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Summary 

This thesis investigates the acquisition of mental representations under uncertainty. Five experiments 

were conducted. The aim of the experiments was to assess if visual search behavior reflects the 

accuracy of the mental representations and the degree of uncertainty during the acquisition process.  

In order to induce uncertainty, a visual spatial search task was developed with likely and unlikely target 

locations. Each of three targets was associated to one of the three target locations with a higher 

probability and with a lower probability to the other locations. The probability distribution remained 

constant for all experiments except for Experiment 5. Participants’ task was twofold: First, they had to 

predict the location of target object presentation in a prediction task. Second, they had to respond to 

color changes of the target object during the presentation of the target object in a subsequent reaction 

task. It is expected that participants develop a mental representation about the likelihoods of target 

locations that allows them to predict the location of the target objects more accurately. During the 

development of the mental representation, the degree of the participants’ uncertainty should be 

indicated by eye movements which reflect searching for relevant information and inhibiting irrelevant 

or ambiguous information. 

In Experiment 1, a new experimental paradigm was introduced to manipulate the probability of target 

locations. Participants were instructed to predict the locations of three different targets and to 

respond when they appeared on the screen. Prediction time, reaction time and the time course of eye 

movement patterns (e.g., fixation frequency, fixation duration, gaze shifts) were analyzed. Eye 

movement patterns changed over the time course of the task with increasing learning and reduced 

task uncertainty. The extensive visual search at the beginning of the experimental session became 

more focused towards the end of the session. Further, behavioral data suggests that participants 

developed a “Take The Best” decision strategy, i.e. lower probabilities were ignored and the most 

probable option was chosen. The new experimental design appeared to be useful for the purpose of 

the study and was therefore used in further experiments. 

The aim of Experiment 2 was to assess to what extent search difficulty affects the development of the 

mental representation. Thus, targets were presented at an unstructured white-gray patterned 

background in order to degrade the target stimuli. The fixation frequency in Experiment 2 was 

significantly higher compared to the first experiment. Contrary to the former assumptions the 

developed mental representation was equally accurate.  

Experiment 3 was designed as a relearning experiment to investigate if eye movement patterns 

indicate changes of probability concepts during the development of a mental representation. First, 



    

 

 

participants had to learn a probability concept. Then, they had to relearn another concept which 

required the adaptation of the initial mental representation. The results of Experiment 3 suggest that 

eye movement patterns indicate different phases during relearning. The beginning of the relearning 

phase was immediately signalized by an increase of fixation frequency whereas the increase in fixation 

duration was temporally delayed. However, performance differences between learning and relearning 

were smaller than expected. 

In Experiment 4, a prediction and a reaction task were assessed separately. The aim of this experiment 

was to elucidate which task is dominating the development of the mental representation. Participants 

developed an almost accurate mental representation of the probability concept in the prediction task, 

but not in the reaction task. Thus, the mental representation acquired during the performance of the 

visual spatial search task seems to rely mainly on the prediction task. Interestingly, this difference in 

the accuracy of the mental representation was only indicated by gaze shift activity.  

In Experiment 5, two probability distributions were employed to manipulate the degree of uncertainty. 

Participants had to learn a higher and a lower probability distribution of the object-exit associations. 

However, eye movement patterns did not differ between the performances of both probability 

distributions. Further, behavioral data suggests that the “Take The Best” decision strategy was 

employed in both distribution conditions. 

The results of this thesis demonstrate that eye movements give insights into the development of 

mental representations under uncertainty and thus, inform about the state of the participant. The 

results suggest that eye movement patterns reflect the learning state as well as the subjective 

uncertainty of the participant, viz. the usage of decision strategies and strategies to cope with 

uncertainty. Further, it was demonstrated that eye movements dependent on the design of the task 

(Experiment 1-2) and the initial knowledge (Experiment 3). However, processing depth was not 

reflected by eye movement parameters (Experiment 4). In addition, the manipulation of the objective 

uncertainty by varying the probability distribution did not seem to affect the degree of subjective 

uncertainty as intended (Experiment 5).  

 

  



    

 

 

Zusammenfassung 

Diese Dissertation beschäftigt sich mit der Entwicklung mentaler Repräsentationen unter Unsicherheit. 

Fünf Experimente wurden dafür konzipiert und durchgeführt. Ziel der Experimente war es, zu 

untersuchen, ob visuelles Suchverhalten die Genauigkeit der mentalen Repräsentation sowie den Grad 

der Unsicherheit während des Entwicklungsprozesses wiederspiegelt. Um Unsicherheit zu induzieren 

wurde eine visuell-räumliche Suchaufgabe entwickelt, mit wahrscheinlichen und unwahrscheinlichen 

Zielpositionen. Jedes der drei Zielobjekte erschien an einer von drei Zielpositionen mit einer höheren 

Wahrscheinlichkeit und an den anderen mit einer niedrigeren Wahrscheinlichkeit. Die 

Wahrscheinlichkeitsverteilung blieb über alle Experimente hinweg konstant mit Ausnahme von 

Experiment 5. Die Aufgabe der Versuchspersonen war zweigeteilt: Zunächst mussten sie vorhersagen 

an welcher Position die Zielobjekte erscheinen (Vorhersageaufgabe). Nachfolgend mussten sie 

während des Auftretens des Zielobjekts auf Farbveränderungen reagieren (Reaktionsaufgabe). Es 

wurde erwartet, dass Versuchspersonen nach und nach eine mentale Repräsentation über die 

Wahrscheinlichkeiten der Zielpositionen entwickeln, die es ermöglicht das Auftreten der Zielobjekte 

genauer vorherzusagen. Dabei sollte das Ausmaß an Unsicherheit, das von den Versuchspersonen 

empfunden wurde, anhand von Augenbewegungsmustern sichtbar werden, da diese die Suche nach 

relevanten Informationen und die Inhibition von irrelevanten oder mehrdeutigen Informationen 

wiederspiegeln. 

In Experiment 1 wurde ein neues Paradigma eingeführt, um die Wahrscheinlichkeit der Zielpositionen 

zu manipulieren. Die Versuchspersonen wurden instruiert die Positionen von drei verschiedenen 

Zielobjekten vorherzusagen und gegebenenfalls zu reagieren, wenn diese auftreten. Die 

Vorhersagezeit, die Reaktionszeit sowie der zeitliche Verlauf der Augenbewegungsparameter (u.a. 

Fixationshäufigkeit, Fixationsdauer, Blickwechsel) wurden analysiert. Augenbewegungsmuster 

veränderten sich über den zeitlichen Verlauf der Aufgabe mit gesteigertem Wissen und reduzierter 

Aufgabenunsicherheit. Das extensive visuelle Suchverhalten wurde zum Ende des Experiments 

fokussierter. Zusätzlich deuten Verhaltensdaten darauf hin, dass Versuchspersonen eine „Take The 

Best“ Entscheidungsstrategie entwickeln, d.h. dass niedrige Wahrscheinlichkeiten ignoriert werden 

und eher die wahrscheinlichere Option gewählt wird. Das neue Paradigma schien für den Zweck der 

Studie angemessen zu sein und wurde somit auch für die weiteren Experimente benutzt. 

Das Ziel von Experiment 2 war es, zu untersuchen inwieweit Schwierigkeiten bei der visuellen Suche 

die Entwicklung der mentalen Repräsentation beeinträchtigen. Dazu wurden die Zielobjekte auf einem 

gemusterten Hintergrund präsentiert und waren somit schwer erkenntlich. Die Anzahl der Fixationen 

war in Experiment 2 signifikant hört als in Experiment 1. Jedoch wurde konträr zu der anfänglichen 

Annahme eine mentale Repräsentation entwickelt, die ähnlich akkurat war wie in Experiment 1.  



    

 

 

Experiment 3 wurde als Umlernexperiment konzipiert, um herauszufinden inwieweit Augen-

bewegungen auf Veränderungen von Wahrscheinlichkeitskonzepten bei der Entwicklung einer 

mentalen Repräsentation hindeuten. Zunächst mussten Versuchspersonen ein Wahrscheinlichkeits-

konzept erlernen. Danach musste ein bestehendes Konzept umgelernt und die vorherige mentale 

Repräsentation angepasst werden. Die Ergebnisse des Experiments zeigten, dass 

Augenbewegungsmuster auf verschiedene Phasen während des Umlernprozess hinweisen. Der Beginn 

der Umlernphase wurde durch einen sofortigen Anstieg der Fixationshäufigkeit gekennzeichnet, 

wohingegen der Anstieg der Fixationsdauer zeitverzögert eintrat.  

In Experiment 4 wurden die Vorhersageaufgabe und die Reaktionsaufgabe getrennt betrachtet. Ziel 

des Experiments war es, aufzuklären welche der Aufgaben hauptsächlich den Aufbau der mentalen 

Repräsentation beeinflusst. Versuchspersonen entwickelten eine nahezu akkurate mentale 

Repräsentation des Wahrscheinlichkeitskonzepts in der Vorhersageaufgabe, nicht aber in der 

Reaktionsaufgabe. Daher scheint die mentale Repräsentation, die während der Durchführung der 

visuell-räumlichen Aufgabe entsteht, hauptsächlich auf der Vorhersageaufgabe zu basieren. 

Interessanterweise spiegelten Blickwechsel diesen Unterschied der Genauigkeit der mentalen 

Repräsentation wieder. 

In Experiment 5 wurden zwei Wahrscheinlichkeitsverteilungen verwendet, um den Grad der 

Unsicherheit zu manipulieren. Versuchspersonen mussten eine höhere und eine niedrigere 

Wahrscheinlichkeitsverteilung lernen. Augenbewegungsmuster zeigten jedoch keine Unterschiede 

zwischen dem Lernen der beiden Wahrscheinlichkeitsverteilungen. Weiterhin deuten die 

Verhaltensdaten darauf hin, dass die „Take The Best“ Entscheidungsstrategie bei beiden Bedingungen 

benutzt wurde und es somit auch bei der Wahl der Strategie keine Unterschiede gab. 

Die Ergebnisse der Arbeit verdeutlichen, dass Augenbewegungen Einblicke in den Entwicklungsprozess 

von mentalen Repräsentationen unter Unsicherheit geben und somit über den Zustand der 

Versuchsperson informieren. Augenbewegungsmuster spiegelten den Lernstand sowie die subjektive 

Unsicherheit der Versuchsperson wieder, d.h. die Nutzung von Entscheidungsstrategien und die 

Nutzung von Strategien, um mit Unsicherheit umzugehen. Darüber hinaus zeigte sich, dass 

Augenbewegungen sowohl abhängig vom Aufgabendesign (Experiment 1-2) als auch vom Vorwissen 

sind (Experiment 3). Jedoch können Augenbewegungsmuster die Tiefe der kognitiven Verarbeitung 

nicht widerspiegeln (Experiment 4). Zudem wirkte sich die Manipulation der objektiven Unsicherheit 

durch die Variierung der Wahrscheinlichkeitsverteilung nicht auf die subjektive Unsicherheit aus 

(Experiment 5).  
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1 Introduction 

What are the mental mechanisms underlying the interaction between users and technical systems? 

And how behave users if working with a technical system does not proceed as expected? If users 

interact with technical systems like a computer program or a ticket machine, they develop a mental 

representation or also called mental model of functioning of the system. Based on their mental model, 

users establish expectations concerning the technical system and behave accordingly. The technical 

system either strengthens these expectations or contradicts them. If it contradicts them, users have 

to adapt their mental model by building new associations (Preim & Dachselt, 2010, p. 94). The mental 

model becomes more detailed with increasing expertise. However, as mental models are only a 

reduced representation of the reality and complex systems cannot provide a complete set of 

information, errors still occur during the interaction. Thus, users have to handle a certain degree of 

task uncertainty due to a lack of knowledge concerning the cause-and-effect relationship, especially 

when expertise with a system is still low (Thompson, 1967). The task uncertainty involves the 

subjective uncertainty perceived by the participants as well as the objective uncertainty which is 

provided by the system, for instance, by the degree of complexity. Task uncertainty can be 

manipulated and be diminished by supporting the development of the mental model, for example, by 

introducing a help system, so that a more accurate mental model can be established in a shorter time 

period. Generally, user’s system performance improve with more accurate mental models (Donnell, 

1996).  

The acquisition of accurate mental models can be supported by designing user friendly interfaces 

because an improved interaction environment reduces task uncertainty (e.g., Bennett & Flach, 2011; 

Brown, 1999; Galitz, 2007; Johnson, 2014). For instance, Jipp (2016) studied expertise development 

while participants had to control air traffic. Two different types of automation design were used within 

this scenario, information automation and decision automation. Information automation refers to the 

automation of the information acquisition and analysis, for example, by highlighting relevant 

information. During decision automation, the selection of the decision was additionally automated, for 

example, the system advises the participants of the ideal speed of the aircraft which is relevant for the 

task. Results of the study showed that decision automation leads to more accurate mental models 

than information automation because of an increased need to process information. Thus, the 

interaction automation also affects the acquisition of the mental model. However, in addition to a 

user-friendly interface and automation, the user might be also supported more individually during the 

interaction with the system. For example, determining at which point the users’ individual mental 
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model is incomplete and task uncertainty is high, is essential for further smooth processing and the 

main focus of the thesis.  

This thesis seeks to find appropriate mechanisms and indicators for task uncertainty. Lipshitz and 

Strauss (1997) report different strategies people apply to cope with uncertainty. Humans might reduce 

uncertainty by searching for additional information or by waiting until additional information is 

available. Ignoring or distorting ambiguous information, in the way that they fit to the existing 

information, are other strategies known to suppress uncertainty. All these strategies deal with 

information search which is connected to attentional processes and visual search behavior. 

Consequently, visual search behavior and thus eye movement patterns might be a suitable indicator 

for the degree of task uncertainty. Eye movements are fast, frequent and automatic actions that reflect 

to which location users pay attention and thereby may allow insights into strategies of information 

accumulation (Hoffman & Rehder, 2010; Spivey & Dale, 2011). However, not only is information 

accumulation important for goal-directed behavior but also information processing. Findings of 

research on reading already provided evidence that stimuli are cognitively processed about the same 

amount of time the person has fixated them, for example the gaze duration for infrequent words was 

longer than for frequent (more familiar) words (Just & Carpenter, 1980). On the basis of such findings, 

Just and Carpenter (1980) proposed the eye-mind hypothesis assuming a strong causal relationship 

between attention and information processing. There should be “no appreciable lag between what is 

being fixated and what is being processed” (Just & Carpenter, 1980, p. 331). Transferring this idea to 

the present thesis, eye movement patterns might inform about an inadequate information processing 

or misunderstanding during the acquisition of mental models and thus, also about the degree of 

subjective uncertainty. The fixation on rather relevant than irrelevant information combined with less 

visual search, for example, may imply more accurate mental models and less subjective uncertainty. 

There is a considerable amount of studies in basic and applied research investigating eye movements 

to draw conclusions about visual information processing (Jacob & Karn, 2003, for review). This thesis 

tries to advance the present research by focusing on eye movements under uncertainty in the context 

of human-computer interaction (HCI). The purpose of the experimental research is to provide a first 

foundation for further studies in this context. Liversedge et al. (2011) already mentioned that 

knowledge about uncertainty and eye movements is limited and thus, stresses the importance for 

further research. In this thesis, I use input from different research fields, namely decision making, 

learning, working memory, information processing and eye movement research, to gain deeper 

insights into the described research topic. 
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In the following, the theoretical background of the thesis is summarized and a research framework is 

developed. At the end of Chapter 1 an overview of the relevant research questions and an outlook 

about the experimental setup is given. In Chapter 2 the experimental paradigm is outlined together 

with the General Method of the studies. In Chapters 3-7 the motivations of five successively developed 

experiments are described in detail as well as their methods and results. At the end of each chapter, 

the findings and implications are discussed. Finally, in Chapter 8 the research findings of all 

experiments are integrated and discussed in the context of the proposed research model. In addition, 

limitations of the studies are considered and an outlook for future research is presented.  

For the purpose of the study a new experimental paradigm is developed: the Occluded Visual Spatial 

Search Task (OVSST). The experimental paradigm will be shortly introduced already at this point due 

to its high relevance for the comprehension of the introduction. The experimental task, however, will 

be explained in more detail later in the General Method section. Participants have to observe target 

objects that appear at one of three target locations with a certain probability (Fig. 1.1). They are asked 

to perform two tasks: predicting the target location of the objects and, subsequently, reacting to 

changes of the color intensity when the object appears. After the experiment, participants are asked 

to estimate the probabilities via questionnaire. The OVSST allows to investigate the acquisition of a 

new mental model of a simplified decision task inhering spatial uncertainty. Further, the conscious as 

well as unconscious understanding of the underlying probability concept is assessed via subjective as 

well as objective measurements. Furthermore, the OVSST allows to vary the degree of objective 

uncertainty by varying the probabilities of the target locations. 

 

Figure 1.1: Simplified depiction of the OVSST. Target objects can appear at three different target 

locations presented on a computer screen. 
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1.1 Mental Model Theory and Probabilistic Mental Models (PMM)  

Originally, the idea of mental models as cognitive representations of the real world was developed by 

Craik (1943) and later revived by Johnson-Laird (1983) who defined a mental model as a reasoning 

mechanism that is integrated in working memory. Nowadays, this vague definition of mental models 

is only one of many different definitions depending on the context. Mental models can be considered, 

for example, in the context of business, education or HCI and on an individual level or in teams. Mental 

models associated with teams, for example the context of sports, “[…] are organized mental 

representations of the key elements within a team’s relevant environment that are shared across team 

members.” (Mohammed, Ferzandi, & Hamilton, 2010, p. 1) and part of collective strategies in decision 

making. On the individual level Young and Veen (2008) emphasize the usefulness of mental models in 

business decisions. The authors describe methods like interview techniques to assess mental models 

which help to understand people’s motivation and thought-processes.  

In this thesis, mental models are considered in the context of HCI as long-term knowledge structures 

which represent the user’s understanding of situation-specific system functioning (Durso & Gronlund, 

1999). At the beginning of the mental model development, mental models are often incomplete and 

systematic faults may occur due to the abstract and schematic knowledge structure of mental models 

(Chalmers, 2003; Durso & Gronlund, 1999; Johnson-Laird, 2010). Chi and Roscoe (2002) report in their 

study about conceptual changes, for instance, that over half of the tested students in their study had 

coherent, but flawed mental models concerning the circulatory system of the human body. They 

assumed incorrectly that the circulatory system is a “single-loop” in which the blood flows from the 

heart to all parts of the body and not a “double-loop” from the heart to the body and from the heart 

to the lungs. Thus, systematic errors occurred which can be fixed with greater knowledge and adaption 

of the mental model. However, mental models seem to be resistant to change once proved useful. If 

information is once stored and an understanding is built up (e.g., when playing cards and having an 

understanding of the specific rules), it is difficult to change the model and adapt to new situations. This 

is comparable to the accommodation process described earlier by Piaget (1952), who states that 

existing knowledge has to be changed when no longer applicable. 

Mental models become more detailed over time when users are more experienced. However, as 

already indicated by the word “model”, mental models do not contain all available information, since 

perception and memory capacities are limited. Thus, mental models are characterized by a reduced 

copy of the reality. Further, a range of interindividual differences regarding the mental model 

development are based on different experiences and cognitive abilities of people (Jipp, 2016). In 

addition, mental models are hypothetic, imaginary and represent only what is true, but not what is 
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false (Dutke, 1994; Johnson-Laird & Savary, 1996) probably to minimize the load in working memory. 

If someone, for instance, acquires a mental model about the electricity flow that is similar to how water 

is flowing, then this mental model does not contain the fact that water cannot flow upwards like 

electricity. In contrast, it implies that there is some time between the starting and the end point of the 

flow which is true for electricity as well as for water flows. This phenomenon of information 

accumulation is comparable to the confirmation bias describing the search for evident information 

that fits the existing beliefs and expectations (Nickerson, 1998). Summarizing the above, mental 

models share some specific characteristics and have to be differentiated from conceptual models and 

situation models. Conceptual models of an application describe the application on a high-level, viz. it 

describes the functioning of the application and concepts users need to understand and use this 

application (Gentner & Stevens, 1983; Johnson & Henderson, 2012). Mental models also have to be 

differentiated from a situation model that is build up in a particular situation and contains information 

about the environment of this situation (Durso & Gronlund, 1999; van Dijk & Kintsch, 1992). Thus, one 

mental model can be evoked by several situations with particular characteristics.  

In contrast to the above mentioned aspects of mental model theory, the theory of Probabilistic Mental 

Models (PMM) by Gigerenzer et al. (1991) proposes a more specific view on mental models with 

concrete behavioral predictions in the context of uncertainty. This theory assumes that during problem 

solving, people build up a mental model about a relevant aspect of the reality. The uncertainty arising 

from the process of representation is also part of the model, for instance, if the problem solver clearly 

knows the solution for the problem, then uncertainty is not present. However, if uncertainty about the 

solution exists, then a PPM is established (Jungermann, Fischer, & Pfister, 2010, p. 177). A PMM 

considers the problem to be solved in a larger context by using a network of variables and “[…] 

connects the specific structure of the task with a probability structure of a corresponding natural 

environment (stored in long-term memory).” (Gigerenzer et al., 1991, p. 4). If, for instance, a decision 

between two options has to be made, a reference class activates all information relevant for the 

decision and enables to elicit valid probability cues which work as a predictor for the correct decision 

based on a probability estimation. Gigerenzer assumes that these probabilistic inferences are purely 

cognitively processed (Gigerenzer et al., 1991). PMM is based on different strategies like Take The Best 

(TTB), Take The Last (TTL) and minimalist strategy, assuming a random generation of cues until a 

discriminatory cue is found that allows to distinguish between different options (Dougherty, Franco-

Watkins, & Thomas, 2008). The first strategy seems to be most relevant for this work, as studies 

showed that non-compensatory strategies, especially TTB, enable to predict the inference of decision 

makers under time pressure and when cue information has to be retrieved from memory (Rieskamp 
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& Hoffrage, 2005). The experimental task used in this thesis comprises of similar characteristics. In the 

following, TTB is presented in detail (cf. Bergert & Nosofsky, 2007).  

TTB can be divided into five-steps in order to decide, for example, between two options as shown in 

Figure 1.2. A possible task might be to decide which of two football clubs has more supporters. The 

first step entails the recognition processes. If only one of two options is recognized, then the 

recognized option is chosen, for example, if only one football club is known, then this club is chosen. 

If both events are not recognized, then the decision maker guesses and chooses the football club with 

the most supporters by chance. If both football clubs are recognized, then the decision maker follows 

Step 2: searching for validity cues that provide information about the environment of the options, for 

example, whether the football club is located in a city that is a state capital or not. Thereafter, these 

cues are ranked from memory with regard to the relevance for the decision. After finishing this 

procedure, the decision maker chooses the highest ranked cue that seems to be most relevant for the 

decision and finds out if the chosen cue discriminates between the options (Step 3), for example, the 

size of population the city the football club is located in might be a cue that discriminates between the 

two football clubs. Step 4 stops the cue search if the cue discriminates between the options and the 

decision maker proceeds to Step 5. If there is no cue discrimination, then the decision maker returns 

to Step 2 and takes the next best cue which seems to be relevant for the decision and so on. Finally, 

Step 5 leads the decision maker to choose the alternative with the best cue value. If, for example, one 

of the football clubs is located in a bigger city than the other, this club is chosen. If there is no validity 

cue that discriminates between the options, then the decision maker chooses the event randomly, viz. 

they guess one of the options (Dougherty et al., 2008).  
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Figure 1.2: Flow diagram for the 5 steps of the Take The Best heuristic for choosing one of two options. 

Either no options (--), one of the options (-+) or both options (--) are known in advance 

influencing the further decision process. Adapted from “Psychological Plausibility of the 

Theory of Probabilistic Mental Models and the Fast and Frugal Heuristics”, by Dougherty et 

al. (2008, p.201).  
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1.2 Decision Making under Uncertainty 

Mental models develop during decision making about relevant information as aforementioned and 

contain to a degree uncertainty about the outcome as described by PPM (Gigerenzer et al., 1991). 

Uncertainty is a broad concept and requires defining before it can be operationalized in scientific 

research. In the following, theories about uncertainty in the context of decision making are described 

in more detail. Lipshitz and Strauss (1997) provide distinct conceptualizations of uncertainty, for 

example, uncertainty related to ambiguity, risk or conflict. As mentioned earlier, task uncertainty is 

based on a lack of knowledge concerning the cause-and-effect relationship and leads to an inability to 

make a decision deterministically (Lipshitz & Strauss, 1997). As a working model, we assumed that 

uncertainty contains subjective uncertainty as well as objective uncertainty (Fig. 1.3). Subjective 

uncertainty describes the perceived uncertainty by the individual. In contrast, objective uncertainty is 

provided by the system and directly manipulable  

 

Figure 1.3: Task uncertainty is defined as the combination of subjective and objective uncertainty. 

Subjective uncertainty is perceived by the human and objective uncertainty is provided by 

the system. 

Generally, humans try to minimize task uncertainty and therefore develop coping strategies (Camerer 

& Weber, 1992; Camerer & Weber, 1992; Smithson, 2009; Weber & Camerer, 1987). Typical examples 

for strategies to cope with uncertainty reported in literature are information search, suppression of 

ambiguous information or information reduction (Lipshitz & Strauss, 1997). During information search 

decision makers search for relevant information to discriminate between alternatives and finally to 

confirm their decision (Betsch, Funke, & Plessner, 2011). If there is much ambiguous information, 

decision makers often use the suppression strategy, viz. they ignore or distort undesirable information 
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to reduce subjective uncertainty in the way that their preferences and beliefs align with their decision 

(Lipshitz & Strauss, 1997). Information reduction is a similar concept to suppression, but decision 

makers rather reduce the amount of task information and focus only on relevant information. Haider 

and Frensch (1999) state in the information-reduction hypothesis that task-relevant information is 

distinguished from task-irrelevant information with practice. Consequently, mainly task-relevant 

information is processed, resulting in better task performance and reduced uncertainty as, for 

instance, the number of alternatives is reduced. Another way to make decisions under risk or 

uncertainty is addressed in the so called expected utility theory (Neumann & Morgenstern, 1947; 

Neumann & Morgenstern, 1947). In this theory decision makers compare the subjective expected 

utility values of the risky or uncertain prospects to make their choice. However, these strategies are 

not always applicable in the real world as access to information is usually limited. Therefore, new 

theories of so called “bounded rationality” were developed, which emphasize the inability to consider 

all relevant information during decision making as a reason for uncertainty, lack of knowledge and 

costly information (Simon, 2000). Consequently, humans often make irrational decisions due to the 

limited information. They use cognitive heuristics – rules of thumb – to simplify the decision making 

process like the earlier mentioned TTB heuristic (Gigerenzer & Gaissmaier, 2011). Another cognitive 

heuristic is the satisficing rule which describes a decision strategy whereby the search for an alternative 

stops as soon as a satisfactory result is found, but not necessarily the optimal result (Simon, 2000). This 

fast and frugal characteristic of heuristics enables people to make economic decisions that, however, 

may lead to erroneous judgments (Kahneman & Tversky, 1973). There are also other characteristics of 

human thinking that lead to incorrect decisions, for example, the tendency to search for a causal 

relationship even if there is none. In contrast, some animals like rats choose a better strategy in these 

random decision situations as they do not tend to search for causality and are able to respond more 

randomly (Wolford, Miller, & Gazzaniga, 2000). Nevertheless, humans have the advantage to be able 

to learn which decision strategy might be optimal in non-random decision situations. Rieskamp and 

Otto (2006) suggest a theory about strategy selection learning (SSL) that is based on reinforcement 

learning, i.e. learning from the consequences of the decisions. Within SSL it is assumed that individuals 

select a decision strategy by considering their expectations that base on past experiences and improve 

the strategy selection through feedback over time. Thereby the learning effects, i.e. the behavioral 

change due to the learned decision-outcome expectations, are stronger at the beginning than at the 

end. The importance of learning in the decision making process is also shown in a  general model of 

decision making provided by the framework of Rangel et al. (2008). This framework assumes different 

processes involved in the decision making process (Figure 1.4).  
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Figure 1.4: Framework for the 5 processes during decision making. Adapted from “A framework for 

studying the neurobiology of value-based decision making”, by Rangel et al. (2008, p. 546). 

For more details see main text. 

At first, the decision maker creates a representation of the decision problem which involves internal 

as well as external states. Examples for an internal state might be fatigue level and for an external state 

threat level, for example, the difficulty of a task. This representation works as the basis for the second 

process, the valuation of different options. During the valuation process, the different decision options 

are weighted with regard to the likelihood to evoke a desirable state as a kind of preference formation. 

Then, the different options are compared with each other in the third process leading to action 

selection. Finally, the decision maker chooses the preferred option. After making the decision, the 

outcome of the decision is evaluated and finally used as feedback in learning processes to improve 

future decisions. Learning updates the other processes, i.e. the representation, the valuation as well 

as the action selection, except for outcome evaluation. These five processes presented in the 

framework, however, are not rigid with regard to the sequence and give only a rough overview (Rangel 

et al., 2008). The framework by Rangel et al. (2008) clearly shows that learning is an essential process 

during decision making that is closely linked to the representation of the decision problem. The aspect 

of uncertainty is not explicitly assumed in the presented framework, but it is integrated in the valuation 

process as the likelihood of the different decision options is taken into account. Thus, probabilities 

create uncertainty in the decision process as the outcome is not predetermined.  

In literature different tasks are suggested to study decision making under uncertainty in laboratory 

settings that are based on a probability structure like lotteries (Arieli, Ben-Ami, & Rubinstein, 2011) or 
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gambling tasks, for instance, the IOWA Gambling task (IGT; Bechara, Damasio, Tranel, & Damasio, 

2005). In the IGT participants are instructed to maximize their profit during the selection of cards with 

monetary gain and losses. They have to decide between four decks of cards whereby two decks are 

riskier and have shortcomings in the long run. However, participants are not aware of that difference 

(Buelow & Suhr, 2009). The probabilities of losses and gains concerning the four decks can be varied 

to increase or decrease objective uncertainty. Nevertheless, the use of gambling tasks like the IGT in 

research has also disadvantages. For example, pathological gamblers show performance impairments 

in the IGT (Buelow & Suhr, 2009) and thus, gamblers’ personalities might bias the results. Therefore, a 

task without gambling characteristics is chosen for the current experiments. Another bias might arise 

from the probability structure. Humans have difficulties to estimate probabilities accurately as 

numbers are abstract and often biased depending on memory performance as well as heuristics 

(Gigerenzer & Gaissmaier, 2011; Gigerenzer & Goldstein, 1996). For instance, high probabilities are 

often underestimated und low probabilities are often overestimated, because of  regression to the 

mean (Beuer-Krüssel & Krumpal, 2009; Fischhoff & Beyth, 1975). In general, not only the probability 

structure, but also the induced uncertainty might evoke bias, as individual differences in perceiving 

uncertainty exist. For instance, people prone to sensation-seeking might perceive uncertainty as a 

motivating factor (Zuckerman, 1979) whereas other people more commonly associate uncertainty 

with anxiety as an inhibitory factor (Bammer & Smithson, 2008). In addition, the questionnaire-based 

study by Shuper et al. (2004) showed that also cultural differences exist with regard to the way how 

people deal with uncertainty. The results of the study indicated that Canadian students were more 

uncertainty oriented, i.e. they seek for information during uncertain situations, in comparison to 

Japanese students. In conclusion, studying probabilities seems to be biased in different ways. 

Nevertheless, the usage of probabilities to vary uncertainty systematically is the common method up 

till now (Smithson, 2009). 

Evidence from neuroscience studies also suggests that uncertainty affects decision making. Functional 

magnetic resonance imaging (fMRI) experiments show that the activation of the prefrontal cortex is 

related to learning processes in uncertain situations (Fellows & Farah, 2007; Paulus et al., 2001; Platt 

& Huettel, 2008). In contrast, other studies  report a larger neural circuit with the involvement of the 

orbitofrontal cortex and the amygdala that respond to the degree of uncertainty (Hsu, Bhatt, Adolphs, 

Tranel, & Camerer, 2005). Furthermore, other authors like Paulus et al. (2001) discuss a network of 

prefrontal, parietal and cingulate cortex during decision making under uncertainty. Overall, there seem 

to be many different brain regions involved in decision making under uncertainty, presumably 

indicating that uncertainty evokes more complex cognitive processing. The aim of the current work, 

however, is to assess uncertainty on a rather behavioral basis with the main focus on eye movement 



Chapter 1: Introduction  12 

 

 

behavior. The following chapter explains how eye movements might provide an additional path to 

explore the central nervous system during the investigation of decision making under uncertainty.  

1.3 Eye Movements, Attention and Learning 

As already mentioned eye movements may be an important indicator to elucidate search behavior and 

several strategies respectively. Eye movements are motor skills used to rotate the eyeball in all 

directions consciously or unconsciously by the oculomotor system which is part of the central nervous 

system. The three most studied eye movement patterns are saccades, fixations and smooth pursuit 

movements. Saccades are rapid eye movements with a velocity between 30 and 500°/s lasting 30-80 

ms (Holmqvist, Nyström, & Andersson, 2011, p. 23). They can be voluntarily and reflexively used to 

move the fovea to another position in the visual environment. The fovea is a small area of the visual 

field not larger than 2° in which humans have full visual acuity and are able to process the perceived 

information most efficiently (Holmqvist et al., 2011, p. 21). However, there is a field of view 

surrounding the fovea called perceptual span in which information is also processed even if the acuity 

is reduced. The size of the perceptual span depends on the nature of the task and can be at least 24°, 

for instance, during driving (Holmqvist et al., 2011, p. 381). During fixations, the eyes do virtually not 

move. However, this phase is characterized by micro-movements consisting of tremor, drift and 

microsaccades lasting 200-300 ms. Thus, fixations are often defined as a timespan in which the eyes 

remain relatively still. A series of both, fixations and saccades, is called scanpath. Smooth pursuits are 

used to track a moving target with the eyes driven by parts of the brain that are not activated during 

saccades (Duchowski, 2007, p. 46; Holmqvist et al., 2011, pp. 22–23). Some authors suggest that only 

during fixations new information is processed (Gilchrist, 2011; Rayner, 2009). Nevertheless, gaze shifts 

seem also to facilitate stimulus processing and influence the development of the mental 

representation (Irwin, 2004). Further, it “[…] seems reasonable to assume that fixation location 

corresponds to the spatial locus of cognitive processing and fixation or gaze duration corresponds to 

the spatial locus of cognitive processing of the material located at fixation.” (Irwin, 2004, p. 106). In 

other words, eye movements and attentional processes seem to have an impact on which stimuli are 

cognitively processed in what manner. This idea was earlier expressed in the aforementioned eye-

mind hypothesis by Just and Carpenter (1980), stating a strong coupling between eye movements and 

attention (cf. Theeuwes, Belopolsky, & Olivers, 2009). Hence, a stimulus is cognitively processed for 

the same amount of time the person has fixated on it. This hypothesis, however, has its limits, for 

example, when considering memory retrieval processes as already shown by Anderson et al. (2004). 

The authors assume that retrieval processes are not necessarily reflected by eye movements. 

Moreover, Irwin (2004) highlights four main issues regarding the eye-mind hypothesis: First, the 

attentional focus of cognitive processing within the complete field of view may be wider than the 
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fixation location as information is also processed in the visual periphery (cf. Fox, Merwin, Marsh, 

McConkie, & Kramer, 1996). Second, the focus of cognitive processing is often separated from the 

fixation location. Third, salient stimuli that pop out can guide the eye without cognitive control and 

without active search (bottom-up driven). Fourth, cognitive processing may happen during saccadic 

eye movements and during fixations. Further, Hyönä (2010) mentions that even if a learner attends to 

the relevant stimulus for a while, there is no necessity that the learner adequately comprehends the 

stimulus. In contrast, if the learner adequately comprehends the stimulus, the stimulus had to be 

attended to initially (top-down driven). Thus, attentional processes are at least partly reflected by eye 

movements and essential for information processing and further cognitive processing, for instance, 

learning.  

The relation between the allocation of attentional resources and cognitive processing is already 

described by Wickens and Hollands (2000) in their model of human information processing. Their 

framework gives an overview of the processes which are involved in information processing and 

underlines the relevance of sensory and perceptual processes as the basis for cognitive processes 

which are relevant in the current thesis. There are a series of stages during information processing: 

sensory processing, perception, cognition, memory, response selection and execution. Perceptual 

processing is driven by bottom-up controlled sensory input as well as by top-down controlled input 

from long term memory including past experiences (Wickens & Hollands, 2000). Shifts of attention are 

either bottom-up driven (stimulus-driven), for example, if a salient stimulus captures attention 

automatically, or volitional, top-down driven (goal-driven) as knowledge about the task is activated 

(Buschman & Miller, 2007). The activated information is temporarily stored in working memory which 

is involved in all cognitive processing that is conscious and resource limited. In addition, a feedback 

loop is used for the evaluation of the goal achievement and suggests that there is no defined starting 

point for the flow of information. Finally, the model also takes into account that attention has to be 

allocated as resources are limited. These relations have to be considered when developing the 

experimental design of the thesis. 

In order to investigate sensory and perceptual processes of visual stimuli, the visual search task (VST) 

was developed. This standard paradigm of visual search in basic research involves the detection of a 

target object amongst distractors (Eckstein, 2011; Huang & Pashler, 2005; Treisman & Gelade, 1980; 

Wolfe, 1994). Most commonly, set size and target-distractor discriminability are varied and the effect 

of this variation on reaction times is studied. The higher the target-distractor similarity, the longer the 

reaction time. However, the standard paradigm of visual search considers rather attention allocation 
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than eye movements as attention shifts precede gaze shifts (Kristjánsson, 2011). In the following the 

term visual search behavior also implies eye movements. 

Eye movements seem to be strongly coupled with attention as neuronal mechanism of attention and 

eye movements overlap to a great extent. Further, the evidence that attention is shifted before eye 

movements follow, reinforces the coupling between eye movements and attentional processes 

(Kristjánsson, 2011). Attentional processes and thus, also eye movements, are essential for cognitive 

processing already shown by top-down processes which rely on prior knowledge and guide attention 

voluntarily. Some authors summarized that eye movement metrics are related to cognitive processes 

reported in literature about evaluating the usability of technical systems (Ehmke & Wilson, 2007; Poole 

& Ball, 2006). They mainly mention that eye movement metrics, like fixation duration and number of 

fixations, indicate the efficiency of visual search and the importance or saliency of presented elements 

(Goldberg & Kotval, 1999). Other authors argue directly that eye movements “[…] provide an excellent 

on-line indication of the cognitive processes underlying visual search and reading.” (Liversedge & 

Findlay, 2000, p. 6). 

Besides of eye movements even blinks seem to be related to information processing (Wascher, 

Heppner, Möckel, Kobald, & Getzmann, 2015). Blinks describe the unconscious closure of the eye for 

a short moment and lead to a temporary loss of visual information. They are inhibited more often 

during the presentation of relevant information and thereby reflect the amount of information 

processing (Fogarty & Stern, 1989). Thus, it seems to be obvious that eye movement and blink behavior 

does not reflect only sensory but also cognitive processing. Especially top-down processes which are 

driven by experience and expectations should be reflected by eye movement behavior. Experience and 

expectations, however, are also strongly related to mental models.  

Eye movement tracking technology has improved considerably in the last 10 years. Therefore, many 

studies investigated eye movements in relation to attention and learning processes. Eye movements 

are automatic, fast and frequent (Irwin, 2004; Spivey & Dale, 2011). These characteristics make eye 

movements an ideal dependent variable because they imply objectivity, might respond quickly to 

experimental manipulations and provide sufficient data for statistical analysis. Eye movements are not 

randomly distributed, but rather systematic and driven by automatic bottom-up and volitional top-

down  processes (Theeuwes, 2010). Additionally, eye movements seem to differentiate between 

experts and novices as experts usually possess a more accurate mental model than novices. In their 

study, Charness et al. (2001) report different eye movement patterns during chess for expert and 

intermediate players. Intermediate chess players showed a higher fixation frequency and smaller 

amplitudes of saccades, i.e. smaller angular distances of the saccades, than experts. Also Tai et al. 
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(2006) found fewer eye fixations and fewer gaze shifts between the displayed elements for experts 

than for novices during a science assessment amongst students studying different disciplines of 

science. Finally, developing expertise also depends on information processing abilities and working-

memory capacity as described by Jipp (2016) which might be reflected by eye-movements.  

Lai et al. (2013) emphasize in their review that eye movements enable to gain insights into the 

relationship of effects of learning and other cognitive activities. Learning processes are involved in the 

development of mental models and often measured by using methods like questionnaires, think-aloud 

protocols, diaries or interviews that are subjective and require a certain amount of consciousness (Lai 

et al., 2013). However, these methods seem to interfere with cognitive processing (Ericsson & Simon, 

1980; Schooler, Ohlsson, & Brooks, 1993) and additionally do not allow to study stimulus driven 

processes people are not aware of. Thus, studying eye movements as a more objective measurement 

might give new insights into the development of mental representations. 

1.4 Further Evidence: Eye Movements and Mental Representations 

Eye movements could inform about cognitive states of the human in different field of application, for 

example, in decision making, problem solving, skill and knowledge acquisition described in the 

following. 

Decision making:  

Orquin and Mueller Loose (2013) published a review about eye movements in the context of decision 

making. In their review, they described that only stimuli that are fixated or inside the perceptual span 

of the nearest fixation can be considered within the decision-making process. Further, there is a robust 

gaze bias towards the finally chosen object indicated by fixation duration or/and fixation frequency 

(Glaholt & Reingold, 2009; Glaholt, Wu, & Reingold, 2010; Hegarty, Mayer, & Green, 1992; Shimojo, 

Simion, Shimojo, & Scheier, 2003; Tsai, Hou, Lai, Liu, & Yang, 2012) and might be used to predict 

selection, for example, of preferred faces (Glaholt, Wu, & Reingold, 2009). Thus, eye movements are 

often seen as a useful measurement to study decision making, as fixations can reveal the decision 

beforehand (Glaholt et al., 2010).  

Problem solving: 

In the field of problem solving researchers make use of eye tracking as it allows to get insights into the 

development of the mental model that also encloses the solution knowledge of the problem. Studies, 

for instance, already showed that eye movements and attentional processes can discriminate between 

successful and unsuccessful problem solvers. Successful problem solvers, for instance, focus more on 

relevant cues than unsuccessful problem solvers (Grant & Spivey, 2003; Tsai et al., 2012). Further, Ellis 
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(2012) investigated solving anagrams while eye movements were monitored. At the beginning of the 

experiment participants focused on distractors and target objects for the same duration of time. 

However, this pattern changed over time. Viewing times on the target object increased while 

simultaneously decreasing viewing times of the distractors. 

Skill and knowledge acquisition: 

In skill acquisition research studies showed that eye movements can discriminate between novices and 

experts, for instance, experts attend earlier and longer on task-relevant information comparable with 

the findings in the context of problem solving (Charness et al., 2001; Hyönä, 2010; Jarodzka, Scheiter, 

Gerjets, & van Gog, 2010; Tai et al., 2006). A greater visual focus lies on the relevant stimulus as shown 

by Jacob and Hochstein (2009), who report higher fixation frequency and longer fixation duration of 

detected card pairs than undetected card pairs in the Identity Search Task. This task requires to find 

two identical card pairs amongst twelve cards. They assume a three-stage model of the perceptual 

recognition process while searching for card pairs. This model seems to be highly relevant for the 

current thesis with regard to the interaction between learning processes and eye movements. In the 

first stage fixations seem to be randomly allocated whereas in a second stage, an implicit recognition 

of the card pairs may guide eye movements to the target location. In the last stage, the implicit 

knowledge develops into explicit knowledge which leads directly to an attention allocation on the 

target stimulus and accelerates reaction times. 

This model seems to fit well to the three stages of the mental model acquisition reported by 

Schumacher and Czerwinski (2014) which was inspired by memory theories. Schumacher and 

Czerwinski (2014) also assume a three stage process, however, in contrast to Jacob and Hochstein 

(2009), the emphasis of their research lies on the acquisition of expert knowledge in the context of 

physical systems. The first pretheoretic stage is based on the fact that earlier experiences, as 

similarities to prior events, are used to understand the functioning of a physical system. The second 

experiential stage includes the development of some understanding of causal relationships and first 

abstractions that arises from recognition of similar characteristics across instances. In the final expert 

stage abstractions across different system representations take place even if dissimilarities exist 

superficially. In this stage users are able to recognize systemic patterns and retrieve prior knowledge 

about the system. Finally, knowledge can be easily transferred. Thus, experts developed a more 

abstract mental model including less irrelevant information than novices.  

A further theoretical approach is provided by Ackerman (1988), who also suggests three phases of skill 

acquisition and complements the aforementioned models. The author proposes that the three skill-
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acquisition phases are linked with three ability classes: general intelligence, perceptual speed and 

psychomotor abilities which are a basis of individual differences in performance. However, this theory 

ignores individual experiences and internal processes during skill learning (Langan-Fox, Armstrong, 

Balvin, & Anglim, 2002). The first phase of Ackermann’s skill acquisition theory is mainly associated 

with general abilities and demands cognitive abilities such as knowledge retrieval or reasoning. The 

influence of this intellectual ability on performance diminishes with practice. In the next phase, 

perceptual speed becomes more important for performance when rules for performance are adopted 

by the learners and attentional demands are reduced. Finally, in the third phase, processes become 

more autonomous and almost free of attentional demands. Thus, performance is more reliant on 

psychomotor skills (Ackerman, 1990). This last phase might be comparable with the proceduralization 

process, as declarative knowledge is no longer required and processes are transferred into automated 

actions (Anderson, 1982; Pomerol & Brézillon, 2003; Pomerol & Brézillon, 2003). In the following, the 

reviewed literature about cognitive processes, behavioral aspects and eye movements are brought 

together. 

1.5 Overview and Research Objectives 

The three aforementioned theoretical concepts of perceptual recognition (Jacob & Hochstein, 2009), 

mental model acquisition (Schumacher & Czerwinski, 2014) and skill acquisition (Ackerman, 1988) all 

assume a three-staged process and show a comparable structure from an novice to a more 

experienced state. These models might be strongly related to each other, as perceptual recognition 

processes are part of the mental model acquisition which in turn is also part of the skill acquisition. In 

other words, a mental model can only be developed if information is perceived and if the information 

stored in the mental model is finally used to prepare and execute actions. Thus, it seems reasonable 

to suggest that the stages of the models run in parallel and influence each other. If this is the case, 

fixations should reflect the state of learning as well as the state of the mental representation (see 

Figure 1.5). The combination of the three models would lead to the assumption that at the initiation 

of the mental model eye fixations are more randomly distributed because information has to be 

accumulated. With increasing expertise and a more abstract mental model, eye movements should 

become more focused on relevant stimuli information, because knowledge about the learning 

environment is still available. Studies already showed that the acquisition of mental representations is 

reflected by eye movements especially if participants look at “nothing”. The “looking at nothing” 

phenomenon describes people’s focus on spatial locations to retrieve information from memory which 

were present at these locations, even if the information is no longer available there. In other words, 

they are looking at nothing to facilitate memory retrieval (Scholz, Helversen, & Rieskamp, 2015). It 

seems to be obvious that the acquired knowledge should also influence visual search behavior. 



Chapter 1: Introduction  18 

 

 

Bowden (1997) already described that a mental representation is created first and then the stored 

information is used for searching additional relevant information in the environment as well as in 

memory. In the current study, an initial mental representation is developed by instructions informing 

about the task procedure and training trials before the actual experiment. Further, the validity and 

accuracy of the mental model is assessed via questionnaire. However, Gentner (2001) already stated 

that it is not sufficient to ask people directly about their mental model as they are often unable to 

verbalize their knowledge. Thus, additional behavioral data is needed to ensure that a mental 

representation has actually developed. In general, performance should increase over the time course 

of the task, as a more accurate mental representation develops simultaneously. In parallel reaction 

times are expected to speed up as actions become more autonomous with increasing knowledge as 

shown by Jacob and Hochstein (2009).  

 

Figure 1.5: The three-stage models in comparison. Depicting the main statements of the proposed 

model by Jacob and Hochstein (2009) including perceptual processes and eye movements 

and the two learning processes concerning skill acquisition by Ackermann (1988) and 

mental model acquisition by Schumacher and Czerwinski (2014). 

This thesis aims to study eye movements during the learning of a probability concept in an 

experimental setting. As mentioned earlier, probabilities are a common method to manipulate 

uncertainty and the results of the probability learning can be inquired explicitly. The research focus on 

representations of uncertain concepts is relevant for the investigation of mental models even though 

not much attention has been paid to uncertainty so far. In decision making, uncertainty is often 
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investigated in the context of risky decisions (Glöckner & Herbold, 2011; Venkatraman, Payne, & 

Huettel, 2014). However, gains and losses of the used gambling tasks in these studies influence the 

participants’ behavior and are accompanied by other task characteristics. Thus, this paradigm is not 

appropriate for the current thesis. 

 In visual search research, attention was given to saliency rather than uncertainty, even if task 

uncertainty is always present. Participants have to search for a salient stimulus, however, little 

consideration is given to the spatial uncertainty of the stimulus in the search paradigm, i.e. the location 

of the stimulus appearance is uncertain. Furthermore, it is still unclear how task uncertainty affects 

the mental model acquisition of, for example, technical systems. In this thesis, behavioral data and 

reported probabilities retrieved from memory are expected to provide insights into mental 

representations. Eye movement patterns are supposed to change in parallel to the learning process 

and the mental model acquisition reflecting cognitive processing. During the learning process, 

feedback as well as motivational processes are essential (Yi & Davis, 2003). In order to investigate the 

theoretical question empirically, an attempt was made to develop a new paradigm for a consistent 

implementation: Occluded Visual Spatial Search Task (OVSST; see Chapter 2.2 for details). This research 

paradigm is successively expanded and further developed over the course of the thesis. All 

experimental manipulations aim to manipulate the learning process and thus, the development of the 

mental representation. In the following an overview of the research objectives of the series of 

experiments is provided. 

1.5.1 Experiment I: Predicting the Appearance of Geometric Objects 

Humans seem to have an individual mental model from the external reality they are familiar with 

(Johnson-Laird, 1983; Jones, Ross, Lynam, Perez, & Leitch, 2011). Thus, it is necessary that participants 

have to learn new associations of rather unfamiliar and abstract constructs when investigating the 

acquisition of new mental models. The OVSST should meet that criteria. It was expected that 

participants learn the underlying concept of the task, that is explained in the next chapter, and thus, 

were able to improve task performance, viz the number of correct predictions. Thereby, eye 

movements should reflect the ongoing cognitive processes. The associated experiment reported in 

Chapter 3 tries to answer the following question. 

Research question 1: Do eye movements allow insights into the acquisition of mental models under 

uncertainty during the performance of the newly developed OVSST? 

  



Chapter 1: Introduction  20 

 

 

1.5.2 Experiment II: Degradation of Search Targets 

In this experiment we aimed to make visual search more difficult (Kumada, 1999; van Zoest & Donk, 

2004) which is expected to interfere with the acquisition of an accurate mental model. Therefore, 

target objects were degraded (e.g., Sternberg, 1969) viz. background texture was changed with the 

aim to reduce target perceptibility. The effect of the disruptive background on visual search behavior 

and learning processes was tested in Chapter 4 to answer the following question. 

Research question 2: Does the degradation of target stimuli interfere with the development of 

accurate mental models? 

1.5.3 Experiment III: Dynamic Relearning 

The findings from the previous experiments suggested that eye movements indeed inform about the 

state of learning and the degree of uncertainty during the development of mental models. However, 

learners usually not only have to learn a new context, they also have to relearn initial associations they 

are familiar with. Thus, they have to deal with problems like functional fixedness which is a cognitive 

bias preventing people to think outside the usual action strategies (Adamson, 1952; Knoblich, Ohlsson, 

& Raney, 2001). Existing mental models have to be adapted to the new task characteristics and might 

impair the learning process. In order to test this in an experimental setting, the OVSST was designed 

as relearning experiment with a learning and a relearning phase. In Chapter 5 it was analyzed if 

previous findings with regard to the eye movement patterns can be transferred to the relearning 

process by answering the following question. 

Research question 3: Do eye movement patterns indicate different phases during relearning? 

1.5.3 Experiment IV: Separate Tasks 

OVSST as a new paradigm to gain insights into the acquisition of mental models seems to work well 

with regard to the findings in the previous experiments. However, so far it is not clear whether 

participants developed the mental model based on the first part of the OVSST, the goal-driven 

prediction task, as intended, or based on the second part, the stimulus driven reaction task. Therefore, 

Experiment 4 evaluates underlying processes during the performance of OVSST by testing both tasks 

separately. Finally, the following question should be clarified. 

Research question 4: Is the developed mental model mainly based on the prediction task or on the 

reaction task? 

1.5.4 Experiment V: Learning Different Probabilities 

In all of the previous experiments the degree of objective uncertainty remained constant. In 

Experiment V the probability distribution was manipulated to investigate the effect of objective 
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uncertainty on visual search behavior. Participants had to learn a probability concept with a higher and 

a lower probability distribution to answer the following question. 

Research question 5: Do participants show more visual search behavior when dealing with a higher 

degree of uncertainty according to the assumption that information search is used to cope with 

uncertainty?
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2 General Method 

In the following I present all methodological details that apply for every experiment if not specified 

explicitly. That includes a description of the tested sample, the main experimental task, pre- and post-

tests to control for cofounding variables, the design and procedure of the experiment, the used eye 

tracking method and a validation study of two different eye-trackers and finally, the data analysis. In a 

separate Method section of each experiment the method will be specified.  

2.1 Participants 

A total of 92 right-handed participants, between 18 and 35 years old, took part in the five experiments. 

All participants obtained informed consent and were naïve about the study’s purpose before 

participating at the experiment. No participants took part in more than one experiment. Furthermore, 

all participants had normal vision without eyeglasses or contact lenses. At the end of the experiment 

they received either course credit or were paid for their participation (10€/10 C$ per hour).  

2.2 Occluded Visual Spatial Search Task (OVSST) 

The OVSST was developed for the purpose of this work. It is inspired by the tunnel effect that describes 

the visual perception when objects are hidden in a tunnel and finally return with different velocities 

(Burke, 1952; Flombaum & Scholl, 2006)1. The aim of the task was to investigate how people build up 

a new mental representation of a spatial probability concept over time without prior knowledge to 

avoid familiarity biases (Ellis, 2012; Starling, 2012). Further, the task should fulfill two requirements: 

1) there should be enough capacity in the visual working memory to be sure that the presented stimuli 

are perceived, 2) stimuli have to be salient to gain attention. Then, allocated information can be 

processed, stored in long-term memory and retrieved from memory, which are the prerequisites for 

the development of a mental representation. 

In the OVSST the presented stimuli are designed as dark grey (RGB: 128, 128, 128) geometric objects 

with a diameter of 2 cm. A black square (“room” or “tunnel”) is constantly presented on the screen 

and is of the dimensions 20x20 cm positioned in the middle of the screen with three exits and a bottom 

entrance each 2 x 0.5 cm. Participants are instructed to perform two tasks: a prediction and a reaction 

task. First, participants observe one of three distinct dark gray objects (triangle, square or circle) 

moving from the bottom entrance into the quadratic room with the three exits (Fig. 2.1). After the 

object disappeared, participants have to predict as accurately as possible with the arrow keys (left, 

                                                           
1 This concept of tunnel effect has to be distinguished from the tunnel effect which describes limitations in the 
visual field. The latter meaning is less relevant in the context of the current research paradigm. 
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top, right) on the keyboard at which of the exits (left, top, right) these objects will reappear 

(Instruction: “Versuche so gut wie möglich mit den Pfeiltasten (links, oben, rechts) vorherzusagen an 

welchem Ausgang das Objekt erscheint”). Participants were asked to put the index finger on the left 

key, the middle finger on the top key and the ring finger on the right key. Each object was associated 

with a higher probability of 74 % to one of the exits and with a lower probability of 11% to each of the 

other two exits  (cf. Miller, 1998). In 4% of the trials the object reappeared at the entrance. In order to 

perform the prediction task as accurate as possible, participants have to learn the probability concept. 

Finally, the object reappears at one of the exits. The response was designed as a go/no-go task, thus 

in 50 percent of the trials the object reappeared with a changed color intensity (light gray, RGB: 223, 

223, 223). In these trials participants had to press the appropriate arrow key as quickly as possible, for 

example, the left arrow key if the object reappeared at the left exit. If there was no color change, 

participants were instructed just to observe the situation (Instruction: “Sobald das Objekt aus einem 

der Ausgänge wieder austritt, solltest du schnellstmöglich die entsprechende Pfeiltaste drücken, aber 

nur wenn sich die Farbe des Objekts geändert hat. Ansonsten wartest du ab bis der nächste Durchgang 

beginnt.”). This task was employed to force participants to process stimulus information and not only 

the physical emergence of the stimuli. In general, participants had to search visually for information at 

the three exits in order to receive performance feedback. This feedback is integrated in the mental 

representation of the participants so that they learn the probability structure of the OVSST and are 

able to improve the performance.  

As mentioned above the OVSST contains another special characteristic: In 4% of the cases, objects 

reappear at the bottom entrance as a rare occurrence. The aim of this rare occurrence was to analyze 

how people deal with a special unexpected and uncertain situation. Auditory feedback indicates 

erroneous task performance in the prediction task, i.e. if the arrow key is pressed too late (“zu schnell”) 

or too early (“zu langsam”), and in the reaction task if participants respond incorrectly (“falsch 

reagiert”). At the end of the task, participants are asked to complete a paper-pencil questionnaire 

concerning the participants’ conscious representation of the probability concept – the Concept 

Awareness Questionnaire (see Appendix A).  

 The described procedure of the task was the basic version of the OVSST used in experiment I (see Fig. 

2.1 for a schematic description). In further experiments stimuli, probabilities and procedures of the 

OVSST are manipulated in accordance to the research questions described in the introduction. The 

motivation for the manipulations is described in detail in the respective chapters. Task uncertainty is 

caused by the instructions, the probability structure of the OVSST as well as the rare occurrence of the 

stimuli at the bottom entrance. It includes the objective and manipulable uncertainty created by the 

task as well as the subjective uncertainty perceived by the participants. Over the course of time 
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performing the OVSST, task uncertainty should be more and more dominated by objective uncertainty 

as the familiarity with the task characteristics increases.  

Figure 2.1: Schematic description of one trial of the OVSST: First, participants fixate a fixation cross in 

the middle of the room that appears for 750 ms. Then, one of the three objects (triangle, 

square, and circle) appears at the bottom entrance of the room for 1 000 ms and moves 

into the room. After 1 000 ms the object has disappeared into the room and participants 

are instructed to predict at which exit the object will reappear with the left, right and upper 

arrow key of the keyboard within 2 000 ms. Finally, the object reappears at one of the exits. 

The object moves out of the room to the exit position for 2 000 ms and pauses there 1 000 

ms. If the object reappears with a changed color intensity, participants have to press the 

appropriate arrow key again. In total, a trial lasts 7 750 ms. 

2.3 Pre- and post-tests 

In our study, changes in attention capacity as well as motivation were additionally measured to check 

for the homogeneity of the sample and a potential interaction between these variables and the results 

of the experiments. Participants performed a computer version of the D2 Test of attention by 

Brickenkamp (1994) before and after the OVSST to control for systematic changes in attention capacity 

(e.g., due to fatigue) as a confounding variable. This test measures accuracy and speed during the 

discrimination of similar visual stimuli. The test consists of 14 lines with 47 symbols each. These 

symbols consist of the letters d or p with 0 or up to 4 dashes. Participants were instructed to mark all 

ds with two dashes and to ignore all other symbols. Each line shows 21 times the letter d with two 

dashes amongst 26 distractor symbols and is displayed for 20 seconds. (Brickenkamp & Zillmer, 1998). 
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Different parameters can be analyzed such as quantitative performance (quantity/speed), qualitative 

performance (errors/accuracy) and total error count. Bates and Lemay (2004) conclude that the D2 is 

an internally consistent and valid measurement of attention.  

The Questionnaire on Current Motivation (QCM) developed by Rheinberg et al. (2001) was used to 

control for motivational aspects on behavioral performance. This questionnaire measures four 

motivational factors with a total of 18 items: anxiety, probability of success, interest and challenge. 

Rheinberg et al. (2001) report an internal consistency between Cronbach’s alpha α = .66 and α = .90 

for their scale which is deemed to be sufficient. In our studies, the items were reformulated into past 

tense because participants finished the questionnaire after the experiment. Thus, the items refer to a 

task which lies in the past. Participants answered the items on a seven-point scale. Overall results 

showed that participants perceived the OVSST as challenging, but they had stronger hope for success 

than fear to failure, presumably due to the laboratory setting. 

2.4 Design and Procedure 

Participants were tested in a single session that took approximately one and a half hour. All used test 

methods and instructions were in German language except in Experiment IV. After they were informed 

about the procedure of the study and signed the declaration of consent, they performed the D2 test 

of attention. Then, the eye tracking experiment with the OVSST started. Participants were seated 

approx. 70 cm in front of a computer screen. Their head was positioned on a chinrest to minimize head 

movements. Furthermore, lighting conditions were kept constant. The stimuli were presented on a 

white background of a 27-inch monitor (Acer HN274H B) with a screen resolution of 1920x1080 

(Fig.2.2). Each participant completed a practice block (18 trials) of the OVSST with three geometric 

objects that differed from the experimental ones. Participants were instructed and became familiar 

with the procedure of the task during the performance of the practice block. After this first practice 

block, a control session followed. In the control session participants were instructed to improve task 

performance, but they were not informed about any probability structure. This control session 

functioned as a control condition called 100% condition: each object, the same as in the previous 

sessions, was associated with one of the exits to 100%. Thus, every object reappeared only at its 

predefined exit. Participants performed 2 blocks with 21 trials each of this 100% condition. Finally, they 

performed 324 trials of the actual OVSST with the 74-11-11 probability structure divided into 4 blocks 

(81 trials each block). After each block, a fixed pause of 2 minutes occurred. Before every block the 

eye-tracker was calibrated with a 9-point calibration and the actual gaze deviation was measured. 

Participants with a deviation more than 2° were excluded from the experiment. After every block, 

participants received feedback about the percentage of correct answers depicted on the display to 
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encourage an improvement of their performance. At the end of the study, participants completed the 

Concept Awareness Questionnaire of the OVSST, the QCM and a second time the D2 test of attention. 

A power analysis was conducted using the software package G*Power 3 to determine an appropriate 

sample size for the following experiments (Faul, Erdfelder, Lang, & Buchner, 2007). The analysis for a 

repeated measures ANOVA with four measurements and within factors, showed that a design with 

total sample size of 20 participants has a Power of 73% with a critical F=2.766. This seems to be 

sufficient on the one hand and also practicable with regard to financial resources and human resources 

on the other hand. Thus, it was aimed to test around 20 participants to have a sufficient statistical 

power. 

 

 

 

 

 

Figure 2.2: Experimental setup: Participants were seated in front of a screen and an eye tracker. The 

keyboard was used as input device. The chinrest was used to avoid head movements. 

2.5 Eye Tracking 

At the beginning of the experimental series, two different eye trackers were available: the SMI Red 

500 (SensoMotoric Instruments, Teltow, Germany) and the EyeLink 1000 (SR Research, Ontario, 

Canada). The EyeLink 1000 allows for an average gaze position accuracy of 0.25°-0.5° and a sampling 

rate of 1000 Hz binocularly when the head is supported whereas the SMI Red provides a gaze position 

accuracy of 0.4° and a sampling rate of 500 Hz. Remote eye tracker like the SMI Red 500 are especially 

useful for the current studies because of different reasons. First, remote eye trackers use a contact-

free measuring technique enabling a natural handling without restrictions. Second, head movements 

are allowed to a certain extent. Third, the time resolution is high – a sampling rate of 500 Hz measures 

the gaze position every 2 ms. However, the high time resolution causes big data sets which might make 

data handling more difficult, especially checking for plausibility and erroneous traces. The advantages 

chinrest 

eye tracker 
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of the EyeLink 1000 are the even higher time resolution as well as the higher possible accuracy. In 

order to find out which of the eye trackers is most suitable for the current studies, a validation study 

was set up to evaluate the precision (spatial variation between individual samples) and accuracy 

(spatial variation from the actual gaze point to the one measured by the eye tracker) of the recordings 

with both eye trackers. The same objects as in the OVSST were tested in this study to check for their 

usefulness at the same time. The experiment and the results are briefly described in Appendix B. 

Results of the validation study showed that data recorded by the SMI Red eye tracker was more precise 

than data of the EyeLink 1000. Furthermore, accuracy of the data did not differ between the recordings 

of both eye trackers. In addition, the calibration of the SMI Red eye tracker was less time-consuming 

and the remote version without head support was more practicable for the current experiments. Thus, 

we decided to use the SMI Red 500 remote eye tracker to track the eye movement binocularly in all of 

our studies. The system tracks the gaze position by using the corneal reflection technique: The cameras 

of the eye tracker detect the cornea reflection of the infra-red light and the gaze position is then 

calculated from the position of the corneal reflection relative to the pupil center (Duchowski, 2007, 54 

ff.). Problems usually occur when detecting pupils of participants with dark eyes. Further, gaze position 

accuracy is lower for participants with contact lenses or glasses (cf. Nyström, Andersson, Holmqvist, & 

van de Weijer, 2013). For this reason, we tested only participants with normal vision who did not wear 

contact lenses or glasses. Moreover, participants were informed not to apply make-up to their eyes to 

prevent miscalculations of the eye tracking system. 

2.7 Data Analysis 

2.7.1 Data Preparation 

Raw data from eye tracking recordings of the OVSST were aggregated per trial (e.g., number of 

fixations, fixation duration, etc.) for every participant. Before analyzing data, we cleaned the data set: 

All trials with missing reactions and/or missing judgments and/or trials with an insufficient amount of 

eye movement data points (less than 65%) were excluded from data analysis. Trials with missing 

reactions and/or judgments were not analyzed separately, because the error rate was too low and 

thus the resulting data set too small for appropriate analyses. Further, fixations within 100 pixels 

around the middle of the screen were excluded from data analysis to prevent inaccuracy as the 

allocation of the fixations to the areas of interest (AOI) could be difficult (Fig. 2.3).  
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2.7.2 Independent and Dependent Variables 

The independent within-subject factors were block (1-4) and judgment (correct, incorrect). Block was 

employed to investigate the development of the dependent variables (see below) over time. Judgment 

was introduced to compare visual search behavior, reaction times as well as judgment times for correct 

and incorrect judgments.  

The standard eye movement variables, already mentioned in Chapter 1.3, were used as dependent 

variables: fixation frequency, fixation duration, and number of gaze shifts. Fixations were detected 

with the saccade-detection algorithm of SR Research (Tatler, 2007) including a minimum saccade 

duration of 4 ms, a minimum fixation duration of 50 ms and a minimum velocity of 30°s-1. Fixation 

frequency was defined as the accumulation of fixations whereas fixation duration was defined as the 

mean time period of all fixations. The display was divided into four equal AOIs (Fig. 2.3). Gaze shifts 

between these AOIs were accumulated and stood for the variable number of gaze shifts.  

An additional dependent eye movement variable was the number of blinks. Blinks were detected with 

the Event Detector for High Speed Event Detection provided by the iView software (SensoMotoric 

Instruments, Teltow, Germany). Blinks were recognized as an important indicator for cognitive 

processing. In general, blinks were usually inhibited during the performance of a task, for example 

during the decision process (Boehm-Davis, Gray, & Schoelles, 2016). However, the number of blinks 

depended also on the task characteristics. If the task was highly cognitively demanding, the number of 

blinks was expected to be lower. Also, the number of blinks depended on the state of the task 

performer, for example, if a person was fatigue (higher blink rate expected) or paid attention (lower 

blink rate expected; Stern, Boyer, & Schroeder, 1994; Wascher et al., 2015).  

Further dependent behavioral variables were: judgment time, reaction time, task performance, 

subjective probability concept and judgment type. Judgment time was described as the time interval 

from the beginning of the prediction until a decision was indicated by the participants viz. one of the 

arrow keys is pressed. In contrast, reaction time was defined as the time interval from the 

reappearance of the target object at one of the exits until the appropriate key press. Task performance 

was reflected by the number of correct predictions. The subjective probability concept of the 

participants was assessed by the Concept Awareness Questionnaire and described the object-exit 

associations participants were able to retrieve.  
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Figure 2.3:  The four AOIs of the display: The red line marks the separation of the AOIs. Only eye 

movement data in the light gray area are analyzed in order to have equal sized AOIs. 

2.7.3 Recurrence Quantification Analysis 

Besides the aforementioned analyses, it was tested if recurrence quantification analyses might be an 

appropriate tool to gain deeper insights into the temporal development of eye movement behavior. 

The recurrence quantification analysis (RQA) was defined as “a method of nonlinear data analysis 

which quantifies the number and duration of recurrences of a dynamical system presented by its state 

space trajectory“ (Marwan, 2017; Marwan, Romano, Thiel, & Kurths, 2007). Recurrence plots 

visualized at which point in time participants look at the same location as before by marking it with a 

black dot. Each fixation was recurrent with itself forming a diagonal line. The recurrence plot was 

mirrored around this diagonal line (Fig. 2.4). There were four important measures. First, recurrence 

(RR) was the percentage of refixations and thus showed how often participants refixated a location. 

Second, determinism (DET) described the refixations which form diagonal lines and thus indicated if a 

specific sequence of fixations was repeated. Third, laminarity (LAM) considered the percentage of 

refixations which form vertical lines. This measurement indicated if a distinct area was repeatedly 

refixated. Fourth, center of recurrent mass (CORM) was a measurement for the temporal distribution 

of recurrences. Low values indicated that refixations were made in short time intervals and high values 

indicated that refixations were made after relatively long time intervals (Anderson, Bischof, Laidlaw, 

Risko, & Kingstone, 2013). For example, the comparison of two recurrence plots might suggest that 

participants were more focused on distinct locations at the end of the experiment than in a trial at the 

beginning of the experiment as vertical lines were longer for the former trial. However, in total 

recurrences within a trial were quite rare in the current experiments. This might be due to the 

phenomenon that people tended to avoid to look at the same location which they attended shortly 

before called “inhibition of return” (IOR, Klein, 2000; Posner, 1980). Further, the short sequence of the 
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trial did not allow much visual search behavior. The target object was the only relevant information 

participants were searching for and disappears during the prediction task. Thus, the visual search was 

mainly limited to the end of the trial when the target object reappears. 

In a further step, we tested if cross recurrence plots are more conclusive than recurrence plots for the 

current experiments. They depicted the interrelations between two state space trajectories which 

described at which point in time the same location was attended while comparing two scanpaths. For 

example, a picture was scanned for 10s at an earlier and at a later point in time. This eye movement 

activity resulted in two scanpaths for the same field of observation which can be compared. The 

associated cross recurrence analysis (CRQA) was used to analyze the interrelations mathematically and 

was based on the same measurements as the recurrence quantification analysis reported before 

(Anderson et al., 2013). The idea was to directly compare two scanpaths with each other instead of 

comparing two separated plots as before. However, in the current experiment the length of the trials 

was different due to different prediction and reaction times and thus had to be standardized to make 

them comparable. Another problem was the large amount of trials that were recorded which made 

the cross-recurrence analysis rather complex and difficult to manage. Further, it was only reasonable 

to make a within analysis and not between subjects as the presentation of the target objects was 

randomized in every block. Finally, it was difficult to interpret the results in an appropriate manner. In 

conclusion, the RQA and CRQA did not seem to be an appropriate tool to analyze data of the current 

experiments as these analyses did not fit well to the experimental design and did not allow to draw 

conclusions about behavioral data.  

 

 

 

 

 

 

 

Figure 2.4: Example of a recurrence plot. For more details see text above.  
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2.7.4 Statistical Methods 

Generally, a two-way repeated-measures ANOVA with the within-subject factors block (1-4) and 

judgment (correct, incorrect) was calculated with SPSS Statistics 23.0 (IBM, Armonk, USA) showing the 

main effects as well as the interaction and are extended depending on the research question. Means 

and standard deviations for correctly and/or incorrectly predicted trials of marginal or partly significant 

effects across blocks were listed in the Appendix.  

A correlation analysis controlled motivation and attention effects on performance as it was assumed 

that increasing task performance was mainly dependent on the mental model development. In order 

to gain deeper insights into the effects of individual performance and motivation on the mental model 

development and visual search behavior, participants were split in two groups by hierarchical cluster-

analysis. Planned t-tests were used to compare these groups and to detect significant group 

differences. The probability level for statistical significance was always set to α=.05. Before using 

planned t-tests, variables were tested for normal distribution by using the Shapiro Wilk test (p>.05) 

because this test is appropriate for small sample sizes. Whenever necessary, violations of sphericity 

were corrected by using the Greenhouse-Geisser Epsilon or using the Huynh-Feldt ε if Greenhouse-

Geisser Epsilon is larger than .750. Unless otherwise specified, error bars in the graphics showed 

confidence intervals according to Morey (2008) that were calculated with a SPSS Syntax provided by 

O'Brien and Cousineau (2014). This was an appropriate method to calculate confidence intervals for 

within-subject designs. Further, Morey’s approach was a corrected version of the earlier methods by 

Cousineau (2005) and Loftus and Masson (1994).
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3 Experiment I – Predicting the Appearance of Geometric Objects 

3.1 Introduction 

The aim of Experiment I was to test if eye movement patterns inform about the acquisition of mental 

models under uncertainty while performing the OVSST. In the following, relevant literature on decision 

making, visual attention, eye movements, learning, feedback mechanism, mental models and 

uncertainty was highlighted specifically in the scope of Experiment I.   

Decision making: The process of decision making can be separated into 4 stages as illustrated by Lee 

et al. (2017, p. 209): (1) the acquisition and integration of information, (2) interpretation and 

assessment of information, (3) planning and choice of one action, (4) monitoring and correction of the 

chosen action. According to the authors attentional resources as well as metacognition are necessary 

in all of these stages, especially within the decision-making cycle. Attention provides the starting point 

for every decision and can also influence the decision, for example, by the attention span and the level 

of attention (Lee et al., 2017, 209 ff.). 

Eye movement and attention: Eye movements might provide insights into the visual attention 

allocation as both processes, eye movements and attention, share the same neural resources with 

attention as mentioned earlier (Kristjánsson, 2011). The operationalization of attention by eye 

movement parameters might also enlighten the influence of visual attention on decision making under 

uncertainty. For instance, Brunyé and Gardony (2017) investigated eye movements during different 

levels of perceptual uncertainty by using a perceptual decision making task. Results showed that eye 

movements reflect decision uncertainty as well as attention demands in a robust manner. For example, 

fixations were fewer and longer during conditions with uncertainty. Just and Carpenter (1976) found 

that longer fixation durations indicated difficulties in encoding information or a higher engagement 

during the performance of simple cognitive tasks. Also applied studies in HCI already showed that eye 

movement parameters are associated with attention processes as mentioned earlier (Ehmke & Wilson, 

2007; Poole & Ball, 2006). For example, Goldberg and Kotval (1999) reported higher numbers of overall 

fixations and longer scanpath length while interacting with poor interfaces indicating less efficient 

search. The authors concluded that eye movements are an important indicator for the quality of the 

interface and thus can be useful for improving interfaces. In general, there seems to be an interaction 

between attention processes and the technical system that can be influenced.  

Learning and feedback: Eye movements might not only inform about attention processes during 

decision making but also about learning processes which occur if the decision making is repeated. 

Learning can thereby include information about the location (Theeuwes et al., 2009) which is highly 
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relevant for the performance of the OVSST. In general, learning results in faster and improved task 

performance due to more automatic and more experienced actions. Feedback mechanisms during 

learning are comparable with the aforementioned fourth stage of monitoring and correction within 

the decision making cycle mentioned by Lee et al. (2017). The comparison of the initial objective with 

the current situation is essential for an accurate learning process and thus influences behavior. 

Learning is also dependent on the frequency of use. As Thorndike states in the law of exercise and the 

law of effect (Thorndike, 1927), stimulus-response associations are reinforced if they are often used 

and produce satisfying effects. Accordingly, these associations are weakened if they are not used and 

associated with dissatisfying results (Olson & Hergenhahn, 2013).  

Mental model development under uncertainty: The information which is processed during learning is 

finally stored in long-term memory and provides the basis for mental models. For example, if users 

interact with a technical system for a long period, they might have access to a detailed representation 

of the system and thus can deal with different situations. In turn, if users interact with the system for 

the first time, they probably have only little knowledge about the cause-effect relationship. At first, 

they have to develop a mental representation or mental model of the system which serves as the basis 

for the interaction with the system. The established mental model of the complex system is only a 

reduced representation of the reality. Altogether, the complexity of the system and the reduced 

representation lead to a certain degree of uncertainty users have to deal with. Uncertainty might also 

interfere with the mental model development. On the one hand, it depends on the user’s personality 

how they deal with the uncertainty. Uncertainty can be used as a motivating or as an inhibiting factor 

(Smithson, 2009). Every person perceives and reacts to uncertainty in a different way. On the other 

hand, earlier mentioned coping strategies, including, for example, information search and suppression, 

have an influence on handling uncertainty (Lipshitz & Strauss, 1997).  

However, optimal search strategies may only be a prerequisite to enhance the accuracy of mental 

models. At least two additional requirements have to be fulfilled for the development of mental 

models. First, users have to pay attention to the relevant stimuli to encode visual information 

(Mulligan, 1998) as already indicated by attention processes in the decision making cycle (Lee et al., 

2017) at the beginning of the chapter, viz. eye movements are focused on the relevant stimulus 

information. Second, sufficient capacity has to be provided in the visual working memory to store the 

relevant information (e.g., Brady, Konkle, & Alvarez, 2011).  
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3.1.1 Research Question and Hypotheses 

In Experiment I, we addressed the acquisition of mental representations under uncertainty2. For this 

attempt, the OVSST was employed and eye movements assessed. As mentioned in the introduction, 

uncertainty was understood in the sense of task uncertainty and defined as a lack of knowledge about 

the cause-effect relationship (Thompson, 1967) which encompasses both, the objective uncertainty 

evoked by the task characteristics and the perceived subjective uncertainty by the participants. The 

objective uncertainty is initiated by the probability structure of the OVSST. The probabilities were 

estimated by the participants at the end of the experiment via questionnaire.  

Participants have to learn object-exit associations and outcome feedback to develop an accurate 

mental representation of the OVSST. It was assumed that this mental representation is then used to 

perform the prediction task of the OVSST as accurately as possible and to anticipate the correct exit 

for the reaction task. The acquisition process might be three-staged as suggested by Schumacher and 

Czerwinski (2014). As already mentioned earlier they divided the acquisition of the mental 

representation into three stages: 1) a reference to earlier experience, 2) a first understanding of the 

causal relationship and 3) an abstract and accurate representation (Schumacher & Czerwinski, 2014). 

Because none of the participants was familiar with the OVSST, one would assume that the pre-

theoretic stage, in reference to Schumacher and Czerwinski (2014), does not focus on the retrieval of 

similar examples in memory, but rather on the accumulation of new information in this task. Hence, 

all participants start with the same degree of uncertainty and develop a completely new mental 

representation of the task. The acquisition of the mental representations already starts with informing 

the participants about the task via instructions and performing the training trials.  

The acquisition of mental models as a process of information processing and storage is also combined 

with learning mechanisms. As already mentioned in the introduction, Rieskamp and Otto (2006) found 

stronger learning effects at the beginning of the learning process than at the end. They reported 

several alternative reinforcement learning theories and also, for example, the imagination model. This 

model describes the ability of people to imagine different options and their outcomes comparable with 

their mental representations. It predicts that learning processes are accelerated at the beginning of 

the task due to the reinforcement of also non-preferred strategies. This model might also be applicable 

to the OVSST as task characteristics are comparable. The OVSST contains different options and 

outcomes which are stored in mental representations of the task.   

                                                           
2 Parts of Experiment I are already published (Renker & Rinkenauer, 2016). 



Chapter 3: Experiment I – Predicting the Appearance of Geometric Objects 35 

 

 

In Experiment I, we set out to investigate if eye movements allow insights into the acquisition of mental 

models under uncertainty during the performance of OVSST. It was expected that task performance 

increases over blocks viz. the amount of accurate predictions increases as indicator of a learning 

process/ learning effect. This increase is expected to be highest at the beginning of the experiment 

when information is mainly accumulated (cf. Rieskamp & Otto, 2006). Furthermore, judgment times 

as well as reaction times are expected to decrease over blocks due to increasing practice and increasing 

task performance (cf. Jacob & Hochstein, 2009). In parallel, it is hypothesized that eye movement 

activity decreases over blocks reflecting the state of learning and the degree of uncertainty (cf. Lipshitz 

& Strauss, 1997). Reactions times as well as eye movements are dependent on the correctness of the 

judgment. Thus, it is expected that reaction times are faster during correctly than incorrectly predicted 

trials and eye movement patterns are less extensive (lower values) during correctly than incorrectly 

predicted trials. Finally, it was expected that the number of blinks is lower during incorrectly predicted 

trials due to a stronger need for attentional resources which are required to perceive the target object.  

3.2 Method 

3.2.1 Participants 

In total, 20 participants (11 female) participated in the experiment at the Leibniz Research Centre for 

Working Environments and Human Factors (IfADo). As mentioned in the introduction, participants had 

to finish the Concept Awareness Questionnaire at the end of the experiment to gain insights into the 

participants’ mental representations of the probability structure. On the basis of this test, two of the 

participants were excluded from data analysis, because they were not able to develop the expected 

representations. The mean age of the remaining 18 participants was 25 years (SD=3 years). 15 of the 

remaining participants were students from the Technical University Dortmund. All of them were right-

handed and had normal vision without glasses or contact lenses.  

3.2.2 Procedure 

In Experiment I, we applied the procedure as described in the General Method section (Chapter 2) to 

compare objective data (eye movement data and behavioral data) with subjective data (data retrieval, 

i.e. subjective probability concept). Motivation and attention resources were used as controlled 

variables measured by the D2 test of attention (Brickenkamp, 1994) and the QCM (Rheinberg et al., 

2001) to check for confounding effects on task performance. The D2 test was run before and after the 

experiment to determine the influence of the OVSST on the test results and the QCM was completed 

at the end of the experiment. Participants performed a practice block of the OVSST and two blocks of 

the 100% condition with geometric objects that differed from the experimental ones. In this condition, 

there is no uncertainty provided by the probabilities due to the constant allocation of the target objects 
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to the exits. After the training and the 100% condition, the original OVSST with the 74-11-11 probability 

concept was completed. Finally, participants filled in the Concept Awareness Questionnaire to gain 

insights into their subjective probability concept. 

3.2.3 Data Analysis 

In the 100% condition, participants predicted 60.8% of the trials (26 out of 42 trials) correctly. This 

condition was used to control for outliers in the sample concerning the comprehension of the task 

after the control sessions. The box plot in figure 3.1 showed no outliers regarding the task performance 

of the current sample in the 100% condition. Nevertheless, there seemed to be a high interindividual 

variability indicated by the high range of the dependent variable. 

 

 

 

 

Figure 3.1: Box plot for the number of correct predictions in the 100% condition of Experiment I. 

Data of the experimental condition were adjusted as follows: Heat maps were used to check for drifts 

in eye movement data set and thus, to ensure that data recording was accurate. 1.3% of the trials were 

excluded from data analysis due to missing responses to the judgment task. Another 0.3% of the trials 

were excluded, because less than 65% of the eye movement data in the trial were not available due to 

tracking errors. As mentioned in the introduction a two-way repeated measures ANOVA with the 

within-subject factors block (1-4) and judgment (correct, incorrect) was performed to analyze the 

development over time to evaluate the learning process. Dependent variables were eye movement 

parameters: fixation frequency, fixation duration, number of gaze shifts and number of blinks. Further 

dependent variables were judgment time, reaction time and task performance. Task performance was 

defined as the number of correct predictions. Judgment time was defined as the time interval from 

the beginning of the prediction - as soon as the object disappeared - until the key press indicating the 

prediction. Reaction time was defined as the time interval from the reappearance of the target object 

at one of the exit until the appropriate key press. 

For the analysis of the participants’ subjective probability concept, data of the Concept Awareness 

Questionnaire were compared with the objective probability concept (74-11-11) indicating the 

accuracy of the developed mental representation. Response behavior, i.e. the prediction of the exits, 
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was also cumulated for each object-exit association and compared with the subjective probability 

concept to determine the relation between behavioral and mental processes. Further, the influence 

of the rare occurrence (trials with object appearance at the entrance) on response behavior was tested 

by comparing response behavior before and after the rare occurrence. The impact of the confounding 

variables on task performance, the number of correct predictions, was measured by correlation 

analysis and repeated measures ANOVA.  

Additional analyses were run due to the novelty of the OVSST in Experiment I. Eye movement data 

within the trials were analyzed as well. Two time intervals were determined: First, the judgment-

interval between the appearance of the object at the bottom entrance and the key press whereby 

participants predict the exit and second, the reaction-interval after predicting the exit until the object 

stays in this final position at the exit (Fig. 3.2). Paired t-tests were computed to identify differences 

between eye movement patterns in both intervals, also including the dwell time: time participants 

spend in the areas of interest (AOI). AOIs were divided into AOItarget where the target object finally 

reappears, AOIpredict which exit-zone participants have predicted and unassigned AOIs, called AOIother, 

for the within trial analysis. In addition, the last fixation within the first interval was compared with the 

participant’s prediction. 

 

 

 

 

 

 

Figure 3.2: Trial analysis separated into two intervals: (1) From object appearance at the bottom 

entrance until key press and (2) from key press until final position at the exit. 

Blinks were separately analyzed within the trial because an effect directly after the prediction and 

reaction task would be suggested based on the earlier discussed literature (see General Method for 

details). The blink rate for the time course of the trial (blinks for each 100ms) was investigated to have 

a more detailed analysis.  

Key press 
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Hierarchical cluster analysis of the task performance was used to split participants into two groups 

(high and low performers). Group differences with regard to eye movement patterns were assessed 

by using independent t-tests. Before using t-tests, variables were tested for normal distribution by 

using the Shapiro Wilk test. This test was used due to the small sample size (n=18).  

Averaged predictions for correct and incorrect exits were fitted to two learning models, a power model 

and an exponential model. These models are used to estimate the rate of learning and to predict the 

maximal learning performance by the asymptote of the learning curve. The power model and the 

exponential model were chosen for the analysis because these two models are mainly discussed in 

literature (e.g., Heathcote, Brown, & Mewhort, 2000; Newell & Rosenbloom, 2013; Speelman & 

Kirsner, 2008). In literature, the exponential function dominates the power function for large sample 

sizes. However, Newell and Rosenbloom (2013) found that the power function describes learning data 

consistently better. The main differences of the two models is that the exponential function has a fixed 

based raising to a variable exponent, whereas power functions have a variable base raising to a fixed 

exponent. We tested both models to check which one fits best for the current data set. 

3.3 Results 

In the following, only significant (p<.05) results or trends (p<.10) were reported, except if the results 

were relevant for the aforementioned research questions.  

Task performance: 

In total 65.7% of all trials were correctly predicted. Descriptive statistics showed that the number of 

correct predictions increased across blocks, indicating the learning process (for details see Appendix 

C, Tab. 9.1). However, this increase was significant only from Block 1 to Block 2, t(16)=4.16, p=.001. 

Thus, Block 1 seems to be the most important one for the learning process and therefore a further 

analysis was run by splitting the block into 4 equal parts. Within the first 20 trials participants already 

predicted the likely exits in 63.7% of the cases. In the last part of Block 1 participants chose in 92.5% 

of the cases the likely exits.  

Judgment time: 

Results showed that judgment time decreased significantly across blocks, F(3,51)=11.61, p<.001, 

ηp
2=0.285, and was  significantly shorter during correctly than incorrectly predicted trials, F(1,17)=6.77, 

p<.019, ηp
2=0.406, (Fig. 3.4A). The variable judgment time was analyzed in detail to gain deeper insights 

into the cause-effect relationship of the within-subject factor judgment. Therefore, judgment times 

were split into correct and incorrect judgments for likely and unlikely exits (see Fig. 3.3). Correct 

judgments for unlikely exits could not be analyzed because participants mainly predicted the likely exit 



Chapter 3: Experiment I – Predicting the Appearance of Geometric Objects 39 

 

 

and if they chose the unlikely exits, the probability is low that the judgment is correct. Thus, there were 

not enough data to integrate this combination in the analysis. For all other combinations, results 

showed that participants predicted the likely exits faster than the unlikely exits no matter if the 

prediction was correct or incorrect (likely exit: correct prediction M=.387, SD=.142; incorrect 

prediction M=.386, SD=.143; unlikely exits: incorrect prediction M=.455, SD=.195). These effects were 

significant for likely correct predictions, t(19)=2.57, p=.03, and showed a trend for likely incorrect 

predictions, t(10)=1.94, p=.08, when comparing it with judgment times for unlikely incorrect 

predictions.  

 

 

 

 

 

 

Figure 3.3: Judgment times in Experiment I: Correct and incorrect judgments for likely or unlikely exits. 

The bar for correct judgments and unlikely exits was not depicted as this combination was 

rare (n=3) and thus, not valid for a comparison. Error bars depict the standard deviation.  

  

* 
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Reaction time: 

We observed a trend of block, F(3,51)=2.54, p=.067, ηp
2=0.130, indicating that reaction times decreased 

across blocks, which was underlined by descriptive statistics (see Appendix C, Tab. 9.2 for details). In 

addition, we found a main effect of judgment, F(1,17)=80.45, p<.001, ηp
2=0.826, indicating shorter 

reaction times during correctly than incorrectly predicted trials (Fig. 3.4B).  

Fixation frequency:  

The main effect of block was significant, F(3,51)=5.32, p=.012, ηp
2=0.238, which suggested a decrease 

of fixation frequency across blocks. We also found a main effect of judgment, F(1,17)=23.69, p<.001, 

ηp
2=0.582, indicating a lower fixation frequency for correctly predicted than for incorrectly predicted 

trials (Fig. 3.4C).  

Fixation duration: 

Analysis of block revealed a significant main effect, F(3,51)=4.00, p=.045, ηp
2=0.190, suggesting a 

significant decrease of fixation duration across blocks (Fig. 3.4D). However, we observed no significant 

main effect of judgment, F(1,17)=2.12, p=.164, ηp
2=0.111, in contrast to fixation frequency and the 

number of gaze shifts which both showed similar patterns of results.  

Number of gaze shifts:  

The main effect of block was significant, F(3,51)=11.16, p<.001, ηp
2=0.396, indicating that the number 

of gaze shifts decreased across blocks. There was also a main effect of judgment, F(1,17)=37.86, 

p<.001, ηp
2=0.690, indicating that the number of gaze shifts was smaller for correctly predicted than 

for incorrectly predicted trials (Fig. 3.4E). 

Number of blinks: 

A main effect of block was found, F(3,48)=4.820, p=.018, ηp
2=0.232, suggesting a significant increase of 

the number of blinks across blocks in contrast to all other eye movement parameters (Fig. 3.4F). In 

addition to the main effect, results showed a trend for a hybrid interaction between the factors block 

and judgment of the dependent variable number of blinks, F(3,48)=2.784, p=.058, ηp
2=0.148, (Fig. 3.3F; 

for details see Appendix C, Tab. 9.1). The hybrid interaction was indicated by a higher number of blinks 

for correctly predicted than for incorrectly predicted trials in Block 1 and Block 2, however, this pattern 

changed and was reserved in Block 3 and Block 4.  
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Figure 3.4: Times course of the variables in Experiment I: Judgment time (A), reaction time (B), fixation 

frequency (C), fixation duration (D), number of gaze shifts (E)and number of blinks (F) across 

blocks for correctly and incorrectly predicted trials as function of block and judgment.  
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Analysis of the subjective probability concept and response behavior: 

In general, the Concept Awareness Questionnaire showed that estimated probabilities of the 

participant’s subjective probability concept were close to the given probabilities as shown in table 3.1. 

Participants estimated the probability relation of the object to the exits on average with 15.5% for the 

unlikely exits and 67% for the more likely exit. In comparison with the given probability concept of 74% 

for the likely exit and 11% for each of the two unlikely exits, the results of descriptive statistics show 

that participants underestimated higher probabilities and overestimated lower probabilities. However, 

planned t-test showed only a trend for an underestimation (p<.06) and only three of the unlikely 

object-exit associations were significantly overestimated, t(16)=2.82, p=.006 (circle-left), t(16)=2.21, 

p=.021 (square-top), t(16)=2.78, p=.007 (square-right). All other unlikely object-exit associations were 

not significantly overestimated, however, results suggested a trend for an overestimation (p<.06). 

In contrast to the estimation of the probabilities, behavioral data rather showed a reversed pattern. 

Table 3.1 shows that likely exits were more often predicted by the participants than the object actually 

reappeared at this position. However, interindividual variability of the predictions were large, ranging 

from 72.14% to 98.66% for the likely exits (M=90.66; SD=7.41) and from 1.61% to 27.86% for the 

unlikely exits (M=9.34; SD=7.41).  

Figure 3.5 shows a more detailed visualization of the predictions for every of the three objects per exit 

and block. This figure provides an overview of the development in the course of time. Participants 

obviously learned the associations of the objects to the exits already within the first block and 

intensified their behavior over time according to the probability concept. Thus, the likely exit was 

predicted more often whereas the unlikely exit was less often predicted with regard to the objective 

probability.  

In order to check if the rare occurrence (the object reappears at the bottom entrance) had an influence 

on the participants’ usage of the developed response strategy and thus, on the learning process 

additional analyses were run. The response during the rare occurrence was compared with the next 

trial after the rare occurrence presenting the same object. The results show that in 82% of the cases 

the response strategies did not change after the rare occurrence and that the response behavior still 

matched with the optimal response strategy participants used most of the time. 
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Table 3.1: Memory representation of the probability concept and behavioral probabilities in 
Experiment I 

Object & Exit Subjective Probability Concept Performed Predictions 

left 16 % (6.4)    7 % (5.9) 

top 71 % (11.6)  89 % (7.8)  

right 13 % (6.0)    4 % (3.4) 

left 16 % (10.9)    5 % (6.0) 

top 14 % (6.0)    8 % (3.5) 

right 70 % (14.9) 87 % (8.9) 

left 66 % (17.1) 87 % (7.8) 

top 18 % (13.0)    9 % (4.5) 

right 16 % (8.7)    4 % (4.8) 

Note. The object-exit associations that inhere a higher probability are shown in bold. Values in brackets show 

the standard deviation. 

 

Analysis of the control variables: 

As already mentioned, the D2 test was used to assess attention before and after the experiment. 

Participants selected significantly more targets of the D2 test after the experiment than before, 

t(16)=6.44, p<.001. In the pre-test they detected 71% (SD=10.31%) of the cases on average and in the 

post-test 79% (SD=11.43%) of the cases on average, presumably due to a learning effect. The error rate 

did not change from the pre-test to the post-test, t(16)=0.22, p=.829 . Thus, attention did not seem to 

decrease from the beginning to the end of the OVSST. 

The analysis of interest in the task showed a significant negative correlation (r=-.469, p=.025) between 

the subscale interest of the QCM and the number of correct predictions, by using the Spearman’s rank 

correlation coefficient. Thus, to be interested in the task seemed to be negatively related to task 

performance.  
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Figure 3.5: Response frequencies in Experiment I: Response frequencies of the three objects (circle, triangle, square) per exit (left, top, right) and block (1-4)

Circle Triangel Square 
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Within trial analysis:  

Table 3.2 shows the main results of the within trial analysis. There were significant differences between 

visual search activity in the first judgment-interval and the second reaction-interval. Participants’ gaze 

was mainly located in the AOIbottom during the judgment-interval until the key press, presumably due 

to the initial presence of the stimuli in this AOI. In the rare case that participants moved their eyes into 

another AOI within the judgment-interval, they preferred the AOItarget instead of the AOIother, 

t(17)=2.552, p=.021. Appropriately, last fixations in the judgment-interval were mainly in the AOIbottom, 

namely 78.5%. However, 17.8% of last fixations in the judgment-interval were in the AOIpredict. This AOI 

is the predicted target AOI and thus indicated with the appropriate key press at the end of the 

judgment-interval in the context of the prediction task. Thus, if participants showed such a visual 

search behavior already in the judgment interval, then they most likely anticipated or prepared their 

later prediction. In this case, eye movements indicated the final choice of the target exit before actually 

predicting the exit. Generally, participants showed extensive visual search behavior only in the 

reaction-interval with significant longer dwell time spent in AOIleft, AOItop and AOIright. Accordingly, the 

gaze shifted more often between the AOIs, presumably due to the fact that participants had to detect 

the target object to perform the reaction task.  

Table 3.2: Trial analysis in Experiment I: Statistics between interval 1 and interval 2  

 judgment-interval reaction-interval paired t-tests 

Dwell time AOIbottom M=1.913, SD=.182 M=.251, SD=.143 t(17)=36.49, p<.000 

Dwell time AOIleft M=.040, SD=.047 M=.803, SD=.245 t(17)=13.76, p<.000 

Dwell time AOItop M=.071, SD=.063 M=1.311, SD=.223 t(17)=23.60, p<.000 

Dwell time AOIright M=.038, SD=.042 M=.819, SD=.187 t(17)=17.73, p<.000 

Number of Gaze Shifts M=.499, SD=.384 M=2.723, SD=1.342 t(17)=7.10, p<.000 

Fixation Frequency AOItarget M=.330, SD=.270 M=3.441, SD=1.133 t(17)=12.99, p<.000 

Fixation Frequency AOIpredict M=.354, SD=.358 M=3.298, SD=1.171 t(17)=12.05, p<.000 

Fixation Frequency AOIother M=.220, SD=.137 M=1.353, SD=.927 t(17)=5.41, p<.000 
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Analysis of the blinks: 

The number of blinks were analyzed in detail by means of frequency measures and planned t-tests of 

events or actions and peak values visualized in figure 3.6. This figure shows a higher blink rate per 

second after the three main events: (1) initial appearance of the object, (2) prediction of the exit and 

(3) detection of a possible change in the color intensity. The number of blinks of all participants was 

accumulated and split into intervals of 100ms length. When the object shape appeared the first time 

the blink rate increased from 90 blinks/s (interval: 700-800ms) to 430 blinks/s (interval: 1100-1200ms). 

The increase was highest and most rapid after performing the prediction task increasing from 120 

blinks/s (interval: 2600-2700ms) to 640 blinks/s (interval: 2900-3000ms) without a long time delay. 

There was more variation when the object reappeared and participants had to react. While the object 

moved out of the room the blink rate first decreased down to 30 blinks/s (interval: 5000-5100ms) and 

then increased with a time delay slowly to a peak of 400 blinks/s (interval: 5900-6000ms). The time 

delay presumably occurred due to the fact that the object became gradually visible. It was impossible 

to perceive the object immediately and to react and thus, there was a larger scattering.  

Cluster analysis: 

A hierarchical cluster analysis was performed to group participants into performance clusters and thus 

to investigate the effect of individual performances on eye movement pattern as described in the 

introduction. Clusters were formed on the basis of the number of correct predictions, i.e. low 

performers (n=6) and high performers (n=12). Low performers had a significantly higher fixation 

frequency, t(16)=3.39, p=.004, and showed significantly more gaze shifts, t(16)=3.06, p=.025, than high 

performers (see Tab. 3.3). In contrast, fixation duration did not differentiate between the clusters, 

t(16)=0.35, p=.732.  

Table 3.3. Descriptive statistics of the Performance Cluster in Experiment I 

 Cluster Mean Standard Deviation 

Number of Gaze Shifts 
Low performance 6.53 2.17 

High performance 3.75 0.71 

Fixation Frequency 
Low performance 14.89 5.03 

High performance 9.27 2.12 
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Figure 3.6: Blinks in Experiment I: The number of blinks per second accumulated over all participants during the time course of the trial for correctly and I 

incorrectly predicted trials. One bar displays all blinks within 100ms. Dark gray bars highlight the values for the t-test (event or action and peak 

values). The first vertical grey line marks the beginning of the object appearance (1), the second line marks the beginning of the prediction task (2) 

and the third line marks the beginning of the reaction task (3) from left to right. 
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Learning models: 

Learning models were fitted to get a future prognosis with regard to the response strategy (e.g. TTB) 

of the participants. Data of the fitted learning models showed that the power model revealed to be a 

better fit in total (R2=.92) than the exponential model (R2=.89), presumably due to the fact that several 

individuals were analyzed (Speelman & Kirsner, 2008, p. 18). The asymptote of the power function 

approaches 99.26% for the likely exits and 0.45% for the unlikely exits. Thus, the model fit suggests 

that the likely exit, the high probability, is obviously represented as nearly a 100% probability. 

3.4 Discussion 

The purpose of Experiment I was to explore eye movement patterns during the acquisition of mental 

representations under uncertainty. Participants improved their performance by learning the 

underlying probability concept of the OVSST. This learning process was reflected by a decrease of 

judgment times, reaction times and eye movement parameters (fixation frequency, fixation duration, 

number of gaze shifts). The development across blocks was strongest at the beginning of the 

experiment, presumably due to the fact that the main learning processes occurred in this time period 

indicating a strong coupling between learning, behavioral data and eye movement data. Additionally, 

the correct predictions were associated with faster judgment times and reaction times as well as fewer 

fixations and gaze shifts. Finally, participants were able to develop a quite accurate mental 

representation of the probability concept and seemed to use both strategies described in literature to 

cope with the given uncertain situation, i.e. information search as well as suppression of ambiguous 

information (Lipshitz & Strauss, 1997).  

Decision making: 

It was expected that participants improve their decision-making behavior by learning the object-exit 

associations of the OVSST. Indeed, means suggested that task performance increased across all blocks, 

however, the increase was only significant from Block 1 to block 2. Thus, learning effects seemed to be 

strongest from Block 1 to Block 2 corresponding to the findings of Rieskamp and Otto (2006) who found 

that learning processes concerning the strategy selection for a decision were accelerated at the 

beginning of the task sequence. A detailed analysis of Block 1 showed that the main tendencies of the 

probability structure were already learned in the first 20 trials of the experiment. Thus, participants 

internalized the probability structure quickly, presumably due to the fact that the chosen object-exit 

associations were easy to memorize.  

The analysis of the response behavior showed that object-exit associations with higher probabilities 

were preferred and object-exit associations with lower probabilities were neglected. Further, the 
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reappearance of the target object at the bottom entrance, the rare occurrence (4%), did not influence 

the response behavior. Thus, participants ignored ambiguous information and maintained their initial 

response strategy consistent with the coping strategy mentioned by Lipshitz and Strauss (1997).  

The decision strategy used by the participants corresponded with the optimal response strategy Take 

The Best (TTB) to maximize the number of correct predictions (Dougherty et al., 2008), also known as 

probability maximizing. As described by TTB, participants chose the recognized alternative initially and 

with increasing expertise they chose the alternative with the best cue value to perform the task (see 

Introduction for more details). The usage of TTB was strongly corroborated by the fitting results of the 

power model showing the tendency that participants would hardly never predict exits with low 

probabilities and almost always exits with high probabilities in further blocks. Thus, participants 

seemed to ignore lower probabilities and to redefine the given uncertainty as certainty in their mental 

model.  

The response behavior was consistent with those of Edwards (1961) studying probability learning.  The 

author also found that participants used a probability maximizing strategy, i.e. they predicted more 

often specific events than they actual appeared. These findings of probability maximizing were 

contradictory to the robust phenomenon of probability matching which is well described in literature 

(e.g. Fantino & Esfandiari, 2002). This phenomenon states that humans usually try to match their 

choice to the given probabilities which eventually results into a less optimal strategy. Yu and Huang 

(2014) studied visual search behavior under conditions of uncertainty during matching and maximizing 

strategies in decision making. Participants had to identify random-dot stimulus patches whereby in 

one condition an equal probability and in a second condition a biased probability was tested. They 

found similar to the current findings an overmatching of the biased probabilities and a quick 

internalization of the probability concept. Further, they assumed that humans choose matching 

strategies to adapt to a changing world. Thus, the absence of an overall probability matching 

phenomenon in the current study might be due to the laboratory setting and the steadiness of the 

experimental setting.  

Effects on cognitive processing: 

The analysis of judgment times and reactions times showed a parallel development across blocks to 

the task performance. Participants performed the prediction task and reactions task considerably 

slower at the beginning of the task than at the end, probably due to the learning effects. Additionally, 

the decrease of judgment times over time might indicate some kind of proceduralization in decision 

making (Anderson, 1982; Pomerol & Brézillon, 2003; Yi & Davis, 2003), meaning that rules of the 
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decision strategy embedded in the mental model were automatically retrieved from memory without 

any further cognitive processing. Such a rule could be, for example, to predict the right exit whenever 

the triangle appears.  

Assessing the within-subject factor judgment clearly showed that reaction time was faster for correctly 

predicted trials, presumably due to a beneficiary preparation for the reaction task. Also, prediction 

time was faster during correct predictions, especially when the optimal decision strategy (TTB) was 

used, i.e. when the likely exit was chosen. The reason for this might be some kind of strategy switch 

cost (Lemaire & Lecacheur, 2010). As mentioned before, participants might have automated the 

learned response patterns for the optimal strategy, also called proceduralization, so that a deviation 

from this strategy required the inhibition of automatic processes leading to longer judgment times.  

Visual search behavior: 

Besides learning effects across blocks, it was expected that eye movement parameters reflect these 

processes. Indeed, eye movement patterns showed a function of block as well as task performance, 

judgment time and reaction time. They informed about the state of learning and the degree of task 

uncertainty by a decrease of visual search activity, i.e. fixation frequency, fixation duration and the 

number of gaze shifts decreased across blocks. The number of blinks showed a reversed pattern and 

increased across blocks indicating less attention effort across blocks (e.g. Wascher et al., 2015). In 

general, visual search for relevant information seemed to be more extensive at the beginning of the 

trial than at the end, presumably due to a high initial subjective uncertainty and the novelty of the 

information. Rayner (2009) stated that new information is only processed during fixations. Thus, 

information search seemed to help to cope with the initial subjective uncertainty evoked by the OVSST.  

The analysis of judgment clearly showed that fixation frequency as well as the number of gaze shifts 

were lower for correctly predicted trials, presumably due to a beneficiary preparation for the reaction 

task. Conversely, this means that incorrect predictions might require more visual search activity to 

perceive the object at the missed exit to perform the reaction task. It was expected that the number 

of blinks is lower during incorrectly than correctly predicted trials as more attentional resources were 

required to perceive the target object and thus to perform the reaction task. This was true at the 

beginning of the experiment (see Fig. 3.4F) and in accordance with previous findings that a lower blink 

rate is related to higher visual attention and information processing (e.g., Wascher et al., 2015). 

However, reasons for a reversed pattern at the end of the experiment remain unclear. 

The further analysis of blinks showed that blinks were suppressed before the execution of the 

prediction and reaction task suggesting the acquisition of higher attentional resources to perform the 
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task. After the completion of the tasks, when cognitive demands are lower, number of blinks increased. 

Experiments with different visual choice response tasks already showed that blinks were suppressed 

during cognitive processing and in expectation of new information (Fogarty & Stern, 1989; Wascher et 

al., 2015). These results were also true for the OVSST of the current experiment. Thus, the blink rate 

seemed to provide a relevant indicator for attentional effort. 

Mental model development: 

Behavioral data as well as eye movement data clearly showed a learning process as expected. In 

addition, data of the Concept Awareness Questionnaire indicated that participants were able to 

develop a mental model that was close to the given probabilities of the OVSST. High probabilities were 

usually underestimated and low probabilities were overestimated presumably due to a tendency to 

the mean (Beuer-Krüssel & Krumpal, 2009). The reported results of the subjective probability concept 

in the current experiment showed similar tendencies. However, the objective response behavior 

showed rather a reversed pattern as participants rather predicted mainly higher probabilities and 

neglected lower probabilities. Participants might be able to reflect the overmatching of their response 

behavior and to adapt their conscious understanding of the probability concept according to the 

received feedback.  

In addition, the high probability of 74% given by the OVSST might facilitate the accurate acquisition of 

the mental model as it points clearly into one direction. Probabilities and their associated meanings 

were already discussed by Jungermann et al. (2010, p. 161). They presented possible associations 

between numeric terms and the appropriate verbal terms within 25%-steps ranging from 0% 

associated with “never” to 100% associated with “always”. They assumed that 75% is associated with 

the word “often” and this might additionally work as an anchor for the subjective probability 

estimation. In general, it should be taken into account that a large interindividual variability in 

estimating the subjective probabilities occurred, also found in the earlier mentioned study by Yu and 

Huang (2014). 

Taken together the findings of eye movement data and behavioral data over time suggest that the 

mental model of the OVSST was mainly developed in the first block. Thus, after the first block high 

performers might already be in the expert stage and were able to recognize patterns and to retrieve 

former knowledge for the development of an optimal decision strategy under uncertainty according 

to the ideas of mental model acquisition suggested by Schumacher and Czerwinski (2014). 
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Group-specific performance: 

Not all participants internalized the optimal decision strategy in the same manner and performed 

equally well. A cluster analysis was used to group participants into high and low performers. 

Interestingly, eye movement patterns in the current experiment allowed to differentiate between high 

and low performers whereby high performers showed less visual search activity compared to low 

performers. This was in accordance with the investigation of expert and novice chess player by 

Charness et al. (2001). In their study, high performers made less fixations and fixated more on relevant 

information than low performers. An explanation for these findings might be that more fixations 

indicate inefficient visual search behavior, also stated by Goldberg and Kotval (1999). These 

participants might have difficulties to cope with the objective uncertainty using coping strategies like 

information search and suppression of ambiguous information (Lipshitz & Strauss, 1997) in an 

appropriate manner.  

Task analysis: 

Due to the novel character of the OVSST, we investigated mental processes within trials and found that 

visual search behavior was mainly shown after the prediction task of the OVSST, thus reinforcing the 

need of the reaction task. It seemed that attention was paid to the relevant features in the respective 

phases of the OVSST (cf. Kaakinen, Hyönä, & Keenan, 2002). Within trial analysis also showed that 

participants preferred AOItarget in case they switched their gaze to another AOI before they made their 

prediction, presumably due to an early anticipation of the later response. If the last fixation was in 

another AOI than AOIbottom, then the AOIpredict was preferred according to the decision making literature 

assuming that the chosen alternative is lastly fixated (Orquin & Mueller Loose, 2013). 

Influence of confounding effects: 

Attention as a possible confounding variable did not seem to affect learning results. However, interest 

in the OVSST could not be excluded as a possible confounding variable, but did not affect the 

experimental conditions in a systematic way and thus, might be interpreted as noise. Higher interest 

in the task led to less correctly predicted trials, possibly due to a more complex strategy and the 

phenomenon of probability matching (Fantino & Esfandiari, 2002). Participants who were more 

interested might have tried to develop a better strategy adapted to the probability concept considering 

also the lower probabilities whereas less interested participants always chose the likely exit. However, 

the latter strategy was more effective. Laude et al. (2012) reported similar results comparing choices 

between a more likely (75 %) and less likely (50 %) option for food of hungry motivated pigeons and 

less hungry and thus, less motivated pigeons. The highly motivated pigeons chose the suboptimal 

option more often presumably due to a greater impulsivity whereas less motivated pigeons preferred 
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the optimal 75 % reinforcement more often. In a study about human gambling behavior Molet et al. 

(2012) also emphasized a tendency for suboptimal strategies for participants with higher gambling 

motivation, viz. more self-reported gambling activities.  

Further research: 

The developed mental model in Experiment I was unexpectedly accurate. It might be that an increase 

in task difficulty influences visual search behavior and further the learning process. In order to increase 

task difficulty and to impair visual search, the stimulus quality could be manipulated by including a 

distracting environment. The issue will be addressed in Experiment II.  

3.5 Conclusion 

The OVSST served as a valid method to study the development of mental models in an uncertain 

setting. Thereby, it was possible to investigate location uncertainty, discriminability of target objects, 

distraction and initial knowledge. The results of the study suggested that eye movement patterns 

provided information about the state of learning and the degree of the task uncertainty during the 

mental model acquisition. Furthermore, both coping strategies reported by Lipshitz and Strauss (1997), 

information search and ignorance of irrelevant information, seemed to matter for dealing with task 

uncertainty of the OVSST in this experiment. Finally, the estimation of the probability concept by the 

participants was better than expected, presumably due to a low level of task difficulty.  
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4 Experiment II – Degradation of Search Targets 

4.1 Introduction 

As became visible from Experiment I, participants were able to build up a mental representation of the 

OVSST already in the first block, and showed a good task performance in general. The learning process 

was reflected by the visual search behavior which became more focused across blocks with increasing 

experience. One important component for the development of mental models is the perception of the 

situation and its following processing steps. Therefore, the aim of Experiment II was to assess the 

influence of perceptual processes on the development of mental models by increasing visual search 

difficulty. 

In the following, relevant literature about visual search is summarized to clarify possible effects of 

visual search difficulty on eye movements and further on cognitive processing as an extension of the 

aforementioned literature. In the typical paradigm of visual search, as mentioned earlier, a target 

stimulus is displayed amongst distractor stimuli whereby the target stimulus is not always present. 

Participants were asked to respond as quickly and as accurately as possible when they perceive either 

the presence or absence of the target stimulus (Müller & Krummenacher, 2006). In these experiments, 

the analysis of reaction times revealed two different visual search modes, namely serial and parallel 

visual search. These search modes are integrated in the feature integration theory (Treisman & Gelade, 

1980) and consists of two stages. In the first, pre-attentive stage the focus is on parallel visual 

processing of basic features such as color, orientation and size (feature mapping) and occurs 

automatically. In the second stage of focused attention, all observed features are combined in order 

to ensure holistic perception requiring attention. If the target object differs from the distractors in a 

fundamental feature, the object is automatically and quickly detected without conscious awareness 

(pop-out effect) whereas the detection of targets with several different features requires a serial scan 

of the distractors (Treisman & Gelade, 1980).  

The different visual search modes affect search efficiency, as expressed in search time and accuracy. 

Search efficiency decreases with increasing target-distractor similarity and decreasing distractor 

similarity (Wang, Cavanagh, & Green, 1994) and thus, should be reflected by eye movements. Search 

efficiency is influenced by task difficulty which can be manipulated by the discriminability of target and 

distractor stimulus. Target-distractor similarity affects performance directly (e.g., response times) and 

indirectly (learning behavior; Ahissar & Hochstein, 1997).  

Another well-investigated phenomenon in visual search is the inhibition of return (IOR) effect which 

might be an additional factor influencing visual in the current context. IOR refers to a bias not to 
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redirect attention to objects or locations shortly after they have been attended to (Klein, 2000; Posner, 

1980). Thus, if a target object amongst similar looking distractors was ignored at one position, it takes 

much longer to find this target object now as in visual search novel locations were attended first before 

returning to familiar locations. In sum, the presence of distractors influences visual search in a negative 

way. However, not only distractors affect visual search, also the degradation of the target stimuli viz. 

if the shape of the stimuli is blurred. Sternberg (1967) investigated information processing by 

degrading stimuli. Results showed that visual stimulus degradation as an additive factor, leads to 

longer encoding time and thus longer reaction times.  

Further studies, for example in the context of IOR research, suggest a strong overlap between the 

oculomotor system, attentional processes and visual working memory (Hoffman & Subramaniam, 

1995; Theeuwes et al., 2009). Eye movements and attention processes are tightly connected: Eye 

movements are typically directed to the location where attention is allocated and attention is allocated 

at locations that are possible saccade targets. However, there is an inability to shift overt attention to 

one location and simultaneously move the eyes to another location (Hoffman & Subramaniam, 1995). 

In a nutshell, attention is the basic prerequisite for cognitive processing and thus, affects memory 

performance (Marois & Ivanoff, 2005). Therefore, it is suggested that cognitive processes involved in 

learning the object-exit association of the OVSST are also influenced by attentional processes and thus 

by visual search.  

In summary, the reported findings in literature emphasize the strong coupling between visual search 

and cognitive processing. Thus, visual search influenced by the degradation of the stimuli is expected 

to affect the mental model development and lead to the following research questions. 

4.1.1 Research Question and Hypotheses 

The main research question of this experiment is whether the degradation of target stimuli interfere 

with the development of accurate mental models. As discussed, distractors might hinder visual search 

and thus, influence cognitive processing in the way that the accurate mental model acquisition is 

hampered due to the strong coupling of visual search and cognitive processing. To test this assumption, 

the target stimuli of the OVSST were degraded by inserting a distracting white-gray pattern in the 

background. This procedure is comparable with the stimulus degradation in the first experiment by 

Maisto and Baumeister (1975) who used a checkerboard pattern to degrade the stimulus.  

First, it is expected that visual search is increased due to the distracting effect of the unstructured 

background. Thus, it is assumed that eye movement parameters show higher values in comparison to 

the first experiment. In literature, it was already reported that participants move their eyes more often 
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with increasing target-distractor similarity (Eckstein, 1998). Second, it is expected that reaction times 

are longer than in the Experiment I (Maisto & Baumeister, 1975; Sternberg, 1969), especially during 

trials with incorrect predictions because here the pop-out effect is attenuated due to the distracting 

background. Third, it is suggested that more resources are required for the visual search due to 

degradation of the stimuli. Therefore, it is assumed that the development of the mental model takes 

longer so that the mental representation of the OVSST is less accurate at the end of Experiment II than 

Experiment I, viz. the estimation of the probability concept made by the participants should differ more 

from the presented probability concept than in Experiment I.  

4.2 Method 

4.2.1 Participants 

A total of 23 participants (11 female) were tested individually at IfADo. Two of the participants did not 

affirm to see a relation of the target objects to the exits and were excluded from data analysis. Another 

four persons were excluded from data analysis due to a low data quality of the eye movement 

recordings. Finally, 17 participants (mean age=24 years, SD=3 years) entered the analysis. They were 

all students except for one. All of them fulfilled the conditions of participation in the experiment: 

normal vision and right-handedness.  

4.2.2 Procedure 

The procedure of the Experiment was similar to Experiment I (see General Method for a detailed 

description). The experiment was divided into a practice block (18 trials), the 100% condition (42 trials) 

and the experimental session (324 trials), whereby a 74-11-11 probability structure of the OVSST was 

used. The rare occurrence of 4% (reappearance of the target object at the bottom entrance) was 

maintained in order to compare results between the experiments. Participants were instructed to 

predict as accurately as possible and to react as quickly as possible. There was only one modification 

in comparison to Experiment I: The background of the screen was a gray-white pattern (Fig. 4.1) 

instead of white. The design of the unstructured background should impair visual search. Thus, a 

pattern with gray colored objects was chosen to increase target-distractor similarity. On the one hand, 

the shape of the objects for the unstructured background should not equal the target objects to 

prevent biases. On the other hand, the shape of the distractor objects should be similar (although not 

identical) to the target objects to decrease search efficiency (Eckstein, 1998; Wang et al., 1994). For 

that reason, an asymmetry was created by breaking the pattern apart and rearranging it to decrease 

distractor similarity. The distractors and target overlapped hereby causing an additional stimulus 

degradation (Sternberg, 1967). 
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Figure 4.1: Unstructured background of the screen: The gray triangle starts to move into the room.  

4.2.3 Data Analysis 

In the 100% condition of Experiment II, participants predicted 70.9% of the trials (28 out of 42 trials) 

correctly. In analogy to Experiment I, the 100% condition was used to check for outliers of the sample 

after the practice block. There were no outliers for the task performance of the current sample in the 

100% condition. Nevertheless, the box plot in figure 4.2 indicated a high interindividual variability.  

 

 

 

 

Figure 4.2: Box plot for the number of correct predictions in the 100% training condition of        

Experiment II.  

In the experimental condition, 1.7% of the trials with missing predictions and another 0.9% of the trials 

with insufficient eye movement data points were excluded from data analysis. A two-way repeated 

measures ANOVA with the within-subject factors block (1-4) and judgment (correct, incorrect) and the 

between-subject variable background (white, white-gray patterned) was employed. The latter factor 

refers to the comparison between Experiment I and II. As in Experiment I, dependent variables were 

fixation frequency, fixation duration, the number of gaze shifts in terms of eye movement parameters 

and judgment time and reaction time in terms of behavioral data. Task performance, viz. the number 

of correct predictions was also used as dependent variable. 
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In order to compare data of Experiment II with data of Experiment I, mixed ANOVAs were performed. 

Variables were checked for normal distribution by using the Shapiro Wilk test before running planned 

t-tests. Shapiro Wilk test was chosen due to the small sample size (n=17). In the case of missing normal 

distribution, the non-parametric Mann-Whitney U test requiring no normal distribution, was used to 

check for the effects. Correlation analysis and repeated measures ANOVA were used to study the 

impact of the confounding variables on task performance. 

4.3 Results 

In the following, only significant (p<.05) results or trends (p<.10) were reported, except if the results 

were relevant for the aforementioned research questions.  

Task performance: 

Overall, 68.5% of the trials in Experiment II were correctly predicted. The number of correct predictions 

increased across blocks as shown by descriptive statistics (see Appendix C, Tab. 9.3 for details). 

However, only the increase from Block 1 to Block 2, t(16)=2.89, p=.011, and from Block 2 to Block 3, 

t(16)=3.24, p=.005, was significant. 

Judgment time: 

The main effect of block was significant, F(3,48)=3.05, p=.038, ηp
2 =0.160, indicating a significant 

decrease of judgment time across blocks. In addition, we found a main effect of judgment, 

F(1,16)=8.35, p=.011, ηp
2=0.343, in the way that judgment times were longer in incorrectly predicted 

trials (Fig. 4.4A).  

Analogous to Experiment I, a more detailed analysis was run for the variable judgment time to check 

for the reliability of the results. Judgment time was split into correct and incorrect judgments for likely 

and unlikely exits (see Fig. 4.3). Results for predicting the unlikely exit correctly were not depicted as 

the likelihood for this combination was low i.e. only one participant made correct predictions by 

predicting the unlikely exit which could be integrated in the analysis. Results of descriptive statistics 

showed that participants predicted the likely exit faster than the unlikely (likely exit: correct prediction 

M=.442, SD=.150; incorrect prediction M=.443, SD=.150; unlikely exits: incorrect prediction M=.488, 

SD=.183). However, this difference showed only a trend for the comparison of incorrect likely 

predictions and incorrect unlikely predictions, t(6)=2.17, p=.073, and not significant for the comparison 

of correct likely predictions and incorrect unlikely predictions, t(6)=1.48, p=.190.  

Reaction time: 

Analysis of block revealed a significant main effect, (F(3,48)=3.07, p=.037, ηp
2=0.161, indicating a 

significant decrease of reaction times across blocks. We also found a main effect of judgment, 
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F(1,16)=8.35, p=.011, ηp
2=0.343, indicating shorter reaction times during correctly than incorrectly 

predicted trials (Fig. 4.4B).  

Fixation frequency:  

There was neither a main effect of block, F(3,48)=0.58, p=.568, ηp
2 =0.035, nor a main effect of 

judgment, F(1,16)=0.25, p=.623, ηp
2=0.015, indicating no significant change (Fig. 4.4C).  

Fixation duration: 

We found no main effect of block, F(3,48)=1.441, p=.242, ηp
2=0.083, and no main effect of  judgment, 

F(1,16)=0.32, p=.579, ηp
2=0.020, indicating no significant change (Fig. 4.4D). 

Number of gaze shifts:  

The main effect of block was significant, F(3,48)=4.06, p=.025, ηp
2=0.202, indicating that the number of 

gaze shifts decreased across blocks. We found also a main effect of judgment, F(1,16)=30.88, p<.001, 

ηp
2=0.659, indicating less gaze shifts for correctly predicted than for incorrectly predicted trials (Fig. 

4.4E). 

 

 

 

 

 

 

 

 

Figure 4.3: Judgment times in Experiment II: Correct and incorrected judgments for likely or unlikely 

exits. The bar for correct judgments and unlikely exits was not depicted as this combination 

was rare (n=1) and thus, was not valid for a comparison. Error bars show the standard 

deviation. 
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Figure 4.4: Results of the variables in Experiment II: Judgment time (A), reaction time (B), fixation 

frequency (C), fixation duration (D) and the number of gaze shifts (E) for correctly predicted 

and incorrectly predicted trials as a function of block and judgment. 
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Comparison of eye movement patterns and behavioral data between Experiment I and II: 

Results of the between-subject factor background showed that participants made significantly more 

fixations per trial in Experiment II with a white-gray patterned background than in Experiment I with a 

white background, t(33)=2.56, p=.015. All other eye movement parameters did not differ significantly 

between Experiment I and II and there were also no interactions between the factor background and 

block or judgment (p>.22). There was also no significant difference between reaction times and 

judgment times in Experiment I and Experiment II, neither for correctly nor for incorrectly predicted 

trials (p>.22). In addition, performance clusters (high performance: n=9, low performance: n=8) 

resulting from hierarchical cluster analysis showed, in contrast to Experiment I, no significant group 

differences with regard to fixation frequency (p>.65), fixation duration (p>.23) and the number of gaze 

shifts (p>.19).  

Analysis of the subjective probability concept and response behavior: 

Behavioral data in Experiment II showed that participants mainly predicted the likely exit and were still 

able to make a realistic estimation of the objects’ actual emergence at the exits indicated by the 

Concept Awareness Questionnaire (Tab. 4.2). The separation of the first experimental block into 4 

equal parts showed that the associations between objects and exits were again already learned in the 

first 20 trials: in 69.4% of the cases the likely exit of the target object was predicted. Overall, 

interindividual variability ranged from 79.05% to 98.74% predicting the likely exit (M=91.85, SD=6.087) 

and 1.26% to 20.95% predicting the unlikely exits (M=8.15, SD=6.087).  

Comparison of probability estimation and response behavior between Experiment I and Experiment II:  

In order to compare the probability estimation and the response behavior in Experiment I and 

Experiment II, task performance and the amount of likely exit predictions were analyzed in a between-

subject design. Further, the prediction error viz. the deviation of the estimated value from the target 

value (74% for higher probabilities and 11% for lower probabilities) for every target object was 

considered. As data in Experiment II was not normally distributed, the appropriate non-parametric 

Mann-Whitney tests were also calculated (Shapiro-Wilk: p<.008). However, all results were not 

significant (p>.20) 
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Table 4.1: Memory representation of the probability concept and behavioral probabilities in 
Experiment II 

Object & Exit Subjective Probability Concept Performed Predictions 

left 12 % (6.7) 4 % (3.4)  

top 78 % (9.6) 92 % (6.3) 

right 10 % (5.2) 4 % (3.9) 

left 12 % (6.6) 4 % (4.3) 

top 11 % (7.4) 4 % (3.6) 

right 77 % (10.0) 92 % (7.2) 

left 79 % (9.8) 92 % (6.8) 

top 11 % (5.5) 4 % (4.0) 

right 10 % (6.5) 4 % (3.9) 

Note. The object-exit associations that inhere a higher probability are shown in bold. Values in brackets show 

the standard deviation. 

Analysis of Control Variables: 

In analogy to Experiment I performance of the D2 test was better after the experiment than before, 

t(16)=10.10, p<.001. The participants detected on average 57% (SD=10.65%) of the targets before 

running the experiment and 68% (SD=12.43%) after the experiment. Furthermore, the error rate did 

not change from the pre-test to the post-test, t(16)=0.58, p=.568. Thus, attention did not seem to 

decrease from the beginning to the end of the OVSST. 

Interest as a subscale of the QCM (M=3.26, SD=1.16) and its impact on task performance, defined as 

the number of correct predictions, was also tested. Spearman’s rank correlation coefficient showed a 

trend for the correlation (r=.357, p=.080) between interest and task performance which might be a 

hint that interest in the task affects task performance positively.   

4.4 Discussion 

The aim of Experiment II was to investigate to what extent the stimulus degradation affects visual 

search behavior and the accuracy of learning a probability concept. Task difficulty seemed to be 

increased indicated by a higher fixation frequency in Experiment II than in Experiment I. However, 

reaction times did not differ between Experiment I and II. Finally, the performance of participants in 

Experiment II did not differ from Experiment I and participants estimated the probabilities of the 

object-exit associations as accurately as in Experiment I. Thus, the accuracy of the mental 

representation did also not seem to be affected by the stimulus degradation. 
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Mental model development: 

Due to the increased task difficulty, as provided by the stimulus degradation in Experiment II, it was 

expected that task performance declined from Experiment I to Experiment II. However, the number of 

correct predictions did not differ between both experiments and also in Experiment II participants built 

up an accurate mental representation of the probability concept. Participants rather overestimated 

high probabilities than underestimating them as in Experiment I. In general, it seemed that the white-

gray pattern used for the stimulus degradation rather supported learning instead of hampering 

cognitive processing. This assumption might be emphasized by a higher fixation frequency because 

Rayner (2009) assumed that new information is only processed during fixations. If participants were 

forced to make more fixations for identifying objects and to spend more attentional resources for 

encoding information, it might be that information processing and in a next step association learning 

was facilitated. This is in accordance with Kintsch (1988) who already highlighted the importance of 

attentional processes for an accurate mental model development in the context of text 

comprehension.  

Effects on cognitive processing: 

The increase in task difficulty was also expected to be accompanied by longer judgment times and 

reaction times, especially for incorrect predictions. This point was already addressed in the 

introduction of this chapter by outlining the state of the art about visual search. However, findings of 

Experiment II showed that judgment time was not influenced by the stimulus degradation. Results of 

the variable judgment time showed similar affects as in Experiment I, presumably due to the fact that 

the predictions were performed while the stimuli were not visible and thus, no further information 

was available through visual search. Interestingly, the findings of the detailed analysis of judgment 

times replicated the findings of Experiment I. Judgment times for unlikely predictions tended to be 

longer, fostering the assumption that a strategy change required more cognitive resources due to the 

inhibition of selecting the preferred strategy. 

In addition, reaction times for correctly as well as for incorrectly predicted trials did also not differ 

significantly from Experiment I to Experiment II. One reason for this might be the short distance 

between the target object locations enabling to still perceive the target at the exit through peripheral 

vision which was identical in both experiments. In addition, the degraded target objects in the current 

experiment seemed to be still distinguishable from the white-gray patterned background due to the 

design of the pattern. One gray figure was created, duplicated several times and aligned next to each 

other with an offset. This pattern was broken apart in several pieces and rearranged so that it 

overlapped or drifted apart from each other so that similar features may be bound together within 
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one group (feature integration theory; Treisman, 1998). Due to the fact that the target object inhered 

different features than the pattern of the background and moved out of the exit, the target object 

seemed to be still salient. This saliency in combination with peripheral vision and the learning effects 

probably lead to similar reaction times also for incorrect predictions as in Experiment I.  

Furthermore, the results of the OVSST might not be comparable to the standard paradigm of visual 

search. For example, the four positions of the target objects at the exits were known in advance and 

the set size of the distractors was not manipulated in contrast to the typical design of visual search 

tasks (cf. Müller & Krummenacher, 2006). This consistency of the white-gray patterned background 

might be another reason why the stimulus degradation was not as distracting as expected. Solman and 

Smilek (2010) studied three different levels of consistency (random, repeated, intermediate) during 

visual search of a target letter and found that response times as well as fixation frequency increased 

with decreasing consistency. Additionally, in the study of Solman and Smilek search efficiency was 

improved during a repeated search condition in contrast to a random search condition. The first-

mentioned condition might be comparable with the condition in the current experiment assuming that 

search efficiency was not highly impaired. The importance of consistency was also reported by 

Kristjánsson (2011) who found better task performance due to the consistent presentation of stimuli. 

Chun and Jiang (1999) published that visual search for a target was facilitated by the presence of the 

same distractors across all trials. The consistency of the background pattern is also accompanied with 

familiarity. Wang et al. (1994) already mentioned that the familiarity of the background reduces visual 

search and support parallel search. In sum, the current background design seemed not to influence 

reaction times due to the patterned background. An accurate mental model of the target locations and 

the object-exit associations seemed to be sufficient for the task performance of the OVSST because 

“[…] humans compute something close to an accurate posterior probability map and then use that 

map to determine the next fixation location efficiently.” (Najemnik & Geisler, 2005, p. 390).  

Visual search behavior: 

It was expected that visual search activity was increased in Experiment II due to the white-gray 

patterned background. Results of analyzing eye movement data showed that participants made 

significantly more fixations in Experiment II than in Experiment I as expected. However, fixation 

duration and the number of gaze shifts did not change significantly from Experiment I to Experiment 

II. One reason for this might be that gaze shifts between the AOIs mainly took place after incorrect 

predictions according to a less beneficial action preparation and the redirection to the target object. 

As participant’s task performance in the currently reported experiment was very good, preparation 

benefits could still be used and thus, participants did not have to switch often between the target AOIs 
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and the incorrectly predicted AOIs. In literature, longer fixations were frequently related to deeper 

processing. For example, objects which did not fit in the context or words that are less frequent are 

usually longer fixated (Henderson, Weeks, & Hollingworth, 1999; Holmqvist et al., 2011; Rayner, 1998). 

Longer fixation duration was also associated with a higher degree of uncertainty (Brunyé & Gardony, 

2017). Fixation duration did not increase possibly because the underlying task of the OVSST was not 

modulated from Experiment I to Experiment II and thus, demands on cognitive processing and the 

degree of uncertainty had not changed. Huang and Pashler (2005) already argued that the nature of 

the task is rather relevant for attentional processes than search efficiency, for example the complexity 

of the task. In contrast to fixation duration, fixation frequency might be increased in Experiment II 

perhaps due to its relevance for perceiving the target objects and distinguishing the object from the 

patterned background. Fixation frequency was already described as an indicator for search efficiency 

and task difficulty (cf. Goldberg & Kotval, 1999; Jacob & Karn, 2003). In conclusion, the stimulus 

degradation and thereby increased task difficulty presumably required more attentional processes for 

encoding of the target objects reflected by increased fixation frequency. 

Influence of confounding effects: 

Just like in Experiment I, attention as a possible confounding variable did not seem to affect learning 

results. In contrast to Experiment I, motivation rather influenced task performance positively than 

negatively. Possibly, motivated participants primarily focused on perceiving the object due to the 

unstructured background and not on developing a probability matching strategy as in Experiment I. 

Another reason might be that intended actions triggered by the instructions were followed more 

carefully influencing attentive processes and thus task performance (Bekkering & Neggers, 2002). 

Further, increasing task difficulty evoked by the unstructured background might lead to a higher 

motivation to increase task performance according to Locke (1968). However, the actual reasons 

remain unclear.  

Further research: 

Experiment II was designed to investigate how stimulus quality, as a kind of visual uncertainty, 

influenced the development of mental representations. In the next experiment, the influence of prior 

knowledge about the task on the development of the mental representation was studied. Therefore, 

the investigation of relearning might provide more specific information how fast an established mental 

representation can be adapted to a new situation, i.e. when the environment stays the same but the 

relations change. 
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4.5 Conclusion 

The results of the second experiment showed that a distracted background which degrades stimuli did 

not generally impair cognitive processing and thus, memory performance. In the actual experiment, 

distraction led to an increased fixation frequency and rather facilitated learning the object-exit 

associations. In sum, the effect of stimulus degradation on task performance and thus the 

development of the mental model seemed be rather dependent on the design of the distractor and 

the nature of the task. 
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5 Experiment III – Dynamic Relearning 

5.1 Introduction 

Besides the stimulus design and the nature of the task, the mental model acquisition might also be 

affected by prior experiences according to Kim and Rehder (2011) who found that attention was guided 

by prior knowledge during category learning. Acquired knowledge about features of a specific category 

facilitated focusing on relevant information. The relevance of prior knowledge for mental model 

development was already mentioned in the main introduction and a brief theoretical motivation of 

Experiment III is provided in the following.  

Experiment III was designed as a relearning experiment to investigate the learning process when prior 

knowledge has to be inhibited and to analyze the new development phase of the mental 

representation in a more detailed way. Relearning can be defined as the learning of new stimuli-

outcome associations as the result of modifications in order to adapt to the change. Relearning might 

be more difficult than new learning as users had to give a second meaning to the actions which were 

learned before, probably leading to a larger ambiguity (Bouton, 2002). In task switching two different 

effects were already reported which might also interfere with relearning. Carry-over of prior relevant 

information as well as inhibition of prior irrelevant information might influence the stability of already 

learned object-exit associations which now have to be overcome (e.g., Koch, Gade, Schuch, & Philipp, 

2010, for review). The inhibition of automatic responses to the earlier learned associations might also 

be related to a functional fixedness. The phenomenon of functional fixedness describes a cognitive 

bias preventing people to think outside the usual action strategies (Adamson, 1952; Knoblich et al., 

2001). After a series of experiments on attention and perception, Shiffrin and Schneider (1977) 

postulated a dual process model of information processing including automatic and controlled 

processes, which was also relevant in later research (Chein & Schneider, 2012; Schneider & Chein, 

2003). Controlled processes require attention and underlie the restrictions of short term memory 

whereas automatic processes do not require attention and could run in parallel. Furthermore, 

controlled processes can be turned into automatic processes via training, however, an inability of 

verbalizing the automatically processed actions might occur. This model reinforced the assumption 

that relearning is more difficult than learning because automatic processes has to be turned into 

controlled processes and thus, attention has to be guided. The change in control, however, should also 

affect eye movement behavior. 

In the following research about conceptual changes, describing the adaptation of conflicting concepts, 

is shortly summed up as processes were comparable with those relevant during relearning. 
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Researchers particularly tried to answer the question at what point in time conceptual changes occur, 

which was also highly relevant, for example, in the context of teaching (Chi, 2008). Jones et al. (2015) 

investigated the role of attentional processes during conceptual change. The authors reported an 

effect of attention allocation on conceptual changes via cognitive engagement which was defined as 

the quality participants think about cognitive strategies. Attention seemed to evoke a high cognitive 

engagement which in turn increased the likelihood of conceptual change (Jones et al., 2015). It was 

argued that difficulties during conceptual changes mainly occurred due to a lack of awareness. In 

everyday life, mistakes in categorization (e.g., a whale is a fish) hardly occur. Therefore, the need for a 

recategorization is not present. However, conceptual changes occur if new information contradicts 

prior knowledge (Chi, 2008). Chi and Roscoe (2002), for instance, studied the incorrect belief of 

students about the heart circulation system as mentioned earlier in Chapter 1.1. The authors of the 

study assumed that conceptual shifts were difficult because misconceptions were often embedded in 

naïve and robust theories. Jones et al. (2015) underlined that strong prior knowledge led to a low 

probability of conceptual change. Additionally, Dole and Sinatra (1998) stressed motivational factors 

as well as dissatisfaction as crucial for conceptual changes. Overall, there seem to be many different 

factors influencing the relearning process. Therefore, the question arises how to gain insights into the 

process of relearning and its difficulties. 

One possibility to approach this question was to consider research about eye movements and problem 

solving in conflicting situation. Knoblich et al. (2001) studied impasses during arithmetic matchstick 

problems. Participants were presented incorrect arithmetic statements including numbers and 

operators (plus and equal sign) with match sticks. Participants were asked to correct these arithmetic 

statements by relocating match sticks. Results of the study showed longer fixation times during 

impasses when problem solvers faced difficult problems. Furthermore, increased attention allocation 

to the operators revealed by eye movements, indicated the end of problem solving. Thus, eye 

movement patterns gave insights into problem solving. Knoblich et al. (2001) concluded that eye 

movement recordings are a powerful method to gain insights into problem solving, because attention 

allocation becomes trackable and shows the approach of the problem. Also other authors reported 

that eye movements reflect cognition and thus, strategic aspects during problem solving (e.g., 

Epelboim & Suppes, 1997; Grant & Spivey, 2003; Hegarty & Just, 1993). The findings of Knoblich et al. 

(2001) reinforced the representational change theory by Kaplan and Simon (1990) describing that 

initial mental representations that are not useful to solve the problem can be seen as a reason why 

problem solvers encounter impasses (cf. Jones et al., 2015). Further, this theory assumes that before 

solving the problem, useless initial mental representations have to be deactivated or inhibited. 

However, some of the inactive knowledge might also be relevant for the solution of the problem. To 
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resolve the problem, initial mental representations have to be revised, for instance by constraint 

relaxation and chunk decomposition. The first idea describes “[…] the deactivation of some knowledge 

element that has acted as a constraint on the options initially considered […]” whereas the latter idea 

focusses on “[…] the separation of the components of a perceptual chunk […]” (Knoblich et al., 2001, 

p. 1001). In sum, during relearning well-established information has to be revised, attention has to be 

allocated to the now relevant information and finally, the mental representation has to be adapted. 

The research question and hypotheses, derived from the described literature reviews, were listed in 

the following.  

5.1.1 Research Question and Hypotheses 

The previous experiments investigated the learning of a probability concept, or in other words the 

development of a completely new mental model. In Experiment III the question arises how people 

relearn concepts and are able to adapt their existing mental model to changed circumstances. Thus, in 

this experiment it is investigated if eye movement parameters allow insights into relearning processes 

and the associated changes in subjective uncertainty. For this purpose, participants have to learn an 

initial probability concept of the OVSST as in the previous experiments. Then, they have to relearn the 

initial probability concept by integrating new object-exit associations for the same target objects as 

before without being informed about this change of concepts. This design focusses on higher-level 

cognitive processes that drive mental model development rather than on perceptual variations.  

It is expected that relearning a concept is more difficult than learning a new concept because earlier 

learned associations have to be suppressed and attention has to be relocated. Thus, task performance, 

viz. the number of correct predictions should be larger during learning than relearning. It is also 

expected that all measured eye movement parameters (fixation duration, fixation frequency and the 

number of gaze shifts) indicate the relearning process in the way that participants show more visual 

search behavior, especially at the beginning of the relearning phase, to search for information and 

thereby to reduce uncertainty.  

5.2 Method 

5.2.1 Participants 

25 students (10 female) were tested at IfADo. One participant had to cancel the test session due to dry 

eyes and the use of eye drops. Another participant did not finish the experiment, as calibration 

indicated that data quality of the eye movement recordings was too low. Further, four participants 

were excluded from data analysis because they were not able to develop the expected mental 

representation. Two of them filled in equal probabilities for all object-exit associations for one of the 
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probability concepts. Another two stated no understanding of any probability structure. All remaining 

participants affirmed that every object is associated to the exits with different relations via 

questionnaire. Finally, 19 participants with mean age 25 year (SD=4 years) entered the analysis. All of 

them were right-handed and had normal vision as required.  

5.2.2 Procedure 

The procedure remained the same as in Experiment 1 and 2. Participants had to predict the appearance 

of three distinct stimuli (circle, triangle, square) at three different exits (left, top, right) as accurately 

as possible presented on the white-gray patterned background used in Experiment II (Fig. 4.1). After 

the reappearance of the target object, participants were instructed to react on changes of the color 

intensity as quickly as possible. A practice block was run with 18 trials, followed by the 100% condition 

with an unambiguous allocation of the target objects to the exits (42 trials). In the experimental 

session, participants performed 324 trials (four blocks) of the OVSST while a first probability concept 

(concept I) with the following likely object-exit associations was presented: circle - top, triangle – right, 

square – left. The probability distribution for the target objects to the exits was the same as in the first 

two experiments with a 74% probability to reappear at the likely exit and 11% probability to reappear 

at each of the two unlikely exits. After four blocks, the concept changed (concept II) and another four 

blocks with 324 trials in total had to be performed with new object-exit associations. Concept II 

includes the following likely associations: circle-right, triangle-left, square-top. The probability 

distribution did not change, only the object-exit associations. Participants were not informed about 

any probability concept at the beginning of the experiment, nor was there any indication of the 

changed probability distribution after the first four blocks. The order of the two concepts was 

counterbalanced across participants by presenting all participants with odd numbers concept I at first 

and then concept II. Participants with even numbers had to initially learn concept II and afterwards 

concept I. A fixed pause of two minutes was included after every block in order to ensure that every 

participant had the same pause length. The pause was followed by a new calibration of the eye tracker. 

At the end of the experiment participants were informed about the two concepts by completing the 

Concept Awareness Questionnaire for both concepts. They also filled out the motivational 

questionnaire QCM. Additionally, participants performed the D2 test before and after the experiment 

to check for changes in attention as confounding variable. 

5.2.3 Data Analysis 

In the 100% condition of the current experiment, participants predicted 63.5% of the trials (26 out of 

42 trials) correctly. The box plot diagram in figure 5.1 showed no outliers regarding the task 

performance of the current sample in the 100% condition. Nevertheless, there seemed to be a high 

interindividual variability indicated by the high range of the dependent variable. 
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Heat maps were used to check for drifts and thus, to ensure that data recording was accurate. 2.4% of 

the trials were excluded from data analysis due to missing predictions. Another 0.1% trials were 

excluded because of technical issues causing less than 65% valid eye movement data points within the 

trial. Data was analyzed as in the previous experiments: repeated measures ANOVAs with the within-

subject factors block (1-4), judgment (correct, incorrect) and additionally learning phase (learning, 

relearning) were performed. Fixation frequency, fixation duration, number of gaze shifts, judgment 

time and reaction time as well as task performance, respectively the number of correct predictions, 

were used as dependent variables. Effects of the confounding variables on task performance were 

investigated by performing correlation analysis and repeated measures ANOVA.  

In a first step, the presentation order of concept I and II, due to counterbalancing, was considered as 

a between-subject variable. Results showed no significant effect of this variable with regard to the 

aforementioned dependent variables (p>.26). Therefore, the data was collapsed over concept I and II. 

However, the analysis of the Concept Awareness Questionnaire revealed distinct group characteristics, 

which were analyzed in more detail in the corresponding paragraph. 

 

 

 

 

Figure 5.1: Box plot of the number of correct prediction in the 100% condition of Experiment III.  

5.3 Results 

In the following, only significant (p<.05) results or trends (p<.10) were reported, except if the results 

were relevant for the aforementioned research questions.  

Task performance: 

There was a significant main effect of block, F(3,54)=4.35, p=.018, ηp
2 =0.195, indicating that the 

number of correct predictions increased across blocks during learning and relearning. We also 

observed that the number of correct predictions decreased significantly at the beginning of the 

relearning from Block 4 to Block 5, t(18)=4.91, p<.001. However, we did not observe a main effect of 

learning phase, F(1,18)=1.72, p=.206, ηp
2=0.087. Thus, correct predictions during learning (M=50.74; 

SD=6.26) and during relearning (M=48.79; SD=10.20) in contrast to our expectations (Fig. 5.3F). 
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Judgment time: 

We found a main effect of block, F(3,54)=6.11, p<.001, ηp
2=0.253, indicating a significant decrease of  

judgment times across blocks. In addition, the main effect judgment was significant, F(1,18)=8.97, 

p=.008, ηp
2=0.333, indicating that participants judged faster during correctly than incorrectly predicted 

trials (Fig. 5.3A). Judgment times were analyzed in detail by splitting it into correct and incorrect 

judgments for likely and unlikely exits. Results showed that participants predicted the unlikely exit 

significantly slower than the likely exit. Judgment times for correctly judging likely exits differed 

significant from incorrectly judging unlikely exits, t(11)=5.10, p<.001, as well as incorrectly judging 

likely exits from incorrectly judging unlikely exits, t(11)=4.84, p=.001 (Fig. 5.2). The bar for correct 

predictions and unlikely exits was not depicted as this combination was only true for one participant 

due to its low probability and thus, too rare for a valid measurement. The tendencies are similar to 

those in Experiment I and Experiment II. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Judgment times in Experiment III: Correct and incorrected judgments for likely or unlikely 

exit. Judgment time for correct predictions and unlikely exits was not depicted as the 

occurrence of this combination was too rare (n=1). Error bars show the standard deviation. 
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Reaction time: 

A main effect of block was found, F(3,54)=3.05, p=.036, ηp
2=0.145, indicating that reaction times 

decreased across blocks. We also found a main effect of judgment, F(1,18)=148.46, p<.000, ηp
2=0.892, 

indicating shorter reaction times during correctly than incorrectly predicted trials (Fig. 5.3B).  

In addition, results concerning the reaction time showed an interaction of block and judgment, 

F(3,54)=5.68, p=.002, ηp
2 =0.240, (Fig. 5.3B). Descriptive statistics showed that reaction times in 

correctly predicted trials decreased across blocks in the learning phase as well as in the relearning 

phase while reaction times in incorrectly predicted trials were almost constant across blocks in the 

learning phase as well as in the relearning phase (see Appendix C, Tab. 9.4 for details). 

Fixation frequency:  

Analysis of block revealed a significant main effect, F(3,54)=3.95, p=.023, ηp
2 =0.180, indicating a 

significant decrease of fixation frequency across blocks. In addition, a main effect of judgment was 

observed, F(1,18)=61.51, p<.001, ηp
2=0.774, indicating fewer fixations during correctly than incorrectly 

predicted trials (Fig. 5.3C). There is also a significant increase of fixations from Block4 to Block5  

Fixation duration: 

There was neither a significant main effect of block, F(3,54)=0.783, p=.466, ηp
2=0.042, nor a significant 

main effect of  judgment, F(1,18)=0.09, p=.774, ηp
2=0.005), indicating no significant change (Fig. 5.3D). 

We only found a significant effect of learning phase for fixation duration, F(1,18)=5.39, p=.032, 

ηp
2=0.230 (Fig. 5.2E), indicating that fixation duration was significantly longer in the learning phase than 

during relearning. 

Number of gaze shifts:  

We observed a main effect block, F(3,54)=4.28, p=.009, ηp
2=0.192, indicating a significant decrease of 

the number of gaze shifts across blocks. We found also a main effect of judgment, F(1,18)=151.75, 

p<.000, ηp
2=0.894, indicating that participants showed less gaze shifts for correctly predicted than for 

incorrectly predicted trials (Fig. 5.3E). 

In addition to the main effect, we found a significant interaction of learning phase and judgment, 

F(1,18)=8.014, p=.011, ηp
2=0.308, (Fig. 5.3E), i.e. the number of gaze shifts in incorrectly predicted trials 

was almost similar in the learning phase (M=4.96, SD=1.44) and the relearning phase (M=4.93, 

SD=1.58) whereas the number of gaze shifts in correctly predicted trials decreased from M=4.20 

(SD=1.61) in the learning phase to M=3.98 (SD=1.78) in the relearning phase.   
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Figure 5.3: Results of the variables in Experiment III: Judgment time (A), reaction time (B), fixation 

frequency (C), fixation duration (D), number of gaze shifts (E) and number of predictions (F) 

during learning and relearning for correctly and incorrectly predicted trials as function of 

block, judgment and learning phase. 
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Analysis of the subjective probability concept and response behavior: 

In the experimental condition, participants predicted on average 63.1% of the cases correctly during 

learning and 56.8% during relearning. As shown in table 5.1 and 5.2 participants were able to estimate 

the probabilities for concept I, which was also used in Experiment I and Experiment II, almost 

accurately even if they had to learn or relearn the concept. However, the probabilities of concept II 

were considerably less accurately estimated. Therefore, both concepts were analyzed in more detail 

in the following. 

 The prediction error of concept I was not significant regarding likely exits estimations of concept I, i.e. 

the estimation of likely exits did not differ significantly from the given value of 74% (p>.14). In contrast, 

the subjective probability concept participants developed of concept II showed significant differences 

between the likely exit estimations and the given probability of 74% with regard to the circle, 

t(18)=2.73, p=.014, and the triangle, t(18)=2.89, p=.010.  Results showed only a trend for the prediction 

error of the square, t(18)=1.99, p=.062. Further, there was a trend that estimations of the likely exits 

differed from each other. There was a trend that the square-top exit association differed from the 

triangle-left exit association, t(18)=1.45, p=.082. In sum, the shape of the objects with regard to the 

exit position might influence learning. 

Behavioral data might provide an explanation for differences between learning and relearning of the 

concepts: During learning of concept I and concept II, participants predicted mainly the likely exits. 

During relearning, participants who had to relearn concept I predicted mainly the likely exits in 85% of 

the cases. However, participants who had to relearn concept II did not show such a strong tendency 

for the likely exits shown in table 5.1 and 5.2. They predicted the likely exits in 57% of the cases. 

Inference statistics showed no significant difference between likely exits prediction during relearning 

concept I and II, t(9)=1.22, p=.130, but Levene’s test indicated unequal variances (F=5.92, p=.026). 

Thus, data seems to be inconsistent with regard to the relearning phase. 

Behavioral data also indicated that the previous learned probability concept affects relearning, 

especially relearning of concept II, in the way that earlier learned associations have to be suppressed. 

Planned t-test showed a trend for differences between learning and relearning concept II with regard 

to the task performance for the following likely associations: circle and top exit, t(9)=1.81, p=.055),  

square and left exit, t(9)=1.678, p=.065, but not for triangle and right exit, t(17)=1.25, p=.120. Further, 

variances were not equal for the circle-top association (F=7.997, p=.012) and the square-left 

association (F=9.681, p=.006). The same statistics for the according object-outcome associations of 

concept I showed no significance (p>.15) and thus equal variances.  
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Analysis of Control Variables: 

Results of analyzing the D2 test seem to be robust for the OVSST due to similar task performance as in 

Experiment I and Experiment II indicating that OVSST is not affected by changes in attentional 

performance. Data of one participant was excluded from data analysis due to a misunderstanding of 

the task. Overall, participants again showed better task performance after the experiment than before, 

t(17)=7.74, p<.001. They performed on average 62% (SD=13.26%) of the cases before running the 

experiment and 70% (SD=11.27%) of the cases after the experiment. The error rate stayed at the same 

level, t(17)=0.50, p=.625. 

Interest measured by the appropriate subscale of the QCM (M=3.09, SD=1.16) showed no effect on 

task performance, viz. the number of correct predictions. Spearman’s rank correlation coefficient 

showed a non-significant unilateral correlation (r=.185, p=.225) between interest and task 

performance.  
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Table 5.1: Probability concept I in Experiment III - Memory representation and behavioral 

probabilities during learning and relearning the concept  

Object & Exit Subjective Probability 
Concept 

Performed Predictions 
during learning  

Performed Predictions 
during relearning 

left 14 % (6.3) 7 % (3.9) 6 % (8.1) 

top 72 % (10.9) 86 % (6.6)  84 % (13.9) 

right 14 % (5.8) 7 % (6.1)  9 % (6.8) 

left 18 % (15.1) 6 % (4.1) 9 % (7.7) 

top 14 % 4.9) 7 % (7.3) 3 % (4.2) 

right 68 % (18.6) 87 % (9.4) 88 % (10.7) 

left 67 % (20.8) 82 % (12.0)  84 % (14.3) 

top 18 % (16.2) 11 % (8.1) 14 % (12.6) 

right 15 % (14.6) 7 % (5.6) 2 % (2.5) 

Note. The object-exit associations that inhere a higher probability are shown in bold. Values in brackets 

show the standard deviation.   

 

Table 5.2: Probability concept II in Experiment III - Memory representation and behavioral 

probabilities during learning and relearning the concept 

Object & Exit Subjective Probability 
Concept 

Performed Predictions 
during learning  

Performed Predictions 
during relearning 

left 21 % (18.0) 8 % (8.8) 9 % (9.2) 

top 21 % (17.9) 8 % (7.2)  21 % (18.9) 

right 58 % (25.1) 84 % (15.7) 70 % (26.9) 

left 57 % (26.1) 85 % (15.4)  79 % (21.6) 

top 13 % (5.9) 7 % (7.5) 6 % (6.3) 

right 30 % (25.8) 8 % (8.3) 15 % (17.1) 

left 18 % (14.2) 6 % (6.1) 19 % (21.0) 

top 66 % (18.3) 87 % (12.5) 73 % (26.6) 

right 16 % (10.2) 7 % (6.6) 8 % (8.5) 

Note. The object-exit associations that inhere a higher probability are shown in bold. Values in brackets 

show the standard deviation.   
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5.4 Discussion 

In addition to the learning process, in Experiment III the relearning of concepts was examined. Task 

performance of the OVSST did not differ significantly between both phases. However, behavioral data 

indicated group differences of relearning concept I and II resulting in a less accurate subjective 

probability of concept II. Eye movement parameters did not reflect this difference. However, they 

seemed to inform about the conceptual change process during relearning and entailed specific 

characteristics. More specifically, fixation frequency signalized the beginning of relearning 

immediately, but reached a rather stable level after one block. The number of gaze shifts showed a 

similar pattern, however, the specification was less noticeable. Fixation duration decreased in parallel 

to the learning curve and thus reflected the general learning progress. Further, fixation duration 

responded to the relearning phase with a time delay and thus might indicate the delay in the 

adaptation of the mental representation. 

Mental model development: 

Unexpectedly, task performance during learning was not significantly better than during relearning the 

object-exit associations. However, unequal variances and prediction errors during relearning concept 

II showed a trend that the relearning phase was more difficult with regard to the suppression of prior 

knowledge, especially for some of the participants. Despite of a non-significant main effect of group, 

there seemed to be group differences at least during relearning concept II which indicated that results 

have to be interpreted with caution. Reasons for that unexpected group difference might be that 

probability concept I was more extinction resistant than concept II and thus there might be a bias 

elicited by the different object-exit associations. Another reason might be the small sample size and 

the partitioning of participants into two groups (concept I and concept II) resulting in lower power of 

the data. Other reasons for the overall missing difference between learning and relearning might base 

on the performed task. The OVSST seemed to be a simple task as shown by the steep learning curve at 

the beginning of the task indicating early learning effects. Furthermore, a lack of awareness that might 

impede conceptual changes as reported in the introduction seemed not to be relevant in the current 

case as actions were not rare, but rather repeated in every trial (cf. Chi, 2008). Thus, attention was 

always allocated to the display. All these aspects facilitated relearning in the present context and might 

be the reason for the unexpectedly good task performance during the relearning phase.  

Interestingly, unequal variances of correct predictions indicated greater interindividual variability 

during relearning of concept II. It seems that some participants are able to adapt to the changed 

situation better than others, presumably due to different levels of cognitive processing and delayed 

realization of the modification (cf. Jipp, 2016). The prediction error of the subjective probability 
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concept might indicate that concept I was more dominant in the way that participants were not able 

to relearn concept II in an accurate manner. There seemed to be still some artifacts of concept I in 

estimating the unlikely probabilities regarding concept II, for example, the triangle of concept II was 

still associated to reappear to 30% at the right exit which was the likely exit of the triangle in concept 

I. Furthermore, behavioral data showed that initially learned associations were more often used during 

relearning of concept II whereas during relearning concept I almost no behavioral differences between 

both phases were shown. Therefore, it might be that the object-exit associations of concept I were 

easier to relearn and more resistant to extinction. In addition, it seemed that participants learned the 

square-top exit association better than other associations of concept II. Thus, other target objects 

should be used in further studies to avoid such biases. Furthermore, the movement of the target 

objects out of the exit might give directional information also supporting biases. Thus, it would 

additionally suppress biases if target objects fade in at the exits and do not move (cf. Itti, Koch, & 

Niebur, 1998; Treisman, 1985). 

Effects on cognitive processing: 

Judgment time and reaction time patterns in the learning phase replicated almost all findings in 

Experiment I and Experiment II and thus, supported the validity of the results, as they were faster for 

correct predictions and decreased across blocks. Interestingly, an interaction effect occurred between 

block and judgment for reaction times. Reaction times were constantly high for all eight blocks in 

incorrectly predicted trials but decreased in correctly predicted trials over all blocks independently of 

learning phase. An explanation might be again the missing anticipation of the correct exit during 

incorrect prediction and the general learning of the OVSST for the decreasing reaction times during 

correct predictions.  

Visual search behavior: 

Results of eye movement data analysis confirmed the assumption that participants showed more 

visual search behavior at the beginning of the relearning phase. Eye movement parameters indeed 

informed about difficulties to adapt to the changed concept, but they provided distinct information 

and did not differ between relearning concept I and concept II, indicating that they only reflected 

general characteristics of the task. The number of gaze shifts and especially fixation frequency might 

reflect disturbances in performing the OVSST due to the changed probability concept. Extensive visual 

search developed into a more focused search as reported in earlier studies (Ellis, 2012; Jacob 

& Hochstein, 2009) was also valid for the relearning process. Generally, the number of gaze shifts and 

fixation frequency might be lower for correctly predicted trials as the relevant exit was already 

anticipated. However, the number of gaze shifts for correctly predicted trials decreased from the 
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beginning to the end of each learning phase whereas the number of gaze shifts for incorrectly 

predicted trials was rather constant in both phases, presumably due to the aforementioned missing 

anticipation which did not allow to improve visual search behavior. The decreasing number of gaze 

shifts during correctly predicted trials in both phases might be related to the increasing number of 

correct predictions and thus, to the increased accuracy of the mental representation which allowed to 

improve visual search and to focus more on relevant stimuli.  

Further, results seemed to indicate that fixation duration was a possible indicator to differentiate 

between learning and relearning. Fixation duration was significantly longer in the learning than 

relearning phase. In literature, fixation duration was usually associated with difficulties in extracting 

information (Ehmke & Wilson, 2007; Jacob & Karn, 2003; Poole & Ball, 2006). In the current task, 

however, the way information had to be extracted did not change. It might be rather the familiarity 

with the task over time that led to an increased fixation duration in the relearning phase. 

In contrast to fixation duration, the number of gaze shifts and fixation frequency, fixation duration 

responded to the changed concept with a time delay presumably due to the delayed awareness about 

the modification of the concept. The situation might be comparable with impasses studied by Knoblich 

et al. (2001) who reported longer fixation duration during impasses as already mentioned in the 

introduction of the chapter. At the beginning of the relearning phase participants had to be aware 

about the changed concept and thus, had to inhibit prior knowledge about the object-exit associations. 

During this process participants might also encounter a kind of impasse which might be the reason 

why fixation duration increases in the second block of the relearning phase. 

Finally, the crucial question to be asked was what eye movements actually represent. Eye movements 

seemed to represent the learning process in a new environment and the search of relevant information 

to adapt to changed situations, but they did not represent the degree of accuracy of the mental 

representation. Difficulties in relearning concept II were not represented by eye movement 

parameters and thus, other processes like information processing seemed to be crucial for the 

relearning phase presumably because of the stable environment.  

Influence of confounding variables: 

The findings of the current experiment showed that attentional resources did not seem to affect 

learning results of OVSST. Thus, the findings of Experiment I and Experiment II could be replicated. In 

contrast to Experiment I and Experiment II, results showed no effect of motivation on task 

performance, neither in a positive nor in a negative way. Thus, the earlier mentioned findings by Dole 

and Sinatra (1998) could not be reinforced by the current experiment. The authors argued that 



Chapter 5: Experiment III – Dynamic Relearning  81 

 

motivational factors were relevant for conceptual changes. In sum, motivation did not seem to qualify 

a systematic influence on task performance. 

Further research: 

Another issue, also mentioned in the introduction, was the interaction between the acquisition of the 

mental representation and the two tasks of the OVSST. It was still unclear whether participants develop 

a mental representation of the OVSST based on the prediction task, the reaction task or a combination 

of both, as participants had to perform both tasks in Experiment I, II and III. Further, judgment times 

and reaction times in almost all experiments showed similar effects: they were slower for incorrect 

predictions and decreased across blocks. Thus, they did not indicate which of the corresponding task 

was essential for the mental model development. 

5.5 Conclusion 

Overall, results of the study showed that there was no appreciable difference between learning and 

relearning the probability concepts of the OVSST with regard to the task performance. However, eye 

movement patterns informed about the state of learning and the effect of relearning during the 

adaption to new features of the OVSST in different ways. Subjective data indicated a less accurate 

mental representation of concept II after the experiment and a bias regarding the shape of the objects. 

Therefore, stimuli of the OVSST should be modified in future studies.  
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6 Experiment IV - Separate Tasks 

6.1 Introduction 

In all previous experiments, participants were able to develop an accurate mental representation of 

the OVSST. However, some underlying processes of the OVSST were still unclear, especially whether 

the mental representation of the probability concept was developed due to the performance of the 

prediction or reaction task. Judgment times and reaction times were affected by learning in the 

previous experiments and thus, did not allow to conclude which of the two tasks was essential for the 

mental model development. Within the scope of the current experiment, we investigated to what 

extent the prediction and the reaction task affected the mental model development of the OVSST.  

The OVSST might be related to aspects of the spatial cueing paradigm, introduced by Posner (1980) in 

the context of visual attention. In the spatial cueing paradigm, participants were asked to respond to 

a target which was presented after a cue. The cue indicated the most likely location for the target. 

Exogenous cues highlighted the target location and directly attracted attention, whereas endogenous 

cues pointed towards the target location and required the conscious guidance of attention. Finally, the 

cue type affected response times in the way that responses in trials with exogenous cue were usually 

faster than in trials with endogenous cues (Posner, 1980). Some aspects of the spatial cueing paradigm 

might be comparable with the OVSST. In the prediction task, the target shape also functioned as an 

endogenous cue for the target exit. In the reaction task, the changed color of the target might directly 

attract attention like the endogenous cue.  

Endogenous and exogenous attentional shifts commonly typify top-down and bottom-up control (e.g., 

Kahneman & Tversky, 1973; Theeuwes, 2010). Due to the respective task characteristics, the 

prediction task could be assigned to top-down processes which were assumed to be goal-driven, slow, 

volitional and endogenously oriented. On the other hand, the reaction task might be a bottom-up 

process, characterized by being stimulus-driven, rapid, automatic and exogenously oriented (e.g., 

Connor, Egeth, & Yantis, 2004; Desimone & Duncan, 1995; Hauer & MacLeod, 2006; Kristjánsson, 

Mackeben, & Nakayama, 2001). Hauer and MacLeod (2006) added that cognitive control was involved 

in top-down processes whereas bottom-up processes required no cognitive control. Based on their 

study about attentional cueing of words, they concluded that endogenously cued attention, for 

example, a row of arrows pointing towards a word, led to more active learning and affected later 

memory processes in a beneficial way. This dichotomy was also visible when analyzing eye movements, 

namely goal-driven attention, should be reflected by slower eye movements than stimulus-driven 

attention (Engelkamp, 2006; van Zoest et al., 2004; van Zoest, Donk, & Theeuwes, 2004).  
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In the field of reasoning and decision making there was also clear evidence for a dual-process reported 

by Evans and Stanovich (2013) inspired by Kahneman (2011). They distinguished between more rapid 

and autonomous processes, called Type 1, and higher order reasoning processes relying highly on 

working memory, called Type 2. The dual process model assumed that two forms of cognitive 

processing were evoked by cognitive tasks. The reflective Type 2 process led to a mental simulation 

and contained explicit knowledge of the task whereas the intuitive Type 1 process was independent of 

cognitive abilities and contained implicit knowledge (Evans, 2003; Evans & Stanovich, 2013).  

In the field of learning research there was also a dichotomy reported, namely implicit learning and 

explicit learning. Implicit learning involved the acquisition of knowledge with a lack of conscious 

awareness. Thus, learners were not able to verbally report the learned knowledge whereas explicit 

learning resulted in conscious knowledge (e.g., Ziori & Dienes, 2012). Regarding the two tasks of the 

OVSST it seemed to be plausible that the prediction task was based on explicit learning including 

higher-level cognition to make decisions. In contrast, the reaction task rather required implicit learning 

as participants only had to react on color changes of the stimuli, however, they might accelerate their 

reaction times by learning the probability concept and anticipating the correct exit (cf. Chun & Jiang, 

1998; Jungé, Scholl, & Chun, 2007).  

In research about category learning, faster and slower processes during decision making were already 

reported. For example, Chen et al. (2016) published that participants made faster decisions during 

category learning when the decisions were based on simple associations and slower decision when 

strategies had to be consciously selected. Thus, the prediction and the reaction task might be reflected 

by reaction times. Research about category learning also indicated effects of different learnings 

processes on the accuracy of the mental model development. Ziori and Dienes (2012) outlined that in 

studies with single tasks and salient features, comparable with the OVSST, implicit learning processes 

might lead to less accurate mental representations than explicit learning processes. Further, they 

concluded that explicit knowledge was based on accurate mental representations which were learned 

via practicing, i.e. the frequent repetition of an event. Thus, learning the probability concept of the 

OVSST accurately and allocating attention to the relevant information seemed to require the frequent 

repetition of target locations (cf. Kabata & Matsumoto, 2012; Ziori & Dienes, 2012).  

In both tasks of the OVSST, the prediction and the reaction task, target locations were repeated and 

feedback was provided. In the prediction task, target objects reappeared at one of the exits. Thus, 

participants could compare their prediction with the actual appearance of the target object at the exits 

and conclude if the prediction was correct. Finally, they could adapt their decision-making behavior to 

the target probabilities. In contrast to the prediction task, participants only received error feedback, 
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but no performance feedback in the reaction task. The following research questions regarding the 

prediction and the reaction task were devised based on the mentioned literature. 

6.1.1 Research Question and Hypotheses 

The aim of Experiment IV was to assess how the two tasks of the OVSST actually influence the 

development of the mental representation by studying the prediction task and the reaction task 

separately. According to the aforementioned research about implicit and explicit learning (Batterink, 

Reber, Neville, & Paller, 2015; Ziori & Dienes, 2012), it might be that both tasks influence the 

development of the mental representation. However, research about top-down and bottom-up 

processes would suggest that only the prediction task influences the development of the mental 

representation due to a deeper processing of the task (Connor et al., 2004; Desimone & Duncan, 1995; 

Hauer & MacLeod, 2006; Kristjánsson et al., 2001). Thus, it remains an open issue how the prediction 

and the reaction task influence the acquisition of the mental representation about the probability 

concept of the OVSST.  

If the prediction task is related to goal-driven top-down processes and the reaction-task to rather 

stimulus-driven bottom-up processes, it is expected that the subjective probability concept is only 

learned accurately during the prediction task and not during the reaction task (Craik & Tulving, 1975). 

Therefore, probabilities estimated via the Concept Awareness Questionnaire are expected to be close 

to the actual probabilities for the concept presented in the prediction task, but not for the concept 

presented in the reaction task. As mentioned earlier, cognitive processing should be reflected by eye 

movements according to the eye-mind assumption. Thus, it is expected that eye movement patterns 

reflect the learning processes in the prediction task, i.e. by decreasing fixation frequency, fixation 

duration, number of gaze shifts, scanpath velocity and scanpath distance. In the reaction task, these 

eye movement parameters are expected to remain unchanged due to the missing learning. It is also 

expected that eye movements during the prediction task are slower than during the reaction task 

according to van Zoest et al. (2004) and Engelkamp (2006). They stated that fast eye movements are 

stimulus driven whereas slow eye movements are goal driven. 

In contrast, if the prediction task and the reaction task are related to explicit and implicit learning 

processes, it is expected that reaction times in the reaction task decrease across blocks due to benefits 

of the unconsciously learned probability concept (e.g., Chen et al., 2016; Chun & Jiang, 1998; Chun 

& Jiang, 1999; Jungé et al., 2007; Ziori & Dienes, 2012). Eye movement parameters are also expected 

to reflect the learning process by decreasing values across blocks in the prediction as well as in the 

reaction task. However, due to the fact that participants cannot report the unconsciously learned 
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probability concept in the reaction tasks, the estimated probabilities are expected to be accurate for 

the concept presented in the prediction task but not for the concept presented in the reaction task.  

6.2 Method 

6.2.1 Participants 

A total of 26 people participated in the experiment at the University of British Columbia in the Brain 

and Attention Research Lab. The analysis of the Concept Awareness Questionnaire showed that nine 

participants could not comprehend any probability structure which is crucial for the analysis of the 

mental model development. Thus, they were excluded from data analysis, except for the cluster 

analysis. Additionally, the calibration values of two participants indicated low data quality of the eye 

movement recordings and data recordings of another two were erroneous. Another person had to be 

excluded due to technical issues. Data of the remaining 12 participants with mean age 26 year (SD=4 

years) was included in the data analysis. All of the remaining participants were right-handed and had 

normal vision without visual aid. Further, they all affirmed that every object is associated to the exits 

with different relations by filling out the Concept Awareness Questionnaire.  

6.2.2 Procedure 

In Experiment III there was a bias with regard to the shape of the object associated to the exits. Thus, 

it was suggested to improve the OVSST by using different target objects and avoiding the movement 

out of the exits. These suggestions were realized in the current experiment. There was no longer an 

unstructured background, but the objects itself were degraded and presented on a gray background: 

Fuzzy Gabor figures (cf. Thornton & Gilden, 2007) with horizontal, vertical and diagonal lines were 

created (Fig. 6.1).  

 

 

 

 

Figure 6.1: The OVSST with fuzzy Gabor figures in Experiment IV: Fuzzy Gabor figures moving from the 

bottom entrance into the black room and fading in at the exits (left). Fuzzy Gabor figures 

with diagonal (1), horizontal (2) and vertical stripes (3) (right). 

1) 

2) 

3) 
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The Gabor figures faded in within three seconds at the exits and thus, no longer moved out of the exits. 

As the change of color intensity would not be salient due to the gray background, participants were 

asked to react on the reappearance at the exits in case of a color change from black-white to red-

green. 

In addition, the OVSST was split into two separate parts: a prediction task and a reaction task. After a 

phase of training of the particular task, participants performed four blocks of the OVSST only predicting 

the exit of the Gabor figures as quickly and as accurately as possible. After another training phase for 

the second task, participants were instructed only to react on color changes of the Gabor figures for 

four blocks as quickly and as accurately as possible (Fig. 6.2). Participants had a fixed two minutes’ 

pause after every block and a new calibration was run before starting the next block.  

Figure 6.2: Temporal sequence of Experiment IV. Dotted lines indicate when participant received 

instructions. 

The order of the two tasks was counterbalanced across participants by instructing all participants with 

odd numbers to perform the prediction task at first and then the reaction task. Participants with even 

numbers had to initially perform the reaction task and afterwards the prediction task. Both tasks were 

based on different object-exit associations. The prediction task comprised the following likely relations 

between Gabor figures and exits: vertical pattern – top exit, horizontal pattern – right exit and diagonal 

pattern – left exit. The reaction task comprised another relation: vertical pattern – right exit, horizontal 

pattern – left exit and diagonal pattern – top exit. In two thirds of the cases the color changed at the 

exits, viz. there were 54 go trials per block in the reaction task. The 100% condition was excluded to 

reduce the duration of the experiment and due to the fact that findings in the previous experiments 

were consistent. In Experiment I to III, only the prediction task allowed performance feedback, i.e. 

depicting the percentage of correct predictions at the end of every block, possibly influencing the 

learning process. Therefore, the performance feedback was no longer depicted in the current 

experiment due to the separation and comparison of the prediction and the reaction task. All test 

materials and instructions were translated into English language and checked by native speakers. 

Additionally, the validated English test version of the QCM was used to be able to compare data with 

previous studies of the experimental series. Before the experiment, participants had to perform an 

online version with 24 plates of the Ishihara Color Blindness Test (Ishihara, 1917) to ensure the ability 
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to perceive color changes. After the experiment, participants completed the Concept Awareness 

Questionnaire for both tasks, the prediction and reaction task. The whole test session lasted up to 

three hours. Due to the technical equipment at the UBC, eye movements were recorded with the same 

eye tracker model, but with a lower sampling rate of 120 Hz instead of 500 Hz. 

6.2.3 Data Analysis 

Eye movement data was checked via heat maps for drifts which were corrected if necessary to ensure 

that data recordings were accurate. 4.2% of the trials of the prediction task were excluded from data 

analysis due to missing predictions and another 1.6% of the trials were excluded as less than 65% of 

the eye movement data points within the trial were valid. In the reaction task only go-trials were 

analyzed. Additionally, 2% of the trials in the reaction task were excluded from data analysis because 

of an insufficient number of valid eye movement data points. Data of the prediction and reaction task 

were separately analyzed. Two-way repeated measures ANOVAs with the within-subject factors block 

(1-4) and judgment (correct, incorrect) were run to analyze learning effects. In the reaction task only 

the factor block was investigated due to the missing prediction. Judgment time and reaction time were 

analyzed as dependent variable in the specific condition. Task performance, viz. the number of correct 

predictions was also used as dependent variable. Further, dependent variables were the earlier 

mentioned eye movement parameters: fixation frequency, fixation duration, number of gaze shifts 

and additionally, scanpath distance and velocity. To expand eye movement analyses, scanpath 

distance and gaze velocity were added to the former set of variables. Research already showed that 

longer scanpaths indicated less efficient searching (Ehmke & Wilson, 2007; Goldberg, Stimson, 

Lewenstein, Scott, & Wichansky, 2002). Gaze velocity used to measure cognitive arousal viz. the 

cognitive activation level (Holmqvist et al., 2011). These new measures might provide additional 

information, especially with regard to the level of arousal that might be relevant for distinguishing 

voluntary and automatic processes. The scanpath distance was calculated by adding up the length 

between all data points. In a next step, the scanpath length was divided by the trial duration and thus, 

the velocity (mm/s) is calculated. Saccadic velocity would be more informative as scanpath velocity 

depended largely on the scanpath distance and showed comparable results. However, the accurate 

detection of saccades in the current experiment might be problematic due to the lower sampling rate. 

Planned t-tests were used to identify differences, for example, between the accuracy of the subjective 

probability concepts and between go and no-go trials in the reaction task. To identify differences in 

the visual search behavior between the reaction and the prediction task eye movement variables were 

used as within-subject variables of the repeated measures ANVOA. By means of hierarchical cluster 

analysis, participants were split into a high and low performer group. Data of participants who reported 
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no understanding of the probability concept were also included in this analysis to increase sample size 

and the performance variance. Differences between these groups were investigated by using 

independent t-tests. Finally, confounding effects of interest and attention on task performance were 

analyzed by running correlation analysis and ANOVA. 

6.3 Results 

In the following, only significant (p<.05) results or trends (p<.10) were reported, except if the results 

were relevant for the aforementioned research questions.  

6.3.1 Prediction Task 

Task performance: 

Generally, 54.3% of the trials were correctly predicted. There was a trend for a main effect of block, 

F(3,39)=2.74, p=.056, ηp
2=0.174, indicating that task performance increased across blocks (Fig. 6.4A).  

Judgment time: 

 Analysis of block revealed a significant main effect, F(3,39)=4.20, p=.039, ηp
2=0.244, indicating a 

significant decrease of judgment times across blocks. However, there was no main effect of judgment, 

F(1,13)=1.21, p=.291, ηp
2=0.085 (Fig. 6.4B). Judgment time was analyzed in depth as in the previous 

experiment. Figure 6.3 shows the results of judgment times for correct and incorrect judgments and 

in each case for likely and unlikely exits. Data analysis showed no significant differences of judgment 

times for all pairings. Neither correct predictions for the likely exit (M=0.457, SD=0.168) and the 

unlikely exit (M=0.435, SD=0.216), nor incorrect predictions for the likely exit (M=0.478, SD=0.170) and 

the unlikely exit (M=0.519, SD=0.193) differed significantly (p>.17). However, at least on a descriptive 

level results seem to be similar to Experiment I, II and III. Interestingly, more participants predicted the 

unlikely exit correctly than in the previous experiments (n=10) so that this combination could be 

analyzed and depicted for the first time. 

Fixation frequency:  

We only observed a significant effect of judgment, F(1,13)=23.86, p<.001, ηp
2=0.647, indicating fewer 

fixations during correctly than incorrectly predicted trials. There was no significant effect of block, 

F(3,39)=1.89, p=.171, ηp
2=0.127, indicating no significant change (Fig. 6.4C). 

Fixation duration: 

There was neither a significant main effect of block, F(3,39)=1.32, p=.283, ηp
2=0.092, nor a significant 

main effect of  judgment, F(1,13)=1.13, p=.308, ηp
2=0.080), indicating no significant change. 
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Number of gaze shifts:  

We observed a main effect block, F(3,39)=9.50, p<.001, ηp
2=0.422, indicating that the number of gaze 

shifts decreased across blocks. We found also a main effect of judgment, F(1,13)=57.26, p<.001, 

ηp
2 =0.815, indicating that participants showed less gaze shifts for correctly predicted than for 

incorrectly predicted trials (Fig. 6.4D). 

Gaze velocity:  

A main effect block was found, F(3,39)=8.58, p=.008, ηp
2=0.398, indicating a significant decrease of gaze 

velocity across blocks. There was only a trend for a main effect of judgment, F(1,13)=4.29, p=.059, 

ηp
2=0.248 (Fig. 6.4E). 

Scanpath distance:  

We observed a main effect block, F(3,39)=9.12, p=.005, ηp
2=0.412, indicating a significant decrease of 

scanpath distance across blocks. In addition, we observed a main effect judgment, F(1,13)=6.69, 

p=.023, ηp
2=0.340, indicating a shorter scanpath distance in correctly than incorrectly predicted trials 

(Fig. 6.4F). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Judgment times in Experiment IV: Correct and incorrect judgments for likely or unlikely 

exits. Error bars depict the standard deviation. 
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Figure 6.4: Results of the variables in the prediction task of Experiment IV. Number of predictions (A), 

judgment time (B), fixation frequency (C), number of gaze shifts (D), velocity (E) and 

scanpath distance (F) as a function of block and judgment.  
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Cluster Analysis: 

Cluster analysis was used to group participants into low (n=9) and high performers (n=12) independent 

of the estimated subjective probability concept. Five participants of the overall 26 participants had to 

be excluded from the test due to technical issues. The grouped sample also included participants who 

reported no understanding of any object-exit association as they showed significantly less correct 

predictions per block (MBlock=23.00, SDBlock=3.19) than participants who reported an understanding of 

the underlying probability structure (MBlock=43.89, SDBlock=3.19; t(19)=4.758, p<.001). Finally, planned 

t-tests were used to test if differences in performances are reflected by eye movement parameters. 

As shown in table 6.1, high performers (MBlock=47.58, SDBlock=6.97), who made more correct predictions 

in the prediction task, shifted their gazes significantly more often between the AOIs than low 

performers (MBlock=22.72, SDBlock=2.04; t(19)=2.780, p=.012). However, other eye movement 

parameters, i.e. fixation frequency, fixation duration and scanpath distance indicated no significant 

differences between low and high performers (p>.26). 

Table 6.1: Statistics of the Performance Cluster and Number of Gaze Shifts in Experiment IV 

 
Cluster Sample size Mean per Block Standard Deviation 

Number of Gaze Shifts 
1 9 5.17 0.29 

2 12 3.83   0.40 

Note. 1=low performers, 2=high performers 

6.3.3 Reaction Task 

Dependent variables: 

There was no main effect of block for reaction time, F(3,39)=2.49, p=.105, ηp
2=0.161. All eye movement 

variables showed no significant effects of block (p>.09). However, the comparison of go-trials and no-

go trials in the reaction task showed significantly more gaze shifts in no-go trials than go-trials, 

t(13)=3.19, p=.007. 

6.3.2 Comparison of the Prediction and the Reaction Task 

Analysis of the subjective probability concept: 

The subjective probability concept of the participants was measured after the completion of both 

tasks. Results showed that there was no significant effect of the order in which the tasks were 

performed (p>.09). However, the comparison of the subjective probability concepts showed that the 

likely estimations of the participants for all Gabor figures differed significantly between the prediction 
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and reaction task: Gabor figures with diagonal lines, t(13)=4.96, p<.001, Gabor figures with horizontal 

lines, t(13)=4.06, p<.001, and Gabor figures with vertical lines, t(13)=5.50, p<.001, as shown in table 

6.2. Results he Concept Awareness Questionnaire, which was completed after the two tasks, showed 

that likely exits in the prediction task were accurately recognized whereas in the reaction task 

participants estimated almost the same tendencies of the probability concept as in the prediction task. 

It seems that participants were not able to recall the probability concept of the reaction task and thus, 

transferred the concept presented during the prediction task also to the reaction task.  

Table 6.2: Memory representation of the probability concept of the prediction and reaction task in 

Experiment IV 

           Gabor figures                Exit Subjective Probability 
Concept - Prediction 

Subjective Probability 
Concept - Reaction 

left 70 % (21.9) 55 % (25.9) 

top 15 % (12.3) 25 % (17.4) 

right 15 % (11.3) 20% (11.3) 

left 16 % (11.6) 26 % (15.7) 

top 20 % (16.7) 22% (12.5) 

right 64 % (23.4) 52% (25.7) 

left 15 % (11.3) 18 % (11.1) 

top 70 % (21.3) 60 % (23.8) 

right 15 % (10.3)  22 % (15.8) 

Note. The object-exit associations with higher probabilities are shown in bold. Values in brackets show the 

standard deviation. 

Eye movements: 

For an additional comparison of eye movement parameters between the two tasks differences across 

blocks were analyzed. The analysis of the within-subject factor task showed no significant difference 

between fixation duration in the prediction and the reaction task. However, scanpath velocity, 

F(3,78)=9.56, p=.001, ηp
2=0.269 (Fig. 6.5A), scanpath distance, F(3,78)=10.03, p<.001, ηp

2=0.278 (Fig. 

6.5B), and fixation frequency, F(3,78)=3.11, p=.050, ηp
2 =0.107 (Fig. 6.5C), showed  a significant 

interaction of the factor block and task in the way that eye movement parameters decreased across 

blocks during the prediction task but rather remained unchanged during the reaction task. 

Furthermore, results showed a significant interaction of the factor block and task with regard to the 

number of gaze shifts, F(3,78)=10.03, p<.001, ηp
2=0.278 (Fig. 6.5D), and significantly more gaze shifts 
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during the performance of the reaction task than the prediction task, t(13)=4.560, p=.001. The number 

of gaze shifts did not change significantly across blocks during the performance of the reaction tasks, 

but decreased during the performance of the prediction task (see Appendix 9.6 for more details).  

Figure 6.5:  Comparison of eye movement parameters in the prediction and the reaction task in 

Experiment IV. Results of scanpath velocity (A), scanpath distance (B), fixation frequency 

(C) and number of gaze shifts (D) in the prediction and the reaction task as a function of 

block and task. 

Analysis of Control Variables: 

As reported in all previous experiments as well, results of the D2 test showed a significant increase of 

selected cases after running the experiment, t(13)=6.48, p<.001, presumably due to learning effects. 

Participants selected on average 60% (SD=15.68%) of the cases before and 70% (SD=16.87%) after 

performing the OVSST. In addition, the error rate did not differ between pre- and post-test (p>.30). 

Thus, attention seems not to be affected by the OVSST.  

Analyzing the subscale interest of the QCM (M=3.4; SD=1.3) showed a significant one-tailed correlation 

(r=562, p=.018) with task performance by using Spearman’s rank correlation coefficient. Participants 

A 
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who were interested in the task seem to make more correct predictions than participants who were 

less interested in the task. Planned t-test analyses showed no differences between the Canadian 

sample of Experiment IV and the German samples from Experiment I to Experiment III (interest: M=3.4, 

SD=1.1; D2 pre-test: Mtotal=188.48, SDtotal=35.23; D2 post-test: Mtotal=210.61, SDtotal=39.11) concerning 

the number of cases selected in the pre- and post-test of the D2 and interest (p>.24).  

6.4 Discussion 

The aim of Experiment IV was to assess the effect of the prediction and the reaction task on the 

development of the mental model in more detail. For this reason, the prediction and reaction task of 

the OVSST were separated and tested respectively. The subjective probability concept for the 

prediction task was quite accurate whereas it was not accurate for the reaction task. Thus, the mental 

representation of the participants developed during the performance of the OVSST seems to be mainly 

based on the prediction task. Eye movement parameters fostered this assumption as they reflected 

learning effects in the prediction task as well as a lack of learning in the reaction task. Furthermore, 

reaction times did not decrease significantly over blocks during the performance of the reaction task 

providing no support for implicit learning. These results rather confirmed the assumption that top-

down processes and bottom-up processes are involved during the performance of the prediction and 

the reaction task.  

Mental model development: 

The results of the subjective probability concept indicated that participants obviously developed a 

more accurate mental representation of the prediction task than the reaction task. For the reaction 

tasks, even likely exits of the probability concept were incorrectly recognized for all object-exit 

associations. The learned probability concept in the prediction task seemed to be transferred to the 

reaction task indicated by similar probability estimations in the Concept Awareness Questionnaire. The 

reason for this finding might be deeper cognitive processing in the prediction task due to the decision 

making process that relied on working memory involvement. As participants were presumably not able 

to retrieve any probability concept for the reaction task, they used the probability concept of the 

prediction task for the estimation of the probabilities.  

As mentioned in the introduction of Experiment IV, Evans and Stanovich (2013) discussed in their 

article dual-process theories and found support for a fast intuitive Type 1 process for default responses 

and a slow reflective Type 2 process for a higher cognitive processing and reasoning. The former 

process requires no working memory, but the latter one does. The results of Experiment IV seemed to 

corroborate this assumption. The prediction task based on decision making between three choices 
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involving higher cognitive processes, and thus, resulted in a conscious knowledge about the underlying 

concept. This task seemed to be a reflective Type 2 process whereas the reaction on salient stimuli in 

the reaction task might be rather an intuitive Type 1 process resulting in an inaccurate mental 

representation of the underlying probability structure as responses relied on simple change detection. 

In the same way, the prediction task might be rather goal-driven and top-down controlled whereas the 

reaction task might be stimulus driven and bottom-up controlled. This assumption could be further 

reinforced by the findings of Orquin et al. (in press). In their article, they suggested that predictable 

locations increased top-down control whereas unpredictable locations decreased top-down control. 

This might be comparable with the learning of the probability concept in the prediction task and the 

missing learning during the performance of the reaction task. Nevertheless, there also seemed to be 

plausible arguments that not all cognitive processes could be classified into bottom-up and top-down 

processes, for example, if neither physical salience nor current goals are provided (Awh, Belopolsky, & 

Theeuwes, 2012; Evans & Stanovich, 2013). For an alternative framework discussing this issue cf. Awh 

et al. (2012).  

Effects on cognitive processing: 

The differences in the development of the mental representation was also indicated by judgment times 

and reaction times. Participants might be able to learn the probability concept explicitly on the basis 

of prediction tasks. They, however, might also be able to learn the probability concept implicitly on the 

basis of the reaction task. These benefits had to be apparent in decreasing reaction times. However, 

the current results showed no significant decrease in reaction times across blocks. In contrast, 

judgment times decreased significantly across blocks during the performance of the prediction task in 

Experiment IV as well as in all previous experiments. These findings reinforced the assumption that the 

prediction task enhanced information processing and allowed to build up an accurate mental 

representation of the probability concept whereas the task characteristics of the reaction task seemed 

not to support the mental model development.  

Further, judgment times could also be analyzed in detail for correctly predicted unlikely exits in 

comparison to likely exits for the first time as this combination occurred for enough participants. 

However, results were not significant and previous findings indicating longer judgment times for 

unlikely than for likely exit predictions could not be replicated, presumably due to the small sample 

size. Nevertheless, the actual reasons for these results remained open. Descriptive statistics might 

rather suggest that judgment times for correctly predicted unlikely exits were faster than all other 

combinations. The reason for this result, however, remained unclear.  
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Visual search behavior: 

It was expected that eye movement parameters indicated different cognitive processing in the reaction 

and the prediction task. In fact, the time course of scanpath velocity, scanpath distance, fixation 

frequency and number of gaze shifts reflected the learning process of the probability concept in the 

prediction task and the lack of learning in the reaction task. However, the different processes of the 

prediction and the reaction task seemed not to be reflected by fixation duration, presumably due to 

the same experimental sequence for both tasks resulting in the same task complexity of the 

environment. In contrast, other authors already found  longer fixation durations with higher task 

complexity (cf. Horstmann, Ahlgrimm, & Glöckner, 2009; Velichkovsky, Rothert, Kopf, Dornhöfer, & 

Joos, 2002; Venkatraman et al., 2014).  

Furthermore, the number of gaze shifts was significantly higher in the reaction task than in the 

prediction task. The higher number of gaze shifts between the AOIs in the reaction task might reflect 

the misunderstanding of the probability concept according to the general finding that low performers 

showed more gaze shifts than high performers in the prediction task. Participants performing the 

reaction task might not be able to anticipate the correct exit and thus, had to shift their gaze more 

often to detect the target and to react to color changes. This might be due to the missing integration 

of feedback. It was not necessary to learn the object-exit associations for the accurate performance of 

the reaction task. Interestingly, in the reaction task participants showed more gaze shifts in no-go trials 

than in go trials. One possible reason for this might be that salient stimuli in go trials guided attention 

to the target stimulus whereas in no-go trials participants did not need to focus further on the target 

and thus might move their gaze randomly on the screen waiting for the start of the next trial. However, 

the actual reasons for this effect were unclear. Overall, it seemed that eye movements reflect the 

learning processes. 

Gaze shifts between the AOIs were also informative in the prediction task as less gaze shifts indicated 

better task performance. These results replicated the findings of Experiment I even if no reaction had 

to be performed. Further, participants seemed to anticipate the predicted exit and shifted their gaze 

to the stimulus if it reappeared at another exit in order to get performance feedback. In addition, 

scanpath distance decreased significantly across blocks in the prediction task indicating more efficient 

scanning of the display across blocks (Ehmke & Wilson, 2007; Goldberg et al., 2002; Goldberg & Kotval, 

1999). Thus, one might argue that the OVSST also works without the second reaction task as eye 

movement parameters are still conclusive. However, fixation frequency and fixation duration showed 

no effects concerning the factor block in this separated task condition and the reaction task did not 

seem to affect the mental model development. Due to these missing findings and reasons of 
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comparability with Experiment I to III, it was plausible to maintain the combined-task structure of the 

OVSST for the next experiment. 

If the prediction and the reaction task of the OVSST could be seen as a dual-process, slower eye 

movements were expected for the prediction task and vice versa faster eye movements were expected 

for the reaction task according to van Zoest et al. (2004). However, this is not the case for the data set 

of the current sample. Scanpath velocity did not differ significantly between both tasks presumably 

again due to the identical experimental sequence of the OVSST used for both tasks. 

Sample-specific features: 

Besides data analysis, it was noteworthy that one third of the tested participants did comprehend any 

probability structure and thus, were excluded from data analysis except for the cluster analysis. There 

might be different reasons why this default rate was higher than in the experiments before. First, there 

was no performance feedback in the current version of the OVSST that might motivate participants. 

Second, studies in the testing environment of the University of British Columbia usually did not last 

longer than one and a half hour. Thus, participants often reported that the experiment was too long 

and exhausting. This might additionally lead to less motivation and further to less effort reporting the 

subjective probability concept, presumably not reported in the motivational questionnaire due to 

social desirability. Third, participants might report a missing understanding of any object-exit 

association solely based on the reaction task. As they were not able to acquire an accurate mental 

representation of the concept used in this task, they probably generalized this state and finally, 

reported a missing understanding in general.  

Influence of confounding variables: 

The findings of the current experiment showed that attention did not seem to affect learning results. 

Thus, the findings of all previous experiments could be replicated. In accordance with Experiment II, 

but in contrast to Experiment I and II, results revealed a positive effect of motivation on task 

performance. As mentioned before, motivation did not seem to systematically influence task 

performance. However, motivation was also used as control variable in the next experiment due to 

reasons of consistency. 

Further research: 

Another aspect mentioned in the general introduction might be the degree of uncertainty influencing 

visual search behavior and the development of the mental representation that was studied in the next 
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experiment. The OVSST enabled to vary the degree of objective uncertainty by using lower and higher 

probabilities of the probability structure. 

6.5 Conclusion  

Experiment IV showed that participants developed only an accurate mental representation of the 

probability concept presented in the prediction task but not in the reaction task. These different 

learning processes in both tasks were reflected by eye movements, namely number of gaze shifts, 

fixation frequency, scanpath distance and scanpath velocity. In conclusion, mental representations 

acquired during the performance of the OVSST seem to be mainly based on the prediction task. It 

seems that both tasks require different cognitive processing, which fits into the dual-process 

assumption of attention: the reaction task seems to be an intuitive Type 1 process that is bottom-up 

controlled whereas the prediction task is rather a reflective Type 2 process that is top-down controlled 

and results in conscious knowledge participants are able to report. 
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7 Experiment V – Learning Different Probabilities  

7.1 Introduction 

In Experiment III and IV, distinct eye movement parameters reflected the learning processes during 

relearning and performing the prediction task as well as the lack of learning during the performance 

of the reaction task. Parallel to the learning curve eye movement parameters mainly decreased 

indicating also a reduced subjective uncertainty. However, the degree of objective uncertainty was 

kept constant in all previous experiments. Another point of concern mentioned before (see 

Introduction) addresses the question whether the degree of uncertainty influences eye movement 

parameters in such a way that the underlying shifts in learning processes become visible. Thus, in the 

last experiment of the experimental series different degrees of objective uncertainty were investigated 

which can be manipulated by adjusting the probability structure of the OVSST.  

A basic model in decision making under uncertainty, as described earlier, is the expected utility theory 

proposed by Neumann and Morgenstern (1947). This theory assumes that probabilities of the 

outcomes are known, however, this is generally not the case in real-life. In contrast, the subjective 

expected utility theory (SEU) by Savage (1954) assumes that people chose the option which maximizes 

the subjective expected utility. However, it is also problematic to identify the subjective utility of the 

decision maker as humans often use fast and frugal heuristics to make their decisions. The way we 

perceive and evaluate the information can also influence the decision making (Gigerenzer & Goldstein, 

1996). Furthermore, findings of several studies fail to find supporting evidence for the SEU theory 

(Slovic, Fischhoff, & Lichtenstein, 1977). Fishburn (1970) extends the SEU and also considers decision 

strategies and consequences of the decision maker. This last-mentioned extension of the SEU is highly 

relevant for the OVSST since the task also requires to develop decision strategies and reflects 

consequences of the decision between the three target objects. Further, during the performance of 

the OVSST all steps are involved in the decision process, i.e. from the identification of the decision 

situation to the final feedback after making the decision during the continuous processing in the 

working memory (see Fig. 1.2).  

The OVSST, however, is not comparable with typical real-life situations, as no prior knowledge with 

regard to the probability distribution exists at the beginning. At first, participants have to encode the 

presented implicit information and develop a strategy to cope with the uncertain situation. They can 

only refer to prior experiences gained during the trainings session which does not included different 

probabilities of the OVSST. Participants acquire knowledge over time that is used for the mental model 

development and also influences the optimal degree of memory updating and exploration (cf. Doya, 
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2008). For instance, it is better to ignore the rare occurrence of the object reappearance at the bottom 

entrance, than trying to integrate this situation in the response strategy as reported in Experiment I 

(Chapter 3). Thus, the ignorance of irrelevant information and the focus on relevant information has 

to be learned and anchored in the mental representation.  

In previous work, different degrees of uncertainty manipulated by probabilities were already 

investigated. In the experiment of Shaw and Shaw (1977) participants had to search and identify single 

target letters whereby some locations had a lower and a higher probability of occurrence. The authors 

already showed that participants were able to learn associations between target objects and high 

probability locations and respond more efficiently relative to low probability associations. Richer and 

Beatty (1987) reported in their study that reaction times increase with response uncertainty during 

the performance of two-choice and four choice tasks with go and no-go responses. These studies 

showed that different degrees of objective uncertainty influenced learning and behavioral data. 

Therefore, it seems to be necessary to examine in which way previous findings can also be applied to 

a higher degree of uncertainty. The following research questions address eye movements and 

judgment times related to lower and higher uncertainty and were derived from the aforementioned 

literature and presented data in the previous experiments.  

7.1.1 Research Question and Hypotheses 

In the current experiment, we compared the task performance in a high probability condition, used in 

the previous experiments, with task performance in a low probability condition. Two pilot studies were 

used to determine the threshold of lower probabilities which participants were still able to 

discriminate. Results of the first pilot study showed that Gabor figures with lines caused an object bias 

in the way that only the preferred exit of this object was learned correctly. Thus, Gabor figures were 

improved once again and counterbalanced across all participants to avoid biases. In the final 

experiment participants performed the OVSST twice, in one session they had to perform the 

probability concept used in the previous experiments and in another session a concept with higher 

uncertainty. The initial uncertainty of the participant due to the innocence of the experimental concept 

was reduced as participants were explicitly instructed to learn the probability concept.  

Three main expectations can be proposed: First, it is supposed that that prediction accuracy is reduced 

in the low probability condition due to the higher degree of uncertainty. Even if participants use the 

optimal decision strategy, TTB, task performance should be reduced and learning times extended, 

because it takes longer to detect the best decision strategy since more evidence accumulation steps 

are necessary in order to build a realistic mental model of the probability structure. Second, it is 
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expected that judgment times in the low probability condition are longer according to Richer and 

Beatty (1987), because of the higher degree of uncertainty and thus different processing demands. 

Finally, a higher degree of objective uncertainty during decision making would probably lead to more 

ambiguous information and thus to a more widespread use of coping strategies. Thus, it is expected 

that higher uncertainty in the low probability condition is reflected by more visual search behavior to 

reduce uncertainty according to Lipshitz and Strauss (1997).  

7.2 Pilot Studies 

In research two-choice problems (cf. Mattes, Ulrich, & Miller, 2002; Miller, 1998) with an underlying 

probability concept were more often considered in detail than multiple choice or in this case three-

choice problems (cf. Swensson, 1965). Thus, there were no hints from earlier studies for an appropriate 

reduction of the probability distribution. In the following, two pilot studies were run to estimate which 

lower probabilities participants are able to learn. 

7.2.1 Participants 

5 students (3 female) with mean age 24 years (SD=3 years) participated in the first pilot study and 7 

participants, 6 of them students, with mean age 24 years (SD=4 years) were tested in the second pilot 

study. All were dominantly right handed and had normal vision without glasses or contact lenses.  

7.2.2 Procedure 

In a first pilot study, participants had to learn a probability concept within six blocks (81 trials each) of 

the last version of the OVSST (see Chapter 6.2.2) with 52% higher probability and 22% lower 

probabilities in one session and in another session a second concept with 44% higher probability and 

accordingly 26% lower probabilities. Six blocks were chosen because no previous experience could be 

used to indicate the course of the learning curve, however, the accumulation of evidence might take 

more time under higher uncertainty than lower uncertainty. The procedure was the same as in 

Experiment IV and thus the 100% condition was excluded but a trainings session had to be performed 

before the experimental session. In contrast to the previous experiments, participants had to attend 

two separated test sessions on different dates due to reasons of time as 6 blocks had to be performed 

lasting 1 1/2 hours in total. In the first test session participants had to learn one probability distribution 

and in the second test session the other probability distribution. The sequences were counterbalanced, 

i.e. participants alternately started with the 52-22-22 probability distribution or the 44-26-26 

probability distribution. Participants were initially instructed to learn a probability concept and they 

were asked to complete the Concept Awareness Questionnaire at the end of each session. Thus, initial 

uncertainty was reduced by clarifying the aim of the task.  
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As probabilities in the first pilot study seemed to be too low to be able to learn, participants in the 

second pilot study had to learn a probability concept with 59% higher probability and 18.5% lower 

probabilities in one sessions (lower probability concept) and the former concept with 74% higher 

probability and 11% lower probabilities in another session (higher probability concept). The formerly 

used high probability concept was included to test a setting for the final experiment with a lower and 

a higher probability distribution. The higher probability distribution was tested only four blocks 

because all previous experiments showed that learning reached a saturation after four blocks for this 

probability distribution. The sequences of the probability concepts were again counterbalanced. 

Furthermore, new objects were created as results of the first pilot study indicated an object bias (Fig. 

7.1). As lines comprise directional information, new patterns without any directional information were 

chosen. All other conditions were the same as in the first pilot study.  

 

 

Figure 7.1: The OVSST with a new set of Gabor figures in Experiment V. Gabor figures with non-

directional information were used in the second pilot study and in the final version of 

Experiment V. 

7.2.3 Data Analysis 

Before analyzing data statistically, eye movement data were checked for drifts on the basis of heat 

maps. 4.4% of the trials were excluded from data analysis in the first pilot study due to missing 

judgments and additionally, 0.4% of the trials were excluded as less than 65% of the eye movement 

data of the trial were valid. In the second pilot study only 2.1% of the trials were excluded due to 

missing judgments and 0.1% of the additional trials were excluded due to less than 65% of valid eye 

movement data. The subjective probability concept measured by the Concept Awareness 

Questionnaire was compared to the objective values. Therefore, the prediction error was calculated 

(the deviation from the target value) and tested against zero by using one-sample t-tests.  

7.2.4 Results  

Pilot Study 1: 

Even if participants were initially instructed to learn a probability concept, 3 of 5 participants reported 

to recognize the 52-22-22 probability concept and 2 of 5 participants could report the 48-24-24 

probability concept. Error rates for both probability concepts were high: 75% (52-22-22 probability 

distribution) and 76% (48-24-24 probability distribution) of the trials were incorrectly predicted. In 
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total, all object-exits associations estimated by the participants via the Concept Awareness 

Questionnaire were not accurate except for the Gabor figures with horizontal lines (Tab. 7.1). The 

prediction error showed significant deviations from the target values for the 52-22-22 probability 

distribution (p<.04) as well as for the 48-24-24- probability distribution (p<.04). The association 

between the top exit and the Gabor figure with vertical stripes might indicate an object bias. Post-hoc 

correlation analysis also supported the assumption of an object bias: results showed a significant 

correlation (r=.040, p=.006) of object types (diagonal, vertical and horizontal stripes) and predictions 

(correct and incorrect). Thus, it was recommended to use different objects in the second pilot study 

and to test another low probability distribution which might be more recognizable, i.e. lower and 

higher probabilities should be distinguishable in a clearer manner.  

Table 7.1: Memory representation of the probability concept of two lower probability distributions 

in Pilot Study I 

           Gabor figures                Exit Subjective Probability 
Concept: 52-22-22 

Subjective Probability 
Concept: 48-24-24 

left 37 % (18.0) 29 % (8.9) 

top 19 % (9.5) 41 % (16.6) 

right 44 % (20.3) 30 % (12.7) 

left 33 % (8.3) 35 % (3.2) 

top 35 % (22.9) 31 % (3.5) 

right 33 % (14.8) 34 % (3.6) 

left 33 % (22.0) 25 % (10.2) 

top 48 % (21.4) 41 % (19.4) 

right 19 % (8.9)  34 % (15.4) 

Note. The object-exit associations with higher probabilities are shown in bold. Values in brackets show the 

standard deviation. 

Pilot Study 2:  

In the second pilot study, all participants stated that they understand the higher probability concept 

(74-11-11 probability distribution) but only 4 of 7 participants confirmed to understand also the lower 

probability concept of the 59-18.5-18.5 probability distribution. 54% of the trials were incorrectly 

predicted in the high probability condition and 64% in the low probability condition. Results of the 

subjective probability concept showed no highly significant prediction error for the high probability 

concept (p>.08) but marginal signficant to signficant effects (.02 > p <.07) for the low probability 
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distribution (Tab. 2). Nevertheless, the low probabiltiy distribution of the second pilot study (59-18.5-

18.5) showed correct tendencies with regard to the estimated probabilites and thus seems to be more 

likely to learn than both lower probability distributions in the first pilot study. This time, correlation 

analysis showed a non-significant correlation (r=.008, p=.273) of the new object types (few circles, 

many circles and symmetric pattern) and predictions (correct and incorrect). Thus, the newly designed 

objects seem to be more suitable for the final experiment.  

Table 7.2: Memory representation of the probability concept of two lower probability distributions 

in Pilot Study II 

           Gabor figures                Exit Subjective Probability 
Concept: 59-18.5-18.5 

Subjective Probability 
Concept: 74-11-11 

left 53 % (28.0) 19 % (23.2) 

top 36 % (27.6) 65 % (24.2) 

right 12 % (7.2) 16 % (8.5) 

left 19 % (4.2) 11 % (6.1) 

top 62 % (17.5) 25 % (21.6) 

right 19 % (14.6) 64 % (22.8) 

left 20 % (19.0) 70 % (25.0) 

top 24 % (20.1) 11 % (4.0) 

right 56 % (32.1)  19 % (22.9) 

Note. The object-exit associations with higher probabilities are shown in bold. Values in brackets show the 

standard deviation. 

7.2.5 Discussion & Conclusion of the pilot studies 

Two pilot studies were used to investigate which lower probability distributions are able to be learned 

or too close to chance. In total, three different lower probability distributions were tested. In the first 

pilot study participants had to learn a 52-22-22 and a 48-24-24 probability distribution. Results showed 

a high error rate with regard to the correctness of the predictions and highly significant prediction 

errors for the estimated probabilities via the Concept Awareness Questionnaire. Thus, participants did 

not seem to learn the probability distributions. In the second pilot study, a 59-18.5-18.5 probability 

distribution was tested which seems to be easier to learn than the probability distributions in the first 

pilot study. Finally, this probability distribution was chosen for the final experiment. 

Besides the learnability, an object bias was found in the first pilot study. This bias was probably not 

existing in Experiment IV while using the same Gabor figures due to the larger sample size and the 
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lower uncertainty. The newly developed Gabor figures in the second pilot study with no directional 

information seem to be less confounding and thus were also used in the final experiment.  

In conclusion, the setting used in the second pilot study worked well and can be applied in the final 

experiment. In more detail, the 59-18.5-18.5 probability distribution should be used for low probability 

concept and Gabor figures with few circles, many circles and a symmetric pattern as target objects.  

7.3 Method 

7.3.1 Participants 

26 students participated in the study at the IfADo. Two participants had to be excluded due to technical 

issues and language barriers. Finally, 24 participants (14 female) with mean age 24 years (SD=3 years) 

entered data analysis. All of them had a dominant right hand and no vision impairment. 

7.3.2 Procedure 

Participants in Experiment V had to performer a 59-18.5-18.5 lower and a 74-11-11 higher probability 

condition due to the results of the pilot studies. The procedure was the same as in the second pilot 

study. In general, there were three main differences of Experiment V in comparison to the previous 

experiments. First, participants had to learn two different probability concepts separately each within 

a test session. Thus, participants had to perform two sessions on different dates. The high probability 

concept lasted four blocks as in the previous experiments whereas the low probability concept lasted 

six blocks as few information was available about how much time participants need to learn a concept 

with a lower probability concept. At the end of each session participants had to complete the Concept 

Awareness Questionnaire for the learned concept. The sessions were counterbalanced in the way that 

all participants with even number started with the lower probability concept and all participants with 

odd numbers started with the higher probability concept. Second, for the first time participants were 

explicitly instructed that every object is associated with the exits to a distinct probability to control 

prior knowledge. Participants had to complete the Concept Awareness Questionnaire after each 

session and would be biased concerning a possible probability concept in the second session. 

Therefore, we decided to inform them about the presentation of a probability structure. Thus, the 

initial uncertainty regarding the task was reduced. Third, all object-exit associations were 

counterbalanced across participants in order to avoid potential confounding effects caused by an 

object bias.   

As the findings of the D2 attention test were consistent in all of the previous experiments, this test was 

excluded in the current experiment. Instead, the “Inventar zur Messung der Ambiguitätstoleranz” by 

Reis (1996) was used at the end of the experiment to control for ambiguity tolerance which might 
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influence the learning process. Tymula et al. (2012) already reported in their study that participants 

with a higher tolerance for ambiguity, i.e. options with consequences inhering unknown probabilities, 

showed increased risk-seeking behavior. Thus, participants’ performance might also be influenced by 

tolerance of ambiguity in the current experiment. Participants filled in the questionnaire with 40 items 

on a scale ranging from 1 (“trifft sehr zu”, ”I strongly agree”) to 6 (“trifft gar nicht zu”, ”I strongly 

disagree”). This inventory contains five subscales measuring ambiguity tolerance for problems that 

seems to be unsolvable (1), ambiguity tolerance for social conflicts (2), ambiguity tolerance of the 

parents’ image (3), ambiguity tolerance for stereotyped roles (4) and ambiguity tolerance for new 

experiences (5). The internal consistency for these subscales lies between Cronbach’s alpha α = .74 

and α = .86 and for the full scale α =.87.  

7.3.3 Data Analysis 

 Before analyzing data statistically, again systematical drifts in eye movement data were checked and 

drifts were found for the first time. Thus, a correction was necessary by calculating the mean of the 

scatter plot per block and then, centering the scatter plot. 2.2% of the trials were excluded from data 

analysis of the high-probability concept due to missing predictions and additionally, 0.5% of the trials 

were excluded as less than 65 % of the eye movement data of the trial were valid. In the low-probability 

concept condition, 1.9% of the trials were excluded as predictions were missing and additionally, 0.2% 

of the trials had to be excluded due to insufficient validity of the data (less than 65%). Distinct AOIs 

were defined as shown in table 7.3. These additional classifications of AOIs were necessary due to the 

counterbalancing.  

The further analyses are comparable with those in the previous experiments. Two-way repeated 

measures ANOVAs were calculated with the within-subject factors block (1-4) and judgment (correct, 

incorrect) for each condition in order to analyze the effect of the learning development. Dependent 

variables were fixation frequency, fixation duration, number of gaze shifts, scanpath length, saccadic 

Table 7.3: AOI classifications and definitions in Experiment V 

AOI Definition 

AOItarget AOI around the exit at which the target object appears 

AOIpredict AOI around the exit which is predicted by the participant 

AOIlow AOI around the exits with the lower probability 

AOIhigh AOI around the exit with the higher probability 
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velocity as well as judgment time and reaction time. Now, saccadic velocity could be calculated as eye 

movements were recorded with a higher sampling rate of 500 Hz. Additionally, task performance, viz. 

the number of correct predictions was used as dependent variable. ANOVAs were also run for the 

newly defined AOIs to analyze the participants visual search behavior within the distinct AOIs. For this 

reason, fixation duration, fixation frequency and a new variable, the dwell time were analyzed. The 

dwell time is the time participants spend in the AOI independent of the fixations (see Chapter 1). For 

the comparison of both conditions, the high and low probability concept, planned t-tests were run as 

well as repeated measures ANOVA with the between factor probability condition.  

Stimuli used in the experiments (Experiment I-V) were gradually developed due to object biases. The 

type of object (geometric figures, Gabor figures with lines, Gabor figures symmetric patterns) as well 

as the background (patterned vs. single-colored) differed in the experiments. Planned t-tests were 

used to investigate the influence of the stimulus presentation on the subjective probability concept, 

i.e. the prediction error, eye movements, i.e. fixation frequency, as well as performance. Finally, 

correlation analyses were used to test the impact of the confounding variables on task performance. 

7.4 Results 

In the following, only significant (p<.05) results or trends (p<.10) were reported, except if the results 

were relevant for the aforementioned research questions.  

7.4.1 High Probability Concept 

Task performance: 

Analysis of block revealed a significant main effect, F(3,69)=10.39, p<.001, ηp
2=0.311, indicating a 

significant increase of task performance increased across blocks (Fig. 7.6).  

Judgment times: 

We observed a main effect of block, F(3,69)=9.69, p=.001, ηp
2=0.296, suggesting a significant decrease 

of judgment times across blocks. In addition, we found a main effect of judgment, F(1,23)=6.25, p=.020, 

ηp
2=0.214, indicating shorter judgment times during correctly than incorrectly predicted trials (Fig. 

7.3A). A detailed analysis of judgment time showed, in line with the previous experiments, that the 

prediction of unlikely exits (correct: M=0.551; SD=0.145, incorrect: M=0.573; SD=0.273) was generally 

slower than the prediction of likely exits (correct: M=0.436; SD=0.197, incorrect: M=0.437; SD=0.195) 

as depicted in Figure 7.2. The effects were partly significant for judgment times during incorrect likely 

and incorrect unlikely predictions, t(13)=2.66, p=.020, and during correct likely and incorrect unlikely 

predictions t(13)=2.41, p=.032. 
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Figure 7.2: Judgment times in Experiment V in the high probability condition: Correct and incorrect 

judgments for likely or unlikely exits. Error bars depict the standard deviation. 

Reaction time:  

Analysis of block revealed a significant main effect, F(3,69)=2.57, p=0.096, ηp
2=0.100, suggesting a 

significant decrease of reaction times across blocks. In addition, there was a main effect of judgment, 

F(1,23)=140.85, p<.001, ηp
2=0.860, suggesting shorter reaction times during correctly than incorrectly 

predicted trials (Fig. 7.3B).  

Fixation frequency:  

We did not observe a main effect of block, F(3,69)=0.25, p=.748, ηp
2=0.011, indicating no change of 

fixation frequency across blocks. However, we observed a main effect of judgment, F(1,23)=13.34, 

p=.001, ηp
2=0.367, indicating fewer fixations during correctly than incorrectly predicted trials (Fig. 7.3C) 

Fixation duration: 

There was neither a significant main effect of block, F(3,69)=0.72, p=.484, ηp
2=0.030, nor a significant 

main effect of  judgment, F(1,23)=1.10, p=.306, ηp
2=0.046, indicating no significant change. However, 

there was a trend for a main effect of block in AOIlow, especially for incorrectly predicted trials, 

F(3,69)=2.91, p=.084, ηp
2=0.112 (see Appendix C, Table 9.6 for details).  

Number of gaze shifts:  

A main effect block was found, F(3,69)=6.58, p=.005, ηp
2=0.222, indicating a significant decrease of the 

number of gaze shifts across blocks. We found also a main effect of judgment, F(1,23)=86.70, p<.001, 

* 

* 
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ηp
2 =0.790, indicating that participants showed less gaze shifts for correctly predicted than for 

incorrectly predicted trials (Fig. 7.3D).  

Gaze velocity:  

Analysis of block revealed a significant main effect, F(3,69)=4.04, p=.046, ηp
2 =0.149, indicating a 

significant decrease  of gaze velocity across blocks. There was no significant main effect of judgment, 

F(1,23)=0.08, p=.781, ηp
2 =0.003, indicating no difference between gaze velocity in correctly and 

incorrectly trials (Fig. 7.3E). 

Scanpath distance:  

We observed a main effect of block F(3,69)=3.89, p=.050, ηp
2=0.145, indicating that the distance if the 

scanpath decreased across blocks. However, we observed no main effect judgment, F(1,23)=0.18, 

p=.673, ηp
2=0.008, indicating no difference between scanpath distance in correctly and incorrectly trials 

(Fig. 7.3F). 
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Figure 7.3: Results of variables of the high-probability condition in Experiment V: Judgment time (A), 

reaction time (B), number of gaze shifts (C), fixation frequency (D), scanpath distance (E) 

and saccadic velocity (F) across blocks for correctly and incorrectly predicted trials as a 

function of block and judgment.  
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AOIs:  

The analysis of the AOIs generally showed that values during correctly predicted trials were higher in 

AOItarget, AOIpredict and AOIhigh and lower in AOIlow in comparison to incorrectly predicted trials. For 

reasons of clarity the results of the AOIs are shown in table 7.4. 

Table 7.4: Results of eye movements in the AOIs in the high probability condition for correctly in 

comparison to incorrectly predicted trials of Experiment V 

AOI Variable Higher   or lower   values 
for correct predictions  

ANOVA 

AOItarget 

dwell time  F(1,23)=53.363, p<.001, ηp
2=0.699 

fixation duration  F(1,23)=48.715, p<.001, ηp
2=0.679 

fixation frequency  F(1,23)=27.592, p<.001, ηp
2=0.545 

AOIpredict 

dwell time  F(1,23)=261.979, p<.001, ηp
2=0.919 

fixation duration  F(1,23)=163.107, p<.001, ηp
2=0.876 

fixation frequency  F(1,23)=120.944, p<.001, ηp
2=0.840 

AOIlow 

dwell time  F(1,23)=177.927, p=.020, ηp
2=0.886 

fixation duration  F(1,23)=123.446, p<.001, ηp
2=0.843 

fixation frequency  F(1,23)=120.944, p<.001, ηp
2=0.840 

AOIhigh 

dwell time  F(1,23)=188.507, p=.020, ηp
2=0.891 

fixation duration  F(1,23)=140.644, p<.001, ηp
2=0.859 

fixation frequency  F(1,23)=75.407, p<.001, ηp
2=0.766 

 

7.4.2 Low Probability Concept 

Task performance: 

Analysis of block revealed a significant main effect, F(5,115)=6.23, p=.001, ηp
2=0.213, suggesting a 

significant increase of task performance across blocks (Fig. 7.6).  

Judgment time: 

We observed neither a main effect of block, F(5,115)=0.75, p=.478, ηp
2=0.032, nor a main effect of 

judgment, F(1,23)=2.86, p=.104, ηp
2=0.111, indicating no significant change (Fig. 7.5A). The detailed 
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analysis of judgment times in the low probability condition showed no significant effects (p>.10). 

However, mean values show the same pattern as in the high probability condition (Fig. 7.4.). Likely exit 

predictions (correct: M=0.457; SD=0.233, incorrect: M=0.452; SD=0.220) were descriptively faster than 

unlikely exit predictions (correct: M=0.534; SD=0.237, incorrect: M=0.547; SD=0.245). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Judgment times in Experiment V in the low probability condition: Correct and incorrected 

judgments for likely or unlikely exits. Error bars depict the standard deviation. 

Reaction time:  

There was a main effect of block, F(5,115)=5.39, p=.004, ηp
2=0.190, suggesting a decrease of reaction 

times across blocks. In addition, there was a main effect of judgment, F(1,23)=95.73, p<.001, ηp
2=0.806, 

suggesting shorter reaction times during correctly than incorrectly predicted trials (Fig. 7.5B).  

Fixation frequency:  

We did not observe a main effect of block, F(5,115)=0.81, p=.467, ηp
2=0.034. However, analysis of the 

AOIs revealed a trend for a main effect block in AOIpredict, F(5,115)=2.51, p=.063, ηp
2=0.098, indicating a 

decrease of  fixation frequency in AOIpredict across blocks (see Appendix C, Table 9.7 for details). 

Furthermore, we observed a main effect of judgment, F(1,23)=6.58, p=.017, ηp
2=0.222, indicating fewer 

fixations during correctly than incorrectly predicted trials (Fig. 7.5C) 

Fixation duration: 

There was neither a significant main effect of block, F(5,115)=0.72, p=.484, ηp
2=0.030, nor a significant 

main effect of  judgment, F(1,23)=1.10, p=.306, ηp
2=0.046, indicating no significant change.  
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Number of gaze shifts:  

We found trend for a main effect block, F(5,115)=6.58, p=0.087, ηp
2=0.095, indicating that the number 

of gaze shifts decreased across blocks. We found also a main effect of judgment, F(1,23)=48.68, p<.001, 

ηp
2 =0.679, indicating that participants showed less gaze shifts for correctly predicted than for 

incorrectly predicted trials (Fig. 7.5D).  

Gaze velocity:  

We observed neither a significant main effect of block, F(5,115)=2.04, p=.154, ηp
2 =0.081, nor a 

significant main effect of  judgment, F(1,23)=0.21, p=.655, ηp
2=0.009, indicating no significant change.  

Scanpath distance:  

Analysis revealed neither a significant main effect of block, F(5,115)=2.03, p=.154, ηp
2=0.081, nor a 

significant main effect of  judgment, F(1,23)=0.04, p=.851, ηp
2=0.002, indicating no significant change.  

Figure 7.5: Results of variables of the low probability condition in Experiment V: Judgment time (A), 

reaction time (B), number of gaze shifts (C) and fixation frequency (D) across blocks for 

correctly and incorrectly predicted trials as a function of block and judgment. 
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AOIs:  

Table 7.5. shows the results for the analysis of the AOIs which are similar to those in the high 

probability condition. Values of the eye movement variables during correctly predicted trials were 

higher in AOItarget, AOIpredict and AOIhigh and lower in AOIlow in comparison to incorrectly predicted trials.  

Table 7.5: Results of eye movements in the AOIs in the low probability condition for correctly in 

comparison to incorrectly predicted trials of Experiment V 

AOI Variable Higher   or lower   values 
for correct predictions  

ANOVA 

AOItarget 

dwell time  F(1,23)=70.548, p<.001, ηp
2=0.754 

fixation duration  F(1,23)=58.799, p<.001, ηp
2=0.719 

fixation frequency  F(1,23)=49.727, p<.001, ηp
2=0.684 

AOIpredict 

dwell time  F(1,23)=448.708, p<.001, ηp
2=0.951 

fixation duration  F(1,23)=245.013, p<.001, ηp
2=0.914 

fixation frequency  F(1,23)=129.959 p<.001, ηp
2=0.850 

AOIlow 

dwell time  F(1,23)=80.099,  p<.001, ηp
2=0.777 

fixation duration  F(1,23)=70.706, p<.001, ηp
2=0.755 

fixation frequency  F(1,23)=75.803, p<.001, ηp
2=0.767 

AOIhigh 

dwell time  F(1,23)=76.489,  p<.001, ηp
2=0.769 

fixation duration  F(1,23)=60.082, p<.001, ηp
2=0.723 

fixation frequency  F(1,23)=62.292, p<.001, ηp
2=0.730 

 

7.4.3 Comparison of the Low and High Probability Concept 

As shown in Figure 7.6, the number of correct predictions as well as the prediction of the likely exits 

increased across blocks in both conditions. However, the learning effect was significantly higher for 

the high probability concept than for the low probability concept, t(46)=3.83, p=.001. In addition, the 

comparison of number of correct prediction for the first 4 blocks showed a significant between-subject 

factor with regard to the probability condition, F(1,46)=17.66, p<.001, ηp
2=0.277, and a trend for an 

interaction effect, F(3,138)=2.31, p=0.093, ηp
2=0.048, . Figure 7.6 indicates that the number of correct 

predictions increases in the high probability condition continuously whereas it seems that the learning 
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curve ends in a plateau between block 2 and block 4 in the low probability condition. A learning curve 

was fitted to check if participants generally learn in the low probability condition. Data of the power 

model showed a very good fit (R2=.99) for the high probability condition, but a poor fit (R2=.70) for the 

low probability condition suggesting that participants clearly learn in the high probability condition, 

but not in the low probability condition. Contrary to the prior assumption, the comparison of eye 

movements and judgment times between both conditions showed no differences (p>.38). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Comparison of predictions in the low and high-probability condition in Experiment V: Mean 

number of correct predictions (A) and mean number of likely exit predictions (B) for the 

high probability concept (High) and the low probability concept (Low) across blocks.  

Results of the Concept Awareness Questionnaire showed that tendencies for both concepts were 

learned in a correct manner. Accordingly, likely object-exit associations in the low probability condition 

were estimated lower than in the high probability condition (Tab. 7.6). Behavioral data underline these 

findings as participants chose the likely exit in 78.8% of the cases while learning the high probability 

concept whereas the likely exit was chosen in 68.0% of the cases during the performance of the low 

probability concept. However, three participants stated no understanding of any probability concept 

even if it was mentioned in the instruction that a probability distribution had to be learned. Further, 
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six participants filled in not to understand one of the concepts, either the lower or higher probability 

concept.  

 

7.4.4 Comparison of Different Stimulus Presentations 

Stimuli in Experiment I-V were gradually developed due to hints of an object bias. In the following, the 

influence of the stimulus presentation on the subjective probability concept, eye movements and 

performance data is reported. The probability concept of 74-11-11 was stable in all of the experiments 

enabling a comparison of the results. The subjective probability concept for geometric figures used in 

Experiment I (see Chapter 3) was more accurate than the subjective probability concept for Gabor 

figures in the current experiment (few circles, many circles and symmetric pattern). The prediction 

error, viz. the deviation from the target value, differed significantly between geometric figures in 

Experiment I (M=8.37; SD=8.66) and Gabor figures in Experiment V (M=15.43; SD=15.46), t(39)=1.86, 

p=.035. It seems that behavioral data are closely related to the self-estimation of the probabilities as 

in Experiment I with geometric figures likely exits were chosen in 87.7% of the cases and probability 

estimations of the participants were more accurate (on average 69%) for the likely object-exit 

association. In the current experiment with Gabor figures the average estimation of the likely exit was 

only 63% in the condition with the high probability concept which employed the same probability 

distribution used in Experiment I. In addition, participants showed more fixations during correctly 

predicted trials in Experiment V (M=14.22; SD=3.84) than in the original version with geometric figures 

(M=11.15; SD=4.22), t(39)=2.47, p=.018, presumably due to the degradation of the stimuli by designing 

the stimuli with more detailed patterns and the fade in of the Gabor figures. 

Table 7.6: Subjective probability concept in the high and low probability condition in Experiment V 

           Gabor figures               Probability High Probability Concept Low probability Concept 

high 62 % (21.8) 53 % (19.1) 

low 19 % (11.0) 23 % (9.4) 

high 60 % (19.4) 55 % (17.5) 

low 20 % (9.6) 23 % (8.7) 

high 66 % (18.1) 53 % (16.4) 

low 17 % (9.0) 23 % (8.1) 

Note. Values in brackets show the standard deviation.   
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In comparison to Experiment II an unstructured gray-white patterned was used for the stimulus 

degradation of the geometric figures. Fixation frequency during correctly predicted trials in Experiment 

II (M=14.51; SD=3.48) did not differ significantly from the current experiment, t(39)=0.24, p=.811. 

However, the prediction error was significantly smaller in Experiment II (M=8.43; SD=5.43) than in 

Experiment V (M=15.43; SD=15.46), t(39)=1.86, p=.035. Thus, there seems to be a difference in 

degrading the stimulus by including a pattern in the background or by making the stimulus more 

detailed with regard to the learning process. However, the results have to be interpreted with caution 

as these analyses base on a between-subject design and participants were explicitly instructed to learn 

a probability concept in the Experiment V. Thus, also other experimental conditions were manipulated 

additionally. 

7.4.5 Analysis of Control Variables 

Correlational analysis showed different effects of the tested control variables. Interest measured by 

the QCM (M=3.28, SD=0.92) showed a significant effect on task performance only during the 

presentation of the high probability concept (r=.547, p=.003). The effect is missing in the low 

probability condition (r=.224, p=.146).  

Tolerance of ambiguity measured by the IMA (full scale: M=143, SD=16.72) indicated an overall low 

tolerance of ambiguity, as values for all scales are below a percentile rank of 50 compared to the table 

of standard values for the age group of 20‐29 years (Reis, 1996). Overall, participants’ tolerance of 

ambiguity did not affect task performance (p>.13). 

7.5 Discussion 

In the last experiment of this experimental series, participants had to learn a higher and a lower 

probability distribution in order to investigate if previous results can also be applied to a higher degree 

of uncertainty. Performance data and the self-reported probability concept showed that participants 

were able to learn both concepts, viz. they correctly estimated the tendencies of the probability 

concepts but made less correct predictions during the presentation of the low probability concept as 

expected. However, eye movement data as well as judgment times could not reflect differences in the 

learning processes, presumably due to same degree of subjective uncertainty in both conditions and 

the usage of the same decision strategy, namely probability maximizing instead of probability 

matching. Thus, the manipulation of the subjective uncertainty by manipulating the probabilities did 

not seem to work. 
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Mental model development: 

Participants made significantly less correct predictions in the low probability condition than in the high 

probability condition in line with the given lower probabilities. In the low probability condition 

participants’ performance increased at the beginning and was rather stable from Block 2 to Block 4 

indicated by a trend of an interaction and the poor fit of the learning curve. After Block 4, the mean 

values of participants’ task performance suggest again an increase until the last block. Thus, it was 

useful to run six blocks of the low probability condition. The plateau in the middle of the experiment 

might occur due to the high objective uncertainty as more information has to be stored before an 

accurate mental representation can be developed than in the high probability condition. A similar 

learning curve for trainings in the context of working environments was described by Reichel (1985, 

p. 60). Generally, the performance of the training increased at the beginning of the training sessions 

until a performance plateau occurs. A further increase of the performance could only be reached by 

an extension of the training workload.  

Effects on cognitive processing: 

Unexpectedly, results showed no differences between judgment times in the low probability and the 

high probability condition. However, there were differences with regard to the development over time. 

In the low probability condition judgment times did not change significantly across blocks in contrast 

to the high probability condition. This might base on the higher objective uncertainty which is closer 

to chance and the resulting less steep learning curve in comparison to the high probability condition 

as mentioned before. The detailed analysis of judgment times, divided into correct and incorrect and 

likely and unlikely exit predictions, showed only significant effects in the high probability condition but 

not in the low probability condition. The pattern of results seems to be comparable with previous 

experiments. Thus, unlikely exit predictions might need more cognitive resources presumably due to 

a change in strategy as reported earlier. Nevertheless, the inconsistency of significance did not allow 

a concrete conclusion, but rather a presumption.   

In accordance with previous experiments, reaction times clearly showed a preparation benefit in 

correctly predicted trials leading to faster reactions. However, the temporal development of the 

reaction time was only significant in the low probability condition, presumably due to the longer 

learning process. In the high probability condition, the learning effect was usually highest in the first 

block as shown in all previous experiments suggesting a ceiling effect that is well known in statistics. 

This might be the reason why reaction times did not decrease to a greater extent in the following 

blocks.  
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Visual search behavior: 

It was also expected that participants show more visual search behavior in the low probability 

condition. Results showed that scanpath length and saccadic velocity decreased significantly across 

blocks in the high-probability condition, but not in the low-probability condition. A longer scanpath 

often indicates less efficient searching of the environment according to Goldberg et al. (2002). In the 

high-probability condition participants might be able to improve information search across blocks 

entailing a reduced scanpath length whereas the low-probability condition might be too demanding 

for this development due to the high uncertainty.  

However, results of a direct comparison showed no significant differences in the visual search behavior 

between conditions. This might be due to the same decision strategy participants used in both of the 

conditions. Parallel to the increasing number of correct predictions, also the number of likely exit 

predictions increased according to TTB indicating that there was a strong influence of the decision 

strategy on task performance. Participants tended to use the optimal probability maximizing strategy, 

which is equal to TTB, in both conditions. Based on dual cognitive process theories, Schulze et al. (2015) 

suggested that probability matching was related to an intuitive cognitive system whereas probability 

maximizing relied on cognitive capacities to correct the first impulse. This might be one possible 

explanation for the process of choosing probability maximizing in line with the correct understanding 

of the probability concepts due to explicit learning. Here, participants rather seemed to interpret 

objective uncertainty as certainty indicated by their rather unilateral response behavior using the TTB 

strategy to minimize task uncertainty in both conditions. However, the low probability condition 

seemed to be more demanding and thus, participants presumably needed more time to identify a likely 

exit for every object and to build up an appropriate decision strategy reflected by the less steep 

learning curve. According to the degree of objective uncertainty, participants chose the likely exit in 

the low probability condition overall less often than in the high probability condition. Instead, task 

uncertainty might be reduced similarly over time in both conditions due to the initial information about 

learning a probability concept. Further, the experimental task did not differ in both of the conditions 

requiring no changed attention processes according to the attentional set which is a bias towards 

stimuli that are learned to be relevant (Scherrmann et al., 2010).  

Besides the main expectations, results generally showed more eye movements in the relevant AOIs 

during correct predictions than incorrect predictions in both conditions. In more detail, participants 

showed longer dwell time in the relevant AOIs according to Jacob and Karn (2003) and Poole et al. 

(2005) as well as longer fixation frequency and fixation duration in AOItarget, AOIpredict and AOIhigh during 

correct predictions indicating a general understanding of the objective probability in both conditions 
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reinforcing the importance of focusing on relevant aspects. In line with these results participants 

estimated the tendencies of all object-exit associations in a correct manner. Nevertheless, the 

comparison of the prediction error showed that learning the geometric objects in Experiment I 

(Chapter 3) resulted in a more accurate estimation of the high probability condition than using Gabor 

figures in the current experiment even if the participants were explicitly instructed to learn 

probabilities. Prior knowledge usually facilitates learning (Hewson & Hewson, 1983). There might be 

different explanations for the reported differences in task performance. It might be that the new target 

objects did not facilitate learning in the same way as before, because of their complexity. New target 

objects in Experiment V presumably took more time to be encoded, also indicated by a higher fixation 

frequency, leading to slower learning. However, it might also be possible that the initial instruction 

caused misleading and exaggerated expectations regarding the underlying probability concept 

(Hilbert, 2012), eventually influencing the learning process. 

Stimulus presentation: 

There seemed to be also a difference of the subjective probability concept if the background was fuzzy 

and degraded the stimuli (Experiment II) or if the stimulus itself was degraded by having no clear 

contour lines and a more detailed pattern (e.g., Experiment V) indicated by the prediction error. 

However, the degradation led to an overall high fixation frequency which did not change across blocks 

in both cases. Presumably, participants always needed more time to perceive and accurately encode 

degraded stimuli independent of the learning process. The results and corresponding interpretations 

had to be considered carefully as many parameters (instruction, target objects, counterbalancing, 

separated sessions) were changed in the current experiment, making it difficult to compare the results 

with the previous experiments in an accurate manner (see General Discussion for more details).  

Influence of confounding variables: 

The analysis of control variables showed that objective uncertainty did not only seem to influence task 

performance directly, but also influenced task performance via interest as provided by the 

questionnaire results. Results showed that high interest in the task could only be related to an 

improvement of task performance in the high probability condition, but not in the low probability 

condition. This might be due to the high objective uncertainty in the low probability condition which 

was too close to chance to consciously control the performance. In contrast to the variable “interest”, 

the newly added control variable tolerance of ambiguity did not seem to influence task performance. 

One reason for this might be the low variability of the data indicating an overall low tolerance of 

ambiguity of the participants. Another reason might be the laboratory situation which might be in 

contrast to the questionnaire asking for everyday life situations.  
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7.5 Conclusion 

In the current experiment, the probability structure of the OVSST was manipulated to induce two 

different degrees of objective uncertainty. Participants had to learn each in a separate test session. 

Participants made more correct predictions within the high probability condition presumably due to 

the lower objective uncertainty, however, this difference was neither reflected by eye movement 

parameters nor by judgment times probably due to the same decision strategy they used in both 

conditions, i.e. probability maximizing. This strategy led to the assumption that participants rather 

interpreted objective uncertainty as certainty to reduce their task uncertainty. In sum, it has to be 

critically reviewed what eye movements actually reflect.  
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8 General Discussion  

In a series of five experiments, we investigated visual search behavior during the acquisition of mental 

representations under uncertainty. In the following, the research questions mentioned in Chapter 1 

are answered to summarize the results. Then, different questions are derived from the reported results 

to discuss the issues on a more general level. Thereafter, practical relevance and limitations of the 

experimental studies are discussed and possible future research introduced. Finally, the chapter ends 

with a conclusion of the thesis. 

8.1 Summary  

Research question 1 - The meaning of eye movements in the development of mental representations: Eye 

movements gave insights into the state of learning concerning the mental representation of the task and 

the degree of subjective uncertainty.   

Although the objective probability remained constant across trials, participants showed distinct 

behavioral variability in their response to uncertainty. In the beginning of the task, participants seemed 

to be uncertain due to the missing prior knowledge about the underlying concept of the task and 

shown by the extensive visual search behavior. Visual search behavior became more focused over time 

in parallel to an increasing learning rate. Behavioral data suggested that participants preferred 

probability maximizing strategies and thereby considered only the likely exits, which equaled the take 

the best strategy (TTB). Thus, objective uncertainty seemed to be rather interpreted as certainty by 

the participants during all of the described experiments in the way that participants interpreted the 

74% probability as 100% probability and ignored lower probabilities (Chapter 3 -7).  

 

Research question 2 - The effect of degraded stimuli on the development of mental representations: 

Degraded stimuli did not hamper learning per se, but might even facilitate learning depending on the kind 

of distraction. 

In Chapter 4 (Experiment II), the OVSST was altered by introducing an unstructured background to 

force participants to use more attentional resources to encode the target objects. Indeed, fixation 

frequency was higher in Experiment II with degraded stimuli than in Experiment I. However, 

participants reported in part a more accurate mental representation of the probability concept, 

presumably due to the more focused attention or perhaps even more perceived stimulus quality. In 

the latter case, the pattern in the background of the screen might be used as landmarks facilitating 

learning and memory retrieval. However, using degraded target objects in the form of detailed Gabor 

figures led to less accurate subjective probability concepts even if fixation frequency was similarly high. 
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In this case, degraded target objects rather hampered learning and the high fixation frequency might 

indicate difficulties during encoding of the target objects (Chapter 7) which complied with the 

experiments of Sternberg (1969).  

Research question 3 - Eye movement patterns as an indicator of relearning a probability concept:                              

Eye movement patterns indicated different phases of relearning but entailed specific characteristics. 

Participants had to relearn a probability concept, i.e. they had to learn a probability concept and then, 

they had to switch to another probability concept without prior knowledge. This unknown change of 

the concept led to decreased performance accuracy and was reflected by a higher fixation frequency. 

Thus, the beginning of the relearning phase was directly signalized by a higher fixation frequency. In 

contrast, the characteristics of fixation duration responded on the relearning with a time delay 

(Chapter 5). However, generalizability of the results was questionable. 

Research question 4 - The differential influence of the prediction and the reaction task on the mental 

representation: The developed mental model during the performance of OVSST is based on the prediction 

task and not on the reaction task. 

Initially, the prediction task of the OVSST was developed to enable the acquisition of a mental 

representation about the underlying probability concept. The reaction task should force participants 

to show visual search behavior at the exits. Experimental results actually showed that participants 

were only able to report an accurate mental representation of the prediction task but not in the 

reaction task when testing both tasks separately (Chapter 6). Thus, deeper cognitive processing 

involved in the decision making of the prediction task seemed to affect memory retrieval. However, 

eye movement parameters seemed not to reflect different cognitive processes during the performance 

of the prediction task and the reaction task. 

Research question 5 - Eye movements as an indicator of different degrees of objective uncertainty:                              

Eye movement patterns did not reflect different learning processes during the performance of the OVSST 

under high and low uncertainty. 

Objective uncertainty was varied by choosing a low and high probability distribution of the OVSST. 

Participants had to learn both probability concepts in separate sessions and were explicitly informed 

to learn a probability concept before the experiment. Results showed a better task performance in the 

high probability condition than in the low probability condition according to the objective uncertainty. 

However, eye movement patterns did not differ between the performances of both concepts (Chapter 

7). One reason for this might be that participants used the same decision strategy in both conditions: 

probability maximizing. Furthermore, task uncertainty might be similar in both conditions due to the 
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initial information about learning a probability concept. Another reason might be that participants 

were not able to perceive differences of the high and low probabilities in the low probability condition 

as probabilities were too close to chance. However, the quite accurate mental representation of the 

subjective probability concept in the low probability condition argued against this reasoning.  

Are learning processes indicated by behavioral characteristics?  

This question seemed to be highly relevant to ensure that learning processes occurred during the 

performance of the OVSST. As already mentioned in the main introduction, in the third stage of the 

perceptual recognition process by Jacob and Hochstein (2009), reaction times decreased due to explicit 

knowledge which led directly to an attention allocation on the target stimulus. In almost all 

experiments judgment times as well as reaction times decreased across blocks indicating the ongoing 

learning process and thus, the development of a mental representation also reported in literature (e.g. 

Hunt & Aslin, 2001).  

Another evidence for the participants’ successful learning process was the choice of the probability 

maximizing strategy. Likely exit predictions were preferred in order to improve task performance. This 

reflected the “Take The Best” decision strategy which seemed to be the most adequate decision 

strategy participants could use to increase task performance in OVSST (cf. Yu & Huang, 2014).  

Further characteristics of the learning process, found in the current experiments, were preparation 

benefits, i.e. during correctly predicted trials participants were able to anticipate the correct target 

exit of the object reappearance. This preparation benefit resulted in faster reaction times and fewer 

gaze shifts during correctly than during incorrectly predicted trials. If participants failed to anticipate 

the target exit, more visual search was necessary to focus on the relevant stimulus and to react in an 

appropriate way.  

Interestingly, judgment times were also faster during correctly predicted trials even if the feedback 

was given after the prediction. For a deeper understanding, judgment times were analyzed separately 

for correct and incorrect predictions and likely and unlikely exits. Overall, results rather showed slower 

judgment times for unlikely exit predictions. An explanation for this might be the costs that occurred 

during the change of strategy also called strategy switch costs (Lemaire & Lecacheur, 2010). Actually, 

likely exits were preferred as mentioned earlier in the section. If another strategy was selected, the 

preferred strategy had to be inhibited first. Thus, a new selection seemed to be more costly and is 

finally reflected by longer judgment times.  
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What do eye movements reflect during the mental model acquisition of choices? 

As described in the previous paragraph, evidence for learning processes and thus, the development of 

a mental representation of the OVSST was found. Thereby, the basic assumption of the experimental 

paradigm could be confirmed. However, the crucial issue of this thesis was the role of eye movements 

during the development of the mental representation discussed in the following. 

Earlier theories like the eye-mind assumption by Just and Carpenter (1980) assumed that eye 

movements were a mirror of the brain and reflect cognitive processes. However, the limits of this 

theory were already described by Irwin (2004) as mentioned in the main introduction. The validity of 

the assumption is further questionable for the following reasons. Kok and Jarodzka (2016) concluded 

recently that “Eye movements reflect cognitive processes, but cognitive processes cannot be directly 

inferred from eye tracking data.” (p.1). Irwin (2004) extended this general conclusion by noting that 

fixations are “[…] not sufficient to specify precisely what information a subject is processing from a 

visual display and how effectively it is represented and interpreted by the cognitive system.” (p.110). 

This criticism  was also brought forward by other authors stating that there was still little knowledge 

of how cognitive process could be deduced from eye movements (Feng, 2003; Wedel & Pieters, 2008; 

Wedel & Pieters, 2008). Further, eye movements should always be interpreted in the scope of the 

current task to avoid misleading conclusions (Gidlöf, Wallin, Dewhurst, & Holmqvist, 2013; Kok 

& Jarodzka, 2016; van der Gijp et al., 2016; Yarbus, 1967). We could thus assume that eye movement 

patterns in the current study might reflect cognitive processes but additional information were 

necessary to gain access to the underlying content. 

The results of the experiments presented in this thesis underlined and specified the statements by 

saying that rather general cognitive processes were reflected by eye movements, i.e. learning effects. 

More precisely, the degree of subjective uncertainty and the overall state of learning was indicated by 

decreasing visual search behavior. Thus, eye movements seemed to be strongly coupled with 

processes that were relevant for learning, for example attentional processes, information 

accumulation and the familiarity of the environment.  

However, visual search behavior did not reflect cognitive processing depth of uncertain concepts. 

Here, eye movements seemed not to inform about the depth of cognitive processing during the 

separate testing of the prediction and the reaction task. Although, longer fixation duration was often 

related to deeper processing in literature (Holmqvist et al., 2011), this was not observed in the current 

experiments.  
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Anderson et al. (2004)  proposed to redefine the eye-mind assumption in the way that this assumption 

only applied for the encoding of information. Thus, eye movements reflected only ongoing processes 

that depended on the encoding of information. The relevance of eye movements for ongoing 

processes was confirmed by results of the well-studied “looking at nothing” phenomenon. This 

phenomenon clearly showed that the gaze was directed to empty spatial locations that were 

associated with the relevant information earlier. Thus, the retrieval process was facilitated and eye 

movements informed about ongoing processes (Scholz et al., 2015). However, this effect diminished 

with practice (Scholz, Melhorn, Bocklisch, & Krems, 2011). The results of the current study showed the 

same tendency: If the mental representation was enriched, participants no longer showed extensive 

visual search behavior and retrieval processes were no longer reflected by eye movements.  

However, it was important to consider eye movements not as one homogenous entity but to 

differentiate between specific characteristics as listed, for instance, by Ehmke and Wilson (2007) as 

well as by Poole and Ball (2006) and shown in the relearning experiment (Experiment III). Here, fixation 

frequency directly indicated the beginning of the relearning phase whereas fixation duration did not. 

Next to breaking down eye movements into specific parameters, it was also relevant to consider eye 

movement parameters in the light of interindividual differences. The results of the experiments 

already indicated that the interindividual variability was high which has also been observed by 

Goldberg and Wichansky (2003). Every person showed a distinct average fixation duration (Johansson, 

Holmqvist, Mossberg, & Lindgren, 2011; Rayner, Li, Williams, Cave, & Well, 2007) and either people 

made lots of fixations or only a small number of fixations described as a kind of personality in visual 

search (Holmqvist et al., 2011).  In addition, memory capacities as well as attentional and cognitive 

abilities varied individually (Jipp, 2016; Yi & Davis, 2003) also influencing visual search behavior.  

Nevertheless, in this thesis we mainly tried to examine general common features of visual search 

behavior. In conclusion, eye movement patterns seemed to reflect the state of the user viz. the degree 

of subjective uncertainty and the overall state of learning of a human decision maker. Thus, individual 

troublesome situations can be derived from eye movement patterns.  

Are the three-stage models of perceptual and learning processes applicable to uncertain 
situations? 

To be able to explain the relations of eye movement parameters and behavioral measures on a more 

general level, three stages of eye movements during learning under uncertainty were introduced. The 

three-stage model of perceptual processes (Jacob & Hochstein, 2009) and learning processes 

(Ackerman, 1988; Schumacher & Czerwinski, 2014) compared in the main introduction seemed to be 

plausible for the current findings. The three stages of the learning models seemed also to be evident 
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in the current study: (1) Participants processed the information given by the OVSST, (2) they developed 

a mental representation of the task via information accumulation and finally, (3) an adequate decision 

strategy was developed and actions became more automatic reflected by faster judgment and reaction 

times. The three-stage structure was also true for eye movements: First, (1) participants showed an 

extensive search behavior which (2) became more precise over time so that finally, (3) mainly relevant 

stimuli were focused. As an extension, there might also be three stages of subjective uncertainty: (1) 

The degree of subjective uncertainty was higher at the beginning of the experiment due to the 

innocence of the underlying probability concept, (2) diminished as a result of information 

accumulation until (3) a lower degree of subjective uncertainty was reached due to a comprehension 

of the situation. 

Based on this comparison of the three-stages and the results of the current experiments, I proposed a 

general three-stage model for eye movements during learning which also applies to learning processes 

in uncertain situations as an extension (Fig. 8.1). Thus, a higher degree of subjective uncertainty at the 

beginning of the experiment was indicated by extensive visual search and the accumulation of 

information. In the next stage, subjective uncertainty as well as visual search behavior was reduced 

due to the advanced learning and mental model acquisition leading to an improved performance. 

Finally, uncertainty was low indicated by the visual focus on relevant information and automated 

actions that were precisely stored in the mental model. A difference between learning processes in 

certain and uncertain environments might be the speed of learning. Uncertain information probably 

led to slower learning than certain information.  

A limitation of the model was that the objective uncertainty was not depicted, but rather the subjective 

uncertainty. As shown in Experiment V eye movements could only reflect the subjective uncertainty 

but not the objective uncertainty of the two probability concepts with lower and higher uncertainty.  

A further limitation referred to the segregation of the second stage in the three-stage models. The 

degree of subjective uncertainty in the second stage seemed to be vague and could not be separated 

clearly in the current experiments, especially due to the quick learning of the OVSST mainly within the 

first block. The learning curve in the low probability condition of Experiment V indicated three-stages 

due to the plateau in the middle of the learning process but clear evidence for a second stage was not 

given. Nevertheless, a combination of the three-stage models seemed to be adequate.  
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Figure 8.1: An extension of three-stage models: Three stages of eye movements during learning under 

uncertainty. The degree of uncertainty, the state of learning and the visual search behavior 

develop in parallel.  

How does the visual presentation affect the mental model acquisition? 

The proposed three-stage model described a learning process, however, it did not consider the 

accuracy of the learned content. The accuracy of the developed mental representation seemed to be 

strongly influenced by the visual quality of the stimuli and is sensitive to changes as shown by the 

results of the experiments and the continuous adaptation to the stimuli due to biases. An unstructured, 

but stable patterned background seemed to facilitate learning of single geometric target stimuli 

whereas more detailed patterned target stimuli seemed to hamper learning. Furthermore, even 

abstract stimuli used in the current study seemed to comprise information that bias results and thus, 

could not be considered independently. Boucheix and Lowe (2010) already showed in their study that 

subtle differences between stimuli influenced learning. Using spreading-color cues to highlight 

relevant information of an animated piano mechanism led to a higher attention on the relevant stimuli 

and improved the comprehension as well as the quality of the mental model compared to arrow cues. 

Further, feedback affected the learning process and thus, the mental model acquisition. The OVSST 

provided feedback about the task directly without a long time delay and thereby directed attention to 

the relevant stimuli. This enabled to build a connection between the stimuli and the exit probability 

and putting forward an expectation used for the next prediction. Further, feedback about the task 

performance was depicted after every block. In literature the impact of feedback was already 

confirmed when misinterpretations of the feedback could be precluded and learners were motivated 

to learn (Hattie & Timperley, 2007; Kluger & DeNisi, 1996). The effect of motivation on the learning 
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process during decision making was discussed in the next paragraph. In conclusion, only task relevant 

information should be available in a clear manner to evoke accurate mental models (Canham & 

Hegarty, 2010).  

What is the role of interest as a motivational aspect in the decision process? 

As state above motivational aspects were relevant in the learning process and were taken into account 

in the current study by measuring interest in the task. Results showed that motivational processes 

influenced the decision process, however in an unsystematic way. A higher level of motivation led to 

a performance improvement as well as to a performance decline depending on the task characteristics. 

If people tried harder, they might complicate their decision strategies, for example, by using probability 

matching (Fantino & Esfandiari, 2002). Finally, they made less correct predictions as shown in the first 

experiment. Laude et al. (2012) reported similar results comparing choices between a more likely 

(75%) and less likely (50%) option for food of hungry motivated pigeons and less hungry thus, less 

motivated pigeons. Highly motivated pigeons chose the suboptimal option more often presumably due 

to a greater impulsivity whereas less motivated pigeons preferred the optimal reinforcement more 

often. In studying human gambling behavior Molet et al. (2012) also emphasized a tendency for 

suboptimal strategies for participants with higher gambling motivation, viz. more self-reported 

gambling activities.  

However, if people were highly motivated and tried to integrate the presented feedback in their 

mental model, task performance could also be positively affected as shown by Experiment I and IV. 

There also seemed to be a limit concerning the extent to which task performance could be influenced 

as shown in the last experiment. If the task is too difficult, even higher motivation to learn the 

underlying concept could not cause better task performance. In literature negative and positive effects 

of motivation were already reported (Bekkering & Neggers, 2002; Laude et al., 2012; Molet et al., 

2012). In the current study negative, positive as well as no effects of motivation on task performance 

were reported even if the same paradigm was used in all experiments. Thus, motivation seemed to be 

quite sensitive and presumably dependent on the sample. Further studies might measure motivation 

with a broader scale to get a clearer statement. 

8.2 Practical Relevance 

This section provides a possible application of the research findings presented within this thesis and 

briefly discusses the practical feasibility. The reported eye movement patterns might be relevant for 

practitioners in the context of detecting individual learning problems and task uncertainty. They could 

improve human-computer interaction even under uncertain conditions by adapting the information 
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content to the individual user’s learning curve and cognitive capacities. The information of the state of 

the user might be collected by eye tracking measures and used to adapt the system to the individual 

user’s state (Goldberg & Wichansky, 2003). Lai et al. (2013) already had the idea of an “[…] adaptive 

learning system with eye tracking embedded technology [...]” (p.99) to improve learning processes. A 

more optimal level of cognitive load, i.e. the mental effort to operate working memory efficiently, 

might be reached by reducing the amount of information and offering help systems. Cognitive load 

theory was based on limited capacities of working memory for information and emphasizes the 

importance of instructional design to reduce extraneous cognitive load which was especially of high 

relevance in practice with multiple stimuli (Sweller, 1988; van Merriënboer & Sweller, 2005). 

Another possibility to reduce cognitive load might be the guidance of eye movements. Earlier studies 

already reported that attention of participants can be guided via a model’s eye movements, i.e. the 

expert’s eye movements were presented to the novice while solving a task. This intervention fostered 

learning by improving the visual search behavior and thus enhancing the interpretation of relevant 

information (Jarodzka, van Gog, Dorr, Scheiter, & Gerjets, 2013; van Gog, Jarodzka, Scheiter, Gerjets, 

& Paas, 2009). The guidance of attention through experts’ eye movements might be an adequate 

intervention if a troublesome situation was previously detected via visual search behavior.  

In order to realize the practical applications, a few issues have to be solved. Due to the high 

interindividual variability, an individual baseline is needed before assumptions of the user profile can 

be made. As earlier discussed, the context specificity and task dependency of eye movements have to 

be considered additionally. There might also be failures in eye tracking that can occur due to glasses 

or dark eye colors as well as inconvenient lightning conditions (Goldberg & Wichansky, 2003). 

Therefore, eye tracking data should be used carefully and results checked with other measures if 

possible. Hyönä (2010) noted that offline measures are necessary to complement eye tracking data 

emphasizing the necessity of the Concept Awareness Questionnaire used in the current study. In 

addition, the acceptance of the technique due to data protection should not be disregarded. 

8.3 Limitations 

In the following, some methodological issues were discussed that led to limitations of this thesis. The 

generalizability of the reported results was reduced as participants represented only a specific target 

group, namely students. Also external validity of the laboratory experiments was low due to the high 

level of abstraction and the high task dependency of eye movements (Gidlöf et al., 2013). Further 

research is necessary to test the applicability on real situations.  
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Another limitation referred to the definition of the eye movement parameters and emphasized the 

need for standardized parameters. Studies in literature were often based on different parameter 

definitions and thus, every study was limited to these definitions and the comparability was missing. 

Results of the current studies might be different if other definitions of the tested eye movement 

parameters were used. For instance, fixations in the current study were defined by the saccade 

detection algorithm provided by SR Research based on velocity and acceleration criteria (Tatler, 2007). 

Nyström and Holmqvist (2010) already addressed the problem of a missing standard and proposed a 

new adaptive velocity algorithm that should be more robust. Furthermore, the display was separated 

into four AOIs around the exits and the entrance with a line acting as a rigorous threshold. However, 

the validation study mentioned earlier showed that eye tracking data was always scattered to a certain 

extent and not completely accurate. Thus, a corridor acting as a border area might be better to 

separate the AOI’s instead of a line. Eye movement data within this corridor should be excluded due 

to the lack of a clear allocation to the AOIs.  

There might also be some restrictions involved in the OVSST. The prediction task was processed offline 

as participants had to choose the exit when the target object is in the room and thus, when the relevant 

stimulus was not visible. Due to this absence of the stimuli, visual search behavior might be reduced 

informing less about the ongoing cognitive processes. In addition, visual search behavior might be 

reduced because of the simplified task that differs only in one feature, namely the direction of the 

exits. This might be advantageous for the interpretation of the manipulated variables, but also led to 

a simplification that is not common in the real world. Another limitation referred to the comparability 

of the stimuli that was restricted as some object-exit associations seemed to be easier to learn and to 

retrieve than others. The last version of target stimuli seemed to be still not optimal as Gabor figures 

with few and many circles also seemed to be less distinguishable in comparison to the third Gabor 

figure with a symmetric pattern. A solution might be the use of different letters or numbers ordered 

on a line to exclude a higher order. In the current experiments, the top exit had some kind of higher 

order due to its location. Further, it might be useful to ask participants about the ad-hoc associations 

of the target stimuli before running the experiment to identify any biases. Finally, the measurement 

of the subjective probability concept, the Concept Awareness Questionnaire, has to be improved as 

the 4% of the rare occurrence, the reappearance of the target object at the bottom entrance, were 

not included in the questionnaire. Thus, participants could not consider this event during the 

estimation of the probabilities, but rather tried to split 100 percent into three parts, the reappearance 

of the target object at the left, top and right exit. The rare occurrence and the Concept Awareness 

Questionnaire remained the same in all experiments to be able to compare data. However, the rare 
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occurrence might be excluded in further experiments or the questionnaire expanded by asking for the 

percentage of the rare occurrence to have a more reliable set of data for the analysis.  

Another aspect considered that uncertainty was operationalized and manipulated via probabilities. 

This manipulation did not evoke the intended effects in the way that the manipulation of the objective 

uncertainty did not affect subjective uncertainty, and thus might not be an appropriate way to vary 

the degree of subjective uncertainty. Further, objective uncertainty seemed to be rather interpreted 

as certainty as a kind of rationalization strategy (Lipshitz & Strauss, 1997): participants developed a 

decision strategy to ignore unlikely events and focused only on likely events. The question arose 

whether objective uncertainty can be operationalized in another way, for example, by varying the 

sequence of the trial (temporal uncertainty). 

8.4 Directions for Future Research 

Future research might follow two different directions: an extended experimental paradigm and a more 

real world setting for a better generalizability of the results. As mentioned in the previous section 

uncertainty was created by varying probabilities called objective uncertainty. However, uncertainty 

could also be varied by varying the time intervals in the trials and thus, creating a kind of temporal 

uncertainty (cf. Alegria & Bertelson, 1970; Rolke & Hofmann, 2007). The comparability of objective 

uncertainty and temporal uncertainty could be tested and discussed. In addition, it was still not clear 

which probability distributions could be learned by participants or were too close to chance as shown 

in Experiment V. The probability distribution finally chosen in Experiment V was tested in a pilot study, 

however, the probabilities were chosen by chance. The threshold for a random response behavior due 

to the inability to distinguish between the likelihood of different options and the ability for statistical 

learning might be investigated in further experiments. In the context of perception, experience about 

determining a perceptual threshold was already gained and used to study perceptional learning 

without attention and awareness (Watanabe, Náñez, & Sasaki, 2001). 

Another aforementioned adjustment would be the design of a more complex OVSST, especially 

concerning the visual search, to provoke more eye movements in line with common eye movement 

literature reporting more visual search within more complex settings (Duchowski, 2007; Ehmke 

& Wilson, 2007; Holmqvist et al., 2011). It could be tested if results of the thesis can be also transferred 

to more complex test environments. It would be also interesting to investigate when people tend to 

use the TTB strategy or switch to other strategies like probability matching (Fantino & Esfandiari, 

2002), Take The Last or minimalist strategy (Dougherty et al., 2008). An experiment could be conducted 

which contains a condition with rewards for the prediction of the unlikely exits or costs for incorrect 
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predictions. The Prospect Theory by Kahneman (2011, pp. 278–288) already showed that humans deal 

with benefits and costs in different ways. The results could be compared with previous studies and 

thus, the influence of rewards and costs on the selection of the strategy could be analyzed. 

In order to extent the external validity of the current results, mentioned as a limitation of the current 

experiments, it might be interesting to use real workspace scenarios. For instance, users of compute 

clusters were modelled with data of a newly developed questionnaire for user habits of compute 

clusters to simulate the human-machine interaction (Schlagkamp, Ferreira da Silva, Renker, & 

Rinkenauer, 2016). In the same way, the eye movement technique could be used while interacting 

with a specific interface or a robot to investigate if eye movements are a reliable indicator for 

uncertainty when interacting with real interfaces or robots. This could be used, for instance, to extent 

and stress the results concerning approach-avoidance tendencies of the interaction between robots 

and humans studied by Rinkenauer et al. (2017). 

Besides these experimental suggestions for future research, a theoretical issue might relate to the 

developed three-stage model of learning under uncertainty inspired by earlier developed three-stage 

models (Ackerman, 1988; Jacob & Hochstein, 2009; Schumacher & Czerwinski, 2014). More evidence 

should be gathered for the confirmation of the model. Further, the model could be enriched by 

clarifying the specific role of different eye movement variables regarding the distinct processing steps 

and the learning environment. For instance, it could be tested if fixation frequency is more sensitive 

to uncertain situations than fixation duration in accordance with the results in Experiment III. 

Another relevant aspect might a clearer differentiation of uncertainty and stress as the theoretical 

construct might overlap to a great extent. Uncertainty might be a trigger for stress which can be seen 

as a reaction on a higher cognitive load. The development of stress depended on the evaluation of the 

situation containing an estimation of the likelihood for a high or low cognitive load in the situation 

(Ulich, 2011, p. 473). Thus, there seemed to be a strong coupling between stress and subjective 

uncertainty defined as the perceived uncertainty by the individual (see Chapter 1). In literature, a 

higher level of stress was associated with shorter fixations (Holmqvist et al., 2011, p. 383) comparable 

with the experimental results for a higher level of subjective uncertainty in this thesis. In future studies, 

stress might be tested separately, for example, via questionnaire to be able to differentiate the 

constructs in a clearer manner. 

The field of eye movements during decision making under uncertainty seemed to be a new research 

field that just started to develop which provides a lot of different directions for future research that 

should also consider the limits of eye movement analysis. This thesis provided a lot of additional 
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aspects that were beyond the scope of the current study but should be investigated in more detail like 

eye blinks (see Experiment 1) or recurrence plots (see General Method) in the context of uncertain 

learning environments. Especially, the analysis of eye blinks seems to be a promising approach to 

extend the investigation of eye movement behavior.  

8.5 Conclusion 

This thesis tried to shed light on the development of mental models under uncertainty by investigating 

visual search behavior. In conclusion, this thesis showed that learning processes as well as the 

subjective uncertainty were reflected by eye movements. The findings could be integrated into a three-

stage model of eye movements during learning under uncertainty providing an extension of existing 

models. Uncertainty as well as visual search behavior is reduced with increased learning progress. 

Importantly, eye movement parameters entailed specific characteristics and were depended on 

various aspects like the design of the task, initial knowledge or individual characteristics that have to 

be considered when interpreting results.  
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Appendix A: Concept Awareness Questionnaire  

Do you think the object (circle, square, triangle) influences the exit where the symbol reappears?  
 

Yes  No  
 
Please estimate the probability of the circle reappearing at each of the exits. Write your answer in the 
following figure (in sum it has to be 100%). 
 
 
 
 
 
 
 
 
 

 
 
 
Please estimate the probability of the square reappearing at each of the exits. Write your answer in 
the following figure (in sum it has to be 100%). 
 
 
 
 
 
 
 
 
 
 
 
 
Please estimate the probability of triangle reappearing at each of the exits. Write your answer in the 
following figure (in sum it has to be 100%). 

 
 

 

 

 

  

____ % ____ % 

____ % 

____ % ____ % 

____ % 

____ % ____ % 

____ % 
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Appendix B: Procedure and Results of the Eye Tracking Validation Study  

In the following, the method and the results of the validation study, comparing the SMI Red 500 and 

EyeLink 1000 eye trackers are briefly described. After a 5-point calibration and 4-point validation, the 

experimental condition started. A central cross appeared for 1 sec followed by one of the three dark 

gray objects (circle, triangle, square) appearing randomly at one of nine different positions (in the 

middle of the screen, 11.5 cm left, top, right and down from the center and 45°, 135°, 225°, 315° in 

between). As shown in Figure 9.1 either objects remained dark gray and participants were instructed 

to focus the eyes on the appeared object (no-go trial) or the object became light gray after 1 sec and 

participants had to react as quickly as possible by pressing the space bar (go trial). Trials with a longer 

reaction time than 2 sec were declared as errors. Every object appeared two times at the same 

position, so that 54 trials had to be performed subdivided into three blocks. One-third of the trials 

were go trials. Participants performed the experiment two times, once with the SMI eye tracker and 

once with the EyeLink. The order of the eye tracker model was randomized. In total 10 participants (7 

female) with mean age of 24 years (SD=2.4) were tested. Results of correlation analysis with 

Spearman’s Rho showed that fixation time (r=-.020, p=.645), fixation count (r=.010, p=.824) as well as 

reaction time (r=-.083, p=.266) was not significantly associated with the object type. The reaction time 

of the participants to the circle (M=.458, SD=.045), the triangle (M=.458, SD=.060) and the square 

(M=.458, SD=.065) did not differ significantly: t(9)=0.01, p=.995 for the difference between triangle 

and circle, t(9)=-.015, p=.988 concerning circle and square and t(9)=-.018, p=.986 for the pairing 

triangle and square. The comparison of the SMI and EyeLink eye tracker showed that eye movement 

data recorded by the SMI eye tracker were more precise as scatter plots of fixations on the target 

objects at the nine positions showed lower standard deviations M=.567, SD=.080 for x-coordinates and 

M=.764, SD=.142 for y-coordinates than data resulted from the EyeLink (x-coordinate: M=.738, 

SD=.094, y-coordinate: M=.956, SD=.200). Planned t-tests showed that these differences were highly 

significant for the x-coordinates, t(8)=5.33, p<.001, and marginal significant (p<.10) for the y-

coordinates, t(8)=1.90, p=.093. However, the drift defined as the difference between start and end 

position of the fixations, viz. the deviation from the mean of the scatter plots for the data recorded by 

the EyeLink (x-coordinate: M=.012, SD=.059, y-coordinate: M=.126, SD=.218) and the SMI (x-

coordinate: M=.030, SD=.116, y-coordinate: M=.021, SD=.105) did not differ significantly (x-

coordinates: t(8)=0.36, p=726; y-coordinates: t(8)=1.41, p=.197). In conclusion objects seem to be 

comparable and thus reliable for the OVSST. Additionally, the precision of the SMI eye tracker seems 

to be sufficient as well as the overall accuracy. However, a drift check of the eye movement data was 
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implemented before analyzing data of all experiments executed for the thesis to be sure that data 

points are accurate and thus reliable. 

 

Figure 9.1: Schematic description of the validating task: Go Trials (left) and no-go Trials (right). All trials 

last 3 seconds (1 sec central cross and 2 sec target object presentation) regardless whether 

the target object changes the color intensity or not.  
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Appendix C: Means and Standard Deviations for Trends across Blocks 

 

Experiment I 

Table 9.2: Means and standards values for correctly and/or incorrectly predicted trials of marginal or 

partly significant effects across blocks in Experiment I 

Variable Judgment Block Mean Standard Deviation 

Reaction time 

(ms) 

correct 

1 953ms 141ms 

2 914ms 132ms 

3 885ms 128ms 

4 880ms 121ms 

incorrect 

1 1.148ms 188ms 

2 1.113ms 130ms 

3 1.102ms 137ms 

4 1.100ms 137ms 

Number of 

Predictions 
correct 

1 48.53 7.87 

2 55.24 4.48 

3 56.41 4.84 

4 56.59 3.99 

Blinks per trial 

correct 

1 2.25 1.51 

2 2.38 1.32 

3 2.66 1.46 

4 3.01 1.94 

incorrect 

1 2.13 1.41 

2 2.29 1.30 

3 2.84 1.52 

4 3.14 2.17 
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Experiment II 

Table 9.3: Means and standards values for correctly and/or incorrectly predicted trials of marginal or 

partly significant effects across blocks in Experiment II 

Variable Judgment Block Mean Standard Deviation 

Number of 

Predictions 
correct 

1 48.06 9.08 

2 54.29 4.96 

3 56.88 3.52 

4 57.94 2.08 

 

Experiment III 

Table 9.4: Means and standards values for correctly and/or incorrectly predicted trials of marginal or 

partly significant effects across blocks in Experiment III 

Variable Judgment Block Mean Standard Deviation 

Reaction time 

(ms) 

correct 

1 888ms 148ms 

2 827ms 112ms 

3 808ms 126ms 

4 797ms 124ms 

5 839ms 119ms 

6 809ms 146ms 

7 830ms 135ms 

8 801ms 128ms 

incorrect 

1 1.097ms 128ms 

2 1.079ms 128ms 

3 1.089ms 103ms 

4 1.099ms 158ms 

5 1.090ms 133ms 

6 1.073ms 142ms 

7 1.094ms 118ms 

8 1.084ms 132ms 
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Experiment IV 

Table 9.5: Means and standards values for the number of gaze shifts in the reaction and the 

prediction task across blocks in Experiment IV 

Variable Task Block Mean Standard Deviation 

Number of gaze 

shifts 

Prediction 

1 4.99 1.11 

2 4.46 1.14 

3 4.39 1.14 

4 4.29 1.11 

Reaction 

1 5.17 1.05 

2 5.40 1.13 

3 5.47 1.05 

4 5.46 1.16 

 

Experiment V 

Table 9.6: Means and standards deviations for the fixation duration in AOIlow for incorrectly and 

correctly predicted trials across blocks in the high probability condition of Experiment V 

Variable Task Block Mean Standard Deviation 

Fixation Duration 

AOIlow 

correct 

1 0.74ms 0.55ms 

2 0.96ms 0.89ms 

3 0.82ms 0.90ms 

4 0.92ms 1.01ms 

incorrect 

1 2.00ms 0.65ms 

2 2.22ms 0.65ms 

3 2.27ms 0.70ms 

4 2.32ms 0.61ms 
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Table 9.7: Means and standards deviations for the fixation frequency in AOIpredict for incorrectly and 

correctly predicted trials across blocks in the low probability condition of Experiment V 

Variable Task Block Mean Standard Deviation 

Fixation Frequency 

AOIpredict 

correct 

1 8.09 3.17 

2 7.79 3.28 

3 7.59 2.59 

4 7.48 3.10 

5 7.31 2.57 

6 7.05 2.64 

incorrect 

1 3.93 1.54 

2 3.70 1.43 

3 3.66 1.24 

4 3.61 1.41 

  5 3.70 1.21 

  6 3.41 1.08 
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