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Abstract

We discuss standard classification methods for high-dimensional data and a small
number of observations. By means of designed simulations illustrating the practical
relevance of theoretical results we show that in the 2-class case the following rules
of thumb should be followed in such a situation to avoid the worst error rate, namely
the probability π1 of the smaller class: Avoid “complicated” classifiers: The indepen-
dence rule (ir ) might be adequate, the support vector machine (svm) should only be
considered as an expensive alternative, which is additionally sensitive to noise fac-
tors. From the outset, look for stochastically independent dimensions and balanced
classes. Only take into account features which influence class separation sufficiently.
Variable selection might help, though filters might be too rough. Compare your result
with the result of the data independent rule “Always predict the larger class”.

1 Introduction

In this paper we discuss typical classification methods in the context of the analysis
of high-dimensional data. This means that we assume many more features p than
observations n, i.e. p� n (cp., e.g., Weihs (2016)). Examples can be found in high
throughput biotechnology like in data acquisition platforms as micro arrays, SNP chips,
and mass spectrometers (cp, e.g., Kiiveri (2008)). As possible consequences, spe-
cialized classification methods are proposed (cp., e.g., Mai (2013), Tan et al (2014)) or
theoretical results concerning the performance of well-known classifiers are derived
(Bickel and Levina (2004), Fan et al (2010)). In this paper, we discuss implications of
this theory for classical methods in high-dimensional data.

In Section 2 we will consider theoretical results for standard classification methods
if p� n. In Section 3 we define our research questions. In Section 4 we construct
an experimental design for simulations to investigate the effects of different factors
on the error rate. We vary the classifiers, the prior class probabilities, the true error
rates, the correlations of features, as well as the asymptotic behavior of the Bayes
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error (constant vs. decreasing for p→ ∞). In Section 5 the corresponding simulation
results are discussed, in particular the convergence of error rates for p→ ∞. Noise
features are ignored until Section 6 where we briefly discuss the influence of noise on
classifier performance. In Section 7 we conclude.

2 Theory

2.1 Linear Discriminant Analysis

We start with a strong warning concerning the application of linear discriminant anal-
ysis (lda) in high dimensions derived by Bickel and Levina (2004). For the data struc-
ture, Gaussians N (µµµ1,ΣΣΣ), N (µµµ2,ΣΣΣ) are assumed in two classes, equal prior prob-
abilities π1 = π2 = 0.5, and n1 = n2 observations. Linear discriminant analysis (lda)
optimally fits this structure. The performance of lda in the case of p� n is discussed
by Bickel and Levina (2004), stating:

Let positive constants k1,k2,c be given. Consider feature distributions with

- true covariance matrix ΣΣΣ not ill-conditioned, i.e. 0< k1≤ λmin(ΣΣΣ)≤ λmax(ΣΣΣ)
≤ k2 < ∞ for λmax and λmin the maximal and minimal eigenvalues,

- Mahalanobis class distance ∆ =
√
(µµµ2−µµµ1)

T ΣΣΣ−1(µµµ2−µµµ1)> c > 0, and

- µµµ1,µµµ2 in a compact set.

Then, if p/n→ ∞, the worst case error rate of lda converges to π1 = 0.5, i.e.
asymptotical class assignment might be no better than random guessing.

Note that since p > n, the inverse of the estimated pooled covariance matrix does not
exist, therefore the Moore-Penrose generalized inverse is used instead in lda. Also
note that this statement is about the worst case error rate over all µµµ1,µµµ2,ΣΣΣ with the
mentioned properties. For applications, though, this asymptotical behavior should be
assumed if there is no indication for a special case with better asymptotical error rates
(for an example cp. Section 2.3).

2.2 Independence Rule

Noise accumulation is suspected to be one reason for the above adverse property
of lda. Therefore, a diagonal covariance matrix is often tried. An asymptotic result
for the corresponding so-called independence rule (ir) (linear discriminant analysis
with diagonal covariance matrix) is again given in Bickel and Levina (2004), under the
same distributional assumptions as for the asymptotic property of lda:

If p/en→ 0, i.e. p grows slower than en, then the error rate of ir is bounded by

Φ(−
√

K0
1+K0

∆) ≤ 0.5 for Φ the cumulative standard normal distribution function,

K0 = max
ΣΣΣ0

λmax(ΣΣΣ0)
λmin(ΣΣΣ0)

, ΣΣΣ0 := correlation matrix.

Note that this statement, again, refers to worst-case behavior since K0 is a maximum
over all possible correlation structures ΣΣΣ0. What matters, though, is that this statement
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leads to a possible superiority of ir over full lda for p� n.1

If ΣΣΣ0 = III, then K0 = 1 and ir is Bayes optimal (as expected) since the Bayes error
is Φ(−∆/2). If ΣΣΣ0 has eigenvalues→ 0 or→ ∞, then K0→ ∞ and the above bound
is Φ(0) = 0.5, as for full lda.

For normal distributions, ir is equivalent to Naive Bayes. However, Naive Bayes
(NB) is typically implemented non-parametrically. Therefore, for normal distributions
NB is expected to be inferior to ir.

2.3 Distance-Based Classifiers

Naturally, classification quality depends on class distance. Fortunately, perfect class
prediction is possible for so-called distance-based classifiers (Fan et al (2010)). A
distance-based classifier g is defined by two properties:

(a) g assigns an observation xxx to class 1 if it is closer to each observation in class 1
than to any observation in class 2.

(b) If g assigns xxx to class 1, then xxx is closer to at least one observation in class 1
than to the most distant observation in class 2.

For such classifiers, the following property is shown:

Let the data structure be XXX i = µµµ i + εεε , i = 1,2 the class index, εεε := (ε j), j =
feature index, ε j i.i.d. with expectation 0. (Note that this way the correlation
matrix is assumed to be ΣΣΣ0 = III.) Then, g achieves the error rate 0 asymptotically

for p→ ∞ iff D := ||µµµ2− µµµ1|| grows faster than p1/4. (Note that D = ∆ for
ΣΣΣ = III.)

This result is independent of sample size n.

Note that the property “D := ||µµµ2− µµµ1|| grows faster than p1/4” can be interpreted
as “all involved dimensions contribute sufficiently to class separation”.
Examples for distance-based classifiers are the k-Nearest-Neighbor classifiers (kNN),
the linear support vector machine (svm), as well as lda and ir for π1 = π2 = 0.5 (cp.
Hall et al (2008)). Therefore, the error rates not only of ir, but also of lda may converge
to 0 if ΣΣΣ0 = III and π1 = π2 = 0.5 (cp. with Section 2.1).

3 Research Questions

From the theoretical results in Section 2 we derived the following research questions
for the practical application of classification methods.

(1) How will the performance of the classifiers lda, ir, NB, 1NN, svm, and additionally
decision tree (tree) depend on the parameters p,π1, and others? Note that
decision trees are additionally included as a representative of classification rules
explicitly using only series of univariate rules, i.e. no linear combinations of
features.

Moreover, how do the classifiers behave for p→ ∞:

1For a graphic on the behavior of the error rate bound for different K0 see Bickel and Levina (2004).

3



(2) Will error rates of the classifiers converge to π1 < 0.5 for p→ ∞ if the Bayes
error is the same for each number of dimensions p?

(3) Will error rates of the classifiers converge to 0 for p→ ∞ for distance-based
classifiers if D := ||µµµ2− µµµ1|| grows faster than p1/4, but the involved features
are dependent?

(4) How do the classifiers compare concerning Bayes error approximation?

All the above research questions will be mainly discussed for the situation where
all observed features influence classes. Finally, we will discuss the behavior of
the classifiers in the case of noise features:

(5) How will the performance of the classifiers react to noise factors, i.e. to factors
not contributing to class separation?

4 Simulation Design

In this section we will develop the experimental design for our simulation.

4.1 General Design and two Cases

For the data structure, we choose the ideal situation for lda, i.e. 2 classes with in-
fluential features i.i.N (µµµ i,ΣΣΣ) distributed, i = 1,2,µµµ1 6= µµµ2, class 1 with probability
π1 ≤ 0.5. We distinguish two very different cases of Bayes error development (see
Section 4.5 for details):

A. The Bayes error, i.e. the classification difficulty, decreases for p→ ∞, i.e. clas-
sification gets simpler for p→ ∞. This is realized by including more and more
independent blocks of features with the same contribution to class separation.

B. The Bayes error is constant ∀p. Note that in this case the contribution of individ-
ual features to class separation is decreasing for p→ ∞.

4.2 Correlation Setting

For the p× p covariance matrix we assume a special structure, namely

ΣΣΣ := RRRρ;p :=


1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 ρ

...
...

...
. . .

...

ρ ρ · · · 1

=(1−ρ)IIIp +ρvvv1vvvT
1 ,0<ρ <1,vvvT

1 := (1 . . .1)

(see, e.g., Bickel and Levina (2004)). This leads to
ΣΣΣ−1 =RRR−1

ρ;p =
1

1−ρ
IIIp− ρ

1−ρ
1

1+ρ(p−1)vvv1vvvT
1 (using the Sherman-Morrison formula).

The eigenvalues of ΣΣΣ−1 are 1
1−ρ

((p−1)-times) and 1
1+ρ(p−1) −−−−→p→∞

0 (once). The

eigenvalues of ΣΣΣ are λi = (1−ρ), i 6= 1, and λ1 = 1+(p−1)ρ −−−−→
p→∞

∞. Therefore,
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K0 → ∞ in the error bound of ir and ir is not theoretically superior to lda (see Sec-
tion 2.2).

The structure of the covariance matrix can be generalized by blocking. For that,
we introduce p/b diagonal blocks of block size b.

Example: p = 6,ρ = 0.5,b = 3: ΣΣΣ =



1 0.5 0.5 0 0 0
0.5 1 0.5 0 0 0
0.5 0.5 1 0 0 0
0 0 0 1 0.5 0.5
0 0 0 0.5 1 0.5
0 0 0 0.5 0.5 1


.

For eigenvalue 2, there are eigenvectors (1 1 1 0 0 0)T,(0 0 0 1 1 1)T, and for
eigenvalue 0.5, there are eigenvectors (1 0−1 0 0 0)T, (0 1−1 0 0 0)T,
(0 0 0 1 0−1)T, (0 0 0 0 1−1)T .

In the general eigenstructure we have p/b eigenvalues 1+ (b− 1)ρ and p− p/b
eigenvalues 1− ρ (cp. Case B1 below). Eigenvectors can be constructed to lie in
bD-subspaces. In the case of no blocking, we have b = p.

Note that the sign of ρ may be changed in one dimension q ∈ {1, . . . , p} leaving
eigenvalues λi unchanged (see Section 4.4). However, this will not change the Bayes
rule for our choice of mean vectors µµµ1,µµµ2 as we will prove in Section 4.4. Therefore,
we will ignore this generalization.

4.3 Class Means

In our design, we would like to pre-specify the Bayes error rate f and the probability
π1 of class 1 at the same time. To achieve this, we fix w.l.o.g. the mean of class 1
as µµµ1 := 000, and the mean of class 2 µµµ2i so that the Bayes error rate is f ∈ (0,0.5),
where i in the index of the mean corresponds to the chosen discriminant direction, i.e.
of the ith normalized eigenvector eeei.
Let the projections on eeei be m1 := eeeT

i µµµ1 = 0≤≤≤eeeT
i µµµ2i =: m2i (w.l.o.g.). The class

variance in direction i is σ2
i = eeeT

i ΣΣΣeeei = λi = ith eigenvalue of ΣΣΣ, i.e., σ2
i = 1−ρ for

i > p
b and σ2

i = 1+(p− 1)ρ −−−−→
p→∞

∞ for i ≤ p
b . For our study, we only use i > p

b .

Then, for the Bayes error the following equation holds:

f = π1(1−Φ(
τi−m1

σi
))+(1−π1)Φ(

τi−m2i
σi

) for

τi :=
m1 +m2i

2
+

σ2
i log( π1

1−π1
)

m2i−m1
=

m2i
2

+
(1−ρ) log( π1

1−π1
)

m2i
,

since m1=0,σ2
i =1−ρ,

(1)

where τ represents the location where the densities of the two distributions intersect
(cp. Figueiredo (2004)).
From this formula, we derived numerical solutions for all relevant combinations of
factors f ,ρ,π1 with 0 < f < π1 ≤ 0.5 (see Case A below). Estimation of the linear
model for m2i on the features u1− f := (1− f )−quantile of the standard normal, σ =
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√
1−ρ , and π̃1 := 1− (1

2 log( π1
1−π1

))2, all their 2-factor interactions, and the one

3-factor interaction 2 in R (cp. R Core Team (2017)) leads to

m2i ≈−2.13952 ·σ +2.91430 ·u1− f ·σ +2.12119 ·σ · π̃1−0.89714 ·u1− f ·σ · π̃1

after elimination of non-significant features and interactions, leading to

0 < m2i(ρ, f ,π1)≈ 2
√

1−ρ u1− f −
√

1−ρ(2.2722−u1− f )

(
1
2

log(
π1

1−π1
)

)2

(using coefficients rounded to integers except the optimized 2.2722)

= m2i(ρ, f ,π1 = 0.5)−
√

1−ρ(2.2722−u1− f )

(
1
2

log(
π1

1−π1
)

)2

≤ m2i(ρ, f ,π1 = 0.5) if f ≥ 0.012.

Note that the estimated model is nearly exact (R2 > 0.999), so that the above argu-
ment not only leads to a nearly exact general formula for m2i(ρ, f ,π1), but also to a
proof that m2i(ρ, f ,π1)≤ m2i(ρ, f ,π1 = 0.5) for relevant error rates f .

For blocking, µµµ2 is set constant for all p/b blocks of size b. Let b = 2 · pη ,0 ≤ η <

1. Then, D := ||µµµ2− µµµ1|| = ||m2ibeeeib||
√

p/b = Θ(
√

p/b) = Θ(p0.5(1−η)). We
choose b so that 0.5(1− η) ≥ 1

4 (because of Section 2.3) using η = 0, 1
3 ,

1
2 , i.e.,

0.5(1−η) = 1
2 ,

1
3 ,

1
4 .

4.4 Theoretical consequences

We now derive theoretical consequences of our settings in Sections 4.2 and 4.3.

Generalization of Bickel and Levina (2004): For the Bayes error f , we have
seen relation (1). With π1 = 0.5 this leads to

f = 0.5(1−Φ(
m2i
2σi

)+Φ(
−m2i
2σi

)) = 1−Φ(
m2i
2σi

).

For lda (Bickel and Levina, 2004, p. 995), show that the argument of Φ, i.e. m2i
2σ̂i

P−→ 0

for p/n→ ∞(, leading to f P−→ 0.5 = π1). Since this result does not depend on π1,

we can show that τ̂i
σ̂i

= m2i
2σ̂i

+
σ̂i log( π1

1−π1
)

m2i
= m2i

2σ̂i
+

log( π1
1−π1

)

m2i/σ̂i

P−→ 0−∞ = −∞, i.e.

Φ( τ̂i
σ̂i
)

P−→ 0 for 0 < π1 < 1
2 . Therefore, with formula (1) the asymptotic behavior of

the estimated error rate f̂ can be characterized as f̂ P−→ π1(1−0)+(1−π1)0 = π1.
This generalizes the result of Bickel and Levina (2004), for lda in that we have shown
that the “worst-case error rate→ π1 for 0 < π1 ≤ 0.5, p/n→ ∞”.
Thus, for lda the asymptotic result might not be better than the data independent rule:
Always predict the larger class. This partly answers research question (2) in Section 3.

2m2i ∼ u1− f ∗σ ∗ π̃1 in R-notation
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Sign of ρ: One can show that the sign of ρ may be changed in one dimension
q ∈ {1, . . . , p} leaving eigenvalues λi unchanged.

Example: Let p = 6,ρ = 0.5,q = 2: Σ=



1 −0.5 0.5 0.5 0.5 0.5
−0.5 1 −0.5 −0.5 −0.5 −0.5
0.5 −0.5 1 0.5 0.5 0.5
0.5 −0.5 0.5 1 0.5 0.5
0.5 −0.5 0.5 0.5 1 0.5
0.5 −0.5 0.5 0.5 0.5 1


.

Then the 1st eigenvector = (1−1 1 1 1 1)T has eigenvalue 1+(p−1)ρ = 3.5
and the eigenvectors (1 0 0 0 0−1)T,(0 1 0 0 0 1)T,(0 0 1 0 0−1)T,
(0 0 0 1 0−1)T, and (0 0 0 0 1−1)T have eigenvalue 1−ρ = 0.5. Thus, only
the 1st eigenvector with eigenvalue 1+(p−1)ρ =3.5 is not the same as in the
case with all signs equal (cp. one block of the example in Section 4.2).

At the same time, a sign change in the correlation will not change the Bayes rule
either, as we will prove now. In Section 4.3 we have shown that
m2i≈ 2

√
1−ρ u1− f −

√
1−ρ(2.2722−u1− f )(

1
2 log( π1

1−π1
))2 which is independent

of eeei and, thus, independent of q. The decision hyperplane of the Bayes rule is given
by h1(xxx)=h2(xxx),where hk(xxx) :=(ΣΣΣ−1µµµk)

T xxx−0.5µµµT
k ΣΣΣ−1µµµk+log(πk),k = 1,2, i.e.

log(π1) = h1(xxx) = h2(xxx)

= m2ixxx
T

ΣΣΣ
−1eeei−0.5m2

2ieee
T
i ΣΣΣ
−1eeei + log(1−π1)

= m2i · (∑
j

α jeee j)
T

ΣΣΣ
−1eeei−0.5m2

2i/λi + log(1−π1) for adequate α j ∈ R,

= m2i ·αi/λi−0.5m2
2i/λi + log(1−π1), i.e.

αi = 0.5m2i +λi · log(π1/(1−π1))/m2i

is independent of q, the α j can be arbitrary, j 6= i, and the decision hyperplanes of
the Bayes rule are independent of q. Therefore, the parameter q is ignored, i.e. we
choose the same correlation sign for all dimensions.

Choice of eeei: As discrimination directions we only choose eigenvectors eeei with the
same variance σ2

i = (1− ρ). Therefore, with the same argument as in the previ-
ous paragraph on the sign of ρ we can show that the Bayes rule is independent of
the choice of eeei so that eeei can be fixed deliberately guaranteeing that σ2

i = (1−ρ).
Therefore, the parameter i is ignored also in the simulation design, i.e. we fix this
parameter according to the rules in Section 4.5.

4.5 Implemented Design

In order to study the dependence on the number of dimensions, we choose p =

12,120,480,1020,1980 features. We use training samples with n = 12 observations
and test samples with 2000 observations. For each covariance matrix ΣΣΣ we use 200
repetitions, i.e. different random samples, to minimize variation in results. Notice that
the training samples are very small in absolute numbers as well as related to the high-
est numbers of features. The maximum ratio of the number of features to the number
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of observations is 165. Because of the restrictions b = 2pη ∈N, p/b = p/(2pη )∈N,
and b/2 ∈ N (see Section 4.3), for η = {1

3 ,
1
2} we use b = {4,6},{10,20},{16,40},

{20,60},{22,90} for p = 12,120,480,1020,1980, correspondingly.

Case A: Decreasing Bayes error for increasing dimension p: The class
means are chosen µµµ1 = 000 and µµµ2 identical in the p/b blocks with prefixed fb,π1,ρ as
derived in Section 4.3. Note that eigenvectors eeei are constructed in b dimensions. The
block size is set to b = 2pη so that D = ||µµµ2− µµµ1|| = Θ(p0.5(1−η)),0.5(1−η) ≥
1
4 . The samples are independently drawn for each block. Then, the Bayes error is

f p/b
b = f 0.5p1−η

b → 0 for p→∞ since (1−η)≥ 1
2 . Note that even in the worst case

fb = 0.45, p = 1980,b = 90 the expression f p/b
b is as small as 2.3e-08.

The parameter design is fixed as follows: Vary p,ρ,b,π1, fb on a grid so that

• p = 12,120,480,1020,1980,

• ρ = 0.1,0.3,0.5,0.7,0.9,

• b = 1,2,2 · p1/3,2 · p1/2 (exact numbers for b = 2p1/3,2p1/2 see above),

• π1 = 0.1,0.2,0.3,0.4,0.5,

• fb = 0.05,0.15,0.25,0.35,0.45 iff fb < π1.

For b = 1 we set ρ = 0 (complete independence). Globally, we fix i = b. Note that
for training we (at least) approximate π1 = 0.1,0.2,0.3,0.4,0.5 by using 1,2,4,5,6
observations in class 1. In the test sample, the theoretical π1 is realized. Therefore,
the number of observations in class 1 can be very small. Overall, we have 5 · (1+5 ·
3) · (5+4+3+2+1) ·200 = 1200 ·200 = 240,000 simulation runs per classification
method. Aims are the analysis of the effects of the parameters p,ρ,b,π1, fb and of
their interactions on the means of the error rates over the 200 replications and the
determination of the limits of the error rates for p→ ∞.

Case B1: Constant Bayes error for all p (version 1): Here, the eigenvectors
eeei are determined according to the full block-diagonal covariance matrix, the eigen-
vectors in bD-subspaces (setting all other entries to 0). These eigenvectors are used
for the construction of µµµ2 in Section 4.3. Thus, the Bayes error is the prefixed fb for
all block sizes b and all numbers of dimensions p.
Parameter constellations for p,ρ,b,π1, fb are chosen as in Case A, except that we

set b = 1,2,2 · p1/3,2 · p0.5, p (exact numbers for b = 2p1/3,2p1/2 see above) and
that we globally fix i = p. Note that for the full covariance matrix only the first p

b
eigenvalues are 6= (1−ρ). Overall, we have 5 · (1+5 ·4) · (5+4+3+2+1) ·200 =

1575 · 200 = 315,000 simulation runs per classification method. Aims are the same
as in Case A.

Case B2: Constant Bayes error for all p (version 2): Here, the eigenvectors
eeei are built blockwise, but identical for all blocks. Afterwards, normalization is realized
over the combined eigenvectors by means of
eeei := (eeeib . . .eeeib)

T /||(eeeib . . .eeeib)
T || so that ||eeei||= 1. Eigenvectors are not restricted
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to bD-subspaces, leading to the most general eigenvector structure.
As in Case B1, the Bayes error is fb for all block sizes b and all numbers of dimensions
p. Parameter constellations, number of runs, and aims are the same as in Case A.

5 Results

All simulations were carried out by means of the software R (R Core Team (2017)) on
the Linux-HPC-Cluster at TU Dortmund (LiDOng).3

5.1 Case A

Let us first discuss research question (1) of Section 3, i.e. the effects of the param-
eters p,ρ,b,π1, fb and their 2-parameter interactions on the mean error rates over
the 200 replications. Please note that this high number of replications leads to very
small variation in the mean error rates so that we expect the parameter effects not to
be blurred by noise, i.e. we expect relevant effects to be very highly significant. With
this reservation, from a regression analysis we see that (cp. Table 1) the main effects
on mean error rates are positive for p (dimension), b (block size), and fb,π1 (Bayes
error, class 1 probability). The correlation coefficient ρ is only indirectly significant (on
the 5%-level) via interactions with the other parameters. The probability π1 of class 1
is not very highly significant (p-value = 0.2%) since for every π1 there is also conver-
gence to a = 0 (cp. Table 2). All classifiers except NB are significantly different from
lda (basic classifier) and all 2-parameter interactions are significant except of ρ,b with
tree. Also, the significance of the interactions of ρ with p,b is only around 5%. Defin-
ing the main effect of a parameter on the mean error rate as the difference between
the product of its estimated coefficient with the maximum and minimum parameter
value, the main effect 0.36 of the Bayes error fb appears to be most relevant, followed
by the main effect 0.13 of the dimension p. Note that only the coefficients of the main
effects of these two parameters are very highly significant. The fit of the regression
model is not optimal (R2 = 0.79), i.e. there should be influences of even higher-order
terms.

Let us now discuss research questions (2) and (3). We assume convergence to a
if |e1980− a| < 0.025, where 0 ≤ e1980 := mean estimated error rate for p = 1980.
Convergence of error rates to a= 0 is observed in the case of complete independence
(b = 1,ρ = 0) (cp. Fig. 1) for ir, 1NN, and svm in 100% of the cases except for
π1 = 0.5, fb = 0.45, for NB except for fb near π1, and for lda only if fb small and
π1 = 0.5.

For dependent features (ρ > 0), convergence to a = 0 again appears most often
for ir, 1NN, svm and somewhat less often for NB (cp. Fig. 2 for an example). Note that
convergence to a = 0 appears in 14 - 23% of the cases with higher percentages for

3For the classifiers, implementations in the package mlr (Bischl et al (2016)) are used: “classif.lda” for
lda, “classif.sda” with options diagonal = TRUE, lambda = 0, lambda.var = 0, lambda.freqs = 0 for ir, “clas-
sif.naiveBayes” for NB, “classif.knn” with k=1 for 1NN, “classif.svm” with kernel = linear and the cost parameter
tuned on the grid {2−4,2−3, . . . ,23,24} for svm, and “classif.rpart” with minsplit=4, minbucket=2 for tree.
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higher π1 (cp. Table 2). Also note that svm does not work for π1 = 0.1 because there
is only one observation in class 1 for training.

Convergence is also observed to limits a 6= 0. Nevertheless, the share of the
asymptotic Bayes error rate 0 is with 21% (= (11+32+60+86+110)/1424, cp. Table 2)
of all cases bigger than the share of convergence to any probability π1 of class 1
which is maximum in π1 = 0.5 with 12% (= 167/1424). Note, however, that in 40% of
the cases convergence to π1 is realized so that error rate convergence to the worst
rate π1 is not unusual. Moreover, note that there is even convergence to unacceptable
rates distinctly > π1, especially for classifier tree.

Table 1: Case A: Parameter Estimates (p-value) from Linear Regression (R2 = 0.79).

param main (1) :ρ (2) :b :π1 : fb :ir :NB :1NN :svm :tree

const. 3.5e-2
(0.001)

p 6.6e-5 -8.7e-6 -1.2e-6 -5.7e-5 -1.0e-4 -7.5e-5 -4.7e-5 -8.1e-5 -6.4e-5 -1.4e-5
*** (3) (0.070) *** (3e-5) (6e-15) *** *** *** *** (0.006)

ρ -3.9e-3 -2.9e-4 5.5e-1 -3.7e-1 1.2e-1 4.9e-2 1.1e-1 6.9e-2 9.7e-3
(0.755) (0.046) *** *** *** (6e-6) *** (3e-10) (0.370)

b 8.6e-4 8.3e-3 -4.2e-3 2.5e-3 1.3e-3 2.8e-3 2.7e-3 -8.8e-5
(2e-5) *** *** *** *** *** *** (0.556)

π1 8.9e-2 -2.8e-1 -4.2e-1 -3.9e-1 -3.3e-1 -4.4e-1 -1.3e-1
(0.002) (0.001) *** *** *** *** (1e-5)

fb 0.905 3.6e-1 2.8e-1 3.8e-1 3.8e-1 1.7e-1
*** *** *** *** *** (1e-8)

classifier ir NB 1NN svm tree

contrast to lda -7.7e-2 1.6e-2 -9.6e-2 -7.0e-2 3.7e-2
(4e-11) (0.176) *** (6e-8) (0.002)

(1) main stands for the direct effect of parameter param
(2) :ρ stands for the interaction of param with ρ, other interactions analogously
(3) *** stands for (< 2e-16), i.e. p-value numerically 0
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Table 2: Case A: Number of Cases: “Convergence” to lim = 0,0.1,0.2,0.3,0.4,0.5 for Different
π1. In the first block of rows, the column max denotes the maximum number of replicates
for the corresponding row. Since f < π1 by construction, there are more replicates for higher
π1. For individual classifiers, diagonal red numbers equal the maximum number possible.
Magenta numbers indicate convergence to a value > π1. Note that only the right block in the
first row represents percentages.

All classifiers:       % row-wise 
π1\lim 0 0.1 0.2 0.3 0.4 0.5 max   0 0.1 0.2 0.3 0.4 0.5 
0.1  11  62   0   0   0   0  80  14  78   0   0   0   0 
0.2  32   3 108  20   0   0 192  17   2  56  10   0   0 
0.3  60   3  12 112  29   0 288  21   1   4  39  10   0 
0.4  86   8  11  11 122  20 384  22   2   3   3  32   5 
0.5 110  10  15  14  35 167 480  23   2   3   3   7  35 

LDA:        Independence Rule:    Naïve Bayes: 
     0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5 
0.1  0  16   0   0   0   0   4  11   0   0   0   0   0  16   0   0   0   0 
0.2  0   0  32   0   0   0   9   0  18   0   0   0   0   0  32   0   0   0 
0.3  0   0   0  45   1   0  17   1   4  10   4   0   5   0   1  37   0   0 
0.4  0   0   1   0  55   0  25   2   1   3   7   2  12   1   0   1  37   0 
0.5  3   2   2   1   3  51  30   2   1   3   4  18  23   1   4   1   7  24 

1 Nearest Neighbour:      SVM:         Decision Tree: 
     0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5 
0.1  7   3   0   0   0   0   -   - (does not run)  -   0  16   0   0   0   0 
0.2 13   1   2   6   0   0  10   0  19   0   0   0   0   1   5  14   0   0 
0.3 20   1   2   1   8   0  18   1   2  12   4   0   0   0   3   7  13   0 
0.4 25   3   1   0   5   6  24   2   3   3   7   2   0   0   5   4  11  10 
0.5 25   3   1   1   5  24  29   2   3   2   4  18   0   0   4   6  12  32 

π1 = 0.1 π1 = 0.2 π1 = 0.3 π1 = 0.4 π1 = 0.5

fb  = 0.05
fb  = 0.15

fb  = 0.25
fb  = 0.35

fb  = 0.45

lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree
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Case A: Share of error rates smaller than 0.025 for p = 1980 and b = 1

Figure 1: Case A: Individual error rates: Convergence to 0 for b = 1 (ρ = 0), on the y-axis
“count” gives the percentage of error rates converged to 0.
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Figure 2: Case A: Dependence on ρ for b = 2.

In order to characterize situations leading to convergence to a = 0, we defined two
new classes, class 0 with all cases with e1980 < 0.025 and class 1 with all other cases.
This defines a 2nd -stage classification problem with influential features b,ρ,π1, f , and
classifier. Applying the above tree classifier with priors 0.20 for class 0 and 0.80 for
class 1 to this problem, leads to the decision tree in Fig. 3 with acceptable 4.1% train-
ing error rate, 7.0% balanced training error rate (taking the mean of the error rates for
class 0 and class 1), as well as 5.8% cross-validated error rate. Note that the priors
are motivated by the fact that class 0 appears in 299 cases and class 1 in 1225 cases
in our examples. The decision tree clearly indicates that higher block sizes b > 2 are
more likely not leading to convergence to 0 though the theoretical convergence condi-
tion is valid for b = 22 and p = 1980 (cp. Sections 2.3, 4.5). Moreover, convergence
to 0 is not restricted to the distance-based classifiers 1NN, svm, as well as {lda, ir}
for π1 = 0.5 (cp. Section 2.3). Indeed, ir depends on the influential features in the
same way as 1NN, svm, and convergence to 0 is also appearing for NB. Obviously,
convergence to asymptotic Bayes error 0 can be expected for ir, 1NN, svm if b ≤ 2
and ρ ≤ 0.7, fb ≤ 0.35 or ρ > 0.7, fb ≤ 0.15 and if b = 22 (i.e. b > 2∧b ≤ 22) and
ρ ≤ 0.3, fb ≤ 0.05,π1 ≥ 0.2, as well as for NB if b≤ 2 and π1 > 0.3, fb ≤ 0.25. Such
dependence on π1 might be related to the fact that lda, ir are only distance-based for
π1 = 0.5. The dependence on fb shows that the dimension-wise or block-wise Bayes
error should not be too high to allow for convergence to 0, and the dependence on ρ

might reflect that the theoretical result in Section 2.3 is only valid for ρ = 0. Note that
not too unbalanced classes should be preferred for the standard implementations of
the classifiers. In summary, for ir, 1NN, and svm convergence to 0 can be expected if
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block size b and fb,ρ are reasonably small, but for lda, tree and for NB with π1 ≤ 0.3
or fb > 0.25 convergence to 0 should not to be expected (cp. also Table 2).

b ≤ 2

classifier = ir,1NN,svm

fb ≤ 0.35

ρ ≤ 0.7

0
197 / 8

fb ≤ 0.15

0
19 / 7

1
2 / 13

1
0 / 18

classifier
= NB

π1 > 0.3

fb ≤ 0.25

0
29 / 7

1
3 / 15

1
5 / 31

1
3 / 177

yes

b ≤ 22

ρ ≤ 0.3

classifier =
ir,1NN,svm

fb ≤ 0.05

π1 > 0.2

0
18 / 0

1
3 / 7

1
11 / 49

1
2 / 88

1
6 / 261

1
1 / 444

no

Figure 3: Case A: Characterization of convergence to a = 0 (class 0, green) vs. a 6= 0 (class
1, red) by a classification tree. In the non-terminal nodes the split is characterized. Note that
in the tree the implicit “no”-alternatives to the classifiers ir, 1NN, svm are NB, lda, tree, and to
NB these alternatives are lda, tree. In the terminal nodes the predicted class is denoted, and
the number of cases in the two classes.

Fig. 4 shows an example for general convergence behavior with the small fixed
Bayes error fb = 0.05. Note that for lda convergence to π1 is obvious, except for
π1 = 0.5. For ir, 1NN, and svm convergence to 0 is always realized, and for NB for
π1 > 0.2.

For research question (4), we look at classifier ranking via mean absolute distance

of estimated error rates to Bayes error f p/b
b , getting 0.20 for {svm, ir }, 0.21 for 1NN,

0.25 for NB, 0.32 for lda, and 0.33 for tree. Thus, svm, ir, and 1NN appear to be
most adequate in Case A. Note that the mean distance would be 0.36 if all error rates
would be π1 for any classifier except svm and 0.38 for svm.

The discussion of research question (5) is postponed to Section 6.
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Figure 4: Case A: Example: Convergence to 0 or π1?

5.2 Case B1

In Case B1, main effects on mean error rates are negative for p (dimension) and
positive for ρ,b (correlation, block size) and fb,π1 (Bayes error rate, class 1 prob.)
(see Table 3). Many interactions are not highly significant and classifier ir differs
the least significant from the basic classifier lda. The main effects, as defined in
Section 5.1, 0.41 of the Bayes error fb and 0.30 of the probability π1 of class 1 appear
to be most relevant. Note that here all main effects except of the constant are very
highly significant. The model fit is distinctly better than in Case A (R2 = 0.85).

Considering Table 4), we observe convergence to π1 = 0.5 in 92% of the cases,
but less often for π1 = 0.1,0.2,0.3,0.4 (cp. the main diagonal of Table 4). For lda and
NB convergence to π1 is observed in around 88% (= (21+40+51+63+103)/(21+42+63+
84+105)) of the cases, for 1NN only for π1 = 0.5. Overall, convergence to π1 ap-
peared in 63% (= (80+153+168+201+581) / 1869) of the cases. Note, however, that
the asymptotic error is very seldom better than π1 , only for tree some asymptotic
error rates are < π1. Moreover, many asymptotic error rates are > π1, especially for
classifier 1NN. Also note that all estimated error rates are bigger than the pre-fixed
Bayes error fb.

14



Table 3: Case B1: Parameter Estimates (p-value) from Linear Regression (R2 = 0.85).

param main (1) :ρ (2) :b :π1 : f :ir :NB :1NN :svm :tree

const. -3.6e-3
(0.498)

p -2.9e-5 -2.3e-5 -2.7e-8 2.1e-4 -2.0e-4 9.8e-6 5.6e-6 3.1e-5 2.2e-5 2.1e-5
*** (3) *** *** *** *** (4e-5) (0.019) *** *** ***

ρ 4.9e-2 6.8e-6 1.3e-1 -3.0e-1 7.2e-2 2.6e-2 1.7e-2 1.6e-2 5.6e-2
(3e-15) (0.070) *** *** *** (1e-6) (0.001) (0.004) ***

b 7.1e-5 -5.2e-5 -9.2e-7 2.9e-5 9.4e-6 -7.9e-6 -7.0e-6 -3.1e-6
*** (3e-7) (0.926) (7e-15) (0.012) (0.035) (0.065) (0.407)

π1 0.739 -1.37 -1.3e-1 5.8e-2 -2.1e-1 -7.3e-2 -2.7e-1
*** *** *** (8e-5) *** (6e-6) ***

fb 1.02 9.7e-2 5.8e-3 8.4e-2 1.0e-1 2.3e-1
*** (6e-11) (0.692) (1e-8) (1e-11) ***

classifier ir NB 1NN svm tree

contrast to lda -1.0e-2 -4.7e-2 6.1e-2 -2.0e-2 3.3e-2
(0.085) (1e-15) *** (0.002) (1e-8)

(1) main stands for the direct effect of parameter param
(2) :ρ stands for the interaction of param with ρ, other interactions analogously
(3) *** stands for (< 2e-16), i.e. p-value numerically 0

Table 4: Case B1: Number of Cases: “Convergence” to lim = 0.1,0.2,0.3,0.4,0.5 for Different
π1. For individual classifiers, diagonal bold red numbers equal the maximum number possible
and diagonal numbers in brackets indicate the corresponding unmatched maximum.

All classifiers:       % row-wise 
π1\lim  0.1 0.2 0.3 0.4 0.5  max  0.1 0.2 0.3 0.4 0.5 
0.1     80   1   0   0   0  105   76   1   0   0   0 
0.2      1 153  72   2   0  252    0  61  29   1   0 
0.3      0   0 168  49   2  378    0   0  46  13   1 
0.4      0   0   2 201 148  504    0   0   0  40  29 
0.5      0   0   4   3 581  630    0   0   1   0  92 
 

LDA:        Independence Rule:   Naïve Bayes: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1   21   0   0   0   0     17   1   0   0   0     21   0   0   0   0 
0.2    0  41(42) 0   0   0      0  30   1   2   0      0  40   0   0   0 

0.3    0   0 49(63)    3    0      0   0  31   7   2      0   0  51   3   0 

0.4    0   0   0  60(84)  0      0   0   0  36  19      0   0   0  63   5 

0.5    0   0   0   0 105      0   0   0   0  95      0   0   0   0 103 

1 Nearest Neighbour:      SVM:        Decision Tree: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1    0   0   0   0   0      - (does not run)  -     21   0   0   0   0 
0.2    0   0  42   0   0      0  38   0   0   0      1   4  29   0   0 
0.3    0   0   0  22   0      0   0  36   9   0      0   0   1  12   0 
0.4    0   0   0   0  63      0   0   0  37   5      0   0   2   5  56 
0.5    0   0   0   0  99      0   0   0   0  97      0   0   4   3  82 
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Classifier ranking is again realized via mean absolute distance of estimated error
rates to Bayes error fb, getting 0.185 for NB, 0.19 for lda, svm, 0.20 for ir, 0.21 for
tree, and 0.22 for 1NN. Note that the mean absolute distance would be 0.183 if all
error rates would be π1 for some classifier except svm and 0.193 for svm. Therefore,
all classifiers sometimes produce error rates > π1 (see Table 4).

5.3 Case B2

In Case B2, main parameter effects on the mean error rates are similar to Case B1
(see Table 5), except that now the effect of classifier ir is also highly significantly
different from the basic classifier lda. Again, most interactions do not appear highly
significant, and only the main effects of the Bayes error fb and the probability π1 of
class 1 appear to be relevant. Moreover, note that entries in Table 5 marked in bold
face have signs different than the corresponding entries in Table 3, but at most one of
the corresponding entries in Tables 3 and 5 is significant. The model fit is best among
the regressions (R2 = 0.87).

Table 5: Case B2: Parameter Estimates (p-value) from Linear Regression (R2 = 0.87).

par main (1) :ρ (2) :b :π1 : f :ir :NB :1NN :svm :tree

const. -1.9e-3
(0.732)

p -2.0e-5 -3.3e-5 -5.1e-7 1.9e-4 -1.9e-4 1.1e-5 1.0e-5 3.1e-5 1.8e-5 2.1e-5
(3e-10) *** (3) *** *** *** (3e-5) (1e-4) *** (9e-12) (1e-15)

ρ 4.0e-2 4.5e-4 1.3e-1 -2.4e-1 5.9e-2 1.2e-2 1.9e-2 3.7e-2 -8.7e-3
(1e-9) (4e-9) (2e-16) *** *** (0.029) (0.001) (1e-10) (0.125)

b 7.6e-4 4.6e-4 -1.0e-3 2.9e-4 -7.5e-5 -4.0e-5 3.4e-4 -1.2e-4
(7e-13) (0.030) (2e-6) (3e-4) (0.335) (0.607) (3e-5) (0.118)

π1 0.729 -1.29 -8.3e-2 5.8e-2 -2.1e-1 -1.1e-1 -1.1e-1
*** *** (1e-7) (2e-4) *** (6e-11) (5e-13)

fb 0.966 1.1e-1 1.5e-2 8.1e-2 1.4e-1 -2.3e-2
*** (1e-12) (0.327) (2e-7) *** (0.145)

classifier ir NB 1NN svm tree

contrast to lda -3.3e-2 -4.6e-2 6.3e-2 -3.0e-2 8.3e-2
(9e-8) (8e-14) *** (1e-5) ***

(1) main stands for the direct effect of par
(2) :ρ stands for the interaction of par with ρ, other interactions analogously
(3) *** stands for (< 2e-16), i.e. p-value numerically 0

For π1 = 0.5, convergence to π1 is observed in 95% of the cases, for π1 =

0.1,0.2,0.3,0.4 such convergence is less systematical (cp. Table 6). For lda and
NB convergence to π1 is observed in 95 - 97% of the cases, for 1NN convergence
to π1 is only realized for π1 = 0.5. Overall, convergence to π1 is realized in 69% of
the cases. Note that the asymptotic error rate is never better than π1 and that, again,
especially classifier 1NN converges to a rate > π1 very often.
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Table 6: Case B2: Number of Cases: “Convergence” to lim = 0.1,0.2,0.3,0.4,0.5 for Different
π1. For individual classifiers, diagonal bold red numbers equal the maximum number possible.

All classifiers:      % row-wise 
π1\lim  0.1 0.2 0.3 0.4 0.5 max  0.1 0.2 0.3 0.4 0.5 
0.1     64   2   0   0   0  80   80   3   0   0   0 
0.2      0 120  60   0   0 192    0  63  31   0   0 
0.3      0   0 155  19   0 288    0   0  54   7   0 
0.4      0   0   0 186 126 384    0   0   0  48  33 
0.5      0   0   0   0 456 480    0   0   0   0  95 
 
LDA:        Independence Rule:   Naïve Bayes: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1   16   0   0   0   0     16   0   0   0   0     16   0   0   0   0 
0.2    0  32   0   0   0      0  28   0   0   0      0  32   0   0   0 
0.3    0   0 45(48)  1   0      0   0  30   7   0      0   0  47   0   0 

0.4    0   0   0 56(64)    0      0   0   0  36  11      0   0   0  58   0 

0.5    0   0   0   0  80      0   0   0   0  71      0   0   0   0  79 

1 Nearest Neighbour:      SVM:        Decision Tree: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1    0   2   0   0   0      - (does not run)  -     16   0   0   0   0 
0.2    0   0  31   0   0      0  28   0   0   0      0   0  29   0   0 
0.3    0   0   0  12   0      0   0  33   7   0      0   0   0   0   0 
0.4    0   0   0   0  49      0   0   0  36   6      0   0   0   0  64 
0.5    0   0   0   0  75      0   0   0   0  71      0   0   0   0  80 

Classifier ranking is again realized via mean absolute distance of estimated error
rates to Bayes error fb, getting 0.180 for NB, 0.19 for ir, svm, lda, 0.22 for 1NN, and
0.24 for tree. Note that the mean distance would be 0.183 if all error rates would be
π1 for some classifier except svm and 0.193 for svm. Note that this time classifiers
NB and svm produce mean distances smaller than the mean distance corresponding
to π1 errors (cp. Table 6 for cases converged to some π1).

6 Noise

We also studied the influence of noise on the error rate. We compared the above
situations with p = 12 and p = 120 influential features with a situation with 120 fea-
tures where only 12 features influence class separation and 108 features are just
independent noise. This is called (12+ 108)-situation in the following. For this, we
first generated mean vectors µµµ1,µµµ2 as well as the covariance matrix ΣΣΣ for p = 12 as
described in Section 4.5. Then, we elongated µµµ1 and µµµ2 by 108 zeros. As the new
covariance matrix we took the 120×120 identity matrix where the left upper 12×12
block is replaced by the 12× 12 covariance matrix generated before. All parameters
except p are varied as indicated in Section 4.5.
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Table 7: Mean (Std.dev.) of the Number of Identified Influential Features when 12 or 18 Fea-
tures are Selected out of 12 Influential and 108 Noise Factors.

Case 12 features selected 18 features selected

A 2.82 (2.32) 3.65 (2.58)
B1 1.57 (1.32) 2.21 (1.59)
B2 1.68 (1.36) 2.36 (1.59)

We compare the behavior of the classifiers for p = 12 and p = 120 influential fea-
tures without feature selection with the (12+108)-situation with selection of the most
important 12 or 18 features. First, we report the number of correct identifications of
influential features in the (12+108)-situation (cp. Table 7). For selection, we used the
RELIEF criterion in the package mlr (Bischl et al (2016)) of the software R. RELIEF es-
timates the quality of attributes according to how well their values distinguish between
instances of different classes that are near to each other (Kira and Rendell (1992)).
Obviously, the mean number of identified influential features over the 200 replications
is small in all cases. To characterize the range of realized correct identifications we
used the statistic “mean + 3·std.dev.”. In the best case (18 features selected in Case
A), mean + 3·std.dev. = 11.4 is still relatively close to the pursued number 12. In the
worst case (12 features selected in Case B1), however, the value of this statistic is
only 5.53, i.e. much smaller than 12. Obviously, Case A is easier for correct feature
selection and the Cases B1 and B2 behave similar. Let us see how this poor feature
selection affects the error rates.

We test the null-hypothesis
H0: By the inclusion of noisy features the mean error rates of the different classi-

fiers are smaller than or equal to the mean error rates in situations without noise and
feature selection, i.e. p = 12 or p = 120 in Section 4.5.

The number of significant results of the Welch-test is given in Table 8 for the dif-
ferent classifiers. We distinguish Case A and Case B, summarizing the Cases B1
and B2, and we test the mean error rates in the (12+108)-situations with 12, 18, or
all 120 selected features against the corresponding mean error rates for p = 12 and
p = 120 without feature selection. Note that the classifiers are sometimes producing
error rates exactly = π1 in all repetitions, e.g. classifiers NB and tree for π1 = 0.1
and all different b and classifier NB sometimes also for π1 = 0.2 (cp. Fig. 5). In these
cases, the test could not be carried out. Therefore, in Table 8 the reported number of
tests differ in the different situations.

Table 8 shows, e.g., that on the one hand in Case A and svm, hypothesis H0 is al-
ways rejected for p = 12. On the other hand, in Case B, hypothesis H0 nearly always
cannot be rejected for classifier 1NN when p = 120 (cp. bold numbers in Table 8).
Note that svm appears to react the most negative to noise among the classifiers.

Overall, classification with additional noise ((12+108)-situations) is seldom better
than without noise (p = 12), but frequently better than with more influential features
(p = 120), in particular in Case B. Moreover, in Case B the classifiers appear to react
more positive to noise than in Case A. This might reflect the fact that in Case B more
influential factors increase the error rate up to π1 and that in (12+108)-situations the
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number of influential factors is smaller than for p = 12 and particularly p = 120.
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CASE A: Distribution of error rates for NB in different situations

Figure 5: Case A: Behavior of NB in noisy and non-noisy situations.

Table 8: Number of Significant and Non-Significant Results of the Welch-Test at 1%-Level

Case A Case B
p = 12 p = 120 p = 12 p = 120

Classifier signif. non-sig. signif. non-sig. signif. non-sig. signif. non-sig.

lda 199 41 156 83 315 240 256 276
ir 207 32 173 37 371 184 141 414
NB 194 30 175 29 312 206 162 304
1NN 219 18 169 39 370 185 14 541
svm 222 0 171 18 474 44 197 321
tree 179 45 145 79 426 92 35 483

7 Discussion

We studied standard classification methods for dimensions p� n. We developed an
experimental design to discuss the effects of certain factors on the error rate in Case
A with decreasing Bayes error for increasing p and in Case B with constant Bayes
error. The design factors are:

• p = number of features;

• ρ = covariance between features in special covariance structure;
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• b = block size in covariance matrix;

• π1 = probability of class 1;

• fb = true error rate (in blocks).

We saw significance of (nearly) all varied factors and corresponding interactions.
Moreover, convergence of error rates for increasing dimension p is observed
• to asymptotic Bayes error 0 (Case A) most often for independent dimensions

(b = 1,ρ = 0), but also for dependent dimensions, especially for the classifiers ir,
1NN, svm. For lda and tree, convergence to π1 is often observed, for classifier
NB if π1 is small or fb large. Overall, stochastically independent dimensions
should be preferred.

• In the case of constant pre-fixed Bayes error fb for all numbers of dimensions p
(Case B), convergence to π1 is systematically observed for π1 = 0.5 as well as
for lda and NB in general. Also, asymptotical rules are often worse than a data
independent rule, especially for classifiers 1NN, tree.

• Concerning classifier ranking, ir and svm show the smallest mean absolute
distance to the Bayes error in Case A. In Case B, however, no classifier is really
recommendable.

• Classification with additional noise factors (p= 12+108) is seldom better than
without noise (p = 12), but frequently better than with more influential features
(p = 120), in particular in Case B.

• In Case B the classifiers appear to react more positive to noise than in Case
A. This might reflect the fact that in Case B more influential factors increase the
error rate up to π1 and that noise factors reduce the number of influential factors.

• Classifier svm appears to react the most negative to noise among the classifiers.

Consequently, adequate Rules of Thumb to avoid the worst error rate π1 for high
dimensions and small numbers of training observations are:
• Avoid “complicated” classifiers: ir might be adequate, svm should only be con-

sidered as an expensive alternative which is additionally sensitive to noise fac-
tors.

• From the outset, look for stochastically independent dimensions and not too un-
balanced classes.

• Only take into account features which influence class separation sufficiently.
Variable selection might help, though filters might be too rough.

• Compare your result with the result of the data independent rule “Always predict
the larger class”.

Let us compare the results in this paper with our former results in Weihs (2016).
In that paper, simulations were performed only for π1 = 0.5 and a covariance matrix
which was on the one hand somewhat more general in that different correlations be-
tween features were used, but on the other hand more restrictive in that the matrices
were nearly diagonal, i.e. had much higher values at the diagonal than in the other
entries. The individual error rate f was not controlled, but implicitly pre-fixed once by
the class distance in each dimension. Case A is represented by the class distance
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md = 2.5 and Case B by md = 20/
√

p. Then, results showed convergence to 0 in
Case A except for tree, and to π1 = 0.5 in Case B for all methods. Moreover, if class
distance sufficiently increases in Case A in a specific way for higher dimensions, then
error rates were decreasing, even though the theoretical condition that the covariance
matrix is diagonal (cp. Section 2.3) is only approximately fulfilled. Finally, if not all
features influence class separation, convergence to 0 was slower in Case A. In such
cases, feature selection choosing the number of selected features somewhat too high
appeared to be better than choosing it too low.

Obviously, results in Weihs (2016), are generalized in this paper allowing for pre-
specification of a general π1 and the error rate fb (corresponding to a certain class
distance). Moreover, we study distinctly non-diagonal covariance matrices, albeit of a
special structure. We show that our former results for lda and π1 = 0.5 are somewhat
special in Case A. Overall, the problems of lda with approximating the Bayes error in
high dimensions are much clearer now. Finally, in the case of noise, we have seen
that feature selection is identifying more relevant features if the number of selected
features is higher than the number of relevant features. This, in a way, explains our
results in Weihs (2016), concerning feature selection.

However, also in this paper, settings are special, particularly the covariance struc-
ture. We use normal distributions with special invertible covariance matrices and iden-
tical contributions to class choice by all feature blocks. As possible extensions you
may want to use other data distributions than normals, vary contributions of feature
blocks to class separation, or use other covariance structures. Most easily, you may
want to choose different error rates fb and different correlations in the different blocks.
Also, you may want to include other classification methods in the comparison such as
methods with nonlinear decision borders like radial basis svm and ensemble methods
like bagged trees (as in Weihs (2016)).
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