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ABSTRACT 
Diabetes is associated with numerous metabolic and vascular risk factors that contribute to a high rate of micro-
vascular and macro-vascular disorders leading to mortality and morbidity from diabetic complications. In this 
case, the major cause of death in overall diabetic patients results from diabetic nephropathy (DN) or renal failure. 
The risk factors and mechanisms that correspond to the development of DN are not fully understood and so far, 
no specific and sufficient diagnostic biomarkers are currently available other than micro- or macroalbuminuria. 
Therefore, this review describes current and novel protein biomarkers in the context of DN as well as probable 
proteins biomarkers associated with pathological processes for the early stage of DN via proteomics data togeth-
er with bioinformatics. In addition, the mechanisms involved in early development of diabetic vascular disorders 
and complications resulting from glucose induced oxidative stress will also be explored. 
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INTRODUCTION 

Diabetes mellitus (DM) is one of the 
most common chronic diseases associated 
with abnormally high levels of glucose in 
blood circulation. The incidence of DM has 
continuously increased both in the adult and 
pediatric populations (Ogurtsova et al., 
2017). Around 415 million people were es-
timated to have diabetes in 2015 (Chatterjee 
et al., 2017), out of which, more than 90 % 
of individuals had type 2 DM (T2D). In ad-
dition, the National Diabetes Statistics Re-
port reveals that up to 9.4 % of the U.S. pop-
ulation had diabetes in 2015, which affected 

about 30.3 million people of all ages (Gheith 
et al., 2016). The complications of diabetes 
such as diabetic nephropathy (DN), neuropa-
thy and retinopathy contribute to increased 
morbidity and mortality rate of all diabetic 
patients’ worldwide. Moreover, present ther-
apeutic options are still in a dissatisfying 
condition. Among those complications, DN 
affects approximately 20-40 % of all diabet-
ics (Molitch et al., 2004). Not only is it the 
most common cause of chronic kidney dis-
ease (CKD), it is also the most frequent 
cause of end-stage renal failure (ESRD) 
(Viberti et al., 1982). The earliest diagnostic 
sign for DN is the presence of detectable 
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amounts of microalbuminuria, indicated with 
an increase in the level of urine albumin 
(Figure 1) (Mischak et al., 2015). In contrast 
to type 1 DM (T1D), the levels of microal-
buminuria in type 2 DM (T2D) can show 
fluctuation. This can thus, lead to the devel-
opment of macroalbuminuria in 20-40 % of 
diabetic individuals (Molitch et al., 2004). 
Moreover, a 40-50 % increase of proteinuria 
has been evidenced to promote the develop-
ment of chronic renal failure (CRF). In addi-
tion, up to 50 % of patients with T2D pro-
gress to cardiovascular diseases and eventu-
ally death. Therefore, obtaining early diagno-
sis of individuals with risk for the develop-
ment of DM complications is extremely im-
portant for the prevention of further disease 
progression (Campion et al., 2017; Kim et 
al., 2007). However, no specific diagnostic 
biomarkers for T2D with nephropathy is cur-
rently available other than microalbuminuria 
or macroalbuminuria. Although microalbu-
minuria (MAU) has been considered to re-
flect the early stage of the irreversible pro-
cess of nephropathy, the predictive value of 
MAU for type 2 diabetics with nephropathy 
is still insufficient.  

Proteins are responsible for all biological 
processes and environmental influences.  
Hence, many biomarkers that were estab-
lished in the past decade consist of a large 
number of proteins.  Recently, the prote-
omics technology has been applied in many 
research fields for the discovery of novel bi-
omarkers that can be useful in discerning 
certain diseases and their associated compli-
cations, including DN. Furthermore, poten-
tial biomarkers with the ability to ascertain 
higher specificity and accuracy for clinical 
implementation are also sought out through 
proteomics. Moreover, studies on proteomics 
are useful for understanding the mechanisms 
of pathology. Serum proteomics is the most 
popular target for the investigation of disease 
related biomarkers due to the containment of 
numerous protein information (Kim et al., 
2007; Vitova et al., 2017). Urinary prote-
omics is another source used in the identifi-
cation of non-invasive biomarkers (Devara-
jan, 2010). Previously, Devarajan reviewed 
existing CKD biomarkers in an effort to gain 
an understanding on the complex pathophys-
iologic processes underlying CKD progres-
sion.  
 

 
Figure 1: Levels of urinary albumin as measured using various tests at different stages of DN. Thirty 
mg/day of albumin is regarded to be the upper limit of the normal range for urinary albumin excretion. 
Conventional urine dipsticks reflect a ‘+’ positive diagnostics at a level of 30 mg/dL albumin that corre-
sponds to 300 mg/L or 300 mg/day. Therefore, a positive value for urine dipstick affords less sensitivi-
ty. This indicates a minimal progression of glomerular function. 
 
 

Urinary	Albumin	Level

Stages	of	Nephropathy

Urine	dipstick

24	Hour	
ACR

0

Normal Microalbumin Macroalbumin
Negative Positive

30	mg/day
30	mg/g

300	mg/day
300	mg/g*

Increased	triglycerides	,	
total	and	LDL	cholesterol Progressive	GFR	decline

 >300	mg/g*



EXCLI Journal 2018;17:312-330 – ISSN 1611-2156 
Received: February 22, 2018, accepted: March 12, 2018, published: March 26, 2018 

 

 

314 

In an extension of this aforementioned 
work, this review aims to cover the current 
and novel plasma protein biomarkers in the 
context of DN in order to assimilate 
knowledge from the early stage of disease 
development and identify potential prote-
omics biomarkers for actual clinical imple-
mentation. In addition, this article also re-
veals the pathophysiological roles of hyper-
glycemic related renal disease such as oxida-
tive stress induced conditions. It is anticipat-
ed that the information gathered herein re-
garding the mechanism may be useful for the 
discovery of potential diagnostic and thera-
peutic targets. 

However, major challenges in synthesiz-
ing these discoveries and translating them to 
clinical practices still re-main. In recent 
years, bioinformatics have been instrumental 
in the study and analysis of the rapidly in-
creasing proteomics data. Therefore, in this 
review we also discuss the implementation 
of bioinformatics and machine learning in 
their roles on the identification of novel bi-
omarkers of DN. 

 
CURRENT BIOMARKERS OF 

NEPHROPATHY USED IN CLINICAL 
DIAGNOSIS 

Glomerular filtration rate 
Glomerular filtration, which is a process 

where the kidneys remove excess waste and 
fluids by filtering blood, can be used to esti-
mate the kidney function using the rate of 
blood filtration. As such, the glomerular fil-
tration rate (GFR) is an assessment of the 
remaining function of kidneys. GFR is also 
commonly applied as a biomarker for the 
prediction of chronic kidney disease stages. 
However, it should be noted that GFR cannot 
be measured directly. Measurements are tra-
ditionally based on the renal clearance ca-
pacity of endogenous biomarkers in plasma, 
expressed as the volume of plasma complete-
ly cleared of the biomarker per unit time. 
This test, known as the estimated GFR 
(eGFR), commonly measures the levels of 
serum creatinine (SCr) or cystatin C (CysC) 
in the blood and the result is used in combi-

nation with age, sex and weight of patients in 
order to calculate how well kidneys are func-
tioning. Nevertheless, biomarkers used to 
measure GFR can also be exogenous sub-
stances such as inulin, iohexol, iothalamate, 
technetium diethylenetriamine-pentaacetic 
acid (TcDTPA), chromium labelled eth-
ylenediaminetetraacetic acid (CrEDTA), etc.  

Although GFR is considered as the most 
important biomarker of kidney function, the 
calculations are time consuming and require 
experienced personnel for its implementa-
tion. Moreover, the estimated value from 
equations can promote some negligible sys-
tematic bias in which the average deviation 
from the assessment of GFR are imprecise, 
which shows approximately 10-20 % of es-
timates deviates by more than 30 % from the 
measured GFR value (Brenner et al., 1978a; 
Levey et al., 2015). 

 

Microalbuminuria 
Microalbumin is an outcome predictor in 

patients with renal disease, as such; the de-
termination of minimum levels of urinary al-
bumin excretion (microalbuminuria) can be 
implied for incipient diabetic kidney disease. 
Microalbuminuria has been identified for the 
discharge of 30 to 300 mg of albumin per 
day (or 20 to 200 µg/min or 30 to 300 µg/mg 
creatinine) in 2 out of 3 urine collections. 
This phase calls for aggressive management 
in order to prevent retard overt DN. Addi-
tionally, microalbumin can be used as a pre-
dictor of morbidity and mortality in patients 
with no signs of renal diseases.  

In hypertensive patients, microalbuminu-
ria has also been associated with the en-
largement and thickening of the left ventricle 
(left ventricular hypertrophy). Furthermore, 
for hypertensive and normotensive patients, 
microalbuminuria can be used as a bi-
omarker for the increasing risk of cardiovas-
cular diseases and early cardiovascular mor-
tality. However, performing a conventional 
24-hour urine collection for testing of pro-
teinuria and measurement of creatinine 
clearance are optional because the measure-
ment of a spot urine collection for the as-
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sessment of albuminuria to creatinine ratio is 
acceptable for diagnostic and therapeutic im-
plementation. Remarkably, exercise, dietary 
protein intake, vasoconstriction in the up-
right posture, pregnancy, fever and activation 
of the renin-angiotensin system tend to in-
crease albumin excretion rates and there is 
significant diurnal and day-to-day variation 
(Brenner et al., 1978a, b). On a basic diag-
nostic urine test strip or dipstick, 10 to 20 
mg/dL is the minimal detection limit of pro-
tein. A positive predictive value for the dip-
stick therefore, only indicates the possibility 
of microalbuminuria but it is not an exact 
form of diagnosis. 

 
Creatinine 

Creatinine is a 113 Da protein, obtained 
as a by-product from the breakdown of crea-
tine phosphate in muscles. It is completely 
filtered but not reabsorbed by the glomerulus 
nor is it metabolized and thus, is excreted 
unchanged from the kidneys. However, a 
significant percentage of creatinine in the 
urine is derived from the proximal tubular 
secretion. Thus, plasma creatinine levels are 
produced at a relatively constant rate based 
on age, gender and muscle mass (0.8 to 1.4 
mg/dL in adult males and 0.6 to1.2 mg/dL in 
adult females).  

A deficient filtration process in the kid-
ney can be indicated with an increase in con-
centration of blood creatinine levels. Conse-
quently, the level of blood and urinary creat-
inine can be applied for the determination of 
the creatinine clearance (CrCl), a biomarker 
which corresponds to GFR. In clinical labor-
atory conditions when the estimated GFR 
based on creatinine is predicted as not accu-
rate enough for clinical decision making, 
confirmatory tests are needed for exact de-
termination of GFR. These include estimat-
ing GFR using serum cystatin C (eGFRcys) 
or a combination of both (eGFRcr-cys). 
 
Blood Urea Nitrogen (BUN) 

Urea is the primary metabolite derived 
from dietary protein and tissue protein turn-
over. It is a relatively small molecule con-

sisting of 60 Da that can be distributed 
throughout the body via the blood circula-
tion. Therefore, the term of blood urea nitro-
gen (BUN) refer to the level of urea nitrogen 
in blood and serum.  

The normal value of BUN is approxi-
mately 5 to 20 mg/dL, or an equivalent 
amount of 1.8 to 7.1 mmol/L. The broad 
range of this normal condition is acceptable 
due to individual variations such as dietary 
protein intake, endogenous protein catabo-
lism or breakdown, hydration state, urea 
production and metabolism inside the body. 
However, the indications of BUN levels are 
non-specific to renal functionality. Several 
factors are involved in the determination of 
BUN levels which include blood volume, 
circular blood flow, high protein diet and al-
so some complications such as febrile ill-
ness, gastrointestinal bleeding etc.  

Owing to limitations of current bio-
markers of renal failure and DN (i.e. low ac-
curacy and non-specificity of such bio-
markers due to variations on age, sex, body 
weight, protein intake and catabolism; com-
plications arising from factors pertaining to 
the state of hydration, fever or even pregnan-
cy of patients) there is a substantial need for 
the discovery of novel serum biomarkers. 

 

DIABETIC NEPHROPATHY AND  
BIOMARKERS OF GLOMERULAR 

DAMAGE 
Diabetic nephropathy (DN) is character-

ized by damages to kidneys as caused by di-
abetes. Changes in glomerular permeability 
and structure are significantly defined as bio-
markers for evaluation. Generally, the com-
position of glomerular capillary wall com-
prises of endothelial cells, basement mem-
brane and epithelial cells. The selectivity in 
glomerular membrane filtration is present in 
the basement membrane, which is a part of 
the kidney that helps filter waste and extra 
fluids from the blood. Importantly, proteins 
that are not filtered, but retained in the circu-
lation is due to their size and charge (Bren-
ner et al., 1978b; Matheson et al., 2010). 
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However, damage of the basement mem-
brane or changes in permeability barrier 
leads to protein exclusion failure, which 
promote urinary protein excretion. Conse-
quently, proteinuria of plasma proteins (e.g. 
albumin and transferrin) that are normally 
not freely filtered through the glomerulus are 
detectable (Najafian and Mauer, 2009). In 
addition, structural changes associated with 
diabetes-related kidney failure includes the 
increase in glomerular extracellular matrix 
accumulation and thickening of the basement 
membrane in the glomeruli (Ziyadeh, 1996), 
as well as renal tubular hypertrophy and as-
sociated basement membrane alterations in 
the tubulointerstitium with tubolointerstitial 
fibrosis (Al Hariri et al., 2017). These ab-
normalities are allied with renal over produc-
tion of extracellular matrix proteins, such as 
type IV collagen (Brenner et al., 1978b) and 
other proteins. Diabetic mouse models 
demonstrated the aorta and kidney responses 
to the diabetic state differently. Protein ex-
pression profiling studies in mouse tissue 
model revealed the presence of protein modi-
fication, which affected a wide variety of 
protein function such as proteins involved in 
the inflammatory processes, fibrotic, oxida-
tive, cytoskeleton and their related proteins. 
Moreover, protein networking and intercon-
nection to vascular disorders and also kidney 
disease are detectable. 
 

OXIDATIVE STRESS IN DIABETIC 
NEPHROPATHY 

Chronic hyperglycemia has been report-
ed for a decade as a condition that is vigor-
ously associated with diabetes complica-
tions. Long-term damage, dysfunction and 
chronic failure of various organs (e.g. eyes, 
kidneys, nerves, heart and blood vessels) (Pu 
et al., 2006) are the major causes of illness 
and death in population suffering from dia-
betes.  

Nowadays, the elucidation of mecha-
nisms associated with DM that promotes 
their complications, is still elusive due to the 
complexity of biological processes that 

might be involved. However, the evidence of 
direct toxic effects of high blood glucose 
concentrations on the increase of high blood 
pressure, abnormal lipid metabolism, oxida-
tive stress, chronic inflammation, hypoxia 
and ischemia (Evans et al., 2002) have been 
revealed.  

Investigations suggest that oxidative 
stress plays a pivotal role in the pathogene-
sis, progression and complications of T2D 
(Aghadavod et al., 2016; Giacco and Brown-
lee, 2010). Systemic effects especially cellu-
lar dysfunction as provoked by lipid peroxi-
dation induced-oxidative stress as well as 
important biomolecule alterations (e.g. pro-
tein and DNA) is strongly correlated to ele-
vated amounts of reactive oxygen species 
(ROS) that is produced in various tissues un-
der diabetic conditions.  

An important outcome of oxidative stress 
affecting the biological cascade is the ab-
normalities of metabolism in diabetic indi-
viduals and the overproduction of mitochon-
drial superoxide radicals in endothelial cells 
lining. The higher production of superoxide 
radical leads to the stimulation of biological 
pathways that are involved in the pathogene-
sis of diabetic complications, such as the 
polyol pathway flux (the sorbitol-aldose re-
ductase pathway), increased production of 
advanced glycation end products (AGEs), 
higher expression of AGEs ligands and re-
ceptors, enhancement of the isoforms of pro-
tein kinase C, hexosamine pathway activity 
increase and DNA lesions such as DNA 
strand breaks and protein crosslink formation 
as well as oxidative damage.  

Some evidence demonstrates that AGEs 
play a crucial role in the development and 
progression of diabetic vascular damage. 
Accumulation of AGEs in the kidney may 
contribute to a variety of microvascular and 
macrovascular complications through the 
formation of crosslink between the extracel-
lular matrix basement membrane molecules 
by engaging the receptor for AGEs (RAGE) 
(Basta et al., 2004). RAGE works as a signal 
transduction receptor molecule that can bind 
to S100 calgranulins and amphoterins, which 
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represent non-AGE pro-inflammatory mole-
cules. The activation of multiple signalling 
pathways is brought about by the accumulat-
ed expression of RAGE associated ligands at 
sites of high tissue damage (Tan et al., 
2004). Furthermore, the activation of key 
transduction pathways by RAGE due to 
AGEs leads to increased production of pro-
inflammatory cytokines.  

In addition, macrophages are induced to 
release IL-6, tumor necrosis factor (TNF)-α 
and IL-1β upon stimulation with AGEs. 
Thus, the production of C reactive protein 
(CRP) might be initiated by the aforemen-
tioned signalling cascade, which are stimu-
lated by AGEs on macrophages (Pickup et 
al., 1997). These abnormalities eventually 
lead to an increase of serum or plasma con-
centrations of several acute phase proteins 
such as CRP, serum amyloid A, fibrinogen, 
α1-acid glycoprotein and plasminogen acti-
vator inhibitor-1 (Pickup et al., 1997; Vani-

zor et al., 2001). Similarly, our results re-
vealed changes in protein expression levels 
of many acute phase proteins including hap-
toglobin, fibrinogen, retinal-binding protein 
4, complement factors, etc. (Table 1 and 
Figure 2).  

In addition, hyperglycemia has been 
found to promote the release of free radicals 
while reducing antioxidant defense respons-
es, which are correlated to endothelial dys-
function. Therefore, high potential bi-
omarkers of oxidative stress and stress de-
fense responses could indicate the progres-
sion of diabetes and its complications 
(Najafian & Mauer, 2009). Numerous uri-
nary biomarkers related to oxidative stress 
have been studied and reported, which corre-
sponds to diabetes and its chronic complica-
tions including, 8-hydroxy-2’-
deoxyguanosine (8-OHdG, or 8-oxodG) and 
pentosidine (Dronavalli et al., 2008). 

 
 
Table 1: Comparison of plasma protein differential expression in hyperglycemic (glucose > 126 
mg/dL) and normal conditions (glucose < 100 mg/dl) 

Identified protein Protein function Pre-diabetic Diabetic Diabetic with  
Microalbuminuria 

Serotransferrin Transport +1.54 -1.06 +1.02 

Haptoglobin Transport +1.19 +1.07 -1.29 

Haptoglobin α2-chain Transport -1.03 -1.36 -1.59 

Immunoglobulin J chain Defense response -2.76 -1.35 -1.30 

CD5 antigen like Defense response -2.04 -1.17 ND 

Transthyretin Metabolism -1.14 -1.15 +1.54 

Fibrinogen β chain Metabolism +1.12 +1.24 +1.10 
Retinol binding protein 4 Signal transduction -1.53 -1.02 +1.15 

Complement C3 Defense response -1.25 -1.15 +1.16 

Complement C4-A Defense response +1.25 +1.12 +1.90 

Complement C1r Defense response +2.60 +2.83 +2.95 

Zinc-α-2-glycoprotein Defense response -1.33 -1.69 -1.12 

α-1B-glycoprotein Transport -1.46 -1.49 -1.48 
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Figure 2: Schematic representation of hyperglycemia induced oxidative cascade in diabetic complica-
tions. Under normal conditions, glucose is taken up by the skeletal muscles and adipose tissues and 
broken down in the glycolysis pathway, providing energy for cells. Excess glucose however, enters the 
polyol pathway. Hyperglycemia develops when overly excessive amounts of glucose are present. The 
affinity of aldose reductase for glucose increases, causing sorbitol to accumulate and allowing excess 
NADPH to be used. This in turn decreases the amount of available NADPH leading to RBC hemolysis 
and oxidative stress whereby free radicals and acute phase proteins such as C-reactive protein, hap-
toglobin and complement C4A increase. After RBC hemolysis, free hemoglobin binds to the haptoglo-
bin α2 chain resulting in a complex (Hb-Hp) that is eventually cleared by the CD163 macrophage re-
ceptor, resulting in the decrease of the haptoglobin α2 chain. In addition, the accumulation of sorbitol 
and free radicals leads to cellular inflammation such that, the inflammation of adipose tissues leads to 
the decrease of retinol-binding protein 4 and transthyretin. 
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HYPERGLYCEMIA AT THE  
EARLY STAGE OF DIABETIC  

NEPHROPATHY 

Hyperglycemia actively promotes the 
cascades of cytokine and growth factors 
thereby mediating the damaging effects that 
enhances the production of oxidative stress 
that is in concomitant with increases in pro-
inflammatory mediators, lipid peroxidation 
and atypical glycosylation (Ha et al., 2008). 
Furthermore, there is evidence suggesting 
that at the early stages of DN, TNF-α can act 
as a useful biomarker owing to the develop-
ment of pathological albuminuria being pre-
ceded by its high concentrations.  

Nevertheless, further research is needed 
to discern whether the increase in this bi-
omarker does in fact correspond to the pro-
gression of nephropathy. Evidences support-
ing the utilization of 8-OHdG and pento-
sidine as oxidative biomarkers for the deter-
mination of DN and its related complications 
exists. However, these biomarkers should be 
compared to urinary albumin in terms of 
their specificity and sensitivity (Choudhary 
and Ahlawat, 2008; Gorin and Wauquier, 
2015).  

Studies pertaining to renal injury associ-
ated with metabolic disease and their under-
lying pathogenesis suggests that oxidative 
stress is triggered by an increase of ROS 
production, impaired mitochondrial func-
tions and/or incapacitated antioxidant sys-
tems. Various areas of ROS exist in the kid-
neys (e.g. the electron transport chain in the 
mitochondria, xanthine oxidase and uncou-
pled nitric oxide (NO) synthase). On the oth-
er hand, nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase is considered 
to be the major producer of ROS (Chen et 
al., 2013). NADPH oxidases are multi-
subunit enzyme complexes composed of 
membrane and cytosolic components that 
primarily function as electron transporters 
across cell membranes.  

Seven members are found to make up the 
NADPH oxidase (Nox) family, which in-
clude Nox1-Nox5 and dual oxidases (Duox), 

Duox1 and Duox2, both of which are found 
in different tissues and are seen to be activat-
ed via different mechanisms (Teng et al., 
2014; Wan et al., 2016). Moreover, mecha-
nisms involved in the regulation of Nox ac-
tivity are homologue specific, which are re-
lated to the operation of protein-protein 
complexes and interactions, protein phos-
phorylation and protein translocation from 
one site of the cellular compartment to an-
other as well as the activation of Rac (a sub-
family of the Rho family of GTPases).  

The overproduction of reactive oxygen 
species (ROS) corresponds with the upregu-
lation of Nox protein. Several stimuli and 
agonists have been observed to activate ROS 
production including hyperglycemic condi-
tion, expression of transforming growth fac-
tor-β (TGF-β), and angiotensin II (Ang II), 
production of oxidized low density lipopro-
tein (oxLDL), insulin-like growth factor-1 
(IGF-1) as well as the release of vascular en-
dothelial growth factor (VEGF) and miner-
alocorticoid hormone aldosterone, etc. (Teng 
et al., 2014). 

In hyperglycemia, the metabolism of ex-
cess glucose takes place via numerous path-
ways such as the polyol pathway whereby 
sorbitol is produced from glucose. However, 
during this process antioxidants such as glu-
tathione (GSH) are drained while ROS levels 
rise. Furthermore, the formation of AGEs 
occurs due to excess glucose binding to free 
amino acids via condensation, which then 
modulate several important events like the 
induction of protein kinase C (PKC) (Basta 
et al., 2004; Ha and Lee, 2005), which then 
triggers the production of ROS via NADPH 
oxidase (Larance and Lamond, 2015).  

All of these pathways correlate with one 
another in such a way that upon an increase 
of oxidative stress through AGEs and PKC, 
the further production of AGEs and PKC is 
also enhanced in a positive feedback cycle. 
Due to the accumulation of oxidative stress 
and modified elements, adverse consequenc-
es are generated which include the activation 
of C-reactive proteins and pro-inflammatory 
cytokines etc. 
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ACUTE PHASE PROTEINS AS EARLY 
BIOMARKERS OF DIABETIC 
NEPHROPATHY AND OTHER  

DIABETIC VASCULAR DAMAGE 

In order to understand the relationship 
between serum or plasma proteins in hyper-
glycemic patients and their related condi-
tions as well as the pathophysiology of such 
conditions, it is pertinent to acquire in-
creased knowledge regarding early bi-
omarkers for better diagnosis and prevention 
in the early stage of the disease. Several in-
dividual proteins have been described as rep-
resentatives of novel biomarkers for kidney 
disease. These biomarkers were accurately 
identified by means of available immunolog-
ical assays as well as with the integration of 
high throughput approaches such as prote-
omics technology for increasing the chance 
of novel biomarker discoveries. 

Proteomics has extensively been applied 
not only to discover new biomarkers but also 
to gain a better understanding on the under-
lying mechanisms of several diseases (e.g. 
diabetes, cancer, Alzheimer’s and renal dis-
ease). In this regard, proteomics based-
approaches will be useful due to the power 
of this technology to detect and identify pro-
tein expression levels in cells and biological 
samples (Mahfouz et al., 2016; Zhang et al., 
2013). Protein profiling of diabetes and their 
related disorders have been extensively stud-
ied for more than a decade. For instance, dif-
ferential expression of retinol binding pro-
tein 4 (RBP4) has been observed and found 
to correlate with the duration of diabetes and 
DN (Liu et al., 2016). Furthermore, potential 
protein biomarkers (e.g. haptoglobin, fibrin-
ogen and serum complement factor) have 
been discovered for diabetic vascular diseas-
es (Asleh and Levy, 2005; Fujita et al., 2013; 
Yang et al., 2005). 

A study conducted by our group on 75 
hyperglycemic plasma samples using two-
dimensional gel electrophoresis (2-DE) in 
conjunction with liquid chromatography-
mass spectrometry (LC-MS/MS) was suc-
cessfully carried out in order to investigate 

changing profiles of protein expression as a 
consequence of elevated fasting blood glu-
cose in different concentrations (normal 
group: <100 mg/dL; borderline high group: 
100-126 mg/dL; and high group: > 126 
mg/dL) with complications of microalbumi-
nuria (>30 mg/dL) and macroalbuminuria 
(>300 mg/dL) (data not shown). Plasma 
samples were collected as leftover specimens 
from the Center of Medical Laboratory Ser-
vices, Faculty of Medical Technology, Ma-
hidol University, Thailand.  

Briefly, pooled plasma samples were 
generated for each group and abundant pro-
teins in serum samples (e.g. albumin and 
immunoglobulin) were removed using the 
trichloroacetic acid/acetone precipitation 
method. Total protein in each group was 
subsequently precipitated and protein ex-
pression levels were quantified using 2-DE 
and LC-MS/MS. Finally, peptides recorded 
using MS/MS spectra were compared using 
the MASCOT program against protein se-
quence databases such as NCBInr and Swis-
sProt.  

Results from our findings indicated that 
there exists a differential expression level in 
plasma protein samples when compared to 
samples with normal glucose level. Changes 
in protein expression includes the reduction 
of retinol binding protein, transthyretin and 
zinc-α-2-glycoprotein levels for the hyper-
glycemic group while an increase in com-
plement factors C4-A and C3. In addition, 
acute phase protein, namely haptoglobin, 
was also detected in hyperglycemics and hy-
perglycemics with microalbuminuric condi-
tions (Table 1). Of all the above mentioned 
biomarkers, differentially expressed proteins 
are known to be involved in inflammatory 
processes particularly those classified as 
acute phase proteins which play a vital role 
in glucose metabolism and transportation. 
 
Retinal binding protein 

Retinol binding protein 4 (RBP4) or reti-
nol binding protein (RBP), carries retinol 
from the liver to the perimeters by acting as 
a plasma transporter.  RBP4 has been report-
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ed as a negative acute phase inflammatory 
reactant. Several evidences reveal the corre-
lation of elevated RBP4 expression in insu-
lin-resistance associated obesity and T2D 
(Aeberli et al., 2007). Moreover, other stud-
ies observed high concentrations of RBP4 in 
obesity (Zabetian-Targhi et al., 2015) induc-
ing chronic inflammation and in its compli-
cations such as T2D, metabolic syndromes 
and cardiovascular diseases (CVDs) (Co-
doner-Franch et al., 2013). In addition, RBP4 
was seen to positively correlate with 
GLUT4, (Codoner-Franch et al., 2013) the 
insulin-regulated glucose transporter found 
primarily in adipose tissues and striated 
muscles. Transgenic expression or injections 
of RBP4 was able to induced insulin re-
sistance in a mouse model, in contrast to the 
reduction of RBP4 expression with improved 
insulin resistance in diet-induced obesity 
(Aeberli et al., 2007). However, much re-
search carried out between the correlation 
RBP4 and oxidative stress show positive cor-
relations with markers such as urinary 8-
isoprostane, 8-isoprostaglandin F2α (8-
isoPGF2α), 13-(S)-hydroxyoctadecadienoic 
acid and malondialdehyde (Ghosh et al., 
2015; Liu et al., 2014) while a negative cor-
relation between RBP4 and antioxidant glu-
tathione was also reported (Liu et al., 2014).  
Thus, RBP4 may have a role in oxidative 
stress induced diabetic complications. In 
parallel, transthyretin (TTR) is a transport 
protein involved in the blood transport of 
different molecules with high binding capac-
ity for thyroxine (T4), triiodothyronine (T3) 
and holo-retinol-binding proteins. In the 
blood circulation, RBP4 forms a complex 
with TTR, which increases the molecular 
mass of RBP4 leading to the prevention of 
glomerular filtration and excretion through 
the kidneys. These evidences lend support to 
the positive correlation between the expres-
sion levels of RBP4 and TTR. 
 
Complement factor 

The complement system is made up of 
more than 30 plasma and cell membrane pro-
teins and it acts in both the adaptive and in-

nate immunity in the form of an effector. 
These factors are produced by hepatocytes. 
In addition, proteins of the complement sys-
tem works together via the classical, alterna-
tive and mannose-binding lectin pathways, 
which are enzyme activating pathways. The 
three activation pathways eventually induce 
a generation of membrane attack complex 
(MAC), the main effector of the comple-
ment-mediated pathway, leading to tissue 
damage (Flyvbjerg, 2017). Chronic inflam-
mation is characteristic of T2D. The induc-
tion of proinflammatory cytokines is induced 
from obesity activated adipocytes, which re-
lease adipocytokines that eventually leads to 
impaired vascular endothelial cells and organ 
injury. C3a is a candidate that can induce tis-
sue inflammation and damage (Fujita et al., 
2013; Flyvbjerg, 2017). Moreover, using 
network analysis of diabetic rats, the rela-
tionship between the up-regulation of com-
plement C3 and the activation of NF-κB and 
TNF was elucidated (Al Hariri et al., 2017). 
TNF are cell signaling proteins (cytokines) 
involved in systemic inflammation that make 
up the acute phase reaction caused by local 
or systemic disturbances to the homeostasis 
of the body. 

 
Haptoglobin 

Haptoglobin (Hp) is an acute phase pro-
tein that is also known as a hemoglobin 
(Hb)-binding serum protein. It is found in 
human serum at a normal level of 0-300 
mg/dL and and is mainly synthesized in the 
liver (Katnik and Jadach, 1996). Hp serum 
levels are known to increase in response to 
injury as well as in the acute phase by as 
much as 3- to 8-folds (Dobryszycka, 1997). 
IL-6, IL-1 and TNF-α are shown to induce 
the production of hepatic Hp, which is also 
present in some non-hepatic cells such as ad-
ipocytes and lung cells. Increased levels of 
Hp from both hepatic and non-hepatic 
sources are observed after inflammation 
(Asleh and Levy, 2005). In addition, unmiti-
gated stress and nitric oxide can cause 
changes in the blood flow, which in turn en-
courages the arteries to induce the expression 
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of Hp thus, further influencing IL-6 expres-
sion. Furthermore, Hp from arteries are im-
plicated in cell migration and the reconstruc-
tion of arteries (Smeets et al., 2002).  

The Hb released during hemolysis acts as 
a potent oxidant whereby the progression of 
atherosclerosis is enhanced due to the entry 
of Hb into the walls of vessels thereby medi-
ating lipoprotein oxidation. Hb-induced oxi-
dative damage can be obstructed via the an-
tioxidant exerting property of Hp. In addi-
tion, Hp utilizes CD163 macrophage scaven-
ger receptor in facilitating the removal of 
Hb. In humans, Hp consists of two common 
alleles (denoted as 1 and 2) which combines 
to form genotypes (Hp1-1, Hp2-1 and Hp2-
2) with three possibilities. Asleh and Levy 
(2005) recently showed that the Hp genotype 
represents a risk factor for the contraction of 
diabetic vascular complications. Precisely, 
they determined that diabetics with the Hp 2-
2 genotype have a higher chance of contract-
ing nephropathy, retinopathy and cardiovas-
cular diseases in comparison to those indi-
viduals with the Hp2-1 or Hp1-1 genotypes. 
 
Zinc-alpha-2-glycoprotein (ZAG) 

Zinc alpha-2-glycoprotein (ZAG) is a  40 
kDa single chain polypeptide, secreted in 
various body fluids (Hassan et al., 2008). Af-
ter the discovery of this molecule, many re-
searches have vastly documented both the 
structure and function of this protein. How-
ever, in spite of all the research, the function 
of ZAG is still unknown. ZAG is present in a 
variety of epithelia and is secreted into many 
body fluids (Wang et al., 2016). Although 
the function of ZAG is ambiguous, a high 
degree of similarity with classic MHC-I 
molecules suggest its role in immunomodu-
lation (McDermott et al., 2006).  

ZAG was reported to be associated with 
a wide variety of diseases and cellular disor-
ders including obesity, prostate and bladder 
cancers, cachexia, as well as cell prolifera-
tion processes (Wang et al., 2016). Immuno-
histochemical analysis has shown that ZAG 
is expressed mainly in the tubules of the hu-
man kidneys. Similarly, proteomic analysis 

revealed that urinary level of ZAG increased 
corresponding to patients with diabetes and 
this correlation might be useful in the pro-
cess of applying ZAG as a potential bi-
omarker of DN (Jain et al., 2005). Besides 
ZAG, there are other glycoproteins that have 
been revealed as being associated with dia-
betic patients. Jain et al. (2005) demonstrated 
the use of 2DGE in combination with Matrix 
Assisted Laser Desorption Ionization Time 
of Flight (MALDI-TOF) mass spectrometry 
and western blot for the identification of the 
group of glycoproteins that responds to high 
blood glucose conditions such as ZAG, α-1 
acid glycoprotein, α-1 microglobulin and 
IgG. These findings are in accordance with 
our discovery (Table 1). 

 
UTILIZATION OF BIOINFORMATICS 

IN DIABETES RESEARCH 

Bioinformatics is an interdisciplinary 
field of study encompassing the use of com-
puter science, biology, chemistry, mathemat-
ics and engineering for analysing and inter-
preting biological information (Spengler, 
2000).  

Currently, major trends in this field in-
clude ligand-based drug design for modulat-
ing metabolic pathways and structure-based 
drug design (protein structure, molecular 
docking, molecular dynamics, etc.) for 
studying the impact of mutations on protein 
folding, stability and function.  

In recent years, the advancement of 
technology and their integration in science 
has led to the use of bioinformatics tools for 
the prediction and analysis of the rapidly in-
creasing proteomics data. As part of an inter-
connected large networks, the expression 
profiles of proteins and peptides can be 
modulated in diseases. Furthermore, the pro-
cess of identifying novel biomarkers for DM 
diagnosis can make simultaneous use of mul-
tiple, heterogeneous data sets in contrast to 
examining alone. This approach may be use-
ful in highlighting the knowledge pertaining 
to the progression and pathophysiology of 
DN.  
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Presently in the literature, the focus of 
bioinformatics as applied to DM is mainly 
concerned with using microarray data 
(Baelde et al., 2004; Fujita et al., 2006; 
Lamb et al., 2006) for linking genes with 
diseases as well as using miRNA data (Eissa 
et al., 2016; Wu et al., 2014) for determining 
novel biomarkers of DN. In addition, the 
vast data pandemonium has brought about 
the need for big data analysis which has fur-
ther paved way for many urinary proteomics 
and bioinformatics research conducted in re-
cent years (Maahs et al., 2010; Meier et al., 
2005; Varemo et al., 2015; Zhang et al., 
2015).  

Herein, we summarize these efforts in 
utilizing molecular data for computational 
rationalization of proteomics data in DN 
(Figure 3). Despite several genome-wide as-
sociation studies for investigating common 
and unique genetic variants from exome se-
quencing, the genetic architecture of DN still 
remains poorly understood (Bonomo et al., 
2014; Pezzolesi et al., 2009; Sandholm et al., 
2012). In that regard, proteome- and tran-
scriptome-driven studies have been utilized 

in order to discover novel biomarkers for di-
abetes (Varemo et al., 2015; Marinkovic and 
Oresic, 2016). Meier et al. (2005) investigat-
ed the urinary proteome profiles of healthy 
adolescents with T1D in comparison to con-
trols. Thus, this study sets the stage for other 
studies by demonstrating that differences in 
urinary proteome profiles could be detected 
at the onset of diabetic kidney disease.  

In the largest urinary peptidome study of 
diabetes to date, Maahs et al. (2010) ob-
served lower urinary levels of collagen and 
uromodulin in diabetic cases with normal re-
nal function as compared to that of controls. 
Furthermore, Zhang et al. (2015) used bead-
based matrix-assisted laser desorption ioni-
zation time-of-flight mass spectrometry 
(MALDI-TOF MS), which allows the en-
richment and analysis of small proteins, to 
discover two urinary proteomic fragments of 
fibrinogen α-chain and prothrombin. These 
fragments are important, closely related 
players in blood coagulation where the lack 
of which have been linked to a high risk of 
thrombosis in patients with T2D.  

 
 

 
 
Figure 3: Conceptual framework for the utilization of bioinformatics and omics for studying DM and its 
complications. 
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Additionally, a number of computational 
studies have also been conducted on the pro-
tein-ligand interactions of RBP in the context 
of DM diagnosis and therapy (Motani et al., 
2009; Naylor and Newcomer, 1999; Torabi 
et al., 2017). A number of proteomic and 
peptidomic analyses of clinical samples in-
cluding plasma and urine from diabetic pa-
tients have been reported as biomarkers that 
predict the progression of nephropathy. Va-
rieties in protein expression profiles are pre-
sent according to the type of cell, tissue, or-
gan, or specimen, which can shed light on 
the location of damage. However, multiple 
data sets of potential biological markers can 
be extremely useful when considered togeth-
er. Van et al. (2017) investigated the biologi-
cal implications of differentially excreted 
urinary proteins in patients with DN by tak-
ing advantage of published, relevant data 
coupled with protein-protein interactions 
(PPI) network analysis. Artificially con-
structed PPI networks were applied for com-
prehensively identifying common and stage-
specific biological processes in diabetic kid-
ney disease by including all proteins bi-
omarkers associated with particular stages of 
the disease. Therefore, in the above men-
tioned study, the author used candidate bio-
markers with differential excretion between 
cases and controls extracted from 31 samples 
and equally weighted as input data.  

The most promising DN urinary bio-
markers in the various nephrons were eluci-
dated. Data from the Human Protein Atlas 
was used to determine the differences in pro-
tein expressions induced in renal tissues as 
compared to their normal expressions (Uhlen 
et al., 2010) and the existing literature. Com-
parison of enriched biological processes in 
uncomplicated diabetes and incipient DN in-
dicates its involvement in the regulation of 
wound healing (i.e the umbrella term used 
for describing complex biological processes 
involved in the body’s response to injury and 
subsequent repair), coagulation, inflamma-
tion, cholesterol and lipid metabolism, as 
well as stress responses. Example of in-
flammatory factors present includes several 

acute phase reactant proteins, α1-antitrypsin, 
haptoglobin, fibrinogen, and transferrin in 
uncomplicated diabetes and incipient DN or 
borderline hyperglycemic patients has been 
reported (Long et al., 2016; Van et al., 
2017). 

In the case of overt DN patients, the 
aforementioned biological processes are also 
involved just as in the case of incipient DN, 
whereby elevated protein biomarkers corre-
sponding to coagulation, inflammation and 
stress responses are determined. Retinol-
binding protein 4 (RBP4), Transthyretin 
(TTR), β2-microglobulin (B2M), α2-glyco-
protein are revealed to be the most respon-
sive at this stage. 

Inflammation can be linked to the path-
way of wound healing in the same way as 
coagulation and extracellular matrix regula-
tion as found in uncomplicated diabetes. 
Macrophages infiltrate injury sites during the 
inflammation process to clear cellular debris 
via phagocytosis and thereby encouraging 
the migration of other cells of the innate im-
munity (Gurtner et al., 2008). Thus, in order 
for the injured tissue to heal, the inflamma-
tion process has to eventually be down-
regulated. However, the inflammatory pro-
cess is sustained by chronic hyperglycemia 
therefore predisposing tissues to progressive 
diabetic kidney disease (Navarro-Gonzalez 
and Mora-Fernandez, 2008). Taken together, 
these correlations reveal the success of artifi-
cially constructed biological process net-
works in identifying promising biomarkers 
for each stage of DN. Many studies have 
supported the use of PPI as a basis for de-
termining novel connections between pro-
teins involved in the progression of diabetes 
(Abedi and Gheisari, 2015; Saito et al., 2016; 
Varemo et al., 2015). 

Moreover, various data mining tech-
niques have been successfully utilized in DM 
research as to discover hidden patterns and 
relationships (Worachartcheewan et al., 
2010, 2013a, b, 2015). Fang (2009) used da-
ta mining techniques such as clustering, clas-
sification and regression models for the iden-
tification of diabetic patients of a large health 
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care enterprise. Bagherzadeh-Khiabani et al. 
(2016) made use of a clinical data set com-
prising of 803 pre-diabetic females and com-
pared several common feature selection algo-
rithms to predict the likelihood of DM. In 
another work, Georga et al. (2015) applied 
random forest (Breiman, 2001) and RReliefF 
(Robnik-Šikonja and Kononenko, 2003) to 
evaluate a number of features, with respect 
to their ability to predict the short term sub-
cutaneous glucose concentrations in diabetic 
patients. 

In addition, many complications of DM 
have been studied using machine learning 
approaches and data mining techniques. In a 
more general aspect, Lagani et al. (2015) tar-
geted several diabetic complications, such as 
cardiovascular diseases (CVD), hypoglyce-
mia, proteinuria, ketoacidosis, microalbumi-
nuria, neuropathy, and retinopathy in an ef-
fort to identify the smallest set of clinical pa-
rameters affording the best predictive accu-
racy that makes use of the aforementioned 
diabetic complications as parameters.  

In the case of nephropathy, Huang et al. 
(2015) employed a decision tree-based pre-
diction tool that combines both genetic and 
clinical features in order to identify DN in 
patients with T2D. On the other hand, Leung 
et al. (2013) compared the current age of pa-
tients, age at diagnosis, systolic blood pres-
sure using numerous machine learning 
methods (e.g. partial least square regression, 
classification and regression tree, random 
forest, Naïve Bayes, neural networks and 
support vector machine) through which ge-
netic polymorphisms of the uteroglobin and 
lipid metabolism arose as the most efficient 
predictors. Cho et al. (2008) applied machine 
learning for predicting the onset of DN via 
risk factor analysis in which patients with 
high microalbumin levels are considered to 
be at high risk for DN. Similarly, DuBrava et 
al. (2017) made use of the random forest 
learning algorithm (Breiman, 2001) for 
shedding light on factors contributing the 
likelihood of acquiring diabetic peripheral 
neuropathy (DPN). In addition, Shoombua-
tong et al. (2015) performed the first large-

scale study for investigating the chemical 
space of potential anti-diabetic agents target-
ing dipeptidyl peptidase-4. 

The potential benefits (while also taking 
into account possible risk factors) of early 
DM detection includes the following: im-
proved quality of life, longevity, reduction of 
severity and frequency of disease, prevention 
and delay of its complications as well as re-
duction of health care costs. In this context, 
data mining and machine learning are key 
mediators that can help provide insight into 
possible relationships among molecules and 
conditions such as gene-gene, protein-
protein, drug-drug, drug-disease or gene-
disease interactions. 

 

CONCLUSION 
The increasing worldwide prevalence of 

DM is in parallel with the rise of obesity. As 
previously mentioned, the global statistics as 
of 2015 estimated that 415 million people 
are currently living with diabetes with an ex-
pected rise of up to 642 million by 2040 ac-
cording to the International Diabetes Federa-
tion (Ogurtsova et al., 2017). These statistics 
provide a grim outlook. DN is the leading 
cause of kidney disease and major complica-
tions in diabetic patients. It affects about 
40 % of patients with type-1 and type-2 dia-
betes. In addition, DN continues to account 
for a large proportion of CKD and remains 
by far the most common cause of chronic di-
alysis leading to the escalation of health care 
costs.  

Although, DN does not always progress 
from one stage to the next, the presence of 
microalbuminuria is widely accepted as the 
first clinical sign of this disease complica-
tion. In addition, prior studies indicated that 
increased levels of albuminuria is not a sen-
sitive biomarker for DN determination ow-
ing to the late detection of its levels whereby 
the kidneys of some diabetic patients had al-
ready sustained glomerular and tubulointer-
stitial damage by the time that increased lev-
els are detected. Therefore, there is an urgent 
need to discover new, early biomarkers for 
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the detection of DN. Herein, we have 
demonstrated various biomarkers and have 
also revealed the pathophysiological roles of 
hyperglycemia-related renal diseases. 

Proteomics is now beginning to deliver 
large information for several diseases includ-
ing diabetes, neuropathy, kidney disease, DN 
and other vascular complications. Currently, 
single biomarkers are used in the detection 
of several diseases but may need to be re-
placed with multiple biomarkers due to their 
higher specificity and accuracy. Further-
more, systemic biological approaches are 
based not only on proteomics but also on 
other "omics" areas such as metabolomics or 
transcriptomics and have served as a huge 
avenue for data in the understanding of dis-
eases at the molecular level. In addition, the 
identification of promising therapeutic tar-
gets for the improvement of patient care is an 
active area of research. However, there is a 
lack of clear consensus on the definite expla-
nation of reliable biomarkers, the required 
performance of such multiple biomarkers, 
the type of studies needed to obtain results 
that are acceptable and sufficient for clinical 
implementation and whether the assessed bi-
omarkers should be implemented as a desir-
able therapeutic avenue. Guidelines for the 
efficient use of biomarkers in specific dis-
ease conditions could be beneficial in their 
correct and lasting implementation. Taken 
together, all supportive data indicate that the 
onset of DN does not depend on few particu-
lar features, but instead depends on a com-
plex interrelationship involving many fea-
tures. Thus, the integration of sufficient bio-
informatics tools might be the key for im-
proving data implementation in order to gain 
highly accurate information and discover 
specific novel biomarkers for DN and other 
diabetes complications. 
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