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Kurzfassung

Der heutige Industriestandard erfordert den Einsatz effizienter und performanter Werk-
stoffe, die im Sinne der Gesamt- und Produktionskosten, der Materialersparnis, des
Kraftstoffverbrauchs oder des mechanischen Verhaltens optimal ausgelegt sind. In vielen
Fällen leistet die richtige Materialwahl für die betrachteten Bauteile einen erheblichen
Beitrag zur Gesamtleistung. Moderne Materialien sind nicht als homogen anzusehen, son-
dern setzen sich aus diversen Bestandteilen zusammen. Oft reicht daher die Betrachtung
auf Strukturebene nicht mehr aus und Untersuchungen auf einer niederen Längenskala,
der sogenannten Material- oder Mikroskala, werden erforderlich.

Der verantwortliche Entwicklungsingenieur hat basierend auf Versuchsergebnissen, Er-
fahrungen aus seiner Praxis sowie den verfügbaren Methoden für die computergestützte
Simulation und Analyse zu entscheiden, welche Materialien und Materialbestandteile für
eine zielorientierte Komposition in Frage kommen. Die Beurteilung der getroffenen Wahl
kann basierend auf so genannten Mehrskalen-Methoden für die Strukturanalyse erfolgen.
Hierzu gehört auch die FE2 Methode, welche durch eine numerische Homogenisierung
der mikroskopischen Materialstruktur eine kombinierte Analyse des makroskopischen
Strukturverhaltens und des mikroskopischen Materialverhaltens ermöglicht.

Für den beschriebenen Anspruch der Strukturanalyse wird im Rahmen der vorliegenden
Arbeit eine Weiterentwicklung realisiert, die neben der numerischen mehrskaligen Simu-
lation des physikalischen Bauteilverhaltens eine Verbesserung definierter Eigenschaften
ermöglicht. Diese Erweiterung führt zum Forschungsbereich der Strukturoptimierung, der
sich neben der Dimensionierung von Bauteilkomponenten mit der optimalen Auslegung
der Bauteile im Sinne der topologischen Zusammensetzung sowie der Formfindung befasst.
Die klassische Aufgabe der Strukturoptimierung setzt sich zusammen aus der Definition
von Zielen, Restriktionen und Designvariablen sowie der Wahl von mathematischen Opti-
mierungsalgorithmen. Es wird eine Methode entwickelt, die eine Erweiterung der einskali-
gen Optimierungsaufgabe darstellt und eine Wahl von Zielfunktionen, Nebenbedingungen
und Designparametern wie Material, Anzahl und Position von Löchern und Einschlüssen
sowie Geometrieparametern auf mehreren Skalen ermöglicht. Da der numerische Aufwand
bereits für die Methoden der Strukturanalyse erheblich werden kann, empfiehlt es sich
effiziente Methoden im Rahmen der Strukturoptimierung zu verwenden. Zu dieser Klasse
der Methoden zählen die sogenannten gradientenbasierten Optimierungsverfahren. Im
Rahmen der vorliegenden Arbeit werden die erforderlichen Gradienten- bzw. Sensitivi-
tätsinformationen basierend auf dem variationellen Ansatz hergeleitet und bereitgestellt.
Anhand geeigneter Beispiele und numerischer Untersuchungen wird gezeigt, dass dieser
Ansatz von Natur aus als performant klassifiziert werden kann.

Schlagwörter: Materialentwurf, FEM, Mehrskalen-Methoden (FE2) und Homogenisie-
rung, Variationelle Sensitivitätsanalyse, Struktur- und Formoptimierung.



Abstract

Today’s state of the art within industrial applications requires the usage of efficient and
high-performance materials, which are optimally designed in terms of production costs,
material savings, fuel consumption or their mechanical behaviour. In many cases, a useful
choice of materials of components contributes to the overall performance significantly.
Modern materials can not be classified as homogeneous, but are composed of various
ingredients. Often, considerations at the structural level are no longer sufficient and
investigations on a lower length scale, the so-called material- or microscale, become
necessary.

Based on experimental data and results, practical experience and available methods
for computer-aided simulation and analysis, the responsible design engineer has to decide
which ingredients are suitable for a goal-oriented composition of materials. The evaluation
of the choice made can be performed based on so-called multiscale methods for structural
analysis. These also include the FE2 method, which allows a combined analysis of the
macroscopic structural behaviour and the microscopic material behaviour by a numerical
homogenisation scheme applied to the microscopic material structure.

The work at hand provides an enhancement of methods for the numerical multiscale
simulation of the physical behaviour and enables improvements of characteristic properties.
This extension leads to the research field of structural optimisation. Apart from sizing, it
deals with the optimal design of components in the sense of optimal topological distribution
of material as well as shape optimisation. The classical sequence of steps within a structural
optimisation process contains the definition of goals, restrictions and design variables as
well as the choice of algorithms for mathematical optimisation. The proposed method
extends the formulation of a single-scale optimisation task and allows choices of objective
functions, constraints and design parameters on multiple scales. Design parameters are for
instance characteristic material properties, number and location of holes and inclusions,
and geometrical parameters in general. Since the numerical effort within methods for
multiscale structural analysis raises with the complexity of referred problems, it is useful
to apply efficient methods in the context of structural optimisation. This class of methods
includes the so-called gradient based optimisation methods. Within the present work,
the required gradient and sensitivity information are derived and provided based on the
variational approach for sensitivity analysis. By means of suitable examples and numerical
investigations, it is shown that this approach can be classified as performant by nature.

Keywords: material design, FEM, multiscale methods (FE2) and homogenisation, varia-
tional sensitivity analysis, structural optimisation, shape optimisation.
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Nomenclature and list of symbols

All mathematical operators and short forms are explained in corresponding paragraphs.
Nevertheless, a list of frequently and repetitively used symbols and abbreviations is given
below and allows a quick lookup. In the scope of multiscale formulations and computational
homogenisation, the term macroscopic is connected with the upper length scale and
corresponding quantities are indicated by overlines. The term microscale is associated
with the lower length scale and the characteristic dimensions of representative volume
elements. The corresponding quantities are represented without any markers.

Abbreviations
BC boundary conditions
BESO bidirectional evolutionary structural optimisation
BFGS Broyden-Fletcher-Goldfarb-Shanno update formula
BVP boundary value problem
CAE computer aided engineering
CAGD computer aided geometric design
CMD computational material design
CMMS computational mechanics of materials and structures
CON constraints
CUDA compute unified device architecture
DP design parameters or design variables
DSA design sensitivity analysis
FDM finite difference method
FE finite element
FEA finite element analysis
FEAP finite element analysis program
FEM finite element method
FE2 multiscale finite element method (FE squared)
GPU graphics processing unit
HPC high performance computing
INA-OPT inelastic analysis and optimisation
IVP initial value problem

v



vi Nomenclature and list of symbols

MAnO multiscale analysis and optimisation
MOO multiobjective optimisation
MPI message passing interface
MSA part of MAnO for structural analysis purposes
MSE material science and engineering
MSO part of MAnO for structural optimisation purposes
NLP non-linear programming
NTFA non-uniform transformation field analysis
OF objective function
OpenMP open multi-processing
POD proper orthogonal decomposition
pRBMOR potential-based reduced basis model order reduction
RVE representative volume element
SA structural analysis
SCON side constraints
SMO structural and multidisciplinary optimisation
SO structural optimisation
SQP sequential quadratic programming
SSRVE statistically similar representative volume element
SVD singular value decomposition
XFEM extended finite element method
YFEM modified extended finite element method

Notation, mathematical operators and subscripts
𝑓 general placeholder for an arbitrary functional
(·) general placeholder for an arbitrary quantity
(·) macroscopic or effective quantity in terms of FE2

(·) quantity in Voigt notation

𝛿(·), (·)′ total variation of a quantity (·)
𝛿*(·), (·)′* partial variation of a quantity (·) with respect to *
𝛿**(·), (·)′′* second partial variation of a quantity (·) with respect to *
𝛿mic(·), (·)′mic variation of a quantity (·) with respect to microscopic state and design parameters
(·)D, (·)N Dirichlet and Neumann domain
(·)a free domain for state
(·)b boundary domain for state
(·)A free domain for design
(·)B boundary domain for design
(·)i inner domain in terms of FE2

(·)I general identifier for boundary conditions on microscale
(·)D identifier for linear displacement boundary conditions
(·)P identifier for periodic displacement boundary conditions
(·)S identifier for uniform traction boundary conditions



Nomenclature and list of symbols vii

(·)ini, (·)opt identifiers for initial and optimised state of a quantity
(·)l, (·)u identifiers for lower and upper bounds of a quantity

Domains and boundaries
𝒦, 𝒦 macro- and microscopic referential domain (Lagrange)
ℳ, ℳ macro- and microscopic current domain (Euler)
ℛ, ℛ macro- and microscopic local domain
𝜕𝒦, 𝜕𝒦 boundary of macro- and microscopic referential domain
𝜕ℳ, 𝜕ℳ boundary of macro- and microscopic current domain
𝜕ℛ, 𝜕ℛ boundary of macro- and microscopic local domain
𝜕𝒦+, 𝜕𝒦− positive and negative parts of referential boundary domain

Continuous quantities for structural and sensitivity analysis
𝑣, 𝑣 macro- and microscopic state
𝛿𝑣, 𝛿𝑣 macro- and microscopic state variation
𝑠, 𝑠 macro- and microscopic design
𝛿𝑠, 𝛿𝑠 macro- and microscopic design variation
𝜙,𝜙 macro- and microscopic deformation mapping
𝜅,𝜅 macro- and microscopic local geometry mapping
𝜇,𝜇 macro- and microscopic local deformation mapping
F,F macro- and microscopic deformation gradient
𝐹 macroscopic deformation gradient in Voigt notation
K,K macro- and microscopic local geometry gradient
M,M macro- and microscopic local deformation gradient
𝑅 microscopic physical residual (also valid for single scales)
𝑅 macroscopic physical residual
𝑘 microscopic physical stiffness operator (also valid for single scales)
𝑘 macroscopic physical stiffness operator̃︀𝑘 multilevel physical stiffness operator
𝑝 microscopic pseudo load operator (also valid for single scales)
𝑝 macroscopic pseudo load operator̃︀𝑝 multilevel pseudo load operator
𝑠 sensitivity of microscopic state (exclusively) (also valid for single scales)
𝑠 sensitivity of macroscopic state (exclusively)̃︀𝑠 sensitivity of macroscopic state caused by micro-changes (multilevel)̂︀𝑠 effective sensitivity of macroscopic state caused by macro- and micro-changes
𝜆I Lagrange multiplier for microscopic boundary conditions I, i.e. 𝜆D,𝜆P,𝜆S

PI effective stress tensor for boundary conditions I, i.e. PD,PP,PS

AI effective material tensor for boundary conditions I, i.e. AD,AP,AS

𝐸, 𝜈 Young’s modulus and Poisson’s ratio
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Discrete quantities for structural and sensitivity analysis
𝑣 , 𝑣 macro- and microscopic state
𝛿𝑣 , 𝛿𝑣 macro- and microscopic state variation
𝑠, 𝑠 macro- and microscopic design
𝛿𝑠, 𝛿𝑠 macro- and microscopic design variation
𝑅 microscopic physical residual (also valid for single scales)
𝑅 macroscopic physical residual
𝐾 microscopic physical stiffness operator (also valid for single scales)
𝐾 macroscopic physical stiffness operator̃︀𝐾 multilevel physical stiffness operator
𝑃 microscopic pseudo load operator (also valid for single scales)
𝑃 macroscopic pseudo load operator̃︀𝑃 multilevel pseudo load operator
𝑃 total multilevel pseudo load operator
𝑆 sensitivity of microscopic state (exclusively) (also valid for single scales)
𝑆 sensitivity of macroscopic state (exclusively)̃︀𝑆 sensitivity of macroscopic state caused by micro-changes (multilevel)̂︀𝑆 effective sensitivity of macroscopic state caused by macro- and micro-changes
𝑃 K,I effective stress matrix for boundary conditions I, i.e. 𝑃 K,D,𝑃 K,P,𝑃 K,S

𝑃 K,I effective stress in Voigt notation for boundary conditions I, i.e. 𝑃 K,D,𝑃 K,P,𝑃 K,S

𝐴I effective material matrix for boundary conditions I, i.e. 𝐴D,𝐴P,𝐴S

Structural optimisation
𝑓 arbitrary function as placeholder for an objective or constraint
𝐽 objective function
ℎ, ℎ, ℎ microscopic equality constraint as scalar, vector, matrix (also on single scale)
𝑔, 𝑔, 𝑔 microscopic inequality constraint as scalar, vector, matrix (also on single scale)
ℎ, ℎ, ℎ macroscopic equality constraint as scalar, vector, matrix
𝑔, 𝑔, 𝑔 macroscopic inequality constraint as scalar, vector, matrix
𝑠l, 𝑠l macro- and microscopic lower bound for design parameters
𝑠u, 𝑠u macro- and microscopic upper bound for design parameters
𝛥𝑠,𝛥𝑠 macro- and microscopic design increment
ℒ Lagrange functional
𝜆, 𝜆 Lagrange multiplier for equality constraints as scalar and vector
𝜇, 𝜇 Lagrange multiplier for inequality constraints as scalar and vector̃︀𝐽 quadratic approximation of objective functioñ︀ℎ linear approximation of equality constraints̃︀𝑔 linear approximation of inequality constraints
𝐶 compliance
𝑉 volume



Nomenclature and list of symbols ix

Quantities within numerical investigations
𝑛𝑣, 𝑛𝑣 overall number of macro- and microscopic degrees of freedom
𝑛𝑠, 𝑛𝑠 overall number of macro- and microscopic design parameters
𝑛𝑒𝑙, 𝑛𝑒𝑙 overall number of macro- and microscopic elements
𝑛IP overall number of integration points
𝑛𝑐𝑝 overall number of control points (CAGD)
𝑛𝑋 overall number of nodal design parameters (FE mesh)
𝑛IT number of iterations
𝑛F number of function evaluations
𝑛c

F number of function evaluations for central FDM scheme
𝑛f,b

F number of function evaluations for forward/backward FDM scheme
𝑡 time variable
𝑡a time for structural analysis
𝑡s time for sensitivity analysis
𝑡s,num time for numerical sensitivity analysis
𝑡cs,num time for numerical sensitivity analysis: central FDM scheme
𝑡f,bs,num time for numerical sensitivity analysis: forward/backward FDM scheme
𝑡s

cp time for sensitivity analysis on geometrical basis
𝑡s

X time for sensitivity analysis on nodal basis
𝑡o time for optimisation
𝑡o,num time for numerical optimisation





Chapter 1

Introduction

This chapter aims to introduce and to motivate the work at hand. A brief classification
of the combined research fields, i.e. computational homogenisation and structural opti-
misation with variational design sensitivity analysis, is given. Detailed reviews on the
state of the art and published literature are given in corresponding chapters. The scope as
well as the goals of the present work are outlined and put into the context of the overall
computational material design process.

1.1 Motivation

Nowadays, performant constructions are of major interest in for example automotive
or aerospace industries. The usage of these efficient components allows the saving of
resources in all respects, e.g. in the sense of saving the total production or material
costs, the weight savings or the fuel economy. The development of performant structures
requires the knowledge about the material properties and its behaviour, also on different
length scales. After a successful design process, these real-world mechanical structures are
labelled efficient or performant and belong to the class of high performance constructions.

Reflecting the past decades, many engineers and researchers developed analytical
and computational methods for the analysis of complex materials with heterogeneous
microstructures. They investigated the topological composition with different microscopic
constituents as well as the overall behaviour on different length scales, cf. Fig. 1.1 for
few illustrative examples for microstructures. The physical behaviour and performance of
modern structures from mechanical, civil or electrical engineering usually are analysed
by the widespread and well-known finite element method (FEM). This method allows
investigation of a broad field of problem formulations, e.g. non-linear hyperelasticity,
instability, fluid dynamics, inelastic and non-linear materials in general or micromechanics.

In parallel and adjacent to the development of methods for the understanding of given
structures, engineers and researchers from the field of structural optimisation concentrated
on strategies for the improvement of structures. Optimal designs in terms of mechanical
behaviour of stated problems can be achieved by incorporating the finite element method,
methods for design sensitivity analysis and methods for mathematical optimisation into

1



2 Chapter 1 Introduction

Figure 1.1: Examples for microstructures: concrete with a cement matrix and aggregated
grains (top left), steel (top right), wood (bottom left), foam structure (bottom right),
(photographs taken by W. Kijanski, 2018).

an overall environment for structural optimisation. Besides modifications of the topology
of microscopic domains, this field deals with the size and shape of individual constituents
and is usable for the generation of mechanical structures with desirable material properties.
The research and development in mentioned disciplines is an ongoing process.

The combination of both fields of research and the corresponding methods, i.e. of the
finite element method and methods for structural optimisation with the integrated design
sensitivity analysis, provides an efficient framework for the development of advanced
designs and optimised layouts of mechanical structures and systems for several problem
formulations. These problems can be related to the overall performance in terms of weight
or stiffness, and as a consequence also to the overall manufacturing or material costs, to
name a few. Especially nowadays, when it comes to manufacturing processes involving 3D
printing technologies and additive manufacturing, methods for analysis and optimisation
gain an eminent importance. Overall and among all disciplines, the focus lies on finding
solutions for optimal designs based on systematic strategies using algorithms and methods
for mathematical optimisation and non-linear programming (NLP) and on avoiding trial
and error methods in general. In this sense, the design sensitivity analysis plays an integral
role because it is responsible for the accuracy and efficiency of incorporated solution
strategies. Especially the variational approach, which is fully integrated into the scope of
the general layout of continuum mechanics, promises good and efficient solutions.
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The major goal is to “Formulate a method for the determination of optimal design layouts
of macroscopic structures and microscopic materials” and it can be put into the context of
Computational Material Design (CMD), which is briefly outlined in Fig. 1.2.

Computational Material Design (CMD)
Optimisation applied to Computational Materials Science and Engineering

Interdisciplinary communication, cooperation and research
Specialisation needed to generate manageable problems and solution strategies

MSE
Materials Science & Engineering:
development of materials, manu-

facturing processes, material
testing, engineering applications

CMMS
Computational Mechanics of

Materials & Structures: modelling
of heterogeneous multiscale

materials, computational methods

SMO
Structural & Multidisciplinary

Optimisation: sensitivity analysis
and algorithms for material, sizing,
shape and topology optimisation

Validation of multiscale computational models

Structural optimisation of multiscale problems

Modelling the design optimisation problem & validation of optimal design

Figure 1.2: Materials Engineering and Computational Material Design (CMD).

This illustration explains how structural optimisation can be applied to research fields
in computational materials science and engineering. The success of any interdisciplinary
collaboration is characterised by an interdisciplinary communication, cooperation and
research. Therefore, results of each individual research field, i.e. the field of Material
Science and Engineering (MSE), the field of Computational Mechanics of Materials and
Structures (CMMS) and the field of Structural and Multidisciplinary Optimisation (SMO),
have to be collected and evaluated for the formulation of the overall design optimisation
problem. This task deals with the optimal layout and design of structures and materials
from theoretical, practical and numerical points of view. Within the mentioned process,
CMMS plays the role of the facilitator. It requires the support of researchers from MSE
for the validation of computational models on one hand, and on the other hand this group
has to support researchers from SMO to set up feasible and correct optimisation problems
with a proper formulation of objectives, constraints and design parameters.

The idea for Computational Material Design is motivated from the practical relevance of
real-world applications and the flexibility of manufacturing processes with the characteristic
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affinity for the generation of high performance materials. The available manufacturing
technologies allow the designing engineers to consider the overall profitability and efficiency
of applications and to tailor them to their special requirements. The ability to produce new
materials, for instance using 3D printers, additionally supports this design process. Modern
applications in automotive, aerospace or aircraft industries often make use of cellular
materials. In general, this kind of materials is classified as ultra-lightweight and rank
among high performance materials due to their high strength-to-weight ratio. Therefore,
it is of special interest to figure out the best possible layouts for this kind of constructions
using automated software solutions. All mentioned disciplines and research fields have
one goal in common; they all intend to promote positive and to reduce or even neglect
negative properties of structures and mechanical systems.

1.2 Scope and goals

The major goal of the thesis at hand, which is referred throughout the entire work is to

“Formulate a method for the determination of optimal design layouts of
macroscopic structures and microscopic materials!”

The achievement of the articulated goal requires the formulation of multiscale sensitivity
relations and the development of a numerical optimisation environment for an automatical
design and layout generation of mechanical structures with heterogeneous microscale
material representations. The formulation takes characteristic mechanical properties over
multiple scales into account and allows the definition of objective functions, constraints
and design parameters on different scales. This work promotes established methods for
computational homogenisation within the structural analysis part in combination with
the variational approach for the derivation of sensitivity information for the integrated
design sensitivity analysis, especially in the scope of shape optimisation problems.

Based on hyperelastic material behaviour of constituents on the microscale without any
time and history dependent effects, established computational homogenisation techniques
are used for the determination of the structural response. These results constitute the
basis for the design sensitivity analysis, which is used for predictions about the physical
multiscale behaviour of the defined structure. Sensitivity relations for the design sensitivity
analysis are derived on the continuous level prior to any discretisation steps. The major
focus lies on the derivation of the design sensitivity information of the homogenisation
condition, which bridges the macro- and the microscale. In general, homogenised or
effective parameters can be formulated in terms of resulting quantities on the boundary of
the investigated microscopic domain. Within techniques for numerical homogenisation
based on the Lagrange formalism, the Lagrange parameter represents forces (or stresses)
on the boundary of the domain, which enforce the formulated boundary conditions on
the microscale. In this scope, understanding physical reaction forces and especially the
sensitivity of physical reaction forces on the boundary of a single-scale domain with respect
to design parameters is essential. This principles and insights can be transferred and
adapted for the mentioned homogenisation condition.

Obtained quantities and analytical derivatives, especially for objectives and constraints
within the optimisation problem, are verified using methods for the computation of nu-
merical derivatives, i.e. the finite difference method (FDM). To demonstrate the flexibility
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of the developed optimisation environment based on the introduced sensitivity relations,
different geometry parametrisation techniques are introduced and used throughout the
illustrative examples and numerical investigations.

1.3 Outline

The outline of the work reflects the described scope and goals mentioned above and is
divided into eight chapters. In the following paragraphs the topics of chapters 2 to 8 are
briefly emphasised.

Chapter 2 compiles the notation and some basic relations and conventions, which are
used throughout this work. Moreover, the notation used for variations and derivatives is
introduced and a brief overview of the developed and used software is given.

Chapter 3 details the abstract setting of a general non-linear optimisation problem
and its solution based on algorithms for mathematical optimisation. A list for the choice
of objective functions and constraints as well as their combinations is given. Some remarks
on the verification of obtained sensitivity relations and on the choice of design parameters
with corresponding parametrisation techniques accomplish the compilation.

Chapter 4 outlines a brief review of relations used for the numerical homogenisation
and FE2 methods in terms of the Lagrange formalism. Based on remarks for the choice
of a representative volume element and the definition of effective field variables, solu-
tion strategies for structural problems over multiple scales in terms of computational
homogenisation are discussed.

Chapter 5 provides principles for the variational approach for design sensitivity analysis
on single scales. A summary of essential quantities, their variations and their discretisation
can also be found in this chapter. The partitioning of relevant relations and the necessary
steps for obtaining the sensitivity of physical reaction forces are discussed. This information
is necessary for the formulation of sensitivity relations for multiscale optimisation problems.
Some examples demonstrate the applicability of the sensitivity of physical reaction forces
as constraints within applications on single scales.

Chapter 6 tackles the major purpose of this thesis and explains the necessary sequence
of steps for the formulation of multiscale optimisation problems and therefore, of the
computational material design task. Sensitivity relations in their continuous and discrete
form are derived for the numerical homogenisation problem and are used for the formulation
and the set up of the overall multiscale optimisation problem. Remarks on the numerical
implementation and on possible combinations of objective functions, constraints and design
parameters on multiple scales are given.

Chapter 7 demonstrates the applicability of derived formulations using three numerical
examples with different design parametrisation techniques for the description of investigated
geometrical domains on the macro- and the microscale. Observations concerning the
numerical behaviour and performance of derived relations are discussed and compared
with methods based on the numerical determination of required sensitivity information.

Chapter 8 closes the work by a summary and highlights the goals and achieved results
once more. Moreover, it offers an outlook on future work and activities in the presented
field of research.





Chapter 2

Preliminaries and notations

To simplify the understanding of following chapters, the subsequent sections aim to intro-
duce fundamental and frequently used notations, mathematical operations and conventions,
products, derivatives and variations. Moreover, some introductory remarks on numerical
investigations in terms of implementation and software are given.

2.1 Notation

The convention presented in Table 2.1 is used and allows to distinguish between scalar
quantities, vectors, tensors of different order and different types of matrices throughout
this work. Relevant deviations and exceptions will be emphasised by corresponding
remarks, when needed. For instance, scalars and scalar functions are represented by
non-bold symbols in italic shape, e.g. 𝐴,𝑏 or using the Greek alphabet 𝛼, 𝛽, 𝛾, respectively.
With a given basis {𝑔1, 𝑔2, . . . , 𝑔𝑛} for a given vector space, vectors are represented by
boldface letters in italic shape, e.g. 𝐴 = 𝐴𝑖𝑔𝑖 or 𝑏 = 𝑏𝑖𝑔𝑖 with the components 𝐴𝑖 and
𝑏𝑖, respectively. Greek vectors 𝜀 = 𝜀𝑖𝑔𝑖 with corresponding components 𝜀𝑖 are used in
the same manner. Second order tensors, e.g. A = 𝐴𝑖𝑗𝑔𝑖 ⊗ 𝑔𝑗 or b = 𝑏𝑖𝑗𝑔𝑖 ⊗ 𝑔𝑗 , are
written with bold-faced Roman letters with the components 𝐴𝑖𝑗 and 𝑏𝑖𝑗 . Greek tensors
are represented by bold-faced Roman letters in a similar fashion, i.e. 𝜎 = 𝜎𝑖𝑗𝑔𝑖 ⊗ 𝑔𝑗 and
the components 𝜎𝑖𝑗 . Fourth order tensors are represented with a hollowed Roman font,
i.e. A = 𝐴𝑖𝑗𝑘𝑙𝑔𝑖 ⊗ 𝑔𝑗 ⊗ 𝑔𝑘 ⊗ 𝑔𝑙. Bold-faced sans-serif letters in italic shape are used for
matrices, e.g. 𝐴 = [𝐴𝑖𝑗 ] or for a column matrix 𝑏 = [𝑏𝑖], respectively. This kind of notation
corresponds to the notation presented in [99], but similar conventions can also be found in
standard literature on tensor algebra, tensor analysis and on continuum mechanics, see for
instance [19, 45, 74, 77, 168] to name a few. Bold-face calligraphic letters are used for
special and not common operators, i.e. 𝒜,ℬ, 𝒞.

To obtain a practical numerical method, the transformation of the general tensorial
notation into a matrix notation is necessary. Due to efficiency aspects, the principles of
the Voigt notation are often applied to several quantities given in matrix form and reduce
their order. In the general case, an arbitrary matrix 𝐴 and a symmetric matrix 𝐵, both
with components A𝑖𝑗 or B𝑖𝑗 and (𝑖, 𝑗 = 1, 2), can be transformed to the following vector or

7
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Table 2.1: Notation and topography.

Quantity Topographic style Example

scalar non-bold, italic 𝐴, 𝑏, 𝛼, 𝛽, 𝛾

vector bold, italic 𝐴, 𝑏, 𝜀,𝜎

tensor, 2nd-order bold A,b, 𝜀,𝜎

tensor, 4th-order hollowed Roman (blackboard) A,B,C

matrix, column matrix bold, italic, sans-serif 𝐴, 𝑏,𝜂,𝜇

special operators bold, calligraphic 𝒜,ℬ, 𝒞

Voigt notation bold, italic, sans-serif, underlined 𝐴,𝐵, 𝑎, 𝑏,𝛼

column matrix representations

𝐴 =
[︀
A11 A22 A12 A21

]︀𝑇 and 𝐵 =
[︀
B11 B22 2B12

]︀𝑇
. (2.1)

Although the Voigt notation and the corresponding representations in Eq. (2.1) are
established in standard techniques for FEM, cf. [168] for instance, the introduced notation
serves for explanations of not common quantities within formulations for multiscale
methods and computational homogenisation.

Standard mathematical operations and tensorial products for vectors and tensors of
different order listed above, which are known from literature on tensor algebra, tensor
analysis and on continuum mechanics, and which are used throughout this work, are
summarised in Table 2.2. Any deviations in subsequent chapters will be emphasised, when
needed, by corresponding remarks.

Table 2.2: Mathematical operations and tensorial products.

Description Operation

Scalar product 𝑐 = 𝑎 · 𝑏

Vectorial (cross) product 𝑐 = 𝑎× 𝑏

Tensorial (dyadic) product C = 𝑎⊗ 𝑏, C = A ⊗ B,

Simple contraction 𝑐 = A · 𝑏, C = A · B

Double contraction 𝑐 = A : B, C = A : B
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2.2 Variations and derivatives

Several textbooks and publications, like [23, 58, 92] for instance, serve as a valuable
reference and detailed introduction to fundamental principles of variational calculus.
Therefore, only some important terms and relations for this work are briefly outlined.

In general physical or mechanical problems, a non-linear state variable 𝑣 is often the
quantity of interest. It represents the solution of stated boundary value problems (BVP) or
initial value problems (IVP), e.g. the deformation state of a fixed referential configuration
under prescribed loads in terms of structural analysis. When it comes to modifications of
the referential (also called initial, material or Lagrangian) configuration, which are referred
to as problems from design sensitivity analysis or more general from structural optimisation,
an additional parameter is necessary for the description of the design under investigation.
Therefore, a non-linear design parameter or design variable 𝑠 is introduced. Both variables
can be used for the evaluation of any arbitrary scalar valued and differentiable functional
𝐽(·) in several combinations depending on the stated problem formulation. For instance,
𝐽(·) can be one of the following forms 𝐽(𝑣), 𝐽(𝑠), 𝐽(𝑣,𝑠) or 𝐽(𝑣(𝑠),𝑠) with an implicit
dependency of the state on the design parameter 𝑣(𝑠).

Remark 2.1 (Definition of parameters) All introduced variables and functionals in
the previous paragraph are defined on appropriate functional spaces 𝒱 or 𝒮. Therefore,

𝑣 ∈ 𝒱, 𝑠 ∈ 𝒮, 𝐽(𝑣) : 𝒱 → R, 𝐽(𝑠) : 𝒮 → R, 𝐽(𝑣,𝑠) : 𝒱 × 𝒮 → R. (2.2)

Variational solution strategies based on weak formulations of stated BVPs or IVPs
require variations with respect to the state variable 𝑣 in the physical space (also known as
current, actual, deformed or Eulerian configuration) for structural analysis and variations
with respect to the design parameter 𝑠 in the referential configuration for the design
sensitivity analysis. In general, a variation of an arbitrary functional 𝐽(·) is related to the
directional derivative explained in Remark 2.2.

Remark 2.2 (Gâteaux or directional derivative) In general, the first and second
Gâteaux or directional derivatives of any arbitrary and at least twice continuously differ-
entiable functional 𝐽 with respect to a variable of choice, e.g. the state parameter 𝑣, in
directions {𝜂,𝜇} ∈ 𝒱 are defined by

𝐽 ′
𝑣(𝑣;𝜂) := lim

𝜀→0

1

𝜀
[𝐽(𝑣 + 𝜀𝜂)− 𝐽(𝑣)] =

d
d𝜀

𝐽(𝑣 + 𝜀𝜂)
⃒⃒⃒
𝜀=0

,

𝐽 ′′
𝑣𝑣(𝑣;𝜂,𝜇) := lim

𝜀→0

1

𝜀
[𝐽 ′

𝑣(𝑣 + 𝜀𝜇,𝜂)− 𝐽 ′
𝑣(𝑣;𝜂)] =

d
d𝜀

𝐽 ′
𝑣(𝑣 + 𝜀𝜇;𝜂)

⃒⃒⃒
𝜀=0

.

(2.3)

As a consequence, the variation of a quantity of interest 𝐽(·) with respect to a parameter
of choice, e.g. state variable 𝑣, is equal to its directional derivative in direction 𝛿𝑣 = 𝜀𝜂

𝛿𝑣𝐽(𝑣; 𝛿𝑣) = 𝐽 ′
𝑣(𝑣; 𝛿𝑣) (2.4)



10 Chapter 2 Preliminaries and notations

and is valid for all upcoming investigations. In this work, major focus lies on functionals
of the form (·)(𝑣,𝑠). Therefore, the total variation of this arbitrary quantity (·)(𝑣, 𝑠) that
depends on a general state variable 𝑣 and a general design parameter 𝑠, is given by the
partial variation with respect to 𝑣 and a fixed design 𝑠 as well as the partial variation
with respect to 𝑠 and a fixed state 𝑣. Therefore, the partial variations appear as

𝛿𝑣(·) = 𝛿𝑣(·)(𝑣, 𝑠) = (·)′𝑣(𝑣, 𝑠) = (·)′𝑣 and
𝛿𝑠(·) = 𝛿𝑠(·)(𝑣, 𝑠) = (·)′𝑠(𝑣, 𝑠) = (·)′𝑠.

(2.5)

In comparison to the introduced Gâteaux derivative from Remark 2.2, the partial variations
can also be expressed by

(·)′𝑣(𝑣, 𝑠;𝜂) =
d
d𝜀

(·)(𝑣+𝜀𝜂, 𝑠)
⃒⃒⃒
𝜀=0

and (·)′𝑠(𝑣, 𝑠;𝜇) =
d
d𝜀

(·)(𝑣, 𝑠+𝜀𝜇)
⃒⃒⃒
𝜀=0

. (2.6)

Finally, the total variation of a quantity of interest is given by

𝛿(·)(𝑣, 𝑠) = 𝛿𝑣(·)(𝑣, 𝑠) + 𝛿𝑠(·)(𝑣, 𝑠) = (·)′𝑣(𝑣, 𝑠) + (·)′𝑠(𝑣, 𝑠) = (·)′(𝑣, 𝑠). (2.7)

When it comes to higher order variations, which are required in the scope of several
solution strategies for structural analysis and structural optimisation based on linearisation
techniques, a similar notation can be introduced, i.e. (·)′′𝑣𝑣, (·)′′𝑠𝑠, (·)′′𝑣𝑠 and (·)′′𝑠𝑣 represent
second and mixed variations with respect to state and design parameters.

In cases with state variables which directly depend on design parameters, i.e. 𝑣(𝑠) and
therefore for arbitrary functionals (·)(𝑣(𝑠), 𝑠), the total derivative is given by

d(·)
d𝑠

=
d
d𝑠

(·)(𝑣(𝑠), 𝑠) =
𝜕(·)
𝜕𝑣

d𝑣
d𝑠

+
𝜕(·)
𝜕𝑠

. (2.8)

Here, explicit partial derivatives 𝜕(·)/𝜕𝑣 and 𝜕(·)/𝜕𝑠 of the quantity of interest (·) with
respect to the general state variable 𝑣 and design parameter 𝑠 are included.

Remark 2.3 (Type of arguments) The introduced notation using commas and semi-
colons allows to distinguish between linear and non-linear arguments in functionals and
tangent forms, when needed. For instance, a functional (·)(·; ·, ·), which has a similar
form to the variations in Eq. (2.6), is non-linear in arguments on the left hand side of the
semicolon, and linear in arguments on the right hand side of the semicolon, respectively.
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2.3 Software environment

The following section gives a brief overview on the software environment and hardware
components, which are used within the presented work. All presented topics, numerical
calculations and investigations of this thesis are realised within a Matlab in-house code.
The development process of the past years involved implementations using versions of
Matlab in chronological order, but the final state of the implemented software is available
in Matlab R2018a. In all subsequent chapters, the developed main program is referred
to as Multiscale Analysis and Optimisation (MAnO). As can be deduced from the
given name, MAnO can be utilised for structural analysis and structural optimisation on
different scales. For instance, single scale structural analysis is performed using MAnO.SA,
single scale optimisation using MAnO.SO and consequently, multiscale structural analysis
and optimisation are carried out by MAnO.MSA and MAnO.MSO, respectively. Only
some of its basic features are introduced and summarised here.

Several geometrical features, like methods from Computer Aided Geometric Design
(CAGD) or morphing techniques, which are explained in Section 3.4, are implemented
to initialise the investigated model problems and BVPs and to handle changes in design
parameters induced from applied mathematical optimisation. General hyperelastic or
Green elastic constitutive models, like the St. Venant–Kirchhoff or Neo-Hookean model,
are available. Besides one-scale constitutive formulations, methods for numerical homogeni-
sation in terms of FE2 techniques, with different type of boundary conditions on the lower
scale, are available as well and can be seen as surrogate material models for the macro
scale structural analysis. The major purpose of MAnO is the variational design sensitivity
analysis and structural optimisation. The non-linear optimisation problems are basically
solved using the Sequential Quadratic Programming method (SQP). In this scope, the
Matlab routine quadprog is applied to solve occurring quadratic subproblems. Some
more details on SQP are presented in Chapter 3. Due to the fact that SQP is a gradient
based optimisation technique, several derivatives of objectives, constraints and quantities
from continuum mechanics are implemented. For the verification of mentioned sensitivity
information, environments based on finite difference method (FDM), which is introduced
in Section 3.3, are provided and allow evaluations of numerical gradients for comparison.

Remark 2.4 (Structure of argument list) For a given objective or constraint func-
tional of the form (·)(𝑠, 𝑣, 𝑠, 𝑣), explicit variations (·)′𝑠, (·)′𝑣, (·)′𝑠 and (·)′𝑣 are required for
tangent forms and are derived analytically. Verification of obtained gradients is realised
using finite difference quotients in terms of FDM. Let the index 0, i.e. (·)0, represent
the initial values of referred quantities, i.e. (·)0 = (·)(𝑠0, 𝑣0, 𝑠0, 𝑣0) being the function
value for the initial set of parameters. Perturbations of referred terms are indicated by the
index 𝑐 (𝑐 for changed), i.e. (·)𝑐 with (·)𝑐 = (·)0 + 𝛥(·). With this convention at hand,
perturbed output values of given functionals can be evaluated, i.e. (̃·) = (·)(𝑠𝑐, 𝑣0, 𝑠0, 𝑣0)
for the computation of numerical derivatives with respect to the first input variable 𝑠 or
(̂·) = (·)(𝑠0, 𝑣𝑐, 𝑠0, 𝑣0) with respect to the second input 𝑣.

According to Remark 2.4, it can be shown, that the following structure of argument list
of a function is advantageous and is applied in most of the implemented routines.

funValue = funName(stateMacro, designMacro, stateMicro, designMicro)
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On the one hand, for computations on single scales the last two input arguments are
optional and can be replaced by some dummy arguments. On the other hand, perturbation
of any quantity in the input argument list to obtain perturbed output values funValue
is straightforward. This convention is useful for testing partial derivatives and variations,
where a perturbation of a single input has an influence on the output.

Post-processing steps, like plots of the model problem under investigation, the optimisa-
tion model with available design parameters, deformed shapes after structural analysis,
displacement or stress contour plots or plots with diagrams and graphs with optimisation
results, are realised using Matlab in-house routines. In some cases, obtained results
are exported as vtk-files and are investigated in the open-source and cross-platform
application ParaView, see [80] for further details. The advantage of ParaView is an
efficient handling and fast visualisation of large datasets, which is often useful for quick
look-up and access of results.

Several required routines for the solution of stated structural analysis and structural
optimisation problems are provided by Matlab R2018a toolboxes listed in Table 2.3. The
non-linear optimisation problem, introduced in Problem 3.1 in Chapter 3 on optimisation,
is solved using routines provided by the Optimization Toolbox. For efficient computations,
the abilities of the Parallel Computing Toolbox are used for the assembly of global system
matrices and vectors. Certain routines and functions can be transferred to C++ code
and pre-compiled using the Matlab coder and Matlab compiler toolbox. This step,
which includes calls of external, pre-compiled and so-called mex-files or mex-functions,
provides an efficient method to fasten the overall runtime of the program. For numerous
derivations, the Symbolic Math Toolbox provides useful routines at different stages of the
development procedure. Finally, the documentation of the implemented code is realised
using the Matlab Report Generator.

Table 2.3: List of utilised Matlab R2018a toolboxes.

Toolbox Version

Matlab Compiler 6.6

Optimization Toolbox 8.1

Parallel Computing Toolbox 6.12

(a) Essential numerical toolboxes.

Toolbox Version

Matlab Coder 4.0

Matlab Report Generator 5.4

Symbolic Math Toolbox 8.1

(b) Optional numerical toolboxes.

In general, there are barely restrictions of the usage of the presented methodology in any
commercial or non-commercial simulation software for structural analysis and structural
optimisation. Adaptions for software like Ansys, Abaqus, Comsol Multiphysics,
FEAP, see [5, 43, 44, 152] for further information on mentioned software, or any other
individual in-house simulation software like INA-OPT (Inelastic Analysis and Optimisa-
tion), developed and used in [11] and [12], can be realised and managed with respect to
individual restrictions. Altogether, the best conditions are given if developers have access
to the sourcecode directly and therefore, to quantities on the element level to formulate
and to evaluate necessary sensitivity relations. Additionally, access to assembled system
quantities for the formulation of global sensitivity relations is beneficial. It is also useful,
if manipulations of input-output argument lists are possible, cf. Remark 2.4.
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The flexibility of the presented methodology allows the application to a wide range of
applications, like linear and non-linear elasticity, plasticity and damage, dynamics, theory
of porous media or to take influence on several processes during manufacturing. Therefore,
extensions of MAnO are straight forward and only a matter of time and diligence.

Remark 2.5 (Element library and controls on element level) So far, the element
library and therefore, the implemented element routines within MAnO have a comparable
structure to FEAP and INA-OPT. Several switches on the element level are introduced to
control parts of the code and therefore, to control the computation procedure. This gives
the ability to deliver required outputs for structural analysis and structural optimisation at
different stages of the overall program.

Development, testing and debugging of the presented software MAnO took place on
a Linux based operating system. It was extensively tested on hardware environments
listed in Table 2.4, which run Linux based operating systems. Nevertheless, Matlab is a
platform independent environment and the software was also tested on Windows based
operating systems and can be adopted to any further user requirements. When it comes
to numerical investigations in terms of time, number of function evaluations or overall
performance measurements, the results are identified by the corresponding label of the
affiliated hardware environment, which is also given in Table 2.4. Every type of evaluated
quantity is marked by m(·) or d(·), e.g. run times for one structural analysis on different
types of presented hardware are distinguished by m𝑡a or d𝑡a. The number of corresponding
function evaluations is tagged by 𝑛F.

Table 2.4: Hardware environments and labels for numerical investigations.

Label Description RAM CPU

m Dell Precision M4800 32 GB 1× Intel® CoreTM i7-4800MQ

(mobile workstation) (quad-core @ 2.70GHz)

d Fujitsu CELSIUS R920 64 GB 2× Intel® Xeon® E5-2690

(desktop workstation) (octa-core @ 2.90GHz)





Chapter 3

Optimisation setup and choice of design parameters

In this chapter, the general setup for optimisation problems considering objective functions,
constraints and design parameters as well as iterative methods for computing their solutions
are presented. Remarks on the verification of obtained sensitivity information and on the
choice of design parameters for optimisation are given.

The major purpose of the presented work is to suggest possible approaches for the
combination of known frameworks for structural analysis (SA), e.g. in the scope of
numerical homogenisation and FE2 techniques, and known frameworks for structural
optimisation (SO), like shape and topology optimisation. The focus lies on formulations
of possible concepts for the numerical treatment of design processes of new structures and
to improve the overall performance of given mechanical parts and components.

In this section, the basic notation for structural optimisation problems is introduced.
An extensive introduction on topics from design sensitivity analysis (DSA) and structural
optimisation is provided on sensitivity analysis in Chapter 5 and on material design
in Chapter 6. In the mentioned chapters, topics from several publications, standard
books and papers on structural optimisation, like [7, 22, 38, 39, 40, 67, 133], will be
introduced, discussed and tailored to the stated optimisation problems. Prior to any
statements, it has to be mentioned that all appearing optimisation problems are solved
using first order mathematical optimisation methods, which all require Fréchet derivatives
or gradient information of the objective function and constraints with respect to the full
space of available design parameters as inputs. As a consequence, each obtained optimum
or each optimal solution can be characterised as a local optimum and is never unique.
Inherently, different initial parameters lead to different optimisation results. Nevertheless,
the obtained solutions represent remarkable improvements compared to initial shapes and
design configurations.

3.1 General formulation of the optimisation problem

The general optimisation problem with an arbitrary objective functional 𝐽 , various equality
and inequality constraints (ℎ, 𝑔), several lower and upper side constraints (𝑠l, 𝑠u) for design
parameters can be introduced in the following abstract way.

15
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Problem 3.1 (General optimisation problem) Find {𝑣, 𝑠} ∈ 𝒱 × 𝒮 of the objective
functional 𝐽 : 𝒱 × 𝒮 → R such that

min
𝑣, 𝑠∈𝒱×𝒮

𝐽(𝑣, 𝑠) (3.1)

subject to the constraints

ℎ(𝑣, 𝑠) = 0, 𝑔(𝑣, 𝑠) ≤ 0, 𝑠l ≤ 𝑠 ≤ 𝑠u, (3.2)

with the vector notation ℎ(𝑣, 𝑠) for introduced equality constraints ℎ𝑖(𝑣, 𝑠) = 0, 𝑖 ∈ ℰ, and
also the vector notation 𝑔(𝑣, 𝑠) for introduced inequality constraints 𝑔𝑗(𝑣, 𝑠) ≤ 0, 𝑗 ∈ ℐ.
The sets of indices for equality and inequality constraints are denoted by ℰ and ℐ.

This abstract setting of a general optimisation problem is presented in several standard
publications on structural and numerical optimisation and design sensitivity analysis, see
[7, 38, 39, 67, 111] and references therein for further details. According to the continuous
formulation of the general optimisation Problem 3.1, the discrete form can be obtained by
using discretised values for objectives, constraints and design parameters.

Problem 3.2 (Discrete form of the optimisation problem) Find {𝑣 , 𝑠} ∈ 𝒱ℎ×𝒮ℎ
of the discrete objective functional 𝐽 : 𝒱ℎ × 𝒮ℎ → R such that

min
𝑣 , 𝑠∈𝒱ℎ×𝒮ℎ

𝐽(𝑣 , 𝑠) (3.3)

subject to the constraints

ℎ(𝑣 , 𝑠) = 0, 𝑔(𝑣 , 𝑠) ≤ 0, 𝑠 l ≤ 𝑠 ≤ 𝑠u, (3.4)

with a matrix notation ℎ(𝑣 , 𝑠) of introduced equality constraints ℎ𝑖(𝑣 , 𝑠) = 0, 𝑖 ∈ ℰℎ, and
a matrix representation 𝑔(𝑣 , 𝑠) of introduced inequality constraints 𝑔𝑗(𝑣 , 𝑠) ≤ 0, 𝑗 ∈ ℐℎ.
The sets of indices for equality and inequality constraints are denoted by ℰℎ and ℐℎ.

The treatment of Problem 3.1 or Problem 3.2, respectively, requires an iterative process
with some essential and recurring steps, which are briefly outlined in Fig. 3.1. The definition
of the initial structural design in terms of a physical model with appropriate boundary
conditions, a geometry and/or CAE-FEM model, the definition of the mathematical
optimisation model, which includes the definition of an objective function (OF) 𝐽 , equality
and/or inequality constraints (CON) (ℎ, 𝑔), some side constraints (SCON) (𝑠l, 𝑠u) and
design parameters (DP) 𝑠, is followed by a first structural analysis for the initial design
using FEM. The obtained results for the equilibrium state can be used for the evaluation
of required design responses, in terms of objective functions and constraints and the
design sensitivity analysis for the stated optimisation problem. The provided sensitivity
information and therefore all available gradient information, serve as input for algorithms
for mathematical optimisation and non-linear programming (NLP) and are essential
quantities to seek for a new and updated design description. Final optimisation results
can be provided as drafts to designers and design engineers. The explicit solution of the
abstract optimisation Problem 3.1 is investigated in [94, 95, 97]. The authors choose the
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Optimisation model and initial structural design
OF, CON, SCON, DP, CAGD or CAE-FEM model, technological data

Structural analysis
Equilibrium and design response by FEM

Design sensitivity analysis
Gradients of OF, CON and SCON

Mathematical optimisation
Design parameter increment by NLP

Update and new design
CAGD- or CAE-FEM-model, technological data

Convergence

Optimum design

YES
NO

Figure 3.1: Principle framework for structural optimisation.

total potential energy of a hyperelastic body as a special objective functional, consider only
the non-linear residual (introduced in Eq. (5.28)) as the equality constraint, i.e. inequality
constraints are neglected and therefore ℐ = ∅, and discuss solution strategies using the
steepest descent method, the full Newton or a staggered solution method in detail. A more
general and more versatile approach, which also guarantees solutions in feasible regions
with respect to stated constraints, is the SQP method. Its application allows the solution
of the full non-linear optimisation problem with all possible constraints, i.e. equality and
inequality (ℰ ̸= ∅ and ℐ ≠ ∅) as well as side constraints (𝑠l, 𝑠u). The basic idea of the
incorporated Lagrange formalism in the scope of SQP is briefly summarised in Problem 3.3
and will be investigated in this form throughout this work. Further explanations and
details on this method can be found for instance in [25, 63, 111, 128, 129] and in several
references therein.

Problem 3.3 (Lagrange formalism in the scope of SQP) Several types of solution
strategies for constrained optimisation problems are often based on reformulations of stated
optimisation problems using the Lagrange formalism

ℒ(𝑠,𝜆,𝜇) = 𝐽(𝑠) +

𝑛ℎ∑︁
𝑖=1

𝜆𝑖 ℎ𝑖(𝑠) +

𝑛𝑔∑︁
𝑗=1

𝜇𝑗 𝑔𝑗(𝑠) = 𝐽(𝑠) + 𝜆𝑇 ℎ(𝑠) + 𝜇𝑇 𝑔(𝑠). (3.5)

Here, the original objective function 𝐽(𝑠) is additively manipulated by scaled equality
and inequality constraints (ℎ𝑖(𝑠), 𝑔𝑗(𝑠)) using Lagrange multipliers (𝜆𝑖, 𝜇𝑗), also known
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as adjoint or dual variables, and results in the so-called Lagrange function ℒ(𝑠,𝜆,𝜇).
The solution of the obtained objective functional ℒ(𝑠,𝜆,𝜇), in terms of minimisation or
maximisation, requires the optimality criteria to be fulfilled

∇ℒ(𝑠,𝜆,𝜇) = 0. (3.6)

The approach of SQP for the solution of general non-linear optimisation problems is based
on the solution of sequential subproblems with a quadratic approximation of the objective
functional 𝐽(𝑣, 𝑠) and the linearisation of constraints (ℎ(𝑣, 𝑠), 𝑔(𝑣, 𝑠)). Therefore, for
each subproblem 𝑘 and each iteration point (𝑠𝑘, 𝜆𝑘, 𝜇𝑘) the resulting system of equations
for the quadratic subproblem results in the form

min
𝛥𝑠∈𝒮

̃︀𝐽𝑘 = min
𝛥𝑠∈𝒮

1

2
𝛥𝑠𝑇 ∇2

𝑠𝑠ℒ(𝑠𝑘,𝜆𝑘,𝜇𝑘)𝛥𝑠 +∇𝐽(𝑠𝑘)𝑇 𝛥𝑠 (3.7)

subject to the constraints

̃︀ℎ𝑘(𝛥𝑠) = ℎ(𝑠𝑘) +∇ℎ(𝑠𝑘)𝑇 𝛥𝑠 = 0,̃︀𝑔𝑘(𝛥𝑠) = 𝑔(𝑠𝑘) +∇𝑔(𝑠𝑘)𝑇 𝛥𝑠 ≤ 0,

(𝑠l − 𝑠𝑘) ≤ 𝛥𝑠 ≤ (𝑠u − 𝑠𝑘).

(3.8)

The quadratic subproblem, i.e. the functional ̃︀𝐽𝑘 is quadratic in 𝛥𝑠, and its solution
provides incremental design updates by

𝑠𝑘+1 = 𝑠𝑘 + 𝛥𝑠𝑘. (3.9)

Altogether, derivatives or variations, especially partial variations of the objective func-
tional 𝐽 and constraints ℎ𝑖, 𝑔𝑗 with respect to the state variables 𝑣 and design parameters
𝑠, are essential for first order optimisation strategies. The fundamental relations for
design sensitivity analysis in the scope of finite element formulations and especially of
optimisation of problems from structural mechanics are provided in Chapter 5. The
formulation of the quadratic subproblem in Problem 3.3 requires the provision of second
order derivatives, i.e. the Hessian matrix of the Lagrange functional ∇2

𝑠𝑠ℒ(𝑠𝑘,𝜆𝑘,𝜇𝑘). In
addition to the numerical effort for its computation, the demand for positive definiteness of
∇2

𝑠𝑠ℒ is not guaranteed to be fulfilled and therefore, in many cases, it is sufficient to chose
appropriate approximations of second order derivatives. For instance, the well known
Broyden-Fletcher-Goldfarb-Shanno update formula (BFGS) provides a positive definite
approximation of the Hessian matrix, see [30, 50, 62, 136] for details on this method. This
approximation is used in following numerical investigations in all subsequent chapters.

Remark 3.1 (Multiobjective optimisation) Improvements of many mechanical sys-
tems with practical relevance and of real world problems often require the solution of
optimisation problems in terms of minimisation or maximisation of more than one objec-
tive function, i.e. min𝑠 (𝑓1(𝑠), 𝑓2(𝑠), . . . , 𝑓𝑛(𝑠)) with respect to certain equality and/or
inequality constraints and the design parameters 𝑠. This kind of optimisation problem is
termed multiobjective optimisation (MOO) or vector optimisation, respectively.
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MOO problems might contain different combinations of following goals: overall or
operating cost, profit, quality, efficiency, safety or performance in general. Usually, most
of the goals are conflicting and non-commensurable, e.g. it might be impossible to measure
performance in monetary units. Consequently, an appropriate priorising of goals is
required but it often leads to arbitrary and subjective optimal solutions, which are not
unique. Within the mentioned problem formulation the target is to find a solution that
satisfies each objective function at the best. In general, no single best solution exist, but a
set of feasible solutions, that are all characterised as equally good solutions. The points
in this solution set are the so-called Pareto optimums. They stand out due to the balance
in the trade-off of solutions, which means, that a solution cannot improve any objective
without degrading one or more of the other objectives. The authors in [37] compile and
compare four solution strategies for this kind of problem formulations, i.e. the global
criterion method, the linear combination of weights method, the 𝜀-constrained method and
the multiobjective genetic algorithm. Further details can also be found in [48] or [46] for
instance. MOO is a standalone research field and therefore, a detailed review on theory
and available methods is beyond the scope of this work. In the work at hand no MOO
problems are solved but one solution strategy is considered and adapted for the solution
of multiscale optimisation problems, i.e. the linear combination of weights method or the
weighted sum method. It requires a construction of a weighted sum of objectives, i.e.

𝐹 (𝑠) =

𝑘∑︁
𝑖=1

𝑤𝑖 𝑓𝑖(𝑠) (3.10)

including individual weight factors 𝑤𝑖. The optimisation is performed in terms of the
objective function 𝐹 (𝑠), i.e. min𝑠 𝐹 (𝑠). Within multiscale optimisation problems, the
approach of a weighted sum of functions is applied to constraints and allows a formulation
of a well-posed optimisation problem.

Example: For a solid square domain with inclusions and different material properties
but no voids and a side length of 1, the volume results to 1. A constant volume constraint
requires the volume of the domain not to change. In that case, the gradient of the constraint
vanishes and a computation of incremental design parameters is not possible. To force a
modification of the design, the contribution of each individual constituent is weighted, i.e.
the overall volume is computed by 𝑉 =

∑︀𝑘
𝑖=1 𝑤𝑖𝑉𝑖. The weight factors 𝑤𝑖 can be related to

the importance, overall costs or valency of each constituent in an abstract sense.

3.2 Objective functions, constraints and design parameters

The challenge within the presented work is to find appropriate mathematical formulations
for the modelling of multiscale optimisation problems. Beside the necessity of sensitivity
relations for the coupling conditions of different scales, the choice of appropriate objective
functionals and constraints in combination with useful design parameters is essential.
Table 3.1 lists possible sets for objectives, constraints and design parameters, which are
common and often used in standard publications on structural optimisation, see [7, 22, 40,
67, 133] to name a few. Within presented numerical investigations, a special choice will be
made and embedded in Problem 3.1 and Problem 3.2 formulation, respectively.
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Table 3.1: Possible sets for objectives (OF) in terms of goal setting, constraints (CON) in
terms of restrictions and design parameters (DP) in the design space.

Goals

Cost functions

stiffness, compliance

volume, mass

displacements, frequencies

costs of constructions

Restrictions

Failure & manufacturing

volume fractions

stresses, strains

damage criteria

manufacturing parameters

Design space

Geometry & material

shape parameters

material distribution

thickness, cross-sections

technological data

3.3 Verification of derivatives and sensitivity information

Gradient based mathematical optimisation methods require correct sensitivity information
to guarantee an efficient optimisation process and to find feasible solutions. Throughout the
entire work, all variations of mechanical quantities, derivatives and gradients of objective
functions and constraints are verified using the finite difference method (FDM) with
either forward, backward or central differences. FDM is a reliable and well-known tool
from computer algebra and can be applied to prove the accuracy of provided sensitivity
information up to a certain numerical precision. Useful suggestions for the computation
of numerical derivatives are given in Remark 2.4. Actually, the numerical sensitivity
information obtained by FDM can be used for optimisation, but in the practical sense the
numerical effort depends on the investigated model problem and perhaps it might become
enormous. Here, some hints on the number of function evaluations and on the resulting
time consumption are briefly outlined. In general, it is necessary to distinguish which
gradients need to be computed.

1. Gradients on nodal basis, i.e. gradients with respect to nodal design parameters 𝑋.

2. Gradients on geometrical basis, i.e. gradients with respect to design parameters 𝑠.

a) In the case where a geometry description is used, the obtained gradient has to
be multiplied by a design velocity fields matrix 𝑉 , as explained in Section 3.4.

b) Gradients with respect to a subset of geometrical design parameters 𝑠, i.e.
gradients with respect to the final design variables. These gradients are equal
to a subset of the gradients from Item 2a.

Numerical derivation of gradients are, for a typical forward or backward difference quotient,
𝑛f,b

F = 𝑛 + 1 and a for central difference quotient, 𝑛c
F = 2𝑛 function evaluations, with 𝑛

being a general and replaceable number of design variables and therefore, of 𝑛 necessary
perturbations and structural analyses. Thus, the resulting computation times for numerical
gradients result to

𝑡f,bs,num = 𝑛f,b
F · 𝑡a (forward/backward FDM scheme),

𝑡cs,num = 𝑛c
F · 𝑡a (central FDM scheme).

(3.11)
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3.4 Choice of design parameters for optimisation

Using finite element techniques, the structural analysis of given mechanical systems is
based on discrete nodal state variables 𝑣 and nodal coordinates 𝑋 of the underlying finite
element mesh. Details on finite element approximations follow in subsequent sections.
Together with element incidences, the nodal coordinates 𝑋 represent the approximation
of the referred and subdivided continuous domain and can also be tackled as design
parameters within structural optimisation procedures, cf. publications on parameter free
or FEM node based optimisation investigated in [24, 88] and [127] for example. In this
case, design sensitivity analysis has to be performed with respect to nodal coordinates 𝑋
of the chosen discretisation and finite element mesh, i.e. the discrete design parameter
𝑠 is set to 𝑠 = 𝑋. As a consequence, the residual 𝑅 (later in Eq. (5.28)) depends on
discrete coordinates 𝑋 and its variation 𝑅′

𝑋 in direction 𝛿𝑋 is the necessary variation
of the residual to obtain the sought tangent pseudo load operator. The final result is
the discrete pseudo load matrix 𝑃 ∈ R𝑛𝑣×𝑛𝑋 , with 𝑛𝑋 being the overall number of finite
element nodal coordinates. Same holds true for the design variation of any arbitrary
objective or constraint functional 𝑓 (later in Eq. (5.33)) and means that 𝑓 ′

𝑋 is the variation
in request.

Within parameter free optimisation procedures, often some intensively discussed draw-
backs occur. Drawbacks like jagged boundaries, mesh distortions and the necessity of
filtering or regularisation techniques during the optimisation processes to avoid non-
physical results for different kinds of physical problems are described in [66] for instance.
Although the mentioned aspects are investigated in several publications, see [24, 60, 88,
127] to name a few, and several solution strategies, like the fictitious energy approach or
several filtering techniques, are proposed, utilisation of parametrisation techniques for the
control of geometrical properties of given structures comes along with several advantages.
For instance, any of the following parametrisations comes with an enormous reduction of
design variables and allows avoiding jagged boundaries in advance due to the characteristic
smoothness of included mappings. Several computer aided engineering (CAE) techniques
and applications for structural analysis in most cases involve an underlying geometry
description. Here for instance, computer aided geometric design (CAGD) is an established
and widely spread technique. Its main advantage within the structural optimisation
process is, that the chosen and modified (by several optimisation steps) geometry can be
handled in every step of the design and the prototype manufacturing process. The obtained
analysis and optimisation results can directly be transferred to responsible engineers and
product designers and can be used for subsequent virtual and physical test scenarios. In
contrast, parameter free optimisation requires intensive post processing steps to construct
manufacturable geometry data. The geometry description is realised using Bézier curves,
basis splines (B-splines) or even non-uniform rational B-Splines (NURBS), see for example
[49] for elementary details and explanations. The coordinates of the control points of
the control polygon can be chosen as design variables and are identified by the design
parameter 𝑠. The design parameters 𝑋 of the underlying finite element mesh depend on
the newly introduced design variables 𝑠 , i.e. 𝑋(𝑠). Therefore, the sensitivities with respect
to 𝑋, mentioned in the prior paragraph, have to be transformed via a design velocity
fields matrix 𝑉 = 𝜕𝑋/𝜕𝑠 into the chosen design space. The final discrete variation of a
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continuous functional 𝑓(𝑣,𝑋(𝑠)) reads

𝑓 ′ =
𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑋

𝜕𝑋

𝜕𝑠
𝛿𝑠 =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝑉 𝛿𝑠, (3.12)

with 𝑆 being the total derivative of the state 𝑣 with respect to the nodal coordinates 𝑋 of
the finite element mesh, i.e. 𝑆 = d𝑣/d𝑋. For further explanations on design velocity fields
see [38, 39, 94]. Generally in both cases, i.e. within parameter free optimisation and within
parametrised optimisation, the kernel task is to compute the sensitivities of quantities of
interest with respect to nodal coordinates 𝑋 first. Therefore, nodal coordinates of the finite
element mesh are chosen as design variables to determine the necessary tangent operators
𝐾 and 𝑃 as well as the sensitivity matrix 𝑆. If dependencies change or a different choice
for the design parameter 𝑠 is made, explicit hints and remarks are given. The derivatives
of objectives and constraints with respect to nodal coordinates have to be transformed
into the design space of interest using the design velocity matrix 𝑉 . In the following, two
approaches for design parametrisation, i.e. design description based on CAGD models and
design parametrisation based on morphing, which are used within the work in hand, are
briefly introduced and illustrated by two simple examples pictured in Fig. 3.2. Here, for
the upcoming investigations a simple domain with a hole represents the first setup and a
simple domain with an inclusion represents the second setup. Both sets are parametrised
using CAGD models on the one hand and morphing techniques on the other hand. The
differences between both approaches are pointed out in the following two sections.

Material 1

Material 2Void

Figure 3.2: Design parametrisation techniques: example with two different setups:
setup 1 - domain with a hole (left), setup 2 - domain with an inclusion (right).

3.4.1 Design parametrisation based on CAGD models

As already mentioned in prior section, the description of underlying structures using
CAGD models is basically realised using Bézier curves and the corresponding evaluation
of Bernstein polynomials. This kind of mathematical formulation allows the description of
geometrical elements and forms like lines, areas and volumes, see [49] for extensive details
on this topic. Due to the fact that the complete description of investigated domains is
realised using CAGD objects and geometrical forms, algorithms for mesh generations are
required to be able to perform structural analysis of the stated problem using FEM for
instance. For this purpose, publications [47] and [51] on mesh generation can be referred.

Illustrations in Fig. 3.3 consider CAGD representations of already introduced setups
from Fig. 3.2. The blue markers represent the control points of Bézier patches, which itself
are illustrated by the blue lines. The definition of the geometry and the corresponding
mesh generation algorithms result in grey coloured finite element meshes. Depending
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on mesh generation algorithms, different kinds of element formulations are available, e.g.
setup 1 in Fig. 3.3 is represented by a mesh with triangular elements and setup 2 in Fig. 3.3
is represented by a mesh with rectangular elements. Possible design parameters, which
are identified by the discrete design parameter 𝑠, are control points of Bézier curves of
lines or areas, denoted by the blue markers, radii of holes or inclusions, here the initial
parameters 𝑎0, 𝑏0, the angle of the hole or inclusion, indicated by 𝛼0, or lengths of lines
(not pictured). For several investigations and examples see [38, 39, 40, 133] to name a few.
Modifications of initial design parameters 𝑠0 = {𝑎0, 𝑏0, 𝛼0} lead to geometries represented
by the parameters 𝑠1 = {𝑎1, 𝑏1, 𝛼1} for both setups in Fig. 3.3. The consequence of the
dependence of the finite element mesh on the geometry description and the positions of the
defined control points is that any modification 𝛿𝑠 results in a modification of the discrete
parameters 𝛿𝑋, i.e. the positions of finite element nodes change due to changes in design
parameters and have to be recalculated after obtained updates of 𝑠 . Within optimisation
procedures, gradients of objectives and constraints with respect to design parameters 𝑠
are required. Therefore, the calculated gradients on nodal basis, i.e. the gradients with
respect to 𝑋, have to be transformed using design velocity fields 𝑉 .

𝑎
𝑏 𝛼

𝑎
𝑏 𝛼

Set 1: 𝑎0, 𝑏0, 𝛼0 𝑎1, 𝑏1, 𝛼1 Set 2: 𝑎0, 𝑏0, 𝛼0 𝑎1, 𝑏1, 𝛼1

Figure 3.3: Design parametrisation based on CAGD model: introduced design variables
are radii 𝑎, 𝑏 of the hole/inclusion and angle 𝛼 (0=initial, 1=modified)(red).

The ability for direct manufacturing and low number of design variables can be seen as
an advantage compared to parameter free optimisation techniques, but the enormous effort
for the generation of CAGD models and the extension of existing software environments
by tools and routines for sensitivity analysis represent arguable drawbacks.

3.4.2 Design parametrisation based on morphing

Design parametrisation based on morphing is useful to handle forms and geometries without
explicit geometrical properties, like diameters, positions and angles. This technique is
basically established and known from image processing and is based on smooth and
continuous transformations of target objects into other objects of interest. A review on
different aspects and approaches can be found in [167] and extensions to three-dimensional
investigations are presented in [146, 166]. Overall, morphing techniques within structural
optimisation procedures can be classified as a combination of parameter free and CAGD
based optimisation techniques. So-called morphing boxes are defined by general B-Spline
tensor products with arbitrary number of control points C𝑖 and arbitrary degree of
basis splines, see [29, 49, 123] for details on this topics. Algorithms scan the domains
within defined morphing boxes for existing nodes of finite element meshes and collect
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the corresponding nodal coordinates. Due to the fact that only finite element nodes are
involved, this technique is valid for arbitrary element formulations and element types.
Coordinates C𝑖 of control points of defined morphing boxes, summarised in the column
matrix 𝐶, are used as design parameters, i.e. 𝑠 = 𝐶, and control positions of depending
finite element nodes 𝑋 within the morphing box. This procedure is pictured in Fig. 3.4
referring to already introduced setups from Fig. 3.2. The modification 𝛿𝑠 results in a
modification of the discrete parameters 𝛿𝑋, i.e. the positions of FEM nodes change due
to changes in design parameters. Gradients of objectives and constraints with respect to
design parameters 𝑠 are required within the optimisation process. Therefore, the calculated
gradients on nodal basis, i.e. the gradients with respect to 𝑋, have to be transformed into
the design space of interest using design velocity fields 𝑉 . Using this technique for design
parametrisation, costly remeshing can be avoided, see [121] for details.

Set 1: 𝐶0 Set 2: 𝐶0𝐶1 𝐶1

Figure 3.4: Design parametrisation based on morphing: introduced design variables are
coordinates 𝐶 (0=initial, 1=modified) of control points of the morphing box (red).

The main advantage of a morphing based approach for design descriptions is that, beside
the manageable implementation effort, it is valid for all types of finite element meshes.
In other words, meshes can be generated in any pre-processing environment of choice
and than imported to the optimisation program to be controlled by defined morphing
boxes. The ability to consider and investigate some subdomains of a given structure
defining morphing boxes only in relevant domains, can be seen as an additional feature.
Several details on mesh generation, analytical design velocity fields and overall morphing
controlled FEM and general mesh handling can be found in [59].

3.5 Summary and concluding remarks

In this chapter the abstract layout of a general non-linear optimisation problem in
continuous and discrete form is stated. A flow chart is used to introduce the iterative
solution procedure for structural optimisation problems in terms of the gradient based
SQP method. Beside remarks on the verification of obtained sensitivity information using
FDM, a list of possible objective functions, constraints and design parameters is outlined.
After a brief review on the choice of design parameters, two explicit parametrisation
techniques based on a square domain with two different setups are presented.



Chapter 4

Structural analysis on multiple scales

This chapter constitutes a concise introduction to basic principles for structural analysis
on multiple scales and the treatment of microheterogeneous materials. Basically, the
class of two-scale problems in terms of homogenisation methods and FE2 techniques is
considered. Necessary relations as well as aspects for the numerical realisation for the
application within structural optimisation problems are stated.

4.1 Introduction

Beside efficient and reliable structural performance (on so-called macroscale), in recent
years, modern engineering applications from several fields require also high performance
behaviour on the material level (on so-called meso-/microscale). In general, the degree of
utilisation has to be maximised on different levels. Here, heterogeneous multiphase and
composite materials with different constituents come into play due to their ability to adjust
their behaviour and overall characteristic properties to stated requirements, like optimal
strength-to-weight ratios. The spatial distribution of individual and so-called microscale
constituents on the so-called mesoscale, the individual properties of each constituent as
well as their size and shape have a strong influence on the overall mechanical behaviour on
the macroscopic structural level. The schematic layout of scale nomenclature is pictured in
Fig. 4.1. To be able to postulate reliable predictions about the overall behaviour or possible
failure scenarios, fundamental knowledge about the physical behaviour on lower scales is
required. This requirement represents an enormous challenge, namely to find formulations
for the analysis of the interaction between referred scales. Using FEM as the analysis tool
of choice, a direct modelling of the microstructure within the coarse macroscale model of
the stated problem is a possible strategy. The drawback is the enormous computational
effort and the enormous memory consumption with the consequence that this approach is
practically not realisable in many cases. Instead, homogenisation techniques are usually
applied and act like a bridging approach for the coupling of structural and material scales.
One major prerequisite for such homogenisation approaches is the existence of different
length scales, i.e. the physical dimensions of referred scales have to be distinguishable.
The principle of scale separation, which states 𝐿micro < 𝐿meso ≪ 𝐿macro and is presented
in Fig. 4.1, has to be fulfilled. Furthermore, to be able to derive phenomenological

25
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𝐿macro 𝐿meso 𝐿micro
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𝐹
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Figure 4.1: Principle of scale separation: macro-, meso- and microscale.

descriptions of the material behaviour on the macroscale, knowledge about mechanical
properties, shape and orientation of each constituent on the microscale is required.

So far and over past decades, several groups and researchers developed a variety of
theories, formulations and numerical realisations for aforementioned homogenisation of
microheterogeneous materials and so-called multiscale methods. For instance, a basic
introduction on numerical two-scale homogenisation methods is given in [183] or [130]. In
the latter publication, based on the approach for micro to macro transitions, boundary
value problems on both scales are formulated and enhanced by several details. Remarks
on so-called effective parameters are also discussed. Extensive explanations on effective
quantities in terms of upper and lower bounds for the effective response of underlying
microstructures, i.e. in terms of Voigt and Reuss bounds, are given in [162] and [124] and
also in [70, 71, 72, 73]. A general discussion on the well-known Hill-Mandel condition can
be found in [70] and [69]. The Hill-Mandel condition postulates the equality of the stress
power between upper and lower scales and is a fundamental principle for homogenisation
approaches and discussions on moduli of mixtures. non-linear formulations in terms of
geometrical non-linearities are investigated in [157] and [159] and are supplemented by
frameworks for physical non-linearities in the works [102, 105, 106, 107]. A discussion on
heterogeneous, non-linear and history dependent material behaviour, like elastoplasticity,
can be found in [86] and [120], and especially on elastoviscoplastic materials in [145] for
instance. Investigations on the convergence behaviour of microscopic stress values and
elastoplastic mechanical responses on different scales are presented in [155]. Within the
deformation driven context and deformation driven microstructures, solution strategies
based on the Lagrange multiplier methods are discussed in [104]. On the other hand,
solution strategies based on penalty methods can be found in [153]. Explanations on
numerical implementations, algorithms and matrix representations of obtained formulations
are summarised in [101] and [103] and several mathematical aspects within numerical
homogenisation techniques are given in [151]. In all presented formulations and approaches,
the choice of so-called unit cells or representative volume elements (RVE) is essential
for reliable solutions. The authors in [8] and [9] investigated several aspects for the
generation of such RVEs and suggested approaches for the construction of statistically
similar representative volume elements (SSRVE) in two- and three-dimensional cases
with much less complexity than the real microstructures. Based on minimisation of
least-square functionals they were able to find simplified unit cell descriptions compared to
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real microstructure morphology but with similar characteristics and mechanical behaviour.
Aforementioned SSRVEs are also investigated in terms of heterogeneous materials in
the context of linear and non-linear elasticity in [154]. The explanation of a possible
numerical implementation of the computational homogenisation technique into an existing
environment for structural analysis on single scales, i.e. into the structural analysis program
FEAP, can be found in [83]. The authors extended their application of inverse analysis
for an identification of material parameters of non-linear composites and viscoelastic
heterogeneous materials by the application of the Levenberg–Marquardt method in [82]
and [84]. Several extensions of the field of applications are proposed in several publications.
For instance, the authors in [131] extended the basis formulation for electromechanically
coupled boundary value problems, in [132] for magneto-electro-mechanically coupled
boundary value problems or in [148] for ferromagnetic materials, which are characterized
by a heterogeneous microstructure, that can be altered by external magnetic and mechanical
stimuli. The enormous numerical effort and the enormous amount of data resulting from
the solution of the mentioned complex BVPs on multiple scales is predestinated for
developments of efficient formulations and solutions of described multiscale problems.
The authors in [52] and [53] developed reduced order models based on Nonuniform
Transformation Field Analysis (NTFA), which is an order reduction technique specifically
designed for homogenization problems, and investigated thermo-mechanical properties of
microheterogeneous materials in terms of polycrystalline aggregates, porous metals and
particle reinforced composite materials as well as the non-linear behaviour of the interface
between constituents.

A discussion on computational homogenisation, a general overview and a summary of
developments is given in [149] and [100]. A variety of methods is presented in [109], and
especially the article [57] reviews the state-of-the-art of computational homogenisation,
discusses trends and upcoming challenges in this field and contains a historical overview
and key principles on first-order computational homogenisation, which is used within the
work at hand.

4.2 Mechanical two-scale problems

The aforementioned principle of scale separation is a fundamental prerequisite for any
application of homogenisation techniques. Nevertheless, in literature there are differences
in labelling the lower scales, i.e. the meso- and the microscale. In most cases where
two-scale problems are considered, the microscale is directly identified with the so-called
unit cell or representative volume element (RVE) and is used within numerical realisations.
The mesoscale can be seen as an intermediate scale and is often omitted within numerical
investigations. This is also the case in the presented work, i.e. the term coupling the scales
is interpreted as the coupling of the macro- with the microscale. Based on the existence of
different length-scales and the knowledge about physical properties of involved constituents,
a solution strategy based on the direct modelling of the stated problem is expensive and
impossible in most cases. The large amount of variables and the large amount of data
obtained is often hardy interpretable. Therefore, solution strategies based on substitution
of real material properties by effective or homogenised models are more attractive and
are part of so-called multiscale or FE2 problem formulations. Such approaches are still
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Figure 4.2: Basic homogenisation scheme.

expensive but the effort is not comparable to the direct solution of the real problem.
Furthermore, a lot of formulations for the solution of mentioned two-scale problems are
predestinated for parallel computing techniques on high performance computing clusters.
This chapter’s goal is to sample relations for mechanical two-scale problems and to obtain
homogenised models for the material based on the solution of several BVPs on underlying
microscales, which all contribute to the solution of the stated BVP on the macroscale.

Remark 4.1 (Macro and micro notation) Throughout this work, all frequently used
quantities connected to the macroscale are identified by overlines, i.e. (·), and quantities
connected to the microscale are represented without additional markers, i.e. (·).

The basic concept of the homogenisation scheme is pictured in Fig. 4.2. The underlying
RVE with the domain 𝒦 is associated with each macroscopic referential point 𝑋 in the
macroscopic domain 𝒦. The macroscopic deformation gradient F in 𝑋 is the necessary
driving factor for the formulation of boundary conditions for the microscopic BVP. The
solution investigated within homogenisation approaches results in so-called effective stress
and material parameters, i.e. P and A. The effective response P and A of the microscale
is finally involved in the solution of the macroscopic BVP. Most concepts presented in
several books and publications basically include a similar sequence of following sub-tasks
for a closed formulation of the solution of the BVP on the upper scale.

• Representative volume element. Choice or definition of an RVE on the mi-
croscale, where the physical properties of each microscopic constituent are known.

• Coupling the scales. Definition of physically useful effective variables on the
macroscale (according to macro to micro context) for the formulation of microscopic
boundary conditions and solution of the microscopic boundary value problem.
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• Homogenisation. Application of useful homogenisation schemes and computation
of effective quantities in terms of the microscopic deformation state and the effective
response of the microscale.

• Solution of stated BVP. Solution of the stated macroscopic boundary value
problem in terms of effective microscopic response and effective parameters.

4.3 Homogenisation methods and FE2 techniques

Heterogeneities are part of most natural and non-natural materials and often cause
anisotropic effects in stress and strain fields. Homogenisation methods and so-called
FE2 techniques allow to include these effects into overall investigations. Therefore, in
this section the aforementioned aspects on mechanical two-scale problems are discussed.
After some remarks on the choice of representative volume elements, averaging theorems
and effective parameters, the formulation of boundary conditions on the microscale, the
necessary setup for computational homogenisation schemes based on the continuous setup
for multiscale problems are presented. The notation of following descriptions is related to
the formulations in [21], [103], [101] and [107]. A lot of extensive details and explanations
can be found in the cited literature in the beginning of this chapter.

4.3.1 Representative volume element (RVE)

As already mentioned, most homogenisation techniques are based on so-called unit cells or
representative volume elements (RVE). The whole material distribution within the stated
BVP has to be statistically represented by the chosen RVE. Unit cells have to represent
the smallest sample of the overall material distribution. For the representation of typical,
structural properties of interest on average, they have to contain enough microscopic
heterogeneities. Simultaneously, their physical size has to comply with the principle of
scale separation, which is pictured in Fig. 4.1 and explicitly reads

𝐿micro < 𝐿meso ≪ 𝐿macro. (4.1)

Furthermore, the representative choice has to be independent of its placement in the context
of the macrostructure and the macroscopic domain 𝒦. In general, details concerning the
size and shape of RVEs cannot be specified, except in some special cases.

4.3.2 Effective field variables

Regarding the macroscopic referential point 𝑋 in the macroscopic domain 𝒦, two different
kinds of field variables can be identified:

• local variables, connected with the underlying RVE and

• effective variables, resulting from the homogenised microscopic domain 𝒦.

For coupling the referred scales, it is necessary to define macroscopic effective variables in
terms of local microscopic variables, which are exclusively formulated on the boundary of
the microscopic domain 𝜕𝒦. For this purpose, it is useful to take the deformation gradient



30 Chapter 4 Structural analysis on multiple scales

F as the central kinematic variable due to its advantage of being valid for domains with
and without discontinuities. Together with its work-conjugated quantity, i.e. with the first
Piola-Kirchhoff stress tensor P, both represent well-suited effective parameters.

For the representation of effective parameters or of volume averaged quantities, the
following notation is used throughout the work

(·) = ⟨(·)⟩ =
1

𝑉

ˆ
𝒦

(·) d𝑉. (4.2)

Considering the averaging theorem in Eq. (4.2), the macroscopic deformation gradient can
be formulated as the volume average of the microscopic deformation gradient, i.e.

F =
1

𝑉

ˆ
𝒦

F d𝑉 =
1

𝑉

ˆ
𝜕𝒦

𝜙⊗𝑁 d𝐴, (4.3)

where the divergence theorem is used to obtain an expression in terms of the surface
integral of the micro domain. In a similar fashion, effective first Piola-Kirchhoff stresses
can be obtained from the volume average of microscopic first Piola-Kirchhoff stresses and
the relation 𝑡 = P𝑁 for the surface traction vector on the boundary of the underlying
domain by

P =
1

𝑉

ˆ
𝒦

P d𝑉 =
1

𝑉

ˆ
𝜕𝒦

𝑡⊗𝑋 d𝐴. (4.4)

Using the effective deformation gradient F, the effective first Piola-Kirchhoff stress tensor
P and the Jacobian 𝐽𝐹 = d𝑣/d𝑉 , further effective stress measurements can be obtained,
e.g. the Kirchhoff, Cauchy or second Piola-Kirchhoff stress tensors read

𝜏 = PF
𝑇
, T =

1

𝐽𝐹
PF

𝑇
, S = F

−1
P. (4.5)

Finally, the fundamental principle within multiscale and homogenisation approaches, i.e.
the aforementioned and well-known Hill-Mandel condition, see [70], can be formulated

P : Ḟ =
1

𝑉

ˆ
𝒦

P : Ḟ d𝑉 =
1

𝑉

ˆ
𝜕𝒦

𝑡 · �̇� d𝐴. (4.6)

It postulates, that the local stress power on the macro scale (first term in Eq. (4.6)) has
to be equal to the volume average of the microscopic stress power in the RVE.

4.3.3 Boundary conditions for homogenisation methods

The aforementioned Hill-Mandel condition in Eq. (4.6) and following boundary conditions
in Eq. (4.7) formulated on the surface 𝜕𝒦 of the RVE, which satisfy the stated relation
(4.6) a priori, are subject of many investigations, for instance in the work [149]. Within
the deformation driven context, all boundary conditions have to be formulated in terms of
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the macroscopic deformation gradient F.

(D) Linear displacements 𝜙 = F𝑋,

(P) Periodic displacements J𝜙K = FJ𝑋K and 𝑡+ = −𝑡−,
(S) Uniform tractions 𝑡 = P𝑁 .

(4.7)

Here, J(·)K = (·)+− (·)− indicates the jump of the field (·) and the quantities (·)+ and (·)−
can be identified as elements of the periodic point sets 𝜕𝒦+ and 𝜕𝒦− on the surface 𝜕𝒦
of the underlying RVE, cf. Fig. 4.2 or Fig. 4.3. For materials with periodically distributed
properties, the periodic displacement formulation (P) is expected to deliver best results.

4.3.4 General setup and solution of homogenisation problems

Definition of the aforementioned micro to macro transition as an energy minimisation
problem for microstructures with constituents of standard materials is possible and is
presented by the authors in [101, 102] and [105]. Therefore, an exact geometrical resolution
of the referred microscale has to be possible and a non-linear elastic material behaviour is
considered within this work. The relation in Eq. (4.8), which depends on the microscopic
deformation 𝜙, which itself is induced by the macroscopic deformation F,

𝑊 (F) = inf
𝜙

�̃� (𝜙), with ̃︁𝑊 (𝜙) =
1

𝑉

ˆ
𝒦
𝑊 (∇𝜙;𝑋) d𝑉, (4.8)

minimises the average energy of the microstructure after enforcement of introduced
boundary conditions from Eq. (4.7) on the microscale, i.e. after enforcement of linear
displacements (D), periodic displacements (P) or uniform tractions (S). Note that 𝑉 ·̃︁𝑊 (𝜙)
can be identified with the total energy of the microstructure. The boundary conditions
{D, P, S} can be applied using the standard Lagrange formalism, which is already presented
in Problem 3.3, and allows to recast Eq. (4.8) into the following saddle point problem

𝑊
𝜆

I (F;𝑋) = inf
𝜙

sup
𝜆I

{︂
1

𝑉

ˆ
𝒦
𝑊 (∇𝜙;𝑋) d𝑉 − 𝑐I(𝜙,𝜆I; F)

}︂
. (4.9)

Here, a general form of enforced constraints 𝑐I and a general description of the necessary
Lagrange multiplier 𝜆I for introduced classes of boundary conditions I = {D, P, S} is used.
The explicit formulations for all three types are given by

𝑐D(𝜙,𝜆D; F) :=
1

𝑉

ˆ
𝜕𝒦

𝜆D · (𝜙− F𝑋) d𝐴,

𝑐P(𝜙,𝜆P; F) :=
1

𝑉

ˆ
𝜕𝒦+

𝜆P · (J𝜙K− FJ𝑋K) d𝐴,

𝑐S(𝜙,𝜆S; F) :=
1

𝑉

ˆ
𝜕𝒦

(𝜆S𝑁) ·𝜙 d𝐴− 𝜆S : F.

(4.10)

Finally, the Lagrange functionals for minimisation with respect to the deformation 𝜙 in
terms of the deformation driven context and with explicit constraints on the boundary of
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the microstructure can be formulated by

(D) 𝑊
𝜆

D(F;𝑋) = inf
𝜙

sup
𝜆D

{︂̃︁𝑊 (𝜙)− 1

𝑉

ˆ
𝜕𝒦

𝜆D · (𝜙− F𝑋) d𝐴
}︂
,

(P) 𝑊
𝜆

P(F;𝑋) = inf
𝜙

sup
𝜆P

{︂̃︁𝑊 (𝜙)− 1

𝑉

ˆ
𝜕𝒦+

𝜆P · (J𝜙K− FJ𝑋K) d𝐴
}︂
,

(S) 𝑊
𝜆

S(F;𝑋) = inf
𝜙

sup
𝜆S

{︂̃︁𝑊 (𝜙)− 1

𝑉

ˆ
𝜕𝒦

(𝜆S𝑁) ·𝜙 d𝐴− 𝜆S : F
}︂
.

(4.11)

The effective stress and material parameters can be obtained directly from Eq. (4.9) by

PI = 𝜕F 𝑊
𝜆

I and AI = 𝜕F PI = 𝜕2
FF 𝑊

𝜆

I . (4.12)

Eq. (4.9) indicates that only constraints 𝑐I depend on the macroscopic deformation gradient
F and therefore, the explicit homogenised stresses can be obtained from

(D) PD = 𝜕F 𝑐D =
1

𝑉

ˆ
𝜕𝒦

𝜆D ⊗𝑋 d𝐴,

(P) PP = 𝜕F 𝑐P =
1

𝑉

ˆ
𝜕𝒦+

𝜆P ⊗ J𝑋K d𝐴,

(S) PS = 𝜕F 𝑐S = 𝜆S.

(4.13)

Within the chosen homogenisation approach it is possible to derive homogenised quantities
exclusively from surface terms of the microstructure. It can be observed that in Eq. (4.13)
the Lagrange multipliers 𝜆D and 𝜆P for linear and periodic displacements, respectively,
can be identified as traction vectors on the boundary of the microstructure. Whereas the
Lagrange multiplier 𝜆S corresponds to homogenised stresses directly. Extended details
and derivations of all presented relations can be found in [21, 101, 102, 105] and [103].
The used notation is also adopted from mentioned publications.

4.4 Computational homogenisation

For a numerical implementation of the general homogenisation approach and the micro
to macro transition, introduced relations in previous sections have to be transferred to
their discretised counterparts. For this purpose, standard finite element techniques and
approximations, which are known from standard text books and are briefly summarised
in Section 5.4 and Section 5.6, respectively, can be utilised. One point, which has to
be mentioned is, that due to the principle of scale separation, RVEs representing the
microstructure are coupled point-wise with the upper scale. The consequence within the
application of FEM is, that the chosen discretised RVE is connected individually to each
integration point or Gaussian point of the discretised upper scale. Therefore, a series
of microscopic BVPs with several test loadings induced by the macroscopic deformation
gradient F in each macroscopic integration point have to be solved, to be able to search
for the solution of one macroscopic BVP. Available analytical approaches are restricted in
many ways. Most of them are usable only for linear elastic material behaviour and are
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related to representative microstructures with simple and not changing geometry models.
Therefore, the upcoming formulations for numerical investigations present a versatile
extension to existing and so far widely spread analytical approaches.

After a spatial FE discretisation of the energy minimisation problem of homogenisation
in Eq. (4.8), the following finite-dimensional minimisation problem is obtained

𝑊 (𝐹 ) = inf
𝑣

̃︁𝑊 (𝑣) with ̃︁𝑊 (𝑣) =
1

𝑉

ˆ
𝒦
𝑊 (𝐹 ;𝑋) d𝑉. (4.14)

According to its continuous form, the total energy of the microstructure reads 𝑉 ·̃︁𝑊 (𝑣).
Referring explanations in Section 5.3 and Section 5.3.1, the physical residual and the
physical stiffness tangent operator in the context of homogenisation can be derived in a
similar fashion. The partial derivative of the discrete energy functional from Eq. (4.14)
with respect to the state variable 𝑣 yields

Physical residual vector: 𝑅(𝑣) = 𝑉 · 𝜕𝑣 ̃︁𝑊 (𝑣), with 𝑅 ∈ R𝑛𝑣 ,

Physical stiffness matrix: 𝐾(𝑣) = 𝑉 · 𝜕2
𝑣𝑣
̃︁𝑊 (𝑣), with 𝐾 ∈ R𝑛𝑣×𝑛𝑣 .

(4.15)

The dimension 𝑛𝑣 represents the overall number of discrete state variables or degrees of
freedom, which results from the overall number of FE nodes 𝑛𝑁 and the number of degrees
of freedom per node 𝑛𝑑, i.e. 𝑛𝑣 = 𝑛𝑁 · 𝑛𝑑.

Remark 4.2 (Contribution of external loads to microscopic energy) Due to the
existence of different length scales and the associated principle of scale separation, contri-
butions of external loads, in terms of physical body forces 𝑏 per unit volume and prescribed
surface tractions 𝑡, can be neglected on the lower scale. The loading situation of the
microstructure is induced by the macroscopic deformation gradient F and therefore, the
deformation of the surface of the microstructure is the present loading scenario. A further
consequence is, that the defined relation in Eq. (5.98) for the overall energy potential
coincides with the internal strain energy and necessary variations and linearisations for
physical residual and tangent operators include only contributions of internal parts.

4.4.1 Discrete relations for homogenisation

The authors in [21] and [103] presented a very elegant tactic for the numerical solution of the
above introduced homogenisation problem. Their approach and their notation are adopted
in the following and useful preparations for the usage within frameworks for structural
optimisation and material design in upcoming Chapter 6 are made. After partitioning of
contributions of degrees of freedom, discretised relations for explicit boundary conditions
are presented, which are finally used within the discrete setup for the minimisation problem
of homogenisation. The solution scheme follows a process similar to a classical Newton
iteration procedure.

The very first step is the partitioning of nodes of the underlying FE mesh of the
discretised domain 𝒦. Two sets of nodes can be distinguished: the nodes in the interior
of the domain 𝒦, i.e. nodes indicated by the (i), and nodes on the boundary 𝜕𝒦 of the
RVE, i.e. nodes indicated by the index (b). Fig. 4.3 can be referred for a schematic
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Figure 4.3: Separation of nodes on boundary (blue).

clarification. The introduction of the set (i, b) has a similar fashion to the partitioning
of discrete sensitivity relations, which is explained and extended with a partitioning of
design parameters in Section 5.5. The number of quantities in set (i) is given by 𝑛i and
the number of quantities in set (b) is given by 𝑛b. The partitioning of physical quantities
is realised by so-called projection matrices

Pi ∈ R𝑛𝑑·(𝑛𝑁−𝑛𝐵)×𝑛𝑑·𝑛𝑁 and Pb ∈ R𝑛𝑑·𝑛𝐵×𝑛𝑑·𝑛𝑁 . (4.16)

The projection matrix Pi defines the interior contribution and the projection matrix Pb
defines the contribution on the boundary. Here, 𝑛𝑁 corresponds to the overall number of
nodes of the FE mesh, 𝑛𝐵 is the number of nodes on the boundary and 𝑛𝐵 ≤ 𝑛𝑁 , and
𝑛𝑑 indicates the number of degrees of freedom per node. With this notation at hand and
similar to the partitioned relations in Section 5.5, a partitioning of state variables, the
physical residual vector and the physical stiffness matrices are presented in Eq. (4.17).

𝑣 =

[︂
𝑣 i
𝑣b

]︂
:=

[︃
Pi 𝑣

Pb 𝑣

]︃
, 𝑅 =

[︂
𝑅i
𝑅b

]︂
:=

[︃
Pi𝑅

Pb𝑅

]︃
,

𝐾 =

[︂
𝐾ii 𝐾ib
𝐾bi 𝐾bb

]︂
:=

[︃
Pi𝐾 P𝑇

i Pi𝐾 P𝑇
b

Pb𝐾 P𝑇
i Pb𝐾 P𝑇

b

]︃
.

(4.17)

After the prerequisite of decomposition of contributions, discrete formulations for the
boundary conditions in Eq. (4.11) on the microscale are required. In the following, the
three introduced classes of constraints are discussed, i.e. linear displacements (D), periodic
displacements (P) or uniform tractions (S). All formulations are based on the macroscopic
deformation gradient F. Within the numerical realisation, F is used in its matrix repre-
sentation obtained from the explanations on the Voigt notation in Chapter 2, i.e. for the
two-dimensional case 𝐹 reads 𝐹 =

[︀
𝐹 11 𝐹 22 𝐹 12 𝐹 21

]︀𝑇 and for completeness, the

three-dimensional case reads 𝐹 =
[︀
𝐹 11 𝐹 22 𝐹 33 𝐹 23 𝐹 32 𝐹 13 𝐹 31 𝐹 12 𝐹 21

]︀𝑇 .
For notational simplicity, here, only the two-dimensional case is considered, i.e. 𝑑 = 2,
and therefore, 𝑋𝑞 =

[︀
X1 X2

]︀𝑇
𝑞

as position vector of node 𝑞 on the surface of the RVE
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in the reference configuration and 𝑥𝑞 =
[︀
x1 x2

]︀𝑇
𝑞

as position vector of same node 𝑞 in
deformed configuration is assumed.

Linear displacements. All linear displacement constraints (D) of nodes on the surface of
the RVE in terms of partitioned state variables 𝑣b can be represented by the relation

𝑣b −𝒟𝑇 (𝐹 − 𝐼) = 0, (4.18)

with 𝐼 =
[︀
1 1 0 0

]︀𝑇 being the column matrix representation of the identity matrix 𝐼.
Furthermore, a global coordinate matrix 𝒟 ∈ R𝑑2×𝑛𝐵 is considered, i.e.

𝒟 =
[︀
𝒟1 𝒟2 . . . 𝒟𝑛𝐵

]︀
. (4.19)

The matrix 𝒟 contains coordinates of each node 𝑋𝑞 with 𝑞 = 1, . . . ,𝑛𝐵 on the surface of
the underlying RVE in terms of matrices 𝒟𝑞 ∈ R𝑑2×𝑑. Each matrix 𝒟𝑞 has the following
explicit form

𝒟𝑞 :=

⎡⎢⎢⎣
X1 0
0 X2

X2 0
0 X1

⎤⎥⎥⎦
𝑞

. (4.20)

Periodic displacements. To obtain a suitable formulation of periodic boundary conditions
(P) for the numerical implementation, it is important to define pairs of nodal coordinates
𝑋+

𝑞 and 𝑋−
𝑞 associated with positive and negative boundaries 𝜕𝒦+ and 𝜕𝒦−, respectively,

as indicated in Fig. 4.3. In the presented scheme, 𝑛𝑃 = 𝑛𝐵/2 + 2 couples of nodes can
be identified. For each pair, the periodicity condition J𝑣bK = (𝐹 − 𝐼)J𝑋𝑞K with already
introduced jump notation J𝑣bK = 𝑣+b − 𝑣

−
b and J𝑋𝑞K = 𝑋+

𝑞 −𝑋
−
𝑞 is used. To reformulate

the periodicity condition to a representation similar to linear displacement condition, the
coordinate matrix in Eq. (4.20) can be referred and yields 𝑣+b − 𝑣

−
b = (𝒟+𝑇

𝑞 −𝒟−𝑇
𝑞 )(𝐹 − 𝐼)

for the nodes 𝑞 = 1, . . . ,𝑛𝑃 . The discretised form of all constraints in terms of partitioned
state variables 𝑣b reads

𝒫 𝑣b − 𝒫 𝒟𝑇 (𝐹 − 𝐼) = 0, (4.21)

with the topology matrix 𝒫 ∈ R𝑛𝑃×𝑛𝐵 including only values {0,1,− 1}. The entries of the
matrix 𝒫 can be constructed using following cases

𝒫𝑖𝑗 =

⎧⎪⎨⎪⎩
1 for 𝑖 = 𝑗,

−1 for coupled nodes on surface, i.e. 𝑖 ̸= 𝑗,

0 otherwise.
(4.22)
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Uniform tractions. The discrete formulation of the boundary constraint (S) for uniform
tractions on the surface of the RVE in its final form reads

𝒜 𝑣b − 𝑉 (𝐹 − 𝐼) = 0. (4.23)

Here, a global matrix 𝒜 ∈ R𝑑2×𝑛𝐵 is used and contains components 𝒜𝑞 ∈ R𝑑2×𝑑, i.e.

𝒜 =
[︀
𝒜1 𝒜2 . . . 𝒜𝑛𝐵

]︀
, and 𝒜𝑞 :=

⎡⎢⎢⎣
A1 0
0 A2

A2 0
0 A1

⎤⎥⎥⎦
𝑞

. (4.24)

Components (A1,A2) in 𝒜𝑞 represent entries of the discrete normal area vector 𝐴𝑞 at node
𝑞 in the referential configuration. It results from the limit of its continuous counterpart
𝑁 d𝐴→ 𝐴𝑞, with outward normal 𝑁 , and is connected to the discretised surface integral.

4.4.2 General form of discrete boundary conditions

The chosen structure of introduced boundary conditions {D, P, S} in Eq. (4.18), Eq. (4.21)
and Eq. (4.24), respectively, and their obvious similarity, allows to find a general formulation
for the representation of boundary conditions and to use this unique and compact notation
for further purposes and investigations. This general form is defined by

𝒮1 𝑣b − 𝒮2 (𝐹 − 𝐼) = 0 (4.25)

for introduced classes of boundary conditions I = {D, P, S} and the corresponding
coefficient matrices 𝒮1 and 𝒮2 of following forms

𝒮1 :=

⎧⎪⎨⎪⎩
ℐ ∈ R𝑛𝐵×𝑛𝐵 (D)

𝒫 ∈ R𝑛𝑃×𝑛𝐵 (P)

𝒜 ∈ R𝑑2×𝑛𝐵 (S)

and 𝒮2 :=

⎧⎪⎨⎪⎩
𝒟𝑇 ∈ R𝑛𝐵×𝑑2

(D)

𝒫 𝒟𝑇 ∈ R𝑛𝑃×𝑑2

(P)

𝑉 ℐ ∈ R𝑑2×𝑑2

(S)

(4.26)

with ℐ being an identity matrix. Further derivations, extended explanations and details
in terms of the chosen notation can be found in [103] and [21].

4.4.3 Solution of the discrete minimisation problem of homogenisation

After the partitioning of contributions and the specification of boundary conditions in
their discrete form, the discrete Lagrange functional as the basis for the solution procedure
of the discrete minimisation problem of homogenisation can be stated in a general form

𝑊
𝜆

I (F;𝑋) = inf
𝑣

sup
𝜆I

{︁
�̃� (𝑣)− 𝜆𝑇

I
[︀
𝒮1 𝑣b − 𝒮2 (𝐹 − 𝐼)

]︀}︁
(4.27)

for introduced classes of boundary conditions I = {D, P, S}. To solve this problem in
terms of minimisation, variations with respect to partitioned state variables 𝑣 i and 𝑣b
and with respect to the Lagrange multiplier 𝜆I are necessary. The first variation yields
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the Euler-Lagrange equations in Eq. (4.28), which are subsequently defined as residuals
𝑅 =

[︀
𝑅i 𝑅b 𝑅𝜆

]︀𝑇 for the upcoming solution using a standard Newton scheme

𝑅i := 0 = 𝑅int
i ,

𝑅b := 0 = 𝑅int
b − 𝑉 𝒮𝑇1 𝜆I,

𝑅𝜆 := 0 = 𝒮1 𝑣b − 𝒮2 (𝐹 − 𝐼).
(4.28)

Typical Newton iterations require a linearisation of the residual in
[︀
𝑣 i 𝑣b 𝜆I

]︀𝑇 , i.e.

0 = 𝑅i +𝐾ii𝛥𝑣 i +𝐾ib𝛥𝑣b,

0 = 𝑅i +𝐾bi𝛥𝑣 i +𝐾bb𝛥𝑣b − 𝑉 𝒮𝑇1 𝛥𝜆I,

0 = 𝑅𝜆 + 𝒮𝑇1 𝛥𝑣b,

(4.29)

and an incremental update of state and Lagrange parameters

𝑣 ⇐ 𝑣 + 𝛥𝑣 and 𝜆I ⇐ 𝜆I + 𝛥𝜆I. (4.30)

Aforementioned sequence of steps and a detailed solution procedure is summarised in
Algorithm 4.1 and is performed until a defined convergence criteria is fulfilled, e.g. in
terms of the residual |𝑅| < 𝑇𝑂𝐿𝑣. In the solution point, i.e. in equilibrium state, effective
quantities can be computed. Homogenised stresses and the overall tangent moduli can be
obtained by the evaluation of Eq. (4.12) and result to

𝑃 K,I := 𝜕F 𝑊
𝜆

I = 𝒮𝑇2 𝜆I and 𝐴I := 𝜕2
FF𝑊

𝜆

I = 𝜕F 𝑃 K,I = 𝒮𝑇2
𝜕𝜆I

𝜕F
= 𝒮𝑇2 �̄�I𝒮2. (4.31)

It can be observed that effective stresses depend only on the Lagrange multiplier 𝜆I, i.e.
on terms defined on the surface of the RVE, and the homogenised tangent moduli can be
evaluated in terms of the condensed matrix �̄�I introduced and utilised in Algorithm 4.1.

4.4.4 Numerical implementation

Here, some hints and remarks on the numerical implementation are given. First, according
to arguments and explanations in Remark 2.4, most routines in the implemented structural
analysis and optimisation program MAnO have the following form

𝑓 := 𝑓(M, 𝑣 ,m, 𝑣). (4.32)

Here, 𝑣 and 𝑣 are macroscopic and microscopic displacement vectors, respectively. The
variables M and m represent structure data types of models on the macro- and the
microscale, respectively. Both contain geometrical model and technology data of stated
BVPs. This structure of argument list allows perturbations of any kind of input variable
and therefore, it is also useful for the verification of any linearised quantity or especially,
of any derived sensitivity relation using numerical derivatives. For instance, with the
notation (·)𝑐 and the index 𝑐 for changed or modified input quantities, perturbed function
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Algorithm 4.1 Solution procedure for minimisation problem of homogenisation. Pro-
posed solution schemes in [21, 101] and [103] are adopted to introduced notation to suit
frameworks for structural optimisation.

Input: Model structure m with geometrical and technological data of stated BVP
Input: Macroscopic deformation gradient 𝐹 in column matrix form
Output: Effective stresses 𝑃 K,I and tangent moduli 𝐴I

1: procedure Solve Homogenisation Problem(m,𝐹 )
2: eval {𝒮1,𝒮2} ← Eq. (4.26) ◁ evaluate boundary conditions
3: eval 𝑉 ◁ evaluate volume of RVE
4: set 𝑣 = 0, 𝜆I = 0 ◁ set initial values

5: while |𝑅| < 𝑇𝑂𝐿𝑣 do
6: // Assemble vector of internal forces and tangent of discretised RVE
7: 𝑅int(𝑣)← 𝑉 · 𝜕𝑣 �̃� (𝑣) and 𝐾(𝑣)← 𝑉 · 𝜕2

𝑣𝑣 �̃� (𝑣)

8: // Get partitioned contributions in terms of (·)i ∈ 𝒦 and (·)b ∈ 𝜕𝒦

9: 𝑅int =

[︂
𝑅int

i
𝑅int

b

]︂
and 𝐾 =

[︂
𝐾ii 𝐾ib
𝐾bi 𝐾bb

]︂
10: // Compute residuals
11: 𝑅i = 𝑅int

i
12: 𝑅b = 𝑅int

b − 𝑉 𝒮𝑇1 𝜆I
13: 𝑅𝜆 = 𝒮1 𝑣b − 𝒮2 (𝐹 − 𝐼)

14: 𝑅 =
[︀
𝑅i 𝑅b 𝑅𝜆

]︀𝑇
◁ residual for evaluation of convergence criteria

15: // Compute condensed matrices
16: �̃�b = 𝑅b −𝐾bb𝐾

−1
ii 𝑅i and �̃�bb = 𝐾bb −𝐾bb𝐾

−1
ii 𝐾ib

17: �̃�𝜆 = 𝑅𝜆 − 𝒮1�̃�
−1

bb �̃�b and �̄�I = 1
𝑉 (𝒮1�̃�

−1

bb 𝒮𝑇1 )−1

18: // Compute increments
19: 𝛥𝜆I = −�̄�I�̃�𝜆

20: 𝛥𝑣b = �̃�
−1

bb (𝑉 𝒮𝑇1 𝛥𝜆I − �̃�b)
21: 𝛥𝑣 i = −𝐾−1

ii (𝐾ib𝛥𝑣b +𝑅i)

22: // Update state variable and Lagrange parameter
23: 𝑣 ← 𝑣 + 𝛥𝑣 and 𝜆I ← 𝜆I + 𝛥𝜆I
24: end while

25: // Compute homogenised values
26: 𝑃 K,I = 𝒮𝑇2 𝜆I and 𝐴I = 𝒮𝑇2 �̄�I𝒮2 ◁ effective stresses and tangent moduli
27: end procedure
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values for computations of numerical derivatives can be obtained from

perturbed state: 𝑓 = 𝑓(M, 𝑣 𝑐,m, 𝑣) or 𝑓 = 𝑓(M, 𝑣 ,m, 𝑣 𝑐),

perturbed model data: 𝑓 = 𝑓(M𝑐, 𝑣 ,m, 𝑣) or 𝑓 = 𝑓(M, 𝑣 ,m𝑐, 𝑣).
(4.33)

The overall structure and organisation of the program MAnO for the structural analysis
part is presented in the flowchart in Fig. 4.4 schematically. Using a material card, it can be
distinguished between solution procedures based on single scale constitutive laws or based
on solution of microscopic homogenisation problems in the integration points. The first
case requires no definition of microscopic BVPs and therefore, the microscopic structure
field with microscopic model data is set empty. Within the macroscopic BVP, the assembly
process of global residual and tangent forms depends on homogenised parameters.

MANO.MSA
Start

Init macro- and microscopic BVPs

1: if materialCard = FE2 then
2: {M,m} ← initInput;
3: else ◁ single scale analysis
4: M← initInput;
5: set m = [ ]; ◁ empty microstructure
6: end if
7: {𝑣 , 𝑣} ← 0 ◁ init solution vectors

Solve macroscopic BVP

1: for 𝑖𝐿 ← 1,𝑛𝐿 do ◁ loop over load steps
2: get 𝜆𝐿 ◁ load scale
3: {𝑅,𝐾} ← assemble(M,m, 𝜆𝐿)

◁ residual and stiffness
4: 𝑣 ← solve(𝑅,𝐾)

◁ solve global system of equations
(e.g. Newton-Raphson iteration)

5: end for

Output

Postprocessing

MANO.MSA
End

Eval material: FE2?

Single scale consitutive law

e.g. St. Venant, Neo-Hooke

Solve microscopic BVP (cf. Algorithm 4.1)

1: {𝒮1,𝒮2} ← Eq. (4.26) ◁ evaluate BC
2: {𝑅,𝐾} ← assemble ◁ residual and stiffness

(e.g. using single scale consitutive law)
3: 𝑣 ← solve(𝑅,𝐾)

◁ solve global system of equations
(e.g. Newton-Raphson iteration)

4: compute effective parameters

𝐹

integration point loop

NO

(𝑃 K = 𝑃 K, 𝐴 = 𝐴)

𝑃 K,𝐴

YES

Figure 4.4: Principle framework for multiscale structural analysis (MAnO.MSA)
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4.5 Summary and concluding remarks

After a short overview on literature and relevant publications for the work at hand, a
brief introduction to mechanical two-scale problems is given. The approach used for
homogenisation based on the choice of effective field variables, representative volume
elements (RVE) and the formulation of appropriate boundary conditions, here linear (D)
and periodic (P) displacements as well as uniform tractions (S), is presented. A numerical
solution procedure based on the general Lagrange formalism in terms of discretised relations
is adapted from literature and implemented in the framework of the simulation program
MAnO. Hints on the numerical implementation and the overall structure of the program,
especially on the structural analysis part, are given.

The development of the software has been a work over past years. Different strategies for
the determination of solutions have been implemented, tested and compared. Nevertheless,
the presented approach appears to be the most promising method, especially when it
comes to the solution of multiscale optimisation problems. Here, the multiscale structural
analysis problem or FE2 problem has to be solved many times in many optimisation
iterations. Besides necessary adaptions for the availability of pre-compiled functions
(so-called mex-files in Matlab), the assembly routines for structural analysis are organised
in a similar fashion to assembly routines for sensitivity analysis. The element routines
are extended by additional options, which allow an efficient evaluation of sensitivity
information on element level with regard to quantities, which are already available for
structural analysis. The overall simulation and optimisation environment MAnO provides
pre-conceived placeholders for different types of objective functions, constraints and design
parameters, but also for extensions for a broad field of problem formulations from structural
mechanics.



Chapter 5

Variations of physical quantities on single scales

In this chapter, the strategies and fundamental principles for variational sensitivity analysis
based on known relations from continuum mechanics are outlined. Beside references on
basic publications, essential coherences for this work are introduced. Relevant physical
and mechanical quantities as well as their corresponding variations are discussed. The
explicit discretised relations for the numerical treatment are summarised. Characteristic
features are emphasised by some additional remarks.

5.1 Introduction

In general physical or mechanical problems, a non-linear state variable 𝑣 is often the
quantity of interest and represents the solution of stated boundary value problems (BVP)
or initial value problems (IVP). In other words, seeked quantities are often the deformation
state of a fixed referential configuration under prescribed loads or the distribution of a
temperature field. In contrast to structural analysis (SA), where changes in the so-called
current, spatial or physical configuration are observed, structural optimisation (SO) focuses
on changes in the referential (initial or material) configuration. The major purpose of
structural optimisation is to improve given structural systems in some proper sense and to
propose reliable environments for predictions of the physical behaviour due to changes of
initial design parameters. Basically, the field of structural optimisation and especially the
design sensitivity analysis is driven by the following central question:

“How do resulting quantities change if input parameters are modified?”

The essential statements for answering this question can be deduced from the so-called
design sensitivity analysis (DSA), which plays the key role within frameworks for structural
optimisation and is an important prerequisite for the success of mathematical optimisation
algorithms. This integrated design sensitivity analysis leads to insights about impacts
and significant effects of design modifications on the physical properties and the resulting
physical behaviour. Design modifications are often characterised by changes in cross-
sections, material parameters, and changes in shape and topology or by modifications of
the referential configuration to be more general. DSA is a powerful and efficient tool to
make predictions and to examine changes of objectives and constraints due to changes

41
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of design parameters. Moreover, it is investigated for several years and in several fields
of applications, all in parallel to the progress of methods for structural analysis. The
methodology of its theoretical derivation and of its numerical realisation is responsible
for the accuracy and the overall performance of numerical algorithms. This contribution
is based on a variational approach for design sensitivity analysis, and especially on the
enhanced intrinsic formulation proposed by [18] and [10, 12]. In contrast to a variety
of further variational techniques, like the material derivative approach (MDA), which
performs sensitivity analysis analogous to the material time derivative, see [6, 38, 39, 85],
or the domain parametrisation approach (DPA), which is based on the introduction of a
design independent global reference configuration (ALE), see [34, 65, 122, 161], the intrinsic
formulation is fully integrated into the classical framework for continuum mechanics by
the introduction of enhanced kinematics with a decomposition of geometrical and physical
properties. Beside a state (function), which describes changes in the physical configuration
and is primarily used for structural analysis, a design (function) is introduced and allows
modifications in the referential configuration. If solution methods of choice are based on
variational formulations and on variational principles, variations of several quantities of
interest, especially of quantities from continuum mechanics, in corresponding physical and
referential configurations are required. Variations in the physical space are connected with
problems from structural analysis, while variations in the referential space are connected to
problems from design sensitivity analysis or from structural optimisation. The variational
approach according to [85] and [38, 39] appears to be a particularly promising approach
to design sensitivity analysis. Especially the enhanced intrinsic formulation proposed in
[18] and [10, 12] provides many beneficial advantages. Compared to different established
methods, see [12, 16] and [10] for a short overview, it is the most sophisticated approach to
design sensitivity analysis in theory but with the gain of accuracy of necessary derivatives
and enormous numerical efficiency. Both aspects as well as an intensive discussion on
further advantages and on the numerical realisation can be found in [13]. Using this
approach, variations with respect to the state and design on the continuous level can be
performed prior to any discretisation. This order of steps leads to an increasing efficiency
of the presented approach within modern methods in computational mechanics. When it
comes to numerical computations, following approaches can be distinguished.

• Finite differences approach requires almost no theoretical knowledge and is widely
used, but it has a high numerical effort due to many function evaluations.

• Semi-analytical approach is used for the computation of numerical derivatives with
respect to design parameters based on exact analytical formulations.

• Discrete analytical approach can be classified by exact derivatives of discrete formu-
lations with respect to some given design parameters.

• Continuous variational approach is based on design variations of continuous problems.
Discretisation takes place after derivation of exact analytical variations.

All mentioned strategies yield finally a useful sensitivity information in a proper sense
and can be utilised within schemes for structural optimisation, but they differ in their
computational behaviour. Overall, only analytical methods provide correct and exact
sensitivity information in contrast to approximations in terms of numerical derivatives.



5.2 Kinematics and variations of kinematical quantities 43

5.2 Kinematics and variations of kinematical quantities

The content of the following sections on fundamental principles for sensitivity analysis can
be basically related to the works [10, 12, 113] and [18]. The initial approach based on an
intrinsic formulation in convective coordinates in [113] is extended in [10, 12] and [18],
where the authors presented an enhanced kinematical framework based on an intrinsic
formulation in local coordinates. Especially the continuum mechanics point of view leads
to very deep insights on mechanical problem formulations and allows a full embedding of
a framework for variational sensitivity analysis due to its fundamental methodology into
the classical layout of continuum mechanics. The basic idea behind this concept is the
introduction of an arbitrary but fixed local convective configuration ℛ with defined local
coordinates 𝜃 and is schematically pictured in Fig. 5.1. It allows the decomposition of

𝜙(𝑋(𝑠),𝑡)

F

K M

𝜅(𝜃,𝑠) 𝜇(𝜃,𝑡)

𝒦 ℳ

ℛ

𝑋
𝑥

𝜃

Figure 5.1: Concept of enhanced kinematics: referential configuration 𝒦, physical configu-
ration ℳ and introduction of a local convective configuration ℛ, deformation mapping 𝜙
and introduction of a local geometry mapping 𝜅 and local motion mapping 𝜇.

the classical kinematical concept, with the time (𝑡) and design (𝑠) dependent deformation
mapping 𝜙(𝑋(𝑠),𝑡), into two additional mappings, i.e. into a local referential or local
geometry mapping 𝜅(𝜃,𝑠) and into a local current or local motion mapping 𝜇(𝜃,𝑡) and
therefore, a separation of geometrical and physical properties is possible. The well known
deformation mapping 𝑥 = 𝜙(𝑋(𝑠),𝑡) can be rewritten by the composition of the local
geometry and the local motion mapping in the following way

𝜙 = 𝜇 ∘ 𝜅−1. (5.1)

Besides the classical deformation gradient F, two additional tangent forms K and M are
introduced in Eq. (5.2) and are used to perform pull-back and push-forward operations
between the configurations 𝒦,ℳ and ℛ for quantities from continuum mechanics and
for corresponding variations.

F = Grad𝜙, K = GRAD𝜅, and M = GRAD𝜇. (5.2)
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The Jacobians of introduced tangent mappings in Eq. (5.2) can be identified by

𝐽𝐹 = det F, 𝐽𝐾 = det K, and 𝐽𝑀 = det M. (5.3)

Remark 5.1 (Gradient and divergence operators) The following notation with re-
spect to corresponding coordinates {𝜃,𝑋,𝑥} for gradient operators and divergence operators
is used throughout this work

referential : Grad(·) = grad𝑋(·) = ∇𝑋(·) and Div(·) = ∇𝑋 · (·), (5.4)
physical : grad(·) = grad𝑥(·) = ∇𝑥(·) and div(·) = ∇𝑥 · (·), (5.5)

local : GRAD(·) = grad𝜃(·) = ∇𝜃(·) and DIV(·) = ∇𝜃 · (·). (5.6)

Remark 5.2 (Variation of determinants) Variations of determinants of second order
tensors A are performed by the application of 𝛿(det A) = det AA−𝑇 : 𝛿A.

Following the main approach for the decomposition of the deformation mapping 𝜙 in
Eq. (5.1), the deformation gradient F in Eq. (5.2) consequently can be obtained from the
multiplicative decomposition

F = MK−1. (5.7)

The displacements are defined as the difference vector between the coordinates of the
current and referential placements, i.e. between the referential points 𝑥 and 𝑋, respectively.
The explicit displacements known from continuum mechanics can also be formulated in
terms of the local mappings 𝜅 and 𝜇, with 𝑥 = 𝜙(𝑋,𝑡) = 𝜇(𝜃,𝑡) and 𝑋 = 𝜅(𝜃,𝑠), and
therefore the displacement vector field 𝑢 is given as

𝑢 = 𝑥−𝑋 = 𝜙(𝑋,𝑡)−𝑋 = 𝜇(𝜃,𝑡)− 𝜅(𝜃,𝑠). (5.8)

As a consequence from the presented approach, the referential gradient H of displacements
𝑢 can be split into a local displacement gradient H𝜃 and the inverse geometry gradient

H = Grad𝑢 = GRAD𝑢K−1 = H𝜃 K−1. (5.9)

The beneficial advantage of the introduced local configuration ℛ is, that after transforma-
tion to ℛ, variations in this configuration can be performed additively in one single step
due to the independence of geometrical and physical properties. Therefore, Eq. (5.10) is
an elegant way to obtain the total variation of the deformation gradient

𝛿F = 𝛿MK−1 + M𝛿K−1. (5.10)

Here, the variation 𝛿M can be identified as variation in the physical space, and the
variation 𝛿K−1 can be identified as variation in the referential space.

Remark 5.3 (Variation of inverse tensors) The total variation of the inverse tensor
A−1 can be obtained using the identity AA−1 = I. Its total variation 𝛿(AA−1) =
𝛿AA−1 + A𝛿A−1 = 𝛿I = 0 yields finally 𝛿A−1 = −A−1𝛿AA−1.
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Remark 5.4 (Transformation of gradients) Gradients can be transformed between
introduced configurations 𝒦,ℳ and ℛ using following relations

Grad(·) = grad(·)F = GRAD(·)K−1, grad(·) = Grad(·)F−1 = GRAD(·)M−1. (5.11)

Using Remark 5.3, the total variation of the deformation gradient can be obtained using
𝛿K−1 = −MK−1𝛿KK and reads

𝛿F(𝜙, 𝛿𝜙, 𝛿𝑋) = 𝛿MK−1 −MK−1𝛿KK = Grad 𝛿𝜙− F Grad 𝛿𝑋, (5.12)

where the variations of the local gradients 𝛿K = 𝛿[GRAD𝜅] = GRAD 𝛿𝜅 = GRAD 𝛿𝑋
and 𝛿M = 𝛿[GRAD𝜇] = GRAD 𝛿𝜇 = GRAD 𝛿𝑥 = GRAD 𝛿𝜙, and the transformation of
gradients from Remark 5.4 are used. For a deformation gradient F given as a function of
the displacement field, i.e. F = I + Grad𝑢 = I + H, it’s total variation reads

𝛿F(𝑢, 𝛿𝑢, 𝛿𝑋) = Grad 𝛿𝑢−H Grad 𝛿𝑋 (5.13)

with the relation 𝛿𝑥 = 𝛿𝑋 + 𝛿𝑢. Therefore, if modifications of the referential configuration
are allowed, it is important to distinguish between formulations in terms of 𝜙 and 𝑢. To
obtain general descriptions, the generalised state variable 𝑣 is introduced, and represents
𝜙 or 𝑢 depending on stated problems. Furthermore, the variable 𝑠 can be identified as a
general design variable, which differs depending on the chosen design description. The
presented notation is adopted from intensive explanations and discussions on the variation
of kinematical quantities and mentioned distinctions presented in [12] and [99]. As a
consequence, the total variation of the deformation gradient in terms of the generalised
state variable 𝑣 is given as

𝛿F(𝑣, 𝛿𝑣, 𝛿𝑠) = Grad 𝛿𝑣 −Grad𝑣 Grad 𝛿𝑠 (5.14)

and the partial variations with respect to the state 𝑣 and design 𝑠 can be identified as

F′
𝑣 = Grad 𝛿𝑣, F′

𝑠 = −Grad𝑣 Grad 𝛿𝑠. (5.15)

The deformation gradient and its decomposition in Eq. (5.7), and therefore also its vari-
ations in Eq. (5.14) and in Eq. (5.15), represent essential relations for all subsequent
derivations of strain measures and of their corresponding variations. Within weak formu-
lations of stated BVPs, in some cases also some second partial variations are needed, e.g.
the mixed variation of the deformation gradient F with respect to 𝑣 and 𝑠 reads

F′′
𝑣𝑠 = −Grad 𝛿𝑣 Grad 𝛿𝑠. (5.16)

The Green-Lagrange strain tensor E in Eq. (5.17) is often used for strain measurements in
structural mechanics and in several applications within FEM. To obtain the full set of its
variations, it is useful to formulate E in terms of local geometry and motion gradients

E =
1

2
(F𝑇F− I) =

1

2
(K−𝑇M𝑇MK−1 − I). (5.17)
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Its variations can be obtained applying techniques similar to the variations of the defor-
mation gradient, and therefore, the necessary partial variations read

E′
𝑣(𝑣, 𝛿𝑣) = sym(F𝑇 Grad 𝛿𝑣),

E′
𝑠(𝑣, 𝛿𝑠) = −sym(F𝑇 Grad𝑣 Grad 𝛿𝑠),

E′′
𝑣𝑣(𝑣, 𝛿𝑣, 𝛥𝑣) = sym(Grad 𝛿𝑣𝑇 Grad𝛥𝑣),

E′′
𝑣𝑠(𝑣, 𝛿𝑣, 𝛿𝑠) = −sym(Grad 𝛿𝑠𝑇H𝑇 Grad 𝛿𝑣 + F𝑇 Grad 𝛿𝑣 Grad 𝛿𝑠).

(5.18)

Complete compilations of first and second variations of several quantities from continuum
mechanics can be found in [12] and [99], and are accentuated by several details and remarks.
Here, only necessary relations for this work are presented and outlined.

5.3 Basic sensitivity relations

In this work, hyperelastic materials are considered, and therefore, the existence of a
strain energy function 𝑊 can be assumed. Extensions to time dependent and non-linear
material formulations are possible and dedicated to future work. This prerequisite allows
to formulate an internal energy functional 𝛱 int of a hyperelastic body in terms of 𝑊

𝛱 int(𝑣, 𝑠) =

ˆ
𝒦
𝑊 (F) d𝑉 =

ˆ
𝒦
𝑊 (E) d𝑉 =

ˆ
𝒦
𝑊 (𝑣, 𝑠) d𝑉. (5.19)

The energy potential in Eq. (5.19) is used to derive necessary relations for structural and
sensitivity analysis, structural optimisation, and especially, the strain energy 𝑊 is referred
for the definition of different stress measures. The first and second Piola-Kirchhoff stress
tensors P and S can be derived from

P :=
𝜕𝑊

𝜕F
and S :=

𝜕𝑊

𝜕E
. (5.20)

Using the deformation gradient F and its Jacobian 𝐽𝐹 , several transformations of the
introduced stress measures are possible, e.g. to obtain the symmetric Cauchy stress tensor

T := 𝐽−1
𝐹 PF𝑇 = 𝐽−1

𝐹 FSF𝑇 . (5.21)

In subsequent investigations variations of the energy potential in Eq. (5.19) with respect
to state variables 𝑣 and design parameters 𝑠 are necessary. The total variation of the
overall internal energy functional 𝛱 int is given by

(𝛱 int)′(𝑣, 𝑠; 𝛿𝑣, 𝛿𝑠) =

ˆ
𝒦

(𝑊 )′𝑣(𝑣,𝑠; 𝛿𝑣) + (𝑊 )′𝑠(𝑣,𝑠; 𝛿𝑠) + 𝑊 Div 𝛿𝑠 d𝑉, (5.22)
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where the divergence term results from the variation of the referential configuration 𝒦
itself and can be replaced by Div 𝛿𝑠 = I : Grad 𝛿𝑠. The partial variations are identified as

(𝛱 int)′𝑣 =

ˆ
𝒦

(𝑊 )′𝑣(𝑣,𝑠; 𝛿𝑣) d𝑉,

(𝛱 int)′𝑠 =

ˆ
𝒦

(𝑊 )′𝑠(𝑣,𝑠; 𝛿𝑠) + 𝑊 I : Grad 𝛿𝑠 d𝑉,
(5.23)

and require partial variations of the introduced strain energy 𝑊 with respect to state
variables 𝑣 and design parameters 𝑠. This partial variations can be given in terms of the
deformation gradient F or the Green-Lagrange strains E and have the form

(𝑊 )′𝑣(𝑣,𝑠; 𝛿𝑣) =
𝜕𝑊

𝜕F
: F′

𝑣(𝑣,𝛿𝑣) = P : Grad 𝛿𝑣 = S : E′
𝑣,

(𝑊 )′𝑠(𝑣,𝑠; 𝛿𝑠) =
𝜕𝑊

𝜕F
: F′

𝑠(𝑣,𝛿𝑠) = −P : Grad𝑣 Grad 𝛿𝑠 = S : E′
𝑠.

(5.24)

Finally, the partial variations of the internal energy potential are given as

(𝛱 int)′𝑣 = 𝑅int =

ˆ
𝒦

P : Grad 𝛿𝑣 d𝑉 =

ˆ
𝒦

S : E′
𝑣(𝑣,𝛿𝑣) d𝑉,

(𝛱 int)′𝑠 = 𝐺int =

ˆ
𝒦
−Grad𝑣𝑇P : Grad 𝛿𝑠 + 𝑊 I : Grad 𝛿𝑠 d𝑉

=

ˆ
𝒦

S : E′
𝑠(𝑣,𝛿𝑠) + 𝑊 I : Grad 𝛿𝑠 d𝑉.

(5.25)

Both quantities can be connected to weak formulations known from structural analysis and
configurational mechanics or mechanics of configurational forces, i.e. (𝛱 int)′𝑣 corresponds
to the internal part of the physical residual 𝑅int and (𝛱 int)′𝑠 can be associated with the
internal part of the material residual 𝐺int, respectively. For further references and detailed
explanations see [99] for instance.

A complete formulation of the overall energy requires the specification of the contribution
of external loads in terms of body forces 𝑏 per unit volume and stresses 𝑡 on the surface
of the domain 𝒦, i.e. on the Neumann boundary 𝜕𝒦N. These terms are given by

𝛱ext(𝑣, 𝑠) =

ˆ
𝒦
𝑏 · 𝑣 d𝑉 +

ˆ
𝜕𝒦

𝑡 · 𝑣 d𝐴. (5.26)

In subsequent steps also variations of the external part of the energy term 𝛱ext are
necessary. Especially, the variation with respect to state parameters 𝑣 contributes to the
external part of the residual and reads

(𝛱ext)′𝑣 = 𝑅ext = 𝐹 (𝑠;𝜂) =

ˆ
𝒦
𝑏 · 𝜂 d𝑉 +

ˆ
𝜕𝒦

𝑡 · 𝜂 d𝐴. (5.27)
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5.3.1 Weak form of equilibrium and its variation

In solid mechanics and other fields of computational mechanics, especially in the finite
element framework, the weak form of equilibrium plays a central role. Within structural
optimisation, the weak form of equilibrium is of same importance for the setting of design
sensitivity analysis as for structural analysis. Its variation leads to the well-known tangent
stiffness operator for structural analysis as well as to the tangent pseudo load operator,
which is used to formulate sensitivity relations to describe effects in the physical space due
to modifications in the referential space. In accordance to methods for structural analysis,
discretisation of mentioned tangent forms and an efficient solution are essentials steps for
the treatment of structural optimisation problems. The required state parameter 𝑣, which
fulfils the equilibrium of mechanical systems, is obtained from the solution of the general
non-linear residual

𝑅(𝑣, 𝑠;𝜂) = 0 (5.28)

It depends on a general state variable 𝑣 ∈ 𝒱, the design variable 𝑠 ∈ 𝒮, and any test
function 𝜂 ∈ 𝒱 . Here, all spaces of admissible states and designs are denoted by 𝒱 and 𝒮.
In the context of structural optimisation, the weak form of equilibrium is often seen as an
equality constraint within the posed optimisation problem and has to be fulfilled for any
arbitrary state and design.

The variation of the weak form can be motivated in several ways, e.g. minimisation
principle of overall energy, solution of an optimisation problem for an arbitrary objective
function with an equilibrium constraint, or finally, that any perturbation in the design
space must not violate the physical equilibrium state. Therefore, the total variation of the
non-linear residual in Eq. (5.28) can be investigated

𝑅′ = 𝑅′
𝑣(𝑣, 𝑠;𝜂, 𝛿𝑣) + 𝑅′

𝑠(𝑣, 𝑠;𝜂, 𝛿𝑠) = 𝑘(𝑣, 𝑠;𝜂, 𝛿𝑣) + 𝑝(𝑣, 𝑠;𝜂, 𝛿𝑠) = 0. (5.29)

Here, the variations of the physical residual with respect to 𝑣 and 𝑠 are introduced by the
tangent operators 𝑘 and 𝑝

𝑘(𝑣, 𝑠;𝜂, 𝛿𝑣) = 𝑅′
𝑣(𝑣, 𝑠;𝜂, 𝛿𝑣) physical stiffness, (5.30)

𝑝(𝑣, 𝑠;𝜂, 𝛿𝑠) = 𝑅′
𝑠(𝑣, 𝑠;𝜂, 𝛿𝑠) pseudo load. (5.31)

Both tangent operators are bilinear forms 𝑘 : 𝒱 × 𝒱 → R and 𝑝 : 𝒱 × 𝒮 → R.

5.3.2 Sensitivity of the physical state

The solution of the sensitivity relation in Eq. (5.29) allows the derivation of the implicit
sensitivity of the state in the current equilibrium point (𝑣, 𝑠)

𝛿𝑣 = 𝑠(𝑣, 𝑠; 𝛿𝑠). (5.32)

So far, Eq. (5.32) is an implicit representation of the sensitivity operator 𝑠. Its explicit
determination is only possible after discretisation of corresponding global quantities.
Explicit formulations for the residual forms, the pseudo load and also for the resulting



5.3 Basic sensitivity relations 49

sensitivity operator 𝑠 are given in Section 5.4 and can be found in [97, 99] and [96] with
detailed descriptions, derivations and explanations.

5.3.3 Variations of arbitrary functionals

The implicit sensitivity relation of the state in Eq. (5.32) provides a possibility for the
evaluation of any design variation of any arbitrary objective or constraint functional
𝑓(𝑣, 𝑠) = 𝑓(𝑣(𝑠), 𝑠) with respect to the chosen design parameter 𝑠

𝑓 ′ = 𝑓 ′
𝑣 + 𝑓 ′

𝑠 =
𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑠
𝛿𝑠 =

(︂
𝜕𝑓

𝜕𝑣
∘ 𝑠 +

𝜕𝑓

𝜕𝑠

)︂
𝛿𝑠. (5.33)

5.3.4 Variations of stresses

The introduced weak form of equilibrium or physical residual and especially its variations
require variations of stresses with respect to state variables 𝑣 and design parameters 𝑠.
The explicit variations of introduced Piola-Kirchhoff stress tensors P and S, respectively,
deliver also known elasticity tensors A and C for hyperelastic materials, i.e.

P′(𝑣,𝛿𝑣,𝛿𝑠) =
𝜕P
𝜕F

: F′(𝑣,𝛿𝑣,𝛿𝑠) = A : F′(𝑣,𝛿𝑣,𝛿𝑠), and A =
𝜕P
𝜕F

,

S′(𝑣,𝛿𝑣,𝛿𝑠) =
𝜕S
𝜕E

: E′(𝑣,𝛿𝑣,𝛿𝑠) = C : E′(𝑣,𝛿𝑣,𝛿𝑠), and C =
𝜕S
𝜕E

.

(5.34)

Referring the introduced variations of the deformation gradient F and the Green-Lagrange
strain tensor E, the explicit partial variations can be identified as

P′
𝑣(𝑣,𝛿𝑣) = A : Grad 𝛿𝑣, P′

𝑠(𝑣,𝛿𝑠) = −A : Grad𝑣 Grad 𝛿𝑠, (5.35)

for the variation of the first Piola-Kirchhoff stress tensor and as

S′
𝑣(𝑣,𝛿𝑣) = C : F𝑇 Grad 𝛿𝑣, S′

𝑠(𝑣,𝛿𝑠) = −C : F𝑇 Grad𝑣 Grad 𝛿𝑠, (5.36)

for the variation of the symmetric second Piola-Kirchhoff stress tensor. In some cases, the
stated optimisation problems involve stress measures as a characteristic quantity of failure
and therefore, they are used as constraints or restrictions. Common stress components
under investigation are von Mises or equivalent tensile stresses 𝜎eq, which are usually
formulated in terms of principal stresses or in terms of Cauchy stress components 𝑇𝑖𝑗 . In
the general three-dimensional case, the von Mises stresses can be computed using relation

𝜎eq(T) =
√︁
𝑇 2
11 + 𝑇 2

22 + 𝑇 2
33 − 𝑇11𝑇22 − 𝑇11𝑇33 − 𝑇22𝑇33 + 3(𝑇 2

12 + 𝑇 2
13 + 𝑇 2

23). (5.37)

The von Mises stress for the plane stress condition is computed by

𝜎eq(T) =
√︁

𝑇 2
11 + 𝑇 2

22 − 𝑇11𝑇22 + 3𝑇 2
12, (5.38)
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and for the plane strain condition using the Poisson’s ratio 𝜈

𝜎eq(T) =
√︁

(𝑇11 + 𝑇22)2(𝜈2 − 𝜈 + 1) + 𝑇11𝑇22(2𝜈2 − 2𝜈 − 1) + 3𝑇 2
12 and

𝑇33 = 𝜈(𝑇11 + 𝑇22).
(5.39)

The variation of von Mises stresses with respect to state variables 𝑣 and design parameters
𝑠 read in abstract form

𝜎′
eq(T) =

𝜕𝜎eq

𝜕T
: T′(𝑣,𝑠,𝛿𝑣,𝛿𝑠) =

𝜕𝜎eq

𝜕T
:
{︀
T′

𝑣(𝑣,𝑠,𝛿𝑣) + T′
𝑠(𝑣,𝑠,𝛿𝑠)

}︀
. (5.40)

As a consequence, the total variation of Cauchy stresses is required and reads

T′(𝑣,𝑠,𝛿𝑣,𝛿𝑠) = T′
𝑣(𝑣,𝑠,𝛿𝑣) + T′

𝑠(𝑣,𝑠,𝛿𝑠). (5.41)

The partial variations in terms of the deformation gradient F and the first Piola-Kirchhoff
stress P, i.e. T = 𝐽−1

𝐹 PF𝑇 , can be extracted to

T′
𝑣(𝑣,𝑠,𝛿𝑣) = −(𝐽−1

𝐹 F−𝑇 : F′
𝑣) PF𝑇 + 𝐽𝐹 (P′

𝑣F
𝑇 + P(F𝑇 )′𝑣),

T′
𝑠(𝑣,𝑠,𝛿𝑠) = −(𝐽−1

𝐹 F−𝑇 : F′
𝑠) PF𝑇 + 𝐽𝐹 (P′

𝑠F
𝑇 + P(F𝑇 )′𝑠).

(5.42)

Here, the previously introduced variations of the deformation gradient F and of first
Piola-Kirchhoff stresses P are used. In terms of the Green-Lagrange strains E and the
second Piola-Kirchhoff stress S, i.e. T = 𝐽−1

𝐹 FSF𝑇 , the partial variations of Cauchy
stresses T are given by

T′
𝑣(𝑣,𝑠,𝛿𝑣) = −(𝐽−1

𝐹 F−𝑇 : F′
𝑣) FSF𝑇 + 𝐽𝐹 ((F𝑇 )′𝑣SF𝑇 + FS′

𝑣F
𝑇 + FS(F𝑇 )′𝑣),

T′
𝑠(𝑣,𝑠,𝛿𝑠) = −(𝐽−1

𝐹 F−𝑇 : F′
𝑠) FSF𝑇 + 𝐽𝐹 ((F𝑇 )′𝑠SF𝑇 + FS′

𝑠F
𝑇 + FS(F𝑇 )′𝑠).

(5.43)

Here, already introduced variations of the Green-Lagrange strains E and of the second
Piola-Kirchhoff stresses S are used. Furthermore, in both cases and referring Remark 5.2,
the variations of the inverse Jacobian read

(𝐽−1
𝐹 )′𝑣 = −𝐽−2

𝐹 (𝐽𝐹 )′𝑣 = −𝐽−2
𝐹 𝐽𝐹F−𝑇 : F′

𝑣 = −𝐽−1
𝐹 F−𝑇 : F′

𝑣

(𝐽−1
𝐹 )′𝑠 = −𝐽−2

𝐹 (𝐽𝐹 )′𝑠 = −𝐽−2
𝐹 𝐽𝐹F−𝑇 : F′

𝑠 = −𝐽−1
𝐹 F−𝑇 : F′

𝑠.
(5.44)

The last missing quantity for a complete representation of the variation of von Mises
stresses, here in Voigt notation as necessary for numerical implementation, is the partial
derivative of von Mises stresses with respect to the Cauchy stress and reads

𝜕𝜎eq

𝜕𝑇
=

1

2𝜎eq

⎡⎣ 2𝑇11 − 𝑇22

2𝑇22 − 𝑇11

6𝑇12

⎤⎦ . (5.45)
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5.4 Discrete sensitivity relations

Within the variational approach to design sensitivity analysis, all quantities are fully
integrated in the well-known framework of classical non-linear continuum mechanics and
variations are derived on the continuous level, cf. [12] for details. This fundamental and
beneficial aspect allows the discretisation of the final resulting sensitivity expressions,
beside a few modifications, using standard finite element techniques known from several
standard literature on finite element analysis, e.g. [20, 28, 181, 182] and [168]. In this
work, the presented relations are basically referred to pure displacement finite element
formulations. This type of elements can be seen as an important and widely used class
of element formulations. Extensions to modified and advanced element technologies are
straight forward. Remarks on design parametrisations and the choice of explicit design
variables are followed by a compilation of necessary sensitivity relations, explanations on
their numerical realisation in terms of FEM and on their verification. Overall, the main
target is to obtain an ability to control the shape and boundary of given geometries.

5.4.1 Discrete weak form of equilibrium and its variation

After standard finite element discretisation with the discrete approximation 𝑣ℎ for the
state and 𝑋ℎ for design, the discrete parameters 𝑣 ∈ R𝑛𝑣 and 𝑋 ∈ R𝑛𝑋 can be used to
obtain the matrix description of the continuous forms, i.e. the physical residual vector in
Eq. (5.46) and the tangent forms in Eq. (5.47) for the physical stiffness and in Eq. (5.48) for
the pseudo load matrix. Additionally, the approximations for the corresponding variations
𝛿𝑣ℎ, 𝛿𝑋ℎ and the test function 𝜂ℎ are chosen in the same manner, i.e. 𝛿𝑣 ∈ R𝑛𝑣 and
𝛿𝑋 ∈ R𝑛𝑋 as well as 𝜂 ∈ R𝑛𝑣 . The overall number of the discrete state variables in 𝒱ℎ ⊂ 𝒱
is given by 𝑛𝑣, and 𝑛𝑋 is the number of discrete design parameters in 𝒮ℎ ⊂ 𝒮.

𝑅(𝑣ℎ,𝑋ℎ;𝜂ℎ) = 𝜂𝑇𝑅, 𝑅 ∈ R𝑛𝑣 , (5.46)

𝑘(𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑣ℎ) = 𝜂𝑇𝐾𝛿𝑣 , 𝐾 ∈ R𝑛𝑣×𝑛𝑣 , (5.47)

𝑝(𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑋ℎ) = 𝜂𝑇𝑃 𝛿𝑋, 𝑃 ∈ R𝑛𝑣×𝑛𝑋 . (5.48)

As a consequence thereof, the discrete form of the variation of the weak form from Eq. (5.29)
evaluated in (𝑣ℎ,𝑋ℎ) reads

𝑅′ = 𝜂𝑇𝑅′ = 𝜂𝑇 [𝐾𝛿𝑣 + 𝑃 𝛿𝑋] = 0, (5.49)

and thus, due to the arbitrariness of the test function 𝜂, following relation holds true

𝑅′ = 𝐾𝛿𝑣 + 𝑃 𝛿𝑋 = 0. (5.50)

5.4.2 Discrete sensitivity of the physical state

Finally, Eq. (5.50) is utilised for the evaluation of the discrete form of the sensitivity
relation from Eq. (5.32) for the state variable

𝛿𝑣 = 𝑆𝛿𝑋 with 𝑆 = −𝐾−1𝑃 and 𝑆 ∈ R𝑛𝑣×𝑛𝑋 (5.51)
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for any arbitrary design variable of the discrete nodal set 𝑋 and its variation 𝛿𝑋. The
introduced matrix 𝑆 is the so-called sensitivity matrix. It connects variations in the
referential space with variations in the physical space and allows predictions of changes in
the state 𝑣 due to arbitrary design modifications 𝛿𝑋.

5.4.3 Discrete form of the variation of arbitrary functionals

The discrete form of the variation of any arbitrary objective or constraint functional in
Eq. (5.33) with respect to any design variation 𝛿𝑋 can finally be specified by

𝑓 ′ =
𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑋
𝛿𝑋 =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝛿𝑋. (5.52)

5.4.4 Discrete form of the variation of stresses

In structural optimisation, stress components and their variations play an important role.
If stresses are chosen as objective functions in some appropriate manner or as constraints,
especially variations with respect to design parameters 𝑠 are the values of interest. The
continuous total variations in terms of linearised strain measures of the first and second
Piola-Kirchhoff stress tensors are given in Eq. (5.34), and the partial variations are given
in Eq. (5.35) and Eq. (5.36), respectively. Variations of both stress quantities contain
variations with respect to state variables 𝑣 and design parameters 𝑋, i.e.

P′(𝑣,𝛿𝑣,𝛿𝑋) = P′
𝑣(𝑣,𝛿𝑣) + P′

𝑋(𝑣, 𝛿𝑋) =
𝜕P
𝜕𝑣

𝛿𝑣 +
𝜕P
𝜕𝑋

𝛿𝑋,

S′(𝑣,𝛿𝑣,𝛿𝑋) = S′
𝑣(𝑣,𝛿𝑣) + S′

𝑋(𝑣, 𝛿𝑋) =
𝜕S
𝜕𝑣

𝛿𝑣 +
𝜕S
𝜕𝑋

𝛿𝑋.

(5.53)

In the discretised sense, the first and second Piola-Kirchhoff stresses are identified by 𝑃 K

and 𝑆K, respectively. Using the discrete sensitivity relation for the state in Eq. (5.51), the
discrete relation for the variation of stresses can be given similar to Eq. (5.52) as

𝑃 ′
K(𝑣 ,𝛿𝑣 ,𝛿𝑋) =

𝜕𝑃 K

𝜕𝑣
𝛿𝑣 +

𝜕𝑃 K

𝜕𝑋
𝛿𝑋 =

(︂
𝜕𝑃 K

𝜕𝑣
𝑆 +

𝜕𝑃 K

𝜕𝑋

)︂
𝛿𝑋,

𝑆′K(𝑣 ,𝛿𝑣 ,𝛿𝑋) =
𝜕𝑆K

𝜕𝑣
𝛿𝑣 +

𝜕𝑆K

𝜕𝑋
𝛿𝑋 =

(︂
𝜕𝑆K

𝜕𝑣
𝑆 +

𝜕𝑆K

𝜕𝑋

)︂
𝛿𝑋.

(5.54)

5.5 Partitioning of discrete sensitivity relations

Regarding the discrete formulation of derived relations for structural and sensitivity
analysis in terms of FEM, the discrete parameters, i.e. the state parameters 𝑣 and the
explicit design parameters 𝑋, which represent the coordinates of the underlying mesh
(therefore 𝑠 = 𝑋 holds true), are partitioned into contributions on the Dirichlet boundary
𝜕𝒦D, the Neumann boundary 𝜕𝒦N and into those of the inner domain 𝒦, cf. Fig. 5.2
for clarification. Further explanations on the choice of design parameters are given in
Section 3.4.
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𝜕𝒦N

𝒦

𝜕𝒦D

State: Design:(·)a
(·)b

(·)A
(·)B

Figure 5.2: Partitioning of nodes in domains 𝒦, 𝜕𝒦N, 𝜕𝒦D and corresponding sets: set
(a, b) for partitioning of state variables and set (A,B) for partitioning of design parameters.

With the overall representation of the domain 𝒦 = 𝒦 ∪ 𝜕𝒦 and the boundary 𝜕𝒦 =
𝜕𝒦N ∪ 𝜕𝒦D, where 𝜕𝒦N ∩ 𝜕𝒦D = ∅, all emerging quantities can be identified by the
following notation for

State: (·)a ∈ 𝒦 ∪ 𝜕𝒦N and (·)b ∈ 𝜕𝒦D,

Design: (·)A ∈ 𝒦 ∪ 𝜕𝒦N and (·)B ∈ 𝜕𝒦D,
(5.55)

with the set (a,b) for the partitioning of state variables and the set (A,B) for the
partitioning of design parameters. The number of state quantities (·)a is given by 𝑛a,
and the number of state quantities (·)b is given by 𝑛b. Same holds true for the design
partitioning and therefore, the number of design quantities (·)A is given by 𝑛A, and
the number of design quantities (·)B is given by 𝑛B. It is useful to introduce these
different kinds of subsets because it finally allows to define and prescribe different types
of boundary conditions, i.e. explicit boundary conditions in the physical and explicit
boundary conditions in the design space. In the special case the sets for state and design
parameters can coincide, but in general they can be completely different.

Remark 5.5 (Nomination of sets for state parameters) Compared to the set (i, b)
introduced in Section 4.4.1 for inner and boundary nodes of an RVE, the nodes on the
Dirichlet boundary given in Eq. (5.56) are also indicated by the index (b). Whereas the set
identified by the index (a) introduced above contains all nodes except boundary nodes, i.e.
it contains nodes in the inner domain as well as nodes on the Neumann boundary.

Using this definition, the state 𝑣 , the variation of the state 𝛿𝑣 , the chosen design parameters
𝑋 and the variation of the design parameters 𝛿𝑋 are subdivided

𝑣 =

[︂
𝑣a
𝑣b

]︂
, 𝛿𝑣 =

[︂
𝛿𝑣a
𝛿𝑣b

]︂
, 𝑋 =

[︂
𝑋A
𝑋B

]︂
, 𝛿𝑋 =

[︂
𝛿𝑋A
𝛿𝑋B

]︂
, (5.56)

with the defined dimensions {𝑣a, 𝛿𝑣a} ∈ R𝑛a , {𝑣b, 𝛿𝑣b} ∈ R𝑛b , {𝑋A, 𝛿𝑋A} ∈ R𝑛A and
{𝑋B, 𝛿𝑋B} ∈ R𝑛B . As a consequence, a similar partitioning holds true for the physical
residual vector 𝑅 from Eq. (5.46) as well as for its variation 𝑅′ from Eq. (5.50)

𝑅(𝑣 ,𝑋;𝜂) =

[︃
𝑅a(𝑣a, 𝑣b,𝑋A,𝑋B;𝜂)

𝑅b(𝑣a, 𝑣b,𝑋A,𝑋B;𝜂)

]︃
and 𝑅′ =

[︃
𝑅′

a

𝑅′
b

]︃
=

[︃
(𝑅a)′𝑣 + (𝑅a)′𝑋
(𝑅b)′𝑣 + (𝑅b)′𝑋

]︃
, (5.57)
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with the dimensions
{︀
𝑅a,𝑅

′
a
}︀
∈ R𝑛a ,

{︀
𝑅b,𝑅

′
b
}︀
∈ R𝑛b . Here, the partial variations 𝑅′

a
and 𝑅′

b of the partitioned residual 𝑅, i.e. of 𝑅a and 𝑅b, have to be determined with
respect to the partitioned state 𝑣a, 𝑣b and with respect to the partitioned design 𝑋A,𝑋B.
The explicit terms can be outlined as

𝑅′
𝑣 =

[︃
(𝑅a)′𝑣

(𝑅b)′𝑣

]︃
=

[︂
𝐾aa 𝐾ab
𝐾ba 𝐾bb

]︂ [︂
𝛿𝑣a
𝛿𝑣b

]︂
, 𝑅′

𝑋 =

[︃
(𝑅a)′𝑋
(𝑅b)′𝑋

]︃
=

[︂
𝑃 aA 𝑃 aB
𝑃 bA 𝑃 bB

]︂ [︂
𝛿𝑋A
𝛿𝑋B

]︂
, (5.58)

and therefore, the partitioned explicit representation of Eq. (5.50) is of the form

𝑅′ = 𝐾𝛿𝑣 + 𝑃 𝛿𝑋 =

[︂
𝐾aa 𝐾ab
𝐾ba 𝐾bb

]︂ [︂
𝛿𝑣a
𝛿𝑣b

]︂
+

[︂
𝑃 aA 𝑃 aB
𝑃 bA 𝑃 bB

]︂ [︂
𝛿𝑋A
𝛿𝑋B

]︂
= 0, (5.59)

with nodal coordinates 𝑋 of the finite element nodes as design variables, as explained in
Section 3.4. The resulting dimensions of the obtained submatrices can be specified for the
stiffness matrix and also for the pseudo load matrix by

𝐾aa ∈ R𝑛a×𝑛a , 𝐾ab ∈ R𝑛a×𝑛b , 𝐾ba ∈ R𝑛b×𝑛a , 𝐾bb ∈ R𝑛b×𝑛b ,

𝑃 aA ∈ R𝑛a×𝑛A , 𝑃 aB ∈ R𝑛a×𝑛B , 𝑃 bA ∈ R𝑛b×𝑛A , 𝑃 bB ∈ R𝑛b×𝑛B .
(5.60)

According to explained relations, Eq. (5.59) can be rearranged and allows the explicit
computation of the sensitivity of the state from Eq. (5.51)

𝛿𝑣a = −𝐾−1
aa
[︀
𝑃 aA 𝑃 aB

]︀ [︂𝛿𝑋A
𝛿𝑋B

]︂
= −𝐾−1

aa 𝑃 a𝛿𝑋 = 𝑆a𝛿𝑋. (5.61)

With 𝑃 a =
[︀
𝑃 aA 𝑃 aB

]︀
, the resulting quantity 𝑆a = −𝐾−1

aa 𝑃 a contains the sensitivity
information of the state variable in the inner domain 𝒦 and on the Neumann boundary
𝜕𝒦N. Compared to Eq. (5.51) it can be termed reduced sensitivity matrix. The part (·)b
in the overall sensitivity matrix 𝑆, i.e. 𝑆b, vanishes due to the fact that the boundary
conditions for the displacements 𝑣b on the Dirichlet boundary 𝜕𝒦D are fulfilled strongly
and therefore, their variations 𝛿𝑣b vanish. The submatrices of the sensitivity matrix

𝑆 =

[︂
𝑆a
𝑆b

]︂
=

⎡⎢⎢⎣
d𝑣a

d𝑋
d𝑣b

d𝑋

⎤⎥⎥⎦ (5.62)

have the dimensions 𝑆a ∈ R𝑛a×𝑛𝑋 and 𝑆b ∈ R𝑛b×𝑛𝑋 . Here, 𝑛𝑋 = (𝑛A + 𝑛B) represents
the overall number of possible design parameters, which corresponds to the overall number
of nodal coordinates of the finite element mesh.
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5.6 Finite element approximation and explicit formulations

This section focusses on some remarkable details of the numerical implementation. The
target is to obtain discrete relations for the introduced residual and tangent forms. So far,
relations for residual and tangent forms in terms of the Green-Lagrange strain tensor E
and the symmetric second Piola-Kirchhoff stress tensor S are well known and established
in literature, see especially [99] for a detailed explanations. Additionally, an alternative
formulation for the residual and tangent forms in terms of the deformation gradient F
and the first Piola-Kirchhoff stress tensor P is presented and is used within the scope
of deformation driven schemes for numerical homogenisation, presented in Chapter 4.
Without going into detail, but referring the well known and standard text books on FEM
like [20, 28, 168, 181, 182], the approximation of state variables 𝑣ℎ and design parameters
𝑋ℎ follows the isoparamteric concept within the finite element method. Therefore, both
quantities are approximated using same shape functions 𝑁𝑖, which are defined on a fixed
parameter space with coordinates 𝜉, i.e. 𝑁𝑖(𝜉). The variations 𝛿𝑣ℎ, 𝛿𝑋ℎ as well as the
test functions 𝜂ℎ are also approximated using shape functions 𝑁𝑖 in accordance to the
classical Bubnov-Galerkin technique. In all subsequent investigations and compilations
the two-dimensional case is considered, but the extension to the third dimension is
straightforward.

Approximations of all mentioned quantities in every element have the same structure
and therefore, a general rule for any arbitrary variable 𝑎 can be introduced

𝑎𝑒
ℎ =

𝑛𝑛∑︁
𝑖=1

𝑎𝑖 𝑁𝑖, with 𝑎𝑖 =

[︂
a𝑖
1

a𝑖
2

]︂
. (5.63)

In this case, 𝑎𝑒
ℎ is the approximation of a continuous variable 𝑎 using the discrete values

𝑎𝑖 and the value of the shape function 𝑁𝑖, both at node 𝑖. The number of nodes per
element is indicated by 𝑛𝑛. The approximation 𝑎𝑖

ℎ can be used for any of the following
variables {𝑣𝑒

ℎ,𝑋
𝑒
ℎ, 𝛿𝑣

𝑒
ℎ, 𝛿𝑋

𝑒
ℎ,𝜂

𝑒
ℎ}. The coefficients of the column matrix 𝑎𝑖 then can be

replaced by any discrete parameter {𝑣 𝑖,𝑋𝑖, 𝛿𝑣 𝑖, 𝛿𝑋𝑖,𝜂𝑖}. A similar rule can be stated for
gradient and divergence operators in the referential configuration, i.e. the gradient or
divergence of any arbitrary variable 𝑎 has the form

Grad𝑎𝑒
ℎ =

𝑛𝑛∑︁
𝑖=1

𝑎𝑖 𝐿
𝑇
𝑖 and Div𝑎𝑒

ℎ =
𝑛𝑛∑︁
𝑖=1

𝐿𝑇𝑖 𝑎𝑖, (5.64)

with 𝐿𝑖 being a vector with the gradient of the shape function 𝑁𝑖, i.e.

𝐿𝑖 := Grad𝑁𝑖 =

[︂
𝑁𝑖,1

𝑁𝑖,2

]︂
. (5.65)

With the Voigt notation introduced in Section 2.1 at hand, non-symmetric and symmetric
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strain measures can be obtained in their vector representation, i.e.

Deformation gradient: 𝐹 =

[︂
F11 F12

F21 F22

]︂
, 𝐹 =

[︀
F11 F22 F12 F22

]︀𝑇
,

Green-Lagrange strain: 𝐸 =

[︂
E11 E12

E21 E22

]︂
, 𝐸 =

[︀
E11 E22 2E12

]︀𝑇
.

(5.66)

After evaluation of constitutive equations, the resulting stresses can also be transformed
to their vector representation, and therefore one obtains

1. Piola-Kirchhoff stress: 𝑃 K =

[︂
P11 P12

P21 P22

]︂
, 𝑃 K =

[︀
P11 P22 P12 P22

]︀𝑇
,

2. Piola-Kirchhoff stress: 𝑆K =

[︂
S11 S12

S21 S22

]︂
, 𝑆K =

[︀
S11 S22 S12

]︀𝑇
.

(5.67)

In the following, the approximation of variations of strain measures is the last relation
which is necessary for final approximations of residual and tangent forms. In [99] the author
introduced a general approximation for variations of symmetric strain measures using a
description with a general form of B-matrices, which can be connected to descriptions in
known standard FEM approximations, i.e. the variation of an arbitrary tensor T with
respect to a variable 𝑣 and some tensor A(𝑣) of the form

T′
𝑣(𝑣, 𝛿𝑣) =

1

2

[︁
Grad 𝛿𝑣𝑇A + A𝑇 Grad 𝛿𝑣

]︁
= sym(A𝑇 Grad 𝛿𝑣) (5.68)

can be approximated by

𝑇 ′
𝑣(𝑣ℎ, 𝛿𝑣ℎ) =

⎡⎣ (𝑇 ′
𝑣)11

(𝑇 ′
𝑣)22

2(𝑇 ′
𝑣)12

⎤⎦ =
𝑛𝑛∑︁
𝑖=1

𝐵*𝑖𝛿𝑣 𝑖, with 𝛿𝑣 𝑖 =

[︂
𝛿v𝑖1
𝛿v𝑖2

]︂
, (5.69)

using the introduced Voigt notation for symmetric strain measures. Here, the introduced
matrix 𝐵*𝑖 is of general form

𝐵*𝑖 =

⎡⎣ A11
* 𝑁𝑖,1 A21

* 𝑁𝑖,1

A12
* 𝑁𝑖,1 A22

* 𝑁𝑖,1

A11
* 𝑁𝑖,2 + A12

* 𝑁𝑖,1 A21
* 𝑁𝑖,2 + A22

* 𝑁𝑖,1

⎤⎦ , (5.70)

where * is a placeholder for the variation in request, e.g the obtained B-matrices for
variations with respect to the state read 𝐵𝑣𝑖 and the obtained B-matrices for variations
with respect to design read 𝐵𝑠𝑖. The components A𝑖𝑗

* in 𝐵*𝑖, with (𝑖, 𝑗 = 1, 2), are
components of a general matrix 𝐴*, which varies in terms of seeked variations and will be
specified for explicit variations. This description can be applied to the variation of the
Green-Lagrange strain tensor. The variation of E with respect to the state variable

E′
𝑣(𝑣, 𝛿𝑣) = sym(F𝑇 Grad 𝛿𝑣) = sym(A𝑇

𝑣 Grad 𝛿𝑣) (5.71)
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with A𝑣 = F can be approximated by

𝐸′
𝑣(𝑣ℎ, 𝛿𝑣ℎ) =

⎡⎣ (𝐸′
𝑣)11

(𝐸′
𝑣)22

2(𝐸′
𝑣)12

⎤⎦ =
𝑛𝑛∑︁
𝑖=1

𝐵𝑣𝑖𝛿𝑣 𝑖 (5.72)

and the variation of E with respect to the design parameter

E′
𝑋(𝑣, 𝛿𝑋) = −sym(F𝑇 Grad𝑣 Grad 𝛿𝑋) = sym(A𝑇

𝑠 Grad 𝛿𝑋) (5.73)

with A𝑠 = −F𝑇 Grad𝑣 can be approximated by

𝐸′
𝑠(𝑣ℎ, 𝛿𝑋ℎ) =

⎡⎣ (𝐸′
𝑠)11

(𝐸′
𝑠)22

2(𝐸′
𝑠)12

⎤⎦ =
𝑛𝑛∑︁
𝑖=1

𝐵𝑠𝑖𝛿𝑋𝑖. (5.74)

The introduced notation is also applicable to second mixed variations of the Green-Lagrange
strain tensor, i.e. the variations

E′′
𝑣𝑣(𝑣, 𝛿𝑣, 𝛥𝑣) = sym(Grad𝛥𝑣𝑇 Grad 𝛿𝑣) = sym(A𝑇

𝑣𝑣 Grad 𝛿𝑣)

E′′
𝑣𝑠(𝑣, 𝛿𝑣, 𝛿𝑋) = −sym(Grad 𝛿𝑋𝑇H𝑇 Grad 𝛿𝑣 + F𝑇 Grad 𝛿𝑣 Grad 𝛿𝑋)

= sym(A𝑇
𝑣𝑠 Grad 𝛿𝑋)

(5.75)

with A𝑣𝑣 = Grad𝛥𝑣 and A𝑣𝑠 = −(H𝑇 Grad 𝛿𝑣 + F𝑇 Grad 𝛿𝑣) are approximated by

𝐸′
𝑣𝑣(𝑣ℎ, 𝛿𝑣ℎ) =

𝑛𝑛∑︁
𝑖=1

𝐵𝑣𝑣𝑖𝛿𝑣 𝑖, and 𝐸′
𝑣𝑠(𝑣ℎ, 𝛿𝑋ℎ) =

𝑛𝑛∑︁
𝑖=1

𝐵𝑣𝑠𝑖𝛿𝑋𝑖. (5.76)

A simple modification allows to use this notation also for variations of non-symmetric
measures, for instance for the variation of the deformation gradient. Therefore, the
introduced B-matrix has the form

𝐵*𝑖 =

⎡⎢⎢⎣
A11𝑁𝑖,1 A21𝑁𝑖,1

A12𝑁𝑖,1 A22𝑁𝑖,1

A11𝑁𝑖,2 A21𝑁𝑖,2

A12𝑁𝑖,1 A22𝑁𝑖,1

⎤⎥⎥⎦ . (5.77)

The variation of the deformation gradient with respect to the state variable

F′
𝑣 = Grad 𝛿𝑣 = A𝑣 Grad 𝛿𝑣, and A𝑣 = I, (5.78)

is approximated using the approximation for gradients

𝐹 ′
𝑣(𝑣ℎ, 𝛿𝑣ℎ) =

𝑛𝑛∑︁
𝑖=1

𝑣 𝑖𝐿
𝑇
𝑖 =

𝑛𝑛∑︁
𝑖=1

𝐵𝑣𝑖𝑣 𝑖. (5.79)
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The variation of the deformation gradient with respect to the design parameter

F′
𝑠 = −Grad𝑣 Grad 𝛿𝑋 = A𝑠 Grad 𝛿𝑋 (5.80)

with A𝑠 = −Grad𝑣 can be approximated by

𝐹 ′
𝑠(𝑣ℎ, 𝛿𝑋ℎ) =

𝑛𝑛∑︁
𝑖=1

𝐵𝑠𝑖𝛿𝑋𝑖. (5.81)

The following tangent forms also require the approximation of the second mixed variation
of the deformation gradient, i.e. the approximation

F′′
𝑣𝑠 = −Grad 𝛿𝑣 Grad 𝛿𝑋 = A𝑣𝑠 Grad 𝛿𝑋. (5.82)

With A𝑣𝑠 = −Grad 𝛿𝑣 the finite element approximation reads

𝐹 ′′
𝑣𝑠(𝛿𝑣ℎ, 𝛿𝑋ℎ) =

𝑛𝑛∑︁
𝑖=1

𝐵𝑣𝑠𝑖𝛿𝑋𝑖. (5.83)

Finally, the matrix representation of elasticity tensors is necessary for the full numerical
description of required tangent forms. The fourth order elasticity tensors C and A are
rearranged to the matrix forms 𝐶 and 𝐴, respectively, and read

𝐶 =

⎡⎣C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

⎤⎦ and 𝐴 =

⎡⎢⎢⎣
A1111 A1122 A1112 A1121

A2211 A2222 A2212 A2221

A1211 A1222 A1212 A1221

A2111 A2122 A2112 A2121

⎤⎥⎥⎦ . (5.84)

At this point, all necessary relations and approximations are available for the overall
approximation of residual and tangent forms. After the discretisation procedure on the
element level, the assembly process over all elements 𝑛𝑒𝑙 has to be performed and is
indicated by the operator

⋃︀
. The approximation of the physical residual in terms of the

Green-Lagrange strain tensor E and the corresponding second Piola-Kirchhoff tensor S as
well as in terms of the deformation gradient F and the first Piola-Kirchhoff tensor P has
then the following form

𝑅(𝑣ℎ,𝑋ℎ;𝜂ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

S : E′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉 − 𝐹 (𝑋𝑒

ℎ,𝜂
𝑒
ℎ)

=

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

P : F′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉 − 𝐹 (𝑋𝑒

ℎ,𝜂
𝑒
ℎ)

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝜂𝑇𝑖 𝑅
𝑒
𝑖 = 𝜂𝑇𝑅.

(5.85)

The tangent forms, i.e. the stiffness and the pseudo load operator 𝑘 and 𝑝, in terms of E



5.6 Finite element approximation and explicit formulations 59

and S or F and P, respectively, are given by

𝑘(𝑣ℎ,𝑋ℎ;𝜂ℎ,𝛿𝑣ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

E′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) : C : E′

𝑣(𝑣𝑒
ℎ, 𝛿𝑣

𝑒
ℎ) + S : E′′

𝑣𝑣(𝜂𝑒
ℎ, 𝛿𝑣

𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

F′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) : A : F′

𝑣(𝑣𝑒
ℎ, 𝛿𝑣

𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝐾
𝑒
𝑖𝑗𝛿𝑣 𝑖 = 𝜂𝑇𝐾𝛿𝑣 ,

(5.86)

𝑝(𝑣ℎ,𝑋ℎ;𝜂ℎ,𝛿𝑋ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

S : E′′
𝑣𝑠(𝑣

𝑒
ℎ,𝜂

𝑒
ℎ,𝛿𝑋

𝑒
ℎ) + E′

𝑣(𝑣𝑒
ℎ,𝜂

𝑒
ℎ) : C : E′

𝑠(𝑣
𝑒
ℎ,𝛿𝑋

𝑒
ℎ)

+ S : E′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) Div 𝛿𝑋𝑒

ℎ d𝑉 − 𝐹 ′
𝑠(𝑋

𝑒
ℎ;𝜂𝑒

ℎ, 𝛿𝑋
𝑒
ℎ)

=

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

P : F′′
𝑣𝑠(𝑣

𝑒
ℎ,𝜂

𝑒
ℎ,𝛿𝑋

𝑒
ℎ) + F′

𝑣(𝑣𝑒
ℎ,𝜂

𝑒
ℎ) : A : F′

𝑠(𝑣
𝑒
ℎ,𝛿𝑋

𝑒
ℎ)

+ P : F′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) Div 𝛿𝑋𝑒

ℎ d𝑉 − 𝐹 ′
𝑠(𝑋

𝑒
ℎ;𝜂𝑒

ℎ, 𝛿𝑋
𝑒
ℎ)

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝑃
𝑒
𝑖𝑗𝛿𝑋𝑖 = 𝜂𝑇𝑃 𝛿𝑋.

(5.87)

The terms S′
𝑣(𝑣ℎ, 𝛿𝑣ℎ) = C : E′

𝑣(𝑣𝑒
ℎ, 𝛿𝑣

𝑒
ℎ) and P′

𝑣(𝑣ℎ, 𝛿𝑣ℎ) = A : F′
𝑣(𝑣𝑒

ℎ, 𝛿𝑣
𝑒
ℎ) can be

identified as variations of stresses S and P with respect to state variable 𝑣, respectively,
and the terms S′

𝑣(𝑣ℎ, 𝛿𝑋ℎ) = C : E′
𝑠(𝑣

𝑒
ℎ,𝛿𝑋

𝑒
ℎ) and S′

𝑣(𝑣ℎ, 𝛿𝑋ℎ) = A : F′
𝑠(𝑣

𝑒
ℎ,𝛿𝑋

𝑒
ℎ) are the

variations of stresses S and P with respect to design parameters 𝑋. The design variation
of the external part of the residual 𝑅ext = 𝐹 (𝑋;𝜂) in its continuous form reads

𝐹 ′
𝑠(𝑋;𝜂, 𝛿𝑋) =

ˆ
𝒦𝑒

𝑏 · 𝜂 Div 𝛿𝑋 d𝑉. (5.88)

Finally, using the introduced approximations for strain and stress measures and their
linearised forms, residual and tangent forms on element level can be specified with respect
to the appropriate B-matrix for symmetric or non-symmetric quantities. The nodal
contribution of the discrete residual vector 𝑅𝑒

𝑖 in element 𝑒 at node 𝑖 is realised by

𝑅𝑒
𝑖 =

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖 𝑆K d𝑉 − 𝐹 𝑒

𝑖 (𝑋) =

ˆ
𝒦𝑒

𝑃 K𝐿𝑖 d𝑉 − 𝐹 𝑒
𝑖 (𝑋). (5.89)

External loads 𝐹 (𝑋𝑒
ℎ;𝜂𝑒

ℎ) = 𝑅ext(𝑋𝑒
ℎ;𝜂𝑒

ℎ) = 𝐹 𝑒
𝑖 (𝑋) in terms of physical body forces read

𝐹 𝑒
𝑖 (𝑋) =

ˆ
𝒦𝑒

𝑁𝑖𝑏 d𝑉. (5.90)

For notational simplicity, the external part of the virtual work is assumed to be deformation
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independent and therefore, terms containing external stress loads are omitted. The nodal
contributions to the element stiffness matrices 𝐾𝑒 in terms of constitutive matrices 𝐶 or
𝐴, respectively, are discretised by

𝐾𝑒
𝑖𝑗 =

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖𝐶𝐵𝑣𝑗 + 𝐿𝑇𝑖 𝑆K𝐿𝑗𝐼 d𝑉 =

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖𝐴𝐵𝑣𝑗 d𝑉. (5.91)

The nodal contributions to the element pseudo load matrices 𝑃 𝑒 in terms of constitutive
matrices 𝐶 or 𝐴, respectively, and in terms of the design variation of the external part of
the residual can be computed from

𝑃 𝑒
𝑖𝑗 =

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖𝐶𝐵𝑠𝑗 − 𝐿𝑇𝑖 𝑆K𝐿𝑗 Grad 𝑣 − 𝐹𝑆K𝐿𝑗𝐿

𝑇
𝑖 + 𝐹𝑆K𝐿𝑖𝐿

𝑇
𝑗 d𝑉 − (𝐹 ′

𝑋)𝑖𝑗(𝑋)

=

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖𝐴𝐵𝑠𝑗 − 𝑃 K𝐿𝑗𝐿

𝑇
𝑖 + 𝑃 K𝐿𝑖𝐿

𝑇
𝑗 d𝑉 − (𝐹 ′

𝑋)𝑖𝑗(𝑋).

(5.92)

For the approximation of the variation of the external part of the residual, i.e. the
approximation of (𝐹 ′

𝑋)𝑖𝑗 , the approximation for divergence operators is referred and yields

(𝐹 ′
𝑋)𝑖𝑗(𝑋) =

ˆ
𝒦𝑒

𝑁𝑖𝑏𝐿
𝑇
𝑗 d𝑉. (5.93)

Remark 5.6 (Structure of stiffness and pseudo load operator) Referring the in-
troduced discretisation it is evident that the structures of introduced stiffness and pseudo
load operators are similar. Therefore, several quantities for the stiffness operator on
element level can be referred to for the implementation of the pseudo load operator. In
comparison, the required effort for numerical implementation as well as for the numerical
performance is similar for both operators.

5.7 Sensitivity relations for selected objectives and
constraints

In structural optimisation functions and quantities can be investigated in terms of min-
imisation, maximisation or adaptation of applications to special requirements. In this
work only the minimisation of the compliance under volume constraints or minimisation of
volume under stress constraints or constraints on reaction forces on the Dirichlet boundary
are considered. The necessary relations are outlined in subsequent sections.
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5.7.1 Volume

The volume of a given domain 𝒦 is characterised by the domain itself and therefore, by
its design description and is given by

𝑉 =

ˆ
𝒦

d𝑉. (5.94)

The variation of the volume with respect to design parameters can be obtained after
transformation into the local parameter space, variation of the Jacobian and final back-
transformation to the domain 𝒦, and therefore, the variation of 𝑉 reads

𝑉 ′ =

ˆ
ℛ

𝐽 ′
𝐾 d𝑉𝜃 =

ˆ
𝒦

Div 𝛿𝑋 d𝑉. (5.95)

Within the numerical realisation, the volume is computed as a sum of all element volumes
of the underlying FEM mesh, i.e.

𝑉ℎ =

𝑛𝑒𝑙∑︁
𝑒=1

𝑉 𝑒 =

𝑛𝑒𝑙∑︁
𝑒=1

ˆ
𝒦𝑒

d𝑉. (5.96)

The approximation of the variation of the volume can be obtained from the general
approximation of divergence operators and the assembly of all elements of the underlying
FEM mesh, i.e.

𝑉 ′
ℎ =

𝑛𝑒𝑙⋃︁
𝑒=1

(𝑉 𝑒ℎ)′ =

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

ˆ
𝒦𝑒

𝐿𝑇𝑖 𝛿𝑋𝑖 d𝑉. (5.97)

5.7.2 Energy and compliance

Maximisation of structural stiffness is an often used target within applications from civil
and mechanical engineering. A suitable objective function for this task is the potential
energy of given system due to the fact that energy minimisation can be connected to
maximisation of structural stiffness. The explicit energy terms, defined by internal and
external parts, are given in Eq. (5.19) and Eq. (5.26), respectively. The overall value of
the total potential energy can be evaluated from

𝛱(𝑣, 𝑠) = 𝛱 int(𝑣, 𝑠)−𝛱ext(𝑣, 𝑠). (5.98)

In many cases, the potential energy is replaced by the end- or mean structural compliance,
which is related to the potential energy 𝛱 by a certain factor

𝐶(𝑣, 𝑠) := −2𝛱. (5.99)

The authors in [31, 33, 56] tackled several optimisation problems in terms of linear and
non-linear elasticity and propose strategies for the stiffness design of mechanical structures
undergoing large displacements and geometric and material non-linearities. Studies for
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several types of elastic potentials within topology optimisation of hyperelastic bodies are
discussed and compared in [81] in detail.

Overall, the maximum stiffness of a structure can be achieved by the minimisation of the
compliance functional 𝐶 and modifications of selected design parameters. Within gradient
based optimisation techniques variations with respect to state and design parameters are
necessary, i.e. the total variation

𝐶 ′(𝑣, 𝑠) = 𝐶 ′
𝑣 + 𝐶 ′

𝑠 (5.100)

contains the partial variations

𝐶 ′
𝑣 = −2𝛱 ′

𝑣 = −2𝑅 with 𝑅 in terms of 𝑅int and 𝑅ext,

𝐶 ′
𝑠 = −2𝛱 ′

𝑠 = −2𝐺 with 𝐺 in terms of 𝐺int and 𝐺ext.
(5.101)

The seeked equilibrium state of structural systems and the corresponding solution 𝑣 allow
negligence of the partial variation with respect to the state parameter 𝑣. In the case, that
the residual vanishes, i.e. 𝑅 = 0 and thus 𝐶 ′

𝑣 = 0, the total variation of the compliance
reduces to

𝐶 ′(𝑣, 𝑠) = 𝐶 ′
𝑠 = −2𝐺. (5.102)

The internal part of the referential residual 𝐺 is already given in Eq. (5.25) and reads

𝐺int =

ˆ
𝒦
−Grad𝑣𝑇P : Grad 𝛿𝑠 + 𝑊 I : Grad 𝛿𝑠 d𝑉

=

ˆ
𝒦

S : E′
𝑠(𝑣,𝛿𝑠) + 𝑊 I : Grad 𝛿𝑠 d𝑉.

(5.103)

The external part is missing and has to be specified. It can be deduced from the formulation
of the external part of the energy in Eq. (5.26) and yields

𝐺ext =

ˆ
𝒦

(𝑏 · 𝑣) Div 𝛿𝑋 d𝑉 =

ˆ
𝒦

(𝑏 · 𝑣) I : Grad 𝛿𝑋 d𝑉. (5.104)

The final finite element approximation is given by

𝐺(𝑣ℎ,𝑋ℎ;𝜂ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝜂𝑇𝑖 𝐺
𝑒
𝑖 = 𝜂𝑇𝐺 (5.105)

with the nodal contribution 𝑖 on element level

𝐺𝑒
𝑖 =

ˆ
𝒦𝑒

𝐵𝑇
𝑠𝑖 𝑃 K + 𝑊 𝐼𝐿𝑖 d𝑉 −

ˆ
𝒦𝑒

𝑁𝑖𝑣
𝑇
𝑖 𝑏 𝐼𝐿𝑖 d𝑉

=

ˆ
𝒦𝑒

𝐵𝑇
𝑠𝑖 𝑆K + 𝑊 𝐼𝐿𝑖 d𝑉 −

ˆ
𝒦𝑒

𝑁𝑖𝑣
𝑇
𝑖 𝑏 𝐼𝐿𝑖 d𝑉.

(5.106)
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5.7.3 Physical reaction forces

In some cases, it is interesting to analyse support areas of given systems to get detailed
information about the interaction between the considered structural parts and the ground.
The profile of distributed forces, tractions or stresses can be investigated in order to
make predictions about mechanical behaviour or even about possible failure. Using
some advanced information it is also possible to improve and optimise several kinds of
support areas. For instance, methods for simultaneous design of structures and supports
using techniques from topology optimisation were proposed by [32]. Here, supports are
introduced as a new subset of design variables within the optimisation process for minimum
compliance and mechanism design with the target to find the optimal location of supports.
A similar approach can be found in [180]. Studies in [115] focused on identification of
optimal locations of lateral spring supports in terms of their stiffness and position as design
variables for problems of maximum buckling load of Bernoulli-Euler columns. Aspects
concerning optimal design of supports for beam and frame structures in general were
reported by [27]. Several influences, e.g. number of supports, their position and stiffness, on
total structural cost were investigated and, in a similar fashion, [26] demonstrated a method
for the determination of the overall number, position and generalised forces of actuators
in smart structures. The shape design of rectangular support blocks and foundations of
machines in order to reduce mass is tackled in [137]. Their studies focused on external
dynamic forces and loads coming from the soil. Introduced constraints are horizontal
and vertical amplitudes of forces and stresses on the soil ground. The investigations in
[147] can be put in a similar context. The authors presented methods for optimisation of
boundary conditions subjected to maximum fundamental frequency of vibrating structures
in order to find optimal locations. A variational formulation and the approach of material
derivatives is the foundation in their gradient-based optimisation techniques. Another field
of applications is discussed in [35], where an algorithm is proposed for shape optimisation
of contact problems with desired contact traction distribution on specified contact surfaces
or areas. It should be mentioned that the quantity of interest is the distribution of
forces or tractions and therefore, it can be related to the presented sensitivity analysis
of reaction forces. In contrast to the topic of this contribution, the influence of the
position of externally applied constant loads or forces on structural response such as
nodal displacements, mean compliance and stress can be investigated and is done in [163].
The common aspect is, that in both cases sensitivity of forces plays the central role, on
one hand on the active side (applied force) and on the other hand on the passive side
(reaction force). The author in [179] investigated shape design sensitivities with respect to
kinematical boundaries, i.e. influence on structural response due to modification on the
Dirichlet boundary 𝜕𝒦D (cf. Fig. 5.2). Although the contribution has a different topic
and intention, the support area is the domain of interest in both cases, i.e. in terms of
kinematical boundaries and in terms of sensitivity analysis of reaction forces.

The purpose of this study is to describe and examine a sensitivity relation for reaction
forces based on both tangent operators and the sensitivity relation for the state. The
obtained gradient information can be used to set up optimisation problems and to find
optimal designs with respect to the distribution of reaction forces. The overall amplitude
of maximum reaction forces can be controlled and adjusted in combination with several
objective functionals, e.g. compliance or volume. The presented approach is not comparable
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to previously referred works directly, but it can be seen as an extension to the variety of
available methods for analysis and design of support areas. An advantage is that derived
relations can be transferred to optimisation problems on multiple scales, where effective
quantities of representative volume elements on the microscale are formulated in terms
of tractions or forces on the boundary, see Chapter 4 and [101, 103, 130] on theoretical
aspects and explanations on multiscale methods.

For the derivation of the sensitivity relation for the physical reaction forces only parts
of the discrete physical residual from Eq. (5.46) have to be considered. Therefore, some
arrangements are necessary in advance. The discrete relations presented in Section 5.4
have to be partitioned in internal and boundary parameters as specified in the following. In
structural analysis, equilibrium is fulfilled for a state variable 𝑣 and a fixed design 𝑋 if the
residual Eq. (5.28) and therefore its discretised form in Eq. (5.46) vanishes. Referring the
partitioned residual from Eq. (5.57) and the division in internal and external contributions
𝑅int(𝑣 ,𝑋;𝜂) and 𝑅ext(𝑣 ,𝑋;𝜂) of the residual forces one obtains

𝑅(𝑣 ,𝑋;𝜂) = 𝑅int(𝑣 ,𝑋;𝜂)−𝑅ext(𝑣 ,𝑋;𝜂) =

[︃
𝑅int

a

𝑅int
b

]︃
−

[︃
𝑅ext

a

𝑅ext
b

]︃
= 0. (5.107)

The dimensions of the residual in Eq. (5.107) correspond to already discussed quantities{︀
𝑅,𝑅int,𝑅ext}︀ ∈ R𝑛𝑣 and therefore

{︀
𝑅int

a ,𝑅ext
a
}︀
∈ R𝑛a ,

{︀
𝑅int

b ,𝑅ext
b
}︀
∈ R𝑛b .

Here, 𝑛𝑣 = 𝑛a +𝑛b is the overall number of state parameters, which are connected with the
inner domain with 𝑛a state parameters and the boundary domain with 𝑛b state parameters.
In the solution point 𝑣 , reaction forces or external forces on the Dirichlet boundary 𝜕𝒦D
for a given system are equal to their internal counterparts and can be computed using

𝑅ext
b (𝑣 ,𝑋;𝜂) = 𝑅int

b (𝑣 ,𝑋;𝜂). (5.108)

Note that the relation given in Eq. (5.108) is only valid for fully converged solutions 𝑣 .
Otherwise, errors are unavoidable and have a significant influence on following sensitivity
relations. For the sensitivity relation of reaction forces, parts of already discussed sensitivity
relations in Chapter 5 for continuous, and especially in Section 5.4 for discrete formulations,
can be considered. The variation of an arbitrary function 𝑓 is presented in Eq. (5.33)
and Eq. (5.52), respectively. This principle can be transferred to the variation of reaction
forces. Hence, variations with respect to the state and design are necessary(︀

𝑅ext
b
)︀′

=
(︀
𝑅int

b
)︀′

=
(︀
𝑅int

b
)︀′
𝑣

+
(︀
𝑅int

b
)︀′
𝑋
. (5.109)

In contrast to the variation of the overall residual, here only variations of the internal
part 𝑅int are necessary. For that reason, the investigation of the sensitivity relation for
the residual 𝑅 in terms of internal and external parts 𝑅int and 𝑅ext is conducted in the
following. The total variation of the partitioned residual in Eq. (5.107) reads

𝑅′ =
(︀
𝑅int(𝑣 ,𝑋;𝜂)−𝑅ext(𝑣 ,𝑋;𝜂)

)︀′
=
(︀
𝑅int)︀′

𝑣
−
(︀
𝑅ext)︀′

𝑣
+
(︀
𝑅int)︀′

𝑋
−
(︀
𝑅ext)︀′

𝑋

=
(︀
𝐾 int −𝐾ext)︀ 𝛿𝑣 +

(︀
𝑃 int − 𝑃 ext)︀ 𝛿𝑋. (5.110)



5.7 Sensitivity relations for selected objectives and constraints 65

Using the partial variations of 𝑅 with respect to the state variable 𝑣 =
[︀
𝑣a 𝑣b

]︀𝑇 , cf.
Eq. (5.56), and with respect to design 𝑋 =

[︀
𝑋a 𝑋b

]︀𝑇 , cf. Eq. (5.56),

𝑅′
𝑣 =

(︀
𝑅int(𝑣 ,𝑋;𝜂)

)︀′
𝑣
−
(︀
𝑅ext(𝑣 ,𝑋;𝜂)

)︀′
𝑣

=

[︃(︀
𝑅int

a
)︀′
𝑣
−
(︀
𝑅ext

a
)︀′
𝑣(︀
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b
)︀′
𝑣
−
(︀
𝑅ext

b
)︀′
𝑣

]︃
=
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𝐾 int

aa 𝐾 int
ab

𝐾 int
ba 𝐾 int

bb

]︃
−

[︃
𝐾ext

aa 𝐾ext
ab

𝐾ext
ba 𝐾ext

bb

]︃}︃[︂
𝛿𝑣a
𝛿𝑣b

]︂
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−
(︀
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=

{︃[︃
𝑃 int

aA 𝑃 int
aB

𝑃 int
bA 𝑃 int

bB

]︃
−

[︃
𝑃 ext

aA 𝑃 ext
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𝑃 ext
bA 𝑃 ext

bB

]︃}︃[︂
𝛿𝑋A
𝛿𝑋B

]︂
,

(5.111)

the linearised form of the total discrete variation of the residual 𝑅 can be represented by

𝑅′ =
(︀
𝐾 int −𝐾ext)︀ 𝛿𝑣 +

(︀
𝑃 int − 𝑃 ext)︀ 𝛿𝑋. (5.112)

In Eq. (5.111) the partitioned stiffness matrix 𝐾 is equal to the stiffness matrix introduced
in Eq. (5.47) and therefore it is also equal to Eq. (5.58). The derivation of the stiffness
matrix based on the internal and external part of the residual, as presented in Eq. (5.111),
results in two contributions. On one hand, 𝐾 int contains the material and geometrical
contribution to the stiffness, known from the variation of the internal part of the residual.
On the other hand, 𝐾ext is the so-called load correction matrix and results from the
variation of the external part of the residual. Initially, this term is proposed by [114] and
[68] and has to be considered if external forces depend on the deformation themselves.
Further explanation on this topic, on theoretical background and numerical realisation can
be found in [134, 135, 144, 168] and [181, 182]. The overall stiffness matrix 𝐾 = 𝐾 int−𝐾ext

from Eq. (5.47) is subdivided in Eq. (5.111) in following submatrices

𝐾 int =

[︃
𝐾 int

aA 𝐾 int
aB

𝐾 int
bA 𝐾 int

bB

]︃
,𝐾ext =

[︃
𝐾ext

aA 𝐾ext
aB

𝐾ext
bA 𝐾ext

bB

]︃
. (5.113)

The dimensions of the resulting submatrices of the stiffness matrix 𝐾 finally result to{︀
𝐾,𝐾 int,𝐾ext}︀ ∈ R𝑛𝑣×𝑛𝑣 and therefore{︀
𝐾 int

aa,𝐾
ext
aa
}︀
∈ R𝑛a×𝑛a ,

{︀
𝐾 int

ab,𝐾
ext
ab
}︀
∈ R𝑛a×𝑛b ,{︀

𝐾 int
ba,𝐾

ext
ba
}︀
∈ R𝑛b×𝑛a ,

{︀
𝐾 int

bb,𝐾
ext
bb
}︀
∈ R𝑛b×𝑛b .

(5.114)

Here, 𝑛𝑣 = 𝑛a + 𝑛b is the overall number of state parameters with 𝑛a state parameters in
the inner domain and with 𝑛b state parameters on the boundary.

In Eq. (5.112) the quantities 𝑃 int and 𝑃 ext represent internal and external contributions
to the overall pseudo load matrix 𝑃 = 𝑃 int − 𝑃 ext from Eq. (5.48) and are subdivided in
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Eq. (5.111) in following submatrices

𝑃 int =

[︃
𝑃 int

aA 𝑃 int
aB

𝑃 int
bA 𝑃 int

bB

]︃
,𝑃 ext =

[︃
𝑃 ext

aA 𝑃 ext
aB

𝑃 ext
bA 𝑃 ext

bB

]︃
. (5.115)

Dimensions of the resulting submatrices of the pseudo load matrix 𝑃 finally result to{︀
𝑃 ,𝑃 int,𝑃 ext}︀ ∈ R𝑛𝑣×𝑛𝑋 and therefore{︀
𝑃 int

aA,𝑃
ext
aA
}︀
∈ R𝑛a×𝑛A ,

{︀
𝑃 int

aB,𝑃
ext
aB
}︀
∈ R𝑛a×𝑛B ,{︀

𝑃 int
bA,𝑃

ext
bA
}︀
∈ R𝑛b×𝑛A ,

{︀
𝑃 int

bB,𝑃
ext
bB
}︀
∈ R𝑛b×𝑛B ,

(5.116)

with 𝑛𝑣 = 𝑛a + 𝑛b being the overall number of state parameters and 𝑛𝑋 = 𝑛A + 𝑛B being
the overall number of design parameters in accordance with Fig. 5.2.

With the obtained parts and submatrices, Eq. (5.109) for the sensitivity of reaction
forces continues finally to

(︀
𝑅ext

b
)︀′

= 𝐾 int
ba 𝛿𝑣a+

[︀
𝑃 int

bA 𝑃 int
bB
]︀ [︂𝛿𝑋A

𝛿𝑋B

]︂
= 𝐾 int

ba 𝛿𝑣a+𝑃 int
b 𝛿𝑋 =

[︀
𝐾 int

ba 𝑆a + 𝑃 int
b
]︀
𝛿𝑋 (5.117)

where the contributions to the pseudo load matrix are summarised in 𝑃 int
b =

[︀
𝑃 int

bA 𝑃 int
bB
]︀

and the relation from Eq. (5.61) for the sensitivity of the state variable 𝛿𝑣a is used.

Remarks on numerical implementation

The sensitivity relation in Eq. (5.117), particularly the quantity which corresponds to the
partial derivative of the external part of the residual on 𝜕𝒦D with respect to design

𝜕𝑅ext
b

𝜕𝑋
= 𝐾 int

ba 𝑆a + 𝑃 int
b , (5.118)

can be implemented into an existing framework for structural optimisation, e.g. they are
implemented and available in MAnO. The reaction forces 𝑅ext

b as well as their sensitivities(︀
𝑅ext

b
)︀′ can be used as objective or constraint functional within the posed optimisation

Problem 3.1 or Problem 3.2, respectively. The introduced sensitivity relation is valid for
a wide class of element formulations due to the fact that only evaluation of assembled
matrices 𝑅,𝐾 and 𝑃 on global system level is necessary. The computation of contributions
on the element level to global matrices can be organised internally for any triangular,
quadrilateral, tetrahedral or hexahedral element formulation with linear or quadratic shape
functions. The implemented element function has to provide required output quantities,
i.e. 𝑅𝑒,𝐾𝑒 and 𝑃 𝑒 as element contributions to assembled global matrices 𝑅,𝐾 and 𝑃
presented in Eq. (5.46), Eq. (5.47) and Eq. (5.48). Details on the explicit formulation for
𝑅, 𝐾 and 𝑃 of a two-dimensional displacement element in terms of symmetric quantities
like the Green-Lagrange strain tensor E, second Piola-Kirchhoff stress tensor S and the
resulting fourth order elasticity tensor C and its matrix representation 𝐶, are presented in
Section 5.3 and Section 5.4 and can also be found in [99], for instance.
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5.8 Numerical investigations on single scales

The intention of this section is to demonstrate the abilities of the sensitivity relations for
physical reaction forces introduced in Section 5.7. Obtained formulations are applied to
the following two situations

• structural optimisation of a macroscopic structure and

• structural optimisation of RVE-like domains,

both with single scale constitutive laws. Therefore, the numerical studies are simulations
on single scales without the application of any homogenisation technique. Special attention
is paid to the maximum amplitude of physical reaction forces on Dirichlet boundaries as
well as to their sensitivity information from Section 5.7.3. The latter is incorporated as a
constraint into the stated structural optimisation problems.

5.8.1 Structural optimisation of a cube-like structure of multi-material

In this example close attention is paid to the sensitivity analysis of physical reaction
forces, which are used as indicators for the design of support areas. This study is divided
into three parts. First, the influence of the choice of material parameters on the reaction
forces is examined for the compliance minimisation problem. Afterwards, computations
for compliance and volume minimisation with the reduction of the resulting maximum
amplitude of reaction forces to a certain prescribed maximum value using inequality
constraints follow. A brief discussion on performance and numerical accuracy is the last
part of this example.

A simple cube-like structure according to the sketch in Fig. 5.3 with the side length
A, loaded by a surface load on the top, fixed on the ground, and two different materials,
an outer shell material 𝐸s and a kernel material 𝐸k, is investigated. Due to symmetry,
the three dimensional cube can be reduced to the mechanical system and finite element
analysis model illustrated in Fig. 5.3.

𝑞

2A

A

𝐸k, 𝜈k

𝐸s, 𝜈s

Material:

x

y

constraint area
side constraints
design variables
CAGD parametersboundary

domain 𝜕𝒦D

2A

2A

Figure 5.3: Cube of multi-material: mechanical system, FE mesh, model parameters and
optimisation model (design variables and constraints area).
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Table 5.1: Cube of multi-material: model parameters.

length 𝐴 1.0

thickness 𝑡 0.10

load 𝑞 25.0

Young’s modulus 𝐸s 25000

𝐸k 𝛾· 𝐸s

Poisson’s ratio 𝜈s = 𝜈k 0.20

number of elements 𝑛𝑒𝑙𝑥 / 𝑛𝑒𝑙𝑦 20 / 40

The overall number of elements 𝑛𝑒𝑙 = 800 for the underling FE mesh results from the
choice of the number of elements in x- and y-direction (𝑛𝑒𝑙𝑥 = 20, 𝑛𝑒𝑙𝑦 = 40). For a pure
displacement and geometrically non-linear element formulation based on two displacement
degrees of freedom per node and Neo-Hookean constitutive law, the overall number of
degrees of freedom results to 𝑛𝑣 = 1722. All investigations are based on the model
parameters listed in Fig. 5.3. It also contains the underling optimisation model, where a
CAGD model with 16 control points assembling one Bézier patch is used for the geometry
description. The number of design parameters on the nodal basis (FE mesh) amounts
𝑛𝑋 = 1722 and on the geometry basis 𝑛𝑐𝑝 = 32. The final subset of design variables
used for optimisation counts 𝑛𝑠 = 7 design parameters and is reselected from the set of
parameters for the described geometry model. Remarks on the choice of design variables
and the differentiation between nodal and geometry design parameters are already given
in Section 3.4 and Section 3.3. Referring to the formulation of an optimisation problem in
Problem 3.1 or Problem 3.2, respectively, the discrete form of objectives and constraints
is specified in the following subsections. Here, only lower and upper side constraints
are introduced in Eq. (5.119). They are valid for all subsequent investigations and are
arranged in descending order from top to bottom according to the optimisation model in
Fig. 5.3.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7
0.4
0.4
0.4
0.4
0.6
0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑠 l ≤ 𝑠 ≤ 𝑠u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3
1.6
1.6
1.6
1.6
1.4
1.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.119)

The material parameter 𝐸k for the kernel area is scaled by the factor 𝛾 and is related
to the outer material parameter 𝐸s by 𝐸k = 𝛾 𝐸s. The choice of 𝛾 will be done in the
following subsections explicitly. The surface load 𝑞 = 25.0 given in Fig. 5.3 is distributed
on the present 11 nodes on the top equivalently and results in nodal forces of 𝐹n = 2.5 for
regular and of 𝐹nc = 1.25 for corner nodes.
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Studies for different scaling factors of material properties

Eight optimisation runs are evaluated for eight different kernel material parameters 𝐸k
to examine the influence on physical reaction forces as constraints. The material scaling
factor 𝛾 varies from 0.33 to 1.5 and the overall end-compliance of the system is the chosen
objective, i.e. 𝐽 = 𝐶 = 𝐹 𝑇𝑢, is evaluated with the target to find a minimum. Inequality
constraints 𝑔 in the constraint area (cf. Fig. 5.3) are used to control the physical reaction
forces 𝐹R, i.e. 𝑔 = 𝐹R. Compared to the initial design, the maximum amplitude of
the resulting reaction force after optimisation has to remain constant for each material
parameter 𝛾, i.e. 𝐹 ini

R,max = 𝐹 opt
R,max. The results for all related objectives and constraints

are summarised in Table 5.2. The values of the objective 𝐶 can be reduced in each
optimisation case. The reduction range is between approximately 5% for 𝛾 = 0.33 and
19% for 𝛾 = 1.50. Same results can be seen in Fig. 5.4, where the values of the objective
decrease over iterations to a minimal value. The ratios opt/ini = 1.0 in the last column of
Table 5.2 as well as the graphs in Fig. 5.4 prove, that the maximum amplitude of reaction
forces remains constant for each value of 𝛾. It is obvious how the design will change due
to changes of the material parameters. For softer kernel material 𝐸k the optimisation
algorithm tends to reduce this type of material to decrease the value of compliance. For
stiffer kernel material it tends to the opposite direction, i.e. the amount of stiffer material
has to be increased. All design modifications, i.e. optimal distribution of the chosen
control points of the Bézier patch for each value 𝛾 and the comparison of the distribution
of initial reaction forces 𝐹 ini

R and the distribution of 𝐹 opt
R after optimisation are presented

in Fig. 5.5 for material parameters 0.33 ≤ 𝛾 ≤ 1.5. All design variables lie in-between
prescribed side constraints 𝑠 l,𝑠u and no nodal reaction force 𝐹R exceeds the predefined
maximum value 𝐹R,max. Finally, using sensitivity information of physical reaction forces
allow the control of reaction forces in selected areas independent of the choice of material
properties. One can observe that for softer kernel material the related area will be reduced
and vice versa, i.e. that for stiffer kernel material the related area needs to be extended.

Table 5.2: Cube of multi-material: optimisation results for material parameters 𝛾: values
for objective (compliance 𝐶 ini,𝐶opt) and constraint (reaction force 𝐹R).

Material scaling factor Objective 𝐶 Constraint 𝐹R

𝛾 𝐶 ini 𝐶opt opt/ini 𝐹 ini
R,max 𝐹 opt

R,max
opt/ini

0.33 4.2033 3.9847 0.99 5.0404 5.0404 1.00

0.50 3.1165 2.8864 0.93 3.9187 3.9187 1.00

0.66 2.5559 2.3114 0.90 3.2777 3.2777 1.00

0.75 2.3330 2.0853 0.89 3.0150 3.0150 1.00

1.00 1.9001 1.6680 0.88 2.5000 2.5000 1.00

1.25 1.6214 1.3534 0.83 2.6001 2.5976 1.00

1.33 1.5517 1.2822 0.83 2.6257 2.6257 1.00

1.50 1.4256 1.1554 0.81 2.6723 2.6723 1.00
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Figure 5.4: Cube of multi-material: optimisation results for material parameters 𝛾: values
for objective (compliance) and constraint (reaction force) over iterations.

Compliance minimisation and reduction of forces

In this study, the material scaling factor is fixed to the value 𝛾 = 0.5. For this explicit
material distribution the compliance minimisation problem with the objective 𝐽 = 𝐶 =
𝐹 𝑇𝑢 is investigated, but different to the study in Section 5.8.1, the physical reaction forces
in the constraint area (cf. Fig. 5.3) have to be reduced to the maximum amplitude of 75%
compared to the amplitude of reaction force for the initial design. This can be done by the
incorporation of the reaction forces as inequality constraints 𝑔 = 𝐹R and the definition of
𝐹R,max as the maximum value. Used side constraints 𝑠 l,𝑠u are presented in Eq. (5.119).

The mathematical optimisation algorithm used 11 iterations to obtain a minimum value
for the objective, which could be reduced by approximately 6% compared to the initial
design. In parallel, the incorporation of reaction forces as constraints gives the advantage
and the possibility to reduce them too. Both results are presented in Fig. 5.6. The
optimal distribution of design variables, which are all in the prescribed boundaries or side
constraints 𝑠 l,𝑠u is pictured in Fig. 5.7. Here, the contour of the initial profile of reaction
forces is compared to the profile of reaction forces for the optimised design.



5.8 Numerical investigations on single scales 71

Maximum amplitude of reaction force

(a) 𝛾 = 0.33, amplitude 𝐹R,max = 5.0404

Maximum amplitude of reaction force

(b) 𝛾 = 1.00, amplitude 𝐹R,max = 2.5000

Maximum amplitude of reaction force

(c) 𝛾 = 0.50, amplitude 𝐹R,max = 3.9187

Maximum amplitude of reaction force

(d) 𝛾 = 1.25, amplitude 𝐹R,max = 2.5976

Maximum amplitude of reaction force

(e) 𝛾 = 0.66, amplitude 𝐹R,max = 3.2777

Maximum amplitude of reaction force

(f) 𝛾 = 1.33, amplitude 𝐹R,max = 2.6257

Maximum amplitude of reaction force

(g) 𝛾 = 0.75, amplitude 𝐹R,max = 3.0150

Maximum amplitude of reaction force

(h) 𝛾 = 1.50, amplitude 𝐹R,max = 2.6723

Figure 5.5: Cube of multi-material: optimal design (left) for material scale factors 0.33 ≤
𝛾 ≤ 1.5 and comparison maximum amplitude of reaction forces for optimised (middle) and
initial design (right).
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Figure 5.6: Cube of multi-material: compliance minimisation: optimisation results for
objective (left) and constraint (right) over iterations.

constraint area
design boundaries
design variables
CAGD parameters

contour of reduced reaction forces
contour of initial reaction forces

Figure 5.7: Cube of multi-material: compliance minimisation: optimal design for 𝛾 = 0.50,
comparison of reaction forces for deformed system (scaling of displacements = 1).

Finally, it is the engineer’s or designer’s choice how to manage the balance between
compliance minimisation and reduction of reaction forces. If the required maximum value
for reduction of 75% is increased, the balance in the overall potential of the system between
objective and constraint will change and the compliance minimisation will lead to higher
reduction values than only 6%.
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Volume minimisation and reduction of forces

Here, the setup for the optimisation problem is similar to the setup for the compliance
minimisation presented in Section 5.8.1. The only difference is that the objective function
will be exchanged and the overall volume 𝐽 = 𝑉 of the given system has to be minimised.
The material scaling factor is fixed to the value 𝛾 = 0.5 and the maximum amplitude of the
reaction forces have to be reduced to 75% compared to the initial design by incorporation of
inequality constraints and a maximum value 𝐹R,max. The optimisation algorithm reaches
the optimum value for the objective after 11 iterations and the optimisation process is
aborted. The overall volume can be reduced by approximately 37% compared to the initial
design. Furthermore the constraint for the reaction forces is fulfilled and allows to reduce
them by 25% compared to the initial design. These results are illustrated in Fig. 5.8.
The corresponding distribution of design variables which remain in the prescribed side
constraints 𝑠 l,𝑠u from Eq. (5.119) as well as the contour of the initial and optimised profile
of reaction forces is presented in Fig. 5.9.

Figure 5.8: Cube of multi-material: volume minimisation: optimisation results for objective
(left) and constraint (right) over iterations.

In this case, the designer or the engineer also has to decide on the balance between
volume minimisation and reduction of reaction forces. For the chosen and presented
optimisation setup, the large resulting displacements on the right top side of the system
(cf. Fig. 5.9) are the consequence. If the system or the material is able to handle this
kind of displacement amplitude, the gain is the enormous reduction of volume and the
reduction of final reaction forces as pressure loads on the ground.
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constraint area
design boundaries
design variables
CAGD parameters

contour of reduced reaction forces
contour of initial reaction forces

Figure 5.9: Cube of multi-material: volume minimisation: optimal design for 𝛾 = 0.50,
comparison of reaction forces for deformed system (scaling of displacements = 1).

Remarks on numerical performance and accuracy

To demonstrate the time consuming differences between structural optimisation based
on numerically obtained gradients in terms of FDM and on the variational approach
for design sensitivity analysis, the investigated model problem in this section with the
following dimensions is considered. The number of design variables on nodal basis is
𝑛𝑋 = 1722 and on geometrical basis 𝑛𝑐𝑝 = 32. The final number for a selected subset
of design variables amounts 𝑛𝑠 = 7. The average computation time for one nonlinear
structural analysis with Neo-Hookean constitutive law takes four Newton iterations and
lasts approximately m𝑡a ≈ 1.0 second using a moderately optimised Matlab R2018a code
on the mobile workstation listed in Table 2.4 in Chapter 2. The consequences for the
numerical determination of gradients lead for a typical forward or backward difference
quotient 𝑛f,b

F = 𝑛 + 1 and a central difference quotient 𝑛c
F = 2𝑛 function evaluations, with

𝑛 being a general and replaceable number of design variables and therefore, of 𝑛 necessary
perturbations and structural analyses. Thus, the resulting computation times for numerical
gradients are m𝑡f,bs,num = 𝑛f,b

F · m𝑡a (forward/backward FDM scheme) and m𝑡cs,num = 𝑛c
F · m𝑡a

(central FDM scheme). Due to the fact that one structural analysis takes approximately
1.0 second and coincides fine with one function evaluation 𝑛F, the times for comparison are
directly used in seconds instead of relative representations. For the given model problem
the results for the numerical effort and time consumptions are summarised in Table 5.3.
Compared to these results, it can be shown that the analytical gradients are characterised
by a significantly improved performance. Despite the assembly of the overall pseudo load
matrix from Eq. (5.48) and the solution of a global system of equations for the sensitivity



5.8 Numerical investigations on single scales 75

Table 5.3: Numerical effort for optimisation based on numerical gradients (FDM).

number of design
parameters 𝑛

FDM computation times
m𝑡f,bs,num

m𝑡cs,num

𝑛𝑋 = 1722 1723 sec. 3444 sec.

𝑛𝑐𝑝 = 32 33 sec. 64 sec.

𝑛𝑠 = 7 8 sec. 14 sec.

of the state from Eq. (5.51) to obtain the required reduced sensitivity matrix, only one
structural analysis is needed and the overall run time amounts 𝑡s ≈ 2.0 seconds. Thus, for
𝑛 > 𝑡s / 𝑡a design parameters, the analytically derived gradients will save computation
time. Even in the fastest numerical test for seven design variables and only a forward
FDM scheme, the ratio is m𝑡s / m𝑡a = 2 / 8 and the analytical gradient is faster. In the
case of linear elastic structural analyses with St. Venant-Kirchhoff constitutive law, the
computation times in Table 5.3 will be reduced by approximately 75%, but even then, the
analytical gradient is more efficient if more than one design parameter is considered.

Fig. 5.4: Cube of multi-material:
accuracy of derived gradients.

Perturbation ||∇𝑔num −∇𝑔||
||∇𝑔||𝛥𝑋

1× 10−2 4.7892× 10−3

1× 10−3 4.7424× 10−5

1× 10−4 4.7419× 10−7

1× 10−5 4.7426× 10−9

1× 10−6 1.4128× 10−9

1× 10−7 1.4002× 10−8

1× 10−8 1.3134× 10−7

1× 10−9 1.6846× 10−6

Next, the accuracy of the gradient information
from Eq. (5.118) is examined. To gain the high-
est precision for numerical approximations of the
required gradient, central finite difference approx-
imation with perturbations 𝛥𝑋 between 1× 10−2

and 1×10−9 are applied. The relative error between
both gradients, i.e. the numerical and analytical
gradient, is evaluated by the application of the L2-
norm (also known as the Euclidean norm).

The final results of this numerical test are de-
picted in Table 5.4. The results let conclude, that
best approximations of analytically derived gradi-
ents can be achieved by using perturbations 𝛥𝑋 of
design parameters in the range between 1×10−5 and
1× 10−7 (coloured blue) for this particular example
and prove the correctness of the determination of
analytical gradients at the same time. Besides the
importance of accuracy, there is still potential for improvements of the numerical behaviour
and numerical performance of the analytically derived sensitivity information. For instance,
the factorised stiffness matrix from structural analysis, can be used at different stages in
the structural analysis and the design sensitivity analysis framework.
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5.8.2 Structural optimisation of RVE-like domains

The purpose of following investigations is the demonstration of the application of the
sensitivity information of reaction forces introduced in Eq. (5.118) as a constraint within
structural, ptimisation for different situations affiliated with characteristic microscale
representations. The focus lies on the geometrical design and improvement of selected RVE-
like domains illustrated in Fig. 5.10. Parametrisations of the design domain using CAGD
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Figure 5.10: RVE-like domains: selection of samples for numerical investigations: square
domain with i) a circular hole (left), ii) a circular inclusion (middle), iii) bi-material (right).

and morphing based models are applied. All studies can be connected to a microscale
analysis in an individual integration point of a stated upper scale BVP according to
presented homogenisation techniques in Chapter 4 and therefore, a macroscopic deformation
gradient 𝐹 is used as a test loading case. The evaluation of the structural response is
performed using periodic boundary conditions (P) from Eq. (4.26) for underlying St.
Venant-Kirchhoff or Neo-Hookean constitutive laws. In addition, the impact on the
homogenised or effective stresses 𝑃 K,P from Eq. (4.31) is emphasised. The upcoming
investigations are organised in following four examples

• D.1: Square domain with a hole using CAGD model,

• D.2: Square domain with a hole using morphing based model,

• D.3: Square domain with an inclusion using morphing based model,

• D.4: Square domain with bi-material using morphing based model.

Each of the square domains has a characteristic side length 𝐴 = 1 and is incorporated into
the general discrete optimisation form from Problem 3.2. The origin of the coordinate
system is positioned in the center of the domain and the boundaries of design parameters
are referred to this position. The target of minimisation of the overall material consumption
in an appropriate way is expressed by the volume objective function, i.e. 𝐽 = 𝑉 . Inequality
constraints in form of reaction forces, i.e. 𝑔 = 𝐹R, allow to control the design process
in terms of specified characteristics, e.g. resulting effective stresses can be tailored to
structural and materials abilities. It should be mentioned that design sensitivity information
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obtained on nodal level of the FEM mesh has to be transformed via corresponding design
velocity fields according to descriptions in Section 3.4. Within all examples D.1 to D.4, a
transformation via the design velocity matrix 𝑉 𝐶 = d𝑋/d𝐶 for geometrical control points
of the CAGD model or of the morphing box, respectively, is required. Additionally, in D.1
control points of the CAGD model depend on the diameters 𝑎 =

[︀
𝑎 𝑏

]︀
of the hole, which

are finally chosen as design variables. Therefore, a further transformation of obtained
sensitivity information via the design velocity 𝑉 𝑠 = d𝐶/d𝑠 for the diameters is necessary.
To obtain the final sensitivity information, the following evaluations are necessary

D.1 :
d(·)
d𝑠

=
𝜕(·)
𝜕𝑋

d𝑋
d𝐶

d𝐶
d𝑠

=
𝜕(·)
𝜕𝑋
𝑉 𝐶𝑉 𝑠,

D.1 to D.4 :
d(·)
d𝑠

=
𝜕(·)
𝜕𝑋

d𝑋
d𝐶

=
𝜕(·)
𝜕𝑋
𝑉 𝐶 .

(5.120)

To avoid confusion, the dimensions for the number of finite element nodes 𝑛𝑁 , for
the number of finite elements 𝑛𝑒𝑙, the resulting number of degrees of freedom 𝑛𝑣, the
number of possible design parameters on the nodal level 𝑛𝑋 and on the geometry level
𝑛𝑐𝑝 and the final subset of chosen design variables 𝑛𝑠 for optimisation is summarised
in Table 5.5 for all examples. The underlying element technology is in all cases a pure
displacement formulation with linear shape functions and two degrees of freedom per node
for tri- and rectangular element types. Beside the optimisation results, all mesh and design
information from Table 5.5 can be found in Fig. 5.11 to 5.14. Beside some example specific
remarks, the results concerning optimisation are presented in following paragraphs.

Table 5.5: RVE-like domains: model dimensions for numerical investigations.

CAGD Morphing

Number of . . . D.1 D.2 D.3 D.4

finite element nodes 𝑛𝑁 360 336 337 608

finite elements 𝑛𝑒𝑙 600 288 320 558

degrees of freedom 𝑛𝑣 720 672 674 1216

design parameters on

nodal level 𝑛𝑋 720 672 674 1216

geometry level 𝑛𝑐𝑝 56 72 72 50

final design variables 𝑛𝑠 2 32 32 10
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Square domain with a circular hole

The first study considers situations D.1 and D.2, both square domains with a circular hole.
Parametrisation of the domain is realised by a CAGD model for D.1 on one hand and
using morphing techniques D.2 on the other hand. Additionally, for both cases different
initial situations are defined, i.e. D.1 considers an elliptical hole as initial design and a
St. Venant-Kirchhoff constitutive law, where D.2 considers a circular hole as initial design
and a Neo-Hookean constitutive law. The technological data is equal for both situations
and is set to 𝐸 = 1000 for the Young’s modulus, to 𝜈 = 0.2 for the Poisson’s ratio and to
𝑡 = 0.1 for the thickness of both domains. Both domains are evaluated for the macroscopic
deformation gradient as a loading case

𝐹 =

[︂
1.20 0.10
0.05 1.10

]︂
(5.121)

in accordance to numerical homogenisation techniques. The design parameters within
the solution of the optimisation problems are the diameters (𝑎,𝑏) of inclusion for D.1 and
therefore, the overall number of design variables is 𝑛𝑠 = 2, and coordinates of control
points of the inner morphing box for D.2 and therefore, the overall number of design
variables is 𝑛𝑠 = 32. The optimisation results for D.1 are pictured in Fig. 5.11. The
distribution of design variables is listed in Section 5.8.2 .

Figure 5.11: RVE-like domains: optimisation results for domain D.1: progress of objective
and constraint (left), initial and optimised design (middle), von Mises stress disctribution
for initial and optimised design (right).

The optimisation algorithm takes 28 iterations to reduce the volume objective by
approximately 27%. Simultaneously, the maximum amplitude of arising reaction forces
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Table 5.6: RVE-like domains: distribution of design variables for domain D.1: defined lower
and upper design bounds 𝑠land 𝑠u, initial and optimised design values 𝑠iniand 𝑠opt.

Design variable 𝑠l 𝑠u 𝑠ini 𝑠opt

𝑎 0.1000 0.8000 0.7500 0.8000

𝑏 0.1000 0.8000 0.2500 0.5981

on the surface of the domain can be reduced by approximately 25%. The reduction of
reaction forces has an impact on the maximum value of resulting local von Mises stresses,
i.e. the maximum value 𝜎ini

eq = 960.85 can be reduced to 𝜎opt
eq = 509.56. A similar impact

can be observed after the evaluation of effective stresses for both states, i.e.

𝑃 K
ini
,P =

[︂
261.37 55.93
53.56 103.18

]︂
and 𝑃 K

opt
,P =

[︂
156.23 25.64
24.35 68.02

]︂
. (5.122)

The optimisation results for D.2 are pictured in Fig. 5.12. The distribution of design
variables is listed in Table 5.7 .

Figure 5.12: RVE-like domains: optimisation results for domain D.2: progress of objective
and constraint (left), initial and optimised design (middle), von Mises stress disctribution
for initial and optimised design (right).
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Table 5.7: RVE-like domains: distribution of design variables for domain D.2: defined lower
and upper design bounds 𝑠land 𝑠u, initial and optimised design values 𝑠iniand 𝑠opt.

Design
variable

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

1 1 −0.5000 −0.2000 −0.2940 −0.4999

1 2 −0.5000 −0.2000 −0.2940 −0.4999

2 1 −0.1900 −0.0100 −0.0980 −0.1899

2 2 −0.5000 −0.2000 −0.2940 −0.4999

3 1 0.0100 0.1900 0.0980 0.1899

3 2 −0.5000 −0.2000 −0.2940 −0.4999

4 1 0.2000 0.5000 0.2940 0.4999

4 2 −0.5000 −0.2000 −0.2940 −0.4999

5 1 −0.5000 −0.2000 −0.2940 −0.4999

5 2 −0.1900 −0.0100 −0.0980 −0.1899

6 1 −0.3750 0.1000 −0.0980 −0.3749

6 2 −0.3750 0.1000 −0.0980 −0.3749

7 1 −0.1000 0.3750 0.0980 0.3749

7 2 −0.3750 0.1000 −0.0980 −0.3749

8 1 0.2000 0.5000 0.2940 0.4999

8 2 −0.1900 −0.0100 −0.0980 −0.1899

9 1 −0.5000 −0.2000 −0.2940 −0.4999

9 2 0.0100 0.2000 0.0980 0.1999

10 1 −0.3750 0.1000 −0.0980 −0.3749

10 2 −0.1000 0.3750 0.0980 0.3749

11 1 −0.1000 0.3750 0.0980 0.3749

11 2 −0.1000 0.3750 0.0980 0.3749

12 1 0.2000 0.5000 0.2940 0.4999

12 2 0.0100 0.2000 0.0980 0.1999

13 1 −0.5000 −0.2000 −0.2940 −0.4999

13 2 0.2100 0.5000 0.2940 0.4999

14 1 −0.1900 −0.0100 −0.0980 −0.1899

continued on next page . . .
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Design
variable

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

14 2 0.2100 0.5000 0.2940 0.4999

15 1 0.0100 0.1900 0.0980 0.1899

15 2 0.2100 0.5000 0.2940 0.4999

16 1 0.2000 0.5000 0.2940 0.4999

16 2 0.2100 0.5000 0.2940 0.4999

The optimisation algorithm takes 9 iterations to reduce the volume objective by approx-
imately 28%. Simultaneously, the maximum amplitude of arising reaction forces on the
surface of the domain can be reduced by approximately 28%. The reduction of reaction
forces has an impact on the maximum value of resulting local von Mises stresses, i.e. the
maximum value 𝜎ini

eq = 422.32 can be reduced to 𝜎opt
eq = 358.60. A similar impact can be

observed after evaluation of effective stresses for both states, i.e.

𝑃 K
ini
,P =

[︂
171.37 39.45
33.28 120.21

]︂
and 𝑃 K

opt
,P =

[︂
113.52 23.54
20.01 75.65

]︂
. (5.123)

Square domain with a circular inclusion

Here, situation D.3 is considered, i.e. a square domain with a circular inclusion. The
parametrisation of the domain is realised using morphing. The evaluation of structural
analysis part is based on the Neo-Hookean constitutive law with a Young’s modulus
𝐸m = 1000 for the matrix and 𝐸i = 1500 for the inclusion’s material, and a Poisson’s
ratio 𝜈 = 0.2 for both. The thickness of the matrix material is set to 𝑡m = 0.1 and for the
inclusion to 𝑡i = 0.3. This circumstance simulates the worthiness of the inclusion’s material,
e.g. the inclusion’s material might be more expensive. Within volume minimisation, this
part of the domain is therefore priorised for design changes. The overall domain is evaluated
for a macroscopic deformation gradient as a loading case

𝐹 =

[︂
1.20 0.15
0.15 1.20

]︂
(5.124)

in accordance to numerical homogenisation techniques. A subset of all coordinates of
control points of the morphing box is chosen as design space, i.e. inner control points of
the morphing box are design variables, and therefore, 𝑛𝑠 = 32. The optimisation results
for D.3 are pictured in Fig. 5.13. The distribution of design variables is listed in Table 5.8.
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Figure 5.13: RVE-like domains: optimisation results for domain D.3: progress of objective
and constraint (left), initial and optimised design (middle), von Mises stress disctribution
for initial and optimised design (right).

Table 5.8: RVE-like domains: distribution of design variables for domain D.3: defined lower
and upper design bounds 𝑠land 𝑠u, initial and optimised design values 𝑠iniand 𝑠opt.

Design
variable

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

1 1 −0.6000 −0.2000 −0.2940 −0.2000

1 2 −0.6000 −0.2000 −0.2940 −0.2000

2 1 −0.1900 −0.0100 −0.0980 −0.0100

2 2 −0.6000 −0.2000 −0.2940 −0.2000

3 1 0.0100 0.1900 0.0980 0.0100

3 2 −0.6000 −0.2000 −0.2940 −0.2000

4 1 0.2000 0.6000 0.2940 0.2000

4 2 −0.6000 −0.2000 −0.2940 −0.2000

5 1 −0.6000 −0.2000 −0.2940 −0.2000

5 2 −0.1900 −0.0100 −0.0980 −0.0100

continued on next page . . .
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Design
variable

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

6 1 −0.4500 0.1000 −0.0980 0.0999

6 2 −0.4500 0.1000 −0.0980 0.0999

7 1 −0.1000 0.4500 0.0980 −0.0999

7 2 −0.4500 0.1000 −0.0980 0.0999

8 1 0.2000 0.6000 0.2940 0.2000

8 2 −0.1900 −0.0100 −0.0980 −0.0100

9 1 −0.6000 −0.2000 −0.2940 −0.2000

9 2 0.0100 0.2000 0.0980 0.0100

10 1 −0.4500 0.1000 −0.0980 0.0999

10 2 −0.1000 0.4500 0.0980 −0.0999

11 1 −0.1000 0.4500 0.0980 −0.0999

11 2 −0.1000 0.4500 0.0980 −0.0999

12 1 0.2000 0.6000 0.2940 0.2000

12 2 0.0100 0.2000 0.0980 0.0100

13 1 −0.6000 −0.2000 −0.2940 −0.2000

13 2 0.2100 0.6000 0.2940 0.2100

14 1 −0.1900 −0.0100 −0.0980 −0.0100

14 2 0.2100 0.6000 0.2940 0.2100

15 1 0.0100 0.1900 0.0980 0.0196

15 2 0.2100 0.6000 0.2940 0.2100

16 1 0.2000 0.6000 0.2940 0.2000

16 2 0.2100 0.6000 0.2940 0.2100

The optimisation algorithm takes 7 iterations to reduce the volume objective by approx-
imately 12%. Simultaneously, the maximum amplitude of arising reaction forces on the
surface of the domain can be reduced by approximately 15%. The reduction of reaction
forces has an impact on the maximum value of resulting local von Mises stresses, i.e. the
maximum value 𝜎ini

eq = 452.69 can be reduced to 𝜎opt
eq = 400.32. A similar impact can be

observed after the evaluation of effective stresses for both states, i.e.

𝑃 K
ini
,P =

[︂
213.33 65.77
65.77 213.33

]︂
and 𝑃 K

opt
,P =

[︂
185.65 57.76
57.73 185.86

]︂
. (5.125)
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Square domain with rectangular stripe

The final study for situation D.4 considers a square domain with a lengthy inclusion. The
parametrisation of the domain is realised using morphing. The evaluation of structural
analysis part is based on the Neo-Hookean constitutive law with a Young’s modulus
𝐸m = 1000 for the matrix and 𝐸i = 1500 for the inclusion’s material and a Poisson’s
ratio 𝜈 = 0.2 for both. Compared to situation D.3, a similar strategy for the thickness
disctribution is utilised to characterise the worthiness of used materials, i.e. the thickness
of the matrix material is set to 𝑡m = 0.1 and for the inclusion to 𝑡i = 0.3. Here, the
inclusion’s material might be more expensive. Within volume minimisation, this part of
the domain is therefore priorised for design changes. The overall domain is evaluated for a
macroscopic deformation gradient as a loading case

𝐹 =

[︂
1.20 0.15
0.15 1.20

]︂
(5.126)

in accordance to numerical homogenisation techniques. A subset of all coordinates of
control points of the morphing box is chosen as design space, i.e. inner control points of
the morphing box are design variables, and therefore, 𝑛𝑠 = 10. The optimisation results
for D.4 are pictured in Fig. 5.14. The distribution of design variables is listed in Table 7.9.

Table 5.9: RVE-like domains: distribution of design variables for domain D.4: defined lower
and upper design bounds 𝑠land 𝑠u, initial and optimised design values 𝑠iniand 𝑠opt.

Design
variable

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

1 1 −0.6500 −0.0100 −0.2450 −0.6500

1 2 −0.6500 0.1000 −0.2450 0.0999

2 2 −0.6500 0.1000 −0.2450 0.0999

3 1 0.0100 0.6500 0.2450 0.6499

3 2 −0.6500 0.1000 −0.2450 0.0999

4 1 −0.6500 −0.0100 −0.2450 −0.6500

4 2 −0.1000 0.6500 0.2450 −0.0999

5 2 −0.1000 0.6500 0.2450 −0.0999

6 1 0.0100 0.6500 0.2450 0.6499

6 2 −0.1000 0.6500 0.2450 −0.0999
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Figure 5.14: RVE-like domains: optimisation results for domain D.4: progress of objective
and constraint (left), initial and optimised design (middle), von Mises stress disctribution
for initial and optimised design (right).

The optimisation algorithm takes 8 iterations to reduce the volume objective by ap-
proximately 22%. Simultaneously, the maximum amplitude of arising reaction forces on
the surface of the domain can be reduced by approximately 23%. In contrast to prior
studies, the reduction of reaction forces has an opposite impact on the maximum value
of resulting local von Mises stresses, i.e. the maximum value 𝜎ini

eq = 302.97 increases to
𝜎opt

eq = 342.90. Finally, it depends on the engineers experience and requirements for useful
decisions concerning the material choice. Nevertheless, it can be observed that effective
stresses can be decreased, i.e.

𝑃 K
ini
,P =

[︂
318.30 70.80
82.67 223.24

]︂
and 𝑃 K

opt
,P =

[︂
250.52 62.04
68.80 196.42

]︂
. (5.127)

Conclusion

In summary, design sensitivity information of physical reaction forces is used to evaluate
constraints within structural optimisation and to control the design process. In each case,
the maximum amplitude of resulting reaction forces could be reduced by a certain amount,
which directly has an impact on effective and homogenised stresses. These are usually
used for structural analysis purposes on the upper scale within numerical homogenisation
schemes. Incorporation of physical reaction forces and of their sensitivity information
gives the designing engineers the opportunity to adjust the material’s behaviour to stated
macroscopic problem formulations and to tailor applications to their special requirements.
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5.9 Summary and concluding remarks

After an introduction and the outline on the state of the art, basic relations for the
variational design sensitivity analysis based on the intrinsic formulation with enhanced
kinematics are presented. Several relations known from continuum mechanics are extended
by necessary design variations to obtain gradients for optimisation procedures based on
first order methods. All continuous relations are transferred to their discrete counterparts
and are available for numerical treatment and investigation in the scope of FEM and
structural optimisation. The most important quantities and relations in continuous and
discrete form, which are frequently used throughout this work, are compiled in Table 5.10
and Table 5.11 and can directly be used for further investigations.

Table 5.10: Overview of continuous and discrete parameters, tangent stiffness and pseudo
load as well as sensitivity operators on single scale.

Continuous Discrete cf. Eq.

Parameters

state 𝑣 𝑣 5.28, 5.46

design (mesh level) 𝑠, (𝑋) 𝑠, (𝑋) 5.28, 5.46

state variation 𝛿𝑣 𝛿𝑣 5.29, 5.46

design variation (mesh level) 𝛿𝑠, (𝛿𝑋) 𝛿𝑠, (𝛿𝑋) 5.29, 5.46

Physical residual 𝑅(𝑣, 𝑠;𝜂) 𝑅(𝑣 , 𝑠;𝜂) 5.28, 5.46

Stiffness operator 𝑘(𝑣, 𝑠;𝜂, 𝛿𝑣) 𝐾 = 𝜕𝑅/𝜕𝑣 5.30, 5.47

Pseudo load operator 𝑝(𝑣, 𝑠;𝜂, 𝛿𝑠) 𝑃 = 𝜕𝑅/𝜕𝑋 5.31, 5.48

Sensitivity operator 𝑠(𝑣, 𝑠; 𝛿𝑠) 𝑆 = d𝑣/d𝑋 = 𝐾−1𝑃 5.32, 5.51

Table 5.11: Summary of discrete sensitivity relations and operators on single scales.

Discretisation cf. Eq.

Physical residual

internal 𝑅𝑒
𝑖 =
´
𝒦𝑒 𝑃 K𝐿𝑖 d𝑉 5.89

external 𝐹 𝑒
𝑖 =
´
𝒦𝑒 𝑁𝑖𝑏 d𝑉 5.90

Physical stiffness 𝐾𝑒
𝑖𝑗 =

´
𝒦𝑒 𝐵

𝑇
𝑣𝑖𝐴𝐵𝑣𝑗 d𝑉 5.91

Pseudo load

internal 𝑃 𝑒
𝑖𝑗 =

´
𝒦𝑒 𝐵

𝑇
𝑣𝑖𝐴𝐵𝑠𝑗 − 𝑃 K𝐿𝑗𝐿

𝑇
𝑖 + 𝑃 K𝐿𝑖𝐿

𝑇
𝑗 d𝑉 5.92

external (𝐹
′
𝑋)𝑖𝑗 =

´
𝒦𝑒 𝑁𝑖 𝑏𝐿

𝑇
𝑗 d𝑉 5.93
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Several studies accentuated possible usage and application of the sensitivity information,
especially of the sensitivity information of physical reaction forces. For instance, they
are used to control amplitudes of arising physical reaction forces, which interact with
foundations of mechanical parts in Section 5.8.1 or within numerical homogenisation
schemes to control effective parameters in Section 5.8.2. A brief discussion on performance
and accuracy concerning one of the presented model problems can be found in Section 5.8.1.





Chapter 6

Material design based on variational sensitivity
information

In this chapter, ideas and several aspects for optimal material design are stated. Formu-
lations for design sensitivity analysis on multiple scales are provided and prepared for
the enhancement of frameworks for multiscale structural analysis. Especially variational
formulations for sensitivity analysis are focused on and are implemented into an environ-
ment for numerical structural optimisation. General multiscale optimisation problems are
formulated and accentuated by some proposals for solution strategies.

6.1 Introduction

Understanding multiscale homogenisation techniques and the well-known FE2 methods
gives the opportunity to analyse complex and heterogeneous materials on different length
scales. A brief overview on methods and literature is given in Chapter 4. This outstanding
and deep insight into the physical behaviour of individual constituents of heterogeneous
material compositions comes along with the allure of improvements in terms of the overall
performance or adjustments of the physical response. The presented framework for
multiscale analysis is predestinated for purposes within structural optimisation, especially
due to its variety of possible applications.

One of the objectives of the work at hand is the enhancement of established FE2 methods
with elements from variational sensitivity analysis, presented in Chapter 5, and the usage
of obtained formulations within frameworks for structural optimisation. Formulations of
BVPs on multiple scales have to be augmented by formulations of problems for structural
optimisation with objective functions, constraints and design variables on different scales.
Decoupled problem formulations, where the macroscale and the microscale are investigated
individually, are possible in general, but these formulations are unrewarding within issues
based on complex interactions between referred scales and therefore, they are unrewarding
within the presented work. The target is to obtain a closed formulation, which contains
the sensitivity information of the overall macroscopic BVP and therefore, the sensitivity
information of all underlying microscopic BVPs. Within the setup for multiscale structural
analysis problems, the domains 𝒦 for the macroscale and the domain 𝒦 for the microscale
are introduced. After the solution of the stated BVP in terms of structural analysis, the

89



90 Chapter 6 Material design based on variational sensitivity information

macroscale microscale

𝐹

Figure 6.1: Possible model problems for structural optimisation on multiple scales.

subsequently performed design sensitivity analysis gives the opportunity to deal with
following three questions and investigations:

• How will physical responses in 𝒦 react, if design parameters in 𝒦 change?

• How will physical responses in 𝒦 react, if design parameters in 𝒦 change?

• How will physical responses in 𝒦 react, if design parameters in 𝒦 and 𝒦 change?

These questions represent a central investigation and are evaluated in Chapter 7 within
several numerical examples. Beforehand, some possible model problems are schematically
pictured in Fig. 6.1. Each individual microscale RVE can be embedded into the macroscale
domain and investigated within several optimisation procedures. A basic selection of
objective functions, constraints and design parameters is introduced in Table 3.1 in
Chapter 3 and can now be used for several combinations within problem formulations
over multiple scales. For instance, on the macroscale, the compliance or the volume of the
system, according to classical approaches for structural optimisation, can be chosen as
objective function. Design variables can be defined using appropriate degrees of freedom
within the underlying geometry description. The overall procedure can be controlled
by some constraints, which incorporate boundaries for stresses, strains or displacements.
On the microscale, there are only design variables and constraints to choose. Possible
design variables are the half-axes, the position or orientation of holes or inclusions, or in
general the geometry in an abstract sense. The range of possible design parameters can
be supplemented by different material parameters for the inclusion or matrix material.
Constraints like volume fractions for matrix material and inclusion or boundaries for
displacement or stress measures are also useful within the optimisation setup. The
presented range of possible combinations of objective functions, constraints and design
parameters, underlines the necessity of a closed form of the optimisation problem with
the overall sensitivity information. The behaviour of an introduced macroscopic objective
function depends directly on the choice of design parameters on the microscale. The
upcoming challenge is characterised by the verification of incorporated FE2 analysis and
FE2 optimisation methods in mathematical, mechanical and computational sense. The
field of optimisation on multiple scales using techniques for numerical homogenisation is
investigated by several researchers and groups over the past years. Overall, a broad field
of applications is considered intensively but particularly, solution strategies within the
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field of topology optimisation methods are the major topics of interest. The authors in
[22] give an extensive introduction on topology optimisation methods in general, but they
also refer topics on inverse homogenisation methods. They briefly overview methodologies
on how to design materials with several target properties like a specific Young’s modulus,
a specific thermal expansion coefficient or a negative Poisson’s ratio. This topics are
also part of several works listed below. The goal of most discussed examples is to find
solutions for problem formulations based on optimisation of series of individual base cells
and not to find one optimal representation for the whole domain. This holds true for
several publications on inverse homogenisation problems within procedures for topology
optimisation. Most relations are formulated in accordance to the rules of continuum
elasticity and effective parameters are obtained using averaging schemes over lower scales,
represented by periodic base cells or RVEs within frameworks for numerical homogenisation.
The general field of continuum elasticity provides a wide range of possible applications
and therefore, several publications propose a variety of formulations for the design of
materials, especially for the design of linear elastic materials. The author in [139, 140]
explains how to prescribe thermoelastic properties within a stated topology optimisation
problem and how to seek for solutions in terms of weight minimisation and manufacturing
constraints for truss-like and continuum-like materials. Further problem formulations
for the choice of optimal thermoelastic properties with the target of maximum, zero
or negative thermal expansion can be found in [141, 142]. Aspects concerning efficient
methods for the design of microstructures for heat transfer problems and high-resolution
problems with multiscale and multiphysics characteristics are discussed in [1]. The design
of periodic linear elastic microstructures of cellular materials in terms of maximisation
of weighted sum of equivalent strain energy density or linear combinations of mechanical
properties under volume and material symmetry constraints are discussed in [110] as well
as for minimisation of mean compliance subject to volume fractions of constituents in an
underlying RVE in [55]. Poroelastic materials which act as actuators under mechanical
pressure and are modeled in a two-scale fluid-structure interaction approach are introduced
in [4].

The key idea of extreme materials is often represented by applications with negative
Poisson’s ratios. Several authors in [87, 108, 125, 139, 140] tackle optimisation problems
and provide results and material representations for this kind of structures, which in
general are characterised by their ability for high energy absorption and fracture resistance.
Further examples on extremal materials like composites with extremal bulk modulus in
two and three dimensions for honeycomb-like structures are reported in [138], combinations
of extreme bulk and shear modulus and negative Poisson’s ratio are presented in [172] and
examples for functionally graded composites with near-zero shear modulus and negative
Poisson’s ratio are topics in [116]. Two-phase composite materials with targeted properties
such as piezoelectric properties in combination with thermoelectric coefficients can be found
in [75]. The author in [3] suggests a strategy to obtain an isotropic three-dimensional
structure consisting of rods, hinges and springs, which finally results in a Poisson’s
ratio close to minus one. Composites with extreme thermal expansion coefficients and
piezocomposites with optimal hydrophone characteristics subject to elastic symmetry
and volume fractions are addressed to in [143]. Inverse homogenisation problems for
two-phase viscoelastic properties of composites to obtain improved stiffness or damping
characteristics are studied in [177] and for prescribed shear modulus in [36]. Topological
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design of multiphase RVEs with respect to minimisation of the sound power radiation
from vibrating macrostructures under time-harmonic mechanical loadings is illustrated
in [176]. General investigations for multiphase composites and their design process for
optimal performance under certain constraints are proposed in [61, 158, 160] and especially
in [150] for high stiffness or high strength composites. Procedures which tackle orthotropic
materials, thickness of components and especially the optimisation of the angle of material
rotation or material orientation in general are derived in [118, 119] and [117]. The authors
in [41] introduce a computational model to design bi-material composite laminates to
minimise structural compliance with mixed sets of micro and macro design variables. The
target is to find optimal composite microstructures and optimal fibre orientation on the
macroscale. Material design and application to sandwich-type structures with a reduction
of the total number of design variables due to the introduction of design subdomains to
simplify applicability and manufacturability is investigated in [42]. Aspects on lightweight
materials for non-periodic topologies within minimum and compliant mechanism problems
can be found in [91].

Topology optimisation of microstructures with a fixed macroscale based on so-called
material test on the lower scale, cf. [156] for details, is stated in [79]. Strategies based
on evolutionary optimisation algorithms, like the bi-directional evolutionary structural
optimisation (BESO), for the concurrent design of material and structures within frame-
works for topology optimisation and non-linear FE2 analysis with design variables on
both scales are investigated in [170, 171, 173, 174]. In order to reduce numerical effort,
the authors in latter publications also introduce reduced multiscale models in terms of
Proper Orthogonal Decomposition (POD) or reduced database models affiliated with a
priori off-line steps. An improved optimisation scheme for the mentioned BESO algorithm
based on the introduction of a damping scheme for sensitivity numbers is proposed by [54,
175]. Furthermore, the authors exchanged the non-linear elastoplastic FE2 analysis by
a potential-based Reduced Basis Model Order Reduction (pRBMOR) with GPU acceler-
ation. All mentioned aspects on efficient topology optimisation schemes for the design
of multiscale non-linear heterogeneous structures and high performance materials are
summarised in [169]. In comparison to previously cited publications, solution strategies for
two-scale optimisation problems based on level set and on extended finite element method
(XFEM) formulations can be found in [164], and in [93] for closed liquid cells materials,
with the shape of fluid inclusion as design on the microscale and topology as design on the
macroscale. Improved structural performance and improved effective response results from
improved underlying lower scale periodic design. The authors in [78] bridge topology and
shape optimisation schemes to design three-dimensional microstructured materials with
extreme properties using energy-based homogenisation and parameteric level set methods.
Patterns for engineered materials in terms of size, shape and layout of inclusion-like phases
in continuum domains are obtained in [64].

An extensive introduction on shape optimisation methods using homogenisation tech-
niques is given in [2]. Shape optimisation results for bi-material microstructures are
reported in [76] for inelastic materials and in [112] for minimisation of local stress fields
by the application of XFEM and a level set representation of the geometry.

In this work special emphasis is given to methods for shape optimisation. The extension
of methods for numerical homogenisation by variational sensitivity relations for design
modifications in terms of geometrical parameters plays the central role.



6.2 Sensitivity relations for problems on multiple scales 93

6.2 Sensitivity relations for problems on multiple scales

Most relations introduced in Chapter 5 for sensitivity analysis on single scales can be used
for investigations on multiple scales. Beside notational modifications, several extensions
and conventions are necessary. According to Remark 4.1, also within design sensitivity
analysis for multiscale problems, quantities connected to the macroscale are identified by
overlines and quantities connected to the microscale are represented without any additional
markers. The extension of the classical layout for continuum mechanics for multiscale
problems is presented in Fig. 6.2. Beside the macroscopic deformation mapping 𝜙(𝑋(𝑠), 𝑡),
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Figure 6.2: Enhanced kinematics within the framework of multiple scales: referential
configurations 𝒦 and 𝒦, physical configurations ℳ and ℳ, introduction of a local convective
configuration ℛ and ℛ, deformation mappings 𝜙 and 𝜙, introduction of a local geometry
mappings 𝜅 and 𝜅 and introduction of local motion mappings 𝜇 and 𝜇.

which in general depends on the time variable (𝑡) and the macroscopic design (𝑠), the
microscopic deformation mapping 𝜙(𝑋(𝑠), 𝑡) with the dependence on the microscopic
design (𝑠) is introduced. Both mappings can be equivalently decomposed in so-called
local geometry and local deformation mappings with the distinction in macroscopic and
microscopic contributions, i.e. using mappings {𝜇,𝜅−1} for the macroscale and mappings
{𝜇,𝜅−1} for the microscale one obtains the decompositions

𝜙 = 𝜇 ∘ 𝜅−1 and 𝜙 = 𝜇 ∘ 𝜅−1. (6.1)
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The full set of point mappings and affiliated tangent mappings in terms of macro- and
microscopic notation is summarised in Table 6.1. All introduced tangent mappings can
be used to perform pull-back and push-forward operations between the configurations
𝒦,ℳ and ℛ on the macroscale and between the configurations 𝒦,ℳ and ℛ on the
microscale for several variations and several quantities from continuum mechanics. The
advantage of the presented approach is, that the methodological procedure for obtaining
analytical variations of physical quantities can be proceeded independent of the scale
under investigation. All presented relations in Section 5.2 and Section 5.3 are also valid
for problems on multiple scales.

Table 6.1: Overview of macro- and microscopic point and tangent mappings.

Description Macroscale Microscale

Deformation mapping 𝜙 𝜙

Local geometry mapping 𝜅 𝜅

Local deformation mapping 𝜇 𝜇

Deformation gradient F = Grad𝜙 F = Grad𝜙

Local geometry gradient K = GRAD𝜅 K = GRAD𝜅

Local deformation gradient M = GRAD𝜇 M = GRAD𝜇

6.2.1 Macroscopic weak form of equilibrium and its variation

Special attention has to be paid concerning the weak form of equilibrium and therefore,
concerning the physical residual on the macroscale. The dependencies change and the
list of arguments is extended by quantities resulting from the microscale. Due to the
characteristics of used homogenisation approaches, treatment of stated physical situations
on the microscale in terms of structural analysis but also in terms of design sensitivity
analysis is similar to problems on single scales, presented in Section 5.3.1. The treatment
of stated physical situations on the upper scale depends on effective parameters not only
within structural analysis but also within design sensitivity analysis. Furthermore, a design
description for the microscale is introduced. All combinations of possible dependencies
are summarised in Table 6.2. The full relation for the weak form of equilibrium as the

Table 6.2: Macroscopic physical residual: possible dependencies and situations.

Scope Single scale Multiple scales

Structural analysis 𝑅(𝑣;𝜂) = 0 𝑅(𝑣, 𝑣;𝜂) = 0

Design sensitivity analysis 𝑅(𝑣, 𝑠;𝜂) = 0 𝑅(𝑣, 𝑠, 𝑣, 𝑠;𝜂) = 0

basis for all upcoming investigations within design sensitivity analysis, and later structural
optimisation, reads

𝑅(𝑣, 𝑠,𝑣, 𝑠;𝜂) = 0. (6.2)
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Equal to formulations on single scales, any perturbation of state and design parameters on
the macro- and the microscale must not violate the equilibrium state of a given mechanical
system. Therefore, Eq. (6.2) has to be fulfilled for any perturbation 𝛿𝑣 of the state variable
𝑣, both {𝑣, 𝛿𝑣} ∈ 𝒱, any perturbation 𝛿𝑠 in the design parameter 𝑠, both {𝑠, 𝛿𝑠} ∈ 𝒮,
any perturbation 𝛿𝑣 of the state variable 𝑣, both {𝑣, 𝛿𝑣} ∈ 𝒱 and for any perturbation 𝛿𝑠
in the design parameter 𝑠, both {𝑠, 𝛿𝑠} ∈ 𝒮. The consequence from this statement is the
possibility for the formulation of several tangent operators. Considering aforementioned
dependencies, the total variation of the physical residual reads

𝑅
′
(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣, 𝛿𝑠, 𝛿𝑣, 𝛿𝑠) = 𝑅

′
𝑣(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) + 𝑅

′
𝑠(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠)

+ 𝑅
′
𝑣(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) + 𝑅

′
𝑠(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠)

= 𝑘(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) + 𝑝(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠)

+ ̃︀𝑘(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) + ̃︀𝑝(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠) = 0.

(6.3)

Here, the variations of the macroscopic physical residual with respect to state variables 𝑣
and 𝑣 are introduced by tangent stiffness operators 𝑘 and ̃︀𝑘 and variations with respect to
design parameters 𝑠 and 𝑠 are introduced by tangent pseudo operators 𝑝 and ̃︀𝑝, respectively.
At this point, it is important to distinguish the tangent operators {̃︀𝑘, ̃︀𝑝} and explicit
microscopic tangent operators {𝑘, 𝑝}, which are derived in Section 6.4.1 in terms of
microscopic quantities exclusively. In the following, each tangent operator is stated

𝑘(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) = 𝑅
′
𝑣(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) macro physical stiffness operator,

𝑝(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠) = 𝑅
′
𝑠(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠) macro pseudo load operator,̃︀𝑘(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) = 𝑅
′
𝑣(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑣) multilevel stiffness operator,̃︀𝑝(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠) = 𝑅
′
𝑠(𝑣, 𝑠,𝑣, 𝑠;𝜂, 𝛿𝑠) multilevel pseudo load operator.

(6.4)

Remark 6.1 (Utilisation of the term multilevel) Throughout the entire work, the
term “multilevel” indicates variations of the macroscopic residual 𝑅 with respect to param-
eters related to the microscale, i.e. quantities like the microscopic state and design.

6.2.2 Sensitivity of the macroscopic physical state

The solution of the sensitivity relation in Eq. (6.3) allows the derivation of an implicit
sensitivity relation for the macroscopic state in current equilibrium point (𝑣, 𝑠,𝑣, 𝑠), i.e.

𝛿𝑣 = ̂︀𝑠 (𝑣, 𝑠,𝑣, 𝑠; 𝛿̂︀𝑠 ) = 𝑠 (𝑣, 𝑠,𝑣, 𝑠; 𝛿𝑠 ) + ̃︀𝑠 (𝑣, 𝑠,𝑣, 𝑠; 𝛿𝑠) with 𝛿̂︀𝑠 =

[︂
𝛿𝑠
𝛿𝑠

]︂
. (6.5)

Here, the sensitivity operator ̂︀𝑠 represents a combination of contributions 𝑠 resulting
from the macroscale (red) and of ̃︀𝑠 resulting from the microscale (blue). The operator̂︀𝑠 is formulated in terms of the combined vector 𝛿̂︀𝑠, which includes design variations in
both referred scales. From Eq. (6.5), changes of the macroscopic state 𝛿𝑣 induced by



96 Chapter 6 Material design based on variational sensitivity information

changes of macroscopic (red) and microscopic (blue) design parameters can be deduced,
i.e. changes due to 𝛿𝑠 and 𝛿𝑠. Introduced sensitivity operators ̂︀𝑠, 𝑠 and ̃︀𝑠 in Eq. (6.5) and
the additional exclusive sensitivity of the microscopic state 𝑠 are characterised as follows

𝑠 : sensitivity of macro state (exclusively),̃︀𝑠 : sensitivity of macro state caused by micro changes (multilevel),̂︀𝑠 : effective sensitivity of macro state caused by macro and micro changes,
𝑠 : sensitivity of micro state (exclusively).

(6.6)

Discrete relations for sensitivity operators are provided in Section 6.3. Explicit formulations
of residual and tangent forms on individual scales as well as formulations of the sensitivity
of effective parameters are given in Section 6.4.

6.2.3 Variations of arbitrary macroscopic functionals

Similar to the design variation of an arbitrary functional on a single scale in Section 5.3.3,
a design variation of an arbitrary functional formulated on multiple scales can be obtained
in terms of the implicit macro- and multilevel sensitivity relation in Eq. (6.5) and the
implicit sensitivity relation of the state on one scale from Eq. (5.32), here of the microscale.
Dependencies on quantities from two different scales have to be taken into account. For
an objective functional or constraint 𝑓(𝑣, 𝑠,𝑣, 𝑠) the total design variation with respect to
macroscopic and microscopic design, i.e. with respect to 𝑠 and 𝑠, reads

𝑓 ′ = 𝑓 ′
𝑣 + 𝑓 ′

𝑠 + 𝑓 ′
𝑣 + 𝑓 ′

𝑠 =
𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑠
𝛿𝑠 +

𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑠
𝛿𝑠

=

[︃
𝜕𝑓

𝜕𝑣
∘ 𝑠 +

𝜕𝑓

𝜕𝑠

]︃
𝛿𝑠 +

[︃
𝜕𝑓

𝜕𝑣
∘ ̃︀𝑠 +

𝜕𝑓

𝜕𝑣
∘ 𝑠 +

𝜕𝑓

𝜕𝑠

]︃
𝛿𝑠.

(6.7)

The first bracket term (red) provides information about changes of the functional 𝑓 due to
changes of macroscopic design parameters 𝛿𝑠 and the second bracket term (blue) provides
information about changes induced by changes of microscopic design parameters 𝛿𝑠.

6.3 Discrete sensitivity relations for multiscale problems

Established and standard finite element discretisation techniques, based on discrete
approximations {𝑣ℎ,𝑣ℎ} for macro- and microscopic state variables and on discrete
approximations {𝑋ℎ,𝑋ℎ} for macro- and microscopic design parameters, can be utilised
in terms of discrete parameters 𝑣 ∈ R𝑛𝑣 , 𝑣 ∈ R𝑛𝑣 , 𝑋 ∈ R𝑛𝑋 and 𝑋 ∈ R𝑛𝑋 to derive
matrix descriptions of continuous tangent forms.
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The dimensions are characterised as follows

𝑛𝑣 : number of discrete macro state variables in 𝒱ℎ ⊂ 𝒱,
𝑛𝑣 : number of discrete micro state variables in 𝒱ℎ ⊂ 𝒱,
𝑛𝑋 : number of discrete macro design parameters in 𝒮ℎ ⊂ 𝒮,
𝑛𝑋 : number of discrete micro design parameters in 𝒮ℎ ⊂ 𝒮.

(6.8)

The variations {𝛿𝑣ℎ, 𝛿𝑋ℎ, 𝛿𝑣ℎ, 𝛿𝑋ℎ} and the test function 𝜂ℎ are approximated in the
same fashion, i.e. 𝛿𝑣 ∈ R𝑛𝑣 , 𝛿𝑋 ∈ R𝑛𝑋 , 𝛿𝑣 ∈ R𝑛𝑣 , 𝛿𝑋 ∈ R𝑛𝑋 and 𝜂 ∈ R𝑛𝑣 .

Remark 6.2 (Choice of design parameters) In the scope of FEM, design parameters
on referred scales are the coordinates of nodes of the finite element meshes, i.e. 𝑠 = 𝑋 on
the macro- and 𝑠 = 𝑋 on the microscale. Utilisation of geometry parametrisation techniques
for 𝑠 and/or 𝑠 induces additional dependencies. Obtained relations and especially the
obtained sensitivity information on finite element mesh level has to be transformed to the
design space of interest using corresponding design velocity field matrices 𝑉 and/or 𝑉 ,
each affiliated to the appropriate scale. This situation is already argued in Section 3.4 and
holds true for problem formulations on multiple scales.

Using introduced finite element approximations, the discrete counterparts of continuous
residual in Eq. (6.2) and tangent forms in Eq. (6.4) result to

𝑅(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ) = 𝜂𝑇𝑅, 𝑅 ∈ R𝑛𝑣 , (6.9)

𝑘(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑣ℎ) = 𝜂𝑇𝐾𝛿𝑣 , 𝐾 ∈ R𝑛𝑣×𝑛𝑣 , (6.10)

𝑝(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑠ℎ) = 𝜂𝑇𝑃 𝛿𝑋, 𝑃 ∈ R𝑛𝑣×𝑛𝑋 , (6.11)̃︀𝑘(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑣ℎ) = 𝜂𝑇 ̃︀𝐾𝛿𝑣 , ̃︀𝐾 ∈ R𝑛𝑣×𝑛𝑣 , (6.12)̃︀𝑝(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑠ℎ) = 𝜂𝑇 ̃︀𝑃 𝛿𝑋, ̃︀𝑃 ∈ R𝑛𝑣×𝑛𝑋 . (6.13)

The set above can be used for the evaluation of the discrete form of the variation of the
weak form from Eq. (6.3) in (𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ) and yields

𝑅
′

= 𝜂𝑇𝑅
′

= 𝜂𝑇
[︁
𝐾𝛿𝑣 + 𝑃 𝛿𝑋 + ̃︀𝐾𝛿𝑣 + ̃︀𝑃 𝛿𝑋]︁ = 0, (6.14)

and due to the arbitrariness of the test function 𝜂 one obtains the discrete counterpart of
the total variation of the weak form to

𝑅
′

= 𝐾𝛿𝑣 + 𝑃 𝛿𝑋 + ̃︀𝐾𝛿𝑣 + ̃︀𝑃 𝛿𝑋 = 0. (6.15)

6.3.1 Discrete sensitivity of the macroscopic physical state

The implicitly given sensitivity relation for the macroscopic state parameter in Eq. (6.5)
can be evaluated using the discretised form of the variation of the physical residual in
Eq. (6.15). To avoid confusion, prior to the evaluation of the sensitivity relation the
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following sensitivity operators are introduced

𝑆 = −𝐾−1
𝑃 sensitivity of macro state (exclusively),̃︀𝑆 = −𝐾−1
𝑃 sensitivity of macro state due to micro changes (multilevel),̂︀𝑆 =

[︁
𝑆 ̃︀𝑆 ]︁ effective sensitivity of macro state,

𝑆 = −𝐾−1𝑃 sensitivity of micro state (exclusively).

(6.16)

After a standard discretisation and the solution of the stated macroscopic BVP, each
sensitivity matrix can be computed. Both, the macroscopic sensitivity matrix 𝑆 and the
multilevel sensitivity matrix ̃︀𝑆 are compiled to a global sensitivity matrix ̂︀𝑆.

According to the list of sensitivity operators in Eq. (6.16), the sensitivity of the macro-
scopic state parameter reads

𝛿𝑣 = −𝐾−1
[︁
𝑃 𝛿𝑋 + ̃︀𝐾𝛿𝑣 + ̃︀𝑃 𝛿𝑋]︁ = −𝐾−1

[︂
𝑃 𝛿𝑋 +

(︂ ̃︀𝐾𝑆 + ̃︀𝑃 )︂ 𝛿𝑋

]︂
= −𝐾−1

[︂
𝑃 𝛿𝑋 + 𝑃 𝛿𝑋

]︂
= 𝑆 𝛿𝑋 + ̃︀𝑆 𝛿𝑋 =

[︁
𝑆 ̃︀𝑆 ]︁ [︂

𝛿𝑋
𝛿𝑋

]︂
= ̂︀𝑆 𝛿 ̂︀𝑋. (6.17)

Here, the sensitivity relation 𝛿𝑣 = 𝑆𝛿𝑋 for the microscopic state variable, which is
evaluated in the equilibrium point of each stated microscopic BVP, is used. Furthermore,
the multilevel terms are stored in a total multilevel pseudo load matrix

𝑃 =
(︁ ̃︀𝐾 𝑆 + ̃︀𝑃 )︁ , (6.18)

which represents the total derivative of the macroscopic residual with respect to microscopic
design parameters, i.e. d𝑅/d𝑋. A complete overview of introduced parameters, tangent
and sensitivity operators and the affiliated matrix representations is given in Table 6.3
and in Table 6.4.

6.3.2 Discrete form of the variation of arbitrary functionals

The continuous formulation for the variation of an arbitrary functional formulated on
multiple scales from Eq. (6.7) can be transferred to its discrete counterpart using discretised
sensitivity relations and sensitivity operators from Eq. (6.17) and Eq. (6.16), respectively.
Its final form results to

𝑓 ′ =
𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑠
𝛿𝑠 +

𝜕𝑓

𝜕𝑣
𝛿𝑣 +

𝜕𝑓

𝜕𝑠
𝛿𝑠

=
𝜕𝑓

𝜕𝑣
𝑆 𝛿𝑠 +

𝜕𝑓

𝜕𝑣
̃︀𝑆 𝛿𝑠 +

𝜕𝑓

𝜕𝑠
𝛿𝑠 +

(︃
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑠

)︃
𝛿𝑠

=

(︃
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑠

)︃
𝛿𝑠 +

(︃
𝜕𝑓

𝜕𝑣
̃︀𝑆 +

𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑠

)︃
𝛿𝑠,

(6.19)
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and can be used for derivations and evaluations of several objective or constraint functionals
on multiple scales, especially of their gradients or general sensitivity information, within
frameworks for multiscale structural optimisation.

Table 6.3: Overview of macroscopic and microscopic parameters. Quantities connected to
a single scale exclusively are indicated by (·)* for macro- and by (·)* for microscopic scale.

Continuous Discrete cf. Eq.

Parameters: macro (·), micro (·)

state 𝑣, 𝑣 𝑣 , 𝑣 6.2, 6.8

design (mesh level) 𝑠, 𝑠, (𝑋,𝑋) 𝑠, 𝑠, (𝑋,𝑋) 6.2, 6.8

state variation 𝛿𝑣, 𝛿𝑣 𝛿𝑣 , 𝛿𝑣 6.2, 6.8

design variation
(mesh level)

𝛿𝑠, 𝛿𝑠, (𝛿𝑋, 𝛿𝑋) 𝛿𝑠, 𝛿𝑠, (𝛿𝑋, 𝛿𝑋) 6.2, 6.8

multilevel design ̂︀𝑠 =

⎡⎣𝑠
𝑠

⎤⎦, ̂︀𝑋 =

⎡⎣𝑋
𝑋

⎤⎦ ̂︀𝑠 =
⎡⎣𝑠
𝑠

⎤⎦, ̂︀𝑋 =

⎡⎣𝑋
𝑋

⎤⎦

multilevel design
variation

𝛿̂︀𝑠 =

⎡⎣𝛿𝑠
𝛿𝑠

⎤⎦, 𝛿 ̂︀𝑋 =

⎡⎣𝛿𝑋
𝛿𝑋

⎤⎦ 𝛿̂︀𝑠 =
⎡⎣𝛿𝑠
𝛿𝑠

⎤⎦, 𝛿 ̂︀𝑋 =

⎡⎣𝛿𝑋
𝛿𝑋

⎤⎦ 6.5, 6.17
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Table 6.4: Overview of macroscopic and microscopic tangent stiffness and pseudo load
as well as sensitivity operators on multiple scales. Quantities connected to a single scale
exclusively are indicated by (·)* for macro- and by (·)* for microscopic scale.

Continuous Discrete cf. Eq.

Physical residual forms

macro* 𝑅(𝑣, 𝑠, 𝑣, 𝑠;𝜂) 𝑅(𝑣 , 𝑠, 𝑣 , 𝑠;𝜂) 6.2, 6.9

micro* 𝑅(𝑣, 𝑠;𝜂) 𝑅(𝑣 , 𝑠;𝜂) 5.28, 5.46

Stiffness operators

macro* 𝑘(𝑣, 𝑠, 𝑣, 𝑠;𝜂, 𝛿𝑣) 𝐾 = 𝜕𝑅/𝜕𝑣 6.4, 6.10

multilevel ̃︀𝑘(𝑣, 𝑠, 𝑣, 𝑠;𝜂, 𝛿𝑣) ̃︀𝐾 = 𝜕𝑅/𝜕𝑣 6.4, 6.12

micro* 𝑘(𝑣, 𝑠;𝜂, 𝛿𝑣) 𝐾 = 𝜕𝑅/𝜕𝑣 5.30, 5.47

Pseudo load operators

macro* 𝑝(𝑣, 𝑠, 𝑣, 𝑠;𝜂, 𝛿𝑠) 𝑃 = 𝜕𝑅/𝜕𝑋 6.4, 6.11

multilevel (partial) ̃︀𝑝(𝑣, 𝑠, 𝑣, 𝑠;𝜂, 𝛿𝑠) ̃︀𝑃 = 𝜕𝑅/𝜕𝑋 6.4, 6.13

multilevel (total) 𝑝(𝑣, 𝑠, 𝑣, 𝑠;𝜂, 𝛿𝑠) 𝑃 = d𝑅/d𝑋 = ̃︀𝐾𝑆 + ̃︀𝑃 6.17

effective ̂︀𝑃 = d𝑅/d̂︀𝑋 =
[︁
𝑃 𝑃

]︁
6.17

micro* 𝑝(𝑣, 𝑠;𝜂, 𝛿𝑠) 𝑃 = 𝜕𝑅/𝜕𝑋 5.31, 5.48

Sensitivity operators

macro* 𝑠(𝑣, 𝑠, 𝑣, 𝑠; 𝛿𝑠) 𝑆 = d𝑣/d𝑋 = −𝐾−1
𝑃 6.6, 6.16

multilevel ̃︀𝑠(𝑣, 𝑠, 𝑣, 𝑠; 𝛿𝑠) ̃︀𝑆 = d𝑣/d𝑋 = −𝐾−1̂︀𝑃 6.6, 6.16

effective ̂︀𝑠(𝑣, 𝑠, 𝑣, 𝑠; 𝛿̂︀𝑠) ̂︀𝑆 = d𝑣/d̂︀𝑋 =
[︁
𝑆 ̃︀𝑆 ]︁

6.6, 6.16

micro* 𝑠(𝑣, 𝑠; 𝛿𝑠) 𝑆 = d𝑣/d𝑋 = 𝐾−1𝑃 5.32, 5.51

6.4 Explicit formulations for multiscale sensitivity analysis

In this section explicit representations for introduced residual and tangent forms on
multiple scales are derived. Relations for sensitivity analysis on the microscale are followed
by relations for sensitivity analysis on the macroscale and are completed by sensitivity
relations for effective parameters, i.e. for homogenised stresses.

6.4.1 Sensitivity analysis on the microscale

The consequence of the arguments in the introduction of this chapter, which state, that
the solution of each microscopic BVP in terms of the physical behaviour contributes to
the overall global macroscopic sensitivity information, is the necessity of performance of
several sensitivity analyses in discretised sense in each macroscopic integration point 𝑝
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of each macroscopic element 𝑒 individually. The required sensitivity analysis for each
microscopic BVP is carried out analogously to the procedure for sensitivity analysis on
single scales, which is described in Chapter 5 in detail.

The solution of stated microscopic BVPs is based on the solution of the weak form of
equilibrium, stated in Eq. (5.28). Therefore, a Newton solution scheme in terms of boundary
conditions formulated for the solution of optimisation problem of homogenisation, outlined
in Algorithm 4.1, is referred to and requires a consistent linearisation of the physical
residual. Following the sequence of steps presented in Section 5.3.1 in the continuous,
and especially in Section 5.4.1 in the discrete sense, results in the discretised physical
residual vector in Eq. (5.46) and the physical stiffness matrix in Eq. (5.47). Explicit
formulations for mentioned residual and stiffness operators are introduced in Section 5.6
and are summarised here to confirm their choice and to avoid confusion. The discretisation
of the residual vector in terms of the first Piola-Kirchhoff stress P and the deformation
gradient F reads

𝑅(𝑣ℎ,𝑋ℎ;𝜂ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

P : F′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉 =

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝜂𝑇𝑖 𝑅
𝑒
𝑖 = 𝜂𝑇𝑅, (6.20)

with the contribution of the element residual vector

𝑅𝑒
𝑖 =

ˆ
𝒦𝑒

𝑃 K𝐿𝑖 d𝑉. (6.21)

The principle of scale separation introduced in Fig. 4.1 and the affiliated characteristic of
different length scales explained in Section 4.3.1 cause the omission of external contributions
in terms of body loads and tractions on the surface. The physical stiffness operator or
stiffness matrix, respectively, is obtained from

𝑘(𝑣ℎ,𝑋ℎ;𝜂ℎ,𝛿𝑣ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

F′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) : A : F′

𝑣(𝑣𝑒
ℎ, 𝛿𝑣

𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝐾
𝑒
𝑖𝑗𝛿𝑣 𝑗 = 𝜂𝑇𝐾𝛿𝑣 ,

(6.22)

with its discretised counterpart for the element stiffness matrix

𝐾𝑒
𝑖𝑗 =

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖𝐴𝐵𝑣𝑗 d𝑉. (6.23)

The last missing part within the presented solution scheme is the specification of used
constitutive laws. Beside the hyperelastic St. Venant-Kirchhoff material model, several
other Green elastic constitutive models like Ogden- or Mooney-Rivlin-type material can
be taken into account. Within the presented work, the Neo-Hookean material formulation
is chosen, which is characterised by the following strain energy function

𝑊 (𝐼𝐶 , 𝐽𝐹 ) =
1

2
𝜇
(︀
𝐼𝐶 − 𝑛𝑑 − 2 ln𝐽𝐹

)︀
+

1

2
𝜆 (𝐽𝐹 − 1)

2
, (6.24)
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with 𝐼𝐶 = tr(C) = tr(F𝑇F) being the first invariant of the Cauchy-Green deformation
tensor C, the Jacobian of the deformation gradient 𝐽𝐹 = det F, the Lamé constants 𝜆 and
𝜇, and the dimension of the problem 𝑛𝑑. Corresponding stresses P in tensorial and index
notation are evaluated from

P = 𝜇
(︁
F− F−𝑇

)︁
− 𝜆𝐽𝐹 (𝐽𝐹 − 1) F−𝑇 ,

𝑃𝑖𝑗 = 𝜇
(︀
𝐹𝑖𝑗𝐹

−1
𝑗𝑖

)︀
− 𝜆𝐽𝐹 (𝐽𝐹 − 1)𝐹−1

𝑗𝑖 .
(6.25)

The corresponding constitutive tensor A and its index representation is evaluated from

A = 𝜇 I⊗ I + 𝜆
(︀
2 𝐽2

𝐹 − 𝐽𝐹
)︀
F−𝑇 ⊗ F−𝑇 +

[︀
𝜇− 𝜆

(︀
𝐽2
𝐹 − 𝐽𝐹

)︀]︀
F−𝑇 ⊗ F−1,

𝐴𝑖𝑗𝑘𝑙 = 𝜇 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝜆
(︀
2 𝐽2

𝐹 − 𝐽𝐹
)︀
𝐹−1
𝑗𝑖 𝐹−1

𝑙𝑘 +
[︀
𝜇− 𝜆

(︀
𝐽2
𝐹 − 𝐽𝐹

)︀]︀
𝐹−1
𝑙𝑖 𝐹−1

𝑗𝑘 .
(6.26)

Beside the obtained solution for the state parameter 𝑣 , homogenised or effective parameters
are also prerequisites for the solution of the stated BVP and upcoming sensitivity analysis.
The design variation of the weak form of the residual leads to the tangent pseudo load
operator in Eq. (5.31) or Eq. (5.48) in the discretised sense. The explicit form

𝑝(𝑣ℎ,𝑋ℎ;𝜂ℎ,𝛿𝑋ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

P : F′′
𝑣𝑠(𝑣

𝑒
ℎ,𝜂

𝑒
ℎ,𝛿𝑋

𝑒
ℎ) + F′

𝑣(𝑣𝑒
ℎ,𝜂

𝑒
ℎ) : A : F′

𝑠(𝑣
𝑒
ℎ,𝛿𝑋

𝑒
ℎ)

+ P : F′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) Div 𝛿𝑋𝑒

ℎ d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝑃
𝑒
𝑖𝑗𝛿𝑋𝑗 = 𝜂𝑇𝑃 𝛿𝑋

(6.27)

has to be evaluated in the current state 𝑣 for the element pseudo load matrix and reads

𝑃 𝑒
𝑖𝑗 =

ˆ
𝒦𝑒

𝐵𝑇
𝑣𝑖𝐴𝐵𝑠𝑗 − 𝑃 K𝐿𝑗𝐿

𝑇
𝑖 + 𝑃 K𝐿𝑖𝐿

𝑇
𝑗 d𝑉. (6.28)

The obtained global tangent operators, i.e. assembled matrices 𝐾 and 𝑃 , are finally used
to evaluate the sensitivity relation in Eq. (5.51) on global microscopic system level and
yield the sensitivity of the microscopic state

𝑆 = −𝐾−1𝑃 . (6.29)

The resulting matrix 𝑆 represents the sensitivity matrix with the sensitivity information
of the microscopic state parameter in the current integration point 𝑝 in current element 𝑒
and contributes to parts of the sensitivity information of the corresponding macroscopic
element, i.e. to the total multilevel pseudo load 𝑃 from Eq. (6.17) on the upper scale.

Sensitivity of the microscopic physical state for periodic materials

A wide range of common materials used in real world mechanical structures and con-
structions is characterised by periodical properties. For the class of periodic materials
it is possible to find representative subsets, the so-called unit cells or RVEs introduced
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in Section 4.3.1, which represent the typical structural properties of the material on
average. By definition, the periodicity condition allows to copy the specified unit cell in
all spatial directions and to obtain statistically representative material properties in each
macroscopic material point. From mechanical point of view, promising results for the
analysis of structural behaviour can be obtained by methods, which take the mentioned
periodicity properties into account. In the case of computational homogenisation and FE2

methods this requirement is fulfilled by the application of periodic boundary conditions
on the microscale, which reflect the materials response in the most realistic way.

Due to the practical relevance and despite the introduction of three different types of
boundary conditions I = {D, P, S} on the microscale in Section 4.3.3 and Section 4.4.2,
the focus of following investigations and numerical studies lies on the application of the
formulation for periodic boundary conditions (P). Nevertheless, all types are implemented
and available in the in-house Matlab code MAnO. The formulations for linear displace-
ments (D) and uniform tractions (S) can be used for the estimation of upper and lower
bounds for homogenised effective parameters but are omitted for the design sensitivity
analysis and the multiscale optimisation.

Similar to assumptions for multiscale structural analysis in terms of periodic boundary
conditions on the microscale, also for the design sensitivity analysis it is important to
define pairs of contributions on positive and negative boundaries 𝜕𝒦+ and 𝜕𝒦− of the
microscopic domain. For each pair, the periodicity condition J𝛿𝑣bK = 0 with the jump
notation J𝛿𝑣bK = 𝛿𝑣+b − 𝛿𝑣−b is required for the proper evaluation of the sensitivity matrix
𝑆 given in Eq. (6.29).

A methodology for the consideration of the periodicity condition in terms of structural
analysis and the periodic boundary fluctuations model is introduced in [178] and can be
adopted for the design sensitivity analysis. The following discretisation of state and design
parameters and of corresponding variations

𝑣 =

⎡⎣ 𝑣 i
𝑣+
𝑣−

⎤⎦ , 𝛿𝑣 =

⎡⎣ 𝛿𝑣 i
𝛿𝑣+
𝛿𝑣−

⎤⎦ , 𝑋 =

⎡⎣𝑋i
𝑋+

𝑋−

⎤⎦ , 𝛿𝑋 =

⎡⎣ 𝛿𝑋i
𝛿𝑋+

𝛿𝑋−

⎤⎦ , (6.30)

refers contribution in the inner domain (·)i, on the positive boundary (·)+ and the negative
boundary (·)− of the domain. This discretisation affects the representation of the total
variation of the microscopic residual in Eq. (5.50) and yields

𝑅′ =

⎡⎢⎣𝐾ii 𝐾i+ 𝐾i−

𝐾+i 𝐾++ 𝐾+−

𝐾−i 𝐾−+ 𝐾−−

⎤⎥⎦
⎡⎢⎣ 𝛿𝑣 i

𝛿𝑣+

𝛿𝑣−

⎤⎥⎦+

⎡⎢⎣ 𝑃 ii 𝑃 i+ 𝑃 i−

𝑃+i 𝑃++ 𝑃+−

𝑃−i 𝑃−+ 𝑃−−

⎤⎥⎦
⎡⎢⎣ 𝛿𝑋i

𝛿𝑋+

𝛿𝑋−

⎤⎥⎦ = 0. (6.31)

Due to the square characteristic of RVEs, design modifications on the boundary are not
feasible and the variations 𝛿𝑋+ and 𝛿𝑋− vanish. Consequently, the pseudo load matrix 𝑃
reduces to the first column. Considering the periodicity condition, unknowns are coupled
and the final system of equations is reduced to[︃

𝐾ii 𝐾i+ +𝐾i−

𝐾+i +𝐾−i 𝐾++ +𝐾+− +𝐾−+ +𝐾−−

]︃[︃
𝛿𝑣 i

𝛿𝑣+

]︃
+

[︃
𝑃 ii

𝑃+i + 𝑃−i

]︃ [︀
𝛿𝑋i

]︀
= 0. (6.32)
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After the solution for the variations on the positive boundary of the microscopic domain 𝛿𝑣+,
the variations in the inner domain 𝛿𝑣 i are determined. The aforementioned assumptions
provide the variations on the negative boundary, i.e. 𝛿𝑣− = 𝛿𝑣+ and thus, 𝑆− = 𝑆+ holds
true. The final overall sensitivity relation for the microscopic state parameter solved in
terms of periodic boundary conditions reads⎡⎣ 𝛿𝑣 i

𝛿𝑣+
𝛿𝑣−

⎤⎦ =

⎡⎣ 𝑆i
𝑆+
𝑆−

⎤⎦ [︀𝛿𝑋i
]︀

(6.33)

with the explicit entries of the sensitivity matrix 𝑆

𝑆+ = −
[︀
𝐾4 −𝐾2𝐾

−1
2 𝐾3

]︀−1 [︀
𝑃 2 −𝐾2𝐾

−1
1 𝑃 1

]︀
, 𝑆i = − [𝐾1]

−1
[𝐾3 𝑆+ + 𝑃 1] . (6.34)

For notational simplicity, the following abbreviations are introduced

𝐾1 = 𝐾ii, 𝐾3 = 𝐾+i +𝐾−i,

𝐾2 = 𝐾i+ +𝐾i−, 𝐾4 = 𝐾++ +𝐾+− +𝐾−+ +𝐾−−,

𝑃 1 = 𝑃 ii, 𝑃 2 = 𝑃+i + 𝑃−i.

(6.35)

The coefficient matrices 𝒮1 and 𝒮2 introduced in Eq. (4.26) for the general form of
boundary conditions can be used to obtain the solution of the sensitivity relation for the
microscopic state parameter in a similar fashion. The required variation of the microscopic
residual can be initiated by

𝑅′ =

[︃
𝐾aa 𝐾ab 𝒮𝑇1

𝒮1𝐾ba 𝒮1𝐾bb 𝒮𝑇1

]︃[︃
𝛿𝑣a

𝒮1 𝛿𝑣b

]︃
+

[︃
𝑃 aA

𝒮1 𝑃 bA

]︃ [︀
𝛿𝑋A

]︀
= 0, (6.36)

and has to be solved for the state variation on the positive boundary of the domain
𝛿𝑣+ = 𝒮1 𝛿𝑣b and 𝛿𝑣a. The individual components can be related to the prior derivation,
i.e. 𝐾1 = 𝐾aa,𝐾2 = 𝒮1𝐾ba,𝐾3 = 𝐾ab 𝒮𝑇1 ,𝐾4 = 𝒮1𝐾bb 𝒮𝑇1 for the stiffness matrix,
𝛿𝑣 i = 𝛿𝑣a for the state variation in the inner domain, 𝑃 1 = 𝑃 aA,𝑃 2 = 𝒮1 𝑃 bA for the
pseudo load matrix and 𝛿𝑋i = 𝛿𝑋A for the design variation. This representation allows
the negligence of the (+,−) notation within the determination of the sensitivity matrix 𝑆
and suits the notation provided in the presented work.

6.4.2 Sensitivity analysis on the macroscale

Schematically and beside some modifications in terms of micro-macro notation, the
methodology for the derivation of sensitivity information on the macroscale is similar to
the procedure on the micro scale. Relevant differences are accentuated in the following.
The derivation is based on the macroscopic weak form of equilibrium stated in Eq. (6.2)
with an extended list of arguments compared to single scales and requires consistent
linearisations with respect to state and design parameters affiliated to both referred scales,
i.e. with respect to parameters {𝑣,𝑋,𝑣,𝑋}. Continuous derivations are already presented
in Section 6.2.1 and the discrete counterparts can be referred to in Section 6.3. The explicit



6.4 Explicit formulations for multiscale sensitivity analysis 105

discretisation of the macroscopic residual vector in terms of the macroscopic deformation

gradient F and now, in terms of effective or homogenised stresses PI =
1

𝑉

ˆ
𝒦

P d𝑉

according to statements and relations for numerical homogenisation techniques presented
in Section 4.3, reads

𝑅(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

PI : F
′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉 − 𝐹 (𝑋

𝑒

ℎ,𝜂
𝑒
ℎ)

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝜂𝑇𝑖 𝑅
𝑒

𝑖 = 𝜂𝑇 𝑅.

(6.37)

The relation in Eq. (6.37) contains the contribution of the element residual vector

𝑅
𝑒

𝑖 =

ˆ
𝒦𝑒
𝑃 K,I 𝐿𝑖 d𝑉 − 𝐹 𝑒

𝑖 (𝑋), (6.38)

and 𝐹 (𝑋
𝑒

ℎ,𝜂
𝑒
ℎ) or 𝐹

𝑒

𝑖 (𝑋), which both represent the contribution of external loads on the
macroscale. The discretisation of external contributions is realised using the relation
introduced in Eq. (5.90) and adapted for macroscopic notation, i.e.

𝐹
𝑒

𝑖 (𝑋) =

ˆ
𝒦𝑒

𝑁𝑖𝑏 d𝑉. (6.39)

The design sensitivity analysis is based on the solution of the stated macroscopic BVP
obtained from the application of the Newton-type method presented in Algorithm 6.2.

The total variation of the residual form in Eq. (6.2) contains partial variations with
respect to all introduced parameters in the argument list, i.e. with respect to {𝑣,𝑋,𝑣,𝑋}
and therefore, it reads 𝑅

′
= 𝑅

′
𝑣 + 𝑅

′
𝑠 + 𝑅

′
𝑣 + 𝑅

′
𝑠. All four contributions can be extracted

from the total variation of Eq. (6.37)

𝛿𝑅(𝑣,𝑋,𝑣,𝑋;𝜂) = 𝛿

ˆ
𝒦

PI : F
′
𝑣(𝑣,𝜂) d𝑉 − 𝐹

′
𝑋(𝑋;𝜂, 𝛿𝑋)

=

ˆ
ℛ

𝛿
[︁
PI : F

′
𝑣(𝑣,𝜂) 𝐽𝐾

]︁
d𝑉𝜃 − 𝐹

′
𝑋(𝑋;𝜂, 𝛿𝑋)

=

ˆ
ℛ

[︁(︁
𝛿PI : F

′
𝑣 + PI : 𝛿F

′
𝑣

)︁
𝐽𝐾 + PI : F

′
𝑣(𝑣,𝜂) 𝛿𝐽𝐾

]︁
d𝑉𝜃

− 𝐹
′
𝑋(𝑋;𝜂, 𝛿𝑋).

(6.40)

Here, the total variation (or mixed variation) of the variation of the deformation gradient
𝛿F

′
𝑣 as well as the variation of the Jacobian 𝛿𝐽𝐾 are provided from sensitivity analysis on

single scales.
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Algorithm 6.2 Newton-type method: solution procedure for nonlinear equations.

1: procedure Solve nonlinear equation
2: set {𝑣 , 𝑣} ← 0 ◁ set or compute appropriate initial values
3: for 𝑖𝐿 ← 1,𝑛𝐿 do ◁ loop over macroscopic load steps

4: get 𝜆𝐿 = 𝑖𝐿 ·
1

𝑛𝐿
◁ get macroscopic load scale

5: set 𝑖𝑡 = 0, convergence = false ◁ start Newton iteration
6: while convergence = false and 𝑖𝑡 < 𝑖𝑡max do
7: // Assemble vector of internal forces and tangent of discretised RVE
8: {𝑅 int,𝐾} ← assemble(𝑣 𝑖𝑡, 𝑣 𝑖𝑡, 𝜆𝐿) ◁ in terms of {𝑃 K,𝐴}

9: // Compute overall residual for current load step
10: 𝑅 = 𝑅 int − 𝜆𝐿𝐹

11: // Compute increment
12: 𝐾𝛥𝑣 𝑖𝑡 = −𝑅 ◁ solve linear system of global equations

13: // Update state variable
14: 𝑣 𝑖𝑡+1 = 𝑣 𝑖𝑡 + 𝛥𝑣 𝑖𝑡

15: // Check convergence

16: ||𝑅 int(𝑣 𝑖𝑡+1)− 𝜆𝐿𝐹 ||𝐿2

{︃
if > 𝑇𝑂𝐿𝑣 than 𝑖𝑡← 𝑖𝑡 + 1

if ≤ 𝑇𝑂𝐿𝑣 than conv = true
17: end while ◁ end Newton iteration
18: end for ◁ loop over macroscopic load steps
19: end procedure

From Eq. (5.16) and Remark 5.2 one obtains

𝛿F
′
𝑣 = F

′′
𝑣 𝑠 = −Grad 𝛿𝑣 Grad 𝛿𝑋 and

𝛿𝐽𝐾 = 𝐽𝐾 K
−𝑇

: GRAD 𝛿𝑋 = 𝐽𝐾 Div 𝛿𝑋,
(6.41)

where the rule A : B = B𝑇A : I for the transformation of the divergence operator is
used, i.e. Div 𝛿𝑋 = GRAD 𝛿𝑋 K

−1
: I = K

−𝑇
: GRAD 𝛿𝑋. The major difference

in comparison to sensitivity analysis on single scales is the total variation of stresses,
especially here of the homogenised stresses PI, which contains following partial variations

𝛿PI = (PI)
′
𝑣 + (PI)

′
𝑠 + (PI)

′
𝑣 + (PI)

′
𝑠 =

𝜕PI

𝜕𝑣
𝛿𝑣 +

𝜕PI

𝜕𝑋
𝛿𝑋 +

𝜕PI

𝜕𝑣
𝛿𝑣 +

𝜕PI

𝜕𝑋
𝛿𝑋. (6.42)
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Inserting the obtained relations in Eq. (6.40), an appropriate rearranging leads to

𝛿𝑅(𝑣,𝑋,𝑣,𝑋;𝜂) =

ˆ
𝒦

(PI)
′
𝑣 : F

′
𝑣 d𝑉

+

ˆ
𝒦

(PI)
′
𝑠 : F

′
𝑣 + PI : F

′′
𝑣 𝑠 + PI : F

′
𝑣 Div 𝛿𝑋 d𝑉 − 𝐹

′
𝑋

+

ˆ
𝒦

(PI)
′
𝑣 : F

′
𝑣 d𝑉

+

ˆ
𝒦

(PI)
′
𝑠 : F

′
𝑣 d𝑉.

(6.43)

The physical stiffness operator or stiffness matrix, respectively, which is necessary for the
solution of the stated non-linear equation for equilibrium using a Newton-type method
presented in Algorithm 6.2 is obtained from the variation of the physical residual with
respect to the macroscopic state 𝑣. The first integral in Eq. (6.43) in terms of the variation
of stresses (PI)

′
𝑣 = AI : F

′
𝑣(𝑣𝑒

ℎ, 𝛿𝑣
𝑒
ℎ) with respect to the macroscopic state can be identified

as the macroscopic tangent stiffness operator 𝑘 from Eq. (6.4) and reads

𝑘(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ,𝛿𝑣ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

F
′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) : AI : F

′
𝑣(𝑣𝑒

ℎ, 𝛿𝑣
𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝐾
𝑒

𝑖𝑗 𝛿𝑣 𝑗 = 𝜂𝑇 𝐾𝛿𝑣 ,

(6.44)

with its discretised counterpart for the element stiffness matrix

𝐾
𝑒

𝑖𝑗 =

ˆ
𝒦𝑒
𝐵𝑇

𝑣𝑖 𝐴I𝐵𝑣𝑗 d𝑉. (6.45)

Incorporated material properties in terms of AI or 𝐴I are obtained according to homogeni-
sation principles presented in Section 4.3 and therefore, AI = 𝜕F PI or 𝐴I = 𝜕F 𝑃 K,I, cf.
Eq. (4.12) and Eq. (4.31), respectively, and replace the evaluation of a classical constitutive
law formulated for single scale problems.

The second integral can be directly connected to the macroscopic tangent pseudo load
operator 𝑝 from Eq. (6.4) and has a similar structure to the pseudo load operator within
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the sensitivity analysis on single scales, cf. Eq. (5.87), i.e.

𝑝(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑋ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

[︁
PI : F

′′
𝑣 𝑠(𝑣

𝑒
ℎ,𝜂

𝑒
ℎ,𝛿𝑋

𝑒

ℎ)

+ F
′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) : AI : F

′
𝑠(𝑣

𝑒
ℎ, 𝛿𝑋

𝑒

ℎ)

+ PI : F
′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) Div 𝛿𝑋

𝑒

ℎ

]︁
d𝑉

− 𝐹
′
𝑠(𝑋

𝑒

ℎ;𝜂𝑒
ℎ, 𝛿𝑋

𝑒

ℎ)

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝑃
𝑒

𝑖𝑗 𝛿𝑋𝑗 = 𝜂𝑇 𝑃 𝛿𝑋.

(6.46)

The discretised counterpart for the element pseudo load matrix is evaluated from

𝑃
𝑒

𝑖𝑗 =

ˆ
𝒦𝑒
𝐵𝑇

𝑣𝑖𝐴I𝐵𝑠𝑗 − 𝑃 KI𝐿𝑗𝐿
𝑇
𝑖 + 𝑃 KI𝐿𝑖𝐿

𝑇
𝑗 d𝑉 − (𝐹

′
𝑋)𝑖𝑗(𝑋). (6.47)

The approximation of (𝐹
′
𝑋)𝑖𝑗 , i.e. the approximation for divergence operators, yields

(𝐹
′
𝑋)𝑖𝑗(𝑋) =

ˆ
𝒦𝑒

𝑁𝑖 𝑏𝐿
𝑇
𝑗 d𝑉. (6.48)

The last two terms in Eq. (6.43) contain partial variations of the macroscopic physical
residual with respect to microscopic state and design parameters, i.e. with respect to 𝑣
and 𝑋 and can be identified with the multilevel stiffness operator ̃︀𝑘 and the multilevel
tangent pseudo load operator ̃︀𝑝, both introduced in Eq. (6.4). The corresponding assembly
procedure for the multilevel stiffness operator yields

̃︀𝑘(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑣ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

(PI)
′
𝑣 : F

′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖
̃︀𝐾𝑒

𝑖𝑗 𝛿𝑋𝑗 = 𝜂𝑇 ̃︀𝐾 𝛿𝑋

(6.49)

with its element contribution

̃︀𝐾𝑒

𝑖𝑗 =

ˆ
𝒦𝑒
𝐵𝑇

𝑣𝑖(𝑃 KI)
′
𝑣 d𝑉 (6.50)
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and for the multilevel pseudo load operator

̃︀𝑝(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑋ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

(PI)
′
𝑋 : F

′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖
̃︀𝑃 𝑒

𝑖𝑗 𝛿𝑋𝑗 = 𝜂𝑇 ̃︀𝑃 𝛿𝑋

(6.51)

with its element contribution

̃︀𝑃 𝑒

𝑖𝑗 =

ˆ
𝒦𝑒
𝐵𝑇

𝑣𝑖 (𝑃 KI)
′
𝑋 d𝑉. (6.52)

Necessary variations of effective stresses, i.e. variations of homogenised stresses in vector
notation (𝑃 KI)

′
𝑣 and (𝑃 KI)

′
𝑋 , can be connected to the sensitivity of the micro-macro

coupling scheme within homogenisation and are derived in the following section.

6.4.3 Sensitivity analysis of effective parameters

To obtain the full formulation of the total variation of the macroscopic weak form of
equilibrium from Section 6.4.2, variations of homogenised stresses are required and are
derived in this section. In the following, variations with respect to all microscopic
parameters are also indicated by the compact notation using the index mic, i.e. (·)′mic =
(·)′𝑣 + (·)′𝑠, and therefore, the partial variations are also expressed by

𝑅
′
mic = 𝑅

′
𝑣 +𝑅

′
𝑠 =

ˆ
𝒦

[︀
(PI)

′
𝑣 + (PI)

′
𝑠

]︀
: F

′
𝑣(𝑣,𝜂) d𝑉 =

ˆ
𝒦

(PI)
′
mic : F

′
𝑣(𝑣,𝜂) d𝑉. (6.53)

In accordance to the minimisation problem of homogenisation, presented in Eq. (4.9) in
terms of the Lagrange formalism and deduced homogenised stresses in Eq. (4.13), effective
stresses PI explicitly depend on the Lagrange multiplier 𝜆I and their variation reads

(PI)
′
mic(𝜆I) =

𝜕PI

𝜕𝜆I
(𝜆I)

′
mic =

𝜕PI

𝜕𝜆I
[(𝜆I)

′
𝑣 + (𝜆I)

′
𝑠] . (6.54)

This relation can be connected to the sensitivity of the micro-macro coupling condition.
The sensitivity of the Lagrange multiplier 𝜆I has to be investigated. Referring the solution
scheme on the lower scale and corresponding Euler-Lagrange equations in Eq. (4.28), in the
solution point of stated microscopic BVP the obtained Lagrange multiplier 𝜆I, especially
directly in the case of linear displacements (D) for boundary conditions, corresponds
to resulting reaction forces or the external part of the residual on the surface of the
underlying RVE scaled by the value of the microscopic volume. For different types of
boundary conditions, like periodic displacements (P) or uniform tractions (S), the resulting
sensitivity relations have to be adapted. As a consequence, the following relation holds
true

𝑉 𝒮𝑇1 𝜆I = 𝑅ext
b = 𝑅int

b . (6.55)
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Correct results for reaction forces and therefore, for their sensitivity information can only
be guaranteed for an equilibrium state obtained with respect to a required and sufficient
precision. The total variation with respect to microscopic parameters yield, due to constant
volume 𝑉 and constant boundary conditions matrix 𝒮1, the statement

𝑉 𝒮𝑇1 (𝜆I)
′
mic = (𝑅ext

b )′mic = (𝑅int
b )′mic = (𝑅int

b )′𝑣 + (𝑅int
b )′𝑠. (6.56)

It is sufficient to consider variations of the internal part of the physical residual 𝑅int on
the surface or boundary of the RVE and to connect them with variations of the external
part of the residual 𝑅ext or directly with the sensitivity of the Lagrange multiplier 𝜆I. The
required total variation in terms of reaction forces is introduced in Section 5.7.3, especially
in Eq. (5.117), and reads(︀

𝑅ext
b
)︀′

mic
= (𝑅int

b )′𝑣 + (𝑅int
b )′𝑠 = 𝐾 int

ba 𝛿𝑣a + 𝑃 int
b 𝛿𝑋, (6.57)

or in terms of the total variation with respect to the design parameters(︀
𝑅ext

b
)︀′

=
[︀
𝐾 int

ba 𝑆a + 𝑃 int
b
]︀
𝛿𝑋. (6.58)

Partial variations can be identified with

(𝑅int
b )′𝑣 =

𝜕(𝑅int
b )

𝜕𝑣
𝛿𝑣 = 𝐾 int

ba 𝛿𝑣a and (𝑅int
b )′𝑠 =

𝜕(𝑅int
b )

𝜕𝑋
𝛿𝑋 = 𝑃 int

b 𝛿𝑋. (6.59)

Finally, the total design variation of the Lagrange multiplier for alternative boundary
conditions I = {D, P, S} is obtained from

𝑉 𝒮𝑇1 (𝜆I)
′ =

[︀
𝐾 int

ba 𝑆a + 𝑃 int
b
]︀
𝛿𝑋. (6.60)

The chosen homogenisation approach requires the incorporation of the obtained sensi-
tivity information into the context of homogenised stresses in Eq. (4.31) and formulated
boundary conditions presented in Section 4.3.3 and Section 4.4.2. The variation of effective
stresses directly is presented in Eq. (6.54). In the computational sense, they are adapted
for different boundary conditions and are computed using the general formulation of the
boundary conditions matrix 𝒮2, i.e. 𝑃 K,I(𝜆I) = 𝒮𝑇2 𝜆I. In comparison to Eq. (6.54), the
boundary conditions matrix 𝒮2 can be identified with the partial derivative of effective
stresses with respect to the Lagrange multiplier 𝜆I. Due to the fact that 𝒮2 is constant
for all introduced types of boundary conditions, the variation of homogenised stresses
contains only the variation of 𝜆I and therefore, its final form result to

(𝑃 K,I)
′
mic = 𝒮2(𝜆I)

′ =
1

𝑉
𝒮2 𝒮−𝑇

1

[︀
𝐾 int

ba 𝑆a + 𝑃 int
b
]︀
𝛿𝑋. (6.61)

The introduced notation using the index (·)′mic allows the formulation of the total multilevel
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pseudo load operator from Eq. (6.17)

𝑝(𝑣ℎ,𝑋ℎ,𝑣ℎ,𝑋ℎ;𝜂ℎ, 𝛿𝑋ℎ) =

𝑛𝑒𝑙⋃︁
𝑒=1

ˆ
𝒦𝑒

(PI)
′
mic : F

′
𝑣(𝑣𝑒

ℎ,𝜂
𝑒
ℎ) d𝑉

=

𝑛𝑒𝑙⋃︁
𝑒=1

𝑛𝑛∑︁
𝑖=1

𝑛𝑛∑︁
𝑗=1

𝜂𝑇𝑖 𝑃
𝑒

𝑖𝑗 𝛿𝑋𝑗 = 𝜂𝑇 𝑃 𝛿𝑋.

(6.62)

An appropriate discretisation yields the contribution on element level

𝑃
𝑒

𝑖𝑗 =

ˆ
𝒦𝑒
𝐵𝑇

𝑣𝑖 (𝑃 KI)
′ d𝑉. (6.63)

The following Table 6.5 summarises all relevant discrete relations for the sensitivity analysis
on multiple scales.

Table 6.5: Summary of discrete sensitivity relations and operators on multiple scales.
Quantities connected to a single scale exclusively are indicated by (·)* for the macroscopic
and by (·)* for the microscopic scale.

Discretisation cf. Eq.

Physical residual

micro* 𝑅𝑒
𝑖 =
´
𝒦𝑒 𝑃 K𝐿𝑖 d𝑉 6.21

macro* 𝑅
𝑒
𝑖 =
´
𝒦𝑒 𝑃 K,I 𝐿𝑖 d𝑉 6.38

macro* (external) 𝐹
𝑒
𝑖 =
´
𝒦𝑒 𝑁𝑖𝑏 d𝑉 6.39

Physical stiffness

micro* 𝐾𝑒
𝑖𝑗 =

´
𝒦𝑒 𝐵

𝑇
𝑣𝑖𝐴𝐵𝑣𝑗 d𝑉 6.23

macro* 𝐾
𝑒
𝑖𝑗 =

´
𝒦𝑒 𝐵𝑇

𝑣𝑖 𝐴I 𝐵𝑣𝑗 d𝑉 6.45

multilevel ̃︀𝐾𝑒

𝑖𝑗 =
´
𝒦𝑒 𝐵𝑇

𝑣𝑖(𝑃 KI)
′
𝑣 d𝑉 6.50

Pseudo load

micro* 𝑃 𝑒
𝑖𝑗 =

´
𝒦𝑒 𝐵

𝑇
𝑣𝑖𝐴𝐵𝑠𝑗 − 𝑃 K𝐿𝑗𝐿

𝑇
𝑖 + 𝑃 K𝐿𝑖𝐿

𝑇
𝑗 d𝑉 6.28

macro* 𝑃
𝑒
𝑖𝑗 =

´
𝒦𝑒 𝐵𝑇

𝑣𝑖𝐴I𝐵𝑠𝑗 − 𝑃 KI𝐿𝑗𝐿
𝑇
𝑖 + 𝑃 KI𝐿𝑖𝐿

𝑇
𝑗 d𝑉 6.47

multilevel ̃︀𝑃 𝑒

𝑖𝑗 =
´
𝒦𝑒 𝐵𝑇

𝑣𝑖 (𝑃 KI)
′
𝑋 d𝑉 6.52

multilevel (total) 𝑃
𝑒

𝑖𝑗 =
´
𝒦𝑒 𝐵𝑇

𝑣𝑖 (𝑃 KI)
′
mic d𝑉 6.63

macro* (external) (𝐹
′
𝑋)𝑖𝑗 =

´
𝒦𝑒 𝑁𝑖 𝑏𝐿

𝑇
𝑗 d𝑉 6.48

Effective parameters

Lagrange multiplier 𝑉 𝒮𝑇
1 (𝜆I)

′ =
[︀
𝐾 int

ba 𝑆a + 𝑃
int
b
]︀
𝛿𝑋 6.60

homogenised stresses (𝑃 K,I)
′
mic =

1

𝑉
𝒮2 𝒮−𝑇

1

[︀
𝐾 int

ba 𝑆a + 𝑃
int
b
]︀
𝛿𝑋 6.61
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6.5 Optimisation setup for problems on multiple scales

In this section a general setup for optimisation problems on multiple scales in terms of their
continuous and discrete representation as well as of their numerical realisation is outlined.
Modifications of notation and adaptations of formulations for single scale optimisation
problems are performed to obtain closed formulations for FE2 optimisation frameworks.

6.5.1 General formulation of the optimisation problem

The general optimisation problem with an arbitrary macroscopic objective functional 𝐽 ,
various equality and inequality constraints (ℎ, 𝑔) on the macroscale and (ℎ, 𝑔) on the
microscale, several lower and upper side constraints 𝑠l, 𝑠u on the macroscale and 𝑠l, 𝑠u on
the microscale for design parameters can be introduced in the following abstract way.

Problem 6.1 (General multiscale optimisation problem) Find {𝑣, 𝑠,𝑣, 𝑠} ∈ 𝒱 ×
𝒮 × 𝒱 × 𝒮 of the macroscopic objective functional 𝐽 : 𝒱 × 𝒮 × 𝒱 × 𝒮 → R such that

min
𝑣, 𝑠,𝑣, 𝑠∈𝒱×𝒮×𝒱×𝒮

𝐽(𝑣, 𝑠,𝑣, 𝑠) (6.64)

subject to the constraints

ℎ(𝑣, 𝑠,𝑣, 𝑠) = 0, 𝑔(𝑣, 𝑠,𝑣, 𝑠) ≤ 0, 𝑠l ≤ 𝑠 ≤ 𝑠u,

ℎ(𝑣, 𝑠) = 0, 𝑔(𝑣, 𝑠) ≤ 0, 𝑠l ≤ 𝑠 ≤ 𝑠u.
(6.65)

Here, the following vector notations are introduced: ℎ(𝑣, 𝑠,𝑣, 𝑠) for introduced macroscopic
equality constraints ℎ𝑖(𝑣, 𝑠,𝑣, 𝑠) = 0, 𝑖 ∈ ℰ, the vector notation 𝑔(𝑣, 𝑠) for introduced
macroscopic inequality constraints 𝑔𝑗(𝑣, 𝑠) ≤ 0, 𝑗 ∈ ℐ, the vector notation ℎ(𝑣, 𝑠) for
introduced microscopic equality constraints ℎ𝑖(𝑣, 𝑠) = 0, 𝑖 ∈ ℰ, and also the vector notation
𝑔(𝑣, 𝑠) for introduced microscopic inequality constraints 𝑔𝑗(𝑣, 𝑠) ≤ 0, 𝑗 ∈ ℐ. The sets of
indices for equality and inequality constraints are denoted by ℰ , ℰ , ℐ and ℐ.

6.5.2 Discrete form of the optimisation problem

Within numerical frameworks, it is necessary to formulate accurate matrix representations
of continuous relations. According to the continuous formulation of the general multiscale
optimisation Problem 6.1, the discrete form can be obtained by using discretised values
for objectives, macro- and microscopic constraints and design parameters.

Problem 6.2 (Discrete multiscale optimisation problem) Find {𝑣 , 𝑠, 𝑣 , 𝑠} ∈ 𝒱ℎ×
𝒮ℎ × 𝒱ℎ × 𝒮ℎ of the discrete macroscopic objective functional 𝐽 : 𝒱ℎ × 𝒮ℎ × 𝒱ℎ × 𝒮ℎ → R
such that

min
𝑣 , 𝑠, 𝑣 , 𝑠 ∈𝒱ℎ×𝒮ℎ×𝒱ℎ×𝒮ℎ

𝐽(𝑣 , 𝑠, 𝑣 , 𝑠) (6.66)
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subject to the constraints

ℎ(𝑣 , 𝑠, 𝑣 , 𝑠) = 0, 𝑔(𝑣 , 𝑠, 𝑣 , 𝑠) ≤ 0, 𝑠 l ≤ 𝑠 ≤ 𝑠u,
ℎ(𝑣 , 𝑠) = 0, 𝑔(𝑣 , 𝑠) ≤ 0, 𝑠 l ≤ 𝑠 ≤ 𝑠u.

(6.67)

Here, the following matrix notations are introduced: a matrix notation ℎ(𝑣 , 𝑠, 𝑣 , 𝑠) of
introduced macroscopic equality constraints ℎ𝑖(𝑣 , 𝑠, 𝑣 , 𝑠) = 0, 𝑖 ∈ ℰℎ, a matrix representa-
tion 𝑔(𝑣 , 𝑠, 𝑣 , 𝑠) of introduced macroscopic inequality constraints 𝑔𝑗(𝑣 , 𝑠, 𝑣 , 𝑠) ≤ 0, 𝑗 ∈ ℐℎ,
a matrix notation ℎ(𝑣 , 𝑠) of introduced microscopic equality constraints ℎ𝑖(𝑣 , 𝑠) = 0,
𝑖 ∈ ℰℎ, and a matrix representation 𝑔(𝑣 , 𝑠) of introduced microscopic inequality constraints
𝑔𝑗(𝑣 , 𝑠) ≤ 0, 𝑗 ∈ ℐℎ. The sets of indices for equality and inequality constraints are denoted
by ℰℎ, ℰℎ, ℐℎ and ℐℎ.

The application of the general SQP method as a solver for the stated optimisation problem,
which guarantees solutions in feasible regions with respect to the stated constraints, requires
a compact and summarising representation of all introduced macro- and microscopic
constraints and design parameters. Therefore, the following representation is introduced

Equality constraints: ̂︀ℎ (𝑣 , 𝑠, 𝑣 , 𝑠) =

[︂
ℎ
ℎ

]︂
,

Inequality constraints: ̂︀𝑔 (𝑣 , 𝑠, 𝑣 , 𝑠) =

[︂
𝑔
𝑔

]︂
,

Design parameters: ̂︀𝑠 =

[︂
𝑠
𝑠

]︂
.

(6.68)

The Lagrange function introduced in Problem 3.3 and used within SQP as well as its
gradient are modified to

ℒ(̂︀𝑠, ̂︀𝜆, ̂︀𝜇 ) = 𝐽(̂︀𝑠 ) + ̂︀𝜆𝑇 ̂︀ℎ (̂︀𝑠 ) + ̂︀𝜇𝑇 ̂︀𝑔 (̂︀𝑠 ) and ∇ℒ(̂︀𝑠, ̂︀𝜆, ̂︀𝜇 ) = 0. (6.69)

For the solution of the optimality criteria using the SQP method, a sequential solu-
tion of quadratic subproblems with a quadratic approximation of the objective func-
tional 𝐽(𝑣 , 𝑠, 𝑣 , 𝑠) and the linearisation of equality ̂︀ℎ (𝑣 , 𝑠, 𝑣 , 𝑠) and inequality constraintŝ︀𝑔 (𝑣 , 𝑠, 𝑣 , 𝑠) is required. This principle procedure in terms of the formulation of quadratic
subproblems and linearisation of constraints is also described in Problem 3.3.

6.5.3 Numerical environment for optimisation on multiple scales

The numerical iterative solution process of Problem 6.1 or Problem 6.2, respectively, with
essential and recurring steps is outlined in Fig. 6.3. The first step includes the definition of
initial structural designs on both referred scales in terms of physical models with appropriate
boundary conditions on individual scales, affiliated geometry and/or CAE-FEM models,
the definition of the mathematical optimisation model, which includes the definition of an
macroscopic objective function 𝐽 , equality and/or inequality constraints (ℎ, 𝑔) on macro-
and of (ℎ, 𝑔) on microscale, some side constraints (𝑠l, 𝑠u) on macro- and side constraints
(𝑠l, 𝑠u) on microscale and basically macro- and microscopic design parameters 𝑠 and 𝑠.
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This basic definition is followed by the first and initial structural analysis on multiple
scales in terms of numerical homogenisation or FE2 techniques. The results obtained
for the equilibrium state can be used for the evaluation of required design responses, in
terms of objective functions and constraints, and the design sensitivity analysis (DSA) for
the stated optimisation problem. The provided sensitivity information and therefore all
available gradient information serve as inputs for algorithms for mathematical optimisation
and non-linear programming (NLP) and are essential quantities to seek for a new and
updated design description. Final optimisation results can be provided as drafts to the
responsible designers and design engineers. The kernel task within the presented framework
for multiscale optimisation pictured in Fig. 6.3 is the integrated design sensitivity analysis.
Therefore, macro- and microscopic models {M,m} as well as solution states {𝑣 , 𝑣} on
both scales are required. Based on this information the tangents {𝐾,𝑃 ,𝑃} are assembled.
This assembly procedure is performed on the macroscopic element level. The sequence of
necessary steps is outlined in Algorithm 6.3 in detail. Element contributions of mentioned
tangent forms are provided within two loops, i.e. within a loop over macroscopic elements
and loop over affiliated macroscopic integration points. It has to be mentioned that the
design sensitivity analysis depends on effective and homogenised parameters in terms
of FE2. These parameters have to be solved within the integration point loop or can
alternatively be provided from stored data. In the last step obtained element contributions
have to be assembled to matrices on global level according to techniques known from
standard FEM assembly techniques.

6.5.4 Design parameters and possible combinations

The multiscale optimisation framework requires a definition of an optimisation model
with an objective function, equality and inequality constraints and design parameters.
Possible choices are already outlined in Chapter 3 and summarised in Table 3.1. Special
attention has to be paid concerning the definition of the objective function namely, the
objective function under investigation has to be formulated on the present macroscale but
in terms of macroscopic and microscopic parameters, where the formulation of equality
and inequality constraints and of design parameters is allowed on both scales. Cases and
problem formulations which deal with objective functions on the microscale exclusively
do not need the overhead of an upper scale and can be treated as optimisation problems
on single scales in terms of a macroscopic deformation as the loading case. In summary,
mandatory (X) definitions and optional combinations (X) are outlined in Table 6.6.

Table 6.6: Mandatory definitions and optional combinations in FE2 optimisation model.

Goals Restrictions Design parameters

Macroscale X X X

Microscale X X
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MANO.MSO
Start

Optimisation model and initial structural design

1: // Init macro- and microscopic models and BVPs
2: {M,m} ← initInput;
3: // Macroscopic optimisation model
4: set M.matCard ← FE2 ◁ homogenisation
5: set M.OF ◁ objective function
6: set {M.DP, M.CON, M.SCON} ◁ design and constraints
7: // Microscopic optimisation model
8: set m.matCard ← libMaterial ◁ single scale consitutive law
9: set {m.DP, m.CON, m.SCON} ◁ design and constraints

10: set m.BC← initBC ◁ boundary conditions {D,P,S}, cf. Eq. (4.26)
11: // Init solution vectors
12: {𝑣 , 𝑣} ← 0

Structural analysis: solve macroscopic BVP (cf. Fig. 4.4)

1: {𝑣 , 𝑣} ← MAnO.MSA:solve(M,m) ◁ dimensions: 𝑣 ∈ R𝑛𝑣 , 𝑣 ∈ R𝑛𝑣×𝑛IP

(𝑛IP: number of macroscopic integration points)

Design sensitivity analysis (Gradients of OF, CON and SCON)

Input: Model structures {M,m} with geometrical and technological data
Input: Macro- and microscopic solution state {𝑣 , 𝑣}

1: // Assemble tangents on macroscopic system level
2: {𝐾,𝑃 ,𝑃} ← assembleSens{M, 𝑣 ,m, 𝑣} ◁ cf. Algorithm 6.3
3: // Evaluate sensitivity of macroscopic state
4: ̂︀𝑆 =

[︁
−𝐾−1

𝑃 −𝐾−1
𝑃

]︁
=
[︁
𝑆 ̃︀𝑆]︁ ◁ cf. Eq. (6.17)

5: // Compute value for objective, gradients of objectives and constraints
6: compute 𝐽, ∇𝐽 ◁ objective
7: compute ℎ, ∇ℎ, 𝑔, ∇𝑔 ◁ macro equality and inequality constraints
8: compute ℎ, ∇ℎ, 𝑔, ∇𝑔 ◁ micro equality and inequality constraints

Mathematical optimisation

1: // Compute increments of design parameters using NLP
2: {𝛥M, 𝛥m} ← SQP(𝐽, ∇𝐽, ̂︀ℎ, ∇̂︀ℎ, ̂︀𝑔, ∇̂︀𝑔) ◁ cf. Eq. (6.68)

(e.g. using internal Matlab-function quadprog)

Update and new design (CAGD- or CAE-FEM-model, technological data)

1: M← M + 𝛥M ◁ update macroscopic design
2: m← m + 𝛥m ◁ update microscopic design

Convergence

MANO.MSO (optimal design)

End

YES

NO

Figure 6.3: Principle framework for multiscale structural optimisation (MAnO.MSO).
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Algorithm 6.3 Procedure for design sensitivity analysis on macroscopic element level.
Contributions of integration points (·)𝑒𝑝 are summarised in contributions (·)𝑒 on element
level. Element contributions are assembled to contributions on global system level (·).

Input: Model structures {M,m} with geometrical and technological data
Input: Macroscopic and microscopic solution state {𝑣 , 𝑣}
Output: Global stiffness tangent 𝐾 and global pseudo load tangents 𝑃 , 𝑃

1: procedure Assemble Element Design Sensitivity Information(M, 𝑣 ,m, 𝑣)
2: for 𝑖𝑒 ← 1,𝑛𝑒𝑙 do ◁ loop over macroscopic elements
3: for 𝑖𝑝 ← 1,𝑛IP do ◁ loop over macroscopic element integration points
4: // Get homogenised parameters
5: {𝑃 K,I,𝐴I } ← get MAnO.MSA:solve(M, 𝑣 ,m, 𝑣) ◁ cf. Algorithm 4.1

(or read results from file)
6: // Compute contributions of macroscopic tangents
7: 𝐾

𝑒 ← 𝐾𝑒

𝑖𝑝(𝑃 K,I,𝐴I) ◁ cf. Eq. (6.44)
8: 𝑃

𝑒 ← 𝑃 𝑒

𝑖𝑝(𝑃 K,I,𝐴I) ◁ cf. Eq. (6.46)

9: // Compute contributions of microscopic tangents
10: {𝐾,𝑃} ← assemble RVE(m,𝑣) ◁ overall stiffness and pseudo load

cf. Eq. (6.22) and Eq. (6.27)
11: // Evaluate sensitivity of microscopic state
12: 𝑆 = −𝐾−1𝑃 ◁ cf. Eq. (6.29)

13: // Compute sensitivity of Lagrange multiplier
14: {𝜆′I, (𝜆I)

′
𝑣, (𝜆I)

′
𝑠} ← eval (𝐾,𝑃 ,𝑆) ◁ cf. Eq. (6.60)

15: // Compute sensitivity of effective stresses

16: (𝑃 K,I)
′
𝑣 ←

𝜕𝑃 K,I

𝜕𝜆I
(𝜆I)

′
𝑣 ◁ cf. Eq. (6.61)

17: (𝑃 K,I)
′
𝑠 ←

𝜕𝑃 K,I

𝜕𝜆I
(𝜆I)

′
𝑠 ◁ cf. Eq. (6.61)

18: // Compute contributions of multilevel tangents
19: ̃︀𝐾𝑒

← ̃︀𝐾𝑒

𝑖𝑝((𝑃 K,I)
′
𝑣) ◁ cf. Eq. (6.49)

20: ̃︀𝑃 𝑒
← ̃︀𝑃 𝑒

𝑖𝑝((𝑃 K,I)
′
𝑠) ◁ cf. Eq. (6.51)

21: // Compute contributions of overall multilevel tangent
22: 𝑃

𝑒
← 𝑃

𝑒

𝑖𝑝(̃︀𝐾, ̃︀𝑃 ,𝑆) ◁ cf. Eq. (6.62)
23: end for ◁ loop over macroscopic integration points
24: end for ◁ loop over macroscopic elements
25: // Assemble tangents on macroscopic system level
26: 𝐾 ← 𝐾𝑒

, 𝑃 ← 𝑃 𝑒
, 𝑃 ← 𝑃

𝑒

27: end procedure
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6.6 Summary and concluding remarks

This chapter provides the essential steps for the material design based on variational
sensitivity. A review on the state of the art and results from literature motivate the major
topic of the presented work and emphasises the relevance.

Required sensitivity relations in continuous form are derived and formulated based
on the enhanced layout of kinematics, which is adapted with respect to the microscale
representation. The connection of sensitivity relations on the micro- and the macroscale
takes the aforementioned results for physical reaction forces and their sensitivity infor-
mation introduced in Chapter 5 into account. The Lagrange multiplier within applied
FE2 techniques can be related to reaction forces on the boundary of the RVE in an
appropriate sense. As a consequence, the design sensitivity of the reaction forces can be
related to the design sensitivity of the Lagrange multiplier and allows the formulation of a
sensitivity relation for the homogenisation condition. Together with effective parameters
the latter formulation bridges both individual scales in general, but also in the case of
design sensitivity analysis. The explicit discrete representations are composed for the
implementation into the in-house Matlab code MAnO.

In the last part of the chapter, the abstract setting for structural optimisation problems
on single scales is extended and arranged for the general layout of multiscale optimisation
problems with objective functions, constraints and design parameters on both scales.
A flow chart illustrates the final framework for numerical structural optimisation on
multiple scales. It contains the FE2 method for structural analysis, the aforementioned
design sensitivity analysis on multiple scales as well as the SQP method for mathematical
optimisation and is fully implemented in MAnO.





Chapter 7

Numerical investigations

So far, previous chapters deliver theoretical foundations for the overall framework of
computational material design. The compilation comprises formulations for structural
analysis in terms of computational homogenisation and for design sensitivity analysis based
on the variational approach, which are both combined with algorithms for mathematical
optimisation. The presented structural optimisation environment is used for an automatic
generation of designs with maximum stiffness under certain constraints.

In the following, three examples with different design parametrisation setups illustrate the
applicability of the formulated sensitivity relations and corresponding numerical aspects
from previous chapters. The stated optimisation problems focus on the minimisation of
the overall macroscopic compliance, which is directly related to the maximisation of the
overall macroscopic stiffness. In addition to some constraints for defined design parameters,
volume constraints on both scales are incorporated into the optimisation process.

The first example in Section 7.1 demonstrates a shape optimisation process based on
two different kinds of design parameters, i.e. CAGD parameters on the macroscale and
diameters of a void on the microscale. This study contains three different evaluations, i.e.
optimisation only on the macroscale, optimisation only on the microscale and optimisation
with constraints and design parameters distributed on both scales. In the second example
in Section 7.2, the macroscopic domain is fixed and evaluated for two different load
case scenarios. The design parametrisations for four different microscale representations
are realised using morphing based parametrisation techniques. In the third example in
Section 7.3 morphing based design parametrisation on the macro- and the microscale is
used to perform shape optimisation on both scales simultaneously.

The introduction of different design parameters establishes the flexibility of the proposed
formulation and incorporated necessary design velocity field matrices and corresponding
transformations into the presented examples. Due to the wide range of applicability and
practical relevance, all examples are evaluated using the formulation for periodic boundary
conditions (P) on the microscale.

The iterative solutions in terms of structural analysis are provided by the application
of the Newton’s method on the macro- and the microscale. The computations are based
on the hyperelastic Neo-Hookean material law for the constituents on the microscale and
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are stopped after the criterion of 𝑇𝑂𝐿𝑣 = 10−8 for the residuals is reached. The iterative
solutions within the structural optimisation are carried out by the SQP method. The
change in the objective function is defined as stop criterion and is set to 𝑇𝑂𝐿𝑠 = 10−4.
Details on theoretical, numerical and algorithmic aspects of used solution methods are
compiled in Chapter 3, Chapter 4 and Chapter 6.

Remark 7.1 (Verification of sensitivity information in numerical studies)
Prior to the discussion on numerical examples and obtained optimisation results, it is
mentioned that all analytically obtained quantities and values within the design sensitivity
analysis are verified using the finite difference method introduced and explained in Sec-
tion 3.3. These numerical tests guarantee correct gradient information and therefore, they
guarantee an efficient optimisation process. The verifications are performed in accordance
to the appropriate quantity either on the element (e.g. pseudo load matrices), on the global
system level (e.g. sensitivities of the state) or after the transformation with the design
velocity field matrices (e.g. final objectives and constraints).

7.1 Macroscopic tension test

In the following, three different structural optimisation setups for the macroscopic tension
test pictured in Fig. 7.1 are investigated and compared. The target is to figure out
the influence of the underlying microscale on the optimisation results and to determine
the amount of possible improvement of the overall macroscopic behaviour. Within the
performed tests, modifications of the macroscale 𝒦, of the microscale 𝒦 and of both scales
simultaneously are considered. For better clarity, the tests are identified as follows:

• T.1: design parameters and optimisation only on macroscale,

• T.2: design parameters and optimisation only on microscale,

• T.3: design parameters and optimisation on macro- and microscale.

The mechanical system is presented in Fig. 7.1. Due to symmetry, only a quarter
of the macroscopic system is modeled within the finite element analysis and structural
optimisation procedure. It is fixed on the left-hand and bottom side and loaded on
the right-hand side. The illustrated microscale representation is connected with each
macroscopic integration point and allows the computation of effective stress and material
parameters in terms of computational homogenisation. Characteristic system parameters
for both scales, like dimensions and material properties, are compiled in Table 7.1. The
solution of the non-linear problem on each microscale is carried out by the iterative Newton
scheme introduced in Algorithm 4.1 with the evaluation of the Neo-Hookean constitutive
law. The sequence of microscopic solution steps is nested into the solution procedure for
non-linear equations on the macroscale outlined in Algorithm 6.2.

The optimisation model with all available design parameters on the macro- and the
microscale is set up according to Fig. 7.2. On the macroscale the coordinates of control
points of the Bézier patch of the upper edge of the system (indicated by numbers 1-7 in
Fig. 7.2) are chosen as design parameters. On the microscale, half-axes 𝑎 =

[︀
𝑎 𝑏

]︀
of the
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𝑞

Macroscale 𝒦

𝐴

2𝐴

𝑟

Microscale 𝒦
Material: 𝐸, 𝜈

𝐵

𝐵

𝑎

𝑏

Figure 7.1: Macroscopic tension test: mechanical system and initial design.

circular void are the design variables. Their choice determines the position of the CAGD
parameters of the Bézier geometry description. Overall, following dependencies hold true

macroscale: (·)(𝑣(𝑋(𝐶 )),𝑋(𝐶 )) and microscale: (·)(𝑣(𝑋(𝐶(𝑎))),𝑋(𝐶(𝑎))) (7.1)

with (𝑣 , 𝑣) being the macro- and microscopic state, (𝑋,𝑋) being the macro- and the
microscopic coordinates of the FE mesh and (𝐶,𝐶) being the coordinates of the macro-
and the microscopic CAGD parameters. The stated optimisation problem introduced
in Problem 3.2 in Chapter 3 contains the minimisation of an objective, which is the
macroscopic compliance 𝐶. Its minimisation is performed with respect to constant volume
constraints (𝑉 , 𝑉 ) and lower and upper bounds (𝑠l

𝑖, 𝑠
u
𝑖 ) for the design parameters on

Table 7.1: Macroscopic tension test: model parameters.

Parameter Macroscale Microscale

length 𝐴 10.0 𝐵 1.0

radius 𝑟 5.0 𝑎 0.25

𝑏 0.25

thickness 𝑡 0.1 𝑡 0.1

load 𝑞 1.0

Young’s modulus 𝐸 10000

Poisson’s ratio 𝜈 0.2

number degrees of freedom 𝑛𝑣 682 𝑛𝑣 480
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both scales. The solution is obtained by the application of the SQP method discussed
in Chapter 3. Due to the choice of design parameters, i.e. control points of the Bézier
patch and radii of the void, the sensitivity information calculated with respect to nodal
coordinates of the FE mesh, i.e. 𝜕(·)/𝜕𝑋 on the macro- and 𝜕(·)/𝜕𝑋 on the microscale,
has to be transformed using design velocity fields matrices introduced in Section 3.4. The
final sensitivity information for arbitrary functionals 𝑓 on the macroscale and 𝑓 on the
microscale are obtained from

𝑓
′

=

(︂
𝜕𝑓

𝜕𝑣
̃︀𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝜕𝑋

𝜕𝐶
𝛿𝐶 =

(︂
𝜕𝑓

𝜕𝑣
̃︀𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝑉 𝛿𝐶 (7.2)

for the macroscale and from

𝑓 ′ =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝜕𝑋

𝜕𝐶

𝜕𝐶

𝜕𝑎
𝛿𝑎 =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝑉 𝛿𝑎, (7.3)

for the microscale, both using the appropriate sensitivity matrix ̃︀𝑆 for the macro- and 𝑆
for the microscale.

The optimisation results for all three tests can be observed in Fig. 7.3. The objectives
are minimised in each scenario and the volume constraints are fulfilled in each case.
The optimisation algorithm takes 6 iterations for test T.1, 6 iterations for test T.2 and 4
iterations for test T.3 to find a solution. The final values for the macroscopic compliance 𝐶T.2

(modifications on microscale only) and 𝐶T.3 (modifications on both scales) are approximately
equal ( 𝐶T.3 / 𝐶T.2 = 0.99 ≈ 1). Comparison with the curve for 𝐶T.1, which represents
the optimisation with modifications only on the macroscale, shows that the overall
macroscopic stiffness can be increased by ≈ 10% compared to its initial shape and design
( 𝐶T.2 / 𝐶T.1 = 0.9046 and 𝐶T.3 / 𝐶T.1 = 0.9045) by the incorporation of the underlying
microscale structure into the optimisation process.

𝑎

𝑏

side constraint
design variable: radius
design variable: CAGD
CAGD parameter

Microscale design parametersMacroscale design parameters

1 2 3 4 5 6 7

Figure 7.2: Macroscopic tension test: optimisation model and design parameters.
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Due to the fact that the macrostructure is nearly optimal for the defined load case 𝑞 (due
to the low complexity of the presented macroscopic tension test), the final macroscopic
shape for test T.1 and test T.3 differs only little from its initial design. For the same reason
it can be observed in Fig. 7.3, that the macroscale does not have a significant influence on
the optimisation results compared to the influence of the microscale. The comprehensible
optimised shape of the microscale structure is pictured in Fig. 7.4. The distribution
of design parameters on the macro- and microscale for the initial and optimised shape
are plotted for the investigated systems in Fig. 7.4 for all three tests T.1, T.2 and T.3.
Additionally, the exact coordinates of geometrical points on the macroscale as well as
for the radii 𝑎 and 𝑏, both before and after optimisation, are listed in Table 7.2. For
comparison, the lower and upper bounds (𝑠l

𝑖, 𝑠
u
𝑖 ) for selected design parameters are listed

too. All design parameters fulfill their constraints and lie in the feasible domain.
As evident from Fig. 7.3, consideration of the underlying microscale is essential for

creating improved designs and mechanical structures. The results prove the eminent
importance and influence of the microscale representation on macroscopic objectives,
constraints and quantities of interest. Only in the two cases with design parameters on
the microscale, i.e. for the test T.2 and T.3, the objectives can be reduced significantly.
Whenever possible, multiscale optimisation techniques and results should be investigated
within the overall design process to take advantage of its huge potential for improvements.

0 1 2 3 4 5 6
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T.1: volume constraint on macroscale
T.2: volume constraint on microscale
T.3: volume constraint on macroscale
T.3: volume constraint on microscale

Figure 7.3: Macroscopic tension test: objectives (left) correspond to macroscopic com-
pliance 𝐶 and constraints (right) correspond to volume constraints (𝑉 , 𝑉 ) on both scales.
Comparison of initial and optimised values of objectives for performed examples results to:
T.1: 𝐶 opt / 𝐶 ini = 0.3339 / 0.3359 = 0.9940, T.2: 𝐶 opt / 𝐶 ini = 0.3020 / 0.3359 = 0.8991,
T.3: 𝐶 opt / 𝐶 ini = 0.3020 / 0.3359 = 0.8991. The volume of the referred domain remains
constant, i.e. 𝑉 ini / 𝑉 opt = 𝑉 ini / 𝑉 opt = 1 depending on incorporated scale.
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𝑎
𝑏

𝑎
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T.1: design parameters on macroscale T.2: design parameters on microscale

T.3: design parameters on macroscale and microscale

Figure 7.4: Macroscopic tension test: distribution of design parameters on macro- and
microscale for initial and optimised shape. T.1: design parameters on macroscale, T.2: design
parameters on microscale, T.3: design parameters on macroscale and microscale. Design
parameters (1-7) correspond to coordinates of macroscopic CAGD control points in vertical
(y-) direction, design parameters (𝑎, 𝑏) correspond to the radii of the void on the microscale.
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Table 7.2: Macroscopic tension test: distribution of design parameters on macro- and
microscale for initial and optimised shape. T.1: design parameters on macroscale, T.2:
design parameters on microscale, T.3: design parameters on macro- and microscale. Design
parameters (1-7) correspond to coordinates of macroscopic CAGD control points in vertical
(y-) direction, design parameters (𝑎, 𝑏) correspond to the radii of the void on the microscale.
Parameters (𝑠l

𝑖, 𝑠
u
𝑖 ) define lower and upper bounds for design.

Design
parameter

Initial
value T.1 T.2 T.3 𝑠l

𝑖 𝑠u
𝑖

1 10.0000 10.4118 10.1235 5.0 15.0

2 10.0000 10.9034 10.2710 5.0 15.0

3 10.0000 9.7388 9.9216 5.0 15.0

4 10.0000 9.7274 9.9182 5.0 15.0

5 10.0000 9.8900 9.9670 5.0 15.0

6 10.0000 9.4533 9.8360 5.0 15.0

7 10.0000 9.4537 9.8361 5.0 15.0

𝑎 0.25 0.45 0.45 0.05 0.45

𝑏 0.25 0.15 0.15 0.05 0.45
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7.2 Multiscale application for the design of microstructures
using morphing based design parametrisation

The aim of the following investigations is the demonstration of the versatility of morphing
based parametrisation methods within the overall optimisation process in combination
with analytically derived sensitivity relations for multiscale problems. A huge advantage
of morphing techniques is the handling of arbitrary finite element meshes and mesh
topologies. The finite element mesh can be generated in standalone programs and has to
be included into the optimisation environment by importing the nodes with corresponding
coordinates and the element connectivity list. The defined morphing box and the underlying
algorithm establishes the connectivity between the finite element mesh and the geometry
parametrisation and can be used for optimisation purposes. Details are given in Section 3.4.
This chapter tackles a multiscale optimisation problem with a fixed macroscopic domain 𝒦,
which is evaluated for two different load cases, i.e. L.1 and L.2. The microscale domain 𝒦
is represented by four different domains, i.e. m.1, m.2, m.3 and m.4, which are investigated
in four distinct optimisation runs. The design parametrisation of all microscale structures
is realised by the morphing technique. An overview on the described situation is given in
Fig. 7.6.

𝑞 𝑞

Microscale 𝒦

Macroscale 𝒦

m.1 m.2 m.3 m.4

L.2L.1
𝐴

𝐴

𝐵

𝐵

𝐸,𝜈

100𝐸,𝜈

𝐸,𝜈 𝐸,𝜈 𝐸,𝜈

100𝐸,𝜈 0.01𝐸,𝜈

100𝐸,𝜈 100𝐸,𝜈

𝑟

𝑎 𝑎
𝑏

𝑎
𝑏

𝑎

Figure 7.5: Microscale design: macroscopic mechanical system with two load cases L.1, L.2
and four different microscale representations m.1, m.2, m.3 and m.4 for initial design.
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The macroscopic system is fixed on the left-hand and bottom side. Depending on the
load case, it is loaded on the right-hand side for L.1 and on the right-hand and top side
for load case L.2. The microscopic representations are individually connected with each
macroscopic integration point and allow the computation of effective stress and material
parameters in terms of computational homogenisation. Each domain consists of a soft
matrix material with a Young’s modulus 𝐸 and a stiffer kernel material. Additionally, the
microscale m.3 contains a third material domain, which is even softer than the matrix
material. Characteristic system parameters for both scales, like dimensions and material
parameters are listed in Table 7.3 and complete the descriptive data from Fig. 7.6. The
solution of the non-linear problem on each microscale is carried out by the iterative Newton
scheme introduced in Algorithm 4.1 with the evaluation of the Neo-Hookean constitutive
law. The sequence of microscopic solution steps is nested into the solution procedure for
non-linear equations on the macroscale outlined in Algorithm 6.2.

Table 7.3: Microscale design: model parameters.

Parameter Macroscale Microscale m.1 m.2 m.3 m.4

length 𝐴 10.0 𝐵 1.0 1.0 1.0 1.0

𝑎 0.5 0.74 0.68 0.68

𝑏 0.22 0.36

radius 𝑟 4.0

thickness 𝑡 0.1 𝑡 0.1 0.1 0.25 0.10

load 𝑞 0.6

Young’s modulus 𝐸 10000 10000 10000 10000

Poisson’s ratio 𝜈 0.2 0.2 0.2 0.2

num. degrees of freedom 𝑛𝑣 182 𝑛𝑣 386 1152 1352 1352

The optimisation model with all available design parameters on the microscale is set up
according to Fig. 7.6. Here, the grey background serves as a dummy domain, which can be
exchanged by any of the introduced microscale representations m.1, m.2, m.3 and m.4. The
coordinates of the inner control points of the morphing box (indicated by numbers 1-8 in
Fig. 7.6) are chosen as design variables. They can move nearly to the defined boundary of
the domain. The control point in the center of the domain is neglected as design variable
due to symmetry of the system. Basically, this choice for design parameters is tackled in a
similar way as control points of a Bézier patch, i.e. following dependencies hold true

microscale: (·)(𝑣(𝑋(𝐶)),𝑋(𝐶)), (7.4)

with 𝑣 being the microscopic state, 𝑋 being the microscopic coordinates of the FE mesh
and 𝐶 being the coordinates of the microscopic CAGD parameters. Therefore, the following
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Figure 7.6: Microscale design: optimisation model and design parameters. Design parame-
ters correspond to the coordinates of the control points of the defined morphing box.

transformation of sensitivity information for an arbitrary functional 𝑓 is necessary

𝑓 ′ =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝜕𝑋

𝜕𝐶
𝛿𝐶 =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝑉 𝛿𝐶 (7.5)

using the appropriate sensitivity matrix 𝑆 on the microscale. Eq. (7.5) provides the
transformation of sensitivity information calculated with respect to nodal coordinates of
the finite element mesh, i.e. of 𝜕(·)/𝜕𝑋, into the design space of interest.

The stated optimisation problem introduced in Problem 3.2 in Chapter 3 contains the
minimisation of an objective, which is here the macroscopic compliance 𝐶. Its minimisation
is performed with respect to constant volume constraints 𝑉 and lower and upper bounds
(𝑠l

𝑖, 𝑠
u
𝑖 ) for the design parameters on the microscale. The solution is obtained by the

application of the SQP method discussed in Chapter 3. As discussed in Remark 3.1, it is
necessary to define weight factors for each microscopic constituent within the accumulation
of volume constraints to provide a well posed optimisation problem. Otherwise, difficulties
during the evaluation of the constraints and of their derivatives arise. The weights for
the matrix material of all microscale domains are set to 𝑤1 = 1.0, for the stiffer kernel
material to 𝑤2 = 2.0 and for the soft inclusion in m.3 to 𝑤3 = 0.5.

In the following two sections, multiscale optimisation for previously described problems
is performed for introduced load case scenarios L.1 and L.2. The results are evaluated,
compared and possible improvements in terms of performance of the obtained designs are
outlined. Choosing the macroscopic compliance as objective attributes the optimisation
problem having a deformation driven characteristic. Therefore in some cases, the maximum
resulting displacements of the optimised mechanical macroscale structure are expected to
be less compared to the initial design and confirm the minimisation of the macroscopic
compliance 𝐶. This statement is not necessarily true for the resulting distribution of local
von Mises stresses and will be accentuated by the evaluation of microscale problems in
individual integration points.
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7.2.1 Evaluation of load case L.1: uniaxial tension

The optimisation results for all investigated microscale representations and the load case
L.1 are pictured in Fig. 7.7. The objectives (macroscopic compliance) are minimised in
each scenario and the microscopic volume constraint is fulfilled. The volume of each
microscale remains constant in each optimisation run. The optimisation algorithm takes
18 iterations for m.1, 21 iterations for m.2, 28 iterations for m.3 and 18 iterations for m.4 to
find a solution. The final values for the macroscopic compliance can be reduced in a range
between ≈ 10− 30%. In the opposite sense, this means, that the macroscopic stiffness can
be increased by ≈ 10− 30% depending on the underlying microscale representation.

Figure 7.7: Microscale design: (L.1) objectives (left) correspond to macroscopic compliance
𝐶 and constraints (right) correspond to volume constraints 𝑉 on the microscale. Compar-
ison of initial and optimised values of objectives for performed examples results to: m.1:
𝐶 opt/ 𝐶 ini = 5.5480 / 6.2761 = 0.8840, m.2: 𝐶 opt/ 𝐶 ini = 2.5240 / 3.4459 = 0.7325, m.3:
𝐶 opt/ 𝐶 ini = 1.8626 / 2.6307 = 0.7080, m.4: 𝐶 opt/ 𝐶 ini = 2.1316 / 2.9789 = 0.7156. The
volume of the referred domain remains constant, i.e. 𝑉 ini/𝑉 opt = 1.

Figure 7.8: Microscale design: FEM mesh (top) and distribution of design parameters
(bottom) after optimisation for load case L.1 for microscale representations m.1, m.2, m.3
and m.4. Design parameters are the coordinates of control points of defined morphing box.
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The distribution of design parameters and the corresponding finite element meshes
for all microscale domains m.1, m.2, m.3 and m.4 after optimisation can be found in
Fig. 7.8. It is difficult to obtain the exact positions of design parameters from the graphical
illustration and therefore, the distribution of design parameters with all coordinates is
listed in Table 7.4. For comparison, the initial values for selected design parameters are
listed as well. All design parameters fulfill their constraints and lie in the feasible domain.

Table 7.4: Microscale design: distribution of design parameters after optimisation for load
case L.1 for microscale representations m.1, m.2, m.3 and m.4. Design parameters are the
coordinates in x and y direction of control points of defined morphing box.

Initial coordinates m.1 m.2 m.3 m.4

# x y x y x y x y x y

1 -0.245 -0.245 -0.475 -0.349 -0.475 -0.266 -0.475 0.090 -0.475 -0.129

2 0.000 -0.245 0.475 0.475 0.475 0.475 -0.475 -0.475 -0.475 0.475

3 0.245 -0.245 0.475 -0.475 0.475 -0.475 0.475 -0.345 0.475 -0.475

4 -0.245 0.000 -0.475 -0.225 -0.475 -0.226 -0.475 0.475 -0.475 0.475

5 0.245 0.000 0.475 0.225 0.475 0.226 0.475 -0.475 0.475 -0.475

6 -0.245 0.245 -0.475 0.475 -0.475 0.475 -0.475 0.345 -0.475 0.475

7 0.000 0.245 -0.475 -0.475 -0.475 -0.475 0.475 0.475 0.475 -0.475

8 0.245 0.245 0.475 0.349 0.475 0.266 0.475 -0.090 0.475 0.129

The plots in Fig. 7.9 to 7.12 outline the results for each optimisation run for load case
L.1 and all introduced microscale representations m.1, m.2, m.3 and m.4. The compilations
include macroscopic displacements and the distribution of local von Mises stresses on the
microscale, both for the initial and optimised design. The pictured microscale results are
obtained in three selected macroscopic integration points indicated by the numbers (1-3) in
all plots. The maximum values for macroscopic displacements and microscopic von Mises
stresses for each investigation are compiled and compared in Table 7.5. In each scenario,
the resulting displacements of the macrostructure are reduced for the optimised design.
This results fulfill the expectations and prove the maximisation of the overall macroscopic
stiffness. When it comes to the local distribution of von Mises stresses, it is up to the
designing engineer to estimate the situation and to decide whether the workload can be
handled by the present material distribution or material choice or not. Nevertheless, the
optimisation task is accomplished satisfactorily.
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Figure 7.9: Microscale design: (L.1-m.1) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.

Figure 7.10: Microscale design: (L.1-m.2) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.
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Figure 7.11: Microscale design: (L.1-m.3) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.

Figure 7.12: Microscale design: (L.1-m.4) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.
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Table 7.5: Comparison of results for load case L.1. Maximum value for macroscopic
displacements 𝑣max for initial and optimised designs, maximum value for microscopic von
Mises stress 𝜎IP

eq in selected macroscopic integration points (1-3) for initial and optimised
design.

(·)ini (·)opt (·)opt/(·)ini

macroscale 𝑣max 0.1480 0.1345 0.9088

m.1 𝜎1
eq 129.41 160.71 1.2419

𝜎2
eq 287.21 353.03 1.2292

𝜎3
eq 100.01 86.51 0.8650

macroscale 𝑣max 0.0830 0.0667 0.8036

m.2 𝜎1
eq 153.08 188.23 1.2296

𝜎2
eq 350.99 562.92 1.6038

𝜎3
eq 113.32 115.40 1.0184

macroscale 𝑣max 0.0652 0.0473 0.7255

m.3 𝜎1
eq 149.50 255.66 1.7101

𝜎2
eq 385.35 502.92 1.3129

𝜎3
eq 115.50 156.84 1.3579

macroscale 𝑣max 0.0736 0.0572 0.7772

m.4 𝜎1
eq 121.35 121.29 0.9995

𝜎2
eq 303.86 267.11 0.8791

𝜎3
eq 96.72 85.46 0.8836
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7.2.2 Evaluation of load case L.2: biaxial tension

The optimisation results for all investigated microscale representations and the load case
L.2 are pictured in Fig. 7.13. The objectives (macroscopic compliance) are minimised
in each scenario and the microscopic volume constraint is fulfilled. The volume of each
microscale remains constant in each optimisation run. The optimisation algorithm takes 9
iterations for m.1, 13 iterations for m.2, 10 iterations for m.3 and 14 iterations for m.4 to
find a solution. The final values for the macroscopic compliance can be reduced in a range
between ≈ 5− 10%. In the opposite sense, this means, that the macroscopic stiffness can
be increased by ≈ 5− 10% depending on the underlying microscale representation.

Figure 7.13: Microscale design: (L.2) objectives (left) correspond to macroscopic com-
pliance 𝐶 and constraints (right) correspond to volume constraints 𝑉 on the microscale.
Comparison of initial and optimised values of objectives for performed examples results to:
m.1: 𝐶 opt/ 𝐶 ini = 7.7616 / 8.3286 = 0.9319, m.2: 𝐶 opt/ 𝐶 ini = 4.5767 / 4.8209 = 0.9493,
m.3: 𝐶 opt/ 𝐶 ini = 3.4573 / 3.8263 = 0.9036, m.4: 𝐶 opt/ 𝐶 ini = 4.0320 / 4.3475 = 0.9274.
The volume of the referred domain remains constant, i.e. 𝑉 ini/𝑉 opt = 1.

Figure 7.14: Microscale design: FEM mesh (top) and distribution of design parameters
(bottom) after optimisation for load case L.2 for microscale representations m.1, m.2, m.3
and m.4. Design parameters are the coordinates of control points of defined morphing box.
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The distribution of design parameters and the corresponding finite element meshes for all
microscale domains m.1, m.2, m.3 and m.4 after optimisation can be found in Fig. 7.14. It is
difficult to obtain the exact positions of design parameters from the graphical illustration
and therefore, the distribution of design parameters with all coordinates is listed in
Table 7.6. For comparison, the initial values for selected design parameters are listed too.
All design parameters fulfill their constraints and lie in the feasible domain.

Table 7.6: Microscale design: distribution of design parameters after optimisation for load
case L.2 for microscale representations m.1, m.2, m.3 and m.4. Design parameters are the
coordinates in x and y direction of control points of defined morphing box.

Initial coordinates m.1 m.2 m.3 m.4

# x y x y x y x y x y

1 -0.245 -0.245 0.037 0.037 0.056 0.056 0.082 0.082 0.091 0.091

2 0.000 -0.245 0.475 -0.475 0.475 -0.475 -0.224 -0.475 0.475 -0.475

3 0.245 -0.245 0.475 -0.475 0.475 -0.475 0.475 -0.475 0.475 -0.475

4 -0.245 0.000 -0.475 0.475 -0.475 0.475 -0.475 -0.224 -0.475 0.475

5 0.245 0.000 0.475 -0.475 0.475 -0.475 0.475 0.224 0.475 -0.475

6 -0.245 0.245 -0.475 0.475 -0.475 0.475 -0.475 0.475 -0.475 0.475

7 0.000 0.245 -0.475 0.475 -0.475 0.475 0.224 0.475 -0.475 0.475

8 0.245 0.245 -0.037 -0.037 -0.056 -0.056 -0.082 -0.082 -0.091 -0.091

The plots in Fig. 7.15 to 7.18 outline results for each optimisation run for load case L.2
and all introduced microscale representations m.1, m.2, m.3 and m.4. The compilations
include macroscopic displacements and the distribution of local von Mises stresses on
the microscale both for the initial and optimised design. The pictured microscale results
are obtained in three selected macroscopic integration points indicated by the numbers
(1-3) in all plots. The maximum values for macroscopic displacements and microscopic
von Mises stresses for each investigation are compiled and compared in Table 7.7. The
optimisation task is accomplished satisfactorily.
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Figure 7.15: Microscale design: (L.2-m.1) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.

Figure 7.16: Microscale design: (L.2-m.2) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.
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Figure 7.17: Microscale design: (L.2-m.3) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.

Figure 7.18: Microscale design: (L.2-m.4) macroscopic displacements (left) for initial and
optimised designs, and microscopic von Mises stress distribution in selected macroscopic
integration points (1-3) for initial (middle) and optimised (right) design.
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Table 7.7: Comparison of results for load case L.2. Maximum value for macroscopic
displacements 𝑣max for initial and optimised designs, maximum value for microscopic von
Mises stress 𝜎IP

eq in selected macroscopic integration points (1-3) for initial and optimised
design.

(·)ini (·)opt (·)opt/(·)ini

macroscale 𝑣max 0.0912 0.0915 1.0033

m.1 𝜎1
eq 81.76 85.96 1.0514

𝜎2
eq 200.85 210.92 1.0501

𝜎3
eq 200.85 210.92 1.0501

macroscale 𝑣max 0.0521 0.0539 1.0345

m.2 𝜎1
eq 114.54 119.22 1.0409

𝜎2
eq 270.30 277.99 1.0284

𝜎3
eq 270.30 277.99 1.0284

macroscale 𝑣max 0.0403 0.0383 0.9504

m.3 𝜎1
eq 154.34 172.43 1.1172

𝜎2
eq 341.39 297.67 0.8719

𝜎3
eq 341.39 297.67 0.8719

macroscale 𝑣max 0.0460 0.0472 1.0261

m.4 𝜎1
eq 111.58 124.70 1.1176

𝜎2
eq 239.94 241.72 1.0074

𝜎3
eq 239.94 241.72 1.0074
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7.3 Multiscale optimisation of a bracket

This example demonstrates the applicability of the morphing based design parametrisation
on both scales, i.e. on the macroscale 𝒦 and the microscale 𝒦. For the finite element
analysis a half of a bracket on the macroscale with main dimensions 𝐴 and 𝐵 and a
microscale with the main dimension 𝑎 consisting of a stiff matrix and a softer kernel
material is modeled, cf. Fig. 7.19. The illustrated microscale representation is connected
with each macroscopic integration point and allows the computation of effective stress and
material parameters in terms of computational homogenisation. Characteristic system
parameters for both scales, like dimensions and material properties, are compiled in
Table 7.8. The solution of the non-linear problem on each microscale is carried out by
the iterative Newton scheme introduced in Algorithm 4.1 with the evaluation of the Neo-
Hookean constitutive law. The sequence of microscopic solution steps is nested into the
solution procedure for non-linear equations on the macroscale outlined in Algorithm 6.2.
The optimisation setup with all design parameters on the macro- and the microscale also
can be found in Fig. 7.19. On both scales selected coordinates of control points of defined
morphing boxes are chosen as design parameters.

𝑞

𝐴

𝐵

𝐷𝐶 𝐸

𝑅1

𝐹

𝐺
𝑅4

𝑅3

𝑅2

𝑟

𝑎

𝑎

Macroscale 𝒦 Microscale 𝒦

𝐸,𝜈

0.1𝐸,𝜈

(0,0)

1 2 3

4 5

6 7 8

9

10 11 12 13

14 15 16 17

18 19 20
side constraint
design variable
morphing parameter

Figure 7.19: Multiscale optimisation of a bracket: mechanical system and FE mesh for the
macro- and microscopic initial design (top line). Optimisation model for macroscale with
two morphing boxes and for microscale with one morphing box (bottom line).
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Table 7.8: Multiscale optimisation of a bracket: model parameters.

Parameter Macroscale Microscale

length 𝐴 10.0 𝑎 1.0

𝐵 4.0

𝐶 1.0

𝐷 8.0

𝐸 1.0

𝐹 0.64

𝐺 1.6

radius 𝑅1 0.75 𝑟 0.25

𝑅2 2.14

𝑅3 0.8

𝑅4 2.0

thickness 𝑡 0.1 𝑡 0.1

load 𝑞 5.1

Young’s modulus 𝐸 10000

Poisson’s ratio 𝜈 0.2

number degrees of freedom 𝑛𝑣 464 𝑛𝑣 386

On the microscale one morphing box with 25 control points is defined. The coordinates
of the inner control points of the morphing box (indicated by numbers 1-8 in Fig. 7.19) are
chosen as design variables. They can move nearly to the defined boundary of the domain.
The control point in the center of the domain is neglected as design due to symmetry
properties of the system. On the macroscale two morphing boxes are defined. The first
one is around the loading area and consists of 9 control points. Here, coordinates of only
one control point are chosen as design variable (indicated by number 9 in Fig. 7.19). The
second morphing box is defined over the main and regular part of the system. It contains
20 control points. For this morphing box, coordinates of 11 control points (indicated by
the numbers 10-20 in Fig. 7.19) are chosen as design parameters within the optimisation
procedure. Due to the characteristics of morphing based design parametrisation, the
following dependencies hold true

macroscale: (·)(𝑣(𝑋(𝐶 )),𝑋(𝐶 )) and microscale: (·)(𝑣(𝑋(𝐶)),𝑋(𝐶)) (7.6)

with (𝑣 , 𝑣) being the macro- and microscopic state, (𝑋,𝑋) being the macro- and the
microscopic coordinates of the FE mesh and (𝐶,𝐶) being the coordinates of the macro- and
the microscopic CAGD parameters. Therefore, the following transformations of sensitivity
information for arbitrary functionals 𝑓 on the macroscale and 𝑓 on the microscale are
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necessary

𝑓
′

=

(︂
𝜕𝑓

𝜕𝑣
̃︀𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝜕𝑋

𝜕𝐶
𝛿𝐶 =

(︂
𝜕𝑓

𝜕𝑣
̃︀𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝑉 𝛿𝐶 (7.7)

for the macroscale and for the microscale

𝑓 ′ =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝜕𝑋

𝜕𝐶
𝛿𝐶 =

(︂
𝜕𝑓

𝜕𝑣
𝑆 +

𝜕𝑓

𝜕𝑋

)︂
𝑉 𝛿𝐶. (7.8)

In both cases the appropriate sensitivity matrix ̃︀𝑆 for the macro- and 𝑆 for the microscale
is required. Eq. (7.8) provides the transformation of sensitivity information calculated
with respect to nodal coordinates of the finite element mesh, i.e. of 𝜕(·)/𝜕𝑋 on the macro-
or 𝜕(·)/𝜕𝑋 on the microscale, into the design space of interest. The stated optimisation
problem introduced in Problem 3.2 in Chapter 3 contains the minimisation of an objective,
which is here the macroscopic compliance 𝐶. Its minimisation is performed with respect
to constant volume constraints (𝑉 , 𝑉 ) and lower and upper bounds (𝑠l

𝑖, 𝑠
u
𝑖 ) for the design

parameters on the macro- and the microscale. The solution is obtained by the application
of the SQP method discussed in Chapter 3. As discussed in Remark 3.1, it is necessary to
define weight factors for each microscopic constituent within the accumulation of volume
constraints to provide a well posed optimisation problem. Otherwise, difficulties during
the evaluation of the constraints and of their derivatives arise. The weight for the matrix
material is set to 𝑤1 = 2.0 and for the softer kernel material to 𝑤2 = 1.0

The optimisation results for this multiscale optimisation problem of a macroscopic
bracket with a heterogeneous microstructure are plotted in Fig. 7.20. The objective can be
minimised to a value that is 17% lower than the initial value and the volume constraints
on both scales are fulfilled. This means that the overall volume on the macroscale as well
as the overall volume on the microscale remain constant. The optimisation algorithm
takes 23 iterations to find a feasible solution.

Figure 7.20: Multiscale optimisation of a bracket: objective (left) corresponds to macro-
scopic compliance 𝐶 and constraints (right) correspond to volume constraints 𝑉 ,𝑉 on the
macro- and the microscale. Comparison of initial and optimised values of objectives for
performed example results to: 𝐶 opt/ 𝐶 ini = 0.329 / 0.398 = 0.83. The volumes of referred
domains remain constant, i.e. 𝑉 ini/𝑉 opt = 𝑉 ini/𝑉 opt = 1.
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Figure 7.21: Multiscale optimisation of a bracket: distribution of final design parameters
for the macroscopic optimisation model with two morphing boxes (left) and the microscopic
optimisation model with one morphing box (right).

The distribution of design parameters on both scales for the initial and optimised shape
can be found in Fig. 7.21. Additionally for a better overview, the exact coordinates of
geometrical points on the macroscale as well as on the microscale, both before and after
optimisation, are listed in Table 7.2. For comparison, the lower and upper bounds (𝑠l

𝑖, 𝑠
u
𝑖 )

for selected design parameters are listed too. All design parameters fulfill their constraints
and lie in the feasible domain. The comparison of the initial and optimised designs in
terms of overall performance is illustrated in Fig. 7.22. The results obtained one half of
the system can be mirrored due symmetry properties to design the overall system. It is
shown that minimisation of the macroscopic compliance leads to a lower maximum value
of the macroscopic displacements, i.e. 𝑣opt

max / 𝑣ini
max = 0.0593 / 0.0733 = 0.81, which is

in the range of the reduction of overall compliance. Concurrently, this means, that the
overall macroscopic stiffness can be increased by ≈ 19%. Furthermore, the design of the
obtained microscale representation leads to a lower distribution of von Mises stresses in
the selected macroscopic integration points. This example proves the applicability of the
presented relations for the sensitivity analysis over multiple scales and that it comes along
with a large gain in terms of overall behaviour of investigated systems.

Table 7.9: Multiscale optimisation of a bracket: distribution of design parameters for
macro- and microscopic domain: defined lower and upper design bounds 𝑠land 𝑠u, initial
and optimised design values 𝑠iniand 𝑠opt.

Design
parameter

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

1 1 −0.4750 0.4750 −0.2450 −0.4749

1 2 −0.4750 0.4750 −0.2450 −0.4415

2 1 −0.4750 0.4750 0.0000 0.4749

2 2 −0.4750 0.4750 −0.2450 0.4391

continued on next page . . .
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Design
parameter

Direction
(1 = 𝑥, 2 = 𝑦)

𝑠l 𝑠u 𝑠ini 𝑠opt

3 1 −0.4750 0.4750 0.2450 0.4749

3 2 −0.4750 0.4750 −0.2450 −0.4749

4 1 −0.4750 0.4750 −0.2450 −0.4749

4 2 −0.4750 0.4750 0.0000 0.3989

5 1 −0.4750 0.4750 0.2450 0.4749

5 2 −0.4750 0.4750 0.0000 −0.3989

6 1 −0.4750 0.4750 −0.2450 −0.4749

6 2 −0.4750 0.4750 0.2450 0.4749

7 1 −0.4750 0.4750 0.0000 −0.4749

7 2 −0.4750 0.4750 0.2450 −0.4391

8 1 −0.4750 0.4750 0.2450 0.4749

8 2 −0.4750 0.4750 0.2450 0.4415

9 1 10.0000 11.5000 10.7500 10.0000

9 2 −0.2500 0.9500 0.5250 −0.2499

10 2 0.4800 1.9500 1.3666 1.1950

11 2 0.1000 1.9500 1.3666 0.4014

12 1 3.0500 5.9500 5.0000 5.1214

12 2 0.1000 1.9500 1.3666 1.9499

13 1 6.0000 9.0000 7.0500 7.1610

13 2 0.1000 1.9500 1.3666 0.1000

14 2 2.0000 3.2000 2.6833 2.0000

15 2 2.0000 3.5000 2.6833 2.0000

16 1 3.0500 5.9500 5.0000 4.9055

16 2 2.0000 3.5000 2.6833 2.4402

17 1 6.0000 9.0000 7.0500 7.1600

17 2 2.0000 3.5000 2.6833 2.0000

18 2 3.5500 6.0000 4.0000 3.5500

19 1 3.0500 5.9500 5.0000 4.3834

19 2 3.5500 6.0000 4.0000 3.5500

20 1 6.0000 9.0000 7.0500 7.0664

20 2 3.5500 6.0000 4.0000 3.5504
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Figure 7.22: Multiscale optimisation of a bracket: macroscopic displacements (large)
for initial and optimised supplemented designs. Microscopic von Mises stress distribution
in selected macroscopic integration points (1-3) for initial and optimised design. Due to
symmetry properties, microstructures in points (1-3) can be copied to design the full system.
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7.4 Observations concerning numerical behaviour

The final remark in the scope of presented numerical investigations refers the time
consumption of presented numerical investigations. The computation times d𝑡o for the
solution of each individual overall optimisation problem and the number of required
optimisation steps 𝑛IT are listed in Table 7.10 for all examples. The optimisation results are
carried out on the desktop workstation introduced in Table 2.4 in Chapter 2. Additionally,
the values in the brackets summarise some basic details about the investigated examples
and give a brief insight concerning the complexity in terms of the mesh and the number
of degrees of freedom on the macro- and the microscale as well as the overall number of
macroscopic integration points, which is related to the number of microscopic BVPs to be
solved.

Concerning the results in Table 7.10 the numerical performance of methods for design
sensitivity based on the variational approach is emphasised. Despite existing semi-analytical
methods, which are also wide-spread and investigated intensively for several years, the
comparison focuses on the numerical optimisation with numerical gradients of objectives,
constraints and of quantities on element level in terms of FDM. Although no complete
numerical multiscale structural optimisation is carried out, the expected results can be
extrapolated with regard to the results and the numerical performance of aforementioned
examples.

As reference, the optimisation problem with the lowest complexity and therefore, with
the lowest computation time per iteration step d𝑡o / 𝑛IT = 3.4 minutes is chosen, i.e. the
microscale design example from Section 7.2.2 for the load case L.2 and the microstructure
m.1. The time per iteration is split into d𝑡a ≈ 0.5 · d𝑡o = 1.7 minutes for one multiscale
analysis, d𝑡s ≈ 0.4 · d𝑡o = 1.36 minutes for one design sensitivity analysis and ≈ 0.1 · d𝑡o =
0.34 minutes for one incremental SQP update. The time consumption of one sensitivity
analysis is in the range of one structural analysis.

The corresponding design parameters are the coordinates of eight control points of the
morphing box on the microscale. Due to the dimension 𝑛𝑑 = 2 of the problem, the final
number of design parameters is 𝑛𝑠 = 16. Gradients have to be computed with respect
to these design variables. The overall optimisation procedure takes 9 iterations to find a
feasible solution and lasts about d𝑡o = 30.6 minutes.

The following consideration allows a rough estimation of the time consumption for
one optimisation step performed using numerical gradients. The effort for the multiscale
structural analysis and the incremental design update by the SQP method remains the
same. The evaluation of the design sensitivity analysis using numerical difference quotients
in terms of FDM requires 𝑛f,b

F = 𝑛𝑠 + 1 = 17 for a forward/backward difference quotient
and 𝑛c

F = 2 · 𝑛𝑠 = 32 evaluations of the function for the multiscale structural analysis.
Therefore, the computation times can be assumed to

d𝑡f,bs,num = 𝑛f,b
F ·

d𝑡a = 17 · 1.7 = 28.9 min. for the forward/backward FDM scheme,
d𝑡cs,num = 𝑛c

F · d𝑡a = 32 · 1.7 = 54.4 min. for the central FDM scheme.

The projection to one optimisation iteration yields 31 minutes for the forward/backward
and 56 minutes for the central FDM scheme. Due to the fact, that the gradients are
equal with respect to a numerical error and precision, the optimisation algorithm will
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Table 7.10: Comparison of computation times for numerical investigations for the macro-
scopic tension test, design of microstructures using morphing based parametrisation and
multiscale optimisation of a bracket. The presented time consumption d𝑡o for one overall
optimisation and the corresponding number of iterations 𝑛IT refers computations on the
desktop workstation listed in Table 2.4. Some basic numerical details of affiliated examples
are listed in the brackets for an overview, i.e. the number of: macroscopic integration points
𝑛IP, macroscopic elements 𝑛𝑒𝑙, macroscopic degrees of freedom 𝑛𝑣, microscopic elements 𝑛𝑒𝑙

and microscopic degrees of freedom 𝑛𝑣.

Example Number of Time

Section (𝑛IP, 𝑛𝑒𝑙, 𝑛𝑣, 𝑛𝑒𝑙, 𝑛𝑣) iterations 𝑛IT
d𝑡o (min.) d𝑡o / 𝑛IT

7.1 Tension test

T.1 (1200, 300, 682, 200, 480) 6 89.5 14.9

T.2 (1200, 300, 682, 200, 480) 6 92.5 15.4

T.3 (1200, 300, 682, 200, 480) 4 67.0 16.8

7.2 Microscale design

7.2.1 L.1 m.1 (288, 72, 182, 180, 386) 18 61.0 3.4

m.2 (288, 72, 182, 539, 1152) 21 263.7 12.6

m.3 (288, 72, 182, 625, 1352) 28 454.5 16.2

m.4 (288, 72, 182, 625, 1352) 18 289.0 16.1

7.2.2 L.2 m.1 (288, 72, 182, 180, 386) 9 30.6 3.4

m.2 (288, 72, 182, 539, 1152) 13 153.9 11.8

m.3 (288, 72, 182, 625, 1352) 10 157.1 15.7

m.4 (288, 72, 182, 625, 1352) 14 200.6 14.3

7.3 Bracket optimisation

(1089, 363, 464, 180, 386) 23 245.5 10.7

find a solution within 𝑛IT = 9 iteration steps. The overall numerical multiscale design
optimisation procedure will last

d𝑡o,num = 𝑛IT · d𝑡f,bs,num = 279 min. for the forward/backward FDM scheme and
d𝑡o,num = 𝑛IT · d𝑡cs,num = 504 min. for the central FDM scheme.

The final comparison of computation times for numerical multiscale optimisation and
multiscale optimisation based on the variational approach for design sensitivity analysis
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presented in this work leads the following ratios

d𝑡o / d𝑡o,num = 30.6 / 279 ≈ 0.11 for the forward/backward FDM scheme and
d𝑡o / d𝑡o,num = 30.6 / 504 ≈ 0.06 for the central FDM scheme.

The required computation effort by means of time can be estimated in the range between 6
and 11 percent compared to the numerical multiscale optimisation procedure. The overall
speed-up of approximately 10 to 15 proves that it is worthwhile to investigate in methods,
witch are overly theoretical but efficient by nature.

7.5 Summary and concluding remarks

The intention of the investigations in this chapter is to emphasize the applicability of
formulated sensitivity relations for multiscale design optimisation. The generation of
optimal material designs is an automatical process based on mathematical optimisation
algorithms with defined objectives and constraints. In the presented case studies, the
target is to find macroscopic structures with maximum macroscopic stiffness based on a
constant amount of material on both scales. The translation of the mentioned goals into
the corresponding optimisation problem contains the definition of the overall macroscopic
compliance as objective and of equality constraints for the volume on both scales.

Based on different parametrisation techniques for the design, i.e. for geometrical
measures like diameters or angles, for control points of geometrical nodes in terms of
CAGD or for control points of defined morphing boxes, the mathematical optimisation
algorithm provides minimum values for the objective and fulfils the constraints in each
case. It can be shown that the incorporation of the microscopic structure into the overall
optimisation and design process comes along with a significant improvement of the overall
macroscopic quantity of interest. The maximum stiffness of the presented macroscopic
structures can be increased in the range of approximately 5 to 30 percent. Furthermore,
the studies in Section 7.4 prove the added value of the variational approach for design
sensitivity by an approximate speed-up of 10 to 15 compared to numerical optimisation
based on the numerical determination of required gradient information.





Chapter 8

Summary and outlook

This final chapter highlights the main goals and achieved results of the presented work. A
brief summary of discussed topics, comments on obtained numerical results as well as
inspirations for future research are given.

8.1 Summary

The presented doctoral thesis provides an overall structural optimisation framework for
optimal material design based on variational sensitivity analysis. The major goal

“Formulate a method for the determination of optimal design layouts of
macroscopic structures and microscopic materials!”

is achieved by accomplishing the following three sub-targets:

1. Obtaining a method for the solution of structural analysis (SA) problems on multiple
scales in terms of computational homogenisation and FE2 techniques.

2. Formulating variational relations for the design sensitivity analysis (DSA) of the
mechanical system under investigation and revealing predictions for the structural
behaviour with respect to modifications of design parameters.

3. Assembling SA and DSA in such a way, that a formulation of the overall multiscale
design optimisation task using mathematical optimisation algorithms (NLP) with
objective functions, constraints and design parameters on different scales is possible.

After a general introduction and motivation for the entire work in Chapter 1 and a
compilation of frequently used mathematical operations and notations in Chapter 2, the
attainment of articulated targets is organised as follows.

Realisation of target 1. In the first part of the work, the established method for compu-
tational homogenisation in the scope of multiscale structural analysis and the solution of
corresponding microscopic BVPs is presented and complemented with relevant publications
in Chapter 4. Based on the definition of effective field variables and remarks on the choice
of appropriate RVEs, the minimisation problem of homogenisation is formulated as a
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Lagrange functional, which incorporates different boundary conditions on the microscale.
The boundary conditions are enforced by the corresponding Lagrange multiplier. Each
nonlinear microscopic BVP with hyperelastic constitutive behaviour is driven by the
macroscopic deformation gradient of the corresponding macroscopic integration point and
solved by the iterative Newton scheme. The sequence of microscopic solution steps in
distinctive macroscopic integration points is nested into the global macroscopic Newton so-
lution scheme, in which each microscopic solution serves for the evaluation of homogenised
macroscopic material properties on the element level. The FE2 method is implemented
and tested in the in-house Matlab code MAnO. Furthermore, it is construed for an
efficient solution of SA problems within the iterative solution process of stated optimisation
problems.

Realisation of target 2. The second part of the work at hand addresses the derivation
and formulation of required sensitivity relations in continuous form and the evaluation of
sensitivity information in discrete form. This target is characterised by two consecutive
viewpoints: (a) DSA on single scales and (b) DSA on multiple scales.

Based on the variational approach for DSA and the concept of an enhanced layout of
kinematics, which contains the introduction of a local convective configuration, relevant
physical and mechanical quantities and especially their continuous variations are outlined
in Chapter 5 and utilised for DSA on single scales. The presented compilation is augmented
by the design sensitivity relation for physical reaction forces on the boundary of investigated
domains. Discussed solutions of different structural optimisation problems on single scales
act as illustrative examples for the demonstration of the applicability of reaction forces
and of their sensitivities as constraints.

Essential relations for DSA on multiple scales are motivated, derived and formulated
in Chapter 6. The concept of the enhanced layout of kinematics is adapted with respect
to the microscale representation. The formulation of sensitivity relations for DSA on the
microscale is followed by the formulation of sensitivity relations for DSA on the macroscale.
The association of obtained sensitivity formulations on both individual scales takes into
account the aforementioned results for physical reaction forces from Chapter 5 and enables
the formulation of the sensitivity relation for the homogenisation condition and effective
parameters, which in general, but also in the case of DSA, bridge the scales. The Lagrange
multiplier within the applied FE2 technique is related to reaction forces on the boundary
of the RVE in an appropriate sense. As a consequence, the design sensitivity of reaction
forces is related to the design sensitivity of the Lagrange multiplier. It plays a central role
for the formulation of multiscale design sensitivity relations and couples the scales within
the selected solution strategie for structural multiscale problems.

Realisation of target 3. Beside the introduction of possible objective functions, constraints,
design parameters and different parametrisation techniques for the geometry of investigated
mechanical systems and domains, the abstract setting of a general non-linear structural
optimisation problem on single scales is introduced in Chapter 3. The extension to an
abstract setting of continuous and discrete multiscale structural optimisation problems
is provided in Section 6.5. Multiscale methods for SA and DSA together with methods
for non-linear mathematical optimisation in terms of NLP are combined into an overall
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numerical framework for structural optimisation on multiple scales, i.e. all components
are implemented into the in-house Matlab code MAnO. Remarks on the numerical
realisation as well as on the choice of design parameters and possible combinations of
objective functions and constraints are pointed out and accomplish the modelling of the
computational material design task.

Examples and numerical investigations. Chapter 7 emphasizes the potential for im-
provements of macroscopic mechanical structures by the incorporation of the microscale
representation into the overall structural design optimisation process by means of three
different examples. The examples contain different design parametrisation setups and
demonstrate the applicability of the presented sensitivity formulations. The first example
with two different kinds of design parameters on the macro- and the microscale comprises
the following situations: (i) design parameters and optimisation only on the macroscale,
(ii) design parameters and optimisation only on the microscale and (iii) design parameters
and optimisation on both scales simultaneously. In the second example a fixed macroscale
domain with two different load cases is investigated in order to design four different
independant microscale representations based on the morphing parametrisation technique
for the present geometry model. The last example demonstrates a multiscale structural
optimisation process with morphing based design parametrisation on both scales. The
major purpose of this investigation is to design the macroscopic shape of the structure
and the microscopic material representation simultaneously.

In addition to the fact, that investigated examples serve as a proof of concept, it is
evident that the variational approach for the integrated DSA is an efficient and performant
strategie to provide required sensitivity information within multiscale design optimisation
problems. Compared to other approaches for DSA, especially DSA based on FDM and the
numerical determination of gradients at the extreme, the variational approach comes along
with the overhead on theory and analytical calculus, but after all, it also comes along
with a significant gain of reduced and convenient computation times. Some observations
concerning the numerical behaviour are outlined in Section 7.4. Based on the variational
approach for DSA, numerical simulations and design optimisation procedures can be
organised efficiently.

8.2 Future work

Although much effort and time has been investigated into the presented work and especially
into the development of the simulation software MAnO, there are some limitations. In the
following, few motivational aspects and inspirational ideas for future work and activities
in the presented field of research are pointed out.

Inelastic materials and coupled problems. The extension to inelastic materials with time
and history dependent effects seems to be natural. Essential steps for the treatment of
DSA for problems with elastoplastic deformations are introduced in [89, 90, 165] and [14].
For a more versatile, interdisciplinary cooperation and research, the presented multiscale
formulation can be extended for the analysis and optimisation of several coupled problem
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formulations for investigations of applications with thermo-mechanical, electro-mechanical
or magneto-electro-mechanical coupling effects, see [52, 131] or [132] for further reading.

Extensions for shape and topology optimisation. Especially when it comes to structural
optimisation, there are some interesting questions to be answered. For instance, the
cooperation between MSE, CMMS and SMO could figure out, which kinds of objective
functions, constraints or design parameters can be used best for the determination of
optimal material designs. At the same time, the definition and investigation of new and/or
not-common objectives and constraints could be beneficial. Within the presented geometry
parametrisation techniques, which are implemented in MAnO, some limitations occur due
to several technical characteristics of CAGD. Restrictions concerning the number, shape
and position of voids and inclusions are present and especially during the optimisation
process the design modifications have to be observed and checked for feasibility. In this
scope, established and well-known level set and extended finite element methods (XFEM)
or even the modified extended finite element method (also labelled YFEM) are assumed
to be an elegant way for the treatment of one or more inclusions and/or voids on the
microscale, cf. [17, 126] or [15] for further details on the latter approach. In combination
with topological derivatives the appearance and disappearance of voids and inclusions can
be realised and controlled. In general, it might be interesting to combine methods from
different disciplines on structural optimisation, i.e. methods, which provide shape and
topological design changes. One possibility could be the application of shape optimisation
on the macroscale for the generation of optimal layouts of macroscopic structures and
the application of topology optimisation methods on the microscale to obtain completely
freeform microscale representations and microscopic topologies without restrictions on
number, size and position of heterogeneities.

Efficient computations and numerical performance. The last major topic of interest is the
question on efficient methods for DSA and on the general overall numerical performance
of the solution procedure for stated multiscale optimisation problems. This question can
be put into the context of hardware environment and programing skills on one hand, and
into the context of theoretical and methodological approaches for the improvements of
used formulations on the other hand.

So far, a Matlab R2018a implementation on mentioned hardware environments (cf.
Table 2.4) is available. In the next step a complete translation of the code to high
performance programming languages like C++ or Fortran could provide first interesting
insights and time consumptions for comparison. Several HPC techniques like MPI,
OpenMP or even GPU acceleration using CUDA could be implemented to push forward
the numerical behaviour. The performance evaluation in terms of computation times
of proposed implementations could be tested and compared on mobile and desktop
workstations with available computation power or even on HPC clusters. In all mentioned
points, advices from experienced programmers and computer scientist are useful and
established standards in their research fields should be taken into account.

The second aspect concerning the improvement of performance is more of theoretical
fashion. Observation of obtained results in Chapter 7, especially of the local distribution of
von Mises stresses on the microscale, let assume, that principal stresses are the driving force
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for the incremental design modification provided by mathematical optimisation methods.
As a consequence, this statement can be projected to the macroscopic deformation gradients
in corresponding macroscopic integration points. It is obvious, that within the deformation
driven context for numerical homogenisation, the deformation gradient is the driving force.
In several macroscopic regions the amplitude of the deformation can be assumed to be in a
similar range and therefore, the following questions arises: “Is it necessary to perform DSA
in each individual macroscopic integration point or is it possible to subdivide the overall
macroscopic domain in regions with similar deformation states and to evaluate DSA
only in this characteristic sub-domains?” This kind of approach is common in different
research fields, like machine learning, image processing or pattern recognition. It is based
on statistical data analysis and often termed cluster analysis or clustering. Determination
of clusters could be based on the question on how many information is required or how
much deviation is acceptable to obtain sufficient results for DSA and SO with respect to a
predefined precision.

Methods termed design exploration, especially methods that are based on the singular
value decomposition (SVD) are applied to single scale structural optimisation problems in
[59] or [14] and can employed for an investigation of the presented multiscale sensitivity
information. These methods are useful for figuring out important or significant design
parameters with major influence on objectives and constraints by the investigation of
corresponding sensitivity data like the pseudo load or sensitivity matrix. The overall
optimisation model can be reduced by a systematical reselection of design parameter sets
using mathematical methods. The presented framework for multiscale design optimisation
is predestinated for the design exploration process due to the large number of BVPs to be
solved and the corresponding and resulting large amount of sensitivity information with
pseudo load and sensitivity operators on different scales. Further improvements can be
deduced from so-called reanalysis methods, which allow predictions of state parameters
due to design modifications based on function evaluations in terms of available data only.
A brief introduction on this topic can be found in [98] among others.
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