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Abstract

In this thesis we study a diffuse interface approximation of the sum of the area and
Willmore functional for which Γ-convergence has already been established in the case
of small space dimensions and smoothly bounded sets. We extend this result to a
larger class of configurations with nonsmooth phase boundaries and explicitly allow
intersecting boundary curves.
We also analyze the interaction of parallel planar phase fields and discuss their slow
motion under the L2-gradient flow of the diffuse Willmore functional. Moreover, we prove
the existence of a new class of periodic entire solutions to the stationary Allen-Cahn
equation in two dimensions.
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1 Introduction

Functionals which depend on the curvature of surfaces or curves play a major role in
modern mathematical theory and numerous applications as for example in biology or
computer science. This broad interest has led to enormous progress in the mathematical
analysis of these energies and their gradient flows during the last decades.
In this thesis we will deal with the Willmore functional as a prototype of such energies
together with the corresponding gradient flow. We examine its relation to a common
diffuse interface approximation for which Γ-convergence already has been established
in the case of smoothly bounded sets [RöSc06]. We extend this result to a new class
of nonsmooth phase boundaries and thereby explain the occurrence of intersecting
boundary curves in numerical simulations of the diffuse Willmore flow [EsRäRö14].
Moreover, we quantify the energy order of parallel planar phase fields and study the
slow motion of these configurations under the gradient flow caused by interacting phase
boundaries. As a further result we prove the existence of a new class of periodic entire
solutions to the Allen-Cahn equation generalizing [DaFiPe92].

Consider a domain Ω ⊂ Rn, n ≥ 2. For an open set E ⊂ Ω with C2-boundary ∂E we
denote the inner unit normal vector field on ∂E by ν and the principal curvatures of
∂E with respect to ν by κ1, . . . , κn−1. The Willmore energy (or Willmore functional)
[Wi93] of ∂E is given by

W(∂E) :=
1

2

∫
∂E∩Ω

|H∂E |2 dHn−1 (1.1)

where H∂E := (κ1 + · · ·+ κn−1) ν is the mean curvature vector field of ∂E. Although
named after Thomas Willmore (1919-2005) nowadays, the functional itself has already
been proposed before by Poisson [Po1812] in 1812 and also later by Germain [Ge1821].
Since then many authors from differential geometry (see for example [Th23, Bl29]) and
geometric measure theory [MaNe14] have contributed to its analysis. One of the most
spectacular results in recent years has been the proof by Marques and Neves [MaNe14]
of the Willmore conjecture [Wi65] on the minmial Willmore energy of immersed tori in
R3.
(1.1) is the simplest type of a bending energy and therefore often serves as a representative
for other more complicated curvature depending functionals. It naturally arises in
biological models due to its connection to the Helfrich-Canham energy [He73] in the
description of cell shapes [Ca70]. W also appears in computer science theory where it is
used in image segmentation problems to control the appearance of noise.
We remark that in the case n = 2 the Willmore functional coincides with Euler’s elastica
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Chapter 1 Introduction

energy (see e.g. [Lo13], §263) which describes the bending of a rod and which also has
been thoroughly investigated in many applications [LaSi84, Mu94]. However, we will
always refer to W as the Willmore functional independently of the space dimension.
For convenience, we also define the Willmore energy of phase indicator functions
u = 2χE − 1 with E as above by

W(u) :=W(∂E).

The phase field model

Many applications make a numerical treatment of the Willmore energy and its gradient
flow necessary. A common approach in this context is the approximation by diffuse
interfaces modeling sharp phase boundaries by diffuse transitions. Thereby, a new
space dimension (compared to the sharp interface) is added to the problem which
yields an automatic treatment of topological changes as a major advantage to other
approximation methods. The diffuse interface approximation is widely used in the
simulation of geometric evolution equations and especially in the analysis of the gradient
flow of W.
We will briefly sketch the core of this theory. It originally goes back to thermodynamical
studies of capillarity by van der Waals in the 1870s on the free energy of phase boundaries
between two immiscible and incompressible fluids (see [Ro79] for an English translation).
Contrary to the classical thermodynamical theory of capillarity by Gibbs [Gi1878] he
argued that the transition between two phases is not given by a sharp (and discontinuous)
interface but can rather be modeled as a continuous phenomenon happening on a thin
layer which can be identified with the interface. To make things precise we slightly adapt
the original notation and consider a spacial domain Ω ⊂ Rn, n ≥ 2. In the classical sharp
interface model, a configuration can be described by a function u ∈ BV (Ω; {−1, 1})
(see Section 2.3 for a definition of BV functions) which takes the value 1 wherever the
first fluid is present and becomes equal to −1 on sets occupied by the second fluid. For
E := {u = 1} we write u = 2χE − 1. The free energy is then given by the perimeter
functional as

P (u) := PerΩ(E) =
1

2

∫
Ω
|∇u| = Hn−1

(
∂∗E ∩ Ω

)
if u ∈ BV

(
Ω; {−1, 1}

)
and P (u) :=∞ if u ∈ L1(Ω) \BV (Ω; {−1, 1}) (see Section 2.3 for a definition of ∂∗E).
For smooth phase boundaries, P describes the area of the common boundary of the
phases.

In the diffuse interface model we allow mixtures of both fluids and describe their average
volume densities by a function u ∈ L1(Ω) with values in [−1, 1]. The values −1 and 1
can be interpreted as above while u(x) = 0 for example describes a point x ∈ Ω where
both fluids are present with equal volume fraction. Van der Waals derived a free energy
formulation for these interfaces which is given by

Eε(u) :=

∫
Ω

ε

2
|∇u|2 +

1

ε
F (u) dx if u ∈ H1(Ω) (1.2)

and Eε(u) := ∞ otherwise. Here, F (s) := 1
4(s2 − 1)2 is a prototype for an equal and
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smooth double well potential (read the remark at the end of the introduction for a note
on F ) and ε > 0 is assumed to be small. The same functional was derived from basic laws
of thermodynamics by Cahn and Hilliard in [CaHi58] as a (first order) approximation of
an interface energy for mixtures of binary alloys. The structure of Eε can be explained
easily. While the second summand prefers large regions with u constant to −1 or 1 the
first term penalizes steep changes of one phase to another. For small ε a minimizer of
u forms phase transitions on a layer of size ε and becomes nearly constant elsewhere.
This already yields strong evidence of the correlation between Eε and Per. We will refer
to (1.2) as the Ginzburg-Landau energy or diffuse surface energy in the following but
many other names are common in the literature.
A rigorous connection between both models was proved by Modica and Mortola in
the framework of Γ-convergence [MoMo77]. They could show that the functionals Eε
approximate Per as ε→ 0 in the sense that for u ∈ L1(Ω)

Γ(L1)− lim
ε→0
Eε(u) = σP (u) (1.3)

is satisfied (see Section 2.1 for a definition of Γ-convergence). The parameter σ > 0
describes the surface tension between both phases and can exactly be determined as
σ =

∫ 1
−1

√
2F ds. Their proof strongly relies on the fact that energetically preferable

phase transitions are shaped as the one-dimensional profile which connects the phases
−1 and 1 in an energetic optimal way (see Section 2.4 for a detailed description of these
profiles).

Based on a conjecture of De Giorgi [DeG91], Bellettini and Paolini formulated a diffuse
interface approximation of the Willmore functional on L1(Ω) in [BePa93] by

Wε(u) :=
1

2ε

∫
Ω

(
−ε∆u+

1

ε
F ′(u)

)2

dx if u ∈ H2(Ω) (1.4)

andWε(u) :=∞ for u ∈ L1(Ω)\H2(Ω). We refer to Section 6.1 for a detailed description
of De Giorgi’s conjecture as well as its modification and only give a formal argument
to motivate the relation between Wε and W at this point. For a set E with smooth
boundary ∂E the first variation of its energy is described by its mean curvature vector
H∂E (see [Si83], §9). At the same time the L2-gradient of (1.2) is given by −ε∆u+ 1

εF
′(u)

and can therefore be understood as a diffuse mean curvature. This makes Wε a natural
choice in order to approximate W in the framework of diffuse interfaces (the factor 1

ε in
(1.4) expresses the size of the energy density in the transition layers, see Section 6.1).
The argument also shows that the structures of Wε and Eε are related.
For a given open and C2-bounded set E ⊂ Ω Bellettini and Paolini could show the
lim sup inequality for the Γ-convergence of Wε. They used the idea from [MoMo77] to
construct a sequence (uε)ε>0 in H2(Ω) such that Wε(uε) approximates W(∂E) (again
up to the constant σ). Since then several authors contributed in this field with partial
results concerning the lim inf inequality (see [BeMu05, Mo05, HuTo00, To02, Sc09]).
Finally, Röger and Schätzle [RöSc06] proved the Γ-convergence of Wε to W for C2-
bounded sets in dimensions n = 2, 3.
For most applications it is convenient to consider the the perimeter and Willmore
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Chapter 1 Introduction

functional simultaneously and we denote their sum by

F(E) := PerΩ(E) +W(∂E).

F can be extended to sets with nonsmooth boundary by its lower semicontinuous
envelope

F(E) := inf

{
lim inf
k→∞

F(Ek) : ∂Ek ∈ C2 and Ek → E in L1(Ω)

}
. (1.5)

This relaxation is natural from a variational point of view as it extends F to a lower
semicontinuous functional.
F has been analyzed in [BeDaPa93] where the authors find several conditions on a set
E of finite perimeter such that F(E) is finite. They show that this can only be the
case if (after a possible change of E on a set of measure zero) there exists a unique
non oriented tangent in every point of ∂E. This immediately shows that transversal
intersections of the boundary always produce infinite energy F . On the other hand
there exist sets E with nonsmooth boundary and F(E) <∞: If ∂E is H2-regular up to
finitely many cusp points then F(E) <∞ if and only if the number of cusps is even.
It is a natural question whether the Γ-convergence result of Fε := Eε +Wε can be
transferred to F for nonsmooth boundaries. Unfortunately the answer turns out
to be negative in general as shown in [Mu13]. While transversal intersections of
phase boundaries cause infinite relaxed energy F as mentioned above it is possible to
approximate these crossings with finite diffuse energy. This is strictly related to a class
of saddle shaped entire smooth solutions uε of the stationary Allen-Cahn equation

−ε∆uε +
1

ε
F ′(uε) = 0 in R2 (1.6)

with a zero set consisting of both coordinate axes. The existence of such solutions
has been shown in [DaFiPe92]. On an open set Ω ⊂⊂ R2 with 0 ∈ Ω these functions
converge to an indicator function u = 2χE − 1 with E := {x1x2 > 0} ∩ Ω in L1(Ω) and
it can be shown that their diffuse surface energies in Ω remain bounded. Due to (1.6)
the diffuse Willmore energy vanishes for every ε > 0 and hence,

lim inf
ε→0

Fε(uε) <∞ = F(E).

We point out that in the example above the Γ-Limit of Fε still exists. In this thesis we
will identify the precise limit for a wide class of configurations with intersections of the
boundary.

The phenomenon of intersecting boundary curves also appears in simulations of the
L2-gradient flow of Wε that we briefly introduce now.
In the following we refer to the L2-gradient flow of W as the Willmore flow. For T > 0
and a family of open and C2-bounded sets (E(t))t∈(0,T ) it determines the velocity v in
the direction of ν by

v(t) = ∆∂E(t)H∂E(t)(t)−
1

2
H3
∂E(t) +H∂E(t)(t) |A(t)|2 on ∂E(t) (1.7)
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where H∂E(t) = κ1 + · · · + κn−1 denotes the scalar mean curvature, ∆∂E(t) is the

Laplace-Beltrami operator on ∂E(t) and |A(t)|2 = κ2
1 + · · · + κ2

n−1 is the sum of the
squared principal curvatures. The Willmore flow is well analyzed in the literature and
we refer representatively to [DzKuSc02] and [KuSc01] for longtime existence results and
a qualitative analysis.
The diffuse Willmore flow is analogously defined as the L2-gradient flow of Wε and
given by

ε∂tu =

(
ε∆− 1

ε
F ′′(u)

)(
−ε∆u+

1

ε
F ′(u)

)
(1.8)

for an evolving diffuse interface u. In [CoLa11] the authors show longtime existence of
solutions to the flow under a volume constraint and in [CoLa12] under a volume and
area constraint. We will adapt their proof in Section 5.1 to show the longtime existence
of smooth solutions on periodic domains (without any further constraints) in up to
three dimensions.
In general it is not clear that the gradient flows of Γ-converging functionals also converge
to the gradient flow of the limit energy and there is no rigorous proof for the convergence
of the diffuse Willmore flows as ε → 0. However, Loreti and March [LoMa00] could
prove on a formal level that the evolution of smooth surfaces under the Willmore flow
can be approximated by solutions of (1.8) (rescaled in time) for small ε.

Figure 1.1: Evolution of a start configuration (left) under the diffuse Willmore flow
with periodic boundary conditions. (The pictures have been taken from
[EsRäRö14] with permission.) The occurring patterns show intersections of
the phase boundary.

The classical Willmore flow (1.7) immediately terminates in singularities caused by
touching or colliding interfaces. The evolution can be extended beyond those points
by considering the gradient flow of the relaxed functional W. This evolution, however,
cannot be approximated by the diffuse Willmore flow in general. In [EsRäRö14] the
authors observe in several simulations that the diffuse flow (1.7) yields structures which
correspond in the limit ε→ 0 to configurations with infinite relaxed energy F . In their
paper they suggest a modified gradient flow which solves this issue and which always
yields configurations with finite values of F . Figure 1.1 shows the evolution of an initial
configuration (left picture) in several evolution snapshots. The gradient flow tends to
produce transversal intersections of diffuse boundary curves (see also [BrMaOu15]).
Besides the occurrence of transversal intersection points another interesting observation
can be made. After a short phase of energy relaxation the phase boundaries approximate
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Chapter 1 Introduction

intersecting curves (as seen in the third picture) which then evolve into straight lines
(right picture). In this state the system’s energy is almost zero and the lines hardly
move anymore.
We also refer to the difference between perpendicular and non perpendicular intersections
of the approximated lines in the last picture. While the first type really consists of two
crossing lines, the interface forms touching curves instead of true intersections in the non
orthogonal case. In this thesis we point out that such structures are related to (4-ended)
entire solutions of the stationary Allen-Cahn equation that have been investigated in
depth over the last years. As mentioned above there exists a solution of (1.6) with its
zero set given by two perpendicular lines due to [DaFiPe92]. In [PiKoPa10] a class of
solutions has been introduced whose zero set is at least asymptotic to two intersecting
lines at infinity (see also Section 2.5). In this case the actual zero set may look like
two curves which nearly touch in the common point of both lines exactly as in Figure 1.1.

Main results

The described observations motivate the scope of this thesis in two different ways. On
the one hand we will explain rigorously why configurations as in the right picture
are energetically preferable states of the diffuse Willmore flow despite the transversal
intersections of the interfaces. Consider the set E which is approximated by the red
phase in the last picture and note that F(∂E) =∞ due to the intersection of boundaries.
However, ∂E interpreted as an one-dimensional varifold (a generalized surface) has
vanishing generalized curvature. This fact strongly suggests that Wε approximates the
Willmore energy generalized to varifolds for small ε > 0. We make this idea rigorous by
proving the Γ-convergence of Fε for a large set S of nonsmooth interfaces in Theorem
6.3. As we will see, cross intersections of the boundary do not contribute anything to
the limit value of the energy which is purely determined by the Willmore energy and
area of the boundary interpreted as a varifold. This result extends the work of Röger
and Schätzle on the conjecture of De Giorgi [RöSc06] to nonsmooth limit sets in two
dimensions.
The proof of Γ-convergence is basically divided into two parts. For the lim inf inequality
we rely on the results from [RöSc06]. As their measure geometric approach already
uses varifold methods the ideas can easily be transferred from smooth boundaries to
configurations in S. To construct a recovery sequence and thereby showing the lim sup
estimate we make use of the above mentioned 4-ended solutions to the Allen-Cahn
equation from [PiKoPa10] (Section 2.5) to approximate transversal intersections. We
match these solutions with the approximation method from [BePa93] (see Section 2.6)
which requires a careful analysis of the appearing error terms.

Another focus of this thesis lies on the described motion of the phase boundaries in
Figure 1.1. In the last picture the boundary curves of the approximated sets seem
to have fully relaxed and do not have any curvature. Nevertheless, it is not clear
whether the gradient flow has reached a stationary state or only appears to be stationary.
This behavior reminds a lot of the slow motion of other diffuse geometric flows as the
Allen-Cahn [OtRe07] or the Cahn-Hilliard equation[OtWe14] (see also Section 5.2 for
a detailed description). For the diffuse Willmore flow this phenomenon has not been
studied yet and this work presents the first results in that direction.
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More precisely, we will analyze the simple quasi one-dimensional situation of parallel
stripes with different widths which interact with each other. We prove that diffuse
interfaces which approximate these configurations still carry small amounts of energy if
and only if the considered stripes are not perfectly symmetrically distributed. Under the
absence of boundary curvature the minimal energy size is determined by the distance
of neighboring phases which we will describe precisely by a scaling law for the energy
order in terms of ε and the stripe widths (see Theorem 3.12). The proof requires a
profound understanding of certain optimal arc solutions of the Allen-Cahn equation
which describe the optimal way in which a single stripe can be approximated by diffuse
interfaces (see Section 3.1).
The precise characterization of the minimal energies yields first results concerning
the motion speed of evolving stripe configurations. Starting with small energy phase
fields, we show that stripe solutions hardly move for exponentially long times. These
statements are mainly due to the L2-gradient structure and the energy estimates proved
before (see Proposition 5.9). Moreover, we expect that the diffuse phase boundaries
(i.e., the zeros of the phase fields) will distribute equally on an interval after a long time
and we will show that they do not move asymptotically in the “wrong” direction.

The analysis of real two-dimensional configurations turns out to be much harder. Even
for a slight modification of the stripe configurations a precise characterization of the
energy order via a scaling law seems out of reach. We consider configurations of half
stripes (see Figure 4.2) and prove the existence of zero energy states (periodic entire
solutions of the Allen-Cahn equation (1.6)) with multiple and equi-distributed saddles
on the x1-axis. We show that for large values of x2 these solutions are shaped as the
optimal one-dimensional arc profiles from above and thereby find a connection between
both classes of solutions. Apart from the relevance for our problem setting, the existence
and analysis of those solutions extends the classical results of [DaFiPe92] on the entire
solutions with only one saddle in the origin. The description and classification of entire
solutions for the Allen-Cahn equation is a current research topic and our results also
contributes in this field.

Outline

The thesis is structured as follows. Chapter 2 collects an overview of the mathematical
concepts and theories which are used in the subsequent chapters. We especially give
a brief introduction in the theory of varifolds (Section 2.2) and fix basic notations in
preparation for Chapter 6.1.
In Chapter 3 we analyze the interaction of straight boundaries under the diffuse Willmore
flow. Section 3.1 introduces the optimal arc profile q`,ε and we give a precise characteri-
zation of this class of solutions to the Allen-Cahn equation. While we quote most of the
well known results we also prove some additional properties that we need later. In the
following Section 3.2 we study the diffuse Willmore energy of quasi one-dimensional and
periodic stripe configuration. Under suitable assumptions on ε and the stripe widths
we show that there always exists an energy minimizing configuration. We are also able
to quantify the energy (which is purely due to the interaction of phase boundaries) by a
scaling law.
Chapter 4 yields a first step into the direction of real two-dimensional configurations
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Chapter 1 Introduction

and their energy scaling. Corresponding to the one-dimensional optimal arc profiles q`,ε
we prove the existence of a new class of entire solutions with multiple saddles to the
Allen-Cahn equation.
In the fifth chapter we consider the dynamical problem. Section 5.1 is based on [CoLa11]
and we prove the longtime existence of smooth solutions for the diffuse Willmore flow
in up to three dimensions on a rectangular domain with periodic boundary conditions.
In Section 5.2 we derive consequences of the scaling law from Section 3.2 for the one-
dimensional diffuse Willmore flow. We analyze the time evolution of configurations with
small energy and prove several results for the flow’s velocity and the movement speed
of layers.
Chapter 6 deals with the Γ-convergence of Fε in nonsmooth limit points and may be
the most relevant part of this thesis. Section 6.1 starts with a brief introduction into
the history of De Giorgi’s (modified) conjecture and we define a set S of configurations
with nonsmooth interfaces. We extend both the perimeter functional and the Will-
more functional to this set using the framework of varifolds. Afterwards, we prove the
Γ-convergence of Fε in S in Theorem 6.3. At the end of this chapter we give several
examples of configurations in S. This set is rather implicitly characterized and we
briefly comment on its structure.

Notations and conventions

We will fix some basic notations and conventions for the rest of this work.

• Constants will be denoted by C in this work and may change from line to line. The
possible dependence of parameters is mentioned in postpositioned parantheses.

• Throughout this thesis, we will often consider families of functions which are
indicated by a continuous parameter ε > 0. By abuse of notation, we still use the
term “sequence” for these ordered families. In this context a subsequence denotes
the part of the family which is indicated by (εn)n∈N with εn ↘ 0 as n→∞. We
will often skip the index n, though.

• We write dx to indicate integration with respect to the n-dimensional Lebes-
gue measure whenever the dimension n is clear from the context. Further, the
integration variable s is always one dimensional.

• Hk always denotes the k-dimensional Hausdorff-measure (see e.g. [Si83]).

• For a function u : Ω→ R the expressions diffuse Willmore and surface energy of
u will always refer to the integrals

1

2ε

∫
Ω

(
−ε∆u+

1

ε
F ′(u)

)2

dx and

∫
Ω

ε

2
|∇u|2 +

1

ε
F (u) dx.

The domain of integration is always implicitly given by the domain of u.

• The function F : R→ R will always denote the quartic even double well potential
(see Figure 1.2) defined by

F (s) :=
(s2 − 1)2

4
, s ∈ R.
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Figure 1.2: The double well potential F (s) = 1
4(s2−1)2 and its derivative F ′(s) = s3−s.

We point out that we only rely on certain qualitative properties of F (concerning
regularity, growth, and the position of zeros for instance) instead of its actual
definition for most of the results although we will sometimes make use of its precise
form to shorten the proofs.
We will not comment on possible generalizations in the following (which is mostly
not difficult) as this would not change the qualitative behavior that we are
interested in.
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2 Preliminaries

We pursue two different aims in this chapter. On the one hand we yield a brief
introduction into the theories and concepts which will be used in the following. On the
other hand we fix the basic notations we are going to use. For most of the proofs we
will just refer to the literature.

2.1 Γ-convergence

Instead of finding a minimizer of a given functional it is a common approach in the
calculus of variations to approximate it by a sequence of other functionals which for
example are easier to describe or to minimize. However, this idea makes it necessary to
find a proper definition of variational convergence which ensures that minimizers of the
approximating sequence converge to minimizers of the limit functional. This property is
not satisfied by the pointwise convergence of functionals and a more careful definition is
necessary. This has been given by De Giorgi and Franzoni in [DeFr75] by introducing
the notion of Γ-convergence of functionals.
We present the precise definition of Γ-convergence and its main properties in this section
and refer to [Br06] or [AtBuMi14] for a detailed introduction into this topic.

Definition 2.1. Let X be a metric space and (Fk)k∈N a sequence of functionals on X
with Fk : X → R∪{∞} for all k ∈ N. We say that Fn Γ-converges to F : X → R∪{∞}
in a point x ∈ X if the following two assertions hold:

i) (Lower bound inequality) For every sequence (xk)k∈N which converges to x we have

F (x) ≤ lim inf
k→∞

Fk(xk).

ii) (Recovery sequence) There exists a sequence (xk)k∈N which converges to x with

F (x) = lim
k→∞

Fk(xk).

In this situation we write

Γ− lim
k→∞

Fk(x) = F (x).

Remark. a) In some situations it is convenient to label the space in which the conver-
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Chapter 2 Preliminaries

gence of the sequence takes place. In this case we write

Γ(X)− lim
k→∞

Fk = F.

b) The Γ-limit is always a lower semicontinuous functional [Br06]. This especially
implies that a constant sequence of functionals with Fk = F for all k ∈ N does
not Γ-converge towards F in general but to its lower semi continuous envelope (or
relaxation) F which is defined as the largest lower semicontinuous functional not
greater than F , i.e.

F (x) := lim inf
y→x

F (y).

The Γ-convergence yields the desired convergence of minimizers in X.

Proposition 2.2. Let (Fk)k∈N, Fk : X → R ∪ {∞} for k ∈ N, be a sequence of
functionals on X which Γ-converges to F : X → R ∪ {∞} as k → ∞. Moreover, let
(xk)k∈N be a sequence in X satisfying

Fk(xk) ≤ inf
x∈X

Fk(x) + εk

with εk > 0 for k ∈ N and εk → 0 as k →∞. Then each cluster point x∗ of (xk)k∈N is
a minimizer of F and the convergence

lim
k→∞

inf
x∈X

Fk(x) = F (x∗)

holds.

Proof. See e.g. [AtBuMi14], Theorem 12.1.1.

2.2 Rectifiable sets and varifolds

We introduce the theory of varifolds as a generalization of classical surfaces and give
a short overview of well-known results in this field. In particular, we explain how the
differential geometric concepts of first variation and mean curvature can be transferred
to this context. For a wider introduction into this topic we refer to [Si83] or [Fe14]
where also many of the results presented here are formulated more generally.
For the rest of this section we fix integers k, n ∈ N with 1 ≤ k < n and denote the
k-dimensional Hausdorff measure on Rn by Hk.

Definition 2.3. The Grassmannian G(n, k) is defined as the space of all k-dimensional
linear subspaces of Rn.
For a set U ⊂ Rn we further define

Gk(U) := U ×G(n, k).

In the following, we often identify a subspace P ∈ G(n, k) with the n × n matrix
representing the orthogonal projection of Rn onto P . This enables us to define a scalar
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2.2 Rectifiable sets and varifolds

product on G(n, k) by

A :B := tr(ATB) =
∑

1≤i,j≤n
AijBij , for A,B ∈ G(n, k)

which induces a metric on G(n, k). For k = n− 1 a subspace P is (up to orientation)
uniquely determined by its normal vector ν = (ν1, . . . , νn) and thus, we have

G(n, n− 1) ∼= Sn−1/± 1.

Particularly, the projection of Rn onto P then is given by the matrix

(Id−ν ⊗ ν) = (δij − νiνj)ij .

Definition 2.4. A set M ⊂ Rn is called countably k-rectifiable if there exist Ni ⊂ Rn,
i ∈ N ∪ {0} such that

M ⊂ N0 ∪
∞⋃
i=1

Ni

where Hk(N0) = 0 and where Ni are k-dimensional C1-submanifolds of Rn for i ≥ 1.

Countably k-rectifiable sets can be characterized by the existence of approximate tangent
spaces which are defined via the blow-ups ηx,λ : Rn → Rn given by ηx,λ(y) := λ−1(y−x)
for λ > 0:

Definition 2.5. Let M be a Hk-measurable subset of Rn and θ : M → (0,∞) a positive
and locally Hk-integrable function. A subspace P ∈ G(n, k) is called the approximate
tangent space for M in x ∈ Rn with respect to θ if

lim
λ↘0

∫
ηx,λ(M)

φθ(x+ λ·) dHk = θ(x)

∫
P
φdHk, for all φ ∈ C0

c (Rn)

and we write TxM := P as in the case of classical tangent spaces.

Proposition 2.6. Let M ⊂ Rn be an Hk-measurable set. M is countably k-rectifiable
if and only if for Hk-almost every x ∈ M there exists the approximate tangent space
TxM with respect to a positive and locally Hk-integrable function θ : M → (0,∞).

Proof. [Si83], Theorem 11.6.

Remark. We can write every Hk-measurable and countably k-rectifiable set M as the
disjoint union of Hk-measurable sets

⋃∞
i=0Mi where Hk(M0) = 0 and and Mi ⊂ Ni,

i ≥ 0, (with Ni as in Definition 2.4). Then, the approximate tangent spaces correspond
to the classical ones almost everywhere as

TxM = TxNi for Hk-almost every x ∈Mi, i ≥ 1.

We are now able to define general varifolds in Rn. These have originally been introdu-
ced by Almgren who thereby generalized the concept of surfaces with methods from

21



Chapter 2 Preliminaries

geometric measure theory (see [Al65] and [Al66]). Later, Allard was able to prove
substantial regularity and compactness properties (see e.g. [Al72]) which led to the high
mathematical relevance of this theory for example in variational calculus. In particular,
varifolds yield a rather natural way to describe (measure theoretic) limits of smooth
surfaces (see Proposition 2.14 and the remark thereafter).

Definition 2.7. Let U ⊂ Rn. A general k-varifold V on U is a Radon measure on
Gk(U). The set of all general k-varifolds will be denoted by Vk(U).
For V ∈ Vk(U) the weight measure (or mass) ‖V ‖ of V is the measure on U given by

‖V ‖ (φ) =

∫
U
φ(x) d ‖V ‖ (x) :=

∫
Gk(U)

φ(x) dV (x, S) for all φ ∈ C0
c (U).

Example 2.8. Assume that M ⊂ U ⊂ Rn is a countably k-rectifiable set with k = n−1.
Then M canonically induces a k-varifold denoted by |M | according to

|M | (φ) :=

∫
M
φ(x, TxM) dHk(x) for all φ ∈ C0

c (Gk(U)).

For its weight measure we obtain by definition with φ ∈ C0
c (U)∫

U
φ(x) d ‖|M |‖ (x) =

∫
Gk(U)

φ(x) d |M | (x) =

∫
M
φ(x) dHk(x)

and therefore, ‖|M |‖ = HkbM describes the area measure of M .

The example above shows that k-varifolds in Vk(U) can be understood as generalized
surfaces. In the following, we will often concentrate on those V ∈ Vk(U) which are
induced by k-rectifiable sets as in the example. This leads to the next definition.

Definition 2.9. A k-varifold V ∈ Vk(U) is called rectifiable if there exist an Hk-
measurable, countably k-rectifiable set M ⊂ U and a function θ : U → [0,∞) which is
locally Hk-integrable on M and vanishes elsewhere such that for all φ ∈ C0

c

(
Gk(U)

)
V (φ) =

∫
Gk(U)

φ(x, S) dV (x, S) =

∫
M
φ(x, TxM)θ(x) dHk(x),

i.e., V is rectifiable if and only if its weight measure is given by

‖V ‖ = θHkbM

with M and θ as above. If further θ(x) ∈ N for Hk-almost every x ∈M , we call V an
integral varifold.
In view of the above given example, a k-varifold is called unit density varifold if
V ∈ Vk(U) is integral with θ ≡ 1 Hk-almost everywhere on M (which especially means
V = |M |).

Remark. For a rectifiable varifold V ∈ Vk(U) as above we always have

θ(‖V ‖ , x) = θ(x), for Hk-almost every x ∈ U.
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The calculation of the first variation of a rectifiable varifold V ∈ Vk(U) is motivated by
classical differential geometry for surfaces.
Consider a varifold V = |M | on U for a countably k-rectifiable set M ⊂ U . We want
to calculate the first variation of its area ‖|M |‖ (U) = Hk(M) with respect to a given
vector field X ∈ C1

c (U ;Rn). Let ε > 0 and consider a family of diffeomorphisms

Φt : U → U, t ∈ (−ε, ε)

with Φ0 = IdU and such that there exists a compact subsetK ⊂⊂ U with Φt

∣∣
U\K = IdU\K

for all t ∈ (−ε, ε). We further prescribe ∂Φt
∂t

∣∣
t=0

= X and obtain

d

dt

∣∣
t=0
Hk
(
Φt(M) ∩K

)
=

∫
M

divM X dHk

(see for example [Si83], §16). Here, divM denotes the surface divergence on M which
for Hk-almost every x ∈M can be written as

divM X(x) = TxM :DX(x)

where we interpret TxM ∈ G(k, n) as the n × n projection matrix from Rn onto the
approximate tangent space in x. This yields

δ |M | (X) =
d

dt

∣∣
t=0
Hk
(
Φt(M) ∩K

)
=

∫
M
TxM :DX(x) dHk(x)

and motivates the definition of first variation of a general varifold V ∈ Vk(U):

Definition 2.10. For V ∈ Vk(U) and X ∈ C1
c (U ;Rn) the first variation of V in

direction of X is defined by

δV (X) =

∫
Gk(U)

S :DX(x) dV (x, S).

Remark. i) With a similar argument as in the motivation above we obtain for every
rectifiable varifold V with ‖V ‖ = θHkbM

δV (X) =

∫
U

divM X d ‖V ‖ =

∫
M

divM Xθ dHk for every X ∈ C1
c (U ;Rn).

Again we refer to [Si83], §16, where the exact calculation is performed.

ii) If in the motivation above M is a closed C2-surface in U , the divergence theorem
([Si83], 7.6) yields for all X ∈ C1

c (U ;Rn)

δ |M | (X) =

∫
M

divM X dHk = −
∫
M
X ·HM dHk

=−
∫
U
X ·HM d ‖|M |‖ (2.1)

with HM denoting the mean curvature vector field of M . This fact will motivate
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the definition of generalized mean curvature for general varifolds which we will give
below.

Definition 2.11. For a general k-varifold V ∈ Vk(U) the first variation δV is called
locally bounded in U if for all open, relatively compact subsets Ũ ⊂⊂ U there exists a
constant C = C(Ũ) > 0 such that

|δV (X)| ≤ C sup
x∈Ũ
|X(x)| for all X ∈ C1

c (Ũ ;Rn). (2.2)

Let V ∈ Vk(U) have locally bounded first variation δV . Since C1
c (Ũ ;Rn) is dense in

C0
c (Ũ ;Rn) we can uniquely extend δV to a continuous linear functional on the entire

space C0
c (Ũ ;Rn) which satisfies inequality (2.2) for all X ∈ C0

c (Ũ ;Rn). By the Riesz
representation theorem A.5 it can be written as

δV (X) =

∫
U
X · ν d |δV | , for X ∈ C0

c (U,Rn) (2.3)

for the variation measure |δV | and ν : U → Rn with |ν| = 1 |δV |-almost everywhere.
Now assume that |δV | � ‖V ‖. In this case the Radon-Nikodym derivative (see
Proposition A.11) of |δV | with respect to ‖V ‖ exists and we obtain from (2.3)

δV (X) =

∫
U
X · ν d |δV |

d ‖V ‖ d ‖V ‖ .

This motivates the definition of mean curvature for general varifolds in accordance with
(2.1).

Definition 2.12. Let V ∈ Vk(U) have locally bounded first variation δV and assume

|δV | � ‖V ‖ .

The generalized mean curvature vector field of V is defined by

HV := −d |δV |
d ‖V ‖ν

with ν and d|δV |
d‖V ‖ as above.

Example 2.13. Let M be a closed C2-surface in U as above. Then its classical mean
curvature vector HM actually coincides with the generalized mean curvature vector of
|M | from Definition 2.12. As above, the first variation of |M | is given by

δ |M | (X) = −
∫
M
X ·HM dHk for all X ∈ C1

c (U ;Rn)

and is locally bounded. Indeed, for Ũ ⊂⊂ U and X ∈ C1
c (Ũ ;Rn) we immediately obtain

δ |M | (X) ≤
(∫

M
|HM | dHk

)
sup
x∈Ũ
|X(x)| .
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In order to show |δ |M || � ‖|M |‖ = HkbM let A ⊂ U with (HkbM)(A) = 0. The outer
regularity of HkbM then implies

|δV | (A) = inf
Ũ open,

A⊂Ũ

sup

{∫
U
g ·HM dHk : g ∈ C0

c (Ũ ;Rn), |g| ≤ 1

}
≤C inf

Ũ open,

A⊂Ũ

(HkbM)(Ũ) = 0

and with the same arguments and notations as above we have

H|M | = −
d |δ |M ||
d ‖|M |‖ ν = HM .

Remark. If in the situation above M is a C2-surface with boundary ∂M 6= ∅ the
divergence theorem yields∫

M
divM X dHk = −

∫
M
X ·HM dHk +

∫
∂M

X · ν dHk−1 for all X ∈ C1
c (U ;Rn)

where ν denotes the unit conormal vector field on ∂M which points into M . Since we
have Hk(A) = 0 for all sets A ⊂ U with Hk−1(A) <∞, the measure νHk−1b∂M is not
absolutely continuous with respect to ‖V ‖ = HkbM .
In general, the absolute continuity in Definition 2.12 corresponds to the fact that
supp ‖V ‖ has no boundary.

The set of all integer k-varifolds satisfies the following important compactness property
with respect to the weak convergence of measures.

Theorem 2.14 (Allard, ’72). Let (Vj)j∈N be a sequence of integer k-varifolds on U ⊂ Rn
with locally bounded first variation which satisfies

lim inf
j→∞

(
‖Vj‖ (Ũ) + |δVj | (Ũ)

)
<∞ for all Ũ ⊂⊂ U. (2.4)

Then there exists a subsequence (Vji)i∈N and an integer k-varifold V on U such that

Vji
∗
⇀ V

as i→∞.

Proof. See [Si83], 42.8, or [Al72].

Remark. i) The relevant part in the proof of Theorem 2.14 is to show that V indeed
satisfies the integrality property. The mere existence of a limit varifold V ∈ Vk(U)
is a direct consequence of the compactness result for general Radon measures from
Proposition A.8.

ii) The statement of Theorem 2.14 is even non trivial for a sequence of smooth surfaces
(or rather for their induced varifolds) which do not converge to classical surface in
general:
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Let (Mj)j∈N be a sequence of smooth k-dimensional surfaces and consider the
induced unit density varifolds Vj = |Mj |, j ≥ 1. For Ũ ⊂⊂ U we have

‖|Mj |‖ (Ũ) = Hk(Mj ∩ Ũ)

and

|δ |Mj || (Ũ) = sup{δ |Mj | (g) : g ∈ C1
c (Ũ ;Rn), |g| ≤ 1}

= sup{−
∫
Mj

g ·HMj dHk : g ∈ C1
c (Ũ ;Rn), |g| ≤ 1}

≤
∥∥HMj

∥∥
L1(HkbMj)

and thus, condition (2.4) is satisfied if

lim inf
k→∞

(
Hk(Mj ∩ Ũ) +

∥∥HMj

∥∥
L1(HkbMj)

)
<∞ for all Ũ ⊂⊂ U.

Theorem 2.14 then yields

|Mji |
∗
⇀ V = θ |M |

as i → ∞ for a countably k-rectifiable set M and a nonnegative integer valued
function θ : U → N0. Notice, that V is not a unit density varifold in general.

2.3 Sets of finite perimeter and the reduced boundary

Let Ω denote an open subset of Rn, n ∈ N. In this section we introduce the notion of
BV functions and generalize the concept of C1-boundaries of sets in a measure theoretic
way.

Definition 2.15. A function f ∈ L1(Ω) has bounded variation in Ω if the condition

sup

{∫
Ω
f ∇·ϕdx : ϕ ∈ C1

c (Ω;Rn), |ϕ| ≤ 1

}
<∞

is satisfied. We denote the set of all functions of bounded variation in Ω by BV (Ω).

The space BV (Ω) consists of those L1-functions on Ω whose distributional derivative is
given by a Radon measure.

Theorem 2.16. For f ∈ BV (Ω) there exists a Radon measure µ on Ω and a µ-
measurable function σ : Ω→ Rn such that

i) |σ(x)| = 1 for µ-almost every x ∈ Ω and

ii)
∫

Ω f ∇·ϕdx = −
∫

Ω ϕ · σ dµ for all ϕ ∈ C1
c (Ω;Rn).

µ is the variation measure induced by the distributional derivative of f and we therefore
write µ =: |∇f | which is characterized by

|∇f | (U) = sup

{∫
Ω
f ∇·ϕdx : ϕ ∈ C1

c (U ;Rn), |ϕ| ≤ 1

}
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2.3 Sets of finite perimeter and the reduced boundary

for all open sets U ⊂ Ω.

Proof. See [EvGa92], 5.1, Theorem 1.

Definition 2.17. An Ln-measurable set E ⊂ Rn has finite perimeter in Ω if

χE ∈ BV (Ω).

Remark. Assume E ⊂ Rn is of finite perimeter in Ω. With f = χE the equation in ii)
then reads∫

E
∇·ϕdx = −

∫
Ω
ϕ · σ dµ

for all ϕ ∈ C1
c (Ω;Rn) We write νE := −σ as well as µ = |∇χE | := ‖∂E‖ in this case and

refer to them as the generalized outer unit vector field and the boundary measure of E.
The notation is clearly motivated by the divergence theorem for sets with C1-boundary
for which we have ‖∂E‖ = Hn−1b∂E and νE = ν with ν denoting the classical outer
unit normal vector field of E.

Definition 2.18. Let E ⊂ Rn have bounded perimeter in Rn with νE and ‖∂E‖ as
above. The reduced boundary of E is denoted by ∂∗E and consists of all points x ∈ Rn
with

i) ‖∂E‖ (B(x, r)) > 0 for all r > 0,

ii) −
∫
B(x,r) νE d ‖∂E‖ → νE(x) as r → 0,

iii) |νE(x)| = 1.

Remark. By definition, the reduced boundary ∂∗E of a set E with finite perimeter
consists of those points of the topological boundary ∂E in which we can define an outer
normal vector to E at least in a weak measure theoretic way.

We conclude this section with a characterization theorem for finite perimeter sets by De
Giorgi. It basically states that these sets have a C1-boundary measure theoretically.

Proposition 2.19 (De Giorgi). Let E ⊂ Rn have finite perimeter in Rn. Then ∂∗E
is countably n-rectifiable and we have ‖∂E‖ = Hn−1b∂∗E. In every point x ∈ ∂∗E the
approximate tangent space Tx∂

∗E exists with multiplicity θ = 1 and is given by

Tx∂
∗E = {y ∈ Rn : y · νE(x) = 0}

with νE from Definition 2.18.

Proof. See [Si83], Theorem 14.3.
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2.4 The optimal profile

The nonlinear reaction-diffusion equation (Allen-Cahn or Ginzburg-Landau equation)

∂tu = ε∆u− 1

ε
F ′(u) (2.5)

on a domain Ω ⊂ Rn appears as the L2-gradient flow of the diffuse surface energy
functional

Eε(u) =

∫
Ω

ε

2
|∇u|2 +

1

ε
F (u) dx

and was originally chosen in [Ca60] to simulate phase boundary motion driven by
surface tension in crystalline materials (see also [AlCa73]). Since then it has been
used extensively in numerous other applications as population genetics or nerve pulse
propagation [ArWe75] to describe phase transition phenomena between two modeled
phases. Basically, stationary states u 6≡ 0 in this context describe optimal configurations
of Eε while the (instable) stationary state u ≡ 0 corresponds to a perfect mixing of both
modeled phases.
However, from our point of view, solutions u of

ε∆u− 1

ε
F ′(u) = 0 (2.6)

on appropriate n-dimensional spacial domains Ω appear in a different light as these
functions naturally have vanishing diffuse Willmore energy Wε(u). Even for n = 1 the
problem stays interesting as in this case solutions of (2.6) can be seen as cross sections or
optimal transition profiles of two-dimensional phase fields with energetically preferable
shapes. A precise understanding of stationary solutions of the Allen-Cahn equation will
be crucial throughout the whole thesis. In this section we introduce a solution which
often appears in phase transition theory.

Before we define the specific problem we briefly remark that equation (2.6) naturally
scales in terms of ε. Indeed, for a solution u of (2.6) on Ω ⊂ Rn the function

ũ := u(ε·)

obviously satisfies

∆ũ− F ′(ũ) = 0 in ε−1Ω

and hence, the solution theory for (2.6) is completely covered by the case ε = 1.

The problemγ
′′ − F ′(γ) = 0

lim
x→±∞

γ(x) = ±1, γ(0) = 0.
(2.7)

28
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is usually called the optimal profile problem and its solution describes the (in terms of
Eε) energetically optimal phase transition connecting the states −1 and 1 without any
disturbances caused by the domain size or prescribed boundary values. The existence
of a solution of (2.7) can be shown easily by multiplying the equation with γ′. This
first yields

1

2
(γ′)2 − F (γ) = C

for a constant C ∈ R and we directly obtain C = 0 due to the prescribed behavior of γ
at ±∞. Consequently, we can transform (2.7) to the first order ODE{

γ′ =
√

2F (γ)

γ(0) = 0.
(2.8)

which yields a unique solution γ satisfying −1 < γ < 1 as F ∈ C1(R). Moreover, due to
our special choice F (s) = 1

4(s2 − 1)2 the solution is given by

γ(x) = tanh

(
x√
2

)
, x ∈ R.

We remark that the condition γ(0) = 0 ensures the uniqueness as otherwise every other
function of the form γ(· − c), c ∈ R solves the equation with the same limit values in
±∞.
We will refer to γ and its ε scaled version γε = γ

( ·
ε

)
as the optimal profile in the following.

2.5 4-ended solutions of the Allen-Cahn equation in two
dimensions

We will give a short (and rather incomplete) introduction into the theory of 4-ended
solutions of the Allen-Cahn equation in two dimensions

−ε2∆uε + F ′(uε) = 0 in R2. (2.9)

Notice, that by rescaling we could assume ε = 1 without loss of generality. However, all
results will directly be formulated for the ε-dependent equation which will turn out to
be more convenient in Section 6.1 below.

In recent years there has been put much effort in the complete characterization of
entire solutions to (2.9) in n ∈ N dimensions and their properties. This specific interest
was initiated by a famous conjecture of De Giorgi in 1978 (see [DeG79]). Inspired by
differential geometric considerations he assumed the following ([PiKoWe12]):

Let u be any bounded entire solution of (4.1) in Rn for n ≤ 8 which is monotone in one
direction ξ ∈ Rn, i.e. ∂ξu > 0. Then all level sets of u are hyperplanes. Equivalently, u
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has to be of the form

u(x) = γ
(
(x− p) · ξ

)
for some point p ∈ Rn where γ denotes the optimal profile (see Section 3.1).

The conjecture has been proved for dimensions n = 2, 3 [AmCa00, GhGu98] and in the
remaining dimensions under slightly stronger hypotheses [Sa09].
For the case n = 2 Dang, Fife and Peletier proved the existence of a nontrivial saddle
shaped solution of (4.1) with a zero set consisting of 2 perpendicular lines [DaFiPe92].
The class of more general 4- or (2k-) ended solutions has been introduced in [PiKoPa10]
and lot of effort has been spent in their description since then [KoLiPa12, PiKoPa13,
KoLiPa14]. For a general overview of this theory we refer to the mentioned sources and
the citations therein.

A 4-ended solution uε ∈ C2(R2) of (2.9) can roughly be described as an entire solution
whose zero set consists, away from a compact set, of four curves which are asymp-
totic to four oriented half-lines at infinity. We call these half-lines the ends of the
solution. Moreover, following these lines towards infinity, uε becomes approximately
shaped like the one-dimensional optimal profile γε (or −γε, respectively) from Section 2.4.

To precise the motivation above and give a rigorous definition we first construct ap-
proximate solutions of equation (2.9) according to [KoLiPa12] or [PiKoPa13]. Note,
that we directly restrict ourselves to symmetric (approximate) solutions (referred to
as Meven

4 in [KoLiPa12]) which makes the definition below slightly more restrictive in
comparison. The existence result for solutions of (2.9), however, is not influenced by the
restraint as those solutions only exist in the symmetric case (see [KoLiPa12] and [Gui12]).

Let ε > 0, r ≥ 0, and v ∈ S1. By reflecting v on both coordinate axes we obtain the
four vectors

v1 := v, v2 :=

(
−1 0
0 1

)
v, v3 := −v1, v4 := −v2.

Obviously, for all sufficiently large R > 0 there exists s = s(R) > 0 such that∣∣∣svi + (−1)i+1rv⊥i
∣∣∣ = R for i = 1, . . . , 4

and thus, ε
(
svi + (−1)i+1rv⊥i

)
∈ ∂B(0, Rε). As always, v⊥i denotes the rotation of vi by

π
2 . We can define four disjoint oriented half-lines G1, . . . , G4 included in R2 \B(0, Rε)
by

Gi := {tvi + (−1)i+1rεv⊥i : t ≥ sε} for i = 1, . . . , 4 (2.10)

and for large radii R the distance between to distinct half-lines is greater than 4ε in
accordance to [KoLiPa12], Chapter 2. Indeed, the minimal distance between Gi and
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Gj , 1 ≤ i, j ≤ 4 is determined by their points on ∂B(0, Rε) and thus,

dist(Gi, Gj) =ε
∣∣∣s(vi − vj)− r((−1)j+1v⊥j − (−1)i+1v⊥i

)∣∣∣
≥ε
∣∣∣s |vi − vj | − r ∣∣∣(−1)j+1v⊥j − (−1)i+1v⊥i

∣∣∣∣∣∣
≥4ε

yields the claim as s is strictly increasing in R and |vi − vj | ≥ C for all 1 ≤ i, j ≤ 4.
This implies that Ω0 := B(0,

(
R+ 1

)
ε) and

Ωi :=
(
R2 \B

(
0, (R− 1)ε

))
∩ {x ∈ R2 : dist(x,Gi) < dist(x,Gj) + 2ε, i 6= j}

build an open covering of R2, i.e.,

R2 =
4⋃
j=0

Ωj

such that Gi is contained in Ωi for i = 1, . . . 4 (see Figure 2.1).

G1G2

G3 G4

Ω0 Ω1Ω2

Ω3 Ω4

Figure 2.1: A schematic sketch of the open covering of R2 given by Ω0, . . . ,Ω4 with
inner radius (R− 1)ε and outer radius (R+ 1)ε.

We can further choose a subordinate smooth partition of unity ρ0, . . . , ρ4 of R2 and
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assume without loss of generality that

ρ0 ≡ 1 in B
(
0, (R− 1)ε

)
as well as

ρi ≡ 1 in
(
R2 \B

(
0, (R+ 1)ε

))
∩ {x ∈ R2 : dist(x,Gi) < dist(x,Gj)− 2ε, i 6= j}

for j = 1, . . . , 4.
With these notations we define

uGε (x) := u(G1,G2,G3,G4)
ε (x) :=

4∑
j=1

(−1)jρjγε
(
x · v⊥j + (−1)jr

)
, x ∈ R2

uGε is an approximate solution of (6.19) in the sense that −ε∆uGε (x)+ 1
εF
′(uGε (x)) decays

exponentially fast as |x|ε →∞ (see [PiKoPa13], the remark after Definition 2.1 on p.726).

With the help of approximate solutions, we can now give a precise definition of a 4-ended
solution of (2.9):

Definition 2.20. Let ε > 0. A solution uε ∈ C2(R2) of (2.9) is called a 4-ended
solution if there exist r ∈ R, v ∈ S1, and a corresponding approximate solution uGε as
above such that (after a possible rotation and translation of uGε )

uε − uGε ∈ H2(R2)

holds.

The following existence result from [KoLiPa12] will be crucial for the construction in
Section 6.1, Theorem 6.3.

Proposition 2.21. For every ε > 0 and v ∈ S1 there exists r ∈ R and a 4-ended
solution uε ∈ C2(R2) with |uε| < 1 and

uε − uGε ∈ H2(R2) (2.11)

where uGε denotes an approximate solution of (2.9) corresponding to v and r. Moreover
for ε ≤ 1, there exists a constant α > 0 (independent of ε) such that∥∥∥εeα |·|2ε (∣∣uε − uGε ∣∣+

∣∣∇(uε − uGε )
∣∣+
∣∣D2(uε − uGε )

∣∣)∥∥∥
L2(R2)

≤ C (2.12)

for a constant C > 0 uniform in ε and thus,

uε − uGε ∈
1

ε2
e−α

|x|2
ε2 H2(R2)

where 1
ε2
e−α

|x|2
ε2 H2(R2) denotes the respective weighted H2-space.

Proof. The existence part has been shown in [KoLiPa12], Theorem 2.7 for ε = 1. Then,
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by the usual rescaling we set

uε(x) := u1

(x
ε

)
for all x ∈ R2

which yields (2.11) and consequently, uε is a 4-ended solution of (2.9).
From 0 ∈ Im(uε) we directly obtain |uε| < 1, as every solution of (2.9) which attains the
values +1 or −1 is known to be constant, e.g., by the estimate from [Mo85], Theorem 1.
Further, [PiKoPa13], Theorem 2.1 yields the result about the refined asymptotics for
ε = 1 and (2.12) follows again with the scaling for the ε-dependence. Indeed, with
vε := uε − uGε and ε ≤ 1 we have∫

R2

(
vε(x)2 + |∇vε(x)|2 +

∣∣D2vε(x)
∣∣2) ε2eα

|x|2
ε2 dx

≤
∫
R2

(
vε(x)2 + ε2 |∇vε(x)|2 + ε4

∣∣D2vε(x)
∣∣2) eα |x|2ε2 1

ε2
dx

=

∫
R2

(
v1(x)2 + |∇v1(x)|2 +

∣∣D2v1(x)
∣∣2) eC|x|2 dx ≤ C

with a change of variables in the last step.

The proposition above particularly provides a statement about the distance between
the zero set of uε and its ends. We will need this specific property later on.

Corollary 2.22. In the situation of Proposition 2.21 there exists R0 > 0 such that for
all ε ≤ 1 and R > 0 with R ≥ R0ε

dist
(
x, {uGε = 0} ∩ {|y| ≥ R}

)
≤ C

ε
e−α

R2

ε2 (2.13)

is satisfied for all x ∈ {uε = 0} with |x| ≥ R with α > 0 from Proposition 2.21.

Proof. Let ε ≤ 1. Due to (2.11) and the structure of approximate solutions of (2.9)
we can choose R0 > 0 such that outside of B(0, R0ε) the zero set of uε consists of
four curves which are asymptotic to four distinct oriented half-lines at infinity (see
[PiKoPa10] and also [PiKoPa13]). By the general Sobolev inequality (see, e.g., [AdFo03])
H2(R2) embeds continuously into C0(R2) and therefore, (2.12) implies∣∣uε(x)− uGε (x)

∣∣ ≤ C

ε2
e−α

R2

ε2 (2.14)

for all x ∈ R2 with |x| ≥ R. To show (2.13), we can restrict ourselves to one of the
four ends of uε and we assume it to be the positive part of the x1-axis without loss of
generality. Now let R ≥ R0ε and x = (x1, x2) ∈ {uε = 0} with |x| ≥ R. Due to the
assumption above, it suffices to consider the case x1 > 0 and |x2| ≤ 1. From (2.14) and

γε(x2) = tanh
(
x2√
2ε

)
we obtain

tanh

( |x2|√
2ε

)
=

∣∣∣∣tanh

(
x2√
2ε

)∣∣∣∣ =
∣∣uGε (x)

∣∣ =
∣∣uε(x)− uGε (x)

∣∣ ≤ C

ε2
e−α

R2

ε2 ,
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which gives

|x2| ≤
√

2ε artanh

(
C

ε2
e−α

R2

ε2

)
≤ C

ε
e−α

R2

ε2 ,

where we have used that artanh(s) = s+O(s3) as s→ 0 in the second inequality. Hence,

dist
(
x, {uGε = 0}

)
= dist

(
x, {(y1, y2) ∈ R2 : y1 > 0, y2 = 0}

)
= |x2| ≤

C

ε
e−α

R2

ε2

yields (2.13).

2.6 A classical approximation result for the Willmore and
surface energy

In this part we want to comment briefly on the diffuse approximation of the Willmore
and surface energy of a given set which has been discovered by Belletini and Paolini in
[BePa93]. The relevant statement is formulated in the next theorem.

Theorem 2.23 (Bellettini, Paolini, ’93). Let Ω ⊂ Rn, n ≥ 2 be an open set and
consider a bounded subset E ⊂ Ω with C2 boundary. Then, for u = 2χE − 1 there exists
a sequence (uε)ε>0 in H2(Ω) which satisfies

uε −→ u in L1(Ω)

and

Eε(uε) +Wε(uε) =

∫
Ω

ε

2
|∇uε|2 +

1

ε
F (uε) dx+

1

2ε

∫
Ω

(
ε∆uε +

1

ε
F ′(uε)

)2

dx

−→ σ
(
Hn−1(∂E ∩ Ω) +W(u)

)
. (2.15)

where F (s) = 1
4(s2 − 1)2 denotes the standard symmetric double well potential as always

and with σ :=
∫ 1
−1

√
2F ds.

Remark. In Section 6.1 we will make extensive use of the result above. For convenience,
we will always refer to the sequence (uε)ε>0 in the theorem as the standard approximation
of Willmore and surface energy by Bellettini and Paolini.

Instead of presenting all technical details of the proof (which can be found in [BePa93]),
we rather describe the idea for the construction and give a heuristic argument for its
convergence. For simplicity, we also restrict ourselves to the two-dimensional case,
although the argument stays valid for arbitrary n ≥ 2.
For small ε > 0 and x ∈ Ω we define the signed distance function of E by

d(x) := dist(x,Ω \ E)− dist(x,E)

and set close to ∂E

uε(x) := γε
(
d(x)

)
.
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2.6 A classical approximation result for the Willmore and surface energy

We have

|uε| ≈ 1 (2.16)

outside a layer of size ε around ∂E and thereby, uε is an diffuse approximation of the
indicator function u. Inside this narrow layer, the transition from one phase of u to
another is shaped like the one-dimensional optimal profile γε which will turn out to be
energetically optimal. We remark that the gradient of d satisfies |∇d| = 1 (see [OsFe03])
and hence,

∇uε = γ′ε(d)∇d (2.17)

as well as

∆uε = γ′′ε (d) |∇d|2 + γ′ε(d)∆d = γ′′ε (d) + γ′ε(d)∆d. (2.18)

The convergence of the second summandWε(uε) in (2.15) can now be justified as follows.
Due to (2.16) and (2.18) we obtain

Wε(uε) ≈
1

2ε

∫
{|d|<√ε}

(
ε∆uε +

1

ε
F ′(uε)

)2

dx

=
1

2ε

∫
{|d|<√ε}

ε2
(
γ′ε(d)

)2
(∆d)2 dx, (2.19)

where we have used that γε is the rescaled solution of (2.7). Now, we introduce new
tubular coordinates around ∂E and perform a change of variables in the integral: For
small ε > 0 every x ∈ {|d| ≤ √ε} has a unique representation

x = g(y, r) = y + rν∂E(y)

with y ∈ ∂E, ν∂E(y) denoting the outer unit normal vector of ∂E in y, and |r| < √ε.
From [GiTr01], Lemma 14.16 we obtain

detDg = 1− rH(y) · ν∂E(y),

where H(y) denotes the curvature vector of ∂E in y. Hence, (2.19) reads

Wε(uε)

≈ε
2

∫
∂E

∫ √ε
−√ε

(
γ′ε(r)

)2
(∆d)2

(
y + rν∂E(y)

)(
1− rH(y) · ν∂E(y)

)
dr dH1(y)

=
1

2

∫
∂E

∫ 1√
ε

− 1√
ε

(
γ′(s)

)2
(∆d)2

(
y + εsν∂E(y)

)(
1− εsH(y) · ν∂E(y)

)
ds dH1(y)

−→
(∫ ∞
−∞

(
γ′(s)

)2
ds

)∫
∂E∩Ω

1

2
(∆d)2(y) dH1(y)

=σW(∂E) = σW(u)
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as ε→ 0 since ∆d = −H · ν∂E on ∂E and∫ ∞
−∞

(γ′)2 ds =

∫ ∞
−∞

√
2F (γ)γ′ ds =

∫ 1

−1

√
2F (γ) dγ = σ.

The convergence of the first summand Eε(uε) has already been proven in [MoMo77] (or
[Mo87]). It can be motivated by (2.17) and the coarea formula since

Eε(uε) ≈
∫
{|d|<√ε}

(
ε

2

∣∣γ′ε(d)
∣∣2 +

1

ε
F
(
γε(d)

))
|∇d| dx

= H1(∂E ∩ Ω)

(∫ 1√
ε

− 1√
ε

1

2

∣∣γ′∣∣2 + F (γ) dr

)
−→ σH1(∂E ∩ Ω)

as ε→ 0 since 1
2(γ′)2 + F (γ) =

√
F (γ)γ′.

Remark. Instead of
√
ε we could have chosen any other function h(ε) with ε−1h(ε)→ 0

as ε→ 0. This is an immediate consequence of the rigorous proof in [BePa93]. Indeed,
the authors choose uε to be constant ±1 outside a neighborhood of ∂E twice as large
as the considered layer above and connect the constant states with the optimal profile
on the narrow gap such that the resulting function is smooth (see Section 6.1 for the
precise construction). The energy contribution of the appearing error terms vanishes if
we ensure that the region where uε is not constant shrinks faster than ε. This will turn
out to be important in Section 6.1.
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3 Energy scalings of stripe
configurations

3.1 The optimal arc profile

In this section we will introduce another relevant class of solutions to the one-dimensional
stationary Allen-Cahn equation (2.6). While the phase transition performed by γ
(Section 2.4) takes place on the whole real line it will also be crucial to understand
and characterize the shape of solutions with prescribed boundary data on a bounded
interval [0, `] for an ` > 0.

We consider the Dirichlet problem
−εq′′`,ε +

1

ε
F ′(q`,ε) = 0 in (0, `)

0 < q`,ε < 1 in (0, `)

q`,ε = 0 in {0, `}.

(3.1a)

(3.1b)

(3.1c)

and show existence of such solutions together with some elementary properties in the
following proposition. The results are well known and can be found more or less explicitly
for instance in [CaPe89, OtRe07, BeNaNo15], although the proofs are often skipped.
For the reader’s convenience we include a complete proof of the presented statements.

Proposition 3.1. There exists a constant `1 > 0 such that for all ratios `
ε > `1 (3.1)

has a unique solution q`,ε ∈ C∞((0, `)) which only depends of ε and ` by the ratio `
ε .

Moreover, q`,ε is symmetric with respect to the interval midpoint `
2 and satisfies

q′`,ε=


1

ε

√
2
(
F (q`,ε)− F (q̄`,ε)

)
in

[
0,
`

2

]
−1

ε

√
2
(
F (q`,ε)− F (q̄`,ε)

)
in

(
`

2
, `

] (3.2)

where q̄`,ε = q`,ε
(
`
2

)
denotes the maximum of q`,ε in (0, `). We will refer to q`,ε as the

optimal arc profile corresponding to ` and ε in the following.

Proof. By the usual scaling q`,ε(x) = q `
ε
,1

(
x
ε

)
we immediately see that it suffices to

consider the case ε = 1 in (3.1a) which already shows the desired dependence of q`,ε on
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this ratio. For the sake of notation we skip the indices of q`,1 in the following.

The existence of a solution of (3.1) follows easily by the direct method of the calculus
of variations. We choose a minimizing sequence (qk)k∈N of E1 in H1

0

(
(0, `)

)
and without

loss of generality we can assume that for all k ∈ N we have 0 ≤ qk ≤ 1. Otherwise, we
can choose q̃k := min{|uk| , 1} which also minimizes E1 since F is even and F (1) = 0.
Therefore, we obtain a minimizer 0 ≤ q ≤ 1 which solves (3.1a) and standard regularity
theory for ODEs directly yields q ∈ C∞((0, `)).
To see that u satisfies (3.1b) for sufficiently large ` we first remark that the function
v ∈ H1

0

(
(0, `)

)
v(x)=


x if 0 ≤ x ≤ 1

1 if 1 < x < `− 1

−x+ ` if `− 1 ≤ x ≤ `

satisfies

E1(q) = min
u∈H1

0 ((0,`))
E1(u) ≤ E1(v) =

34

15
<
`

4
= E1(0)

for ` > 0 sufficiently large and hence, we conclude q 6≡ 0. Now we can rewrite (3.1a) as

−q′′ + q−
∫ q

0
F ′′(r) dr = 0

due to F ′(0) = 0, and the strong maximum principle ([GiTr01], Theorem 3.5 and the
remark thereafter) yields q > 0 in (0, `). With the same argument we also obtain q < 1
which proves (3.1b).
Next, we deduce from (3.1a) that q is a strict concave function and hence, attains its
maximum in exactly one point x̄ ∈ (0, `), i.e., q(x̄) = q̄. We multiply (3.1a) by q′ for(

(q′)2
)′

=
(
F (q)

)′
and integrating over (x, x̄) with x < x̄ (over (x̄, x) with x > x̄, respectively) yields

q′=


√

2
(
F (q)− F (q̄)

)
in [0, x̄)

−
√

2
(
F (q)− F (q̄)

)
in (x̄, `]

which implies x̄ = `
2 and therefore the symmetry of q and (3.2). Finally, from this first

order ODE and the prescribed boundary values we obtain the uniqueness of q in
(
0, `2
)

and
(
`
2 , `
)

as the right hand side of (3.2) is locally Lipschitz continuous away from `
2 .

This yields the uniqueness of q by continuation and concludes the proof.

An exact description of the size of q̄`,ε < 1 (which only depends on the ratio `
ε) will be

necessary in Section 3.2.

Lemma 3.2. As `
ε → ∞ we have q̄`,ε → 1 and there exist `2 ≥ `1 > 0 such that for
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ratios `
ε ≥ `2

1− q̄`,ε = Ke−α
`
2ε

[
1 +O

(
`

ε
e−α

`
2ε

)]
is satisfied with explicitly given constants α :=

√
F ′′(1) =

√
2 and

K := 2 exp

(∫ 1

0

α√
2F (t)

− 1

1− t dt
)

= 4.

Particularly, we have

F (q̄`,ε) =
1

2
K2α2e−α

`
ε

[
1 +O

(
`

ε
e−α

`
2ε

)]
in this case.

Proof. The proof can be found in [CaPe89], Proposition 3.4.

The profiles q`,ε and γε both solve the same differential equation with different boundary
conditions. For large interval lengths ` the influence of the right boundary condition
q`,ε(`) = 0 on the shape of the monotone increasing half of q`,ε declines and we can show
that q`,ε approximates γε in this case.

Lemma 3.3. On every bounded interval [0, R], R > 0, the optimal arcs q`,1 converge
uniformly towards γ.

Proof. Fix an interval length R and consider the sequence (q`,1)`>R which satisfies
0 ≤ q`,1 < 1 for all ` > R due to (3.1b). By (3.1a), (3.2) and the fact that F (q̄`,1)→ 0 as
`→∞ from Lemma 3.2, we immediately obtain that (q`,1)`>R is bounded in H2((0, R))
and hence we can extract a subsequence which converges weakly in H2((0, L)) and
strongly in C1([0, R]) (by the general Sobolev inequality, e.g. [Eva10], 5.6.3, Theorem
6) towards a function q ∈ H2((0, R)). Passing to the limit in (3.1a) then shows that q
solves (2.8) and hence, q = γ as the solution is unique.

As γ(x)→ 1 with x→∞ the foregoing lemma especially implies that q`,ε approximately
looks like χ(0,`) for small ε > 0:

Corollary 3.4. For fixed ` > 0 we have

q`,ε(x)→ 1 for all x ∈ (0, `) (3.3)

as ε→ 0.

Proof. Due to the symmetry of q`,ε it suffices to consider x ≤ `
2 . For δ > 0 small and

N > 0 we have for x ∈ (δ, `2)

q`,ε(x) = q `
ε
,1

(x
ε

)
≥ q `

ε
,1(N)
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if ε < ε0(δ,N). Sending ε→ 0 gives

lim inf
ε→0

q`,ε(x) ≥ γ(N)

by Lemma 3.3 and with N →∞ we conclude

lim inf
ε→0

q`,ε(x) ≥ 1.

Thus, (3.3) follows due to (3.1b) and since δ was arbitrary.

The specific form of F allowed us to find a precise representation of γ (which is not
possible in general for other double well potentials) by the hyperbolic tangent. A
similar description is available for q`,ε using the Jacobian elliptic sine function Sn (see
[DLMF], §22 for a definition). We include the precise form in the next proposition for
completeness, though we will not make use of it later on.

Proposition 3.5. The optimal arc profile q`,ε has the representation

q`,ε(x) := k

√
2

k2 + 1
Sn

(
x

ε
√
k2 + 1

, k

)
(3.4)

with k = k
(
`
ε

)
∈ (0, 1) chosen such that the equation

`

ε
= 2K̄(k)

√
k2 + 1

holds with

K̄(k) :=

∫ π
2

0

dt√
1− k2 sin2(t)

denoting the complete Jacobian elliptic integral.

Proof. We remark that Sn satisfies the second order ODE

Sn′′ = −(1 + k2) Sn +2k2 Sn3

(see [DLMF], §22.13.13) and calculate

− ε2q′′`,ε + F ′(q`,ε) = −ε2q′′`,ε + (q`,ε)
3 − q`,ε

=− k
√

2

(k2 + 1)3
Sn′′

(
x

ε
√
k2 + 1

, k

)
+ 2k3

√
2

(k2 + 1)3
Sn3

(
x

ε
√
k2 + 1

, k

)
− k
√

2

k2 + 1
Sn

(
x

ε
√
k2 + 1

, k

)
=k

√
2

(k2 + 1)3

(
− Sn′′

(
x

ε
√
k2 + 1

, k

)
+ 2k2 Sn3

(
x

ε
√
k2 + 1

, k

)
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− (k2 + 1) Sn

(
x

ε
√
k2 + 1

, k

))
=0.

Since Sn(0, k) = Sn(2K̄(k), k) = 0 and Sn(·, k) > 0 in (0, 2K̄(k)) the statement follows
as the solution of (3.1) is unique.

Remark. The choice of k in the representation of q`,ε above is only possible for large
values of `

ε in accordance to the requirement in Proposition 3.1 and we have k ↗ 1 as
`
ε →∞.
As a byproduct, Proposition 3.5 yields an precise expression for q̄`,ε. As Sn has its
maximum at value 1, we deduce from (3.4) that

q̄`,ε = k

√
2

k2 + 1
.

We also point out that we could have shorten the proof of Proposition 3.1 in some points
by using the representation of q`,ε. However, we decided for the general approach which
stays valid for more general double well potentials.

We conclude this section with two technical lemmas on q`,ε which we will need in Section
3.2.

Lemma 3.6. For `, ε > 0 with `
ε > `2 the corresponding optimal arc q`,ε satisfies∫ `

0

ε

2
(q′`,ε)

2 +
1

ε
F (q`,ε) dx ≤ σ +

`

ε
F (q̄`,ε) ≤ σ + C

`

ε
e−α

`
ε (3.5)

with σ =
∫ 1
−1

√
2F (r) dr.

Proof. We rearrange (3.2) for

1

ε
F (q`,ε) =

ε

2
(q′`,ε)

2 +
1

ε
F (q̄`,ε) in

[
0,
`

2

]
.

and use the symmetry of q`,ε to obtain the first inequality of (3.5) by∫ `

0

ε

2
(q′`,ε)

2 +
1

ε
F (q`,ε) dx = 2

∫ `
2

0

ε

2
(q′`,ε)

2 +
1

ε
F (q`,ε) dx

=2

∫ `
2

0
ε(q′`,ε)

2 +
1

ε
F (q̄`,ε) dx = 2

∫ `
2

0

√
2
(
F (q`,ε)− F (q̄`,ε)

)
q′`,ε dx+

`

ε
F (q̄`,ε)

=2

∫ q̄`,ε

0

√
2
(
F (r)− F (q̄`,ε)

)
dr +

`

ε
F (q̄`,ε)

≤
∫ 1

0

√
2F (r) dr +

`

ε
F (q̄`,ε)

=σ +
`

ε
F (q̄`,ε).

Then, the remaining part of (3.5) follows with an application of Lemma 3.2.
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Lemma 3.7. Let ε, ` > 0 with `
ε > `1. Then q`,ε satisfies∫ `

2

0

∣∣q′`,ε∣∣2 dx ≤ C

ε
, (3.6)∫ `

2

0

∣∣q′′`,ε∣∣2 dx ≤ C

ε3
(3.7)

with a constant C = C(`1) > 0.

Proof. (3.6) follows directly from the first inequality in (3.5) as∫ `
2

0

ε

2

∣∣q′`,ε∣∣2 +
1

ε
F (q`,ε) dx ≤ C.

For (3.7) an integration by parts yields∫ `
2

0

(
q′′`,ε
)2
dx =

1

ε2

∫ `
2

0
q′′`,εF

′(q`,ε) dx

=
1

ε2

[
q′`,εF

′(q`,ε)
] `

2

0
− 1

ε2

∫ `
2

0
F ′′(q`,ε)

∣∣q′`,ε∣∣2 dx
≤ C

ε2

∫ `
2

0

∣∣q′`,ε∣∣2 dx ≤ C

ε3

where we have used (3.6) in the last step.

3.2 Quasi one-dimensional configurations and their
minimal energy scaling

To understand the driving forces which cause the observed slow evolution in the
simulations from [EsRäRö14] we study a corresponding stationary problem. In this
section we consider configurations with only straight phase boundaries and examine
whether these interfaces still carry diffuse Willmore energy in contrast to the sharp
interface limit. Moreover, we restrict ourselves to simple phase fields with a quasi
one-dimensional structure. As we will see below, these configurations already show an
interesting behavior.
In the following, we consider the whole space R2 divided into vertical stripes with
periodically repeating widths `, r > 0 (see Figure 3.1) and denote the (fixed) period
length by L := `+ r.

Defining E ⊂ R2 by

E := {x ∈ R2 : kL < x1 < kL+ ` for some k ∈ Z}

the corresponding indicator function u = 2χE − 1 then obviously satisfies W(u) = 0
as ∂E has no curvature. Consequently, u is a global minimizer of W and a (stable)
stationary state of the Willmore flow independent of ` and r.
In this section we will investigate the same situation for the diffuse Willmore functional
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3.2 Quasi one-dimensional configurations and their minimal energy scaling

E

` r

0 L

Figure 3.1: R2 periodically divided into vertical stripes of widths ` and r.

Wε and compare it to the sharp interface limit described above. For ε > 0 small we
only choose phase fields which are constant in x2-direction and therefore reduce the
problem to one dimension (see Figure 3.2).

u > 0 u < 0

` r

0 L

1

-1

` L

u

Figure 3.2: Dimension reduction.

More specific, we consider u ∈ H2
per(U) with


u > 0 in (0, `)

u < 0 in (`, L)

u = 0 in {0, `, L}

(3.8a)

(3.8b)

(3.8c)

and constrained to

Eε(u) :=

∫ L

0

ε

2

∣∣u′∣∣2 +
1

ε
F (u) dx ≤ F (0)

2
`4 (3.9)

for a sufficiently large constant `4 > 0 chosen below in the proof of Theorem 3.8. We
briefly remark at this point that the pointwise conditions in (3.8) have a proper meaning
as H2

per

(
(0, L)

)
embeds continuously into C1

per([0, L]).

We will always assume `
ε ,

r
ε ≥ `4 such that condition (3.9) excludes functions which are

”too close” to the zero function since

Eε(0) =
L

ε
F (0) =

`+ r

ε
F (0) > 2F (0)`4.
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Chapter 3 Energy scalings of stripe configurations

For ε, ` > 0 with `
ε > `4 we set

M ε
` :=

{
u ∈ H2

per

(
(0, L)

)
: u satisfies (3.8) and (3.9)

}
for convenience and also define the diffuse Willmore functional Wε for ε > 0 in one
dimension by

Wε(u) :=
1

2ε

∫ L

0

(
−εu′′ + 1

ε
F ′(u)

)2

dx, u ∈ H2
per

(
(0, L)

)
.

In order to understand the differences between W and Wε for the considered configura-
tions we are interested in two major issues:

1) Does a minimizer uε of Wε exist in M ε
` ?

2) Do configurations in M ε
` always carry positive energy and (if the answer is positive)

how does the minimal energy scale in terms of ε and `?

Before we answer these questions in general, we remark that both are completely trivial
for ` = r = L

2 . In this case we have

min
w∈Mε

`

Wε(w) =Wε(uε) = 0

with uε given by

uε=

{
q`,ε in (0, `]

−q`,ε(· − `) in (`, L)

where q`,ε denotes the optimal arc profile (see Section 3.1) on [0, `]. For ` 6= r this simple
construction does not apply anymore as optimal arc profiles corresponding to different
interval lengths have different derivatives in 0. Therefore, uε as constructed above would
not be differentiable and hence not in H2

per

(
(0, L)

)
. Nevertheless, the existence of a

minimizer in M ε
` and its diffuse energy are strongly connected to the corresponding

optimal arc profiles as we will see below.

Let us briefly outline the structure of this section: Our main result and the answer to
both questions above is presented in Theorem 3.12 where we show that a minimizer
of Wε in M ε

` exists with the direct method of the calculus of variations. Moreover, we
prove a scaling law for the minimal energy which especially implies that for the case
` 6= r the minimizer still has (exponentially small) positive energy in contrast to the
sharp interface limit. We end the section with a presentation of numerical results which
show the convex dependence of minWε on the zero position around L

2 .

Crucial for the analysis in this section is a result by Otto and Westdickenberg [OtRe07]
which says that in (0, `) ((`, L), respectively) the H2-difference of a function u ∈ M ε

`

and q`,ε (−qr,ε(· − `), respectively) is controlled by the diffuse Willmore energy of u. We
give the precise formulation in the following theorem.
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3.2 Quasi one-dimensional configurations and their minimal energy scaling

Theorem 3.8 (Otto,Westdickenberg, ’07). There exist positive constants C > 0 and
`3 ≥ `1 > 0 such that for every ` ≥ `3 and every u ∈ H2

(
(0, `)

)
with

u ≥ 0, in (0, `), (3.10)

u(0) = u(`) = 0 and (3.11)

E1(u) ≤ F (0)

2
`3 (3.12)

we have

‖u− q`,1‖2H2([0,`]) ≤ C
∫ `

0

(
−u′′ + F ′(u)

)2
dx = CW1(u).

Proof. The proof can be found in [OtRe07] for smooth functions u. A simple approxi-
mation argument then yields the result for general H2

per

(
(0, L)

)
functions.

Remark. Condition (3.12) merely ensures that u is bounded away from 0. It follows
directly from the proof in [OtRe07] that the statement of Theorem 3.8 also holds for all
bigger constants ˜̀

3 > `3.

We continue by proving an ε-scaled version of the above theorem.

Theorem 3.9. Let `3, C > 0 as in Theorem 3.8. For every `, ε > 0 satisfying `
ε ≥ `3

and every u ∈ H2
(
(0, `)

)
with

u ≥ 0, in (0, `) and

u(0) = u(`) = 0

Eε(u) ≤ F (0)

2
`3

we have

‖u− q`,ε‖2L2((0,`)) ≤ Cε2

∫ `

0

(
−εu′′ + 1

ε
F ′(u)

)2

dx = Cε3Wε(u), (3.13)

‖u− q`,ε‖2H1((0,`)) ≤ C
∫ `

0

(
−εu′′ + 1

ε
F ′(u)

)2

dx = CεWε(u), (3.14)

‖u− q`,ε‖2H2((0,`)) ≤
C

ε2

∫ `

0

(
−εu′′ + 1

ε
F ′(u)

)2

dx =
C

ε
Wε(u). (3.15)

Proof. We prove (3.15) first. For u, ε and ` with the mentioned properties we define

ũ(x) = u(εx)

and observe

ũ(0) = ũ

(
`

ε

)
= 0

45



Chapter 3 Energy scalings of stripe configurations

as well as

ũ′(x) = εu′(εx) , ũ′′(x) = ε2u′′(εx).

We obtain

E1(ũ) =

∫ `
ε

0

1

2

∣∣ũ′∣∣2 + F (ũ) dx =

∫ `

0

ε

2

∣∣u′∣∣2 +
1

ε
F (u) dx = Eε(u) ≤ F (0)

2
`3

and together with the scaling behavior of q`,ε (Section 3.1) this yields

‖u− q`,ε‖2H2((0,`))

=

∫ `

0
(u− q`,ε)2 + (u′ − (q`,ε)

′)2 + (u′′ − (q`,ε)
′′)2 dx

=

∫ `
ε

0
ε(ũ− q`,1)2 +

1

ε
(ũ′ − (q`,1)′)2 +

1

ε3
(ũ′′ − (q`,1)′′)2 dy

≤ 1

ε3
‖ũ− q`,1‖2H2((0, `

ε))

≤C
ε3

∫ `
ε

0

(
−ũ′′ + F ′(ũ)

)2
dy

=
C

ε2

∫ `

0

(
−εu′′ + 1

ε
F ′(u)

)2

dx

=
C

ε
Wε(u)

where we have applied Theorem 3.8 in the fourth step.
The proof shows that the factor 1

ε2
in (3.15) originates from the scaling in the second

derivative of (u− q`,ε) and that lower derivatives therefore behave better in terms of ε.
Thus, we especially obtain (3.13) and (3.14) by the same calculation.

In the following theorem we characterize the energy order of infWε in M ε
` in terms of `,

r and ε. While we rely on Theorem 3.9 for the lower bound, we prove the upper bound
by explicitly constructing a competitor function with the desired energy scale. The
arguments for both inequalities require a good knowledge of the qualitative behavior of
the optimal arc profiles q`,ε and qr,ε (see especially Proposition 3.2).

Theorem 3.10 (Scaling Law). There exist constants C1, C2 only depending on L and
a constant `4 > 0 such that for all ε, ` > 0 with `

ε , r
ε ≥ `4 we have

C1
1

ε2

∣∣∣e−α `ε − e−α rε ∣∣∣2 ≤ inf
u∈Mε

`

Wε(u) ≤ C2
1

ε2

∣∣∣e−α `ε − e−α rε ∣∣∣2 (3.16)

where α :=
√
F ′′(1) =

√
2.

Proof. We choose `4 ≥ max{`2, `3}with `2, `3 from Lemma 3.2 and Theorem 3.8 and
such that additionally inequalities (3.17) and (3.18) hold.
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3.2 Quasi one-dimensional configurations and their minimal energy scaling

Lower bound: For u ∈M ε
` and the optimal arc profiles q`,ε and qr,ε we have∣∣q′`,ε(0)− q′r,ε(0)

∣∣ ≤ ∣∣q′`,ε(0)− u′(0)
∣∣+
∣∣q′r,ε(0)− u′(0)

∣∣
and since both summands can be treated analogously we concentrate on the first one.
As q′`,ε

(
`
2

)
= 0 we obtain∣∣q′`,ε(0)− u′(0)

∣∣
=

∣∣∣∣∣(q′`,ε(0)− u′(0)
)q′`,ε(0)

q′`,ε(0)
−
(
q′`,ε

(
`

2

)
− u′

(
`

2

))
q′`,ε
(
`
2

)
q′`,ε(0)

∣∣∣∣∣
=

1

q′`,ε(0)

∣∣∣∣∣
∫ `

2

0

( (
q′`,ε − u′

)
q′`,ε
)′
dx

∣∣∣∣∣
=

1

q′`,ε(0)

∣∣∣∣∣
∫ `

2

0

(
q′′`,ε − u′′

)
q′`,ε +

(
q′`,ε − u′

)
q′′`,ε dx

∣∣∣∣∣
≤ 1

q′`,ε(0)

(∫ `
2

0

∣∣q′′`,ε − u′′∣∣2 dx
) 1

2
(∫ `

2

0

∣∣q′`,ε∣∣2 dx
) 1

2

+
1

q′`,ε(0)

(∫ `
2

0

∣∣q′`,ε − u′∣∣2 dx
) 1

2
(∫ `

2

0

∣∣q′′`,ε∣∣2 dx
) 1

2

.

Both first factors can now be estimated by (3.15) and (3.14), respectively. Together
with (3.6) and (3.7) and q′`,ε(0) ≥ C

ε we deduce

∣∣q′`,ε(0)− u′(0)
∣∣ ≤ C(Wε(u)

) 1
2

and this proves

Wε(u) ≥ C
∣∣q′`,ε(0)− q′r,ε(0)

∣∣2 .
The lower bound estimate follows with the qualitative description of q̄`,ε = max q`,ε
from Lemma 3.2 as∣∣q′`,ε(0)− q′r,ε(0)

∣∣2
=

1

ε2

∣∣∣∣√F (q`,ε(0)
)
− F (q̄`,ε)−

√
F
(
qr,ε(0)

)
− F (q̄r,ε)

∣∣∣∣2
=

1

ε2

∣∣∣∣√F (0)− F (q̄`,ε)−
√
F (0)− F (q̄r,ε)

∣∣∣∣2
≥C
ε2
|F (q̄r,ε)− F (q̄`,ε)|2

≥C1

ε2

∣∣∣e−α`ε − e−αrε ∣∣∣2
where we have also used the local Lipschitz continuity of y 7→ y2 on R in the second
last step.
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Upper Bound: For the second inequality in (3.16) we explicitly construct an element
u∗ ∈ M ε

` with small energy. The first idea is to choose u∗ analogously to the case
` = r from above as the optimal arc profiles corresponding to ` and r in [0, `] and (`, L],
respectively. This would make Wε(u

∗) vanish on both parts of the interval but as their
derivatives differ in 0, the resulting function would not be in C1([0, L]) and consequently
not in H2(0, L). We solve this problem by modifying the arc on (`, L) and moreover, by
keeping the correction small away from the zeros in ` and L. We make the ansatz

u∗ :=

 q`,ε in [0, `]

−
(
qr,ε(· − `) + dF ′(qr,ε(· − `)

)
in (`, L]

where we choose d such that

−q′`,ε(0) = q′`,ε(`) = −q′r,ε(0)− dF ′′
(
qr,ε(0)

)
q′r,ε(0) = (d− 1)q′r,ε(0)

i.e.

d :=
q′r,ε(0)− q′`,ε(0)

q′r,ε(0)
.

Together with q′′`,ε(0) = q′′r,ε(0) = 0 this proves that u∗ satisfies (3.8). Notice, that d = 0

for ` = r = L
2 and thus, u∗ is the minimizer of Wε in M ε

` from above in this case.
We will see below, that the size of d mainly determines the energy of u∗. We remark
that

∣∣dF ′(qr,ε)∣∣ ≤ C
∣∣∣∣∣q′r,ε(0)− q′`,ε(0)

q′r,ε(0)

∣∣∣∣∣ ≤ Cε ∣∣q′r,ε(0)− q′`,ε(0)
∣∣ (3.17)

holds as qr,ε is bounded and that q′r,ε(0) ≥ 1
2ε for r

ε sufficiently large.
Before we show that (3.9) holds for u∗ which then implies u∗ ∈ M ε

` it is convenient
to determine its diffuse Willmore energy. As u∗ = q`,ε on [0, `], there is no energy
contribution on this part of the interval and hence, we observe

2εWε(u
∗)

=

∫ L

`

[
− ε
(
qr,ε(· − `) + dF ′

(
qr,ε(· − `)

))′′
+

1

ε
F ′
(
qr,ε(· − `) + dF ′

(
qr,ε(· − `)

))]2
dx

=

∫ r

0

[
− ε
(
qr,ε + dF ′(qr,ε)

)′′
+

1

ε
F ′
(
qr,ε + dF ′(qr,ε)

)]2
dx

=

∫ r

0

[
− εq′′r,ε − ε3dq(4)

r,ε +
1

ε

(
F ′(qr,ε) + F ′′(qr,ε)dF ′(qr,ε)

+ F ′′′(qr,ε)
(
dF ′(qr,ε)

)2
+ F (4)(qr,ε)

(
dF ′(qr,ε)

)3)]2
dx

=

∫ r

0

[
− ε3dq(4)

r,ε +
1

ε

(
ε2F ′′(qr,ε)dq′′r,ε + 6qr,ε

(
dF ′(qr,ε)

)2
+ 6
(
dF ′(qr,ε)

)3)]2
dx
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≤ C
∫ r

0
ε2d2

(
ε2q(4)

r,ε − F ′′(qr,ε)q′′r,ε
)2

+
C

ε2

(
dF ′(qr,ε)

)4
+ +

C

ε2

(
dF ′(qr,ε)

)6
dx

where we have done a complete Taylor expansion of F ′
(
qr,ε + dF ′(qr,ε)

)
in d = 0.

Taking the second derivative of −ε2q′′r,ε + F ′(qr,ε) = 0 yields

−ε2q(4)
r,ε + F ′′(qr,ε)q′′r,ε + F ′′′(qr,ε)(q′r,ε)

2 = 0

and thus

ε2q(4)
r,ε − F ′′(qr,ε)q′′r,ε = F ′′′(qr,ε)(q′r,ε)

2 = 6qr,ε(q
′
r,ε)

2

which we plug in the calculation above together with (3.17). Almost analogously to the
arguments for the lower bound above this yields

2εWε(u
∗)

≤C
∫ r

0
ε2d2q2

r,ε(q
′
r,ε)

4 + ε2
∣∣q′r,ε(0)− q′`,ε(0)

∣∣4 + ε4
∣∣q′r,ε(0)− q′`,ε(0)

∣∣6 dx
≤C

∫ r

0
ε2

∣∣∣q′r,ε(0)− q′`,ε(0)
∣∣∣2

(q′r,ε(0))2
(q′r,ε)

4 + ε2
∣∣q′r,ε(0)− q′`,ε(0)

∣∣4
+ ε4

∣∣q′r,ε(0)− q′`,ε(0)
∣∣6 dx

≤C
∫ r

0
ε2
∣∣q′r,ε(0)− q′`,ε(0)

∣∣2 (q′r,ε)
2 dx

≤C
ε

∣∣∣∣√F (0)− F (q̄`,ε)−
√
F (0)− F (q̄r,ε)

∣∣∣∣2
≤C
ε
|F (q̄r,ε)− F (q̄`,ε)|2

≤C2

ε

∣∣∣e−α`ε − e−αrε ∣∣∣2 .
Remark that due to 0 ≈ F (q`,ε), F (qr,ε)� F (0) = 1

4 the arguments in the square roots
stay away from 0 and hence the estimate follows by the local Lipschitz continuity of
y 7→ √y on (0,∞). This proves

Wε(u
∗) ≤ C2

ε2

∣∣∣e−α`ε − e−αrε ∣∣∣2
and it remains to show that (3.9) holds for u∗, which then implies that u∗ ∈ M ε

` . As
the integrand of Eε is always positive, we can estimate the integrals over (0, `) and (`, L)
separately. From Lemma 3.6 we directly obtain∫ `

0

ε

2

(
(u∗)′

)2
+

1

ε
F (u∗) dx

=

∫ `

0

ε

2
(q′`,ε)

2 +
1

ε
F (q`,ε) dx
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≤C + C
`

ε
e−α

`
ε .

For the remaining integral we have similarly as above∫ L

`

ε

2

(
(u∗)′

)2
+

1

ε
F (u∗) dx

=

∫ r

0

ε

2

(
(1 + dF ′′(qr,ε))q′`,ε

)2
+

1

ε
F
(
qr,ε + dF ′(qr,ε)

)
dx

≤C
∫ r

0
ε(q′`,ε)

2 +
1

ε
F (qr,ε) +

1

ε
F ′(qr,ε)

(
dF ′(qr,ε)

)
dx

≤C
(∫ r

0

ε

2
(q′r,ε)

2 +
1

ε
F (qr,ε)dx+ εr

∣∣q′r,ε(0)− q′`,ε(0)
∣∣2)

≤C
(

1 +
r

ε
e−α

r
ε

)
by Lemma 3.6 and (3.17). We combine the inequalities above for

Eε(u∗) ≤ C
(

1 +
`

ε
e−α

`
ε +

r

ε
e−α

r
ε

)
≤ F (0)

2
`4 (3.18)

by the requirements for `4.

Remark. i) The competitor function u∗ for the upper bound inequality in the proof
of Theorem 3.10 has been constructed to have vanishing diffuse Willmore energy
on [0, `] and as shown above, the value of Wε(u

∗) is determined by the correction
which ensured u∗ ∈ H2

per

(
(0, L)

)
. Although this leads to the least possible energy

scaling in terms of the exponential decay with ε, u∗ is certainly not a minimizer of
Wε in M ε

` . A refined construction by modifying both arcs could be a possible way
to improve the constant C2. Still this will not be sufficient to make the constants
C1, C2 equal in (3.16) as C1 is only implicitly characterized by [OtRe07].

ii) The mere exponential smallness of minMε
`
Wε can be shown with much simpler

constructions in the upper bound equation. For example, the choice

u∗∗ :=

{
q`,ε in [0, `]

βqr,ε(· − `) in (`, L]

with β :=
q′`,ε(0)

q′r,ε(0) yields

Wε(u
∗∗) ≤ c 1

ε3

∣∣∣e−α `ε − e−α rε ∣∣∣2
which qualitatively differs from (3.20) only in a factor 1

ε .

The next lemma is formulated for arbitrary space dimensions. It is only used for n = 1
in this chapter, but we will need the higher dimensional version in Section 5.1.

50



3.2 Quasi one-dimensional configurations and their minimal energy scaling

Lemma 3.11. For n ≥ 1 let U be an n-dimensional rectangle, i.e.,

U :=
n∏
k=1

(ak, bk) ⊂ Rn

for ak, bk ∈ R and ak < bk, 1 ≤ k ≤ n. Then, every u ∈ H2
per(U) satisfies

‖u‖2H2(U) ≤ C(ε, U)
(
1 +Wε(u)

)
.

Proof. The periodic boundary conditions on u allow integrations by part without
occurring boundary terms and Young’s inequality yields the interpolation inequality∫

U
|∇u|2 dx =

∫
U
−u∆u dx ≤ δ

∫
U

(∆u)2 dx+
1

4δ

∫
U
u2 dx, (3.19)

where δ > 0 is arbitrary. Since F ′′ is bounded from below, we have

2εWε(u) =

∫
U

(
−ε∆u+

1

ε
F ′(u)

)2

dx

=

∫
U
ε2(∆u)2 − 2F ′(u)∆u+

1

ε2
F ′(u)2 dx

=

∫
U
ε2(∆u)2 + 2F ′′(u) |∇u|2 +

1

ε2
F ′(u)2 dx

≥
∫
U
ε2(∆u)2 − C |∇u|2 +

1

ε2
F ′(u)2 dx

≥
∫
U
ε2(∆u)2 − ε2

2
(∆u)2 − C

2ε2
u2 +

1

ε2
F ′(u)2 dx

=

∫
U

ε2

2
(∆u)2 +

1

2ε2

(
−Cu2 + F ′(u)2

)
+

1

2ε2
F ′(u)2 dx

where we have used (3.19) with δ = ε2

2C in the second last step. The term in parentheses
is bounded from below since F ′(u)2 = (u3 − u)2 which yields

2εWε(u) ≥
∫
U

ε2

2
(∆u)2 − C

ε2
+

1

2ε2
F ′(u)2 dx

and therefore,∫
U

(∆u)2 + F ′(u)2 dx ≤ C(ε, U)
(
1 +Wε(u)

)
.

Since F ′(u)2 ≥ C(u2 − 1) for a small positive constant C > 0, we obtain∫
U

(∆u)2 + u2 dx ≤ C(ε, U)
(
1 +Wε(u)

)
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and the desired estimate follows by the fact that∫
U

∣∣D2v
∣∣ dx =

∫
U

(∆v)2 dx for all v ∈ H2
per(U)

and another application of (3.19) with δ chosen equal to 1
2 .

Theorem 3.12 (Existence of minimizer). There exists `∗ > `4 > 0 such that for ε, ` > 0
with `

ε ,
r
ε > `∗ there is a minimizer u of Wε in M ε

` which satisfies

C1
1

ε2

∣∣∣e−α `ε − e−α rε ∣∣∣2 ≤ Wε(u) = min
w∈M

Wε(w) ≤ C2
1

ε2

∣∣∣e−α `ε − e−α rε ∣∣∣2 (3.20)

with constants C1, C2 > 0 and where α :=
√
F ′′(1) =

√
2.

Proof. We only have to show that a minimizer exists in M ε
` . Then (3.20) follows directly

from (3.16).
Since Wε is obviously bounded from below by 0, there exists a minimizing sequence
(uk)k∈N in M ε

` such that

Wε(uk) −→ inf
w∈Mε

`

Wε(w) =: m

as k →∞. Lemma 3.11 yields an H2-bound for uk uniform in k, since

‖uk‖H2((0,L)) ≤ C(ε, U)
(
1 +

√
Wε(uk)

)
<∞.

The weak precompactness of H2
per

(
(0, L)

)
implies the existence of a subsequence again

denoted by (uk)k∈N and of u ∈ H2
per

(
(0, L)

)
such that

uk ⇀ u weakly in H2
(
(0, L)

)
(3.21)

and with an application of the general Sobolev inequality (e.g. [Eva10], 5.6.3, Theorem
6) we can assume that

uk −→ u in C1,α([0, L]) for 0 ≤ α < 1

2
(3.22)

as k ∈ N. We have to prove that u satisfies (3.8) and (3.9). Due to (3.22), it follows
immediately that

u(0) = u(`) = u(L) = 0 and u′(0) = u′(L)

and

u(x)

{
≥ 0, x ∈ [0, `]

≤ 0, x ∈ [`, L].

However, to see that u actually satisfies (3.8) we require a further argument: Assume
that there exists another point x0 ∈ (0, L), x 6= ` with u(x0) = 0. Without loss of
generality we can restrict to the case x0 ∈ (0, `). Since u is nonnegative on this part
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3.2 Quasi one-dimensional configurations and their minimal energy scaling

of the interval, x0 has to be a local minimum of u and hence u′(x) = 0. We combine
Theorem 3.9 with Theorem 3.10 for

|q`,ε(x0)|+
∣∣q′`,ε(x0)

∣∣ = |q`,ε(x0)− u(x0)|+
∣∣q′`,ε(x0)− u′(x0)

∣∣
≤ C√

ε

√
m ≤ C

ε
3
2

∣∣∣e−α `ε − e−α rε ∣∣∣ (3.23)

which is a contradiction as there is no point in (0, `) for which q`,ε and q′`,ε both
become (exponentially) small at the same time. Indeed, (3.23) is obviously not satisfied
for x0 ∈

{
q`,ε >

1
2

}
and `

ε ,
r
ε < `∗ with `∗ sufficiently large. On the other hand, for

x ∈
{
q`,ε ≤ 1

2

}
we have

∣∣q′`,ε(x0)
∣∣ =

√
2

ε

√
F
(
q`,ε(x0)

)
− F (q̄`,ε) ≥

√
2

ε

√
F

(
1

2

)
− F (q̄`,ε)

≥ C

ε

√
1− Ce−α `ε

which also contradicts (3.23) for large `∗ > 0.

To obtain (3.9) we observe that both uk and u′k converge uniformly on [0, L] by (3.22)
and hence,

F (uk) −→ F (u),∣∣u′k∣∣2 −→ ∣∣u′∣∣2
uniformly on [0, L] as k →∞. This implies

Eε(u) =

∫ L

0

ε

2

∣∣u′∣∣2 +
1

ε
F (u) dx = lim

k→∞

∫ L

0

ε

2

∣∣u′k∣∣2 +
1

ε
F (uk) dx ≤

F (0)

2
`4

which is (3.9) for u and thus, u ∈M ε
` .

It remains to show that u is a minimizer of Wε in M ε
` . (3.21) and (3.22) imply that

−εu′′k +
1

ε
F ′(uk) ⇀ −εu′′ +

1

ε
F ′(u) weakly in L2

(
(0, `)

)
and by the weak lower semicontinuity of the norm we have

lim inf
k→∞

Wε(uk) =
1

2ε
lim inf
k→∞

∥∥∥∥−εu′′k +
1

ε
F ′(uk)

∥∥∥∥2

L2
(

(0,`)
)

≥ 1

2ε

∥∥∥∥−εu′′ + 1

ε
F ′(u)

∥∥∥∥2

L2
(

(0,`)
) =Wε(u)

This is the weak lower semicontinuity of Wε and we finally obtain

m ≤ Wε(u) ≤ lim inf
k→∞

Wε(uk) = m
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Chapter 3 Energy scalings of stripe configurations

and therefore,

Wε(u) = min
w∈Mε

`

Wε(w)

which completes the proof.

Theorem 3.12 only describes the minimal energy scale of Wε for a given zero position `
and we are not able to determine the constants C1 and C2 explicitly. Observe that in
case C̃ = C1 = C2 the minimal energy is given by the expression

min
Mε
`

Wε =
C̃

ε2

∣∣∣e−α `ε − e−α rε ∣∣∣2
which is strictly convex in terms of `− L

2 .
To conclude this section we present numerical results for the minimal energies corre-
sponding to different zero positions ` ∈ (0, L).
Let n ∈ N denote the number of equidistant grid points in the interval [0, L] and set
h := L

n−1 . For ε > 0 and a discrete phase field u = (u1, . . . , un)T ∈ Rn we replace the
second derivative in Wε by a difference quotient and use a simple rectangle rule to
approximate the integral. Precisely, we define the discretization of Wε by

Wdis(u) :=
h

2ε

n∑
i=1

(
−ε(D2u)i +

1

ε
F ′(ui)

)2

where D2 is the n× n second order finite difference matrix for periodic boundary values

D2 :=
1

h2



−2 1 0 · · · 0 1
1 −2 1 0

0 1 −2
. . .

...
. . .

...
. . . −2 1 0

0 1 −2 1
1 0 · · · 0 1 −2


.

We consider discrete periodic phase fields with vanishing boundary values and a further
prescribed zero position j0 ∈ {3, . . . , n− 2}, i.e. u1 = uj0 = un = 0, which satisfy

uj > 0 if 2 ≤ j ≤ j0 − 1 and

uj < 0 if j0 + 1 ≤ j ≤ n− 1.

To determine a minimizer ofWdis and its energy among all these configurations we apply
a classical Newton method for its derivative ∇Wdis. The resulting iteration scheme for
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3.2 Quasi one-dimensional configurations and their minimal energy scaling

a minimizing sequence (u(k))k∈N is as follows. With u(0) given by

u
(0)
j =


1 if 2 ≤ j ≤ j0 − 1

−1 if j0 + 1 ≤ j ≤ n− 1

0 if j = 1, j0, n

we define ũ(k) ∈ Rn for k ≥ 0 as the solution of

∇2Wdis(u
(k))ũ(k) = −∇Wdis(u

(k)). (3.24)

and set

u(k+1) = u(k) − ũ(k), k ≥ 0

afterwards. Here, the derivatives of Wdis are given by

∇Wdis =
h

ε

(
−εD2 +

1

ε

(
F ′′(ui)δij

)
ij

)(
−εD2u+

1

ε

(
F ′(ui)

)
i

)
∈ Rn

and

∇2Wdis =
h

ε

(
ε2
(
D2
)2 −D2

(
F ′′(ui)δij

)
ij
−
(
F ′′(ui)δij

)
ij
D2

−
(
F ′′′(ui)

(
D2u

)
i
δij

)
ij

+
1

ε2

((
F ′′′(ui)F ′(ui) + F ′′(ui)2

)
δij

)
ij

)
∈Rn×n.

However, to ensure that each u(k) satisfies the imposed conditions u
(k)
1 = u

(k)
j0

= u
(k)
n = 0

we have to replace the entries of the corresponding three lines and columns by 0 before
solving (3.24).
As the energy values are expected to be exponentially small, a major challenge in the
calculations is to keep rounding errors as small as possible. For that purpose we use
variable-precision floating-point arithmetic (VPA) provided by MATLAB to apply the
iteration scheme above with the highest possible accuracy.

For the performed calculations we have chosen ε = 0.1, L = 10 and n = 301. Figure 3.3
shows the minimal energy values of Wdis for prescribed zero positions in each grid point
between 141 and 161 while the numerical values around j = 151 (corresponding to the
case ` = L

2 ) are also contained in Figure 3.4.
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140 142 144 146 148 150 152 154 156 158 160 162

0

1

2

3

4

·10−53

zero position j0

W
d
is

Figure 3.3: The minimal energies for prescribed zero positions k show a strictly convex
behavior around j = 151 corresponding to ` = L

2 .

One can directly observe its symmetric and strictly convex structure around j0 = 151
in accordance to the assumed behavior from Theorem 3.12. Moreover, there is a rather
drastic drop of the energy values (of order 10−17) in j0 = 151 which corresponds to the
exact value Wε = 0 for ` = L

2 .

j0 Wdis

146 3.478304e-55
147 1.326893e-55
148 4.827121e-56
149 1.536922e-56
150 3.112267e-57
151 1.879347e-74
152 3.112267e-57
153 1.536922e-56
154 4.827121e-56
155 1.326893e-55
156 3.478304e-55

Figure 3.4: Minimal values of Wdis for j0 around 151.

For the sake of completeness, we include a plot of a generic minimizer for j0 = 181 in
Figure 3.5. Away from its zeros it is almost constant to 1 (or −1 respectively) and does
the transition from one phase to another in a small interval around its zeros.
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2 4 6 8 10

−1

−0.5

0

0.5

1

x

Figure 3.5: The obtained minimizer of Wdis for j0 = 181 corresponding to ` = 6.
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4 Existence and qualitative
properties of multisaddle
solutions

In Chapter 3 we analyzed quasi one-dimensional configurations of periodic stripes and
characterized their Willmore energy. For the analysis we heavily relied on a profound
understanding of the optimal arc profiles q`,ε which describe the energetically optimal
way to approximate a single stripe by diffuse interfaces. We have seen that a configu-
ration of parallel stripes has no diffuse Willmore energy if and only if the stripes are
perfectly symmetrically distributed. In this case the corresponding optimal arcs can
be extended to a entire solution of the stationary Allen-Cahn equation on R by odd
reflecting and periodic continuation.
However, these results only describe the simplest type of configurations in two dimensi-
ons and it is natural to ask whether the energy of real two-dimensional interfaces can
be described similarly (e.g., by a scaling law to determine the energy order).

In this chapter we will consider a modification of stripe configurations which cannot
be reduced to one dimension anymore. We start out from a configuration of parallel
stripes as before and add a further line perpendicularly intersecting the stripes to the
phase boundary. The resulting configuration E ⊂ R2 consists of semi infinite rectangles
(see Figure 4.1).

E

EE· · ·

· · · · · ·

· · ·

0

Figure 4.1: A configuration for E consisting of semi infinite rectangles.

Even in this situation an energy characterization similar to Section 3.2 turns out to be
difficult. Here, we will prove the existence of two-dimensional entire solutions of the
stationary Allen-Cahn equation whose zero set is given by the boundaries of the semi
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Chapter 4 Existence and qualitative properties of multisaddle solutions

infinite rectangles. These solutions can be seen as a two-dimensional analogue of the
(reflected) optimal arc profiles q`,ε and thus, our results are a first step into the energy
quantification of those configurations. In correspondence with the quasi one-dimensional
case, such solutions only exist for the symmetric case of rectangles with the same (and
sufficiently large) width (see Theorem 4.2 and Corollary 4.3 below). On the other hand,
this implies that phase fields which approximate E always have positive diffuse Willmore
energy if the stripes have different widths.

In this chapter we will write f instead of F ′ for the sake of notation and therefore, the
Allen-Cahn equation reads

−∆u+ f(u) = 0 in R2 (4.1)

with f(s) = s3 − s for s ∈ R.

The solutions we construct below generalize the result of [DaFiPe92] (see Section 2.5)
in the sense that they have countably many saddles instead of one. Moreover, their
shape far away from the x1-axis approximates the optimal arc profile which yields a
connection between configurations of infinite rectangles and the quasi one-dimensional
case. To the best of our knowledge, entire solutions with more than one saddle have not
been studied so far.
We begin with a general definition of the considered multisaddle solutions.

Definition 4.1 (multisaddle solution). An entire solution u ∈ C2(R2) of (4.1) with
−1 < u < 1 in R2 is called multisaddle solution if it satisfies (after a possible translation
and rotation) the following properties (see also Figure 4.2):

i) The zero set of u satisfies

{u = 0} =
(
R× {0}

)
∪

⋃
j∈I

(
{zj} × R

)
for an consecutive index set I ⊂ Z with 0 ∈ I and such that

z0 = 0 and zj < zk for all j, k ∈ I with j < k.

ii) u changes its sign when crossing any line in {u = 0} in orthogonal direction and is
positive in{

x = (x1, x2) ∈ R2 : 0 < x1 < z1, x2 > 0
}

or in {
x = (x1, x2) ∈ R2 : 0 < x1, x2 > 0

}
,

respectively, if 1 6∈ I.

Note, that in the case I = {0} the corresponding multisaddle solution u is exactly the
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u > 0

u < 0

u < 0

u > 0

u < 0

u > 0· · ·

· · · · · ·

· · ·

0

Figure 4.2: A multisaddle solution u with constant signs on the semi infinite rectangles
and with zero set equal to the x1-axis and countable many lines parallel to
the x2-axis.

solution constructed in [DaFiPe92].

Our main result is included in the following theorem.

Theorem 4.2. There is a constant `min > 0 such that for all ` > `min there exists a
unique multisaddle solution u ∈ C∞(R2) as in Definition 4.1 with I = Z and

xi = i` for i ∈ Z.

u is 2`-periodic in x1-direction and satisfies 0 < u < 1 in (0, `)× (0,∞). Moreover, we
have

u(·, x2) −→ ±q` as x2 −→ ±∞ in (0, `)

u(·, x2) −→ ∓q` as x2 −→ ±∞ in (`, 2`)

where q` denotes the odd extension and periodic continuation of the optimal arc profile
q`,1 from Section 3.1 to a function on R.

Remark. A solution u in Theorem 4.2 can instantly be transformed by uε := u
( ·
ε

)
to

a solution of

−ε2∆uε + f(uε) = 0 in R2. (4.2)

Therefore, Theorem 4.2 is also true for solutions of (4.2) and sufficiently large ratios
`
ε > `min.

Before we prove the theorem we present a simple consequence which shows that there
cannot exist other multisaddle solutions than the symmetric ones at least in the case of
sufficiently wide stripes.

Corollary 4.3. Assume a consecutive index set I ⊂ Z as in Definition 4.1 and

|zi − zj | > `min for all i, j ∈ I with i 6= j.

Then there exists a corresponding multisaddle solution of (4.1) if and only if I = {0} or
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Chapter 4 Existence and qualitative properties of multisaddle solutions

I = Z with

zi = i` for i ∈ Z.

for a constant ` > `min.

We prove Corollary 4.3 at the end of this chapter.

The proof of Theorem 4.2 is divided into several propositions. For the rest of this
chapter we fix the notation

R` := (0, `)× (0,∞) (4.3)

for the semi infinite stripe with width ` > 0. In some proofs we also consider bounded
subsets of R`. For s > 0 we define

R`s := (0, `)× (0, s). (4.4)

We will first find a classical solution of (4.1) on R` with u = 0 on ∂R` and u > 0 in
R` by applying the method of sub- and supersolutions. Although this result is fairly
standard, there seems to be no exact reference for the case of unbounded domains. For
the sake of completeness, we give a detailed proof below.
By odd reflection we then extend u to R2 and prove that the thereby constructed
function is indeed a multisaddle solution of (4.1).

Definition 4.4. We call a function u a weak supersolution (subsolution resp.) of (4.1)
in a (possibly unbounded) domain Ω if the following conditions hold:

i) uϕ ∈ H1(Ω) for all ϕ ∈ C∞c (R2)

ii)
∫

Ω∇u · ∇ϕ+ f(u)ϕ ≥ 0 (≤ 0 resp.) for all ϕ ∈ C∞c (Ω) with ϕ ≥ 0 in Ω

iii) u ≥ 0 (≤ 0 resp.) on ∂Ω in the trace sense.

Furthermore, we call u a weak solution of (4.1) in Ω if u is a weak sub- and supersolution
of (4.1).

The specific result we need for the proof of Theorem 4.2 reads

Proposition 4.5. For ` > 0 let v, v be a weak sub- and supersolution on R` as in
Definition 4.4 with

0 ≤ v ≤ v ≤ 1 a.e. in R`

and v = v = 0 on ∂R`. Then there exists a weak solution u of (4.1) in R` with

v ≤ u ≤ v a.e. in R`

and u = 0 on ∂R`.

Proof. Step 1: For L > 0 we restrict ourselves to the finite rectangle R`L as in (4.4).

Since v and v restricted to R`L are sub- and supersolution for (4.1) on R`L with v, v ≥ 0
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on {x2 = L} ⊂ ∂R`L, we can use the method of weak sub- and supersolutions (see
[DaSw89]) to find for every L > 0 a weak solution uL ∈ H1(R`L) of{

−∆uL + f(uL) = 0 in R`L

uL = 0 on ∂R`L ∩ ∂R`
(4.5)

which satisfies 0 ≤ v ≤ uL ≤ v ≤ 1 on R`L. Precisely, we extend v and v to a weak sub-
and supersolution on the domain R̃`L := (0, `)× (0, 2L) by an even reflection on the line
{x2 = L}. We note that v = v = 0 on ∂R̃`L and apply the mentioned technique to show
the existence of a weak solution between v and v on R̃`L with vanishing boundary values.
A restriction on R`L then yields the desired function uL.

Step 2: (L→∞) We fix some some L̃ > 1 and show that uL with L ≥ L̃ is uniformly

bounded in H1(R`
L̃−1

).

Let η ∈ C∞(R`) be a smooth cutoff function with

η(x) =

{
1, x2 ≤ L̃− 1

0, x2 ≥ L̃

satisfying 0 ≤ η ≤ 1 and |∇η| ≤ 2 in R`. We multiply (4.5) by η2uL ∈ H1
0 (R`

L̃
) and

integrate over R`
L̃

to obtain

0 =

∫
R`
L̃

∇uL · ∇
(
η2uL

)
+ f(uL)η2uL dx

=

∫
R`
L̃

|∇uL|2 η2 + 2uLη∇uL · ∇η + f(uL)uLη
2 dx

and hence∫
R`
L̃

|∇uL|2 η2 dx = −
∫
R`
L̃

2uLη∇uL · ∇η + f(uL)uLη
2 dx

≤
∫
R`
L̃

1

2
|∇uL|2 η2 + 2u2

L

∣∣∇η2
∣∣2 + |f(uL)uL| η2 dx

where we have applied Young’s inequality in the last line. Rearranging the terms on
both sides and using the prescribed bounds on η gives us∫

R`
L̃

1

2
|∇uL|2 η2 dx ≤

∫
R`
L̃

Cu2
L + |f(uL)uL| dx

≤C(L̃)

since |uL| ≤ 1 and therefore also |f(uL)| ≤ 1 almost everywhere in R`. As η ≡ 1 in
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R`
L̃−1

this particularly implies∫
R`
L̃−1

|∇uL|2 dx ≤ C(L̃)

and thus, uL is bounded in H1(R`
L̃−1

) uniformly for all L > L̃. Hence, for every given

L̃ > 1 and every sequence (uLk)k∈N with Lk →∞ as k →∞ we can find a subsequence

denoted by (uL̃k )k∈N which converges weakly in H1(R`
L̃−1

). Now we extract a diagonal

sequence (ukk)k∈N which converges weakly in H1(R`
L̃−1

), strongly in L2(R`
L̃−1

) and

pointwise almost everywhere in R`
L̃−1

to a function u : R` → R for every L̃ > 0 (by the

uniqueness of limits).
Choose an arbitrary test function ϕ ∈ C∞c (R2). From the convergence of the diagonal
sequence we obtain

ukkϕ ⇀ uϕ in H1(R`)

as there exists L̃ > 0 such that suppϕ ∩ {x2 > L̃− 1} = ∅. This especially proves

uϕ ∈ H1(R`) for all ϕ ∈ C∞c (R2).

It remains to show that u is indeed a weak solution on R`. Therefore, let ϕ ∈ C∞c (R`)
be any testfunction. Then there exists k0 ∈ N such that supp(ϕ) ⊂ R`k0 and hence,∫

R`
∇ukk · ∇ϕ+ f(ukk)ϕdx =

∫
R`k0

∇ukk · ∇ϕ+ f(ukk)ϕdx = 0 (4.6)

for all k ≥ k0. The first term of the integrand now converges due to the weak convergence
of (ukk)k∈N in H1(R`k0). For the second term we observe that∫

R`k0

∣∣∣f(ukk)− f(u)
∣∣∣2 dx ≤ C ∫

R`k0

|uk − u|2 dx −→ 0

as k →∞ where we have used that f is locally Lipschitz. This yields

f(ukk)→ f(u) in L2(R`k0)

and we can therefore pass to the limit k →∞ in (4.6). This gives∫
R`
∇u · ∇ϕ+ f(u)ϕdx = 0

and u is a weak solution on R`. Due to the pointwise convergence of (ukk)k∈N almost
everywhere we immediately deduce

v(x) ≤ u(x) ≤ v(x)

for a.e. x ∈ R` which completes the proof.
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Before we continue and apply the above proven method to show the existence of solutions
on R` we prove a short regularity result for solutions of the Allen-Cahn equation.

Lemma 4.6. Let Ω ⊂ R2 be an open domain and assume that there exists a weak
solution of (4.1) in Ω satisfying −1 < u < 1. Then we have u ∈ C∞(Ω) and for all
subsets Ω̃ ⊂⊂ Ω

sup
x∈Ω̃

∣∣∣∂βu∣∣∣ (x) ≤ Ck for all |β| ≤ k, k ≥ 0 (4.7)

with constants Ck > 0 only depending on Ω and Ω̃.

Proof. For Ω̃ ⊂⊂ Ω we choose a sequence of open and smoothly bounded sets Ui ⊂⊂ Ω
with Ω̃ ⊂⊂ Ui for all i ∈ N and such that

Ui+1 ⊂⊂ Ui for all i ∈ N.

u is a weak solution of the Poisson equation ∆u = g on Ω where g := f(u) is L2(Ω) since
u was assumed to be bounded. Hence, we can apply standard theory for interior elliptic
regularity ([GiTr01], Theorem 8.8), to conclude u ∈ H2(U1). This implies g ∈ H1(U1)
as f is smooth and we obtain u ∈ H3(U2). Continuing this argument finally yields
u ∈ Hk(Ω̃) for all k ≥ 0 and hence, by the general Sobolev embedding theorem ([Eva10],
5.6.3, Theorem 6) it follows that for any multiindex β ∈ (N0)2 with |β| ≤ k

sup
x∈Ω̃

∣∣∣∂βu∣∣∣ (x) ≤ ‖u‖
Ck,

1
2 (Ω̃)
≤ C(k,Ω, Ω̃) ‖u‖Hk+2(Ω̃) .

This proves (4.7) and as k and Ω̃ were arbitrary also u ∈ C∞(Ω).

Proposition 4.7. There exists a constant ˜̀
min > 0 such that for all ` > ˜̀

min sufficiently
large there exists a smooth solution u ∈ C∞(R`) of (4.1) on R` with u = 0 on ∂R` and
0 < u < 1 in R`.

Proof. We start by proving the existence of a solution on R` from (4.3). Due to
Proposition 4.5 it is sufficient to find a weak sub- and supersolution v, v of (4.1).
In [DaFiPe92], Lemma 1 the existence of radial solutions Ub, b ∈ (0, 1) of (4.1) was
shown which attend their positive maximum value b in the origin. Furthermore, for
each b there exists a radius rb > 0 (depending continuously on b) with Ub > 0 in [0, rb)
and Ub(rb) = 0. We choose ˜̀

min = 2 inf{rb : b ∈ (0, 1)} and hence for ` > ˜̀
min there

exists b ∈ (0, 1) such that

B

((
`

2
,
`

2

)
, rb

)
⊂ R`.

We now set

v(x) := max

{
Ub

(∣∣∣∣x− ( `2 , `2
)∣∣∣∣) , 0} , x ∈ R`

which as a maximum of two solutions is a subsolution of (4.1).

65



Chapter 4 Existence and qualitative properties of multisaddle solutions

As a supersolution we set

v(x) = q`(x1)γ(x2) > 0, x = (x1, x2) ∈ R`

where q` := q`,1 denotes the optimal arc profile from Section 3.1. Indeed, we have

−∆v + f(v) = −q′′` γ − q`γ′′ + q3
`γ

3 − q`γ
= (−q3

` + q`)γ + q`(−γ3 + γ) + q3
`γ

3 − q`γ
= (q3

` − q`)(γ3 − γ)

> 0

since q` and γ both take values in (0, 1) in the considered region.
We can now apply Proposition 4.5 and find a weak solution u of (4.1) on R` with
uϕ ∈ H1(R`) for all ϕ ∈ C∞c (R2) and satisfying

0 ≤ v ≤ u ≤ v < 1 in R`

and u = 0 on ∂R`.
By three odd reflections of u at the x1-axis, the x2-axis and the line {x1 = `} one
immediately obtains a weak solution of (4.1) in (−`, 2`)× R with 0 boundary values
and satisfying −1 < u < 1. Indeed, the thereby constructed function u solves (4.1) since

f is odd. Now, Lemma 4.6 directly implies u ∈ C∞(R`) as we can cover R` by open
and smoothly bounded sets Ω ⊂ (−`, 2`)× R.
Using the mean value theorem of integral calculus in (4.1) together with f(0) = 0 we
deduce

−∆u+ cu = 0 in R`

with c := −
∫ u

0 f
′(s) ds and the strong maximum principle (see Theorem 3.5 in [GiTr01]

and the remark thereafter) implies

u > 0 in R`.

This completes the proof.

Remark. Instead of using the theory of sub- and supersolutions in the proof of Propo-
sition 4.7 it is also possible to apply energy based methods to find a minimizer of the
Ginzburg-Landau-energy (1.2) with the desired form which satisfies the corresponding
Euler Lagrange equation (4.1). This alternative method yields the same result in two
dimensions but can easier be generalized for higher (even) dimensions. However, it then
becomes quite technical to show that the thereby constructed solution is not identical to
0 since you do not have a subsolution for a comparison anymore. We refer the reader to
[CaTe09] where the authors apply this method to prove the existence of saddle-shaped
solutions in all even dimensions.

We continue by describing the qualitative behavior of the solution u which has been
constructed in Proposition 4.7 above. We show that it increases in x2-direction and
converges uniformly in C2 towards the optimal arc profile q` for x2 →∞. This yields a
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strong connection between entire solutions of the stationary Allen-Cahn equation in
one and two dimensions.

To show the monotonicity of any bounded solution u of (4.1) on the infinite rectangle R`

we apply the Method of Moving Planes. In its origins this technique has been developed
by Alexandroff [AL56]. In [GNN79] and later in [GNN81] the authors have applied
the method to show monotonicity and resulting symmetry properties of solutions of
equations similar to (4.1) on bounded domains and in the whole of Rn. Since then many
generalizations and applications have been made (see, e.g., [Li91, BeNi88, BeNi91]).
The key idea is to introduce a hyperplane T which cuts the domain in two parts and
compare the values of u in one point and its reflection at T . Then the hyperplane is
moved in one direction up to a critical value where u attains a larger value than its
reflection. Usually a maximum principle as the key ingredient for this technique then
yields a contradiction which proves the monotonicity. But exactly this step requires
a careful analysis since the maximum principle does not hold in every domain. For
unbounded domains irregular boundaries (with corners e.g.) it is often difficult to apply
the technique directly.
Berestycki and Nirenberg generalized the method to a wider class of domains in [BeNi88]
and [BeNi91] by proving several maximum principles and adapting the way of argumen-
tation. First, a weak maximum principle for arbitrary narrow domains (see Proposition
A.1 or [BeNi91]) yields the assertion for a small part of the domain. Afterwards, another
weak maximum principle for subdomains of small measure (Proposition A.2 or [BeNi91])
is used to enlarge the part of the domain where the statement still holds.
The proposition and its proof below rely heavily on the techniques presented in [BeNi91]
although we will consider the unbounded domain R` instead of a bounded one.

Proposition 4.8. Let ` > 0 be arbitrary and R` given by (4.3). Every solution

u ∈ C2(R`) of (4.1) which satisfies
∆u− f(u) =0 in R`

u =0 on ∂R`

0 < u <1 in R`

is strictly increasing in x2-direction for fixed x1 ∈ (0, `).

Proof. For λ > 0 we define

Tλ := {x2 = λ},
Σ(λ) := {x ∈ R` : x2 < λ},

(see Figure 4.3) and set

v(x) := v(x, λ) := u(x1, 2λ− x2),

w(x, λ) := v(x)− u(x),

for x = (x1, x2) ∈ Σ(λ). Defined in this way v satisfies (4.1) and coincides with u at
the line Tλ. The strict monotonicity of u in x2-direction is therefore equivalent to the
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positivity of w for all λ > 0 and x ∈ Σ(λ). Indeed, for fixed x1 ∈ (0, `) and 0 < x2 < x̃2

we choose λ̃ = 1
2(x̃2− x2). Thus, u(x1, x2) < u(x1, x̃2) corresponds to w((x1, x2), λ̃) > 0

and vice versa.

x2

x1

Tλ

Σ(λ)

u(x)

v(x)

Figure 4.3

We will use various classical maximum principles to show that w is always greater than
0. We begin with the observation that for u 6= v we have

∆w = ∆v −∆u = f(v)− f(u) =
f(v)− f(u)

v − u (v − u)

and in the case u = v

∆w = 0.

We therefore define

−c(λ) := −c(x, λ) :=

{
f(v(x,λ))−f(u(x))

v(x.λ)−u(x) , v(x, λ) 6= u(x)

0, v(x, λ) = u(x)

and note that hence c(λ) is a bounded function since f is locally Lipschitz. Consequently,
w satisfies{

∆w(·, λ) + c(λ)w(·, λ) = 0 in Σ(λ)

w(·, λ) ≥ 0 on ∂Σ(λ).

Observe that w(·, λ) = 0 on ∂Σ(λ) \ {x2 = 0} and w((x1, 0), λ) = v((x1, 0), λ) =
u(x1, 2λ) > 0 for all λ > 0 and x1 ∈ (0, `). Thus, w(·, λ) does not vanish completely on
∂Σ(λ).
For small λ > 0, Σ(λ) is a narrow domain in the sense of Proposition A.1 and therefore,
the maximum principle holds. We conclude that w ≥ 0 in Σ(λ) and the strong maximum
principle (see [GiTr01], Theorem 3.5 and the remark thereafter) even yields

w(·, λ) > 0 in Σ(λ) (4.8)

since w(·, λ) is not constant.
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Now, we want to show that (4.8) remains true for all λ > 0. We shift the plane Tλ in
vertical direction and argue by contradiction: Suppose there exists µ > 0 such that
(0, µ) is the largest interval with w(·, λ) > 0 in Σ(λ) for all λ ∈ (0, µ). Since w obviously
is continuous in λ, we deduce w(·, µ) ≥ 0 in Σ(µ).
Again we use the strong maximum principle to see that

w(·, µ) > 0 in Σ(µ). (4.9)

Indeed, if there exists x0 ∈ Σ(µ) with w(x0, µ) = 0, w(·, µ) attains its minimum in an
interior point and thus is constant which contradicts the non vanishing boundary values
of w(·, µ).
We derive the desired contradiction by proving

w(·, µ+ ε) > 0 in Σ(µ+ ε)

for sufficiently small ε > 0. For that purpose choose δ > 0 as in Proposition A.2 and let
K ⊂ Σ(µ) be a closed subset such that

|Σ(µ) \K| ≤ δ

2
.

Obviously, by (4.9) we have

w(·, µ) > 0 in K. (4.10)

As above, by the fact that w(·, µ) is continuous in µ by definition, there exists α0 > 0
such that for all 0 < α < α0 we have

|Σ(µ+ α) \K| ≤ δ and w(·, µ+ α) > 0 in K.

For any such α we set Σ̃ := Σ(µ+ α) \K and remark that hence

∂Σ̃ = ∂K ∪ ∂R.

Therefore, w(·, µ+ α) satisfies{
∆w(·, µ+ α) + c(µ+ α)w(·, µ+ α) = 0 in Σ̃

w(·, µ+ α) ≥ 0 on ∂Σ̃

where we have used that w(·, µ+ α) ≥ 0 on ∂Σ(µ+ α) and w(·, µ+ α) > 0 on ∂K ⊂ K
by (4.10) (see Figure 4.4).

By Proposition A.2 the weak maximum principle for w holds in Σ̃ and we obtain

w(·, µ+ α) ≥ 0 in Σ̃

and therefore

w(·, µ+ α) ≥ 0 in Σ(µ+ α) = Σ̃ ∪K.
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x2

x1

µ + α

K
Σ̃

Figure 4.4

Once again the strong maximum principle finally yields the contradiction

w(·, µ+ α) > 0 in Σ(µ+ α)

since µ was chosen to be maximal.
This implies w(·, λ) > 0 for all λ > 0 and thus, the strict monotonicity in x2-direction
as already mentioned above.

In the following, we will show that far away from {x2 = 0} any positive bounded
solution of (4.1) on R` is shaped like the optimal arc profile q`. This can be explained
heuristically as for sufficiently large values of x2 the influence of the prescribed zero
boundary values at {x2 = 0} vanishes and u approaches the unique positive solution of
the one-dimensional Dirichlet problem which is q` as stated in Section 3.1.
The boundedness and monotonicity of u immediately yield pointwise convergence of
u(x1, ·) for fixed x1 ∈ [0, `] as x2 →∞. To pass to the limit in (4.1), however, we need
a stronger convergence result. For that purpose we fix real numbers 0 < a < b and set

A := [0, `]× [a, b] ⊂ R`.

Then we define for ξ ≥ 0 a vertically shifted version of u by

ũξ(x, y) = u(x, y + ξ), (x, y) ∈ R`.

This shift does not change the derivative of u and consequently, it satisfies{
∆ũξ − f(ũξ) = 0 in A

ũξ = 0 on {0, `} × [a, b].

By this construction we keep the domain A fixed but as varying ξ is equivalent to a
slide of the domain in vertical direction through R` we can still study the limit x2 →∞.
We prepare the convergence result in the following lemma.

Lemma 4.9. For ` > 0 let u ∈ C2(R`) be a solution of (4.1) satisfying 0 < u < 1 in
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R` and u = 0 on ∂R. Then there exists a constant C = C(A) such that

‖ũξ‖C3(A) ≤ C (4.11)

uniformly in ξ ≥ 0 where ũξ is defined as above.

Proof. This follows directly from Lemma 4.6. By odd reflections we extend u to a
(weak) solution of (4.1) on (−`, 2`)× (0,∞) and (4.7) gives (4.11) by choosing A as the
compact subset.

We are now able to give the precise characterization of the limit x2 → ∞ (ξ → ∞,
respectively). The idea is to use the uniform bound from Lemma 4.9 for a compactness
argument and afterwards pass to the limit in equation (4.1).

Proposition 4.10. Let `min := max{˜̀min, `1} (with `1 from Proposition 3.1) and

` > `min. Every solution u ∈ C2(R`) of (4.1) with 0 < u < 1 and u = 0 on ∂R`

converges uniformly towards q` in C2([0, `]) as x2 →∞.

Proof. As u(x1, ·) is increasing and bounded for every x1 ∈ [0, `] it converges pointwise
and we set

lim
x2→∞

u(x1, x2) := u∞(x1), x1 ∈ [0, `]. (4.12)

Now, let (ξj)j∈N be an arbitrary nonnegative sequence with ξj →∞ as j →∞. Due to
Lemma 4.9 the set {uξj : j ∈ N} is uniformly bounded in C3(A) and hence equicontinuous
in C2(A) with uξj defined as above. Thus, by the Arzelá-Ascoli theorem we can find a
subsequence jk →∞ as k →∞ such that

ũξjk = u(·, ·+ ξjk) −→ ũ in C2
(
[0, `]

)
for some ũ ∈ C2([0, `]). But as the uniform convergence implies pointwise convergence
of this subsequence we immediately deduce

ũ = u∞

by (4.12). This means that for every sequence (ξj)j∈N tending to infinity we can find a
subsequence which converges towards u∞ in C2([0, `]). Hence, this implies

u(·, x2) −→ u∞ in C2
(
[0, `]

)
as x2 →∞.
The convergence allows us to pass to the limit in (4.1) to obtain

−u′′∞ + f(u∞) = 0 in [0, `]

as well as

u∞(0) = u∞(`) = 0, u∞ > 0 in (0, `).
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This identifies u∞ as the unique solution of the one-dimensional problem (Proposition
3.1) and we finally conclude

u∞ = q`.

For later use we show another statement which follows directly from the proof of
Proposition 4.10.

Corollary 4.11. For ` > `min every solution u ∈ C2(R`) with 0 < u < 1 and u = 0 on
∂R` satisfies∫ `

0
|∂2u(x1, x2)| dx1 −→ 0 , x2 →∞. (4.13)

Proof. By Proposition 4.10 u and ∂2u converge uniformly as x2 → ∞. This already
implies that ∂2u(x1, x2) → 0 as x2 → ∞ for all x1 ∈ [0, `] since any other limit value
would contradict the convergence of u. Now (4.13) follows directly with

lim
x2→∞

∫ `

0
|∂2u(x1, x2)| dx1 = lim

x2→∞

∫ `

0
∂2u(x1, x2) dx1

=

∫ `

0
lim
x2→∞

∂2u(x1, x2) dx1

=0.

The last remaining point to show is the uniqueness of the solution u. The proof presented
here goes back to [DaFiPe92], Theorem 1, where the authors use the same technique to
show uniqueness for solutions of (4.1) with one saddle.

Proposition 4.12. For ` > `min there exists a unique solution of (4.1) on R` with
u = 0 on ∂R` satisfying 0 < u < 1.

Proof. It remains to show the uniqueness of solutions. Assume there exist two solutions
u1, u2 ∈ C2(R`) with 0 < u1, u2 < 1 and u1, u2 6≡ 0. Without loss of generality we can
assume that u1 < u2. Otherwise max(u1, u2) is a weak subsolution and there exists a
solution u of (4.1) with

max(u1, u2) ≤ u ≤ 1 in R`.

As above we can apply the strong maximum principle from [GiTr01], Theorem 3.5 and
the remark thereafter, to conclude

u > u1 and u > u2.

We restrict ourselves to finite rectangles R`s = (0, `)× (0, s) and obtain by (4.1) for all
s ≥ 1 ∫

R`s

u1∆u2 − u2∆u1 dx =

∫
R`s

u1u2

[
f(u2)

u2
− f(u1)

u1

]
dx > C (4.14)
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for a constant C > 0 independent of s. The inequality follows from the fact that on the
one hand f(h)

h = h2 − 1 is strictly monotonically increasing in h and on the other hand
that u1 and u2 are strictly positive in R`s.
We apply Green’s Formula on the left hand side of (4.14) and thus obtain

C <

∫
∂R`s

u1∂νu2 − u2∂νu1 dH1

=

∫ `

0
u1(x1, s)∂2u2(x1, s)− u2(x1, s)∂2u1(x1, s) dx1

≤
∫ `

0
|∂2u2(x1, s)| dx1 +

∫ `

0
|∂2u1(x1, s)| dx1

where we have used that u1 and u2 vanish on everywhere of the boundary ∂R`s except
on the upper portion. By Corollary 4.11 the right hand side tends to 0 as s→∞. This
yields the desired contradiction and the uniqueness is proven.

A combination of the propositions above now yields a proof for Theorem 4.2 and
Corollary 4.3.

Proof of Theorem 4.2. We extend the solution u on R` from above via odd reflections
and periodic continuation to a (weak) solution of (4.1) on R2. By the local regularity
result from Lemma 4.6 u is smooth on R2 and hence is a multisaddle solution in the
sense of Definition 4.1 with I = Z and zi = `i for all i ≥ 0.
The uniqueness of u follows directly from Proposition 4.12. Indeed, if there exists
another multisaddle solution as in the theorem we can restrict it to one semi infinite
rectangle where it differs from u. This already contradicts the uniqueness of solutions
on R`.

Proof of Corollary 4.3. Consider a multisaddle solution of (4.1) and assume that two
consecutive rectangles have finite widths `, ˜̀> `min. Without loss of generality we can
choose them to be (0, `) × (0,∞) and (`, ` + ˜̀) × (0,∞) and assume u to be positive
inside the first and negative inside the second one. Due to Lemma 4.6, u is smooth and
by Proposition 4.12 u is determined uniquely on both separate stripes. Moreover, we
have

u(·, x2) −→ q` in C2
(
[0, `]

)
,

u(·, x2) −→ −q˜̀(· − `) in C2
(
[`, `+ ˜̀]

)
as x2 →∞. Hence, we can choose x̄2 > 0 such that∣∣u′(`, x̄2)− q′`(`)

∣∣ ≤ 1

4

∣∣∣q′`(0)− q′˜̀(0)
∣∣∣

and ∣∣∣u′(`, x̄2) + q′˜̀(0)
∣∣∣ ≤ 1

4

∣∣∣q′`(0)− q′˜̀(0)
∣∣∣
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hold. We conclude∣∣∣q′`(0)− q′˜̀(0)
∣∣∣ =
∣∣∣q′`(`) + q′˜̀(0)

∣∣∣ ≤ ∣∣u′(`, x̄2)− q′`(`)
∣∣+
∣∣∣u′(`, x̄2) + q′˜̀(0)

∣∣∣
≤1

2

∣∣∣q′`(0)− q′˜̀(0)
∣∣∣

and hence, q′`(0) = q′˜̀(0) which is equivalent to ` = ˜̀ by Proposition 3.1.
Analogously, the argument holds for infinite stripe widths and the optimal profile γ
instead of the optimal arcs. For the corresponding convergence result see [DaFiPe92].
This proves that multisaddle solutions with different stripe widths cannot exist.

Remark. We want to point out that the concept of multisaddle solutions is just one
possible class of entire solutions of (4.1) when generalizing the quasi one-dimensional
pattern from Section 3.2. One could also think of classical checkerboard patterns or
pavings of the plane with arbitrary rectangles. Having the results of this chapter in
mind, it seems natural (at least for large length scales) that entire solutions of the
shapes described above can only exist if the pattern is completely symmetric and all
panels have the same size. We omit a proof here, though the methods to study the
existence and qualitative properties of such solutions are identical to the tools used in
this chapter.
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5 The L2-gradient flow of Wε:
Existence and qualitative
behavior

5.1 Longtime existence

In this part we consider the existence and uniqueness of periodic solutions for the
L2-gradient flow of Wε. Although we are only interested in the one-dimensional case
hereinafter, the contemplation can be generalized for space dimensions n ≤ 3 without
any problems.
Throughout the rest of the section let 1 ≤ n ≤ 3 and let U denote a nonempty
n-dimensional rectangle, i.e.,

U :=
n∏
k=1

(ak, bk) ⊂ Rn

for ak, bk ∈ R and ak < bk, 1 ≤ k ≤ n. Furthermore, for m ∈ N0 let

Hm
per := C∞per(U)

be the space of periodic Hm-functions in U where the closure is taken with respect to
the Hm-norm.
We also assume ε > 0 to be a fixed parameter and for simplicity, we suppress the usual
indices of functions with ε dependency. We also allow constants depending on ε in this
section.

We will prove the existence and uniqueness of weak periodic solutions for the evolution
equation

∂tu = −∇L2Wε(u) =
(

∆− 1

ε2
F ′′(u)

)
v in (0,∞)× U

v = −ε∆u+
1

ε
F ′(u) in (0,∞)× U

u(0) = u0 in U

(5.1a)

(5.1b)

(5.1c)

with initial data u0 ∈ H2
per(U). Precisely, we are interested in periodic functions which
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satisfy the following

Definition 5.1. We call u : [0,∞)× U → R a weak periodic solution of (5.1) if

u ∈ H1(0, T ;L2
per(U)) ∩ L∞

(
0, T ;H2

per(U)
)

(5.2)

v := −ε∆u+
1

ε
F ′(u) ∈ L2

(
0, T ;H2

per(U)
)

(5.3)

for all T > 0 and if (5.1a)-(5.1c) hold as identities in L2
per(U) for almost all t > 0. Due

to the continuous embedding

H1(0, T ;L2
per(U)) ∩ L∞

(
0, T ;H2

per(U)
)
↪→ C

(
[0, T ];L2

per(U)
)
,

(5.1c) is well defined.

Remark. Obviously, every classical periodic solution of (5.1) especially is a weak
periodic solution.

The existence proof follows a classical time discretization scheme for gradient flows.
The idea is to solve a minimization problem for a modified functional in each time step
such that its first variation corresponds to a backward Euler scheme (see Proposition
5.2). Afterwards, the convergence of the resulting step functions in time is proven in
Theorem 5.6 using uniform bounds on the step functions and a compactness argument.
In Proposition 5.7 the uniqueness of solutions to (5.1) is established by a contradiction
argument. Finally, we conclude the chapter with an argument which shows that due to
the smoothness of F , every weak solution is in fact a function in C∞((0,∞), C∞per(U))
(see Proposition 5.8).
At this point we want to comment shortly on the time discretization technique described
above. This method is well known and a common approach to show existence of solutions
to evolution problems which have a gradient flow structure. It goes back to Luckhaus
and Sturzenhecker and their contributions to the mean curvature flow equation [LuSt95]
and was later generalized by De Giorgi to the notion of minimal movement for even
non differentiable energies [DeG93].

The structure of this section and many details of the proof follow [CoLa11] where
the authors consider the same phase field model with a volume constraint instead
of periodicity. While our setting simplifies the calculations in some steps, additional
arguments concerning the periodicity of the solutions are necessary.

We begin with the definition of the modified energy functionals: For τ > 0 and f ∈ L2(U)
we define

Jτ,f (w) :=
1

2

∫
U

(w − f)2 dx+ τWε(w), w ∈ H2
per(U)

and observe that a minimizer u ∈ H2
per(U) of Jτ,f satisfies the Euler-Lagrange equation

1

τ
(u− f) = −∇L2Wε(u) in U,
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which reminds of the gradient flow equation (5.1a) with a discretized time derivative on
the left-hand side.

The existence of these minimizers is shown now.

Proposition 5.2. For every τ > 0 and every f ∈ L2(U) there exists a miminizer u of
Jτ,f in H2

per(U).

Proof. We apply the direct method of the calculus of variations. Let τ > 0 and
f ∈ L2(U). Since Jτ,f is obviously bounded from below by 0, there exists a minimizing
sequence (uk)k∈N in H2

per(U) such that

Jτ,f (uk) −→ m := inf
v∈H2

per(U)
Jτ,f (v) ≥ 0

as k →∞. Particularly, Wε(uk) is bounded uniformly in k and due to Lemma 3.11, we
obtain

‖uk‖2H2(U) ≤ C(ε)
(
1 +Wε(uk)

)
≤ C(ε).

As in the proof of Theorem 3.12 we use the weak precompactness of H2
per(U) to find a

subsequence of (uk)k∈N which converges weakly in H2
per(U) and uniformly in C0(U) by

the general Sobolev inequality ([AdFo03], Theorem 4.12) towards a function u ∈ H2(U).
Since H2

per(U) ⊂ H2(U) is closed and convex and thus weakly closed, we deduce
u ∈ H2

per(U).

Again as in Theorem 3.12, we obtain

m ≤ Jτ,f (u) ≤ lim inf
k→∞

Jτ,f (uk) = m

and u is a minimizer of Jτ,f in H2
per(U).

Before we formulate the time discretization scheme, we collect some properties of the
diffuse curvature

v := −ε∆u+
1

ε
F ′(u) (5.4)

related to a minimizer u of Jτ,f .

Lemma 5.3. Let u ∈ H2
per(U) be a minimizer of Jτ,f and let v be defined as in (5.4).

Then the following statements hold.

(i) v is in H2
per(U).

(ii) For all ψ ∈ L2
per(U) the Euler-Lagrange equation∫

U

[
1

τ
(u− f)−∆v +

1

ε2
F ′′(u)v

]
ψ dx = 0 (5.5)

holds.
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(iii) We have the energy estimate∥∥∥∥−∆v +
1

ε2
F ′′(u)v

∥∥∥∥
L2(U)

≤ 1

τ
‖u− f‖L2(U) . (5.6)

Proof. For every ψ ∈ H2
per(U) and s > 0 the function u+ sψ still belongs to H2

per(U)
und since u minimizes Jτ,f we obtain,

0 =
1

τ

d

ds
Jτ,f (u+ sψ)

∣∣∣
s=0

=

∫
U

[
1

τ
(u− f)ψ + v

(
−∆ψ +

1

ε2
F ′′(u)ψ

)]
dx. (5.7)

To prove (5.5) it remains to show (i) and integrate by parts twice in the equation above
where the boundary integrals vanish due to the periodicity of ψ and u. Then, (5.5)
obviously holds even for ψ ∈ L2

per(U) by approximation.
For the regularity of v we note that the elliptic PDE (in w)

∆w =
1

τ
(u− f) +

1

ε2
F ′′(u)v ∈ L2(U)

with −
∫
U w dx = 0 has a unique solution w in H1

per(U) by the Lax-Milgram theorem.
Now, standard regularity theory yields that w belongs to H2(U) and thus, w ∈ H2

per(U).
Consequently, we know from (5.7) that w = v − −

∫
U v dx which means (i) and (5.5)

follows by two integrations by parts as mentioned above.

For the energy estimate (5.6) let η ∈ (0, 1) and let ϕη ∈ H2
per(U) denote the unique

solution of the auxiliary problem

ϕη − η∆ϕη = −∆v +
1

ε2
F ′′(u)v ∈ L2(U). (5.8)

Again, the existence and uniqueness of ϕη is an immediate consequence of the Lax-
Milgram theorem and standard regularity theory. We choose ψ = ϕη in (5.5) and use
(5.8) to obtain∫

U

[
1

τ
(u− f) + ϕη − η∆ϕη

]
ϕη dx = 0.

Rearranging terms and integrating by parts in the third term on the left-hand side
yields

‖ϕη‖2L2(U) ≤
∫
U
ϕ2
η + η |∇ϕη|2 dx = −

∫
U

1

τ
(u− f)ϕη dx

≤1

τ
‖u− f‖L2(U) ‖ϕη‖L2(U)

and thus,

‖ϕη‖L2(U) ≤
1

τ
‖u− f‖L2(U) . (5.9)
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In order to prove (5.6) it is sufficient to pass to the limit η → 0 in the inequality above.
To see this, we test (5.8) with ϕη to obtain

‖ϕη‖2L2(U) + ‖√η∇ϕη‖2L2(U) ≤
∥∥∥∥−∆v +

1

ε2
F ′′(u)v

∥∥∥∥
L2(U)

‖ϕη‖L2(U)

and hence,

‖ϕη‖L2(U) ≤
∥∥∥∥−∆v +

1

ε2
F ′′(u)v

∥∥∥∥
L2(U)

and then

‖√η∇ϕη‖L2(U) ≤
∥∥∥∥−∆v +

1

ε2
F ′′(u)v

∥∥∥∥
L2(U)

.

Due to the reflexivity of L2(U), there exists a non relabeled subsequence η → 0 such
that

ϕη ⇀ ϕ weakly in L2(U),
√
η∇ϕη ⇀ ρ weakly in L2(U)

with ϕ, ρ ∈ L2(U) as η → 0. We can now consider the limit in the weak formulation of
(5.8) which implies for arbitrary w ∈ H1

per(U)∫
U

(
−∆v +

1

ε2
F ′′(u)v

)
w dx =

∫
U
ϕηw + η∇ϕη∇w dx −→

∫
ϕw dx

as η → 0 and hence

ϕ = −∆v +
1

ε2
F ′′(u)v.

Thus, using the weak lower semicontinuity of the L2-norm we obtain (5.6) from (5.9) by∥∥∥∥−∆v +
1

ε2
F ′′(u)v

∥∥∥∥
L2(U)

= ‖ϕ‖L2(U) ≤ lim inf
η→0

‖ϕη‖L2(U) ≤
1

τ
‖u− f‖L2(U) .

We continue by formulating the time discretization scheme for the diffuse Willmore flow.
Let u0 ∈ H2

per(U) be an initial value and fix a time step width τ > 0. For m ≥ 0 and
with Jτ,uτm from above we then define a sequence (uτk)k∈N in H2

per(U) inductively by

uτ0 := u0,

uτm+1 minimizes Jτ,uτm in H2
per(U),

and also set

vτm := −ε∆uτm +
1

ε
F ′(uτm).
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With these sequences in hand, we define (H2
per(U)-valued) step functions uτ , vτ in time

by

uτ (t) := uτm and vτ (t) := vτm

for t ∈ [mτ, (m+ 1)τ) and m ≥ 0. Our plan is to prove the convergence of the above
defined step functions towards a solution of the gradient flow in a suitable sense. We
prepare the main theorem by deriving an H2-bound uniform in time for uτ as well as
uniform bounds for vτ in appropriate Bochner Spaces (see below).

Lemma 5.4. Let τ > 0 be an arbitrary time step width and t2 > t1 ≥ 0. Then the
estimates

Wε

(
uτ (t2)

)
≤ Wε

(
uτ (t1)

)
≤ Wε(u0), (5.10)

sup
t≥0
‖vτ (t)‖2L2(U) ≤ 2εWε(u0), (5.11)

‖uτ (t2)− uτ (t1)‖2L2(U) ≤ 2Wε(u0)(τ + t2 − t1), (5.12)∫ ∞
τ

∥∥∥∥−∆vτ (t) +
1

ε2
F ′′
(
uτ (t)

)
vτ (t)

∥∥∥∥2

L2(U)

dt ≤ 2Wε(u0), (5.13)

hold.

Proof. We have uτm ∈ H2
per(U) for every m ≥ 0 and since uτm+1 is a minimizer of Jτ,uτm

by definition, we obtain

1

2τ

∥∥uτm+1 − uτm
∥∥2

L2(U)
+Wε(u

τ
m+1)

=
1

τ
Jτ,uτm(uτm+1) ≤ 1

τ
Jτ,uτm(uτm) =Wε(u

τ
m). (5.14)

Now let t2 > t1 ≥ 0 and set m1 = b t1τ c and m2 = b t2τ c. Then, m2 ≥ m1 and (5.14)
together with an induction argument yields

Wε

(
uτ (t2)

)
=Wε(u

τ
m2

) ≤ Wε(u
τ
m1

) =Wε

(
uτ (t1)

)
which is (5.10). We then deduce (5.11) by

1

2ε
sup
t≥0
‖vτ (t)‖2L2(U) = sup

t≥0
Wε

(
uτ (t)

)
= sup

m≥0
Wε(u

τ
m) ≤ Wε(u

τ
0) =Wε(u0).

Summing up (5.14) over all m ≥ 0 yields

1

2τ

∞∑
m=0

∥∥uτm+1 − uτm
∥∥2

L2(U)
≤
∞∑
m=0

(
Wε(u

τ
m)−Wε(u

τ
m+1)

)
≤Wε(u

τ
0) =Wε(u0) (5.15)
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5.1 Longtime existence

and due to the Cauchy-Schwarz inequality we have

‖uτ (t2)− uτ (t1)‖L2(U) =
∥∥uτm2

− uτm1

∥∥
L2(U)

≤
m2−1∑
m=m1

∥∥uτm+1 − uτm
∥∥
L2(U)

≤√m2 −m1

√√√√m2−1∑
m=m1

∥∥uτm+1 − uτm
∥∥2

L2(U)

≤
√

1 +
t2 − t1
τ

√
2τWε(u0)

=
√

2Wε(u0)
√
τ + (t2 − t1),

which gives (5.12) after squaring both sides.
To prove (5.13) we again make use the fact that uτm+1 minimizes Jτ,uτm . (5.6) yields∥∥∥∥−∆vτm+1 +

1

ε2
F ′′(uτm+1)vτm+1

∥∥∥∥
L2(U)

≤ 1

τ

∥∥uτm+1 − uτm
∥∥
L2(U)

and we apply this inequality together with (5.15) to estimate the left hand side of (5.13).
This gives∫ ∞

τ

∥∥∥∥−∆vτ (t) +
1

ε2
F ′′
(
uτ (t)

)
vτ (t)

∥∥∥∥2

L2(U)

dt

=
∞∑
m=0

∫ (m+2)τ

(m+1)τ

∥∥∥∥−∆vτm+1 +
1

ε2
F ′′(uτm+1)vτm+1

∥∥∥∥2

L2(U)

dt

≤1

τ

∞∑
m=0

∥∥uτm+1 − uτm
∥∥2

L2(U)
≤ 2Wε(u0)

and completes the proof.

In order to show convergence of uτ and vτ as τ → 0, we depend on uniform bounds of
these functions in L∞(0, T ;H2(U)) and L2(τ, T ;H2(U)), respectively.

Lemma 5.5. For every T > 0 there exists a constant C = C(U, T, u0, F, ε) such that
for every τ ∈ (0, 1) ∩ (0, T ) the estimates

sup
t∈[0,T ]

‖uτ (t)‖H2(U) ≤ C (5.16)

and ∫ T

τ
‖vτ (t)‖2H2(U) dt ≤ C (5.17)

hold.

Proof. Let T > 0 be arbitrary. For every t ∈ [0, T ] the spacial H2-bound for uτ (t) from
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Lemma 3.11 combined with (5.11) reads

‖uτ (t)‖H2(U) ≤C
(

1 +
√
Wε(uτ (t))

)
= C

(
1 +

1√
2ε
‖vτ (t)‖L2(U)

)
≤C

(
1 +

√
Wε(u0)

)
which is (5.16) as the right hand side does not depend on t.
For the second inequality we immediately see that F ′′

(
uτ (t)

)
is uniformly bounded in

L∞((0, T )×U) by (5.16) and the fact that H2(U) embeds continuously into L∞(U) for
space dimensions 1 ≤ n ≤ 3. Together with (5.11) this yields a bound in L∞(0, T ;L2(U))
for the product F ′′(uτ )vτ independent of τ .
Keeping this result in mind we obtain∫ T

τ
‖∆vτ (t)‖2L2(U) dt

≤
∫ T

τ
C

∥∥∥∥−∆vτ (t) +
1

ε2
F ′′
(
uτ (t)

)
vτ (t)

∥∥∥∥2

L2(U)

+
C

ε4

∥∥F ′′(uτ (t)
)
vτ (t)

∥∥2

L2(U)
dt

≤C (Wε(u0))

where we have used inequality (5.13) to estimate the first summand in the last step
together with τ < 1. The control of ∆vτ (t) immediately provides a bound for the
complete second derivative D2vτ in L2(τ, T ;L2(U)) and the L∞(0,∞;L2(U))-bound
for vτ from (5.11) also yields a uniform bound for vτ in L2(τ, T ;L2(U)). Now, by a
standard interpolation argument we also have∫ T

τ

∫
U
|∇vτ (t)|2 dx dt =−

∫ T

τ

∫
U
vτ (t)∆vτ (t) dx dt

≤1

2

∫ T

τ
‖vτ (t)‖2L2(U) + ‖∆vτ (t)‖2L2(U) dt

≤1

2
(T − τ) sup

t≥0
‖vτ (t)‖2L2(U) +

1

2

∫ T

τ
‖∆vτ (t)‖2L2(U) dt

≤C (Wε(u0))

which yields the uniform boundedness of vτ in L2(τ, T ;H2(U)) and therefore, (5.17).

We now use the inequalities from above for an Arzelà-Ascoli argument to find converging
subsequences (uτk)k∈N and (vτk)k∈N. Afterwards, the limit function is shown to be a
strong solution of the gradient flow (5.1).

Theorem 5.6. For initial data u0 ∈ H2
per(U) there exists a weak periodic solution of

(5.1) u in the sense of Definition 5.1 which moreover satisfies

u ∈ C
(
[0,∞)× U

)
. (5.18)
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5.1 Longtime existence

Proof. Let T > 0. By (5.16) the set

K := {uτ (t) : t ∈ [0, T ], τ ∈ (0, 1) ∩ (0, T )} ⊂ H2
per(U)

is bounded and since the embedding H2(U) ↪→ C0(U) is compact for the considered
space dimensions, K ⊂ C0(U) is compact where the closure was taken with respect to
the H2-norm.
Furthermore, (5.12) yields for 0 ≤ t1 ≤ t2 ≤ T

lim sup
τ→0

‖uτ (t2)− uτ (t1)‖L2(U) ≤
√

2Wε(u0)(t2 − t1) −→ 0

as t1 → t2. Therefore, we are able to apply a refined version of the Arzelà-Ascoli
theorem (see [AmGiSa08], Prop 3.3.1) to find a subsequence (τk)k∈N and a function
u : [0, T ]→ C(U) such that

uτk(t) −→ u(t) uniformly for all t ∈ [0, T ]

and thus,

uτk −→ u in C0
(
[0, T ]× U

)
(5.19)

as k →∞ which yields (5.18).
On the other hand, (5.16) and the fact that L∞(0, T ;H2(U)) =

(
L1(0, T ;H2(U))

)∗
imply the existence of a further (not relabeled) subsequence and ũ ∈ L∞(0, T ;H2(U))
such that

uτk
∗
⇀ ũ in L∞

(
0, T ;H2(U)

)
. (5.20)

The two limit functions u and ũ coincide almost everywhere since for every testfunction
ϕ ∈ C∞c ([0, T ]× U) we have∣∣∣∣∫ T

0

∫
U

(u− ũ)ϕdx dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫
U

(u− uτk)ϕdx dt

∣∣∣∣+

∣∣∣∣∫ T

0

∫
U

(uτk − ũ)ϕdx dt

∣∣∣∣
≤‖u− uτk‖C0([0,T ]×U) ‖ϕ‖L1((0,T )×U) + ‖uτk − ũ‖L∞(0,T ;H2(U)) ‖ϕ‖L1(0,T ;H2(U))

−→ 0

as k →∞. Furthermore, u(t) is a periodic function for every t ∈ [0, T ]. Indeed, by (5.16)
we can find for every fixed t ∈ [0, T ] and every subsequence (u

τkj (t))j∈N of (uτk(t))k∈N
a further subsequence which converges in H2(U) and with the same argument as above,
we conclude

uτk(t) ⇀ u(t) in H2(U) for t ∈ [0, T ]

as k →∞. Finally, since H2
per(U) is a closed and convex and therefore weakly closed

subset of H2(U), u(t) is in H2
per(U) for every t ∈ [0, T ] and the second part of (5.2) is
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shown.
To prove (5.3) we observe that (5.11) yields the existence of another (again not relabeled)
subsequence of (τk)k∈N such that

vτk
∗
⇀ v in L∞

(
0, T ;L2(U)

)
and (5.19),(5.20) let us pass immediately to the limit in the definition of vτk to deduce

v = −ε∆u+
1

ε
F ′(u).

We set

ṽτk := vτkχ[τk,T ]

where χ[τk,T ] is the time dependent cutoff function of the interval [τk, T ] and obtain

‖ṽτk‖L2(0,T ;H2(U)) = ‖vτk‖L2(τk,T ;H2(U)) ≤ C

by (5.17). Therefore,

ṽτk ⇀ ṽ in L2
(
0, T ;H2(U)

)
(5.21)

holds with

‖ṽ‖L2(0,T ;H2(U)) ≤ C

as the norm is weak lower semicontinuous. As above, it remains to show that the limit
functions v and ṽ coincide. We see for arbitrary ϕ ∈ C∞c ([0, T ]× U) that∣∣∣∣∫ T

0

∫
U

(v − ṽ)ϕdx dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫
U

(v − vτk)ϕdx dt

∣∣∣∣+

∣∣∣∣∫ T

0

∫
U

(vτk − ṽ)ϕdx dt

∣∣∣∣
where the first summand becomes small due to the weak*-convergence of (vτk)k∈N in
L∞(0, T ;L2(U)). Now, (5.3) follows since the second term can be estimated by∣∣∣∣∫ T

0

∫
U

(vτk − ṽτk)ϕdx dt

∣∣∣∣+

∣∣∣∣∫ T

0

∫
U

(ṽτk − ṽ)ϕdx dt

∣∣∣∣
≤
∣∣∣∣∫ τk

0

∫
U
vτkϕdx dt

∣∣∣∣+

∣∣∣∣∫ T

0

∫
U

(ṽτk − ṽ)ϕdx dt

∣∣∣∣
≤τk ‖vτk‖L∞(0,T ;L2(U)) ‖ϕ‖L∞(0,T ;L2(U)) +

∣∣∣∣∫ T

0

∫
U

(ṽτk − ṽ)ϕdx dt

∣∣∣∣
and therefore also converges to 0 as k →∞ by (5.11) and (5.21).

Finally, we show that the limit functions solve (5.1a). Let ψ ∈ C∞c ([0, T );C∞per(U)) and
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τ > 0 sufficiently small. We define m =
⌊
T
τ

⌋
and set

ψτj := −
∫ (j+1)τ

jτ
ψ(s) ds ∈ C∞per(U), j = 0, . . . ,m− 1

as well as

ψτ (t) := ψτj for t ∈
[
jτ, (j + 1)τ

)
.

Moreover, we extend ψτ by ψτ (t) := ψ(0) for t < 0.

Due to the definition of uτj+1, j ∈ {0, . . . ,m− 1}, we consider (5.5) with ψ = ψτj and
therefore obtain by rearranging∫

U
(uτj+1 − uτj )ψτj dx = τ

∫
U

(
∆vτj+1 −

1

ε2
F ′′(uτj+1)vτj+1

)
ψτj dx

=

∫ (j+2)τ

(j+1)τ

∫
U

(
∆vτ − 1

ε2
F ′′(uτ )vτ

)
ψτ (· − τ) dx ds. (5.22)

The left-hand side can be written as∫
U

(uτj+1 − uτj )ψτj dx =

∫ (j+1)τ

jτ

∫
U
∂τt u

τψτ dx ds

=−
∫ (j+1)τ

jτ

∫
U
uτ∂−τt ψτ dx ds+−

∫ (j+2)τ

(j+1)τ

∫
U
uτψτ (· − τ) dx ds

−−
∫ (j+1)τ

jτ

∫
U
uτψτ (· − τ) dx ds

where ∂τt denotes the discrete (time) derivative and where we have integrated by parts
discretely in the last step. Hence, by summing (5.22) over j = 0, . . .m− 1, canceling
the twice appearing terms on the left hand side, and using ψτ ≡ 0 in [(m− 1)τ, T ] for
sufficiently small τ , this yields

−
∫ mτ

0

∫
U
uτ∂−τt ψτ dx ds−−

∫ τ

0

∫
U
uτψτ (· − τ) dx ds

=

∫ T

τ

∫
U

(
∆vτ − 1

ε2
F ′′(uτ )vτ

)
ψτ (· − τ) dx ds. (5.23)

Now, we pass to the limit τ → 0 and recognize that

∂−τt ψτ −→ ∂tψ uniformly in (0, T ]× U (5.24)

as τ → 0. Indeed, for t > 0 we can assume τ > 0 sufficiently small such that
t ∈ [jτ, (j + 1)τ), j ∈ {1, . . . ,m − 1}. As above, ψτ (t) = ψ(t) ≡ 0 even holds
for t > (m − 2)τ by definition and therefore, ∂−τt ψτ (t) and ∂tψ(t) both vanish for

85



Chapter 5 The L2-gradient flow of Wε: Existence and qualitative behavior

t > (m− 1)τ . We obtain by the definition of ψτ (independent of x ∈ U)

∣∣∂−τt ψτ (t)− ∂tψ(t)
∣∣ =

∣∣∣∣1τ (ψτ (t)− ψτ (t− τ)
)
− ∂tψ(t)

∣∣∣∣
=

∣∣∣∣∣1τ−
∫ (j+1)τ

jτ
ψ(s)− ψ(s− τ)− τ∂tψ(t) ds

∣∣∣∣∣ =

∣∣∣∣∣−
∫ (j+1)τ

jτ
∂tψ(ρ)− ∂tψ(t) ds

∣∣∣∣∣
≤−
∫ (j+1)τ

jτ
‖ψ‖C2([0,T ]×U) |ρ− t| ds ≤ 2 ‖ψ‖C2([0,T ]×U) τ

−→ 0

with ρ ∈ (s− τ, s) due to the mean value theorem.

We choose τ = τk from above such that (5.19), (5.20) and (5.21) hold and take the limit
k →∞ in (5.23). Due to the uniform convergence of (uτk)k∈N in [0, T ]× U from (5.19)
and (5.24), we obtain for the left hand side of (5.23)∫ mτk

0

∫
U
uτk∂−τkt ψτk dx ds−−

∫ τk

0

∫
U
uτkψτk(· − τk) dx ds

=

∫ mτk

0

∫
U
uτk∂−τkt ψτk dx ds−

∫
U
u0ψ(0) dx

−→ −
∫ T

0

∫
U
u∂tψ dx ds−

∫
U
u0ψ(0) dx

as k →∞. For the right hand side we observe that

ψτ (· − τ) −→ ψ uniformly in (0, T ]× U

since for t ∈ [jτ, (j + 1)τ), j ∈ 1, · · · ,m− 1 we have similar to the argument for (5.24)

|ψτ (t− τ)− ψ(t)| =
∣∣ψτj−1 − ψ(t)

∣∣ =

∣∣∣∣∣−
∫ jτ

(j−1)τ
ψ(s) ds− ψ(t)

∣∣∣∣∣
= |ψ(ρ)− ψ(t)| ≤ 2 ‖ψ‖C1([0,T ]×U) τ −→ 0

as τ → 0, where we have used the mean value theorem of integral calculus with
ρ ∈ ((j − 1)τ, jτ). Therefore, the convergence of∫ T

τ

∫
U

(
∆vτ − 1

ε2
F ′′(uτ )vτ

)
ψτ (· − τ) dx ds

=

∫ T

0

∫
U

(
∆ṽτ − 1

ε2
F ′′(uτ )ṽτ

)
ψτ (· − τ) dx ds

follows with the weak convergence of (ṽτk)k∈N in L2(0, T ;H2(U)) from (5.21) and the
uniform convergence of (uτk)k∈N from (5.19).
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Summarized, we deduce

−
∫ T

0

∫
U
u∂tψ dx ds−

∫
U
u0ψ(0) dx =

∫ T

0

∫
U

(
∆v − 1

ε2
F ′′(u)v

)
ψ dx ds (5.25)

from (5.22) in the limit for all ψ ∈ C∞c ([0, T );C∞per(U)). For ψ ∈ C∞c ((0, T );C∞per(U))
in (5.25) we obtain

−
∫ T

0

∫
U
u∂tψ dx ds =

∫ T

0

∫
U

(
∆v − 1

ε2
F ′′(u)v

)
ψ dx ds

and thus, u ∈ H1(0, T ;L2
per(U)), as the expression in parentheses on the right hand side

is in L2(0, T ;L2
per(U)), which proves (5.2).

As a last step, a partial integration in (5.25) yields (5.1) and this completes the proof
of the theorem.

Proposition 5.7. Weak periodic solutions of (5.1) for given initial data u0 ∈ H2
per(U)

are unique.

Proof. Fix T > 0 and let u1 and u2 be two weak periodic solutions of (5.1) with same
initial data u0 and let v1 and v2 denote the corresponding diffuse curvatures as in (5.4).
Due to the regularity of u and v from (5.2) and (5.3), we can find a constant K > 0
such that∥∥ui∥∥

L∞([0,T ]×U)
+
∥∥vi∥∥

L∞(0,T ;L2(U))
+
∥∥vi∥∥

L2(0,T ;L∞(U))
≤ K (5.26)

for i = 1, 2. Here, the first and last inequality both follow by the continuous embedding
of H2(U) into L∞(U).

We first observe that∣∣F ′′(u1)v1 − F ′′(u2)v2
∣∣

≤
∣∣F ′′(u1)− F ′′(u2)

∣∣ ∣∣v1
∣∣+
∣∣F ′′(u2)

∣∣ ∣∣v1 − v2
∣∣

≤
∥∥F ′′′∥∥

L∞(−K,K)

∣∣u1 − u2
∣∣ ∣∣v1

∣∣+
∥∥F ′′∥∥

L∞(−K,K)

∣∣v1 − v2
∣∣

≤C
(∣∣v1

∣∣ ∣∣u1 − u2
∣∣+
∣∣v1 − v2

∣∣) (5.27)

and that the difference of u1 and u2 satisfies

1

2

d

dt

∥∥u1 − u2
∥∥2

L2(U)

=

∫
U
∂t(u

1 − u2)(u1 − u2)

=

∫
U

(v1 − v2)∆(u1 − u2)− 1

ε2

(
F ′′(u1)v1 − F ′′(u2)v2

)
(u1 − u2) dx

since both functions solve (5.1). Now, (5.27) and the definition of v from (5.4) yield

1

2

d

dt

∥∥u1 − u2
∥∥2

L2(U)
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=
1

ε

∫
U

(v1 − v2)

(
1

ε
F ′(u1)− 1

ε
F ′(u2)− (v1 − v2)

)
dx

− 1

ε2

∫
U

(
F ′′(u1)v1 − F ′′(u2)v2

)
(u1 − u2) dx

≤ 1

ε2

∥∥F ′′∥∥
L∞(−K,K)

∥∥v1 − v2
∥∥
L2(U)

∥∥u1 − u2
∥∥
L2(U)

− 1

ε

∥∥v1 − v2
∥∥2

L2(U)

+
C

ε2

∫
U

∣∣v1
∣∣ ∣∣u1 − u2

∣∣2 +
∣∣v1 − v2

∣∣ ∣∣u1 − u2
∣∣ dx

≤ C

ε2

∥∥v1 − v2
∥∥
L2(U)

∥∥u1 − u2
∥∥
L2(U)

+
C

ε2

∥∥v1
∥∥
L∞(U)

∥∥u1 − u2
∥∥2

L2(U)

− 1

ε

∥∥v1 − v2
∥∥2

L2(U)

≤1

ε

∥∥v1 − v2
∥∥2

L2(U)
+
C

ε3

∥∥u1 − u2
∥∥
L2(U)

+
C

ε2

∥∥v1
∥∥
L∞(U)

∥∥u1 − u2
∥∥2

L2(U)

− 1

ε

∥∥v1 − v2
∥∥2

L2(U)

≤C
(

1 +
∥∥v1
∥∥
L∞(U)

)∥∥u1 − u2
∥∥2

L2(U)

where we have applied Young’s inequality in the fourth step to absorb the first term in
the sum. Now, Gronwall’s inequality (e.g., [Eva10], Appendix B.2.) immediately implies
for every t ∈ [0, T ]

∥∥(u1 − u2)(t)
∥∥2

L2(U)
≤
∥∥(u1 − u2)(0)

∥∥2

L2(U)
exp

(
C

∫ t

0
1 +

∥∥v1(s)
∥∥
L∞(U)

ds

)
≤ C

∥∥(u1 − u2)(0)
∥∥2

L2(U)

where the integral in the exponential term exists due to (5.26). Since u1(0) = u2(0) = u0,
this proves u1(t) = u2(t) for all t ∈ [0, T ] in L2(U).

Proposition 5.8. Every weak periodic solution of (5.1) is a smooth classical solution
in C∞((0,∞);C∞per(U)) ∩ C∞([0,∞);H2

per(U)).

Proof. We first observe that a weak periodic solution u of (5.1) solves the biharmonic
heat flow equation

∂tu+ ε∆2u = G(u), (5.28)

where

G(u) := −2

ε
F ′′(u)∆u− 1

ε
F ′′′(u) |∇u|2 +

1

ε3
F ′(u)F ′′(u)

contains all remaining terms with less derivatives of u in (5.1a). The smoothness of u
can now be shown by combining spacial regularity results from [La02] (or [MaMa12])
for the biharmonic heat flow with a bootstrap argument and applying ODE theory
afterwards in order to prove the smoothness in time. Unfortunately, it is not possible
to apply the parabolic regularity results from [La02] or [MaMa12] directly to establish
higher space and time regularity simultaneously, as G(u) contains derivatives of u (and
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their products) and therefore does not inherit the complete regularity of u. This makes
the more careful treatment necessary.
We sketch the argument here using formal differentiation and omit some technical details
which for example can be found (in a similar context) in [La02, MaMa12, Eva10]. The
proof can easily be made rigorous by using discrete difference quotients.

As H2
per(U) embeds continuously into L∞(U) for the considered space dimensions, we

have u ∈ L∞([0, T ] × U) by (5.2) and therefore, all occurring derivatives of F are
bounded uniformly in [0, T ]× U . The regularity of v from (5.3) now implies

∆u =
1

ε2
F ′(u)− 1

ε
v ∈ L2

(
0, T ;H2

per(U)
)

and thus, u ∈ L2(0, T ;H4
per(U)), which already yields G(u) ∈ L2(0, T ;H1

per(U)) since
for every i = 1, . . . , n, ∂iG(u) is bounded in L2(0, T ;L2

per(U)). Indeed, we have

|∂iG(u)| =
∣∣∣− 2F ′′′(u)∂iu∆u− 2F ′′(u)∆∂iu− F (4)(u) |∇u|2 ∂iu

− 2F ′′′(u)∇u · ∇∂iu+
1

ε2

(
F ′′(u)2 + F ′(u)F ′′′(u)

)
∂iu
∣∣∣

≤C
(
|∂iu∆u|+ |∆∂iu|+ |∇u|2 |∂iu|+ |∇u| |∇∂iu|+ |∂iu|

)
and the boundedness of the second and last term follows directly as u ∈ L∞([0, T ]×U).
For the the first and fourth summand we remark that

D2u ∈ L2(0, T ;H2
per(U)) ↪→ L2(0, T ;L∞(U))

∂iu ∈ L∞(0, T ;H1
per(U)) ↪→ L∞(0, T ;L2

per(U))

and therefore,∫ T

0

∫
U

(∂iu)2(∆u)2 dx dt ≤
∥∥∥∥∫

U
(∂iu)2 dx

∥∥∥∥
L∞(0,T )

∫ T

0
‖∆u‖2L∞(U) dt <∞.

At last, for space dimensions n = 1, 2, 3,

u ∈ L∞(0, T ;H2
per(U)) ↪→ L∞(0, T ;W 1,6

per(U))

which yields that the third summand is bounded in L2(0, T ;L2
per(U)).

Hence, we formally derive

∂t(∂iu) + ε∆2(∂iu) = ∂iG(u) ∈ L2(0, T ;L2
per(U))

and using the regularity results from [La02] (in their localized versions), we obtain

∂iu ∈ H1
(
0, T ;L2

per(U)
)
∩ L∞

(
0, T ;H2

per(U)
)
∩ L2

(
0, T ;H4

per(U)
)

and then

u ∈ H1
(
0, T ;H1

per(U)
)
∩ L∞

(
0, T ;H3

per(U)
)
∩ L2

(
0, T ;H5

per(U)
)
.
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Chapter 5 The L2-gradient flow of Wε: Existence and qualitative behavior

Now, the enhanced regularity of u can be used to show G(u) ∈ L2(0, T ;H2
per(U)) with

analogous calculations as above and repeating the argument gives

u ∈ H1
(
0, T ;H2

per(U)
)
∩ L∞

(
0, T ;H4

per(U)
)
∩ L2

(
0, T ;H6

per(U)
)

and so on. By this bootstrap argument we finally obtain

u ∈ H1
(
0, T ;Hk

per(U)
)
∩ L∞

(
0, T ;Hk

per(U)
)
∩ L2

(
0, T ;Hk

per(U)
)

for all k ≥ 0 and consequently, u is a smooth function in the space variable. For the
differentiability in time we argue similarly. We see that G(u) ∈ H1(0, T ;Hk

per(U)) for
all k ≥ 0 and (formally) differentiating (5.28) yields

∂t(∂tu) = −ε∆2(∂tu) + ∂tG(u) ∈ L2(0, T ;Hk
per(U))

which especially implies u ∈ H2(0, T ;Hk
per(U)) for all k. This provides better time

regularity for G(u) and with another bootstrap argument we successively obtain
u ∈ Hj(0, T ;Hk

per(U)) for all j, k ≥ 0 which proves the proposition.
To show the time regularity of u in t = 0 we fix j ≥ 0 and 0 ≤ k ≤ 2. For t ≤ 1 we
obtain ∥∥∥∂jt u(k)(t)− ∂jt u(k)(0)

∥∥∥2

L2(U)
≤
∫
U

(∫ t

0

∣∣∣∂j+1
t u(k)

∣∣∣ ds)2

dx

≤ t
∥∥∥∂j+1

t u(k)
∥∥∥2

L2(0,1;L2
per(U))

≤ t ‖u‖2Hj+1(0,1;H2
per(U))

−→ 0

as t→ 0. This holds true for all j ≥ 0 and hence implies u ∈ C∞([0,∞);H2
per(U)).

5.2 Slow motion: Heuristic justification and analytical
results

We deal with the question how the gradient flow of Wε qualitatively behaves in one
dimension and whether transition layers show up dynamic metastability. This question
has not yet been addressed for the diffuse Willmore flow but is well studied for gradient
flows of the diffuse area functional Eε. There, this phenomenon is distinguished by
several stages of the evolution. In a (fast) first energy relaxation stage the initial value
forms almost constant regions and steep transition layers between them. Afterwards,
the configuration appears to be stationary but in fact evolves exponentially slow on a
long timescale. Both stages are followed by a possible third stage during which the two
closest layers collide and annihilate. This process repeats until a global minimizer of
the underlying energy functional is attained.
Our interest results from the observed dynamics in [EsRäRö14] (which appear nume-
rically nearly stable after an initial energy relaxation) and is also motivated by the
already mentioned metastable behavior of other gradient flows appearing in theory of
phase transitions as the Allen-Cahn or Cahn-Hilliard equation.
A full analysis of the slow motion stage for the Allen-Cahn equation can be found in
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5.2 Slow motion: Heuristic justification and analytical results

[CaPe89] and [FuHa89] where a geometrical approach is used to characterize the expo-
nentially slow layer movement. Using weaker conditions on the inital values Bronsard
and Kohn [BrKo90] could prove slightly weaker results on this stage by energy-based
techniques.
[Ch04] contains a detailed description of all stages and especially characterizes the initial
energy relaxation. We also refer to [OtRe07] where the authors develop general abstract
conditions on an energy functional such that its gradient flow shows up metastability.
Afterwards, they exploit the gradient flow structure of the Allen-Cahn equation to
derive similar results as in [Ch04] by energy based methods.
For a complete analysis of the Cahn-Hilliard equation we refer to [ScWe18] which is
based on the (modified) scheme of [OtRe07] and the citations therein. We also point
out that [ScWe18] heavily relies on the relaxation framework introduced in [OtWe14]
which makes extensive use of the mass conservation of solutions to the Cahn-Hilliard
equation.

The Allen-Cahn and Cahn-Hilliard equation are gradient flows of the diffuse surface
energy functional Eε (with respect either to the L2-norm or the H−1-norm). Here, we
consider the gradient flow of the diffuse Willmore functional Wε instead, which makes it
difficult to adapt most of the listed approaches above. As a major challenge, solutions of
its gradient flow (5.1) lack both of a parabolic maximum principle (as in the case of the
Allen-Cahn equation) and of the mass conservation property (as in the Cahn-Hilliard
equation).
In the following, we will restrict on the slow motion stage in which the dynamics are
mainly driven by the layer locations and especially on the question how the competitor
phase fields u∗ constructed in Theorem 3.10 (as a prototype for configurations with
formed transition layers and exponentially small energy) on an interval [0, L], L > 0
evolve in time. Our aim is to describe the motion speed of u and especially its zero
positions, see Propositions 5.10 and 5.14 below. Unfortunately, it turns out extremely
difficult to determine the direction in which the zeros move. This specific problem still
remains open and we comment on it at the end of the section via an heuristic argument.

As the motion speed of a solution u of (5.1) is directly related to its energy decrease
we expect an exponentially small motion in the L2-sense. This correspondence is true
for every L2-gradient flow equation although we formulate the inequality specifically
for our problem in the next Proposition. In this section space derivatives of u will be
denoted by u′ as before while we write ∂tu for its time derivative.

Proposition 5.9. Let u be a weak solution of (5.1) in the sense of Definition 5.1 for
ε > 0 with initial condition u0 ∈ H2

per

(
(0, L)

)
. Then for all T > 0 we have the inequality∫ T

0

∫ L

0
(∂tu)2 dx dt =Wε(u0)−Wε

(
u(·, T )

)
≤ Wε(u0). (5.29)

Proof. From Proposition 5.8 we obtain u ∈ C∞((0,∞);C∞per(U))∩C∞([0,∞);H2
per(U)).

We multiply (5.1a) by ∂tu and integrate over (0, T ) × (0, L). After an integration by
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parts on the right hand side in space this yields∫ T

0

∫ L

0
(∂tu)2 dx dt

=− 1

ε

∫ T

0

∫ L

0

(
−εu′′ + 1

ε
F ′(u)

)(
−ε(∂tu)′′ +

1

ε
F ′′(u)∂tu

)
dx dt

=− 1

2ε

∫ T

0

d

dt

∫ L

0

(
−εu′′ + 1

ε
F ′(u)

)2

dx dt

=Wε(u0)−Wε

(
u(·, T )

)
where we have used the continuity in time of the inner integral down to t = 0. The
statement then follows as Wε(u(·, T )) ≥ 0 for all T ≥ 0.

Proposition 5.9 gives a first estimate on the motion speed of u and only yields a bound
on ∂tu in L2((0, T ) × (0, L)). Nevertheless, we can use the gradient inequality (5.29)
to obtain better insight into the dynamic behavior. Propositions 5.10 and 5.14 are in
the spirit of [BrKo90] where in contrast to other approaches to the slow motion stage
of the Allen-Cahn equation the results are merely due to the equation’s gradient flow
structure and energy based methods. This makes it suitable to adapt the results in our
case, as we have a good understanding of the energy orders of configurations with a
prescribed number of transition layers from Section 3.2.

The first result describes the time evolution of initial configurations with small energy.
As we will see such phase fields stay almost constant on a large time scale.

Proposition 5.10. For ` ∈ (0, L) let (uε0)ε>0 be a sequence of initial values in
H2

per

(
(0, L)

)
with u(0) = u(`) = u(L) = 0 and

uε0 −→ v := 2χ(0,`)−1 in L1
(
(0, L)

)
, (5.30)

Wε(u
ε
0) −→ 0 (5.31)

as ε→ 0. For the solution uε ∈ C∞((0,∞);C∞per((0, L)))∩C∞([0,∞);H2
per(U)) of (5.1)

with initial value uε0, ε > 0, we then obtain for all T > 0

lim
ε→0

sup
0≤t≤T

∫ L

0
|uε(·, t)− v| dx = 0. (5.32)

Proof. For T > 0 we observe

sup
0≤t≤T

∫ L

0
|uε(·, t)− v| dx ≤ sup

0≤t≤T

∫ L

0
|uε(·, t)− uε0| dx+

∫ L

0
|uε0 − v| dx

where the second summand tends to zero by (5.30). For the first term we apply the
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fundamental theorem of calculus for the estimate

sup
0≤t≤T

∫ L

0
|uε(·, t)− uε0| dx ≤ sup

0≤t≤T

∫ L

0

∫ t

0
|∂tuε| ds dx

≤
∫ L

0

∫ T

0
|∂tuε| ds dx ≤

√
LT

(∫ L

0

∫ T

0
|∂tuε|2 ds dx

) 1
2

≤
√
LT
√
Wε(uε0)

−→ 0

as ε→ 0 where the last inequality follows from (5.29).

As we have information about the least energy order of Wε from the scaling law, we
can improve the result above for a special choice of initial values.

Proposition 5.11. In the situation of Proposition 5.10 choose (uε0)ε>0 such that

Wε(u
ε
0) ≤ C

ε2

∣∣∣e−α `ε − e−αL−`ε ∣∣∣2 ≤ 2C

ε2
e−2α

min{`,L−`}
ε (5.33)

holds for small ε > 0. Then, we have for all constants m > 0, D < 2α

lim
ε→0

sup

{∫ L

0
|uε(·, t)− v| dx : 0 ≤ t ≤ mε2eD

min{`,L−`}
ε

}
= 0.

Proof. This follows directly by repeating the proof of Proposition 5.10. Note that
the ε dependence of T only becomes relevant in the last inequality, where it is now
compensated by the smallness of

√
Wε(uε0).

Remark. For ε > 0 sufficiently small, `
ε ,

L−`
ε > `4 is satisfied and we can choose uε0

to be the constructed competitor function u∗ from the proof of Theorem 3.10 which
satisfies (5.33).

We have proven that initial configurations with exponentially small energy hardly move
for exponentially long times which explains why such phase fields appear numerically
stable. We continue by analyzing the movement of transition layers explicitly.
Before we formulate our result and further considerations we prove a preparatory lemma
which basically says that functions in M ε

` with small diffuse Willmore energy are almost
step functions with values in {−1, 1}.
Lemma 5.12. Let ε, ` > 0 with `

ε ,
L−`
ε > `4 and consider u ∈M ε

` with

Wε(u) ≤ C

ε2

∣∣∣e−α `ε − e−αL−`ε ∣∣∣2 .
For sufficiently small δ > 0 there exists ε0 = ε0(δ) such that for all ε < ε0 we have∣∣u2(x)− 1

∣∣ ≤ δ for all x ∈ [δ, `− δ] ∪ [`+ δ, L− δ]. (5.34)

Proof. By Corollary 3.4 (5.34) holds for q`,ε in [δ, ` − δ] (for −qr,ε in [` + δ, L − δ],
respectively). If ε > 0 is sufficiently small u inherits the property due to the estimate
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(3.14).
Precisely, we choose δ > 0 small and observe for x ∈ [δ, `− δ]

|u(x)− q`,ε(x)| ≤ C ‖u− q`,ε‖H1
(

(0,`)
) ≤ C√ε√Wε(u) ≤ C√

ε

∣∣∣e−α `ε − e−αL−`ε ∣∣∣
by estimate (3.14) which becomes smaller as δ

6 for sufficiently small ε > 0. Moreover,
we directly deduce that |u(x)| < 2 as u is close to q`,ε and 0 ≤ q`,ε < 1.
Together with Corollary 3.4 we can also choose ε sufficiently small such that

|q`,ε − 1| ≤ δ

6
in [δ, `− δ]

to obtain∣∣u2(x)− 1
∣∣ = |u(x) + 1| |u(x)− 1| ≤ 3

(
|u(x)− q`,ε|+ |q`,ε − 1|

)
= δ.

For x ∈ [`+ δ, L− δ] the same argument applies and this proves (5.34).

For the rest of this section we consider ε, `0 > 0 satisfying `0
ε ,

L−`0
ε > `4 (with `4 from

Theorem 3.10) and choose ũ0 ∈ M ε
`0

to be the competitor function u∗ constructed in

the proof of the scaling law. We now define u0 ∈ H2
per

(
(0, L)

)
by

u0(·) := ũ0

(
· − `

2

)
taking the periodicity of ũ0 into account. The shift by `

2 ensures that no zero lies on
the ends of the interval at time t = 0. As we are interested in the movement of the zero
positions, this will simplify the formulation of the results below. We denote the zero
positions of u0 by x1

0, x
2
0 ∈ (0, L), x1

0 < x2
0, satisfying (after possible change of indices)

x2
0 − x1

0 = `0.

and hence, u0 > 0 in (x1
0, x

2
0). Further, let u ∈ C∞((0,∞);C∞per((0, L))) be the solution

of (5.1) satisfying u(·, 0) = u0(·).
We can assume that the number of zeros of u(·, t) does not change and that they stay
transversal for large times as by Theorem 3.9 and the small energy size of u0 increasing
the number of zeros is not energetically preferable (see the proof of Theorem 3.12 for a
similar argument). At a time t ≥ 0 we will denote the zeros of u(·, t) by x1(t) and x2(t)
with x1(0) = x1

0 and x2(0) = x2
0 and remark that by the implicit function theorem the

mappings

xi : t 7→ xi(t), t ≥ 0, i = 1, 2

are differentiable. For convenience, we also define the function

`(t) := x2(t)− x1(t)

which satisfies `(0) = `0. We restrict ourselves to the analysis of two transition layers
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here but remark that the results below can easily be generalized for configurations with
more layers, provided that neighboring zeros are far enough away from each other.

We are going to apply Lemma 5.12 for different points in time and therefore have to
ensure that the requirements of Theorem 3.9, on which we relied in the proof, are
satisfied for large times T > 0. In particular we have to check condition (3.9) for positive
times T . As we consider the gradient flow of Wε it is not a priori clear how the diffuse
surface energy of u evolves in time.

Lemma 5.13. For T > 0 and small ε > 0 we have

Eε
(
u(·, T )

)
≤ Eε(u0) +

√
2TC2

ε
3
2

∣∣∣e−α `0ε − e−αL−`0ε ∣∣∣2
and hence, condition (3.9) is still satisfied for exponentially long times.

Proof. For T > 0 we apply Proposition 5.9 to obtain∫ T

0

d

dt
Eε(u) ds =

∫ T

0

d

dt

∫ L

0

ε

2
(u′)2 +

1

ε
F (u) dx ds

=

∫ T

0

∫ L

0

(
−εu′′ + 1

ε
F ′(u)

)
∂tu dx ds

≤
√

2ε

(∫ T

0
Wε(u) ds

) 1
2
(∫ T

0

∫ L

0
(∂tu)2 dx ds

) 1
2

≤
√

2εTWε(u0)

and hence,

Eε
(
u(·, T )

)
≤Eε(u0) +

√
2εTWε(u0)

=Eε(u0) +

√
2TC2

ε
3
2

∣∣∣e−α `0ε − e−αL−`0ε ∣∣∣2 .
Now we can characterize the movement speed of the layer positions of u.

Proposition 5.14. For δ1 > 0 we define

T δ1ε := inf
{
t ≥ 0 :

∣∣xi(t)− xi0∣∣ > δ1 for some i ∈ {1, 2}
}
.

If δ1 is sufficiently small there exists ε0 = ε0(δ1) > 0 such that

T δ1ε ≥ Cδ2
1

(
Wε(u0)

)−1
(5.35)

holds for every ε < ε0. This means that the transition layers require at least exponential
long time (in terms of `

ε and L−`0
ε ) to travel the prescribed distance δ1.

Proof. Let δ1 > 0 be small. We notice that there is nothing to show if T δ1ε = ∞ and
hence, we can assume that T δ1ε <∞. Since the zeros of u move continuously in time,
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there exists i ∈ {1, 2} with∣∣∣xi(T δ1ε )− xi0∣∣∣ = δ1

which implies∫ L

0

∣∣∣u(·, T δ1ε )− u0

∣∣∣ dx ≥ Cδ1. (5.36)

Indeed, this follows from the fact that both u
(
·, T δ1ε

)
and u0 are basically step functions

by Lemma 5.12 with one of their discontinuities δ1 away from each other. We have∫ L

0

∣∣∣u(·, T δ1ε )− u0

∣∣∣ dx
≥
∫ L

0

∣∣∣∣(2χ(x1(T
δ1
ε )−x2(T

δ1
ε )
) − 1

)
−
(
2χ(x10,x

2
0) − 1

)∣∣∣∣ dx
−
∫ L

0

∣∣∣∣u(·, T δ1ε )− (2χ(x1(T
δ1
ε )−x2(T

δ1
ε )
) − 1

)∣∣∣∣ dx
−
∫ L

0

∣∣∣u0 −
(
2χ(x10,x

2
0) − 1

)∣∣∣ dx (5.37)

where the first integral is greater or equal to 2δ1. The remaining integrals can be treated
analogously and we therefore concentrate on one of them. As u(·, T δ1ε ) is periodic we
can perform a shift of x1(T δ1ε ) in space (and a transformation of variables afterwards)
to obtain∫ L

0

∣∣∣∣u(·, T δ1ε )− (2χ(x1(T
δ1
ε ),x2(T

δ1
ε )
) − 1

)∣∣∣∣ dx
=

∫ L

0

∣∣∣∣u(·, T δ1ε )− (2χ(0,`(T δ1ε )
) − 1

)∣∣∣∣ dx
as well as u(0, T δ1ε ) = u(`(T δ1ε ), T δ1ε ) = 0. Since

Wε

(
u
(
·, T δ1ε

))
≤ Wε(u0) =

C2

ε2

∣∣∣e−α `0ε − e−αL−`0ε ∣∣∣2
and due to Lemma 5.13 we have u(·, T δ1ε ) ∈M ε

`(T
δ1
ε )

and we can apply Lemma 5.12 for

δ � δ1. This yields for Iδ := (δ, `− δ) ∪ (`+ δ, L− δ) ⊂ [0, L]∫ L

0

∣∣∣∣u(·, T δ1ε )− (2χ(0,`(T δ1ε )
) − 1

)∣∣∣∣ dx
=

∫
Iδ

∣∣∣∣u(·, T δ1ε )− (2χ(0,`(T δ1ε )
) − 1

)∣∣∣∣ dx
+

∫
[0,L]\Iδ

∣∣∣∣u(·, T δ1ε )− (2χ(0,`(T δ1ε )
) − 1

)∣∣∣∣ dx
≤δ |Iδ|+ C |[0, L] \ Iδ| ≤ Cδ
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and for sufficiently small δ > 0 we combine the estimates of the single integrals in (5.37)
to conclude (5.36).
Now, by the fundamental theorem of calculus and Proposition 5.9 we have

Cδ1 ≤
∫ T

δ1
ε

0

∫ L

0
|∂tu| dx ds ≤

√
LT δ1ε

(∫ T
δ1
ε

0

∫ L

0
(∂tu)2

) 1
2

≤
√
LT δ1ε

√
Wε(u0)

and (5.35) follows by rearranging.

The proven results above give a profound understanding of the slow time evolution of
configurations with small energy under the diffuse Willmore flow and the velocity of
moving phase transitions. However, they do not explain in which direction the layer
locations move in time. This problem remains unsolved in general although we expect
that the zeros of u will distribute equally on (0, `) and maximize their mutual distance
taking the periodicity into account. We present a partial result on the movement
direction as an immediate consequence of the scaling law from Proposition 3.16. We
will prove that whenever `0 > L− `0 (the case ”<” is absolutely analogous) the scaling
law directly implies that `(t) cannot exceed `0 by more than a constant times ε in the
“wrong” direction for all times t > 0.

Proposition 5.15. Assume that `0 > L− `0 and define C̃ := C2
C1
≥ 1 with C1, C2 from

Theorem 3.10. Then we have for all t > 0

`(t) ≤ `0 +
(√

C̃ − 1
) ε
α
. (5.38)

Proof. For a fixed t > 0 we omit the argument of `(t) and write ` := `(t) in the following.
We can assume that ` > L− ` and ` > `0 as there is nothing to show otherwise. From
(3.16) we obtain

C1

ε2

∣∣∣e−α `ε − e−αL−`ε ∣∣∣2 ≤ Wε(u) ≤Wε(u0) ≤ C2

ε2

∣∣∣e−α `0ε − e−αL−`0ε ∣∣∣2
and taking the square root after rearranging gives

e−α
L−`
ε − e−α `ε ≤

√
C̃
(
e−α

L−`0
ε − e−α

`0
ε

)
.

A multiplication by eα
L−`0
ε yields

eα
`−`0
ε − eα

L−(`0+ε)
ε ≤

√
C̃
(

1− eα
L−2`0
ε

)
and hence since C̃ ≥ 1

1 +
α

ε
(`− `0) ≤ eα

`−`0
ε ≤

√
C̃ −

√
C̃eα

L−2`0
ε + eα

L−(`0+ε)
ε

≤
√
C̃ + eα

L
ε

(
e−α

`0+`
ε − e−α

2`0
ε

)
=
√
C̃ − α

ε
eα

L
ε e−α

`0−˜̀

ε (`− `0)

due to the basic inequality 1 + s ≤ es for s ≥ 0 and with ˜̀ between `0 and ` determined
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by the mean value theorem. The second summand in the last step above is negative and
we neglect it in the inequality which immediately yields (5.38) after rearranging.

We can adapt the argument from the proof of Proposition 5.15 for an heuristic derivation
of an ODE model which describes the evolution of the zeros of u.

Heuristic ODE-model for the zero position. The scaling law from Theorem (3.12)
lets us formally derive an ODE system describing the motion of zero positions of a
configuration u under the diffuse Willmore flow. Although the constants C1, C2 in the
scaling law (3.20) are different in general, we now assume that there exists a constant
C0 = C0(L) > 0 such that

min
Mε
`

Wε ≈
C0

ε2

∣∣∣e−α `ε − e−αL−`ε ∣∣∣2
holds for all ` > 0 with `

ε ,
L−`
ε > `∗ (with `∗ from Theorem 3.12) and where we have

neglected possible lower order terms.
As the functions x1(t), x2(t) are differentiable it is reasonable to describe their behavior
by an ODE system.
We define the functional

Hε(u) := H̃ε(x
1, x2) :=

C0

ε2

∣∣∣∣e−αx2−x1ε − e−α
L−(x2−x1)

ε

∣∣∣∣2
and calculate the corresponding gradient flow for x1, x2

∂t

(
x1

x2

)
= −∇H̃ε(x

1, x2).

This yields the system

∂tx
1 =

2αC0

ε3

(
e−2α

L−(x2−x1)
ε − e−2α

(x2−x1)
ε

)
,

∂tx
2 =

2αC0

ε3

(
e−2α

(x2−x1)
ε − e−2α

L−(x2−x1)
ε

)
.

(5.39)

which describes the time evolution of both zero positions of u completely. Notice that for
` = x2 − x1 > L

2 (< L
2 ) we have ∂tx

1 > 0 (< 0) and ∂tx
2 < 0 (> 0) and ∂tx

1 = ∂tx
2 = 0

for x2−x1 = L
2 . This means that the zeros always maximize their distance to each other

(regarding periodicity) and distribute equally on the interval which is in accordance to
our observation that only in these cases the energy can vanish completely. However, the
motion of zeros is exponentially slow and (5.39) is an intelligent guess for their velocity.

The derivation of (5.39) was done under the assumption that there exists an optimal
constant C0 in the scaling law. Moreover, it is not clear that the gradient flow for
x1 and x2 really displays the actual behavior of the zeros. While the first point is
probably difficult to solve (as the constant in the crucial estimate (3.14) is only given
implicitly) this method yields the correct dynamics in similar contexts. In [BeNaNo15]
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5.2 Slow motion: Heuristic justification and analytical results

the authors prove a scaling law for the Ginzburg-Landau energy Eε in a similar set-
ting with an explicitly determined sharp constant. As the energy scaling is solely
dependent on the zero positions (as in our case) they formally derive an ODE system
for their motion under the gradient flow of Eε (the Allen-Cahn equation) which coin-
cides (up to an multiplicative constant) with the rigorously proven results from [CaPe89].

We end this section with a few thoughts about the zero movement and give a small
outlook how it could be proved.
Even if it would be possible to match the constants C1 and C2 in the scaling law (which
does not even have to be possible in general) this does not immediately justify the ODE
system (5.39).
The in our view most promising approach is to follow the ideas from [CaPe89] for the
slow motion of the Allen-Cahn equation. There, the authors identify a potential and
prove that the time evolution is driven by potential gaps between the transition layers.
We remark that the gradient flow of Wε still gives rise to a potential in the sense that a
solution of (5.1a) satisfies

(∂tu)u′ = ∂x

[
− ε2u′′′u′ +

ε2

2
(u′′)2 + F ′′(u)(u′)2 − 1

2ε2
F ′(u)2

]
=: ∂xP (u).

For this strategy it is crucial to have a precise understanding of the shape of quasi
stationary states which still lacks in our case and therefore, this could be a first point
for later research.
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6 The diffuse approximation ofW
for nonsmooth configurations

6.1 Γ-convergence of Wε for intersecting boundary curves

In connection with the Van der Waals-Cahn-Hilliard theory of phase transitions De
Giorgi stated the following conjecture regarding the Γ-limit of certain diffuse energy
functionals approximating the sum of the area and Willmore energy of the sharp phase
boundary. We state the precise conjecture from [DeG91], Conjecture 4, in a slightly
corrected form with a factor 2 in front of the Laplacian and slightly enhanced regularity
for the function u (see also [RöSc06]).

Conjecture (De Giorgi): For Ω ⊂ Rn and λ > 0 define the functionals Gp : L1(Ω)→ R,
p > 0 by

Gp(u) :=

∫
Ω

[(
2∆u

p
− p sinu

)2

+ λ

][
|∇u|2
p

+ p(1− cosu)

]
dx, (6.1)

if u ∈ H2(Ω), and Gp(u) :=∞ if u ∈ L1(Ω)\H2(Ω). Then there exists k ∈ R, depending
only on n, such that for any E ⊂ Ω with ∂E ∩ Ω ∈ C2 and u = 2πχE

Γ(L1(Ω))− lim
p→∞

Gp(u) = 8
√

2λHn−1(∂E ∩ Ω) + k

∫
∂E∩Ω

|H∂E |2 dHn−1.

Due to the large mathematical relevance of phase transition theory, De Giorgi’s con-
jecture has been studied intensely in the following years. In this work we consider a
modified problem for closely related functionals which originally has been formulated in
[BePa93].

Conjecture (De Giorgi, modified): For Ω ⊂ Rn and ε > 0 define the functionals

Fε : L1(Ω)→ R by

Fε(u) := Eε(u) +Wε(u)

:=

∫
Ω

(
ε

2
|∇u|2 +

1

ε
F (u)

)
dx+

∫
Ω

1

2ε

(
−ε∆u+

1

ε
F ′(u)

)2

dx, (6.2)

if u ∈ L1(Ω) ∩ H2(Ω) and Fε(u) := ∞ if u ∈ L1(Ω) \ H2(Ω). Moreover, let E ⊂ Ω
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Chapter 6 The diffuse approximation of W for nonsmooth configurations

with ∂E ∩ Ω ∈ C2 and indicator function χ := 2χE − 1 and set σ :=
∫ 1
−1

√
2F ds. Then

(Fε)ε>0 is Γ(L1(Ω))-convergent in χ and

Γ(L1(Ω))− lim
ε→0
Fε(χ) = σHn−1(∂E ∩ Ω) + σ

∫
∂E∩Ω

1

2
|H∂E |2 dHn−1. (6.3)

Remark. In comparison to the original conjecture, Bellettini and Paolini changed
the double well potential from (1 − cosu) to F (as before) and replaced the energy
density ε |∇u|2 + 1

ε (1− cosu) in front of the diffuse curvature term by a factor 1
ε where

we set ε := 1
p in (6.1). The last mentioned modification simplifies the structure of

the considered functionals and can roughly be motivated by the fact that the phase
transition happens on a layer of size ε which means that the energy density above is of
order 1

ε in the transition layers. For further details of the problem we refer to [BePa93,
LoMa00, RöSc06] without any claim on completeness.
As another advantage of the modified formulation, the constant factors in front of both
summands of the limit functional now coincide and σ can be interpreted as the “cost”
of an optimal one-dimensional transition from −1 to 1 in terms of the diffuse surface
area functional (see [MoMo77]).
In comparison to [BePa93] and [RöSc06], we added a factor 1

2 in front of the Willmore
functional and its diffuse approximation to be consistent with the notation of this thesis.

The first summand of Fε is (up to the constant σ) a diffuse approximation of the
surface area of ∂E ∩Ω and its Γ-convergence has already been proven in [MoMo77] (see
also [Mo87]) for more general sets E with finite perimeter (see, e.g., Section 2.3 for a
definition).
The Γ-convergence of the second term has turned out to be more complicated to prove
and several authors have contributed in the investigation of the problem. The lim sup-
part of (6.3) was shown in 1993 by Bellettini and Paolini who managed to construct
a proper recovery sequence for the problem (see [BePa93, BeMu05] and also Section
2.6). The lim inf-estimate was accomplished by Bellettini and Mugnai in [BeMu05]
for rotationally symmetric configurations in two dimensions while Moser could prove
the estimate in R3 for data which are monotone in one space direction [Mo05]. In
2006 Röger and Schätzle managed to prove the whole lim inf estimate for dimensions
n = 2, 3 in smooth limit points and thereby could prove the modified conjecture of
De Giorgi in these dimensions [RöSc06]. Their approach uses the framework of ge-
ometric measure theory and the concept of varifolds as suggested in [HuTo00] and [To02].

In this chapter we are going to generalize the result in two dimensions to a wider class
of sets E where our main focus lies on (self-)intersecting boundary curves in which
case the conjecture has not been proven yet. In particular, we will show that these
configurations have a limit energy given by the sum of the energies for every boundary
curve without any ”penalty” for the intersections and independent of the intersection
angles (see (6.7) below). These configurations for example appear in the long time
behavior of numerical simulations for the diffuse Willmore flow as shown in Figure 1.1.
We refer to [EsRäRö14] for the precise numerical results.

We give a short outline of this section. In a first step we introduce a class S of indicator
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6.1 Γ-convergence of Wε for intersecting boundary curves

functions (and thereby the class of sets E) for which we will prove Γ-convergence of Fε
(see the following Section 6.2 for several examples of indicator functions in S). After-
wards in Theorem 6.3, we formulate our main result whose proof is basically divided
into two propositions.

We begin by defining an auxiliary class of characteristic functions u = 2χE − 1 where we
allow ∂E to be the union of finitely many closed C2 curves with finitely many transversal
(self) intersections such that ∂E locally looks like a line or actually is the intersection
of two straight line segments. Observe, that we do not allow more than two boundary
portions to intersect in one point in particular.
Precisely, we consider E ⊂ Ω such that:

i) There exist N ∈ N closed C2-curves ϕ1, . . . , ϕN : S1 → Ω in Ω such that

∂E =

N⋃
i=1

ϕi(S
1)

and

Λ(x) := #
{

(k, s) : ϕk(s) = x
}
≤ 2 (6.4)

for all x ∈ ∂E.

ii) The set A := {x ∈ ∂E : Λ(x) = 2} ⊂ ∂E (which consists of the intersection
points of ∂E) is finite and for every x ∈ A there exist one-dimensional subspaces
P1, P2 ∈ G(2, 1), P1 6= P2 and an open neighborhood U ⊂ R2 containing the origin
such that

∂E ∩
(
x+ U

)
= x+

(
(P1 ∪ P2) ∩ U

)
.

For every point x ∈ ∂E \A the classical tangent Tx(∂E) on ∂E is well defined.

The class of the considered indicator functions is then given by

S0 :=
{
u ∈ L1(Ω) : u = 2χE − 1 with E ⊂⊂ Ω and conditions i)-ii) above

}
and we define the Willmore energy of u ∈ S0 to be

W(u) :=W(∂E) :=
N∑
i=1

W(ϕi)

where the closed curves ϕi, 1 ≤ i ≤ N describe the positions of the phase transitions of
u as in i) and with W(ϕi) :=W(ϕi(S

1)) for all i. Finally, we set

F(u) := σ
(
H1(∂E ∩ Ω) +W(∂E)

)
= σ

N∑
i=1

(
L(ϕi) +W(ϕi)

)
with σ =

∫ 1
−1

√
2F ds as above. Based on S0, the class of functions S can now be
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constructed by an approximation argument. We consider indicator functions of sets
E ⊂ Ω such that

iii) There exists an integral 1-varifold V ∈ V1(Ω) with weight measure ‖V ‖ := θVH1bM
on Ω for a 1-rectifiable subset M ⊂ R2 and θV ∈ N H1-a.e. on M such that

|∇χE | ≤ ‖V ‖ . (6.5)

This condition especially implies that ∂∗E ⊂ supp ‖V ‖ = M . Moreover, V shall
have generalized mean curvature HV ∈ L2(‖V ‖).

iv) There exists a sequence (u(k))k∈N in S0 such that

u(k) → u in L1(Ω)

and

F(u(k))→ F∗(u) <∞ (6.6)

as k →∞ where we define

F∗(u) := σ inf
V as above

∫
Ω

1 +
1

2
|HV |2 d ‖V ‖ . (6.7)

and set

S :=
{
u ∈ L1(Ω) : u = 2χE − 1 with E ⊂⊂ Ω and conditions iii)-iv) above

}
.

Remark. The definition of F∗ extends F in the sense that we have F∗ = F on S0.
To see this consider u = 2χE − 1 ∈ S0. Let V ∈ V1(Ω) be the integral 1-varifold with
weight measure ‖V ‖ = H1b∂E. Then (6.5) is obviously satisfied and HV = HIm(ϕi)

holds H1-a.e. on Im(ϕi), 1 ≤ i ≤ N . Hence, we especially have HV ∈ L2(‖V ‖) as ∂E is
C2-regular away from the intersection points. This yields

F∗(u) ≤ σ
∫
∂E

1 +
1

2
|H∂E |2 dH1 = σ

N∑
i=1

∫
Im(ϕi)

1 +
1

2
|H∂E |2 dH1 = F(u).

Now let V as in iii) with (6.5) and ‖V ‖ = θVH1bM . We obtain∫
M

(
1 +

1

2
|HV |2

)
θV dH1 ≥

∫
∂E

1 +
1

2
|HV |2 dH1

=

∫
∂E

1 +
1

2
|H∂E | dH1 = σ−1F(u)

where the equality in the second step follows from [Sc09], Corollary 4.3. By taking the
infimum over all V as in iii) the statement is shown.

Remark. Notice that the conditions on u ∈ S are fairly natural regarding the genera-
lization of De Giorgi’s conjecture. Indeed, we can show that whenever a sequence of
sharp interfaces (u(k))k∈N in S0 has uniformly bounded energy F(u(k)) there exists a
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6.1 Γ-convergence of Wε for intersecting boundary curves

subsequence and a set E ⊂⊂ R2 such that the associated phase boundaries converge to
a varifold as in iii):
Let (u(k))k∈N be a sequence in S0 with u(k) = 2χEk − 1 for k ≥ 1 and assume

lim inf
k→∞

F(u(k)) = lim inf
k→∞

σ

(
H1(∂Ek) +

1

2
‖H∂Ek‖2L2(H1b∂Ek)

)
<∞. (6.8)

As the sequence is obviously bounded in L1(Ω) the first part of the inequality implies
that (at least for a subsequence)

∣∣∇u(k)
∣∣ (Ω) is bounded and by the compactness theorem

for BV functions (see, e.g., [EvGa92], 5.2.3) we can extract a further (non relabeled)
subsequence such that

u(k) −→ u in L1(Ω) (6.9)

as k →∞ and u = 2χE − 1 for a set E ⊂⊂ R2 of finite perimeter.

We further denote the induced unit density varifolds by Vk ∈ V1(Ω) which means
‖Vk‖ = H1b∂Ek for k ≥ 1. Particularly, (6.8) implies for all subsets U ⊂⊂ Ω

lim inf
k→∞

‖Vk‖ (U) = lim inf
k→∞

H1(∂Ek ∩ U) <∞

as well as

lim inf
k→∞

|δVk| (U) ≤ lim inf
k→∞

‖H∂Ek‖L1(H1b∂Ek) ≤ C lim inf
k→∞

‖H∂Ek‖L2(H1b∂Ek) <∞.

By Allard’s integral compactness theorem (see Theorem 2.14) there exists a subsequence
again denoted by (Vk)k∈N which converges weakly to an integral 1-varifold V ∈ V1(Ω).

Moreover, this immediately induces δVk
∗
⇀ δV as k →∞ by definition. It remains to

show that V has a generalized mean curvature HV ∈ L2(‖V ‖). The lower semi-continuity
of weak measure limits (see Proposition A.7) yields

|δV (η)| = lim
k→∞

|δVk(η)| = lim
k→∞

∣∣∣∣∫
Ω

H∂Ek · η d ‖Vk‖
∣∣∣∣

≤ lim inf
k→∞

‖H∂Ek‖L2(‖Vk‖) ‖η‖L2(‖Vk‖)

≤ lim inf
k→∞

‖H∂Ek‖L2(‖Vk‖) ‖η‖L2(‖V ‖)

≤C ‖η‖L2(‖V ‖)

for all vector fields η ∈ C0
c (Ω;R2) and thus, δV is a bounded linear form on the reflexive

space L2(‖V ‖) for which exists a function HV ∈ L2(‖V ‖), i.e. the generalized mean
curvature of V , such that

δV (η) = −
∫

Ω
HV · η d ‖V ‖

for all η ∈ C0
c (Ω;R2).

It remains to show that V satisfies (6.5). Let M denote the support of ‖V ‖ and for an
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open set U ⊂ Ω consider ϕ ∈ C0
c (U ;R2) with |ϕ| ≤ 1. We set K := suppϕ and obtain∫

E
∇ · ϕdx = lim

k→∞

∫
Ek

∇ · ϕdx = − lim
k→∞

∫
∂Ek

ϕ · ν∂Ek dH1

≤ lim sup
k→∞

H1(∂Ek ∩K) ≤ H1(M ∩K) ≤ H1bM(U) ≤ ‖V ‖ (U)

by (6.9) and the weak convergence of ‖Vk‖ = H1b∂Ek = |∇χEk |. By definition we now
have

|∇χE | (U) = sup

{∫
E
∇ · ϕdx : ϕ ∈ C0

c (U ;R2), |ϕ| ≤ 1

}
≤ ‖V ‖ (U)

which holds for all open sets U ⊂ Ω. This proves (6.5).

The observation above shows that we can assume without loss of generality that every
sequence (u(k))k∈N of indicator functions in S0 with uniformly bounded energy F induces
a limit integer 1-varifold as above.
Nevertheless, the energies F(u(k)) do not have to converge towards F∗(u) as in general
we only have

F∗(u) ≤ lim
k→∞

F(u(k)).

This makes (6.6) the crucial condition to functions in S.
Finally, the definition of the generalized energy functional F∗ is rather canonical as
the infimum ensures that ∂∗E (or rather the induced boundary measure H1b∂∗E) is
extended to an integer 1-varifold with generalized mean curvature in an energetic optimal
way. In fact, we will show in Proposition 6.2 that the infimum in (6.7) is always attained.

The set S has been defined by an abstract approximation argument. We will give several
examples of included elements in Section 6.2, which will provide a better insight into its
structure.

Lemma 6.1. The generalized energy functional F∗ is L1-lower semicontinuous on S,
i.e.,

F∗(u) ≤ lim inf
k→∞

F∗(uk)

for all u ∈ S and sequences (uk)k∈N in S with uk → u in L1(Ω) as k →∞.

Proof. Let u = 2χE − 1 ∈ S and (uk)k∈N in S with uk → u in L1(Ω). We can assume
that the limes inferior is finite as there is nothing to show otherwise. For k ∈ N we
choose Vk ∈ V1(Ω) as in iii) with

σ

∫
Ω

1 +
1

2
|HVk |2 d ‖Vk‖ ≤ F∗(uk) +

1

k
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and thus obtain

σ lim inf
k→∞

∫
Ω

1 +
1

2
|HVk |2 d ‖Vk‖ ≤ lim inf

k→∞
F∗(uk) <∞.

As in the remark above, Allard’s compactness theorem yields Vk
∗
⇀ V for a (non

relabeled) subsequence and again, we deduce

‖HV ‖L2(‖V ‖) = sup
g∈C0

c (Ω;R2)
‖g‖L2(‖V ‖)≤1

∫
Ω

HV · g d ‖V ‖ ≤ lim inf
k→∞

‖HVk‖L2(‖Vk‖)

as well as

|∇χE | ≤ ‖V ‖ .

Therefore, V satisfies the requirements in iii) for u and we have

F∗(u) ≤σ
∫

Ω
1 +

1

2
|HV |2 d ‖V ‖

≤σ lim inf
k→∞

‖Vk‖ (Ω) +
1

2
σ lim inf

k→∞
‖HVk‖2L2(‖Vk‖)

≤σ lim inf
k→∞

∫
Ω

1 +
1

2
|HVk |2 d ‖Vk‖

≤ lim inf
k→∞

F∗(uk)

since ‖Vk‖ ∗⇀ ‖V ‖ for k →∞ and this completes the proof.

Proposition 6.2. For every u = 2χE−1 ∈ S with E ⊂⊂ Ω and finite energy F∗(u) <∞
there always exists a minimizing varifold in (6.7) and therefore, we have

F∗(u) = σ min
V as in iii)

∫
Ω

1 +
1

2
|HV |2 d ‖V ‖ . (6.10)

Proof. This follows immediately by choosing uk = u for all k ∈ N in the proof of Lemma
6.1.

The main result of this chapter is contained in the theorem below.

Theorem 6.3. Let Ω ⊂ R2 be a bounded domain and E ⊂⊂ Ω such that its indicator
function u := 2χE − 1 belongs to S. Then

Γ(L1)− lim
ε→0
Fε(u) = F∗(u)

holds with F∗, Fε defined as in (6.7), (6.2).

Following the definition and characterization of Γ-convergence in Section 2.1 the proof
reduces to the following statements.
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i) (Lower bound inequality) Let (uε)ε>0 be an arbitrary sequence in L1(Ω) with
uε → u in L1(Ω) as ε→ 0. Then

F∗(u) ≤ lim inf
ε→0

Fε(uε)

holds.

ii) (Recovery sequence) There exists a sequence (uε)ε>0 in L1(Ω) with uε → u in L1(Ω)
as ε→ 0 such that

F∗(u) = lim
ε→0
Fε(uε).

We prove statements i) and ii) separately in the Propositions 6.4 and 6.8. The lower
bound inequality follows with the results from [RöSc06] and we therefore restrict to a
sketch of the proof.

Proposition 6.4. Let Ω ⊂ R2 be a bounded domain and E ⊂⊂ Ω such that u := 2χE−1
lies in S. Further, let (uε)ε>0 in L1(Ω) with uε → u in L1(Ω) as ε→ 0. Then

F∗(u) ≤ lim inf
ε→0

Fε(uε). (6.11)

Proof. We follow the proof of Röger and Schätzle from [RöSc06], Theorem 2.1. By
smoothening and standard approximation we can assume without loss of generality that
uε ∈ C2(Ω) for all ε > 0. Now, we define the diffuse curvatures vε ∈ C0(Ω) by

vε := −ε∆uε +
1

ε
F ′(uε)

together with the Radon measures

µε :=

(
ε

2
|∇uε|2 +

1

ε
F (uε)

)
L2,

αε :=
1

2ε
v2
εL2,

which localize the diffuse approximations of the surface and Willmore functional in the
definition of Fε in (6.2). In particular, we have

Fε(uε) = µε(Ω) + αε(Ω).

We can assume that lim infε→0Fε(uε) <∞, since otherwise (6.11) clearly holds. In the
following, we restrict ourselves to a subsequence (for the sake of notation still indicated
by ε) which realizes the limes inferior and therefore obtain

µε(Ω) + αε(Ω) ≤ C. (6.12)

Since the functions uε approximate the indicator function u, the measures µε roughly
display the position of the phase transitions of uε. To give this interpretation a more
geometric meaning, an approximate “normal direction” is assigned to µε on the interface:
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6.1 Γ-convergence of Wε for intersecting boundary curves

For ε > 0 we define the general varifold Vε ∈ V1(Ω) induced by µε via

Vε(φ) :=

∫
Ω
φ
(
x, P∇uε(x)

)
dµε(x), φ ∈ C0

c (Ω×G(2, 1)),

where

P∇uε(x) :=

Id−
( ∇uε
|∇uε|

⊗ ∇uε|∇uε|

)
(x), if ∇uε(x) 6= 0

0, else

describes the orthogonal projection onto the level line of uε in x. We note that by
definition we have ‖Vε‖ = µε for the weight measure of Vε and inequality (6.12) therefore
induces

Vε(Ω×G(2, 1)) = ‖Vε‖ (Ω) = µε(Ω) ≤ C.

Thus, the weak compactness theorem for Radon measures (see Proposition A.8) yields
the existence of another subsequence (again indicated by ε) such that

µε
∗
⇀ µ, αε

∗
⇀ α weakly* in C0

0 (Ω)∗ (6.13)

as well as

Vε
∗
⇀ V weakly* in C0

0

(
Ω×G(2, 1)

)∗
as ε→ 0.
The classical result of Modica and Mortola from [MoMo77] (see also [Mo87]) for the
Γ-convergence of the diffuse surface functionals already includes the estimate

σH1b∂∗E(U) ≤ µ(U) ≤ lim inf
ε→0

µε(U) (6.14)

for all U ⊂ Ω and we can concentrate on the second summand of Fε. We remark that
the inequality above is independent of the boundary restrictions on E we made in the
formulation of the proposition. Essentially, the statement still holds true for every set
with finite perimeter.
Since

µ
∗
↼ µε = ‖Vε‖ ∗⇀ ‖V ‖

as ε→ 0, we obtain µ = ‖V ‖. By Theorem 4.1 from [RöSc06], V is rectifiable and has
generalized mean curvature HV ∈ L2(Ω). Furthermore, we have

1

2

∫
Ω
|HV |2 dµ ≤ α(Ω) ≤ lim inf

ε→0
αε(Ω) = lim inf

ε→0
Wε(uε) <∞. (6.15)

Theorem 5.1 in [RöSc06] proves that σ−1µ has an integral density and (6.14) ensures
|∇χE | ≤ σ−1µ which is (6.5). Hence, by the definition of the generalized energy F∗ in
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(6.7) and the fact that HV = Hσ−1V this yields

F∗(u) ≤ σ
∫

Ω
1 +

1

2
|Hσ−1V |2 d(σ−1 ‖V ‖) =

∫
Ω

1 +
1

2
|HV | dµ (6.16)

and due to (6.14), (6.15), (6.16) we finally obtain

F∗(u) ≤
∫

Ω
1 +

1

2
|HV |2 dµ

= µ(Ω) +
1

2

∫
Ω
|HV |2 dµ

≤ lim inf
ε→0

µε(Ω) + lim inf
ε→0

αε(Ω)

≤ lim inf
ε→0

Fε(uε),

which is the lower bound inequality in u.

Remark. In the formulation of Proposition 6.4 we assume that uε → u in L1(Ω) as
ε→ 0. In fact, this requirement can be guaranteed (at least for a subsequence) for every
sequence (uε)ε>0 with uniformly bounded energy Fε(uε). This compactness property
has already been shown for a sequence in L1(Ω) with bounded diffuse surface energy Eε
in [Mo87], Proposition 3. As Fε contains Eε, the statement follows instantly.

The primary effort of this section is the construction of recovery sequences and therefore
the suitable approximation of u ∈ S in L1(Ω) such that the generalized Willmore energy
of u is recovered in the limit. For indicator functions of sets with C2-boundary this
was already established in [BePa93] and the main difficulty in this work is the handling
of intersecting boundary curves. In the following, we will prove a local approximation
result for these intersections from which we deduce the existence of recovery sequences
for every u ∈ S0. Afterwards, the main result for general u ∈ S follows directly by an
diagonal argument in Proposition 6.8.

Concerning the local approximation of boundary intersections we restrict ourselves to
the following simple case: For R > 0 consider an open ball B := B(0, 4R) ⊂ R2 around
the origin and let u = 2χE − 1 with E ⊂ B such that

∂E ∩B = Im(ϕ1) ∪ Im(ϕ2)

where ϕ1, ϕ2 are C2-curves in B with Im(ϕ1) ∩ Im(ϕ2) = {0} and which intersect ∂B
transversally in pairwise distinct points. Moreover we assume that

Im(ϕi) = gi in B(0, 3R), i = 1, 2

for two distinct lines g1, g2 through the origin (see Figure 6.1). After a possible rotation
we can assume that E is symmetric with respect to both coordinate axes in B(0, 3R),
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6.1 Γ-convergence of Wε for intersecting boundary curves

i.e., there exists a vector v0 ∈ S1 pointing into the first quadrant such that

g1 = {tv0 : t ∈ R} and g2 =

{
t

(
−1 0
0 1

)
v0 : t ∈ R

}
.

Moreover, we assume that E ∩ {x1 = 0} 6= ∅ as in Figure 6.1.
In the following lemma we construct a sequence of H2-functions which approximates u
in B in the desired sense.

ϕ1

ϕ2

E

E

B(0, 3R)

B = B(0, 4R)

Figure 6.1: A localized cross shaped intersection of ∂E inside B.

Lemma 6.5. Let u = 2χE − 1 as described above. Then there exists a sequence of
functions (uε)ε>0 in H2(B) such that

uε → u in L1(B) (6.17)

and

Fε(uε)→ F(u) = σ
(
H1(∂E ∩B) +W(ϕ1) +W(ϕ2)

)
(6.18)

as ε→ 0.

The basic idea is to approximate the intersection of ϕ1 and ϕ2 inside a ball around the
origin which shrinks with ε ↘ 0 by a 4-ended solution of the stationary Allen-Cahn
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equation (see Section 2.5) corresponding to v0. Outside of this ball we use a slightly
modified version of the standard interface approximation from [BePa93] (see also Section
2.6). This approach approximates the sharp phase transition from −1 to 1 with ε-scaled
versions of the one-dimensional optimal profile γ. Thereby, the contribution of the
diffuse transition to the total energy F vanishes in the limit which produces the desired
convergence of the approximation to the sharp interface. For technical reasons it will
be necessary to perform a small shift of the diffuse interfaces which vanishes with ε↘ 0
to connect the ends of the inner approximation with the diffuse interfaces.
Before we precise the construction of (uε)ε>0 and show the convergence (6.17) and
(6.18), we need two auxiliary results the first describing the qualitative behavior of
entire solutions to the Allen-Cahn equation.

Lemma 6.6. For ε > 0 let uε ∈ C2(R2) be a solution of the ε-dependent Allen-Cahn
equation

−ε∆uε +
1

ε
F ′(uε) = 0 in R2 (6.19)

with |uε| < 1. Then∣∣uε(x)2 − 1
∣∣+ ε |∇uε(x)|+ ε2

∣∣D2uε(x)
∣∣ ≤ Ce−αε dist(x,{uε=0})

holds for every x ∈ R2 with positive constants α,C > 0 independent of uε.

Proof. The result is a scaled version of Lemma 4.2 in [KoLiPa12] for entire solutions
of the Allen-Cahn equation in the case ε = 1. With the usual rescaling u = uε(ε·) the
estimate therein reads∣∣u(y)2 − 1

∣∣+ |∇u(y)|+
∣∣D2u(y)

∣∣ ≤ Ce−αdist(y,{u=0}

for all y ∈ R2 and hence with x = εy∣∣uε(x)2 − 1
∣∣+ ε |∇uε(x)|+ ε2

∣∣D2uε(x)
∣∣ ≤ Ce−αdist(xε ,{uε(ε·)=0}).

Now the statement follows from the fact that

dist
(x
ε
, {uε (ε·) = 0}

)
= dist

(
x

ε
,
1

ε
{uε = 0}

)
=

1

ε
dist

(
x, {uε = 0}

)
.

Remark. Lemma 6.6 immediately implies a similar statement for solutions of the
one-dimensional equation: Let vε ∈ C2(R) be a solution of

−εv′′ε +
1

ε
F ′(vε) = 0 in R

with |vε| < 1. Then we can define a solution of (6.19) by

uε(x1, x2) := vε(x1).
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6.1 Γ-convergence of Wε for intersecting boundary curves

This yields∣∣vε(x)2 − 1
∣∣+ ε

∣∣v′ε(x)
∣∣+ ε2

∣∣v′′ε (x)
∣∣ ≤ Ce−αε dist(x,{vε=0}), x ∈ R.

Lemma 6.7. For h ∈ C2(R) and a constant 0 ≤ λ ≤ 1 we define Hλ ∈ C2(R2) by

Hλ(a, b) := h
(
λa+ (1− λ)b

)
− λh(a)− (1− λ)h(b), a, b ∈ R.

Then there exists a function rλ ∈ C0(R2) (also depending continuously on λ) such that

Hλ(a, b) = (a− b)2rλ(a, b), a, b ∈ R. (6.20)

Proof. We define new variables x := a− b and y := b and obtain H̃ ∈ C2(R2) by

H̃(x, y) := h(λx+ y)− λh(x+ y)− (1− λ)h(y) = Hλ(a, b).

We compute

∂xH̃(x, y) = λh′(λx+ y)− λh′(x+ y)

and directly see that H̃(0, y) = ∂xH̃(0, y) = 0 for all y ∈ R. By using the Taylor formula
of H̃ we find a function r̃λ ∈ C0(R2) such that

H̃(x, y) = x2r̃λ(x, y), for all (x, y) ∈ R2.

Hence, the statement follows by resetting variables as

rλ(a, b) := r̃λ(a− b, b), a, b ∈ R.

With the foregoing auxiliary results we are ready to prove Lemma 6.5.

Proof of Lemma 6.5. For the whole proof let d : B → R denote the signed distance
function of the set E = {u = 1} which for x ∈ B is given by

d(x) := dist(x,B \ E)− dist(x,B).

Further, we divide g1 and g2 into four distinct half-lines which are given by

G̃i := {tvi : t ≥ 0}

with

v1 = v0, v2 =

(
−1 0
0 1

)
v0, v3 = −v1, v4 = −v2 (6.21)

and set G̃ :=
⋃4
j=1 G̃j .

Finally, we fix δ > 0 with

1

3
< δ <

1

2
. (6.22)
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= |r| ε

G̃1G̃2

G̃3 G̃4

G1G2

G3 G4

Figure 6.2: The half lines G̃i and the corresponding end Gi of uin
ε .

We follow the idea of construction which already was given above:
Inner construction: According to Lemma 2.21, there exists a 4-ended solution of
(6.19) with values in (−1, 1) corresponding to v0 and some r ∈ R such that (after a
possible rotation) its ends Gi (as in (2.10)) are parallel to the half-lines G̃i with mutual
distance rε (see Figure 6.2). We refer to this solution as uin

ε in the following and choose
a corresponding approximate solution (according to Definition 2.20) which we denote
by uGε .
Outer construction: For ζ ∈ C∞c (R) with 0 ≤ ζ ≤ 1, supp ζ = [−2, 2], and ζ ≡ 1 on
[−1, 1] we set

ζε(s) := ζ

(
s

εδ+
1
2

)
, for s ∈ R

and assuming ε sufficiently small we define a truncated version of the optimal profile γε
by

wε(s) := ζε(s)γε(s) +
(
1− ζε(s)

)
sgn(s).

Thus, we have

wε(s) = γε(s) for |s| ≤ εδ+ 1
2 and wε(s) = sgn(s) for |s| ≥ 2εδ+

1
2

as well as wε ∈ C∞(R). Notice that δ < δ + 1
2 < 1 for δ as chosen above and since γε

makes its transition from −1 to 1 on a domain of size ε around zero, wε only differs
significantly from γε in a region where γε is almost constant.
Precisely, Lemma 6.6 and the remark thereafter rise up an estimate for the distance
between wε and γε in C2(R) as for |s| ≥ εδ+ 1

2 we have

|wε(s)− γε(s)| =
∣∣(1− ζε(s))( sgn(s)− γε(s)

)∣∣ ≤ |sgn(s)− γε(s)|
≤ |sgn(s)− γε(s)| |sgn(s) + γε(s)| =

∣∣1− γε(s)2
∣∣
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≤Ce−Cε |s| ≤ Ce−Cεδ−
1
2 (6.23)

and analogously,∣∣w′ε(s)− γ′ε(s)∣∣ =
∣∣ζ ′ε(s)(γε(s)− sgn(s)

)
−
(
1− ζε(s)

)
γ′ε(s)

∣∣
≤
∥∥ζ ′ε∥∥L∞(R)

∣∣1− γ2
ε (s)

∣∣+
∣∣γ′ε(s)∣∣

≤ C

εδ+
1
2

∥∥ζ ′∥∥
L∞(R)

e−
C
ε
|s| +

C

ε
e−

C
ε
|s| ≤ C

ε
e−Cε

δ− 1
2 (6.24)

and ∣∣w′′ε (s)− γ′′ε (s)
∣∣ ≤ ∣∣(1− ζε(s))γ′′ε (s)

∣∣+ 2
∣∣ζ ′ε(s)γ′ε(s)∣∣+

∣∣( sgn(s)− γε(s)
)
ζ ′′ε (s)

∣∣
≤
∣∣γ′′ε (s)

∣∣+
2

εδ+
1
2

∥∥ζ ′∥∥
L∞(R)

∣∣γ′ε(s)∣∣+
1

ε2δ+1

∥∥ζ ′′∥∥
L∞(R)

∣∣1− γ2
ε (s)

∣∣
≤
(
C

ε2
+

C

εδ+
3
2

+
C

ε2δ+1

)
e−

C
ε
|s|

≤C
ε2
e−Cε

δ− 1
2 . (6.25)

Our plan to define the outer approximation uout
ε is to evaluate uout

ε in the signed distance
of E (as it has been done in [BePa93]), however this construction does not properly go
with the chosen inner approximation of the boundary intersection uin

ε . Since the ends of
uin
ε are not exactly given by the half-lines G̃i, i = 1, . . . , 4 but by their shifted versions
Gi, it is not possible to glue both constructions together with vanishing cost in terms
of energy. We solve this problem by performing the necessary shift of the Gi on the
annulus B(0, 2R) \B(0, R) and adding a small (in terms of ε) correction term on d.
Precisely, we define a function v : B \ {0} → {v1, v2, v3, v4} by

v(x) :=


v1, if x1 > 0 and x2 ≥ 0

v2, if x1 ≤ 0 and x2 > 0

v3, if x1 < 0 and x2 ≤ 0

v4, if x1 ≥ 0 and x2 < 0

which for x = (x1, x2) ∈ B \ {0} yields the direction of the half-line which is closest to
x. Moreover, we choose θ ∈ C∞([0,∞)) with 0 ≤ θ ≤ 1 such that

θ(s) =

{
1, if x ≤ R
0, if x > 2R

and define for x ∈ B \ {0}

uout
ε (x) := wε

(
dεθ(x)

)
:= wε

(
d(x)− εrθ

(
x · v(x)

))
. (6.26)

Particularly, we always place the optimal profile γε in perpendicular direction to ∂E
over the interface ignoring the small shift rεθ during this choice. We refer to Figure 6.3
where we describe the structure of uout

ε in a neighborhood of one G̃i.
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R 2R 3R

gi

rε

Figure 6.3: The directions in which uout
ε places wε on the sharp interface.

Although v is not even continuous on the coordinate axis, uout
ε still is in C∞

(
B\B(0, εδ)

)
for ε sufficiently small since it is constant to 1 (or −1, respectively) on the axes in
B \B(0, εδ)

)
. We further point out, that x · v(x) is always positive as both factors lie

in the same quadrant.
Finally, with a smooth radial symmetric cutoff function η ∈ C∞(B) with 0 ≤ η ≤ 1
given by

η(x) :=

{
1, in B(0, 1),

0, in R2 \B(0, 2)

we set

ηε(x) := η
( x
εδ

)
and are now able to define uε : B → R by interpolating the inner and outer construction
due to

uε(x) := ηε(x)uin
ε (x) +

(
1− ηε(x)

)
uout
ε (x), x ∈ B.

Note, that ηε satisfies

|∇ηε(x)| ≤ Cε−δ and |∆ηε(x)| ≤ Cε−2δ (6.27)

for all x ∈ B and that clearly, uε is in H2(B) by definition.
It is also easy to see that uε approximates u in L1(Ω) as ε → 0 and therefore, (6.17)
holds. Indeed, the constructed function satisfies |uε| ≤ 1 and we have∫

B(0,2εδ)
|uε − u| dx ≤ 2

∣∣∣B(0, 2εδ)
∣∣∣ = 8πε2δ −→ 0

as well as∫
B\B(0,2εδ)

|uε − u| dx =

∫
B\B(0,2εδ)

∣∣uout
ε − u

∣∣ dx
≤ 2

∣∣∣{x ∈ B : |x| ≥ 2εδ and |d(x)| < 2εδ+
1
2 + rε}

∣∣∣
116



6.1 Γ-convergence of Wε for intersecting boundary curves

≤ 4
(

2εδ+
1
2 + rε

) (
L(ϕ1) + L(ϕ2)

)
−→ 0

as ε→ 0.
In order to prove (6.18), we consider the convergence of both summands in Fε separately
and start with the second term Wε. Since B divides into

B = B(0, εδ) ∪
(
B(0, 2εδ) \B(0, εδ)

)
∪
(
B(0, 3R) \B(0, 2εδ)

)
∪
(
B \B(0, 3R)

)
we can split Wε(uε) into four integrals and consider the convergence of the single terms
one by one. For the first summand we have

1

2ε

∫
B(0,εδ)

(
− ε∆uε +

1

ε
F ′(uε)

)2
dx =

1

2ε

∫
B(0,εδ)

(
− ε∆uin

ε +
1

ε
F ′(uin

ε )
)2
dx = 0

as uin
ε solves (6.19).

In B \B(0, 3R) where ∂E has non vanishing curvature and where u = uout
ε = wε(d(x))

by definition, we obtain

1

2ε

∫
B\B(0,3R)

(
− ε∆uε +

1

ε
F ′(uε)

)2
dx

=
1

2ε

∫
B\B(0,3R)

(
− ε∆uout

ε +
1

ε
F ′(uout

ε )
)2
dx

−→ σ
(
W(ϕ1) +W(ϕ2)

)
(6.28)

as ε → 0 by [BePa93]. Indeed, the argument stays true although we have chosen a
different width of the stripes around ϕ1 and ϕ2 but since δ+ 1

2 < 1 is is still larger than
order ε (see the remark at the end of Section 2.6).
In order to show the convergence of the integral over the third region we first note that
for sufficiently small ε > 0 and x ∈ B(0, 3R) \B(0, 2εδ) we have u(x) = uout

ε (x) = ±1

if |dεθ(x)| ≥ 2εδ+
1
2 . Consequently, the integral over B(0, 3R) \B(0, 2εδ) reduces to the

integral over a neighborhood Uε of G̃ ∩
(
B(0, 3R) \B(0, 2εδ)

)
given by

Uε := {x ∈ B(0, 3R) \B(0, 2εδ) : |dεθ(x)| < 2εδ+
1
2 } (6.29)

and due to |d| ≤ |dεθ|+ Cε for small ε > 0 we have

|Uε| ≤ Cεδ+
1
2 . (6.30)

Since this region consists of four same sized components around the four half-lines G̃i,
i = 1, . . . , 4, we restrict to one of them and assume (after a possible rotation) that the
regarded half-line is the positive x1-axis. For the sake of notation we still refer to this
region as Uε.
For x = (x1, x2) ∈ Uε we then obtain with dεθ(x) = x2 − rεθ(x1)

uout
ε (x) = wε

(
x2 − rεθ(x1)

)
(6.31)
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and

∇uout
ε (x) =

(
−rεθ′(x1)

1

)
w′ε
(
x2 − rεθ(x1)

)
(6.32)

as well as

∆uout
ε (x) =w′′ε (x2 − rεθ(x1))

(
1 + r2ε2

(
θ′(x1)

)2)
− w′ε

(
x2 − rεθ(x1)

)
rεθ′′(x1). (6.33)

The integral over Uε reads

1

2ε

∫
Uε

(
−ε∆uout

ε +
1

ε
F ′(uout

ε )

)2

dx

=
1

2ε

∫
Uε

(
−ε∆(wε ◦ dεθ) +

1

ε
F ′(wε ◦ dεθ)

)2

dx

≤C
ε

∫
Uε

(
− ε∆(wε ◦ dεθ) + ε∆(γε ◦ dεθ)

)2
dx

+
C

ε

∫
Uε

(
1

ε
F ′(wε ◦ dεθ)−

1

ε
F ′(γε ◦ dεθ)

)2

dx

+
C

ε

∫
Uε

(
−ε∆(γε ◦ dεθ) +

1

ε
F ′(γε ◦ dεθ)

)2

dx

=: H1 +H2 +H3 (6.34)

and using (6.31), (6.32), (6.33) (and the analogous results for γε ◦ dεθ) as well as the
estimates (6.23), (6.24), (6.25) on the C2-distance between wε and γε we treat the three
terms separately. For H1 this gives

H1 = Cε

∫
Uε

((
w′′ε
(
dεθ(x)

)
− γ′′ε

(
dεθ(x)

))(
1 + r2ε2

(
θ′(x1)

)2)
−
(
w′ε
(
dεθ(x)

)
− γ′ε

(
dεθ(x)

))
rεθ′′(x1)

)2

dx

≤ Cε
∫
Uε

∣∣w′′ε(dεθ(x)
)
− γ′′ε

(
dεθ(x)

)∣∣2 +
∣∣w′ε(dεθ(x)

)
− γ′ε

(
dεθ(x)

)∣∣2 dx
≤ C

ε3
|Uε| e−Cε

δ− 1
2

≤ Cεδ− 5
2 e−Cε

δ− 1
2

and by the same arguments we obtain

H2 =
C

ε

∫
Uε

(
1

ε
F ′
(
wε
(
dεθ(x)

))
− 1

ε
F ′
(
γε
(
dεθ(x)

)))2

dx

=
C

ε3

∥∥F ′′∥∥2

L∞([−1,1])

∫
Uε

∣∣wε(dεθ(x)
)
− γε

(
dεθ(x)

)∣∣2 dx

118



6.1 Γ-convergence of Wε for intersecting boundary curves

≤ Cεδ− 5
2 e−Cε

δ− 1
2

as well as

H3 =
C

ε

∫
Uε

(
−ε∆γε

(
dεθ(x)

)
+

1

ε
F ′
(
γε
(
dεθ(x)

)))2

dx

=
C

ε

∫
Uε

(
− εγ′′ε

(
dεθ(x)

)(
1 + r2ε2

(
θ′(x1)

)2)
+ rε2θ′′(x1)γ′ε

(
dεθ(x)

)
+

1

ε
F ′
(
γε
(
dεθ(x)

)))2

dx

=
C

ε

∫
Uε

(
− r2ε3

(
θ′(x1)

)2
γ′′ε
(
dεθ(x)

)
+ rε2θ′′(x1)γ′ε

(
dεθ(x)

))2

dx

≤ Cε−1εδ+
1
2 ε2

= Cεδ+
3
2 .

Hence, the integral over Uε and therefore over B(0, 3R) \B(0, 2εδ) vanishes as ε→ 0
and it remains to show that the integral over the annulus B(0, 2εδ) \B(0, εδ) also tends
to 0.
Since |x · v(x)| ≤ 2εδ < R we have dεθ(x) = d(x)− rε for x ∈ B(0, 2εδ) \B(0, εδ) and

{dεθ = 0} ∩
(
B(0, 2εδ) \B(0, εδ)

)
=

(
4⋃
i=1

Gi

)
∩
(
B(0, 2εδ) \B(0, εδ)

)
consists of four straight line segments. We distinguish between two disjoint regions A1

ε

and A2
ε on the annulus (see Figure 6.4). In

A1
ε := {|dεθ| ≤ ε2δ} ∩

(
B(0, 2εδ) \B(0, εδ)

)
uout
ε = wε ◦ dεθ does its complete transition from −1 to 1 or vice versa (for sufficiently

small ε > 0) since 2δ < δ + 1
2 . This implies that uout

ε is constant ±1 on each connected
component of the remaining part

A2
ε :=

(
B(0, 2εδ) \B(0, εδ)

)
\A1

ε

and we particularly observe∣∣A1
ε

∣∣ ≤ Cε3δ and
∣∣A2

ε

∣∣ ≤ Cε2δ. (6.35)

Due to Corollary 2.22 the zero set of uin
ε stays exponentially close to G (in terms of ε).

Indeed, (2.13) reads for all x ∈ {uin
ε = 0} with |x| ≥ εδ

dist
(
x, {dεθ = 0} ∩ {|x| ≥ εδ}

)
≤ C

ε
e−Cε

2δ−2
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and thus, there exists a constant C > 0 such that

dist(A2
ε, {uin

ε = 0}) ≥ Cε2δ

is satisfied. Combined with Lemma 6.6 this yields the estimate for x ∈ A2
ε∣∣(uin

ε (x)2
)
− 1
∣∣+ ε

∣∣∇uin
ε (x)

∣∣+ ε2
∣∣D2uin

ε (x)
∣∣

≤Ce−Cε dist(x,{uinε =0}) ≤ Ce−Cε2δ−1
(6.36)

which tends to 0 exponentially fast as ε→ 0 since 2δ − 1 < 0.

A2
ε

A1
ε

B(0, εδ)

B(0, 2εδ)

≤ Cε2δ

g1 = ϕ1

g2 = ϕ2

Figure 6.4: Sketch of the construction inside B(0, 2εδ)

With these considerations in mind we have

1

2ε

∫
B(0,2εδ)\B(0,εδ)

(
− ε∆uε +

1

ε
F ′(uε)

)2
dx

=
1

2ε

∫
A1
ε∪A2

ε

(
− ε∆uε +

1

ε
F ′(uε)

)2
dx

=
1

2ε

∫
A1
ε∪A2

ε

(
− ε∆

(
ηεu

in
ε + (1− ηε)uout

ε

)
+

1

ε
F ′
(
ηεu

in
ε + (1− ηε)uout

ε

))2
dx

=
1

2ε

∫
A1
ε∪A2

ε

(
− ε∆ηε(uin

ε − uout
ε )− 2ε∇ηε · (∇uin

ε −∇uout
ε )− εηε∆uin

ε

− ε(1− ηε)∆uout
ε +

1

ε
F ′
(
ηεu

in
ε + (1− ηε)uout

ε

))2
dx

≤Cε
∫
A1
ε∪A2

ε

(
∆ηε(u

in
ε − uout

ε )
)2
dx+ Cε

∫
A1
ε∪A2

ε

(
∇ηε · (∇uin

ε −∇uout
ε )
)2
dx

+ C
1

ε

∫
A1
ε∪A2

ε

(
−εηε∆uin

ε − ε(1− ηε)∆uout
ε +

1

ε
F ′(ηεuin

ε + (1− ηε)uout
ε )

)2

dx
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:=I1 + I2 + I3.

We show that all integrals converge to 0 as ε→ 0. By (6.27) and (6.35) we obtain

I1 ≤ Cε
∣∣A1

ε ∪A2
ε

∣∣ ‖∆ηε‖2L∞(R2)

∥∥uin
ε − uout

ε

∥∥2

L∞(A1
ε∪A2

ε)

≤ Cεε2δε−4δ = Cε1−2δ

−→ 0

as ε→ 0 since δ < 1
2 and −1 ≤ uin

ε , u
out
ε < 1.

For the second term we have

I2 ≤ Cε
∫
A1
ε∪A2

ε

|∇ηε|2
∣∣∇uin

ε −∇uout
ε

∣∣2 dx
≤ Cε1−2δ

∫
A1
ε

∣∣∇uin
ε −∇uout

ε

∣∣2 dx+ Cε1−2δ

∫
A2
ε

∣∣∇uin
ε

∣∣2 dx
≤ Cε1−2δ

∫
A1
ε

∣∣∇uin
ε −∇uout

ε

∣∣2 dx+ Cε1−2δ
∣∣A2

ε

∣∣ ∥∥∇uin
ε

∥∥2

L∞(A2
ε)
. (6.37)

Inequality (6.36) yields an estimate for the second summand as

Cε1−2δ
∣∣A2

ε

∣∣ ∥∥∇uin
ε

∥∥2

L∞(A2
ε)
≤ Cε1−2δε2δε−2e−Cε

2δ−1

= Cε−1e−Cε
2δ−1

which tends to 0 exponentially fast since 2δ − 1 < 0 and it remains to show that the
first term in (6.37) vanishes as ε→ 0.
We use the fact that the phase transition profiles of uin

ε and uout
ε from −1 to 1 or

vice versa, respectively, are both comparable to the optimal profile γε for small ε and
sufficiently close to the interface. Since A1

ε consists of four components with size of the
same order, we restrict ourselves to one of them and skip the index i for the vector vi
in the following. Notice that by construction the approximate solution uGε of (6.19)
then can be written as γε(· · v⊥ − rε) = γε ◦ dεθ in A1

ε for sufficiently small ε > 0 (after
a possible multiplication of all occurring terms by −1). Due to Proposition 2.21 and
(6.24), this implies∫

A1
ε

∣∣∇uin
ε −∇uout

ε

∣∣2 dx
≤C

∫
A1
ε

∣∣∇uin
ε −∇uGε

∣∣2 dx+ C

∫
A1
ε

∣∣∇uGε −∇uout
ε

∣∣2 dx
≤C

∥∥∥∥ε−2e−C
|·|2
ε2

∥∥∥∥
L∞(A1

ε)

∫
A1
ε

∣∣∇uin
ε (x)−∇uGε (x)

∣∣2 ε2eC
|x|2
ε2 dx

+ C

∫
A1
ε

|∇(γε ◦ dεθ)−∇(wε ◦ dεθ)|2 dx

≤Cε−2e−Cε
2δ−2

+ C
∣∣A1

ε

∣∣ ∥∥γ′ε − w′ε∥∥2

L∞(R)
‖∇dεθ‖2L∞(A1

ε)

≤Cε−2e−Cε
2δ−2

+ Cε3δ−2e−Cε
δ− 1

2
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as |∇dεθ| = |∇d| ≡ 1. Therefore, I2 tends to 0 exponentially fast as ε→ 0.
To understand the behavior of I3 we first consider the remaining integral over A2

ε and
again, equation (6.36) yields its exponential smallness. In fact, since uout

ε is constant to
±1 on each component of A2

ε we have

1

ε

∫
A2
ε

(
−εηε∆uin

ε − ε(1− ηε)∆uout
ε +

1

ε
F ′
(
ηεu

in
ε + (1− ηε)uout

ε

))2

dx

=
1

ε

∫
A2
ε

(
−εηε∆uin

ε +
1

ε
F ′
(
ηεu

in
ε ± (1− ηε)

))2

dx

≤Cε
∫
A2
ε

|ηε|2
∣∣∆uin

ε

∣∣2 dx+
C

ε3

∫
A2
ε

(
F ′
(
ηεu

in
ε ± (1− ηε)

)
− F ′(±1)

)2
dx

≤Cε2δ+1
∥∥∆uin

ε

∥∥2

L∞(A2
ε)

+ Cε2δ−3
∥∥F ′′∥∥2

L∞([−1,1])
‖ηε‖2L∞(B)

∥∥uin
ε ∓ 1

∥∥2

L∞(A2
ε)

≤Cε2δ−3e−Cε
2δ−1 −→ 0

as ε→ 0 by the mean value theorem.
For the integral over A1

ε we use that uin
ε is a solution of (6.19) and that uout

ε almost
solves this equation. By Lemma 6.7 applied to F ′ we obtain with rηε(x) as in (6.20)

1

ε

∫
A1
ε

(
−εηε∆uin

ε − ε(1− ηε)∆uout
ε +

1

ε
F ′
(
ηεu

in
ε + (1− ηε)uout

ε

))2

dx

≤C
ε

∫
A1
ε

(
−1

ε
ηεF

′(uin
ε )− 1

ε
(1− ηε)F ′(uout

ε ) +
1

ε
F ′
(
ηεu

in
ε + (1− ηε)uout

ε

))2

dx

+
C

ε

∫
A1
ε

(
−ε(1− ηε)∆uout

ε +
1

ε
(1− ηε)F ′(uout

ε )

)2

dx

≤C
ε3

∥∥rηε(uin
ε , u

out
ε )
∥∥2

L∞(A1
ε)

∫
A1
ε

(uin
ε − uout

ε )4 dx

+
C

ε

∫
A1
ε

(
−ε∆uout

ε +
1

ε
F ′(uout

ε )

)2

dx

≤C
ε3

∫
A1
ε

(uin
ε − uout

ε )2 dx+
C

ε

∫
A1
ε

(
−ε∆uout

ε +
1

ε
F ′(uout

ε )

)2

dx. (6.38)

Similar to the estimate for I2 above we see that∫
A1
ε

(uin
ε − uout

ε )2 dx

≤C
∫
A1
ε

(uin
ε − uGε )2 dx+ C

∫
A1
ε

(uGε − uout
ε )2 dx

≤Cε−2e−Cε
2δ−2

+ Cε3δe−Cε
δ− 1

2

by Proposition 2.21 and (6.23)
The second summand in (6.38) approximates the Willmore energy of the shifted half-
lines Gi, i = 1, . . . , 4 in A1

ε and vanishes therefore as ε tends to 0. Precisely, we make
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6.1 Γ-convergence of Wε for intersecting boundary curves

use of the fact that dεθ = d− rε in B(0, 2εδ) and hence,

∆uout
ε = w′′ε (dεθ) |∇d|2 + w′ε(d

ε
θ)∆d = w′′ε (dεθ) (6.39)

as |∇d| ≡ 1 and ∆d = 0 in this region. Then the assumption follows exactly as in (6.34)
above with the inequalities (6.23)-(6.25) since

1

ε

∫
A1
ε

(
−ε∆uout

ε +
1

ε
F ′(uout

ε )

)2

dx

≤1

ε

∫
B(0,R)

(
−ε∆(wε ◦ dεθ) +

1

ε
F ′(wε ◦ dεθ)

)2

dx

≤Cε
∫
B(0,R)

(
− w′′ε

(
d(x)− rε

)
+ γ′′ε

(
d(x)− rε

))2
dx

+
C

ε3

∫
B(0,R)

(
F ′
(
wε
(
d(x)− rε

))
− F ′

(
γε
(
d(x)− rε

)))2

dx

≤C
ε3
e−Cε

δ− 1
2 .

This finally yields

I3 −→ 0, ε→ 0

and completes the proof of convergence for Wε(uε).
The handling of the remaining diffuse surface part Eε(uε) of Fε(uε) is less complicated
to show due to its lower order (in terms of involved derivatives of uε). However, in
contrast to the calculations above, the contribution of uin

ε inside B(0, εδ) to the total
surface area does not vanish and we have to analyze this part more carefully.
Remark, that there exists a compact set K ⊂ R2 around the origin such that outside of
εK the zero set of uin

ε consists of four disjoint pieces which are asymptotic to the four

half-lines Gi, i = 1, . . . , 4. Since εK completely lies in the ball B(0, ε
3
4 ) for sufficiently

small ε we can argue as above by dividing the ball B(0, εδ). For the inner part we
obtain by Lemma 6.6∫

B(0,ε
3
4 )

ε

2

∣∣∇uin
ε

∣∣2 +
1

ε
F (uin

ε ) dx ≤ Cε−1
∣∣∣B(0, ε

3
4 )
∣∣∣ = Cε

1
2

which vanishes as ε→ 0. The remaining part of B(0, εδ) itself divides into two disjoint
sets. We define

B1
ε :=

{
x ∈ B(0, εδ) \B(0, ε

3
4 ) : dist(x, {uε = 0}) < ε

3
4

}
with

∣∣B1
ε

∣∣ ≤ Cεδ+ 3
4

and

B2
ε :=

{
x ∈ B(0, εδ) \B(0, ε

3
4 ) : dist(x, {uε = 0}) ≥ ε 3

4

}
with

∣∣B2
ε

∣∣ ≤ Cε2δ
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and hence observe with another application of Lemma 6.6 and (6.22)∫
B1
ε

ε

2

∣∣∇uin
ε

∣∣2 +
1

ε
F (uin

ε ) dx ≤ Cε−1
∣∣B1

ε

∣∣ = Cε−1+δ+ 3
4 ≤ Cε 1

12

as well as∫
B2
ε

ε

2

∣∣∇uin
ε

∣∣2 +
1

ε
F (uin

ε ) dx ≤ Cε−1+2δe−
C
ε

dist(x,{u=0}) ≤ Cε−1+2δe−Cε
− 1

4 .

Therefore,∫
B(0,εδ)

ε

2

∣∣∇uin
ε

∣∣2 +
1

ε
F (uin

ε ) dx −→ 0 (6.40)

as ε→ 0. For the annulus B(0, 2εδ) \B(0, εδ) = A1
ε ∪A2

ε we calculate∫
A1
ε∪A2

ε

ε

2

∣∣∇ηε(uin
ε − uout

ε ) + ηε∇uin
ε + (1− ηε)∇uout

ε

∣∣2
+

1

ε
F
(
ηεu
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ε + (1− ηε)uout

ε

)
dx

≤ Cε
∫
A1
ε∪A2

ε

|∇ηε|2
∣∣uin
ε − uout

ε

∣∣2 dx+ Cε

∫
A1
ε∪A2

ε

|ηε|2
∣∣∇uin

ε −∇uout
ε

∣∣2 dx
+ Cε

∫
A1
ε∪A2

ε

∣∣∇uout
ε

∣∣2 dx+
1

ε

∫
A1
ε∪A2

ε

F
(
ηεu

in
ε + (1− ηε)uout

ε

)
dx

:= J1 + J2 + J3 + J4

and treat the summands separately. Analogously to the estimates of I1 and I2 in the
calculations for Wε(uε) above we obtain for J1 and J2

J1 ≤ Cε −→ 0

and

J2 ≤ Cε3δ−1e−Cε
2δ−1 −→ 0

as ε→ 0.
Since uout

ε is constant ±1 on each component of A2
ε the integral in J3 reduces to A1

ε

which yields

J3 = Cε

∫
A1
ε

∣∣∇uout
ε

∣∣2 dx ≤ Cεε3δ
∥∥w′ε∥∥2

L∞(R)
‖∇dεθ‖2L∞(A1

ε)

≤ Cε3δ+1
∥∥γ′ε∥∥2

L∞(R)
≤ C

∥∥γ′∥∥2

L∞(R)
ε3δ−1

−→ 0

where we have used the fact that |∇dεθ| = |∇d| = 1 in B(0, 2εδ).For the remaining term
J4 we argue similarly as for I3 above. Due to the small size of A1

ε and the mean value
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theorem, we obtain

J4 =
1

ε

∫
A1
ε

F
(
ηεu

in
ε + (1− ηε)uout

ε

)
dx+

1

ε

∫
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ε

F
(
ηεu

in
ε ± (1− ηε)

)
− F (±1) dx

≤Cε−1ε3δ ‖F‖L∞([−1,1]) + Cε−1ε2δ
∥∥F ′∥∥

L∞([−1,1])
‖ηε‖L∞(B)

∥∥uin
ε ∓ 1

∥∥
L∞(A2

ε)

≤Cε3δ−1 + Cε2δ−1e−Cε
2δ−1 −→ 0.

Hence, the contribution of the annulus B(0, 2εδ) \B(0, εδ) and by (6.40) therefore of
the whole ball B(0, 2εδ) to the diffuse surface energy Eε(uε) vanishes as ε→ 0.
On B \B(0, 3R) we have uε = uout

ε = wε ◦ d and thus, a direct application of the result
of [MoMo77] (or [Mo87]) yields∫

B\B(0,3R)

ε

2
|∇uε|2 +

1

ε
F (uε) dx −→ σH1

(
∂E ∩

(
B \B(0, 3R)

))
.

In order to show the convergence of the remaining integral over B(0, 3R) \B(0, 2εδ), we
have to adapt the proof of Modica and Mortola since our construction of uout

ε involves
the disturbed signed distance function dεθ instead of d. For that purpose it will turn out
to be crucial that the small correction of d has an almost vanishing gradient. As in the
corresponding considerations for the Willmore energy of uε, we can restrict to the set Uε
from (6.29) and consider only one of its connected components. Again we assume that
the regarded half-line is the positive x1-axis and that (6.31), (6.32) hold. We see, that∫

Uε

ε

2

∣∣∇uout
ε

∣∣2 +
1

ε
F (uout

ε ) dx

=

∫
Uε

ε

2
|∇(wε ◦ dεθ)|2 +

1

ε
F
(
wε ◦ dεθ

)
dx

=

∫
Uε

ε

2
|∇(γε ◦ dεθ)|2 +

1

ε
F
(
γε ◦ dεθ

)
dx+

ε

2

∫
Uε

∣∣∇(wε ◦ dεθ)∣∣2 − ∣∣∇(γε ◦ dεθ)∣∣2 dx
+

1

ε

∫
Uε

F
(
wε ◦ dεθ

)
− F

(
γε ◦ dεθ

)
dx

:=K1 +K2 +K3.

and we will prove that the last two summands vanish as ε → 0 while the first one
approximates up to the constant σ the length of ∂E ∩ Uε which converges to 3Rσ in
the limit.
Indeed, by

|∇dεθ(x)|2 = 1 + r2ε2
(
θ(x1)

)2 ≤ C for x = (x1, x2) ∈ Uε

as well as (6.24), (6.26), and (6.30) we obtain for the second summand

K2 ≤
ε

2

∫
Uε

∣∣(w′ε + γ′ε
)
◦ dεθ

∣∣ ∣∣(w′ε − γ′ε) ◦ dεθ∣∣ |∇dεθ|2 dx
≤ Cε

∫
Uε

∣∣(ζ ′ε(γε − sgn) + γ′ε(ζε + 1)
)
◦ dεθ

∣∣ ∣∣(w′ε − γ′ε) ◦ dεθ∣∣ dx
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Chapter 6 The diffuse approximation of W for nonsmooth configurations

≤ Cεδ+ 1
2 ε−1e−Cε

δ− 1
2

≤ Cεδ− 1
2 e−Cε

δ− 1
2 .

Using the mean value theorem the third term can be controlled by

K3 ≤ Cεδ−
1
2 e−Cε

δ− 1
2

analogously to the estimate of H2 above. Hence, K2 and K3 vanish as expected for
ε→ 0. For K1 we use the fact that the optimal profile satisfies

γ′ε =
1

ε

√
2F (γε)

and hence,

K1 =

∫
Uε

ε

2

∣∣γ′ε ◦ dεθ∣∣2 |∇dεθ|2 +
1

ε
F (γε ◦ dεθ) dx

=

∫
Uε

1

2

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ) |∇dεθ|

2 +
1

2

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ) dx

=

∫
Uε

1

2

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ)

(
1 + |∇dεθ|2

)
dx.

Now, we observe for x = (x1, x2) ∈ Uε that

1 + |∇dεθ(x)|2 = 2 + r2ε2
(
θ′(x1)

)2
= 2

√
1 + r2ε2

(
θ′(x1)

)2
+O(ε4)

= 2 |∇dεθ(x)|+O(ε4)

and consequently,

K1 =

∫
Uε

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ) |∇dεθ| dx+O(ε4)

∫
Uε

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ) dx,

where the second summand tends to 0 with ε→ 0 due to∫
Uε

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ) dx ≤ Cεδ−1.

The coarea formula yields for the first integral∫
Uε

√
2F (γε ◦ dεθ)(γ′ε ◦ dεθ) |∇dεθ| dx

=

∫ 2εδ+
1
2

−2εδ+
1
2

√
2F
(
γε(t)

) ∣∣γ′ε(t)∣∣H1
(
{z ∈ Uε : dεθ(z) = t}

)
dt.

For |t| ≤ 2εδ+
1
2 we can determine the measure inside the integral explicitly by

H1
(
{z ∈ Uε : dεθ(z) = t}

)
= H1

(
{z ∈ Uε : dεθ(z) = 0}

)
+ h(t)
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6.1 Γ-convergence of Wε for intersecting boundary curves

with h ∈ C0(−2εδ+
1
2 , 2εδ+

1
2 ) given by

h(t) := −3R

(
1−

√
1− t2

9R2

)
+ sgn

(
t(t+ 2rε)

) rε1−δt+ 1
2ε
−δt2√

1− r2ε2

4ε2δ
+
√

1− (t+rε)2

4ε2δ

which converges to 0 as t → 0. Now, by an application of the generalized mean
value theorem for integrals there exists a null sequence of real numbers (ξε)ε>0 with

|ξε| ≤ 2εδ+
1
2 such that

∫ 2εδ+
1
2

−2εδ+
1
2

√
2F
(
γε(t)

) ∣∣γ′ε(t)∣∣H1
(
{z ∈ Uε : dεθ(z) = t}

)
dt

=
(
H1
(
{z ∈ Uε : dεθ(z) = 0}

)
+ ξε

)∫ 2εδ+
1
2

−2εδ+
1
2

√
2F
(
γε(t)

) ∣∣γ′ε(t)∣∣ dt
is satisfied. The expression on the right hand side converges with ε→ 0 as

H1
(
{z ∈ Uε : dεθ(z) = 0}

)
= L

(
graph(εrθ) ∩ Uε

)
=

∫ 3R

2εδ

√
1 + rεθ′ ds −→ 3R

follows immediately by Lebesgue’s dominated convergence theorem and

∫ 2εδ+
1
2

−2εδ+
1
2

√
2F
(
γε(t)

) ∣∣γ′ε(t)∣∣ dt =

∫ 2γ
(
εδ−

1
2

)
−2γ

(
εδ−

1
2

)√2F ds −→
∫ 1

−1

√
2F ds = σ.

We combine the calculations and finally obtain

K1 −→ 3Rσ

and thus,∫
B

ε

2
|∇uε|2 +

1

ε
F (uε) dx −→ σH1(∂E ∩B)

as ε→ 0 which completes the proof of Lemma 6.5.

Remark. In the definition of S0 we have restricted ourselves to boundary intersections
of only two boundary portions which we could approximate by using a 4-ended solution
as the inner part of the construction above. Unfortunately, it is not sufficient to
replace uin

ε by a general 2k-ended solution (k ≥ 2) and directly approximate arbitrary
intersections of more than two curves in a common point since these solutions only
exist for a suitable set of intersection angles (satisfying a Toda-System, see [PiKoPa10],
Theorem 1.1). Hence, another argument is required to handle those intersections and
we revisit them in Section 6.2.

The construction in Lemma 6.5 yields a way how to handle occurring transversal
intersections of transition layers in the approximation of functions u ∈ S0. With this
method in hand we are able to construct for given u ∈ S0 an appropriate recovery

127



Chapter 6 The diffuse approximation of W for nonsmooth configurations

sequence (uε)ε>0 in H2(Ω) which realizes the Γ-limit in F(u). By a simple diagonal
argument the result stays true for u ∈ S.

Proposition 6.8. Let Ω ⊂ R2 be a bounded domain and E ⊂ Ω such that u := 2χ− 1
lies in S. Then there exists a sequence (uε)ε>0 in H2(Ω) with uε → u in L1(Ω) as ε→ 0
such that

F∗(u) = lim
ε→0
Fε(uε).

Proof. First, consider u = 2χE − 1 ∈ S0. By definition, ∂E ⊂ Ω is the union of finitely
many closed C2-curves with at most finitely many self intersection points x1, . . . , xm of
the boundary. We define a radius s > 0 such that B(xj , s) ⊂⊂ Ω for 1 ≤ j ≤ m and
such that these balls are pairwise disjoint. Moreover, we choose s small enough such
that for every j ∂E ∩ B(xj , s) consists of two curve pieces which intersect ∂B(xj , s)
transversally and which are equal to line segments in B(xj ,

3
4s).

Now, we apply Lemma 6.5 on every such ball and denote the resulting sequences by
(uj,ε)ε>0. For ε sufficiently small we then define

uε(x) :=

{
uj,ε(x), if x ∈ B(xj , s) for some 1 ≤ j ≤ m
wε(d(x)), elsewhere in Ω

with wε from the outer construction in the proof of Lemma 6.5 (see Figure 6.5).

E

Ω

Figure 6.5: The whole approximation of u = 2χE − 1 ∈ S0 in Ω.

Therefore, uε ∈ H2(Ω) and Lemma 6.5 together with [BePa93] yield uε → u in L1(Ω)
as ε→ 0 and

F(u) = lim
ε→0
Fε(uε).
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6.1 Γ-convergence of Wε for intersecting boundary curves

Now, let u ∈ S and let (u(k))k∈N be sequence in S0 such that

u(k) −→ u in L1(Ω) and F(u(k)) −→ F∗(u)

as k →∞. By the consideration above we can find for each k ∈ N a sequence (u
(k)
ε )ε>0

with

u(k)
ε −→ u(k) in L1(Ω) and Fε(u(k)

ε ) −→ F(u(k))

as ε→ 0. We will construct a diagonal sequence which will prove the proposition. For
k ∈ N we choose ε(k) > 0 such that∥∥∥u(k) − u(k)

ε

∥∥∥
L1(Ω)

<
1

k
and

∣∣∣F(u(k))−Fε
(
u(k)
ε

)∣∣∣ < 1

k

hold for every ε < ε(k). Without loss of generality we assume that ε(k)↘ 0 as k →∞
and hence, we can define for 0 < ε < 1

ũε := u(k)
ε for ε ∈

[
ε(k + 1), ε(k)

)
.

This yields for 0 < ε < 1

‖u− ũε‖L1(Ω) ≤
∥∥∥u− u(k)

∥∥∥
L1(Ω)

+
∥∥∥u(k) − ũε

∥∥∥
L1(Ω)

≤
∥∥∥u− u(k)

∥∥∥
L1(Ω)

+
1

k

as well as

|F∗(u)−Fε(ũε)| ≤
∣∣∣F∗(u)−F

(
u(k)

)∣∣∣+
∣∣∣F(u(k)

)
−Fε(ũε)

∣∣∣
≤
∣∣∣F∗(u)−F

(
u(k)

)∣∣∣+
1

k

where we have chosen k such that ε ∈ [ε(k + 1), ε(k)). With ε→ 0 we obtain k →∞
and hence

ũε −→ u in L1(Ω) and Fε(ũε) −→ F∗(u)

which completes the proof.
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Chapter 6 The diffuse approximation of W for nonsmooth configurations

6.2 Examples of configurations in S
We conclude this chapter by giving several specific examples of configurations u ∈ S for
which we have proven the Γ-convergence in Theorem 6.3. The definition of S is rather
implicit and only given by an approximation argument. The examples below will provide
not only a vivid interpretation of S but also yield an (incomplete) characterization of
new Γ-limit points of Fε.

i) Non vanishing curvature in intersection points. Let u = 2χE − 1 with
E ⊂⊂ Ω as in the definition of S0 except that we now allow intersection points of
curved boundary segments of ∂E. We show that u ∈ S. For the proof we assume
without loss of generality that there exists exactly one such intersection. The
argument for the general case is identical.
Condition iii) in the definition of S is satisfied automatically as we can choose
V ∈ V1(Ω) with ‖V ‖ = H1b∂E. We also have

F∗(u) = σ

N∑
i=1

(
L(ϕi) +W(ϕi)

)
with the same argument as in the remark on page 104. It remains to show that
there exists a sequence in S0 which approximates u in L1(Ω) with the correct energy.

As in the proof of Lemma 6.5 we restrict to a (sufficiently small) ball B = B(0, R) ⊂
Ω around the considered intersection and assume u = 2χE − 1 with

∂E ∩B = Im(ϕ1) ∪ Im(ϕ2)

for C2-curves ϕ1 and ϕ2 which intersect transversally in the origin and are disjoint
elsewhere in B. For a sufficiently small radius R > 0 we can assume that ϕi can be
written as a graph of a C2-function hi over its tangent line segment gi

{rvi : |r| ≤ R}

for i = 1, 2 where we chose vi := ϕ′i(0). We show that we can approximate each
hi by functions which are constant to zero in a small neighborhood of the origin
such that both the length and the Willmore energy of its graph are preserved in
the limit. Since we are able to construct a proper recovery sequence for each such
approximating function a diagonal argument completes the proof of the claim.
To precise the argument sketched above we restrict to one ϕi and assume gi to be
the real line. Then we omit all indices i in the following. We have h(0) = h′(0) = 0
and for |x| ≤ R we obtain the estimate

|h(x)| =
∣∣∣∣∫ x

0
h′(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

0

∫ t

0
h′′(s) ds dt

∣∣∣∣ ≤ ∣∣x2
∣∣ ∥∥h′′∥∥

L∞([−R,R])
(6.41)

and similarly,∣∣h′(x)
∣∣ ≤ |x| ∥∥h′′∥∥

L∞([−R,R])
. (6.42)
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6.2 Examples of configurations in S

With a smooth cutoff function ξ : [−R,R]→ R given by

ξ :=

{
0 in |x| ≤ 1

2

1 in |x| ≥ 1

we define for 0 < τ < 1
2R

hτ (x) := ξ
(x
τ

)
h(x), x ∈ [−R,R],

see Figure 6.6.

τ 1
2τ 0 1

2τ τ

h

hτ

Figure 6.6: The graph of h and its approximation hτ .

Inequalities (6.41) and (6.42) yield∫ R

−R
(hτ (x)− h(x))2 + (h′τ (x)− h′(x))2 + (h′′τ (x)− h′′(x))2 dx

=

∫ τ

−τ

(
ξ
(x
τ

)
h(x)

)2
+

(
1

τ
ξ′
(x
τ

)
h(x) +

(
ξ
(x
τ

)
− 1
)
h′(x)

)2

+

(
1

τ2
ξ′′
(x
τ

)
h(x) +

2

τ
ξ′
(x
τ

)
h′(x) +

(
ξ
(x
τ

)
− 1
)
h′′(x)

)2

dx

≤C
∫ τ

−τ
τ4 + τ2 + 1 dx

≤Cτ

for 0 < τ < 1 and therefore,

hτ −→ h in H2
(
(−R,R)

)
(6.43)

as τ → 0. Obviously, we also have

h(k)
τ (x) −→ h(k)(x), k = 0, 1, 2 (6.44)

pointwise in [−R,R] \ {0} as τ → 0 by the definition of hτ .
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Chapter 6 The diffuse approximation of W for nonsmooth configurations

Finally, we observe that

W(graphhτ ) + L(graphhτ ) =

∫ R

−R

(h′′τ )2

(1 + (h′τ )2)3 +
√

1 + (h′τ )2 dx

−→
∫ R

−R

(h′′)2

(1 + (h′)2)3 +
√

1 + (h′)2 dx =W(graphh) + L(graphh)

as τ → 0 by the generalized Lebesgue dominated convergence theorem due to (6.43)
and (6.44) and the fact that

(h′′τ )2

(1 + (h′τ )2)3 +
√

1 + (h′τ )2 ≤ 1 + (h′τ )2 + (h′′τ )2

holds in (−R,R) where we have used the general inequality
√

1 + t ≤ 1 + t
2 for

t ≥ 0.
To construct a proper approximating sequence we can now argue as in the proof of
Proposition 6.8. For τ > 0 we denote the indicator function corresponding to the
modified boundary curves from above by uτ and due to the considerations above,
the phase boundary is shaped like a cross inside of B(0, τ2 ). Hence, we can apply
Lemma 6.5 on the ball Bτ := B

(
0, 2τ

3

)
and consequently, there exists a sequence

(uτε)ε>0 which approximates uτ in L1(Bτ ) and therefore in L1(B) such that

Fε(uτε) −→ F(uτ )

as ε → 0. By choosing a sequence (τε)ε>0 which tends to 0 slowly enough (e.g.
choose τε =

√
ε) we can define the diagonal sequence as

uε := uτεε .

ii) H2-curves. Obviously, S includes indicator functions u = 2χE − 1 of sets E ⊂⊂ Ω
as in the definition of S0 but with ∂E given by closed H2-regular curves instead
of C2-curves. In this case condition iii) in the definition of S is still satisfied by
V ∈ V1(Ω) with ‖V ‖ = H1b∂E and we especially have H∂E ∈ L2(H1) and

F∗(u) = σ
N∑
i=1

(
L(ϕi) +W(ϕi)

)
.

We can approximate E with smoothly bounded sets Ek in H2(Ω) and the conver-
gence of energies follows as F is continuous with respect to the H2-topology.

iii) Countably many curves. Let u = 2χE − 1 with E ⊂⊂ Ω such that its (reduced)
boundary is given by

∂∗E =

∞⋃
i=1

Im(ϕi)

for countably many closed C2-curves ϕi, i ≥ 0. Further, assume that every ϕk
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6.2 Examples of configurations in S

has only a finite number of transversal (self) intersections with all curves and that
there are no common points of more than two curves. Precisely, we assume

Λ(x) ≤ 2 for all x ∈ ∂E

with the multiplicity function Λ from (6.4) and additionally, that

#
{
x ∈ ∂∗Ω : Λ(x) = 2

}
<∞.

We show that u ∈ S if

∞∑
i=1

F(ϕi) = σ

∞∑
i=1

(
L(ϕi) +W(ϕi

)
<∞.

Condition iii) in the definition of S is satisfied automatically since ∂∗E is rectifiable
and we can choose V with induced weight measure ‖V ‖ = H1b∂∗E. Especially, we
have

F∗(u) =
∞∑
i=1

F(ϕi) <∞.

It remains to show that there exists a sequence (uk)k∈N in S0 with uk = 2χEk − 1
for all k ≥ 0 which converges in L1(Ω) towards u and approximates F(u).
Therefore, we define Ek ⊂⊂ Ω for k ≥ 1 by choosing its boundary as

∂Ek =
k⋃
i=1

Im(ϕi)

and then set

Ek :=

{
x ∈ Ω : n(∂Ek;x) :=

k∑
i=1

n(ϕi;x) is odd.

}

where n(ϕ;x) denotes the winding number of x with respect to ϕi. It is clear that
uk = 2χEk − 1 ∈ S0 for all k ≥ 1 and by definition

F(uk) = σ

k∑
i=1

(
L(ϕi) +W(ϕi)

)
−→ σ

∞∑
i=1

(
L(ϕi) +W(ϕi)

)
= F∗(u) <∞

as k → ∞. We prove that Ek −→ E in L1(Ω) (i.e. χEk −→ χE in L1(Ω)) as
k →∞. For all k ≥ 1 we have

|∇χEk | (Ω) =

k∑
i=1

L(ϕi) <

∞∑
i=1

L(ϕi) < σ−1F(u) <∞.

Hence, the sequence (Ek)k∈N is bounded in BV (Ω) and we can extract a subsequence
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Chapter 6 The diffuse approximation of W for nonsmooth configurations

(Ekj )j∈N with

Ekj −→ Ẽ

for E ⊂ Ω ([EvGa92], 5.2.3, Theorem 4) and by the construction of Ek we have
∂Ẽ = ∂E and hence

Ẽ = E or Ẽ = Ω \ E.

To see that indeed Ẽ = E holds we can argue as follows. Since E ⊂⊂ Ω there exists
a ball B ⊂ Ω such that

n(∂∗E; b) =
∞∑
i=1

n(ϕi; b) = 0 for all b ∈ B

which especially implies B∩E = ∅. Hence, for every k ≥ 1 we also have n(∂Ek; ·) = 0
in B and thus Ek ∩ B = ∅. The L1-convergence of the subsequence above yields
Ẽ ∩B = ∅ hence Ẽ and E coincide on a set B with positive measure. This implies
Ẽ = E and since we can repeat the same argument for every subsequence of (Ek)k∈N
this finally proves

Ek −→ E

as k →∞.

iv) Junction points of finitely many curve pieces. S allows phase transitions
with junction points of more than 2 curve pieces and arbitrary intersection angles.
For example, a intersection of three curves in a common point (see Figure 6.7 (a))
can be approximated by slightly shifting one of the curves to the side which creates
3 intersection points of 2 curve pieces (Figure 6.7 (b)). By a diagonal argument, we
find a sequence which simultaneously approximates each shifted configuration and
lets the shift size shrink.
Remark that this construction gives rise to a new phase whose sign can be determined
uniquely.
As mentioned in the remark after Lemma 6.5 the argument is crucial for junction
points of higher order with arbitrary intersection angles.

v) Non transversal intersections. For u ∈ S the boundary intersections do not
have to be transversal in general. For example, consider u = 2χE − 1 with ∂E ⊂ Ω
given by two round spheres S1 and S2 touching in one point x0 ∈ Ω (see Figure 6.8).
We can approximate the set by connecting both boundary components to a figure
eight shaped curve which shows a transversal self intersection in x0. Reducing the
size of the intersection angle gives a sequence which converges to u in L1(Ω) and
which realizes (up to the constant σ) the Willmore energy and the surface area

W(u) =W(S1) +W(S2), H1(E ∩ Ω) = H1(S1) +H1(S2).

Beyond the points above (and a combination of them) there are numerous other ways
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6.2 Examples of configurations in S

(a) (b)

Figure 6.7: Approximation of a junction of three curves (a) by creating two additional
intersection points and a new phase (b).

to construct elements in S. For example, it is possible to approximate configurations
with phase boundaries locally shaped as

{x1 = 0} ∪
{

(x1, x2) : x2 = x4
1 sin

(
1

x1

)}
.

∂∗E contains countable many self intersections which cumulate in one point. An approx-
imation can be constructed with a similar argument as in i) by replacing the boundary
in small neighborhoods of x1 = 0 with a straight line segment.

At the end of this chapter, we point out that the limit functional F∗ is not the lower
semicontinuous envelope of F given by

F(u) := inf

{
lim inf
k→∞

F(uk) : uk = 2χEk − 1, Ek C
2-bounded, uk → u in L1(Ω)

}
as for example a configuration u = 2χE − 1 for a figure eight shaped set E satisfies
F∗(u) <∞ but has infinite energy in terms of F .
It is also possible to construct configurations with an even number of cusps (see
[BeDaPa93]) such that both energies are finite but F∗(u) < F(u) <∞.
In general, we have

F∗ ≤ F . (6.45)

This follows directly with the result of [BeMu07] where the authors fully characterize
the lower semicontinuous envelope F . They prove that F(u), u = 2χE − 1, is given
by the minimum of F evaluated in a class of varifolds which contain ∂∗E and have a
unique tangent in every point (see [BeMu07], Definition 4.1 for a precise description).
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E

x0

S1

S2

(a)

x0

(b)

Figure 6.8: Approximation of two touching balls (a) by a sequence of figure eight shaped
configurations (b).

In our case, the class of admissible varifolds in the definition of S contains the varifolds
from Bellettini and Mugnai and hence, (6.45) holds.
However, a full and explicit characterization of S as in [BeMu05] is not available at the
moment. We leave this as an open question for further research.
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7 Summary and outlook

The main purpose of this thesis was the analysis of the diffuse Willmore functional and
its L2-gradient flow in the situation of interacting nonsmooth interfaces. This interest
was especially motivated by configurations which occur in numerical simulations of the
diffuse Willmore flow [EsRäRö14]. We will now interpret the appearing phenomena in
the light of our proven results.
The simulations suggest that configurations with intersecting boundary curves are
energetically preferable states although the sharp interface limit yields infinitely large
values in these cases as corners have infinite curvature.
In Chapter 6 we explained this behavior by proving the Γ-convergence of the diffuse
functionals Fε. The limit functional F∗ extends the phase boundary to an integer
varifold with generalized curvature and its energy value is determined by the support of
this varifold and its geometry. In the case of the simulation snapshots of Figure 1.1 it is
given by the sum of the single energies of the intersecting curves. Hence, the Willmore
energy vanishes in the limit for configurations whose phase boundaries are given by
straight lines without curvature.
This part of the thesis especially extends the Γ-convergence result from [RöSc06] to a
larger class S of nonsmooth interfaces where we explicitly allow transversal intersections
on the boundary. In Section 6.2 we have presented several examples of configurations
u ∈ S which already yield a good idea how S can be described.
A question which directly arises from this work concerns the complete characterization
of S. A similar result by Bellettini and Mugnai in [BeMu07] for the lower semicontinuous
envelope F for H2-bounded sets without intersections of the boundary suggests that
this might be possible.

Another part of this work was dedicated to configurations which appear numerically
stable in the diffuse Willmore flow. To analyze how planar interfaces interact with each
other we considered a quasi one-dimensional situation of parallel stripes. We precisely
determined the minimal energy order in terms of ε and the widths of neighboring stripes
by a scaling law in Section 3.2. Particularly, we proved that quasi one-dimensional
configurations always carry an exponentially small amount of energy in non symmetric
situations. From these results we derived consequences for the diffuse Willmore flow
with small initial energy in Chapter 5. We could show that the diffuse interfaces do
evolve slowly in time. On an exponentially large time scale the layer locations stay
almost constant and hence appear stable in numerical simulations. In view of slow
motion phenomena occurring in gradient flows of the Ginzburg-Landau energy we expect
the same behavior for the diffuse Willmore flow and the present thesis yields a first
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rigorous result in this field.
Although we were not able to determine the movement direction of the zero positions
we expect that they will maximize their mutual distance and distribute equally. We
showed rigorously that the zeros cannot move asymptotically in the “wrong” direction.
Additionally, we presented a heuristic argument which underlines our assumption that
the gradient flow converges to the perfectly symmetric configuration. An exact descrip-
tion of the layer movement is of high mathematical interest. An idea for a possible
approach was already presented at the end of chapter 5.2.

Concerning the analysis of the real two-dimensional case we considered situations of
semi infinite rectangles which result from a slight modification of quasi one-dimensional
stripes. We proved the existence of diffuse interfaces which approximate those confi-
gurations with energy constant to zero for rectangles with the same width. Our class
of solutions can be seen as an analogue of the optimal arc profiles q`,ε in the higher
dimensional case. The proof also showed that in the situation of differing rectangle
widths all diffuse interfaces have to carry positive energy.
In comparison to the existence and characterization of the one-dimensional optimal arc
profiles q`,ε in Section 3.1 the two-dimensional case in Chapter 4 turned out to be noti-
ceably more difficult to prove. This already suggests that a full energy characterization
(e.g., by another scaling law) will be complicated.

Finally, we can summarize that this thesis yields significant progress into the analysis
of the diffuse Willmore functional and its L2-gradient flow. Our results raise several
further questions and interesting problems as a topic for future research.
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Appendix

Maximum principles

Proposition A.1 (Weak maximum principle on narrow domains). Let Ω ⊂ Rn, n ∈ N,
be a bounded domain which lies in a narrow band of sufficiently small width 0 < ε < ε0,
i.e. there exist i ∈ {1, . . . , n} and α ∈ R such that

α < xi < α+ ε for all x = (x1, . . . , xn) ∈ Ω.

Consider a second order elliptic operator L on Ω given by

L :=
n∑

i,j=1

aij(x)∂ij +
n∑
i=1

bi(x)∂i + c(x)

with aij , bi, c ∈ L∞(Ω) for all 1 ≤ i, j ≤ n which is uniformly elliptic, i.e., there exist
constants c0, C0 > 0 with

c0 |ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ C0 |ξ|2 , for all ξ ∈ Rn

and assume that√√√√ n∑
i=1

b2i , |c| ≤ C1

for another constant C1 > 0.
Every function w ∈W 2,n

loc (Ω) with

Lw ≥ 0 in Ω

and

lim sup
x→∂Ω

w(x) ≤ 0

then satisfies z ≤ 0 in Ω

Proof. [BeNi91], 1.2.
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Proposition A.2 (Weak maximum principle on small domains). For d > 0 let Ω ⊂ Rn
be a bounded domain with diam Ω ≤ d and assume L to be a second order elliptic operator
as in Proposition A.1. There exists δ = δ(n, d, c0, C1) > 0 such that the following holds.
If

Ln(Ω) < δ,

then every function w ∈W 2,n
loc (Ω) with

Lw ≥ 0 in Ω

and

lim sup
x→∂Ω

w(x) ≤ 0

satisfies z ≤ 0 in Ω

Proof. [BeNi91], Proposition 1.1.

Basic facts on Radon measures

The results presented in this section are fairly standard and can be found e.g. in
[EvGa92].
Let X be a locally compact and separable metric space.

Definition A.3. An outer measure µ on X is called (positive) Radon measure if

i) µ is Borel regular, i.e., µ is a Borel measure and for all A ⊂ X there exists a Borel
set B with A ⊂ B and µ(A) = µ(B).

ii) for all compact K ⊂ X we have µ(K) <∞.

Remark. A Radon measure µ on X is regular in the sense that

µ(A) = inf {µ(U) : A ⊂ U, U ⊂ X open} for all A ⊂ X
µ(A) = sup {µ(U) : K ⊂ A, K ⊂ X compact} for all µ-measurable A ⊂ X.

Definition A.4. Let M ⊂ X and µ a Radon measure on X. Then we define µbM
given by

(µbM) (A) := µ(A ∩M) for all A ⊂ X

as the restriction of µ to M .

The finiteness of a Radon measure µ on compact sets allows us to integrate functions
φ ∈ C0

c (X,R) and we write

µ(φ) :=

∫
X
φdµ.
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Similarly, if H is a Hilbert space with inner product (·, ·)H then each Radon measure µ
on X and each µ-measurable function σ : X → H with ‖σ‖H = 1 µ-almost everywhere
in X induce a linear functional L : C0

c (X,H)→ R by

L(φ) =

∫
X

(φ, σ)H dµ for all φ ∈ C0
c (X,H). (A.1)

Vice versa, the next proposition states that under suitable assumptions, a linear functi-
onal L : C0

c (X,H)→ R can be written in this way.

Proposition A.5 (Riesz representation theorem). Let L : C0
c (X,H)→ R be a linear

functional satisfying

sup{L(φ) : φ ∈ C0
c (X,H), ‖φ‖H ≤ 1, suppφ ⊂ K} <∞

for all compact K ⊂ X. Then there exists a Radon measure µ on X and a µ-measurable
function σ : X → H with ‖σ‖H = 1 µ-almost everywhere in X such that (A.1) holds.
In this case, µ =: |L| is called the variation measure of L and we have

|L| (U) := sup{L(φ) : φ ∈ C0
c (X,H), ‖φ‖H ≤ 1, suppφ ⊂ U}

for all open sets U ⊂ X.

Proof. [Si83], Theorem 4.1.

Remark. By Proposition A.5 the Radon measures on X can be identified uniquely
with the nonnegative linear functionals on C0

c (X,R) (see [Si83], Remark 4.3).

Definition A.6. A sequence of Radon measures (µk)k∈N on X converges weakly towards
another Radon measure µ, in terms

µk
∗
⇀ µ

as k →∞ if

lim
k→∞

µk(φ) = µ(φ) for all φ ∈ C0
c (X,R).

Proposition A.7. A sequence of Radon measures (µk)k∈N on X converging weakly
towards µ has the lower semi-continuity property

µ(U) ≤ lim inf
j→∞

µj(U)

for each open set U ⊂ X.

Proof. For X = Rn the proof can be found in [EvGa92], 1.9, Theorem 1. The general
case is identical.

With respect to the topology induced by Definition A.6 the space of Radon measures
on X satisfies the following compactness property :
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Proposition A.8. Let (µk)k∈N be a sequence of Radon measures on X (as above)
satisfying

sup
k≥1

µk(U) <∞ for all open and relatively compact U ⊂ X.

Then there exists a subsequence (µkj )j∈N of (µk)k∈N and a Radon measure µ on X with

µkj
∗
⇀ µ

as j →∞.

Proof. [Si83], Theorem 4.4.

Next we want to define the density of Radon measures.

Definition A.9. For a Radon measure µ on X and x ∈ X we define the n-dimensional
upper and lower densities θ∗n(µ, x), θn∗ (µ, x) of µ by

θ∗n(µ, x) := lim sup
ρ↘0

µ(B(x, ρ))

ωnρn

and

θn∗ (µ, x) := lim inf
ρ↘0

µ(B(x, ρ))

ωnρn

where ωnρ
n is the n-dimensional Hausdorff- (or Lebesgue-) measure of a ball in Rn with

radius ρ > 0.
Whenever θ∗n(µ, x) = θn∗ (µ, x) we just denote the value by θn(µ, x) and call it density
of µ.

Definition A.10. Let µ1 and µ2 be two measures on a space X. µ1 is called absolutely
continuous with respect to µ2, in terms

µ1 � µ2

if µ2(A) = 0 implies µ1(A) = 0 for all A ⊂ X.

For the special case X = Rn we have the following differentiation theorem for Radon
measures.

Proposition A.11 (Radon-Nikodym theorem). Let µ1 and µ2 be two Radon measures
on Rn with

µ1 � µ2.

Then there exists a µ2-measurable function dµ1
dµ2

called the Radon-Nikodym derivative of
µ1 with respect to µ2 such that

µ1(A) =

∫
A

dµ1

dµ2
dµ2 for all µ2-measurable subsets A ⊂ Rn.
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For µ2-almost every x ∈ Rn this function is given by

dµ1

dµ2
(x) =

{
lim
r→0

µ1(B(x,r))
µ2(B(x,r)) if µ2(B(x, r)) > 0 for all r > 0

∞ if µ2(B(x, r)) = 0 for some r > 0.

Proof. [EvGa92], 1.6.2, Theorem 2.
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