
Preserving Confidentiality in
Multiagent Systems -

An Internship Project within
the DAAD RISE Program

Te
ch

ni
ca

lR
ep

or
t Daniel Dilger,

Patrick Krümpelmann,
Cornelia Tadros

05/2013

technische universität

dortmund

Part of the work on this technical report has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project A5.

Speaker: Prof. Dr. Katharina Morik
Address: TU Dortmund University

Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de

http://sfb876.tu-dortmund.de

Contents

1 Objectives of the Internship Project 3

2 Background on Project A5 4

3 Internship Report of Daniel Dilger 7

4 Description of Modeled Scenario 8

4.1 The Scene as it is in the Book . 8

4.2 Angerona Simulation . 8

4.3 Mary’s confidentiality policy . 9

4.4 Issues raised by the Scenario . 10

5 Relevant Definitions 11

5.1 d Family of Operators . 11

5.2 Secrecy Weakening . 12

5.3 Open and Closed Queries . 12

5.4 Detail Query and Answer Speech Acts 12

6 Observations and Findings 13

7 Overview of Changes Made 15

7.1 Subgoal Generation . 15

7.2 Intention Update Operator . 16

7.3 Violates Operator . 17

7.4 Belief Updates Operator . 18

7.5 Reasoning Operator . 18

7.6 Agent class . 19

7.7 Intention class . 19

7.8 Skill class . 19

8 Open Issues 19

8.1 Weakening Secrecy and Completely Skeptical Operators 20

8.2 Lying about Facts in the Negative . 20

8.3 GUI Output . 20

1

8.4 Cost Analysis Implementation . 20

8.5 Internal Logic Comparisions . 21

9 Outlook 21

9.1 Further Extensions Relevant for Scenario 21

9.2 Other Extensions Considered . 23

10 Evaluation of the Project 25

11 Appendices 27

11.1 Appendix A: Background on Answer Set Programming 27

12 Appendix B: Test Cases 27

12.1 Core Scenario Test Cases . 28

12.2 Feature Demonstration Test Cases . 29

12.3 Bug Demonstration Test Cases . 33

13 Appendix C: Description and Pseudocode of Changes Made 34

13.1 C1 Subgoal Generation Operator . 34

13.2 C2 Intention Update Operator . 35

13.3 C3 Violates Operator . 36

13.4 C4 Beliefs Update Operator . 37

13.5 C5 Reasoning Operator . 38

13.6 C6 LyingOperator . 38

13.7 SecrecyStrengthPair . 38

2

1 Objectives of the Internship Project

RISE (Research Internships in Science and Engineering) is a summer internship program
for undergraduate students from the United States, Canada and the UK organized by
the DAAD (Deutscher Akademischer Austausch Dienst). Within the project A5 in the
Collaborative Research Center SFB 876 [1], we have planned and conducted an internship
project in the RISE program that should support our research. Daniel Dilger was the
intern and has been supervised by the PhD students Patrick Krümpelmann and Cornelia
Tadros. The aim was to model an application scenario for our prototype implementa-
tion of a confidentiality preserving multiagent system and to run experiments with that
prototype.

The aim of project A5 in general is the investigation and development of advanced tech-
niques for information processing and for protecting the confidentiality of information in
the context of multiagent systems. Information is one of the most valuable commodities,
it forms the basis for human decisions and actions in various fields of society such as
economics, health care or sciences. As such, information is not only shared or published,
but also needs protection. In the database security community there is a long history
of research that has been developing mechanisms for publishing information as statis-
tics or database views while preserving the privacy of individuals or the confidentiality
of other sensitive information in a database [2]. Apart from the idealized conception
in these classical database systems that information is complete and accurate, in many
applications the available information is rather incomplete and vague. In such situations
information needs both, a non-classical representation and further processing based on
expertise for the purpose of decision-making or planning. In the artificial intelligence
community there exists a variety of approaches for the representation and processing of
incomplete and vague information. Examples are answer set programming (ASP) where
both information and expertise are represented by rules, or ordinal conditional functions
(OCF) [7] which provide semantics for conditional logical formulas.

The project A5 brings together research on privacy, non-monotonic reasoning and multia-
gent systems. Its goal is to design agents that are equipped both with a belief component
based on ASP or OCF and with mechanisms effectively shielding their sensitive infor-
mation from other agents. Here, an agent is an autonomous computing system that is
capable of processing information (represented in the belief component) in a rational way
and of automatically deciding and planning its actions driven by internal goals and based
on the belief component.

The specific tasks and objectives of the internship project within the project A5 were as
follows.

• The intern should become acquainted with the Java-based agent system Angerona
already implemented in our project and the theory of confidentiality-preserving
agent interactions.

• The intern should develop and model an agent’s beliefs in a complex scenario.
As a starting point a model of a complex and interesting scenario already existed
but had to be adopted to the research questions within the project A5. The model

3

describes a criminal story based on [3] where agent roles are investigators, witnesses
and criminals.

• The intern should identify a scene from the criminal story with at least one agent
having confidentiality interests. The decision making and actions of all agents in
the chosen scene should be modeled by adequate desires, intentions and Skills for
each agent. Moreover, the agents should be equipped with appropriate speech acts
for their communication in the scene.

• The intern should informally describe the confidentiality interests of one agent in
this scene. Based on this, the intern should specify confidential pieces of information
in an adequate policy language and give semantics to this policy (that is, what the
policy should enforce).

• The intern should instantiate and evaluate the modeled scene under the mentioned
aspects in the Angerona system, especially, with respect to the confidentiality in
the previous task. Appropriate answer set programs for the reasoning components
of all agents had to be developed and applied.

2 Background on Project A5

Project A5 aims at developing theories of confidentiality for multiagent systems whereby
a defending agent maintains a view of a potentially attacking agent. Hereby knowledge
based or epistemic agents are considered, i. e., equipped with symbolic knowledge repre-
sentation formalisms and in particular with non-monotonic ones with advanced inference
and change operators. Epistemic agents with complex inference operators are rarely used
in current implementations of multiagent systems. Moreover, models of confidential-
ity to adequately express the confidentiality interests of an epistemic agent in an open
environment are lacking.

In the following, we survey aspects investigated in project A5 that were relevant in the
context of the RISE internship.

We consider secrecy from the point of view of an autonomous epistemic agent with in-
complete and uncertain information which is situated in a multiagent system [8]. Agents
reason under uncertainty about the state of the environment, the reasoning of other
agents and possible courses of action. They pursue their goals by performing actions
in the environment including the communication with other agents. On the one hand,
the exchange of information with other agents is often essential for an agent in order
to achieve its goals; especially if the agent is part of a coalition. On the other hand,
the agent is interested, or obliged, not to reveal certain information, its secrets. Re-
striction of communication leads to a loss of performance and utility of the individual
agent, coalitions and the whole multiagent system. A good solution of the implied con-
flict between the agent’s goal to preserve secrecy and its other goals is one that restricts
communication as little as necessary in order to preserve secrecy. Secrecy of information
and in particular the inference problem depend on the representation of information and
the appropriate modeling of background information and of the reasoning capabilities of

4

the agents. We show that these can be formalized as properties of the belief change,
the attacker modeling and the action selection components of the agent. The intuitive
formulation of our notion of secrecy preservation can be formulated as follows: An agent
D preserves secrecy if none of its secrets Φ that it wants to hide from agent A is, from
D’s perspective, believed by A after any of D’s actions (given that A does not believe Φ
already).

We designed a secrecy-preserving agent, i. e., an agent that does not perform a secrecy
violating action. Our agent model is based on the well-established belief, desires, inten-
tions (BDI) model. The BDI model [8, 6] has become a leading paradigm in the design
of intelligent agents. This model distinguishes between beliefs, desires, and intentions as
the main components of an agent’s mind, the interactions of which determine its behav-
ior. Roughly, beliefs comprise (plausible) knowledge the agent has concerning the current
situation and how the world works in general, desires encode what the agent wishes to
achieve and hence represent possible goals, whereas intentions focus on the next actions
the agent should undertake to achieve the current goal. The role of beliefs in this scenario
is to provide the agent with useful information to evaluate the current situation and to
find reasonable and effective ways to achieve its goals. In the use of the BDI model in
project A5 we strongly focus on the epistemic state and it inference and change operators.
That is, the agent’s epistemic state contains a representation of its current desires and
intentions which guide its behavior.

The complete agent model is illustrated in Figure 1. The agent gets perceptions from
other agents in its environment which lead to changes of its beliefs. The agent’s beliefs
are comprised of its view on the world, its view on other agents and its secrets. Belief
operators are used to determine the belief sets BS, i. e., the set of inferences from the
view. Different belief operators can be used which represent, e. g., a credulous or a
skeptical reasoner. Based on the changed beliefs, the agent generates its current options,
or desires, with the generate-options operator. Afterwards, the agent commits to some
of its current desires which then form its high-level intentions. The high-level intentions
are then broken down into sub-goals by the Subgoal-Generation Operator. In the latter
process, the potential violation of secrecy of the sub-goals is evaluated by simulating
the implied changes to the beliefs of the agent and in particular on the view of other
agents. If some other agent would be able to infer some secret information based on
the resulting view of that agent, the sub-goal under consideration is determined to be
secrecy violating and alternatives are looked for. The inference of the other agent can be
postulated to apply a credulous or skeptical belief operator. This process ends when it
has determined a non-secrecy violating atomic intention, i. e., an atomic intention can be
immediately achieved by executing an action. The corresponding action is then executed
in the environment and the beliefs are changed accordingly.

The project makes use of Answer Set Programming (ASP) and ordinal conditional func-
tions (OCFs) as two candidates for non-monotonic knowledge representation. For the
internship ASP was used. ASP allows for intuitive knowledge representation and comes
along with several powerful and fast solvers which have proven to be practically usable
which makes ASP especially interesting for resource-constrained data analysis. For a
short introduction of ASP see Appendix A.

5

Environment

Agent

Change

Operator

Generate-Options

Operator

Intention-Update

Operator

Execute

Perception

Action

Epistemic State

Beliefs

World Views Secrets

BS BS

Desires

Intentions

Subgoal-Generation Operator Violates

mental action

copy

Figure 1: Agent model

We implemented a multiagent system framework called Angerona which is based on a
versatile plugin architecture. Agents within this framework are epistemic BDI agents
based on [5] and its BDI extension whereby both, the knowledge representation and the
concrete agent cycle, are flexible. The knowledge representation is based on the interfaces
from the Tweety1 library and thereby allows for the use of a variety of formalisms. The
plugin architecture allows us to easily define and compare different types of agents and
evaluate their performance. The ASP library has been greatly extended in the Tweety
library and used to implement an ASP plug-in for Angerona. An extended BDI cycle for
secrecy preservation based on [5] and its extensions have been implemented as well as an
ASP plug-in realizing different belief and change operators.

1http://tweety.sourceforge.net/

6

http://tweety.sourceforge.net/

3 Internship Report of Daniel Dilger

This document describes the work I performed between May 14th, 2012 and August 3rd,
2012 for my internship project, “Preserving Confidentiality in Multiagent Systems”.

My objective in this internship was to develop and model a scenario in which multiple
agents are present and at least one secret is at stake for one agent. I was then to
implement the scenario using the multiagent simulation framework Angerona, a Java and
ASP based framework developed by the department. I was to try to model the behavior
of my scenario’s agents using existing confidentiality-preserving mechanisms in Angerona,
and where necessary extend Angerona with confidentiality-preserving mechanisms from
the background theory.

The first section “Description of Modeled Scenario” introduces all information relevant
to my scenario. It describes the scenario and the source that inspired it, describes the
scenario as it is modeled in Angerona, explains the confidentiality policy of the agent
of focus (“Mary”) for the scenario, and lists some of the issues that the scenario raises.
Formalized definitions important to understanding the document are given in the section
that follows.

The section “Observations and Findings” explains some mechanisms which I discovered
were necessary for my agents to have so that they would behave as expected for my
scenario.

The section “Overview of Changes Made” provides a description of the changes I made
to Angerona so that my scenario could be modeled.

The section “Open Issues” describes some shortfalls of Angerona that I discovered while
testing my extensions to the framework.

The “Outlook” section gives some suggestions for how to build on the results of my
internship.

Finally, test cases for my scenario are provided in Appendix B and pseudocode describing
the changes made to Angerona are provided in Appendix C.

Summary of Key Activities

• I developed a scenario to model in a multiagent system under the BDI architecture.

• I modeled this scenario in the Java-based multiagent system Angerona.

• In creating the Angerona model I found it necessary to extend Angerona’s capabil-
ities.

• The implementation of my scenario highlighted further useful extensions for Angerona.

In addition to this work for the department, I also presented my progress as of my
eighth week at a DAAD RISE conference in Heidelberg (July 7th 2012).

7

4 Description of Modeled Scenario

This scene comes from Chapter 11 in Agatha Christie’s The Mysterious Affair at Styles.

Agents involved: Coroner, Mary, maid Dorcas. The Coroner asks questions to Mary, who
responds. The maid’s actions are assumed to have already occurred.

4.1 The Scene as it is in the Book

At a hearing the courtroom coroner first asks Dorcas what she overheard of the quarrel
between Emily Inglethorp and another person, who is generally assumed to be her hus-
band Alfred. When questioned by the Coroner Dorcas reveals that she heard something
about a “scandal between husband and wife”.

Mary is questioned by the Coroner next. Her questions are the main focus of interest for
this scene. She knows that it was her husband John who was arguing with Emily. Thus
she has two conflicting goals: to keep her husband’s identity secret, and to avoid lying in
court.

She decides only to reveal that she did hear the quarrel and that she heard the same
fragment that Dorcas revealed. Otherwise she claims she doesn’t know anything about
the argument (though this is her action in the book, it is worth noting claiming ignorance
is a different act from declining to answer, and the former can in fact be considered a
lie).

4.2 Angerona Simulation

The scenario represented in Angerona starts in the middle of the book scenario, after
the maid has already revealed some information about the argument. The Coroner asks
Mary a few open questions, instructing her to tell him everything she overheard during
the argument. Mary wants to keep secret that her husband John argued with Emily. She
knows three things which were stated by Emily during the argument:

1. “You have lied to me”

2. “You owe everything to me”

3. “A scandal between husband and wife”

She also knows that #3 (and only #3) was already revealed to the Coroner by the maid.
The Coroner’s questions are represented by the query said(X), to which Mary must either
reply with one of her facts like said(youLied) or she must tell the lie that she doesn’t know
anything. She wants to choose the answer which is least likely to reveal her secret, but
she is also capable of saying she does not know anything (or anything else) by responding
with dontKnow(said). The Coroner expects to hear at least one piece of information
regarding the argument. If he wants to hear more he will ask again.

Mary reasons as follows:

8

• With right information, Coroner could suspect Alfred, John, or Lawrence

• Alfred and John are married

• All three are financial dependents of Emily

• “A scandal between husband and wife” implies a married man

• “You owe everything to me” implies a financial dependent

• “You have lied to me” is generic and doesn’t single out anyone

For simplicity in implementation the ASP representation of Mary’s reasoning only in-
cludes the rules of which statement suggest who, not her underlying reasoning like “John
and Alfred are married”. In ASP Mary’s knowledge looks as follows.

1 world {
2 s a id (youLied) .
3 s a id (youOwe) .
4 s a id (husbandWifeScandal) .
5 argued (john) .
6 }
7 view−>Coroner {
8 s a id (husbandWifeScandal) .
9 argued (john) :− s a id (husbandWifeScandal) , not argued (a l f r e d) .

10 argued (a l f r e d) :− s a id (husbandWifeScandal) , not argued (john) .
11 argued (john) :− s a id (youOwe) , not argued (a l f r e d) , not argued (lawrence) .
12 argued (a l f r e d) :− s a id (youOwe) , not argued (john) , not argued (lawrence) .
13 argued (lawrence) :− s a id (youOwe) , not argued (john) , not argued (a l f r e d) .
14

15 }

Keep in mind that because Mary’s decision-making process is the central concern of
the scene, it is sufficient to model her views of the Coroner’s reasoning process without
actually giving the Coroner reasoning capabilities. All that the Coroner needs to do is
ask the questions which Mary must decide how to answer.

4.3 Mary’s confidentiality policy

Mary’s secret is that her husband John argued. The only speech acts she is capable of
is giving answers to an open query about what was said, or to express ignorance about
what (or what else, if she has already answered something) was said. She knows three
facts regarding what was said, each of which affects the safety of her secret to a different
degree.

9

Her confidentiality policy is shaped by two desires: protecting her secret and
avoiding being accused of lying in court.

She wants to keep her secret as strong as possible. That is, of all possible considerations
which the Coroner makes, the Mary’s secret appears in the smallest proportion of them
possible. This quantification of secrecy strength comes naturally through the
use of answer sets, as each answer set created by her view of the Coroner can model
a different consideration he makes. The smaller the percentage of answer sets containing
the secret, the better. It’s worth noting that this aspect of the confidentiality policy is
the only one explicitly represented in the model; all other aspects are implied through
Mary’s actions or lack thereof.

Importantly, she seeks to minimize the degree with which she weakens the strength of
her secret. She does not keep a minimum threshold over which her secret must stay.

If some other person reveals information which weakens her secret’s strength, she will
adjust her definition of the secret’s strength. Repeating a piece of secrecy-relevant
information already revealed by someone else has zero cost to her secret. She
can give up secrecy-relevant information revealed by someone else.

A secondary way in which she protects her secret is by avoiding suspicious behavior as
much as possible. “Suspicious behavior” includes any behavior outside of providing an
answer when questioned in court. Thus refusing to answer a question is not an
option under her confidentiality policy, though answering by claiming ignorance is. She
also considers repeating herself suspicious, unless it is to reaffirm that she doesn’t know
anything. Self-repeating is assigned an infinite cost and so is never undertaken.

In addition to choosing a safe truthful answer, Mary’s policy also allows for lying.
She doesn’t produce lies which provide new information to the Coroner, such as saying
“Alfred argued”. Instead she only lies by answering “I don’t know” to a question. As
she does not know what the Coroner could later discover she does not desire to give any
information which could later expose her as a liar.

Her desire to avoid being accused of lying explains why she consider revealing secrecy-
relevant information at all instead of always answering “I don’t know”. She considers
it a risk to tell even the lie “I don’t know” and assigns a cost to that risk
according to her estimated probability of being exposed a liar later. Unless the cost of
revealing secret information exceeds her estimated cost of lying, she will tell the truth.
If the cost of lying and telling the truth are the same, she will still prefer the truth.

4.4 Issues raised by the Scenario

Weakening secrets

In this scenario the secret is never revealed in all possible answer sets by any combination
of revealed information. The secret is at most present in half of the answer sets. However
not all revealed information is equal. Every piece of information allows the secret to exist
in a different proportion of answer sets – either in 0, in 1 out of 3, or in 1 out of 2. Thus
the secret is not as strong given different pieces of information revealed. The information

10

does not reveal but instead weakens secrecy.

Before secrets can be weakened a quantification of their strength must be given. The
strength of a secret is determined by the belief operator assigned to it.

Comparing secrecy weakening to cost of lying

While Mary’s desire to keep her husband’s role in the argument may suggest that she
should always tell this lie, her conflicting desire not to be later found guilty of perjury
in court motivates her to tell the truth. She resolves this conflict of interest by weighing
the cost of lying to the cost of revealing secrecy-relevant information. To assign a cost to
telling a lie, she has to have an estimate of the likelihood that her lie would be revealed.
She then has to be able to compare this weighted estimate to the cost of weakening
secrecy.

For my implementation the estimated cost of telling a lie is fixed for any lie at any time.
It is a constant chosen on the same 0 to 1 scale as the d value representing the strength
of a secret.

The cost of affecting many secrets

Some function must exist which converts the level of secrecy weakening to a value which
is comparable to Mary’s estimated cost of telling a lie. When the cost of telling a lie is
expressed on the same scale as secrecy strength is quantified, as in my scenario’s imple-
mentation, such a function is straightforward for single secrets. The cost of weakening a
secret can be expressed as the difference in the d value representing the old and the new
strength of the secret. The function must be more sophisticated when multiple secrets
are affected by an action. One possibility is to express the cost in terms of the maximum
degree of weakening done to a secret. Another possibility, the one currently in Angerona,
is to sum up the degrees of weakening. Other scenarios may find other functions more
appropriate.

5 Relevant Definitions

5.1 d Family of Operators

The term “d Family of Operators” refers to a family of reasoning operators where each
member is distinguished by a value d, ranging between 0 and 1. The value d represents
the smallest ratio of answer sets containing a fact to total answer sets for the fact to
be believed. A d-value of 0 refers to a completely credulous operator and a d-value of 1
refers to a completely skeptical operator. Formally:

d = 1 - |{x:s∈x,x∈a}||a| where s is the secret in question and a is the set of answer sets.

11

5.2 Secrecy Weakening

Each secret is assigned a reasoning operator which provides the standard by which the
secret is considered known. When the reasoning operator belongs to the d family the
strength of the secret can be quantified by its d-value. An operator with a higher d-value
corresponds to a higher standard by which a secret is considered known. Specifically, the
secret must be present in a lower proportion of answer sets to be considered revealed.
The more credulous a reasoning operator allowed without revealing a secret, the stronger
the secret is kept. To weaken a secret is to replace the secret’s reasoning operator with
one of a lower d-value.

5.3 Open and Closed Queries

The terms open and closed queries come from the database community. An open query
refers to a question to which the answer is the list of all facts which satisfy the conditions
of the question. A closed query refers a question to which a true, false, or unknown value
can be answered. In other words, an open query is requesting a variety of facts like “all of
the presidents of the United States” whereas a closed query is capable of of only providing
true, false, or unknown as an answer to a question like “Was George Washington the first
president?”

5.4 Detail Query and Answer Speech Acts

In the courtroom scenario the Coroner asks Mary an open query, “what was said?” How-
ever, since the agents in the scenario model humans, and not databases, Mary need not
be expected to answer the query with a complete list as a database would. The Coroner
instead expects her to do what is more likely for a human and answers only a subset of all
facts satisfying the conditions of the question. I refer to this variation of open queries as
a “detail query” since only some facts (or “details”) regarding the question are expected,
rather than all relevant information. For the courtroom scenario, because Mary wants
to reveal as little as possible, the subset of possible answers will never have a cardinality
greater than one. Formally:

Definition: Detail Query

For every agent A1, A2 in a set of agents ; p(x) where there exists an x such that there
is a p(x) in the set of literals, the definition of a detail query is <A1 asks the detail
query p to A2 > with the meaning: A1 asks for a detailed answer x to satisfy predicate p

Definition: Detail Answer

For every agent A1, A2 in a set of agents ; p(x) where there exists an x such that there is
a p(x) in the set of literals, the definition of a detail answer is <A1 gives the detail
answer s for predicate p to A2 > with the meaning: A1 returns a set s where s is a set
in which for every element x there is a corresponding literal p(x) in the set of literals.

As an illustrative example of the difference between an open query and a detail query,
consider the query “list the presidents of the United States”. The expected answer to an

12

open query would be a list containing every president in the history of the US. On the
other hand a detail query would only expect a subset of all presidents, as long as at least
one president was named.

As a corollarly to the fact that not all answers are expected for one query, it is possible
to repeat the query and expect new information.

6 Observations and Findings

In implementing my scenario I found a need for a number of confidentiality-preserving
mechanisms present from existing theory.

Contradiction checking

Due to belief revision, enforcement of secrecy for contradictions of current belief base not
possible unless a special contradiction-checking mechanism is included.

Secrecy weakening and choice

If secrets can be weakened rather than digitally “revealed” or “not revealed”, it allows
choice between secret relevant information.

Secrecy weakening and secrecy dynamism

Secrecy-relevant information given up by secret defender if revealed by another source.
This is an automatic result of enabling secrecy weakening.

Evaluation functions of actions in plan

Since Mary wishes to choose an optimal option, among her choices of information to reveal
or lying, three new functions had to be introduced to the intention update operator. One
function needed to calculate the cost of weakening the secrets affected by an action. It
had to determine the cost of not only affecting one secret, but how to combine costs when
multiple secrets are affected. Another function needed to calculate the cost of telling a
lie. Since the consequences of telling a lie cannot be modeled in my scenario, the function
simply assigns an estimated cost to the assumed risk associated with telling a lie. The
third function then compares the costs assigned to the agent’s options, and from them
chooses the minimal costing one.

13

Agent histories and self-repeating

The ability to recognize when secrecy-relevant information has been revealed, and to
weaken the standard of a secret accordingly, is a desirable feature for agents. A con-
sequence of this ability is a motivation to repeat information which has already been
revealed, as once that information has weakened a secret it cannot weaken the secret
further. It can be sensible to repeat information in some contexts, such as to reaffirm a
statement made by another agent, but self-repeating is usually undesirable. Self-repeating
is particularly undesirable in the courtroom scenario, as Mary would appear suspicious if
she always repeated herself when asked a question. To prevent self-repeating, agents have
to be able to remember what they said previously. If agents keep a history of their ac-
tions, they can refer to it to determine whether the action they are currently considering
is a repeat.

Some secrecy weakening preempts lesser weakening

Since secrecy strength is based on the proportion of answer sets revealing secret, revealing
some information removes the secrecy-relevancy of other information if the answer sets
cannot be changed by the new information.

Credulous operators

Any operator other than the purely skeptical needs a policy for contradiction resolution

Semantically different types of strict negation

There is often more than one way in which a statement can be negated, depending on
which particular part of the statement is the focus of the negation. For instance, the
Coroner may believe that an agent Poirot said that Mary lied. Thestatement “Poirot
said Mary lied” would be in his belief set. If that belief were negated, it could be negated
as “Poirot did not say she lied”, a simple negation of the fact, or as “Poirot said she did
not lie” which is a negation by replacing the fact with a contrary one. Only the first type
is supported in the simulated scenario.

Utility of realizing own lies

For Mary’s courtroom scenario an agent needs to be able to recognize when it is lying so
that a cost can be associated with that lie. Having an agent recognize its own lies could
also be useful in an extensions of the scenario’s contradiction checking mechanism. If
an agent wants to distinguish between causing a contradiction to another agent’s belief
base when being deceptive (by telling a lie) or being honest (by, for example, correcting
a mistaken belief held by the other agent), the ability to recognize one’s own lies would
be useful.

14

7 Overview of Changes Made

This section is only an overview of the major changes made. For a full description and
pseudocode of the algorithms introduced here, please refer to Appendix B. While lengthy,
this section does not cover all changes made to the Angerona framework. Some changes
were made purely to make the changes listed here function smoothly within the Angerona
framework; the unincluded changes can be considered as “overhead” work needed to be
performed to extend the capabilities of the framework and not interesting algorithmi-
cally. Such changes include modifying the BaseBeliefbase class and adding new support-
ing classes called “DetailQueryAnswer”, “DetailQueryDO”, “DetailQueryAnswerDO”, and
“DetailPerceptionFactory”.

7.1 Subgoal Generation

I created a new Subgoal Generation Operator which allows for the asking of multiple
questions and the asking and answering of detail queries.

The method “interrogateOtherAgent” produces the questions which an agent may ask
.Questions are generated by parsing the names of the agent’s desires, which are listed in
the simulation file. The names of the desires follow a format “q_textitpredicate(textitarguments)_textitnumber”
(Keep in mind that desires specify specific actions in Angerona; desires are not as abstract
or comprehensive as in the theory). The “q_” tells the Subgoal Generation Operator that
the desire is a question. The textitpredicate is the question being asked. The parentheses
and arguments within are optional. Without them the question will be considered a closed
query later in the answering process. To include them there must be only one argument.
If the argument is in all caps the argument will be considered a variable, and during the
answering process a grounded literal will be found to correspond to that argument, as
is done in answer set programming or Prolog (e.g. said(X) could yield said(youLied)).
The number at the end of the desire’s name is used to enable ordering for questions.
Questions are asked in ascending order according to their number. That is, the question
with the lowest number will be asked first. Once the questions have been produced, they
are packed into subgoals in their specified order. Then, the Intention Update Operator
can refer to those subgoals when choosing what the agent will do next.

The method “answerQuery” produces answers for an agent to give when posed with a
question. As suggested by the syntax of the desires for questions, the Subgoal Gener-
ation Operator also makes distinctions between closed and open query question types.
All questions are stated through an instance of the Java class for detail queries, but
when formulating an answer the answerQuery method calls a method which refers to
the structure of the question. The method “simpleQuery” returns “true” when a close
query type is found. It considers any question a closed query when the predicate doesn’t
have arguments, or when the predicate where all arguments are not stated in all cap-
ital letters (e.g.said(youLied)). A question whose predicate has an argument stated in
all capital letters (e.g. said(X)) produces a return value of “false” for the simpleQuery
method. Within the answerQuery method, a question for which simpleQuery returned
true is given true/false answer. Otherwise an answer for every grounded literal matching

15

the question’s all caps variable argument is given. For example, said(X) produces the
answers said(husbandWifeScandal), said(youOwe), and said(youLied). Lies are also pro-
duced according to how the question was categorized. When an answer to a closed query
question is produced, a lie which is the logical negation of the truthful answer is also
produced. An instance of a class called “Lying Operator” is produced and the truthful
answer is passed to a method called “simpleLie”. This method returns the answer “false”
given “true”, and vice-versa. No special lies are produced for open questions. After the
information-bearing answers have been produced – a truthful answer and correspond lie
for closed query types, one or more truthful answers for open query types – an expression
of ignorance is also produced. Once all of these answers have been produced, they are
packed into the plan for a subgoal of the agent. When it comes time to choose an action,
the agent’s Intention Update Operator will refer to these plans to determine the best
answer for the agent to give.

7.2 Intention Update Operator

The old Intention Update Operator would iterate through atomic actions and choose
the first action whic did not violate confidentiality. I created a new Intention Update
Operator which allows multiple options to be considered at once and which chooses an
optimal option according to some evaluations specific to my scenario. It contains five
methods: the main method processInt, the method isLie, the cost evaluation methods
lyingCost and secrecyWeakeningCost, and the minimizing method minimalCosting. The
method processInt is the one called by the agent cycle. It produces a list of atomic
actions in the agent’s subgoals and plans and then calls the other four methods of the
class in order to determine which atomic action to perform. If the action is determined
a lie by isLie, then a cost according to lyingCost is assigned to the intention (atomic
actions belong to the Intention type). Otherwise, a cost is assigned to the atomic action
according to the secrecyWeakeningCost method. Once costs have been assigned to all
actomic actions in the list, the optimal intention is chosen according to minimalCost.
The secrecy weakenings due to the chosen atomic action are sent to the agent’s object,
and then the intention of the atomic action is returned. The isLie method checks an
“honesty” flag stored in the representation of an intention. If the flag is set to false,
then the isLie method returns true. Otherwise it returns false. The lyingCost method is
passed an intention object. It sets the cost field of that intention to the fixed cost 0.5. A
more complicated version of this method would only be possible if some means existed
for modeling the consequences of being caught lying. There isn’t any such modeling at
the moment, and so there is a simple fixed cost. The secrecyWeakeningCost method
calculates the cost of an intention which weakens secrets. It gets passed a list of pairs
containing a secret affected by the action and the corresponding degree by which the
secret has been weakened. The method returns a cost equal to the sum of the degree by
which each secret is weakened. Other means to combine the cost of weakening secrets
could be considered in the future, such as choosing the maximum degree of weakening
rather than summing the degrees or having the degrees of weakening of different secrets
have different levels of influence on the cost calculated. Note that by the flow of the
processInt method, lies are always excluded from being evaluated by this function. A

16

future Intention Update Operator may want to consider lies that also affect secrets.

The minimalCost method is just a simple minimization function. Given a list of inten-
tions, it chooses the intention with the lowest associated cost.

7.3 Violates Operator

I created a new Violates Operator which is calculates the degree by which secrets are
weakened, checks for potential contradictions in an attacker’s belief set, and avoids giv-
ing the same answer twice. Like most operators in Angerona, my Violates Operator is
invoked through a so-called “processInt” method. While the processInt method of the
Intention Update Operator returned an intention, the processInt method of violates op-
erators returns a boolean which specifies whether the agent’s confidentility policy has
been violated (i.e. a secret has been revealed) within the simulation of a specified inten-
tion. For my particular violates operator processInt always returns false, as my scenario
is concerned with minimizing the degree by which a secret is weakened rather than wheter
a secret has become known. The processInt method is useful mainly because it is the
means by which the method “processIntAndWeaken” is called. This method calculates the
degree by which secrets are weakened and returns a list of SecrecyStrengthPairs, which
associate a degree of weakening to a secret. The list of SecrecyStrengthPairs returned
is then stored in a field called “weakening” to be accessed later by the intention update
operator. Certainly a further extension would be to both calculate the weakenings of an
action and to determine based on the secret’s reasoning operator whether confidentiality
has been violated.

The processIntAndWeaken method first checks if the intended action is an answer, as it
only considers answers as able to affect secrets. Then it refers to the agent’s history to
see if the answer is a repeat of any previous answer it has given. If it is, it considers all
answers infinitely weakened. In the future it should probably be possible to determine if
the answer is a repeat of the same question, and if there are reasons for self-repeating,
such as presenting the same information to a new audience. If the answer passes the
self-repeat test, the answer is added to a copy of the logic program of the agent’s view
of its answer’s receiver (e.g. Mary creates a copy of her view of the Coroner to put
the new information in). The answer sets corresponding to the simulated logic program
are updated accordingly. A check is then made to see if any answer sets exist for the
logic program after its expansion by the new information. If there are no answer sets,
then a contradiction must have occurred and the weakening violates operator assumes
that something bad has happened in its simulation of providing an answer. Therefore it
considers all secrets held by the agent to be infinitely weakened. Note that by adding
the information directly to a logic program the process of belief consolidation is bypassed
altogether. In the future a contradiction checking mechanism such as described here may
not be necessary, as a proper revision operator for the simulation would more appropri-
ately simulate the consequences of producing a consequence in the receiver’s beliefs. At
the moment contradictions are avoided altogether because if consolidated with the belief
revision operator currently implemented, facts are preferred over rules in the event of a
contradiction. This means that a rule which could reveal to the revealing of a secret is

17

ignored if the complement of the secret information is believed, which is an innapropriate
response to contradictions for my scenario; it is assumed that agents give their internal
reasoning processes a higher priority over facts, as facts may come from untrustworthy
sources such as an agent holding a secret. For example, the Coroner should not give up
a rule leading to the secret just because a witness like Mary told him some contradictory
fact – for a full example see “Contradiction checking” in the “Observations and Findings”
section. A better way to produce this desired preference for rules would be to represent
that preference in a new revision operator rather than to use a contradiction checking
mechanism in the violates operator. After contradiction checking occurs, another check
is made to see if any secrets are present in any answers sets of the attacking agent.
If a secret is found present, another method, calculateSecrecyStrength, is called which
calculates the proportion of answer sets in which that secret is present. It returns the
textitd value of the secret according to this proportion. The processIntAndWeakening
then subtracts the new textitd value from the old texitd value of the secret and produces
a SecrecyStrengthPair which matches the affected secret to the difference in textitd val-
ues. The SecrecyStrengthPair is added to the list which eventually becomes the return
value of the method. After the degree of weakening for a secret is calculated, the secret
affect and its corresponding degree of weakening is reported to the user. If it is discov-
ered that no secrets are weakened at all, that fact is reported to the user. Finally, the
method returns the list of SecrecyStrengthPairs is produced. If no secrets were affected
by the simulated answer then the list is simply empty. If a self-repeat or a contradic-
tion is found then a list describing all secrets affected by an otherwise unreachably large
value (such as 1000 in this implementation) is returned. Otherwise the list contains the
SecrecyStrengthPairs calculated by the final step in the method’s execution, in which cal-
culateSecrecyStrength is called and the definition of textitd is invoked. As stated before
the result of the method is stored by the processInt method in a “weakenings” field for
later reference by the intention update operator.

7.4 Belief Updates Operator

I created a new belief update operator which, in addition to updating beliefs as before,
also updates the textitd values of secrets according to the effects of the action chosen by
the agent. The operator receives the values by which to update the strength of secrets
from the agent object. As stated in the description of the new intention update operator,
agent object stores a list of SecrecyStrengthPairs which is set by the intention update
operator when an action is chosen.

7.5 Reasoning Operator

I created a new reasoning operator to produce all answers regarding a question. A
method “queryForAllAnswers” is called by the subgoal generation operator and passed a
question. The method passes that question to a helper method, “findAllAnswers”. The
helper method generates a list of literals by finding all literals whose predicate matches
the predicate of the question. The queryForAllAnswers method takes the list of literals

18

returned by the helper method and bundles each element into the appropriate type for
answers to detail queries, and then returns the new list.

7.6 Agent class

I made two changes to the definition of the agent class to faciliate the changes described
previously. The first was the addition of a history of actions which the new violates
operator refers to in order to check for self-repeating. The actions history is represented
as a simple list of actions. The second change was a field which stores a list of Secre-
cyStrengthPair objects. The belief update operator refers to the field to determine the
secrets weakened and the degrees of weakening caused by the action last chosen by the
intention update operator.

7.7 Intention class

I added two new fields to the intention class. One was a field specifying whether the
intention was “honest”, or not a lie. The honesty field is set by the subgoal generation
operator and referred by the intention update operator. The other field added stores the
cost the intention update operator associates with the intention. As stated in the “Open
Issues” section, in the future both of these changes should be removed in favor of storing
the information in the context associated with the intention, as such an approach would
be more appropriate for the intended agent cycle for Angerona.

7.8 Skill class

As the Skill class inherits from the Intention class, it also contains the honesty and cost
fields. In addition is contains a weakenings field which stores the degree of weakening
calcualted and stored by the violates operator. The weakenings value is retrieved by the
violates operator after a simulation of running the skill is performed. It is the weakenings
field in the Skill object which is accessed by the intention update operator to determine
the cost of weakening secrets and, ultimately, to store in the weakenings field of the agent
object once an atomic action (which has the type of a Skill) is chosen by the operator.

8 Open Issues

While the core scenario runs as expected, there was unfortunately not enough time to
address a few problems with aspects of its implementation or bugs regarding other added
features.

19

8.1 Weakening Secrecy and Completely Skeptical Operators

Currently if a secret has been assigned a completely skeptical reasoning operator – a
reasoning operator with a d-value of 0 – revealing the seceret in an answer set will not
lead to the secret to be given up. Instead, the secret will be “weakened” by a degree of
zero. An internal distinction between a completely credulous reasoning operator and a
lost secret must be made. Some assessment for the cost of losing a secret will have to be
added in the decision-making process of the intention update operator as well. Note that
because a secret is never completely lost in the courtroom scenario, the scenario runs
despite the lack of this important feature.

8.2 Lying about Facts in the Negative

WhenMary tries to keep a negated fact secret like “Alfred did not argue” (¬alfred_argued),
Angerona crashes. Angerona cannot recognize the negated form of a fact as such; it thinks
that the fact is a completely new one which hasn’t been assigned a signature. For more
please refer to Appendix A3, "Bug Demonstration Cases"

8.3 GUI Output

The following are known instances of faulty GUI output:

• A query about a fact with closed arguments, such as “argued(john)?” will be rec-
ognized as a closed query and the answer will be chosen accordingly. However, the
answer will be reported as if it were an answer to an open query, simply because it
has arguments.

• If a fact already present in a belief base is added again, as in the case where Mary
repeats the information that the maid already gave, then that fact will appear twice
in belief base on the screen. The GUI should refer to a set of beliefs rather than a
list so that redundancy doesn’t occur.

8.4 Cost Analysis Implementation

So that Mary could assign costs to her planned actions, I made some direct changes to
the classes which implement intentions. The “Intention” class was given a field specifying
the cost of executing the intention and a field specifying whether the intention was honest
or a lie. These changes are also present in one of Intention’s subclasses, the Skill class.
The problem with these changes are that the cost and the honesty of an intention should
depend on its context. To best fit with the agent-cycle model intended for Angerona, the
action being considered should be taken from the context object associate with the inten-
tion in question, and then the intention update operator should determine the honesty of
intention based on that action in that context. Rather than store the cost of executing
an intention in the intention object, the cost would be stored elsewhere in the intention
update operator class.

20

8.5 Internal Logic Comparisions

There are numerous cases where objects, belong to different types but both being used
to represent logical statements, must be compared. Currently comparisons are made by
parsing the string forms of the logical statements. For example, an answer is found for
a question by checking whether the string form of the predicate of the fact matches that
of the question. Instead a comparision between objects should be made, such as between
the internal object representations of facts. Though this would ultimately come down
to string comparision between the data held within the objects, it would be a cleaner
solution. Likewise conversions between types should be done by building up the objects
comprising those types rather than parsing the string form of the original type.

9 Outlook

I succeeded in modeling my scenario and having my agent “Mary” act according to her
confidentiality policy. In doing so I discovered what confidentiality-preserving mecha-
nisms from the background theory were necessary to include in the Angerona framework.
As I included these mechanisms I realized further extensions which might be necessary
for future simulations. In this section the most interesting of these further extensions are
listed.

9.1 Further Extensions Relevant for Scenario

The following are suggested ways to build on what I did during my internship.

Further interpretation of d parameter

The d parameter used to quantify secrecy strength could also be used to quantify the
credulity of a belief operator. One extreme of credulity, a totally credulous operator
that believes a fact present in one answer set, could be specified with a d value of 1.
On the other extreme, a totally skeptical operator which only believes a fact present in
all answer sets, could be specified with a d value of 0. Of course, the value could be
anywhere in between 0 and 1. The belief operator corresponding to a d value would
be the most credulous operator possible for which a secret of strength d would not be
revealed. For example, a secret of strength d=0 is only considered revealed when it is
present in all answer sets, so the most credulous operator possible is the totally skeptical
one. For a secret of strength d=1, the secret is considered revealed if it is present in one
answer set. The totally credulous operator considers a secret safe only if it is present in
no answer sets. Thus an operator with a d value of 1 is a totally credulous one. A d
of 0.6 corresponds to an operator which considers a secret safe when it is present in less
than 0.4 of answer sets. In other words, an operator with a d value of 0.6 considers a
fact true if it is in 40% of answer sets.

21

Sources of information

Tagging sources of information would be a feature which could also prevent undesireable
actions such as self-repeating. In addition, it could enable features such as sophisticated
contradiction checking (discussed in the section below) or modeling trustworthiness.

Sources of information would ideally be stored in the beliefs of an agent. There, inference
rules could be constructed to affect agent’s behavior according to where facts or rules
come from. For example, if the Coroner believed Mary was a pathological liar, he could
have an inference rule to update his beliefs to the opposite of what Mary told him.
Operators such as the belief revision operator could refer to the agent’s beliefs for sources
of information when deciding how to act. For example, in a model of trustworthiness,
the Coroner could resolve conflicting information given to him by the maid and Mary by
choosing to believe the information from the source he trusts more.

More sophisticated contradiction checking

Sometimes contradicting the beliefs of another agent is justifiable. For example, the
Coroner might have mistaken information which Mary wants to correct. Mary could also
learn new information regarding a topic which contradicts the old information she gave
the Coroner, and she wants to share her new knowledge. For many situations it would
suffice to have a distinction between creating a contradiction by truthful information and
by telling a lie. In other situations, such as when Mary reasons the Coroner could believe
her lies than another agent’s truths, knowing the source of an agent’s information would
be useful.

Different belief change operator

Currently the belief revision operator used will prefer information coming from facts over
information implied by rules. A more appropriate revision operator for my scenario would
have the facts from rules stay and the contradictory facts get removed. This is because it
is assumed that rules represent a set of reasoning processes which are more deeply rooted
in an agent than facts. For this scenario that assumption is made because it is thought
that real people trust their own reasoning processes better than they trust facts given to
them by other people.

A further extension for Angerona would be to have a belief revision operator which allows
some rules to be more deeply rooted than facts but not all rules. There could be some
rules which are specified as deeply rooted while others would be overriden by newer
information. Facts could likewise be specified as deeply-rooted or not. This could be a
way to express beliefs in fundamental laws and facts, like the law of gravity and whatever
rules of reasoning that entails. An ordering to how deeply-rooted a rule or a fact is could
also be specified in the future.

22

Complementary Literals and Reasoning

When an agent possesses any reasoning operator where facts with a 50% probability or
less are believed, there is the possibility that it has to choose its beliefs from contradictory
answer sets. Suppose that an agent has two answer sets to consider, one containing a
and one containing ¬a. Under a credulous operator the agent could believe either fact,
but clearly not both. The operator could be described as “optimistic”, “pessimistic”, or
“nihilistic”, and choose to either believe the positive fact, the negated fact, or neither,
respectively. If a fact appears in more answer sets than its negation, the agent could
be specified to believe the more frequently occuring fact. A parameter could specify at
what minimum difference in frequency does the most frequent fact get favored and where
otherwise its “optimism”, “pessimism”, and “nihilism” preferences take over.

9.2 Other Extensions Considered

Having questions update the views and beliefs of agents

By asking a question an agent reveals some information, but exactly what information
has to be interpreted by the receiver of the question.

For example, if an agent asks “why were you at the cafeteria?” then that reveals he
believes the other agent was at the cafeteria. There would be a classification of questions
somewhere that explains what each type of question normally means.

A particularly useful application of tracking questions would be in inferring the reasoning
operators of other agents. For example, let’s say that Mary believes the Coroner has a
credulous reasoning operator. She knows that a piece of information revealed suggests
“deep voice heard” in 50% of answer sets. She also believes from “deep voice heard” the
Coroner can infer “John argued”. However, suppose the Coroner then asks her “Why did
Alfred argue?”. She interprets this question as meaning the Coroner did not infer “John
argued”, meaning she must either revise her beliefs of the Coroner’s inference rules or her
belief that the Coroner is a credulous reasoner.

The asking of questions would be represented in a belief base the same way as a sources
of information would be.

Updating agent views from world view

Sometimes new information about the world changes an agent’s beliefs about what other
agents believe.

For a simple example, suppose agent Mary is wondering if agent Bob knows agent Tom
was sneaking around his house. If Mary believes was_night, then she may have a rule
representing Bob not knowing. If her belief gets updated to ¬was_night, then she may
believe Bob does know. Views should thus be updated from rules in the world view.

Implementing this change in Angerona would be quite complicated. In fact, all the theory
details aren’t worked out either.

23

Nevertheless it’s a change to consider.

24

10 Evaluation of the Project

The aim of the internship project was to model an application scenario for our prototype
implementation of a confidentiality preserving multiagent system and to run experiments
with that prototype as specified in Section 1. This aim has been completely satisfied
within the time of the internship. Since the intern was an undergraduate with little
previous knowledge about artificial intelligence and computer security a more theoretical
approach to the matter of subject and work closer to the underlying theories was out
of question. The intern already had to get acquainted with the BDI model, ASP, our
framework for epistemic secrecy and the Angerona system.

An application scenario for our framework and implementation is very beneficial for our
ongoing work not only to have a proof of concept but also to be able to model new aspects
that have not been completely worked out theoretically, and to discover these new aspects
in the first place. All of these benefits have been achieved by the internship project. The
chosen scenario shows many aspects of confidentiality in a multiagent system and can be
varied in many ways. At the time of the internship, some of those aspects were already
covered by the theoretical work in project A5 or implemented in the Angerona system, yet,
several aspects had not been under investigation so far. Hence, the intern had to develop
and implement new parts in the Angerona system and was working on its own branch of it.
We could observe that considered theoretical aspects were motivated independently by the
chosen scenario such as the cost and the stability of lies, the weakening of secrets and the
need for information about the sources of information. The new aspects disclosed in the
scenario are in particular the need for open and detailed queries and the secrecy aspects
and possibilities of deception by leaving out secrecy violating information when answering,
and the need for advanced contradiction checking mechanisms based on the agent history
including checks for self-repetition and contradiction. Moreover, the Angerona system was
tested intensely during the internship project which led to many valuable improvements
and bug-fixes.

Summing up, the internship was very valuable and successful on a series of levels. As
just described it was successful in the sense that the intended goals were completely
met and exceeded. Our previous and current work was confirmed and consolidated.
The new aspects discovered already influence our ongoing and future work. Besides the
technical level the project was valuable and fruitful for the intern and for the supervisors.
For the intern it was a new challenge and experience to live and work abroad and in an
environment completely new to him, with respect to the content as well as to the working
environment. For its supervisors it was a way to broaden their experience to design such
a project, to apply for the funding, to select an adequate candidate, and to take care of
and to guide an intern from abroad in all matters involved during its three month stay.

25

References

[1] SFB 876 A5 project. Official project webpage. http://sfb876.tu-
dortmund.de/SPP/sfb876-a5.html, 2011.

[2] Joachim Biskup. Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and Engi-
neering, 7(1):17–37, 2012.

[3] A. Christie. The Mysterious Affair at Styles. Hercule Poirot Mystery Series. 1st World
Library, 2006.

[4] Michael Gelfond and Nicola Leone. Logic programming and knowledge representation
— the A-Prolog perspective. Artificial Intelligence, 138(1–2):3–38, 2002.

[5] Patrick Krümpelmann and Gabriele Kern-Isberner. Agent-based epistemic secrecy.
In Proceedings of the 14th International Workshop on Non-Monotonic Reasoning
(NMR12), 2012.

[6] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of
the 1st International Conference on Multiagent Systems (ICMAS’05), San Francisco,
1995.

[7] W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic states. In
W.L. Harper and B. Skyrms, editors, Causation in Decision, Belief Change, and
Statistics, volume 2, pages 105–134. Kluwer Academic Publishers, 1988.

[8] G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1999.

26

11 Appendices

11.1 Appendix A: Background on Answer Set Programming

We give a short introduction to extended logic programs and the answer set semantics
as presented in [4]. An extended logic program consists of rules over a set of atoms A
using strong negation ¬ and default negation not . A literal L can be an atom A ∈ A
or a negated atom ¬A. The complement of a literal L is denoted by ¬L and is A
if L = ¬A and ¬A if L = A. Let A be the set of all atoms and Lit the set of all
literals Lit = A ∪ {¬A | A ∈ A}. For a set of literals X ⊆ Lit we use the notation
not X = {not L | L ∈ X} and denote the set of all default negated literals asD = not Lit.
L = Lit∪D represents the set of all literals and default negated literals. A rule r is written
as

L← L0, . . . , Lm, not Lm+1, . . . , not Ln.

where the head of the rule L = H(r) is either empty or consists of a single literal and the
body B(r) = {L0, . . . , Lm, not Lm+1, . . . , not Ln} is a finite subset of L. The language of
rules constructed over the set of atoms A this way is referred to as Lasp

At . A finite set of
sentences from Lasp

At is called an extended logic program P ⊆ Lasp
At .

The body consists of a set of literals B(r)+ = {L0, . . . , Lm} and a set of default negated
literals denoted by B(r)− = {Lm+1, . . . , Ln}. Given this we can write a rule as

H(r)← B(r)+, not B(r)−.

If B(r) = ∅ we call r a fact. A set of literals that is consistent, i. e., it does not contain
complementary literals L and ¬L, is called a state S. The reduct P S of a program P
relative to a state S is defined as

P S = {H(r)← B+(r) | r ∈ P,B−(r) ∩ S = ∅}.
A state S is a model of a program without default negated literals P if for all r ∈ P if
B(r)+ ⊆ S, then H(r) ∩ S 6= ∅. An answer set of a program P is a state S that is a
minimal model of P S. The set of all answersets of P is denoted by AS (P).

Two different inference relations are defined based on answer sets. An extended logic
program P infers a literal L credulously, denoted by P |=c

asp L, iff L ∈ ∪AS (P). An
extended logic program P infers a literal L skeptically, denoted by P |=s

asp L, iff L ∈
∩AS (P). P |=◦asp S refers to any answer set inference relation. The answer set semantics
defines the evaluation of queries ?L with L ∈ Lit as yes if P |=◦asp L, no if P |=◦asp ¬L
and unknown else.

12 Appendix B: Test Cases

In addition to my scenario’s simulation and some experimental variations, I had to pro-
duce some simulations to test the features I added. Most test cases worked for the
indended features and anticipated future uses (e.g. affecting more than one secret at
once), but in a few cases bugs still occur. The following test cases provide a complete
overview of the features added to Angerona as well as the known problems.

27

12.1 Core Scenario Test Cases

The following test cases describe the scenario I intended to model as well as some minor
variations.

Full Scenario

Secret and strength: argued(john), d=0.5
Question: said(X) (two times)
Mary’s beliefs:

1 world {
2 s a id (youLied) .
3 s a id (youOwe) .
4 s a id (husbandWifeScandal) .
5 argued (john) .
6 }
7 view−>Coroner {
8 s a id (husbandWifeScandal) .
9 argued (john) :− s a id (husbandWifeScandal) , not argued (a l f r e d) .

10 argued (a l f r e d) :− s a id (husbandWifeScandal) , not argued (john) .
11 argued (john) :− s a id (youOwe) , not argued (a l f r e d) , not argued (lawrence) .
12 argued (a l f r e d) :− s a id (youOwe) , not argued (john) , not argued (lawrence) .
13 argued (lawrence) :− s a id (youOwe) , not argued (john) , not argued (a l f r e d) .
14

15 }

Output: The Coroner asks Mary “said(X)”. Mary answers “said(husbandWifeScandal)”.
The Coroner asks her the same question. Mary answers “said(youLied)”.

Mary has one secret – “argued(john)”. The Coroner asks her “said(X)” twice. She knows
of three things that were said, each of which affects the strength of her secret to a varying
degree. The most secrecy-relevant piece of information, “said(husbandWifeScandal)” is
already known by the Coroner (presumably revealed to him by another witness). Mary
has to take this into account and weaken her secrecy accordingly. She can also say
“dontKnow(said)”, an act which she considers to have a fixed cost equal to weakening a
secret by 0.5.

Full Scenario with Three Questions

Secret and strength: argued(john), d=0.5
Question: said(X) (three times)
Mary’s beliefs: identical to beliefs in “Full Scenario”

Output: The Coroner asks Mary “said(X)”. Mary answers “said(husbandWifeScandal)”.
The Coroner asks her the same question. Mary answers “said(youLied)”. The Coroner
asks Mary “said(X)” a third time. Mary answers “dontKnow(said)”.

28

The same as the above scenario, except that the Coroner asks "said(X)" three times.
Because “said(husbandWifeScandal)” is already known, the set of answer sets considered
by the Coroner cannot be further reduced by new information. Thus further weakening
of secrecy is not possible.

Full Scenario No Maid

Secret and strength: argued(john), d=0.7
Question: said(X) (two times)
Mary’s beliefs:

1 world {
2 s a id (youLied) .
3 s a id (youOwe) .
4 s a id (husbandWifeScandal) .
5 argued (john) .
6 } view−>Coroner {
7

8 argued (john) :− s a id (husbandWifeScandal) , not argued (a l f r e d) .
9 argued (a l f r e d) :− s a id (husbandWifeScandal) , not argued (john) .

10 argued (john) :− s a id (youOwe) , not argued (a l f r e d) , not argued (lawrence) .
11 argued (a l f r e d) :− s a id (youOwe) , not argued (john) , not argued (lawrence) .
12 argued (lawrence) :− s a id (youOwe) , not argued (john) , not argued (a l f r e d) .
13

14 }

Output: The Coroner asks Mary “said(X)”. Mary answers “said(youLied)”. The Coroner
asks her the same question. Mary answers “said(youOwe)”.

The same as the full scenario, except that the maid has not revealed
“said(husbandWifeScandal)”. Mary’s secret is not weakened by that fact, and instead of
her first priority revealing that fact is her last priority. She chooses to say “said(youLie)”
and then “said(youOwe)” instead.

12.2 Feature Demonstration Test Cases

The following test cases highlight important features added to Angerona. The additions
they highlight either were not included in the behavior of the full scenario or which were
less obviously presented in the full scenario.

Full Scenario Two Secrets

Secret and strength: argued(john), d=0.7; eavesdropped_on_argument, d=1.0
Question: said(X) (two times)
Mary’s beliefs: identical to beliefs in “Full Scenario”

29

1 world {
2 s a id (youLied) .
3 s a id (youOwe) .
4 s a id (husbandWifeScandal) .
5 argued (john) .
6 eavesdropped_on_argument .
7 } view−>Coroner {
8

9 argued (john) :− s a id (husbandWifeScandal) , not argued (a l f r e d) .
10 argued (a l f r e d) :− s a id (husbandWifeScandal) , not argued (john) .
11 argued (john) :− s a id (youOwe) , not argued (a l f r e d) , not argued (lawrence) .
12 argued (a l f r e d) :− s a id (youOwe) , not argued (john) , not argued (lawrence) .
13 argued (lawrence) :− s a id (youOwe) , not argued (john) , not argued (a l f r e d) .
14 eavesdropped_on_argument :− s a id (youOwe) .
15

16 }

Output: The Coroner asks Mary “said(X)”. Mary answers “said(youLied)”. The Coro-
ner asks her the same question. Mary answers “said(husbandWifeScandal)”. This case
demonstrates Angerona’s ability to take two affect secrets into account. The scenario is
the same as “Full Scenario No Maid”, but
“said(husbandWifeScandal)” is no longer the most costly piece of information to re-
veal. Instead, “said(youOwe)” is, because it completely reveals Mary’s secret “eaves-
dropped_on_argument”. Angerona adds the costs of weakening each secret affected.
Mary responds to “said(X)” first with “said(youLie)” and then with “said(husbandWifeScandal)”.

Full Scenario with Five Questions

Secret and strength: argued(john), d=0.5
Question: said(X) (five times)
Mary’s beliefs: identical to beliefs in “Full Scenario”

Output: The Coroner asks Mary “said(X)”. Mary answers “said(youLied)”. The Coroner
asks her the same question. Mary answers “said(youOwe)”. Coroner asks his question a
third time. Mary answers “said(husbandWifeScandal)”. The Coroner asks Mary a fourth
and fifth time, and Mary answers with “dontKnow(said)”. This case demonstrates that
saying “dontKnow” is an exception to the no-repeating rule.

Blatant Contradiction with Secret

Secret and strength: john_argued, d=0.5
Question: john_argued
Mary’s beliefs:

1 world {
2 john_argued .
3 } view−>Coroner {

30

4 −john_argued .
5 }

Output: The Coroner asks Mary “john_argued”. Mary answers “¬john_argued”

This case demonstrates agents’ ability to consider creating a contradiction the same as
violating confidentiality.

Blatant Contradiction No Secret

Secret and strength: (none)
Question: said(X) (three times)
Mary’s beliefs:

1 world {
2 john_argued
3 } view−>Coroner {
4 −john_argued .
5 }

Output: The Coroner asks Mary “john_argued”. Mary answers “john_argued” This case
demonstrates that Angerona will not avoid creating contradictions when no secrets are at
stake. The Coroner asks her the same question as in the previous scenario, but this time
since Mary has no secret she wants to keep she answers with her belief “john_argued”.

Implicit Secrecy without Contradiction

Secret and strength: john_argued, 0.6
Question: deep_voice
Mary’s beliefs:

1 world {
2 john_argued .
3 deep_voice .
4 } view−>Coroner {
5 john_argued :− deep_voice .
6 }

Output: The Coroner asks Mary “deep_voice”. Mary answers “¬deep_voice”

This case demonstrates agents’ ability to protect secrets when asked for information
that implies a secret, rather than a question about the secret itself. Mary’s secret is
“john_argued”. The Coroner asks her “deep_voice”. She believes the Coroner has a rule
“john_argued :- deep_voice”. When she simulates adding “deep_voice” to her view of
the Coroner, “john_argued” becomes present as well. To protect her secret she answer
“¬deep_voice”.

31

Implicit Secrecy with Contradiction

Secret and strength: john_argued, 0.6
Question: john_argued, deep_voice
Mary’s beliefs:

1 world {
2 john_argued .
3 deep_voice .
4 } view−>Coroner {
5 john_argued :−deep_voice .
6 }

Output: The Coroner asks Mary “john_argued”. Mary answers “¬john_argued”. The
Coroner asks “deep_voice”. Mary answers “¬deep_voice”.

This case demonstrates the most immediate need for agents to avoid contradictions.
Mary has the secret “john_argued”. The Coroner asks her “john_argued”. She pro-
tects her secret by responding “john_argued=FALSE”. Since Mary believes the Coro-
ner believes everything she tells him, her view of the Coroner’s beliefs now contains
“¬john_argued”. The Coroner then asks her "deep_voice". She believes “deep_voice”
implies “john_argued” to the Coroner. Previously when she simulated adding “deep_voice”
to her view of the Coroner, the contradiction between “¬john_argued” and “john_argued”
was resolved by the belief revision operator by preferring the old fact, “¬john_argued”.
Thus the secret wasn’t present and saying “deep_voice=TRUE” was considered safe. Re-
moving the revision process from her consideration, however, leads to a contradictory
answer set, which is represented a lack of any answer sets. There also the secret is not
present and saying “deep_voice=TRUE” is considered safe. Only when a special check
for contradictions – specifically a check for an empty answer set after a speech act –
allows "deep_voice=TRUE" to be considered a violation of secrecy.

Negative Predicate

Secret and strength: (none)
Question: ¬said(X)
Mary’s beliefs:

1 world {
2 −s a id (youOwe) .
3 s a id (youLied) .
4 s a id (husbandWifeScandal) .
5 }
6 view−>Coroner {
7

8 }

Output: The Coroner asks Mary “¬said(X)”. Mary answers “¬said(youOwe)”

32

This case demonstrates Angerona’s current ability for recognizing negative predicates like
“¬said(X)”.

12.3 Bug Demonstration Test Cases

The following two test cases demonstrate some known problems with Angerona.

Arity 1 Closed Query

Secret and strength: (none)
Question: argued(john)
Mary’s beliefs:

1 world {
2 argued (john) .
3 } view−>Coroner {
4

5 }

Output: The Coroner asks Mary “argued(john)’. Mary answers “argued(john)” (problem
lies in presentation of output)

Since a question like “argued(john)?” contains no ungrounded variables, it is rightly
considered a closed query by the subgoal generation operator. However, due to how the
output is determined, the output for an answer to a closed query with arguments will be
treated the same as the answer to an open query. For this test case, rather than the answer
“argued(john)=TRUE”, the answer is “argued=john” (the format more appropriate for a
question like “argued(X)”).

Negative Secret

Secret and strength: (none)
Question: ¬alfred_argued
Mary’s beliefs:

1 world {
2 −al f red_argued .
3 }
4 view−>Coroner {
5

6 }

Output: The Coroner asks Mary “¬alfred_argued”. Mary doesn’t answer – the program
crashes

This test case demonstrates that it is not currently possible to keep secrets about negative
facts, like “¬alfred_argued”. In this test case the Coroner asks Mary “¬alfred_argued”.

33

Mary believes “¬alfred_argued” but that is her secret. So she should answer “¬alfred_argued=FALSE”.
Instead, the program crashes after the Coroner asks her the question. The crash is because
a signature was not assigned to the fact ¬alfred_argued, only alfred_argued, and the
program considers ¬alfred_argued unrelated to alfred_argued rather than its negation.

13 Appendix C: Description and Pseudocode of Changes
Made

The following sections describe the major changes made to the Angerona program. The
violates, intention update, belief upate, reasoning, and subgoal generation operators were
rewritten. Additionally, the new classes “LyingOperator” and “SecrecyStrengthPair” are
included to better understand the algorithms of the other pseudocode. The changes
made to the Agent, Intention, Skill, and BaseBeliefbase classes were only small addi-
tions. These changes and the descriptions of new helper classes like DetailQueryAnswer,
DetailQueryDO, DetailQueryAnswerDO, and DetailPerceptionFactory are not described
in pseudocode here because they exist only as support within the framework for the
algorithms described in what was included.

13.1 C1 Subgoal Generation Operator

The file for this subgoal generation operator is called “SubgoalGenerationOperator” and
is located in the “angerona.fw.mary” package.

Generating Ordered Questions

In method interrogateOtherAgent
1 Get a l l d e s i r e s from ob j e c t o f agent in ques t ion
2 Sort d e s i r e s in ascending order by number at the end o f de s i r e ’ s name

Asking a Question

In method interrogateOtherAgent
1 I t e r a t e through d e s i r e s in r ev e r s e order :
2 i f name o f d e s i r e doesn ’ t s t a r t with a ‘ ‘ q_’ ’ :
3 cont inue
4 predicateName :− port ion o f name be fo r e parentheses
5 termNames :− port ion o f name within parentheses
6 terms :− l i s t o f terms types .
7 One element f o r each item in termNames s t r i n g (items seperated by ‘ ‘ , ’ ’) .
8 query :− Deta i l Query ob j e c t bu i l t from predName , terms
9 subgoal :− new subgoal ob j e c t

10 add query to subgoal

Developing Options for Answers

In method answerQuery

34

1 Retr i eve the query from the agent ’ s pe rcept ion
2 Retr i eve from agent world views a l l f a c t s r e l a t e d to query
3 (as determined by agent ’ s r eason ing operator)
4 trueAnswers := l i s t o f these r e t r i e v e d f a c t s
5 //The f i r s t context must be made with a f a c t o ry
6 //Others can be i n i t i a l i z e d from cons t ruc to r
7 //Thus the f i r s t i sn ’ t made in the same loop as the othe r s
8 I n i t i a l i z e new ‘ ‘ context ’ ’ ob j e c t with agent ’ s percept ion , us ing Context Factory c l a s s
9 subgoal := new subgoal ob j e c t

10 add context to subgoal
11 Map s t r i n g ‘ ‘ answer ’ ’ to f i r s t element in trueAnswers
12 I n i t i a l i z e new l i s t a l lAnswers
13 Add each element in trueAnswers to a l lAnswers
14 pass query to ‘ ‘ simpleQuery ’ ’ method
15 i f the query i s s imple :
16 i f trueAnswers has at l e a s t one element :
17 truth := f i r s t element o f trueAnswers
18 l i e := l o g i c a l negat ion o f truth
19 add l i e to a l lAnswers
20 add ‘ ‘ dontKnow (’ predName ’) ’ ’ to a l lAnswers
21 f o r a l l e lements but f i r s t in a l lAnswers :
22 elm := next unre t r i eved element
23 context := new context ob j e c t
24 map s t r i n g ‘ ‘ answer ’ ’ to elm
25 add mapping to context
26 add context to subgoal s tack
27 add subgoal to plan

Determine Whether a Query is Closed

In method simpleQuery
1 i f the a r i t y o f the query > 1 :
2 termList := l i s t o f terms from query
3 i f f i r s t term ’ s name a l l upper case :
4 return f a l s e
5 return true

13.2 C2 Intention Update Operator

The file for this intention update operator is called “MaryIntentionUpdateOperator” and
is located in the “angerona.fw.operators.def” package.

Extracting Atomic Intentions

In method processInt
1 atomic Intent i ons := new empty l i s t o f i n t e n t i o n s
2 f o r every subgoal in the agent ’ s p lans :
3 f o r every stack o f i n t e n t i o n s in the subgoal :
4 i f the f i r s t element in the stack i s an atomic ac t i on :
5 i n t en t i on := f i r s t element in stack
6 i f i n t en t i on i s a l i e accord ing to method i s L i e :
7 a s s i gn co s t to i n t en t i on accord ing to ly ingCost
8 add in t en t i on to atomic Intent i ons
9 e l s e :

10 s imulate running i n t en t i on (us ing run method in i n t en t i on ob j e c t)
11 s k i l l := in t en t i on cas t to s k i l l ob j e c t
12 weakenings := weakenings f i e l d in s k i l l
13 a s s i gn co s t to i n t en t i on accord ing to secrecyWeakeningsCost (weakenings)
14 add in t en t i on to atomic Intent i ons
15 min := in t en t i on returned by minimalCost ingIntent ion (a tomic Intent i ons)
16 s e t agent ’ s weakenings to min . getWeakenings ()
17 return min

Assigning Cost to Lies

In method lyingCost
1 return est imate o f 0 .5

35

Determining Cost of Weakening Secrets

In method secrecyWeakeningCost
1 t o t a l := 0
2 f o r each SecrecyStrengthPa i r ob j e c t in argument l i s t :
3 add pa i r . getDegreeOfWeakening () to t o t a l
4 return t o t a l

Choosing Minimal Costing Intention

In method minimalCostingIntention
1 minIntent ion := f i r s t element in argument l i s t ‘ ‘ i n t en t i on s ’ ’
2 minCost := cos t a s s o c i a t ed with minIntent ion
3 f o r each in t en t i on in i n t en t i o n s :
4 i f i n t en t i on cos t l e s s than minCost :
5 minIntent ion := in t en t i on
6 minCost := cos t o f i n t en t i on
7 return minIntent ion

13.3 C3 Violates Operator

The file for this violates operator is called “WeakeningViolatesOperator” and is located
in the “angerona.fw.operators.def” package.

Checking for Self-Repeating

In method processIntAndWeaken
1 a := answer being cons ide red
2 s e c r e t L i s t := empty l i s t o f SecrecyStrengthPai r ob j e c t s
3 f o r each ac t i on in agent ’ s ac t i on h i s t o r y :
4 i f a equa l s ac t i on in a deep comparison (each f i e l d value compared) :
5 s e c r e t L i s t := value returned by pass ing s e c r e t L i s t to representTota lExposure method

Adding New Information to Simulated Program

In method processIntAndWeaken
1 view := deep copy o f agent ’ s view o f answer ’ s r e c e i v e r
2 program := l o g i c program stored in view
3 answerFormula := l o g i c formula r ep r e s en t a t i on o f a
4 ru l e := answerFormula converted to a l o g i c ru l e
5 add ru l e to program

Checking for Contradictions

In method processIntAndWeaken
1 aspReasoner = reason ing operator s to red in view
2 //The l i n e below needs to be done to g ive the reasoner the expanded l o g i c program of view
3 c a l l i n f e r method in aspReasoner , pass view
4 newAnsSets := l i s t o f answer s e t s from aspReasoner
5 i f newAnsSets i s nu l l :
6 //No answer s e t s (not even an empty one) means a con t r ad i c t i on occurred
7 s e c r e t L i s t := value returned by pass ing s e c r e t L i s t to representTota lExposure

36

Determing Secrets Affected

In method processIntAndWeaken
1 secretConta ined := f a l s e
2 f o r each s e c r e t t e x t i t { curSec r e t } o f the agent ’ s s e c r e t s :
3 s e c r e t I n f o := l o g i c formula r ep r e s en t a t i on o f curSec r e t
4 f o r each answer s e t t e x t i t {ans} in newAnsSets :
5 i f ans conta ins s e c r e t I n f o :
6 secretConta ined := true
7 i f s ec rec tConta ined :
8 sPa i r := new SecrecyStrengthPa i r
9 de f i n e sPair ’ s s e c r e t as curSec r e t

10 curStrength := d value o f cu rSec r e t
11 newStrength := ca l cu l a t eSe c r e cyS t r eng th (s e c r e t I n f o , newAnsSets)

Determining Degree of Weakening

In method calculateSecrecyStrength
1 arguments : s e c r e t I n f o (l o g i c formula form of a s e c r e t) and ansSets (a l i s t o f answer s e t s)
2 set sWithSecret := 0
3 t o t a l S e t s := number o f s e t s in ansSets
4 f o r each answer s e t t e x t i t { as } in ansSets :
5 program := answer s e t converted to l o g i c program
6 sec r e tRu l e := s e c r e t I n f o converted to a ru l e
7 i f the program conta ins s e c r e tRu l e :
8 set sWithSecret++
9 quot i ent := setsWithSecret / t o t a l S e t s

10 // Strength de f ined accord ing to d e f i n i t i o n o f d parameter
11 s t r ength := 1 − quot i ent
12 return s t r ength

Considering secrets totally exposed

In method representTotalExposure
1 l i s t := l i s t o f SecrecyStrengthPa i r ob j e c t s passed as an argument
2 f o r each element in l i s t :
3 s e t element ’ s degreeOfWeakening to 1000
4 return l i s t

13.4 C4 Beliefs Update Operator

While the violates operator calculates the degree a secret would be weakened by an action,
and the intention update operator chooses actions acocrdingly, it is up to the belief up-
dates operator to also update the strength of secrets. The file for this beliefs update opera-
tor is called “MaryBeliefUpdateOperator” and is located in the “angerona.fw.operators.def”
package.

Weakening actual secrets

In method processInt
1 // Reca l l that the weakenings f i e l d i s s e t by the i n t en t i on update operator when an act i on i s chosen
2 weakenings := l i s t o f Sec recySt rengthPa i r s s to red in the agent ’ s ob j e c t
3 f o r each s e c r e t t e x t i t { agentSecre t } the agent holds :
4 f o r each s e c r e t t e x t i t {weakenedSecret } present in an element o f weakenings :
5 i f agentSecre t matches weakenedSecret :
6 //Remember that s t r ength i s quan t i f i e d f o r a s e c r e t by i t s d value
7 subt rac t from agentSecret ’ s s t r ength weakenedSecret ’ s degree o f weakening

37

13.5 C5 Reasoning Operator

The file for this reasoning operator is called “AspDetailReasoningOperator” and is located
in the “angerona.fw.logic.asp” package.

Respond to an open query

In method openQueryAnswers
1 Parameter : l o g i c a l formula c a l l e d query
2 queryPred icate := pred i ca t e component o f the query
3 knowledge := l i s t o f l o g i c a l formula forms o f f a c t s agent b e l i e v e s
4 answer := empty l i s t o f l o g i c a l formulas
5 f o r each element f in knowledge :
6 f a c tP r ed i c a t e := pred i ca t e component o f f
7 i f f a c tP r ed i c a t e equa l s queryPred icate :
8 add f to answers
9 return answers

13.6 C6 LyingOperator

The file for this component is called “LyingModule” and is located in the “angerona.fw.mary”
package. In method lie

1 parameter : l o g i c a l formula c a l l e d truth
2 i f t ruth i s a negat ion :
3 return p o s i t i v e form of truth
4 e l s e :
5 re turn negated form of truth

13.7 SecrecyStrengthPair

The file for this component is located in the “angerona.fw.logic” package. The class is so
simple its entirety is represented below.

1 s e c r e t := nu l l
2 degreeOfWeakening := 0
3 s e t S e c r e t (pas sedSecre t) :
4 s e c r e t := passedSecre t
5 setDegreeOfWeakening (degree) :
6 degreeOfWeakening := degree
7 ge tSe c r e t () :
8 re turn s e c r e t
9 getDegreeOfWeakening () :

10 return degreeOfWeakening

38

	Objectives of the Internship Project
	Background on Project A5
	Internship Report of Daniel Dilger
	Description of Modeled Scenario
	The Scene as it is in the Book
	Angerona Simulation
	Mary's confidentiality policy
	Issues raised by the Scenario

	Relevant Definitions
	d Family of Operators
	Secrecy Weakening
	Open and Closed Queries
	Detail Query and Answer Speech Acts

	Observations and Findings
	Overview of Changes Made
	Subgoal Generation
	Intention Update Operator
	Violates Operator
	Belief Updates Operator
	Reasoning Operator
	Agent class
	Intention class
	Skill class

	Open Issues
	Weakening Secrecy and Completely Skeptical Operators
	Lying about Facts in the Negative
	GUI Output
	Cost Analysis Implementation
	Internal Logic Comparisions

	Outlook
	Further Extensions Relevant for Scenario
	Other Extensions Considered

	Evaluation of the Project
	Appendices
	Appendix A: Background on Answer Set Programming

	Appendix B: Test Cases
	Core Scenario Test Cases
	Feature Demonstration Test Cases
	Bug Demonstration Test Cases

	Appendix C: Description and Pseudocode of Changes Made
	C1 Subgoal Generation Operator
	C2 Intention Update Operator
	C3 Violates Operator
	C4 Beliefs Update Operator
	C5 Reasoning Operator
	C6 LyingOperator
	SecrecyStrengthPair

