
Arbeit zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

(Dr. rer. nat.)

Stacking Point Source Search for a
Neutrino Contribution at 22

Track-Like HESE Positions using Six
Years of IceCube Data

Thorben Menne

Dortmund, 2018

Lehrstuhl für Experimentelle Physik V
Fakultät Physik

Technische Universität Dortmund



Erstgutachter: Prof. Dr. Dr. Wolfgang Rhode
Zweitgutachter: Prof. Dr. Bernhard Spaan
Abgabedatum: 20.10.2018



Abstract

In this thesis, an approach is presented to probe the locations of track-like high energy
starting events (HESE) for an additional clustering of neutrino events within six years of
IceCube neutrino data at these positions. Two unbinned Likelihood stacking analyses
using both a time-dependent, per-burst and a steady-state neutrino emission scenario
are performed. This is done to be sensitive to a collection of weak fluxes, undetectable
on their own and to test a rather broad regime of emission scenarios in the light of
the unknown, underlying sources types. In both analyses, no significant excess of an
additional neutrino contribution was found. However, a slight over-fluctuation of about
1 𝜎 in the largest tested time window, with a width of five days, and about 0.7 𝜎 in the
time-integrated analysis is measured. This mildly indicates a connection to the recent
measurement of a correlation between the flaring Blazar TXS 0506+056 and an extremely
high energy neutrino starting event, where evidence was found for an additional neutrino
emission on timescales of about 110 days, right in between the tested emission scenarios
in this thesis.

Kurzfassung

In dieser Arbeit wird die Suche nach einem Neutrinofluss an den Positionen von hochen-
ergetischen, im Detektor startenden Neutrinoereignissen, High Energy Starting Events
(HESE), in sechs Jahren IceCube Neutrino Daten beschrieben. Es wird ein ungebinn-
ter, gestackter Likelihood-Ansatz benutzt, um nach zusätzlichen Neutrinoereignissen
zu suchen, die räumlich korreliert zu den HESE-Ereignissen erzeugt wurden. Da die
potentiellen Quellen, aus denen die HESE Ereignisse stammen können unbekannt sind,
wird sowohl ein zeitabhängiges, als auch ein stetiges Emissionsszenario getestet. In beiden
Analysen konnte kein signifikantes Signal gefunden werden. Allerdings zeigt sowohl die
zeitabhängige Messung mit etwa 1 𝜎 im größten getesteten Zeitfenster, mit einer Breite
von fünf Tagen, als auch die zeitintegrierte Messung mit 0.7 𝜎 eine leichte Überfluktuation.
Beide Ergebnisse lassen sich damit in den Rahmen der kürzlich entdeckten Korrelati-
on eines extrem hochenergetischen Neutrinos und der erhöhten Aktivität des Blazars
TXS 0506+056, bei der eine zusätzliche Neutrinoemission auf einer Zeitskala von etwa
110 Tagen nachgewiesen wurde, einfügen.
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1. Introduction

Since the first proposal in 1960 to use underwater apparatus to detect Cherenkov light
from charged particles originating from astrophysical neutrinos, neutrino astronomy has
come a long way [Mar60]. In 2013, three years after the IceCube neutrino observatory
started operating in its final configuration, the first evidence of a diffuse, astrophysical
neutrino flux was found in IceCube data [Aar+13a; Aar+17e]. Although giving the
opportunity to probe a broad spectrum of astrophysical and particle physics topics,
one of the primary goals of the IceCube detector has been the direct identification
of the sources of astrophysical neutrinos ever since [KS12; Gol02]. Despite numerous
efforts, including general searches of the whole sky, stacked approaches testing various
source catalogues and tests for emission from a extended region like the galactic plane
with different event topologies, no significant source of neutrinos has been found so far
[AH14; Aar+17a; Aar+13a; Aar+16a; Adr+16b; Aar+16c; Aar+18c; Aar+16d; Abb+09;
Aar+14d; Aar+15b]. This changed with the very recent discovery of a blazar flare,
measured with the Fermi satellite, coincident with the arrival direction of an extremely
high energy neutrino, measured with the IceCube neutrino observatory on September
22nd, 2017 [Kei+18]. In addition to the correlation between these two events, a scan of
earlier neutrino data also revealed evidence of a temporally constrained neutrino flux
coming from the blazar’s position emitted on a 100-day long timescale [Aar+18c].

Despite this detection, the few detected neutrinos coincident with a single source cannot
unveil all of the unknown properties of neutrino production mechanisms and the underlying
cosmic ray acceleration processes. This justifies the ongoing efforts to further investigate
the astrophysical neutrino emission scenarios and identify the fundamental physics at
play during the neutrino creation in the source regions. Additionally, it shows that a
more comprehensive picture of the internal workings of astrophysical sources can be
achieved by the combination of multiple observation channels. Having a collection of
observatories that together are able to detect a broad range of astrophysical messengers,
including photons in almost every wavelength [Hub+16], charged cosmic rays [BSY14;
SW09], the aforementioned neutrinos and most recently even gravitational waves, which
are already incorporated in correlation searches [Abb+16; Adr+16a], the way is paved
for powerful new analyses [Bra16].

In this thesis, a similar approach is followed. Equivalently to photons and cosmic rays,
neutrinos are also measured in a broad energy range and, after having data available
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1. Introduction

from eight years of operation in its full configuration state, also in great abundance, by
the IceCube detector. Instead of testing for correlation with other messenger particles,
it is also feasible to try to pinpoint a possible correlation between high energy starting
events and a larger set of lower energy neutrino events. The lower energy neutrinos are
measured with great abundance but it cannot be safely concluded if a single event is
of astrophysical origin or not, due to the large amounts of background events for lower
energies. For the aforementioned high energy starting events on the other hand, it can
be quite safely concluded that they are of astrophysical origin, for most of them even
on a per-event scale. Therefore, if a correlation between higher energy and lower energy
events can be identified, it strengthens the case for further efforts in multi-messenger
observations at these specific source locations, to identify the underlying sources with
better precision.

In this thesis, two analyses for different emission scenarios for a combined, lower energy
neutrino clustering at the positions of 22 track-like high energy starting events, measured
in six years of IceCube data are presented. It is tested for both a time-dependent emission
scenario on short to medium time ranges and a time-independent, steady-state flux
scenario. The second chapter gives a short overview of neutrino astroparticle physics and
some prominent astrophysical source emission models. In the third chapter, the IceCube
detector is described and the detection method explained. The fourth chapter briefly
describes the used datasets, consisting of the source data set of track-like high energy
starting events and the test data set, made of six years of all-sky muon neutrino track
events, that represent the primary channel for neutrino point source searches.

These chapters are held quite short, because of the great abundance of material available
dealing in great detail with many aspects of these topics. In this thesis, the focus lies
more on the methodical approaches and detailed description of the analysis structure.
Therefore, in chapter 5, a detailed derivation of the Likelihood formulas for both analyses
is given. In chapters six and seven, both analyses for the time-dependent and the steady
state emission scenario are described. These chapters explain in detail how choices for
constructing probability density functions or weights used in the Likelihood formulations
are made. The aim is to give a good understanding of how such analyses work and
enable the reader to reproduce the main aspects of the presented analyses. Chapter
eight summarizes the results and presents the main physics results of both analyses. The
conclusion and outlook, which puts them into the context of the most recent development
of searches for astrophysical neutrino sources can be found in chapter nine and closes
this thesis.
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2. Astroparticle physics

The universe can not only be observed in visible light but in a variety of different
wavelengths and other astrophysical messengers. Typically, three main messenger particles
are distinguished, which are photons, cosmic rays and neutrinos [Cir08; Gio09; LM00;
Hal16]. Very recently, also gravitational waves are started to be taken into account
[Abb+16; Abb+17]. Photon observations range over many decades in wavelength, from
radio waves, microwaves, over infrared, visible and ultraviolet light, up to x-rays and
the highest gamma-ray energies. Each of these observation windows is used for different
purposes and combined to obtain a unified picture of astrophysical processes [WT09;
Liu+18; Ada+16; Wer+04; Dal+17; Lal12; Sem99; ODe+10; Aje+17; Tib12; Lau15]

Cosmic rays usually include charged particles as protons, ions or bare nuclei and electrons,
as well as uncharged neutrons and are measured using earthbound experiments for the
highest energies [Hör16; Yoo+17; All+08; Abr+09]. While charged particles, especially
the heavy particles reach up to observed energies in the order of 100 EeV, they usually
don’t point back to their origin, due to deflection in magnetic fields within the intergalactic
or interstellar medium [MGH98]. Photons, on the one hand, are uncharged and can
point back to the source regions, but are also attenuated on cosmic distances by various
influences on the other hand, which makes it difficult to detect faraway sources, especially
for higher photon energies [Gil+09]. Neutrinos only interact weakly with normal matter
and carry no electrical charge. This prevents them from getting deflected away from the
source position or getting absorbed in dust or plasma, enabling them to travel unimpeded
towards earth. However, that apparent advantage makes it necessary to build relatively
large detectors to be able to detect a large enough number of neutrinos to obtain the
desired information [KS12; Anc+14].

2.1. Astrophysical neutrino production

The neutrino production in astrophysical sources can be explained by basic interactions
described in the standard model of elementary particle physics [Pat+16; Her99]. An
extensive review of the processes is given in [Gai90; GER16; Gru05] and a short summary
is given here. Neutrino production is tightly connected to preceding acceleration of
charged particles [Fer49], cosmic rays, powered by some engine mechanism [Net15; BS13;
UP95]. If these high energy particles are available and collide with ambient hadronic
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2. Astroparticle physics

matter or radiation fields, the actual creation of neutrinos is primarily explained by the
decay of pions through hadronic interaction channels. The primary collisions can either
happen in protohadronic𝑝𝑝 → {𝑝𝑝𝜋0𝑝𝑛𝜋+ or photohadronic channels 𝑝𝛾 → {𝑝 + 𝜋0𝑛 + 𝜋+ . (2.1)

For 𝑝𝑝 collisions up to 60 % of the initial beam energy can be channelled into pions
[FGS97]. The subsequent decays then lead to neutrinos via the decaying pions𝜋0 → 2𝛾 (2.2)𝜋+ → 𝜇+𝜈𝜇 → 𝑒+𝜈𝑒 ̄𝜈𝜇𝜈𝜇 (2.3)𝜋− → 𝜇− ̄𝜈𝜇 → 𝑒− ̄𝜈𝑒𝜈𝜇 ̄𝜈𝜇 , (2.4)

where the charged pion decays in > 99.9 % of the time in the depicted channel [Pat+16].
A similar process happens via the the kaon decay [Gai12]𝐾+ → 𝜇+𝜈𝜇 and 𝐾− → 𝜇− ̄𝜈𝜇 . (2.5)

Those main decay chains also lead to the assumption of having a neutrino flavour ratio
of 𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 2 ∶ 0 (2.6)

directly at the sources. Through neutrino oscillations over cosmic distances, this leads to
an expected expected flavour mixture at earth of 1 ∶ 1 ∶ 1 [AKL06; AJY00].

The energy spectrum of the primary cosmic ray population follows a power law, ∼ 𝐸−𝛾,
in first order. This universal behaviour can be explained by first-order Fermi shock
acceleration [MD01; Bar97; Bel78b; Bel78a]. The cosmic ray spectrum measured at earth
is subject to losses as well as propagation effects and can be approximately described
with a spectral index of 𝛾 = 2.7 until a steepening at roughly 1 PeV occurs, possibly due
to particle leakage from the the galactic disc [Mos03; Str+09; GST13; Gai10; Hör03;
Gru05; GIT96]. Depending on the initial energy distribution at the source, the neutrino
spectrum closely follows the spectral form of the cosmic rays because neutrinos do not
suffer any substantial losses during their travel to earth. Usually, a spectral index of 𝛾 = 2
resembles a generic choice for a reasonable range of scenarios and can be derived from
only a few basic assumptions in the shock acceleration regions [Lip08; Bel78b; Gai90].
However, recent measurements from IceCube in different flavour channels yielded a range
of different indices from 𝛾 = 2.19 [HW18] for muon tracks from the northern sky, over
2.48 [NX18] for the cascade channel to 2.92 [Kop18] for all flavour, high energy starting
events. So the production mechanisms of astrophysical neutrinos remain not completely
understood.
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2.2. Possible sources of astrophysical neutrinos

2.2. Possible sources of astrophysical neutrinos

Though the first neutrino emitting source has recently been identified from the connection
of the extremely-high-energy neutrino event and the flaring blazar TXS 0506+056
[Aar+18b] there are many other candidates that in theory may emit neutrinos. An
overview plot for various neutrino emitter candidates and limits from neutrino searches
can be seen in figure (2.1a), but with the assumption that the observed diffuse flux can be
explained by the depicted source classes alone [Kow15]. Some prominent examples from
the pool of possible emitters are given below in a short review extracted from [Gru05;
GER16; Mes17; DG16; Der07; MRT17; JB12; UP95].

Active galactic nuclei (AGN) is the general term for active central engines in the hearts of
galaxies. These accelerators are powered by a super-massive black hole accreting matter
from a surrounding disc of matter and forming a relativistic jet outflow perpendicular
to the disc. Depending on the exact formation of the jets and the ambient material,
multiple particle acceleration mechanisms are possible. AGNs show a variety of different
characteristics, which largely depend on the viewing angle between the observer on
earth and the direction of the jet emission. A schematic representation of the unified
AGN classification scheme can be seen in figure (2.1b) AGN emission spectra can range
over a broad frequency region from low energy radio waves to the highest gamma-ray
energies. Models for the particle acceleration describe leptonic, hadronic, or leptohadronic
interaction types, depending which particle makes up the main amount of electromagnetic
emission from a source.

As protons get accelerated in each scenario, neutrinos may be emitted from each of
these objects. For blazars, which are a subclass of AGNs, the line of sight is less than
10° from the jet direction. Therefore, an observer at earth sees straight into the jet,
perpendicular to the disc area. The jet axis is parallel to the acceleration direction which
leads to the detection of strong, high energy gamma-ray fluxes. This indicates that also
neutrinos should be created in the processes leading to the high energy gamma rays and
emitted in the same direction, which makes blazars a promising neutrino point source
candidate. As the detection of the observation of an extremely-high-energy neutrino
from the direction of TXS 0506+056 shows, at least one blazar seems to correspond
to the prediction [Kei+18; Gao+18]. However a variety of other searches across blazar
catalogues remained unsuccessful so far [MR18; HK18].

While AGNs do show a time variability, there are other, purely transient events that are
also candidates for neutrino emission. Gamma-ray bursts for example output enormous
energies on timescales from milliseconds to minutes. These events are likely created by
stellar collapse events, either massive star hypernovae or compact binary mergers. Highly
relativistic jets emerge from the collapse region, giving rise to high energy particle shock
accelerations [Bia+07]. Though dedicated IceCube searches for neutrinos from these
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flux [GH02; GIT96]. A secondary component originating from mesons with charm
components is called “prompt”, but is sub-dominant to the conventional and also to the
astrophysical flux and plays no role in this thesis [ERS08; HW18]. Pions and kaons have
decay times in the order of 10−8 s [Pat+16] and can interact during their relatively long
livetime with other particles at the high energies considered in this thesis. That leads
to a steepened spectral index with respect to the incident cosmic ray spectrum so that
the conventional atmospheric neutrino flux follows a power law with a spectral index of𝛾𝜈atmo

= 𝛾CR + 1 = 3.7 [GIT96].
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3. The IceCube neutrino observatory

IceCube is currently the largest neutrino observatory, instrumenting roughly one cubic
kilometre of Antarctic ice at the geographic South Pole. Instrumentation is realized by
an approximately hexagonal grid of 86 strings, each carrying 60 digital optical modules
(DOMs). The DOMs are deployed in depths from 1450 m to 2450 m below the ground
with a vertical spacing of 17 m. It has to be further distinguished between 78 regular
strings with a horizontal spacing of about 125 m in the hexagonal grid and eight additional
DeepCore strings which make up the DeepCore sub-detector. These strings are more
densely packed with a string distance of about 75 m and a vertical spacing of 10 m for
ten DOMs above a naturally occurring dust layer at 2000 m below ground in the ice
and the remaining 50 DOMs with a spacing of 7 m below the dust layer, starting at
2100 m. For a schematic view of the detector, see figure (3.1). The denser packing of the
photodetectors reduces the energy threshold in the sub-array to about 10 GeV suitable to
probe atmospheric neutrino oscillation properties [Aar+17e; Wie09]. Additionally, there
is also a surface detection array of small, ice-filled tanks containing two photomultipliers
each, covering an area of roughly 1 km2 on the surface above the IceCube detector. This
air shower detection array, called IceTop, can be used for cosmic ray studies or as a
veto layer for atmospheric particles travelling down to the IceCube array alongside any
astrophysical neutrinos [Abb+13]. Therefore, the complete IceCube detector is suitable
to detect neutrinos in a wide range of energies, starting at the aforementioned 10 GeV
and reaching to the highest energies of cosmogenic neutrinos up to multiple EeV with
events lighting up almost the complete detection volume [Aar+13c].

Each digital optical module consists of a spherical glass unit withstanding the pressure of
the surrounding ice and protecting the electronic components inside. The main detection
instrument is a single 25 cm diameter, downward-facing photomultiplier tube per DOM.
The signal is digitized and sent to the surface data acquisition system, the IceCube
Lab, via the string cable. The main trigger system yields a combined trigger rate of
approximately 2.8 Hz [Aar+17e]. Construction of the detector began in the Antarctic
summer 2004 deploying a single string and ended in 2011 after partial configurations of
1, 9, 22, 40, 59 and 79 strings with the deployment of the last strings to complete the
86 string array. The sub-arrays deployed each season were already operational so data
taking started with the very first configuration[Aar+17e].

3.1. Detection principle

Neutrinos come in three lepton flavours, electron-, muon- and tau-neutrino together
with their corresponding antiparticles. As neutrinos only interact via the electroweak
force with all other standard model particles, they cannot be detected directly [Pat+16].
Therefore, IceCube detects neutrinos indirectly via the Cherenkov effect. Neutrinos can
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3.1. Detection principle

undergo neutral (NC) and charged (CC) current interactions with matter in the detection
volume [FS82]. The interactions are the same for all three lepton flavours 𝑙:𝜈𝑙 + 𝑁 → 𝑍0 → 𝜈′𝑙 + 𝑋′ and 𝜈𝑙 + 𝑁 → 𝑊 → 𝑙 + 𝑋′ . (3.1)

For the energies considered at IceCube, the interactions are dominated by deep inelastic
scattering [CMS11]. Combined CC and NC cross sections are in the order of 10−35 cm2

for a 1 TeV or 10−33 cm2 for a 1 PeV neutrino. For example, a 1 TeV neutrino has an
interaction length of roughly 2.5 ⋅ 106 km in water [Gan+96].

In neutral current interactions, neutrinos interact via an intermediate 𝑍 boson with
a nucleus, generally noted as 𝑁 in the reaction equation (3.1). The 𝑍 boson carries
no charge resulting in an unchanged flavour neutrino final state. These interactions
produce rather spherical, cascade-like signatures in the detector, for which it is virtually
indistinguishable from which flavour they originated.

In charged current interactions, the exchange particle is the charged 𝑊 boson, thus
changing the initial neutrino state 𝜈𝑙 to a final lepton state 𝑙 with the same flavour. These
interactions can produce vastly different event signatures in the detector depending on
the primary neutrino energy and flavour. In general, electron final states produce neutral
current-like cascades due to their short mean free path and rapid energy loss. Muon
final states usually produce track-like signatures and, with enough energy, are able to
traverse through the whole detector [KS12]. Tau leptons can produce various different
signatures depending on the initial energy and particle location. A unique pattern would
be the so-called double bang signature, in which a first cascade is produced in the initial
charged current interaction and a second one when the tau lepton decays, depositing
energy in the detector medium [CI07]. Two exemplary event displays of a cascade and a
track-like event are shown in figure (3.2).

Despite the different interaction types, the detection principle remains the same for
all signatures mentioned above. When energy is deposited in the detector, secondary
charged particles are created which, at the high energies considered here, travel through
the matter faster than the effective speed of light in the medium. During their passage
through matter, Cherenkov light gets emitted along their path. The light is emitted at
an angle given in first order by the relation𝛩 = arccos ( 1𝛽𝑛) (3.2)

with the refractive index 𝑛 of the traversed medium an 𝛽 = 𝑣/𝑐 the particle speed in
units of the vacuum speed of light 𝑐 [Che37; Mea58]. Typical interactions of the charged
primary lepton are ionization, photonuclear, pair production and Bremsstrahlung losses
where the latter three start to dominate the energy loss for muon energies higher than
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3. The IceCube neutrino observatory

(a) Track-like event (b) Cascade-like event

Figure 3.2.: Two event displays from very high energy events [Aar+13a]. Each sphere
represents a DOM and the size of each sphere corresponds to the detected photons in each
photomultiplier. The track-like event starts on the right side within the detector and travels to
the left continuously leaving traces from energy losses along the way. The particle causing the
cascade event interacts in the upper region of the detector and loses all its energy on length
scales unresolvable by the detector, so the light spreads out spherically.

some 10 TeV. The combined Cherenkov light yield from the secondary charged particles
originating from the lepton interaction points is typically higher than the yield from the
primary lepton itself [Koe+13; RW13].

The Cherenkov photons travel through the ice and may be detected in one of the
photomultiplier tubes inside the DOMs which are able to detect single photon hits. The
Antarctic ice as a natural medium is not perfectly isotropic and has depth and direction
dependent absorption and scattering properties, which was observed by using artificially
injected light signals from LEDs built into the DOM cases. Additionally, a dust layer
between a depth of roughly 2000 m and 2100 m in which the mean free photon path
is drastically reduced compared to the clear ice in other layers, is present within the
IceCube detection volume. Furthermore, there is a directional dependence of the ice
scattering coefficient due to environmental influences during the ice sheet formation and a
vertical tilt of ice layers due to slow glacier movement of the detection volume. Different
ice models have been developed and adapted to account for these different effects as good
as possible [Cas+14; Bay+10; Aar+13b; Chi11].
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4. Datasets

Two distinct datasets are used in a so far unique way in the analyses done in this thesis.
Here, two different event selections serve as a test and as a source dataset. In both
sets, six years of IceCube data is used. Usually, in point source searches, locations of
sources measured from other experiments are tested, for example from high energy cosmic
ray information or from gamma-ray observations. These are either classic catalogue
stacking point source searches, where the external catalogue provides source locations
with a sufficiently high precision to treat the sources as point sources with respect to the
resolution capabilities of IceCube, which is in the order of 1° [Aar+14c; Bos+15]. Or the
analyses incorporate the uncertainty from external sources, usually by expanding the
spatial per event uncertainty to 𝜎2

tot = 𝜎2
evt + 𝜎2

src, effectively treating the source as an
extended emitter1. This is problematic when a test for point sources is needed, especially
when testing for extragalactic sources that always appear point-like, due to the large
cosmic distances2. Here, 22 track-like events from six years of the high energy starting
event (HESE) selection data are used as potential source candidates. In this chapter, the
two different data sets partaking in the analyses are shortly introduced. Also, they need
to be slightly adapted from the originally prepared sets to be suitable for the analyses
performed here.

In the following, the naming scheme for data taken in each period is following the number
of operational strings until the complete detector was operational. After that, the data
taking periods are numbered consecutively with the corresponding year the data was
taken in. In IceCube, a data taking period starts around May each year, where a new
detector configuration set-up may be installed or trigger or filter systems get updated
[Aar+17e].

4.1. High energy starting event data

The high energy starting event selection has led to the first-ever detection of a diffuse
astrophysical neutrino signal in 2013 [Aar+13a]. Additionally, a dedicated point source
search was made using only the HESE event selection, however with no significant

1More on the Likelihood formalism in the next chapter.
2Maybe with the exception of Centaurus A (NGC 5128) [Yan+12].
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detection throughout the years [Aar+13b; Aar+14b; KGK16; Kop18]. The idea behind
the data selection is to use the outermost detector units as a veto against events starting
outside the detector to reject atmospheric muons from the southern sky. In figure (4.1)
the veto region is shown. Each event lighting up a DOM in the shaded areas would be
rejected as background and only those passing the layers and start inside the fiducial
detection volume are selected3. Additionally, to make sure no lower energy muon enters
the detector, a total charge of at least 6000 photoelectrons is required to be registered in
the whole detector. In six years of data, in data taking seasons 2010–2015, 82 events,
possibly including all three neutrino flavours, have been collected. 22 of these events are
the track-like starting events with a good angular resolution of about 1° used as sources in
this work. Additionally, 60 cascade-like events with a much worse angular resolution were
recorded [Kop18]. Unlike in most other point source searches, the positions of the sources
are not exactly known due to the reconstruction uncertainties, however, full Likelihood
scans of the reconstruction algorithm are available. To include this uncertainty in the
analyses performance estimation, the Likelihood scan maps are later used to inject source
positions during trial generation. The cascades could potentially also be considered
as sources, but this would require a more advanced Likelihood formalism as known to
the author to-date to capture the wide-spread source regions properly, preferably by
fitting the positions themselves using the Likelihood maps as priors. Therefore, only the
track-like events with good pointing capabilities are used in this thesis. See table (4.1)
for detailed information of each used, track-like high energy starting event.

4.1.1. HESE reconstruction map handling

To use the HESE track-like events as sources, their positions must be reconstructed
first. Instead of determining a single best-fit position, a full Likelihood scan utilizing
an advanced reconstruction algorithm is done4 [Aar+14a]. For the few track-like events
recorded this is feasible, even though scanning the whole sky is a slow procedure and
takes up several hours of computing time on a distributed system. Since 2016, the
scan procedure is running automated to support follow-up observation programs for the
IceCube real-time alert system. When a triggered event passes the high energy starting
event filter running live at the South Pole, an alert is sent and the event reconstruction
starts immediately to make the position available for other observatories [Aar+17f].

For the scan procedure, the sky is binned in a HEALPix [Gor+05] pixelization scheme
in a three pass procedure. The HEALPix grid was originally developed for a frequency

3Less than three of the first 250 registered photoelectrons are allowed to be recorded in any of the veto
DOMS [Kop18].

4Internally named “millipede” due to the segmentation of the track hypothesis. For each segment the
energy losses are fitted, unfolded and compared to data.
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holds reasonably well, the full set of transformations including the sun position and other
corrections takes a long time to process. Therefore, the local event coordinates from a
test dataset are converted to equatorial coordinates beforehand, so their positions can
be directly compared to the equatorial source coordinates. To become computationally
feasible, also the aforementioned reconstruction maps for the HESE events need to be
converted into a fast-to-evaluate equatorial representation.

The used HEALPix maps use an internal coordinate-to-pixel-number conversion scheme,
with 𝛩 ∈ [0, 𝜋] and 𝛷 ∈ [0, 2𝜋], that is easily identifiably with IceCube’s local detector
coordinates zenith 𝜃 ∈ [0, 𝜋] and azimuth 𝜑 ∈ [0, 2𝜋], so the local maps can directly
represent local coordinates for each pixel. The conversion from local to equatorial
coordinates depends on the sources’ times which fixes the detector location relative to the
equatorial coordinate system. Due to IceCube’s special location almost directly at the
geographic South Pole, the relation between zenith 𝜃 and declination 𝛿 angle is 𝛿 ≈ 𝜃 − 𝜋/2
and only the right ascension values varies strongly over time. To avoid recalculating
costly transformations from local map coordinates to equatorial coordinates at runtime,
pre-transformed maps in equatorial coordinates are computed beforehand only once.
The convention used to efficiently map from HEALPix coordinates to equatorial ones is
chosen as 𝛿 = 𝜋2 − 𝛩 and 𝛼 = 𝜑 . (4.1)

This mapping is not bijective though, because 𝛿 ≈ 𝜃 − 𝜋/2 is only an approximation and
the number of pixels in each 𝛩 band changes depending on whether being close to the
poles or to the horizon. So sometimes two pixels are mapped to one, which means that
another pixel stays empty because the number of pixels is fixed. To overcome this, the
mapping is done in reverse by transforming the exact pixel coordinates from a map in
equatorial convention back to local coordinates. Then the local map is interpolated to
the new pixel location and that value is stored in the equatorial map. The maximum
error that can happen this way is in the order of a single pixel offset because the above
approximation between zenith and declination holds closely enough.

Next, the maps should represent a probability distribution that gives the probability
of the true source position being at a specific pixel. For this, the transformed maps
are first converted back from the original logarithmic Likelihood space after the scan in
local coordinates, to linear Likelihood space by 𝑚 → exp (𝑚). To approximately and
conservatively account for unknown systematics, the transformed maps are convolved
with a symmetric Gaussian kernel of width 1° as mentioned before. See figure (4.3) for an
example of the a smoothed Likelihood map around the best fit position. The smoothing
introduces some numerical errors because it is done in spherical harmonics space which
has to be truncated numerically [Gor+05]. The artefacts are removed by normalizing the
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Table 4.1.: Time and angular position for the 22 high energy starting track events used as
potential source candidates. In total, 82 HESE events where detected in six years of data,
including these 22 track-like events and 60 cascade-like events with a worse angular resolution
[Kop18]. For an explanation of the equatorial coordinates 𝛿, 𝛼, see the description in the text.

Nr. HESE ID Season Run MJD 𝛿 in ° 𝛼 in °
1 3 IC79 116 528 55 451.07 −31.19 127.86
2 5 IC79 116 876 55 512.55 −0.35 110.61
3 8 IC79 117 782 55 608.82 −21.24 182.44
4 13 IC86, 2011 118 435 55 756.11 40.30 67.91
5 18 IC86, 2011 119 196 55 923.53 −24.77 345.59
6 23 IC86, 2011 119 470 55 949.57 −13.18 208.71
7 28 IC86, 2011 120 045 56 048.57 −71.49 164.74
8 37 IC86, 2012 122 152 56 390.19 20.66 167.25
9 38 IC86, 2013 122 604 56 470.11 14.02 93.35

10 43 IC86, 2013 123 326 56 628.57 −21.95 206.64
11 44 IC86, 2013 123 867 56 671.88 0.08 336.68
12 45 IC86, 2013 123 986 56 679.20 −86.20 219.27
13 47 IC86, 2013 124 244 56 704.60 67.45 209.33
14 53 IC86, 2013 124 640 56 767.07 −37.69 238.99
15 58 IC86, 2014 125 071 56 859.76 −32.33 102.09
16 61 IC86, 2014 125 541 56 970.21 −16.45 55.62
17 62 IC86, 2014 125 627 56 987.77 13.33 187.93
18 63 IC86, 2014 125 700 57 000.14 6.58 160.06
19 71 IC86, 2014 126 307 57 140.47 −20.75 80.73
20 76 IC86, 2015 126 838 57 276.57 −0.41 240.23
21 78 IC86, 2015 127 210 57 363.44 7.54 0.34
22 82 IC86, 2015 127 853 57 505.24 9.42 240.83
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efficiency is worse in the southern sky, leading to fewer statistics and a higher energy
threshold for obtaining a pure muon neutrino sample. The irreducible background in the
samples is made of muons induced by atmospheric muon neutrinos produced alongside
atmospheric muons in the air showers. Because the particle type is the same, these can’t
be directly distinguished from muons induced by astrophysical muon neutrinos. However,
atmospheric particles are expected to be produced diffusely with no preferred direction
in a large production volume. Therefore the Likelihood ansatz described in the next
chapter is used to test for a significant clustering of events around the assumed source
locations which would be a clear signal of the presence of astrophysical neutrinos.
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Figure 4.5.: Schematic overview of the different particle contributions going into the six year
muon neutrino track sample. In the northern sky, the earth shields the detector from the
atmospheric muons, so the main irreducible background are the atmospheric neutrinos. In the
souther sky, atmospheric muons are able to enter the detector alongside with the atmospheric
and astrophysical neutrino contribution.

A standardized form utilizing a named array structure is used to provide the datasets. The
per-event attributes used for experimental data are the reconstructed angular direction
in equatorial coordinates declination and right ascension, the logarithm to base 10
of an energy proxy variable, the event times in Modified Julian Date representation
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Table 4.2.: Number of events and the lifetime in days in the used muon neutrino track test
datasets remaining at the final analysis level for each considered season.

Season No. of events Livetime in days
IC79 93 133 315.51
IC86, 2011 136 244 1058.34
IC86, ’12–14’ 338 590 332.61
IC86, 2015 211 309 364.68
Total 779 276 2071.14

[Hoh+92] and the combined events angular uncertainty 𝜎6, where the angles and 𝜎 are
given in radian. The underlying reconstruction algorithms for the energy proxy or the
directional reconstruction may differ per or within a sample. However, in general, the
reconstruction algorithms for the angles is one of the algorithms described in [Ahr+04],
because a time costly scan as done with the HESE events is not feasible for a large
number of events. The same reasoning applies to the energy proxy variable, which is
one of the faster algorithms from [Aar+14a]. Though the actually used algorithm does
not matter, the unbinned Likelihood will perform better, the better the algorithms can
reconstruct the true quantities of each event. The per event angular uncertainty 𝜎 is
either constructed using a coarse Likelihood scan around the best-fit position from the
directional reconstruction algorithm and approximating this landscape with a parabola,
which justifies its use as a Gaussian uncertainty or, where that scan fails, through a
bootstrap procedure.

To built time-dependent Likelihood PDFs, the time ranges in which the detector was
set up to actually measure event information is needed too. Usually, this information
is tracked in good run lists, which note the start and end times of each detector run.
Because it was not quite clear which run-list should be used, especially for the older
datasets, run information was manually reconstructed from the datasets by using the first
and last event per run to estimate each run’s livetime. This generally underestimates the
livetime, with the underestimation being more severe the fewer events are present at final
data level within in a run. If a run only had a single event it was dropped, because the
livetime would become zero in this case. However, for the time-dependent analysis done
here, this only leads to a slight overestimation of background because of the high statistic
in the final samples. Therefore this can only worsen the sensitivity, so the procedure is
safe to use, despite not being optimal.

In addition to the experimental data sets, dedicated Monte Carlo simulation tailored to
the specific detector configuration is used to estimate the behaviour of signal-like events

6Named accordingly with keys 'ra', 'dec', 'logE', 'sigma', 'time'.
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from the source regions. The simulation sets are computed by the collaboration using
a software based on [GK05]. For the Monte Carlo datasets, additionally the ground
simulation truth is available to study the effects of the detection mechanism on the
incident neutrino signal. Added are the true neutrino direction in equatorial coordinates,
the true neutrino energy and a weight 'ow'7 , with the energy in GeV and the angles
given in radian. The attribute 'ow', short for OneWeight, contains a per-event simulation
weight that allows mapping the number of produced simulation events to an expectation
value for the desired target flux that can be directly compared to measured data. More
details on the OneWeight is given in equation (5.72). Just note that OneWeight is already
divided by the number of simulated events in total for the standardized datasets used
here, which is, in general, not the case for other datasets. The simulation data is used for
building the model PDFs in the Likelihood construction, described in the next chapters.
Another important step, that is also already included in the standardized datasets, is
the so-called pull correction. In general, the per event uncertainty reconstruction has
an energy-dependent bias which needs to be corrected [Neu06]. This is usually called
pull correction, where the pull 𝛥𝛹/𝜎 is defined by the angular separation of the true
neutrino direction and the reconstructed muon direction 𝛥𝛹 divided by the estimated
angular uncertainty 𝜎, where the former is only available from simulation. Because
the per event uncertainty is later used in a two-dimensional Gaussian distribution and
is also constructed for that use in mind, the median of the energy-dependent pull is
corrected to the expected value of 1.17748. Because this can only be computed using
the ground truth on simulation data, the same correction formula is applied as-is to the
per-event uncertainties on experimental data. See figure (B.2) for effective areas and
sin(𝛿𝜈) distribution plots for each used sample.

4.2.1. Decorrelation

In the analyses done here, the HESE events themselves are the sources, but can and
do also appear in the test dataset because the original data sample that was used to
create both sets are the same. Leaving the HESE events in the experimental test dataset
would introduce a large bias because these events have per-definition a large signal over
background ratio as they occur exactly at the source positions, at the source times and
also have a high energy. To avoid this bias, these events are removed from the data
before doing any analysis steps.

Because the simulation datasets also contain events, that are similar to high energy
starting event signatures and therefore would also be handled as sources rather than

7Named accordingly with keys 'trueRa', 'trueDec', 'trueE', 'ow'.
8The 1 𝜎 error ellipse region of a 2D Gaussian contains 39 % of probability. Equivalently, the 1.1774 𝜎

contour contains 50 % as expected from the median. In general this can be calculated using 𝜎2 =𝜒2
ppf(1 − 𝑝|𝑘), where 𝑘 is the dimension, 𝑝 the tail probability and 𝜒2

ppf the inverse of the CDF [Sio63].
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In this chapter, the unbinned Likelihood methods used for IceCube point source searches
are derived. To identify an astrophysical neutrino signal from a specific source location
in the sky, an excess of events from that direction needs to be identified. In general,
atmospheric and the sought after extraterrestrial neutrinos cannot be distinguished on
a per event basis. However, it is possible to search from a sample based point-of-view
by measuring deviations for an ensemble of events with respect to a known background
expectation. A simple method could be to define a fixed search region around a direction
from which signal is expected, count the number of measured events and compare them
to the number of events from a background expectation in the region [LM83]. If the
measured number of events is significantly higher than the expected number of background
events, that may be a hint for a signal from that direction.

In this thesis, a similar but more advanced approach is used, incorporating multiple pieces
of event information to increase the detection sensitivity. Also the usage of pre-defined
search regions, often called a binned approach, is replaced with an unbinned version on
a per event basis. This has the advantage of avoiding hard search region boundaries
which can drop the sensitivity of the approach if e.g. an unknown source is located
directly at the border of such a region. Starting from a general unbinned, extended
Likelihood approach, the special cases of a time-dependent and time-integrated search
for point-like sources are derived. Particular cases handling multiple years of data from
different detector configurations and multiple sources for the so-called stacking case are
further derived from the basic form. In the following, a single event is consistently noted
with index 𝑖, a source with index 𝑘 and a data sample with index 𝑗.
5.1. Extended unbinned Likelihood

The extended Likelihood [Bar89] and the corresponding logarithmic extended Likelihood
function is defined asℒ(𝜆) = 𝜆𝑁𝑒−𝜆𝑁! 𝑁∏𝑖=1 𝑃𝑖 ⇒ ln ℒ(𝜆) = −𝜆 + 𝑁∑𝑖=1 ln(𝜆𝑃𝑖) , (5.1)

where the constant term ln(𝑁!) is dropped in the logarithmic version. Here 𝜆 is the
expected number of events and 𝑁 the number of measured events following a Poisson
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counting distribution. The per event model distributions 𝑃𝑖, normalized to integral 1 over
the defined parameter space, describe the Likelihood of each event under the assumed
model and how likely it contributes to the expectation. The use of the Poisson term is
justified by a re-normalization of the per event distributions to include the total number
of measured events, which is not fixed for multiple experiments of the same kind but may
fluctuate around an unknown expectation value.

The tested hypotheses are a priori encoded in the description of the model 𝑃. To obtain
a fairly general expression to derive the point source special cases from, the expectation
model can be split into multiple classes by splitting the expectation and the models
accordingly 0 ≤ 𝜆 = 𝑁classes∑𝑘=1 𝜆𝑘 and 𝑃𝑖 = 1∑𝑁classes𝑘=1 𝜆𝑘 ⋅ 𝑁classes∑𝑘=1 𝜆𝑘𝑃𝑖,𝑘 . (5.2)

The single 𝜆𝑘 can be negative but their sum must not, because it is still a Poisson
expectation parameter. Additionally, the new split model is normalized over all classes
to arrive at the form

ln ℒ({𝜆𝑘}) = − 𝑁classes∑𝑘=1 𝜆𝑘 + 𝑁∑𝑖=1 ln (𝑁classes∑𝑘=1 𝜆𝑘𝑃𝑖,𝑘) . (5.3)

To further specialize, it is usually desired to test a signal hypothesis against a background
one, for 𝑁srcs sources in general, for each event 𝑖. The above expression (5.3) is thus
expanded to include 𝑁srcs signal and 𝑁srcs background parameters and the corresponding
distributions 𝑆𝑖,𝑘 and 𝐵𝑖,𝑘:

ln ℒ({𝜆𝑘,𝑆}, {𝜆𝑘,𝐵}) = − 𝑁srcs∑𝑘=1 (𝜆𝑘,𝑆 + 𝜆𝑘,𝐵) + 𝑁∑𝑖=1 ln (𝑁srcs∑𝑘=1 (𝜆𝑘,𝑆𝑆𝑖,𝑘 + 𝜆𝑘,𝐵𝐵𝑖,𝑘)) ,

(5.4)
and from the Poisson condition there is still the constraint0 ≤ 𝑁srcs∑𝑘=1 (𝜆𝑘,𝑆 + 𝜆𝑘,𝐵) . (5.5)

For testing the significance of a potential signal contribution in the measured data, a
Likelihood ratio test is used 9. The null hypotheses 𝐻0, which means that only background

9See section 5.6 for an introduction to frequentist methods.
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is expected to be measured, is constructed by using only a portion 𝛩0 of the allowed
parameter space, here by setting all signal expectations to zero

ln ℒ0({𝜆𝑘,𝑆 = 0}, {𝜆𝑘,𝐵}) = − 𝑁srcs∑𝑘=1 (𝜆𝑘,𝐵) + 𝑁∑𝑖=1 ln (𝑁srcs∑𝑘=1 (𝜆𝑘,𝐵𝐵𝑖,𝑘)) . (5.6)

The alternative hypothesis 𝐻1 is constructed by using the full Likelihood parameter
space 𝛩

ln ℒ1({𝜆𝑘,𝑆}, {𝜆𝑘,𝐵}) = − 𝑁srcs∑𝑘=1 (𝜆𝑘,𝑆 + 𝜆𝑘,𝐵) + 𝑁∑𝑖=1 ln (𝑁srcs∑𝑘=1 (𝜆𝑘,𝑆𝑆𝑖,𝑘 + 𝜆𝑘,𝐵𝐵𝑖,𝑘)) .

(5.7)

The Likelihood ratio test statistic 𝛬 for testing the null hypothesis 𝐻0 against the
alternative 𝐻1 is defined as [CB02]

ln ̂𝛬 = ln (sup𝜃∈𝛩0 ℒ(𝜃)
sup𝜃∈𝛩 ℒ(𝜃) ) = ln ( sup𝜃∈𝛩0 ℒ(𝜃)) − ln (sup𝜃∈𝛩 ℒ(𝜃)) . (5.8)

where ̂𝛬 means the single test statistic value after finding the supremum of both nominator
and denominator. This leads to the test statistic considered in this work,−2 ln ̂𝛬 = 2 ln(ℒ1({𝜆̂𝑘,𝑆/𝐵})) − 2 ln(ℒ0({𝜆̂(0)𝑘,𝐵}))= −2 (𝑁srcs∑𝑘=1 𝜆̂𝑘,𝑆 + 𝜆̂𝑘,𝐵 − 𝜆̂(0)𝑘,𝐵) + 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘 + 𝜆̂𝑘,𝐵𝐵𝑖,𝑘)∑𝑁srcs𝑘=1 (𝜆̂(0)𝑘,𝐵𝐵𝑖,𝑘) ) ,

(5.9)
which has been decorated by the factor −2 to be compatible to Wilks’ theorem [Wil38;
CB02]. Here the parameters 𝜆̂𝑘,𝑆/𝐵 were introduced, which mean the parameters 𝜆𝑘,𝑆/𝐵
that maximize the Likelihood ℒ1 under the complete parameter space and 𝜆̂(0)𝑘,𝐵 maximiz-
ing ℒ0. As seen in expression (5.9), all best-fit parameters from both hypotheses have to
be distinguished. That means it must be differentiated between the best fit parameters𝜆̂(0)𝑘,𝐵 from the null hypothesis and 𝜆̂𝑘,𝐵 from the alternative hypothesis, which are not
the same in general.

In the following sections, specific model choices for the signal and background distribu-
tions and approximating assumptions are shown, to transform expression (5.9) to more
commonly known forms, and to the ones used for the time-dependent and time-integrated
search in this thesis.
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5.2. Per event distributions

The introduced per event distributions 𝑆𝑖, 𝐵𝑖 are the functions that actually define the
tested hypothesis of the analysis. Depending on their structure they can describe a single
point source search, a stacking search for searching at various source positions at once or
a template search, where a whole spatial region is tested for neutrino emission over the
expectation. The used PDFs are usually similar for all analysis types and the conventions
applied for most point source searches in IceCube are followed here [Bra+10; Bra+08].

The per-event distributions describe the main separation power between signal and
background hypotheses in combination with the mixing portions 𝜆𝑖,𝑆/𝐵 by introducing a
priori knowledge in defining signal- and background-like regions in the tested parameter
space. The better these distributions are able to separate signal and background regions,
the more sensitive the analysis becomes, but also the more bias towards specific model
choice is introduced. A common approach with known good separation power is to
combine contributions from spatial clustering and energy information, where the first
one is inherent to the tested point source hypothesis and the latter providing additional
information under certain assumptions of signal flux shapes. For time-dependent analyses,
an additional time-dependent part is introduced.

In their general form, the model PDFs 𝑆𝑖 and 𝐵𝑖 are multi-dimensional composite PDFs.
For the common approach using spatial, energy and time information, the resulting PDFs
would have five dimensions, being possibly correlated in the variables declination, right
ascension, energy proxy, the spatial uncertainty estimator and the event times. However,
for most IceCube point source searches, the signal and background contributions are
written as independent products of a spatial, an energy and a time-dependent part as𝑆𝑖,𝑘 = 𝑆( ⃗𝑥𝑖, ⃗𝑥src,𝑘, 𝐸𝑖|𝛾) = 𝑆𝑆( ⃗𝑥𝑖, ⃗𝑥src,𝑘) ⋅ 𝑆𝐸(𝐸𝑖, 𝛿𝑖|𝛾) ⋅ 𝑆𝑇(𝑡𝑖, 𝑡𝑘) (5.10)

and 𝐵𝑖,𝑘 = 𝐵(𝛿𝑖, 𝐸𝑖|𝜙BG) = 𝐵𝑆(𝛿𝑖) ⋅ 𝐵𝐸(𝐸𝑖, 𝛿𝑖|𝜙BG) ⋅ 𝐵𝑇(𝑡𝑖, 𝑡𝑘) (5.11)

where 𝛾 is the shape parameter of a signal flux usually assumed to be a power law∝ 𝐸−𝛾 and 𝜙BG stands for a flux model of the atmospheric neutrino flux describing the
background flux dependency. The event times 𝑡𝑖 and source times 𝑡𝑘 define the time
dependent emission model and 𝛿𝑖 is the declination angle, described in more detail in
chapter 4. The choice of splitting the PDF in several independent terms happens for
symmetry reasons and to allow the usage of approximate analytic forms of the PDF terms.
The first step to arrive at the split PDF form, is to apply the law of total probability
[CB02], which dissects the composite PDF into marginal distributions𝑓(𝑥1, … , 𝑥𝑛) = 𝑃(𝑥1) ⋅ 𝑃 (𝑥2|𝑥1) ⋅ 𝑃 (𝑥3|𝑥1𝑥2) … 𝑃(𝑥𝑛|𝑥1 … 𝑥𝑛−1) . (5.12)
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This splits the combined PDF into products of marginal distributions. By neglecting
the marginal dependency e.g. of the split off energy PDF on the spatial resolution proxy
or the energy dependence on the spatial terms, the standalone PDFs in the following
sections can be derived. Because of the special location and the resulting symmetry of
the IceCube detector, the right ascension dependency is often dropped. Also, for the
spatial PDF, it is chosen to replace the general form with an analytic Gaussian PDF
as it resembles the true distribution closely enough but is much easier to handle. Note,
that all these simplifications and assumptions influence the shape of the obtained test
statistics and may lead to deviations of the expected shape from the application of Wilks’
theorem. Also note, that only variables known on experimental data can be used, because
no simulation truth is available on actual data.

5.2.1. Spatial distribution

The most important part in the search for neutrino point sources is the spatial clustering
of events around a point in the sky. Without the spatial term, the analysis would
be insensitive to the main hypothesis of having a localized excess of neutrino events
from a certain location in the sky. For data samples used in point source searches, a
reconstructed estimate of the per event uncertainty is available. This estimator is built
from the positional reconstruction Likelihood fit and is constructed assuming a symmetric,
two-dimensional Gaussian distribution describing the reconstruction uncertainty. The
value is obtained by scanning the reconstruction Likelihood on a grid and fitting a
two-dimensional parabola through the sampled points to be compliant with the assumed
underlying Gaussian distribution. To be even easier to apply, it is further assumed
that the underlying distribution is symmetric in the two directional angles. To obtain
the symmetrized covariance matrix from the generally tilted form, the two-dimensional
covariance matrix (𝜎2𝑎 𝜎2𝑏𝜎2𝑏 𝜎2𝑐 ) (5.13)

can be transformed in its diagonal form. The new covariance ellipsis axes then have the
values 𝜎21,2 = 𝜎2𝑎 + 𝜎2𝑏2 ± √(𝜎2𝑎 + 𝜎2𝑏 )2 + 4𝜎2𝑐 . (5.14)

Demanding that the half-axes are of equal length, the radicand needs to vanish, leaving
the relation 𝜎21 = 𝜎22 = 𝜎2𝑎 + 𝜎2𝑏2 , (5.15)

which is used to circularize the covariances obtained from the grid scan. Because the
Gaussian is thus of circular shape, only the radial distance, or space angle, from the

29
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assumed source position the each event’s position is needed

cos(𝛹𝑖,𝑘) = ⃗𝑥𝑘 ⋅ ⃗𝑥𝑖 = cos(𝛼𝑖 − 𝛼𝑘) ⋅ cos(𝛿𝑖) cos(𝛿𝑘) + sin(𝛿𝑖) sin(𝛿𝑘) , (5.16)

which can be derived from the scalar product in spherical coordinates with the angles
defined by the equatorial coordinate system convention.

Alternatively, the same value can be transformed and used for the symmetric Kent
distribution [Ken82] for the per event spatial distribution instead. The Kent distribution
is the pendant of the symmetric, two-dimensional Gaussian distribution, but is correctly
normalized on the sphere and is useful for larger uncertainties for example when investi-
gating cascade-like events. For tracks, the good angular resolution of about 1° justifies
the use of the simpler and more familiar Gaussian distribution as both distributions
become virtually indistinguishable for small uncertainties.

In general, the joint probability for an event 𝑖 to spatially originate from a source 𝑘 can
be obtained by a convolution of the two separate spatial PDFs. One part describes the
intrinsic distribution for the source and the other part the intrinsic distribution of the
event itself. In a search for point sources at known positions, the distribution of a source
position is represented by a delta distribution. In searches for spatially extended sources a
Gaussian profile is usually assumed. The per-event probability distribution is assumed to
be a Gaussian PDF, which is connected to the construction of the per-event-uncertainty
from a parabolic fit of the scanned Likelihood space, as described above or a bootstrap
algorithm. The resulting spatial signal distribution, describing the probability of an
event being spatially correlated to a given source with density profile 𝑓( ⃗𝑥𝑘), can thus be
expressed as a convolution of the Gaussian per-event part and source distribution for the
fixed source position𝑆𝑆( ⃗𝑥𝑖, ⃗𝑥𝑘) = ∫𝛺 12𝜋𝜎2𝑖 exp (−| ⃗𝑥 − ⃗𝑥𝑖|22𝜎2𝑖 ) ⋅ 𝑓( ⃗𝑥𝑘 − ⃗𝑥)d ⃗𝑥 . (5.17)

For the point-source hypothesis, 𝑓( ⃗𝑥𝑘) can be replaced with a delta distribution 𝛿( ⃗𝑥𝑘)
yielding the often used expression𝑆𝑆( ⃗𝑥𝑖, ⃗𝑥𝑘) = 12𝜋𝜎2𝑖 exp (−| ⃗𝑥𝑘 − ⃗𝑥𝑖|22𝜎2𝑖 ) (5.18)

for the spatial signal PDF. Assuming extended sources with a Gaussian density profile
would follow the same scheme and an analytic solution for the convolution of two Gaussian
distributions exists, resulting in a substitution of 𝜎𝑖 → √𝜎2𝑖 + 𝜎2𝑘 [Bro14]. Note, that the
energy dependence of the signal PDF is implicitly included in the per-event uncertainties
marginal distribution. The marginal term, that needs to be split-off in the application of
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the law of total probability, resembles the energy distribution, which is then dealt with
separately.

The spatial background distribution is constructed similarly to the signal case in equa-
tion (5.17). Because IceCube is a nearly right ascension symmetric detector at the South
Pole, the distribution is assumed to be declination-dependent only, which holds the better
the larger the regarded time windows are. This may break down, however, for time
scales short enough that the earth’s rotation does not smear out the slightly asymmetric
distribution in azimuth angle. The declination-dependent PDF is written in a general
form here and can, for example, be constructed by computing histograms of experimental
data, which is described later in more detail. The spatial background distribution can
then be written as 𝐵𝑆(𝛿𝑖) = 12𝜋 ⋅ 𝑃 (sin(𝛿𝑖)) , (5.19)

where the first factor is the uniform distribution in right ascension and the latter indicating,
the often alternatively used, dependence on the sine of declination 𝛿. Note that the
background distribution is only depending on the event position, as background events
are not expected to have any correlation with a source, by definition. This description
neglects the per-event uncertainty though. In principle, the same method that was
used to construct the convoluted signal PDF can be applied to the construction of the
background distribution. With𝐵𝑆( ⃗𝑥𝑖) = ∫𝛺 𝐵̂𝑆( ⃗𝑥) ⋅ exp (−| ⃗𝑥 − ⃗𝑥𝑖|22𝜎2𝑖 ) d ⃗𝑥 (5.20)

the per-event declination distribution would be described in full detail. However, as the
intrinsic background PDF 𝐵̂𝑆 does not change much with declination and a closed form
analytic description as in the Gaussian case for the signal PDF in (5.17) is not easily
possible with 𝐵̂𝑆 derived from histograms, the per-event-uncertainty is neglected.

5.2.2. Energy distribution

In addition to the spatial clustering, the event’s energy can also provide a powerful
separation argument and lead to a large improvement in sensitivity [Bra+08]. As
the energy distribution of atmospheric neutrinos can approximately be described by a
power law 𝜙BG(𝐸) ∝ 𝐸−3.7 and the astrophysical signal by a harder spectrum around𝜙(𝐸)𝑆 ∝ 𝐸−2, higher energy events are more likely to originate from an extraterrestrial
source rather than having been created in the atmosphere. In the PDFs, the energy
dependence can only be taken into account with energy estimators of the true neutrino
energy 𝐸𝜈 because the information must also be available on measured data, not knowing
the true neutrino energy. Formally, that mapping can be written as an integration using
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the law of total probabilities of the distribution of the energy proxy of the event with the
probability of obtaining a true neutrino energy under the current flux hypothesiŝ𝑆𝐸(𝐸, ⃗𝑥|𝛾) = ∫𝐸𝜈 ∫𝛺𝜈 𝑃(𝐸, ⃗𝑥|𝐸𝜈, ⃗𝑥𝜈) ⋅ 𝑃 ( ⃗𝑥𝜈, 𝐸𝜈|𝛾) d𝐸𝜈𝑑 ⃗𝑥𝜈 , (5.21)

where 𝛾 is the shape parameter of an assumed signal power law flux.

For background, the same reasoning applies and the flux model is substituted for one
describing the atmospheric neutrino background instead𝐵̂𝐸(𝐸, ⃗𝑥|𝜙BG) = ∫𝐸𝜈 ∫𝛺𝜈 𝑃(𝐸, ⃗𝑥|𝐸𝜈, ⃗𝑥𝜈) ⋅ 𝑃 ( ⃗𝑥𝜈, 𝐸𝜈|𝜙BG) d𝐸𝜈𝑑 ⃗𝑥𝜈 (5.22)

to obtain the intrinsic distribution.

In practice, the integrals may be obtained using histograms in reconstructed declination
and an energy estimator from simulations for signal and from either simulations or
measured data for the background distributions. By computing the histograms on the
proxy variables directly, the integrals are obtained automatically in each bin from the
simulation procedure. This is because each bin contains the superposition of the fraction
of true neutrino energies contributing to the proxy value considered in the bin.

To obtain the convolved PDFs, that also take into account the per event uncertainty for
each event in energy and position, the same ansatz as for the signal PDFs in section 5.2.1
can be used 𝑆𝐸(𝐸𝑖, 𝛿𝑖|𝛾) = ∫𝐸 ∫𝛺 𝑓( ⃗𝑥𝑖, 𝐸𝑖) ̂𝑆𝐸 d𝐸d ⃗𝑥 (5.23)𝐵𝐸(𝐸𝑖, 𝛿𝑖|𝜙BG) = ∫𝐸 ∫𝛺 𝑃(𝐸𝑖, 𝛿𝑖|𝐸𝜈) ⋅ 𝑃 (𝐸𝜈|𝜙BG)d𝐸𝜈 . (5.24)

In the majority of analyses, a delta distribution is used for the per-event function in
the last step, for the same reasons quoted for the spatial background PDF. Also, the
distribution is normalized independently of the spatial PDFs, although the declination
occurs in both of them. This may be done to simplify the computation and housekeeping
in the analysis code because it avoids higher dimensional PDF constructions. Additionally,
when inferring higher-dimensional PDFs from data, the required statistic may exceed the
available number of measured events and a compromise between robust PDF estimation
and affordable approximations is considered.
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5.2.3. Time dependency

When testing for time-dependent emission models, the time-dependent PDFs 𝑆𝑇𝑖,𝑘(𝑡𝑖, 𝑡𝑘)
and 𝐵𝑇𝑖,𝑘(𝑡𝑖, 𝑡𝑘) need to be incorporated, which depend on each event’s time and their
occurrences relative to the temporal evolution of the sources. The assumption is then,
that each source only emits neutrinos as given by 𝑆𝑇𝑖,𝑘(𝑡𝑖, 𝑡𝑘). The background can in
general also be time dependent to account e.g. for seasonal variations in the detector
rate. Because of the precise timing information available per event, there is no relevant
time uncertainty that needs to be convolved into the intrinsic PDFs.

5.3. Time-dependent Likelihood

To test for a time-dependent emission in this analysis, the general extended Likelihood
is altered to a form similar to what is usually called Gamma Ray Burst Likelihood10

[Aar+18a; Aar+15a; Aar+17c]. As the name may indicate, the source emission is assumed
to be per-burst with a fluence 𝛷 rather than a time-dependent flux, where fluence means
the integral form of a time-dependent flux, so particles received per energy and unit area
only.

This includes explicit assumptions about the temporal source emission PDFs and simpli-
fications of the general Likelihood formula introduced before. The simplifications need to
be applied to ensure the proper handling of small time windows. For relatively small
burst time windows, only a few events are left in each window making it hard to fit
a larger amount of free model parameters to the data. Therefore the number of free
parameters needs to be reduced as much as possible without introducing too many a
priori assumptions. That allows to stick to a rather general search method because of
the unknown source types.

Here, using the burst model, a rather general assumption about the source emission is
made. The time PDFs are therefore constructed using rectangle functions

rect(𝑡) = 𝛩 (𝑡 + 12) ⋅ 𝛩 (𝑡 − 12) = {1 , if |𝑡| ≤ 120 , if |𝑡| > 12 , (5.25)

10Named after the original purpose of searching for emission from a Gamma Ray Burst catalogue. The
concept can be applied to other sources testing a similar hypothesis of emission within a defined time
window.
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where 𝛩 is the Heaviside step function [AS74]. This way, each source is having only a
non-zero emission contribution within its pre-defined source time window𝑆𝑇𝑖,𝑘 = 𝐵𝑇𝑖,𝑘 = 𝑇𝑘(𝑡𝑖) ≔ rect (𝑡𝑖 − 𝑡1𝑘−𝑡0𝑘2𝑡1𝑘 − 𝑡0𝑘 ) . (5.26)

This effectively cuts out a subset of events around the sources time stamps 𝑡𝑘 and the
corresponding time interval around each source [𝑡0𝑘, 𝑡1𝑘] and is a background rejection
technique only, because any underlying temporal dependence on the source emission flux
is discarded. The simplest case is then to have each source in its own, non-overlapping
time window so that each source has a unique set of events belonging to it. Note again,
that no separation power stems from these time PDFs, they are merely used to reduce
the background rate under the assumption of a temporally concentrated emission. In
this light, a per-burst search is not a “real” time-dependent search. For the ease of use, a
time PDF is only defined to effectively cut out the interesting burst regions.

One important simplification of the general Likelihood applied here, is that the background
expectations are not fitted, but rather fixed from the integrated off-time data rate over
the range of the background time PDFs. This decreases the number of parameters to fit
for because it unifies and fixes the background estimators to𝜆̂𝑘,𝐵 = 𝜆̂(0)𝑘,𝐵 = ⟨𝜆𝑘,𝐵⟩ . (5.27)

The test statistic then turns to the form− 2 ln ̂𝛬 = −2 𝑁srcs∑𝑘=1 𝜆̂𝑘,𝑆 + 2 𝑁∑𝑖=1 ln ( ∑𝑁srcs𝑘=1 𝜆̂𝑘,𝑆𝑆𝑖,𝑘∑𝑁srcs𝑘=1 ⟨𝜆𝑘,𝐵⟩ 𝐵𝑖,𝑘 + 1) . (5.28)

One further Likelihood simplification is performed, which is necessary because a large
number of free parameters cannot be fitted to very few events in a low background
analysis. The relative signal expectations of each source are fixed a priori and the
Likelihood is only fitted for a total signal expectation value𝜆𝑘,𝑆 = 𝑛𝑆 ⋅ 𝑤𝑘 (5.29)

with a free global signal strength parameter 𝑛𝑆 and weights 𝑤𝑘 normalized so that𝑁srcs∑𝑘=1 𝑤𝑘 = 1 . (5.30)

The test statistic can then be expressed by− 2 ln ̂𝛬 = −2𝑛̂𝑆 + 2 𝑁∑𝑖=1 ln ( 𝑛̂𝑆 ∑𝑁srcs𝑘=1 𝑤𝑘𝑆𝑖,𝑘∑𝑁srcs𝑘=1 ⟨𝜆𝑘,𝐵⟩ 𝐵𝑖,𝑘 + 1) . (5.31)
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The a priori fixed weights resemble the expectation from every single source at the
detector. They can, therefore, depend on the explicitly chosen source emission model and
the detection efficiency depending on the source locations in the detector. Note that the
a priori chosen weights should match the true, but usually unknown, emission scenario
as much as possible to obtain a good analysis sensitivity. If the true scenario strongly
differs from the assumed weights, the performance of the analysis drops. Generalized
assumptions can be made though, in favour of the ability to test a broader range of
emission scenarios, but losing performance when nature indeed chose a specific model
realisation.

5.3.1. Single sample stacking case

Using the assumption of independent time windows for the sources can further simplify
the test statistic. The expression can be rearranged to an explicit sum of logarithms that
better resembles the uniqueness of each source in its time window.

Starting from the test statistic expression (5.31) and from the definition of the unique
time windows, it can be seen that each event 𝑖 can only contribute to a single source𝑘. The event belongs to the source in which time window it falls or to no source at all,
where the time windows are defined as in (5.26)

𝑇𝑘(𝑡𝑖) ≔ rect (𝑡𝑖 − 𝑡1𝑘−𝑡0𝑘2𝑡1𝑘 − 𝑡0𝑘 ) . (5.32)

The stacking sum then turns to

−2 ln ̂𝛬 = −2𝑛̂𝑆 + 2 𝑁∑𝑖=1 ln ( 𝑛̂𝑆 ∑𝑁srcs𝑘=1 𝑤𝑘𝑆𝑖,𝑘𝛿{𝑖,𝑘|𝑇𝑘(𝑡𝑖)≠0}∑𝑁srcs𝑘=1 ⟨𝜆𝑘,𝐵⟩ 𝐵𝑖,𝑘𝛿{𝑖,𝑘|𝑇𝑘(𝑡𝑖)≠0} + 1) (5.33)

= −2𝑛̂𝑆 + 2 𝑁∑𝑖=1 ln ( 𝑛̂𝑆 [0 + ⋯ + 0 + 𝑤𝑘∗𝑆𝑖,𝑘∗ + 0 + ⋯ + 0][0 + ⋯ + 0 + ⟨𝜆𝑘∗,𝐵⟩ 𝐵𝑖,𝑘∗ + 0 + ⋯ + 0] + 1) (5.34)

= −2𝑛̂𝑆 + 2 𝑁∑𝑖=1
𝑁srcs∑𝑘=1 ln ( 𝑛̂𝑆𝑤𝑘𝑆𝑖,𝑘⟨𝜆𝑘,𝐵⟩ 𝐵𝑖,𝑘 + 1) , (5.35)

where 𝑘∗ means the 𝑘 that fulfils the condition 𝑇𝑘(𝑡𝑖) ≠ 0 and in the last step it is used
that

ln ( 𝑛̂𝑆𝑤𝑘≠𝑘∗𝑆𝑖,𝑘≠𝑘∗⟨𝜆𝑘≠𝑘∗,𝐵⟩ 𝐵𝑖,𝑘≠𝑘∗ + 1) = ln(0 + 1) = 0 . (5.36)
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5.3.2. Multiple samples stacking case

To add more sources to the unique time window scenario, data at the times at which the
added source events occurred needs to be taken into account. In each IceCube data taking
season, there may be a change in the data taking procedure, for example in the trigger
system. Also, different sample selection methods may yield different expectation values
for the number of events in each sample. These changes and differences must be included
in the expectations for the samples used in the single Likelihood test. An additional
weighting scheme can be considered to account for the differences. The reasoning is quite
similar to the a priori 𝑛𝑆 splitting weights 𝑤𝑘 for the stacking case for the single sample
Likelihood as seen in (5.29).

To add another sample, the individual logarithmic Likelihoods can be summed up, because
the tested datasets are independent, which yields the combined test statistic−2 ln ̂𝛬 = 𝑁sam∑𝑗=1 −2 ln ̂𝛬𝑗(𝑛̂𝑆,𝑗) (5.37)

= 𝑁sam∑𝑗=1 [−2𝑛̂𝑆,𝑗 + 2 𝑁𝑗∑𝑖=1
𝑁srcs,j∑𝑘=1 ln ( 𝑛̂𝑆,𝑗𝑤𝑘,𝑗𝑆𝑖,𝑘,𝑗⟨𝜆𝑘,𝑗,𝐵⟩ 𝐵𝑖,𝑘,𝑗 + 1)] , (5.38)

where individual free 𝑛𝑆,𝑗 signal parameters are introduced and the stacking weights 𝑤𝑘,𝑗
per source in the sample are constructed like the usual single sample stacking weights 𝑤𝑘
and are still normalized over all sources 𝑁srcs per sample𝑁𝑗,srcs∑𝑘=1 𝑤𝑘,𝑗 = 1 . (5.39)

Only the number of events per sample 𝑁𝑗 and the sources belonging to sample 𝑗 are
considered for each Likelihood, as well as the weights 𝑤𝑘,𝑗, PDFs 𝑆𝑖,𝑘,𝑗 and 𝐵𝑖,𝑘,𝑗 and the
background expectations per source ⟨𝜆𝑘,𝑗,𝐵⟩ for each sample. Again, a priori information
about the expected number of signal events originating from each sample can be used
and a global free signal strength parameter 𝑛𝑆 is introduced with𝑛𝑆,𝑗 = 𝑤𝑗𝑛𝑆 . (5.40)

To calculate the a priori weights 𝑤𝑗 the law of total probability is applied

𝑤𝑗 = 𝑃(𝑗) = 𝑁srcs∑𝑘=1 𝑃(𝑗|𝑘) ⋅ 𝑃 (𝑘) = 𝑁srcs∑𝑘=1 𝑃(𝑗, 𝑘)⏟
unknown

, (5.41)
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because only the conditional probability contribution 𝑃(𝑗|𝑘) from each source 𝑘 per
sample 𝑗 is known, but not the joint distribution 𝑃(𝑗, 𝑘). 𝑃(𝑗|𝑘) is the probability of
getting signal from source 𝑘 within sample 𝑗, normalized over all samples𝑁sam∑𝑗=1 𝑃(𝑗|𝑘) = 1 . (5.42)

Additionally, 𝑃(𝑘) is the probability of getting signal from source 𝑘 at all within any
sample, separately normalized over all sources𝑁srcs∑𝑘=1 𝑃(𝑘) = 1 . (5.43)

These relations can also be written in a concise matrix notation⎛⎜⎝ 𝑤1⋮𝑤𝑁sam

⎞⎟⎠ = ⎛⎜⎝ 𝑃(𝑗 = 0|𝑘 = 0) … 𝑃(𝑗 = 0|𝑘 = 𝑁srcs)⋮ ⋱ ⋮𝑃 (𝑗 = 𝑁sam|𝑘 = 0) … 𝑃(𝑗 = 𝑁sam|𝑘 = 𝑁srcs)⎞⎟⎠ ⋅ ⎛⎜⎝ 𝑃(𝑘 = 0)⋮𝑃 (𝑘 = 𝑁srcs)⎞⎟⎠ .

(5.44)
The unnormalized, conditional signal expectation values can be obtained in each sample
by calculating the expected number of events from a signal simulation which usually
differs for each detector configuration and sample selection criteria. These values can
then be used to normalize the matrix per column and construct the 𝑃(𝑘) vector by
summing over each column per source 𝑘.

The most complex weighting case in this scenario would be having multiple sources that
have time PDFs overlapping in their emission region and are also leaking into another
data sample. The formalism then still applies, and the sample splitting weights can
be obtained by integrating the time emission PDFs per sample to obtain the relative
emission strength for the source portions lying in each sample. These are then multiplied
with the usual declination dependent weights per sample to form the 𝑃(𝑗|𝑘) entries of
the matrix in expression (5.44). The weighting within each sample wouldn’t be affected
and is still constructed as explained in the previous section 5.3.1.

For the special case treated here, with each source having its unique time window and
also falling exclusively in a single sample, each column has only a single entry which
is 1 after the trivial normalization. The probabilities 𝑃(𝑘) can be obtained by using
the un-normalized source stacking weights regardless of the sample 𝑤̃𝑘 and re-normalize
them over all sources in all samples𝑃(𝑘) = 𝑤̃𝑘∑𝑁srcs𝑚=1 𝑤̃𝑚 . (5.45)
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Because of the special matrix properties used here, the explicit weights 𝑤𝑗 then turn out
to be global re-normalizations of the un-normalized single sample weights 𝑤̃𝑘 with

𝑤𝑗 = 𝑁srcs∑𝑘=1 𝑃(𝑗|𝑘) ⋅ 𝑃 (𝑘) = 𝑁srcs∑𝑘=1 𝛿{𝑘,𝑗|𝑇𝑗(𝑡𝑘)≠0} ⋅ 𝑤̃𝑘∑𝑁srcs𝑚=1 𝑤̃𝑚 (5.46)

= 𝑁𝑗,srcs∑𝑘=1 𝑤̃𝑘,𝑗∑𝑁srcs𝑚=1 𝑤̃𝑚 , (5.47)

where 𝑇𝑗 is a unique rectangle function for each sample, equally used as the rectangle
function utilized to describe the unique time windows per source in each sample. 𝑤̃𝑘,𝑗
are the un-normalized stacking weights per sample.

Now the numerator turns out to be exactly the per sample normalization of the per
sample splitting weights, which is the sum of all weights for the subset of all sources that
actually are in the sample. The full multi-sample test statistic then reads

− 2 ln ̂𝛬 = −2𝑛̂𝑆 + 2 𝑁sam∑𝑗=1
𝑁𝑗∑𝑖=1

𝑁srcs,j∑𝑘=1 ln ⎛⎜⎜⎝𝑛̂𝑆 𝑤̃𝑘,𝑗∑𝑁srcs𝑚=1 𝑤̃𝑚 𝑆𝑖,𝑘,𝑗⟨𝜆𝑘,𝑗,𝐵⟩ 𝐵𝑖,𝑘,𝑗 + 1⎞⎟⎟⎠ , (5.48)

where 𝑤̃𝑘,𝑗 are the un-normalized weights per source with respect to the expected signal in
their corresponding sample and are normalized over all un-normalized source expectations𝑤̃𝑚 in all samples regarded. This expression nicely demonstrates the circumstances here,
namely that each source is independent of each other source and lies completely in a
single data sample, so the whole underlying Likelihood completely factorizes in events,
sources and samples.

5.4. Time-integrated Likelihood

The standard time integrated Likelihood formula used in IceCube point source searches can
also be derived from the general, extended Likelihood formula. A different approximation
than in the time-dependent case is used, which takes into account the usually larger
statistics in a time-integrated sample as all events count and not only these in temporal
coincidence with any source.
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5.4.1. Single sample stacking case

Starting again from the general form− 2 ln ̂𝛬 = −2 (𝑁srcs∑𝑘=1 𝜆̂𝑘,𝑆 + 𝜆̂𝑘,𝐵 − 𝜆̂(0)𝑘,𝐵) + 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘 + 𝜆̂𝑘,𝐵𝐵𝑖,𝑘)∑𝑁srcs𝑘=1 (𝜆̂(0)𝑘,𝐵𝐵𝑖,𝑘) ) ,

(5.49)
the following approximation can be used𝑁srcs∑𝑘=1 𝜆̂𝑘,𝑆 + 𝜆̂𝑘,𝐵 ≈ 𝑁srcs∑𝑘=1 𝜆̂(0)𝑘,𝐵 ≈ 𝑁 . (5.50)

This means the Poisson fluctuations of the sample size are neglected. Also, the second
part is usually valid if the amount of signal expected in the data is small compared to
the amount of background-like events.

These approximations cancel the Poisson term in front of the sum and leave− 2 ln ̂𝛬 = 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘 + 𝜆̂𝑘,𝐵𝐵𝑖,𝑘)∑𝑁srcs𝑘=1 (𝜆̂(0)𝑘,𝐵𝐵𝑖,𝑘) ) . (5.51)

For the time-independent part, the background distributions 𝐵𝑖,𝑘 are all the same, because
they only depend on each event’s location and not on any source related parameters
anymore. Thus the background PDFs can be written as𝜆̂𝑘,𝐵 = 1𝑁srcs

𝜆̂𝐵 and 𝐵𝑖,𝑘 = 𝐵𝑖 (5.52)

and with approximation (5.50) the denominator in the logarithm can be simplified to1∑𝑁srcs𝑘=1 (𝜆̂(0)𝑘,𝐵𝐵𝑖,𝑘) = 1𝐵𝑖 ∑𝑁srcs𝑘=1 𝜆̂(0)𝑘,𝐵 = 1𝑁𝐵𝑖 . (5.53)

Using the same argument for the background distributions in the nominator, the stacking
test statistic becomes−2 ln ̂𝛬 = 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘 + 1𝑁srcs

𝜆̂𝐵)𝑁𝐵𝑖 ) (5.54)

= 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘) + 𝜆̂𝐵𝐵𝑖𝑁𝐵𝑖 ) . (5.55)
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Using the fixed expectation approximation from (5.50) again, the background parameter𝜆̂𝐵 can be eliminated leaving 𝑁srcs free signal parameters, one for each source−2 ln ̂𝛬 = 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘) + (𝑁 − ∑𝑁srcs𝑘=1 𝜆̂𝑘,𝑆) 𝐵𝑖𝑁𝐵𝑖 ) (5.56)

= 2 𝑁∑𝑖=1 ln (∑𝑁srcs𝑘=1 (𝜆̂𝑘,𝑆𝑆𝑖,𝑘)𝑁𝐵𝑖 − ∑𝑁srcs𝑘=1 𝜆̂𝑘,𝑆𝑁 + 1) . (5.57)

where in the last step the equation is slightly rearranged to show the commonly used
test statistic formula in the general time integrated stacking case.

The 𝑁srcs free signal strength parameters 𝜆𝑘,𝑆 can again be reduced to a single signal
strength parameter 𝑛𝑆 when a priori knowledge about the source class proportions is
used via 𝜆𝑘,𝑆 = 𝑛𝑆 ⋅ 𝑤𝑘 and

𝑁srcs∑𝑘=1 𝑤𝑘 = 1 . (5.58)

The test statistic can then be further reduced to its final form−2 ln ̂𝛬 = 2 𝑁∑𝑖=1 ln (𝑛̂𝑆 ∑𝑁srcs𝑘=1 (𝑤𝑘𝑆𝑖,𝑘)𝑁𝐵𝑖 − 𝑛̂𝑆 ∑𝑁srcs𝑘=1 𝑤𝑘𝑁 + 1) (5.59)

= 2 𝑁∑𝑖=1 ln (𝑛̂𝑆𝑁 (∑𝑁srcs𝑘=1 (𝑤𝑘𝑆𝑖,𝑘)𝐵𝑖 − 1) + 1) . (5.60)

Sometimes the signal sum term is abbreviated to𝑆(tot)𝑖 ≔ 𝑁srcs∑𝑘=1 (𝑤𝑘𝑆𝑖,𝑘) (5.61)

and only in this case, with a priori fixed weights 𝑤𝑘, the replacement of the single source
signal term 𝑆𝑖 with the summed signal term 𝑆(tot)𝑖 is valid𝑁∑𝑖=1 ln (𝑛̂𝑆𝑁 ( 𝑆𝑖𝐵𝑖 − 1) + 1) → 𝑁∑𝑖=1 ln (𝑛̂𝑆𝑁 (𝑆(tot)𝑖𝐵𝑖 − 1) + 1) (5.62)

to quickly change from a single to a stacked source hypothesis.

5.4.2. Multiple samples stacking case

Construction of the multi-sample Likelihood formula in the time-integrated case is done
exactly as in the time-dependent case before by starting with the sample weight relation𝑛𝑆,𝑗 = 𝑛𝑆 ⋅ 𝑤𝑗 with 𝑤𝑗 = 𝑃(𝑗) = 𝑁srcs∑𝑘=1 𝑃(𝑗|𝑘) ⋅ 𝑃 (𝑘) (5.63)

40



5.5. A priori weight selection

inserted in the familiar combination of single sample Likelihoods−2 ln ̂𝛬 = 𝑁sam∑𝑗=1 −2 ln ̂𝛬𝑗(𝑛̂𝑆,𝑗) (5.64)

= 𝑁sam∑𝑗=1 [2 𝑁𝑗∑𝑖=1 ln (𝑛̂𝑆,𝑗𝑁𝑗 (∑𝑁srcs𝑘=1 (𝑤𝑘,𝑗𝑆𝑖,𝑘,𝑗)𝐵𝑖,𝑗 − 1) + 1)] (5.65)

= 𝑁sam∑𝑗=1 [2 𝑁𝑗∑𝑖=1 ln (𝑛̂𝑆 ⋅ 𝑤𝑗𝑁𝑗 (∑𝑁srcs𝑘=1 (𝑤𝑘,𝑗𝑆𝑖,𝑘,𝑗)𝐵𝑖,𝑗 − 1) + 1)] . (5.66)

The number of events 𝑁𝑗 is now related to the number of events per sample 𝑗 and the
number of sources is the same in each sample, because of the steady state emission
scenario. Also the PDFs 𝑆𝑖,𝑘,𝑗, 𝐵𝑖,𝑗 and stacking weights 𝑤𝑘,𝑗 are taken and normalized
per sample as seen before in the time dependent Likelihood in section 5.3.

Because all sources contribute during all times and thus in all samples, the weights
cannot be written out in a simplified, compact form here, but they still represent the
relative sensitivity of a single sample to a given source hypothesis combined with the
global sensitivity to a single source across all samples. This may also be seen as a special
case for the time-dependent Likelihood weights, where all the time windows for signal
and background are as large as the sample livetimes and a true flux scenario is used,
where the emitted total flux is proportional to the emission time window length.

A notable difference arises if another global fit parameter is introduced alongside the
mandatory 𝑛𝑆. This is often done to better adapt to the unknown signal hypothesis
and in a time-integrated analysis, the statistics are usually sufficient to reliably fit an
additional parameter. Usually, this parameter describes the signal flux hypothesis and
is modelled as a single unbroken power law with spectral index 𝛾𝑘 per source in the
energy PDF term. This leads to splitting weights that depend on the actual shape of the
assumed signal flux because the sensitivity per sample can change when the flux gets
harder or softer𝑤𝑗( ⃗𝑥𝑘, 𝛾𝑘) = 𝑇𝑗 ⋅ ∫𝐸𝜈 𝐴𝑗,eff(𝐸𝜈, 𝛺𝑘) ⋅ 𝜙(𝐸𝜈, 𝛺𝑘|𝛾𝑘) d𝐸𝜈∑𝑁srcs𝑚=1 𝑇𝑚 ⋅ ∫𝐸𝜈 𝐴𝑚,eff(𝐸𝜈, 𝛺𝑘) ⋅ 𝜙(𝐸𝜈, 𝛺𝑘|𝛾𝑘) d𝐸𝜈 . (5.67)

More details on how these weights are constructed follow in the next section.

5.5. A priori weight selection

The a priori weights for the expected signal of a source in a specific sample should match
the true emission model as closely as possible to gain optimal analysis performance. Note
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that the weights resemble the expected relative flux at the detector. For example, for an
IceCube-like detector that only measures the Northern sky, all weights for sources on the
Southern sky would be zero, regardless of the true intrinsic emission strength, because
no signal is ever detected.

To construct the weights that actually distribute the total expected amount of signal to
the expected contribution from each source, signal simulation can be used to estimate
the signal detection efficiencies. This is done by calculating the total number of expected
events from each source from a given emission scenario at detector level. Depending
on the assumed emission scenario, the weights might depend on any source parameter,
usually the source position, the time and the spectral emission behaviour of the sources.
For sources that are not point-like in any parameter but show a functional dependency,
the detector response must be convolved with the source parameter distribution to obtain
the effective weight.

For the spatial weight contribution, the weights are dependent only on the source positions
and the signal response of the detector at their positions. The assumption that IceCube
is right ascension symmetric yields stacking weights that only depend on the source
declinations. For extended sources the detector response needs to be convolved with
the source extension density profile incorporating efficiencies from multiple detector
regions.

When using a time-dependent emission scenario the number of expected events varies
with the emission type. Because the detector response to signal usually does not vary with
time, only the relative differences in the time window functions matter for the stacking
weights. For example in a per-burst scenario, the amount of signal events is independent
of the considered emission time scale and a time-integrated fluence is assumed rather
than a time-dependent flux. The cases regarded in this thesis both lead to a vanishing
temporal dependence. In the time-dependent analysis, a fluence scenario is considered
and all sources have the same time window length, making the temporal emission equal
by design. Even with time windows that differ in length between each other, the expected
signal is equal from all bursts by definition. In the time-independent case, all source
fluxes have the same linear temporal dependence∫𝑇 𝜙 d𝑡 = 𝑇 ⋅ 𝜙 (5.68)

and are expected to steadily emit for the whole sample livetime, making all integrals
over the temporal part equal. Only when considering fluxes differential in time with
different emission profiles, the integral contributions differ and the stacking weights
become truly time-dependent. It is also possible to split time-dependent sources across
multiple samples with this formalism. If they are assumed to depend on a flux, then the
portion of the flux PDF in each sample can be computed. If using a per-burst scenario
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the time evolution information is lost. Therefore, it is not explicitly possible to split a
burst time window across multiple samples. A fair and general approach might be to
assume a uniform temporal dependency and again see how much of the integral lies in
each sample. Repeating sources in per-burst scenarios can be treated by assuming that
each burst is a separate source and making sure, that time windows do not overlap. The
latter is needed because a source is not expected to emit into two bursts at the same
time. The third common scenario is that sources also vary in their energy dependence for
their intrinsic flux strengths. Usually, this happens in the form of altering the spectral
index of the assumed power-law flux. This means the detector response is additionally
depending on the spectral index as the expected number of events per declination changes
depending on the spectrum’s steepness.

To summarize, note that the source weights should represent the estimated splitting of
the single signal strength fit parameter 𝑛𝑆, reflecting the relative, expected number of
events for the whole tested parameter space. Therefore, they do not vary per event, but
only per source. It is useful to imagine what happens if the proposed source class emits
signal events into the detector and what would be recorded after the detection process.

As an example, a dependency on the source positions ⃗𝑥𝑘 and spectral indices 𝛾𝑘 of the𝑛𝑆 splitting weight per source 𝑘 is assumed. For actually calculating the signal efficiency
and thus the expected number of events per source 𝑁𝑘 at detector level and for the final
sample event selection from an intrinsic, linearly time-dependent neutrino flux 𝜙, the
expression𝑁𝑘( ⃗𝑥𝑘, 𝛾𝑘) = 𝑇 ⋅ ∫𝐸𝜈 ∫𝛺𝜈 𝑓( ⃗𝑥𝑘 − ⃗𝑥)𝐴eff(𝐸𝜈, 𝛺𝜈) ⋅ 𝜙(𝐸𝜈, 𝛺𝜈|𝛾𝑘) d𝐸𝜈d𝛺𝜈 (5.69)

is used. Note the usage of the true neutrino energies and directions, as the interest lies
in the mapping of intrinsic flux strength to expected events, not in the performance of
spatial or energy reconstruction algorithms. Here, the value of 𝛾𝑘 is taken to be exact
and for a point-source hypothesis, the function 𝑓( ⃗𝑥) can be replaced with a 𝛿 distribution
for picking only the integral contribution from the single source position. 𝐴eff is the
hypothetical detector surface area, which would yield the same number of observed events
if it would detect 100 % of the incoming flux compared to the real detector and the
applied event selection and maps an intrinsic flux to event counts detected at detector
level. The integrated 𝐴eff is typically in units cm2, the flux 𝜙 in 1/(GeV cm2 s sr) and
the detector livetime 𝑇 in s. When using a time-integrated fluence 𝛷 model, the livetime
is obsolete and the number of events read𝑁𝑘 → 𝑁𝑘𝑇 . (5.70)
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instead. The normalized weights per source in a single sample can be constructed by𝑤𝑘 = 𝑁𝑘∑𝑁srcs𝑚=1 𝑁𝑚 . (5.71)

This effective area formulation holds for calculating the multi sample splitting weights
as well as for the expected 𝑛𝑆 splitting within a single sample, because it is the most
general form of calculating the detector efficiency and the expected number of events for
a given flux or fluence hypothesis.

In practice, to obtain the desired number of events for a given signal flux or fluence,
simulation data is used to approximate the integral (5.69) using Monte Carlo integration
by estimating the unknown distribution via sampling methods. A simulation quantity
called OneWeight is used to properly weight neutrino simulation to the number of
expected events, being able to compare expectation values obtained from simulation
directly to measured data. The OneWeight per event 𝑖 is defined as [GK05]

OneWeight𝑖 = 𝑝int

∫𝛺 ∫𝐸1𝐸0 𝛷gen(𝐸𝑖)d𝐸d𝛺𝛷gen(𝐸𝑖) 𝐴gen (5.72)

= 𝑝int

∫𝐸1𝐸0 𝛷gen(𝐸𝑖)d𝐸𝛷gen(𝐸𝑖) 𝐴gen𝛺gen , (5.73)

where 𝑝int is the interaction probability for neutrinos forced to interact close to the
detection volume11, 𝛷gen is the energy fluence used to generate the initial neutrino
distribution, usually a power law and 𝐴gen, 𝛺gen are the constant surface and the solid
angle over which the initial neutrinos are injected. In the last step, the integration over𝛺 is carried out because usually, the injection fluence is only energy dependent. By this
definition, OneWeight is the inverse of the generating fluence in GeV sr cm2 combined
with the correction factor for the forced neutrino interaction close to the detection volume.
To obtain the number of equivalent data events for a given simulation set, the per event
weights 𝑁 = ∑𝑖 𝑤𝑖 = ∑𝑖 𝛷𝑖𝛷𝑖,gen

(5.74)

need to be summed up. When using OneWeight to express the generating flux, the
number of events can be obtained via𝑁 = 𝑇 ⋅ ∑𝑖 OneWeight𝑖 ⋅ 𝜙𝑖𝑁gen

(5.75)

11Otherwise the simulation efficiency would be very low due to the small interaction probabilities of
neutrinos.
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or for fluences without the livetime 𝑇𝑁 = ∑𝑖 OneWeight𝑖 ⋅ 𝛷𝑖𝑁gen
, (5.76)

where 𝑁gen is the generated total number of events summed over both particle and
anti-particle types. This scaling makes sure, that the physical expectation value stays the
same, regardless of the number of simulated events. The sum can also be taken across
subsamples of a whole data set to obtain differential event counts, e.g. per energy or
solid angle to obtain approximations for the analytic integration in formula (5.69).

5.5.1. Intrinsic source weights

Additional intrinsic source weights can be introduced to capture differences in the expected,
relative fluxes or fluences from the sources themselves. This is decoupled from the actual
detection mechanism and the detector efficiency weights expressed by formula (5.71). The
weight selection strongly depends on the used catalogue or source category and can, for
example, be a gamma-ray flux or distance weighting [HK18; Aar+17d]. These intrinsic
source weights 𝑤src𝑘 are independently multiplied with the corresponding detector weights𝑤det𝑘 to form the total source weights used in the stacking𝑤𝑘 ≔ 𝑤det𝑘 ⋅ 𝑤src𝑘 . (5.77)

If the intrinsic source properties are not known or not reliably available, the intrinsic source
weights are usually assumed to be equal to trade a potentially worsened performance for
avoiding too much model specific bias.

5.5.2. Connecting weighting formulas

The connection to the effective area formula (5.69) with the more practical one using
simulation weights is shortly depicted below. From the definition of the effective area𝐴eff(𝛥𝐸, 𝛥𝛺) = 𝐴gen

̂𝑁(𝛥𝐸, 𝛥𝛺)̂𝑁gen(𝛥𝐸, 𝛥𝛺) , (5.78)

where 𝛥𝐸 and 𝛥𝛺 are arbitrary chosen integration intervals in energy and solid angle,
because the effective area is only properly defined under the integral, the number of
generated events per interval can be obtained from the flux or fluence assumption used
to sample the primary simulation particles𝜙gen = 𝜙0 ⋅ 𝑓(𝐸, 𝛺) . (5.79)
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The unit-less functional flux dependency is described in the usually energy and solid
angle dependent function 𝑓(𝐸, 𝛺). Because the generating function is usually uniform
and independent in solid angle it follows that 𝑓(𝐸, 𝛺) → 𝑓(𝐸) ⋅ 1/𝛺gen. The expected
number of simulated primaries in the interval is then given bŷ𝑁gen(𝛥𝐸, 𝛥𝛺) = 𝑁gen ⋅   𝛥𝛺𝛺gen

∫𝐸′+𝛥𝐸𝐸′ 𝑓(𝐸) d𝐸∫𝐸1𝐸0 𝑓(𝐸) d𝐸 . (5.80)

For neutrino simulation, where primaries are forced to interact close to the detection
volume, the number of events is given bŷ𝑁(𝛥𝐸, 𝛥𝛺) = 𝑁gen∑𝑖=1 𝑤𝑖,sel ⋅ 𝑝𝑖,int = ∑(𝑖|𝐸𝑖∈𝛥𝐸,𝛺𝑖∈𝛥𝛺) 𝑝𝑖,int , (5.81)

where 𝑤𝑖,sel is either 0, if the event is not present or 1 if it is present in the final selection
in bin 𝛥𝐸, 𝛥𝛺. Now replacing ̂𝑁gen and ̂𝑁 in the effective area definition yields

𝐴eff(𝛥𝐸, 𝛥𝛺) = 𝐴gen ⋅ ( ∑(𝑖|𝐸𝑖∈𝛥𝐸,𝛺𝑖∈𝛥𝛺) 𝑝𝑖,int) ⋅ 𝛺gen𝛥𝛺 ⋅ 1𝑁gen

∫𝐸1𝐸0 𝑓(𝐸)d𝐸∫𝐸′+𝛥𝐸𝐸′ 𝑓(𝐸)d𝐸 . (5.82)

Identifying and replacing the OneWeight definition from (5.72), the formula to obtain
the effective area estimate from a simulation data set becomes𝐴eff(𝛥𝐸, 𝛥𝛺) = 1𝑁gen𝛥𝛺 ⋅ (∑(𝑖|𝐸𝑖∈𝛥𝐸,𝛺𝑖∈𝛥𝛺) OneWeight𝑖 ⋅ 𝑓(𝐸𝑖))∫𝐸′+𝛥𝐸𝐸′ 𝑓(𝐸)d𝐸 . (5.83)

Sometimes a slightly modified version𝐴eff(𝛥𝐸, 𝛥𝛺) = 1𝑁gen𝛥𝛺 ⋅ ∑(𝑖|𝐸𝑖∈𝛥𝐸,𝛺𝑖∈𝛥𝛺) OneWeight𝑖𝛥𝐸 (5.84)

is used, which is only valid for small integration intervals, because it assumes an approxi-
mately constant generating function 𝑓 within an interval by simplifying𝑓(𝐸𝑖)∫𝐸′+𝛥𝐸𝐸′ 𝑓(𝐸)d𝐸 ≈ 𝑓(𝐸𝑖)𝑓(𝐸′) ⋅ 𝛥𝐸 ≈ 𝑓(𝐸𝑖)𝑓(𝐸𝑖) ⋅ 𝛥𝐸 = 1𝛥𝐸 . (5.85)

5.6. Frequentist methods

In this thesis, significances for hypothesis tests are obtained using frequentist methods.
This section shortly introduces the relevant terminology and is a summary of the extensive
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treatments in [CB02; BL13; Bar89]. The methods used are point estimation and interval
estimation. Usually, the result of a model-dependent point source search, as done here, is
a single best fit result. This best fit result is the point in the considered space of free
parameters that gives the most likely model to describe the measured data. This is called
a point estimate. To also obtain an estimate of the region of the true underlying physics
parameters, an interval estimation needs to be performed.

Point estimation is directly connected to hypothesis testing because for a given best-fit
result, the significance of being compatible with the null hypothesis is wanted, to see
if the alternative model is favoured. Therefore, the general procedure is to set the
null hypothesis to a background-only assumption or the current understanding of the
underlying physics. For a given point estimate, an incompatible result can give reason
to reject the null hypothesis and thus open the possibility to claim new discoveries. A
p-value 𝑝 gives the probability to obtain the given or a larger test statistic value under
the assumption that the null hypothesis holds𝑝 ≔ ∫∞𝑥 𝑓𝐻0(−2 ln 𝜆)d(𝑥) , (5.86)

where 𝑓𝐻0(−2 ln 𝜆) is the test statistic distribution under the null hypothesis 𝐻0. The test
statistic is generated by doing pseudo experiments by drawing samples from a distribution
that well resembles the parameter space of the null hypothesis. A small p-value indicates
a strong deviation from the test result from the expected behaviour of the null hypothesis.
It does not imply the truth of the alternative hypothesis though, but only that it is
unlikely for the data to originate from the null hypothesis distribution.

Using an interval estimation, further information on the possible value of the true
parameter can be obtained. In general, a frequentist confidence region [𝜃0, 𝜃1] for a
parameter 𝜃 at a confidence level 𝛼 is defined to have the property of “covering the true
parameter ̂𝜃 in a fraction 𝛼 of random measurements” [CB02]. Note, that the interval
itself is a random quantity and may or may not contain the true parameter. Only a
statement about ensembles of measurements can be made. By following the definition for
a consistent construction of the intervals, it is ensured the desired coverage probability is
reached.

A general method to construct confidence intervals is the Neyman construction [Ney37].
In a modern language, the method relies on the sampling of the probability space of
the defined parameter space, creating sets of samples for which the true parameters are
known. For example, a single parameter 𝑛𝑆 is fitted in a point source Likelihood, which
is an estimator for the true, but unknown signal strength 𝜇. Using a set of experimental
data 𝑋 = (𝑥1, … , 𝑥𝑁), a best-fit point estimator can be obtained by finding the parameter
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5. Point source searches with IceCube neutrinos𝑛̂𝑆, that maximises the Likelihoodℒ(𝑛𝑆) = 𝑁∏𝑖=1 𝑃(𝑛𝑠|𝑥𝑖) . (5.87)

By performing pseudo experiments and creating samples for which the true parameter
is scanned in a region of interest, a two-dimensional plane of the true and estimated
parameter can be created for the example case here. To construct the confidence interval
for 𝜇, first, an interval containing the probability 𝛼 is created on the sampled statistic
for each parameter 𝜇𝑖. This ensures a consistent treatment of the enclosed probabilities
according to the definition. Then the confidence interval for 𝜇 from the single point
estimate 𝑛̂𝑆 at a confidence level 𝛼 is the set of all 𝜇𝑖, which have the measured value𝑛̂𝑆 in the previously built interval. Using the histogram analogy, with 𝑛𝑆 on the x-axis
and 𝜇 on the y-axis, the interval [𝜇0, 𝜇1] is the vertical line that cuts through the band
created by marking the horizontal interval start and end points for each value 𝜇𝑖.
Interval estimation is closely related to hypothesis testing. Hypothesis testing is used to
find the acceptance region for a fixed set of model parameters by probing all possible
sample values. In interval estimation, the sample is fixed and the question is, which
model parameters plausibly explain the data in the whole parameter space. This can be
expressed schematically with(𝑥1, … , 𝑥𝑁) ∈ 𝐴(𝜃0) ⇔ 𝜃0 ∈ 𝐶(𝑥1, … , 𝑥𝑁) , (5.88)

with a function 𝐴 describing the acceptance region for the sample 𝑋 = (𝑥1, … , 𝑥𝑁) and
a function 𝐶 describing the confidence region for the true parameter 𝜃0.
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Despite the detected coincidence of the flaring Blazar TXS 0506+056 and a single ultra-
high-energy neutrino together with the evidence for a temporally constrained neutrino
flux about three years earlier, lasting 110 days, no other significant result of neutrino
point source searches were obtained so far. Most prominent examples are the generic
all-sky search, which scans the whole sky for an unknown neutrino emitter with a large
amount of data. Three analyses stand out in this scenario. One is testing the whole
sky using seven years of data with no prior assumptions [Aar+17a] and the other one
is probing only the northern sky with priors obtained from the most recent diffuse flux
measurement in the muon track channel [HW18; Rei18]. Both analyses could not find a
significant contribution, mostly because the large trial factor from scanning the whole sky
is lowering the significance. Another analysis of this kind is using the high energy starting
event sample directly to test for a clustering of these events, assuming at least some of
them originate from the same source region, again with no significant result [Aar+13a].
Therefore, many different approaches tried to search with more bias but potentially better
significance by introducing a priori knowledge of emission scenarios. One class of searches
relevant here is the stacked search approach. Expecting that individual sources are too
weak to be detected as a single source, it is tested for multiple sources of the same source
class, which are assumed to have similar intrinsic emission mechanisms. Popular and
well-motivated choices are, for example, Blazars and other sources known from source
catalogues created by other high energy astrophysical observatories like, for example,
FERMI [Aar+18a; Aar+17c; Aar+17d; Aar+17b]. To further reduce the background,
additional timing information can be taken into account. Several source classes exist for
transient events and neutrino emission is then also expected only on a corresponding time
scale [Bia+07; Kom15; Kat16]. All of the shortly summarized analyses above could not
find a significant contribution of the expected neutrino signal. The non-detection seen in
so many analyses may also have the reason that emission scenarios are not understood
well enough yet, so that the searched catalogues are not specific enough or biased towards
non-matching models, resulting in worsened sensitivity. Another problem might be that
there are simply not enough events collected so far to make significant statements about
weak source populations.

However, due to the lack of proper models, a generic approach is used here, under the
following assumptions. As the HESE events on their own show a clear astrophysical
signal and therefore should originate from some sources, also a lower energy neutrino flux
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should be produced during the emission of the high energy events [Mes14; Mur15]. Here,
a search for a clustering of events within the high statistics muon neutrino track sample
around the track-like high energy starting event locations is conducted. A stacking search
is used, because no significant signal can be seen by examining the HESE positions in the
aforementioned single source all-sky searches. This indicates that possible emitters are
likely too weak to reveal themselves within the large sample background. Additionally, in
this first analysis in this thesis, the possibility of a time-dependent emission, which might,
for example, originate from a flaring state, is considered [MNF11; Goo+07; ESR12].
This also further reduces the expected background and would be very sensitive to a
time-constrained emission scenario.

The analysis method uses the time-dependent, unbinned Likelihood approach as described
in section 5.3, which is similar to the one used for example in [Aar+18a] but with some
major methodical differences. The required test statistics to obtain final significances on
data are built on experimental data. Each source is always unique in its time window and
is also only present in a single sample, so all sources are treated independently of each
other. Because of the low amount of background in the tested, quite small time windows,
only a single free parameter, the expected signal strength is fitted. To further differentiate
between signal and background, instead of only using the spatial and temporal clustering,
energy information is used with the assumption, that all sources inject neutrinos with
energies following a generic 𝐸−2 power-law flux.

6.1. Per event distribution modelling

Spatial PDF

Here, the spatial signal PDF is modelled using a two dimensional, symmetric Kent
distribution, to take into account the per event uncertainties. The PDF is𝑓(𝛹|𝜅) = 4𝜋 sinh(𝜅)𝜅 exp (𝜅(cos(𝛹) − 1)) , (6.1)

where 𝛹𝑖,𝑘 = cos(𝛿𝑘) cos(𝛿𝑖) cos(𝛼𝑘 − 𝛼𝑖) + sin(𝛿𝑘) sin(𝛿𝑖) (6.2)

is the space angle between the positions of source 𝑘 and event 𝑖 in equatorial coordinates𝛿, 𝛼. Instead of using the Gaussian uncertainty 𝜎 directly, the Kent distribution uses the
transformation 𝜅 ≈ 1/𝜎2 which holds up to 𝜎 ≈ 40° [YT14; Jak12]. The Kent distribution is
used here, because it is correctly normalized on the sphere and virtually indistinguishable
from the two-dimensional Gaussian PDF for the small angular uncertainties of the
track-like events considered here.
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Background PDFs are constructed in equatorial coordinates as well and the distribution
is estimated from data, using only the off-time dataset to avoid signal contamination.
By using equatorial coordinates, the right ascension distribution is assumed to be flat,
which translates to a flat distribution in local azimuth coordinates. This holds well for
larger time windows, in which the detector rotation relative to the sky smooths out any
irregularities in the local azimuth PDF. For smaller time windows the assumption may
break down, and alternatively, an azimuth background PDF could be used as a drop-in
replacement. Here the PDF is only declination independent for simplicity and can be
written as 𝑓(𝛿𝑖|𝑡𝑘) = 12𝜋 ⋅ 𝑃 (𝛿𝑖|𝑡𝑘) , (6.3)

where 𝑡𝑘 is the time of source 𝑘 used to account for varying background strengths due to
seasonal variations. This considers that a source occurring in a time of lower than average
background rate has a higher chance of seeing a signal contribution, which is not influenced
by the change in background rate. Seasonal variations in the atmospheric neutrino flux
are directly correlated to the variation in temperature in the upper atmosphere layers.
The resulting change of the atmospheric density hinders or promotes the interaction
probabilities of pions and kaons from the primary cosmic ray interactions with the air,
so that the resulting shifted ratios of decay and interaction probabilities influence the
neutrino production [Bar+52; DG10; Gai13; Gra+10].

To build a custom background PDF for each source in its respective sample, first all
events in each sample are binned in 20 sin(𝛿) bins. The 14 innermost bins around the
horizon region, defined as 𝛿 ∈ [−30°, 30°], are more tightly spaced. Around the horizon,
the sample selection models are usually switched between dedicated models for the
Northern and Southern sky and the finer binning resolution helps to catch the important
features in the distributions, however, at the cost of higher variances. To capture the
time dependence of the declination dependent background rate, it is calculated by using
the runtime information from the samples. Due to a lack of proper runtime information,
the run lengths are estimated from data by subtracting the earliest from the latest event
time per bin12. The rate information is smoothed beforehand by re-binning the per run
rate bins using a monthly binning, ensuring more stable fits.

To get a continuous description for the background expectation per bin, a phenomenologic
model 𝑓(𝑡) = 𝐴 ⋅ sin (2𝜋𝑇 (𝑡 − 𝑡0)) + 𝑅0 (6.4)

is fitted to the re-binned time bin centres. The free parameters are amplitude 𝐴 and
average rate 𝑅0, both in units 1/s. For the fit in each bin the period length 𝑇 is fixed to365 days, the natural scale for the seasonal variations and the time offset 𝑡0 is fixed from
12This overestimates the background rate, because the earliest and latest events can only be close to the

real runtimes, which yields a slightly less performance of this analysis, but introduces no further bias.
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dependence on declination. To obtain a reasonable fit of the spline function to the data
points a weighted 𝜒2 fit is used here, too. The weights are chosen again as 1/𝜎par𝑖 , where
the standard deviations of the fit parameters are estimated from Likelihood landscape
scans of the rate model fits per bin. For the sake of simplicity it is assumed that Wilks’
theorem holds for the test statistics13 and the parameter uncertainties are not obtained
using a profile scan, but rather by simply using the edge values of the 1 𝜎 boundary box
around the minima. The fit parameters of the splines are tuned, so that the resulting
loss has approximately the value of𝑁bins∑𝑖=1 (𝑤𝑖 (𝑦𝑖 − 𝑓(𝑡𝑖)))2 ≈ 𝑁bins , (6.6)

which yields reasonable and stable results. The spline fits to the set of discrete parameters
for the amplitude and baseline of the sine model can be found in figure (B.4). Finally,
to get the background PDFs per source, the set of rate model parameters is read off
from the built splines on a fine sin(𝛿) grid and plugged into the rate model (6.4). For
each parameter set, the model is integrated over the sources time window to obtain an
average background PDF per source. To evaluate the PDF for each events’ declination, an
interpolating spline is used to include the dense grid in a continuous model. Figure (6.1)
shows the normalized spline PDFs for each source per sample.

Energy PDF

The energy PDFs introduces a significant amount of separation power compared to using
the spatial clustering only [Bra+08]. The integral values∫1−1 ∫∞0 𝑃(𝐸𝑖, sin 𝛿𝑖|𝐸𝜈, sin 𝛿𝜈) ⋅ 𝑃 (𝐸𝜈, sin 𝛿𝜈|𝛾)d𝐸𝜈d sin 𝛿𝜈 (6.7)

can be found using simulation if the conditional probabilities 𝑃(𝐸𝑖, 𝛿𝑖|𝐸𝜈) are analytically
unknown. This is done by directly estimating the convolved integral values. Here, a
two dimensional histogram in sin(𝛿) and in log10 of an energy proxy variable with 30
equidistant bins between ⌊min log10(𝐸proxy)⌋ and ⌈max log10(𝐸proxy)⌉ is used.

To directly obtain the needed signal over background ratio ∼ 𝑆𝐸/𝐵𝐸 used in the test
statistic formula (5.48), two histograms with the same binning are used, one by using data
to obtain the background PDF and the signal one by using signal simulation weighted to
the assumed power law fluence with index 𝛾 = 2. The bin volumes then cancel, leading to
13Which seems reasonable, as the landscapes turn out to be quite Gaussian-shaped around the minima.
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describe the ratios. No extra smoothing, for example, with a Gaussian kernel is applied
here. The resulting two-dimensional PDFs are shown in figure (6.2) for each sample.

A more general strategy could be to fill missing values conservatively to the lowest
non-zero entry per signal and background histogram separately and then taking the ratio.
To average out fluctuations, a smoothing spline could be fitted to the ratio histogram
using the statistical errors as smoothing conditions. This would also automatically yield
analytic derivatives in both axes, which can prove useful when fitting more parameters
than the single signal strength.

Temporal PDF

The time PDFs are defined as simple rectangle functions𝑆𝑇𝑖,𝑘 = 𝐵𝑇𝑖,𝑘 = 𝑇𝑘(𝑡𝑖) ≔ rect (𝑡𝑖 − 𝑡1𝑘−𝑡0𝑘2𝑡1𝑘 − 𝑡0𝑘 ) (6.9)

for both signal and background. For signal, this resembles a generic choice for an unknown
per-burst emission process. For background, the same sine function rate model used for
the spatial PDFs could more accurately be used. But as the amplitudes are small, even
at the largest time window the resulting PDF would be virtually indistinguishable from
a uniform distribution. So for code simplicity, a simple rectangle model is used for the
background PDF. This also means that no extra sensitivity is coming from the temporal
term, it is merely there to select events within the time windows and alters the amount
of total background contribution which is almost zero for the smallest time windows and
grows approximately linearly for the larger ones.

In this analysis, 21 time windows with total widths from two seconds to five days are
tested. This corresponds to typical scales of fast and medium burst length transient
sources with the potential of also having neutrino emission, like Gamma Ray or Fast
Radio Bursts [GF17; Hes17]. The time windows are spaced symmetrically around each
source. All sources are given the same time window and all time windows are tested
independently of each other. This is done to avoid an unstable resource consuming fitting
of the time window size but comes at the cost of an additional trial factor for testing
multiple windows and selecting the best one. The time window intervals can be found in
table (6.1).
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Table 6.1.: Used time windows 𝛥𝑇 = [𝑇0, 𝑇1] in seconds relative to each source event’s
detection-time in the time-dependent analysis. Each time window is tested independently from
the others and all sources share the same time window length in a single emission model set-up.

ID 𝛥𝑇 in s ID 𝛥𝑇 in s ID 𝛥𝑇 in s
1 [ −1.0, 1.0] 8 [ −73.6, 73.6] 15 [ −5421.4, 5421.4 ]
2 [ −1.8, 1.8] 9 [ −136.0, 136.0] 16 [ −10 019.3, 10 019.3 ]
3 [ −3.4, 3.4] 10 [ −251.4, 251.4] 17 [ −18 516.6, 18 516.6 ]
4 [ −6.3, 6.3] 11 [ −464.7, 464.7] 18 [ −34 220.4, 34 220.4 ]
5 [−11.6, 11.6] 12 [ −858.9, 858.9] 19 [ −63 242.4, 63 242.4 ]
6 [−21.5, 21.5] 13 [−1587.3, 1587.3] 20 [−116 877.5, 116 877.5 ]
7 [−39.8, 39.8] 14 [−2933.5, 2933.5] 21 [−216 000.0, 216 000.0 ]

6.2. Background estimation and stacking weights

The estimates of the number of background events per source, ⟨𝜆𝑘,𝐵⟩, are not fitted in
this analysis but fixed from a priori estimates on data. The values are obtained by fitting
the sine rate model to the whole off-time data on the whole sky, again using monthly bins.
The rate model for each sample is then integrated over each sources time window in that
sample, to obtain the average number of background events. As before, the amplitudes
are quite flat, so the exact integral is almost the same as just using the product of time
window length and average rate. The all-sky total run rates for each sample and the
fitted rate model can be seen in figure (B.5).

The a priori fixed stacking weights should resemble the expected signal emission as closely
as possible to the true case, otherwise it is unlikely that the analysis leads to significant
results on data. Because this analysis makes no explicit assumption on the emission
model, the weights are computed using a generic power law with index 𝛾 = 2. This also
implies that sources are assumed to emit the same intrinsic fluence. This is a strong
assumption, though justified by demanding an test as unbiased as possible and being
more conservative with regard to the unknown underlying source types.

The declination-dependent signal efficiency weight for each source in a specific sample
can be obtained by histogramming the declination values from signal simulation with
weights 𝑤𝑖 = 𝛷(𝐸𝜈,𝑖) ⋅ OneWeight′𝑖 . (6.10)

Here 𝛷(𝐸𝜈,𝑖) is the combined fluence of both neutrinos and anti-neutrinos the simulation
shall be weighted to. The histogram entries are then normalized by diving by the bin
width 𝛥𝛺bin to obtain a proper number density. If a fluence 𝛷(𝐸𝜈,𝑖, 𝑝) per particle type𝑝 is used, then an additional factor 𝑓𝑝 for the OneWeight needs to be considered, which
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gives the fraction of simulated particle types in the data set. Usually, the simulation files
are produced with 𝑓𝑝 = 0.5, so that 𝑁gen → 𝑓𝑝𝑁gen [GK05].

Here, an equidistant binning is used to model the signal distribution and the bin widths
are chosen to have at least 100 events in each bin. To obtain a continuous representation
of the expected events per declination model, a smoothing spline is fitted to the histogram
bin centres. For reasonable boundary conditions, values at the outermost bin edges are
added by linearly extrapolating the values from the two outermost bin centres at each
edge. The smoothing spline is created using a least squares minimization. The weights are
the inverse √𝑁𝑖 Poisson uncertainties of each bin 𝑖 and the least squares sum constraint
is set to the number of bins, so that the 𝜒2/dof ≈ 1 approximately holds if the spline
can reasonably describe the data. This gives a stable estimation of the number of events
per declination from the given Monte Carlo simulation, although the choice of the √𝑁𝑖
weights again leads to slightly biased fit results. From this spline, the signal efficiency
weights are read off for each exact source location. For each sample, this procedure is
repeated and the source weights are taken from the spline belonging to the sample they
fall into. The splines and the resulting source weights are shown in figure (B.6).

6.3. Note on LLH minimization

When minimizing the Likelihood to find the best-fit parameter 𝑛̂𝑆, the small background
in short time windows can be taken advantage of to solve the Likelihood minimization
analytically and save computation time. For small time windows, mostly no event, a
single event or two events actually have a significant contribution in the Likelihood
minimization. For these cases, an analytic result of the test statistic fit can be obtained.
Below are the analytic solutions for zero, one and two events with the single sample
Likelihood, where the number of events means the effective number of the non-zero signal
over background ratios, which is defined here by the removal of all events that have a
signal over background ratio of less than 1 ⋅ 10−3 from the Likelihood computation. This
measure only slightly distorts the Likelihood function around the minimum, because zero
terms would drop out anyway. However, due to the gained speed in trial computation,
more trials can be generated for more stable test statistic estimations. The same reasoning
holds for the multi-sample Likelihood where only a bit more bookkeeping is necessary to
entangle the contributions from each single sample Likelihood.

As a reminder, the single sample test statistic that is fitted is− 2 ln 𝛬 = −2𝑛𝑆 + 2 𝑁∑𝑖=1 ln (𝑛𝑆 ⋅ 𝑅𝑖 + 1) , (6.11)
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where 𝑅𝑖 = ∑𝑁srcs𝑘=1 𝑤𝑘𝑆𝑖,𝑘∑𝑁srcs𝑘=1 ⟨𝜆𝑘,𝐵⟩ 𝐵𝑖,𝑘 (6.12)

is introduced as a short-cut for the fixed signal over background ratios per event 𝑖. The
gradient in the single fit parameter 𝑛𝑆 then reads∂(−2 ln 𝛬)∂𝑛𝑆 = −2 + 2 𝑁∑𝑖=1 𝑅𝑖𝑛𝑆𝑅𝑖 + 1 . (6.13)

For zero events, the case is trivial because the “fit” is directly zero, as under-fluctuations
for 𝑛𝑆 < 0 are excluded in this analysis and it is only fitted for over-fluctuations. This
might result in slightly worse sensitivity and limits due to compressing the complete test
statistic in a delta peak at −2 ln 𝛬 = 0. Though, for code and fit procedure simplicity,
this is accepted in this analysis [Aar+17d]. For zero events, no sum term is surviving
and the analytic solution is

ln 𝛬 = −𝑛𝑆 ⇒ 𝑛̂𝑆 = 0 , ln ̂𝛬 = 0 . (6.14)

For a single surviving event, a single sum term is left and the linear equation needs to be
solved for 𝑛̂𝑆 in the gradient and re-inserted in the Likelihood to obtain the best-fit test
statistic. The best-fit 𝑛̂𝑆 is0 = −1 + 𝑅1𝑛𝑆 ⋅ 𝑅1 + 1 ⇒ 𝑛̂𝑆 = 𝑅1 − 1𝑅1 , (6.15)

which yields − 2 ln ̂𝛬 = −2𝑛̂𝑆 + 2 ln (𝑛̂𝑆 ⋅ 𝑅1 + 1) = −2𝑛̂𝑆 + 2 ln(𝑅1) (6.16)

for the best-fit test statistic value.

The last analytic case handled is the one with two events left, which leaves a quadratic
equation to solve in 𝑛̂𝑆0 = −1 + 𝑅1𝑛𝑆 ⋅ 𝑅1 + 1 + 𝑅2𝑛𝑆 ⋅ 𝑅2 + 1 (6.17)⇔ 0 = 𝑛2𝑆 + 𝑛𝑆 (𝑅1 + 𝑅2𝑅1𝑅2 − 2) + 1𝑅1𝑅2 − 𝑅1 + 𝑅2𝑅1𝑅2 . (6.18)

With the short-cut 𝑅1+𝑅2𝑅1𝑅2 ≔ ̃𝑐, the best-fit is obtained solving the quadratic equation𝑛̂𝑆 = —12 ̃𝑐 + 1 + √ ̃𝑐24 + 1 − 1𝑅1𝑅2 (6.19)
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The solution with the negative sign always resembles the fit for 𝑛𝑆 < 0 and is not
considered here. Re-inserting into −2 ln 𝛬 yields the best-fit test statistic− 2 ln ̂𝛬 = −2𝑛̂𝑆 + 2 ln (𝑛̂𝑆 ⋅ 𝑅1 + 1) + 2 ln (𝑛̂𝑆 ⋅ 𝑅2 + 1) . (6.20)

6.4. Trial generation

The Likelihood ratio test performs a discrimination between the null hypothesis, stating
that only diffuse background is present in the data, versus the alternative, stating that
also localized signal events are mixed in. In order to decide whether a fit on actual
data shows a significant signal, the behaviour or test statistic of pure background needs
to be known. The distribution is generally unknown when no further assumption like
the validity of Wilks’ theorem is made. However, it can be empirically estimated from
sampling background-like data and testing the hypotheses multiple times in pseudo-
experiments. This builds a distribution of test statistic values the final fit on data can be
compared against. To estimate the analysis’ performance before looking at the measured
data, simulated signal can be injected into the pseudo background samples.

Background trials

To obtain background-like pseudo-event samples, the experimental off-time data is re-
sampled in this analysis to avoid bias from mismatching simulation data [Aar+17d]. By
re-sampling data, it is either assumed that only a fraction of the sample is made from true
signal events, or that only data from off regions is used, so in regions where no signal is
assumed anyway. The first case uses randomized data and assumes that, when scrambled,
the few potential signal events don’t interfere with the larger portion of background like
events. The latter case only uses a fraction of the data in regions that are not tested
for a signal contribution. The first case is justified when only a few signal events are
expected in a large background sample, the second one, while being more rigorous, is
only convenient to do if a large and representative number of events survive after cutting
out the signal regions. Here the latter approach is used because the 22 sources only cover
a small fraction of the full livetime. Trials are generated and PDFs are built using only
the off-region data, holding the data from the largest time windows back. The on-time
data is only used once at the end, to do a single fit to obtain the analysis’ results

To generate a single pseudo background sample for a single trial run, the PDFs described
in section 6.1 are sampled to match the built models. First, for each source, the number
of background events to inject on the whole sky is drawn from a Poisson distribution with
a mean equal to the expected number of background events per source. For the requested
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number of events, the sin(𝛿) PDF is sampled so a different declination dependency
is sampled for each source, according to the models. The existing data events are
sampled with different declination distributions by re-weighting them to the current
declination PDF. The weights are computed using the ratio of a spline fitted to the
intrinsic distribution and the desired sin(𝛿) distribution spline. Right ascension values
are randomly assigned between 0 and 2𝜋 to match the assumed flat model. Next, new
times are sampled from the previously built rate models per source. The sampling is done
uniformly because the time windows are too short to explore the slight non-uniformity of
the rate model. The other used attributes are the estimated event energy and estimated
spatial uncertainty and are kept as-are from each re-sampled data event.

For each generated pseudo background dataset, the Likelihood is fitted in the free 𝑛𝑆
parameter to build the estimate of the test statistic distribution for a sample of expected
background. Note, that it is important not to tweak the seed for the fit parameter
depending on the trial type, background or injected signal, but to leave the seed selection
routine equal for all trials. Otherwise, a bias is obtained because the fitter might perform
better or worse for a special scenario which may not be known on pure data.

For this analysis, 108 trials with pure background pseudo data are performed to build an
independent test statistic per time window. The high number of trials is necessary to
compensate for the low background in the smaller time windows, in combination with
the truncation of 𝑛𝑆 at zero explained below. For the smallest time window the expected
number of background events in the whole sky is in the order of a single event, which
makes it rare to find any event in the vicinity of the tested source positions. Additionally,
an event candidate gets a high test statistic value only, if it is sufficiently close to one
of the source positions or has a high estimated energy. With larger time windows, this
effect gets less severe and more events are available to obtain test statistics with longer
tails and higher test statistic values. The larger a time window gets, the more the shape
of the corresponding test statistic resembles the 𝜒21 distribution expected from Wilks’
theorem.

Note that signal under-fluctuations are not regarded here, which means that any values𝑛𝑆 < 0 are truncated at 𝑛𝑆 = 0. This yields to a compactification of under-fluctuating
trials at a test statistic value of zero. This behaviour is more prominent for smaller time
windows, as the background events have a low chance to fake a signal-like contribution,
so the amount of under-fluctuations is much larger than the expected 50 % for a pure-
background sample. Another way to look at this is, that for Wilks’ theorem to hold and
to get about 50 % under- as well as over-fluctuations, both the signal and background
PDFs must be sampled equally well. If the time windows are small, then the probability
of having an event close by any source is small, so the signal PDF is almost never sampled
in the signal-like region. This leads to a lot of trials with test statistic values of zero, the
more, the smaller the time window length. Here, for the smallest time window over 99 %
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of all trials have a test statistic value of zero. For the largest time window, about 71 % of
all trials still come with a zero test statistic value. This is not a fundamental problem
per-se, but leads to worse performance estimates and limits, the worse the more zero
trials there are. Because of the compactification at the test statistic value of zero, the
limits can only start at values with a higher test statistic values for a meaningful estimate.
For example, if there are 99 % zero trials, then the smallest meaningful confidence level
that can be applied is about 2.5 𝜎, which leads to larger or worse limits than necessary
for any sought-after smaller confidence level. On the other hand, the small time windows
have such a low background, that any number of somewhat signal-like events showing up,
will lead to a high and close-to-detection significance.

The large number of generated trials allows to use the samples directly as an empirical
PDF representation up to approximately 4 𝜎, which leaves on average 6300 events in the
tails for robust quantile estimations. In principle, 108 samples would allow to empirically
estimate the significance up to about 5.7 𝜎, but with very poor statistics in the high
confidence regime. To make the p-value estimation more robust for large test statistic
values, the tail of each time windows test statistic is fitted with an exponential distribution.
To find a robust set of PDF parameters for the exponential tail, the PDF is fitted with an
unbinned Likelihood fit to the tail of the distribution starting from a threshold scanned
on a grid between 3 𝜎 and 4.5 𝜎 of the background test statistic. The best-fit is selected
using a Kolmogorov-Smirnov test [Hor77] and using the first threshold that no longer
supports the null hypothesis, that the fitted tail describes the empirical PDF well enough,
at 50 % confidence level. While being a somewhat arbitrary argument, this procedure
yields quite robust tails even for the test statistics in the smallest time windows. For the
larger time windows, the distributions become more similar to the 𝜒21 PDFs expected
from Wilks’ theorem and are naturally described by the exponential tails. The resulting
hybrid test statistic PDFs and the parameter scan for the Kolmogorov-Smirnov test
are shown in figures (6.3,6.4) for the three smallest and largest time windows and in
figures (B.14–B.18) for the other ones. An independent set of trials is used to verify the
validity of the tail fits, which reveals a slight, but not severe mismatch between the built
models and the independent trials, as shown in figure (B.11). The resulting PDFs are
then a hybrid made from the empirical distribution and the exponential PDF, which
continuously describes the distribution tails, and are used to estimate p-values for further
evaluations.

As a technical note for multiple samples, every single injector can be sampled individually,
because each source is unique in its corresponding dataset. The used multi sample
background injector thus simply loops over all individual background injectors.
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Signal trials

To estimate the analysis’ performance and to compute limits or constraints for a specific
choice of a source flux model, the Likelihood response to signal-like events need to be
tested. Because it is unknown which and if any events in the data are true signal events,
signal-like events have to be injected from simulation data. Using the already known
weighting scheme, any source emission scenario can be modelled. The injection mode
should mimic the emission scenario to obtain realistic estimates.

The used simulation approach is to select a pool of simulated signal events from a region
close to the source that shall be simulated. These events get rotated to the desired location
using the true simulation coordinates. This assures that events that are representative
for a source location on the sky are used from existing simulation. The signal simulation
is weighted to a per-burst emission to describe the tested emission scenario. Per-burst
emission means that the total number of expected signal events is independent of the
emission-time window, which is also reflected by the rectangle function PDFs in the
Likelihood. To correctly insert events corresponding to the desired target fluence, the
already shown weighting scheme using OneWeight is used𝑤𝑖,𝑘 = 𝑤src𝑘 OneWeight′𝑖 ⋅ 𝛷(𝐸𝜈,𝑖)𝛺𝑘 . (6.21)

where 𝑘 indicates the source, the event was selected from and 𝑤src𝑘 the intrinsic source
weight, normalized over all sources in the sample. The detection efficiency weight which
was used as a stacking weight in the Likelihood description is automatically intrinsically
included in the sample weights because the signal simulation sample was processed with
the same selection as the measured data set. The diffuse power-law fluence 𝛷(𝐸𝜈,𝑖) used
here is normalized to a point source fluence by dividing out the selection solid angle 𝛺𝑘
and is left with units 1/(GeV cm2). Events can be selected multiple times if they fall in
multiple source selection regions. All weights for each event in the whole pool of events
then get normalized, ∑𝑖,𝑘 𝑤̃𝑖,𝑘 = 1, so the weights are prepared for a weighted random
choice sampling procedure.

Usually, the injection is set up to rotate the true event coordinates to the source locations
and use the reconstructed coordinates in the Likelihood testing. Here, this would
overestimate the sensitivity because of the unknown source locations in this analysis. As
the source positions themselves are taken from reconstructed high energy neutrinos, they
also have a spatial reconstruction uncertainty. It is possible to take these uncertainties
into account in the Likelihood formulation, which would lead to a much more complicated
fit procedure and requires a lot of neutrino events to test against, because per source
two new free parameters would be introduced. In this time-dependent analysis, this is
not possible due to low statistics in the small time windows tested. However, in the
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performance calculation, this lack of information can be incorporated by simulating these
uncertainties during the signal injection.

The whole process is then done as follows: For each source, the pool of simulation events
is selected in a declination band around the best-fit source positions, which are also
tested against in the Likelihood formulation. The bands’ upper and lower boundaries
around each source are chosen by scanning the 3 𝜎 contour from the corresponding source
prior map and selecting the minimum and maximum declinations from the contour line.
The choice of using a 3 𝜎 band width is arbitrary but resembles a good compromise of
having enough statistics for the actual signal event injection per source and selection
regions that are representative for the PDFs describing the event properties at the sources’
locations in the sky. A more precise approach would be to re-select events at each drawn
new source position, which comes with additional computational cost. For all selected
events, the injection weights are computed as shown in equation (6.21). For the actual
injection during trial sampling, the events from the prepared pool are sampled randomly,
automatically respecting each sources contribution due to the weight construction and
the intrinsically simulated signal efficiency. The number of events drawn in total is given
as a Poisson mean number of signal events and the actual number of events drawn in each
trial fluctuates accordingly. To account for the unknown source positions, new point-like
source positions are drawn on the HEALPix grid for each trial as shown in figure (B.12).
The positions are drawn independently from each sources reconstruction prior PDF map
so that the most likely position is still the tested best-fit position. All drawn events are
rotated to their new source position in their true spatial coordinates. Lastly, a random
uniformly sampled new MJD time is assigned per event within the time window for each
source. As the time PDFs have no separation power the new time values could also be
chosen to have a constant value here. When time PDFs with real separation power are
chosen for an analysis, the signal time PDF must be properly sampled anyway, so the
more general approach is chosen here.

The sampled events are finally stripped from all Monte Carlo truth information, appended
to the background data, which is independently drawn for the trial, and the Likelihood
is fitted to the combined pseudo-sample. Doing this repeatedly creates a test statistic
distribution for a given mean true signal strength. This injection mode worsens the
analysis performance and limits but represents a more realistic performance estimation
in light of the unknown but constrained source positions.

6.4.1. Signal injection from multiple samples

The combination of several injectors per sample to simulate the signal for the multi-
sample Likelihood is done by distributed sampling from each single sample injector. For
a proper distribution of the requested number signal events to each injector, a similar
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weighting ansatz is used as for the multi-Likelihood 𝑛𝑆 splitting weights. The relative
amount of signal per emitter depends on the total fluence expected to be emitted from a
particular set of sources in a single sample. For a single injector, each event has weights
as shown in (6.21). To construct a multi-injector, which basically injects from a combined,
virtual sample, the intrinsic source weights need to be re-normalized to all sources in all
injectors. This catches the circumstance, that each source is unique in each sample. The
multi-injector construction for the steady state emission scenario described in chapter 7
works similarly, but with a different assumption on the source emission.

The new, re-normalized weights per sample can then be expressed by𝑤̃𝑖,𝑘 = 𝑤̃src𝑘 𝑤det𝑘 OneWeight′𝑖 ⋅ 𝛷(𝐸𝜈,𝑖)𝛺𝑘 , (6.22)

where 𝑤̃src𝑘 are the intrinsic source weights normalized over all samples𝑁sam∑𝑗=1
𝑁j,srcs∑𝑘=1 𝑤̃src𝑘 = 1 (6.23)

and the inner sum runs over all sources in sample 𝑗. Using the total number of expected
events from each sample by summing all re-normalized weights 𝑤̃𝑖,𝑘 per sample, the
relative event distribution can be computed. During sampling, the split number of events
for the current trial is sampled from a multinomial distribution with the distribution
weights as expectation values and each injector is requested to sample the distributed
amount of signal. The connection between the Poisson and the multinomial distribution
can be found in [BZ14].

6.5. Performance estimation

To estimate the analysis performance, the fluence needed from the whole source collection
in order to obtain a given significance in the final analysis result must be estimated.
This can be done by injecting a mean number of events for a given grid of mean signal
strength values and doing a number of trials at each grid point to construct the Neyman
plane14. In each trial, the actual number of injected signal events is drawn from a
Poisson distribution with the currently selected mean number of events from the source
to simulate the measurement process. These trials are used to obtain Neyman upper
limits for the needed fluence strength. The method described here, can be used to obtain
a performance estimation for the normalization of a given global fluence model.
14See section 5.6 for a short introduction on confidence intervals and hypothesis testing.
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After sampling an empirical test statistic for all tested signal strengths, instead of using
the empirical CDFs directly, a generic 𝜒2 CDF is fit to the discrete sample points for
smooth interpolation and to find a more robust estimate of the desired performance value.
While not having a deeply justified connection to the sampled distributions, the function
is variable enough to smoothly describe the sampled points. The desired performance
values over a given test statistic value from the pure background trials can then be
obtained from the analytic 𝜒2 CDF.

The fit is done using an unweighted 𝜒2 fit with the loss𝑁∑𝑖=1 (CDF𝑖 − 𝜒2
CDF(𝑥𝑖|𝑘, 𝑙, 𝑠))2 , (6.24)

where the three free fit parameters are the degrees of freedom 𝑘, the 𝑥−axis offset 𝑙 and
the scale 𝑠 of the 𝜒2 CDF. The location and scale parameters influence the distribution
with the transformations𝑦 = 𝑥 − 𝑙𝑠 and 𝜒2(𝑥|𝑘, 𝑙, 𝑠) = 𝜒2(𝑦|𝑘)𝑠 (6.25)

and make the resulting CDF quite flexible.

To ensure a proper fit, the seeds for the degrees of freedom and the location parameters are
guessed as follows: For the 𝜒2 distribution with degrees of freedom 𝑘, the expressions

Mean (𝑥) = 𝑘 , Var (𝑥) = 2𝑘 (6.26)

hold and the approximation

Median (𝑥) ≈ 𝑘 (1 − 29𝑘)3
(6.27)

for large 𝑘 is valid [BL13; AS74]. Using empirical estimates on the sampled distributions
for the median and the standard deviation, a rough first guess estimate can be obtained
using 𝑘 ≈ 𝑑22 , (6.28)

where 𝑑 is the absolute distance between the median and standard deviation positions.
The scale is seeded at a value of 1 and it is also quite correlated to the degrees of freedom
parameter. Therefore, when a fit is not converging, the scale is therefore fixed at 1 and
only the degree of freedom parameter and the location is fitted.

The advantage of this grid sampling method is, that trials can be reused to evaluate
multiple performance definitions if the statistics are high enough. Here 20 000 trials
were done at each grid point, which is enough for the usual definitions of sensitivity
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and discovery potential. Sensitivity is defined as the average 90 % upper limit, meaning
the flux or fluence needed to shift the signal injected test statistic’s 90 % quantile over
a test statistic value of 0 of the background distribution. Respectively, the discovery
potential is defined as the flux or fluence needed to obtain a 5 𝜎 result in 50 % of the
trials. Another advantage is, that the whole Neyman grid construction can be visually
inspected to see if any errors occurred during the minimization or trial generation and
that confidence intervals for the true signal strength can be inferred from the best fit 𝑛̂𝑆
value. Uncertainties on the limits or bounds themselves, resulting from the fit of 𝜒2 CDF
to the finite sample size, could be obtained via trial bootstrapping and refitting or error
propagation. This is neglected here due to the high number of trials done per grid point
and the dense grid itself. The CDF fits for sensitivity and discovery potential per time
window are shown in figure (B.13).

To express the performance in flux or fluence rather than injected events, the mean
injection strength must be converted to a physical intrinsic fluence at the sources. This
conversion follows straight from the weighting relation between the fluence and number
of events 𝑁 = 𝑁srcs∑𝑘=1 ∑(𝑖|𝛺𝑖∈𝛺𝑘) 𝑤𝑘 OneWeight′𝑖 ⋅ 𝛷0 ⋅ 𝑓(𝐸𝜈,𝑖)𝛺𝑘 (6.29)

= 𝛷0 ⋅ 𝑁srcs∑𝑘=1 ∑(𝑖|𝛺𝑖∈𝛺𝑘) 𝑤′𝑘,𝑖 ≔ 𝛷0 ⋅ 𝑁srcs∑𝑘=1 𝐹𝑘 = 𝛷0 ⋅ 𝐹 , (6.30)

where the outermost sum runs over each source contribution and 𝑤′𝑘,𝑖 is the whole fluence
weight just without the proper fluence normalization. The sum over 𝐹𝑘 ≔ 𝑤′𝑖,𝑘, 𝐹, then
has all the properties of the final fluence except the proper normalization. This relation
connects the number of events 𝑁 at the detector to the combined intrinsic source fluence
strength 𝛷0 𝛷0(𝑁) = 𝑁𝐹 or per source 𝛷𝑘0(𝑁) = 𝑤̂src𝑘 ⋅ 𝛷0(𝑁) , (6.31)

where 𝑤̂src𝑘 are the normalized intrinsic source weights. The reverse relation from the
combined intrinsic fluence to events then yields𝑁(𝛷0) = 𝛷0 ⋅ 𝐹 or per source 𝑁(𝛷0) = 𝛷0 ⋅ 𝐹𝑘 . (6.32)𝛷0 is to be understood as the fluence normalization at a given, fixed energy, here at
1 GeV. Another usual convention is to use the normalization at 100 TeV which doesn’t
change the physics result, but simply shifts the pivot point of the underlying unbroken
power-law to higher energies. To express an unbroken power-law with spectral index
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source would only emit events in that energy range and nowhere else. For each energy bin,
a fluence normalisation which represents the fluence needed if it would only be non-zero
in the current energy bins, is obtained with this procedure.

Note, that the differential performance, as described here, cannot directly be compared
to a differential fluence model. This is because the tested hypothesis assumes that the
fluence is only non-zero in the corresponding energy bin. Therefore, the differential
performance strongly depends on the size of the chosen energy bin. Although the number
of injected events stays roughly equal when the bin size is getting smaller, the resulting
fluence increases because it measures events per energy. Thus, a global fluence can be
made compatible with any differential fluence performance in a bin by decreasing the bin
size of the differential limits. However, the limits can be used to calculate a global limit,
which is directly comparable to other differential fluence models. This can be used to
provide a flexible method for the reader, to obtain performances or limits for its own
model creations. The differential sensitivities and discovery potentials per time window
are shown in figure (6.6) and the corresponding fluence values can be found in tables (B.1,
B.2). The corresponding 𝜒2 CDF fits for each bin and each time window used to derive
the fluences can be seen in figures (B.19–B.39).

Because the differential performance fluence normalisations hold all the information of a
global limit, where the only difference is, that the whole energy range would have been
used in the injection procedure, it is possible to re-obtain the global performance for
the same injection fluence from the differential limits. For this, the average number of
events 𝑁 that would have been needed to be injected on the whole energy region needs
to be computed from the injected number of events 𝑁𝑗 per bin. This can be done via a
weighted sum 𝑁 = 𝑁bins∑𝑗=1 𝑁𝑗𝑤̃𝑗 = 𝑁bins∑𝑗=1 𝑁𝑗 𝑤𝑗∑𝑁bins𝑘=1 𝑤𝑘 . (6.34)

The weights can be derived by the following properties of the performance: First, the
weights should be higher in bins, where more signal events are expected at detector level,
thus lowering the needed fluence in presence of many signal events. This is expressed by
the 𝐹𝑗 quantity in equation (6.35), which gives the expected number of events at detector
level under consideration of the functional form 𝑓(𝐸𝜈) of the underlying source spectrum.
On the other hand, the weights should decrease, if a large number of actual events
compared to the expected events from 𝐹𝑗 is needed. This indicates a large background
contribution in that bin and is lowering the performance, resulting in a higher fluence.
Combining both properties and using the total un-normalized fluence per bin 𝐹𝑗, defined
as 𝐹 for the global model in equation (6.29),𝐹𝑗 = 𝑁srcs∑𝑘=1 ∑(𝑖|𝐸𝑖∈𝛥𝐸𝑗,𝛺𝑖∈𝛺𝑘) 𝑤𝑘 OneWeight′𝑖 ⋅ 𝑓(𝐸𝜈,𝑖)𝛺𝑘 , (6.35)
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which acts as the conversion factor from intrinsic source fluence to the measured number
of events at detector level. As seen in equation (6.31), the weight 𝑤𝑗 for each bin 𝑗 can
be written as 𝑤𝑗 = 𝐹𝑗𝑁𝑗 = 1𝛷0𝑗 , (6.36)

where 𝛷0𝑗 is the differential performance fluence normalization, which is computed
equivalently to the the global normalisation, as described in section 6.5, but for each bin
independently. For the global amount of signal events that get injected proportional to𝑓(𝐸𝜈) over the whole energy range, this further yields the expression

𝑁 = 𝑁bins∑𝑗=1 𝑁𝑗 𝑤𝑗∑𝑁bins𝑘=1 𝑤𝑘 = 𝑁bins∑𝑗=1 𝑁𝑗 1𝛷0𝑗∑𝑁bins𝑘=1 1𝛷0𝑘 . (6.37)

Note that the global injection mode would intrinsically compute the same weights and
inject events correctly distributed to their energy region accordingly.

Further, expression (6.37) can be used to additionally obtain the global fluence normali-
sation for the same fluence which was used to inject events per bin. This usually is the
more interesting case, because it is connected to an actual physical quantity. For the
total fluences 𝐹𝑗, the connection

𝐹 = 𝑁bins∑𝑗=1 𝐹𝑗 , (6.38)

with the global fluence 𝐹 holds, because the weighting formula (6.35) is additive across
multiple bins. This is because a global model injector would internally just compute
the sum over all available events 𝑖. Inserting this relation and the previously shown
relation (6.36) to obtain the number of expected events from a given fluence, into
equation (6.37) yields

𝑁 = 𝑁bins∑𝑗=1 𝑁𝑗 1𝛷0𝑗∑𝑁bins𝑘=1 1𝛷0𝑘 = 𝑁bins∑𝑗=1 𝐹𝑗 ⋅ 1∑𝑁bins𝑘=1 1𝛷0𝑘 = 𝐹 ⋅ 1∑𝑁bins𝑘=1 1𝛷0𝑘 (6.39)⇔ 𝑁𝐹 = 𝛷0 = 1∑𝑁bins𝑘=1 1𝛷0𝑘 (6.40)

for the desired global fluence normalization 𝛷0.

In addition to obtaining the the global performance on the fluence normalisation 𝛷0 from
the differential performance normalisations 𝛷0𝑗 for the same flux model, global limits for
any other fluence model can potentially be derived. The needed condition for this to
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hold, is that the energy bins must be small enough, so that the influence of the originally
injected spectrum, usually an unbroken power law, and the spectrum that the global
performance shall be calculated for is negligible in the bin. This means, that the number
of injected events needed to match the performance condition stays approximately the
same, regardless of which functional fluence dependence is used to inject the events. If
that condition is met, then the fluences per event 𝑓(𝐸𝜈,𝑖) in (6.35) can approximately be
replaced by the average fluence model ̄𝑓 in that bin𝐹𝑗 = ∑(𝑖|𝐸𝑖∈𝛥𝐸𝑗,𝛺𝑖∈𝛺𝑘) 𝑤̃𝑖,𝑘 ⋅ 𝑓(𝐸𝑖) ≈ ∑(𝑖|𝐸𝑖∈𝛥𝐸𝑗,𝛺𝑖∈𝛺𝑘) 𝑤̃𝑖,𝑘 ⋅ ̄𝑓𝑗 . (6.41)

The weights 𝑤̃𝑖,𝑘 are introduced as a shorthand notation and the average of the model
can be calculated via integration ̄𝑓𝑗 = ∫𝛥𝐸𝑗 𝑓(𝐸) d𝐸𝛥𝐸𝑗 . (6.42)

This approximation allows to re-weight the raw fluxes to an arbitrary new target flux
function 𝑓 ′(𝐸) with𝐹 ′𝑗 = ∑(𝑖|𝐸𝑖∈𝛥𝐸𝑗,𝛺𝑖∈𝛺𝑘) 𝑤̃𝑖,𝑘 ⋅ ̄𝑓 ′𝑗 = ∑(𝑖|𝐸𝑖∈𝛥𝐸𝑗,𝛺𝑖∈𝛺𝑘) 𝑤̃𝑖,𝑘 ⋅ ̄𝑓𝑗̄𝑓𝑗 ⋅ ̄𝑓 ′𝑗 = 𝐹𝑗 ⋅ ̄𝑓 ′𝑗̄𝑓𝑗 . (6.43)

Using this re-weighted relation, the global number of injected events and the global
new fluence normalisation 𝛷′0, now for the new fluence 𝛷′ can be computed as shown in
equations (6.37) and (6.40) with𝑁 = 𝑁bins∑𝑗=1 𝑁𝑗 𝑤𝑗∑𝑁bins𝑘=1 𝑤𝑘 (6.44)

and 𝛷′0 = 1∑𝑁bins𝑗=1 𝑤𝑗 , (6.45)

where the constant 𝛷′0 can shift the whole spectrum 𝛷′ up and down. The weights 𝑤𝑗
are computed from 𝑤𝑗 = ∫𝛥𝐸𝑗 𝑓 ′(𝐸) d𝐸𝛷0𝑗 ⋅ ∫𝛥𝐸𝑗 𝑓(𝐸) d𝐸 . (6.46)

It can be seen, that the first case of obtaining the global normalization for the same
fluence as the injection fluence, is a special case of the general weights in equation (6.46).
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When having the same fluence, the weights simplify to𝑤𝑗 = ∫𝛥𝐸𝑗 𝑓(𝐸) d𝐸𝛷0𝑗 ⋅ ∫𝛥𝐸𝑗 𝑓(𝐸) d𝐸 = 1𝛷0𝑗 , (6.47)

yielding the same result as shown in equation (6.40).

6.7. Post-trial method

In this analysis, the Likelihood is only fitted for the single signal strength parameter𝑛𝑆. For a two-parameter fit, the number of events is not sufficient for a meaningful
fit for small time windows. Nevertheless, multiple time windows are tested because a
possible true time window size is unknown. By doing the grid scan in 21 different time
windows, a trial factor needs to be regarded though [GV10]. The trial factor accounts
for the fact, that multiple options are trialled and a-posteriori the best one is chosen as
the final result. The connection to Wilks’ theorem here is as follows: Wilks’ theorem
states, that the difference in the number of free parameters comparing the alternative and
null hypothesis is the degree of freedom of the resulting 𝜒2 test statistic. Fitting more
parameters, adding for example the time window length as a free parameter, the test
statistic would approximately follow a 𝜒2 distribution with higher degrees of freedom,
thus incorporating a trial factor automatically. This trial factor needs to be included
manually here as a penalty for trialling multiple discrete time windows in the whole
allowed parameter space and picking the best result a posteriori.

The procedure to finally obtain a trial-corrected result is a follows: In the end, the
best out of 21 time windows is picked. To estimate the effective trial factor, the same
procedure as used to obtain the final result on data needs to be simulated by using
samples following the null hypothesis distribution, so from pseudo background samples
in this case. Different from the background trials per time window done before, here the
trials are created correlated to each other, like it is the case with the measured dataset in
the end. The largest time window is used to create a pseudo sample of pure background
events. This sample is then fitted with the 21 different time window Likelihoods and all
fit results are recorded per trial. From each trial, the pre-trial p-values are computed
using the independent background test statistics per time window. The smallest pre-trial
p-value per trial enters the final post-trial distribution against which the best p-value
on the final data result is compared. For the final result, the single fit for each time
window is undergoing the same procedure and the best pre-trial p-value is inserted into
the post-trial distribution to obtain the final result significance.

The post-trial distribution may be described by the following PDF, which gives the
probability to observe no p-value lower than a given minimal p-value 𝑥, min𝑖 𝑝𝑖 ≤ 𝑥
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from a set of 𝑁 p-values {𝑝𝑖}. The cumulated distribution function can be constructed
using the fact that, by definition, p-values have a uniform distribution under the null
hypothesis. This yields𝑃(min𝑖 𝑝𝑖 ≤ 𝑥) = 1 − 𝑃(min𝑖 𝑝𝑖 > 𝑥) (6.48)= 1 − 𝑃(𝑝1 > 𝑥) ⋅ ⋯ ⋅ 𝑃 (𝑝𝑁 > 𝑥) = 1 − (1 − 𝑥)𝑁 , (6.49)

by demanding, that each p-value is independent. To obtain the PDF, the derivative of
the constructed CDF 𝑃 needs to be taken𝑓( ̂𝑝) = d𝑃

d𝑥 ∣𝑥=𝑝̂ = −𝑁(1 − ̂𝑝)𝑁−1 , (6.50)

or for the often used distribution of the negative logarithm to base 10 of the p-values𝑦 = − log10( ̂𝑝) → 𝑓(𝑦) = 𝑓( ̂𝑝(𝑦)) ⋅ d ̂𝑝
d𝑦 = 𝑁  (1 − 10−𝑦) ⋅ − ln(10) ⋅ 10−𝑦 , (6.51)

where the rule for transforming probability densities was used [BL13].

The aforementioned independence of p-values may not hold in practice which can lead
to deviations in the effective analytic trial factor. In this analysis, for example, the
time windows are not independent, because each next larger time window includes all
smaller ones. Therefore 106 post trials are done here to have a robust empirical estimate
for the post-trial distribution, even for higher significances without having to assume
some underlying model. Figure (6.7) shows the resulting post-trial test statistic and the
connection between the pre-trial and post-trial significances.
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high energy starting events taken as source positions. Table (6.2) summarizes the pre-trial
fit results. The best pre-trial fit was achieved for the largest time window [−2.5, 2.5]
days centred around each source with a pre-trial p-value of 0.068, the best-fit test
statistic of 1.82 and 2.32 signal-like events. The final, trial corrected p-value is then 0.30
corresponding to 1.03 𝜎, obtained by inserting the smallest pre-trial value in the survival
function of the empirical post-trial distribution.

Table 6.2.: Results of the time-dependent stacking search with 22 track-like high energy
starting events as sources. The fit results per time window performed on held-back on-time
data are shown. All p-values 𝑝 are pre-trial. The most significant and only non-zero result for
the largest time window 21 needs to be trial corrected.

ID 𝑛̂𝑆 −2 ln ̂𝛬 𝑝 ID 𝑛̂𝑆 −2 ln ̂𝛬 𝑝
1 0 0 1 11 0 0 1
2 0 0 1 12 0 0 1
3 0 0 1 13 0 0 1
4 0 0 1 14 0 0 1
5 0 0 1 15 0 0 1
6 0 0 1 16 0 0 1
7 0 0 1 17 0 0 1
8 0 0 1 18 0 0 1
9 0 0 1 19 0 0 1

10 0 0 1 20 0 0 1
21 2.32 1.82 0.068
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7. Time-integrated analysis

In addition to the time-dependent analysis in the previous chapter 6, a time-integrated
analysis is performed to test for a potential steady flux scenario from the high energy
starting event positions. This may be seen as the special case to the previous analysis
using time windows as large as all samples combined across all sources. Instead of using
a self-developed computing code, the calculations are mostly done using the skylab
[Aar+17a; Coe17] module here, which is a versatile tool for performing various types of
time-integrated point source searches in IceCube. Therefore the technical details of the
implementation can be reviewed in the software description and only a short summary
focusing on the key differences to the time-dependent search is given in this chapter. For
the signal injection, the same injection code as used for the time-dependent analysis is
used via a small adapter to be able to take the source position uncertainties into account
with the skylab code.

As mentioned before, no significant excess of neutrinos at any location on the sky could
be found in the extensive all-sky search with seven years of data. The results also indicate,
that at each HESE position no significant source can be identified. This motivates to
additionally conduct a time-independent stacked search independently of the previous
time-dependent one, to check for the possibility that the sources, that have emitted the
high energy starting events, are only emitting enough events for a significant detection in
a combined search.

The method used in this analysis is similar to the previous one and uses the same
underlying Likelihood mechanism. The detailed derivation of the used formula using
different approximations suitable for large statistics samples and a steady source scenario
can be seen in the dedicated section 5.4. The fact that all sources are assumed to
contribute to the common neutrino flux at all times throughout all samples simplifies
the construction of background PDFs and the process of trial generation. Therefore no
splitting in off- and on-data regions is done beforehand. By scrambling all data events in
right ascension before building any PDFs or doing trials, the experimental data is kept
“blinded”.

The main difference to the time-dependent analysis is the usage of an unbroken power law
spectrum with a variable spectral index in the energy PDF. This introduces a second free
fit parameter, namely the spectral index 𝛾 of the assumed power law flux ∝ 𝐸−𝛾 shared
between all sources under the assumption of equal intrinsic emission. Due to the larger
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available statistics, it is possible to reliably fit the additional parameter. From a technical
point of view, the new degree of freedom is also needed to match the model to background
and signal assumptions. While the specific shape of the underlying spectral model was
not very important in the time-dependent analysis due to the low overall background
expectation, it is necessary here to distinguish signal and background contributions more
efficiently.

Performance estimation is done exactly as in the time-dependent analysis, by scanning a
grid of true source strengths and building a test statistic for each grid point. This yields
the Neyman plane marginalized over 𝛾 and can be used to fit a fairly general 𝜒2 CDF to
the samples, to build the required performance parameters or limits. Also differential
performances are calculated for a quite high resolution to allow for the computation of
a wide range of custom models. No post trials are needed here because no grid scan
is performed. Instead, the spectral index is fitted directly, which incorporates the trial
factor automatically in the fitting procedure.

7.1. Per event distribution modelling

The methods to generate probability distributions from measured data and simulation,
are chosen to be compliant to previously conducted IceCube point source analysis, which
used the same or similar datasets for time-integrated searches. A set of rules regarding
the binning and handling of these data, tuned for optimal results in time-integrated
searches is therefore also used in this analysis and shortly described below.

Spatial PDF

Here, the spatial signal PDF is defined as a two-dimensional Gaussian distribution. How-
ever, this makes virtually no differences to the signal PDF for the time-dependent analysis,
where the Kent distribution was used. As the dataset consists of well-reconstructed muon
tracks, the angular uncertainty is small enough to avoid the regions in which both PDFs
would start to severely differ.

The background PDF construction is similar to the time-dependent ones, but is simpler
to compute here. Because seasonal variations are averaged out in the whole sample
livetime, it is sufficient to construct a single average distribution from data to describe
the background behaviour 𝑓(𝛿𝑖) = 12𝜋 ⋅ 𝑃 (𝛿𝑖) . (7.1)

This is done by histogramming the data events in sine of declination and fitting an
interpolating spline through the resulting bin centre points to have a smooth and
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continuous representation of the PDF available. Again, for being consistent with the
commonly used PDFs in IceCube, the binning is chosen a bit different than in the previous
analysis, which makes almost no difference in the used PDF. The binning set-up can be
looked up in the skylab module which collects the shared settings for the datasets. In
figure (7.1) the sin(𝛿) PDF for each sample and a comparison to the binning used in the
time-dependent analysis can be seen.

Energy PDF

The energy PDF needs to be built and evaluated for multiple power law spectral indices
because the second fit parameter is the spectral index of the assumed source flux. To
avoid long computing times by re-calculating the two-dimensional PDFs in sin(𝛿) and
log10 (𝐸proxy) for every index 𝛾 occurring during the fitting procedures, the PDFs are
built and cached for a fine grid of spectral indices beforehand.

For a fixed index 𝛾 the histograms are built as before from data and signal simulation
with the same binning and the ratio is built to describe the signal over background ratios
for the energy term. For simulated signal data, the number of events per bin can be
computed using the modified OneWeight15𝑁(𝛥𝐸, 𝛥𝛿) = 𝑇 ⋅ ∑(𝑖|𝐸𝜈,𝑖∈𝛥𝐸,𝛿𝑖∈𝛥𝛿) OneWeight′𝑖 ⋅ 𝜙(𝐸𝑖|𝛾)𝛥𝛿𝛥𝐸 , (7.2)

where now the spectral index 𝛾 can vary for each source flux hypothesis and each sample
livetime 𝑇 needs to be regarded to adapt the expected number of signal events for each
sample accordingly. The binning can again be looked up in the skylab module. Also, a
more conservative approach is followed here compared to the time-dependent analysis,
which is necessary due to the flexible spectral index and the way the ratios are constructed.
The ratios without valid background or signal histogram points are set to the lowest ratio
and are thus made very background-like. This may worsen the sensitivity, especially for
high energy proxy values and hard spectra, but cannot artificially introduce separation
power based on low simulation or data statistics. An approach to resolve this would
be to fill in missing values in the background and signal PDF histograms themselves
using the underlying model assumptions. The ratio would then be defined in every pixel
before taking the ratio. Figures (7.2) and (B.42–B.44) show the change of the signal over
background PDF ratios for selected spectral indices per sample.

To cache the energy PDF dependency on the spectral index, the signal over background
ratios are built for each 𝛾 on a grid, which is constrained in the interval [1, 4] to cover a
broad range of physically plausible hard and soft energy spectra. The stack of histograms
15See equation (5.72) for a more detailed description of OneWeight.
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is then used to create a one-dimensional spline in the 𝛾 direction on the fly for each
pair of (sin(𝛿), log10 (𝐸proxy)) during the fit, to obtain a continuous description and get
the needed derivatives for the fit in analytic form as well. The built splines are cached
during runtime to avoid repeated construction for the same declinations and energies.
Another approach would be to use multi-dimensional splines directly to parametrize
the PDF. In this case, the spline would be three-dimensional, in log10 (𝐸proxy), sin(𝛿)
and 𝛾. The advantage would be to have a single description of the PDF and obtain
analytic gradients in all directions automatically. However, it might be more difficult to
verify a proper description of the underlying data for higher dimensions, so a thorough
verification process would be needed. Alternatively, a multidimensional kernel density
estimation could be considered, which would automatically come with the possibility to
directly sample the distributions for trial generation.

7.2. Stacking and multi-sample weights

Here, the source weights and the multi-sample 𝑛𝑆 split weights both depend on the current
spectral index and have to be re-evaluated each time the index changes. Otherwise, the
calculation happens similar to the procedure in the time-dependent analysis, but the
signal simulation needs to respect the sample lifetimes 𝑇 and the current spectral index𝛾 for the assumed power-law flux 𝜙 in the weights𝑤𝑖 = 𝑇 ⋅ 𝜙(𝐸𝜈,𝑖|𝛾) ⋅ OneWeight′𝑖 . (7.3)

An interpolating spline is used to continuously describe the built histogram, normalized
by the bin width 𝛥𝛺bin. Though using the same spline per sample, the difference in the
construction of the stacking and sample split weights, compared to the time-dependent
analysis, is the normalization procedure. Stacking weights only consider how a given signal
is split according to the expectation within one sample and are normalized accordingly𝑁src∑𝑘=1 𝑤𝑘,𝑗 = 1 , (7.4)

whereas the 𝑛𝑆 sample split weights 𝑤𝑗 follow the normalization rule from the aforemen-
tioned law of total probabilities (5.12)𝑁sam∑𝑗=1 𝑤𝑗(𝛾) = 𝑁sam∑𝑗=1

𝑁src∑𝑘=1 𝑃(𝑗|𝑘, 𝛾) ⋅ 𝑃 (𝑘|𝛾) = 1 , (7.5)

where 𝑃(𝑗|𝑘, 𝛾) and 𝑃(𝑘|𝛾) can again be obtained by the number of expected events
depending on the current spectral index 𝛾 and have to be adapted accordingly during a
fitting procedure. The dependency on the spectral index is not strong though, as can be
seen in figure (B.40).

84



7.3. Note on LLH minimization

7.3. Note on LLH minimization

The extra fit parameter 𝛾 makes it necessary to calculate an additional analytical gradient∂𝛾 to avoid costly Likelihood evaluations for numeric gradient calculations and to obtain
precise gradients. For the full multi-sample Likelihood (5.64), the gradients are∂(−2 ln 𝛬)∂𝑛𝑆 = ∂∂𝑛𝑆 {2 𝑁sam∑𝑗=1 [ 𝑁𝑗∑𝑖=1 ln (𝑛𝑆𝑁𝑗 (𝑅𝑖,𝑗 − 1) + 1)]} (7.6)

= 2 𝑁sam∑𝑗=1 [ 𝑁𝑗∑𝑖=1 𝑅𝑖,𝑗 − 1𝑛𝑆 (𝑅𝑖,𝑗 − 1) + 𝑁𝑗 ] (7.7)

for 𝑛𝑆 and ∂(−2 ln 𝛬)∂𝛾 = ∂∂𝛾 {2 𝑁sam∑𝑗=1 [ 𝑁𝑗∑𝑖=1 ln (𝑛𝑆𝑁𝑗 (𝑅𝑖,𝑗 − 1) + 1)]} (7.8)

= 2 𝑁sam∑𝑗=1 [ 𝑁𝑗∑𝑖=1 𝑛𝑆𝑛𝑆 (𝑅𝑖,𝑗 − 1) + 𝑁𝑗 ⋅ ∂𝑅𝑖,𝑗∂𝛾 ] (7.9)

for 𝛾 respectively, where𝑅𝑖,𝑗 = 𝑅𝑖,𝑗(𝛾) ≔ ∑𝑁srcs𝑘=1 (𝑤𝑗(𝛾)𝑤𝑘,𝑗(𝛾)𝑆𝑖,𝑘,𝑗(𝛾))𝐵𝑖,𝑗 (7.10)

was introduced for a shorter notation. The ∂𝛾 derivatives of the signal over background
ratios 𝑅𝑖,𝑗 can be evaluated using the analytic spline derivatives used to construct the
weights and PDFs and the application of the product derivation rule∂𝑅𝑖,𝑗∂𝛾 = 1𝐵𝑖,𝑗 ⋅ 𝑁srcs∑𝑘=1 (∂𝑤𝑗∂𝛾 𝑤𝑘,𝑗𝑆𝑖,𝑘,𝑗 + 𝑤𝑗 ∂𝑤𝑘,𝑗∂𝛾 𝑆𝑖,𝑘,𝑗 + 𝑤𝑗𝑤𝑘,𝑗 ∂𝑆𝑖,𝑘,𝑗∂𝛾 ) . (7.11)

7.4. Trial generation

Trial generation is similar to the method in the time-dependent analysis. The main
differences here are the easier background trial generation, by using the full set of
spatially scrambled background data and the different signal injection mode due to the
time-integrated flux.

Here, the added fit parameter 𝛾 leads to a better conversion to a 𝜒2 background only
test statistic as expected from Wilks’ theorem. Using a fixed index would result in many
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test statistic values of zero during background trials because a larger set of background
events follows a much steeper energy spectrum than predicted signal and thus makes
it hard to properly sample a rather flat spectrum from the given experimental dataset.
The variable index results in almost 50 % over- and under-fluctuations in background
trials with spectral indices preferably getting fitted in the more steep spectral region with
indices 𝛾BG ∈ [2.7, 3.7]. These are shifted a bit from the expected atmospheric index of
roughly 3.7 indicating a small bias in the fit parameter from the background scrambles.

Background trials

In this analysis, pure background pseudo data samples are generated by using the
experimental data for the same reason of avoiding bias from mismatches between data
and background simulation. To obtain a pseudo background sample, it is sufficient to
assign a new right ascension value, sampled uniformly in [0, 2𝜋] to each event per trial.
The usage of experimental data as background is justified by the assumption of expecting
a low amount of signal in the sample and that the spatial scrambling of the event positions
in right ascension ensures the removal of any potential signal clustering. Additionally,
because the Likelihood works with the approximation of having a constant number of
events by dropping the Poisson term, the number of background events stays constant in
each trial.

106 background-only trials where performed to describe the test statistic distribution
sufficiently accurate. Again, no under-fluctuations are fitted and the fit parameter 𝑛𝑆 is
truncated at zero. Due to the variable index, this is not as large an issue as previously
described. The test statistic follows the expected 𝜒2 distribution well and is therefore
analytically described with a modified 𝜒2 PDF, which is a common choice for a time-
integrated search. The number of degrees of freedom of the 𝜒2 PDF turns out to be
slightly higher than its expected value of 1 from Wilks’ theorem. This is because for
very background-like samples, which means 𝑛𝑆 = 0, the spectral index of the signal
energy PDF has no relevance any more and is degenerate, leading to the slightly different
effective number of degrees of freedom 𝑛̂. The distribution fitted to the test statistic is a
split PDF model catching the compactified under-fluctuations at zero with a delta peak
and the tail with a 𝜒2 distribution𝑓(𝑥 ≔ −2 ln ̂𝛬) = {𝜂 ⋅ 𝜒2𝑛̂(𝑥) , for 𝑥 > 0(1 − 𝜂) , for 𝑥 = 0 . (7.12)

The PDF is fitted to the test statistic by only varying the effective number of degrees
of freedom 𝑛̂ with a best fit of 1.17. The fraction of non-zero trials 𝜂 = 0.54 is directly
deduced by simple counting. The comparison to the fitted 𝜒2 model and the hybrid
solution that was used in the time-dependent analysis can be seen in figure (B.45). The
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distribution of the fitted signal strengths and spectral indices for the background trials
are shown in figure (B.46). As the median of the spectral index fit values lies around 3, a
small bias towards slightly harder indices than expected from the simplified atmospheric
expectation of 𝛾atmo ≈ 3.7 can be seen. However, this has no influence on the final result,
as this type of analysis is not well suited to really measure the astrophysical spectral
index, but it is rather treated as a nuisance parameter to adapt the signal model in a
flexible way to the data.

Signal trials

The signal injection is set up to simulate a steady flux scenario. This comes with two
main differences to the time-dependent part. First, all sources contribute in every sample
and are no longer unique and only present in a single sample. Second, the expected flux
is directly proportional to the data livetime in each sample. Both properties need to be
reflected by the signal injector. The weights for the signal event sampling are constructed
with 𝑤𝑖,𝑘 = 𝑤𝑘 OneWeight′𝑖 ⋅ 𝜙(𝐸𝜈,𝑖)𝛺𝑘 ⋅ 𝑇 , (7.13)

where 𝑘 is the source the event was selected at, 𝑤𝑘 the combined source weight and 𝑇 the
sample livetime in seconds. The simulated diffuse flux 𝜙(𝐸𝜈,𝑖) is normalized to a point
source flux by dividing out the solid angle 𝛺𝑘 of the selected regions around each source
and has units 1/(GeV cm2 s). The sampling itself stays the same and is also used with
the same HEALPix injection mode to account for the source position uncertainties. No
time information is sampled or needed in this steady-state scenario.

To combine multiple signal injectors, the distribution weights need to be adapted to
account for the fact that all sources are present in every sample. Here, it is sufficient
to distribute the samples according to their expected events in total, without a need to
re-normalize the source weights 𝑤𝑗 = 𝑁𝑗∑𝑁sam𝑚=1 𝑁𝑚 . (7.14)

7.5. Performance

The a priori estimation of the analysis performance is performed analogue to the procedure
in section 6.5. Because the performance flux is just a single value for the full analysis, a
finely binned differential performance is computed here. The differential performance
is estimated in logarithmic energy bins, uniformly spaced with an eighth of a decade
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be calculated using𝑁 = 𝑇 ⋅ 𝑁srcs∑𝑘=1 ∑(𝑖|𝛺𝑖∈𝛺𝑘) 𝑤𝑘 OneWeight′𝑖 ⋅ 𝜙0 ⋅ 𝑓(𝐸𝜈,𝑖)𝛺𝑘 (7.15)

= 𝜙0 ⋅ 𝑁srcs∑𝑘=1 ∑(𝑖|𝛺𝑖∈𝛺𝑘) 𝑤′𝑘,𝑖 ≔ 𝜙0 ⋅ 𝑁srcs∑𝑘=1 𝐹𝑘 = 𝜙0 ⋅ 𝐹 , (7.16)

where 𝑇 is the sample livetime. A global flux normalization 𝜙′0 can equivalently be
obtained from the differential performance normalizations 𝜙0𝑗 using𝜙′0 = 1∑𝑁bins𝑗=1 𝑤𝑗 , (7.17)

where the weights 𝑤𝑗 are computed from

𝑤𝑗 = ∫𝛥𝐸𝑗 𝑓 ′(𝐸) d𝐸𝜙0𝑗 ⋅ ∫𝛥𝐸𝑗 𝑓(𝐸) d𝐸 . (7.18)

7.6. Results

The analysis result is obtained by doing a single Likelihood fit on the unscrambled
experimental dataset. The resulting test statistic value is compared to the background
only test statistic model to obtain the final p-value

No significant excess of neutrinos is seen in the test for a steady state flux scenario. The
best-fit test statistic is 0.057 with best-fit parameters 𝑛̂𝑆 = 5.57 and ̂𝛾 = 2.8. This results
in a p-value of 𝑝 = 0.47 and a significance of 0.73 𝜎. The best fit test statistic value
together with the background only distribution can be seen in figure (7.4). No post-trial
correction needs to be applied.
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This can be used to calculate a fluence upper limit that can be compared against this
analysis’ upper limits. Under the assumption, that the whole diffuse flux from (8.1) is
accounted for by burst emission originating from the 𝑁srcs = 22 track-like high energy
starting event positions in 𝑇tot = 2071.13 days of lifetime16, this leads to a burst rate
of 𝑅HESE = 𝑁srcs4𝜋 ⋅ 𝑇tot

≈ 224𝜋 ⋅ 2071.13 ⋅ 86 400
1

s sr ≈ 9.78 ⋅ 10−9 1
s sr (8.2)

for a single direction per second. The 𝐸2𝜈 weighted diffuse flux normalisation at 100 TeV𝐸2𝜈𝜙𝜈𝜇+ ̄𝜈𝜇0 = 1.01 ⋅ 10−8 GeV
cm2 s sr

(8.3)

can then be scaled to a per-burst fluence with𝐸2𝜈𝛷diff
HESE = 𝛥𝑇 ⋅ 𝐸2𝜈𝜙𝜈𝜇+ ̄𝜈𝜇0 ⋅ 4𝜋𝛥𝑇 ⋅ 𝑅HESE ⋅ 4𝜋 = 𝐸2𝜈𝜙𝜈𝜇+ ̄𝜈𝜇0𝑅HESE

. (8.4)

Note, that the dependence on the burst time window 𝛥𝑇 and the factor 4𝜋 for the isotropic
integration over the whole sky is cancelled, because the burst rate scales accordingly.
This leads to a potential 𝐸2𝜈 weighted per-burst fluence of𝐸2𝜈𝛷diff

HESE, burst ≈ 1.03 GeV
cm2 or a total fluence of 𝐸2𝜈𝛷diff

HESE ≈ 22.71 GeV
cm2 (8.5)

at at a normalisation energy of 100 TeV. Any fluence higher than 𝛷diff
HESE would mean that

more than the total observed diffuse astrophysical muon neutrino flux would originate
from a possible per-burst emission at the HESE positions, which is a highly unlikely
scenario. As seen in figure (8.2), the limits set by this analysis are sane and well below
the diffuse limits, indicating a smaller contribution to the diffuse flux.

To obtain limits for a wider range of spectra and not only the one that is explicitly tested
against, limits are calculated for several different spectral indices for the assumed sources
and for all time-windows. It is always tested against the largest time-window with the
highest significance. The resulting upper limits can be seen in figure (8.3). The central
solid interval indicates the energy region in which the analysis has the most potential
sensitivity for the given spectral hypothesis. These intervals can be computed from the
inverse differential fluences as explained in section 6.6 and the resulting weight distribution
is shown in figure (B.51). Additionally to the shown selection of three power-laws, a fine
grid scan of spectral indices is done. Figure (B.52) shows the resulting limits. Instead
of plotting the power law energy dependent, only the fluence normalisations are shown
16As total fluences are compared in the end, the per-source normalisation cancels out again, but was put

through the calculation for clarity here.
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parameter region, where the non-solid lines are marginal scans in each parameter. For
each marginal scan, one parameter is fixed at a specific value, while the best fit Likelihood
value is only obtained by fitting the other one, yielding one-dimensional parameter
confidence intervals. The scan confirms the low significance result from the comparison
with the test statistic. The spectral index best fit tends only slightly to harder, signal-like
spectra and is close to the median spectral index obtained from the background only
trials, shown in figure (B.46), indicating a very background-like dataset.

Power-law flux limits are calculated equivalently to the time-dependent analysis. The
differential limits, shown in figure (B.54) were used to calculate global flux limits for
a selection of power-law fluxes. Also, the same argumentation used for comparing the
time-dependent limits to an effective point source flux from the diffuse flux can be applied.
This time, the density of the source events only depends on the sky area𝑅HESE = 𝑁srcs4𝜋 , (8.6)

so the 𝐸2𝜈 weighted point source flux normalisation at 100 TeV per source can be obtained
via 𝜙diff

HESE = 𝜙𝜈𝜇+ ̄𝜈𝜇0 ⋅ 4𝜋𝑅HESE ⋅ 4𝜋 = 𝜙𝜈𝜇+ ̄𝜈𝜇0 ⋅ 4𝜋𝑁srcs
, (8.7)

which yields 𝐸2𝜈𝜙diff
HESE, src ≈ 5.71 ⋅ 10−9 GeV

cm2 s
, (8.8)

or a total flux of 𝐸2𝜈𝜙diff
HESE ≈ 1.26 ⋅ 10−7 GeV

cm2 s
. (8.9)

Additionally, the limits can be directly compared to the most optimistic sensitivity flux
for the seven year single point source search analysis in [Aar+17a]𝐸2𝜈𝜙𝜈𝜇+ ̄𝜈𝜇

PS, sens. ≈ 4 ⋅ 10−13 TeV
cm2 s

, (8.10)

which yields a total flux for all 22 high energy starting events of𝑁srcs𝐸2𝜈𝜙𝜈𝜇+ ̄𝜈𝜇
PS, sens. = 8.8 ⋅ 10−9 GeV

cm2 s
. (8.11)

The limits for this analysis are slightly above that potential detection threshold of the
single point source search. This does not necessarily mean, that at least one of the source
locations should have already shown up in the dedicated analysis. However, as the limits
here are penalized by considering the unknown source positions and in the point source
analysis a perfectly known position is assumed, that is not a problem per-se. Ignoring
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Both measurements done in this thesis independently show an insignificant but slight
over-fluctuation, although the tested regimes are placed at quite opposite ends of the
possible source emission scenarios with respect to the temporal source behaviour. In the
time-dependent analysis, small to medium sized time windows are tested in a per-burst
emission scenario. The underlying temporal emission is not modelled in detail here, in
favour of a more generic test. However, the resulting small background leads to a high
sensitivity of catching any event at all. On the other end, in the time-integrated analysis,
a test for a steady flux assumed to originate from all source positions simultaneously
is done. Upper limits and parameter space scans are done in absence of a significant
measurement as the main physics results.

For the time-dependent analysis, the largest time window with a total width of five
days yielded the most significant result from the 21 tested time ranges, with a post-trial
significance of 1.03 𝜎 and is therefore compatible with pure background. The resulting
limits are calculated for various generic power-law neutrino fluence models and a Neyman
upper limit on the number of signal events from the sources could be set. Differential
limits were provided if limits for a new model need to be calculated by the reader at
some time. For the time-integrated analysis, the final significance was 0.73 𝜎 with a best
fit spectral index of ̂𝛾 ≈ 2.8 which is also well compatible with background. The same
family of limits has been calculated as for the time-dependent analysis and finely binned
differential flux limits are provided.

In the light of the recent discovery of the correlation between the flaring Blazar TXS
0506+056 with an extremely-high-energy event measured in IceCube [Aar+18b], the
results in this thesis seem to fit in the picture, under the assumption, that the detected
extremely high energy neutrino may only be the single visible peak energy event. A
time window of about 110 days has been found in which a significant neutrino emission
from TXS could be measured. Comparing the results from [Aar+18c; Aar+18b] to the
results from this thesis, it seems likely that also the high energy starting events have an
associated lower energy neutrino contribution, but on emission scales somewhere between
the time window lengths tested in this work.

Although the results from this thesis are only a hint, it justifies the increasing efforts in
multi-messenger observations, where, in the case of IceCube, real-time alerts from high
energy events are sent out [Aar+17f]. Usually immediate follow-up observations are done
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for these alerts, if the current observation conditions for the respective instruments are
good [Ans+16] and as mentioned before, one of these alert events lead to the observation of
the correlated flaring Blazar [Aar+18c]. A second confirmed neutrino source would further
constrain the parameter space of the neutrino production mechanisms in astrophysical
sources. Therefore, this analysis aims at a similar approach with a multi-messenger
background in mind, although neutrinos are not tested against other messenger particles
but against neutrinos from a different energy range that are very likely from astrophysical
origin. Finding a localized neutrino flux in multiple energy ranges would certainly mean
a big step forward in the understanding of the source physics. In this light, several
approaches may be followed to improve on the analyses strategies presented in this
thesis.

In chapter 5, an extensive theoretic foundation is laid out for the extended, unbinned
Likelihood framework used for searches for neutrino sources in the sky. A detailed
derivation from the general Likelihood definition and the underlying mechanisms to
construct the per-event probability distributions is given. The formulas are partly
specified for the special location of the IceCube detector but should have been introduced
generalised enough to transform the procedure to other, similar environments. Also, two
of the more prominent Likelihood formulas used for the general per-burst search and
the time-integrated search are derived, both for the single and multi-sample case. All
formulas include the often used stacking generalisation. Chapter 5 therefore gives an
extensive review of the used Likelihood formalism for further studies.

The two dedicated analyses described in chapter 6 and 7 use information from two
different neutrino event selections to search for a correlated emission of the few high
energy neutrino events and an expected, less energetic neutrino contribution. For the
time-dependent case, a detailed method to model per-event and source distributions
for the Likelihood framework has been worked out. Especially the time dependent
background modelling has not been included in any analysis of this kind before, taking
into account the rate dependency on the naturally occurring seasonal variations. Also, the
method of using differential flux limits to obtain global model limits has been developed.
This may be useful for the reader if a specific model limit was not calculated by the
analyser. With finely binned differential performance values, it should be possible to
obtain global limits from these values alone for quite arbitrary flux models.

But, for the two searches done here, two improvements may also be suggested. First, for
each high energy starting event, a signalness parameter can be obtained from dedicated
simulation, which estimates the probability of the single event being a true astrophysical
signal. Some high energy starting events have a low signalness, indicating, that these
events may rather be atmospheric high-energy background muons instead of astrophysical
particles. A cut on the signalness parameter can be scanned to further improve the
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sensitivities17. A tighter cut ensures that the surviving events originate more likely from
astrophysical sources which are expected to have an additional lower energy neutrino
contribution. However, the fewer sources are left, the more the sensitivity approaches
the single source search described in [Aar+17a], in which the potential sources could not
be detected. Therefore, an optimal cut has to be found. Also, an additional neutrino
event selection of extremely high energy events (EHE) exists[YI18; Aar+16b]. It may
be useful to also include these event positions to increase the catalogue size and thus
decrease the needed signal flux per source for a discovery.

Another approach may be to increase the time window size and construct an analysis,
which transfers smoothly from the per-burst scenario to the time-integrated search, which
is, in principle, just a special case of burst time-windows of the size of the sample livetime.
However, current analysis frameworks, including the one that was developed for this
work, cannot handle that smooth transition automatically yet. A useful task would be
the development of such a flexible and robust framework for future analyses.

In conclusion, this thesis can serve as a starting reference to construct more generalized
analysis frameworks for future searches for neutrino sources. Several new analysis
approaches have been developed and utilized in this thesis, however, the two conducted
analyses lead to no detection of neutrino sources. Currently, the IceCube detector is
taking data with an uptime of over 99 % and therefore, the awaited further detections
of neutrino sources and the direct characterisation of source properties may only be a
matter of time.

17Note that introducing an intrinsic source stacking weight proportional to the signalness would not
work as maybe expected, because the single events can either be of astrophysical origin or come from
interactions in the atmosphere.
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The appendix is mainly used to show additional plots, for example for distributions for
other time windows than shown in the main matter. These are often similar to each
other and would otherwise clutter the main part too much.

The code written to enable the computational part of this analysis was mainly done in
the Python programming language, making heavy use of the scientific computing and
visualization libraries numpy [Oli15], scipy [JOP+01], matplotlib [Hun07] and healpy
[Gor+05].

A.1. Notes on reproducibility

The author tried to leave the analysis code in a state that hopefully allows to reproduce
the distributions and results in this analysis. Python is used as the programming language
for both the core analysis code and for the scripts using that core code. The scripts and
data for both analysis can be found on the computing cluster of the IceCube collaboration
at the University of Wisconsin-Madison (UW-Madison). A numbering scheme is used
to guide the execution order of the scripts. Help strings are included, when additional
command line argument are needed.

The core analysis code for the time-dependent analysis was written from scratch, but
it was tried to keep a close connection to the existing skylab code base used for many
other IceCube point-source searches. At the time of writing this thesis, the skylab
module wasn’t capable of handling the needed time-dependent variations of the extended
Likelihood formalism though, making the self developed code necessary. The code can be
found in the github repository at www.github.com/mennthor/tdepps. This repository
also includes spline and statistics related methods to provide the tools used during the
evaluation of the analysis in the tdepps/utils submodule. The installation manual can
be found in the modules Readme file. The scripts for the time-dependent analysis can be
found on the UW-Madison cluster’s file system under

/home/tmenne/analysis/hese_transient_stacking_analysis

An additional Readme file is provided with a short install manual. The analysis folder
itself is a git repository so all changes can be tracked. For the first setup, the required
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Python dependencies can be installed using the pip package manager and the provided
py2_requirements.txt file. In this analysis the branch original_hese is used. The
master branch was intended to use an improved HESE sample event selection, “Pass2”,
which was not ready at the time of this thesis and the original selection was used instead.
In general, the analysis folder uses git branches and their names for the whole folder tree.
For this, a _loader.py and _paths.py module is provided. These modules are used to
handle all relative path dependencies and automatically set a new folder structure in
the analysis folder and in the users data storage folder when a new branch is created.
This way, new tests cannot easily overwrite existing data or results and experiments can
be done by git branching. The processing order loosely follows the steps presented in
the analysis chapters 6and 7. Some of the scripts simply run by themselves directly on
the gateway machine. However, trial generation takes quite some computing time. The
trial generation scripts are therefore usually split into three parts, where the first one
creates job files for the dagman distributed computing system, the second one resembles
the actual code to be executed in each job and the last one is usually a script that collects
and combines all the results from the job files in a more compact data structure. For this
analysis, all results are stored in a human readable form in the JSON file format. Because
the format has no compression and can be quite verbose for a large datasets, the gzip
compression algorithm is used to compress the files if necessary. The handling of these
files in Python is quite easy as demonstrated in the following listing

import json
import gzip
fname = "path/to/file.json.gz"
# 'gzip' may be optional , use just 'open(...)' then
with gzip.open(fname , "r") as fp:

data_dict = json.load(fp)

For the time-integrated search, the existing skylab core analysis code was used. Apart
from that, the analysis is structured as explained above for the time-dependent analysis.
The Likelihood map signal injector was not available to the date when it was needed
in the skylab core code. Due to the similar code structure between the self-developed
tdepps and the skylab code, a simple adapter method was used to inject the signal
events in a format needed by the skylab code. The analysis folder can also be found on
the UW-Madison cluster file system at the path

/home/tmenne/analysis/hese_time_independent_stacking_fit_index

Unfortunately, the code to perform certain post-processing analysis steps, as the 𝜒2 fits
or code for producing the plots in this thesis completely resides in IPython notebooks.
Although these have been copied to the respective analysis folders on the UW-Madison
machine, this is not very beneficial for reproducibility. The author can only recommend
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the reader to proceed otherwise with his analysis and make these accessible in standard
scripts too.
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B.2. Time-dependent analysis

Differential performances 𝜒2 CDF fits

Table B.1.: 𝐸2 weighted numerical values for the differential sensitivity fluence normalisations
at 100 TeV in GeV/cm2. The values correspond to the differential performance curves shown
in figure (6.6). The field ID corresponds to the time window ID as defined in table (6.1). See
table (B.2) for the other energy bins. Note: the unweighted fluence values are obtained by
dividing by (100 TeV)2.

ID Left bin edge log10(𝐸𝜈/GeV)
2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 0.083 0.084 0.086 0.089 0.093 0.099 0.107
1 0.084 0.086 0.087 0.090 0.094 0.100 0.108
2 0.086 0.087 0.088 0.091 0.096 0.102 0.110
3 0.087 0.089 0.090 0.092 0.098 0.103 0.112
4 0.089 0.090 0.092 0.095 0.098 0.105 0.113
5 0.090 0.093 0.093 0.097 0.102 0.108 0.116
6 0.092 0.095 0.096 0.099 0.103 0.110 0.119
7 0.094 0.097 0.099 0.101 0.106 0.112 0.123
8 0.099 0.101 0.102 0.103 0.108 0.116 0.125
9 0.103 0.105 0.105 0.108 0.113 0.120 0.129

10 0.109 0.110 0.110 0.111 0.117 0.123 0.133
11 0.118 0.117 0.116 0.117 0.121 0.127 0.139
12 0.130 0.127 0.124 0.124 0.127 0.133 0.144
13 0.148 0.140 0.135 0.132 0.134 0.139 0.152
14 0.174 0.159 0.149 0.145 0.144 0.148 0.157
15 0.212 0.187 0.169 0.159 0.154 0.156 0.166
16 0.276 0.227 0.199 0.180 0.169 0.168 0.176
17 0.378 0.290 0.241 0.210 0.190 0.183 0.190
18 0.528 0.388 0.310 0.258 0.218 0.203 0.206
19 0.761 0.532 0.407 0.318 0.257 0.230 0.227
20 1.105 0.739 0.548 0.409 0.309 0.262 0.253
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Table B.2.: 𝐸2 weighted numerical values for the differential sensitivity fluence normalisations
at 100 TeV in GeV/cm2. The values correspond to the differential performance curves shown
in figure (6.6). The field ID corresponds to the time window ID as defined in table (6.1). See
table (B.1) for the other energy bins. Note: the unweighted fluence values are obtained by
dividing by (100 TeV)2.

ID Left bin edge log10(𝐸𝜈/GeV)
5.5 6.0 6.5 7.0 7.5 8.0 8.5

0 0.116 0.124 0.127 0.128 0.129 0.129 0.130
1 0.117 0.125 0.129 0.130 0.131 0.131 0.132
2 0.120 0.128 0.131 0.132 0.133 0.132 0.134
3 0.123 0.129 0.133 0.135 0.135 0.136 0.136
4 0.125 0.133 0.136 0.137 0.138 0.138 0.138
5 0.126 0.136 0.140 0.140 0.140 0.141 0.140
6 0.131 0.140 0.143 0.143 0.143 0.142 0.143
7 0.134 0.143 0.145 0.147 0.147 0.146 0.146
8 0.139 0.147 0.151 0.150 0.151 0.149 0.150
9 0.144 0.153 0.155 0.154 0.154 0.154 0.153

10 0.149 0.160 0.161 0.160 0.160 0.158 0.158
11 0.154 0.166 0.167 0.166 0.163 0.162 0.162
12 0.162 0.174 0.175 0.171 0.170 0.168 0.167
13 0.168 0.183 0.183 0.179 0.175 0.173 0.173
14 0.178 0.192 0.192 0.187 0.183 0.180 0.179
15 0.187 0.202 0.202 0.196 0.190 0.186 0.184
16 0.197 0.215 0.215 0.206 0.199 0.196 0.192
17 0.213 0.230 0.229 0.220 0.210 0.206 0.204
18 0.230 0.250 0.248 0.239 0.225 0.219 0.217
19 0.248 0.270 0.270 0.259 0.246 0.239 0.236
20 0.273 0.293 0.297 0.285 0.268 0.261 0.259
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B.3. Time-integrated analysis

Table B.3.: Numerical values for the differential sensitivity flux normalisations 𝐸2𝜙100 TeV0
at 100 TeV in GeV cm−2 s−1. The values correspond to the differential performance curve
shown in figure (7.3) for the injection model with spectral index 𝛾inj = 2. The log10(𝐸𝜈/GeV)
columns are the left energy bin borders. See table (B.4) for the flux values calculated with
the injection index 𝛾inj = 3. Note: the unweighted flux values are obtained by dividing by(100 TeV)2.

log10(𝐸𝜈/GeV) 𝜙100 TeV0 log10(𝐸𝜈/GeV) 𝜙100 TeV0
2.000 5.34 ⋅ 10−4 5.500 2.12 ⋅ 10−7

2.125 1.45 ⋅ 10−4 5.625 2.14 ⋅ 10−7

2.250 5.41 ⋅ 10−5 5.750 2.24 ⋅ 10−7

2.375 2.52 ⋅ 10−5 5.875 2.44 ⋅ 10−7

2.500 1.36 ⋅ 10−5 6.000 2.62 ⋅ 10−7

2.625 8.35 ⋅ 10−6 6.125 2.83 ⋅ 10−7

2.750 5.55 ⋅ 10−6 6.250 3.31 ⋅ 10−7

2.875 3.80 ⋅ 10−6 6.375 3.61 ⋅ 10−7

3.000 2.75 ⋅ 10−6 6.500 4.15 ⋅ 10−7

3.125 2.09 ⋅ 10−6 6.625 4.50 ⋅ 10−7

3.250 1.64 ⋅ 10−6 6.750 5.15 ⋅ 10−7

3.375 1.31 ⋅ 10−6 6.875 5.59 ⋅ 10−7

3.500 1.09 ⋅ 10−6 7.000 6.50 ⋅ 10−7

3.625 9.13 ⋅ 10−7 7.125 7.29 ⋅ 10−7

3.750 7.93 ⋅ 10−7 7.250 8.30 ⋅ 10−7

3.875 6.85 ⋅ 10−7 7.375 8.55 ⋅ 10−7

4.000 5.89 ⋅ 10−7 7.500 1.08 ⋅ 10−6

4.125 5.11 ⋅ 10−7 7.625 1.23 ⋅ 10−6

4.250 4.46 ⋅ 10−7 7.750 1.44 ⋅ 10−6

4.375 3.92 ⋅ 10−7 7.875 1.67 ⋅ 10−6

4.500 3.48 ⋅ 10−7 8.000 2.08 ⋅ 10−6

4.625 3.17 ⋅ 10−7 8.125 2.25 ⋅ 10−6

4.750 2.78 ⋅ 10−7 8.250 2.86 ⋅ 10−6

4.875 2.56 ⋅ 10−7 8.375 3.65 ⋅ 10−6

5.000 2.36 ⋅ 10−7 8.500 4.48 ⋅ 10−6

5.125 2.11 ⋅ 10−7 8.625 5.59 ⋅ 10−6

5.250 2.07 ⋅ 10−7 8.750 6.99 ⋅ 10−6

5.375 2.12 ⋅ 10−7 8.875 8.75 ⋅ 10−6
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Table B.4.: Numerical values for the differential sensitivity flux normalisations 𝐸2𝜙100 TeV0
at 100 TeV in GeV cm−2 s−1. The values correspond to the differential performance curve
shown in figure (7.3) for the injection model with spectral index 𝛾inj = 3. The log10(𝐸𝜈/GeV)
columns are the left energy bin borders. See table (B.3) for the flux values calculated with
the injection index 𝛾inj = 2. Note: the unweighted flux values are obtained by dividing by(100 TeV)2.

log10(𝐸𝜈/GeV) 𝜙100 TeV0 log10(𝐸𝜈/GeV) 𝜙100 TeV0
2.000 6.37 ⋅ 10−7 5.500 7.49 ⋅ 10−7

2.125 2.27 ⋅ 10−7 5.625 1.04 ⋅ 10−6

2.250 1.12 ⋅ 10−7 5.750 1.48 ⋅ 10−6

2.375 7.01 ⋅ 10−8 5.875 2.08 ⋅ 10−6

2.500 5.01 ⋅ 10−8 6.000 3.04 ⋅ 10−6

2.625 4.13 ⋅ 10−8 6.125 4.46 ⋅ 10−6

2.750 3.65 ⋅ 10−8 6.250 6.91 ⋅ 10−6

2.875 3.35 ⋅ 10−8 6.375 9.77 ⋅ 10−6

3.000 3.19 ⋅ 10−8 6.500 1.49 ⋅ 10−5

3.125 3.29 ⋅ 10−8 6.625 2.18 ⋅ 10−5

3.250 3.35 ⋅ 10−8 6.750 3.39 ⋅ 10−5

3.375 3.60 ⋅ 10−8 6.875 4.91 ⋅ 10−5

3.500 3.93 ⋅ 10−8 7.000 7.32 ⋅ 10−5

3.625 4.46 ⋅ 10−8 7.125 1.09 ⋅ 10−4

3.750 5.14 ⋅ 10−8 7.250 1.76 ⋅ 10−4

3.875 5.92 ⋅ 10−8 7.375 2.33 ⋅ 10−4

4.000 6.85 ⋅ 10−8 7.500 3.93 ⋅ 10−4

4.125 7.82 ⋅ 10−8 7.625 6.13 ⋅ 10−4

4.250 9.23 ⋅ 10−8 7.750 9.35 ⋅ 10−4

4.375 1.10 ⋅ 10−7 7.875 1.40 ⋅ 10−3

4.500 1.27 ⋅ 10−7 8.000 2.35 ⋅ 10−3

4.625 1.54 ⋅ 10−7 8.125 3.47 ⋅ 10−3

4.750 1.78 ⋅ 10−7 8.250 6.02 ⋅ 10−3

4.875 2.26 ⋅ 10−7 8.375 9.91 ⋅ 10−3

5.000 2.60 ⋅ 10−7 8.500 1.55 ⋅ 10−2

5.125 3.20 ⋅ 10−7 8.625 2.65 ⋅ 10−2

5.250 4.17 ⋅ 10−7 8.750 4.54 ⋅ 10−2

5.375 5.69 ⋅ 10−7 8.875 7.44 ⋅ 10−2
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