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Chapter 1

Introduction

Quantum computation has been of great interest to scientists for decades. Moore’s
law says the number of transistors in a dense integrated circuit doubles every two
years [1]. With electronic devices becoming smaller and more efficient each year,
there is a natural end point for classical computing, where quantum effects become
relevant. But the future of quantum computation is not only inevitable if we want
to continue on our current trajectory of technological growth and improvement,
it also brings with it a number of unique advantages. It was Feynman who in
1982 first suggested that classical computers might not be ideal for simulating
quantum mechanical problems [2], but that a quantum mechanical system should
be preferable. A classical computer can only simulate a quantum system in a
computation time growing exponentially with the system size. His conjecture was
later proven by Bernstein and Vazirani [3], who – based on a quantum mechanical
Turing machine – showed that a quantum computer would be able to simulate
a quantum system in polynomial instead of exponential time. This constitutes
a great improvement and makes a quantum computer highly desirable. Later
works put forward different algorithms [4, 5] that could be implemented more
efficiently on a quantum computer, most famously Shor’s integer factorization
algorithm [6,7].

In a classical computer, information is stored in a bit that can take on the
states of 0 and 1 and can be implemented as a capacitor that is either charged
or uncharged. A quantum computer needs a quantum bit (or qubit), where in-
formation can be stored as the states |0〉 and |1〉, or, unlike the classical case, a
superposition of both. A variety of suggestions have been made how this qubit
should be implemented. Possible candidates for a qubit are superconducting cir-
cuits [8–10], nuclear spins of molecules in liquids [11,12], phosphorous impurities
in silicon [13] and nitrogen vacancies in diamonds [14–16]. This work, however,
focuses on electron spins trapped in semi-conductor quantum dots (QD) [17–28].
Unlike, for example, impurities in diamonds, such QDs can be easily integrated
into existing semi-conductor devices. Also, they allow for ultrafast optical initial-
ization and control [24,28,29].

The fundamental challenge in the realization of a quantum bit by a QD is
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Chapter 1. Introduction

the loss of information, as interaction with a fluctuating environment causes the
electron spin to decay over time. Trapping the electron in a QD suppresses
spin decoherence caused by free movement, but the high localization of the elec-
tron causes the Fermi contact hyperfine interaction [30] to dominate the short
time dynamics of the confined electron spin [31–35]. In order to understand the
decoherence mechanisms, an in-depth investigation of the interaction processes
influencing the electron spin dynamics in QDs on all time scale is desirable.

Gaudin [36] first proposed the central spin model (CSM) to describe QD
systems. It consists of a central electron or hole spin that interacts with its
surrounding nuclear spin bath via hyperfine interaction. The interactions between
nuclear spins are neglected. The CSM has proven to be well suited as a theoretical
description of QD systems [31, 32, 37, 38] and has been the subject of numerous
studies over the years. The CSM is integrable and solvable via Bethe ansatz,
both exactly [39–42] and stochastically [43, 44]. Due to the highly sophisticated
nature of the Bethe ansatz, its solution is limited to certain initial conditions
and bath sizes below N = 50. The highest number of nuclear spins that can be
simulated is N = 1000 via TD-DMRG [45], but this method is restricted to small
time frames.

In order to gain insight into the physics of a system, it has to be observed in ex-
periment. Spin noise spectroscopy (SNS) [46], originally proposed by Aleksandrov
and Zapasskii [47, 48], has since been established as a minimally invasive, weak
measurement of electron spin dynamics. Here, a linearly polarized laser beam
propagating through the probe experiences rotation of its polarization plane ori-
entation caused by local magnetization of the medium. SNS was employed to
observe the spin noise in an ensemble of alkali atoms [49] and in bulk semi-
conductors [50–52]. It was also used to study the influence of the nuclear-electric
quadrupolar interactions in an ensemble of semi-conductor QD [21] on the long-
time decoherence [53,54] of the second-order spin correlation [55–61].

The analysis of the second-order spin noise spectrum [38,51,54,55,57,59,61,62]
reveals much of the intrinsic dynamics of the central spin. However, the inform-
ation obtained from second-order correlation, whether in real-time or in the fre-
quency domain, is limited by the fluctuation dissipation theorem to linear effects,
if only the thermal equilibrium is considered. For this reason many experiments
utilize non-equilibrium conditions, whether generated by radio frequency [63–65]
or through periodic laser pulsing [28,66–70].

Recently, correlation functions beyond second-order were suggested [71–73]
as a way to measure quantum effects not accessible by second-order correlation
or second-order noise. Higher order spectra have also been utilized to study
dynamical decoupling schemes [73–75], and it has been shown that higher order
contributions arise from strong continuous measurement of the spin noise [76].
Bechtold et al. have measured the joint probability of finding an electron spin in
the spin-|↓〉 state at two consecutive measurements, after the electron had been
initialized in the spin-|↓〉 state in the beginning. This can be described by a
fourth-order spin correlation function. Press et al [29] slowed down the electron
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spin decay in a QD via spin echo method, where the spin echo amplitude is
likewise given by a fourth-order spin correlation function.

The focus of this work will be the studies of fourth-order correlation functions
and noise in a QD system, in order to reveal what additional information they
carry in comparison to the well-known and long studied second-order correla-
tion. The work is organized as follows: Chapter 2 gives an introduction into the
experimental background. The basic techniques and ideas are reviewed briefly:
what QDs are, how an electron spin in a QD can be manipulated, and how the
spin polarization can be measured. In Chapter 3 the theoretical modeling of all
interactions relevant to an electron localized in a QD will be discussed in detail.
We will introduce the Fermi contact hyperfine interaction and review its deriva-
tion. The simple CSM will be extended by nuclear-electric quadrupolar coupling,
where the quadrupolar moments of the nuclear spins couple to the electric strain
field of the QD. Chapter 4 gives an overview of the different correlation functions
discussed in this work, as well as a very brief introduction into cumulant theory.
Chapter 5 presents the methods used to investigate the correlation functions. The
analytical methods given are the frozen Overhauser field approximation and the
exact solution of the CSM with homogeneous hyperfine couplings. The numer-
ical methods are the calculation of second and fourth-order correlation functions
via exact diagonalisation (ED) of the Hamilton matrix, and a more elaborate
time propagation scheme based on the Lanczos method. Lastly, a semi-classical
method is presented employing the numerical solution of the equations of motion
of the spins treated as classical magnetic moments.

The central results of this thesis can be found in Chapter 6-8. Chapter 6
reviews different hyperfine coupling distributions and their effect on the second-
order correlation, as well as general features of second-order correlation and the
influence of quadrupolar coupling on its long time decay. The same chapter also
introduces the spin bath correlation and investigates it both analytically exact
and via a numerical scheme. In Chapter 7, the fourth-order spin noise is investig-
ated thoroughly using both classical and quantum mechanical methods. Chapter
8 studies the real time fourth-order spin correlation functions that were already
observed in experiments [29,72]. We show that the observables measured in both
experiments are described by fourth-order correlation functions and analyze the
physical origin of the different time scales of the decay. We provide strong evid-
ence that the additional magnetic field dependent long-time exponential decay is
governed by the relation between the quadrupolar interaction causing the deco-
herence and the nuclear Zeeman effect which is suppressing the decay.
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Chapter 2

Experimental Background

This chapter gives a brief review of the experimental background of this thesis.
Section 2.1 explains what QDs are and how they are formed. In Sec. 2.2 details
how the spin of a charge carrier trapped in a QD can be manipulated into the
desired state. Two different ways to measure the spin polarization of said charge
carrier are presented in Sec. 2.3.

2.1 Semi-conductor Quantum Dots

Figure 2.1: Uncovered InAs
QD grown with the Stranski-Kras-
tranov method anatomically re-
solved by scanning tunneling mi-
croscopy. Figure taken from Ref.
[77].

In most solid materials the atoms align in a lat-
tice whose structure is periodic in space. The
specific form of this lattice causes the charge
carriers to form energy bands. The highest en-
ergy that an electron can have at a temperat-
ure of 0K is called the Fermi energy. In metals
the Fermi energy is located in a band, which
makes the material conductive. In isolators
and semi-conductors all bands are either com-
pletely below or completely above the Fermi
energy. The bands closest to the Fermi energy
are called valence bands if they are below the
Fermi energy, and conduction bands if they are
above it. In an undoped semi-conductor or an
isolator, the lowest conduction band and the
highest valence band are separated by a band
gap, with the Fermi energy in between. The
band gap energy, the difference between the
highest valence state and the lowest conduc-
tion state, is the lowest energy needed to ex-
cite an electron bound to a valence state into a conduction state. The difference
between isolators and semi-conductors is the value of the band gap energy: In
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2.1. Semi-conductor Quantum Dots

Figure 2.2: On the left a typical simplified band structure of a semi-conductor is
shown. The conduction band is above the Fermi energy. hh stands for heavy holes,
while lh means light holes. All bands have a paraboloid shape near the band gap. One
the right one can see a schematic for the QD, with a spin trapped in the valence band
of In1−xGaxAs, between the barrier created by the much higher band gap of GaAs.

isolators, the band gap is to large to be bridged, while in semi-conductors it is
sufficiently small that a charge carrier from the valence state can be excited into
the conduction state. In this work, the experiments considered are usually con-
ducted at 6 − 8K, a temperature sufficiently low that the valence bands can be
considered completely filled and the conduction bands completely empty. If a
semi-conductor is confined in all directions by another semiconducting material
with a significantly higher band gap, carriers can be contained in the potential
well that is created. This is called a semi-conductor quantum dot (QD).

These QDs are usually several nanometers large and consist of 105−106 atoms.
Due to the high localization, the energy bands become discrete energy states.
Therefore, a QD is sometimes referred to as an ’artificial atom’. QDs can be
used as a component for single electron transistors, where the QD is sandwiched
between a source and a drain, with an applied gate voltage which controls the
QDs energy levels. Another important use for QD is as an electron trap. This
enables researchers to manipulate the charge carrier spin and observe its decay
without the carrier tunnelling away or interacting with other carriers.

There are several methods to create a QD, but the experiments we will analyze
use InGaAs QDs self-assembled via molecular beam epitaxy (MBE) based on the
Stranski-Krastanov-growth process [78,79]. There, a several atoms thick wetting
layer of InAs is applied on a GaAs surface. Due to the strain resulting from
7% smaller lattice constants of the barrier material (GaAs) compared to the dot
material (InAs), islands of InAs arch up, forming the QD. After that, another
GaAs barrier is applied. The dot material will usually also contain Ga, leading
to In1−xGaxAs dots. The lattice strain that causes the In1−xGaxAs to arch, also
creates electric field gradients which will be important later.

Control of the amount of QDs created can be achieved by increasing or de-
creasing the amount of InAs deposited on the GaAs barrier. The QD can be
n-doped with an electron or p-doped with a hole. One way to achieve n-doping
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2.2. Pumping a Quantum Dot

is by growing a doping layer, e.g. consisting of Si, underneath the substrate.
By electron tunneling from the donor atoms into the QDs, the QDs become
charged with usually one electron per QD. Another process to manipulate the
QD’s physical properties is called annealing [80]. Here, the sample is heated to
cause diffusion of the sample material into the QD and vice versa.

A QD can be doped by an electron or a hole. Since the periodic part of the
Bloch function of the conduction states is s like, the electron in the conduction
band has spin 1/2. On the other hand a valence state is p like, which means that
the hole has the total angular momentum J = 3/2. Holes with Jz = ±1/2 are
called light holes and those with Jz = ±3/2 are heavy holes, since their effective
mass is determined by the curvature of the bands, see left panel of Fig. 2.2.

Now that we briefly discussed the most important features of the quantum
system in question, we will explain how a carrier spin trapped in a QD can be
controlled.

2.2 Pumping a Quantum Dot

Pumping a QD with coherent laser pulses is one way to initialize the electron
spin in a preferred state in an optical experiment. Here, the quantization axis is
chosen to be parallel to the optical axis.

The optical selection rules are shown in Fig. 2.3 and are the same for excitation
via photon absorption as well as for relaxation via photon emission. Circularly
polarized laser pulses carry an angular momentum and can increase (σ+) or de-
crease (σ−) the total angular momentum by 1. A pulse can excite an electron
from a valence state into a conduction state and leave behind a hole. These
electron-hole pairs trapped in the QD are called excitons. If the conduction state
was already populated by an electron, the two electrons in the conduction state
will form a singlet. Together with the valence state hole, this is called a trion
state |↑↓⇑〉. Due to quantum confinement or strain, the heavy and light hole
states are separated by an energy gap of several tens of meV. Therefore, the light
hole excitation can usually be neglected. However, strain and rotational sym-
metry breaking in the QD can cause heavy to light hole coupling, which makes
all transitions shown in Fig. 2.3 possible, though heavy hole excitation still being
much more probable than light hole excitation.

Polarization is achieved in the system by applying an external magnetic field
transversal to the optical axis, where the Larmor precession is faster or equal to
the trion decay. Figure 2.3 depicts how an expectation value of polarization in a
rotating system arises during trion decay. When a QD doped with an electron is
pumped with σ− polarised light, the electron is unaffected if it is in the |↑〉 state.
Then, the electron freely precesses in the magnetic field, which is shown in Fig.
2.3 as the red spin standing still in the system rotating with Larmor frequency.
If the electron is in the |↓〉 state, a trion is excited (|↓〉 → |↓↑⇓〉, which does not
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2.3. Measuring the Polarization

Figure 2.3: On the left: Optical selection rules for exciting electrons from the valence
state to the conduction states [81]. Since the J = 1/2 and the J = 3/2 states are far
apart in energy, the J = 1/2 states can usually be neglected for optical excitation and
are not shown here. The excitation from the ±1/2 valence states is less likely than the
excitation from the ±3/2 states. A σ+ (σ−) pulse will increase (decrease) the angular
momentum by 1. On the right: Spins during trion decay in a system rotating in the
transversal magnetic field. If the spin is during the σ− pulse in the |↑〉 state, it is not
affected. If it is in the |↓〉 state, the spin is excited into the trion state. As the trion
decays, the |↓〉 is reintroduced into the rotating system at a random time, averaging
out the |↓〉 polarization.

precess since the g factor of the trion is negligible. But after a short but random
time period, the trion relaxes back into the spin |↓〉 state. As the trion decay rate
is large compared to the precession period of the rotating system, the expectation
value of the relaxed |↓〉 spin in the rotating system averages, ideally, to zero. As
nothing will happen to the spin if it is in the |↑〉 state, this creates an effective
polarization of the system.

2.3 Measuring the Polarization

It is a fundamental principle of quantum mechanics that no measurement can be
made without simultaneously perturbing the system. Observation of a particle for
instance causes the immediate collapse of the wave function describing the prob-
ability of the particle to be in a specific state. Therefore, frequent measurement
means frequent collapse of the wave function, and can suppress time evolution of
the system. This is known as the quantum Zeno effect. In this chapter, however,
we will discuss only two limits, very weak and very strong measurement. It is
possible to do a continuous measurement of polarization in an ensemble of QD
where the perturbation is weak enough to be negligible. This is called the weak
measurement limit. On the other hand, polarization can also be measured in
such a way that completely destroys the state measured, but in a predictable
way. Both methods are part of experiments discussed in this thesis.
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2.3. Measuring the Polarization

2.3.1 Weak Measurement Limit

By optically exciting a doped QD it is possible to gain information about the
state of the QD at the time of the measurement. As described in the above
section, a σ− polarized laser pulse will excite a trion if the electron is in the |↓〉
state, and the photon emitted when the trion decays can be detected. Since no
photon will be emitted if the electron is in the spin |↑〉 state, optical excitation
gives us information about the state of the system at a specific time. However,
this measurement also changes the state by exciting a trion. This section will
deal with weakly measuring the polarization within an ensemble of QDs, mean-
ing measuring the polarization without non-negligibly influencing the measured
system. While the spins were described quantum mechanically before, for the
derivation of the Faraday rotation a classical description will be used.

Figure 2.4: Schematic of a pump–
probe experiment in Voigt geometry, to
illustrate the Faraday rotation meas-
urement technique. θF denotes the
Faraday rotation angle. Figure taken
from Ref. [82].

The Faraday rotation can be used to
measure magnetic polarization in a sys-
tem. If an electromagnetic wave propag-
ates through a medium, it will induce os-
cillating electric dipoles in the atoms. The
force on an electron in an electric field ~E
and a magnetic field ~B is

~F = −e( ~E +
1

c
~v × ~B). (2.3.1)

If the magnetic field only stems from
the electromagnetic wave, | ~B| ≈ | ~E|,
the Lorentz force term can usually be
neglected since the electron moves non-
relativistically, v � c. But if a background
magnetic field is present (as is the case
when the system is polarized), the second
term contributes. If the propagation dir-
ection of the electronic wave and the back-
ground magnetic field are aligned in z direction, then the electric field ~E and the
vector ~s, which describes the displacement of the electron from equilibrium, are
constrained to the xy plane.

We assume the atomic electrons have a natural frequency ω0 and both ~s and
~E have an exp(−iωt) time dependence. The resulting equations of motion can be
solved by defining s± = sx ± isy and E± = Ex ± iEy, yielding

s± = − eE±
m(ω2

0 − ω2 ∓ Ωω)
(2.3.2)

with Ω being the cyclotron frequency Ω = eB/mc. Since the dipole moment is
P± = nees±, where ne is the number of electrons that oscillate in the applied elec-
tromagnetic field, and the polarizability is χ± = 4πP±/E±, we arrive at different
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refractory indices for left-handed and right-handed circularly polarized waves

n± =
√

1 + χ± =

√
1 +

4πe2ne
m(ω2

0 − ω2 ∓ Ωω)
. (2.3.3)

Since the cyclotron frequency is usually quite small compared to the frequency of
a light wave, ω, ω0 � Ω, the difference between the refractive index of left-hand
circularly polarized light and right-hand circularly polarized light becomes

∆n = n+ − n− ≈
4πe2neω

m(ω2
0 − ω2)2

Ω, (2.3.4)

linearly dependent on the background field strength B. The mean refractive index
can be expressed as

n =
n+ + n−

2
≈ 1 +

2πe2ne
m(ω2

0 − ω2)
. (2.3.5)

An electromagnetic wave that propagates in z direction can always be described
as a linear combination of left-hand circularly polarized and right-hand circularly
polarized light,

~E(z, t) = E+e
i(k+z−ωt)~e+ + E−e

i(k−z−ωt)~e−. (2.3.6)

Assuming that the wave was fully polarized in x direction at z = 0 ( ~E(z = 0, t) =
Ew exp(−iωt)~ex), the electromagnetic field can be written as

~E(z, t) = Ew

[
cos

(
∆nω

2c
z

)
~ex − sin

(
∆nω

2c
z

)
~ey

]
e−iωtei

nω
c
z (2.3.7)

with the change of the polarization angle by propagation distance

∂θF
∂z

=
∆nω

2c
. (2.3.8)

As electromagnetic radiation typically has frequencies much higher than the res-
onance frequency of atoms, ω � ω0, the total change of the polarization angle of
the light after having travelled through the sample is

∆θF =
e3λ2

2π(mc2)2

ˆ
dz ne(z)B(z) (2.3.9)

with the wavelength λ = 2πc/ω. This allows measurement of the polarization
and, therefore, of the state of the electron spin in a QD or a QD ensemble without
generating a spin flip and disturbing the system non-negligibly.
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Figure 2.5: A QD doped with an electron in the |↑〉-state, with applied voltage and
an asymmetric tunnel barrier. The left panel shows the system before the σ+ pulse, the
center panel shows the system immediately after the laser pulse excited a trion. Due to
the applied voltage, the hole in the valence state tunnels out. This leaves the system
in an optically inactive state with a double negatively charged QD (right panel). This
schematic describes the experiment reported on in Ref. [72].

2.3.2 Measurement with Perturbation of the System

In this set-up, sketched in Fig. 2.5, a σ+-pulse is applied to a single QD doped
with on electron. Additionally a voltage is applied, but an asymmetric tunnel
barrier prevents the electron in the conduction band of the QD from tunneling
out.

If the electron is in the |↓〉-state, nothing will happen, since the Pauli-exclusion
principle prohibits the excitation of another |↓〉-spin electron into the conduction
band. If the electron spin is in the spin-|↑〉 state, the pulse excites an electron-
hole pair (|↑〉 → |↑↓⇑〉). Due to the applied voltage, the hole tunnels out of the
QD. After that the QD is charged with two electrons (|↑↓⇑〉 → |↑↓〉) and becomes
optically inactive, since the Pauli exclusion principle prevents any more electrons
being excited. If the electron is in the spin-|↓〉 state, the σ+-pulse has no effect,
since the Pauli principle does not allow the creation of another |↓〉-electron. The
state of the spin at the time of the pulse can then be inferred via measuring the
charge of the QD.
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Chapter 3

Model

Figure 3.1: The central spin model: A
central spin ~S interacting with a bath
of nuclear spins ~Ik via the hyperfine in-
teraction couplings Ak.

In order to model the spin dynamics of
electrons trapped in QDs adequately, we
need to establish which interactions and
physical properties play a dominant role in
the QD system. The goal of this chapter
is to obtain a Hamiltonian H that incor-
porates all pertinent interactions and to
discuss realistic values for all parameters
entering the theory.

3.1 Hyperfine Interaction
and Zeeman Splitting

In this section, the hyperfine interaction of
the electron or hole with the bath of nuc-
lear spin is analyzed. We start out with a
system containing one charge carrier (elec-
tron or hole) moving in the magnetic field
of one static nucleus. The derivation in
this chapter shows that the electron-nucleus interaction is governed by the Fermi-
contact interaction, while for hole spins only the dipole-dipole interaction is non-
vanishing.

Due to the high localization of the electron in the QD the hyperfine interaction
between a carrier with a spin ~S and the surrounding nuclei becomes dominant
in the system. Fermi [30] derived the hyperfine splitting of a non-relativistic
nucleus interacting with a relativistic carrier using a perturbative approach. A
non-relativistic derivation can be found by examining a carrier with the spin ~S
and the charge e, interacting with the magnetic moment ~µ of a single nucleus
with the nuclear spin ~I [83]. We describe the magnetic properties of the nucleus
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3.1. Hyperfine Interaction and Zeeman Splitting

as those of a magnetic dipole ~µ = γN ~I, with γN being the gyromagnetic moment
of the nucleus with the spin ~I. The vector potential ~A = (~µ× ~r)/r3 = ~∇× (~µ/r)
is generated by the magnetic moment ~µ, and the magnetic field can in turn be
expressed via the vector potential ~H = ~∇× ~A. Both the interaction of the carrier
spin with the magnetic field as well as the carrier dynamics are described by the
Hamiltonian

H =
1

2me

(
~p+ e ~A

)2

+ 2µB~S · (~∇× ~A). (3.1.1)

In first order perturbation theory we retain only those terms linear in ~A and
obtain the Hamiltonian

H1 = 2µBγN
~l · ~I
r3

+ 2µBγN ~S · ~∇×

(
~∇×

(
~I

r

))
+O( ~A2). (3.1.2)

Here, µB is Bohr’s magneton, ~r is the position of the electron in relation to the
nucleus and ~l is the orbital momentum ~l = ~r×~p of the electron. The Hamiltonian
can be rewritten as

H1 = 2µBγN ~I ·

(
~l

r3
−

~S

r3
+ 3

~r · (~S · ~r)
r5

+
8

3
π~Sδ(~r)

)
. (3.1.3)

The first three terms describe the dipole-dipole interaction Hdd, while the last is
the Fermi-contact interaction, as it only contributes at the location of the nucleus.
We define the vector operator

~He = −2µB

(
~l

r3
−

~S

r3
+ 3

~r · (~S · ~r)
r5

+
8

3
π~Sδ(~r)

)
(3.1.4)

that describes the magnetic field produced by the electron at the nucleus and
write

H1 = −γN ~He · ~I. (3.1.5)

We want to express the Hamiltonian as

H1 = cj~j · ~I. (3.1.6)

with ~j being the total angular momentum ~j = ~l + ~S of the electron. Comparing
the expectation values 〈cj~j ·~j〉 and 〈−γN ~He ·~j〉 for a s-type electron, only the
Fermi-contact interaction term remains and we obtain

cj =
16

3
πµBγN |ψe(0)|2. (3.1.7)

Here ψe(~r) is the wave function of the electron.

While the electron in the conduction band of the QD is s-like, holes in the
valence band can be described by a p-type wave function. For l > 0 only the
dipole-dipole term contributes, since orbitals with l > 0 vanish at ~r = 0.
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3.1. Hyperfine Interaction and Zeeman Splitting

The z axis is aligned to [001], the growth direction of the QD. In the bases
of heavy holes (S = 3/2, Sz = ±3/2) and light holes (S = 3/2, Sz = ±1/2), the
dipole-dipole contribution to the Hamiltonian from eq. (3.1.3) can be expressed
as [34]

(Hdd)hh =
8

5
µBγNΩ|ψe(0)|2

〈
1

r3

〉(
Iz 0
0 −Iz

)
(3.1.8)

for heavy holes (hh) and

(Hdd)lh =
8

15
µBγNΩ|ψe(0)|2

〈
1

r3

〉(
Iz −2(Ix − iIy)

−2(Ix + iIy) −Iz
)

(3.1.9)

for light holes (lh). Ω is the volume of the semi-conductor’s unit cell containing
two atoms. Introducing a spin-1/2 pseudo-spin ~Sh, the dipole-dipole coupling
can, therefore, be rewritten as

(Hdd)hh =
16

5
µBγNΩ|ψe(0)|2

〈
1

r3

〉
IzSzh (3.1.10)

for heavy holes and

(Hdd)lh =
16

15
µBγNΩ|ψe(0)|2

〈
1

r3

〉
(SzhI

z − 2[SxhI
x + SyhI

y]) (3.1.11)

for light holes.

Expanding the system from the interaction between an electron or hole with
one nucleus at ~r = 0 to an electron or hole interacting with N nuclei at the
locations ~Rk, the total Hamiltonian reads

Hhf =
N∑
k=1

(H1)k, (3.1.12)

disregarding the dipole-dipole interaction between the nuclear spins. For electrons
this results in

Hhf-contact =
N∑
k=1

Jk ~S~Ik (3.1.13)

with

Jk =
16

3
πµBγN |ψ(~Rk)|2, (3.1.14)

|ψe(~Rk)|2 being the probability of the electron found at the location of the k-th
nucleus. For holes interacting withN nuclei the hyperfine interaction Hamiltonian
can be written as

Hhh =
N∑
k=1

CkS
z
hI

z
k (3.1.15)

Hlh =
N∑
k=1

Ck
3

(SzhI
z − 2[SxhI

x + SyhI
y]) (3.1.16)
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3.1. Hyperfine Interaction and Zeeman Splitting

with

Ck = Ω
16µB

5
γN

〈
1

r3

〉
|ψe(~Rk)|2. (3.1.17)

Both in the electron and the hole case, nuclei are assumed to have identical
gyromagnetic moments γN = µN/I. In reality, this is not necessarily the case.
In an InGaAs QD both Gallium and Arsenide nuclei have I = 3/2, while Indium
nuclei carry spin I = 9/2. The electron wave function ψe(~r) of a periodic state in
a QD can be written, using the Bloch theorem, as a product ψe(~r) = u(~r)ψ(~r) of
the Bloch amplitude u(~k) and the envelope function ψ(~r). The Bloch amplitude
is periodic in the crystal lattice and has its maxima at the positions of the nuclei
in the unit cells, where typical values of ηk = |u(~Rk)|2 are in the order 103 −
104 [27]. While this varies among individual nuclei, we again treat all nuclei
equally and set ηk = 1. This assumption does not influence the character of
the dynamics of the system and influences only the time scale. Since it is not
the goal to give a realistic value of the energy scale of the hyperfine coupling,
this approach is valid. Later we will introduce a time scale T ∗, governing the
decay stemming from the hyperfine interaction, as a characteristic time unit of
the system. Experimental data allows us to obtain a realistic value for T ∗ and
compare our theoretical findings to the experiments. The envelope function ψ(~r)
describes how the electron is positioned in the QD and influences the distribution
function of the hyperfine coupling constants Jk and Ck.

All these considerations lead us to define the anisotropic hyperfine interaction
Hamiltonian

Hhf =
N∑
k=1

Ak

(
IzkS

z +
1

λ
[SxIx + SyIy]

)
(3.1.18)

with λ being the anisotropy factor. To make the connection with the Hamiltonians
in eqs. (3.1.13), (3.1.15) and (3.1.16), this factor is λ = 1 for electrons, λ = 1

2

for light holes and λ → ∞ for heavy holes. Since hole states often exist in a
superposition between heavy and light hole states [34], a value of λ between 1

2

and ∞ can be used to describe this. For electrons, the prefactor Ak = Jk, for
heavy and mixed holes Ak = Ck, while for light holes the prefactor assumes
Ak = Ck/3.

In the isotropic case, the magnetic field caused by the nuclear spin bath acting
on the electron

~BN =
N∑
k=1

Ak~Ik (3.1.19)

is called the Overhauser field. In the anisotropic case the scalar Ak would have
to be replaced by a tensor. The Overhauser field dynamic is much slower than
the central spin dynamic, hence the electron spin can be described as precessing
in a static Overhauser field in short time periods [31].

16



3.1. Hyperfine Interaction and Zeeman Splitting

Symmetric to the Overhauser field, the nuclear spin ~Ik can be described as
precessing in the magnetic field generated by the carrier, the Knight field Ak ~S.

While the Ak for electrons and holes have different physical backgrounds, both
are governed by the probability of the electron being measured at the location of
the k-th nuclei |ψ(~Rk)|. Independently of the nature of the carrier spin, the Ak
can be written as

Ak = AsΩ|ψ(~Rk)|2 (3.1.20)

where the prefactor As can be deduced by comparison with the coupling constants
defined in Eqs. (3.1.13), (3.1.15) and (3.1.16). |ψ(~Rk)|2 is a probability function
and, therefore, normal. If we assume that the volume of one unit cell Ω is very
small compared to the volume of the QD and that |ψ(~Rk)|2 can be considered
constant within one unit cell, we can write

1 =

ˆ
dV |ψ(~r)|2 ≈ Ω

N∑
k=1

|ψ(~Rk)|2. (3.1.21)

It follows from Eqs. (3.1.20) and (3.1.21) that the prefactor As is

As =
N∑
k=1

Ak (3.1.22)

an energy scale that describes the total energy of the hyperfine interaction in
the system. Because of the normalization condition of the probability function
|ψ(~Rk)|2, As is independent of the coupling constant distribution. Usually, As
is in the order of O(10µeV) for electrons [21, 35] and O(1µeV) for holes [34].
The Hamiltonian in Eq. (3.1.18) completely describes the hyperfine interaction

I µ/µN γN/µN γN/µB
75As 3/2 1.439 0.959 5.22×10−4

69Ga 3/2 2.015 1.343 7.31×10−4

71Ga 3/2 2.560 1.709 9.31×10−4

115In 9/2 5.535 1.230 6.70×10−4

Table 3.1: Magnetic moments and gyromagnetic ratios found in InGaAs QDs [84].

between an electron or hole spin with a bath of nuclear spins. However, in most
experiments an external magnetic field is applied to the sample, which acts on
both the carrier spin and the nuclear spins. Incorporating an externally applied
magnetic field ~B into our model results in the Hamiltonian

HCSM = gµB~S ~B + γN

N∑
k=0

~Ik ~B +
N∑
k=1

Ak

(
IzkS

z +
1

λ
[SxIx + SyIy]

)
. (3.1.23)

Again it is assumed that all nuclear spins are identical, in that they share gyro-
magnetic ratio γN, and thus exhibit the same strength of Zeeman splitting γN| ~B|.
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3.2. Quadrupolar Coupling

While the g-factor of a free electron is ge ≈ 2, localized in an InGaAs QD ge = 0.54
has been measured [55]. The g-factor varies between electron and holes, with the
hole g-factor in InGaAs being gh = 0.16 [55]. µB is the Bohr magneton. Due to
the difference in mass, the Zeeman splitting of the nuclei is significantly smaller
than the Zeeman splitting of the electron, the nuclear magneton µN = e/2mp,
with mp being the proton mass, is by a factor of µB/µN = 1836.109 smaller than
the Bohr magneton µB = e/2me. Examples for gyromagnetic ratios of the com-
mon isotopes in InGaAs QD are given in Tab. 3.1. Because the nuclear Zeeman
splitting is about three orders of magnitude smaller than the electronic Zeeman
splitting, it is often neglected. However, in large external magnetic fields the
nuclear Zeeman splitting enters the same order of magnitude as the hyperfine
interaction and the later discussed quadrupolar coupling and can, therefore, no
longer be neglected. The ratio between the electron Zeeman splitting and the
nuclear Zeeman splitting will in the following be defined as

ζ =
γN
gµB

. (3.1.24)

3.2 Quadrupolar Coupling

The growth process of QDs, that in the case of molecular beam epitaxy relies
on a mismatch of lattice constants between growth layers, can lead to lattice
strain. Lattice strain causes the emergence of electric field gradients in the QD,
which couple to the nuclear spins. The nuclear spin translates to a prolate nuclear
charge distribution, which presents a nuclear quadrupole moment Q, see Fig. 3.2.

In deriving the quadrupole Hamiltonian one starts with describing the Cou-
lomb interaction between the charge distribution ρn(rn) of one nucleus and ρe(re)
of the electrons around the nucleus and expands this expression up to quadrupole
order. The Wigner-Eckart theorem makes it possible to describe the interaction

Figure 3.2: Left: A prolate nuclei can be described by a spherical and a quadrupolar
charge distribution. Right: Randomly selecting the quadrupolar orientation vector ~nzk
within a cone around the optical z axis [81, 85].
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3.2. Quadrupolar Coupling

between two charge distributions as the interaction between the nuclear spin ~I
and the classic electrostatic potential V (rn) produced by the electrons at the
location of the nucleus. In the end, the quadrupole Hamiltonian describing the
interaction of one nucleus and the electron cloud can be derived [83,86] to be

HQuad, e-n =
eVzzQ

4I(2I − 1)

{
3I2
z − I(I + 1) +

η

2
(I2

+ + I2
−)
}
, (3.2.1)

where the spin is quantified along the easy axis. I+ = Ix + iIy and I− = Ix− iIy
are the spin ladder operators of the nuclear spin. The anisotropy factor η =
(Vxx − Vyy)/Vzz corresponds to the axial symmetry of the system. Here, as the
coordinate axes x, y and z we choose to use the principal axes of the electric field
gradient

Vij =
∂2V

∂xi∂xj
, (3.2.2)

so that the non-diagonal elements of Vij amount to zero. In order to describe
a bath of N nuclei with a nuclear spin length I, one has to consider that Vij
differs for each nucleus. Therefore we define ~nxk, ~n

y
k and ~nzk as the principal axis

of the Hesse-matrix Vij of the electrostatic potential V (~Rk) at the k-th nucleus.
These are called the quadrupolar orientation vectors. This allows us to write the
quadrupole Hamiltonian of the whole bath as

HQ =
N∑
k=1

q̃k

(
(~Ik~n

z
k)

2 − I(I + 1)

3
+
η

3
(~Ik~n

x
k)

2 − η

3
(~Ik~n

y
k)

2
)

(3.2.3)

with

q̃k =
3eQk

4I(2I + 1)
V k
zz (3.2.4)

being the strength of the quadrupolar interaction of the k-th nucleus. In eq.
(3.2.3) the base was transformed from the sum of the electrons interactions with
each spin. HQ only yields non-zero contributions if the nuclear spins are I > 1/2.
In fact it can be shown [83] that a nucleus with a spin I will only have non-
vanishing moments of the order l ≤ 2I+ 1. This means that for the nuclear spins
of Ga or As, where the spin length is I = 3/2, neglecting all moments higher
than quadrupolar order is exact. Note that HQ conserves time reversal symmetry
[59], contrary to simplified approaches to modelling quadrupolar interaction by a
random magnetic field and I = 1/2 [61].

There are several different parameters governing the behaviour of the quad-
rupolar interaction: (i) The anisotropy factor η is often neglected, but has been
found to be η ≈ 0.5 in self assembled QDs [87], which is the parameter setting we
will use in the following. (ii) The quadrupolar orientation axes ~nzk that have been
reported to be at a mean deviation angle of θ = 23◦ for an In0.4Ga0.6As QD [87]
with the z axis. This mean angle can be reproduced numerically by generating
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3.3. Characteristic Time Scale

isotropically distributed vectors and discarding any vector at an angle larger than
θmax = 34◦. The remaining basis vectors ~nxk and ~nyk are then chosen to create an
orthonormal base. iii) The quadrupolar coupling constants of the nuclei, q̃k, are
randomly generated from a unitary distribution with q̃k ∈ [0.5 : 1].

All these parameters are influenced by the growth process and can vary
strongly between samples. Previous works [59,85] showed that choosing the para-
meters as specified above results in the correct prediction of experimental data
for second-order correlation functions in InAsGa QD.

3.3 Characteristic Time Scale

The second-order correlation function 〈Sz(t)Sz〉 decays on a time scale character-
istic to the QD, in the absence of a magnetic field and quadrupolar coupling. One
can expand the second-order correlation in time by expressing the time evolution
with a Taylor series with the Hamiltonian H, yielding

〈Sz(t)Sz〉 = 〈eiHtSze−iHtSz〉

= 〈
∑
n

(iHt)n

n!
Sz
∑
m

(−iHt)m

m!
Sz〉

= 〈SzSz〉+ it 〈[H,Sz]Sz〉 −
t2

2
〈[H, [H,Sz]]Sz〉+O(t3).

(3.3.1)

If we go to the high temperature limit and regard all states as equally occupied
in an unpumped system (ρ = 1/D, with D being the dimension of the Hilbert
space), the term linear in t vanishes, and 〈Sz(t)Sz〉 can be written as

〈Sz(t)Sz〉 =
1

4
− t2

8λ2

N∑
k=1

A2
k 〈Ixk Ixk + IykI

y
k 〉+O(t3). (3.3.2)

At t = 0, the nuclear spins are not correlated with the electron and are isotropic
in their average orientation, due to the absence of an external magnetic field.
Therefore we can assume that 〈I ikI ik〉 = I(I + 1)/3 with i = x, y, z. This leads us
to the expression

〈Sz(t)Sz〉 =
1

4
−
(

t

4T ∗

)2

+O(t3) (3.3.3)

where we introduce the characteristic time scale

T ∗ = λ

√
3

4I(I + 1)

1∑
A2
k

=
1

ωfluc

. (3.3.4)

We see that in the first non-vanishing order the central spin dynamics is governed
by the characteristic time scale T ∗. In the isotropic case the characteristic time
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3.3. Characteristic Time Scale

scale is inversely proportional to

√
〈 ~B2

N〉 =

√√√√I(I + 1)
N∑
k=1

A2
k (3.3.5)

the fluctuation frequency of the Overhauser field. Note that for heavy holes,
the anisotropy factor λ → ∞, and the characteristic time scale is no longer
applicable. Having defined the characteristic time scale T ∗ allows us to define the
characteristic energy scale ωfluc = 1/T ∗ as its inverse. In the following, we will
use the dimensionless central spin model Hamiltonian

HCSM = T ∗HCSM = ~b~S + ζ
N∑
k=1

~Ik~b+
N∑
k=1

ak

(
IzkS

z +
1

λ
[SxIx + SyIy]

)
(3.3.6)

with the dimensionless hyperfine coupling constants ak = T ∗Ak, the Zeeman
splitting ratio ζ = γN/gµB and the dimensionless external magnetic field ~b =

T ∗gµB ~B.

The dimensionless Hamiltonian of the quadrupolar interaction HQ = T ∗HQ

is defined in a similar manner

HQ =
N∑
k=1

qk

(
(~Ik~n

z
k)

2 − I(I + 1)

3
+
η

3
(~Ik~n

x
k)

2 − η

3
(~Ik~n

y
k)

2
)
. (3.3.7)

In order to compare the strength of the hyperfine interaction with the quadrupolar
interaction strength, we introduce the ratio

Qr =

∑
k qk∑
k ak

(3.3.8)

which will be used in the following to quantify the interaction strength. The
dimensionless quadrupolar coupling constants qk can be obtained through

qk = Qrq̃k

∑
k ak∑
k q̃k

(3.3.9)

to fulfil Eq. (3.3.8).
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Chapter 4

Cumulants and Correlation
Functions

Cumulants and correlation functions are highly useful mathematical concepts
that have application in numerous fields. They can, for instance, be employed in
diagrammatic perturbation theory to describe correlation in the Anderson lattice
with Coulomb repulsion [88, 89]. Correlation functions appear as two-particle
Greens functions in dynamical mean field theory on non-local correlation in the
Hubbard model [90–92]. In the full counting statistics cumulants are used to
describe shot noise and charge fluctuation [93, 94]. In the CSM, second-order
spin correlations have likewise been widely studied [57–59,61,95–97].

Correlation functions are used to quantify the correlation between the measur-
ands of two or more operators. The amount of operators whose interdependence
the correlation function describes gives the order of the correlation function. An
auto-correlation function, which describes the correlation of a measurand with
itself at different times (for example the spin polarization at the beginning of the
measurement and some time later) can be used to evaluate the decay of an initial-
ized measurand in a system. In a static system the auto-correlation function of
any measurand will always be constant, as no information is lost. Compare this
to a very noisy system, where any information that has been put into the system,
for example through pumping a spin into a specific state, will decay quickly. The
Fourier transformation of the correlation function is called noise.

Higher order spin correlators link measurands at several times (or in the case
of higher order noise, frequencies). Therefore it is possible that they contain
additional information compared to the second order, which makes them an in-
teresting object to study.

This work focuses on correlation functions and noise of an electron spin in-
teracting with a nuclear spin bath. While the main focus here are fourth-order
correlators, second-order spin correlation will also be investigated in order to
compare the results to experimental findings and thus to find realistic values for
the parameters of the system.
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4.1. Cumulant Theory

In this chapter the correlators studied in this thesis are defined. The corres-
ponding experiments are discussed as well as the fourth-order correlators derived
by measurement theory if necessary.

4.1 Cumulant Theory

Cumulants are a widely applicable mathematical tool that plays an important
role in probability theory, and is crucial in quantum mechanics as well as in
thermodynamics [98]. The cumulant generating functional

K(ξ) = log
〈
eξX
〉

(4.1.1)

with some parameter ξi and the random variable X is linked to the exponentiated
series of the n-th order cumulant κn via

K(ξ) =
∞∑
n=1

ξn

n!
κn. (4.1.2)

This observation had a profound impact for analysis of noise [99] as well as dia-
grammatic perturbation theory. The first cumulant of a set of random variables
is the mean

κ1 = 〈X〉c = 〈X〉 . (4.1.3)

The subscript c refers to the cumulant average. The second-order cumulant of
two variables X1 and X2 is defined as

〈X1X2〉c = 〈X1X2〉 − 〈X1〉〈X2〉 (4.1.4)

and is identical to 〈X1X2〉 if either X1 or X2 have a mean equal to zero. This can
be systematically extended to higher order cumulants [98], such as the third-order
cumulant
〈X1X2X3〉c =〈X1X2X3〉 − 〈X1X2〉〈X3〉 − 〈X2X3〉〈X1〉+ 〈X1X3〉〈X2〉

+ 2〈X1〉〈X2〉〈X3〉
(4.1.5)

and the fourth-order cumulant
〈X1X2X3X4〉c =〈X1X2X3X4〉 − 〈X1〉〈X2X3X4〉 − 〈X2〉〈X1X3X4〉

− 〈X3〉〈X1X2X4〉 − 〈X4〉〈X1X2X3〉 − 〈X1X2〉〈X3X4〉
− 〈X1X3〉〈X2X4〉 − 〈X1X4〉〈X2X4〉+ 2〈X1〉〈X2〉〈X3X4〉
+ 2〈X1〉〈X3〉〈X2X4〉+ 2〈X1〉〈X4〉〈X2X3〉+ 2〈X2〉〈X3〉〈X1X4〉
+ 2〈X2〉〈X4〉〈X1X3〉+ 2〈X3〉〈X4〉〈X1X2〉 − 6〈X1〉〈X2〉〈X3〉〈X4〉.

(4.1.6)

As can be seen in Eqs. (4.1.4), (4.1.5) and (4.1.6), the n-th order cumulant is
given by the n-th order auto-correlation function from which all Gaussian noise is
subtracted [98]. This separates the true higher order correlations from a trivial
factorisation. If a system would be fully characterized by Gaussian noise, all
higher order cumulants would be vanishing [99]. Using cumulants, we can discern
true correlation from randomness.
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4.2. High Temperature Limit

4.2 High Temperature Limit

The quantum mechanical expectation value of an operator O is defined as

〈O〉 = Tr[ρO] (4.2.1)

with ρ being the density operator of the system. In equilibrium, the density
operator is given by the Boltzmann distribution

ρeq =
1

Z
e−βH . (4.2.2)

H is the system Hamiltonian, β = 1/kBT the inverse of the thermal energy, the
product of the temperature T and the Boltzmann constant kB. Z denotes the
partition function

Z = Tr[e−βH ]. (4.2.3)

Spin noise experiments in semi-conductor QDs are usually performed at around
T = 5K, which translates to a thermal energy kBT = 431µeV. The fluctuation
frequency of the Overhauser field is, depending on the QD, around ωfluc = 109 1/s
[35], which gives the characteristic energy scale of the system ~ωfluc = 0.7µeV.
With the thermal energy being approximately 650 times higher than the systems
characteristic energy scale, it is justified to apply the limit T →∞. The equilib-
rium density operator then becomes ρeq = 1/D, as all states are equally occupied.
D is the dimension of the Hilbert space.

If very high external magnetic fields are applied, the high temperature limit
may not be valid. At a magnetic field strength of Bext = 13.5T the thermal
energy kBT and the electronic magnetic energy geµBBext become equal. Since
the magnetic fields considered in this thesis remain far below this, the high tem-
perature limit will be used throughout.

4.3 Second-Order Correlation Function and Noise

Due to the high temperature limit causing all states to be equally occupied, we
can neglect the equilibrium spin polarization 〈Sz〉. This leads the second-order
spin-spin auto-correlation function

C̃2(t1, t2) = 〈Sz(t1)Sz(t2)〉 (4.3.1)

to be identical to its cumulant 〈Sz(t1)Sz(t2)〉c. It describes the correlation between
the z component of the spin at the start of the measurement t1 and at time t2.

We also assume that the system is in equilibrium, which means that the
Hamiltonian commutes with the density operator. Since the system is transla-
tionally invariant in time, the correlation function only depends on the relative
time τ = t1 − t2. It can also be written as

C2(τ) = 〈Sz(τ)Sz(0)〉. (4.3.2)
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For systems that are translationally invariant in time one time variable can always
be eliminated in higher order correlation [99] in favour of relative time coordinates.
Therefore, the n-th order correlation function only depends on n−1 time variables.

The second-order spin correlation function C2(τ) describes the correlation
between the z-component of the spin at the start of the measurement and at
time t. In a typical pump-probe experiment, the spin is initialized at t = 0 in one
state, and then left to decay while being simultaneously measured via Faraday
rotation. The density operator caused by the initialisation, for example into the
|↑〉-state, can be described by ρinitial = 2P↑/D, P↑ being the projection operator
into the |↑〉-state. Therefore, the polarization can be written as

S(t) =
2

D
Tr[P↑Sz(t)]. (4.3.3)

Since P↑ = 1/2 + Sz and all spin matrices are traceless, the polarization yields

S(t) = 2 〈Sz(t)Sz〉 = 2C2(t) (4.3.4)

in the high temperature limit. The polarization along the z axis that is measured
by Faraday rotation is thus directly equitable with the second-order correlation
function.

This work will analyze correlators both in the frequency domain and in the
time domain. In order to access the frequency information for spin correlation
functions, we introduce the Fourier transform of the spin operator Sz,

a(ω) =
1√
Tm

ˆ Tm/2

−Tm/2
dt e−iωtSz(t), (4.3.5)

defined over the measurement time Tm starting at t0 = −Tm/2. The spin noise
is defined as the Fourier transform of C2(τ) = 〈Sz(τ)Sz(0)〉

C2(ω) =

ˆ ∞
−∞

dτ〈Sz(τ)Sz(0)〉e−iωτ . (4.3.6)

The steady-state spin auto-correlation 〈a(ω1)a(ω2)〉 is related to the spin noise
power spectrum via the Wiener-Chintchin theorem [46,100]. It requires that the
measuring time Tm is much longer than the characteristic time scale of the spin
decay T ∗ (Tm � T ∗). Since the measuring time Tm is very large compared
to the characteristic time scale of spin decay T ∗, we perform the limit Tm →
∞ to simplify the mathematical expressions. However, applying the limit can
lead to divergence in expressions. Substituting the Fourier transformation (4.3.5)
and using the translational invariance in time, we obtain the second-order spin
correlation function in the frequency domain

C̃2(ω1, ω2) = lim
Tm→∞

〈a(ω1)a(ω2)〉

= lim
Tm→∞

1

Tm

ˆ Tm
2

−Tm
2

dt1 e
−iω1t1

ˆ Tm
2

−Tm
2

dt2 e
−iω2t2〈Sz(t1)Sz(t2)〉

=δω1,−ω2C2(ω).

(4.3.7)
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4.4. Third-Order Correlation

The spin-noise spectrum C2(ω) satisfies the sum rule
ˆ ∞
−∞

dωC2(ω) =
π

2
. (4.3.8)

Note that the inclusion of the prefactor 1/
√
Tm into the definition of the Four-

ier transformation ensures the convergence of C̃2(ω1, ω2). It also leads to the
Kronecker δ in the last line of Eq. (4.3.7).

4.4 Third-Order Correlation

The third-order spin correlation function

C3(t1, t2, t3) = 〈Sz(t1)Sz(t2)Sz(t3)〉 (4.4.1)

will, in contrast to the second and fourth-order spin correlation, not be subject
of further investigation. The reason is that C3 is always imaginary in a system
without quadrupolar interaction and an external magnetic field ~B = (Bx, 0, Bz)

T .
In this case the Hamilton matrix is symmetric and real. Diagonalisation yields
the eigenvectors |n〉 and eigenvalues εn, satisfying

H |n〉 = εn |n〉 (4.4.2)

that are real as well. The spin operator Sz then is symmetric and real in the
eigenbasis of the Hamilton matrix, 〈n|Sz|m〉 = 〈m|Sz|n〉. Snm = 〈n|Sz|m〉 is used
in the following for abbreviation.

By inserting the identity

1 =
∑
n

|n〉 〈n| , (4.4.3)

one can rewrite the third-order correlation as

C3(t1, t2, t3) =
1

D

∑
nml

ei(En−Em)t1ei(Em−El)t2ei(El−En)t3SnmSmlSln. (4.4.4)

Through complex conjugation we obtain

C∗3(t1, t2, t3) =
1

D

∑
nml

e−i(En−Em)t1e−i(Em−El)t2e−i(El−En)t3SnmSmlSln

=C3(−t1,−t2,−t3).

(4.4.5)

Now, we introduce the time reversal operator T . T acts on the spin operator as

T−1Sz(t)T = −Sz(−t). (4.4.6)
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4.5. Fourth-Order Spin Noise and Correlation

With this, the result of Eq. (4.4.5) can be expressed as

C3(−t1,−t2,−t3) =
1

D
Tr[Sz(−t1)Sz(−t2)Sz(−t3)]

=− 1

D
Tr[T−1Sz(t1)TT−1Sz(t2)TT−1Sz(t3)T ]

=− C3(t1, t2, t3).

(4.4.7)

This means that C∗3(t1, t2, t3) = −C3(t1, t2, t3), which proves that the third-order
spin correlation is completely imaginary in the high temperature limit. This
reasoning can be extended to any spin-auto correlation function of odd numbered
order in a system that is described by a symmetric Hamilton matrix. Since C3 is
imaginary, it cannot be an observable, and is, therefore, of no further interest in
this work.

4.5 Fourth-Order Spin Noise and Correlation

The second-order spin correlation has been extensively studied both in the fre-
quency and the time domain [49,53,57]. In contrast, the properties of fourth-order
correlation functions remain relatively unknown [73]. In order to separate the in-
formation already provided by C2 from any new information that can be found
in C4, we introduce the fourth-order spin cumulant [99] of a(ω) in this section.

The fourth-order cumulant of a(ω) is defined as

S̃4(ω1, ω2, ω3, ω4) =C̃4(ω1, ω2, ω3, ω4)

− C̃2(ω1, ω2)C̃2(ω3, ω4)

− C̃2(ω1, ω3)C̃2(ω2, ω4)

− C̃2(ω1, ω4)C̃2(ω2, ω3),

(4.5.1)

where we neglected the spin polarization in a finite magnetic field which is justified
in the high temperature limit. The assumption of a steady state and the limit
Tm � T ∗ yields

C̃4(ω1, ω2, ω3, ω4) = δω1+ω2+ω3+ω4,0C4(ω1, ω2, ω3,−(ω1 + ω2 + ω3)).

An interesting special case of the fourth-order cumulant is the bispectrum

S4(ω1, ω2) =S̃4(ω1,−ω1, ω2,−ω2)

=C4(ω1, ω2)− C2(ω1)C2(ω2)

× (1 + δω1,ω2 + δω1,−ω2)

(4.5.2)

with C4(ω1, ω2) = C̃4(ω1,−ω1, ω2,−ω2). S4(ω1, ω2) describes the correlation
between two spin noise components at different frequencies. If the observation
of a spin component with the frequency ω1 decreases the likelihood of observing
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4.5. Fourth-Order Spin Noise and Correlation

a spin component with the frequency ω2, S4(ω1, ω2) is going to have a negat-
ive value. In the limit Tm → ∞, the last two terms in Eq. (4.5.1) are zero for
S4(ω1, ω2) unless ω1 = ±ω2. The bispectrum describes how power spectra at
two different frequencies are correlated. Similarly to the second-order spectrum,
C4(ω1, ω2) also follows a sum rule, in this case

ˆ ∞
−∞

dω1

ˆ ∞
−∞

dω2C4(ω1, ω2) =
π2

4
. (4.5.3)

Since the contributions to S4(ω1, ω2) containing δω1,±ω2 are infinitesimally nar-
row, it follows from Eqs. (4.3.8) and (4.5.3) that the integral of S4(ω1, ω2) over the
ω1 − ω2 plane yields zero. This means that there is just as much anti-correlation
as correlation in the bispectrum, since

ˆ ∞
−∞

dω1

ˆ ∞
−∞

dω2C2(ω1)C2(ω2) =
π2

4
(4.5.4)

as well.

Similarly to the spin noise in the frequency domain, the spin correlation in
real time is defined as

C4(τ1, τ2, τ3) = 〈Sz(τ1)Sz(τ2)Sz(τ3)Sz(0)〉 (4.5.5)

where the fourth time could again be eliminated via the assumption of steady
state and the introduction of relative times.

In the long measurement limit Tm →∞ , the Fourier transform of C4(ω1, ω2)
yields

FC4(ω1, ω2) =
1

Tm

ˆ Tm/2

−Tm/2
dτ〈Sz(t1 + τ)Sz(τ)Sz(t2)Sz〉

=
1

Tm

ˆ Tm/2

−Tm/2
dτC4(t1 + τ, τ, t2).

(4.5.6)

The integrand describes the correlation of two C2(t1/2) measurements with dif-
ferent starting times t = 0 and t = τ , which is then averaged over the time delay
between both measurements.
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Chapter 5

Methods

This chapter will discuss both the analytical and numerical methods employed
in this work. Section 5.1 introduces the semi-classical frozen Overhauser field
approximation, which treats the nuclear spin dynamics as static and is very good
at describing the systems short term dynamics. In Sec. 5.2 the box model solution
is presented, where the CSM can be described exactly for an arbitrary number of
spins if the hyperfine coupling constants are assumed to be homogeneous. Section
5.3 shows how second and fourth-order correlation functions can be calculated via
full exact diagonalisation of the Hamilton matrix. Sec. 5.4 introduces the Lanczos
method with restarts, where the correlation is computed through a numerical time
propagation scheme. And lastly, a semi-classical method is presented in Sec. 5.5,
employing a numerical solution of the equations of motion of the spins treated as
classical magnetic moments.

5.1 Frozen Overhauser Field Approximation

The simplest way to find an analytical expression for the short time spin dynamics
is via a mean field approach [31]. The nuclear spins precess at a much slower rate
than the central electron spin, since the electron spin is interacting with all nuclear
spins, while the nuclear spins see each only the magnetic field generated by the
electron spin. For short time scales, the Overhauser field

~BN =
∑
k

Ak~Ik (5.1.1)

can be treated as a frozen classical vector. This is called the frozen Overhauser
field approximation (FOA). The Hamiltonian of an electron spin precessing in a
static Overhauser field and external magnetic field reads as

H = ( ~BN + ~Bext)~S =
1

2
~B~σ =

1

2

(
b3 b1 − ib2

b1 + ib2 −b3

)
. (5.1.2)
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5.1. Frozen Overhauser Field Approximation

Here, ~B = ~BN + ~Bext is the total field with the components (b1, b2, b3)T . We
change into the eigenbasis, in order to obtain the time evolution operator

U(t) = U †BDIAG
(
e∓iωLt/2

)
UB. (5.1.3)

Diagonalization of the Hamilton matrix results in the Larmor frequency

ωL = | ~B| (5.1.4)

and

UB =

√
|~b|2 − b2

3

2|~b|

 1√
|~b|−b3

1√
|~b|+b3√

|~b|−b3
b1−ib2 −

√
|~b|+b3

b1−ib2

 . (5.1.5)

Any spin operator can always be expanded in a linear combination of Pauli spin
matrices,

Sz(t) = U †(t)SzU(t) = ~c(t)~σ (5.1.6)

with the time dependent vector ~c(t) = (c1(t), c2(t), c3(t))T being

c1(t) =
b3

√
|b|2 − b2

3

2|b|2
(1− cos(ωLt)) (5.1.7)

c2(t) =

√
|b|2 − b2

3

2|b|
sin(ωLt)) (5.1.8)

c3(t) =
b2

3

2|b|2
+
|b|2 − b2

3

2|b|2
cos(ωLt). (5.1.9)

The vector algebra relation

(~a~σ)(~b~σ) = (~a~b)1 + i(~a×~b)~σ (5.1.10)

is used to obtain the second-order spin correlation

C2(t1 − t2) = 〈Sz(t1)Sz(t2)〉

=
1

Z
Tr ((~c(t1)~σ)(~c(t2)~σ))

=~c(t1)~c(t2)

(5.1.11)

as well as the fourth-order spin correlation

〈Sz(t1)Sz(t2)Sz(t3)Sz(t4)〉 =
1

Z
Tr ((~c(t1)~σ)(~c(t2)~σ)(~c(t3)~σ)(~c(t4)~σ))

=(~c(t1)~c(t2))(~c(t3)~c(t4))− (~c(t2)~c(t4))(~c(t1)~c(t3))

+ (~c(t1)~c(t4))(~c(t2)~c(t3)).

(5.1.12)
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5.1. Frozen Overhauser Field Approximation

For the second-order correlation one can easily derive

C2(t) =
1

4
((n2

1 + n2
2) cos(ωLt) + n2

3) (5.1.13)

via Eq. (5.1.11). ~n = (n1, n2, n3)T is the normalized total magnetic field vec-
tor. These derivations of the correlation functions are only for one single fixed
Overhauser field. Since nuclear spin bath consists of a large number of mag-
netic moments with random orientation, the Overhauser field obeys the Gaussian
distribution [31]

W ( ~BN) =

(
2

π

)3/2

(T ∗)3e−2(| ~BN |T ∗)
2

. (5.1.14)

The FOA solution for C2 is then obtained by averaging over all possible Over-
hauser field configurations. In the absence of a magnetic field this can be done
analytically, yielding [31]

C2(t) =
1

12

{
1 + 2

[
1− 2

(
t

2T ∗

)2
]

exp

[
−
(

t

2T ∗

)2
]}

. (5.1.15)

If an external magnetic field is applied and finding an analytical expression is no
longer possible, we generate a large number of Overhauser field configurations
from a Gaussian distribution and average the resulting correlations. The FOA
describes short time dynamics accurately, but does not feature any long term
decay of correlation. This is not surprising since the long-time decay is caused
by the nuclear spin dephasing that the FOA neglects.

Fig. 5.1 shows C2(t) computed in the FOA, averaged over 106 Overhauser
fields for (a) large and (b) small magnetic field strengths. It is clear to see in Fig.
5.1 a) that for external magnetic fields exceeding the Overhauser field (bx > 1),
the correlation quickly decays in O(T ∗). Therefore, long-time dynamics of the
system cannot be observed when a transversal magnetic field is applied. Since
the distribution of Overhauser fields is Gaussian in the limit of infinite number of
nuclear spins the envelope of the oscillation is Gaussian as well. The frequency of
the oscillation is the Larmor frequency ωL. Just for a very small or no external
magnetic field the spin correlation does not decay completely. Therefore, it is
only this regime where we will be able to investigate features that influence the
decay after long times, such as the quadrupolar interaction. The impossibility
to investigate the influence of quadrupolar interaction with external magnetic
fields bx > 1 in the second-order correlation function will be important later
when the advantages of fourth-order correlation are discussed. In the absence of
a magnetic field, the curve progression of C2(t) is described by Eq. (5.1.15). As
the exponential term completely decays for t� T ∗, the correlation remains at a
constant Clim = 1/12 for large time. The local minimum is governed by the term
quadratic in t.
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5.2. Exact Solution with Homogeneous Couplings

Figure 5.1: C2(t) computed in the FOA averaged over 106 Overhauser fields. Panel
(a) shows the behaviour at higher magnetic fields (bx = 10, 50), while panel (b) features
C2(t) at small to intermediate fields (bx = 0, 1, 5).

For the fourth-order spin auto-correlation function one obtains analogously
for one Overhauser configuration

C4(t1, t1 + t2, t1) =
1

16
[n4

3 + (n2
1 + n2

2)2 cos(ωL(t1 − t2))

+ n2
3(n2

1 + n2
2){cos(ωLt2) + cos(ωLt1)}].

(5.1.16)

The results of the FOA for specific fourth-order correlations and noise will be
discussed in the Chapter 7 and Chapter 8 studying their specific features.

5.2 Exact Solution with Homogeneous Couplings

Now we want to derive an exact solution of the correlation in the CSM under
the assumption of homogeneous couplings (box model) Ak = A0 and an external
magnetic field ~bext = bz~ez, proposed by Kozlov [101]. The ratio between nuclear
and electron Zeeman energy, ζ, is also assumed to be the same for all bath spins.
Unlike the semi-classical approximation, this approach incorporates the bath spin
dynamics. However, without a spread of coupling constants, this solution fails
to describe the long-time decoherence accurately. For homogeneous coupling
constants the bath can be described as one large spin ~I =

∑
k
~Ik. This results in

the Hamiltonian

H = bzSz + ζbzIz + a0

(
IzSz +

1

2λ
(I+S− + I−S+)

)
. (5.2.1)
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5.2. Exact Solution with Homogeneous Couplings

For nuclear spins Ik = 1/2, the characteristic time scale is given by

T ∗ = λ

(∑
k

A2
k

)−1/2

=
λ

A0

√
N
. (5.2.2)

using Eq. (3.3.4) which results in the dimensionless coupling constant of eq.
(5.2.1)

a0 = T ∗A0 =
λ√
N
. (5.2.3)

The subspace of a given multiplet I is spanned by the Ising states {|I,−I〉 , ... |I, I〉.
Adding the central electron spin, we arrive at the basis [101]

B ={|I,−I〉 |↓〉 , |I,−I〉 |↑〉 , |I,−I + 1〉 |↓〉 ,
|I,−I + 1〉 |↑〉 , ..., |I, I〉 |↓〉 , |I, I〉 |↑〉}

(5.2.4)

for the Hamiltonian. In the special case without magnetic field (bz = 0) or
anisotropy (λ = 1), the Hamiltonian can be written as

H =
a0

2
(F 2 − I2 − S2) (5.2.5)

with the total system spin ~F = ~I + ~S. The eigenstates and eigenvalues can be
derived easily via spin addition [27].
With an anisotropy or an applied magnetic field, exact diagonalization is still
possible. In the basis B, the Hamilton matrix is given by

H =



E+(I, 0) . . . 0
M−I+1

I . . .
... M−I+2

I

...
... . . . ...
... M I

I

...
0 . . . E−(I, 2I + 1)


. (5.2.6)

E±I (I, n) are scalars

E+(I,−I) = 〈I,−I| 〈↓|H |↓〉 |I,−I〉 =
a0I − bz

2
− ζbzI, (5.2.7)

E−(I, I + 1) = 〈I, I| 〈↑|H |↑〉 |I, I〉 =
a0I + bz

2
+ ζbzI, (5.2.8)

for n = 0, 2I + 1 and ML
I are 2× 2 matrices in the basis {|L〉 |↓〉 , |L− 1〉 |↑〉},

ML
I =

(
− bz+a0L

2
+ zbzL ξLI

ξLI
bz+a0(L−1)

2
+ ζbz(L− 1),

)
(5.2.9)
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with

ξLI =
a0

2λ

√
I(I + 1)− L(L− 1). (5.2.10)

Through diagonalization of the 2 × 2 submatrices ML
I , the eigenvalues for n =

1, ..., 2I

E±(I, L) = −a0

4
± 1

2

√(a0

2
(2L− 1) + bz(1− ζ)

)2

+ 4 (ξLI )
2
. (5.2.11)

and the eigenstates

|I,L,−〉 =

AI,L,− |I, L〉 |↓〉+ BI,L,− |I, L− 1〉 |↑〉 ,
|I,L,+〉 =

AI,L,+ |I, L〉 |↓〉+ BI,L,+ |I, L− 1〉 |↑〉 .

(5.2.12)

are obtained. Here, the pre-factors AI,n,± and BI,n,± amount to

AI,L,± =
2ξLI√

(bz + a0L+ 2EL,± − 2ζbzL)2 + (2ξLI )2
,

BI,L,± =
bz + a0L+ 2EL,± − 2ζbzL√

(h+ a0L+ 2EL,± − 2ζhL)2 + (2ξLI )2
,

(5.2.13)

and give the mixing of the Ising states of the basis B. The first and last eigenstates
in our basis, n = 0, 2I + 1, are the Ising states with extremal polarization, where
no spin flip can occur,

|I, 0,+〉 = |I,−I〉 |↓〉 (5.2.14)
|I, 2I + 1,−〉 = |I, I〉 |↑〉 (5.2.15)

with the corresponding eigenvalues from eq. (5.2.8).

Now we are able to evaluate the dynamics of any desired observable that can
be expressed in the basis B. Here, we are specifically interested in autocorrelation
functions of the form C(t) = 〈O(t)O〉 with

C(t) =
1

Z

N/2∑
I=0

Nw(I)
∑
σ,σ′=±

2I+1∑
n,m=0

| 〈I, n, σ|O1|I,m, σ′〉 |2

× exp(i(Eσ(I, n)− Eσ′(I,m))t).

(5.2.16)

For the total bath spin length I there are

Nw(I) =
(N/2− I)!(2I + 1)

N/2 + I + 1
(5.2.17)

of possible configurations for a bath with an even bath size N . In the high
temperature limit all states are equally occupied, and the partition function reads
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5.2. Exact Solution with Homogeneous Couplings

Figure 5.2: C2(t) computed in the box model for N = 500 nuclear spins without
magnetic field, plotted alongside the FOA results averaged over 106 Overhauser fields.

Z = 2N+1 for 1/2 bath spins. For the autocorrelation function of the electronic
spin transverse to the magnetic field, one arrives at

〈Sx(t)Sx(0)〉 =
1

4Z

N/2∑
I=0

Nw(I)
∑
σ,σ′=±

2I∑
n=0

A2
n,σB

2
n+1,σ′

× cos((Eσ(I, n)− Eσ′(I, n+ 1))t).

(5.2.18)

To simplify the sum expression, we have defined AI,0,− = BI,0,± = AI,2I+1,± =
BI,2I+1,+ = 0 and AI,0,+ = BI,2I+1,− = 1.
The autocorrelation function of the total bath spin transverse to the magnetic
field can be computed analogously,

〈Ix(t)Ix〉 =
1

4Z

N/2∑
I=0

Nw(I)
∑
σ,σ′=±

2I∑
n=0

[An,σAn+1,σ′Bn,σBn+1,σ′

×
√
I(I + 1)− (−I + n+ 1)(−I + n)

×
√
I(I + 1)− (−I + n− 1)(−I + n)]2

× cos((Eσ′(n+ 1)− Eσ(n))t).

(5.2.19)

This expression can be easily evaluated in a computing time of O(N2), which is
highly preferable to a computation time of O(D), since the Hilbert-space dimen-
sion grows exponentially with the bath size N .

To obtain the spin noise, the spin correlation is brought in the frequency
domain. Fourier transformation of Eq. (5.2.18) yields

C2(ω) =
π2

Z

N/2∑
I=0

Nw(I)
∑
σ,σ′=±

2I∑
n=0

A2
n,σB

2
n+1,σ′

× [δ(ω − (Eσ′(n+ 1)− Eσ(n)))]

(5.2.20)
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with the delta-distribution δ(ω −∆E). The nuclear spin bath noise is obtained
analogously

(I2
x)ω =

1

4Z

N/2∑
I=0

Nw(I)
∑
σ,σ′=±

2I∑
n=0

[An,σAn+1,σ′Bn,σBn+1,σ′

×
√
I(I + 1)− (−I + n+ 1)(−I + n)

×
√
I(I + 1)− (−I + n− 1)(−I + n)]2

× [δ(ω − (Eσ′(n+ 1)− Eσ(n)))] .

(5.2.21)

In order to properly present the spectra, the delta-distributions are represented
by the Lorentzian

Γ(ω,∆E) =
1

π

γ

(ω −∆E)2 + γ2
(5.2.22)

with the broadening factor T ∗γ = 0.01 in all following results.

Fig. 5.2 proves that this method concerning the box model produces congruent
results to the FOA. But the exact solution in the box model has the following
advantage: With this method the nuclear spin bath dynamics can be investigated
for large baths, while it is considered frozen in the FOA.

5.3 Full Exact Diagonalization

So far we discussed two different analytical schemes in order to obtain the spin
dynamics. They have the benefit of being computationally advantageous and
able to simulate large to infinite number of nuclear spins. They are, however,
very limited in the interactions they model, and their predictions are only valid
for short times. Therefore, the following two section will present two numerical
schemes able to simulate the full quantum mechanical model with inhomogeneous
hyperfine interaction and quadrupolar interaction.

Matrix diagonalization schemes are fairly canonical. Here, a pre-existing
LAPACK routine was used. What is more interesting is how to compute fourth-
order correlation function optimally, once the eigenvalues εν and the eigenvectors
|ν〉 following

H |ν〉 = εν |ν〉 (5.3.1)

are known. The second-order correlation of an arbitrary hermitian operator O
can be computed in a straight-forward manner

〈O(t)O〉 =
1

D

D∑
nm

|Onm|2ei(εn−εm)t (5.3.2)
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with Onm = 〈n|O|m〉 in a computation time of O(D2) and D being the dimension
of the Hilbert space. This is not ideal, but since the matrix diagonalization also
takes a computation time of O(D3), this does not exacerbate the problem. But
in the case of a fourth-order correlation of two arbitrary hermitian operators O1

and O2, this simple scheme

O4(t1, t2) = 〈O1(t1)O2(t1 + t2)O1(t1)O2〉

=
1

D

D∑
nmkl

O1
nmO

2
mkO

1
klO

2
lne

i(En−El)t1ei(Em−Ek)t2
(5.3.3)

results in a computation time of O(D4). Since the Hilbert space dimension D
grows exponentially with the system size, this computation time is not viable. We
can, however, use a matrix multiplication scheme in order to drastically reduce
computation time. We can rearrange the term of Eq. (5.3.3) to

O4(t1, t2) =
1

D

∑
ml

[∑
k

O2
mke

i(Em−Ek)t2O1
kl

][∑
n

O2
lne

i(En−El)t1O1
nm

]
=

1

D

∑
ml

Aml(t2)Blm(t1)

=
1

D

∑
m

[A(t2)B(t1)]mm

=
1

D
Tr[A(t2)B(t1)]

(5.3.4)

with

Aml(t) =
∑
k

O2
mke

i(Em−Ek)tO1
kl (5.3.5)

Blm(t) =
∑
k

O2
lke

i(Ek−El)tO1
km. (5.3.6)

We want to compute these matrices efficiently using pre-existing optimised linear
algebra packages. Therefore, we define the auxiliary matrices

Õ1
lk(t) = O1

lke
iElt (5.3.7)

Õ2
lk(t) = O2

lke
iElt. (5.3.8)

A and B can then be obtained via matrix multiplication of Õ1 and Õ2.

Aml(t) =
∑
k

Õ2
mk(t)Õ

1
kl(−t) =

[
Õ2(t)Õ1(−t)

]
ml

Blm(t) =
∑
k

Õ2
lk(−t)Õ1

km(t) =
[
Õ2(−t)Õ1(t)

]
lm

(5.3.9)

For every time pair (t1, t2) the fourth-order spin correlation is evaluated at, the
computation time of the auxiliary matrices is O(Dk), with 2.4 < k < 2.8 de-
pending on the optimized algorithm. Computation of the matrices A and B
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is O(Dk) as well. It is possible to achieve a considerable speed-up by using a
highly optimised LAPACK or BLAS routine for matrix multiplication and trace
evaluation. By keeping the computation time per time-pair in O(D3) instead of
O(D4), obtaining a fourth-order correlation function becomes feasible. We sac-
rifice memory for the speed-up, since the auxiliary matrices as well as A and B
need to be stored. The memory requirement also grows exponentially with the
number of nuclear spins.

The number of nuclear spins one is able to simulate using exact diagonalization
is thus very limited. In order to reduce the effects of this limitation, Nc Ak
configurations are generated, and a configuration average obtained. This reduces
finite size effects and thus compensates for the small bath size.

This scheme is applicable to both fourth-order correlations we analyze in this
thesis. For the correlation function measured by the three pulse measurement
G4(t1, t1 + t2, t1), O1 = O2 = P↓. In the case of the fourth-order correlation
measured by the spin echo method, Pg0,g0(T, τ), the operators differ O1 = Sy and
O2 = Sz, and the time-pair is casted from (t1, t2) to (T + τ, T − τ).

5.4 Lanczos Method with Restart

In a large system it is often not numerically viable to evaluate the dynamics
exactly, since the dimension of the Hilbert space, D, grows exponentially with
system size. In this section we will discuss the Lanczos algorithm, a method to
find a representation of the Hamiltonian in a much smaller subspace. This enables
us to propagate a state in time without knowing all eigenvalues and eigenstates.

5.4.1 The Lanczos Algorithm and Time Propagation

The time propagation of an arbitrary state |r〉 can be expressed by Taylor expan-
sion. Terminating the expansion

e−iHt |r〉 = |r〉 − iHt |r〉 − 1

2
H2t2 |r〉+

1

6
iH3 |r〉+ ... (5.4.1)

after M � D summands will result in a vector living in

KM(|r〉) = span(|r〉 , H |r〉 , ..., HM−1 |r〉), (5.4.2)

the M dimensional Krylov space. The error made in this truncation is of the
order of O(HM tM). Therefore it is not exact for arbitrarily large times, like the
full exact diagonalization. In order to express a representation of the Hamiltonian
within the Krylov space, the Lanczos algorithm [102] constructs an orthonormal
base of the subspace. The first base vector is chosen to be |φ0〉 = |r〉, the normal-
ized vector we want to propagate. The second base vector is obtained by applying
the Hamiltonian to the state and subtracting the component parallel to |φ0〉,

b1 |φ1〉 = |φ̃0〉 = H |φ0〉 − a0 |φ0〉 (5.4.3)
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5.4. Lanczos Method with Restart

with b2
n = 〈φ̃n|φ̃n〉 and an = 〈φn|H|φn〉. The next two base vectors can be derived

similarly,

b2 |φ2〉 = |φ̃2〉 = H |φ1〉 −
1∑
i=0

|φi〉 〈φi|H |φ1〉 = H |φ1〉 − a1 |φ1〉 − b1 |φ0〉 (5.4.4)

b3 |φ3〉 = |φ̃3〉 = H |φ2〉 −
2∑
i=0

|φi〉 〈φi|H |φ2〉 = H |φ2〉 − a2 |φ2〉 − b2 |φ2〉 .

(5.4.5)

The orthogonalization of the base vectors and Eq. (5.4.3) results in 〈φ2|H|φ0〉 = 0.
Therefore, the last summand in Eq. (5.4.5) vanishes. All further orthonormal base
vectors can be obtained analogously,

bn+1 |φn+1〉 = |φ̃n+1〉 = H |φn〉 − an |φn〉 − bn |φn−1〉 . (5.4.6)

Rearrangement of Eq. (5.4.6)

H |φn〉 = bn |φn−1〉+ an |φn〉+ bn+1 |φn+1〉 (5.4.7)

shows the representation of the Hamiltonian in the Krylov space to be tridiagonal.
Diagonalization of

H(M) =



a0 b1 0 0 0 0
b1 a1 b2 0 · · · 0 0
0 b2 a2 b3 0 0
0 0 b3 a3 0 0

... . . . ...
0 0 0 0 aM−2 bM−1

0 0 0 0 · · · bM−1 aM−1


. (5.4.8)

results in the eigenvectors |ζn〉 and the eigenvalues εn

H(M) |ζ〉 = εζ |ζ〉 . (5.4.9)

To transfer the eigenvectors |ζ〉 into the original Hilbert space, the transition
matrix

Φ = (φ1, φ2, ..., φM) (5.4.10)

is defined. We gain a set of M approximate eigenvectors of H by the base trans-
form

|ν〉 = Φ |ζ〉 . (5.4.11)

This then enables us to propagate the state |r〉 in time by inserting an identity
matrix

1 =
M∑
ν

|ν〉 〈ν| , (5.4.12)
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in the Krylov space. This results in

e−iHt |r〉 ≈
M∑
ν

e−iενt 〈ν|r〉 |ν〉 , (5.4.13)

a term that is easily evaluated in a computing time of O(M), once the eigenval-
ues and eigenvectors of H(M) are known. Since |r〉 is the first base vector of the
Krylov space, 〈νn|r〉 = ~ν[0]. Computing H(M) for one starting vector |r〉 and
a Hamiltonian H needs a computation time O(DM), since one needs to apply
H M times to a state. The diagonalization takes a computation time of O(M3).
In the case of M � D, this constitutes a great decrease in computation time
and memory requirement compared to full exact diagonalization. The Lanczos
method, however, is not always stable and can suffer from a loss of orthogonal-
ization, where a larger M does not translate into a longer time one is able to
correctly simulate. In the following sections we will discuss a scheme that allows
us to evolve the state in discrete time steps.

Fast dynamics, such as a large external magnetic field bx � 1, limit the max-
imum time the Lanczos algorithm can simulate while keeping the accumulating
error minimal. If the external magnetic field bx is high and the hyperfine and
quadrupolar interactions can be neglected, the eigenvalues become degenerate,
taking the form E± = ±bx(1− ζ)/2, see Eq. (5.2.11). Since the Taylor expansion
is terminated after the Mth summand, the M + 1 summand should fulfil the
relation

1

(M + 1)!
(E+t)

M+1 < 1, (5.4.14)

which, solved for t, becomes

tmax =
2

bx(1− ζ)
M+1
√

(M + 1)!. (5.4.15)

In the case of an external field bx = 100, with a Lanczos depth of M = 200
and ζ = 0, the maximum simulation time becomes tmax = 1.85T ∗, which is
why the method of ’restarting’ the algorithm will be introduced in the following
chapters. Note that simply increasing M will not work limitlessly, since errors
in the orthogonalization process accumulate. Generally speaking, decreasing the
simulated time is better than increasing M .

5.4.2 Stochastic Evaluation of the Trace

While the Lanczos method yields M approximate eigenvalues and eigenstates
in a time O(M3), the expectancy value of an arbitrary operator O has to be
obtained. In order to do this, we have to evaluate the trace without knowing all
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5.4. Lanczos Method with Restart

Figure 5.3: Panel (a) depicts C2(t) computed with Lanczos for N = 18 spins I = 1/2
without a magnetic field. The number of random starting vectors R is varied. Each
starting vector is time evolved with a different configuration of hyperfine coupling con-
stants. Panel (b) shows a detailed plot to make the convergence wit R more visible.

D eigenstates. Therefore, it is advantageous to use stochastic trace approximation
[103]. Here, we chose a small number R� D of random vectors |r〉

|r〉 =
D∑
i=1

ξri |i〉 (5.4.16)

where |i〉 is an orthonormal base spanning the entire Hilbert space, and the ran-
dom coefficients ξri obey the statistics

〈〈ξri 〉〉 =0 (5.4.17)

〈〈ξri ξri 〉〉 =δij/
√
D (5.4.18)

Then the trace is approximated by

Tr[O] =
∑
i

〈i|O|i〉 =
1

R

R∑
r=1

〈r|O|r〉+O
(

1√
DR

)
. (5.4.19)

The relative error made by this approximation is of the order O(1/
√
DR) [103].

This is fortuitous, as in large systems the relative error actually decreases. The
larger the Hilbert space, the less random states need to be evaluated to achieve
the same accuracy. This is evidenced in Fig. 5.3, where the total number of
randomly generated starting vectors does not have to be large for the results to
converge, due to the large Hilbert space (N = 18, I = 1/2).
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5.4. Lanczos Method with Restart

Figure 5.4: Panel (a) shows C2(t) in the absence of a magnetic field and a bathsize of
N = 18 computed with different Lanczos depths M . For comparison, C2(t) resulting
from a Lanczos algorithm with a restart performed in intervals of δt = 50T ∗ with a
depth of M = 128 is shown alongside. Panel (b) the maximum time at which the
results of the Lanczos method are still valid is plotted in relation to the Lanczos depth
M .

5.4.3 Application to Second Order Correlation Functions

It is now the goal to apply the aforementioned technique to a second-order auto-
correlation function,

〈O(t)O〉 =
1

D
Tr[O(t)O] ≈ 1

RD

R∑
r=1

〈r|eiHtOe−iHtO|r〉 . (5.4.20)

Since we are interested in second-order correlations of different operators, we
will use an arbitrary operator O as a placeholder. The Lanczos method is used
to propagate the initial states |r1〉 = |r〉 and the normalized starting vector
|r2〉 = O |r〉 /

√
〈r|O2|r〉. The second starting vector |r̃2〉 = O |r〉 needs to be

normalized in order to correctly perform the Lanczos method, the first starting
vector is already normalized by definition of the stochastic trace evaluation. The
time propagation results in the term

〈O(t)O〉 =

√
〈r|O2|r〉
RD

R∑
r

M∑
ν1

M∑
ν2

ei(ε1ν−ε2ν)t 〈ν1|r1〉 〈ν2|r2〉 〈ν1|O|ν2〉 , (5.4.21)

where the prefactor
√
〈r|O2|r〉 accounts for the normalization of |r2〉.

However, as previously mentioned, the maximum time that can be simulated
with sufficient accuracy through this method is limited. The Lanczos algorithm,
through an accumulation of numerical inaccuracies, can lose orthogonality of the
basis vectors |φn〉 for large M . If we want to simulate large times, we cannot
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Figure 5.5: In the left panel (a) C2(t) is plotted in the absence of a magnetic field
and a bathsize of N = 18 computed with the Lanczos depth M = 64 and different
distances between restarts δt. The right panel, (b), shows C2(t) obtained for δt = 50
with different Lanczos depths M .

simply increase M , since the accuracy does not improve after a threshold M .
The loss of accuracy with time is shown in Fig. 5.4. The maximum simulation
time for which the results of the Lanczos method are still reliable grows linear
with the Lanczos depth M . Therefore, we have to employ the Lanczos method
with restarts, in which the second-order auto-correlation function is written as

〈O(t)O〉 =
1

RD

R∑
r

〈1r(t)|O|2r(t)〉 (5.4.22)

with

|1r(t)〉 = e−iHt |r〉 (5.4.23)
|2r(t)〉 = e−iHtO |r〉 . (5.4.24)

The time is discretized to tn = nτ , n ∈ Z and the recursion relation

|ψ(tn)〉 = e−iHτ |ψ(tn−1)〉 (5.4.25)

is used to propagate a state |ψ(tn)〉 in reasonable small time increments τ . This
incremental time propagation calculated through the Lanczos algorithm and ex-
pressed as

|1r(tn)〉 = e−iHτ |1r(tn−1)〉 =
√
〈1r(tn−1)|1r(tn−1)〉

M∑
ν

e−iεnν τc1
n(tn−1) |νn1 〉

(5.4.26)

where c1
n(tn−1) = 〈νn1 |1r(tn−1)〉. The result becomes exact for τ → 0. The

normalized state |1r(tn−1)〉 /
√

1r(tn−1)|1r(tn−1) is used as the starting vector for
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the algorithm. To arrive at |1r(tNt)〉, Nt Lanczos time evolution steps have to be
computed. The same time evolution is needed for the vector |2r(t)〉,

|2r(tn)〉 = e−iHτ |2r(tn−1)〉 =
√
〈2r(tn−1)|2r(tn−1)〉

M∑
ν

e−iεnν τc2
n(tn−1) |νn2 〉 ,

(5.4.27)

where c2
n(tn−1) = 〈νn2 |2r(tn−1)〉 and the normalized starting vector of the al-

gorithm |2r(tn−1)〉 /
√

2r(tn−1)|2r(tn−1). Having gained both |1r(tn)〉 and |2r(tn)〉,
we can calculate the auto-correlation function 〈O(t)O〉 using Eq. (5.4.22). 2Nt

Lanczos iterations are needed for Nt time steps. We can obtain intermediate time
points by substituting τ with ∆t (0 < ∆t < τ) in Eq. (5.4.26) and (5.4.27), cal-
culating correlation function at tn−1 + ∆t. This way, several time steps between
tn−1 and tn can be obtained without having to perform the Lanzcos algorithm
with a different starting vector. This gives us the flexibility to chose τ smaller
or larger depending on the dynamics of the system, while keeping the same time
resolution. The advantage of this method can be seen in Fig. 5.5, where the
results converge for M = 64 and a distance between restarts of δ = 50.

5.4.4 Application to Fourth Order Correlation Functions

In this section we review how to use the Lanczos method with restarts on fourth-
order correlation C4 in the special case of τ1 = τ3 = t, τ2 = 2t

C4(t, 2t, t) = 2 〈Sz(t)Sz(2t)Sz(t)Sz〉

=
2

RD

R∑
r

〈1r(t)|SzeiHtSze
−iHtSz|2r(t)〉

(5.4.28)

as introduced in Chapter 4. |1r(t)〉 and |2r(t)〉 are the time propagated vectors

|1r(t)〉 = e−iHt |r〉 (5.4.29)
|2r(t)〉 = e−iHtP↓ |r〉 (5.4.30)

and we proceed analogous to the time propagation in Sec. 5.4.3 arriving at

|1r(tn)〉 = e−iHτ |1r(tn−1)〉 =
M∑
n

e−iεnν τc1
n(tn−1) |νn1 〉 , (5.4.31)

where c1
n(tn−1) = 〈νn1 |1r(tn−1)〉 and a discretized time tn = nτ , n ∈ Z. The same

time evolution is needed for the vector |2r(t)〉,

|2r(tn)〉 = e−iHτ |2r(tn−1)〉 =
M∑
n

e−iεnν τc2
n(tn−1) |νn2 〉 , (5.4.32)
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where c2
n(tn−1) = 〈νn2 |2r(tn−1)〉. Until now the procedure is the same as for the

second-order correlation function. But now we need to additionally propagate

|3r(tn)〉 = e−iHtn |3r(0)〉 (5.4.33)
|4r(tn)〉 = e−iHtn |4r(0)〉 (5.4.34)

in time, where the starting points are |3r(0)〉 = Sz |1r(tn)〉 and |4r(0)〉 = Sz |2r(tn)〉.
For each point tn in time, two Lanczos propagations have to be performed. The
fourth-order correlation function

C4(t, 2t, t) =
2

RD

R∑
r

〈3r(t)|Sz|4r(t)〉 . (5.4.35)

can then be easily evaluated, since the Sz is diagonal in the original Ising basis. In
conclusion, 4n Lanczos time evolutions are necessary to arrive at the single value
of C4(tn, 2tn, tn). Here we first calculate a set of N vectors |1r(tn)〉 and |2r(tn)〉,
then compute G4(tn, 2tn, tn) by a parallelized algorithm for obtaining |3r(tn)〉 and
|4r(tn)〉.

5.5 Classical Equations of Motion

Results obtained by the classical equations of motion method [67,69] are compared
to fourth and second-order correlation within the fully quantum mechanical model
in this work. Therefore, this section briefly reviews this method for completeness.
For a more details see Refs. [67, 69,104].

Comparing quantum mechanical observables with their classical equivalents
can be useful to ascertain if a feature is uniquely quantum mechanical in nature.
Classically, spins can be imagined as magnetic dipoles rotating freely in a mag-
netic field. The classical limit is most accurate for very long spins or very large
spin baths. In this chapter we will derive classical equations of motion that de-
scribe the spin dynamics in the central spin model. In quantum physics, the
dynamics of an arbitrary operator Ô(t) can be expressed using the Heisenberg
equation

dÔ
dt

= i[H, Ô]. (5.5.1)

After the commutators [H, ~S] and [H, ~Ik] are derived employing quantum mechan-
ical commutator relations, we shift from the quantum mechanical to the classical
model. Then the spin components can be expressed as the magnetic dipole’s spa-
tial orientations. If the quadrupolar interaction is completely isotropic (η = 0),
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the dynamics of the spins are described by the equations of motion

d~S
dt

= ~btot,S × ~S (5.5.2)

d~Ik
dt

= ~btot,Ik × ~Ik (5.5.3)

with

~btot,S = ~bext +
∑
k

ak~Ik (5.5.4)

and

~btot,Ik = ζ~bext + ak ~S + 2qk(~nk~Ik)~nk. (5.5.5)

The same result can likewise be derived via path integral formalism [37,105]. With
a bath of N spins, we end up with a system of 3(N+1) coupled linear differential
equations. This can be solved by a number of schemes, but the results shown in
this work were derived by a 4th order Runge-Kutta method1.

Since the spins are modelled as freely rotating magnetic moments in the clas-
sical EOM, the spin length does not influence the dynamics except for a scaling
factor.

Of course the expectation value cannot be computed quantum mechanically in
the case of classical equation of motion. Here, the expectation value is obtained
via a configuration average over all initial cofigurations [69,105]. The integral over
the Bloch sphere [31,106] of each spin is realized in good approximation by taking
the mean over a finite number Nc of randomly generated spin configurations.

1This was done by Natalie Jäschke. All results from the method of classical equations of
motion in this work are her intellectual property and are presented in this thesis with her
permission.
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Chapter 6

Second-Order Correlation and Spin
Noise

Second-order spin correlation is a well known quantity that has been extensively
investigated in both theory and experiment. While the main focus of this thesis is
fourth-order correlation functions, understanding the second-order electron spin
correlation and electron spin noise is necessary for analyzing fourth-order cor-
relation. This helps to identify which features of fourth-order correlation actu-
ally carry new information. Because second-order correlation is well studied, we
can also use it to choose realistic parameters for simulation. A part of the res-
ults presented here have already been published or are currently in print, see
Ref. [104,107].

6.1 Distribution of Hyperfine Coupling Constants

As discussed in Sec. 3.1, the hyperfine coupling constants are given by the prob-
ability of the electron being at the location of the nuclei, see Eq. (3.1.20). We
assume that in a d-dimensional QD the envelope of the electron wave function
reads

ψe(~r) = CL
−d/2
0 exp

(
− |~r|

m

2Lm0

)
, (6.1.1)

with m = 1 describing a hydrogen-like wave function and m = 2 a Gaussian
envelope of the wave function. C is the dimensionless normalization constant.
The dimension d = 2 describes self-assembled QDs where the size quantization
along the growth axis is much stronger than that in the QD plane, while d = 3 is
applicable to isotropic QDs. The distribution of the hyperfine coupling constants
thus becomes

Ak = Amax exp

(
−|~r|

m

Lm0

)
. (6.1.2)
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Figure 6.1: The empirical probability distribution of the coupling constants Ak for a
bath of N = 17 nuclear spins, obtained by generating 106 sets of Ak. (a) and (b) show
the distribution Ak,2 defined in Eq. (6.1.8) with a) d = 2 and b) d = 3. In (c) and (d)
the distribution Ak,1 defined in Eq. (6.1.5) is presented, for (c) d = 2 and d) d = 3. A
Gaussian envelope function is assumed (m = 2) in all panels.

There are several ways to implement an Ak distribution that fulfils Eq. (6.1.2),
of which this work utilizes two.
First we present the coupling constant distribution derived and applied in [58]. We
randomly pick a nuclear spin within a cut-off distance R0 from the electron. That
this random nuclear spin is at a distance r from the electron has the probability
of P (r) = drd−1R0. Using the relation P (r)dr = P (A)dA yields

P (A) =
d

m

(
L0

R0

)d
1

A

(
ln

(
A

Amax

))d/m−1

, (6.1.3)

the probability of picking a nuclear spin with the coupling constant A. This
probability distribution is only defined betweenAmin = Amax exp(−Rm

0 /L
m
0 ), since

all nuclear spins beyond the cut-off radius R0 are neglected, and the maximal
possible coupling constant Amax = AsΩC

2/Ld0. We define

γ(Ak) =

ˆ Amax

Ak

P (A)dA (6.1.4)

the probability of the selected nuclear spin having a coupling constant between
Ak and Amax. γ(Ak) is a monotonous increasing function in the value range [0, 1].
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Rearranging for Ak yields

Ak,1 = Amax exp(−rm0 γm/d) (6.1.5)

with r0 = R0/L0. In this work, γ is randomly selected from a uniform distribution
[0, 1]. The distribution of Eq. (6.1.5) was applied in Refs. [57–60].

The second approach to the coupling constant distribution proposed in Ref.
[32] allows for a tighter control of the hyperfine couplings, which makes sure that
a single particularly strong Ak doesn’t dominate the dynamic. This makes it
more suited for very small baths (N < 10). If the k-th nuclear spin lies at the
distance rk to the electron, and we assume that the nuclei density in the volume
r < L0 is by a factor α smaller than in the volume r < rk, we obtain(

rk
L0

)d
= α

k

N
. (6.1.6)

While it is not physical reality that the density of nuclear spins decreases with
the distance to the electron, the density of non-negligible spins certainly does.
Introducing the factor α allows us to discard more negligibly contributing nuclear
spins, which is especially necessary for small baths. Inserting this relation into
Eq. (6.1.2) yields

Ak = Amax exp

(
−
(
α
k

N

)m/d)
. (6.1.7)

In order to introduce randomness, the exponent is varied by a uniformly distrib-
uted random number zk ∈ [0.5 : 0.5], which results in

Ak,1 = Amax exp

(
−
(
α
k − zk
N

)m/d)
(6.1.8)

and enables us to average over different sets of Ak. This randomisation pre-
serves the relation Ak > Ak+1∀ k. If not otherwise specified, a 2-dimensional QD
with a Gaussian electron wave function is studied, leading to an exponential Ak,2
distribution.

6.2 Central Spin Correlation

The second-order spin correlation C2(t) = 〈Sz(t)Sz〉 and its features have been
amply discussed in Ref. [85]. If no external magnetic field or interactions beyond
the hyperfine interaction are present, C2(t) decays on the scale of O(T ∗) and
exhibits a local minimum at tdip ≈ 3T ∗. After that it increases again to a value of
about 1/12. Further decorrelation is governed by the distribution of the hyperfine
coupling constants. If the hyperfine interaction constants are homogeneous (Ak =
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Figure 6.2: Panel (a): Comparison between the spin noise C2(ω) for different ap-
proaches: the quantum mechanical ED simulation with N = 13 I = 1/2 nuclear spins,
a classical EOM simulation of N = 100 spins and C2(ω) computed in the FOA. Panel
(b): C2(t) for bx = 0 computed with a Lanczos with restarts for N = 18 spin I = 1/2
and an EOM simulation for N = 100 spins. Both have the same Ak distribution, follow-
ing (6.1.5) with r0 = 1.5. The EOM and the FOA data in the left panel has previously
been published in Ref. [104].

A0 ∀k) or the FOA holds, C2(t) stays at a constant Clim = 1/12. This has
previously been discussed in Sec. 5.1 and Sec. 5.2.

A non-homogeneous distribution of hyperfine couplings leads to a long-time
O(104T ∗) decay of correlation, whose exact dynamics depends on the spread of
the hyperfine couplings [85,108]. It has been shown [31] that the long-time limit
of the central spin correlation depends solely of the ratio u = 〈A2

k〉 / 〈Ak〉
2,

Clim(u) =
1

6π
(u− 1)3

ˆ ∞
0

dydz
[2y cosh(2y)− sinh(2y)]2

yz sinh(2y)

× exp

[
−(1 + (u− 1)2)z2 − y2

z2

]
.

(6.2.1)

For u = 1, the limit becomes Clim = 1/12. This describes a system with ho-
mogeneous hyperfine couplings (box model). For an infinite spread of hyperfine
couplings, u → ∞, the limit of C2(t) is Clim = 0. Between u = 1 and u → ∞,
Clim(u) monotonically decreases, as an increasing spread of hyperfine couplings
leads to an increasing decorrelation. Introducing a larger transversal magnetic
field (bx > 1) changes this long-time behaviour, as C2(t) oscillates with the Lar-
mor frequency around zero and decays with a Gaussian envelope in O(1T ∗).

A basic understanding of spin noise, thoroughly investigated in Refs. [54,57–
59], can be achieved when using the Fourier transformation of the results from
the FOA [31] expressed in Eq. (5.1.15) for C2(t), which is performed analytically
in the case of ~b = 0, resulting in

C2(ω) =
1

12

[
2πδ(ω) + ω2(

√
8T ∗)3

√
πe−2(ωT ∗)2

]
. (6.2.2)
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The spin noise spectrum was calculated for arbitrary magnetic fields by averaging
the results of Eq. (5.1.13) over the number of configurations Nc.

Figure 6.2 (a) provides a comparison between C2(ω) computed in the FOA,
the classical EOM for N = 100 and ED for a small bath (N = 13) of I = 1/2
spins. The quantum mechanical ED and the classical EOM simulations show
good agreement with the solution of the FOA for bx = 5. The classical calculation
traces the Gaussian envelope of the quantum mechanical spectrum and also differs
from the FOA at bx = 0. This is due to the nuclear spin dynamics included in
Eq. (5.5.5) that causes an additional long-time decay in the time domain not
included in the FOA. Therefore, the spectral weight shifts from the delta-peak
at ω = 0 to the Gaussian as the non-decaying fraction of 〈Sz(t)Sz(0)〉 decreases.
At transversal magnetic fields bx > 1, the spectrum takes the form of a Gaussian
distribution N (

√
b2
x + 1/2, (ωfluc/2)2).

C2(t) is shown for bx = 0 and an Ak distribution following Eq. (6.1.5) with
r0 = 1.5 in Fig. 6.2 (b). Two different methods are compared, the Lanczos method
with restarts and N = 18 nuclear spins (red) and classical EOM calculation for
N = 100 spins. The difference in the dynamics is due to the relatively broad Ak
distribution, that causes the number of effectively contributing spins to be lower
than the actual number of simulated bath spins. While this does not influence
the dynamics in a large bath of N = 100, it does cause a noticeable difference for
N = 18.

6.2.1 Influence of the Hyperfine Coupling Distribution on
Long-Time Spin Decay

Since the distribution of the hyperfine interaction constants governs the long-time
decay of C2(t)) for bx = 0, it is sensible to investigate how the Ak distribution
influences the spin dynamics.

Figure 6.3 presents the second-order correlation function C2(t) in the absence
of a magnetic field, so that the long-time influence of the hyperfine distribution
on the spin decay is made evident. The distribution is given by Eq. (6.1.5) with
d = 3 and m = 2, for different relative cut-off radii r0. It can be clearly seen that
a broader Ak distribution (a larger r0) causes a more pronounced decay.

It could be naively said that a large cut-off radius r0 is better than a small
one, since a larger variety of hyperfine couplings is taken into account. But when
the bath size is limited, and a lot of small Ak are included, then only a few large
Ak dominate the dynamics, reducing the effective bath size. For N = 18 and
r0 = 1.5, the biggest hyperfine coupling accounts for 25% of the dynamic. This
has been successfully employed to model experimental results [59]. Therefore,
r0 = 1.5 is used when the influence of the bath size N is investigated in Fig. 6.4.
On panel (a) the spin correlation for different bath sizes is shown for a nuclear
spin length I = 1/2. While the curve progression of C2(t) is indistinguishable
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Figure 6.3: C2(t) for I = 1/2 computed via the Lanczos method with a Krylov depth
of M = 64 and a distance between restarts of δt = 50. The magnetic field is absent and
a hyperfine distribution following Eq. (6.1.5) with d = 3 and m = 2 was employed. The
plot shows the influence of the relative cut-off radius r0 with a bath size of N = 18.
The curves result from a configuration average over 32 Ak distributions.

for the larger bath sizes N = 15 and N = 18, lower bath sizes show quite noisy
behaviour. This is, however, not due to a low number of Ak, but a finite size effect
caused by a small Hilbert space, as is shown in Fig. 6.4 (b). Here the results for
I = 3/2 and different bath sizes are presented. While the finite size induced
noise is absent, the spin correlation shows the effects of the limited bath size –
C2(t) actually dips below zero for small N . This phenomenon is not observed
in experiment in the absence of a magnetic field [53]. In a small bath, a broad
hyperfine distribution causes a few nuclear spins to interact strongly with the
electron, while the rest can be neglected. This reduces the effective bath size of
contributing spins further. If the actual bath is small already, the effective bath
size can come down to one or two nuclear spins that dominate the electron spin
dynamic. In the extreme case of one electron and one nuclear spin, the result
would be for C2(t) not to decay, but to oscillate around zero. The dip below zero
in Fig. 6.4 (b) is a sign of one spin dominating at least in the short time regime,
leading to the beginning of an oscillation.

Including quadrupolar interaction requires nuclear spin lengths larger than
I = 1/2, which causes for a faster increase of the Hilbert space dimension with
the bath size. The computation of higher order correlation limits bath size even
further. Therefore, an Ak distribution has to be found that can deal better with
small baths. An exponential hyperfine distribution was already used in Ref. [108]
and has been derived in Eq. (6.1.8) for m = 2 and d = 2. The results are given by
Fig. 6.5. In Fig. 6.5 (a) one can see the behaviour of C2(t) with an exponential
hyperfine coupling distribution for different parameter α. The decay of the spin
correlation once again is stronger for a broader distribution (larger α), but the
effect is not as pronounced as seen in Fig. 6.3. For α = 0.3 finite size effects are
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Figure 6.4: C2(t) computed with the same parameters M , δt and the same Ak distri-
bution as in Fig. 6.3 for r0 = 1.5. Panel (a) shows different bath sizes for the nuclear
spin length I = 1/2, while panel (b) does the same for I = 3/2.

clearly visible. At α = 0.3 the distribution is quite close to homogeneous coupling
Ak = A0, which causes stronger finite size effects.

It becomes clear why the exponential distribution is preferable to the previ-
ously discussed distribution in the case of small bath sizes. In Fig. 6.5 the resulting
spin correlation for I = 3/2, α = 0.5 and different bath sizes are plotted. While
the N = 6 curve does betray some finite size effects, the spin correlations show a
more homogeneous curve progression than seen in Fig. 6.4 (b). Furthermore, the
correlation never dips below zero, meaning that a significant number of nuclear
spins contribute effectively to the dynamic. In order to produce relevant result
and to minimize the influence of the limited bath size, the exponential hyperfine
coupling distribution as defined in Eq. (6.1.8) is used for bath sizes N < 10,
unless otherwise stated. Since the hyperfine coupling distribution derived for
the three dimensional QD as shown in Eq. (6.1.5) has produced good results for
large baths [58], this distribution will be occasionally presented as well, to form
a connection to previous work using it. A more in-depth discussion on the influ-
ence of the Ak distribution on the long-time decay of C2(t) can also be found in
Refs. [54, 58,106].

6.2.2 Influence of Quadrupolar Coupling on Spin Correla-
tion

Quadrupolar interaction only plays a role for bath spin lengths I ≥ 3/2, since
the quadrupolar moment of I = 1/2 is zero. As the Hilbert space grows with
(2I + 1)N , less bath spins can be simulated for larger I. Where the computations
without quadrupolar coupling were done with N = 18 spins of length I = 1/2,
the computations with quadrupolar coupling simulate a system with N = 9 spins
and I = 3/2.
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Figure 6.5: C2(t) for I = 3/2 computed with the same parameters M , δt and the Ak
distribution given in Eq. (6.1.8). Panel (a) shows C2(t) for N = 9 and varied α, while
in panel (b) N is varied while α = 0.5.

The effect of the quadrupolar interaction included in HQ, Eq. (3.3.7), is de-
termined by the overall quadrupolar strength Qr, the distribution of the quadru-
polar coupling constants qk, the anisotropy η, the distribution of the local nuclear
easy axis and the nuclear spin length I. For the distribution of qk, the anisotropy
η and the nuclear easy axis ~nzk this work follows Refs. [59, 87] by using the para-
meters η = 0.5 and θmax = 35◦ as stated in Sec. 3.2.

When adding the quadrupolar coupling to the central spin model, it is im-
portant to understand its influence on the long-time decay of C2(t) as a function
of the nuclear spin length I. The relative strength Qr defined in Eq. (3.3.8) has
been originally introduced in Ref. [59] to minimize the dependency on the bath
size N . There is clear experimental evidence [59, 72] that HQ induces a decay of
C2(t) on time scales of 200− 600ns that depends on the growth conditions of the
QD ensemble.

The long-time behavior of C2(t) under the influence of the quadrupolar inter-
action in the absence of an external magnetic field can be accurately computed
by the Lanczos method with restart as detailed in Sec. 5.4.3. The time evolution
is shown for five different values for Qr for a relatively large bath of N=9 nuclear
spins with I = 3/2 in Fig. 6.6 (a) on a logarithmic time scale. The Lanczos
results reproduce the previous results obtained with Chebychev polynomial ap-
proach [59]. Comparing theoretical curves for the spin-spin correlation function
with the direct measurement of C2 [53] yields Qr ≈ 0.15. This value for the
quadrupolar coupling strength is very close in magnitude to the parameter used
in Ref. [57] to explain spin-noise data obtained for modeling different InGaAs QD
samples.

The influence of the quadrupolar interaction is not only determined by the
quadrupolar coupling strength Qr, but also by the nuclear spin length I. In Fig.
6.6 (b) the value of Qr is chosen for each spin length I such that C2(t) remains
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Figure 6.6: Panel (a): C2(t) computed by Lanczos method with restart with N = 9
nuclear spins and no magnetic field. The strength of the quadrupolar interaction is
varied to determine an experimentally relevant value of Qr. Panel (b): The second-order
spin correlation in the absence of a magnetic field computed by a Lanczos algorithm,
with different spin lengths I, bath sizes N and interaction strengths Qr, chosen for
similar long-time decay. The inset plot shows the dependence of QrI(I + 1) on the
squared spin length I(I+1). The hyperfine couplings are homogeneous. In both panels
C2(t) is the result of averaging over 32 sets of hyperfine coupling constants. Figures
taken from [104,107].

invariant. Establishing this gauge will help to compare the differences in the
fourth-order correlation with different bath spin lengths I. Figure 6.6 (b) depicts
the second-order correlation function C2(t) for different I but similar Hilbert space
dimensions D, with an adjusted Qr. In order to connect the quantum mechanical
Lanczos results to the classically computed C2(t), the anisotropy factor is set
to η = 0. This is because the classical EOM method only simulated isotropic
quadrupolar coupling in Ref. [104]. Plotted alongside the results of the Lanczos
method for different I is the C2(t) computed with a classical EOM method as
detailed in Eqs. (5.5.3) to (5.5.5). When the spin is modelled as a classical
magnetic moment, spin length becomes just a scaling factor in the EOM. Here
it is set to Ieom = 1/2. It turns out that a classical approach is very much
able to model the influence of quadrupolar interaction on the second-order spin
correlation with a properly adjusted Qr. To make sure that only the quadrupolar
interaction influences the long-time dephasing for t � T ∗, the data in Fig. 6.6
(b) was computed in a box model.

For I = 3/2, the quadrupolar coupling strength is set to Qr = 0.15. Qr was
chosen for I = 5/2, 7/2 and 9/2 (marked by ’x’ in the inset of Fig. 6.6 (b)) so
that all correlation functions exhibit a similar long-time decay. Interestingly, the
Qr that achieve this agreement of C2(t) for these different combinations of I and
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Figure 6.7: Panel (a): C2(t) with a quadrupolar coupling strength of Qr = 0.15, no
magnetic field and a varying number of nuclear spins with the length I = 3/2. It was
averaged over the results of Na = 32 different sets of Ak. The long-time limit shows an
even-odd behavior in regard to bath size, as shown panel (b). The data in both panels
has been published in [107].

N obey the phenomenological relation

QrI(I + 1) = aI(I + 1) + b, (6.2.3)

with a = 0.068 ± 0.002 and b = 0.30 ± 0.03 obtained via linear regression. The
classical computations of C2(t) that have been made for an effective spin vector
length of I = 1/2 follow this relation roughly (marked by a triangle in the inset
plot).

Due to computational constraints, the number of nuclear spins that can be
computed with a full quantum mechanical central spin model is limited. There-
fore, it is advisable to determine the finite size effects of a small nuclear bath.
In Fig. 6.7 (a) the second-order correlation for different bath sizes, a spin length
I = 3/2 and a fixed quadrupolar coupling of Qr = 0.15 is compared. It demon-
strates the fast convergence of C2(t) with N , as all C2(t) for N ≤ 7 are indis-
tinguishable. While C2(t) can be calculated exactly for a bath size as large as
N = 9 with a Lanczos method with restart without any problem, this is im-
possible for fourth-order correlation functions due to the scaling of the nested
Lanczos algorithm with the exponential growth of the Hilbert space with N . A
finite size analysis for Clim = C2(t → ∞) is depicted in Fig. 6.7 (b). Clearly
visible are even-odd oscillations which approach Clim = 0 at large N within a
numerical error of O(10−4). Odd numbered bath sizes converge at much smaller
bath sizes. For odd numbered bath sizes C2(t) shows a full decay, since an even
total number of spins allows for singlets to form. This is something to keep in
mind when computing and discussing fourth-order correlation.
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6.3 Nuclear Spin Bath Auto-Correlation

While we focused on electron spin decay before, nuclear spins also provide a siz-
able contribution to the Faraday effect in semi-conductors [109,110]. Nuclear spin
fluctuations have recently been observed in a GaAs bulk sample with electrons
bound to Si-donors [52]. Similarly to QDs, such a system can be described via
the CSM, as long as the donors are spaced far enough apart so that the electron
wave functions do not overlap.

The observation of nuclear spin contributions in spin noise spectra motivates
us to investigate the nuclear spin fluctuations in a system where an electron is
either localized in a QD or bound to a neutral donor. While electron spin noise
has been widely studied, nuclear spin fluctuations in the central spin model have
not been.

In this chapter, two analytical methods and one numerical method are em-
ployed in order to describe the behaviour of the nuclear spin bath correlation
and noise. The results presented in this section have been published before in
Ref. [111].

6.3.1 Nuclear Spin Bath Auto-Correlation in the BoxModel

The nuclear spin bath dynamics, characterized via the sum of all nuclear spins
~I =

∑ ~Ik, is influenced by two fields: the Knight field generated by the hyperfine
coupling with the electron spin and the external magnetic field due to the nuclear
Zeeman energy. We derived an analytical expression for the total spin bath
correlation 〈Ix(t)Ix〉 with a transversal field in the box model, see Eq. (5.2.19).
Fourier transformation of the spin bath correlation yields the spin bath noise.

The nuclear spin noise is shown in the absence of a nuclear Zeeman term
(ζ ≡ 0) for different magnitudes of the transversal magnetic field in the left panel
of Fig. 6.8. As the spectra are even functions, only the region ω > 0 is plotted.
In the box model, ak ∝ 1/

√
N . Both the correlation of the total nuclear spin

bath 〈Ix(t)Ix〉 and the bath spin noise (I2
x)ω grow linear with the bath size. To

ensure comparability between results from different bath sizes, the spin noise and
the spin correlation are scaled with N .

The influence of the hyperfine interaction on the nuclei is negligible without
a magnetic field. This can be inferred from the spectrum, since its only feature
is a single Lorentzian peak at ω = 0, broadened as described in Eq. (5.2.22). In
the absence of a magnetic field the total spin ~F is conserved at F 2 = (N + 1)/4
and the electron spin correlation stays constant at 1/12 for long times in the box
model. Therefore, 〈Ix(t)Ix〉 is constant as well for times tωfluc > 10, remaining at
a value of I2 = (3N + 2)/12.

Figure 6.8 (a) shows that the peak shifts frequency without nuclear Zeeman
splitting and with increasing magnetic field strength. At high magnetic field
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Figure 6.8: The nuclear spin noise (I2
x)ω (panel (a)) and the spin bath correlation

(panel (b)) for different transversal external magnetic fields bz and a bath size of
N = 1000, computed within the box model as derived from a Fourier-transformation of
Eq. (5.2.19). The nuclear Zeeman splitting is set to zero. Data shown in panel (a) has
been previously published in [111].

h � 1, the peak in the spectrum shifts to ω∗ = a0/2 [ω∗T ∗ = 1/(2
√
N)], which

shows the precession in the Knight field.

The dynamics of the total spin bath in the time domain can be seen in Fig. 6.8
(b). At strong magnetic fields, decoherence is suppressed in favour of the Knight
field precession. At bx = 1000, no decay of the maximum amplitude is observed
on a given time scale, while the envelope of bx = 10, 100 still decreases noticeably
in the plotted time frame. Note that quite small transversal magnetic fields
(bx = 0.1) already cause a total decay of the spin bath correlation, when in
the absence of a magnetic field it remains at a constant non-zero value. This is
because the total spin is no longer conserved and the nuclear spins precesses in
the Knight field generated by the electron spin.

Figure 6.9 (a) depicts the nuclear spin noise obtained from the Fourier trans-
formation of Eq. (5.2.19), with the finite Zeeman ratio ζ = 0.001. For weak
magnetic fields, ζbz � a0, the influence of the nuclear Zeeman term on the nuc-
lear spin noise spectra is negligible. The effect of ζ can be observed as a shift
of the peak only for ζbz > 1/

√
N . When increasing the magnetic field, a double

peak structure centred around ω = a0/2 emerges, with the peak splitting determ-
ined by the nuclear Zeeman energy. At higher magnetic fields, ζbz � a0, the spin
noise spectrum exhibits two closely lying peaks centered at ω = ζbz, where the
distance between the peaks is equal to a0. This can be derived analytically, when
applying the high magnetic field limit as shown in the next section.

In Fig. 6.9 (v) the time dependent dynamics of the total spin bath correlation
is shown. While the nuclear Zeeman splitting has no effect for small fields, at
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Figure 6.9: The nuclear spin noise (I2
x)ω (panel (a)) and the spin bath correlation

(panel (b)) as plotted in Fig. 6.8, but the ratio of nuclear to electron Zeeman splitting
is ζ = 10−3. This plot in panel (a) has been previously published in [111].

high magnetic fields a beat can be observed due to the precession in both the
Knight field and the external magnetic field. The nuclear spin noise is not only
dependent on applied magnetic field strength or nuclear Zeeman energy, but
on total bath size as well, since the characteristic energy scale of the hyperfine
coupling decreases with ak ∝ 1/

√
N . This is illustrated in Fig. 6.10. It shows

the Fourier transform of Eq. (5.2.19) for the constant product bz
√
N = 300. An

increasing number of bath spins causes the energy spectrum to broaden, reflecting
the bath noise spectrum.

The disadvantage of the box model is obviously that it cannot include a dis-
tribution of coupling constants. Also, it is not possible to extend the Hamiltonian
to additional interactions such as quadrupolar interaction if necessary and still
employ this analytical method.

6.3.2 Nuclear Spin Bath Auto-Correlation in the High Mag-
netic Field Limit

In this section an analytical approach for describing spin correlation and noise in
the limit of large magnetic fields and a distribution of hyperfine coupling constants
is presented. At very high magnetic fields, spin flips are suppressed, leading to
the effective Hamiltonian

Hhmf = bzSz + bz
∑
k

ζIz +
∑
k

akIzSz. (6.3.1)

describing the high magnetic field limit (hmf). This Ising-like coupling can also
be used to model QDs with very heavy holes in an arbitrary magnetic field, see
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Figure 6.10: The nuclear spin noise for different bath sizes, with and without nuclear
Zeeman splitting, obtained by the Fourier transformation of Eq. (5.2.19). The external
magnetic field is varied with the bath size, h

√
N = 300 being kept constant. The spin

noise is scaled with N in order to make the plots comparable. Data here has been
previously published in [111].

Eq. (3.1.15) and Ref. [34,38,112]. In this case, the Hamiltonian (6.3.1) is diagonal
in the Ising basis and 〈Ix(t)Ix(0)〉 is given by

〈Ix(t)Ix(0)〉 =
1

4Z

N∑
k=1,

Lk=↑,↓,σ=↑,↓

〈σ, {Lk}|Ixk (t)Ixk (0)|σ, {Lk}〉

=
1

4

N∑
k

cos(akt/2) cos(ζbzt).

(6.3.2)

For homogeneous hyperfine couplings, ak = a0 ∀k, the nuclear spin noise spectrum
exhibits four peaks at ±(a0/2 ± ζbz) = ±a0(1/2 ± ζbz

√
N). This explains the

peak structure emerging for large fields seen in the last section in Fig. 6.9 (a).
The nuclear spin bath precesses in the Knight field of the strength a0 for ζ = 0.

In the high magnetic field limit the summation over k in Eq. (6.3.2) can be
performed analytically in the large N limit, and nuclear spin noise spectrum
acquires the form

(I2
x)ω =

πN

4

ˆ
daP(a) [δ(ω − a/2) + δ(ω + a/2)] , (6.3.3)

where P(a) is the distribution function of the coupling constants ak, as defined
by Eq. (6.1.3).

The Fourier transformation of Eq. (6.3.2) yields the nuclear spin noise, which
is plotted without nuclear Zeeman splitting in Fig. 6.11 (a). The results of the box
model at bz = 1000 including all spin flips matches the high magnetic field limit
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Figure 6.11: The nuclear spin noise obtained from the Fourier transformation of Eq.
(6.3.2) at the high magnetic field limit for Ising coupling (continuous lines) and a bath
size of N = 1000. In panel (a), ζ is zero, in panel (b) ζ = 10−3. Plotted are three
different hyperfine coupling distributions, one with constant couplings and another one
following Eq. (6.1.5) with m = 1, r0 = 2 and m = 2, r0 = 1.5. For comparison, the
spin noise with spin flips, bz = 1000, and constant ak ≡ a0 is added with a dashed light
blue line. In panel (a) the ak distribution function P(2ω) obtained via Eq. (6.1.3) is
also provided for m = 2, r0 = 1.5 (blue dashed line) and m = 1, r0 = 2 (red dashed
line). The spin noise was averaged over 10 sets of ak distributions. Plots are taken from
Ref. [111].

perfectly, justifying the use of the Ising model. The nuclear spin noise calculated
within the box model with (light blue dashed curve) and without (green curve)
spin flips can be found in the Fig. 6.11 (a). One can infer from Eq. (6.3.3) that
the nuclear spin noise spectrum becomes

(I2
x)ω =

πN

2
P(2ω), ω > 0 (6.3.4)

for γ → 0. Analogous to the approach in the box model, the δ-peaks of the
nuclear spin noise were broadened to a Lorentzian with γT ∗ = 0.001.

Figure 6.11 (a) also presents a comparison of the nuclear spin noise between
the Fourier transformation of Eq. (6.3.2) for N = 1000 nuclear spins with ζ = 0
and the continuum limit of Eq. (6.3.4). The analytical curves calculated via
Eqs. (6.1.3) and Eq. (6.3.4) are plotted as dashed lines of the same color. They
are congruent with the numerical results of Fourier transformation of Eq. (6.3.2)
for ω > 0.01. The dimensionless cut-off radius r0 defines the smallest a and the
distribution function of hyperfine couplings is only valid for a > amin, having a
singularity at a = 0 [58]. The analytical and numerical solutions agree very well
for the same hyperfine coupling parameter m and r0 at high frequencies. The
difference for ω → 0 arises from the hard cut-off of P(a) versus finite Lorenzian
broadening of the numerical solution for a finite number of nuclei.

Figure 6.11 (b) shows the nuclear spin noise in the high magnetic field limit
including a finite ζ = 0.001, again derived through the Fourier transformation
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Figure 6.12: The transversal nuclear spin noise computed with the Lanczos method
for N = 17 nuclear spins and a Krylov space dimension of M = 800 and ζ = 0.
The ak distribution is based on a Gaussian electron wave function m = 2. For better
comparison the results for a low magnetic field are shown in (a) as well as the spectra
obtained for the box model at a small magnetic field of bz = 0.1 (in a brown dashed
line). In (b) the spin noise for higher magnetic fields is depicted, along with the high
magnetic field limit in a black dashed line. Panel (c) shows the corresponding real time
dynamics of the spectra calculated with the Lanczos method. The data plotted in panel
(a) and (b) has been published previously in Ref. [111].

of Eq. (6.3.2). As for ζ = 0, the box model results with and without spin flips
agree perfectly, which stresses the validity of the use of the Ising model for high
magnetic fields.

The spectra again exhibit a two peak structure centred at the nuclear Zee-
man energy bzζ. The distribution of hyperfine couplings generates an additional
broadening, which is clearly observable in the modified shape of curves for the
two distributions of ak, with m = 1 and m = 2.

An interesting takeaway of this analysis of the high magnetic field limit is the
possibility of measuring the distribution of the hyperfine coupling constants at
high magnetic fields directly via spin noise spectroscopy, using Eq. (6.3.4). Since
the peaks are centred around bzζ, the hyperfine coupling distributions can even
be assigned to the different isotopes present in the probe.

6.3.3 Nuclear Spin Correlation in the Central Spin Model

While the high magnetic field limit and the analytical solution of the box model
have the advantage of simulating a large number of spins at low computational
cost, a numerical approach based on the Lanczos method with restart can model
inhomogeneous hyperfine couplings at arbitrary magnetic fields, and also allows
to incorporate additional interactions, such as the nuclear quadrupolar electric
coupling [59,61,107]. Since the Hilbert-space dimension grows exponentially with
the bath size, the number of nuclear spins is severely limited in this approach.
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Figure 6.13: The transversal nuclear spin noise computed for the same parameters as
in Fig. 6.12, but including the electron Zeeman splittings by setting ζ = 10−3 ∀ k. As
with Fig. 6.12, the low magnetic field spin noise is plotted in (a), while the high magnetic
field spin noise, exemplary for bz = 103, is shown in (b). Also depicted in (a) is the
box model solution for bz = 102 in a dashed brown line. The high magnetic field limit
is added to (b) for bz = 103 for comparison with the full model. Panel (c) shows the
corresponding real time dynamics of the spectra calculated with the Lanczos method.
The data plotted in panel (a) and (b) has been published previously in Ref. [111].

Here, N = 17 spins with I = 1/2 are simulated, and the ak distribution introduced
in Eq. (6.1.3) is used with a cut-off radius of r0 = 1.5 and m = 2.

A numerical Fourier transformation is performed over the real-time dynamics
of the nuclear spin bath, which yields the corresponding nuclear spin noise spectra.
This is different from the previous analytical methods where the spectra were
obtained directly. In order to counteract finite size problems caused by the limited
number of nuclear spins, 25 different sets of hyperfine couplings were generated
to perform a configuration average over the resulting spectra.

The nuclear spin noise spectra in a transversal magnetic field obtained by the
Lanczos method are plotted with ζ = 0 in Fig. 6.12 and with ζ = 0.001 in Fig.
6.13.

Figures 6.12 (a) and (b) show the spin bath spectra for small and large mag-
netic fields, respectively. In Fig. 6.12 (a) the box model spectrum Eq. (5.2.19) is
plotted alongside for comparison.

For high magnetic fields, as seen in Fig. 6.12 (b), the spectra qualitatively
resemble the analytical results given previously in the high magnetic field limit
for bz > 1 and the same hyperfine distribution. Without a nuclear Zeeman term,
the bath spin noise spectra center around the Knight field frequency, as shown
in Eq. (6.3.2). At a fixed Overhauser frequency ωfluc, the Knight field strength
decreases relative to the Overhauser field with an increasing number number of
nuclear spins. Therefore, the main spectral weight is centered around a smaller
frequency for N = 1000 bath spins compared to N = 17. Thus the frequency
axis is rescaled with the factor 2T ∗

√
N . While the full numerical solution shows a
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broader spectrum than the box model results, for bz > 1 the high magnetic field
limit exhibits the same qualitative form as the nuclear spin noise results from
the full model. Since the smaller number of nuclear spins severely decreases the
number of discrete eigenvalues of the system, and the fast Fourier transformation
of the real time dynamics from the Lanczos algorithm was not smoothed by
additional Lorentz broadening, the resulting spectra are more noisy than those
discussed in the two previous sections. Panel (c) of Fig. 6.12 shows the Lanczos
real time dynamics. While in smaller magnetic fields the spin bath correlation is
similar to the box model solution, at higher magnetic fields the decay caused by
the inhomogeneity of the hyperfine couplings becomes apparent.

Accounting for the nuclear Zeeman splitting causes significantly different spec-
tra for bz > 10. In Fig. 6.13 (a) and (b) the transversal nuclear spin noise is
depicted with a finite ζ = 10−3 and otherwise identical parameters. A local min-
imum becomes apparent in Fig. 6.13 (a) for bzζ = 0.1, a feature shared with the
box model result added in a dashed brown line. For bzζ = 1 the nuclear Zeeman
splitting causes the same two-peaked structure already observed by the analyt-
ical results in the high magnetic field limit. To stress this point, the analytically
calculated spectrum for bz = 1000 and the same hyperfine coupling distribution
is plotted in a dashed black line alongside the Lanczos result in Fig. 6.13 (b).

When comparing the results of the full CSM with the two analytical approx-
imations presented, one can conclude that both the box model and the high mag-
netic field limit allow for an adequate understanding of the features of the bath
spin noise. An immense advantage of the analytical techniques is the severely
decreased computational cost even at much larger bath sizes, while the Lanczos
method allows for greater flexibility in both the interactions included and the
parameter range evaluated.

6.4 Chapter Conclusion

In this chapter two kinds of second-order spin correlation, the correlation of the
electron spin and the correlation of a component of the total nuclear spin vector
in a nuclear spin bath, were examined for a transversal external magnetic field.

Two kinds of hyperfine distribution function were derived in Sec. 6.1, both
useful for simulating the systems dynamics with only a limited bath size. The
distribution given by Eq. (6.1.5) describes accounting for all spins within a relative
cut-off radius r0, while the distribution presented in Eq. (6.1.8) assumes that the
density of non-negligibly contributing spins decreases by a factor α < 1 with the
distance to the electron.

Sec. 6.2 deals with the second-order correlation C2(t) = 〈Sz(t)Sz〉 and its
counterpart in the frequency domain, the spin noise spectrum C2(ω). Firstly, their
general features were presented. Then the influence of the two different hyperfine
coupling distributions on the systems dynamics were investigated. Both have
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their merits and shortcomings, with the exponential Ak distribution defined in
Eq. (6.1.8) with α = 0.5, d = 2 being more advantageous for small baths N < 10,
and the non-exponential distribution as given by Eq. (6.1.5) with r0 = 1.5 and
d = 3 being better for simulating large baths N > 10. Secondly, the influence of
the quadrupolar coupling on the electron spin correlation function was examined.
The long-time decay of C2(t) for different quadrupolar coupling strengths Qr,
nuclear spin lengths I and bath sizes N was discussed. A phenomenological
connection between the nuclear spin length I and Qr was found and quantified.
An even-odd behaviour of the long-time decay of C2(t) regarding the bath size
was observed.

In Sec. 6.3 the nuclear spin bath auto-correlation I(t) and the spin bath noise
(I2
x)ω were investigated. While the nuclear spin dynamics are frozen in the FOA,

an analytical method for describing the spin bath correlation can be found in the
case of homogeneous hyperfine couplings. It reveals that the nuclear spins precess
in the Knight field generated by the hyperfine coupling with the electron. In the
case of a finite nuclear Zeeman energy and a sufficiently large external magnetic
field, the nuclear spin correlation is dominated by the Zeeman splitting. Even
for inhomogeneous hyperfine coupling constants, an analytical solution exists for
large magnetic fields, as the magnetic field induced suppression of spin flips creates
an Ising-like system. We have shown that this makes it possible to measure the
distribution of hyperfine coupling constants directly via spin noise spectroscopy
as the broadening of the Zeeman energy peak. Quantum mechanical simulation
for a limited nuclear spin bath was able to show the veracity of both analytical
methods in their respective regimes.
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Chapter 7

Fourth-Order Spin Noise

The electron spin, which is a candidate for a qubit, is coupled to a noisy environ-
ment that causes information loss. Therefore, we need to gain precise knowledge
of the noise as a probe for the system dynamics. Higher order spectra extend
upon our current noise characterization methods and provide new information
on the spectral properties of the system. This has been exploited for quantum
systems in recent publications [74, 75].

This chapter will focus on the bispectrum S4(ω1, ω2) as it was defined in
Eq. (4.5.2). The bispectrum S4(ω1, ω2) quantifies the correlation between two
spin noise components at different frequencies, ω1 and ω2. If the existence of a
component of the frequency ω1 in the spin noise signal increases (decreases) the
probability of a component with the frequency ω2 being present as well, S4(ω1, ω2)
will be positive (negative). S4(ω1, ω2) is zero if spin noise components of these
frequencies are not correlated. The main focus of this chapter will be the features
of the bispectrum, and where we can expect to find information not provided by
the second-order spin noise C2(ω). To this end, results from a classical EOM
approach as well as the results of fully quantum mechanical ED calculations are
presented. Most of the data analyzed here is also part of a publication currently
in pre-print [104].

7.1 Fourth-Order Spin Noise in the FOA

This section describes the basic features of S4(ω1, ω2) in the central spin model,
calculated in the FOA. The fourth-order cumulant S4(ω1, ω2) consists of two parts
according to its definition Eq. (4.5.2): C4(ω1, ω2) and the product C2(ω1)C2(ω2).
Both terms are plotted in Fig. 7.1. They can only be equal or greater than zero
for all frequencies ω1 and ω2.

The behaviour of C2(ω) is well known and was succinctly summarized in Sec.
5.4.3. In the absence of a magnetic field the correlator C2 features a delta-peak at
ω = 0, as seen in Fig. 6.2. In the FOA and in the case of homogeneous coupling
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Figure 7.1: C4(ω1, ω2) and C2(ω1)C2(ω2) calculated by FOA. The results were av-
eraged over 106 randomly generated Overhauser fields. The cumulate S4 spectrum is
shown in Fig. 7.2. The external magnetic field is bx = 5. The peaks were broadened
with γ/ωfluc = 0.01.

constants the spectral weight of the ω = 0 peaks is maximal, totaling one third of
the total spectral weight of C2(ω) [31]. When the magnetic field strength is larger
than zero, the position of the Gaussian shifts depending on the external magnetic
field and the spectral weight is transferred from the delta-peak to the Gaussian.
For higher magnetic fields, bx > 1, the contribution at (0, 0) vanishes, and only
the Gaussian remains. This is why in Fig. 7.2 the anti-correlation at the axes
is prominent for bx = 0, 1 but disappears for higher magnetic fields. For bx > 1
C2(ω) can be approximated as a Gaussian with the mean given by

√
b2
x + 1/2 [58].

Its variance σ2 is σ2 = (ωfluc/2)2 [31]. ω1 and ω2 are independent variables, so
C2(ω1)C2(ω2) can be expressed by a multivariate Gaussian, as presented in the
right panel of Fig. 7.1. In the left panel of Fig. 7.1 C4(ω1, ω2) is plotted. It only
contributes on the diagonal ω1 = ω2 for ω1/2 > 0. This can be seen immediately
when performing an analytic Fourier transformation on Eq. (5.1.16), which yields

C4(ω1, ω2) =
π2

8

[
2n4

3δ(ω1)δ(ω2)

+ (n2
1 + n2

2)2{δ(ω1 + ωL)δ(ω2 + ωL) + δ(ω1 − ωL)δ(ω1 − ωL)}
+ n2

3(n2
1 + n2

2)(δ(ω1){δ(ω2 − ωL)

+ δ(ω2 + ωL)}+ δ(ω2){δ(ω1 − ωL) + δ(ω1 + ωL)}]
(7.1.1)

for a frozen Overhauser field ~Bn, with ~n = (n1, n2, n3)T = ( ~Bn+ ~Bext)/| ~Bn+ ~Bext|
the normalized total magnetic field and ωL being the Larmor frequency of the
total magnetic field. There are only non-zero contributions on the axes (ω1 = 0
or ω2 = 0) or the diagonal ω1 = ω2.

In order to present the data in a plot, the δ-distributions are broadened to
a Lorentzian with a width of γT ∗ = 0.01, as described in Eq. (5.2.22). For
bx > 1, the spectrum follows a Gaussian distribution centred around

√
b2
x + 1/2

with σ = ωfluc/2 in the direction of the diagonal. This agrees with the result of
FOA [31], since a high magnetic field suppresses spin flips, leading to an Ising
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Figure 7.2: S4(ω1, ω2) in units of 1/ω2
fluc computed in the FOA averaged over 106

Overhauser fields for a transversal magnetic field of (a) bx = 0, (b) bx = 1 (c) bx = 5
and (d) bx = 10. The peaks were broadened with γ/ωfluc = 0.01.

model. The Gaussian distribution of polarization is due to the central limit
theorem, since an infinite bath is assumed.

Combining C4(ω1, ω2) and C2(ω) to obtain S4(ω1, ω2) as defined in Eq. (4.5.1)
leads to correlations dominating on the diagonal ω1 = ω2 and anticorrelations
elsewhere in the (ω1, ω2)-plane. Figure 7.2 depicts the results of the FOA for the
fourth-order cumulant for different external magnetic fields. For small magnetic
fields (bx = 0, 1) one can also see an anticorrelation contribution at the axes.
This is due to C2(ω) featuring a distinct peak around ω = 0 for small or absent
magnetic fields, and not caused by any fourth-order phenomenon.

7.2 S4(ω1, ω2) in the Classical and Quantum Mech-
anical Regime

In this section the results of S4(ω1, ω2) obtained both via the classical EOM
and the ED in the quantum mechanical regime are discussed, summarizing Ref.
[104]. After the qualitative features of C4 as well as the product C2C2 have been
established via the FOA, we compare the results of more sophisticated methods
like the quantum mechanical calculation and the classical EOM. This will enable
us to gain a deeper understanding of the spectra.

The average ratio between nuclear and electric Zeeman energy amounts to
ζ ≈ 1.25×10−3 for InAsGa using the gyromagnetic ratios found in Tab. 3.1. The
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Figure 7.3: S4(ω1, ω2) computed for N = 1, 2, 3 bath spins with I = 9/2, and for
N = 100 classical spins. The transversal magnetic field is bx = 5, ζ = 1.25× 10−3, and
quadrupolar interaction is not included. This plot has been taken from Ref. [104].

Zeeman energy ratio depends, however, on the ratio of isotopes. We will assume
that all nuclear spins have the same average Zeeman factor instead of identifying
the different isotopes in our model.

Figure 7.3 shows results from both methods, the ED for I = 9/2 nuclear spins
(for example Indium) and N = 1, 2, 3, and the classical results for N = 100.
For N = 1, the distance between the positions of the non-zero contributions are
given by the Zeeman splitting of the nuclear spins. Therefore, we see in (2I + 1)2

equidistant peaks on a grid around the point given by (ωL, ωL). The peaks are
positive at the ω1 = ω2 diagonal and negative everywhere else. Increasing the
bath size leads the spectrum to become more continuous. At N = 3 bath spins of
length I = 9/2 the S4 spectrum, as displayed in the lower left panel of Fig. 7.3,
is already qualitatively congruent to the classical result depicted on the lower
right panel of Fig. 7.3. The classical result is very similar to the FOA result
given in Fig. 7.2 (c). This shows that the FOA is very well suited to explain the
basic features of the spectrum. Additionally, Fig. 7.3 proves that the classical
approach yields good results even for small baths as long as the nuclear spin
length is relatively large.

Figure 7.4 depicts the quantum mechanical results for S4(ω1, ω2) calculated
for different spin lengths (I = 3/2, 5/2, 7/2). The bath size is fixed and an ex-
ternal magnetic field bx = 5 is applied. Due to the exponential increase in the
Hilbert space dimension and the larger number of non-degenerate eigenenergies,
the spectra become more continuous with increasing nuclear spin length I. Posit-
ive correlations are again restricted to the frequency subspace ω1 = ω2, while the
negative anti-correlations can be found in an area centered around ω1 = ω2 ≈ bx.
Note the similarity between the classical results (Fig. 7.3, lower right panel) and
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Figure 7.4: S4(ω1, ω2) computed via ED for a bath size of N = 3 with spin lengths
I = 3/2, I = 5/2 and I = 7/2. The transversal magnetic field is set to bx = 5, and
quadrupolar interaction is switched off. This plot is taken from Ref. [104].

the quantum mechanical solution for N = 3 and I = 7/2 (Fig. 7.4, right panel).
This solidifies the assumption that the quantum mechanical spectra approach the
classical results in the limit of I →∞.

In order to further study the spectra, the diagonal cut ω1 = ω2 is parametrized
as

Adiag(ω̃) = A(ω̃/
√

2, ω̃/
√

2). (7.2.1)

The function A(ω1, ω2) can be S4(ω1, ω2), C4(ω1, ω2) or C2(ω1)C2(ω2). Sdiag
4 (ω̃)

is plotted in Fig. 7.5 in the lower right panel. The definition is used analogously
for the diagonal cuts through the C2(ω1)C2(ω2) and C4(ω1, ω2) spectra. The
spectrum changes slightly when the applied magnetic field is small, here bx = 1.
This can be seen in Fig. 7.5, and is also the case in the FOA, see Fig. 7.2.

Sdiag
4 (ω̃) for high magnetic fields is plotted in Fig. 7.6. While the quantum

mechanical spectra has a Gaussian envelope centred around
√
b2
x + 1/2 for all

magnetic fields, it develops a comb of peaks for very high magnetic fields, bx > 50.
This is due to the spin flip suppression at larger fields, which causes the system to
become Ising-like. The location of the peaks is governed by the hyperfine inter-
action. The distance between the peaks decreases with an increasing number of
nuclei spins, ∝ 1/

√
N . This behaviour is not exhibited by the classical approach,

since the larger spin bath causes a continuous shape. At a larger bath size the
quantum mechanical results would again approach the classical simulation.

The results presented in this section prove that the classical calculations are
valid limits of the quantum mechanical calculations for I →∞ and N →∞. The
non-zero fourth-order cumulant shows that the central spin is not a random vari-
able with purely Gaussian noise. Both numerical methods, classical and quantum
mechanical, share the same restriction of C4 to the diagonal ω1 = ω2 as the FOA.
The features of the spectra in the CSM are driven by both the precession in the
external magnetic field as well as the interaction with the nuclear spins.
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Figure 7.5: S4(ω1, ω2) as well as C4(ω1, ω2) and C2(ω1)C2(ω2) for bxext = 1 in the
classical simulation with N = 100 bath spins. In the lower right panel the diagonal cut
through all three spectra is shown. This plot has been previously published in Ref. [104].

Figure 7.6: Sdiag
4 (ω̃) for high (bx = 50, 100, 200) transversal magnetic fields. Com-

puted via the quantum mechanical scheme for N = 3 bath spins with a spin length of
I = 9/2. The spectra are shifted by

√
2ωmax =

√
2
√
b2x + 1/2. The frozen Overhauser

field approximation (FOA) is included for comparison. This plot has been previously
published in Ref. [104].
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7.3 Influence of Quadrupolar Interaction on S4

Since the quadrupolar interaction changes the nuclear spin dynamics as well as
the electron spin dynamics substantively, we will investigate its effect on the
fourth-order spin noise in this section. The influence of quadrupolar coupling
is evident in the second-order correlation function C2(t) only for bx → 0. The
results of S4(ω1, ω2) in the FOA, the classical EOM and the quantum mechan-
ical results for large bath sizes are all very similar without a quadrupolar term.
Since the classical EOM approach presented in Ref. [104] only simulates isotropic
quadrupolar coupling, the anisotropy factor is set to η = 0 in all calculations
in this section. This enables a valid comparison between classical and quantum
mechanical approaches.

As discussed in the previous two sections, the positive correlations of S4(ω1, ω2)
are restricted to the diagonal ω1 = ω2, due to the spectral confinement of
C4(ω1, ω2). Everywhere else in the plane, the correlation is either negative or
zero, depending on the product C2(ω1, ω2). This investigation focuses on me-
dium and large magnetic field strengths, since the second-order spin correlation
C2(t) and the spin noise power spectrum C2(ω) contain no information on the
quadrupolar coupling on the spin dynamics in this regime. For bx > 1, the spin
noise power spectrum is in leading order a Gaussian [31, 38] centered around
ω =

√
b2
x + 1.

Figure 7.7 depicts S4(ω1, ω2) computed fully quantum mechanically by ED
for nuclear spin lengths I = 3/2, 7/2, 9/2 as well as the results of the classical
approach. The strength of the quadrupolar coupling Qr is chosen in a way that
C2(t) agrees for bext = 0 independent of the spin length. This was done according
to the results shown in Fig. 6.6.

Without quadrupolar interaction, the fourth-order contribution to S4 is re-
stricted to the diagonal, ω1 = ω2. The introduction of quadrupolar coupling
broadens the peak that is sharp for Qr = 0. While the quantum mechanical
spectra all feature roughly the same influence of the quadrupolar interaction, the
broadening of the classical spectrum is smaller, causing the spectrum to exhibit
a sharper peak. Since the quadrupolar coupling strengths were explicitly chosen
so that the second-order correlation would show the same dynamics irrespective
of spin length or method, this mismatch is related to the fourth-order correlation
C4.

The results shown in Fig. 7.7 were all computed for bx = 5. At such a relatively
large magnetic field strength, a second-order correlation is not changed by the
introduction of quadrupolar coupling. However, the broadening featured in S4

caused by quadrupolar interaction is quite strong. Therefore, it is proven that
fourth-order correlation does indeed carry additional information compared to
C2.

In order to further analyze the broadening of the correlation due to quadru-
polar coupling, we parametrize the anti-diagonal cut in the vicinity of the gloabal
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Figure 7.7: S4/ω1, ω2) with a magnetic field bxext = 5, with different spin lengths
I, bath sizes N and interaction strengths Qr. The parameters are chosen for similar
behavior in the second-order spin correlation, see right panel of Fig. 6.6. This plot has
previously been published in Ref. [104].

maximum S4(ωmax, ωmax), with ωmax/ωfluc =
√
b2
x + 1/2 by ω1 + ω2 = 2ωmax. It

is expressed by

Sadiag
4 (ω̃) = S4

(
ωmax +

ω̃√
2
, ωmax −

ω̃√
2

)
. (7.3.1)

The global maximum is then located at the relative frequency ω̃ = 0.

Figure 7.8 (a) shows the the diagonal and panel (b) the anti-diagonal cuts
of the data presented in Fig. 7.7. While the same parameters led to congruent
results for the second-order spin correlation, as seen in Fig. 6.6 (b), they cause
quite different behaviour in S4. In Fig. 7.8 (a) the diagonal cuts computed with
the quantum mechanical method for different nuclear spin length I and number
of nuclear spins N are plotted, as well as the results of the classical approach for a
bath size N = 100. The Gaussian curve progression for the diagonal cuts remains
qualitatively the same, but with increasing spin length (and decreasing Qr) the
amplitude decreases markedly. The classically computed spectrum is an outlier
and shows the lowest global maximum. This is directly linked to the broadening,
since the total spectral weight of C4 is conserved.

Figure 7.8 (b) presents the anti-diagonal cuts for the same parameters as Fig.
7.8 (a) and Fig. 6.6 (b). For comparison Sadiag

4 (ω̃) for Qr = 0 is depicted as well.
Sadiag

4 (ω̃) has a qualitatively different curve shape depending on the computational
approach. While the classical curve exhibits a sharp peak, the results obtained
by the quantum mechanical approach show a Gaussian shape.

One can conclude that the scaling behaviour which allows matching the clas-
sical and quantum mechanical results by adjusting Qr is only present for the
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Figure 7.8: Panel (a): The same data plotted in Fig. 7.7, cut in the diagonal ω1 = ω2,
Sdiag

4 (ω̃). Panel (b): The anti-diagonal cut ω1 + ω2 = 2ωmax, S
adiag
4 (ω̃). Sdiag

4 (ω̃)
without quadrupolar coupling was added in the middle panel as a yellow dotted line for
comparison. Panel (c): Sadiag

4 (ω̃) quantum mechanically calculated with N = 3, bx = 5
and I = 9/2 for different Qr. The inset plot shows the full width half maximum Ω1/2 of
C4 in relation to the quadrupolar coupling strength Qr. All plots have been published
previously in Ref. [104]

second-order correlation at bx = 0. It is possible that the fourth-order bispec-
trum S4 has features that have been neglected in the classical approach, such as
the non-commutability of the spin operators. Also, C4 could react more strongly
than C2 to the quadrupolar coupling qk of an individual bath spin Ik. At con-
stant Qr, the individual coupling constants will be bigger in a small bath than in
a large bath. Since the classical EOM approach can simulate more nuclear spins,
and in fact only yields satisfactory results for large bath sizes, the individual qk
are much smaller than in the small baths computed by ED.

In order to investigate the connection between the strengths of the quadru-
polar couplings and the broadening of the anti-diagonal cut, Sadiag

4 (ω̃) is presen-
ted for N = 3 and I = 9/2 for different Qr in Fig. 7.8 (c). The contribution
of C2(ω1)C2(ω2) on the spectrum is Gaussian with a variance σ2 = (ωfluc/2)2.
In the applied magnetic field, the second-order contribution is wholly independ-
ent of the quadrupolar coupling, and is equivalent to the FOA result [31]. The
fourth-order contribution on the bispectrum, however, changes noticeably with
the quadrupolar coupling strength. We obtain the full-width half maximum Ω1/2

by fitting only C4 with a Gaussian. The relation between Ω1/2 is shown in the
inset of in Fig. 7.8 (c). In the regime of small Qr, Ω1/2 increases with Qr in a
roughly linear fashion, before the increase flattens for Qr > 0.1. In the limit of
small quadrupolar coupling Qr → 0 the Gaussian curve becomes a sharp peak,
with Ω1/2 → 0 only non-zero due to the finite Lorentz broadening.

Figure 7.9 shows the anti-diagonal cut Sadiag
4 (ω̃) for different magnetic fields
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Figure 7.9: Sadiag
4 (ω̃) quantum mechanically calculated with N = 3, Qr = 0.08 and

I = 9/2 for different transversally applied external magnetic fields bx. This plot has
been published before in Ref. [104].

bx and a bath size N = 3 and nuclear spin length I = 9/2. The broadening
induced by a quadrupolar coupling decreases when the external magnetic field
is increased. For larger magnetic fields, the dynamics of the system becomes
dominated by the Zeeman energy, with HQ becoming increasingly perturbatory
in comparison. Similar behaviour has also been observed in the fourth-order spin
correlation in the time domain, where a large magnetic field drastically changes
the long-time decay [29, 53, 72]. This will be explored further in the following
chapter on fourth-order correlation in real time.

Lastly, we investigate the crossover regime, where the Zeeman energy is of
the same magnitude as ωfluc. For bx ≈ 1, the electron spin dynamic is dominated
by both the fluctuating Overhauser field and the external magnetic field, as they
have equal strength. Since the nuclear Zeeman energy is smaller than the electric
Zeeman energy by the factor ζ = 0.00125, the nuclei spin dynamics is mostly not
influenced by the external magnetic field. The nuclear spin dynamic is only gov-
erned by the quadrupolar coupling and the hyperfine coupling with the electron
spin.

In Fig. 7.10, two extreme cases are compared in the crossover regime bx = 1.
The left panel of Fig. 7.10 shows S4 for the smallest possible bath sizeN = 1, while
the right panel presents a classical calculation of N = 100 bath spins. While N =
1 is far away from a classical limit and requires quantum mechanical calculation,
N = 100 is far removed from the capabilities of the quantum mechanical method
and is thus computed classically. Note that the quantum mechanical S4 on the
left is the result of computation in the limit of weak measurement for N =
1. However, it is near identical to the S4 presented for strong and continuous
measurement in Ref. [76]. This shows that measurement strength does not have
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Figure 7.10: S4 for a smaller magnetic field of bx = 1. Left: obtained by quantum
mechanical calculation, with N = 1, I = 9/2 and Qr = 0.08. Right: the classically
computed spectrum with N = 100, Qr = 0.33. This plot has been previously published
in Ref. [104].

a significant influence on S4 in the CSM. For bx = 1, the quadrupolar term
does not only influence C4, but also alters the second-order contribution C2.
S4 exhibits alternating correlation and anti-correlation in the (ω1, ω2)-plane for
small ω1 or ω2. For a fixed ratio ω1/ωfluc = 1, increasing ω2 shows first weak
anti-correlation, then correlations, and then anti-correlations again. Here, the
positive correlations are not confined to the diagonal as depicted in Fig. 7.5 and
Fig. 7.2, but are spread due to the presence of the quadrupolar couplings. The
classically computed S4 shown in the right panel exhibits a continuous spectrum,
but with similar features. These are the anti-correlation at the axis with a local
maximum along ω1/2/ωfluc = 1, with the broadening of the correlation along the
diagonal.

7.4 Chapter Conclusion

In this chapter, the fourth-order spin noise bispectrum S4(ω1, ω2) was investig-
ated. The bispectrum quantifies the correlation between a spin noise compon-
ent with the frequency ω2 and a spin noise component with the frequency ω2.
S4(ω1, ω2) is a cumulant, which means that all Gaussian noise is subtracted.

The basic features of the bispectrum can be explained in the FOA, such as the
positive correlation being limited to the ω1 = ω2 diagonal and the anticorrelation
having the shape of an bivariate Gaussian around ω1 = ω2 = ωL in the case of bx >
1. The bispectrum was computed both classically and quantum mechanically,
which is presented in Sec. 7.2. Both methods agree remarkably well in the limits
of a large spin bath and long nuclear spins. This is because for increased N or I,
the number of eigenstates grows exponentially, causing the energy spectrum to
become more similar to the continuous classical energy spectrum.
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Sec. 7.3 deals with the fourth-order spin noise in the extended CSM with ad-
ded quadrupolar coupling. Introducing quadrupolar interaction causes a broad-
ening of the positive contribution to the fourth-order cumulant. The classical
and the quantum mechanical method both yield congruent results in the case of
second-order correlation with or without quadrupolar coupling, and in the case of
fourth-order correlation without quadrupolar coupling. Here, however, classical
and quantum mechanical results differ slightly the broadening caused by quadru-
polar interaction. While second-order correlation is not influenced by quadrupolar
coupling when an external magnetic field is applied, S4 does so significantly. This
proves that fourth-order correlation does yield information beyond second-order
correlation.

Moreover, the results for S4 obtained through the quantummechanical method
in the weak measurement limit with N = 1 are basically identical to the S4

presented for strong, continuous measurement in Ref. [76]. This implies that the
strength of the measurement does not have a significant effect on S4.

In conclusion, fourth-order spin noise offers new information about the spin
correlation in a QD system, and is thus well-worth investigating in experiment.
It can be used to describe the influence nuclear quadrupolar coupling has on the
spin when an external magnetic field is present.
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Chapter 8

Fourth-Order Correlation in Real
Time

While fourth-order spin noise, such as the bispectrum presented in the last
chapter, has not yet been investigated in experiments at the time of publica-
tion of this thesis, fourth-order spin correlations in real time have. Two of these
experiments, both measuring different kinds of fourth-order spin correlation func-
tions, will be analyzed in this chapter [29, 72]. The central focus of this chapter
is to demonstrate the importance of the nuclear electric quadrupolar interaction
for understanding the long-time dynamics of these quantities. This chapter sum-
marizes and expands upon the findings published in Ref. [107].

8.1 Three-Pulse Measurement

This section is about an experiment [72] measuring spin correlation in a single
negatively charged GaInAs QD. Three σ+ pulses were applied to an initially
empty QD, the first exciting a |↓〉-spin electron. After the pulse sequence, the
charge of the QD is measured. As will be explained in the following, the probab-
ility function of finding one electron (and not two) in the QD, depending on the
delay times between the three pulses, contains the fourth-order auto-correlation
of the Sz component of the electron spin.

8.1.1 Experimental Realization

One way to measure correlation beyond second-order was explored by Bechtold et
al. [72]. The system is a single QD with an asymmetric tunnel barrier and applied
voltage, as sketched in Fig. 8.1. The experiment measured the probability of the
central electron spin being in the spin-|↓〉 state at times t1 and t1 + t2, when the
electron was initially transferred into the spin-|↓〉 at t = 0.
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8.1. Three-Pulse Measurement

Figure 8.1: The QD system with
applied voltage and an asymmetric
tunnel barrier to allow for hole tun-
neling while the electron excited to
the conduction band stays local-
ized. Three σ+ laser pulses are ap-
plied; one for initialising the spin,
the second and third one at times
t1 and t1 + t2 [72].

An asymmetric tunnel barrier extends the
lifetime of excited electrons up to several mi-
croseconds, while the lifetime of the holes is
unaffected. At time t = 0, the empty QD is
pumped with a σ+-pulse that excites a neut-
ral exciton state (|↓⇑〉). The hole then escapes
the QD within picoseconds, which leaves the
spin-|↓〉 state (|↓⇑〉 → |↓〉). After a delay time
t1, another σ+-pulse is applied. The meas-
urement of polarization follows as described
in Sec. 2.3.2. If the electron spin has flipped
during that time and is in the spin-|↑〉 state,
the QD is then charged with two electrons
(|↑↓⇑〉 → |↑↓〉) and becomes optically inactive.
If the electron is in the spin-|↓〉 state, the pulse
has no effect, since the Pauli principle does not
allow the creation of another |↓〉-electron. We
model the effect of this pulse as the projection
operator P↓ = |↓〉 〈↓|. The same σ+-pulse is
again applied at t = t1 + t2. After this, the
total charge is measured. If the electron spin
was in a spin-|↓〉 state both at times t1 and
t1 + t2, the QD is charged with 1e. If the elec-
tron spin was in the spin-|↑〉 state at any time
of measurement, the QD is doubly negatively charged. This measurement is then
repeated often enough to gain a statistically significant probability of a singly
charged QD at the end of these three pulses.

The first probe pulse at time t1 transfers the density operator from ρinit to

ρ(t1) =
1

w1(t1)
P↓U(t1)ρinitU

†(t1)P †↓ . (8.1.1)

U(t) = exp(−iHt) is the time evolution operator and

w(t1) = 〈P↓(t1)〉init (8.1.2)

is the probability to measure the electron spin |↓〉 state at time t1 (before the
probe pulse). Since we are in the high temperature limit, and the pump pulse at
t = 0 has generated an electron in the spin-|↓〉 state, the initial density operator
at t = 0 is ρinit = 2P↓(0)/D. D is the dimension of the Hilbert space. We use the
notation 〈Ô〉init = Tr(Ôρinit) where Ô is an arbitrary operator, and the relation
P↓ = P †↓ = P 2

↓ . The conditional probability of the electron being in the spin-|↓〉
state again at time t1 + t2 can be written as

w(t1|t2) = Tr
(
P↓U(t2)ρ(t1)U †(t2)P †↓

)
. (8.1.3)
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The joint probability function for measuring spin-|↓〉 at both times results in

w(t1, t2) = w(t1|t2)w(t1)

= Tr
(
P↓U(t2)P↓U(t1)ρinitU

†(t1)P †↓U
†(t2)P †↓

)
= 〈P †↓ (t1)P †↓ (t1 + t2)P↓(t1)〉

init

=
2

D
Tr (P↓(t1)P↓(t1 + t2)P↓(t1)P↓(0)) .

(8.1.4)

This is a special case of a general fourth-order autocorrelation function defined
as

G4(t1, t2, t3) =
2

D
Tr (P↓(t1)P↓(t2)P↓(t3)P↓(0)) (8.1.5)

such that w(t1, t2) = G4(t1, t1 + t2, t1). Using the identity P↓ = 1/2 − Sz results
in

G4(t1, t1 + t2, t1) =
1

4
+ C2(t1) + C2(t2) +

1

2
C2(t1 + t2) + 2C4(t1, t1 + t2, t1)

(8.1.6)

with second-order spin autocorrelation functions

C2(t) = 〈Sz(t)Sz〉 (8.1.7)

and the general fourth-order autocorrelation function of the electron spin

C4(t1, t2, t3) = 〈Sz(t1)Sz(t2)Sz(t3)Sz〉 . (8.1.8)

All expectation values are calculated with respect to the high-temperature density
operator ρht = 1/D.

8.1.2 G4 in the CSM: FOA and ED Results

The fourth-order autocorrelation of the projection operator P↓ as calculated in
the FOA follows from Eq. (5.1.13) and Eq. (5.1.16),

G4(t1, t1 + t2, t1) =
1

4
+ 2C4(t1, t1 + t2, t1) + C2(t1) + C2(t2) +

1

2
C2(t1 + t2)

=
1

4
{(n2

3 + 1)2 + (n2
1 + n2

2)2 cos(ωLt1) cos(ωLt2)

+ (n2
1 + n2

2)(n2
3 + 1)[cos(ωLt1) + cos(ωLt2)]}.

(8.1.9)

For a large transversally applied magnetic field (~n ≈ ~ex) we can neglect the C2(t)
contributions, since they decay to zero after t ≈ 10T ∗, as demonstrated in Fig.
5.1. We obtain

G4(t1, t1 + t2, t1) =
1

4
+ 2C4(t1, t1 + t2, t1)

=
1

4
+

1

8
cos(ωL(t1 − t2))

(8.1.10)
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Figure 8.2: G4(t1, t1 + t2, t1) computed in the FOA for different magnetic fields, (a)
bx = 0, (b) bx = 1, (c) bx = 5, (d) bx = 10, (e) bx = 20, (f) bx = 50. It was obtained
through averaging over M = 106 random Overhauser fields.

Figure 8.3: Cuts through G4(t1, t1 + t2, t1) computed in the FOA. (a) and (b) show
the transversal cut t1 + t2 = 20T ∗, while (c) and (d) show the longitudinal cut t1 = t2.
The magnetic field strengths are bx = 10, 50 in (a) and (c), and bx = 0, 1 in (b) and
(d).
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for t1, t2 � T ∗ with Eqs. (5.1.16) and (8.1.9). For equal delay times, t1 = t2 = t,
G4(t, 2t, t) = 3/8 for long-time scales. If the sum of the delay times (the time of
the second probe pulse) is held constant (t1 + t2 = T ′) we observe an oscillation
with 2ωL, double the Lamor frequency for the fourth-order function

G4(t1, T
′, t1) =

1

4
+

1

8
cos(ωL(2t1 − T ′)). (8.1.11)

This explains the oscillation with 2ωfluc at around t1 = T ′/2 that was observed
in experiment [72] for high magnetic fields if the time between the initialization
and the second pulse is kept a constant T ′.

Fig. 8.2 shows G4(t1, t1 + t2, t1) averaged over 106 Gaussian distributed Over-
hauser fields for different magnetic field strengths. The color represents the mag-
nitude of the correlation function in the two-dimensional color plot. The oscilla-
tions present in G4(t1, t1 +t2, t1) are parallel to the axes (t1 = 0 or t2 = 0) and the
diagonal t1 = t2. The contributions along the axes clearly stem from second-order
correlation: If either one of the two delay times is zero, the pulse sequence only
consists of two pulses, resulting in a second-order correlation measurement. The
magnetic field strength causes oscillation with the Larmor frequency, both along
the axes and along the diagonal. In the following, we will focus on two subspaces
in the (t1, t2)-plane: The diagonal defined by t1 = t2 and the anti-diagonal for a
fixed T ′ = t1 + t2. In Ref. [72], the measurements were performed for (t1, t2) pairs
along these lines.

In Fig. 8.3 (a), the cut along the anti-diagonal direction, keeping t1 + t2 =
20T ∗ for G4(t, T ′ = 20T ∗, t) obtained by FOA is depicted for bx = 10, 50. For
t ≈ 0 and t ≈ T ′, oscillations G4(t, T ′ = 20T ∗, t) = 1/4 around with the Larmor
frequency with a Gaussian envelope function can be seen. The maximal value
the correlation reaches is 1/2, and the global maxima of G4 are located at t = 0
and t = T ′. The local maximum at t = T ′/2 and has a value of 3/8. Figure
8.3 (b) shows the same cut but for small and absent magnetic field, bx = 0, 1.
Here, the correlation function reaches higher maxima, since the second-order
contribution does not decay for longer times. Fig. 8.3 (c) shows the diagonal cut
of G4 for the same parameters as (a). The correlation shows an oscillation with
the Larmor frequency, that quickly decays for t > 5T ∗ to stay at a constant level
of 3/8. The diagonal cut G4(t, 2t, t) plotted in Fig. 8.3 (c) is the local maximum of
G4(t, T ′, t) at t = T ′/2 as seen in Fig. 8.3 (a). The diagonal cut gives the maximal
amplitude of the oscillation around t = T ′/2. Why the long-time limit decays to
exactly 3/8 for large magnetic fields can be explained by assuming equal delay
times in Eq. (8.1.11). The oscillation centred around t = T ′/2 originates solely
from the fourth-order spin correlation contribution to G4, since the second-order
contributions are completely decayed for t > 5T ∗. In Fig. 8.3 (d) the diagonal
cuts of G4 are plotted for the same magnetic fields as the anti-diagonal cuts of
Fig. 8.3 (b). The constant long-time limit is larger than for high magnetic fields,
again due to the second-order correlation not decaying.

Fig. 8.4 (a) presents the anti-diagonal cut G4(t, T ′, t) for bx = 200 computed
via the FOA (grey) and ED with N = 6 nuclear spins I = 3/2 (black). We
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8.1. Three-Pulse Measurement

Figure 8.4: Panel (a): G4(t, T ′, t) computed in the FOA averaged over 106 Overhauser
fields (grey) and ED with N = 6, I = 3/2 nuclear spins (black), both with bx = 200.
The lower panels show detailed plots of the oscillation, where ED and FOA results are
identical. Panel (b): The diagonal cut of G4, computed with the same parameters as
the data shown in the left panel. Both plots were taken from Ref. [107].
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extracted the characteristic time scale as T ∗ = 1 ns by matching the Gaussian
envelope of the ED results in Fig. 8.4 (b) to the results of Bechtold et al. [72].
T ∗ = 1 ns is used in all calculations as a reference scale. This also defines the
characteristic energy scale of the system, ωfluc = 1/T ∗ = 1GHz. Then the dimen-
sionless magnetic field bx = 200 translates to the applied magnetic field strength
Bx = 4.1T, which is comparable to 4T, the highest magnetic field Bechtold et
al. applied in the experiment. The lower detailed plots in Fig. 8.4 (a) show the
oscillation on a picosecond time scale. At bx = 200, the Larmor frequency is to
high for the oscillations to be visible in the main plot. The detailed plots reveal
that the results obtained by quantum mechanical ED show the same frequency
doubling for the oscillation around t = T ′/2 as the FOA result does.

Figure 8.4 (b) depicts the diagonal cut G4(t, 2t, t) calculated with the same
parameter as the left panel, again computed via a fully quantum mechanical ED
(black) and in the FOA (grey). It exhibits the same features as already observed
in Fig. 8.3 (c) for bx = 10, 50.

All in all, the results of the FOA and the fully quantum mechanical ED with
a rather small number of N = 6 nuclear spins agree remarkably well in a larger
external magnetic field, |~bext| � |~bN |. Small finite size effects are responsible for
the slight deviation of the ED envelope function compared to the Gaussian of the
SCA, which is generated by the central limit theorem requiring N →∞.

While the results presented so far bring a great deal of clarity to G4(t1, t1 +
t2, t1), both the results obtained by the FOA and the ED of the CSM Hamiltonian
do not show the long-time decay observed in experiment. Apparently, the CSM
model is insufficient for accurately describing the long-time dynamics. Bechtold et
al. [72] have reported that G4(t, 2t, t) decays down to 1/4 for t→∞ at moderate
magnetic fields. They also observed a crossover to an exponential decay with
long-time decay time T2 ≈ 1.4µs. This contradicts our observations of a constant
G4(t, 2t, t) = 3/8 for t > 10T ∗.

8.1.3 Influence of Quadrupolar Coupling on G4

Quadrupolar coupling is a likely candidate for the interaction causing the decay
of G4(t, 2t, t) down to 1/4 for longer times, since it has already been proven to be
influential for the spin dynamics in QD systems [59]. Since the FOA assumes a
static nuclear spin bath, it is not suitable for modeling quadrupolar interaction.

The probes used for the experiments are made of InGaAs. Gallium and Ar-
senide nuclear spins have a spin length 3/2, which is the spin length used in
the calculations presented here. Indium nuclear spins have a spin length 9/2,
which we will also simulate by I = 3/2 in order to access larger bath sizes. The
anisotropy of the quadrupolar coupling is set to η = 0.5 [87].

In order to investigate the influence of the nuclear Zeeman energy and the
quadrupolar coupling separately, we first study the system for ζ = 0. A quad-
rupolar coupling of Qr = 0.15 was used. This value was chosen by comparing
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Figure 8.5: G4(t, 2t, t) as function of t for different external magnetic fields. The
curves were smoothed through a low-pass filter to suppress finite size oscillations. The
inset reveals the short-time behavior without the low-pass filter. One can see that G4

decays down to a constant level close to 1/4 in O(ns), and that the time frame of the
decay is not dependent on the applied magnetic field. Parameters: N = 5 with I = 3

2
and Qr = 0.15, ζ = 0. This plot was taken from Ref. [107].

the theoretical results plotted in the left panel of Fig. 6.6 to the direct measure-
ment of the decay of C2(t) [53]. With this values, G4(t, 2t, t) rapidly approaches
a constant with some finite-size oscillations. This decay occurs one a time scale
of about 10 ns, as can be seen in the inset plot of Fig. 8.5. Furthermore, the ex-
ternally applied magnetic field does not influence the decay significantly, as long
as the magnetic field is larger than bx = 50. The results do not show he long-
time exponential decay at high magnetic fields reported in the experiment [72].
It does, however, describe the experimental results for smaller magnetic fields
(0.5T) quite well.

For extracting the long-time behavior, the finite size oscillations need to be
suppressed. Therefore, we smooth the curves through convolution with a Gaus-
sian function

g(t) =
1√

2πσ2
exp

(
− t2

2σ2

)
. (8.1.12)

In Fig. 8.5 and Fig. 8.6, a standard deviation σ = 60 ns was used for this low-pass
filter. This is small enough to not interfere with the curve progression in O(µs).

In order to make a connection to the experiments [72], a suppression of the
dephasing caused by quadrupolar coupling has to be introduced. This suppression
needs to be a function of the external magnetic field, since the decay shown in
experiments is O(ns) for small fields, and O(µs) for large fields. The desired effect
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is provided by the nuclear Zeeman term, which dominates the local nuclear spin
dynamics at large magnetic fields. When the Zeeman energy is in the order of
magnitude of the hyperfine interaction energy, the Zeeman splitting of the nuclei
suppresses nuclear spin flips.

The average ratio between nuclear and electric Zeeman energy in InGaAs
probes amounts to ζ ≈ 1.25× 10−3, as introduced in Sec. 7.2 for the fourth-order
cumulant S4. While the nuclear Zeeman term is negligible in small magnetic
fields, the magnetic field strength applied in the experiment is large enough so
that it becomes relevant to the spin dynamics.

With nuclear Zeeman energy taken into account, a completely different be-
havior for the long-time limit of G4(t, 2t, t) emerges, as presented in Fig. 8.6.
In the larger left panel of the figure, G4(t, 2t, t) is plotted up to 4µs for dif-
ferent magnetic field strengths. Again the low-pass filter was employed to sup-
press the finite size noise in the long-time evolution. The dimensionless fields
bx = 50, 100, 115, 130, 160, 200 can be translated to physical units of Bx = | ~Bext| =
1.03, 2.07, 2.38, 2.68, 3.31, 4.14T. The data presented in Fig. 8.6 is calculated us-
ing ED with onlyN = 5 nuclear 3/2-spins, a uniform average ratio ζ = 1.25×10−3

and averaged over Nc = 32 configurations of {Ak}.

For magnetic fields where the nuclear Zeeman energy is considerably lower
than ωfluc, bx = 50, 100, the results are very similar to those for ζ = 0. Within
nanoseconds, G4(t, 2t, t) decays to its asymptotic magnetic field dependent long-
time limit defined by

Glim(bx) = lim
t→∞

G4(t, 2t, t). (8.1.13)

The magnetic field dependency of Glim(bx) is shown as blue squares in the
lower right panel of Fig. 8.6. A considerably different picture emerges once bx
exceeds bx = 100. While the long-time limit is magnetic field independent for
ζ = 0, for ζ = 1.25 × 10−3 Glim(bext) monotonically increases with bx. The
increase approaches a plateau for large fields, as Glim(bx) cannot is limited by the
analytic asymptotic value 3/8.

We analyze the slow long-time decay of G4(t, 2t, t) by introducing the fit func-
tion

Gfit
4 (t, 2t, t) = Glim(bx) + ξ exp(−2t/TG

2 ) (8.1.14)

parametrized by the amplitude ξ and the additional exponential decay time TG
2 in

order to compare our results to the experimental findings by Bechtold et al. [72].
These fits are plotted as dashed lines along with the G4(t, 2t, t) curves obtained by
ED in the left panel of Fig. 8.6. The decoherence time TG

2 extracted is plotted as
a function of the external magnetic field in the upper right panel of Fig. 8.6. For
small magnetic fields, TG

2 is small due to the rapid decay and difficult to extract.
It rapidly increases around bx = 115, which translates to Bx = 2.38T. This
agrees excellently with the experimental findings of Ref. [72]. We obtained values
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Figure 8.6: G4(t, 2t, t) as a function of t for different external magnetic fields. and a
relative strength of the Zeeman splitting of ζ = 1.25× 10−3. The decoherence time TG

2

and the convergence level Glim are plotted against the external magnetic field bx. A
low pass filter was utilized to suppress finite size oscillations. In the upper right panel,
the decay time TG

2 is plotted in blue dots. The long-time limit Glim is shown in the
lower right as blue squares. The dashed lines show the ED data fitted with Eq. (8.1.14).
Parameters: N = 5 with I = 3

2 and Qr = 0.15. Data presented in the plot has been
previously published in Ref. [107].

of TG
2 ≈ 3.5µs for Bx = 4.14T, while Bechtold et al. reported TG

2 = 1.4±0.1µs for
an external magnetic field of Bx = 4T. The experimental data points presented
in Fig. 4 (a) of Ref. [72] can also be fitted by a larger TG

2 . If only the data points
for the long-time decay t > 300 ns are taken into account, TG

2 between 2 − 5µs
are found. This indicates that the values for TG

2 depend quite strongly on the
details of the fit procedure.

N = 5 is a very small number of nuclear spins, but it is the highest odd-
numbered bath size our method utilizing all eigenenergies obtained by ED can
calculate. But G4(t, 2t, t) can be accessed for N = 7 with the numerically expens-
ive Lanczos approach with restart outlined in Sec. 5.4. The results of this calcula-
tion are shown in Fig. 8.7. The larger the external magnetic field, the shorter the
time evolution step will be for a given Krylov space dimensionM . Since the mag-
netic fields needed to observe a long-time exponential decay are quite high, using
this method presents a challenge. The Krylov depth used for these calculations
is M = 128. The propagation times were chosen dependent on the external mag-
netic field strength: For the magnetic field strengths bx = 50, 100, 130, 160, 200
the propagation times are δt = 1.2 ns, 0.6 ns, 0.6 ns, 0.3 ns, 0.3 ns for a single re-
start step. Since the computation for the highest magnetic fields requires two-
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Figure 8.7: Single values of G4(t, 2t, t) dependent on t for different external magnetic
fields and ζ = 1.25 × 10−3. Computed with a Lanczos algorithm with a Krylov depth
M = 128 and propagation times between restarts between δt = 0.3 ns and δt = 1.2 ns
depending on the magnetic field strength. The decoherence time TG

2 and the conver-
gence level Glim are plotted against the external magnetic field bx. In the upper right
panel, the decay time TG

2 is plotted in blue dots. The long-time limit Glim is shown
in the lower right in blue squares. The dashed lines show the ED data fitted with Eq.
(8.1.14). Parameters: N = 7 with I = 3

2 and Qr = 0.15. The data for bx = 200 has
been previously published in Ref. [107].

week runs on our HPC cluster, G4(t, 2t, t) was only calculated for a small number
of times.

The results of the Lanczos method for do not show a significant difference
to the results of the N = 5 ED calculation, which leads us to the conclusion
that the long-time dynamics extracted from the ED computation do not contain
significant finite size errors. As for N = 5, the maximum decay time was found
to be TG

2 ≈ 3.5µs for N = 7. It was not possible to fit an exponential curve to
the data for bx = 50, since G4(t, 2t, t) is already decayed down to 1/4 at the first
data point t = 152 ns.

One question is how the fourth-order correlation depend on the different quad-
rupolar coupling strengths Qr. Figure 8.8 depicts G4(t, 2t, t) for N = 7, bx = 160,
ζ = 1.25×10−3 for different Qr, computed via the Lanczos method with a Krylov
depth M = 128 and a distance between restarts of δt = 0.3 ns. The quadrupolar
coupling strength has a noticeable influence on the correlation decay: For higher
Qr, the correlation function is much earlier at a lower level. It should be noted
that the difference in correlation for Qr = 0.15 and Qr = 0.35 is higher for small
times than in the long time limit. Most of the additional decay caused by the
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Figure 8.8: Single values of G4(t, 2t, t) dependent on t for different quadrupolar coup-
ling strengths Qr, an external magnetic field bx = 160 and ζ = 1.25× 10−3. Computed
with a Lanczos algorithm with a Krylov depthM = 128 and a propagation time between
restarts δt = 0.3 ns. Parameters: N = 7 with I = 3

2 .

higher quadrupolar coupling takes place in the short time scale.

Another topic of interest is the influence of ζ on the decay. While ζ =
1.25 × 10−3 is, approximated, the average value for the InGaAs probe used in
the experiment by Bechtold et al. [72], our theoretical simulations can also com-
pute G4 for a different material with a higher ζ. Figure 8.9 shows G4(t, 2t, t)
for ζ = 2.5 × 10−3. All other parameters are identical to those of the results
presented in Fig. 8.7. For ζ = 2.5 × 10−3, the long-time exponential decay sets
in at smaller magnetic fields. This effect is expected, since it is the Zeeman
energy ζbx that causes the crossover from immediate decorrelation to slow ex-
ponential decay. The qualitative change is that the exponential decay is more
pronounced for ζ = 2.5×10−3, because the long-time limit Glim drops lower than
for ζ = 1.25×10−3 at comparable magnetic fields. The decay time of G4 in a large
magnetic field (bx = 100) is about TG2 ≈ 3.2µs. Note that due to the expensive
computation of N = 7, no data for t > 2.5µs was calculated. Values for Glim had
to be estimated based on ED calculations for N = 5.

Quadrupolar interaction requires nuclear bath spin lengths of I = 3/2 or
longer. This severely limits the bath size computationally viable for quantum
mechanical calculations. The long time limit of C2(t) with quadrupolar coupling
showed an even-odd behaviour in regards to bath size, as presented in Fig. 6.6.
In order to minimize long-time finite size effects, we focused on odd-numbered
baths.
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Figure 8.9: G4(t, 2t, t) calculated with identical parameter values as presented in Fig.
8.7, except that ζ = 2.5×10−3. The range of magnetic field strengths was also changed
accordingly.

Note that the limitation of the energy spectrum of the Hamiltonian introduce
finite-size errors which will influence Glim(bx). In the real system with ≈ 105

nuclear spins, the hyperfine coupling distribution function P (A) is nearly con-
tinuous. This then leads to a nearly continuous energy spectrum, increasing the
phase space for spin-flip processes. For N →∞, Glim(bx) will be smaller than in
the computations presented here. But since these finite size corrections of Glim(bx)
only influence the prefactor ξ, the decay time TG2 should remain unaltered.

8.2 Spin Echo Measurement of Fourth Order Cor-
relation

8.2.1 Experimental Realization

A different fourth-order correlation function was recently measured via spin echo
method [29]. Here, the intrinsic long-time decoherence scale T2 is determined by
applying a π/2− π − π/2 pulse sequence to a singly negatively charged QD that
has been initialized into the ground state. A strong external magnetic field is
applied in Voigt geometry, perpendicular to the optical axis. In our coordinate
system, the optical axis is in z direction and the magnetic field in x direction.
The index of the spin states |↑〉opt/B denotes whether the quantization axis is
oriented along the optical axis or the magnetic field.

93



8.2. Spin Echo Measurement of Fourth Order Correlation

Figure 8.10: The laser pulse sequence used in the spin echo experiment measuring a
fourth-order spin correlation function. The first pulse pumps the system into the |↑〉B
state. Then follows the π/2 − π − π/2 Hahn echo sequence, where the laser pulses
cause Rabi rotations in the plane perpendicular to the magnetic field. At τ = 0, if
no decorrelation has taken place, the spin should be in the |↑〉B again after the second
π/2 pulse. Lastly, another pump pulse is applied. If the spin is in the |↓〉B state, the
excitation and resulting trion decay will lead to a measurable emission of photons.

The magnetic field splits the electron spin states into the two states |↑〉B
and |↓〉B. The system is pumped by a 26 ns long circularly polarized σ− pulse
resonant with the transition between |↓〉B and the related trion state. This can
be expressed in the quantization axis oriented along the optical axis as |↓〉B =
(|↑〉opt − |↓〉opt)/

√
2. The |↑〉opt state is not affected by the pulse, but the |↓〉opt

contribution is excited into the trion state |↓↑,⇓〉opt. As the trion decays and
the unaffected spin |↑〉opt rotates in the magnetic field, a polarization in |↑〉opt
is created. Since |↑〉opt = (|↑〉B + |↓〉B)/

√
2, the pumping drains the |↓〉B state

and initializes the system in |↑〉B = (|↑〉opt + |↓〉opt)/
√

2. This corresponds to an
orientation along the x axis in our coordinate system.

The first spin-echo π/2-pulse causes a coherent rotation around the y axis
into the xz-plane, after which the spin freely precesses around the magnetic field
for a time T + τ . Then the π-pulse is applied, which reverses the direction of
the spin dephasing. The spin again precesses in the xz-plane for a time T − τ ,
bringing the total duration of the pulse sequence to 2T . The second π/2-pulse
will then rotate the spin up into the initial state oriented along the x axis. In
the experiment, the same circularly polarized pump pulse is used to read out the
coherence. If the spin has flipped during the process, the pump pulse will excite
an exciton state, which will decay emitting a photon.

We want to quantify the probability of finding the spin again in its initial
state

|g0〉 =
|↑〉opt + |↓〉opt√

2
(8.2.1)

after the pulse sequence. The probability amplitude of finding the system with
the central spin in the |g0〉-state after the time 2T can be described by

A(T, τ, ~m, ~m′) = 〈g0, ~m|Uy(π/2)e−iH(T−τ) (8.2.2)
×Uy(π)e−iH(T+τ)Uy(π/2) |g0, ~m′〉 .

Uy(φ) is the rotation matrix around the y axis with the angle φ. The nuclear
spin configurations ~m = (m1,m2, ...,mN)T are neither measured nor initialized
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and are, therefore, unknown. In order to obtain the total probability, we need to
sum over all nuclear contributions

Pg0g0(T, τ) =
2

D

∑
~m,~m′

|A(T, τ, ~m, ~m′)|2 (8.2.3)

=
2

D

∑
~m

〈g0, ~m|U †y(π/2)eiH(T+τ)U †y(π)

×eiH(T−τ)U †y(π/2)P̂g0Uy(π/2)e−iH(T−τ)

×Uy(π)e−iH(T+τ)Uy(π/2) |g0, ~m〉 (8.2.4)

where D/2 is the number of nuclear spin configurations and

P̂g0 = |g0〉 〈g0| (8.2.5)

is the projector onto the state |g0〉. We define

A = Uy(π/2)P̂g0U
†
y(π/2) (8.2.6)

Ā = U †y(π/2)P̂g0Uy(π/2) (8.2.7)
B = Uy(π) (8.2.8)

and gain the fourth-order correlation function

Pg0,g0(T, τ) =
2

D
Tr[B†Ā(T − τ)BA(−T − τ)]. (8.2.9)

We use the fact that the spin operators are the generators of electron-spin rota-
tions and write the rotation matrices as

Uy(π/2) = e−iσyπ/4 =
1√
2

(1− iσy) (8.2.10)

Uy(π) = e−iσyπ/2 = −iσy. (8.2.11)

Therefore, we obtain for the operators in Pg0,g0(T, τ)

A = Ā =
1

2
1− Sz (8.2.12)

B = −2iSy (8.2.13)

and can finally express the probability of finding the spin in its initial state after
the pulse sequence as [107]

Pg0,g0(T, τ) =
1

2
− 8 〈SySz(T − τ)SySz(−T − τ)〉 . (8.2.14)

With the transversal magnetic field applied in x direction, the system is rotation-
ally symmetric in the yz plane. Note that the fourth-order correlation derived
here is not the same as the G4 function derived in the previous section. While G4

quantifies the correlation of Sz with itself at different points in time, Pg0,g0(T, τ)
describes the correlation between two different electron spin components, Sz and
Sy. Due to the isotropy in the xy plane, we can expect similar behaviour to
G4, but the two experiments discussed in this chapter do not measure the same
correlation function.
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8.2.2 FOA Results for the Spin Echo

Figure 8.11: Pgog0(τ, T ) computed in the FOA averaged over 106 Overhauser fields.
Panel (a) shows the behaviour at higher magnetic fields (bx = 10, 50), while panel (b)
features Pgog0(τ, T ) at small to intermediate fields (bx = 0, 1, 5).

The spin echo fourth-order correlation function Pg0,g0(T, τ) as introduced in
Eq. (8.2.14) is given by

Pg0,g0(T, τ) =
1

2
+

1

2

(
n2

3 + (n2
1 + n2

2) cos(2ωLτ)
)

(8.2.15)

with a normalized and constant total magnetic field vector ~n = ( ~Bext+ ~BN))| ~Bext+
~BN | in the FOA. The Overhauser field ~BN is randomly generated from a Gaussian
distribution. Note that the dependence on T vanishes, since with the nuclear
spin dynamics frozen no information is lost no matter how long ago the system
was initialized. By comparing the FOA solution for C2(t) for a given frozen
Overhauser field ~BN in Eq. (5.1.13) to the FOA solution of Pg0,g0(T, τ) derived in
Eq. (8.2.15), one notices that in the case of frozen nuclear dynamics

Pg0,g0(T, τ) =
1

2
+ 2C2(2τ). (8.2.16)

Averaging over 106 randomly generated Overhauser fields yields the results presen-
ted in Fig. 8.11. The results agree with Eq. (8.2.16). Figure 8.11 (a) shows
Pg0,g0(T, τ) for higher magnetic fields (bx = 10, 50), while Fig. 8.11 (b) depicts
Pg0,g0(T, τ) for smaller magnetic fields (bx = 0, 1, 5). For magnetic fields bx > 1,
Pg0,g0(T, τ) quickly decays to 1/2, while oscillating with 2ωL. For smaller mag-
netic fields, the probability of measuring the spin in its initial state after the pulse
sequence stays above 1/2 for the limit τ →∞.
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8.2.3 Pg0,g0(T, τ) for the Full Hamiltonian

In general, the fourth-order correlation function Pg0,g0(T, τ) cannot be reduced to
a second-order correlation C2(2τ). Due to nuclear spin dynamics and quadrupolar
couplings, information is not retained for an arbitrary time T .

In order to compare the theoretical results with the experimental measure-
ments, we investigate both Pg0,g0(T = const, τ) as a function of τ and the os-
cillation amplitude of Pg0,g0(T, τ = 0) = P̄g0,g0(T ) as a function of T for several
different external magnetic fields. Like G4(t, 2t, t) discussed in the previous sec-
tion, the amplitude of Pg0,g0(T, τ) exhibits a long-time exponential decay that can
be fitted by

P̄g0,g0(T ) = Plim + ξ exp

(
−2T

TP
2

)
. (8.2.17)

The same system parameters were employed for the calculation of Pg0,g0(T, τ)
using ED, as for the computation of G4(t, 2t, t) in Fig. 8.6. This is done in
order to show that the same material parameters can explain both experiments.
For a constant T , Pg0,g0(T, τ) oscillates with twice the Larmor frequency as a
function of τ . This has already been understood by deriving the FOA result in
Eq. (8.2.15). But since the FOA accounts for the decay down to a asymptote of
Plim = limT→∞ Pg0,g0(T, 0) = 1/2, the additional decay observed in experiment
and fully quantum mechanical simulation is caused by the competition between
the nuclear Zeeman energy and the quadrupolar interaction.

In the results of Pg0,g0(T, τ) obtained by ED for N = 5, ζ = 1.25 × 10−3

and Qr = 0.15, the decay of the spin-echo amplitude is noticeable, but not as
pronounced as in the experiment. Exponential fitting for different external mag-
netic field strengths yields decay times TG2 that are similar to the decay times
reported by experiment, but long-time limits Plim that lie above the experimental
values [29]. Figure 8.12 shows the long-time decay of the amplitude P̄g0,g0(T ) for
two different magnetic fields, bx = 130 and bx = 160. These dimensionless mag-
netic field strengths translate with an electron g-factor of ge = 0.442 as reported
in the experiment [29] to Bx = 3.34T and Bx = 4.11T, respectively. On the left
panels of Fig. 8.12 of the spin echo amplitude, the oscillations in τ are presented
for two different times T in order to illustrate the decay of the echo amplitude.

Through applying the pulse sequence of π/2−π−π/2-pulses coherence can be
maintained on a time scale of O(µs), TP

2 � T ∗. In Fig. 8.13, the decay time TP
2 is

shown dependent on the externally applied magnetic field. The extracted depend-
ence of TP

2 � T ∗ on the external magnetic field strength concurs considerably
well with the experimental data presented in Fig. 4, Ref. [29].
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Figure 8.12: Exponential decay of the amplitude of Pg0,g0(T, τ = 0) with N = 5, here
plotted for bx = 130 in panel (a), and bx = 160 in panel (b), which corresponds [29] to a
magnetic field Bx = 3.34T and Bx = 4.11T for ge = 0.442. The decay time was fitted
as TP

2 = 3.96µs. On the right hand side, Pg0,g0(T, τ) for a constant pulse distance T
is shown, once for T = 0µs and once for T = 2µs. The spin echo oscillates with twice
the Larmor frequency, like G4(t, T, t) at t ≈ T/2. All system parameters are equal to
the ones used in Fig. 8.6 to describe the experiment by Bechtold et al [72]. Some of the
data for bx = 160 has been previously published in Ref. [107].
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Figure 8.13: The decay time TP
2 of P̄g0,g0(T ) dependent on the external magnetic

field Bx. The grey dashed lines are guides to the eye, indicating a rising slope that
saturates at magnetic fields bx > 130. With ge = 0.442 the saturation point is reached
at Bx ≥ 3.5T with a saturation level of TP

2 ≈ 4µs. A higher saturation point Bx = 4T
at a lower saturation level TP

2 ≈ 3µs was reported by Press et al. [29]. This plot is
taken from [107].

8.3 Chapter Conclusion

This chapter dealt with two different fourth-order spin correlation functions in
real time, both having been observed in recent experiments, The first part of
this chapter discussed the three σ+-pulses experiment conducted by Bechtold
et al. [72], and the second part was dedicated to the analysis of the spin echo
experiment presented by Press et al. [29].

In Sec. 8.1.1 we were able to show that the joint probability of measuring a
central spin |↓〉 twice at times t1 and t1 + t2 in a single QD after initializing the
electron spin in a spin |↓〉 state is related to the fourth-order correlation function
of the projection operator P↓ into the electron spin-|↓〉 state, G4(t1, t1 +t2, t1). G4

was calculated via the FOA, the ED and and the Lanczos algorithm. We investig-
ated the long-time behavior of G4 with and without nuclear Zeeman splitting and
quadrupolar interaction, and compared the results to the experimental findings
reported by Bechtold et al. [53, 72]. G4(t, 2t, t) features a long time exponential
decay in a strong transversal magnetic field, which cannot be understood with
the semi-classical approximation or the full quantum dynamics within the CMS
including electron and nuclear Zeeman term.

G4 computed using ED for the simple CSM model is very similar to G4 com-
puted by the FOA, as both approaches agree well with the experiments concerning
short time behavior but fail to explain the observed long time decay of G4. By
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extending the CSM with the nuclear-electric quadrupolar interaction and includ-
ing the nuclear Zeeman splitting, both ED and the Lanczos method yield results
which that qualitatively agree with the findings of the recent experiments [53,72].
If the nuclear Zeeman term is neglected (ζ = 0) and nuclear quadrupolar coup-
ling is introduced, G4 features a rapid decay after the initial Larmor oscillations
on a time scale of tdecay ≈ 10 ns. While this agrees well with the experimental
findings for small magnetic fields, it is not sufficient for the understanding of
the slow exponential decay observed when a large magnetic field is applied. We
demonstrated that the nuclear Zeeman term is necessary to observe the crossover
from a fast non-exponential decay in weak and intermediate magnetic fields to a
slow exponential decay at larger magnetic fields. This is due to the competition
between quadrupolar coupling, which induces decay, and nuclear Zeeman split-
ting, which suppresses decoherence. Above a threshold of bx ≈ 100, G4(t, 2t, t)
featured a long-time exponential decay. The decay time TG2 increases with the
magnetic field strength until it reaches a plateau of T2 = 3.5µs. This concurs
qualitatively with the experimental results reported by Bechtold et al. [72].

In the second part of the chapter we derived that the spin echo measurement
is described by a fourth-order spin correlation function Pg0,g0(T, τ). Pg0,g0(T, τ) is
different from G4 in that it is not related to an auto-correlation function of the
spin component Sz, but involves both Sy and Sz. However, the decay mechanism
is the same, and the long time behavior is qualitatively similar. Like G4(t, 2t, t),
P̄g0,g0(T ) exhibits decay times that increase monotonically with the external mag-
netic field strength, until reaching a plateau for very high fields. However, the
magnetic field dependency of the two long-time scales TG

2 (bx) and TP
2 (bx) differs.

While TG
2 (bx) shows a very abrupt increase around bx ≈ 115, TP

2 (bx) exhibits
a nearly linear increase before reaching the plateau. The saturation values are
likewise not identical, with TP

2 ≈ 4µs and TG
2 ≈ 3.5µs. This actually agrees very

well with the experimental findings, since the saturation level of the decay time
TP

2 (bx) reported in Ref. [29] is higher than the decay time obtained for G4(t, 2t, t)
by Ref. [72]. Note, however, that the three pulse experiment measuring G4(t, 2t, t)
did only extract TG

2 for a single magnetic field. Whether a saturation of the decay
time at high magnetic fields as predicted by our calculations could be observed
here experimentally remains a task for the future.

For the anti-diagonal of G4(t1, t2+t2, t1) at a fixed distance between the second
probe pulse and the initial pump pulse (t1 + t2 = T ′), i. e. G4(t1, T

′, t1), G4 os-
cillates with 2ωL and a Gaussian envelope around t1 = T ′/2. The cause of the
frequency doubling can be analytically understood in the FOA. The Gaussian en-
velope is caused by the dephasing introduced by the Overhauser field. Pg0,g0(T, τ)
exhibits a similar behaviour at constant T .

In conclusion, the CSM model expanded by nuclear-electric quadrupolar coup-
ling and nuclear Zeeman splitting describes fourth-order correlation functions in
QD adequately. Quadrupolar coupling induces an immediate decay of the correl-
ation, while an increasing nuclear Zeeman splitting suppresses this effect leading
to a long-time exponential decay in large magnetic fields. Applying the full model

100



8.3. Chapter Conclusion

predicts a long-time exponential decay of the fourth-order correlation functions
dependent on the transversal magnetic field strength, that agrees with the recent
experimental results qualitatively as well as quantitatively.
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Conclusion

The primary focus of this thesis was the investigation of fourth-order spin correl-
ation in QD systems. Both fourth-order spin correlation functions in real time
as well as in the frequency domain were calculated using classical and quantum
mechanical methods. Making the connection with experiments, we were able to
prove that the extended CSM with quadrupolar couplings is a good description
of the spin dynamics in the QD system, and is capable of reproducing the ex-
perimental findings qualitatively and quantitatively. Most importantly, this work
unmistakably shows that fourth-order correlators, be it in the real time or the
frequency domain, yield information beyond that of the well known second-order
correlation function and second-order noise.

Different methods were presented in order to calculate fourth-order correla-
tion. The FOA describes the correlation adequately for short times, and enables
us to simulate an infinite nuclear spin bath. A scheme relying on ED of the
Hamilton matrix yields numerically exact results, but is computationally limited
in regards to bath size. Another method based on Lanczos time propagation can
simulate a larger bath sizes, but is computationally expensive, especially for large
magnetic fields.

To investigate fourth-order correlation, first second-order correlation function
has to be reviewed. After presenting the well known general features of the
second-order electron spin correlation, we discussed the influence of the hyper-
fine coupling distribution and the nuclear-electric quadrupolar coupling on the
long-time spin decay. By making a connection between our numerical results of
second-order spin correlation influenced by quadrupolar coupling and previous
experiments [53], we gauged the quadrupolar coupling strength Qr with the ex-
perimentally observed long-time decay. The influence of the nuclear spin length
I on the decay induced by quadrupolar coupling was investigated. We found an
even-odd behaviour of the decay in regard to bath size for small N .

Furthermore, we analyzed the second-order spin bath correlation function
both analytically and numerically in the CSM. The CSM is exactly solvable for
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homogeneous coupling constants, which makes it possible to obtain the auto-
correlation function of the total bath polarization for an arbitrary number of
spins. The effect of an inhomogeneous hyperfine coupling distribution function
was studied analytically in the hmf limit. With a nuclear Zeeman term, the spin
bath noise exhibits a peak at the frequency corresponding to the nuclear Zeeman
energy. The shape of that peak is given by the hyperfine coupling distribution.
This makes it possible to measure the distribution of the Ak directly through
spin noise spectroscopy, with the location of the peaks goven by the Zeeman
energy of the corresponding isotopes. A numerical approach with Lanczos time
propagation shows that the analytical methods provide an adequate description
of the spin bath correlation, especially at high magnetic fields.

The fourth-order cumulant S4(ω1, ω2) was investigated using the FOA, ED and
a classical EOM approach. For the CSM, all methods produce congruent results.
The quantum mechanical bispectrum converges to the result of the classical sim-
ulation when the quantum mechanical spectrum of eigenenergies approaches a
continuous distribution, for larger bath sizes and a large nuclear spin length. But
even calculations with a small number of nuclear spins provide a good representa-
tion of a larger bath bispectrum. The bispectrum is made up of fourth-order and
second-order spin noise contributions. The fourth-order contributions constitute
the positive correlation to the bispectrum, and are only non-zero for ω1 = ω2.
When the quadrupolar couplings are added, the fourth-order contribution exhib-
its a broadening around the frequency diagonal ω1 = ω2. While second-order
noise is not influenced by quadrupolar coupling when a transversal magnetic field
is present, the fourth-order spin noise changes depending on the quadrupolar
coupling strength. This proves that fourth-order correlation function provides
additional information compared to the second-order correlation function. Also,
the simple linear response theory employed in this work yields congruous results
to those obtained through elaborate continuous measurement theory presented
in Ref. [76]. Hence the assumption of non-perturbative measurement is justified,
since the perturbation included in Ref. [76] does not change the resulting S4.

We were able to show analytically that the two recently conducted experi-
ments, the three σ+-pulse experiment [72] and the spin echo experiment [29], ac-
tually measure two different fourth-order correlation functions in real time. The
joint probability of measuring the electron spin in a QD in its spin-|↓〉 state at t1
and t1 + t2 after initializing it in that same state is described by the fourth-order
correlation function of the projection operator into the electron spin-|↓〉 state,
P↓. The short time dynamics of this fourth-order correlator, G4(t1, t1 + t2, t1),
can be adequately explained by FOA or ED in the CSM. However, neither of
these approaches showed the crossover behaviour of fast decay for a small ex-
ternal magnetic field and a slow exponential decay for large magnetic fields. By
introducing quadrupolar interaction and nuclear Zeeman splitting to the model,
we were able to show long time exponential decay that concurs with the ob-
servations made in the experiment [72]. The decay rate TG2 increases with the
transversal magnetic field strength before reaching a plateau for large magnetic
fields of about TG2 = 3.5µs. We derived that the spin echo amplitude measured
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in Ref. [29] is described by a fourth-order spin correlation function Pg0,g0(T, τ),
involving two different electron spin components, Sy and Sz. We showed that
the decay mechanisms are the same and that both correlation functions exhibit
qualitatively similar long-time decay. This was expected, as the system is iso-
tropic in the yz plane. The decay times of both Pg0,g0 and G4 reach a plateau
for large external magnetic fields. The asymptotic decay time of G4 is lower,
TG2 = 3.5µs, than that of Pg0,g0 , where T P2 = 4µs. Since Press et al. observed
a higher asymptotic decay time T P2 = 3µs [29] than Bechtold el al. [72], who
reported TG2 = 1.4µs for Bx = 4T, this agrees well with experiments.

In conclusion, fourth-order spin correlation in QD systems is well described by
an enhanced CSM including quadrupolar couplings and nuclear Zeeman splitting.
Fourth-order correlation yields information about the system beyond the well
known second-order correlation function, and is, therefore, highly interesting for
future studies.
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