
 
  

 
 
 
 
 

Genetically encoded conformational probes  
for small GTPase activity 

Dissertation 
 

Zur Erlangung des akademischen Grades 

eines Doktors der Naturwissenschaften der 

Fakultät für Chemie und Chemische Biologie an  

der Technischen Universität Dortmund 

 
angefertigt am 

Max-Planck-Institut für Molekulare Physiologie 

in Dortmund 

 
Vorgelegt von  

 

Simone Brand, M. Sc. 
 

Januar 2018 

 



 



 

 

 

 

  



  



 

 

 

„Wer aufhört besser zu werden, hat aufgehört gut zu sein.“ 

P. Rosenthal 

  



  



Diese Arbeit wurde in der Zeit von Mai 2013 bis Januar 2018 am Max-Planck-Institut für 

Molekular Physiologie und am Chemical Genomics Center der Max-Planck-Gesellschaft in 

Dortmund unter Aufsicht von Dr. Yao-Wen Wu und Prof. Dr. Roger S. Goody angefertigt.  

 

 

1. Gutachter:  Prof. Dr. Roger S. Goody 

2. Gutachter:  Prof. Dr. Philippe I. Bastiaens 

 

 



 

 



The following publications were prepared in the context of this thesis: 

 
Brand, S. & Wu, Y.-W. Generation of intramolecular FRET probes via noncanonical 

amino acid mutagenesis. Methods in Molecular Biology 2018; 1728:327-335 

 

Brand, S. & Wu, Y.-W. Semi-synthesis of proteins via oxime ligation. Methods in 

Molecular Biology, Manuscript accepted 

 

Brand, S. & Wu, Y.-W. Development of genetically encoded conformational probes for 

small GTPase activity using amber suppression and intracellular labeling in live cells. 

Manuscript in preparation 

 
 





I 
 

Content 

 

Content ............................................................................................................................... I 

Zusammenfassung ............................................................................................................ III 

Abstract .............................................................................................................................. V 

List of Abbreviations ........................................................................................................ VII 

1. Introduction................................................................................................................ 1 

1.1 Small GTPases ..................................................................................................... 1 

1.1.1 The family of Rab GTPases .......................................................................... 2 

1.1.2 The small GTPase Rheb ................................................................................ 6 

1.2 FRET-based biosensors ..................................................................................... 11 

1.3 Stop codon suppression and bio-orthogonal labeling ...................................... 15 

1.4 Objectives.......................................................................................................... 21 

2. Material and Methods ............................................................................................. 23 

2.1 Material ............................................................................................................. 23 

2.1.1 Chemicals ................................................................................................... 23 

2.1.2 Enzymes and Antibodies ............................................................................ 24 

2.1.3 Oligonucleotides ........................................................................................ 25 

2.1.4 Plasmids ..................................................................................................... 27 

2.1.5 Buffers and Solutions ................................................................................. 29 

2.1.6 Kits and Commercials ................................................................................ 30 

2.1.7 Bacterial strains ......................................................................................... 31 

2.1.8 Mammalian cell lines ................................................................................. 31 

2.1.9 Material ..................................................................................................... 31 

2.1.10 Equipment ................................................................................................. 34 

2.2 Methods ............................................................................................................ 35 

2.2.1 Biomolecular Methods .............................................................................. 35 

2.2.2 Preparation and Storage of Click-Reaction Components .......................... 40 

2.2.3 Cell biological Methods ............................................................................. 41 



II 
 

2.2.4 Biochemical Methods ................................................................................ 45 

2.2.5 Microscopy ................................................................................................ 48 

2.2.6 Image Manipulation and Data Analysis ..................................................... 49 

2.2.7 In silico Linker Optimization Strategies ..................................................... 50 

3. Results ...................................................................................................................... 53 

3.1 Genetically Encoding of the Conformational Sensor ........................................ 53 

3.1.1 Stop Codon Suppression in small GTPases ................................................ 54 

3.1.2 Establishment of the intracellular chemical labeling ................................ 63 

3.1.3 Labeling of amber Rab1b ........................................................................... 73 

3.1.4 Intracellular labeling of amber Rheb ......................................................... 81 

3.2 Characterization of the Genetically Encoded Sensors ...................................... 86 

3.2.1 Rab1b Conformational Sensor ................................................................... 86 

3.2.2 Rheb Conformational Sensor ................................................................... 110 

4. Discussion and Perspectives .................................................................................. 112 

4.1 UAA incorporation into small GTPases ........................................................... 112 

4.2 Intracellular labeling of small GTPases ........................................................... 113 

4.3 Characterization of the genetically encoded Rab1b sensor ........................... 116 

4.4 Characterization of the genetically encoded Rheb sensor ............................. 122 

4.5 Conclusion and Perspectives .......................................................................... 123 

References ..................................................................................................................... 127 

Acknowledgements .......................................................................................................... IX 

Affidavit (Eidesstattliche Versicherung) ........................................................................... XI 

 

 

 

 



III 
 

Zusammenfassung 

Kleine GTPasen sind Guanosinnukleotidbindende und –hydrolysierende Enzyme die, in 

Abhängigkeit von dem gebundenen Nukleotid, Guanosintriphosphat (GTP) oder 

Guanosindiphosphat (GDP), in zwei Aktivitätszuständen existieren. Dadurch fungieren sie 

als binäre Schalter, die Signalprozesse ausschließlich in aktivem, GTP-gebundenem Zustand 

ermöglichen. Kleine GTPasen sind in zahlreichen intrazellulären Signalprozessen, wie der 

Organisation des Zytoskeletts, vesikulärem Transport, Zellkernimport und –export, sowie 

Zellwachstum und –überleben, involviert.  

Aufgrund ihrer spezifischen Lokalisierung zu zellulären Membrankompartimenten, 

sowie der Abhängigkeit ihrer Aktivität von der Lokalisierung und dem Nukleotidstatus, sind 

kleine GTPasen attraktive Ziele für die Entwicklung von Biosensoren. Traditionelle 

Aktivitätssensoren für kleine GTPasen basieren auf Förster-Resonanz-Energietransfer 

zwischen zwei Fluoreszenzproteinen, die an die Ziel-GTPase und eine spezifische 

Bindedomäne fusioniert sind. Die Bindedomäne, ein natürlicher Bestandteil von 

Effektorproteinen, fungiert hier als Affinitätstag, der nur mit der GTP-gebundenen GTPase 

interagiert und somit die Differenzierung des Aktivitätsstatus ermöglicht. Obwohl dieses 

Sensordesign weitverbreitet ist, weist es einige Nachteile auf. Zum einen wird nicht die 

direkte Aktivierung der kleinen GTPase, sondern das nachfolgende Bindeereignis der 

Effektordomäne detektiert. Diese Interaktion konkurriert mit endogenen 

Interaktionspartnern wie Effektoren oder GAP. Desweiteren besteht die Annahme, dass 

Effektorbindung kleine GTPasen auf Membranen stabilisieren kann, wodurch traditionelle 

Sensoren möglicherweise nicht den tatsächlichen Regulationszustand reflektieren. Zum 

anderen sind diese FRET-basierte Sensoren vergleichbar groß, da neben der kleinen GTPase 

und der Effektordomäne noch zwei Fluoreszenzproteine und mehrere 

Verbindungssequenzen enthalten sind. 

Kürzlich wurde eine neue Art von FRET-basierten Sensoren zur Visualisierung der 

Aktivität von kleinen GTPasen entwickelt. Diese Sensoren ermöglichen eine direkte 

Detektion von konformationellen Änderungen in der kleinen GTPase, oder der Interaktion 

mit Effektorproteinen, und bestehen lediglich aus einem Fluoreszenzprotein, der kleinen 

GTPase und einem synthetischen Fluorophor, welches durch Aminosäureseitenketten-

markierung in die GTPase eingebracht wird. Dadurch sind diese Sensoren einerseits deutlich 

kleiner als herkömmliche Sonden und verwenden das ursprüngliche C-terminale 

Lokalisierungssignal der kleinen GTPase. Andererseits enthalten diese konformationellen 

Sensoren keinen Affinitätstag. Diese Unabhängigkeit von einer spezifischen Bindedomäne 

ermöglicht zum einen eine native Regulation des Sensors durch endogene 
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Regulationssysteme, während das Sensordesign andererseits auch für GTPasen ohne 

bekannte Effektorproteine anwendbar ist. Zunächst wurden die konformationellen 

Sensoren zur Visualisierung von Rab1b Aktivität entwickelt und wurden später auf eine 

weitere kleine GTPase, KRas, übertragen. Dadurch konnte die Universalität des 

Sensordesigns demonstriert werden. Nichts desto trotz weißt diese erste Generation der 

konformationellen Sensoren durch den sehr aufwendigen Herstellungsprozess, der 

Expertise in zahlreichen biochemischen und chemisch biologischen Methodiken benötigt, 

einen großen Nachteil auf. Daher ist das Ziel dieser Arbeit die Entwicklung einer zweiten 

Generation konformationeller Sensoren, bei der der Herstellungsprozess und die 

Anwendung in Zellstudien durch genetische Kodierung des Sensors massiv erleichtert 

werden. Um den benötigten FRET-Akzeptor, ein synthetisches Fluorophor, in die kleine 

GTPase einfügen zu können, wurde Stopkodonsuppressionsmutagenese und intrazelluläre 

orthogonale Fluoreszenzmarkierung verwendet. Der erste Teil dieser Arbeit fokussiert auf 

die Etablierung dieser beiden Schritte und verwendet Rab1b als Zielprotein, um eine 

Vergleichbarkeit mit der ersten Sensorgeneration zu gewährleisten. Der neu entwickelte, 

genetisch kodierte konformationelle Rab1b Sensor ermöglicht die raumzeitliche 

Visualisierung von Rab1b Aktivität in lebenden Zellen. Im Weiteren wurde der genetisch 

kodierte Rab1b Sensor mit dem neu entwickelten reversiblen Kryo-Arrest von lebenden 

Zellen kombiniert, um Rab1b Aktivität während vesikulärem Transport zu detektieren. 

Der zweite Teil dieser Arbeit konzentriert sich auf die Übertragung des Sensordesigns 

auf eine weitere kleine GTPase, Rheb. Bislang ist kein spezifisches Effektorprotein für Rheb 

bekannt, wodurch die Entwicklung von traditionellen Aktivitätssensoren nicht möglich ist. 

Rheb ist ein außergewöhnlich interessantes Ziel für die Biosensorenentwicklung, da dieses 

Protein als Aktivator für mTOR-Komplex 1, einen Masterregulator von Zellmetabolismus 

und –wachstum, bekannt ist. Der in dieser Arbeit entwickelte genetisch kodierte 

Rhebsensor ermöglicht die raumzeitliche Visualisierung von Rhebaktivität in lebenden 

Zellen.  
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Abstract 

Small GTPases are guanosine nucleotide binding enzymes that exist in two states, being 

active in the guanosine-triphosphate- (GTP) and inactive in the guanosine-diphosphate- 

(GDP) bound state. Thus, these proteins act as binary molecular switches, allowing signaling 

exclusively in the GTP-bound state and function in a variety of cellular signaling processes, 

including cytoskeleton organization, membrane trafficking, nuclear transport, cell survival 

and proliferation.  

Due to their localization to different cellular compartments as well as their nucleotide- 

and localization-dependent activity, small GTPases are attractive targets for biosensor 

development. Traditional biosensors for small GTPase activity are FRET-based and utilize 

binding domains of effector proteins as affinity tags. Effector proteins interact specifically 

with the GTP-bound state of a small GTPase. Thus, the affinity tag allows for discrimination 

between the activity states. To generate a FRET-probe, both interaction partners are fused 

to a fluorescent protein, enabling sensor read-out by FRET.  

Although widely used, this approach suffers a number of disadvantages. On the one 

hand, they report the activity indirectly, by binding of the affinity tag to the activated 

protein, instead of reporting the activation event directly. In fact, the interaction of the 

affinity tag with the small GTPase competes with endogenous effector proteins. As effector 

binding can stabilize small GTPases on membranes, these probes may not report the native 

regulation of the respective protein. On the other hand, such probes are comparatively 

large, containing the small GTPase, the affinity tag, two fluorescent proteins and several 

linkers.  

Recently, a new type of FRET-based sensors for small GTPase activity was developed. 

These probes allow for direct detection of conformational changes within the target protein 

and hence report activation or binding of endogenous effector directly. Moreover, the 

conformational probes consist only of a fluorescent protein, the target small GTPase and a 

synthetic dye introduced to the protein fold. Thus, these probes are smaller than traditional 

sensors, do not utilize an affinity tag and contain the native C-terminal localization signal of 

the small GTPase. This design allows for native regulation by endogenous proteins and the 

sensor principle is also applicable to targets with unknown effector proteins. Initially, such 

conformational sensors were developed for Rab1b activity and were later on applied onto a 

second small GTPase, KRas, demonstrating the versatility of the sensor design. However, 

the first generation of conformational sensors for small GTPase activity suffers from a labor-

intensive preparation process, which requires a high number of methods and expertise. The 

work presented in this thesis focused on the development of a second generation of the 



VI 
 

conformational probes for small GTPases. In the first part, the sensor approach was 

genetically encoded, facilitating the preparation process and the application to cellular 

studies. The stop codon suppression technique and subsequent intracellular fluorescence 

labeling were used to introduce the FRET acceptor into the protein fold. To establish the 

protocols for stop codon mutagenesis and intracellular fluorescence labeling of small 

GTPases, the previously well characterized Rab1b conformational sensor was used. The 

obtained genetically encoded conformational Rab1b sensor allowed for spatiotemporal 

monitoring of Rab1b effector binding in live cells. Moreover, the genetically encoded Rab1b 

sensor was combined with the novel reversible cryo-arrest of living cells to analyze Rab1b 

vesicular transport in living cells.  

The second part of this work focused on the application of the genetically encoded 

sensor design to another small GTPase, Rheb. At the present time, no effector protein has 

been reported for Rheb, hindering the development of conventional probes to monitor 

Rheb spatiotemporal activity. Rheb is a particularly interesting target due to its role as an 

activator of mTORC1, a master regulator for cell metabolism, growth and proliferation. This 

work demonstrates the establishment of a genetically encoded Rheb sensor using the 

previously described conformational sensor design. This Rheb sensor allows visualization of 

spatiotemporal Rheb activity in living cells.  
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1. Introduction 

1.1 Small GTPases 

Small GTPases are guanosine nucleotide binding and hydrolyzing enzymes. The bound 

nucleotide, either guanosine triphosphate (GTP) or guanosine diphosphate (GDP), defines 

the enzyme’s activity state, being active in the GTP-bound state and inactive in the GDP-

bound form. Thereby small GTPases act as binary molecular switches, allowing for signal 

transduction only in the active state 1. Members of the Ras superfamily of small GTPases 

function as monomeric G proteins and possess key roles in a variety of cellular signaling 

processes including cytoskeleton organization, cell movement, membrane trafficking, 

nuclear transport and proliferation 2. Based on sequence and functional similarities, the Ras 

superfamily is divided into five major branches: Ras, Rho, Rab, Ran and Arf 3. Nucleotide 

binding and hydrolysis are performed by a set of conserved sequence elements, the G 

domain, which is common to all G proteins 4. The G domain comprises five G boxes (G1-G5) 

that are located over a stretch of approximately 20 kDa, conserved in structure and 

biochemistry. Small GTPases share two additional elements, the switch I and switch II 

regions 1. These regions undergo conformational changes during nucleotide exchange and 

hydrolysis and report the nucleotide of a GTPase, enabling the interaction with effector 

proteins. Effector proteins bind specifically to the active, GTP-bound state and thereby 

mediate downstream signaling in dependency of the nucleotide state of the small GTPase.  

Another hallmark shared by the majority of small GTPases is their post-translational 

modification, which, in combination with the sequence context directly upstream, dictates 

the specific subcellular localizations 5,6. The majority of Ras and Rho GTPases contain a 

C-terminal CAAX motif, which serves as a recognition site for the farnesyltransferase and 

the geranylgeranyltransferase I 7,8. Both enzymes catalyze a covalent addition of isoprenoid 

moieties to the cysteine residue of the tetrapeptide motif. In contrast, members of the Rab 

family do not share a consensus prenylation motif and terminate in a distinct set of 

cysteine-containing C-terminal motifs (CC, CXC, CCX, CCXX, or CCXXX) 9. These motifs are 

recognized and modified by the geranylgeranyltransferase II, which covalently attaches 

(two) geranylgeranyl groups to the cysteine residues 9. Together with the sequence context 

directly upstream, the hypervariable domain, these lipid modifications facilitate membrane 

targeting of the small GTPases to their specific cellular compartments, which is essential for 

their respective biological function 10.  

The activity of small GTPases is regulated by a set of specific enzymes called Guanosine-

nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). GEFs bind to the 
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inactive, GDP-bound state of a small GTPase and activate the protein by promoting 

exchange of the nucleotide from GDP to GTP. In contrast, GAPs catalyze the hydrolysis of 

GTP to GDP, resulting in inactivation of the small GTPase 11. Inactive Rho and Rab GTPases 

can further be regulated by guanine nucleotide dissociation inhibitors (GDIs) 12. The Rab-GDI 

interaction involves the switch regions and allows for masking of the prenyl modification, 

promoting cytosolic sequestration of the GTPase 13. As membrane localization is essential 

for the biological function, the GDI-mediated membrane extraction of small GTPases 

represents an additional regulatory mechanism.  

 

1.1.1 The family of Rab GTPases 

Ras-like proteins from rat brain (Rab) GTPases have been initially identified as key 

players for the secretory pathway in yeast 14,15. Until now, 11 Ypt/Rabs were found in 

budding yeast and more than 60 different Rabs in mammals.  At least 42 Rab proteins are 

expressed in all cells, while others are more tissue-specific 16,17.  

Rab GTPases share five conserved sequences motifs in addition to the conserved G 

domain, distinguishing them from other members of the Ras superfamily 18. These Rab 

family motifs (RabF1-F5) are located in or in close proximity to the switch and interswitch 

regions and were identified by sequence alignment. Moreover, based on four Rab subfamily 

conserved sequences (RabSF1-RabSF4) Rab GTPases can be divided into subfamilies. The 

RabSF motifs are believed to convey specificity towards the respective GEFs, GAPs and 

effector proteins, whereas the RabF motifs are thought to be responsible for the 

discrimination of the nucleotide state and/or involved in the interaction with universal 

regulators such as Rab escort protein (REP) and GDP dissociation inhibitor (GDI) 18. 

REP binds to newly synthesized, unmodified Rab proteins and presents the protein to 

the RabGGTase, which then covalently attaches (two) geranylgeranyl groups at the 

C-terminal cysteines of Rab 9,19. REP is believed to subsequently deliver the modified Rab to 

its specific target membrane 20,21. In contrast to REP, which interacts with both modified 

and unmodified Rab with high affinity, the structurally and functionally closely related GDI 

binds only to prenylated Rabs with high affinity 22-24. Two GDI were found in human, 

whereas only one GDI has been identified in yeast 25. These GDI proteins have the capacity 

to bind and solubilize all Rabs. The affinity of GDI towards Rab is reduced by three orders of 

magnitude upon exchange of GDP to GTP, raising the idea that Rab activation stabilizes its 

membrane association by impeding the GDI-mediated membrane extraction 22. In contrast, 

delivery of Rab proteins to membranes is believed to be mediated by a GDI-displacement 

factor (GDF). GDF can dissociate the Rab:GDI complex, facilitating the membrane 

attachment of Rab 26,27. However, whether all Rab proteins require a GDF, as well as the 
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exact mechanism of GDF-mediated GDI displacement, remain unclear. Interestingly, the 

Legionella protein DrrA, a GEF for Rab1, has been reported to displace Rab1 from GDI, 

bypassing any need for GDF activity 28,29. Moreover, ectopic mistargeting of GEFs has been 

shown to cause mistargeting of their respective Rab proteins, highlighting the importance of 

GEFs on the membrane delivery and stabilization of Rabs on membranes 28,30-32.  

Rab GEFs show a high diversity in primary and tertiary structure, hindering their 

identification by sequence homology analysis. Consequently, the number of known Rab 

GEFs is relatively small in comparison to the over 60 identified members of Rab GTPases 33. 

Despite their high variation in structure and size, Rab GEFs can be divided into several 

different families, the two largest being the Vps9 and the DENN domain families 34,35. Other 

GEFs do not relate or comprise two or more subunits, such as the multi-domain TRAPP 

complex which possesses GEF activity towards Ypt1/Rab1 36. The general mechanism of 

GEF-mediated nucleotide exchange of Rab proteins is similar to the one observed for other 

small GTPases and leads from the binary nucleotide-protein complex via a trimeric 

nucleotide-GTPase-GEF complex to a binary GTPase-GEF complex 1. The subsequent binding 

of the nucleotide, predominantly GTP due to its higher abundance in cells, reverses this 

series. Both, removal of the Mg2+ ion, which is important for nucleotide binding, and the 

GEF-induced conformational changes within the small GTPase account for the initial 

nucleotide release leading from the trimeric to the nucleotide-free binary complex 1,37. In 

contrast to Rab GEFs, Rab GAPs share a conserved catalytic Tre-2/Bub2/Cdc16 (TBC) 

homology domain consisting of approximately 200 amino acids 38-40. Rab GAPs have been 

shown to promote the hydrolysis of GTP to GDP via a conserved catalytic arginine-glutamine 

finger 39,41-43. Interestingly, approximately a quarter of the 42 TBC proteins identified in 

human and mouse lack the conserved catalytic arginine residue, which makes these 

proteins unlikely to possess GAP activity towards Rab GTPases 44.  

Intensive investigations revealed that the different Rab proteins localize to the cytosolic 

side of various cellular compartments and function in membrane trafficking throughout the 

whole secretory pathway (Figure 1.1) 45-47.  
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Figure 1.1: Rab GTPases localize to specific cellular compartments and are key players in membrane 

trafficking.  Schematic overview of the cellular localization and function of different Rab proteins in 

mammalian cells. Figure modified from Stenmark & Olkkonen 48. 

 

Rab GTPases are believed to act in Rab cascades to establish the polarity of the 

secretory and endocytic pathways (Figure 1.2) 49,50. This model suggests that a GEF recruits 

its specific Rab (here denoted RabA) to a specific membrane. The active RabA can then 

recruit the GEF of the subsequent Rab of the cascade, RabB, which in turn recruits a third 

GEF to activate RabC. One the one hand, this model is supported by the findings, that most 

characterized Rab GEFs are cytosolic proteins that can associate with other Rab effectors to 

activate locally specific Rab proteins 25,51. While on the other hand, many Rab effectors can 

simultaneously bind two adjacently acting Rab GTPases, linking their respective localization 

and function 52-55. Therefore, Rab effectors may organize the transitions between two Rab 

proteins within a cascade. Moreover, it was shown that a Rab protein, e.g. RabB, can also 

recruit the specific GAP of the previously acting Rab, e.g. RabA (Figure 1.2 B) 50. Thereby 

RabA would be removed from the respective membrane, sharpening the boundaries 

between the individual Rab proteins. One example of a Rab cascade is the Ypt1(Rab1)-
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Ypt31/31(Rab11)-Sec4(Rab8) cascade which coordinates the secretory pathway in budding 

yeast 56,57. 

 
Figure 1.2: Schematic model of Rab GTPase cascades. A) Rab GTPases are believed to act in Rab 

cascades. First, a GEF recruits its cognate Rab protein (RabA) to a membrane. The active RabA can 

subsequently recruit the GEF of RabB which in turn recruits GEF C after activation. In this model, all Rab 

proteins of a cascade can be active simultaneously. B) In this second model, a Rab protein recruits also the 

GAP of the antecedent Rab, resulting in its deactivation and removal from the membrane. Thereby, the 

boundaries between the different Rabs of a cascade are sharpened. Figure modified from Pfeffer et al. 25. 

 

The first Ypt/Rab protein identified in yeast was the Golgi-resident Ypt1 58. Both, Ypt1 

and its mammalian homologue Rab1, are essential for the homeostasis of the Golgi complex 

and function in vesicular transport at the endoplasmic reticulum (ER) - Golgi interface 59-61. 

Rab1 has been shown to localize to ER-derived COPII-coated vesicles and is believed to 

mediate tethering and fusion of these vesicles 62-65. In fact, numerous Rab1 effector proteins 

including p115, GM130, Giantin and Golgin84 are Golgi-resident tethering factors 62,66-68. 

Moreover, Rab1 has been found to regulate cargo sorting at ER exit sites (ERES) as well as 

autophagosome formation 69,70. Initially Rab1 was believed to mediate only the anterograde 

ER-to-Golgi transport, but was subsequently found to be also essential for retrograde 

transport 61,71. The two identified isoforms, Rab1a and Rab1b, share a high degree of 

sequence similarity (~ 92 %) and seem to have similar but distinct functions 72-75. 

The multi-subunit protein complex Transport Protein Particle (TRAPP) has been 

established as a GEF for Ypt1/Rab1 and potentially Ypt31/32 36. While the composition and 

function of the three distinct TRAPP complexes found in yeast are well understood, the two 

proposed mammalian TRAPP complexes (mTRAPP) are less characterized 76-78. Mutation 
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analysis has assigned the three yeast TRAPP complexes to distinct steps of the secretory 

pathway, where TRAPP I functions in the ER to cis-Golgi transport, TRAPP II in the 

trans-Golgi to plasmamembrane transport and TRAPP III mediates trafficking from the ER to 

the pre-autophagosomal structure (PAS) 79-82. In contrast, direct evidence was found for 

only one mammalian TRAPP complex, mTRAPP II, and a second mTRAPP complex 

(mTRAPP III) was proposed by proteomic studies 76,78,83. Similar to their yeast orthologs, 

different subunits of mTRAPP II were found to interact with COPI and COPII coat 

components 78,84. Thus, mTRAPP II is believed to associate to vesicles after budding from the 

ER and to subsequently activate Rab1, ensuring proper targeting of the vesicles to the Golgi 

complex 85,86. Whether the function of mTRAPP II in ER-to-Golgi transport is restricted to its 

function as a Rab1 GEF or if the complex itself could act as a tether for vesicle tethering and 

fusion, remains controversial 76,80,86-88. 

The ER-resident protein TBC1D20 was identified as a GAP for Rab1b and Rab2a 89-93. 

TBC1D20 shares 26 % homology with the yeast Ypt1 GAP Gyp8 and consists of 403 amino 

acids 90. As its name suggests, TBC1D20 contains the Tre-2/Bub2/Cdc16 (TBC) homology 

domain, which is common for all Rab GAPs and promotes hydrolysis of Rab GTPases by a 

dual arginine/glutamine finger mechanism 38-43. Unlike other Rab GAPs TBC1D20 contains a 

C-terminal transmembrane domain mediating its cellular localization 90. Due to its role as a 

negative regulator of Rab1b, TBC1D20 overexpression causes disruption of the ER-to-Golgi 

transport and loss of the Golgi complex 89,91. Interestingly, inactivation or depletion of 

TBC1D20 blocks ER exit sites, but did not alter the secretory pathway or the Golgi structure 

in mammalian cells, suggesting that another, yet unknown GAP may contribute to Rab1 

inactivation during ER-to-Golgi trafficking 69,91,94. Recently, a role of TBC1D20 in regulating 

autophagy has also emerged 89.  

 

1.1.2 The small GTPase Rheb 

Ras homolg enriched in brain (Rheb), a member of the Ras family of small GTPases, is 

evolutionary highly conserved from yeast to human 95-97. While no Rheb was found in plants 

and only one RHEB gene has been described in lower eukaryotes such as yeast or 

Drosophila, two RHEB genes, RHEB1 and RHEB2, were found in mammals 98-100. Although 

the two gene products share 54 % identity and 74 % similarity, their tissue expression 

profile differs. Despite its name, Rheb1 is ubiquitously expressed, while Rheb2 expression is 

more limited 97,98,100,101. Hereafter, Rheb refers to Rheb1.  

Rheb consists of 184 amino acids and shares the common architecture of Ras-like 

GTPases. The N-terminal 169 amino acids contain the GTPase domain, whereas the 

15 C-terminal amino acids form the hypervariable region (HVR), including a CAAX 
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prenylation motif. Similar to other small GTPases, the switch I region of Rheb undergoes 

conformational changes during the nucleotide cycle. In contrast, the switch II region of Rheb 

maintains a relatively stable structure, adopting a unique conformation that differs from the 

long helix observed in other Ras GTPases 98,102. Moreover, the catalytic mechanism of 

GTP hydrolysis of Rheb differs. On the one hand, the Gln64, which corresponds to Gln61 in 

Ras, is buried in a hydrophobic core and cannot interact with GTP or the catalytic site. On 

the other hand, Tyr35 was shown to inhibit the intrinsic GTPase activity, maintaining Rheb 

in its highly active state 103. In fact, mutation of Tyr35 to alanine increases the intrinsic 

GTPase activity by approximately 10-fold and renders this mutant insensitive to GAP 

activity 103. Although Rheb shares the C-terminal CAAX motif with other Ras family 

members, it lacks the polybasic domain in the HVR, which in combination with prenylation 

of the CAAX motif, targets Ras proteins to the cytoplasma membrane 104,105. Both Rheb1 and 

Rheb2 become farnesylated 106,107 and associate with various endomembranes, including 

lysosomes, mitochondria and peroxisomes 101,106,108-113. Farnesylation, followed by cleavage 

of the -AAX motif and subsequent carboxymethylation are essential for membrane targeting 

and biological function of Rheb 100.  

The best characterized function of Rheb is its role as an activator of the 

mechanistic/mammalian target of Rapamycin (mTOR) complex 1, which acts as a master 

regulator of cell metabolism, growth and proliferation 114. mTOR, a highly conserved 

serine/threonine kinase, can form two structurally and functionally distinct complexes, 

mTORC1 and mTORC2 115-117. Interestingly, Rheb activates only mTORC1 but not mTORC2 
118. mTORC1 is regulated by various extracellular stimuli and intracellular mechanisms 

including the energy status, growth factors and amino acids, and integrates these signals to 

cell metabolism (Figure 1.3). Intensive research of the last decades has identified two 

distinct mechanisms by which mTORC1 senses the availability of nutrients. The first well-

established mechanism is the growth factor signaling. Growth factor stimulation is a multi-

step process which leads to the activation of the PI3K-Akt signaling axis, resulting in Akt-

mediated phosphorylation of the tuberous sclerosis (TSC) complex. The TSC complex is an 

oligomeric complex comprising TSC1, TSC2 and TBC1D7. TSC2 possesses GAP function 

towards Rheb, positioning the TSC complex as a major negative regulator of mTORC1 113,119-

125. On the one hand, the phosphorylation of the TSC complex inhibits the GAP activity of 

TSC2 towards Rheb, allowing the small GTPase to become active by a yet unidentified 

mechanism. On the other hand, phosphorylated TSC dissociates from the lysosomal surface 

and thus away from its substrate. Rheb-GTP is believed to subsequently activate mTORC1 

but the exact mechanism remains elusive 126-129. In addition to growth factors, the TSC 

complex is also regulated by various other signals, including hypoxia, genotoxic stress and 

low energy (Figure 1.3) 122,130-132. These signals seem to be integrated equally to growth 

factor sensing onto Rheb via regulation of the TSC complex.  
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Figure 1.3: Integration of different stimuli on mTORC1 signaling. Growth factor stimulation activates a 

multi-step signaling pathway which causes AKT-mediated phosphorylation of the TSC complex. 

Phosphorylation is thought to inhibit the GAP activity of TSC2 towards Rheb and induces the dissociation 

of the TSC complex from the lysosomal surface and thus away from its substrate. Rheb adapts the GTP-

bound state by a yet unknown mechanism and Rheb-GTP subsequently activates mTORC1. Similar to 

growth factor sensing, mTORC1 is regulated by stress and energy status. In contrast, amino acids are 

sensed via the Rag GTPases which act on mTORC1 in a Rheb-independent fashion. Activation of 

mTORC1 promotes cell growth and proliferation, while mTORC1 inactivation initiates autophagy, a 

catabolic process enabling cells to adapt to starvation. Figure modified from Jewell et al. 133   

 

The second mechanism mediating mTORC1 activation is the availability of amino acid. 

The presence of amino acids is sensed by the v-ATPase (Figure 1.4). Under low amino acid 

conditions, the v-ATPase binds the Ragulator complex, inhibiting its GEF activity towards 

RagA. In parallel, the GATOR1 complex exerts its GAP activity towards RagA, maintaining the 

heteromeric RagGTPases in an inactive state which is does not allow for recruitment of 

mTORC1 to the lysosomal surface. Hence, mTORC1 is distributed diffusely in the cytosol. 

Upon amino acid stimulation, the v-ATPase and Ragulator undergo conformational changes, 

allowing Ragulator to activate RagA. In parallel, the Folliculin complex promotes the GTP 

hydrolysis of RagC, resulting in an active Rag GTPase heterodimer. The active RagGTPases, 

containing RagA-GTP and RagC-GDP, recruit mTORC1 to the lysosomal surface, allowing for 

Rheb-mediated activation.  
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Figure 1.4: Amino acid sensing on the lysosomal surface. In the absence of amino acids the v-ATPase 

inhibits the Ragulator complex, preventing its GEF activity towards RagA. In addition, the GATOR1 

complex exerts its GAP activity on RagA, maintaining the heterodimeric Rag GTPases in an inactive state 

which does not allow for mTORC1 recruitment to the lysosomal surface. Amino acid stimulation causes 

conformational changes in the v-ATPase and the Ragulator complex, enabling the Ragulator complex to 

function as a GEF for RagA. GATOR1 may be inhibited by GATOR2. The active RagGTPases recruit 

mTORC1 to the lysosomal surface, enabling its activation by Rheb-GTP in the presence of growth factors. 

Figure modified from Jewell et al. 133  

 

Whether this mechanism senses all 20 amino acids equally or only specific amino acids, 

such as leucine and arginine, remains controversial. Although leucine and arginine are 

crucial for mTORC1 activation, they are not sufficient for mTORC1 activation in cells 

deprived of the remaining 18 amino acids 134,135. However, some amino acid transporters in 

the plasma membrane cotransport different amino acids, hindering the precise 

differentiation between cellular transport and sensing event 136.  

 

The current model of mTORC1 activation is that the presence of amino acids regulates 

mTORC1 recruitment to the lysosome, whereas the growth factor signaling integrates on 

Rheb-mediated mTORC1 activation. Thus, both stimuli are required to activate mTORC1 and 

promote cell growth (Figure 1.5).  
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Figure 1.5: Nutrient signal integration at the lysosomal surface. Both, the amino acid availability and 

the growth factor signaling axes converge on the lysosomal surface to regulate mTORC1 activity. Amino 

acid signaling integrates on the v-ATPase/Ragulator pathway and enables mTORC1 recruitment to the 

lysosome, enabling subsequent mTORC1 activation by GTP-bound Rheb. The activity of Rheb is regulated 

by growth factor signaling, a multi-step signaling process resulting in phosphorylation of the TSC complex 

via the PI3K/Akt axis. The phosphorylated TSC dissociates from the lysosomal surface, allowing Rheb to 

become active. Hence, mTORC1 can only be activated by Rheb if both signaling pathways are triggered. 

Figure modified from Dibble et al. 132  

 

In addition to the TSC complex-dependent regulation of mTORC1 activity, other signals 

regulating Rheb activity in a TSC-independent fashion have been reported. On the one 

hand, Rheb seems to be regulated by PRAK-mediated phosphorylation, which was found to 

decrease the nucleotide binding of Rheb, which may weaken its ability to activate mTORC1 
137. Zheng et al. found that this process is induced by energy depletion and may represent 

an AMPK-independent mechanism of mTORC1 regulation in response to the energy status. 

On the other hand, two proteins were reported to bind Rheb and potentially sequester 

Rheb away from the lysosomal surface, which may lead to a decrease of mTORC1 signaling. 

Kim et al. found that PDE4D, which is responsible for the degradation of cAMP, binds Rheb 

under low cAMP conditions, whereas high cAMP levels disrupted this interaction 138. A 

similar interaction was found by Lee et al. for GAPDH and Rheb 139. Under low glucose 

conditions GAPDH was reported to bind Rheb independently of its nucleotide state, 

whereas high levels of Gly-3P, the GAPDH substrate, inhibited the interaction. In fact, this 
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interaction has been found to decrease mTORC1 activity. Hence, this study identified a 

mechanism of Rheb/mTORC1 regulation that seems to be independent of AMPK/TSC 

signaling 139,140.  

Thus, Rheb and thereby mTORC1 activity, is regulated by a variety of signaling 

pathways. Some of these pathways seem to act on the nucleotide state of Rheb, e.g. by 

recruitment of its GAP, the TSC complex, while other stimuli may utilize binding to Rheb to 

eliminate Rheb-mediated mTORC1 activation.  

 

1.2 FRET-based biosensors 

Due to their role in a plethora of intracellular signaling processes, small GTPases are 

popular targets for biosensor development. A majority of biosensors are based on Foerster 

Resonance Energy Transfer (FRET), a non-radiative energy transfer between two 

fluorophores that have overlapping emission and excitation spectra 141. In addition to the 

spectral overlap, this energy transfer depends on the distance and the relative orientation 

of the two fluorophores. FRET has been widely used in cellular studies to assess protein-

protein interactions or protein activity using biosensors.  

Several imaging methods can be utilized to monitor FRET. The practically most feasible 

strategy is ratiometric imaging which utilizes separate fluorescence intensity images of the 

donor and the acceptor to calculate the ratio of the fluorescence intensities of the two 

images 141. When FRET occurs, this ratio is increased. Although this method can be used at 

any fluorescence microscope, due to photo-bleaching, spectral bleed-through it is prone to 

artifacts and requires appropriate subtraction of the background. Moreover, proper signal 

detection may be impaired by probe relocation, especially when monitoring bimolecular 

probes. The most commonly used fluorescent proteins for ratiometric imaging are CFP and 

YFP, or the respective enhanced variants such as Cerulean and Venus 142-145. 

A more sensitive method to detect FRET is fluorescence lifetime imaging (FLIM) 146. 

When a fluorophore is excited, it emits fluorescence in a decaying, typically exponential 

fashion from the time of activation. This fluorescence lifetime of a donor molecule is 

shortened when FRET occurs, allowing for quantitative measurements of FRET signal 

changes (FLIM-FRET). Moreover, the fluorescence lifetime is independent of the 

fluorophore concentration and the acceptor fluorescence and thus less prone to artifacts 

caused by changes in the local concentration of donor or acceptor. Although eGFP is often 

used as a donor molecule, mCitrine or mTurquoise are superior for fluorescence lifetime 

imaging due to their mono-exponential decay and higher fluorescence lifetime 142,143,147. A 

mono-exponential decay facilitates fitting of the obtained decay curves, simplifying the data 
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analysis and interpretation greatly 147. Moreover, higher donor lifetimes allow for a broader 

dynamic range when used in FRET probes.  

 

Based on their architecture FRET-based biosensors can be generally divided into two 

groups (Figure 1.6). While bimolecular probes consist of two chains, with one fluorophore 

attached to each chain, unimolecular probes contain both fluorophores within a single 

chain. Depending on the mode of action, the two fluorophores are brought in close 

proximity in one conformational state, allowing efficient FRET to occur, while the other 

state prevents FRET. To sense the activation event many biosensors utilize an affinity tag, 

which, in the case of small GTPases, is most commonly a specific binding domain of an 

effector protein. This strategy was initially developed to generate a specific bimolecular 

sensor for Rac1 activity and was further applied to other small GTPases 148. The affinity tag 

recognizes the different conformations of the small GTPase, allowing for discrimination 

between the two activity states. In the GTP-bound state, the effector binding domain can 

interact with the small GTPase, bringing the two fluorescent proteins in close proximity and 

enabling FRET (Figure 1.6). In contrast, nucleotide hydrolysis of GTP to GDP, and thereby the 

inactivation of the small GTPase, disrupts the interaction and prevents FRET. 

 
Figure 1.6: Design of FRET-based probes to monitor spatiotemporal small GTPase activity. A) The 

general design of bimolecular FRET-bases biosensors. These sensors consist of two separate chains, the 

small GTPase and its specific affinity tag (AT), each fused to a fluorescent protein (e.g. CFP and YFP). 

These two chains interact only in the GTP-bound state of the small GTPase, bringing the two fluorescent 

proteins in close proximity and enabling FRET. B) A general design of a FRET-based unimolecular probe 

to visualize small GTPase activity. The sensor consists of two fluorescent proteins, the small GTPase and 

its affinity tag, all units linked by spacers.   
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The most commonly used biosensors to monitor small GTPase activity are Ras and 

interacting protein chimeric unit (RAICHU) probes. RAICHU probes are FRET-based 

unimolecular sensors that were initially developed to assess the spatiotemporal Rap1 and 

HRas activity in cells 149. The basic architecture of these probes is similar to the calcium 

sensor Chameleon 150, consisting of two fluorescent proteins, the target protein and its 

respective affinity tag, linked by spacers (Figure 1.6 B) 149. For membrane targeting, the 

probe is fused to the native C-terminal prenylation motif of the respective small GTPase. 

This sensor design was successfully applied to several small GTPases, including members of 

the Rap, Rho, Rab, Ran and Ras families 151-157. The architecture of RAICHU probes for Rho 

GTPases was slightly altered to reduce the basal FRET-levels by interchanging the small 

GTPases and the effector unit 152,158. Most FRET probes conventionally use CFP as a 

fluorescence donor and YFP as an acceptor, allowing for ratiometric assessment to obtain 

the probe read-out 159. Since the FRET efficiency of RAICHU probes correlates with the 

nucleotide loading, the small GTPase activity can be calculated by the CFP/YFP fluorescence 

intensity ratio 149,152,154,158. 

Although widely used, RAICHU probes exhibit several disadvantages. The major pitfall 

of this sensor design is the use of an affinity tag. On the one hand, the tag allows for 

discrimination between the nucleotide states, but on the other hand, the affinity tag 

competes in binding to the small GTPase with endogenous proteins, such as effectors or 

GAPs. Moreover, effector binding is believed to stabilize small GTPases on membranes. 

Therefore, a RAICHU probe may be regulated differentially to the respective endogenous 

GTPase and the read-out may not reflect the native activity state. Furthermore, the RAICHU 

sensor design is limited to small GTPases with known effector proteins and cannot be 

applied to small GTPases for which no effector protein has been identified yet. Another 

disadvantage is the comparably huge size of the probe, containing the affinity tag, the two 

fluorescence proteins, the target GTPases and several linkers. In addition, the membrane 

targeting signal of the small GTPase has to be artificially reintroduced to the probe.  

To overcome the disadvantages of traditional probes, a new type of sensors for small 

GTPase activity was developed recently. These conformational sensors for small GTPase 

activity (COSGA) are unimolecular probes, consisting of a fluorescent protein, fused to the 

N-terminus of the small GTPase of interest, and a synthetic dye that is introduced to the 

protein fold by amino acid side chain labeling 160,161. Depending on the bound nucleotide 

and thus, the conformation of the small GTPase, the FRET signal is more or less efficient and 

can be assessed by fluorescence lifetime imaging. COSGAs have been previously developed 

and characterized as recombinant proteins and were later on applied for cellular studies 

using microinjection. Several mutation sites in Rab1b have been identified to tolerate the 

introduction of the acceptor molecule without interfering with protein folding or function 

(Figure 1.7 A) 160,161. Positioning of the acceptor in the small GTPase determined the type of 
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sensor read-out, e.g. whether the probe reports exclusively the activity state of the small 

GTPase, or both, activity and effector binding 160,161.  

 

 
Figure 1.7: Crystal structure of human Rab1 and KRas in complex with GDP. A) The mutation sites 

in Rab1 allowing for introduction of a synthetic dye via amino acid side chain labeling are highlighted in 

red. These sites are located either in the switch I region (T34 and S36), in the interswitch region (D53 and 

G54) or close to the nucleotide binding pocket (G18 and W102). The latter are suitable for the introduction 

of environment sensitive dyes, while the other positions were utilized to constitute a FRET-based 

conformational probe. GDP is colored blue. B) Alignment of the crystal structures of human Rab1a (grey) 

and KRas (dark teal), both in GDP-bound states (blue). PDB: Rab1a 2FOL; KRas 4OBE.  

 

Depending on their localization in the protein fold the mutation sites to introduce the 

FRET acceptor can be divided into three groups, the switch I region (T34 and S36), the 

interswitch region (D53 and G54) and positions in close proximity to the nucleotide binding 

pocket (G18 and W102). The first two groups are suitable to generate FRET-based 

conformational probes, whereas the last group was successfully used to introduce an 

environmental sensitive dye reporting the nucleotide state. 

Interestingly, the sensor read-out varies depending on the positioning of the acceptor 

within the protein and also within the same region. While the interswitch mutations, D53 

and G54, yield comparable sensor signals, reporting effector binding by an increase in FRET 

and protein activation by a FRET decrease, the two mutants in the switch I region differ. 

Positioning of the acceptor at S36 was found to report predominantly effector binding, 

whereas introduction of the acceptor at T34 yielded a probe that is insensitive to effector 

binding and reports exclusively nucleotide state 160,161. Due to the conserved structure that 

is shared by many small GTPases, the sensor design can be applied to other small GTPases. 

To demonstrate this versatility, the COSGA sensor approach was subsequently extended to 
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KRas, which shares high structural similarity with Rab1 (Figure 1.7 B). Similar to Rab1b, 

different mutation sites in KRas were successfully assessed for GEF-mediated activation and 

GAP-induced hydrolysis in vitro, as well as EGF-induced activation in vivo.  

Nevertheless, the major disadvantage of COSGA probes is the extremely labor-intensive 

preparation process. First, the sensor needs to be designed, a process which depends on 

the empirical evaluation of the probe. The respective position for introducing the acceptor 

dye has to be mutated to cysteine. Next, the construct requires heterologous expression, 

e.g. in bacterial expression systems, followed by protein purification and chemical 

modification. The acceptor is subsequently introduced by cysteine side-chain labeling with 

iodoacetamide-functionalized dyes. Unwanted, multiple labeling can only be avoided by 

replacement of non-essential cysteines or, if possible, via kinetic labeling 160,161. Following 

introduction of the acceptor fluorophore, the native C-terminus of the small GTPase, which 

was initially removed to avoid labeling of the cysteine residues in the prenylation motif, 

needs to be reintroduced by native chemical ligation. Finally, the sensor has to be 

introduced into cells by microinjection or electroporation to enable cellular studies. Thus, a 

broad range of biochemical and chemical methods and expertise is required to yield a 

COSGA sensor.  

 

1.3 Stop codon suppression and bio-orthogonal labeling  

Stop codon suppression, also named amber suppression, is a bioorthogonal approach 

to incorporate an unnatural amino acid (UAA) cotranslationally into a target protein in live 

cells. This unnatural amino acid carries a unique chemical handle which can then be 

specifically addressed by an orthogonal reaction. To this end, a nonsense codon, usually the 

amber stop codon (UAG) is reassigned by extending the endogenous translation system 

with an orthogonal system. The essential components for amber suppression are an 

orthogonal tRNACUA and a cognate aminoacyl-tRNA synthetase, which loads the UAA onto 

the tRNA (Figure 1.8). It is essential, that the orthogonal pair functions completely 

independent of the endogenous translation system. Thus, the orthogonal synthetase should 

aminoacylate only the orthogonal tRNA and should accept exclusively the UAA as a 

substrate. Moreover, neither the tRNA, not the UAA should be recognized as substrates by 

endogenous synthetases. If these criteria are fulfilled, the orthogonal pair can function in 

parallel to and without interfering with the endogenous translation system.  

In the absence of a stop codon suppression system, the translation process pauses 

when the ribosome reaches an amber codon. The release factor enters the ribosome and 

terminates the translation process by releasing the two ribosomal subunits, the mRNA and 

the peptide chain. In prokaryotes, the termination process is mediated by the release 
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factors 1 and 2 (RF1/RF2), which selectively terminate the translation in response to 

UAG/UAA and UGA/UAA stop codons, respectively 162,163. The termination process in 

eukaryotic cells is more complex and involves the two eukaryotic release factors 1 and 3 

(eRF1/eRF3) 164-166. eRF1 is an orthologue of the prokaryotic release factors and terminates 

the translation in response to all three stop codons. While eRF1 is the key factor for the 

termination, eRF3 plays only a stimulatory role 164-167. In contrast, the presence of an UAA 

and a cognate orthogonal pair allows for UAA incorporation into the target protein in 

response to the amber codon (Figure 1.8). However, the orthogonal process competes with 

the endogenous eRF1-mediated termination process. Thus, the expression yield of amber 

suppressed proteins depends strongly on the efficiency of the UAA incorporation process. 

Therefore the expression of amber proteins is usually lower than the expression of the 

respective wild type protein.  

 

 
Figure 1.8: Incorporation of an unnatural amino acid into a target peptide in response to an amber 

stop codon. The unnatural amino acid (UAA) is loaded onto an orthogonal tRNA by an orthogonal 

aminoacyl-tRNA synthetase. The orthogonal tRNA contains a CUA anticodon, allowing for UAA 

incorporation into the target protein at the ribosome in response to a UAG codon on the mRNA. Figure 

modified from Davis & Chin 63.  

 

Orthogonal synthetases are evolved by a two-step process (Figure 1.9) 63,168. First, a 

heterologous aminoacyl-tRNA synthetase/tRNA pair is imported from an evolutionary 

distinct organism into the target host. Then the active site of the synthetase is mutated to 

allow for recognition of an unnatural amino acid and functional candidates are selected 

(Figure 1.9 A). Generally, such synthetase candidates still recognize their natural substrate. 

Thus, libraries of synthetase candidates containing mutations in the active site are 

generated to remove the natural binding site for endogenous amino acids. These libraries 

are applied to a two-round selection process to identify mutants that accept exclusively 

unnatural amino acids as substrates (Figure 1.9 B). First, these libraries are subjected to a 

positive selection. An essential gene is modified with an amber codon and only synthetases 

incorporating an amino acid in response to the amber codon can express the gene in full 

length, allowing for host survival. These clones are applied to a second, negative selection. 

Here, the host organism is supplied with a toxic gene containing an amber codon. In the 
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absence of an UAA, this gene should not be translated in full length. Candidate synthetases 

that accept endogenous amino acids as substrate will incorporate those in response to the 

amber codon, resulting in the translation of the toxic gene and thereby host death. The 

scope of an established orthogonal pair can be further expanded by directed evolution 169. 

Although most orthogonal synthetases were discovered by import of a synthetase/tRNA 

pair into a heterologous host, a synthetase/tRNA pair can also be created de novo by 

directed evolution approaches 93.  

 

 
Figure 1.9: Evolution and selection process of an orthogonal pair for stop codon suppression. A) To 

generate an orthogonal pair, a natural synthetase and the respective tRNA are selected from an evolutionary 

distinct organism and transferred to the target host. Next, a library of mutants of this synthetase is generated 

to identify active site mutations allowing for binding of the unnatural amino acid. B) The generated library 

of active site synthetase mutants is selected in two rounds to achieve orthogonality of the 

synthetase/tRNACUA pair. Figure modified from Davis & Chin 63.  
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While the genetic code is highly conserved between distinct organisms, the sequence, 

structure and molecular specificity of aminoacyl-tRNA synthetases and tRNA differ. Thus, 

the orthogonality of amber suppression systems can depend on the host organism (Figure 

1.10). Four different orthogonal synthetase/tRNA pairs were developed and are commonly 

used for various applications. The first pair used to incorporate an unnatural amino acid was 

the Methanococcus jannaschii Tyrosyl-tRNA synthetase (MjTyrRS)/tRNACUA. This pair is 

bioorthogonal in Escherichia coli, but not to synthetases and tRNA in eukaryotes 170. In 

contrast, the E. coli Tyrosyl-tRNA synthetase (EcTyrRS)/tRNACUA and the E. coli Leucyl-tRNA 

synthetase (EcLeuRS)/tRNACUA are orthogonal in yeast and mammalian cells, but not in 

bacteria 171,172. The pyrrolysyl-tRNA synthetase (PylRS)/tRNACUA from Methanosarcina 

species is orthogonal in both, eukaryotes and prokaryotes and has even been used to 

incorporate unnatural amino acids in Drosophila melanogaster and Caenorhabditis elegans 
169,173-176. 

 

 
Figure 1.10: Orthogonality of the three different evolved aminoacyl-tRNA synthetase/tRNACUA pairs 

allowing for cotranslational incorporation of unnatural amino acids in response to stop codons. While 

the pyrrolysyl-tRNA synthetase (PylRS)/tRNA pair is orthogonal in bacteria and in eukaryotes, the 

Methanococcus jannaschii Tyrosyl-tRNA synthetase (MjTyrRS)/tRNACUA pair and the Escherichia coli 

Leucyl-tRNA synthetase (EcLeuRS) /tRNACUA pair are only orthogonal in bacteria and eukaryotes, 

respectively. Figure modified from Davis & Chin 63.  

 

The PylRS/tRNACUA system has two major advantages over the other orthogonal pairs. 

(1) The PylRS synthetase does not recognize any of the 20 canonical amino acids and 

therefore does not require an additional mutation of the natural binding site in organisms 

that do not use pyrrolysine. (2) Due to the orthogonality both in bacteria and eukaryotes, 

directed evolution and selection processes expanding the scope of recognized UAA can be 

performed in E. coli. This allowed for further evolution of the PylRS/tRNACUA pair to accept a 

variety of strained alkenes and alkynes as substrates 177-181.  

 

Genetic code expansion has become a wide-spread technique in the past decades, 

allowing for a broad range of applications, including photo-crosslinking of proteins 182-184, 
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installation of post-translational modifications 169,185-197, photo-activation 198-200 and 

introduction of biophysical probes 201-203 or labels 168,177,178,181,204-208. In addition to these 

research applications, amber suppression was also utilized to generate therapeutics, e.g. by 

protein conjugations (reviewed in 209). 

Introduction of minimal fluorescent tags into a target protein in live cells using UAA 

mutagenesis has several advantages over the more traditional genetic methods. 

Traditionally, a protein is fluorescently tagged by genetic fusion of the target protein and a 

fluorescent protein. Despite constant progress in the field and the generation of numerous 

variants of GFP, the available spectral ranges, as well as the biophysical properties of the 

respective fluorophores are limited. To overcome this issue, self-labeling protein tags such 

as the eDHFR- or SNAP-tag were developed 210. Even though these tags utilize synthetic 

fluorophores, which are superior in photostability and which are available in the whole 

spectral range, the tag size is comparable to that of fluorescent proteins. Moreover, these 

tags can be introduced exclusively to the target protein’s termini. Thus, proteins that 

require both termini for native folding or function are difficult to address by genetic fusion.  

 

Chemical biological approaches yielded numerous biocompatible strategies to 

overcome these disadvantages. One approach is the use of short peptide-motifs, e.g. the 

tetracysteine motif, which can subsequently react with biarsenical-functionalized 

fluorescent dyes 211-213. While tetracysteine motifs consist of only four amino acids, their 

introduction to the target protein is limited to fusion of the protein backbones and thus, the 

termini of the target protein. An alternative approach is the labeling of amino acid side 

chains, allowing for introduction of the fluorophore at a distinct position into the protein 

fold (reviewed in 214). The most frequent targets of this approach are lysine or cysteine 

moieties. Nevertheless, due to the biological abundance of these amino acids and the fact that 

all accessible target moieties can potentially react, the labeling specificity of these reactions is 

limited. Different bioorthogonal approaches were developed to enhance the labeling specificity, 

such as the site-specific introduction of an orthogonal group that is unique even in cellular 

systems, and which can specifically be addressed by a bioorthogonal chemical reaction. Several 

requirements need to be fulfilled in order to achieve biocompatibility and high specificity in 

cells. On the one hand, orthogonal reactions should take place under physiological conditions, 

e.g. in aqueous solution at physiological temperatures and under ambient pressure. Moreover, 

both reactants should be thermodynamically, metabolically and kinetically stable, and the 

reaction should yield covalently linked products. Neither the reactants, nor the product or any 

side product should be toxic to living systems. On the other hand, the orthogonal reaction 

partners must react exclusively with each other and not with any functional moiety present in 

cellular systems. Different reactions fulfilling these criteria were successfully used for live cell 

approaches (reviewed in 204,215), including the strain-promoted alkyne-azide cycloaddition 

(SPAAC) and the Diels-Alder cycloaddition between tetrazines and strained alkenes/alkynes 
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(Figure 1.11). Both reactions have been used to fluorescently label amber suppressed proteins 

with the respective functionalized dyes 179,207. Labeling via SPAAC was achieved using a variant 

of the E. coli Tyrosyl-tRNA synthetase (EcTyrRS) in combination with an engineered Bacillus 

stereathermophilus tRNATyr, allowing for incorporation of a variety of unnatural amino 

acids, including p-azido-L-phenylalanine (AzF) 216. AzF can subsequently react with 

bicyclononyne- (BCN) or dibenzocyclooctyl (DBCO)-modified dyes. In contrast, protein 

labeling by Diels-Alder cycloaddition between tetrazines and strained alkenes/alkynes was 

performed using the Methanosarcina mazei PylRS/tRNAPyl orthogonal pair. In the past the 

scope of substrates of this pair was extended continuously, resulting in a broad range of 

strained alkenes and alkynes that are accepted as substrates 178,179,217,218. Among these are 

bicyclo[6.1.0]-nonyne-lysine (BcnK) and Trans-cyclooctene–L-Lysine (TcoK*), which have 

been recently used to specifically label both extracellular and intracellular proteins 177-

179,181,217,219. However, although both reactions are bioorthogonal and generally applicable 

in live cells, due to the higher rate constant the Diels-Alder cycloaddition is superior to the 

SPAAC (103-104 and 10-1 M-1 s-1, respectively), allowing for rapid labeling even at low 

reactant concentrations. Another advantage is the use of tetrazine-functionalized dyes, 

which are often fluorogenic. Fluorogenic probes exhibit low intrinsic fluorescence emission 

which is massively increased after coupling to the target protein, facilitating the detection 

of specifically labeled target protein against the background signals 220-222. 

 

 
Figure 1.11: Reaction schemes of the labeling of unnatural amino acids incorporated into a protein 

with functionalized synthetic fluorophores (represented by green stars). A)  Strain-promoted alkyne-

azide cycloaddition (SPAAC) of the unnatural amino acid (UAA) p-azido-L-phenylalanine and a BCN-

functionalized fluorophore. B) Inverse-electron demand Diels-Alder cycloaddition of the UAA BCN-L-

Lysine incorporated into a protein and an H-tetrazine-functionalized dye.   
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Intracellular labeling poses a number of requirements on the dye. On the one hand, the 

functionalized probe requires high cell permeability, while on the other hand, it should not 

bind unspecifically to cellular components or accumulate in membranes. Most conventional 

small dyes including cyanine dyes and Alexa Fluor® probes, as well as their derivatives, carry 

charges and are thus not cell permeable. In contrast, tetramethylrhodamine (TMR) and 

fluorescein diacetate (FDAC) are highly cell permeable and have been used for several 

cellular applications in the past 177,181,205,223. Furthermore, boron-dipyrromethene (BODIPY) 

dyes have been used for various live cell approaches in the past and are thus promising 

candidates for intracellular labeling of amber suppressed proteins 210,221. However, the 

number of available cell permeable dyes and their spectral range are currently rather 

limited. A new series of TMR-derivates was developed by Atto-TEC 224. These probes exhibit 

excellent biophysical properties and cover the whole range of the visible spectra. 

Nevertheless, it has to be determined whether these Atto dyes are suitable for live cell 

application approaches and intracellular labeling.  

 

1.4 Objectives 

The aim of this work is to develop a new generation of the FRET-based conformational 

sensors for small GTPase activity (COSGA). These second generation probes will be 

genetically encoded and thus circumvent the extremely labor-intensive preparation process 

of the first generation of conformational sensors. This preparation process required 

expertise in a variety of methodologies, including protein expression and engineering, 

microinjection for cellular studies. To genetically encode COSGA probes, stop codon 

suppression mutagenesis, enabling incorporation of an unnatural amino acid into the target 

protein, and subsequent intracellular fluorescence labeling will be used. The first part of the 

work presented in this thesis focuses on the establishment of the UAA incorporation into 

small GTPases and the subsequent intracellular fluorescence labeling in live mammalian 

cells. While the incorporation of UAAs is nowadays a widely used technology, the 

subsequent site-specific intracellular fluorescent labeling remains challenging. Therefore, 

the well-characterized Rab1b conformational probe will serve as a target protein to allow 

direct comparison of the second generation COSGA probes with the in vitro and in vivo data 

obtained from the first generation sensor. Hence, the functionality of the genetically 

encoded sensors can be confirmed following the same strategies used for the recombinant 

probes, including effector binding studies and coexpression of GEF and GAP regulatory 

enzymes.  
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The second part of the work presented here targets the application of the COSGA 

approach to the small GTPase Rheb. Rheb is a particularly interesting target for biosensor 

development due to several reasons. First, it is the only known activator of mTORC1 and is 

indispensable for mTORC1 activation on lysosomes by virtually all stimuli (reviewed in 225). 

Second, the precise mechanism of mTORC1 activation by Rheb remains controversial and it 

is not known, whether this interaction is direct or mediated by another, yet unknown factor 
226-229. In fact, it has not been clearly shown whether mTORC1 activation under physiological 

conditions indeed depends on the nucleotide state of Rheb and if Rheb-GTP is sufficient to 

activate mTORC1 126,230. Third, although phosphorylation of the TSC complex, the Rheb GAP, 

is commonly thought to inhibit the GAP activity of TSC2 on Rheb, the mechanism of this 

inhibition, as well as the physiological relevance of the phosphorylation sites, have not been 

dissected yet 230-233. In addition, no Rheb GEF protein was yet indentified and the exact 

mechanism by which Rheb is supposed to adopt its active state in absence of the TSC 

complex on the lysosomal surface remains elusive. In fact, this event was neither monitored 

nor directly proven and is assumed solely because of the indirectly determined mTORC1 

activity. Moreover, several signals and protein interactions seem to regulate Rheb activity 

independent of its activity state, such as PDE4D or GAPDH binding in the absence of their 

substrates 138,139. Thus, the impact of the nucleotide state of Rheb on its function as an 

mTOR activator is barely understood. And fourth, due to the lack of known Rheb effector 

proteins, no specific Rheb effector binding is available. As traditional probes for small 

GTPase activity rely on such domains to differentiate the activity state of the small GTPase, 

at the present time no Rheb sensor is available. A biosensor reporting Rheb spatiotemporal 

activity would allow dissecting the role of Rheb activity during nutrient sensing on the 

lysosomal surface. Moreover, a Rheb probe would enable to shed light on the true 

regulation of Rheb by upstream signals such as the TSC complex, as well as the link to 

mTORC1 activation and downstream signals, such as autophagy.  
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2. Material and Methods 

2.1 Material  

2.1.1 Chemicals 

Table 2.1: Chemicals 

Chemicals Supplier 

2-Propanol  J.T. Baker 

4% PFA/PBS solution Morphisto 

Acetic acid Sigma-Aldrich 

Acetonitril   

Acrylamid 4 K - Lösung (30%) Diagonal 

Agarose Invitrogen 

Amersham ECL Prime Western Blotting Detection Reagent GE Healthcare 

Ammonium persulfate (APS) Serva 

Ampicillin Sodium Salt Gerbu 

Bovine serium albumin (BSA) Biomol 

Bromophenol Blue Serva 

Dimethylsulfoxide (DMSO) Serva 

Ethanol Thermo Fisher Scientific 

Ethylenediaminetetraacetic adic (EDTA) Gerbu 

Formic acid   

GeneRuler 1kb DNA ladder ThermoFisher Scientific 

Glycerol Gerbu 

Glycine Carl Roth 

HEPES Carl Roth 

Kanamycin Gerbu 

Methanol Sigma-Aldrich 

Phenylmethylsulfonylfluoride (PMSF) Serva 

Prestained protein marker (10-250kDa) '7712S New England BioLabs 

Protease Inhibitor cocktail, EDTA-free Roche 

Roti GelStain Carl Roth 

Skimmed Milk Powder Carl Roth 

Sodium azide  Sigma-Aldrich 
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Sodium Chloride Sigma-Aldrich 

Sodium dodecyl sulfate (SDS) Carl Roth 

Tris-(hydroxymethyl)-aminomethan (Tris) Santa Cruz 

Triton X-100 Thermo Fisher Scientific 

Tween-20 Serva 

β-Mercaptoethanol Serva 

 

 
Table 2.2: Unnatural amino acids 

Unnatural amino acid Supplier 

4-Azido-L-Phenylalanine (AzF) Chem-Impex International 

Endo-Bicyclononyne-Lysine (BcnK) SiChem 

Trans-Cyclooctene-L-Lysine (TcoK*) Kind gift by E.Lemke 

 

 
Table 2.3: Tetrazine-functionalized Dyes 

Dye Supplier 

6-Methyl-Tetrazine-BDP-FL Jena Bioscience 

6-Methyl-Tetrazine-FDAC synthesized by X. Chen, AG Wu 

Tetrazine-5-FAM Jena Bioscience 

Tetrazine-5-TAMRA Jena Bioscience 

Tetrazine-Atto 520 synthesized by L. Zhao, AG Wu 

Tetrazine-Atto 565 synthesized by L. Zhao, AG Wu 

Tetrazine-Atto 590 kind gift by Dep. 2 

Tetrazine-BDP-FL Jena Bioscience 

Tetrazine-Cy5 Jena Bioscience 

6-Methyl-Tetrazine-TAMRA synthesized by X. Chen, AG Wu 

 

 

2.1.2 Enzymes and Antibodies 

Table 2.4: Enzymes 

Enzyme Supplier 

FD XhoI ThermoFisher Scientific 

FD BamHI ThermoFisher Scientific 

FD NheI ThermoFisher Scientific 

DpnI ThermoFisher Scientific 
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FastAP Thermosensitive Alkaline Phosphatase ThermoFisher Scientific 

Phusion High-Fidelity PCR Master Mix HF New England BioLabs 

Red-Taq DNA Polymerase 2X MasterMix, 2,0 
mM MgCl₂ 

VWR 

T4 DNA Ligase ThermoFisher Scientific 

BigDye Terminator ThermoFisher Scientific 

 

 
Table 2.5: Antibodies 

Antibody Supplier 

Anti-Actin Chemicon 

Anti-GFP AnaSpec 

Anti-mouse HRP conjugate Dako 

Anti-rabbit HRP conjugate Millipore 

 

 

2.1.3 Oligonucleotides 

2.1.3.1 Cloning primers 

Table 2.6: Cloning primer 

Name Sequence 

1056_XhoI_Giantin_fwd AACCGCTCGAGgaaccgcagcaaagcttttctgaagc 

175 Rab1b rv TTCGGATCCTTAACAGCAACCACCACCCGCC 

665_NdeI_Citrine_fw GGAATTCCATATGGTGAGCAAGGGCGAGG 

757_XhoI_KX_fw CCGCTCGAGGATCCGGCGGTTCCG 

758_BamHI_KX_rv CGGGATCCTTACATAATTACACACTTTGTCTTTGACTTCTTTTTCTT
CT 837_BamHI_Rheb_fl_rv CGCAAGGATCCTTACATCACCGAGCATGAAGACTTGCCTT 

910_XhoI_Olisho_Rab1b_fwd 
AACCGCTCGAGGCCGCCTACAGCAGCATCCTGAACCCGGAATAT
GACTATCTGTTTAAACTGCTGCTGATCGGCG 

914_XhoI_mTurD11_rv AAGGCCTCGAGggcggcggtcacgaactccagcaggacc 

XhoI_D2Rab1b_fw AAAAACTCGAGGAATATGACTATCTGTTTAAACTGCTGCTGATCG
GCG 

XhOlisho_Rheb_fw 
AATTCTCGAGGCCGCCTACAGCAGCATCCTTCCGCAGTCCAAGTC
CCGGAAGATCGCG 
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2.1.3.2 Single site-directed mutagenesis primers 

Table 2.7: Single site-directed mutagenesis primer 

Name Sequence 

1213_Rheb_S20N_f GGGCTACCGGTCTGTGGGGAAAAACTCATTGACG 

1215_Rheb_Q64L_f CTTGTAGACACAGCCGGGCTGGATGAATATTCTATCTTTCCTC 

1217_Rheb_G63A_f 
CATCTTCAACTTGTAGACACAGCCGCCCAAGATGAATATTCTAT
CTTTCC 

1218_Rheb_G63V_f 
CATCTTCAACTTGTAGACACAGCCGTGCAAGATGAATATTCTAT
CTTTCC 

1219_Rheb_D60K_f 
CATCTTCAACTTGTAAAGACAGCCGGGCAAGATGAATATTCTAT
CTTTCC 

1220_Rheb_D122N_f 
CCTATTATGTTGGTTGGGAATAAGAAAAACCTGCATATGGAAA
GGG 

730_Rab1b_W102_TAG_fw 
TATGCCAACGTGAAACAGTAGCTGCAGGAAATTGATCGTTATG
CC 

731_Rab1b_G18_TAG_fw 
CTGCTGCTGATCGGCGATTCTTAGGTGGGTAAAAGCTGTCTGC
TGCTGCG 

732_Rab1b_S36_TAG_fw 
TTTGCTGATGACACGTATACCGAATAGTATATCAGTACCATTGG
CGTCGACTT 

733_Rab1b_I41_TAG_fw 
CGTATACCGAATCCTATATCAGTACCTAGGGCGTCGACTTCAAA
ATCCGTACGATCGAAC 

846_Rab1b_T34_TAG_fw 
GCGTTTTGCTGATGACACGTATTAGGAATCCTATATCAGTACCA
TTGGCG 

847_Rab1b_D53TAG_fw 
TCGACTTCAAAATCCGTACGATCGAACTGTAGGGTAAAACCAT
CAAACTG 

848_Rab1b_G54TAG_fw 
AATCCGTACGATCGAACTGGATTAGAAAACCATCAAACTGCAG
ATCTGGG 

890_aRheb D33TAG 
CGATTCAATTTGTTGAAGGCCAATTTGTGTAGTCCTACGATCCA
ACC 

891_aRheb S34TAG 
CGATTCAATTTGTTGAAGGCCAATTTGTGGACTAGTACGATCCA
ACC 

892_aRheb N50TAG 
GATCACAGTATAGGGACAAGAATATCATCTTCAACTTGTAGAC
ACAGCCG 

893_aRheb G51TAG 
ATCACAGTAAATTAGCAAGAATATCATCTTCAACTTGTAGACAC
AGCCGG 

898_aRheb G108TAG CCATGGCAAATTGTTGGATATGGTGTAGAAAGTACAAATACC 

899_Q67L_Rab1b_for GCAGATCTGGGATACCGCTGGTCTAGAACGTTTCCGTACC 

Rab1b D2_rv 
GTTATCTAGATCCGGTGGATCCTTATTATTAACCACCACCCGCC
GGTTTCACCGGGG 
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Rab1b_N121I_f CAACAAACTGCTGGTTGGTATCAAAAGCGATCTGACGACGA 

Rab1b_S22N_f CGATTCTGGTGTGGGTAAAAACTGTCTGCTGCTGCG 

 

2.1.3.3 Sequencing primers 

Table 2.8: Sequencing primer 

Name Sequence 

108_fwd_n_fluo CGACCACTACCAGCAGAACACC 

372_CMV_fw CGCAAATGGGCGGTAGGCGTG 

905_SV40_rev GGACAAACCACAACTAGAATGC 

 

 

2.1.4 Plasmids 

Unless indicated otherwise, plasmids were generated within this work. 

2.1.4.1 Plasmids for stop codon suppression 

Table 2.9: Plasmids for stop codon suppression 

Plasmid Source 

(U6-PylT )4 EF1α-BcnKRS  Kind gift by J.Chin 

pcDNA_SV40Bst-Yam_CMV(eCFP_P2A_AzF-RS)   

pcDNA-AzpRS (RS-V1) Kind gift by T.P.Sakmar 

pCMV PylRS AF Kind gift by E. Lemke and C. Schultz 

pSVBpUC-Yam Kind gift by T.P.Sakmar 

 

2.1.4.2 Rab1b plasmids 

Table 2.10: Rab1b plasmids 

Plasmid Source 

pCitrine_aRab1b fl. D53TAG   

pCitrine_aRab1b fl. G18TAG   

pCitrine_aRab1b fl. G54TAG   

pCitrine_aRab1b fl. I41TAG   

pCitrine_aRab1b fl. S36TAG   

pCitrine_aRab1b fl. T32TAG   

pCitrine_aRab1b fl. T34TAG   
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pCitrine_aRab1b fl. W102TAG   

pCitrine_Olisho_aRab1b fl. D53TAG   

pCitrine_Olisho_aRab1b fl. G54TAG   

pCitrine_Olisho_aRab1b fl. S36TAG   

pCitrine_Olisho_aRab1b fl. S36TAG N121I   

pCitrine_Olisho_aRab1b fl. S36TAG Q67L   

pCitrine_Olisho_aRab1b fl. S36TAG S22N   

pCitrine_Olisho_aRab1b fl. T34TAG   

pCitrine_Olisho_Rab1b fl.   

pCitrine_Rab1b fl.   

pCitrine_Rab1b fl. N121I   

pCitrine_Rab1b fl. Q67L   

pCitrine_Rab1b fl. S22N   

pCitrine_XPn_aRab1b S36   

pCitrine_XPn_Rab1b fl.   

pCitrineD11_LE_aRab1b S36   

 

2.1.4.3 Rheb plasmids 

Table 2.11: Rheb plasmids 

Plasmid Source 

pCitrine_Rheb fl.   

pCitrine_XhOlisho_aRheb fl. D33TAG   

pCitrine_XhOlisho_aRheb fl. G108TAG   

pCitrine_XhOlisho_aRheb fl. G51TAG   

pCitrine_XhOlisho_aRheb fl. N50TAG   

pCitrine_XhOlisho_aRheb fl. S34TAG   

pCitrine_XhOlisho_Rheb fl.   

pmCherry_Rheb fl.   

 

2.1.4.4 Plasmids for cellular markers and others 

Table 2.12: Plasmids for cellular markers and others 

Plasmid Source 

pCitrine-C1 Clontech 

pEGFP_182TAG   
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pEGFP_182TAG_Kx   

pKate2_Giantin 3131-3259 Kind gift by P.I.Bastiaens 

pmCherry_OCRL fl.  Kind gift by R.S. Goody 

pmCherry-C1 Clontech 

pTagBFP_2xFKBPF37V_DrrA 340-533  Ag Wu 

pTagBFP_OCRL 539-901   Ag Wu 

pTagBFP_TBC1D20 1-362   

pTagBFP-C Evrogen 

pTagBFP-C Evrogen 

 

 

2.1.5 Buffers and Solutions 

All buffers were prepared using double distilled MilliQ water. Unless indicated 

otherwise, all percentages are volume/volume.  

 
Table 2.13: Enzyme buffers 

Enzyme Buffer Supplier 

10x Fast Digest Buffer ThermoFisher Scientific 

10x T4 DNA Ligase Buffer ThermoFisher Scientific 

10x Tango Buffer ThermoFisher Scientific 

10x FastAP Buffer ThermoFisher Scientific 

5x Sequencing Buffer ThermoFisher Scientific 

 

 
Table 2.14: Transfer buffer 

Amount Component 

6.04 g Tris/HCl 

30 g Glycine 

1200 mL H2O 

400 mL Methanol 

ad 2 L H2O 
 

Table 2.15: 10x TBS-T buffer 

Amount Component 

48.46 g Tris/HCl 

160.12 g NaCl 

1600 mL H2O 

20 mL Tween 

ad 2 L H2O 
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Table 2.16: Stacking gel buffer 

Amount Component 

0.5 M Tris/HCl pH 6.8 

0.4 % (w/v) SDS 
 

Table 2.17: Separating gel buffer 

Amount Component 

1.5 M Tris/HCl pH 8.8 

0.4 % (w/v) SDS 
 

Table 2.18: 4x SDS Sample Buffer 

Amount Component 

130 mM Tris/HCl pH 6.8 

200 mM DTT 

4 % (w/v) SDS 

0.025 % (w/v) Bromophenol blue 

20 % Glycerin 

 
 
 

Table 2.19: RIPA Buffer 

Amount Component 

50 mM Tris/HCl pH 7.8 

150 mM NaCl 

0.1 % (w/v) SDS 

0.5 % (w/v) 
Sodium 
deoxycholate 

1 % Triton X-100 
 

Table 2.20: 10x SDS-Page Running Buffer 

Amount Component 

250 mM Tris/HCl 

2 M Glycin 

1 % (w/v) SDS 

 
 

Table 2.21: 50x TAE Buffer 

Amount Component 

242 g Tris base 

57.1 mL Acidic acid 

100 mL 0.5 M EDTA pH 8.0 

ad 1 L H2O 
 

Table 2.22: 5x DNA Loading Buffer 

Amount Component 

30 % (w/v) Sucrose 

20 % Glycerin 

0.2 % (w/v) Orange G 
 

2.1.6 Kits and Commercials 

Table 2.23: Kits and Commercials 

Kit Supplier 

E.Z.N.A. Cycle Pure Kit Omega bio-tek 

E.Z.N.A. Gel Extraction Kit Omega bio-tek 

E.Z.N.A. Plasmid Mini Kit  Omega bio-tek 

SuperSignal™ West Femto Maximum Sensitivity 
Substrate 

ThermoFisher Scientific 

Western Blotting Detection Reagent GE Healthcare 
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2.1.7 Bacterial strains 

Table 2.24: Bacterial strains 

Bacterial strain Supplier 

E.coli XL-1 blue (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac ) Stratagene 

 

2.1.8 Mammalian cell lines 

Table 2.25: Mammalian cell lines 

Cell line ATCC no. Source 

CHO CCL-61™ Kind gift by AG Waldmann 

Cos-7 CRL-1651™ Kind gift by AG Bastiaens 

HEK 293 CRL-1573™ Kind gift by AG Waldmann 

HEK 293T CRL-3216™ Kind gift by AG Großmann 

HeLa CCL-2™  ATCC 

MCF7 HTB-22™  ATCC 

U2OS HTB-96™ Kind gift by AG Hennig 

 

2.1.9 Material  

Table 2.26: Frequently used Devices 

Device Supplier 

Accu-jet pro Brand 

Alpha Imager HP Alpha Innotec 

BioPhotometer Eppendorf 

Blotting Cassette GE Healthcare 

Centrifuge 5415R Eppendorf 

Centrifuge 5804R Eppendorf 

Countess® II Automated Cell Counter LifeTechnologies 

EPS 301 Power supply GE HEalthcare 

HeraSafe HS12 Hera 

IncuCyte Zoom Essen BioScience 

Invo2 Humidified CO2-supplemented Incubator Memmert 

Lyophilizer   
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Microwave Siemens 

MilliQ Water/Millipore Advantage A Merck Millipore 

Mini Trans-Blot® Bio-Rad 

Mini-PROTEAN® Tetra handcast system Bio-Rad 

NanoDrop 2000c Thermo Fisher Scientific 

OptiMax X-ray Flim Processor PROTEC 

PCR Cycler Analytik Jena 

Plasma Surface technology Femto Diener electronic  

PowerPac™ Universal Power Supply BioRad 

QBT Block Heater Grant Instruments 

Shaker ST5  Ingenieurbüro CAT 

Typhoon Trio+ Imager GE Healthcare 

VortexGenie2 ScientificIndustries 

Waterbath Memmert 

 

 
Table 2.27: Cell Culture Medium and Supplements 

Medium / Supplement Supplier 

DMEM, high glucose, phenol-red free ThermoFisher Scientific 

Dulbecco's Modified Eagle's Medium, D5796 Sigma-Aldrich 

Earle's Balanced Salt Solution, no phenol red ThermoFisher Scientific 

Fetal Bovine Serum ThermoFisher Scientific 

GlutaMAX Supplement ThermoFisher Scientific 

MEM Non-Essential Amino Acids Solution ThermoFisher Scientific 

Minimum Essential Medium Eagle, Hepes-modified (M7278) Sigma-Aldrich 

Opti-MEM ThermoFisher Scientific 

Penicillin-Streptomycin Solution P4333 Sigma-Aldrich 

Phosphate buffered saline, P4417 Sigma-Aldrich 

Poly-L-Lysine solution, 0.01%, P4832 Sigma-Aldrich 

Sodium Pyruvate  ThermoFisher Scientific 

Trypsin-EDTA solution, 0.25%, T4049 Sigma-Aldrich 

XtremeGene HP DNA Transfection Reagent Roche 

Insulin I9278 Sigma-Aldrich 

Trypan blue Invitrogen 
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Table 2.28: Frequently used Consumables 

Consumable Supplier 

TC-Flasche T75,Standard Sarstedt 

Cell Culture Plate 48-well, tc-treated Eppendorf 

Conical tube 15mL Sarstedt 

Conical tube 50mL Sarstedt 

CryoPure Tube 1.8mL Sarstedt 

Glass Bottom Dish 35mm MatTek 

Safe-Seal Reaktionsgefäße 0,5 mL Sarstedt 

Safe-Seal Reaktionsgefäße 1,5 mL Sarstedt 

Safe-Seal Reaktionsgefäße 2,0 mL Sarstedt 

Sterile serological pipets 10mL Sarstedt 

Sterile serological pipets 25mL Sarstedt 

Sterile serological pipets 5mL Sarstedt 

Falcon TC plate 24 well ThermoFisher Scientific 

TC plate 6 Well, Standard, F Sarstedt 

TC-dish 100, Standard Sarstedt 

x-well slides 4-well on cover glass Sarstedt 

x-well slides 8-well on cover glass Sarstedt 

Pipette tip 10µL  Sarstedt 

Pipette tip 200µL  Sarstedt 

Pipette tip 1250µL Sarstedt 

Cell scraper VWR 

Countess Cell Counting Chamber Slides Invitrogen 

Whatman cellulose chromatography paper Sigma-Aldrich 

Autoradiography Film Santa Cruz 

Forceps Carl Roth 

0.2 mL PCR tubes Sarstedt 

Multi PCR stripes (8-strip) Sarstedt 
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2.1.10 Equipment 

Table 2.29: Frequently used Microscopes 

Microscopes Supplier 

TCS SP5 Leica Microsystems 

SP2 Leica Microsystems 

TCS SP8 Leica Microsystems 

PrimoVert Inverted Microscope Zeiss 

 
Table 2.30: Frequently used Software 

Software Publisher 

Adobe Photoshop CS4 Adobe 

ImageJ 1.51p W.Rasband (NIH) 

IncuCyte Zoom 2016B Essen BioLabs 

JediFLIM Dr. K. Schuermann (Dep.2, MPI Dortmund) 

LasAF Lite Leica Application Suite 2.6.0 Leica Microsystems 

MatLab 2015a MathWorks 

Microsoft Office 2010 Microsoft 

Modified JediFLIM B. Scocozza (Dep.2, MPI Dortmund) 

OriginPro 9.0G OriginLab 

PyCharm 2017.1.4 JetBrains 

PyMol Schrödinger Suites 

SnapGene Viewer 3.1.4 SnapGene 

SymPhoTime v5.12 PicoQuant GmbH 
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2.2 Methods  

2.2.1 Biomolecular Methods  

2.2.1.1 Template PCR  

Single genes or sub genetic fragments were amplified and fused to restriction enzyme 

recognition sites by Polymerase chain reaction (PCR). Table 2.31 indicates the components 

and volumes of a standard PCR reaction.  

 
Table 2.31: Standard PCR reaction 

Volume Component 

10 µL 2x Phusion High-Fidelity PCR Master Mix HF 

0.5 µL Forward primer (10 pmol/µL) 

0.5 µL Reverse primer (10 pmol/µL) 

1.2 µL DMSO 

10-20 ng Template DNA 

ad 20 µL ddH2O 

 

All components were thawed on ice, the Phusion High-Fidelity PCR Master Mix HF, both 

primers, and DMSO were mixed with the PCR template in a 0.2 mL PCR tube and shortly 

centrifuged before running the program “Template PCR” (Table 2.32) in a PCR cycler. The 

annealing temperature (*) was selected accordingly to the melting temperature of the used 

primers, typically 2-4 °C below the lowest melting temperature. All primer pairs were 

designed to exhibit a maximum of 5 °C difference in melting temperature. Annealing time 

(**) was set accordingly to the lengths of the gene to be amplified. 

 
Table 2.32: Template PCR program 

Temperature Time Cycle 

98 °C 2 min - 

98 °C 30 sec 

30x 50-72 °C * 30 sec 

72 °C 15 sec/1kb** 

75 °C 10 min - 

4 °C ∞ - 

 



36 
 

Successful amplification of the target gene was verified by DNA gel electrophoresis. The 

PCR product was purified using a PCR purification kit or via gel extraction, and eluted from 

the columns in 30 µL elution buffer. 

 

2.2.1.2 Linker Insertion and Modification 

Engineering of the linker between the fluorescent protein and the small GTPase was 

performed by PCR amplification of the respective target gene using a prolonged forward 

primer encoding an XhoI restriction enzyme recognition site and the respective linker 

sequence. Linker sequences were manually codon optimized for mammalian cells using the 

NCBI-GenBank-based Codon Usage Database 234. 

 

2.2.1.3 DNA Gel Electrophoresis 

To confirm successful gene amplification and/or restriction enzyme digestion, the PCR 

product and/or the crude digestion reaction were analyzed by DNA gel electrophoresis. 

Therefore 1% (w/v) agarose was suspended into 1x TAE buffer and boiled in the microwave 

until the agarose was fully dissolved. 5 µL Roti-GelStain was added per 100 mL agarose and 

the solution was mixed intensively. Gels were cast by pouring the solution into a DNA gel 

electrophoresis device and inserting a comb to generate sample loading pockets. 2-5 µL of 

the DNA sample was mixed with the respective volume of 5x DNA loading buffer and the 

whole mixture was loaded onto the DNA gel. Gel electrophoresis was performed for 40 min 

at 90 V. 

 

2.2.1.4 Restriction Enzyme Digestion 

Complementary sticky ends on the PCR product and on the plasmid backbone were 

generated by restriction enzyme digestion. Table 2.33 and Table 2.34 show standard 

reactions for digestion of a PCR product and plasmid DNA, respectively. All components 

were thawed on ice and mixed in a 1.5 mL reaction tube. The digestion was performed for 

4-16 h at 37 °C. Successful digestions were controlled by DNA gel electrophoresis.  
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Table 2.33: Standard reaction for 

restriction enzyme digest of PCR products 

Volume Component 

3.5 µL 10x FD buffer 

1 µL Enzyme 1 

1 µL Enzyme 2 

30 µL  Purified PCR product 
 

Table 2.34: Standard reaction for restriction 

enzyme digest of plasmids 

Volume Component 

2 µL 10x FD buffer 

1 µL Enzyme 1 

1 µL Enzyme 2 

1 µL FastAP 

0.5-1.0 µg  DNA 

ad 20 µL ddH20 
 

 

The digested DNA fragments were purified using a PCR purification kit or via gel 

extraction. In both cases samples were eluted in 30 µL elution buffer.  

 

2.2.1.5 Ligation 

Digested plasmid backbones and the respective PCR products were ligated using T4 

DNA Ligase. Table 2.35 shows a standard ligation reaction. All components were thawed on 

ice, mixed in a 1.5 mL reaction tube, centrifuged shortly and incubated at 16 °C overnight.  

 
Table 2.35: Standard ligation reaction 

Volume Component 

1 µL 10x T4 DNA Ligase buffer 

1 µL T4 DNA Ligase 

1 µL Backbone DNA, digested and dephosphorylated 

3 µL Insert DNA, digested 

ad 10 µL ddH2O 

 

On the following day, the complete ligation reaction was chemically transformed into 

E. coli and positive clones were screened by Colony PCR. 

2.2.1.6 Single Site-Directed Mutagenesis 

Exchange of up to two amino acids and insertion of single amino acids into a target 

sequence were performed by single site directed mutagenesis using only one primer. 

Primers for this purpose were designed with at least 50 bp lengths and more than 20 bp on 

each side of the mutation site. To ensure selective and strong binding of the primer a 3’ GC 
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clamp was introduced and primers with melting temperatures higher than 68 °C were 

generated. Table 2.36 shows a standard single site-directed mutagenesis reaction. All 

components were thawed on ice, mixed in a 0.2 mL PCR tube and shortly centrifuged. The 

reaction was performed using the PCR program illustrated in Table 2.37. Annealing 

temperatures (*) were selected accordingly to the primers used, usually 3-5 °C below the 

primer melting temperature.  

 
Table 2.36: Standard reaction for single 

site-directed mutagenesis 

Volume Component 

10 µL 2x Phu HF MasterMix 

1.5 µL Primer (100 pmol/µL) 

1.2 µL DMSO 

0.4-0.6 µg  Plasmid DNA 

ad 20 µL ddH2O 
 

Table 2.37: Single site-directed mutagenesis PCR 

program 

Temperature Time Cycles 

98 °C  30 sec - 

98 °C 30 sec 

29x 65-72 °C * 30 sec 

72 °C 30 sec per 1kb 

72 °C 10 min - 

4 °C ∞ - 
 

 

Following the PCR reaction, 2.3 µL 10x Tango buffer and 1 µL DpnI were added to the 

reaction mix and incubated at 37 °C for 4-16 h. The whole reaction was subsequently 

transformed chemically into E. coli XL1 blue. Three to five clones were selected, the plasmid 

DNA was extracted and the sequence of the target gene verified by DNA sequencing 

 

2.2.1.7 DNA Sequencing 

Sequencing of plasmid DNA was performed by either sending the samples to external 

sequencing services (StarSeq GmbH or Eurofins), or performed manually using BigDye 

Terminator and submitted to the MPI in-house sequencing facility.  

For external sequencing services the plasmid of interest was mixed with an appropriate 

sequencing primer following sample submission guidelines of the respective company.  

For in-house submission, the sequencing reaction was performed as displayed in Table 

2.38. All components were mixed in a 0.2 mL PCR tube and the sequencing reaction was 

performed following the protocol shown in Table 2.39. 
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Table 2.38: Standard DNA sequencing 

reaction 

Volume Component 

2 µL 5x Sequencing buffer 

2 µL BigDye Terminator 

1.5 µL Primer (10 pmol/µL) 

0.4-0.6 µg Plasmid DNA 

ad 10 µL ddH2O 
 

Table 2.39: DNA sequencing PCR program 

Temperature Time Cycles 

96 °C 4 min - 

96 °C 10 sec 

25x 50 °C 5 sec 

60 °C 4 min 

4 °C ∞ - 
 

 

Following the sequencing reaction, the reaction mix was transferred into a 0.5 mL 

reaction tube and DNA was precipitated by adding 2 µL 4 M NaAc pH 4.0, 2 µL 100 mM 

EDTA pH 7.0, 16 µL ddH2O and 70 µL 100 % EtOH. The mixture was intensively mixed, 

incubated for 15 min at RT and centrifuged for 30 min at 14 000 rpm and 4 °C. The pellet 

was washed carefully with 0.5 mL ice cold 70 % EtOH and centrifuged again for 20 min at 14 

000 rpm and 4 °C. The supernatant was discarded; the pellets were dried at RT and 

submitted to the MPI in-house sequencing facility.  

 

2.2.1.8 Transformation into E. coli 

Transformation of plasmid DNA into E. coli allows amplification of whole plasmids with 

high efficiency and low error rate. 2-10 ng plasmid DNA or 10 µL crude ligation reaction was 

mixed with 30-300 µL solution of chemically competent E. coli XL-1 blue and incubated for 

1 h on ice, followed by a heat shock of 45 sec at 42 °C. 1 mL LB medium was added and the 

mixture incubated for 1 h at 37 °C and 170 rpm. The bacteria suspension was centrifuged at 

8000 x g for 3 min, the supernatant discarded and the bacteria pellet resuspended in 50 µL 

LB medium. The solution was spread on agar plates containing antibiotic for selection of 

positive clones and the plates were incubated overnight at 37 °C. 

 

2.2.1.9 Bacterial Cultures 

Single bacterial colonies were chosen from agar plates after antibiotic selection and 

transferred into pre-culture tubes containing 4 mL LB medium and the respective selection 

antibiotic (Ampicillin 125 µg/mL, Kanamycin 50 µg/mL). Bacterial cultures were grown 

overnight at 37 °C and 170 rpm. Plasmid DNA was extracted using the E.Z.N.A.® Plasmid 

Mini Kit I following the manufacturer’s protocol.  
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2.2.1.10 Colony PCR 

Bacterial clones obtained by antibiotic resistance selection were screened for the 

plasmid of interest by Colony PCR. Table 2.40 shows the composition of a single standard 

Colony PCR reaction, for analysis of multiple clones, a master mix solution was calculated 

based on the number of selected clones. All liquid components were thawed on ice, mixed 

in a 1.5 mL reaction tube and centrifuged shortly. The master mix was distributed into Multi 

PCR stripes with 10 µL per tube. Single bacterial colonies were selected and transferred into 

10 µL of the reaction mix. The same tips were used to plate the respective colony onto a 

fresh agar plate and the plates were incubated overnight at 37 °C. The reaction mix was 

placed in a PCR cycler and the Colony PCR program (Table 2.41) was performed. 

 
Table 2.40: Single Colony PCR reaction mix 

Volume Component 

5 µL 2x RedTaq MasterMix 

1 µL Forward primer (10 pmol/µL) 

1 µL Reverse primer (10 pmol/µL) 

1x Bacterial colony 

ad 10 µL ddH2O 
 

Table 2.41: Colony PCR program 

Temperature Time Cycles 

94 °C 2 min - 

84 °C 1 min 

29x 55 °C 2 min 

72 °C 30 sec 

72 °C 10 min - 

4 °C ∞ - 
 

 

Positive clones were inoculated in pre-cultures for plasmid extraction and DNA 

sequencing. 

 

2.2.2 Preparation and Storage of Click-Reaction Components 

2.2.2.1 Preparation of BcnK Solution 

BcnK stock solution aliquots were prepared by dissolving 25 mg BcnK powder in 500 µL 

30 % Acetonitrile / 1 % formic acid in water. The suspension was mixed intensively and 

distributed to ten 1.5 mL reaction tubes with 50 µL per tube (2.5 mg BcnK per tube). The 

aliquots were snap-frozen in liquid nitrogen, lyophilized and stored at -20 °C. Shortly before 

an experiment a 250 mM stock solution was prepared by adding 31 µL 0.1 M NaOH to one 

aliquot and dissolving the BcnK powder by pipetting. 250 mM stock solution aliquots were 

stored at -20 °C and, if not consumed immediately, thawed maximum up to three times 

after dissolving. 
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2.2.2.2 Preparation of AzF Medium 

AzF medium was prepared by dissolving 0.12 g AzF powder in plain 500 mL MEM 

HEPES-modified medium (1 mM final AzF concentration). To enhance dissolving, the 

solution was sonicated until all AzF aggregates dissolved completely. The medium was 

sterile-filtered over a 0.2 µM syringe filter and completed by addition of 57 mL FBS, 5.7 mL 

sodium pyruvate, 5.7 mL NEAA and 5.7 mL GlutaMAX. AzF medium was aliquotted and 

aliquots were stored at -20 °C.  

2.2.2.3 Preparation of Tetrazine-Functionalized Dyes 

Tetrazine dyes were dissolved in cell culture grade DMSO and distributed to 1.5 mL 

reaction tubes with each tube containing 50-100 µg. The aliquots were snap-frozen in liquid 

nitrogen, lyophilized and stored at -20 °C. 5-10 mM stock solutions were prepared freshly 

before an experiment by dissolving the dye in cell culture grade DMSO. Aliquots were 

stored at -20 °C and thawed maximum up to three times. 

 

 

2.2.3 Cell biological Methods 

2.2.3.1 Subculture of Mammalian Cells 

Mammalian cell lines were cultured in HEPES-modified Minimum Essential Medium 

Eagle (MEM) or Dulbecco’s modified Eagle’s Medium (DMEM), both supplemented with 

10 % (v/v) fetal bovine serum (FBS), 1 % (v/v) non-essential amino acids (NEAA), 1 % (v/v) 

sodium pyruvate and, if required, 1 % (v/v) GlutaMAX, in a humidified incubator at 37 °C 

and 5 % CO2, unless indicated otherwise. All mammalian cell lines were passaged two to 

three times a week by trypsinization and seeding of 1-3 x 105 cells in a fresh 10 cm dish. 

PenStrep was added to the growth medium only for certain experiments, such as reversible 

cryo-arrest experiments. 

2.2.3.2 Cryo-Preservation and Long-Term Storage 

Long-term storage of mammalian cells was performed in the gas phase of a liquid 

nitrogen tank in presence of 10 % DMSO in the growth medium. Therefore, 100 µL DMSO 

was mixed with 400 µL fully supplemented DMEM in a cryo vial and 500 µL of cell 

suspension (approximately 1 x 106 cells) were added. The cell stocks were stored for one 

week at -80 °C before being transferred into the vapor phase of a liquid nitrogen tank.  
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Cryo-preserved cells were thawed in a water bath at 37 °C. To remove DMSO from the 

growth medium, the cell solution was diluted into 10 mL medium and centrifuged for 5 min 

at 500 x g. The pellet was gently resuspended in 10 mL fresh medium and the cell solution 

transferred into a dish or flask for further cultivation.  

2.2.3.3 Cell Culture Vessel Surface Treatment 

Poly-L-Lysine coating 

To increase cell adherence to the culture vessel and ensure cell attachment even after 

multiple medium exchanges, HEK 293 and HEK 293T samples were seeded on culture 

vessels pre-coated with Poly-L-Lysine. Table 2.42 shows the respective amount of 

Poly-L-Lysine solution used per well for the different types of growth vessels. Coating was 

performed by addition of Poly-L-Lysine solution on the bottom of the culture vessel, gentle 

rocking to distribute the solution evenly and incubation for 15-30 min at RT. The 

Poly-L-Lysine solution was removed and each well was washed three times in PBS to 

remove residual solution. The vessels were kept openly in the laminar flow bench to dry the 

wells before seeding of the cells. 

 
Table 2.42: Coating of growth vessels with Poly-L-Lysine 

Vessel Type Poly-L-Lysine Volume / Well 

4-well chamber slide 300 µL 

8-well chamber slide 150  µL 

24-well plate 200  µL 

48-well plate 150  µL 

6-well plate 150  µL* 

* Only the growth channel was coated on cryo slides. 

 

Glow-discharge surface modification 

Samples for cryo experiments were treated by plasma treatment instead of Poly-L-

Lysine coating, as this allows for more even and stronger cell adherence. Glow-discharge 

modification is a plasma irradiation treatment resulting in oxygen incorporation into the 

irradiated surface. This increases the amount of negative charges of the surface, allowing 

strong cell adhesion. Plasma surface treatment was performed following the standard 

procedure using the Femto device from Diener Electronics. Treated cell culture vessels were 

rinsed three times in PBS before cell seeding. Experiments in plasma surface treated vessels 

were performed in presence of PenStrep to decrease contamination risk.  
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2.2.3.4 Transfection  

Transfection was performed using two different protocols: the traditional transfection 

and the fast-forward transfection for transfection of adherent an trypsinized cells, 

respectively.  

 

Traditional Transfection 

Traditional transfection was performed on adherent cells by seeding the cells one day 

before transfection. A 75-90 % confluent cell culture was rinsed once in 10 mL PBS (HEK 293 

and HEK 293T cells were rinsed in 2 mL Trypsin), 1 mL Trypsin was added and the dish was 

incubated at 37 °C until all cells detached from the vessel bottom. Cell detachment was 

monitored by light microscopy. After complete cell detachment, 9 mL medium was added 

and cell aggregates were separated by pipetting. The cell suspension was then transferred 

into a 50 mL conical tube. 10 µL cell suspension was mixed in a 1.5 mL reaction tube with 

10 µL Trypan blue and 10 µL of the mixture transferred on a Countess Cell Counting 

Chamber Slide. The cell number was counted using the Countess II Cell Counter. Based on 

the live cell count, the required volume for the cell number per well was calculated and 

added to each well. The total volume per well was adjusted using growth medium. Table 

2.43 indicates the number of cells that were seeded according to the growth area per well 

for different cell lines.  

 
Table 2.43: Cell numbers per growth area [cm²] 

Cell line Cell Number/cm² 

CHO 1.5 x 104 

Cos-7 1 x 104 

HEK 293 1.875 x 104 

HEK 293T 1.875 x 104 

HeLa 1.5 x 104 

MCF7 1.5 x 104 

U2OS 1.5 x 104 

 

Transfection was performed at approximately 60 % cell confluency judged by light 

microscopy on the morning following seeding of the cells.  

Opti-MEM was added into a sterile 1.5 mL reaction tube; the plasmids were diluted into 

Opti-MEM, and mixed intensively. After addition of the transfection reagent, the mixture 

was incubated for 15-30 min at RT to allow DNA:reagent complex formation. Meanwhile 

BcnK was diluted 1:5 in 1 M HEPES buffer pH 7.5 and added to amber suppression samples 

to a final BcnK concentration of 250 µM, unless indicated otherwise. After complete 
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incubation time, the transfection mixture was added to each sample. To achieve even 

complex distribution within each well, the culture vessel was rocked gently. Unless 

indicated otherwise, all amber suppression samples were incubated in presence of UAA for 

1.5 d post-transfection before further treatment. Table 2.44 shows the different culture 

vessels and the respective transfection conditions. 

 
Table 2.44: Transfection conditions in different culture vessels 

Application Vessel Type 
Total 
Vol./ 
Well 

Growth 
Area/ 
Well 

Opti-
MEM 

Total DNA 
Amount 

Xtreme 
Gene 

live cell 
microscopy 

4-well chamber 0.5 mL 1.9 cm² 80 µL 0.5 µg 0.8 µL 

8-well chamber 0.3 mL 0.8 cm² 40 µL 0.3 µg 0.4 µL 

Lysates 24-well plate 0.5 mL 2.0 cm² 100 µL 0.5-1.0 µg 1.5 µL 

IncuCyte 48-well plate 0.3 mL 0.64 cm² 40 µL 0.3 µg 0.4 µL 

Cryo-arrest 6-well plate 2.0 mL 8.87 cm² 200 µL 3.0 µg 3.0 µL 

 

Fast forward Transfection 

Fast forward transfection was performed on trypsinized cells immediately before cell 

seeding. First, the respective amount of DNA was incubated with the XtremeGene 

transfection reagent in OPTI-MEM for 15-30 min at RT. Meanwhile cells of a 75-90 % 

confluent culture were rinsed in 10 mL PBS, 1 mL Trypsin was added and the dish incubated 

at 37 °C until cell detachment was completed. 9 mL medium was added and the cell solution 

was transferred to a 50 mL conical tube. The cell number was counted by mixing 10 µL cell 

suspension with 10 µL Trypan blue solution, transferring 10 µL of the mixture into a 

Countess Cell Counter Chamber slide and using the automated cell counting machine 

Countess II. Based on the live cell number, the required cell number was calculated and the 

respective volume was transferred into a fresh cell culture vessel for live cell imaging. 

Growth medium was added to the final working volume of the vessel and the solution was 

mixed to achieve even distribution of the cells throughout the vessel. The DNA-Reagent 

complex was added drop wise and the vessel was agitated gently to allow even distribution. 

The required amount of BcnK was added directly to the cell suspension.  

2.2.3.5 Intracellular Chemical Labeling 

To remove residual BcnK from the cells and thereby decrease side reactions, the 

medium was exchanged to BcnK-free DMEM 16-20h before intracellular labeling. Labeling 

was performed by diluting 5-10 mM stock tzDye to the final concentration of 0.5 µM into 

DMEM, unless indicated otherwise. The solution was rigorously mixed to avoid local 
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concentration differences. Cells were rinsed once in the dye-containing medium and 

incubated for 30-45 min at 37 °C and 5 % CO2 in the humidified incubator. The dye-

containing medium was removed and cells were rinsed at least once in dye-free medium. To 

remove residual dye from the cells, the samples were washed for several hours before 

imaging or treatment. Frequent rinsing of the sample can enhance dye removal but, 

depending on the cell line, may affect cell adherence. For live cell microscopy and IncuCyte 

experiments, the growth medium was exchanged to phenol red-free medium before 

imaging or directly after the labeling step, respectively. 

2.2.3.6 Chemical Fixation of Cells 

Cells were chemically fixed using paraformaldehyde (PFA) fixation. The samples were 

prepared using the same protocol and culture vessels as for live cell imaging. The medium 

of respective samples was removed, the cells once rinsed in PBS and incubated in 

4 % PFA/PBS for 20 min at RT. The PFA solution was removed; the samples rinsed again in 

PBS and kept in PBS for imaging.  

 

 

2.2.4 Biochemical Methods 

2.2.4.1 Preparation of Whole Cell Lysates 

Whole cell lysates for in-gel fluorescence and Western blot analysis were prepared 

from mammalian cells cultured in a 24-well plate (Table 2.43 and Table 2.44). Lysis of 

intracellularly labeled samples was performed 2-8 h post-labeling to allow removal of excess 

dye. The cells were rinsed once in cold PBS and lysed in 50 µL RIPA-buffer supplemented 

with 1 mM PMSF and 1x c0mplete EDTA-free protease inhibitor. To enhance lysis, the wells 

were scratched using a cell scraper. The lysates were transferred to 1.5 mL reaction tubes 

and centrifuged for 15 min at 4 °C and 14 000  rpm. The supernatants were transferred to 

fresh tubes and the pellets were discarded. The lysates were stored at -20 °C. 

 

2.2.4.2 SDS-Page Gel Electrophoresis 

All SDS polyacrylamide gels were hand cast using the mini-PROTEAN® Tetra handcast 

system. The acrylamide concentrations in the separation gel was 15 %, for stacking gels 4 % 

acrylamide was used. Table 2.45 and Table 2.46 show the detailed composition.  
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Table 2.45: Composition of 15% Separation gel 

Separating Gel Concentration 15 % 

Total Volume 100 mL 

Acrylamide 50 mL 

Separating Gel Buffer 25 mL 

ddH2O 22.9 mL 

10 % APS 1 mL 

TEMED 100 µL 

 
Table 2.46: Composition of 4% Stacking gel 

Stacking Gel Concentration 4 % 

Total Volume 50 mL 

Acrylamide 6.67 mL 

Stacking Gel Buffer 12.5 mL 

ddH2O 31.5 mL 

10 % (w/v) APS 0.5 mL 

TEMED 50 µL 

 

To prepare the stacking and separation gel acrylamide, gel buffer and water were 

added to two separate 50 mL conical tube and mixed intensively. 10 % (w/v) APS was added 

and the solution mixed gently. TEMED was added to the separating gel solution, mixed 

quickly by inverting twice and distributed to the gel casting device and covered with 

Isopropanol. After complete solidification of the separating gel, the Isopropanol was 

removed by decanting. TEMED was added to the stacking gel solution, mixed quickly by 

inverting twice and pipetted on top of the solid separating gels. Gel combs were inserted. 

Unless used on the same day, the gels were wrapped in wet tissue paper and stored in a 

plastic bag at 4 °C. 

Whole cell lysates were thawed on ice. Unless indicated otherwise, 4x SDS-PAGE 

loading buffer was added and the samples were boiled at 95 °C for 10 min. Per slot 10 µL 

prestained protein standard and 10-30 µL lysate were loaded on the SDS-PAGE. The gels 

were run at 80 V until samples entered the separation gel, followed by 100-120 V for 

several hours. Proper separation was judged by separation of the prestained protein 

molecular weight standard.  
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2.2.4.3 In-gel Fluorescence Analysis 

The completed SDS polyacrylamide gels were kept in the glass plates and fluorescence 

was scanned using a Typhoon Trio+ Scanner with the following settings: 

 
Table 2.47: Settings for In-gel Fluorescence detection 

Probe Excitation Line Sensitivity Emission Filter 
PMT 
Voltage 

FAM 488 nm Medium 520BP40 600-700 V 

TMR 532 nm Medium 580BP30 600-700 V 

Cy5 633 nm Medium 670BP30 600-700 V 

Atto 565 532 nm Medium 580BP30 600-700 V 

Atto 590 532 nm Medium 580BP30 600-700 V 

 

Samples with low fluorescence intensity, e.g. TcoK incorporation experiments, were 

scanned with high laser sensitivity and/or increased PMT voltage (up to 750 V). 

2.2.4.4 Western Blot 

To verify the fluorescent bands’ identity, the scanned gels were used for western 

blotting. The samples were transferred from the gel onto a nitrocellulose membrane in 

transfer buffer in a wet blot module for 40 min at 100 V. All following steps were performed 

on a tilting shaker at 20 rpm, washing steps at 60 rpm. The membrane was incubated in 

5 % (w/v) milk in TBS-T for 1 h to block the residual protein binding sites of the membrane 

and incubated with rabbit anti-GFP primary antibody over night at 4 °C. The membrane was 

washed three times for 10 min in TBS-T and incubated with the HRP-conjugated anti-rabbit 

secondary antibody for 1 h at RT. After washing three times 10 min in TBS-T, the HRP-

dependent luminescence reaction was started using standard ECL and/or SuperSignal ECL 

solution. Luminescence was detected by exposure of X-ray films which were developed in 

an automated developing machine. Exposure times were varied from few seconds up to 1 h 

to achieve proper signal detection.  

To denature the HRP and thereby inhibit detection of the previously immunostained 

bands, the membrane was soft-stripped in 0.1 M NaN3 for 1 h at RT, washed three times for 

10 min in TBS-T and reblocked for 45 min in 5 % milk in TBS-T, followed by an overnight 

incubation with mouse anti-Actin antibody. The membrane was washed three times 20 min 

in TBS-T and incubated with HRP-conjugated anti-rabbit secondary antibody for 1 h at RT. 

Following three times 20 min washing steps at RT, the blots were incubated for 1 min with 

ECL substrate solution, transferred into a transparent plastic bag and fixed into a developing 

cassette. X-ray films were used to detect luminescence and subsequently developed in a 

developing machine.  
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Developed X-ray films were scanned; blots and fluorescence scans of the same gel were 

cropped, aligned and labeled using Photoshop CS4. 

2.2.4.5 Determination of the Intracellular Labeling Efficiency 

To determine the yield of the intracellular labeling reaction whole cell lysates of 

unlabeled and intracellularly TMR-labeled protein expressing cells were generated as 

described before (Chapter 2.2.4.1). 1 µM tetrazine FAM or tetrazine Cy5 were added to 

each lysate, the solution mixed intensively and incubated for 15 min at RT before adding 

SDS-PAGE loading buffer and further sample preparation. The samples were separated on 

SDS-PAGE and in-gel fluorescence of the different dyes was monitored. 

2.2.5 Microscopy 

2.2.5.1 Confocal Fluorescence Microscopy 

Confocal fluorescence images of live cells were obtained using a Leica SP2, Leica TCS 

SP5 or SP8 laser scanning microscope using a HCX PL APO (λ blue) 63x oil objective. All 

microscopes were equipped with an incubation chamber, enabling live cell imaging at 37 °C 

and 5 % CO2. Excitation wavelengths and emission detection bands of the respective 

fluorophores are listed in Table 2.48. FRET partners that have overlapping excitation 

spectra, e.g. Citrine and TMR, were imaged sequentially to ensure proper separation of the 

fluorescence signals. Unless indicated otherwise, all samples were imaged under live cell 

conditions.  
Table 2.48: Settings for confocal imaging of different fluorophores 

Type Fluorophore λexcitation λemission Laser Source 

Fluorescent 
protein 

mCitrine 514 nm 520-540 nm Argon/WLL 

eGFP 488 nm 503-530 nm Argon/WLL 

mTurquoise2 458 nm 468-511 nm Argon 

mCherry 587 nm 610-750 nm WLL 

TagBFP 405 nm 520-540 nm UV Diode 

mKate2 587 nm 640-790 nm WLL 

Organic 
Dye 

BDP FL 496 nm 506-600 nm WLL 

Fluorescein 496 nm 506-600 nm WLL 

Atto 565 565 nm 595-700 nm WLL 

Atto 590 590 nm 605-750 nm WLL 

Atto 520 514 nm 530-600 nm WLL 

TMR 552 nm 567-700 nm WLL 
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2.2.5.2 Fluorescence Lifetime Imaging 

Time domain fluorescence lifetime was performed at a TCS Leica SP5 or SP8 laser 

scanning microscope, both equipped with PciQuant’s compact FLIM and FCS upgrade Kit 

and White Light Lasers from Koheras. Excitation wavelengths and emission detection bands 

were set according to the settings for confocal microscopy for the respective fluorophore 

and the pinhole was kept half open at 300 µm. Before each FLIM image, a sequential 

confocal image was acquired first. Laser power was adjusted to keep the photon count rate 

stable, below 10 % of the laser frequency (20 MHz). FLIM images were captured at 200 Hz 

scan speed and 256x256 or 512x512 format. Depending on the protein of interest, a 

minimum of 500-1000 counts per pixel or at least 15 000 counts per image were acquired.  

2.2.5.3 Reversible Cryo-Arrest 

Samples for reversible cryo-arrest were prepared as described before, but cells were 

seeded on modified glass slides. Reversible cryo-arrest was performed in collaboration with 

Dr. J. Hübinger (Dep. 2, MPI Dortmund) as previously described using the Leica TCS SP5 or 

SP8 microscopes 235. Different stage inlays were tested to avoid frequent issues of sample 

movement post-freezing. 

2.2.6 Image Manipulation and Data Analysis 

2.2.6.1 Fluorescence Lifetime Image Analysis 

Time-domain FLIM data was analyzed using the customized MatLab script for Global 

analysis 147. Based on the obtained photon count images binary masks were generated using 

ImageJ and applied on the lifetime images. Single cells were selected manually and average 

lifetimes of whole cells or cellular segments, such as the Golgi apparatus or the Cytosol, 

were measured. FLIM images were false colored using the ImageJ look up table “royal” and 

data box charts were generated using OriginPro 9.0G.  

2.2.6.2 Intensity-based Fluorescence Quantification 

Microscopy experiments for image-based Fluorescence quantification were captured at 

16-bit depth and with stable microscope settings during sample acquisition. Fluorescence 

intensities were quantified using ImageJ. In-gel and western blot densitometry analysis 

were performed similarly using ImageJ. Data illustrations were generated using Microsoft 

Excel 2010 or OriginPro 9.0G. 
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2.2.6.3 Analysis of Reversible Cryo-Arrest Data 

FLIM data obtained from Cryo-arrest experiments was analyzed using either the 

MatLab-based Global Analysis script or the newly developed Python-based JediFLIM 

software by Dr. K. Schürmann (Dep.2, MPI Dortmund). XY-Correction of FLIM data was 

achieved by a modified version of JediFLIM, kindly developed by B. Scocozza (Dep.2, MPI 

Dortmund). Vesicle extraction was performed using a modified version of the ImageJ plugin 

“Vesicle extraction”, originally written by Dr. M. Massip (Dep.2, MPI Dortmund). This 

modified version is based on detection of local maxima in intensity images and was 

developed in the frame of this work.  

2.2.7 In silico Linker Optimization Strategies 

2.2.7.1 In silico Prediction of the Secondary Structure 

Secondary structures of the linker regions were predicted using the online PSIPRED 

Protein Sequence Analysis Workbench 236. 

2.2.7.2 Calculation of Linker Lengths 

Unstructured linker 

To calculate the maximal distance between the FRET partners the distance of the 

fluorophores to the C-terminus or N-terminus was measured in the crystal structure of 

mCitrine and Rab1, respectively. Next, the length of the linker was determined using 

Equation 2.1. mCitrine and Rab1 amino acids that were not resolved in the crystal structures 

were treated as part of the linker. The sum of the three values represents the maximal 

distance between the FRET partners, assuming that the linker region does not adapt a 

secondary structure and that the fusion protein adapts a linear conformation. The distance 

and orientation between the synthetic dye fluorophore and the protein backbone is not 

taken into account in this calculation. 

 
Equation 2.1 

𝑟 = √𝐶𝑛  ×  𝑏0  ×  √(𝑛) 

𝑟 = distance [Å] 
𝑛 = number of amino acids 
𝑏0 = 3.8 Å 
𝐶𝑛 = 2.3 
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Helical linker 

To determine the maximal distance between the FRET partners assuming a helical 

linker, the amino acid sequence of the linker region plus 15 amino acids each upstream and 

downstream of the linker were applied to secondary structure prediction. The number of 

amino acids forming an alpha helix was divided by 3.6 to determine the number of 

windings. The result was multiplied with 5.4 Å, which is the length of one winding. The 

result was added to the distance of the fluorophores to the termini of mCitrine and Rab1b, 

assessed by crystal structure as described before. Amino acids of mCitrine and Rab1 those 

were not resolved in the crystal structures as well as amino acids between secondary 

structures were treated as unstructured and their distance was calculated using Equation 

2.1. The sum of all values represents the maximal distance between the FRET partners 

assuming a helical conformation of the linker region and a linear conformation of the fusion 

protein.  
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3. Results 

The focus of the study presented in this thesis was to genetically encode the previously 

developed FRET-based conformational sensors for small GTPase activity (COSGA). These 

conformational probes consist of a fluorescent protein tag as FRET donor and a synthetic 

dye introduced to the protein fold as acceptor 160,161. Positioning of the acceptor position 

determines whether the sensor reports exclusively the nucleotide state of the small GTPase, 

or the nucleotide state as well as effector binding. The first generation of COSGA probes has 

been extensively characterized for Rab1b and KRas GTPases both in vitro and in vivo 160,161. 

The major limitation of COSGA sensors is the labor-intensive preparation process, which 

requires various methods ranging from protein expression and purification to chemical 

protein engineering. Moreover, cellular application of these recombinant probes requires 

microinjection or electroporation. Therefore, this work focused on the development of a 

second, genetically encoded generation of COSGA probes to facilitate the use of these novel 

sensors. To this end, amber suppression approach and subsequent intracellular fluorescent 

labeling are utilized to side-specific introduce the FRET acceptor into the small GTPase fold. 

The first target protein is Rab1b, allowing comparison of the sensor properties of the first 

and second generation probes. The principle was subsequently applied to the small GTPase 

Rheb, which is the only known activator for the mammalian target of rapamycin (mTOR) 

complex 1 126-128. The lack of known Rheb effectors and thereby a specific Rheb binding 

domain that could be exploited as affinity tags impeded the development of traditional 

probes to monitor spatiotemporal Rheb activity.  

 

3.1 Genetically Encoding of the Conformational Sensor 

Two major steps are essential to genetically encode COSGA probes, (1) the 

cotranslational incorporation of an unnatural amino acid (UAA) into the target protein in 

mammalian cells and (2) the subsequent intracellular fluorescence labeling reaction to 

embed the FRET acceptor into the small GTPase fold. While the first step, to incorporate an 

UAA, has become a well-established method within the last decades 63,237, the second step, 

where the UAA is dye-labeled intracellularly, was achieved only in single cases 177,181. As the 

labeling of intracellular proteins in mammalian cells remains challenging, the reaction and 

its major pitfalls were intensively assessed in this work.  
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3.1.1 Stop Codon Suppression in small GTPases 

Stop codon suppression of small GTPases in mammalian cells was performed using two 

different amber suppression systems. Due to its artificial nature, the UAA incorporation 

event competes with the termination of the translation process (see Chapter 1.3). In 

eukaryotic cells, translation is terminated by the eukaryotic release factors 1 and 3 

(eRF1/eRF3) 164-167. When exogenously expressed, the orthogonal aminoacyl-tRNA 

synthetase (RS) loads the orthogonal tRNACUA with the UAA, allowing UAA incorporation in 

response to an amber codon at the ribosome 63,237. The orthogonal incorporation process 

competes with the endogenous release factor-mediated termination of the translation, 

yielding a mixed expression of the amber protein as a full-length protein (UAA 

incorporation) and a N-terminal fragment (translational termination) 180,238,239. The 

incorporation efficiency, and thereby the expression rate of an amber protein, depends on 

the target protein, the incorporation site, the abundance of the orthogonal tRNACUA and the 

used cell line. Two different parameters were evaluated to estimate the UAA incorporation 

efficiency of a sample: (1) the number of incorporating cells per sample and (2) the ratio of 

full-length and fragment expression of the small GTPase.  

 

3.1.1.1 Evaluation of UAA Incorporation Efficiency 

To establish a general protocol for UAA incorporation in mammalian cells 

amber GFP182TAG (aGFP) and different amber mutants of mCitrine-Rab1b (hereafter 

referred to as aRab1b) were utilized. aGFP is a reporter construct consisting of an eGFP 

cassette modified with an internal TAG stop codon at position 182 240. The amber codon 

prevents the full-length expression and fluorophore maturation in the absence of an UAA, 

whereas UAA presence and incorporation result in a mature and fluorescent protein. 

Thereby, the reporter construct allows for precise detection of the UAA incorporation 

event. In contrast, the fluorescent protein (FP) of the COSGA sensor is fused to the 

N-terminus of Rab1b, positioning the FP upstream of the amber codon (Figure 3.1 A). On 

the one hand, this allows for native prenylation of the Rab1b C-terminus, a process essential 

for membrane targeting 46,47,241, while on the other hand, the mCitrine fluorophore can 

mature even in the absence of an UAA and without full-length expression of the construct. 

Therefore, fluorescence emission cannot serve as an indicator for UAA incorporation into 

aRab1b. Instead, the incorporation efficiency was estimated by phenotypic comparison of 

the cellular localization of aRab1b and the wild type protein. Rab1b localizes predominantly 

to the Golgi complex and the cytosol, but not to the nucleus (Figure 3.1 B). The membrane 

association of aRab1b mutants depends on the presence of the C-terminal prenylation motif 
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46,47,241 and thereby on the successful incorporation of the UAA and the full-length 

expression of the construct (Figure 3.1 A).  

To estimate the UAA incorporation rate of single cells the cellular localization of aRab1b 

constructs was compared with Rab1b wild type (WT) and soluble mCitrine as positive and 

negative controls, respectively (Figure 3.1 B). Three parameters can serve as indicators for 

the UAA incorporation into Rab1b, (1) the proper localization of aRab1b to the Golgi 

apparatus, (2) the amount of aRab1b in the cytosol and (3) the mCitrine fluorescence 

intensity in the nucleus.  

 
Figure 3.1: Subcellular localization of aRab1b depends on the presence of its C-terminus, and can 

therefore serve as an indirect for successful UAA incorporation. A) Schematic overview of the sensor 

architecture; the fluorescent protein mCitrine is fused to the C-terminus of Rab1b; the amber codon (red 

asterisk) in amber Rab1b allows for the incorporation of an unnatural amino acid, e.g. p-azido-L-

phenylalanine (AzF) or Bicyclo[6.1.0]-nonyne-L-lysine (BcnK). Full-length expression of the construct 

allows for prenylation of the C-terminus of Rab1b and thereby membrane targeting of the sensor. B) HeLa 

cells expressing amber Rab1b (aRab1b) S36 displaying three different incorporation efficiencies; mCitrine 

and Rab1b wild type (WT) served as negative and positive controls, respectively. aRab1b S36 grown in the 

absence of UAA (-UAA) lacks the typical Rab1b subcellular localization pattern and resembles the 

expression of soluble mCitrine.   

 

Expression of aRab1b S36 mutants in HeLa cells revealed various phenotypes, 

suggesting different incorporation efficiencies (Figure 3.1 B). Low UAA incorporation 

resulted in weak association of Rab1b to the Golgi complex and high cytosolic and nuclear 



56 
 

fluorescence intensity, resembling the phenotype of aRab1b expressed in the absence of 

UAA or expression of soluble mCitrine. High UAA incorporation efficiency yielded a 

subcellular localization pattern comparable to that observed for Rab1b wild type (WT) 

indicated by association of the construct to the Golgi complex and low fluorescence 

intensity in the nucleus (Figure 3.1 B).  

 

3.1.1.2 UAA Incorporation into Rab1b 

Two different amber suppression systems were tested for the UAA incorporation into 

Rab1b in mammalian cells. The first system is based on an E. coli tyrosine aminoacyl-tRNA 

synthetase variant and an engineered Bacillus stereathermophilus tRNATyr (Chapter 1.3 and 

Figure 1.10). This orthogonal pair allows for the incorporation of p-azido-L-phenylalanine 

(AzF) 171,216,242. The second system consists of an aminoacyl-tRNA synthetase (RS)/tRNACUA 

pair from Methanosarcina mazei and naturally encodes for pyrrolysine 243,244. As the wild 

type RS/tRNAPyl pair did not efficiently incorporate cyclooctene lysine derivatives, two 

mutations based on rational design were introduced to the RS 179,217. The Y306A and Y384F 

mutant synthetase (PylRSAF, here after referred to PylRS) efficiently incorporated different 

strained alkenes and alkynes, including Bicyclo[6.1.0]-nonyne-lysine (BcnK) and Trans-

cyclooctene–L-Lysine (TcoK*) 178,179,217,218. The PylRS system can be operated in both, 

prokaryotes and eukaryotes, whereas the AzF system is restricted to eukaryotic cells 

(Chapter 1.3). 

The incorporation of AzF into the reporter construct aGFP suffered from extremely low 

efficiency and high cytotoxicity (data not shown). Although the transfection of HeLa cells for 

the AzF system and different amber Rab1b mutants revealed a small but detectable number 

of transfected cells, only few cells exhibited the expected Rab1b subcellular localization 

pattern indicating UAA incorporation (data not shown). In addition to the low incorporation 

efficiency, the system caused massive cytotoxicity. Intensive optimizations of transfection 

and cultivation conditions neither enhanced the UAA incorporation efficiency nor decreased 

the cytotoxicity, raising the question of suitability of the AzF system for the development of 

genetically encoded COSGA sensors (data not shown).  

In contrast, the BcnK/TcoK* system exhibited surprisingly high transfection efficiency 

(up to 90 %) for several proteins of interest (POIs) with moderate to low cytotoxicity (data 

not shown). The BcnK incorporation efficiency varied between different amber proteins and 

different incorporation sites within the same protein, causing high heterogeneity of the 

fluorescence intensity and the Rab1b localization pattern (data not shown). In contrast, the 

TcoK* incorporation into aRab1b produced comparable numbers of incorporating cells per 

sample, but all cells exhibited a low to moderate fluorescent intensity (data not shown). 

Due to the high efficiency, the comparably low cytotoxicity and the rapid labeling reaction 
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with tetrazine-functionalized probes, the BcnK/TcoK* system was selected for the 

establishment of the genetically encoded COSGA sensor.  

Figure 3.2 illustrates the newly established general protocol for the UAA incorporation 

into small GTPases in mammalian cells using the amber suppression technique. The 

protocol spans three days; the cells were seeded on day 1, transfected the following 

morning and imaged or lysed on day 3. The UAA was added during transfection on day 2 

and kept in the growth medium for the whole time. The expression time in presence of the 

UAA can be prolonged for an additional one to two days but should be evaluated 

empirically to avoid cytotoxicity or, depending on the used cell line, over confluency of the 

culture. 

 
Figure 3.2: Scheme of the established protocol for UAA incorporation into small GTPases in 

mammalian cells.  The cells were seeded on the evening of day 1 and transfected with the orthogonal pair 

and the amber protein plasmids on the following morning. 250 µM of the UAA was added during 

transfection. The samples were incubated at least for 24 h post-transfection and imaged or lysed on day 3.   

 

Unless indicates otherwise, BcnK was used as the standard UAA for all experiments 

and, if not specified differently, all amber proteins were grown in the presence of 250 µM 

BcnK. In certain cases, BcnK and TcoK* were used in parallel to compare their different 

properties.  

 

3.1.1.3 Comparison of Different Amber Rab1b Mutants 

To compare the UAA-dependent localization pattern of different aRab1b mutants, the 

constructs were coexpressed with a cellular Golgi marker. The marker consists of a far-red 

fluorescent protein, mKate2, and the C-terminal membrane anchor of the Golgi-resident 

transmembrane protein Giantin (amino acids 3131-3259). On the one hand, 

mKate2-Giantin3131-3259, hereafter revered to as GntC, enables the identification of the 

Golgi-localized fraction of aRab1b, while on the other hand, the marker allows for 

visualization of homeostasis of the Golgi apparatus. Inactive Rab1 mutants, such as the 

dominant negative Rab1b S22N or N121I mutants, act as dominant suppressors of 

endogenous Rab1b function 245-247. Exogenous expression of inactive Rab1 mutants in cells 
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causes partial or complete disintegration of the Golgi complex, resulting in redistribution of 

Golgi-localized proteins to perinuclear fragments and the ER 245,248,249. If Rab1b function is 

impaired due to the incorporation of the UAA, a similar or comparable phenotype would be 

expectable. In contrast, mutations that impair nucleotide hydrolysis, e.g. the constitutively 

active Rab1b Q67L mutant, localize natively to the Golgi apparatus and do not impair Golgi 

biogenesis. Figure 3.3 A illustrates the different amber Rab1b mutants coexpressed with the 

Golgi marker in HeLa cells.  

The colocalization between Rab1b and GntC was quantified to identify the Golgi-bound 

fraction of the different Rab1b mutants (Figure 3.3 B). Rab1b wild type (WT), the empty 

mCitrineN1 vector (mCitrine) and the aRab1b mutant S36 grown in the absence of BcnK 

served as phenotype controls for the cellular localization of Rab1b. The non-amber 

suppressed Rab1b WT/S22N mutant served as a control for the disruption of the Golgi 

complex.  

All examined amber mutants, except for the G18 construct, exhibited the typical 

subcellular localization pattern of Rab1b, displaying a clearly visible Golgi apparatus and 

varying fractions of cytosolic and nuclear fluorescence (Figure 3.3 B). This distribution is 

abolished in the absence of BcnK, resulting in a diffuse cytosolic localization resembling the 

expression of soluble mCitrine. Cells expressing aRab1b exhibited a well-structured Golgi 

apparatus as indicated by the marker GntC. mCitrine fluorescence intensity varied between 

cells expressing different amber mutants, suggesting differences in the expression levels 

among the mutants. Cells expressing aRab1b S36 showed the highest fluorescence intensity, 

whereas cells expressing D53 and G54 exhibited only moderate fluorescence intensity. T34, 

I41 and W102 expression was low, resulting in hardly visible fluorescent signals. The D53 

and G54 constructs which contain an amber mutation in the interswitch region, exhibited a 

larger nuclear fraction than the other mutants, potentially indicating a mixture of mCitrine-

Rab1b fragment and full-length protein. No Golgi association was found for the aRab1b G18 

construct, suggesting a lack of UAA incorporation. 

These results demonstrate that UAA incorporation into different sites of Rab1b was 

successful and yielded functional proteins that did not interfere with Golgi homeostasis. An 

exception is the mutation site G18, which seemed to lack stop codon suppression, and 

thereby full-length expression of the construct, completely. A possible explanation could be 

that G18 is equivalent to the oncogenic KRas G12D mutation and UAA incorporation at this 

position might impair the protein’s function, causing rapid degradation of the construct 250.  

The varying fluorescent intensity of the different amber Rab1b mutants indicates 

differences in expression levels. In order to establish the FRET-based conformational sensor 

the aRab1b T34, S36, D53 and G54 constructs were used for further experiments, whereas 

the G18 and W102 mutants as well as I41 constructs were not further assessed. 
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Figure 3.3: Amber Rab1b mutants localize to the Golgi complex in a UAA-dependent fashion. 

A) HeLa cells coexpressing different amber mutants of Rab1b and the Golgi marker (GntC). 

B) Quantification of the colocalization of the Golgi marker and the different aRab1b mutants. Rab1b WT, 

mCitrineN1 and aRab1b S36 in the absence of BcnK served as controls. Scale bars: 10 µm.  
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3.1.1.4 Evaluation of Amber Rab1b Expression Levels 

Next, the expression yields of the different amber Rab1b mutants were determined. To 

this end, aRab1b expression in the presence and the absence of an UAA was analyzed by 

western blot (Figure 3.4 A). The bands indicating full-length aRab1b expression were 

extremely faint and their detection required prolonging of the exposure time. Therefore, 

two different exposure times are illustrated. The prolonged exposure resulted in the 

detection of an unspecific band around 42 kDa. Although full-length expression of aRab1b 

mutants was detectable, the obtained expression yields were much lower than observed for 

the wild type protein. Moreover, the expression levels varied between the mutants. 

aRab1b S36 showed the highest full-length expression, whereas D53 expression was 

moderate and G54 and T34 yielded comparable low amounts of full-length constructs. 

Moreover, the mCitrine-Rab1b fragment was detected in all amber suppression samples 

and its size varied with the position of the mutation site within Rab1b. Interestingly, the 

presence or absence of an UAA did not affect its abundance.  

 
Figure 3.4: Evaluation of the expression yields of different amber Rab1b mutants in HEK 293T cells. 

A) Western blot analysis of Rab1b WT and four aRab1b mutants in the presence and absence of BcnK 

(GFP). Two different exposure times are displayed. Full-length expression of the mCitrine-Rab1b 

construct (49 kDa) is indicated by a black arrow head; mCitrine-Rab1b fragment expression (approx. 

30 kDa) is marked by a white arrow head; the asterisk indicates an unspecific band (~42 kDa). 

Untransfected cells and PylRS expressing cells served as negative controls; immunoblotting of Actin 

(Actin) served as a loading control. B) Densitometric quantification of the expression yield of the 

different amber mutants and Rab1b WT in the presence and absence of BcnK normalized on Actin.   

 

The same experiment was performed using TcoK* (data not shown). TcoK* was 

incorporated in a similar fashion observed for the incorporation of BcnK into aRab1b 

mutants, but the observed expression yields were generally lower (data not shown). 
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3.1.1.5 UAA Incorporation into Rheb 

In parallel to amber suppression of Rab1b, the newly established protocol for the UAA 

incorporation into small GTPases was applied to different amber mutants of mCitrine-Rheb 

(hereafter referred to as aRheb).  

The mutation sites in Rheb were selected by two strategies. On the one hand, the 

previously described sites for introduction of the FRET acceptor into Rab1b were applied to 

Rheb by structural alignment of the two proteins (Figure 3.5). This approach yielded the 

mutation sites D33, S34, N50 and G51. On the other hand, a RMSF modulation, a measure 

of the average atomic mobility of backbone atoms, was performed by collaborators, 

suggesting the additional mutation site G108 as a candidate (data not shown). 

 
Figure 3.5: Structural alignment of Rab1a and Rheb small GTPases. GTP-bound Rab1a (PDB: 3TKL) 

is illustrated in grey, the previously characterized mutation sites for introduction of the FRET acceptor 

fluorophore are highlighted in blue. The active state of the small GTPase Rheb (PDB: 1XTS) is depicted in 

cyan. The structural equivalents of the mutation sites of Rab1b in Rheb are highlighted in red. The 

additional mutation site, G108, was identified by RMSF modulation.  

 

In contrast to Rab1b, the small GTPase Rheb does not localize predominantly to one 

cellular compartment 101,106,108,111,113,251,252. Consequently the phenotype of Rheb expression 

is not as clearly defined as for Rab1b. The largest fraction of mCitine-Rheb localized in a 

diffuse cytosolic pattern with faintly visible endomembrane systems and dense 

fluorescence signals in the perinuclear area (Figure 3.6 A). A smaller fraction of Rheb 

localized to the nucleus. The difference in fluorescence intensity of the nucleus and the 

cytoplasm was similar between Rheb WT and the amber mutants when expressed in 
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presence of BcnK, but was abolished in its absence (Figure 3.6 A). Some aRheb mutants, e.g. 

D33 and G108, exhibited irregular punctate structures, suggesting unspecific accumulation 

of the constructs. Although all aRheb expressing cells showed fluorescence differences 

between nucleus and cytosol, perinuclear densities as displayed by Rheb WT expressing 

cells were hardly detectable. Moreover, most cells expressing aRheb constructs displayed 

elevated nuclear fluorescence levels than observed for the expression of Rheb WT, 

suggesting abundance of non-suppressed mCitrine-aRheb fragment (Figure 3.6 A). 

Incorporation of TcoK* into Rheb yielded comparable results to incorporation of BcnK but 

suffered of low efficiency. 

 
Figure 3.6: Stop codon suppression of amber Rheb. A) Five different incorporation sites were tested for 

BcnK and TcoK* incorporation in HeLa cells. Rheb WT and aRheb S34 in the absence of UAA served as 

controls. B) Western blot of HEK 293T cells expressing Rheb WT and different aRheb mutants in the 

presence of BcnK (GFP); immunoblotting ofActin served as a loading control (Actin). Full-length Rheb 

expression (48.2 kDa) is indicated by an arrow head. The asterisk indicates an unspecific band. The loading 

of Rheb WT was reduced to avoid over-exposure. Expression yields were quantified to allow for the direct 

comparison of the mutants and the wild type constructs. Scale bar: 10 µm.  
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To determine the expression yield, western blot analysis of aRheb expression in the 

presence of an UAA was performed (Figure 3.6 B). The densitometric quantification of the 

bands representing full-length expressed Rheb construct revealed 12 % expression yield for 

the highest expressed mutant, aRheb N50, in comparison to the natural translation control 

Rheb WT. In contrast, full-length expression of aRheb S34 and G51 was hardly detectable 

and no full-length expression was obtained for aRheb D33 and G108. 

The determined expression yields of aRheb were lower than those observed for the 

expression of aRab1b (Figure 3.4 B), suggesting that the UAA incorporation process into 

Rheb is not as efficient as UAA incorporation into aRab1b. Moreover, the observed diffuse 

fluorescent pattern of aRheb mutants may indicate a mixed expression of aRheb in full 

length and as a non-suppressed fragment.  

 

3.1.2 Establishment of the intracellular chemical labeling 

The intracellular labeling of amber suppressed proteins in mammalian cells has 

remained challenging despite the progress in the field in the last years. Consequently, a 

major part of this study focused on the establishment of a robust and reproducible protocol 

allowing for intracellular labeling of various proteins with high specificity and yield in 

mammalian cells.  

 

3.1.2.1 Fluorescent probes for intracellular labeling 

The intracellular labeling of proteins with synthetic fluorophores poses several 

requirements on the functionalized dye. While on the one hand, the probe needs to be 

highly cell permeable, on the other hand, it should not bind to cellular components or 

accumulate in membrane systems unspecifically. Furthermore, the probe needs to be fully 

removable from the cell and should not cause cytotoxicity even at higher concentrations. 

Numerous H-tetrazine (tz) and methyl-tetrazine (mtz) functionalized dyes in the green and 

red spectral range were screened for these parameters (data not shown). Fluorescein 

diacetate (FDAC) and BODIPY FL (BDP) in the green spectral range, as well as 

tetramethylrhodamine (TMR), Atto 590 and to a lesser extend Atto 565 in the red spectral 

range, were identified as optimal candidates for intracellular labeling applications (data not 

shown). These four probes exhibited high cell permeability and were fully removable from 

the cell lumen, allowing for the precise detection of specific labeling with good signal-to-

noise ratios. In addition to the cell permeability and the removal capacity, the choice of dye 

for intracellular labeling may also depend on the cellular localization of the target protein. If 

the protein of interest localizes to the nucleus, it might not react with e.g. BDP, as this 
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probe seemed to remain exclusively in the cytosol (data not shown). Moreover, the 

application of interest may affect the choice of dye as some dyes, including Atto 565 and 

Atto 590, attached to the glass surface of the culture vessel (data not shown). This 

unspecific accumulation might hinder analysis by e.g. Total Internal Reflection (TIRF) 

microscopy.  

Thus, the choice of dye is a critical factor to achieve specific labeling of intracellular 

proteins with high yields. 

 

 

3.1.2.2 Intracellular labeling of Rab1b in HeLa cells 

To identify the optimal conditions for intracellular labeling of aRab1b, a range of 

different incubation times and dye concentrations for the labeling step were assessed 

(Figure 3.7 A).  

Although the typical Rab1b subcellular localization pattern, indicating UAA 

incorporation into aRab1b, was observed in all samples, no colocalization of the TMR and 

the mCitrine fluorescence signals was detected. Higher dye concentrations and/or longer 

incubation times only increased the fluorescence background signals, but did not yield any 

specific labeling. To circumvent potential sterical hindrance due to protein-protein 

interactions, the screen was repeated using aRab1b D53, an interswitch mutant. However, 

similar to the labeling of S36 only unspecific TMR background signals were observed for the 

labeling of aRab1b D53 (data not shown).  

Furthermore, BcnK was exchanged to TcoK*, which led only to an increase of unspecific 

puncta-like structures in the cell lumen (Figure 3.7 B). 
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Figure 3.7: Intracellular labeling of amber Rab1b with TMR in HeLa cells. A) Overview of the 

titration of TMR concentration and incubation time for the labeling of aRab1b S36. B) HeLa cells 

expressing aRab1b S36 and D53, each suppressed with BcnK or TcoK*, labeled with TMR.  

Scale bars: 10 µm. 

As the incubation of aRab1b S36 or D53 with Atto 565 or Atto 590 did also not yield any 

specific labeling, we speculated whether the biophysical properties of red dyes might 

impede the intracellular labeling reaction. Therefore two green probes, BODIPY FL (BDP) 

and fluorescein diacetate (FDAC) were selected as alternative candidates for the 
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intracellular labeling of aRab1b. Green dyes are generally smaller in size and less 

hydrophobic than red fluorophores, which may reduce the observed unspecific 

accumulation in endomembranes. To test green fluorophores, the fluorescent protein of 

the sensor construct was exchanged to either mCherry or mTurquoise2, which can both 

serve as FRET partners for green fluorophores. Figure 3.8 illustrates the results of the 

intracellular labeling of aRab1b S36 and D53 with BDP, each fused to mCherry or 

mTurquoise2. 

 

 
Figure 3.8: Intraccellular labeling of aRab1b with green dyes. HeLa cells expressing aRab1b S36 and 

D53 in the presence of BcnK were labeled with BODIPY FL (BDP). Rab1b wild type and 

aRab1b S36 (-UAA) served as positive and negative controls, respectively. Scale bar: 10 µm. 

 

The localization of aRab1b to the Golgi complex confirming BcnK incorporation was 

detected for both amber mutants and was independent of the fluorescent protein tag. 

Moreover, the incubation with BDP resulted in highly specific labeling of aRab1b, indicated 

by the colocalization of the fluorescent signals. This specific labeling was comparable 

between the two different amber mutants and the respective mCherry and mTurquoise2 

constructs. In contrast, no labeling was observed for the two negative controls Rab1b WT 

and aRab1b (-UAA). Exchange of BDP to FDAC yielded comparable results (data not shown). 

Unfortunately, the observed specific labeling signals were rather weak and bleached 

rapidly during confocal imaging. In fact, the same labeling protocol yielded a diverse 

labeling efficiency and high heterogeneity of the labeling, ranging from visible specific 

labeling to only dye background signals. Numerous protocol optimizations did neither 

enhance the labeling homogeneity nor improve its intensity or the reproducibility. 
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In summary, these results demonstrate specific intracellular labeling of aRab1b with 

FDAC and BDP in HeLa cells. The observed labeling was highly specific and UAA-dependent, 

but exhibited low fluorescence intensity and high photo-bleaching. In contrast, labeling of 

the same aRab1b mutants under identical conditions with three different red probes did not 

result in any detectable labeling. Besides the difference of the biophysical properties of 

green and red fluorophores, the reasons for this discrepancy remain unclear. 

 

3.1.2.3 Intracellular labeling in different mammalian cell lines 

To assess whether mammalian cell lines differ in their suitability for intracellular 

labeling applications, several cell lines with cancer and non-cancer-related background were 

tested for the intracellular labeling with red fluorescent probes. The reporter gene aGFP182 

was modified with a C-terminal linker and a CAAX box (hereafter referred to as aGFP-Kx), 

targeting the construct to the cytosolic side of the plasma membrane. The cytoplasma 

membrane targeting circumvents unspecific dye accumulations in the cell lumen, allowing 

for the precise detection of specific labeling (Figure 3.9 A). In parallel to aGFP-Kx, labeling of 

aRab1b S36, the highest expressing Rab1b amber mutant, was assessed (Figure 3.9 B). 

Fluorescence emission and membrane association was observed for both target proteins in 

all examined cell lines, indicating successful stop codon suppression. HEK 293T cells 

exhibited specific labeling with high fluorescence intensity for both target proteins, whereas 

only moderate to low labeling intensities were observed in COS-7 and CHO cells. 

Interestingly, U2OS cells displayed a weak but specific labeling of the Golgi compartment 

but no labeling of the cytoplasma membrane. Neither aRab1b, nor aGFP-Kx labeling was 

detected in HeLa and MCF7 cells. In fact, these two cell lines exhibited non-specific 

accumulations of the dye, which were hardly observed in HEK 293T cells.  

Based on the detected plasma membrane labeling, the assessed cell lines can be 

divided into two groups. The first group comprises HeLa, MCF7 and U2OS, which did not 

exhibit any specific labeling, while the second group, CHO, COS-7 and HEK 293T, displayed 

specific labeling of the plasma membrane. In fact, the first group consists only of cell lines 

with a cancer-related background, whereas the cell lines of the second group do not 

originate from cancer tissues. However, specific labeling of aRab1b was also observed in 

U2OS cells, suggesting that intracellular labeling may also be possible in cancer-derived cell 

lines. Since COS-7 and HEK 293T cells exhibited the strongest labeling and the lowest TMR 

background signals, further experiments were performed exclusively in these two cell lines. 
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Figure 3.9: Intracellular labeling in different mammalian cell lines. A) Labeling of the reporter 

construct aGFP-Kx with TMR Specific plasma membrane labeling was observed only in CHO, COS-7 and 

HEK 293T cells. B) Labeling of amber Rab1b S36 with TMR in different cell lines. U2OS, CHO, COS-7 

and HEK 293T cells displayed highly specific labeling of the Golgi complex, whereas only TMR 

background signals were detected in HeLa and MCF7 cells. Scale bars: 10 µm. 
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3.1.2.4 Red dyes for intracellular labeling  

To determine an optimal FRET pair, labeling in HEK 293T cells was assessed using three 

different red dyes, TMR, Atto 565 and Atto 590 (Figure 3.10 A). Specific labeling with a high 

signal-to-noise ratio was obtained with for all three probes, but the labeling homogeneity 

differed. The incubation with TMR resulted in the most efficient labeling and the highest 

sample homogeneity, whereas labeling with Atto 590 yielded a similar homogeneity but 

lower labeling intensity. In contrast, samples labeled with Atto 565 exhibited only a small 

fraction of specifically labeled cells. In all three cases the intensity of the specific labeling 

correlated with the mCitrine fluorescence signals, resulting in a strongly labeled Golgi region 

and lower TMR fluorescence intensity in the cytoplasm (Figure 3.10 A). Fluorescence 

lifetime analysis revealed a lifetime reduction of +TMR = 290 ± 75 ps for the TMR-labeled 

sample in comparison to the unlabeled control (Figure 3.10 B). In contrast, labeling with 

Atto 565 or 590 decreased the donor lifetime by only +Atto = 90 ± 40 ps. The decrease in 

fluorescence lifetime correlated spatially with the labeling intensity, displaying low lifetimes 

in the Golgi region and higher lifetimes in the cytoplasm (Figure 3.10 A). Although this 

spatial distribution was similar in all labeled cells, the average fluorescence lifetime differed 

between the three dyes used. On the one hand, this difference may be due to the spectral 

properties of the dyes, allowing for distinct FRET efficiency when paired with mCitrine. On 

the other hand, this difference may be due to potential variations in labeling efficiency. A 

low labeling efficiency results in a minor fraction of donor-acceptor pairs and leaves a large 

amount of aRab1b unlabeled, which represents donor only fraction in fluorescence lifetime 

imaging. As both fractions are acquired equally, the obtained lifetime of a sample 

represents the average of these fractions. Hence, high labeling efficiency causes a major 

reduction in fluorescence lifetime, whereas the lifetime of samples exhibiting low labeling 

efficiency is closer towards the donor only lifetime (mCitrine = ~3.0 ns ).  

In addition to HEK 293T cells, labeling of aRab1b S36 with TMR, Atto 565 and Atto 590 

was performed in COS-7 cells (data not shown). Similar to the findings in HEK 293T cells, 

specific aRab1b labeling was observed for all three dyes, but the observed signal-to-noise 

ratio and the decrease of fluorescence lifetime upon labeling was generally lower in COS-7 

cells (data not shown).  
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Figure 3.10: Intracellular labeling of aRab1b S36 in HEK 293T cells using three different red dyes. 
A) Fluorescence lifetime analysis of HEK 293T cells expressing aRab1b S36 labeled with TMR, Atto 565 

and Atto 590. B) Single cell fluorescence lifetime analysis of the same experiment. Scale bars: 10 µm.  

 

In conclusion, these findings identified TMR as the most potent dye for the intracellular 

labeling of amber Rab1b. Labeling of aRab1b with TMR was homogenous, highly specific 

and yielded a reproducible decrease of mCitrine fluorescence lifetime in comparison to 

unlabeled control samples, indicating the presence of the acceptor on the unimolecular 

sensor. Moreover, the labeling did not affect the cellular localization of aRab1b, Golgi 

biogenesis or the cell phenotype evidentially in HEK 293T cells. Labeled HEK 293T cells 

exhibited no apparent stress indications such as vacuole formation, blebbing or rounding as 

observed for the labeling of intracellular proteins in COS-7 cells (data not shown). 

Therefore, TMR was used primarily in further experiments.  
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3.1.2.5 Optimization of the intracellular labeling 

Using different cell lines raised the question of the cell culture medium and the nutrient 

requirements to ensure maintenance of robust and viable cells for efficient amber 

suppression and intracellular labeling. The standard medium used for initial experiments 

was a low glucose/low vitamin medium. The comparison of two equally treated amber 

suppression samples, one cultivated in low glucose medium, the other one in high glucose 

medium, revealed lower cytotoxicity in samples grown in nutrient rich medium. The 

nutrient rich medium comprises 4-fold more glucose and essential nutrients in comparison 

to the low glucose medium, allowing for rapid proliferation. However, the enhanced 

proliferation emerged as a pitfall, as the established protocol for UAA incorporation and 

intracellular labeling spans over four days, resulting in over-confluent samples on the day of 

imaging. Therefore the number of initially seeded cells was gradually reduced to identify the 

optimal cell number yielding 80-90 % cell confluency on the day of imaging. These samples 

were transfected at 50-60 % confluency, instead of 70-80 %, but did not exhibit increased 

cytotoxicity. The concentration of BcnK in the growth medium did not affect the labeling 

efficiency. Nevertheless, an attempt to identify the cause of the puncta structures revealed 

their dependency on the presence of UAA in the culture medium (Figure 3.11). While 

untransfected cells incubated with BDP did not display any punctate structures, cells grown 

in the presence of BcnK exhibited a high abundance of punctate structures following 

labeling with BDP. Therefore we speculated that removal of the excess of residual BcnK 

before labeling may reduce the number of puncta and potentially augment the specific 

labeling, as the effective dye concentration would not be reduced by side reactions. 

Although BcnK has been previously reported to be removed from cells within one hour 181, 

this time frame was not sufficient for the intracellular labeling of aRab1b and aRheb. 

Prolongation of the BcnK removal time to 16 h pre-labeling resulted in highly specific 

labeling with a high signal-to-noise ratio and a negligible amount of punctate structures in 

HEK 293T cells (Figure 3.10 A). In fact, the BcnK removal time was found to depend strongly 

on the number of incorporating cells per sample and on the cell line (data not shown). As 

protein expression levels vary between different cell lines and as the BcnK consumption 

depends on the number of consuming cells and the stop codon suppression efficiency of 

these cells, the BcnK removal time should be empirically determined for each application to 

ensure complete removal or consumption of BcnK before the intracellular labeling step.  
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Figure 3.11: Excess UAA during intracellular labeling causes high abundance of punctate structures. 

Untransfected HeLa cells cultured in the presence and absence of BcnK and cells expressing the orthogonal 

pair (PylRS), as well as the orthogonal pair and aRab1b, were labeled with BODIPY FL (BDP). 

Scale bars: 10 µm. 

 

Due to the high reaction rate of the inverse electron-demand Diels-Alder reaction, dye 

concentrations in the nanomolar range are sufficient for intracellular labeling 
168,178,179,181,204,253. We found that increasing the dye concentration up to 1 µM increased the 

labeling efficiency noticeable. However, higher dye concentrations required longer wash-

out time post-labeling to achieve good signal-to-noise ratios. Furthermore, prolonging of 

the incubation time from 15-20 min to 1 h increased the labeling efficiency dramatically 

(data not shown). Longer incubation of up to 3 h did not further enhance the specific 

labeling but increased the background signal massively (data not shown). 

Based on these findings the previously established protocol for UAA incorporation into 

small GTPases (Figure 3.2) was extended, allowing for robust and specific labeling of 

intracellular proteins with high reaction yields (Figure 3.12). 
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Figure 3.12: Scheme of the established protocol for intracellular labeling of small GTPases in live 

mammalian cells. The adherent mammalian cells were seeded on the first day and transfected in the 

following morning (~ 16 h post-seeding). 250 µM of the UAA was added to the growth medium during the 

transfection and kept in the medium over night. The UAA was removed from the samples the following day 

to achieve complete removal of residual UAA from the cell lumen before labeling (> 12-16 h). Intracellular 

labeling was performed in the morning on day 4; cells were washed for 2-8 h and analyzed.  

  

3.1.3 Labeling of amber Rab1b 

Furthermore, the observed intracellular labeling of amber Rab1b was assessed to 

confirm the covalent binding of the acceptor to the sensor construct and to determine 

whether the observed change in fluorescence lifetime indeed depends on the presence of 

the acceptor. Moreover, the intracellular labeling reaction was characterized intensively to 

ensure the bioorthogonality of the reaction.  

 

3.1.3.1 Intracellular labeling of Rab1b is bioorthogonal 

To confirm that the intracellular labeling reaction is indeed bioorthogonal, HEK 293T 

cells expressing Rab1b WT with and without the components of the amber suppression 

system, or different aRab1b mutants, were labeled with TMR (Figure 3.13 A). Specific 

labeling of the Golgi apparatus was clearly visible in both samples transfected for an aRab1b 

mutant, but no TMR fluorescence signal was detected in cells expressing Rab1b WT. The 

presence of the components of the amber suppression system in Rab1b WT samples 

increased the TMR background signals mildly but did not yield any labeling as observed for 

the amber mutants. These findings were consistent with the mCitrine fluorescence lifetime 

analysis of the samples (Figure 3.13 B). Rab1b WT samples exhibited fluorescence lifetimes 

comparable to donor only lifetime (Rab1b WT = 2.97-3.01 ns), whereas both amber mutants 

displayed significantly lower lifetimes (S36 = 2.71 ± 0.07 ns and D53 = 2.82 ± 0.11 ns).  
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Figure 3.13: The intracellular labeling of amber Rab1b is bioorthogonal. A) HEK 293T cells 

expressing Rab1b WT and amber Rab1b mutants in the absence and presence of the components of the 

amber suppression system and TMR. B) Single cell lifetime analysis of the respective samples.  

Scale bar: 10 µm. 

 

Next, labeling of aRab1b was assessed by denaturing in-gel fluorescence analysis to 

verify covalent binding of the dye to the amber construct and to further confirm the 

specificity and the UAA-dependency of the reaction (Figure 3.14). To this end, HEK 293T 
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cells expressing Rab1b WT or different amber mutants were cultured in the presence and 

absence of either BcnK or TcoK*. Two fluorescent bands were detected in all aRab1b 

samples in the presence, but not in the absence of an UAA (Figure 3.14, indicated by arrow 

heads). The lower band, at the heights of 46 kDa molecular weight marker band, represents 

the full-length expressed and TMR-labeled mCitrine-aRab1b (49.9 kDa, black arrow head), 

whereas the upper band was identified as the PylRS (50.8 kDa, white arrow head, see Figure 

3.18). The fluorescence intensities of labeled full-length constructs varied between the 

different amber mutants, suggesting differences in expression levels or the labeling 

efficiency. The most intense bands were detected for aRab1b S36 and D53, whereas T34 

and G54 exhibited weaker fluorescence intensities. This order of the mutants is in 

agreement with the previously determined expression levels of the different aRab1b 

mutants (Figure 3.4). Although TcoK* containing samples exhibited generally fainter bands, 

the same order among the mutants was observed. The lower signals observed for labeling 

of TcoK*-containing aRab1b may be due to the lower incorporation efficiency that was 

previously determined (data not shown), but could also be caused by a less efficient labeling 

reaction.  

 

 
Figure 3.14: In-gel analysis of Rab1b WT and amber variants suppressed for BcnK or TcoK*. The 

back arrow heads indicate the UAA-dependent full-length expression and labeling of the aRab1b constructs 

(49.9 kDa), whereas the white arrow heads mark the PylRS (50.8 kDa), which was frequently observed 

during in-gel fluorescence analysis. Immunoblotting of Actin (Actin) served as a loading control.   
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3.1.3.2 Comparison of different UAA for intracellular labeling 

Furthermore, the intracellular labeling of BcnK and TcoK* was compared by 

fluorescence lifetime analysis to determine which UAA is more suitable for the genetically 

encoding of the conformational probes for small GTPase activity (Figure 3.15).  

 

 
Figure 3.15: Comparison of two different UAA for the intracellular labeling of aRab1b. 

A) TMR-labeled HEK 293T cells expressing Rab1b WT and aRab1b S36 in the presence of BcnK or 

TcoK*. B) Single cell analysis of the fluorescence lifetime of these samples. Rab1b WT served as a donor 

only control. Scale bar: 10 µm. 

 

The subcellular localization observed in both UAA samples indicated successful 

incorporation of BcnK and TcoK* into aRab1b S36 (Figure 3.15 A). Moreover, both UAA 
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allowed for specific labeling of the amber constructs. In contrast to the labeling of BcnK 

containing amber proteins, punctate structures and unspecific dye accumulations were 

frequently observed in TcoK* containing samples. The fluorescence lifetime analysis showed 

a significant difference between labeled samples and the unlabeled control Rab1b WT 

(Figure 3.15 B). While the labeling of aRab1b S36-BcnK resulted in an average lifetime of 

BcnK = 2.76 ± 12 ns, the lifetime of TcoK*-labeled samples was in average higher 

(TcoK* = 2.83 ± 0.06 ns).  

These findings are in agreement with the previous results demonstrating a discrepancy 

of the UAA incorporation efficiency and the labeling between the two UAA (Chapters 3.1.1.1 

and 3.1.3.1). Generally, TcoK* incorporation into aRab1b and the subsequent labeling 

seemed to be less efficient than observed for BcnK. Moreover, TcoK* samples displayed 

large amounts of unspecific dye background signals after labeling, which may be due to the 

higher hydrophobicity of TcoK*.  

 

3.1.3.3 The intracellular labeling of aRab1b is time- and dose-dependent 

To verify the direct dependency of the decrease of the donor fluorescence lifetime on 

the presence of the acceptor, the labeling reaction was monitored over time in live cells. To 

this end, Rab1b WT and aRab1b S36 expressing HEK 293T cells were analyzed by confocal 

and fluorescence lifetime microscopy before and after the addition of 1 µM TMR (Figure 

3.16).  

In both samples the dye entered the cell lumen within two minutes and distributed 

evenly throughout the cell lumen in Rab1b WT expressing cells. In contrast, specific labeling 

of the Golgi-bound fraction of aRab1b S36 was clearly visible against the background 

fluorescence within five minutes (Figure 3.16 A, indicated by arrow heads). The 

fluorescence lifetime of aRab1b S36 expressing cells decreased continuously within 

5 minutes post-dye addition and stabilized after 40 minutes at a total difference of 

 = 400 ± 30 ps in comparison to the Rab1b WT control (Figure 3.16 B). In contrast, the 

fluorescence lifetime of Rab1b WT expressing cells remained almost constant, even in the 

presence of 1 µM TMR. 

To determine the effects of the labeling efficiency on the sample lifetime, the same 

experiment was performed using different TMR concentrations (Figure 3.16 C). A dose-

dependent decrease of the fluorescence lifetime on the used TMR concentration was 

observed (Figure 3.16 C). 
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Figure 3.16: The intracellular labeling of Rab1b is time- and dose-dependent. A) HEK 293T cells 

expressing Rab1b WT or amber Rab1b S36 were monitored by confocal and fluorescence lifetime 

microscopy before and after the addition of 1 µM TMR. White arrow heads indicate the specific labeling of 

the Golgi apparatus which was detectable within 5 min post dye addition. B) The average of single cell 

lifetime analysis of unlabeled Rab1b WT as well as Rab1b WT and S36 incubated with 1 µM TMR. 

C) Single cell lifetime analysis of aRab1b S36 expressing cells incubated with different concentrations of 

TMR. D) Scatter plot of TMR-labeled HEK 293T cells expressing either Rab1b WT or aRab1b S36. The 

TMR fluorescence was quantified after intense washing and plotted against the fluorescence lifetime of the 

respective cell. Each data point represents a single cell. Scale bars: 10 µm. 

  

These time-resolved lifetime measurements of aRab1b S36 labeling demonstrate a 

clear dependency of the change in fluorescence lifetime on the specific labeling. Moreover, 

the intracellular labeling reaction was titratable using different concentrations of TMR, 

indicating a dose-dependency of the labeling reaction on the abundance of the dye. The 

observed change in lifetime correlated with the respective dye concentration, confirming 
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the influence of the labeling yield on the fluorescence lifetime of the sensor construct. In 

contrast, presence of even 1 µM dye in Rab1b WT control samples did not affect the sample 

lifetime, verifying that even high abundance of the dye did not alter the fluorescence 

lifetime in the absence of amber protein. The labeling reaction seemed to be completed 

within 30-40 minutes in the presence of 500 nM TMR, whereas lower dye concentrations 

seemed to prevent completion of the labeling reaction within the same time period. Hence, 

the availability of the dye may be the rate-limiting factor for intracellular labeling. To 

achieve saturation of the labeling reaction and thereby the highest possible yield of labeled 

amber protein, the intracellular labeling was performed using 500 nM TMR and at least 

45 minutes incubation for all further experiments.  

 

3.1.3.4 Determination of the labeling yield 

Another important factor for the establishment of the genetically encoded 

conformational sensor is the yield of the labeling reaction, which directly affects the 

fluorescence lifetime of a sample and thereby the accuracy and the dynamic range of the 

sensor. To determine the reaction yield, and thus, the efficiency of the intracellular 

reaction, HEK 293T cells expressing aRab1b S36 were labeled with TMR and lysed after 

intense washing. The lysates were divided in a half and a second, spectrally isolated dye was 

added to one aliquot. This second dye can react only with the previously unlabeled fraction 

of amber protein and can thereby serve as a direct indicator for the size of this fraction. 

Thus, fluorescence quantification of both fluorophores by in-gel fluorescence imaging 

allows for an indirect determination of the labeling yield (Figure 3.17 A). Subsequent 

western blot analysis was performed to identify the amount of full-length Rab1b, enabling 

the normalization the dye fluorescence on the amount of amber Rab1b per sample (Figure 

3.17 B). While the labeling reaction in cells might be impaired by various factors, such as 

protein-protein interactions or activation state of the target protein, the labeling site should 

be fully accessible after cell lysis and protein denaturation. Thus, labeling of intracellularly 

unlabeled lysates should allow for a complete labeling reaction and served as a positive 

control. The experiment was performed using two different cell-impermeable fluorescent 

dyes for the second, in-lysate labeling, FAM and Cy5. Two single-labeled lysates, one labeled 

only with TMR in live cells and one labeled only post-lysis with FAM/Cy5, served as controls 

for the total intracellular labeling and the complete post-lysis labeling, respectively.  

 



80 
 

 
Figure 3.17: Evaluation of the intracellular labeling yield of the reaction of aRab1b S36-BcnK with 

TMR. A) In-gel fluorescence and western blot analysis (GFP) of HEK 293T cells labeled with TMR 

pre-lysis and/or labeled post-lysis with FAM (left panel) or Cy5 (right panel). Asterisks indicate unspecific 

bands; Immunoblotting of Actin (Actin) served as a loading control. B) Quantification of the fluorescence 

intensity of the fluorescent signals of each fluorophore, normalized on the respective amount of full-length 

aRab1b S36 per sample. The upper graph illustrates the results of the post-lysis labeling with FAM and the 

lower panel the post-lysis labeling with Cy5. 

  

The in-gel fluorescence analysis revealed the two previously described bands for full-

length and labeled aRab1b S36 (49.9 kDa) and the PylRS (50.9 kDa), independent of the 

used dye (Figure 3.17 A). Intracellular labeling with TMR resulted in strong fluorescent 

bands in all labeled samples, while the labeling post-lysis with FAM or Cy5 exhibited high 

labeling in the previously unlabeled samples, but only faint secondary labeling in the 

intracellularly TMR-labeled samples. The quantification of the fluorescent band intensity, 

normalized on the respective amount of full-length aRab1b, revealed labeling yields of 

85.0 ± 14.5 % for sole TMR-labeling in live cells and 86.1 ± 16.8 % for TMR-labeling in live 

cells followed by post-lysis FAM labeling. The samples labeled with Cy5 as a secondary dye 

displayed yields comparable to the labeling with FAM (81.83 ± 9.90 % and 86.76 ± 10.96 %, 

respectively).  

These data demonstrate that the intracellular labeling of aRab1b S36 with TMR in live 

cells allows for high reaction yields using the protocol established in this work. The reaction 

yields were robust and reproducible, but depended strongly on the quality of the dye 

solution. Multiple freeze-thaw cycle of the dye stock solution were found to reduce the 

labeling yield up to 50% after the third cycle (data not shown). 
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3.1.4 Intracellular labeling of amber Rheb 

In parallel to the establishment of the intracellular labeling of aRab1b, the same 

strategy was followed to achieve specific labeling of amber suppressed Rheb. Comparable 

to aRab1b labeling (Figure 3.7), the labeling of aRheb in HeLa cells with red probes did not 

result in any detectable specific labeling (data not shown). Furthermore, labeling with green 

dyes, e.g. FDAC or BDP, did also not succeed, neither for BcnK nor for TcoK* incorporation 

(data not shown). Moreover, the six mammalian cell lines that were tested for aRab1b 

labeling were also examined for the labeling of aRheb S34 and N50, the structural 

equivalents to aRab1b S36 and D53, respectively. Specific labeling of aRheb with TMR was 

not observed in any of the six cell lines, including HEK 293T cells, which is surprising 

considering the previously observed BcnK-dependent full-length expression of aRheb N50 

detected by Western blot (Figure 3.6 B). To further assess whether any full-length expressed 

aRheb is labeled, in-gel fluorescence analysis was performed for the different amber Rheb 

mutants (Figure 3.18).  

 

 
Figure 3.18: Intracellular labeling of different amber Rheb mutants with TMR. In-gel fluorescence 

analysis of TMR-labeled HEK 293T cells expressing Rheb WT and different amber variants in the presence 

and absence of BcnK. Fluorescent bands were detected for the PylRS (50.9 kDa, white arrow head) and 

full-length amber Rheb (48.2 kDa, black arrow head). Immunoblotting of Actin (Actin) served as a 

loading control.  

 

Similar to in-gel analysis of the aRab1b mutants, two major UAA-dependent fluorescent 

bands were detected. The upper band representing the PylRS (50.8 kDa, indicated by the 

white arrow head) and a marginally lower band, indicating full-length expressed and 
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TMR-labeled aRheb (48.2 kDa, black arrow head). The labeling intensity varied for the 

different aRheb mutants; the strongest band was detected for labeling of aRheb N50 and 

only faint fluorescent bands indicating labeling of D33 and S34. No respective band was 

observed for the G108 labeling; G51 incubation with TMR caused massive cell detachment, 

resulting in complete cell loss before the lysis. The order of the mutants is in agreement 

with the previous findings for UAA-incorporation into aRheb (Figure 3.6 B), which 

demonstrated a yield of full-length expressed aRheb N50 of 12 % of the natural translation 

control, Rheb WT. In contrast, UAA incorporation into other Rheb mutants was hardly 

detectable. 

 

To further assess these findings on the single cell level, HEK 293T cells expressing 

aRheb N50 were screened by confocal microscopy for specific TMR labeling. Only a small 

number of cells exhibited low but still detectable dye fluorescence against the background 

signals. These cells were analyzed by fluorescence lifetime microscopy to confirm the 

specificity of the labeling (Figure 3.19 A and B).  

As previously described, the lack of clearly visible subcellular localization pattern of 

Rheb impedes the precise determination of the UAA incorporation efficiency of aRheb by 

microscopy. Direct comparison of the localization patterns of Rheb WT and aRheb N50 in 

HEK 293T cells revealed only minor differences. While the wild type protein localized almost 

exclusively in the cell lumen and displayed only a small nuclear Rheb fraction, the difference 

between the cytosolic and nuclear fluorescence was less distinct in aRheb expressing cells 

(Figure 3.19 A). Moreover, Rheb WT expression showed diffuse membranous patterns and 

high fluorescence densities in the perinuclear area, which were not observed in cells 

expressing aRheb, suggesting either functional impairment caused by the mutation or a low 

UAA incorporation efficiency. Low UAA incorporation efficiency would cause a mixed 

expression of mCitrine-Rheb fragment and full-length expression construct. Depending on 

its abundance, the fragment could mask the specific localization of the full-length expressed 

and prenylated aRheb mutants, further impeding the verification of the UAA incorporation 

process by the subcellular localization of the full-length construct. In fact, the fluorescence 

intensity of the detected TMR-labeling signals was rather low and did not evidently 

correlate with aRheb abundance, which raises the question of the specificity of the 

observed TMR signals. In addition, high fluorescence of the dye was observed in the 

nucleus, indicating unspecific side reactions.  
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Figure 3.19: Intracellular labeling of aRheb N50 with TMR in HEK 293T cells. A) Confocal and 

fluorescence lifetime microscopy of aRheb N50 and Rheb WT. Arrow heads indicate the perinuclear 

fluorescence densities observed for Rheb WT but not for the amber mutant. B) Single cell lifetime analysis 

of the respective experiment. C) In-gel and western blot analysis of TMR-labeled HEK 293T (GFP) cells 

expressing Rheb WT and aRheb N50 in presence and absence of BcnK. The black arrow head indicates 

full-length expressed and TMR-labeled aRheb (48.2 kDa); the white arrow head indicates the PylRS 

(50.9 kDa); the asterisk marks an unspecific band. Immunoblotting of Actin (Actin) served as a loading 

control. Scale bar: 10 µm. 

  

mCitrine fluorescence lifetime analysis showed an average decrease of 

 = 73.4 ± 41 ps for aRheb N50 in comparison to the unlabeled Rheb WT sample (Figure 

3.19 B). This lifetime reduction is only a minor change in comparison to the observed 

decrease in lifetime of aRab1b after labeling ( = 300 - 400 ps). Although the lifetime 

difference is rather marginal, it indicates the presence of the acceptor on the amber 

construct and thus, the specific labeling of at least a small fraction of aRheb. Furthermore, 

western blot and in-gel fluorescence analysis of aRheb N50 demonstrated full-length 

expression and specific TMR-labeling of the construct (Figure 3.19 C, black arrow head). 

 

To confirm that the decrease of lifetime is due to the specific labeling of the construct, 

the labeling reaction was followed over time by fluorescence confocal and lifetime 

microscopy (Figure 3.20).  
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 Figure 3.20: Time-resolved monitoring of the intracellular labeling reaction of aRheb N50 and TMR 

in HEK 293T. A) Confocal and lifetime analysis of HEK 203T cells expressing Rheb WT and aRheb N50 

pre- and post- addition of 1 µM TMR. White arrow heads indicate the perinuclear fluorescence densities in 

cells expressing aRheb N50. The asterisks indicate unspecific nuclear TMR-labeling. B, C) Single cell 

analysis of the change in lifetime of HEK 293T cells expressing Rheb WT (B) or aRheb N50 (C) pre- and 

post- addition of 1 µM TMR. Grey lines indicate single cells; the black line the sample average. 

Scale bar: 10 µm. 

 

Only few cells expressing aRheb N50 exhibited the perinuclear Rheb fraction as 

observed in Rheb WT expressing cells, indicating the native localization of the construct 

(Figure 3.20 A, indicated by arrow heads). The majority of cells displayed a more diffuse 

localization throughout the cytoplasm and partially the nucleus. In both samples the dye 

entered the cells rapidly but, in contrast to the labeling of aRab1b, no specific labeling of 

aRheb was visible against the background signal. However, transfected cells, but not 

neighboring untransfected cells or Rheb WT expressing control cells, exhibited a nuclear 

TMR staining resembling nucleoli structures (Figure 3.20 A, marked by asterisks). Single cell 

fluorescence lifetime analysis revealed a change in the lifetime of aRheb N50 expressing 

cells post-dye addition, whereas the lifetime of the Rheb WT sample remained constant. 

The detected change in the lifetime of the aRheb N50 samples represented the 

heterogeneity of observed phenotypes; cells exhibiting a diffuse cytosolic Rheb pattern 

showed an average decrease in lifetime of  = 100-150 ps, whereas the lifetime of cells 

with perinuclear densities decreased up to  = 350 ps depending on the size of this fraction 

(Figure 3.20 C). In both cases no further decrease of the lifetime was observed after 

30 minutes, indicating completion of the labeling reaction. In comparison, labeling of 

aRab1b S36 expressing cells with 1 µM TMR caused an average change in lifetime of 

 = 350-400 ps within 45 minutes. 

In summary, these findings demonstrate the specific labeling of aRheb N50 with TMR 

using the recently established protocol in HEK 293T cells. Nevertheless, the aRheb N50 

labeling exhibited high heterogeneity both in the TMR labeling signals and in the lifetime 

reduction during labeling. Monitoring the labeling reaction over time identified a direct 

dependency of the lifetimes of single cells on the cellular localization of the aRheb 

construct, suggesting low incorporation efficiency as the major pitfall for amber suppression 

and labeling of aRheb N50. In contrast to aRab1b labeling, strong nuclear staining was 

observed for aRheb labeling, indicating unspecific side reactions similar to the previously 

reported nuclear labeling observed for the labeling of cytoplasmic BcnK-suppressed amber 

proteins 218. Further optimization of both, the UAA incorporation efficiency and the labeling 

yield may allow for higher expression yields of full-length aRheb and thereby higher 

homogeneity of the sample, allowing for precise monitoring of Rheb spatiotemporal activity 

in live cells.  
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3.2 Characterization of the Genetically Encoded Sensors 

3.2.1 Rab1b Conformational Sensor 

The recombinant Rab1b conformational probes have been shown to report nucleotide 

exchange, effector binding or both events, depending on the position of the acceptor within 

the small GTPase 160,161. Moreover, the probe read-out also depends on the labeling site. 

Labeling of mutation sites within the switch I region resulted in an increase of the sensor 

lifetime upon activation or effector binding, whereas introduction of the acceptor into the 

interswitch region caused a decrease in lifetime upon activation. Except for T34, a mutation 

site located in the switch I region, all previously characterized Rab1b mutants allowed for 

the detection of effector binding and activation events simultaneously. Nevertheless, due to 

the low expression and fluorescence brightness the amber variant of Rab1b T34 was not 

suitable for fluorescence lifetime analysis and was therefore not further assessed within this 

study. Unless indicated otherwise aRab1b S36 was used in all further experiments.  

 

3.2.1.1 Sensing effector binding 

To confirm the functionality of the genetically encoded conformational sensor, Rab1b 

effector binding was assessed. Introduction of the acceptor at the position S36 in Rab1b has 

been demonstrated to efficiently report effector binding events both in vitro and in vivo 
160,161. In this study a truncated version of the inositol-5-phosphatase OCRL1, a Rab effector 

protein, was used to confirm the signal change of the conformational sensor upon effector 

binding 160,161. OCRL1 is a multi-domain membrane-bound protein that has been shown to 

interact in a nucleotide state dependent manner with different Rab proteins, including 

Rab1b 54,254-257. Therefore, the C-terminus of OCRL1, which contains the Rab binding domain 
255,256, was fused to the fluorescent protein TagBFP (TagBFP-OCRL1539-901, hereafter referred 

to as OCRL) and was coexpressed with aRab1b S36 (Figure 3.21). Expression of Rab1b WT in 

the absence and the presence of OCRL and the expression of aRab1b S36 in the presence of 

soluble TagBFP served as negative controls.  

In both samples the OCRL localization correlated with the Rab1b localization, resulting 

in a cytosolic and a Golgi-bound fraction (Figure 3.21 A). Neither the Rab1b localization nor 

the intracellular labeling reaction seemed to be affected by the presence of OCRL.  

 



87 
 

 
Figure 3.21: The genetically encoded conformational Rab1b sensor reports effector binding. 

A) HEK 293T cells expressing Rab1b WT and aRab1b S36 in the presence and absence of 

TagBFP-OCRL539-901 (OCRL). B) Single cell fluorescence lifetime analysis of HEK 293T cells 

expressing Rab1b WT or aRab1b S36 in the absence and presence of OCRL. C) Fluorescence lifetime 

analysis of HEK 293T cells expressing Rab1b WT and aRab1b S36 in the absence and presence of 

TagBFP. Scale bar: 10 µm. 
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The presence of OCRL increased the average fluorescence lifetime of aRab1b S36 

significantly by S36+OCRL = +120 ps, whereas the coexpression of OCRL and Rab1b WT 

resulted in a minor decrease in lifetime (WT±OCRL = -60 ps, Figure 3.21 B). The lifetime 

increase of aRab1b correlated spatially with the OCRL localization, resulting in a change in 

lifetime especially for the Golgi-bound aRab1b (Figure 3.21 A). In contrast, expression of the 

soluble TagBFP fluorescent protein did not affect the lifetime of aRab1b S36 noticeably 

(S36±TagBFP = 35 ps), excluding potential fluorophore cross-talk or side effects due to the 

presence of the third fluorophore. 

These findings demonstrate that the labeled aRab1b S36 protein functions as a sensor 

for effector binding events. The sensor read-out and its dynamic range are in agreement 

with the previous studies demonstrating that the recombinant Rab1b S36C sensor displayed 

an increase of the fluorescence lifetime of eGFP upon binding to effectors 160,161.  

 

3.2.1.2 Linker optimizations 

To optimize the dynamical range of the sensor, the linker between the fluorescent 

protein and the small GTPase was engineered. This linker is a short peptide sequence 

encoded by the expression plasmid, allowing for rapid and simple optimizations of the linker 

properties by cloning. Two parameters influencing the sensor’s dynamic range were 

assessed. The first parameter is the linker length, which defines mainly the distance 

between the two fluorophores. The second parameter is the linker flexibility, which can 

affect the orientation of the fluorophores towards each other. A highly flexible linker allows 

for a high number of different conformational states, whereas a more rigid linker locks the 

two FRET partners in distinct orientation states. Each conformational state of the sensor 

possesses its own fluorescence lifetime, thus, the acquired fluorescence lifetime represents 

an average of the different conformational states during signal acquisition. To reduce the 

number of conformational states, the linker rigidity was increased already in the beginning 

of this study. To this end, the native linker sequence, deriving from the insertion of the 

Rab1b gene into the pCitrineC1 backbone, was exchanged to a nine amino acid peptide 

sequence (Figure 3.22 A). This sequence has been reported to form an alpha helix258,259 and 

in silico analysis indicated that the mCitrine C-terminus participates in the helix formation, 

extending the alpha helix towards the beta barrel of mCitrine (data not shown)236. Only five 

amino acids predicted to be unstructured are located on each side of the linker helix, both, 

towards the end of the mCitrine beta barrel and the first beta sheet in Rab1. When 

expressed in mammalian cells, this construct localized natively to the Golgi compartment 

and was comparable to the aRab1b construct with the more flexible linker (data not 
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shown). Unless indicated otherwise, all amber Rab1b and Rheb constructs used within this 

work contain the helical nine amino acid linker.  

In addition to the helical linker, two shorter linker sequences, a two amino acid linker 

and a proline rich rigid linker, were assessed (Figure 3.22 B and C). The first one aims for an 

increase of the FRET efficiency and the dynamic range of the sensor by bringing the two 

fluorophores in closer proximity. Depending on the helicity of the linker, a maximal distance 

of 8.4-9.4 nm between the fluorophores was calculated for the helical nine amino acid 

linker constructs (Chapter 2.2.7). To bring the two fluorophores closer to the optimal 

distance R0, the linker length was shortened to two amino acids and the last C-terminal 

eleven amino acids of mCitrine were removed. Previous studies showed that the C-terminal 

depletion of up to eleven amino acids of GFP did neither affect the protein fold, nor the 

fluorophore maturation or the biophysical properties 150,260-262. These truncated fluorescent 

proteins allowed improving the dynamic range of orientation-dependent FRET-based 

sensors significantly 150,160,161,261.  

The maximal distance calculated for the Rab1b construct containing the shortened 

linker is 6.0 nm, which is close to the R0 value for the mCitrine-TMR FRET pair (est. 5.57 nm 
263). The expression of this construct in HEK 293T cells revealed a cytosolic and partially 

nuclear localization, but no association to the Golgi apparatus (Figure 3.22 B). In addition, 

no labeling was observed for the short linker construct, whereas the control, aRab1b S36, 

showed strong and specific labeling. Moreover, the Golgi marker GntnC localized in a diffuse 

pattern throughout the cell lumen, indicating perturbance of the Golgi homeostasis and 

thus, potential malfunction of the Rab1b short linker construct.  

The second linker is a proline-rich linker (XPn). Proline is a unique amino acid which has 

a restricted backbone conformation due to the cyclization of its backbone 264. Linkers 

consisting of multiple repetitions of proline and another amino acid, preferentially alanine, 

lysine or glutamine, have been shown to possess high stiffness due to the formation of 

proline helices 253,265-267. The Rab1b_XPn linker construct localized to the Golgi 

compartment and displayed a labeling specificity comparable to the control sample, but 

with lower labeling intensity (Figure 3.22). In fact, the number of incorporating cells per 

sample was reduced in comparison to the helical linker control sample. mCitrine 

fluorescence lifetime analysis revealed an average lifetime of XPn_S36 = 2.91 ± 0.04 ns, 

resulting in  = 100 ps difference between the two linker constructs 

(helical_S36 = 2.82 ± 0.08 ns). However, whether this difference is due to the altered 

orientation of the fluorophores or their distance towards each other remains unclear. 

Further characterization of this constructs may give more insights into the influence of the 

linker rigidity on the dynamic range of the conformational sensor.  
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Figure 3.22: Optimizations of the proteinogenic linker between the fluorescent protein and Rab1b 

small GTPase. A) Scheme of the conformational sensor’s architecture. The black box marks the linker 

region between the fluorescent protein and Rab1b; the respective linker sequences are illustrated below. 

B) HEK 293T cells expressing Rab1b WT and different linker variants of aRab1b T34. GntnC served as a 

marker for the Golgi compartment. C) Confocal microscopy and mCitrine lifetime analysis of HEK 293T 

cells expressing Rab1b WT and different linker variants of aRab1b S36. Scale bars: 10 µm.  
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3.2.1.3 Viability of sensor expressing cells 

During the establishment and the optimization of the intracellular protocol aRab1b 

expressing samples exhibited lower fluorescence intensity and a more diffuse localization 

pattern when imaged one day post-labeling. To determine the potential time range for 

imaging of an amber sample, treatment and other applications, time-course experiments 

were performed. To this end, the fluorescence emission and the total cell confluency of 

Rab1b WT and sensor expressing cells were monitored for 48 h following the intracellular 

labeling with TMR (Figure 3.23). 

mCitrine fluorescence was detectable for both samples despite the lower expression 

levels of the amber mutant in comparison to Rab1b WT (Figure 3.23 A). Although the 

number of fluorescent cells was higher in the aRab1b S36 sample, the observed 

fluorescence intensity was generally lower. Moreover, mCitrine fluorescence decreased 

over time in the aRab1b sensor sample but not for Rab1b WT. Quantification of the average 

fluorescent area per sample revealed that the fluorescence started to decay 6 h 

post-labeling and reached the level of background signals at 40 h post-labeling (Figure 

3.23 A). In contrast, the Rab1b WT fluorescence remained constant over the whole 

measurement. As indicated by the microscopy images this fluorescence decrease of the 

Rab1b sensor was not due to a sudden loss of transfected cell, but due to a constant 

reduction of fluorescence intensity over time, especially within the first 12 h after labeling. 

One explanation for this decay may be the cellular Rab1b turn-over, which results in a 

continuous decrease of the protein over time. Due to the lack of UAA in the growth 

medium, expression of aRab1b S36 is prevented after the removal of the UAA prior to 

labeling, whereas Rab1b WT expression does not depend on the presence of the UAA and 

thus may compensate for the protein degradation by turn over. On the other hand, cells 

transfected for aRab1b did not notably divide during this experiment and were partially 

overgrown by neighboring untransfected cells. Repetitions of this experiment demonstrated 

that the decrease in fluorescent area can be delayed by using lower initial cell numbers, 

which prevents the overgrowths of untransfected cells and thereby the loss of fluorescent 

cells (Figure 3.23 B). However, the reduction of aRab1b S36 fluorescent area over time was 

monitored in all amber Rab1b samples, independent of the presence of TMR or its 

concentration.  

Whether this fluorescence decay was also present in other amber proteins, e.g. amber 

Rheb mutants, remains unclear. However, depending on the cellular turn-over rate of a 

protein it is likely that all amber proteins may suffer from this pitfall. Consequently, all 

samples, independent of the protein of interest, the cell line or the dye used for labeling 

were imaged or lysed within 2-8 h post-labeling.  
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Figure 3.23: Viability and proliferation assay of TMR-labeled HEK 293T cells expressing 

TMR-labeled aRab1b S36. A) Bright field and fluorescence microscopy of HEK 293T cells expressing 

Rab1b WT and aRab1b S36 over 48 h post-labeling with TMR. The fluorescent area and cell confluency 

per sample were quantified to illustrate viability and proliferation. Data points represent the mean of three 

technical replicates over time. Error bars illustrate the SD. B) Fluorescent area and cell confluency of cells 

expressing aRab1b S36 labeled with different concentration of TMR. Lower initial cell numbers were used 

for this experiment to avoid loss of transfected cells due to overgrowth of neighboring cells. 

Scale bars: 200 µm. 
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3.2.1.4 Determination of the sensor’s dynamic range 

Different strategies can be utilized to ascertain the dynamic range of a sensor, e.g. 

(1) using mutations that affect the protein’s activity or that lock the protein in a respective 

activity state, (2) regulation by coexpression of activating or inactivating proteins or 

(3) exploiting the cognate signaling pathway and thereby activating the target protein by a 

known stimulus. Because of the lack of stimuli for Rab1b activation due to its role in ER-to-

Golgi vesicular transport, the last option is not applicable for the conformational Rab1b 

sensor. Therefore, the two first strategies were followed, using Rab1b mutants that affect 

the nucleotide state and regulating the sensor by coexpression of GEF and GAP proteins. 

 

 

 

Regulation of the nucleotide state by GEF and GAP 

To determine the lifetime of the active Rab1b sensor, the Legionella protein DrrA was 

exploited. During infection Legionella injects a number of proteins into the host cell of 

which many have been shown to modulate the function of Rab GTPases (reviewed in 268). 

Among these proteins is DrrA, which has been reported to act as a Rab1 GEF. DrrA consists 

of three domains and the central domain possesses the catalytic GEF activity towards Rab1 
29,269. Therefore, coexpression of DrrA should result in predominantly GTP-loaded Rab1b 

protein, allowing for the determination of the Rab1b sensor’s ‘ON’ signal. To this end, 

Rab1b WT and aRab1b S36 were coexpressed with DrrA340-533 fused to TagBFP 

(TagBFP-DrrA340-533, hereafter referred to as DrrA, Figure 3.24).  

The DrrA presence caused a reduced Golgi association and relocalization of Rab1b to 

the cytosol and partially the nucleus (Figure 3.24 A). In Rab1b WT expressing cells this 

phenotype correlated with the abundance of DrrA. Low DrrA expression allowed for partial 

Rab1b localization to the Golgi compartment, while high expression levels induced 

predominantly cytosolic Rab1b localization. Coexpression of DrrA and amber Rab1b S36 

resulted in a variety of phenotypes, ranging from cytosolic to partially Golgi-associated 

aRab1b and did not depend on the DrrA expression level. Furthermore, DrrA presence 

increased signs of cytotoxicity in the amber suppression samples noticeably, whereas 

Rab1b WT and DrrA coexpressing cells were viable and healthy. Moreover, cells expressing 

aRab1b S36 and DrrA displayed a drastic reduction of TMR-labeling, which in fact correlated 

with DrrA abundance (Figure 3.24 A). Quantification of TagBFP (indicating DrrA expression 

level) and TMR (indicating specific labeling) fluorescence intensities within single cells 

revealed a strong dependency of the TMR amount of a cell on the abundance of DrrA 

(Figure 3.24 C). mCitrine fluorescence lifetime analysis showed an increase in lifetime of 

aRab1b S36 in the presence of DrrA in comparison to its absence (S36±DrrA = +77 ps, Figure 
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3.24 B). In contrast, coexpression of DrrA and Rab1b WT sample caused a minor 

fluorescence lifetime reduction (WT±DrrA -20 ps).  

 

 
Figure 3.24: Directing the Rab1b sensor’s nucleotide state by coexpression of the Rab1 GEF DrrA. 

A) HEK 293T cells expressing Rab1b WT and the amber mutant S36 in the absence and presence of 

TagBFP-DrrA340-533 (DrrA). B) Single cell lifetime analysis of the respective experiment. 

C) Quantification of the TagBFP and TMR fluorescence intensity of HEK 293T cells expressing 

Rab1b WT and aRab1b S36 in the absence and presence of DrrA. Each data point represents a single cell; 

the dashed line represents the linear fit of the aRab1b S36+DrrA. Scale bar: 10 µm 

  

As the activation of the Rab1b S36 sensor is reported by an increase of the fluorescence 

lifetime, an augmented fluorescence lifetime of mCitrine-aRab1b S36 is expected in the 

presence of DrrA. However, in this case, it cannot be excluded that the detected increase in 

sensor lifetime is indeed due to the DrrA-mediated activation and not caused by an 

impaired intracellular labeling reaction. Impairments in the labeling reaction and thereby a 

lower labeling yield would artificially decrease the donor-acceptor population, resulting in 

an increase of the average sample lifetime. The observed dependency of the TMR 

fluorescence on the TagBFP fluorescence intensity supports this possibility. Another 
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possibility is that the DrrA coexpression causes degradation of the sensor construct. If fully 

intact, single mCitrine displays an even distribution throughout the cell, which cannot be 

reliably distinguished from the cytosolic Rab1b localization caused by DrrA coexpression. 

This possibility is supported by the complete lack of labeling in respective cells and the 

sample lifetime that is comparable to the donor only lifetime. Nevertheless, a full-length 

expression of the construct but a lack of labeling would also yield similar lifetimes and 

cannot be differentiated from protein degradation.  

 

Furthermore, coexpression of Rab1 GAP TBC1D20 was performed. TBC1D20 functions 

as a Rab1b and Rab2a GAP protein, regulating the ER-to-Golgi vesicular transport and 

maintaining the homeostasis of the Golgi complex 90,91,93. Overexpression of the catalytically 

active TBC1D20 has been reported to maintain Rab1b in its inactive, GDP-loaded state, 

causing disruption of the ER-to-Golgi trafficking and the loss of the Golgi structure 89,91. To 

determine the sensor’s ‘OFF’ state, a truncated version of TBC1D20, fused to TagBFP, was 

coexpressed with aRab1b S36. TBC1D201-362 contains the catalytic RabGAP domain, but 

lacks the C-terminal transmembrane domain and thereby the protein’s localization signal 90. 

Hereafter, TagBFP-TBC1D201-362 is referred to as TBC1D20. 

The presence of TBC1D20 caused a predominantly cytosolic and partially nuclear 

localization of Rab1b WT and prevented the localization of Rab1b to the Golgi apparatus. In 

contrast, aRab1b S36 localized mainly to the cytosol (Figure 3.25 A). Rab1b WT and 

TBC1D20 coexpressing cells were markedly rounded in comparison to TBC1D20-negative 

samples. As observed for DrrA coexpression, specific labeling of aRab1b S36 was not 

detectable in the presence of TBC1D20, although aRab1b S36 expressing cells displayed low 

TMR fluorescence. These signals were above the background signals of untransfected 

neighboring cells, but the TMR fluorescence intensity did not correlate with the localization 

of aRab1b. Moreover, TBC1D20 and aRab1b S36 coexpression yielded extremely dim 

fluorescent cells which were hardly detectable. mCitrine fluorescence lifetime analysis 

revealed an average lifetime of S36+TBC1D20 = 2.85 ± 0.10 ns of aRab1b S36 in the presence of 

TBC1D20 and S36 = 2.75 ± 0.09 ns in its absence.  

Due to its GAP activity towards Rab1, coexpression of TBC1D20 maintains Rab1b 

predominantly in its GDP-loaded state 89,91. Inactivation of the Rab1b sensor has previously 

been shown to decrease the lifetime of the eGFP-Rab1b recombinant sensor by 

approximately 10 % 160,161. Thus, the observed increase in mCitrine lifetime is not in 

agreement with the previous findings. However, similar to DrrA coexpression, it cannot be 

excluded that the lifetime increment was due to the lack of specific labeling, resulting in a 

larger donor only fraction and thereby a higher average lifetime. 
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Figure 3.25: Determining the Rab1b sensor’s ‘OFF’ state by the coexpression the Rab1 GAP 

TBC1D20. A) HEK 293T cells expressing Rab1b WT or aRab1b S36 in the presence and absence of 

TBC1D20. B) and C) Single cell fluorescence lifetime analysis of aRab1b S36 (B) and Rab1b WT (C) in 

the absence and presence of TBC1D20. Cells expressing only Rab1b were segmented for analysis  

(Cell = whole cell, Gol. = Golgi, Cyt. = Cytoplasm). Scale bar: 10 µm. 

  

In summary this data demonstrates that coexpression of regulatory proteins can affect 

the intracellular labeling reaction of an amber protein, potentially causing artificial changes 

in the fluorescence lifetime of a sample. In fact, coexpression of the Rab1 binding domain of 

the effector OCRL did not affect aRab1b labeling which raises the possibility that aRab1b 

must be fully functional and requires free cycling between the two different nucleotide 

states to allow for complete labeling.  
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Amber Rab1b nucleotide state mutants 

To avoid exogenous expression of regulatory proteins, three nucleotide state affecting 

mutations of Rab1b, S22N (SN), Q67L (QL) and N121I (NI), were assessed to determine the 

different activation states of the sensor. The Q67L mutation of Rab1 lowers the intrinsic 

nucleotide hydrolysis and impairs the GTPase-GAP interaction, leading to a dominant active 

protein which exhibits 2-3 fold higher GTP-loading than the wild type protein in vivo 21,63,249. 

The Rab1b S22N mutant has a lower affinity for GTP than GDP, resulting in a predominantly 

GDP-loaded protein, whereas N121I exhibits low affinity for both nucleotides 245,246,249. The 

two inactive mutants act as dominant suppressors of endogenous Rab1b function and their 

exogenous expression causes a partial or complete disruption of the Golgi complex 245-249.  

First, the BcnK incorporation and TMR-labeling was assessed for the active and inactive 

mutants of aRab1b S36 (Figure 3.26). Similar to aRab1b S36 wild type (S36/WT) the 

dominant active mutant aRab1b S36/QL (S36/QL) localized to the Golgi apparatus and 

exhibited comparable TMR-labeling with high specificity (Figure 3.26 A and C). Expression of 

the two dominant negative mutants aRab1b S36/SN and S36/NI resulted in low 

fluorescence signals and an even distribution within the cytosplasm and nucleus. No specific 

labeling with TMR was detectable for the two inactive amber mutants (Figure 3.26 A and C). 

Single cell mCitrine fluorescence lifetime analysis of the samples revealed an average 

lifetime of S36/QL = 2.82 ± 0.05 ns for S36/QL which is slightly lower than the lifetime of 

S36/WT (S36 = 2.85 ± 0.06 ns, Figure 3.26 B). In contrast, the S36/SN and S36/NI samples 

exhibited drastically higher lifetimes (S36/SN = 2.96 ± 0.03 and S36/NI = 2.97 ± 0.03) that were 

comparable to the unlabeled Rab1b WT/WT control (WT/WT = 2.99 ± 0.03). In combination 

with the observed lack of acceptor fluorescence, this increase in lifetime suggests a 

complete lack of TMR-labeling. To further assess, whether the lack of labeling is due to 

failure of BcnK incorporation into the inactive amber mutants, in-gel fluorescence and 

western blot analysis were performed (Figure 3.26 C). Full-length expression and specific 

labeling were detected for aRab1b S36/WT and /QL mutant, whereas the /SN and /NI 

variants lacked any full-length expression detected by western blot. Interestingly, the more 

sensitive in-gel fluorescence analysis revealed very faint bands, indicating low abundant but 

full-length expressed and labeled /SN and /NI mutants (Figure 3.26 C, black arrow head).  
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Figure 3.26: Determining the dynamic range of the conformational sensor using dominant active and 

inactive mutants of Rab1b. A) HEK 293T cells expressing Rab1b WT and three different amber 

Rab1b S36 nucleotide state mutants, S22N (SN), Q67L (QL) and N121I (NI). B) Single cell fluorescence 

lifetime analysis of the different amber nucleotide state mutants and aRab1b S36/WT. Rab1b WT 

(WT/WT) served as the donor only control. C) In-gel fluorescence and western blot analysis of the different 

mutants. The white arrow head marks the PylRS, the black arrow head labeled aRab1b, the asterisk 

indicated an unspecific band. Immunoblotting of Actin served as a loading control (Actin). 

Scale bar: 10 µm. 
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Characterization of the sensor’s ‘ON’ state 

Following verification of the BcnK-dependent full-length expression and the labeling of 

the dominant active mutant aRab1b S36/QL, the sensor signal was analyzed in a higher 

spatial resolution in live cells. To this end, lifetime images of S36/WT and S36/QL expressing 

cells were segmented into three regions of interest (ROI): whole cell (Cell), cytoplasm (Cyt.) 

and Golgi apparatus (Gol.) and the average lifetime was determined for each region (Figure 

3.27).  

Segmentation of Rab1b expressing cells revealed different lifetimes for cytosolic and 

Golgi-bound Rab1b fractions in all samples (Figure 3.27 B). The Golgi region exhibited a 

lower lifetime than the cytoplasm. While this difference amounted to WT Gol-Cyt. = 90 ps in 

Rab1b WT/WT and WT/QL samples, the gap between Golgi complex and cytoplasm was 

larger in TMR-labeled aRab1b S36 samples (S36 Gol-Cyt. = 250 ps). Interestingly, although 

S36/QL mutant expressing cells displayed a minor increase of the fluorescence lifetime in 

comparison to S36/WT (Cell (S36/WT-S36/QL) = 32 ps), the lifetime of the Golgi-bound aRab1b 

fraction was higher (Gol.(S36/WT-S36/QL) = 170 ps). Thus, the lifetime difference between Golgi 

and cytoplasm (S36/QL Gol-Cyt. = 90 ps) is 2.5-fold less than observed for S36/WT and is 

comparable to the difference observed in Rab1b WT cells.  

Although the average sample lifetimes of S36/WT and /QL differed by only  = 40 ps, 

the labeling of the two constructs was further assessed to exclude varying labeling 

efficiency as a cause for the detected lifetime increment. The amount of TMR fluorescence 

of S36/WT and /QL expressing cells was quantified and plotted against the lifetime of the 

respective cell (Figure 3.27 C). Both samples, aRab1b S36/WT and S36/QL, displayed a 

similar dependency of the lifetime on the abundance of the acceptor. Moreover, the linear 

fitting of the two data sets was comparable, indicating similar labeling and lifetime 

distribution of the two constructs. Furthermore, in-gel fluorescence and western blot 

analysis of the amber wild type protein and the QL mutant revealed similar expression 

levels and labeling intensity, excluding a reduced labeling efficiency as an artificial cause for 

the observed fluorescence lifetime differences of the two samples (Figure 3.27 D).  

In summary, the dominant active QL mutant of amber Rab1b S36 was expressed in full-

length and labeled comparably to the amber wild type protein. Moreover, the 

predominantly active QL mutant displayed an increase in fluorescence lifetime of the 

Golgi-bound aRab1b fraction, which is consistent with previous studies using the 

recombinant COSGA sensor 160,161. Nevertheless, the lifetime increment observed for the 

Golgi region of the genetically encoded sensor, about 6.5 %, is slightly less than reported for 

the active recombinant sensor (10 %).  
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Figure 3.27: Characterization of the sensor’s ‘ON’ state using the dominant active Q67L mutant. 

A) HEK 293T cells expressing Rab1b WT and aRab1b S36, both as wild type protein and Q67L variant. 

B) Single cell fluorescence lifetime analysis of Rab1b WT and aRab1b S36 and their respective QL 

mutants. The lifetime was quantified for whole cells (Cell), Golgi apparatus (Gol.) and cytoplasm (Cyt.). 

C) Comparison of the dependency of the lifetime on the abundance of the acceptor for aRab1b S36 WT and 

/QL. The black lines shows the linear fit for S36/WT, the dashed line for S36/QL. D) Comparison of the 

aRab1b S36/WT and /QL expression and labeling by in-gel fluorescence and western blot analysis. The 

white arrow head marks the PylRS, the black arrow head indicates labeled aRab1b and the asterisk an 

unspecific band. Scale bar: 10 µm. 

 

 

 

 

Determining the sensor’s ‘OFF’ state 

As previously determined by western blot analysis, the inactive amber Rab1b mutants 

S22N and N121I lacked BcnK incorporation and thus full-length expression of the construct 

(Figure 3.26). Furthermore, the reliable detection of BcnK incorporation by fluorescence 

microscopy was impaired by the cytosolic localization of the inactive mutants which cannot 

be distinguished from the expression of the non-suppressed mCitrine-Rab1b fragment. 

However, if full-length expressed, inactive Rab1b mutants cause a dispersion of the Golgi 

apparatus, allowing for an indirect detection of BcnK incorporation. To identify any full-

length expression of SN or NI amber mutants, the Golgi marker GntC was coexpressed with 

both inactive mutants of aRab1b S36 or D53 and the samples were screened for 

fragmentation of the Golgi complex (Figure 3.28). Rab1b WT/SN and /NI mutants served as 

phenotype controls. 

The compact and defined Golgi structure detected in WT/WT sample was not observed 

in any cell expressing Rab1b WT/SN or /NI mutant. Even low expression of these constructs 

resulted in complete dispersion of the Golgi apparatus as indicated by the diffuse 

localization of GntC (Figure 3.28 A). Comparison of the inactive amber mutants with the 

control samples revealed several differences. Despite the cytosolic and partially nuclear 

localization of aRab1b S36 and D53 /SN and /NI mutants, the Golgi structure remained 

intact and tightly packed, similar to the wild type protein control samples. Additionally, cells 

expressing amber /SN and /NI mutants seemed less rounded than the respective controls. 

The same results were found in HeLa and Cos7 cells, and are consistent with the lack of full-

length expression of the dominant negative aRab1b mutants as detected by western blot. 
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Figure 3.28: Phenotypic screen to identify full-length expressed dominant negative Rab1b amber 

variants. GntC served as a Golgi marker. The expression of the dominant negative mutants S22N (SN) and 

N121I (NI) was assessed for Rab1b WT (A), aRab1b S36 (B) and aRab1b D53 (C). Scale bar: 10 µm.  

  

An alternative strategy to determine the lifetime of the predominantly GDP-loaded 

sensor is the deletion of the C-terminal double cysteine motif of Rab1b (C2), which 

prevents its prenylation and thereby the membrane association of the sensor. 

Consequently, the construct remains cytosolic and does not underlie regulation by GEF 

proteins 30. Figure 3.29 A illustrates HEK 293T cells expressing aRab1b S36 and the truncated 

protein S36/C2 before and after labeling with TMR.  



103 
 

 
Figure 3.29: UAA incorporation and labeling of full-length and C-terminal truncated 

aRab1b S36 (C2). A) TMR-labeled and unlabeled HEK 293T cells expressing aRab1b S36 full-length 

and C2 variant. B) In-gel fluorescence and western blot analysis of aRab1b S36 full-length (fl.) and 

C-terminal truncated (C2). Fluorescent bands indicating the PylRS and aRab1b are marked with white and 

black arrow heads, respectively. The asterisk indicates an unspecific band. Scale bar: 10 µm. 

  

As expected, the C-terminal deletion prevented the Golgi localization of the construct 

and resulted in an even cytosolic and partially nuclear distribution of the sensor. 

aRab1b S36 displayed clearly visible TMR-labeling, whereas no labeling was detectable for 

the C2 mutant. In fact, the labeling step seemed to affect the localization of the truncated 

construct (Figure 3.29 A). While unlabeled cells displayed clear fluorescence intensity 

differences between nucleus and cytosol, cells transfected under the same conditions, but 

labeled with TMR, revealed even fluorescence throughout the cell lumen and nucleus. 

Furthermore, in-gel fluorescence and western blot analysis demonstrated a lack of full-

length expression and specific labeling of the truncated protein S36/C2 (Figure 3.29 B). 

Similar to the inactive mutants, this lack of full-length expression may be due to failure in 

BcnK incorporation. Another possibility is that the labeling step may affect the fate of the 

amber protein, e.g. causing rapid degradation of the construct. 

In conclusion these results demonstrate that the sensor’s ‘OFF’ state was not 

assessable by coexpression of TBC1D20 Rab1b GAP, utilizing inactive Rab1b mutants or 

C-terminal truncation. Furthermore, the findings show that introduction of mutation sites 

into an amber protein may affect stop codon suppression or the proteins fate, potentially 

resulting in reduction or complete degradation of the construct. On the other hand, 
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interfering with the protein function, e.g. by coexpression of regulatory proteins, may cause 

deficiencies in the labeling reaction. 

 

3.2.1.5 Monitoring Rab1b vesicular transport by reversible cryo-arrest 

Since Rab1b is involved in ER-to-Golgi membrane trafficking, the conformational Rab1b 

sensor was investigated in vesicular transport. Initial UAA incorporation experiments 

already showed that amber suppressed and labeled Rab1b participated in vesicular 

transport by formation of vesicles comparably to the wild type protein. These vesicles were 

traceable by confocal microscopy, but determination of the lifetimes of single vesicle was 

hindered by the comparably long acquisition periods during fluorescence lifetime imaging 

and the relatively fast vesicle movement. Therefore a new strategy, the reversible cryo-

arrest of live cells, was applied to lock live cells in a temporary state by freezing, allowing for 

even prolonged measurements without biological interferences in the sample during 

acquisition 235. 

 

 

 

The Rab1b sensor participates in vesicular transport 

First, labeled aRab1b S36 was monitored before and after freezing by fluorescence 

microscopy to confirm that the fluorescence emission of TMR is not affected by the change 

in temperature or the drastic increase in DMSO concentration during freezing (Figure 3.30). 

Cryo-arrest of the samples at -45 °C revealed a large number of Rab1b-positive vesicles 

which were not visible at 37 °C, but clearly distinguishable from the cytosolic fraction after 

freezing. Rab1b is known to participate in ER-to-Golgi transport, mediating vesicle tethering 

and fusion of COP-coated vesicles 59. These vesicles exhibit a rapid traveling speed under 

physiological conditions, impairing their detection by common fluorescence lifetime 

microscopy in live cells.  
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Figure 3.30: Monitoring Rab1b vesicular transport by reversible cryo-arrest. Confocal microscopy 

images and close-ups of HEK 293T cells expressing TMR-labeled Rab1b S36 at 37 °C and -45 °C.  

Arrow heads indicate labeled Rab1b vesicles; labeling of the Golgi apparatus is indicated by asterisks. 

Scale bars: 5 µm.  

  

Despite the low temperatures and the increased DMSO concentration during 

cryo-arrest, TMR remained fluorescent. However, TMR fluorescence signals showed a 

diffuse pattern throughout the cell post-freezing, lowering the signal-to-noise ratio in 

comparison to 37 °C. These TMR background signals may be caused by an excess of dye that 

was solubilized by the increase in DMSO concentration during freezing. Nevertheless, 

specific labeling of the Golgi apparatus, as well as labeling of single vesicles was detectable 

against the background fluorescence. Thus, the amber suppressed and labeled Rab1b 

protein indeed seems to function in vesicular trafficking.  

 

Rab1b sensor read-out pre- and post-freezing 

Precise determination of the fluorescent lifetime of subcellular Rab1b sensor fractions 

during cryo-arrest was impaired by movement of the sample during fluorescence lifetime 

image acquisition. Mechanic improvements of the cryo-arrest set up did neither solve nor 

improve this issue. Therefore the acquired lifetime data was in silico corrected by 

XY-alignment of the fluorescence intensity frames and application of the correction vectors 

onto the respective fluorescence lifetime frame set, before fitting of the average lifetime 

per pixel. This correction method provided sharp fluorescence intensity and lifetime images 

which displayed single Rab1b vesicles and well defined Golgi structures after freezing 

(Figure 3.31 A). mCitrine fluorescence lifetime analysis of whole cells, Golgi and cytoplasmic 

segments of the Rab1b sensor pre- and post- freezing revealed the previously described 



106 
 

lifetime distribution between the three segments (Figure 3.31 B and C). The fluorescence 

lifetime of the Rab1b sensor was comparable at 37 °C and -45 °C ( -45 °C (Gol-Cyt) = 260 ps and 

 37 °C (Gol-Cyt) = 280 ps). In contrast, Rab1b WT expressing cells displayed lifetime differences 

between the Golgi region and the cytosol before and after freezing (Gol (-45 °C-37 °C) = -140 ps 

and Cyt (-45 °C – 37 °C) = 60 ps).  

These data demonstrate that TMR was not only fluorescent at -45 °C and in the 

presence of 50 % DMSO, but also functioned as a FRET acceptor. Moreover, the 

fluorescence lifetime analysis indicated comparable FRET efficiency between mCitrine and 

TMR before and after freezing. In fact, plotting of the lifetime of Golgi-bound Rab1b against 

the lifetime of the cytoplasmic fraction of the respective cell revealed no differences in the 

Golgi/Cytoplasm ratio of the Rab1b sensor at the two different temperatures (Figure 

3.31 D). Interestingly, mCitrine and TMR fluorescence was massively increased at -45 °C in 

comparison to 37 °C. The acquisition of fluorescence lifetime images required about 

100-fold less laser power to achieve the same photon count rate at -45 °C in comparison to 

37 °C (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.31: Determination of Rab1b sensor lifetimes on single vesicles by reversible cryo-arrest. 

A) Intensity image of a HEK 293T cell expressing the Rab1b sensor illustrating sample movement during 

fluorescence lifetime image acquisition during cryo-arrest at -45 °C. Arrow heads mark single vesicles 

which are blurred before and well defined after the in silico correction. B) HEK 293T cells expressing the 

Rab1b sensor at 37 °C and at -45 °C. C) Segmented single cell fluorescence lifetime analysis of Rab1b 

sensor and Rab1b WT at 37 °C and at -45 °C. D) Ratio and linear fitting of the Golgi and cytoplasmic 

lifetimes of single cells expressing Rab1b sensor or WT protein at 37 °C and -45 °C. Scale bars: 5 µm. 
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Lifetime analysis of single Rab1b vesicles 

To determine the sensor signal on single vesicles Rab1b intensity images were masked 

on local intensity maxima representing the observed vesicle structures. The binary mask 

was transferred onto the respective XY-corrected lifetime image and mean lifetime values 

were calculated for each vesicle (Figure 3.32 A). mCitrine lifetime analysis of the extracted 

Rab1b vesicles revealed a broad range of mean fluorescence lifetimes for the Rab1b sensor 

on vesicles in different cells (Ves. (Sensor) = 2.54 - 2.71 ns). Despite the difference in average, 

the lifetime distribution of mean vesicle values correlated with the lifetime of the Golgi 

region and the cytoplasm within the same cell (Figure 3.32 B). Moreover, the four analyzed 

Rab1b sensor expressing cells showed a similar range of single vesicle mean lifetimes, which 

was comparable to that observed for Rab1b WT vesicles. (σ = 0.12 - 0.17 ns, Figure 3.32 B). 

Nevertheless, the mean vesicle lifetimes of vesicle-bound Rab1b sensor were significantly 

different from Rab1b WT vesicles (Figure 3.32 C).  

In summary, these results demonstrate that the genetically encoded Rab1b 

conformational sensor participates in the vesicular trafficking, allowing for the detection of 

single Rab1b vesicle lifetimes. A range of mean vesicle values was observed in different cells 

expressing the Rab1b sensor. This range was comparable within different samples and 

similar to the lifetimes observed for Rab1b WT vesicles, but single vesicle lifetimes of the 

Rab1b sensor differed significantly. However, further investigation is required to correlate 

the detected signals with the spatiotemporal Rab1b activity. One possibility may be the 

coexpression of the Golgi-localized tether protein p115, which is a Rab1b effector. 

Colocalization of p115 and Rab1b sensor on vesicles may enable the determination of the 

effector bound sensor fraction. Another possibility is the identification of ER exit sites 

(ERES), highly specialized ER areas from where COPII vesicles are budding 270,271. Rab1b is 

known to localize to ERES, regulating cargo sorting and targeting the budded vesicles to the 

Golgi complex, where is subsequently functions in tethering and fusion of the vesicles 62-65. 

As it is not clearly known at which distinct point during ER-to-Golgi trafficking Rab1b 

becomes activated, the conformational sensor could give further insights into the 

mechanism of ER-to-Golgi vesicular transport.  

 

 

 
Figure 3.32: Extraction of the Rab1b sensor lifetime on single vesicles in live cells. A) Identification of 

vesicles by intensity based binary masking of the lifetime image. The identified vesicles were extracted and 

a mean lifetime value was determined for each vesicle. B) Lifetime histograms of measured vesicles in 

different cells expressing Rab1b sensor or Rab1b WT control. The black line and the dashed line mark the 

average lifetime of the cytoplasm and the Golgi region of the corresponding cell, respectively. C) Mean 

vesicle lifetime values for one cell expressing Rab1b WT and four cells expressing the Rab1b sensor. All 

Rab1b sensor vesicle populations were significantly different from the WT vesicle 

population (p < 6.0 x 10-14). Scale bars: 5 µm. 
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3.2.2 Rheb Conformational Sensor 

In parallel to the characterization of the conformational Rab1b sensor, preliminary 

experiments were performed to assess whether the TMR-labeled aRheb N50 protein also 

functions as a Rheb sensor. To this end, HEK 293T cells expressing aRheb N50 were 

serum-starved overnight to induce inactivation of the lysosomal Rheb fraction. Cells were 

labeled in serum-free medium, washed intensively and screened for specific TMR labeling. 

In fact, few cells displayed TMR signals above background levels and the fluorescence 

intensity correlated only partially with the localization and abundance of aRheb N50. 

Fluorescence lifetime analysis of those cells revealed a lifetime decrease of  = 270 ps in 

comparison to the Rheb WT control sample. These cells were analyzed first in starved 

condition, then treated with insulin and analyzed again 15 minutes post-treatment (Figure 

3.33). Insulin stimulation activates the PI3K/AKT signaling pathway and results in a rapid and 

enduring activation of the lysosomal Rheb fraction124.  

 

 
Figure 3.33: Insulin stimulation of HEK 293T cells expressing the Rheb sensor. A) HEK 293T cells 

were serum-starved overnight (> 16 h) and the same cells were analyzed before and after treatment with 

insulin. B) Single cell lifetime analysis of A). Scale bar: 10 µm. 
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mCitrine lifetime analysis revealed an average change of lifetime of = -65 ps 

following insulin stimulation, indicating a response of the sensor signal to the activation of 

the signaling pathway. Positioning of the acceptor in the interswitch region of aRheb is 

expected to report protein activation as a decrease in sensor lifetime, which is in agreement 

with these findings. Thus, these preliminary data showed that the labeled amber Rheb 

construct indeed reports Rheb activity upon stimulation with insulin. However, further 

investigation is required to confirm that the observed alteration of fluorescence lifetime of 

the Rheb sensor is indeed due to the insulin-induced activation.  
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4. Discussion and Perspectives 

4.1 UAA incorporation into small GTPases 

This study demonstrates the successful and specific UAA incorporation into Rab1b and 

Rheb GTPases. Both proteins were subsequently labeled specifically in live mammalian cells 

and the labeled constructs allowed for spatiotemporal detection of the protein activity. The 

observed UAA incorporation was fully orthogonal, despite the frequent abundance of 

amber stop codons within eukaryotic cells. Six different incorporation sites of Rab1b 

tolerated the UAA incorporation and yielded functional proteins. In contrast, UAA 

incorporation and full-length expression was achieved for only one of the five mutation 

sites of Rheb GTPase. The expression yields of the amber mutants of both GTPases were 

rather low, maximum 12-20 % of the respective wild type protein (Chapters 3.1.1.4 and 

3.1.1.5). Low protein expression is a major pitfall of the stop codon suppression approach 

and has been subject to various studies 239,272-274. The limited expression is largely due to 

two reasons, (1) the availability of the orthogonal tRNACUA (PylT) and (2) the competition 

between the UAA incorporation event and the termination of the translation process at the 

ribosome 273-275. The first possibility has been successfully addressed by amplification of the 

PylT expression cassette and optimizations of the promoter region 180,198. In contrast, the 

competition between the UAA incorporation and the translational termination remained 

more challenging. If the translation machinery reaches a stop codon, the ribosome pauses, 

a release factor enters the ribosome and releases the translated peptide by separation of 

the two ribosomal subunits 164. In the presence of an orthogonal pair, the orthogonal tRNA 

can enter the ribosome, allowing for the incorporation of the UAA in response to a stop 

codon 171. Nevertheless, the endogenous release factor-mediated termination process can 

still operate and thereby competes with the orthogonal UAA incorporation process. 

Depending on the efficiency of each process, the amber protein is expressed as a mixture of 

fragment (translational termination) and full-length protein (UAA incorporation). In 

prokaryotes the termination process is mediated by the release factors 1 and 2 (RF1/RF2), 

which selectively terminate translation in response to UAG/UAA and UGA/UAA stop codons, 

respectively 162,163. Several studies successfully augmented the UAA incorporation efficiency 

in bacteria by disruption of RF1 function 162,238,239,272,273,276,277. In contrast, translational 

termination in eukaryotic cells is more complex, involving the eukaryotic release factors 1 

and 3 (eRF1/eRF3)164-166. eRF1, an orthologue of the two prokaryotic release factors, 

recognizes all three stop codons. While eRF1 is the key protein in the translation 

termination process, eRF3 possesses only a stimulatory role 164-167. A recent study targeted 
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eRF1 function to enhance UAA incorporation process, while maintaining low read-through 

of opal and ochre stop codons 180. The resulting engineered eRF1 allowed for 17-20-fold 

higher expression levels of UAA containing proteins using the PylRS/PylT amber suppression 

system in mammalian cells. Besides the significantly higher yields, which were comparable 

to the respective natural translation controls, the engineered eRF1 also enabled efficient 

multiple stop codon suppression within the same protein 180.  

Furthermore, the incorporation efficiency has been shown to depend on the local 

sequence context of the amber codon in bacteria 274,278. Pott et al. investigated the effects 

of two random codons, one upstream and one downstream of the amber codon, on the 

incorporation efficiency and found a strong preference of the UAA incorporation efficiency 

on the local sequence context 274. Moreover, the dependency on the local sequence context 

was versatile between different proteins and allowed for expression yields of 70-110 % of 

the respective natural translation control 274. In fact, the local sequence context seems to 

also affect the endogenous termination of the translation in yeast and human 164,279,280. 

Studies identified the nucleotide immediate downstream of the stop codon, at +1 position, 

as a key factor for the translation termination efficiency. Thereby the stop codon partially 

holds characteristics of a quadruplet codon, where the fourth base determines the 

efficiency of a process 164,279,280. Thus, a dependency of the UAA incorporation process on 

the local sequence context is also like to exist in mammalian cells.  

Another relatively new approach to enhance the UAA incorporation is the construction 

of orthogonal ribosomes that do not function with eRF1 273,275. This engineered ribosome 

selectively binds modified mRNA encoding amber proteins and also allowed for utilizing 

quadruplet codons, enabling encoding of multiple different UAA within one protein 253,275.  

However, most of these approaches were developed in parallel to the work presented 

in this thesis and therefore were not assessed here. Further investigations will show 

whether these strategies may also improve UAA incorporation into small GTPases, 

especially in the case of Rheb GTPase. 

 

 

4.2 Intracellular labeling of small GTPases  

Following the UAA incorporation into the small GTPases Rab1b and Rheb, both proteins 

were subsequently labeled intracellularly in live cells. Highly specific and covalent labeling 

was confirmed for the full-length expressed amber Rheb mutant, as well as for four amber 

Rab1b mutants. The intracellular labeling reaction with different fluorophores and the 

effects of the protein labeling on its function and on the cell health were intensively 

characterized in this work, providing vast insights into major pitfalls and challenges of the 
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approach. Among those are the findings that intracellular labeling depends not only on the 

target protein and the choice of dye, but also on the cell line and potentially the protein’s 

activity state. Intracellular labeling of Rab1b was highly specific, bioorthogonal and resulted 

in up to 90 % reaction yield (Chapter 3.1.3.4). These observed high yields of the labeling 

reaction opposes the previous assumption that utilizing the PylRS AF/PylT orthogonal pair in 

the absence of the engineered eRF1 allows only for ‘sparse labeling’ of intracellular 

proteins 181. Nikic et al. have reported the specific labeling of an extracellular loop region of 

IGFR using the PylRS AF/PylT pair to incorporate strained alkynes and alkenes 178,281. The 

extracellular labeling was performed using 1.5 µM tetrazine-functionalized dye for 10 min at 

37 °C, a much shorter incubation time than required for efficient intracellular labeling of 

aRab1b observed during this study. Nevertheless, the 3-fold higher dye concentration may 

accelerate the reaction sufficiently to compensate for the short labeling period. Moreover, 

labeling of extracellular proteins does not require the dye to enter the cell lumen, a process 

which may decrease the efficient dye concentration due to potential hydrophobic 

interactions with endomembranes. Uttamapinant et al. have recently demonstrated highly 

specific labeling of several intracellular proteins using BcnK and TcoK* incorporation in 

HEK 293T and COS-7 cells 181. In that study, intracellular labeling was performed using 

0.4 µM tetrazine-FDAC and 20 min incubation time, which is comparable to the labeling 

conditions initially used in this work. Nevertheless, complete labeling of aRab1b required 

more than 30 min in presence of 0.5 µM dye, as monitored for the labeling reaction over 

time by fluorescence lifetime imaging (Chapter 3.1.3.3). One possible explanation for the 

prolonged labeling time might be the high expression levels of the amber protein 281. 

However, the highest expressing amber Rab1b mutant, aRab1b S36, was expressed only 

about 20 % of the wild type protein (Chapter 3.1.1.4). In contrast, Uttamapinant et al. 

utilized the engineered eRF1 release factor allowing for expression levels of amber proteins 

comparable to the respective wild type protein 180,181. Consequently, the expression levels 

of the two amber proteins used within that study were much higher than expression yields 

of aRab1b in this work. A second possibility for the prolonged labeling times for intracellular 

labeling of aRab1b may be the choice of dye. Uttamapinant et al. used fluorescein diacetate 

(FDAC) for intracellular labeling, whereas Rab1b and Rheb amber proteins were labeled 

with TMR or other red fluorophores. FDAC has been shown to enter the cell rapidly and 

spread evenly throughout the cell (Chapter 3.1.2.1). Cell permeability of TMR was 

comparably fast, but TMR distributed exclusively within the cytosol and exhibited a partially 

membranous localization pattern within the cell, suggesting unspecific membrane 

association of the dye. In addition to cell permeability, the unspecific accumulation of dyes 

in the endomembrane system has been a limiting factor for intracellular labeling 

approaches 178,281. In order to be highly cell permeable, fluorescent probes require a certain 

hydrophobicity, which in turn may cause the unspecific membrane binding after cell entry. 
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Nevertheless, the choice of dye for the establishment of the genetically encoded 

conformational sensor for small GTPase activity was not only limited by their cell 

permeability and suitability for intracellular labeling, but also to the demand to serve as a 

FRET acceptor for a fluorescent protein. 

It has to be noted that the observed high labeling yields of Rab1b may be partially due 

to its intrinsic cycling between membrane-associated and membrane-independent state. In 

fact, Rab1b is not only targeted to one compartment, but localized to the Golgi apparatus, 

to ERES and to COP-coated vesicles during vesicular transport (Chapter 3.1.3.4). Thus, the 

presence of aRab1b at different membrane systems may enhance the labeling reaction by 

promoting the encounter between amber protein and tetrazine-dye. Linked to the change 

in localization, Rab1b also cycles between the active and inactive state, enabling interaction 

with effectors and other proteins. The rapid nature of this cycle may allow for the observed 

high efficiency of the labeling reaction, as not only one conformational state of the protein 

is exposed to the dye. In addition, interactions of Rab1b with other proteins may be limited 

to the time frame a vesicle requires from budding to tethering and may thereby not affect 

the labeling reaction e.g. by sterical hindrance. In contrast, Rheb is a less flexible GTPase 

concerning cycling and subcellular localization under normal growth conditions. Rheb 

resides on a number of endomembranes including the ER, Golgi, Mitochondria, peroxisomes 

and lysosomes 101,106,108,111,113,251,252. The lysosome-located Rheb fraction was intensively 

investigated in the last decades due to its role as an activator of the mTOR complex 1 in 

nutrient sensing (reviewed in 282). In presence of amino acids and growth factors, the 

lysosomal Rheb fraction is thought to be GTP-bound, allowing activation of mTORC1 
113,124,125. The absence of amino acids causes a RagGTPase-mediated recruitment of the TSC 

complex, the Rheb GAP, to the lysosomal surface 119-123. The TSC complex consists of TSC1, 

TSC2 and TBC1D7 and is also regulated by the growth factor-dependent PI3K-AKT pathway 
113,120,124,283. In order to avoid sterical hindrance of the labeling reaction by continuous 

interaction of Rheb and mTORC1 on the lysosomal surface, intracellular labeling was 

performed in serum-starved condition (Chapter 3.1.4), causing Rheb dissociation from the 

lysosomes 124,125. However, the effects of the localization of Rheb and its nucleotide state on 

the labeling reaction were not further investigated.  

While intracellular labeling of Rab1b was highly specific and did not yield any visible 

side reactions, aRheb expressing cells labeled with TMR displayed high TMR fluorescence 

intensities in the nucleus (Chapter 3.1.4). Side reactions of the intracellular labeling in the 

nucleus are a well-known issue that has been successfully addressed by fusion of the PylRS 

AF to a nuclear export signal (NES) 218. In addition to lower PylRS AF accumulation in the 

nucleus, the NES modification also increased the UAA incorporation rate significantly 218. 

Although the yields of intracellular labeling of aRheb were not determined, the change in 

mCitrine fluorescence lifetime upon incubation of aRheb with TMR was comparable to 
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intracellular labeling of aRab1b, indicating similar reaction yields ( = 300 – 400 ps, 

Chapter 3.1.4). However, unlike aRab1b, aRheb labeling was highly heterogeneous and only 

a small fraction of aRheb expressing cells displayed the large lifetime changes indicating 

complete labeling. These cells also exhibited perinuclear fluorescence densities, suggesting 

successful BcnK incorporation and proper localization of the construct. Nevertheless, the 

localization pattern of aRheb was not as clearly defined as observed for the wild type 

protein, suggesting low UAA incorporation rate.  

In conclusion, our data, together with the few previously reported cases of UAA-based 

labeling of intracellular proteins, leads to a better understanding of the major pitfalls and 

challenges of this approach. Vast insights into the effects of diverse parameters on the 

intracellular fluorescence labeling were achieved, including a screen for potential 

fluorophores for intracellular labeling, labeling of different target proteins and in different 

cell lines. Moreover, the intracellular labeling reaction was time-resolved monitored by 

fluorescence lifetime imaging, demonstrating that the reaction is not only time but also 

highly dose-dependent. Labeling and microscopic analysis were performed in live cells and 

cells expressing TMR-labeled aRab1b or aRheb have been shown to remain viable and 

healthy even over longer time periods (Chapter 3.2.1.3). 

 

 

4.3 Characterization of the genetically encoded Rab1b 

sensor 

Following successful establishment of the UAA incorporation and labeling protocol for 

small GTPases, functionality of the Rab1b sensor was confirmed by effector binding studies. 

Moreover, the sensor’s dynamic range was investigated by coexpression of regulatory 

enzymes, nucleotide state affecting mutants and deletion of the C-terminal prenylation 

motif.  

Previous studies showed that introduction of the acceptor at position S36 in Rab1b 

yields a probe reporting predominantly effector binding both in vitro and in vivo 160,161. In 

fact, coexpression of the Rab binding domain of the Rab1 effector protein OCRL1 resulted in 

a significant change of sensor lifetime. The observed lifetime increase in presence of OCRL 

(~ 5 %) demonstrates that the labeled Rab1b protein reports effector binding events in a 

comparable manner to the recombinant probe 160,161. Despite the intracellular labeling step, 

which did not yield 100 % labeled protein (Chapter 3.1.3.4), the dynamic range of the 

genetically Rab1b sensor was similar to the recombinant conformational sensor (~ 5 % and 

~ 6 % signal change, respectively) 160,161. Incomplete labeling may leave a distinct fraction of 

aRab1b construct unlabeled, increasing the donor only fraction in fluorescence lifetime 
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imaging and thereby the samples average lifetime. Depending on the size of the donor only 

fraction, the sensor’s dynamic range could be narrowed.  

Although the observed change in signal in presence of OCRL was stable and 

reproducible, it remains unclear whether the change in FRET is due to conformational 

changes within the small GTPase or due to binding of the effector. The preceded study 

establishing the recombinant, first generation of COSGA sensors found, that probes with 

acceptors introduced at position S36, D53 and G54, but not at T34, report effector binding 

in the same manner. Thus, a common sensing mechanism for effector binding is likely. One 

possibility is that effector binding limits the space available for the N-terminal fluorophore. 

This notion is supported by the observation, that larger effectors caused a larger change in 

sensor signal, but does not explain why the FRET signal of the T34 probe is not altered by 

effector binding 160,161.  

 

While OCRL coexpression did not affect the specific labeling of aRab1b, coexpression of 

the Rab1 GEF protein DrrA impaired the labeling reaction massively. Presence of the 

catalytic Rab1 GEF domain of DrrA caused Rab1b to localize predominantly in the cytosol 

and partially in the nucleus. This phenotype was similar for Rab1b sensor and wild type 

protein, but no specific labeling of aRab1b was detectable (Figure 3.24 A). In the same 

sample cells expressing aRab1b but not DrrA displayed strong and specific TMR-labeling, 

suggesting the presence of DrrA as cause for the impaired labeling reaction. In fact, TMR 

fluorescence intensity (indicating specific labeling) correlated with TagBFP fluorescence 

intensity (indicating DrrA expression levels), revealing a direct dependency of the two 

parameters (Figure 3.24 C). This correlation raises the possibility, that the incorporated UAA 

may not be accessible for labeling due to interaction of aRab1b and DrrA. In fact, the 

incorporation site S36 is located in the switch I region, one of three regions involved in the 

interaction interface of Rab1 and DrrA 126,284. Nevertheless, the interaction of small GTPases 

with their cognate GEF proteins is rather transient and generally terminated by the 

nucleotide exchange of GDP to GTP. Thereby the interaction should not affect specific 

labeling of aRab1b. On the other hand, although both proteins are exogenously 

overexpressed, aRab1b is most likely less abundant due to the amber suppression 

approach. Thus, the bulk of DrrA protein might shift the equilibrium towards complex 

formation, reducing the availability of free aRab1b for the labeling reaction. To circumvent 

this, DrrA mutants with lowered GEF activity could be used. These mutants show reduced 

complex formation with Rab1b which may enable aRab1b to become labeled 126. Another 

approach may be to incorporate BcnK at position D53 in Rab1b instead of S36. In contrast to 

S36, D53 is not involved in the interaction interface with DrrA and should hence be 

accessible for labeling 126.  
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Coexpression of the Rab1 GAP TBC1D20 revealed a similar lack of aRab1b labeling, but 

the phenotype differed from DrrA coexpression (Figure 3.25). While aRab1b/DrrA 

expressing cells displayed high mCitrine fluorescence intensities, aRab1b and TBC1D20 

positive cells exhibited only faint fluorescence, indicating low levels of mCitrine-aRab1b 

fusion protein. Due to the competition of translational termination and incorporation event, 

the population of amber protein can be divided into two fractions. The first fraction, and in 

case of aRab1b the major fraction, is the amber protein expressed in full-length. The second 

fraction is the non-amber suppressed mCitrine-aRab1b fragment. The observed mCitrine 

fluorescence comprises both fractions, but since full-length expressed aRab1b is the major 

fraction, its abundance may proportionally constitute for the fluorescence intensity. 

Hypothetically, if the amber protein expressed in full length and as a fragment are degraded 

differentially, mCitrine fluorescence intensity would decrease massively, leaving the 

mCitrine-aRab1b fragment as the predominant source for fluorescence emission. Moreover, 

degradation of only full-length aRab1b fraction would eliminate the labeled fraction and, 

due to reduction of the donor acceptor population, the sample’s fluorescence lifetime 

would be shifted to donor only signal. All three parameters of the above scenario are in 

agreement with the observations made for aRab1b and TBC1D20 coexpression, suggesting 

possible degradation of the full-length amber construct (Figure 3.25 C). However, it is 

striking, that presence of TBC1D20 did not affect fluorescence intensity of mCitrine-

Rab1b WT expressing cells, indicating that presence of the GAP does not alter Rab1b WT 

abundance. This raises the possibility of amber suppression and/or intracellular labeling as 

cause for degradation of aRab1b. One possibility to dissect whether aRab1b is degraded due 

to the labeling of the GDP-bound state or due to presence of the GAP could be coexpression 

of the catalytically inactive mutant TBC1D20 R105A 89-91. This mutant binds Rab1b, but 

cannot catalyze nucleotide hydrolysis. 

Another approach to coexpress regulatory enzymes while enabling complete labeling of 

the amber construct may be to utilize an inducible expression system, such as the 

tetracycline-controlled transcriptional activation 170,172. In combination with the established 

protocol for amber suppression and intracellular labeling an inducible system may allow for 

induction of exogenous GEF or GAP expression post-labeling. Consequently, the amber 

protein would first be labeled and then be regulated by its cognate enzyme. However, due 

to the reduction in aRab1b abundance within -labeling and the required additional 

expression time for the GEF or GAP protein this strategy might be challenging. 

 

As a second strategy to determine the dynamic range of the genetically encoded 

conformational sensor, three nucleotide mutants of aRab1b were assessed. Amber 

suppression and fluorescent labeling was successful for the dominant active Q67L (QL) 
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mutant, whereas both steps failed for the two constitutively inactive aRab1b mutants 

(Figure 3.26).  

The dominant active amber suppressed Rab1b S36 mutant QL was expressed and 

labeled comparably to the wild type amber protein, allowing comparison of the constructs. 

In contrast to the inactive Rab1b mutants, the active QL mutant allows for functional ER-to-

Golgi transport and does not impair Golgi homeostasis. The segmentation of sensor 

expressing cells revealed a fluorescence lifetime difference for the sensor QL mutant and 

the wild type amber protein. Interestingly, the greatest change in sensor signal was 

detected for the Golgi region, which displayed a significant increase. In contrast, lifetimes of 

the cytosolic aRab1b fraction and the whole cell lifetime were comparable to the wild type 

amber protein. The fluorescence lifetime alteration in the Golgi region is in agreement with 

previous studies reporting that microinjection of an active mutant of the recombinant 

sensor Rab1b T34C results in elevated sensor lifetime predominantly in the Golgi region 
160,161. However, the preceded studies used the T34C probe, which does not sense effector 

binding and reports exclusively nucleotide state. In contrast, introduction of the acceptor at 

position S36 in Rab1b, which was mainly used in this work, reports majorly effector binding 

events and has only a minor read-out for nucleotide state. In fact, the elevated sensor 

lifetime of aRab1b S36/QL in the Golgi region (QL(Golgi) = 170 ps) was similar to the increase 

observed for coexpression of the Rab1 effector OCRL (+OCRL(Cell) = 120 ps). It is thus 

possible, that the detected increase in sensor lifetime is due to binding of endogenous Rab1 

effectors, e.g. p115 or Giantin which are localized in the Golgi complex 62,66-68,285. The Rab1 

QL mutant has a lower intrinsic hydrolysis rate and is predominantly GTP-loaded in cells, 

allowing for interactions with effector proteins63,248,286.  

In contrast to the active aRab1b QL mutant, determining the sensor’s ‘OFF’ state using 

the constitutively inactive aRab1b mutants S22N (SN) and N121I (NI) was not successful. 

In-gel fluorescence analysis of cells expressing aRab1b S36/SN and /NI mutants revealed 

faint bands at the size of full-length expressed aRab1b, but western blot analysis failed to 

confirm the bands’ identity (Figure 3.26 C). Although faint, the detected fluorescent bands 

hint at low but successful stop codon suppression and specific labeling of both amber 

constructs. The low intensity of the bands in combination with the faint mCitrine 

fluorescence of aRab1b S36/SN and /NI expressing cells observed by fluorescence 

microscopy indicate low abundance of the amber construct. While low abundance of the 

target constructs may have different reasons, in this case, a degradation of the full-length 

constructs similar to the observations made for TBC1D20 coexpression, is likely. Differential 

degradation of the full-length expressed and labeled aRab1b fraction would reduce mCitrine 

fluorescence intensity, and eliminate the labeled aRab1b fraction. An alternative for the lack 

of full-length amber protein might be failure of BcnK incorporation into the target proteins. 

However, the two mutation sites yielding constitutively inactive Rab1b proteins are located 
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both upstream and downstream of the amber codon. While mutation of S22 to asparagine 

may affect BcnK incorporation, e.g. by altering the conformation of the partially translated 

fusion protein, the N121I mutation is translated identically as the wild type protein when 

reaching the amber codon at position S36. Consequently, differential UAA incorporation 

might be a possible reason for the lack of aRab1b S36/SN expression, but not for the lack of 

full-length expressed aRab1b S36/NI, whereas selective protein degradation would affect 

both constructs. The extended phenotypic screen for full-length expression of inactive 

mutants of aRab1b S36 and D53 in three different mammalian cell lines demonstrated that 

this pitfall is independent of the cell line (data not shown). 

Interestingly, UAA incorporation was observed for both, SN and NI mutants, in 

combination with a different linker between aRab1b and the FP. In this setup, the two 

amber mutants mTuquoise211-aRab1b S36 and D53 caused Golgi fragmentation when 

expressed in HeLa cells (data not shown). There are two differences between the above 

constructs and the constructs described before (Figure 3.26 and Figure 3.28), (1) the type of 

fluorescent protein (FP) and (2) the linker connecting the FP and aRab1b. The linker used in 

mTurquoise2-tagged constructs was modified by truncation of the fluorescent protein’s 

flexible C-terminus, resulting in a shorter and less flexible linker that brings the two proteins 

in closer proximity. Thus, the linker may be less accessible to proteolytic cleavage, 

potentially preventing degradation of the full-length amber protein. Consequently, these 

constructs are not only full-length expressed, but can also act as dominant suppressors for 

Rab1 function, causing Golgi fragmentation. However, it remains unclear whether aRab1b 

constructs containing C-terminal truncated mCitrine are full-length expressed and TMR-

labeled or whether the shortened linker indeed prevents degradation. 

 

The third strategy to determine the sensor’s ‘OFF’ state, the deletion of the C-terminal 

double cysteine motif of aRab1b, did also not yield a specifically labeled construct (Figure 

3.29). In fact, the observed differences in aRab1b localization pre- and post-labeling may 

indicate a change of protein fate due to the labeling step. Similar to coexpression of 

TBC1D20 and expression of inactive aRab1b mutants, the full-length amber construct may 

be degraded while the mCitrine-aRab1b fragment remained in the cell. If this process is due 

to the labeling reaction, the localization of aRab1b would differ before and after labeling as 

observed for the C2. This finding, together with the observations made for TBC1D20 

coexpression and expression of constitutively inactive aRab1b mutants, raises the possibility 

that the labeling of the inactive state of aRab1b may cause the construct’s degradation. 

However, further investigations, such as Western blot analysis of aRab1b C2 pre- and 

post-labeling may confirm whether inactivation of labeled aRab1b or labeling of inactive 

aRab1b proteins causes degradation. Another possibility might be monitoring the labeling 
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reaction of aRab1b C2 by confocal and fluorescence lifetime microscopy over time, as 

previously performed for aRab1b and aRheb labeling. 

 

As an alternative strategy to dissect different Rab1b sensor signals without interfering 

with its function, Rab1b trafficking was investigated by reversible cryo-arrest approach. 

Despite the lower temperature and the elevated DMSO concentration during the freezing 

process, specific labeling of vesicles-bound aRab1b was detected against the background 

signals. Since Rab1b is known to participate in vesicular transport at the ER-Golgi 

interface 59-61, these vesicle structures may represent COPII-coated vesicles. However, the 

vesicle identity was not further determined, but will be targeted by future work, e.g. by 

immunostaining of COPII coat subunits. 

Analysis of the sensor lifetime pre- and post-freezing revealed similar signals for Golgi 

and cytosolic fraction at 37 °C and -45 °C. Although the fluorescence lifetime of 

mCitrine-Rab1b WT differed marginally between the two conditions, both signals were 

comparable for the Rab1b sensor. Interestingly, the Rab1b sensor fraction on vesicles varied 

in mean vesicle lifetimes between cells, but the vesicle fraction of a single cell correlated 

with the lifetimes of Golgi region and independent within the same cell. It is thus possible, 

that the variations of mean vesicle lifetimes between cells are due to differences in sensor 

expression levels or labeling efficiency. Nevertheless, the mean vesicle lifetimes extracted 

from Rab1b sensor expressing cells were significantly different to lifetimes of Rab1b WT 

vesicles. The observed range of mean vesicle lifetimes (vesicles = 2.2 – 2.9 ns) is almost three 

fold broader than the dynamic range observed for effector binding reported by aRab1b S36 

( = ~170 ps). It may thus be possible, that other, so far unknown factors, affect the 

sensor’s read-out. Moreover, the dramatic changes in temperature and environment may 

affect the sensor’s dynamic range. Further investigations are required to dissect the sensor 

read-out and to identify e.g. effector bound sensor fractions. Future experiments will 

include coexpression of the Rab1b effector p115 as well as specific markers for ER exit sites 

(ERES). p115, the mammalian homologue of the yeast protein Uso1, is a Rab1 effector 

protein and is thought to mediate COPII vesicle tethering and fusion at the ER-Golgi 

interface 62. Cryo-arrest of cell expressing p115 and the Rab1b sensor will allow for 

identification of the effector bound sensor fraction on vesicles. To confirm versatility of the 

sensor signal between live cell and cryo-arrest conditions, the OCRL RBD coexpressed with 

the sensor during cryo-arrest will serve as a control. In addition, identification of ERES, 

highly specialized ER areas that are responsible for cargo sorting and formation of COPII 

vesicles, will enable to determine the nucleotide state of Rab1b sensor on budding vesicles. 

This approach will allow dissecting the role of Rab1b activity during ER-to-Golgi vesicular 

transport.  
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4.4 Characterization of the genetically encoded Rheb sensor 

In parallel to the characterization of the genetically encoded Rab1b conformational 

sensor, preliminary experiments were performed to demonstrate whether the labeled 

aRheb N50 amber protein indeed reports Rheb activity. To this end, cells were serum 

starvation overnight, labeled and analyzed pre- and post-treatment with insulin. Insulin 

stimulation activates the PI3K-AKT signaling pathway, resulting in phosphorylation of the 

TSC complex 113,124,282. The phosphorylated TSC complex dissociates from the lysosomal 

surface, allowing Rheb to adopt GTP-bound state and thus to become active by a yet 

unknown mechanism 113,282. In fact, insulin stimulation of serum-starved aRheb N50 

expressing cells caused a rapid decrease in fluorescence lifetime of specifically labeled cells. 

The observed lifetime reduction is in agreement with previous results on COSGA sensors 

that have the acceptor fluorophore introduced in the interswitch region, reporting GTPase 

activation by a decrease in sensor lifetime. However, it has to be noted that introduction of 

the FRET acceptor at position D53 in recombinant Rab1b protein, the structural equivalent 

to aRheb N50, yielded a probe reporting effector binding both in vitro and in vivo by a 

significant increase in sensor lifetime ( =~ +10 %) 160,161. In contrast, GEF-mediated 

protein activation of Rab1b D53C in vitro was reported by a non significant reduction in 

sensor lifetime ( =~ -3 %). Interestingly, the here observed lifetime decrease of 

aRheb N50 equals a 3 % change in sensor lifetime and is thus similar to the previously 

reported sensor signal reporting GEF-mediated activation of the recombinant Rab1b D53C 

probe. Nevertheless, the Rheb sensor signal was analyzed for the whole cell and not on 

higher spatial resolution, e.g. only for the perinuclear fraction. Extraction of the lysosomal 

Rheb fraction may allow for a more precise read-out of Rheb activity in response to growth 

factor stimulation. Moreover, additional removal of essential amino acids may increase the 

fraction of inactivated lysosomal Rheb via Rag GTPase signaling and may thereby lead to a 

larger signal change upon stimulation 113,124,287-289.  

Future work will further investigate whether the Rheb conformational probe in fact 

specifically reports Rheb activation and to which extend effector binding may contribute to 

the signal. Determining whether the sensor reports binding of effector proteins is quite 

challenging, due to the lack of known effector proteins for Rheb. Further investigations may 

involve coexpression of Phospholipase D1 (PLD1), which was proposed as a Rheb effector 

protein 229. If PLD1 is indeed a Rheb effector, the Rheb N50 probe should report the binding 

event by a significant signal change. Furthermore, the sensor signal will be integrated with 

traditional methods to monitor Rheb-mTORC1 activity such as S6K1 activity and 

phosphorylation of 4E-BP1. Although the amber mutation site was not reported to affect 
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Rheb function 98, this approach may also reveal whether the incorporated UAA or the 

subsequent labeling impairs Rheb function. Moreover, nucleotide mutants, such as the 

active Rheb Q64L mutant, may enable eliminating the sensor signal’s origin 174. Using 

mutants which exhibit e.g. an altered nucleotide state or lower sensitivity for GAP activity 

will influence the sensor read-out and thus, allow eliminating different events which may 

contribute to the sensor signal. Moreover, engineering of the sensor’s CAAX box to 

generate an exclusively cytosolic sensor, or to redirect the sensor to another compartment, 

could give further insights into the signal’s dependency on the endogenous regulation 

factors. In addition, transfection and cultivation conditions of aRheb samples may increase 

BcnK incorporation efficiency. Higher stop codon suppression efficiency in turn elevates 

intracellular labeling intensity, enlarging the donor-acceptor fraction which may increase 

the dynamic range of the sensor.  

 

4.5 Conclusion and Perspectives 

In conclusion, this study demonstrates the development of a new type of genetically 

encoded conformational probe for small GTPase activity by amber suppression and 

intracellular labeling approach. First, the sensors were genetically encoded by amber 

suppression and intracellular labeling, allowing monitoring of Rab1b effector binding in live 

cells. In the second part of this work, the sensor principle was applied to the small GTPase 

Rheb, demonstrating the versatility of this approach. To date this is the first sensor 

spatiotemporally reporting Rheb activity in live cells.  

Comparison of the two genetically encoded conformational sensors presented in this 

work revealed the impact of a cognate stimulus enabling to directly address the GTPase 

activity state. Growth factor deprivation and subsequent insulin treatment, a signal leading 

to activation of the lysosomal Rheb fraction, served as a simple and rapid method to 

confirm functionality of the Rheb sensor in live cells. In contrast, determining the dynamic 

range of the conformational Rab1b sensor suffered from a number of pitfalls. Due to its 

function during vesicular transport, Rab1b activity is hardly addressable by external stimuli. 

Thus, three different strategies were applied to determine an ‘OFF’ state signal for the 

Rab1b sensor, including coexpression of the respective GAP, nucleotide state mutants and 

deletion of the C-terminal double cysteine motif. Unfortunately, none of these strategies 

yielded success. Further investigations are required to determine the conformational Rab1b 

sensor’s ‘OFF’ state. However, interfering with Rab1b function affects Golgi biogenesis 

massively, causing a dramatic change in cellular physiology. In contrast, identification of the 

Rab1b sensor’s “ON” state using the active QL mutant was successful. In fact, the observed 

increase in sensor lifetime was predominantly in the Golgi region and was similar to the 



124 
 

sensor read-out obtained for effector coexpression. It is thus possible, that the sensor 

reports predominantly effector binding events, which would be in agreement with the 

previous in vitro characterization of the respective recombinant probe 160,161.  

Although the findings of this study are restricted to the development of the genetically 

encoded conformational sensor and did not asses Rab1b biology further, the combination 

of the conformational probe and the novel reversible cryo arrest of living cells allows for 

precise tracking of Rab1b activity during vesicular transport. The here obtained results will 

pave the way for elaborate studies allowing dissection of Rab1b activity during ER-to-Golgi 

transport using the genetically conformational Rab1b sensor.  

 

Unless specifically determined, the activity state of small GTPases is traditionally 

assumed by colocalization with their cognate GEF and GAP proteins. Although no GEF is 

known for Rheb yet, this strategy is frequently applied to the lysosomal Rheb fraction, 

which is supposed to be inactivated if its GAP, the TSC complex, localizes to the lysosomal 

surface 113,124. Another indicator for the nucleotide state of the small GTPase could be their 

cellular localization, being active in membrane-bound state and inactive in cytosolic, GDI-

bound state. However, whether these paradigms are ubiquitously applicable to any small 

GTPase remains elusive. Specific biosensors for small GTPase activity, including the probes 

developed in this work, enable direct and spatiotemporal detection of the protein’s activity 

state in live cells.  

Future experiments will explore the role of Rab1b activity at the ER-Golgi interface 

using the conformational sensor. Rab1b localizes to different cellular compartments, 

including the Golgi and COP-coated vesicles at the ER-Golgi interface. Moreover, Rab1b was 

also found to colocalize with specific ERES markers and seems to play a role in cargo sorting 

during COPII budding 69,91,290. In contrast, the known Rab1 GEF and GAP were found to 

localize to the Golgi complex and the ER, respectively 80,90. The ER-localized 

Tre2/Bub2/Cdc16 domain containing protein TBC1D20 has been shown to promote GTP 

hydrolysis of Rab1b and Rab2a 89,90,93. While overexpression of TBC1D20 maintained Rab1b 

in its inactive state, causing a block of ER-to-Golgi transport and Golgi fragmentation 89,91, 

depletion of TBC1D20 did not affect anterograde transport 90. It was thus proposed, that an 

alternative, yet unknown GAP may be responsible for negative Rab1 regulation at the Golgi 

complex 90. Moreover, little is known about the Rab1 GEF, the mammalian multi-subunit 

protein complex Transport Protein Particle (mTRAPP). Three distinct multi-domain TRAPP 

complexes possessing GEF activity for Ypt1 were found in yeast. Each complex functions in a 

different trafficking pathway, including anterograde transport and trafficking from the ER to 

pre autophagosomal structures (PAS) 79,81,82. In contrast, composition and function of the 

mammalian TRAPP complex (mTRAPP) remain largely elusive (reviewed in 76). Based on 

genetic interaction maps, two mammalian TRAPP complexes, mTRAPP II and III, were 
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proposed, but no evidence was found for a potential mTRAPP I complex 78. Localization and 

knock down studies of specific subunits suggested a role of mTRAPP II in ER-to-Golgi 

transport, whereas trafficking at the late Golgi is independent of mTRAPP II 80,85. Moreover, 

due to the interaction of mTRAPP II and III subunits with COPI and COPII coat components, a 

role for TRAPP complexes as tethers for vesicle tethering and fusion has been proposed 
78,80,84. Whether the function of mTRAPP complexes in ER-to-Golgi transport is restricted on 

its function as a Rab1 GEF, or if the complex alone could act as a tether, remains 

controversial. Thus, both regulatory enzymes of Rab1 are involved in ER-to-Golgi 

anterograde transport, but their colocalization with Rab1 is not sufficient to explain Rab1 

activity in membrane trafficking.  

 

The lysosomal fraction of the small GTPase Rheb has been shown to play a key role in 

nutrient sensing and mTORC1 activation upon growth factor stimulation. Although in this 

study insulin treatment was used as a proof of principle to confirm Rheb sensor 

functionality, it is the first direct evidence of Rheb activation during the growth factor 

sensing process. Rheb activity was traditionally monitored by indirect read-out of 

phosphorylation of mTORC1 substrates such as S6K1 or 4E-BP1, because Rheb-mediated 

mTORC1 activation is nucleotide-state dependent 126-129,173. Another study utilized 

fluorescent protein tagged mTORC1 and Rheb to monitor their interaction by fluorescence 

lifetime analysis 291. However, in both cases the exact activity state of Rheb remained 

elusive. Different signaling pathways were proposed for signal integration at the lysosomal 

surface. Two main signaling axes have evolved, the PI3K-AKT-pathway which acts through 

TSC complex localization and activity to activate mTORC1 via Rheb, and the RagGTPase 

mediated TSC recruitment to sense amino acids. However, a plethora of other signals 

collectively restrict mTORC1 mediated cell growth, such as hypoxia 130,132,292, low energy 
137,175 and genotoxic stress 131. Several stimuli regulate mTORC1 in a TSC-dependent fashion, 

while other signals, such as energy depletion, have been shown to act directly on Rheb by 

phosphorylation of Rheb S130 137. Thus, Rheb is indispensible for mTORC1 activation by 

virtually all stimuli, although the exact mechanism remains unclear.  

In addition to mTORC1-dependent function, Rheb was reported to play regulatory roles 

in mTORC1-independent fashion. Rheb were found to bind GAPDH and that interaction is 

depending on the enzyme’s substrate abundance 139,140. Interestingly, the interaction of 

Rheb and GAPDH was not altered by the nucleotide state and did not depend on TSC 

activity. This study suggested a mechanism by which GAPDH sequesters Rheb away from 

mTORC1 under low glucose conditions, whereas glucose-rich conditions disrupted Rheb-

GAPDH interaction, allowing for Rheb-mediated mTORC1 activation and eventually cell 

growth. A similar substrate-dependent binding mechanism was reported for PDE4D and 

Rheb, but whether this interaction alters mTORC1 activity was not determined 138. Hence, 
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the small GTPase Rheb possesses a variety of cellular signaling functions. While Rheb-

mediated mTORC1-activation seems to depend on the Rheb nucleotide-state 126,128,129, 

other stimuli may not alter Rheb nucleotide binding. The newly developed conformational 

sensor for Rheb activity will enable to directly monitor spatiotemporally Rheb signaling 

allowing for precise detection of the Rheb nucleotide state in response to specific stimuli. In 

combination with traditional methods to monitor mTORC1 activity, the Rheb sensor will 

provide insights into the signal integration at the Rheb-mTORC1 hub.  

In the past, development of a Rheb sensor was impaired by the lack of known Rheb 

effectors. Specific binding domains of small GTPase effector proteins are traditionally used 

as affinity tags to generate intramolecular FRET probes, allowing for spatiotemporal 

tracking of protein activity in cells. However, the FRET signal of such probes depends on the 

interaction of the affinity tag with the active small GTPase. Thus, protein activation is 

reported indirectly by the binding of the effector domain. Another disadvantage of these 

probes is the incorporated specific effector binding, which competes in binding to the small 

GTPase with endogenous proteins. In contrast, the sensors for small GTPase activity 

presented here directly report conformational changes instead of a subsequent binding 

event. Moreover, the conformational probes are independent of an affinity tag and can 

hence also be applied on small GTPases without known effectors. Furthermore, these 

sensors underlie native regulation by endogenous proteins, e.g. GEF or GAP, and, due to the 

lack of an intramolecular affinity tag, interaction with endogenous proteins is not affected. 

However, although the labor-intensive preparation process of the first generation of 

conformational sensors for small GTPase activity was circumvented by the use of amber 

suppression technique and intracellular labeling approach, the sensor establishment 

remains challenging. UAA methodology has been massively enhanced in the past few years 

and became more wide-spread, allowing for broad applications. In contrast, intracellular 

labeling remained largely challenging, which limits its application. Nevertheless, the rapid 

progress in the UAA field may also promote intracellular fluorescence labeling approaches, 

e.g. by development of new UAA and tetrazine-functionalized dyes for intracellular labeling 
219,293. The growing number of applications and studies using this sophisticated 

methodology, such as the here presented work, will enhance general user knowledge, 

facilitating development of new methods. Ultimately, this process may also promote the 

use of the genetically encoded conformational probes for small GTPase activity developed 

in this study. 
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