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BETA DISTRIBUTIONS AND SONINE INTEGRALS FOR

BESSEL FUNCTIONS ON SYMMETRIC CONES

MARGIT RÖSLER AND MICHAEL VOIT

Abstract. There exist several multivariate extensions of the classical Sonine
integral representation for Bessel functions of some index µ+ν with respect to

such functions of lower index µ. For Bessel functions on matrix cones, Sonine

formulas involve beta densities βµ,ν on the cone and trace already back to
Herz. The Sonine representations known so far on symmetric cones are re-

stricted to continuous ranges <µ,<ν > µ0, where the involved Beta densities

are probability measures and the limiting index µ0 ≥ 0 depends on the rank
of the cone. It is zero only the one-dimensional case, but larger than zero in

all multivariate cases.

In this paper, we study the extension of Sonine formulas for Bessel func-
tions on symmetric cones to values of ν below the critical limit µ0. This is

achieved by an analytic extension of the involved Beta measures as tempered
distributions. Following recent ideas by A. Sokal for Riesz distributions on

symmetric cones, we analyze for which indices the obtained Beta distributions

are still measures. At the same time, we characterize the indices for which
a Sonine formula between the related Bessel functions exists. As for Riesz

distributions, there occur gaps in the admissible range of indices which are

determined by the so-called Wallach set.

1. Introduction

Consider the one-variable normalized Bessel functions

jα(z) := 0F1(α+ 1;−z2/4) (α ∈ C \ {−1,−2, . . .}),
which for α > −1/2 have the well-known Laplace integral representation

jα(z) :=
Γ(α+ 1)

Γ(α+ 1/2)Γ(1/2)

∫ 1

−1

eizx(1− x2)α−1/2 dx (z ∈ C). (1)

For half integers α = p/2 − 1 with p ≥ 2, formula (1) may be regarded as a
Harish-Chandra integral representation for the spherical functions of the Euclidean
space Rp with SO(p)-action. It is also well-known that for α > −1 and β > 0, jα+β

can be expressed in terms of jα as a Sonine integral (formula (3.4) in Askey [2]):

jα+β(z) = 2
Γ(α+ β + 1)

Γ(α+ 1)Γ(β)

∫ 1

0

jα(zx)x2α+1(1− x2)β−1 dx. (2)

This follows easily by power series expansion of both sides and is a particular case of
classical integral representations for one-variable hypergeometric functions. Notice
that for β = 0, formula (2) degenerates in a trivial way. As j−1/2(z) = cos z,

2010 Mathematics Subject Classification. Primary 33C70; Secondary 43A85, 33C80, 17C50.
Key words and phrases. Symmetric cones, Bessel functions, Sonine integral formula, Beta

distributions, Riesz distributions, Wallach set.

1
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formula (1) is actually a special case of (2). For some background on these classical
formulas we also refer to the monograph [1].

We now ask for which indices α, β ∈ R with α > −1 and α + β > −1 there
actually exists a Sonine integral representation

jα+β(z) =

∫ ∞
0

jα(zx)dµα,β(x)

with a positive measure µα,β . It is easily seen that this is only possible if β ≥ 0.
Indeed, if such a representation with β < 0 would exist, we could combine it with
(2) for the parameter pairs (α + β,−β) instead of (α, β). This would lead to a
Sonine integral representation of jα in terms of jα with a measure different from
the point measure δ1, which is impossible by the injectivity of the Hankel transform
of bounded measures. In particular, a Laplace representation such as (1) with a
positive representing measure exists precisely for α ≥ −1/2.

In this paper we study extensions of Sonine-type integral representations for
Bessel functions of matrix argument and more generally, on Euclidean Jordan al-
gebras and the associated symmetric cones. The general Jordan algebra setting
includes the Jordan algebras of hermitian matrices over the (skew) fields R,C or
the quaternions H as important special cases. Bessel functions in this setting trace
back to the fundamental work of Herz [17], which was motivated by questions in
number theory and multivariate statistics. For example, Bessel functions of matrix
argument occur naturally in the explicit expression of non-central Wishart distri-
butions ([7], [25]). They are imbedded in a theory of hypergeometric functions on
Euclidean Jordan algebras which are defined as hypergeometric series in terms of
so-called spherical polynomials. Integral representations of Bessel functions play
an important role in the analysis on symmetric cones and are closely related to
Laplace transforms. For details and a general background see [11], [16] and [17].
For various aspects concerning the rich harmonic analysis associated with Bessel
functions on symmetric cones, we also refer to [12], [9], [30], [31] and [24].

Let us now describe our results in more detail. In order to avoid abstract no-
tation, we restrict in this introduction to the case where the underlying Jordan
algebra is the space V = Hq(F) of q × q Hermitian matrices over F = R,C or H.
The (real) dimension of V is

n = q +
d

2
q(q − 1) wih d = dimRF ∈ {1, 2, 4},

and V is associated with the symmetric cone Ω = Ωq(F) of positive definite matrices
over F. The Bessel functions on V are defined by

Jµ(x) := 0F1(µ;−x) =
∑
λ≥0

(−1)|λ|

(µ)λ|λ|!
Zλ(x), x ∈ V.

Here the sum is over all partitions of length q, (µ)λ is a generalized Pochhammer
symbol, and the Zλ are the (renormalized) spherical polynomials of Ω, see Section
2 for the details.

For indices µ, ν ∈ C with <µ,<ν > n/q − 1 =: µ0, the associated Beta measure
on Ω is defined by

dβµ,ν(x) :=
1

BΩ(µ, ν)
∆(x)µ−n/q∆(Iq − x)ν−n/q · 1Ωe(x)dx (3)
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where Ωe = {x ∈ Ω : x < Iq} and BΩ(µ, ν) is the Beta function associated with Ω.
For real µ, ν > µ0, βµ,ν is a probability measure. It is known for Hq(R) and easy
to see in the general Jordan setting (Theorem 1) that the Bessel functions Jµ have
the following integral representation of Sonine type generalizing the one-variable
case (2): For indices µ, ν ∈ C with <µ,<ν > µ0,

Jµ+ν(r) =

∫
Ωe

Jµ(
√
rs
√
r)dβµ,ν(s) for all r ∈ Ω . (4)

Notice that µ0 = 0 if q = 1, but µ0 is larger than zero if q > 1, and in this
case formula (4) is not available in the range <ν > 0. This is to some extent
unexpected and makes the situation more interesting in higher dimension than in
the one-variable case.

Let us mention at this point that there is a broad literature on beta probabil-
ity distributions on matrix cones and their relevance in statistics, in particular in
relation with Wishart distributions, see [6], [13], [21], [25], [28] well as the survey
[8]. For some applications in mathematical physics and representation theory, see
for example the survey [27] and references therein. To our knowledge, beta dis-
tributions have so far only rarely been considered for indices beyond the critical
value µ0. References in this case are [36] and [34], where certain discrete indices
are considered for which the associated beta measures become singular.

Our aim in this paper is to study the extendability of the Sonine formula (4)
to larger ranges of the index ν. This will be achieved by analytic extension (with
respect to ν) of the beta probability measures as distributions, and a detailed
analysis when these distributions are still measures.

Our method is motivated by the theory of Gindikin for Riesz distributions as-
sociated with symmetric cones (see [14], [15], Chapter 7 of [11], and the recent
simplifications in [33]). Let us recall the basic facts, again for the case V = Hq(F).
For indices α ∈ C with <α > µ0 = n/q − 1, the Riesz probability distributions Rα
on V are defined by

Rα(ϕ) =
1

ΓΩ(α)

∫
Ω

ϕ(x)∆(x)α−n/q dx

where ΓΩ is the gamma function associated with Ω and ∆ denotes the determinant
on V. According to the results by Gindikin, the measures Rα have a (weakly)
analytic extension to distributions Rα ∈ D′(V ) for all α ∈ C. This means that the
mapping α 7→ Rα(ϕ) is analytic on C for each ϕ ∈ D(V ). The distributions Rα are
tempered and their support is contained in the closed cone Π = Ω. Moreover, Rα
is a positive measure exactly if α belongs to the Wallach set{

0,
d

2
, . . . , (q − 1)

d

2
= µ0}∪ ]µ0,∞[ . (5)

A simple proof for the necessity of this condition is given in [33].
We consider the beta measures βµ,ν in (3) as compactly supported distributions

on V of order zero. Their extension to a larger range of the index ν is more involved
than in the Riesz case. Indeed, the range of extension we are able to obtain depends
on <µ. To become precise, consider the open half planes

Ek := {ν ∈ C : <ν > µ0 − k}, k ∈ N0

where E0 ⊂ Ek ⊂ Ek+1. It is easily checked that for fixed µ ∈ E0, the mapping

E0 → D′(V ), ν 7→ βµ,ν (6)
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is (weakly) analytic, i.e., ν 7→ βµ,ν(ϕ) is analytic for each test function ϕ ∈ D(V ).
Recall that compactly supported distributions on V extend continuously to E(V ),
the space C∞(V ) with its usual locally convex topology. In Theorem 3, we prove:

Theorem A. For k ∈ N0 and µ ∈ C with <µ > µ0 + kq + 1, the mapping (6) has
a unique analytic extension from E0 to Ek with values in D′(V ). The distributions
βµ,ν obtained in this way are compactly supported with support contained in Ωe.
Moreover, the Bessel functions Jµ and Jµ+ν associated with Ω are related by the
Sonine formula

Jµ+ν(r) = βµ,ν(J rµ ) for all r ∈ Ω, (7)

where J rµ (x) = Jµ(
√
rx
√
r) ∈ E(V ).

We next ask when the distributions βµ,ν are actually complex Radon measures or
even probability measures. The latter requires that µ, ν ∈ R. The following result
is contained in Corollary 2:

Theorem B. Let F = R,C, k ∈ N, and µ ∈ R with µ0 > kq + 3/2. Then for
ν ∈ Ek, the following statements are equivalent:

(1) ν is contained in the Wallach set (5).
(2) The distribution βµ,ν is a positive measure.
(3) There exists a probability measure β ∈M1(Ω) such that

Jµ+ν(r) =

∫
Ω

Jµ(
√
rs
√
r)dβ(s) for all r ∈ Π .

In this case, the measure β ∈M1(Ω) in (3) is unique, and β = βµ,ν .

We shall prove this result, as well as a counterpart for complex measures, actually
in the more general setting of symmetric cones with Peirce constant d = 1 or 2.
This also includes the Lorentz cones in R × R2 and R × R3. Without restriction
on the Peirce constant d, our results (contained in Theorem 5) are somewhat less
complete, but still give interesting restrictions on the indices which are necessary to
assure that βµ,ν is a measure. This in particular concerns the case of quaternionic
matrix cones.

We finally mention that the spherical polynomials and thus also the Bessel func-
tions on Euclidean Jordan algebras depend only on the eigenvalues of their argu-
ment. Considered as functions of the spectra, the spherical polynomials can be
identified with Jack polynomials whose index depends on d; this was first observed
by Macdonald [22]. There is a natural theory of hypergeometric expansions in
terms of Jack polynomials (see [19], [23]) which encompasses the theory on sym-
metric cones and is closely related with rational Dunkl theory, c.f. [30] and Lemma
2 below. Riesz distributions in this setting are Selberg densities, and their analytic
extension and consequences for integral representations of Bessel functions of Dunkl
type will be studied in a forthcoming paper.

The organization of this paper is as follows: The next section gives a short survey
about Bessel functions on Euclidean Jordan algebras. In Section 3 we discuss several
facts concerning the beta measures βµ,ν and the Sonine formula for <µ,<ν > µ0.
Section 4 contains the main results of this paper on the analytic extension of the
beta measures and their consequences for Sonine integral representations of the
Bessel functions.
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2. Bessel functions on Euclidean Jordan algebras

In this section we present some basic facts and notions on symmetric cones
and associated Bessel functions. We illustrate the general notions by the important
example of matrix cones. For a background on symmetric cones and Jordan algebras
we refer to the monograph [11].

A real algebra V of finite dimension n is called a (real) Jordan algebra if its
multiplication (x, y) 7→ x · y = xy satisfies

xy = yx and x(x2y) = x2(xy) for all x, y ∈ V.

A real Jordan algebra is called Euclidean, if it has an identity e ∈ V and a scalar
product ( . | . ) such that (xy|z) = (y|xz) for all x, y, z ∈ V. It is called simple if it
contains no non-trivial ideals. Let V be a Euclidean Jordan algebra, and put

Π := {x2 : x ∈ V }.

Then the topological interior Ω of Π is a symmetric cone. We recall that a symmetric
cone Ω in a Euclidean vector space V is an open cone Ω ⊆ V which is proper (i.e.
Ω ∩ −Ω = {0}), self-dual and homogeneous in the sense that the automorphism
group of Ω acts in a transitive way. Let G denote the identity component of this
automorphism group and K = G ∩ O(V ). Then already G is transitive on Ω, and
there exist points e ∈ Ω such that K is the stabilizer of e in G. Thus Ω ∼= G/K,
which is a Riemannian symmetric space. With e fixed as above, there is a natural
product in V for which V becomes a Euclidean Jordan algebra with identity element
e and such that Ω = {x2 : x ∈ V } (See Thm. III.3.1.of [11]). Every symmetric
cone is a product of irreducible ones, and in the above way, the simple Euclidean
Jordan algebras correspond to the irreducible symmetric cones.

Example. Let F be one of the (skew) fields R,C or H with real dimension d = 1, 2
or 4 respectively. The usual conjugation in F is denoted by t 7→ t and the real part
of t ∈ F by Rt = 1

2 (t+ t). Let

Hq(F) := {x ∈Mq(F) : x = x∗}

be the space of Hermitian q×q-matrices over F, where x∗ = xt. We consider Hq(F)
as a Euclidean vector space with scalar product 〈x, y〉 = RTr(xy), where Tr(x) =∑q
i=1 xii denotes the usual trace. With this scalar product and the Jordan product

x · y = 1
2 (xy + yx), the space Hq(F) becomes a simple Euclidean Jordan algebra

with identity e = Iq. Notice that 〈x, y〉 = tr(x · y). The associated symmetric cone
is given by

Ωq(F) = {x ∈ Hq(F) : x positive definite},
and it closure is

Πq(F) = {x ∈ Hq(F) : x positive semi-definite} = {x2 : x ∈ Hq(F)}.

The pairs (G,K) are in this case (GL+
q (R), SOq(R)), (GLq(C), Uq(C)) and (GLq(H),

Uq(H)), respectively, where the action of G on Ωq(F) is given by r 7→ grg∗. Notice
that this reduces to conjugation when restricted to K.

Let now V be a simple Euclidean Jordan algebra and Ω the associated symmetric
cone. A Jordan frame in V is a complete set c1, . . . , cq ∈ V of orthogonal primitive
idempotents, i.e.

c2i = ci, cicj = 0 if i 6= j, c1 + . . . cq = e.
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The group K acts transitively on the set of Jordan frames, and their common
cardinality q is called the rank of V (or Ω). The rank of V is related to its real
dimension n via

n = q +
d

2
q(q − 1),

where d is the so-called Peirce constant, see p.71 of [11]. Each x ∈ V admits a
decomposition x = k

∑n
i=1 λici with k ∈ K and unique real numbers ξ1 ≥ . . . ≥ ξq

which are called the eigenvalues of x (Sect. VI.2. of[11]). The Jordan trace and
determinant of x are defined by

tr(x) =
∑

ξi, ∆(x) =
∏

ξi .

Both functions are K-invariant.

Example. In the Jordan algebras Hq(F), a natural Jordan frame consists of the
matrices ci = Eii, 1 ≤ i ≤ q (having entry 1 in position (i, i) and 0 else). The
eigenvalues of x ∈ Hq(F) are the usual (right) eigenvalues, and ∆ coincides with
the usual determinant if F = R or C, while for F = H it is given by the so-called
Moore determinant, see [3].

The simple Euclidean Jordan algebras are classified. Up to isomorphism, there
are the series Hq(F) with F = R,C,H, the exceptional Jordan algebra H3(O) over
the octonions, as well as the Jordan algebras V = R × Rq−1, q ≥ 3, with Jordan
product (λ, u) · (µ, v) = (λµ + 〈u, v〉, λv + µu), where 〈 . , . 〉 denotes the usual
Euclidean scalar product on Rq−1. In this case, Ω is the Lorentz cone

Λq = {(λ, u) ∈ R× Rq−1 : λ2 − 〈u, u〉 > 0, λ > 0}.
The following table summarizes these Jordan algebras and their structure data.

V Ω rank d n = dim V

Hq(R) Ωq(R) q 1 1
2q(q + 1)

Hq(C) Ωq(C) q 2 q2

Hq(H) Ωq(H) q 4 q(2q − 1)

H3(O) Ω3(O) 3 8 27

R× Rq−1 Λq 2 q − 2 q

In this paper, we shall always assume that V is a simple Euclidean Jordan algebra
with associated symmetric cone Ω and that the scalar product of V is given by

〈x, y〉 = tr(xy),

where xy denotes the Jordan product. (This is no loss of generality, c.f. Section
III.4 of [11].) We need some further notation: On V we use the partial orderings

x < y :⇐⇒ y − x ∈ Ω and x ≤ y :⇐⇒ y − x ∈ Π = Ω.

The quadratic representation P of V is defined by

P (x) := 2L(x)2 − L(x2), x ∈ V,
where L(x) ∈ End(V ) denotes the left multiplication by x on V , i.e. L(x)y = xy.
For the Jordan algebras Hq(F), the quadratic representation is given by

P (x)y = xyx
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where on the right side, the product is the usual matrix product (see [11], Section
II.3). An element x ∈ V is invertible in V if and only if P (x) is invertible, and in
this case P (x−1) = P (x−1). We finally mention an important invariance property:
Let r, s ∈ Ω. Then by Lemma XIV.1.2 of [11], there exists k ∈ K such that

P (
√
r )s = kP (

√
s )r. (8)

For normalizations we need the gamma and beta function associated with the
cone Ω ([11], Chapter VII.1). They are defined by

ΓΩ(z) =

∫
Ω

e−tr(x)∆(x)z−n/q dx,

BΩ(z, w) =

∫
Ωe

∆(x)z−n/q∆(e− x)w−n/qdx,

where dx is the Lebesgue measure on V induced by the scalar product 〈 . , . 〉 and

Ωe = {x ∈ Ω : x < e}

Both integrals are absolutely convergent for all z, w ∈ C with <z,<w > µ0, where

µ0 :=
n

q
− 1 =

d

2
(q − 1). (9)

By Corollary VII.1.3 of [11], ΓΩ can be expressed in terms of the classical gamma
function as

ΓΩ(z) = (2π)(n−q)/2
q∏
j=1

Γ
(
z − d

2
(j − 1)

)
. (10)

Moreover,

BΩ(z, w) =
ΓΩ(z)ΓΩ(w)

ΓΩ(z + w)
,

see Theorem VII.1.7 of [11]. Notice that ΓΩ is meromorphic on C without zeros,
and its set of poles is {

0,
d

2
, . . . , (q − 1)

d

2
= µ0

}
− N0 .

The basic functions for the harmonic analysis on the cone Ω and building blocks
for related special functions are the so-called spherical polynomials. For their defi-
nition, recall that a q-tuple (λ1, . . . , λq) ∈ Nq0 is called a partition if λ1 ≥ . . . ≥ λq.
We shall write λ ≥ 0 for short. The spherical polynomials associated with Ω are
indexed by partitions λ = (λ1, . . . , λq) ∈ Nq0 and are defined by

Φλ(x) =

∫
K

∆λ(kx)dk, x ∈ V

where dk is the normalized Haar measure on K and ∆λ is the generalized power
function on V ,

∆λ(x) = ∆1(x)λ1−λ2∆2(x)λ2−λ3 · . . . ·∆q(x)λq .

Here the ∆i(x) are the principal minors of ∆(x), see Section VII.1 of [11] for details.
For the matrix algebras V = Hq(F), the ∆i(x) are just the usual principal minors.
The power function ∆λ is a homogeneous polynomial of degree |λ| = λ1 + . . .+ λq
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which is positive on Ω. For convenience, we shall work with renormalized spherical
polynomials Zλ = cλΦλ, where the constants cλ > 0 are such that

(tr x)k =
∑
|λ|=k

Zλ(x) for k ∈ N0 , (11)

see Section XI.5. of [11]. The Zλ are K-invariant and thus depend only on the
eigenvalues of their argument. In view of (8),

Zλ
(
P (
√
r )s) = Zλ

(
P (
√
s )r) for all r, s ∈ Ω.

We mention that for each symmetric cone the associated spherical polynomials
are given in terms of Jack polynomials ([35]). More precisely, it was observed by
Macdonald in [22] that for x ∈ V with eigenvalues ξ = (ξ1, . . . , ξq) ∈ Rq,

Zλ(x) = Cαλ (ξ) with α =
2

d
(12)

where the Cαλ are the Jack polynomials of q variables and index α > 0, normalized
such that

(ξ1 + . . .+ ξq)
k =

∑
|λ|=k

Cαλ (ξ). (13)

The Cαλ are homogeneous of degree |λ| and symmetric in their arguments.
For a simple Euclidean Jordan algebra with Peirce constant d, the associated

(J -) Bessel functions are defined on V C as

Jµ(z) =
∑
λ≥0

(−1)|λ|

(µ)
2/d
λ |λ|!

Zλ(z), (14)

with the generalized Pochhammer symbol

(µ)λ :=

q∏
j=1

(
µ− d

2
(j − 1)

)
λj
,

c.f. [11]. Here it is assumed that µ ∈ C with (µ)λ 6= 0 for all λ ≥ 0, which is for
example satisfied if <µ > µ0. The function Jµ is analytic on V C.

In the rank one case q = 1, we have Π = R+, µ0 = 0, and the Bessel function
Jµ is independent of d and satisfies

Jµ
(z2

4

)
= jµ−1(z)

in the notion of the introduction.
For the matrix cones Ωq(F) it is well-known (see e.g. [30] or [31] for details)

that for certain indices µ, the associated Bessel functions Jµ occur as spherical
functions of flat symmetric spaces. In fact, fix some integer p ≥ q and denote
by Mp,q = Mp,q(F) the space of p × q-matrices over F. Consider the Gelfand
pair (Mp,q o Up, Up), where the unitary group Up := Up(F) acts on Mp,q by left
multiplication. The double coset space Mp,q o Up//Up may be naturally identified

with the orbit space M
Up
p,q which is in turn homeomorphic with the closed cone

Πq(F) via the mapping

Up.x 7→
√
x∗x .
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Considered as functions on the cone Πq(F), the bounded spherical functions of the
Gelfand pair (Mp,q o Up, Up) are precisely given by the Bessel functions

ϕµs (r) = Jµ
(1

4
rs2r), s ∈ Πq(F) with µ = pd/2.

As spherical functions, these Bessel functions have an integral representation of
Harish-Chandra type. Analytic continuation with respect to µ leads to the following
integral representation, see [30], Section 3.3 as well as [17] for F = R.

Proposition 1. Let d = dimRF and µ ∈ C with <µ > d(q − 1/2). Then for all
x ∈ Hq(F), the Bessel function of index µ associated with Hq(F) satisfies

Jµ(x2) =
1

κµ

∫
Bq(F)

e−2i〈v,x〉∆(I − v∗v)µ−1−d(q−1/2)dv (15)

with Bq(F) = {v ∈ Mq(F) : v∗v < Iq}, the scalar product 〈x, y〉 = <Tr(x∗y) on
Mq(F) and

κµ =

∫
Bq(F)

∆(I − v∗v)µ−1−d(q−1/2)dv.

Formula (15) generalizes the Laplace representation (1) to higher rank.

3. Beta measures and the Sonine formula on symmetric cones

Throughout this paper, Mb(X) is the set of bounded, regular, complex Borel
measures on a locally compact Hausdorff space X and M1(X) the set of all prob-
ability measures in Mb(X).

As before, let V be a simple Euclidean Jordan algebra and Ω the associated
symmetric cone. For µ, ν ∈ C with <µ,<ν > µ0 = n

q − 1 we introduce the Beta
measures

dβµ,ν(x) :=
1

BΩ(µ, ν)
∆(x)µ−n/q∆(e− x)ν−n/q · 1Ωe(x)dx ∈Mb(Ω) (16)

which we also consider as measures on V with compact support

Πe = {x ∈ Π : x ≤ e}.

The βµ,ν are probability measures for µ, ν ∈]µ0,∞[. We here do not use the notion
“beta distributions”, as we shall study (tempered) distributions below and want to
avoid any misunderstanding.

Our starting point is the following Sonine formula (2) for Bessel functions on
Euclidean Jordan algebras, which generalizes formula (4) announced in the intro-
duction. For Hq(R) it goes already back to [17] (formula (2.6’)).

Theorem 1. Let V be a simple Euclidean Jordan algebra. Then for all µ, ν ∈ C
with <µ,<ν > µ0 and x ∈ V ,

Jµ+ν(x) =

∫
Ωe

Jµ
(
P (
√
r )x

)
dβµ,ν(r).

Proof. For indices α, β1, β2 ∈ C with <α,<βi > µ0 consider the hypergeometric
function

1F2(α;β1, β2; z) :=
∑
λ≥0

(α)λ
(β1)λ(β2)λ |λ|!

Zλ(z)
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which is holomorphic on V C (Proposition XV.1.1. of [11]). Consider first x ∈ Ωe.
As G is transitive on Ω, there exists g ∈ G with x = ge. According to Proposition
XV.1.4 of [11],

1F2(µ;β, µ+ ν; ge) =
1

BΩ(µ, ν)

∫
Ωe

0F1(µ; gr)dβµ,ν(r).

With β = µ, this becomes

Jµ+ν(−x) = 0F1(µ+ µ; ge) =
1

BΩ(µ, ν)

∫
Ωe

Jµ(−gr)dβµ,ν(r).

By Theorem III.5.1 of [11], g can be written in polar form as g = P (s)k with
s ∈ Ω, k ∈ K. Thus x = ge = P (s)e = s2 and g = P (

√
x )k. The measures βµ,ν and

teh function Jµ are K-invariant. Thus in view of (8),

Jµ+ν(−x) = c

∫
Ωe

Jµ
(
−P (
√
x)r
)
dβµ,ν(r) = c

∫
Ωe

Jµ
(
−P (
√
r)x
)
dβµ,ν(r)

with c = BΩ(µ, ν)−1. The last formula extends analytically to all x ∈ V.
�

We conclude with some remarks concerning the matrix cones Ωq(F).

Remark 1. (1) It follows form the analysis in Section 3 of [30] that for µ > µ0

and ν = µ0, there exist degenerated beta probability measures βµ,ν on Ωq(F)e such
that the mapping ν 7→ βµ,ν becomes weakly continuous on [µ0,∞[. In this way
Theorem 1 extends to indices ν ≥ µ0 and µ > µ0. In [36] and [34] some singular
Beta measures are studied for F = R.

(2) Formula (15) may be regarded as a special case of Theorem 1 with the
parameters (qd/2, µ − qd/2) instead of (µ, ν). To check this, we first recall from
formula (3.4) of [30] that for x ∈ Hq(F),

Jqd/2(x∗x) =

∫
Uq

e−2i〈u,x〉 du (17)

where du is the normalized Haar measure on Uq = Uq(F) and the scalar product is
that of Proposition 1. We also need the integral formula for the polar decomposition
of Mq(F) (see [12] or Section 3.1 of [30]):∫

Mq(F)

f(x)dx = C

∫
Uq

∫
Ωq(F)

f(u
√
r) ∆(r)qd/2−n/q drdu

with some constant C = Cq > 0. Let <µ > d(q− 1/2). Then identity (15) becomes

Jµ(x∗x) = C

∫
Bq(F)

e−2i〈v,x〉∆(I − v∗v)µ−1−d(q−1/2)dv

= C

∫
Ωq(F)e

(∫
Uq

e−2i〈u
√
r,x〉du

)
∆(r)qd/2−n/q∆(I − r)µ−1−d(q−1/2) dr

= C

∫
Ωq(F)e

Jqd/2(
√
r x∗x

√
r) ∆(r)qd/2−n/q∆(I − r)µ−1−d(q−1/2)dr.
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Put ν := µ−qd/2 and notice that <ν > µ0. In view of the normalization Jµ(0) = 1
this is equivalent to

Jν+qd/2(s) =

∫
Ωq(F)e

Jqd/2(
√
r s
√
r) dβqd/2,ν(r)

for all s ∈ Πq(F), which is a special case of Theorem 1 as stated.

In the next section we shall construct an extension of Theorem 1 with respect to
the ranges of the indices µ, ν. Before that, we mention a special case in the matrix
cone setting which follows from group theory:

Proposition 2. Let µ = pd/2 and ν = p̃d/2 with integers p ≥ q and p̃ ≥ 0. Then

there exists a unique probability measure β̃µ,ν on Ωq(F) such that for all r ∈ Πq(F),

Jµ+ν(r) =

∫
Ωq(F)

Jµ
(√
rs
√
r
)
dβ̃µ,ν(s).

Proof. For brevity we omit F in the notion of the relevant matrix spaces. Recall
that the functions

ϕµs (r) = Jµ
(1

4
rs2r

)
s, r ∈ Πq

can be naturally identified with the bounded spherical functions of the Gelfand
pair (Mp,qoUp, Up), and the ϕµ+ν

s with those of the pair (Mp+p̃,qoUp+p̃, Up+p̃). In
Section 6 of [31] it is deduced from this characterization by a positive definiteness
argument that the functions φµ+ν

s have a representation

ϕµ+ν
s (r) =

∫
Πq

ϕµt (r)dαµ,ν;s(t),

with a unique probability measure αµ,ν;s, see formula (6.1) of [31]. (There is a
misprint in [31]: the indices p1, p2 of the groups Gp1 , Gp2 are mixed up). With
s = 2Iq this immediateley yields our claim. �

4. Beta distributions and extension of the Sonine formula

In this section we present an analytic extension of Theorem 1 with respect to the
parameters µ, ν by distributional methods. Let us first fix some notation. For an
open subset U of some finite dimensional vector space V over R, denote by D(U)
the space of compactly supported C∞-functions on U and by D′(U) the space of
distributions on U . We write E(U) for the space C∞(U) with its usual Fréchet
space topology; its dual E ′(U) coincides with the space of compactly supported
distributions on U . Further, D′k(U) denotes the space of distributions of order
≤ k. Recall that D′0(U) consists of those distributions which are given by a (not
necessarily bounded) complex Radon measure on U . In particular, each locally
integrable function f ∈ L1

loc(U) defines a regular distribution Tf ∈ D′0(U) via
Tf (ϕ) =

∫
U
ϕ(x)f(x) dx.

We shall also consider regular distributions associated with functions fλ ∈ L1
loc(U)

where fλ depends analytically on some parameter λ ∈ D with some open, con-
nected set D ⊆ C. We ask for which parameters the associated distributions
Tλ := Tfλ ∈ D′0(U) admit extensions to distributions of order 0 on V . We shall
need the following observation from Sokal [33]; see Lemmata 2.1, 2.2 and Proposi-
tion 2.3 there.
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Lemma 1. Let U ⊆ V and D ⊆ C be as above, and let

F : U ×D → C, (x, λ)→ fλ(x) := F (x, λ)

be a continuous function such that F (x, .) is analytic in D for each x ∈ U . Define
Tλ ∈ D′0(U) by

Tλ(ϕ) =

∫
U

ϕ(x)fλ(x)dx.

Then the following hold:

(1) The map λ 7→ Tλ , D → D′(U) is (weakly) analytic in the sense that
λ 7→ Tλ(ϕ) is analytic for all ϕ ∈ D(U).

(2) Let D0 ⊆ D be a nonempty open set, and let λ 7→ T̃λ, D → D′(V ) be an

analytic map such that T̃λ extends Tλ for each λ ∈ D0. Then T̃λ extends Tλ
for each λ ∈ D. Moreover, for each λ ∈ D with T̃λ ∈ D′0(V ) one has fλ ∈
L1
loc(U ), that is fλ is integrable over each sufficiently small neighborhood

in V of any point x ∈ U . In particular, if U is compact, then fλ is the
density of a bounded measure.

We start our considerations on symmetric cones with an injectivity result which
is of interest in its own and will be of importance in the sequel. Let again Ω be an
irreducible symmetric cone and V the associated simple Euclidean Jordan algebra.
Following [9], we consider the Schwartz space of the closed cone Π = Ω,

S(Π) :=
{
f ∈ C∞(Π) : ‖f‖α,β,Π := ‖xβ∂αf‖∞,Π <∞ for all α, β ∈ Nq0

}
.

Here C∞(Π) denotes the space of continuous functions on Π which are smooth on
Ω and whose partial derivatives extend continuously to its closure Π. We note that
each f ∈ C∞(Π) can be extended to a smooth function on V . This follows by the
Whitney extension theorem (see [5], Theorem 2.6 and Propos. 2.16), because Π is a
semi-algebraic (and hence subanalytic) subset of V with dense interior. Therefore

S(Π) =
{
f
∣∣
Π

: f ∈ C∞(V ), ‖f‖α,β,Π <∞ for all α, β ∈ Nq0
}
.

The same approximation argument as in the classical case shows that the space

D(Π) := {f
∣∣
Π

: f ∈ D(V )}
is dense in S(Π) with respect to the seminorms ‖.‖α,β,Π. We denote by S ′(Π) the
dual of the locally convex space S(Π), i.e. the space of tempered distributions on
Π. Let <µ > d(q − 1) + 1 = 2µ0 + 1. Then according to Theorem 2.2. of [9], the
Hankel transform

f 7→ f̂ µ, f̂ µ(r) =

∫
Ω

f(s)Jµ
(
P (
√
s )r
)
∆(s)µ−n/qds

is a homeomorphism of S(Π). Actually, this is stated in [9] for <µ > µ0, but the
proof requires absolute convergence of the inverse Laplace integral representing the
Bessel function, which is guaranteed only for <µ > d(q − 1) + 1, see[11], Proposi-
tion XV.2.2. The stated homeomorphism property allows to deduce the following
injectivity result.

Theorem 2. Let µ ∈ C with <µ > 2µ0 + 1. For r ∈ Π define

J r
µ (x) := Jµ

(
P (
√
r )x

)
∈ E(V ).

Suppose that T ∈ E ′(V ) has compact support which is contained in Π. Then the
following hold:
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(1) If T (J r
µ ) = 0 for all r ∈ Π, then T = 0.

(2) Suppose that J r
µ is bounded for each r ∈ Π, and that there is a bounded

measure β ∈Mb(Ω) (also considered as a measure on V ) such that

T (J rµ ) =

∫
Ω

J rµ (s) dβ(s) for all r ∈ Π .

Then T = β.

Proof. We first observe that T belongs to S ′(Π). Indeed, choose a compact, convex
and connected subset K ⊂ Π containing the support of T , and let k denote the
order of T . Then according to Theorem 2.3.10 of [18], there exists a constant C > 0
such that for all ϕ ∈ E(V ),

|T (ϕ)| ≤ C
∑
|α|≤k

‖∂αϕ‖∞,K . (18)

This shows that T ∈ S ′(Π) and that the inclusion

{T ∈ E ′(V ) : suppT ⊂ Π} → S ′(Π)

is injective. Now let ϕ ∈ D(Π). It is easy to check that the mapping r 7→ J r
µ , Π→

E(V ) is continuous. Therefore∫
suppϕ

J rµ ϕ(r)∆(r)µ−n/qdr

is well-defined as an integral with values in E(V ) (see e.g. Section 3 of [32]), and
we obtain

T (ϕ̂µ) = T
(∫

suppϕ

J rµ ϕ(r)∆(r)µ−n/qdr
)

=

∫
suppϕ

T (J rµ )ϕ(r)∆(r)µ−n/qdr. (19)

In the situation of part (1), it follows that T (ϕ̂µ) = 0. As D(Π) is dense in S(Π)
and the Hankel transform is a homeomorphism of S(Π), this implies that T = 0 as
an element of S ′(Π), which yields assertion (1). In the situation of part (2), identity
(19) leads to

T (ϕ̂µ) =

∫
Ω

ϕ̂µ(s) dβ(s),

and the same argument as above shows that T = β. �

The following estimate implies that already for <µ ≥ µ0 + 1
2 , the Bessel functions

J r
µ with r ∈ Πq are indeed bounded on Πq as required in part (2) of the above

theorem.

Lemma 2. Let <µ ≥ µ0 + 1/2. Then

|Jµ(x)| ≤
√

2qq! for all x ∈ V.

For further bounds on J -Bessel functions see [24] and [26]; they do however not
cover Lemma 2 above. Our proof of this Lemma will be based on the connection
between Jµ and Bessel functions of Dunkl type associated with the root system

Bq = {±ei, 1 ≤ i ≤ q} ∪ {±ei ± ej : 1 ≤ i < j ≤ q} ⊂ Rq

as established in [30]. The reflection group associated with Bq is the hyperoctahe-
dral group G = Sq n Zq2. For a general background on Dunkl theory see [10], [29]
and the references cited there. Let EBk : Cq × Cq → C denote the Dunkl kernel
associated with Bq and multiplicity k = (k1, k2), where k1 and k2 are the values of k
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on the roots ±ei and ±ei±ej , respectively. Here k belongs to a regular multiplicity
set Kreg ⊂ C2 which contains those k with <k ≥ 0, i.e. <ki ≥ 0. The associated
Bessel function is given by

JBk (z, w) =
1

|G|
∑
g∈G

EBk (z, gw).

It is G-invariant in both arguments and satisfies JBk (λz,w) = JBk (z, λw) for all
λ ∈ C. If <k ≥ 0, then by [10],

|JBk (iξ, η)| ≤
√
|G| for all ξ, η ∈ Rq. (20)

Proof of Lemma 2. Let x ∈ Π with eigenvalues ξ = (ξ1, . . . , ξq) ∈ Rq and suppose
that <µ ≥ µ0 + 1/2. According to Corollary 4.6 of [30],

Jµ(x2) = JBk (2iξ,1) with k = (µ− µ0 − 1/2, d/2),1 = (1, . . . , 1).

Estimate (20) implies the stated estimate of Jµ(x) with x ∈ Π. By the K-invariance
of Jµ it extends to all x ∈ V.

�

Theorem 2 together with the integral representation of Theorem 1 can be used
to derive the following composition result for beta measures.

Lemma 3. Let µ, ν1, ν2 ∈ C with <µ > 2µ0 + 1 and <νi > µ0. Then for the
mapping

C : Ωe × Ωe → Ωe, (r, s) 7→ P (
√
s )r

the push forward (or image measure)

βµ,ν1 ◦ βµ+ν1,ν2 := C(βµ,ν1 ⊗ βµ+ν1,ν2) ∈Mb(Ωe)

satisfies

βµ,ν1 ◦ βµ+ν1,ν2 = βµ,ν1+ν2 .

Proof. We recall that for r ∈ Ω, P (r) is a positive operator and contained in
G = G(Ω)0. (The latter follows from Propos. III.2.2. of [11] and the continuity of
P ). Thus for r, s ∈ Ωe, we have 0 < P (

√
s )r < P (

√
s )e = s < e, which confirms

that C(r, s) ∈ Ωe. By Theorem 1 we obtain for r ∈ Ω

Jµ+ν1+ν2(r) =

∫
Ωe

Jµ+ν1(P (
√
s )r) dβµ+ν1,ν2(s)

=

∫
Ωe

∫
Ωe

Jµ
(
P (
√
t )P (

√
s )r
)
dβµ,ν1(t)dβµ+ν1,ν2(s).

On the other hand,∫
Ωe

Jµ
(
P (
√
r)y
)
dβµ,ν1 ◦ βµ+ν1,ν2(y) =

=

∫
Ωe

∫
Ωe

Jµ
(
P (
√
r)P (

√
s)t
)
dβµ,ν1(t)dβµ+ν1,ν2(s).

Now consider the argument of Jµ. By the polar decomposition of G (Thm. III.5.1

of [11]), there exist k ∈ K and x ∈ Ω such that P (
√
r)P (

√
s)P (

√
t) = P (x)k and

therefore

P (
√
r)P (

√
s)t = P (

√
r)P (

√
s)P (

√
t)e = P (x)ke = P (x)e = x2
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and

P (
√
t)P (
√
s)r = P (

√
t)P (
√
s)P (

√
r)e = (P (x)k)∗e = k−1P (x)e = k−1x2.

As Jµ is K-invariant, we obtain

Jµ+ν1+ν2(r) =

∫
Ωe

Jµ
(
P (
√
r)y
)
dβµ,ν1 ◦ βµ+ν1,ν2(y).

If we compare this with Theorem 1 and use Theorem 2(1), the result follows. �

We now turn to the distributional extension of beta measures on matrix cones.
We shall apply Lemma 1 to the Jordan algebra V, the relatively compact set U :=
Ωe, λ = ν and the densities

fν(x) :=
ΓΩ(µ+ ν)

ΓΩ(µ)ΓΩ(ν)
∆(x)µ−n/q∆(e− x)ν−n/q (21)

of the beta measures βµ,ν from (16) on U , where the index µ is suppressed. We
consider the open half planes

Ek := {ν ∈ C : <ν > µ0 − k}, k ∈ N0.

Note that E0 ⊂ Ek ⊂ Ek+1. It is clear that for fixed µ with <µ > max(µ0, k) and
x ∈ U , the function ν 7→ fν(x) is analytic on Ek. Moreover, by Lemma 1(1), the
mapping

E0 → D′(V ), ν 7→ βµ,ν (22)

is analytic for fixed µ with <µ > µ0. In order to apply the approach of Sokal [33]
and Lemma 1(2), we construct distributions βµ,ν ∈ D′(V ) for ν ∈ Ek. We here use
ideas of Gindikin [14], [15] for Riesz distributions; see Ch.VII of [11].

Theorem 3. Fix k ∈ N0 and an index µ ∈ C with <µ > µ0 + kq + 1.

(1) For ν ∈ Ek there exists a unique distribution βµ,ν ∈ D′(V ) such that the
mapping

Ek → D′(V ), ν 7→ βµ,ν

is a (weakly) analytic extension of the mapping (22) from E0 to Ek.
(2) The distributions βµ,ν from part (1) belong to D′kq(V ) and have compact

support which is contained in Πe. In particular, βµ,ν(ϕ) is well-defined for
each ϕ ∈ E(V ) and ν → βµ,ν(ϕ) is analytic on Ek for fixed ϕ ∈ E(V ).

(3) For each ν ∈ Ek, the Bessel function Jµ+ν satisfies

Jµ+ν(r) = βµ,ν(J r
µ ) for all r ∈ Π. (23)

Proof. We first note that for m ∈ N0 and α ∈ C with <α > µ0 +m+ 1 = m+n/q,
the function on V defined by

gα(x) :=

{
∆(x)α−n/q for x ∈ Ω

0 otherwise

is contained in Cm(V ). Moreover, by Proposition VII.1.4 and the arguments on
p. 133 of [11], the functions gα are related to the linear differential operator ∆

(
∂
∂x

)
of order q via

∆
( ∂
∂x

)
gα =

ΓΩ(α)

ΓΩ(α− 1)
gα−1 . (24)
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This leads to part (1) as follows: The case k = 0 is trivial. For k ≥ 1 and ν ∈ Ek
we define a distribution βµ,ν ∈ D′(V ) by

βµ,ν(ϕ) :=
ΓΩ(µ+ ν)

ΓΩ(µ)ΓΩ(ν + k)

∫
V

∆
( ∂
∂x

)k(
ϕ(x)gµ(x)

)
· gν+k(e− x) dx. (25)

Notice for this definition that gµ ∈ Ckq(V ) by our assumptions. Moreover, the
above expression is analytic in ν ∈ Ek. It is now easy to see from (24) that
definition (25) is consistent with (22). Indeed, for <ν + k > µ0 + qk + 1 we may
carry out integration by parts. As

∆
(
− ∂

∂x

)k
gν+k(e− x) =

ΓΩ(ν + k)

ΓΩ(ν)
gν(e− x), (26)

we obtain that (25) coincides with the beta measure βµ,ν for such ν, and by ana-
lyticity with respect to ν, it coincides for all ν ∈ E0. Part (2) is clear from formula
(25). Finally, identity (23) holds for all ν ∈ E0 according to Theorem 1, and as
both sides are analytic in ν ∈ Ek, it extends to all ν ∈ Ek. This proves part (3). �

Similar to Riesz distributions in Theorem VII.2.2 of [11], one can extend analytic
relations for the beta measures (16) to distributions with parameters µ, ν as in
Theorem 3. For instance, (16) immediately leads to:

Lemma 4. Let µ, ν ∈ C be as in Theorem 3 for some k ∈ N0. Then

∆(e− x) · βµ,ν =
(q−1∏
j=0

ν − jd/2
µ+ ν − jd/2

)
· βµ,ν+1 , (27)

∆(x) · βµ,ν =
(q−1∏
j=0

µ− jd/2
µ+ ν − jd/2

)
· βµ+1,ν .

The following result concerning the existence of Sonine representations is an
immediate consequence of Theorem 2, Lemma 2 and Theorem 3(3).

Corollary 1. Let k ∈ N0 and <µ > max(µ0 + kq + 1, 2µ0 + 1). Then for ν ∈ Ek,
the following are equivalent:

(1) The distribution βµ,ν is a complex measure.
(2) There exists a bounded complex measure β ∈Mb(Ω) such that Jµ+ν has the

Sonine representation

Jµ+ν(r) =

∫
Ω

Jµ
(
P
√
s) r)dβ(s) for all r ∈ Π.

In this case, the measure β in (2) is unique and given by β = βµ,ν .

We now investigate for which ν ∈ Ek the distribution βµ,ν (with <µ > µ0+kq+1)
is actually a complex measure, i.e. contained in D′0(V ), or even a positive measure.

It is well known (see Section VII.3 of [11]) that the Riesz distributions, which
are given for <α > µ0 by

Rα(ϕ) =
1

ΓΩ(α)

∫
V

ϕ(x)gα(x) dx,

have a (weakly) analytic extension to distributions Rα for all α ∈ C. They are
tempered and supported in Π. Moreover, the distribution Rα is a positive measure
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exactly if α belongs to the Wallach set{
0,
d

2
, . . . , (q − 1)

d

2
= µ0}∪ ]µ0,∞[ .

A simple proof for the necessity of this condition is given in [33]. By the same
method, it is also shown there that Rα is a locally finite complex Borel measure
exactly if α belongs to the set

Wq,d :=
{

0,
d

2
, . . . , (q − 1)

d

2

}
∪ E0.

The following sufficient condition for beta distributions is a consequence of the
known results for Riesz distributions.

Theorem 4. Let k ∈ N0, <µ > µ0 + kq + 1, and let ν ∈ Ek ∩Wq,d. Then βµ,ν
belongs to D′0(V ), i.e. βµ,ν is a compactly supported complex Borel measure. In
particular, βµ,0 = δe, provided that 0 ∈ Ek.

If in addition µ and ν are real, then βµ,ν is a probability measure.

Proof. For the normalization, recall from Theorem 3 that ν → βµ,ν(1) is analytic
on Ek. Therefore βµ,ν(1) = 1 for all ν ∈ Ek.

Now let ν ∈ Ek ∩Wq,d. Then the distribution

∆
( ∂
∂x

)k
gν+k = ΓΩ(ν + k)Rν

is a locally finite complex Borel measure. We claim that for ϕ ∈ D(V ),

βµ,ν(ϕ) =
ΓΩ(µ+ ν)

ΓΩ(µ)
·Rθν(ϕgµ), (28)

where Rθν denotes the image measure (pushforward) of the Riesz measure Rν under
the mapping θ : V → V, x 7→ e− x. Indeed, for ψ ∈ D(V ) we have

ΓΩ(ν + k)Rθν(ψ) =
(

∆
( ∂
∂x

)k
gν+k

)
(ψ ◦ θ) =

∫
V

∆
( ∂
∂x

)k
ψ(x) · gν+k(e− x)dx.

An approximation argument shows that this identity also holds for ψ ∈ Ckqc (V ), as
we may approximate ψ by a net (ψε)ε>0 ⊆ D(V ) such that ∂αψε → ∂αψ uniformly
on V for all |α| ≤ kq and the supports of the ψε stay in a fixed relatively compact
neighborhood of suppψ. Putting ψ = ϕgµ ∈ Ckqc (V ) and using formula (25), we
thus obtain (28). From identity (28) it is now obvious that βµ,ν is a complex
measure which is even positive if µ, ν are real. As R0 = δ0, it is also immediate
that βµ,0 = δe.

�

Remark 2. (1) The supports of the Riesz measures Rν with ν ∈ Wq,d are known
(see Propos.VII.2.3 of [11]). Identity (28) then easily gives the supports of the
corresponding measures βµ,ν . In particular, βµ,ν is a point measure only if ν = 0.

(2) Theorem 4 is in accordance with Proposition 2 in the group cases for µ suf-
ficiently large. It is not clear whether for small parameters µ = pd/2 and ν = p̃d/2,

the probability measures β̃µ,ν from Proposition 2 can be obtained as distributions

via analytic extension as above. Nevertheless, we shall from now on denote β̃µ,ν by
βµ,ν .



18 MARGIT RÖSLER AND MICHAEL VOIT

We are now aiming at necessary conditions on the indices under which the beta
distributions βµ,ν on Πq are actually measures. Such conditions will also imply
that the existence of an integral representation as in the above corollary requires
non-trivial restrictions on the indices of the Bessel functions involved. As a first
step, we extend Lemma 3 for beta measures to a larger set of parameters for which
the involved beta distributions are measures according to Theorem 4 or Proposition
2. The same proof as in Lemma 3 implies:

Lemma 5. Let <µ > 2µ0 + 1 and ν1, ν2 ∈ C be such that the beta measures βµ,ν1 ,
βµ+ν1,ν2 , βµ,ν1+ν2 exist. Then, in notation of Lemma 3,

βµ,ν1 ◦ βµ+ν1,ν2 := C(βµ,ν1 ⊗ βµ+ν1,ν2) = βµ,ν1+ν2 .

It might be possible to derive a converse statement of Theorem 4 by following
the approach of Gindikin [14], [15] for Riesz distributions; see Section VII.3 of [11].
We shall however use a different approach by Sokal [33] (specifically, Lemma 1), by
which we easily obtain the following result:

Theorem 5. Let k ∈ N0, <µ > µ0 + kq + 1, and ν ∈ Ek. If βµ,ν ∈ D′0(Hq), i.e.,
βµ,ν is a complex measure, then

ν ∈
({

0,
d

2
, . . . , (q − 1)

d

2

}
− N0

)
∪ E0 .

In particular, ν + l ∈Wq,d for some l ∈ N0.

Proof. We apply Lemma 1(2) to D0 := E0, D := Ek, and U = Πe and obtain that
the beta density fν given by (21) belongs to L1

loc(Πe). It is well-known that

x 7→ ∆(x)µ−n/q∆(e− x)ν−n/q

is contained in L1
loc(Πe) precisely for ν ∈ E0; see for instance Lemma 3.4 of [33].

Therefore either ν ∈ E0 or
ΓΩ(µ+ ν)

ΓΩ(µ)ΓΩ(ν)
= 0,

where the latter just means that ΓΩ has a pole in ν. �

We conjecture that under the conditions of Theorem 5, it should be even true,
similar as for Riesz distributions, that ν ∈Wq,d. Our next statement confirms this
conjecture under the assumption that d ∈ {1, 2}. This covers the important case of
the matrix cones Ωq(F) over F = R or C, as well as the Lorentz cones Λ3 and Λ4.

Theorem 6. Suppose that d ∈ {1, 2}. Let k ∈ N, <µ > µ0 + kq+ 3/2 and ν ∈ Ek.
If βµ,ν is a complex measure, then <ν ≥ 0. If in addition µ is real and βµ,ν is a
positive measure, then ν ∈ [0,∞[.

Proof. Notice first in the present situation, µ0 + kq + 3/2 > 2µ0 + 1. Now suppose
that βµ,ν is a complex measure. In view of Theorem 5 it suffices to consider ν =
rd/2 − l with r = 0, . . . , q − 1 and l > 0 an integer. We may also assume that
µ0 − k < ν ≤ µ0 − k + 1, and therefore ν = µ0 − k + α with α ∈ {1/2, 1}. We
now assume that ν < 0 and claim that βµ+ν,−ν is a complex measure. In fact, our
assumptions imply that

<(µ+ ν) > (µ0 + kq + 3/2) + (µ0 − k + 1/2) = 2µ0 + k(q − 1) + 2 > µ0 .
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If −ν > µ0, our claim is obvious. Let us consider the case −ν ≤ µ0. Then
−ν ∈ E2µ0+2−k with 2µ0 + 2 − k ∈ N. As ν < 0 and µ0, ν ∈ 1

2N0, it follows that
k ≥ µ0 + 1 and therefore

<(µ+ν) > 2µ0 +k(q−1) + 2 ≥ 2µ0 + (µ0 + 1)(q−1) + 2 ≥ µ0 + q(2µ0 + 2−k) + 1 .

Moreover, as 0 < −ν ≤ µ0 = (q − 1)d/2 and d = 1 or d = 2, we conclude that
−ν ∈ {d/2, . . . , (q − 1)d/2} ⊂ Wq,d. (Here the assumption d ∈ {1, 2} has been
used for the first time). We may now apply Theorem 4 to the pair (µ+ ν,−ν) and
obtain again that βµ+ν,−ν is a complex measure. Notice also that βµ,0 is a complex
measure because 0 ∈ Ek according to our assumptions. Thus by Lemma 5,

βµ,ν ◦ βµ+ν,−ν = βµ,0 = δe . (29)

On the other hand, the support of the measure βµ,ν ◦ βµ+ν,−ν is given by

{P (
√
s )r : r ∈ suppβµ+ν,−ν , s ∈ suppβµ,ν}.

If P (
√
s)r = e with 0 ≤ r, s ≤ e, then r = s = e. Identity (29) therefore implies that

suppβµ,ν = suppβµ+ν,−ν = {e}, which is possible only if ν = 0. This contradicts
our assumption and proves the first statement.

If in addition µ is real and βµ,ν is a positive measure, then it is clear from
Theorem 3(3) that ν is real. This shows the second statement.

�

The argument above relies on the condition d ∈ {1, 2}, and we do not know
whether Theorem 6 extends to larger Peirce constants. Let us summarize our
results for d ∈ {1, 2}.

Corollary 2. Suppose d ∈ {1, 2}. Let k ∈ N and <µ > µ0 + kq + 3/2. Then for
ν ∈ Ek, the following statements are equivalent:

(1) βµ,ν is a complex measure;
(2) ν ∈Wq,d;
(3) There exists a bounded complex measure β ∈Mb(Ω) such that

Jµ+ν(r) =

∫
Ω

Jµ(rs)dβ(s) for all r ∈ Π .

If µ is real with µ > µ0 + kq + 3/2, then for ν ∈ Ek the following are equivalent:

(1) βµ,ν is a positive measure;
(2) ν is contained in the Wallach set{

0,
d

2
, . . . , (q − 1)

d

2
= µ0

}
∪ ]µ0,∞[ ;

(3) There exists a probability measure β ∈M1(Ω) such that

Jµ+ν(r) =

∫
Ω

Jµ(rs)dβ(s) for all r ∈ Π .

In both cases, the measure β in (3) is unique and given by βµ,ν .

Proof. In both cases, implication (1)⇒(2) follows from Theorem 5 in combination
with Theorem 6. The remaining parts are immediate from Corollary 1, Theorem 4
and Theorem 2(2).

�
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Corollary 2 implies in particular that for q > 1 and sufficiently large µ > 0, there
exist indices ν > 0 such that Jµ+ν admits no positive integral representation with
respect to Jµ. So there exists no Sonine-type formula in these cases. This is a
surprising contrast compared to the one-variable case.

Remark 3. The Jack polynomials Cαλ have non-negative coefficients in their expan-
sion with respect to the monomial symmetric functions([20]). In view of formula
(14), this implies that

Jµ(−r) > 0 for µ > µ0 and all r ∈ Π. (30)

Similar to an argument in the appendix of [33], this observation together with
Theorem 3(3) and identity (27) leads for d = 2 to an alternative proof that for
µ > µ0 + kq + 1 and indices ν ∈ [0,∞[ which do not belong to the Wallach set,
the distribution βµ,ν cannot be a positive measure. In fact, otherwise identity (27)
would imply that βµ,ν+l is a negative measure for l = 1 or l = 2, because the
product on the right side of formula (27) will be negative for either ν or ν + 1.
(Here d = 2 is relevant). On the other hand, Theorem 3(3) immediately implies
that

Jµ+ν+l(−r) =

∫
Ωe

Jµ
(
−P (
√
s)r
)
dβµ,ν+l(s)

for all r ∈ Π, in contradiction to (30).

References

[1] G. Andrews, R. Askey, R. Roy: Special Functions. Cambridge Univ. Press, 1999.

[2] R. Askey, Orthogonal Polynomials and Special Functions. Regional Conference Series in Ap-
plied Mathematics, SIAM, Philadelphia, 1975.

[3] H. Aslaksen, Quaternionic determinants. Math. Intelligencer 18 (1996), 57–65.

[4] T.H. Baker, P.J. Forrester, The Calogero-Sutherland model and generalized classical polyno-
mials. Comm. Math. Phys. 188 (1997), 175–216.

[5] E. Bierstone, Differentiable functions. Bol. Soc. Bras. Mat. 11, no. 2 (1980), 139–190.

[6] M. Casalis, G. Letac, The Lukacs-Olkin-Rubin characterization of Wishart distributions on
symmetric cones. Ann. Stat. 24 (1996), 763-786.

[7] A.G. Constantine, Some non-central distribution problems in multivariate analysis. Ann.
Math. Statist. 34 (1963), 1270–1285.

[8] J.A. Diaz-Garcia, Riesz and Beta-Riesz distributions. Austrian J. Statistics 45 (2016), 35–51.
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