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NOTATION

When using mathematical expressions in this thesis all variables, functions and arguments
are defined where they appear first. The following notation is used for specific mathema-
tical elements:

a,b,c, ... scalar

a,b,c,... vector

A B C,... matrix or tensor

A,B,C,... univariate random variable

A,B,C,... multivariate random variable

AB,C,... integer value for, e.g., counts, cardinalities or dimensionalities
A.B,C, ... set

|A| the cardinality of set A

A the i-th element in set A

A average value of the set A, i.e., ﬁ ZLZ'I A

al the transpose of vector a

a,a estimate or prediction of a scalar or vector

a; the i-th element of vector a

a; the element of the matrix A at row ¢ and column j
diag(A) the main diagonal of A

al(j) the i-th element of the j-th vector in set S = {a(j)}::1
f(z), f(x)  scalar function with scalar or vector argument

f(x) vector function with vector argument

8;;’:) the partial derivative of f with respect to z;

E[X] the expected value of the univariate random variable X
(a,b) inner product between the vectors a and b

All vectors are assumed to be column vectors if not specified otherwise. When referring to
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the norm of vectors, the notation ||-|| is short for the Euclidean norm ||||,. The operator
© denotes the Hadamard product (element-wise vector or matrix multiplication):

a®b = (aiby, azbs,...,apbp)”

For all functions that are only defined on scalars, a vectorial argument indicates element-
wise application of the function, e.g.:

igm () 1
sigm(z) = ———
& I+e®
sigm(x) = (sigm(z1), sigm(z2), . .. ,sigm(zp))”
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INTRODUCTION

Understanding the contents of handwritten texts from document images has long been a
traditional field of research in computer science. The ultimate goal is to automatically tran-
scribe the text in the images into an electronic format. This would make the documents
from which the images were generated much easier to access and would also allow for a
fast extraction of information. Especially for historical documents a possibility to easily
sift through large document image collections would be of high interest. There exist vast
amounts of manuscripts all over the world storing substantial amounts of yet untapped
information on cultural heritage. Being able to extract this information for large and dif-
ferent corpora would allow historians unprecedented insight into various aspects of ancient
human life.

The desired goal is thus to obtain information on the text embedded in digital document
images with no manual human interaction at all. A well known approach for achieving this
is to make use of models known from the field of pattern recognition and machine learning
in order to classify the text in the images into electronic representations of characters or
words. This approach is known as Optical Character Recognition (OCR) or text recogni-
tion and belongs to the oldest applications of pattern recognition and computer science
in general with the first works in this field dating back as far as 1914 [31]. Despite its
long history, handwritten text recognition is still considered an unsolved task as classifica-
tion systems are still not able to consistently achieve results as are common for machine
printed text recognition. This is especially true for historical documents as the text to be
recognized typically exhibits different amounts of degradation as well as large variability
in handwriting for the same characters and words.

Depending on the task at hand, a full transcription of the text might, however, not be
necessary. If a potential user is only interested in whether a certain word or text portion
is present in a given document collection or not, retrieval-based approaches are able to
produce more robust results than recognition-based ones. These retrieval-based approaches
compare parts of the document images to a sought-after query and decide if the individual
parts are similar to the query. The similarity measure does not need to be binary and
is often times a real number representing the level of similarity. For a given method, the
result is then a list of parts of the document images which are deemed relevant by the
method. Typically, this list is sorted according to the determined similarity in descending
order. In the field of document image analysis, this retrieval approach is known as keyword
spotting or simply word spotting.

Word spotting is the problem of interest in this thesis. In particular, a method will be
presented which allows for using neural network models in order to approach different
word spotting tasks. This method is inspired by a recent state-of-the-art approach by Al-
mazan et al. [9] which utilizes semantic attributes for word spotting. In pattern recognition
and computer vision, semantic attributes describe characteristics of classes which may be
shared between classes. This sharing ability enables an attribute representations to encode
parts of different classes which are common and those which are not. For example, when
classifying animals, the classes tiger and zebra may share an attribute striped.
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In the context of document images analysis, Almazan et al. [9] encode the characters of a
word in combination with their position as attributes. This way, a powerful representation
is obtained. Using this approach, they were able to establish state-of-the-art performance
at the time of their first publication.

The success of any attribute-based method is, of course, highly dependent on the ability
of a classifier to correctly predict the individual attributes. In order to accomplish an
accurate prediction, the use of Convolutional Neural Networks (CNNs) is proposed in this
thesis. CNNs have recently attracted a substantial amount of research interest as they
are able to consistently achieve state-of-the-art results in virtually all fields of computer
vision. Their main advantage compared to other methods is their ability to jointly optimize
a classifier and the feature representations obtained from the images. This characteristic
is known as end-to-end learning. While CNNs have been used extensively for classifying
data into one of multiple classes for various tasks, predicting attributes with these neural
networks has largely been done for face and fashion attributes only.

For the method presented in this thesis a CNN is trained to predict attribute repre-
sentations in an end-to-end fashion. These attributes are leveraged in order to perform
word spotting. The core contribution lies in the design and evaluation of different neural
network architectures which are specifically designed to be applied to document images. A
big part of this design is to determine suitable loss functions for the CNNs. Loss functions
are a crucial ingredient in the training of neural networks in general and largely determine
what kind of annotations the individual networks are able to learn for the given images.
It will be shown experimentally, that the obtained architectures achieve state-of-the-art
results for various word spotting benchmarks.

This thesis presents five different contributions to the fields of word spotting and deep
learning. These individual contributions will be discussed in Sec. 1.1. The section also
states if and where parts of the contributions have been published before. The chapter is
concluded by giving an outline over the following chapters of this thesis in Sec. 1.2.

1.1 CONTRIBUTIONS

Word spotting methods in general can be discriminated with respect to whether they need
a segmentation for the document images into word images as well as the types of query
they are able to process. The method in this thesis is able to perform segmentation-based
Query-by-Example (QbE) and Query-by-String (QbS) word spotting®. This is achieved
using attribute and attribute-like representations of strings. While using attributes for
word spotting was initially presented in [9], using a CNN for predicting the attributes in
an end-to-end is a novel approach. For designing the presented method, a number of con-
tributions are made regarding the fields of document image analysis and neural networks.
These contributions are explained in detail in the following. Please note that some of the
contributions in this thesis have previously been published in peer reviewed conferences
or journals. According to the regulations governing this thesis (German: Promotionsord-
nung), the author is required to report his individual contributions in joint publications
which will be done in this section also.

The presented method is in principal also able to support a lesser known query paradigm called Query-by-
Online-Trajectory (QbO). While QbO is not at the primary focus in this thesis, there exists a chapter in
the appendix which is concerned with using the approach presented here for QbO word spotting (cf. Ap-
pendix C).
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Loss functions for attribute representations

The big advantage of CNNs is their ability to combine the training of a classifier and
the learning of feature representations for the input images. While this characteristic has
been exploited in multi-class classification in a large number of scenarios, the prediction of
attribute representations has mainly focused on human characteristics or fashion. Before
the initial publication of the presented method in 2016, learning attribute representations
with CNNs had not been done for document image analysis in general and word spotting
in particular. The standard procedure to train neural networks in general is an algorithm
known as backpropagation. While the specifics of training will be explained later, at this
point it suffices to say that the aforementioned loss function is critical for the training
process. A major contribution of this thesis is to derive suitable loss functions for attribute
representations. These loss functions are derived from a statistical model. This allows for
interpreting the training process from a probabilistic point of view. In particular, the well-
known Binary Cross Entropy Loss (BCEL) and Cosine Loss functions can be obtained
through the method used in this thesis. This method was first published in [189] and
more thoroughly discussed in [190]. In these two publications, the author was responsible
for proposing the Generalized Linear Model (GLM) framework for a theoretically sound
derivation of the loss functions, the derivation of the Cosine Loss from the von Mises-Fisher
distribution, finding the connection between the Euclidean Loss and the Cosine Loss and
for conducting the experimental evaluations.

CNN architectures for word spotting

A common approach for computer vision tasks using CNNs is to make use of network
architectures which have been shown to achieve state-of-the-art results in other scenarios
and apply them to the problem at hand. The most commonly used CNN architectures like
AlexNet and VGGnet, however, where initially proposed for processing natural images.
In contrast, document or word images feature different traits with respect to number of
objects, object sizes and variability. It can be shown that standard CNN architectures
do achieve competitive performance when applied to document images [177]. However, it
is reasonable to expect that architectures which are designed to cope with the defining
characteristics of document and word images are enabled to perform better than these
standard architectures. Thus, three CNN architectures are proposed in this thesis designed
for word images. While all these architectures build on successful CNNs such as VGGnet
and Residual Network (ResNet), they are able to accept word images of varying sizes while
still producing a fixed-size attribute representation. This allows the CNNs to process the
images without the need for rescaling or cropping. In order to accomplish this, the first
architecture makes use of the well known Spatial Pyramid Pooling (SPP) layer. For the
other two architectures a novel layer is used which is referred to as Temporal Pyramid
Pooling (TPP) layer. While this layer also allows the CNNs to accept images of varying
sizes, it is explicitly constructed for word images as input.

The three proposed architectures are called PHOCNet, TPP-PHOCNet and PHOCRes-
Net. The PHOCNet was first proposed in [188] while the TPP-PHOCNet and the TPP
layer where presented in [189]. In both publications, the author was responsible for design-
ing the CNN architectures as well as conducting the different word spotting experiments
which they were involved in.
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Augmentation method for word images

The CNNs used in this thesis generally fall into the category of deep learning models. A
common challenge with these models is that the number of trainable parameters is usu-
ally in excess of 10%. If no counter measures are taken, the vast amount of parameters
makes these neural networks prone to overfitting during training. This means that the
model learns the characteristics of the training data “by heart” and is unable to achieve
a satisfactory generalization ability for new and unseen data. Approaches for countering
overfitting behavior are known as regularization techniques. Goodfellow et al. define re-
gularization as “any modification we make to a learning algorithm that is intended to
reduce its generalization error but not its training error” [58, p.224]. A prominent and
oft-used method for regularization is dataset augmentation. For this, images are added to
the dataset based on label-preserving transformations of images from the dataset. For na-
tural images, these label-preserving transformations include for example rotation, scaling
and cropping or flipping of the images. However, not all of these techniques are directly
applicable to document or word images. Hence, a novel method is proposed which allows
for randomly sampling a transformation for word images which incorporates a number of
image transformations which may be applicable to word images such as shear, rotation,
scaling and translation. This augmentation strategy was first proposed by the author in
[188] as part of a joint publication.

Ezxperimental evaluation of the different architectures and attribute representations

Most works on attribute-based word spotting make use of the attribute representation
proposed by Almazén et al. [9]. However, there exist other attribute and attribute-like
embeddings for word strings which can be used for word spotting in general and for the
presented method in particular as well. The question that arises is which representation is
best suited for performing attribute-based word spotting with CNNs. This question will
be answered through a thorough experimental evaluation comparing the three word string
embeddings known as Pyramidal Histogram of Characters (PHOC), Spatial Pyramid of
Characters (SPOC) and Discrete Cosine Transform of Words (DCToW). What all three
representation have in common is that pairs of attributes in a single representation may
be correlated. This correlation may lead the neural network to falsely predict the presence
of attributes based on other attributes which are correlated with the desired one. In order
to assess whether this is the case, two decorrelation techniques for attribute as well as
attribute-like representations are proposed and evaluated.

Part of the evaluation is the investigation of how much the amount of annotated training
images can be reduced in order for the network to still perform well. Using the proposed
CNNs this way was first done in [61]. Here, the author was responsible for the idea of
training CNNs for word spotting under this increasingly weak supervision.

The evaluation will investigate the two most common query types namely images (QbE)
and word strings (QbS).

Analysis of what the CNNs have learned

Deep neural networks still carry the stigma of being black boxes when it comes to explai-
ning the reasons for their predictions. However, there exist visualization techniques which
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allow for gaining insight into what the trained filter kernels of a CNN in a specific layer
have learned to detect (cf. e.g. [180, 183, 213]). In this thesis, the guided backpropation
method [183] will be used in order to investigate the filter kernels of the proposed CNNs.
This analysis allows for interesting observations regarding the behavior of filters in the
final convolutional layers. As will be seen, these filters often times function as character
detectors without ever having been supplied with segmented characters.

1.2 OUTLINE

The main part of this thesis is split into 8 chapters with the current chapter serving as
introduction and motivation. The remaining chapters are organized as follows:

CHAP. 2 - PATTERN RECOGNITION AND COMPUTER VISION FUNDAMENTALS
The proposed method can be accounted towards the fields of pattern recognition in general
and computer vision in particular. This chapter explains the basic fundamentals of these
two fields of research which are necessary in order to understand the method presented
later. This includes a detailed presentation of attributes in computer vision as they build
an integral part of the method.

CHAP. 3 - NEURAL NETWORKS AND DEEP LEARNING  As neural networks are
the model used at the core of the presented method, this chapter gives a thorough overview
over these machine learning models. In particular, important aspects for neural networks
from the field of deep learning are explained as the CNNs used for word spotting fall into
this category.

CHAP. 4 - WORD SPOTTING  While neural networks are the models of interest in
this thesis, word spotting is the application of interest. As word spotting applications can
be discriminated into various tasks depending on the problem at hand, this chapter first
explains established terminology with respect to this field of document images analysis. Af-
terwards, important contributions to word spotting are presented and their methodologies
are explained in detail.

CHAP. 5 - ATTRIBUTE CNNS  This chapter presents the methodology proposed for
word spotting in this thesis. As this methodology hinges on using the right loss functions
for training the proposed neural networks, a statistical model is explained first which allows
for deriving loss functions based on an assumption on the distribution of attributes. This
model is subsequently used to derive the loss functions used for learning attribute repre-
sentations. The chapter is concluded by presenting the three CNN architectures proposed
for the word spotting problem at hand. In particular, their design choices are explained
and justified.

CHAP. 6 - RELATED WORK  The presented method has relations to other methods
proposed previously in the literature. This chapter presents other works related to the
approach proposed in the previous chapter. Especially, the similarities and differences
between the CNN-based method presented in this thesis to the related methods are pointed
out and explained.
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CHAP. 7 - EXPERIMENTAL EVALUATION In this chapter, the results obtained with
the proposed approach for six different word spotting benchmarks are presented. For this,
the benchmarks and their specific characteristics are explained first. Afterwards, the ob-
tained performance values are listed and compared to other methods from the literature.
Finally, an analysis is conducted which allows for interpreting what the final convolutional
layer has learned to detect.

CHAP. 8 - CONCLUSION  The final chapter concludes the main part of the thesis by
summarizing the obtained results, findings and insights as well as giving an outlook on
potential future work.

APPENDIX AND BACKMATTER After the main part of the thesis, there is an ap-
pendix containing a detailed list of publications by the author, additional mathematical
derivations, a chapter on QbO word spotting with the proposed CNNs and further results
concerning the significance tests from the experimental evaluation. The backmatter con-
sists of the bibliography, a definition of all acronyms and an index.

Besides referencing articles from the literature, some sources such as, e.g., the software
libraries used for implementing the presented method or the datasets used for evaluation
are referenced by internet URLs. All URL references in this thesis were last checked on
December 21, 2018 for availability and content.



PATTERN RECOGNITION AND COMPUTER VISION
FUNDAMENTALS

The method presented in this thesis can be assigned to the field of pattern recognition.
Pattern recognition methods in general aim at replicating human perception abilities (cf.
e.g. [40, p. 2]). The branch of pattern recognition which is concerned with visual perceptions
is known as computer vision. Computer vision problems include classifying the content of
images into one of many classes, detecting or segmenting images into salient objects or
retrieving relevant instances from a database of images. The application of interest in this
thesis, i.e., word spotting, can generally be considered a computer vision problem, too, as
the data to be processed consists of images of handwritten words. The approach for word
spotting presented in this thesis and other related works for word spotting make use of
computer vision methodology used for classifying images. Hence, the rest of this chapter
will focus on presenting the fundamentals for solving classification problems in computer
vision.

Despite the large variety in tasks, classic approaches for image classification share, to
some extent, a common pipeline (cf. e.g. [40, p.5]). This pipeline is depicted in Fig. 1:
The first step in this pipeline is the acquisition of images through some form of camera
device. These images may then be preprocessed in order to reduce the amount of unwanted
variability. Typical preprocessing steps include pixel value scaling, noise removal or edge
enhancement (cf. e.g. [195, p.101]). After preprocessing, the next step is to extract so-
called features from the images. The feature representation of a given image is then used
in order to classify the image into one of the available classes. This classification step
requires a classifier which is responsible for generating the prediction. Using parametrized
models which are able to automatically learn the statistical characteristics of the feature
representations has shown itself to be a successful approach for finding good classifiers.
The structure for these models, however, is not determined automatically but by a human
expert. Interestingly, it can be shown that there does not exist a single best classifier
without a priori knowledge of the data to be processed [209]. In the context of pattern
recognition, this fact is known as the No Free Lunch theorem.

Having decided on a type of classifier, finding suitable model parameters can be achieved
by setting them such that the classifier predicts the desired classes for a given sample
set of images. This process is known as supervised training. It is typically an iterative
optimization procedure during which the accuracy of the classifier’s predictions is gradually
increased. Besides the images themselves, supervised training requires a corresponding
annotation for each image indicating the desired class. The set of tuples of images and
annotations used for training is called training set. The classifier is trained using the
feature representation of the respective training images.

When performing supervised training, it is important that the sample set is represen-
tative for the data to be classified later. This is due to the classifier being tasked to
extrapolate the knowledge obtained from the training to new data when making predic-
tions.

One notable aspect of the classic computer vision pipeline shown in Fig. 1 is that the
classifier does not have the ability to influence the feature extraction or preprocessing step
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Figure 1: The figure displays the standard pipeline for computer vision methods: First, an image
is obtained from some sort of camera device which may then be preprocessed in order
to reduce unwanted variability. Afterwards, features are extracted from the image. A
classifier is then used in order to predict the class membership of content of the image
using the feature representation. While the general structure of the classifier is obtained
through expert design, the parameters of the respective classification model are usually
trained using a set of annotated feature vectors.

in order to optimize the classification accuracy. Preprocessing, feature extraction and clas-
sifier are thus typically optimized individually. A notable exception to this are the recently
successful Convolutional Neural Networks (CNNs) from the field of deep learning. Fig. 2
visualizes a modern deep learning pipeline for computer vision using these neural networks.
As can be seen in the figure, CNNs integrate preprocessing and feature extraction into the
classification model. This characteristic is their main advantage compared to classic ap-
proaches: Instead of optimizing each block in the classic pipeline individually, a CNN can
be optimized in an end-to-end fashion. This term refers to the fact that preprocessing,
feature extraction and classification are optimized combinedly in order to obtain the best
classification accuracy. It needs to be noted, that the No Free Lunch theorem still dictates
that a CNN is not superior to other classification models which make use of the classic
pipeline a priori. However, deep learning approaches can be shown empirically to outper-
form classic ones on different computer vision benchmarks by a substantial margin (cf.
e.g.[54, 92, 172]). Especially the prestigious ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [167] has been dominated by deep CNNs ever since they were made
famous by Krizhevsky et al. [92] in 2012 in this competition.

Both classic and deep learning approaches face a problem when being presented with
images of classes which were not among the training classes, i.e., are unknown from a
classifier’s point of view. Without modifications, a classifier can typically only predict one
of its known classes [95]. It would, of course, be desirable to enhance a classifier such
that it is able to easily incorporate knowledge about unknown classes without the need
of collecting training samples for them. This approach is known as zero-shot learning [96].
Zero-shot learning is of high importance for this thesis as the presented methodology
requires to predict representations for word images of classes which may have not been
observed during training.

The rest of this chapter presents relevant methodology for the classic computer vision
pipeline as well as zero-shot learning techniques. Describing the classic approaches is neces-
sary as they are at the core of a number of important works related to the method presented
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Figure 2: The figure conceptually visualizes how a Convolutional Neural Network (CNN) is used
in computer vision for classification: The acquired image is used as input to the respec-
tive neural network which encapsulates a potential preprocessing, feature extraction and
classification. Each of the three parts can be learned in an end-to-end fashion. For this, a
CNN typically requires the training images to be manually labeled. Besides for supplying
the annotation, an expert is also required for defining the concrete architecture of the
CNN to be used.

in this thesis. As the presented method makes use of a deep learning approach, CNNs and
relevant fundamentals will be extensively discussed in a dedicated chapter (Chap. 3). Gen-
eral preprocessing techniques will not be covered here as most related works ignore a
preprocessing step and extract features directly from the given images. If preprocessing is
applied in a related method, it is very specific for the problem of processing images of hand-
written documents. For these related works, the preprocessing step will be described when
explaining the method. The interested reader may find detailed descriptions for general
preprocessing techniques in computer vision in, e.g., [195, p.99]. In contrast to preprocess-
ing, feature extraction techniques and classifier types found in the related word spotting
literature are typically successful ones from other fields of computer vision or pattern
recognition in general. The next section (Sec. 2.1) will hence describe common approaches
for extracting feature representations from images in the classic computer vision pipeline.
The ensuing section (Sec. 2.2) then focuses on describing different classifier models. The
chapter is concluded by describing important fundamentals concerning zero-shot learning
(Sec. 2.3). These fundamentals are relevant for some of the related works as well as the
presented method.

2.1 FEATURE REPRESENTATIONS FOR IMAGE CLASSIFICATION

The goal of encoding an image into a feature representation is to obtain a numerical vec-
tor which may further be processed by the ensuing classifier. Choosing a discriminative
feature representation is paramount for solving the classification task: If for all classes
the feature vectors of a specific class are compact while the regions in feature space re-
presenting the different classes are far apart, a classifier will be presented with a much
easier task compared to when different classes overlap in feature space. For determining
useful feature representation, one would like a closed loop optimization where the goal is
to maximize the classification performance for the training samples with respect to the fea-
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ture representation. In the case of classic approaches, however, the loop is open as feature
representation and classifier are optimized independently (cf. Fig. 1). Hence, a common
approach is to define the feature representation heuristically.

A very famous feature representation for computer vision methods is the so-called Bag of
Features (BoF) (cf. e.g. [129, 181]). Its principals derive from Bag-of-Words models known
from natural language processing. The BoF representation is essentially a histogram of
quantized local image statistics obtained at various points of an image. In order to create a
BoF representation, local descriptors are computed from the image first. These descriptors
capture characteristics of the respective image in a defined and small pixel neighborhood.
Typically, the descriptors of the Scale Invariant Feature Transform (SIFT) [112] are used
in BoF representations but other local features such as Speeded Up Robust Features
(SURF) [15] are possible as well and have been used in the literature (cf. e.g. [79]). While
in the original SIF'T method the descriptors were calculated at specified keypoint locations,
current methods for image classification usually compute the descriptors in a dense grid
across the entire image when using BoF representations (cf. e.g. [25]).

Having computed the local descriptors for a set of images, the next step for obtaining
a BoF representation is to quantize them. This quantization step is necessary for creating
the BoF histogram as the individual descriptors have to be assigned to a specific bin in the
histogram. In order to obtain the assignment of local descriptors to bins, the descriptors
obtained from the images are clustered. This can be achieved with, e.g., Lloyd’s algorithm
[111] or MacQueen’s k-means algorithm [114]. The codebook obtained after clustering is
referred to as wvisual vocabulary and the cluster centers as visual words. For quantizing the
descriptors, each descriptor is assigned to its closest visual word in descriptor space. Having
found a visual word representative for each descriptor in an image, the BoF histogram is
obtained by counting the number of descriptors which have been assigned to the individual
visual words.

One notable characteristic of BoF representations is the loss of localization information
for specific descriptors. This is due to the position of the individual descriptors not being
taken into account for creating the BoF histogram. While this does bare certain advan-
tages with respect to, e.g., translation invariance, a complete loss of localization may lead
to a decreased overall performance in certain situations [98]. Spatial pyramid represen-
tations [98] seek to counter this problem. The spatial pyramid concept is visualized in
Fig. 3. The dots represent local descriptors with the color depicting one of three possible
visual words the respective descriptor has been assigned to during clustering. The spa-
tial pyramid representation is then obtained by creating individual BoF histograms for
different parts of the image in a pyramidal fashion. In the first level, the standard BoF
representation is used. In the second level, the image is subdivided into four equally sized
regions and a BoF histogram is computed for each region. This process is continued for
the ensuing pyramid levels with each layer having double the amount of regions along the
horizontal and vertical axis compared to its previous level. All levels make use of the same
visual vocabulary obtained during the initial clustering. Finally, all individual histograms
are concatenated to form the spatial pyramid representation. While the amount of levels
can be chosen arbitrarily, typical spatial pyramid approaches use three levels (cf. e.g. [25,
96, 98]). As a 3-level spatial pyramid has a grand total of 21 bins across all levels, this
also increases the overall representation size by this factor compared to a standard BoF
representation. However, spatial pyramids are typically sparse and can thus be stored and
processed quite efficiently [169].
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Figure 3: The figure visualizes how to create a 3-level spatial pyramid representation from quan-
tized features belonging to one of three visual words. In each level the image to be
processed is split into different regions in a quad tree-like structure. For each region a
BoF histogram is extracted. The individual histograms may further be scaled or norma-
lized in order to account for the expected loss in absolute counts for levels with a higher
index. Finally, all histograms from all bins are concatenated in order to form the spatial
pyramid representation. The figure is inspired by Fig. 1 in [98].

Both BoF and spatial pyramid representations share the hard assignment of a descriptor
to a visual word. It can be shown empirically that this hard assignment performs worse
compared to soft-assignment strategies for a large variety of tasks [25, 169]. A very suc-
cessful representation making use of soft-assignment has been the Fisher Vector [169]. The
Fisher Vector contains information about log-likelihood gradients of a probabilistic model
given the descriptors. In order to compute a Fisher Vector representation, the descriptors
of a set of images are assumed to be realizations of a random variable. For modeling this
generative process, a Gaussian Mixture Model (GMM) is chosen. A GMM is a mixture
model of M different normal distributions. The Probability Density Function (PDF) of a
GMM can be defined as weighted sum of the mixture components:

M
. . ~) M . . .
fermu (x ] {w®, ), Z“)}H) = > wlfu (x|, 20) , where (1)
i=1
M . .
Zw(z) =1,Vi: w® >0 and (2)
i=1
1 1
v bl E) = ———exp (5 (=) k- m) . )
(27)Pa - ||

In Bq. 1, w®, u(i) and () are the respective weight, mean and covariance matrix for the
i-th mixture component. In Eq. 3, Dq is the dimensionality of the descriptors and |Z| the
determinant of the covariance matrix. The descriptors obtained from the images are used
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in order to estimate the parameters of the GMM using the Expectation-Maximization
algorithm. In analogy to the visual vocabulary from BoF, the GMM involved in creating
a Fisher Vector is sometimes referred to as probabilistic visual vocabulary [169]. Typically,
only diagonal covariance matrices are used for the GMM’s mixture components. In order to
generate the Fisher Vector representation for a given image, the derivative of the GMM’s
log-likelihood given the descriptors in the image is computed with respect to the mixture
weight, mean and covariance matrix of each component. For this, the weights are first
re-parametrized using the softmax formalism [89]:

exp (Oz(i))
S exp (am) ‘

W) —

(4)

This way, the constraint from Eq. 2 is implicitly encoded into the model. The gradients
for each descriptor x are then computed as follows [89]:

dlog favm , (7)
9al) i(x) —w (5)
dlog favm ' (i)~ 1 (i)
oou® pn@ pi(x)-Z (X K ) (©)
dlog famm  pi(x) ¥ (i) () @\

ax@®! 2 ( - (X_“ ) (x H ) ) ' )

In the equations above, p;(x) is the probability of the descriptor being generated by the
i-th mixture component and is computed as follows [169]:

O fy (x| @, 20)
pi(x) = MWl fy (X ’ ), z(a‘))

(8)

For building the Fisher Vector, the gradients for all descriptors from the available images
are computed, averaged and concatenated. Note that for this only the diagonal of the
gradient in Eq. 7 is used. The size Dpy of the resulting Fisher Vector is thus

Drv = (2Dg + 1) - M. (9)

The concept of subdividing the image into regions in a pyramidal form as was done for the
spatial pyramids can be used for the Fisher Vector as well. This is achieved by computing
an individual GMM per region in the pyramid and concatenating all resulting Fisher
Vectors [169]. As Fisher Vectors are almost always dense, they, however, typically consume
more memory than spatial pyramid representations of the same dimensionality.

2.2 IMAGE CLASSIFICATION

Having obtained a feature representation for the training images, the next step in the
classic computer vision pipeline is to train a classifier (cf. Fig. 1). While the feature repre-
sentations for computer vision approaches are typically designed specifically for images,
the classifiers used in computer vision methods are usually not specific to this subfield of
pattern recognition.

There exists a variety of classifiers in the pattern recognition literature. A central compo-
nent of each of these classifiers is the classification rule. The classification rule is essentially
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the function a classifier uses to make its prediction. For example, statistical classifiers pre-
dict a data sample to belong to a class ¢ such that the costs for a wrong classification are
minimized (cf. e.g. [40, p.20]). If all false classifications carry the same cost, statistical
classifiers assign a given sample to the class c if ¢ is the class with maximum posterior
probabilities given the feature vector x of the sample. Using Bayes’ rule, this classification
rule can be expressed as follows (e.g. [40, p. 24]):
_ ple)p(x|c) _
argmax p (¢|x) = argmax —————— = argmax p(c)p (x| c), (10)
c c p(X) c

where p(c) is the prior probability for class ¢ and p (x| ¢) the probability for observing the
vector x given the class ¢. These two probabilities need to be estimated from the training
samples.

While statistical classifiers are used quite regularly in classic computer vision approaches,
other classifier types such as the k-Nearest Neighbor classifier (kNN) (e.g. [124, p.16]),
Random Forests [21] or Support Vector Machines (SVMs) [30] can be found there as well.
Please recall that no classifier can be identified as optimal for a given task a priori [209].
The best classifier and its respective parametrization for a given set of data can thus only
be determined empirically. For this, the available data can be split into a training set,
which is used for training the classifier, and a validation set, which is then used in order to
determine the classifiers’ performance (cf. e.g. [124, p. 23]). Training a classifier and using
it for predicting new data will be explained exemplarily in the following using an SVM as
classifier. SVMs are of general interest for this thesis as a number of works closely related
to the presented method make use of these classifier models.

An SVM classifies data into one of two classes which is commonly known as binary

classification. Given a training set S = { (X(i) , y(i)) }le of tuples of feature representations
x and labels y, an SVM tries to find a hyperplaneli_n feature space which separates the
two classes and has maximum distance to the samples from either class. For convenience,
it is assumed that the two classes are encoded as —1 and 1 in the labels. The reason for
this will be seen when formally discussing the training algorithm for the SVM.

Having found the hyperplane with maximum distance to the samples, a new sample
can be classified by determining in which half space it lies with respect to the hyperplane.
This is the SVM’s classification rule. The concept of an SVM is visualized in Fig. 4. In
the figure, the dashed lines represent the so-called margins and the solid black line the
separating hyperplane of the SVM. The two margins are always parallel and the separating
hyperplane is always halfway between them.

The two major shortcomings of the SVM as explained above are that it is only able
to classify binary data and only if the data is linearly separable. The first aspect can be
countered by either one-vs-all or one-vs-one classification. In one-vs-all there exists one
SVM per class which tries two find the hyperplane separating the samples of the respective
class from all other samples. In one-vs-one, there exists one SVM per pair of classes. In
both scenarios, the final classification result is obtained through some form of voting
mechanism (cf. e.g. [124, p.503]). In order for the SVM to handle non-linearly separable
data, there exist two common concepts. The first is concerned with individual outliers:
If only a small amount of outliers from each class causes the data to not be linearly
separable, the SVM may be allowed to position the hyperplane such that the outliers
are classified incorrectly during training. The second approach for classifying non-linearly
separable data is concerned with the situation when a non-linear class boundary is not
caused by outliers but is rather a structural characteristic of the data. In these situations

13



PATTERN RECOGNITION AND COMPUTER VISION FUNDAMENTALS

Figure 4: The figure visualizes the concept of an SVM. The samples of the two classes are repre-
sented by green and blue dots. The hyperplane found during training is the one with
maximum distance to all samples (solid black line). The margins of the hyperplane are
depicted by dashed lines. Data samples, which lie on the margins, are called support
vectors. All data points with a red outline are the support vectors for the specific classes.

the data can be projected into a high-dimensional space using a non-linear transformation.
Intuitively speaking, the higher dimensionality increases the probability of being able to
find a hyperplane for which the projected data is again linearly separable. As will be seen
in the following, an SVM only requires inner products for training and predicting a class.
Thus, the computationally expensive non-linear transformation can be replaced by a kernel
function (cf. e.g. [124, p.488]). A kernel function allows for computing the dot product in
a projected space using only the original data samples.

When using feature representations such as spatial pyramids or Fisher Vectors as input
to an SVM, the dimensionality of the respective representations is usually in the order
of 10° or even higher [25, 153]. These input spaces are typically large enough such that
an SVM without a kernel function can find a hyperplane which separates the training
samples into the desired classes. SVMs, which do not make use of a kernel, are referred to
as linear SVMs (cf. e.g. [75]). In the context of this thesis, only linear SVMs are of interest
which is why the application of kernel functions will not be discussed in the following. The
interested reader is referred to the literature on kernel functions, e.g., [124, p.479].

Any SVM is parametrized by the normal vector w and the offset wy of its hyperplane. If
these two values have been determined, the SVM can predict the label § of a new sample
x* as follows:

J = sgn (WTX* + w()) . (11)

For obtaining the parameters of the hyperplane from the training samples, the margins
for the two classes are first defined as w’x +wo = 1 and w!x + wy = —1 respectively.
The distance between these two margin hyperplanes can be shown to be ﬁ (cf. e.g.
[124, p.501]). Instead of maximizing this distance, one can also minimize the inverse of
it. The optimization process must, of course, be constrained to account for the data at
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hand: Recalling that the margins define the edge for the respective classes, the hyperplane
obtained from optimization must fulfill the following constraint (cf. e.g. [19, p. 328]):

y D (wix @ fag) =1>0 Vie{l,...,n}. (12)

In order to account for potential outliers as explained above, so-called slack variables are
introduced into the constraints of the optimization problem. These slack variables allow
the hyperplane to be placed such that samples of a specific class are outside of their class
margin (cf. e.g. [19, p.332]):

y D (wix® +wg) ~14+&>0 Vie{l,...,n}. (13)

The slack variables &; need to be positive, which is another constraint for the optimization.
Using Lagrange multipliers, the constraint optimization problem for finding the normal
vector and offset of the hyperplane can be defined as follows:

N
~ 1 2
W, o, &, B = argmin o ||w|[* + C Y4
=1

w,wo,0,f

+ %S: Q; (y(i) (WTX(i) + wg) — 1) (14)
i=1

Ns
+) Biki-
=1

In the optimization, the positive scalar C' is a meta-parameter which defines how the slack
variables will be penalized. If C' is large, the total sum of slack variables may only be small
meaning that only few training sample misclassifications are allowed (cf. e.g. [19, p. 332]).
In contrast, a C' close to zero would allow the hyperplane of the SVM to be placed almost
arbitrarily.

It can be shown that the resulting estimate W for the hyperplane is a linear combina-
tion of the training samples with the Lagrange multipliers a serving as weights for the
individual samples (cf. e.g. [124, p.499]):

Ns
W= Zaix(i). (15)
i=1

Moreover, «; is only non-zero for those training samples x() which reside on or beyond
their respective margin. These samples are called support vectors. In Fig. 4, the support
vectors for the two classes are depicted by a red outline around the respective data samples.

2.3 ZERO-SHOT LEARNING WITH ATTRIBUTES

The classifiers mentioned in the previous section are all able to classify data samples into
one of k classes. As hinted at before, they are faced with a problem when being presented
with samples of classes which were not present during the training. These classes are
generally referred to as unknown [96]. The problem arises due to the classifiers only being
able to predict one of the known classes. Even if a specific classifier is able to reject a
prediction through some form of thresholding, determining suitable threshold values is
a cumbersome task, especially when considering that unknown classes are by definition
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unavailable during the time the classifier is trained. The problem discussed above can
be mitigated if information about unknown classes can be incorporated into a classifier
without requiring samples of these classes. Methods which follow this paradigm belong
to the field of zero-shot learning [96]. For zero-shot learning, classes are represented by a
set of semantic properties instead of a scalar label [73]. These properties may be shared
between classes. It is, however, required that each class is represented by a unique set of
properties and that no two classes have the same representation. When presented with
new samples, classification can be performed by first predicting the set of properties for
the given sample and then determining the class for which this intermediate encoding fits
the best. Using the zero-shot learning framework, unknown classes can be made available
for classification without requiring any training samples if an expert can supply the set of
semantic properties for the new class. In the following, these classes will be referred to as
zero-shot classes.

For computer vision problems, the semantic properties used in zero-shot learning are
known as attributes [73]. The concept of attributes was independently proposed by Lampert
et al. [95, 96] and Farhadi et al. [43]. Lampert et al. define an attribute as a characteristic
of an object for which a human has the ability to decide if it is present or not. For example,
if the object class is banana, possible attributes would be yellow, fruit, curved or grows
on trees. It is important to note, that attributes do not necessarily need to be visually
assessable!. As an example for this, Lampert et al. [96] list the habitat of an animal. An
important aspect of attributes is that they are shared among a subset of classes [43]. This
way, when learning attributes for known classes, an attribute classifier should be able to
transfer knowledge to unknown classes which share the respective attributes and be able
to predict the respective attributes for the unknown classes also. Zero-shot learning using
attributes can thus also be viewed as a transfer learning problem [93, 153].

The definition of attributes by Lampert et al. leaves a certain leeway for interpretation.
In particular, the definition does not state whether attributes are assigned to classes or
image instances. Although it may seem as classes and image instances can be considered
equally, there is an important difference between the two. If attributes are simply labels
for a given image, finding these attributes is a problem known for decades as multi-label
classification. Multi-label classification describes the problem of assigning k out of n pos-
sible labels to a given input sample (cf. e.g. [57, 115, 144]). Predicting attributes would
thus be nothing else than multi-label classification. In contrast, if an attribute belongs to
a class the focus of the problem shifts. In this scenario, each image instance does not carry
multiple but only a single class label from which attributes can be derived. Farhadi et al.
[43] use attributes under this second paradigm, i.e., as belonging to a class. They make this
explicit as they claim to use attributes in order to effectively recognize object categories.
Lampert et al. [96] also use attributes in this sense, i.e., in order to recognize object classes.
The computer vision community in general, however, has adopted a looser interpretation
of what defines an attribute. A prominent example for this is facial attribute prediction
which has received considerable research interest lately, e.g., [109, 161, 215]. While the
attributes used here are also assigned to classes, the attribute vector for a given class may
not be unique. It is rather used as a so-called soft biometric in order to increase the perfor-
mance of traditional face recognition methods by including a number of additional clues,
i.e., attributes, for the face to be classified [120]. The attributes used here can thus rather

For this very reason, the term visual attributes will not be used in this thesis although it can also be found
in the literature for describing attributes as well (cf. e.g. [133])
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be interpreted as an additional multi-label annotation for a given face image. Rudd et al.
[161] agree on this fact as they state “that facial attribute recognition inherently seeks
multiple labels for the same image”. Another area of computer vision where attributes
are used is the classification of scene images. Here, the term attribute again refers to a
multi-label annotation for a given scene image with no unique representations of scene
classes through attributes [136].

As can be seen, attribute classification is sometimes used as a synonym for multi-label
classification. This is in line with the definition by Sharif Razavian et al. [176] who consider
an “attribute within the context of computer vision [...] as some semantic or abstract
quality which different instances/categories share”. In order to discriminate between the
two definitions, attributes as defined by Lampert et al. [96] will be referred to as class
attributes and those as defined by Sharif Razavian et al. [176] as instance attributes in this
thesis. If no further qualification is given, the term attributes refers to class attributes in the
following. Despite the different definitions for attributes, it should be noted that methods
for predicting class attributes can often times be used for instance attributes as well and
vice versa: As each sample is annotated with a binary vector y € {0, 1}", predicting class
and instance attributes can be done using the same methods from a technical point of
view.

For classifying data based on attributes, a mapping from attribute representation to the
desired classes has to be defined. Typically, this mapping is obtained by a human expert
establishing the relationships. However, recent work seeks to find these relationships in
an unsupervised fashion by mining information from encyclopedias such as Wikipedia [5].
Besides allowing for zero-shot learning, attributes also enable a classifier to predict unusual
attributes, i.e., unusual characteristics of known classes [43].

According to the definition by Lampert et al. [96], attributes are binary values. An
oft-used approach is thus to use a set of SVMs for predicting the attribute representation
for a given data sample (cf. e.g. [43, 73, 93, 96, 153]). For this, there exists one SVM
per attribute which is responsible for predicting the presence or absence of this attribute.
Having predicted the attribute representation, the class prediction can be done in different
ways: Farhadi et al. [43] compute the distance from the predicted attribute representation
to the available known encodings which are made up of the attribute representation known
from the training samples and those supplied for the zero-shot classes. The class of the
nearest known encoding is then used as prediction for the given sample. In contrast to
Farhadi et al., Lampert et al. [96] propose a probabilistic approach for predicting classes
from attributes which they term Direct Attribute Prediction (DAP)2. The DAP approach
is visualized in Fig. 5. The basis for DAP is a joint class label set C which consists of all
unique class labels y of the known classes and all unique class labels z for zero-shot classes.
The first step is then to obtain a vector a of attribute predictions for a given sample x from
the attribute classifier. In order to obtain a class prediction from the predicted attribute
vector, the attribute classifier has to be able to predict the probabilities p (a; | x) for each

Lampert et al. [96] also propose a second approach for predicting classes from attributes which they call
Indirect Attribute Prediction (IAP). IAP is, however, rarely used in the literature and has no relevance
for this thesis.
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Figure 5: Visualization of the DAP method: First, the probability for each of the D, attributes to
be present given sample x is predicted from an attribute classifier. These probabilities
are then used in order to predict probabilities for the known classes y; as well as the
zero-shot classes z; for which there do not exist any training samples (figure recreated
from Fig. 2 in [96]).

attribute a; being present given the sample x. The class é can then be predicted from a
through

¢ = argmaxp (¢|x) (16)
ceC
p(e) T ()

= argmax ———— Hp (ai =aq, ‘X) with (17)

ceC p a(c)) i=1

e (c)
Z- fal9 =1

p (ai — agc) X) — p (a |X) 1 al (18)

1—p(ai|x) otherwise
where D, is the dimensionality of the attribute representation and aEC) € 0,1 defines
whether the i-th attribute for class ¢ is present or not. If no further knowledge about the
known and unknown classes is available, the class prior p(c) is set to a uniform value and
may hence be disregarded when optimizing the posterior probability. The same applies for
the prior p (a(c)) for the different attribute vectors.

Class attributes are a powerful tool which have been successfully used for a variety of
different computer vision applications such as human action recognition [108, 211], object
retrieval [38, 96], scene recognition [104] and clothing recognition [192]. They were also used
for determining whether a human finds an image aesthetically pleasing or not [36]. Besides
the aforementioned facial attribute recognition, instance attributes have successfully been
used for predicting characteristics of natural scene images [136] and human poses [214]. In
all of the applications mentioned above, attributes are predicted for a single image. An
interesting expansion to this is to define attributes as relations between two images [134].
This way, an attribute is not detected as present or not but it is rather determined whether
a specific attribute applies more to a given image than another. Relative attributes have
successfully been used for product retrieval, e.g., [87, 88]. For example, if the user queries
a specific shoe, he or she can then decide to retrieve other shoes which have a higher heel
than the current one. In this case, the relative attribute would be has higher heel.
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Attributes have also been used for document image analysis applications. Works in
these regard have a higher relevance than from other fields of computer vision and will be
discussed separately in Chap. 6.
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NEURAL NETWORKS AND DEEP LEARNING

After explaining general concepts of computer vision in the previous chapter, this chapter
gives a detailed overview of neural networks as these machine learning models play an
integral part in the methodology presented later in this thesis. First, concepts for feed-
forward neural networks are presented in Sec. 3.1 as they represent the fundamentals of
neural networks used in this thesis. The ensuing Sec. 3.2 then elaborates on how to train
feedforward architectures. Afterwards, Sec. 3.3 introduces Convolutional Neural Networks
(CNNs) which serve as the cornerstone of the presented methodology. Finally, Sec. 3.4 and
Sec. 3.5 discuss the field of deep learning and the use of increasingly deeper models.

In the following, the terms neural network and network will be used interchangeably.
These terms refer strictly to the neural network models known from pattern recognition
and machine learning and not any circuit networks from electrical engineering or models
of the brain.

3.1 FEEDFORWARD NEURAL NETWORKS

Feedforward neural networks build an important class of neural networks with some au-
thors even suggesting that they are the “quintessential deep learning models” [58, p. 168].
The are made up of computational blocks which are stacked up in a hierarchical order and
form a directed and acyclic graph.

Work on feedforward neural networks can be traced back at least as far as the 1950s.
As the name suggests, the main inspiration was mimicking the structures of the human
brain. This way, abstract neuron models could be created which where able to approximate
binary functions and later real-valued functions as well. It should be noted, though, that
neural networks are only loosely inspired by the human brain and especially do not copy
its functionally.

A number of concepts that where developed with the early neural networks models are
still used in todays deep learning architectures which is why they will be presented in
detail here. First, this section discusses the Perceptron in Sec. 3.1.1. Then, the Multilayer
Perceptron is presented in Sec. 3.1.2.

3.1.1  Perceptron

The Perceptron model by Rosenblatt [155] is widely regarded as one of the most influential
early works on neural networks. A graphical outline of a Perceptron is given in Fig. 6. The
Perceptron classifies input samples x € RP into either of two classes y € {=1,1}. This is
done by determining the sign of a weighted sum of the inputs. The classification rule for
the Perceptron can formally be defined as

1 ifwlx+b>0
y(x) = (19)
—1 otherwise
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<

Figure 6: The Perceptron model in its “updated” version as proposed by Minsky and Papert [122].
The input to the model is a real-valued vector. A weighted linear combination of the
vector elements is forwarded to a step function which effectively extracts the sign of the
linear combination. This is the class § predicted from the Perceptron.

where w is the vector of weights for the input and b is a bias. Originally, the input to
the Perceptron was restricted to binary vectors [155]. Contemporary literature, however,
usually refers to the “updated” version by Minsky and Papert [122] which handles real-
valued vectors as well.

A Perceptron shares a number of characteristics with a Support Vector Machine (SVM)
(cf. Sec. 2.2). Just as an SVM, a Perceptron is only able to perform binary classification.
Upgrading a Perceptron in order to perform multi-class classification can be achieved
the same way as is done for SVMs, i.e., through one-vs-all or one-vs-one classification.
Another similarity is how an SVM and a Perceptron determine the class prediction for a
given sample. For the Perceptron, w represents the normal vector of a hyperplane which
defines the boundary between the two classes. Using a hyperplane for classification is
done in SVMs as well. The major difference of the two models lies in the way they are
trained, i.e., fitted to data. While the optimization of an SVM model makes use of the
max-margin criterion in order to find the separating hyperplane, the Perceptron uses a per-
sample classification result as optimization criterion which is also referred to as perceptron
criterion [19, p. 193]. For this, each sample x and its corresponding label y is processed by
the Perceptron individually and in an iterative fashion. If the criterion

wlix.-y>0 (20)

is satisfied, w is not changed. Otherwise, the weight vector w(™) at iteration 7 is updated
as follows:
w( w4y x. (21)

This algorithm is guaranteed to converge to an exact solution if the training samples are
linearly separable [122, 156].
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Input Layer Hidden Layer Hidden Layer Output Layer

Figure 7: The figure visualizes an MLP. Except for the input, each layer is fully connected, meaning
that each neuron is connected to all neurons in the preceding layer. All inner layers of
the MLP are called hidden layers, while the last layer is called output layer.

3.1.2  Multilayer Perceptron

The main drawback of a Perceptron is its inability to handle non-linearly separable data.
This was famously documented by Minsky and Papert [122] in showing the Perceptron’s
inability to represent the XOR-function. However, Minsky and Papert went on to show
that this property could be remedied by stacking multiple layers of Perceptrons. This
approach gave rise to a neural network model which is known as Multilayer Perceptron
(MLP)

An MLP consists of a number of sequentially stacked Perceptrons. Fig. 7 exemplarily
visualizes a four layer MLP. The first layer simply delivers the input x to the network and
is called input layer. The ensuing layers all compute intermediate representations with the
last layer (the output layer) finally producing the output § of the MLP. All layers beside
the input and output layer are called hidden layers. In general, the MLP is a feedforward
network [19, p.229] as the output of any layer does only depend on the output of the
immediately preceeding layer (except for the input layer).

As each layer s in an MLP is a Perceptron, the layer-wise output is computed the same
as is done in a multi-class Perceptron: First the weighted sum

i) (3, W), b)) = Wlx 4 bl (22)

of the layer’s input vector is calculated. For simplicity, the input vector x can be augmented
by a single element with value 1. This way, the bias is encoded into the weight matrix which
greatly simplifies notation:

i) (%, W) = Wlx. (23)
The result of the weighted sum of inputs is then forwarded to a nonlinear activation
function

£(s) (X,W(s)> o) (i(s) (X,W(s)>) (24)
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in order to compute the layer’s output £(5). It is necessary that © is nonlinear as otherwise
the MLP can be represented by a single linear function and thus be no more expressive
than a linear classifier. In contrast to the step function used in the Perceptron, MLPs
traditionally made use of the sigmoid function

1

R 25
14+e2 (25)

sigm (z)
The sigmoid can be interpreted as a soft step function which has the property of being
differentiable everywhere. This is an important aspect for training MLPs which will be
further discussed in Sec. 3.2.
Computing the output ¥ of the MLP is done by a so-called forward pass of the input
data through the network (weight arguments left out for cleaner visualization):

g = £ <f<Nz—1) ( f@ (f(l) (X)>)> , (26)

Here, N; represents the number of layers in the MLP. There are N; — 1 hidden layers with
£(No) serving as the output layer.

An interesting theoretical aspect of MLPs is, that an MLP with two layers containing
weights, i.e., one hidden and one output layer, is able to approximate any Borel measurable
function with arbitrary accuracy [71]. As all functions g : R® — RP" are Borel measurable,
an MLP is thus theoretically able to approximate all real-valued multivariate functions
[170]. The proof concerning this characteristic is known as the universal approximation
theorem [71].

3.2 TRAINING FEEDFORWARD NETWORKS

Although MLPs can theoretically approximate any function, finding the correct weight
configuration to represent a specific function with desired accuracy is non-trivial and an
open research question. In essence, one would like to accurately approximate the correct
classification rule for a given classification problem. This is, of course, impossible to achieve
since the true data distribution and the corresponding classification rule can generally not
be determined. Hence, neural networks have to approximate the correct classification rule
based on a set of training samples they are supplied with.

While a Perceptron learns its classification rule using the perceptron criterion, this
criterion can no longer be used when dealing with MLPs. Instead, the standard approach
is to minimize the difference between the output obtained for a specific input and the
desired output with respect to the weights of the MLP. Fitting a neural network to data
this way is called training or learning. While this approach has been used for training neural
networks since at least the 1980’s, it is still the de-facto standard for supervised training of
modern neural networks. This section gives a detailed description of this standard training
procedure for feedforward networks.

3.2.1 Gradient Descent and Error Backpropagation

The goal of training is to find the weights and biases such that a neural network produces
a desired output y for a given input x. For this, a so-called loss function [ is required.
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This function computes a numerical value that represents a measure of deviation of the
network’s prediction § from y. A straight forward loss function is the Euclidean Loss:

v (3y) =

=1

@ —wi)” (27)

N |

The loss here is simply the squared Euclidean distance of § and y scaled by a factor.
Having defined a loss function, training a neural network is then achieved by adapting
the weights of the network such that [ and thus the deviation is minimized. Unfortunately,
finding an analytic solution to the optimization problem is cumbersome at best and most
often simply impossible, especially with increasing depth of the network to be trained.
Thus, the training procedure resorts to an iterative update of the weights known as gradient
descent: The weight wl(fj) in layer s is updated by adding a fraction of the negative gradient

(s).

of the loss with respect to w

2,7 °
S S 8l S S
wg’j) — wi(’j) -7 ”e) = w§7j) + Aw&}. (28)
4,J

This way, the gradient descent algorithm iteratively finds a local minimum for [. The meta-
parameter 7 is called learning rate and is critical for the optimization process. If chosen
too large, the optimization might oscillate or even diverge. On the other hand, a small
learning rate might require a large amount of iterations for the algorithm to converge to a
local minimum. In order to stabilize the training process, Rumelhart et al. [162] propose
to add an inertia term into the optimization: At iteration 7 the weight update sz(;) (1) is
not only determined by the current gradient but also by a fraction of the previous weight

update:
s ol s
sz(,j) (M) =-n—5 -+t sz(,j)(T -1 (29)
Ow; ; (1)

Here, « is called momentum and is another meta-parameter for gradient descent. It can
be shown empirically that incorporating the momentum term makes optimization less sen-
sible to otherwise disadvantageous learning rate values and greatly speeds up the training
process [162].

The above formulations suffice for training a neural network. However, it requires com-

puting the gradient 8855) which is straight forward for the weights in the output layer
w.

but less so for the Weights in the hidden layers. An important insight is, that a neural
network computes its output through a composition of functions f (s) (cf. Eq. 26). Thus,

the gradient of the loss function with respect to a weight wgsj) in layer s can be rewritten

by applying the chain rule:

ol ol of(N1) ofs+1)  ofls)  Hils)
ow® Ot N T 9El) 0I5y, () )
1,7 b
ol Neo o) | afs) ails) (31)
of(NY k=s+1 oftk=1) | 5il®) 8w£,8j)

The last factor in Fq. 31 is the gradient of the desired weight with respect to the linear out-
put, i.e., before applying the activation function. The first two factors in Eq. 31 effectively
represent the gradient of the loss with respect to the previous layer s 4+ 1. This implies
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(s)

that for computing the gradient of any weight w;”; one needs to first find the gradient for
the previous layer. Hence, for updating all the weights in the network the gradients are
computed starting at the last layer and ending at the first layer as follows: The output
layer computes the gradient of its weights directly from the loss function. It also computes
the gradient with respect to its input and sends this gradient “back” to its preceding layer.
Thus the preceding layer is handed the gradient for its output. All hidden layers then
compute their gradients the same way: Use the gradient of the respective output (i.e. the
gradient handed back from the succeeding layer) in order to determine the gradient of the
loss with respect to the weights and the input of this layer. The gradient with respect to
the input is then propagated back to the preceding layer. Computing the gradients of the
weights of a neural network this way is known as error backpropagation or simply back-
propagation. Although first versions of this algorithm were proposed as early as 1974 [202],
the work by Rumelhart et al. [162] is widely considered as being most comprehensive and
thorough with respect to backpropagation.

The formulation of the backpropagation algorithm in Fq. 31 shows why using the step
function as activation function @ as is done for the Perceptron is not a feasible approach
when training a network with gradient descent as was claimed earlier: The gradient of the
step function is 0 everywhere except for when the argument is 0 for which the gradient is not
defined. While technically a gradient could simply be defined for this specific argument,
training a neural network would still not work as the gradient would be 0 everywhere
else. Thus gf((;) in Eq. 31 would always be 0 as well. As gf—g:; is a factor in the gradient
computations, the overall gradient would be the zero-vector and the weights would never

receive any updates.

3.2.2  Stochastic Gradient Descent

The description of the training of neural networks so far only considered a single data point
for training. In order to train a neural network with a number of data samples, Rumelhart
et al. [162] initially proposed to compute the gradient for each sample individually and
then update the weights of the network according to the mean of all individual gradients.
This training procedure is referred to as batch training [100]. One major drawback of this
approach is that computing the gradients for the entire training set can be very time
consuming if the amount of training samples is large.

A possible alternative to batch training is using a small, randomly drawn subset of
training samples in order to estimate the true gradient for updating the weights. Using
this approach, gradient computations and hence training can be sped up substantially.
This concept is known as Stochastic Gradient Descent (SGD) or stochastic learning. In its
most extreme case, a single sample is used for approximating the “true” gradient. This
approach is also known as online learning.

While earlier works define stochastic learning as online learning, e.g. [20, 101], stochastic
learning nowadays is usually defined as using a subset larger than one for computing the
gradient estimate. In the context of Stochastic Gradient Descent (SGD), this subset is
referred to as mini-batch. While LeCun et al. [101] suggest, that the mini-batch size is set
to small values in the beginning of training and then gradually increased, it is common
practice nowadays to simply define a mini-batch size and keep it fixed during the entire
training process (cf. e.g. [92, 179]).
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Stochastic gradient descent has a number of advantages over batch training. One of them
is the increased number of updates per weight given a number of training samples. Apart
from this, however, there exist structural advantages as well. In order to explain them, one
has to visualize the loss to be optimized as a function of the weights of the network. This
function is highly non-convex and usually exhibits a large amount of local minima (cf. e.g.
[42]). When training with batch gradient descent, the optimization process always finds
the minimum corresponding to the basin of extraction of the initial weights [101]. SGD,
however, allows for the optimization to “hop” out of the current basin of attraction as the
gradient used is only a noisy approximation. However, in order to not fall victim to too
noisy gradients and also to have the algorithm converge eventually, the use of momentum
during training is practically mandatory when performing SGD.

Besides its intuitive characteristics, SGD has a number of interesting theoretical proper-
ties. For example, it can be proven that it almost always finds a local minimum despite
its stochastic nature [103]. Moreover, SGD is not affected by saddle points [131].

The size of a mini-batch is a crucial meta-parameter when training neural networks
with SGD. Recent work suggests that when the mini-batch size is too big the optimization
process finds a local minimum with bad generalization characteristics [81]. This means,
that, although the labels for the training samples are predicted with high accuracy, the
accuracy on the test samples is generally poor.

3.3 CONVOLUTIONAL NEURAL NETWORKS

A basic aspect of MLPs is that each layer is fully connected to the preceeding layer (cf.
Sec. 3.1). When dealing with images as input data as is done in this thesis, this approach
has the notable drawback that the network requires a large amount of parameters in the
first layer. For example, using an image size of 28 x 28 pixels! and a relatively small first
hidden layer of 500 neurons, the layer would require 392 000 parameters. Having this many
parameters in the first layer alone would require a large amount of annotated training
samples for the network not to overfit during training. Additionally, the network could
not exploit the knowledge that objects can appear at different positions in the image. For
example, if a neural network learned to detect cars in the upper left corner of an image, it
would need to again learn a set of weights for detecting a car if it appeared in the upper
right corner of an image. Ideally, one would like to incorporate translation invariance here
in the sense that a neural network is able to learn a concept, i.e., detect an object, and
find this learned concept in arbitrary parts of the supplied image. This is exactly the
approach used in modern architectures known as Convolutional Neural Networks (CNNs).
In comparison to MLPs, CNNs do not exhibit a full connection to the previous layer but
rather use small filters or kernels of trainable weights to slide over the input. These special
types of neural networks were originally proposed by Fukushima [48] under the name of
Neocognitron but did not receive major attention until made famous by LeCun et al. [99]
as CNNs.

The main building blocks of CNNs are convolutional layers. Fig. 8 exemplarily visualizes
such a layer. Each convolutional layer is made up of n different filters and a bias b for each
filter. It is common practice to chose a fixed kernel size for all filters in a single convolutional
layer. This way, the learnable parameters of the layer can be represented by a tensor W
and a vector of biases b. During the forward pass, the input image I, ,, . of height h, width

1 28 x 28 pixels is the image size for the well-known MNIST dataset [101]
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Figure 8: The figure depicts a convolutional layer using n different 3 x 3 filters. The weights of the
layer are combined into the four dimensional tensor W. The filters produce feature maps
Fp/ 4 5 from the input image I.

w and ¢ channels is discretely convolved with the different filters to produce n distinct
outputs which in this context are known as feature maps. Each convolution is only applied
in a small spatial region but spans across all channels of the input?. More formally, the
point x,y of the f-th feature map is computed by

K [dy/2]—-1 [dz/2]-1

Foyr =0 > > Wijer Lvigtje+br ], (32)
c=Li=—[dy/2) j=—[du/2]

where d, and d, are the width and height of the filter f and by its corresponding bias and K
the number of channels in the input to the convolutional layer. Typically, a convolutional
layer makes use of square filter kernels, i.e., d, and d, are equal. As can be seen from the
equation, a feature map value is undefined when the corresponding filter kernel would be
placed over pixels which are outside of the input. For these special situations, the behavior
has to be defined by the user. A common approach is to only compute feature map values
for which the corresponding filter does not exceed the bounds of the input. The drawback
of this approach is, of course, that the resulting feature maps are smaller than the original
image. Using square filters with a width and height of d, the feature maps have 2 - LgJ
less pixels in height and width. In order to mitigate this effect, an oft-used approach is to
pad the input along the horizontal and vertical axes by the amount of pixels that would
otherwise by erased due to the convolution. While the padding values can principally be
arbitrarily chosen, they are typicall set to 0.

Just as is done for layers used in an MLP, which are referred to as fully connected
layers when comparing them to convolutional layers, the result of the discrete and linear
convolution is forwarded to an activation function ®. This activation function is typically
a scalar function and thus applied individually for each element of the output of the
convolution in order to produce the resulting feature map.

There exists so-called nd-convolutions as well which take the channel dimension as depth of the supplied
input and thus do not span the entire channels. These special convolutions, however, are not relevant for
this thesis and will not be discussed further.
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Figure 9: Visualization of the receptive fields for two consecutive convolutional layers. Each of
the convolutional layers uses filter kernels of size 3 x 3. The first convolutional layer is
applied to the input image (1). Here, the receptive field is simply the input pixels under
the current filter kernel (light red). The resulting feature map (2) is then used as input
for the second convolutional layer. Although the filter kernel is also of size 3 x 3 the
receptive field is now the entire image.

Up to this point, the input to a convolutional layer was considered to be in image. Of
course, convolutional layers can also accept the output of other convolutional layers, i.e.,
feature maps. This way, convolutional layers can be stacked to form parts of a neural
network. The filters in the convolutional layers can be considered feature detectors that
get activated by certain structures or objects in the image. It can be shown, that the layers
close to the input image typically learn to detect color blobs and edges. The filters of layers
which are further away from the input image are typically activated by objects parts or
entire objects [180, 183, 213]. A CNN is thus able to learn hierarchical representations
of the input data. They are most effective if such a hierarchy exists, meaning that the
supplied data exhibits hierarchical characteristics. These characteristics are typically given
for natural images where objects can be composed of object parts which in turn can be
composed of edges and color blobs. The data used in this thesis are document images
of hand written text, which also exhibit the desired characteristics: Word images can be
decomposed into characters which in turn can be decomposed into strokes. Hence, it is a
reasonable assumption that CNNs will fare well on document and word images, too.

An important concept for CNNs is the receptive field. It describes all pixels in the
original image that influence the value of the current “pixel” in the output feature map
of a specific layer. Fig. 9 visualizes this concept for two consecutive convolutional layers
which use filter kernels of size 3 x 3 using an input image of 5 x 5 pixels. The feature map
values for the first convolutional layer are only affected by the input image pixels which
are within the view of the filter kernel (red rounded rectangle). The resulting feature map
is then processed by the second convolutional layer. The filter kernels in this layer are
also of size 3 x 3 (dark blue rounded rectangle). However, all pixels in the input image
influence the feature map value (light blue filled rectangle). The receptive field is not only
defined for each pixel in a respective feature map but also for a filter in a convolutional
layer in general. Here, the term refers to the spatial extent a filter kernel is affected by in
the input image. For example, the blue filter in Fig. 9 has a receptive field size of 5 x 5.

In general, the receptive field gradually increases for each convolutional layer in a CNN.
In order to increase the receptive field size without adding more convolutional layers and
also to introduce a certain amount of translation invariance in the intermediate feature
maps, a common approach is to insert so-called pooling layers after a certain number
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Figure 10: The figure displays a 2 x 2 pooling layer with a stride of two.

of convolutional layers. Pooling layers use feature maps as input and pool their values in
predefined areas into single scalar value in order to produce an output feature map. Fig. 10
exemplarily visualizes such a pooling layer. Each 2 x 2 region in the input feature maps is
pooled into a single value. The pooling regions are applied with a stride of two, meaning
that the next pooling region has an offset of two pixels compared to the previous region.
This is a common approach when applying pooling layers and effectively downsamples the
input feature maps. This downsampling increases the receptive field size by a factor of two
when using 2 x 2 pooling regions and a stride of two. The most commonly used pooling
strategy is max pooling, e.g., [92, 179]. Here, the output feature map is computed by taking
the maximum value from each pooling region in the input feature map. In average pooling,
e.g., [107, 217] output feature map values are computed from averaging the values in the
respective pooling regions. A strategy used less often is stochastic pooling [212]. Here, the
values in each pooling region are first L1-normalized in order to form pseudo-probabilities.
The pooling result is then determined by drawing from a multinomial distribution using
the previously computed pseudo-probabilities as priors for selecting the respective location.

Convolutional and pooling layers form the so-called convolutional part of a CNN. When
using CNNs for image classification, this convolutional part is typically connected to a neu-
ral network capable of classification, usually an MLP, e.g., [92, 179], or a Perceptron, e.g.,
[67, 193]. The convolutional part can thus be interpreted as being responsible for selecting
suitable features from the input image which are then used as input to the succeeding clas-
sifier. This view bares a certain resemblance to the computer vision pipeline in traditional
approaches (cf. Chap. 2). The difference is that the feature extractors (convolutional part)
and the classifier (MLP, Perceptron) can be optimized in a combined fashion instead of
optimizing each part individually. This concept is referred to as end-to-end optimization
in the literature [101]. The term stems from the fact that a CNN is only presented with
an image and its corresponding label during training and is tasked to find a good feature
representation during the optimization process.
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T ()

Figure 11: Network architecture for demonstrating the vanishing gradient problem. The input z is
forwarded through four layers containing neurons with sigmoid activation. The result
from the last layer is then forwarded to a loss function I.

3.4 DEEP LEARNING AND THE VANISHING GRADIENT PROBLEM

CNNs are the backbone of computer vision methods from the field of deep learning. In the
context of this thesis, deep learning is defined as follows: Deep learning refers to a field
of research in pattern recognition and machine learning concerned with neural networks
which encompass a large amount of layers. Viewing the layers as nodes in a graph, the
depth of a neural network is the maximum length of any path from input to output. The
term deep is used rather loosely and there exists no clear definition as to when a neural
network can be regarded as deep. Bengio [16] defines deep architectures simply as having
“many hidden layers”. Glorot et al. [56] state that an architecture can be considered as
deep if it has three or more hidden layers. Nowadays, deep neural networks are often times
made up of tens or hundreds of layers (cf. e.g. [67, 92, 179]). These networks are generally
regarded as deep.

While it can be shown empirically, that deep neural networks achieve better performance
than other approaches in a vast amount of tasks, there exists no theoretical evidence con-
cerning the reason for their current superiority. While the No Free Lunch theorem [210]
forbids such evidence without knowledge of the data anyways, even when making as-
sumptions on the data there exists no theoretical explanation. Most explanations rely on
intuition and cite the ability to extract intricate structures in hierarchical representations
of the supplied data [102].

Although a large depth was expected to be crucial for learning powerful representations
long before the current success of deep architectures, e.g., [16], training deep architectures
proved to be difficult. For these types of neural network, training requires a large amount
of computational power and can only be handled effectively by Graphical Processing Units
(GPUs). In addition, an increasing number of model parameters, i.e., weights, requires a
substantial amount of annotated training samples in order to be optimized. But even after
having satisfied both conditions, training deep neural networks suffered from a structural
problem in the beginning which is known today as vanishing gradient problem. While it was
first discovered for Recurrent Neural Networks (RNNs) [70], it occurs in deep feedforward
architectures as well and can be illustrated by the following toy example3: Consider an
MLP architecture with N; layers, each consisting of a single neuron using the sigmoid
activation function. Fig. 11 depicts such a network for the case of four layers. The output
for a layer ¢ is computed by

-y
=
8
SN—
I
Q

(w® 5= (@) + D) with (33)
fO(e) = x. (34)

3 The example is inspired by a similar one presented in [128]
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The gradients of f(?) with respect to the layer’s input and the weight w(® are
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The gradient of the loss with respect to an arbitrary weight w®) is thus
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The derivative of the sigmoid function ¢’ has its maximum at 0 where its value is %. When
backpropagating the error, the gradient is thus scaled by a maximum value of % for each
layer:

ol ol M e 1

gt < g 1L [0 770 5 (38)
While this scaling factor has a smaller influence on gradients for layers at the end of the
network, the gradient almost vanishes for the layers at the beginning of the network due
to the exponential decrease. Using the four-layer network from Fig. 11, the scaling factor
is already at ﬁ for the first layer. As Hochreiter [70] mentions, this problem can not be
combated by an increased learning rate.

Initial attempts for solving the vanishing gradient problem didn’t target it directly but
rather used a form of unsupervised pretraining of the weights in order to have each layer
output useful representations [69, 168]. These pretrained weights can then be used as
initialization for supervised training of the neural network. This approach, however, does
not mitigate the structural problem of vanishing gradients during the supervised training
stage as the network still uses sigmoid activation functions.

A more direct approach for overcoming the vanishing gradient problem is to replace the
sigmoid with a more suitable activation function for increasingly deeper architectures. The
desired properties for such an activation function are that it does not scale the gradient but
still is non-linear. A function that fits these criteria is the Rectified Linear Unit (ReLU).
While originally proposed by Hahnloser et al. [63] for hardware circuits representing neural
networks, it was made popular in machine learning and computer vision by Glorot et al.
[56] and Nair and Hinton [126] for use in deep feedforward architectures. The Rectified
Linear Unit (ReLU) is arguably one of the deciding factors for the current success of deep
learning as it allows for architectures with many layers while not exhibiting the structural
risk of a vanishing gradient?.

The ReLU is defined as

rz ifx>0

freLu () = (39)

0 else

When used in a neural network, it has the effect of linearly propagating values if they are
positive. Fig. 12 visualizes this concept for an MLP with two hidden layers of six neurons
each using ReLLU activations. Neurons for which the weighted sum produces a negative
result are “switched off” by the ReLU. These neurons are depicted in light gray in the

Gradients may still vanish due to disadvantageous initialization of the weights, see, e.g., [179]. However,
the described scaling behavior is eliminated.
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Figure 12: The figure visualizes the effect of ReLUs in an MLP (inspired by [56]). All gray nodes
have a negative output before applying the activation function and are thus effectively
switched off by the ReLU.

figure. Using the ReLU activation, only a subset of neurons is active for a given input,
i.e. the output is different from 0 [56]. The final output of the network is then a linear
function of the subset and the input. Essentially, a neural network using ReLLU activations
in the hidden layers is a mixture of linear classifiers [126]. The number of linear classifiers
increases exponentially with the number of neurons, i.e. model parameters.

Shortly after being proposed as activation function for deep neural networks, ReL.Us
where used in the CNN known today as AlexNet which is often times cited as being the
neural network which kicked off the current success of deep learning. Since then, a number
ReLU variants have been proposed. Leaky Rectified Linear Units (LReLUs) [113] do not
set negative values to zero but rather scale them by a constant factor:

T ifz>0

fureLu(z) = (40)

0.01z else

Improving on this concept, Parametric Rectified Linear Units (PReLUs) [66] use the factor
as learnable parameter of the activation function, effectively learning the negative slope «
for each unit:

T ifxz>0

fpreLU(7) = (41)

axr else

The one thing that all of the three ReLLU variants have in common is that they are not
differentiable in 0. The recently proposed Exponential Linear Unit (ELU) [29] seeks to
eliminate this kink in the function. It is defined by the following equation:

T ifz>0

feru(z) = (42)

a(e®—1) else

Fig. 13 visualizes the ReLU, LReLLU and ELU activation functions. The PReLU is not
shown as the parameter o might cause different slopes for the negative x-axis. The vi-
sualized LReLLU can be seen as an instance of the PReLU function with o = 0.01. As
can be seen from both the equations and the plot, the described activation functions all

33



NEURAL NETWORKS AND DEEP LEARNING

ReLU
31 /  |=—LReLU
yd — ELU
’l
2 /t
4

4
P 4

1 ,/’

l"
’O
} ; ’
-5 -4 =7 -1 1 2 3
-1+

Figure 13: Visualization of the ReLLU, LReLU and ELU activation functions.

negate the vanishing gradient problem as the respective gradients are linearly propagated
for positive values.

Although specific activation functions may perform better in specific tasks, recent work
suggests that all activation functions mentioned above perform more or less similarly in
general [106]. Hence, it is common practice to simply use the ReLU for its computational
simplicity and effectiveness.

3.5 ARCHITECTURES FOR COMPUTER VISION

The types of layers, their parametrization, connections and ordering constitute the ar-
chitecture of a CNN and neural networks in general. Of course, there exists an infinite
amount of possible network architectures and designing architectures for a specific task is
still considered an art rather than a science. Most of the time, designing neural networks
is based on intuition and design patterns without a clearly defined and principled method.
There have been some attempts at a data-driven approach of finding the best architecture
for a given task [13, 218]. However, these approaches make use of evolutionary algorithms,
effectively treating the problem as a black box and applying a brute-force solution. More-
over, the approach requires a large amount of time in order to find suitable architectures
in addition to a considerable amount of computation power in terms of GPUs. At last,
using an evolutionary algorithm one is, of course, able to create only very constrained
architectures.

Due to the given reasons, the prevailing approach for designing neural network archi-
tecture is to pick an established one, which performs well on other tasks, and adapt it to
the specifics of the data at hand. The CNN architecture used for the presented method
in this thesis makes use of this approach as well. In order to understand specific design
choices presented later on, this section gives an overview over a set of CNN architectures
which have become de-facto reference architectures and explains their respective unique
features.

3.5.1 AlexNet

The emergence of deep learning is in large parts due to an architecture which is publicly
known as AlexNet. Originally published under the name of SuperVision by Krizhevsky et al.
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Figure 14: The figure displays the AlexNet architecture. The cuboids represent convolutional layers
with the number of filters shown at the bottom and the kernel dimensions shown in the
inner cuboids. The dense connections represent fully connected layers with the number
of neurons shown at the bottom. Maz pooling represents max pooling layers with a
kernel size of 3 x 3 and a stride of 2 (image taken from [92]).

[92], it was the first CNN to win the prestigious ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [167] in 2012 beating the competition by an unprecedented margin.

Fig. 14 schematically depicts the AlexNet architecture. It is made up of five convolu-
tional, three pooling and three fully connected layers. The CNN accepts input images of
224 x 224 pixels. As can be seen in the figure, the CNN is actually a combination of two
CNNs which operate on the same image and have connections at certain layers. In the
context of neural networks, this design is known as a two stream network [44]. This design
choice, however, was not due to a single stream giving inferior performance but rather a
more practical reason: At the time the AlexNet was proposed, high-end GPUs did only
have a memory size of roughly 3 GB. The one stream version of the AlexNet was simply
too large to fit on a single GPU. Hence, Krizhevsky et al. decided to split the net in two
and have each stream of the CNN handled by one of two GPUs. As nowadays graphical
memories are large enough to store the entire AlexNet, it is usually used in a variant using
a single stream only in recent publications (cf. e.g. [53, 175]).

Each of the convolutional and fully connected layers in the AlexNet uses ReLLUs as non-
linear activation function. In addition, the first two fully connected layers make use of a
technique known as dropout [185]. In dropout, the output of a neuron is randomly set to
0 with a fixed probability during training. This way, succeeding neurons cannot rely on
a neuron to be active given a certain input as it might have simply been “deactivated”
during dropout. This has the effect of the network building more robust feature detectors
and in return generalizing better to unseen data. At each training iteration, dropout allows
only certain paths through the network from input to output. This can be seen as training
an ensemble of smaller neural networks with the individual networks sharing their weights.
Typically, the probability of dropping out a neuron is set to 0.5 which is also the value
used in the AlexNet. At test time, no neuron is dropped out but the outputs are multiplied
by 0.5 in order to account for the expected increase in neuron outputs.

3.5.2 VGGnet

The architecture known as VGGnet is one of the most frequently used CNNs today. Pro-
posed by Simonyan and Zisserman [179], its simplicity in design yet strong performance
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Figure 15: Visualization of the VGG16 architecture. The light blue boxes represent convolutional
layers, pink boxes max pooling layers and block boxes fully connected layers. The con-
volutional layers can be grouped into blocks with the max pooling layers serving as
separators. In every block, each convolutional layer makes use of the exact same para-
meters. The number of filters in the respective blocks are shown at the bottom. The
two hidden fully connected layers make use of 4096 neurons each while the output layer
size depends on the number of classes.

on a large variety of benchmarks lead to the VGGnet being used for a number of different
applications There actually exist five different variants of the VGGnet which only differ
in the amount of layers used. The most often used variants are the ones with 16 and
19 weight layers which have since been denoted VGG16 and VGG19 respectively. The
VGG16 architecture is visualized in Fig. 15. It is made up of blocks of convolutional layers
with max pooling layers serving as separators between the blocks. The parameters for the
convolutional layers are the same within a block. However, all convolutional layers in the
VGG16 make use of 3 x 3 filter kernels. The max pooling layers are applied in what can be
considered the standard downsampling approach: Use 2 x 2 kernels for pooling and apply
each pooling region with an offset of 2 to the previous one. After a final max pooling
layer, an MLP serves as classifier. In comparison to the depicted VGG16 architecture, the
VGG19 architecture simply adds one more block in the convolutional part.

The key observation for designing this CNN was that the AlexNet and other successful
AlexNet-like architectures such as the improved AlexNet by Zeiler and Fergus [213] and the
OverFeat net by Sermanet et al. [172] all use larger filter kernels for the convolutional layers
in the earlier parts of the architectures while exclusively employing 3 x 3 kernels in the
final convolutional layers. Larger filter kernels, of course, lead to more trainable parameters
and are thus more prone to overfitting. Instead of using large convolutions, Simonyan and
Zisserman use only 3 x 3 convolutions throughout the entire VGGnet. They argue that a
receptive field size of 7 x 7 as is used by Zeiler and Fergus [213] can be obtained by stacking
three convolutional layers, each containing 3 x 3 filter kernels. Assuming a constant number
of input and output channels ¢, each layer needs c filters, each having 9¢ parameters. Thus
the total amount of parameters in this three layer block is 27¢?. Using a single layer of
7 x 7 convolutions, this layer requires 49¢?> parameters. Simonyan and Zisserman claim
that this can be seen as imposing a regularization on the CNN, namely that the 7 x 7 can
be decomposed into 3 x 3 convolutions, each using ReLUs as activation function.
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3.5.3 Residual Networks

A recurrent finding in papers on deep CNNs is that an increased architecture depth leads
to better performance, e.g., [92, 179]. However, in their VGGnets Simonyan and Zisserman
[179] note that deeper networks do not converge when trained from scratch. Thus they
initialize the nets from previously trained shallower ones. He et al. [66] propose to initialize
weight layers which make use of ReLLUs as activation function from a normal distribution
with zero mean and variance of % Here, n is the number of input connections for a specific
layer. Using this approach, even architectures like VGG19 can be trained from scratch.
For increasingly deeper architectures than VGG19, He et al. [67] find that a network’s
performance first saturates and then deteriorates rapidly even when using suitable weight
initializations. In their experiments they show that this effect is not due to overfitting
and that the training error is worse for extremely deep networks than shallower ones. The
authors argue that this should not be the case as deep network can be constructed which
has the same training error as a shallower one by simply requiring the additional layers to
perform identity mappings. This observation leads the authors to the following hypothesis:
Assuming that a number of layers in a CNN can be trained to approximate any underlying
function H(X), it may be easier for a CNN trained with SGD to learn the residual function

F(X) = H(X) - X (43)

instead of H(X). The function H is thus approximated by a learned function F and an
identity mapping:
H(X) =F(X) + X. (44)

This concept can be integrated into CNNs through so-called residual blocks. Fig. 16a and
Fig. 16b display the two residual block types proposed by He et al. [67]. Both block
types make use of a so called skip-connection which allows for the input of the residual
block to skip a number of layers during the forward pass. The residual standard block
(Fig. 16a) is made up of two convolutional layers, each followed by a batch normalization.
First proposed by Szegedy et al. [193], batch normalization transforms its input (in this
case the output of the preceeding convolution) to have zero mean and unit variance. It
is inspired by the observation, that some neural networks can be trained more effectively
when presented with input data which has been normalized to zero mean and unit variance
as well. As could be shown by Szegedy et al. [193], the training time of neural networks
can be reduced substantially if batch normalization is injected into the architecture. In the
residual standard block, batch normalization is applied after the convolution and before
the ReLU activation function. For simplicity, the batch normalization will be seen as part
of each convolutional layer. After the second convolutional layer the output is added to the
input X of the first convolutional layer. The two convolutional layers thus represent the
function F in FEq. 44. While the first convolutional layer makes use of the ReLLU activation
function, the second convolutional layer applies the activation function after having added
the original input. The authors do not disclose what lead to this architectural decision.

In contrast to the residual standard block, the residual bottleneck block (Fig. 16b) makes
use of three convolutional layers for learning the residual function F. While the first and last
convolutional layers use filter kernels of size 1 x 1, the second layer uses 3 x 3 filter kernels.
The reason for constructing such a bottleneck block is the limited amount of memory
available in GPUs. Using the bottleneck blocks, deeper architectures can be constructed
compared to standard blocks given a fixed memory size.
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Figure 16: The figure visualizes the two residual block types proposed by He et al. [67]. The figure
on the left portrays a standard residual block while the structure on the right is known
as bottleneck residual block. In comparison to the standard block, the bottleneck block
allows for more layers in a Residual Network (ResNet) considering a fixed memory size
the network may be stored in.

Residual blocks can be stacked in order to form ResNets. In order to allow for down-
sampling specific feature maps, ResNets typically do not make use of pooling layers but
rather use convolutional layers with a stride of two pixels. The identity shortcut makes
use of a linear convolutional layer with a stride of two pixels as well. This approach is
essentially the same as is done for the All Convolutional Net [183] which only consists of
convolutional layers and one fully connected layer.

Although residual blocks can be stacked in almost arbitrary ways to form neural net-
works, it is common practice to use one of four architectures initially proposed in [67],
namely ResNet34, ResNet50, ResNet101 and ResNet152. The number at the end of each
name symbolizes to overall amount of convolutional layers used in the respective architec-
ture and thus directly correlates to the depth of the CNN. All but ResNet34 make use of
residual bottleneck blocks while the former uses residual standard blocks.
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After having established relevant methodological fundamentals in Chap. 2 and Chap. 3,
this chapter presents relevant fundamentals with respect to the application of interest in
this thesis.

Keyword spotting or simply word spotting has attracted a substantial amount of research
interest over the last years. The goal in word spotting is to retrieve relevant word images
from a given document collection given a query. This makes word spotting a form of
Content-based Image Retrieval (CBIR). It is important to differentiate between word
spotting and text recognition. In text recognition, the goal is to find the transcription
of a given image portraying text. The classifier used here is tasked to produce only one
recognition result. While it is generally accepted that text recognition is solved for machine
printed text, recognition-based approaches often times do not yield a comparable level of
accuracy for handwritten text. This characteristic emerges especially when dealing with
historical handwritten documents. The main reason for the increased difficulty of these
document types are large variabilities in writing style and degeneration of the original
documents such as fading ink, bleed through or other aging effects [143, 165]. In contrast
to recognition, word spotting methods are tasked to retrieve all relevant elements of a
given document image collection in a retrieval list. Thus, instead of one single prediction,
approaches used for word spotting present the user with a number of possibly relevant
items. This makes word spotting-based approaches more robust than recognition-based
ones.

There exists a de-facto standard terminology in word spotting which has been largely ac-
cepted by the document image analysis community. In order to have a clear understanding
of specific word spotting nomenclature, this chapter first gives definitions for established
and important word spotting terms in Sec. 4.1. Afterwards, an overview of relevant older
(Sec. 4.2) as well as modern methods (Sec. 4.3) in the field of word spotting is given. The
presentation of these methods is necessary as certain characteristics serve as motivation
as well as foundation for the method presented in this thesis.

4.1 WORD SPOTTING TERMINOLOGY

Methods for word spotting are usually discriminated with respect to three different catego-
ries: possible query modalities, necessity for an existing segmentation of word images and
availability of annotated training samples. The general word spotting scenario is that there
exists a database of document images from which to extract relevant parts by querying
the database. If a method is capable of using word images as queries it is said to support
Query-by-Example (QbE). If the query can be provided as textual representation, a me-
thod is able to perform Query-by-String (QbS). QbE and QbS are the most common query
modalities in the literature. However, there has been an increasing amount of research con-
cerned with using other query types lately. Rusifiol et al. [166] propose Query-by-Speech
(QbSP) word spotting. Here, the query is the digital signal of a spoken word for which
relevant word images are to be retrieved. Wieprecht et al. [204] present Query-by-Online-
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Trajectory (QbO) word spotting. In QbO, retrieval is performed by finding relevant word
images with respect to an online trajectory of a handwritten word.

Apart from possible query types, a word spotting method is either dependent on a pre-
vious segmentation of the word images from the page or can operate without any such pre-
requisite. While approaches depending on a segmentation are referred to as segmentation-
based, all others are able to perform segmentation-free word spotting.

Finally, if a word spotting method requires a set of annotated training samples it is
referred to as training-based and training-free otherwise [51]. The naming convention re-
garding the requirement of annotated training samples is somewhat misleading. A substan-
tial amount of methods falling into the training-free category make use of training on the
supplied samples albeit in an unsupervised fashion, e.g., [159, 165, 187]. Hence, it would
be more fitting to discriminate methods with respect to supervised training, unsupervised
training and no training. While the initially described wording has been generally accepted
in the word spotting community, word spotting methods will be categorized as supervised,
unsupervised or training free in the following where training free refers to the scenario
were neither supervised nor unsupervised training is happening for a given method. This
is done in order to allow for a clearer discrimination between different methods.

4.2 ORIGINS AND EARLY WORD SPOTTING METHODS

A large number of early word spotting methods have their roots in the signal processing
subfield of acoustics. This was a general trend in the early 1990’s: Methods which had
shown itself to be successful for audio and speech signals were transfered over to the field
of document image analysis, e.g., [186]. The main idea behind this is that both audio signals
and text images exhibit sequential characteristics thus allowing sequence-based methods
to be applied to both fields. For example, Rohlicek et al. [152] use Hidden Markov Models
(HMMs) with Gaussian output modeling in order to process features extracted from speech
in order to perform acoustic word spotting, i.e., retrieving sections of a speech signal which
represent a desired spoken word. In a very similar fashion Chen et al. [26] use HMMs for
segmentation-free, supervised QbS word spotting in printed text: First, word bounding
boxes are detected by applying a number of morphological operations and finding the
connected components. Then the height of each bounding box is normalized to a fixed size
with the width being scaled such that the aspect ratio is kept constant. From each scaled
image, sequential contour features are then extracted which serve as input to an HMM.
For word spotting, a keyword HMM is constructed by using the trained character models
which correspond to the characters in the query. Each word in the corpus is then scored
by the keyword HMM and a so-called non-keyword HMM. Afterwards, the retrieval list is
constructed by taking the words from the corpus which have higher probability to have
been generated by the keyword HMM than the non-keyword HMM. In a similar approach
to the one by Chen et al. [26], Kuo and Agazzi [94] use a pseudo 2D HMMs in order to
also perform segmentation-free, supervised QbS word spotting in printed documents.

In contrast to the sequence-based approaches used for early QbS methods, initial me-
thods for QbE word spotting resorted to holistic representations. One of the first ap-
proaches to do so was presented by Khoubyari and Hull [82] in the form of XOR distance
maps for segmentation-based, training-free QbE word spotting in printed documents. Here,
a binary image is computed for the query and each word image in the corpus. Then, a
so-called XOR image is computed by scaling the images in the corpus to the size of the

40



4.2 ORIGINS AND EARLY WORD SPOTTING METHODS

query and computing the pixel-wise XOR values. Each pixel in the XOR image which is
1, i.e., where the corpus word image doesn’t match the query word image is then replaced
by the closest distance to any 0 pixel. As a measure for determining the distance from the
word images in the corpus to a query word image, the squared pixel values are summed
per XOR map and the corpus entries are ranked according to this distance.

While all preceding works on word spotting focus on printed text, Manmatha et al. [116]
present the first work on QbE word spotting for handwritten text in historical documents.
Using handwritten text as data is widely considered to be more difficult than printed text
as the visual variability is much larger. Historical documents pose an even harder problem
as they typically exhibit additional unwanted variabilities such as fading ink, bleed through
or other types of image degradations [143]. For their word spotting approach, Manmatha
et al. use the XOR distance map approach from [82]. Manmatha et al. also prune the
retrieval list by eliminating word images which do not approximately match the query
image in terms of size and aspect ratio. In addition, they evaluate a second matching
algorithm which allows for a larger amount of inter-class variability. For this, the affine
transformation is computed from the pixels with value 1 which best allows for obtaining
the XOR distance map for a given corpus image from the XOR distance map of the query
image. The distance map of the query image is then processed by the affine transform and
the result is compared to the original distance map for the corpus image. Manmatha et al.
argue that if the difference between the projection on the original distance map is large,
the query and corpus image are likely to not match and vice versa.

Ensuing works on word spotting eliminated the XOR map as image representation and
replaced it with more discriminative representations. Geometric features used to be a
very popular choice in this regard. These features describe geometric properties of objects
in images such as their outline [138, p.96]. For binarized word images, the typically used
geometric features include the upper, lower, left and right outlines of the word, cavities and
column-wise transition counts of black and white pixels. One of the first approaches to use
geometric features is presented by Keaton et al. [80]. In this method for segmentation-free,
unsupervised QbE word spotting, Keaton et al. use the outline as well as cavity features
of word images as input to a discrete cosine transform. The resulting representation is
defined as keyword signature and word spotting is performed by computing the Minkowski
distance of order four from the query to the corpus representations and ranking the word
images according to this distance. In a different approach with geometric features, Kolcz
et al. [85] use the upper and lower contour as features in their method for segmentation-
free, unsupervised QbE word spotting. In addition, they also add the number of transition
counts to the feature representation. For this, the number of changes from black to white
pixels are counted for each pixel column in a given word image. Having extracted the
features, the resulting representation is then normalized and scaled to a unit length, i.e.,
scaled along the axis of writing in order to be able to compare representations for differently
sized word images. Comparing the representations is done through Dynamic Time Warping
(DTW). In general, DTW finds an optimal alignment between two sequences [123]. The
cost for this alignment is used by [85] as similarity measure for comparing two sequences
of the image features explained above. This measure is also known as DTW distance For
word spotting, they extract hypothesized word images from a document image and rank
these hypotheses based on the DTW distance of their representation to the representation
of a specified query image. In a similar approach, Rath and Manmatha [142] also use
the DTW distance on sequences of geometric features in order to perform word spotting.
For this, the vertical projection profile of a word image is extracted and normalized. In
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contrast to Kotcz et al., however, Rath and Manmatha do not scale the extracted profiles
along the direction of writing. They are able to show, that the combination of geometric
features and DTW vastly outperform approaches based on XOR maps.

4.3 MODERN WORD SPOTTING METHODS

One common approach in early word spotting methods was the use of heuristic features
based on binarized word images. Especially when dealing with historical documents, how-
ever, binarization is a difficult task and often times falls victim to the aforementioned
degradations in the document images. Recent approaches for word spotting thus aimed
at introducing more robust feature representations for word images. For this, state-of-the-
art methods from the late 2000’s drew inspiration from other computer vision tasks. One
trend that could be observed for other tasks was the use of local image descriptors based
on gradient statistics, e.g, classification or retrieval of natural images [25]. In contrast to
the previously presented features, these descriptors can be obtained from gray-level im-
age directly thus eliminating the necessity for binarization. One of the most prominent
local descriptors used across different computer vision tasks is the one used in the Scale
Invariant Feature Transform (SIFT) approach [112]. This local feature representation is
generally known as SIFT descriptor [25]. Its success in natural image classification and
retrieval could be transfered over to word spotting as well. The first word spotting method
to make use of SIFT descriptors is presented by Ataer and Duygulu [10]. Here, a Bag of
Features (BoF) histogram is obtained from the descriptors which is then used as holistic
word image representation in order to perform segmentation-based, unsupervised QbE on
word images of Ottoman script. For this, Ataer and Duygulu apply the “classic” SIFT
approach in that they first detect keypoints in the word images at which the descriptors
are computed. Then, the obtained descriptors are clustered and quantized into a BoF
representation. Finally, the representation is Li-normalized. For retrieval, they rank the
word images from the corpus according to the Kullback-Leibler divergence between the
query and the corpus representation.

An interesting observation when using SIFT descriptors for classification and retrieval
of natural images is, that the accuracy can be improved if the descriptors are sampled at
fixed locations instead of at keypoints [25]. Typically, this is done in a regular grid spanning
the entire image. The stride in this grid is chosen such that the descriptors overlap. The
latest works on word spotting using descriptor-based representations exclusively use this
dense grid approach. In an influential approach, Rusinol et al. [164] pursue this concept
by representing regions of a document images by spatial pyramids using quantized SIFT
descriptors in order to perform segmentation-free, QbE wordspotting. The query images
are also represented through a spatial pyramid. At query time, a window is slid over the
document images in order to extract small patches of the given document. The respective
spatial pyramid representation is then computed for each patch. The query and patch
representations are then projected into a lower dimensional space using latent semantic
indexing [35]. Finally, the projected patch representations are ranked according to their
cosine dissimilarity

a’b

[lall - [[b]|’

to the projected query representation in order to obtain the retrieval list. The respec-

dCOS(a7 b) =1 (45)

tive representations are denoted as a and b in Eq. 45. The method by Rusifiol et al.
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can be characterized as segmentation-free and unsupervised while allowing for QbE word
spotting. In [165], Rusifiol et al. improve upon their method by incorporating a Product
Quantization-based indexing structure. This way, the computation of patch representa-
tions can be reduced to a small amount of regions in the document image which are
deemed as potentially relevant by the indexing structure. Not having to compute a spatial
pyramid for all possible patch positions results in a decrease in retrieval time and allows
the method to be applied to large corpora.

In an approach similar to the one by Rusinol et al., Aldavert et al. [6] use spatial pyra-
mids on top of SIFT descriptors in their approach for segmentation-based, supervised QbS
word spotting. For this, the available annotations for the word images are transformed into
a histogram representation counting all different n-grams in the annotation. The obtained
histogram is then Lo-normalized and concatenated with a SIFT descriptor-based spatial
pyramid representation of the respective word image. All concatenated vectors are used for
determining a transformation matrix in order to project the vectors into a low-dimensional
subspace using truncated Singular Value Decomposition (SVD). This subspace is used as
basis for the ensuing word spotting approach. The general idea is to be able to compute
purely textual and purely visual representations of annotations and word images respec-
tively. For the word images in the corpus, there doesn’t exist an annotation. They are
projected into the subspace by padding the visual representation, i.e., a spatial pyramid,
with a vector of zeros such that the resulting vector has the same dimensionality as the
combination of spatial pyramid and textual representation. Likewise, query strings can be
projected into the subspace by computing the textual representation and then padding
with a vector of zeros of the same dimensionality as the spatial pyramid. The assumption
is that the projections of the padded visual representations and the padded textual repre-
sentations are close for corresponding annotations and word images in the subspace. The
presented approach gave then state-of-the-art results for segmentation-based QbS word
spotting.

While the approaches by Rusifiol et al. [164] and Aldavert et al. [6] make use of SIFT
descriptors in holistic representations of word images, another method incorporates them
into a sequential model: In [158], Rothacker et al. combine BoF representations with HMMs
in order to represent word images. Like the spatial pyramid approach from [164], these so
called BoF-HMMs are able to perform segmentation-free, unsupervised QbE word spotting.
A sliding window approach is used here as well in order to extract patch regions from
the document images. For each patch region, a dense grid of quantized SIFT descriptors
is computed. The descriptors in each column of the dense grid are then pooled into a
sequence of BoF histograms. For the desired query image, the sequential representation
is generated the same way. An HMM is then trained on the sequence of BoF histograms
extracted from the query image. After training, this HMM is used in order to score each
patch region extracted from the corpus with respect to how likely it is that the BoF
histogram sequence from the patch was generated from the HMM. For generating the
retrieval list, the patches are ranked according to their score. The concept of BoF-HMMs
is extended in [157] to allow for segmentation-free, supervised QbS word spotting. This
is done by training separate BoF-HMMs for the individual characters present in a given
dataset.

Apart from the SIFT descriptor, other gradient-based descriptors which have been used
for word spotting are Local Gradient Histograms (LGHs) [148, 151], Histograms of Ori-
ented Gradients (HOGs) [8, 86] or HOG-like descriptors [7, 197]. Independent of the fea-
ture representation used though, word spotting methods presented in the literature are
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Figure 17: Visualization of the embedded attributes framework as presented by Almazén et al. [9]:
For a given word image the corresponding Pyramidal Histogram of Characters attribute
representation is predicted from an ensemble of Support Vector Machines (SVMs) based
on a representation of the word image (right side). This attribute representation can
also be obtained directly for a given word string (left side). QbE and QbS are then
performed by ranking all word images of a given corpus based on their cosine distance
to the query representation. This representation is either obtained directly for word
strings or also obtained from the SVM ensemble. The figure is inspired by a similar
one found in [204]. Parts of the figure are courtesy of Christian Wieprecht and Leonard
Rothacker.

typically designed to work under either of the QbE, QbS, QbO or QbSP paradigms. If a
method shall be enabled to accept other types of queries as well it usually needs to be
adapted. An example for this are the aforementioned BoF-HMMs which where initially
proposed for QbE [158] and then adapted in order to accept string queries for QbS [157].
A very elegant solution for combining different query paradigms is proposed by Almazan
et al. [9] in the form of the embedded attributes framework. This framework is also the
foundation of the method presented in this thesis. Due to its high relevance, it will be
presented extensively in the following section.

4.4 EMBEDDED ATTRIBUTES

The embedded attributes framework has been a very influential concept, not only in word
spotting but in document image analysis in general. Initially proposed by Almazan et al.
[9], it allows for a unified approach for supervised QbE and QbS word spotting. While Al-
mazan et al. initially proposed a segmentation-based method for the embedded attributes
framework, recently proposed methods extend it to segmentation-free scenarios as well (cf.
e.g. [50, 160, 207]).

Fig. 17 visualizes the embedded attributes framework using the approach by Almazéan et
al. The basic concept is to encode word strings and word images as common representation
using attributes (cf. Sec. 2.3). If these attribute representations can be obtained from
word strings and word images, word spotting boils down to a simple nearest neighbor
search in the attribute space. For this, there need to exist two mappings into the common
attribute space: one for the word strings, i.e., word classes, and another one for the word
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Figure 18: The figure visualizes the construction of a Pyramidal Histogram of Characters represen-
tation for the word string place. The example shown here makes use of a PHOC with
levels 1,2 and 3. For each region in the respective level, an indicator vector is obtained
showing whether a given character is present in this region or not. Not shown is the
final representation which is obtained by concatenating all individual vectors. Parts of
the figure are courtesy of Christian Wieprecht and Leonard Rothacker.

images. While Almazéan et al. require the mapping for the word classes to be directly
obtainable from the respective string representation of the class, the mapping from word
images to attribute space is best obtained through some form of trainable model. For
simplicity, the mapping for the word strings will be referred to as the textual model
while the one for word images will be called visual model. Having the visual model not
predict class labels but attributes allows for predicting attribute representations for word
images from classes which where not seen during training. Especially QbS word spotting
benefits from this characteristic: In QbS the textual model is responsible for predicting the
query representations. As it is able to compute this representation directly from a string
unknown at training time, the queries are not constrained to come from a predefined, i.e.,
closed lexicon. In analogy to zero-shot learning, this paradigm is also known as zero-shot
retrieval in image retrieval in general [33]. For word spotting applications, this is essentially
a requirement as it typically cannot be known beforehand which queries are of interest to
a potential user.

The attribute representation used to represent strings and word images plays a crucial
role in the embedded attributes framework. Almazan et al. propose an embedding for
this which they term Pyramidal Histogram of Characters (PHOC). The PHOC encodes
the presence or absence of characters in certain sections of a string in a pyramidal fashion.
Fig. 18 visualizes how to construct a PHOC vector for the string place. In order to construct
the representation, an alphabet of characters or unigrams needs to be defined first. Then,
an attribute is created for each unigram of the alphabet indicating the presence or absence
of this specific character in a certain split of the string. At the first level of the PHOC,
all unigrams in the string are considered and the respective attribute is set to 1 if the
corresponding unigram appears at least once in the word. In the following levels, the
string is split into regions of same sizes. For each unigram and region it is then evaluated
whether the region contains at least one of the respective unigrams. For determining
whether a certain unigram in the given string lies in a specific region, all unigrams in the
string to be processed are first defined to have an equal width of one. In the example
in Fig. 18, the total width of the word would thus be five. Almazan et al. then define a
unigram to be present in a given region if it overlaps at least 50% with the particular region.
For example, the character a in Fig. 18 has an overlap of 50% with both left and right
region in the second level. Hence, it is marked as present for both regions. In the ensuing
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levels, the string is split into increasingly smaller regions. At the third level there are three
regions and at the fourth four. This pattern continues for as many levels as are desired.
Almazan et al. propose to not use the first level in the PHOC as the resulting vector for
this level can not discriminate between anagrams, e.g., asleep and please. In their PHOC
definition, they use the levels 2, 3,4 and 5. In addition to the attributes for the unigrams,
Almazan et al. also add attributes for bigrams to the PHOC representation. For this they
determine the 50 most common bigrams in the English language and add a level with two
regions accounting for bigram attributes. This setup results in the PHOC being obtained
from 14 individual vectors for the unigrams and 2 vectors for the bigrams. As unigrams
Almazan et al. use all lower-case characters from the Latin alphabet plus the ten digits.
This is justified by their assumptions made for a potential application: They assume that
a word image should be considered relevant for a given query if the transcriptions match
without considering whether characters are capitalized or not. The resulting PHOC is of
size 604 (14 - 36 elements for the unigram attributes and 2 - 50 elements for the bigrams).

While the PHOC represents the textual model, Almazan et al. make use of an ensem-
ble of SVMs as the visual model which they term AttributeSVM. The AttributeSVM
requires that the image is encoded into some form of holistic feature representation. For
this, Almazén et al. choose the Fisher Vector on top of enriched SIFT descriptors which
are extracted in a grid. For enriching the SIFT descriptors, they add the normalized width
and height coordinates of the point in the grid the descriptor was extracted at to the
descriptor. The descriptors are then projected into a lower dimensional space using Prin-
cipal Component Analysis (PCA). In order to introduce even more spatial information,
the Gaussian Mixture Model (GMM) used for constructing the Fisher Vector is not com-
puted for all descriptors but only for certain ones: At training time, the descriptors are
pooled into twelve bins (six along the width and two along the height of the word image)
depending on the location they were extracted at. For each bin, an individual GMM with
192 mixture components is fitted using the enriched descriptors from the respective bin
as data. Afterwards, all GMMs are joined and the weights of the individual components
are Li-normalized in order to sum to 1. The Fisher Vector is then created with this joint
GMM.

Having defined the global feature representation, the goal is to predict the PHOC re-
presentation corresponding to the transcription of the word image at hand. In order to do
so, there exists an SVM for each dimension, i.e., attribute, in the PHOC vector, which is
responsible for predicting this attribute. The combination of all SVMs then predicts the
entire PHOC. In [9], Almazan et al. use linear SVMs as their Fisher Vector representation
has a size of 24 576. The large dimensionality allows for disregarding a kernel in the SVMs.

The embedded attributes framework allows for QbE as well as QbS word spotting in a
straight forward way: For the corpus to be retrieved from, the PHOC is predicted for each
word image from the AttributeSVMs. For QbE, the query representations is also predicted
from the AttributeSVMs while for QbS it is obtained directly from the query string. The
retrieval list is then generated by ranking all representations obtained from the corpus
with respect to the cosine distance to the query representation.

For obtaining the predicted representations, Almazan et al. do not use the class predic-
tions as attributes but rather the raw distance from a given Fisher Vector to the hyperplane
of the respective SVM. As these scores exhibit a different range than the PHOCs they are
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compared with in QbS, the are calibrated. In order to do so, three different techniques are
evaluated: The first is Platt’s scaling. Here, the generalized logistic function

1
flz) = ] (46)
is fitted to the scores using Maximum Likelihood Estimation (MLE) were v and 3 are the
trainable parameters. The final attribute prediction is obtained by applying this function
to the aforementioned distance values. The other two approaches used by Almazin et
al. for calibration are Canonical Correlation Analysis (CCA) and Kernelized Canonical
Correlation Analysis (KCCA). For both CCA and KCCA the goal is to find the projections
to a common subspace for two data sources which maximize the correlation between
corresponding elements. In the context of the method proposed by Almazéan et al. both
can thus be used to correlate the distance values obtained from the AttributeSVMs with
the desired PHOC representation. While CCA achieves this through an individual linear
projection for both data sources, KCCA adds a kernel function to the projection in order
to allow for non-linear correlations. Almazéan et al. evaluate the effectiveness of the three
calibration methods and find that Platt’s scaling gives better results for smaller datasets
while the other two methods work better if there exists more training data. However, there
is no consistent improvement when using KCCA instead of CCA.

The embedded attributes framework is very flexible and does not only allow for a simple
and effective way to perform QbE or QbS word spotting but also other query modalities.
For example, Wieprecht et al. [204] use this framework in order to perform QbO word
spotting. For this, the textual model is replaced with a model which is able to predict the
corresponding PHOC representation given an online-handwritten trajectory. This allows
for using the online trajectories as queries to a corpus of offline word images. In general,
any query modality can be used in the presented framework as long as a desired attribute
representation can be obtained for it.

There exists a number of other approaches for word spotting in the literature which are
based on embedded attributes as well. As they bare a high relatedness to the proposed
method, they will, however, be discussed in the chapter on related work (Chap. 6).
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Having established the necessary fundamentals in the previous chapters, this chapter
presents the methodology proposed in this thesis. The approach shown here is able to
perform supervised Query-by-Example (QbE) and Query-by-String (QbS) word spotting
and falls into the segmentation-based category'. The main contribution is the design of
Convolutional Neural Networks (CNNs) which are able to predict attribute representations.
These neural networks can then directly be used in the previously described embedded at-
tribute framework (cf. Sec. 4.4). Due to their special characteristic of predicting attributes,
the CNNs presented here will be referred to as Attribute CNNs. The motivation for using
a CNN is based on the observation that supervised word spotting methods typically follow
the traditional computer vision pipeline in which feature representation and classification
model are optimized separately (cf. Chap. 2). This is also the case for the AttributeSVM
approach by Almazan et al. [9]. In addition, the different AttributeSVMs used here are
unable to share trained knowledge which leads to each Support Vector Machine (SVM)
being trained independently. This thesis proposes to use a single Attribute CNN which, in
contrast to the AttributeSVM, predicts all attributes in a combined fashion. In addition,
it is able to learn the attribute representations in an end-to-end fashion thus eliminating
the need to design heuristic feature representations.

There are two crucial aspects when designing Attribute CNNs: The first is to choose a
suitable network architecture. The second is to have the network output a representation
which is suitable for the word spotting problem at hand. For the second aspect, an appro-
priate way needs to be determined how the respective CNNs can be trained with a given
representation. The key ingredient for this is a suitable loss function which can be used for
training. This chapter thus explains the design choice for the proposed CNN architectures
as well as how to derive loss functions which allow for training a CNN with attribute re-
presentations. Before getting into the details of the CNNs though, it is first explained how
Attribute CNNs can be used in the embedded attributes framework in order to perform
word spotting.

Afterwards, the attribute embeddings are explained which will be used in conjunction
with the presented networks (Sec. 5.2). The ensuing section then explains how neural
networks in general can be trained to predict these attribute representations (Sec. 5.3).
The last section of this chapter finally presents the CNN architectures used for the proposed
method (Sec. 5.4).

Please note that the sole focus of this chapter is to present the proposed method. A
comparison to related work including the discussion of the respective differences will be
given in the next chapter.

The method presented here is in principal also able to perform supervised Query-by-Online-Trajectory
(QbO) word spotting. However, in order to do so, it requires additional considerations compared to QbE
and QbS. For the sake of a clean presentation, QbO will not be presented in this chapter. There exists a
chapter in the appendix which concentrates on QbO with Attribute CNNs exclusively (see Appendix C).
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Figure 19: Overview of the presented method for QbE and QbS word spotting: Word images (right)
as well as word strings (left) are embedded in an attribute space. For strings, this
mapping is computed directly, while for word images an Attribute CNN predicts the
attribute representation. The word spotting problem then boils down to a simple nearest
neighbor search in the attribute space.

5.1 WORD SPOTTING WITH ATTRIBUTE CNNS

Suppose a CNN is able to predict a desired attribute representation for a given word image
and the attribute representation for the transcription can be obtained directly, i.e., is a
function of the word string, as is the case for, e.g., the Pyramidal Histogram of Characters
(PHOC). Hence, the attribute representation for all word images in a desired corpus can
be predicted from the CNN prior to running retrieval. QbE word spotting can then be
performed by predicting the attribute representation for a given query word image and
ranking all images in the database according to the distance to the query representation.
As the attribute representation is a function of word strings, QbS word spotting can
be performed by computing the attribute representation for the given query string and
ranking all attribute representations of word images in the corpus as was done for QbE.
Fig. 19 gives an overview of the described approach. Of course, the proposed approach
requires a suitable distance metric for determining distances between representations. As
the attribute representations are typically of high dimensionality, the cosine dissimilarity
(Eq. 45) can be reasonably expected to be suitable for the task at hand. This measure is
actually the one predominantly used when comparing high dimensional representations,
not only for word spotting, e.g., [6, 165, 206], but in other pattern recognition problems
as well, e.g., [28, 126, 127].

5.2 ATTRIBUTE REPRESENTATIONS FOR WORD SPOTTING

When performing word spotting in the embedded attributes framework, the attribute
representation used plays a critical role. In order to choose a suitable representation, one
has to define which behavior should be expected from a word spotting method with respect
to what it considers similar, i.e., relevant for a given query. Of course, exact matches for
a sought-after query are always similar but the question is whether the user prefers word
images in the retrieval list which are semantically close to the query or rather images
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which show words which are close from a point of characters and their respective order. An
example for this decision would be, whether a word spotting method should rather return
word images showing military ranks for the query Captain or if word images showing
different inflections or abbreviations of the query are of higher interest.

For the rest of this thesis, it is assumed that a word spotting method is of interest
which focuses on the latter, i.e., lexical similarity. Thus, methods like Word2Vec [121]
are not considered in the following?. This paradigm does not only allow for the retrieval
aspect of word spotting but also enables word spotting methods to be used directly for
handwriting recognition [9] or use them in order to support other methods for Optical
Character Recognition (OCR). For example, Silberpfennig et al. [178] use word spotting
as an additional confidence measure for an unreliable baseline OCR method.

The second constraint which is made regarding the representation is that it should be
obtainable for words which were not seen during training, effectively allowing for querying
classes unknown from training. The representation must thus allow for zero-shot learning
(cf. Sec. 2.3) which rules out representations like the one proposed by Weston et al. [203].

In the context of the thesis, there exist three prominent attribute representations for
word strings which can effectively be integrated into the proposed methods, namely the
PHOC, the Spatial Pyramid of Characters (SPOC) and the Discrete Cosine Transform of
Words (DCToW). The inevitable question, of course, is, whether any of these representa-
tions is more suitable to be used with the proposed Attribute CNNs than the others. This
question will be evaluated in the experiments presented later in this thesis. In the rest of
this section, the SPOC and DCToW representations are presented and their individual
characteristics are discussed. The PHOC will not be elaborated on again as it was already
presented in Sec. 4.4.

The SPOC proposed by Rodriguez-Serrano et al. [150] for both scene text recognition
and retrieval is very similar to the PHOC. Like is done for the PHOC, a given string is
split into multiple levels and histograms are computed for each of these levels in order to
form this representations. Different to the PHOC, though, not the presence of characters is
stored in the individual histograms but the actual count of characters or fractions thereof.
Fig. 20 visualizes how a 3-level SPOC descriptor can be extracted from the given string
aabce. At each level, the string is split into a number of regions for which a character
histogram is computed. For this, each character is treated as having equal width and the
total width of a string is considered to be the number of characters it contains. If only a
fraction of a character overlaps with a region, this fraction is added to the respective bin in
the histogram as well. Afterwards, all individual histograms are concatenated. Rodriguez-
Serrano et al. note that the individual histograms may optionally be La-normalized. They
do not perform normalization for their recognition experiments but do so for their retrieval
experiments. In addition, they propose to use four levels for the SPOC, each doubling the
number of splits compared to the previous layer. Thus at the first level, the histogram is
extracted for all characters in the word. At the second level there is a split into left and
right part while the third splits these two again in two parts each. At the fourth and final
layer, the string is split into eight different regions.

Different from the PHOC and SPOC, the string embedding known as DCToW [206] does
not make use of a pyramidal splitting of a given string. Fig. 21 visualizes this embedding
approach. First, the word is transformed into an indicator matrix. This is done by encoding

In principal, the proposed approach would still allow for easily integrating Word2Vec representation. How-
ever, they are not in the scope of this thesis
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Figure 20: Visualization of how to extract a 3-level SPOC embedding from the string aabcc. At
each level the string is split into a number of regions for which individual histograms
are computed. The regions, which are considered in the respective levels, are indicated
in green at the top of each region in the pyramid. If a fraction of a character falls into
a region, this fraction is used in the histogram as well. Afterwards, all histograms are
concatenated and optionally normalized.

every character in the string as a one-hot vector with the characters in the alphabet used
serving as classes. The resulting vectors are then stacked in order to form the matrix.
Then, a discrete cosine transform is applied to each row. The three largest values per
row are then concatenated in order to form the DCToW descriptor. As only the three
largest coefficients are chosen, strings of variable length can be encoded in a fixed size
representation this way.

Strictly speaking, both SPOC and DCToW are not attribute representations as they
are not binary (cf. Chap. 2). However, both can be considered attribute-like. Looking at
the SPOC, a human can still determine whether a certain number of characters is present
in a split or not or if a fraction of a character belongs to a split. For the DCToW, the final
representation is obtained from a binary, i.e., attribute representation. The mere transfor-
mation involved in SPOC and DCToW should not render them as strictly non-attribute
representations. For simplicity, they will be referred to as attribute-like representations in
the following.

In addition to the three embeddings mentioned above, two novel feature embeddings for
word spotting are presented and evaluated in this thesis. The main idea behind creating
both embeddings is that the elements in the pyramidal representations, i.e., PHOC and
SPOC, may be heavily correlated. For a neural network, it may be easier to learn an
embedding if its elements are decorrelated. A well known method which achieves decor-
relation is, of course, Principal Component Analysis (PCA). However when using PCA,
one relies on being able to estimate reliable covariance values. Obtaining good covariance
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Figure 21: Visualization of how the DCToW embedding is created for the word place. First the
word is transformed into an indicator matrix which resembles the alphabet used for the
DCToW in its rows and the characters of the word in the columns. Then a row-wise
discrete cosine transform is performed. The three largest values of each row are then
concatenated in order to form the DCToW descriptor.

estimates is rather problematic for the high dimensional string embeddings. Hence, two
other decorrelation methods are used. While the first requires the string embedding to be
binary vectors, the second approach works for all types of data as long as there exists a
suitable metric for determining similarity between two embedded representations.

For decorrelating binary vectors, Chollet [28] proposes to use a transformation based
on the Pointwise Mutual Information (PMI). The PMI is a measure for determining the
discrepancy between the joint probability of two univariate and discrete random variables
X and Y and the product of their individual probabilities. It is defined as

. e P (z,y)
pmi(z,y) = log 7oy 47)

where = and y are realizations of X and Y respectively. Using the PMI, a matrix M is
computed in [28] where each element m; ; captures the PMI between the i-th and j-th
attribute of a binary vector y:

m;; = pmi(y;, yj). (48)

For simplicity, this matrix will be referred to as PMI matrix. It can be decomposed via
Singular Value Decomposition (SVD) into

M=U-S.-UT, (49)

where U is a unary matrix and S the matrix of singular values. Defining the matrix
Epyvi = U - V/S, the matrix M of individual PMI values can be rewritten as

M = Epyi - Ebyp. (50)

Chollet [28] argues that using Epy1 as projection matrix one can project the labels y onto
a latent space where each dimensionality describes an independent factor of variation of
the PMI. These projections can then be used as surrogates for the string embeddings in
order to train a neural network. It is obvious that the proposed approach can only work if
S is at least positive semidefinite. This might, however, not always be the case. Even worse,
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the elements m; ; can obtain the value —oo if the corresponding joint probability p (s, y;)
is zero. In order to overcome this problem, a small change to the approach by Chollet is
proposed in this thesis. Looking at the original PMI-based approach, one can see that the
PMI matrix represents positive as well as negative correlations between attributes. For
training a CNN, however, only the possible positive correlations are of interest. This is
due to the neural network possibly learning the aspects of the data that actually belong
to the correlated attributes opposed to the “correct” ones. A simple example for this for
natural images would be the attributes sunny and blue sky. Depending on the data, a
neural network might learn to predict blue sky based solely on the presence of the sun
in an image. This, of course, leads to errors if the sun can be seen on an image showing
a partially clouded sky. As only the positive correlation between attributes is of interest,
one can adapt Eq. 47 to disregard negative correlations:

ppmi(z,y) = max (0,pmi (z,y)) . (51)

This measure is known as Positive Pairwise Mutual Information (PPMI) [77, p. 276]. Using
the PPMI in Eq. 48, S contains only positive and finite values. This way, the projection
matrix E is defined and can be used in order to project binary attribute representations
onto a latent space of independent factors of variation of the PPMI.

The approach proposed above can only be applied to binary vectors as otherwise the
matrix M could not be constructed. Hence, it is applicable to the PHOC but not the
SPOC and DCToW. In order to decorrelate these real-valued attribute representations,
an approach is proposed which is based on Multi Dimensional Scaling (MDS). MDS is
usually used as an algorithm to solve the inverse distance problem which is defined as
finding the location of a fixed amount of points given only their pairwise distances and
the dimensionality d of the target space. This is achieved by computing a matrix B using
the matrix D of pairwise distances as follows:

1

B = —§HD2H, where (52)
1

H=1I,--1,17, (53)
n

Here, I,, is the n x n identity matrix and 1n1£ the n x n matrix of all ones. From B the d
largest eigenvalues A" and their corresponding eigenvectors v(%) are extracted and stacked

into a matrix as follows:
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N . v@T
Eups = . . (54)
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The shape of Eypg is d x n and each column represents the embedding for a specific data
point.

In addition to solving the inverse distance problem, MDS can be exploited to decorrelate
attribute representations given a suitable distance metric. This is achieved by computing
the matrix of pairwise distances from the obtained attribute representations and obtaining
the MDS embedding while keeping all positive eigenvalues and their corresponding eigen-
vectors. In this thesis, the cosine distance (cf. Eq. 45) is used as metric. The embedding
thus aims at preserving the angles as distances between the given attribute representations.
In addition, the dimensions with eigenvalues of 0 in the embedding Eypg are disregarded
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in the proposed approach as well. This way, the dimensionality of the embedding is kept
to a minimum while preserving all relevant information.

Attribute representations, which were not observed at training time, can easily be trans-
formed into the space obtained from MDS through out-of-sample embedding [17]. Given an
attribute representation a, its embedding e is obtained by the following transformation:

1

o= EB* (m - d2) , where (55)
\/iu) v
1 @7

E# = | VA® , (56)
1 y@T

A(d)

d is a vector of distances from a to all samples used in obtaining the original MDS
embedding and m is the column mean of D? (cf. Eq. 52).

In the following, if a decorrelation method is used for a given attribute representation,
the resulting representation will be denoted by prepending the decorrelation method to the
attribute representation’s name. For example, the PPMI-PHOC representation is obtained
by applying the PPMI embedding technique to the standard PHOC representation.

5.3 LOSS FUNCTIONS FOR ATTRIBUTE CNNS

Having defined the attribute representations to be used for the proposed approach, this
section presents how loss functions can be obtained in order to train a CNN with the
desired representation. This is one of the central contributions of this thesis.

Traditionally, CNNs have been heavily used in the domain of multi-class classification.
The task here is to predict one out of k classes for a given image. Usually, this is achieved
by computing the softmax

i(o) = (57)

Nc
> e
7=1

for each element o; of the last layer’s output o in order to obtain the posterior probability
9; for the i-th of N, classes (cf. e.g. [22]). The predicted class is the one with highest
probability. For training, a one-hot-encoded vector is supplied to the CNN with the sought-
after class having a numerical value of 1 and all other classes a value of 0. For optimizing
the weights, the categorical cross entropy loss between the CNN’s output and the label
vector is computed. The gradient of the computed loss is then backpropagated through
the neural network and the weights are iteratively optimized by changing them in the
direction of the negative gradient (cf. Sec. 3.1.2).

When dealing with the previously mentioned attribute representations, it is infeasible
to use the combination of softmax and the categorical cross entropy loss function for
training. The reason for this is that the softmax produces a vector of probabilities where
at most one element can become 1 and all elements have to sum to 1. In the attribute
representations considered in this thesis, however, there may exist multiple binary values
(PHOC) or the representation to be predicted might be real-valued (SPOC, DCToW and
the decorrelated representations). For binary representations, one can of course use the
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sigmoid as activation function in the last layer instead of the softmax in order to predict
individual probabilities for each attribute. This, however, leads to the question what loss
function is most suitable for this situation. A straightforward approach would be to make
use of the Euclidean Loss
N
) 1 2
N@y) =35> |

s
=1

[y — g0

(58)

in order to train the network with the N; available samples. This, however, bares the
drawback, that the overall gradient is scaled by the derivative of the sigmoid in the last
layer [128]3. If the initialization of the network’s weights leaves the sigmoid neurons in a
saturated state after a forward pass, i.e., the input to the sigmoid has a large absolute
value, this causes a slow convergence behavior or even a complete stall in training. The
sigmoid activation function could, of course, be replaced by a linear function. While this
would eliminate the gradient being scaled by the derivative of the sigmoid, the output
of the CNN would not be bounded anymore. It could thus produce values below 0 or
above 1 when tasked to predict the PHOC representation. Whether a sigmoid or a linear
activation is used, there exists another disadvantage: By using the Euclidean Loss one
implicitly assumes that the Fuclidean distance is a feasible metric for comparing the
output of the CNN and the label vectors. For high-dimensional vectors the ratio of closest
and farthest points approaches 1 for the Euclidean distance [1, 37]. As the dimensionality
of the attribute representations to be used is typically between 500 and 1000, the Euclidean
Loss is not feasible for the proposed method.

It is obvious, that the activation function in the last layer of a neural network and the
loss function used for training are tightly coupled. Determining suitable combinations is
thus paramount for designing networks which allow for word spotting using attribute re-
presentations. A very elegant framework for finding these combinations are Generalized
Linear Models (GLMs). In the following, loss functions and corresponding activation func-
tions for the last layer of a neural network are derived from these statistical models. This
allows for interpreting the training from a probabilistic perspective.

The rest of this chapter is organized as follows: First, an introduction to GLMs is given in
Sec. 5.3.1. The ensuing sections then explain, how GLMs can be used in order to derive loss
functions for binary (Sec. 5.3.2) as well as real-valued attribute representations (Sec. 5.3.3).
Please note that, for the sake of a clean presentation, mathematical deductions are kept to
a minimum in the text. The interested may find complete deductions for certain equations
in dedicated sidebars throughout the chapter.

5.3.1 Generalized Linear Models

Generalized Linear Models (GLMs) are statistical tools for predicting the conditional ex-
pected value E [Y | X = x| of a random variable Y conditioned on an independent random
variable X, e.g., [174, p. 281]. When using a GLM, two important assumptions are made:
It is assumed that Y follows a distribution from the exponential family and the expected
value [E[Y] depends on a transformation of a linear combination of X . The first assumption
can be expressed by the inner product

n(x) = w'x (59)

The proof for this can also be found in the appendix, Sec. B.2.2
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which is called linear predictor in the context of GLMs. Here, w are the weights of the
GLM and x is a realization of X. In order to transform the linear prediction into the
correct range, a so-called link function g is used. It is defined as the function mapping
from conditional expectation to the linear prediction (cf. e.g. [174, p.283]):

n(x) =g (E[Y|X =x]). (60)

The inverse of this function can then used in order to perform the mapping from linear
prediction of the GLM to the predicted conditional expected value:

EY| X =x]=g" (WTX) . (61)

In general, any link function can be used in a GLM as long as its inverse is defined
and maps the linear prediction 7 into a range suitable for the assumed distribution of
Y [174, p.286]. However, there exists a canonical link function for each distribution in
the exponential family for which a number of statistical characteristics can be shown. In
the context of the thesis, the most important of these is that minimizing the negative log-
likelihood of the model with respect to some data converges to the maximum likelihood
estimate [174, p.286]. For obtaining the canonical link function the formulation of the
Probability Density Function (PDF) of Y (or Probability Mass Function (PMF) in the
case of Y being discrete) is first rearranged into the standard exponential family form

fexp (x18) = h(x) - exp (v(8) " t(x) —a(0)) , (62)

where 6 are the parameters of the distribution (cf. e.g. [124, p.282]). The canonical link
function is then equivalent to the function v (cf. e.g. [124, p.291]). Sidebar 1 exemplarily
shows how the canonical link function can be obtained if Y follows a Bernoulli distribution.
Training a GLM happens in a supervised fashion, meaning it requires an annotated dataset
OGS

5= {(x"0")} ., (63)
where Ny is the number of training samples. The weights of the GLM can then be ob-
tained through Maximum Likelihood Estimation (MLE). This training procedure shall be
explained using the following example: It is assumed that all samples in S are independent
and identically distributed (i.i.d.) and that all labels y*) follow a normal distribution. The
canonical link function for the normal distribution is simply the identity function [174,
p. 283]. Thus the expected value is predicted by

EY|X =x] =wlx=§(x|w) (64)

For the sake of presentation, § (x| w) will be abbreviated to ¢ in the following. The goal
now is to maximize the likelihood of the data given the predictions from the model. As Y
is assumed to follow a normal distribution, its PDF is

1 (y—p)?
2y _ L _\y—H)”
fn (y ‘ {0 ) = 55 P ( 507 ) (65)
As the variance o2 is not predicted by the GLM, it needs to be defined by the user.

Typically, it is simply set to 1. The likelihood of the data given the model can then be

computed by
Ns

L(w|$) = I fv (v

=1

5, 1) . (66)

57



ATTRIBUTE CNNS

Sidebar 1: Obtaining the canonical link function for a GLM

The following example shows how to obtain the canonical link function for a spe-
cific GLM*. For the sake of this example, it is assumed that Y follows a Bernoulli
distribution. The PMF of Y is defined as follows:

f8(Y =ylp)=p’(1-p)'™¥ fory € {0,1}
The next step is to bring the PMF into the standard exponential family form:
fs(Y =ylp)=p’(1-p)'""
= exp (log (py (1 —p)l_y>>

= exp (ylog(p) + (1 —y) log(1 —p))
= exp (ylog(p) — ylog(1 —p) +log(1 —p))

= exp (log %) -y +log(1 —p))

The canonical link function is thus

95() =10g(1f$>-

The model parameters w now need to be chosen such that L is maximized. As is common
for similar MLE problems, the parameters can also be estimated by minimizing the nega-
tive log-likelihood of the model given the data (see sidebar 2 for a complete derivation):

Ns
W = argmin —log L(w|S) = = > fxr <y(z‘) 5@ 1)
: = (67)
1N N2
= argv{/nin 3 ; (y(Z) _ Q(l)) )

Similar to neural networks, the optimization is then carried out by running (stochastic)
gradient descent in order to minimize the function in Eq. 67 [124, p.292].

As can be seen from Eq. 61, a GLM can be interpreted as a Perceptron (cf. Sec. 3.1.1)
with the inverse of the link function serving as activation function. The output of a Per-
ceptron is thus the estimated conditional expected value of a random variable Y. This
characteristic can be generalized to Multilayer Perceptrons (MLPs) and deeper neural
networks: In order to obtain a possibly deep MLP from a GLM one needs to replace the
linear predictor with a neural network. Replacing the linear predictor can be done without
invalidating any other aspect of the GLM [174, p.287]. In fact, this is the exact approach
chosen by Generalized Nonlinear Models (GNLMs) [97]. These variants of GLMs replace
the linear predictor by a non-linear relation between the independent and dependent vari-
able. A neural network can thus be interpreted as a form of GNLM and its output as
a prediction for the conditional expected value. This allows for applying all the insights
gained from GLMs to neural networks as well. Especially, training a neural network with

This example originates from an online blog available at http://willwolf.i0/2017/05/18/minimizing_
the_negative_log_likelihood_in_english/
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Sidebar 2: Fitting a GLM with labels following a normal distribution

Given a dataset S = {x(s) y(s)} x the assumption is that the labels follow a

1=
normal distribution with the variance o2 to be determined by the user. The PDF

for the normal distribution is defined as

e (o] ) = e (@2_@) |

The output
g (X(i) w) - gQ(i) = wlx(®

is the GLM’s prediction for the expected value u. For training the GLM the likeli-

hood function
(w[S) H fN( @) )

is maximized or, alternatively, the negative log-likelihood is minimized in order to
estimate the weights W of the GLM:

W = argmm Zlog fN( @) g, 02
=1

1 1 . )
= argmln Zlog <702> — (y(z) _ g(z))2

=1

1 & .
= argmin 352 Z <y(1) _ g(l))Q

=1

specific loss functions and activation functions in the last layer can be interpreted as MLE
of the network’s weights. In addition, it allows for determining the assumptions made
when training with different loss functions. For example, assuming that the labels follow a
multivariate normal distribution with the identity matrix as covariance matrix one obtains
the Euclidean Loss (Eq. 58) as function to be minimized (a complete derivation for this
is given in sidebar 3). This means that training a neural network with the Euclidean
Loss using a linear activation in the last layer is equivalent to MLE of the network’s pa-
rameters while assuming that all labels are observations of a random variable following a
multivariate normal distribution with the identity matrix as covariance matrix.

Of course, this probabilistic perspective on neural networks can also be used in reverse:
By defining the distribution Y of the labels one can derive an activation function for the
last layer of the neural network as well as a loss function specifically for this distribution:
The activation function in the last layer is the inverse of the canonical link function for
Y. The loss function is simply the negative log-likelihood function for Y given a set S
of i.i.d. data samples. If these two conditions are met, the neural network predicts the
conditional expected value [E [Y | X| as does the GLM. If a multivariate distribution is
used, the above formulation can be generalized to the neural network predicting [E [Y | X |
(cf. e.g. [124, p.295] for how this is done for GLMs). The insight presented above will be
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Sidebar 3: Derivation of the Euclidean Loss

Given a dataset S = {(X(s),y(s)>}',\l_sl, the assumption is that the labels follow
a multivariate normal distribution ofzaimensionality D with the identity matrix as
covariance matrix. The PDF can thus be expressed as composition of D independent
normal distributions

I (ylm1) = \/%eXp (—%(y—u)2) .

The prediction § of the neural network for a specific sample x is equivalent to
the conditional expected value p given the sample and the weights w of the neural
network. As the individual dimensions are independent the likelihood function given
the set S can be expressed as

p(ws) =TT T o (5 [69.1),
i=1j=1

where Ny is the number of samples. Instead of maximizing this function one can
also minimize the negative log-likelihood:

Ns D .
W = argmin — » ) log fy <yj(}) i, 1)
W i=1j=1
= argmin — i i log (L) _ 1 (y(z) _ g(i))2
w i=1j=1 Var 2\ !
Ns D 1 0 @ 5
=argmin Y = (yj — g )
W i=1j=1
Ns D 0 @ 5
= argmin — Z Z (yjl _ @]Z )
w i=1j=1
0 L3510 _ 00|
:arg&nlniz ‘yz _ gl ‘

The function to be minimized is thus exactly the Euclidean Loss (cf. Eq. 58).

leveraged in the following two subsections in order to obtain loss functions for training a
neural network with attribute as well as attribute-like representations.

5.3.2 Loss Function for Attribute Representations

The goal of this section is to derive a loss function which allows for using true attribute
representations, i.e., binary vectors such as the PHOC as labels. For illustration purposes,
the labels are considered to be binary scalars first. The derived loss function is then
generalized in order to account for binary vectors as labels.

When using binary scalars as labels, it can be reasonably assumed that the dependent
variable Y follows a Bernoulli distribution. As explained in the previous section, the ac-
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tivation function in the last layer of the neural network used must be the inverse of the
canonical link function. For a Bernoulli distributed random variable Y, the inverse canon-
ical link function is the sigmoid function (cf. e.g. [124, p.291]:

1

sigm(z) = 1T oxp(—z)’

(68)

It squashes the output of the network to the range (0, 1). In order to find the corresponding
loss function, the negative log-likelihood function is computed. For this, the PMF of a
Bernoulli distributed variable Y is required, which is defined as

fB(Y =y|p)=p’(1—p)'7¥ fory € {0,1}, (69)

where p is the probability P(Y = 1). The negative log-likelihood function given a training
set S of i.i.d. samples (X(i),y(i)) then computes to

NS . .
=3 fis (v [39)
1=1

N, (70)
= _ Zy(i) log 9% + (1 _ y(i)) log (1 _ Q(i)> ,
i=1

where §() is the prediction of the network for the i-th sample. This value can be shown to be
the predicted posterior probability of Y given X: As Y follows a Bernoulli distribution, its
expected value is p. The neural network predicts the conditional expected value E [Y | X ]
which is P (Y = 1| X), i.e., the posterior probability. As explained in the previous section,
Eq. 70 is exactly the loss function to be optimized. It can be shown, that [z is equivalent
to the cross entropy between the distribution of the network’s predictions and the label
distribution [128] which is why [; is often times referred to as Binary Cross Entropy Loss
(BCEL). Due to the sigmoid function being used here, another common name is Sigmoid
Cross Entropy Loss [135, 175].

As explained before, the labels are assumed to be scalars up to this point. A straight
forward approach in order to account for vectors of binary variables would be to assume
that Y follows a multivariate Bernoulli distribution [32]. This approach, however, has the
drawback that the neural network used would have to have an output layer size of 2P where
D is the dimensionality of the attribute representation. Typical attribute representations
for word spotting have a size greater or equal to 540 [9, 150] which would demand an
output layer size greater than 3.599 - 10162, This is, of course, technically impossible to
realize. In order to make the problem tractable, the assumption is made that each label
vector is a collection of D pairwise independent and Bernoulli distributed variables, each
having their own probability p of evaluating to 1. This way, the negative log-likelihood
(and thus the loss function) is simply the sum over all negative log-likelihoods for the
different variables:

s=—>"> " log)” + (1—y" ) log (1-5"). (71)
i=1j=1

A complete derivation for this generalization of the BCEL can be found in sidebar 4. In
most deep learning tool boxes, BCEL functions typically make use of the formulation
presented in Fq. 71 thus assuming independence between the individual attributes. This
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Sidebar 4: Derivation of the Binary Cross Entropy Loss

g ) (i) Ns (2) q e G
Given the dataset S = {(x(Z ,y\ )},_1 where y; € {0,1} V 7, the assumption is
that each label y is a collection of independent random variables were each variable
follows an individual Bernoulli distribution with PMF

8 (ylp;) =pY (1—p;)' ™ for y € {0,1}

Here, p; is the probability for the j-th element of y to evaluate to 1. The logarithmic
PMF for the Bernoulli distribution is hence

log f5 (y|p;) = ylogp; + (1 —y)log (1 —p;).

The prediction ¥ of the neural network for a specific sample x is equivalent to the
conditional expected value p (the vector of all probabilities p;) given the sample and
the weights w of the neural network. As the individual dimensions are independent
the likelihood function given the set S can be expressed as

L(w|S)= HHfB( ‘QJ(i)),

i=1j=1

where Ny is the number of samples and D is the dimensionality of the labels. As was
done for the Euclidean Loss (cf. sidebar 3) the negative log-likelihood is minimized
instead of maximizing the likelihood in order to obtain the weights w of the neural
network:

W = argmm Z Z log [ ( ‘ @J(Z))

= 1] 1
= argmln — Z Z y] log (y] ) + ( yj(»i)) log (1 = ZQJ(Z))
i=17=1

As can be seen, the function to be minimized is the Binary Cross Entropy Loss.

loss function will be used when training the proposed Attribute CNNs with the PHOCs as
labels. The training process can then be interpreted as follows: Training a neural network
with sigmoid activation functions in the last layer using the BCEL is equivalent to MLE
of the network’s weights given the training set and assuming that the labels are vectorial
realizations of independent random variables, each following a Bernoulli distribution.

5.3.3 Loss Function for Attribute-like Representations

When dealing with attribute-like, i.e., real-valued representations, a straight forward ap-
proach would be to assume that the labels follow a multivariate normal distribution. Com-
puting the activation function and loss function for this distribution leads to the Euclidean
Loss Ix (Eq. 58, also cf. sidebar 3). For high-dimensional representations such as the ones
used in this thesis, the Fuclidean Loss is infeasible due to the drawbacks explained in
Sec. 5.3. Hence, a different distribution family is assumed for the real-valued representa-
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0.5

Figure 22: Visualzation of samples drawn from two different von Mises-Fisher distributions of di-
mensionality 3 (red and blue). The mean vector of each distribution is shown as line
from the origin. The distribution painted in red has a larger concentration parameter
than the one painted in blue.

tions in the following. For this, a distinct trait of these embeddings is exploited: When
dealing with real-valued attribute representations, the cosine dissimilarity (cf. Eq. 45) has
shown itself to be effective for computing similarity between two vectors, e.g., [150, 206].
As Sra [184] and Mardia [118] claim, if the cosine distance is an effective metric for data
from a certain domain, this data has intrinsic directional characteristics. One of these
characteristics is that the direction of the data vectors is the only relevant aspect for
comparing them while the individual magnitudes do not matter. As the direction is the
defining criterion, all data samples can as well be normalized, effectively projecting them
onto the unit hypersphere.

For real-valued representations, the loss function is thus derived based on a directional
distribution®. In order to obtain a suitable loss function, a directional distribution needs
to be chosen which belongs to the exponential family. One possible distribution for this is
the von Mises-Fisher distribution. Its PDF for a D-dimensional vector is defined as

iz (ys k) = e(D,w) exp (rp”y) (72)

where p is the mean direction, x is the concentration parameter and cp is a normalization
constant, depending on the dimensionality D of the data and  [184]. The vectors p and x
are required to be have unit length. The von Mises-Fisher distribution can be considered
as a normal distribution on the D-dimensional unit hypersphere with the mean direction as
analogy to the mean and the concentration parameter as (inverse) analogy to the variance.

The term directional distribution refers to distributions which are defined on a d-dimensional unit hy-
persphere. An extensive discussion of directional distributions and directional statistics can be found in,
e.g., [184].
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The density value for a given sample, however, depends on the angle of the sample to the
mean direction and not its Euclidean distance. Fig. 22 displays two examples of von Mises-
Fisher distributions. In the figure, the distribution shown in blue has a lower concentration
than the one shown in red.

In order to derive the corresponding activation and loss functions from this distribu-
tion, the simplifying assumption is made that Kk = 1. The PDF of the von Mises-Fisher
distribution thus boils down to

frr(y, 1) = e(D, 1) exp (") (73)

This formulation of the PDF is already in the standard form of the exponential family (cf.
Eq. 62). The natural parameter for the von Mises-Fisher distribution with x = 1 is simply
the mean vector p. This means that the canonical link function is simply the identity
function. As a consequence, the neural network has to make use of a linear activation
in the last layer when predicting labels from a von Mises-Fisher distribution. However,
the output of the network still needs to be Lo-normalized. This is due to the network
predicting E [Y | X]. In the case of the von Mises-Fisher distribution, this expected value
is o which by definition has to be normalized.

Assuming that the concentration parameter is set to 1, minimizing the negative log-
likelihood leads to the following loss function (a complete derivation can be found in
sidebar 5):

Ny
Imr = Zl—cos <y(i),y(i)) . (74)
i=1
The loss is thus simply the cosine distance between the distribution of predictions and
the label distribution (Fq. 45) which is why it is known as Cosine Loss. Although this
loss in itself is not novel, e.g., [28], this is, to the best of the author’s knowledge, the first
time it has been theoretically motivated from a statistical point of view. As was done
for the BCEL, this allows for interpreting the training process: Using the Cosine Loss for
training a neural network with linear activation function in the last layer is equivalent to
MLE of the network’s parameters and assuming that the labels follow a von Mises-Fisher
distribution.

Interestingly, there is a connection between the Cosine Loss and the Euclidean Loss
(Eq. 58) which to the best of the author’s knowledge has not been shown before: If the
output of the neural network and the labels are both normalized then training with the
Euclidean Loss is equivalent to training with the Cosine Loss (see sidebar 6).

Apart from being used for real-valued attribute representations, the Cosine Loss can
also be used for binary representations such as the PHOC. This is feasible as PHOC
representations are compared effectively using the cosine dissimilarity, e.g., [9, 91, 165, 206],
hence exhibiting directional characteristics as well. The added benefit of using the Cosine
Loss for binary representations from a theoretical point of view is that the assumption of
independence between the different attributes is eliminated.

5.4 ATTRIBUTE CNN ARCHITECTURES FOR WORD SPOTTING
The loss functions from the previous section could simply be attached to any CNN architec-

ture in order for the network to learn to predict attribute representations. However, most
CNN architectures have been designed with the task of operating on natural images in
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Sidebar 5: Derivation of the Cosine Loss

Ns
Given the dataset S = {( (3),y(s)> } , the assumption is that the labels follows
1=
a von Mises-Fisher distribution with concentratlon parameter 1. The PDF for this
von Mises-Fisher distribution is defined as

far (v | ;1) = e(D, 1) exp (1"y)

Where ¢(D, 1) is a constant normalization factor. As was shown in Sec. 5.3.1, the
prediction § of the neural network is equivalent to the conditional expected value of
the label distribution. In the case of the von Mises-Fisher distribution this is simply
the expected value p. Note that both pu and y are expected to have unit length.
The neural network’s output ¥ is hence also expected to be normalized. Training
the weights of the neural network through MLE is then done by minimizing the
negative log-likelihood as was done previously for the Euclidean Loss (sidebar 3)
and BCEL (sidebar 4):

N

= argmm—Zlong;( )
s=1
Ns

_argmln—Zlogc (D 1)+< (S)’y(s)>
s=1

$) 1)

_argmln —Ngloge(D, 1) —1—2 < y(S)>
s=1

= argmin %S: 1-— <§I(S),y(s)>

w s=1
N

= argmin Z 1 — cos (S,(S) y(S)>
w s=1

The equivalence relation for the last step is only valid as long as § and y are norma-
lized as was assumed above. Instead of performing the normalization beforehand, it
can also be explicitly integrated into the loss function:

(99,5

= argmln Z 1-—
5

T

The resulting function to be minimized is exactly the Cosine Loss.

mind. The problem in this thesis is concerned with document or word images which often
times have different properties than can be found in typical natural images. Hence, three
different CNN architectures are proposed in this thesis which are specifically designed to
be applied to document images. These architectures are presented in the following subsec-
tions.
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Sidebar 6: Connection between Euclidean Loss and Cosine Loss

Assuming that the prediction ¥ of a neural network and the desired label y are both
normalized then the Euclidean Loss (Eq. 58) can be reformulated as follows:

% i [y —59" = g: % ((r0,y0) =2 (yO0,90) + (30,50})
=1 i—1

1=

_ g:% (2-2-(y0,50)) = NZ 1— (y,9)
i=1 i=1

Ns
= 1-cos(y,9).
i=1

The function on the right side of the equation is the Cosine Loss (Eq. 74). Hence
using the Euclidean Loss is equivalent to using the Cosine Loss if the labels and the
output of the neural network are both normalized.

5.4.1 PHOCNet

As the first proposed architecture was originally used to only predict PHOCSs represen-
tations [188], it was dubbed PHOCNet. The architecture is visualized in Fig. 23. The
PHOCNet is inspired by the successful VGG16 architecture [179]. Just as for the VGG16,
the convolutional layers which are closer to the image use a small amount of filters which
is doubled after each pooling layer. This forces the CNN to learn to detect less and thus
more general features in the first layers while giving it the possibility to learn a large num-
ber of more abstract features for the “deeper” layers. In addition to this, only 3 x 3 filters
are used in all convolutional layers. This imposes a regularization on the filter kernels as
the number of weights per layer is kept to a minimum® for the convolutional part of the
CNN [179].

The previous two design choices work for both natural images in the case of the VGG16
as well as document or word images in the context of this thesis. However, there are certain
aspects to be taken into account when designing a CNN architecture for document image
analysis applications. In the case of segmentation-based word spotting, the CNN is asked
to predict a representation for previously segmented word images. Usually, these word
images exhibit a substantial variability in size. Typically when applying CNNs to natural
images, size variations are combated by either anisotropical rescaling of the images to a
fixed size [92] or by sampling different crops from the images [67, 179]. Both approaches
are, however, infeasible when dealing with word images: Rescaling the input images leads
to severe distortions whenever the original aspect ratio does not approximately match
the desired aspect ratio. Likewise, cropping can not be easily applied as it is unclear how
the obtained attribute representations for the individual crops can be merged. While in
multi-class classification problems the outputs for different crops can simply be averaged,
this is not possible in this case as the considered attribute embeddings contain a certain

The term minimum here refers to the minimal kernel size that can be used while still considering spatial
information for a given filter. One could, of course, use 1 x 1 convolutions to reduce the number of weights
even further but this would not allow the filters to learn any spatial context.
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Figure 23: Visualization of the PHOCNet architecture: Green layers represent convolutional layers
using 3 x 3 filter kernels with the respective number of filters shown underneath. All
convolutional layers make use of Rectified Linear Unit (ReLU) activation functions.
Orange layers depict 2 x 2 max pooling layers with a stride of 2. These layers effectively
sample down the feature maps they are presented with. The red layer indicates a 3-
level SPP layer while both block layers are fully connected layers using 4096 neurons,
dropout of 50% and ReLU as activation function. The output layer size D, depends on
the attribute representation used as does the activation function which is simply the
link function from the respective GLM model.

level of positional encoding of the attributes. Fusing outputs for different crops is thus
very cumbersome and not straightforward at all.

The main problem with varying image sizes is the classifier deployed at the end of a
CNN. Whether this classifier is a MLP or a Perceptron, both expect a fixed-sized input.
On the other hand, the convolutional layers can be applied to arbitrarily sized images. In
order to alleviate this problem, He et al. [65] propose to use a so called Spatial Pyramid
Pooling (SPP) layer. Inspired by the original spatial pyramid paradigm [98], this layer type
performs multiple pooling operations over a fixed number of regions of the last feature map
of the convolutional part of a CNN. These regions vary in size in order to always span the
entire feature maps obtained for a given image. Pooling is performed at various levels of
granularity in a quadtree-like structure (cf. e.g. [195, p.407]). As for the original spatial
pyramid, the number of regions in a certain level along width and height is doubled with
respect to the previous level. Typically, a three-level SPP is used for CNNs [65]. The first
level performs a global pooling over each feature map, while the second and third level
split the feature maps in four and 16 regions respectively. As pooling is performed for a
fixed amount of feature map regions, an SPP layer has a fixed output representation of

size
Lspp—1

Dspp = »_ 4'-Ny, (75)
i=0
where Lgpp is the number of levels used in the SPP layer and N the number of feature maps
presented as input to the SPP layer. While all pooling types which are applicable to normal
pooling layers can be used for an SPP layer as well, max pooling is the predominantly
used one (e.g. [52, 65]).
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In order to be able to process input images of different sizes, an SPP layer is employed
in the PHOCNet after the last convolutional layer (red layer in Fig. 23). This way, the first
fully connected layer following the convolutional part is always presented with a fixed size
image representation, independent of the input image size. As parameters, the standard
ones are chosen, i.e., the SPP layer uses three levels and max pooling.

As the input image sizes are kept, the number of pooling layers in the convolutional part
of the PHOCNet architecture is reduced with respect to the VGG16. This way, even the
smallest word images in the datasets used for the experimental evaluation can be processed
(26 x 26 pixels for the George Washington dataset). The pooling layers are placed rather
close to the input layer in order to lower the computational cost (orange layers in Fig. 23).

After the convolutional part, the PHOCNet makes use of an MLP with two hidden
layers. The number of neurons in the two hidden layers is set to 4096 which is the same
number used in the VGG16 and the AlexNet CNNs [92, 179]. Just as is done for these two
CNNs, a 50% dropout is applied to the neurons in the hidden layers of the PHOCNet’s
MLP at training time in order to avoid overfitting. The output layer has size d, which is
the dimensionality of the attribute representation to be predicted. The activation function
in this layer is the link function corresponding to the loss function used during training.
For the BCEL this is the sigmoid and for the Cosine Loss it is the Lo-normalization.

In total, the PHOCNet has 70,230,492 trainable weights (not including the weights for
the output layer as the number here depends on the size of the attribute representation
used). The convolutional part of the CNN accounts for 13.4% of all weights while the
hidden layers contain 86.6% of the weights. The layer with the most parameters is the
first fully connected layer (the layer following the SPP layer) which contains 62.7% of all
weights in the PHOCNet.

5.4.2 TPP-PHOCNet

The use of the SPP layer enables the PHOCNet to accept images of varying size as input
while producing an output of constant size. The design of the SPP layer follows the one
used for the “classic” spatial pyramid proposed by Lazebnik et al. [98]: the number of
regions along width and height in a level is doubled with respect to the previous level. It
can be shown that using this standard bin partitioning scheme for spatial pyramids on
top of Bag of Features (BoF) representations leads to inferior results compared to other
schemes for word spotting problems (e.g. [6, 164, 165]). Here, the retrieval results can be
increased when using spatial pyramids featuring a fine-grained split along the horizontal
axis while only using a rough partitioning for the vertical axis of a word image. This
concept is pursued even further by Hidden Markov Model (HMM)-based approaches, such
as SC-HMMs [149], BoF-HMMs [157, 159] or HMMs using word graphs [200], as well as
methods based on Recurrent Neural Networks (RNNs) such as Bidirectional Long Short-
Term Memory Networks (BLSTMs) [47]. In the case of these sequential models, the vertical
axis is not partitioned at all while the partitioning of the horizontal axis is implicitly done
by splitting the word image in frames and processing them as sequence. In a way, this can
be seen as a probabilistic version of a spatial pyramid.

In general, choosing a fine grained partitioning along the horizontal axis and a coarser
partitioning along the vertical axis is important when dealing with word images. Incorpo-
rating this observation into a neural network layer, a modified version of the SPP layer is
proposed which will be referred to as Temporal Pyramid Pooling (TPP) layer. Pooling in
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Figure 24: The figure visualizes a TPP layer. For every feature map from the output of the convolu-
tional part of a CNN (left) a sequence of max pooled values is extracted in a pyramidal
fashion (middle). Here, a 3-level TPP layer is visualized. The layer produces output
values for 9 max pooled regions per feature map. These values are stacked as is done
for the SPP layer in order to form a representation of fixed size for variably sized input
feature maps. This representation is then fed to the MLP-part of the network (right).
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this layer is done similarly to the PHOC pooling of binary attributes: In each level, the
feature maps used as input to the TPP layer are split into horizontal regions. Each region
covers the entire vertical axis of the feature map. The values obtained after pooling thus
represent features from consecutive intervals of the word image along the axis of writing.
When stacking multiple of these pooling layers with different amounts of splits along the
axis of writing, one ends up with a pyramidal representation encoding the progression of
writing, hence the name Temporal Pyramid Pooling. The TPP concept is visualized in
Fig. 24. Here, the feature maps of the output of the convolutional part of the CNN used
(left part of the figure) are followed by a TPP layer as described above. The number of
regions are doubled for each level compared to the previous one as is done in the SPP
layer.

For evaluating the effectiveness of the proposed layer, the SPP layer in the PHOCNet
is swapped with the TPP layer. The rest of the PHOCNet architecture is left unchanged.
In order to discriminate the new architecture from the previous one, this variant of the
PHOCNet will be referred to as TPP-PHOCNet. In the experimental evaluation, a 3-level
TPP layer will be used which encompasses 1, 2 and 4 regions in the respective levels. A
notable benefit of using a TPP instead of a SPP layer is that the number of weights in
the CNN is drastically reduced. The output dimensionality of a TPP layer is

Lrpp—1

Drep = > 2'-Ny, (76)
i=0

where Ltpp is the number of levels used in the layer and N; is, again, the number of
feature maps used as input. In the TPP-PHOCNet architecture, the layer following the
TPP has 1.468 - 107 weights while for the PHOCNet the layer following the SPP layer has
4.404 - 10" weights. The TPP layer hence reduces the necessary parameters in this layer
by 66.7%.
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5.4.3 PHOCResNet

The previous two CNN architectures are both inspired by the VGG16 CNN. Using this ar-
chitecture for tasks on natural images, it could be shown that Residual Networks (ResNets)
can achieve considerably better results. For evaluating the effectiveness of residual connec-
tions in CNNs for word spotting, a third architecture is proposed in this thesis. For easy
reference, it will be referred to as PHOCResNet.

The proposed PHOCResNet is inspired by the successful ResNet50 [67]. One of the
characteristics of ResNets is that they do not use pooling layers. Downsampling of feature
maps is instead achieved through strided convolutions. In analogy to the PHOCNet, only
the first two strided convolutions are used in the PHOCResNet while the others are set to
have a stride of one, i.e., do not perform downsampling. The reason for this is, again, the
capability of processing small word images. In order to allow the PHOCResNet to accept
arbitrarily sized images, a TPP layer is used after the convolutional part of the CNN.

In addition, the classifier at the end of the CNN is replaced in the PHOCResNet with
respect to the original ResNet50. This is due to the fact that ResNets typically only make
use of a Perceptron after the convolutional part in order to perform classification. While in
typical multi-class classification problems this setup achieves state-of-the-art results, this
might not be the case for the attribute representations to be used for word spotting as
they typically exhibit a substantial amount of dependencies. Even after decorrelation, a
simple Perceptron may not be powerful enough in order to reliably predict the desired
representation. Hence, the Perceptron is replaced by an MLP in the PHOCResNet. Thus,
this specialized ResNet has a closer resemblances to architectures such as the VGGnet or
the AlexNet (cf. Sec. 3.5).

The last adaption made to the original ResNet architecture is to eliminate the Batch
Normalization (BN) layers. The reason for this is of a technical nature: When dealing
with images of varying size, the gradients for a single batch are computed by passing
the images through the network one by one and accumulating the individual gradients.
Essentially, the effective mini-batch size is reduced to one and the desired mini-batch size
ny is obtained by averaging n; single image mini-batches. This approach is problematic for
BN layers as they expect to see an entire mini-batch of feature maps of the same size in
order to compute the mean and variance for each feature map pixel. Computing mean and
variance for each pixel using a mini-batch of size one does, of course, not make sense. One
could compute all inputs for each mini-batch presented to a BN layer and then apply the
layer to these values. Unfortunately, this increases the time necessary for a single forward
pass by a large amount as this requires n; forward passes for each BN layer used in the
respective CNN. But even if the added computational expenses were to be accepted, there
exists another problem: If the input images and hence the feature maps vary in size, the
mean and variance can only be computed for those pixel locations that are shared among
all images. For example, if for a given layer half of the output feature maps have a shape
of 50 x 50 and the other half a shape of 100 x 100 all pixels with a width or height index
greater than 50 would not be defined for the first half. The only chance in the presented
scenario for applying BN layers is to simply compute the mean and variance of all pixels
in the given feature map. It is, however, questionable whether this leads to meaningful
results. Due to the problems mentioned above, the BN layers are simply neglected in the
PHOCResNet architecture.
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Overall, the PHOCResNet has 98,980, 864 trainable parameters not including the out-
put layer. The convolutional part is responsible for 23.7% of the weights while the MLP
accounts for 76.3%.
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The approach proposed in the previous chapter shares a number of characteristics with
other methods from the literature. This chapter presents these related works. For this, the
chapter is split into two sections: The first section deals with the related literature con-
cerned with the core methodology of this thesis, namely predicting attributes with neural
networks. The second section then examines related work in document image analysis. A
major focus of this section is the use of neural networks or attribute representations for
word spotting.

6.1 PREDICTING ATTRIBUTE REPRESENTATIONS USING CNNS

For predicting attributes using Convolutional Neural Networks (CNNs), there exist two
popular approaches: For the first approach, a CNN is first trained on a multi-class classi-
fication dataset like the well-known ImageNet [167]. The resulting CNN is then used as a
feature extractor by using the output of a certain layer as feature representation for a given
image. This feature representations is then processed by a dedicated attribute classifier,
typically one Support Vector Machine (SVM) per attribute. The concept of using the out-
put of a certain layer in a CNN as feature representation is known as deep feature approach
(cf. e.g. [11, 216]). It has been successfully used for predicting class or instance attributes
for human pose detection [214], animal classification [4, 176], objects [135], faces [109] and
natural scenes [24].

In contrast to using deep features, the second approach for predicting attributes using
CNNs is to train the neural network to predict the desired attributes directly from a
given image, i.e., in an end-to-end fashion. For instance attributes of objects in natural
scenes, this second approach could already be shown to achieve superior results compared
to using deep features [135]. Methods using the end-to-end approach are related closer
to the presented Attribute CNNs than those using deep features as the neural networks
presented in this thesis also predict the desired attribute representations in an end-to-end
fashion.

As class and instance attributes can both be represented by a vector of binary values (cf.
Sec. 2.3), using the combination of sigmoid activation function and Binary Cross Entropy
Loss (BCEL) for end-to-end training of these representations is well motivated. One of
the first methods which predicts attributes using this combination of activation and loss
function is presented by Shankar et al. [175] for predicting instance attributes of natural
scenes. Their approach is to learn the respective instance attributes given only a weak
supervision. Shankar et al. define weak supervision in this context as being given only a
single label for an image for which other labels would be correct as well but are missing
from the annotation. The goal is then to use all images with this single annotation in
order to discover all instance attributes present for a new image. For this, they iteratively
determine pseudo labels from the feature map responses during training: First, an AlexNet
CNN (cf. Sec. 3.5) is used to predict the single attribute annotation for each training image.
After a certain amount of training iterations, the average activation in each feature map
is calculated for all training images of a certain attribute label a;. Then, the feature map
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responses for all other training images, i.e., images which are not annotated with a;, are
computed. These responses are then used in order to determine a pseudo-probability for a;
to actually be present even though it is not contained in the annotation. Having obtained
the potentially missing attributes for all images, the network is then trained again for a
number of iterations using the newly obtained annotation of pseudo-probabilities for all
attributes. For training the network, Shankar et al. make use of the BCEL. While their
approach for predicting attributes in an end-to-end fashion is similar to the use of the
BCEL in the approach presented in this thesis, the problem of missing attributes is not
given for the word spotting task considered in this work. As the attribute representations
for word strings are generated in a deterministic and automatic way from the training
labels, they are always complete.

Patterson and Hays [135] use the combination of sigmoid activation function and BCEL
in order to predict instance attributes for objects in natural images. As CNN architecture
they choose CaffeNet which is an AlexNet-like architecture which comes with the Caffe
deep learning library [74]'. The CNN is first pretrained using the ImageNet dataset. After
pretraining, Patterson and Hays replace the softmax and Categorical Cross Entropy Loss
with a sigmoid activation function and the BCEL. The resulting network is then finetuned
using the instance attributes for each image.

Hand and Chellappa [64] use the sigmoid activation function in tandem with the BCEL
for instance attribute prediction of faces. Instead of using an existing architecture, though,
they design a novel CNN which they refer to as Multi- Task CNN. This CNN architecture is
made up of two shared convolutional layers and then branches out into six individual CNNs.
Each of these branches is responsible for predicting the instance attributes from one of six
previously defined groups. Each group contains semantically similar instance attributes.
For example, the instance attributes male and female belong to the gender group. The
resulting CNN is trained concatenating all outputs of the individual branches and applying
the sigmoid and BCEL. Hand and Chellappa also present a second architecture in which
they attach an additional fully connected layer to their previously trained Multi-Task
CNN which is of the same size as the original output layer. This new last layer is then
trained by only updating the new parameters in this layer and freezing all other weights
in the previously trained CNN. The goal of this is to enable this new layer to incorporate
knowledge from all other instance attribute predictions when making the “final” decision
whether a specific instance attribute is present or not. Unfortunately, it is unclear whether
the second training step is done using a second training set or with the original training
data. It seems, though, that the original training data is used. The presented results
support this assumption as the performance of the second architecture is almost identical
to that of the first.

All related works using an end-to-end prediction of class and instance attributes pre-
sented so far have made use of the combination of sigmoid activation in the last layer and
applying the BCEL during training. To the best of the author’s knowledge, the only other
approach for training a CNN with class attribute representations using the Cosine Loss
is presented by [28] for classification of natural images?. The goal in [28] is to incorporate
information about attribute co-occurrences in the training process in order for the CNN
to find more discriminative representation of a given class. For this, Chollet projects the

The exact definition of the CaffeNet architecture can be found at https://github.com/BVLC/caffe/tree/
master/models/bvlc_reference_caffenet

The Cosine Loss is also used in [201] for multi-label classification which can be considered an instance
attribute prediction.
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binary attribute vectors for each class into the R¢ by using the Pointwise Mutual Infor-
mation (PMI) embedding approach as shown in Sec. 5.2. As projection matrix, he only
uses those eigenvectors of the PMI matrix which have a positive corresponding eigenvalue.
Having obtained a projection for each class, a CNN is trained in order to minimize the Co-
sine Loss of its output and the desired projected representation. As architecture, Chollet
uses the Inception v3 CNN by Szegedy et al. [194].

6.2 DOCUMENT IMAGE ANALYSIS

The focus of this section is on discussing related work with respect to using attribute
representations in document image analysis in general and word spotting in particular.
In addition, word spotting methods will be examined which make use of neural networks
concerning the relationships with the presented Attribute CNNs.

Related Works for Non-Word Spotting Tasks

While attribute representations have been used quite frequently lately for word spotting,
they are scarcely used for other document image analysis tasks. To the best of the author’s
knowledge, there exist only three approaches using attributes for non-word spotting related
tasks. In the first of these three tasks, Almazan et al. [9] use their embedded attribute
approach in order to perform lexicon-based recognition. A presentation of the embedded
approach was already given in Sec. 4.4. In order to perform recognition, Almazan et al.
simply use the nearest neighbor Pyramidal Histogram of Characters (PHOC) representa-
tion available from the lexicon as recognition result. The rest of their methodology stays
the same.

The second non-word spotting related method using attributes is presented by He et
al. [68]. They propose a method for learning attribute representations for writing styles
in an unsupervised fashion in order to predict the dates of historical document images.
They motivate the unsupervised approach by stating that manually creating an attribute
annotation may be tedious and that defining attributes for writing styles may be hard
even for experts. For obtaining the attributes, He et al. first represent the individual
document images through a concatenation of four heuristic features which originate from
writer identification. The authors then assume, that documents with the same attributes
are close in feature space. In order to obtain these attributes, He et al. cluster the feature
space into K clusters. Each centroid then represents an attribute. In order to predict the
attributes, K linear SVMs are trained where each SVM is responsible for predicting one
of the K clusters, i.e., attributes. The final representation given the feature vector x is
then obtained by computing and concatenating all scores

B 1
B 1+ exp (<—w(i),x> + w(()i))

(77)

S

for the K SVMs. In the equation above w(?) and w(()i) are the normal vector and offset of
the hyperplane for the i-th SVM. He et al. define this as their attribute representation.
They are able to show that this representation can be used effectively for the document
dating task at hand. While the approach by He et al. has merits for obtaining writing style
attributes in an unsupervised fashion, the attribute and attribute-like representations used
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for word spotting in this thesis do not require such an approach as they can be obtained
from a given translation through a direct mapping.

The final of the three approaches for using attributes in non-word spotting related tasks
is presented by Poznanski and Wolf [140]. Their proposed method is able to perform hand-
written text recognition using attribute representations which are predicted from a CNN.
The method is hence highly related to the proposed Attribute CNNs. In their work, Poz-
nanski and Wolf train a CNN using a PHOC representation for word images using the
sigmoid in the last layer and training with the BCEL. This approach is essentially the
same as the one presented in this thesis for training Attribute CNNs with class attribute
representations®. For creating their PHOC representation, Poznanski and Wolf not only in-
corporate bigram attributes but also add attributes for trigrams. Compared to the original
PHOC, the global level of unigrams is added to the PHOC as well, giving it unigram levels
1 to 5. The PHOC is thus made up of 15 individual histograms for the unigram levels, two
for the bigrams and another two for the trigrams, hence 19 histograms in total. Rather
than predicting the entire PHOC, the CNN used by Poznanski and Wolf predicts each
histogram of the attribute embedding individually in a similar fashion as is done by [64].
For this the network uses a shared convolutional part, while there exists an individual Mul-
tilayer Perceptron (MLP) with one hidden layer for each of the 19 individual histograms.
Each MLP uses the sigmoid activation function in the last layer in order to predict the
attributes. For training, all outputs of the individual MLPs are concatenated and the
BCEL is applied. In their CNN architecture, Poznanski and Wolf [140] make use of Batch
Normalization (BN) layers. In order to employ these layers, they anisotropically rescale
the word images during training and evaluation to a fixed image size. In order to perform
recognition, a lexicon is used and for each entry the PHOC representation is computed.
Instead of using the output of the network as the representation for classification directly,
Poznanski and Wolf instead concatenate the outputs of each hidden layer of the 19 MLPs
and train a Canonical Correlation Analysis (CCA) model for predicting a subspace repre-
sentation from the concatenated activations and the desired PHOC vectors. Recognition is
then performed by projecting all PHOC encodings of the lexicon into the CCA subspace,
predicting the representation from the CNN and computing the nearest neighbor from
the lexicon. The authors perform an extensive experimental evaluation, determining the
influence of the bi- and trigrams, the influence of using the 19 MLPs “branches” compared
to a single one as well as the influence of the CCA. The results suggest, that both bi- and
trigram attributes are insignificant for the final performance and that one can obtain the
same results when using only unigrams in the PHOC. The CNN proposed by Poznanski
and Wolf differs quite substantially from the Attribute CNNs used in this thesis. The BN
layers used in the architecture demand that the input images are scaled to a fixed size.
This introduces unwanted variability in the word images the CNN has to process. The
Spatial Pyramid Pooling (SPP) and Temporal Pyramid Pooling (TPP) layers used for the
Attribute CNNs presented in this thesis eliminate the necessity of fixed sized images.

Related Works for Word Spotting

Related work considering word spotting encompasses the methods either using neural
networks or those using attributes as proposed by Almazan et al. [9] (cf. Sec. 4.4) in the

Both the original work on training Attribute CNNs with the PHOC [188] and the work by Poznanski and
Wolf [140] were published simultaneously.
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context of this thesis. Please note that the focus of this section is on methods for word
spotting in document image analysis. Methods for word spotting in audio data are not
relevant for this thesis and will thus not be considered here

The first works on word spotting with neural networks did actually not make use of
CNNs but rather Recurrent Neural Networks (RNNs). Inspired by similar works for word
spotting in audio data [45, 208], Frinken et al. [47] use a Bidirectional Long Short-Term
Memory Network (BLSTM) for spotting words in historical as well as contemporary hand-
written document images. Their presented method is able to perform Query-by-String
(QbS) word spotting but not Query-by-Example (QbE). Furthermore, Frinken et al. op-
erate under a line spotting approach, meaning that they require segmented text lines for
training their neural networks. In addition, instead of returning word images in the re-
trieval list, it is made up of text lines as well. An element in the retrieval list is considered
to be relevant if the corresponding line contains the word which was used as query. The
actual method by Frinken et al. follows the classic computer vision pipeline: As a prepro-
cessing step, the text lines are skew and slant corrected, normalized to a unit height and
then binarized. In the feature extraction step, nine geometric features are obtained for each
pixel column of the text lines. Afterwards, a BLSTM is trained as is done for handwriting
recognition: Given the sequential features for a given line, the neural networks is trained
to predict the sequence of characters from the supplied annotation using the Connection-
ist Temporal Classification (CTC) algorithm by Graves et al. [59]. For this, the BLSTM
first predicts posterior probabilities for each character, i.e., character posteriors, for every
element of the feature sequence. In addition, a “blank” label is added as possible pre-
diction. Combining all character posteriors from all frames leads to a lattice in which the
paths represent possible predictions. For training the network, the probability for the path
representing the annotation is maximized*. Having obtained a trained BLSTM, Frinken
et al. then adapt the standard approach for handwriting recognition in order to account
for word spotting: Instead of using the path with highest probability for a new text line
in order to classify it into characters, they compute the entire lattice for the text lines in
the corpus to be retrieved from. Then, the log-probability of observing the query string in
any path is calculated for a given lattice. The retrieval list is then constructed by sorting
the text lines according to their log-probabilities. Evaluating the approach on historical
as well as contemporary document images of handwritten text, Frinken et al. were able to
achieve then state-of-the-art results. In contrast to the approach presented in this thesis,
the BLSTM-based approach by Frinken et al. does not depend on a word-level segmen-
tation for the training data. A notable disadvantage of their method, however, is that it
relies on the ability to binarize the document images in order to extract the geometric
features. For document images featuring a certain amount of degradation, binarization is
a difficult task. Almazan et al. [9] were able to show that the BLSTMs can be outper-
formed using SIFT-based Fisher Vectors in a sliding window-based approach on historic
document images.

Another method for QbS word spotting using neural networks in sequential models
is presented by Thomas et al. [198]. Instead of using an RNN, though, they combine an
MLP with a Hidden Markov Model (HMM). In this hybrid model, the HMM is made up of
individual character models with the MLP being responsible for predicting the probability
of being in a given state when observing elements of a feature sequence, i.e., the state

A more detailed description of the exact technical properties of the CTC algorithm is not important in
the context of this thesis. The interested reader is referred to [59] for a complete presentation.
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posterior. As is done by Frinken et al., Thomas et al. use their model in a classic approach:
Text lines are first extracted using the connected components-based method from [132].
The text lines are then preprocessed by correcting for skew and slant, smoothing the
contours of the text as well as normalizing the line images to a unit height of 54 pixels.
The lines are then represented by overlapping sequential frames which each have a width of
8 pixels and stride of 3 pixels. These frames are used as input for the MLP. For training the
neural network in order to predict the state of the HMM, each frame needs to be assigned
a state label. In order to obtain these labels, Thomas et al. use the standard approach
for predicting the state posteriors in hybrid models of neural networks and HMMs (cf. e.g.
[105, 196]): First, a surrogate HMM using Gaussian output modeling is trained using the
26 geometric features for each of the extracted frames. Then, the Viterbi algorithm (cf.
e.g. [46, p.86]) is used in order to extract the most probable sequence of states for each
training line. These states are used as labels for the corresponding frames. This frame-level
annotation is then used in order to train the MLP directly on the pixels of the individual
frames. As the last step, the HMM is trained on the output of the neural network for the
different frames of a sequence in order to obtain the complete hybrid model. Thomas et al.
are able to show that their hybrid approach is able to outperform a Gaussian Mixture
Model (GMM)-HMM on the RIMES database®. One of the challenges of using an MLP
for processing the frame images instead of a convolutional architecture is the number of
parameters in the first layer of the neural network (cf. Sec. 3.3). The architecture used
by Thomas et al. is hence rather small compared to other architectures published at that
time, e.g., the AlexNet (cf. Sec. 3.5): Their proclaimed deep neural network is made up of
three fully connected layers of 400,350 and 300 neurons respectively.

Before being used for word spotting, CNNs were already used for a task called text
spotting [72]. Although word and text spotting sound similar, the goal of the latter is
to perform text recognition in natural scenes (cf. e.g. [60, 139]). The methods for text
spotting are thus not directly related and will not be discussed in the following.

The first work on using CNNs for word spotting is presented by Sharma and Pramod
[177]. The presented approach is able to perform segmentation-based QbE. The first step
is to train an AlexNet CNN on the ImageNet dataset. The resulting CNN is then finetuned
to the word images available for training for a given dataset. For the finetuning step, the
1000 most often occurring word classes are determined and the corresponding word images
are extracted from the dataset. Training on this subset of word images is then carried out
by having one neuron in the output layer represent each of the 1000 word classes and
applying the softmax function in combination with the Categorical Cross Entropy Loss
(cf. Sec. 5.3). As is done by Poznanski and Wolf [140], Sharma and Pramod scale the word
images to a fixed size in order to serve as input to the neural network during training.
After having trained the CNN, each word in the corpus is also scaled to the previously
used fixed size and forwarded through the CNN. The output of the last hidden layer is
then used as representation. At query time, this representation is predicted for the query
word image. The retrieval list is obtained by sorting all word images in the respective
database according to the distance of their representation to the query representation.
As distance metrics, Sharma and Pramod experiment with both the Li- and Lo-norm.
They evaluate their approach on the IAM Handwriting Database (IAM-DB) as well as
a second dataset featuring Telugu script. The reported results show that their approach

RIMES is a database of contemporary document images of handwritten text, cf. http://www.a2ialab.
com/doku.php?id=rimes_database:start
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is able to outperform the AttributeSVM and Platt’s scaling combination proposed by
Almazan et al. [9] on the IAM-DB but fall short of the results obtained for the tandem
of AttributeSVM and Kernelized Canonical Correlation Analysis (KCCA) on this dataset.
Unfortunately, Sharma and Pramod do not explain, why they choose to pretrain their
CNN on natural images instead of document images. While the initial layers of a CNN
are generally accepted to detect blobs and edges, the ensuing layers are trained towards
detecting parts and entire objects. It is not obvious why this is generally a good starting
point for finetuning the CNN to document images. Besides this, there exist a notable
methodological drawback: First, the CNN is finetuned in order to learn word classes.
Hence, the network is forced to discriminate two words differing only in a single letter
as two different classes. Knowledge about parts of the words which are shared, i.e., the
characters, is disregarded. Attribute representations have an advantage here as they are
able to encode similarities between differing word classes as well.

The method by Krishnan et al. [91] proposes remedies for these two drawbacks of the
approach by Sharma and Pramod. As a first step in their method for segmentation-based
QbE and QbS word spotting, the authors also train a CNN on classes of word images. In
contrast to the approach by Sharma and Pramod, however, Krishnan et al. do not pretrain
their network on natural images but rather use the HW-SYNTH dataset from [90]. This
dataset consists of synthetically generated word images of handwritten-like fonts. This
fact makes it a more suitable alternative for pretraining than the ImageNet for the word
spotting task. After pretraining, the resulting CNN is further finetuned to the available
training images of the respective datasets. For this, all word classes are used for training.
Krishnan et al. then go on to also use the output of the last hidden layer as feature repre-
sentations for the word images. Instead of using this representation for retrieval directly,
though, it serves as input to an AttributeSVM. Hence, these deep features effectively
replace the Fisher Vector used as feature representations by Almazan et al. [9] in the at-
tribute embedding framework. The obtained attribute classifiers are then used as is done
by Almazan et al. in order to perform QbE as well as QbS word spotting. As attribute
representation, Krishnan et al. also use the PHOC. They are able to show empirically
that their deep feature approach is able to outperform the AttributeSVMs by Almazén
et al. [9] as well as the results obtained for the initial publication of the PHOCNet [188]
on the IJAM-DB and George Washington Database (GW). The main conceptual difference
between the method by Krishnan et al. and the proposed Attribute CNNs is that the
deep feature approach does not allow for end-to-end training as the CNN and the SVMs
need to be trained separately. As the ability of end-to-end training has already shown to
obtain superior results in other computer vision tasks compared to the classic pipeline (cf.
Chap. 2), it can be reasonably expected that this is also the case for word spotting.

The approach sharing the closest relation to the presented Attribute CNNs is proposed
by Wilkinson and Brun [206]. In their method for segmentation based QbE and QbS word
spotting, they also uses a CNN in order to directly predict attribute and attribute-like
representations which are then used for retrieval as is done by Almazan et al. [9] and
in this thesis. The first step in their approach is to train a CNN in order to predict
discriminative feature representations from the given word images This is achieved by
training the network using a triplet loss function. The general goal when training neural
networks with triplet loss functions is to obtain embeddings in R” for images based solely
on knowledge about whether pairs of images belong to the same class or not. For this the
network first computes an output representation for three different samples as input with
the constraint that the classes of two of these samples match while the third class is not
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a match for either of the other two. The loss function then produces large values if the
representations for the two matching samples are far apart in R” or if the representation
for the non-matching sample is close to either of the two others. When training the neural
network to minimize this loss function, it learns an embedding space where samples from
same classes are bunched together while those of different classes are “pushed apart”. CNNs
trained with a triplet loss are generally referred to as Triplet-CNNs in the literature (cf.
e.g. [27]). As triplet loss function, Wilkinson and Brun use the SoftPN loss presented by
Balntas et al. [14]. It is computed by

d(a®a) \? [ min(d(a®b).d(a® b))\ >
lspN (a(l),a(2),b) S R R
S (a(l), a®), b)

s (a(l),a(2),b> _ emin(d(a<1>,b),d(a<2>,b)) +ed(a<1>,a<2>)

where a(t) and a® are the representations of the matching samples, b is the representa-
tion for the non-matching sample and d is a distance metric for the embedding space. For
training, the gradients with respect to each of the three samples are computed individu-
ally. For updating the weights, they are then averaged. As CNN they use the ResNet34
architecture from [67]. Having obtained the representations from the Triplet-CNN, they
are then fed as input to an MLP of the same dimensionality as the ones used for the
proposed Attribute CNNs. This MLP is responsible for predicting the desired attribute
representation for the word image which was previously processed by the Triplet-CNN. In
their work, Wilkinson and Brun propose to use the Discrete Cosine Transform of Words
(DCToW) as attribute representation. As the DCToW is real-valued, they propose to use
the Cosine Embedding Loss for training the MLP. This loss requires two representations
r) and r@ as input in addition to a boolean value ¢ which specifies whether the neural
network shall be trained in order to minimize the angle between the two representations:

o (r(l),r(2),t) _ 1 — cos (r(l),r(2)) 7 if t = true, ‘ (79)
max (0, cos (r(l), r(2)) — fy) otherwise

In the equation above, v is the minimum desired angle between the two representations.
The Cosine Embedding Loss is very similar to loss functions used for training Siamese
networks [23] which can be seen as a precursor to the Triplet-CNNs. For training, Wilkinson
and Brun use the output of the MLP and a DCToW representation randomly sampled from
the available training representations. If the randomly sampled representation matches
the desired representation, ¢ is set to true and to false otherwise. After having trained
the Triplet-CNN and the MLP, Wilkinson and Brun, combine both neural networks to
a single one and perform a small amount of end-to-end training steps. Their method is
able to outperform the AttributeSVM approach [9] as well as the results obtained for the
initial publication of the PHOCNet [188] on the IAM-DB and GW.
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The approach using Attribute CNNs for word spotting as proposed in Chap. 5 raises two
immediate questions:

Is any combination of attribute or attribute-like representation, loss function
and CNN-architecture superior or inferior to others? Between the seven different
attribute or attribute-like representations, two loss functions and three CNN architectures
there exist 24 unique combinations. The question is whether any of these combinations
generally stands out as being superior or inferior to all or a subset of other combinations.

Does end-to-end learning of attributes for word spotting lead to a significant
improvement in performance compared to ‘“classic” approaches such as At-
tributeSVMs? The main argument for using Attribute CNNs over non end-to-end ap-
proaches is the ability of the neural network to integrate the process of learning feature
representations and the corresponding attribute classifier. In order to support this argu-
ment, there needs to be evidence for a statistically significant difference in performance.

As there does not exist a strategy for answering these two questions theoretically, the
approach chosen in this thesis is to run a number of different experiments in order to
supply empirical evidence for either of the answers. In order to accomplish this and keep
the number of experiments handleable, the possible combinations of attribute or attribute-
like representations and loss functions are first narrowed down to a feasible subset using
selected datasets. The obtained subset is then used in order to determine whether any
architecture is superior or inferior to the others as well as compare the performance to
that of other word spotting approaches reported in the literature.

In order to run the different experiments, standard word spotting benchmarks will be
used. Each of these benchmarks comes with its own evaluation protocol which may differ
from other protocols. For all protocols and experiments the same measure is used, however,
in order to determine the performance of a specific Attribute CNN configuration or other
word spotting approaches. For this, the mean Average Precision (mAP) is chosen which has
become the de-facto standard for comparing word spotting methods. Hence, this chapter
starts by giving a detailed description and formal definition of the mAP (Sec. 7.1).

As will be seen in the experiments, the mAP values for different Attribute CNN con-
figurations or word spotting approaches on a single benchmark are often times very close
from a numerical point of view. In order to determine whether a difference in performance
stems from mere chance or rather a systematic superiority of one configuration, a sta-
tistical significance test is run for the obtained results. For this the permutation test is
chosen. Sec. 7.2 presents this specific test while also justifying its applicability for the word
spotting scenario.

Sec. 7.3 presents the results obtained for the different experiments. First, it is evalu-
ated which combination of attribute or attribute-like representation, loss function and
Attribute CNN architecture is best suited for word spotting. Afterwards, the obtained
results are compared to others reported in the literature. The section is closed by a dis-
cussion considering the obtained results, run times and requirements concerning training
set size
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Besides the two questions stated above, which generally refer to performance of the
proposed Attribute CNNs, there exists a third one which is more concerned with inter-
pretability of the predictions:

When predicting attributes, what do trained Attribute CNNs base their deci-
sion on? Deep neural networks today still carry the stigma of being black boxes when
it comes to interpreting what they base their decision on. However, there exist a number
of different techniques which allow for at least partially explaining what parts of a given
image did cause a neural network to decide for or against a certain class. The last section
of the chapter (Sec. 7.4) aims at examining just that, i.e., what the Attribute CNNs base
their attribute predictions on. For this, the guided backpropation method is used in order
to visualize the filters of the last hidden layer.

7.1 PERFORMANCE MEASURES

As word spotting is essentially an information retrieval problem, performance measures
for specific word spotting methods are typically taken from this field of research as well.
In order to describe these measures, important information retrieval terms are explained
first: Information retrieval deals with the problem of extracting relevant information from
a database. For this, a query is issued to the database which returns a list of items which is
known as retrieval list. In the case of word spotting, the retrieval list consists of a number
of word images from the corpus which serves as database. The retrieval list consist of items
which are either relevant or irrelevant with respect to the query. In information retrieval
in general, relevance is not globally defined and depends on the context of the application.
Most works on word spotting deem an item in the retrieval list as relevant with respect to
the query if the transcriptions of the query and the word image match, e.g., [9, 158, 164].
Hence, an image showing the word place would be considered relevant to this very textual
query but irrelevant for the textual query places.

Typically, a user demands an information retrieval system to only return relevant items
in the retrieval list. On the other hand, the system should also return all elements from the
database which are relevant. Determining the performance of a retrieval system can thus
be based on the fraction of relevant items in the retrieval list and the fraction of relevant
items returned from the database. While the former measure is known as precision the
later is called recall [12, p.135]. It is important to always consider both measures when
determining the performance of a retrieval system as the precision can typically be traded
for recall and vice versa. For example, returning only the item of the database for which
the system asserts the highest likelihood of being relevant likely leads to a precision of
100% but yields a small recall if more than one relevant item is in the database. On the
other hand, returning all items in the database leads to a recall of 100% but typically
yields a number of irrelevant items which causes a drop in precision.

Comparing information retrieval systems based on two values is difficult as only pareto-
superiority can be assessed this way. For comparing two methods, a scalar performance
measure is much more desirable (cf. e.g. [12, p. 139]). A straight forward approach to get a
single value from the precision and recall values is to compute the harmonic mean of two
values which is known as F'-score or F-measure (cf. e.g. [12, p. 144]). However, there is a
distinct disadvantage to the F-measure: When querying a database, a user would typically
like those items to appear first in the retrieval list for which the retrieval system asserts the
highest likelihood of being relevant. The F-measure, however, is agnostic to the order of
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Figure 25: Visualization of the precision at k and average precision: Given a list determining the
relevance of the respective item in a corresponding retrieval list, the different precision
values pr, can be computed when cutting off the list after one of the k possible elements.
In order to represent the precision as a function of the recall, an interpolation scheme is
applied (green line). The average precision is then the area under this interpolated pre-
cision recall curve. The presented example assumes, that the retrieval list corresponding
to the relevance list contains all items available in the queried database, i.e., is complete.

the retrieval list and simply treats it as set of retrieved items. A very well known measure
for assessing the precision, recall as well as sorting of a retrieval list simultaneously is the
Average Precision (AP) (cf. e.g. [117, p.158]). In order to compute the AP, the precision
values at different recall levels are averaged in order to obtain a single value. The problem
is, that the recall levels for a given retrieval list are inherently discrete. The precision
values can thus only be determined for discrete levels. Determining precision this way, one
ends up with a concept known as precision at k [12, p. 140]. It is a function pr (k) which
determines the precision of the retrieval list for query ¢ if the retrieval list is cut-off after
k elements. Fig. 25 visualizes a toy example illustrating the principals of precision at k.
Here, the relevance list for a generic query ¢ is displayed. This list simply contains a 1 at
all positions which contain relevant items in the corresponding retrieval list and 0 for all
other positions. The graph on the right side plots the precision against the recall for the
different cut-off positions k. In the example, it is assumed that the retrieval list is complete,
meaning that it contains all items available in the queried database. As can be seen from
the plot, transforming the precision at k into a function of the recall is impossible as single
recall values often-times have a number of precision values. Thus a common approach is to
interpolate the precision at k to the next highest recall level [117, p. 158]. This interpolated
precision can be computed by

iprq(r) = Ig}gic pr, (pos (r')) (80)

where r is the desired recall level, 7’ a recall level bigger or equal to r and pos an indicator
function determining the index of the retrieval list where the recall 7’ is obtained. In the
example from Fig. 25, the interpolated precision is indicated as a green curve in the plot.
The intuition behind using the interpolated precision for the AP is that a user would likely
be willing to look at a certain amount of irrelevant items in the retrieval list if it could
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increase the chance at obtaining a higher precision [117, p. 159]. The interpolated precision
has two nice characteristics: First, compared to the precision at k, it is a function from a
mathematical point of view as any recall level is mapped to a single precision value only.
Second, it is also well defined for the recall level 0.

For determining the AP, the interpolated precision doesn’t have to be computed expli-
citly. Instead, one may only use the precision at k values for which the recall level changes.
The AP is then simply the average of these selected values:

Y1 prg(i) -rely (i)
nrel(Q) .

AP(q) = (81)
In the equation, L is the length of the retrieval list obtained for a query g, rel,(i) an
indicator function yielding 1 if the i-th element of the retrieval list is relevant with respect
to ¢ and 0 otherwise, and n,(g) the total amount of relevant items in the database for
the query. The average precision is equivalent to the area under the interpolated precision-
recall curve for a given query (cf. e.g. [117, p. 160]).

The AP can be used as performance measure for a single query. However, a user would
typically like a retrieval system to not only perform well for a single query but rather a
number of different ones. A straight forward approach is thus to use a number of queries for
testing. The resulting AP values are then averaged in order to obtain a scalar performance
measure. This way, all queries are treated as equally important. The resulting averaged
value is known as mean Average Precision (mAP) and is one of the most commonly used
performance measures for retrieval systems (cf. e.g. [117, p.159]). This is also true for
word spotting where the mAP has become the de-facto standard metric for determining
the performance of different methods. Hence, it will be used in this thesis as well in order
to determine the performance of different Attribute CNN configurations. This not only
allows for comparing the configurations against each other but also for comparing the
obtained results to others reported in the literature.

7.2 SIGNIFICANCE TESTING

When examining different word spotting methods or configurations, one is tempted to
simply compare the obtained mAP values in order to determine which method performs
better or worse. However, assessing superiority based on this single number bares a num-
ber of risks. For example, it may be that a given method performed better by chance on
a given set of queries used for evaluation and might perform substantially worse when
using slightly different queries. Additionally, a number of word spotting methods make
use of training some sort of model on a given dataset, be it in an unsupervised or super-
vised fashion. The process of training these models almost always involves some sort of
stochastic element, e.g., sampling a suitable number of descriptors for creating a visual vo-
cabulary in Bag of Features (BoF)-based approaches (cf. e.g. [159, 164]) or the stochastic
gradient descent used for training neural networks (cf. e.g. [91, 206]). It thus may be that
superior performance stems from a “lucky” solution found during training rather than a
methodological advantage.

Hence, it is desirable to take into account additional evidence besides the pure mAP
values when comparing word spotting methods. One possible approach for this is to run
statistical hypothesis tests (cf. e.g. [34, p.3-28]). These tests allow for a data-driven as-
sessment whether a hypothesis made about a certain set of data is unlikely enough to
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be rejected. This hypothesis is referred to as null hypothesis. Among others, a commonly
tested null hypothesis is the assumption, that the mean of two random variables is equal.
This hypothesis can be used for determining whether there exists statistical evidence for
one of two word spotting methods being better than the other on a specific dataset: First,
the average precisions obtained from the two methods for the given dataset are treated as
realizations of two random variables. The respective mean of these two random variables is
the “true” mAP of the corresponding method. If the null hypothesis can be rejected, these
two mAP values are significantly different from one another, i.e., the larger of the two
mAPs is significantly higher than the other. A significantly higher mAP value indicates
superiority beyond chance. This can be interpreted as the method with a significantly
larger mAP value than another being significantly better than the other method on a
given dataset.

An important element of any statistical test is the so-called p-value. It represents the
probability of observing the data (e.g. the two different sets of APs) under the assumption
that the null hypothesis is true. If this value is smaller than a previously defined threshold,
the null hypothesis is rejected and the alternate hypothesis is accepted, which is simply the
opposite of the null hypothesis. The threshold mentioned above is called significance level
and is a meta-parameter of the test which has to be set by the user. If the null hypothesis
is rejected, the result of the test is called statistically significant or simply significant. It
is very important to note that a statistical test can only reject the null hypothesis if the
evidence allows so. In particular, it can never serve as statistical evidence for accepting
the null hypothesis. In case the obtained p-value is bigger than the significance level, the
test only fails to reject the null hypothesis but does not accept it. This means, that there
does not exist enough statistical evidence for making a definitive statement regarding the
null hypothesis. In the context of word spotting, the difference between two mAP values
may still be significant in case of a failure to reject the null hypothesis that both are equal.
However, this can not be determined from the two sets of obtained AP values. A failure
to reject happens if the two empirically determined mAPs are too close from a numerical
point of view for the test to definitively say, that the underlying “true” mAPs are different.
In this case, it can be assumed that the two corresponding methods perform (almost) the
same.

There exist a number of statistical tests for determining whether the means of two
sets of data are significantly different. Most of these tests, however, make some form of
assumption regarding the data used for testing, i.e., the AP values in the case of word
spotting. For example, the well known two-sample Student’s t-Test assumes that the two
random variables each follow a normal distribution with identical variance values (cf. e.g.
[78, p. 8]). The same assumption is made for the Wilcoxon-Mann-Whitney-Test (cf. e.g. [78,
p. 101]). A notable exception regarding assumptions is the permutation test which is also
known as resampling or randomization test [182]. The basic idea behind the permutation
test is the following: If the null hypothesis (means of both random variables are equal)
is true, the difference between the observed mean values for each variable should not be
smaller if the realizations of the two variables are randomly assigned to either variable.
Taking all possible permutations of assigning the data to either of the two variables, the
true observed difference should thus not be an outlier compared to the difference in means
obtained after permutation. Here, the fraction of permutations where the difference of the
randomly assigned average precision values is greater than the true observed difference is
exactly the p-value for the permutation test (cf. e.g. [41, 130, 182]).
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For an exact permutation test, all possible permutations of the data at hand have to be
evaluated. In practice, however, computing all permutations quickly becomes impossible
as the sample sizes grow [130]. A solution to this problem is to approximate the p-value of
the test by sampling an adequate number of permutations. Let p denote the approximated
p-value. The variance 3125 of p is

where K is the number of sampled permutations and p is the underlying true p-value [41,
p. 208]. This formula can be rearranged in order to find the number of iterations necessary
to obtain a desired standard deviation:

>N

S

K= p(18; P) (83)

In the formula above, the true p-value is unknown. However, the upper limit of permuta-
tions necessary to obtain a desired standard deviation for any p-value can be computed by
finding the maximum of p(1 — p). The maximum value is obtained for p = 0.5. Inserting
0.5 into Eq. 83 for p yields the following function:

(84)

Using Eq. 84, the user can specify an allowed standard deviation 3123 of the p-value and
obtain the number of permutations necessary to obtain this standard deviation.

Having layed out the general principles, Alg. 1 shows how to assess the significance
of difference in performance of two word spotting methods using the permutation test:
Given two sets A; and Ay of average precision values for two different methods obtained
for the same queries and retrieval database, the difference between the mAP values o is
computed first. This is the true observed difference. Then, A; and A, are joined in order to
form a combined set B. Whether an AP value in B belongs to the first or second method
can not be differentiated anymore. The number of permutations k is computed from the
desired standard deviation s; which has to be defined by the user. Afterwards, k different
sets P; and Ps are drawn from B such that all samples in B get randomly assigned to
one of the two sets. These two sets must be different from all other previously drawn
sets, i.e., be a unique permutation for the current test. In order to assure that the current
permutation is unique with respect to all previously drawn permutations, a hash value of
the current permutation is computed!. If this hash value has been observed for a previous
permutation, a new permutation is drawn. This is repeated until an unseen permutation
was drawn. By only using permutations with a unique hash value, it can be guaranteed
that the drawn permutation is also unique with respect to all previous permutations. The
algorithm then proceeds to compute the difference of the means tperm for the current sets
P, and Ps. If this difference is larger than the true observed difference tqs, a counter
variable n is increased. After having evaluated K unique permutations, the fraction g
represents the estimated p-value p. If it is smaller than the defined significance level «, the
null hypothesis can be rejected, meaning that the difference in mAPs is deemed significant.
Otherwise, the test fails to reject the null hypothesis.

The implementation used in this thesis uses the built-in hash function of the Python programming language
as this hash function allows for an efficient computation of hash values. In principle, other hash functions
such as the Message-Digest Algorithm 5 (MD5) could be used here as well.
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Algorithm 1 Determining the significance of difference in mAP between two word spot-
ting methods using the permutation test

Inputs:
A;: set of average precision values obtained for the first method,
As: set of average precision values obtained for the second method,
52%: desired variance of the estimated p-value p

«: significance level of the test
Initialize:

lobs ¢ A1 _AQ‘
B+ AjUAy
K« (453)
n<+0

H« o
fori=1tokdo

while TRUE do
Draw sets P1 and Py from B without replacement
Concatenate the byte representations of P; and Po
h < hash value for the concatenated byte string
if h ¢ H then
H<«+~ HU{h}
BREAK
end if
end while
tperm — |51 — |_32
if tperm > tons then
n+<n+1
end if
end for
if ¢ < athen
Difference in mAP is significant for level «
else
Failure to reject
end if

7.3 EVALUATION OF QBE AND QBS WORD SPOTTING

In this section, the results obtained for the Query-by-Example (QbE) and Query-by-String
(QbS) experiments are presented. In order to be able to compare the results obtained
from the presented Attribute CNNs with those from other methods from the literature,
established word spotting benchmarks are used. The same benchmarks are also used for
comparing the different configurations of the proposed CNNs.

First, the datasets used for the evaluation are presented in Sec. 7.3.1. This description
also contains how a given dataset is split up into training and test partitions, where the
test partition consists of a set of queries and a retrieval set which is used as database. The
ensuing Sec. 7.3.2 then covers the protocols for the different benchmarks. Having defined
the word spotting specifics, Sec. 7.3.3 presents the meta-parameters used for training the
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Attribute CNNs and justifies their choice. Finally, the obtained results are presented in
Sec. 7.3.4 and discussed in Sec. 7.3.5.

7.3.1 Description of the Benchmarks

The evaluation of the presented CNNs for QbE and QbS is done on six publicly available
benchmarks. These datasets used in these benchmarks are made up of document images
showing both historical and contemporary handwriting. In addition, a benchmark featuring
Arabic handwritten text is included in order to determine the robustness of the presented
method to a change in script. In the following, the different datasets are explained in
detail.

George Washington

The George Washington Database (GW) has become the data source for one of the stan-
dard benchmarks for word spotting. It is also known as George Washington 20 (GW20)
as it encompasses 20 pages of correspondences between George Washington and his asso-
ciates dating from 1755. The dataset is an excerpt of a larger collection available at the
library of congress of the United States?. As the documents in the GW are obtained from
the letter book 2, which is not an original, but a later re-copied volume, it can be assumed
that the dataset has been produced by a single writer only.

There actually exist two versions of this dataset which have been used to evaluate word
spotting methods. The first version contains binarized word images which have been slant
corrected?. The second version*
the more commonly one used for evaluating word spotting methods (e.g. in [159, 164-166,
177]). For the following experiments, the plain gray-level document images will be used as
well. Although not challenging from the number of writers, the GW exhibits a number of
aging artifacts such as fading ink and bleed-through.

The annotation for the GW contains word bounding boxes for 4860 word images with
1124 different transcriptions. Originally, the GW was used for unsupervised word spotting
methods which is why there exists no official partition for supervised methods into training,

contains plain gray-level document images and is by far

query and retrieval set. Typically, when using this dataset for supervised approaches, a
fourfold cross validation is performed (cf. e.g. [9]). For segmentation-free experiments, the
dataset is split up into cross validation splits of five consecutive pages [157]. However, for
segmentation-based evaluations, as are done in this thesis, a randomized fourfold split of
all words is typically used. Here, the splits by Almazan et al. [9] serve as de-facto standard
partitioning for the GW. In order to be able to compare the results obtained for the
Attribute CNNs to those reported by Almazan et al. for AttributeSVMs, the same cross
validation splits are used in this thesis®.

IAM-DB

Although originally designed for handwriting recognition, the IAM Handwriting Database
(TAM-DB) [119] has recently been used as data for word spotting benchmarks as well. The

https://memory.loc.gov/ammem/gwhtml/
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/
washington-database

http://ciir.cs.umass.edu/downloads/old/data_sets.html

cross validation partitions available at https://github.com/almazan/watts/tree/master/data
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database is made up of document images showing English handwritten text of contempo-
rary style. In its latest version 3.0, it consists of 1539 scanned pages containing text from
657 different writers®. The annotation contains transcriptions for 13353 text lines as well
as bounding boxes for 115320 word images.

The document images in the TAM-DB are gray-level images and the quality is very good.
The challenge lies in the fact that the official partitioning into training and test is writer
independent meaning that a single writer did only contribute to either the training or the
test set. This partitioning has been adopted for word spotting benchmarks in the literature
as well (cf. e.g. [9, 91, 206]). In order to allow for a direct comparison of the Attribute
CNNs to these approaches, the standard partitioning is used in this thesis as well.

A common benchmark for segmentation-based, supervised word spotting on the TAM-
DB is defined by Almazan et al. [9]. The first step in this benchmark is to remove all text
lines from the dataset where the annotation states that the transcription may be dubious
or contains errors. The training images from the handwriting recognition benchmark are
then also used as training partition. As retrieval set, all images in the test partition of the
recognition benchmark are used.

Esposalles

The FEsposalles Database [154] is an excerpt of the larger Llibres d’Esposalles collection
of marriage license books at the archives of the Cathedral of Barcelona dating from 1451
to 1905. For the following experiments, the first version of the Esposalles databases will
be used as presented in [154]. It consists of 173 pages of historical documents. The major
difficulties of the dataset lie in several forms of degradation of the document images such
as uneven illumination, smearing or bleed-through as well as high variability in the text
stemming from multiple writers.

The accompanying annotation gives bounding boxes and transcriptions for 45 100 word
images. The official partitioning for offline handwriting recognition uses 32052 of these
word images as training set and the remaining 13048 as test set. As there exists no
dedicated word spotting partitioning, the approach chosen for the Esposalles is follows: the
official training partition is used for training also while the test set is used for obtaining
the query and retrieval set.

IFN/ENIT

The IFN/ENIT Database (IFN/ENIT) [137] contrasts all other datasets used as it fea-
tures Arabic script. It consists of word images of Tunisian town or village names. The
total amount of word images is 26459 which were contributed by 411 different writers.
There exists an official partitioning of the database into four subsets A, B, C and D.
For handwriting recognition, the custom benchmark using the IFN/ENIT uses sets A,B
and C for training and D for testing. As, again, there exists no dedicated word spotting
partitioning, the same approach is chosen for IFN/ENIT as was done for IAM-DB and
Esposalles.

While for all other datasets a Latin alphabet can be used in order to extract attribute
representations, the IFN/ENIT requires an Arabic alphabet. The problem here is that
this alphabet can easily become very large considering all characters with diacritics and

Version 3.0 of the IAM-DB is available at http://www.fki.inf.unibe.ch/databases/
iam-handwriting-database
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Table 1: Number of training images for the respective partitions of the Botany and Konzilspro-
tokolle datasets after the removal of word images wider than 2000 pixels.

Botany Konzilsprotokolle
Train I 1683 1849
Train 11 5289 7816
Train ITI 21964 16918

ligatures. In order to keep the size of the attribute representations at a manageable num-
ber, the alphabet is reduced to a smaller set of characters in the following way”: First all
character shapes are mapped to their representative Arabic characters. Characters with op-
tional Shadda diacritic are replaced with characters without the Shadda diacritic. Special
two-character-shape ligature models are mapped to two-character ligature models without
the shape contexts. This mapping produces an alphabet of size 50 for this dataset®. Please
note that Arabic script is written from right to left opposed to Latin script. In order to
account for this, the word images from the IFN/ENIT are mirrored along the vertical axis
for the following experiments.

Botany and Konzilsprotokolle

The two datasets Botany in Britsh India (Botany) and Alvermann Konzilsprotokolle
(Konzilsprotokolle) where introduced and used in the Handwritten Keyword Spotting
Competition held during the 2016 International Conference on Frontiers in Handwriting
Recognition?. While the former covers botanical topics such as gardens, botanical collec-
tions and plants, the latter is a collection of protocols from the central administration at
the university library of Greifswald, Germany, dating from 1794 to 1797. While Botany is
written in Latin script, the script used in the Konzilsprotokolle database is Kurrent.

Different from the other datasets presented before, Botany and Konzilsprotokolle are
dedicated word spotting datasets and come with a partitioning into training set, query im-
ages for QbE, query strings for QbS as well as a retrieval set. As part of the competition
was to evaluate how well the participating systems could deal with small to large amounts
of training images, each dataset comes with three increasingly larger training sets. Tab. 1
lists the sizes for the three different sets. Please note that both datasets contain word im-
ages which are wider than 2000 pixels. When using images of this size, a pre-experimental
evaluation showed that it was impossible to fit the neural networks into the memory of the
Graphical Processing Unit (GPU) used during training. Hence, images which are wider
than 2000 pixels are removed from the training partitions for both datasets. This proce-
dure still allows for comparing the obtained results to those reported in the literature as
the number of available training images is decreased. The images in the query or retrieval
sets are not altered.

The respective retrieval set sizes are 3230 for Botany and 3533 for Konzilsprotokolle.
For QbS, there exist 101 query strings for each dataset. For QbE, the query word images
in Botany amount to 150 while for Konzilsprotokolle there exist 200.

The idea and implementation of this specific reduction are courtesy of Irfan Ahmad.

The approach bares some similarities to the Arabic sub-character modeling proposed in [2] which was later
extended on in [3].

https://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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The major challenges for both datasets are similar to ones present in the other historical
datasets, namely aging effects. In addition, Botany features a considerable amount of size
variability in word images of the same class.

7.3.2 Ewvaluation Protocols

As explained before, the presented datasets can be discriminated with respect to whether
they come with dedicated sets of training, query and retrieval images or not. While Botany
and Konzilsprotokolle possess official partitions for these three sets, they need to be ob-
tained for the other datasets first. Almazan et al. [9] present a method how the three sets
can be obtained from a standard training-test partition found in datasets used for hand-
writing recognition and how word spotting can be performed with these three derived sets.
The approach by Almazan et al. is used for GW, IAM-DB, Esposalles and IFN/ENIT and
will be dubbed Almazdn Protocol. For Botany and Konzilsprotokolle, the protocol from
the competition will be used which will be referred to as Competition Protocol. For both
protocols, the mAP is used for comparing the performance of different methods. In order
to determine the significance of difference in performance between two methods on a given
dataset, the permutation test is used as described in Sec. 7.2. For all experiments in this
thesis a small desired standard deviation sz of 0.001 is chosen. Choosing this standard
deviation, the probability for the true p-value being in the interval p £ 0.003 is more than
99%. The desired standard deviation is obtained after a maximum of 250000 randomly
chosen permutations (see Eq. 84 for determining the upper bound of permutations to be
evaluated). It needs to be pointed out here, that only the results obtained from the differ-
ent Attribute CNNs will be compared by means of the permutation test. Comparing the
obtained results to those reported in the literature would require the other results to re-
port the individual AP values as well, which is not the case for the methods the Attribute
CNNs will be compared to.

In the rest of this section, the Almazan and Competition protocols will be explained in
detail.

Almazdan Protocol

Adapting the word spotting protocol proposed by Almazéan et al. [9] in order to obtain
mAP values for different Attribute CNNs and datasets is done as follows in the ensuing
experiments: For each dataset, the annotation is used in order to create a segmentation for
each word image. The alphabet to be used for creating the desired attribute representation
is then obtained by collecting each unique character from the annotations for the training
set. Here, the lower case version for each character is used only. Each transcribed word
is then transformed into an attribute or attribute-like representation using this alphabet.
The word images in the training partition and their corresponding representations are then
used in order to train a given Attribute CNN.

At query time, the segmented word images in the test set are used for retrieval as
follows:. For QbE, each word image in the test set is used once as query to rank all the
other test word images, effectively using them as retrieval set. For ranking, an attribute
representation is predicted for the query and each word image in the retrieval set from
the Attribute CNN to be evaluated. The word images in the retrieval set are then ranked
according to the cosine dissimilarity from their predicted attribute representation to the
query representation. A requirement for a word image to be used as query is that its
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corresponding word class appears more than once in the retrieval set as otherwise the
retrieval list would not contain any relevant results. However, if a word class only appears
once, the corresponding word image is kept in the retrieval set as distractor for all other
queries.

For QbS, all unique word classes in the retrieval set are used as queries. The attribute
or attribute-like embedding can be computed directly from the word class string. For each
query, the entire test set is used as retrieval set. Similar to QbE, the Attribute CNN to be
evaluated is used to predict attribute representations for all word images in the retrieval
set. As in QbE, the obtained representations are then ranked according to their Cosine
distance to the query representation.

In both QbE and QbS the entire retrieval set is returned in the retrieval list. Hence, the
recall for each query is always 100%. An item in the retrieval list is considered relevant if
its annotated word class matches the query word class without considering upper or lower
cases as different. For example, a word image showing Captain is relevant for the query
string captain but not for Captains.

The Almazan protocol is used for the datasets GW, TAM-DB, Esposalles and IFN/ENIT.
For TAM-DB, however, stop words are excluded as queries for both QbE and QbS. Again,
they are kept as “distractions” among the test words though.

Competition Protocol

The segmentation-based protocol used for the 2016 Keyword Spotting Competition [141]
is very similar to the Almazan protocol. The training of the respective Attribute CNNs is
performed just as before. However, there are dedicated query sets for both QbE and QbS
for which it can be assumed that at least one relevant item is present in the respective
retrieval set. Before query time, the attribute representations are predicted for the word
images in the retrieval set under both query paradigms. For QbE, the query representations
are then also predicted from the query word images. The retrieval list is then generated
as was done for the Almazan protocol. Relevance is also assessed in the same way.

7.3.3 Training Configurations

All Attribute CNNs used in the experiments are trained in an end-to-end fashion given
word images as input and their corresponding attribute representation as labels. The
respective CNNs are always trained from a random initialization without the help of
additional pretraining. No word image is preprocessed before being forwarded through
either of the CNNs except for scaling the pixels to floating point values in the range of
[0, 1] with O representing white pixels and 1 representing black pixels. As the word images
in the respective datasets are all made up of black strokes, this lets those parts of the image
be closer to 1 in pixel values while the background is closer to 0. The rational behind this
is that the convolution layers employed in a CNN effectively multiply each pixel in the
input with a corresponding weight value from the filter kernel. Using the non-zero values
for ink, the filters will thus be enabled to be active when “seeing” portions of the word
image containing ink, i.e., the supposedly relevant portions.

The initial experiment is conducted using the three presented attribute representations
Pyramidal Histogram of Characters (PHOC), Spatial Pyramid of Characters (SPOC) and
Discrete Cosine Transform of Words (DCToW) in addition to their decorrelated versions
using Positive Pairwise Mutual Information (PPMI) and Multi Dimensional Scaling (MDS)
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(cf. Sec. 5.2). For training the Attribute CNNs, the Binary Cross Entropy Loss (BCEL)
(Eq. 70) is used for PHOC representations while the Cosine Loss (Eq. 74) is used for all oth-
ers. In addition, the Cosine Loss is evaluated in combination with PHOC representations
as well.

Due to the massive amount of free parameters in the fully connected parts of the At-
tribute CNNs, the neural networks are prone to overfitting. Hence, a number of regulariza-
tion techniques is applied in order to mitigate the overfitting problem. The regularization
measures used are described in the following subsection. Afterwards, the section closes
by explaining the training of the neural networks using the Stochastic Gradient Descent
(SGD) algorithm.

Regularization

The regularization techniques used for the presented Attribute CNNs are well-known ones
which have become standard approaches for deep learning architectures in general. First,
dropout is applied to all but the last fully connected layers in the Multilayer Perceptron
(MLP) parts of the neural networks. In dropout, the output of a neuron is randomly set to
0 with a certain probability. This prevents a neural network from learning certain paths
for a given input image “by heart” as neurons can no longer rely on a neuron in a previous
layer to always be active for a given image. Another way to think of dropout is that a the
network trained with dropout actually represents an ensemble of smaller networks which
all share some of their weights [185]. The size of this ensemble is exponential in the number
of neurons used in the layer applying dropout. Deep learning architectures typically use
dropout with a probability of 50% meaning that for each forward pass half the neurons in
a layer are dropped on average (cf. e.g. [92, 172, 179]).

In addition to dropout, the training images are augmented with additional images which
are created in an unsupervised way. The goal in augmentation is to present the neural net-
work with variability of the data which may not be covered by the training set but can be
expected for new images. The transformations used for creating the new images have to
be label preserving, meaning that the depicted content may not change in an augmented
image given the original label. For example, in natural images this is typically the case
when flipping an image around the vertical axis. However for word images, this approach
is not valid for augmentation as the mirrored image would almost always not produce a
valid word image. In order to allow for augmenting word images, a new approach is pre-
sented in this thesis: The unwanted variability in new word images can be expected to fall
into the categories usually addressed with preprocessing in other document image analysis
tasks. Most prominently, these are variabilities in size, slant, shear, translation and rota-
tion. These variabilities can be accounted for in preprocessing by presenting the neural
network with a number of affine transformations of a given word image. In order to not
have to define a set of parameters for each of the stated transformations individually, a ho-
mography projection can be used. Fig. 26 illustrates the proposed augmentation approach.
The process of creating an augmented image using a homography is done as follows: Three
points at fixed relative positions in the middle of an image are taken and each coordinate
is multiplied with a random number uniformly sampled from the interval [0.9;1.1]. The
boundaries of the interval represent the meta-parameters for the presented augmentation.
Then, the homography is computed for which the second set of points is obtained from
the first. This homography is the transformation used for generating a single augmented
image from an original word image. Of course, a number of different augmented images
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Figure 26: Visualization of how to extract a synthetic (bottom) from an original image (top) for
dataset augmentation: A homography is computed which allows for transforming three
points into the same three points offset by a random amount. This homography can then
be used in order to create a synthetic image in an unsupervised fashion while preserving
the original label of the word image.

can be obtained from a single “original” one by sampling the corresponding number of
random offsets for the three points.

Optimization of the Weights in the CNNs

Traditionally, the optimization strategy of choice in deep learning has been SGD with mo-
mentum (cf. Sec. 3.2). The drawback with this approach is that each weight uses the same
learning rate during the update step which could possibly hamper training convergence.
Recent improvements for classic SGD have thus incorporated additional information into
the training process for adapting learning rates individually. For example, AdaGrad [39]
assigns low learning rates to frequently occurring features while giving high learning rates
to those occurring only rarely. On the other hand, RMSprop [199] normalizes the gradient
length for a given weight by a moving average over recent gradient lengths. The opti-
mization strategy Adaptive Moment Estimation (Adam) [83] combines the advantages of
AdaGrad and RMSprop. It works by computing a sliding average for the mean and vari-
ance of the gradient for each weight. The weights are then updated by applying the mean
gradient normalized with its mean standard deviation. The Adam approach has increas-
ingly been used lately as optimization strategy for deep neural networks, e.g., in [49, 76,
81, 218]. In the following experiments, both standard SGD and Adam are evaluated as
optimization strategies for Attribute CNNs.

All Attribute CNNs are trained using a mini-batch size of 10. The initial learning rate
values are determined by taking the largest value for which training started to converge.
For networks being trained with standard SGD this value is 10~% when using the BCEL
and 1072 when using the Cosine Loss. For Adam based optimization the maximum initial
learning rate to achieve convergence was found to be 10~* which matches the default value
proposed by Kingma and Ba [83]. In order to stabilize the gradients for standard SGD,
a momentum of 0.9 is used. For Adam, the recommended momentum hyperparameters
f1 = 0.9 and [y = 0.999 are chosen [83]. In addition, all networks are trained with
a weight decay of 5-107° as is standard for VGG-style and Residual Network (ResNet)
architectures [67, 179]. Training is run for a maximum of 80 000 iterations with the learning
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rate being divided by 10 after 70 000 iterations. The step size of 70 000 was determined by
monitoring the training loss for plateaus. After a total of 80000 iterations the loss could
not be improved upon anymore by lowering the learning rate which is why training was
stopped at this point. Only for the experiments using the TAM-DB a maximum number of
240 000 iterations was used as the training loss could still be improved by training beyond
80000 iterations. On this dataset, training is carried out for 100000 iterations before
lowering the learning rate. Please note that a training iteration here refers to calculating
the gradient for a given mini-batch and updating the weights of the network accordingly.

As the neural networks in this thesis are trained with gradient descent, the final solution
is inherently dependent on the initial weights of the network. Hence, a crucial step in
training is the weight initialization strategy. Throughout the literature, various strategies
have been used. The influential AlexNet architecture [92], for example, is initialized by
drawing weights from a normal distribution with zero mean and a standard deviation of
0.01. However, choosing initial weights this way hampers training for increasingly deep
architectures (cf. e.g. [66, 179]). According to Glorot and Bengio [55], the difficulty in
training is caused by a large variance in gradients in the beginning of the training. They
propose an initialization scheme based on a uniform distribution which minimizes the
variance in the gradients. However, their initialization scheme is based on the assumption
that the respective network only makes use of linear activation functions. He et al. [66]
adapt the work by Glorot and Bengio [55] in order to account for networks using Rectified
Linear Unit (ReLU) activation functions. Here, the weights for initializing a layer s are
obtained by drawing from a normal distribution with zero-mean and variance n% where
ng is the number of parameters in s. For example, if a convolution layer with a kernel size
of 3 x 3 is presented with a feature map of 512 channels, n, computes to 32 - 512 = 4608.
This theoretically sound initialization strategy allows He et al. to train a 30-layer network
from scratch. In the experiments presented in this thesis, all weights in the convolutional
and fully connected layers of the Attribute CNNs are initialized according to the strategy
presented by He et al. [66]. As is common for this strategy, the biases in the layers carrying
weights are initialized to zero. All CNNs are always trained from scratch and do neither
depend on nor require pretrained weights.

All the meta-parameters regarding training were chosen based on pre-experiments on
the GW. Only for TAM-DB the number of training iterations was altered as the training
loss could still be decreased with the added amount of iterations. Training is carried out
on a single Nvidia Pascal P100 using a customized version of the Caffe library [74].

7.3.4 Results

In total, there exist 48 possible configurations of Attribute CNN architecture, loss function,
word string embedding and optimization strategy. Evaluating all these combinations on all
QbE and QbS benchmarks would require 288 different experiments when assuming that
QbE and QbS can be evaluated in a single experiment. In order to keep the amount of
experiments tractable, a subset of suitable configurations is defined first. The resulting
configurations are then evaluated on all datasets. For this, the TPP-PHOCNet is trained
with all possible configurations of attribute embedding, loss function and optimization
strategy on GW and IAM-DB. The choice of these two datasets is based on the following
considerations: The GW is a rather small dataset which allows for assessing whether certain
configurations are more suitable when faced with fewer training data. While the IJAM-DB
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Table 2: Comparison of results using different configurations for the TPP-PHOCNet on the GW
and TAM-DB datasets in mAP [%)].

Loss Emb. Opt. GW IAM-DB
QbE QbS QbE QbS

BCEL PHOC Adam 97.53 95.89 85.33  92.10
Cosine PHOC Adam 96.44 87.56 66.70 85.28
Cosine SPOC Adam 97.17 89.68 75.43 90.53
Cosine DCToW Adam 96.63 90.47  73.17 90.05
Cosine PPMI-PHOC Adam 96.51 91.28 67.24 84.02
Cosine MDS-PHOC Adam 96.92 91.34 74.93 90.25
Cosine MDS-SPOC Adam 96.9/ 91.60 77.85 91.91
Cosine MDS-DCToW Adam 96.57 89.66 69.99 83.59
BCEL PHOC SGD 97.27 96.67  79.85 90.68
Cosine PHOC SGD 97.47 97.20 82.62 92.20
Cosine SPOC SGD 97.64 97.68 83.26 93.22
Cosine DCToW SGD 97.48 97.56 83.80 93.48
Cosine PPMI-PHOC SGD 97.48 97.37 76.48 88.58
Cosine MDS-PHOC SGD 97.70 97.38 77.48 90.44
Cosine MDS-SPOC SGD 97.72  97.63 80.33 92.06
Cosine MDS-DCToW SGD 97.55 98.06  65.18 78.34

has the largest amount of training images of all datasets, the variability in the word images
is probably the largest among all datasets. This makes it a great challenge for the CNNs
used with respect to learning the attribute representations.

Tab. 2 compares the results obtained for the different string embeddings, loss functions
and optimization strategies for the TPP-PHOCNet. In the table, the classic stochastic
gradient descent optimization is denoted as SGD and the Adam optimization [83] as
Adam although technically Adam is a form of stochastic gradient descent as well. The
best results are printed in bold. Results printed in italics are significantly worse than the
respective best result. For all other results, a significant difference to the respective best
result could not be determined. The significance of difference is determined by running a
Monte Carlo permutation test with a significance level of 0.01 and the standard deviation
of the p-value set to 0.001 (cf. Sec. 7.2).

As can be seen in Tab. 2, no combination of word string embedding, loss function and
optimization always produces better results than the others. As a clear winner in terms
of configuration can not be determined, two configurations are chosen for evaluating the
three different Attribute CNN architectures on the six benchmarks, one for training with
the BCEL and one for the Cosine Loss (see Sec. 7.3.5 for further discussion): The first is
the combination of BCEL, PHOC embedding and Adam optimization (BPA) while the
second is Cosine Loss, SPOC embedding and standard SGD optimization (CSS).

Tab. 3 presents the results obtained for the other CNN architectures using these two
configurations for the benchmarks with Almazan protocol. In addition, the table also lists
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Table 3: Comparison of the results obtained with the Attribute CNNs on the benchmarks using
the Almazén Protocol. All values are mAP percentages.

Method GW IAM Esposalles IFN/ENIT
QbE QbS QbE QbS QbE QbS QbE QbS

PHOCNet (BPA) 97.25 95.13 84.61 91.71 97.30 93.62 96.57 94.81

PHOCNet (CSS) 9742 9755 82.46 9270 97.12 94.01 93.21 94.00

TPP-PHOCNet (BPA) 9753 95.839 85.34 92.10 97.31 93.72 96.50 93.25
TPP-PHOCNet (CSS) 97.64 97.68 83.27 93.22 97.17 94.29 92.75 93.25
PHOCResNet (BPA) 96.95 94.56 86.82 93.34 97.15 93.68 96.93 95.29
PHOCResNet (CSS) 97.75 98.01 8551 94.07 97.10 93.92 92.64 93.48

Deep Feat. Emb. [91] 94.41 92.84 84.24 91.58 - - - -

Attribute SVM [9] 93.04 91.29 5573 T3 T2 — - — -
Finetuned CNN [177] — — 4653 - — — — —
LSA Embedding [6] ~ 5654 — . - - - -
Triplet-CNN* [206] 98.00 93.69 81.58 89.49 = = = =
BLSTM* [47] ~ 8400 - 800 - - - -
SC-HMM* [149] 53.10  — - - - — 4160 -

the results reported in the literature in order to compare them to those of the Attribute
CNNs. In this table, significant differences in performance are displayed as was done for
Tab. 2. Please note that the results obtained from the literature do not allow for assessing
the significance of the obtained differences: In order to conduct a statistical test, the
individual average precision values of each method to be compared must be known. As this
is not the case, the significance of differences can not be determined for the results obtained
from the literature for other approaches. Approaches marked with an asterisk do not share
the exact same evaluation protocol and can thus not be compared directly to the results
obtained for the Attribute CNNs. In particular, Rodriguez-Serrano and Perronnin [149]
use different splits for training and test for their experiments on IFN/ENIT, effectively
reducing the number of word images in the retrieval set. The Bidirectional Long Short-
Term Memory Network (BLSTM) approach by Frinken et al. [47] follows a line spotting
protocol instead of the segmentation-based Almazan protocol. Finally, Wilkinson and Brun
[206] make use of the CVL-Database [84] in order to pretrain their neural networks thus
effectively extending their annotated training dataset. While the results are not directly
comparable, they nevertheless give a general idea of the performance of the proposed
method in comparison to others. Corresponding to Tab. 3, Fig. 27 shows the mAP values
obtained after increasing amounts of training iterations for the QbE experiments.

Tab. 4 and Tab. 5 display the mAP results obtained for the benchmarks using the
competition protocol. The results used for comparison were all obtained from the offi-
cial competition report [141]. Significant differences in performance are displayed as was
done in the previous two tables. Fig. 28 visualizes the mAP values obtained after dif-
ferent amounts of training iterations for Botany and Konzilsprotokolle during the QbE
experiments.
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Figure 27: The figure displays the mAP over the different training iterations for the four QbE
experiments using the two different Attribute CNNs.
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Table 4: Results for the experiments run on the Botany dataset in mAP [%]. All results for other
methods were obtained from the official report of the 2016 Handwritten Keyword Spotting
Competition [141].

Method Train 1 Train II Train IIT
QbE QbS QbE QbS QbE QbS
PHOCNet (BPA) 41.04  31.94 77.03 76.73  92.75 95.91
PHOCNet (CSS) 38.29  32.97 71.7,  80.85  80.11 90.51
TPP-PHOCNet (BPA) 39.86  36.47  76.55 84.23 92.89 96.61
TPP-PHOCNet (CSS) 38.80 38.19 73.35 84.42 78.39  87.78
PHOCResNet (BPA) 41.70 34.10  80.07 86.43 9592 98.53
PHOCResNet (CSS) 47.68 49.32 78.44 8848 7747  87.61
AttributeSVM 75.77 65.69 — 65.69 — —
HOG/LBP 50.64 — — — — —
Triplet-CNN 54.95 3.40 — — — =

Table 5: Results for the experiments run on the Konzilsprotokolle dataset in mAP [%]. All results
for other methods were obtained from the official report of the 2016 Handwritten Keyword
Spotting Competition [141].

Method Train 1 Train IT Train ITI
QbE QbS QbE QbS QbE QbS
PHOCNet (BPA) 84.00 76.56  95.16  94.11 96.62 96.79
PHOCNet (CSS) 85.60  79.66  94.85 9474 95.24 94.97
TPP-PHOCNet (BPA) 84.40  77.51 96.46 95.77 97.58  97.69
TPP-PHOCNet (CSS) 88.47  84.89 95.98  95.23 95.51 94.44
PHOCResNet (BPA) 90.44 84.32  98.15 9728 98.10 97.69
PHOCResNet (CPS) 94.80 90.74 9696 97.31 96.21 96.97
AttributeSVM 77.91 55.27 — 82.91 — —
HOG/LBP 71.11 — — — — —
Triplet-CNN 82.15 12.55 — — = =
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Figure 28: Comparison of the evolution of the QbE experiments for the Botany and Konzilspro-

tokolle datasets.
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7.3.5 Discussion

Ezxamining the Results Obtained for the Different Configurations

Tab. 2 lists the results for the different combinations of loss function, attribute or attribute-
like embedding and optimization strategy using the TPP-PHOCNet. The first observation
is that there does not exist a clear cut winning combination. For most combinations, the
permutation test was unable to find a significant difference. This indicates that perfor-
mances in these cases is almost identical. The PHOC embedding might be considered
the only exception here as it always achieves state-of-the-art results. In addition, this at-
tribute representation consistently allows for the fastest training of all configurations when
combined with BCEL and Adam optimization (Fig. 27 and Fig. 28).

One fact that can be observed is that the networks trained with the Cosine Loss generally
do not perform well when paired with the Adam optimization for either representation.
While this characteristic does show less severe for the GW dataset, using Cosine Loss
and Adam for the more challenging IAM-DB leads to a substantial drop in performance.
Optimizing with SGD is more suitable for this combination as the results obtained for
PHOC, SPOC and DCToW embedding are very similar.

Using a decorrelated embedding does not provide an advantage for any of the tested
configurations and datasets. For the experiments on the IAM-DB, decorrelating the at-
tribute representations even leads to worse results for QbE. The results suggest that the
dependencies of the individual variables in the PHOC vectors do not pose a problem when
training the TPP-PHOCNet with BCEL. This is a notable result as one assumes indepen-
dence between the individual components of a binary vector when training with the BCEL
(cf. Sec. 5.3.2).

For comparing the different Attribute CNN architectures, one configuration using the
BCEL and one using the Cosine Loss is selected. The idea behind this is to examine
whether the correlation of attributes does not play a role for training the TPP-PHOCNet
only or if the same results can be obtained for the other architecture as well. For the
configuration using the BCEL, Adam is chosen as optimization strategy and the PHOC
as attribute representation. This combination achieved the best results on the TAM-DB
for all examined configurations.

Comparing the Attribute CNN Architectures

Comparing the results obtained from the PHOCNet with the TPP-PHOCNet allows for
assessing the suitability of the Temporal Pyramid Pooling (TPP) layer compared to the
Spatial Pyramid Pooling (SPP) layer as both architecture only differ in this layer. As
can be seen in Tab. 4 and Tab. 5, the TPP layer achieves better results for the QbS
experiments if the number of training images is rather small as is the case for the first two
training partitions of Botany and Konzilsprotokolle. This is probably due to the reduced
number of parameters: The fully connected layer following the TPP layer has 66.7% less
parameters in the TPP-PHOCNet than the layer following the SPP layer in the PHOCNet
(cf. Sec. 5.4.2). This reduction leads to less trainable parameters and thus acts as an
additional regularization measure. On the other hand, the representation obtained from
the TPP layer is still discriminative enough to be able to achieve state-of-the-art results if
there exists a large amount of training images. The results obtained with the PHOCNet
and TPP-PHOCNet are almost identical in these cases. An interesting aspect is that the
TPP layer consistently produces more robust representations which generalize better than

101



10

EXPERIMENTAL EVALUATION

Table 6: Comparison of the results obtained when using the output of the SPP and TPP lay-
ers as word image descriptors for QbE word spotting. The displayed numbers are mAP

values [%].
Attribute CNN GW IAM-DB Esposalles IFN/ENIT
PHOCNet (SPP, BPA) 89.10 62.69 96.22 88.56
PHOCNet (SPP, CSS) 92.95 69.88 96.56 90.60
TPP-PHOCNet (TPP, BPA) 93.23 73.14 96.40 90.50
TPP-PHOCNet (TPP, CSS) 95.82 76.39 97.05 92.63

those obtained from an SPP layer. Thus the TPP layer is especially suitable in situations,
where a pretrained CNN is used as a deep feature extractor for document images as is done
by, e.g., Retsinas et al. [146] and Krishnan et al. [91]. In order to show that the TPP layer
learns to predict better representations than the SPP layer, an additional QbE experiment
is run'®: A total of four PHOCNets and TPP-PHOCNets are trained using the same setup
as presented in 7.3.3 where each of the architectures is trained with the BPA and CPS
configuration once. At query time, the representations for the word images in the query
and retrieval sets are obtained directly from the SPP and TPP layers in the respective
CNNs. Using these representations, the previously presented protocols are then applied
in order to evaluate the word spotting performance. Tab. 6 shows the results obtained for
the different architectures using the configurations BPA and CPS for training.

The PHOCResNets are generally able to achieve superior or at least similar results
compared to the PHOCNet and TPP-PHOCNet. This is true for even the datasets with
smaller training partitions such as the GW or the benchmarks with smaller training par-
titions for Botany and Konzilsprotokolle (cf. Tab. 3, Tab. 4 and Tab. 5). This noteworthy
as the PHOCResNets contain considerably more parameters than the PHOCNets or TPP-
PHOCNet architectures and do not make use of additional regularization strategies. Train-
ing a PHOCResNet with the BPA configuration only produces significantly inferior results
to the CSS configuration in three experiments, namely QbE and QbS for GW and QbS
for the Train I partition of Botany. For all other experiments, this setup either produces
the significantly best results or results which could not be determined to be significantly
different from all other configurations. In combination, training a PHOCResNet with ei-
ther the BPA or CSS configuration resulted in the best performance in 18 of the 20 QbE
and QbS experiments. For the two experiments, where a PHOCResNet did not achieve
the top performance (QbE and QbS on Esposalles) the obtained performance could not
be determined to be significantly different from best performance.

Comparison to Results from the Literature

As can be seen from Tab. 3, Tab. 4 and Tab. 5 the proposed Attribute CNN approach
achieves state-of-the-art results on all datasets in both QbE and QbS scenarios except
for the Train I partition of the Botany dataset. The most likely reason for this is that
the training set size of this partition in combination with the difficulty of the Botany
dataset is too small in order for the Attribute CNNs to learn robust representations. In

Please note that a QbS experiment can not be run directly using the feature representations obtained from
the SPP and TPP layers as a mapping from string to feature representation is missing.
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other datasets such as GW and Konzilsprotokolle, however, a small training set is not
detrimental to the performance. In fact, the Attribute CNNs are all able to outperform
all other approaches on Konzilsprotokolle for even the smallest training partition of 1849
images.

As the methods from the literature do not report average precision values, the permu-
tation test cannot be used in order to assess the significance of difference in performance
between the Attribute CNNs and the other approaches. However, the PHOCResNets al-
ready achieve a significantly higher performance than the PHOCNet with BPA configu-
ration which in turn achieves better results than the next best results reported for the
Deep Feature Embedding [91] approach. This allows for the reasonable assumption, that
the results obtained for the PHOCResNet would also be significantly better than those for
the Deep Feature Embedding and the Triplet-CNN [206]. For the GW it can be expected
that the permutation test would not find a significant difference of the mAP values for
QbE between the proposed CNNs and the Triplet-CNN as there is already no significant
difference between the two mAP values obtained for the PHOCResNet CSS and PHOCNet
CSS configurations.

Run Time Considerations

When integrating a method into real world word spotting applications, there exist two
main aspects which have to be considered. On the one hand, the method must have
high retrieval performance in order to give accurate results. On the other and the user
expects the system to have low retrieval times. The experiments did already show that
the proposed Attribute CNNs are very capable of fulfilling the first goal. For evaluating
their retrieval times, one has to consider two different points in time: training time and
query time. At training time, the CNNs are allowed to be fitted to the data at hand.
Run times here are not as critical as they can be considered offline precomputations. The
eventual user of a word spotting application will not be affected by these times directly
when querying a database. However, if the user supplies a new document image collection,
these precomputations should still be in a reasonable time frame and not take weeks or
months before the user can even begin with retrieving elements. In contrast to training
time, a user typically demands a responsive system at query time which is able to run the
retrieval in a minimal amount of time.

In order to assess the applicability of the proposed Attribute CNNs in word spotting
applications, the training and query times are evaluated. Of course, the exact training times
depend on the number and size of the word images in the datasets and the architecture
used. Training of the different CNNs finished after 9 to 18 hours for all datasets and
architectures when run on a Nvidia Pascal P100 GPU. In addition to training the model,
the respective retrieval set representations can be obtained at training time as well as they
are not dependent on a query. Hence, this computation does not count towards the query
time.

The individual query times for the proposed method thus only depend on the time it
takes to generate the query representation plus the time for comparing it to the retrieval
set representations and sorting the obtained distance values. For QbS, generating the
query representation does effectively not consume any time as it can be directly obtained
from the string using very simple computational operations. For QbE, the generation time
is the time it takes for the CNN to compute the predicted representations of the given
query image, i.e., one forward pass. Tab. 7 lists the described timings in milliseconds for
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Table 7: Timings for single a forward pass using a TPP-PHOCNet predicting a PHOC representa-
tion. The unit of the presented values is milliseconds.

Forward Pass

Dataset Retrieval
CPU GPU
GW 2191 6.2 2.0
TAM-DB 3474 6.1 1.7
Esposalles 2676 5.0 1.0
IFN/ENIT 4309 11.5 1.2
Botany 8493 15.5 0.2
Konzilsprot. 4318 13.8 0.2

a TPP-PHOCNet using the PHOC as word string embedding. Computing the distance
between the query and retrieval set representations as well as sorting the resulting values
was done using Python and the sklearn library!'!. For running the forward pass for a given
query image, a Nvidia Pascal P100 GPU was used. It should be noted here that using an
advanced graphics card like the P100 might not be possible for some applications at query
time. The scenario for this might be that a previously trained model shall be employed on
a mobile device. Hence, forward pass timings are also evaluated for the scenario when only
a CPU is available at query time. For this an Intel Xeon E5-2650 processor is used which
is similar to the modern consumer CPU Intel Core i7. It is still assumed here that for
training time a GPU was available such that model training and the generation of word
image representation for the retrieval set can be completed in an adequate time frame.
Training the presented Attribute CNNs on a CPU is practically not possible as is the case
for all modern deep neural networks.

From the timings in Tab. 7 it can be seen that a single QbE query takes at most 8.5s
total (forward pass + retrieval) on the CPU and can be as fast as 6 ms when using a GPU.
It should be emphasized that the retrieval time for the CPU scenario is almost exclusively
due to the forward pass of the query image. The retrieval set size could be increased by a
factor of 100 in all experiments which would only add at most 200 ms to the query time
irrelevant of the usage of a CPU or GPU. This makes the Attribute CNNs suitable for
real-world applications even when faced with limited computation power at query time.

Training Set Size Considerations

One of the stigmas that is still attached to CNNs today is that they require large amounts of
annotated training data. The presented Attribute CNNs can be trained from scratch with
very limited data as demonstrated in the GW and Konzilsprotokolle experiments. Here,
the training sets encompasses only 3615 and 1849 annotated samples respectively. As can
be seen from the evaluations during training (Fig. 27 and Fig. 28), the regularizations
added to the proposed networks largely prevent overfitting.

However, an inevitable question that arises is how far the number of training images can
be reduced without losing too much of the retrieval performance. When faced with few
training samples for training a CNN, there exists a common regularization strategy called

http://scikit-learn.org/
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Table 8: Results for experiments the experiments on GW, TAM-DB and Esposalles when using
synthetic data for pretraining and small amounts of data for finetuning. All values are
mAP percentages. The results presented here were first published in [61].

Training GW IAM Esposalles
Subset Size  QbE QbS QbE QbS QbE QbS

100  83.05 86.69 38.45 56.47 89.67 71.15

250  90.76 92.39 43.78 60.90 94.06 82.43

500  93.86 94.82 52.41 68.33 95.14 85.42

1000  95.74 96.59 55.39 74.09 96.27 89.18
complete  97.64 97.68 85.34 92.10 97.31 93.72

finetuning which was not used for the previously presented results. In finetuning, a large
annotated dataset is used in order to put the weights of a CNN in a supposedly good range
for a smaller dataset to which the CNN is then adapted, i.e., finetuned. This approach,
however, only shifts the manual effort as the larger dataset still has to be annotated in
order to be used for pretraining. Of course, this manual effort can be mitigated to almost
zero if the annotation can be generated synthetically.

For assessing the possibility of pretraining an Attribute CNN, a small amount of addi-
tional experiments is conducted'?. In these experiment, a TPP-PHOCNet is trained using
synthetically generated data. The resulting network is then finetuned to small portions
of the training partition of a given dataset. In order to keep the amount of experimental
evaluations small, only the benchmarks using the Almazan protocol are evaluated. As
synthetic dataset the HW-SYNTH [90] is chosen. This dataset was created by using 750
different fonts for rendering word images for 10000 classes from the Hunspell dictionary.
For each class, 100 from the possible 750 fonts are randomly sampled and each font is
used in order to render one word image per font. For each rendering process, the string
to be used, i.e., the string representing the word class, is randomly transformed to either
capitalizing the first letter, capitalizing the whole string or using the lower case version. A
single word image is obtained by randomly rendering the individual characters with differ-
ent distances, different stroke widths and random ink and background pixel distributions.
Overall, 1000000 word images are created this way which form the HW-SYNTH. The
official training partition contains 750 000 word images and is used for pretraining a TPP-
PHOCNet. The data used for finetuning is obtained by randomly sampling word images
from the respective training partitions. As the HW-SYNTH only encompasses Latin script,
the following experiments are only conducted for the GW, IAM-DB and the Esposalles.
The word spotting protocol is the same as specified in Sec. 7.3.2. Finetuning is carried out
for 4000 iterations after which the training loss could not be decreased any further.

Tab. 8 lists the results obtained when randomly sampling 100, 200, 500 and 1000 word
images for finetuning. In the experiments, the entire test partition was used as retrieval set
and the numbers reported for GW are, again, obtained through cross validation. As can be
seen from the table, for GW and Esposalles competitive results can be obtained with only
1000 randomly sampled training images. This is roughly four pages of manual annotation
effort for the GW. The results on the ITAM-DB are considerably worse compared to using

12 The results shown here were previously published in [61].

105



EXPERIMENTAL EVALUATION

the entire training set. A reasonable explanation is that the TAM-DB training partition was
created by more then 600 writers. The large variability of the different writing styles can
not be captured using only 1000 training samples. However, in comparison to the results
obtain with an AttributeSVM on the entire dataset the results are not worse (cf. Tab. 3).
This goes to show that the CNN does not fail when faced with heavily reduced training
sets provided that there exists a synthetically generated dataset which can be used for
pretraining.

A notable aspect of pretraining the TPP-PHOCNet with the HW-SYNTH is that the fi-
nal results after finetunung are usually obtained after 1000 iterations. These 1000 iterations
take between 7 and 11 minutes for the evaluated datasets. This is especially important for
word spotting applications. If a CNN pretrained on synthetic data is available, the user
can be asked to only annotate about 1000 words and have the CNN obtain competitive
results after a very short amount of time. As the pretrained CNN does only depend on
the synthetic data and can be used for any dataset matching the script used for synthesis,
this allows for very fast adaption to new and unseen data.

7.4 VISUALIZATION OF THE FILTERS

The results presented in the previous section show that the proposed Attribute CNNs
achieve results similar to or beyond the state-of-the-art. It is, of course, interesting to
investigate the cause of this strong performance, i.e., what the different Attribute CNNs
base their predictions on. A possible approach for this is to visualize the parts of certain
images for which filter kernels in a given layer get activated the most. Informally speak-
ing, these visualizations show what the filters have learned, i.e., which structures in the
respective images they detect.

The visualization of the filter kernels in the first layer is trivial as these are simply the
weights of the specific kernels. These visualizations are generally not informative as the
first layer of a CNN can generally be shown to learn filters which serve as edge or blob
detectors (cf. e.g. [92, 183, 213]). Visualizing the filter kernels of “deeper” hidden layers is
more interesting but also not as straight forward as visualizing the filters of the first layer.
There exist a number of different approaches for inspecting these hidden kernels but the
three most prominent ones are proposed by Zeiler and Fergus [213], Simonyan et al. [180]
and Springenberg et al. [183]. These will be discussed in the following.

Zeiler and Fergus [213] make use of a deconvolutional neural network which is attached
to the layer to be inspected. The goal is to map back the activations obtained from a desired
layer to the input space, i.e., image pixels. For this, the deconvolutional network has the
same architecture as the network to be inspected but flips the layers. Thus convolutional
become deconvolutional layers and pooling become unpooling layers. Without going into
the specifics of the layers, this flipping procedure is essentially equivalent to a backwards
pass through the network. The only difference to a standard backwards pass is how the
non-linearities, i.e., ReLLU activation functions, are handled. Zeiler and Fergus argue, that
the deconvolutional neural network should always produce valid feature maps in each
of its layers. Hence, the ReLU function is applied to the output of each deconvolution.
The combination of the network to be inspected plus the attached deconvolutional neural
network is thus very similar to a convolutional auto-encoder architecture. The weights of
the deconvolutional part are however not trained but are simply the transposed weights
of the original network.
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Figure 29: The figure displays the guided backpropation approach for visualizing filter kernels. The
first step is to run a forward pass of a given image up to the layer s in which the filter
to be visualized resides. The second step is then to set all feature maps in this layer to
zero except for the largest element of the feature map corresponding to the desired filter.
The resulting feature maps are then used as gradient for layer s and are backpropagated
through the neural network until the gradient for the image is obtained.

A different method for visualizing the inner filter kernels of a CNN is the class saliency
approach by Simonyan et al. [180]. Here, the approach is to compute the gradient of
a desired neuron with respect to the image. This way, one can find the pixels in an
image which need to be adapted the least to have the strongest influence on the inspected
neuron. The class saliency approach is, of course, strongly related to the deconvolutional
neural network approach by Zeiler and Fergus. Essentially, the only difference is how the
activation function is handled. Interpreting the deconvolutional network as backward pass,
the ReLLU units are reversed with respect to a real backward pass. In contrast, the class
saliency approach computes the gradient of the ReLU.

In the third prominent work on visualizing filter kernels, Springenberg et al. [183] argue
that the standard backwards pass as done by Simonyan et al. [180] incorporates negative
gradients as well, i.e., gradients which lower the activation of the unit to be inspected.
They claim that this is detrimental to the visualization as the goal is to find the image
pixels which need to be changed in order to have a positive influence on the neuron to
be inspected. Hence, Springenberg et al. propose to combine the deconvolutional neural
network approach with the class saliency method. They term this visualization strategy
guided backpropation as it guides the gradient to the pixels with a positive influence.
Guided backpropation has not only been used for visualizing inner filters of CNNs but
also for weakly supervised learning [171].

In the following, guided backpropation will be used in order to visualize what certain
internal filters of the Attribute CNNs have learned. Fig. 29 gives an abstract overview over
this visualization technique. An image is passed through the neural network up to the layer
s which contains the filter to be visualized. All feature maps in this layer are then set to
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Figure 30: The figure shows examples of visualizations obtained for the last convolutional layer of
a TPP-PHOCNet trained on the GW dataset. As can be seen, the filters concentrate
on individual characters.

zero except for the largest value in the feature map obtained from the desired filter. This
way, a very sparse feature map is obtained which is subsequently used as “start” gradient
for the layer s in a backpropagation step. Instead of computing only the gradients for the
inputs of the different layers before s, however, the gradient of the image is computed.
This gradient is then the visualization for the desired filter kernel. In order to obtain a
guided gradient of the input image, the ReLU non-linearities are handled specially: For
any ReLU in the network, the gradient is computed as follows:

G = (F">0)0 (G >0)0 G, (85)

where G 1) is the gradient from the layer after the ReLLU in the architecture, i.e., the
preceding layer during backpropagation, F(") is the result from the ReLU function from
the forward pass and G is the guided gradient of the ReLU.

Due to the massive amount of layers and filters in the different architectures, only a
selected number of visualizations obtained from guided backpropation for the Attribute
CNNs will be shown. In the following, filters from the last convolutional layer of the TPP-
PHOCNet are visualized. The reason for this is, that these filters are expected to be the
most interesting in terms of detecting entire structures in the word images. For natural
images, it could be shown already that the filters in the last convolutional layer of a CNN
learn entire objects such as heads of animals and humans or parts of cars (cf. e.g. [180,
183, 213]). It is assumed that for a network trained on word images a similar behavior can
be expected, i.e., that individual parts of word images are detected by the filters in the
last convolutional layer.

Fig. 30 displays a selected number of visualizations for a TPP-PHOCNet trained on
the GW dataset. As can be seen, the individual filters are activated the most by certain
characters that can be seen in the word image. This behavior can be observed consistently
for the other network architectures and datasets as well. To a degree, the individual filters
in the last convolutional layer can thus be considered character detectors. The detections
obtained for a single word image are then composed into an attribute representation by the
MLP in the proposed Attribute CNN architectures. In order to assess this compositional
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Figure 31: Visualization of the eight filters showing the highest activation for the given word image.

behavior, Fig. 31 visualizes the eight filters with the numerically largest activations in the
last convolutional layer of the TPP-PHOCNet for a word image from the GW showing the
word Captain. On the left side of the figure the word image itself as well as the gradients
obtained from guided backpropation are displayed. The different colors in the gradient
image correspond to the different filters. The right side of the figure additionally shows the
receptive fields for the different filters at their highest activation. First, it can be seen that
the different filters really split the task of character detection with each filter concentrating
on a different character. In addition, there exists a filter which is responsible for detecting
the transition between the first a and the p (light blue). An interesting observation is,
that the different filters are activated the most by the core area of the word image and
largely ignore the ascender and descender parts. As can be seen, this behavior is not due
to ascenders and descenders vanishing due to fading ink. Apparently, these parts of the
characters are not relevant for making a decision about attributes later in the architecture.

The filter displayed in pink can be considered a “false detection” as this filter has actually
learned to detect the character r. For the given word image, it is wrongfully detecting an
r in the last character n. This behavior is actually plausible as the r characters in the
GW dataset look quite similar to the last portion of an n (cf. Fig. 30). Despite the strong
performance of the Attribute CNNs, these false detections of characters occur throughout
the different architectures. It seems, that the MLP used at the end of each Attribute CNN
is able to eliminate implausible detections quite efficiently when predicting the attribute
representations.
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After reporting the results of the experimental evaluation of the proposed Attribute CNNs
in the previous chapter, this chapter concludes the thesis. For this, a summary of the
contents, results and findings is given first (Sec. 8.1). Afterwards, it is discussed how the
proposed Attribute CNNs can be extended in order to cope with segmentation-free word
spotting tasks (Sec. 8.2). The following section discusses the most recent activities in the
literature concerning Attribute CNNs (Sec. 8.3) while the ensuing section discusses fitness
of applicability for Attribute CNNs in a real world scenario (Sec. 8.4). Finally, section
Sec. 8.5 closes the thesis by given an outlook on potential future work in the field of
attribute-based word spotting.

8.1 SUMMARY

In this thesis, a method for word spotting was proposed which is capable of segmentation-
based, supervised Query-by-Example (QbE) and Query-by-String (QbS) word spotting.
For this, a CNN is trained to predict attribute or attribute-like representations of word
strings. Three different CNN architectures have been investigated in this regard. All of
them are capable of accepting word images of arbitrary size while producing a fixed-size
output representation. In order to determine which combination of attribute representation
and CNN architecture is most suitable for the word spotting task an extensive empirical
investigation has been conducted. It could be shown, that for easier datasets, i.e., datasets
with a small amount of visual variability, the different architectures and attribute repre-
sentations perform almost alike.

The core contribution of this thesis is a probabilistic interpretation of the different loss
functions used to train the Attribute CNNs. This interpretation allows for determining the
assumptions made when employing the specific functions. Using the Generalized Linear
Model (GLM), the well-known Binary Cross Entropy Loss (BCEL) could be derived. As
was shown, the assumptions made when training with the BCEL as loss function are that
the attribute representations used as labels are a set of pairwise independent binary values.
This assumption is violated in one of the most-often used attribute representations for
word spotting, the Pyramidal Histogram of Characters (PHOC) representation. In order
to alleviate this violation, a different loss function is derived with the prerequisite that
the attribute vectors used as labels follow a von Mises-Fisher distribution. The resulting
loss function is the Cosine Loss which can not only be used for attribute representations
but also attribute-like representation such as the Spatial Pyramid of Characters (SPOC)
or the Discrete Cosine Transform of Words (DCToW).

The experimental evaluation, however, shows that the independence assumption is not
critical for training the proposed Attribute CNNs. Using three different attribute repre-
sentations and the two loss functions mentioned above, no combination stood out as con-
sistently superior to the others. Even decorrelating the representations did not improve
performance and sometimes even diminished it. While performance-wise no clear winner
can be determined, the combination of BCEL, PHOC and Adam optimization consistently
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lead to the fastest convergence times. It can thus be considered the recommended combi-
nation for the presented method.

The experimental evaluation also showed that the Attribute CNN-approach leads to
state-of-the-art results for segmentation-based, supervised QbE and QbS word spotting.
While for the easier benchmarks such as the one defined on the George Washington
Database (GW) no significant difference to other recent approaches can be determined,
the presented approach outperforms them on harder benchmarks such as the one defined
on the IAM Handwriting Database (IAM-DB). The organizers of the 2016 Handwritten
Keyword Spotting Competition even attest the TPP-PHOCNet “overwhelming superior-
ity” with respect to other methods entered into the competition [141] given an adequate
amount of training data.

An interesting aspect about the proposed CNNs is that they learn character detectors in
the final convolutional layer without being given a character-level segmentation. This trait
could potentially be exploited for building weakly supervised character detectors which
only require word-level annotations.

As could be shown in the experimental evaluation, the approach of using CNNs for
predicting attributes for word spotting bares a number of advantages over methods pre-
sented in the literature. In comparison to the influential AttributeSVM [9] or Deep Fea-
ture Embedding [91], Attribute CNNs allow for an end-to-end learning approach which
greatly increases the performance compared to the classic approach of handling features
and attribute predictors separately. Additionally, the presented approach does not require
extensive pretraining on labeled data as is done for Triplet-CNNs [206]. In contrast to
other CNN-based methods for word spotting, predicting attribute representations with
the presented neural networks is based on a solid theoretical foundation: The loss func-
tions are designed specifically to account for the characteristics of the respective attribute
or attribute-like representations which shall be predicted.

8.2 SEGMENTATION-FREE WORD SPOTTING

One aspect, which was not in the scope of this thesis, is how the presented Attribute CNNs
can be used effectively in situations were segmented word images are not available for re-
trieval, i.e., segmentation-free word spotting. In order to be used in real word applications,
this is an important aspect as manually creating a word-level annotation for document
images of handwritten text is very cumbersome. A user would typically expect a word
spotting system to handle the segmentation step automatically with only a bare minimum
of user interaction. An approach how to integrate the presented Attribute CNNs into a
segmentation-free method was presented by Rothacker et al. [160]. Here, a number of word
hypotheses are predicted for a given document image for which a TPP-PHOCNet predicts
the attribute representations. In contrast to typical sliding-window based approaches for
QbE word spotting, e.g., [159, 165], the word hypotheses-based approach has the advan-
tage that it can effectively deal with words in the document image which are relevant to
the query but exhibit a substantial difference in size. Another important aspect is, that
the attributes only need to be predicted for the regions of the document image for which a
word is hypothesized. Besides the approach by Rothacker et al. [160], Ghosh and Valveny
[50] use the PHOCNet for segmentation-free word spotting by incorporating a region of
interest layer as is done for R-CNNs used for object detection (cf. e.g. [52]). A similar
approach, into which the Attribute CNNs could also be integrated, is presented by Wilkin-
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son et al. [207]. Here, the authors employ a region proposal network in combination with
a heuristic method in order to predict word hypotheses. The resulting hypotheses are also
processed by a CNN in order to predict attribute representations as is done by Rothacker
et al. [160]. This CNN could easily be replaced by one of the proposed Attribute CNNs.

8.3 ENSUING WORK ON ATTRIBUTE CNNS

The work on Attribute CNNs proposed in [188] and [189] has sparked a number of research
activities. In [147], Retsinas et al. examine two properties of the TPP-PHOCNet: First,
they investigate whether using a word image’s original size gives better results compared
to using fixed-size images. This way, they evaluate the necessity of the Spatial Pyramid
Pooling (SPP) or Temporal Pyramid Pooling (TPP) layers used in the PHOCNet and
TPP-PHOCNet respectively. They find that the approach using fixed-size images leads to
results comparable to those obtained for keeping the original image size.

They second question they investigate is whether a pyramidal approach as used in the
SPP and TPP layers is necessary in order to achieve state-of-the-art performance or if a
single pyramid level suffices in order to obtain a similar performance. This approach is
also known as zoning (cf. e.g. [173]). They find that the zoning-based approach leads to a
small performance drop but do not evaluate whether the drop in performance is significant.
These results lead them to the conclusion that the zoning-based approach performs as well
as using SPP or TPP layers in a CNN architecture designed for predicting attributes.

The findings by Retsinas et al. [147] are somewhat contradicted by a different work on
using Attribute CNNs for word spotting presented by Rusakov et al. [163]. In this work,
the authors extend the attribute-based word spotting approach by not performing retrieval
based on a nearest neighbor search but rather a probabilistic retrieval: After predicting a
PHOC representation for a given query, the posterior probability for all PHOC represen-
tations in the database to retrieve from given the query representation. This approach is
very similar to how Lampert et al. [96] use Direct Attribute Prediction (DAP) in order to
predict classes from attribute representations (cf. Sec. 2.3). Having obtained the posterior
probabilities, Rusakov et al. [163] construct the retrieval list by sorting all word images in
the database according to the probability of their PHOC representation given the query
representation. Here, the query representation is either obtained directly when performing
QbS or predicted from an Attribute CNN when performing QbE. In their work, Rusakov
et al. [163] extend on the original TPP-PHOCNet architecture by adding a SPP and a
TPP layer in parallel. The concatenation of the output of both layers serves as input to
the Multilayer Perceptron (MLP) part of the CNN. The resulting Attribute CNN is able
to outperform the results obtained by Retsinas et al. [147] by a considerable margin. This
indicates that pyramidal pooling may actually help in obtaining top performances.

8.4 DISCUSSION OF APPLICABILITY

The major motivation for word spotting, as stated in Chap. 1, is the possibility for histo-
rians to effortlessly browse through large corpora of digitalized historic documents. The
question is whether the presented Attribute CNNs pose a viable option to be used as
core component in such a word spotting application. The question can be paraphrased by
asking whether Attribute CNNs are able to deal with large corpora of diverse and historic
writing styles in scans of degraded document images. In the experimental evaluation it
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could be shown, that this is exactly the case (cf. Sec. 7.3). While the GW and IAM-DB
might not be ideally suited to support this claim, the other datasets clearly allow for
making this statement: The Esposalles dataset was collected from multiple writers and
exhibits a considerable amount of degradation due to its age. The datasets Botany in
Britsh India (Botany) and Alvermann Konzilsprotokolle (Konzilsprotokolle) can both also
be considered historic with Konzilsprotokolle even featuring a different script than the
others (Kurrent). In addition, the number of training samples of Botany and Konzilspro-
tokolle is quite limited compared to Esposalles for even the largest training partitions. Yet
despite all these aspects, the presented Attribute CNNs are able to achieve state-of-the-art
results on all of them. This demonstrates that they are very capable of handling historic
documents as well as multiple scripts and languages. The last point is emphasized even
more by the superb results obtained for IFN/ENIT Database (IFN/ENIT) which features
Arabic script. In addition to the performance, the retrieval run times are also adequate
for using the proposed Attribute CNNs in real applications (cf. Tab. 7).

8.5 OUTLOOK

Over the recent past, results for segmentation-based word spotting have come close to per-
fect even for the most challenging benchmarks like IAM-DB. Today, different approaches
are able to achieve mean Average Precision (mAP) values in the mid or high 90’s on all
common segmentation-based benchmarks. In comparison to this, segmentation-free word
spotting methods still have a larger room for improvement when it comes to performance.
Recent approaches here have also started to incorporate deep neural networks in hopes
of replicating their success for segmentation-based scenarios. Whether neural networks
are used or not, the vast amount of recent work on segmentation-free word spotting does
not incorporate an end-to-end training procedure. Judging from the results obtained for
other fields of research as well as from the ones obtained in this thesis, it can gener-
ally be expected that a method for segmentation-free word spotting making use of the
end-to-end paradigm would principally be better from a performance point of view than
others making use of the classic computer vision approach. To the best of the authors
knowledge, the only work on end-to-end learning for segmentation-free word spotting is
presented by Wilkinson et al. [207]. Here, the authors make use of a Region Proposal
Network (RPN) (cf. [145]) in combination with a heuristic approach in order to predict
hypotheses for regions in a digital document image where word images may lie. For these
regions, a PHOC or DCToW representation is predicted which in turn can then be used
for word spotting using the nearest neighbor approach as is done for segmentation-based
word spotting. The region hypotheses are obtained by combining both the output of the
RPN and other hypotheses generated from an approach known as Dilated Text Proposals
(DTP) [205] which is based on finding connected components in a document image. While
the results reported for the segmentation-free benchmarks using GW and TAM-DB are
state-of-the-art or at least comparable to it, the results also suggest that the DTP plays
a more important role for creating reliable word hypotheses compared to the RPN: The
recall for DTP on the segmentation-free IAM-DB benchmark is at 97.9 % while the RPN
is only able to find 39.0 % of all word images' . The total recall of 98.1 % indicates that
the RPN helps almost nothing in detecting words in a document image. While the authors
do not elaborate on this, a possible explanation for this behavior may be that RPNs are

Recall values obtained at 50 % overlap.
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designed to usually detect typically well below 50 elements in an image. In contrast to this,
the document images in the presented tasks typically contain 200 or more word images
which are sometimes overlapping making it very hard to reliably detect boundaries. In
contrast to document images, RPNs work very well for text detection in natural images
(cf. e.g. [125]) where the number of instances to be detected is also well below 200. This
serves as an indicator that the standard RPN might not be ideally suited for document
images of handwritten words. Hence, a new approach would be required which can be
trained in an end-to-end fashion all while being able to predict in the order of 200 word
images per page. Finding such an approach could potentially help in achieving as high
mAP values in segmentation-free scenarios as are obtained for segmentation-based word
spotting using the proposed Attribute CNNs.
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PUBLICATIONS BY THE AUTHOR

As stated in Sec. 1.1, the main contributions presented in this thesis were previously pub-
lished in peer-reviewed conferences or journals. While in Sec. 1.1 the contributions in
previous publications were stated in a brief fashion, this chapter gives a more detailed
overview of the different publications which served as base for this dissertation. In the
following, the publications are listed in order of publication date.

Sebastian Sudholt and Gernot A Fink. “A Modified Isomap Approach to Ma-
nifold Learning in Word Spotting.” In: Proc. of the German Conference on
Pattern Recognition. 2015, pp. 529-539,

Bibliography entry: [187]

In the work presented in [187], a dimensionality reduction method for sparse and high-
dimensional Bag of Features (BoF) representations is proposed. Based on Multi Dimen-
sional Scaling (MDS), this method is used in order to obtain smaller and dense represen-
tations for spatial pyramid representations of word images for word spotting. It is shown
experimentally, that the obtained representations maintain their individual distances with
respect to the original representation more faithfully than the well-known Latent Seman-
tic Indexing (LSI). The method presented in [187] is used for obtaining the decorrelated
attribute representations in this thesis (cf. Sec. 5.2): All embeddings denoted with the
MDS prefix in the experiments (cf. Tab. 2) are obtained by transforming them into their
respective MDS embedding using the cosine distance for computing the required distance
values.

Sebastian Sudholt and Gernot A Fink. “PHOCNet : A Deep Convolutional
Neural Network for Word Spotting in Handwritten Documents.” In: Proc. of
the Int. Conf. on Frontiers in Handwriting Recognition. 2016, pp. 277-282,
Bibliography entry: [188]

The work presented in [188] constitutes the initial ideas and concepts of how Convolu-
tional Neural Networks (CNNs) can be used in an end-to-end fashion in order to predict
attribute representations for word spotting. As part of this, the CNN architecture known
as PHOCNet (cf. Sec. 5.4.1) is proposed. In contrast to previous works on neural networks
for document image analysis, this CNN does not require its input images to be scaled to
a fixed size. Another notable difference is that it predicts Pyramidal Histograms of Char-
acters (PHOCs), i.e., attribute representations compared to other approaches predicting
either word class labels or character sequences. In [188], the PHOCNet is trained to predict
the PHOC representations as proposed by Almazan et al. [9], i.e., using the levels 2,3,4
and 5 for unigrams and a left-right split level for the 50 most common bigrams in the
English language.
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Sebastian Sudholt and Gernot A. Fink. “Evaluating Word String Embeddings
and Loss Functions for CNN-based Word Spotting.” In: Proc. of the Int. Conf.
on Document Analysis and Recognition. 2017, pp. 493—498,
Bibliography entry: [189]
The work presented in [189] extends on [188] in two critical aspects: The first is to evaluate
the three word string embeddings used in this thesis also (cf. Sec. 5.2) in order to deter-
mine whether there exists a single best performing embedding. This question can also be
interpreted as whether there exists an embedding which can be learned “easier” than the
others in an end-to-end setting. The Cosine Loss is used in order to be able to learn the
attribute-like embeddings. As the experimental evaluation shows, this is not the case, i.e.,
no significant difference in performance can be determined for the different embeddings.
The second part of this work examines the PHOCNet and proposes a new and improved
version of it by replacing the originally used Spatial Pyramid Pooling (SPP) layer with the
Temporal Pyramid Pooling (TPP) layer (cf. Sec. 5.4.2). This layer also accepts variably
sized feature maps and produces a fixed-size representation but is specifically designed
for word images as input to the respective neural network. Using this layer, a new CNN
architecture is proposed for word spotting known as TPP-PHOCNet. As the experimental
evaluation shows, the TPP-PHOCNet is able to significantly improve on the performance
obtained by the original PHOCNet.

Sebastian Sudholt, Leonard Rothacker, and Gernot A. Fink. “Query-by-Online
Word Spotting Revisited: Using CNNNs for Cross-Domain Retrieval.” In: Proc.
of the Int. Conf. on Document Analysis and Recognition. 2017, pp. 481-486,
Bibliography entry: [191]

The method proposed in [191] constitutes the first method for Query-by-Online-Trajectory
(QbO) word spotting using CNNs. In order for the CNN to accept online trajectories as
input, the trajectories are first rendered into offline images. An added benefit of this ap-
proach is that it allows to disregard preprocessing techniques as the CNN is capable of
coping with the data at hand without this initial step. Using the rendered images, two
approaches for QbO are then proposed which are also examined in this thesis (cf. Sec. 5.1):
For the first, two networks are trained, one for the query image and one for the test image
domain. The second approach uses a single CNN to learn to predict attribute representa-
tions for both domains combined. As is shown in the paper, the two proposed approaches
are able to outperform the previous state-of-the-art using handcrafted features and At-
tributeSVMs by a considerable margin.

Leonard Rothacker, Sebastian Sudholt, Eugen Rusakov, Matthias Kasperidus,
and Gernot A. Fink. “Word Hypotheses for Segmentation-free Word Spotting
in Historic Document Images.” In: Proc. of the Int. Conf. on Document Anal-
ysis and Recognition. 2017,

Bibliography entry: [160]

As stated in the conclusion, one of the major drawbacks of the Attribute CNNs proposed
in this thesis, [188] and [189] is that they require previously segmented word images in the
database to retrieve from. The approach proposed in [160] improves upon this fact in en-
abling the previously mentioned CNNs to allow for segmentation-free Query-by-Example
(QbE) and Query-by-String (QbS) word spotting. In order to accomplish this, a number
of word hypothesis regions are predicted for the document images of a given corpus. These
regions are then processed by the TPP-PHOCNet in order to predict attribute represen-
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tations. The presented approach is similar to the well-known R-CNNs used for object
detection [54]. As part of the hypothesis predictions, a CNN is used which allows for
weakly supervised character detection by generalizing the Class Activation Maps (CAM)
approach from [217] to attributes.

Sebastian Sudholt and Gernot A. Fink. “Attribute CNNs for Word Spotting
in Handwritten Documents.” In: International Journal on Document Analysis
and Recognition 21.3 (2018), pp. 199218,

Bibliography entry: [190]

The work presented in [190] combines the methods and findings from [188] and [189] and
adds a more thorough experimental evaluation. In addition, a probabilistic interpretation
of the training and loss functions used is given which allows for assessing the assumptions
made when training with the respective loss functions. This probabilistic interpretation
makes use of Generalized Linear Models (GLMs) and is the base for the loss functions de-
rived in Sec. 5.3. Using this approach, the Cosine Loss is derived from the von Mises-Fisher
distribution. This connection had not been shown before in the literature and allows for
determining the implicit assumptions made when training with the Cosine Loss.

119






MATHEMATICAL DEDUCTIONS

In the following chapter, mathematical deductions concerning earlier claims in Chap. 3
and Chap. 5 are presented.

B.1 OBTAINING THE CATEGORICAL CROSS ENTROPY LOSS

In the following, it will be shown how to derive the Categorical Cross Entropy Loss us-
ing the Generalized Linear Model (GLM) framework as shown in Sec. 5.3.1. The training

. . Ns

dataset S = {(x(l), c(’)) } ) is considered to consists of tuples of images or feature repre-
1=

sentations x and class labels ¢ € {1,...,N.} where N; is the number of samples and N, the

number of classes. For each sample, the vector y(i) indicates the one-hot encoding of EON
If the annotations ¢! are class labels, it can reasonably be assumed that the dependent
variable Y in the GLM follows a categorical distribution. The categorical distribution is a
special case of the multinomial distribution with only a single draw. Its Probability Mass
Function (PMF) is defined as follows:

N
fe(ylp) = I1»; (86)

As E[Y] = p in the case of Y following a categorical distribution, the corresponding GLM
directly predicts the conditional posterior probability for each of the classes given the
corresponding sample x(). For this, it makes use of N, independent linear projections in
order to obtain a vector g which is subsequently processed by the inverse of a single link
function. Bringing the categorical distribution into the standard exponential family form
(cf. Eq. 62), one obtains the softmax function (cf. Eq. 57) as inverse of the canonical link
function (cf. e.g. [18]). The prediction p of probabilities for all classes is then obtained
from the GLM as follows:

- Nexp (Wx) (87)

>j<1 €xp (w;fx)
where W are the trainable parameters of the GLM and wj is the j-th row of W. For
training, the negative log-likelihood is minimized:

W = arg\;’nin — Z log fc (y(i) f,(z’))

=1

NS NC . .
= argmin — Z Z y](-l) log ﬁj(l)
w i=1 j

As y(i) has only one non-zero entry, the function from above can also be rewritten as
N '
W = argmin — Z logﬁ(lz)
w

C(
i=1
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This is actually the formulation for the Categorical Cross Entropy Loss that can be found
in most deep learning toolboxes!.

B.2 DERIVATIVES

In this section, a number of gradients are derived which are important for training neural
networks in the context of this thesis.

B.2.1 Derivative Sigmoid

In this section it is shown that the derivative of the sigmoid activation function aSi%r;l(m)

is indeed sigm(z)(1 — sigm(x)):

. 1
sigm(z) = ppp—
dsigm(z) 1 2 .
=5 (=) e
 (14e7)?
e * 1

1+e—$'1+e—z
1+e%-1 1
1+e % 1+e 2

_<1 1 ) 1
o 1+e® 1+e*

= sigm(z) (1 — sigm(x))

B.2.2 Combined Gradient Sigmoid Activation and Fuclidean Loss

It was claimed in Sec. 5.3 that using the Euclidean Loss in combination with sigmoid
activation functions in the output layer leads to the overall gradient being scaled by the
gradient of the sigmoid. This claim will be proven in this section. Recall that the Fuclidean
Loss is defined as

18
Al12
ZNZ§ZHY—YH :
=1

The otherwise linear output o of the last layer is transformed by a sigmoid in order to
obtain the output § of the neural network:

¥ = sigm(o)
The combined gradient of both loss function and sigmoid activation function can be ex-
pressed by means of the chain rule as is standard for the backpropagation algorithm:

oy _oly 03

do 9% 0o’

For example, in the Caffe toolbox [74]: https://caffe.berkeleyvision.org/doxygen/classcaffe_1_
1MultinomiallogisticLossLayer.html
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B.2 DERIVATIVES

In order to obtain this gradient, the partial derivatives %OM are computed separately and
J
then stacked in order to obtain the gradient:

Oy _ Oy 05;
do;  09; 0o,
0 sigm(o;)
J J an

A

= (§; —y;) - sigm(0;) (1 — sigm(o;))

Olns . . .
O~ (5~ y) @ sigm(0) © (1 - sigm(o))
As can be seen from the equation above, if the linear output o has large absolute values,

the gradient is scaled by a very small factor. This can be seen as a version of the vanishing
gradient problem.

B.2.3 Combined Gradient Sigmoid Activation and Binary Cross Entropy Loss

In this section it will be shown that, in contrast to the combination of sigmoid activation
function and Euclidean Loss, the combined gradient of the loss and activation function is
not scaled by the derivative of the sigmoid if the Binary Cross Entropy Loss (BCEL) is
used as loss. Recall that the BCEL is defined as

I =— %: ED: vy log 7" + (1 -y ) log (1- 9"} .
i=1j=1

For simplicity, the gradient will be computed for a single sample only. As was done in
the previous section, the combined gradient for sigmoid activation function and BCEL is
derived by computing the partial derivative with respect to each dimension j of the linear
output vector o to the sigmoid function separately. The results are then stacked in order
to obtain the gradient:

ol _ ol 0
an N 8@] 60j
_ (yj 3 1—yj> ~Osigm(o;)

g 1= doj

(1 —y yg> -sigm(0;) (1 — sigm(o;))

1-9; 9
1=y —y;(1—175) . .
~ Ul 2Ol gy )
yJ( yy)
=95 — 9595 — Y5 T U5Y;
=0 —yj

The gradient of Ig with respect to the entire linear output vector o is thus

o
ao_y y'

As can be seen, the combined gradient is not scaled by the derivative of the sigmoid
anymore.
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B.2.4  Gradient for the Cosine Loss

In order to be able to train a neural network with the Cosine Loss its gradient with respect
to the output of the network needs to be computed. As was done in the previous section,
only a single sample will be considered in order to derive this gradient. For multiple samples
the gradient is simply the mean of all gradients. If only a single sample is used, the Cosine
Loss is defined as follows:

r=1- Y3
Hy - 1131l
D A
2 Uil
=1- J=

D D
YRR AR
7j=1 7j=1
D 2 2
) (59) (5
J=1 =

b(9) c(y)

-
-
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In order to make the following computations more visually appealing, the Cosine Loss
is expressed in terms of three functions a,b and c¢. With respect to the prediction of the
neural network, the function c is constant. Thus for finding the derivative dle , the partial

derivatives 2 8A and gf’ need to be computed and aggregated:
da
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Applying the product rule leads to the gradient M.
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QUERY-BY-ONLINE WORD SPOTTING

C.1 ATTRIBUTE CNNS FOR QBO

Query-by-Online-Trajectory (QbO) word spotting bares a subtle difference to QbE and
QDbS: The trajectories of online-handwriting used as queries under this paradigm are inad-
equate to be used with CNNs as these neural networks are designed for images as input. A
simple and straight forward approach is to render the trajectories into word images. These
word images can then be processed by a given CNN. The advantage of using the rendered
“offline versions” of the trajectories is that CNNs can usually cope with a large amount
of variability and do not require excessive preprocessing. In contrast, when dealing with
online trajectories, one typically needs to make use of a number of elaborate preprocess-
ing techniques in order to obtain good results even when using advanced methods such
as RNNs [59]. This is all done away with when rendering the trajectories to offline word
images and using a CNN. Of course, the images produced this way can be expected to be
vastly different from the corpus images, especially when dealing with historical documents.
Hence, a straight forward approach for QbO word spotting with Attribute CNNs is to have
one CNN predict attributes for the rendered online trajectories and another CNN doing
so for the corpus images. This way, the individual CNNs can specialize to the specific
data domain they are presented with. Fig. 32a visualizes this approach. In contrast to this,
a second approach would be to predict attribute representations for both rendered and
corpus images from a single CNN (Fig. 32b). If the CNN is powerful enough to learn the
characteristics of both data distributions, this approach may even be better as it would
allow the single model to draw connections between the different datasets and attributes.

C.2 EVALUATION OF QBO WORD SPOTTING

In the following section, the QbO experiments conducted in this thesis are reported. QbO
is a rather new query paradigm and the AttributeSVM-based approach by Wieprecht et al.
[204] was the only one for this specific task before Attribute CNNs were proposed for this
in [191]. The benchmarks and protocols proposed by Wieprecht et al. differ quite sub-
stantially from the Almazadn and competition protocols. In order to compare the results
obtained for the presented Attribute CNNs for QbO to the ones reported by Wieprecht
et al., the same benchmarks and protocols will be used in this thesis.

The goal in QbO is to retrieve offline word images based on an online trajectory. The
benchmarks for evaluating QbO thus consist of two different datasets. The first is a set
of online trajectories, which are used as queries. The second is a dataset of offline word
images. In the case of supervised word spotting methods, there exists a training partition
for both datasets. The remaining words of the online dataset are then used as queries
while the remaining offline data is used as retrieval set.

Wieprecht et al. [204] propose two QbO benchmarks: The first uses a single writer which
contributes online trajectories to both training and query set. For the second benchmark,
online trajectories from different writers are used for training, while the query dataset
only contains trajectories from a single writer who did not contribute to the training par-
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Figure 32: Visualization of the two proposed approaches for using Attribute CNNs for QbO word
spotting. In the 2-Net approach (a), one Attribute CNN is trained on images rendered
from online-handwritten trajectories while the other is trained on word images extracted
from document images. For retrieval, the “online” network predicts the query represen-
tations while the “offline” network predicts to the corpus representation. In contrast
to this, the 1-Net approach (b) uses a single CNN which is trained on both rendered
online trajectories and extracted word images. Both query and corpus representations
are predicted from this network at query time.

tition. For both benchmarks, the online as well as offline data are made up of publicly
available datasets. In order to compare the performance of the Attribute CNNs for super-
vised QbO word spotting with the AttributeSVM approach by Wieprecht et al., the same
benchmarks will be used. In addition, a third benchmark is proposed. This benchmark
focuses on the scenario, where different users issue online queries to a supervised QbO
word spotting method while none of these users contributed any online trajectories to the
training partition.

In the following, the online datasets used for the three benchmarks will be described first
(Sec. C.2.1). As offline datasets, the previously presented GW and TAM-DB will be used
(cf. Sec. 7.3.1). These datasets will not be presented again at this point. Having established
the online datasets to be used, Sec. C.2.2 presents the three different benchmarks in more
detail specifically pointing out the datasets and word spotting protocol used. The section is
concluded by presenting the obtained results, comparing them to the ones from Wieprecht
et al. and a final discussion (Sec. C.2.3). For the experiments, all Attribute CNNs use the
combination of BCEL, PHOC and Adam as this configuration has shown itself to be the
most effective for the QbE and QbS experiments (cf. Sec. 7.3.5).
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c.2.1  Online Datasets

George Washington Online

The GWO! is a dataset of online-handwriting trajectories. It was created for the experi-
ments in [204] in order to perform QbO word spotting using the GW dataset as retrieval
set. For this, every word in the GW was copied by a single writer as online trajectory
using a stylus pen on an Android tablet. Hence, the GWO consists of 4860 trajectories of
online-handwritten text. The writing style is very homogeneous due to being created by a
single writer only. Likewise, the scale of the individual trajectories is very consistent.

UNIPEN

The UNIPEN dataset is a collection of online-handwritten trajectories from the UNIPEN
foundation [62]2. It was originally designed to facilitate a database for evaluating and com-
paring methods for online handwriting recognition. The dataset comes with annotations
and transcriptions at line, word and character level. In order to be able to directly compare
the obtained results to the ones reported in [204], the subset sta0 of trajectories of Latin
script is used in the following experiments. This subset consists of online-handwritten
trajectories from 62 writers, each contributing roughly 400 trajectories. In total, the sta0
partition of the UNIPEN dataset consists of 27 112 online trajectories.

IAM On-Line Handwriting Database

The TAM-OnDB [110] is used as online dataset for the newly proposed QbO benchmark.
Like the UNIPEN, the TAM-OnDB was originally designed for online-handwriting recog-
nition. It is made up of 13 049 trajectories of online-handwritten text lines, contributed by
221 writers. The IAM-OnDB does only come with line-level segmentations for the trajecto-
ries. As the Attribute CNNs used in this thesis are dependent on word-level segmentations,
this segmentation was obtained from the line segmentations using a BoF-HMM by means
of a forced alignment. The forced alignment used in this thesis is courtesy of Leonard
Rothacker. The exact parametrization of this segmentation procedure are beyond the
scope of this thesis. The interest reader is referred to the original publication of Attribute
CNNs for QbO [191] for a detailed description.

The IAM-OnDB comes with a number of official partitionings. In the following experi-
ments the f partition is used. Similar to the IJAM-DB, a single writer does only contribute
to either the training or the test split for this partition. Using the test partition as queries
thus allows for QbO with multiple writers, unknown from the training partition.

Cc.2.2  QbO Benchmark Description

This section outlines the benchmarks used for the QbO word spotting experiments in this
thesis. For all benchmarks, rendering of the online trajectories is done by sliding a circle
along the trajectory. The diameter of this circle differs for the three online datasets and
will be referred to as stroke width in the following.

In order to simplify explanations, only the training, query and retrieval set used in each
experiment are pointed out in the following. For the 2-Net approach, the rendered online

1 The GWO dataset is available at https://github.com/cwiep/gu-online-dataset
2 UNIPEN dataset available at http://www.unipen.org/products.html
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images and offline document images of the respective training set are used to train two
different Attribute CNNs while for the 1-Net approach both sets are combined to train
a single CNN (cf. Fig. 32). For the query set PHOCs are predicted from the network
trained on the rendered online images (2-Net) or the joint network (1-Net). Likewise,
representations for the word images in the retrieval set are obtained from the CNN trained
on the offline images (2-Net) or the joint network (1-Net). For each experiment, word
spotting is performed following the Almazan protocol: Each query PHOC is used to rank
the PHOCs obtained for the retrieval set using the Cosine distance. A query is discarded
if the corresponding retrieval list has no relevant entry.

Benchmark 1: Single Known Writer (SKW)

For the first benchmark, the queries originate from a single writer, while all training
trajectories also originate from this writer. As online dataset the GWO is used while the
GW serves as offline dataset. In order to be able to train the Attribute CNNs on the
online trajectories, they are rendered with a stroke width of 10 pixels. The stroke width
was determined by taking five trajectories of the training partition and creating a visually
appealing rendered word image. The GWO and GW are then divided into four cross
validation splits. For this, the splits defined by Almazén et al. [9] are used (cf. Sec. 7.3.1).
The training set for this experiment is then the combination of both training splits for
GWO and GW. The query set is the test split of the GWO while the retrieval set consists
of the test split of the GW.

Benchmark 2: Single Unknown Writer (SUW)

For the second experiment, the queries originate from a single writer, who did not con-
tribute other trajectories to the training partition. The datasets used are the UNIPEN,
GWO and GW. As was done for the first benchmark, the GWO is rendered with a stroke
width of 10 pixels. For UNIPEN, a stroke width of 20 pixels is chosen. The stroke widths
were determined as for the first experiment. Afterwards, GWO and GW are again split up
into the four cross validation sets. As training set for this benchmark, the entire UNIPEN
dataset as well as the respective GW training split is used. Query and retrieval set are,
again, the test splits for the GWO and GW respectively. During pre-experimental evalua-
tions it became evident that simply using the query set this way does not allow the CNN
to reliably predict PHOCs. This is due to the vastly different scales of the UNIPEN and
GWO trajectories and hence the rendered word images. In order to cope with this size
mismatch, a scaling factor is determined which is applied to the word images of the GWO.
For this, all common words from the UNIPEN and the respective training partition of
the GWO are determined first. Then, the average height of these common words is calcu-
lated for both datasets. The scaling factor is then the quotient between the average height
of the UNIPEN and the average height of the GWO. This procedure roughly aligns the
distribution of word image heights for the two datasets.

Benchmark 8: Multiple Unknown Writers (MUW)

For the third experiment, the queries originate from multiple writers, who did not con-
tribute other trajectories to the training set. For this, the TAM-DB and TAM-OnDB
datasets are used. The IAM-OnDB is first rendered with a stroke width of 20 pixels (stroke
width was determined as for Exp. 1 and 2). The training set for this experiment is the
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Table 9: Summary of the different datasets for the three QbO benchmarks.

Benchmark Training Set Query Set Corpus
Ben. 1: SKW GWO Train + GW Train GWO Test GW Test
Ben. 2: SUW UNIPEN + GW Train GWO Test GW Test
Ben. 3: MUW IAM-DB Train + IAM-OnDB Test ~ TAM-DB Test

TAM-OnDB Train

Table 10: Results for the three QbO experiments. All values are mAP percentages.

Architecture/Method Ben. 1: Ben. 2: Ben. 3:
SKW SUW MUW
PHOCNet (2—Net) 94.68 77.26 84.96
PHOCNet (1-Net) 95.89 87.14 84.53
TPP-PHOCNet (2-Net) 94 .41 77.20 84.51
TPP-PHOCNet (1—Net) 96.42 87.22 84.92
PHOCResNet (2—Net) 94.76 77.03 86.59
PHOCResNet (1-Net) 96.60 86.63 85.02
AttributeSVM [204] 86.49 21.71 -

union of the two training splits of TAM-DB and IAM-OnDB. The query set is the official
test split f of the IAM-OnDB. All words from the f split are used as queries. Finally, the
retrieval set consists of the test split of the IAM-DB. Table 9 summarizes the training,
query and test sets for the three experiments.

C.2.3 Results and Discussion

The results for the three experiments and two word spotting systems are reported in table
10. As can be seen in the table, the approach of using CNNs instead of AttributeSVM
leads to a considerable performance gain.

Another interesting observation is that the 1-Net approach is able to consistently out-
perform the 2-Net approach for the SKW and SUW experiments. This result might seem
counter intuitive at first as using individual CNNs for the rendered online images and of-
fline document images should enable each CNN to focus better on the characteristics of the
respective data. A possible explanation for why the 1-Net approach performs better is that
it is able to draw connections between characters of the different data sources: If the net is
presented with word images of the same class from both rendered and document images, it
is implicitly shown which portions of the word images “match” from an attribute point of
view. This enables it to learn a much more robust representation compared to seeing data
from one domain only. What is really interesting about this is that the online trajectories
are rendered as binary images while the offline word images are grayscale images. Yet, the
CNN is able to draw knowledge from combining both binary and grayscale images. This
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demonstrates that the Attribute CNN approach is very capable of dealing with data of
different modalities.
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In order to supply a clean visualization, significant differences in performance as displayed
in the tables in Chap. 7 were only shown in terms of whether a certain mAP value was sig-
nificantly better than a second one. In this chapter, the results of the significance tests are
displayed more verbosely. For each dataset used in the experimental evaluation reported in
Chap. 7, there exist two tables stating the used Attribute CNN and configuration (BCEL,
PHOC, Adam (BPA)) or Cosine Loss, SPOC, SGD (CSS)). The columns of the tables are
always set up the same way: The first, second and third column state the architecture,
configuration and mAP values. The fourth column displays the p-value obtained through
the Monte Carlo permutation test for testing against the best result. The range of the p-
value is [0, 1]. The fifth column displays the significance of the p-value in the star notation
of the programming language R!. The last column states whether the obtained result is
significant with a significance level of 0.01. The first row of the table always shows the best
performing configuration for the respective experiment. All other rows show the results
in comparison to the first row, i.e., significance is assessed by comparing the result in a
given row to the one in the first. If a result is significantly worse than the best result, it is
marked with a check mark (v').

The displayed p-values were obtained for 250,000 Monte Carlo runs of the permutation
test. The p-value is obtained by dividing the number of permutations with a bigger differ-
ence in means than the original difference by the total number of runs (cf. Sec. 7.2). Thus,
the number of permutations with a bigger difference can be obtained by multiplying the
respective p-values with 250, 000.

Table 11: Results for QbE on the GW database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC, SGD 97.75
TPP-PHOCNet  Cosine, SPOC, SGD 97.64 0.667368
TPP-PHOCNet BCEL, PHOC, Adam  97.53  0.405704

PHOCNet Cosine, SPOC, SGD 97.42  0.224636
PHOCNet BCEL, PHOC, Adam 97.25 0.072532 .
PHOCResNet BCEL, PHOC, Adam  96.95 0.005712 *x v

1 A description of R’s star notation can be found here: https://www.rdocumentation.org/packages/
gtools/versions/3.5.0/topics/stars.pval

131


https://www.rdocumentation.org/packages/gtools/versions/3.5.0/topics/stars.pval
https://www.rdocumentation.org/packages/gtools/versions/3.5.0/topics/stars.pval

RESULTS FOR THE SIGNIFICANCE TESTS

Table 12: Results for QbS on the GW database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC, SGD 98.01

TPP-PHOCNet  Cosine, SPOC, SGD 97.68  0.383952

PHOCNet Cosine, SPOC, SGD 97.55  0.243536

TPP-PHOCNet BCEL, PHOC, Adam  95.39  0.000000 ok v

PHOCNet BCEL, PHOC, Adam  95.13  0.000000 ook v

PHOCResNet BCEL, PHOC, Adam  94.56  0.000000 ok v
Table 13: Results for QbE on the IAM-DB

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet BCEL, PHOC, Adam 86.82

PHOCResNet Cosine, SPOC, SGD 85.51  0.019744 *

TPP-PHOCNet BCEL, PHOC, Adam  85.34 0.008576 K v

PHOCNet BCEL, PHOC, Adam 84.61  0.000132 ok v

TPP-PHOCNet  Cosine, SPOC, SGD 83.27  0.000000 ok v

PHOCNet Cosine, SPOC, SGD 82.46  0.000000 oAk v
Table 14: Results for QbS on the IAM-DB

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC, SGD 94.07

PHOCResNet BCEL, PHOC, Adam 93.34  0.165812

TPP-PHOCNet  Cosine, SPOC, SGD 93.22  0.112992

PHOCNet Cosine, SPOC, SGD 92.70 0.011184 *

TPP-PHOCNet BCEL, PHOC, Adam  92.10 0.000412 ok v

PHOCNet BCEL, PHOC, Adam  91.71  0.000032 ok v

Table 15: Results for QbE on the Esposalles database

Attribute CNN  Configuration mAP p-value R Symb. Significant

TPP-PHOCNet BCEL, PHOC, Adam  97.31

PHOCNet BCEL, PHOC, Adam  97.30 0.956788

TPP-PHOCNet  Cosine, SPOC, SGD 97.17  0.283956

PHOCResNet BCEL, PHOC, Adam  97.15  0.230356

PHOCNet Cosine, SPOC, SGD 97.12  0.154584

PHOCResNet Cosine SPOC, SGD 97.10 0.116056
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Table 16: Results for QbS on the Esposalles database

Attribute CNN  Configuration mAP  p-value R Symb. Significant
TPP-PHOCNet Cosine, SPOC, SGD 94.29
PHOCNet Cosine, SPOC, SGD 94.01 0.703616
PHOCResNet Cosine, SPOC, SGD 93.92 0.610524
TPP-PHOCNet BCEL, PHOC, Adam 93.72  0.440540
PHOCResNet BCEL, PHOC, Adam 93.68 0.411240
PHOCNet BCEL, PHOC, Adam 93.62 0.360332
Table 17: Results for QbE on the IFN/ENIT database
Attribute CNN  Configuration mAP  p-value R Symb. Significant
PHOCResNet BCEL, PHOC, Adam 96.93
PHOCNet BCEL, PHOC, Adam 96.57  0.078540 .
TPP-PHOCNet BCEL, PHOC, Adam 96.50 0.036652 *
PHOCNet Cosine, SPOC, SGD 93.22  0.000000 otk v
TPP-PHOCNet  Cosine, SPOC, SGD 92.75  0.000000 oK v
PHOCResNet Cosine, SPOC, SGD 92.64  0.000000 ok v
Table 18: Results for QbS on the IFN/ENIT database
Attribute CNN  Configuration mAP  p-value R Symb. Significant
PHOCResNet BCEL, PHOC, Adam 95.29
PHOCNet BCEL, PHOC, Adam 94.81  0.529952
TPP-PHOCNet BCEL, PHOC, Adam 94.27  0.183472
PHOCNet Cosine, SPOC, SGD 94.00 0.091228 .
PHOCResNet Cosine, SPOC, SGD 93.48  0.020040 *
TPP-PHOCNet  Cosine, SPOC, SGD 93.25  0.009288 K v
Table 19: Results for QbE on the Botany Train I database
Attribute CNN  Configuration mAP p-value R Symb. Significant
PHOCResNet Cosine, SPOC, SGD 43.70
PHOCResNet BCEL, PHOC, Adam  41.70  0.472120
PHOCNet BCEL, PHOC, Adam  41.04  0.349052
TPP-PHOCNet BCEL, PHOC, Adam 39.86  0.171732
TPP-PHOCNet  Cosine, SPOC, SGD 38.80  0.095748
PHOCNet Cosine, SPOC, SGD 33.29  0.000224 HoAK v
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Table 20: Results for QbS on the Botany Train I database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC, SGD 42.27

TPP-PHOCNet  Cosine, SPOC, SGD 38.19  0.354536

TPP-PHOCNet BCEL, PHOC, Adam  36.47 0.173352

PHOCResNet BCEL, PHOC, Adam  34.10  0.054192 .

PHOCNet Cosine, SPOC, SGD 32.97  0.036260 *

PHOCNet BCEL, PHOC, Adam  31.94  0.019144 *
Table 21: Results for QbE on the Botany Train IT database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet BCEL, PHOC, Adam 80.07

PHOCResNet Cosine, SPOC, SGD 78.44  0.539032

PHOCNet BCEL, PHOC, Adam 77.03  0.255864

TPP-PHOCNet BCEL, PHOC, Adam 76.55  0.205992

TPP-PHOCNet  Cosine, SPOC, SGD 73.35  0.017644 *

PHOCNet Cosine, SPOC, SGD 71.74  0.003044 *x v
Table 22: Results for QbS on the Botany Train IT database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC SGD 88.48

PHOCResNet BCEL, PHOC, Adam 86.43  0.383400

TPP-PHOCNet  Cosine, SPOC SGD 84.42  0.113032

TPP-PHOCNet BCEL, PHOC, Adam 84.23  0.095292

PHOCNet Cosine, SPOC SGD 80.83  0.006276 ok v

PHOCNet BCEL, PHOC, Adam 76.73  0.000068 ok v
Table 23: Results for QbE on the Botany Train IIT database

Attribute CNN  Configuration mAP p-value R Symb. Significant

PHOCResNet BCEL, PHOC, Adam 95.92

TPP-PHOCNet BCEL, PHOC, Adam  92.89 0.054260

PHOCNet BCEL, PHOC, Adam  92.75  0.057732

PHOCNet Cosine, SPOC, SGD 80.11  0.000000 ok v

TPP-PHOCNet  Cosine, SPOC, SGD 78.39  0.000000 ook v

PHOCResNet Cosine, SPOC, SGD 77.47  0.000000 o v
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Table 24: Results for QbS on the Botany Train III database

Attribute CNN  Configuration mAP  p-value R Symb. Significant
PHOCResNet BCEL, PHOC, Adam 98.53

TPP-PHOCNet BCEL, PHOC, Adam  96.61 0.026676 *

PHOCNet BCEL, PHOC, Adam  95.91  0.004448 oK v
PHOCNet Cosine, SPOC, SGD 90.51  0.000000 ok v
TPP-PHOCNet  Cosine, SPOC, SGD 87.78  0.000000 otk v
PHOCResNet Cosine, SPOC, SGD 87.61  0.000000 ok v

Table 25: Results for QbE on the Konzilsprotokolle Train I database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC, SGD 94.80

PHOCResNet BCEL, PHOC, Adam 90.44  0.001180 ok v

TPP-PHOCNet  Cosine, SPOC, SGD 88.47  0.000008 ok v

PHOCNet Cosine, SPOC, SGD 85.60  0.000000 otk v

TPP-PHOCNet BCEL, PHOC, Adam 84.40  0.000000 oK v

PHOCNet BCEL, PHOC, Adam 84.00  0.000000 ok v
Table 26: Results for QbS on the Konzilsprotokolle Train I database

Attribute CNN  Configuration mAP  p-value R Symb. Significant

PHOCResNet Cosine, SPOC, SGD 90.74

TPP-PHOCNet  Cosine, SPOC, SGD 84.89  0.067064 .

PHOCResNet BCEL, PHOC, Adam 84.32  0.047216 *

PHOCNet Cosine, SPOC, SGD 79.66  0.002460 oK v

TPP-PHOCNet BCEL, PHOC, Adam 77.31  0.000136 oK v

PHOCNet BCEL, PHOC, Adam 76.56  0.000232 rorok v

Table 27: Results for QbE on the Konzilsprotokolle Train IT database

Attribute CNN  Configuration mAP p-value R Symb. Significant
PHOCResNet BCEL, PHOC, Adam 98.16

PHOCResNet Cosine, SPOC, SGD 96.96  0.080852 .

TPP-PHOCNet BCEL, PHOC, Adam  96.46 0.025128 *

TPP-PHOCNet  Cosine, SPOC, SGD 95.98  0.002948 ok v
PHOCNet BCEL, PHOC, Adam  95.16  0.000548 ok v
PHOCNet Cosine, SPOC, SGD 94.85  0.000052 HoAK v
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Table 28: Results for QbS on the Konzilsprotokolle Train II database

Attribute CNN  Configuration mAP  p-value R Symb. Significant
PHOCResNet Cosine, SPOC, SGD 97.31

PHOCResNet BCEL, PHOC, Adam  97.28  0.982264

TPP-PHOCNet BCEL, PHOC, Adam  95.77 0.318436

TPP-PHOCNet  Cosine, SPOC, SGD 95.23  0.68208

PHOCNet Cosine, SPOC, SGD 94.74  0.114684

PHOCNet BCEL, PHOC, Adam  94.11 0.051304

Table 29: Results for QbE on the Konzilsprotokolle Train III database

Attribute CNN  Configuration mAP  p-value R Symb. Significant
PHOCResNet BCEL,PHOC, Adam 98.10

TPP-PHOCNet BCEL,PHOC, Adam 97.58  0.427148

PHOCNet BCEL,PHOC, Adam 96.62  0.029036 *

PHOCResNet Cosine, SPOC, SGD 96.21  0.007344 *x v
TPP-PHOCNet  Cosine, SPOC, SGD 95.51  0.000280 ok v
PHOCNet Cosine, SPOC, SGD 95.24  0.000080 ook v

Table 30: Results for QbS on the Konzilsprotokolle Train III database

Attribute CNN  Configuration mAP  p-value R Symb. Significant
TPP-PHOCNet BCEL, PHOC, Adam  97.69

PHOCResNet BCEL, PHOC, Adam  97.69  0.999908

PHOCResNet Cosine, SPOC, SGD 96.97  0.502012

PHOCNet BCEL, PHOC, Adam  96.79  0.412868

PHOCNet Cosine, SPOC, SGD 94.97  0.064156 .

TPP-PHOCNet  Cosine, SPOC, SGD 94.44  0.023748 *

136



RESULTS FOR THE SIGNIFICANCE TESTS

The following tables indicate the results of the significance test for the QbO experiments.
As all configurations used the PHOC, BCEL and Adam optimization, only the general

QbO setup is displayed as configuration, i.e., 1-Net or 2-Net (cf. Sec. 5.1).

Table 31: Results for QbO for the SKW experiments

Attribute CNN Configuration mAP p-value R Symb.  Significant

PHOCResNet 1-Net 96.60

TPP-PHOCNet  1-Net 96.42  0.524020

PHOCNet 1-Net 95.89  0.017052 *

PHOCResNet 2-Net 94.76  0.000000 ork v

PHOCNet 2-Net 94.68  0.000000 ok v

TPP-PHOCNet  2-Net 94.41  0.000000 orck v
Table 32: Results for QbO for the SUW experiments

Attribute CNN Configuration mAP p-value R Symb.  Significant

TPP-PHOCNet  1-Net 87.22

PHOCNet 1-Net 87.14  0.892648

PHOCResNet 1-Net 86.63  0.302504

PHOCNet 2-Net 77.26  0.000000 orck v

TPP-PHOCNet  2-Net 77.20  0.000000 orck v

PHOCResNet 2-Net 77.03  0.000000 ok v
Table 33: Results for QbO for the MUW experiments

Attribute CNN Configuration mAP p-value R Symb.  Significant

PHOCResNet 2-Net 86.59

PHOCResNet 1-Net 85.02  0.000000 ork v

PHOCNet 2-Net 84.96  0.000000 ok v

TPP-PHOCNet  1-Net 84.92  0.000000 ok v

PHOCNet 1-Net 84.53  0.000000 orck v

TPP-PHOCNet  2-Net 84.51  0.000000 ork v
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