Technical Report

Computing on
high performance clusters
with R:
Packages BatchJobs and
BatchExperiments

Bernd Bischl, Michel Lang,
Olaf Mersmann,
Jorg Rahnenflhrer, Claus Weihs

1/2012

technische universitat _ Verfiigbarkeit von
dortmund Information durch Analyse unter

Ressourcenbeschrankung

This work was partly supported by the Research Training Group “Statistical Modelling”
of the German Research Foundation (DFG), the “Graduate School of Energy Efficient
Production and Logistics” and by the German Research Foundation (DFG) within the
Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained
Analysis”, project AS.

We thank the team of the LiDO HPC cluster at the TU Dortmund for their technical
support while developing and using both R packages.

We also thank Heike Trautmann, Oliver Flasch and Uwe Ligges for helpful discussions
and comments.

Released on: 2012-05-29.

Speaker: Prof. Dr. Katharina Morik

Address: TU Dortmund University
Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de

http://www.statistik.tu-dortmund.de/gk-english.html
http://www.nrw-forschungsschule.de/
http://www.nrw-forschungsschule.de/
http://sfb876.tu-dortmund.de/SPP/sfb876-a3.html
http://sfb876.tu-dortmund.de/SPP/sfb876-a3.html
http://sfb876.tu-dortmund.de

Abstract

Empirical analysis of statistical algorithms often demands time-consuming ex-
periments which are best performed on high performance computing clusters. We
present two R packages which greatly simplify working in batch computing envi-
ronments.

The package BatchJobs implements the basic objects and procedures to control
a batch cluster within R. It is structured around cluster versions of the well-known
higher order functions Map, Reduce and Filter from functional programming. An
important feature is that the state of computation is persistently available in a
database. The user can query the status of jobs and then continue working with a
desired subset.

The second package, BatchExperiments, is tailored for the still very general sce-
nario of analyzing arbitrary algorithms on problem instances. It extends BatchJobs
by letting the user define an array of jobs of the kind “apply algorithm A to prob-
lem instance P and store results”. It is possible to associate statistical designs with
parameters of algorithms and problems and therefore to systematically study their
influence on the results.

In general our main contributions are: (a) Portability: Both packages use a
clear and well-defined interface to the batch system which makes them applicable
in most high-performance computing environments. (b) Reproducibility: Every
computational part has an associated seed that the user can control to ensure
reproducibility even when the underlying batch system changes. (c) Efficiency:
Efficiently use batch computing clusters completely within R. (d) Abstraction and
good software design: The code layers for algorithms, experiment definitions and
execution are cleanly separated and enable the writing of readable and maintainable
code.

1 Introduction

Time-consuming computer experiments play an increasingly important role in modern
statistical applications for researchers and practitioners alike. While many scientists
have access to powerful cluster systems or could purchase computing resources from
cloud providers such as Amazon, the effort required to harness these types of systems
is still substantial. The time spent to familiarize oneself with the ins and outs of these
types of systems is a major hindrance to adoption — not every statistician is a proficient
computer scientist. But even after overcoming this hurdle, practitioners are burdened
by spartanic tooling and little or no automation to support their typical computing
workflow. There are many reasons for this lack of tooling. One is that the type of workload
that statistical problems induce is sometimes atypical for “traditional” high-performance
computing (HPC). In traditional HPC, many nodes of a cluster are combined for hours
or days at a time to solve a single problem. Statistical simulations on the other hand
often call for many repetitions of the same or very similar (often smaller) jobs. They are
what is called “embarrassingly parallel”. Therefore, instead of running a small number
(say 10-20) of jobs, we usually produce thousands of jobs which must be processed, but
that do not necessarily have to communicate with each other. Also, in the increasingly
important field of large scale data analysis some methods exist that rely on bagging or
data partitioning techniques. These algorithms are mostly embarrassingly parallel and
they often require only moderate, simple communication in between longer intervals of
independent calculations.

To understand the intricacies of typical HPC clusters we have to examine how they are
managed. Here, so-called job schedulers come into play, sometimes also referred to as
batch queuing systems. It is their duty to assign tasks to worker nodes, manage job
submissions, handle the job accounting and perform routine housekeeping. On these
systems it is therefore not possible to directly start a process on a given node. Instead,
we have to submit special job definitions to the batch system which in turn — based on
our resource requirements — decide when and where our task is executed. This means all
jobs are placed in queues and processed in some order to guarantee efficiency and fair
share among users. Because the assignment of jobs to queues and the management of the
queues incurs considerable overhead, these systems can usually deal with no more than

a few hundred jobs at once!.

From these rather superficial considerations we can already draw important conclusions:
(a) The user has to cope with many technicalities to operate such clusters. This includes
commands on the operating system level for submission and status overview as well as
file formats for job definitions. Even worse, both commands and file formats are not
standardized across different batch systems. (b) For very large statistical experiments we
will in general not be able to submit all jobs at once. One reason is the already mentioned
technical queue limit. Also, errors can occur on all stages and some jobs might have to be
resubmitted. And last but not least, after we have gained more insight into the results,
we might want to add further experiments. Keeping track of the state of computation

IThere are schedulers which will work with many more jobs, but they require considerable computing
power dedicated to the scheduler. Their use is usually restricted to the fastest cluster systems with many
thousands of nodes.

might become difficult. (c¢) Furthermore, up to a point it will hold true that the smaller
we can construct our tasks, the more efficiently we can use our cluster. Many small jobs
that require only a few minutes or hours will be scheduled much earlier than few large
ones that require days of computation time.

We provide two R (R Development Core Team, 2012) packages to work in these environ-
ments which are applicable in many different scenarios. Our design goals are:

e Allow any batch system in principle.

e Complete control of the batch system from within R.

e Let the user concentrate on the experiments instead of cluster management code.
e Build upon Map, Reduce and Filter from functional programming.

e Persistent state of computation for experiments.

e Efficient use of available computing resources.

e (Clean separation of cluster and submission code from experiment definitions.

e Reproducibility in distributed environments, even if the architecture changes.

The first package, BatchJobs, implements the core infrastructure required to interact with
a cluster system. It enables the user to define jobs, submit them to the batch system,
query their status and collect the results. Its interface is designed to mimic the powerful
functional programming concepts of Map, Reduce and Filter — which are also available
in R under these names. Results can be further processed in parallel by mapping over
them again.

The second package, BatchExperiments, is tailored for the general problem of studying
combinations of algorithms on problem instances. This subsumes among other things:

e benchmarking experiments where multiple algorithms are compared on multiple
problem instances,

e sensitivity analysis for studying the influence of algorithm parameters on algorithm
performance,

e statistical simulation studies which often comprise a combination of the previous
two tasks,

e parameter tuning of algorithms,

e meta learning where one tries to predict algorithm performance based on problem
characteristics.

BatchExperiments builds upon the BatchJobs framework by letting the user quickly
define jobs of the kind “apply algorithm A to problem instance P”. It is furthermore

possible to associate a statistical design with the parameters of an algorithm or problem
so that jobs are automatically generated for all parameterizations.

Both packages are written in such a way that they can be used on almost any cluster.
Even a loosely coupled set of nodes which are only accessible via SSH can be employed
as a makeshift cluster. This is achieved by using an abstract interface to specify how the
BatchJobs package interacts with the cluster. Several implementations of these so-called
“cluster functions” are provided in the package but system administrators and users are
free to implement their own versions which fit their environments. It should be noted
that this is a one-time effort for a site and we have spent a considerable amount of time
on providing flexible generic cluster functions which should work for a large number of
installations.

The next Chapter 2 gives a brief overview of other comparable work. The following
Chapters 3 and 4 introduce the packages BatchJobs and BatchExperiments. For readers
with a strong focus on applied work we recommend to mainly concentrate on the chapter
about BatchExperiments. Nevertheless, the sections from BatchJobs on the configuration
file (3.1), on the registry (3.2), on submitting jobs (3.6), on status queries (3.7), on
collecting results (3.8) and on debugging (3.11) are crucial for usage and should be read
as well. Chapter 5 addresses the aspects of reproducibility in computational statistics,
Chapter 6 finally provides a conclusion and an outlook.

2 Review of other relevant work

A wealth of R packages for HPC is available. As of writing, the CRAN Task View “High-
Performance and Parallel Computing with R”? lists over 60 packages for HPC and parallel
computing in R. Of these, some provide low-level parallel computing functions, others
contain specialized parallel versions of certain algorithms and still others serve as bridges
to other computing resources or frameworks. The most widely used low-level packages are
Rmpi (Yu, 2010) and nws (Revolution Analytics and Pfizer, 2010). These packages allow
the explicit parallelization of R functions by using, e.g., the Message Passing Interface
(MPI) or the network spaces (NWS) abstraction. All of these packages require extensive
reworking of the code that should be executed concurrently and are meant for settings
where the parallel tasks need to communicate with each other. They are best used in
traditional HPC settings when there is one big task that can be parallelized and there
is significant communication between its subtasks to synchronize or exchange temporary
results.

Since these low-level interfaces are somewhat cumbersome to use, there are a variety of
wrappers for these packages which provide a more abstract interface to the underlying
cluster. Examples are snow (Tierney et al., 2011), snowfall (Knaus, 2010) and foreach?
(Revolution Analytics, 2011). Most of these packages provide parallel versions of R’s

2http://cran.r-project.org/web/views/HighPerformanceComputing.html

3foreach is actually just a front-end which requires a back end to dispatch the work. There are
many different packages on CRAN that can serve as a back end for foreach. They are all named
do<technology>.

http://cran.r-project.org/web/views/HighPerformanceComputing.html

apply family of functions. This is also true for multicore (Urbanek, 2011) which includes
a parallel version of lapply for multiple cores or CPUs. A notable exception to this
programming style is foreach which mimics a parallel for loop. A good overview of these
functions and their respective advantages and disadvantages is given in Schmidberger
et al. (2009).

In addition to these, there is a plethora of specialized packages that implement parallel
versions of statistical algorithms. They usually employ one of the above mentioned pack-
ages internally to access the parallel computing resources. A notable exception is the
SPRINT package (Hill et al., 2008) which contains only a few highly optimized routines
that are explicitly tuned to run well on large HPC clusters. There are also packages to
tap into the vast computing power of modern graphics processors, but these currently
require considerable low-level programming skills w.r.t. the graphics processing unit and
it is especially hard to map memory-intensive algorithms to these architectures.

All of the packages described so far are “synchronous” in that they require a running R
process to orchestrate the parallel execution on multiple nodes that have been allocated
using a job scheduler. While this is certainly feasible for, e. g., small benchmark studies,
larger experiments tend to result in job allocations that are too large for the cluster
to satisfy. What we really want is a mechanism to run our tasks in an “asynchronous”
fashion. That means, we want to define all our tasks and then let the job scheduler
execute these as resources become available. While this is conceptually possible with
current batch systems, practice has shown that they cannot cope with the huge number
of jobs produced by this approach. Even moderately large experiments can easily produce
tens of thousands of tasks that need to be executed and, while each task may only run for
a couple of minutes, their sheer number will in almost all situations overwhelm the job
scheduler. We therefore started to develop tools that let us submit just a few jobs, wait
until they were finished and then submit some more, thereby running all jobs in such a
piecemeal fashion. Over time this collection of utilities grew and was then rewritten as a
proper R package resulting in what is now the BatchJobs package.

BatchJobs is not the first package which implements this idea, there is another R pack-
age named batch (Hoffmann, 2011) which is similar but less fully featured. It provides
facilities to submit an R script to a batch system and combine the results as data frames.
Parameters have to be passed as command line arguments and error handling is less
sophisticated compared to our package.

Another package under active development is RHIPE (Cleveland et al., 2011) which
integrates R into a Hadoop* environment. Apache’s Hadoop is a derivation of Google’s
MapReduce framework (Dean and Ghemawat, 2008) to support running applications in
distributed environments, especially for the purpose of handling very large data. The
scope of the Hadoop system is however not as broad as what we are aiming for. Hadoop
focuses on efficiently processing massive amounts of data distributed over many nodes by
running the actual analysis code as “close” to the data as possible, ideally on the node
where the data is stored. This may fit some problems naturally, but many statistical
tasks do not map well to the Hadoop framework.

“http://hadoop.apache.org/

http://hadoop.apache.org/

Finally it should be mentioned that there are language agnostic approaches to describe
these types of workflows. An example of such a system is makeflow (Bui et al., 2011).

3 BatchJobs

The R package BatchJobs provides the basic infrastructure and abstractions to work
with R on any cluster or batch system. First, you create a so-called registry object which
defines a directory where all relevant information, files and results of the computational
jobs will be stored. We currently require the cluster to provide a shared filesystem for
all computational nodes. All jobs are declared at the registry and their computational
status is held in a database. Therefore, the registry bundles the access to both the
database and the information stored on the filesystem. It is automatically saved and
can be reused later, e.g., when you login to the system again. The registry provides a
persistent description of the experimental setup and computational state.

Jobs are not submitted when they are created, instead their definition is stored in the
database until they are explicitly submitted to the cluster. Every job has a unique ID
that you can use as a reference. Most functions of the BatchJobs and BatchExperiments
packages allow or require a vector of these IDs as an argument. Jobs communicate
with the registry via the database, so their status is available to you on the master
node at all times. You do not have to query the database yourself (or be aware of its
existence for that matter), as it is transparently managed. While jobs are running, you
can query their status, find out which ones have completed successfully and which have
failed by raising an R exception. It is even possible to configure the system to send you
a status email after each individual job or after the termination of the last submitted
job. Internally the package sendmailR (Mersmann, 2011) is used for this, note that its
documented restrictions therefore apply to this feature. We also provide functions to
aid in debugging, as this is one of the most important and time-consuming tasks when
working with parallel programs.

The usual tasks to perform with both packages are summarized in Figure 1. All these
functions will be explained in more detail in the current and in the following chapter.

3.1 Configuration file

After installing the package you should set up a short configuration file. The configuration
is a concise description of your computing environment and personal settings. The file
itself is an R script that is sourced when BatchJobs is loaded. To explain its makeup, let
us look at an exemplary configuration:

cluster.functions <- makeClusterFunctionsTorque("~/torque.tmpl")
mail.start <- "first"

mail.done <- "last"

mail.error <- "all"

mail.from <- "<bischl@lidongl.itmc.tu-dortmund.de>"

BatchJobs’ functions Common functions BatchExperiments’ functions

Creating the Registry [makeRegistry] [makeExperimentRegistry]
ddProbl
patchilap batchNapResul addALgoriehn
Defining Jobs batchReduce atchlfapResults gor?
: batchReduceResults makeDesign
batchExpandGrid
addExperiments
Submitting Jobs (submitJobs)
showStatus
Status & Debugging testJob [summarizeExperiments]
showLog
findDone, findErrors, ...
Subsetting Jobs (findJobs) [findExperiments]

reduceResults
filterResults
reduceResults [AggrTypel

Collecting Results

[reduceRe sultsExper iments]

Figure 1: Overview of the most important functions grouped by package and task.
Common functions are functions from BatchJobs that are also useful when working
with BatchExperiments. reduceResults[AggrType] is a convience wrapper around
reduceResults for aggregation into the types Vector, Matrix, DataFrame or List.

mail.to <- "<bischl@statistik.tu-dortmund.de>"
mail.control <- list(smtpServer="mail.statistik.tu-dortmund.de")

The first line specifies the batch system you are using. Here, we use a TORQUE-based sys-
tem. TORQUE® (Terascale Open-Source Resource and QUEue Manager) is a distributed
resource manager that allows to handle batch jobs on distributed compute nodes. Jobs
are scheduled by writing short Portable Batch System (PBS) scripts on such clusters, and
we have specified the path to a template PBS file here. Working on another architecture
simply means exchanging this single line in your configuration. Further details regarding
this topic are discussed in Section 3.12.

The following lines concern the status mails that are potentially sent when important
events occur in a job’s life cycle. Any of the options mail.start, mail.done and
mail.error can be set to either "none", "first", "last", "first+last" or "all",
defining for which jobs status mails are generated at their state transitions, see Sec-
tion 3.7 for a more detailed explanation. The remaining options set the return and
recipient address fields for the status mails and the options passed to sendmailR. For the
latter, setting the SMTP server should be sufficient in most cases.

The configuration file must be named .BatchJobs.R and placed at one of three possible
locations. If multiple configuration files are found, the more user-specific settings will
overwrite the more general settings in the following order: package directory < user home

Shttp://www.adaptivecomputing.com/products/torque.php

http://www.adaptivecomputing.com/products/torque.php

directory < working directory. The configuration file in the package directory allows site
administrators to define reasonable global settings for all users. Placing a configuration
file in your home directory should suffice for most users, but for some scenarios it might
be necessary to define project specific configurations in the working directory of your
current R session. The default settings are to run jobs sequentially in the same R session
and never to send any status mails.

3.2 Job registry

The registry is the central object for any BatchJobs project. It contains all meta-data
about jobs. To create a new registry, run:

reg <- makeRegistry(id="my_reg", seed=123, file.dir="my_job_dir")

Creating dir: my_job_dir
Saving registry: /home/lang/my_job_dir/registry.RData

The most important arguments are:

id: Name of your registry. Displayed in mails and cluster queue.

file.dir: This is the directory where the registry, the database, R scripts, log files and
all results are stored. If not defined, it defaults to the subdirectory <id>_files
in your current R working directory. BatchJobs will not overwrite an existing
directory.

work.dir: This directory will be used as working directory when your jobs get executed.
Useful if you want to source other R files or load data in your jobs.

packages: These R packages are loaded for each job before it is executed.

seed: This seed will be used for the first job and is incremented for each subsequent job.
Useful to generate reproducible results. Defaults to a random positive integer if not
set. See Chapter 5 for further details on the seeding mechanism.

sharding: With sharding set to TRUE, the job and result files will be distributed over
several subdirectories. This avoids problems with some (network) filesystems that
perform poorly when there are thousands of files in a single directory. Defaults to
TRUE.

multiple.result.files: If this is set to TRUE and your jobs return a list, each list item
will be saved in a separate file. This enables partial loading of results when further
processing them. This is useful when you store large objects at the end of your jobs
that are rarely required in subsequent analysis. All functions in BatchJobs as well
as in BatchExperiments that operate on results allow the automatic reconstruction
of such lists.

The registry is stored in the defined file.dir and its database is continually updated
when jobs are registered. Together both objects provide a persistent state of the compu-
tation. In a later session you can use the function loadRegistry(file.dir) and resume
working.

3.3 Filesystem layout

The file.dir defined in your registry contains all files belonging to this registry that
are created during the lifetime of your project. In general, the user does not need to
worry about the technical details of how information is stored in this file hierarchy since
everything is accessible through utility functions. However, for completeness’ sake, we
will explain its structure in the following paragraphs. The following elements are always
present in the main directory:

registry.RData: The stored registry.

BatchJobs.db: An SQLite database which contains all transactional information about
jobs and their (computational) state. See Section 3.4. Handled transparently.

conf .RData: The user configuration of BatchJobs. Will be loaded on the slave nodes. If
the user changes his configuration during his session, the most recent configuration
will always be stored here.

functions: Functions subdirectory. Contains mapped functions as .RData files. The file
is named with a digest hash. This directory mainly exists for later extensibility,
as we currently always map only one single function over a list in BatchJobs.

jobs: Jobs subdirectory. It contains the individual job files explained below. If the
option sharding in makeRegistry is set to TRUE (the default), these files are dis-
tributed over many subdirectories (shards) in order to bypass problems occuring
when working with directories which contain many thousands of files.

There are three files for each job (start script, result, log) in the jobs directory, and they
are named with the job ID the following way:

<ID>.R: A small R script which loads the registry, executes a single job and stores the
result. The complete workflow resulting from its execution is explained in detail in
Appendix A.

<ID>.out: The log file of a single job, produced by R CMD BATCH. Can be displayed with
showLog.

<ID>.RData: The stored return value of a single job. If multiple.result.files is set
to TRUE in makeRegistry, each element of the named list that is returned by the
job will be saved as <ID>_<list_element_name>.RData.

3.4 Job database and message passing protocol

The job database holds two tables with all information necessary to describe a job,
identify it on the batch system and query its computational status. The first table
stores informations about the job’s status. This includes the BatchJobs job ID, the
seed, timestamps of events (submit, start, termination), potentially an error message
and further technical information like the name of the executing cluster node, the ID of
the job assigned by the batch system or the R process ID. The job ID is a primary key
(automatically incremented positive integer) for this table. Hence, all job IDs are assured
to be unique. A further column contains the job definition ID to relationally link to the
second database table, the job definition table. This table holds informations about the
filename of the function to call and its parameters.

We use RSQLite (James, 2011) as interface to the SQLite® database back end. SQLite
calls itself a “self-contained, serverless, zero-configuration, transactional SQL database
engine”. This means that you do not have to install or configure a database server
yourself. Also, you do not have to worry whether it is possible that your jobs are allowed
to communicate with the database server when they get executed on a node because they
can directly access the database file on the shared filesystem.

As the jobs are concurrently executed, we write their status into the database, making
sure that the ACID (atomicity, consistency, isolation, durability) properties hold. A usual
sequence of messages for a job looks like this:

1. submit message: The job gets submitted to the batch system, its ID on the batch
system and timestamp are stored.

2. start message: When all resources are available, the job gets executed and the
timestamp is stored.

3. done message: When the job has successfully completed, its result file is written
and the timestamp is stored.

4. error message: If an error occurs, the job is terminated and the R exception message
is stored.

We also experimented with other DBMS like MySQL” or PostgreSQLS. Albeit these are
currently not supported, the use of a fully featured database server could increase the
overall performance of all database transactions. The major disadvantage of SQLite is
that it does not support row-level locking, i.e., the whole database has to be locked for a
write operation. This can lead to lock congestion if very many jobs access the database
in parallel, and the effect gets worse the faster the jobs terminate. As every database
operation on the worker only relates to a single, unique row of the "job status" table,
row-level locking (which is supported by both MySQL and PostgreSQL) would probably
eliminate this problem completely.

Shttp://www.sqlite.org
"http://www.mysql.com
Shttp://www.postgresql.org

10

http://www.sqlite.org
http://www.mysql.com
http://www.postgresql.org

However, we did not observe performance problems with SQLite in our studies. Nev-
ertheless the support of these alternative DBMS is an option for future versions of the
packages.

3.5 Mapping, reducing and filtering

The higher order functions Map, Reduce and Filter are arguably the most important
building blocks of functional programming and — as the name suggests — also appear
in the famous MapReduce framework (Dean and Ghemawat, 2008). Most packages for
parallelization in R provide a parallelized version of Map. This package is not different in
this regard, with the exception that — as we work on a batch system — the corresponding
jobs are not submitted at once but only defined. They can be submitted in arbitrary
subsets.

The following overview lists the most important operations provided in BatchJobs for
computing on the cluster and obtaining the results:

batchMap: Applies a function over a list or vector. A batch version of R’s Map function
which is basically the same as lapply. One job is one function application.

batchExpandGrid: Generates a cross product of parameter vectors and applies a function
to each combination. A simple wrapper for expand.grid and batchMap.

batchReduce: Reduces (aggregates) a list or vector with a binary function. The binary
function is successively called to combine the elements of the vector — think of
reducing a numeric vector with the “+”-operation. In other languages this concept
is also known as folding or accumulation. batchReduce is nothing more than a
batch aware version of R’s Reduce function. One job is one reduction of a shorter
sub-list. The results can then be reduced one final time on the master node.

batchMapResults, batchReduceResults: Same as batchMap and batchReduce but op-
erate on the results of previous operations. Will be covered in Section 3.9.

reduceResults: Loads and reduces your stored results on the master after jobs have
terminated.

filterResults: Filters all results with a predicate. Essentially works like R’s Filter
function.

In the next code snippet we demonstrate the parallel calculation of the square of the first
100 natural numbers. Note that only the first 50 jobs are actually submitted to the batch
system by using the IDs of the jobs.

xs <- 1:100

batchMap(reg, function(x) x~2, xs)
ids <- getJoblds(reg)

submitJobs (reg, ids[1:50])

11

Parallel reduction is also possible by partitioning a list or vector into blocks and reducing
each block as an individual job. This means successively combining all elements of a block
with a binary function to an aggregated object. In the next example we partition the
vector of the first 100 natural numbers into blocks of size 10 and calculate their respective
sums.

xs <- 1:100

r <- function(aggr, x) aggr + x
batchReduce(reg, r, xs, init=0, block.size=10)
submitJobs (reg)

sapply(getJobIds(reg), loadResult, reg=reg)

[1] 55 155 255 355 455 555 655 755 855 955

In the final line we apply the function loadResult over all job IDs of the registry to
retrieve the partial sums. Further information regarding the collection of results are
given in Section 3.8.

3.6 Submitting jobs

Jobs can be submitted to the batch system via the submitJobs function which already
appeared in some of the previous examples. It takes the registry and the selected job
IDs as arguments, as well as an arbitrary list of resource requirements which are to be
handled by the cluster back end. Usual examples for the latter are maximal wall time
and required memory. The function tries to submit as many jobs as possible. If either
system limits or user limits are exhausted, the function waits until submission is possible
again. By default an exponential back-off mechanism is used where the waiting time is
doubled after each unsuccessful retry. But this is customizable as well, as the following
example shows:

submitJobs (reg, resources=list(walltime=3600, memory=4+*1024),
wait=function(retries) 100, max.retries=10)

Here, we have passed the wall time in seconds, requested 4 gigabytes of memory per job
and told the system to wait for 100 seconds in case of temporary submission errors like
filled queues. After 10 unsuccessful tries the submission would finally terminate with an
exception.

In some cases it can be advantageous to set the computational resources differently for
subsets of the jobs. As this is more likely to happen with BatchExperiments where your
experimental setup might contain algorithms of very different run times or problems that
vastly differ in size, we demonstrate how this works in the example of Section 4.4.

12

3.7 Status queries and status mails

After you have submitted all or a subset of your jobs to the batch system, you can query
their status by using the showStatus function.

showStatus (reg)

Status for jobs: 200

Submitted: 200 (100.00%)
Started: 200 (100.00%)
Running: 100 (50.00%)
Done: 100 (50.00%)
Errors: 0 (0.00%)
Expired: 0 (0.00%)

Time: min=0.00 avg=0.00 max=1.00

The resulting output includes the number of jobs in the registry, how many: have cur-
rently been submitted, have started to execute on the batch system, are currently run-
ning, have successfully completed, have terminated due to an R exception or have expired
because they hit the wall time or required too much memory.

The user should always call this function if he is unsure about the current computational
status.

The last line shows the minimal, average and maximal execution times for all selected
jobs. This is useful if the user has to set wall times and does not exactly know how long
each job will take or if there are vast differences in execution times. You can restrict
showStatus to take only a subset of jobs into account by passing a vector of job IDs.
See Section 4.4 for an example on how to extract specific job IDs from the registry. If
errors occurred, the first error messages are displayed as well, see Section 3.11 for further
remarks on debugging.

Simple helper functions that query the computational state of your jobs and which all
return vectors of job IDs are:

findSubmitted: Jobs that have been submitted with submitJobs.
findStarted: Jobs that have already begun to execute.
findDone: Jobs that terminated successfully.
findMissingResults: Jobs where results are still missing.
findErrors: Jobs that terminated due to an exception.

findOnSystem: Jobs that currently “live” on the batch system. This includes idle, blocked,
running, etc. jobs.

findRunning: Jobs that are currently running.

13

findExpired: Jobs that have probably hit the wall time or were terminated by the
scheduler due to excessive memory usage and such. This is quite difficult to figure
out (as we have lost control over the R process under these conditions), therefore
we employ a simple heuristic here which works well most times: Started, not done,
no R exception, not currently on batch system.

BatchJobs also contains a configurable status mailer that internally uses the package
sendmailR. The mail options were already briefly introduced in Section 3.1. Mail sending
is triggered at the start of the job (mail.start), the successful completion (mail.done)
and the termination by an R exception (mail.error). For each of these events you can
define for which jobs mails should be sent. You can set these options to "none" to receive
no mails at all, "first" for the first job, "last" for the last job, "first+last" for both
the first and last job and finally "all" for all jobs.

You can combine these options for fine adjustment of the mail notification mechanism —
with mail.start="first", mail.done="1last" and mail.error="all" you will receive
a mail right before the scheduler starts your first job and as soon as the last scheduled
job is finished. Furthermore, all jobs with errors will trigger mails immediately. Note
that when the option mail.done="1last" triggers its status mail, not all jobs will have
necessarily completed. However, this is an acceptable heuristic time point to inform the
user of the nearby completion of the computation. Also, the mail of the last submitted
job to the batch system includes the current output of showStatus, so the percentage
of still running jobs is immediately available. A typical status mail includes information
about the respective job, a summary of its results and a status output:

Ids HHEHHHHHHHAHHH R R R R
10
HHAHHHH R R R R R R

Job Info H#HGHMFHEHMHHEHHHE 4
BatchJobs job:

Job id: 10

Fun id: 9bfef973a2c6345763ce3bfb76394874
Fun formals: x

Pars: <unnamed>=10

Seed: 132

HH S

H H H =

Results ##t####S#HHHHHHS RS RIS
num 100
it S R R A S A S R A A

3.8 Collecting results

We provide the function reduceResults to collect the results on the master node. The
function operates by default on all currently available results, but can easily be restricted

14

to another subset utilizing job IDs.

The passed reduce function must have the formal arguments aggr, job and res. The
argument aggr contains the so far aggregated results, while job holds a job description
object and the job result is passed as res. job is rarely needed, but can be useful in
BatchExperiments when a job contains the description of an experiment, e. g., names of
the current problem and algorithm and their respective parameters.

We show three common examples to accumulate results by an arithmetic operator, col-
lecting them into a numeric vector and collecting them into a data frame.

xs <- seq(1, 5)

batchMap(reg, function(x) x°2, xs)

submitJobs (reg)

reduceResults(reg, fun=function(aggr, job, res) aggr+res)

[1] 55
reduceResults(reg, fun=function(aggr, job, res) c(aggr, res))
[1] 1 4 9 16 25

reduceResults(reg, fun=function(aggr, job, res)
rbind(aggr, data.frame(foo=res)), init = data.frame())

foo
1

9
16
25

ad W N -

Note that in the last reduction above we have specified an initialization value. If not set,
the first result object is used.

For convenience we also provide wrappers for reduceResults for the most common ag-
gregation types. Here, init can be omitted and the provided function fun has only job
and res as arguments. It again selects the desired elements for reduction:

e reduceResultsVector: Combines the respective results of fun with c.

e reduceResultsMatrix: Coerces the results of fun to a vector and combines with
rbind/cbind.

e reduceResultsDataFrame: Coerces the results of fun to a data frame and combines
with rbind.

e reduceResultsList: Coerces the results of fun to a list and combines with c.

If you omit the argument fun it defaults to function(job, res) res.

15

3.9 Transforming results

It is also possible to operate further on the stored results of a registry. This might
be necessary if subsequent steps or further analysis are so time-consuming that they
should be performed on the cluster as well. For this purpose BatchJobs provides the
functions batchMapResults and batchReduceResults which behave very similar to their
respective counterparts batchMap and batchReduce. These functions generate a new job
on the batch system, applying a user defined function over the result files.

Let us again perform some very trivial calculations on a vector of numbers to demon-
strate the principle. All performed operations should be directly understandable from
the commented code:

square some numbers

regl <- makeRegistry(id="squaring")
f <- function(x) x°2
batchMap(regl, f, 1:10)

submitJobs (regl)

look at results
reduceResultsVector (regl)

[1] 1 4 9 16 25 36 49 64 81 100

transform the results back by calculating the square root
reg2 <- makeRegistry(id="root")

batchMapResults(regl, reg2, fun=function(job,res) sqrt(res))
submitJobs (reg2)

check results
reduceResultsVector (reg2)

(1] 1 2 3 4 5 6 7 8 910

now reduce them in parallel by summing them

reduce <- function(aggr, job, res) aggr+res

reg3 <- makeRegistry(id="partial_sums")

batchReduceResults(reg2, reg3, fun=reduce,
init=0, block.size=3)

submitJobs (reg3)

check results
reduceResultsVector (reg3)

[1] 6 15 24 10

16

finally reduce on the master to total sum
reduceResults(reg3, fun=reduce)

[1] 55

3.10 Chunking of small jobs

In a scenario with thousands of fast executing jobs, computation on classical HPC systems
is problematic. The vast number of jobs puts much stress on the scheduler and the time
starting R sessions on the slaves may exceed the time required to actually do a single
computation.

As a resort for such scenarios we offer to block jobs together into chunks which will get
executed sequentially on the slaves. If you pass ids to submitJobs as a list of IDs,
then each list element defines a chunk and submitJobs internally combines them into
one job for the batch system. You can either create such a list yourself or use the helper
function chunk. Note that the vector ids get shuffled per default by chunk which balances
differences in computation time when we execute the chunks.

In order to mitigate the already mentioned lock congestion problem with SQLite because
of the many, quickly terminating jobs, we cache the write operations on the worker for
some time and then efficiently flush them to the database in one go. To ensure efficiency
we recommend to build chunks with an execution time of at least 10 minutes.

3.11 Debugging tools

As you can imagine, in any experiment many things can and will go wrong. The cluster
might have an outage, jobs may run into resource limits or crash, subtle bugs in your
code could be triggered or any other error condition might arise. In these situations it
is important to quickly determine what went wrong and to recompute only the minimal
number of required jobs.

While BatchJobs cannot handle all conceivable error conditions, it does include extensive
functionality to aid in debugging problems when they arise. Large parts of your code
can and should be tested independently of the batch system. For complex projects
you can turn to test-driven development and use either testthat (Wickham, 2011b) or
RUnit (Burger et al., 2010) to define your tests, possibly by directly developing an R
package. But other parts directly have to do with the execution of the experiment.
Nearly everybody makes typing errors in first versions, forgets to load a required package
or makes other trivial or less trivial mistakes. It is not very efficient to figure out these
types of things while working live on the batch system. Therefore, before you submit
anything you should use testJob(reg, id) with id as a job ID to catch errors that are
easy to spot because they are raised in many or all jobs. This function runs the job in an
independent R process on your local machine via R CMD BATCH exactly as on the slave,
redirects the output of the process to your R console, loads the job result and returns it.

17

It is important to note that the relevant parts of your registry’s file directory are copied
to the system’s temporary directory, so no side effect during this test can affect your
current project.

When you have submitted jobs and suspect that something is going wrong, the first thing
to do is to run showStatus to display a summary of what has already run, what needs
to run and what errors were caught. Assume we run the following artificial example on
our cluster:

flakyFunction = function(value) {
if (value 7inj 2:3) stop("Ooops.")
value~2

}

reg <- makeRegistry(id="error")
batchMap(reg, flakyFunction, 1:4)
submitJobs (reg)

Two of our four jobs will fail. If we call showStatus after all jobs have been processed
we get the following output:

showStatus (reg)

Status for jobs: 4
Submitted: 4 (100.00%)
Started: 4 (100.00%)
Running: 0 (0.00%)
Done: 2 (50.00%)
Errors: 2 (50.00%)
Expired: 0 (0.00%)

Time: min=0.00 avg=0.00 max=1.00

Showing first 2 errors:
Error in 2: Error in function (value) : Ooops.
Error in 3: Error in function (value) : QOoops.

We see that we have four jobs which have all been submitted and started. Two of these
jobs completed successfully and two of them terminated with an error condition.

Finally, showStatus outputs the first few errors that were caught. If we want to get the
IDs of all jobs that failed due to an error we can use:

failed <- findErrors(reg)
failed

[1] 2 3

18

And if we want to peek into the R log file of the job to see more context for the error we
can use

showLog (reg, failed[1])

which will show the log for the first failed job.

Finally we can fix our code by using setJobFunction. This function allows the redefini-
tion of the mapped function for some jobs as a last measure when errors have occurred
and we want to keep our already calculated results. We can then resubmit the jobs with
missing results by running:

setJobFunction(reg, failed, fun=function(value) value~2)
submitJobs (reg, failed)

If unwanted jobs or jobs with programming bugs are still running on the cluster you can
manually terminate them with the function killJobs(reg, ids).

3.12 Supported batch systems and how to integrate a new one

BatchJobs is designed to work on any cluster using any type of batch system. To achieve
this goal, all interaction with the batch system is delegated to a so-called “cluster func-
tions” interface. Its implementation must provide the following three operations:

submitJob: Submit a new job to the cluster system. The name of the job, the R script
to run, the path where the log file must be placed and the required resources
are provided so that the function can allocate the job to an appropriate node.
The function is expected to return a SubmitJobResult object created with the
makeSubmitJobResult function. The result is composed of a status code (0 to
indicate success or any positive integer to indicate failure), a batch job ID to identify
this job on the batch system and optionally a message string to further clarify the
error code.

killJob: Kill a running job given its batch job ID as returned by submitJob. This
function is expected to always succeed, i.e., all possible exception handling has to
be done internally. Not being able to finally kill a job after all available measures
have been taken is considered as a drastic error because this would imply that you
have lost control over the batch system at this point.

listJobs: Return a list of all scheduled jobs. Technically this is a character vector of
batch job IDs.

All high-level functionality is built upon these simple operations. In most cases you
will not need to write these functions yourself. Instead you will be able to use the
provided constructors of the package in your configuration file to choose an existing
implementation, see section 3.1. This enables you to swap the back end on the fly if you

19

need

to switch to a different cluster system, say scale up from a local lab cluster to a

larger cluster at a remote computing facility, or if a different user wants to replicate the
results, but does not have access to the same type of cluster as you. We feel that this

1S an

important aspect in making these types of large scale experiments accessible for

collaborative work and review.

The package currently provides the following implementations:

Interactive execution (makeClusterFunctionsInteractive): All jobs are executed

sequentially in the same R session. This setting is the default and provided for
small toy examples and to try out the package.

Multicore execution (makeClusterFunctionsMulticore): All jobs are executed in

SSH

parallel on the local machine in independent R processes. The multicore cluster
functions are very similar to the following SSH cluster functions. The options
ncpus, max.load and max. jobs are available, for their description and the schedul-
ing heuristic see below.

cluster (makeClusterFunctionsSSH): Jobs are distributed to different (Linux)
nodes using the secure shell (SSH) as the underlying communication layer. All
nodes must be accessible without manually entering passwords (e. g., by ssh-agent
or passwordless pubkey). This mode is suited for ad-hoc clusters of workstations
when you do not have access to a true batch system. But it is somewhat fragile
in production use because only rudimentary resource control can be provided. The
implementation tries very hard not to overload nodes, but since others may start
jobs without our knowledge on any node at any time this cannot be avoided en-
tirely. To configure a makeshift SSH cluster, use the constructor and pass it workers
constructed with makeSSHWorker. The latter function requires the hostname of the
node, the number of available cores ncpus (otherwise auto-detected) and the instal-
lation directory of R (if it is not the same on the worker as on the master and not
in the systems PATH environment variable). Resource management can be achieved
by setting the max.load and max.jobs arguments. During job submission, the
following rules determine whether it is currently disallowed to schedule a job to a
worker:

e There is an upper limit on the number of open R processes of all users. Cur-
rently this is 3 times the number of cores of the worker.

e There are already as many “expensive” R processes running (by any user) as
there are cores. Such a process is defined to have a load greater than 50%.

e The current total load of the worker already exceeds max.load. The default
for this setting is the number of CPU cores minus one.

e No more than max. jobs are allowed to run on the worker in parallel for the
current registry. The default for this setting is the number of cores.

TORQUE/PBS cluster (makeClusterFunctionsTorque): Jobs are submitted to a

cluster managed by TORQUE which is used by many medium and large size com-
puting sites. Jobs are submitted using the gsub command, killed using qdel and

20

queried using gselect. Given that these are part of the original Portable Batch
System upon which TORQUE is built, any PBS derivative will likely work with
this implementation.

Since each cluster is different and has different requirements for the job files, a
flexible approach is used where the user supplies a job file template and brew
(Horner, 2011) is used to turn this into a PBS job file. For details on how this is done
and what variables are available in the template see the package documentation for
the constructor. We have also provided a very simple and a much more complicated
template file in the examples directory of the package.

Oracle/Sun Grid Engine (SGE) (makeClusterFunctionsSGE): Jobs are submitted
to a cluster managed by Sun Grid Engine® in a similar fashion as for TORQUE.
Jobs are submitted using the gsub command, killed using qdel and queried using
gstat. Again, the user supplies a job file template and brew is used to turn this
into a . job file.

Load Sharing Facility (makeClusterFunctionsLSF): The interface to an LSF' clus-
ter is again very similar to the TORQUE implementation and also uses a config-
urable brew template. The respective commands for submitting, killing and status
queries are bsub, bkill and bjobs.

While the above six cluster function implementations cover a wide variety of situations
and systems, they may not work with the system available to you. In that case you will
have to write code to implement the three operations described previously. But this is
not hard and a one time effort. Anyone interested in writing a custom cluster function
implementation is encouraged to look at the interface specification!! and the source code
of the existing implementations.

4 BatchExperiments

The package BatchExperiments expands BatchJobs with an abstraction layer for the
very general task of applying a set of algorithms to a set of problems and recording some
arbitrary results. Both, problems and algorithms, may be parametrized in an arbitrary
way and these parameters can be varied according to a statistical design. We call a
problem with a specific parameter setting a problem instance and define an experiment
as an application of an algorithm (together with its parameter values) to a problem
instance. As experiments might be stochastic, each one can be replicated any number of
times.

In our opinion, a large number of applied statistical tasks can be mapped to this abstrac-
tion, especially in the domains of benchmarking and statistical evaluation. Many articles
nowadays include simulation studies and comparisons to alternative methods. Moreover,

Ynttp://www.oracle.com/us/products/tools/index.html
Ohttp://www.platform.com/workload-management/high-performance-computing
"http://code.google.com/p/batchjobs/wiki/ClusterFunctions

21

http://www.oracle.com/us/products/tools/index.html
http://www.platform.com/workload-management/high-performance-computing
http://code.google.com/p/batchjobs/wiki/ClusterFunctions

for a lot of statistical domains large and meaningful comparison studies are still missing.
Many researchers have experienced the fact that theoretical results and guarantees quite
often tell only part of a method’s story, as mathematical assumptions will nearly always
be violated to some degree in practice. Empirical knowledge about a method’s behavior
and characteristics are equally important. In order to generate the data for such an anal-
ysis, we need two fundamental ingredients: First, enough computational power. This is
already accessible to many scientists and the situation will further improve when we take
general technological progress and specifically the rapid development in the cloud com-
puting area into account. Secondly, a framework to succinctly define these experiments;
quickly, cleanly and in a reproducible fashion.

BatchExperiments combines exactly these two aspects. It allows you to compare many
candidate methods to each other, work with large problem domains instead of a few, possi-
bly unrepresentative instances, and investigate the influence of algorithm parameters and
problem characteristics on performance measures (sensitivity analysis). “Benchmarking
experiments” might subsume all of this under a single term, although BatchExperiments
does not force you to follow a specific, formal methodology in your experiments or anal-
ysis. You are free to set them up and focus on individual aspects as you like. You might
even start to build large, shared, growing databases of such empirical results (see Van-
schoren et al. (2011) for a recent example). From these, sophisticated statistical models
might be derived to further enhance our understanding of statistical algorithms. Or one
might be able to construct automatic algorithm selection mechanisms, see for example the
area of meta-learning in machine learning or hyper-heuristics in optimization. Actually,
just the organized, machine-readable collection and public accessibility of such results
would be a huge step forward in many areas of statistics.

In the following sections, we will stick to a rather simple, but not unrealistic example to
explain the package’s functionality. We will apply two classification algorithms on the
famous iris data set, vary a few of their hyperparameters and record the classification
performance.

Just as in BatchJobs, we use a registry as the central meta-data object which records
technical details and the setup of the experiments. The internals are slightly different,
therefore a special experiment registry is needed. The (subtle) differences of the underly-
ing filesystem and database structure are described in Section 4.6. An experiment registry
is created using the makeExperimentRegistry function which has the same arguments
as makeRegistry (see Section 3.2):

library(BatchExperiments)
reg <- makeExperimentRegistry(id="my_experiments")

Once the registry is created, you can start to add problems, algorithms and designs.
Experiments can then be created from these building blocks.

4.1 Problems and Algorithms

Some problems we encounter in practice are based on a “static” data object like a matrix,
data frame or a multidimensional array that always stays the same for all subsequent

22

experiments. Other problems (or problem parts) are of a more “dynamic” nature. This
means that the problem instance (or instance part) is either created stochastically, e. g.,
by sampling, or depends on problem parameters. With this in mind, we opted for a
unified interface which deals with both possibilities.

To illustrate the interplay of problems, algorithms and designs we provide Figure 2 as a
schematic overview. All further details will be covered in this chapter. As a reminder,
Figure 1 in the previous chapter may prove useful again to keep track of the general tasks

to perform.
static problem part dynamic problem function | problem algorithm function
static in addProblem() dynamic in addProblem() [instance |algorithm in addAlgorithm()
problem é parameters algorithm é parameters
[problem iterator] [algorithm iterator]
problem design algorithm design
design/exhaustive in makeDesign() design/exhaustive in makeDesign()

Figure 2: Relationship of BatchExperiment functions. Grey rectangulars require user
input. White boxes represent internal functions. A straight arrow stands for direct
passing of the object or function, a squiggly line denotes passing of the evaluated result.

The problem-defining function addProblem requires the registry reg and a unique prob-
lem identifier id as its first two arguments. The latter is used for referencing purposes.
Additionally, at least one of the arguments static or dynamic must be given. The static
part may be any R object. The dynamic argument on the other hand is restricted to be
a function. It may have arbitrary further arguments which will later be filled in from a
statistical design. If the dynamic function has static as named argument in its signature
then the static problem part will be loaded on the node and passed to the function. If
your problem does not have a dynamic part, you are of course free to omit the dynamic
argument.

We illustrate a typical workflow now with our already mentioned toy classification exam-
ple on the iris dataset. The iris data frame embodies the static part whereas resampled
observation indices — used for evaluation — may be interpreted as the “dynamic” part of
the problem instance. In the following snippet we use subsampling as the resampling
strategy and define a function subsample which takes the additional argument ratio to
define the ratio of training to test observations in the data set.

subsample <- function(static, ratio) {
n <- nrow(static)
train <- sample(n, floor(n * ratio))
test <- setdiff(seq(n), train)
list(test=test, train=train)

23

}

data(iris)

addProblem(reg, id="iris", static=iris,
dynamic=subsample, seed=123)

The function addProblen files the problem (including the static part and the dynamic
function) to the filesystem and the problem gets recorded in the registry. The dynamic
function will be evaluated at a later stage on the workers. In this process, the static part
will be loaded and passed to the dynamic function. Note that we set a special problem
seed to synchronize the experiments in the sense that the same resampled training and
test sets are used for the algorithm comparison, see Section 5 for detailed information on
the seeding mechanism.

Algorithms are added to the registry in a similar manner. The first two arguments to
addAlgorithm should again be the registry reg as well as a unique algorithm identifier
id. The third argument fun has to be a function with the two optional formal arguments
static and dynamic. Further arguments (e.g., hyperparameters or strategy parame-
ters) to connect with a statistical design may be analogously defined as for the dynamic
function in addProblem. When a job gets executed on the node the static part and the
evaluated result of the function dynamic, if present in the function’s signature, are passed
to your algorithm. Appendix A gives a more in-depth description of this workflow.

For our example we define functions for a classification tree (package rpart, Therneau and
Atkinson (2011)) and a random forest (package randomForest, Liaw and Wiener (2002)).
Note that instead of loading these two packages via library in the wrappers we could
have also used the packages option of the registry.

tree.wrapper <- function(static, dynamic, ...) {
library(rpart)
mod <- rpart(Species ~ ., data=static[dynamic$train, J, ...)

pred <- predict(mod, newdata=static[dynamic$test,], type="class")
table(static$Species[dynamic$test], pred)

}

addAlgorithm(reg, id="tree", fun=tree.wrapper)

forest.wrapper <- function(static, dynamic, ...) {
library(randomForest)
mod <- randomForest (Species ~ ., data=static,
subset=dynamic$train, ...)

pred <- predict(mod, newdata=static[dynamic$test, J])
table(static$Species[dynamic$test], pred)

}

addAlgorithm(reg, id="forest", fun=forest.wrapper)

The return value of an algorithm can be any R object. The algorithm will be serialized
to disk for later use. It is often reasonable to construct a named list of objects which will
in many cases contain one or more performance measures. Here, we compute a confusion

24

matrix of the classification prediction on the test set which will later be used to calculate
the misclassification rate. Note that using the "..." argument in the wrapper definitions
allows us to omit design parameters in the signature. This is an advantage if we later want
to extend the set of algorithm parameters in the experiment. The functions provided as
fun in addAlgorithm are stored on the filesystem and the algorithms are also recorded
in the registry.

4.2 Parametrization with statistical designs

The parametrization of both problems and algorithms is covered by makeDesign. This
function takes a problem or algorithm ID as its first argument which defines the object
of reference. The parameters for the respective problem or algorithm can be passed as
either design, exhaustive or a combination of both. The argument design takes a user
generated design as a data frame where parameter names correspond to column names.
exhaustive can be used to create exhaustive grid designs, i.e., crossproducts of value
vectors. makeDesign expects exhaustive to be a named list of atomic vectors or factors,
the same holds for the columns of design. If both design and exhaustive are provided,
a crossproduct of each row of design and each row of exhaustive’s grid is generated.

For our example we will try two different cross-validation ratios as problem parameters.
We will also vary the complexity parameter cp and the parameter minsplit of the tree,
as well as the number of trees in the random forest.

pars <- list(ratio=c(0.67, 0.9))
iris.design <- makeDesign("iris", exhaustive=pars)

pars <- list(minsplit=c(5, 10, 20), cp=c(0.01, 0.1))
tree.design <- makeDesign("tree", exhaustive=pars)

pars <- list(ntree=c(100, 500, 1000))
forest.design <- makeDesign("forest", exhaustive=pars)

By passing a pre-generated data frame to the argument design you are free to use any
statistical design — and corresponding R package — you deem fit for your experiments.
For computer experiments often space-filling designs like latin hypercube designs come to
mind, but depending on your setup more classical approaches like the ones derived from
A-, D-, or E-optimality and many others might also be feasible. For the generation of
such designs we recommend using external packages like lhs (Carnell, 2012), AlgDesign
(Wheeler, 2011) or DiceDesign (Franco et al., 2011)'2.

It is worth mentioning that the exhaustive grid will never be expanded in memory to a
matrix or data frame with all possible rows. Instead, an iterator object is used internally
which traverses all defined rows. This minimizes the memory footprint on the master
and allows experiments with rather large grid designs.

12But see http://cran.r-project.org/web/views/ExperimentalDesign.html for a better overview

25

http://cran.r-project.org/web/views/ExperimentalDesign.html

Note that you can easily reference more complex R objects in your design by naming
them and providing a “retrieval” function:

getMyObject <- function(name) {
switch(name, foo=matrix(0,2,2), bar=identity)
}
algo <- function(static, dynamic, my.obj.name) {
obj <- getMyObject (my.obj.name)

}
des <- makeDesign(id="algo",
exhaustive=list (my.obj.name=c("foo", "bar")))

4.3 Adding Experiments

In the previous sections we have shown how to register problems as well as algorithms and
how to associate statistical designs with them. Now it is time to connect these parts to
actually define an experiment. addExperiments takes the arguments prob.designs for
the problem designs and algo.designs for the algorithm designs to add them to registry
reg. You may pass any number of designs wrapped inside a list to both arguments. If
you pass a single design to addExperiments via prob.designs or algo.designs it will
automatically be wrapped in a list for you. Moreover you may pass a problem or algorithm
ID as a string. In this case addExperiments treats the input as an unparametrized
problem or algorithm. In addition you can set the integer parameter repls to define any
number of replications for your experiments.

Suppose we want to subsample the iris dataset 100 times and apply both classifiers.
To do this we combine both algorithm designs into a list and then pass this list to
addExperiments:

addExperiments(reg, prob.designs=iris.design,
algo.designs=1list (tree.design, forest.design),
repls=100)

Internally addExperiments checks problems and algorithms for their existence in the
registry, generates the rows of the designs for the respective problems and algorithms
and utilizes BatchJobs to finally create batch jobs.

To list all known problem and algorithm names, we provide the functions getProblemIds
and getAlgorithmIds. Given an ID you can obtain the respective problem or algorithm
by using getProblem or getAlgorithm. The function summarizeExperiments returns
a cross table with the number of jobs which belong to specific problems (rows) and
algorithms (columns):

summarizeExperiments (reg)

26

Algorithm
Problem forest tree
iris 600 1200

It is also possible to display further details like parameter settings by setting the argument
details=TRUE. Once the experiments are added to the registry you can use testJob or
submitJobs from BatchJobs, as described in Section 3.6, to run the jobs on your cluster.

4.4 Subsetting experiments

Before submitting all jobs to your batch system, we encourage you to test each algorithm
individually. Or sometimes you want to submit only a subset of experiments because they
extremely differ in runtime. Other reoccurring tasks include the investigation of algorithm
specific errors, the checking or collecting of results for only a subset of experiments and
so on. For all these use cases, findExperiments can be employed to conveniently select
a particular subset of jobs. It expects a registry as its first argument and always returns
the IDs of all experiments that match the given criteria. Your selection can depend on
substring matches of problem or algorithm IDs using prob.pattern or algo.pattern,
respectively. You can also pass R expressions which will be evaluated in your problem
parameter setting (prob.pars) or algorithm parameter setting (algo.pars). The ex-
pression is expected to evaluate to a boolean value. Furthermore, you can restrict the
experiments to specific replication numbers.

To illustrate findExperiments we will select two experiments, one with a decision tree
and the other with a random forest and the parameter ntree=1000. The selected exper-
iment IDs are then passed to testJob.

idl <- findExperiments(reg, algo.pattern="tree")[1]

id2 <- findExperiments(reg, algo.pattern="forest",
algo.pars=(ntree == 1000))[1]

testJob(reg, id1)

testJob(reg, 1id2)

The next example shows how to kill jobs on the cluster, assuming you have found a small
bug in your experiments. For this example let us suppose that you have accidentally
hardcoded the subset sampling ratio in the dynamic problem function:

subsample <- function(static, ratio) {
n <- nrow(static)
train <- sample(n, floor(n * 0.67)) # <- hardcoded ratio
test <- setdiff(seq(n), train)
list(test=test, train=train)

}

This bug renders the parameter ratio effectless. We want to first stop the experiments
which use other ratios than 0.67 on the cluster and remove the affected experiments from
the registry.

27

ids <- findExperiments(reg, prob.pattern="iris",
prob.pars=(ratio != 0.67))

kill still running jobs

killJobs(reg, intersect(ids, findRunning(reg)))

remove jobs from registry

removeExperiments (reg, ids)

Now we want to fix the dynamic problem function and add the experiments to the registry
again. To do this we simply add all experiments again and set the option skip.defined
in addExperiments to TRUE — this way all so far known experiments which may already
have completed calculation remain unchanged. Finally we submit those jobs where re-
calculation is necessary:

fixed dynamic problem function
subsample <- function(static, ratio) {
n <- nrow(static)
train <- sample(n, floor(n * ratio)) # <- fixed
test <- setdiff(seq(n), train)
list(test=test, train=train)
}
patch the problem function
addProblem(reg, id="iris", static=iris,
dynamic=subsample, overwrite=TRUE)

re-add all experiments using skip.defined

new <- addExperiments(reg, prob.designs=iris.design,
algo.designs=1ist (tree.design, forest.design),
repls=100, skip.defined=TRUE)

submit all freshly added experiments

submitJobs (reg, new)

Note that the jobs with the previously hardcoded ratio 0.67 are not interrupted nor
need recalculation. Keep in mind that patching your problems or algorithms with the
overwrite option should only be used when absolutely necessary. Your code gets clut-
tered with those patches and the experiments are harder to read, to understand and to
reproduce.

4.5 Collecting results

To collect the results of your experiments you are free to use the collection functions
introduced in Section 3.8. In addition to these, we provide reduceResultsExperiments
to conveniently collect parameters and atomic (performance) values into a data frame.
It works very similar to the already explained reduceResultsDataFrame and requires a
function argument fun with the signature function(job, res). The result of fun must
be a named list containing desired values. reduceResultsExperiments converts these

28

lists to data frames, stacks them and prepends columns for the problem and algorithm
IDs, the settings and the replication number.

During our toy analysis of the iris dataset we calculate the misclassification rate for all
submitted and successfully terminated jobs (suppose only 4 already terminated):

reduce <- function(job, res) {
n <- sum(res)
list(mcr=(n-sum(diag(res)))/n)
+
res <- reduceResultsExperiments(reg, ids=findDone(reg), fun=reduce)
print(res[c(1:2, 601:602), 1)

prob ratio algo minsplit cp repl mcr ntree

1 iris 0.67 tree 5 0.01 1 0.08 NA
2 iris 0.67 tree 5 0.01 2 0.06 NA
601 iris 0.67 forest NA NA 1 0.08 100
602 iris 0.67 forest NA NA 2 0.06 100

We could have omitted the explicit calculation of the IDs with findDone (reg) as this is
the default behavior of the reduction / collection functions.

After the results have been collected, the data can be summarized, explored, visualized,
modeled or tested with any method of your choice. An encompassing overview of these
topics is of course out of scope for this paper. Nevertheless we would like to point the
reader to a few packages that we have found useful for basic operations on such experimen-
tal results, namely the plyr package (Wickham, 2011a) which is handy for aggregating
and subsetting data frames, reshape2 (Wickham, 2007) to convert the data frame to
“long” or “wide” formats, the sqldf (Grothendieck, 2011) package to query the data frame
using SQL as the query language, ggplot2 (Wickham, 2009) and lattice (Sarkar, 2008) to
quickly visualize results and benchmark (Eugster and Leisch, 2008; Eugster et al., 2008)
for explorative and inferential analysis of benchmark experiments.

As a final step let us quickly peek into our complete results by calculating the mean
misclassification rate for all algorithm variants. We use ddply from plyr to partition the
data frame into groups w.r.t. the problem, the algorithms and their parameters.

vars <- setdiff(names(res), c("repl", "mcr"))
ddply(res, vars, summarise, mean.mcr=mean(mcr))

prob ratio algo minsplit cp ntree mean.mcr

1 iris 0.67 forest NA NA 100 0.05020000
2 iris 0.67 forest NA NA 500 0.04920000
3 iris 0.67 forest NA NA 1000 0.04920000
4 iris 0.67 tree 5 0.01 NA 0.05660000
5 iris 0.67 tree 5 0.10 NA 0.06540000
6 iris 0.67 tree 10 0.01 NA 0.05600000

7 iris 0.67 tree 10 0.10 NA 0.06540000
8 diris 0.67 tree 20 0.01 NA 0.06540000
9 iris 0.67 tree 20 0.10 NA 0.06540000
10 iris 0.90 forest NA NA 100 0.04866667
11 iris 0.90 forest NA NA 500 0.04666667
12 iris 0.90 forest NA NA 1000 0.04600000
13 iris 0.90 tree 5 0.01 NA 0.05266667
14 iris 0.90 tree 5 0.10 NA 0.07133333
15 iris 0.90 tree 10 0.01 NA 0.04800000
16 iris 0.90 tree 10 0.10 NA 0.07133333
17 iris 0.90 tree 20 0.01 NA 0.07000000
18 iris 0.90 tree 20 0.10 NA 0.07133333

4.6 Further technical differences between the packages

As already mentioned, BatchExperiments completely builds upon the structure and mech-
anisms provided by BatchJobs. Most of its functions can be reused here, see Figure 1.
There are some technical differences, but nearly all of them are internal and transpar-
ent for the user. We have opted for these differences mainly out of run time and space
efficiency considerations. Firstly, for BatchExperiments the two additional subdirecto-
ries problems and algorithms are created inside your file.dir to store your problems
and algorithms. Another difference lies in the need for an additional database table to
hold experiment definitions so that they can be quickly queried in the database without
expanding all designs in main memory. This is especially relevant for subsetting exper-
iments with findExperiments (see Section 4.4). The additional experiment definition
table stores the problem and algorithm ID, their serialized parameters and the number
of replications. Note that we store replicated experiments only once here, but multiple
time in the job status table as the computational state of jobs for a replicated experiment
can of course be different.

5 Reproducibility

Reproducibility of experiments is an important aspect of modern day computational
statistics, but a somewhat disregarded topic. Even for simpler experiments that do not
require hundreds of lines of code or parallelization, the current situation is still not ideal.
As Hothorn and Leisch (2011) point out, the number of papers contributing both data and
source code for simulation studies or analyzes is still rather limited. Even for the ones
that do, reproducibility is sometimes arguable. Code often contains important details
unmentioned in the respective article, and — if it is well written — constitutes a precise
documentation of methods and experiments. Another current roadblock is that published
code is not treated with the same kind of diligence in the review process that ensures the
quality of the published article itself. Our personal opinion is that code is an integral part
of the scientific text as a whole and should be treated as such: It must be published, read
and criticized. Only then we can critically compare our results and build upon them. A

30

recent remedy is the proposal of the R? platform by Leisch et al. (2011). It aims at the
publication of R packages that specifically contain supplementary code as well as input
and result data for scientific articles.

For computationally expensive experiments that require parallelization or batch compu-
tation the situation is more complicated for two different reasons: First, if we want to
reproduce such scientific experiments, we need to have access to sufficient computational
power and the skills to manage it. Even if assuming all of this as given, a general problem
still remains: As different institutions and individuals have access to or prefer different
operating systems, hardware and computational management systems, everybody writes
their own, sometimes extensive code for parallelizing such experiments — quite often in
an ad-hoc manner. In our experience it is not a trivial undertaking to cleanly separate
the code parts of the actual algorithms and experiments from their scheduling on the
computational system. Even if this is done by the original authors, we would still have
to rewrite the latter part for our system to perform replicated or similar experiments.

A major advantage of both BatchJobs and BatchExperiments is their independence of the
underlying batch system. By using abstract experiment descriptions where the mapping
to the computational jobs, their submission to the batch system and the collection of
results is out-sourced, your calculations become portable. If you publish your file.dir
everybody can reproduce the results on their own batch system by simply exchanging
the cluster functions back end. Smaller up to moderately sized experiments you could
even reproduce with some patience on your personal multi-core machine or some ad-hoc
connection of a few Unix machines by using our SSH cluster functions if you do not have
access to a high performance cluster. Moreover, due to the separation of problems, algo-
rithms, experiments and batch system specific parts you can write clear, understandable
and well structured code. On top of that, other researchers might easily expand your
registry with their own problems, algorithms or evaluation methods, without touching
or recomputing your results. Or you can do this yourself when you later want to extend
your own study. Comparison and exchange of problems and algorithms is thereby easily
achieved.

Especially in simulation studies seeding is crucial and special care has to be taken if
jobs are executed in parallel. BatchJobs and BatchExperiments store a seed for each
potentially stochastic part to ensure reproducibility. The registry of BatchJobs allows
the definition an initial seed. A jobs’ seeds is defined by incrementing this initial seed
when job gets added to the database. Therefore each job is assigned a unique seed. For
BatchExperiments the situation is slightly more complicated as two potentially stochas-
tic computational parts exist: The dynamic problem generation and the subsequent al-
gorithm application. If the problem is simply static the mechanism works exactly in
BatchJobs. FEach job has one unique seed, automatically defined by incrementing the
initial seed. For dynamically generated problems we assign a second seed to this part.
We differentiate between “unsynchronized” and “synchronized” problem generation. Per
default, by not setting a problem seed in addProblem, you will get unsynchronized prob-
lem generation where the problem seed is randomly defined in addExperiments. For
synchronized problems on the other hand the user-provided problem seed is incremented
with each experiment replication and your algorithms will retrieve the same problem in-
stances for each distinct replication. We also refer the reader to the detailed description

31

of the workflow on the slave in Appendix A.

6 Conclusion and outlook

We have presented two packages for performing statistical calculations on high perfor-
mance computing clusters. BatchJobs is intended as a general purpose tool which is
applicable in as many scenarios as possible. It also allows users to extend it to build their
own special purpose parallel systems on top of it. Most people will find BatchExperi-
ments more convenient for analyzing their problems and algorithms. As an abstraction
for statistical experiments, BatchExperiments allows to write clear, understandable, eas-
ily extensible and well structured R scripts for statistical experiments which are both
reproducible and portable.

The first obvious extension is to support more batch systems and schedulers. BatchJobs is
already applicable in many common environments, but, as pointed out in Section 3.12, the
cluster functions interface is general enough for further extentsions. The most important
ones are probably Slurm'?, Amazon EC2'* and standalone, multi-core Windows machines.
The first requires only minor modifications to the current cluster function implementation
for TORQUE, while EC2 support would likely require a custom Amazon Machine Image
(AMI) and some sort of globally shared filesystem between the nodes. We will of course
support anybody who would like to integrate other systems and will either include well-
written code for this purpose in the package or publish it on the project’s web.

Although we have not experienced any problems with SQLite up to now, for an extremely
large number of jobs with short computation times it might be advantageous to have a
DBMS with row-level locking. We are therefore looking into supporting MySQL and
PostgreSQL as well in the foreseeable future. However, the different data back ends must
be convertible into each other in order to assure portability of registries. Regarding SQL
compatible database systems the latter can be easily achieved.

Another option would also be to support architectures where the computational nodes
only have local filesystems. This requires an additional abstraction layer for file access
to import and export data for the nodes.

Furthermore, it might also be beneficial to have a system that allows for scheduling
workflows of dependent jobs to a batch system. The idea is to specify a graph of dependent
computational steps where the parents of a node define its required results, possibly with
the option of recalculating only the required parts if some of the input data change.

In the near future we will apply BatchExperiments to perform broad benchmark stud-
ies in the areas of machine learning, optimization and survival analysis. Furthermore,
we are generally interested in solving computationally expensive black-box optimization
algorithms and analyzing computer experiments. Often, either evolutionary algorithms,
model-based approaches or a combination of both are put to work for such problems.
Especially the notion of model-based optimizers originates from the desire to efficiently

Bhttps://computing.1llnl.gov/linux/slurm/
“http://aws.amazon.com/ec2

32

https://computing.llnl.gov/linux/slurm/
http://aws.amazon.com/ec2

produce approximate solutions for expensive problems. We think it might be worthwhile
to create an interface on top of BatchJobs that allows such optimizers to create cluster
jobs on-the-fly, collect their results and iterate asynchronously.

A Workflow on the slave

The calculation of a job is started by an R CMD BATCH <scriptfile> command where
the argument corresponds to an automatically generated small R script. The standard
output and standard error stream of the R process are redirected to a log file for debugging
purposes. The various steps of the script are going to be explained in the following;:

A.1 R scriptfile

Inside the script, job specific settings as location of the registry file and job IDs are
hardcoded. They have automatically been filled in during the script creation. The
following steps are performed / triggered by function calls:

1. Load the BatchJobs package.
2. Load the registry from the hardcoded location.

3. Evaluate the hardcoded vector of job IDs. The vector contains either a single job
ID or, if you have used submitJobs in conjunction with chunk, all job IDs of one

chunk.
4. Load the required packages of the registry.
5. Load the stored configuration file.
6. Change working directory to the one defined in the registry.
7. Deserialize the current job definition from the DB.

8. Send "started"-message for current job. The current timestamp is inserted into
the database.

9. Potentially send "start"-mail, depending on configuration.
10. Save the current state of the RNG, set the job seed.

11. Call the applyJobFunction function inside a try-block. For BatchJobs this is
simply applying the job function to the job parameters. For BatchExperiments see
below.

12. If an error occurred: Send "error"-message for current job, potentially send "error"
mail.

33

13. If success: Store result, send "done"-message with timestamp for current job, po-
tentially send "done"-mail.

14. Reset the seed to the previous seed.

15. Reset working directory.

If you have joined your jobs into chunks the steps 7 - 13 will basically be repeated for
each individual job while using a caching mechanism to efficiently flush the messages.

A.2 BatchExperiments: applyJobFunction

BatchExperiments overloads the “apply-job function”, otherwise the rest of the already
explained workflow stays the same and is reused. The steps are as follows:

1. Load the static problem part and dynamic problem function from the filesystem.

2. Save the current state of the RNG, set the preliminary in addExperiments gener-
ated problem seed.

3. If not missing, call the dynamic problem function and pass it the problem parame-
ters from the deserialized job definition. Create a problem instance (otherwise set
to NULL).

4. Reset the seed to the previous seed.
5. Load the algorithm function from the filesystem.

6. Apply the algorithm function to the static problem part, the problem instance and
the algorithm parameters from the deserialized job definition.

7. Return the result of your algorithm function.

References

Bui, P., Yu, L., Thrasher, A., Carmichael, R., Lanc, I., Donnelly, P., and Thain, D. (2011).
Scripting distributed scientific workflows using weaver. Concurrency and Computation:
Practice and Ezxperience.

Burger, M., Juenemann, K., and Koenig, T. (2010). RUnit: R Unit test framework. R
package version (0.4.26.

Carnell, R. (2012). [hs: Latin Hypercube Samples. R package version 0.7.

Cleveland, W., Guha, S., Hafen, R., Li, J., Rounds, J., Xi, B., and Xia, J. (2011). Divide
and Recombine for the Analysis of Complex Big Data. Technical report, Department
of Statistics, Purdue University.

34

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51, 107-113.

Eugster, M. J. A. and Leisch, F. (2008). Bench plot and mixed effects models: First
steps toward a comprehensive benchmark analysis toolbox. In P. Brito, editor, Comp-
stat 2008— Proceedings in Computational Statistics, pages 299-306. Physica Verlag,
Heidelberg, Germany.

Eugster, M. J. A., Hothorn, T., and Leisch, F. (2008). Exploratory and inferential anal-
ysis of benchmark experiments. Technical Report 30, Institut fuer Statistik, Ludwig-
Maximilians-Universitaet Muenchen, Germany.

Franco, J., Dupuy, D., and Roustant., O. (2011). DiceDesign: Designs of Computer
Ezxperiments. R package version 1.1.

Grothendieck, G. (2011). sqldf: Perform SQL Selects on R Data Frames. R package
version 0.4-6.1.

Hill, J., Hambley, M., Forster, T., Mewissen, M., Sloan, T., Scharinger, F., Trew, A., and
Ghazal, P. (2008). SPRINT: A new parallel framework for R. BMC' Bioinformatics,
9(1), 558-+.

Hoffmann, T. J. (2011). Passing in command line arguments and parallel clus-
ter/multicore batching in R with batch. Journal of Statistical Software, Code Snippets,
39(1), 1-11.

Horner, J. (2011). brew: Templating Framework for Report Generation. R package version
1.0-6.

Hothorn, T. and Leisch, F. (2011). Case studies in reproducibility. Briefings in Bioin-
formatics, 12(3), 288-300.

James, D. A. (2011). RSQLite: SQLite interface for R. R package version 0.11.1.

Knaus, J. (2010). snowfall: Easier cluster computing (based on snow). R package version
1.84.

Leisch, F., Eugster, M., and Hothorn, T. (2011). Executable papers for the r community:
The r2 platform for reproducible research. Procedia Computer Science, 4(0), 618 —
626.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News,
2(3), 18-22.

Mersmann, O. (2011). sendmailR: send email using R. R package version 1.1-1.

R Development Core Team (2012). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Revolution Analytics (2011). foreach: Foreach looping construct for R. R package version
1.3.2.

35

Revolution Analytics and Pfizer (2010). nws: R functions for NetWorkSpaces and Sleigh.
R package version 1.7.0.1.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., and Mansmann,
U. (2009). State of the art in parallel computing with r. Journal of Statistical Software,
31(1), 1-27.

Therneau, T. M. and Atkinson, B. (2011). rpart: Recursive Partitioning. R package
version 3.1-50, R port by Brian Ripley.

Tierney, L., Rossini, A. J., Li, N.; and Sevcikova, H. (2011). snow: Simple Network of
Workstations. R package version 0.3-8.

Urbanek, S. (2011). multicore: Parallel processing of R code on machines with multiple
cores or CPUs. R package version 0.1-7.

Vanschoren, J., Blockeel, H., Pfahringer, B., and Holmes, G. (2011). Experiment
databases. A new way to share, organize and learn from experiments. Machine Learn-
mg.

Wheeler, B. (2011). AlgDesign: Algorithmic Experimental Design. R package version
1.1-7.

Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical
Software, 21(12), 1-20.

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York.

Wickham, H. (2011a). The split-apply-combine strategy for data analysis. Journal of
Statistical Software, 40(1), 1-29.

Wickham, H. (2011b). testthat: Testthat code. Tools to make testing fun :). R package
version 0.5.

Yu, H. (2010). Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). R
package version 0.5-8.

36

	Introduction
	Review of other relevant work
	BatchJobs
	Configuration file
	Job registry
	Filesystem layout
	Job database and message passing protocol
	Mapping, reducing and filtering
	Submitting jobs
	Status queries and status mails
	Collecting results
	Transforming results
	Chunking of small jobs
	Debugging tools
	Supported batch systems and how to integrate a new one

	BatchExperiments
	Problems and Algorithms
	Parametrization with statistical designs
	Adding Experiments
	Subsetting experiments
	Collecting results
	Further technical differences between the packages

	Reproducibility
	Conclusion and outlook
	Workflow on the slave
	R scriptfile
	BatchExperiments: applyJobFunction

