-maximization

ERB equivalent rectangular bandwidth

EVD eigenvalue decomposition

FA false alarm

FBF fixed beamformer

FFT fast Fourier transform

FN false negative

FOV field of view

FP false positive

fwSNRseg frequency weighted segmental

SNR

GCC generalized cross-correlation

GCC-PHAT generalized cross-correlation

with phase transform

GFCC Gammatone frequency cepstral co-

efficient

GMM Gaussian mixture model

GPC graphics processing unit

GSC generalized sidelobe canceler

HMM hidden Markov model

HoG histograms of oriented gradients

IC inferior colliculi

ICA independent component analysis

IID interaural intensity difference

IIR infinite impulse response

ILD interaural level difference

ISM image source model

ITD interaural time difference

LCMV linearly constrained minimum vari-

ance

LPC linear prediction coefficient

LS least squares

LSO lateral superior olive

MD missed detection

MDS multidimensional scaling

MFCC mel frequency cepstral coefficient

ML maximum likelihood

MMSE minimum mean square error

MoG mixture of Gaussians

MSO medial superior olive

mTDoA maximum time difference of ar-

rival

MUSIC multiple signal classification

MVDR minimum variance distortionless

response

NMF non-negative matrix factorization

p.d.f. probability density function

PCA principal component analysis

PoAP peak over average position

RANSAC random sampling consensus

RBF radial basis function

RBM restricted Bolzmann machine

ReLU rectified linear unit

RIR room impulse response

RMS root mean square

RTF relative transfer function

SAI stabilized auditory images

SIF spectral image features

SNR signal-to-noise ratio

SOC superior olivary complex

SRP-PHAT steered response power with

phase transform

STFT short time Fourier transform

SVD singular value decomposition

SVM support vector machine
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TDoA time difference of arrival

ToA time of arrival

ToF time of flight

TP true positive

TTL time to live

UBM universal background model

VAD voice activity detection

WASN wireless acoustic sensor network
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N O TAT I O N & S Y M B O L S

ı imaginary unit (ı =
√
−1)

⊗ convolution a⊗ x(t) := ∑k a(k)x(t− k)

⊕ cross-correlation (x⊕ y)(τ) := ∑t x(t)y(t + τ)

⊙ Hamacher fuzzy t-norm

◦−• Fourier transform correspondence from frequency to time domain, H( f ) ◦−•
h(t) symbolizes that H( f ) is the frequency domain representation of the time

domain signal h(t) after applying a Fourier transform.

∝ proportional

·T transposed matrix or vector

·̂ an estimated quantity

·̃ a measured quantity

· an average of a quantity

E expected value

µ mean

σ standard deviation

N normal distribution

fs sampling frequency

T60 reverberation time

c speed of sound

x source signal, i.e., dispersed by a human speaker

y received signal, i.e., at a microphone

z feature vector computed from the received signal

t discrete-time sampling index

k frame index

K frame size

Ωc class or cluster with index c

sn source position with index n, mostly two-dimensional with respect to the

ground floor

n source position index

N number of source positions

mi position of microphone i

M number of microphones

ri receiver node position, the center of microphone array i

oi azimuthal orientation of microphone array i with respect to the global world

coordinate system

R number of microphone arrays or nodes

θn,i azimuthal direction of arrival (DoA) at microphone array i in degrees relative

to the node orientation oi for speech event n

notation & symbols iii



τn,(i,j) time difference of arrival (TDoA) between signals yj and yi at positions mj

and mi for sound event n from position sn.

ǫa error of DoA measurements θ̃

ǫτ error of TDoA measurements τ̃

ǫv error of visual localizations ŝ

ǫl error of acoustic two-dimensional localizations ŝ

ǫo error of estimated orientations ô

ǫr error of estimated positions r̂
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There is something common in the orientations in a city and in any scientific
area: from every given point we must be able to reach any other one.

Polya and Szego

1 I N T R O D U C T I O N

In the modern world, we are increasingly surrounded by computation devices with net-

work access in everyday situations. While smartphones are the most popular sign of this

change, tablets, laptops, hearing aids, television sets, and game consoles are other exam-

ples of such devices. The availability of these devices offers new possibilities. When the

devices are equipped with one or more microphones, they can work together collabora-

tively and become nodes in an acoustic sensor network (ASN). For the collaboration to

be powerful for practical applications, the ASN needs knowledge about itself and the

acoustic scene around it. This thesis provides methods that enable the nodes to automat-

ically acquire such knowledge. The nodes can learn their geometric arrangement and

the type and position of sound sources around them.

1.1 scenarios

A small existing example for an ASN is the wireless combination of a hearing aid with

a smartphone. The hearing impaired person can use the smartphone as a “radio micro-

phone”. It can be held by or pointed at others and transmit their speech into the hearing

aid. This requires manual positioning.

More sophisticated solutions are possible if more devices are included in the network.

Figure 1.1 shows an example of persons with heterogeneous devices that can work to-

gether as an ASN. These are a smartphone, tablet, laptop, and hearing aids. The assem-

bly in this case can be considered “ad hoc”, meaning that the devices come together in

Figure 1.1: ASN example: The nodes (bright green: hearing aids, smartphone, laptop,
and tablet) communicate wirelessly and process the acoustic scene together.
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the moment they are to be used as a network. Let us assume, for example, that the per-

son with the hearing aids wants to listen to the one person it faces, which does not carry

a device of her own. An enhanced speech signal could be provided by the devices held

by persons standing next to the speaker working together. In order to make this pos-

sible, the devices would have to be aware of their relative positioning and the speaker

in question. As we can see from this example, when the nodes become automatically

aware of the position and type of sound sources around them, more advanced solutions

become possible. To provide robust real-time methods that provide such information is

the goal of this thesis.

There are other scenarios in which this will be vital. Consider the same situation in a con-

ference room equipped with cameras. The five persons are having a business meeting

where remote participants will be joining. The cameras’ positions are known in advance,

as they are part of a fixed installation at the walls or ceiling. As the acoustic nodes can

localize themselves as well as the active speakers, this can be used to select and control

cameras for transmission and again provide an enhanced speech signal. If the partici-

pants of the meeting are known, the identity of the active speaker can be transmitted as

well.

These examples show the focus of this thesis, ASNs in close proximity, typically indoors

and assembled ad hoc. While the methods were developed with such situations in mind,

they are applicable in a broader range of scenarios including automation, assisted living,

urban planing, wildlife surveillance and more.

1.2 informed asn

The goal of this thesis is to provide robust methods for automatic and autonomous

application of ASNs. What is generally missing for the collaboration of the nodes to

be useful and effective, is knowledge about the auditory scene. Therefore, they should

acquire this knowledge automatically.

Definition of tasks

Two types of information can be distinguished: First, the identification of types of au-

ditory objects present over time. Second, the relative positioning of these objects in the

ASN. For this, the relative geometry of the nodes has to be inferred as well.

The acquisition of information can be divided in three tasks: The first task is the detec-

tion and classification of sounds. Foremost speech has to be identified correctly for both

localization and enhancement. The identification of other ambient sounds can guide the

processing. Classifying the type of noise distorting the speech signal allows to chose and

control the enhancement algorithm. The detection of human actions such as footsteps or

chair movement helps to interpret the scene. The second task is the geometric calibration

of the ASN. In order to localize speakers and other sound sources, the nodes have to

know their relative arrangement with respect to each other. The third task is said local-

ization. Once the geometry of the network is established, the nodes can collaboratively

find the position of sound sources.

Challenges

To be useful for practical applications, the methods developed in this thesis have to

overcome several challenges. The first challenge is reverberation. As the ASN will of-

ten be situated indoors, where the sound is reflected by the walls and other surfaces,
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all methods have to be robust against an unknown level of reverberation. The second

challenge concerns the computations itself. It has to be realized in parallel computation

distributed over the nodes. As the network can be set up in an ad hoc manner, the com-

putations should be fast enough to be applied in real-time. As the scene may not be

static, it is favorable to use adaptive online algorithms. A third challenge stems from

the fact that the network connections will often be wireless. This imposes bandwidth

and timing constraints. Therefore, the amount of information shared between the nodes

should be low and the exchange itself be tolerant against delays. A fourth challenge is

the independence of the ASN. As the methods have to be autonomous to be truly useful

in practice, no additional devices or information should be necessary for them to work.

Existing approaches

The systematic approach for automated gathering of information in the ASN is a novel

perspective. However, the three tasks identified are not completely new in themselves

and already addressed by existing methods. Several state-of-the-art approaches for the

individual tasks of sound classification, geometry calibration and speaker tracking exist.

These do not cope with all the challenges just described. Several shortcomings can be

identified that will be overcome with the novel approach in this thesis.

The detection and classification of auditory objects has been investigated for decades.

Recently, the classification of overall scenes and the event detection has become the fo-

cus of renewed attention. This is probably also partially due to the advent of ASNs.

Challenges still not fully overcome in event detection are robustness and online appli-

cability with limited resources. Another open issue is the reliable speech detection in

noise for enhancement.

Geometry calibration of distributed microphones is addressed by existing methods, but

many of them require additional constraints and means that are not required otherwise.

Such means are often speakers playing dedicated signals in a calibration phase, either on

the devices themselves or required additionally. Rather than using a dedicated calibra-

tion sequence with special sounds, it is desirable to perform the calibration online form

speech alone. Another shortcoming in existing techniques is the fact that they do not

explicitly consider nodes with multiple microphones. Such nodes can estimate the angle

towards sound sources, allowing the ASN to pinpoint them by triangulation. In order

for this to be feasible, the relative orientation has to be calibrated with high accuracy.

Acoustic speaker tracking is a well-researched field. The collaborative online tracking

by an ASN has become a new focus as this imposes new challenges. Only few existing

methods consider the information exchanged between the nodes. It should be of low

bandwidth and the exchange tolerant to transmission delays and errors. Similarly, how

to combine this information to handle concurrent speakers is a challenging research

question.

1.3 contribution

The author’s contributions to research developed in this thesis are novel methods for

sound classification, sensor calibration, and speaker tracking in ASNs. The individual

methods are described in the following, along with the corresponding publications. As

these are collaborative works, the author’s individual contributions will be pointed out.

1.3 contribution 3



Detection and classification of auditory objects

A novel application of the bag-of-features (BoF) paradigm on acoustic event classifica-

tion and detection is introduced. By using soft quantization and supervised training

for the BoF model, superior accuracy is achieved. The method is working online and

can be computed in a fraction of real-time on a consumer computer. It can be used for

speaker identification as well. The method was first published at the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) held in May 2014 in

Florence, Italy [PGF14]. The author’s contributions to the joint paper were the selection

and adaptation of the BoF method, the selection of features with the introduction of

Gammatone and loudness features, and the organization of the recordings. A joint in-

depth investigation of the method an further extensions is presented in an article in the

IEEE/ACM Transactions on Speech, Audio and Language Processing [GPF17].

Based on the method’s good speech detection ability, it was extended in order to provide

control for a beamformer, thus performing blind speech enhancement. The method can

handle multiple concurrent noises from different directions. The classification of noise

in stationarity levels allows to predict the achieved improvement. It was published at the

IEEE Sensor Array and Multichannel processing workshop (SAM) held in July 2016 in

Rio de Janeiro, Brazil [PG16]. The author’s contributions were the design of the classifier

and the introduction of a dedicated training strategy based on levels of stationarity, as

well as the conduction of the recording and experiments.

Speaker tracking

The author’s diploma thesis [Pli10] introduced a neuro-biologically inspired speaker

localization method for microphone arrays. This single node approach proved very ro-

bust against reverberation and is able to automatically determine the number of active

speakers.

Within this PhD thesis, two methodical improvements were made: In order to be ap-

plicable independently without manual adjustments, an automatic gain estimation was

added. In order to better handle the unknown number of concurrent speakers, the au-

thor introduced an application of the expectation-maximization (EM) algorithm that

realizes probabilistic clustering according to auditory scene analysis (ASA) principles.

The refined method was first published at the European Signal Processing Conference

(EUSIPCO) held in September 2013 in Marrakesh, Morocco [PF13].

Based on this approach, a system for Euclidean tracking in ASNs was designed, first

published at the ICASSP conference held in May 2014 in Florence, Italy [PF14a]. The

author designed the system to be online while using little bandwidth since only sparse

information has to be exchanged. It is robust against jitter and transmission errors. The

author added the association based on spectral similarity and introduced a special trian-

gulation scheme that incorporates the expected accuracy.

Calibration of the nodes geometry

As the topic is of increased interest but few systematic reviews were available at the

time, a dedicated survey of the field was performed. It was published in an article in the

IEEE Signal Processing Magazine in July 2016 [PJHUF16]. The author contributed the

general idea of the survey and the organization of state-of-the-art approaches according

to an application oriented taxonomy. He also contributed the evaluation framework,
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data recordings, and experiments with his methods for off-line calibration as well as

multidimensional scaling (MDS) based techniques.

For video conferencing scenarios, it is important to provide integration of acoustic and

visual sensors. The first method developed is a multimodal approach using the visual lo-

calization of a speaker at a small number of fixed positions. By matching the positions to

the direction of arrival (DoA) estimates of the microphone arrays, their absolute position

and orientation are derived. The method was devised by the author and first published

in the EUSIPCO conference held in September 2014 in Lisbon, Portugal [PF14b].

The second method is using acoustic measurements only. It works with speech events

from distinct unknown positions. The author introduced a single target function that

combines DoA and time difference of arrival (TDoA) measurements. This allows for off-

line calibration with dedicated recordings and achieves high orientation accuracy. The

method was first published in the International Workshop on Acoustic Signal Enhance-

ment (IWAENC) held in September 2014 in Antibes, France [PF14c].

The method was later refined for online application. The author introduced an evolu-

tionary algorithm that is able to solve the combined target function in real-time. The use

of incremental measurements makes it possible to calibrate online. By using a sparse

spike representation computed by the neuro-biologically inspired speaker localization

model for the DoA estimation, it is robust and requires lower bandwidth for sharing

information between the nodes. This version is presented in an article in the IEEE Signal

Processing Letters [PFG17].

Method connections

The overall goal is the development of an automatically informed ASN. The novel meth-

ods developed for this goal complement each other in multiple ways, as illustrated

in Figure 1.2: The event classification is employed as pre-filter for the calibration and

tracking, as it helps to exclude non-speech sounds. The single array tracking method

is employed in turn for acoustic sensor network geometry calibration. Together with

visual speaker localization, it is used for the multimodal approach. Once the geome-

try is calibrated, the sensor network can work together for Euclidean speaker tracking.

Both the sound classification and tracking methods can control a beamformer for speech

enhancement.

1.4 outline

As this thesis proposes novel methods for three complementary tasks, the remaining

text of this thesis is organized in a way that the overlapping aspects can be addressed

together while the individual methods are discussed separately. As many of the devel-

oped methods are based on shared assumptions, common principles and fundamentals

of the novel methods will be introduced in a background chapter. Thereafter, the tasks

of sound classification, sensor localization and person tracking will each be discussed

in individual chapters. Each chapter contains an overview of the state-of-the-art related

work and an in depth description of the developed method. As the methods are used in

conjunction with each other in overlapping scenarios, a detailed evaluation of all three

methods will be described in a common chapter. A final conclusion chapter summarizes

the main results and contributions of the thesis. The individual chapters’ contents are:

1.4 outline 5
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Figure 1.2: Dependencies of the novel methods. Sound classification is used as pre-filter
for tracking and geometry calibration. It is also used to provide control infor-
mation for speech enhancement. The central calibration of an acoustic sensor
network enables Euclidean speaker tracking.

• The following Chapter 2 introduces common notation and fundamental back-

ground knowledge for the work. The basic mathematical description of the geo-

metric setup and signals involved will be introduced first. A short overview of the

physiology of human hearing and the main concepts of the influential auditory

scene analysis theory will be given. Thereafter the basic principle and notation of

the maximum likelihood estimation used for both classification and localization

will be introduced. The chapter is concluded by a brief outline of the common

concepts for speech enhancement.

• The state-of-the-art in sound classification will be described in Chapter 3 with a

focus on the different classifiers and features used in acoustic event detection. The

novel method applying the bag-of-features approach is explained in detail. The

chapter is concluded by a description of the blind speech enhancement method

based on the classification of speech.

• The acoustic person localization task will be addressed in Chapter 4. First, common

state-of-the-art approaches will be described, including the neurobiologically in-

spired models developed by the author prior to this thesis. Then, the novel method

for single array speaker localization and tracking will be explained. The chapter is

concluded by a description of the extension of this method to multiple distributed

microphone arrays.

• The problem of acoustic sensor geometry calibration will be introduced in depth

in chapter 5. Related methods for the calibration of individual microphones and

microphone arrays will be discussed. The author’s contributions will be presented,
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starting with the novel audiovisual method. Then the novel approach to solve the

more difficult problem of calibration from acoustic data only will be explained.

• In Chapter 6, all proposed methods will be evaluated. First the common metrics

and data used for the evaluation is described. Then the sound classification will

be evaluated for event detection and speech enhancement. The evaluation results

for single node speaker localization will be presented next. The following sections

present evaluation results for the calibration of distributed microphone arrays us-

ing simulated data or results from the single node localization. Then the results

for tracking with multiple distributed microphone arrays are described. The effect

of calibrating the arrays with the novel calibration method will be investigated. An

experiment employing all methods in conjunction is presented at the end of the

evaluation.

• Chapter 7 concludes this text with a discussion of the results achieved. A perspec-

tive towards further research will be given and the impact of the new methods for

ASN applications will be outlined.

1.4 outline 7





Here and elsewhere we shall not obtain the best insight into things until we
actually see them growing from the beginning.

Aristotle, Politics

2 B A C K G R O U N D

For methods in an acoustic sensor network (ASN) there are some common fundamen-

tal principles. In this chapter, the mathematical formulation of the sound propagation

towards microphones will be introduced. The basic measurements and geometric rela-

tions will be described in the next section. As insights of the neuro-biological principles

of human sound perception are used in several methods, the basic terms and ideas

will be introduced in Section 2.2. Next, the common framework of maximum likelihood

(ML) based clustering used in both the classification and localization methods will be

explained in Section 2.3. Concluding this chapter is Section 2.4 which introduces basic

principles of speech enhancement.

2.1 sound and geometric relations

In order to introduce notation and give some general background, the basic model of

sound propagation will be introduced here. As most of the work is concerning indoor

scenarios, a characterization of reverberation and its effect will be given. The mathemati-

cal notation will be introduced starting with the measurements on the example of a pair

of microphones. Then it will be extended to the measurements in an network of nodes

and the quantities to be estimated in its geometric calibration.

2.1.1 Sound

Sound is propagated as density variation in the acoustic medium. It consists of longitu-

dinal compression waves in fluids and air. Whether it originates from a loudspeaker or

a human mouth, it starts as almost spherical wave. The expansion pattern is bent by the

head or loudspeaker, more so at high frequencies. When multiple sources are present,

their signals add linearly.

Propagation

The propagation speed is a function of the medium through which the wave travels. Air

forms an almost homogenic medium, so the speed can be assumed constant. Since the

variation is small for indoor temperatures, the speed it is often approximated by the

constant value 343 m/s or linearly as function of the temperature K in Kelvin [Kut00]:

c =167.61 + 0.6K = 331.5 + 0.6(K− 273.15) (2.1)

This simplification does not hold for other media. In sea water, for example, the speed

has to be modeled as a function of the local salinity as well as the local temperature.

Similarly, when sound is conducted through floor or furniture, the medium is hardly

homogenic and the propagation therefore far from linear.
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Figure 2.1: Indoor sound propagation model: The spherical wave from the source posi-
tion sn is propagated to the sensor mi. Reverberation adds different paths
which lead to the signal arriving later at the sensor. These can be modeled as
mirror sources as shown for the first order reflection.

Reverberation

In indoor environments, the sound does not only reach the sensor on the direct path,

but via indirect paths by reflection on walls and objects in the room as illustrated in Fig-

ure 2.1. It is notable that the signal is attenuated at each reflection, which can be quanti-

fied by an absorption coefficient. The reverberations can also be seen as image sources

with a lower amplitude and time delay coming from the mirrored directions [AB79].

One way to quantize the amount of reverberation is the reverberation time T60, defined

as the time it takes the total reverberation of a signal to attenuate by 60 dB after the

source is turned off.

The distance at which the reverberation and the direct path signal have equal power is

called critical distance. It can be approximated with the reverberation time T60 [s] and

room volume V [m3] as [Kut00, p. 317]:

rD ≈ 0.057

√
V

T60
. (2.2)

Signal model

As the processing is digital, we are dealing with discrete-time signals with a sampling

index t with respect to the sampling frequency fs. All time measurements will be ex-

pressed accordingly.

Because of the additive and linear properties of sound, all paths can be added and

expressed as a single linear filter a. This filter is called the acoustic transfer function

(ATF). In this case it is also referred to as room impulse response (RIR). The microphone

signal is modeled as the signal filtered by the ATF with some additive noise n:

yj(t) = aj ⊗ xj(t) + n(t) (2.3)
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where j is the microphone index. Often, the processing is done in the short time Fourier

transform (STFT) domain. The Fourier transform is applied to overlapping time frames

k of, e.g., K = 1024 samples yielding a frequency representation Yj(k, f ) of the time

signal. Each vector Yj is comprised of K = F frequency bins with index f .

Yj(k, f ) ◦−• yj(t = kK, kK + 1, . . . , kK + K− 1) (2.4)

Here, the convolution in (2.3) becomes a multiplication [Smi99]:

Yj(k, f ) = Aj(k, f )Xj(k, f ) + N(k, f ). (2.5)

By stacking the vectors Y = [Y0, Y1, . . . YM−1]
T of the microphone signals and the cor-

responding transfer functions A = [A0, A1, . . . AM−1]
T, the recording of one or more

acoustic sensor nodes can be written as

Y (k, f ) = A(k, f )X(k, f ) +N (k, f ). (2.6)

2.1.2 Sensor node measurements

For the proposed methods, we assume each sensor node is equipped with a non-linear

planar microphone array. A microphone array can acquire three basic types of measure-

ments with respect to a sound source. They will be defined in the following. As each can

be estimated using cross-correlation, this will be formalized at the end of this section.

ToA

The time tn,i it takes to reach a sensor at position mi from a source position sn is linearly

dependent on the distance. This time is referred to as the time of arrival (ToA) or time

of flight (ToF),

tn,i = ‖sn −mi‖ fs/c. (2.7)

In Figure 2.2 the geometric properties for a pair of microphones are illustrated. Since

the propagation of sound is spherical, the distance dn,(i,j) in the direction towards source

sn is equal to the difference of the individual distances of each microphone towards the

source,

dn,(i,j) = ‖sn −mi‖ − ‖sn −mj‖ . (2.8)

TDoA

If signals yi,yj received at two microphones with index i, j were free of reflections and

noise, they would be identical but for attenuation and the time offset τi,j, called the time

difference of arrival (TDoA).

yj(t) ∝ yi(t + τi,j) (2.9)

It is given in samples by the difference of distances from the microphone positions mi,

mj to the source position sn multiplied with the given sampling rate fs and divided by

the speed of sound c,

τ(i,j) (sn) = τn,(i,j) = dn,(i,j) fs/c = (‖sn −mj‖ − ‖sn −mi‖) fs/c = tn,j − tn,i . (2.10)
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Figure 2.2: Geometric relations between two microphones and a speaker. The sound
propagation from the speaker is illustrated as dotted circles.

A constant TDoA for one microphone pair corresponds to a hyperboloid surface in the

room. The positions in line with a microphone pair are termed the “endfire” positions,

the perpendicular ones are termed “broadside” positions. We can see that the TDoA is

zero at the broadside positions and reaches its maximum value at the endfire positions.

DoA

If the distance of the source is large compared to the microphone distance, the hyper-

boloid becomes an angular line segment. This situation is referred to as the far field

assumption. In this case, the circle intersecting the position mj of the right microphone

is approximately a line perpendicular to mj − sn, cf. Figure 2.2. The TDoA becomes a

function of the angle Θn,(i,j) towards the speaker

τn,(i,j) ≈ cos
(

θn,(i,j)

)
‖mi −mj‖ fs/c (2.11)

Therefore, only this angle, the direction of arrival (DoA) can be estimated from the

TDoA:

θn,(i,j) ≈ arccos

(
τn,(i,j)c

‖mi −mj‖ fs

)
. (2.12)

The DoA can also be expressed as a unit vector. In the two dimensional case, the follow-

ing vector α can be used given the angle θ relative to the coordinate origin.

α(θ) :=

(
cos (θ)

sin (θ)

)
(2.13)

Cross-correlation

A typical way to derive these measurements is the cross-correlation. For discrete-time

signals, this is the element-wise multiplication of the two signals with a given time offset
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τ, sometimes also denoted as expected value over time. In practice, this is evaluated over

a short time frame of K samples.

(xi ⊕ xj)(k, τ) := Et

(
xi(t)xj(t + τ)

)
=

kK+K−1

∑
t=kK

xi(t)xj(t + τ) (2.14)

The time lag where the function reaches its maximum value is the time offset between

two non-periodic signals.

τ̂k,(i,j) =
τ

argmax (xi ⊕ xj)(k, τ). (2.15)

All three measurements can be estimated by cross-correlation. The ToA is computed by

correlating the signal received at one microphone with the source signal. The TDoA for

a pair of microphones can be estimated by correlating their signals. The DoA is derived

from the TDoA as described above (2.12).

When correlating microphone signals in order to estimate the TDoA, spectral distortion

and reverberation can change the signals in a way that the cross-correlation’s maximum

is not always found at the time lag resulting form the length difference of the direct

paths. In order to counter these effects, compensating filters h̃i, h̃j with xi(t) ≈ h̃iyi(t) can

be applied before computing the cross-correlation. Then the TDoA estimate is computed

as

τ̂k,(i,j) =
τ

argmax Et

{
(h̃i ⊗ yi(t))(h̃j ⊗ yj(t + τ))

}
︸ ︷︷ ︸

ryiyj
(k,τ)

. (2.16)

The function r is known as the generalized cross-correlation (GCC) [KC76]. It is often

computed in the STFT domain in the following way: Rather than computing the cross-

correlation in the time domain, the cross-power spectral density Φyiyj
(k, f ) is computed

as the product of one signal’s spectrum with the complex conjugate of another signal’s

spectrum. For deterministic signals, this is identical with the Fourier transform of the

cross-correlation [Smi99]:

Φyiyj
(k, f ) = Yi(k, f )Y∗j (k, f ) •−◦ (yi ⊕ yj)(k, τ)

∣∣K/2

τ=−K/2
(2.17)

Therefore the GCC can be computed in the Fourier domain from the cross-power spec-

tral density multiplied with a compensation G(k, f ) given by the conjugate product of

the spectral compensations:

ryiyj
(k, τ) ◦−• 1

F

F/2

∑
f=−F/2

H̃i(k, f )H̃∗j (k, f )
︸ ︷︷ ︸

G(k, f )

Φyiyj
(k, f )ej2π f /Fτ (2.18)

In practice the distortions are unknown, so this G(k, f ) has to be estimated as well.

A successful approach is the use of the phase transform that normalizes the spectral

amplitudes.

GPHAT
yiyj

(k, f ) =
1∣∣∣Φyiyj
(k, f )

∣∣∣
(2.19)
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Figure 2.3: ASN geometry and triangulation using two nodes.

By substituting the unknown G(k, f ) with this function, we arrive at the function

rPHAT(k, τ) known as the generalized cross-correlation with phase transform (GCC-

PHAT):

rPHAT
yiyj

(k, τ) ◦−• 1

F

F/2

∑
f=−F/2

Φyiyj
(k, f )∣∣∣Φyiyj
(k, f )

∣∣∣
ej2π f /Fτ (2.20)

The TDoA estimate is computed as its maximum over possible TDoAs according to

(2.16).

2.1.3 Sensor network geometry

When using more than one sensor node for spatial processing, their relative geometry

is relevant. For the target scenarios, the two-dimensional projection to the floor is used.

We denote the absolute position of a node with index i as ri. The node is equipped

with multiple microphones arranged in a planar array. We define its orientation as oi as

the angle of the line from the center of the node to the first microphone to the abscissa.

Using these definitions, we can formalize the relation between the geometry of one or

more nodes and one source position. Figure 2.3 shows these quantities and illustrates

how the speaker position relates to the ASN geometry and the DoA measurements.

Triangulation

Using the known geometry of two nodes and simultaneous DoA measurements, the

speaker can be localized in absolute coordinates by triangulation – except when the

speaker and the two nodes form a line, in this case the direction but not the distance

can be derived.

Given the orientations oi,j and positions ri,j of two acoustic sensor nodes, and given the

DoAs θi,t and θj,t the speaker position is computed by solving

ŝn,(i,j) =ri + kn,iα (oi + θn,i) = rj + kn,jα
(
oj + θn,j

)
. (2.21)
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This is easily solved with some vector algebra. Given the definition of α it is already a

unit vector, its perpendicular vector can be defined as:

α⊥(θ) :=

(
− sin (θ)

cos (θ)

)
(2.22)

As the distance of sn to the ray starting in rj is zero, it follows that

α⊥
(
oj + θn,j

)T (
sn − rj

)
= 0. (2.23)

We can formulate a simple vector equality

sn − rj = (ri − rj) + kn,iα (oi + θn,i) . (2.24)

We can now substitute (2.24) in (2.23) and it follows that

α⊥
(
oj + θn,j

)T (
(ri − rj) + kn,iα (oi + θn,i)

)
= 0, (2.25)

which is solved for kn,i. For kn,j obviously the solution is the same but for swapping i

and j. The distances can be computed as scalar product of the connecting vector of the

array positions and the vector in the perpendicular DoA direction divided by the scalar

product of the perpendicular direction and the other DoA direction:

kn,i =
(ri − rj)α⊥

(
oj + θn,j

)T

α (oi + θn,i)α⊥
(
oj + θn,j

)T
and kn,j =

(rj − ri)α⊥ (oi + θn,i)
T

α
(
oj + θn,j

)
α⊥ (oi + θn,i)

T
(2.26)

When both distances kn,i and kn,j are positive, the rays starting at ri in direction oi + θn,i

and rj in direction oj + θn,j have an intersection at sn as stated in (2.21).
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Figure 2.4: Mammalian hearing – From sound waves to electrical impulses

2.2 human and machine hearing

The biologically inspired processing has been shown to improve the performance of

different methods in practical conditions. The approach of using neurological and psy-

chological insights in acoustic signal processing is also known as “machine hearing”

[Lyo10, Lyo17]. As the proposed localization methods are also based on insights in and

theories on human hearing, the fundamental principles will be described in this section.

The early stages of sensory processing are well researched by neurological experiments,

its basic functionality and corresponding computational models will be described. The

higher stages of neural processing are less clearly understood by neural studies. Here

psychological experiments allow understanding of the overall function. The influential

theory of auditory scene analysis (ASA) offers rich interpretations and will be outlined.

2.2.1 From sound waves to electrical impulses

The transformation from sound waves into electrical impulses in mammalian hearing is

illustrated in Figure 2.4. The sound waves cause movement of the eardrum, which is am-

plified mechanically by three assides and transmitted to the cochlea via the oval window.

Inside the cochlea, a traveling wave in an incompressible fluid is set into motion. Since

the volume of the fluid changes along the spiral, the amplitude of the wave is a function

of its frequency and place, realizing a frequency-to-place transformation. The basilar

membrane is placed along the spiral. Between the membrane and the bone, the organ of

Corti resides which contains outer and inner hair cells. The former change the flexibility

of the membrane, acting as an active filter. The latter generate electrical impulses when

sheared by the movement. The auditory nerve continuously transports these impulses

to the brain. This signal is figuratively referred to as ”spike trains” [Han89].

2.2.2 Cochlear models

A multitude of computational models exists for this process [WB06]. One of the first

models was proposed by Lyon in 1982 [Lyo82] and later refined to binaural process-

ing [Lyo83]. His models use a Gammatone filterbank to model the frequency selectivity

and frequency-to-place encoding of the cochlea. For encoding of the band amplitude,

halfway rectification and square-root compression is used. For phase encoding, zero

crossing detection in the band filtered signals is employed. Many later computational

auditory scene analysis (CASA) models are derived from this approach. Most use a
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Figure 2.5: Gammatone filterbank, filter amplitudes in dB for ERB spaced center frequen-
cies in the range of 0.3 to 3.6 kHz

Gammatone filterbank, often with the infinite impulse response (IIR) filter approxima-

tion derived by Slaney [Sla93]. Both halfway rectification and zero crossings are still

widely used. According to some researchers [Gro03], the human hearing actually em-

ploys signal maxima for the phase locking process.

In this thesis, a Gammatone filterbank is used for the event detection and localization.

It is computed from the STFT as introduced in [PHF10]: Rather than using IIR filters,

the filterbank is computed with the fast Fourier transform (FFT) overlap-add method

[Smi99]. The microphone signals yi are each transformed into the spectral domain with

the STFT. Input frames with 50% overlap are multiplied with a cisoid (sine-shaped)

window before the FFT is computed. For each band b, the resulting frame spectrum Yi

is multiplied with a specific frequency response Gb to yield a bandfiltered spectrum Zi,b.

Zi,b(k, f ) = Gb( f )Y(k, f ) (2.27)

The center frequencies fb are distributed equidistantly on the equivalent rectangular

bandwidth (ERB) scale [GM90]:

ERBS( f ) = 24.1log10

(
1 + 4.37 · 10−3 · f

)
(2.28)

The filters are defined using a Gammatone approximation introduced by Unoki et

al. [UA99], with ı denoting the imaginary unit and wb the Glasberg-Moore bandwidth

[GM90]:

Ĝb( f ) =

(
1 +

ı( f − fb)

wb

)−4

with wb = 24.7(4.37 fb + 1). (2.29)

The frequency responses of the filters are illustrated in Figure 2.5. After the filtering,

the signal for each band is transformed back into the temporal domain by the inverse

Fourier transform. The frames are added together with 50% overlap to yield the resulting

continuous time signal zi,b(t).

2.2.3 Early neural processing

The auditory nerve first reaches the cochlear nucleus (CN). The outer ear has a specific

shape that leads to cancellation of specific frequencies depending on the DoA of the

signal. This is evaluated in the CN, allowing for estimation of the sources’ elevation.

2.2 human and machine hearing 17
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From the CN, the signal reaches the superior olivary complex (SOC) in the auditory

midbrain, where the main binaural cues are computed. Due to the spatial distance of the

ears, the sound arrives with a direction dependent TDoA. In the medial superior olive

(MSO), this interaural time difference (ITD) is derived. According to the Jeffress-Colburn

model [Jef48] cross-correlation of the band-filtered signals is performed. Multiple more

advanced models have been proposed (see [Bla96] for an overview).

In Lyons binaural model [Lyo83] zero crossings are used for phase encoding of the sig-

nals. The zero-crossings are then used for computation of the ITD. Rather than comput-

ing the correlation of signals derived from two microphones, the ITD can be calculated

more efficiently as time offset between zero crossing positions [HOS95, PS06, KAK06].

Due to head shadowing effects, the signal also has a direction dependent level difference.

In the lateral superior olive (LSO), the interaural intensity difference (IID) is derived.

In the inferior colliculi (IC), the sounds are back-projected to three-dimensional space.

This is done using ITD and IID as well as the elevation estimates from the CN.

The next stage is the corpus geniculatum medium (CGM), where frequency, intensity

and binaural information are combined in a frequency and spatially dependent rep-

resentation. Temporal changes are analyzed within this representation in the middle

region [Han89, p. 521].

2.2.4 Echo suppression

Many physiological studies have shown the so called “precedence effect”, sometimes

also referred to as the “law of the first wave-front”, in mammalian hearing: In localiza-

tion, the first wave front of a signal is evaluated with higher weighting [Bla96]. This is

a mechanism for echo suppression, because the first wave-front reaching the ear is the

one that took the shortest, i.e., direct path. The reflections arrive later due to their longer

path through the room. The effect was also shown in neurological research, where it

is mostly referred to as “onset dominance” [DIH+09]. The precedence of onsets in the

neural processing is said to be found both in the monaural and binaural stages of the

neural pathway.

Monaural echo suppression may already be done in the CN [BvH07]. A basic way to

realize this is to compare the signal to an average shifted in time and suppress any

signal below that average to mimic neural saturation [PBW04, PHF10].
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2.2.5 Auditory scene analysis

The term of ASA was coined by Albert Bregman in the 1990s. Influence by Gestalt theory,

he was one of the first to point out the analogies of the process of building an abstract

representation from hearing with the interpretation of a visual scene [Bre90].

Using extensive psychological studies, the auditory perception is interpreted as a bottom-

up process in which various cues are extracted from the auditory input. Important

monaural cues are the timbre, i.e., the spectral distribution, and pitch, i.e., the funda-

mental frequency, of the sounds. Studies also show the importance of the direct-to-

reverberation ratio (DRR) and other indirect cues. The most important binaural cues

are the ITD and IID as they provide localization of sounds.

Processing stages

According to ASA, these cues are used to group together individual parts of the sounds

as belonging to the same source and forming an auditory object. The process of com-

bining related acoustic features is called “simultaneous grouping”. Strong cues for this

process are common onset, ITD and IID as well as amplitude and frequency modulation.

The next stage is the integration of these groups over time. In the “sequential integra-

tion”, consecutive groups are connected when they are close by at least one cue. Strong

cues for this process are pitch, rhythm and spatial proximity. In a larger time contexts,

there can be multiple cues suggesting contradicting associations. Here, the one with

highest proximity is chosen.

The bottom-up information acquired by the auditory cortex is not necessarily sufficient.

In higher brain regions, different learned models are used to interpret the scene. These

include a model of the room and its acoustic properties as well as speech and speaker

models. This stage is termed “model-based integration”. The “glimpsing model” sug-

gests that human speech perception in adverse conditions is based upon sparse clear

events with high signal-to-noise ratio [Coo06] and filled by top-down model-based pro-

cessing.

CASA

The computational implementation of ASA principles has become increasingly popular

in the last decade. CASA approaches often target the separation of concurrent speakers

by means of time-frequency masks, often in the most difficult single channel case [WB06].

However, several auxiliary tasks are addressed by CASA, such as speaker localization

and identification from the signals of an artificial human head [MPK13].
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2.3 maximum likelihood clustering

ML estimation via the expectation-maximization (EM) algorithm is used in a variety

of applications. It estimates parameters for statistical models in an iterative manner in

cases when an analytical solution is impossible or very hard to obtain. Some of the

most common case are the estimation of Gaussian mixture model (GMM) or hidden

Markov model (HMM) parameters [Bil98, Fin14]. The estimation of a mixture of Gaus-

sians (MoG) is also considered as probabilistic clustering, and can be seen as an exten-

sion of Lloyds algorithm [LBG80, Llo82] which is often used for its initialization. Since

the EM algorithm is employed in many of the proposed methods, the basic principle

and the MoG estimation will be introduced here along with the notation used within

this thesis.

2.3.1 Maximum likelihood estimation

The ML estimation is common practice for deriving parameters of statistical models. Its

general principle can be formalized as follows: The observation is given as a set Z of N

independent and identically distributed (i.i.d.) data points zn. These can be, e.g., feature

vectors or spatial likelihood values. The set can be described by a probability density of

zn with parameters Ω, denoted as P(zn|Ω), and the probability density function (p.d.f.)

is written as

fΩ (Z) = P (Z|Ω) =
N

∏
n=1

P (zn|Ω) =: L (Ω|Z) , (2.30)

the function L is referred to as the likelihood function. It expresses how well the model

corresponds to the data. The goal of the ML estimation is to find parameters Ω
∗ that

maximize L. In many cases, e.g., when working with exponential distributions, it is

easier to maximize the log-likelihood. This leads to the same parameters as log is a

strictly monotonically increasing function.

Ω
∗ =

Ω

argmaxL (Ω|Z) =
Ω

argmax logL (Ω|Z) =
Ω

argmax
N

∑
n=1

log P(zn|Ω) (2.31)

In many practical cases, there is either no closed form solution or it is hard to obtain.

2.3.2 The EM algorithm

The general EM algorithm is iteratively optimizing a statistical model in such cases

[DLR77]. It is applied to a model that contains some hidden or latent variables whose

parameters are unknown. The observation might not inform us about these or the for-

mulation of the model can be greatly simplified by introducing them. The data set Z

is considered incomplete in the sense that the observation contains only a fraction of

the complete information. The maximized expression then becomes the complete-data

log-likelihood with latent or hidden random variables υ:

logL (Ω|Z,υ) = log P (Z,υ|Ω) . (2.32)

The EM algorithm iteratively performs two steps in order to maximize this likelihood.

The first is the expectation or E-step that estimates the hidden variables based on the

20 background



current model parameters and the observed data. The second is the maximization or

M-step, that computes new model parameters using these hidden variable values.

In the E-step, the expected value of the complete-data log-likelihood log P (Z,υ|Ω) is

computed with respect to the hidden υ given the observed data Z and the current

parameter estimates Ω
(ℓ) :

Q
(
Ω, Ω

(ℓ)
)
= Eυ

{
log p (Z,υ|Ω)

∣∣Z, Ω
(ℓ)
}

(2.33)

As υ is a random variable with the p.d.f. f (υ|Z, Ω
(ℓ)), the expectation can be computed

as:

Eυ
{

log P (Z,υ|Ω)

∣∣∣∣Z, Ω
(ℓ)
}
=
∫

υ
log P (Z,υ|Ω) f

(
υ|Z, Ω

(ℓ)
)

dυ (2.34)

In the M-step, the model parameters Ω are changed in order to maximize the expected

value of the complete-data log-likelihood.

Ω
(ℓ+1) =

Ω

argmax Q
(

Ω, Ω
(ℓ)
)

(2.35)

Each iteration of the E- and M-step increases the likelihood.

L
(

Ω
(ℓ+1)|Z

)
≥ L

(
Ω

(ℓ)|Z
)

. (2.36)

Thus, the algorithm converges to a stationary point or local maximum of L [Wu83]. This

also holds true when the E- and M-steps are executed in an incremental fashion, i.e.,

updating per sample and not in batch over the full observed data, c.f. [NH93].

2.3.3 Application to mixture of Gaussians estimation

Given this framework, it is possible to derive the required equations for a MoG [Bil98].

The MoG consists of a fixed number of C Gaussians with index c = 1...C that are

combined linearly. The contribution of each Gaussian is expressed by its prior

P(Ωc) = ηc with
C

∑
c=1

ηc = 1. (2.37)

Assuming normal distributions without covariance, the parameters Ωc for the Gaussian

with index c are the mean µc and variance σc and the mixture weights ηc. The full set of

parameters searched for in this case is

Ω = {Ω1, . . . ΩC} with Ωc = {µc,σc, ηc} (2.38)

The model based probability for a observed sample zn is

P (zn|Ω) =
C

∑
c=1

ηcN (zn|µc,σc) . (2.39)

The observed or incomplete-data log-likelihood in this case becomes:

logL(Ω|Z) =
N

∑
n=1

log

(
C

∑
c=1

ηcN (zn|µc,σc)

)
(2.40)
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e-step We suppose unobserved hard assignment of data points to the mixture com-

ponents. The hidden data υ is defined as the selection of mixture components for each

observed data point zn. So υ = {υ1, . . . υN} where υn ∈ {1, . . . , C} assigns zn to the

mixture component with that index. In order to compute the distribution of the hidden

data, choose a fixed set of the parameters Ω
(ℓ). The mixture weights can be seen as pri-

ors ηc = P(c) for the selection of the mixture component. With this, Bayes’s rule can be

applied (2.41) followed by the law of total probability (2.42) to obtain

P
(

Ωc=υn |zn, Ω
(ℓ)
)
=

P
(

zn|Ωc, Ω
(ℓ)
)

P
(

zn|Ω(ℓ)
) (2.41)

=
P
(

zn|Ωc, Ω
(ℓ)
)

∑c′ P
(

Ωc|Ω(ℓ)
)

P
(

zn|Ωc, Ω
(ℓ)
) (2.42)

=
ηcN

(
zn|µ(ℓ)

c , σ
(ℓ)
c

)

∑c′ ηc′N
(

zn|µ(ℓ)
c′ , σ

(ℓ)
c′

) . (2.43)

Therefore, the E-Step is computing the log-likelihood of the current model as

logL
(

Ω
(ℓ)|Z

)
=

N

∑
n=1

log
C

∑
c=1

ηcN
(

zn|µ(ℓ)
c , σ

(ℓ)
c

)
. (2.44)

Thus it is sufficient to evaluate (2.41).

m-step Equation (2.41) allows to express the probability of a fixed instance υ of hid-

den data as

P
(
υ|Z, Ω

(ℓ)
)
=

N

∏
n=1

P
(

υn|zn, Ω
(ℓ)
)

. (2.45)

The complete-data log-likelihood (2.33) becomes a sum over all choices Υ of υ

Q
(
Ω, Ω

(ℓ)
)
= ∑

υ∈Υ

log (L(Ω|Z,υ)) P
(
υ|Z, Ω

(ℓ)
)

(2.46)

which can be expressed as (cf. [Bil98, p. 4] for the derivation)

Q
(
Ω, Ω

(ℓ)
)
=

N

∑
n=1

C

∑
c=1

P(Ωc|zn, Ω
(ℓ)) log (ηcP (zn|Ωc)) (2.47)

=
N

∑
n=1

C

∑
c=1

P
(

Ωc|zn, Ω
(ℓ)
)

log ηc +
N

∑
n=1

C

∑
c=1

P
(

Ωc|zn, Ω
(ℓ)
)

logN (zn|µc,σc) . (2.48)

As (2.48) is a sum of positive expressions, both sides can be maximized independently

in order to maximize the likelihood in the M-step. This takes some lengthy derivation
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using Lagrange multipliers, which can be found in, e.g., [Bil98, pp. 5-7]. By maximizing

the left side of the sum in (2.48), the new mixture weights are given:

η
(ℓ+1)
c =

1

N

N

∑
n=1

P
(

Ωc|zn, Ω
(ℓ)
)

. (2.49)

Then, (2.48) is used to find the new parameters according to (2.35). By maximizing the

right side of the sum in (2.48), the parameters of the individual Gaussians are computed.

Using these, the new means are given as

µ
(ℓ+1)
c =

N

∑
n=1

P
(

c|zn, Ω
(ℓ)
)

∑
N
n′=1 P

(
c|zn′ , Ω

(ℓ)
)

︸ ︷︷ ︸
ρc(zn)

zn. (2.50)

and the variance is re-estimated using the new means

σ
(ℓ+1)
c =

√√√√√√√√

N

∑
n=1

P
(

c|zn, Ω
(ℓ)
)

∑
N
n′=1 P

(
c|zn′ , Ω

(ℓ)
)

︸ ︷︷ ︸
ρc(zn)

(zn −µc)
2 . (2.51)

As both equations contain a term that expresses the contribution of each mixture to each

sample, contribution weights ρc(zn) can be precomputed.

termination Both the E- and M-step are ideally repeated until the distribution

parameters converge. In practice, the relative change of the likelihood can be computed

as

∆L(ℓ+1) =
logL

(
Ω

(ℓ+1)|Z
)
− logL

(
Ω

(ℓ)|Z
)

logL
(

Ω
(ℓ+1)|Z

) . (2.52)

The loop is terminated when the log-likelihood does no longer change more that a

threshold, ∆L(ℓ+1) < ∆Lmin, or a maximum number of iterations is reached, ℓ = ℓmax.
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2.4 speech enhancement

One of the most important applications that can benefit from the methods developed in

this thesis is the enhancement of speech signals. A multitude methods exist for speech

enhancement using multiple microphones. An in-depth description is beyond the scope

of this work. More details can be found in survey articles [VB88, GVMGO17] or books

dedicated on this topic [BMC05, BW01]. The relevant fundamental principles will be

introduced in this section, including their realizations in ASNs. First three basic ap-

proaches will be described. Then the different control mechanisms required for practical

application will be discussed.

2.4.1 Approaches

The speech enhancement methods employ a variety of optimization criteria in order

to derive different types of filters. From a constructive standpoint, it is possible to dis-

tinguish between three basic types: Data-independent beamforming, data-dependent

beamforming [VB88] and blind source separation (BSS) [MLS07], cf. Figure 2.7.

Data-independent beamforming

One basic, but yet robust, type are data-independent beamformers, namely delay-and-

sum or filter-and-sum beamformers. The principle of the former is to delay the signal

of each microphone with a fixed time delay in order to compensate the TDoAs in the

direction of the source [DM03, PT13]. The delay-and-sum method is very robust as

the signals are only shifted in time. The gain in signal-to-noise ratio (SNR) is achieved

by the fact that the desired signal in the source direction is unchanged while other

directions are mitigated by uncorrelated combination. The filter-and-sum beamformer

is an extension designed for multipath environments, i.e., reverberant enclosures. The

time delays are replaced by a more general matched filter [JF95].

It was shown that a generalized delay-and-sum beamformer can be applied in ASNs

using asynchronous communication. A distributed solution converges to the centralized

one over a number of communication iterations [ZH14].

Data-dependent beamforming

Better enhancement can be gained by the so-called data-dependent beamformers. One

such spatial filter is the minimum variance distortionless response (MVDR) beamformer

that steers a “beam” towards the desired source while minimizing sounds from all other

directions [Ows85, VB95, HBC+10]. This can be split in two parallel processing paths

in the well-established generalized sidelobe canceler (GSC) implementation [GJ82]: A

fixed beamformer (FBF) focusing on the source and a blocking matrix (BM) that blocks

it and provides noise reference signals to the subsequent adaptive noise canceler (ANC),

cf. Figure 2.7 middle.

In an ASN realization based on message passing, the MVDR principle was applied

[HZH+12]. By setting a trade-off parameter, it is possible to increase convergence speed

at the cost of reduced performance. For the fastest convergence, only the delay-and-sum

solution as in [ZH14] is reached.

The linearly constrained minimum variance (LCMV) is an extension of the MVDR as

the constraint of a constant gain for the desired source is combined with further linear

constraints that maximize or minimize the response for other directions [EC83, VB88].

In an ASN realization it was shown that transmission of a compressed signal from each
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Figure 2.7: Types of multi-microphone speech enhancement: (a) data-independent beam-
forming using time delays, (b) data-dependent adaptive optimization in a
GSC structure and (c) source separation based on time-frequency masks.

node is sufficient to achieve the same performance as the centralized solution where all

signals are available [BM12].

For both MVDR and LCMV, the fixed response for the desired source is often a delay-

only steering vector, thus only using the direct path. In reverberant enclosures, the room

impulse response (RIR) consists of many reflections. Hence, methods using an estimate

of the entire RIR provide better speech quality [GBW01, MGGC09].

Spatially based filters can not fully mitigate diffuse noise as it will be part of the signal

from the look direction. Speech can be further enhanced by a time-varying spectral filter.

A post filter can be added to the beamformer that suppresses noise while keeping the

time-varying speech signal unchanged. Either adding a single-channel Wiener post-filter

to an MVDR beamformer or a multichannel Wiener filter can achieve an optimal solu-

tion with respect to the minimum mean square error (MMSE) criterion. More advanced

approaches incorporate perceptual measures in order to improve the intelligibility, e.g.

the speech distortion weighted multi channel Wiener filter [DSWM07].

Blind source separation

Another family of beamformers is based on BSS concepts that aim at imposing indepen-

dence between the sources [BAK04, MLS07]. The contribution of individual sources in

the received signal is estimated blindly without information on the source signal. Aris-

ing problems are the unknown gain and association of time-frequency components for

each source, referred to as scaling and permutation ambiguity [PLKP08]. High rever-

beration limits the performance of these approaches, as the reflections will be found in

many time-frequency bins not related to the direct path of a source [AMM+03].

One type of solution is the use of independent component analysis (ICA) that uses the

assumption that the signals are statistically independent. This is often implemented by

using higher than second order statistics [NK11].

Another type only employs the weaker sparsity assumption. It states that it is highly

likely that each time-frequency bin of the STFT of the signals is dominated by the signal

of at most one speaker. Thus it is estimated which time-frequency bins belong to which

source and the signal is decomposed accordingly. This can be obtained by subspace de-

composition with additional assumptions like the non-Gaussianity of the sources [PS03].

2.4.2 Control mechanisms

Applying any of the methods described blindly without control information is of limited

practical use. The delay-and-sum method requires the microphone array to point at the

desired source if no estimate of the direction is provided. The data-dependent methods
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require information about the activity of the desired source in order to estimate the

filters. The BSS methods benefit from additional information that allows to distinguish

between sources.

Speech activity

One fundamental control information is the activity of speakers in the time domain.

This can be used in the data-dependent approach. The different paths of the GSC can be

adapted in a straightforward manner [GBW01]. When the desired source is active, the

FBF focusing on it can be estimated. The BM is given by the orthogonal subspace. When

the source is inactive, the ANC is updated from the signal. Leakage of speech in the

blocking signal produces speech distortion. This can be mitigated by adding speech sig-

nal information to the ANC estimator [DSWM07], which also requires a reliable speech

detection.

Classification-based approaches have shown to be more robust than simpler measures

for the detection of speech in noise [BKA10]. For this, acoustic event detection meth-

ods can be used. Despite recent progress, overlapping events, especially speech with

noise, remain a challenge for them [SGB+15]. An event detection based approach will

be presented in chapter 3 (pp. 37–38).

Speaker position

The direction of the desired source can be utilized in delay-and-sum beamfomers by

setting the time delays accordingly [PT13]. In both MVDR and LCMV beamformers,

the DoA can be used as a constraint for the filter estimation [TTH14]. In an ASN com-

prised of nodes with small microphone arrays, Euclidean localization is possible based

on triangulation of DoAs, cf. chapter 4. This can be used to derive localized filters in an

ASN [TH13]. Directional information can also be incorporated into BSS beamformers in

order to resolve the permutation ambiguity [PA02, SMAM04, NOS08, RMGB+13].

Time-frequency masks

The time-frequency mask for each speaker can be used to separate speakers. After esti-

mation of this mask, it is applied to the signal in the STFT domain. This is a common

concept in both BSS [PLKP08] and CASA [WB06].

CASA approaches often target the difficult problem of separating speakers in a single-

channel signal by means of ASA cues and top-down models [JW09, HW10]. Binaural

realizations make use of spatial cues [RWB03].

Multi-microphone BSS methods often employ straightforward ML clustering based on

location cues, e.g., the phase difference between microphone pairs [ANS10]. Rather

than hard assignment of bins to speakers, soft masks using fractional values achieve

better results in practice. After localizing speakers probabilistically, such a soft mask

can be inferred from the probability of each time-frequency bin belonging to a given

source [MM11]. A simple but effective ASN realization chooses the closest node after

localization and employs a soft mask derived in this way to its signals [DCG15].

Time-frequency masking can induce some distortion to the signals. Madhu et al. [MM11]

showed that a GSC realization of an LCMV beamformer driven by the estimated mask

achieves good enhancement with less signal degradation than using the mask directly.

Another interesting hybrid approach combines ML mask estimation with a multichannel

Wiener filter in a joint algorithm in order to minimize distortion [AN11].
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One person’s data is another person’s noise. K.C. Cole

3 A C O U S T I C E V E N T D E T E C T I O N

The question what is happening in a given environment by acoustic means is addressed

by two similar tasks, acoustic scene classification and acoustic event detection. Acoustic

scene classification is answering the question what the overall scene is, i.e., if the record-

ing takes place in an office, a bus, or on the street. Acoustic event detection answers

the question which events are happening in particular and at what time, i.e., a person

speaking, a printer working, a phone ringing, or a siren howling. The latter task will be

addressed in this work. The objective is to develop an online method that is robust and

implemented in real-time while providing state-of-the-art results. It should be able to

generalize well from limited training data.

Within this thesis, it is important to have a method to distinguish speech from other

sounds. This is required for the other methods developed in this thesis in the following

ways: For speaker tracking, non-speech sounds should be excluded in order to allow a

correct estimation of the speakers activity and position. Even more, the method devel-

oped here can help distinguish different speakers. For geometry calibration, it is vital to

exclude sounds not transmitted solely by air, such as chairs moving or footsteps, since

the distance measurements derived from sound are assuming the propagation to be

with the speed of sound in air. For speech enhancement, reliable control information on

whether the signal contains speech or certain kinds of noise is required.

The classification is difficult because of the diversity of the acoustic events. Human

speech is comprised of sounds of different phone classes, i.e. vowels, plosives and frica-

tives that have individual spectrum and time characteristics. Other sound types are also

complex because they are comprised of a variety of individual sounds, e.g. chair move-

ment can produce knocking and rubbing sounds, handling paper can include rustling

and knocking on the table and so on. Sounds like footsteps are individually different

depending on the person and kind of shoes. It is desirable for a sound classification

method to be able to handle the diverse composition and generalize in a way to cover

different, possibly unheard realizations of the sound types.

In this chapter, first the state-of-the-art will be introduced. The different types of features

and classifiers will be explained and the existing methods will be introduced according

to these two aspects. Thereafter, the proposed method for acoustic event classification

and detection be explained. Finally, the method providing speech and noise type detec-

tion as control information for a beamformer is described.

3.1 state-of-the-art

Over the last decades, a large number of different approaches for acoustic event detec-

tion have been proposed [TMZ+07, MHEV10, SGB+15]. They are used in a large variety
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of applications, from security and surveillance [SSKP16, MK16, CFP+13, YS01] to urban

planning and wildlife monitoring [SKG13, KSJM09, ZSB13].

Two main aspects that these differ in are the features used and the classification scheme.

In the following, first the different features and then the range of classification ap-

proaches will be introduced on examples of state-of-the-art methods.

3.1.1 Features

For sound and especially speech processing, the mel frequency cepstral coefficients

(MFCCs) are one of the most widely used features. Along with MFCCs, a variety of

technical features such as zero crossing rate, and linear prediction coefficients (LPCs)

are used. Some of researchers tend to include features more oriented towards human

perception, such as the “perceptual” feature set introduced by Temko et al. [TN06].

Since considerable progress has been made by applying insights from human perception

in the field of computer or machine vision, similar approaches have been advocated for

acoustics [Lyo10]. Two recent approaches show such an application. One uses auditory

images computed from the output of an auditory filterbank over time. Another uses an

MFCC like feature based on Gammatone filterbanks [SSW07].

Mel frequency cepstral coefficients

The MFCCs are the most common and successful features in speech recognition. To

compute MFCCs, the input signal is filtered by a mel frequency filterbank, from the

logarithm of its magnitude the discrete cosine transform (DCT) is computed. Typically

the second to 13th coefficient is used [HAH01]. The first and second temporal deriva-

tive is often included to capture transient features, resulting in a de-facto standard 39

dimensional feature vector in speech recognition systems.

Prediction coefficients

Although originally designed for speaker independent speech recognition, the MFCCs

are also commonly used in speaker identification [KL10, TP11]. The LPCs or perceptual

linear prediction (PLP) coefficients are theoretically more speaker dependent, as they ap-

proximate the vocal tract. But spectral features as the MFCCs have become very popular

in speaker identification in the last two decades. Some approaches combine both PLP

and MFCC [TCHJH12]. One recent strategy is to use not the Gaussian mixture model

(GMM) or hidden Markov model (HMM) classification of the MFCCs, but rather build

a universal speaker model referred to as universal background model (UBM), and look

at the differences after re-training the model with the data in question. The differences

in model parameters are concatenated into a large feature vector that is then used for

classification of the speaker [KL10, TP11].

Perceptual features

Nadeu et al. introduced filter-band energies as an alternative for speech recognition.

The design allowed for decorrelation and equalization of the variance [NHG95]. Temko

et al. [TN06] combined the frequency band features with zero-crossing rate, short time

energy, four sub-band energies, spectral flux, calculated for each of the defined sub-

bands, spectral centroid, spectral bandwidth and pitch. The so called ’perceptual’ feature

set has been used in several approaches [TN09, PMMM14].
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Gammatone features

The long history of psychoacoustic research has been complemented by computational

modeling of the human hearing process [WB06] where ERB-spaced Gammatone filter-

banks are used (see section 2.2.2 on page 17). From that the Gammatone frequency

cepstral coefficients (GFCCs) were derived [SSW07]. First, a time-frequency representa-

tion is computed by a filterbank composed of 64/128 Gammatone filters between 50

and 4,000/8,000 Hz, respectively. The cubic root of the magnitude of the filter outputs is

used as Gammatone feature over 10 ms frames. It should be noted that the term “cep-

stral” is used here even though no log operation is performed, just cubic compression.

The GFCCs were shown to be more robust against noise than MFCCs in the task of

speaker identification.

By combining GFCCs with the estimation of a time-frequency mask, Zhao et al. [ZSW12]

constructed a speaker identification system with improved noise robustness. In parallel

to the Gammatone features, a computational auditory scene analysis (CASA) based bi-

nary time-frequency mask of speech presence is computed. Both marginalization and

reconstruction are applied in parallel to cope with noisy and missing time-frequency

bins. The reconstruction module uses a universal speech model to estimate the missing

Gammatone features. Thereafter, the DCT is applied in order to compute 22 GFCCs. A

GMM is used to identify the speaker based on these features. The bounded marginal-

ization is computed in the spectral domain on the Gammatone features. The resulting

spectral features are also classified by a GMM. The reconstruction only works better

than marginalization for lower noise conditions of 12 dB signal-to-noise ratio (SNR) or

more. However, the combination of the two classifiers is better than reconstruction alone,

even at -6 dB SNR.

Recently, the combination of GFCCs and MFCCs for sound recognition was investigated.

A scream detection system proposed by Lei et al. [LM14] uses both MFCC and GFCC

features. First, high energy segments are extracted from the input signal. Then, 12 MFCC

and GFCC coefficients are computed along with their first and second derivatives. The

resulting 72 dimensional feature vector is then reduced to 36 dimension by regularized

principal component analysis (PCA). The mean and standard deviation over several time

slices of equal length are computed. These values are then classified as scream or non-

scream by a support vector machine (SVM). The evaluation shows a decrease in error

for the combination of MFCC and GFCC features, although the GFCCs perform worse

than the MFCCs, the combination outperforms each feature used individually.

Auditory and spectral images

When the output of a cochlear filterbank is captured over a number of consecutive

time frames, and the energy of each band at each frame is color coded, the result is a

cochleogram similar to a spectrogram. As the resulting patterns exhibit periodic time

variations with pitch, they are sometimes stabilized by setting a trigger point and cen-

tering the sliding window on that. These so called stabilized auditory images (SAI)

[PRH+92] can be used with image processing techniques.

Rehn et al. used such images for text-based retrival of sounds [RLB+09]. A large sound

database composed from over eight thousand sound files was used. About half the files

were from a commercial sound effects database, the others were collected from various

websites. For training and evaluation, the sound files were tagged with keywords. The

user was entering a keyword and presented with an ordered list of sound files, the

retrival set.
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Figure 3.1: Stabilized auditory image features: Computation pipeline (left) and areas
used for vector quantization (right). Halfway rectified band signals in multi-
ple Gammatone filtered bands form a cochleogram over time. The image is
stabilized by setting a trigger point based on the envelope. The cochleogram
is used as two dimensional image, in which different areas are selected. Each
area is quantized and the concatenated codebook entries provide the final fea-
ture vector used in classification or retrieval. Images from [LPC11], © 2011

IEEE.

Two methods for computation of the retrival set were used. First, standard MFCC fea-

tures along with the first and second derivative were computed. These were clustered

using a large unsupervised codebook with eight thousand centroids. Second, a SAI

was computed. The image was encoded by a sparse coding technique and the codes

were summed over time. Both features were compared in retrival performance using

the PAMIR [GB08] retrival system. In a three fold cross-validation, the auditory features

outperformed the MFCCs with 70% vs. 60% precision for the top 1-5 ranked sounds, i.e.,

the top elements of the retrival set.

The system was used for acoustic event classification by McLoughlin et al. [MZX+15].

The task was to classify events with and without added noise as described in [DTC13].

Sound samples of 50 different classes were taken from a sound scene database. Train-

ing was done with the clean signals only. The test was done on the clean signals and

mixed with noises at 0, 10, and 20 dB SNR. As the use of vector quantization dimin-

ished the performance, this step of the PAMIR system was omitted. The sounds were

classified using a SVM with a linear kernel. A total of ten 35 ms frames was used, which

improved the results compared to using only a single frame. Another small improve-

ment in performance in noise conditions was achieved by replacing the classifier with

a deep neural network (DNN). Compared to using MFCC features with the SVM, the

SAI shows slightly better performance, especially in low SNR. Similarly, the SAI with

temporal context and the DNN slightly outperform an MFCC-HMM baseline system.

The specially constructed spectral image features (SIF) were introduced by Dennis et al.

[DTL11]. A grayscale spectrogram image is mapped into several monochrome images

for different dynamic ranges. These are partitioned into small blocks, whose central

moments are computed and concatenated into a feature vector. On the task described

above [DTC13], these features used with a DNN outperform both the MFCC-HMM and

SAI-DNN by far in noisy conditions. With the additional use of a denoising algorithm

and energy weighting, the DNN with SIF achieves 85% to 95% accuracy over different

noise levels.
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3.1.2 Classifiers

The classifiers used for acoustic event detection span a range of pattern recognition

methods. One of the first are GMMs and HMM approaches that were originally used

for speaker and speech recognition. These are still common, but today general purpose

classifiers such as SVMs and random forests are also applied successfully. In the last

years, using two-stage approaches and bag-of-features (BoF) methods have been shown

to be advantageous over single-stage classification. Recently, DNNs have been applied.

These can also be considered multi-stage systems that perform automatic feature com-

putation and classification.

Gaussian mixture models

A common approach to model different sounds is to use a set of GMMs that are indi-

vidually trained for each class. The GMMs scores are summed over all frames and the

class with the highest likelihood is chosen. Since the summation discards any temporal

information, the method is sometimes termed “Bag-of-Frames” [ADP07, GSB+13]. For

speaker identification, this approach has been used with MFCCs features successfully

for decades [Rey95]. One common extension is the use of differences to an universal

background model (UBM) [TP11]. The task of speaker diarization is determining “who

spoke when” with no prior speaker models. In many diarization applications, a clus-

tering algorithm determines the different speakers using individual GMMs or their dif-

ferences to an UBM [MBE+12]. Given its continued success in speaker classification, it

is not surprising that the combination of MFCC features with GMMs is also used in

acoustic event [ADP07, VBK+13] and scene classification [BGSP15].

Hidden Markov models

Hidden Markov models (HMMs) are the most widely used classifier in speech and

handwriting recognition [Fin14]. They are also applied for speaker identification and di-

arization [MBE+12] and acoustic event detection [SMS+13]. Their main advantage is the

inherent modeling of dynamic temporal alignment. When Gaussian mixtures are used

to model the emissions, the HMM is a generalization of the GMM to multiple temporal

states with different models of the distribution of the features over time. There are sev-

eral architectures employed for acoustic event detection. The most basic architecture is

to use a fixed number of states for each event in a sub-model, and then to connect them

as parallel alternatives. The detected events are then determined by the Viterbi path go-

ing through the states of the corresponding sub-model. This is the same architecture as

a typical HMM for word recognition. One recent application of this approach was used

by Diment et al. [DHV13] in the 2013 D-CASE challenge. They constructed a HMM us-

ing sub-models with three states per class and an additional one state submodel for the

background class. The sub models were using a mixture of eight Gaussians to model

the MFCC features. In order to detect overlapping events, multiple passes of the Viterbi

algorithm are computed. After each pass, the used states are forbidden to enter again,

so the next pass is forced to estimate a different event.

Deep neural networks

In recent years, DNNs have been able to outperform the state-of-the-art in pattern recog-

nition tasks [LBH15]. One of the key applications that showed advantages of the nonlin-

ear manifold learning ability of DNNs was the use for output modeling in speech recog-

nition [MDH11, HDY+12]. Gaussian-Bernoulli restricted Bolzmann machines (RBMs)
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are pre-trained as generative models for spectrograms and then later re-trained together

with the HMM. It was shown that an increase of performance is achieved by replacing

both the MFCC features and the GMM modeling with a neural network.

So it is not surprising that DNNs are also applied for acoustic event recognition. By

applying a moving window as input, a DNN classifier can be used for online recogni-

tion. As typically one-of-k coding is used in the output layer, concurrent events may be

trained and recognized as well. One of the remaining disadvantages of the DNN ap-

proaches is the considerable training time of days or weeks, even when implemented on

graphics processing units (GPUs) that provide large parallel processing power. Another

disadvantage is the need for a large set of training material. When the amount of data

is limited, as is quite reasonable in real life scenarios, the DNN approaches may be out-

performed by the much simpler GMM as this is able to generalize better from limited

data [KSWP16, SAG16].

One approach is to use a deep belief like architecture of stacked RBMs to learn a rep-

resentation from feature data. The different RBM layers can be trained individually

in order to avoid vanishing gradients in back-propagation. The input layer is often a

Gaussian-Bernoulli RBM as in speech recognition applications. Subsequent layers can be

Bernoulli-Bernoulli. The output layer can be a one-of-k coding layer, encoding each pos-

sible event class with a single output neuron. This architecture was used by McLoughlin

et al. [MZX+15] on the task already described in the stabilized auditory images (SAI)

section 3.1.1. When using MFCC features, the DNN outperforms the SVM but not the

HMM for event detection in noise. It is likely that the abstraction done in the feature

computation is too strong for the Gaussian-Bernoulli RBM in the DNN configuration to

learn a robust representation. When using the SAI features, the DNN performs slightly

better than the HMM. The spectral image features (SIF) are more suited as they allow

the DNN to learn a feature representation from the preprocessed spectrogram, which

results in notably better performance in noisy conditions.

Rather than using stacked RBMs, it is also possible to use a DNN composed of several

fully connected layers. The rectified linear unit (ReLU) activation function reduces the

vanishing gradient problem and benefits the training speed. Typically the input and hid-

den layers are used with dropout, meaning that randomly selected neurons are omitted

in the training stage [SHK+14]. The last fully connected layer applies one-of-k coding

and is followed by a softmax layer for classification. Hertel et al. [HPM16] used such

an architecture for acoustic event classification. In order to allow the DNN to learn a

feature representation, the raw audio data or the spectrum was used as input to the

network. Interestingly enough, the DNN was able to correctly classify most events even

from time domain data. The spectrum data performed better. Kong et al. [KSWP16] used

a similar structure with mel band energies as input feature. Rather than using a softmax

layer, they used a sigmoid function in the one-of-k coding. By setting a threshold for the

minimum output activation, this network is able to detect concurrent events.

A common architecture in image processing are the convolutional neural networks

(CNNs). Here, a small filter is applied to an input layer by computing the weighted

sum of filter coefficients and adjacent input values. As the filter is learned but fixed

for the whole input, this performs a two dimensional convolution. After such a convo-

lutional layer, a subsampling is performed by a max-pooling layer that computes the

maximum value of a small input region. By stacking pairs of convolutional and pooling

layers, the size of the layers is subsequently reduced. After this, several fully connected

layers with dropout are used. The final fully connected layer again implements one-of-k
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coding followed by a softmax decision. This type of architecture was also used by Hertel

et al. [HPM16] for acoustic event classification. In comparison to the DNN architecture

described before, better results were achieved. The successive reduction in layer size

benefits the abstraction and provides a level of shift invariance. Using the spectrum as

input, the performance was state-of-the-art.

Bag of features

The bag-of-features (BoF) approach originated in text retrieval [BYRN99]. Here, his-

tograms of word occurrence are used to retrieve text documents relevant to a tex-

tual query. Since the histograms are discarding any information on word order, the

approach was named “bag of words”. The idea was transferred to general retrieval

and classification tasks, first in the field of computer vision [SZ03]. In this approach,

first the feature values are clustered using vector quantization. Typically, Lloyds’ al-

gorithm [LBG80, Llo82] is used, which minimizes the quantization error by iterative

re-estimation of the codebook entries as best representatives of the training data. The

codebook entries are referred to as “vocabulary”. Second, a histogram is computed over

the number of input frames assigned the individual codebook entries. Third, these his-

tograms are then used for classification by, e.g., a multiclass SVM. The augmentation

of the second step, the quantization, has become an active field of investigation. More

information is encoded by using soft quantization and supervised training [CLVZ11].

One of the first applications of BoF to acoustic event classification was the approach

of Pancoast et al. [PA12]. In their implementation, a large number of MFCCs and their

deltas are used along with an overall energy estimate of the time window. These are then

classified by a multiclass SVM. They used a histogram intersection kernel, which was

shown to outperform a pure linear classification. The histogram intersection kernel com-

putes the vectors scalar product of two vectors a, b by the component-wise minimum:

kHI(a, b) =
L

∑
l=1

min{al , bl} . (3.1)

A related idea was implemented by Phan et al. [PM14]. So called “superframes” are

computed as mean and deviation of each feature over all frames in an 0.1 s time window.

This is used to train a random forest classifier to recognize the event corresponding

to each superframe. For pre-segmented events, the histogram of the classifications is

computed and used in turn to train an SVM. The SVM performed best when using a

χ2 or histogram intersection kernel. The histogram approach was later superseded by

an integrated random regression forest framework that also uses the forest to detect the

event on- and offsets [PMMM14].
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Figure 3.2: Bag of superfeatures acoustic event detection method. Both MFCC and GFCC
features are calculated on a single channel input signal. In training, code-
books for each class are computed using maximum likelihood clustering.
These are then concatenated into a super-codebook. When classifying an in-
put signal, this codebook is used to compute probabilities for each Gaussian
density. These probabilities are accumulated over a time window to form a
histogram. The histogram is then classified using a Bayesian maximum like-
lihood classifier.

3.2 proposed event detection method

A refined method was devised that applies the BoF approach based on soft quantization

with GMMs [PGF14]. One of the key contributions is class-wise training of codebook

entries. Figure 3.2 shows the processing pipeline. First features are computed over a

sliding window on the input. These features are then softly quantized by a GMM and

classified by a maximum likelihood classifier. Rather than using a prior classification step

to eliminate silence and background noise, as done in several systems (cf. [TMZ+07]),

the rejection class Ω0 is trained with recordings where no event occurred.

3.2.1 Features

A single microphone or beamformed signal is processed in short time windows of 0.6 s

every 0.05 s. Within this window, short time Fourier transform (STFT) frames of K =

1024 samples are computed with a hop size of 512. For each frame k in this window, a

feature vector zk is calculated. The features for all time frames in the nth time window

make up the matrix Zn.

Each vector zk contains three types of features. First, the MFCCs coefficients are com-

puted using the common mel filterbank of 40 filters. Second, GFCCs are computed by

replacing the mel filterbank by equivalent rectangular bandwidth (ERB)-spaced linear

phase Gammatone filters according to equation (2.29), as described in Section 2.2.2 on

page 17, before computing the DCT on the log of the magnitudes of the filterbank out-

put. Third, the perceptual loudness is computed on the input frame by applying an

A-weighting filter1 and subsequently computing the energy of the frame. Figure 3.3

illustrates the feature calculation process.

1defined in the international standard IEC 61672:2003
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Figure 3.3: Computation of the features for acoustic event detection. The microphone
signal yi is windowed and transformed in the spectral domain with a STFT.
From the magnitude spectrum, three types of features are computed. The
overall perceptual loudness (top), MFCCs (middle) and GFCCs by applica-
tion of a filterbank before computing the DCT of the log energies.

3.2.2 Bag of super features

A BoF approach is used for building a codebook of “acoustic words” from the training

set. Unlike the common approach to estimate the codebook unsupervised, i.e., discard-

ing class labels, the training is done in a supervised manner. Codebooks are estimated

separately for all classes Ωc and then concatenated into a large super-codebook. The

expectation-maximization (EM) algorithm is applied to all feature vectors zk for each

class Ωc in order to estimate I means and deviations µi,c, σi,c, c.f. Section 2.3 on pages 20–

23. The mixture weights ηc are not used, as an assignment is also estimated in training

the maximum likelihood (ML) classifier. All means and deviations are concatenated into

the super-codebook

vl=i+cI = (µi,c,σi,c) (3.2)

over all classes, therefore containing L = I ·C means and deviations. A soft quantization

of a feature vector zk is computed as the soft assignment to the individual codebook

entries

qk,l(zk, vl) =
N (zk|µl ,σl)

∑l′ N (zk|µl′ ,σl′)
. (3.3)

Then, a pseudo-histogram b of pseudo-frequencies can be computed over the features

Zk computed for all K frames of the input window by

bl(Zn, vl) =
1

K ∑
k

qk,l(zk, vl) . (3.4)

This method was introduced as “bag of super features” [PGF14] in analogy to the super-

vector construct used in speaker identification (cf. [TCHJH12]).
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Figure 3.4: Features, GMM probabilities and ML probability (top to bottom) for several
different event classes (left to right). In the top row, the color coded feature
values of the MFCCs, GFCCs and the Loudness feature are shown for 30

frames. The middle row shows the GMM scores over all training classes (c,
abscissa) and 30 Gaussian densities for each (i, ordinate). In the bottom row,
the log scores of the Bayesian classifier for all classes are shown.

3.2.3 Classification

The probability of an acoustic word for a given class P(vl |Ωc) is estimated using a set

of training features Z′n ∈ Ωc for each class c. In order to handle zero-valued entries,

Lidstone smoothing is used with a factor α = 0.5:

P(vl |Ωc) =
α + ∑Z′n∈Ωc

bl(Z
′
n, vl)

αL + ∑
L
m=1 ∑Z′n∈Ωc

bm(Z′n, vm)
(3.5)

Since all classes are assumed to be equally likely and have the same prior, a maximum

likelihood classifier is used for classification. The posterior is estimated using the rela-

tive pseudo-frequency bl(Zn, vl) of all acoustic words vl . By computing the product of

the trained P(vl |Ωc) likelihoods taken to the power of the pseudo-frequency bl(Zn, vl)

for the feature vectors Zn in the input window, the overall likelihood of the class is

computed following a multinominal Bayesian distribution:

P(Zn|Ωc) =
L

∏
l=1

P(vl |Ωc)
bl(Zn,vl) . (3.6)

In Figure 3.4, the different stages output is shown for example input signals on seven

exemplary event classes.
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3.3 proposed speech detection method

Noise is present in many everyday situations where a smart audio device is used. Speech

enhancement techniques can mitigate this noise using multiple microphones (see sec-

tion 2.4 on pages 24–26). A novel method for blind speech enhancement is proposed

that employs a classification based control mechanism to a beamformer.

The beamformer used here is exploiting the non-stationarity of speech in the filter esti-

mation [GBW01]. It can provide good speech enhancement in the presence of stationary

noise. It makes use of the full acoustic transfer functions (ATFs), not only the direct path,

by estimating room impulse responses (RIRs) with respect to the first microphone for

the filters. It is not suited to mitigate highly non-stationary noise. For this, more complex

techniques have to be used [TCG11].

The classification is based on the BoF system described in the previous section. It pro-

vides control information by identifying speech and different noise types. Situations

where the noise is too non-stationary for the chosen filter estimation are detected auto-

matically. A dedicated training strategy and integration of the classification results was

developed to guide the beamformers filter estimation. Figure 3.5 shows the structure of

the novel blind speech enhancement system. The BoF classifier is used to classify time

segments based on the single channel signal y1 from the first microphone. This is used

to estimate the components of an minimum variance distortionless response (MVDR)

beamformer (see section 2.4 on pages 24–26) implemented in a generalized sidelobe

canceler (GSC) structure [GBW01]. From speech segments, the relative transfer function

(RTF) h is estimated as ratios of the ATFs hi(t, f ) = ai(t, f )/a1(t, f ), (cp. section 2.1.1

on pages 10–11). From this estimate, the parameters of the FBF and BM blocks are

computed. Stationary noise segments are used to adapt the ANC coefficients g. When

non-stationary noise is detected, neither are updated [PG16].
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3.3.1 Features

The MFCC and GFCC features are used as before. No loudness is used as this is deemed

counterproductive given the unknown level of the interfering signal. The first temporal

derivatives of the features are computed in addition in order to better capture the tem-

poral characteristics hinting at the stationarity.

3.3.2 Training

The basic training approach of using separate isolated recordings as described before

did not yield sufficient detection of speech in complex noise conditions. A dedicated

training strategy was devised in order to provide the required quality in detection.

To provide a structured data basis, different types of noises are recorded. It is dis-

tinguished between types of noise based on their nonstationarity. Good results were

achieved by using four different levels: The first class Ω1 are very stationary noises such

as white noise or fan sounds, the second class Ω2 are mechanical noises, the third Ω3

is speech-like babble noise. The fourth and final class Ω4 is comprised of nonstationary

noise like keyboard typing, for which the estimation procedure [GBW01] fails. Each of

the four noise classes is trained using individual examples. Additionally, for each of

them a mixture class Ω′1 . . . Ω′4 is trained by mixing noise types of the same level of sta-

tionarity or lower. Ω1 is trained using mixtures of different examples for that class. Ω′2
is trained by mixing with different noise types from the categories Ω1 and Ω2, and so

on.

In order to estimate a good representation for speech, the speech samples are mixed with

samples of each of the different noise types at a high SNR of 18 dB to train the speech

class Ω0. Using lower SNRs resulted in more false alarms where noise is detected as

speech.

3.3.3 Speech detection

The classifier is applied to a single channel input signal. Time segments classified as

speech are used to estimate the FBF and BM, noise segments are used to update the

ANC. In order to find the best way of applying the control, the effect of different types

of classification errors have to be taken into account. The main error type to be expected

is the underestimation of speech existence, especially in the transitions between speech

and noise and at low SNRs.

The updating of the ANC in speech would lead to a serious deterioration of the perfor-

mance, as speech would be distorted from the ANC canceling part of it. The updating

of the FBF and BM is much more tolerant, as the estimation is done off-line using all

segments classified as speech. Some errors in the form of a few noise time segments

classified as speech will hardly change the estimation result.

In order to provide the best possible integration, a guard boundary of dS = 0.5 s around

the time segments classified as speech is introduced. The ANC is only updated in noise

segments that are dS before or after the speech segments as shown in Figure 3.6.

38 acoustic event detection



estimate h

t

update gupdate g update g

speech speechdS dS dS dS
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classified as noise farther away than a guard margin dS from speech are
used to continuously update the ANC coefficients g. Illustration first used
in [PG16], © 2016 IEEE.

3.4 summary

For sound classification, a variety of features and classifiers are used. Table 3.1 gives

an overview of the methods described in this chapter. The classical approach of using

MFCCs with competing GMM models is still used. The implementation is well estab-

lished and comparatively simple. The approach shows good performance and gener-

alization ability. For example, the approach by Vuegen et al. [VBK+13] achieved good

results in the 2013 D-CASE challenge with a two stage foreground-background GMM

method based on MFCC features.

Features

Besides MFCCs, auditory features have been shown recently to improve the perfor-

mance. The GFCCs showed better discrimination in speaker identification [SSW07]. For

event detection, they improve the performance when combined with the MFCC fea-

tures [LM14]. Both SAI and SIF show promising results in conjunction with DNNs

[MZX+15]. However, the computational effort of computing and handling these features

is comparatively large. Given enough training data, the DNN can also learn features

from raw time or spectral data [ODZ+16, HPM16].

In order to gain performance in another direction, some systems use a collection of

different features. This is often combined with a classifier that is able to internally se-

lect features, e.g., a random forest. The perceptual feature set introduced by Temko et

al. [TN06] is popular among these.

Classifiers

The basic GMM approach was developed for speaker identification. Nowadays, more

complex approaches like UBMs and HMMs are often used.

In off-line applications for speech recognition and event detection, HMMs are widely

used. While successful in speech recognition, using DNNs for output modeling does

not always improve the event detection performance. This especially apparent when the

amount of training data is limited [SAG16].

DNN are applicable online for detection with a sliding window. It is possible for the

network to learn the feature representation by using spectral or spectrogram data as in-

put. Detection of concurrent events is achieved by ways of a thresholded output layer or
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MFCC – GMM X – event detection [VBK+13]

MFCC – UBM – – speaker identification [TP11]

GFCC – GMM – – speaker identification [SSW07]

SIF DNN DNN X – event detection [MZX+15]

mel energies DNN DNN X X event detection [KSWP16]

perceptual [TN06] superframe RF X X event detection [PMMM14]

MFCC, GFCC PCA SVM X – scream detection [LM14]

MFCC hard SVM X – event detection [PA12]

MFCC, GFCC soft, super. ML X – event detection [PGF14]

MFCC, GFCC soft, super. ML X X speech detection [PG16]

Table 3.1: Overview of state-of-the-art sound classification methods with different fea-
tures and classifiers

binary attribute encoding. However, they still require comparably large computational

efforts and large amounts of input data, resulting in a long time for training. When the

amount of training data is limited, the feature learning is not performing well. In such

cases, the DNNs is outperformed by the classic MFCC GMM approach, as this is able to

generalize better [KSWP16].

The BoF approach provides a practical way of implementing a two-stage classification

system. It is popular due to its simplicity and good generalization ability. The first ap-

plications used hard quantization with SVM classification of the histograms [PA12]. The

related superframe approach makes use of a random forest classifier. This allowed to

extend the method for improved on- and offset detection [PMMM14].

Proposed method

The proposed method is a hybrid between a classical BoF approach and the GMM

method, since it applies supervised training of individual GMMs for the classes be-

fore using all densities for quantization. It provides robust recognition for both acoustic

events and speech in noise while being computationally efficient and requiring only a

short time for training. The use of both MFCC and GFCC features improves the classifi-

cation accuracy.

By a dedicated training strategy based on a hierarchy of stationarity, the detection of

speech in mixtures with noise was realized. This makes the method robust against se-

vere noises levels corrupting the speech signal. Thus it is possible to provide control

information to a beamformer in order to realize blind speech enhancement.

Given the computational efficiency and robustness of the proposed method, it is possible

to use the event detection as pre-filter for speaker localization and geometry calibration.

It is also possible to add different classes for different speakers in order to identify them

while tracking.
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The difficulties that are involved in the scene analysis processes in audition
often escape our notice. This example can make them more obvious: . . . your
friend digs two narrow channels from the side of a lake. Each is a few feet
long and a few inches wide and they are spaced a few feet apart. Halfway up
each one, your friend stretches a handkerchief and fastens it to the side of the
channel. As waves reach the side of the lake they travel up the channels and
cause the two handkerchiefs to go into motion. You are allowed to look only
at the handkerchiefs and from their motions to answer a series of questions:
How many boats are there on the lake and where are they? Which is the most
powerful one? Which one is closer? Is the wind blowing? Has any large object
been dropped suddenly into the lake?

Albert S. Bregman: Auditory Scene Analysis (1990)

4 A C O U S T I C P E R S O N L O C A L I Z AT I O N

The localization and tracking of speakers is one of the key applications for microphone

arrays and acoustic sensor networks (ASNs). It is used for dedicated speech enhance-

ment, camera control, and meeting annotation. In practice, all these applications require

both exact speech detection of concurrent speakers and good location accuracy. The

problem is important in two aspects for the geometry calibration approach described in

chapter 5. First, the single node localization and speech detection is required as input.

Second, the achieved geometric accuracy has a direct influence on the performance of

Euclidean tracking in ASNs.

In this chapter, first an overview of related state-of-the-art methods is given. It is con-

cluded by a description of the basic localization approach for a single microphone array,

which was developed in the author’s diploma thesis. Then the new method of speaker

localization with a single sensor node is described. Thereafter, the novel method for

speaker tracking using a distributed acoustic sensor network is presented. A summary

of the methods discussed concludes this chapter.

4.1 state-of-the-art

The problem of speaker localization and tracking is well researched, and there is a large

variety of existing methods. While several modern approaches utilize complex mathe-

matical constructs such as particle filters [PHHF11, EMN16], these were deemed beyond

the scope of this work. Three basic families of approaches will be discussed that are

closely related to the proposed methods and their goals.

First, methods based on cross-correlation are presented. As many methods of acoustic

localization are based on the generalized cross-correlation (GCC) or steered response

power with phase transform (SRP-PHAT) approach, this is an important baseline. Ad-

ditional effort is required to determine speech activity and the number of concurrent
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speakers. Assuming perfect synchronization, the method can be applied for distant mi-

crophones for Euclidean localization and tracking in ASNs. Often the time difference of

arrivals (TDoAs) are integrated over all frequencies and the spectral characteristics of

the sources are not considered.

Second, approaches based on source separation will be discussed. These are exploiting

the fact that not only the location, but also the spectra of the speakers are different.

Based on the assumption that individual time-frequency bins are dominated by a single

source, clustering and histogram techniques grouping them by direction of arrival (DoA)

have been developed. Euclidean localization is possible by triangulation using the DoAs.

This is better suited for ASNs as the synchronization has only to be good enough with

respect to the speaker’s movement.

Thirdly, approaches based on computational auditory scene analysis (CASA) will be in-

troduced, as the proposed method also uses insights and models derived from the theory

of auditory scene analysis (ASA). The human ability to localize speakers in adverse con-

ditions has inspired a large number of computational models. Targeted at understanding

the neuro-biological process, these usually use only two microphones embedded in an

artificial head. A hybrid method employing a model of human hearing in conjunction

with microphone arrays was introduced by the author [PHF10].

4.1.1 Correlation based approaches

As the correlation of microphone signals is a strong direct indicator for a sound source,

several approaches rely on correlation alone. The SRP-PHAT, which evaluates the cor-

relation in all possible directions, is very common. In order to improve the robustness

and handle concurrent speakers, several extension have been proposed, including direct

multiplicative combination and evaluation on intervals of dominance.

Steered response power

The SRP-PHAT-approach [BW01, pp. 157-180] uses a delay-and-sum beamformer (cf.

section 2.4 on pages 24–26) that is steered into the direction where its output is maximal.

This can be seen as an extension of the generalized cross-correlation with phase trans-

form (GCC-PHAT) since the SRP-Equation (4.1) is identical to the GCC-PHAT summed

over all microphone pairs (2.20) [MHA08, pp. 149–150].

ŝ =
s

argmax
1

F

F/2

∑
f=−F/2

∑
(i,j)

Φyiyi
(k, f )∣∣∣Φyiyj
(k, f )

∣∣∣
ej2π f /Fτm,n(s) (4.1)

=
s

argmax ∑
(i,j)

1

F

F/2

∑
f=−F/2

Φyiyj
(k, f )∣∣∣Φyiyj
(k, f )

∣∣∣
ej2π f /Fτi,j(s)

︸ ︷︷ ︸
RPHAT(τ(i,j)(s))

. (4.2)

When applied with time windows of sufficient length, this method is robust against

noise and reverberation [ZFZ08]. A main problems with SRP-based speaker tracking

is that the correlation maxima are not directly related to source presence. A peak in

the correlation may be caused by reverberation or non-speech sources. To exclude the

latter, a voice activity detection (VAD) may be added. The common approach to exclude

the former is to apply large time averaging. This is working because the peaks due to

reverberation and noise show a higher variance in TDoA.

42 acoustic person localization



An example of SRP-PHAT based multi-speaker tracking is the work of Lathoud et

al. [LO07]. Here SRP-estimates are grouped into short-term clusters by angular and

temporal neighborhood. The clusters correspond to an optimum partitioning of all de-

tections over the time sequence. Maximum likelihood (ML) clustering is done with in-

tegrating close azimuths over short time frames, allowing for gaps due to omissions

and short speech pauses. The method achieves about 2◦ error and good recall on multi-

speaker recordings of the AV16.3 corpus.

The framework for SRP-based speaker tracking introduced by Madhu et al. [MM08] also

uses maximum likelihood estimates computed via the expectation-maximization (EM)

algorithm. A small variance is estimated for true source positions while noise is modeled

by a Gaussian with a large variance fixed at 90◦. The DoA estimates for each time frame

are modeled as a mixture of Gaussians (MoG). The tracking is computed online by

repeating the ML estimation for each time frame after initializing it by the result for the

previous frame. This method defines a time to live (TTL) that past estimates are allowed

to be associated with current ones to cover speech gaps and detection omissions. After

an estimate is older than that time, the source is discarded.

Multiplicative combination

The additive combination of the SRP-PHAT leads to imaginary sources, so called ‘ghosts’.

This effect is already apparent if only small arrays with far field source are used. How-

ever, the highest peaks in the spatial likelihood are often from correct positions, as the

TDoAs correspond to the same DoAs (cf. section 2.1.2, p. 11). If pairs with larger dis-

tances or from multiple arrays in an ASN are combined, the TDoAs correspond to hy-

perboloids rather than angles. Here the ‘ghosts’ are a more severe problem. In principle,

a source should be apparent in all pairs, and the correlation estimates rPHAT of the in-

dividual microphone pairs can be multiplied to find the true source positions without

‘ghosts’:

ŝk =
s

argmax ∏
(i,j)∈P

rPHAT
(

k, τ(i,j)(s)
)

. (4.3)

The product can degrade, as small values will dominate and a single zero in one of the

factors will lead to the missing of a source. Thus the product itself is not robust for prac-

tical application, since errors caused by incorrect geometry calibration or noisy signals

may lead to erroneously small values for one or more microphone pairs. Therefore, the

family of Hamacher-t-norms was introduced as an alternative by Pertilä et al. [PKV08].

The Hamacher t-norm is defined as:

hγ(z1, z2) =
z1z2

γ + (1− γ)(z1 + z2 − z1z2)
=: z1 ⊙ z2 (4.4)

Note that a fuzzy t-norm is defined only for values zi in the interval [0, 1]. By iterative

application of hγ,

⊙

i∈I

zi := (((z1 ⊙ z2)⊙ . . .)⊙ zn), (4.5)
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Figure 4.1: Cumulative spatial likelihood for two speakers in a living room recording
using different combination methods for the microphone pairs: Additive SRP-
PHAT (left), Hamacher-PHAT (middle) and Product PHAT (right). Images
taken from [PKV08], Springer Open Access, Creative Commons Attribution
License, © 2016 BioMed Central Ltd, © 2008 Pasi Pertilä et al..

the source position is estimated in a robust fashion:

ŝk =
s

argmax
⊙

(i,j)∈P

RPHAT
(

k, τ(i,j)(s)
)

. (4.6)

Experiments with three microphone arrays in a living room show the superiority of

multiplicative combination. Two concurrent speakers are reflected by clearly defined

maxima at their locations for either the multiplicative and the Hamacher-PHAT. The

speakers are localized within a 25 cm radius in 92% and 93% of time frames, respectively.

The SRP-PHAT achieved 81%. Figure 4.1 illustrates the mitigation of ghost artifacts by

use of the Hamacher norm or multiplicative combination of microphone pairs in this

experiment.

Intervals of dominance

An efficient way of combining the pairwise GCCs was introduced by Oualil et al.

[OFK13a]. For each GCC, intervals of dominance are computed based on the location

of the peaks. Then, these intervals are mapped from TDoAs to source positions. Only

source positions that are backed by a dominant peak in the correlation of all microphone

pairs are considered. This is in effect a multiplicative combination. The benefit of this

method is a drastic reduction of the search space as illustrated in Figure 4.2. Instead of

calculating the SRP-PHAT for the whole search space (left), intervals of dominance are

computed for each pair (middle) and used to define regions of interest (right).

After finding all possible source positions in this way, the SRP is computed cumulatively

over all TDoAs and microphone pairs, hence the method is called cumulative steered

response power (C-SRP). At the positions yielding the maximum values, the source is

localized by the classical SRP-PHAT in a fine grid.

After the localization, a Bayesian classifier is used to distinguish between speech and

noise. A Gaussian mixture model (GMM) is fitted to the cumulative function. Exploiting

the fact that true speech sources produce sharp peaks in the spatial likelihood, while

noise sources tend to have a very flat distribution, the Gaussian fitted to the C-SRP can

be classified as speech or noise [OFK13b].
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GCC Function
Intervals of Dominance 

Figure 4.2: CSRP-PHAT localization [OFK13a]: Unmodified SRP-PHAT (left), intervals
of dominance for one microphone pair (middle) and regions of interest
(right). Images published in [OFK13a], available from EURASIP Open Li-
brary, © 2013 EURASIP.

The method achieves realtime performance and is able to track multiple concurrent

speakers. Evaluation on the AV16.3 corpus shows around 50% recall with 80% precision

and an angular error around 2◦ [OFK13a].

4.1.2 Time-frequency localization

Given the spectral sparsity of speech, it may be assumed that no or only few values

originating from different speech sources collide in frequency. This is known as the

”sparsity assumption” employed in blind source separation (BSS) [PLKP08]. This tech-

nique is used for both localization and speech enhancement, cf. Section 2.4.1 on page 25.

When the direct path is dominant, strong independent components can be found for

each source in the short time Fourier transform (STFT) domain. The speakers can be

separated by different techniques.

A basic approach is the multiple signal classification (MUSIC) method that is based on

eigenvalue decomposition (EVD), cf. [MHA08, pp. 151–154]. Here the number of sources

that can be identified is bounded by the number of microphones. A mathematically more

complex approach is the independent component analysis (ICA), it assumes statistical

independence and employs higher order statistics, cf. [NK11]. An in-depth discussion

of these methods is beyond the scope of this work. Instead, the less restricted and more

practical approach of clustering will be investigated on two examples, the reference-

based clustering of the directions and the identification of “single-source zones” for

histogram based DoAs estimation. For both methods, extension to Euclidean tracking in

ASNs have been proposed, which will be described below.

Directional clustering

The BSS based clustering method proposed by Araki et al. [ASMM06] identifies DoAs

of concurrent speakers towards a microphone array. All time-frequency bins of the STFT

are clustered. In order to form a common representation, one microphone is used as

reference sensor and all pairs with said sensor are evaluated. The phase difference is

normalized with respect to frequency, so that each time-frequency bin of each pair

yields the same unit vector when pointing at the same far-field source. Experiments

with three microphones in a mildly reverberant room (T60 = 0.12 s) show the methods

ability to localize concurrent speakers. It is able to localize four speakers with just three

microphones. Two sources as close as 22◦ are found with around 4◦ error.

4.1 state-of-the-art 45



An application of the clustering based DoA estimation in ASNs was introduced by

Taseska et al. [TH13]. The DoAs of the two nodes with the strongest signal are used

to determine the Euclidean position of the speaker. The triangulation is a plain line in-

tersection with just two nodes. This is done independently for all time-frequency bins,

so that concurrent speakers are handled by spectral association. The goal of this work

is to apply an minimum variance distortionless response (MVDR) beamformer that en-

hances the speech of the person present at the given position or spot, hence the method

is called ‘spotforming’. The position based filter constraints are estimated by a minimum

Bayes risk detector based on the triangulation. The spot radius around the position and

the cost values of the Bayes detector are set so that the missed detection (MD) and false

alarm (FA) rates have the best trade-off. While in the initial approach [TH13], the prior

probability for each room position was set to a symmetric Gaussian distribution, in the

later version it was refined by estimating said probability in a training stage based on

room simulation [TH16]. The method is shown to provide speech enhancement in vari-

ous simulated scenarios with up to four speakers and moderate to strong reverberation

(T60 = 0.7 s).

Single source zones

A different BSS inspired approach was presented by Pavlidi et al. [PGP13]. Under the

sparsity assumption, time-frequency bins that are dominated by a single speaker are

used to estimate the DoA with a circular microphone array. After applying an STFT to

the input signal for a given time frame, adjacent frequency bins dominated by one source

are identified. This is done by computing the cross-correlation over adjacent pairs of

microphones in each frequency bin and finding those with a correlation close to 1, called

“single-source zones”. By using up to eight adjacent frequency bins for each single-

source zone, the DoA of that zone is computed. All DoAs determined in that fashion

are cumulated in a histogram over time. In said histogram, peaks are extracted by an

iterative algorithm. The largest peak is found and removed by subtracting a matched

Hamming window. The process is repeated until no peak of sufficient height remains.

Simulation of up to six concurrent speakers show a good performance with 3◦ error at

T60 = 0.25 s and 99% recall for a signal-to-noise ratio (SNR) of 20 dB that decreases to

about 60% for an SNR of 0 dB. When compared with wide-band MUSIC and others, the

single-source-zone method provides higher recall and slightly better precision. All three

approaches solve the problem of concurrent speakers. At T60 = 0.4 s an RMS estimation

error of below 10◦ is achieved. The method is real-time capable and verified with real

recordings.

An extension of the single source zones to ASNs was devised by Griffin et al. [GM13].

First the angular localization described above is applied in order to obtain one or more

DoA estimates from a number of sensor nodes. Given the node locations, pairwise inter-

sections of rays in the DoA direction give Euclidean positions. In order to incorporate

the fact that almost parallel rays will lead to very bad localizations, pairs with a low

angular difference are discarded. The remaining intersections are combined to give one

or two speaker positions. If there is only one DoA per node, it is assumed that only one

speaker is active and the mean of all intersections is computed as his or her position.

If there are multiple DoAs for at least some nodes, the search space is divided by half-

planes between them. When n is the number of nodes with two DoA detections, all 2n

possible partitions created by the half-planes are compared, and the one containing the

highest number of intersection points is chosen. The mean of these intersection points is
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the first speaker localization. The mean of intersections on the other side of each of the

chosen half-planes is the localization of the second speaker.

4.1.3 Bio-inspired methods

The impressive ability of humans to process and localize speech in adverse conditions

has been an interesting research subject for decades. Many computational models were

designed in order to imitate and thereby understand these abilities [Bla96]. Over the

years, several CASA models inspired by the ASA theory [Bre90] (see section 2.2.5 on

page 19) were implemented [WB06]. These CASA models of both monaural and bin-

aural human hearing use similarities of multiple cues such as location, spectrum, and

pitch for grouping and separation of speakers [CB10, HW12]. In relation to this work,

binaural models for localization are of the most interest. An example of the basic model

and a recent extension will be described before introducing the hybrid approach for

microphone arrays.

CASA Model

A straightforward binaural localization model based on CASA principles was proposed

by Roman et al. [RW08]. Two microphones mounted on an artificial head are used to lo-

calize and track multiple concurrent speakers. Their signals are filtered by a 128 channel

Gammatone filterbank with center frequencies equidistantly spaced on the equivalent

rectangular bandwidth (ERB) scale between 80 Hz and 50 kHz. The hair cell transduction

is simulated by halfway rectification and square-root compression. The cross-correlation

of the signals from left and right ear is computed in each band on 20 ms rectangular

windows with a shift of 10 ms. All peaks that are defined as values higher than their

left and right neighbors are considered interaural time difference (ITD) estimates. The

ratio of energy between frames of left and right channel is used as interaural intensity

difference (IID) estimate in each band. Reference values for ITD and IID are obtained

using white noise signals applied in the azimuth range of −90◦ to 90◦. The deviation

from these reference values is modeled using a Laplacian distribution for both ITD and

IID. In order to handle an unknown number of concurrent speakers, separate models are

trained for one to three concurrent speakers. A small Markov model is used to model all

eight possible activity patterns of three speakers as different states. The idea of a simple

state model for speaker activity is also used in [OK14]. Both the ITD and IID distribu-

tions as well as the transition probabilities were estimated using samples from the TIMIT

database. The model was shown to be able to track up to three overlapping speakers on

various trajectories in an anechoic simulation with around 5◦ accuracy. Unfortunately

the performance deteriorates significantly in reverberation as mild as T60 = 0.05 s.

CASA GMM Model

A notably improved binaural CASA model was introduced by May et al. [MvK11]. The

signals from an artificial human head are processed with a smaller Gammatone filter-

bank comprised of 32 ERB-spaced bands between 80 Hz and 5 kHz. The spike model

is implemented with halfway rectification followed by square-root compression. ITD

is computed as cross-correlation within the bands, followed by exponential interpola-

tion. Interaural level difference (ILD) is computed as energy ratio, both are using 20 ms

windows with a shift of 10 ms. Training was done with speech data from the TIMIT data-

base. Both interfering speakers and a reverberation of T60 = 0.5 s were incorporated in
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Figure 4.3: CASA GMM Localization. ITD-ILD distributions in different frequency
bands (left) and localization accuracy compared to other methods (right).
Images from [MvK11] © 2011 IEEE.

the training step. The ITD and ILD estimates are combined in a two dimensional feature

space. Their distribution is modeled by individual GMMs for each source direction. The

number of mixture components is estimated by either visual inspection or a minimum

descriptor length (MDL) criterion. The GMMs are trained by EM-estimation. The local-

ization is done by choosing the GMMs with the maximum sum log-likelihood over a

number of time frames.

The localization performance degrades with both the source distance and reverberation

level. This was shown in a comparative evaluation on simulated data. In a 5×7 m room,

the amount of erroneous detections increases to about 15% and 45% at high reverbera-

tion of T60 = 0.7 s for a distance of 1 and 3 m, respectively [MvK11].

The number of active speakers can be estimated by thresholding a histogram of detec-

tions over the DoAs. In the aforementioned simulation setup, up to three sources are

reliably detected with 95% accuracy up to reverberation times of 0.5 s. Beyond that, the

accuracy drops to about 70% at 0.7 s. A GCC-PHAT based baseline algorithm shows

worse performance with 80% accuracy dropping to 50% [MP12].

4.1.4 Hybrid approach

Fixing the number of sensors at two — aimed at strict imitation of the human proto-

type — is an unnecessary constraint for a technical system. The use of multiple sensors

facilitates robust localization in noisy and reverberant environments, by exploiting the

redundancy among all channels. Recently, hybrid approaches applying acoustic signal

processing in combination with biologically inspired neural processing to subband or

circular microphone arrays were proposed [SGT07]. One of the first successful true hy-

brid methods was implemented by the author [PHF10].

Since the first parts of that model are also used in the proposed methods in this thesis

here, the method is described in this section. Figure 4.4 shows the two common stages

of processing and the third heuristic step that was later replaced. First, a cochlear model

is used to compute a band-wise peak over average position (PoAP) representation of

the microphones’ signals. Second, a midbrain model computes a band-wise spatial like-

lihood with spherical coordinates. Third, an azimuth-only representation is computed

and peaks are extracted yielding the speaker DoAs.
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Figure 4.4: Neurologically inspired speaker localization. Cochlear and midbrain model
followed by heuristic peak localization.
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Figure 4.5: Onset dominance (left) and Peak-over-Average-Position (PoAP) spike gener-
ation (right). Band and microphone index omitted for simplicity. The differ-
ence between the signal z and its average z is shown in red (a), the first waves
are enhanced if the average is shifted in time (b). The energy of the difference
is encoded as spikes at the maximum position of each peak-over-average in-
terval (c).

Cochlear model

The cochlear model is composed of a filterbank modeling the frequency response of the

basilar membrane and a spike generation step modeling the cochlear nucleus. The first

step is done in the STFT domain on overlapping time windows of K = 1204 samples

with a hop size of 512. A fast Fourier transform (FFT) filter-bank is used with B =

16 filters defined in the spectral domain using a Gammatone approximation [UA99]

defined in Equation (2.29). The center frequencies are equally distributed on the ERB

scale between 300 and 3,000 Hz. For each microphone signal yi, band filtered signals zi,b

are generated by applying these filters in the spectral domain and back-transformation

in the time domain (see section 2.2.2 on page 17).

For the phase encoding, rectangular pulses are generated phase-locked to signal maxima

while intensities are coded relative to the overall amplitude using a single nonlinear time

domain step, the PoAP spike generation method illustrated in Figure 4.5. It is tailored to

facilitate localization in reverberant and noisy environments by three aspects: First, echo

suppression is achieved by modeling neural saturation. Second, phase-locked spikes are

generated based on maxima for the TDoA estimation. Third, only highly modulated

parts of the signal are used.

The input signal zi,b(t) is compared to the 30 ms average of its halfway rectification

zi,b(t− tD). By shifting the average in time, neural saturation is emulated by comparing

signal to an average shifted in time [PHF10, PBW04]. This mimics the neural satura-

tion of monaural echo suppression with minimal computational load (cf. section 2.2 on
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pages 16–18). As can be seen in Figure 4.5 (left), the shifted average masks the later

waves but not the first one, mimicking the precedence effect.

Modulated intervals [ui,b,n, di,b,n] are detected as periods where the peak over average

condition z>z holds. In each such interval, the maximum position is determined.

pi,b,n =
ui,b,n≤t≤di,b,n

argmax (zi,b(t)− zi,b(t− tD)) (4.7)

For each peak, a spike is generated as illustrated in Figure 4.5 (right). In the human brain,

spikes occur in spike trains where the number of spikes per train encode the intensity

of the signal (see section 2.2.1 on pages 16–17). Here, it is encoded as one number only

to compress the information into a sparse signal. This is calculated as the sum of the

peak-over-average amplitudes in the interval. Square root compression is used as basic

model of the sensitivity:

hi,b,n =
di,b,n

∑
t=ui,b,n

√
zi,b(t)− zi,b(t− tD) (4.8)

The output ẑi,b(t) can be modeled as a sparse vector sequence (pi,b,n, hi,b,n) for each

microphone signal with index i in each frequency band with index b. This way, a sparse

representation of the spike trains encoding both the amplitude and the phase of the

signals is derived. It can be efficiently stored and processed in a sparse data structure.

By accepting only peaks more than a threshold tg = 6 dB above the average, only high

peaks or “glimpses” with high SNR are used as reliable witnesses for speech,

20 log10 (z [pi,b,n])− 20 log10 (z [pi,b,n]) ≥ tg. (4.9)

Mid-brain model

As described in Section 2.2 on pages 16–18, ITD estimation between the ears in the

medial superior olive (MSO) can be modeled via a cross-correlation of the two signals.

As the rectangular spikes themselves are correlated, this leads to a sharp correlation

figure for all frequencies, unlike the halfway rectification used in other CASA models.

To reduce harmonic errors, a band and pair dependent correlation frame size Kb,(i,j) is

computed for each microphone pair (i, j). In order to capture TDoAs with the smallest

possible time window, the length is computed as the sum of three values. First, the time

it takes the sound to travel the microphone pair distance is used as this reflects the range

of physically possible TDoAs. Second, a maximum pitch period of 12 ms is chosen, as

in voiced speech the onset will occur in sync with pitch. Third, two wavelengths to the

lower band edge frequency fb
′ are added to allow for deviations in the signals phases.

Kb,(i,j) =
(
‖mi −mj‖ /c + 12 ms + 2 / fb

′) fs (4.10)

The cross-correlations r(i,j),b,τ, with τ denoting time delay, are calculated using the signal

in these time windows multiplied by a Hamming window function. In order to capture

all possible correlations for voiced speech, this is performed in 6 ms steps, i.e. a common

hop that is smaller than half the window length for all bands and microphone pairs.

Due to the time-domain sparsity of the spikes, an optimized matching algorithm is

about ten times faster than performing a correlation in the spectral domain [PHF10].
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This algorithm finds matching spikes Rb,(i,j)(k) in the signals of two microphones by

iterating the nonzero values in a sparse data structure used for the spikes. For each

match, a small triangular function scaled by the product h of the amplitudes is added to

the output at the time difference d between the spikes:

rb,(i,j),τ(k) = ∑
(s,t)∈Rb,(i,j)(k)

(△(τ − d)h +△(d− τ)h) where (4.11)

Rb,(i,j)(k) = {(h, d)|pi,b,n − pj,b,n = d ∧ hi,b,nhj,b,n = h (4.12)

∧ kKS ≤ pi,b,n < pj,b,n < kKS + Kb,(i,j)}.

The correlations are back-projected to spherical source positions s(θ, φ). This is imple-

mented with a lookup table mapping the positions to time lags and linear interpolation.

τ(i,j)(θ, φ) = ||mj − s(θ, φ)|| − ||mi − s(θ, φ)|| fs/c (4.13)

d(i,j),b,(θ,φ)(k) ≈ rb,(i,j),τ′(k) with τ′ = τ(i,j)(θ, φ) (4.14)

Finally, all microphone pairs are combined by iterative application of the Hamacher

fuzzy t-norm, as defined in Equation (4.4).

eb,(θ,φ)(k) =
⊙

(i,j)

d(i,j),b,(θ,φ)(k) (4.15)

The resulting spatial likelihood is three-dimensional as it is a function of time, DoA

and frequency band. For an example sequence of two, partially concurrent speakers, the

three dimensional space is shown as sum projections to each pair of two dimensions in

Figure 4.6.

Heuristic peak localization

In order to find speakers using the so computed spatial likelihood eb,(θ,φ), a peak de-

tection approach is used. While the parameters of this process are naturally heuristic,

consistently good results were achieved with small circular arrays in reverberant confer-

ence rooms with the values that will be given in this section.

A first reduction of the search space is done by searching only in the two spatial dimen-

sions parallel to the floor. This can be justified as in the tabletop placement speakers

can be separated by azimuth, and only small positive elevation angles are in the re-

gion of interest. Furthermore, planar arrays exhibit a bad resolution for elevation. So, as

discrimination by elevation is not desired, the maximum value over a set of elevations

(φ = 0, 5, . . . 45) is chosen.

ẽb,θ(k) = max
φ

eb,(θ,φ)(k) (4.16)

Next, the average over a longer time segment is computed. The moving average eθ over

L = fs · 0.5 s is calculated over all data points with a shift of L · 1/4 samples.

eb,θ(k
′) =

k′+L/2

∑
k=k′−L/2

ẽb,θ(k) (4.17)

The spectral spread is investigated and spectral information is discarded. Speech is

mostly producing a signal spread over the spectrum while several noise types are not.
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Figure 4.6: Projections of the spatial likelihood computed by the neuro-biologically in-
spired method. A snapshot of sequence #9 recorded in the FINCA, where two
speakers have a normal conversation is shown. The tree dimensional space
is shown as sum projections to each pair of two dimensions: Angle and fre-
quency band (top left), angle and time frame (top right), and frequency band
and time frame (bottom right). The colors represent the intensity from -40 dB
in blue to the maximum in red. The speakers have different powers due to
dissimilar distance to the array and loudness of speech.

Narrow band noise from fans and machines is typically only found in one of the fre-

quency bands. Time domain aliasing in the correlation occurs frequency-dependent and

therefore produces erroneous peaks at different source locations in different frequency

bands. So by filtering out positions with low spectral spread, noise and aliasing errors

can be suppressed. In practical applications of the method, speech yields nonzero val-

ues in about half of the Gammatone bands. Thus, a basic filtering is implemented by

counting the bands with energy peaks, and discarding detections occurring in less than

a third of the frequency bands.

êθ(k
′) =

{
∑b ẽb,θ(k

′) #{eb,θ(k
′) > 0} > B/3

0 otherwise
(4.18)

When considering larger time segments, the correlation results can be modeled as “true”

peaks plus noise [LO07]. To get rid of noise induced peaks in the spatial likelihood, a

processing inspired by the difference of Gaussians process found in may parts of the

human sensory processing was used in [PHF10]. To incorporate the typical variations, a
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Figure 4.7: The peak localization: Spatial likelihood êθ(k
′), summed over all bands for

sequence #9 (top) and the PoAP peak localization result s∗θ (k
′) (bottom). Col-

ors represent the intensity from -40 dB in blue to the maximum in red.

45◦ average, spanning the reverberation induced artifacts, is subtracted from a 5◦ average

representing the signal to yield a filtered spatial likelihood:

fθ(k
′) =

1

5

2

∑
d=−2

ê(θ+d)(k
′)− 1

45

22

∑
d=−22

ê(θ+d)(k
′) (4.19)

Finally, the peak-over-average algorithm is run along the azimuth to extract positions

of modulated peaks. An average f is computed along the circle to find intervals of

high modulation where the value is higher than the average. The maxima within these

intervals are extracted as detected peaks. Given the angular width of a peak caused by

a speaker in the spatial likelihood, a length of 15◦ for the average was chosen.

s∗θ (k
′) = max

un≤t≤dn

fθ(k
′)− f θ(k

′) (4.20)

In Figure 4.7, this process is illustrated for a snapshot of sequence #9, where two speak-

ers have a normal conversation. It can be seen that natural overlap of speech activity oc-

curs. The angular PoAP operation reduced the wide likelihood areas around the speaker

positions to a single value for each time frame and active speaker.

Figure 4.4 shows the whole pipeline of the PoAP speaker localization method for a

single node. After computing the spike representation in the cochlear model for each

microphone channel, a spatial likelihood is computed in the mid-brain model through

correlation, back projection and combination of all microphone pairs. In the peak local-

ization, the position is reduced to azimuths at the elevation with the maximum value

and angular peaks are extracted.
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microphone
array

filterbank

cochlear model

phase
encoding

midbrain model

correlation backprojection combination

Figure 4.8: Common neurologically inspired processing used for localization.

4.2 proposed method for single node speaker localization

The hybrid method described above calculates angular localizations for a single ar-

ray [PHF10]. For the application within ASNs, it was augmented in two aspects.

The first improvement is an adaptive input gain for the signals. This eliminates the

need of manually presetting a gain for each recording. More importantly, the Hamacher

combination requires the signals to be clipped, as it is only defined in the interval [0, 1].

As the power of the input signal is unknown, a suitable gain has to be applied before

clipping. By adding a method to automatically set this gain, it is no longer required to

adjust this beforehand.

The second improvement is the replacement of the basic peak localization. It required ad-

justing the thresholds involved and is not able to separate close speakers clearly. There-

fore, it was replaced by the CASA approach, where simultaneous grouping (see sec-

tion 2.2.5 on page 19) is modeled by clustering. According to the ASA theory, multiple

cues are used in this process. Given that the spatial likelihood is computed in a spatial

and a spectral dimension, it is possible to cluster considering both important cues. This

multi-criterion clustering was first used successfully in [PHF12] with the density based

DBScan algorithm [EKSX96]. Here, the later approach with the EM algorithm will be

described, cf. Section 2.3 on pages 20–23. The use of ML clustering allows for better

modeling and removes heuristic thresholds. The output is probabilistic and spectral in-

formation is retained for each source. This is important to associate the speakers across

different nodes in the tracking approach described in the next section.

4.2.1 Cochlear and midbrain model

The cochlear and midbrain model described on pages 49–51 is used, cf. Figure 4.8. While

the first steps of the system are linear, the fuzzy combination is not. The correct gain

has to be applied to the signals in order to keep the spike amplitudes in the range

[0,1]. This is also important if the method is implemented with small floating point or

integer precision for faster computation. The model was therefore extended by a method

of automatic gain estimation. The gain is set automatically dependent on a running

estimate of the current input energy. A histogram of H spike amplitudes is used to

calculate the energy level. For each channel i and band b, the histogram Ii,b,h is set to

the number of spikes hi,b,n falling within the hth bin, i.e., with amplitudes ranging from

h/H to (h + 1)/H:

Ii,b,h = |{hi,b,n|h/H < hi,b,n ≤ (h + 1)/H}| . (4.21)
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This level ̺i,b is estimated as the level at p = 0.95 of the spike level distribution, i.e.,

P(hi,b,n ≥ ̺i,b) ≈ 0.95 . (4.22)

Practical tests showed small variance over the microphones. This is plausible as the

nodes are of small size and thus very little difference in the speaker volume is to be

expected. Similarly, the adaptation of the loudness for individual frequency bands did

not prove advantageous. Thus, the level is estimated over all channels and bands:

̺∗ =
1

BI

B

∑
b=1

I

∑
i=1

̺i,b (4.23)

A series of experiments was made in order to determine the gain required. As the analy-

sis showed little variance over the recordings of natural speakers in different reverberant

settings, the optimal gain can be approximated with a fixed emphasis function based on

the frequencies. It approximates the experimentally derived gains by a simple stepwise

linear function:

β( fb) =





18 fb/860 fb ≤ 860

18 + 12( fb − 860)/1540 860 < fb ≤ 2400

30 2400 < fb

. (4.24)

For performance reasons, the gain is applied to the sparse spike structure before com-

puting the correlation and subsequent back projection and combination.

h′i,b,n = hi,b,n10(β( fb)−̺∗)/20 (4.25)

Again, the elevation with the highest value after a short moving average eb,(θ,φ) over L

samples, e.g., L = fs · 0.5 s is calculated over all data points with a shift of L/4 samples

and detections with less than B/3 spectral components are excluded as non-speech

sounds. The values are collected over all bands as

gk,θ =
[
e1,(θ,φ), e2,(θ,φ), . . . , eB,(θ,φ)

]T
. (4.26)

The energy values comprise a set of azimuth-spectrum tuples Gk = {(θ, gk,θ)} for each

time frame k. In order to filter low energy noise, these are only considered speech energy

detections where the sum over all bands exceeds a threshold of te = −40 dB. This sum

energy over all frequency bands is interpreted as likelihood for a source ν at the given

angle, as it reflects the correlation and signal strength:

l(ν = (θ, gk,θ)) =
1

B ∑
b

gb,k,θ . (4.27)

4.2.2 Simultaneous Grouping

According to the ASA theory, location as well as spectral cues are used for grouping

the auditory information coming from a certain source, cf. Section 2.2.5 on page 19. In

order to emulate this process, ML clustering over spatial and spectral similarity is used.

The probabilistic modeling of the speakers according to this concept will be described

in the following before the details of the EM implementation. Then it will be explained
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how the number of sources is estimated in each iteration and when the algorithm is

terminated.

Model

The distribution of repeated measurements of DoAs peaks produced by reverberant

speech is often successfully modeled by a Gaussian distribution, cf. [LO07]. Therefore,

the spatial likelihood is modeled as a MoG as in [MM08]. The probability density for

a detection ν = (θ, g) ∈ Gk can be calculated with the average angle Θ and standard

deviation σ:

pa(ν|Θ, σ) =
1√
2πσ

exp

(
−0.5

d(θ, Θ)2

σ2

)
. (4.28)

Here an angular distance function d is used. As the distance of two angles can be either

clock- or counterclockwise, the direction around the circle with the shorter absolute

distance is chosen:

d(α, β) = min{360− |α− β|, |α− β|}. (4.29)

The second clustering criterion is spectral similarity. The spectra from different speech

sources are dissimilar with a high probability in most practical scenarios and noise and

time domain aliasing artifacts are assumed independent across frequency. The spectral

similarity of a detection ν = (θ, g) to a model spectrum g′ is calculated as normalized

scalar product

ps(ν|g′) =
〈

g

||g|| ,
g′

||g′||

〉
=

∑b gbg′b√
∑b g2

b ∑b g′2b
. (4.30)

The pseudo-probability of ν to originate from Ψc = (Θc, σc, g
′
c) with average angle Θc,

standard deviation σc and spectrum g′c is defined as

p(ν|Ψc) = ps(ν|g′c)pa(ν|θc, σc) . (4.31)

Estimation step

Sources Ψc are estimated over all N detections in the current and adjacent time frames

ν ∈ Gk−1 ∪ Gk ∪ Gk+1 by maximum likelihood estimation. In the estimation step, the

pseudo-probabilities are computed over the MoG using mixture weights ηc and the

equations above:

p (Ψc|ν) =
ηc p(ν|Ψc)

∑c′ ηc′ p (ν|Ψc′)
. (4.32)

Maximization step

For the maximization step, first partial weights are computed that reflect the relative

contribution of a given detection ν for a given mixture component index c:

ρc(ν) =
p(Ψc|ν)l(ν)

∑ν′ p(Ψc|ν′)l(ν′)
(4.33)
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The weighting ρc(ν) takes the spatial sum likelihood into account. In relation to the orig-

inal unweighted EM-implementation, l(ν = (θ, g)) can be interpreted as the number of

measurements for ν, so that the maximization step equals the original one for a discrete

number of measurements. With these weights, the distribution parameters recomputed

in order to maximize the likelihood:

Θ̂c = ∑
ν=(θ,g)

ρc(ν)θ (4.34)

σ̂c
2 = ∑

ν=(θ,g)

ρc(ν)d(θ, Θ̂c)
2 (4.35)

ĝc = ∑
ν=(θ,g)

ρc(ν)g (4.36)

ρ̂c =
1

N ∑
ν

p (Ψc|ν) , (4.37)

The weighted average of angles in (4.34) has to be calculated on the circle. While the

mean of a Gaussian on a circle is not defined, in practice the values are often concen-

trated within a small interval of angles. Thus it is sufficient to compute the average

within this interval.

Number of sources

The number of sources can be estimated by observing the typical variance of speaker

localizations, as in [MM08]. To allow for the number of speakers to decrease or increase

from the previous time frame k, a join and split rule are evaluated. If two estimates

get closer than a threshold d(θc, θc′) < Γjoin, the sources i, j are merged. If σc > Γsplit,

the source i is split into two sources with θc,c′ = θc ± σi as illustrated in Figure 4.9.

As the angular parameters for the previously described peak extraction method, these

threshold values are chosen heuristically based on the standard deviation of σ = 5◦− 15◦
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Figure 4.9: Split (left) and join (right) within the EM estimation. Mixture components are
plotted in color and the mixture as contour line for each iteration. The spatial
likelihood histogram ∑ν=(θ,g) l(ν) for the angles θ to be estimated is shown
in gray at the back. Iteration 0 shows the estimate from the previous time
frame. Illustration first published in [PF13], available from EURASIP Open
Library, © 2013 EURASIP.
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join/split

simultaneous grouping

converged?

Figure 4.10: PoAP EM speaker localization. The cochlear model is used with automatic
gain estimation. The midbrain model performs the correlation, back projec-
tion, and combination of microphone pairs. The EM algorithm is used to
determine the probabilistic positions and spectra of an unknown number of
concurrent speakers.

observed for a known speaker in the spatial likelihood in reverberant enclosures. Good

results are achieved by setting Γjoin = 11◦ and Γsplit = 22◦.

Termination

The estimation loop is terminated when the likelihood does no longer change signifi-

cantly. This typically happens after two to ten iterations, allowing for real-time calcula-

tion. After this step, there are clustered source estimates {Ψi} for each time frame. The

overall method is illustrated in Figure 4.10.

4.2.3 Speech segment identification

For the geometry calibration approach, static speaker positions have to be identified.

This can be achieved by post-processing the PoAP EM method.

Spatial proximity is used to associate the localizations into tracks over time. Given that

the PoAP EM DoA localization produces small angular errors, only DoAs localizations

with an overall angular deviation of less than 5◦ are grouped in the same speech segment.

Values with a large angular deviation are mostly caused by speaker movement. As the

calibration requires static positions, these can not be used here.

Given that gaps in speech occur naturally, several approaches use a TTL, cf. [MM08].

Here, consecutive DoA localizations within a TTL of 1 s or less are grouped in time to

identify speaker activity. This bridges typical small speech pauses.
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4.3 proposed method for speaker tracking

In an ASN, the individual DoA localizations can be combined by triangulation in order

to localize the speakers in Euclidean coordinates. This requires the knowledge of the

nodes’ relative geometry, which can be computed automatically as described in chap-

ter 5 on pages 65–86. The method proposed in [PF14a] integrates the nodes’ PoAP EM

localizations in three steps. First, the estimates are associated using their spectra, sec-

ond the Euclidean speaker coordinates are computed by triangulation and thirdly the

localizations are integrated into tracks over time.

4.3.1 Association

The problem of ambiguity of multiple concurrent localizations by multiple nodes is il-

lustrated in Figure 4.11. When two or more speakers are active, this results in multiple

DoA localization from each node. Without additional information, it is not clear which

DoA corresponds to which speaker. While some associations may be excluded geomet-

rically, e.g., by the rays not intersecting within the room, often different associations are

possible.

To associate the estimates from different nodes, their spectra are correlated using Equa-

tion (4.30), and the pairs with the strongest correlation above a minimum threshold ts

are computed. By thereafter combining all pairs with common angles, sets of angular

estimates over all nodes are derived.

4.3.2 Triangulation

The Euclidean position of the source can be derived by triangulation using the so asso-

ciated sets of DoAs and the ASN geometry. By calculating the intersection of the rays

originating at two nodes with the cluster angles Θi and Θj the 2D position ŝ(i,j) is de-

rived as explained in 2.1.3 on pages 14–15.

Given two angles α, β the expected accuracy q of the localization by intersection may be

expressed as the sine of the intersection angle to reflect the fact that an angular difference

of 90◦ yields the highest precision and an angular difference near 0◦ or 180◦ the worst:

q(α, β) = |sin(α− β)| . (4.38)

Figure 4.11: The problem of ambiguity of multiple concurrent estimates: Without addi-
tional information, all four intersections are possible source positions. Us-
ing the spectral similarity, the correct intersections (circles) are chosen and
the others (squares) are discarded. Illustration first published in [PF14a], (c)
IEEE 2014.
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This function is a good approximation of the expected empirical error. It was derived

from simulations given in the evaluation chapter. In order to calculate one point from

multiple intersections, the weighted sum is used:

ŝ =
∑(i,j) q

(
Θi, Θj

)
ŝ(i,j)

∑(i,j) q
(
Θi, Θj

) (4.39)

As is illustrated in Figure 4.12, this leads to an improved position estimate.

4.3.3 Tracking

A combined tracking state Ωc,k = (Ψ
(m)
c,k , . . . , Ψ

(n)
c,k , ŝc,k)

T represents the states of the track

with label c for time step k. It does not necessarily contain estimates from all nodes. The

probability of a new detection Ψ∗,k+1 to belong to a track Ψc given the cluster angles is

calculated for each node:

pa (Ψ∗,k+1|Ψc,k) = pa(Θj,k|Θ∗,k+1, (σ∗,k+1+σc,k)/2). (4.40)

These probabilities are then multiplied over all nodes to compute the consensus:

p(Ψ
(m)
∗,k+1, . . . , Ψ

(n)
∗,k+1|Ωj,k) = ∏

o

pa

(
Ψ

(o)
∗,k+1|Ψ

(o)
j,k

)
. (4.41)

For each set of new estimates, the track with the highest likelihood above a threshold

ǫa is chosen from all tracks not older than a tTTL (e.g. 5 s). The time-to-live covers gaps

caused by speech pauses or detection or transmission failure. If no such track exists, a

new one is started. Figure 4.13 illustrates the overall tracking procedure.

Figure 4.12: Incorporating angular intersection quality into the triangulation: Using all
pairwise intersections (circles) equally, the center (square) is computed as
localization. When weighting by intersection quality, the steeper angles get
favored and a more precise localization is achieved (star). Illustration first
published in [PF14a], (c) IEEE 2014.
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Figure 4.13: ASN tracking method: Each node computes dominant DoAs with spectral
activity patterns for concurrent speakers. For each time step, all pairs of
such estimates from two nodes are considered tracking candidates. If they
are close to an existing state from a previous time step not longer ago than a
TTL, that track is continued. Otherwise a new track is started. If there is no
new detection near a track older than the TTL, that track is discontinued.
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4.4 summary

There is a vast variety of speaker localization and tracking algorithms. Selected examples

have been discussed in the state-of-the-art section. Based on the extended localization

method for a single node, a tracking solution for ASNs was proposed. In this section,

first the properties of the different localization approaches for a single node will be

summarized in a comparative fashion. Then the extensions for ASN application will be

described.

Single node speaker localization

Several approaches for the DoA localization with a single node were introduced. Ta-

ble 4.1 on this page lists the key methods described in this chapter. One of the most

important properties for application in real scenarios is the ability to handle concurrent

speakers. The different approaches of the methods are summarized in the table and will

be briefly discussed in comparison. Another distinguishing aspect listed in the table is

the fusion of the TDoA estimates from the microphone pairs in the array. The SRP-PHAT

method is still often used because of its simplicity and good performance [ZFZ08]. In its

basic form, it will identify the position of any source with the maximum spatial coher-

ence. It is not able to handle concurrent speakers, which requires additional modeling

as in, e.g., [MM08, LO07].

For application in practical scenarios, VAD or speech detection should to be added,

as in [OK14]. The problem of ‘ghost’ localizations is mitigated by using multiplicative

combination of the microphone pairs.

As the TDoAs are distributed around the true value over time and frequency due to

reverberation and other errors, most methods employ clustering to model this. As the

distribution of correlation peaks over time is very similar to Gaussian, the use of MoG

modeling and the EM algorithm is quite common.

The BSS employs the sparsity assumption by identifying time-frequency bins dominated

by a single source. Even though this is less applicable in higher reverberation, both the

directional clustering and single source zone approach are employed successfully in

indoor environments.

method speaker counting mic. array

SRP-PHAT [BW01] – sum

SRP-PHAT EM [MM08] EM, join sum

C-SRP [OK14] dominant pos. prod.-like

Direction clustering [ASMM06] t-f bins direction

Single Source Zones [PGP13] peak detection histogram

CASA [RW08] threshold –

CASA GMM [MP12] threshold –

PoAP [PHF10] peak detection t-norm

PoAP EM [PF13] EM, join / split t-norm

Table 4.1: Single node localization methods, listing the speaker counting approach for
handling concurrent speakers and the integration of microphone pairs for the
handling of arrays.
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CASA based methods are benefiting from insights into human perception, which makes

them robust to reverberation and noise. Aimed at replication of the biological example,

an artificial human head with just two channels is used. With models of the human inte-

gration and back projection, good localization of concurrent speakers is possible [MP12].

The proposed PoAP EM method for speaker localization with a single node combines

the benefits and insights of the methods described above. It employs a neuro-biologically

inspired cochlear and mid-brain model that makes it robust against reverberation and

implicitly handles concurrent speakers [PHF10]. MoG modeling according to CASA

principles was added to improve the performance and provide probabilistic estimates.

ASN speaker localization

When using an ASN comprised of nodes with small microphone arrays, Euclidean track-

ing based on triangulation is possible. Table 4.2 on the current page lists the methods dis-

cussed in this chapter. The Hamacher-PHAT [PKV08] uses all microphone pairs jointly

for correlation. This requires a perfect synchronization and transmission of the full sam-

ple signals to a central node. It is therefore not well suited for ASN application. The

other methods combine only local microphone pairs of small compact arrays in order to

estimate DoAs. This relaxes the synchronization requirement and reduces the required

transmission bandwidth.

A practical problem for triangulation are the bad estimates derived from near parallel

DoAs. In [GM13], these are excluded when below a threshold. The proposed approach

introduced an weighting based on intersection angles to resolve this issue.

Another problem is the correct association of multiple DoA localizations for concurrent

speakers. In the half-plane search method [GM13], this is solved by counting the agree-

ing nodes for a certain intersection. Given that the sources are inside the convex hull of

the sensors in their setup, this seems to work. In the clustering based approach [TH13],

the association is handled by assigning time-frequency bins to the dominant DoA. The

proposed method follows a similar idea by computing spectral similarity based on the

reduced band information. It employs the neuro-biologically inspired PoAP EM method

in the nodes in order to improve the robustness in reverberant enclosures. The algorithm

also localizes concurrent speakers. The bandwidth required is minimal since only a sin-

gle DoA and a coarse spectrum is transmitted for each active speaker.

method association triangulation data

Hamacher-PHAT [PKV08] position hyperboloid-inters. full signal

Half-spaces [GM13] counting counting DoA only

Strongest pair [TH13] spectra strongest two DoA / spectra

PoAP EM [PF14a] spectra weighted DoA + spectra

Table 4.2: ASN tracking methods with the approach to solve the association and trian-
gulation and the data to be transmitted between the nodes.
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Let no one ignorant of geometry enter
Inscription on the entrance of Plato’s academy

5 A C O U S T I C S E N S O R L O C A L I Z AT I O N

This chapter discusses the task of acoustic sensor localization. The goal is to compute

the relative or absolute geometric arrangement of the sensors, therefore it is often also

referred to as “acoustic geometry calibration”. The task is the reverse of the source

localization task, as in this case one or more actors (i.e. sound sources) are used to

determine the positions of the sensors. However, in the source localization scenario, the

sensor geometry is known, whereas in sensor localization, the position of the sources

is often also unknown. In the broadest case, the problem requires the estimation of the

geometry of sensors, sources and the timing. In order to be able solve the underlying

equations, the rank of the measurements has to be equal or higher than the rank of

the unknowns. If certain constraints are imposed on the geometry or the signals used,

the search space becomes more restricted, allowing for easier estimation or even direct

computation of geometry parameters.

The knowledge of the spatial arrangement of acoustic sensor nodes is required for

both localization and some speech enhancement algorithms. Automated methods are

required since manual measurement is cumbersome and impractical in ad hoc scenar-

ios. It is also favorable that the calibration can be performed solely by acoustic signals

received by the nodes, thus eliminating the need for additional sensors, speakers in

the nodes or external calibration devices. As the application of wireless acoustic sensor

networks (WASNs) has become increasingly popular, an increasing number of methods

has been published in recent years. These methods progress at reducing the number of

practical constraints imposed for the calibration.

In this chapter, first criteria to distinguish the vast variety of acoustic geometry cali-

bration methods will be introduced. Thereafter, several state-of-the-art methods will be

outlined. Finally, the novel methods for multimodal and acoustic calibration of micro-

phone array configurations will be described in detail.

5.1 taxonomies

To categorize the variety of methods, several criteria can be employed. Here the taxon-

omy introduced in [PJHUF16] will be used: As main criterion, the scenario defining the

quantities to be estimated is chosen. Within each scenario, additional constraints used

can be identified to distinguish the methods. An important distinction is the type of sig-

nal and synchronization required, yielding different measured quantities. From these,

mathematical procedures can be derived in order to estimate the geometry. These cri-

teria to distinguish the different approaches will be outlined before discussing selected

examples of the different methods.
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Array Shape Microphone Configuration Array Configuration

Figure 5.1: Scenarios of sensor geometry calibration. From left to right: The calibration
of the shape of a small compact array, the calibration of the position of dis-
tributed microphones, and the calibration of distributed microphone arrays.
Illustration after an idea used in [PJHUF16].

5.1.1 Scenarios

The first distinction is the actual geometry of the microphones to be estimated. Con-

sidering the extent of the geometric configuration, three types can be distinguished, cf.

Figure 5.1:

array shape The first scenario deals with a small compact microphone array. This

will be referred to as array shape calibration. The relative geometric positioning of

the microphones is to be estimated. The scenario is characterized by the limited

physical extent of the array. Here, the small inter-microphone distance allows for

the application of otherwise unusable or impractical techniques such as manual

distance measurement or exploiting the diffuse noise coherence.

microphone configuration The second scenario addresses individual distributed

microphones. This is the task commonly referred to as microphone geometry cali-

bration. In distinction to the previous scenario, the microphones can be distributed

with large inter-microphone distances all over a room or, e.g., a conference table.

array configuration The third scenario is specifically addressing distributed mi-

crophone arrays. The intra-array geometry is assumed to be known, either by mea-

surement or application of one of the previous methods. Here not only the position,

but also the orientation of the arrays is to be estimated.

5.1.2 Measurement type

The second distinction is the measurement type, which is closely related to the imposed

constraints on the calibration process. Four types of acoustic measurements can be dis-

tinguished, cf. Section 2.1.2 on pages 11–12.

pairwise distance This case is the measurement of all pairwise distances between

the microphones or nodes [Bir03]. This can be achieved by using active nodes,

each of which emits a sound [RD04] or by using diffuse noise in the case of small

apertures like the array shape case [ML08]. The resulting measurement is of high

rank and allows for direct computation of the geometry.
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Time Difference of
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Direction of Arrival
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Figure 5.2: Measurement types used in geometry calibration. From left to right: Pairwise
distances as measured with active devices of diffuse noise, the time of arrival
of sound from a synchronized source, the time difference of arrival measured
at pairs of microphones, and the direction of arrival. Illustration first used
in [PJHUF16] (c) IEEE 2016.

toa The first alleviation is to use fewer sound sources that are not geometrically linked

to the nodes. When the emission time is known by synchronizing the nodes, abso-

lute time of arrival (ToA) measurements can be used. When the source positions

are unknown, they have to be estimated as well. This requires a larger number of

sound emissions.

tdoa Without such synchronization, only time difference of arrivals (TDoAs) between

pairs of microphones is directly available. The emission times can estimated as well,

allowing to reduce the problem to the previous one of ToA based calibration. This

is often done by imposing additional restrictions such as using a previously known

sequence of sounds in order to reduce the number of measurements required. A

single but notable exception uses the maximum TDoAs to derive the pairwise

distances.

doa In the array configuration scenario, the direction of arrival (DoA) can be measured

as well and be used to estimate the nodes’ orientation. This can be done separately.

Either the geometry is estimated from the DoAs first and the scaling is estimated

thereafter by using the TDoAs [SJHU+11, JSHU12]. Or the nodes’ positions are

estimated first and the orientation is estimated in a second step [PMH11].

5.1.3 Mathematical approaches

The mathematical procedure of estimating the geometry is closely linked to the type of

measurement and the number of known quantities. It is common to successively reduce

the number of unknowns by separate minimization steps.

A large portion of the state-of-the-art approaches exploits the fact that the rank of the

problem is limited by the physical dimensions and uses either eigenvalue decomposition

(EVD) or singular value decomposition (SVD).

When the pairwise distances between some or all microphones or nodes have been de-

rived from the measurement, the p = 1, 2, or 3 eigenvectors corresponding to the p

largest eigenvalues of the centered square distance matrix will yield a solution for the

1, 2, or 3D geometry [Bir03]. This is exploiting the fact that the variance in the measure-

ments created by the physical distance is larger compared to the variance produced by

measurement errors. The EVD algorithm is so simple and robust that it is applied even
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in cases where underlying assumptions are not fully fulfilled. It is applied to derive an

initial solution in active device calibration without considering the individual distances

between speaker and microphones at each of the nodes [RKL05]. The solution is then

refined by least squares (LS) or maximum likelihood (ML) minimization that takes the

exact positioning into account.

It was shown that the ToA measurement of distances between unknown source and mi-

crophone positions can be decomposed in a similar manner, using either EVD [BS05]

or SVD [CDM12]. The latter approach was subsequently extended to TDoA measure-

ments by first estimating emission times [GKH13]. It was then further enhanced to use

measurements from unsynchronized devices by previously estimating the individual

recording offsets [GKH14].

5.2 state-of-the-art

As both the unknowns and the complexity of the estimation procedure increase with

the scenarios ordered as introduced here, the description of the individual methods will

be ordered by the scenarios in the following. Examples of active and passive calibration

methods will be described. As the EVD based approach is fundamental to many meth-

ods, the description will start with its original application to array shape calibration.

5.2.1 Array shape calibration

One of the first methods for the calibration of microphone arrays was the use of tape

measured pairwise distances. Given all pairwise distances, the geometrical shape can

be computed analytically using multidimensional scaling (MDS). The approach was

extended to base-point classical multidimensional scaling (BCMDS). Here, rather than

using all distances between the microphones, the ToA from a set of base points to each

microphone is measured. The base-points are either a-priori known or estimated within

the calibration process. Since the geometry estimation problem is of low rank, a few

base-points are sufficient to compute a basis that can be used to apply multidimensional

scaling, afterwards. It was shown that using p+ 1 base-points, the measurements of their

relative distance and the distance between each base-point and microphone is sufficient

to derive such a basis [BS05].

Multidimensional scaling

Applying MDS can be related to the principal component analysis (PCA). In both meth-

ods the eigenvectors corresponding to large eigenvalues yield the desired representation.

Here a matrix consisting of the squared distances of the sensors is used. The eigenvectors

of the decomposed inner product matrix are an estimate of the relative sensor coordi-

nates.

First the square distance matrix D̂ij = d̂2
ij is composed from all pairwise distance esti-

mates. Using the double centering matrix H , the mean is removed and the approximate

inner product matrix B̂ is computed as

B̂ = −1

2
HD̂H where H = I − 1

N
11

T . (5.1)

The inner product matrix can be factorized to determine the N × p position matrix

M = [m1 . . .mN ]
T containing the positions of the N microphones since

B ≈MMT. (5.2)
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B̂ is positive semidefinite, therefore it can be factorized using EVD into the diagonal of

eigenvalues Λ and the matrix composed of the corresponding unit eigenvectors V :

V ΛV T = evd(B̂). (5.3)

We can observe the relation to the SVD:

V Λ
1
2W T = svd(B̂) (5.4)

Exploiting the fact that the p largest eigenvalues correspond to the largest variance in

B̂, which span the p = 2 or 3 dimensional room containing the microphones, we can

estimate the geometry using the p largest eigenvalues. The geometry estimate is com-

puted as the product of the square-root of the diagonal matrix containing the two largest

eigenvalues Λp multiplied with the N × p sub-matrix Vp containing the corresponding

eigenvectors:

M̂ = VpΛ

1
2
p . (5.5)

The estimate has an arbitrary rotation and translation in relation to the true positions.

Diffuse noise coherence

In the case of array shape calibration, the distance between the microphones is so small

that the received signals will be spatially coherent. When the microphones pick up spa-

tially diffuse noise, the pairwise correlation has a characteristic form dependent on the

microphone distance. Thus it is possible to estimate the microphones’ pairwise distance

by matching the pairwise correlation of the microphone signals to the coherence function

for a diffuse noise field. This was used by McCowan et al. [ML08] to estimate pairwise

distances and subsequently compute the geometry using MDS as described above.

The complex coherence between two microphone signals yi and yj is computed as:

Γyj,yi
( f ) =

Φyj,yi
( f )

√
Φyj,yj

( f )Φyi ,yi
( f )

, (5.6)

where Φyj,yi
( f ) and Φyj,yj

( f ) denote cross- and auto-spectral densities at signal fre-

quency f , respectively.

Assuming a diffuse noise field and omni-directional microphones in distance d, the

theoretical coherence function (cf. [BW01, chap. 4], [HG07]) is given as

Γdiffuse( f , d) = sinc

(
2π f d

c

)
=





1 f = 0
sin(2π f dc−1)

2π f dc−1 f 6= 0
. (5.7)

Note that the noise field model can also be derived for directional microphones. Ob-

taining distances dm,n from coherence measurements is formulated as a non-linear least-

squares model fitting problem:

d̂m,n =
d

argmin
fs/2

∑
f=0

‖Γdiffuse( f , d)− Γyj,yi
( f )‖ (5.8)
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where fs/2 is the Nyquist frequency. This optimization problem is solved for all pairs

by minimizing Equation (5.8), e.g., via the Levenberg-Marquardt algorithm.

Applications

McCowan et al. [ML08] used this technique to estimate the two-dimensional geometry of

linear and circular microphone arrays. The microphones’ positions were estimated with

around 1 cm accuracy. The error converged to this value after using about ten seconds

of noise produced by electronic devices’ fans.

Different tests were performed in order to assess the influence on practical applications.

First, the beampattern for a super-directive beamformer was investigated. When using

the estimated positions in case of a linear array, the steering error was about 10-15◦.
The circular array proved more robust and showed little difference in the beampattern

using the estimated microphone positions. In a different set of experiments, the micro-

phone calibration technique was used to estimate the shape of two circular arrays for

speech recognition in a scenario with two concurrent speakers [HML08]. After calibrat-

ing the arrays, the steered response power with phase transform (SRP-PHAT) was used

for speaker localization. The speaker position estimates were used to steer a superdirec-

tive beamformer. A basic postfilter was added that set the time-frequency bins to zero

in case the competing speaker showed higher activity. When using the calibrated posi-

tions, the localization and speech recognition performance was close to the one achieved

with the measured positions. When using the localization, the speech recognition perfor-

mance was actually slightly better compared to using approximate ground truth speaker

positions [ML08].

Hennecke et al. applied the ambient noise and MDS approach in a smart conference

room setting. Circular and T-shaped arrays were calibrated with about 1 cm accuracy

[HPFHU09]. In one case, the error increased up to 4 cm, according to Hennecke et

al. most likely due to the placement of the array near an non-orthogonal room corner.

This hints at the fact that spatial diffuseness can be lower in certain physical configura-

tions and thereby limit the accuracy of this method.

5.2.2 Estimation of distributed microphones’ geometry

The estimation of the geometry of distributed microphones has been a popular research

topic in recent years. This is most likely due to the advent of WASNs in the form of

ad hoc assemblies of smart phones and laptops. Three types of measurement acquisi-

tion can be identified in order to sort the various approaches: First, the use of active

devices equipped with a speaker in addition to the microphones. Second, the use of sep-

arate sound sources for the calibration sequence. Third, the use of speech events only,

requiring no additional equipment.

Several methods employ speakers in the devices, each one emitting a calibration sound.

This is then used to compute the pairwise distances from the ToA for MDS. Such meth-

ods are employed with laptops [RKL05] and smartphones [HPFHU09].

Alternatively a sequence of chirps or hand claps emitted from unknown positions in

the room is used [GKH13]. Assuming the direct path is the shortest to all microphones,

the TDoA can then be estimated using onset detection [KA13]. In order to simplify the

setup, a single moving source continuously emitting short chirps can be used [GKH14].

The most interesting approach is the use of distributed speech events. This allows to

calibrate without additional devices or a dedicated calibration sequence. The method
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introduced by Pertilä et al. uses the TDoA of speech events to jointly estimate the syn-

chronization and geometry [PMH12].

Active devices

When active devices are used, the fact that the distance of speaker and microphone is

small compared to the inter-device distance allows for a two-step estimation approach:

First, the speaker configuration is estimated by base-point MDS (see section 5.2.1 on

pages 68–69) neglecting the distance of speaker and microphone in the device. Second,

the geometry is estimated by maximum likelihood (ML) estimation. The method was

tested with p + 1 of the microphones paired with a speaker. In an experiment, 32 mi-

crophones in a three-dimensional convex hull arrangement could be localized after a

speaker was playing a chirp on five positions close to a microphone [RD04]. The same

approach was later used to calibrate distributed laptops placed on a table in close prox-

imity. The position error was 3.8 cm with synchronization and 6.2 cm without it [RKL05].

A similar approach was employed for the calibration of distributed microphones in

the form of smartphones on a table by Hennecke et al. [HF11]. Here, the geometry is

estimated from sound events created by the phones themselves. A short logarithmic

sweep chirp is played and the ToA is computed by each phone via correlation with the

known signal. From the ToAs, pairwise TDoAs are computed for all pairs of phones,

using the two events where each is once playing the sound. Again, in the first step,

the distance of the phones own speaker to its microphone is neglected. The pairwise

distance is estimated from the difference of the TDoA between two devices when they

alternately play a sound. As the sound takes the direct path to device j when device i

plays a sound, the TDoA τi,(i,j) is directly proportional to their distance. By using the

devices alternately, any constant time offset δ(i,j) cancels out.

di,j = ‖mj −mi‖ ≈
c

2 fs

(
τi,(i,j) + δ(i,j) − τj,(i,j) − δ(i,j)

)
=

c

2 fs

(
τi,(i,j) − τj,(i,j)

)
(5.9)

Using the so obtained distance estimates, the geometry of the microphones is estimated

by MDS. This is again used as initialization for a general minimization-based estima-

tion in a second step. The known microphone to loudspeaker distances and the global

orientation of the phones as provided by their sensors is incorporated. Real word experi-

ments were done with three ad hoc configurations of six identical smartphones in about

40 cm distance, cf. Figure 5.3 on the following page. Over ten recordings of each config-

uration, the geometry was estimated with around 7 cm accuracy. An experiment with

increasing pairwise distance of two phones showed a steep increase of the localization

error with the microphone distance. Problems when using smartphones like this are the

unknown effects of the microphones and speakers directivity, the sound propagation of

loudspeakers lying on a table, and the uncontrolled effects of the phones audio software

including noise canceling and gain control.

Calibration sounds

Many methods estimating the geometry using a set of sounds emitted from unknown

positions are again based on the idea of aligning the geometry by decomposition of

the measurement matrix. As shown by Crocco et al. [CDM12], a geometry estimate can

be obtained by SVD, again using the p biggest singular values and the corresponding
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Figure 5.3: Experimental setup for smart phone geometry calibration. Several phones
placed on a conference table in close proximity. Image taken form [HF11] (c)
IEEE 2011.

vectors. The product of the receiver and source position matrices is proportional to the

distance matrix obtained from the ToA measurements.

−2MST ≈ D̃ (5.10)

This allows for the estimate to be computed from the truncated SVD using a p × p

mixing matrix C:

V Λ
1
2W T = svd(D̃) (5.11)

M̂ ≈ CVp and − 2ŜT ≈ C−1
Λ

1
2
pW

T
p . (5.12)

A simple-to-use method for calibrating a set of devices with a single microphone each

using a mobile phone emitting a calibration sequence was proposed by Gaubitch et

al. [GKH14]. The phone is playing a sequence of chirps with known time delays, while

being moved around the microphones to be calibrated. As the chirps are short relative to

the movement velocity, the emissions can be treated as originating from static unknown

positions. A matched filter is used to extract peaks corresponding to the emission time

in each device. Given that the delays between the chirps are known, the internal offset δi

of each device i can be computed by aligning the sequence to the device’s clock. This is

done jointly for all devices by composing a matrix from all measured TDoAs to estimate

the ToAs. Using the offsets and ToAs, the relative geometry is estimated by minimizing

the difference to the measurement as

M̂ , Ŝ, δ̂ =
M ,S, δ
argmin

T

∑
t=1

I

∑
i=1

‖mi − st‖ − ctt,i − δi . (5.13)

Given that the minimization can end up in local minima far from the correct solution,

initialization of the gradient descent is crucial. Therefore, the offsets are initialized by
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the previous estimation and the positions using an SVD estimate of the geometry. Both

simulations and a single experiment with microphones distributed on a table showed

an accuracy of 3 cm for this method.

Maximum TDoA of speech

A recent approach uses maximum time difference of arrival (mTDoA) values of speech

events to estimate pairwise distances and classical MDS to calibrate the geometry

[PMH12]. When a source is in the endfire position Θt,(i,j) = 0 for a pair of microphones

(see section 2.1.2, p. 12), the TDoA (2.11) reaches its maximum value:

τmax
i,j = max

t

{
τt,(i,j)

}
(5.14)

≈ max
{

cos
(

Θt,(i,j)

)
‖mi −mj‖ fs/c

}
= ‖mi −mj‖ fs/c. (5.15)

Equally, for the other endfire position Θt,(i,j) = 180◦, the minimum value is reached as

τmin
i,j = −‖mi −mj‖ fs/c . (5.16)

In the case of asynchronous devices, each device has an unknown time offset, resulting

in unknown pairwise time offsets δi,j. Thus the measured TDoA is

τ̃max
i,j = ‖mi −mj‖ fs/c + δi,j and (5.17)

τ̃min
i,j = −‖mi −mj‖ fs/c + δi,j = ‖mj −mi‖ fs/c + δi,j (5.18)

Thus it follows that the offset can be computed as [PHM13]

δi,j =
1

2

(
τ̃max

i,j + τ̃min
i,j

)
(5.19)

and the distance as [PMH12]

di,j =
c

2 fs

(
τ̃max

i,j − τ̃min
i,j

)
. (5.20)

In order to find valid mTDoA measurements, first an voice activity detection (VAD) is

used to detect speech. The TDoAs themselves are obtained using the generalized cross-

correlation with phase transform (GCC-PHAT) (see section 2.1.2, p. 13). A histogram

based filtering is employed to exclude outliers. Using the so obtained distance estimates,

the geometry of the microphones is estimated by MDS as described in Section 5.2.1

on pages 68–69. The position of distributed smartphones and laptops with a single

microphone was successfully calibrated with around 10 cm accuracy. In meeting room

experiments wirelessly coupled devices were calibrated with an accuracy of 7–15 cm

after synchronization [PPH14].

5.2.3 Estimation of microphone array configurations

Since there is a growing number of devices with more than one microphone, this sce-

nario has been of increased interest in recent years. This is of high relevance in ad hoc

scenarios. Both the case of active devices and ambient sound are investigated.

For most applications, the correct estimation of the orientations of the devices is of vital

importance. Most types of spatial processing using several small arrays are in effect
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using triangulation, and therefore even a small orientation error will lead to large errors

in the estimation of source positions.

In order to achieve a good orientation estimate, the methods for calibrations of dis-

tributed microphones described in the previous section are not sufficient. The error in

the position estimate is often large compared to the device dimensions, so the implicitly

estimated rotation is not of sufficient precision. Better results are achieved when the

known intra-array microphone geometry is used to derive DoAs measurements in the

calibration and include these in the geometry estimation process.

Active devices

Using mobile lab prototypes with four microphones and one speaker in the center, Per-

tilä et al. [PMH11] devised an active calibration method. Each device emits a maximum

length sequence (MLS) signal. By using the TDoA between pairs of microphones from

different devices, the pairwise device distances are estimated. From that, the inter-array

translation is estimated using MDS. In a second step, the rotation and reflection of each

array is estimated by aligning the SVD-based rotation estimate to the measured DoAs.

In a series of experiments with four devices placed on a table in a mildly reverberant

room (T60 ≈ 0.26 s), their geometry was calibrated with around 1 cm and 6◦ accuracy.

Speech-based RANSAC methods

A hierarchical approach by Hennecke et. al [HPFHU09] starts by ambient noise coher-

ence based detection and calibration of the individual arrays as described in section 5.2.1

on pages 68–70. Subsequently, a five minute random walk of a speaker is used to derive

a large set of TDoA measurements. Given that the arrays were located at the ceiling of

a conference room, they are approximately positioned in a plane parallel to the moving

speaker. Therefore, a constant height offset to the source can be estimated. The source is

localized relative to each array by SRP-PHAT. Then SVD-based data set matching (DSM)

is used to derive the relative geometry of the arrays. Over 100 Monte Carlo trials with a

random sampling consensus (RANSAC) optimization, two circular arrays placed in the

ceiling were calibrated with about 25 cm accuracy using natural speech. In a comparable

experiment with white noise, 10 cm accuracy was achieved.

Using wall-mounted arrays consisting of only two microphones, Schmalenstroeer et al.

measured the DoA of a moving speaker by beamforming [SJHU+11]. The relative po-

sition and the orientation of microphone arrays was estimated in two dimensions by

an angular matching and the RANSAC approach. The problem of scale indeterminacy

inherent to DoA-only observations is solved by estimating the scale in a second step

using the TDoA. Tests in a mildly reverberant room (T60 = 0.15 s) showed a translation

error of about 25 cm and a rotation error of 2◦. Extensions of the method features better

cost functions [JSHU12, JSHU13]. Extensive simulation showed that the RANSAC pro-

cedure is required to remove outliers for even mild reverberation above T60 = 0.05 s. For

medium reverberation around T60 = 0.4 s the improved circular cost function decreased

the position error from around 70 to 30 cm.
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5.3 proposed multimodal method for array configuration calibration

In a smart room setting, often several cameras are mounted. As they are mostly fixed

on the walls or ceiling, they can be calibrated once. Sometimes microphone arrays are

also mounted at these fixed positions. The disadvantage of this positioning is that they

mostly receive indirect sound after reflections, as the speakers barely face the walls.

Thus it is practical to put the microphones inside the room, e.g., on a conference table.

This means that the microphone array positions are not fixed. Even if they are mounted

on the table, the table itself may be moved. Therefore, the proposed method aims at

automatically calibrating the geometric microphone array configuration using known

camera positions. A human speaker will say a few sentences while moving through

the room. He is localized visually by the cameras while the microphone arrays gather

directional measurements.

The goal of the method is to find the absolute geometry γ̂i of each microphone array

using these two measurements. Thus, both the position ri = [r1i, r2i]
T and the orientation

oi have to be estimated, cf. Section 2.1.3 on page 14. The possible range for the position

is given by the space between the cameras, oi is in the range [−180◦, 180◦).

γ̂i = [r̂1i, r̂2i, ôi]
T (5.21)

The method first proposed in [PF14b] uses a speaker talking at static positions in the

room to estimate the microphone arrays’ geometry in the following way: Suitable time

periods for a number of positions are identified from the acoustic recording. The Eu-

clidean positions of a speaker are estimated by visual detection and triangulation. The

DoA of the utterances at each microphone array and position are estimated. Both Eu-

clidean position and DoA are computed for the projection to the ground floor. Using sets

of matched visual 2D localizations and acoustic DoAs, an estimate of the absolute posi-

tion and orientation of the microphone arrays is computed. By computing a consensus

over several such estimates, a reliable estimation is derived.

5.3.1 Acoustic speaker localization

The robust bio-inspired speaker localization described in Section 4.2 on pages 54–58 is

used since it is robust against reverberation and provides an implicit speech/non-speech

decision. Time periods where a speaker is static and robustly localized are identified as

periods with a large number of similar estimates as described in Section 4.2.3 on page 58.

For each person position with index n and microphone array with index i, the median

DoA Θn,i with respect to the ground plane is computed.

5.3.2 Visual person localization

A visual localization estimates positions with respect to the ground plane. Given a con-

ference setting where the person may be sitting, upper body detections from the camera

images are computed with histograms of oriented gradients (HOGs) [DT05]. Especially

if visual clutter is present, background subtraction can be used to restrict the visual

search area [KB01].

The method from [Bri13] is used here for upper body detection. It uses background

subtraction followed by HoG computation and a support vector machine (SVM) detector

for each camera image. Thereafter, triangulation is used to determine the person location.

Only areas that differ form the background camera image are searched, as the person
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Figure 5.4: Example of upper body detection in the FINCA (cf. on page 91). Individ-
ual detections in areas preselected by background subtraction (green) and
merged detections (red). Computed using models from [Bri13].

appearing will be different from the background image of the empty room. Within these

areas, a sliding window search is done on multiple scales. An SVM classifier is used to

detect an upper body in each. After this, overlapping detections are merged into a single

one with a simple center of gravity method. Examples for detections and the merging are

given in Figure 5.4. The so found detections in the camera images are back projected into

the room using the know position and orientation of the cameras. If a person is seen by

more than one camera, their Euclidean position is computed by weighted triangulation.

The weighting function was derived for the acoustic speaker tracking method developed

in this thesis, see page 60. If the person is detected by only one camera, the distance of

the person is estimated by assuming the detection window width corresponds to an

average shoulder width of 0.5 m. Thus for each position with index n, an absolute two-

dimensional localization sn with respect to the ground plane is estimated.

5.3.3 Geometry Estimation

In order to find the geometry automatically, a target function is used that expresses the

error of the geometry estimate. Thus the function will reach its minimum output value

for the correct geometry as input. It uses the above mentioned measurements and the

geometric relation to the speaker position.

For each person position and microphone array, the vector from the source s to the

receiver r can be expressed by the unit vector in the DoA as defined in equation Equa-

tion (2.13) on page 12 and the distance kn,i as illustrated in Figure 5.5 on the next page:

r̂i = s̃n − kn,i α(ôi + Θ̃n,i) . (5.22)

This equation holds when there is no error in the localization data or geometry estimate.

We can reformulate these equations to describe the Euclidean error of the geometry

estimate γi = [r̂i1, r̂i2, ôi]. This error reflects both errors in the position and angular

localization as well as the geometry estimate.

εAV
n,i = r̂i − s̃n + kn,iα

(
ôi + Θ̃n,i

)
(5.23)
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Θn,i

sn

k n,i

Figure 5.5: Geometric relations between microphone array and speaker. The vector
sn − ri from the node to the speaker position corresponds to a vector of
length kn,i pointing in the direction of the DoA relative to the nodes’ absolute
orientation α(oi + Θn,i). Illustration from [PF14b], available from EURASIP
Open Library, © 2013 EURASIP.

It can be seen that ‖εn,i‖ is a convex function with a minimum at the correct geometry.

When r̂i moves away from the true ri, Equation (5.22) no longer holds and the value is

strictly increasing with the distance to the true position. Likewise, an wrong value of

oi will rotate the speaker away and thus the function is also strictly increasing for the

orientation.

As this equation is under-determined, a set of speaker positions S ∈ P({1, 2, . . . , N})
with a fixed number of source positions J = |S| is employed in order to estimate the

geometry. We derive a minimization problem stating that the squared error should be

minimal for the correct estimates given the measurements for these positions.

J AV
i (S) =

√
∑
n∈S

(
εAV

n,i

)2
(5.24)

The positions s̃n and DoAs Θ̃n,i are given by the acoustic and visual localization. The

offsets oi and positions, ri, and the distances ki = kn,i|n ∈ S have to be estimated. Hence

(5.24) estimates 3 + J unknowns with 2J equations, and is determined for J ≥ 3. An

estimate for γi = (ri1, ri2, oi)
T is computed by minimizing (5.24).

γ̂
(S)
i =

[
r̂
(S)
1i , r̂

(S)
2i , ô

(S)
i

]T
with r̂

(S)
i , ô

(S)
i , k̂

(S)
i =

ri, ôi, k̂
argminJ AV

i (S) (5.25)

The function is visualized in Figure 5.6. The search space is bounded in the possible

orientations oi ∈ [−180◦, 180◦). It can be restricted for the possible positions by the

maximum array extension |rij| ≤ rmax, and for the speaker distances by the room

size 0 < ki,t < kmax. The function is convex for perfect measurements, as the Eu-

clidean distance will be minimal for the same true position ri and orientation oi. In

practice with measurement errors, the different εt,i might have minima for different

γi, and their sum is no longer necessarily convex. However, it is still practical to

use the minimum, as this is where the most measurements agree. The common Broy-

den–Fletcher–Goldfarb–Shanno algorithm for bounded gradient descent is employed to

find the geometry with the minimum target function value [BLNZ95].
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Figure 5.6: Cuts through the seven-dimensional target function for one microphone ar-
ray and four source positions in a smartroom recording. Values shown in
rainbow colors (blue = highest, red = lowest) as parameter of position and
orientation, using the best estimated values for the other dimensions.

5.3.4 Consensus

The estimates may contain outliers due to errors in the localization or the positions being

close to co-linear. Q random sets SJ = S1 . . . SS of a fixed number of J ≥ 3 positions are

chosen and corresponding geometry estimates are computed for each set.

Over the Q geometry estimates, a refined position estimate is computed as the median

two-dimensional position over all individual estimates.

r̂i
m = median{r̂i

(S)|S ∈ S} (5.26)

The set S ′ of the Q′ = Q/3 estimates with the smallest Euclidean distance to the median

is used to compute an improved estimate. The mean position and orientation of these

estimates is the final “consensus” estimate.

γ̂∗i =
1

Q′ ∑
S∈S ′

γ̂
(S)
i (5.27)

Figure 5.7 summarizes the overall procedure. Both the acoustic and visual recording is

done in the calibration sequence where the speaker talks from several static positions.

Then, first the acoustic localization identifies the time segments with speech. The speaker

is localized for each such segment in the camera images and the position is computed

by triangulation. Using both types of measurements, each node can be localized. Several

subsets of speaker positions are chosen and a geometry calibration solution is computed

for each. Then the median position is computed and the final mean estimate is computed

for the consensus set of close estimates.
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Figure 5.7: Multimodal geometry calibration method to localize a microphone array
from angular and visual speaker localizations.
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5.4 proposed acoustic methods for array configuration calibration

In order to calibrate the geometry of microphone arrays from sound only, the source

positions have to be estimated as well. To solve this problem, additional information

regarding the distance between the microphone arrays is used. Additionally to the DoA,

the TDoA between the arrays is measured. The sampling of the nodes has to be synchro-

nized by a suitable method, e.g., [MGGC12, PHM13, CG14, SJHU14].

The joint DoA-TDoA optimization was first proposed in [PF14c] and later refined in

[PFG17]. Different methods for the measurement and computation of an estimate were

proposed. While in the first approach, the TDoA estimation was done using the GCC-

PHAT, the methods were later unified by employing the correlation of the peak over

average position (PoAP) spikes already computed for the DoA localization. Since the

search space is highly non-continuous, exhaustive search was used at first. The compu-

tation was quite slow, so this was later replaced by an evolutionary optimization scheme.

This enabled real-time application.

As defined in Section 2.1.3 on page 14, R sensor nodes with planar nonlinear microphone

arrays are placed at unknown positions ri and orientations oi. As there is no anchoring

information in this case, only the relative geometry can be estimated. r0 and o0 are fixed

to an arbitrary value and only the others ri, oi for i > 0 are estimated.

5.4.1 DoA and TDoA Measurements

Sounds played or spoken at a set of fixed unknown source positions sn and received by

all microphone arrays. First, DoAs are estimated and the time segments corresponding

to the speaker positions are identified. Second, an intra-array TDoA estimate τn,(i,j) is

computed for each sound event.

As in the multimodal approach, the localization method described in Section 4.2 on

pages 54–58 is used that allows to isolate the events and computes the DoA Θn,i with

respect to the ground plane for each of the sound events with index n and microphone

array with index i [PF13]. The events themselves are identified automatically as time

segments with low DoA variance as described in Section 4.2.3 on page 58.

The common approach is to find the maximum in the correlation using PHAT weighting

(2.20). This was used in [PF14c]. The computation requires large time segments in order

to be robust against reverberation [ZFZ08], which leads to a relatively large bandwidth

requirement for exchanging the information in a WASN.

An alternative method was introduced in [PFG17]. The sparse spike representation com-

puted in the cochlear model is used for correlation. The band-wise spikes used for the

DoA measurement are summed up over the bands and correlated with the data from

other nodes. This has two advantages. First, the amount of data to be exchanged is

significantly reduced. Second, the measurement is more robust to reverberation.

For symmetrical microphone arrays, the TDoA between two microphone arrays i, j for

sound event n can be computed as the average over all microphone pairs between the

arrays. When the TDoA estimated from the correlation has a standard deviation exceed-

ing a threshold of, e.g., 100 cm, it is considered to be unreliable. These pairs are not used

and their estimates are discarded before computing the mean TDoA. If the number of

unreliable pairs is more than half of all the pairs, the speaker position is discarded.

5.4.2 Estimation

For each pair i, j of arrays, the source position can be computed by triangulation as

explained in 2.1.3 on pages 14–15. When both distances kn,i and kn,j are positive, the
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oj

Θt,i

Θn,j

dn,(i,j)

kn,i = ||sn − ri||

k n,j
=
||sn
− r j||

Figure 5.8: Geometric relations between two microphone arrays and a single speaker.
The vectors sn − ri and sn − rj between the nodes i, j and the speakers’ po-
sition t again correspond to the vectors oriented in the DoAs relative to the
nodes positions. The distance difference between the length of the two vec-
tors corresponds to the TDoA τn,(i,j) multiplied by the speed of sound c. Il-

lustration first used in [PF14c] ©2014 IEEE.

rays starting at r̂i in direction ôi + Θ̃n,i and r̂j in direction ôj + Θ̃n,j have an intersection

at ŝn,(i,j) computed by equation (2.21), cf. Figure 5.8. In order to get the best possible

estimate of the speaker position, a joint estimate over all pairs is computed as the mean

of the individual intersections

ŝn =
2

R(R− 1) ∑
i<j

ŝn,(i,j) . (5.28)

As illustrated in Figure 5.8, the difference of the two array to speaker distances corre-

sponds to the projected distance between the microphone arrays. Therefore, the distance

inferred by the measured TDoA τ̃n,(i,j) should be identical:

kn,i − kn,j ≈ d̃n,(i,j) = τ̃n,(i,j)c/ fs . (5.29)

An error of the estimates with respect to the TDoA estimates is computed as difference

between the TDoA and triangulation based estimate of the relative microphone array

distance in speaker direction. Cases where the two rays do not intersect are penalized

by a constant εNI chosen clearly larger than the possible intra-node distance, e.g., 10 m.

εA
n

2
= ∑

i<j





(
||ŝn − r̂i|| − ||ŝn − r̂j|| − d̃n,(i,j)

)2
when kn,i > 0∧ kn,j > 0

εNI
2 otherwise

(5.30)

As in the multimodal case, this equation is under-determined, so again a set of speaker

positions S ∈ P({1, 2, . . . , N}) with a fixed number of source positions J = |S| is em-

ployed in order to estimate the geometry. The target function is therefore again a func-

tion of a set of measurements.

J A(S) = ∑
n∈S

εA
n

2
(5.31)
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Figure 5.9: Target function values (blue = highest, red = lowest) for one microphone
array in the full search space using the best estimated values for the others.
The plateaus are due to non-intersections penalized by ǫNI .

By minimizing (5.30) for a set S of source positions the joint estimate γ̂(S) for the whole

multi-array configuration is computed:

γ̂(S) = (r̂
(S)
11 , r̂

(S)
12 , . . . , r̂

(S)
R2 , ô

(S)
1 , . . . , ô

(S)
R ) with ô(S), r̂(S) =

o, r
argminJ A(S) (5.32)

Figure 5.9 shows two cuts through the search space. It is non-convex and non-continuous

because of the penalties. Therefore, direct gradient descent is not applicable. Two dif-

ferent optimization strategies were implemented, hierarchical search and evolutionary

optimization as described in the next sections.

As the estimation may be biased because of an individual error in measurement or

the source positions being close to co-linear, subsets of positions are used as in the

multimodal approach. In order to get a better estimate, multiple sets S ∈ P({1 . . . T})
of a fixed number of positions J = |S| are used. Their average is computed weighted by

the reciprocal of the error:

γ̂∗ =

(

∑
S

1

J A(S)

)−1(

∑
S

γ̂(S),

J A(S)

)
(5.33)

5.4.3 Hierarchical search

The method proposed in [PF14c] applies exhaustive search in order to find the geometry

best fitting a selected subset. The search space is bounded in the possible orientations

oi ∈ [−180, 180) and can be restricted for the possible positions by the maximum array

extension |rij| ≤ rmax. This space is divided into an equidistant grid of, e.g., 10 cm and 2◦.
As this is computationally heavy, a hierarchical approach was devised. First, a solution

for pairs (0, i) of microphone arrays is found by exhaustive grid search. The solution is

refined by bounded gradient descent [BLNZ95]. The so found solutions for all arrays

are used as a starting point for a second gradient descent optimizing a joint solution
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for all arrays. Given the non-convex property of the search space, the so found solution

might still lie outside the convex target area. In order to exclude these cases, a solution

is discarded when the target function value is too large, e.g. ǫS > 10 cm.

This is repeated for several subsets until a predefined number N of subset solutions is

present. Then the overall solution is computed using Equation (5.33), cf. Figure 5.10.

5.4.4 Evolutionary optimization

The strategy was later replaced by an online method [PFG17]. By the use of a genetic

algorithm, it is possible to compute a solution for the full configuration in real time.

A differential evolutionary algorithm with a binomial distribution mutation of the best

member of each generation is used [SP97].

A population of, e.g. 25, candidate solutions γ(i) is iteratively optimized over several

generations. They are initialized with random values and evolutionary optimized by

iterating a mutation step followed by a selection step over several generations. In the

mutation step, trial candidates ρ are generated by mutating the member γ∗ with the best

fitness value ε∗. The individual values are mutated using two members j, k of the current

generation that are chosen by a binomially distributed random variable Z. The difference

is weighted by a mutation factor ν and added to the value of γ∗. The individual values

of γi are replaced if the value of Z exceeds a given crossover threshold ϑCR.

γd =

{
γ∗ + ν(γ

(j)
d − γ

(k)
d ) if Z > ϑCR

γ
(i)
d otherwise

(5.34)

In the selection step, the trial candidate replaces the current one if its fitness value is

better. If it is better than the best member, it also replaces that one.

γ(i) ← ρ if ε(ρ) < ε(γ(i)) (5.35)

γ∗ ← ρ if ε(ρ) < ε∗ (5.36)

Once the population converges to a set with low variance, the optimization terminates.

This method converges fast to an accurate solution for all nodes. This allows for dis-

tributed online computation of the geometry as illustrated in Figure 5.11.

Whenever there is a speech event, the DoA is computed by the node. The result is

broadcast with the corresponding spike segment to all other nodes. Upon receiving this,

each node computes the TDoA to all other nodes. The result is subsequently broadcast

to all other nodes.

While there is no speech, each node selects subsets of the speech events received so far

and computes a geometry estimate using the differential evolution algorithm. The result

is broadcast to the other nodes. The subset estimates computed by all nodes are then

used to update the weighted mean using Equation (5.33), providing the current overall

estimate.

5.4 proposed acoustic methods for array configuration calibration 83



hierachical offline calibration

select subset S

compute pairwise
solution by exhaustive

grid search

refine pairwise solution
by bounded gradient

descent

compute solution for full
configuration by

bounded gradient decent

compute weighted mean

ǫS < ϑ

add to consensus set

Q subsets ?

measurement

compute DoA localization
and find time segments

compute pairwise TDoA
between nodes

Figure 5.10: Acoustic offline calibration method using exhaustive search. First a se-
quence is recorded where a speaker talks from a number of static positions.
In the recording, speech segments corresponding to the individual posi-
tions are identified by the DoA localization. For each position, the TDoA
between the nodes is measured by correlation of the signals from pairs of
nodes. With these two measurements, the calibration is computed. Random
subsets of positions are chosen. For each an individual solution is computed
in three steps: For pairs of microphone arrays, a solution is found by exhaus-
tive search in a fixed grid. These are then refined by gradient descent. Then
a joint estimate over all nodes is computed by bounded gradient descent.
When estimates for Q subsets are found, the overall estimate is computed
as weighted mean.
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measurement
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compute DoA Θn,j
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select subset S′

compute estimate by
differential evolution

update data, compute
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γ(S′), εA
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speech present ?

yes

speech present ?

yes

no no

Figure 5.11: Acoustic online calibration method using a genetic algorithm and dis-
tributed computation. When speech occurs, the DoA is computed in each
node. The spike representation of the microphone signals is shared with the
others in order to compute TDoAs. After that, at each node several random
subsets of positions are used to compute overall estimates by differential
evolution. These can again be shared in order to compute a better weighted
mean estimate. Illustration based on [PFG17] © 2017 IEEE
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5.5 summary

Three types of scenarios to be calibrated were introduced to organize the state-of-the-

art: array shape, distributed microphones and distributed microphone configurations.

Different methods were presented for each. They were grouped by the constraints they

impose on the scenario. It was distinguished between the use of active devices, dedicated

sound sources and ambient sounds such as speech. Table 5.1 lists the main methods

according to these two criteria.

For the array shape calibration, only the diffuse noise based MDS estimation is used. It

achieves around 1 cm accuracy if the spatial diffuseness is good enough.

For the geometry calibration of distributed microphones, a multitude of methods has

been introduced. Active devices that each play a chirp can be calibrated by MDS with

subsequent optimization based on the device geometry. The devices do not need to be

synchronized. About 7 cm accuracy was achieved in practical experiments with laptops

and smartphones. With calibrations sounds, an SVD-based approach can be employed.

By playback of a known sequence, the need for synchronization was eliminated. About

3 cm accuracy was achieved by playing a chirp sequence from a moving smartphone. The

use of the mTDoA allows to compute the geometry from ambient speech sources. This

approach requires the speakers to be near the endfire positions at some point. About

10 cm accuracy was achieved with smartphones and laptops.

The newer scenario of distributed microphone arrays requires the estimation of the

nodes’ position as well as the orientation. Active devices can be calibrated using MDS

and a subsequent SVD orientation alignment. Around 1 cm and 6◦ accuracy were

achieved with laboratory mockup devices. For passive calibration, a single speaker walk-

ing on a random trajectory for about 5 minutes was used. With RANSAC estimation,

about 25 cm were achieved.

The proposed methods allow for automated calibration from speech events form a num-

ber of static positions. The multi-modal approach uses cameras at known positions for

person detection and subsequently aligns the nodes. The acoustic methods employs both

DoA and TDoA measurements computed by a neuro-biologically inspired model. The

two measurements are combined in a joint objective function. By using evolutionary op-

timization, this function can be minimized online. As will be shown in the evaluation

on pages 123–135, the accuracy achieved by the proposed methods is better than the

state-of-the-art.
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active sound sources speech

array
sh

ap
e

– diffuse noise→ EVD

• MDS [Bir03, ML08]

• base-point MDS [BS05]

–

m
ic.

co
n

fi
g

MDS + ML

• laptops [RD04]

• smartphones [HF11]

ToA→ SVD

• known emission
[CDM12]

• known sequence
[GKH14]

max TDoA

• introduction [PMH12]

• + data assoc. [PPH14]

array
co

n
fi

g

MDS + SVD orientation

• mockups [PMH11]

SRP-PHAT

• trajectory [HPFHU09]

DoA + RANSAC

• trajectory [SJHU+11]

• +cost. [JSHU12, JSHU13]

Proposed

• off-line [PF14c]

• online [PFG17]

Table 5.1: State-of-the-art acoustic geometry calibration approaches ordered by scenario
and measurement method.
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Nature is relentless and unchangeable, and it is indifferent as to whether its
hidden reasons and actions are understandable to man or not.

Galileo Galilei

6 E VA L U AT I O N

The methods were evaluated in simulations and many real life scenarios. In the begin-

ning, an overview of the simulations in as well as the recorded datasets used in will be

given in Section 6.1 and Section 6.2, followed by description of the methodology in Sec-

tion 6.3. Then, the different tasks will be investigated. We begin with the acoustic event

detection, as it can be used as pre-filter for the other methods in Section 6.4. Second, the

blind speech enhancement based on it in Section 6.5. Third, the single node speech local-

ization will be focused on in Section 6.6. It is the basis for the sensor network methods.

Fourth, the different proposed methods for geometry calibration of sensor nodes with

multiple microphones will be thoroughly evaluated in simulation and with real record-

ings in Section 6.7. Fifth, the Euclidean speaker tracking in the so-calibrated network will

be tested in Section. 6.8. Finally, event detection, calibration and tracking methods will

be used in a combined experiment on recordings of natural speakers in a reverberant

conference room in Section 6.9.

6.1 simulations

Two types of simulations were performed in order to assess the properties of the pro-

posed methods. In order to work on defined artificial microphone signals, acoustic room

simulations with synthetic room impulse responses (RIRs) were performed. To system-

atically investigate the effect of defined measurement errors, randomly generated errors

were added to the ground truth.

6.1.1 Acoustic room simulation

Simulations of the acoustic wave propagations were done using the image source model

(ISM) [AB79]. The room is approximated by a “shoebox” of six walls enclosing the

source and receivers. The wave propagation is approximated by assuming a spherical

waves radiating from the source. When the signal reaches a wall, it is reflected and

attenuated by multiplication with a reflection coefficient.

The simulation was done using MATALB code released into the public domain by Eric

Lehmann [LJN07].1 The code provides a “fast” version that approximates the tail of the

room impulse response. This option did not provide comparable results with the actual

recordings. Therefore, the “non-fast” version of the simulation was used, where the tail

is computed fully.

1❤tt♣✿✴✴✇✇✇✳❡r✐❝✲❧❡❤♠❛♥♥✳❝♦♠✴✐s♠❴❝♦❞❡✳❤t♠❧
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6.1.2 Measurement errors

Especially for the sensor localization, the question of the influence of measurement er-

rors was investigated. For a given root mean square (RMS) ǫ, individual errors were

generated by a zero mean Gaussian distribution. Theses were then added to the ground

truth values in order to generate the erroneous measurement.

θ̃i = θi + ei with ei ∼ N (0, ǫ) for i = 1, . . . , I (6.1)

In the case of two dimensional measurements, pairs of values drawn from a normal

distribution were used:

s̃n = sn + [e2n−1, e2n]
T with ei ∼ N

(
0,

ǫ√
2

)
for i = 1, . . . , 2N (6.2)

Multiple Monte Carlo simulations were done with this method. In all cases, the average

RMS of 100 Monte Carlo runs was close to the intended ǫ, with an error of below 30%.

6.2 recordings

For the evaluation of both sensor geometry calibration and speaker tracking, several

recordings with one or more natural speakers were made in the FINCA smartroom. To

test the acoustic event classification and detection performance, a dedicated set of record-

ings was done there as well. During a research visit to Israel, dedicated constructed

smart phone mockups were used for recordings. In order to compare to published

results from other researchers, the AV16.3 corpus and the publicly available D-CASE

dataset from the IEEE AASP challenge in 2013 was used [GSB+13].

6.2.1 FINCA Dortmund, Germany

The experiments were in large part done in a conference room setup in a laboratory at

the robotics research institute at TU Dortmund university, called the “FINCA”, before it

was dismantled in September 2014. The room is roughly 3.5 × 6.5 × 2.4 meters in size

and has a clipped edge near the door, see Figure 6.1. It was equipped with microphones

and cameras in the following configuration:

The installation featured three m-Audio Delta1010 soundcards. They were synchronized

by wired clock connection, recordings of coherent white noise showed a remaining jit-

ter of 22 µs between the sound cards. Behringer ECM8000 microphones were placed in

a table as three uniform circular microphone arrays with five microphones each. The

microphones from each microphone array were connected to an individual soundcard,

capturing the signals at fs = 48 kHz. A reverberation time of 670± 89 ms over the mi-

crophone signals was calculated using an estimation algorithm [LYJV10].

Three circular microphone arrays with five microphones in a circle with 5 cm radius were

embedded in a table as shown in Figure. 6.1. They were placed in a non-symmetrical

triangle with about 1m edges.

Up to five Sony EVI-D70P cameras were used in the experiments. Their field of view

(FOV) is 48◦. They were connected to a PAL framegrabber that delivered 388x284 images

with up to 30 fps. In the installation, four cameras were mounted at the ceiling as shown

in Figure 6.1 (right). Since the coverage of the room is limited, an additional camera was

set on a tripod in the room as shown in Figure. 6.1 (right) in gray. With this configuration,
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Figure 6.1: Table with three embedded circular microphone arrays in the FINCA (left)
Camera and microphone array positions (right).
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# nodes cams description

#1 3 – A mobile phone playing white noise at table height, using the
same positions as in #2.

#2 3 5 One speaker speaking at 10 static positions sitting and standing
around the table.

#3 3 5 One speaker speaking at 15 static positions sitting and standing
around the table.

#4 3 5 One speaker speaking at 19 static positions sitting and standing
around the table.

#5 3 4 Two speakers taking up six positions and talking alternately.

#6 3 4 Two speakers taking up six positions and talking alternately.

#7 3 4 Four speakers standing and sitting in various positions while dis-
cussing research topics.

#8 3 4 Three concurrent speakers.

#9 3 4 Two speakers discussing.

Table 6.1: Recordings of natural speakers in the FINCA used for the evaluation of track-
ing, speaker identification and geometry calibration.

the capture of a person around the table by at least two cameras is ensured for most

positions.

Table 6.1 lists the recordings made. For off-line calibration and testing of the localization,

several sequences were recorded where one or more speakers were taking up a number

of fixed positions in the room and uttering a few sentences at each. To test the limits

towards concurrent speakers, three speakers were doing their best to talk simultaneously

in sequence #8. Additionally, some unconstrained recordings were made. #9 is a natural

discussion between two speakers to show the natural overlap. In #7, several persons

were discussing and changing positions at will.

6.2.2 AV16.3 Dataset

For comparison with the literature, the AV16.3 dataset was used [LOGP05]. Here two

uniform circular microphone arrays with eight microphones and a diameter of 20 cm are

placed on a table in a mildly reverberant conference room (T60 ≈ 0.5 s). The sequences

were recorded in parallel with three cameras. Speakers were wearing colored balls on

their heads in order to get position data by visual triangulation. The recordings were

done at 16 kHz sampling rate and 16 bit resolution.

6.2.3 FINCA AED Dataset

The FINCA acoustic event detection dataset was recorded in the smartroom using one

microphone embedded in the table. The dataset was published along with the paper de-

tailing the bag-of-features (BoF) approach to acoustic event detection [PGF14]. The fol-

lowing eleven sound event classes used are listed in Table 6.2. For creating independent

training and test sets, each sound class was produced twice by a different person on a

different day. Each recording was longer than 60s. Additionally, two scripted recordings

containing a large portion of the sound events were created.

92 evaluation



Figure 6.2: Acoustic laboratory at Bar Ilan University.

6.2.4 D-CASE AED dataset

The D-CASE 2013 challenge was a public competition in acoustic event and scene recog-

nition [GSB+13]. The acoustic event dataset is comprised of the 16 event classes listed in

table 6.3 on the following page.

For each class, 20 training examples of varying length are included. The public develop-

ment dataset included three ’skript’ sequences of events occurring in an office environ-

ment. Two sets of annotations were provided for all recordings.

The results of the challenge were published at the WASPAA conference in October 2013

[SGB+15]. The proposed methods were not taking part in the challenge, but the results

on the D-CASE development dataset were published in the ICASSP conference in 2014

[PGF14].

6.2.5 BIU Ramat Gan, Israel

Another set of recordings was made at Bar Ilan University in the speech and signal

processing laboratories at the faculty of engineering [HHVG14]. The lab is about 6× 6×
2.5 m in size. It is acoustically isolated from the environment. The lab is equipped with

acoustic panels on the walls and ceiling that allow to change the reverberation properties

of the room, c.f. Figure 6.2. The panels are reflective on one side and absorbent on the

other and can be flipped so that either side faces the room. Up to 64 microphone signals

can be recorded simultaneously with synchronized sampling equipment. At the same

time, multiple signals can be played from loudspeakers.

Speech enhancement dataset

For experiments in speech enhancement, the room’s T60 was adjusted to 320 ms by open-

ing and closing specific panels. Special smartphone mockups were constructed by the

university workshop to simulate future generation smartphones. The mockup consists

of a plastic body and four microphones mounted near the edges. They can be mounted

in an 12x8 cm rectangular pattern as shown in Figure 6.3. The mockup was placed in the

center of the room. Three loudspeakers were placed around it as shown in Figure 6.4.

The desired speaker was placed at 1.2 m distance at −30◦ in position s1. Two interfering

speakers were placed at 2.0 m distance at 45◦ and 135◦, at position s2 and s3 respectively.

The recordings were executed with 48 kHz sampling rate and 24 bit resolution.

Several sound samples were played back from the speakers. Noise samples from the

NOISEX-92 database were used [VS93]. In order to add some more realistic office
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sound description

silence No event happening but background noise from the room and electri-
cal noise from the recording equipment.

door Opening the door of the smart room.

steps A person walking around.

chairs Pulling one of the chairs.

rolling Moving a rolling chair mounted on small wheels.

paper Turning pages of a multi-page printout or knocking a stack of papers
on the table.

keyboard Typing on a keyboard on the table with heavy pressure keys.

laptopkeys Typing on a laptop keyboard with soft keys.

speech A single person talking in the room.

cups Moving around cups on the table or lifting them up and setting them
down again.

pouring Pouring a liquid from a can in the cups.

Table 6.2: Sounds in the FINCA AED dataset

sound description

alert a short alert (beep) sound.

clearthroat someone clearing his throat.

cough a person coughing.

doorslam a door slammed shut.

drawer the opening of a desk drawer.

keyboard keyboard clicks.

keys keys put on a table.

knock someone knocking on a door.

laughter a person laughing.

mouse a computer mouse click.

pageturn turning a page in a book or printout.

pendrop a pen, pencil, or marker touching table surfaces.

phone a phone ringing

printer an office printer working.

speech a person speaking.

switch a very soft and short click made by a lightswitch.

Table 6.3: Sounds in the D-CASE AED dataset
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Figure 6.3: Smartphone mockup comprised of four microphone mounts attachable to a
plastic body.
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Figure 6.4: Recording setup for speech enhancement with one smartphone mockup at
BIU.
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and work noises, additional samples were extracted from the freesound database2. The

sound classes were the following:

Ω0 speech Playback of anechoic speech recordings

Ω1 stationary noise ‘white’ and ‘pink’ noise from NOISEX-92, as well as ‘roaring

fan’, a rather loud humming fan, and ‘ventilation’ air conditioning noise from the

freesound database

Ω2 mechanical noise ‘factory1’ and ‘factory2’ from the NOISEX-92 database

Ω3 babble noise from the NOISEX-92 database

Ω4 nonstationary noise constant keyboard typing from freesound

To generate the test data, speech played from s1 was mixed with a single noise played

from s2 or s3 and with two different noises played from s2 and s3 simultaneously. Two

different anechoic speech sequences from the same speaker at s1 were played. In each

sequence, there are four speech segments of 2-4 s. Overall, they were 18.5 s and 16.5 s

long, where speech is present half of the total time. For a single noise test, each noise

was played individually from each of the noise speaker positions s2,3 and added to

each speech sequence at signal-to-noise ratios (SNRs) of 0,6, and 12 dB. For mixed noise

testing, sequences with two different noises were generated. Two different noise samples

played from the speaker at s2 and s3 were added simultaneously to the speech.

The classifier was trained with data from a different recording session using the same

mockup, the speakers were placed at slightly different positions. A 45 s long anechoic

speech sequence was used. The different noise samples were played for up to 120 s.

6.3 metrics and representation

Throughout the evaluation, the main goal is not only to list quantitative results, but to

present them in an adequate way and to apply the appropriate statistical tests. One major

concern is that many of the quantities under investigation are not justifiably modeled

by a predefined statistical distribution. To portray or test them as such would therefore

be inadequate. The charts and statistical tests employed were therefore chosen to avoid

introducing any unjustified model assumptions. They will be described in this section.

6.3.1 Classification metrics

Every correctly detected event is counted as true positive (TP). A detection of wrong

class as false positive (FP), a missed event as false negative (FN). Then precision P and

recall R can be defined along with the f-score F in the usual way:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P + R
. (6.3)

For the event detection performance, the non-event class Ω0 is excluded in the counts.

The metrics are evaluated frame-based and class-based, for the latter all classes are

evaluated individually and the average is computed.

2http://www.freesound.org
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Figure 6.5: Evaluation of tracking results

6.3.2 Localization and tracking evaluation

The most direct measure for the error of a location estimate is the mean absolute dif-

ference between ground truth and measurement. In the case of vectorial values, such as

two dimensional coordinates, the mean of the Euclidean distance for each measurement

is used. In the case of multiple detections and/or ground truth values, the pairs that

minimize the metric are used as in common tracking measures like the Wasserstein or

OSPA distance [RVCV11]. This is computed by testing all permutations of the detections

against the ground truth and choosing the one that minimizes the error.

The evaluation of the tracking as a detection task was performed as illustrated in Fig-

ure 6.5. A practical maximum distance between the ground truth and the localization

was set as a threshold, this is 15◦ or 0.5 m. These values were chosen with respect to

practical applications such as camera control, where larger values would lead to steer-

ing the camera to a position where the speakers’ face is not visible. Whenever there is

a localization within that margin, it is counted as true detection or TP. If it is further

away, the frame is counted as FN or missed detection. The same is done in the case that

there is no detection at all. When there is a detection but no ground truth value, the

frame is counted as FP or false alarm. Thereafter, precision and recall are calculated as

in Equation (6.3).

6.3.3 Geometry estimate evaluation

The geometry estimates from array configuration calibration methods can exhibit an

arbitrary mirroring, rotation and translation to the reference geometry. In order to relate

the estimate M̂ to the true geometry, the translation and rotation is estimated using

singular value decomposition (svd). First, we subtract the center m̂ = 1
N ∑i mi from the

microphone coordinates, to use the matrix M̂ ′ of centered positions m̂′i = m̂i − m̂ to

compute the dispersion matrix O. Its singular value decomposition yields the rotation

and mirroring matrix R. Using this, the translation v with respect to the true positions

is computed, which allows to compute the aligned sensor positions m̂′′i .

O =
1

N
M ′TM̂ ′ (6.4)

R = JLT with JKL = svd(O) (6.5)

v = M ′ −RM̂ ′ (6.6)
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m̂′′i = Rm̂i + v . (6.7)

The error ǫp is then computed as Euclidean distance of the estimated positions m̂′′i to

the true positions m̂i.

The position error er for inter-array calibration is computed with the same procedure as

Euclidean distance of the aligned array positions r̂′′i to the ground truth ri over all R

nodes. The overall orientation error eo is computed relative to the optimal rotation do.

eo =
{
|or − (ôr − do)|

∣∣∀g

}
with do = −180◦ +

1

R

R

∑
r=1

(or − ôr + 180◦) mod 360◦ (6.8)

6.3.4 Speech enhancement evaluation

In order to asses the improvement of speech while considering the distortion introduced

by the processing method, the overall output SNR is often found not to be a good indi-

cator [LK11]. The frequency weighted segmental SNR (fwSNRseg) [HL08] was found to

be the best objective measure reflecting subjective listening quality [KDG+16]. The idea

of this measure is to weigh the differences of the processed signal x̂ to the clean signal

x weighted with respect to the energy in the clean signal. The signal is decomposed by

a Mel-filterbank into B = 32 bands. The magnitude spectrum in each band is taken to

the power of γ = 0.2 to produce the corresponding weight W(b, k) for the band b and

the current time frame k. Then the difference in SNR is computed for each time frame

by summing the weighted difference per band:

w(x, x̂) =
10

K

K

∑
k=1

∑
B
b=1 W(b, k)

(
log10 |x(b, k)|2 − log10(|x(b, k)− x̂(b, k)|)2

)

∑
B
b=1 W(b, k)

(6.9)

with W(b, k) = |x(b, k)|γ

The relative improvement is computed as a difference in the fwSNRseg w between the

input and output. The output fwSNRseg is computed between the speech signal as

received by the reference microphone used in the estimation, e.g., the first microphone

x1 to the processed output x̂, w(x1, x̂). The input fwSNRseg is computed between the

speech only signal on the reference microphone s1 and the mixed input signal y1 as

w(x1, y1). The improvement is then computed as

∆w = w (x1, x̂)− w (x1, y1) . (6.10)

6.3.5 Significance

A significance test is used to determine how certain one can be that the results are

unlikely to have occurred by chance alone. The significance level p is the probability

with which this assumption, referred to as the H0 hypothesis, is wrong. Historically,

some process with a p-value of below 0.05 (or 5%) was called “significant” by R. A. Fisher

in the first applications of significance testing. This is practiced by many researchers up

to date. Since allowing an 1:20 error is not uncontroversial, a threshold of p < 0.01

is advocated by many researchers. Likewise, the term “highly significant” is not well

defined, it is used for p < 0.01, p < 0.005 or p < 0.001 throughout the literature. Within

this text, the p value will be given alongside the word significant to be precise. The tests

will aim for the highest significance level of p < 0.001.
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Figure 6.6: Visualization of the randomization test principle: Histogram of two data se-
ries with 500 elements (left), random shuffling of labels (middle) and 10,000

random permutations’ differences of means (right). In the histograms, per-
mutations will only change the relative part of the two quantities yellow and
blue of the distribution in each histogram bin while not changing the overall
distribution or the total amount of blue and yellow. It is unlikely to move
the means farther apart than they are initially in the bottom case, while it
is simple in the top case. The relative number of differences of means larger
than the initially observed T(obs) = µY − µB shown in red approximates the
significance level p. If it is large (top, p = 0.74), Y and B are not significantly
different, if it is small (bottom, p < 0.001), they are.

The significance testing will aim at determining whether one method or set of param-

eters is superior to another, or if the difference in results could be attributed to chance.

For many of the metrics compared, it would be unreasonable to assume a given statisti-

cal distribution. There is a straightforward technique of testing on significance that does

not require any model assumption. This is the class of randomization or permutation

testing, which will be described in the following subsection.

6.3.6 Randomization test

The randomization test can determine the significance level on any two sets of numbers

by shuffling them and comparing the difference of means (i.e. expected values) before

and after the shuffling [OG10]. Imagine the numbers being some performance measure-

ment results from two different algorithms on the same input data. This can be anything

like, e.g., recognition rate, error rate, or execution time. Consider the numbers as a set

with the labels “algorithm A” and “algorithm B”. If we mix up the labels on the numbers,

the means for A and B should change if the algorithms perform differently. In partic-

ular, the chance of producing a larger difference of means by shuffling the two is very

slim if the two sets of numbers were generated by different processes. If the numbers

are different for the two processes, mixing them will lead to more similar means. So the

chances of producing means with a larger difference are better if they were generated by

the same process. In this case shuffling obviously makes little difference. The principle

is visualized in Figure 6.6.

Formally, given two sets of numbers x1..n and xn+1..n+m, we compute the mean difference

T(obs) =

∣∣∣∣∣
1

n

n

∑
i=1

xi −
1

m

n+m

∑
j=n+1

xj

∣∣∣∣∣ (6.11)
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then we create a random permutation π ∈ P(n + m, n) of n out of n + m values and

distribute the values into two sets with the original sizes, i.e., using the index sets π and

π = {1 ≤ i ≤ n + m ∧ i 6∈ π} and compute the difference of means

T(π) =

∣∣∣∣∣
1

n

πn

∑
i=π1

xi −
1

m

πm

∑
j=π1

xj

∣∣∣∣∣ =
∣∣∣∣∣
1

n

πn

∑
i=π1

xi −
1

m

(
n+m

∑
i=1

xi −
πn

∑
i=π1

xi

)∣∣∣∣∣ (6.12)

and count the number of times that the difference of means of the permutation is larger

T(π) > T(obs). If we divide this number by the count of subsets, we get the exact

two-sided p-value, therefore the permutation test is also called an exact test.

pexact =
|{T(π) > T(obs)|π ∈ P(n + m, n)} |

|P(n + m, n)| (6.13)

There are (n+m
n ) subsets of length n out of n + m values. In practice, this number is often

way to large for the exact test to be feasible. However, it can be observed that when

using only a small number of permutations, the result of the permutation test converges

to the true value very quickly [OG10].

In order to find out how many iterations are necessary, we can employ statistical theory.

For any Monte Carlo approximation with k iterations and a true p-value of pT, we can

compute the standard deviation of the p-value as described in [Goo00]:

δp =

√
pT (1− pT)

k
(6.14)

Since pT is notoriously unknown, it is practical to compute the standard deviation of the

p-value [OG10] the significance level α

δp ≈
√

α(1− α)

k
(6.15)

or the upper bound

δp ≤ 1

2
√

k
. (6.16)

Assuming we want δp ≤ 0.001 for α = 0.01, we require k ≥ 10, 000 iterations according

to Equation (6.15) or k ≥ 250, 000 when using the upper bound Equation (6.16).

Much is to say for the permutation test method since it requires no model assumption

while producing accurate results. As Schmucker et al. said: “Before the era of cheap com-

puter power, the randomization test was impractical for all but the smallest experiments. As

such, statisticians created significance tests that replaced the actual score differences with the

ranks of scores” [SAC07, p. 625]. Which means, in return, that given today’s computing

power, there is little need for anything but the randomization test to determine the sig-

nificance. Given that one can rarely assume the system in question to produce normally

distributed errors, this is the method of choice for comparison of algorithm performance.
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Figure 6.7: Three distributions (left to right) displayed as bar, box and histogram plot
(top to bottom).

6.3.7 Plots

Within this thesis, sets of numbers will be displayed graphically mostly in two ways: Bar

charts and box plots, see Figure 6.7 for examples.

When the number of data points is small, bar charts are displayed. The bar length corre-

sponds to the mean value. The standard deviation is shown by symmetrical error bars.

When the number of data points in the set is large, box plots will be used to provide

a concise representation of the distributions. The box represents the interquartile range

between the 1st and 3rd quartile. The line in the middle marks the median. Values farther

away than 1,5 times the interquartile range from the box are considered outliers and

plotted as individual points. The whiskers are therefore drawn to the maximum value

above the 3rd quartile that is still below the 3rd quartile plus 1,5 times the interquartile

range, and the minimum value no more than 1.5 times interquartile range below the 1st

quartile.
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6.4 acoustic event classification

Several experiments on acoustic event detection and classification were performed. Sev-

eral different approaches were implemented. They will be outlined in section 6.4.1. For

the recordings made in the FINCA (see section 6.2.1 on pages 90–92), a detailed compar-

ison of systems and the performance for different classes and features will be described

in this section. Then the proposed method will be evaluated on the D-CASE dataset in

order to compare it with state-of-the-art results from the literature.

6.4.1 Systems

Several event classification and detection systems were implemented for comparison.

Each system was trained on C input classes, including the non-event class. For all sys-

tems, features zk were computed on windows of 1024 samples at 48,000 Hz sampling

rate, i.e., 21.3 ms. A total of 0.6 s, i.e., K = 27 consecutive feature vectors were used for

classification. The following ways of codebook estimation were used:

hq-u Hard vector quantization. One codebook with a fixed number of I · C centroids

was estimated from the training data using Lloyd’s algorithm [LBG80, Llo82].

sq-u Soft vector quantization. One codebook with a fixed number of I ·C Gaussian den-

sities was estimated from the training using the expectation-maximization (EM)

algorithm, cf. Section 2.3 on pages 20–23.

sq-s Supervised soft vector quantization. For each of the C classes, a fixed number of

I Gaussian densities was estimated using the EM algorithm, cf. section 3.2.2 on

page 35. All Gaussians were concatenated to a super-codebook with I · C densities.

Using the estimated codebooks, the bag of features (BoF) method was used with differ-

ent classifiers:

svmLin A multi-class support vector machine (SVM) classifier with a linear kernel. The

slack parameter was determined by a grid search on the training data.

svmRBF A multi-class SVM classifier with a radial basis function (RBF) kernel. The slack

and γ parameter were determined by a grid search.

svmHI A multi-class SVM with a histogram intersection kernel, like the bag of features

event detection approach proposed by Pancoast et al. [PA12] as described in Sec-

tion 3.1.2 on page 33.

ml A maximum likelihood Bayesian classifier as described in Section 3.2.3 on page 36.

Additionally, the following classifiers were used for comparison:

gmm The Gaussian mixture model (GMM) implementation follows the standard “bag

of frames” approach [GSB+13]. For each class, an individual Gaussian mixture

model with a fixed number of I densities was trained. The means were computed

using Lloyd’s algorithm as initialization of the EM algorithm.

For each 0.6 s detection window, the posterior probability (score) for each individ-

ual GMM model was computed as sum of the log-likelihoods. The class belonging

to the model with the highest score is chosen as the detection.
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hmm A straightforward hidden Markov model (HMM) approach using a Gaussian mix-

ture model for semi-continuous modeling of the observation. L = I · C Gaussian

densities with diagonal covariance were estimated from the training data, either

supervised (SQ-S) or unsupervised (SQ-U). The ESMERALDA toolkit was used

[FP08], which estimated the initial means by the k-means algorithm [Mac67] be-

fore the densities were estimated using the EM-algorithm.

For each of the C classes, a linear state structure with the same number of S = 15

fixed states was used. Each sub-model was trained individually with the Baum-

Welch algorithm [Fin14, pp. 92–96]. All class sub-models were connected by

pseudo-states for the Viterbi decoding [Fin14, pp. 85–87], allowing the hypothe-

sis to provide an alignment using any sequence of the classes sub-models.

In off-line mode, the whole data file was decoded once using the Viterbi algorithm

and the class corresponding to the sub-model where the optimal path was at each

frame was used as the detection result. The most often occurring class in each 0.6 s

time window was used as final decision. In online mode, up to 10 s of previous

frames before the current one were decoded.

dnn The deep neural network (DNN) baseline system published with the 2016 D-CASE

challenge was applied for comparison. The sliding windows were used for training

and test. Three fully connected rectified linear unit (ReLU) layers of 500 neurons

with 10% dropout are followed by a one-of-k coding with sigmoid output. The

background class is not used in the training. An event is considered detected if the

output is larger than 0.5, otherwise the window is considered background.

For all classifiers, 100 different training iterations were computed. The estimation of the

Gaussian densities was randomized by shuffling the input data.

6.4.2 Classification on FINCA dataset

The classification was tested using the data for each class in the training set for training

and using the test set to evaluate the performance, (see section 6.2.3 on page 92). For a

comparison of the different classifiers, a codebook size of I = 30 densities per class was

chosen for all supervisedly trained codebooks. For the unsupervised trained codebook,

a corresponding size of I ·C = 330 was chosen, except the BoF SVMHI approach. For the

latter, the codebook size of 1,000 densities was chosen as in [PA12]. Figure 6.8 show the

overall performance of the different classifiers using the loudness, mel frequency cep-

stral coefficient (MFCC) and Gammatone frequency cepstral coefficient (GFCC) features.

In the offline case, one run of the Viterbi algorithm was done by the HMMs over the

full sequence. The supervised codebook (SQ-S) is significantly better in all measures

(p ≤ 0.001) than the unsupervised one.

When using the HMM online, the performance deteriorates as expected. However, the

HMM using the supervised codebook performs best. The bag of super features [PGF14]

(ML BoF SQ-S) is the next best classifier with 92.0% f-score, showing significantly better

precision than the rest. It can also be seen that its performance is much more consistent

over the 100 randomized runs. This shows its greater abstraction ability. Overall, the

average performance of the GMM is similar, leading to a close f-score value of 91.7%.

The HMM with the unsupervised codebook comes close, but with a higher deviation

due to the random codebooks.

6.4 acoustic event classification 103



70 80 90

SVMLin BOF HQ-U
SVMLin BOF SQ-U

SVMRBF BOF HQ-U
SVMHi BOF HQ-U

ML BOF HQ-U
SVMRBF BOF SQ-U

SVMLin BOF SQ-S
DNN 3x500 NN-S

SVMRBF BOF SQ-S
ML BOF SQ-U

HMM 15s SQ-U
GMM SQ-S

ML BOF SQ-S
HMM 15s SQ-S

HMM 15s SQ-U
HMM 15s SQ-S

of
fl

in
e

on
li

n
e

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

F1 [%]
70 80 90

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

precision [%]
70 80 90

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

recall [%]

Figure 6.8: Classwise classification results on the FINCA dataset for different classifiers
using the loudness, MFCC and GFCC features. Box plots of the results of 100

runs. A star marks that the performance is significantly different than the
next best one below according to a randomization test (N = 105).

The DNN achieved 84.4% f-score with the feature combination of loudness, MFCCs

and GFCCs. The silence detection is controlled by the threshold applied to the output

neurons. While the f-scores are similar, the precision and recall of 91.7% and 78.1%

for a threshold close to 1.0 change to 82.1% and 85.7% for the proposed threshold of

0.5. The DNN performs worse than the GMM but better than plain BoF methods. As

the DNN is in principle able to learn and optimize its own feature representation, it

was also applied with spectra and mel band energies as input. 83.7% and 76.1% f-score

were achieved, respectively. This shows that the proposed feature combination provides

advantageous information compared to the standard mel band energy approach. The

better performance using the plain amplitude spectrum shows the DNNs ability to infer

better features. Still, even with this it is not close to outperforming the proposed method

or the GMM.

Within the rest, a clear ordering among codebook and classifier is visible. The super-

vised codebook is always better than the unsupervised one, and soft quantization is

always better than hard. The maximum likelihood (ML) classifier clearly outperforms

the SVM. The RBF kernel is always working better than the linear one. The SVM with

histogram intersection kernel (BOF SVM-HI) and hard quantization [PA12] shows better

performance than the RBF or linear ones.

Codebook estimation and size

Given the clear superiority of the supervised codebooks of the same size, it was inter-

esting to see if larger unsupervised codebooks converge towards the performance of

the supervised ones. Figure 6.9 shows the classwise performance for the HMM and bag

of features maximum likelihood (ML) Bayes classifier for different codebook sizes and
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Figure 6.9: Classwise classification results on the FINCA dataset using supervised and
unsupervised codebooks of different size. Box plot over 100 runs with ran-
domized training.

supervised and unsupervised clustering. Exponentially increasing codebook sizes of 15,

30, 60, 120, 240, and 480 Gaussian densities per class with diagonal covariance were

used, i.e., 165 to 5,280 densities in total.

The unsupervised case is almost similar for all codebook sizes, the performance becomes

slightly more consistent for larger codebooks. All results using a supervised trained

codebook are better on average than using an unsupervisedly trained one the same

size. Pairwise randomization test (N = 105) showed that the results of an HMM using

supervised codebooks are significantly different (p < 0.001) from an HMM using un-

supervised codebooks independent of codebook size, i.e. all HMMs using supervised

codebooks produce better results than any HMM using an unsupervised codebook.

For the bag of super features classifier, the supervised case performs slightly worse for

larger codebooks than 30, which might be a sign of overfitting. Beyond 120 centroids,

the performance deteriorates. In the unsupervised case, the performance becomes both

better and more consistent with increasing codebook size up to 120. After that, the per-

formance decreases, probably since the data is insufficient to support more centroids.

However, it never comes close to the supervised case. The results for supervised and un-

supervised training are disjoint up to as size of 120, i.e. the best result for unsupervised

training is still worse than the worst result for supervised training. As for the HMM, all

classifiers with unsupervised trained codebooks show significantly (p < 0.001) different

results than any supervised one according to a pairwise randomization test (N = 105).

The performance using hard quantization does not come close to the soft quantization,

even for much larger codebooks. Its median f-score improves form about 80% to 85%

when increasing the codebook size from 165 up to 1,320 centroids, while the soft quan-

tization is in the range between 90% and 95%.

Event classes and features

Figure 6.10 shows the results for the eleven different classes using an HMM, GMM and

the bag of super features [PGF14] classifier. For all classifiers, “speech” is the best per-
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Figure 6.10: F-score for the different classes using loudness, MFCC and GFCC features
on the FINCA dataset for different sound event classes using the HMM
(online), GMM and BOF (ML) classifiers. Box plots over 100 runs.

forming class. The HMM performs slightly worse for the classes “pouring” and “chairs”,

this may be due to some unjustified generalization from the training data. In contrast,

it outperforms the other methods clearly for “paper” and “laptopkeys”, both of which

contain a lot of transients. Here, the improved temporal modeling seems to be working

better. The ML classifier works better and more consistent than the GMM, especially for

“steps”, “rolling” and “door”. This is most likely to attribute to its better generalization

ability and utilizing the Gaussians of the other classes.

Another aspect to look at are the features used. As the ML BoF approach showed the

most consistent results, different feature sets were used with this classifier in order to

see their influence on the classification performance. The combination of MFCC and

GFCC features works best. The use of the MFCCs alone produces results close to the

combination with GFCCs. This is understandable as the GFCCs themselves perform

significantly worse than the other feature sets.

In order to find out where the benefit of the GFCCs lies, it is necessary to look at the

individual classes. Table 6.4 lists the results for each of the classes and the different

feature sets. For “speech”, all feature sets perform well, which may be due to its wide

spectral spread. A slight advantage of adding the GFCC features can be seen with the

“paper”, “steps”, and “door” class, even though the GFCCs alone only perform badly

on “door” by themselves. The combination achieves similar results to the MFCCs alone

for the other classes. These features are also compared with the perceptual feature rep-

resentation from [TN06], as it is used in numerous methods and encompasses a large

selection of promising features. These work slightly better on “pouring” and “speech”,

but worse over all.

6.4.3 Event detection example

The results for the proposed method for the skript recording in the FINCA are visualized

in Figure 6.11. The ML BoF classifier with loudness, MFCC and GFCC features was used.

As expected, the speech events are detected quite precisely. The worst confusion is that

of “chairs” and “steps”. This is not only the result of them being very similar in sound,

but also due to the rough annotation of what is in practice a mixture of both events. The
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L MFCC GFCC 93.6 93.3 96.2 94.7 78.4 86.1 94.5 93.9 87.5 95.6 92.4 91.5

MFCC GFCC 89.2 89.0 95.4 92.5 76.6 81.4 92.1 88.9 86.4 94.9 90.6 88.8

L MFCC (40) 93.2 94.7 94.0 93.3 77.0 80.4 94.6 92.6 83.0 96.5 91.3 90.1

MFCC (40) 92.6 95.7 93.9 92.7 78.7 79.8 94.3 93.2 85.4 96.7 91.0 90.3

L MFCC 92.8 93.7 94.0 94.9 76.8 81.9 93.8 91.5 86.9 95.4 90.0 90.1

MFCC 90.0 90.2 92.0 92.7 75.2 77.9 89.5 86.6 86.0 94.3 89.0 87.6

L GFCC 89.5 92.2 67.3 91.3 55.4 86.5 94.3 92.2 79.4 94.7 86.9 84.5

GFCC 79.1 86.3 50.0 91.9 37.9 89.6 91.5 87.1 70.6 94.6 81.6 78.2

perceptual [TN06] 90.1 93.0 86.8 91.7 62.2 80.1 96.6 88.9 27.9 96.6 87.8 82.0

Table 6.4: Classwise f-score [%] for different feature sets for the event classes using the
ML BoF classifier on the FINCA event classification task. Colored between
100% � and 75% �. Scores close to 1% of the best for the class are set in bold.
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Figure 6.11: Event detection results for FINCA skript.

detection of “paper” is not very clear, as it is often confused with other classes. Partially,

the background is classified as “laptopkeys”, not surprising as this was the class with

the worst classification performance.

6.4.4 Event detection on D-CASE dataset

In order to compare to literature values, the development set of the D-CASE challenge

[GSB+13] was used also to evaluate the event detection performance. The dataset is

similar to the FINCA. It was recorded in an office and contains training snippets and

skript recordings, see Section 6.2.4 on page 93 for a description of the dataset. Several
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contenders published their performance on the development set.3 The systems used

were the following:

[SMS+13] An HMM with features computed by a Gabor filterbank as extension of the

MFCCs and their temporal derivatives. A noise-reduction algorithm was used as

preprocessing. The Gabor filters are used as two dimensional feature modeling

the modulation along time and frequency in the spectrogram. The event detection

is done by a two-layer HMM. The first layer is a fully connected HMM with each

state corresponding to an event class. The observations of this layer are sub-HMMs,

which model the filterbank responses. This entry performed best in the challenge

with a 61.52% framewise f-score on the test set.

[NVM13] An HMM with meta classification. From the training data, a variety of tech-

nical features was calculated. These were used to train a random forest classifier

using random subsets for each class. The detection is performed by a two-layer

HMM. The top layer contains a state for each event class plus extra finishing states

to explicitly model class transitions. Each class state is connected to a sub event

cluster of states modeling the observations in the second layer. This entry was

second with an 45.50% framewise f-score.

[VBK+13] An extension of the classical MFCC GMM approach. Based on a threshold

criterion, either a shared background GMM or foreground GMM for the given

class is trained. The output of both is combined and classified by another GMM

per class. This entry performed close to second best with 43.42% framewise f-score.

[GVK+13] A HMM with non-negative matrix factorization (NMF) spectra as features.

A dictionary of magnitude spectra was calculated by NMF on the training data.

Additionally to the given classes, a background or non-event class was trained on

the not annotated parts of the training files. For the event detection, the magnitude

spectra were mapped to the event classes by means of a matrix mapping the esti-

mated dictionary entries to the classes. The mapping was converted into posterior

probabilities by scaling and normalization. A basic HMM with a single state per

class was used for classification. The transition probabilities were set to be equal

for all classes using fixed self transition, event to event, and event to background

probabilities. This entry achieved an 31.94% framewise f-score on the test set.

[DHV13] A basic MFCC HMM approach. They did well on the development set, but

achieved only 26.0% framewise f-score on the test set.

[GSB+13] The baseline system published with the challenge. It utilizes NMF spectra

classified by a multiclass SVM.

[KSWP16] The DNN baseline system published with the 2016 D-CASE challenge was

used again to compare. The proposed 40 mel band energies over the sliding win-

dow are used as features. After the input layer, three fully connected ReLU layers

of 500 neurons with 10% dropout are followed by a one-of-k coding with sigmoid

output. An event is considered detected if the output is close to 1, otherwise the

window is considered silence.

3Results and papers are availiable at www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge
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Figure 6.12: Acoustic event detection results on D-CASE development set. Framewise
f-score, precision, and recall over all three scripts and both annotations com-
puted for the methods reimplemented [*], the bag of audio words approach
[PA12] and values from the literature.

Again, several of the implemented methods tested on the FINCA dataset were evalu-

ated. The Loudness, MFCC, and GFCC features were used. As the codebook creation

using supervised soft clustering (SQ-S) was clearly superior, only this method is used.

The codebook size was set to ng = 30, resulting in a total of 510 Gaussians for the 17

classes. The HMM was used both offline decoding the whole sequence and online de-

coding up to each time frame. The bag of super features method [PGF14] (ML BOF) and

the basic GMM approach were used as described in the previous section. The bag of

words approach was applied with MFCC-Delta and energy as features and hard vector

quantization with a codebook size of 1,000 as in [PA12].

Classifiers

The classifiers were run on all three skripts, fifty times each to capture the effect of

random initialization. The background parts of the other two scripts were taken for

training of the non-event class. Both sets of annotations were used separately, thus a

total of 300 runs was computed for each classifier. For the implemented methods, the

Loudness, MFCC, and GFCC features were used together with supervised clustering.

In order to replicate the “bag of words” approach [PA12], MFCC-Delta and energy was

used with hard vector quantization. Figure 6.12 on the current page shows the results

on the D-CASE development set.

The off-line HMM performs close to the other off-line methods with 61.3% f-score, 56.7%

precision, and 67.7% recall. [DHV13] report an f-score of 61.6% for their MFCC HMM

method on one of the annotations. The NMF based HMM achieved 65.2% f-score ac-

cording to [GVK+13]. The meta recogition HMM performed worst with 54.4% according

to [NVM13].

In the online event detection, the foreground-background GMM achieved an f-score of

56.3% both the HMM and ML BoF approach achieve a similar f-score of 55.9% and

55.4%, respectively. The difference in f-score is not significant. The precision and recall

differ significantly according to a permutation test (p < 0.001, N = 105) The HMM
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L MFCC GFCC 12.1 53.7 46.3 34.2 35.6 61.5 44.3 69.7 17.9 5.2 46.5 29.0 30.8 40.6 92.7 65.1 0.0 40.3

MFCC GFCC 18.4 59.5 31.7 3.3 31.8 56.9 42.2 68.9 16.5 6.0 50.3 28.2 27.9 44.3 92.6 61.0 0.0 37.6

L MFCC 1.5 48.9 47.9 38.7 30.7 63.3 43.5 60.4 15.7 6.5 48.6 10.7 29.4 41.8 92.5 44.9 0.0 36.8

MFCC 5.6 52.8 25.1 2.1 28.0 58.2 43.3 58.3 15.6 6.9 48.1 14.3 30.1 41.9 92.3 45.6 0.0 33.4

L GFCC 27.9 65.7 54.0 44.5 35.8 41.8 32.4 68.5 16.3 0.1 32.9 1.8 28.9 23.1 92.7 69.9 0.0 37.4

GFCC 33.3 74.1 46.1 0.0 23.4 40.7 30.3 65.5 16.3 0.4 46.9 1.6 27.9 24.5 92.6 80.1 0.0 35.5

perceptual [TN06] 1.1 49.2 43.6 31.5 31.4 53.5 48.8 50.6 20.2 4.0 39.5 8.8 32.0 44.8 92.4 23.2 0.0 33.8

Table 6.5: Classwise F score [%] for different feature sets for the event classes using the
ML BoF classifier on the D-CASE dataset. Colored between 100% � and 0% �.
Scores close to 1% of the best for the class are set in bold.

achieves this by lower precision and higher recall, it seems to handle the background

class slightly better. The GMM performs slightly worse, with significantly smaller f-

score, precision, and recall according to the permutation test (p < 0.001, N = 105). The

bag of audio words approach [PA12] performs worse than even the GMM, likely due to

the unsupervised hard quantization. The DNN baseline system with mel band energy

features [KSWP16] shows a large variance over different training runs. It is unable to

beat any of the GMM approaches, which is consistent with its performance in the D-

CASE 2016 challenge on Task 2. The training material seems to be insufficient.

Features and Classes

Again, it is interesting to see if the use of the GFCC features is helping. Table 6.5 shows

the results per event class and feature set for the ML BoF SQ-S classifier.

Averaged over all classes, the combination of loudness, MFCCs, and GFCCs performs

well. The combination is significantly better than loudness and MFCC or GFCC alone

according to a permutation test over the mean f-score over all classes for the 100 runs

(p < 0.001, N = 105). Adding the loudness feature also leads to significantly better

results (p < 0.001, N = 105) for MFCC, GFCC, and the combination of both.

The performance of the features sets varies largely depending on the event class. The

f-score for speech is increased from 45% to 70% with the GFCC. The combination of

loudness, MFCC, and GFCC is also close to 70%, so the trade-off of incorporating the

other non-speech oriented features is acceptable. The loudness feature actually decreases

the performance for speech.

Detection example

Figure 6.13 shows the detections of the BoF ML classifier for one run on the first skript.

There are a few misclassifications of the rather soft “pendrop” and “phone” classes,

the “pageturn” is sometimes missed. The “alert” and “laughter” classes are also mis-

classified. Speech is basically detected, although it is confused with “laughter” and

“clearthroat” at the on or offset. The “printer” is detected before it is audible according

to the ground truth annotations.
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Figure 6.13: Detections on D-CASE skript using the BoF ML classifier and L,MFCC and
GFCC features.

6.4.5 Summary

The proposed method for detection of acoustic events was thoroughly evaluated on data

recorded in the FINCA smartroom and data from the D-CASE challenge. The addition

of the GFCC to the MFCC features increases the overall performance, in the case of

the smartroom recordings more so than using more MFCCs. For both the smartroom

and the D-CASE dataset, the proposed feature combination outperforms the common

perceptual features [TN06].

A systematic comparison showed the superiority of the super-codebook estimation. Es-

timating separate codebooks for each of the event classes with separate applications

of the EM algorithm and concatenating them works better for HMM, GMM, and BoF

classification. The HMM is performing best in either off-line or online application. The

DNN baseline system used for comparison is outperformed by the proposed approach

as well as the GMM on both datasets. This is most likely due to the training data being

insufficient for the approach, cf. [GPF17].

The proposed BoF method achieves similar results to the online HMM. It clearly outper-

forms both the GMM and standard BoF approach. Further enhancement may be possible

through the use of multiple channels as shown in [KGPF16].
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6.5 blind speech enhancement

Speech enhancement is one of the key applications for acoustic sensor nodes. This can

be achieved by dedicated beamforming methods (see section 2.4 on pages 24–26). To be

applicable in practical scenarios, they need some type of control information. One funda-

mental type is the detection of speech activity over time. As the proposed BoF classifier

provides robust results in real time, it was applied for this task. The speech detection

was used to control a minimum variance distortionless response (MVDR) beamformer

realized as generalized sidelobe canceler (GSC) as described in Section 3.3 on pages 37–

38. The filter estimation assumes stationary noise and exploits the nonstationarity of the

speech signal in order to estimate it [GBW01]. The relative transfer function (RTF) of

this signal is estimated, thus the direction of arrivals (DoAs) of the speech and noise sig-

nals do not have to be known. Dedicated recordings with a single smartphone mockup

were done in the acoustic lab at Bar-Ilan university, cf. Section 6.2.5 on pages 93–96.

Up to two concurrent noises from different directions were added to speech signals. A

novel training strategy was devised to handle difficult scenarios with real noise types.

It was evaluated in comparison to simpler alternatives. Different scenarios with differ-

ent noise types and SNRs were used. The speech classification and its influence on the

enhancement performance were evaluated.

6.5.1 Features and Training

On the features level, only the addition of deltas is different from the event detection

method (see section 3.2 on pages 34–36). No higher level temporal augmentation was

found to improve the performance, neither using a spatial pyramid [PGF14] nor tempo-

ral feature augmentation [GPF15].

A dedicated training strategy was devised. As described in Section 3.3.2 on page 38,

the training data is divided into levels according to nonstationarity to form a hierarchy

of noises. The training data for each level is trained as individual classes. Additionally,

mixtures up to a certain level are used to train mixture classes. The introduction of

hierarchical mixing was found necessary in order to handle mixed noise cases well.

Using only high SNR mixtures of speech with noise was found important in order to

ensure high recall.

Each change was retracted individually and the resulting classifier was evaluated on the

test set. Figure 6.14 shows the speech classification results for different training strategies

0 25 50 75 100

∆, mix, high SNR

no ∆

no mix

all SNR

F1 [%]
0 25 50 75 100

precision [%]
0 25 50 75 100

recall [%]

Figure 6.14: Classification of speech using different training sets and features: the pro-
posed method using deltas, mixtures and only high SNR speech samples,
the same without using deltas, training without noise mixtures, and using
speech mixed in all SNRs (from top to bottom).
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detection Ω0 Ω1 Ω′2 Ω2 Ω′3 Ω3 Ω′4 Ω4

speech Ω0 92.3% 23.5% 23.6% 15.0% 44.8% 13.4%

stationary Ω1 0.5% 55.2%

Ω′2 1.1% 18.9% 30.3% 1.1% 0.6% 1.3%

mechanical Ω2 1.0% 1.2% 54.9% 10.1% 28.6%

Ω′3 0.7% 0.4% 44.7% 26.6% 30.1%

babble Ω3 1.0% 1.5% 14.3% 56.7%

Ω′4 0.1% 2.0% 0.2% 1.0%

nonstationary Ω4 3.1% 100%

Table 6.6: Confusion matrix for the different speech and noise classes. Detection results
over the full test set. Class type of the data is enumerated in columns, detec-
tions in rows. The cell color is scaled linearly between 100% � and 0% �.

and features. In order to assess the significance of the changes, a permutation test was

performed between the proposed method and each of the variants.

The proposed methods achieves a 89.6% precision and 93.8% recall in the mean over

all sequences, resulting in a mean f-score of 87.4% . When using no delta-features, the

performance is slightly worse. This effect was found to be slightly significant (p <

0.02, N = 105). Both training set changes resulted in a significantly worse f-score with

a mean value of 76.5% for no mixing (p < 0.001, N = 105) from a reduced precision to

a mean value of 76.5% (p < 0.001, N = 105). This is caused by more noise as speech

classifications. On the contrary, the use of training samples for speech mixed with noise

in lower SNRs significantly reduces the recall to a mean value of 85.4% (p < 0.001, N =

105). This is caused by more speech as noise classifications.

Table 6.6 shows the class-wise confusion for the chosen strategy and features. There is

little detection of speech (Ω0) as noise, the worst is non-stationary noise with 3% of the

speech data in the test sequences with keyboard noise (Ω4). All non-stationary noise

frames are classified correctly. This is important as the beamforming algorithm can not

be applied in this case, and has to be switched off. Some noises, especially babble noise

mixed with others, are wrongly classified as speech. This mostly occurs in the transitions

before or after the speech segments. The pure noise classes are classified correctly more

than half of the time. Especially in the mixed cases, there is some confusion within the

different stationary noise classes (Ω1 −Ω′3).

6.5.2 Scenarios

Figure 6.15 shows the speech classification results for the different scenarios using the

chosen training strategy and features. The results are worse for lower SNRs, as is to

be expected. Interestingly, the variation of the precision is slightly higher for the cases

with only one noise source. It seems to be slightly easier for the classifier to distinguish

speech from a mixture of noises. The all important recall is very close to 100% in all

cases except 0 dB SNR. Here it is still rather good with a mean of 87.2% and 91.0% for

one and two interfering noises, respectively. The precision is slightly worse for the high

SNR cases, meaning that more confusion of noise with speech takes place in these cases.

The mean precision degrades from 95.6% and 88.6% to 87.6% and 83.2% for one and

two interfering noises, respectively. This is understandable as high noise levels make the

6.5 blind speech enhancement 113



0 25 50 75 100

0 dB

6 dB

12 dB

0 dB

6 dB

12 dB

1
n

oi
se

2
n

oi
se

s

F1 [%]
0 25 50 75 100

precision [%]
0 25 50 75 100

recall [%]

Figure 6.15: Classification of speech using the proposed method for different SNRs and
number of noise sources.
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Figure 6.16: Improvement measured by mean and standard deviation difference in fwS-
NRseg for different noise scenarios computed over the three SNRs (0,6,12)
and both speech sequences, totaling six data points. The classifier is com-
pared with using oracle annotations of speech.

noise more prominent, even in the transitions. Together with the bad recall in the lower

SNR, this results in a mean f-score of 90.0% and 88.5% for the 0 dB case that goes up to

93.1% and 90.6% for one and two interfering noises, respectively.

6.5.3 Enhancement

Figure 6.16 shows the quantitative improvement in fwSNRseg for both a single noise and

noise mixtures recorded with the smartphone mockup (see section 6.2.5 on pages 93–96).

For a single noise source, the mean improvement in fwSNRseg ∆w over all noise types,
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excluding the keyboard, is 1.75± 0.89 dB. When using an oracle in the form of ground

truth annotations instead of the classifier, it is only slightly better with 1.87± 0.92 dB.

When looking at the individual results plotted in Figure 6.16a, the classification only

clearly mitigates the result in the case of pink noise. Only six out of the 84 test sequences

have a negative result, i.e., the fwSNRseg is decreased after the processing. This happens

in a few cases of ventilation and babble noise, both only when they are coming from

position s3. This is consistent with the fact that the results are slightly worse for this

position over all. In the case of ‘keyboard’ noise, the proposed method is not able to

consistently improve the fwSNRseg; In half of the cases, the fwSNRseg decreases. As

the presence of this kind of noise is detected, the algorithm can be switched off.

When two different noises are coming from different directions, the task is more difficult

as the adaptive noise canceler (ANC) has to cancel them both. The mean improvement in

fwSNRseg is 1.09± 0.76 dB compared to 1.21± 0.74 dB with the oracle, cf. Figure 6.16b.

There is a clear improvement over all cases. In seven out of the 48 test sequences, the

fwSNRseg is slightly worse after the processing.

The proposed method clearly suppresses the noise while very little distortion is intro-

duced to the speech signal.4 Figure 6.17 shows an application of the method on one

of the test signals. The classification and output signal for both oracle and classifier are

shown. As the speech detection is very close to the ground truth, there is little difference

in the output.

6.5.4 Summary

A fully blind system for speech enhancement with multiple microphones was proposed.

The BoF classifier is used to provide the control information for a beamformer.

The classifier performs very well in most cases, as speech and non-stationary noise

are classified with high accuracy. The training strategy of using classes of mixtures is

able to generalize well enough. There is some confusion between the mixed classes and

their counterparts, which is not relevant for the application. Overall the idea of using

mixtures of different noises in the training is required to handle the overlapping noises

in practice. By training only speech with high SNR in mixtures with the various noises,

the misclassification of speech as noise was minimized. This is vital as this would lead

to cancellation of speech. An additional guard margin around the speech segments was

introduced to avoid this. As the speech enhancement quality is very close to using the

ground truth instead of the classifier, successful automation was achieved, making the

system truly blind. As the system already uses a sensor node with multiple microphones,

the performance may be enhanced using multiple microphone information [GPKM14,

PMH+15, KGPF16].

There is a solid improvement achieved by the proposed method for a single noise source

and for two noise signals from different directions even in 0 dB SNR. The speech en-

hancement quality is good, as a gain in fwSNRseg of 1-3 dB is achieved. This is en

par with state-of-the-art results; Cuachi et al. [CKR+15] showed a similar improvement

for an MVDR beamformer using eight microphones on the evaluation set of the reverb

challenge.

In the case of highly non-stationary noise, there is little improvement by the proposed

method. This is expected, as the filter estimation assumes the noise to be stationary.

Since the classifier detects this situation, the ANC adaptation can be switched off.

4Audio samples available at ✇✇✇✳❡♥❣✳❜✐✉✳❛❝✳✐❧✴❣❛♥♥♦t✴s♣❡❡❝❤✲❡♥❤❛♥❝❡♠❡♥t✴s❛♠✶✻
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(a) input signal at the first microphone (w = 3.98 dB)

(b) oracle annotations and output signal (w = 7.19 dB)
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(c) detections and output signal from blind speech enhancement (w = 7.09 dB)
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Figure 6.17: Spectrograms of speech from s1 distorted by ‘factory’ noise from s3. Input
signal (a), output using oracle ground truth annotations (b), and output
of the proposed method (c). Classification is shown on top of the output
signals, speech in green (�) and noise in blue (�).
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6.6 single node speaker localization

The DoA localization method [PHF10] was extended with probabilistic clustering via

the EM algorithm according to computational auditory scene analysis (CASA) principles

[PF13]. The method described in Section 4.2 on pages 54–58 is used for two tasks within

this thesis. First, to provide detection of speech segments with DoA measurements for

the geometry calibration. Second, to provide running DoA and spectral estimates for

the subsequent tracking with the acoustic sensor network (ASN).

In this section, the method is evaluated towards these goals. First, an encompassing

simulation is used to investigate the robustness against reverberation and concurrent

speakers. Second, it is applied to different recordings in smart rooms to show its ability

to handle moving and concurrent speakers and detect valid speech segments in real

situations.

6.6.1 Simulation

For systematic evaluation, a single node was simulated using the ISM method with

a shoe-box model as described in 6.1.1 (p. 89). An uniform circular array with eight

microphones and a diameter of 10 cm was placed in the middle of a 5× 6× 2.5 m room.

Speakers were placed at seven positions in 1-2 m distance at −170◦, −120◦, −70◦, −20◦,
30◦, 80◦, and 130◦ as shown in Figure 6.18. Snippets of eight seconds from three different

anechoic recordings were used as speech data. The first two are of male and female

speaker reading a text in normal voice, the third one is a theatrical performance with

high volume modulation.5 The reverberation time T60 was varied between 0 and 2 s.

DoA localization

The individual speaker signals were used to compare the proposed method with its

predecessor and the steered response power with phase transform (SRP-PHAT). The

0.5m 1.0m 1.5m 2.0m

Figure 6.18: Simulated speakers around a circular array.

5Courtesy of the university of North Carolina school of arts, sound stage test recordings
http://faculty.uncsa.edu/dandp/romneyj/testrecordings/ 12.09.2016
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Figure 6.19: Localization error of a single speaker using different localization methods
for a single node at varying reverberation times.

default parameters were used (γ = 0.5, tg = 6 dB, te = −40 dB). Given that the proposed

method is able to work with comparably small time windows, both a 0.1 s and a 0.5 s

sliding window were used for all methods. Figure 6.19 shows the resulting angular

localization error ǫa and the number of missed detections.

Using the smaller time windows, only the proposed method is able to localize the speak-

ers consistently with below 10◦ error up to very heavy reverberation of T60 = 2 s. This

is achieved by rejecting about half of the time windows as non-reliable. Both the non-

probabilistic peak over average position (PoAP) method and the SRP-PHAT accept more

time windows, which results in higher angular errors. It may be possible to improve their

performance by adaptive thresholding. This is not necessary for the proposed method.

The gain estimation and probabilistic clustering handle all scenarios well.

When the window size is increased to half a second, all methods perform reasonable.

As in these simple scenarios the speaker is always the strongest signal, choosing the

maximum correlation is sufficient.

Speaker counting

To assess the ability to detect concurrent speakers, ten mixtures with up to five simulta-

neously active sources were generated from the simulated data. For the case of a single

speaker, the seven positions were used individually. The PoAP EM method for DoA

localization was applied to all mixtures with 0.5 s time windows and the default param-

eters. Table 6.7 on the next page lists the number of speakers found.

A single speaker is found in all cases. Up to three concurrent speakers are found in

moderate reverberation. Four or five speakers are only found consequently in mildly

reverberant conditions. This may be due to the fact that the spatial likelihood saturates

with artifacts. As the reverberation increases, there are more missed detections due to

reverberation artifacts until speakers are not found in the whole 8 s sequence. Figure 6.20

illustrates the effect of increased reverberation on a choice of three concurrent speakers.
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speakers \ T60 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

2 100.0% 100.0% 100.0% 97.5% 92.5% 82.5% 77.5% 71.1% 65.8%

3 100.0% 100.0% 100.0% 93.3% 86.7% 77.2% 70.2% 63.2% 50.9%

4 100.0% 100.0% 95.8% 76.4% 72.2% 57.4% 48.4% 41.7% 34.6%

5 97.5% 100.0% 76.2% 56.2% 40.0% 31.3% 27.5% 25.3% 25.5%

Table 6.7: Single node detection of concurrent speakers. Percentage of detected speakers
for different reverberation times and number of speakers.
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Figure 6.20: Localization of concurrent static speakers in simulation with the PoAP EM
method. The spatial likelihood before EM clustering is shown in gray in the
background.

6.6.2 Smart room recordings

The method was tested with smart room recordings for the main objective of detection

and localization of speech activity. It is compared to the SRP-PHAT approach. Addi-

tionally, recordings from the AV16.3 dataset (see section 6.2.2 on page 92) were used to

compare to the cumulative steered response power (C-SRP) method. The data is not ideal

for the PoAP model for two reasons: First, it is sampled only at 16 kHz giving poorer

phase resolution and second, the microphone array has a larger diameter of 20 cm which

induces more spatial aliasing.

Speech detection and localization

In order to test the ability of the proposed method to find speech segments for the

geometry calibration, it was run on sequence #2 and #4 where a single speaker talks from

different static position towards the table with the microphone arrays. The PoAP EM was

applied with 0.5 s time windows and the default parameters. For comparison, the basic

SRP-PHAT approach was used as well with a window size of 0.5 s. As the SRP-PHAT

requires additional speech detection, the best possible performance was approximated

using an oracle threshold, below which localizations were discarded as non-speech. The

threshold was selected so that it minimizes the harmonic mean of misses and false

alarms on the given sequence. The overall DoA error was computed as well as the

precison and recall as described in Section 6.3.2 on page 97. Table 6.8 lists the results.
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sequence speakers method εa precision recall

SRP-PHAT 2.57± 8.42 71.3% 98.3%

SRP-PHAT, oracle th. 2.54± 8.41 74.7% 98.0%FINCA #2 1 static

PoAP EM 1.77± 1.46 92.6% 92.1%

SRP-PHAT 3.59± 5.18 70.9% 93.6%

SRP-PHAT, oracle th. 3.59± 5.18 72.6% 93.6%FINCA #4 1 static

PoAP EM 2.47± 2.08 86.5% 91.6%

SRP-PHAT 7.35±27.28 53.3% 94.3%

SRP-PHAT, oracle th. 3.97±17.68 58.7% 94.3%

C-SRP [OFK13a] 1.64± 1.23 96.0% 64.3%
AV16.3 #01 1 static

PoAP EM 1.98± 1.64 91.4% 95.3%

SRP-PHAT 3.08± 4.41 58.3% 96.1%

SRP-PHAT, oracle th. 3.08± 4.41 58.7% 96.1%

C-SRP [OFK13a] 3.46± 2.46 97.3% 94.8%
AV16.3 #11 1 moving

PoAP EM 3.10± 2.91 78.7% 96.1%

C-SRP [OFK13a] 1.75± 1.68 100.0% 46.9%
AV16.3 #18 2 moving

PoAP EM 3.09± 2.76 100.0% 44.0%

Table 6.8: Single node localization of a speakers talking from different positions towards
the node in conference rooms.

The proposed method achieves best DoA accuracy in both sequences recorded in the

FINCA, about 1◦ less error than the SRP-PHAT even with oracle information. The SRP-

PHAT produces more false alarms, resulting in lower precision.

In order to allow for comparison with the literature, the methods were run on sequence

#1, #11 and #18 of the AV16.3 corpus [LOGP05]. For this sequences, the output of the

C-SRP method was provided by the authors [OFK13a].

In the fist sequence, a single speaker again utters two sentences at different static po-

sitions. In Figure 6.21 the localization results from the different methods is visualized.

It can be seen that the SRP-PHAT also localizes a laptop fan present at around 100◦ in

the speech pauses. Both the C-SRP and the proposed method do not suffer from this

problem, as they include speech detection. The C-SRP has more misses, which might

also be an effect of the speech classification step in that approach.

In sequence # 11, a single speaker moves his head very rapidly while talking continu-

ously. Here we can see the ability of the methods to follow a moving source. All methods

perform good, as the speed is not too fast nor is the movement too irregular for the 0.5 s

time window, cf. [TR16].

In sequence # 18, two speakers move their heads together till touching two times while

trying to talk continuously. As the ground truth assumes constant speech activity that is

not always discernible, misses are expected. The straightforward SRP-PHAT approach

could not be applied as it can only localize a single speaker at a time. The proposed

approach shows a slightly higher angular error compared to the C-SRP as it does not

follow the head movements as closely. Overall, the performance is quite similar with

just a few more missed detections.
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Figure 6.21: Localization of static speaker in AV16.3 sequence # 1

Speech segment identification

After the frame-wise EM, speech segments were automatically identified as consecutive

detections over more than 2 s with an angular distance of less than 5◦ and a time to

live (TTL) of 1 s. Table 6.9 lists the results for all three nodes in FINCA recordings with

static speech from various positions. All positions were found with no false alarms. The

smaller precision in #4 may be the result of head movement not captured by the ground

truth. Figure 6.22 shows the segments found.

6.6.3 Summary

The PoAP EM DoA localization method is designed to automatically detect speech activ-

ity from an unknown number of sources. It was shown to be robust against reverberation

in simulation with reverberation times up to 2 s.

When localizing a single speaker, the proposed method can localize correctly with about

5◦ accuracy even in short time windows. Both the gain estimation and probabilistic

clustering make it more robust than its predecessor or the SRP-PHAT.
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Figure 6.22: Speech segment detections of a static speaker in the smart room in sequence
#4 with the PoAP EM method using a single node.

sequence precision recall segments found

FINCA #2 95.4%, 94.4%, 90.9% 94.9%, 95.8%, 95.8% 100.00%, 100.00%, 100.00%

FINCA #3 95.9%, 96.7%, 94.3% 81.4%, 86.0%, 84.9% 100.00%, 100.00%, 100.00%

FINCA #4 88.7%, 87.4%, 86.0% 93.2%, 91.9%, 93.6% 100.00%, 100.00%, 100.00%

FINCA #5 97.8%, 99.6%, 98.2% 82.4%, 80.4%, 80.4% 100.00%, 100.00%, 100.00%

FINCA #6 98.2%, 98.2%, 99.2% 89.5%, 88.5%, 83.4% 100.00%, 100.00%, 100.00%

Table 6.9: Speech segment identification results for smart room recordings in the FINCA
for all three arrays.

Unlike the SRP-PHAT, the proposed method is able to automatically detect speech from

one or more concurrent speakers due to its neuro-inspired pre-processing and CASA

based integration. Up to three speakers are detected in low to moderate reverberations.

This is likely sufficient for many realistic scenarios, as overlap between more than three

close talking speakers is rather unusual.

The detection and localization ability is also shown in application to real recordings from

both the FINCA and the AV16.3 corpus. Fewer false alarms and comparable misses are

achieved than when using the SRP-PHAT, even with an oracle correlation threshold as

voice activity detection (VAD). This method would require a more reliable VAD, while

the proposed method works as is. The results for the C-SRP on the AV16.3 data are

similar to the proposed method. The speech classification included in that approach

works sufficiently as well [OFK13a].

Most importantly, the PoAP EM approach allows to identify speech segments from static

positions with good accuracy in real recordings. There are few false detections as local-

izations caused by footfall noise and other noises are discarded when they occur outside

a constant speech segment. These segments are the basis for the geometry calibration

method evaluated in the next section.
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6.7 sensor node localization

The automated geometry calibration of ASNs is the central task discussed in this thesis.

Multiple methods were developed to solve it in different scenarios. They all employ the

PoAP EM DoA localization evaluated in the last section.

First, a multimodal scenario, where video cameras in fixed locations are used to localize

the speaker (see section 5.3 on pages 75–78). It was evaluated in a number of simulations

and smart room recordings, as described in section 6.7.1 and 6.7.2.

Second, an acoustic scenario where the speaker positions are unknown is addressed

(see section 5.4 on pages 80–83). Here not only the DoA measurements, but also the

time difference of arrivals (TDoAs) between the nodes are employed. To make sure

that the assumption of air conduction and the resulting proportionality of time and

distance are correct, other types of sounds should be rejected by the event or speech

detection method. The off-line methods for the acoustic calculation will be evaluated

with systematic simulations and real recordings in section 6.7.3 and 6.7.4. The online

method for acoustic calibration will be evaluated using a recording from a meeting in

section 6.7.5.

The recordings made in the FINCA allow to use the same recordings for both scenarios.

Using this, the methods developed will be compared to each other and an online method

from the literature in section 6.7.6.

6.7.1 Simulation of the multimodal approach

In order to test the viability of the method, several simulations were performed. All

simulations used the microphone configuration in the smart room and the 10 person

positions located around them in recording #2. The positions were chosen with regard

to a conference scenario, either sitting at the table, standing near the table or near the

whiteboard. Localization errors were simulated using Gaussian distributed random off-

sets with zero mean and around a predefined RMS value. All simulated errors were

generated as described in Section 6.1.2 on page 90. For each configuration investigated,

100 such errors were generated for each of the three nodes, resulting in 300 runs. Over

these, the actual RMS was deviated below 30% from the given value.

The method estimates the absolute geometry of each node individually. While J = 3

speaker positions are sufficient for estimation of the two dimensional position and ori-

entation, it has been observed that using more positions increases the robustness. Rather

than using all positions at once in one big set, multiple randomly chosen subsets can

be even more beneficial. This aspect will be first investigated. The number of position

sets and positions per set were varied for a simulation with an RMS of ǫl = 20 cm and

ǫa = 4◦. These values correspond to the error found in practice by the localization al-

gorithms used. Then the measurement errors themselves were varied to investigate its

effect on the calibration accuracy.

Number of position sets

Assuming a zero-mean distributed error of the localizations, it is clear that the average

error for multiple position sets will decrease with the number of sets used. Figure 6.23

on the next page shows the geometry estimation errors for position ǫr and orientation

ǫo. The mean of different numbers of sets N for estimations with J = 6 positions was

computed over 128 choices.
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Figure 6.23: Estimation error and its standard deviation for the mean from a different
numbers of position sets Q of J = 6 positions. Based on 100 simulations with
a localization error of ǫl = 20 cm and ǫa = 4◦ for each of the three nodes.
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Figure 6.24: Estimation error for different numbers of positions J in the sets using the
mean of Q = 64 choices and a Q′ = 16 consensus. Results for 3x100 simula-
tions with a measurement error of ǫl = 20 cm and ǫa = 4◦.

As the problem is not necessarily convex for erroneous measurements, the choice of

the Broyden–Fletcher–Goldfarb–Shanno algorithm could be suboptimal. In order to in-

vestigate this, the differential evolution was used on the same simulations in place of

the bounded gradient descent. The results were almost numerically identical and not

significantly different for any configuration (p > 0.2, N = 250, 000).

The estimation error decreases with the number of position sets used. Each increase in

the number of sets lead to significantly better results according to a permutation test

(p < 0.001, N = 250, 000). It is also lower than the error of the initial measurement, as

the different errors compensate each other.

Number of positions

The number of positions J used in the set was varied from three to all ten in the next

experiment. Q = 64 sets were chosen, and the Q′ = 16 estimates closest to the median

were used as consensus to compute an improved estimate. Figure 6.24 shows the result-

ing errors using either the consensus or the mean. Again, the evolutionary optimization

was run in comparison on the same data. The results were again almost identical and

showed no significant difference according to permutation tests (p > 0.7, N = 250, 000).
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Figure 6.25: Estimation error of orientation ǫo and absolute position ǫr and its standard
deviation for different audio and video localization errors ǫa, ǫv. The mean
and standard deviation over 3x32 simulations is plotted for both the mean
and consensus method for sets of size J = 6.

The error decreases up to J = 7, 8 out of the ten positions, then slowly rise again. Using

all positions jointly (shown in gray) performed worse than J = 5− 9. The differences

were found significant except between J = 7 and J = 8. This shows that using subsets

increases the robustness of the approach.

The consensus has a s smaller position error than the mean for small sets J = 3, 4 while

for bigger sets the mean is better as the zero mean errors cancel each other out. This

does not necessarily hold for other error distributions.

Measurement error

In order to investigate the influence of measurement errors, different audio localization

errors ǫa = 0, 2, . . . , 10◦ and video localization errors ǫl = 0, 10, . . . 50 cm were simulated.

N = 64 sets of positions and a N′ = 16 consensus were used with J = 6. The resulting

geometry estimation errors are shown in Figure 6.25. For all simulations, the orientation

error ǫo is lower than 3◦, which is beneficial for localization target applications, since

the triangulation quality decreases rapidly with angular errors. The visual localization

error ǫv translates to a position estimation error. As the result is averaged over several

positions, the individual localization errors cancel themselves out partially. The result-

ing position error is well below half the visual localization error. The influence on the

estimated orientation is similar but even less strong, with about one degree orientation

error for ǫv = 30 cm.
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Figure 6.26: Calibration results for the second array in the multimodal approach for
different consensus strategies. Mean and standard deviation are plotted as
the number of runs is limited.

6.7.2 Multimodal smart room recordings

Two recordings with both cameras and microphone arrays were used to test the multi-

modal calibration approach. Sequence #2 with the speaker taking up ten positions and

sequence #4 with the speaker at a total of 19 positions. The DoA localization method (see

section 4.2 on pages 54–58) was applied in order to determine speech segments and the

DoA of the speaker at the arrays. Time segments with low angular deviation in all the

arrays were grouped as described in Section 4.2.3 on page 58. The mean DoA estimates

of the positions had an error of ǫa = 3.00◦ and 3.58◦ over all arrays, respectively. For

each of these time segments, the visual localization using histograms of oriented gradi-

ents (HoG) descriptors and background subtraction filtering was applied to the camera

images [Bri13]. As the speaker was not found in the camera image at all positions, only 7

and 16 positions could be used for the calibration algorithm, respectively. The Euclidean

localizations had a mean RMS error of 16.7 and 21.9 cm, respectively.

Figure 6.26 shows the results using different positions set counts J for both sequences

using either the weighted mean or consensus. Both the position and orientation error

are plotted over random choices of position sets.

Due to some big errors in the visual localizations for sequence #4, the mean performs

badly up to a position set size of 6. The consensus is much more robust against this kind

of error. Here good results are already achieved at a set size of 4.

The results for the more concise recording #2 are generally better. This reflects the fact

that a well organized calibration sequence with close and distributed positions is not

only sufficient but favorable for the calibration task. Below 10 cm location error and

around 1◦ orientation error are readily achieved. In contrast, the longer sequence #4

leads to slightly worse calibration accuracy. Around 15 cm and 1.5◦ are achieved. Even

if the outliers are removed by the consensus method, the overall worse measurement

accuracy has a negative effect that is not fully compensated by the use of more positions.
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(a) Sequence #2: ǫr = 8.2 cm, ǫo = 0.9◦
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(b) Sequence #4: ǫr = 14.7 cm, ǫo = 0.6◦

Figure 6.27: Multimodal calibration of sequence #2 (top) and #4 (bottom). The 10 and 19

speaker positions and the 7 and 16 visual localizations are shown along with
the array localization in the FINCA. The consensus of J = 5 positions sets is
used, all estimates used in the consensus are plotted together with the final
estimates for each of the three arrays in red, green, and blue, respectively.
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Figure 6.27 shows the result of a single calibration run for both sequences along with

the visual localizations. The outlier in the visual localizations for sequence #4 is clearly

visible. The array positions results are more strongly biased which may be the result of

the bias introduced by errors in the visual localization.

6.7.3 Simulation of the acoustic approach

Several simulations were performed to investigate the properties of the acoustic geome-

try calibration approach (see section 5.4 on pages 80–83). The simulations were all based

on the ground truth data of sequence #1. First, the different optimization methods were

applied in comparison. Second, measurement errors were simulated to determine the

influence on the accuracy of the method.

Optimization methods

Two different optimization strategies were proposed, hierarchical grid search [PF14c]

and differential evolution optimization [PFG17]. As the optimization is different from

the multimodal approach, it is again interesting to see the influence of the position set

size. So, all possible set sizes J = 3 . . . 10 were used in the simulation. The discarding

of estimates with a high error function value was turned on and off for both methods.

Several runs with a normally distributed measurement error with an RMS of 4◦ and 5 cm

around the three-dimensional ground truth positions were computed. Up to 64 position

sets were used to compute the weighted mean. The results are shown in Figure 6.28.

It can be seen that the position error is very similar for all strategies. The thresholding

criterion improves the result when using all positions, which means that for several runs

of the grid search a worse overall estimate was found.

The orientation error is almost consistently better for the differential evolution optimiza-

tion. The thresholding has no visible effect, meaning that the target function values are

typically already lower than 10 cm. In the grid search case, the results improve though

the thresholding, showing that some bad solutions are found.

The computation times were measured using the python implementation on a core i7

processor. Four subsets were computed simultaneously on four cores. The differential

evolution optimization is faster to compute than the grid search. The latter is about one

order of magnitude slower. It can be seen that the subset size has a small influence on the

computation time necessary. This is the result of two effects working against each other.

While the computation of a larger set takes longer, there are less than the maximum 64

sets when choosing sets of size J ≥ 8 out of the ten positions. The single choice of all

positions was computed in around 10 s and 300 s compared to 500 s and 8,000 s for J = 7

with the differential evolution and the grid search, respectively.

Overall, there is a slightly better performance for the differential evolution optimization.

This method was chosen for the rest of the evaluation, as it provides more consistent

results with less outliers and is faster to compute. There is no clear choice for the number

of positions J in the sets.

Measurement errors

As with the multimodal approach, different measurement error values for both types of

measurement were simulated, cf. Section 6.7.1 on page 125. As the method does assume

a planar geometry, additional distance estimate errors are induced by the height of the

speaker relative to the table. Therefore, the simulation was done with the source placed
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Figure 6.28: Estimation error of absolute position ǫr and orientation ǫo as well as com-
putation times, means and standard deviations for different optimization
strategies. The acoustic geometry calibration applied to a simulation of sce-
nario #2 with random distributed errors of ǫa = 4◦ and ǫτ = 5 cm.

at table height as in sequence #1 and the speaker standing or sitting as in sequence #2.

The results are plotted in Figure 6.29. It can be seen that the method is more sensitive to

DoA measurement errors than the multimodal approach, cf. Figure 6.25 on page 125.

The planar assumption induces an additional position error of around 6 cm as can be

seen in the simulation of angular measurement errors. This reflects the shortening of

the TDoAs due to speaker elevation. There is no observable effect on the estimated

orientations.

Errors in the TDoA measurement do not affect the orientation estimation much, the er-

ror increases up to around 2◦ for an distance measurement error of 20 cm and does not

increase much for higher errors. They again induce position errors, as the measurement

error in the co-planar case. The effect is rather small as the error slowly increases to

around 10 cm for distance measurement errors of 50 cm. The effect of the source eleva-

tion becomes weaker for higher errors.

Errors in the DoA measurement cause both position and orientation errors. As the ge-

ometry is deduced over all arrays, it is understandable that the faulty orientation of

the arrays leads to a certain position offset. This offset increases with the DoA error to

about 6 cm for an DoA error of 8◦. The orientation estimate also degrades with increas-

ing DoA errors, it is below half the measurement error. Compared to the multimodal

approach, the effect of DoA errors is stronger, which is understandable as the geometry

is computed over all three arrays.
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Figure 6.29: Estimation error of orientation ǫo and absolute position ǫr and its standard
deviation for different angle and distance errors ǫa, ǫτ. The mean and stan-
dard deviation of the estimate provided by the differential evolution opti-
mization on all positions is plotted over a total of 100 simulations each. Both
a co-planar source and a standing and sitting speaker that is elevated from
the table plane was used for comparison.

6.7.4 Offline ASN calibration with real recordings

Several recordings with a single source directed towards the table in the FINCA (see

section 6.2.1 on pages 90–92) were used to test the acoustic calibration method (see

section 5.4 on pages 80–83). In sequence #1 a smartphone was used to play white noise

at table height, in the other sequences #2, #3, and #4 a human speaker was saying a

sentence from positions sitting in a chair or standing up in the room. In sequence #1

and sequence #2, the same ten positions were used. In #3 and #4 15 and 19 positions

were used, respectively. The additional positions were situated at the whiteboard further

away from the table. Table 6.10 summarizes the accuracy of the measurements and

the resulting geometry calibration error using differential evolution optimization on all

positions.

Again, the DoA estimation was used to automatically determine the time segments cor-

responding to the different positions (see section 4.2 on pages 54–58). The angular RMS

error was 4.4◦, 3.9◦, 7.3◦, and 5.4◦ with respect to the ground truth positions for sequence

#1 to #4, respectively. The slightly higher error for the latter sequences is probably caused

by the speaker being further away and the signals having higher reverberation.

The TDoA measurements based on SRP-PHAT had an RMS error of 3.4, 8.9, 19.5 cm

and 12.1 with respect to the two-dimensional ground truth positions for sequence #1 to

#4, respectively. The higher deviation in the human speaker case stem most likely from

his elevation. When computing the TDoA error with respect to the three-dimensional

ground truth positions, the RMS error is lowered by 4-6 cm to 4.5, 15.8 cm, and 3.3

for sequence #2 to #4. When using the PoAP spike representation in order to compute

the TDoA measurements, the RMS error with respect to the two-dimensional ground

truth positions is similar or better than the SRP-PHAT based estimate with 6.5, 19.5

and 10.2 cm for sequence #2 to #4. For the white noise it is slightly worse with 5.3 cm.
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measurement RMS calibration error

sequence T ǫa ǫτ ǫo ǫr

PoAP PHAT PoAP PHAT PoAP PHAT PoAP

#1 noise 10 4.44◦ 3.34 cm 5.27 cm 2.40◦ 2.01◦ 2.84 cm 2.73 cm

#2 speech 10 3.93◦ 8.92 cm 6.47 cm 2.79◦ 1.97◦ 5.94 cm 3.64 cm

#3 speech 15 7.28◦ 12.89 cm 12.96 cm 1.43◦ 1.48◦ 9.06 cm 8.90 cm

#4 speech 19 5.45◦ 12.06 cm 10.17 cm 1.35◦ 0.69◦ 8.92 cm 7.06 cm

Table 6.10: Error of the measurements used for acoustic geometry estimation with cali-
bration sequences and the resulting error of the calibration with differential
evolution optimization on all positions.

PHAT, J = 6 subsets PoAP, J = 6 subsets
PHAT, all positions PoAP, all positions
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Figure 6.30: Calibration results for the acoustic approach on dedicated calibration se-
quences recorded in the FINCA. The differential evolution optimization was
used and the weighed mean of estimates on random subsets of J = 6 po-
sitions or all positions were used to calculate the final geometry estimate.
Either the SRP-PHAT or PoAP data was used to estimate the TDoAs. In
sequence #1 smartphone was used to play white noise from 10 positions at
table height, in the other sequences #2, #3, and #4 a human speaker was say-
ing a sentence from positions sitting in a chair or standing up in the room
from 10, 15 and 19 positions, respectively.

This can be understood since the spike representation is not tuned for broadband noise

signals.

Figure 6.30 shows the calibration results using the differential evolution optimization.

Two methodical aspects were varied: First, either the weighted mean of estimates for

random subsets of J = 6 positions was used or the estimate was computed once over

all positions. Second, either the SRP-PHAT or the correlation of the PoAP spikes was

used to measure the TDoAs. The calibration error is about 2 cm and 2◦ for the noise

recording #1. When the human speaker is used instead of the smartphone, the posi-

tion error increases to about 6 cm. This is in line with the expected error resulting from

the TDoA estimates being shortened by the speaker’s elevation. The same effect was

seen in the simulation (see section 6.7.3 on pages 128–129). Using the sequences with

more speaker positions, the position error increases to around 10 cm while the orienta-
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tion error decreases slightly. Overall, the accuracy provided is more than sufficient for

most applications. The effect of the calibration on the speaker tracking performance is

investigated in Section 6.8.2 on pages 140–141.

The use of the sparse spike representation as shared information for the calculation of

the TDoAs does not reduce the achieved accuracy. In most cases the error is lower than

when applying the SRP-PHAT on the time signals. This may hint at more consistent

data.

The calculation time on a core i7 processor running at 3.4 GHz was 8-21 s when using

all estimates. Assuming four parallel cores sharing the computation of the 64 sets of

positions, it was 92-142 s for the subset method. As the subset-based mean is not clearly

better in terms of calibration accuracy and it is much faster to compute an estimate over

all positions, the latter seems preferable for dedicated calibration sequences.

6.7.5 Online ASN calibration

When using position subsets, the acoustic calibration can be performed online with a

growing set of measurements. After each speech event, solutions for new sets of posi-

tions and a new weighted mean estimate is computed (see section 5.4.4 on page 83). As

the amount of information to share is reduced by about two orders of magnitude when

using the PoAP spikes instead of the signals for correlation, this is the feasible choice

for wireless acoustic sensor networks (WASNs).

This method was applied to the meeting recording in sequence #7. Here, five people

entered the FINCA, greeted each other and then sat or stood at a random position while

talking to each other. The measurement of DoA and TDoA was done within the first

five seconds of each utterance. The computation in the nodes was simulated by running

the python implementation on a core i7 processor at 3.4 GHz. As the computation time

for the geometry with the differential evolution algorithm is around 10 s per set for

small sets on one core, multiple estimates can be computed between speech events. The

number of positions J in each set is fixed and the weighted mean estimate is computed

over random choices of such sets.

In order to investigate the influence of the number of positions in the subsets J = |Sk|, it

was varied between the minimal value of three up to seven. Likewise the population size

for the differential evolutionary optimization was varied. Table 6.11 shows the number

of sets evaluated #Sk, the time used to optimize one set of positions tǫ, the position error

ǫr and orientation error ǫo over 100 runs of the algorithm. The errors were computed as

average over the time of the meeting. The results are quite similar, showing the robust-

ness of the approach. Using small population sizes U lead to slightly higher errors, even

though much more individual solutions can be computed through the decreased time

required for each one. Position set sizes of 4− 6 perform well, beyond that the accuracy

begins to drop.

In order to visualize the algorithms behavior over time, in Figure 6.31 the speech events

and the calibration error are plotted for one run of the algorithm with J = 5 and two

cores. In order to provide an indication as soon as possible, the geometry calibration

process is started when three speech events are available. When there are five or more,

the nodes start collecting estimates for the weighted mean. In the initial phase with less

than six speech events, the error already decreases as the first speech events are rather

well localized. This can not be expected in general, though. When enough speech events

are measured for the weighted mean, the results are more reliable. The position error

has decreased to 7 cm and stays around this value for the whole meeting. In the time
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|Sk| U #Sk tǫ[s] ǫr [cm] ǫo [◦]

5 5 459±102 2.4±0.4 8.2±0.2 1.7±0.1

5 15 145±039 7.2±1.5 8.0±0.3 1.5±0.2

5 25 77±021 11.9±2.2 7.9±0.4 1.4±0.3

5 35 52±012 16.4±3.7 7.9±0.5 1.5±0.3

5 45 43±004 19.2±3.9 7.8±0.4 1.4±0.3

3 25 127±027 8.6±1.5 7.8±0.9 1.9±0.5

4 25 110±026 9.3±1.8 7.9±0.5 1.6±0.3

5 25 77±021 11.9±2.2 7.9±0.4 1.4±0.3

6 25 59±020 13.8±2.9 8.0±0.2 1.4±0.2

7 25 53±013 14.2±3.1 8.2±0.3 1.4±0.2

Table 6.11: Comparison of different parameterizations of the online calibration approach
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Figure 6.31: Online calibration. Realtime processing using the measurements (dotted
lines) to update the geometry estimate over the course of a meeting. The
resulting position errors are shown in the top graph, the orientation errors
on the bottom.

period of two to four minutes, the orientation error decreases from around 2◦ to 1◦ and

stays there.

6.7.6 Summary

Different approaches for the calibration of distributed microphone arrays were proposed.

A multi-modal approach, and an acoustic approach that can use different optimization

strategies. All methods use the DoA localization computed by the neuro-biologically

inspired approach described in Section 4.2 on pages 54–58.

The multi-modal method requires video cameras to be mounted at known positions,

therefore the applicability is limited to such conference room scenarios. It provides ab-

solute positions that can be directly used to perform, e.g., acoustic speaker tracking for

camera control. The use of a consensus over several random subsets leads to higher
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Figure 6.32: Comparison of different methods for array configuration calibration. Posi-
tion (left) and orientation error (right) for two calibration sequences with 10

and 19 speaker positions. The results for the multimodal and the acoustic
method with PoAP spikes and differential evolution are shown. The mT-
DoA method was evaluated for comparison.

accuracy and robustness. This is also reflected by the small influence of measurement

errors.

The acoustic method can only provide relative positions for the sensor nodes. Since

it requires only the nodes themselves, it is applicable in a range of ad hoc scenarios.

The differential evolution optimization provides better and faster results than the grid

based approach. The use of the PoAP spikes for correlation allows to reduce the amount

of shared information without reducing the accuracy of the method. Thus, the use of

the SRP-PHAT is not recommended. For calibration sequences, the use of all positions

in a joint optimization is as accurate as using position subsets, therefore the former is

recommended as it requires less computational effort. In the case of online calibration,

this is not so. The weighted mean over random subsets ensures the robustness against

outliers which are more likely in an unconstrained scenario. A continuously growing

set of estimates allows for real-time application.

In Figure 6.32 the results for two calibration sequences are shown in comparison. The

multi-modal approach is compared to the acoustic one. For the acoustic approach, the

PoAP spike correlation was used in conjunction with the differential evolution optimiza-

tion. Both the off-line and online version were run with position subsets of size J = 6.

All proposed acoustic methods calibrate with an error of 7 cm and around 1◦. From the

simulation, it is clear that the position error is partly due to the speaker’s elevation. Simi-

lar performance was achieved in the online application of the method during a meeting.

In the short dedicated calibration sequence #2, the position error is lower with about

4 cm. This is likely due to the speaker’s higher proximity to the nodes.

For comparison, the maximum time difference of arrival (mTDoA) and multidimen-

sional scaling (MDS) approach was re-implemented [PMH12]. It achieves a comparable

position accuracy. However, the orientation can not be estimated reliably from the micro-

phone positions. The orientation error is much higher than 5◦ when using singular value

decomposition (SVD) (as in [PMH11]) or minimum angular difference for alignment of

the known geometry.

As the multi-modal approach optimizes the array’s positions independently, the error in

measurement translates more directly. Additionally, the visual localization had a higher

error than the correlation based distance measurements. Thus, a higher position error of
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15 cm and 10 cm is observed. The multimodal approach has slightly better orientation

accuracy than the acoustic approach in the short sequence, the values are similar for the

long sequence.

It can be remarked that both proposed methods perform well within the accuracy re-

quired for speaker tracking (see section 6.8.2 on pages 140–141) and better than the

state-of-the-art methods working with speech, cf. pages 86–86.
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6.8 asn speaker tracking

In order to evaluate the multi speaker tracking method proposed for acoustic sensor net-

works [PF14a], several simulations and recordings in different settings were performed.

First, the effectiveness and robustness was investigated using a dedicated simulation

with a single speaker. The proposed weighted triangulation was compared to other

approaches. The effect of the number and position of sensor nodes was tested. The ro-

bustness against reverberation, transmission errors and jitter is shown. As the geometry

calibration method is the basis for employing the tracking in an ad hoc configuration,

the influence of geometry calibration errors was investigated.

Several recordings of human speakers in the smart room with three sensor nodes in the

table were used. The effect of speaker movement was investigated. By using recordings

with concurrent speakers, the ability to automatically detect the number of speakers and

associate the DoAs across the nodes is shown.

6.8.1 Triangulation error

One of the novelties introduced in the speaker tracking is the weighted triangulation.

The weighting function was derived from a simulation experiment. Two nodes were

placed 4 m apart and DoAs with intersection angles α were set with and without angular

errors ǫa.

r1 = [2, 0]T, r2 = [−2, 0]T, o1 = o2 = 0

θn,1 = 0, 1, . . . , 359, θn,2 = θ1 + α, α = 1◦, 2◦, . . . , 170◦

θ̂n,1 = θn,1, θ̂n,2 = θn,2 + ǫa, ǫa = 1◦, 2◦, . . . , 10◦
(6.17)

The source position without error sn,(1,2) and with error ŝn,(1,2) was computed by trian-

gulation as described in Section 2.1.3 on pages 14–15 using either θn,1, θn,2 or θ̂n,1, θ̂n,2,

respectively. The Euclidean distance between these two position gives the localization

error ǫl .

ǫl = ‖ŝn,(1,2) − sn,(1,2)‖ (6.18)

Figure 6.33 shows the resulting error and the reciprocal of the weighting function. It can

be seen that the sine reciprocal gives a reasonable fit, especially in the range of 0◦ to 90◦.
At the other end, angles close to 180◦, the metric error is smaller as the intersection is
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Figure 6.33: Triangulation error as function of the intersection angle from simulation
and the weighting function.
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closer to the nodes. While the reliability of the intersection decreases again above 90◦,
the absolute error decreases due to the proximity. Modeling this more exactly would

require a more complex weighting function taking the node distance into account. The

configurations of nodes considered in this thesis are not likely to produce angles close to

180◦, since the speakers would have to move in between nodes. The issue is not further

investigated here.

6.8.2 Room simulation

To evaluate the system’s basic properties and its fitness for the task, a number of exper-

iments were performed on signals computed by simulation. A rectangular 6.5× 3.5×
2.5 m room was simulated using the ISM with a shoe-box model as described in section

6.1.1 on page 89. Five nodes were placed in the inner part of the room at table height

and a single speaker speaks from 18 positions around the arrays as illustrated in Fig-

ure 6.34. The reverberation time was varied from 0 to 2.0 s in 0.25 s steps. According to

the approximation formula (2.2), the critical distance rD decreases to 0.3 m at T60 = 2.0 s.

The simulation was repeated seven times with different speech signals at the different

positions in order to make the results independent of the actual speech content. Each

speech event is 4 s long.

The tracking algorithm described in Section 4.3 on pages 59–60 was run on DoA local-

izations computed by the method described in Section 4.2 on pages 54–58 in a moving

window of 0.5 s with a time step of 0.25 s. In the experiments, the Euclidean localization

was not constrained by the actual room dimensions. However, positions farther than 9 m

from the nearest array were rejected automatically.

Triangulation

The first thing investigated is the triangulation strategy. Different methods were tested

with the multi-node simulation. The weighted triangulation introduced in this thesis is

compared to an unweighted combination of the pairs’ intersections. Additionally, the

two nodes with the highest signal amplitude were used as in [TKH14]. The idea behind
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Figure 6.34: Simulated room with five sensor nodes and a single speaker at 18 positions.
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Figure 6.35: Localization error and misses for a simulation of a single speaker tracked by
five sensor nodes at different reverberation times for different triangulation
strategies. Distribution over all speaker positions and simulation runs with
different utterances.

this is to use the closest nodes that most likely have the best angular estimates. Using

only two angles, triangulation is straightforward line intersection.

Figure 6.35 shows the two-dimensional localization error for different reverberation

times when using these three different modes for triangulation. In the bottom, the num-

ber of missed frames is plotted. A frame is counted as missed if there is no localization

or the speaker is further than 0.5 m away from the nearest localization.

The weighted triangulation has the lowest localization error, increasing from about 20 cm

at T60 = 0.25 s to about 50 cm at T60 = 2.0 s. The median of the number of misses is 0%

below T60 = 1.0 s and then steadily increases to about 60% at T60 = 2.0 s. The unweighted

triangulation already degrades to 1 m at T60 = 0.5 s on average and is significantly worse

in most scenarios (p < 0.001, N = 250, 000). The use of the two nodes with the highest

amplitudes is performing better, close in localization error to the weighted triangulation

for low reverberation levels. However, there are more missed frames. In both respects

it is significantly worse than the weighted triangulation between T60 = 0.75 and 1.75

(p < 0.01, N = 250, 000).

Node count and positioning

Not only the number but also the positioning of the nodes used has direct influence on

the result. Figure 6.36 shows the localization error for different subsets of the simulated

sensor nodes.

When only two nodes can be used, the accuracy is worse because the triangulation is

using close angles in some cases. Interestingly, the two nodes B,D that are close together

in the middle of the room perform far worse than the use of the nodes A,E that are

further apart. This is likely related to the larger intra-node distance. The fact that the

speaker’s trajectory is closer to A,E in a few more instances does not seem to be the major
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Figure 6.36: Localization error (top) and number of missed frames (bottom) of different
selections of nodes at different reverberation times over all simulations and
speaker positions.

influence since the co-linear nodes A,C,E spanning 5 m also achieve better localizations

than the three central nodes B,C,D with a maximum inter-node distance of 2 m. The

advantage of the bigger aperture is also reflected in the number of missed detections

which is clearly higher for the smaller choices. As the variation over the positions and

simulation runs is rather large, a permutation test only showed a significantly better

localization for the use of all nodes (A-E) versus the other configurations (p < 0.01, N =

250, 000) for T60 below 1.5 s.

Transmission failure of some nodes may temporarily change the number of used sensor

nodes. Depending on the conditions, not all nodes may be able to send their localization

at a given time step. In order to investigate the influence of the node count and the

robustness of the system, a fixed number of nodes were selected randomly for each

time step. Figure 6.37 on the following page shows the localization error ǫl for different

counts and reverberation times as well as the number of missed detections.

Again, using only two nodes performs significantly worse and the accuracy increases

with the number of nodes. Starting with three nodes, the median localization error is

below 0.5 m. The gain from using five over using four nodes is minimal. The miss rate

increases with the reverberation.

Drift and Jitter

Regardless whether the signals from the nodes are transmitted over wireless or wired

connections, by exchanging information every frame in real time and using the integra-

tion node’s clock as reference, drift can be avoided. Severe jitter of up to a time step

(0.25 s) may be the result of different clocks at the nodes or transmission delays. In or-

der to simulate this, random jitter with a given RMS was added to the nodes inputs

signals at T60 = 0.5 s. The results are shown in Figure 6.38. The tracking error shows no

significant increase, even if the jitter reaches unrealistic values that can not be caused by
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Figure 6.37: Localization error (top) and number of missed frames (bottom) of different
counts of randomly selected nodes at different reverberation times over all
simulations and speaker positions.
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Figure 6.38: Localization error and missed detections for different jitters between the
nodes at T60 = 0.5 s.

lack of synchronization alone, such as 400 or 800 ms. However, the number of missed

detections shows a slight increase. This is to be expected as there are DoA detections

missing when the nodes are out of sync. From a system design standpoint, we may

therefore conclude that jitter can be neglected as long as the nodes communicate at a

reasonable rate.

Geometry Calibration

One important practical aspect in the tracking with multiple arrays is the accuracy of the

geometry calibration. In order to find out the dependency, different calibration errors

were simulated using the three center nodes and all five at T60 = 0.5 s. One hundred

Monte Carlo trials were performed for fixed geometry errors as described in Section 6.1.2

on page 90.
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Figure 6.39: Localization error as function of Euclidean (left) and angular (middle) geom-
etry calibration error as well as calibration by the proposed method (right)
for three and five nodes at a T60 of 0.5 s. Box plots over 100 Monte Carlo
runs.

First, a fixed random displacement of the arrays was generated. Figure 6.39 (left) shows

the resulting localization quality. While a small error up to about 20 cm leads only to a

minimal small decrease of accuracy, at 50 cm the results deteriorate. When using only

the three inner nodes, the localization deteriorates much quicker. This may be due to the

fact that the zero mean array positions errors are in effect averaged by the localization

algorithm.

Secondly, the incorrect calibration of the angular position of the nodes was simulated.

Due to the use of triangulation based on the angles, small angular errors already de-

teriorate the localization accuracy significantly as is shown in Figure 6.39 (middle). An

error of 2◦ already decreases the accuracy by 20 cm and an error of 4◦ yields localization

errors beyond 1 m rendering the approach unfeasible. The compensating effect of using

more nodes is much smaller here.

Using the off-line calibration with evolutionary optimization (described in section 5.4

on pages 80–83), a calibration error of 11.2±2.0 cm and 1.3±0.4◦ was observed over 100

subset choices (J = 5). The localization was run with the geometry estimate obtained

from each choice. The resulting localization error is plotted in Figure 6.39 (right). The

accuracy achieved by the proposed calibration method with below 0.5 m is sufficient for

most tracking applications.

6.8.3 Smart room recordings

Several recordings were made in the FINCA with the circular arrays embedded in the

table. The ground truth annotations are based on floor positions and assume linear

movement, thus they do not reflect slight head movement or speed and position vari-

ations. For recall and precision calculation, a localization is considered correct if it is

within a typical person’s shoulder width of 0.5 m.

In sequence #8, one speaker starts talking while walking into the room. After that, three

speakers are talking concurrently. This is an extreme case which allows to investigate

the association by spectrum. With a strong threshold for the minimal spectral correlation

(ts = 0.9), no association errors occur. Figure 6.40 shows the tracking result.

The tracking was also applied to the two static speaker sequences #2 and #4. In order

to test the influence of the automated calibration, the node positions and orientations
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Figure 6.40: Tracking three concurrent speakers in the smart room.
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sequence ǫa [◦] ǫl [m] pr. [%] re. [%]

#8 measured 2.78±3.01 2.38±3.38 3.79±2.67 0.15±0.14 100.0 93.3

measured 5.16±2.65 2.21±2.48 3.24±3.23 0.25±0.19 100.0 93.8
#2

calibrated 5.14±2.65 2.72±2.91 3.21±2.82 0.30±0.16 100.0 91.4

measured 5.97±4.65 3.04±2.50 3.97±3.38 0.27±0.21 97.6 89.7
#4

calibrated 5.97±4.63 4.37±3.01 3.85±3.32 0.31±0.21 97.6 86.5

Table 6.12: ASN tracking results in the smart room

were derived from manual measurement as well as from the off-line calibration (J = 6,

evolutionary optimization) applied to the same sequence. Table 6.12 lists all tracking

results. The speaker is localized successfully at all positions. The automated geometry

calibration has little influence, precision and recall are almost the same. The position

error increases by about 5 cm.

6.8.4 Summary

The proposed speaker tracking approach for acoustic sensor networks was evaluated in

simulation and with real recordings. In simulation it was shown to handle even severe

reverberation levels of T60 > 1.0 s by maintaining 0.5 m accuracy in the majority of the

cases at the cost of an increased number of missed detections. The systematic compari-

son showed that the proposed weighted triangulation is outperforming other methods.

By randomly omitting node transmissions and introducing severe jitter, it was shown

that the method is very robust against these type of errors. The accuracy achieved by

the proposed calibration methods is good enough not to deteriorate the tracking perfor-

mance.

With actual smart room recordings, it was shown that the method is applicable in prac-

tice. Despite considerable reverberation, the proposed method tracks the speakers well

within the accuracy required for practical applications. The association by spectra can

handle concurrent speakers.
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6.9 combined experiment

In order to show what the methods developed for ASNs can achieve when working

together, another experiment was made that employs the event detection, geometry cal-

ibration and tracking together on the basis of sequences #5 and #6. In both sequences,

two speakers talk alternately while moving through the room.

Single node speech detection and localization

The neuro-inspired PoAP EM localization already includes a basic speech model by use

of the spectral spread in the Gammatone filters. To safely exclude non-speech events,

the acoustic event detection (see section 3.2 on pages 34–36) was computed on a single

microphone of each node. Localizations in time windows where the classifier does not

detect speech are removed. Table 6.13 shows the speaker localization performance in

comparison. The classifier increases the precision by removing non-speech events. The

identification of constant DoA segments used as preprocessing for the geometry cal-

ibration naturally has a low angular error with respect to the constant ground truth.

However, the classification based approach achieves the highest precision with an only

slightly increased angular variance. The recall is reduced by both the constant DoA

and classification filtering. This is of little consequence for the calibration, as there are

estimates for each positions.

Figure 6.41 shows the effect of filtering out non-speech events by event classification in

recording #6. Localizations in a time frame classified as speech are shown in green, while

other events, mostly ‘steps’ and ‘background’ are plotted in gray. It can be seen that

several non-speech events are filtered out, mostly footfall noise between the utterances.

Geometry calibration

Using the speech segments detected by the single node localization (see section 4.2 on

pages 54–58) on sequence #5, the geometry of the nodes was calibrated. The off-line

geometry calibration (see section 5.4 on pages 80–83) was run on recording #5 using 64

subsets (J = 5) and the evolutionary optimization. The resulting geometry had an error

of er = 9.8 cm and eo = 0.76◦.

sequence method ǫa precision recall

PoAP EM 5.69◦ 95.67% 81.04%

PoAP EM + const. seg. ident. 4.41◦ 96.40% 77.54%#5

PoAP EM + AED = speech 4.37◦ 98.74% 65.94%

PoAP EM 4.89◦ 83.59% 95.27%

PoAP EM + const. seg. ident. 4.39◦ 93.36% 89.70%#6

PoAP EM + AED = speech 4.51◦ 97.03% 85.57%

Table 6.13: Localization results for different methods of speech detection. The basic
PoAP EM method, added filtering by identifying constant segments and
added filtering by event detection. Mean values over all three nodes.
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Figure 6.41: Speech localizations filtered by event detection.

Speaker tracking and identification

Using the so-calibrated ASN, the proposed ASN tracking method was used to compute

tracks of the speakers in sequence #6. The speech-filtered localizations were used. The

resulting tracks are shown in Figure 6.42. The position error relative to the ground truth

is 0.36±0.17 m with 97.4% precision and 75.4% recall. Without the event detection it

is slightly worse with 0.37±0.17 m and 96.2% precision and 76.2% recall. The position

errors are not significantly different according to a permutation test. When using the

measured ASN geometry instead of the automatic calibration, the position error de-

creases to 0.27±0.17 m and 97.6% precision and 82.5% recall are achieved. This decrease

is significant (p < 0.001, N = 250, 000).

The ability of the event detection method to jointly identify the speakers was tested as

well. The two speakers were trained as individual speech classes along with the other

acoustic events. Each track computed from the tracking was classified and assigned the

corresponding speaker. Both speakers were identified correctly in all cases for all nodes.

This shows that it is possible to track and identify known speakers with the same method

used for event classification.

Summary & Discussion

The three proposed methods were used in combination with real recordings in the rever-

berant smart room. The single node localization was applied to identify speech events.

Then the event detection was used to filter out non-speech events. Here, superior pre-

cision compared to the heuristic identification of speech segments based on constant

DoAs was achieved. The angular variance is comparable.

In order to use the calibration in unconstrained scenarios, the classification is necessary

to exclude sounds not conducted by air, such as footsteps or chair movement. In the

combined experiment, the calibration was applied successfully once again. A very low

orientation error of below 1◦ was achieved. This is important in order not to induce large

triangulation errors in subsequent spatial processing.
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Figure 6.42: Speaker tracks computed using a combination of proposed methods. The
calibration was done based on the single node PoAP EM localization. The
tracking was performed with the calibration result. The speaker tracks were
assigned to the different speakers based on the classification.

The tracking was applied successfully based on the calibration. Using the classification

as pre-filter to exclude non-speech events sightly increased the precision. Compared

to measurement of the spatial node configuration, the automated calibration led to an

increased Euclidean position error. This is a direct result of the 10 cm position error of

the calibration. However, the error of 36 cm is still small enough not to impact most

applications.

The speakers were identified successfully by classifying the tracks. This is an important

result for practical applications of the ASN, as now not only the location but the identity

of the speakers is available. Whether the tracking result is used for speech enhancement

or camera control, specific speakers can be processed individually.

The overall combination of the proposed methods was demonstrated successfully with

recordings in a reverberant smart room. The location and identity of different speakers

was inferred automatically with the ASN. Thus it was shown that the proposed methods

can work together to provide information on the acoustic scene in real time.
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The open secret of real success is to throw your
whole personality into your problem.

George Pólya: How to Solve it (1957), p. 207

7 C O N C L U S I O N

The number of computation devices with communication links and acoustics sensors

around us is increasing. Thus, acoustic sensor networks (ASNs) are a growing platform

that opens the possibility for many practical applications. ASN based speech enhance-

ment, source localization, and event detection can be applied for teleconferencing, cam-

era control, automation, or assisted living. For this kind of applications, the awareness

of auditory objects and their spatial positioning are key properties. In order to pro-

vide these two kinds of information, novel methods have been developed in this thesis.

Information on the type of auditory objects is provided by a novel real-time sound clas-

sification method. Information on the position of human speakers is provided by a novel

localization and tracking method. In order to provide this kind of information within the

ASN, the relative arrangement of the sensor nodes has to be known. Therefore, different

novel geometry calibration methods were developed.

In the following, the individual methods and their validation in the evaluation will

be summarized. Thereafter, their common properties and combined application will be

addressed. A short outlook to future developments concludes this chapter.

Event detection

The proposed bag-of-features (BoF) event detection method is robust and fast while

achieving state-of-the-art results. It can be easily integrated in the overall ASN process-

ing. As the acoustic calibration relies on the propagation speed of sound, such a classi-

fication step is necessary to exclude other sound events. Since the underlying Gaussian

mixture model (GMM) approach is suitable for speaker identification, the same method

can be used to distinguish speakers when tracking them.

As shown in the evaluation, the novel combination of mel frequency cepstral coeffi-

cient (MFCC) and Gammatone frequency cepstral coefficient (GFCC) features leads to

higher classification accuracy. The introduction of supervised codebook training into

the BoF paradigm boosts the performance, so that the method clearly surpasses other

BoF approaches as well as the basic GMM method. Unlike state-of-the-art deep learning

methods, the proposed method can generalize well from limited training data. This is

important because the amount of data available is often constrained in practical applica-

tions.

In order to detect speech overlapped by noise, a dedicated training strategy was devised.

It creates a hierarchy of sound classes based on their stationarity. With this training, the

BoF approach is able to provide control information for a beamformer. This way, a fully
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blind speech enhancement system is realized. By incorporating the full room transfer

function, better speech enhancement is achieved compared to using only the direct path

to the speaker.

In the evaluation, the speech enhancement performance was compared to the achiev-

able optimum in classification. This was done by using the ground truth annotations

as oracle for the beamformer control. It was shown that the proposed method provides

similar performance in most cases. Even in cases with multiple directed noise sources

and low signal-to-noise ratio (SNR), a significant improvement in speech intelligibility

is achieved.

Speaker tracking

For speaker localization with a microphone array, the peak over average position (PoAP)

expectation-maximization (EM) method for direction of arrival (DoA) localization was

proposed. The neuro-biologically inspired method uses a dedicated cochlear and mid-

brain model, which make it robust against the reverberation found in indoor rooms.

It implicitly handles the concurrency of speech activity found in natural conversations.

An automated gain estimation was introduced that allows to use the method without

prior manual adaptation to the scenario. EM clustering based on computational audi-

tory scene analysis (CASA) principles was introduced that emulates the simultaneous

grouping according to spatial as well as spectral cues. Based on the localizations, the

speech segments required for the geometry calibration methods are detected.

The evaluation showed that the proposed PoAP EM method for DoA localization of

speakers is able to handle two or more concurrent speakers. It is robust against the

reverberation typically found in indoor environments.

The proposed method for speaker tracking in ASNs employs the PoAP EM localization

in each node. Each node shares probabilistic DoA estimates together with an estimate of

the spectral distribution with the network. As this information is relatively sparse, it can

be transmitted with low bandwidth. The information from all nodes is integrated accord-

ing to spectral similarity. By incorporating the intersection angle in the triangulation, the

precision of the Euclidean localization is improved. Speaker tracks are computed over

time.

With dedicated simulations, the tracking method was shown to be robust against trans-

mission errors and jitter. Its ability to track concurrent speakers was shown with record-

ings of real persons in reverberant rooms.

Geometry calibration

The central task of geometry calibration has been solved with focus on sensor nodes

equipped with multiple microphones. In addition to the off-line audio-visual and acous-

tic calibration methods, an online method employing a genetic algorithm with incremen-

tal measurements was introduced. By using the robust speech localization method, the

calibration is computed in parallel to the tracking. As speech events can be used, this is

possible without additional devices. Unlike previous methods that only infer the posi-

tioning of distributed microphones, the proposed methods incorporate the DoA and are

able to calibrate the orientation of the nodes with a high accuracy. This is very impor-

tant for all applications using the spatial information, as the triangulation error increases

dramatically with bad orientation estimates.
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The evaluation showed that both the audiovisual and audio only method can be applied

for off-line calibration. The subset sampling strategy makes it robust against measure-

ment errors. The resulting orientation accuracy was consistently 2◦ when the method

was tested with recordings in a smart room. The position error of around 10 cm is well

within the accuracy required for practical applications. When the method is applied as

basis for the proposed speaker tracking, the localization error increases only slightly

compared to using measured positions. The online method was shown to be able to

calibrate the ASN in real time. Thus it is possible to perform the calibration in parallel

to the speaker tracking.

Informed ASNs

All new methods are important building blocks for the use of ASNs. The online methods

for localization and calibration both make use of the neuro-biologically inspired process-

ing in the nodes which leads to state-of-the-art results, even in reverberant enclosures.

The high robustness and reliability can be improved even more by including the event

detection method in order to exclude non-speech events. When all methods are com-

bined, both semantic information on what is happening in the acoustic scene as well as

spatial information on the positioning of the speakers and sensor nodes is automatically

acquired in real time. This realizes truly informed audio processing in ASNs.

The combined experiment showed that all methods work in conjunction. The PoAP EM

localization provides the speakers DoA while the event detection reliably filters out non-

speech events. The so found speech events are the basis for the geometry calibration,

which provides the relative ASN geometry. Once the geometry is established, the local-

ized speech events can be combined to speaker tracks with the Euclidean tracking. The

tracks can be assigned to individual speakers by the BoF method.

Summary & Outlook

In this thesis, novel methods that enable employing smart devices in a collaborative way

as ASNs were developed. All methods were evaluated with recordings of real persons

in reverberant rooms, showing their practical applicability. By combined application, it

was shown that the methods work together in order to provide both classification and

spatial information to the network.

The novel methods enable a multitude of applications in ASNs. As such networks can be

built from smartphones, tablets, laptops, and hearing aids in an ad hoc assembly, these

can be applied in a growing number of everyday life situations.

For example, teleconferencing can be automated. In a meeting with multiple partici-

pants, the closest devices to the speaker can be used for audio pickup. Cameras can be

selected and steered automatically.

Another example is the improvement of distributed speech enhancement. The speech

detection and localization could be incorporated in a linearly constrained minimum

variance (LCMV) approach, allowing to selectively suppress or enhance speakers based

on their position and identity. Thus an ad hoc network of, e.g., smartphones and hearing

aids, can be used to provide enhanced speech to a hearing impaired person.

These examples illustrate how this thesis provides an important contribution that can

stay a part of practical applications. Therefore, the contribution of this thesis is not only

advancing the state-of-the-art in automatically acquiring information on the acoustic

scene, but also pushing the practical applicability of such methods.
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