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Abstract

In this thesis corrections to the energy loss cross sections of high-energy muons
are calculated. Over a large part of the energy range investigated by very large
volume neutrino telescopes such as IceCube, pair production and bremsstrahlung
dominate the energy loss. The theoretical uncertainties on the energy loss cross
sections influence the experimental results as systematic uncertainties. These
corrections are important for the energy reconstruction of high-energy muons
which are observed in particle and astroparticle detectors.

The leading-order cross sections of bremsstrahlung and pair production have
been parametrized with less approximations than in previous works. In the case of
bremsstrahlung the differences are most pronounced at low muon energies, where
bremsstrahlung is a very subdominant process, while at higher energies the dif-
ference to previous works is negligible. For pair production, the new parametriza-
tions lead to changes of up to a percent to the cross section differential in the lost
energy, and the differences are present at all energies.

For bremsstrahlung, the next-to-leading-order (NLO) corrections have been
calculated for the average energy loss and the differential cross section. The av-
erage energy loss is increased by about 2% in the high-energy limit due to these
corrections. The relative effect on the differential cross section is independent of
the energy of the muon in the approximation used here. The correction increases
the cross section for large relative energy losses.

For the inelastic nuclear interaction, NLO corrections have also been calcu-
lated. The correction to the cross section is also most pronounced for large rela-
tive energy losses; the correction is not independent of the muon energy for this
process.

For bremsstrahlung and pair production, Coulomb corrections, i. e. correc-
tions to all orders in the coupling Zα to the electric field of the nucleus have been
calculated and parametrized, taking into account the nuclear formfactor. The
qualitative behavior has been predicted earlier by other authors using simplified
models for the nuclear charge distribution; this is the first quantitative calculation
of Coulomb corrections for realistic extended nuclei.

Zusammenfassung

In dieser Arbeit werden Korrekturen zu den Wirkungsquerschnitten der Ener-
gieverlustprozesse hochenergetischer Myonen berechnet. Die theoretischen Unsi-
cherheiten auf dieWirkungsquerschnitte der Energieverlustprozesse beeinflussen
experimentelle Ergebnisse als systematische Unsicherheiten. Die in dieser Arbeit
bestimmten Korrekturen sind daher von Bedeutung für die Energierekonstruktion
hochenergetischer Myonen, wie sie in Detektoren von Teilchenphysik- und Astro-
teilchenphysikexperimenten beobachtet werden. Der Energieverlust wird über ei-
nen Großteil des Energiebereichs großvolumiger Neutrinoteleskope, wie IceCube,
durch Paarproduktion und Bremsstrahlung dominiert

DieWirkungsquerschnitte für Bremsstrahlung und Paarproduktion in führen-
der Ordnung werden mit weniger Näherungen als in früheren Arbeiten parame-
trisiert. Im Falle der Bremsstrahlung sind die Unterschiede am bedeutendsten
bei kleinen Energien, wo Bremsstrahlung ein subdominanter Prozess ist, wäh-
rend bei hohen Energien die Unterschiede zu früheren Arbeiten vernachlässigbar
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sind. Im Fall der Paarproduktion führt die neue Parametrisierung zu Unterschie-
den von bis zu etwa einem Prozent im in der verlorenen Energie differentiellen
Wirkungsquerschnitt, die bei allen Energien auftreten.

Strahlungskorrekturen werden für den mittleren Energieverlust und den diffe-
rentiellen Wirkungsquerschnitt der Bremsstrahlung berechnet. Der mittlere En-
ergieverlust von Myonen durch Bremsstrahlung steigt durch diese Korrekturen
um etwa 2%. Der relative Effekt auf den differentiellen Wirkungsquerschnitt ist
in der hier genutzten Näherung unabhängig von der Energie des Myons. Die Kor-
rekturen erhöhen den Wirkungsquerschnitt für große relative Energieverluste.

Ebenfalls wurden Strahlungskorrekturen für denWirkungsquerschnitt der in-
elastischen nuklearen Wechselwirkung berechnet. Die Korrekturen sind auch in
diesem Fall bei großen relativen Energieverlusten bedeutend, jedoch sind die Kor-
rekturen in diesem Fall nicht unabhängig von der Myonenergie.

Für Bremsstrahlung und Paarproduktion wurden Coulombkorrekturen, d. h.
Korrekturen zu allen Ordnungen im Kopplungsparameter Zα zum elektrischen
Feld des Kerns berechnet, wobei der nukleare Formfaktor berücksichtig wurde.
Die qualitativen Eigenschaften der Ergebnisse stimmen mit früheren näherungs-
weisen Vorhersagen überein; diese Arbeit führt die erste quantitative Bestimmung
von Coulombkorrekturen für realistische ausgedehnte Atomkerne durch.

vi



Chapter 1

Introduction

One of the central problems of astroparticle physics is the energy reconstruction
of muons and neutrinos. The energy spectra of muons and neutrinos produced in
the atmosphere in extended air showers provide the possibility to study hadronic
interactions at energies inaccessible to present accelerators, and the energy spec-
tra of astrophysical neutrinos offer insights into the acceleration processes of such
extreme environments as active galactic nuclei and gamma ray bursts, which are
assumed to be the production sites of ultra-high energy charged cosmic ray par-
ticles.

The determination of these spectra depends on the energy reconstruction of
the muon events and, in the case of muon neutrino spectra, the determination of
the neutrino energy from the muon energy. The energy reconstruction of muons is
based on the energy loss of muons. The processes which contribute to the energy
loss of muons are ionization, pair production, bremsstrahlung and inelastic nuclear
interaction.

The average energy loss is approximately a first-order polynomial of the en-
ergy and thus well correlated to the energy of the muon [15]. However, the
energy is not lost continuously but stochastically. This makes the determination
of the muon energy an ill-posed inverse problem. The algorithms used to solve
this problem [5, 51] depend on accurate simulations [63, 64] of the energy loss
patterns and their effects in detectors. The uncertainties of the energy loss cross
sections affect the results of these algorithms as systematic uncertainties. To
reduce the uncertainties, the cross sections are calculated more exactly in this
thesis.

The production processes and energy spectra of atmospheric muons and of at-
mospheric and astrophysical neutrinos are described in Chapter 2, together with
a brief account of astroparticle physics in general. The characteristics of the
different energy loss processes and the parametrizations commonly used for the
simulation of muon propagation are reviewed in Chapter 3, where also improved
parametrizations of the leading-order cross sections for bremsstrahlung and pair
production are presented and the influence of other processes is estimated. In
Chapter 4 a modified Weizsäcker-Williams method is presented, which is used in
Chapter 5 to investigate the effect of radiative corrections on the average energy
loss and cross section of bremsstrahlung. Additionally, in this chapter the radia-
tive correction to the cross section of inelastic nuclear interaction is calculated.
The effect of Coulomb corrections on the pair production and bremsstrahlung
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cross section is investigated in Chapter 6.
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Chapter 2

Muon production

Muons in astroparticle detectors are produced in the atmosphere via decay of
hadrons, where the spectral behaviour depends on the decaying hadron, via pair
production in photon-nucleus interactions in the atmosphere, production of muon
pairs by other muons or in charged current interactions of muon neutrinos.

2.1 Muons from pions and kaons

Pions and kaons decay predominantly into muons and muon neutrinos

π± → μ± + νμ(ν̄μ) (∼ 100%) (2.1)

K± → μ± + νμ(ν̄μ) (∼ 63.5%). (2.2)

Typically these decays occur in heights of ∼ 15 km [46]. For muon energies
above Eμ ∼ 2.5GeV the decay length is longer than the distance to the ground
and the muon can be considered as stable.

The form of the muon flux is determined by the competition between the de-
cay of the parent mesons according to the above equations and the interaction of
the mesons with the surrounding air. The critical energy where the interaction
probability exceeds the decay probability of the hadron i is approximately given
by [46]

εcriti =
εi

cos θ∗
=

mic2h0
cos θ∗cτi

, (2.3)

where θ∗ is the local zenith angle at the production site to account for the cur-
vature of the Earth, mi and τi are the mass and lifetime of the hadron i and
h0 = RT/Mg = 29.62m/K × T ≈ 6.4 km is the scale height in an exponential
approximation of the density at high altitudes, where R is the universal gas con-
stant, g the gravitational acceleration, T the temperature and M the molar mass
of the atmosphere. The local zenith angle θ∗ at production is related to the zenith
angle θ on ground by

cos θ =
(RE + h) cos θ∗ − RE√

(RE + h)2 + R2
E − 2(RE + h)RE cos θ

∗
(2.4)
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with RE the earth radius and h the production height. The leptons from these
light hadrons are commonly referred to as conventional muons and neutrinos.
The spectrum of leptons from air showers can then be expressed as1 [45]

φℓ(Eℓ) = φN(Eℓ)×
{

Aπℓ

1+ Bπℓ cos θEℓ/επ
+

AKℓ

1+ BKℓ cos θEℓ/εK

+
Acharmℓ

1+ Bcharmℓ cos θEℓ/εcharm

}
,

(2.5)

where the weakly energy-dependent A-factors consist of the spectrum-weighted
moments of the production and decay of mesons, accounting for both the kine-
matics and branching ratios, the denominator accounts for the interaction and
the energy dependence of the decay distributions, and φN(E) = dNN/dE is the
number spectrum of cosmic-ray nucleons interacting with the atmsophere.

Air shower arrays such as the Pierre Auger Observatory [1] and Telescope
Array [8] observe a flux of nuclei which can be described approximately by a
broken law [46] (Fig. 2.1)

dN
dE

∝


E−2.7 10GeV ≲ E ≲ 1PeV,

E−3.1 10PeV ≲ E ≲ 1EeV,

E−2.6 10EeV ≲ E ≲ 1020 eV.

(2.6)

Since the pion and the muon differ only slightly in mass, the muon receives
most of the energy of the pion. The kaon is considerably heavier, leading to
a more equal distribution of the energy on the muon and the neutrino. Thus,
the conventional neutrino flux is dominated by the contribution from kaons above
Eν/ cos θ ∼ 102 GeV, while for muons pions remain the dominant contribution
(cf. Fig. 2.2, Fig. 2.3).

The interaction probability is proportional to the density of air, which in the
case of an ideal gas is inversely proportional to the temperature. The decay proba-
bility on the other hand is independent of the ambient temperature. Consequently,
the critical energies εcriti change with the seasonal variations of the temperature
in the atmosphere.

2.2 Muons from heavy hadrons

The production of muons from heavy hadrons such as D-mesons or Λc-baryons
is described analogously to the light mesons (cf. (2.3)). However, the critical
energy εcriti is of the order of a few PeV, therefore the lepton flux from heavy
hadrons stems practically exclusively from the decay-dominated regime. They
are commonly referred to as prompt muons and neutrinos.

Compared to prompt neutrinos, the prompt muon flux receives an additional
component due to the decay of unflavored mesons such as

η → μ+ + μ−. (2.7)

The contributions of the various parent particles are shown in Fig. 2.2 and Fig. 2.3.
The contribution of unflavored particles such as η, η′, ϱ,ω is comparable to the

1The third term correspond to leptons from heavy hadrons, as discussed in the next section.
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2.2. MUONS FROM HEAVY HADRONS 5

Figure 2.1: Spectrum of charged cosmic ray particles measured by various ex-
periments [46]. The arrows at the x-axis denote the laboratory energies corre-
sponding to various accelerator experiments.



6 CHAPTER 2. MUON PRODUCTION

Figure 2.2: Atmospheric muon flux with partial contributions of intermediate
particles [43], weighted with the third power of the muon energy. The pion com-
ponent remains dominant compared to the kaon component for the conventional
flux. The prompt component from unflavored meson decays is also clearly visible.

Figure 2.3: Atmospheric muon neutrino flux with partial contributions of inter-
mediate particles [43], weighted with the third power of the muon neutrino en-
ergy. The kaon component is dominant compared to the pion component over a
large part of the energy range of the conventional flux.
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Figure 2.4: Average ratio y between neutrino energy and cascade energy in
charged current neutrino and antineutrino interactions [80].

contribution of D-mesons over a large energy range and even dominates at ener-
gies above ∼ 100PeV.

Because the cross-section in the forward region gives the dominant contribu-
tion to the prompt flux, which is inaccessible for detectors at accelerators, the
predictions for the prompt flux vary widely (e. g., [30, 42]).

Since the center-of-mass energy for the production of heavy hadrons is high,
the prompt muons are often muons which carry most of the energy of the shower
in which they are produced because they have to be produced early. This is in
contrast to conventional muons, which are also produced at later stages of the air
shower and also arrive in bundles with more or less equipartition of the energy
between the muons.

2.3 Muons from neutrinos

By exchanging aW-bosonwith a nucleon, a muon neutrino is converted to a muon.
The energy of the neutrino is divided between the hadronic cascade and the muon.
The average ratio between the neutrino energy and the energy imparted to the
cascade decreases with energy (cf. Fig. 2.4).

The muon direction is almost identical to the neutrino direction with a mean
deviation of [46]

⟨θ⟩ ≈ 1.5◦√
Eν/TeV

. (2.8)

This small deviation together with the accuracy of the muon directional recon-
struction in modern neutrino telescopes such as IceCube [4] allows to use muon
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neutrinos as messenger particles in astrophysical point source investigations.
The identification of neutrino point sources will allow to solve the long-standing

problem of the origin of ultra-high energy charged cosmic ray particles. Since
these particles are charged, they are deflected by galactic and extragalactic mag-
netic fields during the propagation from their source to Earth. The sources of
cosmic rays are therefore unknown. The break at about a PeV is commonly con-
sidered to denote the beginning of the end of the galactic population of cosmic
rays; whether this is due to propagation effects [47], maximum attainable en-
ergy of galactic accelerators [86] or energy-dependent leakage [46] is still under
debate.

Astrophysical sources which accelerate charged cosmic rays produce high-
energy pions in hadronuclear and photohadronic interactions

p+ nucleus → π +X (π = π0,π±), (2.9)

p+ γ →

{
π+ + n,
π0 + p.

(2.10)

The pions in turn decay to photons and neutrinos via

π0 →γ + γ,

π+ →μ+ + νμ
,→ e+ + νe + ν̄μ.

(2.11)

Neutrino oscillation changes the presumed source flavor distribution of νe : νμ :
ντ = 1 : 2 : 0 to equipartition νe : νμ : ντ = 1 : 1 : 1 [73].

Since neutrinos and photons are uncharged, they are not deflected by magnetic
fields and point back to their origin. However, high-energy photons can be pro-
duced not only by hadronic acceleration mechanisms, but also in leptonic sources
via inverse Compton scattering of low-energy photons on electrons of high energy

γlow energy + e−high energy → γhigh energy + e−. (2.12)

Since the production of neutrinos in leptonic sources via [24]

γ + e− → μ+ + μ− + e− (2.13)

with subsequent decay of the muons is suppressed by the large mass of the muons,
astrophysical sources producing neutrinos can be practically regarded as “smok-
ing gun” of hadron accelerators.

The spectrum of a single source depends of course on the characteristics of the
specific source. A hadronuclear model predicts a power law which roughly follows
the primary proton spectrum, similar to atmospheric prompt neutrinos due to the
low density of even comparatively dense astrophysical sources. The prediction
of a photohadronic model naturally depends on the photon distribution; however,
the general picture is a spectrum peaking at high energies (cf. Fig. 2.5, 2.6).

However, calculations of the diffuse neutrinos flux generally show a spectrum
compatible with a power law ∝ E−γ, where γ ≈ 2 (e. g. [37, 85, 109]) due to
the averaging over many sources.
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2.3. MUONS FROM NEUTRINOS 9

Figure 2.5: Hadronuclear model for the blazar TXS 0506+056 [76] with two
assumptions on the spectral index of the power law describing the proton distribu-
tion. This model assumes independent emission zones for the neutrino emission
and the photon emission.

Figure 2.6: Photohadronic model for the blazar TXS 0506+056 [36]. The to-
tal flux weighted with the square of the energy (νFν) is shown with solid lines
for photons and neutrinos, respectively, below and above 100TeV. The dotted
lines show the emission from electrons produced via p + γ → p + e+ + e−, the
dashed lines the emission of cascades from electron produced in pion decays and
the dotted-dashed lines the proton synchrotron emission. The black dots refer
to quasi-simultaneous measurements during a high-flux state, the grey dots are
archival data for comparison. The colours represent increasing values of the size
of the emission region.
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Chapter 3

Muon interaction

The energy loss of muons is important for the simulation of the propagation of
muons from their production site in the atmosphere or the surrounding ice and
bedrock to the underground detector. As an example, we consider the IceCube
detector (cf. Fig. 3.1), which consists of 5160 digital optical modules arranged
on 86 strings frozen into a block of clear ice in a depth of 1450–2450m at the
geographic South Pole. The muons produced in air showers in the atmosphere,
in the instrumented volume or the surrounding ice and rock are observed via the
Cherenkov radiation of the muons and the secondary particles produced during
propagation.

Muons loose energy almost exclusively by four processes, namely

• excitation, ionization and μe scattering on atomic electrons,

• bremsstrahlung,

• electron pair production,

• inelastic interaction with nuclei.

Other possible processes such as emission of Cherenkov light or muon pair pro-
duction are negligible for the energy loss.

The two quantities of interest in underground detectors such as IceCube are
the differential cross-section dσ/dv, where v = (E − E′)/E is the energy lost by
the muon relative to its initial energy, and the average energy loss per distance,

−
⟨
dE
dx

⟩
=

NA

A
ϱE∫ v

dσ
dv

dv, (3.1)

where NA is Avogadro’s constant, A is the mass number of the material and ϱ its
density.1 The average energy loss can be parametrized quasi-linearly as [15]

−
⟨
dE
dx

⟩
≈ a(E) + b(E)E, (3.2)

where a(E), b(E) are varying at most logarithmically with energy (cf. Fig. 3.2).

1Instead of the distance, also the depth X = xϱ is used.
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12 CHAPTER 3. MUON INTERACTION

Figure 3.1: Schematic view of the IceCube neutrino observatory. Also shown are
the precursor detector AMANDA and, as a scale, the Eiffel tower.
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Figure 3.3: Range of monoenergetic muons of initial energy Eμ = 100GeV in
ice, calculated with the lepton propagator PROPOSAL [63]. The average range
is ⟨R⟩ = (395± 44)m, the range calculated on the basis of the average energy
loss is R⟨dE/dX⟩ = 394m.

Since a muon with an energy of tens or hundreds of TeV can travel several
kilometers through rock or ice, it is necessary to know the energy loss to a high
precision.

Based on the quasi-linear parametrization of the average energy loss the range
of muons is given by

R⟨dE/dx⟩(E) =
1
b
ln
(
1+

b
a
E
)

(3.3)

if it is assumed that a, b are independent of energy and all energy is lost contin-
uously. Since the energy loss is a stochastic process, the actual range fluctuates
due to hard losses by mainly bremsstrahlung and inelastic nuclear interaction,
with the effect of fluctuations increasing with energy. Therefore, the average
range ⟨R⟩ becomes smaller than the range calculated on the basis of the average
energy loss R⟨dE/dX⟩, where the ratio ⟨R⟩/R⟨dE/dX⟩ decreases with increasing en-
ergy (cf. Fig. 3.3, 3.4). Some muons propagate much farther than R⟨dE/dX⟩, but
the majority loose their energy faster in large stochastic losses.

The fluctuations influence the rate of downgoing atmospheric muons and of
neutrino-induced muons in opposite ways [74]. This is due to the different depths
traversed and the steep spectrum of atmospheric muons. In an underground detec-
tor, the depth of rock or ice traversed by atmospheric muons is fixed for a given
direction, whereas the depth of matter traversed by neutrino-induced muons is
not, because the muons can originate everywhere in the surrounding matter. The
rate of atmospheric muons can be written as ∫ dEμ(dN/dEμ)Psurv(Eμ,X), where
Psurv(Eμ,X) is the survival probability of a muon with energy Eμ to reach a depth
X. The small probability to travel larger depth than R⟨dE/dX⟩ is compensated for
by the vastly larger flux at smaller energies, thus leading to a larger flux than ex-
pected from the average energy loss. In contrast, the neutrinos sample all depth

13
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Figure 3.4: Range of monoenergetic muons of initial energy Eμ = 100TeV in
ice, calculated with the lepton propagator PROPOSAL [63]. The average range
is ⟨R⟩ = (13.3± 3.8)km, the range calculated on the basis of the average energy
loss is R⟨dE/dX⟩ = 14.8 km.

and ⟨R⟩ < R⟨dE/dX⟩ decreases the flux compared to the expectation based on the
average energy loss.

3.1 Ionization

Excitation μ + Z → μ + Z∗, (3.4)

ionization μ + Z → μ + Z+ + e−, (3.5)

and μe scattering μ + e− → μ + e− (3.6)

on atomic electrons are the dominant energy loss processes for muons up to en-
ergies below about 1TeV in water or ice. The contribution of these processes to
the average energy loss makes up most of the quasi-constant coefficient a(E) in
the quasi-linear parametrization (3.2).

The first treatment of ionization was given by [19], the first treatment of
e−-e− scattering by [23]. Later, corrections were introduced to account for the
influence of the density of the medium [101]. Also radiative corrections to the
μe scattering, including bremsstrahlung by the atomic electron, were calculated
[59].

Ionization differs from the other processes discussed in this section in that its
contribution to the energy loss increases only logarithmically with increasing en-
ergy. Therefore it dominates the energy loss of low-energy muons. The threshold
at which radiative processes become dominant depends on the material. In water,
it is at about 1TeV.

The number of μe scattering interactions per distance differential in the lost

14



energy ν is given by [48]

d2N
dνdX

=
1
2
Kz2

Z
A

1

β2
1
ν2

[
1− β2 ν

νmax
+

1
2

(
ν

E+ μ

)2
]

×
{
1+

α
2π

[a(2b+ c)− b2]
}
,

a = ln
(
1+

2ν
me

)
, b = ln

1− ν/νmax

1− ν/E
, c = ln

2meE(E− ν)
μ2ν

,

νmax =
2me(E2 − μ2)

m2
e + μ2 + 2meE

,

(3.7)

where K is the ionization constant, Z is the nuclear charge of the medium, z the
charge of the particle propagating through the medium, μ its mass, β its velocity
in units of light speed and A the atomic mass of the medium.

Integrating this expression between νmin and νmax and adding the contribution
of ionization and excitation, the average energy loss is given by

− dE
dX

= K
Z

Aβ2

[
1
2
ln

(
2meβ

2γ2νupper
I(Z)2

)
−

β2

2

(
1+

νupper
νmax

)

+
1
2

(
νupper

2E(1+ 1/γ)

)2

− δ
2

]
.

(3.8)

where

νmin =
1

2me

(
I(Z)
βγ

)2

,

νmax =
2me(γ2 − 1)

1+ 2γme/μ + (me/μ)2
,

νupper = min(νcut, νmax).

Here, I(Z) is the mean excitation energy, νcut = Evcut or νcut = ecut refers to the
cutoff at small energy losses explained in 3.6 and δ refers to the density correction
[101]

δ =


δ0102(X−X0) X < X0,

c1X+ c+ a(X1 −X)m X0 ⩽ X < X1,

c1x+ c X1 ⩽ X.

(3.9)

where X = log10(βγ), and δ0,X0, c1, c, a,X1 are material constants (cf. [49]).

3.2 Bremsstrahlung

μ + Z → μ + Z+ γ (3.10)

Bremsstrahlung has a slightly smaller contribution to the energy loss of muons
than pair production, but is almost as important at very high energies. The dif-
ferential cross section is harder (dσ/dv ∼ v−1) so that bremsstrahlung is mainly
responsible for hard energy losses of muons in the detector. In contrast to the
finite integrand of energy loss v dσ/dv the lowest order cross section diverges for

15



v → 0 due to the v−1 behavior of the cross section and the vanishing mass of the
photon.

The first calculation of the bremsstrahlung cross section of electrons on a
Coulomb center was carried out by Bethe and Heitler [21]. Already in this paper
results were given also for complete screening of the nucleus by the atomic elec-
trons in the Thomas-Fermi model. The results of this paper can be written in the
form

dσ = 4Z2α
(
re
me

μ

)2 dv
v

[
(2− 2v+ v2)Φ1 −

2
3
(1− v)Φ2

]
, (3.11)

where re is the classical electron radius, me and μ are the rest mass of the elec-
tron and the initial lepton and the screening functions Φ1,2 depend only on the
minimum momentum transfer

δ =
μ2v

2E(1− v)

and are given for relativistic particles by

Φ1 = Φ2 = ln
μ
δ
− 1

2

in the absence of screening. In the case of complete screening

Φ1 −Φ2 =
1
6
, Φ1 = ln

( μ
m
BZ−1/3

)
,

where B ≈ 183 is the radiation logarithm. Its exact value depends on the spatial
charge distribution of the atomic electrons. Since the minimum momentum trans-
fer decreases ∼ μ2/E, the spectrum of bremsstrahlung photons is dominated by
the complete screening regime at very high energies.

The first correct account for the influence of both atomic and nuclear formfac-
tors was carried out in [87]. The formfactors are the Fourier transform of the
charge distribution2 of the atomic electrons and the nucleus, respectively,

Fe,n(q) =
4π
q

∞

∫
0

rϱe,n(r) sin qr dr . (3.12)

The cross section is proportional to the structure function [40]

W2(q2, ν) = −Z2δ(ν)[Fn(q)− Fe(q)]2 (3.13)

for the elastic interaction with an infinitely heavy nucleus, screened by atomic
electrons. q is the momentum and ν the energy transferred to the nucleus. In this
case, the functions Φi(δ) are given for highly relativistic muons by [31]

Φ1(δ) =
∞

∫
δ

[
q2 lnx− δ2(y− 1)

]
[Fn(q)− Fe(q)]2

dq
q3

, (3.14)

2The charge distribution is assumed to be normalized such that ∫ ϱe,ndV = 1.
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B Model
183.0 Thomas-Fermi [58]
184.15 Thomas-Fermi-Molière [105]
189 Thomas-Fermi-Tietz [87]
202.4 Hydrogen atom
151.9—179.8 Hartree-Fock [60] (depends on Z)

Table 3.1: Different values of the numerical value in the radiation logarithm
Lrad = ln[(μ/me)BZ−1/3].

Φ2(δ) = 6μ2

∞

∫
δ

(
1− 1

y
− lnx− δ2

μ2 ln y

)
[Fn(q)− Fe(q)]2

dq
q3

, (3.15)

lnx =
1

4
√
ζ(1+ ζ)

× ln
1+ 4ζ + 4

√
ζ(1+ ζ)−

√
ζ/(1+ ζ)√

1− 8ζ/y+ 16ζ(1+ ζ)/y2 + 4
√
ζ(1+ ζ)/y−

√
ζ/(1+ ζ)

,

y =
q
δ
, ζ =

q2

4μ2 .

(3.16)

In the case of the hydrogen atom, the atomic form factor is known analytically
as the Fourier transform of the squared modulus of the ground state electron wave
function (e. g. [60])

FH
e (q) =

[
1+

(aBohrq
2

)2]−2

,

where aBohr = re/α2 is the Bohr radius of the hydrogen atom. For heavier atoms,
the atomic formfactor can be parametrized based on approximations such as the
Thomas-Fermi model [105] or the Hartree-Fock model [60]. Based on the cho-
sen approximation, the numerical value in the argument of the logarithm in the
function Φ1 in the complete screening limit, the so-called radiation logarithm,
assumes different values (cf. Tab. 3.1).

The effect of the atomic formfactor is an effective cutoff of low transferred
momenta. The nuclear formfactor leads to a cutoff of high transferred momenta.
Since the regions where the formfactors differ substantially from 1 are very dif-
ferent, it is possible to consider them separately via

[Fn(q2)− Fe(q2)]2 ≈ [1− Fe(q2)]2 − [1− Fn(q2)]2. (3.17)

The correction to Φi due to the finite nucleus can therefore be expressed as

Φi = Φ0
i − Δi, (3.18)

where Φ0
i contains the effect of the atomic formfactor and Δi the effect of the

nuclear formfactor.
The interpolation ofΦ0

i between the limiting cases of absence of screening and
complete screening can be carried out in the approximation Φ = Φ1 ≈ Φ2 with
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the function [87]

Φ = ln
BZ−1/3μ/me

1+ B
√
eZ−1/3δ/me

. (3.19)

The difference between Φ1,Φ2 in the complete screening limit leads to an uncer-
tainty of ≲ 3% for electrons and ≲ 1.6% for muons3.

Another way is the use of the atomic formfactor suggested by [97]

Fe =
1

1+ b2q2
, b =

BZ−1/3

me
√
e
. (3.20)

This leads to the expressions [105]

Φ1(δ) =
1
2

(
1+ ln

μ2b2

1+ b2δ2

)
− bδ arctan

1
bδ

,

Φ2(δ) =
1
2

(
2
3
+ ln

μ2b2

1+ b2δ2

)
+ 2b2δ2

(
1− bδ arctan

1
bδ

+
3
4
ln

b2δ2

1+ b2δ2

)
.

(3.21)

The results of numerical calculations based on the Thomas-Fermi model are de-
scribed better by the function of (3.19); however, for hydrogen the function by
(3.21) describes the results better, provided that the correct value of the radiation
logarithm is used.

The results of numerical calculations by [87] based on the data in [41] for the
nuclear formfactor corrections are parametrized by

Δ1 = Δ2 = ln(1.5Z1/3). (3.22)

Later calculations by [10] based on the formfactor parametrization in [105]

Fn(q) =
(
1+

a2q2

12

)−2

, a = (0.58+ 0.82A1/3)5.07GeV−1, (3.23)

are parametrized by the expressions4

Δ1 = ln
μ
qc

+
ϱ
2
ln

ϱ+ 1
ϱ− 1

,

Δ2 = ln
μ
qc

+
1
4
(3ϱ− ϱ3) ln

ϱ+ 1
ϱ− 1

+
2μ2

q2c
,

ϱ =

√
1+

4μ2

q2c
, qc = 1.9mμZ−1/3.

(3.24)

which for heavy nuclei (Z ≥ 10) leads to

Δ1 − Δ2 ≈ 1
6
, Δ1 ≈ ln

μ
qc

+ 1 ≈ ln(1.43Z1/3). (3.25)

3In the case of muons, the nuclear formfactor corrections to Φ1,Φ2 cancel the difference in the
complete screening limit. However, the cancelling terms lead to a difference of the opposite sign in the
absence of screening, see below.

4Here the muon mass mμ occurs as a convenient scaling, since the inverse radius of the nucleus
and the muon mass are of the same order of magnitude in units with ℏ = c = 1.
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Therefore, in the complete screening limit for heavy nuclei, the difference between
Φ1,2 is compensated by the difference of Δ1,2 in the case of muons. Calculations
by [58] based on nuclear measurement data in [41] can be parametrized by

Δ2 ≈ Δ1 = ln(1.54A0.27). (3.26)

Both [58, 87] base their calculations on the data of [41], while [10, 11] base their
calculation on [105]. A comparison of the nuclear corrections calculated based on
these form factors with the parametrizations is seen in Fig. 3.5. The parametriza-
tions of [58, 87] are only compared to Δ1, because they use the approximation
Φ1 ≈ Φ2. The nuclear formfactor correction decreases the muon bremsstrahlung
cross section by 10–15% compared to bremsstrahlung on a point-like nucleus.
The parametrization by [10, 11] describes well the nuclear formfactor correction
for the heavy nuclei that were at the focus of their work; the parametrization by
[58] describes the nuclear formfactor correction for all nuclei.

Apart from these elastic interactions there are contributions from inelastic
interactions with the atom. Under the assumption that the wavefunction of the
nucleus is a nonantisymmetrized product of individual proton wavefunctions, the
inelastic nuclear formfactor is given due to completeness relations by [10]

Finel
n (q) =

1
Z
[1− F2

n(q)], Z ̸= 1, (3.27)

such that the contribution of the excitation of nuclear levels is given by Δinel
i =

Δi/Z. Obviously, this model cannot be used for hydrogen, as there are no nuclear
levels to be excited. The inelastic nuclear formfactor correction is important for
light and medium nuclei, because for heavy nuclei the factor 1/Z is small.

The inelastic atomic formfactor describes the contribution of atomic electrons
as target. When the recoil of the electron is neglected, the contribution is de-
scribed by Φ0

i /Z (cf. (3.21)) with b replaced by c = B′/(Z2/3√em), where B′

is the constant in the inelastic radiation logarithm L′
rad = ln(B′Z−2/3μ/me); in

the Thomas-Fermi-Molière approximation, B′ = 1194 [10, 105], while a nu-
merical solution by [59] obtained B′ = 1429. In [59] the bremsstrahlung on
atomic electrons was calculated without neglect of recoil; in this case two sets of
Feynman diagrams contribute to the cross section, the e-diagrams with photon
emission by the electron, and the μ-diagrams with photon emission by the muon
(cf. Fig. 3.6). The e-diagrams constitute radiative corrections to the ionization
cross section, since the cross section dσe ∝ 1/ω2 analogous to the form of the μe
scattering cross section5. The μ-diagrams are a correction to the bremsstrahlung
cross section. The results of [59] can be approximated by

dσμ = αZ
(
2mere
μ

)2 dv
v

(
4
3
(1− v) + v2

)
Φin(δ),

Φin(δ) = ln
μ/δ

μδ/m2
e +

√
e
− ln

(
1+

me

δB′Z−2/3
√
e

)
.

(3.28)

Here, B′ is the inelastic radiation logarithm.

5The contribution of the e-diagrams is given in the ionization cross section (3.7).
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20 CHAPTER 3. MUON INTERACTION

(a) Comparison of numerical results for Δ1,2 based on the nuclear form factor of [105]
with the parametrization of [10, 11].a

aAccording to [10, 11], the effect of the inelastic nuclear formfactor (see below) is taken into
account. According to my own calculations, this is not the case, since the parametrization fits much
better the results without the inelastic nuclear formfactor.

(b) Comparison of numerical results for Δ1 based on the nuclear form factor of [41] with
the parametrizations of [87] and [58].

Figure 3.5: Comparison of numerical results and different analytical parametriza-
tions of Δ1,2. Themass numberA corresponding to the charge numberZ is chosen
based on the most common isotope.
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Figure 3.6: Feynman diagrams of muon bremsstrahlung on atomic electrons. The
upper diagrams are the μ-diagrams, the lower the e-diagrams.

3.3 Pair production

The direct production of electron-positron pairs by muons

μ + Z → μ + Z+ e+ + e− (3.29)

is the dominant energy loss process for muons at high energies. The cross sec-
tion is described by two groups of Feynman diagrams, the e-diagrams and the
μ-diagrams (cf. Fig. 3.7).

The main contribution to the cross section is due to the e-diagrams. The μ-
diagrams are of importance only for hard energy losses, since the cross section
goes as dσ/dv ∼ v−3 for the e-diagrams and as dσ/dv ∼ v−2 for the μ-diagrams
for v ≫ me/μ. For v ≲ me/μ the cross section due to the e-diagrams is much
flatter, so that this region is responsible for the main contribution to the energy
loss.

The production of an electron-positron pair by a charged particle was first
calculated by [91] for a Coulomb center. Later [55] carried out calculations for
the Coulomb center in the absence of screening and the case of full screening.
The expressions obtained here were used in [66] to obtain an expression valid
for every degree of screening. It was also pointed out that the finite extent of
the nucleus influences the cross section [67]. The last important step was the
calculation of the contribution of atomic electrons as target for pair production
[56]. The contribution of inelastic nuclear excitations was shown to be negligible
for pair production [34].

The cross section of electron pair production taking into account all the above-
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22 CHAPTER 3. MUON INTERACTION
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Figure 3.7: Feynman diagrams for direct pair production. The upper diagrams
are the e-diagrams, the lower the μ-diagrams.



mentioned corrections can be parametrized as

d2σ
dv dϱ

=
2
3π

Z(Z+ ζ)(αre)2
1− v
v

[
CeLe +

m2
e

μ2 CμLμ

]
,

v =
ε+ + ε−

E
, ϱ =

ε+ − ε−
ε+ + ε−

,

(3.30)

where ε± denotes the electron (positron) energy and

Ce =
[
(2+ ϱ2)(1+ β) + ξ(3+ ϱ2)

]
ln
(
1+

1
ξ

)
+

1− ϱ2 − β
1+ ξ

− (3+ ϱ2),

(3.31)

Le = ln
BZ−1/3

√
(1+ ξ)(1+ Ye)

1+ 2me
√
eBZ−1/3(1+ξ)(1+Ye)

Ev(1−ϱ2)

− 1
2
ln

[
1+

(
3me

2μ
Z1/3

)2

(1+ ξ)(1+ Ye)

]
,

(3.32)

Cμ =

[
(1+ ϱ2)

(
1+

3
2
β
)
− 1

ξ
(1+ 2β)(1− ϱ2)

]
ln(1+ ξ)

+
ξ(1− ϱ2 − β)

1+ ξ
+ (1+ 2β)(1− ϱ2),

(3.33)

Lμ = ln
2
3

μ
me
BZ−2/3

1+
2me

√
eBZ−1/3(1+ξ)(1+Yμ)

Ev(1−ϱ2)

, (3.34)

Ye =
5− ϱ2 + 4β(1+ ϱ2)

2(1+ 3β) ln(3+ 1/ξ)− ϱ2 − 2β(2− ϱ2)
, (3.35)

Yμ =
4+ ϱ2 + 3β(1+ ϱ2)

(1+ ϱ2)(3/2+ 2β) ln(3+ ξ) + 1− 3
2ϱ2

, (3.36)

β =
v2

2(1− v)
, ξ =

(
μv
2me

)2 1− ϱ2

1− v
, (3.37)

ζ =
0.073 ln E/μ

1+γ1Z
2/3E/μ − 0.26

0.058 ln E/μ
1+γ2Z

1/3E/μ − 0.14
, (3.38)

γ1 = 1.95× 10−5, γ2 = 5.3× 10−5 for Z ̸= 1, (3.39)

γ1 = 4.4× 10−5, γ2 = 4.8× 10−5 for Z = 1. (3.40)

The functions Le,μ correspond to Φ1 ≈ Φ2 in the bremsstrahlung cross section;
however, due to the additional degrees of freedom of the muonic part of the e-
diagrams and the electronic part in the μ-diagrams Le,μ,Ce,μ arise after an addi-
tional integration.

3.4 Landau-Pomeranchuk-Migdal effect and Ter-
Mikaelian effect

The cross sections in this chapter have been calculated for the interaction with one
isolated atom. This is a good approximation if the volume in which the interaction
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takes place contains only one atom. The linear dimension of this volume is given in
the case of bremsstrahlung by the formation length following from the uncertainty
relation

ℓ ∼ ℏ
δ
, (3.41)

where δ denotes the minimum momentum transfer. Since δ = μ2v/[2E(1 − v)],
the formation length can be larger than the interatomic distance for very high
energies or for very small momentum transfers. If the formation length is larger
than the interatomic distance, the bremsstrahlung process is suppressed because
the coherence of the wavefunctions of the photon and the radiating lepton are
disturbed. The effect of Coulomb scattering on the wavefunction of the lepton is
called Landau-Pomeranchuk-Migdal (LPM) effect [72, 81], the effect of Compton
scattering by surrounding electrons on the wavefunction of the photon is called
Ter-Mikaelian (TM) effect [103]. If the scattering angle due to multiple Coulomb
scattering θs is greater than the typical angle of the bremsstrahlung photon θbr ∼
μ/E, the bremsstrahlung process is suppressed. The average scattering angle due
to multiple Coulomb scattering while traversing a distance ℓ is given by

⟨θ2s ⟩ =

(
μ
√
4π/α
E

)2
ℓ

X0
, (3.42)

where X0 is the medium-dependent radiation length, i.e. the distance over which
the lepton looses 1/e of its energy.

The LPM effect also has an influence on the pair production cross section
[90, 104]; however, the effect is very small, since the energy of the lower-energy
electron is the dominant factor for the determining factor. The average energy
loss is noticeably changed due to the LPM effect only at extremely high energies
≳ 1024 eV (cf. Fig. 3.8). Therefore the following discussion is limited to the
bremsstrahlung cross section.

Both effects affect the production of secondaries with low v; in the case of
the bremsstrahlung cross section, the infrared divergent behaviour dσ/dv ∝ 1/v
changes to dσ/dv ∝ 1/

√
v in the region affected by the LPM effect and dσ/dv ∝ v

in the region where the TM effect is important [62]. The calculation of the LPM
effect on the bremsstrahlung cross section has been carried out using a quasi-
classical method [13, 90]. The calculation leads to an indefinite numerical factor
ln(θ2/θ1) arising from a small-angle approximation. The value of this factor is
determined by the assumption that the cross section in the regime where the LPM
effect is unimportant coincides with the cross section under the usual assumption
of interaction with a single isolated atom. The final result can be expressed by
the substitution[

4
3
(1− v) + v2

]
Φ(δ) → ξ(s)

3
{
v2G(s) + 2[1+ (1− v)2]φ(s)

}
(3.43)

or analogously

Φ1(δ) →
ξ(s)
3

[G(s) + 2φ(s)]Φ1(δ) (3.44)

Φ2(δ) →
2
3
ξ(s)G(s)Φ2(δ). (3.45)
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Figure 3.8: Average energy loss of muons due to pair production and bremsstrah-
lung with and without the LPM and TM effect [63] in ice and Fréjus rock (cf. C;
the latter is scaled by 10−3 for better visibility).

Adopting the scheme of [100], the functions ξ(s),G(s),φ(s) are given by

φ(s) =

{
1− exp

(
−6s[1+ (3− π)s] + s3

0.623+0.796s+0.658s2

)
s < 1.54954,

1− 0.012s−4 s ⩾ 1.54954,

(3.46)

ψ(s) = 1− exp
(
−4s− 8s2

1+ 3.936s+ 4.97s2 − 0.05s3 + 7.50s4

)
, (3.47)

G(s) =


3ψ(s)− 2φ(s) s < 0.710390,
36s2

36s2+1 0.710390 ⩽ s < 0.904912,
1− 0.022s−4 s ⩾ 0.904912,

(3.48)

ξ(s) ≈ ξ(s′) =


2 s′ < s1,

1+ h− 0.08(1−h)[1−(1−h)2]
ln(s1)

s1 ≤ s′ < 1,
1 s′ ⩾ 1,

(3.49)

where

s =
s′√
ξ(s′)

, (3.50)

s1 =
√
2
Z1/3Dn

B
me

μ
, (3.51)
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s′ =

√
ELPM

E
v

8(1− v)
, (3.52)

h =
ln s′

ln s1
, (3.53)

ELPM =
α(μc2)2X0

4πℏc
. (3.54)

The TM effect operates in a part of the regime where the LPM effect is im-
portant. Its effect can be described by the substitutions

ξ(s) → ξ(Γs),

φ(s) → φ(Γs)
Γ

,

G(s) → ψ(Γs)
Γ2 ,

(3.55)

where

Γ = 1+

(
ℏωp

μv

)2

, (3.56)

with the plasma frequencyωp =
√
4πnZe2/m. n = (NA/A)ϱ denotes the electron

density.

3.5 Nuclear interaction

μ + A → μ +X (3.57)

The inelastic interaction with nuclei is a subdominant process for the energy loss
of muons. It is also responsible for hard energy losses. The contribution to the
average energy loss is about 10%. Since this process is dominated by small mo-
mentum transfers, phenomenological models based on Regge theory or general-
ized vector meson dominance are applied. Perturbative QCD is only applicable
to losses with a large transferred momentum, which present a correction to the
non-perturbative main contribution.

The calculations of this effect are carried out in two directions. One direction
views the inelastic nuclear interaction as a generalization of the photonuclear in-
teraction

γ +N → X, (3.58)

the other approach views inelastic interaction as a generalization of elastic scat-
tering, which can be described by the structure functions introduced in [40] in
the context of Regge theory.

In both cases, it follows from kinematical considerations, that the minimum
transferred energy is given by

vminE = mπ +
m2

π
2mN

, (3.59)

where mπ,mN are the masses of the pion and the nucleon.
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3.5.1 Calculations based on photonuclear interaction

A widely employed parametrization based on the photonuclear interaction was
presented by [22] and later improved in [32, 33]

dσ
dv

=
α
2π

AσγN(ν)v

×
{
3
4
G(x)

[
κ ln

(
1+

m2
1
t

)
− κm2

1

m2
1 + t

− 2μ2

t
+

4μ2

m2
1
ln
(
1+

m2
1
t

)]
+

1
4

[(
κ +

2μ2

m2
2

)
ln
(
1+

m2
2
t

)
− 2μ2

t

]
+

μ2

2t

[
3
4
G(x)

m2
1 − 4t

m2
1 + t

+
1
4
m2

2
t

ln
(
1+

t
m2

2

)]}
,

(3.60)
where t = Q2

min = μ2v2/(1−v), κ = 1−2/v+2/v2, ν = vE,m2
1 = 0.54GeV2,m2

2 =
1.8GeV2 and

G(x) =
3
x3

(
x2

2
− 1+ e−x(1+ x)

)
Z ̸= 1,

= 1 Z = 1;

x ≃ 0.00282A1/3σγN(ν).

G(x) describes the shadowing of the nucleons.
This calculation is based on the generalized vector meson dominance, which

describes the interaction of photons with nucleons by fluctuations into vector
mesons such as ρ, ω, φ, ψ, Υ and their excited states ρ′, ρ′′, …, ω′, ω′′, …, etc.
σγN(ν) is the absorption cross section of a photon by a nucleon, for which several
parametrizations of lab data are widely used, e. g. the parametrization of [22]

σγN(ν) =
[
114.3+ 1.647 ln2

(
0.0213

ν
GeV

)]
µb, (3.61)

the parametrization of [65]

σγN(ν) =

(
96.1+

82√
ν/GeV

)
µb, ν ⩽ 17GeV,

(3.62)

σγN(ν) =
[
114.3+ 1.647 ln2

(
0.0213

ν
GeV

)]
µb, 17GeV ≤ ν ≤ 200GeV,

(3.63)

σγN(ν) =

(
49.2+ 11.1 ln

ν
GeV

+
151.8√
ν/GeV

)
µb, ν ⩾ 200GeV,

(3.64)

the parametrization of [93, 94], which uses an interpolation of the measured
values of the HERA detector below 200GeV and coincides with (3.64) above
this value; and the parametrization of [27]

σγN(ν) = (63.5s0.097 + 145s−0.5)µb, (3.65)

where s = 2mNν/GeV.
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3.5.2 Calculations based on Regge theory

The Regge theory is an effective theory for hadronic interactions. Its basis is
the experimentally established Chew-Frautschi relation [38] between the mass
squared m2 of a meson and its spin J

m2(J) ≈ aJ+m2
0 (3.66)

which is extended into the complex spin plane to describe scattering processes
by the exchange of a quasiparticle with non-integer spin called reggeon. An ad-
ditional quasiparticle is necessary to describe cross section data at high energy
which is called pomeron. Using this theory the scattering data of the electron-
proton collider HERA can be parametrized by [6, 7]

dσ
dv dQ2 =

4πα2

Q4
F2

v

[
1− v− Mxv

2E
+

(
1− 2μ2

Q2

)
v2

2
1+ 4M2x2/Q2

1+ R

]
(3.67)

with

x =
Q2

2MEv
, (3.68)

Fp
2(x,Q

2) =
Q2

Q2 +m2
0
(FP

2 + FR
2 ), (3.69)

Fi
2(x,Q

2) = ci(t)x
ai(t)
i (1− x)bi(t), i = P,R, (3.70)

t = ln
ln Q2+Q2

0
Λ2

ln Q2
0

Λ2

, (3.71)

xi =
Q2 +m2

i

Q2 +m2
i +W2 −M2 , (3.72)

W2 = M2 + 2MEv− Q2. (3.73)

Here, aR, bR, cR, and bP increase with Q2 as

ƒ(t) = ƒ1 + ƒ2t
f3 , (3.74)

and aP, cP decrease with Q2 as

g(t) = g1 + (g1 − g2)
[

1
1+ tg3

− 1
]
. (3.75)

This leads to 23 free parameters which have to be constrained by a fit to experi-
mental data. The parametrization of [6] is used by default in the lepton propagator
PROPOSAL. It does not correctly describe the behaviour in the resonance region
(cf. Fig. 3.9).

3.6 Propagation algorithm

After this discussion of the processes contributing to the energy loss of muons,
the simulation of muon propagation is described. The stochastic nature of the
energy deposition in muon interactions necessitates a Monte-Carlo simulation of
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Figure 3.9: Comparison of the different parametrizations of the photonuclear
cross section.

the propagation of muons (cf. [39, 63, 64, 70, 74, 99]). The simulation of
all energy losses, however, is impossible due to the infrared divergence of the
bremsstrahlung cross section. Due to this physical reason and also to reduce the
computational cost of muon propagation, the losses are separated into hard losses
treated stochastically, and soft losses treated continuously. This artificial division
can happen either at a specified energy ecut or at a specified relative energy loss
vcut. These cutoff parameters are chosen sufficiently small to ensure that their size
does not influence the results. The following equations are written for a relative
cut vcut; the corresponding equations for an absolute cut ecut follow analogously.

The probability for a particle of energy E(x) to undergo a stochastic hard loss
over a distance dx is given by

dP(x) =
dN
dx

(E(x))
hard

dx, (3.76)

where

dN
dx hard

=∑
k

NA

A
ϱ
vmax

∫
vcut

dσk
dv

(3.77)

is the integrated number of interactions per distance for all processes. The proba-
bility for a particle to experience no hard stochastic losses over a distance [xi,xƒ],
which shall be divided into infinitesimal partial distances dx, and to loose energy
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stochastically between xƒ and xƒ + dx, is therefore given by

(1− dP(E(xi))) · · · (1− dP(E(xƒ−1))) · dP(E(xƒ))

≈ exp(−dP(E(xi))) · · · exp(−dP(E(xƒ−1))) · dP(E(xƒ))

dx→0−→ exp

−
E(xƒ)

∫
E(xi)

dP(E(x))

 dP(E(xƒ))

= d

− exp

E(xƒ)

∫
E(xi)

dN
dx (E) hard

− dE
dx soft

dE




≡ d(−ξ), ξ ∈ (0,1].

(3.78)

Here, ξ represents a random variable, and

−dE
dx soft

=
NA

A
ϱE∑

k

vcut

∫
0

v
dσk
dv

dv (3.79)

is the soft energy loss per distance. The energy Eƒ at the next stochastic loss is
therefore determined by

− ln ξ =

Eƒ

∫
Ei

dN
dx hard (E)

− dE
dx soft (E)

. (3.80)

A solution to this equation exists under the condition

ξ > ξ0 ≡ exp

elow

∫
Ei

dN
dx hard (E)

− dE
dx soft (E)

dE

 , (3.81)

where elow is a lower limit on the energy below which the particle is no longer
propagated. The most conservative value is the particle mass, which is used by
default in [63].

The effect of vcut or ecut on the distribution of initially monoenergetic muons Ei
after propagation is the occurrence of a peak near Ei(1−vcut) or Ei−ecut. This can
be alleviated by using a sufficiently small vcut, ecut, leading to large running times.
An alternative approach is the continuous randomization [39], which smears out
the lost energy according to a Gaussian distribution with mean ΔE = Ei−Ef and
variance

⟨(Δ(ΔE))2⟩ = −
ecut

∫
0

dE
− dE

dx soft

E2
i

ecut/Ei

∫
0

v2
dN
dx hard

dv

 . (3.82)

where e = vE.
The size of the stochastic loss and the process by which it happens are deter-

mined by the ratio between the total hard cross section and the differential cross
section.
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3.7 Improved parametrizations of the bremsstrahlung
and pair production cross section

3.7.1 Improved bremsstrahlung cross section

Based on the calculations reviewed in section 3.2, we propose the following para-
metrization of the bremsstrahlung cross section, which preserves the difference
between Φ1,2,Δ1,2

v
dσ
dv

= 4Z2α
(
re
me

μ

)2 [
(2− 2v+ v2)Φ1 −

2
3
(1− v)Φ2

]
(3.83)

Φ1 = Φ0
1 − Δ1 (3.84)

Φ2 = Φ0
2 − Δ2 (3.85)

where for hydrogen Φ0
1,2 is given by (3.21) and for heavier nuclei

Φ0
1 = ln

BZ−1/3μ/me

1+ BZ−1/3
√
eδ/me

, (3.86)

Φ0
2 = ln

BZ−1/3e−1/6μ/me

1+ BZ−1/3e1/3δ/me
. (3.87)

This parametrization is exact in both the complete screening limit and in the ab-
sence of screening by construction. The nuclear corrections Δ1,2 are given by
(3.24) with qc = μe/Dn. Here, B is to be taken from [60] and Dn = 1.54A0.27.

Adding the contribution of atomic electrons and the inelastic nuclear form
factor, we obtain

dσ
dv

= 4Z2α
(
re
me

μ

)2 1
v

{[
(2− 2v+ v2)Φ1(δ)−

2
3
(1− v)Φ2(δ)

]
+

1
Z
satomic(v, δ)

}
,

(3.88)

where

Φ1(δ) = ln
μ
me
BZ−1/3

1+ BZ−1/3
√
eδ/me

− Δ1

(
1− 1

Z

)
, (3.89)

Φ2(δ) = ln
μ
me
BZ−1/3e−1/6

1+ BZ−1/3e1/3δ/me
− Δ2

(
1− 1

Z

)
, (3.90)

Δ1 = ln
μ
qc

+
ϱ
2
ln

ϱ+ 1
ϱ− 1

, (3.91)

Δ2 = ln
μ
qc

+
3ϱ− ϱ3

4
ln

ϱ+ 1
ϱ− 1

+
2μ2

q2c
, (3.92)

ϱ =

√
1+

4μ2

q2c
, qc = mμe/Dn, (3.93)

satomic(δ) =
[
4
3
(1− v) + v2

] [
ln

μ/δ
μδ/m2

e +
√
e
− ln

(
1+

me

δB′Z−2/3
√
e

)]
.

(3.94)
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The difference between Φ1,2 appears in different limiting cases depending on
the mass μ of the primary particle. For muons, the difference occurs in the absence
of screening, which dominates at low energies and for very hard losses, because
the difference betweenΦ0

1,2 in the complete screening limit is counteracted by the
difference between Δ1,2. The difference between Δ1,2 is not lifted in the absence
of screening, however. A comparison of the average bremsstrahlung energy loss
and of the differential cross section is shown in Fig. 3.10.

For electrons, the difference shows up in the complete screening limit. For
electrons, however, a further correction due to higher-order corrections is impor-
tant (see chapter 6).

3.7.2 Improved pair production cross section

The parametrization in (3.30) is based on the interpolation between complete and
no screening by [88] and the calculations for the nuclear formfactor correction by
[87], thus using the approximationΦ1 ≈ Φ2, whereΦ1,2 are functions analogous
to the functions in the bremsstrahlung cross section. This approximation entails
an uncertainty of ∼ 3% [61].

Based on the results from [55], where the cross section is calculated without
this approximation for the limiting cases of complete screening and no screening,
we can derive an expression for the cross section without using this approximation
in an analogous procedure to [66, 67]. Analogously to the new bremsstrahlung
cross section,Φ1,2 are interpolated separately. In contrast to the bremsstrahlung
cross section, there are additional terms not contained in the main logarithm (see
ΔN,S

e,μ below), which arise from the additional integration. In [66], this term was
taken into account as

|ΔN
e,μ|

Ce,μ
= ln(1+ Ye,μ), (3.95)

whereYe,μ approximately describe the more complex actual function (cf. Fig. 3.11
for a comparison for the e-diagrams).

The function Φe is given in the absence of screening and the case of complete
screening by

ΦN
e = Ce ln

Ev(1− ϱ2)
2m

√
e
√
1+ ξ

− 1
2
|ΔN

e |, (3.96)

ΦS
e = Ce ln(BZ−1/3

√
1+ ξ) +

1
2
ΔS

e , (3.97)

where

|ΔN
e | = [(2+ ϱ2)(1+ β) + ξ(3+ ϱ2)]Li2

1
1+ ξ

− (2+ ϱ2)ξ ln
(
1+

1
ξ

)
−

ξ + ϱ2 + β
1+ ξ

,

(3.98)

ΔS
e = |ΔN

e | −
1
6

{
[(1− ϱ2)(1+ β) + ξ(3− ϱ2)] ln

(
1+

1
ξ

)
+
1+ 2β + ϱ2 + ξ(3− ϱ2)

1+ ξ

}
.

(3.99)
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(a) Average bremsstrahlung energy loss.

(b) Differential cross section at 10GeV muon energy.

(c) Differential cross section at 100GeV muon energy.

Figure 3.10: Comparison of the average bremsstrahlung energy loss and the
differential cross section at 10GeV and 100GeV between the improved para-
metrization presented here and the parametrization of [58] for a material with
Z = 11,A = 22.
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Figure 3.11: Ratio of the non-logarithmic term in the pair production cross sec-
tion to its parametrization of [66] for the e-diagrams.

Here and in the following, Li2(x) is the dilogarithm, defined as

Li2(x) = −Re

x

∫
0

ln(1− t)
t

dt. (3.100)

The functions |ΔN
e |,Δ

S
e are equal except for the terms arising from the differ-

ence L1 − L2 = 1/6 in the complete screening limit, such that the coefficient of
Φ2 is given by 6(ΔN

e − ΔS
e ). We therefore have the conditions for the coefficients

C1,2 of Φ1,2

Ce
1 + Ce

2 = Ce, (3.101)

Ce
1Δ

e
1 + Ce

2Δ
e
2 = |ΔN

e |, (3.102)

Ce
1Δ

e
1 + Ce

2

(
Δe

2 −
1
6

)
= ΔS

e (3.103)

where Δe
1,2 denote the terms not proportional to the main logarithm arising from

Φ1,2, respectively.

Thus, the cross section for the e-diagrams using an analytical interpolation
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for Φ1,2 analogous to [66, 87] is given by

dσ
dv dϱ

=
2
3π

(Zαre)2
1− v
v

{Ce
1L

e
1 + Ce

2L
e
2} ,

Le
1 = ln

BZ−1/3
√
(1+ ξ)Xe

Xe +
2me

√
eBZ−1/3(1+ξ)
Ev(1−ϱ2)

,

Le
2 = ln

BZ−1/3e−1/6
√
(1+ ξ)Xe

Xe +
2mee1/3BZ−1/3(1+ξ)

Ev(1−ϱ2)

,

Xe = exp

(
−|ΔN

e |
Be

)
,

Ce
2 = [(1− ϱ2)(1+ β) + ξ(3− ϱ2)] ln

(
1+

1
ξ

)
+ 2

1− β − ϱ2

1+ ξ
− (3− ϱ2),

Ce
1 = Ce − Ce

2,

(3.104)

without the nuclear formfactor correction and the contribution of atomic electrons.

For the μ-diagrams, it follows analogously from

|ΔN
μ | =

[
(1+ ϱ2)

(
1+

3
2
β
)
− 1

ξ
(1+ 2β)(1− ϱ2)

]
Li2

(
ξ

1+ ξ

)
+

(
1+

3
2
β
)

1− ϱ2

ξ
ln(1+ ξ)

+

[
1− ϱ2 −

β
2
(1+ ϱ2) +

1− ϱ2

2ξ
β
]

ξ
1+ ξ

,

(3.105)

ΔS
μ = |ΔN

μ | −
1
6

{
1− β − (1+ β)ϱ2 − 2

1− β − ϱ2

1+ ξ

+ [(1− β)(1− ϱ2)− ξ(1+ ϱ2)]
ln(1+ ξ)

ξ

} (3.106)
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that the corresponding expression for the μ-diagrams is given by

dσ
dv dϱ

=
2
3π

(
Zαre

me

μ

)2 1− v
v

{
Cμ
1L

μ
1 + Cμ

2L
μ
2

}
,

Lμ
1 = ln

B μ
me
Z−1/3

√
(1+ 1/ξ)Xμ

Xμ +
2me

√
eBZ−1/3(1+ξ)
Ev(1−ϱ2)

,

Lμ
2 = ln

μ
me
BZ−1/3e−1/6

√
(1+ 1/ξ)Xμ

Xμ +
2mee1/3BZ−1/3(1+ξ)

Ev(1−ϱ2)

,

Xμ = exp

(
−
|ΔN

μ |
Cμ

)
,

Cμ
2 = [(1− β)(1− ϱ2)− ξ(1+ ϱ2)]

ln(1+ ξ)
ξ

− 2
1− β − ϱ2

1+ ξ
+ 1− β − (1+ β)ϱ2,

Cμ
1 = Cμ − Cμ

2,

(3.107)

The correction for atomic electrons can be obtained by the substitution Z2 →
Z(Z + ζ) as above [56]. The newer more accurate calculations for the nuclear
formfactor correction by [58] can be incorporated by replacing Le

1,2,L
μ
1,2 by the

expressions

Le
1 = ln

BZ−1/3
√
(1+ ξ)Xe

Xe +
2me

√
eBZ−1/3(1+ξ)
Ev(1−ϱ2)

− 1
2
ln

[
1+

(
me

μ
Dn

)2

(1+ ξ)/Xe

]
,

(3.108)

Le
2 = ln

BZ−1/3e−1/6
√

(1+ ξ)Xe

Xe +
2mee1/3BZ−1/3(1+ξ)

Ev(1−ϱ2)

− 1
2
ln

[
1+

(
me

μ
Dn

)2

e−1/3(1+ ξ)/Xe

]
,

(3.109)

Lμ
1 = ln

Xμ
μ
me
BZ−1/3/Dn

Xμ +
2me

√
eBZ−1/3(1+ξ)
Ev(1−ϱ2)

, (3.110)

Lμ
2 = ln

Xμ
μ
me
BZ−1/3/Dn

Xμ +
2mee1/3BZ−1/3(1+ξ)

Ev(1−ϱ2)

, (3.111)

Dn = 1.54A0.27, (3.112)

analogous to the procedure in [67]. The cross section differential in v and the
average energy loss are shown in Fig. 3.12.
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(a) Average pair production energy loss.

(b) Differential cross section at 10GeV muon energy.

(c) Differential cross section at 100GeV muon energy.

Figure 3.12: Comparison of the average pair production energy loss and the
differential cross section at 10GeV and 100GeV between the improved para-
metrization presented here and the parametrization of [58] for a material with
Z = 11,A = 22.



3.8 Other muon energy loss processes

3.8.1 Muon pair production

Besides the production of an electron-positron pair, at sufficiently high energy the
production of a muon-antimuon pair is also a possible process

μZ → μμ+μ−Z. (3.113)

This process was considered in [57]. The energy loss is smaller than the one for
electron pair production by approximately m2

e /m2
μ ∼ 10−4, and therefore irrele-

vant for the energy loss of the muon. However, the conversion of a single muon
into a bundle of three muons can be interesting for densely instrumented detectors
[71], as it results in a narrow bundle.

3.8.2 Muon energy loss and the giant dipole resonance

The giant dipole resonance (GDR) is a resonance of nuclei with a resonance en-
ergy and integrated cross section of [79]

νGDR ≈ (40A−1/3 + 7.5)MeV, (3.114)

∫ σ(ν) dν ≈ (A− Z)Z
A

60MeVmb. (3.115)

The energy transferred to the nucleus is rather small, but the cross section
associated with the process is large. Therefore it is interesting to assess the
energy loss due to the giant dipole resonance. Using the method of equivalent
photons (cf. chapter 4), we obtain

−
⟨

dE
dx

⟩
=

NA

A
ϱ∫n(ν)νσ(ν) dν

=
2α
π

NA

A
ϱ∫ ν ln

Eμ

ν
σ(ν)

dν
ν

≈ νGDR
2α
π

NA

A
ϱ ln

Eμ

νGDR
∫ σ(ν) dν .

(3.116)

For very large volume neutrino telescopes in ice or water, the most abundant
nucleus is 16O. If we use the values above, we obtain

−
⟨

dE
dx

⟩
≈ 4.2× 10−5 MeVcm2 g−1ϱ ln

E
νGDR

,

which corresponds to ∼ 10−4 of the ionization loss and rises only logarithmically
with energy. This process can therefore be neglected.

3.8.3 Muon interaction via exchange of a W boson

The weak interaction process
μN → νμX, (3.117)

where N is an initial nucleon and X is a hadronic final state, is similar to the
neutrino charged current interaction. Compared to other processes, it is strongly
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suppressed; however, the signature of a high-energy muon stopping in the detec-
tor with a hadronic cascade is similar to the so-called “lollipop” signature expected
for high-energy tau events.6

The cross section of charged current muon interaction follows by crossing
symmetry from the neutrino charged current interaction cross section as

dσ(μN → νμX) =
1
2
dσ(νμN → μX). (3.118)

The factor 1/2 follows from the averaging over the initial polarization of the muon,
which can be left- and righthanded in contrast to the neutrino.

Using the fit of [26] for the total charged current neutrino nucleon cross sec-
tion at high energies

σCC = −2.097× 10−32 + 4.703× 10−33 lnEν − 3.666× 10−34 ln2 Eν

+ 1.010× 10−35 ln3 Eν,

(3.119)

where Eν is in GeV and σCC in cm2, we can estimate the rate of tau- and muon-
induced lollipop events as (cf. [25])

Rμ = 2πNAϱVeff

∞

∫
Eμ,min

1
2
σCCΦμ(E0) dE μ d cos θ, (3.120)

(3.121)

where Veff is the effective volume of the detector, Φμ(E) the flux of atmospheric
muons and E0 = ebxE + a/b(eb − 1) the energy of the muon before propagation
over a distance x = d/ cos θ for a detector at a depth of d underground. Taking
Veff = 0.9 km3, d = 1550m and ϱ = 0.918g cm−3, roughly corresponding to the
IceCube detector, and [2]

Φμ(E) = 1.06× 10−10 s−1 cm−2 TeV−1 sr−1
(

E
10TeV

)−3.78

, (3.122)

we obtain a rate of about 2× 10−2 yr−1.
To assess the importance of this process as background to tau neutrino searches

via the lollipop channel, we estimate the rates of actual tau-induced lollipop events
[16]

Rτ = 2π
NA

A
ϱAeff

∞

∫
Eν,min

σCCΦντ (Eν)(L− xmin)[exmin/Rτ((1−y)Eν)]y=⟨y⟩dEν, (3.123)

6Tau leptons have a very short livetime in the rest frame of 290.3× 10−15 s and therefore decay
fast. Due to their higher mass, the average energy loss of tau leptons is smaller than for muons of
the same energy. The rough scaling of the average energy loss of a lepton with mass m is ∝ m−2 for
bremsstrahlung, ∝ m−1 for pair production and inelastic nuclear interaction and ∝ m0 for ionization
[92]. The energy of a muon with the same average energy loss as a tau lepton with a given energy is
therefore a factor 6 to 11 lower [33] since inelastic nuclear interaction dominates the energy loss at
tau energies above 100TeV.
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where Rτ(Eτ) = cτ(Eτ/mτ) ≈ Eτ50m/PeV is the range of tau leptons, L the
length of the detector and y the inelasticity of the neutrino interaction, approxi-
mated by the mean value ⟨y⟩ ≈ 0.25. The minimum length xmin the τ lepton has
to travel before decay has been assumed as 100m. Due to neutrino absorption by
the earth, only downgoing events are considered. Using Aeff ≈ 1 km2,L ≈ 1 km
and the neutrino flux per flavor [3]

Φν(E) = 0.66× 10−18 cm−2 s−1 Gev−1 sr−1
(

E
100TeV

)−1.91

, (3.124)

a rate of about 0.3yr−1 is obtained. Therefore, a measurement of the ντ flux via
the lollipop channel is possibly contaminated by muons at the 10% level. Both
estimates are very optimistic, assume a 100% efficient event selection and make
simple approximations. Amore detailed calculation of the event rate would require
a detailed simulation of the detector. This process might be interesting for future
detectors with even larger volume.
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Chapter 4

The Weizsäcker-Williams
method

TheWeizsäcker-Williams method, also called method of equivalent photons, is an
approximate method in quantum electrodynamics, which is based on the observa-
tion of Fermi [44] that the electric field of a fast moving nucleus is similar to a
flux of real photons. Independently, Weizsäcker and Williams investigated this
problem in the context of classical electrodynamics [106, 107] for a point charge.
This allows to express the bremsstrahlung cross section through the Compton
cross section and a flux of photons equivalent to the field of the nucleus.

The interaction of muons with atoms has to take into account the atomic and
nuclear form factor. In this chapter, the equivalent photon flux for an extended
nucleus is calculated, analogous to the treatment of a point nucleus in [17]. This
photon flux will be used in the following chapter to calculate the radiative correc-
tions to the bremsstrahlung energy loss and cross section.

Consider the two processes (a) and (b) in Fig. 4.1. If the momentum transfer
squared |k2| in diagram (b) is small, it is possible to express process (b) by pro-
cess (a). The particle with momentum p is assumed to have mass M, energy ε
and to move ultrarelativistically (ε ≫ M) in the rest system of the particle with
momentum q and mass m. If m ̸= M, it is assumed thatm < M.

The amplitude of process (a) can be expressed in the form

M(r)
ƒi = −e(eμJμ) (4.1)

with eμ the 4-vector of polarization and Jμ the transition current describing the
interaction in the circle. The amplitude of process (b) is accordingly

Mƒi =
Ze2

k2
(j μJμ) (4.2)

with j μ the transition current of particle M and Ze its charge. The current Jμ
is a function of k = Q − q where k2 = 0 in (a) and k2 ̸= 0 in (b). In the case
|k2| ≪ m2 we can approximate the current J in (b) also by its value at k2 = 0,
since Jμ is necessarily a function which assumes a finite limiting value at k2 = 0
because process (a) is also possible.

Compared to the initial momentum |p| ≈ ε the change of momentum k = p−p′

at emission of a virtual photon is small, so that its motion is quasiclassical. We
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Figure 4.1: Process with (a) a real photon, k2 = 0, and (b) a virtual photon,
k2 < 0. Q can refer to a system of several particles.

can therefore neglect its spin so that

jμ = pμ + p′μ ≈ 2pμ. (4.3)

Gauge invariance requires jk = 0 and therefore

0 = εω− pxkx ⇔ ω = vkx, (4.4)

where the x-axis has been chosen in the direction of motion of particleM, v = px/ε
is the velocity of particle M and ω the energy of the photon. This leads to

− k2 = −ω2 + k2x + k2⊥ ≈ ω2(1− v2) + k2⊥, (4.5)

and the condition |k2| ≪ m2 is equivalent to k2⊥ ≪ m2 and the condition ω ≪
m/

√
1− v2 = mε/M, which is much weaker due to the assumption that ε ≫ M.

Since the current Jμ is also gauge-invariant, Jk = 0 and we obtain

J0 =
Jx
v

+
J⊥k⊥
ω

, (4.6)

so that the scalar product jJ is given by the expression

jJ ≈ 2pJ = 2(J0ε − Jxpx)

= 2ε(J0 − Jxv) = 2ε
(
Jx
v

+
J⊥k⊥
ω

− Jxv
)

= 2
ε
ω

(
k⊥J⊥ +

1− v2

v
ωJx

)
≈ 2

ε
ω

(
k⊥J⊥ +

ωM2

ε2
Jx

)
.

(4.7)

We now evaluate the scalar product Je. This is simplified by using the polar-
ization vector in Coulomb gauge ek = −ek = 0, leading to ex ≈ −e⊥k⊥/ω, and
therefore

Je = −e⊥

(
J⊥ − k⊥

ω
Jx

)
. (4.8)
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Comparing the expressions (4.7) and (4.8), we observe that they are pro-
portional to each other if the second term in parentheses can be neglected. The
current J is connected to the upper part of the diagram, and the components Jx, J⊥
have to be considered as quantities of comparable magnitude. Therefore, the re-
gion of validity of this approximation is given by |k⊥| ≪ ω and ω ≪ |k⊥|ε2/M2;
these do not contradict the earlier established conditions for ω,k⊥.

Considering that in (4.8) the photon is polarized in the x,k-plane such that
e⊥ ∥ k⊥, and that under the above conditions e2⊥ ≈ e2 = 1, we now obtain

Mƒi = M(r)
ƒi

Ze
−k2

2ε
ω

|k⊥|, (4.9)

subject to the conditions

|k⊥| ≪ ω ≪ mγ,
ω
γ2 ≪ |k⊥| ≪ m,

γ =
ε
M

=
1√

1− v2
.

(4.10)

This relation between the amplitudes leads to the desired relation between the
cross section of processes (a) and (b). In the rest system of m we have according
to the usual formulæ

dσr = |M(r)
ƒi |

2(2π)4δ4(Pƒ − Pi)
1

4mω
dϱQ , (4.11)

dσ = |Mƒi|2(2π)4δ4(Pƒ − Pi)
1

4mε
d3p′

2ε(2π)3
dϱQ , (4.12)

where dϱQ denotes the statistical weight of the particles Q. We obtain

dσ = dσr n(k) d3p′ , (4.13)

where

n(k) =
Z2e2

4π3
k2⊥

ω(k2⊥ + ω2/γ2)2
. (4.14)

The factor n(k) can be interpreted as density of equivalent photons in k-space
for the production of the same system of particles Q as in dσr with p′ in the
interval d3p′ . The integration over d3p′ is equivalent to integration over d3k =
dω d2k⊥ . The k⊥-integration corresponds to the averaging over the polarization
direction of the photon k such that

dσ = n(ω) dω dσr (4.15)

where

n(ω) = ∫n(k)2πk⊥ dk⊥ =
2Z2α
πω ∫ k3⊥ dk⊥

(k2⊥ + ω2/γ2)2
. (4.16)

This integral diverges logarithmically for k⊥ → ∞ and has to be regularized. We
can set the upper limit of integration to k⊥ ∼ m, the upper limit of the inequality
in (4.10), if not only the argument of the resulting logarithm is big compared
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to 1, but also the logarithm itself, leading to logarithmic accuracy. The spectral
distribution is therefore given by

n(ω) dω =
2
π
Z2α

dω
ω

ln
γm
ω

. (4.17)

This derivationwas carried out for an ultrarelativistically moving point charge.
If we neglect the spin but take into account the extended charge distribution, as
is appropriate for fast moving atoms and nuclei, the current jμ is multiplied by
the form factor F(k2) = Fn(k2)− Fe(k2). In this case the spectral distribution of
equivalent photons is given by

n(ω) dω =
2Z2α
πω ∫ k3⊥

(k2⊥ + ω2/γ2)2
|F(k2⊥ + ω2/γ2)|2 dk⊥ . (4.18)

In this work the charge distribution of the nucleus and of the atomic elec-
trons are described by a Gaussian and an exponential distribution, respectively,
resulting in the form factors [50]

Fn(q2) = exp
[
−q2R2

n

6

]
, (4.19)

Fa(q2) =
[
1+

q2R2
a

12

]−2

(4.20)

with R the Rms-radius of the charge distribution. The atomic and nuclear radius
can be parametrised for light and medium nuclei as [35]

Rn = 1.27A0.27fm, (4.21)

Ra =
183Z−1/3

2.718me
(4.22)

with Z the nucleus charge and A its mass number, and for hydrogen

Rp = 0.85 fm. (4.23)

With the above formfactors, the calculation of the pseudophoton flux integral
gives

n(ω) dω =
αZ2

π

[
1

(bz+ 1)2

(
−17

6
− 4b2z2 − 7bz

)
−2 exp

(a
b

)
(az− 2bz+ a/b− 1)Ei(1, a(z+ 1/b)) (4.24)

−(2az+ 4bz+ 2)Ei(1, az) + (2az+ 1)Ei(1,2az)

+ (4bz+ 1) ln
(
1+

1
bz

)
− e−2az + 4e−az

]
dω
ω

,

where Ei(1,x) =
∫∞
x e−t/t dt is the exponential integral, z = ω2/γ2, a = R2

n/6,
b = R2

a/12.
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Chapter 5

Radiative corrections

5.1 Radiative corrections to the average bremsstrah-
lung energy loss of high-energy muons

Previous calculations took into account the modification of the Coulomb interac-
tion with the nucleus by elastic and inelastic nuclear form factors, the contribution
of atomic electrons as target for muon bremsstrahlung and the inelastic interac-
tion with the target nucleus. This section1 discusses the correction of the energy
loss through virtual and real radiative corrections. Since this correction is small
compared to the main contribution, we restrict our treatment of the nucleus to
elastic atomic and nuclear form factors.

In the calculation of radiative corrections in QED, processes with virtual pho-
tons can give rise to logarithmically divergent integrals; to obtain a finite result, it
is necessary to add the cross section for the emission of an additional photon with
energy ω < ωmin which cancels this divergence. Usually ωmin is identified with
the finite energy resolution of the detector and assumed to be small compared to
the mass of the radiating particle, such that the approximation of classical cur-
rents can be used. The contribution of harder photons indistinguishable from a
single photon is then evaluated numerically according to the conditions of the ex-
periment (see e. g. [12]). In the problem of muon propagation, however, the
particle may traverse several kilometers of material before the energy losses can
be seen by the detector. Therefore the cross section has to be integrated over all
kinematically allowed states of the additional photon. So the energy loss depends
only on the primary energy of the muon.

Unless stated otherwise, all equations are presented in a system of units where
ℏ = c = mμ = 1.

5.1.1 Method

This calculation uses a modified Weizsäcker-Williams method [106, 107], which
approximates the effect of a nucleus by a spectrum of equivalent photons. This
method allows to express the bremsstrahlung cross section dσB through the
Compton cross section dσC convolved with the equivalent photon flux. Using

1The results of these calculations were published in [95].
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Figure 5.1: Tree level diagrams for muon bremsstrahlung.
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Figure 5.2: Vacuum polarization diagrams for muon bremsstrahlung on atoms.

the radiative corrections to the Compton effect in [28], the radiative corrections
to the bremsstrahlung spectrum were first calculated in the soft-photon approxi-
mation in [82] for an unscreened or completely screened nucleus. The diagrams
taken into account are shown in2 Fig. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6.

Energy loss

Considering the collision of a fast muon with an atom, we introduce two systems
of reference: the laboratory system KZ in which the atom is at rest and the muon
has a Lorentz factor γ ≫ 1, and the system Kμ in which the muon is at rest and
the atom has a Lorentz factor of γ.

It is convenient to calculate the energy loss in the frameKμ. InKZ the average
energy loss per unit length caused by bremsstrahlung is given by

−
⟨

dE
dx

⟩
= NEΣ, Σ =

1
E ∫(E− E′) dσB . (5.1)

where E (E′) is the initial (final) muon energy, N is the number density of tar-
get atoms per unit volume. The quantity Σ can be rewritten in a relativistically

2These are all diagrams contributing at next-to-leading order, except diagrams with two photons
exchanged to the nucleus, which will be considered in the following chapter in Coulomb corrections.
Self-energy and vacuum polarization diagrams on the outer legs vanish identically due to the use of
on-shell renormalization, as is customary in quantum electrodynamics.
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Figure 5.3: Fermion self energy diagrams for muon bremsstrahlung on atoms.

invariant form as

Σ =
1

(up) ∫((up)− (up′)) dσB , (5.2)

where u is the 4-velocity of the atom and p, p′ are the initial and final 4-momenta
of the muon respectively, (up) = u0p0 − up is the scalar product of 4-vectors.
Using the Weizsäcker-Williams method it is possible to rewrite this as

Σ = ∫ (up)− (up′)
(up)

dσC n(ω)dω, (5.3)

where ω is the energy of the equivalent photon. In this equation we will calculate
the integrand in the Kμ frame. For Compton scattering the energy-momentum
conservation gives (u, p−p′) = (u, q′−q), where q (q′) is the initial (final) photon
4-momentum. In the frame Kμ we have (uq)/γ = ω(1 − β) ≈ ω/(2γ2), where
ω is the initial photon energy and ω′ the final photon energy. Since ω ∼ γ, the
ratio (uq)/γ ∼ 1/γ is negligible. The other term is

(uq′)
γ

= ω′(1− β cos θ) ≈ 1
2
ω′(θ2 + 1/γ2). (5.4)

In Compton scattering θ ≲ 1/√γ [17] and the second term in parentheses is
negligible. Therefore we obtain for the first case

1− (up′)
(up)

≈ 1− ω′

ω
. (5.5)

Similarly for double Compton scattering we have

1− (up′)
(up)

≈ ω1(1− cos θ1) + ω2(1− cos θ2), (5.6)

where ω1,2, θ1,2 are the energies and angles of the final photons.
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Figure 5.4: Vertex correction diagrams for muon bremsstrahlung on atoms.
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Figure 5.5: Four-point function diagrams for muon bremsstrahlung on atoms.
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Figure 5.6: Double bremsstrahlung diagrams for muon bremsstrahlung on atoms.



Corrections to energy loss

The contribution to the energy loss of a pseudophoton with energy ω in the rest
system of the charged projectile can be conveniently expressed by the angles and
energies of the final particles in this system as

Σvirt = ∫
(
1− ω′

ω

)
dσ(ω,ω′) (5.7)

for virtual radiative corrections, where dσ(ω,ω′) is the differential cross section
for Compton scattering and the scattering angle θ is determined by conservation
laws; and

Σreal = ∫[ω1(1− cos θ1) + ω2(1− cos θ2)]dσ(ω,ω1,ω2, θ1, θ2) (5.8)

for the double bremsstrahlung contribution, where dσ(ω,ω1,ω2, θ1, θ2) is the dif-
ferential cross section for double Compton scattering, dependent on the initial and
final photon energies ω and ω1,ω2 and the scattering angles θ1, θ2; the azimuthal
angle between the two photons is determined by conservation laws. All quantities
refer to the rest system of the muon. This formulation improves the numerical
stability compared to using the angles in the lab frame, because the cross section
is strongly peaked in the forward direction, while this peak is much broader in the
rest frame.

In addition, the contribution from vacuum polarization was calculated directly.
The loop correction to the virtual photon coupled to the atom can be interpreted
as a factor modifying the form factor of the atom.

5.1.2 Results

The radiative corrections to the Compton cross section by virtual photons can be
written as [28]

dσC, vir = −
αr2μ
2π

(τ
κ

)2
ReUC, virdΩ (5.9)

with

UC, vir = P(κ, τ) + P(τ, κ),

P(κ, τ) =
(
1− 2y

tanh 2y

)
ln

λ
μ
·UC − 2y

tanh 2y
[2h(y)− h(2y)]UC

+

[
−4

y sinh 2y
κτ

(2− cosh 2y)
2y

tanh y

]
h(y) + ln κ

{
4y

tanh 2y

[
4
κτ

cosh2 y

+
κ − 6

2τ cosh 2y
+

4
κ2

− 1
κ
− τ

2κ
− κ

τ
− 1
]

+
3τ
2κ2

+
3τ
2κ

+
3
τ
+ 1− 7

κτ
+

8
κ
− 8

κ2
+

2κ − τ2 − κ2τ
2κ2τ(κ − 1)

− 1
2τ

2κ2 + τ
(κ − 1)2

}
+

y2

sinh2 y

[
2
κ
− 7

4
κ − 3

4
τ2

κ

]
− 4y tanh y

(
1
2
− 1

κ

)
+ 4

(
1
κ
+

1
τ

)2
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− 12
κ

− 3κ
2τ

− 2κ
τ2

+
1

κ − 1

(
κ
τ
+

1
2

)
+ G0(κ)

[
κ2

τ
+

τ
κ2

+
κ
τ
+ κ +

τ
2
+

2
κ
− 3

τ
− 1
]

+ terms antisymmetric in κ, τ,

UC = 4
(
1
κ
+

1
τ

)2

− 4
(
1
κ
+

1
τ

)
− κ

τ
− τ

κ

with

4 sinh2 y = κ + τ, (5.10)

h(y) =
1
y

y

∫
0

u du
tanhu

= ln(2 sinh y)− y
2
+

1
2y

(
π2

6
− Li2(e−2y)

)
,

(5.11)

G0(κ) = −2
κ

1

∫
1−κ

ln(1− u)
u

du

=
2
κ

[
−Li2(1− κ) +

π2

6

]
for κ > 1,

=
2
κ

[
Li2

(
1

1− κ

)
+

1
2
ln2(1− κ)− π2

6

]
for κ < 1.

(5.12)

This expression can be represented in the form

P = P0 + P1 ln λ (5.13)

where λ is the fictitious photon mass necessary to regularize the infrared diver-
gences which cancels out in the final result. The functions P0 and P1 depend only
on the initial and final photon energies ω,ω′. Then the virtual radiative correc-
tions to the differential Compton cross section are given by

dσcorr = −αr2μ(P0 + P1 ln λ)
dω′

ω2 (5.14)

and we obtain

σcorr = −
αr2μ
ω2

ω

∫
ω∗

(P0 + P1 ln λ) dω′ (5.15)

for the total cross section, where ω∗ = ω/(1 + 2ω) and rμ = re(me/mμ) is the
classical muon radius. To determine the correction to the average energy loss we
have to calculate the integral

Σcorr = Σvirt + Σreal = − 1
ω2

ω

∫
ω∗

(P0 + P1 ln λ)
(
1− ω′

ω

)
dω′ . (5.16)
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Figure 5.7: Numerical results of the integration over angles and energies for
the contribution of the pseudophoton with energy Eγ for the functions defined in
(5.17), (5.18).

The results can be expressed through the following functions:

Ai = − 1
ω2

ω

∫
ω∗

Pi dω′ (5.17)

Bi = − 1
ω2

ω

∫
ω∗

Pi

(
1− ω′

ω

)
dω′ , (5.18)

i = 0,1.

The graphs of the functions A0,1,B0,1 which only depend on ω are shown in
Fig. 5.7.

For the calculation of the integral (5.6) we used the cross section from [78].
The cross section differential in the photon energies is given by

dσD =
Z2α2r2μ
4π2 Φ(δ)

ε2ω1ω2 dω1 dω2

ε51

X
ƒ3

2 d cos θ′1 d cos θ′2 dφ , (5.19)

where θ′1, θ
′
2 are the scattering angles of the two photons, φ is the angle between

these momenta and

X = 2(ab− c)[(a+ b)(x+ 2)− (ab− c)− 8]− 2x(a2 + b2)− 8c

+
4x
AB

[(A+ B)(x+ 1)− (aA+ bB)(2+ z(1− x)/x)

+ x2(1− z) + 2z]− 2ϱ[ab+ c(1− x)],

(5.20)

with the abbreviations

a =∑
i

1
κi
, b =∑

i

1
κ′i
, c =∑

i

1
κiκ′i

, (5.21)
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Figure 5.8: Comparison of the numerical results (solid line) and the analytical
parametrisation (5.27) (dots).

x =∑
i

κi =∑
i

κ′i, z =∑
i

κiκ′i, (5.22)

A =∏
i

κi, B =∏
i

κ′i, ϱ =∑
i

(
κi
κ′i

+
κ′i
κi

)
. (5.23)

The quantities κ′i, κi denote the scalar products

κi = pqi, (5.24)
κ′i = p′qi, (5.25)

denoting by q0 the initial photon and by q1,2 the final photons.
The integral diverges as ω1,2 → 0, so we integrated over the region ω1,2 >

ωmin. Let us denote the result of this integration as αr2μγX(ω,ωmin). The sum

ƒ(ω) ≡ X(ω,ωmin) + B0(ω) + B1(ω) ln(2ωmin) (5.26)

in the limit ωmin → 0 does not depend on ωmin. Numerical calculations for ωmin =
10−4 and ωmin = 10−5 give practically the same result (here we use the known
relation λ = 2ωmin). For the convenience of further calculations we have obtained
the following approximate formula:

ƒ(ω) = 405ω
[
1− (0.006ω)2

16+ (0.006ω)4

]
ln(1+ 0.00654ω)

1+ 4 ln2(ω+ 1) + ω2
, (5.27)

The comparison between the numerical results and this approximation is shown
in Fig. 5.8.

By numerical integration over the product of the pseudophoton flux and this
function the energy loss is obtained. It can be approximated by the function

− 1
E

⟨
dE
dx

⟩
= Z2α2Nr2μc1 ln

Ra/(Rnc2)
1+ Ra/(Rnc2) · c3/γ

(5.28)

53



10-10

10-9

10-8

10-7

10-6

10-5

102 103 104 105 106 107 108

-1
/E

 d
E
/d

X
 [

g
 c

m
-2

]

E [MeV]

Tree level
Radiative corrections
Vacuum polarization

Figure 5.9: Average energy loss for oxygen (Z = 8,A = 16).

with

c1 = 8.303, (5.29)
c2 = 0.999, (5.30)

c3 = 4.099+ 6.335Z1/3. (5.31)

An additional contribution is due to vacuum polarization, which cannot be
calculated using the equivalent photon method. This contribution corresponds to
modifying the tree level expression with a factor [9]

Π(q2) =
α
π

[
1
9
−

(
1− ξ2

3

)(
1− ξ

2
ln

ξ + 1
ξ − 1

)]
, (5.32)

where ξ =
√
1+ 4m2

e /q2 in the case of virtual electrons and analogously with
me → mμ for muons. However, the vacuum polarization vanishes for real pho-
tons after renormalization and increases with increasing momentum; because the
bremsstrahlung cross section is dominated by low momentum transfers, this con-
tribution is small. The correction due to vacuum polarization to the average en-
ergy loss is about an order of magnitude smaller than the correction of other
radiative corrections (cf. Fig. 5.9).

Ratio to the main contribution

When the main contribution to the bremsstrahlung energy loss is calculated in
the modified Weizsäcker-Williams method with the above form factors, the ratio
between the radiative correction and the main contribution is independent of Z
and A and can be approximated by

− 1
E

⟨
dE
dx

⟩
rad

= − 1
E

⟨
dE
dx

⟩
0
αδ(γ) (5.33)

with

δ(γ) = 2.66
ξ − 1
ξ + 1

, ξ = 0.0406
√
γ + 3.39 (5.34)
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for light and medium nuclei and

δ(γ) = 2.77
ξ − 1
ξ + 1

, ξ = 0.02
√
γ + 5.32. (5.35)

for hydrogen.

5.2 Radiative corrections to the differential brems-
strahlung cross section

The average energy loss calculated in the previous section is important for cal-
culations of underground muon flux, but to correctly account for the fluctuations
around the average energy loss it is necessary to use the differential cross sec-
tion. For this task, it is necessary to change the method used above. The minimum
momentum transfer, which was approximated as ωeq/γ in the energy loss calcula-
tion, in this case has to be replaced by the more exact expression δ = μ2ω/2ε1ε2.
where ω is the final photon energy and ε1,2 denote the initial and final muon en-
ergy. Also, the energies of the final photons have to be transformed to the rest
system of the nucleus, so that only the scattering angles remain in the lab system.

For the single bremsstrahlung cross section, we can make use of the Compton
relation3

ω′
1 =

ω′
0

1+ ω′
0(1− cos θ′1)

, (5.36)

which follows from energy-momentum relation, and the Lorentz transformation

ω1 = ε1ω′
1(1− β1 cos θ

′
1) (5.37)

where β1 ≈ 1 for ε1 ≫ 1. The propagator denominators κ = 2p1q0 = −2ω′
0, τ =

−2p1q1 = 2ω′
1 and the integral over the initial equivalent photon energy dω′

0
thus become

κ = − 2ω1

ε1(1− cos θ′1)
, (5.38)

τ =
2ω1

ε2(1− cos θ′1)
, (5.39)

dω′
0 =

ε1 dω1

ε22(1− cos θ′1)
. (5.40)

Since the differential cross section of the Compton effect in lowest order of
perturbation theory is given in the rest system of the muon by

dσC (ω′
0,k

′
1) =

1
2
r2μ
(κ
τ

)2
UC dΩ

′
1 ,

UC = 4
(
1
κ
+

1
τ

)2

− 4
(
1
κ
+

1
τ

)
− κ

τ
− τ

κ
,

(5.41)

3In this section quantities in the laboratory system where the nucleus is at rest are distinguished
from the quantities of the rest system of the muon by denoting the latter with a prime.
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the tree level bremsstrahlung cross section is given by

dσB (ω1) = n(ω′
0) dσC (ω′

0,k
′
1)

=
Z2αr2μ
π

Φ(δ)
ε2 dω1

ε1ω1
UC dΩ

′
1

(5.42)

where Φ(δ) follows from n(ω′
0) by replacing the minimum momentum transfer

ω′
0/γ by the more accurate value δ, except the prefactor Z2α/π. Integrating over

the angles in dΩ′
1 , we obtain

dσB (ω1) = 4Z2αr2μ
dω1

ω1
Φ(δ)

[
4
3
ε2
ε1

+

(
ω1

ε1

)2
]
, (5.43)

the known expression for tree level bremsstrahlung in the approximation Φ1 ≈
Φ2. For the virtual photon corrections we replaceUC by−(α/π)Uvirt, where [28]

Uvirt = P(κ, τ) + P(τ, κ). (5.44)

The real photon correction is calculated analogously using the double Comp-
ton cross section by [78]. Here, the scalar products κi, κ′i are expressed in the
variables above by

κ1 =
ω1

ε1(1− cos θ′1)
, κ′1 = −ƒ1

ω1

ε2(1− cos θ′1)(1− cos θ′2)
,

(5.45)

κ2 =
ω2

ε1(1− cos θ′2)
, κ′2 = −ƒ2

ω2

ε2(1− cos θ′1)(1− cos θ′2)
,

(5.46)

κ3 = −ƒ3
ε1

ε2(1− cos θ′1)(1− cos θ′2)
, κ′3 =

ƒ3

(1− cos θ′1)(1− cos θ′2)
, (5.47)

ƒ1 =
ω2

ε1
(1− cos θ′1) +

ε1 − ω2

ε1
(1− cos θ′2)−

ω2(ε1 − ω2)

ε21
(1− cos θ′12),

(5.48)

ƒ2 =
ω1

ε1
(1− cos θ′2) +

ε1 − ω1

ε1
(1− cos θ′1)−

ω1(ε1 − ω1)

ε21
(1− cos θ′12),

(5.49)

ƒ3 =
ω1

ε1
(1− cos θ′2) +

ω2

ε1
(1− cos θ′1)−

ω1ω2

ε21
(1− cos θ′12), (5.50)

with cos θ′12 = sin θ′1 sin θ
′
2 + cos θ′1 cos θ

′
2 cosφ.

The differential cross section depends on the initial energy only in the function
Φ(δ), such that the result of the integration over the scattering angles depends
only on the ratios ωi/ε1. The numerical integration is improved by integrating
over cos θ′12 instead of φ since the Jacobian of this transformation leads to an
integrable singularity which can be used as a weight function for the QUADPACK
[89] subroutine QAWS. The other variables were integrated over with the cubature
algorithm DCUHRE [18]. We obtain the results shown in Fig. 5.10 for the sum
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of virtual and real radiative corrections differential in the energy carried away by
all photons. The numerical results are described by the following parametrization
with an accuracy better than 1%:

dσ
dv rad

=
Z2α2r2μ

v
Φ(δ)ƒ(v), (5.51)

where

ƒ(v) =



a1 + b1v+ c1v2 v < 0.02,
a2 + b2v+ c2v2 + d2v3 0.02 ⩽ v < 0.1,

a3 + b3v+ c3v2 + d3v ln v

+e3 ln(1− v) + ƒ3 ln
2(1− v),

0.1 ⩽ v < 0.9,

a4 + b4v+ c4v2 + d4v ln v

+e4 ln(1− v) + ƒ4 ln
2(1− v),

v ⩾ 0.9

(5.52)

with

a1 = −0.00349, b1 = 148.84, c1 = −987.531, (5.53)
a2 = 0.1642, b2 = 132.573, c2 = −585.361, d2 = 1407.77, (5.54)

a3 = −2.8922, b3 = −19.0156, c3 = 57.698, (5.55)
d3 = −63.418, e3 = 14.1166, ƒ3 = 1.84206,
a4 = 2134.19, b4 = 581.823, c4 = −2708.85, (5.56)
d4 = 4767.07, e4 = 1.52918, ƒ4 = 0.361933.

The parametrization of the correction diverges ∝ ln2(1 − v) for v → 1. This
does contradict neither the finite result for the energy loss in the previous section
nor the necessarily finite cross section integrated over v above a certain vmin > 0
that is necessary for propagation simulations, since this is an integrable singular-
ity. Also, for any finite muon energy, the factor Φ(δ) cuts off the cross section at
v ≈ 1− μ

√
e/2ε1.

The additional contribution of vacuum polarization can be expressed by

dσ
dv

= 4Z2α2
(
re
me

μ

)2

Φ(δ)
[
4
3
(1− v) + v2

]
svac(δ,Z), (5.57)

where svac(δ,Z) is weakly dependent on Z and can be parametrized for muon
bremsstrahlung as

svac(δ,Z) =
α
π
b(Z) ln(a(Z)1/b(Z) + ec(Z)/b(Z)δ),

a(Z) = 2.60288− 0.06468Z1/3,

b(Z) = 0.267183+ 0.00979099Z1/3,

c(Z) = 2.05536− 0.0860752Z1/3.

(5.58)

The vacuum polarization acts as a modification of the form factor and therefore al-
ters the screening functionsΦ1,2(δ) by a factor which can manifestly only depend
on δ.
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Figure 5.10: Ratio between radiative corrections and tree level bremsstrahlung
cross section.

Figure 5.11: Correction to the average bremsstrahlung energy loss due to radia-
tive corrections for a medium with Z = 11,A = 22.



μ μ

N X

Figure 5.12: Effective Feynman diagram for inelastic nuclear interaction on tree
level.

μ μ

N X

Figure 5.13: Vertex correction to inelastic nuclear interaction.

5.3 Radiative corrections to the cross section of in-
elastic nuclear interaction

The next-to-leading-order radiative corrections to the cross section of inelastic nu-
clear scattering are the one-loop corrections and the emission of a bremsstrahlung
photon simultaneous to the inelastic interaction with the nucleon (cf. Fig. 5.12,
5.13, 5.14, 5.15). Depending on the energy transferred to the nucleus and the
photon, it is debatable whether this should be considered a radiative correction
to the nuclear interaction or a nuclear correction to bremsstrahlung [10, 58].
Low-lying nucleon resonances, which are less important for inelastic interaction
because of the small deposited energy, can be important because of their big cross
section as a nuclear correction to bremsstrahlung, which grows ∼ A and is com-
parable to the correction corresponding to the inelastic nuclear formfactor.

The energy of the muon before and after the interaction is denoted by ε1,2,
respectively, the energy transferred to the nucleus is denoted by −ν and the mo-
mentum transferred to the nucleus by q2. The inelastic structure functions are
assumed as [10, 22]

W1(q2, ν) =
A

4π2α

(
|ν| − q2

2M

)
σT, (5.59)

W2(q2, ν) =
A

4π2α

(
|ν| − q2

2M

)
q2

q2 + ν2
(σT + σL), (5.60)

where

σT = σγN(|ν| − q2/2M)

[
0.75

m4
1

(m2
1 + q2)2

G(x) + 0.25
m2

2

m2
2 + q2

]
, (5.61)
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μ μ

N X

Figure 5.14: Effective Feynman diagram for inelastic nuclear interaction with
vacuum polarization.

μ μ

N X

μ μ

N X

Figure 5.15: Bremsstrahlung correction to inelastic nuclear interaction.



σL = ξσγN(|ν| − q2/2M)

{
0.75

m2
1q

2

(m2
1 + q2)2

G(x)

+ 0.25
[
m2

2
q2

ln
(
1+

q2

m2
2

)
− m2

2

m2
2 + q2

]}
.

(5.62)

Here, σγN(Eγ) is the photonuclear cross section, M is the nucleon mass, m2
1 =

0.54GeV2 and m2
2 = 1.8GeV describe the effective hadronic spectrum of vector

mesons of a light particle with mass m1 and a continuum starting at mass m2.
Nucleus shadowing is accounted for by the factor G(x), which is the same as
in (3.60). The factor ξ = 0.25 is the ratio of the absorption cross section of
longitudinally and transversally polarized mesons. Among the photonuclear cross
sections presented in 3.5, the interpolated cross section of [93, 94] is the only one
containing these resonances. It is therefore used in this section.

The expressions for the bremsstrahlung cross section change when the energy
transferred to the nucleus is no longer negligible. The cross section is in this case
[10] given by (3.11), where Φ1,Φ2 are given by

Φ1 = −∫ dν
dq
q3

W2(q2, ν)
{
q2 lnx− δ′

2
(
q′

δ′
− 1
)
+ 2δ′ν ln

q′

δ′

}
, (5.63)

Φ2 = 6μ2∫ dν
dq
q3

W2(q2, ν)

{
1− δ′

2

μ2 ln
q′

δ′
− lnx− δ′

q′

}
, (5.64)

where

δ′ =
μ2(ω− ν)
2ε1ε2

,

q′ =
√
q2 + ν2 + ν.

The contribution of the structure function W1, which is negligible for elastic
bremsstrahlung, leads to an additional term (1/ε21)Φ3, which is added to the ex-
pression in brackets in (3.11) and is given by

Φ3 =
1
8
W1(q2, ν)

{
4(4μ4 − q4) lnx− 2μ4ω

δ′
(2μ2 − q2)

(
1− δ′

q′

)[
1
ε21

+
1
ε22

]

− 2μ4ω2
[
1
ε21

+
1
ε22

][√
q′2

δ′
28ζ

q′

δ′
+ 16ζ(1+ ζ)− 1− 4ζ + ζ ln

q′

δ′

]

+ 8δ′ω(2μ2 − q2) ln
q′

δ′

}
.

(5.65)

Neglecting this term does not noticeably alter the cross section differential in ω, ν
for high-energy muons.

These expression are approximations based on the assumption that the energy
−ν transferred to the nucleus is small compared to the energy of the muon and
the photon the interaction. This only distorts the cross section at the upper kine-
matical limit where almost all the energy of the initial muon goes into either the
photon or the nuclear interaction. Since the cutoff at this limit is rather steep, the
error of using the approximation ν2 ≪ ω2 is only small.
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Figure 5.16: Differential cross section of bremsstrahlung with inelastic nuclear
excitation for a muon of 100GeV primary energy on a proton target without
account of shadowing.

A numerical integration leads to the cross section shown in Fig. 5.16, 5.17
for selected values of ω and ε1. The high peaks around 1GeV correspond to
resonances such as the Δ-resonance.

If we consider bremsstrahlung as radiative correction to the inelastic interac-
tion cross section, we also have to take into account the virtual corrections due to
a vertex correction. The tree-level cross section is given by4

dσ
dν

=
α2π

2(ε21 − μ2)

∞

∫
μ2ν2/ε1ε2

dq2

q4
[
LμμW1 −W2L44

]
,

Lμν = Sp
{
γμ(ip̂1 − μ)γν(ip̂2 − μ)

}
,

Lμμ = δμνLμν = 8μ2 − 4q2,

L44 =
PμPν

M2 Lμν = 2q2 − 8ε1ε2.

(5.66)

which coincides within about 5% with the parametrization of [22] in (3.60). Us-
ing the renormalized expression for the vertex correction in the case of space-like

4In this section, for consistency with [10], the Euler metric is used.
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Figure 5.17: Differential cross section of bremsstrahlung with inelastic nuclear
excitation for a muon of 100TeV primary energy on a proton target without
account of shadowing.

photon (see e. g. [9])

ΛR
μ =

α
π
γμ

{(
ln

μ
λ
− 1
)(1+ a2

2a
ln b+ 1

)
+

1
4a

ln b

− 1+ a2

4a

[
2Li2(1+ b) + ln b− π2

2

]}
− iα

8πμ
(γμq̂− q̂γμ)

a2 − 1
2a

ln b,

≡ α
π

[
γμΛ1 + i

γμq̂− q̂γμ

8μ
Λ2

]
,

(5.67)

where a =
√

1+ 4μ2/q2, b = (a−1)/(a+1), q2 > 0, the virtual photon correction
is achieved by replacing Lμμ,L44 with

Lvirt
44 =

α
π
{
(2q2 − 8ε1ε2)Λ1 − 8(ν2 + q2)Λ2

}
, (5.68)

Lvirt
μμ =

α
π
{
(8μ2 − 4q2)Λ1 + 24q2Λ2

}
. (5.69)

Vacuum polarization can be calculated analogous to the bremsstrahlung cross
section. Because the minimum momentum transfer is comparable to or greater
than the electron mass for ν/ε1 ≳ me/μ, this contribution is much more important
than for bremsstrahlung.

Taking all these corrections into account, we obtain the differential cross sec-
tion shown in Fig. 5.18, 5.19. The average energy loss on hydrogen is shown
in Fig. 5.20. The radiative corrections increase the average energy loss by about
3%.
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Figure 5.18: The differential cross section for inelastic nuclear interaction on tree
level (solid line) and adding higher-order corrections (dashed line) for a muon
energy of 100GeV.

Figure 5.19: The differential cross section for inelastic nuclear interaction on tree
level (solid line) and adding higher-order corrections (dashed line) for a muon
energy of 100TeV.



5.3. INELASTIC NUCLEAR INTERACTION 65

Figure 5.20: Average energy loss through inelastic nuclear interaction on hydro-
gen on tree level (solid line) and higher-order corrections (dashed line).
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Chapter 6

Coulomb corrections

6.1 Introduction

The effect of higher-order corrections in the nuclear coupling constant Zα, where
Z is the nuclear charge and α the fine structure constant, so-called Coulomb cor-
rections, has been considered for pair production in [53, 54] for a point-like nu-
cleus. However, in [53], it was pointed out that the effect of a form factor can
be sizeable. In this section, the corrections are calculated for a realistic nuclear
charge distribution.1 This process has been considered recently in [69] in the
quasiclassical approximation, neglecting the nuclear form factor, but taking into
account higher-order corrections to the interaction of the initial charged particle
with the nucleus, which will be neglected in the following, because only muons are
considered as initial charged particle, while in [69] emphasis was put also on ions
as initial particles. Here, the correction to the spectrum of secondary particles
and also the average energy loss of the muon is calculated.

The effect of Coulomb corrections on the bremsstrahlung cross section has
been calculated in [20] for electrons and was shown to be large (from ∼ 1% for
medium nuclei such as iron to ∼ 10% for heavy nuclei such as uranium). In [11]
Coulomb corrections for muon bremsstrahlung on extended nuclei were calculated
in the approximation of a homogeneously charged sphere for the nuclear charge
density and were found to be small (≲ 0.5%). This process was also considered
more recently in [68], in whose approximation the correction for muons vanishes
identically, independently of the form of the nuclear potential.

6.2 Higher order corrections in Zα for a point-like
nucleus

The coupling to the field of the nucleus is governed by the coupling constant ν =
Zα, which for high Z can achieve values which are not very small compared to
1, and therefore should be treated non-perturbatively. The first work on this
subject was [20], where the corrections to the cross sections of bremsstrahlung
and pair production by real photons were calculated using wave functions which

1The results of these calculations have been published in [96].
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p1

· · ·

q1

q2

p2 p′2

k1 k2 kN

Figure 6.1: Diagram of the pair production process with N photons exchanged
with the nucleus.

are approximate solutions of the Dirac equation for a Coulomb field. The final
result is in the case of pair production by a real photon the expression

dσ
dx

=
4
3
Z2αr2e {1+ 2[x2 + (1− x)2]}

(
ln

2x(1− x)ω
m

− 1
2
− ƒ(Zα)

)
,

ƒ(ν) = ν2
∞∑
n=1

1
n(n2 + ν2)

,

(6.1)

where x = ε+/ω is the ratio of the initial photon energyω and the positron energy
ε+. It is very difficult to extend this treatment to a more realistic description of the
nucleus as the wave functions would have to be determined for the given potential.
The term ln[2x(1−x)ω/m]− 1

2 arising from the leading order calculation is called
the main logarithm in the following2, the term ƒ(Zα) arising from higher-order
corrections in the coupling to the nuclear field is called Coulomb correction.

In [53], this result was obtained again in a much simpler way by resummation
of the perturbation series. Moreover, the approach in [53] allows for the inclusion
of realistic atomic and nuclear form factors. In [14] this approach was applied to
the problem of electron-positron photoproduction in the field of a screened nucleus.
In [54], the results of [53] were used to calculate the Coulomb correction to the
pair production cross section by high-energy muons on a pointlike nucleus. First,
the calculations of [53] are briefly reviewed and then this treatment is extended
to calculate the corrections for a screened extended nucleus which allows also to
determine the Coulomb correction to muon bremsstrahlung.

The main contribution to the cross section arises from small scattering angles,
therefore the momenta (cf. Fig. 6.1) are expressed in Sudakov variables [102]

ki = αip̃1 + βip̃2 + ki⊥,
qi = xip̃1 + yip̃2 + qi⊥,

(6.2)

where p̃1 = p1 + (Q2/s)p2, p̃2 = p2 − (m2/s)p1 are almost light-like vectors,
Q2 = −p22 is the virtuality of the photon and s = 2p1p2 ≫ Q2,m2 is the center
of momentum energy. As a simplification, the mass of the nucleus and of the
produced lepton are set equal p22 = q21 = q22 = m2. The mass of the nucleus does

2For an atomic field different from the Coulomb case, the main logarithm changes also.
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not enter the final result, where its mass is considered infinite. Denoting again
by x the fraction of the energy of the initial photon ω which is transferred to the
antilepton,

x1 = x, x2 = 1− x,

y1 =
m2 + q21

xs
, y2 =

m2 + q22
(1− x)s

with q2i = −q2i⊥. The amplitude for the diagram with N exchanged photons is
given in the impact representation [75] by

MN =
8π2s(−i)N−1

N! ∫
N∏

i=1

(
d2ki

(2π)2k2i

)
δ

 N∑
j=1

kj − q1 − q2

 JNγ→ℓℓ̄J
N
A . (6.3)

The impact factors are given by

JNγ→ℓℓ̄ = ∫
N−1∏
i=1

(
d(βis)
2πi

)
(iA)μ1...μN

p̃μ1
2 · · · p̃μN

2
sN

, (6.4)

JNA = ∫
N−1∏
i=1

(
d(αis)
2πi

)
(iB)μ1...μN

p̃μ1
1 · · · p̃μN

1
sN

. (6.5)

where (iA)μ1...μN
is the amplitude corresponding to the upper part of the diagram

in Fig. 6.1 and (iB)μ1...μN
to the lower part.

For an infinitely heavy point nucleus, the impact factor is given by

JNA = i(−1)N(eZ)N. (6.6)

Accounting for an extended nucleus can be either carried out by modifying the
impact factor or equivalently by modifying the Coulomb propagator 1/k2i in (6.3).

The impact factors for the lepton part of the diagram can be determined by a
recurrence relation. The impact factor for one exchanged photon is given by

J1γ→ℓℓ̄(q1, q2) = ie2ū1[mêS1 − 2x(T1e)− T̂1ê]
ˆ̃p2
s
u2 (6.7)

for a transversely polarized photon with polarization vector e and for a longitudi-
nally polarized photon by

J1γ→ℓℓ̄(q1, q2) = −ie2
√
Q2x(1− x)S1(q1, q2)ū1

ˆ̃p2
s
u2, (6.8)

where

S1 ≡ S1(q1, q2) =
1

μ2 + q21
− 1

μ2 + q22
, (6.9)

T1 ≡ T1(q1, q2) =
q1

μ2 + q21
+

q2
μ2 + q22

, (6.10)

μ2 = m2 + Q2x(1− x). (6.11)
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The scalar SN and vector TN structures are related by the recurrence relations

SN(q1, q2,kN) = SN−1(q1, q2 − kN)− SN−1(q1 − kN, q2), (6.12)

TN(q1, q2,kN) = TN−1(q1, q2 − kN)− TN−1(q1 − kN, q2), (6.13)

because due to Bose symmetry theN-th t-channel photon can be considered as the
last one attached to the lepton line, from which the relations follow immediately
[52]. The dependence on the other t-channel photon momenta k1, . . .kN−1 is
omitted for clarity. The integral over the t-channel momenta

JNe (q1, q2) = ∫
N∏

i=1

d2ki
k2i

F(ki)δ

 N∑
j=1

kj − q

SN (6.14)

with the formfactor F(k) can be recast using the recurrence relations as

JNS (q1, q2) = ∫ d2k
k2

F(k)[JN−1
S (q1, q2 − k)− JN−1

S (q1 − k, q2)] (6.15)

such that for the Fourier transform of JNS (q1, q2)

jNS (r1, r2) =
1

(2π)2 ∫ eiq1r1+q2r2JNS (q1, q2) d
2q1 d2q2 (6.16)

the recurrence relation assumes the form

jNS (r1, r2) = jN−1
S (r1, r2)πφ(r1, r2)

φ(r1, r2) =
1
π ∫

d2k
k2

(eikr2 − eikr1).
(6.17)

Using the Fourier transform of J1S

j1S(r1, r2) =
1
2
K0(μ|r1 − r2|)φ(r1, r2), (6.18)

the total impact factor to all orders, inverting the Fourier transform, is given by

JS(q1, q2) =
i

(2π)22ν ∫ d2r1 d2r2 e−iq1r1−iq2r2

×K0(μ|r1 − r2|)[e−iνφ(r1,r2) − 1],
(6.19)

and analogously for the vector structure by

JT(q1, q2) =
−1

(2π)22ν ∫ d2r1 d2r2 e−iq1r1−iq2r2

× μ(r1 − r2)
|r1 − r2|

K1(μ|r1 − r2|)[e−iνφ(r1,r2) − 1].
(6.20)

Here Kν(z) is the modified Bessel function. To obtain the amplitude out of the
impact factor, according to [108] the impact factor is multiplied by a universal
phase factor and the amplitude is given by

M = 8πeνs
(

x
1− x

)−iν

ū1 {mêJS(q1, q2)

− 2x[JT(q1, q2)e]− ĴT(q1, q2)ê
} ˆ̃p2

s
u2

(6.21)
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for a transversely polarized incident photon and by

M = −16πeνs
(

x
1− x

)−iν√
Q2x(1− x)ū1JS(q1, q2)

ˆ̃p2
s
u2 (6.22)

for a longitudinally polarized incident photon.
The total cross section is obtained by integration over the transversal momenta

q1, q2 and the energy fraction x as

dσ =
2ν2α
π2 {m2|JS|2 + |JT|2[x2 + (1− x)2]} dx d2q1 d2q2 (6.23)

for the transversely polarized photon, summed over all polarization states. To
obtain the Coulomb correction to the Born cross section, the Born approximation
cross section has to be subtracted. Therefore the correction dσ2 , for dσ =
dσ1 + dσ2 with dσ1 the Born approximation cross section, is given for the
transversely and longitudinally polarized photon by

dσT2
dx

=
2αν2

π2 {m2A1 + [x2 + (1− x)2]A2}, (6.24)

dσS2
dx

=
2αν2

π2 4Q2x2(1− x)2A1, (6.25)

respectively, where

A1 = ∫ d2q1 d2q2 (|JS|2 − |J1S|2), (6.26)

A2 = ∫ d2q1 d2q2 (|JT|2 − |J1T|2). (6.27)

6.3 Higher-order corrections for an extended screened
nucleus

In the calculation of corrections in a Coulomb field, the expressions for A1,A2
contain terms which diverge and have to be regularized, which leads to not well-
defined expressions when attempting a numerical integration. As pointed out by
[14], the divergences are removed when screening is taken into account.

Using the form factor [105]

F(k) = Fn(k)− Fe(k),

Fn(k) =
(
1+

a2k2

12

)−2

, a = (0.58+ 0.82A1/3)5.07GeV−1

Fe(k) =
1

1+ b2k2
, b =

184.15Z−1/3

me
√
e

,

φ is given by

φ(r1, r2) =
1
π

∫
d2k
k2

F(|k|)(eikr2 − eikr1)

= 2[K0(Λer2)−K0(Λer1)] + 2[K0(Λnr1)−K0(Λnr2)]
+ Λnr1K1(Λnr1)− Λnr2K1(Λnr2),

Λe =
1
b
, Λn =

√
12
a

.

(6.28)

71



The quantities A1,A2 are given by the expressions

A1 =
π

2ν2μ4

∞

∫
0

dx

∞

∫
0

dR

2π

∫
0

dθ x3K0
2(x){2− 2 cos(νφ12)− ν2φ2

12}, (6.29)

A2 =
π

2ν2μ2

∞

∫
0

dx

∞

∫
0

dR

2π

∫
0

dθ x3K1
2(x){2− 2 cos(νφ12)− ν2φ2

12}, (6.30)

φ12 = φ

(
xR
μ

,
x
√
R2 + 1− 2R cos θ

μ

)
. (6.31)

In the case of a Coulomb field, φ = ln(r21/r
2
2) and A1,A2 assume the values

AC
1 = −2π2

3μ4 ƒ(ν),

AC
2 = −4π2

3μ2 ƒ(ν),

ƒ(ν) =
1
2
{Ψ(1− iν) +Ψ(1+ iν)− 2Ψ(1)}

= ν2
∞∑
n=1

1
n(n2 + ν2)

.

When realistic form factors are employed, it is no longer possible to evaluate the
Coulomb corrections in closed form. The numerical results can be approximated
by

A1 = AC
1g1(μ/MeV, ν), A2 = AC

2g2(μ/MeV, ν), (6.32)

gi(x, ν) =
ai(ν) + bi(ν)x

1+ ci(ν)x+ di(ν)x2 , (6.33)

where ai, bi, ci, di are approximately cubic polynomials for Z > 5

a1(ν) = 1.0026− 2.2789× 10−2ν + 2.9437× 10−2ν2 − 4.1536× 10−2ν3,

b1(ν) = 1.9465× 10−2 − 7.7063× 10−2ν + 1.9979× 10−1ν2 − 1.4107× 10−1ν3,

c1(ν) = 3.6785× 10−2 + 5.4466× 10−2ν − 9.2971× 10−2ν2 + 2.7357× 10−2ν3,

d1(ν) = 9.9382× 10−4 + 2.4601× 10−3ν + 2.6733× 10−3ν2 − 2.8198× 10−3ν3;

a2(ν) = 1.0046− 1.9267× 10−2ν + 4.5255× 10−2ν2 − 5.1603× 10−2ν3,

b2(ν) = 8.8223× 10−3 − 5.2931× 10−2ν + 1.4854× 10−1ν2 − 1.0764× 10−1ν3,

c2(ν) = 3.7141× 10−2 + 1.2897× 10−1ν − 2.2677× 10−1ν2 + 1.0776× 10−1ν3,

d2(ν) = 7.1144× 10−4 + 1.7710× 10−3ν + 5.0240× 10−3ν2 − 4.5527× 10−3ν3.

Since the correction is small for low Z, it is possible to use this parametrization
for all Z.

This Coulomb correction for the virtual photon pair production can be used
to calculate several cross sections. Setting Q2 = 0, μ2 = m2, one obtains the
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Figure 6.2: Correction to the main logarithm of bremsstrahlung and photoproduc-
tion for electrons due to Coulomb corrections for a Coulomb field and a screened
nucleus. Shown are the correction ƒ(ν) for a Coulomb field (solid line) and the
corrections which account for the screened nucleus g1(me, ν)ƒ(ν) (dashed line),
g2(me, ν)ƒ(ν) (dotted line).

corrections for real photoproduction of particles with mass m on a screened ex-
tended nucleus. The numerical examples show that for electrons, the result of
[20] is reproduced with a small correction for heavy nuclei (see Fig. 6.2), while
for muons the correction due to multiphoton exchange is very small (see Fig. 6.3).
Since the main logarithm assumes the value ln[BZ−1/3(mμ/me)]− ln(1.54A0.27)
with B ≃ 183 [58] in the full-screening limit, the correction to the energy loss
spectrum due to Coulomb corrections is negligible with very high accuracy

max
Z

ƒ(ν)g1,2(mμ, ν)

ln
(
Bmμ

me
Z−1/3

)
− ln(1.54A0.27)

< 0.004.

The small influence of the nuclear form factor on electrons and the smallness of
the corrections for heavy particles was already observed by [53] in the limiting
cases Λ ≫ m for electrons and Λ ≪ m for muons, using a nuclear form factor

F(k) =
Λ2

Λ2 + k2
. (6.34)

From the corrections to the real photoproduction cross section, the corrections
to the bremsstrahlung cross section are obtained via the substitution rules ε+ →
−ε1, ε− → ε2,ω → −ω, dσ → (ω2 dω /ε2+ dε+ ) dσ , where x = ε+/ω (e. g.,
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Figure 6.3: Correction to the main logarithm of bremsstrahlung and photopro-
duction for muons due to Coulomb corrections for a Coulomb field and a screened
nucleus. Shown are the correction ƒ(ν) for a Coulomb field (solid line) and the
corrections which account for the screened nucleus g1(mμ, ν)ƒ(ν) (dashed line),
g2(mμ, ν)ƒ(ν) (dotted line).



[84]). Again, the classical result for electrons is obtained, that the function ƒ(ν)
is subtracted from the main logarithm, and it is observed that the correction for
muon bremsstrahlung is small, as was found in [11] for a simplified nuclear form
factor.

Using the result for the process of pair production by a virtual photon, one
can calculate the Coulomb corrections to the cross section of pair production by a
charged particle, thus generalizing the corrections calculated by [54] for pair pro-
duction in a Coulomb field. The correction to the cross section for pair production
by a muon is given by

dσ2 = dnT (ω,Q2)σT2 (ω,Q
2) + dnS (ω,Q2)σS2(ω,Q

2), (6.35)

where the virtual photon fluxes are given by [29]

dnT (ω,Q2) =
α
π
(1− v)

(
1− Q2

min
Q2 +

v2

2(1− v)

)
dω
ω

dQ2

Q2 , (6.36)

dnS (ω,Q2) =
α
π
(1− v)

dω
ω

dQ2

Q2 , (6.37)

Q2
min =

m2
μv2

1− v
≤ Q2 < ∞. (6.38)

where v = ω/Eμ is the fractional energy loss of the muon. Since σT2 , σ
S
2 are inde-

pendent of ω and dnT, dnS, Q2
min only depend on the fractional energy loss, the

correction itself is independent of the incident muon energy, because the singu-
larity for x → 0,x → 1 is only logarithmic and therefore integrable. Since the
contribution in Born approximation is dependent on energy, however, the relative
importance of the correction is a function of the energy. Also, the integration
over x should only be carried out in the range where the Born contribution is non-
negative. The influence of Coulomb corrections on the differential cross section
dσ/dv for a muon of 100TeV primary energy in standard rock and lead is shown
in Fig. 6.4, 6.5 in comparison to the Born contribution of [67].

The influence of Coulomb corrections on the average energy loss

− dE
dX

=
NA

A ∫ω
dσ
dω

dω , (6.39)

where NA is Avogadro’s constant, A is the mass number of the material, andX =
x/ϱ is the depth, is shown in Fig. 6.6 for standard rock3 and in Fig. 6.7 for lead,
integrated in the appropriate energy-dependent limits of the Born approximation
cross section of [67].

6.4 Discussion

We have calculated Coulomb corrections to the cross sections of pair production
and bremsstrahlung on extended screened nuclei. These calculations generalize
the work of [14, 53, 54] with regard to pair production and the work of [11] with
regard to muon bremsstrahlung.

3Standard rock is assumed as a mixture of MgCO3 and CaCO3 consisting of 52% oxygen, 27%
calcium and 9% magnesium.
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Figure 6.4: Differential cross section dσ/dv for a muon of 100TeV primary en-
ergy in standard rock. Shown are the cross section in Born approximation [67]
(solid line), our Coulomb corrections (dashed line), and the corrections of [54]
(dotted line).
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Figure 6.5: Differential cross section dσ/dv for a muon of 100TeV primary en-
ergy in lead. Shown are the cross section in Born approximation [67] (solid line),
our Coulomb corrections (dashed line), and the corrections of [54] (dotted line).
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Figure 6.6: Average energy loss through pair production in standard rock, calcu-
lated using the Born cross section of [67] (solid line) and the negative Coulomb
corrections calculated in this work (dashed line) and in [54] (dotted line).
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Figure 6.7: Average energy loss through pair production in lead, calculated using
the Born cross section of [67] (solid line) and the negative Coulomb corrections
calculated in this work (dashed line) and in [54] (dotted line).



Our results confirm that the Coulomb corrections to the muon bremsstrahlung
cross section are negligible with very high accuracy. This coincides qualitatively
with the results of [11], who applied a very simple model for the charge dis-
tribution of the nucleus and used a different method based on wave functions.
However, here a more realistic charge distribution was used; therefore a direct
comparison of the numerical results is difficult. In contrast to the results of [68],
the corrections do not vanish identically in our calculation.

Our results on electron pair production by high-energy muons confirm the
importance of Coulomb corrections established by [54] for this process in precise
calculations of muon transport. Our calculations differ in two aspects from [54]:

• the correction in the cross section is integrated only over values of x, v, for
which the Born cross section is positive;

• the atomic and nuclear form factor is taken into account.

The effect of the first aspect decreases with energy; however, as shown in Fig. 6.4,
the effect of correct limits is still noticeable at a muon energy of 100TeV in stan-
dard rock. The second point leads to an additional decrease of the Coulomb cor-
rection which does not decrease with energy. As shown in Fig. 6.7, for lead the
correction to the energy loss is smaller by more than 10%, amounting to about
a percent of the Born loss. For the differential cross section, the effect is even
greater, as shown in Fig. 6.5.
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Chapter 7

Discussion and outlook

In this thesis corrections to the energy loss cross sections of high-energy muons
have been calculated. Muons loose energy by ionization, pair production, brems-
strahlung and inelastic nuclear interaction. Ionization dominates the energy loss
at low energies, while the other processes dominate at higher energies. Over a
large part of the energy range investigated by very large volume neutrino tele-
scopes such as IceCube, pair production and bremsstrahlung dominate the energy
loss, with inelastic nuclear interaction being a subdominant process.

The leading-order cross sections of bremsstrahlung and pair production have
been determined more accurately by dropping the approximation that the two
screening functions are equal. For bremsstrahlung, the effect on high-energy
muons is negligible compared to the parametrization of [58]; for pair production,
in addition to this, the analytical approximation by [66] to the non-logarithmic
terms of the cross section has been replaced by the exact expression calculated
in [55], and the nuclear formfactor corrections calculated in [67] have been re-
placed by later more exact calculations of [58]. Together these improvements lead
to changes of a several percent to the simply differential cross section dσ/dv.

For bremsstrahlung, the next-to-leading-order (NLO) corrections have been
calculated for the average energy loss and the differential cross section. The av-
erage energy loss is increased by about 2% in the high-energy limit due to these
corrections. The relative effect on the differential cross section dσ/dv is inde-
pendent of the energy of the muon in the approximation used in this work; the
NLO corrections increase the cross section most pronounced for the emission of
photons with v ∼ 0.1, i. e. large energy losses.

For the inelastic nuclear interaction, NLO corrections have also been calcu-
lated. The correction to the cross section is also most pronounced for large v; the
average energy loss is increased by 2–3%. The uncertainties on the cross section
of this process are however, much larger than in the case of pair production and
bremsstrahlung, therefore these corrections are less important.

For bremsstrahlung and pair production, Coulomb corrections, i. e. correc-
tions to all orders in the coupling Zα to the electric field of the nucleus have been
calculated and parametrized, taking into account the nuclear formfactor. For
muon bremsstrahlung, the result of previous approximate calculations [11] are
confirmed that Coulomb corrections are negligible. For pair production, the re-
sult show that the calculations of [53, 54] are valid for light nuclei and describe
accurately the cross section and energy loss, if the limits of integration are cho-
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sen appropriately. For heavy nuclei such as lead, however, the nuclear formfac-
tor cannot be neglected and the Coulomb corrections to the cross section decrease.
Although the qualitative behavior has been predicted earlier using simplified mod-
els for the nuclear charge distribution, this is the first quantitative calculation of
Coulomb corrections for realistic extended nuclei.

The theoretical uncertainties on the energy loss cross sections influence the
experimental results as systematic uncertainties. These corrections are important
for the energy reconstruction of high-energy muons which are observed in particle
and astroparticle detectors.

Further work in this direction should include the calculation of radiative cor-
rections to the pair production cross section. The method of equivalent photons
applied here to the bremsstrahlung cross section is not applicable to this problem
[29]. Therefore this problem is much more complex to solve due to the large num-
ber of particles in the final state and the corresponding large number of degrees
of freedom.
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Appendix A

Analytical cross section for
main contribution of pair
production

A.1 Cross section differential in q2, k2

The contribution of the e-diagrams to the pair production is given by

d2σ
dω dε 1

=
Z2α4m4

32π2k∗p23
∫ dk2 dq2 dν

k4q4
{W1L1M1

μμ
αα +W2L2M1

44
44

−W1L2M1
μμ
44 −W2L1M1

44
αα}

(A.1)

where in the case of a screened heavy nucleus [31]

W1 = 0, W2 = −[Fn(q2)− Fa(q2)]2δ(ν), (A.2)

L1 = −4
{
k2

2
− μ2 − k2

k∗2

(
−ε3ε4 +

k2

4

)}
, (A.3)

L2 = −4
{
k2

2
− μ2 − 3

k2

k∗2

(
−ε3ε4 +

k2

4

)}
, (A.4)

−1
8

M1
44
44 =

8π
m6ωΓ

ε21ε
2
2

(
1− 1

y
− δ2Γ

m2 ln y− lnx

)
, (A.5)

−1
8

M1
44
αα =

4π
m4ωΓ

ε1ε2
(
2− k2

m2

)(
1− 1

y
− δ2Γ

m2 ln y− lnx

)

+ π(ε21 + ε22)
{

J′3
2ε21ε22

+
2q2

πm4 J2 +
4δν
m6ω

ln y
}
.

(A.6)

with

J′3 = −ωΓ
m2

[√
y2 − 8ζy+ 16ζ(1+ ζ)y2 − 1− 4ζ

]
= −ωΓ

m2 (y− 1) + O(ζ),
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J2 =
π

m2ωΓ
lnx,

lnx =
1

4
√
ζ(1+ ζ)

× ln
1+ 4ζ + 4

√
ζ(1+ ζ)−

√
ζ/(1+ ζ)√

1− 8ζ/y+ 16ζ(1+ ζ)/y2 + 4
√
ζ(1+ ζ)/y−

√
ζ/(1+ ζ)

,

δ =
m2ω
2ε1ε2

, Γ = 1+
k2ε1ε2
m2ω2 , y =

1
δΓ

(
√

q2 + ν2 + ν), ζ =
q2

4m2Γ

k∗ =
√
k2 + ω2.

The integration region is given by the relations

(δΓ)2 − 2νδΓ < q2 < ∞,

μ2ω2

ε3ε4
< k2 < 4ε3ε4.

lnx can be expanded in two overlapping regions

lnx ≈ 1− 1
y
− 2

3
ζ
(
1+

3
y2

− 4
y3

)
, ζ ≪ 1, (A.7)

lnx ≈ 1√
ζ(1+ ζ)

ln(
√
1+ ζ +

√
ζ), y ≫ 1. (A.8)

Since the mass of electrons is much lighter than the inverse radius of nuclei,
it is reasonable to set Fn = 1. The form factor (Tsai 74)

Fa(q2) =
1

1+ b2q2
(A.9)

leads to the correct behavior in the limiting cases of complete screening and ab-
sence of screening.

A.2 No Screening

As a first step, the cross section is calculated for the case of on unscreened point
nucleus, such that

W2 = −δ(ν). (A.10)

We start with the evaluation of M1
44
44, since the terms also occur in M1

44
αα.

We split the integration over q2 at an auxiliary momentum q0 subject to the
conditions q0 ≫ δΓ, q20 ≪ 4m2Γ. We obtain

∞

∫
(δΓ)2

(
1− 1

y
− δ2Γ

m2 ln y− lnx

)
dq2

q4

=

 q20

∫
(δΓ)2

+

∞

∫
q20

(1− 1
y
− δ2Γ

m2 ln y− lnx

)
dq2

q4
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≈ 2

q0

∫
δΓ

[
2
3
ζ
(
1+

3
y2

− 4
y3

)
− δ2Γ

m2 ln y

]
dq
q3

+

∞

∫
q20

(
1− 1

y
− δ2Γ

m2 ln y− 1√
ζ(1+ ζ)

ln(
√
1+ ζ +

√
ζ)

)
dq2

q4
.

We consider these integrals separately. In the region δΓ < q < q0

2

q0

∫
δΓ

[
2
3
ζ
(
1+

3
y2

− 4
y3

)
− δ2Γ

m2 ln
q
δΓ

]
dq
q3

=
1

3m2Γ

q0

∫
δΓ

(
1
q
+ 3(δΓ)2

1
q3

− 4(δΓ)3
1
q4

)
dq − 2δ2Γ

m2

q0

∫
δΓ

dq
q3

ln
q
δΓ

=
1

3m2Γ

[
ln q− 3(δΓ)2

2q2
+

4(δΓ)3

3q3

]q0
δΓ

+
δ2Γ
m2

[
ln(q/δΓ)

q2
+

1
2q2

]q0
δΓ

=
1

3m2Γ

[
ln

q0
δΓ

− 3(δΓ)2

2q20
+

3
2
+

4(δΓ)3

3q30
− 4

3

]
+

δ2Γ
m2

[
1
q20

ln
q0
δΓ

+
1
2q20

− 1
2(δΓ)2

]
=

1
3m2Γ

[(
1+ 3

(δΓ)2

q20

)
ln

q0
δΓ

+

(
1− (δΓ)2

q20

)
3
2
−
(
1− (δΓ)3

q30

)
4
3

−
(
1− (δΓ)2

q20

)
3
2

]
≈ 1

3m2Γ

(
ln

q0
δΓ

− 4
3

)
.

In the region q20 < q2 < ∞
∞

∫
q20

(
1− δ2Γ

m2 ln y− 1√
ζ(1+ ζ)

ln(
√

1+ ζ +
√
ζ)

)
dq2

q4

=
1

4m2Γ


∞

∫
ζ0=q20/4m

2Γ

(
1− 1√

ζ(1+ ζ)
ln(
√

1+ ζ +
√
ζ)

)
dζ
ζ2

−2δ2Γ
m2

∞

∫
q0

dq
q3

ln
q
δΓ


=

1
4m2Γ


η0=1/ζ0

∫
0

(
1− η√

1+ η
ln

1+
√
1+ η

√η

)
dη

+
δ2Γ
m2

[
1
q2

ln
q
δΓ

+
1
2q2

]∞
q0

}
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=
1

4m2Γ

{
2
3

[
η + ln η + (2− η)

√
η + 1 ln

√
η + 1+ 1
√η

]η0
0

− δ2Γ
m2q20

ln
q0
δΓ

− δ2Γ
2m2q20

}

=
1

6m2Γ

{[
4m2Γ
q20

+ ln
4m2Γ
q20

+

(
2− 4m2Γ

q20

)√
4m2Γ
q20

+ 1

× ln

√
4m2Γ + q20 + q0

√
4m2Γ

− ln 4

− δ2Γ
m2q20

ln
q0
δΓ

− δ2Γ
2m2q20


≈ 1

6m2Γ

[
ln

m2Γ
q20

+
5
3

]
The final result is therefore

∞

∫
(δΓ)2

(
1− 1

y
− δ2Γ

m2 ln y− lnx

)
dq2

q4

≈ 1
3m2Γ

(
ln

q0
δΓ

− 4
3

)
+

1
6m2Γ

(
ln

m2Γ
q20

+
5
3

)
=

1
6m2Γ

(
ln

m2

δ2Γ
− 1
)
.

(A.11)

We now calculate the integral occurring in M1
44
αα besides the one already cal-

culated. Retaining only the lowest order of ζ in J′3, we have
∞

∫
(δΓ)2

[
ωΓ

2m2ε21ε22
(1− y) +

2q2

m6ωΓ
lnx
]
dq2

q4
=

∞

∫
δΓ

4
m6ωΓ

[(δΓ)2(1−y)+q2 lnx]
dq
q3

(A.12)
We again split up the integration at q20 and obtain for (δΓ)2 < q2 < q20

4
m6ωΓ


q0

∫
δΓ

(δΓ)2 − (δΓ)q
q3

dq +

q0

∫
δΓ

[
1− 1

y
− 2

3
ζ
(
1+

3
y2

− 4
y3

)]
dq
q


=

4
m6ωΓ

{[
− (δΓ)2

2q2
+

δΓ
q

]q0
δΓ

+

[
ln q+

δΓ
q

− q2

12m2Γ
− (δΓ)2

2m2Γ
ln q

−2(δΓ)3

3m2Γq

]q0
δΓ

}

≈ 4
m6ωΓ

(
ln

q0
δΓ

− 3
2

)
and for the region q20 < q2 < ∞

2
m6ωΓ

∞

∫
q20

[
(δΓ)2(1− y) +

q2√
ζ(1+ ζ)

ln(
√
1+ ζ +

√
ζ)

]
dq2

q4
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=
2

m6ωΓ

2

∞

∫
q0

[
(δΓ)2

q3
− δΓ

q2

]
dq +

∞

∫
q20/4m

2Γ

1√
ζ(1+ ζ)

ln(
√
1+ ζ +

√
ζ)

dζ
ζ


=

2
m6ωΓ

2
[
− (δΓ)2

2q2
+

δΓ
q

]∞
q0

+

4m2Γ/q20

∫
0

dη√
η(1+ η)

ln
√
η + 1+ 1
√η


=

2
m6ωΓ

 (δΓ)2

q20
− δΓ

q0
+

[
2
√
η + 1 ln

√
η + 1+ 1
√η

+ ln η

]4m2Γ/q20

0


≈ 2

m6ωΓ

(
ln

4m2Γ
q20

+ 2− ln 4
)

=
2

m6ωΓ

(
ln

m2Γ
q20

+ 2
)
.

Thus the final result is
∞

∫
(δΓ)2

[
ωΓ

2m2ε21ε22
(1− y) +

2q2

m6ωΓ
lnx
]
dq2

q4
≈ 2

m6ωΓ

(
ln

m2

δ2Γ
− 1
)
. (A.13)

Therefore in the absence of screening

∫ dq2 dν
q4

W2M1
44
44 =

32π
3m8Γ2

ε21ε22
ω

(
ln

m2

δ2Γ
− 1
)
, (A.14)

∫ dq2 dν
q4

W2M1
44
αα =

16π
m6Γ2

ε1ε2
ω

(
2− k2

m2

)(
ln

m2

δ2Γ
− 1
)

+
16π
m6Γ

ε21 + ε22
ω

(
ln

m2

δ2Γ
− 1
)
.

(A.15)

A.3 Partial screening

The cross section differential in k2 can be expressed using two dimensionless func-
tions

Φ1(δ,Γ) =
1
2

∞

∫
(δΓ)2

[q2 lnx− (δΓ)2(y− 1)]
b4q4

(1+ b2q2)2
dq2

q4
, (A.16)

Φ2(δ,Γ) = 3m2Γ
∞

∫
(δΓ)2

(
1− 1

y
− lnx− δ2Γ

m2 ln y

)
b4q4

(1+ b2q2)2
dq2

q4
(A.17)

which also occur in bremsstrahlung. As shown above, in the absence of screening

Φ1(δ,Γ) = Φ2(δ,Γ) =
1
2

(
ln

m2

δ2Γ
− 1
)

and the cross section is given by

∫W2M1
44
44

dq2

q4
=

64π
3m8ωΓ2Φ2(δ,Γ), (A.18)
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∫W2M1
44
αα

dq2

q4
=

16π
3m4δΓ2

(
2− k2

m2

)
Φ2(δ,Γ) +

32π(ε21 + ε22)
m6ωΓ

Φ1(δ,Γ).

(A.19)

The result of the calculation in the preceding section is independent of the
value of the auxiliary momentum q20. Therefore we can give any value to it and
in particular m2Γ, such that the atomic formfactor at the cutoff momentum is
practically zero and the logarithms in the high-q2 terms vanish such that we obtain

Φ1(δ,Γ) =
1
2

m2Γ

∫
(δΓ)2

(q− δΓ)2
b4q4

(1+ b2q2)2
dq2

q4
+ 1, (A.20)

Φ2(δ,Γ) = 3m2Γ
m2Γ

∫
(δΓ)2

[
2
3
ζ
(
1+

3
y2

− 4
y3

)
− δ2Γ

m2 ln y

]
b4q4

(1+ b2q2)2
dq2

q4
+

5
3
.

(A.21)

In analogy to [10, 11] we obtain

Φ1(δ,Γ) =
1
2

{
ln

1+ b2m2Γ
1+ (bδΓ)2

− 2bδΓ[arctan(bm
√
Γ)− arctan(bδΓ)

+ 1]
}
+ 1

≈ 1
2

[
1+ ln

b2m2Γ
1+ b2(δΓ)2

]
− bδΓ arctan

1
bδΓ

,

(A.22)

Φ2(δ,Γ) = 2(bδΓ)3[arctan(bδΓ)− arctan(bm
√
Γ)]

+
3(bδΓ)2 + 1

2
ln

1+ b2m2Γ
1+ (bδΓ)2

− 3(bδΓ)2
(
1+

1
1+ b2m2Γ

)
ln

m
δ
√
Γ

+
12Γ3b4δ2m2 + 7Γb2m2 − 12(bδΓ)3bm

√
Γ + 3(bδΓ)2 + 10

6(1+ b2m2Γ)

≈ 1
2

(
2
3
+ ln

b2m2Γ
1+ b2(δΓ)2

)
+ 2(bδΓ)2

(
1− arctan

1
bδΓ

+
3
4
ln

(bδΓ)2

1+ (bδΓ)2

)
.

(A.23)

A.4 Interpolation between full screening and no screen-
ing

The integration over k2 can be carried out analytically [55] in the limiting cases
of full screening and no screening. It was shown in [87], that the function Φ =
Φ1 ≈ Φ2 in the bremsstrahlung cross section, which assumes the limiting values

ΦNS = ln
μ
δ
− 1

2
(A.24)
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in the absence of screening and

ΦFS = ln
( μ
m
183Z−1/3

)
(A.25)

for full screeening, can approximate the numerical results for a Thomas-Fermi
atom for any degree of screening with the function

Φ = ln
(μ/m)BZ−1/3

1+ BZ−1/3δ/m
. (A.26)

This describes the behavior of a Thomas-Fermi atom better than the form factor
in the previous section, which deviates by several percent in the partial screening
region, but leads to the correct limiting behavior.

This interpolation was later applied by [66] on the pair production cross sec-
tion, based on the cross section integrated over k2 and in the approximationΦ1 ≈
Φ2, thus leading to an uncertainty of 1–3%.

To improve this parametrization we apply this analytical interpolation to the
functions Φ1,Φ2 separately, without using Φ1 ≈ Φ2. The integration over k2 is
dominated by small values of k2 due to the factor 1/k4 in the integrand, similar to
the q2 integration. The lower limit of k2, μ2ω2/ε3ε4, is not small compared to m2

for ω ≳ (m/μ)ε3, and we cannot neglect k2 compared to m2. In the region ε23,4 ≫
μ2, however, we can neglect k2 compared to ω2, such that k∗ =

√
k2 + ω2 ≈ ω.

In the chosen accuracy

∫ dk2 dq2 dν
k4q4

W2L2M1
44
44 = ∫−4

k2

ω2

{
k2

2
− μ2 − 3

k2

ω2

(
−ε3ε4 +

k2

4

)}
× 64π

3m8ωΓ2 ε
2
1ε

2
2Φ2

dk2

k4
,

−∫ dk2dq2dν
k4q4

W2L1M1
44
αα = ∫4

{
k2

2
− μ2 − k2

ω2

(
−ε3ε4 +

k2

4

)}
×
[

16π
3m4δΓ2

(
2− k2

m2

)
Φ2 + 32π

ε21 + ε22
m6ωΓ

Φ1

]
dk2

k4
(A.27)

The Integration over k2 can be reduced to the following integrals

∫ k2Φ2dk2

Γ2 , ∫ Φ2dk2

Γ2 , ∫ Φ2dk2

k2Γ2 , ∫ Φ2 dk2

k4Γ2

∫ Φ1dk2

Γ
, ∫ Φ1dk2

k2Γ
, ∫ Φ1 dk2

k4Γ
,
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as detailed in the following equations

∫ dk2 dq2 dν
k4q4

W2L2M1
44
44 = − 256π

3m8ω3 ε
2
1ε

2
2

{[
1
2
+ 3

ε3ε4
ω2

]
∫ Φ2

Γ2 dk2

− μ2∫ Φ2

k2Γ2 dk2

− 3
4ω2 ∫ k2Φ2

Γ2 dk2
}
,

(A.28)

−∫ dk2 dq2 dν
k4q4

W2L1M1
44
αα =

128π
3m6ω

ε1ε2
{(

1+
μ2

m2 + 2
ε3ε4
ω2

)
∫ Φ2

k2Γ2 dk2

−
(

1
2m2 − ε3ε4

m2ω2 − 1
2ω2

)
∫ Φ2

Γ2 dk2

− 2μ2∫ Φ2

k4Γ2 dk2

+
1

4m2ω2 ∫ k2Φ2

Γ2 dk2
}

+ 128π
ε21 + ε22
m6ω

{(
1
2
+

ε3ε4
ω2

)
∫ Φ1

k2Γ
dk2

− μ2∫ Φ1

k4Γ
dk2

− 1
4ω2 ∫ Φ1

Γ
dk2

}
.

(A.29)

Using the integrals below we obtain the following resulting cross section for the
limiting cases of complete (no) screening, corresponding to the upper (lower) sign
in ±:

∫ dk2 dq2 dν
k4q4

L2W2M1
44
44 =

256π
3m6ω3 ε

2
1ε

2
2

{
Ψ̃2

[
μ2

m2

(
ln

1+ ξ
ξ

− 1
1+ ξ

)
− ω2

ε1ε2

(
1
2
+ 3

ε3ε4
ω2

)
1

1+ ξ

]
± 1

2

[
μ2

m2

(
Li2

1
1+ ξ

− 1
1+ ξ

)
− ω2

2ε1ε2(1+ ξ)

(
1
2
+ 3

ε3ε4
ω2

)]}
, (A.30)

−∫ dk2 dq2 dν
k4q4

L1W2M1
44
αα = 128π

ε1ε2
3m6ω3 ε3ε4

{
Ψ̃2

[
ln

1+ ξ
ξ(

ω2

ε3ε4
+

μ2ω2

m2ε3ε4
+ 2+ 4ξ

)
− 1

1+ ξ

(
ω2

ε3ε4
+

μ2ω2

m2ε3ε4
+ 2+

ω4

2ε1ε2ε3ε4
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− ω2

ε1ε2

)
− 2
]
± 1

2

[
Li2

1
1+ ξ

(
ω2

ε3ε4
+

μ2ω2

m2ε3ε4
+ 2+ 4ξ

)
− 1
1+ ξ

(
ω2

ε3ε4
+

μ2ω2

m2ε3ε4
+ 2+

ω4

2ε1ε2ε3ε4
− ω2

ε1ε2

)
− 2ξ ln

1+ ξ
ξ

]}
+ 128π

ε21 + ε22
3m6ω3 ε3ε4

{
Ψ̃1

[
ln

1+ ξ
ξ

(
ω2

2ε3ε4
+ 1+ ξ

)
− 1
]

±1
2

[
Li2

1
1+ ξ

(
ω2

2ε3ε4
+ 1+ ξ

)
− ξ ln

1+ ξ
ξ

]}
, (A.31)

Ψ̃ i = Φi|Γ=1+ξ. (A.32)

Changing to the notation used in [66], the expressions by [55] are obtained.
To obtain the correction for the nuclear formfactor,Φ1,2 are changed toΦ1,2−

Δ1,2, where Δ1,2 are given by (3.24) with = me
√
Γ. Numerical calculations show

that the cross section is described with good accuracy by the expressions in the
main text.

A.5 Integrals over k2 in the pair production cross sec-
tion

The Φi can be split into a constant term and lnΓ, such that the necessary indefi-
nite integrals are

∫ k2 dk2

Γ2 =

(
k2

Γ − 1

)2(
lnΓ +

1
Γ

)
,

∫ dk2

Γ2 =
k2

Γ(1− Γ)
,

∫ dk2

k2Γ2 = − lnΓ + ln k2 +
1
Γ
,

∫ dk2

k4Γ2 =
2(Γ − 1)

k2

(
lnΓ − ln k2 − 1

Γ

)
− 1

k2Γ
,

∫ dk2

Γ
=

k2

Γ − 1
lnΓ,

∫ dk2

k2Γ
= ln k2 − lnΓ,

∫ dk2

k4Γ
=

Γ − 1
k2

(lnΓ − ln k2)− 1
k2

,

∫ k2 lnΓ
Γ2 dk2 =

(
k2

Γ − 1

)2 2+ 2Γ lnΓ + ln2 Γ
2Γ

,

∫ lnΓ
Γ2 dk2 =

k2

Γ(1− Γ)
(1+ lnΓ),

∫ lnΓ
k2Γ2 dk2 =

1
Γ

+
lnΓ
Γ

+ Li2
Γ − 1
Γ

,
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∫ lnΓ
k4Γ2 dk2 =

Γ − 1
k2

[
2Li2(1− Γ) + ln2 Γ + ln k2 − 1

Γ

]
− Γ2 + Γ − 1

k2Γ
lnΓ,

∫ lnΓ
Γ

dk2 =
k2

2(Γ − 1)
ln2 Γ,

∫ lnΓ
k2Γ

dk2 = −1
2
ln2 Γ − Li2(1− Γ),

∫ lnΓ
k4Γ

dk2 =
Γ − 1
k2

(
ln k2 +

1
2
ln2 Γ − Γ

Γ − 1
lnΓ + Li2(1− Γ)

)
,
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Appendix B

Improved cross section
parametrizations

For convenience, this appendix lists the complete cross sections for bremsstrah-
lung and pair production with all corrections calculated in this thesis.

In this appendix, we use the following symbols:

B radiation logarithm (≈ 183)
B′ inelastic radiation logarithm (≈ 1429)

Dn = 1.54A0.27 nuclear formfactor parametrization
μ mass of the incoming particle

B.1 Bremsstrahlung

This parametrization takes into account: elastic atomic and nuclear formfactors,
inelastic nuclear formfactors, bremsstrahlung on atomic electrons (μ-diagrams
only), and radiative corrections. The Coulomb corrections, which are important
for electrons1, are negligible for muons and therefore neglected.

dσ
dv

= 4Z2α
(
re
me

μ

)2 1
v

{[
(2− 2v+ v2)Φ1(δ)−

2
3
(1− v)Φ2(δ)

]
+

1
Z
satomic(v, δ) +

α
4
Φ1(δ)srad(v)

}
,

(B.1)

where

Φ1(δ) = ln
μ
me
BZ−1/3

1+ BZ−1/3
√
eδ/me

− Δ1

(
1− 1

Z

)
, (B.2)

Φ2(δ) = ln
μ
me
BZ−1/3e−1/6

1+ BZ−1/3e1/3δ/me
− Δ2

(
1− 1

Z

)
, (B.3)

Δ1 = ln
μ
qc

+
ϱ
2
ln

ϱ+ 1
ϱ− 1

, (B.4)

1For electrons, Φ1,2 are to be replaced by Φ1,2 − ƒ(αZ)g1,2(μ/MeV,αZ), where ƒ(ν) =

ν2
∑∞

n=1[n(n
2 + ν2)]−1 and g1,2(x, ν) is given in 6.
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n 0 1 2 3 4 5

an −0.00349 148.84 −987.531
bn 0.1642 132.573 −585.361 1407.77
cn −2.8922 −19.0156 57.698 −63.418 14.1166 1.84206
dn 2134.19 581.823 −2708.85 4767.05 1.52918 0.361933

Table B.1: Parameters of the parametrization for the radiative corrections to the
bremsstrahlung cross section.

Δ2 = ln
μ
qc

+
3ϱ− ϱ3

4
ln

ϱ+ 1
ϱ− 1

+
2μ2

q2c
, (B.5)

ϱ =

√
1+

4μ2

q2c
, qc = mμe/Dn, (B.6)

satomic(δ) =
[
4
3
(1− v) + v2

] [
ln

μ/δ
μδ/m2

e +
√
e
− ln

(
1+

me

δB′Z−2/3
√
e

)]
,

(B.7)

srad(v) =


∑2

n=0 anv
n v < 0.02,∑3

n=0 bnv
n 0.02 ≤ v < 0.1,∑2

n=0 cnv
n + c3v ln v+ c4 ln(1− v) + c5 ln2(1− v) 0.1 ≤ v < 0.9,∑2

n=0 dnv
n + d3v ln v+ d4 ln(1− v) + d5 ln2(1− v) v ≥ 0.9,

(B.8)

where the values of the fit parameters an, bn, cn, dn are given in table B.1.

B.2 Pair production

This parametrization of the pair production cross section takes into account: elas-
tic atomic and nuclear formfactors, and pair production on atomic electrons2.

d2σ
dv dϱ

=
2
3π

Z(Z+ ζ)
1− v
v

[
Φe +

m2
e

m2
μ
Φμ

]
, (B.9)

where

Φe = Ce
1L

e
1 + Ce

2L
2
e , (B.10)

Ce
1 = Ce − Ce

2, (B.11)

Ce
2 = [(1− ϱ2)(1+ β) + ξ(3− ϱ2)] ln

(
1+

1
ξ

)
+ 2

1− β − ϱ2

1+ ξ
− (3− ϱ2),

(B.12)

Le
1 = ln

BZ−1/3
√
1+ ξ

Xe +
2me

√
eBZ−1/3(1+ξ
Ev(1−ϱ2

− Δe

Ce
− 1

2
ln

[
Xe +

(
me

mμ
Dn

)2

(1+ ξ)

]
(B.13)

2The way this calculation is set up it is impossible to take into account the inelastic nuclear form-
factor and the atomic electron contribution simultaneously.
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Le
2 = ln

BZ−1/3e−1/6
√
1+ ξ

Xe +
2mee1/3BZ−1/3(1+ξ

Ev(1−ϱ2)

− Δe

Ce
− 1

2
ln

[
Xe +

(
me

mμ
Dn

)2

e1/3(1+ ξ)

]
(B.14)

Xe = exp
(
−Δe

Ce

)
, (B.15)

Ce = [(2+ ϱ2)(1+ β) + ξ(3+ ϱ2)] ln
(
1+

1
ξ

)
+

1− ϱ2 − β
1+ ξ

− (3+ ϱ2),

(B.16)

Δe = [(2+ ϱ2)(1+ β) + ξ(3+ ϱ2)]Li2
1

1+ ξ
− (2+ ϱ2)ξ ln

(
1+

1
ξ

)
−

ξ + ϱ2 + β
1+ ξ

,

(B.17)

where Le
1,2 can be equivalently expressed in the case of large Xe as

Le
1 = ln

BZ−1/3
√
1+ ξ

1+ 2me
√
eBZ−1/3(1+ξ)
Ev(1−ϱ2) X−1

e
− 1

2
Δe

Ce
− 1

2
ln

[
1+

(
me

mμ
Dn

)2

(1+ ξ)X−1
e

]
,

(B.18)

Le
2 = ln

BZ−1/3e−1/6
√
1+ ξ

1+ 2mee1/3BZ−1/3(1+ξ)
Ev(1−ϱ2) X−1

e
− 1

2
Δe

Ce
− 1

2
ln

[
1+

(
me

mμ
Dn

)2

e1/3(1+ ξ)X−1
e

]
,

(B.19)

and

Φμ = Cμ
1L

μ
1 + Cμ

2L
μ
2, (B.20)

Lμ
1 = ln

B μ
me
Z−1/3/Dn

Xμ +
2me

√
eBZ−1/3(1+ξ)
Ev(1−ϱ2)

−
Δμ

Cμ
, (B.21)

Lμ
2 = ln

B μ
me
Z−1/3/Dn

Xμ +
2mee1/3BZ−1/3(1+ξ)

Ev(1−ϱ2)

−
Δμ

Cμ
, (B.22)

Cμ
1 = Cμ − Cμ

2, (B.23)

Cμ
2 = [(1− β)(1− ϱ2)− ξ(1+ ϱ2)]

ln(1+ ξ)
ξ

− 2
1− β − ϱ2

1+ ξ
+ 1− β − (1+ β)ϱ2,

(B.24)

Cμ =

[
(1+ ϱ2)

(
1+

3
2
β
)
− 1

ξ
(1+ 2β)(1− ϱ2)

]
ln(1+ ξ) +

ξ(1− ϱ2 − β)
1+ ξ

+ (1+ 2β)(1− ϱ2),

(B.25)

Xμ = exp
(
−
Δμ

Cμ

)
, (B.26)

Δμ =

[
(1+ ϱ2)

(
1+

3
2
β
)
− 1

ξ
(1+ 2β)(1− ϱ2)

]
Li2

(
ξ

1+ ξ

)
+

(
1+

3
2
β
)

1− ϱ2

ξ
ln(1+ ξ) +

[
1− ϱ2 −

β
2
(1+ ϱ2) +

1− ϱ2

2ξ
β
]

ξ
1+ ξ

,

(B.27)
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where Lμ
1,2 can be expressed for large Xμ equivalently as

Lμ
1 = ln

B μ
me
Z−1/3/Dn

1+ 2me
√
eBZ−1/3(1+ξ)
Ev(1−ϱ2) X−1

μ
, (B.28)

Lμ
2 = ln

B μ
me
Z−1/3/Dn

1+ 2mee1/3BZ−1/3(1+ξ)
Ev(1−ϱ2) X−1

μ
, (B.29)

with the abbreviations

β =
v2

2(1− v)
, (B.30)

ξ =

(
μv
me

)2 1− ϱ2

1− v
, (B.31)

ζ =
0.073 ln E/μ

1+γ1Z
2/3E/μ − 0.26

0.058 ln E/μ
1+γ2Z

1/3E/μ − 0.14
, (B.32)

γ1 = 1.95× 10−5, γ2 = 5.3× 10−5 for Z ̸= 1, (B.33)

γ1 = 4.4× 10−5, γ2 = 4.8× 10−5 for Z = 1. (B.34)

The dilogarithm Li2(x) is defined as

Li2(x) = −Re

x

∫
0

ln(1− t)
t

dt. (B.35)
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Appendix C

Constants used in this work

This appendix lists the numerical values of fundamental constants and material
constants.

Constant Value

α 1/137.035999074
re 2.8179403267× 10−13 cm
NA 6.02214129× 1023 mol−1

K 0.307075MeVcm2/g
mec2 0.510998928MeV
mμc2 105.6583715MeV
mτc2 1776.82MeV
mπc2 139.57018MeV
mNc2 938.272046MeV
ττ 290.3× 10−15 s

Table C.1: Natural constants. Values are taken from [83].
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98 APPENDIX C. CONSTANTS USED IN THIS WORK

Material Z A I [eV] −C a

Water 1+8 1.00794 + 15.9994 75.0 0.09116
Ice 1+8 1.00794 + 15.9994 75.0 0.09116
Rock 11 22 136.4 3.7738 0.08301
Fréjus rock 10.12 20.34 149.0 5.053 0.078

Material m X0 X1 ϱ [g/cm3] δ0
Water 3.4773 0.2400 2.8004 1.000 0
Ice 3.4773 0.2400 2.8004 0.917 0
Rock 3.4120 0.0492 3.0549 2.650 0
Fréjus rock 3.645 0.288 3.196 2.740 0

Table C.2: Material constants. Values are taken from [49, 77].

Z B Z B Z B Z B Z B

1 202.4 8 173.4 15 172.2 22 176.8 53 178.6
2 151.9 9 170.0 16 173.4 26 175.8 74 177.6
3 159.9 10 165.8 17 174.3 29 173.1 82 178.0
4 172.3 11 165.8 18 174.8 32 173.0 92 179.8
5 177.9 12 167.1 19 175.1 35 173.5
6 178.3 13 169.1 20 175.6 42 175.9 other 182.7
7 176.6 14 170.8 21 176.2 50 177.4

Table C.3: Radiation logarithm in the Hartree-Fock model. Values are taken from
[60].

Parameter Value Parameter Value

aP1 −0.0808 aP3 1.1709
aR1 0.58400 aR3 2.6063
bP1 0.602432 bP3 1.8439
bR1 0.107112 bR3 0.49338
cP1 0.28067 cP3 2.1979
cR1 0.80107 cR3 3.4942
m2

P 49.457GeV2 m2
0 0.31985GeV2

m2
R 0.15052GeV2

aP2 −0.44812
aR2 0.37888
bP2 1.37542

bR2 1.93862

cP2 0.22291
cR2 0.97307
Λ2 0.06527GeV2

Q2
0 − Λ2 0.46017GeV2

Table C.4: Parameters of the parametrization of inelastic nuclear interaction ac-
cording to [6].
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